
Multifunctional and Stimuli-Responsive Polymersomes 

for Biomedical Applications 

 

DISSERTATION 

 

zur Erlangung des akademischen Grades 

Doctor rerum naturalium 

(Dr.rer.nat.) 

 

vorgelegt 

der Fakultät Mathematik und Naturwissenschaften 

der Technischen Universität Dresden 

 

von 

M.Sc. Banu Iyisan 

 

geboren am 23.03.1985 in Adana, Türkei 

 

Eingereicht am 23.08.2016 

 

Die Dissertation wurde in der Zeit von September 2012 bis August 2016 

im Leibniz-Institut für Polymerforschung Dresden e.V. angefertigt 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gutachter                      : Prof. Dr. Brigitte Voit 

Technische Universität Dresden / Leibniz 

Institut für Polymerforschung Dresden e.V. 

 Prof. Dr. Rainer Haag 

Freie Universität Berlin 

Tag der Verteidigung:  18.11.2016 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

                                              To my beloved family  

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

Acknowledgements 

Every big journey in life requires lots of working time and patience as likely the realization 

of this thesis. But most importantly, none of these efforts would have been sufficient for the 

success without the support of many people. As I have come to the end of this big step in 

my life, I would like to express my deep appreciation and thanks to all people helped me not 

only for a better science but also for good and happy days in Germany. 

First of all, I would like to express my sincere gratitude to my supervisor Prof. Dr. Brigitte 

Voit for giving me the opportunity to work in this very interesting and fascinating research 

field, “Polymersomes” during my PhD at IPF. I deeply appreciate her continuous support 

and guidance which helped me a lot to make this research more productive and innovative. 

She has been also a great example for me by being a very successful woman scientist and a 

professor in chemistry world. This indeed has motivated me not only for my PhD experience 

but also this is a big inspiration for the future steps of my research life. Besides, I would like 

to extend my deep appreciation to my co-supervisor Dr. Dietmar Appelhans for his support, 

guidance and encouragement in every stage of this work. I am also greatly thankful to him 

for the fruitful discussions we have made at any time I needed. I have learnt a lot from those 

insightful comments and ideas that motivated me to think and question more which in turn 

led to improve the quality of this research significantly.  

Regarding the funding of this thesis, I would like to thank DFG and IPF for their great 

support not only granting my PhD scholarship but also enabling me to participate several 

worldwide conferences. In addition, my acknowledgements also go to the International 

Helmholtz Research School for Nanoelectronic Networks (IHRS NANONET) for a 

comprehensive training in the field of nanotechnology and for giving me the opportunity to 

participate different soft skill courses and workshops. In particular, I want to thank PD. Dr. 

Artur Erbe and PD. Dr. Peter Zahn for their help in many organizational works. In this 

manner, i am thankful to all colleagues in IHRS NANONET for various discussions and 

social activities that we have done together.  

Furthermore, it is my great pleasure to thank Prof. Dr. Lukas Eng and Dr. Philipp 

Reichenbach from IAPP in TU Dresden for the fruitful collaboration in the scope of the SPP 

1327 DFG Project. The efforts of Dr. Reichenbach on the laser irradiation experiments and 

further imaging with Fluorescence Microscope add another perspective to this work. 



viii 
 

Besides, this interdisciplinary environment helped me to get new and exciting insights about 

the laser technology and photophysics which I am very much appreciated. 

I also owe a deep thank to many people in IPF who supported me for various characterization 

techniques. It is therefore my pleasure to thank department of Analytics, in particular Dr. 

Hartmut Komber, Andreas Korwitz (both NMR); Petra Treppe, Christina Harnisch (both 

SEC); Dr. Mikhail Malanin (IR) and Liane Häussler (DSC). My further special thanks go to 

Dr. Peter Formanek (cryo-TEM) and Andreas Janke (AFM) for making my tiny 

polymersomes visible which helped me a lot to maintain a proper flow in my work. By their 

warm support and guidance, I have the opportunity to meet with the fascinating world of 

microscopy and I am very much appreciated for this. Another special thanks goes to Anja 

Caspari for introducing me the use of DLS which is undoubtedly my almost everyday tool 

for characterizing my polymersomes. I would like to thank also Stefan Michel for 

introducing me the contact angle device so that I could conduct many measurements on my 

coated surfaces.  

In addition, I would like thank all my colleagues in the department of bioactive and 

responsive polymers as well as polymer structures for the pleasant working atmosphere. My 

special thanks goes to also Carmen Krause for her support and help in various administrative 

works related to IPF. I feel myself very lucky that I was surrounded so many kind and nice 

people whom I’ve worked with, had fun with and got help whenever I needed. Many thanks 

to Gözde Öktem, Sandra Tripp, Mohamed Yassin, Ulrike Georgi, Jörg Kluge, Bahar 

Baghaei, Jens Gaitzsch, Hannes Gumz, Mimi Hetti, Xiaoling Liu, Emrah Demir, Francesco 

Piana, Maria Riedel, Christin Striegler, Robert Pötzsch, Shruti Pattanaik, Sourav 

Chakraborty, Johannes Fingernagel, Christiane Effenberg, Burak Kutlu, Haiping Zhang, 

Monika Warenda, David Gräfe, Anna Bauer, Qiang Wei and Bettina Mamitzsch. I want to 

say so many words for each of you but the long pages of thanksgiving avoided me to 

continue. In this manner, I want to particularly thank to Ulrike for her great support in the 

beginning of my life in Germany. Her kindness and patience towards all my questions related 

to everyday life and IPF environment make my start in a new country very easier. Also, 

thanks to Sandra for her friendship and so many fun activities that we have done together. 

She has been also very supportive to me for a smooth start in Dresden. Therefore, thanks for 

all the nice places I have learned from you and thanks for all your support. And Gözde, my 

coffee addicted friend like myself, our long talks with hard black coffees would have never 

been forgettable. Thank you for your great, endless friendship and support in all manners. 



ix 
 

And many thanks to Mohamed for being a great lab mate and a friend to me. His huge 

support for a smooth start in our lab was very worthy to me. In this manner, thanks to him 

and also to Jens, Jörg and Hannes for many fruitful polymersome discussions and various 

helps which improved this work a lot.  

Moreover, I am grateful to my friends in Turkey as being my second family. Many thanks 

to Şefik Elbeyli, Selin Erkişi, Ceren Meriç, Özge Uğur, Handan Bakalcı, Burcu Atalay, 

Deniz Kimya and many others that I could not name now, for their endless friendship and 

emotional support during this work.  

Last but not least, I wish to express my special thanks to my family for their immeasurable 

love, encouragement and support throughout this work and my life in general. In particular, 

I am grateful to my sister, Burcu Iyisan-Ocakcı and my brother in law, Hasan Ocakcı for 

being with me whenever I needed. Special thanks go to my sweet niece, Nehir and my sweet 

nephew, Güney for making me always cheerful and happy even after long working hours 

during our skype talks. I also want to express my deepest love and thanks to my husband, 

Umut Karagüzel for sharing all aspects of life with me by being my forever love and best 

friend ever. There are no words that can truly describe his unconditional support and help in 

overcoming various difficulties during this work. I can just say thank you so much Umut for 

always being there for me. I would like to extend my hearthful thanks to my dear parents 

Halide-Nihat Iyisan for always supporting me and believing in me. Thank you so much for 

raising me with a strong passion of learning and leading me to follow always wisdom and 

reasoning in life. I know that I could have never finalized this work without your endless 

support and love. You make me who I am and I can just say thank you for everything. 

 

 

 

 

 

 

  

 

 



x 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 
 

Abstract 

The demand for multifunctional nanocontainers possessing both recognition ability and 

responsive nature is increasing greatly because of their high potential in various biomedical 

applications. The engineering of such smart nanovesicles is useful to enhance the efficiency 

of many therapeutic and diagnostic tools that have the applicability in targeted drug delivery 

systems as well as designing sensing devices or conducting selective reactions as 

nanoreactors in the scope of nanobiotechnology. For this purpose, this study demonstrates 

the formation of multifunctional and stimuli-responsive polymersomes comprising various 

abilities including pH and light sensitivity as well as many reactive groups with sufficient 

accessibility to be used as smart and recognitive nanocontainers.  

The fabrication included several steps starting from the synthesis of azide and 

adamantane terminated block copolymers, which were then self-assembled to prepare the 

polymersomes with the corresponding functional groups for the subsequent post-

conjugations at the vesicle periphery. The accessible and sufficiently reactive groups were 

quantitatively proven when UV and IR cleavable NVOC protected amino groups as well as 

β-cyclodextrin molecules were conjugated to the pre-formed polymersomes through click 

chemistry and strong host-guest complexations. The gained light responsivity with the aid 

of successful NVOC attachment enabled further selective photochemical reactions triggered 

either by UV or harmless NIR light leading to liberated amine groups on the polymersome 

surface. Therein, these released amino groups were further conjugated with a model 

fluorescent compound as mimicking the attachment of biorecognition elements to see the 

direct picture of the applicability. To realize this concept in a more localized and selective 

way as well as to avoid the possible side effects of UV light, the NIR-light induced 

photochemical reactions and further dye coupling were performed when polymersomes were 

immobilized onto solid substrates.  This fixation was achieved by adapting the host-guest 

chemistry into this part and conjugating the adamantane decorated polymersomes onto β-

cyclodextrin coated substrates. Several investigations including adhesion behavior, pH 

sensitivity and mechanical properties of the established multifunctional polymersomes under 

liquid phase have been performed. It has been found that the polymersome shape is highly 

dependent on the attractive forces of the substrate and needs to be optimized to avoid the 

flattening of the vesicles. For these optimization steps, different conditions were investigated 

including the decrease of cyclodextrin amount and additional surface passivation with PEG 

molecules on the solid substrates. Besides, the calculated Young’s and bending modulus of 
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the polymersome membrane (E=27±17.5 MPa, k=19±12.5 10-18 J) from AFM measurements 

showed a robust but still flexible “breathable” membrane which is an important criterion for 

the applicability of these smart and stable vesicles.  In addition, the hosting ability as well 

as diffusion limits and sufficient membrane permeability of the polymersomes were 

observed by encapsulating gold nanoparticles as a smart cargo and doxorubicin molecules 

as an anticancer drug. 

In conclusion, the established multifunctional polymersomes are highly versatile and 

thus present new opportunities in the design of targeted and selective recognition systems 

which is highly interesting for various applications including development of microsystem 

devices, design of chemo/biosensors, and also for conducting enhanced, combined therapy 

in the field of drug delivery.    
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1 Theoretical Background 

1.1 Introduction 

Humanity has been using the elements of nature to develop new technologies for a long time. 

Especially, in the last few decades, the biomimicry studies have increased significantly to 

prepare materials with extremely interesting properties such as superhydrophobicity inspired 

by the lotus leaves.1-2 Apart from this, scientists have a wide interest on biological cells by 

being the basic structural and functional unit of living organisms that can perform complex 

reactions and multiple functions within confined environments. In particular, the cell 

membrane consists of the phospholipid bilayer with the embedded proteins and serves 

important functions which inspires new materials and particles for various biomedical 

applications. For instance, the selective permeability of the cell membrane is a mimicking 

source for designing nanocarriers, e.g. for drug delivery systems. Besides, cell adhesion and 

signaling abilities lead to creative ideas for building up biorecognition platforms, e.g for 

sensing devices.3-5 At this point, the inspiration of cell membrane led to the development of 

lipid based vesicles, so called liposomes by Bangham et al. in 1961.6 The vesicles are self-

assembled from phospholipids having hydrophilic head and hydrophobic tails in water which 

can host many compounds either in their lumen or in the membrane. This was a big step 

forward for delivery purposes as well as many other biotechnological applications. However, 

the lack of stability and undesired permeability of liposomes led scientists towards further 

developments. In this regard, the knowledge of cell mimicking was translated into the 

polymeric analogous of the liposomes which was developed using synthetic amphiphilic 

block copolymers. These vesicles, named as polymersomes, have been firstly reported by 

Discher and coworkers in 1999.7 The similarities of liposomes and polymersomes are their 

encapsulation ability of both hydrophilic and hydrophobic molecules as well as their 

biocompatible property. However, the big difference is originated by the use of synthetic 

polymers that enable chemical versatility and also stability with the aid of a thicker 

membrane. This is basically due to the higher molecular weight of polymeric materials 

leading to enhanced robustness and less permeability which makes polymersomes more 

advantageous in various applications including drug delivery, synthetic biology and sensors 

in comparison to their lipid counterparts (Figure 1.1).8-10  

Hence, this chapter describes the methods of polymersome formation starting from the 

synthetic mechanism for required self-assembling polymers and ending with the design of 
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multifunctional polymersomes with the focus on responsiveness and surface 

functionalization. Furthermore, the most widely used characterization tools and the possible 

applications for polymersomes are given by referring to previous studies in literature.   

 

Figure 1.1 Illustration of liposome (adapted from Wikipedia) and polymersome structures. 

The graph represents the molecular weight dependent membrane properties of the 

corresponding self-assembled structures which show enhanced stability of polymersomes 

compared with liposomes.8 

1.2 Synthetic Methods to Produce Amphiphilic Block Copolymers 

The starting point of a polymersome formation is to produce amphiphilic block copolymers 

that consist of hydrophobic and hydrophilic segments. Depending on the ratio of these two 

blocks, the amphiphilic copolymers can self-assemble into variety of structures such as 

spherical micelles, rods and vesicles. Thus, a precise polymer structure is required to obtain 

the desired morphology that can be provided by applying controlled polymerization 

techniques. In the following section, the widely used synthetic methods to prepare 

polymersome-forming block copolymers are discussed.   

1.2.1 Anionic Polymerization 

This technique exemplifies the first polymersome forming block copolymer synthesis that is 

based on the poly(ethylene oxide)-b-poly-ethyl ethylene (PEO-b-PEE) structure.7, 11-12 

Anionic polymerization is a type of chain growth polymerization that is carried out through 

a carbanion active species. The monomers having electrophile groups such as styrene, 

methacrylates, acrylates, butadiene, isoprene, acrylonitrile and ε-caprolactone can be 

Amphiphilic 
block copolymers

Liposomes

Phospholipids

Polymersomes
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polymerized by this technique. In principle, the mechanism consists of three steps including 

initiation, propagation and termination. However, no chain termination occurs in living 

anionic polymerization systems in the case of strict reaction conditions like low temperature 

as well as devoid of any protonic impurities including water and oxygen. The initiation step 

may follow two different mechanisms as illustrated in Figure 1.2. The first way includes the 

initiators like n-butyl lithium or Grignard reagents in which their negatively-charged part is 

added to the monomers to form the anionic active center. In the second case, the use of alkali 

metals leads to a direct electron transfer to the monomer for the formation of a radical anion. 

Since the anionic centers of the resulting polymers stay reactive unless they are quenched, 

functional units can be added as a termination agent to stop the polymerization process. For 

instance, PEG oligomers having various functional end-groups such as azido and amino 

moieties can be prepared by using this approach that are also available in the polymer 

market.13 The commercial azido-terminated PEG molecules (Mn=2700 g/mol) used in this 

thesis was also synthesized by living anionic polymerization in which the initiation was 

performed through potassium salts of azido-ethoxy-ethanol. 

 

Figure 1.2 Illustration of different initiation mechanisms for anionic polymerization. 

As an example for preparing a polymersome-forming block copolymers, the synthetic 

scheme of producing PEO-b-PEE block copolymer is given in Figure 1.3. Herein, anionic 

polymerization of butadiene is performed using alkyl lithium as an initiator which is 

followed by addition of ethylene oxide to obtain the monohydroxyl-terminated 

poly(butadiene) (PBD-OH). In the second step, this PBD-OH precursor is catalytically 

hydrogenated to synthesize the monohydroxyl-terminated poly(ethylethylene) (PEE-OH). 

Finally, the PEE-OH is turned into the corresponding potassium alkoxide (PEE-O-K+) as a 

macroinitiator to be used in the polymerization of ethylene oxide.11-12 The polymersomes 

prepared from the corresponding block copolymers is of great significance since they inspire 

many other investigations to form different polymersome systems for a broad spectrum of 

applications in the macromolecular nanotechnology.  
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Figure 1.3 Synthetic mechanism for anionic polymerization of PEG-PEE block copolymer11 

1.2.2 Atom Transfer Radical Polymerization 

Atom transfer radical polymerization (ATRP) is a controlled radical polymerization (CRP) 

technique which is very efficient to design multifunctional and nanostructured materials in 

the scope of biomedical applications.14 Among the available CRP techniques like reversible 

addition-fragmentation chain transfer (RAFT) and nitroxide-mediated radical 

polymerization (NMRP), ATRP is widely used in polymersome forming block copolymer 

synthesis as listed in Table 1.1.15-20 This high attention is simply based on various advantages 

such as commercially available initiators and precise control over macromolecular structure. 

In addition, several monomers including styrene, methacrylate and acrylate can be 

polymerized in a controlled manner with this technique.21  

    Table 1.1 Polymersome forming block copolymers produced by ATRP 

Block Copolymers Functionality Reference 

PEG43-block-P(DEA40-stat-TMSPMA40)  pH sensitive 15 

PMPC25-block-PDPA120  pH sensitive 16 

PS150-block-PAA20 pH sensitive 17 

PMPC25-block-PDPA70 pH sensitive 18, 19 

PEG45-block-PS130-block-PDEA120 pH sensitive 20 

PEG: polyethylene glycol, DEA: 2-(diethylamino)ethyl methacrylate, TMSPMA: 3-

(trimethoxy-silyl)propyl methacrylate, MPC: 2-(methacryloyloxy)ethyl phosphorylcholine, 

DPA: 2-(diisopropylamino)ethyl methacrylate, PS: polystyrene, PAA: polyacrylic acid. 
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Figure 1.4 shows the reaction mechanism of ATRP which consists of a transition metal 

catalyst (Mt
n), a complexing ligand (L) and an alkyl-halide (R-X) as an initiator molecule. 

Copper is the most commonly used metal catalyst in ATRP technique whereas iron 

compounds, nickel, cobalt and palladium can be also utilized. In order to perform the ATRP 

reactions under homogeneous or heterogeneous conditions, the transition metal complex 

(Mt
n-Y/Ligand) has to be fully or at least partially soluble in the reaction medium. In this 

regard, the complexing ligand plays an essential role in improving the solubility, selectivity 

and reactivity of the metal catalyst. As ligand molecules; bipyridines, aliphatic amines and 

phosphines are frequently used in which their lone pairs of electrons are coordinated to the 

transition metal for strong and stable complexes. This complex is responsible for the 

homolytic cleavage of an alkyl-halide bond (R-X) which result in the oxidized metal halide 

complex (X-Mt
n+1-Y/Ligand) and the radical (R.) species as an initiator. The halide (X) is 

commonly bromide or chloride whereas the Cu(I)bromide is a popular combination for the 

metal complexes. The chain propagation is proceeded by addition of the monomer units 

through the radical species until they are reversibly deactivated by the formation of a halide-

capped dormant polymer chain. The ATRP equilibrium (KATRP= kact/kdeact) is strongly in the 

side of the dormant species which produce continuously unreactive chains, for instance when 

copper (I) species are turned into copper (II) salt within the reaction period. For this purpose, 

it is necessary to perform the polymerization in the absence of oxygen which can be present 

as a limited amount only in the case of added reducing agents such as ascorbic acid. By this 

means, the reaction can be simply terminated by exposure to air that results in copper 

oxidation so as to have unreactive dormant polymer chains.14, 21  

 

Figure 1.4 General mechanism of the transition-metal catalyzed ATRP having the following 

reaction rate constants: kact (activation), kdeact (deactivation), kp (propagation), kt 

(termination)14 
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1.3 Polymersome Formation 

1.3.1 Self-Assembly Principles of Amphiphilic Block Copolymers 

The self-assembly of amphiphilic block copolymers may result in different morphologies 

including planar bilayers, micelles and vesicles depending on the relative size of hydrophilic 

to hydrophobic segments. The curvature of the hydrophobic-hydrophilic interface is 

described by its mean (H) and Gaussian (K) curvature as shown in Figure 1.5.22 

 

Figure 1.5 Description of amphiphile shape in terms of molecular packing parameter (p) 

and its relation to the to the interfacial mean curvature (H) and Gaussian curvature (K).22 

In this regard, a model developed by Israelachvili et al. is used to define the shape of the 

self-assembled structures by linking the curvature with the molecular packing parameter (p) 

(equation 2.1) where v denotes the hydrophobic volume, a is the interfacial area and l 

represents the hydrophobic chain length.23 By calculating the p values, the resulting shape 

of the self-assembled structures can be predicted as seen in Table 1.2.24  

2

1
3

v Klp Hl
al

   
                                                                                                              (1.1) 

However, it should be noted that the packing parameter is defined by means of 

geometrical aspects and therefore it is not adequate to fully explain the self-assembly of 

amphiphilic block copolymers. The free energy of the system, which is the combination of 

the interfacial energy of the hydrophobic-hydrophilic interface and the entropy loss of the 

polymer chains during vesicle formation, have a considerable effect on the resulting 

morphologies. In this manner, Disher and Eisenberg reported another parameter known as 

mass or volume fraction of hydrophilic part of the block copolymer (ƒ) to predict the 

morphology of the self-assembled structures (Table 1.2).8, 25-26 
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Table 1.2 Packing parameter and hydrophilic fraction of different self-assemblies8, 24-26 

Shape of the assemblies Packing parameter (p) aHydrophilic Fraction (ƒ)  

Spherical Micelle p < 1/3 f = 0.55 - 0.70 

Cylindrical Micelle 1/3 < p < 1/2 f = 0.45 - 0.55 

Vesicle 1/2 < p < 1 f = 0.10 - 0.40 

         aHydrophilic fraction of the block copolymers either mass or volume ratios 

Apart from the above-mentioned parameters, several other factors can also influence the 

shape of the self-assembled block copolymers. For instance, the nature of the solvent, 

temperature, amount of water in the medium and the presence of salts, acids or bases may 

also have an effect on the final morphologies.27 It has been reported that PS-PAA copolymer 

self-assembled into spheres when DMF was used as the dissolution solvent, whereas vesicles 

can be obtained in the case of THF usage.28 Another example is that the addition of 

hydrochloric acid (HCl) to PS-PAA spheres led to a decrease in the volume of the corona 

which resulted in a morphological change into rods and vesicles.29 Thus, self-assembly of 

the block copolymers should be always investigated by taking into account all these factors 

in combination with the preparation method.  

1.3.2 Preparation Techniques  

Numerous techniques exist for preparing polymersomes from the self-assembly of 

amphiphilic block copolymers. These can be classified into five groups including solvent-

switch, film rehydration, electroformation, microfluidic technology and direct dissolution 

like the pH switch method which is indeed utilized in this study. The selection of the 

convenient method is highly dependent on the copolymer structure and the application needs. 

It should be also noted that the resulting polymersome size can be varied significantly from 

nanometer to micrometer scale by using different techniques. Therefore, this is also an 

essential criterion for choosing the most suitable preparation method. 

The solvent-switch method, also termed as co-solvent method, is a common 

polymersome preparation technique for the block copolymers that are not soluble in water. 

The procedure requires an organic solvent such as THF, chloroform, dichloromethane or 

ethanol for dissolving all block copolymers which are then gradually mixed with water under 

vigorous stirring. Subsequently, the organic phase is separated from the mixture by using 
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dialysis against water or ultrafiltration. During this procedure, the hydrophobic blocks of the 

copolymer are assembled together in the aqueous solution that form the membrane whereas 

the solvated hydrophilic blocks create the polymersome corona.27, 30 Although this technique 

is a simple way of polymersome preparation, the use of organic solvent includes some 

drawbacks. For instance, the variation of the solvent behavior during the prolonged dialysis 

period may affect the morphology of the resulting self-assembled structures.31-32 In addition, 

use of fully water miscible solvents like acetone and THF led to smaller polymersomes in 

comparison to the chloroform/water systems when biodegradable PEG-PDLLA 

polymersomes were formed. A broad size distribution of the resulting polymersomes within 

the range of 70 nm to 50 µm was also reported which points out another drawback of this 

technique.33  

The film rehydration method starts with the dissolution of the block copolymers in an 

organic solvent such as chloroform and ethanol. Then the solvent is evaporated under 

reduced pressure to form the polymeric film on a solid surface like glass or roughened 

Teflon. Afterwards, the addition of the aqueous buffer solution enables the hydration of the 

copolymer film and thus, the polymersomes are formed. To support this process, gentle 

methods such as stirring, sonication or mechanical agitation may be utilized.30 This method 

is generally combined with an extrusion step to obtain polymersomes with a narrow size 

distribution like it was applied for poly(dimethylsiloxane)-block-poly(2-methyloxazoline) 

based polymersomes reported by Meier et.al.34  

Electroformation is similar to the film hydration method which results in micrometer-

sized giant polymersomes. Therein, the copolymers are spread onto an electrode surface 

followed by the addition of a buffer solution and finally the rehydration process is facilitated 

by applying the electric current.27 The used electrodes can be made of indium-tin oxide (ITO) 

coated glass plates,35 platinum wires36 or gold wires37 which have been already applied to 

form liposomes or polymersomes.  

The microfluidic technology is utilized recently to prepare polymersomes in a 

controllable and reproducible way. This technique is based on two approaches including the 

formation of a double emulsion template in microchannels38-40 or the hydrodynamic flow-

focusing in microfluidics.41-42 In the former approach, the amphiphilic block copolymers are 

carried in an organic solvent which is then removed in the case of double emulsion formation 

at the microchannels to produce the polymersomes. This way of production enables larger 

polymersomes in the range of micrometer size. An example for the latter approach is the 
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preparation of poly-2-vinylpyridine-b-poly(ethylene oxide) based polymersomes in which 

the block copolymers were dissolved in ethanol and flowed through the main channel of the 

microfluidic device. The side channel of the microfluidic device was also filled with 

Millipore water that was flowing in the perpendicular direction to the block copolymer side. 

Eventually, these two solutions mixed through diffusion that led to the polymersomes with 

a controllable size range of 40 nm to 2 µm.41 This result showed that the hydrodynamic-flow 

based microfluidic production is a feasible preparation technique for nanometer-sized 

polymersomes as well. However, Braun et. al has shown that there was no difference in the 

size distribution of pH sensitive poly(2-(methacryloyloxy) ethyl phosphorylcholine)-b-

poly(2-(diisopropylamino) ethyl methacrylate) based polymersomes formed either using 

microfluidics or direct bulk production.42 

The direct dissolution method is carried out without the need of an organic solvent. 

The block copolymers are directly self-assembled in water or aqueous buffer solutions under 

vigorous stirring. For instance, the poly(ε-caprolactone)-b-poly(2-aminoethyl-methacrylate) 

and poly(ε-caprolactone)-b-poly[2-(methacryloyloxy)ethyl phosphorylcholine] based 

polymeromes have been successfully prepared in pure water within this technique.43-44 In 

addition, the self-assembly of pH-responsive block copolymers can be easily performed by 

adjusting the pH of the corresponding polymer solution. The pH-sensitive groups such as 2-

(diisopropylamino)ethyl methacrylate enables the direct dissolution of the copolymer in an 

acidic water by means of protonation. This is followed by adding a base to deprotonate the 

amino groups that triggers the self-assembly process for polymersome formation. Nano-

sized range polymersomes can be obtained using this technique which is advantageous by 

being practical, clean and fast.16 In this context, the polymersomes established in this thesis 

are also prepared through the direct dissolution of pH-sensitive block copolymers.  

1.4 Design of Multifunctional Polymersomes 

Multifunctionality of polymersomes is described as the combination of two or more abilities 

of a single polymersome system that can act either simultaneously or separately. The design 

of such structures can be performed within two ways. First, stimuli-responsive 

polymersomes can be formed using triggers like pH,45-46 temperature,47-48 redox,49-50 light51 

and magnetic fields.52-53 Second, several useful functionalities including amino groups, 

photoactive moieties, or guest molecules for supramolecular complexes can be inserted to 

the polymersome surface using -pre/-post functionalization methods.54-55 In this regard, this 
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section emphasizes the design of multifunctional polymersomes with the focus on stimuli-

responsive systems and polymersome surface functionalization.  

1.4.1 Stimuli-Responsive Polymersomes 

Stimuli-responsive polymersomes are able to sense small variations in their environment and 

converted these signals into physical or chemical structural changes such as morphological 

transitions, membrane permeability and reactivity of the functionalities. Different external 

or internal stimuli can be applied for controlling the uptake of drugs and various particles to 

be favored in different areas of biomedical applications. In the scope of this thesis, some of 

these stimuli including pH and light responsiveness are discussed in the following.  

The pH-responsive polymersomes are of great interest due to the high tendency of pH 

variation in biological and physiological systems.  Nature itself contains a wide range of pH 

gradients especially in the cellular compartments like decrease of pH values in the 

endosomes and lysosomes to trigger the degradation of biomacromolecules.56 In addition, 

the healthy (pH 7.4) and the inflamed or wound tissue (between pH 7.4-5.4) show different 

pH values. Similarly, cancerous cells also exhibit acidic condition having the value up to pH 

5 in the late endosome.57 Therefore, pH-responsivity is widely used to deliver drugs in a 

controlled manner by various scientists.  It is indeed not only favorable in controlled delivery 

of drugs but also very useful to deliver genes, proteins, diagnostic probes and various other 

chemical compounds depending on the needs.58  

 

Figure 1.6 Schematic representation and corresponding TEM micrographs of pH-induced 

inversion of vesicles based on poly(acrylic acid)-b-polystyrene-b-poly(4-vinylpyridine) 

(PAA-b-PS-P4VP) vesicles. Adapted from Eisenberg et al.59 

Vesicles with PAA outside      Both PAA and P4VP outside     Vesicles with P4VP outside 

2 h                                           6 h
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The Eisenberg group has started early studies in this field by producing pH-sensitive 

vesicles based on a triblock copolymer, poly(acrylic acid)-b-polystyrene-b-poly(4-

vinylpyridine) (PAA-b-PS-b-P4VP). In this work, the vesicle morphology (pH 1) was 

inverted into solid spherical or ellipsoidal aggregates (pH 3-11) and switched back to vesicle 

shape at pH 14 in the period of gradual pH increase. The former case of the vesicles (pH 1) 

have the P4VP chains at the exterior corona and PAA chains at the interior part whereas the 

latter case at pH 14 was the opposite which was believed to be sourced by the difference in 

repulsive interactions within PAA or P4VP corona at varied pH states. (Figure 1.6).59  

Furthermore, Armes et al. has reported pH-responsive polymersomes based on 

poly(ethylene oxide)-b-poly[2-(diethylamino)ethyl metcrylate-stat-3-(trimethoxy-

silyl)propyl methacrylate] (PEO-b-P[DEA-stat-TMSPMA]) copolymers in which DEA 

residues function as the pH-sensitive segment and TMSPMA residues are the hydrolytically 

self-crosslinking units. Therein, the polymersome membrane was able to switch from 

hydrophobic to hydrophilic states when pH was decreased into acidic conditions. The 

principle behind this concept was that the DEA groups were protonated at low pH which 

were then deprotonated at the basic state leading to swelling-shrinking of the membrane. 

With the help of cross-linking, the disassembly of the vesicles was avoided and finally 

tunable pH responsivity was achieved which is usable for controlled release systems (Figure 

1.7a).15 Another example of pH responsive polymersomes was prepared from PMPC-b-

PDPA block copolymers which contain a highly biocompatible 2-(methacryloyloxy)ethyl 

phosphorylcholine (MPC) and the pH sensitive 2-(diisopropylamino)ethyl methacrylate 

(pKa of DPA~5.8-6.6) (Figure 1.7b). Therein, the polymersomes were formed when the pH 

was above 6 but they are completely disassembled in the case of acidification. The is simply 

based on the same logic as the previous DEA based polymersomes in which the DPA is 

protonated below its pKa leading the dissolution of the corresponding block copolymers. 

This polymersomes were also utilized to assess the loading of doxorubicin molecules which 

are used as anticancer drug in the pharmaceutical market.16  Besides, DNA plasmid 

encapsulation was also carried out within these polymersomes in another study of the 

group.46  
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Figure 1.7 (a) Formation of pH-responsive polymersomes from PEO-b-P[DEA-stat-

TMSPMA]) block copolymers. Adapted from Armes et al.15 (b) Formation of pH-responsive 

polymersomes from PMPC-b-PDPA block copolymers. Adapted from Armes et al.16 

Moreover, photo-crosslinked polymersomes were successfully developed in the group 

of Voit et al. The block copolymers based on poly(ethylene glycole)-b-[2-(diethylamino) 

ethyl methacrylate-stat-3,4-dimethyl maleic imidoethyl methacrylate]60 or poly(ethylene 

glycol)-b-[2-(diethylamino) ethyl methacrylate-stat-2-hydroxy-4-(methacryloyloxy) 

benzophenone]61 were self-assembled into pH-responsive polymersomes having the 

corresponding cross-linker units in their membrane. In this regard, the further membrane 

cross-linking was triggered through a UV-irradiation that prevented the polymersome 

disassembly at acidic condition (< pH 7). In addition to the tunable membrane permeability, 

this way of cross-linking also offers a clean process which is advantageous for using these 

polymersomes in biomedical science. 

The light-responsive polymersomes are promising and convenient vesicles for 

biomedical applications since light is a rapid and clean external stimulus which does not 

require any additional chemicals to be triggered. The light response is usually obtained by 

incorporating photo-cleavable groups leading to light-triggered cleavage reactions or other 

photoactive molecules like azobenzene (AZO) resulting in light-induced conformational 

changes, into the vesicle structure.62 For photocleavage reactions, o-nitrobenzyl (NB) 

water

Polymer chain in tetrahydrofuran                         pH-responsive vesicle

(a)                                                                                                

NaOH

20 oC

PMPC

PDPA

PMPC-B-PDPA in water (pH 2)      pH-responsive vesicle at pH>6

(b)                                                                                                     
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derivatives can be utilized to realize the UV or NIR responsiveness.63-64 It should be also 

noted that several studies on light responsive systems based on liposomes65-68 or micelles69-

72 are inspiring guides to develop analogous light-sensitive polymersomes which draw more 

attention in the recent years. 

In this regard, Meier et al. have reported light-responsive polymersomes self-assembled 

from a photocleavable amphiphilic block copolymer, poly(methyl caprolactone)-O-

nitrobenzyl-polyacrylic acid (PMCL-ONB-PAA). The photocleavable group (ONB) was 

placed between the hyrdrophobic and hydrophilic blocks leading to PAA chains with the 

photodegraded linker and PMCL chains with carboxyl end groups after the UV exposure 

(Figure 1.8). In order to utilize these polymersomes as intelligent drug delivery systems, 

different cargos including fluorescein, ATTO 655 dye and enhanced green fluorescent 

protein were encapsulated and they were further released upon UV trigger. Therein, the 

broken polymersomes evolved into micellar structures to minimize the charge interactions 

that were induced by the formation of negatively charged PMCL chains (Figure 1.9).51 

Besides, Katz and coworkers have developed biocompatible and photocleavable 

polymersomes prepared from poly(ε-caprolactone)-block-poly(ethylene glycol) having a 2-

nitrophenylalanine (2NPA) group between the block junction. The photocleavage of 2NPA 

molecules upon UV-exposure led to a morphological transition that was utilized to release 

the encapsulated biocytin.73  

 

Figure 1.8 Schematic view and chemical structure of the poly(methyl caprolactone)-ONB-

poly(acrylic acid) diblock copolymer and its degradation products after UV exposure.51 

 

+
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Figure 1.9 Scheme showing the polymersomes, and the conformation of the assembled 

polymer chains forming the membrane (A). The corona containing the PAA chains cleaved 

upon UV-trigger and separated from the PMCL chains (B). Finally, polymersome membrane 

was destroyed and the cargo released (C).51  

In addition to the photocleavage reactions, Zhao et al. have shown azobenzene 

containing block copolymer vesicles that could be reversibly dissociated and reformed by 

light trigger through trans-cis photoisomerization of the azobenzene molecules. The block 

copolymer used in this study consisted of a methacrylate-based azobenzene containing side 

chain liquid crystalline polymer as the hydrophobic block (PAzo) and poly(tert-butyl 

acrylate-co-acrylic acid) (tBA-AA) as the hydrophilic block.  This switchable morphology 

was monitored in-situ by tracking the variations in the optical transmittance of the vesicle 

solutions under UV or visible light exposure. Therein, the thermodynamic instability led to 

UV-triggered dissociation of the vesicles which was caused by the shift of 

hydrophilic/hydrophobic balance originating from the trans-cis isomerization of the 

azobenzene molecules. In the reverse case, the vesicles recovered their morphology upon 

visible light illumination in which the hydrophilic/hydrophobic balance was shifted in the 

Drug PAA ONB PMCL

A

C

B
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opposite direction (Figure 1.10).58, 74-75 Another interesting example of light-induced 

morphological changes is polymersomes self-assembled from azopyridine-based block 

copolymers that showed reversible photo-controlled swelling and shrinking behavior. These 

polymersomes were in micron size-range and the structure of the self-assembling block 

copolymer was poly(N-isopropylacrylamide)-block-poly[6-[4-(4-pyridyazo) phenoxy] 

hexylmethacrylate] (PNIPAM-b-PAzPy). The principle of light response was arising from 

the reversible isomerization of the azopyridine units upon UV and visible light illumination. 

The change from trans-to cis isomerization under UV-exposure (λ=365 nm) caused an 

increase in the diameter of the vesicles from 7.86 µm to 8.16 µm whereas the visible light-

trigger led to the shrinking back to the original size due to the opposite isomerization 

behavior. The swelling power could be also regulated by changing the power density of the 

UV-light. For instance, the diameter has increased of about 17% at UV-exposure having the 

power as 150 mW/cm2 whereas no swelling occurred when the power decreased to the 20 

mW/cm2.76  

 

Figure 1.10 Reversible polymersome formation through UV/visible light irradiation.58, 75 

Moreover, near-infrared light responsivity is particularly interesting since the IR light 

provides deep penetration into organic materials and shows minimal harm to the tissues that 

leads to a safer applicability in biological environments. In this context, one way of replacing 

UV light source by NIR laser (700-1000 nm range) was to utilize two-photon absorption 

(TPA) processes in combination with the photosensitive groups. The principle of this 

technology is based on the simultaneous absorption of two photons with the aid of a 

femtosecond pulsed laser having a high power density. TPA enables to access the target 

excited state by using photons of half the energy or double the wavelength in comparison to 

UV

Visible

Trans, hydrophobic Cis, less hydrophobic
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the one photon absorption processes triggered by UV light (Figure 1.11). The excitation 

probability is proportional to the square of light intensity and the two-photon absorption 

cross section quoted as Göppert-Mayer unit (1 GM =10-50 cm4 s/photon) since this 

phenomenon was first described theoretically by the Nobel Prize winner, Maria Göppert-

Mayer in the 1930s. In this regard, an additional advantageous of TPA technology arises in 

which the excitation of photons is confined to a very small volume leading to a very localized 

and focused photoactive area.62-63, 77-79 The polymersomes related studies exploiting this 

technology have been limited in the literature. However, there are examples of peptides80 

and hydrogel systems81 showing the successful cleavage of nitroveratryloxycarbonyl 

(NVOC) groups, a NB derivative, via IR light through TPA mechanism. 

 

Figure 1.11 Principle of (a) one photon absorption (OPA) and (b) two photon absorption 

(TPA) optical processes 

Another way of providing NIR sensitivity is to link polymersomes and gold 

nanoparticles (AuNPs) that have unique optical properties like surface plasmon resonance 

(SPR) as well as second harmonic generation (SHG) leading to frequency doubling. With 

the help of these optical features, AuNPs are able to absorb visible light and have the ability 

to convert it into heat energy.82-84 In this respect, Weitz et al. have developed photo and 

thermo-responsive polymersomes self-assembled from the mixture of gold nanoparticle 

incorporated PEG-b-PLA and 5 wt% PNIPAM-b-PLGA block copolymers. As shown in 

Figure 1.12, the encapsulation of a green dye was performed to monitor the release after 

irradiation with a mixture of three laser sources having wavelengths of 488, 532 and 633 

nm, respectively. As a negative control, polymersomes without gold NPs were also prepared 

and a red dye was loaded into them which was subjected to the same laser irradiation at room 

temperature. Thus, the polymersomes having the AuNPs ruptured and the green dye was 

released due to the photo-responsive behavior within 20 minutes.85 One another example 

Ground State
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Ground State

Excited State

Absorption Emission
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was the doxorubicin/gold nanorod-loaded polymersomes that was utilized as heat generator 

by the trigger of NIR light (λ=808 nm). Therein, polymersomes that were made of 

poly(ethylene glycol)-block-poly(ε-caprolactone) applied as delivery vehicle to release 

doxorubicin molecules.86 

 

Figure 1.12 Scheme showing (a) the polymersomes with gold nanoparticles loaded with a 

green dye and (b) the polymersomes without gold nanoparticles loaded with a red dye. (c) A 

series of confocal microscope images of the mixture of corresponding polymersomes 

irradiated with lasers at room temperature. Adapted from Weitz et al.85  

1.4.2 Functionalization of Polymersome Surface 

Polymersome functionalization is useful to develop active targeting via specific receptor-

ligand interaction for enhanced therapeutic efficiency as well as a diagnostic ability for 

especially drug delivery purposes.55 In addition, the integrated functional moieties can be 

favored in specific immobilization of the polymersomes onto solid substrates19, 87-88 which 

is important for designing microfluidic devices, e.g biosensors. In this respect, two common 

routes are available to incorporate functional groups to the polymersome surface. The first 

approach is the pre-functionalization method in which the desired molecules are 

incorporated to the block copolymer structures before the self-assembly process. Herein, the 

functional groups are equally placed at both inner and outer region of the bilayer membrane 

after the polymersome formation. In the second approach named as post-functionalization 

method, the functional moieties are conjugated to the polymersome surface after their 

formation (Figure 1.13).17, 54-55, 89-90 Depending on the polymersome structure, functionality 

(a)                                                                                (                b)

(c)
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can be integrated either inside or outside within this method, e.g. when stimuli-responsive 

vesicles are used.  

In this regard, attachment of many recognitive ligands such as antibodies,91-93 

peptides,94-95 folic acids,90, 96 and sugars89, 97 have been studied by using either pre-

functionalization or post-functionalization methods. It is possible to conjugate the 

functionalities through covalent binding approaches like azide-alkyne click chemistry,17, 89, 

98-99 and attachment via bis-aryl hydrazine bond.34 Another way of conjugation is using non-

covalent binding approaches including biotin-streptavidin binding,100-102 adamantane-

cyclodextrin binding,103-104 and nitrilotriacetic acid (NTA) metal complexations.105-106  

 

Figure 1.13 Scheme showing the principle of pre/post-functionalization routes 

The group of van Hest has shown the use of click chemistry in polymersome field that 

illustrated both pre- and post- functionalization routes. In this study, azido terminated 

poly(styrene)-b-poly(acrylic acid) block copolymers were self-assembled to form the 

corresponding polymersomes. The further surface functionalization was carried out by 

conjugating different alkyne-modified ligands such as fluorescent dansyl probe, biotin, and 

enhanced green fluorescent protein (EGFP) in the presence of a copper catalyst 

(CuSO4.5H2O), sodium ascorbate and tris-(benzyltriazolymethyl) amine (TBTA) as a 

stabilization ligand for copper species (Figure 1.14).17 The same group has also developed 

alkyne-functionalized polymersomes self-assembled from the mixture of polystyrene-b-

Pre-functionalization

Post-functionalization

Functional Groups

Self-assembly of 

functionalized BCs
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poly(ethylene glycol) (PS-b-PEG) bearing an acetylene moiety and polystyrene-b-poly[L-

isocyanoalanine(2-thiophen-3-yl-ethyl) amide] (PS-b-PIAT) block copolymers. The 

conjugation of azido-modified Candida Antarctica Lipase B (CalB) was subsequently 

performed which retained its activity while attached on this hybrid polymersomes.98 

 

Figure 1.14 Clickable polymersomes self-assembled from azido-terminated PS-b-PAA 

block copolymers (pre-functionalization) and further post-functionalization with different 

molecules.17 

 

Figure 1.15 Scheme illustrating the immobilization of biotin-functionalized PMOXA-b-

PDMS-b-PMOXA based polymersomes onto a glass substrate through streptavidin binding 

for realizing a nanoreactor platform.87 

As an example of non-covalent conjugation approaches, Hunziker and Meier et al. have 

reported biotin-functionalized triblock copolymers having the structure of [poly(2-

methyloxazoline)–b-poly(dimethylsiloxane)–b-poly(2-methyloxazoline)] (PMOXA-b-

PDMS-b-PMOXA) which was then self-assembled to form the respective polymersomes. In 
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this study they also linked the biotinylated ligands to these functionalized polymersomes 

through streptavidin coupling for cell-targeting purposes.100 In another study, the same 

conjugation chemistry was utilized to immobilize the biotin-possessing polymersomes onto 

glass substrates to realize a nanoreactor platform by performing enzymatic conversions for 

applications in the field of analytics like sensors. The glass surface was modified with biotin 

bearing bovine serum albumin (BSA) through microcontact printing followed by exposure 

with streptavidin to prepare the relevant conjugation platform for biotinylated 

polymersomes. As a model enzymatic reaction, acid phosphatase was encapsulated within 

the polymersomes to trigger the dephosphorylation of the fluorogenic substrate ELF 97. The 

enzyme was able to access the substrate through the protein F channels (OmpF) embedded 

in the polymersome membrane that became permeable afterwards (Figure 1.15).87 

 

Figure 1.16 Surface modification of polymersomes with β-cyclodextrin molecules by pre-

functionalization and further post-conjugation of adamantane-modified PEG having 

different molecular weights.104 

Another type of non-covalent conjugation is the host-guest complexation of adamantane 

and β-cyclodextrin (β-CD) molecules. This type of binding has been widely used in polymer 

chemistry since adamantane groups tightly fit into the cavity of β-CD molecules with a high 

association constant between 104 to 105 M-1 leading to a strong host-guest interaction.107-109 

In this regard, Felici et al. has reported polymersomes decorated with β-cyclodextrin which 

was further conjugated to an adamantane modified enzyme, horseradish peroxidase (HRP), 

CD-PI-CD

β-CD
Ada-PEGn
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through the host-guest interaction mechanism. Although the non-modified enzyme was also 

able to interact with polymersomes, the adamantane bearing HRP showed increased affinity 

and retained its activity while conjugated to the polymersomes. In this study, the vesicle 

formation was performed by the self-assembly of polystyrene having the permethylated β-

cyclodextrin compounds.103 Similar approach was also applied by Guo et al. by preparing a 

cyclodextrin-capped polyether imide (CD-PI-CD) that was self-assembled into 

polymersomes in water. As a guest molecule, polyethylene glycol with adamantane groups 

was utilized for conjugation to the CD-functionalized polymersomes. The successful host-

guest complexation at both inner and outer region of polymersome corona was proven by 

using isothermal titration calorimetry (ITC) as well as static light scattering (SLS) 

measurements (Figure 1.16).104  

1.5 Characterization Methods of Polymersomes 

Several characterization tools exist to investigate the polymersomes including light 

scattering methods, imaging techniques as well as spectroscopic methods. The selection of 

the relevant technique is highly dependent on the physicochemical properties and the size 

range of the analyzed polymersomes. Although the common essential characteristics are 

size, shape and membrane properties, the surface charge as well as topography on solid 

surfaces become significant when pH responsive or surface-immobilized polymersomes are 

investigated. In this context, the most frequent techniques such as dynamic light scattering 

for size determination, transmission electron microscopy for shape visualization and atomic 

force microscopy for probing topography and mechanical properties are highlighted in this 

section. In addition, the availability of light-absorbing molecules as functional groups or 

encapsulated cargos lead to the use of ultraviolet visible spectroscopy for quantitative and 

qualitative analysis which is emphasized in this part as well.     

Dynamic light scattering (DLS) is a widely used technique to determine size and size 

distribution of the vesicles dispersed in a liquid through noninvasive measurements. The 

principle of the technique is relying on the measurement of translational diffusion coefficient 

which is then related to the size by using relevant theoretical relations. In brief, the sample 

is illuminated by a laser beam at a fixed angle and use of photodetector enables to detect the 

fluctuations of the scattered light which reflects the Brownian motion of the particles. In 

order to obtain a meaningful information from the collected signal, the correlation function 
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is computed by using an autocorrelator which is shown in below along with the exponential 

fitting expression (equation 1.2). 

2G( I(t).I(t A[1 Bexp( 2Dq                                                                               (1.2) 

In the above equation, I is the scattering intensity, t is the initial time, τ represents the 

delay time, A is the intercept and B is the baseline of the correlation function. Additionally, 

D represents the diffusion coefficient, an important parameter to define the size. The 

scattering vector (q) is also included in this equation and it is defined by the following 

relation where n is the refractive index of the medium, ϴ is the scattering angle and λ0 is the 

wavelength of the laser (equation 1.3). 

0q (4 / )sin ( / 2)                                                                                                               (1.3) 

By following this, a common theoretical approach named as Cumulants analysis is used 

to determine the mean size and polydispersity index of the particles. The principle of this 

analysis is basically fitting a single exponential to the correlation function to compute the 

diffusion coefficient (D) from equation 1.2 which is then related to the radius of diffusing 

particles by Stokes Einstein equation where RH is the z-average hydrodynamic radius, T is 

temperature, kB is the Boltzmann constant and η is the viscosity of the solvent.110-113  
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In addition to the size information, the zeta potential of the polymersomes can be 

determined through DLS by measuring the electrophoretic mobility of the particles in a 

capillary cell containing two electrodes. In brief, an electrical field is applied to the 

electrodes and the charged particles move towards the oppositely charged electrode with a 

velocity known as the electrophoretic mobility (UE) which is then related to the zeta potential 

(ζ) by the Henry equation shown in below. Herein, the parameters like viscosity (η) and 

dielectric constant (ε) is already known whereas the Henry’s function, f(ᴋa), is assumed as 

1.5 for the aqueous solutions of moderate electrolyte concentration. This is known as the 

Smoluchowski approximation which can be applicable to polymersomes as well.114 As can 

be inferred, information about zeta potential is specifically important for pH responsive 

polymersomes where charge of the particles is highly dependent on the working pH value. 
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Ultraviolet visible spectroscopy (UV-Vis) is another efficient method for polymersome 

characterization when they are tagged with fluorescent compounds. For instance, the 

encapsulation and further release of a light absorbing cargo such as doxorubicin molecules96, 

115 or enzymatic reactions within the polymersomes116-117 can be monitored easily by using 

this technique. Indeed, the method is useful naturally for light-responsive polymersomes 

which can be simply tracked through the chromophore in their structure. The theory of UV-

Vis spectroscopy is based on the light absorbing capability of the molecules. In principle, 

the molecules having valance electrons of low excitation energy can absorb UV or visible 

light through the electronic transitions (Figure 1.11a). The possible transitions involving π, 

σ and n electrons with the required energy levels can be seen in Figure 1.17. Among them, 

n-π* and π-π* transitions are frequently observed since absorption peaks for these transitions 

lay in the experimentally relevant region of the spectrum which is ranging between 200 to 

700 nm. However, the required energy to excite an electron in a bonding σ orbital into the 

corresponding antibonding σ* orbital (σ-σ* transition) is higher, therefore absorption 

sourced by this kind of transition is not seen in the UV-Vis spectrum. Similar case is also 

valid for n-σ* transitions despite of the lesser energy requirement in comparison to the σ-σ* 

transition in which the absorption range can be only in the region of 150 to 250 nm.  

 

Figure 1.17 Electronic transitions and corresponding energy levels for bonding (σ, π) and 

nonbonding (n) orbitals 

In this context, the absorbance spectra of a material can be recorded through an optical 

spectrometer in which the light passes through the sample solution relating the decrease of 

transmitted light with the material characteristics. This phenomenon is described by 

Lambert-Beer Law (equation 1.6) where A is the absorbance I0 and I are the initial and 

outgoing intensities whereas c is the sample concentration, L is the optical path length and 

ε(λ) is the wavelength dependent molar absorption coefficient having the units of M-1cm-1. 
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This relationship enables to perform quantitative analysis for a particular material by 

determining either the concentration or molar absorption coefficient depending on the known 

quantity.118  

0IA log ( ).c.L
I

   
                                                                                                            (1.6) 

Atomic Force Microscopy (AFM) is another tool to characterize polymersome 

topology particularly for the immobilized cases on solid substrates.19, 88, 119 Indeed, fixation 

onto convenient substrate is the precondition for the analysis with AFM. Basically, this 

technique allows to measure the interactions between the sample and the sharp tip attached 

to the cantilever in which the surface is scanned by moving either the tip or the sample. 

Figure 1.18 shows the components of an AFM when the sample is stationary and the tip is 

moved over the surface with the aid of a connected piezo scanner. The topography of the 

sample surface leads to a deflection of the cantilever which is detected through the reflected 

laser light onto a split photodiode. The converted electrical signal is evaluated by a feedback 

control system through a given set point. The tapping and non-contact mode of AFM enables 

a constant cantilever vibration amplitude whereas in contact mode, the cantilever deflection 

is maintained by moving the piezo scanner at the vertical position. The data at each (x, y) 

position for any chosen modes of AFM are then stored by the computer software to obtain a 

three-dimensional surface topography. This operation can take place in both ambient and 

liquid environments. For the latter case, special cantilever holders are available which is very 

advantageous to image the vesicles under liquid phase.120-121  

 

Figure 1.18 Scheme of the Atomic Force Microscopy setup. Adapted from Averett et al.122 
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Among the different AFM modes, tapping mode is widely used for soft materials due to 

the lower applied forces on the sample. As can be inferred, polymersomes are also in the 

class of relatively soft particles and therefore possible deformation during the tip interaction 

has to be kept to a minimum. In this context, the AFM technology provides peak force 

tapping mode which enables precise control over the probe sample interaction with the lowest 

available forces and highest resolution imaging. Within this technique, feedback loop controls 

the maximum force on the tip that helps to avoid any possible damage on the sample surface 

while enabling a minimized contact area between tip and the sample. In addition to the 

topography images, the mechanical properties can be also probed within AFM through 

individual force curves by monitoring approaching, contacting and withdrawal of tip from the 

sample surface. In this regard, the measured cantilever deflection versus piezo scanner extension 

is converted into the force versus tip-sample separation curves.123-125 A basic idea of this 

operation can be seen in Figure 1.19 in which different analytical models such as Hertz126 or 

Reissner Thin Shell Theory127 are used to evaluate the measured data for acquiring elastic 

modulus values. Apart from polymersomes,128-130 several other soft materials such as 

liposomes,131-132 micelles,133 polyelectroclyte multilayer capsules,134 and natural membrane 

nanovesicles135 are monitored within AFM for obtaining the information about their mechanical 

properties.  

 

Figure 1.19 Scheme of ideal force-distance curves of AFM, eg. on a hard surface, where tip 

is approaching (1), contacting (2) and deflecting (3) respectively whereas the set point leads 

to the retraction of the tip from the sample surface (4) and further jump out occurs showing 

the complete retraction of the tip. Adapted from Leggett et al.121  
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Transmission electron microscopy (TEM) is widely used for imaging the nano-sized 

polymersomes to observe their morphology and size.136-137 Indeed, visualization is the most 

feasible way to understand the shape of the self-assembled structures whether they are in the 

form of vesicles, micelles or other morphologies. The driving force of TEM utilization is 

their resolution enabling to image smaller particles in the sub-nano range which is not 

possible with conventional optical microscopes. This is described through a mathematical 

expression by Abbe’s equation where d is the resolution, λ is the wavelength and α is the 

aperture angle. For optical microscopes containing ideal lenses, the resolution (d) can be 200 

nm whereas for TEM it is possible to decrease the wavelength several orders of magnitude 

leading to a decreased resolution of about 0.3 nm.138 

0.6d
sin




                                                                                                                                  (1.7) 

Since the specimen preparation of TEM requires the drying of the sample by dropping 

them onto a thin carbon film stretched over fine-meshed metal grid, some artifacts can occur 

especially for soft colloidal particles like polymersomes.  To avoid such artifacts based on 

drying as well as the interactions of sample with the film support, one can use cryo-TEM 

which enables to visualize the polymersomes in their native hydrated state. This is basically 

sourced by the rapid cooling (1000 K/s) of the sample solution through vitrification but 

avoiding crystallization to form a frozen thin film. In this case, the morphological changes 

caused by different stimuli, e.g pH can be also observed as vitrifying the samples in acidic 

and basic aqueous solutions.139-142  

1.6 Biomedical Applications of Polymersomes 

The driving force of polymersome applicability is their inherent ability to encapsulate variety 

of organic and inorganic molecules. Unlike micelles, polymersomes are able to host both 

hydrophilic and hydrophobic compounds either in their aqueous lumen or in the membrane. 

Besides, the synthetic polymer chemistry provides flexible structure design which enables 

to prepare controlled membrane permeability through stimuli-responsive segments and 

selective recognition by integrating functional groups before or after the polymersome 

formation. In this respect they can act as nanocontainers78, 143 for storage, transport and 

release of drugs, enzymes, proteins, gold or magnetic nanoparticles by using the hosting 

ability either individually or in combination with responsiveness and functionality. From the 

terminology, nanocontainers can be defined as nanocarriers when the vesicles are used in 
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delivery purposes. In addition, they can have the task of nanoreactors144-146 to mimic the cell 

functions through metabolic reactions as well as to be used in various other reaction 

platforms such as enzymatic catalysis. Both of these duties widen the application areas of 

polymersomes, particularly in biomedical science including drug delivery systems55, 58, 90, 

147-149, synthetic biology116, 150 in combination with multicompartmentalization to form 

artificial organelles and therapeutic delivery carriers.5, 151 In addition, despite of the few 

studies on using polymersomes in microsystem devices, e.g. for building 

chemo/biosensors,87, 152 their phospholipid analogous, liposomes, have been widely applied 

for designing such microsystem devices.153-158 For this purpose, the future applications of 

polymersomes will be in this direction by being more stable than the liposomes and having 

the ability of hosting signal amplifiers like gold nanoparticles159 as well as allowing 

conjugation of biorecognition elements to their surface.  

As an example of drug delivery applications, the group of Lecommandoux has prepared 

doxorubicin (Dox) loaded polymersomes (PolyDox) self-assembled from poly(γ-benzyl L-

glutamate)-b-hyaluronan (PBLG23-b-HYA10) block copolymers. In this study, the PolyDox 

showed an enhanced circulation time in comparison to free Dox molecules by targeting the 

cancer cells overexpressed with CD44 receptors. Besides, PolyDox also increased life span 

of the mouse having the Ehrlich ascites tumor (EAT) by six times than the ones treated with 

free Dox.149 It should be also noted that doxorubicin is one of the most common anticancer 

drugs used in the nanomedicine market and therefore it is highly investigated in 

polymersome field as well.90, 148, 160 As already mentioned in the previous sections, gold 

nanoparticles can be also combined with polymersomes to realize photodynamic therapy as 

well as diagnostic purposes.82, 161 This was shown by using Dox and gold nanorod-loaded 

poly(ethylene glycol)-block-poly(ε-caprolactone) based polymersomes which increased the 

therapeutic efficiency in the treatment of solid tumors through combined chemo-

photothermal therapy.86 

Use of enzymes either attached to the surface or encapsulated within the polymersomes 

enables three enzyme cascade reactions as reported by van Hest group. Therein, polystyrene-

b-poly(L-isocyanoalanine(2-thiophen-3-yl-ethyl) amide) (PS40-PIAT50) block copolymers 

were self-assembled to form porous polymersomes that showed a relatively high diffusion 

towards small molecules whereas proteins as being larger molecules cannot move across the 

membrane. The enzymes used in this study were positioned at different regions of the 

polymersomes in which glucose oxidase (GOx) was in their lumen, candida antartica lipase 
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B (CalB) was in the bilayer membrane and horseradish peroxidase (HRP) was conjugated to 

the surface by using click chemistry. The multi-step reactions within polymersomes was 

started with the conversion of glucose acetate into glucose by CalB which was then oxidized 

into gluconolactone by GOx enzyme. The third step of the reaction was to oxidize 2,2’-

azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) using the hydrogen peroxide from 

the previous reaction by HRP on the surface.162 Although this porous polymersome enabled 

efficient cascade reactions, the permeability and thus the activity of the enzymes were not 

tunable. In this context, pH-responsive polymersomes having controlled membrane 

permeability were used to perform enzymatic reactions by Voit group. In this study, 

myoglobin was encapsulated into the lumen of the photo-crosslinked PDEAEM based 

polymersomes which catalyzed the reaction of hydrogen peroxide and guaiacol. The reaction 

activity was significantly enhanced in the case of acidic condition (pH 6) whereas relatively 

low activity was observed at basic state since the substrate cannot diffuse inside the 

polymersome to reach the myoglobin enzyme.116, 150 

In the study of Egli and Meier, targeting antibodies including antibiotin IgG and 

trastuzumab were conjugated to the polymersomes through bis-aryl hydrazine bonds for 

specific binding towards biotin patterned solid surfaces and breast cancer cells. The 

polymersomes structure was based on poly(dimethylsiloxane)-b-poly(2-methyloxazoline) 

block copolymers and functionalized with succinimidyl 4-formylbenzoate (NHS-4FB) 

groups after the self-assembly. Since the antibodies as well as enhanced yellow fluorescent 

protein (eYFP) were modified with 6-hydrazinonicotinate acetone hydrazone (HyNic), the 

next step was to attach them to the surface of the polymersomes. The special attention here 

was that the selective recognition of the antibiotin IgG on the polymersome surface led to a 

specific binding to the biotinylated pattern on the glass slide. This was one example of 

potential biosensor applications to be utilized in enzyme-linked immunosorbent assays 

(ELISA) that can show enhanced sensitivity in comparison to the conventional ELISA 

tests.152  
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2 Motivation and Aim 

Nature has been always served as an inspiration tool for humans to create new scientific 

approaches in order to develop novel materials and devices. Indeed, learning from the largest 

laboratory as being the life itself, has led to an increased number of interdisciplinary studies 

in the last few decades.1-2 In this context, a special interest among scientists is to adapt the 

knowledge of biological cellular compartments in developing various nanoparticles by 

mimicking the phospholipid based cell membrane. One of the noteworthy attempts is the 

invention of liposomes self-assembled in water from analogous phospholipids having 

hydrophilic head and hydrophobic tails.3 Although these nanoparticles have been very 

attractive in many biotechnological applications, they lack stability, show undesired 

permeability and allow limited chemical versatility.4 Therefore, the mimicking approach has 

been taken one step further and polymersomes that are wholly synthetic counterparts of 

liposomes have been developed. These vesicles are formed by the self-assembly process of 

amphiphilic block copolymers leading to a bilayer membrane enclosing an aqueous interior 

phase.5-6 Similarly as liposomes, polymersomes can host both hydrophilic and hydrophobic 

compounds which is very useful for delivery purposes.7-8 In addition, the artificial nature of 

these vesicles provides high flexibility in chemical design of the structures which makes 

them promising nanoparticles in many biomedical applications including drug delivery,9-14 

synthetic biology15-19 and usage in microsystem devices such as chemo/biosensors.20-21 

Besides they also show an enhanced stability and reduced permeability22 so that the demand 

for polymersomes is increasing greatly especially in the field of material science and 

biotechnology.  

Nevertheless, the key challenge to enhance the efficiency in the mentioned application 

areas is to fabricate robust polymersomes that possess both selective recognition and 

responsive nature. The responsiveness is necessary for the cargos to be released in a 

controlled way when polymersomes are used as nanocontainers or nanoreactors. Among the 

external stimulus, pH and light triggers are one of the cleanest and feasible ways for 

designing smart polymersomes.  The biological and physiological systems are naturally 

prone to pH variation, like having more acidic environment for inflamed tissue or cancerous 

cells.23-24 Besides, light is already very convenient for biomedical applications since it does 

not even require any additional chemicals to be triggered.25 Although such triggers can 

provide controlled release of the  cargos, e.g. drugs, they are still inadequate for specific 

targeting to certain disease sites or ligands in the scope of the application. To solve this 
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problem, selective recognition has arisen as the second tool by providing specific receptor-

ligand interactions to the nanocarriers which are active solely for confined and targeted 

regions. For instance, it is useful to increase the therapeutic efficiency of drug delivery 

systems by enabling the release of the drugs only at the certain diseased cells through 

recognitive molecules. Besides, specific recognition is also very beneficial for sensing 

devices as well as to perform selective reactions in the scope of synthetic biology. In order 

to realize this property, polymersome surface functionalization can be used to conjugate 

desired reactive groups as well as targeting ligands to the vesicle periphery.14 Apart from 

that, polymersome stability is another concern since they can encounter disassembly 

problems due to shear forces or dilution effects either in the blood circulation system or in 

the manufacturing steps. To overcome this problem, cross-linking the membrane12,15 is a 

promising way to have enhanced mechanical and chemical strength. In this point, gathering 

information about the mechanical properties of the polymersomes is of significant 

importance to know the limits of the applicability of these soft particles.  

As seen, all these above-mentioned abilities are fulfilling some functions in the varied 

biomedical applications. Although some of them have already been introduced individually 

to polymersomes, it is rare to combine all these properties into one single system having the 

simultaneous recognition and delivery capability for intelligent nanocontainers and 

nanoreactors. The term multifunctionality is coined in this point meaning that the single 

polymersome system possess more than one property which can function either 

simultaneously or separately. As stated above, these properties are responsiveness and/or 

functional groups. The latter ability can open up new opportunities in the case of sufficient 

reactivity and accessibility to increase their use in microsystem technology for designing 

specific compartments as well as building sensing devices. Such kind of devices can be used 

for different purposes like creating cell-mimicking platforms to study the complex 

biomacromolecule functions and interactions. Indeed, this is possible if the polymersomes 

are connected to a solid surface or to other systems like hydrogels or polymeric 

microchannel. When they are immobilized onto a solid surface, this also enables to perform 

deeper analysis and characterization of the polymersomes with advanced microscopy 

techniques like AFM. This field is quite less investigated in comparison to the delivery 

applications and therefore the number of studies concerning surface immobilization and 

probing the various functions of polymersomes in these confined states have to be increased. 
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In this regard, the overall goal of this study is to develop multifunctional and stimuli-

responsive polymersomes possessing various abilities including pH, UV and IR light 

sensitivity as well as many sequentially accessible reactive groups for selective recognition 

systems in the scope of biomedical applications, e.g. designing sensing devices. In the way 

of reaching this goal, the following objectives are also addressed in this thesis: 

(i) The synthesis of polymersome forming amphiphilic, photocrosslinkable and pH 

sensitive block copolymers comprising azide and adamantane groups is aimed for 

further post-functionalization steps through click chemistry and host-guest 

interaction. 

(ii) Sequential post-conjugation is the second objective to evaluate the accessibility and 

reactivity of the functional groups on polymersome surface. In this stage, photo 

active groups as nitroveratryloxycarbonyl (NVOC) protected amine molecules are 

also integrated as IR or UV cleavable moieties.  

(iii) The immobilization of the developed polymersomes onto solid substrates is another 

target to perform infrared light induced selective photochemical reactions as well as 

probing pH response and mechanical properties through AFM under wet state. 

Herein, the attachment of model fluorescent compounds mimicking biorecognition 

molecules, onto locally released amine groups on polymersome surface by IR trigger 

is also aimed to fulfill the selective recognition concept for biomedical applications. 

(iv) Lastly, to assess the hosting ability and membrane permeability limits of the 

established polymersomes as nanocontainers, incorporation of 5 to 10 nm sized gold 

nanoparticles as well as doxorubicin molecules as an anticancer drug is performed.  

Each of the above-mentioned sub-objectives are discussed in detail starting from the 

design and formation in chapter 3 and continued with the capability as nanocontainers in 

chapter 4. The last two chapters of results and discussion are devoted to immobilized 

multifunctional polymersomes focusing on firstly photoreactivity and pH responsivity at 

confined states in chapter 5 and lastly probing mechanical properties in chapter 6.  
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3 Multifunctional and Dual-Responsive Polymersomes 

3.1 Introduction      

It has been already emphasized that multifunctionality in polymersomes is highly demanded 

in various fields of biomedical applications which enables to fabricate smart nanocontainers 

that possess both selective recognition and responsive nature. To design and establish such 

polymersomes, some concerns have to be taken into account. Obviously, the first issue is 

that the polymersomes should have effective reactive groups attached to their membrane 

whether before or after the self-assembly process. Herein, both approaches are favored 

starting with the functional block copolymers synthesis having adamantane and azide end 

groups in their structure and proceeded by post-modification of the preformed polymersome 

surface with photoactive groups. As can be inferred, polymersomes should show a stable 

and robust behavior without facing any disassembly problems within these whole applied 

fabrication steps. In addition, shear forces or dilution effects during blood circulation when 

used as drug carriers,1-2 and also possible stability problems during manufacturing steps 

when commercializing these particles are another issue in the scope of the design parameters. 

In order to solve this problem, 2-hydroxy-4-(methacryloyloxy) benzophenone (BMA) units 

are integrated to the block copolymer structure for photo-crosslinking the membrane by UV-

irradiation which is aimed to have enhanced robustness.3 This photo-crosslinking in 

combination with the pH responsive segments in the block copolymer structure provides 

tunable membrane permeability which is very favorable in many biomedical applications. 

Thus, this chapter describes the fabrication of robust, multifunctional and dual-

responsive polymersomes as the basis of this study and it has been already published.4 Figure 

3.1 outlines the discussed points by starting with the formation of pH responsive and photo-

crosslinked polymersomes decorated with adamantane and azide groups in combination with 

the synthesis of suitably end-modified block copolymers. In addition, the sequential post-

modifications steps including the conjugation of nitroveratryloxycarbonyl protected amine 

(NVOC) molecules as light responsive moieties and further photocleavage step to assess the 

potential of dual-responsivity is discussed. In the scope of responsiveness, reversible pH 

dependent swelling/shrinking ability of the polymersomes at different conjugation steps is 

also analyzed. Eventually, the subsequent β-cyclodextrin attachment to the adamantane 

groups of the polymersomes is investigated to gain information about the accessibility and 

reactivity of the functional groups within these sequential post-modification steps.  
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Figure 3.1 Overview of the multifunctional polymersome formation by sequential post-

conjugations starting from the self-assembly of block copolymers having azide (BC1), 

methoxy (BC2) and adamantane (BC3) functionalities 

3.2 Block Copolymer Synthesis and Characterization 

One of the common methods to prepare multifunctional polymersomes is to conjugate 

desired functional moieties to the block copolymer structure before starting the self-

assembly process. This approach was taken as the basis of this study and required block 
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copolymers were synthesized with some key features. One essential basis was to ensure the 

polymersome formation upon self-assembly by assigning the hydrophilic fraction of the 

block copolymers as the first key feature.5 Because it is known that depending on the 

hydrophilic to hydrophobic ratio together with the balance of all free energy during the self-

assembly of copolymers, various morphologies such as micelles, macroscopic aggregates or 

vesicles may be formed.6 Therefore, it is important to produce the block copolymers with a 

fixed length and having a desired structure. For this purpose, atom transfer radical 

polymerization (ATRP) was chosen as a controlled polymerization technique to synthesize 

three block copolymers having azide, adamantane and methoxy end groups at their 

hydrophilic segment (Figure 3.1, Figure 3.2). Here, azide and adamantane functionalities 

were the second key features which were chosen to favor ease of click chemistry and host-

guest interactions for further post-functionalization steps. The structures of the block 

copolymers are based on poly(ethylene glycol)-b-poly[2-(diethylamino) ethyl methacrylate-

stat-2-hydroxy-4-(methacryloyloxy) benzophenone] (BC2).3 Herein, poly(ethylene glycol) 

(PEG) is the hydrophilic segment of the amphiphilic block copolymer whereas pH sensitive 

2-(diethylamino)ethyl methacrylate (DEAEM) and a photo cross-linker benzophenone 

(BMA) groups form together the hydrophobic part. Each block of the polymer was chosen 

by a purpose to fulfill some essential key properties in biomedical applications. PEG was 

selected due to its biocompatibility as well as the ability of in-vivo protein resistance that 

enables long circulation times.7 DEAEM was chosen to impart pH responsivity to the 

polymersome structure and finally BMA was selected to provide robustness as well as tuned 

membrane permeability. Since the selected approach to form multi-functionalized 

polymersomes was to mix three block copolymers having different end groups, another issue 

concerning the homogeneity of the resulting polymersomes was taken into account. Firstly, 

to induce a homogenous formation for the polymersome membrane (hydrophobic part) from 

the tertiary system, the hydrophobic block length of the polymers was kept almost equal. 

However, the hydrophilic length of the azide- and adamantane-functionalized block 

copolymers (BC1, BC3) was designed to be longer than the non-functional methoxy 

terminated block copolymer (BC2) to increase the accessibility of the reactive groups on the 

polymersome surface. This strategy has been successfully applied in the Voit group to 

conjugate folate molecules to the polymersome system which showed remarkable specificity 

towards cancer cells.8 Therefore, it was also assigned as the last key feature to establish 

multifunctional polymersomes in the scope of this study. 
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Figure 3.2 Overall synthetic pathway of block copolymers (BC1, BC2, BC3, BC4) 

To establish such functional block copolymers, a multi-step synthetic approach was 

performed as seen in Figure 3.2. The first attempt was to prepare the suitably end-modified 

PEG molecules for further ATRP process. Although azide and methoxy terminated PEG can 

be provided commercially, adamantane functionalized PEG was prepared by utilizing copper 

(I) catalyzed azide/alkyne click chemistry (CuAAc) to provide a high degree of 

functionalization at moderate reaction conditions.9 Thus, the adamantane molecules were 

firstly modified with alkyne moieties for the click chemistry requirements by reacting 

carboxylic acid groups of 4-pentynoic acid with the amine moieties of the adamantane 

molecules. The simple amidation reaction through DCC activation of carboxylic acid results 

in a successful conjugation which is confirmed by 1H NMR spectroscopy as shown in Figure 

3.3. The next step was to react this purified (see experimental part) yne-modified molecule 

with commercially available azide-terminated poly(ethylene glycol) (Mn=2700 g/mol). The 
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confirmation of the conjugation was carried out by 1H NMR spectroscopy and IR 

spectroscopy. From 1H NMR spectrum, all peaks of the adamantane protons and the triazole 

proton (at 7.52 ppm in CDCl3, at 7.74 ppm in DMSO-d6) were clearly detected (Figure 3.4). 

Additionally, the disappearance of the azide characteristic peaks at 2104 cm-1 after the 

reaction in IR spectra supported this successful conjugation as well (Figure 3.5). Thus, it is 

concluded that the ease of click reaction enables to convert all available azide groups in the 

commercial PEG molecules into adamantane moieties. 

 

Figure 3.3 1H-NMR spectrum of alkyne functionalized adamantane in DMSO-d6 

 

Figure 3.4 1H NMR spectrum of adamantane functionalized PEG in DMSO-d6 

1

2
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Figure 3.5 IR spectrum of azide/adamantane functionalized poly(ethylene glycol) 

Afterwards, the PEG macroinitiators with azide (N3PEG60Br), adamantane 

(AdaPEG60Br) and methoxy (PEG45Br) end groups were synthesized for the next 

polymerization step. The successful coupling of 2-bromoisobutyryl bromide to the hydroxyl 

groups of PEG molecules was verified by 1H NMR spectroscopy from the appearance of the 

new signal at 1.95 ppm that corresponds to the six protons of the macroinitiator end group 

(Figure 3.6, 3.7, and 3.8).  

  

Figure 3.6 1H-NMR spectrum of poly(ethylene glycol) with azide end groups in CDCl3 
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Figure 3.7 1H-NMR spectrum of poly(ethylene glycol) with methoxy end groups in CDCl3 

 

Figure 3.8 1H-NMR spectrum of poly(ethylene glycol) with adamantane end groups in 

CDCl3 

Finally, PEG macroinitiators terminated with corresponding end groups were 

statistically copolymerized with pH sensitive DEAEM units and photo-crosslinker BMA 

monomers to establish the desired block copolymers, named as BC1 – BC3. The BMA unit 

was not used for BC4 synthesis to obtain an azide functionalized polymer without cross-

4

5
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linker. This polymer was required for the supporting proof approach of photoactive 

polymersome formation in further steps to distinguish the contributions of two photoactive 

species. The composition and the number average molecular weight (Mn) of the block 

copolymers were determined with 1H NMR spectroscopy from the peak integrals of PEG 

(signal a, 3.6 ppm), DEAEMA (signal b, 4.2 ppm) and BMA (signal c, 6.6-7.7 ppm) by 

taking the PEG block as an internal standard (Figure 3.9-3.12, Table 3.1). Herein, the total 

number of protons of each monomer units has taken into account and related with the 

equation 3.1 to determine the repeating units of each block of the copolymer. Therein, the 

analyzed signal of the PEG unit has four protons whereas the DEAEMA and BMA 

monomers have two and eight protons respectively.  

. . .
: : : :

4 2 8
sig a sig b sig c

PEG DEAEMA BMA 
                                                                     (3.1) 

Thus, the length of the hydrophobic block was calculated as about 91 to 97 monomer 

units using the above equation whereas the photo-crosslinker (BMA) content was found 

about 10 to 15 repeating units. It should be noted that the feed ratios between the monomers 

during polymerization reaction are (1: 90: 10) for (PEG: DEAEMA: BMA) respectively 

(more information is available in section 8.4 of experimental part). The consistence of the 

feeding molar ratios and the resulted repeating units confirms the controlled nature of the 

polymerization reaction. Apart from that, in the 1H NMR spectrum of BC3 polymer, six 

protons of the adamantane groups could be clearly observed at 1.66 ppm. However, the other 

two characteristics 1H NMR signals of the adamantane groups (1.94 ppm, 2.05 ppm) are 

overlapped by DEAEM signals. Although other signals of adamantane groups are detectable 

in the spectra, a lower intensity of the corresponding peaks is observed because of the 

relatively high molar mass of the copolymer (Figure 3.11). This was an expected situation 

and therefore, the integration of the adamantane group to PEG segment was performed 

before the polymerization process for monitoring and proving the functionalization step 

clearly.  
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Figure 3.9 1H-NMR spectrum of N3PEG60-b-P(DEAEMA82-stat-BMA10) (BC1) block 

copolymer in CDCl3 

 

Figure 3.10 1H-NMR spectrum of PEG45-b-P(DEAEMA81-stat-BMA10) (BC2) block 

copolymer in CDCl3 
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Figure 3.11 1H-NMR spectrum of AdaPEG60-b-P(DEAEMA82-stat-BMA15) (BC3) block 

copolymer in CDCl3 

 

Figure 3.12 1H-NMR spectrum of N3PEG60-b-P(DEAEMA150) (BC4) block copolymer in 

CDCl3 
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Additionally, size exclusion chromatography (SEC) analyses showed narrow molar 

mass distributions (Ð) of the block copolymers in the range of 1.3 to 1.4 which is in 

agreement with the characteristics of controlled polymerization systems. Herein, the SEC of 

the block copolymers were performed using DMAC as an eluent in order to avoid the 

interactions of the polymers with the SEC column. The use of a more polar solvent, like 

DMAC, in the SEC analysis of charged polymers is a favorable approach which prevents 

retaining the macromolecules in the column and give a logic result with respect to molecular 

weight and dispersity. Thus, the synthesized block copolymers with well-defined chemical 

composition as well as monomodal distribution fulfills the required design criteria for a 

narrow-dispersed polymersome formation.  

Table 3.1 Molecular parameters of polymers synthesized by ATRP 

Code Polymer Chemical Composition Mna 

(g/mol) 
Ðb 
(Mw/Mn) 

ƒPEGc 

PEG-Br PEG45-Br 2150 1.07 - 

N3PEG-Br N3PEG60-Br 2850 1.23 - 

AdaPEG-Br AdaPEG60-Br 3080 1.30 - 

BC1 N3PEG60-b-P(DEAEMA82-stat-BMA10) 21400 1.35 0.13 

BC2 PEG45-b-P(DEAEMA81-stat-BMA10) 20000 1.31 0.10 

BC3 AdaPEG60-b-P(DEAEMA82-stat-BMA15) 22400 1.41 0.13 

BC4                       N3PEG60-b-P(DEAEMA150)                                30600        1.17 0.09 
acalculated by 1H NMR; bdetermined by SEC and chydrophilic mass fraction is calculated 

by dividing the PEG molar mass by the total block copolymer mass 

3.3 Polymersome Preparation and Characterization 

3.3.1 Preparation of Surface-Functionalized Polymersomes 

Polymersomes were formed by using the pH switch method in which the mixture of the 

polymers was self-assembled in aqueous media without the aid of any organic solvent.10 In 

brief, tertiary amine groups of the PDEAEM segment are protonated in acidic conditions 

which enables to dissolve desired polymers in acidic water (pH 2). To obtain multi-

functionalized polymersomes, the aqueous (pH 2) mixture of BC1, BC2 and BC3 block 
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copolymers was prepared. Then, to induce the self-assembly process, deprotonation of the 

tertiary amine moieties is performed by simply increasing the pH to a basic state (>pH 7). 

After 4 days of stirring, the final polymersome structure is formed with a bilayer membrane 

having a central hydrophobic part based on PDEAEM and BMA segments and a hydrophilic 

inner and outer PEG corona with azide and adamantane functionalities. The specifically 

designed hydrophilic fraction of about 0.1 enabled to form polymersomes through the self-

assembly which is consistent with a previous report on polymersomes based on PEG-

PDEAEMA block copolymers having hydrophilic volume fraction of about 0.11.11  

Table 3.2 Specifications of unfunctional and multifunctional polymersomes 

Polymersome 
Code 

Functional 
Groups [mol %] 

N3         Ada 

Diametera [nm] 

pH 10          pH 5 

PDIb 

    pH 10           pH 5 

PS0 - - 116±0.4 161±1.5 0.20±0.01 0.18±0.03 

PS1 29 9.2 120±1.0 173±1.1 0.20±0.02 0.18±0.01 

PS1-2 9.5 9.2 122±1.0 172±1.7 0.19±0.01 0.20±0.01 

PS1-3 29 18.4 119±0.3 172±1.9 0.17±0.01 0.14±0.02 
a The pH values were adjusted by 1 M NaOH or 1 M HCl solution to determine the diameter 

at basic or acidic state. bPDI=polydispersity index of polymersomes that shows the size 

variation.  

As a next step, the BMA moieties were used for crosslinking the membrane of the 

polymersomes by UV irradiation with measured intensity of 80 mW/cm2 for 30 minutes. 

This is another key feature of the multi-functionalized polymersomes to obtain robust and 

mechanically stable vesicles at different pH values. Since, it is aimed to apply several 

reaction sequences to a single polymersome system (Figure 3.1), it is essential to avoid any 

disassembly problems during the whole post-conjugation steps. Therefore, the photo cross-

linking is supposed to favor the stability of the vesicles as previously shown by Yassin et 

al.3 and Gaitzsch et al.12 In this manner, the prepared polymersomes were firstly 

characterized by dynamic light scattering (DLS) to determine the size distributions. Table 

3.2 shows the hydrodynamic diameter as well as polydispersity index of the unfunctional 

and multi-functional polymersomes at different pH values. Herein, DLS results show that 

integrating functional moieties on polymersome surface by the co-assembly process of 

differently end-functionalized block copolymers has no significant effect on the average 
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diameter of the vesicles. Additionally, low PDI values in the range of 0.14 to 0.20 

demonstrate the monodisperse polymersomes, even when tertiary mixtures of polymers with 

different end groups were used for the formation of the vesicles. Although it is possible to 

alter these block copolymer ratios according to the needs, one has to consider the challenges 

that can be encountered during the self-assembly process. Therefore, among the tested 

variations of different functionalization degrees (Table 3.2), only a maximum of 18.4 mol% 

of BC3 were incorporated due to the hydrophobic nature of adamantane groups. The 

assessed block copolymer ratios do not induce any undesired side effects like individual self-

assembly or aggregation problems. In addition, the azide and adamantane functional groups 

are assumed to be placed homogeneously in the interior and outer region of the bilayer 

membrane during the formation of surface-functionalized polymersomes as indicated in 

previous studies.8, 13-15 Having sufficient functional groups on the outer region of the 

polymersomes is a well-known prerequisite for the further step to start a post-conjugation 

process on polymersome surface as observed in previous studies such as targeted drug 

delivery systems.13-14, 16-20  

3.3.2 pH Responsivity of the Surface-Functionalized Polymersomes  

To assess the pH responsive behavior of the cross-linked polymersomes, the stability of the 

polymersomes was investigated at various pH conditions. Firstly, the size of the PS1 

polymersomes in the range of pH 10.1 to pH 3.3 were obtained using DLS equipped with an 

autotitrator. As seen in Figure 3.13, polymersomes preserve their shape without disassembly 

at acidic conditions with the aid of the crosslinked membrane. It has been already proven 

that the vesicles without photo-crosslinking disassembled at acidic state because the polymer 

chains become hydrophilic due to the protonation of the tertiary amine groups in DEAEM 

groups and fully dissolved in water.3 However, in the case of cross-linking, the protonated 

polymer chains at acidic condition repel each other to reach the equilibrium state which in 

turn leads to an increase in the size of polymersomes. This indeed enables to release any 

hosted cargo through the pores formed during this swelling condition. Another important 

investigation from this experiment was that the expected size change of the polymersomes 

was seen at about pH 7 and this value roughly corresponds to the pKa of the DEAEM 

groups.21 As can be observed, the diameter of the polymersomes are constant before (>pH7-

basic) and after (<pH7-acidic) the swelling point. In addition, the mixed block copolymers 

to form PS1 polymersomes did not make any alteration in the pKa of the resulting vesicles 

which is supported by zeta potential measurements (Figure 3.14). This was an expected 
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result since the mixed block copolymers was designed to have relatively equal hydrophobic 

block lengths that supports also the homogeneous membrane formation. Lastly, the zeta 

potential values at different pH values revealed that the membrane is almost unprotonated at 

physiological condition which is favorable for biomedical applications. 

 

Figure 3.13 pH-dependent diameter variation of multifunctional polymersomes (PS1) 

 

Figure 3.14 Zeta potential variation of multifunctional (PS1) and unfunctional (PS0) 

polymersomes at different pH values 

Further investigation concerning the stability issue was to assess how PS1 

polymersomes act upon reversible pH switch for several cycles. This helps to gain 

information about the tunable membrane permeability which is provided by the cross-linking 
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process. Thus, this phenomenon was explored by monitoring the size change of the 

polymersomes upon changes in pH value from basic to acidic state for 5 cycles. The intensity 

average hydrodynamic diameters measured by DLS at each cycle showed that the 

multifunctional polymersome was able to swell and shrink reversibly at acidic and basic 

conditions because of the protonation/deprotonation of the PDEAEM groups in the 

membrane (Figure 3.15). Here, the size of the vesicles increases about 44.2% in the swollen 

state and return back to the original diameter in each cycle. In this regard, it is clear that the 

cross-linking time was sufficient and the polymersomes are thoroughly cross-linked. 

Otherwise, some polymer chains would have been disassembled due to the leakage of cross-

linking and this would result in a size decrease in the cycles of pH switch. Thus, this pH-

controlled size alteration allowed considering the permeable polymersome membrane like a 

gate that can be opened or closed by the trigger of pH stimulus. This is useful in hosting and 

releasing several biological molecules such as drugs, enzymes and proteins to create 

intelligent nanocarriers or nanoreactors for various biomedical applications.22-25 

 

Figure 3.15 (a) Reversible swelling-shrinking of polymersomes (PS1) upon changes in pH 

value. (b) Intensity size distribution of PS1 polymersomes at pH 5 and pH 10 with average 

hydrodynamic diameter of 173 nm and 120 nm, respectively. (c) Schematic illustration of 

reversible size switch at basic and acidic condition. 
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3.3.3 Shape Visualization and Membrane Thickness 

Cryo-TEM investigation was conducted to confirm the vesicular structure of the 

polymersomes at both acidic and basic conditions (Figure 3.16). Polymersome visualization 

by cryo-TEM has a great advantage over conventional TEM methods because the native 

vesicle structure can be imaged in the frozen hydrated state without the aid of sample 

staining. Sufficient contrast between the polymeric membrane and the vesicle interior filled 

with water leads to a clear identification of the structure. This enabled to determine the 

membrane thickness of polymersomes at high and low pH value by analyzing several cryo-

TEM micrographs (Figure 3.16). The average membrane thickness increases from 18.6± 1.7 

nm to 26.8 ± 3.8 nm when changing pH from a basic state (pH 9) to an acidic value (pH 5). 

This impressively implies that the repelling of polymer chains by protonation of DEAEM 

segments at acidic condition causes the state of a permeable membrane in polymersome PS1 

with azide and adamantane surface groups (Figure 3.16b). The increase of the membrane 

thickness was calculated to be 44.1%. This is in a perfect agreement with the previous 

swelling/shrinking experiments as stated above (Figure 3.15). Thus, the cryo-TEM study not 

only approves the vesicular shape of the polymersomes but also supports the porous 

membrane formation at acidic condition to enable the pH controlled permeability. 

Additionally, it was proven that the average thickness of the polymersome membrane was 

almost 3.5 times thicker than the phospholipid membrane of liposomes which in turn leads 

to more stable, tougher and, in the collapsed state, tighter polymeric vesicles.26-28 Such thick 

membrane is also useful to avoid undesired leakage of the encapsulated molecules at basic 

state by providing impermeable polymersomes.  

 

Figure 3.16 cryo-TEM micrographs of polymersomes (PS1) at pH 9 (a) and pH 5 (c). (b) 

Membrane thickness distribution of polymersomes (PS1) determined from corresponding 

cryo-TEM micrographs by analyzing 57 particles at pH 9 and 42 particles pH 5. 
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3.4 Polymersome Surface Functionalization by Sequential Post-Conjugations 

3.4.1 Covalent Conjugation of Photoactive Moieties and the Successive Photocleavage  

A second way to functionalize a polymersome surface is the introduction of functional 

moieties to the preformed vesicles after the block copolymer assembly. Herein, this 

technique was applied for further post-functionalization of pH sensitive polymersomes with 

photoactive moieties to obtain a dual-responsive structure (Figure 3.1: from PS1 up to 

PS1R). The aim was to perform a photocleavage reaction on polymersome surface to have 

additional functionalities in a controlled way which offers the potential to bind selectively 

biological entities afterwards. For this purpose, the released functions are chosen as amino 

groups which are protected by the well-known photolabile nitroveratryloxycarbonyl 

(NVOC) group for selective cleavage by UV irradiation. An important advantage of these 

groups are that they allow reactions at longer wavelengths up to 410 nm29 meaning that the 

possibility to trigger the cleavage also in the IR range with the half energy through two 

photon absorption mechanism.  Therefore, the post-modification process of photo-

crosslinked polymersomes, PS1, was started with the synthesis of NVOC protected amine 

molecules possessing an alkyne moiety as confirmed by 1H NMR spectrum (Figure 3.17).   

 

Figure 3.17 The synthetic scheme and 1H-NMR spectrum of NVOC protected amine groups 

in CDCl3  
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Afterwards, as seen in Figure 3.18a, this molecule was conjugated to the azido groups 

on polymersome surface of PS1 in the presence of a copper catalyst and tris-

(benzyltriazolylmethyl) amine (TBTA) as a ligand, using slightly modified literature 

procedures.30-31 After 2 days of reaction time, unbounded NVOC groups and the copper 

catalyst were removed by extensive dialysis. To guarantee that the purification was efficient, 

the same amount of NVOC molecules without polymersomes was dialyzed under identical 

conditions and there was no sign of NVOC absorption in UV-Vis spectra (Figure 9.1, in 

experimental part). It should be noted that the working pH of whole conjugation steps 

including this one was kept as pH 8 to perform the reactions where the membrane of the 

vesicles is impermeable. Although the size of the polymersomes at basic state is constant 

(>pH 7, Figure 3.13), the surface charge is minimized at this state which is close to the 

isoelectronic point of the polymersomes (Figure 3.14). In this context, selection of pH 8 as 

reaction parameter would not only avoid diffusion of the reactants into the lumen of the 

polymersomes but also decrease the possible electrostatic interaction of the reagents on the 

membrane periphery.  

 

Figure 3.18 (a) Reaction scheme of NVOC conjugation and cleavage process on PS1 

polymersomes. (b) UV-vis spectra of PS1C polymersomes upon UV exposure up to 600s 

showing the decrease of absorption bands due to NVOC cleavage. (c) The absorbance 

change (%) of PS1 and PS1C at λ=345 nm versus irradiation time under identical UV 

exposure. 
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After verification of the successful purification, the resulting polymersomes (PS1C) 

were exposed to UV light (320-500 nm) for up to 600 seconds to trigger the photocleavage 

reaction. The chemistry of this reaction sequence (PS1 over PS1C to PS1D) is outlined in 

Figure 3.18a. Thus, the photocleavage of the NVOC chromophore in PS1C resulted in the 

formation of free amine moieties on the polymersome surface of PS1D. Although the 

chemistry is straightforward, confirmation of this conjugation step as well as the cleavage 

process required multiple characterization efforts and model studies. Thus, the first 

inspection was realized by the time-dependent UV-vis study of the NVOC conjugated 

polymersomes (PS1C) (Figure 3.18b). The characteristic chromophore absorption of NVOC 

groups is seen in the wavelength range between 260 to 400 nm where the maximum 

absorption is at around λmax = 345 nm.32-33 As illustrated in Figure 3.18b, UV-vis spectra 

recorded during the irradiation process show a sharp decrease of the corresponding 

absorption bands. Although this is a strong evidence for the cleavage of NVOC chromophore 

and its conjugation to the vesicle, the effects of photo-crosslinker (BMA) units in the 

polymersome membrane has to be considered due to similar absorption maxima of BMA 

compared to NVOC. The UV-vis spectra of PS1C (Figure 3.18b) clearly indicates that there 

was no significant absorbance change after 500 seconds and the absorption bands between 

300 to 400 nm did not fully disappear. This remaining absorbance can be caused to some 

extent by residual photocleavage products such as nitrosobenzaldehyde.32 However a 

significant contribution originated from BMA units because of the higher molar ratios 

compared with the possible side products. Thus, this clearly implies that BMA units show 

overlapping absorption bands with NVOC groups in the region of 250 and 330 nm due to 

their π-π* transition and n-π* transition, respectively.34 In addition, photoreduction of the 

carbonyl groups in BMA units upon UV exposure could also lead to a decrease in the 

absorption spectra.34-35 To distinguish the effects of these two photoactive species in the 

same absorption wavelengths range, the same irradiation process to polymersomes without 

NVOC groups (PS1) was applied. As expected, the absorbance decrease (λ=345 nm) of 

NVOC-conjugated polymersomes (PS1C) is about 1.5 times higher than that of those 

without NVOC groups (PS1) (Figure 3.18c). The small deviation of three repeated 

irradiation processes from different batches of PS1 and PS1C polymersomes supports the 

reproducible nature of photocleavage reaction as well as the NVOC conjugation (Figure 3.1, 

Figure 3.18c).  
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Furthermore, the shape persistence and stability of polymersomes during this whole 

reaction sequence was investigated by DLS and cryo-TEM visualization (Figure 3.19a, 

Table 3.3 and Figure 3.19b,c). This is an important prerequisite to use those polymeric 

vesicles as stable nanocontainers for various applications. Table 3.3 summarizes size 

distribution as well as portion of integrated functional moieties on polymersome surface in 

each post conjugation step. Here, results from DLS study show that the average diameter 

and the monodisperse nature of the polymersomes is not altered during these reaction steps. 

The size distribution seen in Figure 3.19a supports the stable behavior of polymersomes 

during the post-conjugation of the light sensitive group (NVOC) and the further 

photocleavage step.  Additionally, cryo-TEM images of PS1D polymersomes at basic (pH8) 

and acidic state (pH5) confirm this claim by showing the preserved vesicular structure of the 

polymersomes as seen in Figure 3.19b, and c. 

Table 3.3 Specification of the polymersomes with different functional groups 

Polymersome     Functional groups [mol%] Photo- 
crosslinked 
 

Diameterc 
[nm] 

  PDId 
 
N3a 

 
NVOCb 

 
NH2b 

 
Adaa 

PS0 - - - - yes 117±1.1 0.19±0.03 

PS1 29.0 - - 9.2 yes 120±1.6 0.20±0.03 

PS1C 21.3 7.7 - 9.2 yes 117±0.2 0.20±0.01 

PS1D 21.3 3.2 4.5 9.2 yes 119±0.3 0.20±0.01 

PS2 100 - - - no 88.0±0.2 0.15±0.02 

PS2C 73.5 26.5 - - no 84.5±0.5 0.18±0.02 

PS2D 73.5 11 15.5 - no 93.5±0.1 0.14±0.02 
a Azide and adamantane functionalities are placed equally both outer and inner part of the 

polymersome bilayer membrane and therefore only half of them is available for further outer 

surface functionalization. bThese values are the estimates of functionalities only at the outer 

surface of the polymersomes since the modification reaction was performed at basic 

condition meaning the impermeable state of the membrane. cDiameter is measured by DLS 

at pH8. dPDI=polydispersity index of polymersomes that shows the size variation. 
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Figure 3.19 (a) Intensity size distribution of crosslinked polymersomes PS1, PS1C and 

PS1D (b,c) cryo-TEM micrographs of PS1D polymersomes at pH 8 and pH 5 

Although the conjugation of photoactive groups has been proven with different ways so 

far, the covalent binding of the NVOC molecule has to be supported with alternative methods 

not to leave any questions behind. In this respect, two model reactions under identical 

conditions were performed (Figure 3.20a, Figure 3.22a) for further proof of this conjugation 

step (Figure 3.1: from PS1 to PS1C). Firstly, the azide terminated block copolymer without 

BMA groups was synthesized (BC4, see section 3.2) to form the corresponding 

polymersomes (PS2). By following this, the same click conditions were conducted to obtain 

NVOC-conjugated polymersomes devoid of the cross-linker unit (PS2C). Comparing the 

UV-vis spectra of polymersomes PS2 and PS2C (Figure 3.20b), absorption bands in the 

region of λ=260-400 nm after click reaction are a clear evidence of NVOC conjugation on 

the surface of PS2. In addition, the characterization of the freeze dried and disassembled 

PS2C polymersomes by 1H NMR spectroscopy supports the successful conjugation of 

NVOC on PS2 surface through attributed 1H NMR signals between 4.5 to 7.75 ppm (Figure 

3.21). However, the relatively high molecular weight of the copolymer leads to low 

intensities of NVOC protons in 1H NMR spectrum which is in agreement with previous 

studies.8, 36 Therefore, the conjugation yield cannot be quantified precisely with this 

approach. Thus, another model study was conducted by applying the same aqueous click 

conditions to a short azide terminated PEG molecule (N3-PEG60-OH, Figure 3.22a). As 

expected, 1H NMR spectrum of the final product (M1C) enables a more precise detection of 

the NVOC groups using the relatively low molecular weight of the PEG molecule. The 
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successful synthesis as well as the conversion data of NVOC-PEG60OH (M1C) were verified 

by 1H NMR spectroscopy as shown in Figure 3.23. Furthermore, the UV-vis spectrum of 

M1C (Figure 3.22b) supports the conjugation clearly by the apparent absorption of the 

NVOC chromophore.  

 

Figure 3.20 (a) Reaction Scheme of NVOC conjugation on PS2 polymersomes via identical 

click modification as done for PS1 polymersomes (b) UV-vis spectra of freeze dried PS2 

and PS2C in CHCl3  

 

Figure 3.21 1H-NMR spectrum of freeze dried PS2C polymersome in CDCl3 
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Figure 3.22 (a) Reaction Scheme of NVOC conjugation on short PEG molecule via identical 

aqueous click modification as a upporting model study (b) UV-vis spectra of M1 (before 

click) and M1C (after click) in CHCl3 

 

Figure 3.23 1H-NMR spectrum of NVOC-PEG60-OH (M1C) in CDCl3 
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After successful covalent attachment of the photoactive groups to the polymersomes, 

the conjugation yield (conversion of PS2 into PS2C) was estimated as 26.5% by comparing 

the molar extinction coefficients (ɛ) of PS2C polymersomes with M1C molecule (Figure 9.2, 

9.3 experimental part). PS2C polymersomes were used here rather than PS1C polymersomes 

to obtain a more precise value by excluding the BMA contribution to the absorbance spectra.  

At first glance, this conjugation efficiency might be considered poor. However, about half 

of the azide moieties are placed in the interior of the bilayer membrane and not available for 

the reaction.8, 30, 37 This implies that about 53% of azide moieties on the outer surface of 

polymersomes were converted into NVOC groups. By assuming the same conversion 

behavior also for the conjugation step of PS1 into PS1C polymersomes, the starting point 

for all further covalent conjugation steps (Figure 3.1: PS1C to PS1D and PS1D to PS1R) can 

be clarified. Thus, from this postulation the resulting multifunctional polymersome system 

PS1C consist of about 7.7 mol% of NVOC, 9.2 mol% of adamantane and 21.3 mol% of 

azide functionalities as shown in Table 3.3. A noteworthy point here is that the 7.7 mol% of 

NVOC value depicts the modification only at the outer surface of PS1C polymersomes 

whereas the other two values represent the functionalities at both interior and exterior of the 

polymersome bilayer membrane.  

 

Figure 3.24 Intensity size distribution of non-cross-linked polymersomes before (PS2) and 

after click reaction (PS2C) and after photodeprotection (PS2D) at pH 8 

As a next step, the photocleavage efficiency was determined as 58.4±2.3% by 

calculating the NVOC chromophore cleavage from UV-vis analysis using PS2C 
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polymersomes (Figure 9.4, experimental part). This incomplete conversion behavior might 

be explained by an imine formation resulting from a reaction of nitroso benzaldehyde with 

amine groups released on the polymersome surface. To avoid this condition, the 

polymersomes were immediately dialyzed after UV exposure. However, dialysis required a 

certain time. Thus, this side reaction could occur before all aldehyde products were removed. 

The outcome is also in agreement with previously published results where del Campo et al. 

obtained 40-50% deprotection efficiency even in the presence of carbonyl scavenger.29 It 

should be also noted that PS2C polymersomes showed a narrow size distribution (Figure 

3.24, Table 3.3) during the whole reaction sequences as similarly observed for PS1C 

polymersomes. This ensured-stability without any disassembled polymer chains was 

important to simulate the PS1C formation thoroughly. In this manner, from the theoretical 

point of view, when transferring results from PS2D to PS1D, the final content of various 

functional groups in polymersomes is presented in Table 3.3. Thus, PS1D may have about 

4.5 mol% of free NH2 groups on the surface as an additional functionality for the next 

conversion step (Figure 3.1: PS1D into PS1R). 

3.4.2 Covalent Conjugation of a Fluorescent Dye as a Model Compound 

Gathering information about the accessibility of converted functional groups at each 

conjugation step on the polymersome surface is of great significance to use them as efficient 

nanocontainers for various applications. For this purpose, a final covalent conjugation step 

(Figure 1: PS1D to PS1R) was carried out to evaluate the accessibility of amino groups on 

the polymersome surface of PS1D. Thus, rhodamine B isothiocyanate (RhB-NCS) was 

selected as photo-stable and high quantum yielding fluorescent dye over a broad pH range38 

to be reacted with the released NH2 groups of PS1D vesicles after UV exposure (Figure 

3.25a). Herein, the fluorescent dye acts as a model compound to mimic a possible binding 

of bio/chemo molecules to the polymersome surface. Although isothiocyanate groups are 

highly reactive towards primary amines, their susceptibility to hydrolysis in water at higher 

pH values should be considered.39 Therefore, excess amount of RhB-NCS dye was used to 

ensure its reactivity in polymersome solutions at pH 8 within an appropriate time. Next, an 

extensive purification step by dialysis was carried out to remove the unreacted reagent. As 

shown in Figure 3.25b, there is no change in the characteristic absorption bands of RhB-

NCS dye (λmax=555 nm) after 3 days of dialysis at basic conditions. This clearly indicates 

the successful conjugation of RhB-NCS molecules on polymersome surface of PS1D. 

However, a possible physical interaction between RhB-NCS dye and the vesicle membrane 
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might also contribute to the observed absorption band.40 To investigate this possibility, the 

same process under identical conditions was applied to PS1 polymersomes. As shown in 

Figure 3.25c, about 1.4 times higher amount of RhB-NCS molecules conjugated to NH2 

functionalized polymersomes (PS1D) than to the ones without NH2 groups (PS1, control). 

This difference clearly confirms the successful covalent conjugation as well as the 

availability of the amine groups on the polymersome surface liberated after photocleavage 

process of PS1C.  The absorbance difference of PS1R and the control experiment at 

λmax=555 nm was defined as measure for the covalent attachment of the RhB-NCS dye 

(Figure 3.25b, A555 of PS1R=0.893, A555 of PS1=0.655). This value was used in further 

calculations together with the measured molar extinction coefficient of RhB-NCS (Figure 

9.6, experimental part) to estimate the conjugation efficiency of amino groups in 

polymersome PS1D (Table 3.3). This leads to a value of about 57% of amino groups on the 

surface of PS1R which reacted with RhB-NCS dye.  

 

Figure 3.25 (a) Reaction Scheme of RhB-NCS conjugation on PS1D polymersomes. (b) 

Monitoring RhB-NCS coupling to polymersomes through amino groups (PS1R) with UV-

vis analysis during dialysis procedure. (c) UV-vis spectra of RhB-NCS containing 

polymersomes with (PS1R) and without (PS1) NH2 groups to show the covalent conjugation 

of the dye. (d) cryo-TEM micrographs of PS1R polymersomes at pH 8. 
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As indicated above, functional groups on polymersome surface were placed as antennae 

with a longer PEG segment to prohibit the concealment and steric effects of the hydrophilic 

corona.8, 41 The relatively high conjugation efficiency of RhB-NCS supports the argument of 

freely accessible and very reactive amine surface groups (Table 3.3). It is also noteworthy 

to point out that the amount of freely accessible amine groups on the surface can be tuned 

by UV exposure which can lead to a controllable surface functionalization. In this regard, 

the resulting multifunctional polymersome gain the ability of light-tuned responsivity in 

addition to the tuned-permeability of the membrane by pH trigger. Lastly, cryo-TEM 

micrographs of PS1R polymersomes verify that the vesicles preserve their shape without 

any disassembly in this conjugation step (Figure 3.25d) as indicated previously for PS1D 

polymersomes (Figure 3.19). This result confirmed the stable nature of the polymersomes 

over the whole sequential conjugation steps which is an essential precondition to use these 

nanocontainers in various applications. 

3.4.3 Non-Covalent Conjugation of β-Cyclodextrin by Host-Guest Interactions  

In the last conjugation step, the accessibility of the adamantane functionality on PS1R 

polymersome surface was studied in a non-covalent approach by the formation of host-guest 

inclusion complexes with β-cyclodextrin (β-CD) molecules. It is widely reported in literature 

that adamantane groups tightly fit into the cavity of β-CD molecules showing perfect host-

guest interaction with a high association constant between 104 to 105 M-1.42-43 For this non-

covalent conjugation approach on PS1R surface, β-CD molecules were modified with a 

water soluble Sulfo-Cyanine7 (Cy7) dye to monitor the host-guest inclusion complexation 

by UV-vis spectroscopy. From Figure 3.26a, it is apparent that the absorption band in the 

range of 600-850 nm demonstrates the attachment of Cy7 labeled β-CD molecules (β-CD-

Cy7) to adamantane groups in PS1H. To understand this conjugation behavior in detail, the 

same process was carried out under identical conditions by using PS0 polymersomes without 

any adamantane groups (Figure 3.26b). This negative control experiment showed that 

polymersomes PS0 also interact to some extent with β-CD-Cy7 molecules. A possible 

explanation is that PEG chains in polymersome corona of PS0 might thread into β-

cyclodextrin cavities and form inclusion complexes. Various groups reported such behavior 

between PEG and α-cyclodextrin molecules.44-45 Another reason for that might be related to 

the negatively charged sulfonate groups in Cy7 dye. Although membrane of the 

polymersome at pH 8 is mainly unprotonated, zeta potential results (Figure 3.14) outline a 

slight positive charge (ζ-potential of about +5 mV). This can induce a weak interaction 
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between sulfonate moieties and the PDEAEM groups of the membrane. Thus, it is assumed 

that this unexpected slight β-cyclodextrin binding to polymersomes PS0 without adamantane 

units is caused mostly by threading behavior of PEG molecules in combination with the 

slight electrostatic interactions. 

 

Figure 3.26 (a) UV-vis analysis to show sequential conjugation of cyclodextrin molecule to 

Rhodamine B NCS modified polymersomes (PS1R) by host-guest interaction. (b) UV-vis 

spectra of Cy7-CD containing polymersomes with (PS1H, PS1) and without (PS0) 

adamantane groups on their surface to show the conjugation triggered by host-guest 

interaction. 

However, a comparison of UV-vis spectra of PS1H and PS0 polymersomes (Figure 

3.26b) clearly shows that the adamantane groups enhance the binding of CD-Cy7 molecules 

on polymersome surface in PS1H significantly. Although this nicely proves the successful 

host-guest inclusion complexation of the β-cyclodextrin-modified dye by the adamantane 

groups on the polymersome surface (A775 of PS1H=1.80, A775 of PS0=1.35), an additional 

investigation was performed on PS1 polymersomes. The concern was to distinguish if there 

were any other interactions between cyclodextrin molecules and free functional groups on 

PS1H polymersomes (NVOC: 3.2 mol%, NH2: 1.9 mol%). As can be seen in Figure 3.26b, 

UV-vis spectra of polymersomes having only adamantane groups (A775 of PS1=1.87) 

showed a similar trend as for PS1H. This supports the claim that binding β-cyclodextrin 

β-cyclodextrin 
with Cy7

PS1R PS1H

(a)                                                                    (b) 
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molecules to the PS1H surface is mainly triggered by the interaction with adamantane 

groups. To determine the efficiency of this conjugation, the same methodology was used as 

done for the rhodamine attachment step. The absorbance difference of PS1H and PS0 

polymersomes at λmax=775 nm was assigned as the value of the non-covalent conjugation 

which was then used together with the measured molar extinction coefficient of CD-Cy7 

molecules (Figure 9.7, experimental part). Finally, this calculation shows that about 58% of 

adamantane groups on the outer shell of PS1H polymersomes were conjugated to the β-

cyclodextrin molecules. 

3.5 Reversible pH-switch of Light Responsive Polymersomes 

Gathering information about the pH sensitive behavior of the multifunctional polymersomes 

having NVOC groups as light active molecules is of great significance to ensure the dual-

responsivity of the established system. One can assume that the irradiation during 

photocleavage step would lead to more cross-linking which results in lesser swelling power 

for PS1D polymersomes. For this purpose, in the final part of this chapter, PS1C (after click 

reaction) and PS1D (after photocleavage process) polymersomes were assessed in respect to 

pH responsivity as it was similarly done for PS1 polymersomes.  

 

Figure 3.27 Reversible swelling-shrinking of (a) PS1C and (b) PS1D polymersomes upon 

changes in pH value. 

The reversible swelling and shrinking of the polymersomes at acidic and basic states 

were confirmed by 5 cycles of pH switch experiments as seen in Figure 3.27. This result 

showed that both polymersomes keep their stable nature and recover the initial size without 

facing any disassembly problems. Another essential result here is that there is almost no 
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variation in the overall size increase of PS1C, so called swelling power, in comparison to 

PS1 polymersomes (Figure 3.15a). However, as it is mentioned before, irradiation during 

photocleavage process increased the crosslinking degree of the membrane which causes a 

lower swelling in the acidic state. Although crosslinking degree can be tuned according to 

the needs of the application,3 it is unknown how this decreased swelling power will 

contribute to the permeability of the membrane. To investigate this, the doxorubicin release 

on PS1C and PS1D polymersomes was performed and is given in the next chapter.  Thus, 

the clear outcome of these experiments was that the dual responsivity as well as the stability 

of the established multifunctional system persisted even in the case of additional UV-

irradiation.  

3.6 Summary 

In this chapter, the formation of multifunctional and dual-responsive polymersomes was 

discussed. The starting point of the fabrication was to synthesize three block copolymers 

comprising adamantane, azide and methoxy end groups at their hydrophilic PEG chain 

whereas pH sensitive DEAEM and a photo-crosslinker BMA groups form together the 

hydrophobic part. The integrated azide and adamantane groups were utilized to start the 

sequential post-surface functionalization of the pH sensitive and photo-crosslinked 

polymersomes with multiple reactive groups through covalent and non-covalent 

conjugations.  To guarantee the accessibility of functional units in these post-modification 

steps, the hydrophilic length of the azide- and adamantane-terminated block copolymers was 

designed to be longer than in the methoxy-terminated block copolymer. Moreover, these 

multi-functionalized polymersomes possessed a reversible swelling (pH 5) and shrinking 

(pH 10) behavior after photo-crosslinking the membrane. This in turn leads to controlled 

membrane permeability which is addressed in the next chapter by doxorubicin encapsulation 

and further release experiments. In line with this, the established polymersomes showed a 

remarkable pH-stability and preserved their vesicular shape at different pH environments. 

One key characteristics of the sequential post-functionalization of polymersome surface 

was the covalent conjugation of a photolabile NVOC protected amine groups, by azide-

alkyne click reaction. This directly induced a light responsiveness to provide selectively free 

amine functionalities on the surface of polymersomes upon UV exposure. The presence of 

free amino groups was used for further post-conjugation steps as proven in this study by 

introducing dye molecules. Besides, the controlled photochemical reaction can be performed 
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to tune the amount of amino groups by simply varying the irradiation time. This also created 

an opportunity to tune the surface functionalities and to retain the off-state of NVOC-

protected amine groups unless they are triggered externally. Furthermore, the post-

conjugation of polymersomes was proceeded with host-guest interaction of adamantane 

groups with dye-modified β-cyclodextrin molecules. It was thus quantitatively proven that 

all functional groups were accessible and highly reactive to fabricate multi-functionalized 

polymersome surfaces with different interaction and reactivity properties. In addition to 

these findings, the persistence of the pH response as well as the pH stability was 

demonstrated by performing reversible shrinking/swelling experiments on multifunctional 

polymersomes having NVOC groups as light active molecules.  

Overall, these established polymersomes, possessing various reactive groups as well as 

pH- and light-responsive nature, exhibit new opportunities for the enhancement of specific 

targeting and the establishment of multicompartmentalized systems in drug delivery and 

synthetic biology, but also for future application in “Lab-on-a-Chip” devices. 
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4 Multifunctional Polymersomes as Nanocontainers 

4.1 Introduction 

Polymersomes have been widely applied as nanocarriers or nanocontainers in biomedical 

science for delivery and diagnostic purposes with the aid of their outstanding features like 

flexible chemical structure, tunable membrane permeability and hosting ability of various 

hydrophilic and hydrophobic compounds either in their aqueous lumen or in the membrane.1-

4 As already investigated, this study utilized the first two features to develop multifunctional 

and responsive polymersomes having various reactive groups at their periphery. In this 

regard, the hosting capacity of the established polymersomes as well as the limits of the 

membrane permeability should also be examined by encapsulating drugs or smart 

nanoparticles like gold NPs. In fact, the latter smart cargo can provide additional functions 

to the established multi-reactive and responsive polymersomes due to their interesting 

characteristics.  

Gold nanoparticles are known for their unique physical and chemical properties 

including size and shape dependent optical features like surface plasmon resonance (SPR) 

and second harmonic generation (SHG).5-6 These optical features enable AuNPs to absorb 

visible light as well as to convert the light into heat energy which can be used in the field of 

photothermal therapy, imaging and diagnostic tools.7-10  Therefore, incorporation of gold 

nanoparticles into polymersomes create new insights for selective recognition and targeted 

delivery purposes by being able to possess both visibility and responsivity. As one example 

of such combination, doxorubicin/gold nanorod-loaded polymersomes11 were prepared to be 

used in cancer treatment by utilizing the gold nanorods as heat generator through the trigger 

of near-infrared light and polymersomes as releasing vehicle for doxorubicin molecules. 

Furthermore, SHG, a type of nonlinear optical effect, can occur depending on the shape and 

size of the gold NPs when they are excited by light and lead to frequency doubling. 

Especially, the noncentrosymetric gold nanoparticles like nanorods and nanocones are 

efficient second harmonic emitters12 and can be used as optical antennae when combined 

with polymersomes. Apart from these usual application potentials, the combination of gold 

nanoparticles with polymersomes can be utilized to design sensing or microfluidic devices 

in which gold NPs have been already used as labels for signal amplifications in biosensing 

applications.13 
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Another aspect of the applicability of the nanocontainers is to gain information about 

the permeability of the polymersome membrane. As already mentioned, swelling of the 

polymersomes induced by the protonation of PDEAEM groups at acidic condition leads to 

the repelling of the polymer chains which results in a porous membrane structure. These 

pores are responsible for the permeability and allow passive diffusion of the molecules 

through the polymersome membrane. Both cross-linking density as well as the size of the 

encapsulated cargo has played an essential role to understand the limits of this pH controlled 

diffusion behavior. Therefore, this chapter focuses on firstly encapsulation of doxorubicin 

molecules as smaller sized anticancer drugs into established azide and adamantane decorated 

polymersomes by means of pre-loading approach. Afterwards, the photoactive 

polymersomes were loaded with doxorubicin molecules and further photocleavage reaction 

was performed in order to induce pH-controlled drug release for clarifying the membrane 

permeability that has been already published.14 In addition, two differently-sized gold 

nanoparticles which have average core diameters of 5 nm and 10 nm, are loaded into the 

azide and adamantane decorated polymersomes by utilizing both pre-loading and post-

loading approaches. Therein, the capability of these two methods as well as the size selective 

and pH dependent diffusion through the porous membrane at swollen state is discussed in 

detail.  

4.2 Doxorubicin Encapsulation and pH-triggered Release 

After successful formation of multifunctional polymersomes, drug release experiments were 

carried out to demonstrate pH controlled permeability of the established system. As already 

discussed in the previous chapter, the polymersomes showed sufficient pH responsivity 

originated by the protonated PDEAEM groups in acidic state. However, there was a 

reduction in the swelling power of the PS1D polymersomes due to additional UV-irradiation 

for photocleavage of the attached NVOC groups. To investigate whether this condition led 

to a change in the membrane permeability, the drug release experiments were performed 

using PS1C and PS1D polymersomes. Here, doxorubicin hydrochloride (Dox) was selected 

as a model drug which has a common clinical use in cancer chemotherapy.15-17  

There are two common ways of cargo encapsulation for the pH responsive vesicles in 

which the cargo can be loaded during self-assembly (pre-loading) or afterwards (post-

loading).3 Herein, pre-loading approach was applied to avoid any possible Dox trapped on 

the outer region of the polymersome membrane which can inhibit an effective drug 
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encapsulation. In line with this, it was also aimed to investigate the compatibility of the 

sequential post-conjugation approach with the presence of a carrier. Thus, Dox encapsulation 

was performed before surface modification of the PS1 polymersomes during its formation 

as illustrated in Figure 4.1. After the self-assembly and crosslinking of the PS1-Dox 

polymersomes, an extensive purification using hollow fiber filtration (HFF) system was 

carried out to remove all non-encapsulated Dox molecules. In this purification method, 

polymersomes encountered a shear flow with a 130 mbar transmembrane pressure that is 

close to the normal blood pressure of about 160/106 mbar.18 Both the shear flow and the Dox 

incorporation during self-assembly of the block copolymers did not lead to any aggregation 

behavior as well as a notable size variation in the resulting polymersomes (Figure 4.2). Thus, 

this outcome fulfilled the expectation of the stable behavior of the established 

multifunctional polymersomes even in the case of blood capillaries. Afterwards, the outer 

shell of the PS1-Dox polymersomes were modified with NVOC moieties by click chemistry 

as done previously for the polymersomes without Dox (PS1), followed by an irradiation for 

600 seconds to cleave the NVOC moieties to obtain PS1D-Dox polymersomes (Figure 4.1). 

In addition, the DLS data of the polymersomes at each step revealed that they showed a 

monodisperse size distribution having average diameters of 124.2±1.08 nm (PS1-Dox), 

115.4±1.01 nm (PS1C-Dox) and 119.4±1.8 nm (PS1D-Dox), respectively, even in the case 

of drug encapsulation. 

 

Figure 4.1 Schematic overview of the Dox encapsulated polymersomes formation through 

pre-loading approach. 

Before proceeding release study, any possible Dox leakage was also monitored during 

purification of NVOC moieties. There was only a slight Dox (15.5 ±2.04%) leakage within 

1-Dox addition 2-Self assembly       3-Cross-linking

Click Reaction Photocleavage

PS1-Dox                                      PS1C-Dox                                   PS1D-Dox
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two days of intensive dialysis at pH 7.4 condition (Figure 4.3). The UV-vis monitoring of 

the vesicles before and after the photocleavage process shows that doxorubicin molecules 

maintain their stability with only a small absorbance drop during the irradiation (Figure 4.3). 

This was an important issue to be able to analyze and interpret the release data truly.  

 

Figure 4.2 Intensity size distribution of Dox encapsulated polymersomes before (PS1-Dox) 

and after click reaction (PS1C-Dox) and after photocleavage (PS1D-Dox) at pH 7.4. 

 

Figure 4.3 UV-vis spectra of Dox encapsulated polymersomes before and after dialysis of 

NVOC molecules and after subsequent irradiation process 

Eventually, in vitro doxorubicin release from PS1C-Dox and PS1D-Dox was studied at 

pH 5 and pH 7.4 under physiological temperature (T=37 oC). As seen in Figure 4.4, both of 

the polymersome systems exhibit a similar release profile. Dox was released to about 53% 
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within 140 h at pH 5 from PS1C-Dox polymersomes whereas for PS1D-Dox the release was 

determined as about 51% under the same condition. Although the membrane of the PS1D-

Dox became more compact due to further UV irradiation, the pores induced by repelling of 

the polymer chains at acidic state were sufficient for an efficient drug release. Moreover, the 

closed state of the membrane decreased the undesired Dox release in a considerable amount 

at pH 7.4 to about 20% from PS1C-Dox and 26% from PS1D-Dox within 140 h (Figure 4.4). 

Both of these results confirm the claim about tunable membrane permeability and reveal the 

potential of this multifunctional and dual responsive nanocontainer for various biomedical 

applications. 

 

Figure 4.4 In-vitro release of doxorubicin from (a) PS1C-Dox polymersomes and (b) PS1D-

Dox polymersomes at 37 oC in different pH medium 

4.3 Polymersome/Gold Nanoparticle Assemblies 

The doxorubicin encapsulation and further pH-dependent release approved the hosting 

capacity of the established polymersomes for small drug molecules. However, there is still 

lack of investigation whether these vesicles can incorporate sufficient amount of larger-sized 

nanoparticles. In addition, incorporation of a smart particle having remarkable physical and 

chemical properties like gold nanoparticles (AuNPs) can provide additional functions to the 

established polymersomes. For this purpose, two different sized-AuNPs (5 and 10 nm) were 

incorporated to the polymersomes by using pre-loading and post-loading approaches as seen 

in Figure 4.5. The latter method is performed not only for testing the feasibility of the 

preparation technique but also to gain information about the pH controlled diffusion 

behavior as well as possible interactions between gold nanoparticles and the polymersome 

membrane.  

(a)                                                                                                 (b)      
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Figure 4.5 Schematic overview of the polymersome/gold nanoparticle preparation through 

(a) pre-loading approach and (b) post-loading approach. 

The pre-loading approach has been performed as similarly done for doxorubicin 

encapsulation in which gold nanoparticles were loaded during the self-assembly of mixed-

block copolymers. This approach functioned well for drug loading which did not disturb the 

self-assembly process for polymersome formation. However, some challenges have to be 

taken into account in the case of gold nanoparticle incorporation. Since AuNPs were 

provided in PBS buffer (0.1 mM), addition of this solution into dissolved block copolymers 

in acidic water lead to an increase in the salt amount that may cause size increase or even 

aggregates during the self-assembly process as shown previously on PEO-PDEAMA block 

copolymers.19 Therefore, the volume portions of acidic water for  block copolymer (BC) 

dissolution and AuNP solution in PBS buffer has to be balanced to perform a smooth self-

assembly process by keeping the BC concentration constant (1 mg/mL) like it was in the 

previous cases. Thus, two different molar ratios of AuNPs to block copolymers were used 

for the formation of polymersome/gold nanoparticle assemblies as shown in Table 4.1. 

Before proceeding to the detailed analysis with UV-Vis and DLS methods, the purification 

of all samples was performed by using HFF system with a transmembrane pressure of about 

1-AuNP addition, pH 5    2-Self assembly, pH 8

3- Photo 
cross-linking, pH 8

(a) Pre-loading approach: Transport of AuNPs during Self-Assembly Process

1- Swelling at pH 5   2-AuNP addition  3-Diffusion at pH 5   4- Shrinking back at pH 8          

(b) Post-loading approach: Transport of AuNPs by pH-Controlled Diffusion Processes
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150 mbar to remove the non-encapsulated gold nanoparticles. Herein, two HFF membranes 

were assessed to ensure the sufficient purification of larger-sized gold nanoparticles. Table 

4.1 summarizes these results by showing the UV-Vis data before and after the separation 

steps in which volume of the solutions was conserved.  Therein, the control experiment using 

only gold nanoparticle stock solutions were carried out with two kinds of filtration 

membrane. In both cases, no traces of gold can be detected by UV-Vis after HFF cleaning 

which is a sign of successful separation. However, the filtrate collected after separation did 

also not have reddish color. This may be due to the fact that the removed gold nanoparticles 

may stick to the waste tubes or filtration membrane after separation and it was not possible 

to take them into the filtrate solution. Although this led to an unclear outcome for the 

efficiency of the separation, the UV-Vis monitoring of before and after purification steps for 

polymersome/gold nanoparticle assemblies approved that the most part of non-integrated 

gold nanoparticles can be separated with this technique. Since both types of membrane 

showed similar performance, the one having a 750 kDa MWCO was chosen for the 

purification of all gold nanoparticle encapsulated polymersomes to avoid any polymersome 

loss with the 50 nm pore sized-separation module. 

Table 4.1 Purification of polymersome/gold nanoparticle assemblies by HFF method 

Code Molar Ratio 
[AuNP:BC] 

Molecular weight cut-offa 
[MWCO] 

Before HFFb 
[A at λmax] 

After HFFb 
[A at λmax] 

AuNP-10 only gold NP 750 kDa  0.71 ≤ 0.01 

0.05 µm  0.71 ≤ 0.01 

AuNP-5 only gold NP 750 kDa  0.51 ≤ 0.01 

0.05 µm  0.51 ≤ 0.01 

PS1-Au51 1.1 750 kDa  0.31 0.12 

PS1-Au54 3.8 750 kDa  0.28 0.14 

PS1-Au101 1.1 750 kDa  0.18 0.09 

PS1-Au104 3.8 750 kDa  0.24 0.14 

aHFF mebrane having 750 kDa MWCO and 0.05 µm pore size are made of modified 

polyethersulfone and polysulfone, respectively. bAbsorbance is detected at λmax=522 nm 

and λmax=525 nm for 5 and 10 nm AuNPs, respectively. 
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Eventually, the UV-Vis spectrum of PS1-Au54 and PS1-A104 after purification showed 

a clear SPR absorption at λmax=522 nm and λmax=525 nm, respectively (Figure 4.6, 4.7). 

Herein, the sign of polymersomes can be also seen at the spectral range of λ=220-400 nm. 

In addition, the DLS data of these polymersomes revealed that the gold nanoparticle 

encapsulation as well as the slight increase of salt amount due to the PBS buffer did not lead 

to a noticeable size variation as can be seen in Table 4.2. Although the PDI increased slightly 

in comparison to the pure polymersomes, the intensity size-distribution of the PS1-Au54 and 

PS1-Au104 (Figure 4.8) showed a single peak with a monodisperse distribution. Thus, it can 

be concluded that the higher amount of gold nanoparticle concentration resulted in a 

satisfactory encapsulation without encountering any self-assembly problems. For this 

purpose, the further investigations were performed using PS1-Au54 and PS1-Au104 

samples.  

 

Figure 4.6 UV-vis spectra of 5 nm sized-AuNP encapsulated polymersomes after HFF 

purification, (a) shows the whole spectra of the PS1-Au51 and PS1-Au54 polymersomes, (b) 

the enlarged area of the UV-Vis spectra showing the gold nanoparticle absorbance range. 
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Figure 4.7 UV-vis spectra of 10 nm sized-AuNP encapsulated polymersomes after HFF 

purification, (a) shows the whole spectra of the PS1-Au101 and PS1-Au104 polymersomes, 

(b) the enlarged area of the UV-Vis spectra showing the gold nanoparticle absorbance range. 

  

Figure 4.8 Intensity size distribution of gold nanoparticle encapsulated polymersomes 

through pre-loading method, PS1-A54 and PS1-A104, at pH 8. 

As known, one of the characteristic properties of gold nanoparticles are surface plasmon 

resonance (SPR) which leads to an absorption of visible light and makes them very attractive 

(b)

(a)
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for the applications including diagnostic tools and biomarkers.8-10 The SPR band is 

responsible for the red color of the gold nanoparticle solutions which is size-dependent and 

can be shifted even to the longer wavelengths yielding pale blue or purple solutions for the 

larger-sized gold nanoparticles. Therefore, it is important to monitor the SPR shift of the 

polymersome/gold nanoparticle assemblies to gain information about the aggregation 

phenomena.  As can be clearly implied, when AuNPs aggregate, their essential 

photochemical properties may be lost.  

 

Figure 4.9 The SPR monitoring with respect to time for only gold nanoparticles, AuNP-

10nm at λmax=525 nm, AuNP-5nm at λmax=522 nm, and polymersome/gold nanoparticles 

assemblies, PS1-Au54 at λmax=522 nm, PS1-Au104 at λmax=525 nm 

For this purpose, the time-dependent UV-Vis monitoring was performed to understand 

this behavior more in detail (Figure 4.9). The polymersome/gold nanoparticle solutions did 

not show a shift at the SPR band within 42 hours of storage period which means that there 

was no aggregation tendency of the encapsulated gold NPs. As a control, the spectrum of 

only gold nanoparticles was also measured. The SPR absorption loss after 42 hours was 

almost similar for PS1-Au104 and 10 nm gold nanoparticles which are 4.3% and 6.3%, 

respectively. In addition, the SPR absorption was decreased of about 8.7 % for PS1-Au54 

polymersomes and 2.1% for 5 nm sized gold nanoparticles. Although 5 nm-sized gold 

nanoparticles showed a slight better performance, these variations are not in a significant 

amount which demonstrated similar trend for both of the analyzed systems. There are 
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examples in literature in which gold nanoparticle loading into liposomes enhanced the 

stability of AuNPs by keeping the SPR absorption constantly up to 12 hours whereas the 

gold NPs without liposomes lost this unique property within the same storage period.20 

Although this is not the case for the analyzed system, polymersomes can be also utilized to 

avoid the aggregation of unstable gold nanoparticles. Thus, this SPR monitoring revealed 

that the polymersome/gold nanoparticle assemblies showed a stable phenomenon without 

facing any aggregation problems which is an important information for further 

investigations. 

Table 4.2 Specifications of polymersomes/gold nanoparticle assemblies 

Code Molar 
Ratio 

[AuNP:BC] 

Method Diametera 
[nm] 

PDIb Zeta potential 
[mV] 

pH8        pH 5 

PS1-Au51 1.1 Pre-
loading 

124.8±1.0 0.19±0.01 n.d n.d 

PS1-Au54 3.8 Pre-
loading 

128.2±1.6 0.20±0.01 6.6±1.3 22.9±0.4 

PS1-Au101 1.1 Pre-
loading 

113.9±1.3 0.25±0.01 n.d n.d. 

PS1-Au104 3.8 Pre-
loading 

116.6±1.2 0.24±0.01 6.8±0.5 24.2±1.0 

PS1-Au54P 3.8 Post-
loading 

133.9±1.4 0.27±0.02 2.5±0.1 17.2±0.3 

PS1-104P 3.8 Post-
loading 

127.4±1.2 0.22±0.02 0.1±0.5 21.3±0.7 

PS1 - - 120.0±1.6 0.20±0.03 5.0±0.9 23.7±0.4 

aHydrodynamic diameter is measured by DLS at pH 8. bPDI= polydispersity index of 

polymersome/gold nanoparticle assemblies that shows the size variation. 

As a next step, cryogenic transmission electron microscopy was conducted to visualize 

polymersome/gold nanoparticle assemblies. Although spectroscopic methods verified the 

incorporation of the gold nanoparticles into polymersomes, cryo-TEM imaging provides an 

information about the location of the nanoparticles within the polymeric vesicles (Figure 

4.10). As can be inferred, this also enables a direct picture of the shape and morphological 
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changes if present. The first outcome of PS1-Au54 and PS1-Au104 imaging was that the 

pre-loading approach did not disturb the final morphologies in a significant manner although 

a few overlapped and collapsed structures were observed when analyzing many cryo-TEM 

micrographs. In addition, Figure 4.11 and 4.12 confirm the successful gold nanoparticle 

encapsulation in which up to 13 AuNPs can be hosted by a single polymersome particle. 

These micrographs also show that the AuNPs can be placed at different locations within the 

polymersomes as illustrated in Figure 4.10. 

 

Figure 4.10 Scheme of the possible AuNP positions in polymersomes after the uptake 

process in which they can be located at the outer (1) or inner (3) hydrophilic part of the 

bilayer membrane, and are stuck/embeeded within the hydrophobic region (2) and finally 

can be guided into the aqueous lumen (4). 

It should be noted that although hydrophilic gold nanoparticles are expected to be in 

contact with hydrophilic corona or placed at the aqueous lumen, the AuNPs may be stuck at 

the hydrophobic vesicle wall as well. This phenomenon can relate to molecular interactions, 

but can relate also to thermodynamic equilibrium of final self-assembled structures as well 

as the size ratio between AuNPs and the membrane thickness.21-22 Xu et al. has already 

shown that the escape of gold nanoparticles from polymeric vesicle walls in spherical 

micelles is an entropy-driven phenomena.22 By keeping this in mind, the charge of the 

particles should indeed have a role in this placement since polymersome membrane contains 

PDEAEM groups. For this purpose, the zeta potential of PS1-Au54 and PS1-Au104 samples 

AuNP Uptake

Possible AuNP
Positions 

1 2

34



97 
 

as well as individual gold nanoparticle solutions and polymersomes were measured at pH 8 

and pH 5 condition as seen in table 4.2. Gold nanoparticles are highly negatively charged in 

both acidic and basic states which are having ζ potential of -19.3±2.7 and -25.3±2.4 for 5 

nm and 10 nm sized-AuNPs, respectively. Although polymersome/gold nanoparticle 

assemblies are almost neutral at pH 8, they became highly cationic at acidic condition. In 

this manner, it is possible that some AuNPs electrostatically interacted with the polymeric 

chains when added to the solution at pH 5 during self-assembly process which were then 

freed by increasing the pH to a basic state and form the polymersomes. However, some of 

them may still be stuck in the hydrophobic membrane and cannot escape due to the 

interactions and energetic reasons as well as the geometrical considerations as mentioned 

previously. In order to clarify this claim, post-loading approach was performed which gives 

more information about the physical interactions of gold nanoparticles and polymersomes 

since in this approach AuNPs are added after forming the vesicles.  

 

Figure 4.11 cryo-TEM micrographs of PS1-Au104 polymersomes at pH 8. (a,b) AuNPs 

(~10 nm) were placed at the outer (1) or inner (3) hydrophilic part of the membrane and 

guided into the aqueous lumen (4). (c) AuNPs were placed at the interphase of shell and the 

hydrophilic corona. (d) This image shows the maximum number of AuNP incorporation into 

one single polymersome and exemplifies the embedded AuNPs at the hydrophobic 

membrane (2). 

100 nm 100 nm

100 nm

(a) (b)

150 nm
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Figure 4.12 cryo-TEM micrographs of PS1-Au54 polymersomes at pH 8. (a,b) AuNPs (~5 

nm) were placed at the outer (1) or inner (3) hydrophilic part of the bilayer membrane and 

are stuck within the hydrophobic region of the membrane (2) as well as guided into the 

aqueous lumen (4).  

In order to form polymersome/gold nanoparticle assemblies by means of post-loading 

approach, gold nanoparticle solutions were added to the pre-formed polymersomes at acidic 

condition (pH 5) and the resulting mixture was stirred for an hour to provide sufficient time 

for the uptake process before increasing the pH to the basic state (pH 8) (Figure 4.5). Herein, 

no purification was applied since the target was to lighten up the AuNP-polymersome 

interactions and monitor the diffusion of the larger-sized particles into polymersome lumen. 

Therefore, the PS1-Au54P and PS1-Au104P samples were directly visualized by cryo-TEM 

as shown in Figure 4.13. The DLS analysis showed a similar trend like the samples obtained 

by pre-loading approach and the polymersomes have monodisperse distribution with slight 

increase in PDI as shown in Table 4.2 and Figure 4.14. Herein, the polymersome 

morphologies were less disturbed in comparison to the pre-loading approach as monitored 

by several cryo-TEM micrographs.   

The final investigation of this part was the comparison of two approaches by determining 

the AuNP fraction within the polymersomes. Herein, several polymersomes having gold 

nanoparticles were analyzed from many cryo-TEM micrographs and the number based ratios 

are given in Table 4.3. Although pre-loading approach enabled more gold nanoparticle 

incorporation, the trend of the AuNP internalization was similar for both techniques. Another 

essential result was that 5 nm sized AuNPs could easily diffuse into the polymersome lumen 

and only 24.5% of the integrated gold nanoparticles were placed at the outer hydrophilic 

corona. However, this efficiency was decreased for 10 nm-sized gold nanoparticles. Most of 

the particles were internalized at the outer region or stuck in the membrane. Only a few of 

200 nm 200 nm

(a) (b)

2

1

4
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them diffused into the polymersome lumen. This result showed that the AuNP diffusion into 

the vesicles is size-dependent as expected but not limited by electrostatic interactions. Since 

the smaller AuNPs can be easily transported into the polymersome lumen with post-loading 

approach, it can be concluded that the highly negatively charged gold nanoparticles can be 

freed when changing the charge of the polymersomes from cationic (pH 5) to neutral (pH 8) 

and are not embedded at the outer region of the polymersome membrane due to the 

electrostatic interactions. As proposed previously, the internalization of AuNPs within the 

polymersomes is triggered randomly and only a few of them were interestingly stuck at the 

hydrophobic membrane that may be due to geometrical and energetic reasons like size 

dependence or the entropic effect. 

 

Figure 4.13 cryo-TEM micrographs of PS1-Au54P and PS1-Au104P polymersomes at pH 

8. (a,b,c) AuNPs (~5 nm) were placed at the outer (1) or inner (3) hydrophilic part of the 

membrane and guided into the aqueous lumen (4). (d) AuNPs (~10 nm) were placed at the 

outer hydrophilic region of the membrane (1).  
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Table 4.3 AuNP fraction of the polymersome/gold nanoparticle assemblies determined from 

cryo-TEM micrographs 

Code Method AuNP 
Fractiona 

[NAuNP : NPS] 

Position Related 
AuNP Fractionb 

[NAuNP%] 

max[NAuNP] 
in single PSc 

1 2 + 3 + 4  

PS1-Au54 Pre-loading 441:148 = 3.0:1 15.6 84.4 9 

PS1-Au104 Pre-loading 311:148 = 2.1:1 18.0 82.0 13 

PS1-Au54P Post-loading 184:69 = 2.7:1 24.5 75.5 9 

PS1-104P Post-loading 113:69 = 1.6:1 39.0 61.0 4 
aNAuNP and NPS represent the total number of gold nanoparticles integrated with total number 

of polymersomes, respectively. b1-4 is defined in Figure 4.10 and marked with arrows in the 

cryo-TEM micrographs of the corresponding samples (Figure 4.11, 4.12 and 4.13) which 

were calculated with respect to the total number of AuNPs integrated with polymersomes 

(NAuNP). cThis value represents the maximum number of AuNPs hosted by single 

polymersome particle detected for each sample.  

 

Figure 4.14 Intensity size distribution of gold nanoparticle encapsulated polymersomes 

prepared with post-loading method, PS1-A54P and PS1-A104P, at pH 8. 
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4.4 Summary 

In conclusion, the hosting capacity of the established polymersomes as nanocontainers was 

assessed by incorporation of 5 to 10 nm sized gold nanoparticles as well as doxorubicin 

molecules as an anticancer drug. The first applied method for encapsulation of the cargos 

was the pre-loading approach in which the doxorubicin or gold nanoparticles were loaded 

into the azide and adamantane decorated polymersomes during self-assembly of the block 

copolymers. This method allows increased loading efficiency where many particles can be 

trapped inside of the polymersomes during formation as demonstrated by combination of 

different characterization techniques for both doxorubicin molecules and gold nanoparticles. 

The drug encapsulation was proceeded by the sequential post-conjugation steps to form 

the dual responsive polymersomes in the presence of a carrier. As already shown in chapter 

3, the photo-cleavage process caused a decreased swelling ratio for the established 

polymersome system. Since the focus of this chapter is to understand the hosting ability by 

means of permeability and diffusion limits, pH-dependent drug release was performed for 

both PS1C-Dox and PS1D-Dox polymersomes. An almost similar amount of drug release at 

acidic state within 140 hours (53%, PS1C-Dox, and 51%, PS1D-Dox) proved the sufficient 

permeability for the polymersome membrane from the perspective of drug delivery 

applications. This result also supports the claim that the diffusion of the molecules through 

the membrane can be adjusted by combining pH sensitivity and cross-linking.  

Furthermore, larger-size gold nanoparticle (5 nm and 10 nm) encapsulation through pre-

loading approach was also demonstrated which can provide additional functions to the 

established polymersomes due to the unique optical characteristics of gold NPs like surface 

plasmon resonance and second harmonic generation. Although these potential applications 

were not evaluated in this chapter, the encapsulation of these smart particles into 

polymersomes gave new insights about the limitations of such colloid formation including 

the location based-analysis caused by size-dependence and energetic reasons. Although pre-

loading approach gave sufficient encapsulation efficiency, it did not provide the information 

about the membrane permeability for these larger sized particles in comparison to drug 

molecules. Another issue here was to lighten up the electrostatic interactions of AuNPs 

within the polymersome membrane. For this purpose, the post-loading approach was applied 

in which gold NPs were added to the polymersome solutions at swollen state when the 

porous membrane was formed. Therein, 5 nm sized AuNPs can diffuse through the 
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polymersome membrane with a high efficiency whereas this performance was considerably 

decreased for 10 nm sized AuNPs. Among the analyzed particles of 10 nm sized AuNPs, 

39% of them have been already located at the outer region of the membrane and only 29% 

of them can totally diffuse inside and are located at the inner region without sticking to the 

membrane. This result underlines the permeability as well as the pH-dependent diffusion 

limits of the established polymersome membrane from both drug delivery perspective and 

larger-size smart nanoparticle incorporation.  

Overall, probing hosting capacity of the polymersomes showed that these vesicles can 

be utilized to encapsulate several particles to act as smart nanocarriers depending on the 

application purpose by means of pre-loading or post-loading approaches. Besides, the gold 

nanoparticle incorporation can be used for signal marking to make the established 

polymersomes visible to be employed in designing sensing devices for diagnostic tasks.  
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5 Immobilized-Multifunctional Polymersomes on Solid Surfaces 

5.1 Introduction 

Fixing polymersomes onto surfaces is in high demand not only for the characterization with 

advanced microscopy techniques but also for designing specific compartments in 

microsystem devices in the scope of nanobiotechnology. Unlike liposomes, the use of 

polymersomes for such purposes is not widely investigated so far. However, the sufficient 

accessibility and reactivity of the established multifunctional polymersomes can be favored 

to conjugate bio/chemo recognition elements for sensing purposes to design microsystem 

devices. Relying on the light responsive nature of the fabricated polymersomes, such 

recognition processes can be mimicked through photochemical reactions on solid surfaces. 

In addition, the hosting ability of the polymersomes as nanocontainers can be utilized to 

encapsulate the signal markers like enzymes or gold nanoparticles as investigated, to 

function as signal amplifiers for designing sensing devices. Similar approaches have been 

already used in liposome based biosensors for detection of nucleic acids,1 antibodies2 or 

large biomacromolecules.3 However, as known, polymersomes show an enhanced stability 

as well as reduced permeability in comparison to the liposomes which encounter problems 

like higher diffusion through the membrane, lack of rigidity and lipid oxidation.4-5 In this 

regard, it is really worthwhile to investigate the potential of polymersomes to design robust, 

responsive and reactive surfaces for the fabrication of microfluidic devices. This can also 

give the opportunity to use polymersomes as cell membrane model to provide more insight 

about complex natural biomacromolecule interactions.  

In order to reach the mentioned goals, immobilization of polymersomes onto suitable 

surfaces is necessary. Most reported vesicle immobilization methods are based on direct 

adsorption onto silicon or mica substrates via unspecific and/or electrostatic interactions.6-9 

Only a few of the reported strategies focused on more controlled ways of immobilization 

strategies such as biotin-streptavidin conjugations10-11 and covalent attachment through 

vesicles having aldehyde end groups onto aminated glass surfaces.12 Due to the proven 

affinity of adamantane groups on polymersome surface to the β-cyclodextrin molecules, the 

same chemistry is adapted into this chapter for polymersome immobilization. In addition, 

the high association constant (104 to 105 M-1)13-14 of such host-guest interactions is believed 

to provide stable binding of the polymersomes on solid substrates. Once surface immobilized 

polymersomes have been achieved, further insights can be obtained such as understanding 
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the responsive behavior of the polymer membrane not only in the freely diffusing case but 

also under several physical constraints and simulating specific interactions. As can be 

inferred, interactions between the vesicle membrane and its surrounding play an essential 

role for the application of these nanovesicles in various fields. 

Hence, this chapter is already published15 and firstly deals with the surface 

immobilization of multifunctional and photo-crosslinked polymersomes as shown in Figure 

5.1. The second investigation is tuning the adhesion properties of the polymersomes by 

varying the attractive forces on β-CD coated substrates. This study is aimed for gaining 

information about the shape deformation of the vesicles when adhering to the surfaces. This 

is obviously significant not only for mimicking cellular adhesion but also for the conjugation 

of these vesicles to other systems like gel particles or polymeric microchannels. The further 

steps focus on the pH and light sensitive nature of these surface-bound smart vesicles in 

which the latter one also provides photo-patterning by NIR induced photoreactions through 

two photon absorption mechanism. This nonlinear optical phenomenon enables to reach the 

final excited state of the molecules using photons of half the energy leading to a very 

localized reaction area. Furthermore, the attachment of model fluorescent compounds 

mimicking biorecognition molecules into locally released amine groups on polymersome 

surface by IR trigger is also discussed to fulfil the aimed concept for designing microsystem 

devices in the scope of biomedical applications.  

 

Figure 5.1 Schematic overview of polymersome immobilization by adamantane-β-

cyclodextrin host-guest complexation leading to spherical cap like shapes on the surface and 

further steps including tuned-adhesion properties, pH swellable surfaces and NIR induced 

photochemical reactions 
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5.2 Preparation of β-cyclodextrin Coated Substrates 

The preparation of β-cyclodextrin coated substrates (S2, S3) was performed by applying a 

two-step route as shown in Figure 5.2. The process started with the formation of 3-

glycidyloxypropyltrimethoxysilane (3-GPS) self-assembled monolayers (SAMs) on the 

substrate. To realize this modification step, the Si wafers or glass slides were firstly activated 

with plasma cleaning followed by the treatment with 1 vol% epoxy silane solution in toluene. 

The chosen concentration as well as the deposition time and temperature play an important 

role to have a smooth monolayer formation.16-17 A previous report by Luzinov et al. 

investigated the effect of several parameters on 3-GPS SAMs fabrication. By analyzing SPM 

images, contact angles and thickness values of the epoxysilane films, it was observed that 

the decrease of the solution concentration below 1 vol% resulted in a globular aggregate 

formation.17 Therefore, this work was taken as the base for SAMs preparation to have a 

homogeneous layer formation.  

 

Figure 5.2 Precoating steps to prepare β-cyclodextrin modified substrates (S2, S3) and 

further PEG passivation on S3 surface by postulated PEG threading into the cavity of 

cyclodextrin. 

As seen in Table 5.1, the values for advancing contact angles of the epoxy silane films 

show as expected the hydrophilic character of the layers and are consistent with the 

previously reported studies.16, 18 The low deviation in the 15 repeated (5 samples at 3 
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different regions) measurements supports both homogeneity and the reproducibility for the 

SAMs layer. In addition, AFM analysis was conducted to gain more information about the 

surface morphology of the monolayers. The topography images of the 3-GPS coated Si wafer 

showed a smooth layer without any aggregates having a roughness of about 0.4 nm (Figure 

5.3, Table 5.1). This result is also consistent with the thickness values obtained by 

ellipsometry measurements. As seen in Table 5.1, the thickness of the 3-GPS layer was 1.25 

nm which is close to the extended length of the epoxysilane molecules (0.95 nm) estimated 

from computer models applied by Luzinov et al.17 

Table 5.1 Characterization of the self-assembled monolayers 

Code Coating        ƟAa [H2O, deg]      ƟR a [H2O, deg] Thicknessb         
[nm] 

Roughnessc

[nm] 
Si wafer        Glass  Si wafer        Glass 

S1 3-GPS 61.0±1.1 61.6±1.1 40.3±1.4 33.4±1.3  1.25±0.05 0.41±0.02 
S2 β-CD  

[1 mM] 
51.2±1.9 50.7±1.9  30.1±2.2 33.8±1.8  1.05±0.28 0.40±0.11 

S3 β-CD 
[0.1 mM] 

52.0±2.1 50.4±2.2  34.1±3.3 32.3±2.5  1.03±0.27 0.50±0.14 

S4 PEG 
passivated 
S3 surface 

48.1±7.3 n.d. 22.6±3.1 n.d. n.d. n.d. 

aAdvancing (ƟA) and receding (ƟR) water contact angles. bThickness determined by 

ellipsometry measurements. aAverage roughness (Ra) determined by AFM 

As a next step, the β-cyclodextrin molecules with amino end groups reacted with the 

available epoxy functionalities on the surface (Figure 5.2) to obtain the aimed substrates for 

the immobilization of adamantane-decorated polymersomes. It is very common to utilize 

epoxide-amine ring opening reactions in material science due to the ease of chemistry as 

well as high conjugation yields at mild reaction conditions.19 For instance, a similar 

conjugation was realized in a previous study by simply rinsing NH2-β-CD aqueous solution 

on top of a 3-GPS coated Mach-Zehnder interferometer at room temperature.20 To avoid an 

uncontrolled reaction and thus multilayer or aggregate formation on the surface,  it was 

chosen  to perform this coating at room temperature using the mono-amino-terminated CD 

molecules at two different concentrations (0.1 mM and 1 mM in phosphate buffer at pH 8). 

The decrease in the advancing contact angles revealed the clear change of the surface 

hydrophilicity as expected after β-CD coating (Table 5.1). The angle of about 51ο together 
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with the determined 1 nm ellipsometric thickness corresponds to a successful monolayer 

fabrication which is in agreement with the previous reported studies.21-22 It is also important 

to mention that the β-CD cavity has a height of 0.78 nm20 which is very close to the measured 

ellipsometric thickness. During the optimization of this coating step, it was observed even 4 

to 7 nm thickness values at other modification parameters like the use of higher 

concentration of β-CD molecules. Therefore, 1 nm is a reasonable result to assume that the 

cavity of the β-CD molecules is positioned on the upper side of the surface (Figure 5.2) 

which is necessary for the host-guest inclusion formation during polymersome 

immobilization as previously reported by many groups.20, 22 The AFM topographical 

imaging shows that the surface roughness increases when β-CD content is decreased (Figure 

5.3, Table 5.1). However, both S2 (Ra=0.4 nm) and S3 (Ra=0.5 nm) substrates show 

satisfactory smoothness to perform polymersome immobilization as the next step.   

 

Figure 5.3 Tapping-mode AFM height image of (a) the plasma activated silicon wafer, (b) 

3-GPS SAMs layer, S1, (c) β-CD coated layer, S2. 

The final surface for polymersome immobilization was prepared by passivation of the 

β-CD coated surfaces (Table 5.1, S3) with poly(ethylene glycol) (PEG) molecules. 

Poly(ethylene glycol) has been widely used to obtain protein-resistant surfaces by utilizing 

them as passivation agent in various fields.23-24 Therefore different concentrations of PEG 

molecules (MeO-PEG-NH2, Mn:750 g/mol) were prepared to decide the optimum condition 

by simply inspecting the surface hydrophilicity. Herein, the substrates were analyzed by 

contact angle measurements from different regions to see the deviation. The successful 

surface passivation was found for the highest concentration (0.25 mM, S4, Table 5.1) where 

the average contact angle of the surface was found as 48.1±7.3o.  However, the other two 

passivation concentrations (0.11 mM, 0.05 Mm) did make any considerable change in the 

surface hydrophilicity. As can be implied that the surface heterogeneity increased since the 
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receding contact angle was reduced from 34.1 ± 3.3ο to 22.6±3.1ο (Table 5.1). Since blocking 

all cyclodextrin molecules on the substrate was not desired, the PEG concentration was not 

increased anymore and this surface (S4) was used in polymersome immobilization together 

with other β-cyclodextrin coated surfaces (S2, S3). 

5.3 Polymersome Immobilization  

The chosen conjugation chemistry to attach polymersomes onto solid surfaces was the well-

known adamantane-β-cyclodextrin host-guest interaction mechanism13-14 as previously 

applied using PS1 polymersomes and β-CD molecules (chapter 3). To trigger this non-

covalent attachment, the adamantane functionalized polymersome (PS1) was prepared again 

by simply mixing the suitably end modified block copolymers (Figure 5.4, BC1-BC3) and 

let them self-assemble via pH switching method.25 As a reminder for this chapter, the 

previously described block copolymer structures for self-assembly can be seen in Figure 5.4.  

In addition, the light responsive polymersomes having NVOC moieties were also favored in 

immobilization study to try out IR-induced photochemical reactions on surfaces. Thus, the 

polymersomes used in this chapter are summarized in Table 5.2. Therein, the size 

distributions of the resulting polymersomes measured by DLS and the ratios of the functional 

groups of all polymersomes are stated.  

    Table 5.2 Specifications of polymersomes used for immobilization studies 

aThese values represent the functionalities only at the outer surface of the membrane and 

determined according to the estimated conjugation efficiency of NVOC groups (chapter 3). 
bPDI = polydispersity index of polymersomes that shows the size variation. 

Polymersome   Functional groups [mol%] Diameter[nm] PDIb 

N3 NVOCa Ada   

PS0 - - - 117±1.1 0.19±0.03 

PS1 29.0 - 9.2 120±1.6 0.20±0.03 

PS1C 21.3 7.7 9.2 117±0.2 0.20±0.01 

PS3 90.8 - 9.2 116±0.4 0.20±0.01 

PS3C 66.7 24.1 9.2 119±0.1 0.19±0.02 
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Figure 5.4 The illustrative scheme of the surface-immobilized polymersomes showing the   

chemical structure the used block copolymers in polymersome formation 

Afterwards, incubation of the prepared polymersomes (PS1) with the cyclodextrin 

coated surfaces by constant stirring led to the surface-bounded polymersomes (Table 5.3) 

which were then rinsed 3 times with PBS buffer (pH 7.4) to remove any unbounded vesicles 

from the surface. This way of immobilization (constant stirring) was selected to avoid any 

aggregated structures on the substrate due to immobilization procedure. Before proceeding 

to further investigations, the first step was to ensure the successful immobilization with a 

suitable technique. A typical way to analyze such surface-immobilized vesicles is to use in-

situ AFM under a liquid droplet (liquid-AFM) which enables the visualization of assembled 

supramolecular structures in the wet state. Although liquid-AFM is very advantageous to 

image the polymersomes in their native environment, the possible deformation of the 

relatively soft particles during the measurement has to be kept to a minimum.  For this 

purpose, AFM studies were conducted at peak force tapping mode which allows precise 

control over the probe sample interaction with the lowest available forces and highest 

resolution imaging in comparison to conventional tapping mode measurements.26-27 This 

clearly helps to maintain the polymersome integrity and avoids the dislocation of the sample 

due to high shear forces during liquid-AFM measurements. In this regard, the presence of 

polymersomes, captured on pre-coated silicon wafers in a fluid cantilever holder at pH 7.4 

BC3

BC2
BC1
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PBS buffer, is confirmed by the corresponding AFM images (Figure 5.5) The selection of 

this pH value was to mimic the physiological conditions as well as to work under conditions 

where the membrane of the vesicles is not permeable. The AFM analysis of β-CD coated Si 

wafer at identical conditions in wet state was also performed to compare it with 

polymersome-incubated surfaces (Figure 5.5a). As clearly observed in the topography 

images (Figure 5.5b-d), the particles present are the deposited polymersomes on β-CD 

surfaces and these are now ready for further analysis.  

 

Figure 5.5 (a) Peak force tapping mode liquid-AFM height image of β-CD coated layer (S3) 

at pH 7.4. (b) small area of PS1-S2 polymersomes (PS1 on S2 surface) at pH 7.4, and (c) at 

pH 5 in swollen state. (d) small area of PS1-S3 polymersomes (PS1 on S3 surface) at pH 7.4 

5.4 Tuning Adhesion Properties of the Immobilized Polymersomes 

After achieving the polymersome fixation onto solid substrates, the question how these 

particles behave upon different adhering surfaces was raised. Because it is a common 

phenomenon to encounter a deformation or even rupture of such vesicles including 

liposomes and polymersomes during an immobilization process. Several investigations show 

that binding a spherical vesicle to a solid substrate often ends up with either spherical caps 

or bilayer structures depending on the degree of interaction between the adsorbed vesicle 

and the surface.7-10, 12 For this purpose, the immobilization of adamantane functionalized 
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polymersome (PS1) was carried out using cyclodextrin coated substrates having different 

level of surface coverage as can be seen in Figure 5.6 and Table 5.3. 

      Table 5.3 Adsorption behavior of PS1 polymersomes on β-CD coated surfaces 

Codea Heightb [nm] D/Hc 

pH 7.4          pH 5 pH 7.4                            pH 5 

PS1-S2 42 64 2.30±0.56 1.73±0.46 

PS1-S3 52 85 1.89±0.13 1.41±0.18 

PS1-S4 70 n.d 1.36±0.15 n.d. 
  aRepresents the immobilized polymersomes on S2 to S4 surfaces having different β-CD                  

coverage (see Table 4.1). b,cRepresents the average height and the average ratio of diameter 

to height values obtained several particle analyses from AFM micrographs. 

In this regard, the first assessment was to define the shape geometry of the immobilized 

polymersomes for each surface. Several well-isolated particles visualized by liquid-AFM 

were analyzed to obtain the height and diameter values of the vesicles at pH 7.4 condition. 

From Figure 5.6d and e, one can conclude that the height of the polymersomes has a linear 

relationship with the diameter for both of the samples (PS1-S2, PS1-S3). This is a logic 

finding which is in agreement with a previous study where biotinylated-polymersome 

immobilization onto streptavidin coated substrates was investigated by Battaglia et al.10 The 

analysis also gave the opportunity to calculate the average diameter to height ratio of the 

PS1-S2 and PS1-S3 samples (statistics for about 150 well isolated particles) which are 

2.30±0.56, and 1.89±0.13 respectively (Table 5.3, Figure 5.6d and e). This was the first 

indication to imply that the polymersomes were laying on the surface as spherical caps. 

However, in the analysis of PS1-S2 surfaces, some flat-like structures having heights of 21 

to 23 nm and diameters of 66 to 73 nm have been observed. Since the thickness of the 

polymersome membrane was found as 18.6 nm from cryo-TEM studies (chapter 3), it is 

assumed that these structures may have rearranged to a bilayer structure rather than being 

spherical caps. Thus, polymersomes tend to spread more strongly on the substrate which has 

more cyclodextrin on it (S2). In addition, the average height of the polymersomes increased 

from 42 nm (PS1-S2) to 52 nm (PS1-S3) when immobilized to less-concentrated 

cyclodextrin-coated substrate (S3) (Figure 5.6 d and e). This was another evidence to 
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indicate that a more active surface led to more spreading as well as flattening of the 

immobilized polymersomes. A possible explanation to this fact is that the higher amount of 

attractions between adamantane and cyclodextrin molecules from different sections of the 

polymersome membrane caused a higher deformation in the shape. This is in agreement with 

a previous report where the flattening effect of surface activeness on (PDMS-b-PMOXA) 

vesicles adsorbed on oxidized Si wafers and mica substrates was explored.7 This behavior 

was also supported by another study which showed that the increasing molecular recognition 

between streptavidin layers and biotinylated-liposomes induced a height decrease in the 

vesicle structures.28 

 

Figure 5.6 Peak force tapping mode liquid AFM height image of PS1-S3 (a) and PS1-S2 (c) 

polymersomes at pH 7.4 condition, (b) 3D-image of the marked region of the PS1-S3 

polymersomes. Height vs diameter relationship for (d) PS1-S2 and (e) PS1-S3 

polymersomes (inset schemes: 3D image of a single polymersome illustrating the shape 

variation due to the different adhering forces on S2 and S3 surfaces)  

Furthermore, particle size distributions of the surface-immobilized polymersomes were 

compared with the data obtained from cryo-TEM analysis (Figure 5.7). Since polymersomes 

have adopted a shape of spherical caps once attached to the surface, the diameter value 
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acquired from AFM was not representing the diameter of the corresponding sphere. 

Although PS1-S3 polymersomes showed a trend to be adsorbed almost as hemisphere, the 

condition was not the same for PS1-S2 polymersomes. Therefore, the diameter of the 

undisturbed polymersome was derived via simple geometrical calculations from the 

following equation to represent the equivalent spherical dimension for a more precise 

comparison with cryo TEM as well as DLS results of the PS1 vesicles.  

2 20.25
2sphere

W HR
H


 ; W=width, H=height, R=radius                                                       (5.1)                                                                                                                  

Figure 5.7 represents this particle size distribution in comparison with the dimension 

obtained from cryo-TEM micrographs. Both techniques show a quite good agreement by 

having a similar trend in the size histograms as well as exhibiting almost identical average 

sphere diameters obtained from AFM (100 nm) and cryo-TEM (103 nm) analysis. Although 

there is a small difference between the mentioned methods and the DLS results (120 nm, 

Table 5.2), the similarity of all analysis revealed that the possible leakage of the liquid from 

the interior region of the polymersome during immobilization process was not of a 

significant level. A similar behavior was reported previously in which (PDMS-b-PMOXA) 

vesicles had an average radius of 135 nm from AFM and 153 nm from DLS analysis.7  

 

Figure 5.7 (a) Peak force tapping mode liquid-AFM height image and (b) cryo TEM image 

of a single polymersome, (c) AFM and cryo-TEM measured particle analysis. 
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(a)                                                                     (b)                                              

(c)                                                                                                       (     )
(     )



116 
 

The final investigation of this part was to analyze the shape of PS1 polymersomes on 

PEG-passivated β-CD surfaces (S4, Table 5.1, Figure 5.2). The idea behind this step was to 

block some of the β-cyclodextrin groups by threading of PEG chains as well as to avoid any 

other possible non-specific interactions on the surface. The analysis of several particles for 

PS1-S4 polymersomes (Table 5.3, Figure 5.8) showed that the average height increases 

significantly to 70 nm with an average sphere diameter of about 103 nm. This matched 

perfectly well with the PS1-S3 samples as well as the cryo-TEM results of PS1 

polymersomes. Furthermore, the diameter to height ratio was decreased to a value of 

1.36±0.15 as seen in Table 5.3. Herein, it was possible to analyze more particles (about 211) 

since polymersomes could interact with the surface more specifically which allowed the 

attachment of well isolated polymersomes. It is believed that this passivation also helps to 

decrease the vesicle-vesicle interaction29-30 and thus, reduces polymersome aggregates on 

surface. 

 

Figure 5.8 (a) Peak force tapping mode liquid AFM height image of PS1-S4 polymersomes 

at pH 7.4 condition (b) Height vs diameter relationship for PS1-S4 polymersomes (inset 

scheme: 3D image of a single polymersome illustrating the shape variation due to the 

different adhering forces on S4 surface). 

As a control experiment, polymersomes without any adamantane groups were 

immobilized onto β-CD (S3) coated surfaces to clarify the nonspecific interactions. Herein, 

few polymersomes devoid of adamantane groups adsorb on the cyclodextrin layer (S3) 

which resulted in even large aggregates as visible in the image (Figure 5.9). This is in line 

with the previously described study for non-confined polymersomes (chapter 3) indicating 

that PEG chains in the polymersome corona may interact to some extent with the cavity of 
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β-cyclodextrin compounds. Such behavior between PEG and α-cyclodextrin molecules was 

also reported by various groups.31-32 To have an opinion about the level of shape change in 

this kind of nonspecific interactions, the particles excluding the aggregates were analyzed as 

done similarly for the previous samples.  The average diameter to height ratio was found as 

2.78±0.82 with an average height of about 36 nm (Figure 5.9) which results in more 

flattening due to random and uncontrolled adsorption of polymersomes on the surface 

 

Figure 5.9 (a) Peak force tapping mode liquid AFM height image of PS0-S3 polymersomes 

(PS0 on S3 surface) without adamantane groups at pH 7.4 condition (b) Height vs diameter 

relationship for PS0-S3 polymersomes.  

Thus, it can be concluded that firstly, although polymersome immobilization is induced 

by host-guest complexation mechanism, a small contribution of nonspecific interactions is 

also involved in the process like it has been shown also for biotinylated liposomes on 

streptavidin monolayers.28 Secondly, the vesicles are pulled more strongly by the more 

active surface which in turn leads to a more significant change in the shape of the 

polymersomes during the immobilization. Using a surface passivation with PEG and having 

a low amount of cyclodextrin moieties significantly helps to obtain intact and isolated 

polymersomes in a half-spherical shape on a surface. 

5.5 pH-Responsive Surface-Immobilized Polymersomes 

As already explored, combination of pH sensitivity and cross-linking provides tunable 

membrane permeability to this multifunctional polymersome system with a swelling ability 

at acidic pH due to protonation of the poly(2-(diethylamino)ethyl methacrylate) block of the 

crosslinked membrane (Figure 5.1). This behavior should be noticeable in surface-
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immobilized polymersomes as well and is favored to use these smart particles in microfluidic 

devices. For this purpose, PS1-S2 and PS1-S3 samples (Table 5.3) were visualized in acidic 

condition (pH 5) to see the response of the surface- immobilized vesicles towards pH 

stimulus. Figure 5.10 shows the AFM images as well as the particle size distribution for both 

samples at pH 5.  From several particle analyses, it is seen that the average height of PS1-S2 

and PS1-S3 vesicles increased to 64 nm and 85 nm, respectively. This indicates a swelling 

ratio of about 53% and 63 % in z-direction whereas the diameter of the particles rose 3 times 

less than the height. It clearly implies that polymer chains can repel more freely in z direction 

than in the lateral direction. Such behavior can be attributed to the competition of forces 

acting on vesicles within the different directions.  It is believed that the adhesion forces, 

which act in the lateral direction, cause a higher tension within the membrane. This was also 

mentioned in theoretical studies of Lipowsky and Seifert.30, 33 The adhesive forces hamper 

the repelling of polymer chains which leads to a reduced swelling ratio in lateral direction 

of about 17% for PS1-S2 and 21% for PS1-S3, as illustrated in Figure 5.10d and e. Besides, 

the higher height value as well as the higher swelling ratio of PS1-S3 compared to PS1-S2 

supports the previous assumption that the decreased cyclodextrin coverage on the surface 

leads to lower adhesion forces and therefore enables a better swelling of the polymersomes 

at acidic condition. It has to be emphasized that the retained pH responsivity of the surface-

bound polymersomes combined with a high stability at acidic state is well matching with the 

undisturbed and non-confined polymersomes shown in the previous sections (chapter 3). 

Therein, the DLS analysis showed that the average hydrodynamic radius of the freely 

diffusing polymersomes in solution rose about 44% at pH 5 condition. The small difference 

in average swelling ratios from DLS and AFM is simply due to the confined state of 

polymersomes in the latter method. Besides, although numerous polymersomes (149 for 

PS1-S2, 148 for PS1-S3) were analyzed in AFM studies, DLS investigation enables a large 

scattering area in which a much higher number of particles is analyzed. However, no matter 

what, one can state that wet-state AFM is a very suitable tool to analyze swelling in surface-

immobilized polymersomes and gives comparable results to DLS studies for non-

immobilized counterparts. Thus, the clear outcome of this investigation was that the swelling 

power of the membrane of an immobilized polymersome is basically fully retained even 

though an asymmetric swelling is observed due to the surface confinement in lateral 

direction. 
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Figure 5.10 Peak force tapping mode liquid AFM height image of (a) PS1-S3 and (c) PS1-

S2 polymersomes at pH 5 condition. (b) 3D-image of the marked region of the PS1-S3 

polymersomes. Height vs diameter relationship for (d) PS1-S2 and (e) PS1-S3 

polymersomes at pH 5 (inset schemes: representative shapes of polymersomes showing the 

distinct swelling ratios due to the different adhering forces on S2 and S3 surfaces as well as 

in different directions) 

5.6 Infrared Light Induced Photochemical Reactions  

To realize light responsivity of the surface-immobilized polymersomes, the previously 

described light responsive polymersomes were utilized in the current study in collaboration 

with Dr. Philipp Reichenbach (TU Dresden, IAPP) in the scope of an interdisciplinary 

project (SPP1327, DFG). For this purpose, NVOC-modified polymersomes with two 

different concentrations of 7.7 mol% (PS1C) and 24.1 mol% (PS3C) NVOC moieties were 

prepared (Table 5.2). As already investigated, NVOC protected amino groups on PS1C 

polymersomes can be cleaved selectively to obtain free amino groups on the surface by the 

trigger of UV light through one photon absorption mechanism (OPA). However, UV light 

has some drawbacks like less penetration ability and being possibly harmful to biological 

systems.34 Therefore, here the investigation was to see whether this photocleavage was 
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possible by the trigger of IR light via two photon absorption mechanism (TPA). In 

comparison to OPA, TPA holds great advantages which can broaden the applicability of the 

established multifunctional system in various fields including biomedical usage. The first 

benefit is that TPA induced reactions are more localized than linear absorbing systems 

because the excitation of photons is confined to a very small volume (smaller than a 

femtoliter) which can enable selective reactions in a very confined region. In addition, IR 

light exhibits improved penetration into organic materials and can be used more safely in 

biological environments.35  

 

Figure 5.11 (a) Schematic illustration of NVOC-cleavage on surface-immobilized 

polymersomes (1-2) and further reaction of ATTO 532 NHS ester with the freed amino 

functions (3) for the fabrication of fluorescent photopatterned structures under a liquid phase. 

(b) The chemical structures of NVOC-conjugated polymersomes indicating the cleavage 

leading to unprotected amines and further dye conjugation (c) Fluorescence microscopy 

images of lines photochemically written on substrates with immobilized PS3C 

polymersomes (PS3C on S3) at pH 8 condition after labelling with fluorescent dye. 
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Due to these outstanding advantages, PS1C and PS3C polymersomes (Table 5.2) were 

immobilized onto β-cyclodextrin coated glass slides (S3) followed by an irradiation by a 

femtosecond laser at 775 nm wavelength with pulse duration of 100 fs (Figure 5.11). The 

laser irradiation was performed by writing lines of 30 µm length at different power densities. 

These photo-patterned lines are separated by a distance of 10 µm. All this operation was 

performed in pH 8 buffer solution to avoid any collapsed structures of the polymersomes in 

dry state as well as to keep them in their native environment and shape. As a next step, the 

laser-irradiated samples were immersed into a solution of fluorescent dye (ATTO 532 NHS 

ester) which reacts with free amino groups, to monitor the success of the photocleavage of 

NVOC groups on polymersome surface. After 1 day of this labelling reaction, intensive 

purification from unbound dye was performed by immersing the samples into a buffer 

solution for 2 additional days. Subsequently, the samples were visualized by fluorescence 

microscopy and as can be seen in Figure 5.11, fluorescent lines of the imaged parts become 

clearly visible with increasing power densities starting from 16 mW for the higher NVOC 

concentrated polymersome (PS3C) on glass slides. Here, the attachment of dye molecule 

does not prove only the liberated amine groups on the surface but also it mimics the 

conjugation of biological molecules like enzymes and proteins which requires the same 

conjugation chemistry. Thus, this shows a potential application of the established NVOC 

conjugated polymersomes to build up sensing devices for a possible selective attachment of 

bioreceptors. 

However, although an efficient photocleavage reaction of the amino protecting group by 

direct UV exposure was obtained previously with freely diffusing, not surface-constrained 

PS1C polymersomes, a clear photo-patterned structure with surface bound PS1C by IR light 

(Figure 5.12) could not be reached as found in case of PS3C (Figure 5.11). But from the 

experiment with PS3C we can conclude that the higher the light power as well as the 

polymersome concentration, the more effective is the photoreaction, similar as observed 

previously for the photoreaction on P(MMA-co-NVOC-AEMA) copolymers via TPA 

mechanism.36 As known, extremely high momentary intensity as provided by pulsed laser 

light is necessary for all nonlinear optical phenomena including TPA which cannot be 

obtained by continuous wave (CW) illumination with the same average power.37-38 For this 

purpose, as a control experiment, the same reaction was performed also with CW irradiation 

and, as expected, no photoreaction was observed in this condition. This supports our claim 
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that the immobilized NVOC conjugated polymersomes showed TPA induced photoreactions 

triggered by harmless IR light.  

 

Figure 5.12 Fluorescence microscopy images of lines photochemically written on substrates 

with immobilized PS1C polymersomes (PS1C on S3) at pH 8 condition after labeling with 

fluorescent dye 

5.7 Summary 

In the present work, the successful immobilization of multifunctional, responsive and photo-

crosslinked polymersomes having adamantane groups in the membrane onto β-cyclodextrin 

coated substrates was demonstrated. This approach allowed to creating spherical cap-shaped 

polymersome compartments at the substrate, as shown by investigation through AFM 

imaging in the wet state and under different environmental conditions.  

The polymersomes were assessed for their adhering potential on substrates not only by 

specific binding through host-guest interactions but also by nonspecific interactions. This 

showed that shape change can be controlled and possible rupture of the vesicles can be 

avoided by tuning the binding forces such as decreasing β-cyclodextrin coverage on the 

surface as well as passivating the substrate with PEG molecules for reducing the level of 

nonspecific adsorption. In addition, the swelling ability of these photo-crosslinked and multi-

functional polymersomes at acidic condition was preserved also in the surface-immobilized 

state. As expected, the swelling amount was considerably higher when the polymersomes 

were bound to the surface with less host-guest interactions. Thus, this study gives insight 

about the effect of the adhering forces between a specific surface and the vesicles on 

compartment shape and responsiveness at different physiological conditions (pH 5 and pH 

7.4) which can be useful for future studies to mimic specific cell environments.  

Another key feature of this polymersome system is light responsivity provided by 

conjugating photo-sensitive compounds, NVOC-protected amino groups, to the azido 
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moieties of the vesicle before immobilization. This previously established system (chapter 

3) was used in this chapter to assess the light sensitivity of surface immobilized 

polymersomes towards IR irradiation via two photon absorption mechanism. It could be 

shown that femtosecond pulsed laser exposure (λ=775 nm) causes the cleavage of the NVOC 

groups. This in turn leads to controlled photopatterned structures and to free amino groups 

on the surface of the immobilized-vesicles which had been subsequently conjugated with a 

fluorescent dye and the successful binding was imaged by fluorescence microscopy imaging. 

Here, this simple dye molecule is a model compound to mimic biological molecules like 

enzymes and proteins which require the same chemistry for conjugation. IR light provides a 

deeper penetration depth into organic matter compared to UV light and it is not harmful for 

biomolecules, therefore, it is believed that this surface-immobilized polymersomes with IR 

light sensitive NVOC protected amines can be a promising tool for integrating targeted and 

selective recognition processes e.g. into microfluidic devices and in system biology.  

Overall, the described findings in this chapter are highly versatile and thus exhibit new 

possibilities for the design of multifunctional, smart and stable compartments at surfaces 

which is highly interesting for many applications including development of microsystem 

devices, design of chemo/biosensors, and also for mimicking cell membrane functions to 

understand complex biological interactions.  
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[12] Domes, S.; Filiz, V.; Nitsche, J.; Frömsdorf, A.; Förster, S., Covalent Attachment of 
Polymersomes to Surfaces. Langmuir 2010, 26, 6927-6931. 

[13] Paolino, M.; Ennen, F.; Lamponi, S.; Cernescu, M.; Voit, B.; Cappelli, A.; 
Appelhans, D.; Komber, H., Cyclodextrin-Adamantane Host–Guest Interactions on 
the Surface of Biocompatible Adamantyl-Modified Glycodendrimers. 
Macromolecules 2013, 46, 3215-3227. 

[14] Böhm, I.; Isenbügel, K.; Ritter, H.; Branscheid, R.; Kolb, U., Cyclodextrin and 
Adamantane Host–Guest Interactions of Modified Hyperbranched Poly(Ethylene 
Imine) as Mimetics for Biological Membranes. Angew. Chem. 2011, 123, 8042-8045. 

[15] Iyisan, B.; Janke, A.; Reichenbach, P.; Eng, L. M.; Appelhans, D.; Voit, B., 
Immobilized Multifunctional Polymersomes on Solid Surfaces: Infrared Light-
Induced Selective Photochemical Reactions, Ph Responsive Behavior, and Probing 
Mechanical Properties under Liquid Phase. ACS Applied Materials & Interfaces 
2016, 8, 15788-15801. 

[16] Tsukruk, V. V.; Luzinov, I.; Julthongpiput, D., Sticky Molecular Surfaces:  
Epoxysilane Self-Assembled Monolayers. Langmuir 1999, 15, 3029-3032. 

[17] Luzinov, I.; Julthongpiput, D.; Liebmann-Vinson, A.; Cregger, T.; Foster, M. D.; 
Tsukruk, V. V., Epoxy-Terminated Self-Assembled Monolayers:  Molecular Glues 
for Polymer Layers. Langmuir 2000, 16, 504-516. 

[18] Elender, G.; Kühner, M.; Sackmann, E., Functionalisation of Si/Sio2 and Glass 
Surfaces with Ultrathin Dextran Films and Deposition of Lipid Bilayers. Biosens. 
Bioelectron. 1996, 11, 565-577. 

[19] Reddy, L. R.; Bhanumathi, N.; Rao, K. R., Dynamic Kinetic Asymmetric Synthesis 
of β-Aminoalcohols from Racemic Epoxides in Cyclodextrin Complexes under Solid 
State Conditions. Chem. Commun. 2000, 2321-2322. 

[20] Busse, S.; DePaoli, M.; Wenz, G.; Mittler, S., An Integrated Optical Mach–Zehnder 
Interferometer Functionalized by Β-Cyclodextrin to Monitor Binding Reactions. 
Sensors Actuators B: Chem. 2001, 80, 116-124. 

[21] Onclin, S.; Mulder, A.; Huskens, J.; Ravoo, B. J.; Reinhoudt, D. N., Molecular 
Printboards:  Monolayers of Β-Cyclodextrins on Silicon Oxide Surfaces. Langmuir 
2004, 20, 5460-5466. 



125 
 

[22] Méndez-Ardoy, A.; Steentjes, T.; Kudernac, T.; Huskens, J., Self-Assembled 
Monolayers on Gold of Β-Cyclodextrin Adsorbates with Different Anchoring 
Groups. Langmuir 2014, 30, 3467-3476. 

[23] Jain, A.; Liu, R.; Xiang, Y. K.; Ha, T., Single-Molecule Pull-Down for Studying 
Protein Interactions. Nat. Protocols 2012, 7, 445-452. 

[24] Kannan, B.; Castelino, K.; Chen, F. F.; Majumdar, A., Lithographic Techniques and 
Surface Chemistries for the Fabrication of Peg-Passivated Protein Microarrays. 
Biosens. Bioelectron. 2006, 21, 1960-1967. 

[25] Du, J.; Tang, Y.; Lewis, A. L.; Armes, S. P., Ph-Sensitive Vesicles Based on a 
Biocompatible Zwitterionic Diblock Copolymer. J. Am. Chem. Soc. 2005, 127, 
17982-17983. 

[26] Alsteens, D.; Dupres, V.; Yunus, S.; Latgé, J.-P.; Heinisch, J. J.; Dufrêne, Y. F., 
High-Resolution Imaging of Chemical and Biological Sites on Living Cells Using 
Peak Force Tapping Atomic Force Microscopy. Langmuir 2012, 28, 16738-16744. 

[27] Heu, C.; Berquand, A.; Elie-Caille, C.; Nicod, L., Glyphosate-Induced Stiffening of 
Hacat Keratinocytes, a Peak Force Tapping Study on Living Cells. J. Struct. Biol. 
2012, 178, 1-7. 

[28] Pignataro, B.; Steinem, C.; Galla, H.-J.; Fuchs, H.; Janshoff, A., Specific Adhesion 
of Vesicles Monitored by Scanning Force Microscopy and Quartz Crystal 
Microbalance. Biophys. J. 2000, 78, 487-498. 

[29] Yu, K.; Eisenberg, A., Bilayer Morphologies of Self-Assembled Crew-Cut 
Aggregates of Amphiphilic Ps-B-Peo Diblock Copolymers in Solution. 
Macromolecules 1998, 31, 3509-3518. 

[30] Lipowsky, R.; Seifert, U., Adhesion of Vesicles and Membranes. Molecular Crystals 
and Liquid Crystals 1991, 202, 17-25. 

[31] Harada, A., Preparation and Structures of Supramolecules between Cyclodextrins 
and Polymers. Coord. Chem. Rev. 1996, 148, 115-133. 

[32] Liu, G.; Jin, Q.; Liu, X.; Lv, L.; Chen, C.; Ji, J., Biocompatible Vesicles Based on 
PEO-b-PMPC/α-Cyclodextrin Inclusion Complexes for Drug Delivery. Soft Matter 
2011, 7, 662-669. 

[33] Seifert, U.; Lipowsky, R., Adhesion of Vesicles. Physical Review A 1990, 42, 4768-
4771. 

[34] McCray, J. A., In Methods Enzymol., Academic Press: 1998, pp 175-202. 
[35] Smith, A. M.; Mancini, M. C.; Nie, S., Bioimaging: Second Window for in Vivo 

Imaging. Nat Nano 2009, 4, 710-711. 
[36] P Reichenbach, U. G., U Oertel, T Kämpfe, B Nitzsche, B Voit, and LM Eng., In 

Optically Induced Nanostructures: Biomedical and Technical Applications, König 
K, O. A., Ed. De Gruyter: Berlin, 2015; Chapter 6. 

[37] Peng, K.; Tomatsu, I.; van den Broek, B.; Cui, C.; Korobko, A. V.; van Noort, J.; 
Meijer, A. H.; Spaink, H. P.; Kros, A., Dextran Based Photodegradable Hydrogels 
Formed Via a Michael Addition. Soft Matter 2011, 7, 4881-4887. 

[38] Zipfel, W. R.; Williams, R. M.; Webb, W. W., Nonlinear Magic: Multiphoton 
Microscopy in the Biosciences. Nat Biotech 2003, 21, 1369-1377. 



126 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



127 
 

6 Probing Mechanical Properties of Polymersomes 

6.1 Introduction 

Gathering information about the mechanical properties of the polymersomes is of great 

significance in the context of stability issues for the uses of established multifunctional 

system. Obviously, the polymersomes should have sufficient mechanical strength to be 

utilized in the prospective application areas. However, stability does not mean having only 

higher elastic or bending modulus value. It has to be optimized according to the specific 

tasks of the materials. One apparent example for this is red blood cells which have a 

membrane with the lowest bending resistance known.1 But on the other side, they are highly 

resistant against stretching that allows fulfilling their task in the blood circulation system.  

Furthermore, the adhesion properties of polymersomes are linked to their mechanical 

properties.  Although several factors like surface chemistry, size and contact area have an 

impact on the adhering potential as investigated in the previous chapter, knowing the 

flexibility and mechanical strength of the membrane is helpful to understand this 

phenomenon in detail. In fact, this can also clarify whether the established polymersomes 

can be used as model cell membrane to study complex biological interactions or not. For 

instance, high rigidity like in glassy polymers is not favorable to mimic the biomembranes 

since they are naturally robust but also flexible. Apart from these issues, mechanical 

properties have also a role in transport behavior of the polymersomes through microchannels 

or in blood vessels when used as drug delivery vehicles. The vesicles should show sufficient 

resistance against the shear forces encountered within the fluid flow. The attractive forces 

due to the adhesive surfaces may contribute to the transport properties of the polymersomes 

as well.2 Thus, this chapter focuses on mechanical properties of the fabricated polymersomes 

to understand their physicochemical behavior more deeply. 

A convenient method to probe the mechanical properties of polymersomes is the use of 

atomic force microscopy through force measurements. Similar approaches have been applied 

previously for liposomes,3 polyelectrolyte multilayer capsules,2 natural membrane 

nanovesicles4 and different polymersome structures.5-6 This technique allows monitoring 

local deformation under different forces which has been widely utilized to assess the 

hardness and elastic properties of the soft materials. Nevertheless, the nanometer size of the 

polymersomes excludes using other common techniques like micropipette aspiration. This 

method has been successfully applied for micron-sized polymersomes and liposomes so 
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far.7-10 However, it cannot be applied for nano-scaled vesicles due to technical restrictions. 

One reason is that a micropipette having an inner diameter of about several microns is 

required for the suction of vesicles when the pressure is applied. Another limitation is 

sourced by the necessity of optical microscopy to monitor the shape deformation as a 

function of applied pressure. As can be inferred, due to the diffraction limited resolution of 

the optical detection, the deformation of the nano-scaled polymersomes cannot be probed by 

this way.  

Thus, in the final part of this thesis, the mechanical properties of the established 

polymersomes are investigated by using AFM under a liquid phase which has been already 

published.11 Wet-state environment is crucial to avoid any variation in the mechanical 

strength due to the collapsing and drying of polymersomes. Here, the discussion is started 

with the available analytical models to study the stiffness of polymersomes and finishes with 

the prediction of Young´s and Bending modulus values of the polymersome membrane.   

6.2 Selection of the Analytical Model 

Before analysis of the force curves obtained from AFM measurements in wet state, a suitable 

approach for modulus prediction has to be chosen.  Several issues have to be considered 

when probing mechanical properties of the colloidal systems like the established 

multifunctional polymersomes. Therefore, a deep discussion should be done to clarify all 

assumptions for the most relevant mathematical approach. The potential problems that can 

be encountered during measurements or afterwards are listed as follows:2 

- These vesicles contain water and the volume conservation should be ensured for the 

quality of the calculations. 

- They are relatively soft materials and special attention should be paid to secure the 

reversible deformations by focusing on the elastic region. 

- They may act like a composite due to the height variation of the vesicles on surface. 

This may lead to a contribution from the substrate in the thinner regions during force 

measurements.   

- The charged membrane may lead to tensions in the shell due to the self-repulsion of 

the polymer chains.  

By taking into account of all these factors, two common analytical models, named as Hertz 

Model12 and Reissner´s Thin Shell Theory13 can be the potential methods to determine the 
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stiffness of the polymersomes. These approaches are frequently used to compute the elastic 

modulus of micro- and nanocapsules. However, Fery et al. has already shown that the latter 

model is more relevant to shell systems by performing analysis on hollow micro capsules2 

and on nano-sized liposomes.3 This is due to the fact that Shell Theory takes into account 

the bending rigidity of the membrane together with the size dependency of the vesicle 

deformation whereas the Hertz model does not consider any of these phenomena.2-3, 5-6 This 

has been demonstrated on DPPC based liposomes in which the stiffness increased when the 

radius of the liposomes decreased.3 In addition, the deformation analysis of such shell 

systems from numerical models such as Finite Element Method (FEM) agrees well with the 

analytical quantifications based on Reissner Shell Theory.14 Thus, Thin Shell Theory seems 

to be more applicable for the established multifunctional polymersome system and it was 

chosen  to compute the Young´s Modulus (E) by considering small deformations that are in 

the order of the membrane thickness (h) which is a prerequisite of the model.2 However, the 

relevance of the theory has to be supported by clarifying the above-indicated potential 

problems. These issues can be pointed out by the response of the established multifunctional 

polymersomes against force indentation experiments and the detailed discussions of the 

results will be given in the next part.  

6.3 Prediction of the Young’s and Bending Modulus 

The AFM force measurements were carried out in PBS buffer (pH 7.4) to determine the 

elastic modulus of the multifunctional polymersomes (PS1) immobilized on S3 surface 

(PS1-S3). The selection of this pH was to ensure the impermeable state of the vesicles to 

avoid any loss of water during the force measurements. This was also supposed to avoid the 

potential membrane tension due to charged polymer chains by keeping the PDEAEM groups 

at their unprotonated state. Figure 6.1a shows the principle of this experiment where the 

piezo scanner movement in z direction leads to cantilever deflection as well as sample 

indentation after the tip contacts to the vesicles. These measured data as cantilever deflection 

versus piezo extension were converted into the required force-separation curves for the 

indentation analysis (Figure 6.1b). 

Firstly, as seen in Figure 6.1b, the force-separation curve exhibits an initial linear regime 

up to a certain point, followed by a second regime at higher indentations where the curve 

reveals exponential relation. This behavior was similarly observed in other shell systems 

including natural membrane nanovesicles4 and self-assembled protein nanotubes15 in which 
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higher deformation may lead to buckling instabilities or irreversible shape variation 

indicating the plastic response. Note that the incompressible fluid inside the vesicles plays a 

role in large deflection points. The pressure and resistance of the water lead to a substantial 

increase in the force. This is shown by the force-deformation analysis of a water-filled 

racquetball where the analytical predictions from Shell Theory matches well for water-filled 

and empty spheres up to deformations belonging to 20% of the radius.16 Secondly, another 

essential issue here is that the analyzed shell systems were rather thick shells (h/R>0.1) as 

also observed in the study of Chen et al. (0.18≥h/R≥0.32).6 This confirms the applicability 

of the shell theory even in the case of thicker membrane when small deformation regime has 

been taken into account. Additionally, the substrate may have an influence at higher 

indentations17 when the tip moves over the edge of the particles which may lead to the 

measurement of thinner regions. This can also contribute to linearity variation after a certain 

point in the force curve which may lead to higher, deceivable elastic modulus values. To 

avoid this situation, it is reasonable to focus on the small deformation region that certainly 

represents the polymersome structure. Thus, on the basis of all these factors, the Young´s 

modulus of individual polymersomes was determined by taking into account the initial linear 

region of the force curves. It should be also noted that this confined regime corresponds to 

indentations up to 20% of the polymersome radius which agrees well with the previous 

findings in literature.2, 6 Thus, the zero distance between tip and the sample (contact point) 

was determined by following the start of the force increase with a stable trend to convert the 

data into indentation-force relation (Figure 6.2).  

As a next step, from the slope of the linear indentation-force curve (Figure 6.2), the 

membrane stiffness (k) was determined and used in the following equation (6.1)3, 5-6, 13 

relating with the Young´s Modulus (E) where ʋ is the Poisson ratio as 0.5,5-6 h denotes the 

membrane thickness as 18.6±1.7 nm from cryo-TEM analysis (determined in chapter 3) and 

R is the radius of the curvature of a vesicle which forms a spherical cap and it was determined 

by simple geometrical calculations from width and height of the polymersomes (equation 

5.1, chapter 5). In addition, the bending modulus (kbend) of the vesicles can be derived from 

the following equation (6.2) in which the calculated Young´s Modulus (E) was utilized as 

applied previously for different polymersome systems5-6 and lipid vesicles.3 
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Figure 6.1 (a) Schematic illustration of the AFM indentation experiment: tip and vesicles 

are not in contact (1), first contact (2), indented (3). (b) Force vs separation curve of two 

different sized-polymersomes marked by blue and red arrow in the AFM height image at 

inset of the graph. 

 

Figure 6.2 (a,b) Force vs indentation curves of corresponding polymersomes shown in the 

inset of force-separation graph (Figure 6.1b) to find membrane stiffness, k by linear fitting. 
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Figure 6.3 (a) Histogram of the Young’s modulus and (b) bending modulus of the 

polymersomes. 

By analyzing force-indentation curves of 16 different polymersomes, the average value 

of Young´s and bending modulus was found as 27±16 MPa and 19±11.4×10-18 J, 

respectively, as seen in the histograms of the corresponding data (Figure 6.3a,b). Note that 

these values do not consider the distribution of the membrane thickness (18.6±1.7). In this 

manner, to define the range of modulus values more precisely, uncertainty analysis presented 

by Kline and McClintock18 was applied through the following equations where Ew  and 

kbendw  denote the deviation values including the thickness distribution.    

1/22 2 2

E k R h
E E Ew w w w
k R h

        
         

         
                                                                      (6.3) 
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                                                                      (6.4) 

This leads to values in the range of 27±17.5 MPa and 19±12.5×10-18 J for Young’s and 

bending modulus, respectively, of the multi-functionalized polymersomes. These values 

reveal a less stiff nature of the established polymersomes than polymersomes based on 

polystyrene-block-poly(acrylic acid) (PS-b-PAA)6 (h=22±1 nm, E=61±6 MPa, 

kbend=71.6±10.3×10-18 J) while they are more rigid in comparison to poly(dimethylsiloxane)-

block-poly(2-methyloxazoline) (PDMS-b-PMXO) polymersomes5 (h=16±2 nm, E=17±11 

MPa, kbend=7±5×10-18 J). Firstly, the membrane thickness has an effect on the elasticity of 
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the vesicles8 which also explains the better mechanical stability of the analyzed 

polymersomes compared to the liposomes based e.g. on egg yolk phosphatidylcholin 

(EggPC, h=6±0.6, E=2±0.8, kbend=0.03×10-18 J).19 In addition, the mechanical behavior of 

the vesicles also depends on the intrinsic properties of the block copolymer used in the self-

assembly process. For this purpose, thermal behavior of the BC2 polymer was investigated 

by differential scanning calorimetry to determine Tg value. Although the established 

polymersomes consisted of the mixture of three polymers (BC1, BC2, BC3, chapter 3), the 

adamantane and azide groups would not have much impact on the thermal behaviors. 

Therefore, to have more understanding and to make comparisons with the mechanical 

properties of the previously published polymersomes with a clearer way, the nonfunctional 

PEG-DEAEM-BMA (BC2) was chosen for this analysis. Thus, the glass transition 

temperature was found as about -4 Co from the second heating run of the DSC curves to 

avoid the influence of the thermal history although similar values were deducted from first 

heating or cooling steps as well. Apart from gaining the idea of stiffness, the additional 

important point here is that the single Tg value for a block copolymer supports the 

consistence of the monomers in the polymer structure and they did not behave like a blend 

to show the glass transition of each polymer.  

In this manner, PS-b-PAA have a higher glass transition temperature than our system 

(Tg-BC2 = -4 oC,) since both polystyrene (Tg-PS = 100 oC) and polyacrylic acid (Tg-PAA 

= 106 oC) are in the glassy state at room temperature which makes the PS-b-PAA vesicles 

much stiffer. It should be also noted that the established multifunctional polymersomes have 

a cross-linked membrane which enhances the stiffness as proven previously by comparing 

Young’s modulus of cross-linked and non-cross-linked bilayers based on poly(ethylene 

glycol)-block-poly[2-(diethylamino)ethyl methacrylate-stat-3,4-dimethyl maleic imidobutyl 

methacrylate] (PEG45-b-PDEAEM-sPDMIBM).17 Thus, this moderate stiffness values for 

the established system among other published polymersomes showed that a good balance in 

elasticity and rigidness can be achieved to use these nanovesicles for various biomedical 

applications.  

6.4 Summary 

In this chapter, the mechanical stability of the established polymersomes was investigated 

by computing Young’s and bending modulus through force curves obtained by AFM 

measurements. Among the available analytical models for modulus prediction, Reisner´s 
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Thin Shell Theory was found more applicable to the investigated system since it considers 

both bending rigidity of the membrane and size dependency of the vesicle deformation. 

Furthermore, the thermal behavior of the polymersome forming block copolymer was 

examined by differential scanning calorimetry which led to the glass transition temperature 

of -4 oC. This value supported the modulus results when compared with other polymersome 

systems in literature. Table 6.1 summarizes the mechanical properties of the different 

vesicular systems determined by AFM using similar mathematical approach. Therein, it is 

clear that the established polymersomes found a place in between PS-b-PAA and PDMS-b-

PMXO polymersomes from the perspective of rigidness and flexibility.  

Overall, the findings in this chapter demonstrate the robust but still flexible nature of the 

polymersomes which have a “breathable” membrane of a moderate stiffness. This result also 

supports the prospective aim of the established system which is robust enough to design 

stable compartments but also flexible enough to mimic the cell membrane functions. Finally, 

this mechanical probing part showed the limits of the created system and fulfills the missing 

information to understand the essential key characteristics of the fabricated polymersomes 

like responsive nature and adsorption behavior as described previously. 

  Table 6.1 Summary of mechanical and thermal properties of different vesicle systems 

Vesicle ha [nm] Eb [MPa] kb [10-18 J] Tgc [oC] 

This study 18.6 ± 1.7 27±17.5 19±12.5 -4 

PDMS-b-PMXO polymersomes5 16 ± 2 17 ± 11 7 ± 5 -124 

PS-b-PAA polymersomes6 22 ± 1 61 ± 6 71.6 ± 10.3 ~100 

EggPC liposomes19 6 ± 0.6 2 ± 0.8 0.03   n.d. 

aRepresents the average thickness of the vesicle membrane. bRepresent Young´s (E) and 

bending modulus (k) values, respectively. cShows the glass transition temperature of the used 

block copolymers for polymersome formation.  
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7 Conclusion and Outlook 

The requirement of specific recognition and external stimuli controlled systems in the scope 

of biomedical applications is the basic driving force of this study. These key functions are 

especially very useful in the design of targeted drug delivery vehicles as well as conducting 

selective reactions in nanoreactors or designing sensing devices in the scope of microsystem 

technology. Therefore, this thesis aimed to develop multifunctional and stimuli-responsive 

polymersomes possessing various abilities including pH, UV and IR light sensitivity as well 

as many reactive groups with sufficient accessibility to be used as smart and recognitive 

nanocontainers. In this manner, the main features of the developed polymersomes are: 

(i) Functional reactive groups for introducing multiple targeting ligands through 

covalent and non-covalent conjugations. 

(ii) UV and IR light triggered photoreactivity for selective recognition functions. 

(iii) pH-controlled membrane permeability to host and release various cargos. 

(iv) Persistence of the pH and light sensitivity also in confined environments which 

correspond to capabilities of immobilized polymersomes on solid surfaces. 

Each of these findings were shown at different stages of the whole research period as 

summarized in Figure 7.1. These are fulfilling the sub-objectives of the thesis to reach the 

overall goal. The first and second part of this work describe the successful polymersome 

fabrication realized through the synthesis of pH sensitive, photocrosslinkable and 

functionalized amphiphilic block copolymers and further post-conjugations to the 

polymersome surface. Besides, the pH-dependent release and diffusion limits of the 

developed polymersomes were shown by probing the hosting capacity through drug and gold 

nanoparticle encapsulation. Lastly the surface-immobilized polymersomes were achieved 

with the aid of host-guest interactions of adamantane-β-cyclodextrin molecules which 

enabled to trigger near-infrared light induced selective photochemical reactions and 

mechanical probing under liquid phase. This fixation and immobilization study is indeed a 

very less investigated area in polymersome field, and opens up new opportunities for using 

these vesicles in sensing devices as well as characterizing them thoroughly with advanced 

microscopy techniques. 

In this context, the starting point of this work was the synthesis of polymersome forming 

amphiphilic block copolymers by using ATRP with a controlled manner, which were then 

self-assembled to prepare the azide and adamantane decorated polymersomes to induce the 
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post-conjugation processes at the vesicle periphery. The produced polymers consist of 

polyethylene glycol (PEG) as the hydrophilic segment having azido, adamantyl or methoxy 

end-groups, whereas pH sensitive 2-(diethylamino)ethyl methacrylate (DEAEM) and a 

photo cross-linker benzophenone (BMA) groups form together the hydrophobic part. The 

characterization of the resulting polymers by 1H NMR and SEC techniques revealed 

relatively low molar mass dispersities as well as desired hydrophilic mass fraction of about 

0.1 to 0.13 for vesicle formation.  In addition, the homogeneity of the multi-functionalized 

polymersomes was ensured by keeping the hydrophobic block length of the polymers almost 

equal. However, hydrophilic length of the azide- and adamantane-functionalized block 

copolymers was designed to be longer than the non-functional methoxy terminated block 

copolymer to increase the accessibility of the reactive groups on the polymersome surface. 

 

Figure 7.1 General overview of the main research developments within this work indicating 

the sub-divisions (1&2: chapter 3, 5: chapter 4, 3&4: chapter 5 and 6). 
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After the successful polymersome formation possessing adamantane and azide 

functionalities at inner and outer hydrophilic corona of the vesicles, the photo-crosslinking 

of the membrane with the aid of BMA units was realized. The tunable pH-responsive nature 

to the multifunctional polymersomes was provided in terms of reversible swelling and 

shrinking abilities up to 5 cycles in which the hydrodynamic diameter of the polymersomes 

was increased about 42% at acidic condition and shrank back to the original size without 

facing any disassembly problems. In addition, the established polymersomes also 

demonstrated a remarkable pH-stability at different pH environments as seen in Figure 7.2. 

 

Figure 7.2 (a) Reversible swelling-shrinking of surface functionalized-polymersomes (PS1) 

upon changes in pH value. (b) pH-dependent diameter variation of the corresponding 

polymersomes (PS1).  

Accessible and sufficiently reactive groups were found when photoactive moieties as 

well as β-cyclodextrin molecules were conjugated to the pre-formed polymersomes by 

means of click chemistry and strong host-guest complexations. The photoactive groups, as 

UV and IR cleavable NVOC molecules, provided light responsivity to the established 

multifunctional polymersomes. This was demonstrated firstly by UV-triggered 

photochemical reactions which resulted in free amino groups on the polymersome surface 

as an additional functionality. The liberated amino groups were further conjugated with a 

fluorescent compound to evaluate the reactivity as well as simulate the concept of selective 

binding approaches. The subsequent attachment of fluorescently labeled-β-cyclodextrin 

molecules was also carried out and the success of all conjugation steps was monitored by 

UV-Vis spectroscopy. Another important outcome from this fabrication process was that the 

polymersomes preserved their shape and stability throughout the whole steps as confirmed 

by cryo-TEM visualization (Figure 7.3). 
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Figure 7.3 (a) Monitoring RhB-NCS coupling to polymersomes through amino groups with 

UV-vis analysis during dialysis procedure to finally obtain PS1R polymersomes (b) UV-vis 

analysis to show sequential conjugation of cyclodextrin molecule to Rhodamine B NCS 

modified polymersomes (PS1R) by host-guest interaction. (c) cryo-TEM micrographs of 

PS1D polymersomes at pH 8 and pH 5. (d) cryo-TEM micrographs of PS1R polymersomes 

at pH 8. 

In addition, encapsulation of gold nanoparticles and doxorubicin molecules as an 

anticancer drug proved the hosting ability as well as the sufficient membrane permeability 

of the established polymersomes which demonstrated the applicability as nanocontainers or 

nanocarriers. The important finding here was that the polymersomes before and after 

photocleavage step showed similar performance in pH-dependent drug release although 

additional UV exposure led to a more compact membrane. Another outcome was that the 

post-loading of highly negatively charged-gold nanoparticles was not restricted by 

electrostatic interactions and was realized successfully for 5 nm sized AuNPs. However, the 

particle uptake was decreased to some extent for 10 nm sized AuNPs that demonstrated the 

size dependence of pH-controlled diffusion processes. 

(c)                                                           (d)                                                            
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Figure 7.4 In-vitro release of doxorubicin from (a) PS1C-Dox polymersomes (before 

photocleavage) and (b) PS1D-Dox polymersomes (after photocleavage) at 37 oC in different 

pH medium. (c-e) cryo-TEM micrographs of PS1-Au104 polymersomes at pH 8 (10 nm 

sized AuNP loaded. 

The multifunctional polymersomes were finally immobilized onto solid substrates via 

adamantane-β-cyclodextrin conjugations and confirmed by in-situ AFM monitoring under 

liquid phase at pH 7.4 PBS buffer as well as at acidic condition, pH 5. The approach enabled 

spherical cap-shaped polymersome compartments at the cyclodextrin coated substrate in 

which the shape was highly dependent on the level of binding forces. Several investigations 

including adhesion behavior, pH sensitivity and finally the IR-induced selective 

photochemical reactions on immobilized polymersomes were reported. Therein, the released 

amino groups on the polymersome surface were further conjugated with a model fluorescent 

compound for mimicking the attachment of biorecognition elements. The possibility to use 

the advantages of IR light like being safe to biological compounds as well as deep 

penetration ability to organic materials outlines the potential of established multifunctional 

and stimuli responsive polymersomes for various biomedical applications. In particular, the 

efficient reactive groups and the presence of light and pH responsivity render these smart 

nanovesicles especially suitable for the design of targeted and selective recognition systems 

which can be useful for building microsystem devices with sensing functions.  

(a)                                                                                                 (b)      

100 nm 100 nm 100 nm

(c) (d) (e)
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Figure 7.5 Immobilized spherical cap-shaped polymersomes and NIR induced selective 

photochemical reactions in which the released amino groups were conjugated with ATTO 

532-NHS ester molecules for mimicking the biorecognition systems.  

In the final part of this work, the mechanical properties of the polymersomes were 

determined by computing Young’s and bending modulus of the membrane (E=27±17.5 

MPa, k=19±12.5 10-18 J) through force curves obtained by atomic force microscopy 

measurements in the wet state. This was a complementary study to understand the constraints 

of the established vesicles from the perspective of mechanical strength which is indeed 

necessary for the applicability in biomedical science.  

Based on the achieved goals, this work can go further in diverse directions, 

demonstrating the potential of the established smart and multifunctional nanocontainers for 

many biomedical applications. Indeed, the various functions of one single polymersome 

system widen the application aspect not only as carrier devices but also as smart 

multicompartments in the design of microsystem devices. It is possible to use the developed 

concept for building sensing devices in which the selective recognition can be realized either 

through light-trigger or host-guest interactions.  

In addition, the post-surface functionalization can be performed not only at the outer 

corona as investigated in this study, but the conjugation to the inner bilayer membrane is 

also possible at acidic conditions when the polymersomes are in swollen state. This approach 

can be favored to decorate the outer and inner region with different molecules according to 

the needs. In the light of this possibility, the post-conjugation steps can be also utilized for 

the attachment of targeting molecules like proteins, enzymes and antibodies to the 

polymersome surface which enhances the selectivity and provides potential for the 

established polymersomes to be used in pharmaceutical market as drug delivery vehicles and 

in synthetic biology as nanoreactors or artificial organelles. 

Another potential lies in the gold nanoparticle loaded polymersomes which can be 

utilized for photothermal therapy since AuNPs can convert the absorbed light into heat 

0 nm

100 nm NIR light

20 µm
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energy when irradiation is applied. Herein, the additional opportunity is to trigger the NIR-

selective photochemical reactions through second harmonic generation which is a type of 

nonlinear optical phenomenon sourced by gold nanoparticles. However, SPR band is highly 

affected by the particle dimension and red shifted with increased size of the gold 

nanoparticles. Since the established polymersomes do not allow to encapsulate larger 

AuNPs, in the range of 50-100 nm, the azide and adamantane groups can be used to attach 

these relatively bigger particles through covalent and noncovalent conjugations. In this 

regard, gold nanoparticles can act either as optical antennae or heat generator to be used for 

diagnostic or therapeutic applications in biomedical science.  

Furthermore, the successful immobilization of polymersomes onto solid substrates 

showed that the shape is highly dependent on the attractive forces of the substrate in which 

decreased cyclodextrin amount and additional passivation with PEG molecules led to more 

intact polymersomes. In this manner, further investigations can be done by conducting 

molecular printing methods in combination with PEG passivation for the pre-coating steps 

which may be useful in improving the shape of the polymersomes on surfaces.  

Hence, the accessible and sufficiently reactive groups of the established polymersomes 

make these smart nanocontainers a toolbox for several other technologies by conjugating 

any desired or required molecules to the polymersome surface. For this purpose, the future 

prospective of these established polymersomes is not limited with only the mentioned 

opportunities but can be increased in the hands of the next researcher.  
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8 Materials and Methods 

8.1 Materials 

All commercial materials were used as received without further purification, unless stated. 

Anhydrous solvents were stored over molecular sieves. Dialysis membranes were rinsed 

with distilled water prior to use. The pH of the aqueous dialysis media was adjusted by 

NaOH or HCL solutions unless otherwise indicated.  

Table 8.1 List of chemicals 

Chemical/Specification Supplier 

Azide terminated poly(ethylene glycol) (N3PEG-OH); Mn:2700 
g/mol, Ð:1.18; azide functionality: 90% by 1H NMR 
 

Polymer Source 

Poly(ethylene glycol) methyl ether ; Mn:2000 g/mol, Ð:1.05  Sigma-Aldrich 

2-Hydroxy-4-(methacryloyloxy) benzophenone (BMA), 99% Alfa Aesar 

6-Monodeoxy-6-monoamino-β-cyclodextrin.HCl, >98% Cyclodextrin Shop 

1-Aminoadamantane, 97% ; Propargylamine, 98% Sigma-Aldrich 

4,5-Dimethoxy-2-nitrobenzyl chloroformate (NVOC-Cl), 97% Sigma-Aldrich 

4-Pentynoic acid (98%) Across Organics 

Sulfo-cyanine7 NHS ester, 95% LumiProbe GmbH 

Sodium ascorbate, ≥98% Sigma-Aldrich 

Copper(I) bromide, 98% ; Copper(I) iodide, ≥98% Sigma-Aldrich 

Copper(II) sulfate pentahydrate, ≥98% Sigma-Aldrich 
 
 
 

2-Bromoisobutyryl bromide, 98% Sigma-Aldrich 

2,2’-Bipyridine (bpy), >99% Sigma-Aldrich 

Aluminum oxide (neutral, activated), Brockmann I grade Sigma-Aldrich 
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Table 8.1 continued  

2-(Diethylamino)ethyl methacrylate (DEAEMA), 99% Sigma-Aldrich 

Rhodamine B isothiocyanate, mixed isomers Sigma-Aldrich 

Triethylamine, ≥ 99.5% ; 2-butanone (MEK), anhydrous Sigma-Aldrich 

Doxorubicin hydrochloride (Dox), ≥ 98% Carbosynth     
Limited 

Tris-(benzyltriazolylmethyl) amine (TBTA), 97% Sigma-Aldrich 

N,N-Diisopropylethylamine (DIPEA), 99.5% Sigma-Aldrich 

Dimethyl sulfoxide (DMSO), anhydrous, 99.9% Sigma-Aldrich 

N,N-Dimethylformamide (DMF), anhydrous, 99.8% Sigma-Aldrich 

Sodium bicarbonate, 99.5% Acros Organics 

Tetrahydrofuran (THF), anhydrous, 99.5% Acros Organics 

N,N`-Dicyclohexylcarbodiimide (DCC), 99% Acros Organics 

Dichloromethane (DCM), anhydrous, 99.9% Acros Organics 

Ethyl acetate, 99.5% ; Chloroform, 99.8% ; n-Hexane, 99% Acros Organics 

Silica Gel, high purity grade, mesh: 200-400 Merck 

Ethylenediaminetetraacetic acid tetrasodium salt dehydrate, 99% Sigma-Aldrich 

Sodium Phosphate dibasic heptahydrate, N/A 
 

Sigma-Aldrich 

Sodium Phosphate monobasic, anhydrous, ≥ 99% Sigma-Aldrich 

Acetic Acid (glacial), 100% Merck 

Sodium Acetate, ≥ 99% Fluka 
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Table 8.1 continued  

Sodium Hydroxide, ≥ 97% Sigma-Aldrich 

Hydrochloric Acid, fuming 37% Merck 

Phosphate Buffered Saline (PBS), Biotech grade Sigma-Aldrich 

3-(Glycidyloxypropyl) trimethoxysilane, ≥98% Sigma-Aldrich 

Toluene, anhydrous, 99.8% Sigma-Aldrich 

Ethanol, absolute, ACS reagent, 99.5% Acros Organics 

ATTO 532 NHS ester, Bioreagent, Mw:1081 g/mol ATTO-TEC GmbH 

Amino-terminated poly(ethylene glycol) (MeO-PEG-NH2),  
Mn:750 g/mol)  

IRIS Biotech 

Table 8.2 List of separation tools and materials 

Material/Specification Supplier 

Dialysis Membrane, made of regenerated cellulose, MWCO 5000 Carl Roth 

Dialysis Membrane, made of regenerated cellulose, MWCO 50000 Carl Roth 

Hollow fiber filtration modules, modified polyethersulfone (mPES),     
MWCO: 100 kDa, 750 kDa, 0.05 µm 

Spectrum Labs 

Gold Nanoparticles, 5 nm, suspension in 0.1 mM PBS, reactant free Sigma-Aldrich 

Gold Nanoparticles, 10 nm, suspension in 0.1 mM PBS, reactant free Sigma-Aldrich 

Silicon Wafers (~30 nm of SiO2 layer thickness) Silicon Materials 

Glass slides,15x15 mm VWR Foundation 
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Table 8.3 List of buffer solutions 

Buffer solution Ingredients 

Phosphate buffer, pH 7.4, 10 mM NaH2PO4 (0.27 g), NaHPO4.7H2O (2.08g), Millipore 
water (1 L) 

Phosphate buffer, pH 8, 10 mM NaH2PO4 (0.082g), NaHPO4.7H2O (2.5 g), Millipore 
water (1 L) 

Acetate buffer, pH 5, 10 mM Acetic acid (0.165 mL), Sodium acetate (0.692), 
Millipore water (1 L) 

8.2 Analytical Methods 

8.2.1 Nuclear Magnetic Resonance Spectroscopy  

1H NMR (500.13 MHz) and 13C NMR (125.76 MHz) spectra were recorded using 

BrukerAvance III 500 spectrometer (BrukerBiospin, Germany) with CDCl3 or DMSO-d6 as 

a solvent at room temperature. Chemical shifts are expressed in ppm and referenced to the 

corresponding solvent signals (CDCl3: δ=7.26, 77.0 ppm; DMSO-d6: δ= 2.50 ppm). 

8.2.2 Size Exclusion Chromatography  

The molar mass distributions (Ð) of the block copolymers were determined using Size 

Exclusion Chromatography (SEC) equipped with a multi-angle laser light scattering 

(MALLS) detector (MiniDAWN-LS detector, Wyatt Technology, USA) and a refractive 

index (RI) detector (K2301, Fa. KANUER, Germany). The pump (HPLC pump, Agilent 

1200 series) and the column (PolarGel-M, 300x7.5 mm) of the system were from Agilent 

Technologies (USA). The eluent was DMAc with 3 g/L LiCl and the flow rate is 1mL/min.  

The molar mass distributions (Ð) of the poly(ethylene glycol) macroinitiators were measured 

using an analogous SEC-system equipped with a MALLS detector (MiniDAWN-LS 

detector, Wyatt Technology, USA) and a viscosity/refractive index (RI) detector (ETA-

2020, WGE Dr. Bures, Germany). The pump (HPLC pump, Agilent 1200 series) and the 

column (PL MIXED-C with a pore size of 5 µm, 300x7.5 mm) of this Size Exclusion 

Chromatography were again from Agilent Technologies (USA). The eluent was THF with a 

flow rate of 1 mL/min. The calibration was based on polystyrene standards ranging from 

580 to 210500 g/mol. 
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8.2.3 Infrared Spectroscopy  

The spectra were recorded on Vertex 80V (Bruker) FT-IR spectrometer. The samples were 

prepared with KBr-Pellet method. 

8.2.4 Dynamic Light Scattering  

Dynamic Light Scattering (DLS) measurements were performed at 25 oC using Zetasizer 

Nano-series instrument (Malvern Instruments, UK) equipped with a multi-purpose 

autotitrator and a 633 nm He-Ne laser at fixed scattering angle of 173°. The hydrodynamic 

size of polymersomes (1 mg/mL) is given as intensity-average diameter (zaverage) values 

assuming refractive index of the polymer as 1.50. The data evaluation was carried out by 

using Malvern Software 7.11. 

8.2.5 Zeta-Potential Measurements  

Zeta potential (ζ potential) of the polymersomes (1 mg/mL) as well as gold nanoparticles 

was determined by Zetasizer Nano-series instrument (Malvern Instruments, UK) through 

electrophoretic light scattering. The autotitration of polymersomes against HCl (0.1 mol/L) 

and KOH (0.1 mol/L) solution allowed to measure the zeta potential at different pH values 

so as to determine the isoelectronic point. During this titration, size of polymersomes was 

also recorded in order to observe the stability and swelling behavior of the vesicles. The data 

evaluation was carried out by using Malvern Software 7.11. 

8.2.6 UV-Vis Spectroscopy 

UV-vis measurements were carried out using Specord 210 Plus double beam UV-vis 

spectrophotometer (analytikjena, Germany). Samples were analyzed at desired wavelength 

range in quartz cuvettes. To monitor in vitro drug release experiments as well as the SPR of 

gold nanoparticle encapsulated polymersomes; disposable micro cuvettes were used for the 

measurements.  

8.2.7 Contact Angle Measurements 

The water contact angles of the substrates were measured on an OCA35L (DataPhysics, 

Germany) automatic contact angle instrument using the sessile drop technique at room 

temperature. Both advancing and receding angle was given with an average value of the 

measurements from 5 different samples at 3 (Si wafer) or 2 (Glass slide) different regions of 

each coated surface.  
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8.2.8 Differential Scanning Calorimetry 

Differential Scanning Calorimetry (DSC) measurements of PEG45-b-P(DEAEMA81-stat-

BMA10) was performed at 10 K/min heating rate (-80 oC to 100 oC) under nitrogen using 

DSC Q2000 device (TA Instruments, USA). 

8.2.9 Spectroscopic Ellipsometry 

The monolayer thickness of the epoxysilane and cyclodextrin coated wafers was determined 

by using the multiwavelength ellipsometer in the spectral range of 380-900 nm with an 

incidence angle of 70 οC (alpha-SE ellipsometer, J.A. Woollam Company, USA). The 

thickness measurement was performed by using the same Si wafer with the same optical 

model after each coating step. The model used for the measurement is available in Complete 

Ease Software which consists of a Si substrate and an interface layer with thermal SiO2. This 

means that the monolayer thickness measurements were also carried out with the same 

refractive index (1.46) as the SiO2 layer.1-2 All reported thickness values were averaged from 

5 different samples from the following equation.  

( )
 

Monolayer Thickness nm
Total thickness after coating Total thickness beforecoating     (8.1) 

8.3 Imaging Techniques and Analysis 

8.3.1 Cryo-Transmission Electron Microscopy 

Cryo-Transmission Electron Microscopy (cryo-TEM) images were obtained using Libra 120 

microscope (Carl Zeiss Microscopy GmbH, Oberkochen, Germany) at an acceleration 

voltage of 120 kV.  Samples were prepared by dropping 1 µl of polymersome solution (1 

mg/mL) on each side of a copper grid coated with holey carbon foil (so-called Lacey type). 

A piece of filter paper was used to remove the excess water; the sample was then rapidly 

frozen in liquid ethane at -178 °C. The blotting with the filter paper and plunging into liquid 

ethane was done in a Leica GP device (Leica Microsystems GmbH, Wetzlar, Germany). All 

images were recorded in bright field at -172 °C. The image analysis to determine the 

thickness of the polymersome membrane as well as the diameter was performed using 

Olympus Scandium Software 5.2.  
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8.3.2 Atomic Force Microscopy 

Atomic Force Microscopy (AFM) measurements of the polymersome-coated surfaces were 

performed under aqueous solution (PBS, pH 7.4 or pH 5) using a Dimension Icon AFM with 

NanoScope V Controller (Bruker-Nano, Santa Barbara, CA). The peak force tapping mode 

was applied using ScanAsyst-Fluid+ silicon nitride probes for imaging and ScanAsyst-Fluid 

silicon nitride probes (Bruker-Nano) for force measurements with a nominal spring constant 

of about k= 0.7 N/m. The shape of the cantilever was triangular and tip radius of the probes 

used in topography and force measurements was 5 nm and 20 nm respectively. For a 

quantitative modulus analysis in force measurements, the deflection sensitivity (29.4 nm/V) 

was determined by recording cantilever deflection vs piezo position curves on a hard surface 

followed by the calibration of spring constant (k=1.22 N/m) using thermal tune method. The 

image analyses were carried out by NanoScope Analysis 1.5 Software by determining height 

and diameter values of several well-isolated particles from the corresponding images.  

Monolayer images (β-CD and epoxy silane) were captured by using Dimension 3100 AFM 

(Bruker-Nano, Santa Barbara, CA) under ambient conditions with tapping mode using 

etched silicon probes TAP 300 (Budget Sensors, Bulgaria) with a nominal spring constant 

of about k=40 N/m. 

8.3.3 Fluorescence Microscopy 

Fluorescence images of surface-immobilized polymersomes with photocleavable moieties 

were acquired by illumination of 1 mW laser beam at 532 nm. A bandpass filter transmitting 

between 570 and 620 nm (593/40 nm BrightLine bandpass filter from Semrock) transmits 

only the fluorescent light and it is detected by an AndoriXon+ camera. Image processing 

was performed using the Andor Solis (i) software. 

8.4 Synthetic Methods and Characterization 

8.4.1 Synthesis of Alkyne Functionalized Adamantane Molecule 

 

The previously reported method was slightly modified as follows:3 1-Aminoadamantane (0.6 

g, 4 mmol) was charged into a round-bottom flask followed by adding anhydrous DCM (20 
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mL). In another flask, 4-pentynoic acid (0.4 g, 4 mmol) and N,N’dicyclohexylcarbodiimide 

(DCC, 1.65 g, 8 mmol) were dissolved in anhydrous DCM (80 mL) under nitrogen 

atmosphere. The prepared 1-aminoadamantane solution was added dropwise to 4-Pentynoic 

acid-DCC solution, then the reaction mixture was stirred for 15 h at room temperature. After 

15 h, the mixture was filtered and the solvent was removed under reduced pressure. Finally, 

the product was obtained by purification with column chromatography on silica gel using 

hexane/ethyl acetate=2:1(Yield: 70%). 

Analytical Data: 

1H NMR (500.13 MHz, DMSO-d6, δ): 1.61 (s, 6H), 1.91 (d, J=2.5 Hz, 6H), 1.99 (s, 3H), 

2.21 (t, J=6.9 Hz, 2 H), 2.30 (td, J=6.9, 2.5 Hz, 2H), 2.72 (t, J=2.5 Hz, 1H), 7.29 (s, NH). 

IR (cm-1): 3305 (NH), 2908 (CH), 1636 (Amide I), 1548 (Amide II), 680 (NH). 

8.4.2 Synthesis of Adamantane Functionalized Poly(ethylene glycol) 

 

Synthesis procedure was performed by modifying a previous method.3-4 N3-PEG60-OH (0.35 

g, 0.13 mmol), alkyne functionalized adamantane (0.065 g, 0.28 mmol) and copper (I) iodide 

(0.013 g, 0.007 mmol) was loaded into a flask. This mixture was degassed for 30 min under 

vacuum. In a separate flask, DMF (10 mL) was deoxygenated by freeze pump thaw cycles 

and added to reaction flask under nitrogen atmosphere. After addition of DIPEA (0.091 mL, 

0.52 mmol), the reaction mixture was stirred for 2 days at 80 oC. Solvent of the resulting 

reaction mixture was evaporated under reduced pressure, followed by dissolving the solid 

product in THF. Finally, Ada-PEG60-OH was obtained as a white solid by precipitation in 

n-hexane. For further purification, Ada-PEG60-OH was dissolved in millipore H2O and 

dialyzed for 24 h against EDTA solution to remove the copper species. After freeze drying, 

the pure product (0.2 g) was obtained with a yield of 53%.  

Analytical Data: 

IR (cm-1): 3438 (OH), 2889 (CH), 1644 (Amide I), 1541(Amide II), 1467 (CH2), 1344 (C-

O-C), 1114 (C-O). 
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1H NMR (500.13 MHz, CDCl3, δ): 1.66 (s, 6H), 1.94 (6H), 2.05 (s, 3H), 2.51 (t, J=7.6 Hz, 

2H), 2.58 (OH), 3.01 (t, J=7.6 Hz, 2H), 3.65 (s, 248H), 3.86 (t, J=5.6 Hz, 2H), 4.50 (t, J=5.0 

Hz, 2H), 5.39 (s, NH), 7.52 (s, 1 H)  

1H NMR (500.13 MHz, DMSO-d6, δ): 1.61 (s, 6H), 1.91 (s, 6H), δ 1.99 (s, 3H), 2.34 (t, J=7.6 

Hz, 2 H), δ 2.78 (t, J=7.6 Hz, 2H), 3.51 (s, 248H), 3.77 (t, J=5.7 Hz, 2H), 4.45 (t, J=5.7 Hz, 

2H), 4.52 (OH), 7.25 (s, NH), 7.74 (s,1H). 

8.4.3 Synthesis of Poly(ethylene glycol) Macroinitiators with Different End-Groups 

 

The previously reported method was used as follows.5 Polyethylene glycol with 

corresponding end groups (methoxy, azide or adamantane, 1 eq.) was charged into a flask 

and dried under vacuum for 30 min. Subsequently, anhydrous THF was added and the flask 

was flushed with nitrogen followed by addition of triethylamine (2 eq.). Then 2-

bromoisobutyryl bromide (2 eq.) was diluted in anhydrous THF and added dropwise to 

reaction mixture. The reaction was carried out for 48 h at room temperature. After that, the 

mixture was filtered to remove the salt and the resulting solution was concentrated under 

reduced pressure. Finally, PEG macroinitiator was precipitated in cold n-hexane and isolated 

by decantation. Yield of the reaction was 82% for azide terminated PEG, 80% for methoxy 

terminated PEG and 72% for adamantane terminated PEG macroinitiators. 

Analytical Data: 

PEG Macroinitiator with azide end groups: 1H NMR (500.13 MHz, CDCl3, δ): 1.95 (s, 

6H), 3.40 (t, 2H), 3.65 (s, 248H), 4.33 (t, J=5.0 Hz, 2H) 
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PEG Macroinitiator with methoxy end groups: 1H NMR (500.13 MHz, CDCl3, δ): 1.95 

(s, 6H), 3.38 (s, 3H), 3.65 (s, 180H), 4.33 (t, J=5.0 Hz, 2H) 

PEG Macroinitiator with adamantane end groups: 1H NMR (500.13 MHz, CDCl3, δ): 

1.66 (s, 6H), 1.94 (6H), 1.95 (s, 6H), 2.05 (s, 3H), 2.51 (t, J=7.6 Hz, 2H), 3.01 (t, J=7.6 Hz, 

2H), 3.65 (s, 248H), 3.86 (t, J=5.6 Hz, 2H), 4.33 (t, J=5.1 Hz, 2H), 4.50 (t, J=5.1 Hz ,2H), 

5.39(s, NH),7.52 (s,1 H)  

8.4.4 Synthesis of Block Copolymers 

Block copolymers were synthesized by using standard atom transfer radical polymerization 

(ATRP) procedure with slight modifications as reported previously.5  

8.4.4.1 Synthesis of Block Copolymers with Crosslinker 

 

A round bottom flask was loaded with the desired poly(ethylene glycol) macroinitiator 

possessing different end groups (1 eq.), 2,2’-bipyridine (2 eq.), Cu(I)Br (1 eq.) and BMA 

(10 eq.,10 mol%) respectively where the exact feed amounts of each polymer synthesis is 

given in Table 8.1. This mixture was degassed for 30 minutes under vacuum. In two other 

flasks, DEAEMA (90 eq.) and 2-butanone were separately deoxygenated by freeze pump 

thaw cycles, and then were added to the reaction mixture. The reaction of BC1-BC3 was 

carried out for 19 h at 50 oC under nitrogen atmosphere. The polymerization was terminated 

by exposure of the mixture to air by adding THF. The oxidized copper catalyst was removed 

by passing through the mixture over an activated neutral aluminum oxide with THF as an 

eluent. Final solution was concentrated by evaporating most of the solvent, followed 

precipitation in cold n-hexane. The block copolymers were then washed with water to 
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remove the unreacted macroinitiator and dried under vacuum. The yields of the obtained 

polymers were 75% for BC2, 65% for BC1, 60% for BC3. It should be noted that the larger 

scaled polymerizations ended with higher yields.  

           Table 8.4 Feed amounts of the reagents for block copolymer synthesis 

Code Feed amounts (mmol) 

aR-PEG-Br 2,2’-bipyridine Cu(I)Br DEAEMA BMA 

BC1 0.08 0.16 0.08 7.2 0.8 

BC2 0.23 0.46 0.23 20.7 2.3 

BC3 0.04 0.08 0.04 3.6 0.4 
aR: Azide, methoxy or adamantane for BC1, BC2 and BC3 polymers, respectively. 

Analytical Data: 

N3PEG60-b-P(DEAEMA82-stat-BMA12), BC1: 

1H NMR (500.13 MHz, CDCl3, δ): 0.80-0.96 (m, 3 H), 0.97-1.25 (m, 6 H), 1.71–2.20 (m, 2 

H), 2.48-2.63 (m, 4 H), 2.65-2.80 (m, 2 H), 3.49-3.75 (m, 4H), 3.90–4.18 (m, 2 H), 6.59-

7.72 (m, 8H). 

PEG45-b-P(DEAEMA81-stat-BMA10), BC2: 

1H NMR (500.13 MHz, CDCl3, δ): 0.80-0.96 (m, 3 H), 0.97-1.25 (m, 6 H), 1.71–2.20 (m, 2 

H), 2.48-2.63 (m, 4 H), 2.65-2.80 (m, 2 H), 3.39 (s, 3 H), 3.49-3.75 (m, 4 H), 3.90–4.18 (m, 

2 H), 6.60-7.72 (m, 8H). 

AdaPEG60-b-P(DEAEMA82-stat-BMA15), BC3: 

1H NMR (500.13 MHz, CDCl3, δ): 0.80- 0.96 (m, 3 H), 0.97 - 1.25 (m, 6 H), 1.65-1.70 (m,6 

H), 1.71 – 2.20 (m, 6 H, m, 6H, m, 3H), 2.46 - 2.61 (m, 4 H), 2.64 - 2.79 (m, 2 H), 3.01 (t, 

J=7.6 Hz, 2H), 3.49-3.75 (m, 4H), 3.90 – 4.18 (m, 2 H), 4.50 (t, J=5.0 Hz, 2H), 5.39 (s, NH), 

6.60-7.72 (m, 8H).  
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8.4.4.2 Synthesis of azide-terminated Block Copolymer without Crosslinker 

 

A round bottom flask was loaded with the azide terminated poly(ethylene glycol) 

macroinitiator (0.04 mmol), 2,2’-bipyridine (0.08 mmol) and Cu(I)Br (0.04 mmol) 

respectively. This mixture was degassed for 30 minutes under vacuum. In two other flasks, 

DEAEMA (4.8 mmol) and 2-butanone were separately deoxygenated by freeze pump thaw 

cycles, and then were added to the reaction mixture. The reaction of BC4 was carried out for 

15 h at 50 oC under nitrogen atmosphere. The further steps were performed identically as 

described above to obtain the block copolymer without crosslinker. 

N3PEG60-b-P(DEAEMA150), BC4: 

1H NMR (500.13 MHz, CDCl3, δ): 0.80-0.96 (m, 3 H), 0.98-1.25 (m, 6 H), 1.70–2.20 (m, 2 

H), 2.52-2.64 (m, 4 H), 2.67-2.81 (m, 2 H), 3.49-3.75 (m, 4 H), 3.92-4.13 (m, 2 H). 

8.4.5 Synthesis of Photoactive Compounds 

8.4.5.1 Synthesis of Nitroveratryloxycarbonyl (NVOC) Protected Amine Groups 

 

To an aqueous mixture of propargylamine (0.11 mL, 1.7 mmol) and sodium bicarbonate (0.3 

g, 3.6 mmol), a solution of nitroveratryloxycarbonylchloride (0.5 g, 1.8 mmol) in THF was 

added dropwise. After 15 hours of stirring at room temperature, the precipitation was filtered 

and THF was evaporated under reduced pressure. The obtained suspension was diluted with 

water and extracted with ethyl acetate followed by drying with sodium sulfate. Then ethyl 

acetate was evaporated to obtain the solid product (yield 88%). Since the product was not 
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pure enough determined by NMR spectra, it was further purified with column 

chromatography on silica gel using n-hexane/ethyl acetate=1:2 (Yield: 50%). 

Analytical Data: 

1H NMR (500.13 MHz, CDCl3, δ): 2.26 (t, J=2.5 Hz, 1 H), 3.96 (s, 3 H), 3.99 (s, 3 H), 4.03 

(dd, J=5.7, 2.5 Hz, 2H), 5.07 (br, NH), 5.55 (s, 2H), 7.0 (s, 1 H), 7.72 (s, 1 H). 

13C NMR (125.76 MHz, CDCl3, δ): 31.00 (C-d), 56.41 (C-b, C-c), 63.85 (C-f), 71.77 (C-a), 

79.43 (C), 108.23 (C-g), 110.31 (C-h), 127.67 (C- i), 139.92 (C-m), 148.22 (C-l), 153.56 (C-

k), 155.37 (C-j). 

8.4.5.2 Synthesis of Model Compound (NVOC-PEG60OH), M1C 

 

A round bottom flask was charged with aqueous solution of N3-PEG60-OH (1 mol eq.) and 

purged with nitrogen for 30 min. Subsequently, aqueous solutions of CuSO4.5H2O (0.25 mol 

eq.), TBTA (0.25 mol eq. in DMSO), sodium ascorbate (0.5 mol eq.) and alkyne modified 

NVOC groups (1.5 mol eq. in DMSO) were added to reaction flask as the same way 

mentioned above. After 2 days of stirring at room temperature, the reaction mixture was 

extensively dialyzed against water for 2 days and then freeze dried for characterization. 

Analytical Data: 

1H NMR (500.13 MHz, CDCl3), δ (ppm): 2.52 (OH), 3.65 (s, 248 H), 3.95-3.96 (each 3 H 

at 50 Co), 4.49 (d, J=5.6 Hz, 2H), 4.52 (t, J=5.1 Hz, 2 H), 5.53 (s, 2H), 5.67 (br, NH), 7.01 

(s, 1 H), 7.72 (s, 1 H), 7.74 (s, H) 

8.4.5.3 Disassembly of the Photoactive Polymersomes (PS2C) by Freeze-Drying 

In order to monitor the NVOC conjugation to the non-crosslinked polymersomes by 

chemical structure characterization with 1H NMR spectroscopy, the PS2C vesicles (1 
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mg/mL) were disassembled to obtain the corresponding polymers using freeze dryer 

ALPHA1-2 LDPlus (Fisher Bioblock Scientific, France). After overnight, the freeze dried 

PS2C polymersomes were analyzed by 1H NMR spectroscopy. 

Analytical Data: 

1H NMR (500.13 MHz, CDCl3, δ): 0.80-0.96 (m, 3 H), 0.98-1.20 (m, 6 H), 1.74–2.20 (m, 2 

H), 2.52-2.65 (m, 4 H), 2.67-2.81 (m, 2 H), 3.49-3.75 (m, 4 H), 3.92-4.13 (m, 2 H), 4.49 (d, 

J=5.6 Hz, 2H), 4.52 (t, J=5.0 Hz, 2 H), 5.39 (s, NH), 5.54 (s, 2H), 7.71 (s, 1 H), 7.75 (s, 1 

H).  
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9 Polymersome Formation and Encapsulation Procedures 

9.1 Preparation of Multi-functionalized Polymersomes 

A mixture of block copolymers was dissolved in aqueous HCl solution (pH 2), then passed 

through 0.2 µm nylon filter to remove any impurities. The degree of functionalization was 

controlled by varying the weight percentages of the desired block copolymers in solution. 

To initiate the self-assembly process, pH was slowly increased to pH 9 by adding 1 M NaOH. 

The total block copolymer concentration was 1 mg/mL and the polymersomes (PS1, PS3) 

were formed after four days of stirring in dark condition. 

9.2 Preparation of Polymersomes from Single Block-Copolymer 

The same procedure was applied as described in the previous section. The desired block 

copolymer (BC1 or BC4) was dissolved in aqueous HCl solution (pH 2), then passed through 

0.2 µm nylon filter to remove any impurities. Then self-assembly of the block copolymers 

was triggered by increasing the pH value gradually to pH 9 through the addition of 1 M 

NaOH. The block copolymer concentration was 1 mg/mL and after 4 days of stirring in dark 

state, the polymersomes (PS0 or PS2) were formed.  

9.3 Cross-linking of Polymersomes 

After the formation of polymersomes, the solutions were further passed through the 0.8 µm 

nylon filter to remove any impurities. Then they were placed in the UV chamber equipped 

with an iron lamp (UVACUBE 100, honle UV Technologies, Germany) and irradiated for 

30 min. The photo-crosslinking was performed in round shaped-glass vials in which the path 

length of light is adjusted as 1.5 cm. The intensity of the light at this condition was measured 

with a power meter (Coherent Fieldmax II TO, USA) and found as 80 mW/cm2. 

9.4 Reversible Swelling and Shrinking of Crosslinked Polymersomes 

To monitor the swelling power of the cross-linked polymersomes, they were titrated by 

addition of 1 M HCL or 1 M NaOH to reach the pH 5 or pH 10 values respectively. The 

diameter of the vesicles was determined by DLS at each pH condition and this process was 

repeated for 5 cycles. 
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9.5 Polymersome Surface Functionalization  

9.5.1 NVOC Modification of Polymersomes 

Previously published methods were modified as follows:1-2 The aqueous solutions of 

CuSO4.5H2O (0.25 mol eq.), sodium ascorbate (0.5 mol eq.), TBTA (0.25 mol eq. in 

DMSO), and alkyne modified NVOC groups (1.5 mol eq. in DMSO) were added to the 1 

mg/mL polymersome solution at pH 8 (PS1, PS2 or PS3, azide groups, 1 mol eq.). The 

reaction mixture was stirred for 2 days at room temperature. Subsequently, the polymersome 

solution was transferred to a dialysis membrane (5 kDa MWCO) and extensively dialyzed 

against EDTA solution in millipore water (5 liters, 0.055 mM, pH 8) for 2 days by changing 

the media 3 times a day. To ensure the purification efficiency, dialysis of same amount of 

NVOC molecules without polymersomes was also performed as done identically for 

purification after click reaction on PS1 surface (Figure 9.1).  

 

Figure 9.1 Dialysis of same amount of NVOC molecules without polymersomes for 

purification assesment (Diaysis duration=2 days with the 5 kDa MWCO membrane) 

9.5.2 Photocleavage of NVOC groups via UV-irradiation 

The polymersome solutions were placed in round-shaped glass vials by keeping the path 

length of the light as 1.5 cm. Then the irradiation was carried out at a distance of 1 cm from 

the UV lamp in the range of 0-600 seconds (Omnicure S2000, Lumen Dynamics Group Inc., 

Canada). The UV chamber was equipped with a high pressure mercury lamp and the light 

intensity at described condition was measured as 0.35 W/cm2 using a power meter (Coherent 
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Fieldmax II TO, USA). The decrease in absorbance at 345 nm was monitored by UV-vis 

spectroscopy. Then, the final polymersome solution was dialyzed against water (pH 8) for 4 

hours to remove byproducts of the deprotection reaction. 

9.5.3 Rhodamine B NCS Modification of Polymersomes 

To a 1 mg/mL polymersome solution at pH 8 (PS1D) was added 19 μL of Rhodamine B 

NCS solution in DMSO (RhB-NCS, 0.03 mM). The reaction mixture was stirred for 12 hours 

at room temperature, then the polymersome solution was extensively dialyzed against water 

(5 liters, pH 8) for 3 days using a 50 kDa MWCO membrane by changing the media 3 times 

a day. The same process was applied also to PS1 polymersomes as a negative control.  

9.5.4 β-Cyclodextrin Modification of Polymersomes 

Aqueous solution of sulfo-cyanine7 labeled cyclodextrin (β-CD-Cy7, 6 mol eq.) was added 

to polymersomes which were already reacted with Rhodamine B NCS fluorescent dye 

(PS1R, Ada groups 1 mol eq.). After 20 hours of stirring at room temperature, the 

polymersome solution was transferred to a dialysis membrane (MWCO: 50kDa) and 

dialyzed extensively against water (5 liters, pH 8) for 3 days by changing the media 3 times 

a day. As a control experiment, the same procedure was also applied to polymersomes 

without any adamantane groups (PS0) and also PS1 polymersomes with adamantane groups.  

9.5.5 Predicting the Accessibility of the Functional Groups  

9.5.5.1 Functionalization Degree of NVOC groups 

A similar method as described previously was applied as follows:1 PS2C polymersome was 

freeze dried and dissolved in CHCl3 at different concentrations. Then, absorbance of the 

prepared solutions was measured at 345 nm using UV-vis spectroscopy and fitted to a linear 

line (A=6289.52c, R2=0.997, Figure 9.2). To obtain the comparative relationship, the same 

approach was also applied to a model compound (NVOC-PEG60OH, M1C) which had 50% 

NVOC functionalization (XM1C) determined from 1H NMR spectrum (A=3330.33c, 

R2=0.998, Figure 9.3). Subsequently, the ratio of the slopes of the regression lines was 

related with the functionalization degree of the two compounds (1.88XPS2C= XM1C) to 

estimate the relative amount of NVOC modification on polymersome surfaces. 
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Figure 9.2 Calibration curve of PS2C determined from absorbance values at λ=345 nm, 

measured in CHCl3, to calculate the relative NVOC functionalization degree of 

polymersomes (path length of the quartz cuvette =1 cm) 

 

Figure 9.3 Calibration curve of M1C determined from absorbance values at λ=345 nm, 

measured in CHCl3, to calculate the relative NVOC functionalization degree of 

polymersomes (path length of the quartz cuvette =1 cm) 

9.5.5.2 Photocleavage Efficiency of NVOC Groups 

PS2C polymersomes were irradiated for 600 seconds as described in the previous section 

and then dialyzed against water (pH 8) for 4 hours. The polymersome solutions before and 

after irradiation were freeze dried and dissolved in acidic water (1 mg/mL) for UV-vis 

A=3330.33c 
R2=0.998 

A=6289.52c 
R2=0.997 
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characterization as shown in Figure 9.4. Then, the absorbance values at 345 nm were 

determined and the photocleavage efficiency was predicted by calculating the amount of 

NVOC chromophore cleavage from three different batches of PS2C polymersomes (Figure 

9.5) by means of equation 9.1. 

(%)

100

NVOC ChromophoreCleavage
Absorbancebeforeirradiation Absorbance after irradiation x

Absorbancebeforeirradiation



  (9.1) 

 

Figure 9.4 UV-vis spectra of freeze dried PS2C and PS2D in acidic water 

 

Figure 9.5 Monitoring the cleavage of NVOC chromophore from 3 different batches of 

PS2C polymersomes to calculate the photocleavage efficiency 

Average (%) = 58.4±2.3 
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9.5.5.3 Efficiency of the Rhodamine B NCS Modification 

To predict the accessibility of released NH2 groups after photocleavage step, both PS1R and 

PS1 polymersomes was analyzed by UV-Vis spectroscopy. The concentration of NH2 groups 

reacted with RhB-NCS dye was determined by using the subtracted absorbance value of 

PS1R and PS1 polymersomes at 555 nm and the measured molar absorption coefficient 

(ɛRhNCS=136811 at 555 nm) of RhB-NCS in polymersome solutions (Figure 9.6). Afterwards, 

the reactivity of NH2 groups on the polymersome surface was determined by equation 9.2. 

2

1 1

2

(%)
( ) 100PS R PS

Accessible NH groups on surface
Concentrationof attached RhBNCS x

Concentrationof total free NH groups




    (9.2) 

 

Figure 9.6 Calibration Curve of Rhodamine B NCS determined from absorbance values at 

λ = 555 nm, measured in polymersome solutions, to calculate the molar extinction coefficient 

(Ɛ) of the corresponding dye (path length of the quartz cuvette =1 cm)  

9.5.5.4 Efficiency of the β-Cyclodextrin Modification  

The conjugation efficiency of β-CDCy7 molecules was determined with a similar strategy 

as done for the evaluation of amino groups. The molar absorption coefficient of β-CDCy7 

was measured as ɛCDCy7=113964.8 at 775 nm in polymersome solutions (Figure 9.7) and 

used to calculate the accessible adamantane groups on PS1H surface from equation 9.3. 

A=136810.8c 
R2=0.997 
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1 0

(%)
( 7) 100PS H PS

Accessible Ada groups on surface
Concentrationof attached CDCy x
Concentrationof Ada groups onouter shell


     (9.3) 

 

Figure 9.7 Calibration Curve of Cy7-labelled β-cyclodextrin determined from absorbance 

values at λ = 775 nm, measured in polymersome solutions, to calculate the molar extinction 

coefficient (Ɛ) of the corresponding dye (path length of the quartz cuvette =1 cm) 

9.6 Doxorubicin-Encapsulated Polymersomes 

Doxorubicin encapsulation was performed during the polymersome formation process with 

pre-loading approach.  A mixture of block copolymers (29 mol% BC1, 61.8 mol% BC2, 9.2 

mol% BC3) was dissolved in aqueous HCl solution (pH 2) then passed through 0.2 µm nylon 

filter. Afterwards, pH was increased to a value of pH 5 by utilizing 1 M NaOH solution. 

Doxorubicin (3 mg, 0.5 mL in millipore H2O) was added to the block copolymer solution in 

this step followed by increasing the pH to pH 7.4 to initiate the self-assembly process. The 

final concentration of the block copolymer was adjusted as 1 mg/mL whereas Dox 

concentration was 0.13 mg/mL. After stirring the mixture four days in dark condition, 

polymersomes were photo-crosslinked for 30 minutes as identically done for polymersomes 

without dox incorporation. By following this, the non-encapsulated Dox molecules were 

separated from the polymersome solutions by using hollow fiber filtration system. The 

separation was performed using modified polyethersulfone (mPES) based filter modules 

(MWCO: 100 kDa,) with transmembrane pressure (TMP) of 130 mbar by washing the 

samples with phosphate buffer at pH 7.4 for several cycles. To calculate the encapsulation 

A=113964.8c 
R2=0.998 
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efficiency, all wash solutions during filtration were collected and absorbance at λ=480 nm 

was measured with UV-vis spectroscopy. From the calibration curve at pH 7.4 (Figure 9.8a), 

the amount of free Dox was defined and the encapsulation efficiency (71.9±0.4%) of the 

PS1-Dox polymersomes was determined by means of equation 9.4. 

( )(%) 100Initial Dox amount Free Dox amountEncapsulation Efficiency x
Initial Dox amount


             (9.4) 

As a next step, to obtain NVOC modified Dox-loaded polymersomes (PS1C-Dox), the same 

procedure was applied to PS1-Dox polymersomes like it was done for PS1 vesicles 

previously. Here, only the reaction medium retained at pH 7.4 rather than pH 8 to avoid any 

Dox instability. As the final step, some portion of PS1C-Dox polymersomes were used in 

photocleavage process to obtain PS1D-Dox vesicles for further release studies.  

9.7 In Vitro Release of Doxorubicin 

Before proceeding to in-vitro release study, the calibration curves of doxorubicin at pH 7.4 

and pH 5 were prepared in the range of 0-50 µg/mL using phosphate buffer (PBS, pH 7.4) 

and acetate buffer (pH 5) from the stock solution of Dox in milipore water (0.1 mg/mL). 

Then the corresponding DOX solution in PBS or acetate buffer was measured with UV-Vis 

spectroscopy to define the absorbance values. Finally, the linearization of the Dox 

concentration versus absorbance data gives the required relationship (Figure 9.8, embedded 

equations in graphs) to calculate the unknown drug amount during release period.  

For in vitro release study, Dox encapsulated polymersomes at pH 5 and pH 7.4 (4 mL, PS1C-

Dox and PS1D-Dox) were poured into dialysis tubes (MWCO 5000) which were then placed 

into a 2-liter buffer containing beaker at constant temperature (37 oC) and stirring (200 rpm) 

condition. Two different release media were prepared as acetate buffer (0.01 M) for pH 5 

profile and phosphate buffer (0.01 M) for pH 7.4 profile. To determine the drug release, 0.8 

mL samples were taken at selected time intervals for UV-Vis analysis (λ=480 nm) and 

returned back into the dialysis membrane after the measurement. The amount of remaining 

Dox at each sampling point was then calculated from the calibration curves at pH 5 and pH 

7.4 (Figure 9.8). Finally, the cumulative Dox release at each time interval was obtained from 

equation 9.5. 
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(%)
( , ) 100

Cumulative Dox Release
Initial Dox Residual Dox each sampling point x

Initial Dox



   (9.5) 

 

 

Figure 9.8 Calibration curve of Doxorubicin at (a) pH 7.4 and (b) pH 5 determined from 

absorbance values at λ = 480 nm to calculate the cumulative release 

9.8 Preparation of Polymersome/Gold Nanoparticle Assemblies 

9.8.1 Pre-loading Approach 

In pre-loading approach, gold nanoparticle encapsulated polymersomes were prepared 

during self-assembly of block copolymers. As similarly done for doxorubicin encapsulation, 

a mixture of block copolymers (29 mol% BC1, 61.8 mol% BC2, 9.2 mol% BC3) was 

dissolved in aqueous HCl solution (pH 2) then passed through 0.2 µm nylon filter. 

(b) 

y=0.01982x 
R2=0.999 

y=0.02007x 
R2=0.999 

(a) 
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Afterwards, pH was increased to a value of pH 5 by utilizing 1 M NaOH solution. The 

addition of gold nanoparticles (in 0.01 mM phosphate buffer, 5 or 10 nm) was performed 

dropwise along with constant stirring. Afterwards, the pH was increased to pH 8 to obtain 

the polymersome/gold nanoparticle assemblies followed by stirring four days in dark 

condition. Finally, the photo cross-linking of polymersome membrane was carried out for 

30 minutes as described previously. The total block copolymer concentration was kept as 1 

mg/mL and the molar ratio of gold NPs to block copolymers was adjusted as 1.1 or 3.8. For 

purification of non-encapsulated gold nanoparticles; hollow fiber filtration system with 

modified polyethersulfone (mPES) based filter modules (MWCO: 750 kDa) was used. The 

transmembrane pressure (TMP) was maintained as 150 mbar during the filtration and 

phosphate buffer at pH 8 was used to wash the polymersome/gold nanoparticle solutions for 

several cycles of filtration process. 

9.8.2 Post-loading Approach 

In post-loading approach, gold nanoparticle encapsulated polymersomes was prepared after 

self-assembly of the block copolymers. The polymersomes solutions (PS1, 1 mg/mL) were 

prepared as identically described in chapter 8. Afterwards, the pH of the polymersomes was 

gradually decreased to pH 5 by addition of HCL (0.1 mM) solution which led to the swollen 

state of the polymersomes. By following this, the addition of gold nanoparticles (in 0.01 mM 

phosphate buffer, 5 or 10 nm) to the acidic polymersomes was carried out dropwise along 

with constant stirring. In order to provide sufficient time for gold nanoparticles to diffuse 

into the polymersome lumen, the polymersome/gold NPs mixture was stirred for an hour 

before pH was increased to the basic state (pH 8). The adjustment of the pH was performed 

by slow addition of NaOH solution (1 M). Herein, the molar ratio of gold NPs to block 

copolymers was kept as 3.8 which is the same like the pre-loading approach. The final block 

copolymer concentration after gold nanoparticle incorporation was 0.64 mg/mL and 0.66 

mg/mL for PS1-Au10P and PS1-Au5P, respectively.  
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10 Polymersome Immobilization onto Solid Substrates 

10.1 Epoxy silane Coating of Substrates 

The procedure of Luzinov et al. was modified as follows.1 Silicon wafers and glass slides 

were firstly cleaned in ethanol via sonication for 30 minutes followed by rinsing several 

times with Millipore water. Then the substrates were dried under a stream of nitrogen before 

they were treated with plasma for 140 seconds at middle setting of the Harric Plasma Cleaner 

(PDC002, USA). As a next step, substrates were gently placed into teflon Si wafer holders 

(which enable the stirring of the solution for a more homogeneous layer formation) and 

immersed immediately into epoxysilane solutions (1 vol% in toluene) under inert 

atmosphere. After 23 hours of deposition time at 25 οC, the Si wafers and glass slides were 

rinsed 3 times with toluene and additionally placed in ethanol at ultrasonic bath for 15 

minutes to remove unbound silane compounds. Finally, the SAMs were blow-dried with 

nitrogen stream and kept overnight under vacuum before the next coating step.  

10.2 β-cyclodextrin Coating of Substrates 

The previously published method was adopted as follows.2 Solutions of NH2-β-CD as 0.1 

mM and 1 mM were prepared in phosphate buffer at pH 8 (10 mM) and stirred for 2 hours 

for deprotection of the amino groups before using in the coating process. Afterwards, the 

epoxysilane covered substrates were gently placed into teflon Si wafer holders as done 

similarly for the previous step and immersed in this solution. The duration of the coating 

was 24 hours at 25 οC. After the deposition time, the substrates were rinsed 3 times with 

phosphate buffer and placed in Millipore water at ultrasonic bath for 15 minutes to remove 

unbound cyclodextrin molecules. Finally, β-cyclodextrin covered surfaces were obtained by 

drying the substrates with nitrogen stream and kept under vacuum. 

10.3 Passivation of β-Cyclodextrin Coated Substrates with PEG molecules 

The less-active β-cyclodextrin covered Si wafers (0.1 mM) were placed into special teflon 

Si wafer holders and immersed in polyethylene glycol solutions (in phosphate buffer, pH 8). 

The Si wafers were kept overnight in this solution after NH2-β-CD coating. Three different 

concentrations were used for the PEG solution (0.25 mM, 0.11 mM and 0.05 mM) to 

optimize the passivation level of the surface.  



172 
 

10.4 Polymersome Immobilization 

β-Cyclodextrin-coated Si wafers or glass slides were placed into teflon Si wafer holders and 

immersed into 1 mg/mL polymersome solution at pH 7.4. After 20 hours of deposition time, 

the substrates were rinsed with PBS buffer at pH 7.4 for 3 times then imaged with AFM 

under the same aqueous solution. For the samples of photoreaction experiments, the pH 

value was kept at pH 8 (in phosphate buffer) to obtain a high conjugation yield of the amine 

reactive fluorescent marker.  

10.5 Two Photon Absorption (TPA) Induced Photochemical Reactions 

This work was performed in collaboration with Dr. Philipp Reichenbach in the group of Prof. 

Lukas M. Eng from Applied Photophysics Institute (IAPP) of Dresden Technical University 

in the scope of SPP 1327 Project of German Research Foundation. The samples were 

irradiated by a femtosecond laser beam at 775 nm central wavelength with pulse duration of 

100 fs at a repetition of 75 MHz.  The sample illumination was realized through an air 

objective (40x Zeiss Achrostigmat with N.A=0.65) and the laser beam is defocused on the 

surface (by approximately 8 µm) to illuminate a larger number of polymersomes. By 

utilizing the piezo stage, the samples were moved against the laser beam to write the lines 

of 30 µm length at different powers from 1 mW to 64 mW. The laser-written lines were 

separated by a distance of 10 µm and all irradiation experiments were performed in wet state 

(in pH 8 buffer solution). After the irradiation step, the samples were immersed into the 

ATTO 532-NHS ester dye solution (0.3 mM, pH 8) for one day. To remove the unbound 

dye, the samples were rinsed with buffer solution (pH 8) for 3 times which is then placed 

into the buffer for two additional days not to have any unspecific dye attachment. After this 

intensive purification of dye molecules, the samples were placed into fresh pH 8 buffer 

solutions and visualized by fluorescence microscopy. To mark the positions of the 

polymersomes during fluorescence imaging, Au stripes were deposited onto glass slides by 

using a mask through the middle of the sample by evaporating 1.5 nm Cr and 15 nm Au in 

a vacuum evaporator. Before carrying out the 3-GPS coating step, scratches were drawn into 

these stripes to mark certain position in the neighborhood of the gold stripe. All further 

coating steps including polymersome deposition are identical as explained above. 
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Abbreviations and Symbols 

Ada                                Adamantane 

AFM Atomic force microscopy 

ATRP Atom transfer radical polymerization 

AuNP Gold nanoparticles 

BMA 4-(methacryloyloxy) benzophenone 

BC Block copolymer 

β-CD β-cyclodextrin 

bpy Bipyridine 

CRP Controlled radical polymerization 

Cryo-TEM Cryogenic transmission electron microscopy 

Cy7 Sulfo-Cyanine 7 

CW Continuous wave 

DLS Dynamic light scattering 

DEAEM 2-(diethylamino) ethyl methacrylate 

DPA 2-(Diisopropylamino) ethyl methacrylate 

Dox Doxorubicin 

DMSO Dimethyl sulfoxide 

DMAC Dimethylacetamide 

DMF Dimethylformamide 

DIPEA Diisopropylethylamine 

DPPC Dipalmitoylphosphatidylcholine 

EDTA Ethylenediaminetetraacetic acid 

EggPC Egg yolk phosphatidylcholin 

FEM Finite element method 
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3-GPS 3-Glycidyloxypropyltrimethoxysilane 

HFF Hollow fiber filtration 

MWCO Molecular weight cut-off 

NHS N-hydroxysuccinimide 

NIR  Near-infrared 

NMR Nuclear magnetic resonance 

NVOC Nitroveratryloxycarbonyl 

ONB o-Nitrobenzyl 

OPA One photon absorption 

PAA Poly(acrylic acid) 

PBS Phosphate buffered saline 

PEG Poly(ethylene glycol) 

PDI Polydispersity index 

PDMS Poly(dimethylsiloxane) 

PDMIBM Poly(dimethylmaleic imide butyl methacrylate) 

PMCL Poly(methyl caprolactone) 

PMOXA Poly(2-methyloxazoline) 

RhB-NCS Rhodamine B isothiocyanate 

SAMs Self-assembled monolayers 

SEC Size exclusion chromatography 

SHG Second harmonic generation 

SPR Surface plasmon resonance 

TBTA Tris-(benzyltriazolymethyl) amine 

THF Tetrahydrofuran 

TMP Transmembrane pressure 

TPA Two photon absorption 
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UV-vis Ultraviolet-visible 

A Absorbance 

E Young’s Modulus 

ζ zeta potential 

RH z-average hydrodynamic radius 

Ð Dispersity of polymers 

Mn Number average molecular weight 

Mw Mass average molecular weight 

kB Boltzmann constant 

η Viscosity 

pKa Acid dissociation constant 

kbend Bending modulus 

ϴA Advancing contact angle 

ϴR Receding contact angle 

Ra Surface roughness 

GM Göppert-Mayer unit 

ε Molar absorption coefficient 

ρ Molecular packing parameter 

λ Wavelength 

NAuNP Total number of AuNPs interacted with polymersomes 

NPS Total number of polymersomes interacted with AuNPs 

Tg Glass transition temperature 

h Polymersome membrane thickness 
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