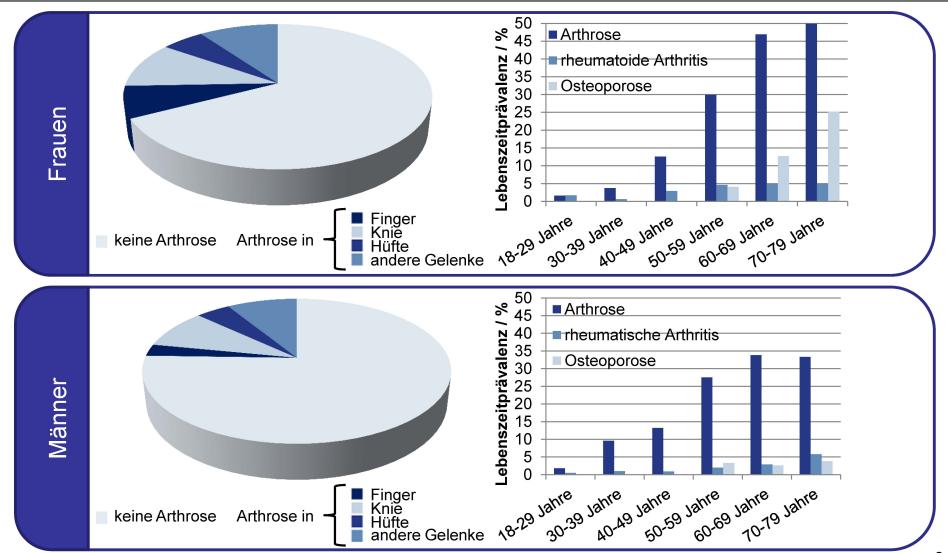


Optimierung der Schaftkomponente von Kurzschaftendoprothesen mittels Finite-Elemente-Analyse

EEE 2016

30. Juni 2016

Claudia Kleinschrodt, Hans-Georg Simank, Bettina Alber-Laukant, Frank Rieg



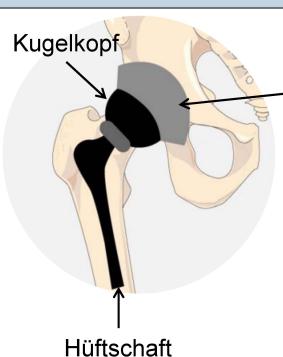
"Das Geheimnis des Vorwärtskommens besteht darin, den ersten Schritt zu tun."

> Mark Twain, US-amerikanischer Schriftsteller, 1835 – 1910

Arthrose - die häufigste aller Gelenkerkrankungen

UNIVERSITÄT BAYREUTH

Indikation



Hüft-TEP: Totale Endoprothese der Hüfte

Hüftpfanne

Unterscheidung der Hüftschäfte nach:

Schaftlänge

Kurzschaft - Standardschaft - Langschaft

Schaftform

gerade - gebogen - anatomisch

Schaftquerschnitt

rund – oval – hexagonal – trapezförmig – rechteckig – mit Stabilisatoren

Versorgungstechnik

zementiert - zementfrei - hybrid

Resektionsebenen

schenkelhalserhaltend - schenkelhalsteilerhaltend - schenkelhalsresezierend

Modularität

Monoblock – modular

Verankerung

proximal - metaphysär - meta-diaphysär - diaphysär

Material

Ti 6Al 4V - Ti 6Al 7Nb - Cobalt-Chrom - Strukturierung

www.onmeda.de www.uni-regensburg.de www.implantat-atlas.com

tion

Medizinische Grundlagen

Kurzschaftprothesen

Definition

Bezüglich Design, Verankerungsprinzip, Resektionshöhe des Schenkelhalses, Einstellung des Offsets und der Anteversion bestehen erhebliche Unterschiede zwischen den "Kurzschaftprothesen". Eine einheitliche Definition ist daher nicht möglich.

Oft genannte Vorteile

- Knochensparend
- Weichteilschonend
- Schnellere Remobilisation
- Einfachere Revision
- Bessere Nachbildung der Physiologie

Indikation

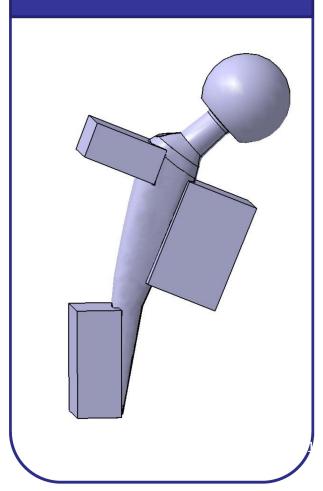
- Geringes Alter
- Hohe Aktivität
- Gute Knochenqualität
- Stark abhängig von Anatomie

Kurzschaftprothese AIDA®

Original-Prothese

AIDA® Kurzschaft (implantcast GmbH)

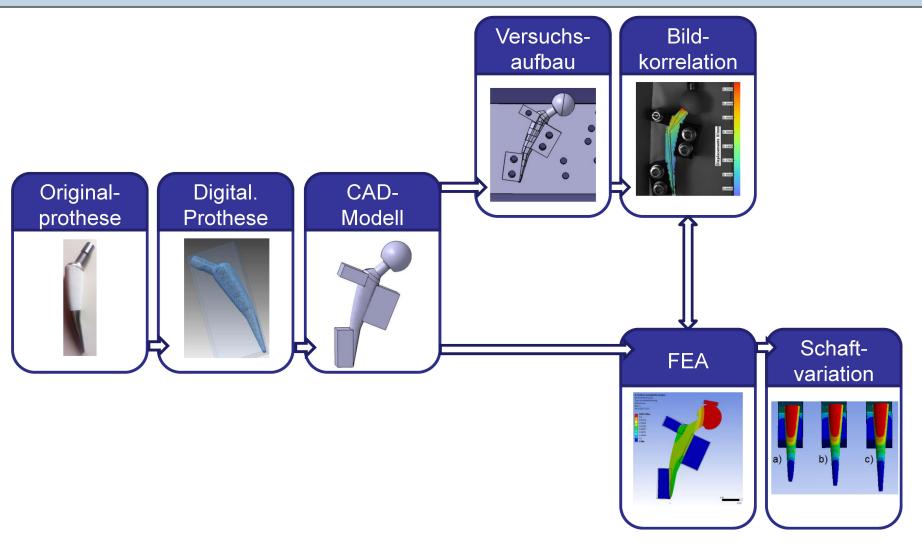
Größe: 3


CCD-Winkel: 130° Material: TiAl₆V₄

mit Titan-Hydroxylapatit-B.

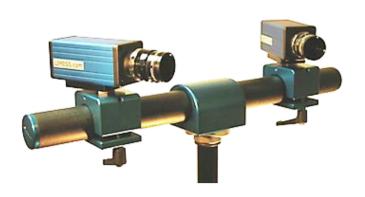
Verankerungsprinzip

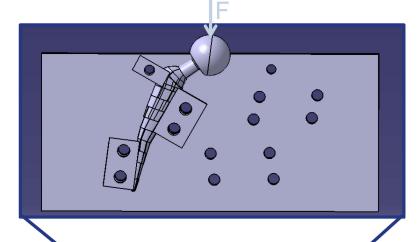
CAD-Modell

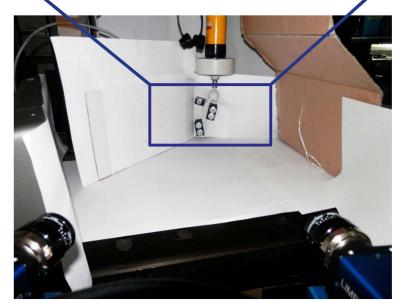

Jerosch 2013

Vorgehen

Überblick

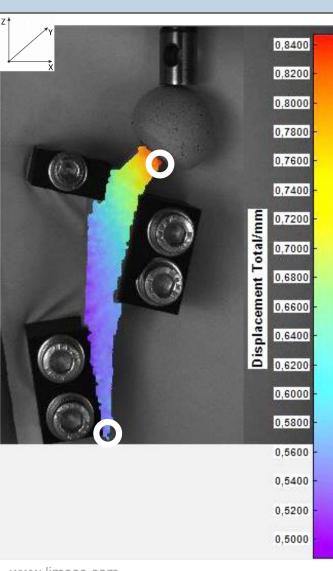


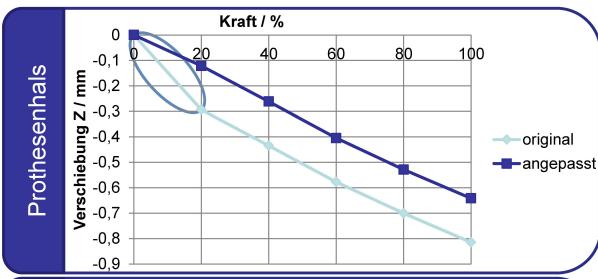

Exemplarischer Belastungsfall

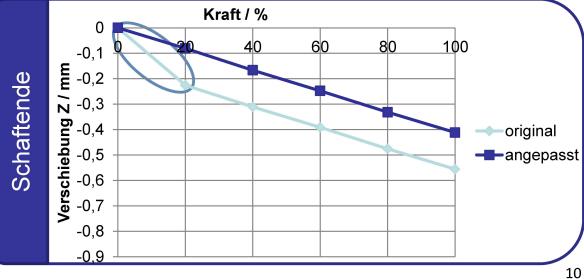

Stolpern

Kraft: 4681N

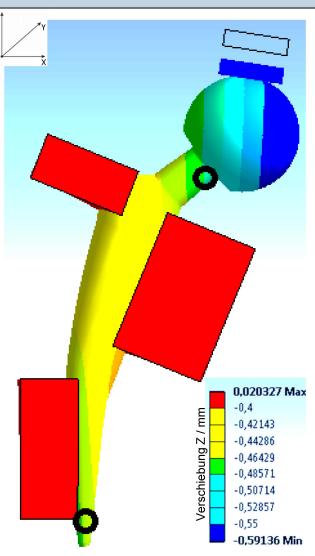
Neigungswinkel: 9,0°

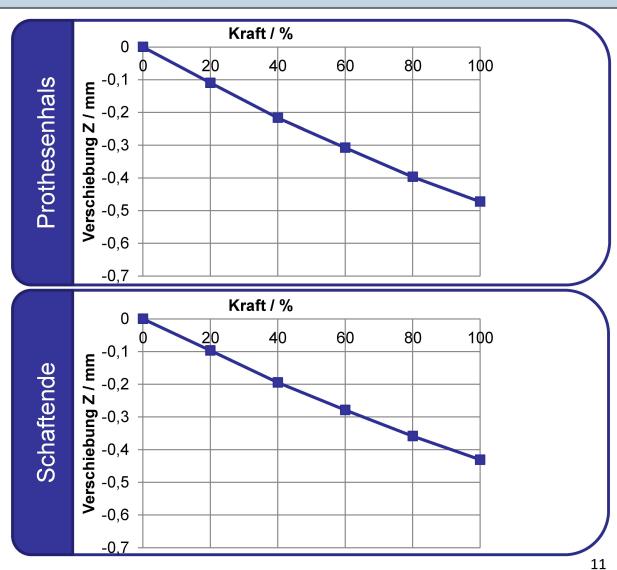


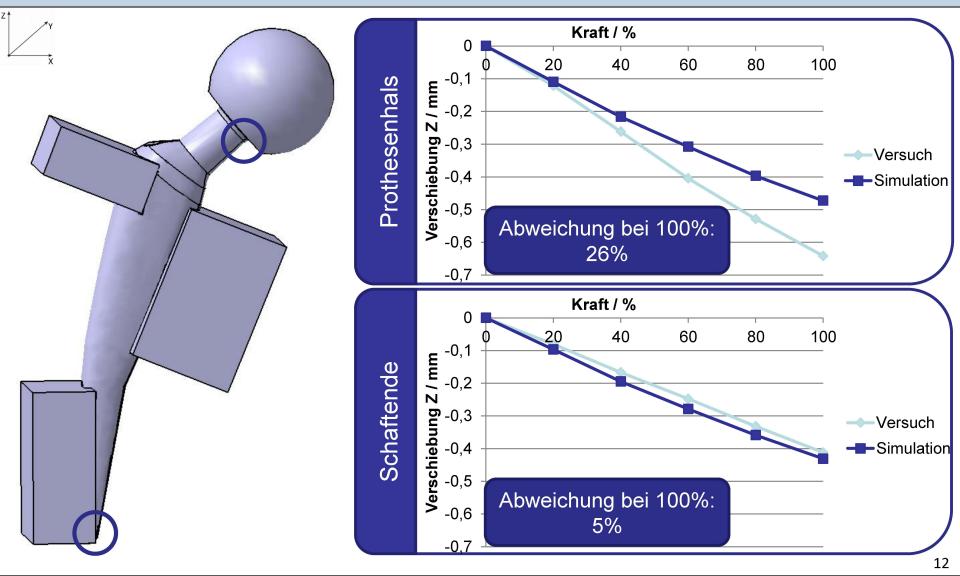



www.limess.com www.orthoload.de

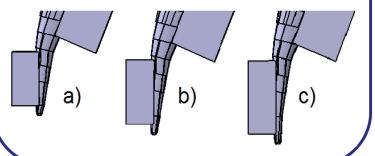
Praktische Versuche mittels Bildkorrelation



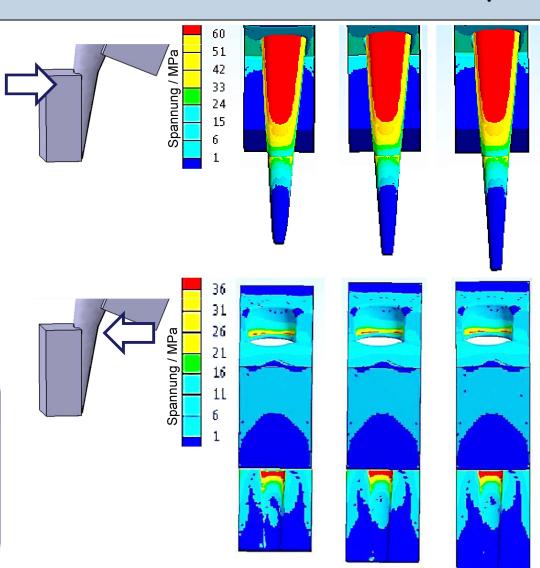

www.limess.com


Ergebnisse der Finite-Elemente-Analyse

Vergleich



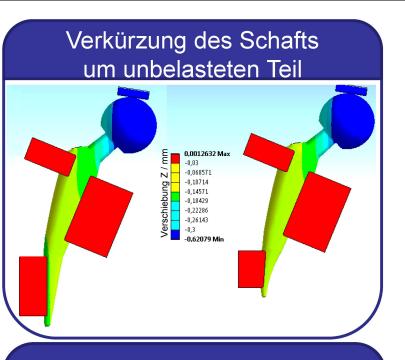
Variation der Schaftlänge


Schaftvariation

- a) Schaftkürzung um 5 mm
- b) Ursprungsschaftlänge
- c) Schaftverlängerung um 5 mm

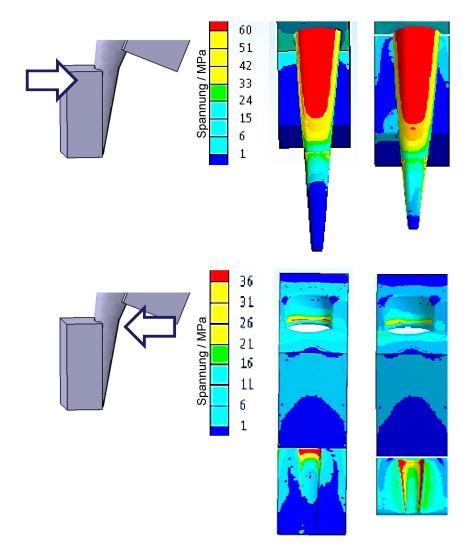
Fazit

- Keine Beeinflussung des Verschiebungsverhaltens
- Kein resultierendes Kippen
- Kraftübertragung lediglich im oberen Anlagebereich



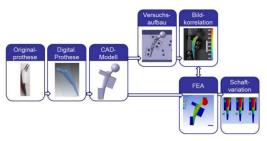
13

Variation der Schaftlänge

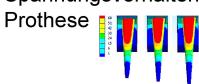

Verkürzung des Schafts auf angepasste Länge

Fazit

- Keine Veränderung des Spannungsverhaltens in der Prothese
- Gleichmäßigere Einleitung in den Knochen



Zusammenfassung und Ausblick



Zusammenfassung

 Workflow zur Untersuchung von Kurzschaftprothesen

• kein Einfluss der Schaftlänge auf Spannungsverhalten in der Prothese

 Einfluss der Schaftlänge auf Spannungsverhalten im Knochen

Ausblick

- Optimierung des Versuchsaufbaus
- Detailliertere Modellbildung
- Betrachtung weiterer Lastfälle
- Berücksichtigung weiterer medizinischer Aspekte (Nachbildung der Physiologie, Individualität des Patienten, Operationstechnik etc.)
- Untersuchung weiterer Parameter von Kurzschaftprothesen
- ...

Vielen Dank für Ihre Aufmerksamkeit!

Dipl.-Ing. Claudia Kleinschrodt

Wissenschaftliche Mitarbeiterin

Tel.: +49 (0) 921 55 7182 Fax: +49 (0) 921 55 7195

E-Mail: claudia.kleinschrodt@uni-bayreuth.de

Konstruktionslehre und CAD

Prof. Dr.-Ing. Frank Rieg

Universität Bayreuth

Universitätsstr. 30, 95447 Bayreuth

www.lscad.de www.z88.de

Literatur

Damm, P., Kutzner, I. 2005: Orthoload, Loading of Orthopaedic Implants. http://www.orthoload.com/database, 16.3.2016

Ender, S., Macher, A, Hubbe, J., Pap, G., Neumann, H. 2007: Mittelfristige Ergebnisse der zementfreien Schenkelhals-Endoprothese Typ CUT. In: Der Orthopäde, 4, 477–483 Fallpauschalenbezogene Krankenhausstatistik (DRG-Statistik) 2015: Diagnosen und Prozeduren der vollstationären Patientinnen und Patienten in Krankenhäusern, Bonn: Statistisches Bundesamt

Fuchs, J., Rabenberg, M. & Scheidt-Nave, C. 2013, Prävalenz ausgewählter muskuloskelettaler Erkrankungen. In: Bundesgesundheitsblatt 2013, 56, 678-686, Berlin: Springer Verlag

Fröber, R. 2002: Funktionelle Anatomie des proximalen Femur. In: OP-Journal, 17, 86-90, Stuttgart: Georg Thieme Verlag

Fratzl, P. 2002: Von Knochen, Holz und Zähnen. In: Physik Journal, 1 (5), 49-55

implantcast GmbH 2015, Produktübersicht Hüftsysteme. Buxtehude

Jerosch, J., Heisel, J. & Imhoff, A. B. (Hrsg.) 2005: Fortbildung Orthopädie Traumatologie, Bd. 11: Hüfte, Darmstadt: Steinkopff

Jerosch, J. 2011: Ist kürzer wirklich besser? In: Der Orthopäde, 40 (12) 1075-1083, Berlin: Springer

Jerosch, J. 2012: Kurzschaft ist nicht gleich Kurzschaft – Eine Klassifikation der Kurzschaftprothesen. Köln: Deutscher Ärzte-Verlag

Jerosch, J. 2013, Kurzschaftendoprothesen, Wo liegen die Unterschiede. Köln: Deutscher Ärzte-Verlag

Kirschner, P. 2005: Hüftendoprothetik. In: Der Chirurg, 76 (1), 95-104

LIMESS Messtechnik und Software GmbH 2016: DIC – Bildkorrelation, http://www.limess.com/de/produkte/bildkorrelation, 16.3.2016

Rahimi, A. 2013, Numerische Simulation von Knochenumbauvorgängen um zahnärztliche Implantate mit der Finite-Elemente-Methode. Bonn: Universitäts- und Landesbibliothek Bonn

Richard, H. A. & Kullmer, G. (2013): Biomechanik. Wiesbaden: Springer Verlag

Schneider, M. (Hrsg) 2016a: Endoprothesen – künstliche Gelenke oder Gelenkersatz. http://www.leading-medicine-guide.de/Medizinische-Fachartikel/Endoprothesen-kuenstliche-Gelenke-oder-Gelenkersatz. 16.3.2016

Schneider, M. (Hrsg) 2016b: Hüftrevision. http://www.operation-endoprothetik.de/huefte/hueftrevision/, 16.3.2016

Schönau, E. 2005:Gesunde Knochen: Muskeln bringen's. In: UGB-FORUM, 4, 166-169.

Weghorn, P. 2016: FE-basierte Analyse von Kurzschaftendoprothesen. Bayreuth.

Winter, E. 2009: Entwicklung und aktueller Stand der Hüftendoprothetik. In: Wintermantel, E. (Hrsg.): Medizintechnik. Berlin: Springer.