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Abstract

Fractal Dimensions in Classical and Quantum Mechanical Open Chaotic

Systems

Fractals have long been recognized to be a characteristic feature arising from chaotic
dynamics; be it in the form of strange attractors, of fractal boundaries around basins of
attraction, or of fractal and multifractal distributions of asymptotic measures in open
systems. In this thesis we study fractal and multifractal measure distributions in leaky
Hamiltonian systems. Leaky systems are created by introducing a fully or partially trans-
parent hole in an otherwise closed system, allowing trajectories to escape or lose some
of their intensity. This dynamics results in intricate (multi)fractal distributions of the
surviving trajectories. These systems are suitable models for experimental setups such
as optical microcavities or microwave resonators. In this thesis we perform an improved
investigation of the fractality in these systems using the concept of effective dimensions.
They are defined as the dimensions far from the usually considered asymptotics of infi-
nite evolution time t, infinite sample size S, and infinite resolution (infinitesimal box-size
ε). Yet, as we show, effective dimensions can be considered as intrinsic to the dynamics
of the system. We present a detailed discussion of the behaviour of the numerically
observed dimension Dobs(S, t, ε). We show that the three parameters can be expressed
in terms of limiting length scales that define the parameter ranges in which Dobs(S, t, ε)
is an effective dimension of the system. We provide dynamical and statistical arguments
for the dependence of these scales on S, t, and ε in strongly chaotic systems and show
that the knowledge of the scales allows us to define meaningful effective dimensions.
We apply our results to three main fields. In the context of numerical algorithms to
calculate dimensions, we show that our findings help to numerically find the range of
box sizes leading to accurate results. We further show that they allow us to minimize
the computational cost by providing estimates of the required sample-size and iteration
time needed. A second application field of our results is systems exhibiting non-trivial
dependencies of the effective dimension Deff on t and ε. We numerically explore this in
weakly chaotic leaky systems. There, our findings provide insight into the dynamics of
the systems, since deviations from our predictions based on strongly chaotic systems at
a given parameter range are a sign that the stickiness inherent to such systems needs
to be taken into account in that range. Lastly, we show that in quantum analogues of
chaotic maps with a partial leak, a related effective dimension can be used to explain
the numerically observed deviation from the predictions provided by the fractal Weyl
law for systems with fully absorbing leaks. Here, we provide an analytical description of
the expected scaling based on the classical dynamics of the system and compare it with
numerical results obtained in the studied quantum maps.



Zusammenfassung

Fraktale Dimensionen in Klassischen und Quantenmechanischen

Chaotischen Systemen

Es ist seit langem bekannt, dass Fraktale eine charakteristische Begleiterscheinung chao-
tischer Dynamik sind. Sie treten in Form von seltsamen Attraktoren, von fraktalen Be-
grenzungen der Einzugsbereiche von Attraktoren oder von fraktalen und multifraktalen
Verteilungen asymptotischer Maße in offenen Systemen auf. In dieser Arbeit betra-
chten wir fraktal und multifraktal verteilte Maße in geöffneten hamiltonschen Systemen.
Geöffnete Systeme werden dadurch erzeugt, dass man ein völlig oder teilweise transpar-
entes Loch im Phasenraum definiert, durch das Trajektorien entkommen können oder in
dem sie einen Teil ihrer Intensität verlieren. Die Dynamik in solchen Systemen erzeugt
komplexe (multi)fraktale Verteilungen der verbleibenden Trajektorien, beziehungsweise
ihrer Intensitäten. Diese Systeme sind zur Modellierung experimenteller Aufbauten, wie
zum Beispiel optischer Mikrokavitäten oder Mikrowellenresonatoren, geeignet. In dieser
Arbeit führen wir eine verbesserte Untersuchung der Fraktalität in derartigen Systemen
durch, die auf dem Konzept der effektiven Dimensionen beruht. Diese sind als die Dimen-
sionen definiert, die weit weg von den üblicherweise betrachteten Limites unendlicher It-
erationszeit t, unendlicher Stichprobengröße S und unendlicher Auflösung, also infinites-
imaler Boxgröße ε auftreten. Dennoch können effektive Dimensionen, wie wir zeigen,
als der Dynamik des Systems inhärent angesehen werden. Wir führen eine detaillierte
Diskussion der numerisch beobachteten Dimension Dobs(S, t, ε) durch und zeigen, dass
die drei Parameter S, t und ε in Form grenzwertiger Längenskalen ausgedrückt werden
können, die die Parameterbereiche definieren, in denen Dobs(S, t, ε) den Wert einer effek-
tiven Dimension des Systems annimmt. Wir beschreiben das Verhalten dieser Längen-
skalen in stark chaotischen Systemen als Funktionen von S, t und ε anhand statistischer
Überlegungen und anhand von auf der Dynamik basierenden Aussagen. Weiterhin zeigen
wir, dass das Wissen um diese Längenskalen die Definition aussagekräftiger effektiver
Dimensionen ermöglicht. Wir wenden unsere Ergebnisse hauptsächlich in drei Bereichen
an: Im Kontext numerischer Algorithmen zur Dimensionsberechnung zeigen wir, dass
unsere Ergebnisse es erlauben, diejenigen ε-Bereiche zu finden, die zu korrekten Ergeb-
nissen führen. Weiterhin zeigen wir, dass sie es uns erlauben, den Rechenaufwand zu
minimieren, indem sie uns eine Abschätzung der benötigten Stichprobengröße und Itera-
tionszeit ermöglichen. Ein zweiter Anwendungsbereich sind Systeme, die sich durch eine
nichttriviale Abhängigkeit von Deff von t und ε auszeichnen. Hier ermöglichen unsere
Ergebnisse ein besseres Verständnis der Systeme, da Abweichungen von den Vorher-
sagen basierend auf der Annahme von starker Chaotizität ein Anzeichen dafür sind,
dass im entsprechenden Parameterbereich die Eigenschaft dieser Systeme, dass Bereiche
in ihrem Phasenraum Trajektorien für eine begrenzte Zeit einfangen können, relevant
ist. Zuletzt zeigen wir, dass in quantenmechanischen Analoga chaotischer Abbildungen
mit partiellen Öffnungen eine verwandte effektive Dimension genutzt werden kann, um
die numerisch beobachteten Abweichungen vom fraktalen weyl’schen Gesetz für völlig
transparente Öffnungen zu erklären. In diesem Zusammenhang zeigen wir eine ana-
lytische Beschreibung des erwarteten Skalierungsverhaltens auf, die auf der klassischen
Dynamik des Systems basiert, und vergleichen sie mit numerischen Erkenntnissen, die
wir über die Quantenabbildungen gewonnen haben.
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Chapter 1

Introduction

1.1 Motivation

Fractals and multifractals have long been a topic of interest in different fields from eco-

nomics [Man04] to biology [Wes99, HRO02], medicine [VGL+15, IAG+99], solid state

physics [Zaa10, CKP+14], astronomy [AS81, LKK+15], and many others. Their defin-

ing property is that they are self similar or at least qualitatively or statistically self

similar on all scales. This self similarity can be quantified by assigning a fractal dimen-

sion [Man67]. One possible choice of defining such a fractal dimension is the box-counting

dimension D0 [Ott02]. Some fractals exhibit an even more complicated structure and

are therefore not sufficiently characterised by a single fractal dimension. Instead, they

are characterised by a full spectrum of fractal dimensions such as the Rényi dimensions

Dq [Rén55] or the so called f(α) spectrum [HJK+86b, HJK+86a].

Some years after Mandelbrot publicised the term, attracting limiting sets of dy-

namical systems were found to be fractal; these strange attractors appear in systems used

to model turbulence [RT71]. In the study of the same subject it was later realised that

the fractal dimension of a strange attractor can be expressed in terms of the Lyapunov

exponents of the system [FKYY83]. This so called Lyapunov-dimension is conjectured to

be similar to the information dimension Dq=1 [Ott02] and it bridged the gap between a

geometrical description of the invariant structure and its underlying dynamics. The dy-

namical systems mentioned so far have in common that they are dissipative and chaotic

in the long-time asymptotic regime. Those conditions are, however, not necessary for

the appearance of fractal structures. There is a class of systems which exhibit chaotic

behaviour only on finite time scales; a phenomenon called transient chaos [LT11, Tél15].

1



2 Chapter 1 Introduction

Transient chaos was first studied in the context of crises [GOY82] and fractal bound-

aries [GOY83] but also commonly appears in open systems (e.g. chaotic scattering). For

such systems a similar relation to the Kaplan-Yorke formula was found connecting the

fractal dimension Dq=1 of the saddle with the Lyapunov exponent and the escape rate

describing the exponential decay of the chaotic component [KG85]. But also in energy

conserving systems, which are Hamiltonian and therefore do not have an attracting set,

fractals appear when the systems are opened. In that case, the surviving set, or, in

the case of a partially transparent leak, the asymptotic intensity distribution exhibit

a (multi)fractal structure. By now fractality is recognised as a general signature of

chaotic dynamics [Ott02, LT11, AVS09], although fractality does not necessarily imply

chaos [GOPY84].

In this work we discuss Hamiltonian systems which have a leak somewhere within

their phase space that either allows trajectories to escape or that absorbs some part

of an intensity associated to the trajectory. This class of systems is especially inter-

esting because such systems exhibit transient chaos, but, at the same time, they can

be studied using numerically convenient volume preserving maps [Mei92]. Apart from

their theoretical significance, these systems are also models for – amongst other physical

phenomena [APT13b], such as, for example, reverberation in acoustics – the behaviour

of optical cavities [WM08, CW15, SSFH16]. Such cavities are experimentally realised

by embedding a disk made of a dielectric material with a refractive index n1 within

a larger disk of dielectric material with a different refractive index n2 < n1. On the

interface between the two materials light rays are either reflected completely if the angle

of incidence α fulfills

α > arcsin
n2

n1
,

in which case the light ray stays within the disk, or transmitted at least partially, i.e.,

they can escape if their angle of incidence is steep enough. If the boundary shape

of the inner disk is circular, such systems can support resonant electromagnetic whis-

pering gallery modes that have very long life-times and a very narrow spectral width

which makes this type of micro cavity useful for many optical applications [IM06]. For

lasing applications, however, the isotropic emission pattern of such whispering gallery

mode resonators is not desired, instead the emission ideally is unidirectional. An al-

most unidirectional far-field emission pattern is achieved by deforming the micro disk

boundary appropriately. While most deformations do not produce the desired result,

i.e., unidirectional emission with low spectral width, the limaçon shape was experimen-

tally shown [WH06, SHW+09] to show a preferred direction of emission. In large enough

billiards the light propagation can be described by ray dynamics in optical billiard which

is chaotic for most shapes of the disk [Sto10, SHF+11]. The validity of the ray approx-

imations allows to model the propagation of light in optical billiards by studying the
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dynamics of classical dynamical billiards with a leak. The far field intensity distribution

around micro cavity lasers has a very intricate pattern which can be explained by the

fractal intensity distribution inside the region of the phase space that allows transmission

to the outside [CW15].

Another class of experimental setup that the model systems we study are rel-

evant for are superconducting microwave billiards [DR15] with absorbers [WBK+14].

Because in quasi two-dimensional realisations of such resonators, the Helmholtz equa-

tions describing the propagation of electromagnetic waves in such systems are of the

same functional form as the two-dimensional Schrödinger equation [Ric99, Stö99], these

experimental setups allow experimental measurement of wave functions in an analogue

quantum system. The relevance of classical leaky systems in this context arises at wave-

lengths corresponding to the semiclassical limit in the quantum system. Introducing a

small leak in an otherwise closed system of this kind allows the measurement of spectral

properties such as scarring [AOCO95] of the closed system; this process is called chaotic

spectroscopy [DS92]. In the field of quantum chaos [Stö99] quantised leaky chaotic sys-

tems show the influence of fractal structures in the classical phase space on the quantum

dynamics in such systems. Probably most famously, this is expressed in the fractal Weyl

law which states that the number of surviving eigenstates in such a system scales alge-

braically with the dimension of the Hilbert space with an exponent that is the fractal

dimension of the chaotic saddle of the corresponding classical system [LSZ03].

In all the leaky systems mentioned so far we have only mentioned completely

open leaks. In many physical scenarios, however, the leaks – or absorbing regions –

have a finite reflectivity. An example for that is the reflection on the boundary of a

microcavity with an angle of incidence smaller than the critical angle of total reflection.

In contrast to open systems (full absorption), in partially absorbing systems, the box-

counting dimension is an integer number equal to the phase-space dimension [APT13a].

Fractality in the classical dynamics of such systems is still present [WM08] and can be

quantified using the spectrum of Rényi dimensions.

1.2 This Thesis

In the previous section we argued that fractal dimensions are a central quantity in the

study of transient chaos in fully and partially open systems. They are generally defined as

the scaling-exponent of some scalar function of the t→∞ asymptotic invariant measure

contained in boxes of size ε of a regular grid covering the phase space in the limit of ε→ 0.

In practise, these two limits are almost never reached; the exception being the rare cases,
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where an analytical treatment is possible. Instead, the fractal dimension is usually

calculated numerically, in which case a sampling of finite size ς (the number of found

trajectories) of a finite time t approximation of the invariant measure is examined at

finite box-sizes ε. Using statistical and dynamical arguments we show that the finiteness

of all three of those parameters can be expressed in terms of finite length scales and

thus can be related to each other. Apart from the computational cost of the numerical

calculation, there can be physical reasons for the finiteness of any of the scales associated

to the parameters. Minimal length scales in physical fractals are in the extreme case for

example given by thermal noise or even quantum effects. More interestingly, there are

dynamical systems (e.g. weakly chaotic Hamiltonian systems) which exhibit a non-trivial

dependence of the effective dimension on ε [LFO91, MLG03, KMBK13].

The aforementioned limitations lead to an observed dimension which depends on

the parameters ς, t, and ε. There is a range of values of those parameters, for which

the observed dimension does not depend on the particular choice of parameters, but

instead is an intrinsic property of the underlying dynamical system. We use the term

effective dimension (Deff) to describe the observed dimension in this range of parameters.

Using fully and partially open strongly chaotic systems we develop a theory that allows

the prediction of the parameter ranges leading to Deff . We then continue to show

that the concept can be applied to find efficient choices of the parameters of numerical

dimension algorithms. We further show that the concepts can be used to gain insight

into the dynamics of weakly chaotic systems. And, lastly, we show that in partially

open quantum chaotic systems we can use an effective dimension to explain numerical

observations. In detail, this work is organised in the following way.

In Chapter 2 we give an introduction to Hamiltonian chaos followed by a general

overview over fundamental concepts from the field of transient chaos. We further in-

troduce the stadium billiard, both in its traditional (closed) form and also opened by

the introduction of a leak. This chaotic billiard serves as an instructive example of the

concepts discussed in that chapter and also reappears later in the text.

The introduction of the type of dynamics considered in this text is then followed

by a chapter on fractal dimensions in Chapter 3. There we show the definition of the

spectrum of Rényi dimensions which is central to the research presented here and discuss

its relevance in the investigation of (leaky) chaotic systems. We also review the most

commonly used numerical methods to calculate fractal dimensions and compare them in

terms of their generality and numerical efficiency. We then propose a derivative of the

algorithms which preserves generality in the sense that it is applicable to a wide range

of (multi)fractal measures and allows the calculation of the full Rényi spectrum while at

the same time being straightforward to implement and almost perfectly parallelisable.
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In the central Chapter 4 we formulate a theory for effective dimensions Deff in

strongly chaotic leaky systems. It is based on the numerical observation that even

though the asymptotic dimensions in the limit of infinitesimally small box-sizes and

infinitely large sample-size are often trivial, there exist parameter-intervals for which we

can assign a well defined effective dimension spectrum to approximations of the invariant

structures. We show that the bounds of these intervals can be expressed in commonly

used dynamical-quantities such as the Lyapunov exponents and the escape rate, and

with the help of statistical concepts such as order statistics. We numerically confirm our

theoretical predictions in an analytically solvable map, a true-time billiard-map, and in

a partially open system and show that the predictions are valid in all three.

For the discussion in Chapter 5 we turn to leaky systems which are not fully

hyperbolic. We review stickiness caused by regular regions and marginally unstable

periodic orbits embedded within a chaotic phase-space. We then proceed to show that

we can identify effective dimensions of the type presented in Ch. 4 even in these types of

chaotic systems. We compare the numerically obtained results to the theory presented

in Ch. 4 and demonstrate, that the observed features can be explained by a similar

reasoning.

In Chapter 6 we present an introduction to partially open quantised chaotic maps

and the fractal Weyl law and give a short review of the literature in the field. We then

present another type of effective dimension based on the interpretation of the invariant

measure as a probability measure. We apply our results about undersampled distri-

butions to explain properties of the eigenvalue spectrum of (partially) open quantised

chaotic systems and show that something comparable to the fractal Weyl law can be

observed also in the case of partial absorption, and that the observed scaling can be

explained from our model.

Lastly, we close the thesis with a review of the central results in Chapter7.

This thesis is a result of studies conducted between 2012 and 2016 at the Max

Planck institute for the physics of complex systems in Dresden under the supervision of

Eduardo G. Altmann. The results presented in parts of Sec. 4.4, Chapter 6, and App. D

were previously published in [SA15].





Chapter 2

From Closed to (Partially) Open

Chaotic Hamiltonian Systems

In this chapter we give an overview over a selection of concepts from the theory of

transient chaos that we will need throughout this work. We start with the discussion of

chaos in closed systems. Afterwards we consider leaky systems, i.e., systems with fully

and partially absorbing regions in the phase space.

The introduction presented here is based on textbooks [Ott02, Str94, LT11, Ozo90,

Bäc03, Stö99] and review articles [APT13b, Nov13] on nonlinear dynamics and (tran-

sient) classical and quantum mechanical chaotic dynamics. It shall serve as an intro-

duction to the type of dynamics and the systems that we study in later chapters.

2.1 General Concepts in Hamiltonian Chaos

In this work we consider chaotic dynamics in systems that are deterministic and Hamil-

tonian. A dynamical system in this context is a function that describes the temporal

evolution of a point x in the N -dimensional phase-space of the system. A system is

called deterministic if its state is at all times t > t0 uniquely defined by its state at t0.

In a Hamiltonian system there exists a set of canonical coordinates (q, p) with p, q ∈ RN

spanning the phase-space Ω such that the time evolution in Ω is described by Hamilton’s

equations
dp

dt
= −∂H

∂q

dq

dt
= +

∂H
∂p

. (2.1)

7



8 Chapter 2 From Closed to (Partially) Open Chaotic Hamiltonian Systems

The Hamiltonian H(q, p, t) fully describes the dynamics in the system. For this work one

of the most important properties of Hamiltonian systems is that because of their sym-

plectic structure the dynamics preserves infinitesimal phase-space volumes. We stress

this property here because it allows to differentiate the case that there are absorbing

regions in Ω which we discuss below and which leads to a decay with time of relevant

sets in the phase-space from the dynamics in dissipative systems which show decaying

behaviour in a different sense and which are not subject of this thesis.

For the most part, in this work we study Hamiltonian chaos in symplectic maps

which are the discrete-time equivalent of such continuous Hamiltonian systems [Mei92].

Such mappings are of the form

xn+1 =Mxn, (2.2)

where the xn ∈ Ω are the subsequent states of the system. Such maps can be created by

discretising a continuous-time system. One way of achieving a discretisation of a flow is

by stroboscopic mapping, i.e., by noting the state of trajectories at fixed time-intervals,

which leads to a map of the type

x(t+ T ) =MTx(t), (2.3)

where the map MT describes the change in the value of x within one period T . This

method is especially useful in periodically driven systems where the driving period pro-

vides a natural choice of T . Another way of obtaining a discrete time map from a flow

is to create a Poincaré map by reducing trajectories1

x(t) =
(
x(1)(t), x(2)(t), . . . , x(N)(t)

)
∈ RN

to a discrete time trajectory {χ0, χ1, . . . , χn, . . .} by only considering the intersection

points of the trajectory and a hyperplane of dimension N − 1, where

χn =
(
f (1) (x(t∗)) , . . . , f (N−1) (x(t∗))

)
∈ RN−1

is the set of free coordinates at the point in time t∗ when x(t) intersects the plane for

the nth time. The function f defines the shape of such a Poincaré surface of section and

the mappingMP from one point of intersection to the subsequent one is called Poincaré

map:

χn+1 =MPχn, (2.4)

This sort of reduction to a map is generally possible and the resulting mappings are

1We use the superscript (i) do mark the ith component x(i) ∈ R of x ∈ RN .
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often simpler to handle in computations than the flow. There are also computationally

convenient “artificial” chaotic maps that show behaviour similar to maps created by the

methods described above. For the sake of clarity the notation and examples in this work

are oriented on such artificial discrete time systems. Nonetheless, the results obtained

also apply to the more complicated dynamics in maps created by a discretisation of flows

in physical systems.

The notion of chaos in such systems is based on the concept of stability. We define

the Jacobian matrix J(x∗) as2

J(x∗) :=

(
∂M
∂x

)∣∣∣∣
x=x∗

. (2.5)

This defines a linearisation of the dynamics ofM around x∗ so that we can approximate

the evolution of a trajectory close to x∗ by a Taylor expansion to first order as

M(x∗ + δ) ≈Mx∗ + J(x∗)δ + · · · (2.6)

for small δ. If x is a fixed point, i.e., ifMx = x, then we can use this equation to qualify

the stability of this fixed point by looking at a nearby trajectory starting at x′ = x+ δ:

δ 7→ M(x+ δ)−M(x) ≈ J(x)δ. (2.7)

In an N -dimensional system J(x) has a system of N eigenvalues li and eigenvectors vi.

The component δ · vi of a deviation δ away from x grows or shrinks in one iteration of

M by a factor of li. So any small volume containing x is stretched in the direction of

vi by a factor of li. In a similar fashion we can define the linear stability of any orbit

of period n by using the fact that any point of such an orbit is a fixed point of a map

M̃ := Mn. The resulting eigensystem (ṽi, l̃i) describes the stretching – or squeezing –

of the distance between the periodic orbit and a nearby trajectory within one period of

the orbit, so that we can define a set of stretching factors li := l̃i/n that quantify the

stretching within one iteration.

To simplify the discussion below it is useful instead of the eigenvalues li we discuss

exponents Λi ∈ C such that li = eΛi . The volume-preserving property of a map implies

2Let x, y ∈ RN . Using v(i) for the ith component of a vector v ∈ RN we define the following
short-hand notation:

∂y

∂x
:=


∂y(1)

∂x(1)
∂y(1)

∂x(2)
· · · ∂y(1)

∂x(N)

∂y(2)

∂x(1)
∂y(2)

∂x(2)
· · · ∂y(2)

∂x(N)

...
...

. . .
...

∂y(N)

∂x(1)
∂y(N)

∂x(2)
· · · ∂y(N)

∂x(N)
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that the Jacobian determinant is equal to unity:

|det J(x)| = 1 . (2.8)

Expressed in terms of the stability exponents of J(x) an equivalent formulation is∣∣∣∑N
i=1 Λi

∣∣∣ = 0. So for the real part of a set of Λi values at a certain point the pos-

sible scenarios are

(i) All <Λi = 0: A fixed point with purely imaginary stability exponents is called

elliptic. A volume close to such a point is rotated around it with time but neither

stretched nor squeezed.

(ii) If one or more <Λi > 0 there must exist <Λj < 0 such that the stretching is com-

pensated. An eigenvector associated to the negative (positive) exponents defines a

stable (unstable) direction of a fixed point, and the manifold containing all forwards

(backwards) iterations of a small perturbation in an unstable (stable) direction is

called unstable (stable) manifold such that every point on the stable (unstable)

manifold converges to the fixed point under forwards (backwards) iteration.

(iii) The special case of (ii) with <Λi 6= 0 for all i defines a hyperbolic fixed point. The

name stems from the fact that trajectories that are passing by such a point do

this on a trajectory resembling a hyperbola. They first approach along the stable

direction close to but not on the stable manifold before the trajectory bends away

from the fixed point and they are accelerated along the unstable direction.

There also exist fixed points with slower than exponential instability that therefore

cannot be expressed in terms of stability exponents. Such linearly unstable points are

called marginally unstable and we discuss them in detail in Ch. 5.

Up to this point we have established that we are interested in Hamiltonian systems

and that such systems can be treated as maps. Furthermore we have discussed how to

treat periodic orbits in such systems. What remains to be introduced is the concept

of chaotic dynamics. While most people seem to agree on a colloquial definition of

dynamical chaos which could be summarised as the emergence of unpredictability and

random-like behaviour usually associated to stochastic systems in systems that are fully

deterministic, stating a rigorous and minimal definition of chaos is much more difficult.

In fact, there exist numerous definitions [Fot05]. In light of the scope of this work

the following definition is sufficient: We call the dynamics in a bounded set C (with

x ∈ C ⇒Mx ∈ C) chaotic if it fulfills the following criteria:

(i) For every x ∈ C there exists a periodic point x′ arbitrarily close to x.
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(ii) Trajectories in C diverge exponentially fast, i.e., the distance between nearby tra-

jectories grows exponentially with time. Of course, since C is finite the Euclidean

distance between two trajectories can not grow exponentially for all times, but the

probability that both are within some ε-environment decreases exponentially fast.

(iii) The dynamics in C is mixing, which means that if we pick any two volumes A and

B contained in C, there exists an x ∈ A and an n ∈ N with Mnx ∈ B.

From (i) and (iii) it follows that there exist arbitrarily long periodic orbits that come ar-

bitrarily close to every point in C so that we can use their stability exponents to describe

the exponential divergence of two close-by trajectories on the set. This divergence is de-

scribed by the Lyapunov exponents λi. Let ε > 0 and two points x and x′ with x, x′ ∈ C
and |x− x′| < ε. Then we can approximate (see Eq. (2.5) and below) the nth image of

x′ as Mnx′ ≈Mnx+ Jn(x)(x′ − x), where Jn(x) := J(Mn−1x) · J(Mn−2x) · . . . · J(x).

For almost all initial conditions x0 ∈ C and large n, the eigenvalues li,n of Jn(x0)TJn(x0)

are the same and

λi := lim
n→∞

1

2n
ln li,n, (2.9)

with i = 1, 2, · · · , N and λi ∈ R, defines the spectrum of Lyapunov-exponents. We

follow the conventional ordering λ1 ≥ λ2 ≥ · · · ≥ λN . Every typical small variation

with time aligns itself with the direction associated to λ1 so that the largest Lyapunov

exponent can be interpreted as a measure of the severeness of the exponential decay

mentioned in (ii). λ1 can be numerically approximated by iterating two nearby initial

conditions x and x′ = x + δx and observing the stretching of the displacement vector

δx:

λ1 = lim
n→∞

lim
|δx|→0

1

n
ln
|Mnδx|
|δx| (2.10)

If λ1 > 0, criterion (ii) above is fulfilled and thus the two formulations are equivalent.

2.2 Closed Stadium Billiards and True-Time Maps

Dynamical billiards are a very instructive class of systems to study Hamiltonian chaos [CM06]

and we will use this section to introduce a particular example of them – the stadium bil-

liard. We also introduce a Poincaré map for dynamical billiards that acts on an extended

phase-space and allows the description of the true-time (as opposed to iteration-number)

dynamics [KL01]. Dynamical billiards are straightforward to implement numerically and

depending on the choice of boundary shape all typical cases of dynamics found in other

Hamiltonian systems can be reproduced.
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Figure 2.1: Stadium billiard
boundary (black) with shape-
parameters L and r in blue and an
example of a collision at (s, ϑ) in

red.

Figure 2.2: Exponential diver-
gence of two trajectories with almost
identical initial conditions. Both
start from the same point (+) on the
boundary and their initial angles dif-
fer by around 0.05◦. The trajecto-
ries are truncated at the 11th colli-

sion with the boundary.

The dynamics in a billiard takes place on an area Q in configuration space which

is circumscribed by an boundary ∂Q. We consider the dynamics of “balls” (i.e. massless

point like particles) moving freely in Q which collide elastically with the boundary. That

means at a collision the velocity vector of the ball is mirrored on a line tangent to ∂Q
at the collision point. Depending on the choice of boundary-geometry billiards can be

fully integrable (e.g. circular boundary), fully hyperbolic (e.g. cardioid shape [Rob83]),

hyperbolic with measure-zero continuous families of marginally unstable periodic orbits

(e.g. stadium), and mixed regular and chaotic (e.g. mushroom [BVA12] or limaçon

[DB01]).

A particularly popular and widely studied example of a chaotic billiard is the

stadium-billiard. Its boundary is made up of two semi-circular arcs with radius r con-

nected by two parallel lines of length L which are smooth continuations of the arcs. This

shape is shown in Fig. 2.1. Stadium billiards are fully chaotic in the sense of the defini-

tion in the previous section. They do however have a class of periodic orbits that are not

exponentially unstable but only linearly unstable. The most obvious marginally unsta-

ble periodic orbits (MUPOs) are trajectories of balls bouncing perpendicularly back and

forth between the straight wall segments. If the angle is slightly perturbed away from a

perpendicular direction the distance of the perturbed trajectory to the unperturbed one

grows only linearly. This family of MUPOs can trap trajectories for a while if they enter

the area between the straight wall segments in a direction that is almost perpendicular

to a straight segment. The length of this trapping depends on the angle of incidence.

This effect is called stickiness and we will discuss it in Ch. 5. In Fig. 2.2 we show parts
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Figure 2.3: Schematic illustration
of billiard coordinates (s, sinϑ) in a
stadium where L is equal to the arc-
length. The vertical segments are la-
beled with the respective part of the
boundary. On the right we indicate
the outgoing direction with respect
to a normal pointing towards the in-

side.

of two trajectories in a stadium billiard. They follow each other closely until they hit

the curved part of the boundary for the first time. Up to that point the divergence was

merely linear. After that the exponentially fast divergence is clearly visible.

In billiards the dynamics is independent of the velocity of the balls and we can

reduce a trajectory in real space to a series of collision-events {x0, x1, · · · , xn, · · · } with

xn = (sn, sinϑn) (see Fig. 2.1) by reducing the motion to a Poincaré surface of section

on the boundary. Here, s ∈ [0, 1) is the parametrised position along the boundary and

ϑ ∈ (−π/2, π/2) is the collision angle, i.e., the angle between the normal vector at the

collision point and the incoming trajectory. The collision angle thus is defined in such a

way that if we were to look from the collision point along the normal direction towards

the inside of the billiard a trajectory coming from our right with a very flat angle to

∂Q and leaving with the same flat angle towards our left would have a positive ϑ value

close to π/2. The steeper the angle between the trajectory and the boundary, the closer

ϑ approaches zero. The case ϑ = 0 then corresponds to a collision perpendicular to the

boundary. A ball approaching from our left is described by a value −π/2 ≤ ϑ < 0. For

the variable s along the boundary we chose the following definition: s = 0 at the center

of the lower straight segment and s is the length a of the boundary-segment between

this origin and the collision point measured in clockwise direction and normalised by the

total length of the boundary: s = a
2L+2πr . Throughout this work we plot sinϑn versus

sn, so that the different parts of the boundary correspond to vertical strips in these plots.

This transformation of coordinates makes the billiard map area-preserving [Ber81] and

the tuple (s, sinϑ) is called Birkhoff-coordinates; we illustrate them in Fig. 2.3.

Stadium billiards exhibit a particular type of trajectory that showcases the im-

portance of distinguishing between the iteration-time and true-time dynamics. Since

the velocity of all “balls” is identical, the time τ(x) a trajectory spends between two
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collision points can be assumed to be equal to the distance between the collision points:

τ(xn) = |xn − xn+1| (2.11)

Trajectories that collide almost tangentially to the wall get trapped in the semi-circular

parts of the boundary, because the number of iterations to escape from there goes to

infinity as sinϑ → ±1. At the same time, their real runtime is bound by the length

rπ of the semi-circular segments. Depending on the application it is often necessary to

look at the runtime instead of the iteration number and it can be incorporated into the

mapping by extending the phase-space and considering the true-time map

M∗ :

xn 7→ xn+1 =Mxn

tn 7→ tn+1 = tn + τ(xn)
(2.12)

where tn is the length of the trajectory after n collisions (t0 := 0).

2.3 Transient Chaos in Open Systems

So far we have discussed chaotic dynamics in closed Hamiltonian systems. In this section

we introduce the concept of leaks in the phase space and define the relevant quantities

that we use to discuss the dynamics in open systems later in this work. If we open the

phase-space Ω of an ergodic chaotic system, e.g., by introducing an absorbing region

H intersecting it, any ensemble of trajectories started in Ω decays with time as more

and more trajectories get absorbed. In such system chaotic dynamics is only prevalent

for a transient time, hence the term transient chaos is used to describe such behaviour

[LT11].

To describe this sort of dynamics in maps it is useful to extend the true time map

[APT13b] by setting

M : xn 7→

xn+1 =Mclosedxn, if xn /∈ H

escape, if xn ∈ H
(2.13)

in Eq. (2.12). With that we can define the escape time of a trajectory: Let x /∈ H and

nesc(x) := max{n∗ :Mn∗x /∈ H ∀ n∗ ≤ n}+ 1 (2.14)
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and nesc(x) = 0 for x ∈ H. The escape time is then defined as

tesc(x) := tn=nesc(x). (2.15)

We further define the finite-time trapped set as

St := {x ∈ Ω : tesc(x) ≥ t}. (2.16)

The survival probability P (t) which is the probability that the trajectory of an initial

condition randomly chosen somewhere in Ω has an escape time of at least t and it is

equal to the probability that an initial condition placed randomly in Ω belongs to St
which is equal to the relative volume of St:

P (t) = µL(St), (2.17)

where µL is the Lebesgue measure normalised such that µL(Ω) = 1. Because the dy-

namics on Ω is mixing or – in other words – because typical trajectories explore the full

phase space almost every trajectory has a finite escape time and

P (t)
t→∞−−−→ 0. (2.18)

There is, however, a subset of measure zero that survives even in that limit. This subset

is called the forward trapped set S∞. Analogously, the set surviving infinitely long under

time-reversed dynamics is the backwards trapped set S−∞. The points x ∈ S∞ ∩ S−∞
are trapped in both temporal directions and they form the chaotic saddle of the open

system [LFO91, LT11, JT91]. The trapped sets S∞ (S−∞) form the stable (unstable)

manifold of the saddle.

For closed systems an invariant quantity is the natural measure µn(B) defined as

the relative time a typical trajectory spends within a ball B: Let B be a ball in Ω and

{x1, x2, . . . , xn} be a trajectory generated by Mclosed. Then the probability of finding

points of such a trajectory in B defines the natural measure:

µn(B) :=

∫
B

dµn = lim
n→∞

1

n

n∑
i=1

IB(xi), (2.19)

where

IB(xi) :=

1, if xi ∈ B
0, else

. (2.20)

Due to the ergodic property of the chaotic systems we consider, all but a subset of

measure zero of initial conditions lead to the same distribution µn after some transient
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Figure 2.4: Escape from a volume preserving Hénon map: xn+1 = 6 − x2
n − yn,

yn+1 = xn, and tn+1 = tn + 1. A trajectory escapes if |x| > 5. (a) Exponential decay
of P (t); Numerical results (+) and an exponential function (dashed) for comparison.
(b) Escape times (low: dark blue, high: yellow). (c) Numerical approximation of stable

(red) and unstable (green) manifolds of the saddle (black).

time. In open systems, the probability of finding a trajectory which does not leave the

system goes to zero with time (see Eq. (2.18)) so that the only place where the n→∞
limit in Eq. (2.19) is defined is on the chaotic saddle and on its stable manifold. As an

example, in Fig. 2.4 we show a numerical treatment of the chaotic saddle in a chaotic

map. For this particular choice of parameters of the map is area preserving (2.8) for all

r ∈ R2. We chose the hole as H = R2\{(x, y) ∈ R2 : |x| ≥ 5}. This system is slightly

different from the usual notion of open systems that we use in this work because it is not

the result of opening an otherwise bounded chaotic set to the outside. Instead, almost

every trajectory leaves to infinity. The escape here happens exponentially fast as we

numerically confirm by starting a large number of initial conditions and counting the

remaining ones after t iterations. The results in Fig. 2.4(a) show that in this map P (t)

is very closely described by an exponential decay. The distribution of the escape times

presented in Fig. 2.4(b) already hints at the position and shape of the stable manifold

which must be close to the points with high escape times in this plot. In Fig. 2.4(c)

we show numerical approximations of the manifolds and the saddle. They are created

by finding trajectories with escape times tesc ≥ t∗ = 5 by random sampling of initial

conditions in the shown sector. For this choice of t∗ the survival probability dropped

to P (t∗) ≈ 10−2. To approximate the unstable manifold we define the time-reversed

map and apply the same criterion. The saddle is the intersection of these sets. From

these approximations we can already get a good idea of the shape and position of the

manifolds and the saddle. For a more quantitative discussion, however, a more fine-

grained approximation would be necessary.

Since the area of S∞ is zero, its natural measure is also is zero and therefore
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it is not useful to describe the distribution of S∞ in Ω. A measure µc is said to be

conditionally invariant [PY79] if, for any B contained in Ω, it fulfills

µc(B) =
µc(M−1B)

µc(M−1Ω)
, (2.21)

as is the case with the natural unstable manifold measure which is invariant under the

condition that we renormalise it at every time step which is achieved by the factor

µc(M−1Ω). This factor accounts for the overall decay of the total measure, i.e., µc(Ω) =

αµc(M−1Ω) with α < 1.

Following this line of argument, we define a natural measure of the stable manifold

in the following way: Let B be a ball in Ω with B∩S∞ 6= ∅. The natural stable manifold

measure µs is the relative volume of the remaining set in B in the limit t→∞:

µns(B) = lim
t→∞

µL(B ∩ St)
µL(St)

. (2.22)

Since µL(St) is equal to the survival probability P (t) we can also use this term instead.

In a similar way, it is possible to define a version of this measure for the unstable

manifold by replacing St with S−t in Eq. (2.22). With this definition of µns we close

this general introduction of leaky systems with fully open holes. In the next section we

discuss the introduction of holes on the specific example of the leaky stadium billiard.

A generalisation of the concepts from this section to partially open systems follows in

Sec. 2.5.

2.4 Open Stadium Billiards

Billiards are very suitable systems to study transient chaos in open systems [DG09,

NKL+07]. As mentioned in Sec. 2.2 they can easily be tailored to have the desired mix

of dynamical behaviour and an opening in the phase space of a billiard also often has

an intuitive interpretation. The representation of different kinds of holes in the phase

space defined in the billiard coordinates introduced in Sec. 2.2, however, is sometimes

not as straightforward, so we will discuss it in detail in this section.

The most intuitive type of hole is a gap in the boundary that allows the escape

of trajectories. In Fig. 2.5 we show two examples of trajectories in a billiard with that

type of hole. The initial conditions were chosen to be the same as in Fig. 2.2, so they

are very close together. Nonetheless, the integer escape times differ by a factor of two.

This already hints at the complicated structure of the surviving set in the phase-space

which we will discuss in more detail in later sections. The (s, sinϑ)-space representation
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Figure 2.5: Trajectories in a bil-
liard with a hole. Both start from
the same point (+) on the bound-
ary. Their initial angles differ by
0.05◦ and their escape times are
nesc, black = 11 and nesc, grey = 22.

Figure 2.6: (a) Trajectories from
Fig. 2.5 in billiard coordinates. The
grey strip represents the hole. The
initial conditions are marked with
+ points are connected to illustrate
their order. (b) Other types of holes.
A: Full (no) reflection above (below)
a critical value of |ϑ|; B: no direct

physical equivalent. 0.0 0.5 1.0
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of the same two trajectories is shown in Fig. 2.6(a). Like in Fig. 2.5 the first 4 images

of the initial points are almost indistinguishable and afterwards the quick correlation

loss is clearly visible. A few interesting properties of this representation can be seen in

the example of the two trajectories plotted here. We can see how mappings from one

straight to the other straight (2nd, 3rd, and 4th image of each trajectory) correspond

to a linear change (modulo 1) of s and only a sign change of sinϑ. We can also observe

how mappings within the same arc (5th, and 6th image) only change s and not sinϑ.

The gap in the boundary is a vertical region in (s, sinϑ)-space and it is marked

as a grey band in Fig. 2.6(a). It spans the whole range of sinϑ ∈ [−1, 1] because such a

hole allows every trajectory to pass independently of the angle. Apart from this kind,

we also consider other types of opening in this work. In general when we discuss holes

in billiards in this work we consider rectangular regions in phase space defined by the

set {smin, smax, ϑmin, ϑmax} so that a trajectory is absorbed if smin < s ≤ smax and

ϑmin < ϑ ≤ ϑmax. As seen above, a physical hole in the boundary comparable to the

pockets of a billiard table then corresponds to the case of ϑmin = −π/2 and ϑmax = π/2.

In Fig. 2.6(b) we show two other types of hole that are relevant for this work. Any choice

that is symmetric around the line ϑ = 0 means that any collision above or below some
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Figure 2.7: 30 iterations of a single
trajectory in a billiard (starting at +)
with a partially reflecting hole (grey
region in top straight segment) with
a reflectivity of 50%. The dashed
part has a half the intensity than the
solid part and the dotted part has a

quarter left.

critical value leads to an escape, while other reflections are unaffected. Such a choice is

reminiscent of the reflection of light rays on the interface between dielectric materials of

different refractive index [CW15]. This sort of reflection can of course be restricted to

only parts of the boundary. Sometimes it is also useful to chose less physical holes like

the one denoted B in Fig. 2.6(b). This hole makes part of the boundary transparent to a

narrow band of angles but in such a way that a trajectory could pass through a collision

(s, sinϑ) in one direction, while it would leave the system if followed in the opposite

direction (s,− sinϑ).

2.5 Partially Open Systems

In the discussion leading up to this section we have considered holes that completely

absorb every trajectory that enters as described by Eq. (2.13). In this section we take

a look at the more physically relevant case of holes that are not completely absorbing

and at the necessary modifications of the concepts introduced in the context of systems

with fully absorbing holes. A motivation of the study of partially open systems is given

in Sec. 1.1, and the formalism in this section is oriented on the presentation found for

example in [APT13b]. The optical microcavities mentioned there comprise of a disk of

transparent material surrounded by a layer with a different refractive index so that there

is a critical angle of incidence at the interface between the two materials above which a

ray of light inside the disk is fully reflected and below which it is partially transmitted to

the outside. We now give an introduction to a way of modelling such a partial reflection

using partially transparent holes in well established chaotic systems.

Partial leaks in their most general form are incorporated into the discrete time

systems discussed so far by instead of defining a hole as in Sec. 2.3 defining a real valued

function R(x) ∈ [0, 1] that defines the reflectivity coefficient at x. We incorporate the

effect of partial absorption by associating to each trajectory an intensity In, with I0 = 1,

In+1 = R(xn)In. This type of dynamics in a billiard with a partial leak is sketched in
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Fig. 2.7. It can be expressed by an extended true time map defined as

M∗ :


xn 7→ xn+1 =Mxn

tn 7→ tn+1 = tn + τ(xn)

In 7→ R(xn)In

, (2.23)

whereM can be an open or closed map. Since it is more useful in studying the transition

between open and closed systems we restrict the discussion in this work to a slightly

less general type of opening: we consider the case of a small absorbing region H with

R(x) = R < 1 inside that region of the phase-space (i.e. R(x) = 1 everywhere else).

If R = 0 in the absorbing region the system corresponds to usual open systems

and the asymptotic behaviour can be discussed in terms of trapped sets. The set of

initial conditions x0 with limt→∞ In = 1 form the forward trapped set S∞ of the map

(the stable manifold of the chaotic saddle). Analogous to the definition of the invariant

stable manifold measure (see Eq. (2.22)) in systems with fully transparent holes we can

define an invariant asymptotic measure from the intensity distribution in partially open

systems by normalising to the total intensity left in the system. The analog to the stable

manifold measure (see Eq. (2.22)) in a partially absorbing system with 0 < R < 1 in a

phase-space region B should be proportional to the average intensity In for n → ∞ of

randomly drawn x0 ∈ B. The finite time normalised measure of B after n iterations can

thus be written as

µn(B) =
〈In〉B
〈In〉Ω

, (2.24)

where the average intensity 〈...〉B is computed over initial conditions x0 ∈ B. The

asymptotic stable manifold measure then follows from taking the limit n→∞

µs(B) = lim
n→∞

〈In〉B
〈In〉Ω

, (2.25)

This definition is consistent with the usual definition of the natural stable manifold

measure defined in Eq. 2.22 considering the intensities I ∈ [0, 1] of trajectories as weights

(see also Ref. [APT13b]). More precisely, the normalised density of the support of µs

(short: supp(µs)) defines µns in ergodic systems. If R(x) 6= 0 for all x ∈ Ω and M in

Eq. (2.23) is closed, supp(µs) is the full phase space. The equivalent unstable manifold

measure can be achieved from Eq. (2.24) by computing 〈In〉 over the positions xn ∈ B
after n iterations instead of the initial conditions.

In summary, in this chapter we have introduced (partially) open chaotic systems,

the concept of the chaotic saddle and its (un)stable manifolds, and the associated natural

measures. We have also introduced a measure based on the asymptotic intensity in
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partially open systems.





Chapter 3

Fractal Dimensions in Open

Chaotic Systems

As we have seen in Chapter 1, fractal dimensions are a powerful tool to study the prop-

erties of dynamical systems. In this chapter we give a mathematical definition of the

dimensions we consider and afterwards discuss methods for their numerical calculation.

We begin this chapter with an introduction to the fractal dimension spectrum that we

consider in this work. After that, in Sec. 3.1.3 we show that fractal dimensions are

useful in the description of invariant structures in open systems. Towards the end of the

chapter, in Sec. 3.2 we review common algorithms to calculate fractal dimensions. In

this review we concentrate on their suitability in the calculation of the fractal dimen-

sion spectrum of invariant fractal and multifractal measures in open chaotic systems.

Afterwards, in Sec. 3.2.2 we present a new method suitable to calculate the full Rényi

dimension spectrum of a measure. We close the chapter in Sec. 3.2.3 with a qualitative

comparison of the efficiency and generality of the different algorithms.

3.1 Introduction to Fractal Dimensions

Expressed in simple terms, fractals are objects that “look the same” on different scales,

i.e., if we take a picture of a fractal object, pick a small region in the picture, and blow

that region up to the same size as the original picture, the two would look alike. On

the one hand, that can mean that the two are exactly the same, as it is for example the

case with a middle third cantor set if the region to zoom in is chosen appropriately. In

a more general sense, however, it means that zooming in leads to a qualitatively similar

picture. Both kinds of self similarity – the exact kind and the qualitative kind – can be

23
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Figure 3.1: First 2 itera-
tions of the construction of
a Koch curve. In each itera-
tion step, every straight seg-
ment of the curve is replaced
by the shape seen in the 2nd

row.

expressed in terms of fractal dimensions. In fact, fractal dimensions are suitable a way

of defining both exact and qualitative self similarity.

The concept of fractal dimension is an extension of the general notion of spatial

dimension [Str94, Ott02, TG06, Man04]. The dimension of an object can be interpreted

as the number of variables needed to uniquely describe a point on the object. For

example, along a one dimensional curve, the position of a point on the curve is uniquely

defined by the distance to a arbitrarily chosen origin on the curve. Now, if the curve is

a fractal, such as, for example, the Koch curve (see Fig. 3.1) is, then the length along

the curve between two points is infinite and therefore its dimension must be larger than

one. At the same time this curve is still made up of infinitely short line segments and

it does not fill an area, in the sense that if we were to draw a box of any size around

any part of the curve, almost all points in the box would not belong to the Koch curve,

i.e., the probability that a randomly drawn point in the box lies on the curve is zero. If

we would try the same with a two dimensional object, this probability would be larger

than zero, so the Koch curve is neither one, nor two dimensional, instead its dimension

is a non-integer number. This is the defining property of fractal objects and the fractal

dimension is always smaller than the dimension of the embedding space.

3.1.1 Box-Counting Dimension

The box counting dimension D0
1 is a commonly used and very accessible fractal di-

mension, i.e., it is intuitive and convenient to compute numerically. The box-counting

dimension of a set is the exponent of the asymptotic (ε → 0) scaling of the minimal

number2 of disjoint ε-sized boxes that is needed to completely cover the set. Its defini-

tion is slightly different from another popular choice of fractal dimension, the Hausdorff

dimension, which is defined as the scaling exponent of the minimal number of – not

necessarily non-overlapping – balls of radius r needed to completely cover S as r → 0.

1we use the subscript 0 because – as we will see in Sec. 3.1.2 – the box-counting dimension is just
one special case of a full spectrum of fractal dimensions

2In practise, for small enough box sizes the number is not changing drastically with a shift of the
covering grid, so that it is not necessary to minimize the number at every box-size. If the fractal is
strictly self similar, however, an improper choice of box-sizes can introduce systematic errors.
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The box-counting dimension always gives an upper bound to the Hausdorff dimension

and for most fractals they converge to the same value [Ott02].

In this work, we concentrate on the box-counting dimension for two main reasons.

First, the box-counting dimension is a special case of a full spectrum of dimensions

that we consider and, second, it is much more conveniently computed numerically. It is

formally defined in the following way: Let S be a fractal object embedded in RN . The

box-counting dimension D0 of S is then defined by the scaling relation

nintersecting(ε)
ε→0∼ ε−D0 , (3.1)

where nintersecting(ε) denotes the number of εN -sized boxes of a regular grid needed to

cover S. This relation can be slightly rearranged to make the definition more explicit:

D0 = lim
ε→0

lnnintersecting(ε)

ln 1/ε
(3.2)

As we can verify by imagining trivial examples, like, for example, a line or a square,

the box counting dimension of non-fractal objects is similar to the usual (non-fractal)

definition of dimension.

3.1.2 Generalised Fractal Dimensions and Multifractals

In the previous section we have assumed that the object we want to describe using a

fractal dimension is a fractal set embedded in a N -dimensional space. In this section

we extend the concept to measures, i.e., real valued functions µ : S 7→ R, where S =

supp(µ) and µ(S) :=
∫
S dµ = 1. Examples for such measures are the (un)stable manifold

measures introduced in Sec. 2.3 and Sec. 2.5. The distribution of µ on S can have very

intricate features that are not resolved by a metric such as D0, which only considers the

binary property “filled or not filled” of a box but does not distinguish boxes by how much

of the measure is contained in them. In this section we introduce two generalisations of

the box-counting dimension that fix this shortcoming. We define the spectrum of Rényi

dimensions and use it to introduce the concept of multifractality and afterwards shortly

discuss an alternative approach – the f(α)-spectrum.

The spectrum of Rényi dimensions of a measure µ is defined as follows [Rén55]: As

above we use the symbol S for the support of µ. We further assume that S is embedded

in the connected subspace Ω of RN such that S ⊂ Ω. Let {bi} be a covering of Ω

with non-overlapping εN -sized boxes and let µi :=
∫
bi

dµ. Further, let n(ε) := |{bi}|
the number on boxes in the covering and nintersecting :=

∣∣∣{bi :
∫
bi

dµ > 0}
∣∣∣ the number
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of boxes intersecting S. The spectrum of Rényi dimensions Dq (q is a continuous real

valued index) is defined as

Dq =
1

1− q lim
n→∞

ln
∑n(ε)

i=1,µi>0 µ
q
i

ln 1/ε
, (3.3)

where the sum runs only over boxes with µi > 0 – a restriction which is necessary

only for the case q = 0. This spectrum is sometimes also referred to as “generalised

fractal dimensions”. The dimensions Dq fulfill N ≥ Dq ≥ Dq′ ≥ 0, where q′ > q and

q, q′ ∈ R+
0 . In the case of a uniformly distributed measure all the dimensions are the

same, independently of the choice of q. All measures with Dq = D0 ∀ q ∈ R are called

monofractal and their fractality is sufficiently described by any fractal dimension Dq of

their support. In the case that Dq depends on the value of q, µ is called multifractal.

Some values of q lead to special fractal dimensions:

(i) q = 0: Plugging this in leads to a numerator
∑

i:µi>0 µ
0
i . This is the number of

boxes with µi > 0, i.e., the number of boxes needed to cover supp(µ), and we

obtain the box-counting dimension (see Eq. (3.1)) of the support S.

(ii) q = 1: This case needs to be treated separately because the factor 1/(1 − q) in

Eq. (3.3) is not defined in that case. We define this dimension as

D1 := lim
q→1

Dq (3.4)

which – using L’Hôpital’s rule – leads to

D1 = lim
ε→0

−∑n(ε)
i=1 µi lnµi
ln 1/ε

. (3.5)

If we interpret µi as the probability that a random variable X assumes a state xi

then the expression in the numerator is the Shannon entropy Hε of that probability

distribution, which is defined as

Hε := −
n(ε)∑
i=1

µi lnµi. (3.6)

Therefore, D1 describes the growth of information content as the number of boxes

is increased, and for that reason it is often called information dimension.

(iii) q = 2: The case

D2 = lim
n→∞

ln
∑n(ε)

i=1 µiµi
ln ε

(3.7)
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is called correlation dimension because if µ is a natural measure the summands in

the numerator here are proportional to the probability that two trajectories end up

in the same box, i.e., within a distance ε. It is often used in numerical dimension

estimations (see for example Sec. 3.2.1.2) because there are efficient algorithms to

compute it. It gives a lower bound to the numerically much less accessible D0 – or

even the same result in the monofractal case.

For other values of q there are no such intuitive interpretations. In general, the parameter

q gives more (less) weight to the boxes that contain more measure the larger (smaller)

it is. For example, in the limit q → ∞ the sum is dominated only by the box or boxes

bj with µj = max({µi}).

An alternative but equivalent way of describing the multifractality of a measure is

given by the f(α) spectrum [HJK+86b, HJK+86a]. To define it we first need to introduce

the point-wise dimension, which is defined as

DP(x) := lim
ε→0

lnµ(Bε(x))

ln ε
. (3.8)

This dimension describes the change of the measure contained in an ε-sized ball B around

the point x as ε is changed. Now consider the set Cα of points in the support S of µ

that have a point-wise dimension close to α:

Cα := {x ∈ S : |DP(x)− α| < δ}, (3.9)

with δ → 0. We define a function f(α) which returns the box counting dimension of this

subset:

f(α) := D0(Cα) (3.10)

The knowledge of f(α) is equivalent to knowing the full Dq spectrum as they can be

transformed into each other using c

d

dα′
(
qα′ − f(α′)

)∣∣∣∣
α′=α(q)

= 0 (3.11)

and
d2

dα′2
(
qα′ − f(α′)

)∣∣∣∣
α′=α(q)

> 0, (3.12)

which leads to

Dq =
1

1− q (qα(q)− f (α(q))) . (3.13)

Both treatments are equivalent but as we will see in Sec. 3.2 sometimes the point wise

dimension is numerically more accessible.
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3.1.3 Application of Rényi Dimensions in Open Chaotic Systems

Fractals are omnipresent in nonlinear dynamics [AVS09]; for an overview, see Sec. 1.1.

Here we show two important relations that illustrate how fractal dimensions allow to

link the geometry of structures in the phase space with the underlying dynamics.

Historically, the first use of dimensions in the characterisation of asymptotic mea-

sures comes from the study of chaotic attractors. Those can be found in dissipative

systems and their natural measure is defined as the probability of finding a typical tra-

jectory in a given region of the phase-space. The Kaplan-Yorke formula [FKYY83] gives

an expression of the information Dimension D1 of this measure in a system in terms of

its Lyapunov exponents λi. Let

k := max

{
j ∈ N :

j∑
i=1

λi > 0

}
(3.14)

be the index after which the sum becomes negative. Then D1 is given by

D1 = k +

∑k
i=1 λi
|λk+1|

, (3.15)

which for two-dimensional maps reduces to

D1 = 1 +
λ1

|λ2|
. (3.16)

This relation is very significant, because it made a connection between a geometrical

property – the fractal dimension – and dynamical properties of the system.

In open systems a similar formula exists. The Kantz-Grassberger relation [KG85]

connects the information Dimension D1 of the natural measure of the saddle in a two

dimensional system with the escape-rate κ and the Lyapunov exponents λ1, λ2

D1 = (λ1 − κ)

(
1

λ1
+

1

|λ2|

)
. (3.17)

In the case of a closed system, we have κ = 0 and we recover Eq. (3.16). A gener-

alisation for the case of true-time maps with partial absorption was recently proposed

in [APT13a].

As we will see later in this work, in open quantum chaotic systems the fractality

of the classical dynamics appears in the distribution of eigenstates [CMS97] and in

the Weyl law [LSZ03]. The latter we discuss in detail in Ch. 6, so we omit a further

description here. In very basic terms we can summarise the influence of fractal invariant
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structures in this way: Exceptionally long and short lived states in quantized chaotic

systems localise on an equivalent to the classical phase-space in regions that contain

a majority of the stable-manifold and unstable-manifold measure, respectively. As a

result, the scaling of the number of such states with the dimension of the associated

Hilbert space is determined by certain fractal dimensions of those measures.

3.2 Numerical Dimension-Estimation

Over the years a variety of algorithms was devised to numerically estimate fractal di-

mensions in different contexts. Some of them are tailored to a specific setting like for

example time series analysis, while others are more general. In the following we discuss

the algorithms most commonly used in the context of dynamical systems. We compare

them in terms of their ability to calculate fractal dimensions of conditionally invariant

stable manifold measures – as defined in Eq. 2.22 and Eq. 2.25 – of fully and partially

open chaotic systems of the kind introduced in Ch. 2. The first of these measures is the

natural stable manifold measure µns defined as the density of surviving points and the

other one (µs) is proportional to the average leftover intensity in a particular region.

Since the escape of a trajectory can be expressed by setting the associated intensity

to 0, in fully open systems, the fraction µi,t of either of those measures contained in a

phase-space region bi at the time t is proportional to the average intensity after a time

t of the trajectories started from this box at t = 0.

We assume that the measures are not analytically known because that is typically

not the case. Therefore the measure needs to be numerically estimated which means that

a large number of trajectories needs to be iterated for a sufficiently long time in order

to get a good estimate of µi,t and its support. The exponential decay of the survival

probability in chaotic systems makes it very hard to find long enough trajectories in fully

open systems, so that the sample size in a brute force sampling of the full phase space is

not a viable option if the support of µ is sparse. The algorithms presented in Sec. 3.2.1.3

and 3.2.1.4 avoid the sampling in the full phase space by generating sampling on the fly

and only in parts of the phase space.

In partially open systems, however, the support of the measure is not sparse, so

that a sampling in the full phase space or at least along a cross section is necessary.

Because of that we start the discussion with known algorithms acting on a pre-sampled

set. In Sec. 3.2.2 we present a parallelisable approach to pre-sample sparse measure

distributions.
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3.2.1 Known Algorithms

In the following we give an overview over the algorithms most widely used for dimension

calculation. We assume that the intensity associated It(x0) to a trajectory starting at

x0 is accessible only through numerical forwards evolution of the point. If the system

is fully open It(x0) = 1 for t ≤ tesc and It(x0) = 0 afterwards. We further assume

that the system is at least partially chaotic. There are three main contributions to the

computational cost associated to the numerical dimension calculation (see for example

[Ott08, MLCVHÁ02]). The first contributor simply is the iteration of the trajectories.

It grows linearly with the desired iteration time t. The second contribution comes from

grouping the trajectories into boxes or comparative methods to calculate the function

used to estimate the dimension. As we show in the following review efficient algorithms

apply different strategies to minimize either one of the two or both contributions. The

third, and in most cases most severe contribution to the numerical cost is the expense

of trying out (i.e. iterating) a sufficiently large number of initial conditions.

For the numerical examples in this section we use a fully open tent map defined

as

xn+1 =


2xn for xn <

3
4

6(1− xn) for xn ≥ 3
4

escape for xn ≥ 1

tn+1 = tn + 1.

(3.18)

This map is analytically treatable as we will discuss in detail in Sec. 4.2. For this chapter

the relevant analytical result is that for this choice of parameters the fractal dimension

of the stable manifold is that of the middle third cantor set D0 = ln 2/ ln 3. As a more

general example we use a open stadium billiard (see Sec. 2.4) with r = 1 and L = π.

Since the particular choice of parameters is not important for the results in this chapter

– as long as L, r > 0 – we have picked values that make the area in phase space belonging

to the arc section similar to that belonging to the straight section. For the billiard we

use the extended true-time map defined in Eq. (2.23) with R(s, sinϑ) = 0 inside the hole

and R(s, sinϑ) = 1 everywhere else.

3.2.1.1 Brute Force Sampling and Box-By-Box Evaluation

The numerical approach described here is less of an algorithm than it is a straightforward

application of the definitions presented in 3.1 on a fractal measure µ which needs to be

available before the algorithm is applied. In its most simple form the sampling and

dimension calculation follows a procedure like this:
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Figure 3.2: Blue: numerically calculated escape time distributions in (left) the asym-
metric tent-map (see Eq. (3.18)) and (right) a leaky stadium (R = 1, L = π with a hole
at 0.1 < s < 0.2); for the billiard we chose the line defined by ϑ0 = 2π/3. To give a
better representation of the strong fluctuations we connected the points of the escape
time distributions which were sampled using 105 i.i.d. initial conditions uniformly dis-
tributed on [0, 1[. Red: markers for the location of trajectories that survive longer than

some threshold (tesc > 15 in the tent map and tesc > 200 in the billiard).

1. Chose a time t∗ that is large enough that the sampling yields a sufficiently good

approximation of the asymptotic behaviour; chose t∗ as small as possible to minimize

the computational cost of iterating the system.

2. Pick an initial condition x and iterate it until its associated intensity reaches zero

(i.e. the trajectory escapes) or up to tn ≥ t∗. Repeat this step until we have a large

enough sample size ς of points with tesc ≥ t∗ for a good approximation of the measure.

After these steps the sampling part of the dimension calculation is finished. In Fig. 3.2

we sketch the sampling procedure. The size of the approximation of the trapped set at

this sample size is roughly 350 points in the tent map and around 700 in the stadium.

Both values are three orders of magnitude smaller than the total number of samples

(105) which already hints at the low efficiency of this approach for sparse sets. From

here on the steps are independent of the sampling method but the outcome still depends

on the quality of the sampling, i.e., usually the sample-size. What follows is a numerical

evaluation of Dq (see Eq. (3.3)) which is defined in the limit of ε→ 0 by looking at the

scaling of a q-dependent function fq(ε, µ) with ε at finite box-sizes. What choice of t∗ and

what range of box-sizes is leading to an accurate estimation at a decent computational

effort is discussed in detail in Ch. 4.

3. For a wide range of box-diameters ε ≤ 1 completely cover the embedding space with

a regular grid of non-overlapping boxes bi of volume εN , where N is the phase-space

dimension.3

3It is not necessary to sample the full N -dimensional phase-space if the measure is constant along the
stable manifold. In that case the calculation of the dimension can be done on an (N − 1)-dimensional
subspace intersecting the stable manifold. We do not specifically discuss the latter case below, but all
the arguments are easily applied there by replacing N with N − 1.
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4. In every box approximate the measure as the normalised average intensity of trajec-

tories that started in that box. This means that in general every initial condition

x that was randomly drawn needs to be checked for the conditions It∗(x) > 0 and

x ∈ bi.

5. Calculate fq(ε, µ) :=
∑

i:µi>0 µ
q
i with q = 0 for the box-counting dimension or with

q ∈ R for any of the Rényi dimensions.4.

6. Find the scaling exponent Dq that best describes the observed scaling fq(ε, µ) ∼ ε−Dq ;
either by a method like least square fitting of a line in log-log-space or by averaging

over local slopes ∆lnfq/∆lnε between different box-sizes.

This method of calculating the Rényi dimensions has the benefit that it is very

easy to implement and very robust. It is also very general in the sense that it can be

applied to different kinds of measure with only minor modifications to steps 1 to 4. Its

main downside is connected to its generality: Because no information about the origin

of the measure is considered, it checks all n(ε) = ε−N boxes covering the phase-space.

The number of filled boxes –i.e. the support of µ – by definition of the box-counting

scales as ε−D0 and in most open chaotic systems D0 is much smaller than N . This

means in cases where D0 is considerably smaller than N it wastes a lot of computational

effort checking empty boxes unnecessarily. In the next section we review two alternative

approaches that are – at the sacrifice of some generality – much more efficient if µ fulfills

some criteria. In Sec. 3.2.2 we propose a variant of this algorithm that makes it more

efficient while preserving the generality.

3.2.1.2 The Grassberger-Procaccia Algorithm

A lot of the development of fractal dimension algorithms was done in the attempt to

calculate the fractality of strange attractors (i.e., fractal asymptotic sets in contracting

systems). It became obvious very quickly [GWSP82] that the straightforward application

of box-counting algorithms is not practical because of the sparseness of the attractor in

the phase-space and the associated rapid scaling of the unnecessary computational cost

for checking empty boxes. In this section we present a class of very successful algorithms

based on the correlation sum that allow a much faster estimation of the fractality that

are commonly referred to as “Grassberger-Procaccia(-Theiler) Algorithm”.

4The q = 1 case needs to be treated slightly different; see Eq. (3.5)
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It was introduced5 [GP83] as an efficient way to estimate the correlation dimension

D2 of strange attractors. Here, the measure these algorithms act upon is a finite-time

approximation of the natural measure of the stable manifold (i.e. the distribution of

surviving initial conditions in the phase space), not the intensity based measure that we

study in partially open systems. As Dq′ ≥ Dq for q′ > q, the value of D2 can be used

to give a lower bound for the box-counting dimension of the support of µ. In the case

of monofractal measures, i.e. if Dq = D0 ∀ q, we can use this algorithm to calculate

the box-counting dimension of the set directly. In many multifractal cases, however, the

Dq spectrum is flat enough, in which case D0 ≈ D2 and it can be considered a good

approximation of D0.

The Algorithm in its original monofractal-oriented form is based on the correlation

sum: Let S̃t be a sampling approximation of the time-t forward trapped set St (for

example obtained from a procedure similar to the first steps of the algorithm described

in the previous section) with ς :=
∣∣∣S̃t∣∣∣ points. The correlation sum C(r) on S̃t then is

the following sum over all pairs of points xi, xj ∈ S̃t:

C(ε) =
1

ς2

ς∑
i,j:i 6=j

Θ(ε− |xi − xj |), (3.19)

with

Θ(ξ) =

1, ξ > 0

0, ξ ≤ 0
. (3.20)

The value of C(ε) is the fraction of points within a distance ε from each other and

therefore the scaling exponent D2 in C(ε) ∝ ε−D2 , is the correlation dimension (c.f.

Sec 3.1.2) of S̃t. As with any algorithm based on finite sample-size approximations, the

sample size limits the accessible range of ε and can introduce spurious dimensions that

can be avoided by requiring a minimum distance in the sum in Eq. (3.19) [The86].

The algorithm can be made more efficient by – instead of comparing all pairs –

pre-ordering the xj in bins and only comparing distances in neighbouring bins [The87,

Gra90]. This sort off approach which is sometimes called “Theiler algorithm” reduces

the numerical effort from O(ς2) to O(ς ln ς). Later, an adaptive version [Cor00] using a

variable number of points at different scales as well as improved versions based on differ-

ent data-structures for the pre-ordering [FSM01, BOPG07] of the points were proposed

and implemented.

5For the sake of completeness, we mention that according to, e.g., [The90], Floris Takens indepen-
dently published a similar algorithm in a paper called “Invariants related to dimension and entropy”
published in Atas do 13◦ Colóqkio Brasiliero do Mathemática, Rio de Janeiro (1983), which we can not
access at the time of writing.
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The algorithm can also be used to calculate the Dq-spectrum of the natural mea-

sure of the stable manifold by calculating the scaling of

Cq(ε) :=

(
ς−1

∑
i

(ni(ε)/(ς − 1))q−1

)1/(q−1)

, (3.21)

where ni =
∑

j 6=i Θ(ε − |xi − xj |) is the number of points ε-close to xi, instead of

C(ε) above. A generalisation to intensity-based measures is not straightforward for this

algorithm.

3.2.1.3 Uncertainty Algorithm and Output Function Evaluation

The algorithms presented in this section are suitable for the calculation of the box-

counting dimension D0 of a fractal boundary [TG06, HP83, OSA+93, MdMGK05]. His-

torically, the uncertainty algorithm was applied to fully chaotic systems with two holes

H1 and H2 [BGOB88] and to dissipative systems with multiple attractors, but fractal

boundaries appear in many other contexts. The different holes or attractors define dif-

ferent outcome states and the phase space can be divided into disjoint sets of initial

conditions that lead to a particular outcome. Following the notation established in the

examination of strange attractors, the set of initial conditions leading to a particular out-

come is called its basin of attraction In such a system almost every point belongs to one

of the basins and the interface between the basins of attraction is typically a fractal. The

points belonging to the boundary are the ones that do not end up in any of the defined

outcome states and as such are singularities of a function f : Ω 7→ {o1, o2, · · · , on}, where

{o1, o2, · · · , on} are the different outcomes. Using the fact that points on the forward

trapped set S∞ of an open system are the singularities of the function f(x) := tesc(x) we

can use this algorithm for the estimation of D0 of S∞. In the context of fractal dimen-

sions of the intensity based stable manifold measure µs, the algorithms can be used only

for D0 of µs. But since they converge quickly they can be used to confirm the results of

slower but more general algorithms in the special case q = 0. We start the discussion of

this class of algorithms applied to S∞ on the example of the uncertainty algorithm and

later present a second method which is outperforming the uncertainty method in some

cases [dMG01].

The estimation of D0 of S∞ using the original uncertainty algorithm follows this

procedure:

1. Chose a set E of values for the box-size ε > 0. Since the dimension is calculated

from evaluating the scaling-exponent of the density of the boundary with ε, E should
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be chosen sufficiently dense on a logarithmic scale while at the same time choosing

εmin := min E small enough to ensure a sufficiently close approximation to S∞.

2. Fix a value of ε ∈ E .

3. Choose a random initial condition x and evolve it until it escapes at t := tesc(x).

4. Perturb the initial condition in a random direction: x → x′ = x + δ, where |δ| = ε

and calculate its escape time t′.

5. If t = t′ then x is considered a certain point, if not, x is uncertain at the scale given

by ε.

6. Repeat steps 3 to 5 until the number uncertain points nuc(ε) reaches a given required

value. This value is a parameter of the algorithm and should be as large as the desired

computational performance allows.

7. Start from step 2 with a new value of ε.

The ratio r(ε) of nuc(ε) to the total number ntot(ε) of initial condition chosen in point

3 for each value of ε follows a power law

r(ε) ∝ εα (3.22)

with α ≥ 0. The value of α is then obtained by a suitable fitting method and it is the

codimension of the boundary in the phase-space. The restriction that nuc(ε) must be

the same ensures a similar sample size at all scales. The uncertainty dimension Duc

embedded in a N -dimensional phase-space is defined as.

Duc := N − α (3.23)

And its value is similar to the box-counting dimension of S∞6.

In contrast to the previously discussed algorithms that rely on a finite time ap-

proximation of S∞ this algorithm naturally converges to high escape times with the

decrease of ε because – as we will discuss in detail in Ch. 4 – the larger the escape time

the shorter the interval it is constant on.

6It is instructive to consider the case of anN -dimensional space divided by aN−1-dimensional barrier.
Independent of N , the probability of being ε-close to the barrier on either side is P (ε−close) := 2ε. This
needs to be multiplied with the probability P (uncertain) that the perturbed point falls on the other side
of the barrier. If N = 1 the boundary is a point and P (uncertain) = 1/2 because there are only two
choices. Accordingly, we expect a scaling of r(ε) ∼ P (uncertain)P (ε−close) = ε, i.e., α = 1 and Duc = 0.
For N = 2, P (uncertain) depends on the distance of x to the barrier. It is proportional to the area of
an ε-disk around x that is beyond the boundary. Integration over all x within a distance ε of the barrier
results in P (uncertain) = 1/2 and Duc = 1. For larger N the calculation is equally straightforward.
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The Output Function Evaluation algorithm is closely related to the uncertainty

algorithm. This method utilises the local slope of f(x) to generate a sampling of the

trapped set that is more dense in regions that contain singularities than in regions that

do not. Afterwards the dimension of the set is calculated. We discuss the method using

the escape time as an output function. It is outperforming the uncertainty method if

the reduced dimension

Dr := D0 − (N − 1) (3.24)

is smaller than 1/2, where D0 is the fractal dimension of the trapped set [dMG01].

To keep the notation clean, we here restrict the discussion to the one-dimensional

case, which in a 2D system corresponds to the calculation the reduced dimension (i.e.

the dimension along a line intersecting the manifold) of the stable manifold of the saddle.

In that case the algorithm works as follows:

1. Pick an initial condition x at the beginning of the line and calculate its outcome

f := tesc(x).

2. Set x∗ = x + ∆, where ∆ = ε in the overall first passage of this algorithm, and ε is

the minimal allowed step size – a free parameter of the algorithm.

3. Calculate f∗ := tesc(x
∗).

4. Approximate the derivative f ′ := f∗−f
∆

5. To calculate the step size ∆ for the next passage, first introduce the intermediate

variable

ξ := min

(
δ

|f ′| , α∆

)
(3.25)

so that ξ is either the distance in which f changes by ±δ, or α times the previous

step size. α > 1 is a further parameter of the algorithm.

6. Set the next step size to

∆ =


ε if ξ < ε

∆max if ξ > ∆max

ξ else.

, (3.26)

where ∆max is the chosen maximum step size (also a parameter of the algorithm).

7. Store x∗ and f∗ and continue from step 2 with x := x∗ and f := f∗ until x lies outside

of the range of interest.
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Figure 3.3: Sets resulting from (red) brute-force sampling, (green) uncertainty
method with ε = 10−6, and (blue) output function evaluation.

8. Remove all points that do not change the outcome significantly from the two sets

containing all points {xi} used and output-function values {fi} calculated in to create

the new set

Ω = {xi : |fi − fi−1| > β} (3.27)

with an appropriately chosen β > δ.

The set Ω generated in this way is made up of points which oscillate on scales we can

not resolve at a given ε or in other words δ
|f ′| < ε in (3.25). We can now apply a box-

counting or Grassberger-Procaccia algorithm on this set. In both cases the number of

points that needs to be checked is much lower than if uniform random sampling would

be used because points far from the stable manifold are removed from the sample in

step 6.

To illustrate the algorithms, in Fig. 3.3, we show a comparison of approximations

to the stable manifold obtained by steps 2 to 5 of the uncertainty algorithm and by the

output function evaluation method. We stop the uncertainty algorithm once nuc reaches

the size of the brute force approximation from Sec. 3.2.1.1. The number of total samples

to find the 350 (700) uncertain points is around 2× 103 (4.5× 104) in the stadium (tent

map), which is significantly lower than what the brute force approach required which is

of the order of 105. While in the tent map, a pair of points is uncertain if the two escape

times are different, in the true-time billiard map, the number depends on the definition

of a uncertain point. We use the approximation for the average inter-collision distance of

the closed stadium [LS90, MLS93] and consider two points different if their escape times

fulfill |t1 − t2| > 2π/3. With the output function evaluation method it is less simple to

control the number of points. To get sets of a similar size than with the brute force

attempt we restrict the minimal step size to ε ≈ 10−4. This leads to an approximation

approximately 400 (1000) points of the stable manifold of the tent map (stadium) at

the expense of a total of approximately 4000 (1500) calculated trajectories. While this

parameter choice leads to the same number of points than brute force sampling and

uncertainty method and to a qualitatively similar picture of the set in Fig. 3.3 at a
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much lower cost, the cut-off in inter-sample distances introduced by this choice of ε also

restricts the box-sizes that can be used with the set.

3.2.1.4 GAIO Algorithms

Other than the algorithms discussed so far which are relatively independent of the dy-

namics that create the fractal distributions, the following method is specifically targeted

to the calculation of D0 of invariant sets in dynamical Systems. It is part of a set of

algorithms which are presented in [DFJ00]. Because of its clearly defined field of appli-

cation it is less general than the methods before. At the same time this lack of generality

allows us to use properties of the dynamical system to improve the performance of the

algorithm. Furthermore, its computational cost does not depend strongly on the dimen-

sion of the phase space. In the following we discuss the general procedure and results

from its application to our two model system.

The algorithm is split in three main parts: first, a more and more refined covering

of the chaotic saddle is constructed utilising the fact, that the saddle is invariant under

the dynamics. In the second part this covering is iterated backwards to generate an

approximation of the stable manifold at the same resolution. Then a box-counting

method with a increasingly coarse resolution is applied.

In practise the following steps are applied.

1. Pick an initial box-size ε larger than the desired resolution of the approximation and

cover the full phase space with disjoint boxes of that size.

2. Remove any boxes that are entirely in the hole, if such boxes exist.

3. In each box of the current selection7 of boxes pick random initial conditions and

iterate them backwards once until either some maximum number of trials in that box

is reached or an initial condition is found for which its pre-image lies within a box of

the current collection of boxes.

4. Discard all boxes where no pre image within the current selection is found and divide

the remaining boxes into smaller ones.

5. Repeat steps 3 and 4 until a predefined small enough box-size εmin is reached.

The steps so far result in an approximation of the saddle at a resolution defined by εmin.

It is made up from the set A of surviving – i.e., self-intersecting – boxes of size εmin. To

7In the first passage of the algorithm that means all boxes from step 1.
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Figure 3.4: GAIO approximation of the stable
manifold in the open stadium.

get the stable and unstable manifolds this approximation needs to be iterated, e.g., in

the following way:

6. Cover the phase-space with boxes of size ε ≥ εmin

7. Pick a number ς of initial points inside the boxes contained in A.

8. Iterate this batch of points until the trajectories either escape or reach a maximum

length t∗ – either forwards to approximate the unstable manifold or backwards for

the stable manifold of the saddle-approximation A. After each iteration mark the

boxes that contain any of the trajectories. If the number of marked boxes saturates

the iteration can be terminated here.

The last three steps result in a approximation of a ε-covering of the (un)stable

manifold. As an example, in Fig. 3.4 we show the approximations to the stable manifold

obtained using the two parts of this algorithm. We used εmin = 2−10 and a maximum

of 105 samples per refinement level in steps 1 to 5. Overall this amounts to ∼ 5 · 105

iterations performed to arrive at the saddle and roughly the same number again to get

this picture. From here on we can go upwards to larger box-sizes by combining neigh-

boring filled boxes to new boxes to obtain the covering at increasingly coarse resolutions.

By going up the subdivision tree that created the small covering in the first place in

the opposite direction we obtain from this method the box-counting dimension without

needing to check all points of the approximation to determine if the boxes contain a

point or not. The algorithm can further be used to calculate the natural measure of

chaotic saddles and approximate attracting sets with minor modifications [DFJ00].
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3.2.2 Tree Based Algorithm Suitable for Partially Open Systems

In Sec. 3.2.1 we have discussed the major known algorithms. They all have advantages

and disadvantages, that we summarise again in Sec. 3.2.3. What they all have in common

is that they are not applicable to intensity based measures such as µs (see Eq. (2.25))

in a straightforward way. The only method that can be applied to such measures is

the brute-force box-counting method described in Sec. 3.2.1.1. As mentioned above,

this method is also the most inefficient if applied to sparse sets. In the following we

propose a derived variant of the algorithm that keeps its generality, but also makes it

more efficient in that case. A main feature of the algorithm is that – similarly in spirit

to the GAIO method above – we use the iterations of a refinement tree as boxes. This

makes the calculation of the dimension after the sampling steps very efficient, since the

found initial-conditions are already binned.

First let us only consider the case of sampling a sparse fractal set that is the

support of a natural measure µ. The basic idea of the algorithm is to use uniform

sampling but to only refine the search in non-empty areas: Let S be the number of

samples we want to draw on some support.

1. Cover the support with an ε-grid consisting of nb boxes.

2. In each box sample at most dS/nbe and at least some fixed number of points and stop

sampling in this box as soon as a point from the set is found.

3. Cover the support with an ε-grid consisting of n′b > nb boxes. In this step we usually

divide each box in half along each dimension but other factors are sometimes useful,

too.

4. Mark every box as empty that does not intersect a box from the previous covering

that contained a point. Optionally, mark every box as filled which contains any of

the previously successful samples.

5. Distribute the remaining number of samples on the still undecided boxes and continue

the refinement process until S points were sampled or until a certain resolution in ε

is reached

A sketch of this sampling procedure can be seen in Fig. 3.5. In this figure we already

hint at the main improvement over uniform sampling in the full phase space. Namely, in

boxes, which contain large parts of the set, the number of necessary samples is smaller

than in less densely populated areas. This can be observed on the example systems used

throughout this chapter in Fig. 3.6. In this figure we can clearly see, that the histogram
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Figure 3.5: Three subsequent steps of the tree based algorithm; left and middle panel:
The set (orange), samples which are not in set (black +), and samples which are (light
and dark green +) at different depth levels of the algorithm. Right panel: next step of

the refinement and already found points.
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Figure 3.6: Blue:Number of samples needed for tree method approximation of stable
manifold in (left) the tent map and (right) the stadium. Red: Resulting approximation.

The minimal box-size here is 2−8.

shows dips where the set is dense. In contrast to the discussion in Sec. 3.2.1, we have

chosen shorter cut-off times here, to make the fluctuations more visible.

After this sampling is finished D0 can be calculated by going up the refinement

tree used in the sampling. This procedure allows a quick calculation of the number of

filled boxes at each level, because the edges of the boxes between different levels align.

I.e., instead of having to check all points, the algorithm checks only the boxes one level

below.

For the computation of Dq of the intensity based measures µs defined in systems

with partial leaks, there are only slight modifications necessary. Since in this case the

support of µs is the full phase space we can skip the sampling during the refinement.

Instead, we start at the leaves of the refinement tree (i.e. at some minimum ε) and sample

a fixed number of initial condition in each. The initial condition are then iterated up

to some fixed time. After all boxes are treated that way, we calculate the measure of

each box. Then, to calculate a Dq we go upwards in the tree, assigning each box the

sum of the measures of the boxes it contains. This method naturally lends itself to a

distributed computing implementation since each leave can be computed independently
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from the others.

3.2.3 Comparative Discussion of the Algorithms

In the following we want to summarise advantages and disadvantages of the algorithms

presented in Secs. 3.2.1 and 3.2.2.

First let us consider the brute-force box-counting approach and the Grassberger-

Procaccia algorithm. As mentioned above, if the two algorithms are applied to the same

sampling approximation of a fractal set, the Grassberger-Procaccia algorithm is much

more efficient. Its main disadvantage over the brute force method is, that it does not

return D0 but only a lower bound given by D2. In cases where the Dq spectrum is flat,

this is often a good approximation. If the fractal under consideration is located at the

singularities of some function, then a method like the uncertainty method or the output-

function-evaluation method can be used to provide a better sampling approximation than

provided by brute-force sampling. If the fractal is generated by a dynamical system, then

the GAIO method is most suitable to calculate a covering of the set, because it is the

only method that explicitly uses dynamical properties.

The tree method presented in the previous section in most scenarios cannot com-

pete with the efficiency of the long optimised methods above in the estimation of D0 of

a natural measure. Its main advantage lies in its generality. It can be applied to any

measure distribution and is easily implemented and parallelised.

It is important to note, that the efficiency of most methods (with the exception of

the GAIO algorithm) is based on making efficient use of the available samples. For exam-

ple the Grassberger-Procaccia algorithm is faster than the brute force method because

it minimizes the number of comparisons between points. Nonetheless, in dynamical sys-

tems, they are all subject to constraints coming from the dynamics itself. In the next

section we will investigate in detail these constraints and their dynamical and statistical

origins. The results obtained from these investigations provide a deeper understanding

of the algorithms summarised above.



Chapter 4

Effective Dimensions in Open

Chaotic Systems

In this chapter we introduce an effective dimension defined away from the usual asymp-

totic definition, i.e., at finite sample-sizes, finite box-size, and finite time. Effective frac-

tal dimensions that depend on the length scale with which they are observed have been

previously considered in weakly chaotic systems [LFO91, MLG03, KMBK13, MdMGK05],

general computer science [Lut05, AHLM07], and statistical surface analysis [Pfe84,

CH94, MA84]. The influence of finite sample sizes on the observed dimension has been

studied in [Gra88, LT89]. In the following we argue that all of the three finite parameters

can be expressed in terms of length scales, related to each other, and used to obtain a

useful definition of the effective dimension.

While they are seemingly straight-forward, the definitions of the box-counting di-

mension in Eq. (3.1) and spectrum of Rényi dimensions in Eq. (3.3) contain several

assumptions, e.g., ε → 0 that are usually not met when we study physical fractal ob-

jects or numerical models. In the following we will show that in most cases the strict

application of the definitions leads to trivial results in the sense that they do not pro-

vide information about the underlying dynamics. Usually, the analytical calculation of

a fractal dimension is not possible and we need to use numerical dimension estimation

algorithms such as the ones presented in Sec. 3.2. All the common algorithms have

parameters that need to be chosen carefully in order to produce a relevant result. In

this chapter we discuss in detail where the straight-forward application of the definition

fails to teach us something insightful about physical fractals and how we can pick up

the relevant information numerically, i.e., which are the optimal parameter-ranges of an

algorithm. We show that this parameter range not only tells us where we can trust

the numerics, but that it also defines an effective fractal dimension that is an intrinsic

43
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property of the dynamical system. We will mostly focus on the box-counting dimension

D0 to keep the notation clear but as we will see later in the chapter the concepts apply

to multifractals as well.

The definitions of fractal dimensions in Eqs. (3.1) and (3.3) contain the limit of

infinitesimal box size ε → 0 or, equivalently, infinite number of boxes n(ε) → ∞ that

make up the covering of the phase space used in the calculation of the box-counting

dimension. Physical objects, however, are never endlessly self similar, e.g., because they

undergo only a finite number of branchings or iterations until they reach a minimal

feature-size. Such objects are only fractal down to some minimal scale below which they

assume an integer dimension and thus the ε→ 0 limit is trivial. Such a minimal feature-

size also appears in numerical computations, e.g., if the fractal set is computed by the

iteration of initial conditions in a chaotic system where a truncation in the resolution

of the fractal appears because of computational limitations. The fractal dimension (at

ε → 0) of such truncated fractals is equal to the dimension of the remaining features

which, in turn, is usually the phase-space dimension. We will in the following use

Dε→0 for the fractal dimension of an object that results from a strict application of the

definition. In contrast, we consider a ε-dependent dimension. In the case of a truncated

fractal this leads to an effective dimension for “large” ε:

nintersecting ∼ ε−Deff(ε), (4.1)

where nintersecting is the number of disjoint boxes needed to cover the set. In general, we

will use Deff (ε) when we talk about the local (in ε-space) scaling if this scaling is not

equal to Dε→0.

The second assumption is less apparent: the definitions of Dε→0 and Deff (ε) im-

plicitly assume that we know the measure µi of each box or – in the case of box-counting

– which box intersects the fractal set. In most cases, however, our knowledge of the frac-

tal distribution is limited. For example, if the data comes from an experiment or from

a simulation it is limited to a finite number ς of points. Even if we run numerical sim-

ulations that generate samples on the fly – and therefore can control ς – the accessible

sample-size is limited by computational power. As a result of this, the observed dimen-

sion Dobs(ε, ς) can differ significantly from the “real” dimension of the set which we will

call Dς→∞(ε) from now on (note that limε→0Dς→∞(ε) = Dε→0, and away from that

limit: Dς→∞(ε) = Deff (ε)). A lack of data points necessarily leads to Dobs(ε, ς)
ε→0−−−→ 0

for finite ς, i.e., the dimension of a point. At which box-size ε this transition takes place

depends on the sample size, so that we can expect that there exists an ς-dependent range

of box-sizes for which we can observe Dobs(ε, ς) = Dε→0 and Dobs(ε, ς) = Deff (ε). In

case we sample the fractal on the fly we can formulate the problem in the reversed way:
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How many samples do we need to perform if we want to observe the non-trivial effective

dimension of a particular fractal distribution down to a certain minimal box-size?

An additional interesting type of behaviour appears if the fractal depends on

the escape-time, as it is the case in finite-time approximations of trapped sets and

conditionally invariant measures of open chaotic systems. In such fractals the typical

feature size changes with the escape-time chosen for such an approximation, and the

ε-dependence of Dobs(ε, ς) changes accordingly. Additionally, the number of samples

needed to approximate the fractal to sufficient precision in the sense that the observed

dimension is close to the real one is a function of that cut-off time.

In this chapter we discuss the questions “What is the optimal range of box-sizes?”

and “How many samples do I need?” in more detail. We will first discuss the interplay

between these two questions in open chaotic systems in general. We then present an-

alytical arguments on the calculation of fractal dimensions in a class of systems where

such an analytical treatment is possible and compare it to numerical calculations. After

that we show on the example of an open billiard that the observations from these simple

systems can be used to numerically obtain the fractal dimensions of more complicated

systems and that we can identify the parameter ranges yielding Deff . For the most part

we will base these calculation on cantor-like fractals and monofractal distributions but

we will show that our description also applies to more complex and multifractal distri-

butions. The latter we demonstrate numerically on an example of a map with a partially

absorbing hole. For the sake of clarity of the discussion we only consider fractals which

are either generated by one-dimensional maps or the result of restricting the calculation

of two dimensional fractal measures to a one dimensional slice of the phase space. This

restriction to one dimensional maps or slices is not necessary – as the presented results

are expected to hold in higher dimensional systems as well – but it allows us to express

the formalism in a simpler, more didactic way.

4.1 General Theory

In this section we describe the general behaviour of the observed dimension as a function

of box-size, sample-size, and escape-time on the illustrating example of the forward

trapped set S∞ and its finite-time approximation St of an open chaotic map M of the

following general form (see Sec. 2.3):

M : (xn, tn) 7→

(xn+1, tn+1) = (Mclosedxn, tn + τ(xn)) , if xn /∈ H

escape, if xn ∈ H
, (4.2)
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Figure 4.1: Surviving sets St in a mapping that at each iteration removes the middle
third of every remaining segment.

where H defines the hole and τ(xn) is the time between the nth and (n+ 1)th iteration.

For the remainder of this section we assume τ(x) = 1 for all x. We will discuss both an

example with a partial leak and an example with non-trivial τ(x) later in the chapter.

We are interested in strongly chaotic (e.g. hyperbolic) open systems for which the

survival probability shrinks exponentially (see Ch.2) for large t:

P (t) ∼ e−κt. (4.3)

In the infinite-time limit the set S∞ := limt→∞ St is the forward trapped set of the

system and limt→∞ P (t) = 0, i.e., the chance of finding a point belonging to S∞ when

picking initial conditions distributed uniformly over the full phase space, i.e., a brute

force sampling, goes to zero with increasing t.

For finite t, St is made up of objects with the same dimension as the phase space.

With increasing time these objects or segments shrink in size but grow in number. In

Fig. 4.1 we can see how St changes in an example map which in in the limit t → ∞
creates the Cantor set. Maps like this can be viewed as a tree branch. At each level

there are more but smaller branches until they reach a minimal size. For the sake of

simplicity we will from here on assume thatM is one-dimensional. This implies that St
is shrinking in only one direction along which we observe a time-dependent distribution

of segment-sizes li,t (i is an index numbering the segments) around a typical value `(t)1.

For large t this distribution concentrates around `(t) and it can be shown that this value

scales with the largest Lyapunov-exponent λ [LVA13]:

`(t) ∼ e−λt (4.4)

It is easy to see that in a one-dimensional map for finite t the asymptotic dimension is the

dimension of a line: Dε→0 = 1 (the dimension of each segment). In chaotic systems the

forward trapped set S∞ has a fractal dimension. This dimension is equal to the effective

1In a higher dimensional map there is a typical width for each direction along which St is shrinking
and the value of the effective dimension changes each time the box-size passes over a typical size until
it reaches the phase space dimension once ε is smaller than the smallest typical size.
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dimension Deff of St. So box counting on St is expected to yield Dobs = Dε→0 = 1 for

“small” box-sizes and Dobs = Deff for “large” ε values. The transition between Dε→0

and Deff happens approximately at the typical length of segments ε ≈ `(t):

Dobs =

Dε→0 for ε / `,

Deff for ε ' `
(4.5)

As we have mentioned at the very beginning of this chapter the range of box sizes

that lead to the effective dimension is further restricted by the number of available data

points. We now discuss the influence of finite sampling on our example map M. In

a typical scenario we estimate Deff of St at a given value of t. Since we do not know

which initial conditions lead to a trapped trajectory we try to sample St by picking S

points distributed uniformly over the full phase space and iterate each of them t times or

until they escape. Then the number of successful samples ς – i.e., the number of initial

conditions that belong to St – scales with the survival probability P (t):

ς ≈ SP (t) = Se−κt (4.6)

This gives us an upper limit for the number nfilled ≤ nintersecting ≤ n(ε) of intersecting

boxes that are actually found:

nfilled ≤ ς. (4.7)

This upper limit is simply due to the fact that the number of found boxes can not

exceed the number of available data-points. For the observed dimension this implies

that if the box-size is small enough such that every filled box contains exactly one of

the ς points, then Dobs = 0. What “small enough” here means depends on St and on

the sampling method used. More precisely, it depends on the distribution of distances

between neighbouring data-points around the typical distance which we will call δ in

the following. We can summarise our prediction as follows:

Dobs =

0 for ε / δ

Dς→∞ for ε ' δ
. (4.8)

Intuitively speaking, this provides us with an minimum number of samples we need at a

given box size to see the actual dimension of the set (i.e. Dς→∞) while Eq. (4.5) gives us

an lower limit of box sizes that allow us to see the non-trivial effective dimension Deff .

The value of δ depends on the value of Dς→∞ at ε ≈ δ so that in the case of a 1D

map we have to distinguish two cases:
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(i) δ < `: In this case Dς→∞ = 1 for ε = δ, i.e., the transition takes place at box-sizes

at which the segments of St look like lines to a box-counting algorithm.

(ii) δ > `, i.e., Dς→∞ = Deff which describes the case where the box-sizes are large

enough for an algorithm to resolve the fractal effective dimension.

Let us first discuss case (i) on the trivial example of S0 because in that particular

case `(t = 0) = 1 and we can be sure that Dς→∞ = 1 for all box-sizes 0 < ε < 1. As

described before we distribute ς points on S0. First, assume that we use a method that

creates exactly evenly spaced samples and therefore δ = 1/ς. Here we expect to see a very

sharp transition from Dobs = 1 to Dobs = 0 exactly at ε = δ. This type of behaviour, i.e.,

a drop from Dobs = 1 to Dobs = 0 – albeit less abruptly – is also observed if we distribute

the ς points randomly on S0, typically the sort of data available. In the random case

we can use order statistics to calculate the distribution of inter-sample distances around

the expected value 1/S (see App. A). The steepness of the transition in the dimension

in that case depends on the distribution of distances between the samples.

We now consider the more relevant case of St for larger but finite t. The area of

the set shrinks with the same rate as ς, so that δ = 1/S continues to hold. At the same

time the distribution of gaps in St will include smaller and smaller values as t increases.

Once the two distributions overlap we get into the transition denoted by (ii) earlier.

That is, we are at box-sizes, where Dς→∞ = Deff and we can no longer assume that we

sample on a line. Accordingly, the δ = 1/S estimation based on order statistics used

above is no longer valid but we can use a different method to estimate δ. The option

we use is to use the upper limit to the number of filled boxes expressed in Eq. (4.7) to

estimate the value of δ as the point where the nfilled curve reaches ς: So, at ε = δ we

have ς ∝ δ−Deff which already gives us the scaling of δ:

δ = Cς−1/Deff (4.9)

The constant C can be calculated from the assumption that the two predictions of δ

must match at the point where ` and δ cross (as we will see in Eq. (4.14)). So we

complete the statements in Eqs. (4.5) and (4.8) by noting that

δ =

1/S for 1/S < `

Cς−1/Deff for 1/S > `
. (4.10)

The shape of the transition depends on ς and we can generally expect that it is sharper,

the larger ς is. We have sketched an example of the typical behaviour of nfilled(ε) in

Fig. 4.2. We show all types of general behaviour that we can observe with a box-counting
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Figure 4.3: Schematic picture of the behaviour of the transition points δ and `. The
(green) δ-line separates the box-sizes where we observe the actual dimension of the set,
i.e. Dobs = Dς→∞ from box-sizes where Dobs = 0 . The red ` line (4.5) on the other
hand separates box-sizes with Dς→∞ = 1 from box-sizes with Dς→∞ = Deff . The point
of intersection between the two lines is called topt (or Sopt). (a) at a fixed sample size
S; (b) at a fixed time t. Note the different scaling of the x-axes. The roman numerals

mark regions of similar combinations (Dobs(ε, ς), Dς→∞(ε)).

algorithm. Starting from the left (ε → 0) we start in the regime of saturation due to

Eq. (4.7) where nfilled = ς. With increasing ε we then pass the transition Dobs = 0 to

Dobs = 1 (see Eq. (4.8)) at ε = 1/S and lastly we cross over to Dobs = Deff at ε = `

(see Eq. (4.5)). In the sketched scenario ς is large enough to observe the line-like nature

of St. This means, that here δ < ` and therefore δ = 1/S, i.e. case (i). If on the other

hand ς is small – or, equivalently, t is large – eventually, δ > ` change order and we

observe case (ii). In this case the observed dimension would transition directly between

Dobs = 0 at small boxes to Dobs = Deff at large ε without crossing the Dobs = 1 region.

Now that we have established the types of behaviour that we can observe we

discuss in more detail the circumstances under which they arise. In Fig. 4.3 we combine

the scalings from Eqs. (4.4) and (4.10). The (ε, t) and (ε, S) spaces are each split in

four regions which we denote by I to IV and which are uniquely characterised by the

combination of Dς→∞ and Dobs that is observed in a box-counting procedure using ε,

t and S from that region. The value combination for all four regions can be found in
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Table 4.1: Values of the ob-
served dimension and of the real
dimension in the four regions of

Fig. 4.3

Dς→∞(ε) Dobs(ε, ς)

I Deff Deff

II Deff 0

III 1 1

IV 1 0
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t3 > t2
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t2 > t1
t3 > t2

Figure 4.4: Sketches of the typical behaviour of the number of found boxes nfilled(ε)
(solid lines) when box-counting St at different values of t ∈ {t1, t2, t3} and different
numbers of samples S ∈ {Stot,1, Stot,2, Stot,3}. The dashed lines mark the position of

`(t).

Tab. 4.1. To clarify the meaning of these regions we now take a look at a couple of

examples. Let us start by conjuring up Fig. 4.2. This figure represents a vertical slice

along a line of fixed box-sizes in Fig. 4.3. More precisely, it is a slice that crosses from

region IV to III to I. In a scenario where the sample size is fixed (Fig. 4.3(a)) this vertical

slice is left of topt(S). If we assume that we are studying St with t fixed (Fig. 4.3(b))

the vertical slice would lie right of Sopt. We will explain the relevance of the intersection

points after some more examples which are shown in Fig. 4.4. In Fig. 4.4(a) the sample

size is very small and therefore for most of the box-sizes Dobs(ε, ς) = 0 for all shown

values of t. This corresponds to a slice IV-II-I. For the (S, t) combinations shown here

δ > ` so that we do not see the transition at `. In Fig. 4.4(b) the sample size is large

enough that we observe the Deff over the full range of possible ε values at all three ti.

Here, the value of t3 (S2) is very close to topt (Sopt) so that in this example the curves

for t1 and t2 follow a line across IV-III-I while the t3-curve almost does not cut region

III but goes directly from IV to I. Fig. 4.4(c) shows the case of very large S where all

three curves follow a line IV-III-I.

Let us now look at the regions from Tab. 4.1 from the point of view of someone who

wants to find efficient parameters for a numerical box-counting algorithm to calculate

the real dimension Dς→∞(ε) of St of a given 1D-map. There is a computational cost

attached to each box-size and to each iteration step that is calculated. Since sampling

in this system means to iterate a randomly picked initial condition up to an exit or up to

t, depending on what happens first, the cost of increasing S also grows with t. Basically

there are two typical scenarios:
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(i) We have a sampled version of St with fixed (S, t) and we want to know which

box-sizes ε we can trust to give us a meaningful result, i.e., Deff(ε).

(ii) We can sample St on the fly and have some freedom in the choice of S and t, and

we want to know a choice of (S, t) that leads to Deff(ε) over a particular range of

box-sizes.

The scenarios correspond to the questions

(i) “What is the optimal range of box-sizes?” and

(ii) “How many samples do I need?”

stated in the introduction of this chapter and we can now answer them using Eqs. (4.4),

(4.5), (4.8), and (4.10): (i) As long as ε > δ we observe the dimension of the set, while

for ε < δ we resolve the individual data points and therefore Dobs = 0. How sharply this

transition is depends on the choice of (S, t). (ii) The answer here depends slightly on

the definition of “meaningful”, but since the value of the dimension for ε < ` and ε < δ

is trivial, the only dimension worth calculating numerically is Deff (i.e., the algorithm

should stay in region I). The optimal choice of t or sample size S then is the one where

the range of ε’s leading to Deff is maximal. This happens at the intersection points

topt(S) =
1

λ
lnS (4.11)

and

Sopt(t) = eλt. (4.12)

These equations can be obtained by simply solving `(t) = δ(S, t) (see Fig. 4.3) for S or

t. With that the proportionality constant in Eq. (4.9) can be expressed as a function of

S, the constant `0 in

`(t) = `0 exp(λt), (4.13)

the Lyapunov-exponent λ, and the escape rate κ by solving `(topt) = Cς(topt)
−1/Deff for

C which leads to

δ(t > topt) = `0S
−1− κ

λDeff exp(− κ

Deff
t), (4.14)

where we assume that we are already at t-values in the asymptotic regime (4.4).

Sopt and topt each have a very intuitive interpretation. In the case that we have an

algorithm that allows us to study a given range of ε’s (limited e.g. by machine precision).

If we iterate S initial conditions in the system up to a time t < topt then we do not make

use of the possible resolution of the algorithm by providing it a set with lower resolution.
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On the other hand if we iterate to t > topt we waste computational power to calculate

an object that has a lower resolution than the algorithm. Analogously, if at fixed t we

chose S < Sopt then we expect gaps in our approximation of St that are similar in size

to the box-sizes used by the algorithm and we waste computational power on these box-

sizes. And lastly, if S > Sopt then we oversample the set and create an approximation

of St with a finer resolution than the algorithm can pick up. These limitations are valid

for all the common algorithms discussed in Sec. 3.2. That means that the scalings of

Sopt and topt are very hard to circumvent computationally without resorting to previous

knowledge of the system under consideration. Accordingly, the different algorithms – at

least in terms of sampling efficiency – are expected vary only by pre factors in efficiency

as already hinted at in Sec. 3.2.3. We expect our results to be very useful in choosing

the parameters connected to the relevant length scales efficiently.

So far we have stated the challenges that arise in typical numerical dimension

calculations and we have formulated a general theory of the scaling of the length scales

` and δ which define Deff in terms of S and t. In the upcoming sections we apply this

theory to relevant strongly chaotic systems, and confirm the predictions made above

numerically, and, in case of the tent map, also analytically.

4.2 Application to the Analytically Solvable Open Tent

Map

In the following we discuss the general concepts presented in Sec. 4.1 on the instructive

example of the open tent map. This system is simple enough that we can make analytical

calculations but at the same time shows many of the features that also appear in more

physical examples of open chaotic systems.

The open tent map is defined as follows:

xn+1 =


βxn
2a for xn < a

β(1−xn)
2(1−a) for xn ≥ a

escape for xn ≥ 1

tn+1 =

tn + 1 for xn < 1

tn for xn ≥ 1

, (4.15)

where a ∈ (0, 1) and β ≥ 2. The mapping is illustrated in Fig. 4.5. In this system a

trajectory is escaping if it leaves the interval [0, 1) so that we effectively have a hole of size
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Figure 4.5: The open asymmetric tent map as defined in Eq. (4.15). Trajectories
escape the system when they are mapped outside the interval [0, 1) (grey area). The
red line marks the first pre-image of the hole and the green and magenta lines mark

the second pre-images.
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Figure 4.6: Surviving sets St in the asymmetric tent map (4.15) with β = 3 and
a = 0.61.

1−β/2 (if β < 2 the system is closed). In a map like this the escape time is the number

of iterations until escape and thus tesc ∈ N plays the role of t in the previous section. In

Fig. 4.5 we also mark the intervals of initial conditions with tesc = 1, 2, which are the first

and second pre images of the hole. The next set of pre images would fall in the empty

regions between the colored segments and so on, so that the time-t trapped set St (2.16)

in this system is cantor-like. In Fig. 4.6 we clearly see that St approaches a Cantor-set

like structure. In fact, the tent map with a = 1/2, β = 3 generates the middle third

Cantor set for t→∞. Fig. 4.7 shows the escape-time distribution along the unit interval

of an asymmetric tent map with β = 3 which corresponds to a hole-size of 1/3. If we

compare the zoomed image in Fig. 4.7(b) with the original we can easily see the fractality

of the escape time distribution. We can also see that the pre-images of the hole do not

overlap and therefore the measure of St is exactly µL (St) = (1− µL(H))t = (2/β)t.
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Figure 4.7: Escape times of 106 evenly spaced initial conditions x ∈ (0, 1) in an open
asymmetric tent map (4.15) with a = 0.8 and β = 3. (a) Full phase space (b) Zoom of

the region between the dashed lines.

This means that the escape rate κ (4.3) in this system is κ = − ln(2/β) and therefore

the large-S-asymptotic behavior of the number of successful samples (4.6) is

ς = Seln(2/β)t (4.16)

In the tent map we can calculate the distribution of segment sizes `i(t) analytically.

We describe the segment sizes at any cut-off time t as being generated by a multiplicative

process with two different scales. In the tent map we have two possible absolute values

of the local derivative: M′l := β
2a andM′r := β

2(1−a) . To get from t to t+1 a fraction a of

each segment is multiplied by M′l while the rest is shrunk by the factor M′r. Therefore

the segment sizes follow a binomial distribution. This allows us to quantify the value

of the typical length `(t) in (4.5). The minimum and maximum segment width after t

iterations are lmin,t = min(a, 1− a)t
(

2
β

)t
and lmax,t = max(a, 1− a)t

(
2
β

)t
, respectively.

The width of the distribution depends on a and it goes to zero in the case a = 1/2.

Accordingly, the expected value of the segment size for large t is

E(lt) =

(
2

β

)t
aat(1− a)(1−a)t. (4.17)

We now show that this is equivalent to Eq. (4.4) by calculating the Lyapunov exponent

λ(x0) = lim
t→∞

1

t
ln

∣∣∣∣dMt(x0)

dx

∣∣∣∣ , (4.18)

of the tent map, where dMt(x0)
dx =

∏t
i=1

dM(xt−i)
dx . To do so we can use the ergodicity

of the dynamics and replace the averaging over a trajectory by an average over the

invariant set. We first consider a finite time t and then look at t→∞. After t iteration

the fraction of the unit interval that has |M′(x)| = M′l, or |M′(x)| = M′r, is equal to

a(1 − β/2)n, or (1 − a)(1 − β/2)n, respectively. Now all that is left to do is normalise
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Figure 4.8: Time and sample-size dependence of the histograms of the spacing be-
tween neighbouring samples calculated in a tent map wit a = 0.8, β = 3. (a) fixed
overall sample size S = 106. (b) fixed time t = 4 but different values of S. For each
value of S in (a) and (b) we use 107/S realisations of the sampling and the distances

∆x,i := |xi − xi−1| are normalised by 1/S.

these values by µL (St) and we can write (4.18) as

λtent = lim
t→∞

1

t
ln
(
M′ atl M′ (1−a)t

r

)
= a ln

β

2a
+ (1− a) ln

β

2(1− a)
. (4.19)

By rearranging this expression to λtent = ln β
2 − a ln a− (1− a) ln(1− a) and comparing

with (4.17) we confirm the agreement with Eq. (4.4). Thus in the open tent map the

analytic prediction of the transition between Dε→0 and Deff (see Eq. (4.5)) is

`(t) =

(
2

β

)t
aat(1− a)(1−a)t. (4.20)

We can use the fact that we know the distribution of segment size in this example

to discuss the transition due to a lack of successful samples at ε ≈ δ in more detail.

In Fig. 4.8 we show numerically that (as predicted in Eq. (4.10)) the typical distance

between neighbouring samples on the set is δ = 1/S for small t. We also see a heavy tail

growing on the right side of this value as t increases. These larger intervals are the gaps

in St so they are distributed according to Deff . We can observe in Fig. 4.8(a) how for

large t these intervals interfere with the distribution of the ∆x caused by the sampling.

At t = 8 the distributions start to overlap and at t = 16 the two distributions are no

longer distinguishable. What we observe here is the change in the order of ` and δ with

increasing iteration-number. In Fig. 4.8(b) we can see how the overlap of the two parts

of the distribution decreases with increasing sample-size.

In Fig. 4.9 we show results obtained by numerical box-counting in an open tent

map. The shapes of the nfilled-curves share their central features with the stylised curves

presented in Fig. 4.4. First of all, at small ε the curves get flat (i.e. Dobs = 0) because

they reach the upper limit (4.7). For t = 8 and t = 12 this transition occurs at δ = 1/S
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Figure 4.9: Numerical results from box-counting at different cut-off times t in the
tent-map with different asymmetry parameters a but constant β = 3; The sampling
was uniform over [0, 1) with a sample size of S = 107. The dotted lines are D0 = 1
(black) and D0 = ln(2)/ ln(3) (red). The dashed vertical lines mark `(t) (for ε > `(t),
Dobs = Deff). The vertical black line is at ε = 1/S and the green vertical lines mark

ς−1/Deff (cf. Eq. (4.10)).

and we can see in the local dimension curves that the quickest change does indeed happen

very close to this predicted value. We can also observe the second kind of transition at

δ close to ` in the curves for t = 16 where the dimension changes directly from Deff to

0.

Now let us compare this observations to the curves in Fig. 4.8. The parameters

used in the generation of the histograms are the same as the parameters in the left

column of this figure.

• At t = 8 we observe a dimension of one for ε ∈ [10−6, 10−5] which in the rescaled

coordinates of Fig. 4.8 corresponds to an interval ∆xS ∈ [101, 102]. In this interval,

the gap between the two distance distributions is so that at box-sizes of this order

an algorithm resolves neither the gaps created by the sampling nor the gaps that

are intrinsic to the fractal set.

• At t = 16 in the asymmetric case we can see that ` is very close to 1/S so here we

see a competition between the two possible values of δ as seen in Eq. (4.10).

Next, we look at the transition to Deff at ε = `:



Chapter 4 Effective Dimensions in Open Chaotic Systems 57

• For t = 8 and t = 12 the onset of his transition coincides very well with the

analytical value. By comparing the symmetric and the asymmetric case we can

also verify, that the transition becomes sharper for the symmetric case because the

distribution of lengths is narrower there.

• The t = 16 case is again special. In the asymmetric case we can observe how the

increase in nfilled because of ε < ` is competing with the decrease caused by ε ≈ δ.
In the more symmetric map ` is already smaller than 1/S and we can observe a

drop of Dobs that is indeed most severe close to δ ∝ ς−1/Deff (cf. Eq. (4.10)).

To discuss the relevance of the analytical predictions to numerical methods we cal-

culated the scaling of `, δ and topt with t and S numerically. In simple terms we propose

a numerical procedure consisting of the following three steps for many combinations

(S, t):

1. Calculate Dobs for a range of box-sizes,

2. find the transitions at ε = δ and ε = `, and lastly,

3. use this information to find scaling of topt with S.

Each of the steps can be done in different ways. For example for step 1 alone there exist

numerous algorithms that produce the desired results more or less efficiently (see Sec. 3.2

for an overview). We chose the following approach and parameters (see Appendix B for

a detailed description):

1. From n realisations of S initial conditions randomly drawn from a uniform distri-

bution over [0, 1) calculate n approximations S̃t of St for different values of t, and

repeat the process with different choices of S. For every approximation then use a

box-counting algorithm to calculate the number of boxes containing any of its ele-

ments and use the local derivative between two adjacent box sizes as Dobs(ε).

2. Repeat the following steps for all sets S̃t to get n estimations of ` and δ for every

value of t:

a) Estimate δ as the ε in the transition region between Dobs = 0 and Dobs = Dς→∞

where the slope of Dobs(ε) is maximal.

b) Estimate ` as the maximum box-size where the dimension curve for a given t is

significantly different from the curves for t′ > t. It is not possible to find ` with

this method if ` < δ, and in this case this approach returns a value close to δ.
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Figure 4.10: Numerical results of `, δ and topt(S) in the tent map with high (left
column) and low (right) values of the asymmetry parameter a. The solid lines in
the top row are the analytical predictions. The sample size used in the top row is
S ≈ 1.7 × 105. For `, δ we plot the average over the n realisations of the Sampling
together with error bars that span the interval from the 10th to the 90th percentile of
the n values obtained for every (S, t)-combination. In the topt(S) plots we show the
average over the locations of the 4 lowest 〈`〉-values and the error bars cover the whole

range of their locations.

3. Estimate topt(S) as the average over the four smallest values of 〈`〉n(t), where 〈. . .〉n
is the average taken over the n realisations of the sampling.

In Fig. 4.10 we show the results of this numerical approach. We now discuss them

using the representative example of the results obtained with S ≈ 1.7×105 presented in

the top row of the figure quantity by quantity. We use the superscript A to denote the

analytically estimated values. (see Equations (4.4), (4.10), (4.14), (4.11), and (4.19)).

• As long as δA = 1/S and t is small the numerical results follow the analytic

prediction very well.

• Once we leave this regime (i.e. if t ' 13 for a = 0.8 and t ' 11 for a = 0.55)

the behaviour changes and we observe a strong discrepancy between δA and δ in

the strongly asymmetric case. The reason for the difference lies in the asymmetry

of the distribution of segment sizes. At t = 15 for example the largest segment

size in the strongly asymmetric map is of the order of 10−4. The smallest segment

on the other hand is already of the order of 10−14 which is much smaller than

1/S ≈ 5.9×10−6. The fact that there are many segments too small to be sampled
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at this value of S leads to much larger effective gaps in the set than we assumed in

the discussion leading to Eq. (4.10). The fact that in the more symmetric case this

discrepancy is not observed further corroborates this hypothesis. Also, δA and δ

seemingly coincide more for larger t at a = 0.8. The reason for this is most likely

also the shape of the segment size distribution which gives a lot of weight to the

extreme segment sizes at smaller t but not at higher values.

• Regarding the algorithm to find ` we can state, the most obvious observation is

that – as already discussed earlier – we cannot numerically observe the typical

length of the segments once `A < δA but instead for larger t we resolve the largest

time-dependent feature which is close to δ. The reason for the shift towards larger

values obtained with the algorithm for δ lies in the fact that the `-algorithm finds

the onset of the transition while the δ-algorithm looks for the steepest slope.

• On the other hand in the range where ` > δ (i.e. for small t) the numerical results

confirm `A very well.

• Because of the width of the segment size distribution the analytical prediction tAopt

lies above the numerically observed point. If we look at other values of S (bottom

row of plots) we can see that nonetheless the scaling of topt with S follows the

analytical estimation.

To summarize the observations from a numerical perspective: The relatively simple

proposed algorithm already allows to find the optimal value of t at a given sample size

S. One possible approach for that would be to, starting from a small t0, continue to larger

values of t until the slope of `(t) becomes positive. Of course any other numerical method

to find the minimum can be employed here. If the Lyapunov exponent is known tAopt

can be used to chose t instead of using this method. In that case the minimum suitable

box-size ` still has to be found numerically as `A is not usable in this region. If tAopt is

used the range of box-sizes is smaller than in the optimal case, but the computational

cost saved by not having to box-count at many values of t can be used for example to

increase S which in turn would increase the range of box-sizes.

In conclusion, the tent map allows us to verify our general statements from 4.1

by comparing analytic results with numerical calculations. In the following section we

go on to show that the same kind of behaviour can also be observed in more complex

systems like the stadium billiard.
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stadium billiard. Dark blue marks tesc = 0, i.e. the hole, the color changes gradually
from blue to green, then yellow and finally red with increasing escape time. (right)
Survival probabilities in real- and discrete time in the same systems. The parameters
here are r = 2, L = 4, and {smin, smax, ϑmin, ϑmax} = 0, 1,−π/8, π/8. The exponents
of the dashed lines are obtained from fitting exponential functions to the central 60%

of each data set.

4.3 Numerical Observations in Fully Hyperbolic Stadium

Billiard

In Sec. 4.2 we have shown to which extent we can observe the general predictions made

in Sec. 4.1 in simple chaotic maps. In this section we show that they also hold in more

complicated but also more physically relevant systems, like the stadium billiard which

we have introduced in Secs. 2.2 and 2.4.

In Fig. 4.11 we show the escape time distribution tesc(s0, sinϑ0) and the survival

probability in an example. In this particular billiard the complete boundary is fully

absorbing at collisions with |ϑ| < π/8. This choice of opening removes all the marginally

unstable periodic orbits from the system, so that the survival probability is purely

exponential. Fig. 4.11 shows that the numerically estimated survival probability in

these particular billiard is indeed exponential and that the exponent is different for

P (t) ∝ exp(−κtt) and P (n) ∝ exp(−κnn). We can use the fitting results to estimate

the typical inter-collision distance τ := limn→∞tn/n of a surviving trajectory where

tn is the length of the trajectory after n iterations as τ ≈ κn/κt ≈ 3.45. This is

significantly smaller than the typical estimation for mean free path in a closed billiard

〈l〉 = πA/P ≈ 4.36 [LS90, MLS93] where A is the area and P is the perimeter of the

billiard because our choice of hole removes the longest possible paths, i.e., end-to-end

collisions with small reflection angles. An analogous estimation of the mean free path

in open systems can be achieved by taking the average 〈l〉c according to the unstable

manifold as described in [APT13b]. In Fig. 4.12 we can see the difference between
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cal dimension in the stadium billiard with four
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show the behaviour for Deff = 0.86, the value
obtained by averaging Dobs over ε > max{`, δ}.

the iteration number and the real time in the escape time distribution of the stadium.

Unsurprisingly, the transitions between intervals of different iteration numbers match

the transitions between different escape times, but we can observe how considering the

trajectory length introduces some noise on the distribution of segment lengths. That

means, at the transition between two integer escape times, the length of the segments

takes a little while to settle to a constant value. In Fig. 4.13 we show the numerically

calculated local observed dimensions of a slice across St in the billiard. We chose initial

conditions along a line, so that our observed dimension is the dimension of this slice and

it falls in the interval [0, 1]. The fractal dimension of the full surviving set St can be

obtained from that value by adding 1 to this dimension [Ott02]. As in the simple map

discussed in Sec. 4.2 we can identify three regions of observed scaling. Going from small

to large box sizes we first see Dobs = 0 then the transition to Deff ≈ 0.86. For t = 40 we
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Figure 4.14: Numerical results of
`, δ and topt(S) in the stadium bil-
liard. The sample size used in the
top row is S ≈ 4.6 × 105. For `, δ
we plot the average over the n re-
alisations of the Sampling together
with error bars that span the interval
from the 10th to the 90th percentile
of the n values obtained for every
(S, t)-combination. The solid red and
green line show the scaling obtained
by fitting an exponential function to
the respective region. In the topt(S)
plots we show the average over the lo-
cations of the 4 lowest 〈`〉-values and
the error bars cover the whole range
of their locations. The purple crosses
are the lowest t with 〈δ〉(t) > 2/S.
The black lines in the bottom plot
show ln(S)/λ with the λ value from
the fit in the top plot (dashed) and

the theoretical value (dotted).
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can also observe an ε-region with Dobs = 1. In summary, we can numerically observe

the basic predictions from Sec. 4.1 in this more realistic continuous-time system.

But not only do the transitions at ` and δ as defined in Eqs. (4.5) and (4.8),

respectively, occur in this system, we can also numerically show that they follow the

same scaling behaviour as in the simple map. In Fig. 4.14 we can see that where we

can observe ` numerically, i.e., for times t where ` > δ, it scales exponentially. By

fitting an exponential to the data at S = 107 (where the relevant interval is largest) in

this region we obtain a value of λ ≈ 0.15 which is lower than the analytical value of

λclosed ≈ 0.43 obtained for the closed system [BS78]. That the values are different comes

as no surprise, since λclosed is calculated in the closed system. We use the numerical

results from the `-algorithm to calculate topt as described in the previous section. As in

the asymmetric tent map in Fig. 4.10 the value is systematically lower than the prediction

of topt = ln(S)/λ with the numerically obtained value λ ≈ 0.15, but nonetheless, the

logarithmic scaling with S is confirmed. We have compared the values of topt with

numerical values compared with an alternative algorithm. Namely, we used the results

from the algorithm for δ and estimated topt as the lowest t with 〈δ〉(t) > 2/S, 〈δ〉 is

computed over all n realisations for each S. Both methods agree reasonably well and

the observed scaling follows topt = ln(S)/a with λnum. < a < λclosed. The numerical

δ-curve, however, shows excellent agreement with our general predictions. For small t,
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Figure 4.15: Sketches of one iteration of partially open versions of (a) the baker map
(4.21) and (b) the cat map (4.22). The region between the dashed lines is the absorber
(or hole) and it has a reflectivity R < 1. The grey regions in the phase-space pictures

are there to show where the hole is mapped in one iteration.

δ ≈ 1/S and then it follows an exponential scaling with an exponent κ/Deff ≈ 3.41×10−2

obtained by fitting an exponential to the relevant range of data. Using Deff ≈ 0.86 (see

Fig. 4.13 we obtain κ ≈ 2.93 × 10−2 which is very close to the value κ ≈ 2.9 × 10−2

obtained by fitting an exponential to P (t) (see Fig. 4.11).

To summarize: the general predictions from Sec. 4.1 can be observed in a much

more realistic system such as the stadium. We can also use the theory to numerically

find the optimal ε range to observe Deff .

4.4 Maps with Non-Trivial Rényi Dimension Spectrum

As a last class of systems to discuss the general statements from Sec. 4.1 we now consider

partially open systems with multifractal asymptotic measures. As representative cases

of fully chaotic area-preserving maps we investigate in detail the baker [Ott02] map

defined as
xn+1 = 3xn − b3xnc
yn+1 = yn/3 + b3xnc/3
tn+1 = tn + 1

In+1 = InR(xn, yn)

, (4.21)

and the cat map [dMdA95]:

xn+1 = 2xn + yn mod 1

yn+1 = 3xn + 2yn mod 1

tn+1 = tn + 1

In+1 = InR(xn, yn)

. (4.22)

The dynamics generated by these maps is illustrated in Fig. 4.15. In the case of the baker
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and (c),(d) cat map (4.22). (a),(c) projected on initial conditions: In(x0, y0) and (b),(d)

projected on n-th iterate: In(xn, yn) with n = 4.

map the absorbing region was chosen in order to allow for comparison with analytical

calculations. In the case of the cat map we chose an arbitrary asymmetric region. The

essential point for our investigation of the role of partial opening is that both choices lead

to a non-trivial D0 for R = 0. In both maps D0 = 2 and Dq is non-trivial, confirming

the result of Ref. [APT13a] that the apparent self-similar distribution of µ observed in

the phase-space is properly quantified only through the full multifractal spectrum Dq.

For the baker map the calculation of the spectrum Dq can be done analytically (see

Appendix C). We will use this fact to confirm the validity of our numerical approach.

In order to discuss the fractal dimensions in this system we need to define the

measure we use for their calculation using a multifractal box counting method as de-

scribed in Sec. 3.2.2. The stable manifold measure (see Eq. (2.22)) contained in the ith

box of a partition (by a regular grid) of the phase space of a partially absorbing system

with 0 < R < 1 in a phase-space region should be proportional to the average intensity

In for n→∞ of randomly drawn x0 ∈ Bi. The finite time normalised measure of a box

Bi after n iterations can thus be written as

µn,i =
〈I〉n,i∑
i〈I〉n,i

, (4.23)

where the average intensity 〈...〉n,i is computed over initial conditions x0 ∈ Bi. This

definition is consistent with the usual definition of the stable manifold measure consid-

ering the intensities I ∈ [0, 1] of trajectories as weights (see also Ref. [APT13b]). The

unstable manifold measure equivalent can be achieved from Eq. (4.23) by computing

〈...〉n,i over the positions xn ∈ Bi after n iterations instead of the initial conditions. In

the case R = 0 the measure is uniformly distributed on a fractal support and the Rényi

spectrum is flat (Dq = D0).

As in the simple fractal case the minimal scale of multifractal objects in any

practical case is finite. That means there is a typical length on which the measure

fluctuates. In the case of an partially open system that corresponds to a typical width
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of areas of constant intensity. In Fig. 4.16 we report the distribution of the measure µ

in the phase-space for a particular reflectivity after a few iterations. The finite size of

the features is clearly visible. In the plots we show the intensity averaged over initial

conditions contained in boxes in the phase space, i.e., 〈I〉n,i from Eq. (4.23) over boxes

i. That means that – similar to the monofractal case – the observed dimension goes to

zero once the boxes are too small to contain any points. As a result, we can observe the

transitions at ` and δ in these systems, too.

In the following we have a look at both in more detail, but first, let us define the

equivalent forms of the dimensions used in Sec. 4.1. The biggest difference is in the local

dimension which we define now for the calculation along a one-dimensional slice of the

phase space. We use the superscript (k) to denote a particular covering of boxes sized

ε(k) and µ
(k)
i for the measure of the ith box of that covering.

Dq,loc(ε
(2)) := lim

|ε(1)−ε(2)|→0

ln
(∑n(1)

i=1 µ
(1)q
i

)
− ln

(∑n(2)

i=1 µ
(2)q
i

)
(1− q)

(
− ln ε(1) + ln ε(2)

) (4.24)

This is the local scaling exponent of
∑n(k)

i=1 µ
(k)q
i where µ

(k)
i is the measure from Eq. (4.23)

in the ith box. As in the monofractal cases studied before, We call the numerically

observed dimension at finite ε(k), and finite values of ε(1) − ε(2)|, Dobs. It is also usually

calculated using a finite sample size approximation of µi. In the case 0 < R <= 1,

In is always different from zero and therefore – and because we restrict our sampling

to the support of µ – we can for the rest of the discussion assume S = ς. In other

words, all sampled initial conditions do not escape because their intensity never reaches

zero. If S → ∞, or if we know the measure analytically, then Eq. (4.24) defines the

real local dimension Dq,S→∞(ε). This case is the infinite sampling limit of the observed

dimension Dq,obs(ε) which is the dimension obtained from a sampling approximation of

µ. Furthermore, in analogy to the monofractal case, we use Dq,eff(ε) for any non-integer

Dq,S→∞(ε).

Now let us consider the transition between Dq,eff(ε) and the trivial dimension at

ε = ` (see Eq. (4.5)). For the sake of a simpler notation we restrict ourselves to measures

with a one-dimensional support, but as in the previous sections the arguments need little

modifications to apply to higher dimensions. Assume we go from a box size ε(1) to a

smaller box size ε(2) = ε(1)/ν, where ν ∈ N+. Let us also assume that ε(1) is already

close to the typical length ` on which the measure fluctuates. The i-th box of the larger

grid contributes the term µ
(2)q
i the sum in Eq. (4.24). Because the intensity is constant
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over the larger box the general statement that

n(1)∑
i=1

µ
(1)
i =

n(2)∑
i=1

µ
(2)
i (4.25)

in this case implies that each of the smaller boxes contained in that box leads to

a contribution of µ
(2)q
i = (µ

(1)
i /ν)q. Therefore we can change one of the sums to∑n(2)

i=1 µ
(2)q =

∑n(1)

i=1 νµ
(2)q =

∑n(1)

i=1 ν
1−qµ(1)q. Plugging this into Eq. (4.24) leads to

Dq,S→∞(ε(2)) =
ln
(∑n(1)

i=1 µ
(1)q
i

)
− ln

(∑n(1)

i=1 ν
1−qµ(1)q

)
(1− q)

(
− ln(νε(2)) + ln(ε(2))

) = 1, (4.26)

if ε < `. The equivalent to Eq. (4.5) for the Rényi spectrum thus is

Dq,obs =

Dq,ε→0 for ε / `

Dq,eff for ε ' `
. (4.27)

As is the case in monofractals, ` is time dependent and `(t) > `(t′) if t′ > t. In the

example of the ternary baker map, the feature-size is decaying exponentially: `(t) = 3−t.

The transition caused by finite S as defined in Eq. (4.8) is also very similar to

the mono-fractal case. Once the box-size is comparable to the typical distance between

samples, the observed dimension goes to zero. In the here considered case that the

support of µ is a line we have ς = S for all times and therefore, in the multifractal case

δ = 1/S is independent of the time and we can state the transition as:

Dq,obs =

0 for ε / 1/S

Dq,S→∞ for ε ' 1/S
(4.28)

We now compare the theoretical predictions to numerical results obtained in the

partially open baker and cat map. In Fig. 4.17 we show the results from a numerical dq

calculation in the two maps. As in the previous sections we use a simple box-counting

algorithm for q = 0, 2, 8.

In Fig. 4.17(a) to (c) we can immediately see the two transitions at ` and δ. At

1/S the dimension goes from zero to one and at ε = ` it drops again to the effective Dq.

In the baker map we have ` = 3−8 ≈ 1.5× 10−4 and ` = 3−12 ≈ 1.9× 10−8 for t = 8 and

t = 12, respectively, which agrees very well to the observed transition points. In the cat

map, we can also observe how ` decreases with t. In Fig. 4.17(d) we are already in the

case ` < δ, so that the transition (4.27) can not be observed. We plot this particular

choice of t to show that, in this system, the value of δ stays constant even in this case.
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Figure 4.17: Numerically calculated local Dq-values for partially open baker and cat
map with R = 0.3 at two different times t. Initial conditions were picked from a uniform
distribution on a line with constant y0. The grey markers in (a),(b) mark the analytical

values of Dq (see Eq. (C.13)). The vertical lines mark ε = 1/S.

4.5 Conclusions

In this chapter we have defined an effective dimension related to previously considered ex-

amples of such dimensions in physical systems [LFO91, MLG03, KMBK13, MdMGK05,

Gra88, LT89] and also generalised the concept to multifractals. We have expressed the

finite parameters (sample size ς, iteration time t, box-size ε) in terms of two length scales

` and δ. We further gave a general description of their expected functional dependence

on ς and t and confirmed them on the example of two monofractal model systems. Addi-

tionally we have shown that they are also identifiable in systems exhibiting a non-trivial

Rényi spectrum, a necessary in order to describe partially open symplectic maps. ` can

be intuitively interpreted as the typical size of segments in a finite-t approximation of

either the trapped set or the intensity distribution of the system. Once the box size

(or equivalent length scale) of any algorithm gets smaller than `, no fluctuations are

measured and the dimension assumes some trivial value (See Figs. 4.2 and 4.3, Tab. 4.1,

and Eq. (4.5)). δ, on the other hand, intuitively is the length scale introduced by the

lack of samples. Its value further depends on the fractal dimension of the (multi)fractal

under consideration (see Eq. (4.10)). We have used these results to calculate optimal

combinations of t and the total sample size S, S ≥ ς, to observe the effective dimension

over a given range of ε (see Eqs. (4.11) and (4.12)). We expect the respective scalings
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of topt and Sopt to apply to the algorithms discussed in Ch. 3.

In the next chapter we consider non hyperbolic systems which were shown to

exhibit more than one effective dimension [LFO91, MLG03, KMBK13] and apply our

methods to this class of system.



Chapter 5

Open Non-Hyperbolic Systems

So far we have considered fully chaotic systems, that is, ergodic systems in which the

full phase space is chaotic. In fact, we have restricted the discussion even beyond that

definition to systems that were fully hyperbolic, i.e., every orbit in the chaotic set is

exponentially unstable. In physical Hamiltonian systems, however, the dynamics is

typically more diverse. In most cases, it is neither purely integrable nor fully chaotic,

but mixed, i.e., there are regions in phase space (with positive measure) that support

chaotic motion and regions where the dynamics is regular (periodic or quasi-periodic).

But also in the ergodic-chaotic case the dynamics often is not fully hyperbolic. Instead,

we can often identify measure-zero families of orbits that have weaker than exponential

instability.

In this chapter we focus on one particular implication of such non-hyperbolic

dynamics: It introduces stickiness to the dynamics in the chaotic component, i.e., it

leads to regions within the chaotic sea that trap a trajectory for some time [CS84,

MO85, WHK02, Zas02]. During that time the motion is almost regular, but still, before

entering the sticky region and after leaving it the trajectory is showing the exponential

loss of correlation typical for chaotic motion. If a hole is introduced inside a chaotic

component containing sticky regions the observed survival probability is no longer purely

exponential but instead exhibits a power-law tail [NKL+07, DG11b, ALV12]. Our goal

is to investigate the effect of stickiness and mixed phase-space on the fractal properties

of the system by studying the fractal dimension of finite-time trapped sets in such

systems. It was previously shown that their fractal dimension approaches the phase

space dimension as ε → 0 [LFO91]. The approach to this case was shown not to

happen smoothly but instead different effective dimensions can be observed [MLG03].

The effective dimension in such systems was further shown to depend on the phase-

space region under consideration [MLG03, KMBK13] We show that following the line

69
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of argumentation presented in Ch. 4 we can observe a time dependent transition in the

effective dimension in such systems.

Before discussing these effective dimensions in Sec. 5.2 we begin the chapter with

a review of stickiness and its implications to transient chaos in open systems. We also

introduce two dynamical systems that serve as instructive examples of the different

kinds of stickiness and that we later use for the numerical investigation of the effective

dimension of trapped sets.

5.1 Transient Chaos in Sticky Systems

In Ch. 2 we discussed the concept of transient chaos in systems with a hole. We have

shown that in fully chaotic systems the survival probability P (t) of trajectories de-

cays exponentially with time t. This means that the area of the remaining set St (See

Eq. (2.16)) in such systems also decays exponentially and that it asymptotically ap-

proaches the stable manifold S∞ of the chaotic saddle.

In Hamiltonian systems containing non-hyperbolic sets the picture is not that

simple. What we find instead is that the survival probability at different times follows

a different type of scaling [DG11b, ALV12]:

P (t) =


irregular for t < tI

ae−κt for t1 < t < tII

bt−γ for tII < t

. (5.1)

The asymptotic power-law tail is due to sticky regions in the phase space which can trap

trajectories that enter them for long time spans. This stickiness can happen around

families of marginally unstable periodic orbits embedded in the chaotic component or

in the vicinity of regular regions – the so called KAM islands [Ott02]. In the following

we discuss both cases more thoroughly using the stadium billiard as an example for a

fully chaotic system with measure-zero sets of non-hyperbolic orbits, and the standard

map as an example where the stickiness is due to regular islands.
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Figure 5.1: Sketch of a stadium billiard and the relevant coordinates: s, the position
along the boundary, and ϑ, the angle of incident. The half plane with positive (negative)
sinϑ corresponds to trajectories leaving the collision point towards the left (right)
with respect to the normal vector pointing inside the billiard from that point on the

boundary. For a more detailed description of the stadium see Sec. 2.2.

5.1.1 Stickiness Around Marginally Unstable Periodic Orbits within

Hyperbolic Sets

Stickiness around continuous families of marginally unstable periodic orbits (MUPOs)

was extensively studied in different dynamical billiards such as for example locally per-

turbed annular billiards [AFM+08], open mushroom billiards [DG11a], drive belt bil-

liards [DG12], open Sinai billiards [FRS94], as well as 2D maps [AS09] and other systems

[GD95].

To have a closer look at this source of stickiness we here concentrate on the particu-

lar example of the stadium billiard as sketched in Fig. 5.1. We can observe the stickiness

in a closed stadium by comparing the discrete-time evolution of bundles of trajectories

emerging from close to the sticky set and from far away from it. Both bundles explore

the full phase space as t → ∞ but for finite times the observed distributions are very

inhomogeneous.

In the top row of Fig. 5.2 we see how an initial distribution of points corresponding

to a bundle of trajectories emitted from around the center of the right arc of the sta-

dium with a angles distributed in a narrow band around the normal direction is rapidly

stretched along the unstable directions and later fills a large portion of the phase space

apart from empty areas containing a continuous family of MUPOs. We can see how

after 5 iterations large parts of the phase space are still empty and that there is a larger

density of trajectories are colliding with the top (bottom) straight with a large negative

(positive) angle to the normal (i.e. facing to the left of the billiard) and around a diago-

nal line in (s, sinϑ)-space spanning the s-range belonging to the left arc. It means that
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Figure 5.2: Evolution of two bundles of trajectories consisting of a large number of
initial conditions in a stadium billiard with L/r = π. The trajectories are started within
the black squares visible in the leftmost column of the panels. The columns show the
nth images of the initial conditions from the leftmost panel of the respective row; the
value of n is the same for both panels within each column. The red horizontal lines
located at sinϑ = 0 and spanning the intervals s < 1

8 , 3
8 ≤ s ≤ 5

8 , and 7
8 ≤ s mark the

family of MUPOs consisting of orbits bouncing back and forth perpendicularly between
the straight segments of the boundary.

after 5 iterations the majority of trajectories is facing leftwards under still a relatively

low angle to the parallel walls or has just hit the left arc which is intuitively expected

for small odd iteration numbers of this tight “beam” of trajectories. At n = 6 we can

quite clearly see how the left-facing trajectories that were on the straights at n = 5 have

by now hit the left arc. The further spreading of the distribution over the phase space is

also visible on the decrease of the empty region, e.g., in the center of the panels. After

50 iterations much of the empty space visible at lower iteration-numbers is filled by the

trajectories.

In the bottom row we show how a bundle of initial conditions located on the top

straight and containing a part of the family of MUPOs looks after the same iteration

numbers. In the plots for n = 5 and n = 6 we can see how at short times the bundle is

located on the top (bottom) straight for even (odd) iteration numbers. At n = 50 there

is a distinct spike-pattern visible on which a majority of the trajectories is localised. In

general, by observing the time evolution in that way we can see that the MUPOs are

surrounded by an area in which orbits from the outside only penetrate very slowly while

at the same time trajectories from in there take a very long time to leave.

The spike like pattern that we observe from looking at the time evolution of bun-

dles of trajectories in the closed system is also visible when we look at the escape-time
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Figure 5.3: Escape time (real
trajectory-length, not iteration num-
ber) distribution in a region on the
upper straight segment containing
bouncing ball orbits in a stadium
with L = 4, r = L/π: color scale
transitions from long (tesc ≈ 2500,
yellow) to short (tesc ≈ 10, dark
blue). The hole is independent of the
angle and located at on the left arc.

distribution in the open version of the billiard. To do so we open the billiard by intro-

ducing a hole on the boundary. In Fig. 5.3 we display the numerically sampled escape

time distribution in a relevant region of such a system. This escape-time distribution

leads to triangular filled areas in St which disappear as t → ∞ but which we have to

consider in the calculation of an effective fractal dimension at finite times as we show in

Sec 5.2. The shape of this spiky structure is discussed in great detail on the example of

an open stadium in [DG09]. In Sec. 5.2 we discuss its influence on the fractal dimension

of the trapped set.

5.1.2 Stickiness Around Regular Islands

In the previous section we reviewed stickiness on families of MUPOs which are measure

zero sets embedded within a chaotic phase space. In this section we examine sticky

regions around regular islands. In open systems ensembles of trajectories started inside

these islands do not decay with time, unless the islands have a non-empty intersection

with the hole. Therefore, the measure accumulates there in the limit t → ∞. Regular

islands are a common occurrence in Hamiltonian systems, because typically such systems

are neither fully chaotic nor fully integrable. These islands are surrounded by a fractal

hierarchy of smaller and smaller islands [Mei92, LT11] unless the systems are specifically

designed to have islands with non-fractal boundaries [AMK05, BVA12]. The stickiness

of the hierarchical interface between generic regular islands was studied extensively in

both two dimensional [CS84, MO85, MO86, WHK03, Zas02] and higher-dimensional

[AK07] maps.
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Figure 5.4: Phase space of the
standard map (5.2) for β = 0.1 (left),
β = 0.52 (center), and β = 4.3

(right).
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Figure 5.5: Part of a single trajectory in a closed standard map with β = .52. Left:
time series of x and p. Right: The same trajectory plotted in phase-space. Around
the fixed point (x, p) = ( 1

2 , 0) we show some trajectories belonging to the main regular
island in grey.

The standard map is a very useful tool for the study of Hamiltonian systems with

mixed phase space. It is a two dimensional mapping on a torus defined as

pn+1 = pn + β sin(2πxn) mod 1

xn+1 = xn + pn+1 mod 1

tn+1 = tn + 1

(5.2)

where β ∈ R+ is a parameter that allows to tune the mix of chaotic and regular

behaviour, as seen Fig. 5.4, where we show the phase space portrait of the map with

choices of β leading to almost regular (β close to 0) motion, mixed dynamics with large

island for intermediate β, and fully chaotic dynamics for most large values of β.

The stickiness of the island visible in the central panel of Fig. 5.4 can be observed

by looking at the time evolution a typical trajectory in this system. By comparing the

time series of the (x, p)-values of a trajectory with its representation in phase space (see

Fig. 5.5) we can see how the trajectory alternates between chaotic motion exploring the

chaotic sea and almost regular motion during the time-intervals it is trapped by the

island.
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Figure 5.6: Finite time trapped set St=9 of a standard map (5.2) withβ = 0.52 and
a hole at x > 0.8 as indicated in grey. (a) full phase-space; (b) blow-up of area marked

by dashed lines in left panel.

As in the case of the billiard, when introducing a hole in the phase space of the

standard map (away from the island) this trapping leads to structures in the finite-time

trapped different from what we observe in fully chaotic systems. In Fig. 5.6 we can

see that the trapped set after nine iterations is dominated by a large continuous area

covering the island but also extending throughout the phase space. In the zoomed-in

picture we can see that in regions far from the island the set still appears to be of fractal

nature, but that there is also a wider band visible that extends directly from the island.

In the following section we study this in a more quantitative manner by looking at the

time and box-size-dependence of reduced fractal dimensions along lines intersecting the

trapped set.

5.2 Effective Dimensions in Non Purely Hyperbolic Chaotic

Systems

In this section we present numerical results of the box-counting dimension in the two

examples of non purely hyperbolic systems introduced above. In both cases we calculate

the reduced dimension along a line intersecting the trapped set. We show that we can

identify an effective fractal dimension in such systems following the theory introduced in

Ch. 4 which can be roughly summarized as follows: In that chapter we have introduced

the observed dimension Dobs(ε, ς) which is the local slope of the number of filled boxes

obtained from a box-counting algorithm at a given box-size. Here, ς = SP (t) is the

number of sampled points that is available for the algorithm; S is the total number of

sampled trajectories and P (t) is the survival probability of the system. We have further

shown that Dobs goes to zero if the box-size is smaller than the inter-sample distance

1/S. In a similar fashion parts of the set that are smaller than 1/S are likely to be not

found by the sampling which also leads to Dobs → 0. Lastly, assuming S is large enough,
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Figure 5.7: Survival probability in the open
standard map obtained from random sampling
of initial conditions along the dashed line in the
right panel of Fig. 5.6. The dashed line here is

a guide to the eye following exp(−0.3t).
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once the box-size is smaller than the typical segment size, the Dobs dimension goes to

the dimension of the support of the fractal set under consideration. We used these

limiting cases to define the effective dimension Deff of a set as the dimension that can be

observed if at box-sizes that are larger than the features of the set and at sample-sizes

large enough to resolve the fractal set.

In the following we show that an effective dimension can also be identified in

systems which have a more complicated structure of the fractal set. As in the earlier

discussion we restrict the description to one-dimensional cuts across trapped sets of 2D-

systems but emphasize that the results are not exclusive to such systems and can also

be adapted to higher-dimensional systems. We start with numerical results in the open

standard map and later in the section identify the features observed in this system to

the true-time map of the stadium billiard.

5.2.1 Effective Dimensions in the Open Standard Map

We use the same non-linearity parameter and hole as shown in Fig. 5.6 and discuss the

dimensions along the dashed line in the right panel of that figure. We chose this line

because it crosses the apparently fractal part of the set as well as the extension of the

area covering the central island. As we show in the following, as long as it does not

intersect the island the choice of the line does not change the value of Deff but it has

an influence on the box-size interval at which we can observe it. In Fig. 5.7 we can

clearly see the transition between the different types of decay of the survival probability

described by Eq. (5.1). Most noticeable is the transition from exponential to algebraic

behaviour at t ≈ 30. We numerically calculate the box-counting dimension of the set

along that line at different iteration numbers t and collect the results in Fig. 5.8. The

decay at the mean inter-sample distance of 5 · 10−8 is a sign that there are line-like

segments of comparable size present for all shown values of t. Those line-like segments

are also causing the bump that is observable for all shown times and that is caused by

the box-sizes being smaller than the typical width of the line like segments. For box
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Figure 5.8: Numerically observed box-
counting dimension in the open standard map.
The sample size here is S = 2 · 107 which leads

to a mean inter-sample distance of 5 · 10−8.

sizes larger than that we can see the effective dimension Deff ≈ 0.5 before Dobs falls to

zero which is most likely caused by the extreme sparseness of the set along this line.

What is different to the fully hyperbolic case here is that for t > 30 there is a visible dip

at intermediate box-sizes. This dip is caused by the fact that there are more than one

typical length scales in a mixed system. One scale is given by the exponential shrinking

(see Eq. (4.4)) of the average length of the part of the set that decays exponentially

fast. The part of the set that shrinks with time following a power-law leads to another

length-scale. From the results in Fig. 5.8 we can deduce that this length scale is roughly

of the order of 106.

5.2.2 Effective Dimensions in the Open Stadium Billiard

To show that this type of behaviour is also present in systems that exhibit stickiness

without having regular islands we now consider the open stadium billiard. Here we also

use the true time map, i.e., instead of the iteration number we here consider the traveled

distance of a trajectory. Apart from showing the general validity of the discussion, doing

so also removes the singularities from the escape-time distribution that are caused by

whispering gallery orbits. To study the effect of the sticky set more carefully we consider

two different realisation of a hole in this system. One is located entirely on one of the

arcs of the boundary the other one is slightly shifted so that it partially overlaps with

the upper straight segment. In Fig. 5.9 we show an extensive comparison of the escape-

dynamics in these systems. We can observe that even though at the resolution provided

in the plots the escape time distribution and the trapped set look almost identical,

shifting the hole to intersect the sticky set eliminates the extremely long escape times

from the set. The reason for that is, that a trajectory that stays extremely long bounces

almost perpendicularly between the two straight walls and therefore hits almost all points

on the straight segments – including the hole. We can see the influence of shifting the

hole much more clearly in the survival probability. In Fig. 5.10 we show how shifting the

hole changes the shape of the survival probability curve from almost purely algebraic to

almost purely exponential.
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Figure 5.9: Comparison of the two different holes studied here; top row: hole at
0.17 ≤ s < 0.37, i.e., on the arc, and bottom row: 0.18 ≤ s < 0.38, i.e., intersecting
the upper straight segment. Left column: Escape-time distribution. The colour-coding
here is in a logarithmic scale to emphasize the strong fluctuation on all scales. The
red horizontal lines mark the bouncing-ball MUPOs on the straight wall-segments and
the shorter black line shows the line used in the dimension-calculation. Middle column:
Trapped sets St=60 in both billiards obtained from random sampling with S = 9 · 104

in the full phase-space. Right column: Escape time distribution along the black line
shown in the left column; χ ∈ [0, 1] is a coordinate along that line.

Figure 5.10: Survival probability in the open
stadium billiards with two slightly different
holes; numerically obtained by random sampling
of initial conditions along the dashed lines shown
Fig. 5.9. The (blue) almost purely power-law
like line is for the hole on the arc; the green
curve is for the hole that slightly intersects the
straight segment. The dashed line here is a guide

to the eye following exp(−0.015t).
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The fact that the holes are almost similar causes the effective dimension in both

systems to be almost the same. This can be seen in Fig. 5.11 where for smaller times

up to t ≈ 100 we can observe the effective dimension of Deff ≈ 0.9 at box-sizes between

ε ≈ 10−3 and a lower limit which is different for both choices of the hole position. In

the case that the survival probability is dominated by a power-law decay this lower

bound appears at ε ≈ 3 · 10−4 while in the other case it significantly decreases with

increasing cut-off time. The latter is an indicator that we still observe the exponentially

shrinking segments there, i.e., this length-scale is still larger than the typical size of the

algebraically decaying segments. At t = 200 the sample size is too small to resolve any
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Figure 5.11: Numerically observed box-counting dimension in the open stadium.
Left: hole entirely on a arc; right: hole intersecting the straight segment (see caption

of Fig. 5.9). Here, S = 106

of the remaining segments but still the drop to Dobs = 0 is slower in the case where the

hole allows for more bouncing ball orbits to exist.

In conclusion, in this section we have shown that the definition of an effective

dimension made in the context of ergodic hyperbolic systems can be extended to systems

that exhibit stickiness. The main difference here is that instead of a single typical length

given by the exponential shrinking of the segments with time with an exponent that is

the Lyapunov-exponent, here we have additional length-scales caused by the slower-than

exponential decay of the part of the trapped set that is affected by the stickiness of the

system. The previous results are essential to distinguish between numerical limitations

and dynamics-generated deviation from the results obtained for hyperbolic systems.

From the point of view of our framework of effective dimensions, the nonhyperbolic

systems treated here are interesting, because they show non-trivial dependencies of Deff

on ε, S, and t. Other systems in which we expect this to appear, too, are for examples

multidimensional systems and random maps [NOA96, BAE13].





Chapter 6

(Partially) Open Quantum Maps

In this chapter we investigate the quantum mechanical signatures of multifractality

in the classical phase-space. The content of this section was previously published

in [SA15]. Recent studies considered the effect of periodic orbits [PWCN12] and weak

chaos [RPBF09, KMBK13, ST04] and were conducted on 4-dimensional Hamiltonian sys-

tems [RPBF09] and different area-preserving maps [PWCN12, Nov13, KMBK13, ST04].

In these systems the fractal Weyl law can be written as

N(|νi| > |ν|cutoff) ∼MD
(S)
0 /2, (6.1)

whereM is the dimension of the Hilbert space, D
(S)
0 is the fractal dimension of the chaotic

saddle, and |ν|cutoff is a cutoff separating long-lived from short-lived states with eigen-

values νi. While a straightforward application of the fractal Weyl law to partially open

systems predicts a trivial scaling (N ∼M), as also argued in [NS08], non-trivial scalings

have been reported in numerical investigations [WM08]. In order to investigate the ro-

bustness of fractality in the Weyl law we study it at the transition between monofractal

and multifractal. This is done by varying the reflectivity R ≥ 0 of an absorbing region

localized in the phase-space. For all nonzero reflectivities we obtain non-trivial Weyl

laws with effective dimensions that show strong oscillations as a function of system size

and other parameters.

We argue that these observations are due to an effective undersampling of the

classical measure in the quantum regime and that the non-trivial scaling remains valid

in the semiclassical limit M →∞.

81
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6.1 Baker Map and Cat Map with (Partial)Leak

As examples of Hamiltonian chaotic systems, in this section we consider the partially

open maps introduced in Sec. 4.4. We use R ∈ [0, 1] for the reflectivity in the hole (i.e.

R = 1 everywhere else) and consider the finite time intensity based measure in the ith

box µn,i defined in Eq. (4.23) as the normalised average intensity left in that box after

n iterations. For R = 0 in the leak, this map corresponds to the usual open maps, and

the set of initial conditions with limn→∞ In = 1 form the forward trapped set of the

map (the stable manifold of the chaotic saddle [LFO91, LT11, JT91]). In this case the

measure is uniformly distributed on a fractal support and the Rényi spectrum is flat

(Dq = D0).

As representative cases of the two fully chaotic area-preserving maps we investigate

in detail the baker [Ott02] and the cat map [dMdA95] as defined in Sec. 4.4. In the case

of the baker map the absorbing region was chosen in order to allow for comparison with

analytical calculations. In the case of the cat map we chose an arbitrary asymmetric

region. The essential point for our investigation of the role of partial opening is that both

choices lead to a non-trivial D0 for R = 0. In Fig. 4.16 we report the distribution of the

measure µ in the phase-space for a particular reflectivity. The results of the numerical

calculation of Dq can be found in Fig. 4.17. For the baker map the calculations of the

Dq-spectrum can be done analytically (see Appendix C) and confirm the validity of our

numerical methods of estimating µi and Dq. In both maps D0 = 2 and Dq is non-trivial,

confirming the result of Ref. [APT13a] that the apparent self-similar distribution of µ

observed in the phase-space is properly quantified only through the full multifractal

spectrum Dq.

6.2 Numerical Results on Eigenvalue Spectra

In this section we introduce the quantised version of the maps of Sec. 4.4 and compute

Weyl’s law (6.1). By open quantum map we mean a propagator [WC08]

M̂ = Û P̂, (6.2)

where Û is the quantised closed system and P̂ is a projector that contains all the in-

formation about absorption. In the case of full absorption, P̂ removes the part of the

quantum wave-function ψ(x) that overlaps with the absorbing region, but does not alter

the remaining part. In the case of partial absorption, P̂ reduces the intensity by a factor

R(x) as
∣∣∣〈x| P̂ |ψ〉∣∣∣2 = R(x) |ψ(x)|2. The matrix representation of the propagator of the
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quantised version of the baker map defined in Eq. (4.21) is

Mbaker = Ubaker ·


1M/3 0 0

0
√
R1M/3 0

0 0 1M/3

 (6.3)

with

Ubaker = F−1
M ·


FM/3 0 0

0 FM/3 0

0 0 FM/3

 (6.4)

where FM ;m,n = 1√
M

exp
[
−2πi
M (n+ 1/2)(m+ 1/2)

]
are Fourier transformations from

position to momentum representation and F−1
M denotes the inverse transformation. For

an explanation of a quantisation scheme see e.g. [BV89].

Analogously, the quantised cat map has the following form:

Mcat = [αM ;m,n]M ·


1M/6 0 0

0
√
R1M/2 0

0 0 1M/3

 (6.5)

where M is even and the entries are [Kuz00]

αM ;m,n =
1√
M

exp

[
2πi

M

(
m2 −mn+ n2

)]
. (6.6)

In an M -dimensional Hilbert space (effective ~ = 1
2πM ) maps M̂ have M left (and

right) eigenstates with complex energies εi = Ei + iΓi/2. M̂ acts like a time evolution

operator so its eigenvalues νi are related to εi by

νi = exp

[
− i

~
εi

]
= exp

[
− i

~
Ei

]
exp

[
− 1

2~
Γi

]
. (6.7)

Since Γi ∈ R+
0 and Ei ∈ R it follows that |νi| ∈ [0, 1]. Hereafter we use |νi| to quantify

the lifetime of the state, e.g. long-lived states have |νi| / 1 (Γi � 1).

We calculated the eigenvalues of M̂ for both the baker and cat map for different

reflectivities R and matrix sizes M = 3n with n ∈ N. The normalised distributions of

|νi| are shown in Fig. 6.1. The states concentrate around a typical value |ν|typ, which is

|ν|typ ≈ 0 for R = 0, increases with R, and can be approximated as the median of ρ(|ν|).
For increasing matrix-sizes M the distribution becomes more concentrated around |ν|typ.

To investigate this tendency in further detail, and in line with the fractal Weyl law, we

concentrate on the number of eigenstates with |νi| ≥ |ν|cutoff .



84 Chapter 6 (Partially) Open Quantum Maps

Figure 6.1: Distribution of eigen-
values |ν|, see Eq. (6.7))in the quan-
tised baker (a) and cat (b) maps.
Two matrix sizes were used: M = 37

(gray line) and M = 39 (black line).
The vertical dashed line marks the
cutoff value used for the fractal Weyl

law calculations in Fig. 6.2(a,d).
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Figures 6.2(a,d) show the relative number of eigenstates N(νi : |νi| ≥ |ν|cutoff)/M

as a function of the matrix-size M . For this plot, |ν|cutoff was chosen in such a way

that |ν|cutoff > |ν|typ but still small enough to allow the calculation of the scaling for a

wide range of M , see vertical dashed lines in Fig. 6.1 1. The division by M allows for

an improved analysis of the scaling, which according to the Weyl law prediction (6.1)

should be d0 − 1, where d0 = D0 − 1 is the partial fractal dimension of the forward

trapped set along the unstable direction. D0 denotes the full fractal dimension of this

set. It is connected to the dimension of the chaotic saddle D
(S)
0 by [LT11]

D
(S)
0 = 2D0 − 2 ⇔ d0 =

D
(S)
0

2
. (6.8)

The usual fractal Weyl law is confirmed in Fig. 6.2(a,d) for the case R = 0. For small R,

the curves follow the R = 0 case for small M before deviating from it. With increasing

R, the deviation is observed already for smaller M . Interestingly, even for large R and

M the numerical results do not approach a constant value as predicted by the classical

dimension d0 = 1. Instead, a non-trivial scaling with an effective dimension between 0

and 1 is observed. Even if the numerical results do not allow for a conclusion regarding

the scaling in the limit M → ∞, the roughly constant scaling for a broad range of

1In practice, for each of the maps the number of states with |νi| ≥ |ν|cutoff was chosen to be the same
for all reflectivities at M = 243 (82 for cat-map): |ν|cutoff = min

{
|ν|c : N(νi : |νi| ≥ |ν|c) > Nc

}
where

Nc = 60 for the baker map and Nc = 10 for the cat map.
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Figure 6.2: Scaling behaviour of the quantum states for the baker (a-c) and cat (d-f)
maps. Top row: Fraction of eigenvalues above the cutoff value |ν|cutoff as a function of
the system size M at different reflectivities. The dotted lines mark the expected scaling

for R = 0 (d
(R=0)
0 = ln(2)/ ln(3) for the baker map and d

(R=0)
0 ≈ 0.42 for the cat

map). Middle row: Local scaling exponent dloc(M) := (lnN(M)− lnN(M/3)) / ln 3,
where N(M) denotes N(νi : |νi| ≥ |ν|cutoff), at M = 39 for different values of R as
a function of |ν|cutoff (colors and symbols as in top row). We show results up to a
cutoff where N(M) < 0.005M after which point the lack of resonances leads to strong
oscillations of dloc. The vertical dashed lines indicate the cutoff values used in the
top row. The small ticks on the upper axis mark the positions of the medians of the
eigenvalue distributions (≈ |ν|typ). Bottom row: dloc(M) as a function of the cutoff

for M = {37, 38, 39} (lighter shades correspond to smaller M).
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values in M shows the importance of the effective dimension (similar effective dimen-

sions have been employed to investigate classical [MdMGK05] and quantum [KMBK13]

Hamiltonian systems with mixed phase-space).

In order to more carefully analyse the scaling we define the local dimension dloc as

the slope of the N/M vs. M curves between two nearby matrix sizes M . Figures 6.2(b,e)

show the dependency of dloc on the choice of the cutoff |ν|cutoff . For small cutoffs

|ν|cutoff < |ν|typ we observe dloc = 1, in agreement with the observation in Fig. 6.1 that

the distribution of eigenvalues becomes concentrated around |ν|typ (almost all states

count as long-lived). A more interesting behavior appears for |ν|cutoff > |ν|typ, where

at least two regimes governed by non-trivial dloc can be identified before dloc starts to

fluctuate for |ν|cutoff → 1 due to a lack of statistics: (I1) an regime of intermediate

|ν|cutoff with strong (almost periodic) oscillations of dloc; and (I2) a regime in which

dloc ≈ d
(R=0)
0 . These regimes are particularly visible for small R (because |ν|typ → 0),

but can be identified also for larger R. Surprisingly, Figs. 6.2(c,f) show that regime

I1 increases for increasing M (strong oscillations cover a wider range of cutoffs). This

suggests that the oscillating (local) scaling is not an artifact of small M but instead that

it will prevail in the large M limit.

In summary, our numerical observations of the quantum maps show surprising

features. In particular: (i) the classical prediction d0 = 1 was not observed; (ii) the

effective scaling varies smoothly with R; and (iii) strong oscillations we observed in dloc

vs. |ν|cutoff .

6.3 Sampling Multi-Fractal Measures

In this section we propose an explanation for the scaling of the number of long-lived

states with M observed in the previous section based on the classical dynamics of the

system.

6.3.1 General Argument

We first consider how the usual fractal Weyl law is obtained from the classical phase-

space of fully absorbing maps [LSZ03, ST04]. Lu et al. [LSZ03] argue that the states

can be considered as non-overlapping and that each of them covers an area of h = 1/M .

This localisation happens in the forward trapped set (for the left eigenstates 2) [CMS97,

2We focus on left eigenstates but the same ideas apply to the right ones, which localise in the backward
trapped set
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KNPS06], which is smooth. Therefore, the number of different long-lived states depends

on the distribution of the forward trapped set in the perpendicular direction (along

the backward trapped set or, equivalently, along the unstable manifold of the chaotic

saddle). The reasoning above leads to the following constructive classical procedure:

1. Cover an intersection of the forward trapped set with segments of size h = ε =

1/M .

2. Count the number Nb of boxes (segments) needed to cover the forward trapped

set, which estimates the phase-space volume available to the long-lived eigenstates.

3. The number of long-lived states N(M) is proportional to Nb.

Since Nb ∼ Md0 we obtain N(M) ∼ Md0 , the fractal Weyl’s law (6.1). The scaling

exponent d0 is the partial fractal dimension of the forward trapped set along the unstable

direction (6.8). Schomerus and Tworzyd lo [ST04] provide an alternative explanation

based on the phase-space areas that do not escape up to a given time (which grows

with M). Both explanations are equivalent because asymptotically the h-sized boxes

intersecting the invariant set correspond to the non-escaping phase-space areas.

We now generalize the ideas above to the case of partial absorption. In this case

we expect for large M the long-lived states to be distributed according to the classical

measure µ of the forward trapped set. Therefore, it is essential to consider a procedure

that accounts for the non-uniformity of µ. In line with the usual interpretation of µ

as a probability measure, we modify point 2. above and attribute to each segment i a

probability pi of being counted as long-lived (i.e., a probability that a long-lived state

is localized in it). This probability has to be large (small) where the measure µi of the

segment i is large (small) because states localise on high measure areas of the phase-

space. At the same time, for large M the number of possibly long-lived states grows and

pi should grow because of the multiple chances of one state being localized in segment

i. The simplest stochastic process agreeing with these two intuitions corresponds to

performing S independent trials with a success-probability µi. This can be incorporated

in the procedure described above by replacing point 2. by

2’. Count each segment i as part of the accessible phase-space volume with a proba-

bility pi = 1− (1− µi)S , where (1−µi)S is the probability that the box is rejected

S times.
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For one realization of this process the available volume V (M) is proportional to the

number Nb of counted segments. Therefore, point 3. is generalised to 3’. as

N(M) ∝ E[Nb] =
M∑
i=1

pi =
M∑
i=1

1− (1− µi)S , (6.9)

where E[...] is the expected value computed over multiple sampling realisations and the

number of trials S is associated to the total number of states S = S0M . In the case of a

fully absorbing region, µi = 1/N for allN boxes intersecting the forward trapped set and

µi = 0 everywhere else. Eq. (6.9) simplifies to E[Nb] = N
(
1− (1− 1/N )S

) S→∞−−−−→ N
and we recover the fractal Weyl law. Analogously, in the fully reflecting case µi = 1/M

and E[Nb]
S→∞−−−−→M and we recover the traditional Weyl law.

At the heart of the reasoning above is a crucial difference between the computation

of d0 and of the Weyl scaling. d0 is obtained by first taking the limit of sampled

trajectories S to infinity S →∞ (construction of the measure) and afterwards computing

the scaling of filled boxes in the limit of small box sizes ε → 0. In the Weyl law the

analogues of these two limits (S →∞ and ε→ 0) happen simultaneously when M →∞
because the maximum number of eigenstates grows with M (S ∝ M) and the phase-

space resolution increases with M (h = ε = 1/M). Therefore, the scaling in the Weyl

law corresponds to the estimation of d0 when sampling the measure with a sample size

S = S0M = S0ε
−1 (6.10)

in (6.9). The proportionality constant S0 effectively controls how many segments (long-

lived states) will be found for the different M values and therefore plays a similar role

as the cutoff value |ν|cutoff in the quantum case.

6.3.2 Application to Baker Map

We now apply the general sampling method proposed in the previous section to the

baker map (4.21)). The expected number of long-lived boxes E [Nb] for ε = 3−n can be

computed analytically (see App. D.1)

E [Nb] = 3n −
n∑
l=0

2n−l
n!

l!(n− l)!

(
1− Rl

(2 +R)n

)S
. (6.11)

In Fig. 6.3 we plot Eq. (6.11) and its local derivatives as a function of its three

parameters ε, S0, and R. The similarities to the quantum observations shown in

Fig. 6.2 are remarkable (the comparison is based on the identifications ε = h = 1/M ,
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Figure 6.3: Scaling behaviour of
the classical expected values (6.11)
for the baker map. The black dot-

ted line denotes d
(R=0)
0 . a) Rescaled

expected value of accepted boxes at
an arbitrary sample size of S(M) =
S0M with S0 = 0.3. E[Nb] grows at
fixed ε monotonically with R. The
shaded areas cover the range between
E[Nb] ± σ[Nb], where σ is the stan-
dard deviation. b) Scaling exponent
dloc(M = 39) as a function of 1/S0.
The lower the value of R, the lower
the curve intersects the dashed ver-
tical line (the S0 choice used in a).
c) dloc(M = 3n) with n ∈ {7, 8, 9}.
Lighter shades correspond to smaller

M .

N(νi : |νi| ≥ |ν|cutoff) ∝ E [Nb], and the similar role played by S0 and |ν|cutoff . In par-

ticular, we reproduce the three main observations reported in Sec. 6.2: (i) the scaling

of the curves is different from d0 = 1; (ii) for increasing R, the effective scaling deviates

more and more from d
(R=0)
0 and approaches a non-trivial dimension (Fig. 6.3(a)); (iii)

the local slope dloc show strong oscillations with S0 (Fig. 6.3(b)) in a range of S0 values

which increases with M (Fig. 6.3(c)). One quantum feature which is not immediately

apparent in Fig. 6.3(b) is the plateau of dloc ≈ d
(R=0)
0 , the regime I2 mentioned at

the end of Sec. 6.2. To understand this we need to take a closer look at the mapping

from S0 to the cutoff |ν|cutoff . The limiting case S0 → ∞ can be safely identified with
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Figure 6.4: Comparison of the
quantum data to the classical model.
The symbols show the number of
long-lived states. The solid lines
are the classical values of aE[Nb] ob-
tained by choosing S0 and a for each
R so that the rightmost two points
of the quantum data are matched as

close as possible.
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|ν|cutoff → 0. In this limit our model correctly reproduces the quantum observations

(dloc → 1). The identification of the opposing limit S0 → 0 with |ν|cutoff → 1 is also

possible but less meaningful, since in this limit both the number of resonances, and Nb

become very small, and as a result the determination of dloc becomes prone to fluctua-

tions. Between these limits, we can assume that 1/S0 grows monotonically with |ν|cutoff .

However, the functional form relating 1/S0 and |ν|cutoff is unknown (e.g., it depends on

the distribution of eigenstates) which does not allow for a careful quantitative compari-

son of the two plots (e.g., a non-linear transformation of the x-axis in Fig. 6.3(b) could

generate the plateaus around d
(R=0)
0 seen in Figs. 6.2(b,d).

We now search for a quantitative comparison between our classical sampling model

and the quantum observations. The only parameter we have to fit is S0 in the sampling

model, which according to the arguments of Sec. 6.3.1 should reproduce the scaling of

the long-lived states with large M . Accordingly, for each value of R we choose the

value of S0 which reproduces the local slope between the last two N/M points in the

quantum data (Figs. 6.2(a,d)) and we shift the E [Nb] curve obtained to match the

rightmost point of each quantum data-set (this last shift fixes the proportionality factor

a in N(M) = aE[Nb]). We restrict S0 to the range
[
3−1, 3

]
, so that S is of the order

of M since these values give the best agreement with the whole range of quantum data.

Because of the oscillations in dloc there may be more than one choice of S0
3. The results

for the different R shown in Fig. 6.4 confirm that our model describes the data also for

values of M much smaller than the region used in fixing S0, a.

The quantitative success of our sampling model motivates us to consider its be-

havior in the semiclassical limit M → ∞. In Fig. 6.5(a) we plot Eq. (6.11) in an

increased range of M = 1/ε values using for the different R curves the value of S0

used in Fig. 6.4(b) (estimated from the quantum data). We again see the presence of

3The asymptotic behaviour is essentially the same for different possible choices of S0
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Figure 6.5: Asymptotic scaling
of the classical prediction. a) Ex-
trapolation of E [Nb] of the curves
in Fig. 6.4(a) without the shift (i.e.
a = 1). R increases from the black
(bottom) to the brown (top) curve.
The dashed lines follow the asymp-
totic scaling Mdasymptotic−1 with

dasymptotic = 〈 lnN(M)−lnN(M ′)
lnM−lnM ′ 〉,

where the average is computed
over all possible combinations
{(M,M ′) : M ′ < M ∧ (M,M ′) ∈
{310, 311, . . . , 340}2

}
. In b) we show

these dimensions together with their
standard deviations. In grey are
analytically obtained dq curves, see
Eq. (C.13). Note, that for fixed R
and q ∈ R+, d0 ≥ dq ≥ d∞ [Ott02].

log-periodic oscillations (see Ref. [Sor98] for a review on log-periodicities in fractals).

While these oscillations play a major role in dloc and for the range of M accessible in the

quantum computations, they do not hinder the estimation of an asymptotic dimension

dasymptotic as the general trend of the curves. For R = 0 the results confirm that for

dasymptotic = d
(R=0)
0 and that our sampling correctly accounts for the usual fractal Weyl

law. More interestingly, dasymptotic < 1 for all R, strongly suggesting that the non-trivial

scaling dloc observed in the quantum data are not finite M effects but persist in the

asymptotic limit. This implies that the fractal Weyl law of partially open systems does

not follow the classical prediction d0 = 1. Comparing the R dependence of dasymptotic

with the analytical calculated dq indicates that roughly q ≈ 0.3 can be used to estimate

this scaling.

In summary, we have investigated the statistical properties of long-lived eigen-

states of chaotic systems with partial absorption. Contrary to the naive prediction

obtained combining the classical fractal dimension d0 and the fractal Weyl law, we ob-

serve numerically that for a broad range of parameters the number of long-lived states

grows sub-linearly with the dimensionality M of the Hilbert space. We explain these

observations by considering a model which is consistent with the quantum to classical

correspondence in the semiclassical limit M → ∞ but that accounts for an undersam-

pling of the classical measure at finite M . This undersampling combined with the strong
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spatial fluctuations of the multifractal classical measure is responsible for the effective

reduction of the available phase-space volume for long-lived eigenstates.

Our most surprising finding is that even the asymptotic (M →∞) scaling of the

number of long-lived states differ from the d0 = 1 prediction. This result is compatible

with our numerical simulations at least for a broad range of cutoffs in |ν|. In any

practical situation the limit M → ∞ is not achievable and the relevance of our model

is that it allows to understand the effective dimension observed quantum mechanically.

We have also considered alternative models in which we assume that the eigenstates

concentrate exclusively on the phase-space regions with highest measure µ, or on boxes

with a µ-dependent probability that we compute without including a sampling process.

None of these models is able to reproduce the quantum observations, see Appendix D.2.

Our results are not limited to area-preserving maps or to systems with localized

absorbing regions. Instead, they should be visible in systems of any dimension for which

a multifractal spectrum of a classical measure µ appears. In n-dimensional systems

the long-lived resonances are expected to concentrate in n-cuboids of volume h and the

sampling has to be carried out on a hyperplane intersecting these volumes. In general

partially-absorbing systems there is no analogous fully open system (R→ 0 for the cases

above). In these cases, the scaling of Weyl’s law is expected to follow the dimension of

the regions of highest probability4 for small M (analogous to d0 of the R = 0 case

in the examples above) and show a transition towards the dimension dasymptotic of the

undersampled µ (for the large M case). The multi-fractality in the localization of wave

functions can appear also without a clear classical counterpart, e.g. in the case of

phase transitions in disordered systems [EM08, MGMGG10]. It would be interesting

to investigate whether the number of such states show similar dependencies on system

size as the ones we observed.

4The d0 of the peaks is different from dq for q →∞.
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Conclusions and Outlook

7.1 Summary and Open Problems

1. Dimension algorithms

We have reviewed the fractal dimension algorithms most commonly used in the study

of dynamical systems and compared them with regard to their applicability in the

fully and partially open systems discussed in this work (Sec. 3.2.1). We have presented

an improved numerical method suitable to calculate the full spectrum of Rényi dimen-

sions Dq of asymptotic stable manifold measures µs defined in Eq. 2.24 based on an

iterative refinement of the search for initial conditions x0 ∈ supp(µs) (Sec. 3.2.2). The

method significantly reduces oversampling of densely populated areas in the phase

space and is trivially parallel, which allows an implementation, for example on graph-

ics cards. We have also shown that the definition of the effective dimensions allows

to computationally recognise the resolution-range in which the algorithm produces

trustworthy results (Sec. 4.2, App. B). This method is not specific to the algorithm

we used but instead it can be applied to any sampling-based dimension calculation

in open systems.

2. Effective dimensions in strongly and weakly chaotic systems

With the help of the example of finite-time t approximations of trapped sets in fully

open, strongly chaotic dynamical maps we have developed a theory explaining the

behaviour of the observed dimension Dobs(S, t, ε). Its value depends on the number

of sampled initial conditions S, the iteration time t used in the approximation of

the trapped set, and the box-size ε used to observe the set. We have identified two

transition points ` and δ separating the ε-intervals characterised a particular value of

Dobs(S, t, ε) (see Eqs. (4.5) and (4.8)). Based on dynamical and statistical arguments

we have obtained the scaling of ` and δ with S and t (see Fig. 4.3 and Eqs. (4.4), (4.9)).

93
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We have further demonstrated that ` and δ define an interval of box-sizes that leads

to a value of Dobs(S, t, ε) which is not the result of the choice of S, t, or ε, but instead

is an intrinsic property of the dynamical system. We call this dimension the effective

dimension Deff of the set (see Tab. 4.1). Using the analytically treatable open tent

map we have proposed an algorithm to numerically find ` and δ in a numerical box-

counting dimension calculation (see Fig. 4.9 and related discussion), which enables

us to automatise the identification of trustworthy results of such an algorithm. We

have confirmed the numerical method by demonstrating the agreement of the results

with analytical predictions. In Secs. 4.3 and 4.4 we have applied our method to a

fully hyperbolic open stadium billiard and two partially open dynamical maps. With

these examples we have shown that the validity of our theory also extends to more

complex and physically more relevant systems.

3. Application to open systems with stickiness

In Sec. 5.2 we have shown a further possible application of our theoretical framework.

We have studied numerical results of box-counting dimension calculations in an open

standard map (see Fig. 5.8) which is a system with a mixed phase space, and in an

open stadium billiard (see Fig. 5.11) which is ergodic chaotic but has sticky families

of marginally unstable points. On the results we have shown that in such systems

we can identify a non-constant effective dimension which depends on the iteration

time and is caused by competing length scales resulting from the stickiness. We have

confirmed this by comparing two realisations of the open stadium billiard which are

almost identical but have different sticky sets.

4. Discussion of the fractal Weyl law in systems with partially absorbing

leaks based on another kind of effective dimension

We have presented numerical results on the eigenvalue distribution of partially open

quantised maps (baker map and cat map, see Fig.6.1) for wide ranges of both reflec-

tivity parameter R and Hilbert space dimension M . We have numerically studied

the scaling of the number of long lived resonances as a function of M (see Fig. 6.2).

In Sec. 6.3.1 we have provided a statistical model, based on the interpretation of

the (un)stable manifold measure as the probability to successfully sample a point in

a particular region of the classical phase space, to describe the observed scaling of

long lived eigenstates (see Sec. 6.3.2). We have shown that our model recovers the

known limiting case of the fractal Weyl law defined in Eq. 6.1 in the limit R → 0

and quantitatively describes numerical observations in the quantum baker map (see

Fig. 6.4). We have further shown that for large M our model predicts a scaling of

the number of resonances with M described by an effective dimension that can not

be identified with any of the Rényi dimensions of the (un)stable manifold measure.

The results were published in [SA15].
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While our theory of effective dimensions in ergodic, fully hyperbolic, open and

partially open systems is self-consistent, there are still some interesting open questions

in the context of its application to more complex systems. In systems with stickiness we

have so far only been able to identify the time-dependent Deff . A theory of the observed

transition point between the two possible values is still lacking. Similarly, while we

do have shown that our general theory is not restricted to one-dimensional systems, a

quantitative description of the expected effective dimensions in multidimensional systems

is not available. Such systems are characterised by more than one Lyapunov exponent,

and as a result of that we expect there to be more than one typical length scale `. At

fixed t, this leads to an ε-dependent effective dimension. In the context of partially

open quantum maps, an interesting open question is the origin of the log-oscillations

of the local dimension that are present in both the quantum mechanical and classical

observations.

7.2 Discussion and Outlook

In this thesis we have discussed fractal dimensions in a wide range of physically relevant

model systems. The systems we have studied previously recognized generalisations of

the already widely studied case of asymptotic dimensions in open systems. One of

the generalisations is to allow partial absorption described by a reflection coefficient

R in a region of the phase space which allows to bridge the gap between fully open

(R = 0) and fully closed (R = 1) systems. With that, we have been able to confirm

the validity of our predictions in these well studied limiting cases. On the other hand,

we have considered the generalisation of fractal dimensions, not only to the case of

finite scales ε, but also to the regime of finite sample sizes S and finite iteration times

t. The study of partial absorption has been motivated by the fact that, in physical

systems, full absorptions is an exception rather than the norm. Therefore, a ray-based

modeling of experimentally realised leaky systems such as optical microcavities and

microwave resonators is accurately possible only by considering partial absorption. The

consideration of finite S and t on the other hand has been motivated primarily from

a computational perspective. A secondary motivation for the discussion of finite t is

the fact that physical fractals found in nature can not be self similar down to infinitely

small length scales. Furthermore, such length scales can be meaningful observables in

dynamical systems and therefore their identification provides insight into the dynamics

of such systems. We have further found that a finite sample size allows to model the

behaviour of leaky quantum maps from a classical perspective.
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The central concept in the research we have presented in this work is that of

the effective dimension which we have defined as the exponent of the scaling with ε –

the finite box size used in the observation – of a function of an approximation of the

asymptotic measure. The approximation of the invariant measure is taken at finite time

and with a finite sample size. The resulting dimension is usually different from the

value obtained from the strict asymptotic definition of the Rényi dimension spectrum,

but it is defined in the regime that is physically most relevant – as described in the

previous paragraph. Nonetheless, it has the usual Rényi dimension as limiting case.

We have discussed the concept in two main areas. In the first chapters of this thesis

we have defined and calculated effective dimensions in classical systems and later we

have used the concept to describe results obtained in the examination of partially open

quantised maps. In the following we discuss both separately and also discuss possibilities

of applying our results to other fields of study.

We have given a full description of the possible observed dimensions as a function

of time, box-size, and sample size in leaky, strongly chaotic classical systems and con-

firmed our predictions analytically in the open tent-map. We have also connected the

results to well established dynamical quantities such as the Lyapunov exponents and

the escape-rate. We have further shown that the description is valid also in physically

relevant models such as partially open, mixed, and non-uniformly hyperbolic dynamical

systems. In the latter case, our method extends the known scale-dependent effective

uncertainty exponents to a description that allows the calculation of the full Rényi spec-

trum of the natural measure as well as the (un)stable manifold measure based on the

intensity distribution. This fact makes us confident that our results can also help with

the description of other systems that exhibit a non-trivial behaviour of Deff . The first

class of such systems is made up of multidimensional systems. In the one-dimensional

strongly chaotic systems we have studied in detail, the typical length scale ` of the seg-

ments in the finite-t trapped sets scales as ` ∼ exp(−λt). Multidimensional systems

have more than one positive Lyapunov exponent which leads us to expect that there

is a relevant length scale associated to each of them. As a result of this, we expect

the value of Deff to change at those length scales. A second class of systems we expect

to show a non-trivial Deff that can be described using our findings, is that of random

maps which were shown to exhibit a fluctuating fractal dimension that also depends on

the box-sizes used in its estimation [NOA96, BAE13]. In the context of nonhyperbolic

dimension it would be interesting to explicitly study the position-dependent dimensions

observed for example in hierarchical decomposition of systems with mixed phase space

which have been found to have different fractal dimensions on different levels of the hier-

archy [KMBK13]. Our findings are of interest in this type of system, for example if the

multifractality of the chaotic saddle and its manifolds in each level is to be considered.
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In the context of open quantum maps we have numerically studied the eigenvalue

spectra of chaotic quantum maps with partial leaks. The prediction of the fractal Weyl

law based on D0 of the classical trapped sets, for partially open systems, predicts a linear

scaling of the number of surviving eigenstates with the dimension M (~eff := 1/M) of

the Hilbert space. We have shown that if the scaling of the number of longest living

eigenstates is considered instead, its dependence on M is non-trivial. With help of a

statistical model – identifying M with an effective sample size and using the intensity

distribution in the classical system as a probability distribution in a sampling process

– we have successfully reproduced the observed scaling. We have further shown that

this process leads to an effective dimension for large M which leaves us confident that

the observed scaling is not a finite-~eff effect and that similar scalings can be observed

in other systems. One particular possible field of application is that of experimental

setups of microwave billiards with absorbers [MSKB+03]. When partial reflection at

the absorber is considered we expect our findings to describe the observed spectral

properties. Another possible application lies in the field of phase transitions in disordered

systems [EM08, MGMGG10] where multi-fractality in the localisation of wave functions

can appear without having a classical counterpart.

In summary, in this thesis we have developed a framework for the definition and

investigation of effective dimensions of fractal sets and multifractal measures. These di-

mensions are meaningful for the description of the dynamics and they are defined far from

the usual asymptotics of infinite resolution, infinite self-similarity and infinite sample

size. In our framework we relate the parameters S, t, ε expressing this non-asymptotic

regime to length scales. We have provided a theory to describe the dependence of these

length scales on S, t, ε and we base our definition of effective dimensions on them. We

have applied this framework to strongly and weakly chaotic classical leaky systems and

have demonstrated that the applicability also extends to systems with partial leaks (in

which case the multifractal investigation is essential). For quantised, partially open,

chaotic systems, we have proposed a model to explain observations comparable to the

fractal Weyl law in open systems. This model is centered around the definition of an

effective scaling based on undersampled multifractal intensity distributions of the un-

derlying classical system. We have also shown that our findings can be used to define

optimal parameter choices for numerical algorithms.



Appendix A

Order Statistics

Here we show that the distribution of samples on line-like objects can be calculated
using order statistics following the discussion in Ref. [SM14]. We start with a set of ς
samples {x̃i} drawn from a uniform distribution on the unit interval [0, 1). If we order
{x̃i} in ascending order we get a new set {xi}. The i-th entry of the set is called the
i-th order statistics and since {x̃i} are drawn from a uniform distribution the xi follow
a beta distribution

xi ∼ B(i, ς + 1− i) (A.1)

We can use this fact to calculate the expected value of the spacing between two neigh-
bouring samples:

E[xi+1 − xi] = E[xi+1]− E[xi] =
i+ 1

ς + 1
− i

ς + 1
=

1

ς + 1
, (A.2)

where we used that E[X] = a
a+b if X ∼ B(a, b).

So, for the time-zero trapped set, S0 the typical inter-sample distance is E[xi+1 −
xi] = 1/(S + 1), because at t = 0 none of the S samples can be outside the set and
ς = S. Because in all relevant scenarios S � 1 we will approximate the expected value
by 1/S. With that our prediction for the transition point here is δ = 1/S.
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Appendix B

Numerical Algorithm for Tent
Map

To calculate the transitions between the different values of the observed dimension Dobs

discussed in section 4.2 we apply the following steps:

1. a) Calculate the escape-time for Stot = 107 initial conditions drawn from a uniform
distribution over [0, 1). This leaves us with a set Q = {(x0,i, tesc,i)} containing the
Stot results.

b) Pick n = max({10, bS/Stotc}) non-overlapping random subsets of QS for values
of S distributed logarithmically equidistant (i.e. the ratio of any two subsequent
values of S is constant) over [103, 107].

c) From every QS approximate St as the subset S̃t := {x0,i ∈ QS : tesc,i ≥ t} for
t = 1, 2, . . . , 29.

d) Apply a simple box-counting algorithm to all n approximations S̃t using 40 box-
sizes εi ∈

[
10−8, 1

]
with ln (εi/εi−1) = const. to get n datasets containing the

number nfilled(ε) of boxes containing elements of S̃t.
e) We then use the local derivative as the ε-dependent observed dimension

Dobs

(
ε =

εi + εi+1

2

)
=

lnnfilled(εi+1)− lnnfilled(εi)

ln εi+1 − ln εi
, (B.1)

which leaves us with n curves of Dobs for every (S, t) combination.

2. a) First we estimate δ. Here we define a window ∆ε and then find the position
εmax where Dobs at small ε reaches a maximum. The criterion we use is that
εmax is the smallest box-size for which ∂εDobs(εi) < c for all εi < εmax with
|ln εmax − ln εi| < ∆ε. In other words, εmax is the largest box-size in the ε-interval
in which Dobs increases monotonically with ε at the smallest used box-sizes.

b) We only need a very rough estimate in step a) since δ is now approximated as the
value of epsilon, where the local derivative of Dobs is the largest. For every (S, t)
we pick we get n values of δ from this approach.

c) Estimate ` using the fact that ` depends on t: We use a strict criterion and require

Dobs(`, t) > D
(S)
obs(`, t

′) for all (S, t′) with t′ > t. In other words, we pick the value
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of ε, where the dimension curve starts to deviate from all the curves obtained with
higher values of t. Repeat that process for all realisations with the same S and t.

3. Because of our numerical definition of ` the location of the smallest value of ` is the
optimal choice of t at this S (4.11). So for each S we estimate topt as the average
over the locations of the smallest 4 values of the average value 〈`〉 computed over all
n results we obtained for ` at any given t.



Appendix C

Analytical dimension spectrum of
the partially open baker-map

Let RL,M,R ∈ [0, 1]. After the first iteration the intensity in the top horizontal third is
RL, the central strip has an intensity of RM, and the bottom third carries RR. The total
intensity is

Itot,1 = RL +RM +RR. (C.1)

The next iteration gives the following total intensity:

Itot,2 = R2
L +RLRM +RLRR +

RMRL +R2
M +RMRR + (C.2)

RRRL +RRRM +R2
R

and so forth. At the nth step we obtain the total intensity

Itot,n =

n∑
k=0

n−k∑
l=0

(
n

k, l

)
RkLR

l
MR

n−k−l
R (C.3)

= (RL +RM +RR)n

Here we used the fact that the number of strips with a certain combination of reflectivities
RkLR

l
MR

n−k−l
R is given by the multinomial coefficient

(
n
k,l

)
:= n!

k!l!(n−k−l)! .

Now we focus on the multifractal dimension spectrum (3.3) of the distribution
generated by this map. First, since the measure is constant in the horizontal direction,
we can restrict ourselves to a vertical line and calculate the partial dimensions dq along
this line. Assume this line is covered by disjoint segments of length ε = 3−n. The
dimensions of the full distributions are then simply obtained from

Dq = 1 + dq (C.4)

with

dq =
1

1− q lim
n→∞

ln
∑3n

i=1 µ
q
i

n ln 3
. (C.5)
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Here µi is the intensity on the i-th segment normalised by Itot,n, so that

3n∑
i=1

µi = 1 (C.6)

Or, again using multinomial factors:

n∑
k=0

n−k∑
l=0

(
n

k, l

)
µn;k,l = 1 (C.7)

with

µn;k,l =
RkLR

l
MR

n−k−l
R

Itot,n
(C.8)

With that we can write the sum in (C.5) as

ln
3n∑
i=1

µqi = (C.9)

ln
n∑
k=0

n−k∑
l=0

(
n
k,l

) (
RkLR

l
MR

n−k−l
R

)q
(RL +RM +RR)nq

= (C.10)

ln

(
RqL +RqM +RqR

)n
(RL +RM +RR)nq

= (C.11)

n ln

(
RqL +RqM +RqR

)
(RL +RM +RR)q

(C.12)

Thus we obtain for dq

dq =
1

1− q lim
n→∞

n ln
(RqL+RqM+RqR)
(RL+RM+RR)q

n ln 3
. (C.13)

This is independent of n so we can drop the limit and get

dq =
ln

(RqL+RqM+RqR)
(RL+RM+RR)q

(1− q) ln 3
. (C.14)

The limit q → 1 can be obtained using L’Hôpital’s rule.

d1 := lim
q→1

1

1− q
ln
∑3n

i=1 µ
q
i

n ln 3

⇒ d1 =
ln (RL +RM +RR)

ln 3
(C.15)

− RL lnRL +RM lnRM +RR lnRR

(RL +RM +RR) ln(3)
.

Asymptotically dq goes to

lim
q→∞

dq =
ln (RL +RM +RR)− ln (Rmax)

ln 3
, (C.16)

where Rmax := max {RL, RM, RR}.



Appendix D

Additional notes on the Sampling
in Quantum Maps

D.1 Derivation of Expected Value

Starting from the general equation (6.9) for the expected number of accepted boxes here
we show how to arrive at the formula for the baker map (6.11).

The i-th box is found with a probability pi = 1 − (1 − µi)S . Analogous to (C.8)
we can restrict ourselves to different boxes and define pn:k,l := 1 − (1 − µn;k,l)

S . The
expected value of the number of found boxes is

E [Nb] =

3n∑
i=1

pi =

n∑
k=0

n−k∑
l=0

(
n

k, l

)
pn;k,l. (D.1)

Plugging in the expression for µn;k,l we get

E [Nb] = (D.2)

n∑
k=0

n−k∑
l=0

(
n

k, l

)1−
(

1− RkLR
l
MR

n−k−l
R

(RL +RM +RR)n

)S .

Equation (6.11) follows from setting RL,R = 1, RM = R, carrying out the inner sum,
and renaming the indices.

D.2 Discussion of Alternatives to Sampling

Here we want to show that taking into account only the regions of phase-space with the
highest measures by a cutoff in the measure can not reproduce the scaling observed in
the quantum maps.
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First, let us consider a fixed cutoff. In this case it is easy to see that for any value
of µcutoff = const. there exists a n∗ with

µn;k,l < µcutoff , ∀n > n∗.

Therefore d0
n→∞−−−→ 0.

The second case is an n-dependent cutoff value µcutoff,n = Icutoff
Itot,n

with constant

Icutoff . In this case if all RL,M,R < 1 there also exists a n∗ with µn;k,l < µcutoff,n, ∀n > n∗.

In other words: d0
n→∞−−−→ 0. An exception here arises if RL,R = 1 and RM ∈ [0, 1). Then,

for all 0 < Icutoff < 1 after a number of iterations n∗ all middle thirds fall below the
cutoff d0

n→∞−−−→ ln 2/ ln 3 from above.

So, by associating the number of long-lived eigenstates of boxes above a given
threshold we obtain an effective dimension contradicting our numerical observations.
This indicates that the (large) regions with low measure µ still contain substantial
portions of the eigenstates.

The third alternative we want to discuss is the case where each box contributes
to the long-living phase-space volume proportionally to its intensity

pn;k,l ∝ In;k,l = µn;k,lItot,n. (D.3)

As before we identify M = 3n. In this context we need to limit the contribution of each
box pn;k,l = min{1, αIn;k,l} and compute E [Nb] =

∑n
k=0

∑n−k
l=0

(
n
k,l

)
pn:k,l. The factor α

plays a similar role as the cutoff in the sense that for α → ∞ (α → 0) we count all
(zero) boxes. This method reproduces the correct scalings in the cases RL,M,R = 1, and
RL,R = 1,RM = 0. However, it fails to reproduce the increase of the effective dimension
with R and M and the oscillating behaviour of dloc with |ν|cutoff .



Bibliography

[AFM+08] E. G. Altmann, T. Friedrich, A. E. Motter, H. Kantz, and A. Richter.
Prevalence of marginally unstable periodic orbits in chaotic billiards.
Physical Review E, 77(1):016205, 2008.

[AHLM07] K. B. Athreya, J. M. Hitchcock, J. H. Lutz, and E. Mayordomo. Ef-
fective strong dimension in algorithmic information and computational
complexity. SIAM Journal on Computing, 37(3):671–705, 2007.

[AK07] E. G. Altmann and H. Kantz. Hypothesis of strong chaos and anoma-
lous diffusion in coupled symplectic maps. Europhysics Letters (EPL),
78(1):10008, 2007.

[ALV12] E. G. Altmann, J. C. Leitão, and J. Viana Lopes. Effect of noise in
open chaotic billiards. Chaos: An Interdisciplinary Journal of Nonlinear
Science, 22(2):026114, 2012.

[AMK05] E. G. Altmann, A. E. Motter, and H. Kantz. Stickiness in mushroom
billiards. Chaos: An Interdisciplinary Journal of Nonlinear Science,
15(3):033105, 2005.

[AOCO95] T. M. Antonsen, E. Ott, Q. Chen, and R. N. Oerter. Statistics of wave-
function scars. Physical Review E, 51(1):111–121, 1995.

[APT13a] E. G. Altmann, J. S. E. Portela, and T. Tél. Chaotic systems with
absorption. Physical Review Letters, 111(14):144101, 2013.

[APT13b] E. G. Altmann, J. S. E. Portela, and T. Tél. Leaking chaotic systems.
Reviews of Modern Physics, 85(2):869–918, 2013.

[AS81] J. E. Avron and B. Simon. Almost periodic hill’s equation and the rings
of saturn. Physical Review Letters, 46(17):1166–1168, 1981.

[AS09] A. Akaishi and A. Shudo. Accumulation of unstable periodic orbits and
the stickiness in the two-dimensional piecewise linear map. Physical Re-
view E, 80(6):066211, 2009.

[AVS09] J. Aguirre, R. Viana, and M. Sanjuán. Fractal structures in nonlinear
dynamics. Reviews of Modern Physics, 81(1):333–386, 2009.
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ähnlicher Form einer anderen Prüfungsbehörde vorgelegt.
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