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SUMMARY 

Industrial wastewater, such as the effluents from textile and garment companies, may contain 

toxic organic pollutants, which resist conventional wastewater treatment. Their complete and 

environmentally friendly degradation requires innovative technologies. Photocatalysis, an ad-

vanced oxidation process, can serve this purpose. Since 1972, when the photocatalytic activity 

of titanium dioxide was first noticed, photocatalysis has drawn the attention of scientists and 

engineers but it has not yet been widely applied in industrial practice. This is mainly related to 

the challenges of up-scaling from laboratory experiments to large production sites. 

The main goal of this thesis is to develop a concept of nanoparticle-based photocatalysis for 

the treatment of wastewater. Ideally, process parameters should be adjustable and process 

conditions should be well-defined. These constraints are prerequisite for establishing process 

models and comparing the photocatalytic efficiency of different photocatalysts or for different 

pollutants. More importantly, the configuration should be scalable, in order to cover a wide 

spectrum of applications. 

In response to these requirements, this thesis introduces a new reactor concept for photo-

catalytic wastewater treatment, which relies on finely dispersed photocatalysts as well as 

uniform and defined process conditions with regard to illumination and flow. The concept was 

realized in a photocatalytic setup with an illuminated flow reactor. The flow channel has a 

rectangular cross section and meanders in a plane exposed to two dimensional illumination. 

Crucial process parameters, e.g., volumetric flow rate and light intensity, can be adjusted in a 

defined manner. This facilitates the study on the photocatalytic degradation of different or-

ganic pollutants in the presence of various photocatalytic materials under arbitrary illumination. 

The thesis provides a comprehensive description of the operational procedures necessary to 

run photocatalytic reactions in the experimental setup. It includes three main steps: i) disper-

sion of photocatalysts, ii) equilibration with respect to pollutant adsorption and iii) accomplish-

ing the photocatalytic reaction. Samples are collected in a mixing tank for online or offline 

analysis. The proceeding decrease in the concentration of organic pollutant is used to assess 

the activity of the photocatalytic materials. 

A particular focus lies on the first of these steps, the dispersion of photocatalysts, because it 

is ignored in most studies. Typically, photocatalysts are in an aggregated state. The thesis 

demonstrates that type, intensity and energy of dispersion exert a crucial influence on size 

and morphology of the photocatalyst particles and, thus, on their optical properties and, ac-

cordingly, macroscopic photocatalytic behavior. Apart from this, a proper dispersion is neces-

sary to reduce speed of gravitational solid-liquid separation, at best, to prevent catalyst sedi-

mentation and to avoid misleading results. 

The photocatalytic performance was intensively investigated for the color removal of a model 

dye substance, methylene blue. Commercial titanium dioxide nanoparticles, widely explored 

in literature, were used as a photocatalyst. Their characteristics (size, morphology, stability 
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and optical properties) were determined. Photocatalytic experiments were carried out under 

UV irradiation. Influences of different factors, including the concentration of the photocatalyst, 

the concentration of the organic compounds, light intensity, optical pathlength and pH were 

examined. The degradation was quantified via the decrease of methylene blue concentration. 

This conversion is, however, an immediate result influenced by all process parameters, e.g., 

the volume, the light intensity, the optical pathlength. Hence, kinetic models on macroscopic 

and microscopic levels are established. Normalizations with respect to process conditions are 

proposed. The apparent reaction kinetics are traced back to volume- and intensity-related re-

action rate constants, and the reaction rate constant at the illuminated surface of the reactor. 

Additionally, the model is modified to be used for time-variant UV intensities, as encountered 

for solar photocatalysis. These achievements allow for a comparison of the experimental re-

sults from different laboratories. Moreover, they are prerequisite for the translation of labora-

tory results into large scale plants. 

Selected case studies for further applications are introduced. The photocatalytic degradation 

of different organic molecules (one antibiotic and two commercial dyes) with different photo-

catalytic materials (commercial nanomaterials and self-synthesized magnetic particles) under 

artificial or natural light sources was performed. Additionally, photocatalysis was studied in a 

realistic application. Preliminary tests with dye solutions of a textile company in Danang, Vi-

etnam, impressively showed the feasibility of wastewater treatment by means of photocatal-

ysis. Based on the reported capacity of wastewater in the current treatment plant of the com-

pany, the necessary process parameters were assessed. The rough estimation showed that 

photocatalysis can improve the working ability of the current wastewater treatment plant. 

In conclusion, this thesis presents a concept for wastewater treatment by slurry photocataly-

sis. As the process conditions are adjustable and definable, the process can be ideally per-

formed in laboratories for research purposes, where different materials need to be tested and 

the working volume can be lower than hundreds of milliliters. The photocatalytic configuration 

is expected to work with a capacity of hundreds of liters, although appropriate experimental 

evidences are reserved for further up-scaling studies. 
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KURZFASSUNG 

Industrielle Abwässer, wie solche der Textil- und Bekleidungsindustrie, können giftige organ-

ische Verunreinigungen enthalten, die durch konventionelle Abwasserbehandlung nicht 

beseitigt werden. Um einen vollständigen und umweltfreundlichen Abbau zu gewährleisten 

bedarf es neuer Technologien. Die Photokatalyse, eine Form der Erweiterten Oxidation (engl.: 

advanced oxidation process), entspricht den gewünschten Anforderungen. Sie ist seit 1972, 

dem Jahr als die photokatalytische Aktivität von Titandioxid entdeckt wurde, umfangreich un-

tersucht worden. Allerdings findet sie in der industriellen Praxis kaum Anwendung. Das liegt 

im Wesentlichen an den Schwierigkeiten der Maßstabsüberübertragung vom Labor zu 

großtechnischen Anlagen. 

Das übergeordnete Ziel der vorliegenden Dissertation besteht in der Entwicklung eines 

Konzeptes zur nanopartikel-basierten Photokatalyse in der Abwasserbehandlung. Idealweise 

sollten die Prozessparameter einstellbar und die Prozessbedingungen eindeutig definiert sein. 

Das ist notwendig, um Prozessmodelle zu entwickeln und die photokatalytische Effizienz von 

unterschiedlichen Photokatalysatoren oder für unterschiedliche Schadstoffe zu vergleichen. 

Außerdem sollte das Konzept eine skalierbare technische Umsetzung ermöglichen, damit sich 

ihm ein breites Anwendungsfeld eröffnet. 

Die Dissertation antwortet auf diese Anforderungen mit einen Reaktorkonzept für die photo-

katalytische Abwasserbehandlung, das feindisperse Photokatalysatoren nutzt sowie einheit-

liche und definierte Prozessbedingungen in Bezug auf Beleuchtung und Strömung gewähr-

leistet. Das Konzept wurde in einem photokatalytischen Versuchsstand umgesetzt, das einen 

Strömungsreaktor beinhaltet, dessen mäandrierender Strömungskanal einen rechteckigen 

Querschnitt besitzt und einer planaren Beleuchtung ausgesetzt ist. Die kritischen Prozesspa-

rameter wie Durchfluss und Lichtintensität sind definiert und einstellbar. Das ermöglicht ver-

gleichende Untersuchungen zum photokatalytischen Abbau unterschiedlicher organischer 

Substanzen für unterschiedliche Photokatalysatormaterialien und beliebigen Beleuchtung-

sszenarien. 

Ergänzend dazu, werden auch die zum Betrieb des photokatalytischen Versuchsstandes not-

wendigen Verfahrensschritte umfassend beschrieben. Sie beinhalten drei Schritte: i) die Dis-

pergierung des photokatalytischen Materials, ii) eine Wartezeit zur Einstellung des Adsorp-

tionsgleichgewichtes der organischen Schadstoffe und iii) die Durchführung der photokatalyt-

ischen Reaktion. Zur Offline- und Online-Analyse des Abbauprozesses werden aus einem Vor-

lagebehälter Proben gezogen. Die stetige Absenkung der Schadstoffkonzentration ermöglicht 

eine Quantifizierung der photokatalytischen Aktivität auf mikroskopischer Ebene. 

Ein besonderes Augenmerk gilt der Dispergierung des Photokatalysators, weil dieser 

Prozessschritt in den meisten publizierten Studien ausgeblendet wird. Dabei handelt es sich 

bei Photokatalysatoren typischerweise um aggregierte Partikelsysteme, deren Größe und 

Morphologie entscheidend von der Art, Intensität und Energie der Dispergierung bestimmt 
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wird. Die vorliegende Arbeit zeigt, dass dementsprechend auch ein Einfluss auf die optischen 

Materialeigenschaften und folglich auf das photokatalytische Verhalten des Gesamtsystems 

besteht. In jedem Fall ist eine Katalysatordispergierung notwendig, um eine Schwerkraft in-

duzierte Entmischung der Suspension zu verhindern und daraus resultierend Fehlinterpreta-

tionen der Versuchsergebnisse zu vermeiden. 

Mit dem neuen Versuchstand wurde der photokatalytische Abbau vor allem an der Entfärbung 

eines Modelfarbstoffes (Methylenblau) untersucht. Als Photokatalysator wurde ein kommer-

zielles, nanostrukturiertes Titandioxid verwendet, das auch in anderen Studien zum Einsatz 

kam. Dessen morphologischen und optischen Kenngrößen wurden gemessen. Die photokata-

lytischen Experimente wurden regulär bei UV-Beleuchtung durchgeführt. Die Einflüsse di-

verser Faktoren, u.a. die Katalysatorkonzentration, die Farbstoffkonzentration, die Lichtinten-

sität, die optische Weglänge und der pH-Wert, wurden untersucht. Die Kinetik der Abbaureak-

tion wurde zunächst unmittelbar aus dem Rückgang der Farbstoffkonzentration berechnet. 

Doch da das entsprechende Ergebnis von Prozessparametern, wie dem Reaktorvolumen, der 

Lichtintensität oder der optischen Weglänge, abhängt, wurde ein Modell entwickelt, dass die 

Kinetiken auf Mikro- und Makroebene miteinander verbindet. Es ermöglicht eine Normalisier-

ung von Messdaten bezüglich verschiedener Messbedingungen. Das heißt, dass die beo-

bachteten Reaktionsraten auf volumen- und intensitätsbezogene Reaktionskonstanten unmit-

telbar hinter dem Beleuchtungsfenster zurückgeführt werden. Darüber hinaus, wurde das 

Modell so modifiziert, dass es auch für Situation mit zeitlich veränderlicher Bestrahlungsinten-

sität (z.B. Sonnenlicht) genutzt werden kann. Die Ergebnisse der Modellentwicklung erlauben 

nunmehr den Vergleich zwischen photokatalytischen Messdaten aus unterschiedlichen La-

boren, sie sind aber auch Voraussetzung für die Übertragung von Versuchsdaten aus dem 

Labor auf großtechnische Anlagen. 

In Form von Fallstudien werden mögliche Anwendungsszenarien betrachtet. Unter anderem 

wurde der photokatalytische Abbau von verschiedenen organischen Molekülen (ein Antibi-

otikum und zwei herkömmliche Farbstoffe) mit unterschiedlichen photokatalytischen Materi-

alien (kommerzielle Nanomaterialien und selbsthergestellte Partikel) unter künstlichen und na-

türlichen Licht untersucht. Zudem wurde die Photokatalyse für einen realen Anwendungsfall 

eingesetzt. Machbarkeitstests mit Farblösungen einer Textilfabrik aus Danang (Vietnam) 

bestätigten die Wirksamkeit der photokatalytischen Abwasserbehandlung. Anhand des Ab-

wasservolumens und der Kapazität des vorhandenen Klärwerkes der Fabrik wurden die not-

wendigen Prozessparameter abgeschätzt und der Nutzen einer Implementierung der Photo-

katalyse in das bestehende Abwasserbehandlungskonzept nachgewiesen.  

Die vorliegende Dissertation präsentiert ein Konzept zur Abwasseraufbereitung durch Photo-

katalyse mit suspendierten Nanopartikeln. Aufgrund der definierten und einstellbaren Prozess-

bedingungen eignet sich dieses Konzept hervorragend für Forschungsaufgaben im La-

borbereich, um z. B. unterschiedliche photokatalytische Materialien bei einem geringen Ar-

beitsvolumen zu testen. Das Konzept ermöglicht jedoch auch eine Umsetzung in großskaligen 
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Anlagen mit größeren Kapazitäten, gleichwohl entsprechende experimentelle Nachweise zu-

künftigen Studien vorbehalten bleiben. 
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1 INTRODUCTION 

The term “photocatalysis” is intensively mentioned throughout this Ph.D. dissertation. This 

process is expectedly applied in water treatment. This study aims a concept for the treatment 

of textile industry wastewater by heterogeneous photocatalysis. In this chapter, the state of 

the art, the problem statement, the overview of the methodology and the organization of the 

dissertation are introduced. 

1.1 MOTIVATION 

The industry of textile and garment, which are inevitable products, drew a speedy growth, 

especially in Asian developing countries [1]. Worldwide, their market share increased from 

36 % in 1990 to 58 % in 2011 worldwide. For instance, Vietnam had a market share of 2.5 % 

of the world exports (2008) [2], and was the 9th and 6th major exporter of textile and clothing, 

respectively (2014) [3]. Together with the growth of the garment economy, dyes are broadly 

consumed. The amount of synthetic dyes produced annually worldwide was estimated to be 

over 7×105 tons (2013) [4]. Due to the inefficiency of the dyeing process, up to 2×105 tons of 

dyes were lost to the effluents [4]. They have affected more and more seriously the environ-

ment [3]–[6]. Their toxicity together with their chemical stability makes it difficult to be de-

graded by the conventional wastewater treatments. 

Therefore, modern wastewater treatments are required. It is essential that modern technology 

is cost-effective hence applied in developing countries, where a sustainable development at-

tracts less attention. A wide range of modern techniques has been used, including adsorption, 

oxidation, microbiological or enzymatic decomposition. Among all, chemical oxidation is effec-

tive but its selectivity limits its applications. Advanced oxidation processes (AOPs) have re-

ceived increasing attention as an alternative method [7]–[10]. Generated reactive free radicals 

are strong oxidizing agents (e.g., the superoxide radical O2
●− and the hydroxyl radical OH●) that 

make AOPs non-selective to decompose organic solutes. These radicals are responsible for 

the oxidation, discoloration, mineralization and degradation of organic pollutants. 

Among AOPs [11], photocatalytic oxidation has been applied successfully to the removal of 

recalcitrant pollutants [12]. The process was first introduced by Fujishima and Honda in 1972 

[13]. The heterogeneous process is based on the interaction between photocatalytic materials 

and radiation with adequate energy to induce generation of electron-hole pairs [8], [23], [27]–

[32]. Semiconductor nanoparticles are widely used as photocatalysts [14]–[16]. Usually, 

ultraviolet (UV) or near UV light can be utilized. To perform photocatalytic tests, key solutions 

[8] were focused: i) the utilization of new catalysts, including modified materials more effec-

tively working under wide spectral illumination, or immobilized catalysts to enhance the recov-

ery of the materials and avoid post treatment by filtration or sedimentation, ii) performances 

with harsh operational conditions, iii) design of efficient photoreactors, and iv) combination 

with other processes to enhance the efficiency. 
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45 years after photocatalysis was introduced for the first time, only a few industrial-scaled 

photocatalytic systems were presented. Two systems for water treatment were early in-

stalled at the National Solar Thermal Test Facility in Albuqueque, New Mexico, USA, and at 

Plataforma Solar de Almería, Spain [17]–[19]. For air purification, in 2015, a photocatalytic de-

pollution performance was installed at the Leopold II tunnel in Brussels, Belgium [20], [21]. In 

fact, 29,095 papers on the topic “photocatalysis” had been published in open access journals 

within 1972–2012 (data are based on Thompson Reuters, http://apps.webofknowledge.com, 

accessed on 10-Sep-2017). Despite the numerous amount of researches, photocatalysis still 

meets a barrier when it comes to its applicability at large scale. It seems that, the studies of 

new materials (strategies i), and combined process (strategy iv) have been favored. Indeed, in 

2015, it is the first time that a separated symposium of photocatalysis was organized in a 

conference. This event was held by the European Materials Research Society (the 2015 E-

MRS Spring Meeting, Lille, France, May 2015). Most of the talks focused on photocatalytic 

materials development, while engineering studies were dispersedly presented. In May 2017, 

in the second occasion, the E-MRS again gathered scientists from the field (the 2017 E-MRS 

Spring Meeting, Strasbourg, France). Of all 15 sessions, new materials were intensively pre-

sented, while it was given only one session for the process performances and another for 

photoreactors. 

A suitable photocatalytic reactor has become essential to fill in the gap between the laboratory 

studies and real applications. First, the photoreactor must ensure the engineering require-

ments of a reactor where process parameters are controllable and determinable. Second, an 

efficient interaction between light and fluid must be guaranteed [22], [23]. Third, the reactor 

must be scalable. A down-scale is needed to conduct experiments in different laboratories. 

An up-scale is necessary for further applications at industrial scale, or at least at pilot scale. 

Facing these challenges, in this Ph.D. study, a photocatalytic setup was designed. Illuminated 

batch reactors widely used in other studies of materials development [6], [24], [25] are shown 

inappropriate. Instead, this work is based on the flow reactor prototype which was applied at 

the pilot scale [17]–[19]. An operational procedure is suggested. A reactor model for quantita-

tive experimental results is introduced. To acquire comprehensive understanding of the de-

signed setup, photocatalytic performance was tested with a model dye substance, methylene 

blue, and a widely used photocatalyst, commercial titanium dioxide nanoparticles. To test the 

ability for further applications, different photocatalytic materials and organic substances and 

different light sources (artificial or natural light) were used. At the end, a proposal of applying 

photocatalysis as one step in the effluent treatment system in a textile and garment company 

in Vietnam is given. It fulfills the concept of wastewater treatment by photocatalysis with 

nanoparticles. Detailed challenges are be presented after the state of the art. 

This Ph.D. study tackles various issues on the development of a scalable photocatalytic sys-

tem which can be applied for wastewater treatment. Various ideas came up. In fact, with 

certain facilities, a limited time and a finite knowledge, only few of them were successfully 

conducted. For future work, the use of immobilized photocatalysts in the setup can be one 

http://apps.webofknowledge.com/
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important application. Up-scaling can be done based on the connection between laboratories 

and reality which is introduced in this multidisciplinary study. 

1.2 OUTLINE OF THE THESIS 

This dissertation is structured as follows: 

Chapter 2: The state of the art is introduced. Based on reviewed literature, different aspects 

are considered, including photocatalytic materials used in research worldwide, pros and cons 

of photocatalytic reactors, influencing factors, and modeling. Detailed challenges are pre-

sented at the end. 

Chapters 3 to 7 give a detailed description of the main findings and results of this thesis. The 

main results can be divided into four parts: 1) the design and realization of the reactor; 2) the 

experimental characterization of the materials used as photocatalysts; 3) the experimental and 

theoretical aspects of the photocatalytic performance; 4) the real application in a textile com-

pany in Vietnam. More in details, the chapters are divided as following: 

Chapter 3: The chapter introduces the design of a new laboratory-scaled flow photocatalytic 

setup together with an operational procedure. A reactor model is established. This chapter 

actually shows the first main results of the dissertation. 

Chapter 4: Materials, experimental and analytical methods are given. 

Chapter 5: The characteristics of the photocatalytic materials used in this work are shown. 

This chapter represents the second part of the main experimental results of the thesis. 

Chapter 6: Experiments are performed for a comprehensive understanding of the engineering 

photocatalysis. Theoretical aspects of a photocatalytic performance are discussed. The chap-

ter is the third part of the main results of this work. 

Chapter 7: Selected case studies aiming at laboratory applications are shown. Further experi-

ments towards real applications in a textile company in Danang, Vietnam are presented. Data 

are discussed regarding a joint German-Vietnamese project. The results aim at practical as-

pects, and are the fourth main results of the thesis. 

Chapter 8: Conclusions of the work are given. Ideas for further studies are suggested. 
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2 FUNDAMENTALS OF PHOTOCATALYSIS 

2.1 PHOTOCATALYSIS 

2.1.1 Photo excitation 

Photocatalysis is a heterogeneous process with a wide range of application. Various oxides 

with narrow bandgap such as TiO2, ZnO, SnO2, Fe2O3, WO3 or sulfides such as CdS, ZnS are 

potential photocatalysts [14]–[16]. In these materials, free electrons are localized in the va-

lence band. When the materials are irradiated with light, they will absorb photon energy (h) 

of greater than the bandgap (typically with the ultraviolet illumination) [6], [8], [25]–[31]. Elec-

trons are excited and jump to the conduction band. The positively charge carriers left in the 

unfilled valence band are called holes. The photo excitation is described as Eq. (2.1) and shown 

in Figure 2.1. 

 h

2 2
TiO TiO e h .     (2.1) 

The created electrons and holes move to the surface of the photocatalyst. They are trapped, 

or recombine at surface trapping sites. 

The time scale for each step of photocatalytic mechanism can be summarized as [28], [32], 

[33]: electron–hole excitation time is few fs, trapped time is 100 fs–10 ns, and recombination 

time is tens ns. Consequently, the fast recombination restricts the application of photocataly-

sis [17], [31]. 

 

 

Figure 2.1 Scheme of a photocatalytic process, where h is the photon energy, VB and CB are the 

valence and conduction band of the photocatalyst, e– and h+ are the photo excited electrons and holes, 

A and D are electron acceptors and donors, respectively. 
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2.1.2 Reaction pathway 

The photo induced electrons and holes react with electron acceptors or donors, respectively. 

The reaction of holes with electron donors can be performed via two mechanisms. The 

trapped holes either directly degrade organic compounds (so-called direct mechanism or hole 

mechanism, Eq. (2.2)) or react with surface hydroxyl groups in water to produce OH● radicals 

(the indirect mechanism or the radical mechanism, Eqs. (2.3)−(2.4)). 

h R R ,     (2.2) 

h OH OH ,     (2.3) 

2
OH RH R H O.     (2.4) 

The dual reaction mechanism may happen where both hydroxyl group and the organic com-

pound can act as electron donors, or reductants, which are oxidized [34]–[36]. Accordingly, the  

properties and products of reaction may be influenced. It is interesting that, like other AOPs, 

photocatalytic reaction are chain reaction sequences and the ideal final products are CO2 and 

water. 

While hydroxyl groups or organic substances consume the holes, electron acceptors utilize 

the counter charge carriers, the electrons in the conduction band. Dissolved oxygen (DO) is a 

primary electron acceptor since it involves the formation of other reactive oxygen species. As 

DO reacts with electrons, its presence is vital to maintain the electron-hole separation and to 

promote the photocatalysis [37]. The reaction pathway of DO was proposed [30], [38] as 

 2 CB 2 2 2TiO e O TiO O     (2.5) 

2 2O H HO   
 (2.6) 

2 2 2 2 2HO O H H O O     
 (2.7) 

2 2 2 22HO H O O  
 (2.8) 

 2 CB 2 2 2 2TiO e HO H TiO H O     
 (2.9) 

2 2 2 2H O O OH OH O     
 (2.10) 

 2 CB 2 2 2TiO e H O TiO OH OH .     
 (2.11) 

The kinetics of O2 as well as the decay profile O2
•– was studied [30], [37], [39]. 

Other electron acceptors are H2O2, O3 [39]. Note that H2O2 can act a dual role not only to 

accept conduction band electron as an oxygen species, but also to generate hydroxyl radicals 

(Eq. (2.12)) [40]. 
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2 2H O 2OH .
 (2.12) 

2.1.3 Modified photocatalysts 

Among photocatalytic materials, titanium dioxide TiO2 is very promising because of its chem-

ical, biological inertness and especially its commercial availability [8], [26]. However, the large 

bandgap requiring UV irradiation for the activation is the main disadvantage. For TiO2, to excite 

the electron-hole pair, an adequate energy of 3.0–3.2 eV appropriate to wavelengths of shorter 

than 410–387 nm is requisite [28], [33], [41]. Due to a small quantity of UV-radiation in the 

sunlight spectrum [17], [31], TiO2 can absorb only 2−5 % of solar energy. It limits the utilization 

of solar photocatalysis which has become the goal for industrial applications (Figure 2.2) [17], 

[23], [42], [43]. As previously presented (section 2.1.1), the fast recombination is the second 

main limitation of TiO2 photocatalysts. Critical solutions [8], [43] to overcome these drawbacks 

are the modification of the photocatalytic materials. There are three forms of modification [44]. 

In the bulk modification, dopant chemicals can be added to the bulk of the photocatalysts [44]. 

Doping is the technique to achieve this modification. Photocatalysts can be doped with differ-

ent types of metals (including rare earth elements) or nonmetals [8], [46], [47]. The non-metal-

lic dopants (nitrogen [48], [49] and carbon [50]) may localize electronic states above the valence 

band of the photocatalyst, thus narrowing the bandgap energy and extend the light absorption 

of photocatalysts to the visible range [46], [48]. It increases the photocatalytic response, or 

photoresponse of the materials. The presence of metals can also narrow the bandgap of pho-

tocatalysts and utilizes lower photon energy than pristine photocatalysts [46]. Moreover, me-

tallic ion dopants prolong the lifetime of the charge carriers by trapping electrons, thus the 

  

  

Figure 2.2 The number of scientific manuscripts with keywords "photocataly*" and "solar" based on 

the data of Thompson Reuters [45]. The statistics was conveyed on June 2017. 

* The data statistic was tallied throughout the first half of the fiscal year.
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counter carrier can reach the surface of the photocatalyst [51], [52]. Various metals can be 

listed, e.g., silver [53], [54], platinum [55], gold [56], iron [57], copper [58], chromium [59], 

magnesium [60] and tin [61]. Rare earth doping is another strategy to enhance photocatalytic 

activity. Rare earth elements belong to the f-block in the periodic table including lanthanides, 

as well as scandium and yttrium. Doping with rare earth elements can inhibit the phase trans-

formation of titania photocatalysts from anatase to rutile [62], [63]. Note that, of three phases, 

anatase is the most active for photocatalytic purposes. Additionally, rare earth doped photo-

catalysts have an improved photocatalytic activity as lanthanide ions play the role of an elec-

tron acceptor and accelerate the electron-hole separation [64]–[67]. Attributed to a charge 

transfer transition between f-electrons and the conduction/valence band of titania, the 

bandgap of the photocatalyst is narrower [59], [64]–[67]. The red shift to longer wavelengths 

excites the catalyst in the visible light and makes the utilization more efficient. 

Another modified photocatalyst group is nanocomposites [43], [44]. The materials consist of 

photocatalyst domains in contact with inert or photoactive compounds. Different strategies 

can be applied. Nanocomposites can be produced by depositing metals (Ag [68], [69] and Au 

[70]) on photocatalysts. Similar to the mechanism of metallic doped photocatalysts, the Fermi 

level of metals shift closer to the conduction band of the photocatalyst, which indicates a 

better separation of electrons and holes [44], [71]. Composites made of photocatalysts and 

some carbonaceous materials with high conductivity (graphene [72] and carbon nanotubes 

[73]) also have this property. Another strategy is coupling. TiO2 can be coupled with different 

semiconductors (SnO2 [74], WO3 [75], ZnO and CdS [76]). They have a similar bandgap to that 

of TiO2 where the energy state of the conduction band is lower and the valence band is either 

similar or lower. They act as an electrons and holes storages. Consequently, the inter-particle 

electron transfer from TiO2 to the other semiconductors can happen and prolong the lifetime 

of electrons and holes. 

Surface modification is the other form to improve photocatalytic activity [44]. Since this section 

aims at the enhancement of photoresponse and the retard of electron-hole recombination, 

surface modification is briefly introduced. Accordingly, the physicochemical properties of pho-

tocatalysts can be varied [43]. Sol-gel preparation of silica or zirconia may control the crystal-

linity and help to achieve purer anatase phase [77]. The surface roughness of photocatalysts 

related the reflectivity and the efficiency of light absorbance [44] can be altered by doping 

photocatalysts with silver [78]. Adsorption capacity is one of the most dominant parameters 

affecting the photodegradation [44]. The deposition on nanoporous materials such as fractal-

type morphology [79], nanofibrous architecture [80], nano hollow [81] structured may enlarge 

the surface area of photocatalysts. In addition, increasing the adsorption of dissolved oxygen 

enhances the charge carriers’ separation [44]. As polytetrafluoroethylene (PTFE) has an affinity 

toward O2, it can be chosen to produce the composite film to increase the local concentration 

of oxygen [82]. Other properties such as surface charge, surface hydrophilicity, and specifici-

ties (which is the selectivity toward certain toxic compounds) can be altered as well [44]. 
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2.2 PHOTOCATALYTIC SETUPS 

2.2.1 Requirements 

A photocatalytic setup certainly ensures the engineering requirements. Additionally, the reac-

tor must efficiently collect photon energy to perform the reaction. 

Illumination 

Illumination is an absolute requirement for a photocatalytic reaction. Regarding the light 

sources, the excitation of commercial photocatalysts required energy in the UV region of the 

electromagnetic spectrum. Artificial UV lamps can be employed. Mercury lamps are widely 

used. However they are costly and unfriendly to the environment [6], [31], whereas photoca-

talysis is expected to solve environmental problems. The substitution of these lamps by mer-

cury-free UV source is a must strategy [31], [83]. Light-emitting diode (LED) [84], [85] or ex-

cimer lamps [86], [87] with a broad range of applications can be used. For the modified photo-

catalysts, which can utilize the visible light, sunlight has gained a great attention to researchers 

(Figure 2.2) [17], [23], [42], [43]. If the reactor design allows for an efficient light collection, 

solar photocatalysis can be performed even with commercial photocatalytic materials. Differ-

ent types and technical issues of solar photocatalytic reactors have been investigated by the 

group of Malato in Plataforma Solar de Almería (PSA) in Spain [17]–[19]. The design was used 

for pilot scale photocatalysis. 

Regarding the brightness, the flux density striking the illuminated surface should be taken into 

account. In photocatalysis, this characteristic is commonly referred as “intensity” and has the 

unit of W/m2 (which is actually the unit of irradiance in optics [88]). Light intensity in most 

current studies is lower than 200 W/m2. In this range, the photocatalytic reaction rate is pro-

portional to the light intensity [39], [41], [89]–[93]. The influence of light intensity is introduced 

in detail in section 2.3.3. 

Optical penetration should be considered. In case of working with slurry photocatalysts, the 

turbidity of the suspension affects the radiation propagation [94], [95]. For this reason, the 

optical penetration is usually short [17], [19]. 

Flow 

In continuous flow process with slurry photocatalysts, a mixing tank is required to disperse 

the photocatalyst in the fluid [8]. A good mixing should be performed to avoid sedimentation 

or re-agglomeration of photocatalysts [17], [19]. 

A pump is needed to supply the massive suspension into the system. The pump energy must 

be high enough to maintain the flow regime. Typically, in flow reactors of which length in 

reality can be hundreds meter and the retention time can last for hours, turbulence must be 

carried [17], [19]. 
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Additionally, due to the non-uniformity of light intensity in different fluid layers inside the reac-

tor (e.g., Figure 2.6 in section 2.2.2), the concentration gradients of organic substances cannot 

be avoided [95]–[97]. A strong mixing condition can help to lower this mass transport limita-

tion. 

Post treatment 

An integral step is entailed for the post-separation. One simple technique is the integration of 

coagulation, flocculation, and sedimentation steps, yet it is unable to recover the photocata-

lysts. Membrane filtration (micro- or nanofiltration [98]–[100]) is a practical solution (Figure 2.3). 

It not only handles products separation but also realizes the continuous mode of photocataly-

sis. 

Materials 

Reactors must be stable enough to contain the mass of the catalyst and a large amount of 

liquid. Especially the illuminated side must be UV-transparent to receive radiation for photo-

catalyst activation. Other needs for chemical reactions must be guarded, e.g. the material 

must be pH-resistant depending on the pollutants to be treated and their (by-) products. Fluor-

opolymers such as PTFE (polytetrafluoroethylene), PVDF (polyvinylidene fluoride), FEP (fluori-

nated ethylene propylene), PFA (perfluoroalkoxy) and several types of glass such as borosili-

cate glass satisfy these requirements [17]. 

When working with solar light, to concentrate the light, a sun collector is needed [17]–[19]. Its 

surface must be polished and mirrored but, at the same time, anti-abrasive so that it can ef-

fectively reflect the solar light in various climatic conditions. A wavelength-selective reflective 

surface is needed since the reaction requires the high photon energy of UV light. Electro-

polished anodized aluminum and organic plastic films with an aluminum coating are the two 

best fitting of these requirements. 

 

 

Figure 2.3 A photocatalytic configuration: a photocatalytic reactor integrated with a membrane filtra-

tion for continuous flow. 
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2.2.2 Reactors 

This study concentrates on water treatment. Heterogeneous reaction occurs in solid-liquid 

systems. Depending on photocatalytic types, operational conditions and applications, compat-

ible photocatalytic reactors are required [101]. Different types of reactor deal with well-stirred 

slurries, fluidized beds, packed beds and catalytic walls [102]. Since fixed photocatalysts re-

duce the active sites, enlarge the mass transfer limitation as well as restrict the photon pene-

tration, the suspended photocatalysts are preferred [8], [31]. This section firstly introduces 

reactors for suspended and fixed photocatalysts. It is then followed by coupling processes of 

photocatalysis and post treatment. 

Batch reactors for slurry photocatalysts 

Most of the slurry photocatalysis have been implemented in illuminated batch reactors where 

a perpendicular or magnetic stirrer maintains the dispersion. A UV lamp (usually mercury lamp) 

housed in an inner quartz tube is immersed in the cylindrical axis of the reactor to generate 

the UV radiation for photocatalyst’s excitation (Figure 2.4) [6], [24], [103]. Cooling water for 

thermal stabilization (optional) can be circulated in the quartz well. Gas electron acceptor (if 

needed) can be purged in the reaction container. The use of multiple lamps can enhance a 

more uniform distribution of light intensity [104]. Illuminations from the side, from the top or 

through a bottom optical window of the reactor are other variants of this reactor prototype 

[25]. 

When one uses laboratory-scaled batch reactors, e.g. flasks, the recirculation time is seconds, 

whereas the reaction time is minutes to hours [22]. The fluid parcel is considerably well-stirred. 

Every particle assumedly has the same averaged exposure to illumination and the system can 

be treated as a well-stirred reactor. 

 

 

Figure 2.4 A batch reactor widely used in photocatalysis studies. 
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Flow reactors for slurry photocalysts 

With this reactor type, photocatalysis is performed in a UV-transparent tube, which receives 

illumination from the side [12], [17], [18], [89], [97], [105]. Reactor diameter must be small 

enough to eliminate the non-illuminated space, but big enough to maintain the small pressure 

drop. The inner diameter is recommended to be in the range of 25–50 mm. 

Flow reactors can be well applied for solar photocatalysis [17], [18]. A reflector based on solar 

thermal collectors is used to concentrate sunlight. Solar photocatalysis requires only a high-

energy photon gathering, whereas heating plays no significant role, thus, the process identi-

fies with medium-, and low- or non-concentrating systems. Parabolic trough collector is a me-

dium-concentrating system. The tubular reactor (or absorber) is located in the focal line of a 

parabola to receive concentrated solar radiation from the parabolic reflective surface. The con-

figuration demands an azimuth tracking mechanism to adjust the system direct to the solar 

irradiation angle which is costly. Additionally, the high concentrated irradiation of such concen-

trating systems causes a higher electron-hole recombination rate and decreases the photo-

catalytic property. The problems are negligible in compound parabolic collector, a low-concen-

trating system. This alternative has a reflective surface constructed by two parabolas thus 

indirect solar light is also reflected onto the absorber (Figure 2.5). Accordingly, this collector is 

less dependent on the solar irradiation angle. The complex design and the costly operation of 

the tracking device in parabolic trough collectors are avoided. The large scaled reactors for 

suspended photocatalysts were successfully employed. 

In flow reactors, the interplay between incident photons and fluid elements is inextricably 

coupled and should be accounted [22]. While the irradiance profile essentially follows the Beer-

Lambert law, the flow rate bears different fluid velocity profiles (Figure 2.6a and c), thus the 

absorbing species are spatially non-uniformly distributed. Ollis and Turchi [107] introduced a 

model to determine the reactant concentration for each single fluid element which depends 

on the distance to the illuminated wall, the axial distance, the velocity profile as well as the 

ratio between the diffusion rate and reaction rate (the Dahmkkohler number). 

In the laminar flow (Figure 2.6 a), the paraboloid flow by the radii causes non-uniform residence 

time for each fluid layer. The fastest velocity is in the middle of the slit whereas radiation 

traverses a half distance and is being extinguished. For an industrial performance, since the 

reactor tube is long, a turbulence must be guaranteed to avoid the sedimentation of the cata-

lyst along the circuit [19]. The turbulence (Figure 2.6 c) allows for a uniform fluid over any cross 

section. This configuration is more efficient than the former. 
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Figure 2.5 A flow reactor used for solar photocatalysis: a) Scheme and b) image of compound parabolic 

systems for water disinfection which were installed in the Plataforma Solar de Almería (2010) [106]. 

 

 

Figure 2.6 Illumination on the fluid layers in different flows: a) laminar flow, b) laminar falling film flow, 

and c) turbulent flow. 

 

Reactors for fixed photocatalysts 

When using photocatalyst powders, dispersion is needed to homogenously distribute photo-

catalyst particles in reactors. Additionally, the final separation of the catalyst from the treated 

stream is the main limitation of the process. Immobilization of photocatalyst on an inert sup-

port restrains the costly membrane filtration of the post-treatment [8], [83], [108]. A variety of 

conventional supports include mesoporous clays (zeolite, kaolinite) [103], [109] or polymers 

[84], [110], glass or steels [111]. 

Three main categories of reactors for fixed photocatalysts are glass plate reactors, wall reac-

tors, and bed reactor. In fluidized bed reactors, beds were prepared by immobilizing photo-

catalysts on glass beads [112]. Silica gel can be used to enhance the fluidized quality [113], 

[114]. Recently, an innovation of fluidized reactors was reported via the utilization of a coupling 

photocatalytic membrane reactor [115] which is introduced in the next section. The biggest 

problem of bed reactors is light distribution. To avoid it, glass plate reactors or wall reactors 

are other options. In glass plate reactors, the photocatalyst coated on a glass sheet and water 

falls as a thin film top side down which is illuminated from the side [116]. The falling film 
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(Figure 2.6b) holds the great amount of efficient absorbing species, because the fastest flow 

at the illuminated wall receives the greatest radiation. Glass sheet can also be held on an 

inclined surface of the reactor and UV light was irradiated from the top [117]. The immobilized 

catalysts can be also placed on the bottom of the reactor [111], [117]. Instead of coating on a 

glass sheet, fixation on polymers can be employed as well [109], [118], [119]. These configu-

rations, however, encounter the capacity problems and so far not a practical design for an up-

scaling purpose. In wall reactors, photocatalysts are coated directly on the inner surface of a 

reactor [38], [114], [120], [121]. Both batch or flow reactor can be used. 

There are other forms of immobilization. Photocatalysts entrapped balls or immobilized on 

cement beads were employed in a flow reactor [122]. Magnetic nanoparticles allowing for the 

recovery of the magnetized photocatalysts by an external magnetic field also have a great 

attention [123]–[125]. These materials provide the large surface area, which is unapproachable 

for conventional immobilized photocatalysts. The reaction was performed in batch reactors. In 

other techniques, catalysts can be coated on glass fibers or glass tubes [126], [127]. The re-

actor can be cylindrical where UV lamp is positioned in the center axis. The photocatalyst 

tubes [127] or coated fiberglass fabric [126] in a cylindrical form are placed in the space be-

tween the UV lamp and the reactor wall. For a better light distribution, the catalyst-coated 

optical fibers can be used. The fibers act a double role as a photocatalyst support and as a 

light distributing guide [128]. The photoreactor consists of glass tubes distributed between 

two baffles (similar to a tube bundle heat exchanger) [129], [130]. The free reactor volume is, 

however, small and arduous for up-scaling purposes. 

The commercial performance for immobilized photocatalyst has not identified to date [17]. 

Coupling processes 

The combination of photocatalysis with other processes can be a solution to improve the pho-

tocatalytic efficiency and moreover allow for the performance of a large amount [31]. Here 

combined (simultaneous) processes, which are dissimilar from integrated (sequential) pro-

cesses [99], [131], are mentioned. Combined processes may be divided into two main cate-

gories [132]. The photocatalysis can be coupled with other AOPs such as ozonation, ultrasonic 

irradiation, photo-Fenton reaction or electrochemical treatment to increase the number of gen-

erated radicals. The other is coupling with biological treatment, membrane filtration or physical 

adsorption which improves the efficiency of the overall process but does not affect the pho-

tocatalytic mechanism. 

To solve the problem of photocatalyst post-separation and recovery which were questioned 

in the previous section, hybrid photocatalysis-membrane process can be employed [132], 

[133]. The coupling process includes three main units as shown in Figure 2.7a) [133], [134]. 
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Figure 2.7 Configuration of a hybrid photocatalysis-membrane process: a) the whole system; and b–

d) photocatalytic membrane reactors. 

 

Water and photocatalyst are stored in the feed reservoir. Photocatalytic reaction occurs in the 

photocatalytic membrane reactor (PMR) illuminated by a UV lamp [135], [136]. Photocatalysts 

can be either colloidal (Figure 2.7b) or immobilized (Figure 2.7c and d). In slurry photocatalysis, 

the submerged membrane is used for the coupling filtration. When using fixed photocatalysts 

on an external support but not on membrane (Figure 2.7c), the membrane isolates the parti-

cles segregated from the immobilized layer due to the mechanical instability. A PMR can be 

also constructed by photocatalyst particles forming a cake layer beyond a microfiltration mem-

brane (Figure 2.7d) [115]. The PMRs reduce the size of installation as well as help to control 

the residence time of the molecules in the reactor. 

2.3 QUANTITATIVE DESCRIPTIONS OF PHOTOCATALYSIS 

Application of photocatalysis requires the understanding of the process as well as of its oper-

ational parameters. A lot of authors have made their contributions to the effect of parameters 

[41], [89], [94], [101], [137], [138]. For the study purpose, influences on the slurry photocatal-

ysis are discussed. Impact factors can be grouped into main categories (Figure 2.8): 

- Photocatalyst which promotes the reaction; 

- Reactants, in particular the organic compounds to be degraded and the electron ac-

ceptors to be oxidized; 

- Light which is the driving force of the process, more specifically light wavelength and 

intensity; 
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Figure 2.8 Factors influencing a photocatalysis. 

 

- And other factors, such as acid-base property, thermal condition, flow regime, turbid-

ity, and the appearance of other chemicals. 

At the end of this sub-chapter, modeling of photocatalytic process is introduced. Light propa-

gation, kinetic model and the evaluation of the reaction by photonic efficiency are mentioned. 

2.3.1 Influence of photocatalyst concentration and morphology 

Photocatalyst dispersion 

Mechanical mixing is usually used to achieve homogeneity of slurry photocatalysts [8]. Dis-

persion with ultra-energy has some attention [24], [33], [36], [37], [137], [139]–[144]. However, 

the relation between dispersion related to the aggregated level [145] and the turbidity short-

ening the optical penetration [94], [95] was not reported. 

Photocatalyst loading 

In photocatalysis researches, the photocatalyst concentrations from few mg/l to few g/l were 

reported [12], [14], [26], [101], [105], [146]–[150]. 

Mostly, in a low range of photocatalyst concentration (below hundreds mg/l), the reaction rate 

increases along with the concentration due to the increase of surface area [12], [14], [40], 

[148], [149], [151]. It was claimed that the rate is proportional to the number of active sites of 

the photocatalyst [40], [152]. The reaction rate constant reaches a plateau or even decreases 

with ongoing increased photocatalyst concentrations [14], [148]–[150]. This phenomenon was 

usually noticed when the concentration is from hundreds mg/l to few g/l. It is explained with 

the high turbidity of the suspension and also with possible re-agglomeration, which conse-

quently shorten the radiation propagation [94], [95]. Additionally, at high loading, the particles 

with the activated species adsorbed on their surface collide with the ground state particles 

(i.e., with no activated species on their surface) thus turn to be deactivated [146], [149], [153]. 

Moreover, the availability of the active sites on catalysts depends upon solute concentration 

which should be accounted. Diffusive limitations (external interfacial diffusion and even inter-

nal diffusion) may be another reason [95]–[97]. 
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It is agreed that there is an optimum catalyst concentration. This value depends on types of 

contaminants, operation parameters as well as experimental setups [8], [26], [101], [105]. The 

assessment of photocatalyst concentration is more important when using flow reactors. Since 

an industrial reactor can be hundreds meter long, highly concentrated photocatalysts can 

cause the massive load. 

Morphology of photocatalysts 

Various analytical methods can be employed to characterize photocatalysts. Most of them 

focused on the morphology of primary particles (or fundamental particles). They are structured 

by atomic or molecular bonding and cannot be separated into smaller particles except using 

an ultrahigh energy. Due to the synthetic process of photocatalysts, one rarely finds them as 

primary particles. Instead coalescence of primary particles by the tight bound or by the loose 

bound is formed. These so-called aggregate or agglomerate structures [154] have their prop-

erties differing from the primary particles. Scattering properties, as well as the degree of pho-

tons diffusion depends on the aggregate size and structure. 

Certainly, the size of primary particles determines the specific surface area of photocatalysts 

which is related to the adsorption capacity and the reaction zone [44], [155] Finer particles 

have a larger specific surface area and higher saturated absorbability [24], [156]. Dissimilarly, 

aggregates of different size can have the same BET surface [157]. It means that aggregate 

size has no effect on the surface area. 

Particle size and morphology determine optical properties of the system [95], [156]–[160]. It is 

caused by the UV penetration influenced by particle size. It was also shown that particle size 

affects the lifetime of excited electrons and holes, and their recombination [146], [153], [159]. 

Additionally, shape and structure of photocatalysts affect the internal diffusion of light and 

organic concentration inter-particles [22], [95], [96], [142]. Experimentally, the reactivity of pho-

tocatalysts reduces as the aggregates become larger and denser [142], [145], [157], [161]. 

Finally, size affects the distribution and sedimentation of photocatalysts in the suspension, as 

well as decides the operation of post-treatment [98]–[100]. 

Notably, when a “particle size” is presented, depending on analytical methods, the shape of 

primary particles and structure of agglomerates or aggregates, different equivalent diameters 

can be mentioned [162]–[164] (see Particle size distribution in Appendix A1). It is necessary to 

inspect the used method so that one can acknowledge which property of the photocatalyst 

was introduced. 

2.3.2 Influence of organic compounds 

Organic pollutants in wastewater (WW) can be diverse. Depending on the sources, some or-

ganic chemicals can have a higher concentration than in municipal WW. E.g., pesticides and 

fertilizers are introduced in WW from agriculture [165]. In the textile industry, WW consists of 

dye substances [4]. Pharmaceuticals from different drug classes mainly present in WW from 



Chapter 2 Fundamentals of photocatalysis 

18 

hospitals or pharmaceutical companies [166]. Different attempts have been performed to de-

grade such organic pollutants. 

Photocatalytic pathway depends on the chemical structure of organic compound(s) in the wa-

ter. As affecting the mass transfer between the bulk liquid and the photocatalyst [95]–[97], 

the organic substances also impact the photocatalytic conversion. In photocatalytic studies, 

adsorption is assumed to be equilibrated. It follows the Langmuir isotherm [8], [167] 
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where  is the surface coverage of the catalysts, Kads is the adsorption constant and Cn is the 

molar concentration of the organic molecule in the aqueous solution. 

Since the adsorption depends on the ratio between the amount of photocatalyst and the con-

centration of organic compounds, the reaction rate is altered by the initial concentration of the 

organic substance [91]. Profiles of the pollutants concentration in the bulk always present in 

the heterogeneous reaction [22], [91]. The increased concentration causes mass transfer. Or-

ganic compounds, intermediates and products obstructs the active reaction sites at the TiO2 

surface [90], [101]. However, below a certain concentration of the photocatalyst, the mass 

transport is negligible [95]–[97]. Also the turbulent flow can diminish the mass transfer limita-

tions in a flow reactor. 

The shielding effect of organic substances is, of course, important. Depending on their prop-

erties, organic molecules can absorb UV or visible light. Typically for colored dye substances 

from textile wastewater when the initial concentration is high, more photons are absorbed by 

the dye molecules whereas fewer photons can reach the TiO2 surface [3], [4], [10], [38], [101], 

[168]. The limited UV penetration depth thus decreases the photodegradation. 

Other consequences such as surface charge and pH are discussed later (section 2.3.4) to-

gether with the influence of the aqueous medium. 

2.3.3 Influence of light intensity 

Radiation, the driving force of photocatalysis, is a key factor in the process [101], [169]. In the 

field of photocatalysis, due to the large bandgap of photocatalysts, only radiation in the UV 

range or near UV range (for modified photocatalysts) is utilized. The effectiveness of light de-

pends on its intensity [39], [41], [89]–[93]. 

In most photocatalytic studies, the intensity is lower than 200 W/m2, and the dependence of 

the reaction rate on the light intensity is linear. The number of photogenerated electron-hole 

pairs on the photocatalyst surface governs the reaction rate. The higher radiant flux causing 

the larger number of charge carriers certainly explains the linear function. 

Some work reported the photocatalytic performance at medium range (approx. 250 W/m2), 

where the reaction rate is proportional to the square root of the intensity. The electron-hole 
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recombination in a meanwhile competes for the excitation. The recombination rate rR is pre-

sented as in [170] 

2

R R Re h e
,r k C C k C     (2.14) 

where C is the concentration of the charge carriers, and kR is the recombination rate constant. 

The transition to zero-order is noticed at the intense UV intensity due to the predominance of 

electron-hole recombination over the formation. Note that the recombination is exothermic. 

Thus, an extreme radiant flux should be considered, as it may overheat the catalyst and reduce 

the reusability of the catalyst. The influence of temperature is discussed later. 

Exceptionally, in the very high range, the reaction rate is independent of the light intensity. 

2.3.4 Influence of other factors 

Electron acceptors 

Electron acceptors (such as dissolved oxygen, hydrogen peroxide and ozone [30], [37], [39]) 

react with trapped electrons, thus trapped holes have a relatively long lifetime to initiate the 

radicals. In other words, the presence of electron acceptors promotes the electron-hole sep-

aration and retards the recombination [37]. However, at high concentrations of electron ac-

ceptors they occupy the surface of the photocatalyst, compete the adsorption of the organic 

pollutants and thus have an adverse effect. Additionally, as hydrogene peroxide H2O2 and 

ozone O3 are not friendly to the environment, their use should be reduced. 

Temperature 

As a chemical reaction, the photocatalytic reaction rate constant depends on the temperature 

according to the Arrhenius’ equation [170] 
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  (2.15)  

where Ea is the activation energy and A is the pre-exponential factor. 

The adsorption of organic molecules on the photocatalyst surface is exothermic. At low tem-

perature [8], [165] according to the Le Chatelier’s principle, adsorption of reactants, interme-

diates and products is favored and limits the product desorption. On the contrary, at high 

temperature, the adsorption is disfavored and becomes the rate-determining step. The theory 

was experimentally proved [40], [171], [172]. Indeed, the adsorption constant complies with 

the van‘t Hoff’s equation [170] 
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where H is the enthalpy of adsorption.  
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The solubility of oxygen, an electron acceptor, in water reduced by temperature [17] should 

be also considered. In photocatalytic performances, the temperature hardly affects the point 

of zero charge (PZC) of TiO2 colloids [173], [174] leading to no effect on the morphology of the 

photocatalysts. 

Considering solar photocatalysis based on the mechanism of a solar thermal concentrator, 

photoreactors concentrate the heat of solar radiance [17], [18], [175]. Aiming at a photons 

activation, the photocatalytic systems require no heating and can be operated at room tem-

perature. In addition, for wastewater treatments, the temperature of the process is intention-

ally operated at ambient conditions to avoid the loss of volatile organic compounds. Compound 

parabolic concentrators are employed of which concentrating factor is approx. 1 (one-sun col-

lectors) and the temperature during the performance slightly intensifies up to 40 ºC. In the 

summer, the temperature is higher, but the upper limitation to ensure the safety of the setup 

does not exceed 60–70 ºC. In this not very extreme conditions [170], an insignificant role of 

the temperature was practically proved. 

pH 

Photocatalytic degradation depends on the generation of hydroxyl radicals, which strongly de-

pends on the pH of the solution [30], [91]. TiO2 particles suspended are, as other metal oxides, 

well known to be surrounded by hydroxyl groups and to act as amphoteric materials [32], [39]. 

The surface titanol groups (>Ti–OH) can undergo acidification or basification [26], [174], [176], 

[177] as 

2
TiOH H TiOH  

  (2.17) 

2
TiOH H TiOH  

  (2.18) 

The pH of the solution defines the charging mechanism. By comparing the pH value with the 

PZC (that is the pH at zero net surface charge of the colloids), one can anticipate which are 

the predominant charges in solution. When the pH is lower than the PZC, the surface charge 

is positive, and inversely.  

By defining the surface charge of the colloids, pH determines the stability of the suspension. 

In an unstable colloidal system, esp. when pH is approximate to the PZC, particles may adhere 

to others. The aggregates can successively increase in size. It causes the change of optical 

properties of the suspension [169], in particular, limitation of optical penetration. Sedimenta-

tion may undergo and, in the case of a long retention time in a reactor, cause the inhomoge-

neity of the suspension as well as the mass transfer limitation. 

There is also a possibility that the position of conduction and valance bands of photocatalysts 

is pH dependent [178], [179]. In this case, the bandgap determining photon absorbance may 

be varied. 

In targeted water, ionic organic molecules presence and their adsorption on photocatalysts 

depends on pH [174]. Methylene blue, as an example, is a cationic dye. The negative surface 
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charge of TiO2 at a high pH may intensify the adsorption of the contaminants as the result of 

the electrostatic attraction. One should stay aware of the decrease of the degradation rate 

attributing to the favored adsorption in the basic medium but not to the photocatalytic effi-

ciency [180]. 

Last but not least, intermediates may be pH-sensitive [178], [181]. Individual studies on same 

systems (4-chlorophenol/TiO2/O2 photosystem) but at varied pH were compared. Not only the 

temporal distribution but also the concentration of intermediates took place. 

The influence of pH on the photocatalytic reaction was also explicitly quantified [16], [25]. 

Impurities 

In reality, wastewater contains numerous known and unknown substances. Chong et al. [8] 

reviewed the effects of presented ions and metals. The contaminants may occupy the active 

surface area of the photocatalyst, i.e. cause competitive adsorption of reactants or desorption 

of products. Chemical investigations showed either positive, neutral or even negative effects 

on the photo-reaction depending on different ions. Some of them should be noticed. For in-

stance, Ca2+, Mg2+, and Zn2+ cations decrease photo-mineralization; Fe2+ promotes the Fenton 

or photo-Fenton reaction, but fouls the catalyst surface; 2

3 3
Cl , HCO , CO    anions compete for 

the degradation by consuming radicals and/or trapped holes; in contrast, oxyanion oxidants 

(e.g., 2

2 3 2 8
ClO , ClO , S O   ) consume the electrons and prevent the electron-hole recombination. 

Additionally, some contaminants cause negative effects on the optical properties of the water, 

i.e. shorten the UV penetration due to its turbidity or its irradiation absorbance. 

2.3.5 Modeling 

Radiative transfer 

In a heterogeneous photocatalysis, light interacts with photocatalysts and it can be absorbed 

or scattered. 

The propagation of light I traversing a medium by a distance of z follows the Bouguer-Lam-

bert-Beer law (abbreviated to the Beer-Lambert law) [182] 

n
d d ,I C z 


   (2.19) 

where  is the molar extinction coefficient at the wavelength λ, and Cn is the molar concen-

tration of the substance in the medium. 

For scattering systems such as heterogeneous photocatalysis, application of the law is limited 

as scattered light is not negligible [152], [183]. Its intensity depends on the number of particles, 

refractive indices of the medium, the volume of the particles, the wavelength and scattering 

angle. A complete radiative transfer equation (RTE) can be substituted [102], [184]. An RTE is 

written as a radiation transport balance. In general, due to a low temperature operation, the 
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radiation emission is negligible. The light conversion is actually the difference between the 

scattered, and absorbed parts; and extinction coefficient is the sum of absorption and scatter-

ing coefficients. In particular, the radiation at one specific point changes by a loss of photons 

by absorption, or by out-scattering, and a gain of photons by in-scattering as a result of multiple 

scattering in the space surrounding the point. To solve the RTE, absorption and scattering 

coefficients must be known. The RTE can render the intensity of specific points inside the 

reactor, which depends on reactor geometry. Eventually, the intrinsic reaction rate constant 

of the heterogeneous reaction is achievable. Details of formulation and solution of the model 

can be found in [102]. 

Reaction rate constant 

The overall photocatalytic reaction includes five steps [170]  

1. Diffusion: reactants transfer from the bulk liquid to the catalyst surface through the bound-

ary layer 

2. Adsorption: the organic compounds adsorb on the surface of the catalyst 

3. Photocatalytic reaction: reactants are oxidized or degraded by trapped electrons and holes, 

or by radicals on the surface of the photocatalyst 

4. Desorption: the (intermediate) products desorb from the catalyst surface 

5. Diffusion: the (intermediate) products transfer to the fluid phase 

Langmuir-Hinshelwood kinetics is widely used to evaluate the conversion of photocatalysis 

[8], [22], [91]. In this model, diffusion is omitted, adsorption is assumed to be equilibrated, and 

photocatalytic reaction is the rate determining step. The reaction rate is written as 

r ,r k   (2.20) 

where  is the equilibrium surface coverage based on the Langmuir adsorption at the reactant 

concentration Cn. It can be written as 
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where Kads is the adsorption equilibrium constant. The reaction rate accounting the light inten-

sity dependence I is defined as 
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where kr is the reaction rate constant accounting the influence of light intensity I, and kr0 is the 

intrinsic reaction rate constant. The order of magnitude of irradiance is  = 0.5–1. When the 

electron-hole formation dominates,  = 1, and when the electron-hole recombination favors, 

 = 0.5 (section 2.3.3). 

In the limit case, when KadsCn 1, the denominator is approx. 1. As the consequence, the rate 

is rewritten as the pseudo first order model 
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where k’ = kr Kads. Integrating the equation renders 

n
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    (2.24) 

The value k   is the so-called apparent reaction rate constant. It follows k’ = kr Kads = kr,0 I
 Kads 

thus is linear to the magnitude irradiance I. This parameter is widely used to quantify the 

photocatalysis. 

Photonic yield and efficiency 

In photocatalytic researches, in addition to the reaction rate constant, the terms quantum and 

photonic yield/efficiency are popularly addressed but sometimes with misconception [152], 

[184]. 

Quantum efficiency (dimensionless) is defined as the amount of reactant consumed or prod-

uct formed per the amount of absorbed photons [152]. It can also be defined as the reaction 

rate per the photonic flux (which is the rate of absorbed photons) [185]. Quantum efficiency 

is dimensionless, and is a “double kinetics” as the ratio of two rates. 

In the heterogeneous photocatalysis, scattering is significant [152], [184]. The rate of incoming 

photons is different from the rate of absorbed photons. This value depends on the illumination 

and is known. The term photonic efficiency is used instead. It is the amount of reactant trans-

formed or product formed per the amount of incident photons on the reactor cell.  

The quantum efficiency of the heterogeneous system can be calculated via a relative photonic 

efficiency [152]. It is determined by comparing the initial rate of reactant degradation with that 

of phenol degradation. This substitution allows for an elimination of the reactor geometry, light 

wavelength and intensity, as well as other influencing parameters. Quantum efficiency of the 

solute is determined as the products of the relative photonic efficiency and the known quan-

tum efficiency of phenol disappearance [152]. 

When mentioning to monochromatic excitation, i.e. at a specified wavelength, quantum or 

photonic yield is termed with the same meanings [184]. 

2.4 CHALLENGE 

This chapter presents the state of the art in the field of photocatalysis. Basically, heterogene-

ous photocatalysis can be applied in a broad range of applications, e.g., wastewater treatment. 

Photocatalytic materials can be activated by radiation of an adequate photon energy. The re-

action mechanism was presented. Among photocatalysts, titanium dioxide TiO2 nanoparticles 

have been widely explored in literature. These materials are commercially available, but they 

have a large bandgap and require a post-treatment after use to recover the nanoparticles. TiO2 
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based photocatalysts obtained by modification and immobilization of the nanoparticles on sup-

ports can overcome these drawbacks. The form of the photocatalysts, as well as other re-

quirements (e.g., illumination, flow and post treatment), demand different reactors. In princi-

ple, batch or flow reactors can be employed. Coupling processes such as a photocatalytic 

membrane reactor is an alternative to avoid a post treatment. Photocatalysis is also influenced 

by various factors, such as the photocatalyst concentration and morphology, organic com-

pounds, light intensity, pH, temperature, impurities, among others. The process can be quan-

tified by a radiative transfer equation or a kinetic model. 

However, since the first notice of photocatalytic activity of titanium dioxide in 1972, up to now, 

the application of photocatalysis in reality is still limited. There is an incomparability among 

photocatalytic reactors at different scales. It is due to insufficiently defined process conditions 

at lab scale, e.g., illumination and flow conditions in batch reactors. Also among a large varia-

tion of lab reactors, the disposition of the light source is difficult to scale up and ensure an 

efficient illumination of all the volume of a reactor. Last but not least, kinetic models were 

inappropriately used regardless of the reactor types and caused insufficient intrinsic reaction 

rate constants at the microscopic level. 

Therefore, this Ph.D. thesis focuses on a concept for water treatment by photocatalysis aim-

ing at a scalable photocatalytic setup. The configuration can be either down-scaled so that it 

suits different study purposes in different labs or up-scaled and applied in reality. Ideally, the 

data of different scaled work are comparable. 

In this work, slurry photocatalysts were performed as photocatalyst powders are commercially 

available. Titanium dioxide, a commercial nanomaterial, is mostly tested. Since the catalyst is 

not composed of spherical primary particles, but it is in an aggregated state, it is necessary to 

investigate the influence of aggregation to avoid an unwanted decrease of the efficiency of 

the photocatalyst. 

The design of a photocatalytic reactor was the prerequisite for this study. As photocatalysis is 

a complex process, many factors can affect the reaction. Unlike batch illuminated reactors, a 

flow reactor allowing for definable parameters (e.g., flow regime and uniform illumination) is 

necessary for on-going studies. Therefore, in this work, the photocatalytic setup was based 

on a flow reactor. Aforementioned, the reactor must satisfy the scalability, but also ensure 

research purposes. A reactor model, inevitably, must be established alongside the new de-

sign. 

For a comprehensive insight of the photocatalytic process in the research reactor, it is neces-

sary to study the influence of different process parameters. The goal of this thesis work is to 

eliminate different impacts which are available in a macroscopic photocatalysis, or at least give 

explanations of different phenomena. To compare with publications worldwide, the photo-

catalytic degradation of a model organic compound, methylene blue, was performed. 

In this work, also the applicability of the reactor concept for different purposes was studied. 

Different photocatalytic materials and organic compounds, as well as the utilization of sunlight, 
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were tested. As this work especially aims the treatment of wastewater from textile industries, 

color removal of commercial dyes as a realistic scenario was studied. At the end, the integra-

tion of an up-scaled photocatalysis in a wastewater treatment is proposed. 

The five following chapters go through all theoretical and practical investigations. Expectedly, 

this Ph.D. research brings a new sight in photocatalysis and fill in the gap between experi-

mental studies and large-scaled work. 
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3 A PHOTOCATALYTIC SETUP FOR RESEARCH 

PURPOSES 

3.1 THE EXPERIMENTAL SETUP 

The key factor of this Ph.D. work is a photocatalytic performance in a configuration, where 

influential parameters can be determinable. This section introduces a photocatalytic setup 

used for research purposes. The designed system is a modification of the original setup first 

presented in 2015 [186]. 

3.1.1 Objectives 

As mentioned in the previous chapter, suspended photocatalysts are commercial available. 

Here, a new photocatalytic setup for slurry photocatalyst was designed. Desired features were 

specified. Technical solutions were proposed alongside as listed in Table 3.1. 

3.1.2 The setup 

Based on the requirements, a photocatalytic setup was innovated [186]. Scheme of the pro-

cess is shown in Figure 3.1. Experimental setup in the lab was photographed as shown in 

Figure 3.2. 

Feed suspension including a dye substance and photocatalysts is contained in a container and 

kept mixed by a magnetic stirrer. The suspension is pumped into the reactor. The reactor cell 

consists of a meandering flow channel. In addition, the channel has rectangular cross section, 

which allows for a 2-dimensional UV illumination and thus ensures a roughly uniform UV in-

tensity along the whole channel. 

More details of the flow reactor are mentioned in section 3.1.3. The photocatalysis receives a 

steady-state illumination from a planar UV irradiator (section 3.1.4). Depending on the study 

purposes, artificial visible light (section 3.1.4) or sunlight can also be employed. In this case, 

the reactor was illuminated from the top and the reactor was placed on an inclined plane 

(approx. 30 °). The Micropump®132-665-316 pump operates the circulation of fluid in the pro-

cess. 
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Table 3.1 Futures and technical solutions for a photocatalytic setup. 

Features Proposed technical solutions 

In general 

G1 Though the design is for research 

purposes, the prototype must be 

scalable for other researches and 

further applications. 

So far up-scaling batch reactors face the problem of light 

distribution. A flow reactor is one possible solution. 

Of two flow reactor configurations (Figure 2.6) [107], fall-

ing flow reactors enable a better use of light, however are 

not recommended because of the limitation of up-scaling. 

The tubular flow reactor would be chosen. 

G2 Because a lab-scaled flow reactor 

is small, the retention time is 

short. 

The length of the reactor must be maximized. The reactor 

consists of a meandering flow channel within the illumi-

nated area. 

G3  The flow must be circulated. Principal components of the 

setup are: a flow reactor illuminated by a light source (see 

also I2), a pump circulating the flow and a mixing tank 

storing the feed as well as connecting the reactor with 

the pump. 

Illumination 

I1 The illuminated surface must be 

made of UV-transparent material. 

UV-transparent Schott BOROFLOAT®33 glass is used. 

I2 The radiation field must be defina-

ble. The radiation should be as ho-

mogenous as possible [184]. 

The UV illuminator is planar and the reactor is rectangular. 

The UV intensity distributed on the illuminated surface is 

thus measurable. 

Only reactor is illuminated, whereas other components 

are not. 

I3 The reactor ensures an efficient 

photon collection [23]. 

The specific illuminated surface area (Eq. (3.1), section 

3.1.3) is large. In particular, the width and length of the 

reactor are large, while the depth is small. 

I4 Because of the short optical path-

length [17], [19], non-illuminated 

space should be diminished [8]. 

The optical path (thickness) of the reactor is small. 

I5 At best, photocatalytic perfor-

mance is monochromatic. When 

employing polychromatic light, at 

least the spectrum must be known 

[184]. Additionally, the radiation 

should be steady [184]. 

The Philips 8-watt mercury fluorescent tubes were em-

ployed as the artificial UV irradiation. The UV spectrum 

and lifetime are specified [187]. 

I6 For research purposes, the light in-

tensity can be varied. 

The distance between the reactor and the artificial irradi-

ation is adjustable to vary the light intensity on the illumi-

nated surface. 

Flow regime 

F1 For colloidal photocatalysis, mass 

transfer limitation [95] and sedi-

mentation must be avoided [19]. 

A good mixing condition is ensured. The high flow rate is 

controlled by a pump. 

Others 

O1 The reactor must be easily 

cleaned. 

The design is as simple as possible. Thus the reactor is 

easily assembled. 
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Figure 3.1 Scheme of the photocatalytic setup, including the UV lamp, the flow reactor, the mixing 

tank, and the pump. The flow reactor is zoomed in as shown in the right. 

 

  

Figure 3.2 The laboratory-scaled photocatalytic setup including the pump (front left), the flow reactor 

(front right), the UV irradiator (behind), and the mixing tank (far behind). Visualization of the setup ani-

mated by Supreeth Venkatraman can be found in the URL: https://www.youtube.com/watch?v=99TiM-

U0LKo. 

 

3.1.3 Design of a flow reactor 

The flow reactor prototype was originated as the one-side optical reactor [186]. The engineer-

ing drawing for the design can be found in Figure 3.3 and Figure 3.4. The illuminated window 

of the reactor is made from 3.3 mm UV-transparent Schott BOROFLOAT®33 glass. According 

to the manufacturer, the glass is more than 90 % UVA transmittance [188]. Our measurement 

showed that 92 % radiation with the wavelength of 365 nm can transmit through the 3.3 mm 

glass. Lately, both front and back sides of the reactor are made from glass. Thus the transmit-

ted light intensity through the reactor is measurable. 

outflow

inflow
flow reactor

pump

UV lamp

mixing tank

https://www.youtube.com/watch?v=99TiM-U0LKo
https://www.youtube.com/watch?v=99TiM-U0LKo
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Figure 3.3 Engineering drawing of the flow reactor: The transverse section from the front view.  
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Figure 3.4 Engineering drawing of the flow reactor (cont.): The cross sections.  
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Table 3.2 Specifications of the designed flow reactors. 

Reactor  R10 R15 R20 

Reactor size mm 260×180×27 260×180×33 260×180×38 

Reactor volume ml 206 318 411 

Number of channels - 6 

Channel size mm 25×120×11 25×120×17 25×120×22 

Optical path mm 11 17 22 

Specific illuminated surface area a cm2/cm3 0.91 0.59 0.45 

a Specific illuminated surface of the reactor SV is the illuminated surface area S over the volume V as 

V .
S

S
V


  (3.1) 

 

Three reactors, namely R10, R15 and R20, with different optical paths (11 mm, 17 mm and 

22 mm) were fabricated. They would be chosen to suit the various study purposes. Table 3.2 

presents main specifications of three flow reactors. 

3.1.4 Illumination 

The flow reactors receive radiation from an artificial UV or visible lamp, or from sunlight. Here, 

UV intensity of an artificial UV illumination is presented, followed by the brief introduction of 

the artificial visible and solar illumination. 

Artificial UV lamp 

The UV lamp constructed with six Philips 8–watt mercury fluorescent tubes was assembled 

by UMEX GmbH. The mode wavelength is 365 nm (Figure 3.5a) as reported by Koninklijke 

Philips N.V. Company [187], while the minimum and maximum wavelengths are 340 nm and 

410 nm. 

The UV lamp is center-aligned with the reactor. As the reactor is rectangular, light intensity on 

the illuminated surface is determinable. UV intensity was measured by a lux-meter PCE-UV34 

which is sensitive to UVA and UVB. The maximum UV intensity was noticed at the center of 

the reactor, while the minimum intensity was at the edge. The UV intensity can be varied by 

adjusting the distance between the lamp and the reactor. Figure 3.5b shows the UV intensity 

profiles on the illuminated surface when the distance is 7 cm, 10 cm and 15 cm. The corre-

sponding intensity range in these three cases are 13.7–25.5, 11.7–19.7 and 9.3–14.5 W/m². 

The average intensity I  was calculated from the specific intensities at different coordinates 

(x, y) as 
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Figure 3.5 Spectral intensity of the artificial UV lamp: a) Relative intensity (which is the specific inten-

sity over the intensity at 365 nm) vs. wavelength; and b) Intensity profile and average intensity on the 

illuminated surface of the reactor corresponding to three radiance levels [189]. 

 

 
,

1
, .

x y

I I x y x y
S

    (3.2) 

The average value in three cases are 20.8, 16.7 and 12.9 W/m², respectively. 

Artificial visible lamp 

The artificial visible light was irradiated by a simulator fabricated by Ingenieurbüro Mencke & 

Tegtmeyer GmbH. According to the company, the mode wavelength of the lamp is 650–

700 nm (Figure 3.6a), and no UV light was recorded (also by the lux-meter PCE-UV34). Figure 

3.6b shows the light distribution of the visible lamp of different wavelength ranges in compar-

ison with visible light of solar spectrum. 

In experiments, light intensity was monitored with the Susicontrol software (version 2.9.0) by 

a silicon irradiance sensor of the company, which is sensitive in the wavelength range from 

300–1200 nm. The light intensity was approx. 98 W/m². 

Natural solar light 

For experiments with solar light, UV intensity was recorded every 30 s by the lux-meter PCE-

UV34 and are shown along with the experimental data. No visible light was detected. 
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Figure 3.6 Spectral intensity of the artificial visible lamp: a) Relative intensity (which is the specific 

intensity over the intensity at 650 nm) vs. wavelength; and b) Comparison of intensity distribution be-

tween the lamp and sunlight. 

 

3.1.5 Flow conditions 

In the setup, fluid is circulated by a pump with a flow rate of 2.28 l/min. As all dimensions are 

known, flow conditions used in experiments are definable. In particular, equivalent hydraulic 

diameter dh of the channel can be determined as 

h

4
,

A
d

p
  (3.3) 

where A and p are the area section and the wetted perimeter of the channel, respectively. 

Retention time of the fluid elements in the reactor tR follows 

R ,R

V
t


  (3.4) 

where VR is the volume of the reactor and   is the flow rate of the fluid. Reynolds number Re 

of the fluid in the reactor is defined as 

hRe ,
ud


  (3.5) 

where   and u is the density, dynamic viscosity and velocity of the fluid, respectively. All 

determined data are presented in Table 3.3. 
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Table 3.3 Flow conditions used in this study. 

Reactor  R10 R15 R20 

Equivalent hydraulic diameter of the channel mm 15 20 23 

Retention time  s 5.41 8.35 10.81 

Reynolds number (at 20 ºC)  - 1770 1517 1356 

 

 

Figure 3.7 Fluid velocity in the reactor: Flow field simulation of the reactor R20 corresponding to the 

flow rate of 0.84 l/min and the Reynolds number of 500. The simulation with the finite element method 

of COMSOL Multiphysics® Modeling was operated by Hagen Eckert [192]. 

 

The Reynolds numbers (at 20 ºC) for three reactors are respectively 1770, 1517 and 1356. 

Note that the cross section of the fluid is non-circular, the ratio between the length of channels 

and the diameter is small, as well as the fluid direction has U-turns. Indeed, by simulation, 

even with a one-third of the operating flow rate, eddies are obvious esp. in the entrance and 

exist, or when the fluid changes its direction (Figure 3.7), which imply a quasi-turbulence. The 

pressure drop does not guarantee to the laminar regime [190], [191]. 

Though the simulation has been run with the lower operating flow rate (0.84 l/min), it proved 

that flow in the reactor could be obtained. 

3.2 OPERATION 

Photocatalytic degradation of organic compound is performed in the presence of slurry photo-

catalyst. This subchapter introduces the operation of a photocatalytic test with the experi-

mental setup. In general, one test includes three steps as followings: 
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1. Preparation of the slurry photocatalyst 

Photocatalysts are dispersed into water then stored in the mixing tank. Different dispersion 

techniques can be employed. 

2. Adsorption-desorption equilibrium 

An organic compound is added into the prepared photocatalyst suspension. It is stored in the 

dark and kept under mixing. Due to the difference between concentrations of organic mole-

cules in the bulk and on the photocatalyst surface, adsorption and desorption happen. The 

equilibrium is necessary. No photocatalytic reaction occurs since the suspension is kept in the 

dark. 

As presented (section 2.3.5), an overall photocatalytic reaction includes five steps [170]: diffu-

sion of the compounds to the catalyst surface, adsorption, photocatalytic reaction, desorption, 

and diffusion of intermediates and (by-) products to the bulk liquid. Under certain conditions 

(low particle concentration, strong mixing/turbulence), diffusion is negligible [95]–[97], [184]. 

Dissimilarly, sorption of organic molecules on the photocatalyst’s surface happens during the 

reaction. The loss of target organic compounds is attributed not only to the photocatalytic 

reaction but also to the adsorption. This disturbing process [39], [193], [194] may mislead the 

evaluation of photocatalysis [185]. Therefore, a steady-state regime of the adsorption of the 

reactant on the catalyst needs to be achieved. 

3. Photocatalytic degradation 

The equilibrated system is then loaded into the illuminated flow reactor and circulated by the 

pump. According to the study purposes, different illumination conditions can be employed. 

While working with artificial illumination, the lamp should be turned on 10 min prior to the test 

for the stabilization of the light source. 

At first, the reactor is covered to ensure that no reaction occurs while purging air inside reactor 

out and homogenizing the flow in the channels. Typically, it takes approx. 0.5–1 min. 

Lately, the reactor is uncovered and the photocatalytic reaction (if happens) starts immediately 

under the illumination. Samples are collected in the mixing tank for online or offline analysis. 

Here, the adsorption of the organic molecules on the inner walls of the reactor and of the 

other components was not visible when being observed, so it is assumed to be negligible. 

Another phenomenon should be taken into account. When starting the circulation, the flow 

properties is different from that in the previous step. Additionally, pH may change. Thus the 

adsorption-desorption equilibrium previously achieved may be broken. At best, the second 

equilibrium in the reactor should be carried out. However, to mimic the process in reality, this 

equilibrium is omitted. For theoretical investigations, control tests need to be done, where all 

the procedures of this step are performed similarly but in the dark. 

After each experiment, the flow reactor needs to be dismantled and cleaned. 

Details of each step are presented in chapter 4. 
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3.3 DETERMINATION OF REACTION RATE CONSTANT 

Previously the determination of the apparent and intrinsic reaction rate constants in the pho-

tocatalytic setup was proposed [186]. Based on the assumptions (section 3.3.1), by inspecting 

the Langmuir adsorption (section 3.3.2), an improvement of the model is initiated (section 

3.3.3). The fluids and the concentrations of the organic compound in the setup can be found 

in Figure 3.8. 

3.3.1 Assumptions 

- There is no axial dispersion in the flow reactor, i.e., variations only exist along the 

length of the reactor. The mass balance is thus written as one-dimensional. 

- Adsorption of the species on the catalyst surface is a rate-determining step only at 

high temperature (section 2.3.4). At ambient temperature, adsorption takes place in-

stantaneously and is quasi-equilibrated. 

- The reaction of the adsorbate is steady-state isothermal and it is the rate-determining 

step of the multistep heterogeneous reaction. 

- During the photocatalytic reaction, desorption of intermediates or (by-) products com-

petes with adsorption of the reagent on the photocatalyst. This assumedly has no big 

influence on the process, i.e. there is no change of the adsorption constant with re-

spect to reaction time. 

- Influence of mass transfer is inconsiderable since the particle concentration is small 

[95]–[97], while mixing is strong (section 3.1.5). 

- In the mixing tank, the mixing is ideal. 

- Since the lifetime of radicals is in nano-seconds [32], they exist in the reactor where 

the activation occurs under UV radiance. In the mixing tank and in tubes, no radical 

persists which means that no chemical reaction occurs. 

- The volume of the suspension is assumedly unchanged during the reaction. 

 

 

Figure 3.8 Fluids and concentrations of species in the photocatalytic system. The setup includes a 

mixing tank, a flow reactor illuminated by an irradiator, a pump and connecting tubes. The molar flow 

rate and the molar concentration of the organic compound are denoted as n  and Cn, respectively. 
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3.3.2 Heterogeneous reaction 

The heterogeneous photocatalysis is a five-step process as mentioned in section 2.3.5. With 

the assumptions above, the multistep heterogeneous reaction can be simplified to two steps 

including an adsorption equilibrium and the rate-determining step (i.e., oxidation of adsorbed 

reactants). The reaction on the surface of the photocatalyst produces the most abundant in-

termediate. The transformation of the reactant is, thus, the rate-determining step, while the 

other steps have no kinetics significance [195]. 

The simple sequence for a bimolecular reaction is 

   ads,A

A aq S A ad
K

  (quasi-equilibrated adsorption)   (3.6) 

   ads,B

B aq S B ad
K

  (quasi-equilibrated adsorption)  (3.7) 

    rA ad B ad ...
k

   (rate-determining step)   (3.8) 

where S is the photoadsorption center of a catalyst, A(aq) and A(ad) are the reactant in the 

aqueous solution and on the adsorbent surface, B(aq) is either hydroxyl groups OH or holes 

and B(ad) is radicals on the photocatalyst surface. Eq. (3.7) actually describes the formation of 

the active species (hydroxyl radicals in the case of an indirect photocatalytic mechanism, or 

trapped holes in the case of a direct pathway) (Eqs  (2.2) and (2.4), section 2.1.2). 

The adsorption is assumedly equilibrated. The fractional surface coverage i of each species 

(or the number of adsorption sites occupied) is 

 

 

ads,i n,i aq

i

ads,i n,i aq

.
1

K C

K C
 


 (3.9) 

where Kads,i is the adsorption constant, and Cn,i is the molar concentration of the species i. Rate 

of the sequence is the rate of the reaction r and is determined as 

 

 

r B ads,A n,A aq

r A B

ads,A n,A aq

,
1

k K C
r k

K C


  


 (3.10) 

where kr is the reaction rate constant. Generally, B depends on the properties of the photo-

catalyst and the interfacial phenomena. In particular, it relates to the photoadsorption capacity 

(which is the maximum number of photoadsorbed entities to the number of surface sites 

[184]). It also depends on the properties and the flow phenomenon of the medium as well as 

the light phenomena. In one experiment, if all influential conditions (e.g., temperature, pH, 

electrical conductivity and light intensity) are kept unchanged during the experiment, for a 

certain amount of photocatalytic powder in a certain volume of aqueous solution, the value B 

is a constant. The reaction rate is, thus, a function of one variable Cn,A(aq)  
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3.3.3 Reactor model 

Materials balance in the flow reactor 

Considering a volume element of species A in the plug flow reactor, the amount changes only 

by the reaction. The change of the molar flow rate is 

A,0 n,A,0
d d ,n C  (3.11) 

where   is the flowrate. The material balance is derived as [196] 

A,0

A

R

d
,

d

n
r

V
  (3.12) 

where the stoichiometric coefficient A is –1, V is the volume, R Rd dV t , t is the retention 

time, and the subscript R denotes the reactor. The photocatalytic reaction r is calculated as 

Eq.(3.10). Eq. (3.12) can be written as 

n,0 r B ads,A n,A,0

R ads,A n,A,0

d
.

d 1

C k K C

t K C


 


 (3.13) 

For a shorter display, let 

r ads,A B .k K k   (3.14) 

Since the aim of this study focuses on only species A, in order to simplify all following equa-

tions, the subscript “A” is omitted. Eq. (3.13) becomes 

ads n,0

n,0 R

n,0

1
d d .

K C
C t

kC


   (3.15) 

 n,0 ads n,0 Rd ln d d .C K C k t    (3.16) 

The integrated equation is derived as 

 
 

 

 

 n,1 n,1

n,0 R n,0 R R

n,0 ads n,0 Rd ln d d ,

C t C t t

C t t C t t t t

C K C k t
  

    
 (3.17) 

 

 
   n,1

ads n,1 n,0 R R

n,0 R

ln .
C t

K C t C t t kt
C t t

       
 (3.18) 

Since Kads, k and tR are constants, the solution for the mass balance in the reactor is 

    n,1 n,0 R .C t f C t t   (3.19) 

Materials balance in the mixing tank and tubes 

In the mixing tank, by assuming that the change of amount is due to the in- and outflows, and 

not due to the reaction, the material balance follows [196] 
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0
0 2

d
,

d

n
n n

t
    (3.20) 

n,0

M n,0 n,2

d
,

d

C
t C C

t
    (3.21) 

where n is the mole. In addition, 

   n,2 n,1 T ,C t C t t   (3.22) 

where the subscript T denotes the tubes. Eq. (3.21) is derived as 

   n,0

M n,0 n,1 T

d
,

d

C
t C t C t t

t
     (3.23) 

where the subscript M denotes the tank. Eq. (3.23) is a delay differential equation with one 

variable Cn,0(t). 

The special case 

When Kads Cn,0 1, Eq. (3.15) can be shortened as 

n,0

R

n,0

d
d .

C
k t

C
   (3.24) 

The mass balance in the flow reactor has one explicit solution 

    R

n,1 n,0 R e .ktC t C t t    (3.25) 

Eq. (3.23) is expanded as 

    Rn,0

M n,0 n,0 R T

d
.

d

ktC
t C t C t t t e

t

    
 (3.26) 

The linear delay differential equation has the exponential solution Cn,0(t) = A e−Kt. The charac-

teristic equation is 

 R T R

M1 e .
K t t kt

Kt
 

   (3.27) 

Eq. (3.27) can be solved by looking for the intersection(s) of the straight line y = 1 – K tm and 

the curve  R T Re
K t t kt

y
 

  (Figure 3.9). For positive tM and (tR + tT), there is a single intersection 

corresponding to a unique solution K, equaling to Cn,0(t) = A e−Kt. The boundary condition lets 

Cn,0 (t = 0) = Cn,ini, so A = Cn,ini. 

Eventually the degradation in the experimental setup follows the exponential law as 

 n,0 n,inie .KtC t C   (3.28) 
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Figure 3.9 Solution of the characteristic equation (Eq. (3.27)). 

 

The reaction rate constant K in the photocatalytic setup is determined by means of least 

square regression from experimental data (t, Cn,0(t)). Note that, the photocatalytic reaction oc-

curs only in the flow reactor but not in the other components (i.e., the mixing tank, the tubes 

and the pump). Thus, the value K reflects the reaction rate constant at the macroscopic level, 

where phenomena happening in all components are taken into account. It is only an apparent 

reaction rate constant. 

Additionally, it is possible to discover the integrated reaction rate constant k in the flow reactor. 

The value k defines the reaction rate constant at the microscopic level, counting only influential 

factors within the flow reactor and reflecting the true photocatalytic activity of the setup. It 

can be computed from the characteristic equation as follows 
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  (3.29) 

In the flow reactor, light intensity across the reactor extinguishes. For this reason, the value k 

is the average value of all specific reaction rate constants at specific points in the entire volume 

of the reactor. At best, one reference point, e.g., a point at the illuminated surface (or the 

window) of the reactor, should be fixed and the reaction rate constant at this point is em-

ployed. This is discussed in details in section 6.4.3. 

3.4 CONCLUDING REMARKS 

The chapter introduces a laboratory-scaled photocatalytic setup which was designed for re-

search purposes. The configuration includes main components: an illuminated flow reactor, a 

mixing tank, a pump and connecting tubes. This design works with the suspended photocata-

lysts. Depending on study purposes, different illumination can be employed: artificial UV or 
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visible light, or sunlight. The flow channel meandering within the reactor has a rectangular 

cross section, thus allows for a 2-dimensional illumination. Operational conditions including 

light intensity and flow conditions, which were not commonly presented in other publications, 

are assessable in this study. 

An operation procedure of a photocatalysis with the setup was given. Three main steps were 

listed, including the preparation of the slurry photocatalyst, adsorption-desorption equilibrium 

and photocatalytic degradation. Sample analysis can be done online or offline. Additionally, the 

simple construction makes the reactor easy to be cleaned after use. 

These reasons above proved that the reactor type is recommended for studies at laboratory 

scale. Also, as all process parameters are accessible, with some modification, the prototype 

can be scalable and can suit different purposes. 

To evaluate the process, a quantitative model was established. It is based on the Langmuir 

equilibrated adsorption. Material balances were written for each component. The combination 

derives a delay linear differential equation. Within assumptions, a shortened form which is 

mathematically solvable was procured. The apparent reaction rate constant of the entire sys-

tem follows an exponential function and can be experimentally determined. It can be easily 

converted to the integrated photocatalytic reaction rate constant which is a characteristic of 

the flow reactor. It accounts the influences of flow, transport and light phenomena. These two 

parameters are distinct from the intrinsic reaction rate constant. 

The reactors design was employed for all experiments in this study. Initially, the established 

reactor model was used for evaluating photocatalytic activity of the tests. If necessary, the 

derived forms (introduced alongside when being used) are the alternatives to adapt different 

study purposes. 
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4 MATERIALS AND EXPERIMENTAL METHODS 

This chapter introduces materials and methods used for selected experiments which are cat-

egorized in two chapters 5−6 and subchapter 7.1. Exceptionally, in subchapter 7.2, some typ-

ical experiments of the NaViTex CLIENT project are introduced. Materials, experimental set-

ups and methods are various. As they were used only for experiments shown in that subchap-

ter but not in the other parts of this dissertation, they are introduced alongside of experimental 

data. 

4.1 MATERIALS AND THEIR PROPERTIES 

4.1.1 Photocatalysts 

In this work, four photocatalytic materials were employed, including commercials titanium 

dioxide Aeroxide®TiO2 P25 and P90 (formerly Degussa P25 and P90) provided by Evonik, zinc 

oxide ZnO 90–210 nm purchased from IOLITEC GmbH, and self-synthesized magnetic parti-

cles. Their properties which are of main concerning in the field of photocatalysis are here 

introduced. 

Titanium dioxide TiO2 P25 

The properties of commercial titanium (IV) oxide Aeroxide®TiO2 P25 are well-known [197]. 

The primary particle size determined by SEM is 25 ± 3 nm [166]. The specific surface area is 

56 m² g–1 [166]. 

P25 consists of an approx. 80/20 w/w anatase/rutile mixture. Bandgap energy, the crucial 

property of a photocatalyst, differs between these two crystal modifications [33]. The bandgap 

energy values of P25 were reported to be between 2.98 eV and 3.37 eV [66], [198]–[200], 

corresponding to the wavelength range of 400–368 nm. 

Another important property of photocatalytic materials is the isoelectric point (IEP), which is 

the pH at the zero zeta potential. The IEP reflects the acid-base properties of the catalyst 

surface. The IEP of P25 is in the range of 6–6.8 (pH unit) [201], depending on the electrolytes’ 

concentration obtained by different measurement techniques [39], [176], [202], [203]. Note 

that the IEP of other types of TiO2 varies due to the different phase anatase/rutile ratio [173]. 

Titanium dioxide TiO2 P90 

Commercial titanium (IV) oxide Aeroxide®TiO2 P90 has the primary particle size of 14 nm (de-

termined by TEM [197]). The specific surface area is 90 ± 20 m² g–1 [197]. Titania P90 consists 

of 90/10 w/w anatase/rutile mixture and has the bandgap energy similar to that of P25 (3.40 eV 

corresponding to the wavelength of 365 nm) [198]. 
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Zinc oxide ZnO 

ZnO has the bandgap energy of more than 3.1–3.4 eV, corresponding to the wavelengths of 

shorter than 400–365 nm [204], [205]. The photocatalytic activity of ZnO was reported to be 

higher than that of TiO2 [147], [166], [204]. However, the photodecomposition under irradiation 

limits application of ZnO [16]. In this work, ZnO has the primary size of 251 ± 83 nm and the 

BET surface area of 5.23 m²/g [110]. 

Magnetic particles Fe3O4/SiO2/TiO2 

The magnetic particles Fe3O4/SiO2/TiO2 were produced in our laboratories according to Teixeira 

et al. [125]. 

In general, photocatalyst magnetic nanoparticles (NPs) has two main layers: the magnetic NP 

as a core and the photocatalyst (e.g., TiO2) on the outer layer. By applying an external magnetic 

field, it is easy to separate the NPs from the aqueous solution. A passive layer can be optionally 

inserted between these primary layers to protect the core from oxidization and photo-dissolu-

tion. It also obstructs the electron-hole recombination centers. 

The magnetic particles were synthesized by sol-gel method. The magnetite core (Fe3O4) was 

first prepared by co-precipitation. Afterwards the magnetic nanoparticles were coated with 

silica (SiO2). Finally, nanoparticles were immobilized by sol-gel method on the surface of the 

Fe3O4/SiO2 particles. Synthesized samples were calcined at 500 °C. The BET surface area was 

reported to be 19 m²/g. No primary particle size or bandgap was reported for this kind of syn-

thesis. However, with the same synthesis but with 600 °C calcination, the particle size is 

293 ± 81 nm as estimated by SEM image analysis, while the bandgap energy is 2.8 eV, calcu-

lated according to the modified Kulbeka-Munk function (section 4.3.3). Other characteristics 

like zeta potential, XRD pattern and magnetic properties can be found in [125]. 

4.1.2 Organic compounds 

In this study, photocatalytic degradation of various solutions was performed. The used organic 

compounds were methylene blue (Merck KGaA), ciprofloxacin (Sigma-Aldrich, Inc.) and two 

commercial dyes, Everzol Navy ED and Remazol Red RR (March 29 Textile-Garment Joint 

Stock Company, Danang, Vietnam, section 7.2.1). Optical properties of these substances 

which are important in the field of photocatalysis are presented. 

Methylene blue 

Methylene blue (MB) (C16H18CIN3S.3H2O) is a thiazine dye. Since the first reports on UV-

induced decomposition of MB in the presence of an inorganic semiconductor in 1969, MB has 

been employed as a model dye substance for examining photocatalytic activity [6], [43], [180], 

[206], [207]. 
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Figure 4.1 UV-VIS absorbance spectrum of methylene blue. The methylene blue solution with a con-

centration of 10.31 µM was measured with a cuvette of 10 mm optical pathlength by means of a Varian 

Cary 100 Bio UV-VIS spectrometer. 

 

 

Figure 4.2 Dimerization of methylene blue (MB): a) Absorbance spectra of MB solutions with high 

concentrations of 24, 79 and 190 µM, which were measured with different cuvettes of 5, 2 and 1 mm 

pathlength by means of a Varian Cary 100 Bio UV-VIS spectrometer; and b) Decadic molar extinction 

coefficient of MB at 664 nm 664 vs. concentration Cn,MB. Here the value 664 is the apparent molar ex-

tinction coefficient and dissimilar from the true molar extinction coefficient (Appendix A4). 

 

In this study, MB was used for photodegradation. The photocatalytic pathway is known as 

photocatalyzed N-demethylation [25], [143]. Also the degradation of this dye substance is 

time-saving for implementing numerous experiments in this study. 

Note that when studying the photocatalysis, the organic compound should not absorb the light 

used for the photoexcitation [85], [208], [209]. In other words, the compound should enable 

the optimal use of light for the photocatalytic performance. In the experimental setup, a UV 
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lamp with the mode wavelength by energy of 365 nm was employed. At this wavelength, MB 

does not show absorption (Figure 4.1), which means that it does not affect the UV light pen-

etration in the aqueous suspension. 

In this study, the desired initial concentration of MB in most of the experiments was kept at 

the moderate values of 10–13 µM [24], [25], [207], [210]. A part of this study focuses on the 

variation of the initial concentration of MB (section 6.4.4) of up to 130 µM. Note that, dimeri-

zation occurs at MB concentration higher than 7 µM [211]. The dimerization can be observed 

in the UV-VIS absorbance spectrum of MB solutions, where a second peak at approx. 610 nm 

appears next to the main peak at 664 nm (Figure 4.2a). Indeed, the molar extinction coefficient 

decreases with the increasing concentration of dye (Figure 4.2b). The influence of dimerization 

of MB on the UV-VIS spectroscopy is discussed in Appendix A4. 

Ciprofloxacin 

Ciprofloxacin (Cipro) [212], [213] is a quinolone antibiotic. Because of its stability in water, it 

has become ubiquitous in pharmaceutical effluents. This antibiotic is toxic and harmful to living 

organisms. It can be used as a model pollutant when studying the photocatalytic treatment of 

wastewater from hospitals [210]. 

In this study, Cipro ( 98 %, molecular weight of 331.34 g/mol) from Sigma-Aldrich, Inc. was 

used to indicate the photocatalytic activity of the photocatalyst magnetic nanoparticles. Its UV-

VIS absorbance spectrum is shown in . The absorbance peak is at 277 nm. Dissimilar to meth-

ylene blue, a 12.1 µM Cipro solution with a 10 mm optical pathlength absorbs approx. 5 % 

light of 365 nm. 

 

 

Figure 4.3 UV-VIS absorbance spectrum of ciprofloxacin (Cipro). The 12.1 µM Cipro solution was 

measured with the 10 mm optical pathlength cuvette by means of a Varian Cary 100 Bio UV-VIS spec-

trometer. 
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Commercial dye substances Everzol Navy ED and Remazol Red RR 

The Everzol Navy ED dye contains the functional group of –SO2CH2CH2– [214], while the azo 

dye Remazol Red RR contains the azo group of –N=N– [215]. 

These two commercial reactive dyes were provided by March 29 Textile-Garment Joint Stock 

Company, Danang, Vietnam (section 7.2.1). The names were given by the company. The pow-

ders may consist of mixtures of various components and the purity is not guaranteed. Due to 

the study purpose, discoloration was focused. For this reason, the absorbance of the solutions 

analyzed by UV-VIS spectroscopy were used to evaluate the data. The absorbance spectra of 

Everzol Navy ED and Remazol Red RR are shown in . Their maxima are observed at approx. 

520 nm and 600 nm, respectively. When being tested with a 10 mm cuvette, the 52 mg/l red 

dye and 31 mg/l navy dye solutions absorbed 48 % and 33 % light at 365 nm, which means 

that shielding effect occurs during the test. 

In this work, 25–30 mg/l dye solutions were discolored (section 7.1.4). Exceptionally, a high 

concentration of the Navy dye of 250 mg/l was also degraded (section 7.2.4.2). 

4.1.3 Others 

Water 

Water was purified by an Astacus membraPure system. The ultrapure water was required to 

prepare suspensions and the solutions of organic compounds with defined ionic background. 

 

 

Figure 4.4 UV-VIS absorbance spectra of two commercial dyes: The 31 mg/l Everzol Navy ED and 

52 mg/l Remazol Red RR solutions were measured with the 10 mm optical pathlength cuvette by 

means of a Varian Cary 100 Bio UV-VIS spectrometer. 
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Air 

In the experimental setup, the mixing tank is an open tank. Dissolved gases (noticeably CO2 

and O2) in the system can influence the properties of the suspension. Dissolved carbon dioxide 

forms the carbonic acid or bicarbonate. These weak acids change the pH of the system. Mean-

while, dissolved oxygen acts as an electron acceptor (section 2.1.3). The amount of gases was 

kept unchanged by maintaining the same stirring speed and the same form of the mixing tank. 

Chemicals used for pH adjustment 

The acidity of the suspension was adjusted by HCl or NaOH. Sodium hydroxide (VWR BDH 

Prolabo® Chemicals) was dissolved to have 0.01 M solution. Hydrochloric acid, ACS reagent, 

37 % (Sigma-Aldrich) was diluted to 0.01 or 1 M. A certain amount of these acid/base was 

added to the suspension to have the desired pH. 

4.2 PHOTOCATALYST DISPERSION TECHNIQUES 

P25 is a nanostructured material, which is composed of aggregates and agglomerates in the 

size range of 100 nm up to 100 µm, depending on the mechanical treatment that the material 

has experienced. In order to study the influence of the aggregated state in a defined manner, 

adequate dispersion techniques are required. Two methods were tested. 

The P25 suspensions were dispersed by a T25 digital ULTRA-TURRAX® device (disperser 

S25N-25F). In this work, the rotation speed of 21 500 ppm was tested corresponding to an 

energy of 40 W. 

High intensity ultrasound is another technique. Suiting the purpose of experiments, one of 

two ultrasonic processors was chosen, including Hielscher UP100H (sonotrode MS7, 7 mm 

diameter) and Topas UDS751 (sonotrode S7, 7 mm diameter). Generating power was meas-

ured by the power meter Voltcraf® Energy Logger 4000. 

This part of this study is a cooperation with the research group Mechanical Process Engineer-

ing of TU Dresden. 

4.3 ANALYTICAL TECHNIQUES 

This subchapter introduces the characterization of P25 particles (as powder samples or in sus-

pensions). Photon correlation spectroscopy, UV-VIS spectroscopy, and diffuse reflectance UV-

VIS spectroscopy were used. The wavelengths used in these methods are in the UV and 

visible range (from 200–800 nm). As the dimension of the semiconductor particles is in the 

nano-scale and, therefore, smaller or comparable to the wavelength used, generally the light 

is absorbed or scattered. The interaction between the particles and the light can be deter-

mined, including transmittance, reflectance, and scattering. Depending on the used theories, 

characteristics such as the bandgap energy, the Kubelka-Munk function (which is clarified 
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later), the extinction coefficient, the intensity-weighted harmonic mean size, and the polydis-

persity of P25 can be achieved. 

4.3.1 UV-VIS spectroscopy 

UV-VIS spectrometer is a widely used instrument in laboratories. In this work, a Varian Cary 

100 Bio UV-VIS spectrometer was used to determine the transmittance of photocatalyst sus-

pensions as well as to measure the molar concentration of the organic molecules. 

Transmittance of suspensions 

This technique was used to measure the transmittance of the colloidal P25 suspensions [216]–

[218]. It is the ratio of the transmitted radiant flux to the incident radiant flux (Figure 4.5). The 

principle of the method obeys the Beer-Lambert law. The (napierian) transmittance of light T 

is determined as 

m

,0

e e ,C z zI
T

I
  





 
    (4.1) 

where I and I,0 is the transmitted and incident light intensity, z is the optical pathlength, Cm, 

, and  are the mass concentration, the turbidity of the suspension, and the extinction co-

efficient of the material, respectively. These values are related to each other as 

m .C   (4.2) 

Seven particle concentrations in the range of 0.01−1 g/l were analyzed. The UV-VIS spectra 

were scanned in the wavelength range of 200−800 nm. For different purposes, transmittances 

and related optical properties at specific wavelengths are discussed: 340 nm, 365 nm and 

410 nm (corresponding the minimum, the mode and the maximum wavelengths of the UV 

lamp, section 3.1.4), additionally, 410 nm and 387 nm (corresponding to the minimum [28], 

[33], [41] and maximum values of commonly reported TiO2 bandgap [28], [33], [41]), and 

633 nm (corresponding to the wavelength of the red laser beam used in the photon correlation 

spectroscopy, section 4.3.3). 

 

 

Figure 4.5 UV-VIS spectroscopy: transmittance. 
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Absorbance of the organic compounds  

In experiments, the color removal of dyes (methylene blue (MB), Everzol Navy ED and Rema-

zol Red RR) and the degradation of ciprofloxacin (Cipro) was observed. UV-VIS spectroscopy 

is a practical analysis method for the quantitative determination of these organic substances 

based on the Beer-Lambert law (Eq. (2.19)). Absorbance of the solutions was measured with 

the Varian Cary 100 Bio UV-VIS spectrometer. The scanning range is 400−800 nm for dyes, 

and 200−400 nm for Cipro. Depending on the concentration ranges, 4 cuvettes were alterna-

tively used. Low concentration samples (0–15 µM for MB and Cipro, 25–30 mg/l for commer-

cial dyes) were measured with the 10 mm cuvette, whereas 5, 2 and 1 mm cuvettes were 

used for higher concentration samples (25–125 µM for MB and 250 mg/l for the Navy dye). 

The absorbance peak was used to quantify the organic compounds. 

In order to determine the molar concentration of MB, a calibration curve is needed. According to ISO 

10678:2010(E) and DIN 52980 [219], [220], the molar extinction coefficient at 664 nm is 7.4028 m2/mol. 

However, when increasing the concentration (exceed 7 µM), the dimerization of MB occurs (Figure 4.2) 

[211]. For this reason, the linear function of absorbance by MB concentration is invalid, especially with 

high concentrations. Instead, the calibration counting the dimerization follows 

2

n,MB 664 6642 2

664

2 1
,

K
C E E

L L 
   (4.3) 

where Cn,MB is the concentration of MB, K is the dimerization equilibrium constant, 664 is the 

true molar extinction coefficient of MB at 664 nm, and E664 is the napierian absorbance of MB 

through an optical pathlength L and related to the decadic absorbance by E664 = Abs664 ln(10). 

It was found that 664 = 1.9104 m2/mol and K = 3.58 m3/mol. Details of the calibration can be 

found in Appendix A4. 

For Cipro, the calibration curve was determined as 

n,Cipro 277
24.00 0.13,C Abs   (4.4) 

where Cn,Cipro is the concentration of Cipro, and Abs277 is the decadic absorbance of Cipro 

through an optical pathlength of 10 mm. More details can be found in Appendix A5. 

For Everzol Navy ED and Remazol Red RR dyes, absorbance peaks at 600 and 520 nm were 

used to evaluate the discoloration, respectively. No calibration was done. 

All information for UV-VIS measurement of organic substances is presented in Table 4.1. 
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Table 4.1 UV-VIS spectroscopy of organic compounds. 

Organic molecules Color of the 

solution 

Scanning 

range, nm 

Absorbance peak at 

wavelength , nm 

Calibration 

curve 

Methylene blue blue 400−800 664 Eq. (4.3) 

Everzol Navy ED navy 400−800 600 Eq. (4.4) 

Remazol Red RR red 400−800 520 − 

Ciprofloxacin colorless 200−400 277 − 

4.3.2 Diffuse reflectance UV-VIS spectrometer 

The method was used to determine the ratio of the absorption coefficient to the scattering 

coefficient of the P25 semiconductor. Diffuse reflectance UV-VIS spectroscopy is also an em-

pirical method to determine energy bandgap of the sample [199], [221], [222]. 

The powder was compressed then measured with a Shimadzu UV-2501 PC UV-VIS spectrom-

eter. The thickness of the compressed sample must be large enough so that light cannot 

penetrate the solid samples but is absorbed or scattered. The ratio of the reflected radiant flux 

to the incident radiant flux is so-called reflectance. It includes two components: specular re-

flection (or symmetrical reflection) and diffuse reflection (or scattering) (Figure 4.6). The instru-

ment is coupled with an integrating sphere, and BaSO4 was used as a standard white board 

(or a reference). The diffuse reflectance R spectra was recorded. It is actually the ratio of the 

reflectance of the sample to that of the white board. In this study, only absolute but no other 

reflectance is referred, the subscript “∞” is omitted and the symbol R is used as the substi-

tution. 

 

 

Figure 4.6 Diffuse reflectance UV-VIS spectroscopy: Specular and diffuse reflection. 
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The method offers a great advantage to determine the bandgap energy of the semiconductors 

[221]. The reflectance can be transformed to the Kubelka-Munk function F(R) through the Ku-

belka-Munk theory. It is the ratio of absorption coefficient  to scattering coefficient  at a 

specific wavelength and can be determined as [222] 
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   (4.5) 

Additionally, the Tauc equation is written as 

   
1

g ,
n

h A h E      (4.6) 

where h is the Planck’s constant,  is the light frequency, A is a proportional constant, Eg is 

the bandgap energy, and n denotes the nature of the sample transition. When the scattering 

coefficient  is assumed to be a constant (actually, it usually increases with the decreased 

wavelength), F(R) is proportional to the absorption coefficient . Eq. (4.6) can be expressed as 

   
1

g .
n

F R h A h E        (4.7) 

The value [F(R) × h]1/n is called the modified Kubelka-Munk function. It can be plotted as the 

function of energy of the incident light E = h (the Tauc plot). By extrapolating [F(R) × h]1/n to 

0, the found energy is considered as the bandgap energy. 

This work addressed the cooperation with other colleagues and with the Electroactive Smart 

Materials group of the University of Minho. 

4.3.3 Photon correlation spectroscopy 

For nano colloidal assembles, photon correlation spectroscopy (also known as dynamic light 

scattering (DLS)) can be used to characterize the size distribution [154], [162], [218], [223]–

[226]. The technique is based on the measurement of the scattered light (Figure 4.7). 

Theoretically, the dispersed particles are in continuous Brownian movement, and the scat-

tered intensity I(t) fluctuates along with time. The time autocorrelation function G2() of the 

scattered intensity is determined as 

     2 ,G I t I t     (4.8) 

where  is the time interval, and the symbol … refer to an average value of the product I(t) 

and I(t + ).  
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Figure 4.7 Photon correlation spectroscopy: Scattering geometry 

 

For a large number of particles, the correlation function is an exponential function of the time 

difference 

   2

2 1 e ,G A B      (4.9) 

where A and B are the baseline and intercept of the correlation function, respectively. The 

decay rate  is related to the diffusion coefficient D as 

2.Dq   (4.10) 

The modulus of the scattering vector q is the function of the refractive index of dispersant n, 

the wavelength of the incident light  and the scattering angle  

4
sin .

2

n
q

 


  (4.11) 

Particle size can be calculated from the Stokes-Einstein equation 

h ,
3

kT
d

D


 (4.12) 

where dh is the hydrodynamic diameter, k is the Boltzmann’s constant, T is the absolute tem-

perature, and  is the viscosity. 

In this work, DLS measures the intensity fluctuation of the scattered light. The immediate 

results of DLS measurement are the scattering intensity-weighted distribution functions. By 

means of the correlation function, the diffusion coefficient can be determined. The intensity-

weighted harmonic mean size xcum was extracted. To show the broadness of the size distribu-

tion, polydispersity index PDI was collected. Note that these parameters are physical values 

corresponding to both hydraulic and optical properties of the colloids (see also Appendix A1). 

Fundamentals of DLS can be found in Appendix A2. 

Two particle sizers, Malvern HPPS-ET and Zetasizer Nano S90, were employed. The HPPS-ET 

was used in the early stage of this study with the cooperation with the research group Me-

chanical Process Engineering of TU Dresden. Some of the specifications of each instrument 

specified by the manufacturer are shown in. Data achieved by two instruments are correlated 

as presented in the Appendix A2. 

sample

incident laser beam

: scattering angle
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Table 4.2 Particle sizers used for the characterization of the dispersed photocatalysts. 

 
Specifications HPPS-ET Nano S90 

Scattering angle, 0 173 90 

Laser     

  beam red red 

  wavelength, mm 633 633 

Measurement position, mm -1 4.65 

 

4.4 PHOTOCATALYTIC EXPERIMENTS 

4.4.1 Procedure 

Photocatalytic degradation tests involve 3 steps as generally introduced in subchapter 3.2. In 

the study, the operations were as follows: 

1. Preparation of the slurry photocatalyst 

A desired amount of photocatalysts was dispersed in ultrapure water. Different techniques 

were tested, including mixing by a magnetic stirrer, an ULTRA-TURRAX® device or an ultra-

sonic processor (section 4.4.2). The particle characteristics were analyzed with samples col-

lected at the beginning and the end of this step. 

2. Adsorption-desorption equilibrium 

The dispersed suspension was placed in a mixing tank in the dark. The tank is open beakers. 

The same form of the beakers were used to ensure the same amount of incorporated air in 

the suspension which could act as electron acceptors (sections 2.1.1 and 2.3.4). The use of 

aluminum foil to cover the glassware avoided the interference of light (if possible) with the 

suspension. The desired volume of stock solution of the organic compound was then added 

into the suspension and the adsorption-desorption equilibrium started. Magnetic stirring dur-

ing equilibrium prevented the suspension from re-agglomeration or sedimentation. 

When working with a low initial concentration of organic compounds (10–15 µM for methylene 

blue and ciprofloxacin, 25–30 mg/l for commercial dyes) and using photocatalyst concentra-

tions of 0.03−10 g/l, a 30 min dark adsorption-desorption can reach the equilibrium [25]. When 

studying the high initial of the organic compound (25–125 µM for methylene blue and 250 mg/l 

for the commercial Navy dye), an extended period of dark experiments was necessary to en-

sure a (near) equilibrium. Experimentally, the 90 min equilibrium was performed. 

If necessary, HCl or NaOH was added to adjust pH of the suspensions. 
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3. Photocatalytic degradation or control tests 

Experiments were performed as described in subchapter 3.2. Photocatalytic tests were done 

under artificial UV or sunlight. Control tests were done in the dark. Exceptionally, to verify the 

photosensitivity of dyes under visible light, control tests were conducted with the artificial 

visible light. 

For experiments with UV illumination, UV intensities at the illuminated surface of the reactor 

were measured before each experiment series by the lux-meter PCE-UV34. The average in-

tensity I  was determined as Eq. (3.2). During the individual test, the light intensity of a refer-

ence point Iref was recorded to check the stability of light through the experiment. The corre-

lation with the computed average intensity was done as 

ref.I I  (4.13) 

For experiments with sunlight, the intensity is homogeneous on the entire illuminated surface. 

However, the intensity is chronologically changed by weather conditions. UV intensity was 

measured every 30 s by the lux-meter. No UVC or visible light was measured as it is out of 

the sensitivity range of the lux-meter. When conducting experiments with visible lamp, the 

visible intensity was monitored by the software. 

The interference of illumination with the mixing tank and tubes can intensify the computed 

light intensity. To avoid it, aluminum foil was used to cover these components. 

 

 

Figure 4.8 Procedure for photocatalytic experiments. 
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During experiments, samples were taken from the mixing tank each desired interval. Offline 

analysis was done by UV-VIS spectroscopy. As the samples were in a suspension state, cen-

trifugation was used to separate the solid-liquid. The samples were put in the centrifuge Ep-

pendorf 5417 for 40 min with the rotation speed of 14000 rpm. The temperature was set to 

be similar to the ambient conditions, in particular, 25 °C in summers, and 20 °C in winters. 

The supernatants were taken out for analysis. 

When pH was adjusted in experiments, pH of the fluid in the mixing tank was noted with the 

pH meter (pH 100 VWR). 

If necessary, at the beginning and at the end of this step, particle characterization was per-

formed to check the changes during the test. 

 shows the entire procedure of experiments. 

4.4.2 Dispersion tests 

Experiments aimed at a study on the pre-treatment of the photocatalysts, including: 

- comparison of two dispersion techniques by an ULTRA-TURRAX® device and an ultra-

sonic processor; 

- a detailed study on the ultrasonic dispersion with the consideration of energy con-

sumption; 

- stability of dispersed suspensions with/without the appearance of methylene blue 

(MB), one organic compound; 

- and the influence of the aggregate size on the optical properties and the photocatalytic 

activity of P25. 

Depending on the experiment purposes, three dispersion methods were used: agitating by a 

conventional magnetic stirrer, high-performance dispersion by a T 25 digital ULTRA-TURRAX® 

disperser, and ultrasonication by a Topas UDS751 and a Hielscher UP100H. The particle con-

centration was set to be 1 g/l. Suspension volumes were varied from 20–1800 ml. The power 

during the dispersion time was recorded by the power meter Voltcraf® Energy Logger 4000. 

Samples were taken as the desired interval for analysis. 

Selected experiments regarding dispersion technique are listed in Table 4.3. In subchapter 

5.2.4 the influence of dispersion on the optical properties is discussed, whereas the impact of 

ultrasonic dispersion on the photocatalytic reaction of MB is presented in subchapter 6.4.6. 
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Table 4.3 Overview of experiments on the pre-treatment of the photocatalyst. 

mP25, g VH2O, ml Disperser Powera), W tdispersion, 

min 

Others Datab) 

purpose: choosing a dispersion technique   

0.20 200 Hielscher 30 52 - 5.1.1 

0.21 200 Ultra 

Turrax  

40 60 A3 

purpose: an energy concept of ultrasonic dispersion      

0.22 200 Hielscher 10 90 - 5.1.1 

0.20 200 Hielscher 30 52 

0.24 200 Topas 33 51 

0.20 200 Topas 70 36 

1.00 1000 Topas 97 32 

1.80 1800 Topas 97 48 

purpose: stability test   

0.20 200 Topas 60 60 stability test: 4 

weeks 

A3 

0.05 50 Magnetic 

stirrer 

- - with/without MB 

stability test: 3 days 

5.1.2 

0.05 50 Topas 52 4 

 

purpose: effects on optical properties  

0.02 20 Magnetic 

stirrer 

- - stock suspension 

was then diluted to 

have the desired 

particle concentra-

tions 

5.2.3 

0.02 200 Hielscher 40 0−32 5.2.4 

purpose: effects of ultrasonic dispersion on photocatalytic reactivity  

0.04 40 Topas 20 0−4 - 6.4.6 

       
a) Data show the average values in the dispersion period   
b) Experimental data are presented in the mentioned sections   

 

4.4.3 Color removal of methylene blue 

In chapter 6, all scientific investigations of photocatalysis in the designed illuminated flow 

reactor are presented. To compare results with other publications, widely used TiO2 P25 was 

used as the photocatalyst, and the model dye substance methylene blue (MB) was used as 

the target organic molecule. 

Preliminary tests 

The first preliminary test C1 is to inspect if MB is a photosensitizer. The MB solution was 

illuminated under UV light. No photocatalyst powder was added. 
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The second preliminary test C2 is to study the adsorption of MB on the photocatalyst during 

the photocatalytic reaction. The equilibrated MB and P25 system (after the adsorption-desorp-

tion equilibrium in the dark, section 4.4.1) was loaded into the reactor. The experiment was 

done in the dark. 

The third preliminary test is to check if color removal of MB occurs in the presence of P25 

photocatalyst under UV illumination following the procedures introduced in section 4.4.1. 

Three preliminary tests are compared and photocatalytic ability of P25 for degradation of MB 

will be concluded. 

Variation of process conditions 

To inspect the influential parameters on the photocatalysis, process conditions were varied, 

including: i) the photocatalyst concentration; ii) the initial concentration of MB: iii) the suspen-

sion volume; iv) the UV intensity; v) the optical thickness; vi) pH; and vii) the aggregation state 

of the photocatalyst. 

i−iii) These conditions were achieved by altering the amount of P25 powder, the volume of 

water, or the volume of MB stock solution. 

iv) UV intensity can be altered by changing the irradiation. In this study, UV intensity was 

adjusted by changing the distance between the UV lamp and the reactors, or by adding trans-

parent films on the illuminated window. 

v) Varying optical thickness were obtained by using different reactors, corresponding to the 

thickness of 11, 17 or 22 mm (see also section 3.1.3). 

vi) pH was changed by adding a desired amount of HCl or NaOH. 

vii) Different aggregation states were obtained by varying ultrasonic energy of the dispersion. 

Photocatalytic experiments were carried out following the operational procedures in section 

4.4.1. For experiments with varying pH or the MB initial concentration, in addition to the pho-

tocatalytic tests, control tests were done with the same procedure but in the dark. 

Experimental plan is summarized in Table 4.4. 
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Table 4.4 Overview of experiments on the color removal of methylene blue by photocatalysis. 

Materials Process conditions Notes Datab) 

P25 MB Volume Equilib-

rium du-

ration 

Reac-

tor 

UV 

intensitya) 

Reaction 

duration 

g/l µM ml min - W/m2 min 

purpose: premilinary tests 6.2 

0 11 400 - beaker 15–16c) 60 Control test 

C1 

1 124 400 90 R10 0 150 Control test 

C2 in dark 

0.3 11 1000 30 R20 19 60 Photocata-

lytic test 

purpose: verifications of the reactor model, influence of the suspension volume 6.3.1 

6.4.1 

& 

7.1.1 

0.3 10–11 600, 800, 

1000, 

1400, and 

2400 

30 R20 18−21 30−60 Suspension 

volume was 

varied 

purpose: influence of UV intensity 6.4.2 

0.1 10 600 30 R20 6−20 30−60 Intensity of 

incident light 

was varied 

purpose: influences of optical penetration 6.4.3 

0.03, 

0.1, 

0.3 

and 1 

9–10 600 30 R10, 

R15, 

R20 

26 40 Photocatalyst 

concentration 

was varied; 

Each experi-

ment was 

done in three 

reactors 

purpose: influence of initial concentration of MB  6.4.4 

& 

7.2.4 
0.1, 

0.2, 

0.5 

and 1 

13, 24, 

51, 

and 

123 

400 90 R10 22 30, 60, 

120 or 

180 

Initial concen-

tration of MB 

was varied 

0 Control tests 

in dark 

purpose: influences of pH 6.4.5 

0.1 13 400 30 R10 24 40 pH = 3−10 

0 Control tests 

in dark 

purpose: influences of aggregate size  6.4.6 

0.1 13 400 30 R10 24.9 40 photocatalyst 

size was var-

ied (xcum = 

243−469 nm); 

pH was set to 

be 5 

         
a) Data show the average values of all photocatalytic experiments   
b) Experimental data are presented in the mentioned sections   
c) The maximum intensity on the illuminated surface of the beaker    
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4.4.4 Selected case studies for applications of photocatalysis 

Chapter 7 introduces selected case studies for further photocatalytic applications. Different 

materials including TiO2 P90, ZnO, and the synthesized magnetic particles were employed as 

photocatalysts. Here, not only lab chemicals (methylene blue (MB) and ciprofloxacin (Cipro)), 

but also commercial dye substances (Remazol Red RR and Everzol Navy ED) were used for 

degradation tests. Artificial UV or natural solar light were used for photocatalytic tests, while 

artificial visible light was employed for control tests. 

Details and parameters of each test can be found in Table 4.5. 

 

Table 4.5 Overview of experiments on applications of photocatalysis for wastewater treatment. 

Materials Process conditions Notes Dataa) 

Photoc

atalyst 

Organic 

sub-

stance 

Vol-

ume 

Equi-

librium 

Reac-

tor 

Illumination Reaction 

duration 

purpose: solar photocatalysis 7.1.2 

TiO2 

P25 

0.1 g/l 

MB 

4 mg/l 

(13 M) 

600 ml 30 min R10 solar light, cloudy 

day 

IUV = 2.4−19.7 

W/m2 

IUV,ave = 5.2 W/m2 

60 min Photo-

catalytic 

test 

solar light, sunny 

day 

IUV = 7.1−35.0 

W/m2 

IUV,ave = 23.6 W/m2 

50 minb) 

artificial visible light 

IVIS  100 W/m2 

60 min Control 

test 

purpose: photocatalysis with different nanomaterials 7.1.3 

TiO2 

P90 

0.01–

10 g/l 

MB 

3.3 mg/l 

(10 µM) 

600 ml 30 min R20 artificial UV light 

IUV,ave = 27.7 W/m2 

30, 40 

or 60 

minb) 

Commer-

cial NPs 

ZnO 

0.1−3 

g/l 

MB 

3.3 mg/l 

(10 µM) 

600 ml 30 min R20 artificial UV light 

IUV,ave = 27.2 W/m2 

15 minb) 

Fe3O4 

/SiO2 

/TiO2 

1 g/l 

Cipro 

5.0 mg/l 

(15 µM) 

500 ml 30 min R10 artificial UV light 

IUV,ave = 16.7 W/m2 

120 

minb) 

Self-

synthe-

sized 

magnetic 

NPs 

         
a) Experimental data are presented in the mentioned sections    
b) Duration to degrade more than 90 % of the initial concentration    
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Table 4.5 (cont.) Overview of experiments on applications of photocatalysis for wastewater treatment. 

Materials Process conditions Notes Dataa) 

Photo-

catalyst 

Organic 

sub-

stance 

Vol-

ume 

Equi-

librium 

Reac-

tor 

Illumination Reaction 

duration 

purpose: photocatalysis for commercial dye substances 7.1.4 

TiO2 

P25 

0.3 g/l 

Remazol 

Red RR 

31 mg/l 

600 ml 30 min R10 solar light, sunny 

day 

IUV = 29.1−37.4 

W/m2 

IUV,ave = 33.7 W/m2 

60 minb) Photo-

catalytic 

test 

  

artificial UV light 

IUV,ave = 20.8 W/m2 

60 min   

artificial visible light 

IVIS  100 W/m2 

60 min Control 

test 

  

TiO2 

P25 

0.3 g/l 

Everzol 

Navy ED 

24–29 

mg/l 

600 ml 30 min R10 solar light, cloudy 

day 

IUV = 3.4−17.9 

W/m2 

IUV,ave = 8.6 W/m2 

40 min Photo-

catalytic 

test 

  

artificial UV light 

IUV,ave = 20.8 W/m2 

  

artificial visible light 

IVIS  100 W/m2 

Control 

test 

  

purpose: preliminary test for up-scaling purpose 7.2.4 

TiO2 

P25 

1 g/l 

Everzol 

Navy ED 

250 mg/l 

400 ml 90 min R10 artificial UV light 

IUV,ave = 24.6 W/m2 

300 min Photo-

catalytic 

test 

  

dark Control 

test 

  

         
a) Experimental data are presented in the mentioned sections    
b) Duration to degrade more than 90 % of the initial concentration    
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5 PHYSICAL PROPERTIES OF P25 PHOTOCATALYST 

AGGREGATES 

TiO2 P25 is a commercial material and its characteristics have been widely reported. The ma-

terial is manufactured at industrial scale, thus the homogeneity of product in different stocks 

is not guaranteed. The characterization of the material in individual study is necessary. 

The commercial materials are typically in an aggregated state (Figure 5.1). While the primary 

particle has the mean size of 25 ± 3 nm [166], the fractal-like aggregates are in sub-micron 

scale [79], [227], [228]. Depending on the aggregated degree, the properties of the P25 may 

change. This chapter discusses this topic. Only characteristics which have important effects 

on photocatalysis, such as size, optical characteristics and stability, are of interest. 

5.1 SIZE AND STABILITY 

5.1.1 Photocatalyst size 

Results in this section were previously published [186]. 

Dispersion technique 

P25 nanoparticles are usually in an aggregated state. Since the aggregates are tightly bound, 

high-performance dispersing devices are required to disintegrate the aggregates. A dispersion 

technique is required to disintegrate P25, and to vary the aggregate size. 

ULTRA-TURRAX® device can produce strong shear force which provides a better dispersion 

compared to conventional mechanical mixing. The device works based on the rotor-stator 

 

  

Figure 5.1 SEM image of P25 aggregates. Image credit to Annegret Benke. 
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principle [229]. The rotor is operated at a high speed within a stationary stator. Suspension  

moves both axially and radially between the gaps of the rotor-stator. The high speed of the 

rotor and the small gap can produce a strong shear force, thus facilitate a better dispersion. 

However, the shear force is ineffective to disintegrate P25. The data is presented in Appendix 

A3. It indicates that the P25 aggregates are structured by tight bonds and require ultra-high 

energy performance, such as ultrasound. 

Ultrasonication is well applied in materials science because of its wide range of chemical and 

physical consequences [230]. The main mechanism of ultrasound in liquids is the acoustic 

cavitation. Formed bubbles and jets are collapsed and generate local heat and high pressure, 

thus produce surface damage at interfaces of multiphase systems, or/and make ultrasonic 

stirring much highly intense than mechanical agitation. The initial test is to find out if ultrasound 

can usefully disperse the P25 suspension. A rather low electric power of 30 W was applied 

by using the Hielscher device. A 200 ml volume of 1 g/l P25 suspension was dispersed within 

a period of 40 min and the P25 size was characterized by the dynamic light scattering (DLS) 

instrument (Figure 5.2). 

Prior to the dispersion, the P25 has the size xcum of 416 ± 24 nm. The value measured by DLS 

is the intensity-weighted harmonic mean size of the entire body. It is far different from the 

size characterized by image analyses (Figure 5.1), which is the diameter corresponding to the 

projected area of the primary particles. For this reason, in the test, the P25 size of sub-microns 

was found. In a meanwhile, the polydispersity index PDI is 0.544 ± 0.062. It implies that DLS 

is not suitable to measure such a highly polydispersed population, yet it indicates a broad 

distribution of the aggregates. 

 

 

Figure 5.2 Ultrasonic dispersion of P25 suspension: Size characterization. A 200 ml P25 suspension 

of 1 g/l was dispersed with 30 W ultrasonication by the Hielscher processor. Aggregate size and poly-

dispersity index of P25 colloidal suspensions measured by the Malvern Nano S90 dynamic light scat-

tering instrument were shown along with the dispersion time. 
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During the ultrasonic dispersion, xcum and PDI reduced. After a short dispersion of 2 min, xcum 

of 324 ± 14 nm and PDI of 0.402 ± 0.060 were achieved. The lower PDI shows the narrower 

distribution which can be well measured by DLS. After the period of 40 min, the aggregate 

size xcum of 230 ± 3 nm and the PDI of 0.190 ± 0.023 were obtained. These data prove that 

the ultrasonication can be an effective dispersion technique. 

The decrease of xcum and PDI obeys the power law. It also means that the decay rate at the 

beginning is speedy, while later it becomes slower. It seems to have a critical value of xcum, 

where a long dispersion time has no more effectively disintegrating effect. 

The reports of correlogram and size distribution by intensity before and after the dispersion 

can be found in Appendix A3. 

Energy concept 

Ultrasonication is considered as a high energy consuming technique. In this work, power was 

inspected. Different power was adjusted by altering generating amplitudes (20−100 %) and 

the immersion level of the sonotrodes (2.0−5.5 cm), depending on the suspension volumes 

(Figure 5.3). Since the Hielscher device can generate ultrasound corresponding to the low 

electric power of 8–23 W, it was preferably used for the dispersion of a small volume. With 

the big volume of dispersed suspension (up to 5 l in the test), the efficient dispersion requires 

a higher energy up to 154 W which was achieved by the Topas device. 

Here, the energy density of the dispersion was considered. It is the product of the electric 

power P and the dispersion time t divided by the suspension volume V, i.e. V

t
E P

V
. Differ-

ent volumes of the P25 suspension were tested [186]. The decay of P25 aggregate size is a 

power function of the energy density (Figure 5.4) as 

  


0.13 0.14

cum Vx E  (5.1) 

 

 

Figure 5.3 Ultrasonic energy consumption in a certain volume of water by using the ultrasonic proces-

sors (left) Hielscher UP100H and (right) Topas UDS751. 
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The data are in agreement with the energy concept [231], [232]. The exponent of Eq. (5.1) 

quantifies the efficiency of the dispersion. Small values suggest the requirement of a high 

energy to achieve a good dispersion. In this work, the exponent values of 0.142 and 0.134 for 

the Hielscher and Topas processors were obtained, respectively. This result means that an 

energy density of factor 170 is necessary to halve the P25 aggregate size. For instance, a 

dispersion time of 30 min is required to achieve the half size of colloids in one liter suspension 

when generating an ultrasonic power of 100 W. In this study, the real electric power con-

sumption was measured, which is non-identical to the ultrasonic energy generated into the 

suspension. Thus, energy consumption of the two devices is dissimilar, noticed by the devia-

tion of the two lines in Figure 5.4. In any event, this energy density concept is applicable for 

academic researches and economic estimation. 

From the practical point of view, highly concentrated suspensions can be dispersed by means 

of ultrasonication, then be diluted to have the desired photocatalyst concentration of hundreds 

mg/l. With this procedure, ultrasonic dispersion can be realized as a pre-treatment step prior 

to the photocatalytic reaction. In this study, the maximum volumes of 1.8 and 5 liter, in case 

of with and without P25, respectively, were dispersed. It shows a promising application at a 

pilot scale. The next subchapter discusses further the impact of aggregate size on the photo-

catalyst properties. 

 

 

Figure 5.4 Ultrasonic dispersion of P25 suspension: The energy model. The 200–1800 ml suspensions 

of 1 g/l were dispersed with 10–97 W ultrasound by two ultrasonic processors, Hielscher UP100H (de-

noted by “H”) and Topas UDS751 (denoted by “T”). Dot and solid lines show power functions of ag-

gregate size by energy density achieved by Hielscher and Topas processors, correspondingly. Aggre-

gate size were measured by the Malvern HPPS-ET dynamic light scattering instrument and the correla-

tion with Malvern Nano S90 was done (Appendix A2). Horizontal axis is in logarithmic scale. 
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5.1.2 Stability of dispersed photocatalyst 

As mentioned in the previous section, P25 aggregates are structured by tight bonds. By ultra-

sonication, these bonds, to some extent, can be broken, and aggregates can be disintegrated. 

Due to the surface charge of the colloids, they can attract each other and re-aggregation prob-

ably occurs. Depending on the aggregate level, the fractal-like aggregates [79], [227], [228] 

may have different properties. This fact is be discussed later in section 5.2.4. For this reason, 

the dispersity state of the suspension should remain as constant as possible for study pur-

poses. Furthermore, a flow reactor at an industrial scale may be as long as hundreds of me-

ters. Re-aggregation or/and sedimentation of the photocatalyst can cause the change of cata-

lyst loading along the axial reactor [97]. This section discusses the stability of the dispersed 

photocatalyst. 

Prior to the stability test, 50 ml P25 suspensions of 1 g/l were dispersed with two dispersion 

methods, which are conventional mixing by a magnetic stirrer, and ultra-mixing by assisted 

ultrasound (section 2.3.1). As the adsorption of the organic substance on the P25 may change 

its surface charge, and affect the aggregation of the colloids, suspensions with and without 

methylene blue (MB) were prepared. 

The suspensions have pH of approx. 4.6–4.8. The conductivity of water was approx. 

0.06 µS/cm. No conductivity of suspensions was measured. The dispersed suspensions were 

kept in ambient conditions at which temperature was approx. 20 °C. The stability test was 

performed within 3 days. No pH value or conductivity was recorded, however, as shown in 

Appendix A3, there might have no significant change during the 3 day test. A weak mixing by 

a magnetic stirrer was applied before each analysis for the sampling purpose. Figure 5.5 

shows the changes in the aggregate size xcum and the polydispersity index PDI. 

The conventional mixing shows the unstable suspensions with or without MB. Within 4 days, 

a deviation of the size of 57–62 nm was noticed, whereas PDI fluctuates by 0.05–0.09. It is in 

agreement with other work of our group [233], where at this pH, the interpolated zeta potential 

of P25 is approx. 22–26 mV. 

Being dispersed with ultrasonication, the suspension without MB was stable. In particular, 

xcum is 221 ± 2 nm, and PDI is 0.19 ± 0.01. The results of the stability test over 4 weeks can 

be found in Appendix A3. Interestingly, even with the appearance of MB, the stability is likely 

unchanged. The values xcum and PDI fluctuate in the range of 219–233 nm and 0.18–0.19, 

respectively. In this test, P25 is positively charged [26], [174], [176], [177], [233]. As MB is a 

cationic dye, when it is adsorbed on P25, it may promote the repulsive force among colloids. 

Thus aggregation is avoided. Here, only suspensions of P25 and MB were tested. No other 

organic substances were experimented. However, one should consider the possible change 

by other dyes, especially the anionic dyes, which can negatively affect the stability of the 

suspension. 
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Figure 5.5 Stability test of dispersed P25: a) aggregate size (xcum), and b) polydispersity index (PDI). 

The 50 ml P25 suspensions of 1 g/l were dispersed either by a magnetic stirrer (–US) or by the Topas 

ultrasonic processor (52 W, 4 min) (+US). The stability test was performed with/without methylene blue 

(+MB/–MB) in ambient conditions. 

 

In reality, few hours after the dispersion, a sedimentation of the conventionally mixed P25 

samples was visible to the naked eye. On the contrary, no sedimentation of ultrasonic-dis-

persed samples was observed. As mentioned early in this subchapter, sedimentation can in-

duce problems during the operation of the industrial flow reactor. Also the harsh working con-

ditions (such as the appearance of different chemicals, electrolytes, salts, intermediates or 

(by-) products of real water) can intensify the sedimentation. Regularly, the fluid must be well 

mixed which requires a high pumping energy [19]. In this subchapter, ultrasonic dispersion 

was proposed as an alternative. 

In this study, most suspensions have P25 concentrations of 0.1–0.3 g/l and pH of around 5.5–

6.0 corresponding to zeta potential of 5–12 mV [233]. A concept of ultrasonic dispersion to 

avoid the instability of the suspension is necessary. Due to the working conditions, a short 

dispersion of 0.5–1 min by the Hielscher disperser with the energy of 10–30 W was used, 

otherwise size was characterized for controlling or at least experiments were always repeated 

to check the reproducibility. Exceptionally, experiments to examine the impact of ultrasonic 

dispersion on photocatalytic activity were done with the Topas processor. 

5.2 OPTICAL PROPERTIES 

In this study, P25 was used as a photocatalyst for the color removal of dye substances under 
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performed at ambient temperature, i.e. room temperature under artificial illumination, or out-

side temperature under sunlight, thus radiation emission is negligible. The photon energy of 

absorbed light or elastic scattering light activates the photocatalysts. Bandgap energy corre-

sponding to the absorbed wavelength were determined by a diffuse reflectance UV-VIS spec-

trometer [199], [221]. Unused light penetrating was measured by a conventional UV-VIS spec-

trometer [183], [217]. Turbidity, as well as extinction coefficient, were accessed by using the 

Beer-Lambert law within the validity range. 

5.2.1 Bandgap energy 

By a diffuse reflectance UV-VIS spectrometer, the reflectance of the photocatalyst powder 

was measured (Figure 5.6a). The Kubelka-Munk function F(R) was converted (Eq. (4.5), section 

4.3.2). The modified Kubelka-Munk function [F(R) × h]1/n can be used to determine the 

bandgap energy of the semiconductor (Eq. (4.7), section 4.3.2). For P25, it is suggested that 

n = 2 (the indirect allowed transition) [199]. The function [F(R) × h]1/2 was plotted as the 

function of energy (Figure 5.6b). The bandgap energy was found to be 3.1 eV (Figure 5.6b) 

and is in agreement with other works, where P25 was reported to have the bandgap of 2.98–

3.37 eV [66], [198]–[200]. Correspondingly, radiations with the wavelength of shorter than 

400 nm can activate P25. 

 

 

Figure 5.6 Diffuse reflectance UV-VIS spectroscopy of P25: a) The reflectance spectra, and b) The 

modified Kubelka-Munk function. 
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5.2.2 Scattering 

By means of diffuse reflectance UV-VIS spectroscopy (the previous section), the Kubelka-

Munk function F(R) which is the ratio of absorption coefficient  to scattering coefficient  

[222] can be determined. For P25 powder this value at the wavelength of 365 nm is 0.6. The 

data were compared with other researches [200], [233]. Accordingly, the interpreted value  

over  at 365 nm was found in an extensive range, from 0.25 to 1.2. Note that Kubelka-Munk  

function is an empirical method to determine the bandgap but not the scattering. In any event, 

back scattering seems to be weighty and should be taken into account when studying sus-

pensions. 

In this work, only extinction coefficient in the heterogeneous system (i.e., suspension) was 

determined (see the following section), but no scattering was measured. However, literature 

study shows that scattering is significant, while absorption is minor at 365 nm [183], [234]. 

The extinction coefficient , the absorption coefficient  and the scattering coefficient  of 

P25 suspensions were obtained in independent measurements. These values at the wave-

length of 365 nm are 5.51  cm2/g, 0.08  cm2/g and 5.41 cm2/g, respectively. Accordingly, the 

ratio of absorption coefficient to scattering coefficient is 1.6 %, and the absorption extinction 

is only 2 % of the extinction coefficient. 

5.2.3 Transmittance, turbidity and extinction coefficient 

UV-VIS absorption spectroscopy of P25 suspensions is shown in Figure 5.7a. There is differ-

ence among spectra of different samples at any wavelength. It is because particles absorb or 

scatter light. 

In the visible range, as already discussed in the previous section, P25 particles do not absorb 

light. Here, only scattering happens as the result of interaction between visible light and ag-

gregates of hundreds nm. It was claimed that the scattering intensity Isca of a dilute aggregate 

suspension system is proportional to the volume concentration CV of particles [235] 

f f

sca V v

d dI C q C     (5.2) 

where df is the fractal dimension of the aggregates, q is the scattering factor, and  is the 

wavelength. Experimentally, the transmittance decreases with the increased mass concentra-

tion of the photocatalyst. The high turbidity of the suspensions of higher than 0.5 g/l even 

caused the complete extinguishment of visible light through a 10 mm optical pathlength. 
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Figure 5.7 UV-VIS absorption spectroscopy of P25 suspensions: a) Transmittance spectra; and b) 

Transmittance at the wavelength of 365 nm. Seven particle concentrations of 0.01−1 g/l were used. 

Transmittances were measured with the 10 mm optical pathlength cuvette. 

 

For each sample, the transmittance in the UV range is significantly lower than that in the visible 

range. Take a comparison of the 0.01 g/l and 0.03 g/l samples as an example. The gap be-

tween two curves within the entire visible range is rather constant. The slightly wider gap in 

the UV can be affiliated to the light absorption of the photocatalyst. The data are in agreement 

with literature, where P25 were proved to absorb the photon energy of light shorter than 416–

368 nm (corresponding to 2.98–3.37 eV) [66], [198]–[200]. The lowest transmittance is ob-

served at approx. 320 nm which agrees with the data obtained by the diffuse reflectance 

spectroscopy in this work (Figure 5.6a). The impact of the wavelength lower than 320 nm on 

the transmittance spectra is weak, which is dissimilar with Eq. (5.2). It was caused by the 

domination of absorption over scattering. 

Figure 5.7b shows the transmittance at 365 nm, which is the mode wavelength of the used 

UV lamp in the photocatalytic experiments [187]. Data well fit with the Beer-Lambert law (Eq. 

(2.19)) indicated by the curve when the transmittance is, not surprisingly, higher than a thresh-

old. Due to the lower limitation of the used UV-VIS spectrometer, the very low transmittance 

was not distinguished. A critical value of transmittance, thus, should be defined. 

To determine the validity range, extinction coefficient of total 21 runs was computed at certain 

wavelengths. Theoretically, extinction coefficient depends only on the properties of material, 

thus are identical irrespective of either particle concentration or optical pathlength. Experi-

mental data are shown in Figure 5.8. 

When the transmittance is high enough, as shown in the right side of the figure, extinction 

coefficients slightly fluctuate; whereas data are significantly scattered when the transmittance 

is small, shown in the left side. Table 5.1 shows the average extinction coefficients  ±  

when the lower limitation of transmittance was set from 0.001−10 %. 
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Figure 5.8 UV-VIS absorption spectroscopy of P25 suspensions (cont.): Lower limitation of transmit-

tance. Seven particle concentrations of 0.011 g/l were used. Transmittances were measured with the 

2, 5 and 10 mm optical pathlength cuvettes. Extinction coefficient was computed at five wavelengths: 

340, 365, 387, 410 and 633 nm. 

 

It can be noticed that data have high precision with T ≥ 1−10 %, shown by  = 3−7 %. 

Deviations are usually larger than 20 % with T ≥ 0.001−0.1 %. It also means that 1−10 % can 

be reasonably chosen as the critical value. Considering data shown in Figure 5.8, this work 

fixed the lower transmittance limitation of 5 % for further computations. 

To investigate the nature of P25 photocatalyst, extinction coefficient needs to be determined. 

Since the extinction coefficient is a constant at a given wavelength, transmittance for each 

particle concentration must be an exponential function of optical pathlength (Eq. (4.1), section 

4.3.1). Data are presented in Figure 5.9a. Seven particle concentrations of 0.011 g/l were 

used, however, the transmittances of 0.5 g/l and 1 g/l samples are lower than the critical 

threshold (5 %) thus not shown. Figure 5.9b shows the relation between turbidity and particle 

concentration. Extinction coefficient was found to be 4.28  104 cm2/g (Eq. (4.2)). The high 

coefficient of determination (R2 > 0.999) affirms the accuracy of the values computed by 

means of the Beer-Lambert law. 
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Table 5.1 UV-VIS absorption spectroscopy of P25 suspensions: Lower limitation of transmittance. 

Extinction coefficient of P25 suspensions  ±  at wavelength  were computed with varied critical 

threshold. 

critical 

thresh-

old 


 

104
 104 critical 

thresh-

old 


 

104
 104

nm cm2/g cm2/g - nm cm2/g cm2/g - 

0.001% 340 4.54 1.09 24% 1% 340 5.42 0.21 4% 

  365 3.67 0.93 25%   365 4.34 0.26 6% 

  387 3.14 0.78 25%   387 3.69 0.23 6% 

  410 2.77 0.63 23%   410 3.20 0.21 6% 

  633 1.36 0.17 12%   633 1.43 0.10 7% 

0.01% 340 4.67 0.96 20% 5% 340 5.43 0.20 4% 

  365 3.76 0.84 22%   365 4.38 0.22 5% 

  387 3.14 0.78 25%   387 3.72 0.20 5% 

  410 2.77 0.63 23%   410 3.23 0.17 5% 

  633 1.36 0.17 12%   633 1.44 0.09 6% 

0.1% 340 4.64 0.98 21% 10% 340 5.44 0.18 3% 

  365 3.79 0.81 21%   365 4.39 0.21 5% 

  387 3.22 0.70 22%   387 3.72 0.20 5% 

  410 2.77 0.63 23%   410 3.23 0.17 5% 

  633 1.36 0.17 12%   633 1.44 0.09 6% 

 

 

Figure 5.9 UV-VIS absorption spectroscopy of P25 suspensions (cont.): Turbidity. a) Transmittance T 

vs. optical pathlength z; and b) Turbidity  vs. particle concentration Cm. Five particle concentrations of 

0.010.3 g/l were used. Samples were measured with the 2, 5 and 10 mm optical pathlength cuvettes. 

Data at the wavelength of 365 nm were inspected. 
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Figure 5.10 Extinction coefficient of P25 suspensions. The data determined in this study (“measured 

data”) were compared with the works of Cabrera et al. [183]. 

 

The extinction coefficients at other wavelengths were compared with the work of Cabrera et 

al. [183] (Figure 5.10). It is shown that the measured values are lower than those of the refer-

ence study. Note that in the reference data, the primary particle size determined by SEM is 

30–90 nm, while the secondary particle size measured by laser light scattering instrument is 

700 nm. In this study, the primary and secondary particle sizes are 25 ± 3 nm [166] and 

382 ± 12 nm (section 5.1.1), respectively. The bigger sizes certainly affect the extinction co-

efficient of the suspension. This topic is discussed in the following section. Additionally, 

Cabrera et al. assumed the aggregates as spherical particles that do not reflect the nature of 

pyrogenic P25 [197]. Such nanopowder is, indeed, fractal [79], [227], [228], and scattered light 

may internally diffuse within the aggregate structure. Also the use of an integration for the 

UV-VIS spectrometer to minimize the amount of in- and out- scattering might contribute to the 

difference of the compared data. 

5.2.4 Influence of aggregate size 

Results in this section was previously published [186]. 

Generally, the gross photocatalyst may experience an internal light diffusion within the aggre-

gate structure. This section discusses if the aggregated state of the P25 photocatalyst impacts 

the optical properties. Ultrasonic dispersion was used to vary the P25 aggregates. The inten-

sity-weighted harmonic mean size xcum measured by dynamic light scattering characterizes the 

aggregate size. It is a physical parameter which reflects the optical property of the photocata-

lyst measured by means of the dynamic light scattering (section 4.3.3). As a P25 entity is in 

an aggregated state, and certainly not spherical (Figure 5.1), the value xcum is actually an equiv-

alent diameter and it differs from the diameter of the primary particle. 
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Figure 5.11 shows the influence of aggregate size of 234−343 nm on the optical properties. 

In the visible range, no change of transmittance is observed, while there is a dissimilarity of 

data in the UV range (Figure 5.11a). Note that, light can be either scattered or absorbed by the 

UV light, but there is no absorption in the visible range (of which photon energy is smaller than 

the bandgap energy of the photocatalyst). Therefore, the change of the data in the UV range 

can be attributed to light absorption. The extinction coefficient (Figure 5.11b) shows the obvi-

ous change of the optical property. In the visible range (exampled at the wavelength of 

633 nm), the extinction coefficient remains constant. In the UV range (data at 365 nm were 

compared), extinction coefficient increases with the decreased photocatalyst size. A decrease 

of transmittance by 15 % and 20 % corresponding to an increase of extinction coefficient by 

34 % and 49 % was observed, respectively. This can be achieved by dispersing with 60 and 

385 J/ml ultrasonic energy. As expected, the result indicates a more efficient use of light by 

the finer aggregates of the photocatalyst. The effect on the photocatalytic activity is discussed 

in subchapter 6.4.6. 

On the other hand, without ultrasonic dispersion, to increase the turbidity of suspension by 

50 %, an increase of particle concentration by the same factor (Eq. (4.2)) is required. Here, 

ultrasonic dispersion can be the substitution. It results in material saving. Consequently, en-

ergy for loading materials as well as operation cost of the post-treatment can be saved. 

 

 

Figure 5.11 Influence of P25 particle size on the optical properties : a) the transmittance spectra, and 

b) the turbidity at the wavelengths of 633 nm and 365 nm. 
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5.3 CONCLUDING REMARKS 

SEM shows that the P25 particles have the primary size of 25 ± 3 nm. By dynamic light scat-

tering analysis, it was confirmed that fractal-liked P25 experiences aggregation of sub-mi-

crons. It is possible to disintegrate P25 aggregates by ultrasonic dispersion, however, the 

aggregate size xcum smaller than 200 nm is impractical as it requires too high ultrasonic energy. 

The polydispersity index PDI of 0.2 shows that the homogeneity of the aggregate size can be 

improved by ultrasonication. During the dispersion, the decrease of xcum and PDI along with 

the energy density follows the power law, which is in agreement with the energy concept. 

Though the studied volume is only at laboratory scale, but the validity for the maximum volume 

of 1.8 l suggests that the concept can be applied at pilot scale. 

Depending on the concentration of the particle, pH can be changed and affect the stability of 

the suspension. In this work, the 1 g/l dispersed suspension in the presence of methylene 

blue was stable during 3 days. The suspension of finer aggregate without methylene blue was 

stable within 4 weeks, which is meaningful for further application in reality. Also the fine ag-

gregates show no sedimentation during hours. 

The optical properties of photocatalyst particles were studied. By diffuse reflectance UV-VIS 

spectroscopy, the bandgap energy of used P25 was found to be 3.1 eV, corresponding to the 

wavelength of 400 nm. It means that when using the artificial UV light with the wavelength of 

340–410 nm (section 3.1.4), it is expected that photocatalytic reaction happens. Additionally, 

the back scattering of the materials is significant, shown by the Kubelka-Munk function, which 

is the ratio between the absorption coefficient and the scattering coefficient. By a UV-VIS 

spectrometer, one of the most common laboratory instruments, the interaction of particles 

and UV light was investigated. When the transmittance is higher than the critical threshold of 

5 %, the Beer-Lambert law is well applied. Transmittance as well as extinction coefficient 

were discussed in parallel. At the low concentration of particles (hundreds mg/l), UV can ef-

fectively penetrate, thus make utilization of the catalyst. However, for the concentrations of 

few g/l, light penetration is restricted. It suggests an upper limitation of photocatalyst concen-

tration. Depending on the optical pathlength, one should choose an optimal particle concen-

tration so that catalysts can effectively absorb light. 

Optical properties and the degree of aggregation are intrinsically coupled. Due to the specifi-

cations of the experimental setup, transmittance at 365 nm was studied. Experimentally, the 

transmitted light through fine photocatalyst suspensions of the same optical pathlength di-

minishes. It suggests that the finer aggregates of fractal-like photocatalysts more efficiently 

absorb UV light and consequently, induce a better photocatalytic activity. 



6.1 Process conditions 

77 

6 COLOR REMOVAL OF METHYLENE BLUE IN THE 

DESIGNED PHOTOCATALYTIC SETUP 

The photocatalytic activity of TiO2 P25 photocatalyst introduced in chapter 5 is here presented. 

This chapter shows the investigation of photocatalytic degradation of methylene blue (MB), a 

model dye substance, under UV illumination. 

The first subchapter presents the process conditions of the experiments, which satisfy the 

assumptions used for the reactor model. Secondly, the preliminary tests, including the control 

tests and one photodegradation, are introduced to examine the presence of the photocatalytic 

reaction in experiments. Afterwards, the verification of the reactor model is presented. The 

use of the established kinetics is then discussed. Pros and cons are showed. In subchapter 

6.4, the influences of different process conditions on the photocatalysis are presented, includ-

ing the suspension volume, the light intensity, the photocatalyst concentration, the optical 

penetration, the initial concentration of the organic compound, and the pH of the suspension. 

The last section shows the investigation of the influence of the photocatalyst size modified by 

ultrasonic dispersion on the photocatalytic activity of P25. It is also the closing for scientific 

findings of chapter 6. 

6.1 PROCESS CONDITIONS 

In this subchapter, the experimental conditions, which are related to the assumptions in sub-

chapter 3.3.1, are discussed. 

The concentration of the photocatalyst as well as of the dye substance decide the period 

which is needed to achieve the adsorption-desorption equilibrium. Prior to the photocatalytic 

tests under UV illumination, a 30 min and 90 min mixing in the dark for low (9–13 µM) and 

high (25–125 µM) concentrations of methylene blue (MB) was carried out, respectively. This 

step is sufficient to achieve the adsorption-desorption equilibrium [25]. The adsorption of MB 

on P25 is thus considerably equilibrated and the reaction is the rate-determining step of the 

heterogeneous reaction. 

During the reaction under illumination, the emission of electrons is negligible [102], [184]. The 

electron-hole recombination is dominated by the formation [39], [41], [89]–[93], thus the exo-

thermal heat is insignificant. The increase of the temperature of the suspension is mainly be-

cause of the heat emitted from the artificial UV lamp. In the experiments, the temperature 

increased by 2–3 ºC (from 21 to 24 ºC) after 30 min under illumination. The reaction is consid-

ered as an isothermal process. 

It was claimed that when photocatalyst concentration is lower than 1 g/l and a good mixing is 

operated (in particular, Reynolds number is higher than 1700), mass transfer restrictions are 

non-existent [97], [184]. Except the study on the photocatalyst concentration, in the other 
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experiments, the mass concentration of photocatalyst was intentionally kept minimum. It also 

helps to reduce the inactivation of the catalyst in such short UV penetration systems [184]. In 

this study, the experimental performances were done with three different flow cells of the 

same reactor prototype (section 3.1.3). Reynolds number was found to be 1356–1770 (section 

3.1.5). However due to the structural geometry of the reactor, eddies are obvious especially 

with the in- and out-flows and in the corners of channels (Figure 3.7). As the result of the quasi 

turbulence, mass transfer limitations can be excluded. Additionally, the strong mixing effect 

in the reactors can mitigate the accumulation of catalyst at the window of the reactor. 

As the lifetime of radicals is few nano-seconds, they persist only under illumination. Only the 

flow cell was exposed to the UV light, whereas the other parts of the setup were covered by 

aluminum foil to avoid the interference with illumination. Therefore, the reaction occurs only 

in the reactor. 

During 30–180 min photocatalytic reaction (depending on the initial concentrations of MB), 

1.4 ml samples were collected at regular time intervals for analysis. The total withdrawn vol-

ume of nine samples is 12.6 ml. Of the total suspension volume, the change of 1−2 % during 

the reaction was assumed to have no effect on the photocatalytic process. 

6.2 PRELIMINARY TESTS 

The photosensitization of methylene blue (MB) under UV illumination (control test C1) and the 

adsorption of MB in the photocatalytic system after equilibrium (control test C2) were tested.  
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Figure 6.1 Control tests of the photodegradation of methylene blue (MB). Sample “-P25, +UV”: con-

trol test of 11 µM MB in the absence of P25 in a beaker under UV illumination. Sample “+P25, -UV”: 

control test of 124 µM MB in the presence of 1 g/l P25 in reactor R10 in the dark. 
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In the control test C1, 11 µM MB solution was exposed to the UV light in the absence of 

photocatalyst. In this test, the mode wavelength of the UV lamp is 365 nm (section 3.1.4). At 

this wavelength, there is no interaction between MB and the electromagnetic radiation (Figure 

4.1). For this reason, in the control test C1, the concentration of MB remained unchanged 

during the test (Figure 6.1, series “-P25, +UV”). 

The second control test was conducted in the presence of P25 in the dark. The high concen-

trations of MB (124 µM) and P25 photocatalyst (1 g/l) were used to test the effect of adsorp-

tion. Prior to the reaction, the suspension was kept under stirring in a beaker in the dark for 

90 min to achieve an equilibrium. After that, the suspension was loaded into the reactor, but 

no light was illuminated. As explained in subchapter 3.2, MB may be adsorbed on the inner 

walls of the reactor and other components of the setup. Additionally, due to the strong mixing 

in the setup (which is dissimilar to that in the beaker), the adsorption of MB on the P25 surface 

more or less depends on the tendency at which pH increases or decreases. In this study, the 

adsorption of MB on the walls of the setup is ignored and the influence of flow regime is not 

considered. Further study on the impact of pH is discussed in section 6.4.5. Experimentally, 

in the control test C2, the concentrations of MB slightly decreases (Figure 6.1, series “+P25, 

-UV”). After 30 min, the color was removed by 8 %. In the next 30 min, the color was removed 

by 1 %. The extension of time to 120 min caused a total loss of 10 % (not shown in the figure). 

It proves that even with a high concentration of MB, less than 10 % MB was adsorbed on P25 

after the equilibrium prior to the test, and adsorption during the run in the photocatalytic setup 

is negligible. 

The additional test was done in the presence of P25 under UV illumination. As P25 used here 

has the bandgap of 3.1 eV corresponding to 400 nm (section 5.2.1), it was expected to show 

the photocatalytic activity under the UV illumination of 340–410 nm of the UV lamp. The UV-

VIS spectra of MB samples in the presence of P25 and at different times of UV irradiation are 

shown in Figure 6.2. The decrease of the characteristic absorption peaks of MB (at 664 nm) 

along with the reaction time shows that the photodegradation of the dye occurred. The deg-

radation is caused by neither photosensitization nor adsorption (proved by the control tests), 

but it is truly attributed to the photocatalytic activity of P25 under UV illumination. In addition 

to the decrease of absorption intensity, the peak shift from 664 nm to 640 nm is observed in 

the UV-VIS spectra. This blue shift [143] is caused by the degradation of MB to new molecules 

[25], [236]. 

In the experiment, the volume of the suspension was a bit high (1 liter) compared to other 

laboratory-scaled experiments as well as other photocatalytic assays in this thesis. The discol-

oration is slow (which is discussed in section 6.4.1). However, after 60 min reaction, MB was 

bleached by 92 % showing that the reactor, in these working conditions, can practically de-

compose MB. 
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Figure 6.2 Typical UV-VIS spectra of the photodegradation of methylene blue (MB) at different exper-

iment times. The color removal of 1 l MB solution of 11 µM with 0.3 g/l P25 was performed in reactor 

R20 under UV illumination (the average intensity on the illuminated surface was 19 W/m²). 

 

6.3 USES OF THE REACTOR MODEL 

To quantify the photocatalytic reaction, a reactor model is crucial. According to the reactor 

model introduced in subchapter 3.3, the apparent degradation rate constant in the entire pho-

tocatalytic setup K can be determined from the experimental data as Eq. (3.28) and the (inte-

grated) photocatalytic reaction rate constant in the flow reactor k can be calculated as Eq. 

(3.29). 

The verification of the reactor model with experimental data is introduced in this subchapter. 

The uses of the model is then discussed. Pros and cons are evaluated at the end. 

6.3.1 Verification of the model 

The reactor model is validated by experiments with varied suspension volume while keeping 

the other influential parameters unchanged, e.g., light intensity, flow condition, the concen-

tration of the photocatalyst, the initial concentration of methylene blue (MB). When varying 

the volume of reactant suspensions in experiments but using the same photocatalytic setup, 

only suspension volume in the mixing tank VM was varied, whereas the suspension volumes 

in the flow reactor VR and in the tubes VT maintained constant. In essence, the increase of this 

unilluminated space in the photocatalytic setup VS lowers the apparent degradation rate con-

stant K in the entire system. On the contrary, as the process conditions in the flow reactor 

were fixed, an increase of the suspension volume in the mixing tank VM has no contribution 

to the reaction. The integrated photocatalytic reaction rate constant k in the flow reactor is 

expected to remain unchanged. 
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Experiments were done with a set of five different suspension volumes. The decays of MB 

were observed during the reaction (Figure 6.3). With the smallest amount of suspension 

(600 ml), 90 % color was removed after 30 min. Experiments with the increased volume of 

800 and 1000 ml required the longer reaction time of 40 and 60 min to achieve the same 

removal efficiency, respectively. For the high volume of 1400 and 2400 ml, the color bleaching 

of 40 % and 20 % were obtained after 60 min. It shows that the increase of reactant volume 

lowered the degradation of the entire setup. 

In any event of the suspension volume, the conversions of MB are an exponential function of 

time, which are in agreement with the reactor model (Eq. (3.28)): 

  


0.016 0.075

n,MB n,MB,ini
e .

t
C C   (6.1) 

The coefficients of determination of higher than 0.98 support the validity of exponential decay 

and thus of the first order kinetics. The values K = 0.016–0.075 min-1 quantify the reaction rate 

in the entire photocatalytic setup. High values obtained with the small suspension volumes 

mean a rapid degradation, and inversely. The value can be also initiated to find the required 

duration t to achieve a desired color removal efficiency () 

 ln 1
.t

K


 
  (6.2) 

In experiments, the required time to acquire the 90 % color removal are t = 143–30 min, 

corresponding to K = 0.016–0.075 min-1. 

To determine the reaction rate constant in the flow reactor k, Eq. (3.29) was used. Though the 

irradiance in the experiments was kept unchanged, in reality it slightly fluctuated. To exclude 

the influence of light as well as to compare with data from other works, the constants KI25 and 

 

 

Figure 6.3 Photocatalytic degradation of methylene blue (MB): Color removal of 600–2400 ml MB so-

lution of 10–11 µM with 0.3 g/l P25 in reactor R20 under UV illumination (the average intensity on the 

illuminated surface was 18–21 W/m²). Curves show the exponential fits. 
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kI25 were normalized (which are discussed in section 6.4.2). The data are shown in Figure 6.4. 

As predicted, the integrated reaction rate constant k deviates within the upper and lower 

bands (Figure 6.4) and yields an average value of 0.120 ± 0.009 min-1. This result supports the 

hypothesis of the model. The reactor model can eventually be used for further studies with 

the designed setup. 

6.3.1 Further discussion 

Deviation of the reactor model 

In heterogeneous photocatalysis, adsorption constant is an important parameter which affects 

the reactor model (Eq. (3.28), section 3.3.2). 

In this study, suspensions of TiO2 P25 and methylene blue (MB) were tested. To determine 

the adsorption constant, the change of the adsorption of MB on P25 in the dark should be 

studied [25]. In reality, MB concentration was analyzed by a UV-VIS spectrophotometer. The 

presence of P25 particles induces the scattering thus P25 must be separated from the col-

lected suspensions. The separation with different syringe filters was tested, of which mem-

branes are made of cellulose acetate (CA) (VWR and Rotilabo® syringe filters), nylon, polyvi-

nylidene difluoride (PVDF) or regenerated cellulose (RC) (Rotilabo® syringe filters). However, 

there is a loss of 33–98 % of MB after filtering. It means that the use of these membranes is 

not suitable. Instead, a centrifuge was employed (section 4.4.1). To obtain the complete sed-

imentation of P25, a duration of 40 min was required. Unfortunately, this period is long enough 

 

 

Figure 6.4 Reaction rate constants of photodegradation of methylene blue (MB): Color removal of 

600–2400 ml MB solution of 10–11 µM with 0.3 g/l P25 in reactor R20 under UV illumination (the aver-

age intensity on the illuminated surface was 18–21 W/m²). The apparent reaction rate constants in the 

photocatalytic setup KI25, and the integrated reaction rate constants in the flow reactor kI25 vs. the sus-

pension volume V. Lines show the linear fit of kI25 together with the 95 % confidence interval bands. 
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to achieve the equilibrium. Practically, adsorption of MB on P25 can be studied but it requires 

an alternative separation method or analysis procedure. Here, adsorption was not studied, and 

consequently, adsorption constant was not determined. 

In this section, the adsorption constant of 6.25  103 M-1 reported in the literature [25] is used 

for a brief estimation. The reactor model (Eq. (3.28), section 3.3.3) can be solved with the 

shortened form (Eq. (3.24)). It is the particular case of assuming Kads Cn,MB 1, where Kads is 

the adsorption constant, and Cn,MB is the molar concentration of MB taken from the mixing 

tank. To ensure the assumption, Kads Cn,MB should be lower than 1 % (or at least, 10 %). As a 

result, MB concentration should be lower than 1.6 µM (or at least, 16 µM). However, in this 

study, the initial concentrations of MB were 10–123 µM. It means that the assumption is lim-

ited and the shortened form has a restriction. Instead, the full form of Eq. (3.18) should be 

used. The reaction rate constant k is a total amount of two values 

1 2,k k k   (6.3) 

where 

 

 
1

1

R 0 R

1
ln ,

C t
k

t C t t
 


 (6.4) 

and 

   2 ads 1 0 R

R

1
.k K C t C t t

t
        (6.5) 

Accordingly, the reaction rate constant is determined as the sum of one exponential function 

(Eq. (6.4)) and one linear function (Eq. (6.5)). The gain by the amount k2, eventually, makes the 

apparent degradation in reality faster than in the shortened form. It explains that the raw ex-

perimental data in the early stage of the photocatalytic test are usually lower than the expo-

nential fits (Figure 6.3). Even though, the exponential relation works (Figure 6.3) and the sim-

plification of the model as Eq. (3.28) and Eq. (3.29) is applicable for the evaluation of the pho-

tocatalytic test. 

Other limitation of the reactor model 

When using the simple reactor model, another point should be noted. The model is estab-

lished for the “disappearance” of the original organic compound. The influence of the inter-

mediates and (by) products was not considered. In reality, the produced intermediates or (by) 

products occupy the photocatalyst coverage and cause the decrease of the amount of active 

centers on the photocatalyst surface. Depending on the interaction between these species 

and the photocatalyst surface, the value Kads is not constant but varied during the reaction, 

thus makes the assumption fail. This fact is discussed in section 6.4.4. 
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Lower limitation of the methylene blue concentration in photocatalytic tests 

The concentration of MB in photocatalytic tests were measured by means of UV-VIS spec-

troscopy. When the absorbance peak is lower than approx. 0.05, the sensitivity of the reactor 

is low and it affects the accuracy of the data. Additionally, the conversion of MB concentra-

tions follows an exponential function. As the characteristic of the function, the curve is as-

ymptotic when the reaction time becomes infinite (which is impractical). The concentration 

should be, thus, higher than a critical value to assure the regression. 

Figure 6.5 shows an example of one photocatalytic test. Basically, the degradation obeys an 

exponential function. Thus, the plot in the logarithmic scale should express a linearity. The 

data were plot with different reaction time of 20−60 min, corresponding to the final concen-

tration of 0.87−0.15 µM. When the MB concentration is very low (e.g., from 30 min onwards), 

the plots are deviated from the data (Table 6.1). In this work, the lower limitation correspond-

ing to Cn/Cn,ini of 5 % was chosen as the critical value. 

“End” of a photocatalytic test 

For different study purposes, experiments were performed with the variation of operational 

parameters leading to a wide range of results. With fast reactions, the value Cn/Cn,ini reached 

5 % after a short duration of 30–40 min. This lower critical value of MB concentration was 

chosen as the end of the test. On the contrary, slow reactions took longer. The experiments 

were ended after collecting 8 samples at suitable time intervals. This total number of samples 

are enough for exponential regressions. Additionally, the changes of total sampling volumes 

by less than 2 % ensure the assumption (section 3.3.1), and the time-saving is reasonable for 

numerous experiments. 

 

 

Figure 6.5 Lower limitation of the methylene blue concentration: Color removal of 600 ml MB 7.3 µM 

with 0.1 g/l P25 photocatalyst in reactor R15 under UV illumination (the average intensity on the illumi-

nated surface was 26 W/m²). Exponential function was plotted with different reaction duration. Numer-

ical results are shown in Table 6.1. 
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Table 6.1 Lower limitation of the methylene blue concentration. Graphical results were shown in Fig-

ure 6.5. Parameters of the exponential plots were computed with different ending concentrations, in-

cluding the coefficient of determination R², the apparent reaction rate constant in the setup K. The 

values  show the differences between the experimental and regressed data Cn and Cn,comp. 

t Cn Cn/Cn,ini Cn(t) = Cn
* e-Kt 

R2 Cn
* K Cn,comp (Cn,comp–Cn) 

min µM - - µM min-1 µM - 

0 7.288 100% - - - - - 

1 6.820 94% - - - - - 

5 4.678 64% - - - - - 

10 2.960 41% - - - - - 

20 0.875 12% 0.994 7.714 0.106 0.926 6% 

30 0.276 4% 0.997 7.869 0.110 0.290 5% 

40 0.227 3% 0.975 7.087 0.095 0.159 30% 

50 0.134 2% 0.966 6.479 0.086 0.088 34% 

60 0.153 2% 0.925 5.583 0.073 0.070 54% 

 

6.3.2 Concluding remarks 

The reactor model was established based on the first order reaction of organic molecules. 

Experiments with methylene blue (MB) showed that the MB concentration versus reaction 

time approximately substantiates an exponential relation.  

To ensure the accuracy of the exponential function, the use of low molar concentration of 

organic compound (approx. Cn  0.01–0.1 Kads) is recommended. The maximum value depends 

on the adsorption of the organic molecules on photocatalysts in the setup and, in particular, 

the nature of the materials, the properties of the medium and the process parameters. How-

ever, this value is determined by the nature of the targeted water and is not an arbitrary value. 

Thus, the deviation of the model may happen. Here, the macroscopic reactor model suffices. 

With the known operating process conditions, reaction rate constants in the photocatalytic 

setup as well as in the flow reactor can be determined. These two non-identical values are 

adequate for an understanding of the photocatalytic process. Optionally, if one knows the 

adsorption constant and the surface coverage of the active holes/radicals, the intrinsic reaction 

rate constant can be also determined. 
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The reactor model can be used for experiments in a setup including an illuminated flow reactor 

combined with a non-illuminated reservoir. Such setup is popular in reality and the model has 

a broad range of application. 

6.4 INFLUENTIAL PARAMETERS ON THE PHOTOCATALYTIC 

PERFORMANCE 

In this subchapter the main factors of a photocatalytic process are discussed. The first section 

is related to the last subchapter, where the influence of suspension volume is presented. To 

activate a photocatalyst, an adequate photon energy supported by a light source is required. 

The second section analyzes the influence of illumination on the photodegradation of meth-

ylene blue. As the concentration of photocatalyst affects the total active surface area and 

decides the optical penetration, it is then discussed. Later, the initial concentration of the or-

ganic substance which influences the adsorption-desorption on the photocatalyst is intro-

duced. Afterwards, the effects of pH, which is a property of wastewater and also an important 

factor of a photocatalysis, are introduced. The last section approaches the influence of the 

photocatalyst aggregate size. 

6.4.1 Suspension volume 

Experimental data in section 6.3.1 show the influence of the suspension volume on the ap-

parent reaction rate constant in the photocatalytic setup. With the same reactor, a high sus-

pension volume increased the non-illuminated space and reduced the degradation rate con-

stant. An explicit relation can be determined from the characteristic equation (Eq. (3.27)). The 

first order approximation for Taylor series gives    R T R

R T Re 1
K t t kt

K t t kt
 

    . The equation 

can be rewritten as 

R
R

M R T

1
, or .

kt
K K kV

t t t V
 

 
  (6.6) 

When the value k is a constant (as only one reactor was used, and all process conditions were 

kept the same), the degradation constant is inversely proportional to the suspension volume. 

Figure 6.6 shows the fit of experimental data. Here, the intensity-related reaction rate con-

stants KI25 and kI25 were computed (section 6.4.2). The slope, which is the product of the 

degradation constant and the inverse volume kI25 VR is 0.0516 ± 0.0015 l-1 min-1. As the volume 

of the reactor is 411 ml, the reaction rate constant in the flow reactor was 0.126 min-1, which 

matches the value found in section 6.3.1, kI25 = 0.120 ± 0.009 min-1. 

The linear fit has a high coefficient of determination. It assures that the value k in the flow 

reactor is a constant. This calculation can be, thus, used as the second verification of the 

model. 
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Figure 6.6 Influence of the suspension volume on the photodegradation of methylene blue (MB): Color 

removal of 600–2400 ml MB solution of 10–11 µM with 0.3 g/l P25 in reactor R20 under UV illumination 

(the average intensity on the illuminated surface was 18–21 W/m²). The apparent reaction rate constant 

in the photocatalytic setup KI25 vs. the inverse reactant volume: raw data, and the linear fit with the 

95 % confidence interval bands. 

 

6.4.2 Irradiance. The intensity-related reaction rate constant 

Results in this section were previously published [189]. 

Influence of the incident light 

Generally, influence of intensity I on the reaction rate constant k can be written as 

,k I   (6.7) 

where  is the exponent and is 1, 0.5 or 0 corresponding to I of lower than 200 W/m², approx. 

250 W/m² or higher, respectively. For an utilization of sunlight which is a cost-saving option, 

the average intensity is reported to be 20−30 W/m2 and not exceed 55 W/m2 in a sunny loca-

tion [12], [26], thus  should be approx. 1. 

In this study, the intensity of UV light in a low range (6–20 W/m²) was tested. As all experiment 

conditions were kept unchanged, the value Kads and the intrinsic reaction rate constant kr in 

Eq. (3.14) are constant. The (integrated) reaction rate constant in the flow reactor k is, thus, 

proportional to the surface coverage of the active species (B). As the intensity is low, the 

formation of electron-hole dominates the recombination (section 2.3.3) and is proportional to 

the number of photons of incident radiation. As consequence, the integrated reaction rate 

constant k is a linear function of UV intensity. When associating with the condition boundary, 

the reaction rate constant is zero when no illumination is conducted.  shows the influence of 

the UV intensity on the (integrated) photocatalytic reaction rate constant. The linearity was 
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fitted when the intercept was set to be zero. Results have a high coefficient of determination 

(R2 = 0.998) and confirm the theory.The result is also in agreement with other studies, where 

photocatalytic reactions in flow reactors were studies and the reaction rate constant was 

shown to be proportional to the UV intensity [12], [26], [89], [236]. Note that in this section, 

only intensity on the illuminated surface was accounted. In reality, light is attenuated along 

with the optical depth. The impact of optical penetration is discussed later in section 6.4.3.  

The intensity-related reaction rate constant 

The finding above allows for a normalization of the experimental result k to the used intensity 

I. It originates the intensity-related reaction rate constant kIref corresponding to a reference 

intensity Iref as 

ref
Iref . 

I
k k

I
  (6.8) 

The value kIref is used to exclude the influence of light intensity. The reference intensity Iref can 

be an arbitrary value within the linear range of k(I), i.e., lower than 200 W/m2 [39], [41], [89]–

[93]. Since this study aimed at the application under solar illumination, the average UV intensity 

of solar light of 25 W/m2 was chosen as the reference value. For further discussion, the nor-

malized value kI25 is used to interpret the experimental data. 

 

  

Figure 6.7 Influence of light intensity on the on the photodegradation of methylene blue (MB): Color 

removal of 600 ml MB solution of 10 µM with 0.3 g/l P25 in reactor R20 under UV illumination (the 

average intensity on the illuminated surface Iave was 6–20 W/m²). The reaction rate constant in the flow 

reactor kI25 vs. the light intensity: raw data, and the linear fit. 
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6.4.3 Optical penetration. A modified model 

In the previous section, the influence of light intensity was presented. In this section, the 

change of light within the bulk suspension is discussed. Due to the scattering and absorption 

by photocatalyst particles, light is attenuated along with the optical pathlength of the flow 

reactor. This optical phenomenon is also affected by the concentration and morphology of 

photocatalysts, i.e., size and structure. The influence of photocatalyst concentration is focused 

in this section, whereas the influence of photocatalyst morphology is presented later in sec-

tion 6.4.6. 

Color removal of methylene blue (MB) was performed in the presence of TiO2 P25 photocata-

lyst. P25 concentration was varied in the range of 0.03–1 g/l. Optical pathlength was tested in 

three flow reactors (R10, R15 and R20) with different thicknesses (11, 17 and 22 mm, respec-

tively). The shielding effect of the organic substances occurs but can be excluded, since the 

artificial illumination has the mode wavelength of 365 nm, at which MB molecules does not 

absorb light. Raw experimental data were previously reported [237]. 

Influence of photocatalyst concentration 

When there is one photocatalyst particle in the system, it fully adsorbs the organic molecules. 

In a real photocatalyst suspension, many particles exist in the suspension and the fractional 

surface coverage MB (dimensionless) is low 

ads n,MBMB
MB

MB,sat ads n,MB

,
1

K C

K C



 
 

 (6.9) 

where Kads is the adsorption constant (m³/mol), Cn,MB is the molar concentration in the bulk 

solution (mol/m³), and MB is the surface concentration (mol/m²) of MB. The subscript “sat” 

denotes the saturation. The moles of MB adsorbed on the P25 photocatalyst nads (mol) is re-

lated to the mass concentration Cm,P25 (g/m³) as 


S

 
ads m,P25 a,P25 MB MB,sat

,n C S V  (6.10) 

where Sa,P25 is the specific surface area (m²/g) of P25 photocatalyst and VS is the total volume 

(m³) of the suspension. Generally, the increased photocatalyst concentration increases the 

number of the active sites on the suspensions. When the particle concentration is low, light 

penetrates and is absorbed in the whole volume of the suspension (section 5.2.3). In conse-

quence, the integrated reaction rate constant k is expected to increase with the catalyst con-

centration Cm,P25 [40], [147], [152]. To some extent, the increased mass concentration induces 

more dominant scattering and light phenomena become more challenging to be accessed 

[42], [183]. At high concentration of photocatalysts, there is the loss of photons in the system. 

It is caused by reflection of light out of the reactor which is related to the back scattering. 

Thus, k may decrease at high Cm,P25. 



Chapter 6 Color removal of methylene blue in the designed photocatalytic setup 

90 

 

Figure 6.8 Influence of the photocatalyst concentration on the photodegradation of methylene blue 

(MB): Color removal of 600 ml MB solution of 9–10 µM with different concentrations of P25 in three 

reactors R10, R15 and R20. The average intensity of UV illumination on the illuminated surface was 

26 W/m². The reaction rate constant in the flow reactor kI25 vs. the P25 concentration Cm,P25 is shown, 

experimental data were compared with the simulated data. The inset shows the data in the low range 

of concentration in normal scale. 

 

The theory was proved by experimental results, shown in Figure 6.8. When the photocatalyst 

concentration was lower than 0.3 g/l, the reaction rate constant increased with the increased 

photocatalyst concentration (Figure 6.8). In contrast, when the concentration was higher than 

0.3 g/l, the reaction rate constant decreased. The very high catalyst dose has an extreme tur-

bidity. It hinders the optical penetration of UV light into the suspension [95]. In the experi-

ments, the transmittance through the suspensions with different optical pathlengths (shown 

in Figure 5.9) proved this theory. The simulated data in the figure are discussed later. 

The modified reactor model 

For further explanation of the decreased optical penetration by the turbid suspension, the in-

fluence of the optical pathlength of the reactors on the photocatalytic reaction was inspected. 

In this study, three reactors R10, R15 and R20 have rectangular cross-sectional channel me-

andering within a vertical plane facing the illumination. Their optical pathlengths are 11 mm, 

17 mm and 22 mm, respectively. 

Radiation across the channel depends only on the optical depth and can be extinguished in 

the rear of the reactors. The concept of active-inactive volumes of the reactors is derived. 

These abstract spaces are separated by an imaginary vertical plane (Figure 6.9). It is at a certain 
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distance Lactive from the illuminated surface, where the transmittance of light reaches a critical 

threshold. The ratio 

active
R

R

L
a

L
  (6.11) 

is the so-called activity factor of the reactor. This value is different depending on the thickness 

of the reactor LR. 

As discussed in section 5.2.3, when the particle concentration is lower than 0.3 g/l, turbidity 

of suspensions is proportional to the concentration (Figure 5.9). It was also shown that, de-

pending on the particle concentration and optical pathlength, the linear function is invalid when 

transmittance is lower than 5 % (Figure 5.8) For this reason, the value 5 % was chosen as the 

lower transmittance, i.e. when the transmittance is lower than this critical value, light is con-

sidered to be extinguished. At the wavelength of 365 nm, the found extinction coefficient is 

4.28  104 cm2/g. Accordingly, the optical penetrations opt are 24 mm, 7 mm and 2 mm for 

the particle concentrations of 0.03 g/l, 0.1 g/l and 0.3 g/l, respectively. When opt < LR, it means 

that the reactor has the active volume in the front and the inactive volume in the rear. The 

separated plane is at Lactive = opt and the activity factor is lower than 1. When opt ≥ LR, it means 

that the entire volume of the reactor is active, the maximum values are achieved, where Lactive 

= LR and the activity factor is 1. 

A modified model was established based on the original reactor model (section 3.3.3), includ-

ing the penetration of light inside the reactor, which is characterized by the activity factor. 

In the active volume of the reactor, the change of the studied species is 
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Figure 6.9 Fluids and concentrations of species in the photocatalytic system (cont.). The setup in-

cludes a mixing tank, a flow reactor illuminated by an irradiator, a pump and connecting tubes. The 

reactor is considered to have active and inactive volumes. The molar flow rate and the molar concen-

tration of the species are denoted as n  and Cn, respectively. 
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The activity factor is a constant and can be omitted in the left side of the equation. The solution 

can be generated as Eq. (3.15). In the limit case, the concentration is written as the exponential 

function     R

n,1,active n,0 R e ktC t C t t    as Eq. (3.25). 

In the inactive volume of the reactor, no reaction takes place. The concentrations of the inlet 

and outlet flows are related by the residence time 

   n,1,inactive n,0 R .C t C t t   (6.13) 

The fluid going out of the reactor includes the fluids from active and inactive volumes. Its 

concentration is 

       

   

    

     
R

n,1 R n,1,active R R n,1,inactive R

n,0 R R R

1

         e 1 .kt

C t a C t t a C t t

C t t a a
 (6.14) 

No reaction occurs in the mixing tank or the tubes. The change of the amount in the mixing 

tank is due to the in- and out fluids as Eq. (3.20), and that in the tubes is due to the residence 

time as Eq. (3.22). The modified form of Eq. (3.26) is 

             
Rn,0

M n,0 n,0 T R R R

d
e 1 .

d

kt
C

t C t C t t t a a
t

 (6.15) 

The linear delay differential equation can be solved as described in section 3.3.3. The conver-

sion of the organic substance follows the exponential function Cn,0(t) = Cn,ini e
-Kt as Eq. (3.28). 

The reaction rate constant of the photocatalysis in the reactor is 

 T R

M R

R RR

1 11
ln .

e
K t t

Kt a
k

t aa


  
   

  
 (6.16) 

When the activity factor is 1, the modified model returns the original model as Eq. (3.29). 

The reaction rate constant at the illuminated surface 

The reaction rate constant is actually an average parameter. Indeed, as light across the reactor 

attenuates, each fluid vertical layer receives a correspondent illumination Iz. The specific reac-

tion rate constant kz of the fluid layer z is defined as 

mz
z 0 0 z 0

0

e ,zCI
k k k T k

I

    (6.17) 

where k0 refers to the reaction rate constant at the illuminated surface of the reactor z = 0, T 

is the transmittance,  is the extinction coefficient and Cm is the particle concentration. The 

reaction rate constant can be calculated as 
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where T* is the transmittance through an active optical pathlength Lactive. The value T* can be 

chosen as the lower limitation of transmittance, i.e., 5 % as discussed. For a certain photo-

catalytic system, the turbidity of the suspension is known, thus Lactive can be determined. The 

value k0 is derived as 

 *

R
0 *

active

ln
.

1

TL
k k

L T





 (6.19) 

With each photocatalyst concentration, the reaction rate constant at the illuminated surface is 

independent from the optical depth and thus identical. Experimental data (Figure 6.10a) con-

firm this theory. The scattering of the data is due to the fluid properties in three reactors. E.g., 

the lateral mixing of the flow induced the mixing among layers.  

The average values for individual concentrations of three reactors were found (Figure 6.10b). 

The value k0,I25 was expected to be proportional to the concentration in this low range [40], 

[152]. However, experimental data show a power law 

 0 m,P25 .k A C



 (6.20) 

The process parameter A is 19.60. The exponent is 1.29 and slightly higher than 1. It can be 

affiliated to the radial mixing. The back scattering in the system may also positively intensify 

the light at the illuminated surface. However, in the context of this study, this relation allows 

for an optimization of the data. 

 

 

Figure 6.10 Influence of the photocatalyst concentration and optical pathlength on the photodegrada-

tion of methylene blue (MB): The reaction rate constant on the illuminated surface of the reactors k0,I25. 

Data were interpreted from experiments shown in Figure 6.8. a) Values of experiments with three pho-

tocatalyst concentrations Cm,P25 in three reactors with different thickness LR; and b) The average values 

vs. the photocatalyst concentration. 
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Optimization 

In this study, the reactors were designed for research purposes. In following discussion, they 

are called the “research reactor”. To define the intensity of light across research reactors, the 

cross section of the flow channel is rectangular. In reality, a flow reactor is tubular. If light is 

illuminated on one side, e.g., from the top, the inner diameter of the tubular reactor is equal 

to the thickness of the research reactor. If light is illuminated on the total surface area of the 

flow channel, e.g. the solar photocatalytic reactor with the parabolic compound concentrator 

[12], [17], [18], [89], [97], [105], the radius of the tubular reactor is equal to the thickness of 

the research reactor. In any event, this dimension should be optimized to ensure the active 

space in the reactor. In addition, optimization of photocatalyst concentration should be done, 

in order to achieve fast photocatalysis performance while material- and operation-cost saving 

is ensured. 

Eq. (6.19) and  gives the formula of the reaction rate constant 
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  (6.21) 

The relation allows for the prediction of the reaction rate constant when the process conditions 

are known. Figure 6.8 shows the simulated data in comparison with the experimental results. 

Note that the optimization can be utilized only in the validity range of the Beer-Lambert law. 

In this study, the upper photocatalyst concentration to ensure the validity is 0.3 g/l. Therefore, 

only experimental data in this range can be used for the evaluation. 

To look for the optimum value of the photocatalyst concentration, the partial differentiation by 

concentration is calculated 
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The value is always positive. Therefore, the value k monotonically increases with the increased 

photocatalyst concentration. The optimal concentration should be chosen as the upper value 

as 0.3 g/l. This optimal concentration is in good agreement with other works where organic 

compounds were degraded in either an illuminated batch or flow reactor [17], [148]–[150]. 

On the other hand, the partial differentiation by reactor thickness helps to find out the optimal 

value of the optical pathlength 
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 (6.23) 

For TiO2 suspensions, typically the extinction coefficient  at the UV wavelength is approx. 1–

10 × 104 cm2/g. The particle concentration is less than 1 g/l. The flow reactors usually have 

the optical depth of dozens of millimeters. Thus, the value  R m,P25

R m,P25e 1
L C

L C





  is higher 
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than 1 and the partial differentiation is negative. It means that the reaction rate constant mon-

otonically increases with the decreased optical depth. One should choose the optimal optical 

pathlength as the lower boundary. Note that the small diameter of flow channels increases 

the fluid velocity, leads to the increase of pressure drop. It makes the small diameter imprac-

tical. The lower boundary of 10 mm is, thus, suggested as the optimal thickness of the reactor. 

It is compiled with data from other studies, where the optimal radius of the reactor are 10–

25 mm [17], [19]. 

Practical remarks 

The simulated and experimental results show that the optimal concentration of P25 is 0.3 g/l. 

A larger amount has the negative effects from both theoretical and practical aspects. Indeed, 

increasing the photocatalyst loading induces the material cost. When using the commercial 

nanoparticles (NPs), such as TiO2 and ZnO, the energy bandgap is rather large, the UV light is 

required to provide adequate photon energy. To shorten the bandgap and make use of the 

visible radiation in solar light, the commercial photocatalysts are modified (section 2.1.3). To 

the best of my knowledge, these novel nanomaterials for photocatalytic uses have been not 

produced at industrial scale yet. The saving of material, hence, reduces the synthesis cost. 

Additionally, less photocatalysts reduce the mass of the suspension. Energy consumption for 

loading the fluid with a pump is lower. Moreover, the use of NPs needs a post-treatment to 

separate the solid part from the supernatant. A decrease of used materials leading the oper-

ating cost of the post treatment to be more economical is, thus, very important. 

Last but not least, for the experimental setup design, the weight of the flow reactor, which 

can be as long as hundreds meter, should be considered. The small diameter not only reduces 

the weight of the setup, but also ensures the efficient use of the illumination. The large diam-

eter is useless, but has the lower pressure drop. In this study, cost estimation has not been 

done. The optical thickness of 10 mm is sufficient to achieve the highest photocatalytic deg-

radation. 

6.4.4 High initial concentration of the organic compound 

This part of the study focuses on the photocatalysis with the high initial concentrations of the 

organic substance. Here, methylene blue (MB) was discolored, of which concentrations are 2, 

5 and 10-time higher than the commonly used one. It also aims at the fact that in industrial 

application of textile wastewater, the dye concentration is usually high. Raw experimental data 

were previously presented [238]. 

While diluted MB solutions can be easily analyzed by UV-VIS spectroscopy with common cu-

vettes of which optical pathlength is 10 mm, concentrated MB solutions require measurement 

with short optical pathlength cuvettes. All calibration curves determined with 1, 2 and 5 mm 

cuvettes as well as the calibration formula can be found in section A4 of the Appendix. 
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Figure 6.11 Photocatalytic degradation with the high initial concentration of methylene blue (MB): Color 

removal of 400 ml MB solution of 93.8 µM with 1 g/l P25 in reactor R10 under UV illumination (the 

average intensity on the illuminated surface was 22 W/m²). The evolution of MB concentration Cn,MB 

was plotted along with the experiment time t by exponential fits within the “all” degradation, or within 

“0−33 %” and “33−95 %” degradation. The inset shows the color removal efficiency by adsorption and 

by photocatalytic reaction. 

 

Figure 6.11 shows the experiment result with 1 g/l TiO2 P25 and approx. 110 µM MB which 

is the highest MB concentration in this study. After a 90 min adsorption-desorption equilibrium 

in the dark, 14 % MB was adsorbed on P25 photocatalyst. The initial concentration of MB in 

the photocatalytic test was 93 µM. 

Prior to the test, MB and P25 were stored in a mixing tank and kept stirring in dark condition. 

A period of 90 min can ensure the adsorption-desorption equilibrium of MB [25]. In fact, during 

the control test (which was also in the dark, but suspension was loaded and run through the 

channel of the reactor), there was an adsorption of 9 % after the first 30 min (shown in the 

inset of the figure). The strong mixing in the setup certainly impacted the mass transfer and 

increased the adsorption, especially at the beginning. From 30 to 150 min, more 4 % MB was 

adsorbed. 

During the degradation test under UV illumination, the color removal occurred due to both 

adsorption and photocatalytic reaction. To exclude the adsorption effect, the concentration of 

MB by photocatalytic reaction was calculated as 

n,MB n,degradation n,adsorption,C C C   (6.24) 

where Cn,adsorption and Cn,degradation are the molar concentrations of MB in the control test and in 

the degradation test, respectively. 

By assuming the adsorption constant of MB on P25 Kads an unchanged value, the reactor 

model (Eq. (3.28)) could be used for a determination of the reaction rate constant. In reality, 
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during reactions, MB was degraded, while intermediates or products were generated. These 

formed molecules occupied the adsorption sites of the photocatalyst. In other words, the va-

cant sites were covered not only by MB but also by the produced compounds. Though ad-

sorption-desorption equilibrium was achieved prior to the photocatalytic test, there was al-

ways a competition between the adsorption-desorption of MB and that of the intermediates 

and (by-) products [90], [101]. As the results, the value Kads changes along with the reaction 

time and the assumption above is only valid to a certain extent. This effect makes the expo-

nential fit of the reactor model deviate from the experimental data. 

For a low initial concentration, the deviation was also observed (Figure 6.3), but not remarka-

ble. Dissimilarly, here, the MB concentration is high and this phenomenon is obvious. A scat-

tering of the experimental data from the exponential plot of the entire test duration (the con-

tinuous line of the plot “all” in Figure 6.11) was observed. There seem to be two phases of 

the experiment. At the beginning, the amount of MB adsorbed on the photocatalyst is satu-

rated after the equilibrium and abundant. The adsorbed MB is strongly degraded, and the de-

cay rate is fast, shown by the raw data under the plotted line. In the second stage, the number 

of products is larger. The desorption of the products to the bulk restricts MB to transfer to the 

catalyst surface. The reaction is slower, indicated by the raw data above the line. For this 

reason, the division of the entire duration into two phases allows for the much better expo-

nential fits. 

In this study, the turning point of two phases was chosen at which the photocatalytic effi-

ciency reaches 33 %. The degradation rate constant at the beginning K1 is higher than that at 

the end of the test K2 (Figure 6.11). These two values are 0.024 and 0.014 min-1, respectively. 

It proves the argument above about the change of reaction rate constant during the test. 

Data of the other experiments were analyzed in the same way. The intensity-related reaction 

rate constants in two phases k1,I25 and k2,I25 are compared in Figure 6.12. Further discussion 

deals with the reaction rate constant in the first phase as it is less influenced by the interme-

diates or (by-) products. 

With a same catalyst concentration, the number of generated products increases with the 

increased MB initial concentration. They obstruct the active site at the catalyst surface. It low-

ers the adsorption constant and consequently, the reduced reaction rate constant is observed. 

This trend was clearly observed by experimental data as shown in Figure 6.12. 

With a same initial MB concentration, the use of the higher amount of the photocatalyst un-

doubtedly results in a larger surface area of the catalyst. It explains the ongoing increase of 

the reaction rate constant with the increased catalyst amount even when the P25 concentra-

tion is lower than 0.5 g/l. When the catalyst concentration is 0.5–1 g/l, the reaction rate con-

stants in both phases slightly increases or reaches a plateau. It is a bit different from the 

finding in section 6.4.3, where the optimal concentration of photocatalyst of 0.3 g/l was 

claimed. Here, not only turbidity of the catalyst suspension but also adsorption of the organic  
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Figure 6.12 Influence of the initial concentration on the photodegradation of methylene blue (MB). Color 

removal of 400 ml MB solution (7, 18, 40, 50 and 105 µM) with TiO2 P25 (0.1, 0.2, 0.5 and 1 g/l) in 

reactor R10 under UV illumination (the average intensity on the illuminated surface was 22 W/m²). Ten 

experiments (IC1–IC10) were done. More details can be found in Table 6.2. The intensity-related reac-

tion rate constant in the flow reactor a) in the first phase k1,I25 and b) in the second phase of the degra-

dation k2,I25 vs. the photocatalyst concentration Cm,P25. 

 

Table 6.2 Influence of the initial concentration on the photodegradation of methylene blue (MB). The 

table shows the numerical results corresponding to the graphical results in Figure 6.12. The intensity-

related reaction rate constant in the first phase k1,I25 and in the second phase of the degradation k2,I25 

are compared. 

Experi-

ment 

Cm,P25 

g/l 

Cn,MB,ini 

µM 

Cm,P25/Cn,MB,ini 

g/mol 

k1,I25 

min-1 

k2,I25 

min-1 

IC1 0.1 50 2004 0.067  ±  0.011 0.022  ±  0.004 

IC2 0.2 105 1896 0.042  ±  0.003 0.011  ±  0.001 

IC3 0.1 18 5445 0.170  ±  0.036 0.171  ±  0.002 

IC4 0.2 40 5013 0.192  ±  0.000 0.058  ±  0.004 

IC5 0.5 105 4740 0.057  ±  0.005 0.021  ±  0.002 

IC6 0.1 7 13799 0.269  ±  0.009 0.252  ±  0.107 

IC7 0.2 18 10889 0.270  ±  0.058 0.219  ±  0.060 

IC8 0.5 50 10020 0.130  ±  0.043 0.071  ±  0.004 

IC9 1.0 105 9481 0.060  ±  0.010 0.031  ±  0.002 

IC10 1.0 50 20040 0.104  ±  0.002 0.090  ±  0.007 

 

molecules affected the process. To exclude the effect of the adsorption as much as possible, 

only experiments of the same ratio of P25 to MB were compared (Table 6.2). Of each ratio 

(experiments IC3–IC5, or IC6–IC9), the reaction rate constant reaches the maxima at 0.2 g/l 

P25. Not surprisingly, the reaction rate constant with 0.5 or 1 g/l P25 is lower than that with 

0.1 or 0.2 g/l P25. The high turbidity restricted the penetration of light and the optical influence 

is more important. It agrees with the results discussed in section 6.4.3. 
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6.4.5 Acidic/basic property 

In previous experiments, it was preferred to use the original pH of the suspensions, which is 

4–6 depending on the P25 photocatalyst concentration. In wastewater treatment, the influ-

ence of pH is important as pH is varied in a wide range of values. Especially, in textile compa-

nies, depending on the type of dye substances, the processing is altered, pH of wastewater 

can be as high as 10–12. Based on this reality, the impact of pH on the photocatalytic reaction 

was studied. In this section, color removal of methylene blue (MB) by photocatalysis is dis-

cussed where the pH was adjusted in the range of 3–10 by adding NaOH or HCl. As pH has 

no effect on the UV-VIS absorbance of MB (Appendix A4) [239], MB concentrations were 

analyzed with UV-VIS spectroscopy. Experimental work was contributed by Hieu Le. 

Evolution of pH during experiments 

It is reported that pH may change during the photocatalysis [181]. In the experiments, the 

decrease of pH was observed when pH was higher than 6, which is the pH of the suspension 

without pH adjustment. When circulating the suspension in the setup, due to strongly mixing 

by stirring in the mixing tank and by quasi-turbulent flow in the flow reactor, CO2 in the air was 

incorporated and dissolved into the aqueous system. The formation of HCO3
− and H2CO3 de-

creases pH during the photocatalytic tests. The maximum change was observed with pH of 

9.5–10, where pH at the end of the tests was 6.9–8.4. In all cases, after the first 10 min, pH 

was relatively stabilized, which might be due to the likely saturation of CO2 absorbed in the 

system. The minor drops after that might pose the different chemical functional groups of the 

intermediates/products [8]. The change of pH during experiments can be found in Table 6.3  

Influence of pH on photocatalysis 

Theoretically, the photocatalyst is excited by photon energy and the electron-hole formation 

is pH independent. However, holes react with hydroxyl group, of which formation is certainly 

influenced by pH, to form hydroxyl radicals. In a basic medium, the concentration of OH– is 

higher than in a neutral or acidic medium. Consequently, the increased concentration of radi-

cals under illumination leads to a higher reaction rate constant. Experimentally, reaction rate 

constant increases with increasing pH (a), which agrees with other researches [25], [40]. The 

observed change can be assigned to the hydroxylation of the P25’s surface due to the pres-

ence of OH–. 

Another reason can be attributed to the adsorption of MB on the surface of photocatalysts. It 

is known that the PZC of P25 is 6–6.8 [201]. When pH is higher than 6, P25 is negatively 

charged, and inversely. As MB is a cationic dye, it is favorably adsorbed on negative surfaces, 

whereas positively charged surfaces counteract MB adsorption due to electrostatic repulsion. 

It was confirmed by the experiments in the dark, shown in . Exceptionally, at pH 3, slight 

desorption was observed. Initially, MB was added and it concentration was 13.2 µM. After 

30 min adsorption-desorption equilibrium, MB concentration was 12.8 µM. During the test, 
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the concentration slightly increased and reached 13.3 µM at the end of the test. It explains 

the very low reaction rate constant of experiment 1 and 2 (Table 6.3 and Figure 6.13). 

In reality, the pH of the dye solutions can be high. The presence of hydroxyl groups promotes 

the photodegradation of the solutions. Additionally, the increased adsorption of the cationic 

dyes supports the color removal. However, desorption of the (by-) products which makes re-

covery of photocatalysts more problematic should be concerned. 

 

Table 6.3 Evolution of pH during the photodegradation of methylene blue (MB): Color removal of 

400 ml MB solution of 13 µM with 0.1 g/l P25 in reactor R10 under UV illumination. 15 experiments 

were done (experiment 1–15). pH was adjusted to have a desired value (labelled “-30”). Photocatalyst 

was added into the solution. After 30 min adsorption-desorption in a mixing tank, pH was then meas-

ured (labelled “-0”). The suspension was then loaded into the covered reactor and circulated for the 

homogeneity of flow and pH was measured (labeled “+0”). The reactor was then uncovered for the 

photocatalytic test and pH was measured every 10 min (labelled “10”, “20” and “30”). Experiment 5 

was done without pH adjustment. 

Experiment pH at time t (min) 

-30 -0 + 0 10 20 30 

1 2.9 3.0 3.2 3.2 3.1 3.1 

2 3.0 3.0 3.1 3.0 2.9 3.0 

3 3.9 3.9 3.9 4.0 4.1 4.1 

4 4.4 4.4 4.6 4.7 4.8 4.8 

5 5.9 5.5 5.8 5.8 5.9 5.9 

6 7.2 6.0 5.7 5.6 5.7 5.7 

7 7.3 6.0 6.1 6.1 6.2 6.2 

8 8.3 6.3 6.3 6.4 6.4 6.4 

9 8.3 6.3 6.3 6.2 6.3 - 

10 8.5 6.3 6.3 6.2 6.0 5.9 

11 9.5 8.1 7.9 7.5 7.2 6.9 

12 9.5 6.6 6.5 6.7 6.8 6.9 

13 9.6 9.3 9.0 8.5 8.2 7.7 

14 9.8 9.3 8.9 - - 7.1 

15 10.0 9.7 9.4 8.9 8.1 8.4 
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Parameters of the reactor model 

When considering the indirect photocatalytic pathway, the hydroxyl groups in water react with 

trapped holes and form hydroxyl radical, which degrade the MB molecules. Eqs. (3.6)−(3.8) 

can be rewritten as follows 

   ads

MB aq MB ad ,
K

  (6.25) 

rad

trOH h OH ,
K     (6.26) 

 MB ad OH intermediate,  (6.27) 

where Krad is the constant of radical formation and Kads is the adsorption constant. The inte-

grated reaction rate constant k in Eq. (3.14) is derived as 

rad n,OH

r ads OH r ads

rad n,OH

,
1

K C
k k K k K

K C






 


 (6.28) 

where OH is the fractional surface coverage of hydroxyl groups and kr is the intrinsic reaction 

rate constant. The equation can be rewritten as 

r ads rad n,OH

1 1 1 1
1 .

k k K K C 

 
   

 
 

 (6.29) 

As adsorption is pH dependent, the value Kads is not constant in Eq. (6.29) and 1/k is a compli-

cate function of COH.  

 

 

Figure 6.13 Influence of pH on the photodegradation of methylene blue(MB): Color removal of 400 ml 

MB solution of 13 µM with 0.1 g/l P25 in reactor R10 under UV illumination. The average intensity on 

the illuminated surface was 24 W/m². a) Reaction rate constant kI25 vs. pH; and b) Inverse reaction rate 

constant vs. inverse concentration of OH−. 
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Depending on pH, the color removal of MB in the presence of P25 with high pH is actually 

caused by both photocatalytic reaction and adsorption. E.g., when the P25 concentration is 

0.1 g/l and the MB initial concentration is 13 µM, P25 itself can adsorb up to 40 % MB when 

pH is 9.3 (). With the same experimental conditions, when pH is lower than 6, only less than 

5 % of MB was adsorbed, the influence of pH on the adsorption can be eliminated and ap-

proximately, Kads is a constant. With this assumption, Eq. (6.29) means that the inverse reac-

tion rate constant is a linear dependence of the inverse concentration of hydroxyl groups. The 

function also fits the experimental data (b), where the relation was found as 

10

I25 n,OH

1 1
3 10 5.8371

k C 

    (6.30) 

with the coefficient of determination higher than 0.97. A system of equations can be derived 

from Eqs. (6.29)−(6.30) 

r ads

10

r ads rad

1
5.8371

.
1 1

3 10

k K

k K K








  


 (6.31) 

Once Kads corresponding to each pH is found (as discussed in section 2.1.2), kr and Krad can be 

determined. E.g., with the adsorption constant of MB of 6.3  10³ M-1
 [25], the other parame-

ters can be determined (Table 6.4). 

 

 

Figure 6.14 Influence of pH on the adsorption of methylene blue on the P25 photocatalyst. Adsorption 

tests of 400 ml methylene blue solution of 13 µM with 0.1 g/l P25 in reactor R10 in the dark. Concen-

tration conversion with regard to time with varied pH. 
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Table 6.4 Parameters of the kinetic model for the photodegradation of methylene blue with pH < 6. 

Description Parameters Unit Value 

Adsorption constant of MB * Kads l/mol 6.3 × 103 

Intrinsic reaction rate constant kr min-1 2.7 × 10-5 

Radical formation constant Krad l/mol 1.9 × 1010 

* The used value of the adsorption constant was taken from literature [25]. 

 

Note that, for photocatalysis, two reaction pathways can happen (section 2.1.2), where hy-

droxyl groups or organic compounds react with the trapped holes. In this work, only indirect 

mechanism (the former) was accessed. Additionally, the surface charge on the nanocolloids 

was not taken into account. The simple calculation above can be used only for a practical 

consideration. Further insights should be performed to obtain a full understanding of the influ-

ence of pH on the photocatalysis. 

6.4.6 Photocatalyst size 

As discussed previously in subchapter 5.2.4, P25 photocatalysts are fractal-like aggregates 

and the degree of aggregation has a big effect on the optical properties of the photocatalyst. 

The aggregate size can be varied by ultrasonic dispersion. The extinction coefficient increased 

by 50 % corresponding to the decreased aggregate size from 343 nm to 234 nm. This sug-

gested the improvement of the absorption properties of the aggregates. In this section, color 

removal of methylene blue (MB) was used to inspect the change of photocatalytic activity of 

P25 when varying the aggregate size. 

Preliminary tests 

The preliminary tests were to define the suitable photocatalyst concentration for the study on 

the influence of aggregate size on photocatalysis. Three photocatalyst concentrations were 

tested, including 0.03 g/l, 0.1 g/l and 1 g/l. First the catalyst was dispersed by ultrasonication, 

then equilibrium was carried in the dark and color removal of MB was tested in reactor R20. 

The intensity-related reaction rate constant (section 6.4.2) was computed. Data were shown 

in Figure 6.15. 

In the tests with 1 g/l photocatalyst [186], originally the P25 photocatalyst has the aggregate 

size of 374–391 nm. When applying ultrasonication to the suspensions, the aggregate size 

can reduce to 245–250 nm, depending on the level of energy generated. In the photodegra-

dation of MB, an increase of reaction rate constant by approx. 20 % was obtained. Here, the 

high concentration is very turbid (section 5.2.3). It was estimated that only 3 % of light with  
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Figure 6.15 Influence of P25 aggregate size on the photodegradation of methylene blue(MB): Color 

removal of 600 ml MB solution of 10 µM in reactor R20 under UV illumination. The average intensity on 

the illuminated surface was 16–18 W/m². Three photocatalyst concentrations were used, including 

0.03 g/l, 0.1 g/l and 1 g/l. Intensity-related reaction rate constant kI25 vs. aggregate size xcum. 

 

the wavelength of 365 nm can transmit through a 1 mm pathlength. Due to the short optical 

penetration, in these performances, while employing the reactor R20 with 22 mm thickness, 

most of the space of the reactor is inactive (section 6.4.3). It explains that the effect of ultra-

sonication on the photocatalytic activity is only 20 % though extinction coefficient increased 

by 50 %. In addition, the photocatalytic performance of the disintegrated photocatalysts (245–

345 nm) is faster than that of original aggregates (374–391 nm) but is not distinct among each 

other. It can be attributed to the high turbidity. 

With the low concentration of 0.03 g/l, by ultrasonic dispersion, the aggregate size decreased 

from 455 nm to 258 nm and the extinction coefficient increased by 25 %. At this low concen-

tration, 5 % of light can penetrate a pathlength of 15–18 mm. Here, reactor R20 with the 

optical path of 22 mm was used. However, due to the radial mixing in the flow channel, all 

particles may absorb light, which makes the entire volume of the reactor active (section 6.4.3). 

Indeed, by using the light intensity meter PCE-UV34, 7 % of light could pass through the re-

actor. For this reason, no change of reaction rate constant was observed. 

The photocatalyst concentration of 0.1 g/l is a bit lower than the optimal concentration (0.3 g/l, 

as shown in section 6.4.3), thus a differentiation of reaction rate constant by aggregate sizes 

was expected. Here, the aggregate sizes were varied in the range of 400–223 nm. Extinction 

coefficient increased by 27–37 %. Correspondingly, the active pathlength was found to be 

6.0–7.6 mm. The reaction rate constant increased by 25 %. The results suggest that this con-

centration is suitable for testing the influence of aggregate size. However, the use of a thick 

reactor (reactor R20) diminished the effect, thus, the use of a thin reactor (reactor R10) was 
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recommended for further test. Also, the reaction rate constant at the illuminated surface (sec-

tion 6.4.3) which can exclude the impact of optical pathlength was suggested to analyze ex-

perimental data. 

Experimental results 

Experiments were carried out in the thin flow cell (reactor R10). As discussed, the 0.1 g/l 

photocatalyst concentration was used. To restrict the re-aggregation of the photocatalyst, the 

pH was set to be 5.0. It was achieved by adding an amount of 100−400 µl HCl 0.01 M into the 

suspensions. 

In most experiments, at the beginning and at the end of the test, pH slightly fluctuated in the 

range of 5.0–5.3 (Table 6.5). Uncertainly, with the finest photocatalysts, there was an increase 

of pH from 4.6 to 5.1. It induced a re-aggregation, where xcum increased from 236 nm to 

314 nm and from 250 nm to 356 nm. PDI also increased from 0.21 to 0.23. Additionally with 

the gross photocatalysts of 465–473 nm, after 40 min test, the aggregate size decreased to 

359–360 nm and PDI decreased from 0.44–0.46 to 0.33–0.34. When inspecting the extinction 

coefficient, not surprisingly, it increased by approx. 50 %, from 20 cm²/g to 31 cm²/g. It is 

expected that the photocatalytic performance also increased. 

 

Table 6.5 Characteristics of the suspensions during the test with ultrasonic pre-treatment: Color re-

moval of 400 ml MB solution of 11–12 µM with 0.1 g/l P25 in reactor R10 under UV illumination. 12 ex-

periments were done. The aggregate size xcum, the polydispersity index PDI, pH and extinction coeffi-

cient at 365 nm 365 were determined at 0, 10 and 40 min. Photocatalysts of two first experiments were 

mixed by a magnetic stirrer but not dispersed by ultrasonication. 

xcum PDI pH 365 

at 0 min at 40 min at 0 min at 40 min at 0 min at 10 min at 40 min at 0 min 

nm - - cm²/g 

473 359 0.44 0.33 5.0 5.2 5.1 21 

465 360 0.46 0.34 4.9 5.0 5.0 20 

343 359 0.34 0.29 5.3 5.4 5.3 27 

340 340 0.34 0.28 5.1 5.2 5.1 26 

325 318 0.30 0.26 5.0 5.3 5.2 26 

323 302 0.34 0.26 5.0 5.4 5.2 28 

306 302 0.29 0.26 5.0 5.3 5.2 27 

300 - 0.28 - 5.1 5.1 5.0 28 

282 296 0.24 0.24 5.6 5.5 5.4 29 

278 292 0.24 0.25 5.3 5.3 5.2 30 

250 356 0.20 0.20 4.6 5.0 5.1 29 

236 314 0.21 0.23 5.4 5.5 5.6 31 
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Figure 6.16 Influence of photocatalyst aggregate size on the photodegradation of methylene blue(MB): 

Color removal of 400 ml MB solution of 11–12 µM with 0.1 g/l P25 in reactor R10 under UV illumination. 

The average intensity on the illuminated surface was 25 W/m². Graphs show the intensity-related reac-

tion rate constant on the illuminated surface k0,I25 vs. a) aggregate size xcum, and b) polydispersity index 

PDI. 

 

Figure 6.16 shows the change of the reaction rate constant on the illuminated surface with 

respect to the varied catalyst aggregate size. The finer aggregates allow for higher reaction 

rate constants. In particular, an increase of the reaction rate constant by 2.5 times was ob-

tained when disaggregating the photocatalysts from 473 nm to 236 nm. 

Since ultrasonic dispersion disintegrates the smaller cluster aggregates, the total specific sur-

face area of the photocatalyst insignificantly changes [240]. The increase of reaction rate con-

stant is not attributed to the surface area of the fractal-like aggregates. 

The interaction between light and particles is of great importance. The gross aggregates of up 

to sub-microns induce the shielding effect when interacting with UV light of which wavelength 

is less than 400 nm, i.e., light is restricted to penetrate a long distance and reach the neighbor 

photocatalysts behind. It was confirmed that the extinction coefficient increases with the de-

crease of the aggregate size (section 5.2.4 and Table 6.5). From a microscopic inspection, 

depending on the position of the photocatalyst, there may have an internal obscuration and 

light diffusion within the bulky structures is obstructed. As already known, in nano-photocata-

lyst systems, light is scattered. Within the internal structure of big aggregates, scattered light 

is easily captured and the elastic scattering is utilized to activate the neighbors. In  this sense, 

the larger aggregates have a positive effect. To balance the advantages and the disadvantages, 

a model accounting light interacting with structural photocatalyst is needed. To the best of my 

knowledge, in the studies of the radiative transfer [102], [184], photocatalysts were consid-

ered as single spherical particles, which does not reflect the nature. Here, with the outcome, 

from the theoretical aspect, it should be aware that the aggregation has a big influence on the 

photocatalysis. 
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The interaction between the organic compounds and photocatalyst also contributes to the 

change of the reaction rate constant. For the P25 aggregates, the external mass transfer is 

negligible [97]. However, due to the light penetration restriction within the aggregates, the 

concentration profiles always present, which causes the internal mass transfer [96]. In princi-

ple, due to the diffusion path, the organic molecules and the intermediates or (by-) products 

easily reach the surface of a fine photocatalyst aggregate. Indeed, the adsorption constant 

was reported to depend on the size of photocatalysts [155]. Consequently, the smaller P25 

photocatalysts achieved by ultrasonic dispersion allows for a faster color removal of MB. 

More importantly, by disintegrating the photocatalyst with ultrasonication, the reaction rate 

constant can be boosted by 2.5 times. The average reaction rate constant in the entire flow 

reactor kI25 is 0.165 min-1 and even higher than the maxima with the optimal catalyst concen-

tration of 0.3 g/l (section 6.4.4). Obviously, ultrasonic pre-treatment can be considered as a 

technique to enhance the photocatalysis while ensuring the material saving. Consequently, 

the operating cost of the post treatment by membrane filtration reduces. Together with the 

energy concept introduced in section 5.1.1, it is possible to estimate the electric consumption 

of ultrasonic dispersion. A comprehensive cost estimation of the whole process, including 

ultrasonic pre-treatment, photocatalysis, and post-treatment should be studied, then one can 

decide if it is ambitious to apply ultrasonic dispersion to enhance the photocatalytic activity at 

pilot scale. 

Last but not least, these findings recommend that gross photocatalysts have much lower 

photocatalytic activity. As the results, a suitable photocatalyst dispersion technique is neces-

sary to homogenize and stabilize the properties of particles as well as to prevent the sedimen-

tation of photocatalysts in real applications. 

6.4.7 Concluding remarks 

In this subchapter, the influence of different parameters on the color removal of methylene 

blue (MB) was examined. Depending on the study purposes in each part, an appropriate as-

sessment of the experimental data was employed. It must be assured that photocatalysis is 

a complex process, which is influenced by operating conditions. 

Experimental data with the varying suspension volume were introduced in the previous sub-

chapter for the validation of the reactor model. Here, by another interpretation, an explicit 

relation was given, in particular, the inversely proportional dependence of the apparent reac-

tion rate constant of the photocatalytic setup K on the volume were given. 

The influence of UV light intensity, the driving force of a photocatalysis, was inspected. As 

expected, in the low range of intensity, as the electron-hole formation prevails over the re-

combination, it is proportional to the number of incoming photons. It explains the linear relation 

between the reaction rate constant of the flow reactor k and the light intensity at the illumi-

nated surface. The intensity-related reaction rate constant was then derived, which can be 

used to compare with the data of tests of various intensities. The normalized reaction rate 
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constant with respect to the average intensity of the solar light of 25 W/m2 kI25 was introduced. 

This value was used for most discussion of this study. 

The following results showed the study on the optical penetration. As light across the reactor 

attenuates, not all volume of the reactor is illuminated. In particular, in the front, where light 

can penetrate, photocatalyst is activated. Dissimilarly, in the rear, light is extinguished, and 

this space is considered as an inactive volume. For example, less than 5 % of light can pene-

trate an optical pathlength of 24 mm, 7 mm and 2 mm for the particle concentrations of 

0.03 g/l, 0.1 g/l and 0.3 g/l, respectively. The value kI25 is actually an average value of all specific 

reaction rate constants within the reactor. The concept of the reaction rate constant at the 

illuminated surface k0 was derived, and the original model was appropriately modified. This 

aimed at an understanding of the effect and a prediction of the photocatalytic reaction. Three 

reactors with the optical thickness of 11, 17 and 22 mm were used, and the photocatalyst 

concentration was varied from 0.03−3 g/l. In the low range of photocatalyst concentration 

where scattering is negligible, the simulated data are in fair agreement with the experimental 

data. It was optimized that the concentration of P25 photocatalyst is 0.3 g/l and the optical 

thickness is 11 mm. Since this part of the study focused on the optical properties, the pressure 

drop induced in such thin reactor was not discussed. For up-scaling purpose, this issue should 

be accounted to minimize the loss of energy. 

In this subchapter, the influence of the reactant’s concentration was also introduced. With 

high initial concentrations, the adsorption constant of the reactant is unsteady during the pho-

tocatalytic reaction. It is caused by the competition between the adsorption and desorption of 

the reactants and intermediates/products on the surface coverage of photocatalyst. To find 

out the parameters of the kinetic model, the adsorption constant must be simplified as a con-

stant value. Experimental data showed that, when dividing the entire photocatalytic reaction 

into two stages (the beginning, phase 1, and the end, phase 2, corresponding to 0−33 %, and 

33−95 % degradation, respectively), the experimental data are well fit to the exponential func-

tion of the reactor model. The results suggested that instead of inspecting the initial reactant 

concentration, the ratio between the photocatalyst and the reactant concentrations is a more 

important parameter.  

Additionally, the influence of pH was described. In principle, the increase of pH allows for a 

larger number of hydroxyl groups, which certainly increases the number of hydroxyl radicals. 

It was confirmed by the experimental data. It can be also explained by the change of the 

adsorption of the organic molecules on the photocatalyst surface. As MB is a cationic dye, the 

adsorption is favored at pH of higher than PZC of P25, at which P25 is negatively charged. The 

impact was confirmed by experiments in the dark or under UV illumination. Generally, the 

photocatalytic degradation of MB increases at the increased pH. Indeed, pH higher than PZC 

promotes the adsorption and the reaction rate constant is much higher. Exceptionally, when 

pH is 3, desorption occurs, thus the reaction rate constant of the photocatalytic test is very 

low. When considering only indirect reaction pathway (section 2.1.2), the reactor model was 
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then adapted with respect to the concentration of hydroxyl groups. Once the adsorption con-

stant is determined, intrinsic reaction rate constant can be defined. 

The last section showed the study on the influence of the photocatalyst aggregate size. Ag-

gregated state was varied by ultrasonic dispersion. The physical properties were previously 

discussed in subchapter 5.2.4. In the preliminary tests in reactor R20, only a slight enhance-

ment of photocatalytic reaction rate constant was observed since light was extinguished in 

this thick reactor. Thus, the thin reactor (R10) was employed. The influence of process condi-

tions as UV intensity, optical penetration and pH was eliminated by using the results in sec-

tions 6.4.2, 6.4.3 and 6.4.5. The enhancement of the photocatalytic activity by ultrasonic pre-

treatment was confirmed. Experimentally, the reaction rate constant on the illuminated sur-

face increased 2.5 times. The result is even higher than the maximum reaction rate constant 

obtained with the conventional mixing with the optimal catalyst concentration (0.3 g/l), which 

is 3-time higher than the used one here (0.1 g/l). It was explained by the interaction between 

the catalyst particles with light as well as organic molecules. Both macro- and microscopic 

issues were interpreted. 

Other practical aspects should be attended. In this work, though pH was adjusted to stabilize 

the photocatalyst colloids, the re-aggregation was detected after a 40-min reaction. When the 

photocatalyst aggregates are bigger, the photocatalytic activity reduces. In an up-scaled appli-

cation, where the reactor can be hundreds meter long and the retention time can last few 

hours, the re-aggregation along with time is definitely problematic. Thus, ultrasonication, or at 

least an efficient dispersion, is necessary to minimize this aging problem. In addition, the tur-

bulent flow must be considered to avoid the sedimentation caused by further re-aggregation. 

It must be assured that photocatalysis is a complex process, which is influenced by operating 

conditions. This subchapter introduces a comprehensive view on the field of photocatalysis. 

For further studies and application, one should consider the weighting factor of each parame-

ter and decide the most suitable operating conditions. 





7.1 Laboratory applications: Selected case studies 

111 

7 TOWARDS APPLICATIONS OF PHOTOCATALYSIS 

Based on the photocatalytic degradation concept, which are discussed in the previous chap-

ters, selected case studies aiming at laboratory applications are introduced in subchapter 7.1. 

Different photocatalytic materials were studied and the color removals of commercial dye so-

lutions were examined under solar light. The high initial concentration of dye solution was also 

tested. 

In the second subchapter, an application of photocatalysis for a specific case in textile industry 

is introduced. This Ph.D. study was inspired by the CLIENT/NaViTex project. The project aimed 

at the treatment, by means of photocatalysis, of wastewater coming from two textile compa-

nies in Danang, Vietnam. Some results within the project period are here introduced. They are 

also the challenges of this thesis. From both scientific and technical considerations, at the 

end, the possibility of using photocatalysis in a simulated up-scaled reactor for wastewater 

treatment is discussed.  

7.1 LABORATORY APPLICATIONS: SELECTED CASE STUDIES 

In this subchapter, photocatalysis in the designed reactors was examined with different ma-

terials. First experiments show the photocatalytic activity of different photocatalysts, including 

the novel materials. Various organic compounds were used, including the commercial dye 

substances from Hachiba Company, Danang, Vietnam (section 7.2.1). As the evaluation of 

these tests, photocatalytic reaction rate constants were determined according to Eq. (3.28) 

and (3.29) (section 3.3.3), and the normalization to light intensity was calculated according to 

Eq. (6.8) (section 6.4.2). Solar photocatalysis, which is the trend for applications, was tested. 

To exclude the weather conditions, the kinetic model by light energy consumption is pro-

posed. 

7.1.1 The volume-related reaction rate constant 

In most of experiments in this study, photocatalytic tests were done with a volume of 400 or 

600 ml. However, depending on purposes, the volume can be varied. For lab-scaled studies, 

experiments usually have a small volume of less than100 ml. It depends on the experimental 

conditions, such as the amount of photocatalysts, the capacity of setup, the volume of col-

lected solutions. At larger scale, dozens of liters of water are treated. As the research reactor 

is scalable, a normalization by volume can be delivered. As the apparent reaction rate constant 

is inversely proportional to the total volume (Eq. (6.6), section 6.4.1), it can be derived as 

ref
Vref ,

V
K K

V
   (7.1) 



Chapter 7 Towards applications of photocatalysis 

112 

where the apparent reaction rate constant K corresponds to the volume V tested in this work, 

and KVref corresponds to a reference volume Vref of the compared study. The value KVref is called 

the volume-related reaction rate constant in the photocatalytic setup. 

7.1.2 Solar photocatalysis. The UV energy-dependent model 

Experiments in the previous chapter show good performance of photocatalytic degradation 

with P25 under artificial UV illuminated by a mercury lamp. Mercury-free UV source is a critical 

solution to perform an environmental-friendly process. Solar photocatalysis has attracted a 

great attention in this field. 

This section presents the solar photocatalysis for the discoloration of methylene blue (MB) in 

the designed photocatalytic setup. 

Color removal of methylene blue under visible light 

It is noted that, TiO2 can experience photo-induced hydrophilic effect [33]. In particular, TiO2 is 

semi-hydrophilic under UV illumination, but turns to be hydrophilic under visible light. Water 

contact angle on an anatase film was reported to be around 55 ° and around 5 ° in two cases 

[33], respectively. The affinity toward water or organic solutions was enhanced. Experimen-

tally, 13 µM MB was mixed with 0.1 g/l P25 powder in the dark to achieve the adsorption-

desorption equilibrium. The 600 ml suspension was then irradiated under artificial VIS light for 

60 min. Though the adsorption-desorption equilibrium in dark was achieved before the test, 

more organic molecules were adsorbed on the surface of P25 when being exposed to visible 

light. A disappearance of 28 % MB in the bulk liquid was obtained (Figure 7.1) Color was 

removed by 19 % after the first 30 min. In the second half of the test, more 9 % color was 

bleached. 

 

Figure 7.1 Conversion of methylene blue under visible illumination. 600 ml methylene blue (MB) of 

13 µM was tested with 0.1 g/l P25 under artificial visible light: The concentration of MB Cn,MB and the 

percentage of color removal  vs. time t. 
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Additionally, dye substances can be self-photosensitizers, i.e., self-degraded under illumina-

tion [85], [153], [208], [209], [241]. Dyes strongly absorb light in the visible range of the electron 

magnetic spectrum and therefore a charge transfer from the excited dye molecules to the 

conductance band of the photocatalyst may occur. It forms the unstable dye cation radical and 

an active species on the catalyst surface which can attack the unstable dye molecules or other 

molecules. Due to this self-sensitization mechanism, the discoloration can happen but it is not 

attributed to the photocatalytic reaction. For MB, the control test C1 (Figure 6.1) proved that 

it is not discolored by the used UV light. However, it was reported that MB itself experiences 

sensitization under visible light, [85], [208], [209]. Indeed, MB strongly absorbs visible light of 

550–700 nm. It has one absorbance peak at 664 nm with one shoulder at 610 nm (Figure 4.1) 

[242], [243]. In the test, self-sensitization under visible light may happen and contribute to the 

loss of MB. 

Supposedly the artificial visible light has no UV radiation and it was confirmed by the meas-

urements with the UV intensity meter PCE-UV34. However, according to the manufacturer, 

there is a minor percentage of UV (3 %) in the spectra 3.1.4. This causes the photocatalytic 

reaction and cannot be excluded in this test. 

Solar photocatalysis of methylene blue 

In these experiments, natural light was utilized. Dissimilar to the artificial UV, the solar light is 

spectral in both UV and visible ranges, and most of the energy is distributed in the visible 

range. 

Two photocatalytic tests were individually carried out on a sunny day and a cloudy day (Figure 

7.2). The finding in section 5.2.1 shows that P25 is activated by irradiation shorter than  

400 nm. It means that visible light has no role in the photocatalytic reaction. UV intensity was 

recorded (Figure 7.2a). For the experiment on the sunny day, the average UV intensity was 

23.6 W/m2 and the degradation of MB was very fast (Figure 7.2b). As shown in the inset, after 

30 min, 92 % color was removed. On the cloudy day, UV light was weak, its average intensity 

was 5.2 W/m2, and the color removal of MB was slow. The degradation efficiency is 53 % and 

69 % corresponding to the degradation period of 30 and 60 min, respectively.In experiments 

with an artificial UV lamp, light intensity is stable during the illumination. The conversion of 

organic compound can be evaluated by the experiment time. Naturally, the solar light can be 

chronically changed according to weather conditions. The reactor model by time is no longer 

relevant to solar photocatalysis. Instead, an evaluation by the light energy consumption is re-

quired [105], [236]. As the reaction rate constant is proportional to UV intensity (section 6.4.2), 

the reactor model in section 3.3.3 can be rewritten as 

 inie ,KEC C  (7.2) 

where the apparent reaction rate constant K in the photocatalytic setup is in inversed energy 

unit (J-1), and E is the light energy consumption (J). It is calculated from the recorded UV in-

tensity Ii (W/m2) each time interval t (s) as 
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Figure 7.2 Color removal of methylene blue under solar radiation. a) UVA-B intensity recorded by the 

lux meter vs. experiment time; and b) 600 ml methylene blue (MB) of 13 µM was tested with 0.1 g/l 

P25 under sunlight or artificial visible light: Concentration of MB vs. UV energy consumption. The inset 

shows MB concentration vs. experiment time. 

 

  i

i

,E S I t  (7.3) 

where S is the illuminated surface (m2). 

The conversions of MB in two experiments were plotted by UV energy consumption (Figure 

7.2b). As expected, the decay rate of two experiments is independent from the UV intensity 

and has a resemblance. Indeed, the UV energy-dependent model (Eq. (7.2)) yields the same 

reaction rate constant K of 3.10–3.17 kJ-1. It proves that the derivative model can be well-

applied for solar photocatalysis. 

For a comparison with experiments under artificial light in the previous parts, it is possible to 

convert the value K from the inversed energy unit (J-1) into the inversed time unit (min-1). By 

averaging the intensity with a reference value, Eq. (7.3) is rewritten as 

 ref .E SI t  (7.4) 

The conversion can be initiated as 

     
         

     

2

2

1 1 W
m .

s J m
refK K S I  (7.5) 

For a normalization, the average UV intensity of solar light of 25 W/m2 is used. Accordingly, 

the value K of 3.10–3.17 kJ-1 is equivalent to 0.087–0.089 min-1. The values are similar to the 

data found from experiments of the same conditions in section 6.4.3, which is 0.082 min-1. 
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Shielding effect 

As shown in Figure 4.1, in the UV range, MB has 2 peaks at 292 nm and 246 nm. With the 

10 µM solution, at these two wavelengths, only 37 % and 62% light can transmit through 

10 mm cuvette, it means that 63 % and 38 % light is shielded. The effect is weak (5 %) at 

365 nm which is the mode wavelength of the UV light. The data show that shielding should 

be counted in the model. 

7.1.3 Photocatalysis with different nanomaterials 

To prove that the designed photocatalytic setup can work in different laboratories for various 

study purposes, experiments were conducted with different nanomaterials. Results of the 

tests with commercial TiO2 and ZnO nanoparticles and with self-synthesized nanoparticles are 

shown. 

Commercial nanoparticles: TiO2 P90 and ZnO 

Color removal of methylene blue (MB) with three commercial photocatalysts were tested. 

Experiments were done in reactor R20. The intensity-related reaction rate constants (section 

6.4.2) were determined and compared (Figure 7.3). 

 

 

Figure 7.3 Photodegradation of methylene blue with commercial photocatalytic materials, including 

TiO2 P25, TiO2 P90 and ZnO. Color removal of 600 ml methylene blue (MB) of 10 µM in reactor R20 

under UV illumination (the average intensity on the illuminated surface was 26–28 W/m²). The intensity-

related reaction rate constant in the flow reactor kI25 vs. mass concentration of photocatalysts Cm. Error 

bars of P25 and P90 series show the gap between minimum and maximum values of two repeated 

experiments. No repeated experiment with ZnO was done. 
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The highest reaction rate constants for TiO2 P25 and P90 are 0.13 and 0.21 min-1, correspond-

ing to the catalyst concentrations of 0.3 and 3 g/l, respectively. The difference can be ex-

plained by the morphology of these two materials. The primary size of P90 is 14 nm [197] and 

is smaller than that of P25, which is 25 ± 3 nm [166]. It is followed by two consequences. 

Firstly, it leads to a higher specific surface area, 90 ± 20 m²/g compared to 56 m²/g, respec-

tively. It explains that the maximum reaction rate constant of P90 (0.21 min-1) is higher than 

that of P25 (0.13 min-1). Secondly, P90 suspension is less turbid than P25 suspension. Addi-

tional measurements indicate that UV light can penetrate more deeply in the P90 suspensions 

of the same concentration. It means that the active space in the reactor with P90 is larger 

than that with P25. In other words, P90 particles work more efficiently in the rear than P25 

particles do. It results in the different optimum concentrations of photocatalysts. However, in 

the very low range of concentrations, the influence of turbidity is less important, instead, the 

role of energy bandgap becomes crucial. The different energy bandgaps of rutile and anatase 

were claimed, e.g. these values are 3.0 and 3.2 eV in a same report, respectively [33]. As P25 

has a higher ratio of anatase/rutile (80/20 w/w in comparison with 90/10 w/w for P90), the 

photocatalytic performance is better, shown by the experimental results. It was also reported 

that the recombination rate of electron-hole is different for anatase and rutile. 

The reaction rate constants of ZnO tests lie in the higher range. The optimal reaction rate 

constant is 0.55 min-1. The color removal of MB reached more than 90 % after 10 min of ex-

periment. The data indicate that ZnO is more effective than TiO2, which is in agreement with 

other researches [147], [166], [204]. Here, a comparison of ZnO and P25 is discussed [110]. 

The primary size of ZnO is much larger than that of P25, 251 ± 83 nm with ZnO in comparison 

with 25 ± 3 nm with P25. Correspondingly, the surface area of ZnO is much smaller than that 

of P25, i.e., 5.23 m²/g and 56m²/g, respectively. However, the reaction rate constant of ZnO 

is higher. Probably, the effect of size in this case is not as much important as the impact of 

optical properties. By using UV-VIS diffuse reflectance spectroscopy, it was shown that ZnO 

has a lower bandgap and absorbs light of shorter wavelengths (340 nm, compared to 380 nm 

with P25), i.e., it has a broader absorbance. Neither recombination rate of electron-hole on the 

catalyst surface nor turbidity of the suspensions were compared. In addition, these materials 

have non-identical physical and chemical properties, thus the degradation pathways are dis-

similar and contribute to the difference. Last but not least, when choosing photocatalytic ma-

terials, beside the reaction rate constant, other criteria should have an attention. For instance, 

in mineralization of ciprofloxacin [244], the photocatalytic materials remaining in aqueous so-

lution after treatment caused the toxicity. It was proved that, while P25 is considered slightly 

toxic, ZnO is highly toxic. It showed the restriction of using ZnO for environmental applications. 

Self-synthesized nanoparticles: Fe3O4/SiO2/TiO2 

This work is a cooperation with Teixeira et al. [125]. In this test, ciprofloxacin (Cipro) was de-

graded with self-produced magnetic nanoparticle. 
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Generally, it was confirmed that after 30 min in the dark, the adsorption-desorption reaches 

the equilibrium. It was expected that the conversion of Cipro when being illuminated is at-

tributed to the photocatalytic reaction. Experimental data are shown in Figure 7.4. 

Due to the typical shape of the UV-VIS absorbance spectra of Cipro (notably at 240 nm and 

300 nm) and the sensitivity of the used spectrometer, the absorbance peaks of lower than 

0.05, corresponding to 1.3 µM were not used for data processing. It was found that the ap-

parent reaction rate constant K in the photocatalytic system is 0.0146 min-1 and the normalized 

reaction rate constant kI25 in the reactor (section 6.4.2) is 0.046 min-1. It means that Cipro can 

be degraded by 90 % after 50 min photocatalysis. When comparing the conversion of MB and 

Cipro of the same TiO2 P25 photocatalyst, the degradation of Cipro is faster but not much 

more than that of MB [210]. Accordingly, the experimental result can be modestly compared 

with the MB test in section 6.4.3. Here, the found reaction rate constant is rather low and 

equivalent to the test with 0.03–0.1 g/l TiO2 P25. The loss of the active surface area caused 

by immobilizing photocatalyst on magnetic particles can be the reason. The surface areas of 

the magnetic particles and pristine P25 are 56 and 19 m²/g, respectively. However, the use of 

magnetic particles is a means to avoid the post-recovery by membrane filtration. Here, an 

external magnetic field can be applied and the particles will be separated from the suspension. 

For this reason, magnetic particles are considered as a novel photocatalyst. 

All results showed in this section are comparable regardless of commercial or self-synthesized 

photocatalysts, light intensity or working volume. It suggested that the flow reactor type can 

be well employed for a wide variety of research on new photocatalytic materials. 

 

 

Figure 7.4 Photodegradation of ciprofloxacin with magnetic nanoparticles: 500 ml ciprofloxacin (Cipro) 

of 15 µM was tested with 1 g/l self-synthesized Fe3O4/SiO2/TiO2 [125]. The UV intensity on the illumi-

nated surface was 17 W/m². a) The UV-VIS absorbance spectra of Cipro through 10 mm cuvette with 

different degradation time; b) The conversion of Cipro along with the reaction time. 
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7.1.4 Photocatalysis for commercial dye substances 

In all previous experiments, methylene blue or ciprofloxacin was used. As shown in the UV-

VIS spectra (Figure 4.1 and Figure 4.3), the absorbance at 365 nm, which is the mode wave-

length of the UV lamp (section 3.1.4) is negligible, and no shielding effect has influence on the 

photocatalytic performance. Additionally, these substances used are purchased chemicals and 

their purity is high. However, these conditions are not guaranteed in reality. In this section, 

performance with two commercial dyes from Hachiba Company, Danang, Vietnam (section 

7.2.1) is shown. Color removal was carried out with different light sources (artificial UV and 

VIS light, and natural sunlight). Because only qualitative aspect was focused, discoloration was 

quantified with UV-VIS spectroscopy by using a 10 mm cuvette [215] and no calibration was 

needed. 

Dye Remazol Red RR 

Experiments with the commercial dye Remazol Red RR was performed. 

After 60 min under visible illumination, the absorbance decreases from 0.435 to 0.397, and 

the color was removed by 7 %. The test proves that the effect of adsorption and photosensi-

tization under visible light are negligible (Figure 7.5a). With this result, it was expected that 

the adsorption in the dark has no big effect and the control test in the dark was skipped. No 

control test of only dye solution under UV (in the absence of photocatalyst) was carried out to 

test the self-sensitization under UV. It is because, in literatures, there is only claim of this 

phenomenon under visible light but not under UV [85], [153], [208], [209], [241]. 

When illuminating with artificial UV, a 70 % discoloration was obtained. It can be attributed to 

the photocatalytic reaction under UV. The average UV intensity was 20.8 W/m2, which is a bit 

low compared to that of the average intensity of solar light (20−30 W/m2). 

With the outdoor experiment on a sunny day, the average measured UV intensity was 

30.7 W/m2, and color was removed by 93 % after 60 min. 

To compare these experiments, the absorbance by the light energy consumption was shown 

(Figure 7.5b). The experimental data with the artificial illumination well fit the exponential func-

tion (Eq. (7.2)); whilst data with the solar light are deviated. There may have several reasons 

to explain this fact. 

Firstly, the measured intensity is only of UVA and UVB (280–400 nm) since the used radiation 

meter has no sensitivity for UVC. For this reason, of the same recorded intensity value, the 

true UV intensity of solar light is stronger than that of the artificial lamp. 
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Figure 7.5 Color removal of Remazol Red RR dye under artificial UV/ visible light and solar light: The 

600 ml dye solution of 31 mg/l was tested with 0.3 g/l P25 under artificial visible or UV light and sunlight. 

The average UVA-B intensities in three experiments were 0, 21 and 34 W/m², respectively. Absorbance 

was measured with the UV-VIS spectrometer and with the 10 mm cuvettes. a) Evolution by time; b) 

Evolution by light energy consumption; and c) UV-VIS spectra of samples at 0, 10, and 60 min of the 

experiment under sunlight. 

 

Secondly, shielding effect, which is not taken into account in the reactor model, contributes 

to the difference. As shown in , the Red RR dye strongly absorbs UV light, especially UVB and 

UVC. Some computation was performed with the 31 mg/l solution. At 365 nm, only 52 % light 

can transmit through a 10 mm cuvette. When the optical pathlength is 1 mm, 94 % light can 

transmit, while 6 % is shielded. The effect computed for 1 mm optical pathlength is 23 % and 

30 % with 288 or 200 nm wavelength, respectively. While the artificial lamp has the mode 

wavelength of 365 nm (in the UVA range), the natural light has also UVB and UVC. It means 

that the restriction of UV penetration in the test with solar light is more important. This strong 

shielding effect in the UVB and UVC lifts the energy-dependent model of experiment with 

sunlight upon above that of experiment with artificial UV light.  

Thirdly, the increase of temperature from 17 to 40 °C during the experiment on the sunny day 

may positively influence the degradation, especially at the end of the test. 

And finally, as shown in Figure 7.5c), the absorption spectra are broad, spanning over 50 nm. 

It is caused by a number of vibrational levels resulting in the electronic absorption band. It may 

also be assigned to the mixture of the commercial dye substances. Either of them makes the 

UV-VIS spectroscopy not a precise measurement for these dye solutions. However, as intro-

duced above, in this part of the study, a practical issue was aimed at, in particular the color 

removal. It needs to match the national regulation applied to the textile company. Therefore, 

this analysis method is applicable for the evaluation of the process. 
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Accordingly, the reaction rate constant in the photocatalytic setup K for the experiment with 

the artificial UV light is 0.538 kJ-1. It is much lower than the value of 1.224 kJ-1 of the experi-

ment with the solar light. The data were normalized to the average UV intensity of solar light. 

The computed values KI25 are 0.015, and 0.034 min-1, corresponding to a required duration of 

154 or 68 min for a 90 % color degradation under the average intensity. 

Dye Everzol Navy ED 

Experiments with Navy ED dye were similarly performed. The results were analyzed in the 

same way. The graphical results are shown in Figure 7.6. 

Under the artificial visible light, color was removed by 7 % (the absorbance peak decreases 

from 0.682 to 0.636). Like Red RR, Navy ED is not a photosensitizer under UV. 

In the 60 min photocatalytic reaction, color was removed by 82 % and 67 % under the artificial 

UV light, and under sunlight of a cloudy day of which the average UV intensity was 8.6 W/m2, 

respectively. The reaction rate constants K of the experiments with the UV lamp and with 

solar light are 1.138 and 1.876 kJ-1, equivalent to the normalized values KI25 of 0.032 and 

0.053 min-1, respectively. In other words, a 72 and 44 min reaction under the average intensity 

can obtain 90 % discoloration. The difference between these values is as discussed above. 

 

 

Figure 7.6 Color removal of Everzol Navy ED dye under artificial UV/visible light and solar light: The 

600 ml dye solution of 24–29 mg/l was tested with 0.3 g/l P25 under artificial visible or UV light and 

sunlight. The average UVA-B intensities in three experiments were 0, 21 and 9 W/m². Absorbance was 

measured with the UV-VIS spectrometer and with the 10 mm cuvettes. a) Evolution by time; b) Evolu-

tion by light energy consumption; and c) UV-VIS spectra of samples at 0, 10, and 60 min of the experi-

ment under sunlight. 
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Shielding effect was considered at 365 nm, 303 nm and 200 nm. Accordingly, 33 %, 76 % 

and 88 % light was shielded when penetrating through the total optical length of 10 mm, re-

spectively. The corresponding data for 1 mm optical pathlength are 4 %, 13 % and 19 %. 

7.1.5 Concluding remarks 

In this subchapter, applications of photocatalysis were presented in different selected case 

studies. 

Previously, the influence of testing volume on photocatalysis was shown (sections 6.3.1 and 

6.4.1). The explicit relation was given.by means of the reactor model (section 3.3.3). Based on 

the results, an elimination of the influence of volume for a comparison of different tests was 

rendered. The volume-related degradation rate constant was proposed. 

As solar utilization is a trend of photocatalysis application, the subchapter introduces experi-

ments under natural light. Color removals of methylene blue (MB) were examined. Though 

TiO2 P25 photocatalysts is not activated by visible radiation, the test under artificial visible lamp 

showed the loss of MB. It can be caused either by the photo-induced hydrophilic effect or by 

self-sensitization. It positively influences the degradation of MB under solar illumination. Sun-

light utilization was tested on sunny and cloudy days. To omit the influence of the weather 

condition in the tests, the reactor model previously presented in subchapter 3.3 was adapted. 

Photosensitization, photo-induced hydrophilic effect and shielding effect were not accounted. 

Also the spectral light distribution was not interpreted. However, data computed by the UV 

energy consumption model are in good agreement with experimental data. A normalization to 

the average UV intensity of solar light was considered. The data are comparable with experi-

mental results in chapter 6, where artificial UV was illuminated. 

Different photocatalytic materials were compared, including commercial nanopowders (P25, 

P90, and ZnO), and self-synthesized magnetic particles. Depending on the used materials and 

the organic substances, the photocatalytic performance takes only few to dozens of minutes, 

which is quite fast, compared to other published data. Data were normalized to the average 

UV intensity of solar light. When using the optimal photocatalyst concentrations of P25, P90 

and ZnO, the intensity-related reaction rate constant in the flow reactor kI25 are 0.13, 0.21 and 

0.55 min-1. It means that, a duration of 18, 11 and 4 min is sufficient for 90 % color removal 

of MB with P25, P90 and ZnO, respectively. With the 1 g/l magnetic particles, ciprofloxacin 

can be degraded by 90 % after 50 min. No optimization of the photocatalyst concentration 

was initiated, as the test was aimed at the possibility of utilizing the novel materials to over-

come problems of post-treatment. All results are comparable and reproducible regardless of 

experimental conditions, e.g., light intensity, testing volume. They also show good perfor-

mances of various photocatalysts in the photocatalytic flow reactor. 

Red or navy solutions of two commercial dye substances from one textile company in Danang, 

Vietnam (section 7.2.1) were tested for the degradation. The P25 photocatalyst was used and 

its optimal concentration of 0.3 g/l was employed. Experiments were done under artificial UV, 
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artificial visible light and sunlight. The tests under visible light showed the loss of 7 %color 

after 60 min regardless of dye substances. Under artificial UV illumination or sunlight, the van-

ishing of color was observed. The reaction rate constants were found from the UV energy-

dependent model. They were normalized to the average UV intensity of solar light. Accord-

ingly, 90 % color can be removed after 68 and 44 min with the red and navy solutions, respec-

tively. The findings suggest that solar photocatalysis is relevant for the degradation of colored 

WW from textile industry. However, it should be note that the shielding effect induced by 

these two dye molecules can be a problem when applying spectral illumination. For instance, 

up to 30 % or 19 % of light (200 nm) was shielded when transmit through 1 mm optical path-

length of red and navy dyes, respectively. 

7.2 INDUSTRIAL APPLICATION IN A TEXTILE COMPANY 

Earlier, photocatalytic application was tried at pilot scale for wastewater treatment in a textile 

company in Vietnam via the CLIENT/NaViTex project 02WCL1264A. After the 4-year project, 

there is still obstacle which hinders the photocatalytic application at industrial scale. 

In the first section, the scenario of one textile company in Danang, Vietnam is presented. 

Selected results of the CLIENT/NaViTex project are shown and the limitation of current (semi) 

pilot photocatalytic setups in the company is discussed. The challenges is then introduced in 

the next section. The fourth section is the most important part of this subchapter, where the 

configuration of an industrial scaled photocatalytic reactor is proposed. 

7.2.1 Scenario in March 29 Textile-Garment Joint Stock Company 

March 29 Textile-Garment Joint Stock Company (Hachiba) was found in 1976 in Danang, Vi-

etnam. It manufactures towels, apparel and washing products. The company is also a supplier 

in the American, European and Japanese markets. 

Typically, in textile companies, dyes are spread to the effluents. Wastewater (WW) after the 

dyeing and washing processes is usually dark. In Hachiba Company, the WW after processing 

was estimated to be 6–10 m3/day (said Mr. Tran Xuan Hoe, vice general director, in 2014). The 

current effluent treatment plant includes three main steps: mechanical separation, biotechno-

logical treatment and sedimentation (section 7.2.4, Figure 7.12). However, treated WW does 

not fulfil the Vietnamese regulation of dye WW to be discharged Table 7.1. The most serious 

obstacle is that the complete discoloration is not achieved, especially in the case of strongly 

colored dyes, such as those listed in Table 7.2. In reality, when WW drains into the effluents 

of the industrial park, the company has to pay a fee for an extra treatment. 
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Table 7.1 Technical regulation of textile wastewater in Vietnam [245]. Wastewater satisfying upper 

limitations in column A (called wastewater type A in this thesis) can be discharged into domestic water. 

Wastewater with upper limitations in column B (called wastewater type B) must be treated. 

No Parameter Unit Upper limitations 

A B 

1 Temperature   0C 40 40 

2 pH   - 6−9 5.5−9 

3 Color index (pH = 7) for new plants Pt-

Co 

50 150 

    for current plants Pt-

Co 

75 200 

4 BOD5 at 20 0C   mg/l 30 50 

5 COD for new plants mg/l 75 150 

    for current plants mg/l 100 200 

6 Total suspended solids   mg/l 50 100 

7 Cyanide   mg/l 0.07 0.1 

8 Chloride   mg/l 1 2 

9 Cr6+   mg/l 0.05 0.1 

10 Surfactants   mg/l 5 10 

 

Regarding the regulation, color is determined by the Pt-Co measurement method (single point 

photometry). However, the UV-VIS spectra of different dye solutions in Table 7.2 show that 

they have a broad and various range of absorbance. For investigation in the next section, if 

possible, another concept for analysis, UV-VIS spectroscopy, was used to substitute this sin-

gle point photometry. 
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Table 7.2 Commercial dyes provided by Hachiba Company (Danang, Vietnam). UV-VIS spectra with 

the horizontal axis of wavelengths scaled from 400 to 800 nm and the vertical axis of the absorbance 

scaled from 0 to 1 (dimensionless). 

 

Concentration

mg/l

Spectrum

Cibacron Red S 2B 35

Cibanon Red 2BM 45

Entracion Orange F2R 34

Entracion Red 3BF 35

Everzol Black ED 33

Everzol Navy ED 18

Everzol Red ED-3B 37

Indanthreen Orange GR 40

Indanthreen Pink R 44

Remazol Red RR 41

Synozol Red HF-6BN 35

Synozol Scarlet SHF-2G 40

UV-VIS absorbance spectrumDye powder
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7.2.2 The CLIENT/NaViTex project 

The CLIENT/NaViTex project 02WCL1264A (September 2012 – April 2016) is a cooperation 

project between the Federal Ministry of Education and Research (BMBF), Germany and the 

Ministry of Science and Technology (MOST), Vietnam. The project aimed at the “Water treat-

ment in Vietnam using photocatalytic oxidation”. 

The project was engaged with the current situation of two textile companies in Danang, Vi-

etnam. One of two is March 29 Textile-Garment Joint Stock Company (Hachiba). The project 

mission is the integration of photocatalysis to enhance the conventional effluent treatment 

ability for discoloration. The WW satisfying wastewater type B (Table 7.1) is expected. Eco-

nomically, the cost of operating photocatalysis should be less than the penalty required when 

the WW does not fulfil the eligible criteria. 

The working plan was coordinated by the Institute for Research and Development of Natural 

Products (INAPRO), Hanoi University of Science and Technology. The photocatalytic materials 

were provided by Gesellschaft zur Förderung von Medizin-, Bio- und Umwelttechnologien e. 

V. (GMBU) and the photocatalytic setups were designed by UMEX GmbH Dresden. The 

wastewater samples used in the tests were collected from Hachiba Company. The experi-

ments were mainly carried out in the Department of Science and Technology, MOST, Danang, 

Vietnam. The following subsections show selected experiments operated by the author within 

the framework of the project. More details or similar data can be found in reports elsewhere 

[246]–[248]. 

7.2.2.1 Photocatalysis combined with hydrogen peroxide 

The pilot system 

The pilot photocatalysis system was designed by UMEX GmbH [248] and fabricated within 

the project. It consists of three main components: a photoreactor, a reservoir and a pump 

(Figure 7.7). The water to be treated is stored in a closed reservoir. There are two reservoir 

volumes, one is up to 20 l and other up to 2000 l. A centrifuge pump transports the water to 

the photoreactor with a flow rate of 39 l/min. The reactor has the inner diameter of 228 mm 

and the effective length of 560 mm. It can store approx. 17 l. The photocatalytic degradation 

takes place in this cylinder reactor. The mercury UV lamp housed in a quartz tube of 90 mm 

outer diameter is positioned in the center of the reactor. The lamp has a broad energy distri-

bution range of 240–400 nm, the electric power of 2000 W and the radiance of 20–100 W/cm. 

With the addition of hydrogen peroxide H2O2, hydroxyl radicals are formed under UVC irradia-

tion (wavelengths of 240–280 nm), and the degradation occurs. Optionally, immobilized pho-

tocatalyst prepared by GMBU [246] can be added, and the combined H2O2 photocatalysis pro-

motes the degradation. The photocatalytic material was prepared by dip coating 3D glass fiber 

fabric (Abstandsgewebe) in TiO2 sol (code K1297, K1295E and K1295G [246]), followed by 

drying and thermal treatment at 600 °C. 
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Figure 7.7 The NaViTex’s pilot combined photocatalytic system: a) The diagram; and b) The setup in 

reality. Photo credit Steffen Johne (UMEX GmbH). 

 

Color removal of methylene blue 

Degradation with hydrogen peroxide under UV illumination was tested for the color removal 

of 40 l methylene blue (MB) with a high initial concentration, 83 µM. An amount of 20 ml com-

mercial H2O2 30 % was added to the solution prior to the test. 

According to the Vietnamese regulation for dye wastewater (WW) (Table 7.1, color index (Pt-

Co unit) is recommended to inspect the experimental results. This method is relatively precise 

with the red-orange color which absorbs light at 500 nm. However, in this test, the MB solu-

tion is blue, which is the complementary color of orange, i.e., the absorbance of MB 10 µM at 

500 nm is low (0.04 when measured with a 10 mm cuvette, see Figure 4.1). It means that the 

Pt-Co analysis has low sensitivity. Therefore, the UV-VIS absorbance at 665 nm of the samples 

was used in the analysis. 

A short degradation with UV/H2O2 of 6–10 min is able to completely remove the color of the 

solution (Figure 7.8a). The data suggest that this pilot system has a potential application in the 

treatment of the WW of the company. 

Color removal of real wastewater from Hachiba Company 

As mentioned, the current treatment plant of the company is unable to treat the highly colored 

wastewater (WW). Inquiries of strong colors of customers are usually refused, so the com-

pany can ensure the pale WW after treatment. For this reason, occasionally the WW is dark. 

As pH is typically high (10–12) and no microorganism exists, the WW was collected and stored 

for further tests. It was kept in ambient conditions and not exposed to direct sunlight. Before 

the experiments, all parameters were re-measured. 
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Figure 7.8 Photodegradation of colored solutions with the NaViTex’s pilot combined photocatalytic 

system: a) 83 µM methylene blue degraded with H2O2 under UV and analyzed with a UV-VIS spectrom-

eter; and b) Orange wastewater from Hachiba Company degraded with H2O2 under UV (sample 

“H2O2/UV”), or with H2O2 and TiO2 under UV (sample “H2O2/TiO2/UV”) then analyzed with Pt-Co. 

 

To have a model highly colored WW, a mixture of WW after dyeing (strongly colored) and after 

the entire treatment (lightly colored) was tested. In this experiment, WW after the dyeing and 

washing processes was collected in January 2015. The WW is dark orange and the color index 

is 4080 Pt-Co unit, measured according to the TCVN 6185:1996 method, which is equivalent 

to the ISO 7887:1985. BOD and COD measured at the collecting time are 1030 and 1737 mg/l, 

respectively. No visible suspended solids were observed after filtering. WW after the treat-

ment plant was collected on June 04, 2015. The color index is 144 Pt-Co unit. BOD and COD 

are 13.8 and 25.1 mg/l. On the date of experiment (June 0809, 2015), 2.4 l orange WW was 

mixed with 37.6 l pale WW. The color index of the mixture is 360–400 Pt-Co unit, which is 

twice as high as that of the WW type B. COD is approx. 240 mg/l. No BOD was measured. 

Two experiments were done with and without the presence of the photocatalyst. An amount 

of 60 ml commercial H2O2 50 % was added into the mixed WW in prior to each experiment. 

Experimental data are shown in Figure 7.8b. After 120 min, 63 % of the color was removed 

by H2O2 under UV. With the addition of immobilized photocatalyst, the efficiency increases to 

77 %. The reaction rate constants were found to be 0.483 and 0.749 h-1, respectively. This 

proves the improvement of the treatment by the addition of the photocatalyst. The corre-

sponding color indices at the end of the tests are 149 and 82 Pt-Co unit and meet the require-

ment of the WW type B. Additionally, other properties of the obtained WW also meet the 

required characteristics. In particular, BOD after the photocatalytic treatment with and without 

the photocatalysts are 38 and 36 mg/l; while COD are 68 and 64 mg/l, respectively. 
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7.2.2.2 Solar photocatalysis 

The solar photocatalytic reactor 

Experiments were conducted with solar light using immobilized photocatalyst. N-modified 

TiO2 (code K1297 [246]) coated on the aluminum ceramic (monolayer coating) was provided 

by GMBU (Figure 7.9) [246]. The photocatalytic sponges were placed inside a plate reactor 

fabricated by UMEX GmbH [248]. The reactor is split with 15 parallel channels. Water to be 

treated is pumped from the bottom, navigated by the split sheets and came out from the top 

of the reactor. The reactor can carry 7.7 l of aqueous solution. In the tests, the total tested 

volume was 15 l (including the solution in the tubes and the reservoir). The solution was cir-

culated with a flow rate of 4 l/min. The reactor was placed on a fixed inclined plane of approx. 

35−40 °. The illuminated area is 68 × 95 cm2. 

Color removal of methylene blue 

One of the preliminary tests is the color removal of methylene blue (MB). MB was dissolved 

in tap water to have the concentration of approx. 10 µM. No properties of tap water was re-

ported. The photocatalytic test was carried out from 10:54 to 11:54 (local time) on June 09, 

2015, at DOST Danang. It was partly cloudy. The temperature of the aqueous solution in the 

reservoir varied from 35 °C to 51 °C. The color removal along the treatment time can be ob-

served by naked eyes (shown by the inset of Figure 7.10). The UV-VIS absorbance peaks at 

664 nm were used for data analysis. After 1 h, the color was completely removed. The discol-

oration efficiency of 95 % and 97 % was found corresponding to the reaction time of 30 and 

60 min, respectively. The photocatalytic reaction rate constant is 0.101 min-1. When consider-

ing the use of solar light, the method is potential, especially in strongly sunny regions like 

Danang, Vietnam. 

 

 

Figure 7.9 The NaViTex’s solar photocatalytic setup: a) The diagram (the reactor is from the side view); 

b) Image of the reactor (from the front view); and c) The immobilized photocatalyst. Photo credit Steffen 

Johne, UMEX GmbH. 
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local 

time 

duration temper-

ature 

Abs at 

664 nm 

Color re-

moval 

 

hh:mm min ◦C – – 

10:54 0 35 0.668 0% 

10:59 5 37 0.355 47% 

11:04 10 41 0.238 64% 

11:09 15 43 0.154 77% 

11:14 20 44 0.096 86% 

11:24 30 46 0.031 95% 

11:54 60 51 0.022 97% 

Figure 7.10 Photodegradation of methylene blue with the NaViTex’s solar photocatalytic setup. The 

inset shows the pictures of the solution in the reactor along with the irradiation time. 

 

Color removal of real wastewater from Hachiba Company 

WW after dyeing and washing processes of Hachiba was collected on the June 01, 2015. The 

WW has the COD of 316.5 mg/l, the BOD of 16.2 mg/l, and the color index of 1595 Pt-Co unit. 

The WW were diluted 5 times with tap water to have 342 Pt-Co unit, which is 1.7 times as 

high as that of the target (for WW category B, see Table 7.1) 

Experiments were carried out from 14:27 to 16:57 (local time) on June 10, 2015, at DOST 

Danang in a very sunny day. The UV index recorded by ASUS Zenphone 5 with ASUS Weather 

and Time Widget was 9/12. The temperature of the aqueous solution in the reservoir varied 

from 40 to 47 °C. 

The control test was performed without photocatalyst. The WW was stored in an open tank 

illuminated by solar light. The color index at the end of the test was 382 Pt-Co unit, which is a 

bit higher than that at the beginning. It is caused by the evaporation of the solution in the hot 

and dry conditions. The result suggests that the colored WW is not self-degraded under solar 

illumination. 

In the meantime, the solar photocatalytic test was taken place in the reactor. Through the 

startup process, water remaining from the previous experiment inside the reactor diluted the 

solution (from 382 to 244 Pt-Co unit). After a 5-min circulation of the flow for homogeneity, 

the color decreased over time. Figure 7.11 shows the data of the experiment. The photocata-

lytic reaction rate constant is 0.109 h-1. The discoloration efficiency is 27 % after 2.5 h. The 

color index at the end is 250 Pt-Co unit, which is higher than the upper limitation of the Viet-

namese standards. It is estimated that a value of 200 Pt-Co unit for WW quality B can be 

achieved by prolonging the photocatalysis to 4.5 h. In the real treatment plant, the combination 

with other methods (e.g. biological treatment) is recommended. 
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Figure 7.11 Photodegradation of wastewater from Hachiba Company with the NaViTex’s solar photo-

catalytic setup. The upper right figure shows the color change of the collected solutions along with the 

irradiation time. Photo credit Cong Thanh Tran, INAPRO. 

 

7.2.3 Challenges 

In the first section of this subchapter, the scenario of March 29 Textile-Garment Joint Stock 

Company (Hachiba) in Vietnam was presented. Color removal in wastewater treatment is one 

of the biggest issues of the company. As indicated in the regulation of the government, treated 

water must satisfy observation analysis as well as ensure the pale color (Table 7.1). 

Experimental results of the NaViTex project showed the promising application of photocataly-

sis for the treatment of dye polluted WW. Two photocatalytic setups were tested. Different 

types of water were treated, including methylene blue (MB) and real WW from the textile 

company. MB is a model textile dye and usually the discoloration of 10–20 µM solution takes 

less than 1 h. Dissimilarly, a treatment of real WW requires a few hours. It means that the 

treatment in reality is more complex. Different techniques should be implemented, such as 

the use of slurry catalysts to ensure the large active site, the modification of photocatalysts, 

the strong light intensity, the reactor design and the combination with other processeses. 

The NaViTex project introduced two photocatalytic concepts. 

The first system works based on the combination of H2O2 under UV and photocatalysts. There 

is a potential application of such a pilot system. Though the cost estimation meets the require-

ment of the company, the use of the medium pressure lamp is not environmentally friendly 

and it should be accounted. Additionally, the disposition of the lamp is facing the problem of 

up-scaling. To some extent, the system can be considered to be applied in a small industrial 

plant and for treatment of highly colored water. 
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The second system works under solar illumination, which is the trend of photocatalytic appli-

cations. The conversion of MB in the NaViTex’s solar photocatalytic setup can be roughly 

compared with that in the research reactor (chapter 3) because of the same reaction pathway. 

The reaction rate constant of the NaViTex’s experiment was 0.101 min-1, which is similar to 

the degradation with 0.03 g/l TiO2 P25 catalyst in the research reactor under 25 W/m² UV irra-

diation (section 6.4.3). The concentration of 0.03 g/l is very low. Not surprisingly it is because 

slurry photocatalysts exhibit a higher surface area than immobilized photocatalysts. In addition, 

the short retention time is a limitation. Further improvement of the reactor should be consid-

ered for an up-scalability. 

7.2.4 An up-scaled photocatalytic reactor in a wastewater treat-

ment system 

As presented in previous sections, the flow reactor prototype with slurry photocatalysts can 

be the ideal solution for an industrial application. Here, in the first subsection, photocatalysis 

is proposed to be an additional step of the wastewater treatment system of Hachiba Com-

pany, Danang, Vietnam. Data of preliminary tests which were used as the input data for sim-

ulation are presented in the next subsection. Base on that, an up-scaled reactor is introduced. 

7.2.4.1 Photocatalysis integrated within the wastewater treatment plant 

Currently, Hachiba Company (section 7.2.1) operates a conventional wastewater (WW) treat-

ment. Generally, the system includes these following steps: mechanical separation, neutrali-

zation, sedimentation and biological treatment (Figure 7.12). The WW after dye processing 

has concentrated color, high pH, high COD and BOD. This WW, labeled “WW type I”, has a 

smaller capacity of 6–10 m3/day. WW is then gathered with municipal WW thus its composi-

tions are not controllable. It is treated with physical, chemical and biological methods. At the 

end of the treatment process, the WW, named “WW type II”, has light color, neutral pH, low 

COD and BOD, but in a large amount. 

In this work, slurry photocatalysis is proposed to be used in the current treatment plant as an 

integrated step. There may have two possibilities corresponding to two types of WW named 

above (Figure 7.12). 

As shown in section 7.2.4.2, with strongly colored WW (WW type I, Figure 7.12), the photo-

catalytic reaction is slow. Although solar light can be utilized, in order to enhance the degrada-

tion rate, high UV intensity (section 6.4.2) supplied by an artificial lamp is suggested. The WW 

usually has high pH. This property is an advantage as it promotes the photocatalytic degrada-

tion of the cationic dyes (section 6.4.5). When anionic dyes are used, the pH of water should 

be adjusted to be acidic, because this supports the dye adsorption on the positively charged 

photocatalysts. Different materials should be endeavored to obtain the best photocatalytic 

activity (section 7.1.3). The photocatalyst loading should be optimized accounting the optical  
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Figure 7.12 Photocatalysis introduced in a wastewater treatment plant. 

 

penetration (section 6.4.3). Because of either turbidity of suspensions (section 6.4.3) or shield-

ing effect of dye solutions (section 7.1.4), the optical path of the reactor should be small to 

ensure optical penetration. Any moderate or intense dispersion procedure that yields homo-

geneous, stable photocatalyst suspensions and avoids sedimentation should be used before 

loading the suspensions into the slurry reactors. Ultrasonic dispersion is a proper method to 

pretreat the photocatalysts (section 6.4.6). Dispersion can be performed at high catalyst con-

centration (1 g/l to 10 g/l). The combination of photocatalysis with other techniques is recom-

mended to enhance the performance, e.g. the combined photocatalysis with H2O2 (section 

7.2.2). Membrane filtration can be the post-treatment to recover the photocatalyst. The oper-

ational cost must be estimated [100]. The alternative can be to use traditional separations, 

such as agglomeration by adjusting pH, coagulation with additives, integrated with sedimen-

tation. 
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As WW type II has the light color, the treatment is not very complicated (section 7.1.4). In 

sunny regions, the utilization of sunlight (sections 7.1.2 and 7.1.4) can be an option. UV inten-

sity can be intensified (section 6.4.2) by using the parabolic concentrator [17]. To take ad-

vantage of the visible light, modified photocatalysts should be used whose bandgap is nar-

rowed. The immobilized photocatalyst on supports (section 7.2.2) can be a solution to over-

come the technical and economical drawbacks of post-treatment, especially with a large 

amount of wastewater. The use of photocatalytic magnetic nanoparticles (section 7.1.3) is an 

alternative as they can be easily separated by an external magnetic field. 

The treatment of WW with dark color (WW type I, Figure 7.12) is more problematic than with 

light color (WW type II, Figure 7.12). Hence, in next two subsections, preliminary tests and a 

simulated up-scaled photocatalytic reactor for this type of WW are introduced. 

7.2.4.2 Preliminary tests with strongly colored water 

In this subsection, at first, the definition of strong color or high concentration of solutions is 

given. Then, photodegradation of highly colored solutions is presented. Methylene blue, a 

model dye substance, and commercial Everzol Navy ED dye from Hachiba Company were 

employed. As titanium dioxide P25 photocatalysts are commercial available, they were used 

in these tests. Color removal with P25 under UV illumination is reported. 

High concentrations 

In the test, methylene blue (MB) and Navy ED dye have the initial concentrations of 10 times 

as high as in previous tests. Samples were measured with a UV-VIS spectrometer and com-

pared with wastewater (WW) from Hachiba Company in Danang, Vietnam (section 7.2.1). UV-

VIS spectra of all samples were shown in Figure 7.13. 

According to the Beer-lambert law, the absorbance Abs of the solution at the wavelength  

measured through L optical pathlength is 

m,Abs LC   (7.6) 

where Cm is the mass concentration of solute in the analyzed solution. For WW, the samples 

were diluted by a dilution factor FD 

m,ini

D

m

,
C

F
C

  (7.7) 

and Eq.  was rewritten as 

m,ini

app, D

D

.
C

Abs L LF
F

      (7.8) 
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Figure 7.13 UV-VIS spectroscopy of highly colored (waste) water. UV-VIS absorbance spectra of 

40 mg/l methylene blue (MB), 250 mg/l Everzol Navy ED dye solution, wastewater WW1 (25-time di-

luted), WW2 (15-time diluted), WW3 (5-time diluted) and WW4 (2-time diluted) which were collected 

from Hachiba Company (Danang, Vietnam) (section 7.2.1). MB and Navy ED were measured with 1 mm 

cuvette, WW1–4 were measured with 10 mm cuvette. 

 

The value app, =  Cm,ini is called the apparent turbidity. There is a fact, when the concentration 

is high, dimerization can happen. This phenomenon was observed with MB molecules at 

610 nm (Figure 4.1 and Appendix A4) [211]. This may happen with WW1 at approx. 500–

600 nm (Appendix A6). Thus, app, is only an apparent value, which counts such phenomenon. 

However, it can characterize the color intensity of solutions. 

The computed apparent turbidity is shown in Table 7.3. Accordingly, the color intensity of MB 

or Navy ED is a half of that of WW1 or WW2, and 6 times as high as that of WW4 and WW3, 

respectively. Note that, WW1 and WW2 have exceptionally dark color. WW’s color is usually 

lighter, like WW3 and WW4. It is to say, though the used concentrations are not the highest 

concentration of the WW, the experiments approached a nearer fact. 

Experiments with methylene blue 

Different P25 photocatalyst amounts were used to examine the efficiency of the degradation 

of methylene blue under UV illumination. Accordingly, after 30 min of photocatalytic degrada-

tion, in all tests, color removal efficiency is higher than 50 %. With the lowest P25 concentra-

tion of 0.2 g/l, 70 % color was removed after 2.5 h (Figure 7.14). 

The higher photocatalyst concentration of 0.5 g/l and 1 g/l helped to achieve approx. 85 % and 

92 % discoloration after the same period. Accordingly, the intensity-related reaction rate con-

stants in the flow reactor k2,I25 (sections 6.4.2 and 6.4.4) are 0.011, 0.021 and 0.031 min-1, 

corresponding to the P25 concentration of 0.2, 0.5 and 1.0 g/l. The promising results give an 

attention to the application of photocatalysis for textile wastewater treatment in reality. 

0

0.5

1

400 600 800

A
b
s
, 
-

, nm

MB (40 mg/l)

Navy ED (250 mg/l)

WW 1 (25x diluted)

WW 2 (15x diluted)

WW3 (5x diluted)

WW4 (2x diluted)



7.2 Industrial application in a textile company 

135 

 

Table 7.3 UV-VIS spectroscopy of highly colored (waste) water. Numerical results for Figure 7.13: 

Apparent turbidity app, at wavelength  according to Eq. . Cm - mass concentration, FD - dilution factor, 

 - wavelength of absorbance peak, L - optical pathlength, Abs - absorbance peak, and app - apparent 

turbidity. 

Sample Cm, mg/l FD, - ,nm L, mm Abs app,, mm-1 

methylene blue 40 1 664 1 0.661 0.66 

Navy ED 250 1 610 1 0.883 0.88 

wastewater WW1 na 25 433 10 0.785 1.96 

wastewater WW2 na 15 543 10 0.850 1.28 

wastewater WW3 na 5 402–408* 10 0.384 0.19 

wastewater WW4 na 2 569–573* 10 0.557 0.11 

* WW3 and WW4 have a plateau peak in the mentioned wavelength 

 

Experiments with Everzol Navy ED 

Color removal of Everzol Navy ED is shown in Figure 7.15. The optimal concentration of P25 

obtained in the previous part (1 g/l) was used. The control test was performed in the dark. The 

color remained unchanged (Figure 7.15), which proves that the adsorption-desorption reaches 

the equilibrium. It also demonstrates that the color change under artificial UV light is attributed 

to the photocatalytic reaction. During the test under UV illumination, the color was slowly 

removed and color removal efficiency reached 30 % after 5 h (Figure 7.15), which is much 

lower than that of the test with MB. Normalization to the average intensity of solar light 

(25 W/m²) was performed. The reaction rate constant in the photocatalytic setup KI25 is 

0.001 min-1 or 0.057 h-1, while the reaction rate constant in the flow reactor kI25 is 0.002 min-1 

or 0.111 h-1. These values were used as the input parameter for computation in the next sub-

section. 
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Figure 7.14 Color removal efficiency with the high initial concentration of methylene blue. Photodegra-

dation of 400 ml MB solution of 40 mg/l with 0.2, 0.5 and 1 g/l P25 in reactor R10 under UV illumination 

(the average intensity on the illuminated surface was 22 W/m²). 

 

 

Figure 7.15 Color removal of Everzol Navy ED dye with a high initial concentration: Absorbance peak of 

samples measured with the 1 mm cuvette vs. experiment time. 400 ml dye solution of 250 mg/l was 

tested with 1 g/l P25 in the dark (labeled “dark adsorption”) or under UV illumination (labeled “photo-

catalysis with UV”, the average intensity on the illuminated surface was 25 W/m²). 

 

7.2.4.3 An up-scaled photoreactor 

In this section, a simulated up-scaled photocatalytic reactor for strongly colored water is intro-

duced. As discussed in subsection 7.2.4.1, the use of artificial UV lamp is necessary to supply 

high UV intensity. A flow reactor integrated with an UV lamp, named a “photoreactor”, is 

presented. Simple computation was conducted to prove the up-scalability of the configuration 

of the flow reactor type. 
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Definition of “photoreactor” within this thesis 

The photocatalytic setup at lab scale introduced in section 3.1.3 consists of a flow reactor and 

a UV lamp as individual components. An up-scaled reactor is a bit different. UV lamp should 

be housed in a close reactor to avoid eye contact for operators and workers. In other word, 

the up-scaled reactor is a reactor integrated with an UV lamp. In this work, this integration is 

called a “photoreactor”. For safety reasons, the lamps should be separated with the flow cells 

by walls to avoid the problem when the mercury lamps are broken. The wall material must be 

UV-transparent and it can be made of the same materials as that of the flow cell (which are 

discussed later). 

The UV lamp can be arranged in a vertical row as the same design of the lab-scaled lamp. In 

this case, it is called a “UV lamp unit”. One photoreactor can have multiple lamp units (Figure 

7.16). 

The flow channel includes tubes which are aligned vertically. The channel units are placed in 

front of a UV lamp unit. As light can go through the gap between two near tubes, at least two 

rows of tubes should be dispositioned in a staggered array where three near tubes are ar-

ranged as triangular pitch, so tubes in the further row can make use of the UV light. It is the 

case for the outer flow channel units (next to the wall of the entire photoreactor, e.g. “Flow 

cell 1st unit” in Figure 7.16). In flow cell units between two UV lamp units, three rows can be 

arranged together and the illumination is ensured for all tubes (Figure 7.16). For instance, all 

surface area of the tube labelled “T2.3.4” in the “Flow cell 2nd unit” receives light from the 1st 

and 2nd UV lamp units. The surface area mainly receives light from the nearest lamp unit, in 

particular, from four lamps L2.3–L2.6, and also receives a minor part from the further lamp 

unit, lamps L1.4 and L1.5. Tubes in the middle row receive light equally from both UV units. 

In the figure, the tube “T2.2.3” receives the strongest light from lamps L1.3 and L2.3. It also 

receives light from very far lamps L1.1, L1.5, L2.1 and L2.5. Incoming lights from L1.2, L1.4, 

L2.2 and L2.4 also contribute. Certainly, the efficiency of illumination depends on the distance 

among lamps and tubes as well as their dimensions. This topic is discussed in the next sub-

sections. 
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Figure 7.16 The up-scaled photoreactor: A proposed flow reactor of 365 liter for photocatalysis under 

artificial UV. A part of the reactor (top left) is zoomed out (right). The cross section (right) shows the 

dispositions of UV lamps (purple circles) and flow tubes (blue circles). Grey solid lines visualize the 

illumination from UV lamps to the tube T2.3.4, whereas grey dash lines visualize the illumination from 

the 1st UV lamp unit to the tube T2.3.4 (the illumination from UV lamps in the 2nd unit is similar and the 

symmetric lines are not shown). 

 

UV lamp unit 

The dimension of commercial UV lamp available in the market decides the dimension of the 

reactor. For example, in the lab setup (section 3.1.3), the length of the lamp is 302.5 mm, and 

of one flow channel length is 120 mm. The shorter length of the channel is to ensure the 

homogeneity of the UV intensity. In reality, to spare the operating room as well as to save the 

energy consumption of UV lamps, the length of the channel should be identical to that of the 

lamp. Long flow channels are preferred, so that of the same volume, fewer U-turn connectors, 

which induce pressure drop, are needed. For this reason, long lamp tubes were chosen. From 

the catalogue of Philips Koninklijke Philips N.V. Company, 5 lamps meeting this requirement 

were found. Important properties are shown in Table 7.4. Among all, TL-D 36W BLB 1SL/25 

lamp bulb has some advantages, e.g., low electric power (36 W), light net weight (211 g), long 
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life time (approx. 500 days) and low mercury content (5 mg). The UV radiation is a bit low 

compared to the others. Another option can be TUV 36W SLV/6 bulb, of which electric power 

is similar to the former (36 W), net weight is lighter (135 g), lifetime is less (375 days), mercury 

content is lower (2 mg) but UV intensity is higher (15 W). Both of them have the same bulb 

diameter of 28 mm and efficient length of 1199.4 mm. These dimensions were used for com-

putation. 

Flow cell units 

The tube material must be UV-transparent. Quartz or UV-transparent glass has good optical 

properties for photocatalysis. However, these fragile materials are not favored for assembly 

and operation. Instead, as mentioned in section 2.2.1, the use of polymer is an alternative. As 

specified by manufacturer (Adtech Polymer Engineering ltd), FEP (fluorinated ethylene propyl-

ene) is UV-transparent. By a rough computation, it is known that 75 % UV can transmit a 

1.6 mm thickness wall. 

Here, the distance between two bulbs is chosen as 42 mm, i.e., the clearance and the pitch 

are 0.5 and 1.5 times as large as the outer diameter. The distance between bulb centers and 

inner walls is similar (42 mm), while the distance between the bulbs to the ceiling of the pho-

toreactor is 118 mm. With this design, one UV lamp unit of 42×2000×1500 mm³ can contain 

42 bulbs in a row. 

 

Table 7.4 UV lamps for up-scaled photocatalytic setup. Philips fluorescent lamps and their properties. 

Product F40T12/ 

BLACKLIGHT/48 

BLB LF 

TL-D  

36W BLB 

1SL/25 

TL-D 

95W HO 

SLV/25 

TUV 

36W 

SLV/6 

TUV 

75W HO 

1SL/6 

General properties 

  Bulb diameter mm 40.5 28 28 28 28 

 Total length mm 1213.6 1213.6 1514.2 1213.6 1213.6 

 Efficient length mm 1199.4 1199.4 1500 1199.4 1199.4 

 Net weight g 310 211 233 135 135 

  Electric power W 39 36 95 36 75 

UV properties 

  UV range - UVA UVA UVC UVC UVC 

 Mode wavelength nm 365 365 250 250 250 

 UV radiation W 9.6 9.5 22.5 15 25.5 

Others 

  Useful life h 5000 12000 8000 9000 9000 

 Mercury content mg 13 5 8 2 2 
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It is observed that some dyes strongly absorb near-UV wavelengths, e.g. Red 2BM, Orange 

F2R, Black ED, Orange GR, Pink R and Scarlet SHF-2G (Figure 7.13). When performing photo-

catalytic treatment, the shielding effect must be considered (section 7.1.4). To efficiently de-

grade these dyes, the optical pathlength of the photocatalytic reactor should be as short as 

possible (section 6.4.3). In the lab-scale experiments, the optical thickness of 11 mm of the 

reactor R10 is the optimal value. For an up-scaled reactor, tubes with the same optical path 

should be chosen. Note that, in the lab reactor, the cross section of the channel is rectangular, 

but in reality the channels are tubular. As shown in the previous subsection, all surface area 

of tubes can be illuminated, so the inner diameter of 22.2 mm equivalent with 11 mm optical 

path was chosen. The outer diameter of tubes is 25.4 mm. Each tube have the working length 

of 1200 mm (identical to the length of the UV bulb). It can contain 464 ml water. 

Tubes are arranged as triangular pitch. Tube pitch is 42 mm (clearance is 16.6 mm). Distance 

from tube center to the wall splitting with the UV units is 21 mm, and to the wall of the reactor 

is 54 mm. The two outer flow cell units have a dimension of 114×2000×1500 mm³ and contain 

83 tubes which are arranged in two rows. In each inner flow cell unit (between two UV lamp 

units), 124 tubes can be arranged in three rows. Its dimension is 114×2000×1500 mm³. 

A photoreactor with the width of approx. 1000 mm has 2 outer flow cell units, 5 inner flow 

cell units and 6 UV lamp units (total width = 2×114 + 5×114 + 6×42 = 1050 mm). The total 

number of tubes are 2×83 + 5×124 = 786. The total working volume is 365 l. All specifications 

of the photoreactor can be found in Table 7.5. 

 

Table 7.5 Specifications of the up-scaled photoreactor. Tubes and bulbs refer to the flow channel and 

the UV bulb, respectively. 

    Outer flow 

cell unit 

Inner flow 

cell unit 

UV lamp 

unit 

Dimension mm³ 1050×2000×1500 

  114×2000×1500 114×2000×1500  42×2000×1500 

Total volume liter 365 - 

Total number of bulbs/tubes - 786 252 

Bulb/tube inner diameter mm 22.2 - 

Bulb/tube outer diameter mm 25.4 28  

Bulb/tube length mm 1199.4 1199.4 

Volume of one tube ml 464 - 

Number of row - 2 3 1 

Bulb/tube pitch mm 42 42 42 

Number of bulbs/tubes in a row - 42 or 41 42 or 41 42 

Number of bulbs/tubes in a unit - 83 124 42 

Number of units - 2 5 6 
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Reaction rate constant 

In this study, a computation was attempted. The operational conditions were considered to 

be similar to those of the experiment presented in subsection 7.2.4.2, i.e., the organic com-

pound Everzol Navy ED dye of 250 mg/l, the P25 photocatalyst of 1 g/l and no pH adjustment. 

The reaction rate constant in the lab-scaled flow reactor normalized to the light intensity of 

25 W/m² is 0.111 h-1. 

In reality, depending on the inquiry, dyeing and washing processes are operated only few 

times per month. With the capacity of 10 m³/day, it is possible to circulate the treatment of 

dye solution more than 3 times. In the flow reactor, the conversion of dye concentration fol-

lows an exponential function (Eq. (3.25)). The result computed for a 3-time circulation is Cn/Cn,ini 

= 11 %. It means that 90 % color of this dark solution can be bleached. 

However, the presented data is only a rough estimation. Firstly, the flowrate of 10 m3/day or 

7 l/min is low, Reynolds number is 5558 which means a transition of laminar and turbulent 

flow. For a long retention time, sedimentation may happen. The flow rate of 14 l/min can 

ensure a turbulence, however, in this work, the effect of flow regime has not been studied so 

this value is not used for computation here. Secondly, when increasing the reaction time, the 

intermediates and (by-) products compete the parents for the adsorption-desorption on the 

catalyst surface (previously discussed in section 6.4.4). It may make the reaction rate lower. 

Thirdly, light intensity was not considered in the computed data. Only average light intensity 

of sunlight was used for the normalization. However, as the UV lamps in the up-scaled setup 

have relatively high irradiance (compare to the lab-scaled UV lamp which is similar to UV of 

sunlight), they promote the reaction rate (section 6.4.2). Finally, shielding effect is not taken 

into account (section 7.1.4). These reasons make the experimental data different from the 

computed data. However, this computation proved that this photocatalytic configuration can 

be up-scaled for color removal of wastewater. 

7.2.5 Concluding remarks 

Based on all findings throughout the dissertation, in the last subchapter, photocatalyst was 

proposed to be used in a wastewater (WW) treatment plant. The scenario of wastewater 

treatment in March 29 Textile-Garment Joint Stock Company (Hachiba Company) in Danang, 

Vietnam was selected for this case study. The aim of photocatalysis is the discoloration of 

wastewater. 

Two possibilities to introduce photocatalysis into the current treatment plant were discussed. 

Photocatalysis can be used to treat highly colored WW after dyeing and washing processes. 

It can be also the last step of the treatment, where light color needs to be removed. In any 

event, a flow reactor type is applicable. Artificial UV light with high intensity is recommended 

to treat dark WW, whereas sunlight can be utilized for treatment of light color. 
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Of two types of WW, the highly colored WW treatment is more complicated. An up-scaled 

reactor was proposed. For safety operation, UV lamp is integrated with a close reactor. This 

so-called photoreactor includes UV lamp units and flow channel units. In the UV lamp unit, 

long UV lamp bulbs of approx. 1 200 mm available in markets are aligned in one row. In the 

flow channel unit, FEP (fluorinated ethylene propylene) tubes are arranged as triangular pitch. 

Two or three rows can be dispositioned and make use of UV light. In the photoreactor of 

1050×2000×1500 mm³, there are 6 UV lamp units composed of 252 bulbs and 7 flow channel 

units which can contain 365 l water. 

Color removal efficiency was computed for the treatment of 10 m³/day dark wastewater of 

250 mg/l Everzol Navy ED dye. This dye was provided by Hachiba Company and was reported 

to induce issues for the current WW treatment of the company. Based on the preliminary 

tests with 1 g/l commercial TiO2 P25 photocatalyst under UV light equivalent to sunlight, the 

reaction rate constant was found for the system. This value was used in simulation of the 365-

liter setup. Accordingly, photocatalysis can remove 90 % color in the wastewater. Though 

many influenced factors were not included in the computation (e.g., impact of pH, flow re-

gime, intermediate and product molecules and shielding effect), the result show a promising 

application of photocatalysis in reality. 
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8. CONCLUSIONS AND FUTURE WORK 

8.1 CONCLUSIONS 

Color removal of wastewater is a crucial problem for textile industry. This issue has to be 

solved before draining the wastewater to effluents. In this thesis, a concept for wastewater 

treatment by photocatalysis was initiated. In particular, this work is dedicated to the color 

removal of textile wastewater under artificial or natural light. Generally, slurry photocatalysts 

were employed for this purpose. Facts and solutions, ideas and practice, computation and 

experiments shown in this work helped to achieve the study goals. 

In chapter 8, motivation, goals and the main results achieved in this thesis are recalled. The 

detailed summaries are presented at the end of each chapter or subchapter. 

It was shown (chapter 1) that together with the development of the textile industry, dye pol-

lutants remaining in the effluents are more and more problematic. Conventional treatment 

techniques do not completely remove the strongly colored wastewater (WW). Recently, pho-

tocatalysis, one of the advanced oxidation processes, has been intensively studied for appli-

cations in WW treatment. Since 1972, when photocatalytic activity was first reported, there 

are approx. 29,000 papers on the topic “photocatalysis”, but only a few industrial-scaled ap-

plications. The incomparability between laboratory studies and large-scaled practice causes 

the limit of photocatalysis. 

Later (chapter 2), an overview of the state of the art and the fundamentals of photocatalysis 

were given. A detailed description of the factors and parameters (materials used, driving force, 

kind of reactor, etc.) that can influence the photocatalytic process was shown. Slurry photo-

catalysts have large surface area and therefore are very interesting materials to be used for 

such applications. Dissimilarly, immobilized photocatalysts can avoid the problem of post-

treatment, but are not commercially available. UV or near UV light is necessary to activate the 

photocatalysts and act as the driving force of the photocatalytic process. Sunlight is environ-

mentally friendly, but its UV intensity is low. In photocatalytic reactors, typically, light penetra-

tion is short and limits the use of illuminated batch reactors at a large scale. However, flow 

reactors can ensure an efficient light absorption. Also, process parameters in the flow reactors 

can be defined. Photocatalysis is a complex process, which is affected by many factors, e.g., 

photocatalyst and organic compound materials, catalyst concentrations and morphologies, 

light intensity and pH. Finally, the reaction rate constant is usually employed to compare the 

photocatalytic activity in the system. 

Based on the state of the art, in the next five chapters (chapter 3–7), both theoretical and 

practical investigations were considered.  

Firstly, the design of a photocatalytic configuration for slurry photocatalysis was presented.as 

the key factor of this work. Dislike illuminated batch reactors which are commonly used in 
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other researches, the use of a flow reactor of which process parameters can be easily deter-

mined was introduced. Considering all the requirements for a photocatalytic reactor (e.g., illu-

mination, flow, post treatment and materials), the new experimental setup was designed. It 

consists of three main components, including a flow reactor, an illumination source and a 

pump for circulating the suspension. Testing volume, flow conditions and light intensity are 

adjustable. Thus, the reactor is satisfactory for fundamental studies as well as different pur-

poses in laboratories (e.g., experiments shown in chapter 6 and subchapter 7.1). The simple 

construction is also suitable for up-scaling purpose (subchapter 7.2). 

The use of the Langmuir-Hinshelwood model in photocatalytic studies is arbitrary and it may 

lead to an insufficient distinction between the observed degradation kinetics (at macroscopic 

level) and the intrinsic reaction rate constant (at the microscopic level). Here, a reactor model 

was built to quantify the photocatalytic performance. This model is based on the heterogene-

ous reaction and the material balances in different components of the setup. Through mathe-

matical equations, it is possible to determine the reaction rate constants which can character-

ize the photocatalytic activity. The model was verified by experiments. It was found that there 

is a dissimilarity between the apparent reaction rate constant in the entire photocatalytic setup 

and the reaction rate constant in the flow reactor. These findings are the tools used for exper-

imental works. 

A detailed operational procedure was given. Generally, a photocatalytic performance includes 

three steps: dispersion of photocatalyst, adsorption-desorption equilibrium of organic mole-

cules on the photocatalyst, and photocatalytic reaction. The first step missing in most studies 

was inspected. Experimental results showed a big influence of dispersion technique on pho-

tocatalytic performance. The second step has not been experimentally studied but was en-

gaged with the published work of other group. The third step was the center of the experi-

mental work. 

For academic purposes, titanium dioxide P25 was used as a photocatalyst. This nanopowder 

is a commercial product. The characteristics of the materials provided by the manufacturer 

may vary from one batch to another one. Therefore, important physical properties of P25 used 

in this work were investigated. To understand the activation of the photocatalyst, it was fun-

damental to determine the bandgap energy. Transmittance, turbidity, and extinction coeffi-

cient of the photocatalyst suspension are other notable optical properties. They were thor-

oughly discussed along the scattering phenomenon. 

To access the key features of the photocatalytic performance in the new photocatalytic setup, 

color removal of methylene blue (MB) with P25 photocatalyst under UV light was studied. It 

is a popular testing pollutant for photocatalytic researches as suggested in the standard ISO 

106789:2010. Experimentally, the use of the reactor model was verified. The impact of pro-

cess parameters was, then, examined for the understanding of the photocatalysis. In particu-

lar, explicit relations of the reaction rate constants on testing volume or light intensity were 

given. Especially, the intensity-related reaction rate constant was presented. This parameter 
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is a normalization, which can exclude the impact of light intensity on a photocatalysis. Subse-

quently, the interaction between photocatalysts and light contributions to the optical penetra-

tion was examined. The reactor model was modified and the concept of reaction rate constant 

at the illuminated surface was introduced allowing for an elimination of optical depth of differ-

ent reactors. The results were followed by an optimization of the photocatalyst concentration 

as well as the optical depth of the reactor. Other influenced conditions such as the initial con-

centration of MB and pH were explored. The reactor model was adapted for theoretical expla-

nations of the experimental results. These results fulfilled a comprehensive insights of the 

photocatalytic performance. 

Additionally, it is noticed that the P25 photocatalysts are in an aggregated state. The effect of 

photocatalyst aggregate size achieved by ultrasonic dispersion was discussed. The photocata-

lyst aggregate size and the stability of the suspensions were considered. Consequently, the 

aggregate size was demonstrated to have influence on the optical properties of the suspen-

sion. In the photocatalytic performance, it was proved that, when the photocatalyst aggregate 

size was smaller, the photocatalytic activity was enhanced. Hence, it was claimed that a suit-

able photocatalyst dispersion technique is necessary, as it can assure the stability of the sus-

pension and the homogeneity of the photocatalyst aggregate size, which leads to the change 

of optical properties, thus the change of the photocatalytic reaction rate constant. A photo-

catalyst dispersion can also help to avoid sedimentation in a real application, where a flow 

reactor can be hundreds of meter long and the retention time can take up to several hours. 

As examples of various laboratory applications, the experiments were put into different case 

studies. Experiments of different photocatalytic materials (commercial titanium dioxides P25 

and P90 and zinc oxide) were compared. In addition, magnetic photocatalyst particles pro-

duced in our lab were tested. Different organic compounds were degraded, including three 

dyes (methylene blue, Remazol Red RR and Everzol Navy ED) and one antibiotic (ciprofloxa-

cin). Different light sources were utilized, including artificial light sources. Of particular interest 

are the experiments made using sunlight which represent an important step in the direction 

of environmentally friendly applications. To exclude the influence of the testing volume of the 

suspension, the volume-related reaction rate constant was proposed. To eliminate time-vari-

ant light intensities, which are typical for the case of natural light source, the reactor model 

was transformed to a UV-dependent model. Ultimately, these results showed that the concept 

of the flow reactor suits a variety of applications in laboratories. 

At the end, an industrial application was discussed. Aiming at a specific case, the photocata-

lytic treatment was applied for wastewater from one textile company in Danang, Vietnam. 

Earlier, photocatalytic reactors installed in the company within the German-Vietnamese 

CLIENT/NaViTex project worked at semi pilot or pilot scales. Here, in this work, the concept 

of a flow photocatalytic reactor was proposed for working at industrial scale. Preliminary tests 

and simulations were performed aiming at the treatment of strongly colored wastewater. The 

high dye concentration in such wastewater demands the use of high UV light intensity. Artifi-

cial UV lamps were recommended and the integration with the flow reactor in a so-called 
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“photoreactor” was suggested. A photoreactor of 1050×2000×1500 mm³ can contain 365 l 

water. With this industrial setup, the color removal of one textile dye from the company at 

high concentration can reach 90 %. Notably this result is a solution to upgrade the WW treat-

ment plant of the company. 

This Ph.D. work introduced a concept for the treatment of wastewater from textile industry 

by slurry photocatalysis. Operational procedure, influential factors and reactor models were 

given. The flow reactor prototype can suit various study purposes in laboratories and have a 

great potential for industrial applications. The contribution of this thesis can be a translation 

among studies of different scales. It is important to note that already some real industrial 

applications based on the findings of this thesis were performed and open the avenue for 

future up-scaled systems. 

8.2 OUTLOOK 

All shown results confirmed that photocatalysis is a key-process for applications of nanotech-

nology to environmental problems. To realize an efficient photocatalysis, the strategies that 

should be studied are the following: i) the development of catalytic materials, ii) the perfor-

mance with real conditions, iii) the combined photocatalysis, and iv) the reactor design. This 

Ph.D. work solved the matters regarding strategies ii) and iv). Further studies are of special 

interest. 

Regarding strategy i, new materials should be tested in the photocatalytic flow reactor type. 

Also, the use of immobilized photocatalysts is possible and should be tested. Regardless of 

material types, new photocatalysts should satisfy the physical and chemical resistances and 

the reusability. Very importantly, the materials must be able to be produced in a large amount.  

Regarding strategy ii, influences of some other factors should be taken into account. For in-

stance, shielding effect is of special interest. A number of organic molecules absorb UV light, 

which is the wavelength for excitation of photocatalysts. This means that the light propagation 

in the suspension must be described as a sum of photons absorption by the organic molecules 

and extinction by the catalyst particles. The extinction by catalyst particles remains constant 

during the photocatalytic reaction, while the photons absorption by organic molecules is not 

(this last factor is connected with the concentration of molecules in solution). This has not yet 

been taken into account in the model equations because it was irrelevant for the examined 

configurations. For the general case, this should be integrated into the model equations. 

Regarding strategy iii, it is noted that, photocatalysis cannot alone solve the problem of indus-

trial effluents. The combination with other processes is necessary. Also the pretreatment and 

post treatment of photocatalysts are necessary. Therefore, a comprehensive cost estimation 

is a need to successfully conduct photocatalysis. 

Regarding strategy iv, up-scaling studies should be done and a real industrial photocatalytic 

treatment can be realized in the future. 
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APPENDIX 

A1. FUNDAMENTALS OF PARTICLE SIZE 

Equivalent diameters 

The shape of a particle can be spherical, non-spherical or even irregular. Geometrical measures 

of a particle can be stipulated such as the main dimensions, statistical lengths, or volume, 

surface area, projected area [163]. The measure is expressed in the term of “equivalent diam-

eter” [164]. It varies depending on analytical methods. E.g., image analyses give the projection 

of particles, sieve analyses determine the diameter of circumscribing spheres, and sedimen-

tation analyses handle the hydrodynamic equivalent diameter [163], [164]. 

Particle size distribution 

Size and shape of particles are non-uniform, thus lead to the fact that size-dependent geomet-

ric and physical features are non-uniform. Particle size distribution is necessary to characterize 

particle populations. 

Let x a size of particle measurement distributed from the minimum value xmin to the maximum 

value xmax. The proportion of the total population lying between xmin and x is defined as the 

cumulative function Qr(x) (Figure A 1). Since the number of particles in most practical assem-

bles is large, Qr(x) can be regarded as continuous and can be differentiated to have the density 

function qr(x) (Figure A 1) 
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Figure A 1 Graphical representation of particle size distribution of an assemble [164]. 
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The measure of the distribution can be number, length, surface area, or volume, correspond-

ing to the subscript r of 0, 1, 2 or 3, respectively. 

In particle size distribution, some specific statistical values may be considered [162], [163]: 

the mode xmode,r is the most frequently occurring size in the sample, where qr(xmode) holds the 

maximum value; the median size x50,r corresponds to the cumulative distribution as 50 % size, 

or Qr(x50) = 0.5, and the power mean size 
k,rx  [249] 

 
max

min

k,r rd ,

x

k
k

x

x x Q x   (A.2) 

where  
max

min

rd

x

k

x

x Q x  is the moment of the size distribution. Corresponding to the exponent k, 

there are different means: arithmetic mean 1,rx  with k = 1, harmonic mean -1,rx  with k = −1, 

geometric mean 0,rx  with k = 0, or quadratic mean 2,rx  with k = 2. E.g., 1,0x  is the arithmetic 

mean of number weighted-size distribution, which is truly the average particle size. Note that 

the measure of distribution can be physical properties, such as extinction or scattering light 

intensity. For instance, 1,intx   is the harmonic mean of intensity weighted-size distribution (sec-

tion A2). 
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A2. CHARACTERIZATION OF P25 COLLOIDAL SUSPENSIONS BY 

PHOTON CORRELATION SPECTROSCOPY 

A typical DLS correlogram 

Photon correlation spectroscopy (or dynamic light scattering (DLS) method) was used to char-

acterize the size of TiO2 P25 aggregates. P25 has the primary size of 25 ± 3 nm [166], and the 

point of zero charge (PZC) at pH of approx. 6.4. Figure A 2 shows a typical correlogram of P25 

samples measured by DLS instruments.  

The data were analyzed by the Zetasizer software, version 7.02. The starting time of the decay 

gives information about the harmonic mean xcum, whereas the angle of the decay  relates to 

the polydispersity PDI of the intensity-weighted size distribution (section A1). The baseline 

(shown in the inset of the figure) gives information of the presence of big aggregates. 

Effect of the particle concentrations on the DLS measurements 

The quality of the DLS measurements can be influenced by the concentration of material. In 

this section, varied concentrations were tested to investigate the optimal concentration for 

the highest reliability of measurement. A rather strong ultrasonication was applied to disinte-

grate and homogenize the P25 suspension. The high power of 52 W by the ultrasonic proces-

sor Topas UDS751 was used. The dispersion lasted for 16 min. The prepared suspension was 

then diluted to have desired concentrations. The values xcum and PDI were measured with the 

DLS Malvern Nano S90 instrument (Table A 1). 

 

 

Figure A 2 Correlogram of a sample measured by dynamic light scattering. The inset shows the base-

line of the correlation function. 
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Table A 1 Effect of particle concentration on the dynamic light scattering measurements. 

No concentration 

of particles 

mean count 

rate 

intercept attenuator xcum PDI 

 g/l kcps - - nm - 

1 1.000 209 0.742 9 74.3  ±

  

0.8 0.553  ±

  

0.027 

2 0.333 339 0.903 8 217.3  ±

  

2.1 0.238  ±

  

0.013 

3 0.167 468 0.906 8 220.9  ±

  

1.9 0.184  ±

  

0.015 

4 0.100 431 0.915 8 221.2  ±

  

0.9 0.181  ±

  

0.010 

5 0.067 367 0.924 8 220.6  ±

  

0.9 0.195  ±

  

0.021 

6 0.033 225 0.945 8 238.6  ±

  

3.4 0.160  ±

  

0.020 

7 0.017 334 0.936 9 626.1  ±

  

14.0 0.229  ±

  

0.028 

 

The size xcum of the 1 g/l particle concentration sample is too small compared to most of the 

other data, while PDI is too high. This suspension is too turbid, and light is extinguished 

through a short optical pathlength (see also section 5.2.3). The diluted sample of 0.017 g/l, on 

the contrary, has extremely big size. Probably the sample does not provide enough scattering 

signal for the detector. In both case, the attenuator is higher than the others. These two con-

centrations are not recommended for the DLS measurements. 

Measurements at concentrations of 0.033−0.333 g/l suspensions give similar data. However, 

the PDI of the 0.333 g/l sample is a bit higher than the others, which can be attributed to the 

turbidity. Figure A 3 shows the transmittance of the suspensions with UV-VIS spectra. Ac-

cordingly, the suspension at 0.3 g/l induces a very low transmittance (2 %) at 633 nm which 

is the red laser wavelength of the nanosizer. Additionally, the 0.033 g/l sample has higher xcum 

and lower PDI. For these reasons, a particle concentration of 0.067−0.167 g/l was chosen for 

further measurements. 
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Figure A 3 Effect of the particle concentrations on the transmittance and dynamic light scattering 

measurements. Transmittances of P25 suspensions were measured by the UV-VIS spectroscopy, the 

10 mm optical pathlength cuvette was used. The particle size xcum was measured by the Nano S90 DLS 

instrument, the standard deviations of data are small and involved in the markers. 

 

Correlation of mean size measured by two DLS Malvern instruments: HPPS-ET and 

Nano S90 

In this work, the harmonic intensity-weighted mean sizes of photocatalysts were measured 

by two DLS instruments, Malvern HPPS-ET and Nano S90. The HPPS-ET instrument was used 

in early studies: choosing a technique of dispersion and the energy concept of ultrasonic dis-

persion (sections 5.1.1 and A3) and the stability test of the suspensions (section A3). The other 

experiments were conducted with the Nano S90 instrument. Only one instrument was used 

throughout each series of experiments, thus the comparisons of the results were ensured. 

However, to have an overview for all data of this study, a correlation between data achieved 

by these two instruments is needed. 

A 200 ml suspension of 1 g/l P25 was used as a standard suspension for the correlation func-

tion. The low ultrasonic power of 30 W by the ultrasonic processor Hielscher was used. The 

small decay rate of the integrated aggregate size (Figure A 4) helps to maximize the difference 

of the data achieved by the two instruments, thus increases the accuracy of the correlation. 

The time models of the ultrasonic dispersion were determined 

cum
,x A t    (A.3) 

where A and  are model parameters. For each instrument, they were found as in Table A 2. 

The size measured by these instruments is correlated to each other by the following equation 
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Figure A 4 Correlation of two dynamic light scattering instruments. A 200 ml P25 suspension of 1 g/l 

was dispersed with 30 W ultrasonication by the Hielscher processor for 40–50 min. Aggregate sizes of 

P25 measured by two dynamic light scattering instruments Malvern HPPS-ET and Nano S90 show a 

power function of dispersion time. 

 

Table A 2 Correlation of two dynamic light scattering instruments Malvern HPPS-ET and Nano S90: 

Parameters of the time models. 

Instrument HPPS-ET Nano S90 

  A 368.5 370.53 

  α 0.158 0.131 
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A3. DISPERSION OF P25 

Dispersion with an ULTRA-TURRAX® device 

ULTRA-TURRAX® dispersers are considered as a high-performance dispersing technique. A 

very high rotation speed of 21500 rpm (corresponding to 40 W) was applied to disperse 200 ml 

P25 suspension of 1 g/l. Within the dispersion period of 60 min, the aggregate size xcum is in 

the sub-micron range of 495–586 nm (Figure A 5). Polydispersity index PDI fluctuates within 

the high range of 0.44–0.74 which is not precise when being measured by DLS technique 

(shown by large error bars). The results suggest that this technique is not efficient to disinte-

grate P25 aggregates. They are probably structured by tight bonds, which require another 

dispersion technique with a higher energy.  

Dispersion with ultrasonication 

A 200 ml volume of 1 g/l P25 suspension was dispersed within a period of 40 min. A rather 

low electric power of 30 W was applied by using the Hielscher device. Samples before and 

after ultrasonic dispersion were measured with the DLS Nano S90 instrument. Figure A 6 and 

Figure A 7 show the correlogram and the particle size distribution by intensity of samples, 

respectively. 

Prior to the dispersion, the population is polydispersed, shown by the deviation of curves in 

Figure A 6a. Additionally, the baselines of the samples are high, evidencing the presence of 

big aggregates. The second peaks of thousands nm in Figure A 7a prove it as well. Note that 

with DLS method, the scattered light by large particles dominates that by small particles. For 

this reason, five measurements are dissimilar. 

 

 

Figure A 5 ULTRA-TURRAX® disperpsion of P25 suspension: Size characterization. A 200 ml P25 sus-

pension of 1 g/l was dispersed by an ULTRA-TURRAX® dispenser for 60 min with the rotation speed of 

21 500 rpm. Aggregate size and polydispersity index were measured by the Malvern HPPS-ET dynamic 

light scattering instrument and are shown along with the dispersion time. 
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Figure A 6 Ultrasonic dispersion of P25 suspension: Size characterization (cont.) : Correlogram. A 

200 ml P25 suspension of 1 g/l was dispersed with 30 W ultrasonication by the Hielscher processor for 

40 min. Samples a) before, and b) after dispersion were measured by the Malvern Nano S90 dynamic 

light scattering instrument. Five measurements were operated for each sample. 

 

 

Figure A 7 Ultrasonic dispersion of P25 suspension: Size characterization (cont.): Particle size distribu-

tion by intensity. A 200 ml P25 suspension of 1 g/l was dispersed with 30 W ultrasonication by the 

Hielscher processor for 40 min. Samples a) before, and b) after dispersion were measured by the Mal-

vern Nano S90 dynamic light scattering instrument. Five measurements were operated for each sam-

ple. 

 

After the dispersion, big aggregates were well disintegrated, shown by the very low baseline 

(next to the horizontal axis of Figure A 6b. Also the decay of the correlation coefficient is steep, 

indicating the low polydispersity index. The repeated data of five measurements in Figure A 

7b also confirms the result. 
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Figure A 8 Ultrasonic dispersion of P25 suspension: Stability test. 200 ml P25 suspension of 1 g/l 

(without methylene blue) was dispersed with 22 W ultrasonication by Topas UDS751 processor for 

60 min. The stability test was then carried out over 4 weeks. Aggregates size were measured by the 

Malvern HPPS-ET dynamic light scattering instrument and the correlation with Malvern Nano S90 was 

done (Appendix A2). 

 

Stability of dispersed P25 suspension 

Prior to the stability test, a 200 ml P25 suspension of 1 g/l was dispersed with 22 W ultrason-

ication for 60 min. The aggregate size xcum of 174 ± 1 nm and the polydispersity index PDI of 

0.22 ± 0.017 were obtained. The suspension was then kept in ambient conditions for the sta-

bility test within 4 weeks. Conductivity remained approx. 12 µS/cm during the test. The pH 

value of 3.8–3.9 was unchanged during the first 3 weeks, however the sample at week 4 has 

a higher pH of 4.4. Figure A 8 shows that xcum has a minor change of 3 %, while PDI fluctuates 

within 11 %. The result shows the stability of the suspension over weeks. 

A4. UV-VIS ABSORBANCE OF METHYLENE BLUE 

Calibration curves 

Methylene blue (MB) stock solution of 3.126 mM was prepared by mixing 0.1 g MB (Merck 

KGaA) powder in 100 ml ultrapure water. The MB concentrations in the range of 0.5−189.5 µM 

were prepared from the stock solution. The MB absorbance through a 1, 2, 5 and 10 mm 

optical cuvette was scanned in the wavelength range of 200−800 nm with the UV-VIS spec-

trometer. The peak of the spectra was recorded at 664 nm. 

When MB concentration exceeds 7 µM, dimerization occurs [211] 
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where M and D stand for MB monomers and dimers, respectively. The dimerization equilib-

rium constant K can be written as 

n,D

2

n,M

,
C

K
C

  (A.6) 

where Cn is the molar concentration of the molecules at equilibrium. The material balance 

gives the relation 

n,M,0 n,M n,D2 .C C C   (A.7) 

where Cn,0 is the total molar concentration of monomers and dimers. Solution of Eqs. (A.6) 

and (A.7) is 

n,M,0 n,M

2

n,M

,
2

C C
K

C


  (A.8) 

2

n,M n,M n,M,02 0,KC C C    (A.9) 
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The Beer-Lambert law applied for a system of both monomers and dimers is 

,M n,M ,D n,D,E LC LC      (A.12) 

where E is the extinction of MB solution at the wavelength  through an optical pathlength 

L, M, and D, are the true molar extinction coefficients of monomers and dimers, respectively. 

At the wavelength of 664 nm, no dimer is detected, i.e., D,664 = 0. Thus, the extinction E664 

can be written as 

664 664,M n,M,E LC  (A.13) 

n,M664
M,664 n,M,0 app,664 n,M,0

n,M,0

,
CE

C C
L C

    (A.14) 

where app,664 is the apparent molar extinction coefficient of MB. For a clearer display, the sub-

scripts M and 664 are omitted. It can be derived as 
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Put  
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n,01 8KC x  , we have 
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 (A.19) 

In each measurement, the sample was prepared and the value Cn,0 is known. Extinction coef-

ficient at 664 nm was measured with a cuvette of optical pathlength L, thus the apparent 

extinction coefficient app can be determined as Eq. (A.13) (Figure A 9). Least square regression 

was done from the known data set (1/app,i, Cn,0,i), the true extinction coefficient of monomer  

and the dimerization equilibrium constant K were found to be  = 1.9104 m2/mol and K = 

3.58 m3/mol. 

It can be derived from Eqs. (A.14) and (A.19) as 
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  (A.20) 

2

n,0 2 2

2 1
.

K
C E E

L L 
   (A.21) 

Eq. (A.21) is the calibration formula of MB and it was used to determine MB concentration in 

the thesis. All graphical results of calibration are shown in Figure A 9. 

Influences of pH on the UV-VIS absorbance spectra 

Methylene blue (MB) is a cationic dye. The acid dissociation of MB is described as  

MB MB Cl   (A.22) 

MB OH MB-OH.   (A.23) 

The acidity constant Ka is determined at the quotient of the equilibrium concentrations Cn as 

n,MB-OH

a

n,MB n,OH

,
C

K
C C 

  (A.24) 

The total amount of MB Cn,MB is 

n,MB MB-OHMB
.C C C   (A.25) 
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Figure A 9 Calibration of methylene blue (MB). Absorbance of MB solutions (0.5−189.5 µM) were 

measured by UV-VIS spectroscopy with 1, 2, 5 and 10 mm optical cuvettes: (Napierian) molar extinction 

coefficient and (decadic) absorbance at 664 nm vs. MB concentration. Measured data were compared 

with computation. 
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 (A.27) 

The Beer-Lambert law written for MB solution including two species MB+ and MB-OH is  

+ MB-OH, n,MB-OHMB , n,MB
,E C L C L  

   (A.28) 

where E is the absorbance of a matrix of component at a certain wavelength ,  is the molar 

the extinction coefficients and L is the optical pathlength. The apparent molar extinction coef-

ficient of the matrix can be defined as 
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For MB, pKa = 0 [239], thus Ka = 1. In experiments, pH is in the range of 3−10, which means 

that  14

a n,OH n,OH
10 1

pH
K C C 

 
  . Eqs. (A.26), (A.27) and (A.29) are rewritten as 

n,MBn,MB
C C   (A.30) 
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Figure A 10 Effect of pH on the UV-VIS absorption spectra of methylene blue. Absorbance of 13 µM 

methylene blue solutions (pH = 3–10) were measured by UV-VIS spectroscopy with a 10 mm optical 

cuvettes. 
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Experimentally, almost no change of the absorption spectra is observed in the pH range of 

3−10 (Figure A 10). At 664 nm, MB shows the peak of 0.965  ± 0.032, which means that the 

apparent extinction coefficient can be considered as a constant and that 
+

MB-OH,664

MB ,664

1



 . 

  



A5 UV-VIS absorbance of Ciprofloxacin 

181 

A5. UV-VIS ABSORBANCE OF CIPROFLOXACIN 

Ciprofloxacin (Cipro) was used in this study on the photocatalytic activity of the magnetic par-

ticles. The stock solution was prepared by dissolving 5 mg Cipro powder (Sigma-Aldrich, Inc.) 

in 1 l ultrapure water. The medium was adjusted to be acidic by adding a small amount of HCl 

0.1 M, thus ensured the solubility of Cipro in water. The solution was then diluted to have the 

concentrations of 3.0−21.1 µM. Samples were measured with the UV-VIS spectrometer. The 

maximum absorbance peak at 277 nm was used to determine the calibration curve. 

This work addressed the cooperation with Sara Teixeira. The data were kindly provided. The 

relation between absorbance and concentration obeys the linear function (Figure A 11) 

277 n,Cipro0.0417 0.0054.Abs C   (A.33) 

 

 

Figure A 11 Calibration of ciprofloxacin. Absorbance of ciprofloxacin (Cipro) solutions (3−21 µM) were 

measured by UV-VIS spectroscopy with a 10 mm optical cuvettes. a) The UV-VIS absorbance spectra, 

and b) The calibration curve at the wavelength of 277 nm. 
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A6. UV-VIS ABSORBANCE OF WASTEWATER FROM HACHIBA 

COMPANY 

Towards application of photocatalysis, color removal of two commercial dye solutions from 

March 29 Textile-Garment Joint Stock Company (Hachiba), Danang, Vietnam were tested. The 

highest concentration of the solution was chosen based on the color intensity of real 

wastewater (WW) from the company. Figure A 12 shows the UV-VIS absorbance spectra of 

four WW solutions collected and measured in October 2014 in the Department of Science 

and Technology, Danang, Vietnam. Different dilution factors were used. 

 

 

Figure A 12 UV-VIS absorbance of real wastewater from Hachiba Company (Danang, Vietnam). 

Wastewater (WW) was diluted from 5–50 times and analyzed by UV-VIS spectroscopy with a 10 mm 

optical cuvettes. 
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