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Abstract  

Oleanolic and ursolic acid (OA and UA) are triterpenic acids with diverse biological 

activities that are of interest to the pharmaceutical industry. To investigate the scope for 

producing these compound using cell suspension cultures of Salvia species, calli from 

S. officinalis, S. virgata and S. fruticosa were induced using several plant growth regulator 

(PGR) combinations. Eleven lines were selected for suspension induction from a pool of 

calli. Six suspension cultures were established successfully and cultivated in the 

Respiration Activity MOnitoring System® (RAMOS®) to obtain online data on their 

growth kinetics and to establish appropriate sampling schedules for the determination of 

their OA and UA production. Based on their observed growth behaviour, OA and UA 

contents, and aggregation properties, one suspension culture from each studied Salvia 

species was selected for further optimisation. The µmax values for these suspension cultures 

ranged from 0.20 to 0.37°d-1, their OA and UA contents were greater than 1.3 and 

1.2 mg g-1, respectively, and they afforded maximum volumetric yields of 21.0 mg l-1 for 

OA and 32.8 mg l-1 for UA. These results will be useful in the development of a refined 

Salvia suspension-based process for OA and UA production. 

 

Keywords: Salvia officinalis, Salvia fruticosa, Salvia virgata, callus, bioactive triterpene, 

RAMOS® – respiration activity monitoring system 

Abbreviations: AGG: area gained by growth; DW: dry weight; LS: Linsmaier and Skoog 

medium; MS: Murashige and Skoog medium; OA: oleanolic acid; OTR: oxygen transfer 

rate; PGR: plant growth regulator; RQ: respiration quotient; UA: ursolic acid;  

  



 

Introduction 

Oleanolic acid (OA) and ursolic acid (UA) are triterpenic acids with diverse biological 

activities including hepato-protective and anticancer properties (Liu 2005). In China, they 

are used in the clinic to treat liver diseases such as hepatitis (Liu 1995). The development 

of a GMP-compliant process for producing these substances using plant cell suspension 

cultures could increase the scope for exploiting their application in the areas of medicine. 

Salvia species produce various monoterpenes or essential oils (Taarit et al. 2011) but some 

of them also produce OA and UA in amounts that can exceed 1% of their total dry weight 

(DW) (Martin et al. 2009; Janicsák et al. 2006), especially S. fruticosa, S. officinalis and 

S. virgata. The measured OA and UA contents of these species vary depending on their 

growth conditions, the variety used, and the analytical procedure used to perform the 

measurements. OA contents ranging from 0.001 to 2.0% (w/w) have been measured while 

those for UA range from 0.4 to 3.8% (w/w) (Table 1). 

At present, the literature contains relatively little data on callus or cell suspension cultures 

of Salvia species whose capacity for producing OA and/or UA has been tested (Georgiev et 

al. 2011; Bolta et al. 2000). S. officinalis cultures have been evaluated for the production of 

UA (Bolta et al. 2000). While a suspension culture of S. fruticosa has been reported, it was 

only evaluated for the production of rosmarinic acid (Karam et al. 2003; Kintzios et al. 

1999). To the best of our knowledge, there have been no published studies on callus or 

suspension cultures of S. virgata. 

Cultivation experiments using plant cell suspension cultures are often performed in 

standard shake flasks. This approach has a significant drawback in that the entire contents 

of one or more flasks must be harvested in order to characterise the culture’s growth, 

which is very time consuming and laborious. The RAMOS® (Respiratory Activity 

MOnitoring System) eliminates this drawback by enabling on-line monitoring of the 

oxygen transfer rate (OTR) and carbon dioxide transfer rate (CTR) within individual shake 



 

flasks (Anderlei et al. 2004; Anderlei and Büchs 2001). The availability of this on-line 

information makes it possible to monitor the culture’s growth on a regular basis without 

taking samples. Since its introduction the RAMOS has been widely used in the cultivation 

of microorganisms (Kottmeier et al. 2012; Kensy et al. 2009; Anderlei et al. 2004; 

Anderlei and Büchs 2001) and has been applied to plant in vitro cultures already (Geipel et 

al. 2013; Ullisch et al. 2012). Basic investigations into the adaption of the RAMOS for 

cultivation of plant cells were reported by Geipel et al. (2013). It can be challenging to 

screen various suspension cultures under different growth conditions or cultures that 

behaves very differently because the standard procedure is to sample all cultures on the 

same day of cultivation (Mathur and Shekhawat 2013), but the results obtained by doing 

this will not necessarily be comparable when dealing with cultures that have very different 

properties. For example, it is possible that a given time of sampling may correspond to the 

time at which the biomass concentration of one suspension is maximized whereas a 

different culture may have already passed its peak at the same point in time. One way of 

avoiding this problem is to sample narrowly (e.g. on a daily basis). However, this is very 

laborious. Alternatively, by using the RAMOS, one can monitor the growth kinetics of 

each culture continuously and decide when to collect punctual samples based on these data.  

The main aim of this study was to establish cell suspension cultures of Salvia species, 

study their growth and metabolic activity, and determine their potential for the production 

of OA and UA. A secondary objective was to evaluate RAMOS as a tool for screening 

plant cell suspension cultures.  

Material and methods 

Callus cultures 

Seeds of the Salvia officinalis L. variety “Extrakta” purchased from N.L. Chrestensen - 

Erfurter Samen- und Pflanzenzucht GmbH (Erfurt, Germany) and of Salvia virgata 



 

received from Hortus botanicus Hauniensis, University Copenhagen (Copenhagen, 

Denmark) were potted in common garden soil and grown in the lab. Callus formation was 

induced on leaves and leaf stems from young (3-9 weeks old) S. officinalis and S. virgata 

plants. The leaves used for this purpose were taken from the 2. – 4. position below the 

shoot tip. Callus formation from Salvia fruticosa syn. S. triloba was induced from leaves 

and leaf stems from a 2-year old plant that was ordered from Die Kräuterei (Oldenburg, 

Germany). 

The surfaces of the plant explants were sterilised as described previously (Georgiev et al. 

2011). The explants were cultivated in Murashige and Skoog (MS) medium including 

vitamins supplemented with 30 g l-1 sucrose, 5.55 g l-1 phyto-agar (pH 5.6 – 5.8) and 

various plant growth regulators (PGR`s) in various combinations. The PGR`s included the 

auxins 2,4-dichlorophenoxy acid (2,4-D), l-naphthalene acetic acid (NAA), and picloram 

(Pic); and cytokinins represented by kinetin (Kin), 6-benzylaminopurine (BAP) and zeatin 

(Zea). Callus induction experiments were performed using each auxin in combination with 

each cytokinin and also by itself. The following auxin/cytokinin ratios at mass 

concentration (mg l-1) were used: 0.5/0.5, 1/0.5, 2/0.5, 1/1, 2/1 and 2/2. Experiments using 

only one auxin were performed with auxin concentrations of 0.2, 0.5, 1 or 2 mg l-1. Calli 

from S. fruticosa were only induced on media containing PGR combinations with 2,4-D. 

All chemicals were purchased from Duchefa Biochemie BV (Haarlem, The Netherlands). 

Calli were sub-cultivated with three week intervals. Biomass samples were collected from 

the cultures, freeze dried and used for analysis of OA and UA 8 to 12 months after 

induction. The growth behaviour of the cultures was studied 14 months after induction (see 

the Analyses section for details).  

Suspension cultures 

Approximately 15 months after callus induction, eleven lines were selected for use in 

establishing suspension cultures (see Table 3, section Results and Discussion). The 



 

corresponding calli were transferred into liquid Linsmaier and Skoog (LS) media 

(including vitamins) that was supplemented with 30 g l-1 sucrose and 0.2 mg l-1 2,4-D (pH 

5.6 – 5.8). Suspension cultures were maintained as described previously (Geipel et al. 

2013). Sub-cultivation was performed between 8 and 11 days depending on the line being 

used and its rate of growth. Aggregates were shortly allowed to settle down before sub-

cultivation to remove bigger aggregates (> 0.5 cm) within the suspensions. After 6 – 8 

passages of sub-cultivation the suspension cultures were growing stably, which means 

stable growth behaviour and stable morphological characteristics. At least nine passages of 

sub-cultivation were performed before setting up RAMOS. 

RAMOS and shake flask cultivation 

The RAMOS (HiTec Zang, Herzogenrath, Germany) was used for the cultivation and on-

line monitoring of the established suspension culture lines. The names of the individual 

lines and the growth conditions of their corresponding callus lines are shown with a grey 

background in Table 3. Cultivations were performed as described previously (Geipel et al. 

2013). The inoculum volume was 20% (v/v) of the working volume for all cultures than 

Soff_b, for which it was (40%, v/v). Every suspension other than Soff_b and Sfru_a was 

cultivated and measured in the RAMOS three times independently: twice at 110 rpm and 

once at 150 rpm, with a shaking diameter 50 mm shaking for both shaking frequencies. 

The Soff_b culture was measured only once at 110 rpm, while Sfru_a was measured twice at 

110 rpm. Each cultivation was performed with two to four replicates. 

The cultivation time varied depending on the culture`s growth behaviour, and cultivation 

was halted when the OTR started to decline sharply. Sampling was conducted based on the 

on-line OTR data, at three separate time points: (1) at the start of the cultivation; (2) during 

the increasing OTR phase, which corresponds to the late growth phase; and (3) when the 

OTR stopped increasing. One entire shake flask was harvested per sample and processed as 

described in the Analyses section.   



 

To better understand the kinetics of product formation an additional shake flask experiment 

was performed using the Soff_a suspension culture, which was prepared in the same way as 

in the RAMOS experiments. Twenty shake flasks (250 ml, 50 ml working volume) were 

prepared, two of which were harvested on each day of sampling.   

Analyses 

Callus growth 

The growth of callus was determined by measuring their area gained by growth (AGG) 

based on photos that were taken directly after sub-cultivation and three weeks later. The 

area occupied by each callus was determined by counting the number of pixels 

corresponding to the callus and the Petri dish using ImageJ (McMaster Biophotonics 

Facility, McMaster University, Hamilton, Canada). The number of pixels occupied by the 

callus was normalized against the number of pixels corresponding to the area of the Petri 

dish. The area of the Petri dish was defined using the oval selection tool. Areas that had 

been covered by the growth of the callus were identified by manually adjusting the image`s 

hue and saturation and with the help of the wand tool. The ‘area gained by growth’ (AGG) 

was then calculated using the following equation:  

𝐴𝐴𝐴𝐴𝐴𝐴 =
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The relative standard deviation for AGG estimates performed with this method is 12.9% 

based on ten independent analyses of the same picture.  

Growth of suspensions 

The content of a whole shake flask was filtrated to isolate the biomass, which was 

transferred to a Petri dish. The wet weight (WW) and DW of the biomass were determined 

by measuring the material before and after freeze drying (Alpha 1–2 lyophilizer, Christ, 



 

Osterode am Harz, Germany). The WW and DW concentrations were calculated based on 

the initial used culture volume of 50 ml in both cases in order to neglect the influence of 

H2O evaporation over the cultivation period. 

The specific growth rate µmax was determined graphically from the curve of the logarithmic 

mean OTR values for each cultivation experiment. The specific OTRmax was calculated by 

dividing the measured OTRmax by the dry biomass concentration at the corresponding time 

point. 

Determination of oleanolic and ursolic acid 

After biomass determination, the freeze dried biomass was extracted and subjected to 

HPLC analysis as described previously (Kümmritz et al. 2014). The OA and/or UA 

concentrations of some samples were below the limit of detection (2.5 µg ml-1). For the 

calculation of the OA and UA contents the value of 2.5 µg ml-1 was used and the values 

were marked with ‘<’ in Table 5. The relative standard deviation for the entire extraction 

and HPLC analysis process was 14.95% for OA and 14.19% for UA due to sample 

heterogeneity arising from cell aggregation (6 replicate extraction and analyses of a single 

biomass sample). Two parameters were used to assess the production of OA and UA by the 

different suspension cultures: the content per unit DW (µg g-1 or mg g-1) and the 

volumetric yield (the content multiplied by the biomass concentration for the sample at the 

same time point, given in mg l-1).   

Analysis of filtrated suspension media 

The conductivity and pH of the filtrated media were determined directly after sampling at 

25 °C. After enzyme inactivation at 80 °C (15 min) in a water bath, the filtrate was stored 

at -20 °C until required. Sample preparation and quantification of sucrose, glucose and 

fructose by HPLC were performed as previously reported (Geipel et al. 2014). The nitrate 

content was analysed using the photometric LCK-339-Kit (Hach Lange, Düsseldorf, 

Germany).  



 

Results and discussion 

Selection of callus lines for establishing suspension cultures  

Callus was successfully induced from young leaves and leaf stems of three different Salvia 

species (S. officinalis, S. virgata and S. fruticosa) in media containing several combinations 

of PGR`s. The calli were very heterogeneous in terms of their production of target 

metabolites, growth behaviour, morphology and colour. The colour of the callus seems to 

be species-specific because it did not vary visibly between different PGR combinations. 

Calli of S. officinalis and S. fruticosa were bright yellow, while those of S. virgata were 

more greyish.  

Four callus morphologies were observed for all Salvia species: a) round-shaped and very 

compact callus, b) mixtures of compact and friable callus, c) friable callus and d) mixtures 

of friable and very soft callus with a pulpy consistency (Fig. 1).   

The 71 callus lines that produced sufficient biomass for screening were analysed for their 

OA and UA contents (Table 2). The determined minimum, median and maximum values 

for OA and UA contents differed strongly between the three tested Salvia species. 

S. fruticosa lines exhibited relatively strong OA and UA production, represented by higher 

median values (642 µg g-1 for OA and 927 µg g-1 for UA). S. virgata had a much lower 

median value for OA and UA than S. fruticosa followed by S. officinalis. Comparing the 

median OA and UA contents for the calli (Table 2) with the minimum and maximum 

values that have been reported for intact plants (Table 1), the OA and UA outputs of the 

calli ranged from 0.4 to 10.9% of those for intact plants. The growth behaviour of the 

callus (in terms of their AGG values) is shown in Table 2. S. fruticosa callus lines 

exhibited stronger growth than the other two Salvia species, as indicated by their much 

higher minimal (24% vs. < 10%) and median AGG values. The influence of PGR`s on 

callus growth and OA/UA production remained unconsidered in this work. 



 

Finally, eleven lines of the heterogeneous pool of screened Salvia calli were selected for 

the establishment of suspension cultures (Table 3). The criteria for selection were a high 

content of the target metabolites OA and UA, acceptable growth behaviour and a non-

compact morphology.  

Preliminary experiments revealed that the medium used for callus induction was not 

appropriate for promoting the growth of suspension cultures (data not shown). Therefore, 

the selected calli were transferred from the solid induction media (MS medium containing 

various auxin/cytokinin combinations) to liquid LS medium supplemented with 0.2 mg l-1 

2,4-D only. This medium has previously been used successfully to establish cell 

suspension cultures of various plant species (Gyurkovska et al. 2011; Pavlov et al. 2005; 

Pavlov et al. 2000). After several weeks of cultivation six lines adapted successfully to the 

new medium and were studied further using RAMOS to characterise their physiology 

(these lines are listed in Table 3 and highlighted with a dark background). Lines that did 

not adapt to the new medium were not used in subsequent experiments.  

 

Online data of established suspension cultures obtained in RAMOS 

Each suspension culture has its own growth cycle, so samples taken from different cultures 

on any given day of cultivation will not necessarily represent the same growth phase and 

thus may not be comparable. Therefore, respiration data gathered using RAMOS were used 

to characterise the growth of each culture and to establish schedules for offline sampling 

such that the samples from each individual suspension culture reflected the same phases of 

growth. 

In general, the measured OTRmax values for the suspension cultures ranged from 2.0 – 

4.0 mmol l-1·h-1, while their specific OTRmax values were between 0.17 and 0.38 mmol l-

1·h-1. Assuming that the OTR is approximately equal to the oxygen uptake rates (OUR), the 

specific OTRmax values of the Salvia suspension cultures are comparable to or perhaps 



 

slightly lower than the values reported in the literature for other plant suspension cultures, 

which range from 0.27 to 0.59 mmol g-1·h-1(Taticek et al. 1991). A sunflower suspension 

culture that was cultivated under the conditions used in this work exhibited a similar 

OTRmax value of 2 mmol l-1·h-1(Geipel et al. 2013).  

 

Fig. 2 shows illustrative OTR-curves for two Salvia suspension cultures: Soff_a and Sfru_a 

(for species and line names see Table 3). After inoculation, the OTR values for both 

suspension cultures were around 0.6 mmol l-1·h-1, which represents their respiratory 

activity during the lag-phase. Around two days later, the OTR curves increased due to 

higher metabolic activity associated with cell growth and division, and the cultures` OT 

values increased strongly. The OTR curves for both suspension cultures peaked after 

approximately 9 days of cultivation (Fig. 2a-1 and b-1), after which their OT curves started 

sloping. This corresponds to the beginning of the transition phase that denotes a reduction 

in growth activity. Then the OTR decreased further, indicating that the culture had entered 

the stationary phase.  

The decrease in the OTR values on day 10 (Soff_a) or 11 (Sfru_a) was probably due to the 

depletion of sugars within the medium (Fig. 2a-3 and b-3). As shown in Fig. 2 a-3 and b-3, 

the suspension cultures had completely hydrolysed the original carbon source (sucrose) 

after 3 - 4 days of cultivation into glucose and fructose, which are metabolized 

simultaneously. However, in keeping with results observed for several other plant cell 

suspension cultures, the glucose was taken up more quickly. This may be due to the higher 

affinity of the hexose-transporter in the plasma-membrane for glucose (Krook et al. 2000). 

After 10 days, all of the sugar in the medium had been depleted in the case of Soff_a (Fig. 

2a-3) and after 11 days, only a small amount of fructose remained in the case of Sfru_a (Fig. 

2b-3). These effects were most probably not due to nitrogen limitation because the final 

offline samples from all cultures had residual nitrate concentration in excess of 0.7 g l-1 



 

(the initial values was 2.4 g l-1). The OTR curves of the screened cultures all had different 

forms and scales, even when considering cultures from the same species, highlighting the 

different growth behaviours of the suspension cultures. As demonstrated by the results for 

the Soff_a and Sfru_a lines, the increase in OTR was relatively linear in some cases (e.g Soff_a, 

Fig. 2a-1) and almost exponential in others (e.g. Sfru_a, Fig. 2b-1). ). In most cases, the 

OTR only remained at the OTRmax value for a relatively short period of time (as was 

observed for Soff_a) but some cultures exhibited near-maximal OTR values for multiple 

days (e.g. Sfru_a). A higher rate of agitation supports the O2-transfer within a culture (Maier 

and Büchs 2001). However, the growth patterns of cultures grown under agitation at 150 

rpm did not differ from those for cultures grown at 110 rpm, indicating that O2-transfer 

was not growth-limiting at 110 rpm. Extended OTR plateaus have previously been 

observed for a sunflower suspension culture but an investigation of this effect revealed, 

that an O2-limitation was not responsible (Geipel et al. 2013). It therefore seems that the 

occurrence of extended periods when the OTR for the Salvia suspension cultures was close 

to their OTRmax was due to an as yet unidentified factor rather than growth limitation 

because of O2-transfer or inadequate supply of carbon.  

The RQ values for the tested cultures (Fig. 2a-1 and b-1) were relatively constant, ranging 

from 1.1 to 1.2 at the start of cultivation and declining to around 1.0 when the OTR 

stagnated or decreased. Cultures that are only respiring would be expected to have an RQ 

of 1.0, which seems to be the case when the growth activity of the cells is reduced or 

stopped. To the best of our knowledge no data are available in the literature on typical RQ 

values during plant cell cultivation. Because the molecular formula (primary elemental 

composition) of the Salvia cultures` biomass used in this work is unknown, it is not 

possible to establish theoretical predictions of their RQ. Consequently, it is also impossible 

to analyse or explain any potential variation or increases in the RQ during the early stages 

of cultivation. Further investigations into the RQ values, growth, and secondary metabolite 



 

production of Salvia cell suspension cultures might enable the identification of useful 

indicators for following these processes and of transition points between different 

metabolic phases such as the switch from primary to secondary metabolite production.  

 

Growth behaviour of the established suspension cultures 

The online OTR data were used to assess the growth of the suspension cultures, which 

means the calculation of their specific growth rates because the offline data set based on 

biomass sampling was too small. The specific growth rate µmax is the most useful 

parameter for characterising the suspension-specific growth behaviour because it is 

independent of the lag-phase (Table 4). The duration of the lag-phase can be influenced by 

inoculum size and by the initial ratio of life to dead cells in the cultures, which was not 

determined in this work.  

The growth behaviour (µmax) of the cultures fluctuated between the cultivations. All µmax 

values independent from the applied shaking frequency were taken into account in Table 4 

because the µmax values for cultures grown at 150 rpm were within the RSD of the values 

obtained at 110 rpm or no clear tendency to better or worse growth at 150 rpm compared to 

110 rpm is apparent; that is to say, there was no appreciable difference between the growth 

behaviours observed at 110 and 150 rpm. The calculated µmax values ranged from 0.16 to 

0.53 d-1 and are comparable to those reported for suspension cultures of Nicotiana tabacum 

(0.47 d-1) or Catharanthus roseus (0.33 d-1) (van Gulik et al. 1992).  

In general, the mean µmax values for the S. virgata suspension cultures (> 0.34 d-1) were 

greater than those for S. officinalis or S. fruticosa cultures, which were both around 0.20 d-

1. The suspension culture with the highest mean µmax (≈ 0.40 d-1) Svir_a while that with the 

lowest specific growth rate was Soff_b (0.17 d-1). The very slow growth of this latter 

suspension culture makes it unsuitable as a production system. Therefore, no further 



 

experiments were performed with Soff_b. The maximum dry biomass concentrations for all 

investigated suspension cultures ranged from10.8 to 15.7 g l-1.  

Although the suspensions were all grown on identical media, they differed strongly in 

terms of their growth rates and aggregation behaviour, clearly demonstrating the need for 

detailed screening. 

 

The kinetics of product formation in established suspension cultures  

Fig. 3a and 3b show illustrative online OTR data acquired using RAMOS and product 

content data (OA, UA) determined via offline sampling for the Soff_a and Sfru_a cultures 

grown at a shaking frequency at 110 rpm. In both cases, the OA and UA contents remain 

more or less constant and may even decline slightly at the start of cultivation and during 

the early stages of the growth phase (Fig. 3a and b). The OA and UA content within dry 

biomass increased in the second half of the growth phase or at the start of the transitional 

phase (which occur after 11 and 7 days of cultivation, respectively).  

Because RAMOS can only accommodate a limited number of measuring flasks, a standard 

shake flask experiment with daily sampling was performed using the Soff_a suspension 

culture in order to acquire more detailed information on product formation (Fig. 3c). 

During the first day, there was an increase in the culture`s triterpenic acid content that may 

have been induced by new osmotic conditions presented by the fresh media during 

inoculation and it is known that osmotic stress can have eliciting effects (Kim et al. 2001). 

The cultures OA and UA content did not change appreciably over the next three days, 

which is consistent with culture being in the lag phase of growth, when it would not be 

expected to produce secondary metabolites. After the fourth day of cultivation the OA and 

UA content started to decrease strongly when the cultures began growing intensively. This 

could be caused by a dilution effect arising from the increase in the culture`s biomass and 

from degradation of existing triterpenic acids. After the sixth day, triterpenic acid 



 

production resumed and the levels of OA and UA in the biomass samples rose 

continuously until day 10 of cultivation. Between days 8 and 10, growth activity stagnated 

but the production of the target metabolites continued until the culture`s OA and UA 

contents were identical to those at the start of cultivation. This is consistent with the use of 

a 10 day old inoculum for the start of the experiments. Based on this increasing trend, one 

might expect the OA and UA content to increase further on day 11 and beyond that and 

indeed, after 11 days of Soff_a(1) cultivation using RAMOS, the product content was greater 

than that observed at the start of the experiment (Fig. 3a). In general, the OA and UA 

contents determined from the samples collected during the cultivation of Soff_a in the shake 

flasks confirmed the trends observed in the RAMOS data. Similar data on the relationship 

between growth and the production of OA and UA (Fig. 3) have been reported for a 

suspension culture of Perilla frutescens (Wang et al. 2004). However, reductions in UA 

levels during the later stages of the growth phase have been observed for two other 

suspension cultures of S. officinalis (Bolta et al. 2000). Overall, our results indicate that the 

production of OA and UA is maximised during the late stage of the growth phase and the 

stationary phase. Prolonging the stationary phase by adding further sucrose to the medium 

may thus enhance OA and UA production.  

 

Assessment of OA and UA production in established suspension cultures 

To assess the production of OA and UA of the investigated suspension cultures the 

maximal measured product contents and the corresponding volumetric yields were 

considered (Table 5).  

The mean values for OAmax and UAmax contents for the suspension cultures ranged from 

0.29 – 4.08 mg OA g-1 DW and 0.12 – 3.23 mg UA g-1 DW, respectively. The highest 

triterpene contents and volumetric yields were obtained from suspension cultures of S. 

officinalis (Soff_a, Soff_b) and S. fruticosa (Sfru_a). The Sfru_a and Soff_a cultures also had the 



 

lowest RSD`s for these variables (22 – 39%), indicating that their output was relatively 

stable. While, growth and secondary metabolite formation can be negatively correlated in 

some cases (Hagendoorn et al. 1997) we did not observe any correlation between µmax and 

the maximum cumulative OA and UA content for most of the cultures (data not shown). 

Only the data for Soff_b are somewhat consistent with this hypothesis because this culture 

exhibited very weak growth and the highest product contents. However, as previously 

mentioned, this culture grew very slowly and was therefore only studied in a single 

RAMOS cultivation experiment. Consequently, no firm conclusion can be drawn from this 

result. 

 

The OA and UA contents of the screened Salvia suspension cultures are comparable to 

those reported for other in vitro cultures (Muffler et al. 2011; Georgiev et al. 2011; Feria-

Romero et al. 2005).  

Interestingly, the OA:UA ratio differs among the three species and depends on the type of 

in vitro culture considered (callus or suspension). There was no clear species-specific 

OA:UA ratio. However, the S. fruticosa suspension culture (Sfru_a) and corresponding 

intact plants (Table 1) have a low OA:UA ratio and produce much more UA than OA. The 

suspension cultures of S. officinalis and S. virgata often produce equal amounts of both 

triterpenic acids.  

The OA and UA concentrations within the screened suspension cultures were substantially 

lower than those seen in intact plants (Table 1). Sfru_a produces around 14% as much OA 

and 10% as much UA as has been reported for S. fruticosa. The plants used to induce the 

callus cultures of S. officinalis and S. virgata in this study were obtained from the same 

seed batch as the plants used by Kümmritz et al. (2014), so the OA and UA contents for 

cultures of these species will only be compared to those authors` results. The OA and UA 

content of the S. officinalis suspension culture Soff_a were 54% and 11% of the values 



 

observed for intact plants. Svir_c, the most productive S. virgata suspension culture 

accumulated 24% and 5% of the OA and UA contents measured for intact S. virgata 

plants.  

 

Final assessment of the screened suspension cultures and prospects for future 

development  

Based on their growth behaviour and productivity, the most appropriate suspension 

cultures for further investigation and optimisation are Sfru_a, Svir_c, and Soff_a. The specific 

growth rates of Sfru_a and Soff_a were lower than those for the Svir suspensions (0.2 d-1 vs. > 

0.3 d-1, compare Table 4) but both cultures exhibited good growth stability (see the RSD 

values listed in Table 4) and, together with Soff_b, they gave the highest volumetric yields of 

OA and UA (> 40 mg OA+UA l-1). The Soff_a suspension exhibits particularly useful 

behaviour with respect to aggregate formation because it is very homogenous and consists 

of aggregates smaller than 1 mm. The Sfru_a and Svir_c suspensions are more heterogeneous 

and contain aggregates up to around 5 mm in diameter but also have high proportions of 

very small aggregates. Regardless, they merit further investigation.   

The OA and UA contents per unit DW of these three cultures were at least 10% of those 

seen in the corresponding intact plants. These levels could potentially be increased further 

via media optimisation, elicitation (Marchev et al. 2014) and the use of appropriate 

cultivation systems (Georgiev et al. 2013). In addition, the establishment of 

cryopreservation protocols that would preserve the biosynthetic potential of the cultures 

would be desirable (Mustafa et al. 2011) because it is known that problems with the long-

term stability of growth and productivity can occur with plant in vitro cultures (Smetanska 

2008). 
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Table 1 Reported oleanolic and ursolic acid contents for the three sage species 

examined in this work. 

Species OA  

[mg g-1 DW] 

UA  

[mg g-1 DW] 

Reference* 

S. officinalis 6.5 

15.6 

5.6 – 19.7 

7.5 

18.6 

38.3 

9.7 – 26.6 

22.5 

(Janicsák et al. 2003) 

(Janicsák et al. 2006) 

(Martin et al. 2009) 

(Kümmritz et al. 2014) 

S. fruticosa 0.011  

 

10.8 

 - 

 

31.1 

calculated from (El-Sayed 

et al. 2001) 

(Kümmritz et al. 2014) 

S. virgata 2.9 

5.5 

3.5 

27.5 

(Janicsák et al. 2006) 

(Kümmritz et al. 2014) 

* Please note that the cited studies used different extraction solvents and 

analytical methods. 

 



 

Table 2 Triterpene content (RSD = 14.95% for OA and 14.19% for UA) of the callus lines and growth behaviour of the callus lines expressed in 

terms of the area gained by growth (AGG, RSD = 12.9%) for the three used sage species. Minimum, maximum and median values for both 

parameters are presented.  

  Triterpene content [µg g-1 DW] Growth behaviour – AGG [%] 

Species No. of lines Min Median Max Min Median Max 

  OA UA OA UA OA UA    

S. officinalis 57 0 0 80 215 1901 4294 4.6 64.9 198.9 

S. virgata 9 49 35 384 292 1350 1050 10.1 37.5 99.5 

S. fruticosa 5 378 762 642 927 825 2425 23.9 70.0 149.6 

 



 

Table 3 Characteristics of the callus lines that were selected for the establishment 

of suspension cultures. Lines that adapted successfully to the indicated liquid LS 

medium and grew are highlighted with a grey background. 

Line 

name 

Plant growth regulators 

used for callus induction  

[mg l-1] 

Triterpene content  

                                            

[µg g-1 DW] 

Growth 

behaviour  

AGG [%] 

 auxin cytokinin OA UA  

S. officinalis 

Soff_a  2,4-D: 0.5 Kin: 0.5 97 164 69 

Soff_b  2,4-D: 1 Zea: 0.5 1517 1026 38 

Soff_c  2,4-D: 1 BAP: 0.5 1206 814 41 

Soff_d  NAA: 1 Kin: 1 178 1385 14 

Soff_e  Pic: 0.5 Kin: 0.5 677 207 57 

Soff_f  Pic: 1 BAP: 1 32 139 94 

S. virgata 

Svir_a  2,4-D: 1 - 438 605 99 

Svir_b  2,4-D: 1 Kin: 1 356 288 30 

Svir_c  2,4-D: 0.5 Zea: 0.5 476 354 32 

S. fruticosa 

Sfru_a  2,4-D: 1 Zea: 0.5 825 2425 70 

Sfru_b  2,4-D: 0.5 Zea: 0.5 378 762 150 

 

 

 



 

Table 4 Specific growth rate (µmax) values for the screened suspensions (n=3) 

based on two measurements for a shaking frequency of 110 rpm and one for a 

shaking frequency at 150 rpm. The values for the Soff_b (n=1) and Sfru_a (n=2) 

cultures based only on measurements obtained at 110 rpm. 

Suspension Mean µmax [d-1] RSD [%] 

S. officinalis   

Soff_a  0.20 27.9  

Soff_b 0.17  - 

S. virgata   

Svir_a 0.40 26.9  

Svir_b  0.34 49.8  

Svir_c  0.37 33.8 

S. fruticosa   

Sfru_a  0.21 19.2 

 

  



 

Table 5 Maximum OA and UA contents per unit DW for each suspension culture 

and volumetric yields of OA and UA at the corresponding time points. Values 

below the limit of detection are indicated by the ‘<’ symbol; in such cases, the 

measured sample concentration was assumed to be equal to the limit of detection 

for the purpose of subsequent calculations. n.d. = not detectable 

Line Maximum triterpene content 

[mg g-1] 

Volumetric yield 

[mg l-1] 

 OAMax  UAMax  OA UA 

Soff_a (1) 1.14 1.32 17.9 20.7 

Soff_a (2) 1.64 1.53 26.9 25.2 

Soff_a (3) 1.15 0.90 18.1 14.1 

mean 1.31 1.25 21.0 20.0 

RSD [%] 22 26 25 28 

Soff_b  4.08 2.54 40.1 25.0 

mean - - - - 

RSD [%] - - - - 

Svir_a (1) <0.09 <0.09 <1.3 <1.3 

Svir_a (2) <0.18 <0.21 <1.9 <2.1 

Svir_a (3) 1.93 2.28 27.7 32.6 

mean 0.73 0.86 10.3 12.0 

RSD [%] 142 144 147 149 

Svir_b (1) <0.16 n.d. <1.9 n.d. 

Svir_b (2) 0.55 0.36 6.5 4.3 

Svir_b (3) <0.16 n.d. <1.8 n.d. 

mean 0.29 0.12 3.4 1.4 



 

RSD [%] 79 173 80 173 

Svir_c (1) 1.21 1.25 17.0 17.5 

Svir_c (2) 2.08 2.27 31.0 34.1 

Svir_c (3) 0.64 0.53 6.9 5.7 

mean 1.31 1.35 18.4 19.1 

RSD [%] 55 65 67 75 

Sfru_a (1) 1.87 4.11 16.3 35.8 

Sfru_a (2) 1.14 2.35 14.4 29.7 

mean 1.50 3.23 15.3 32.8 

RSD [%] 34 39 9 13 

 

  



 

 

Fig. 1 Morphological properties of calli from the different Salvia species 

considered in this work: a – round-shaped and very compact callus, b – mixtures 

of compact and friable callus, c – friable callus, d – friable and very soft callus 

with a pulpy consistency 

  



 

 

Fig. 2 Representative online (OTR and OT-curves, a-1: Soff_a, b-1: Sfru_a) and 

offline (DW, a-2: Soff_a, b-2: Sfru_a and sugars, a-3: Soff_a, b-3: Sfru_a) data 

for two sage suspensions cultivated using the RAMOS at 110 rpm  

  



 

 

Fig. 3 Representative online (OTR) and offline (OA and UA contents) data for 

RAMOS cultivations of Soff_a (a) and Sfru_a (b) at 110 rpm as well as DW 

measurements and triterpenic acid contents for the Soff_a suspension culture from a 

shake flask experiment conducted at 110 rpm (c) 
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