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Chapter 1  
1. Summary 

1.1.  Introduction  
 

Water resources in the semi-arid to arid areas of Central Asia are often limited by low 

precipitation, and hence vulnerable to impacts of global change, i.e. socio-economic 

development and climate change. Both, socio-economic development and climate change 

are very likely causing significant changes as water resources are affected by two main 

effects: Firstly, growing population and industrial activities in the region raise the pressure 

on water resources due to increasing water abstractions. Secondly, air temperature in the 

region has been rising in the past far above global average and it is expected to increase 

further, which will lead to changes in runoff generation and therefore water availability. 

Increasing temperature as well as increasing water abstractions will affect water quantity 

and consequently water quality as a result of higher pollution intake or reduction in dilution 

capacity. Thus, it is of crucial importance to analyse and assess the state of current and 

future water resources to implement sustainable water management as the above 

mentioned effects very likely causing significant changes of water resources. Consequently, 

adaptation is required to “anticipate to adverse effects of climate change and taking 

appropriate action to prevent or minimise the damage they can cause (EC 2014).” 

In general, Central Asia is likely to be severely affected by climate change and increasing 

water abstractions whereas the potential development of water resources is of crucial 

importance to develop sustainable water management strategies and an integrated water 

resources management system. To achieve a comprehensive assessment of current and 

future water resources also cultural adaptation and governance policy is important. At this, 

also data scarcity is a major problem as observed data is only sparsely available (Karthe et 
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al. 2015) and therefore large-scale modelling is needed to get a comprehensive overview of 

the study region, to close knowledge gaps and assess future state and potential impacts.  

Here, Mongolia is of high interest as current water availability is generally low and during 

last decades climate change induced temperature increase is nearly twice as much as the 

global average (Batimaa et al. 2011, Törnqvist et al. 2014). Already today, wide regions are 

characterized by low annual precipitation below 100 mm per year. Furthermore, due to a 

rapid urbanization, particularly around the capital of Ulaanbaatar, pressures on water 

resources are increasing. At this, infrastructure is often in a worse condition, e.g. around 

50 % losses due to leakages in the sewage pipe system (Scharaw and Westerhoff 2011) or 

per capita water use in urbanized areas is ~230 l/d (Batsukh et al 2008; MEGD 2012). 

Therefore, improved infrastructure to prevail or reduce the overexploitation of water 

resources and water quality deterioration is needed. As the Selenga river is the main 

contributor (>60 % of the total inflow) to Lake Baikal, which is the world’s largest 

freshwater source, special attention was given to evaluate the current and future state of 

water quality in the Selenga river basin. 

Within the last years, the number of scientific research studies using large-scale models to 

simulate water availability and water use has increased substantially. Several new datasets 

from earth observations and new or improved models have been published (Werth et al. 

2009; Werth and Güntner 2010; van Beek et al. 2011). Nevertheless, those studies focussed 

on water quantity and did not take into account impacts on water quality induced by global 

change although changes in water quality affecting aquatic ecosystems and species. 

Furthermore, spatially explicit large-scale modelling studies have not been carried out for 

Mongolia and Central Asia to get a comprehensive overview and assessment. 

To address this research gap, the large-scale water resource modelling framework 

WaterGAP 3 was applied to Central Asia with a focus on Mongolia to simulate impacts on 

current and future water resources. WaterGAP 3 consists of hydrology, water use and 

water quality sub-models in order to simulate current and future water quantity and quality 

(cf. Chapter 1.2).  

This thesis provides the first integrated-model-based assessment to simulate spatially 

explicit water quantity and quality alterations induced by global change in Central Asia, 
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particularly in Mongolia. Hence, impacts of global change, i.e., socio-economic factors and 

climate change have been separated in order to quantify their specific effects on water 

resources and to simulate loadings and in-stream concentrations for conservative and non-

conservative substances to gain insight into the sectoral (agriculture, industry, and 

domestic) contributions as well as spatial patterns of potential water pollution.  

In detail, within this thesis four different studies have been carried out to assess the impact 

of global change on water resources using the large-scale water modelling framework 

WaterGAP 3: The first analysis (see Chapter 2) describes the application of the large-scale 

modelling framework to the study region Central Asia. The performance of model 

simulations was evaluated against measured data from different sources. The hydrological 

model was driven by different climate datasets in order to analyse the impact of climate 

change on water resources and accompanied uncertainties caused by different climate 

forcing. The second study (see Chapter 3) deals with the impact of climate change on water 

availability in Central Asia. Simulations were conducted with the WaterGAP 3 hydrology 

model in order to quantify the effects of climate change on water resources up to 2100. 

The third model experiment (see Chapter 4) refers to the development and application of 

socio-economic scenarios for Mongolia and the quantification of the impact of increasing 

water abstractions for domestic, industrial and agricultural purposes on water resources 

until 2100. In this study, for the first time mining was included as water use sector, because 

mining accounts for nearly 40 % of the water withdrawals and has the potential to affect 

water quality. The fourth study (see Chapter 5) combines the hydrology model and 

knowledge of the first three model experiments to implement a water quality sub-model 

for simulating water pollution in Mongolia, in particular in the Selenga River Basin. For this, 

loadings and in-stream concentrations of total dissolved solids (TDS), biological oxygen 

demand (BOD) and faecal coliform bacteria (FC) were simulated and –if possible- validated 

against observed data. 

Finally, a conclusive discussion analyses the methods applied and results produced in this 

thesis. In addition, based on the newly gained knowledge, a comprehensive outlook 

discusses recommended further developments and shortcomings identified within this 

thesis.  
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1.2.  Data & Methods 
 

1.2.1 Water Resource Model WaterGAP 3 

 

 

Figure 1: Overview of the WaterGAP 3 modelling framework (Verzano, 2009, modified) 

 

Within this thesis, the large-scale water resources model WaterGAP 3 (Water – Global 

Assessment and Prognosis, see Figure 1) has been used as it is the most suitable tool to 

simulate large-scale water quantity and quality. Besides WaterGAP 3, several other large-

scale models are available such as WBM (Vörösmarty et al. 2000), WASMOD (Widen-Nilson 

et al. 2007), PCR-GLOBWB (van Beek et al. 2011), and VIC (Andreaidis and Lettenmaier 

2006). WaterGAP 3 is –next to PCR-GLOBWB- the only model which runs on a high spatial 

resolution of five arc minutes (~ 6x9 km in Central Asia) compared to thirty arc minutes 

(~50x50 km) or less of the other models. This allows not only global but also regional to 

mesoscale model studies (Verzano 2009). Furthermore, WaterGAP 3 is the only large-scale 

model featuring a water quality sub-model and includes also five sub-models for water use 

for the sectors irrigation (aus der Beek et al 2010), livestock (Alcamo et al. 2003), domestic 

and small businesses, manufacturing industries and thermal electricity production (Flörke 
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et al. 2012, Flörke et al. 2013). Additionally, the model’s water quality sub-model allows the 

simulation of biological oxygen demand, total dissolved solids and faecal coliform bacteria 

loading and in-stream concentration. The regional studies in this thesis (particularly Chapter 

4 and 5) could not have been accomplished with a lower resolution model.  

WaterGAP 3 calculates the daily water balance for each grid cell based on climatic time 

series and the physiogeography like slope, elevation, and soil type. The climate forcing 

includes precipitation, air temperature and solar radiation. The runoff is calculated for each 

grid cell and routed by a drainage direction map through the catchment until it reaches the 

outlet. The vertical water balances consist of (i) radiation budget and potential 

evapotranspiration, (ii) snow accumulation and melting, (iii) interception, (iv) soil water 

balance and (v) groundwater (see Figure 2). The lateral water balance routes surface runoff, 

subsurface runoff and baseflow first through lakes, wetlands and reservoirs, and finally to 

the river segment.  

 Figure 2: Schematic illustration of water fluxes considered in WaterGAP 3; Rg (groundwater recharge), Rs (surface 
 runoff), Rl (runoff generated on land), Epot (potential evapotranspiration), Ea (actual evapotranspiration), 
 Ec (canopy evaporation) (Verzano, 2009) 
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The above mentioned water use models calculate the water abstractions for the industry 

(manufacturing, thermal electricity production), agriculture (livestock, irrigation) and 

domestic and small businesses sectors separately (aus der Beek et al. 2010, Flörke et al 

2012, Flörke et al. 2013). The water balance calculated within the hydrology model is then 

reduced by the water consumption from the water use sub-models. Subsequently, the 

calculated water resources are fed in the water quality sub-model (WorldQual) to calculate 

in-stream concentrations. The water quality model (WorldQual, Voß et al. 2012, Williams et 

al. 2012, Reder et al. 2015) considers loadings from point and diffuse sources (see Figure 3) 

where point sources include domestic sewage, wastewater from industries and mining, and 

urban surface runoff. Diffuse sources comprise agricultural inputs such as manure 

(livestock), industrial fertilizer, and natural background emissions. Additionally, loadings 

from domestic – non sewered are considered as point (e.g. hanging latrines) and diffuse 

(e.g. open defecation) sources depending on the type of disposal. 

Diffuse loadings from manure application are calculated by multiplying the substance-

specific loading in livestock manure with a substance specific release rate and the 

respective surface runoff. Domestic-non sewered sources cover loadings from population 

not connected to wastewater treatment plants (WWTPs). In this context, three different 

classes of sanitary waste disposal were distinguished: 

(a) Settlements with some type of private onsite disposal, such as septic tanks or pit toilets: 

calculated by multiplying the connected population with a per-capita emission factor. To 

achieve the final loadings flowing into the stream a reduction factor is used. 

 (b) Settlements with open defecation: calculated analogously to loadings from manure 

application by multiplying the load of a pollutant in human faeces by a substance specific 

release rate and the respective surface runoff. 

(c) Settlements with hanging latrines: calculated by multiplying the per-capita loading by a 

per-capita emission factor. 

The domestic loadings from sewage are calculated by multiplying a per-capita emission 

factor by the urban and rural population connected to wastewater treatment plants. 

Loadings reaching WWTPs are reduced depending on the treatment level, i.e. primary, 
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secondary, and tertiary treatment. Loadings from urban surface runoff are calculated by 

multiplying a typical event mean concentration with the urban surface runoff. The loadings 

resulting from industries are estimated by multiplying the average raw effluent 

concentration by the return flow from industries.  

 

Figure 3: Pollutant loading sectors in WorldQual categorized as either point sources or diffuse sources (Reder 
 et al. 2015, modified) 

 

The estimated cell-specific pollutant loadings are divided by the river discharge of each grid 

cell to calculate the in-stream concentration. In addition, the model simulates substance-

specific sedimentation and decay processes depending on temperature and/or solar 

radiation reducing the in-stream concentration.  
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1.2.2 Data assimilation 

 

Simulation results depend highly on the quality and accuracy of the input data, particularly 

climate input data is one of the most sensitive drivers (see Chapter 2). For the standardized 

baseline model period (1971-2000), climate forcing from the EU-FP6 WATCH project was 

used (Chapter 3, 4, and 5). This so called WATCH forcing data (WFD, Weedon et al. 2010, 

2011) has been incorporated into WaterGAP 3 and covers the time period from 1958-2001 

in 0.5° resolution and daily (or aggregated monthly) time steps, providing parameters like 

precipitation, air temperature, and long- and shortwave radiation. The climate data has 

been rescaled to the five arc minutes WaterGAP 3 grid. As Chapter 2 compares the 

suitability of precipitation data for Central Asia it examines also the TS 3.2 datasets of the 

Climate Research Unit (CRU) (Harris et al. 2014), the Aphrodite’s water resources dataset 

(Yatagai 2009, 2012), and the precipitation dataset version 6 from the Global Precipitation 

Climatology Centre (GPCC, Schneider et al. 2011). These datasets, as mentioned above, 

were also rescaled to the WaterGAP 3 spatial resolution. Based on observed river runoff 

from the Global Runoff Data Center (GRDC) and data from the Mongolian Institute for 

Meteorology, Hydrology and Environment (IMHE), the calibration and validation of the 

WaterGAP 3 hydrology model has been conducted for in total 158 gauging stations in 

Central Asia. Socio-economic data was taken from national datasets and gridded by the 

water use sub-models as described in aus der Beek et al. (2010) for irrigation, Flörke et al. 

(2012, 2013) for domestic and industry, and Alcamo et al. (2003) for livestock. Water 

Quality validation data for Mongolia was taken from Altansukh (2008) as it is the only 

source with continuous long-term time series for BOD and TDS in Mongolia for the baseline 

period. At this, input data assumptions were derived from global or national datasets, e.g., 

Joint Monitoring Programme (WHO/UNICEF (JMP 2013)), in terms of connection rates and 

treatment level or derived within an extensive literature recherché, e.g., effluent 

concentration, event mean concentration (urban surface runoff) or livestock excreta. 
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1.3.  Results and Discussion  
 

Four research studies and modelling experiments have been conducted to analyse and 

quantify impacts of global change on water quantity and quality in Central Asia with a focus 

on Mongolia. The first study (see Publication 1, Chapter 2) includes the evaluation of global 

and regional climate datasets, which are available for Central Asia. The second study (see 

Publication 2, Chapter 3) focuses on impacts of climate change on Central Asian water 

resources, whereas the third study (see Publication 3, Chapter 4) focuses on the impacts of 

socio-economic changes on water resources in Mongolia. Both (Publication 2 and 3) studies 

are combined with water stress indicators to highlight potentially impacted basins. The 

fourth study (see Publication 4, Chapter 5) deals with the impacts of changes implied in 

study 2 and 3 on water quality in the Selenge river basin in Mongolia. 

 

1.3.1 Suitability of large-scale datasets for regional hydrological 

 modelling in Central Asia 

 

Focus of this study was the comparison of global and regional datasets to estimate the 

uncertainties in simulated water resources. The quality of hydrological model results 

strongly depends on input data (Ludwig et al. 2009, Kauffeldt et al. 2013). Particularly 

precipitation is a very sensitive parameter. Hence, the study focuses on the uncertainty of 

simulated runoff induced by precipitation input data. The study compares simulated and 

observed runoff at 142 gauging stations in Central Asia. Four different regional and global 

datasets have been applied. The CRU TS 3.2 dataset (Harris et al. 2014), the full data 

reanalysis of the Global Precipitation Climatology Centre (GPCC) in version 6 (Schneider et 

al. 2011), the WATCH forcing data (Weedon et al. 2010, 2011) and the Aphrodite’s water 

resources precipitation data (Yatagai et al. 2009, 2012). All datasets have been rescaled to 

the WaterGAP 3 resolution and applied for the baseline time period 1971-2000. The 

datasets show already big differences in the input data, particularly in the maximum 

precipitation per grid cell (822 mm to 1415 mm), and therefore also in the mean 

precipitation. Especially in the southern part of the study region (Tien-Shan, Pamir, and 



10 
 

Taklamakan desert), spatial patterns differ between the datasets. Nevertheless, the 

interannual behaviour shows a good accordance, but varies in the amount of precipitation.  

As an indicator to examine the effects of low water availability and anthropogenic water 

abstractions, the withdrawal-to-availability ratio was applied to point out water stress at 

the basin level (Alcamo et al. 2007). Spatial distribution of water stress shows a high 

accordance between the datasets with a focus on south and south-western parts of the 

study region (Tarim River, Amu and Syr Darya). The magnitude of water stress between the 

datasets differs clearly and the robustness and goodness at each of the 142 gauging 

stations is evaluated. Overall, GPCC shows the best results on the whole study region, while 

WFD lead to more extreme values in the results and therefore to a higher standard 

deviation. Nevertheless, all datasets feature stations with lower or higher Nash-Sutcliffe-

Efficiency (NSE, Nash and Sutcliffe 1970) compared to other datasets. For example, stations 

in northern part of Mongolia could only be modelled accurately with WFD or Aphrodite but 

not with the GPCC or CRU dataset. The station at Ulgii in Mongolia differs by twice as much 

precipitation induced by the CRU dataset and leads to inadequate overestimation of 

simulated runoff compared to the other datasets. This is in line with a study conducted by 

Fekete et al. (2003) in which they compared six precipitation datasets in their latitudinal 

profile and showed large (up to 100 %) differences in the datasets for arid regions, while 

the datasets are more consistent in wetter regions. This leads to the need for the 

improvement and more numerous precipitation sampling, particularly in dry regions. 

In addition to the fact that only few runoff stations are available compared to the size of 

the study area, stations are also concentrated in the northern part of the study region while 

large regions are not represented by any station.  

Furthermore, the study showed that WaterGAP 3 is capable to represent water resources in 

Central Asia realistically, but shortcomings could be identified as well. Unreported 

overexploitation of water resources can sometimes lead to an overestimation in simulated 

water availability though water use is considered in the model. This is due to a lack of 

information in the input data (e.g. industries or thermal power plants) and the disregard of 

land use change in this study. Global and regional datasets should be backed up by regional 

socio-economic data as studying water-human interactions becomes a rising issue.  
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1.3.2 Climate Change impacts on water availability in Central Asia 

 

Large parts of Central Asia are dominated by low precipitation and consequently low water 

availability and are therefore vulnerable to climate change. Objective of this study is to 

simulate impacts of climate change on water resources and to point out regions, which are 

potentially most impacted by climate changes. At this, transient climate scenarios from 

three different GCMs are applied to simulate current and future water availability (1961-

2100), based on daily internal time steps and a spatial resolution of five arc minutes 

(~ 6x9 km). At this, climate change is analysed solely and water use is not included in this 

study. Overall, more than 167,000 grid cells and 1,536 basins were included in this study 

taking into account spatially distributed information, e.g. slope, elevation, and land cover. 

The stream network is defined by a drainage direction map indicating the drainage 

direction of surface water (Lehner et al. 2008). To calculate baseline water resources, the 

WATCH forcing data was applied to the model region. For the scenario period, the WATCH 

driving data was applied for two IPCC-SRES scenarios A2 and B1 and three GCMs: CNRM-

CM3 (Salas-Mélia et al. 2005), IPSL-CM4 (Marti et al. 2010), and ECHAM5 (Roeckner et al. 

2003). The WATCH driving data provides transient bias-corrected scenarios on daily time 

steps. The data has been rescaled from 0.5° to five arc minutes and was validated against 

data from the Global Runoff Data Centre (GRDC). Not all stations covered the complete 

baseline time period 1971-2000, but were validated against the available time period. The 

results show low water availability especially in the wide arid regions with annual water 

availability below 10 mm. In contrast the mountainous areas show annual water availability 

up to more than 1200 mm. Simulation results show an increase of mean annual water 

availability to the end of the 21st century. At this, the differences between the GCMs are 

higher compared to the differences in the scenarios A2 and B1. For the baseline period only 

a small change from 64 mm to 63 mm between the time period 1961-1990 and 1971-2000 

was detected. Although the WATCH driving data is bias-corrected, an offset between the 

WATCH forcing data for the baseline period and the scenario period exists. The IPSL-CM4 

and CNRM-CM3 GCMs show a more or less constant increase of simulated water availability 

till 2100, while ECHAM5 shows a decrease by the middle of the century followed by an 
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increase until 2100. Looking at spatial patterns, the Ob River basin and the Altai Mountains 

show high water availability in all GCM-scenario combinations, while the western part in 

the Aral-Caspian depression shows a decrease of simulated water availability. The trends 

are particularly robust in the south of the study region (Chinese Xinjiang), in the Mongolian 

Altai, the north of Mongolia, and at the Aral-Caspian depression. Inter-annual variations 

show an increase of simulated water availability in all GCM-scenario combinations during 

spring (March-April) and for some GCM-scenario combinations also in July.  

 

1.3.3 Socio-economic development in a water scarce region and its 

impact on water resources 

 

Socio-economic development in Mongolia may impact water resources and vice versa. 

Therefore, water abstractions and their potential change are of high importance. At this, 

socio-economic scenarios for Mongolia were developed to analyse the impacts of 

anthropogenic water use on water resources. Given the low natural water availability, 

special attention was paid to overexploitation of river basins and therefore, different water 

stress indicators were applied. Scenarios are based on development of socio-economic 

indicators like population and gross domestic product as well as technological change. 

Current water use in Mongolia is dominated by mining followed by livestock, domestic, and 

irrigation (Batsukh et al. 2008). Domestic water use differs completely between rural and 

urban areas. At this, rural areas use 5-10 l per person per day, while the daily water use in 

housing areas is around 230 l per person per day. This is often induced by high losses 

caused by old and broken water supply pipes (Batsukh et al. 2008, Scharaw and Westerhoff 

2011). In terms of land cover, Mongolia is dominated by agricultural land with pasture as 

dominating land use type. Arable land accounts for less than 1 % of the total area, but 

mostly occurs in the Selenga Aimag. Here, cropland is mostly used for wheat, barley and oat 

production whereas irrigation is dominated by sprinkler technique (75 %). The WATCH 

forcing and driving data was applied to simulate water resources from 1971 to 2100 

transiently. Two socio-economic scenarios were developed to quantify the effects of 

anthropogenic activities on water resources following the IPCC-SRES climate change 

scenarios A2 (economic growth) and B1 (sustainable development). At this, population 
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density, household size, population growth, GDP per capita, and GVA (gross value added) 

are main drivers to quantify the potential abstractions of mining, manufacturing, electricity 

production, irrigation, and livestock sectors. Finally, two water stress indicators were 

applied to examine the current and future pressures on water resources as they include the 

long term effects of water use on water stress; the withdrawals-to-availability (w.t.a.) ratio 

and the consumption-to-Q90 ratio (c.t.Q90). At this, water withdrawal is defined as “the 

volume of water abstracted from either a surface water or groundwater source”, while 

water consumption is “the share of water withdrawal that is evaporated, transpired, 

incorporated into products or crops, or consumed by humans (Flörke et al. 2013).” Q90 

means “the monthly river discharge that occurs under dry conditions (monthly discharge is 

higher in 90 % of the time than the Q90-value (Alcamo et al. 2007).” 

The first indicator focuses on the abstracted water in a river basin compared to the total 

available water and the second indicator focuses on long-term low-flow conditions (Alcamo 

et al. 2007). As Mongolia is a data scarce region (cf. Karthe et al. 2015), only 13 gauging 

stations were available to validate the model results. Looking at mean annual water 

balance, the model show very good results (NSE 0.96) while low flows are mostly 

overestimated (NSE 0.66). Sectoral water abstractions show a huge increase in 

manufacturing, domestic, and mining sector; in particular for the A2 scenario. Irrigation 

shows a slight increase, while thermal electricity production decreases rapidly. This is 

caused by an implied change from once-through to tower cooling, which lead to a huge 

reduction of water withdrawals. In total, water withdrawals increase in the economic 

growth scenario about 63 % and in the sustainable development scenario 9 % till 2100. 

While w.t.a. focuses on water abstractions and shows the highest ratio in the Tuul and 

Orkhon river basin, the c.t.Q90 is more sensitive to low flows and shows therefore higher 

ratios in the southern parts of Mongolia with low water availability. Looking at future 

changes of w.t.a., an increasing trend was found for both IPCC-SRES scenarios in the Tuul 

river basin and for the business-as-usual scenario (A2) in the Orkhon river basin. The 

southern region mostly feature low water consumption, but are highly vulnerable to 

increasing water consumption, e.g., for industrial purposes.  
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1.3.4 Water quality alterations in Mongolia induced by global change 

 

The above mentioned studies focussed on water quantity and showed that the large-scale 

water resources model WaterGAP 3 is able to represent water fluxes in Central Asia in a 

realistic way. Based on these scenarios, water quality alterations by conservative (total 

dissolved solids) and non-conservative (biological oxygen demand and faecal coliform 

bacteria) substances are examined. For this purpose, a large-scale approach was applied to 

model comprehensive and spatially explicit water quality patterns in the Selenge river basin 

to get an insight in current and potential future water quality. Time series data for BOD and 

TDS in the Tuul River at Ulaanbaatar with monthly data covering the period (1996-2000) 

was used for model validation. At this, summer in-stream concentrations could be 

reproduced well by the model, while concentration levels during winter were 

overestimated. Simulation results show a strong increase in BOD, FC, and TDS loadings in 

the scenario period 2071-2100, while the differences between the representative dry, wet, 

and average scenario conditions are quite low. Main contributing sectors are generally the 

domestic and industry sectors. Particularly, FC is dominated by loadings from domestic–

sewered and domestic-non sewered. Urban surface runoff and livestock play a minor role in 

sectoral contribution to total loadings. TDS is dominated by industrial activities like 

manufacturing and mining as they are already major water users and are expected to 

increase in the future. Hotspots, especially for the non-conservative substances, are found 

around bigger settlements like in the Tuul river basin at Ulaanbaatar. In the scenario period 

loadings are concentrated around the urbanized areas of Ulaanbaatar, Darkhan, 

Sukhbaatar, and Erdenet. High concentrations of TDS are found mainly in the Orkhon river 

basin, Kharaa river basin and around Ulaanbaatar, which is the main region of irrigation and 

mining in Mongolia. BOD concentrations are highest downstream of Erdenet and 

Ulaanbaatar but also in the Kharaa river basin. FC is more spread across the basins but river 

stretches with higher concentration are located downstream of Ulaanbaatar and Darkhan. 

TDS concentrations exceed the guideline limit in the Tuul River. Furthermore, other 

research studies showed high pollution loadings for heavy metals, nutrients or sediment 

loads (e.g. Batsukh et al. 2008, Hofmann et al. 2011, Nadmitov et al. 2015) or FC 

concentrations at Naushki settlement in 2010 (227 to 6600 cfu/100 ml, Sorokovikova et al. 

2013), which is far above the guidelines for bathing and drinking water. FC concentrations 
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are mainly driven by the domestic sector, but connection and treatment rates are on a low 

level in Mongolia and wastewater treatment plants (~67 %) are often malfunctioning or in a 

poor condition. Nevertheless, only little information is available in the literature about FC in 

Mongolia. Considering the simulation results FC should be measured and monitored more 

extensive as it poses a risk to human health. Generally, urban areas are initial loading 

hotspots and pollution prevention becomes important, to reduce initial pollution 

discharged into surface waters. 
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1.4 Conclusion  
 

Within this thesis the WaterGAP 3 modelling framework has been adapted, improved, and 

validated in order to model water quantity (in terms of water availability and water use) 

and water quality in Central Asia. The model was tested against observed data. The model 

approach has been applied to analyse and assess large-scale hydrological and water quality 

patterns. Climate change and socio-economic impacts on Central Asia’s water resources 

have been investigated and the WorldQual model has been applied to Mongolia to 

calculate, for the first time, in a comprehensive manner loadings and in-stream 

concentrations. The major findings of this thesis can be summarized as follows: 

 The WaterGAP 3 hydrology model was successfully applied and validated for 

Central Asia. Available global and regional datasets differ significantly in parts of the 

region and, consequently, introduce large uncertainties to hydrological modelling 

results. The improvement and adaptation of WaterGAP 3 to reflect regional 

characteristics has led to a better reproduction of observed runoff. 

 

 Climate projections following different emission pathways show a high 

temperature increase throughout the region for the entire 21st century. Although 

changing precipitation patterns differ regionally, precipitation is expected to 

generally slightly-moderate increase until the end of the 21st century.  

 

 Simulated water availability as calculated on the basis of daily time series of various 

bias-corrected climate data sets shows large spatial variability with an overall 

increasing mean annual water availability until the end of the 21st century.  

 

 A trend of increasing water use as a result of socio-economic development has 

strong impacts on water availability, particularly the industrial and domestic sector. 

Urbanization likely lead to higher water withdrawals as a result of leakages in the 

public water supply system and higher consumption of drinking water compared to 

nomadic lifestyle. 
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 Water stress indicators, though initially on a lower level, are expected to increase in 

Mongolia, in particular in the Tuul, Orkhon, and Kharaa River basins. 

 

 The first comprehensive water quality study was carried out for the Selenga river 

basin in Mongolia. Here, the newly developed water quality model WorldQual, 

which was applied and validated for Selenga river basin, was used to identify 

hotspots of conservative (TDS) and non-conservative substances (BOD, FC). 

Loadings of TDS, BOD, and FC were found to increase strongly during the scenario 

period. Hotspots of water quality deterioration became obvious mainly in the 

Kharaa, Tuul and Orkhon river basins. 

 

 Despite uncertainties in climatic forcing datasets from different underlying GCMs, 

the major uncertainty for water quality modelling results from a lack of information 

on the condition and operability of sewage systems and treatment levels as well as 

observed water quality data for model calibration and validation (ground truthing). 

 

 Overall, it is concluded that the further improved WaterGAP 3 modelling 

framework has the ability to reproduce past and current water fluxes as well as the 

potential to project water availability and water use across Central Asia. Moreover, 

the model skill in simulating water quality patterns of pollution loadings and in-

stream concentrations was tested and improved in Mongolia. However, these skills 

ensure an improved evaluation of global change impacts.   
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1.5 Outlook 
 

The state-of-the-art integrated modelling framework WaterGAP 3, consisting of hydrology, 

water use and water quality models, has been successfully applied, tested and validated to 

reproduce the state of water resources in terms of water quantity and water quality in 

Central Asia. First encouraging water quality results show the possibility and need of 

comprehensive modelling studies, particularly in data scarce regions like Mongolia.  

This thesis has shown that socio-economic development is a main driver of change in 

Mongolia and therefore anthropogenic overexploitation of river basins might be a key issue 

in the future. In this context spatially explicit information on the location of water 

abstraction points and industrial activities would improve the model results. Currently, 

global or national datasets are used as input and are allocated over the study region 

according to generic rules.  

Nevertheless, the assessment of water quality in Mongolia shows a need for monitoring 

and field campaigns to generate continuous long-term time series data for improving the 

model (calibration and validation) and to assess current and future state of water 

resources. Furthermore, the model requires several assumptions as input data, e.g., per 

capita emission factors are not available for Mongolia. Information on such parameters 

would greatly help to improve and verify the model results. At this, better data would be 

needed also to provide an enhanced picture of the state of water resources, to estimate 

impacts on water resources, aquatic ecosystems and human health, and to develop 

strategies and solutions to adapt to global change impacts.  

Moreover, better data would provide the basis to implement an integrated water resources 

management (IWRM) in the region and to achieve the targets set by the sustainable 

development goals. For this purpose an assessment of current situation is required to 

“ensure availability and sustainable management of water and sanitation for all (UN 2015).”  

In addition, several major water infrastructure projects are planned in Mongolia like a 

channel from the Orkhon River to the Gobi desert or the Shuren Hydropower project. 

Studies on the effects of these large projects on water availability and water quality should 
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be performed as these interventions will definitely severely change the catchment 

hydrology. At this, also transboundary cooperation is needed as the Selenga flows into Lake 

Baikal in Russia and people as well as ecosystems are affected in both countries. 

Furthermore, pipe leakages and malfunctioning of wastewater treatment plants are widely 

reported. Thus, a study should be carried out to analyse population growth and 

urbanization on wastewater generation as well as the impacts of connection rates and 

treatment levels on water quality. In a next step a “wastewater scenario study” should then 

be executed, because increasing connection rates without any improvement in treatment 

can be expected to even worsen water quality. Hence, local data would help to verify and 

potentially improve the model results.  

However, as consistent and reliable environmental data is not available for large parts of 

the study region (Karthe et al. 2015), the presented model results include uncertainties in 

regard to input data, and therefore estimated impacts like pollution loadings and in-stream 

concentrations. Nevertheless, this study is the first comprehensive water quality modelling 

study in this region identifying potential hotspots of water quality deterioration and shows 

the need of a consistent monitoring programme in Mongolia to get further insight on water 

quality.  
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2. Evaluation of large-scale precipitation data sets for water 

resources modelling in Central Asia 
 

2.1.  Abstract 
 

Central Asia features an extreme continental climate with mostly arid to semi-arid 

conditions. Due to low precipitation and therefore low water availability, water is a scarce 

resource and often the limiting factor for socio-economic development. The aim of this 

model study was to compare the uncertainties of hydrological modelling induced by global 

and regional climate data sets and to calculate the impacts on estimates of renewable 

water resources. Within this integrated model study the hydrological and water use model 

Water Global Assessment and Prognosis 3 (WaterGAP 3) is being applied to all river basins 

located in Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, Uzbekistan, and Mongolia in 

five arc minutes spatial resolution (~6x9 km/grid cell). The model was driven by different 

global and regional climate data sets to estimate their impact on modelled water resources 

in Central Asia. In detail, these are the global TS data set of the Climate Research Unit 

(CRU), the WATCH forcing data (WFD) developed within the EU–FP6 Project ‘‘WATer and 

global Change’’, the Global Precipitation Climatology Centre (GPCC) Reanalysis product v6, 

and the regional Aphrodite’s Water Resources data set (Aphrodite). The performance of the 

model is then being evaluated by comparing modelled and observed river discharge for the 

time period 1971–2000. Finally, the uncertainties in modelled water availability induced by 

the different data sets are quantified to point out the consequences for water 

management. Over the entire region, mean and maximum annual precipitations given by 

the various data sets differ by 13 % and up to 42 %, respectively. In addition, considerable 

deviation of temporal dynamics is found in some locations, where a pair wise comparison 

showed poor agreement between CRU and GPCC/WFD (Nash–Sutcliffe efficiency 

0.27/0.23). Thus, also modelled discharge shows high temporal and spatial variations which 

leads to differences in median model efficiency of 0.11 between the data sets. 
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2.2.  Introduction 
 

During the last decade sustainable water management has emerged as a widely recognised 

method to solve water related problems (MoMo-Consortium 2009). Previously, 

environmental problems have often been solved with technical solutions such as dams, 

reservoirs, and dikes solely (MEA 2005), whereas Integrated Water Resources Management 

(IWRM) concepts are now being considered the more sustainable pathway for managing 

Central Asian water resources (e.g. Wouters et al. 2004; Dukhovny and Sokolov 2009; 

MoMo-Consortium 2009). Especially, in regions where high pressures on water resources 

persist, it becomes more important to set up an integrated and sustainable water resources 

management system (Jakeman et al. 2006). This enables not only a holistic assessment of 

current available water resources but also, even more  important, an analysis of 

anthropogenic water abstractions, which often are the reasons for water scarcity (e.g. 

Alcamo and Henrichs 2002; Alcamo et al. 2007; Aus der Beek et al. 2011; Malsy et al. 2013). 

Furthermore, cultural adaptation and governance policy are important issues to develop a 

concept for sustainable water use (MEA 2005; Pahl-Wostl et al. 2008). Central Asia features 

an extreme continental climate with mostly arid to semi-arid conditions and high 

interannual variability. In detail, due to low precipitation and therefore low water 

availability, water is a scarce resource and often a limiting factor for socio-economic 

development. For example, the ‘‘Dzud’’ events in Mongolia mark unusual extreme cold–dry 

weather conditions which result in livestock death over wide regions (IPCC 2012). According 

to Unger-Shayesteh et al. (2013) in the most studies performed since the 1970s a warming 

trend in air temperature was detected, but with a disagreement in terms of seasonal 

changes. Furthermore, the glacierized area in Tian Shan and Pamir Mountains decreased, 

which applies as well for the trend in snow depth and snow cover duration. At this, changes 

in runoff show no clear trend. The collapse of the Soviet Union caused a depression during 

the 1990s and a change to market economy. During the last decade, Gross Domestic 

Product (GDP) increased in all Central Asian countries, in particular in Kazakhstan and 

Turkmenistan. Also in Mongolia GDP per capita doubled between 2009 and 2011 (The 

World Bank 2013). Agriculture still plays a dominant economic role as it generated 27 % of 

Tajikistan’s, 19 % of Uzbekistan’s and Kyrgyzstan’s, 17 % of Mongolia’s, and 15 % of 
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Turkmenistan’s GDP in 2012. Only in Kazakhstan it is less important with 6 % of the GDP in 

2011 (The World Bank 2013). Irrigated area tripled throughout the 20th Century (Sattarov 

et al. 2006) and groundwater resources are increasingly used for irrigation and livestock 

purposes (Rakhmatullaev et al. 2010). Especially in Mongolia, Russia, and China up to 36 % 

of groundwater resources are used for irrigation, while in Kazakhstan, Uzbekistan, 

Tajikistan, Kyrgyzstan, and Turkmenistan it is currently below 10 % (Siebert et al. 2010). In 

the Amu Darya river basin, farmers started to use groundwater resources for irrigation at 

the end of the 1990s, as surface waters were often polluted by salts and pesticides. Due to 

pollution of surface water, sustainable water management is becoming more important 

(Rakhmatullaev et al. 2010). In this study, the hydrological conditions in Central Asia are 

being assessed using the large-scale hydrology model WaterGAP 3, which provides a 

geographically explicit overview of Central Asian water resources. However, it needs to be 

noticed that the quality of hydrologic model results strongly depends on the quality of the 

input data driving the model (Ludwig et al. 2009; Kauffeldt et al. 2013). Here, especially 

climate as well as river runoff data have proven to be very sensitive input parameters. 

Therefore, the aim of this model study is to compare the uncertainties of hydrological 

modelling induced by global and regional climate data sets and to calculate the impacts on 

estimates of local water resources. As precipitation is the most important driver of 

hydrological cycle (Yu et al. 2003), this study focuses on the uncertainties of modelled 

water fluxes induced by different precipitation data sets. Modelled water fluxes, i.e., river 

runoff, are being compared to observed data in order to evaluate the performance of 

WaterGAP 3, which also enables to assess the reliability and robustness of the model 

results in the real world. 

 

2.3.  Data and Methods 

2.3.1. Study Region 

 

This study focuses on Central Asia whereas this region is not defined by political borders 

but through the extent of river basins. Therefore, the term Central Asia contains the 

countries Kazakhstan, Kyrgyzstan, Mongolia, Tajikistan, Turkmenistan, and Uzbekistan 
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entirely as well as parts of Russia and China (cf. Cowan 2007) (see Figure 4). The largest 

water bodies in the study region are the rivers Ob with its tributaries Irtysh and Tobol, as 

well as Ural, Amu Darya, Syr Darya, Tarim and the lakes Balkhash, Issyk Kul, and Aral Sea. 

Elevation ranges from -152 m in the Turpan Depression up to 7,500 m in the Pamir and Tian 

Shan Mountains, whereby downstream arid lowlands are highly reliant on water provision 

from the mountainous regions (Hagg et al. 2007). The extreme continental climate is mainly 

arid to semi-arid with a wide temperature amplitude (up to +40 °C in summer and –40 °C in 

winter) (Worden and Savada 1991; Curtis 1997; Kottek et al. 2006; for a more detailed 

description of the study region see Malsy et al. 2012). Mountainous regions play a major 

role for runoff generation in Central Asia and the majority of hydrographs are mainly 

shaped by meltwater components (Savoskul and Smakhtin 2013). The meltwater 

component of runoff generation is very important for rivers flowing into arid areas or into 

warm and dry climate conditions (at least seasonal). For instance, 79 % of the precipitation 

in the Aral Sea basin runs off as delayed meltwater with decreasing importance from higher 

to lower altitudes (Kaser et al. 2010). In the Amu and Syr Darya Basin, hydrographs at 

upstream stations like Zerafshan, Vaksh, or Naryn feature a more or less equal contribution 

of seasonal snow melt, glacier melt, and groundwater to runoff generation. The area 

covered by glaciers and snow as well as the meltwater component of river discharge 

decreased in the Amu and Syr Darya basin comparing 1961–1990 to 2001–2010. In 

particular snow melt decreased in the Syr Darya river basin, but still ‘‘meltwater plays a 

dominating role in the hydrological regime of Amu and Syr Darya’’ (Savoskul and Smakhtin 

2013). For the Alay mountain range, which is located between Pamir and Tian Shan 

Mountains, snow melt decreases from West to East. Hagg et al. (2013) found a decreasing 

glacier area for Tian Shan, and Konovalov (2007) reports a slight decrease in glacier runoff 

for the Zerafshan river basin, which originates in the Pamir Mountains. Streamflow 

variations of the Aksu River, which drains the Tian Shan Mountains, show stronger 

dependency on precipitation in its less glacierized subcatchment compared to its more 

glacierized sub-catchment (Kundzewicz et al. 2014). According to Kriegel et al. (2013), a 

prolongation of the melting season causes increasing discharge during early spring and 

winter, though absolute discharge in winter is low. Although population density is in 

general low, especially in Mongolia (1.8 pop/km2) and Kazakhstan (5.7 pop/km2), some 

regions, such as the Aral Sea basin, feature high population densities and/or high pressures 
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on scarce water resources, which is heavily influenced by human activities altering 

hydrological fluxes in large areal extents (Aus der Beek et al. 2011). Furthermore, basins 

surrounding the capitals are often widely overused, due to urbanisation; therefore, water 

abstractions for domestic and industry purposes are high. Generally, water abstractions for 

agricultural, domestic, and industrial purposes play a major role, as water use increased, 

e.g., in Mongolia from 434 M. m3/year (2005) to 551 M. m3/year (2008). Also, immense 

water losses due to leakages are often caused by old and broken water supply pipes 

(Scharaw and Westerhoff 2011). Due to former Soviet infrastructure planning, 

transboundary reservoir management is important as new upstream reservoirs are planned 

(Rakhmatullaev et al. 2013), and inequalities in the access to water reservoirs for irrigation 

or hydropower between upstream and downstream countries have been a source of 

conflict (UNEP 2005). In total, data from 158 gauging stations from the Global Runoff Data 

Centre (GRDC) and the Mongolian Institute of Meteorology, Hydrology and Environment 

(IMHE) are available for the study region. As some stations feature a short or discontinuous 

time series, just 142 stations could be applied within this study. The gauging stations show 

a concentration in the northern parts of the study region in the river basins of Ob, Tobol, 

Irtysh, Selenga, plus in the Amu and Syr Darya catchments (see Figure 4), while for large 

areas no observed discharge data is available.  
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Figure 4: Study region with most important river basins [a Ob, b Irtysh, c Selenga, d Tobol, e Ural, f Ili River 
 (Lake Balkhash), g Syr Darya, h Amu Darya, i Tarim, j Morghab (Karakum Canal)]; river line width 
 depending on river length; mean elevation per grid cell based on SRTM30 data (Farr and Kobrick 
 2000) 

 

2.3.2. Data and models 

 

The simulations of Central Asian water resources have been conducted with the large-scale 

hydrology and water use model WaterGAP 3 (Water—Global Assessment and Prognosis) 

(Verzano 2009, online electronic supplement). WaterGAP 3 is a further development of 

WaterGAP 2 (Alcamo et al. 2003; Döll et al. 2003) and operates on a five arc minute grid 

(~6x9 km2) in daily internal time steps (Verzano 2009). Although WaterGAP 3 can operate 

on a global scale, an adapted land mask derived from river basins in Central Asian has been 

applied in this study. The water use model contains five sub models for irrigation, domestic, 

manufacturing, electricity production, and livestock water uses (Aus der Beek et al. 2010; 

Flörke et al. 2013). In this study, only irrigation water use differs within each model 

application, as it is the only climate dependent water use sector. The other water use 

sectors remain constant. Water abstractions from all sectors are being computed and then 

fed as time series into the hydrological module of Water- GAP 3 on the same grid scale in 
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order to simulate human impacts on natural river discharge. In addition, WaterGAP 3 needs 

to be calibrated to each climate data set by taking into account observed runoff data (next 

to water abstractions). The calibration and validation routine is described in detail by 

Alcamo et al. 2003. However, as shown in Figure 4, discharge data are scarce in Central Asia 

and not equally distributed throughout the region. For river basins without gauging 

stations, calibration parameters are being transferred by regionalisation from neighbouring 

basins. In total, four different global and regional climate data sets have been applied, 

which all are based on observed data. In particular, these are the data sets of the Climate 

Research Unit (CRU) TS 3.2 (Harris et al. 2013), Full Data Reanalysis from the Global 

Precipitation Climatology Centre (GPCC) in version 6 (Schneider et al. 2011), the forcing 

data of the WATCH project (WATCH forcing data, WFD) (Piani et al. 2010; Weedon et al. 

2011, 2012), as well as the Aphrodite’s water resources precipitation data (Yatagai et al. 

2009, 2012, see Table 1). 

Table 1: Characteristics of the applied climate data sets 

Climate Dataset 
Spatial 

resolution 

Temporal 

resolution 
Time period 

Climate Research Unit 

TS 3.2 (CRU) 
0.5° Monthly 1901-2011 

Global Precipitation 

Climatology Centre 

version 6 (GPCC) 

0.5° Monthly 1901-2010 

WATCH forcing data 

(WFD) 
0.5° Daily 

1958-2001 (ERA 40) / 1979-

2009 (ERA Interim) 

Aphrodite´s water 

resources (Aphrodite) 
0.25° / 0.5° Daily 1951-2007 

 

However, spatial and temporal resolution as well as available time period differs 

significantly. Thus, all data sets have been rescaled to the five arc minute spatial resolution 

of WaterGAP 3. The daily values of the WFD and Aphrodite record were aggregated to 

monthly values, as baseline time period 1971–2000 was chosen. It also needs to be 
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mentioned that the WFD is already bias corrected. Based on the ERA-40 or ERA-Interim 

reanalysis data, precipitation of WFD is adjusted with data of the Global Precipitation 

Climatology Centre (Weedon et al. 2011, 2012). As GPCC and Aphrodite only provide 

precipitation data, air temperature and radiation data were taken from the CRU data set 

and remain the same for all model runs. The precipitation input and number of rain days 

were replaced with the data of each climate record (GPCC, WFD, and Aphrodite). In the 

next step, a separate calibration of the WaterGAP model for each climate data set was 

processed in order to calculate the climate specific terrestrial water fluxes and irrigation 

demand of each Central Asian grid cell. Thereafter, WaterGAP was set up for each climate 

data input to simulate the water fluxes, such as runoff and evapotranspiration, in Central 

Asia for the time period 1971–2000. These model runs were conducted with and without 

consideration of anthropogenic water uses to analyse impacts of precipitation input data 

and human water abstractions solely. As precipitation data of GPCC and Aphrodite records 

are inserted into the CRU data, the interplay of parameters, e.g., temperature and 

precipitation, might not match. Finally, modelled river runoff was validated with 142 

stations of the GRDC and the IMHE. It needs to be mentioned that stations with a negative 

Nash– Sutcliffe efficiency (NSE) in all data sets were not examined at all, as these stations 

are expected to be strongly influenced by anthropogenic activities, as for example flow 

regulation by dams. Therefore, affected river basins, such as the Amu Darya River basin, 

need to be modelled with additional input data and expert knowledge (see Aus der Beek et 

al. 2011). The reassessment of runoff stations resulted in about 102 GRDC stations which 

could be used to validate the modelled runoff. As mentioned above one problem in the 

study region is the lack of validation data in dry regions, because of the few numbers of 

gauging stations and the often short or discontinuous time period of discharge data which 

is available. The input data of the four climate data sets vary highly in terms of precipitation 

quantity (cf. Table 2) as well as in spatial distribution (see Figure 5a). GPCC shows a much 

higher maximum annual precipitation (1,415 mm) compared to the other data sets (CRU 

822 mm, Aphrodite 998 mm, and WFD 1,036 mm). In terms of mean annual precipitation 

Aphrodite is dryer than the other data sets (237 mm) followed by GPCC (260 mm), WFD 

(271 mm), and CRU (272 mm).  
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Table 2: Mean annual precipitation input data for baseline time period (mm) 

 Aphrodite CRU GPCC WFD 

Minimum 30 0 0 7 

Mean 237 272 260 271 

Maximum 998 822 1415 1036 

 

Concerning minimum values, CRU and GPCC show the lowest values with no precipitation, 

while WFD features 7 mm, and Aphrodite 30 mm. In terms of spatial distribution the lowest 

values can be found in the South of the study region at Gobi and Taklamakan deserts. Here, 

large areas have a mean annual precipitation below 100 mm. The highest mean annual 

precipitation occurs at Ob river basin and Pamir Mountains. Here, CRU is much dryer than 

other data sets. On the other hand, CRU is not as dry compared to the other data sets at 

Tarim basin. In general, GPCC features the highest global station density with 10,700 up to 

more than 47,000 depending on the year and month (Schneider et al. 2011). Aphrodite 

consists of 5,000–12,000 stations for Asia (Yatagai et al. 2009), while CRU includes up to 

19,000 stations globally (Harris et al. 2013). As WFD is in terms of precipitation derived 

from GPCC (version 4 and 5) (Weedon et al. 2010, 2012; Rudolf et al. 2011; Schneider et al. 

2011), it relies on the same database. For Asia, Aphrodite has the highest station density 

compared to GPCC and CRU (cf. Yatagai et al. 2012; Harris et al. 2013) and should lead to 

more precise results.  
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Figure 5: a) Spatial distribution of mean annual precipitation in Central Asia for the time period 1971–2000, 
 b) spatial accordance of precipitation data sets expressed by a median Nash–Sutcliffe Efficiency 
 (NSE) per grid cell for baseline time series 

 

To evaluate the spatial accordance of the four precipitation data sets, all data sets were 

compared pair wise to each other and the median NSE over all combination was calculated 

in each grid cell for the baseline time series (see Figure 5b). Hereby, it can be found that the 

data sets agree very well in northern and eastern Mongolia, in southern Russia (Tobol) as 

well as in eastern Turkmenistan, and Uzbekistan. The highest deviations are obvious in the 

Pamir Mountains, Kunlun Shan, and Taklamakan Desert. At this, it is obvious that CRU and 

(a) 

(b) 
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GPCC/WFD show the least accordance and therefore highest deviations. Aphrodite and 

GPCC show the highest agreement both for mean and median NSE (cf. Table 3). Continuing 

to seasonal differences in precipitation input (see Figure 6) illustrates the mean monthly 

precipitation for each data set for the time period 1971–2000. At this, it becomes clear that 

WFD is considerably wetter during the first half of the hydrological year. In contrast 

Aphrodite features the lowest precipitation values during summer especially in July. CRU 

and GPCC show a very similar behaviour throughout the year as well as in terms of monthly 

values. Hereby, CRU is slightly wetter than GPCC with the highest deviation from March till 

May. 

Table 3: Pair comparison of mean and median NSE for each data set combination and monthly time series 
(01.1971–12.2000) 

 
Aphrodite 

– CRU 

Aphrodite 

– GPCC 

Aphrodite 

– WFD 

CRU –

GPCC 

CRU – 

WFD 

GPCC - 

WFD 
Median 

NSE 
0.71 0.87 0.69 0.69 0.68 0.81 

Mean 

NSE 
0.62 0.82 0.61 0.27 0.23 0.71 

 

2.4. Results and Discussion 
 

In the following, simulated water availability results are shown in order to compare the 

different data sets and to evaluate their impact on modelled water resources in Central 

Asia. Furthermore, the spatial and temporal distribution is analysed by hydrographs and 

maps. To validate the modelled results, river discharge has to be compared with observed 

values of gauging stations. Hereby, the water availability depends on the amount of river 

discharge. The evaluation of the goodness of the modelled river runoff is performed with 

different efficiency criteria. In this study, the coefficient of determination (R2) and the NSE 

are applied (Nash and Sutcliffe 1970). For both, NSE and R2, it needs to be mentioned that 

they are very sensitive to peak flow under- and overestimations; in addition, NSE tends to 

underestimate low flows and overestimate peak flows. As R2 only quantifies the dispersion 

of the values it is not sensitive for systematic over- or underestimation (Krause et al. 2005).  
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Figure 6: Mean monthly precipitation in Central Asia for the time period 1971-2000 

 

The global and regional data sets differ considerable in amount and spatial distribution of 

mean annual water availability (see Figure 7). Three sub-regions feature very low water 

availability; the first one is Southern Mongolia and Northern China which is affected by the 

Gobi desert. The second one is in the middle and west of Kazakhstan, Uzbekistan and 

Turkmenistan which contains the Karakum and Kyzyl Kum deserts. The third one is the 

Taklamakan Desert which is located in north-western China at the border to Tajikistan and 

Kyrgyzstan. In these regions the mean modelled yearly water availability is <10 mm. In 

particular, WFD induces a large and very dry area in southeast Mongolia and Inner 

Mongolia. In contrast to the other data sets, CRU shows high water availability at Tarim 

catchment, whereas all other data sets tend to very dry conditions. Further on, WFD does 

not reproduce the very dry part at the Kazakh-Russian border northwest of the capital 

Astana. 

The highest water availability can be found for GPCC (1,336 mm), WFD (1,305 mm), and 

Aphrodite (1,012 mm) in the Ob River basin, whereas CRU (925 mm) has the maximum in 

Pamir-Alay Mountains in Tajikistan. In general, the wettest parts can be found in the 

mountainous regions of Alay, Pamir, Tian Shan, and Altai. For the baseline 1971–2000, 

mean annual simulated water availability is 64 mm (CRU), 61 mm (GPCC), and 60 mm 
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(Aphrodite, WFD). In terms of water use, irrigation is the only sector which depends on 

climate. At this, WFD features highest mean and maximum annual irrigation water 

withdrawal with 0.84 and 29.46 km3, respectively (see Table 4), while CRU, GPCC, and 

Aphrodite are on an equal level at 0.78 and ~27 km3. 

 

Figure 7: Simulated mean annual water availability (time period 1971–2000) 

 

Compared to other water use sectors irrigation is by far the biggest contributor, as summed 

water abstractions of other sectors are considerably lower (0.029 km3 mean, and 5.51 km3 

maximum). Highly influenced by abstractions for irrigation purposes are Syr Darya and 

Amur Darya river basins as well as Tarim River basin. However, not only high abstractions 

for irrigation are present in the river basins but also low precipitation and therefore low 

water availability persist. As indicator to examine these effects the water withdrawal to 

availability ratio (w.t.a.) is used, which points out the water stress level in river basins 

(Alcamo et al. 2007). No water stress is assumed, if the ratio is below 0.2, which means that 

<20% of the available water is withdrawn. The range between 0.2 and 0.4 is defined as 
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medium water stress, whereas over 0.4 severe water stress occurs. In general, the data sets 

show high agreement concerning spatial distribution of water stress (cf. Figure 8), as all 

data sets show severe water stress in the southern and south-western study region (e.g. 

Tarim River, Amu Darya and Syr Darya). Furthermore, Ural River at the Russian- Kazakh 

border as well as in the very East severe water stress can be found. Medium water stress is 

present in the centre surrounding Lake Balkash (e.g. Ili River), while in most parts of 

Mongolia as well as in north and mid-west region no water stress can be found. This might 

be surprising as Mongolia is well known for its arid to semi-arid climatic conditions. 

However, due to its sparsely populated area, anthropogenic pressure and thus water stress, 

is low. Nevertheless, a recently published scenario study (Malsy et al. 2013) shows an 

increase in water stress for the Tuul river basin, which is the single water source for the 

rapidly increasing population of the Mongolian capital Ulaanbaatar. Even if the spatial 

distribution of water stress is similar, absolute values differ clearly, but lead not to changes 

into a higher w.t.a category (e.g. Tuul River: Aphrodite 0.06, CRU 0.15, GPCC 0.07, and WFD 

0.19), or induce with all data sets severe water stress (e.g. Tarim River: Aphrodite 5.4, CRU 

0.98, GPCC 4.97, and WFD 9.20). Following the water stress analysis for Central Asia, we 

evaluated the goodness and robustness of the WaterGAP 3 model results. 

 

Table 4: Mean simulated annual irrigation water withdrawals per basin (1971–2000) 

 Aphrodite CRU GPCC WFD 

Minimum [km³] 0 0 0 0 

Maximum [km³] 27.30 26.97 27.18 29.46 

Mean [km³] 0.078 0.078 0.078 0.084 

 

The analysis of the spatial distribution of NSEs shows that various patterns dominate (cf. 

Figure 9). Firstly, stations agglomerate in the northern part. Secondly, stations in Amu and 

Syr Darya basin show low NSEs while basins at Ob, Irtysh and Tobol rivers feature generally 

good NSEs. At this, one exception surrounding Vasyugan Mire in the middle north is 

obvious. Further on in the east, Mongolia is characterised by low station density and 

varying NSEs. For large parts especially in arid regions such as southern Mongolia, north-



39 
 

west China, west and middle Kazakhstan, not a single station is available. In addition, 

various effects concerning the model results have to be mentioned. Some stations in 

particular in arid regions as well as regions with impounding soil layer could not be 

modelled accurately, which is on one hand the result of heavy anthropogenic water 

abstractions and on the other hand of insufficient represented processes in the model, as 

evaporation is modelled with Priestley-Taylor equation (see Priestley and Taylor 1972), 

which was used due to lack of input data. 

 

Figure 8: Comparison of water stress (w.t.a.) (Climate period 1971–2000; water use base year 2005) 

 

In terms of anthropogenic influence, the Aral Sea basin with Amu Darya and Syr Darya 

Rivers has to be mentioned. Huge water abstractions for irrigation in conjunction with large 

canals lead to a complete modification of the natural hydrological cycle. Here, Aus der Beek 

et al. (2011) has shown that the performance of WaterGAP 3 can drastically be improved 

when taking into account local data sets and infrastructure, such as the Karakum Canal, as 

well as dynamic land use maps. Furthermore, stations influenced by swamp and inundation 
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areas could not be modelled accurately as far as WaterGAP only consists of one soil layer 

which is derived from soil texture and land cover (Alcamo et al. 2003). At this, soil retention 

capacity is probably underestimated and leads to simulated discharge ahead of time. Also, 

interflow processes are not included in the model, which would as well slow down 

discharge generation. As example in the Vasyugan Mire, between of Irtysh and Ob River, 

peak discharges are overestimated in the simulation results, which lead to a low NSE. 

Beside this, at some stations rather large disagreements between the data sets persist, as 

some stations, e.g., in Mongolia, could only be modelled accurately with WFD or Aphrodite, 

but not with GPCC or CRU. However, no standard is evident, as all data sets feature stations 

with high or low NSE compared to the other data sets. Comparing NSE and R2 (Figure 10, 

left) the study region was modelled best with GPCC (Median 0.59) followed by Aphrodite 

(0.56), CRU (0.51) and WFD (0.48). This is probably attributable to the fact of availability 

and distance to precipitation stations in that region, as precipitation distribution strongly 

influences runoff generation, and thus NSE. Generally, WFD tends to more extreme results 

and therefore higher standard deviation. 

 

Figure 9: Spatial distribution of NSE efficiency at gauging stations 
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The NSE box plot also points out this behaviour. Here, GPCC shows more clustered results, 

while WFD is more scattered. CRU and Aphrodite take a central position in between these 

two data sets. The reasons for these patterns are unknown as the raw input data for these 

gridded data sets are not available; also, different interpolation and gridding techniques 

may have been applied to produce these data sets. 

 

Figure 10: Box plot (left) and histogram (right) of NSE (top) and R2 (bottom) 

 

The histogram underlines this as WFD shows more stations in the lowest class (NSE<0.25), 

whereas GPCC has by far the largest amount of stations in the highest class (NSE>0.75). In 

terms of R2 the differences between the data sets are lower. Here, Aphrodite and GPCC 

show a median of 0.77, WFD of 0.76, and 0.72 for CRU. The histogram (Figure 10, right) 

shows a concentration of all data sets in the middle NSE classes (classes 0.25–0.50 and 

0.50–0.75) and in the highest classes for R2 (classes 0.50–0.75 and >0.75). In the following, 

two hydrographs are discussed to highlight the differences in simulated results of the four 

applied climate data sets in Central Asia. These hydrographs were selected because they 



42 
 

exemplary show the varieties and similarities which are induced at a station by climate data 

input. One is located in the Tuul River, a tributary to Selenga River at Ulaanbaatar in 

Mongolia with a catchment size of 6,900 km2; the second one is located at Khovd River at 

Ulgii in western Mongolia with a catchment area of 22,057 km2 (see Figure 11). For the 

station at Ulaanbaatar overall agreement between the data sets is very high and all data 

sets show a considerable good NSE (GPCC 0. 66, CRU 0.61, WFD 0.67, and Aphrodite 0.68).  

 

Figure 11: Hydrograph of Station Ulaanbaatar at Tuul River (top) and Station Ulgii at Khovd River (bottom) 

 

The observed discharge features a high increase during the early 1990s, due to increasing 

precipitation. During mid-late 1990s discharge decreased rapidly, which leads to 
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overestimated runoff peaks with all climate data sets, but matches regarding runoff 

dynamics and variability. A complete different picture appears when analysing station Ulgii; 

here, the four data sets lead to large differences in runoff simulation, especially regarding 

high peaks. CRU tends to overestimate the peaks during the entire time period except for 

two very high peaks in 1993 and 1994. On opposite, GPCC and WFD overestimate these two 

peaks, while Aphrodite tends to underestimate them. Furthermore, CRU induces the first 

peak earlier in spring as the other data sets and the observed data. This is mirrored in the 

NSE: while Aphrodite (0.47), GPCC (0.52), and WFD (0.52) are on a similar level, CRU 

features a low NSE of 0.02 at Ulgii. These patterns correspond to precipitation sums and 

distribution in headwater region (see Table 5).  

Table 5: Precipitation input data at headwater of station Ulaanbaatar and Ulgii (time period 1971–2000) 

 Aphrodite CRU GPCC WFD 

 
Ulaan-

baatar 
Ulgii 

Ulaan-

baatar 
Ulgii 

Ulaan-

baatar 
Ulgii 

Ulaan-

baatar 
Ulgii 

Minimum [mm] 263 92 289 232 279 120 254 117 

Maximum [mm] 309 159 362 358 311 168 294 171 

Mean [mm] 290 120 330 284 292 132 265 131 

Minimum [%/100, 

compared with CRU] 
0.91 0.40 1.00 1.00 0.97 0.52 0.88 0.50 

Maximum [%/100, 

compared with CRU] 
0.85 0.44 1.00 1.00 0.86 0.47 0.81 0.48 

Mean [%/100, 

compared with CRU] 
0.88 0.42 1.00 1.00 0.89 0.47 0.80 0.46 

 

Comparing the precipitation input data at headwater region of gauging station Ulgii and 

Ulaanbaatar, huge differences between the data sets at station Ulgii occur. Here, CRU 

features twice as much precipitation in terms of minimum, mean, and maximum 

precipitation than the other data sets (cf. Table 5). As in particular WFD and GPCC but also 

Aphrodite, show similar precipitation, data mismatch of CRU at Ulgii station is apparent. At 

station Ulaanbaatar, all data sets feature more homogenous input data, which 
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consequently leads to NSE at a similar level. As shown in this study data reliability is a 

problem in regions with scarce data. Fekete et al. (2003) showed for six precipitation data 

sets differences in the latitudinal profile for mean annual precipitation. At this, the relative 

range differences are high in dry regions (up to 100 %) and are more consistent in wet 

regions. Bosilovich et al. (2008) compared reanalysis data on a global scale among 

themselves and with satellite data and found huge regional differences. Overall the need 

for precipitation sampling improvements especially in dry regions is obvious (Fekete et al. 

2003). 

 

2.5.  Conclusions and Outlook 
 

This hydrological model study for Central Asia focussed on two topics. First, an uncertainty 

analysis concerning precipitation input data and their effect on water availability and model 

performance. Here, it could be shown that large regional differences persist between the 

four data sets, which can have enormous consequences on modelled local water 

availability, and thus on model performance, too. The GPCC and Aphrodite data sets have 

shown to generally yield the best hydrological results and can thus be considered as the 

most suitable data sets for Central Asia. 

However, it is unknown if the same results would be reproducible with a different 

hydrological model (see Schewe et al. 2013; Haddeland et al. 2011). The validation of the 

goodness of the modelled water availability is difficult, because only a few runoff stations 

are available compared to the size of the study area. Also, due to the fact that the stations 

are concentrated in the northern part, some larger regions, such as southern Mongolia, do 

not contain a single station. Secondly, this study focussed on a first assessment of Central 

Asian water resources in a geographically explicit manner. The results show large 

differences between the arid deserts in the South with less than 10 mm water availability 

per year and humid mountainous regions in the north and middle of Central Asia with more 

than 300 mm/year. At this, validation and regionalisation are difficult in particular for arid 

regions as gauging station density is very low. This is not only the case regarding gauging 

stations but also holds true for meteorological stations which are the basis for 
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climatological data sets. This is reflected in the geographical differences in climate input 

data as well as in depending model results. Furthermore, catchment size seems not to be 

an important factor in this study as smaller basins (around 5,000 km2) were modelled 

accurately as well. From a scientific point of view, this study has shown that WaterGAP 3 is 

capable of a realistic representation of Central Asian water resources. However, two 

shortcomings have been identified. First, overexploitation of regional water resources can 

sometimes lead to overestimation of water availability even though WaterGAP 3 models 

include water use from five different sectors and also features a reservoir algorithm for 

dams. Moreover, ‘‘non-climatic stresses are likely to increase regional vulnerability to 

climate change and reduce adaptive capacity (Lioubimtseva and Henebry 2009).’’ 

Therefore, it is according to Lioubimtseva et al. (2005) of high importance for Central Asia 

to consider land use changes in future modelling experiments, especially for regions with 

high human impacts. Aus der Beek et al. (2011) has shown for the Aral Sea in a WaterGAP 3 

study that regional dynamic data sets, e.g., on land use, need to be included to better 

represent anthropogenic effects on local water resources, as climate change only accounts 

for 14 % of the Aral Sea inflow reduction, whereas the remaining 86 % can be assigned to 

anthropogenic overexploitation of local water resources. This study has also shown that the 

global data sets are not able to represent local and sub-national water use patterns, and 

need to be backed up by regional data. Therefore, future studies of water resources in 

Central Asia should not only include regional climate data sets but also regional socio-

economic data input, as studies of human–water interactions (socio-hydrology) become a 

rising issue (cf. Sivapalan et al. 2012; Savenije et al. 2013). Second, several processes have 

been identified, which need to be further investigated in order to improve the model 

performance in Central Asia. For example, this study has shown that the reliability of the 

model decreased in wetlands as well as in arid regions. This may originate from the 

historical development of WaterGAP starting in the mid-1990s, where it was planned as a 

global water balance tool. Since the development of the high-resolution WaterGAP 3 model 

(Verzano 2009), regional hydrological aspects came into focus, and more sophisticated 

hydrological processes have been integrated. 
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3. Climate Change Impacts on Central Asian Water Resources 
 

3.1.  Abstract  
 

Central Asia is in large parts dominated by low precipitation and, consequentially, by low 

water availability. Therefore, changes of natural water resources induced by climate change 

are of high interest. The aim of this study is to analyse the potential impact of climate 

change on Central Asian water resources until the end of the 21st century and to point out 

the main affected regions. Thus, simulations with the large-scale hydrology model 

WaterGAP 3 for the baseline and scenario periods were performed with outputs from three 

General Circulation Models (GCMs: ECHAM5, IPSL-CM4, and CNRM-CM3) and two IPCC-

SRES emission scenarios (A2 and B1). The results show that mean modelled annual water 

availability increases for all scenarios and GCMs while CNRM-CM3 induces the wettest 

water situation for the 2085s and ECHAM5 the lowest water availability. Furthermore, 

robust trends to wetter or dryer conditions could be found for many basins. A seasonal shift 

of mean modelled water availability could be derived for ECHAM5 which does not show a 

second peak during summer. The application of daily input data showed no improvement of 

modelled monthly river discharges for most Central Asian basins compared to monthly 

input data. 

3.2.  Introduction 
 

Large parts of Central Asia feature arid to semi-arid conditions and are therefore of high 

interest for hydrological studies, as water scarcity often limits the development of human, 

ecological, and industrial resources. However, not only climate change induced water 

problems, such as permafrost and glacier melting (Marchenko et al., 2007) and increased 

evapotranspiration (Yu et al., 2003) prevail in Central Asia, but also overexploitation of 

existing water resources (aus der Beek et al., 2011; Bucknall et al., 2003), transboundary 

water conflicts (ICG, 2002), failure of post-soviet water management strategies (O’Hara, 

2000), and many more (EDB, 2009; Lioubimtseva and Henebry, 2009). Within this 
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integrated model study the hydrological and water use model WaterGAP 3 (Water – Global 

Assessment and Prognosis) is applied to all river basins located in Kazakhstan, Kyrgyzstan, 

Tajikistan, Turkmenistan, Uzbekistan, Southern Russia, North-Western China, and Mongolia 

in five arc minutes spatial resolution (6×9 km per grid cell). Furthermore, an overview of the 

Central Asian water resources of the last three decades is given. To verify the plausibility of 

the model results, simulated river discharge is compared to observed river discharge. At 

this point, the impact of daily climate input data compared to monthly climate input data 

on modelled monthly river discharge is examined. Following the successful validation of the 

model results, transient bias-corrected climate change projections are being applied to 

estimate their impact on the water resources of Central Asia. Monthly fields of 

precipitation, radiation and air temperature output from the Global Circulation Models 

(GCMs) CNRM-CM3, ECHAM5, and IPSL-CM4 for the SRES-IPCC scenarios A2 and B1 (IPCC, 

2000) are used to drive WaterGAP 3 to calculate potential changes in future local water 

resources. Thus, the model results also provide further insight into the range and 

uncertainty of climate change impacts when applying opposing climate models and 

scenarios. Menzel et al. (2008) analysed precipitation trends in a study for Mongolia. Even if 

water availability was not the focus of this study, but runoff generation, it is of high 

interest. They found an increase with ECHAM5 in the Middle and East of Mongolia with up 

to 20% more precipitation while the other parts mostly show small changes in the B1 

scenario. For the A1B scenario the western and southern parts of Mongolia showed a 

decrease in runoff generation.  

 

3.3.  Methods and Study Region 

3.3.1. Study Region 

 

This study focuses on the region of Central Asia whereas this region is not defined by 

political borders but through the extent of river basins. Therefore, the term Central Asia 

contains the countries of Kazakhstan, Kyrgyzstan, Mongolia, Tajikistan, Turkmenistan and 

Uzbekistan entirely as well as parts of Russia and China (cf. Cowan, 2007) (see Figure 12).  
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Figure 12: Study Region of Central Asia with GRDC (Global Runoff Data Center) stations 

 

The study region is confined in the South (-West) by the mountains of Kopet Dag and Pamir, 

and with the Caspian Sea as western border. Moving on eastwards from the Pamir, the 

southern border is determined by the Kunlun Shan and Altun Shan mountains. Next to this 

mountain chain the Tarim basin with the desert of Taklamakan followed by Mongol Shan 

and Gobi desert can be found. The northern boundary is determined by the south Siberian 

lowlands with its large plain areas. The middle parts in the West (Kazakhstan) and East 

(Mongolia) are dominated by the Eurasian Steppe. The driest part of the study region is 

located in the desert regions of Gobi, Taklamakan, Karakum and Kyzyl Kum while the 

mountainous regions of Pamir, Altai, Alatau as well as south Siberia have the highest annual 

precipitation amounts. Especially, the downstream arid lowlands are highly reliant on water 

provision from the mountainous regions (Hagg et al., 2007). The biggest water bodies in the 

study region are the rivers Ob (North-Northeast Kazakhstan) with its tributaries Irtysh and 

Tobol, as well as Ural (West-Northwest Kazakhstan), Amu Darya (Fountain head in Pamir 

Mountains, then runs Turkmenistan and Uzbekistan to the Aral Sea), Syr Darya (Origin in 

Tien-Shan Mountains, then runs through Kyrgyzstan, Uzbekistan and Kazakhstan to the Aral 

Sea), Tarim (Northwest-China) as well as the lakes Balkhash (East-Kazakhstan), Issyk Kul 

(Kyrgyzstan) and Aral Sea (Border of Kazakhstan and Uzbekistan). In summary, the study 

region is topographically dominated by the Eurasian Steppe and additionally by mountains 

and deserts (Worden and Savada, 1991; Curtis, 1997). Overall, the study region features a 

spatial extent of 10 million km2 with an elevation range from below sea level in the Turpan 
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Depression (−152 m) and (−135 m) in the Aral-Caspian Depression up to 7,500 m in the high 

mountainous regions of Pamir and Tien-Shan. Due to the continental and mainly arid to 

semi-arid climate the study region has a high temperature amplitude from −45°C in winter 

up to 40°C during the summer. Although the study region is sparsely populated in the most 

parts, some regions – such as the Aral Sea basin – are heavily influenced by anthropogenic 

water uses (e.g. water abstractions for agriculture). 

 

3.3.2. Data and methods 

 

Within this study the large-scale hydrology and water use model WaterGAP 3 has been 

applied, which is a further development of the global model WaterGAP 2 (Alcamo et al., 

2003; Döll et al., 2003). WaterGAP 3 still can operate on the global scale, whereas in this 

study a Central Asian landmask derived from river basins has been applied. In addition to 

the increase in spatial resolution from 0.5° (~50 km × 50 km) to 5’ (~6 km × 9 km) (Verzano, 

2009) also some hydrological process descriptions have been improved in WaterGAP 3, 

such as snow related processes (Verzano and Menzel, 2009), flow velocity (Schulze et al., 

2005), and water use (aus der Beek et al., 2010; Flörke et al., 2012). However, as this study 

focuses on the impact of climate change on available water resources, water use will not 

further be considered herein, but will follow in a future study. Monthly water fluxes for 

each of the 167,600 Central Asian grid cells forming 1,536 basins were calculated taking 

into account spatially distributed physiographic information on elevation, slope, 

hydrogeology, land cover and soil properties, as well as location and extent of lakes, 

wetlands, and reservoirs. It has to be mentioned that many of the small basins are closed 

depressions. The upstream/downstream relationship among the grid cells is defined by a 

global drainage direction map (DDM) which indicates the drainage direction of surface 

water (Lehner et al., 2008). If only monthly climate input is available WaterGAP 3 internally 

calculates the water balance of each grid cell on daily time steps. Therefore, all climate 

input, except precipitation, is interpolated with cubic splines to daily values. In terms of 

precipitation the model computes pseudo-daily time series from the number of rain days 

using a Markov chain algorithm (Geng et al., 1986). As climate input data for the baseline 
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period 1971 to 2000 the WATCH forcing data (WFD), generated within the European Union-

Framework Six (EU-FP6) – WATer and global CHange Project (WATCH), was used. This half 

degree global climate dataset was derived from ERA-40 reanalysis data and is available in 

daily time steps for the time period 1958 to 2001. For detailed information on the WATCH 

forcing data see Weedon et al. (2010, 2011). As radiation input shortwave derived from 

CRU data was used. Malsy et al. (2011) have shown that the WATCH forcing dataset is 

suitable for application in Central Asia. The climate change projections for the 21st century 

were extracted from the WATCH driving data. This dataset is available for two IPCC-SRES 

scenarios (A2 and B1) and for three GCMs; IPSL-CM4 (Institute Pierre Simon Laplace, 

France), ECHAM5 (Max Planck Institute for Meteorology, Germany) and CNRM-CM3 (Centre 

National de Recherchés Météorologiques, France). The WATCH driving data provides 

transient bias-corrected scenarios and is available with a daily temporal and a half-degree 

spatial resolution from 1960 to 2100. For further information on the WATCH driving dataset 

and the statistical bias correction see Hagemann et al. (2011) and Piani et al. (2010). All 

climate datasets have been rescaled from half-degree to five arc minute spatial resolution. 

The transient and bias-corrected climate scenarios have been divided into 30-yr time slices, 

i.e. 2011–2040, 2021–2050, ..., 2071–2100, for a better comparison to the 1971–2000 

baseline results. The baseline time period has been simulated with daily and monthly 

climate data input to explore the impact of daily input data on the simulated monthly water 

fluxes. For this reason the daily WFD data was aggregated to monthly values. The 

performance of the model results was evaluated by comparing modelled to observed river 

discharge for 73 valid stations in Central Asia available from the Global Runoff Data Center 

(GRDC) database. Since some GRDC stations records do not cover the entire baseline 

period, only parts of the baseline could be validated. The location of the GRDC gauging 

stations shows a concentration in the northern part of the study region at the Russian 

border. Especially, the arid parts lack gauging station data, which is shown in Fig. 1. In this 

region only a few runoff stations with often short time series observations are available for 

model calibration and validation. Also, climate data is less reliable in these regions, which 

leads to interpolation inconsistencies, as often only few climate stations are available. For 

the scenario period the influence of climate change on the water fluxes, e.g. water 

availability has been examined. First, the decadal trend of mean annual water availability in 

comparison to the baseline results has been analysed. 
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Furthermore, modelled water availability for 2071–2100 (2085s) has been compared with 

the baseline water availability on river basin level to assess spatial changes. Here, the 

robustness of trends in water availability – three GCMS pointing into the same direction of 

change – has been analysed. The threshold for relative changes has been set to ±5 % and 

for absolute changes to ±5 mm. Finally, changes not only in mean annual water availability 

but also seasonal variability are of high interest. On this account, the monthly variability for 

three GCMs and two IPCC-SRES scenarios (2071–2100) have been simulated and compared 

with the baseline period (1971–2000).  

 

3.4.  Results and discussion 

3.4.1. Modelling current water resources in Central Asia 

 

Central Asia features large areas with low precipitation and therefore limited water 

resources, which can be observed in the modelled annual water availability for the time 

period 1971–2000 (cf. Figure 13).  

 

Figure 13: Modelled annual water availability based on monthly input data (top); alongside absolute and  
 relative deviation between monthly and daily data input (baseline period 1971–2000) 
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The big desert regions, i.e., Gobi, Karakum, and Taklamakan, show mean annual water 

availability below 10 mm. Predominant westerly winds, lee side effects and orographic 

precipitation patterns are the reasons for this low precipitation (e.g. Taklamakan desert). In 

contrast, there are mountainous regions, e.g., the Pamir and Altai mountains, with high 

precipitation and mean annual water availability of more than 1200 mm. The mean water 

availability in the study region is 63 mm and 66 mm as modelled with monthly and daily 

data input, respectively. Here, the predominant patterns of modelled annual water 

availability are very similar for monthly and daily data input. The highest deviations for 

absolute values between daily and monthly data input are in the mountainous regions of 

Central Asia, i.e., Pamir, Dzungarian Alatau, and Altai, as well as southern Siberia (Figure 

13). On the one hand, model results with monthly input data result in wetter conditions in 

the mountain regions. 

On the other hand, model results with daily input data show higher water availability in the 

North of the study region (Siberia). In contrast, the examination of relative differences leads 

to different spatial patterns. The reason for these differences can be found in the input 

data; daily input data result in wetter conditions in the southern desert parts, i.e., Gobi, 

Taklamakan, and Karakum, as well as again at the Siberian border in the North. Monthly 

data is wetter around the Aral Sea and in eastern part of Mongolia. Whereas the mean 

modelled annual water availability slightly differs between daily and monthly input, more 

effects can be found in the modelled hydrographs of river discharge and its model 

efficiency evaluation. The Nash- Sutcliffe Efficiency (NSE) and coefficient of determination 

(R2) for modelled monthly river discharge show higher, and thus better values with monthly 

(NSE 0.45, R2 0.65) than daily (NSE 0.39, R2 0.56) input data. Generally, the model 

application is suitable for the entire study region with a mean NSE of 0.45. Not only the 

level of the efficiency criteria is higher with monthly data input, also more stations were 

modelled validly (73 to 60). Mostly, the river runoff peaks are overestimated with daily 

input data, which leads to overestimated runoff generation and, hence, to lower efficiency 

criteria (Krause et al., 2005). Further, the base flow appears higher for daily input data. In 

many cases, this is caused by rather small peaks in autumn, which lead to a slower 

transition from peak to low flow. It has to be mentioned that some regions and rivers which 

are heavily influenced by anthropogenic water abstractions such as Amu Darya and Syr 
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Darya cannot be simulated accurately because the model setup within this study simulates 

the water fluxes only with natural conditions (i.e., water abstraction is not considered). 

Beside this, also the observed runoff data may include uncertainties – for example 

measurement errors. As shown above, daily data input does not improve the results for 

modelled monthly river discharge. One reason for this could be that the model structure 

and the representation of evapotranspiration processes was developed for monthly data 

input. Hence, further adaptation of the model to daily input data might improve the results.  

 

3.4.2. Potential future development of Central Asian water resources 

 

The simulation of the potential future development of Central Asian water resources has 

been carried out with the WATCH driving data (see Sect. 2.2). While for the baseline a small 

decrease between the time periods 1961–1990 and 1971– 2000 (64 mm to 63 mm) was 

noticed, an increase of mean annual water availability for each scenario and GCM until 

2100 compared to the baseline was found. For both scenarios, A2 and B1, CNRM-CM3 

shows the highest increase in water availability and ECHAM5 the lowest. It has to be 

mentioned that the baseline values were computed with the ERA-40 corrected WFD and 

not with the respective GCM baseline. This was necessary to calibrate WaterGAP 3 

accurately, because the GCM baselines are too wet and lead to overestimated calibration 

parameters. For a detailed description of the calibration method of WaterGAP see Alcamo 

et al. (2003). Thus, even though WATCH forcing (until 2001) and driving (scenarios) data are 

supposed to be transient and bias-corrected, an offset between the observed WFD data 

(time period 1971–2000) and the first scenario period 2001–2030 (see Figure 14) exists.  
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Figure 14: Modelled decadal mean annual water availability from 1971 to 2100 (Baseline period 1971–2000 
 with WFD, scenario period 2001–2100 with three GCMs and two scenarios) 

 

While CNRM-CM3 and IPSL-CM4 show a constant increase in mean water availability for the 

study region, ECHAM5 causes firstly a decrease which turns from the 2045s to an increase 

until the end of the 21st century (scenario A2). This is induced by an increasing precipitation 

input in the scenario data during the 21st century, as precipitation is the main driver of the 

water cycle. In general, it can be determined that the differences between the IPCC-SRES 

scenarios (up to 9 mm in 2071–2100) is smaller than between the GCMs (up to 17 mm in 

2071–2100). Furthermore, the impact of the A2 scenario is stronger than of B1 except for 

the ECHAM5 driven simulations. Here, the B1 scenario results are well above the A2 

outcomes until the last phase (2071–2100). This is in agreement with Zwolsman et al. 

(2011) who detected also stronger impacts under the A2 than the B1 scenario. 

Looking at the spatial distribution of mean modelled water availability the following picture 

emerges (Figure 15). Compared with the baseline the Ob river basin and the Altai 

Mountains river basins remain with high water availability in all GCM/scenario 

combinations. For the Tobol river basin in the north western part of Central Asia the A2 

scenario leads to an increase of water availability with ECHAM5 as well as CNRM-CM3. This 

trend cannot be found for IPSL-CM4 and for the B1 scenario. In the western part in the Aral-

Caspian depression water availability stays in dry conditions with all GCM/scenario 
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combinations. In contrast to the Karakum and Gobi Desert, where all three GCMs and 

scenarios project ongoing dry conditions, the Tarim basin within the Taklamakan desert 

gets wetter with the IPSl-CM4 and CNRM-CM3 and less wet with ECHAM5. In the Amu 

Darya and Syr Darya basins only ECHAM5 shows a decrease in water availability. Generally, 

in relation to the baseline (1971–2000) the middle and middle-eastern parts of the study 

region are mostly affected by increasing natural water availability (e.g. Tarim basin, Selenga 

basin). In contrast, the biggest change to dryer conditions can be found in the Aral Caspian 

Depression within all models and scenario combinations. Also, parts of the Gobi Desert in 

Southeast Mongolia, Dzungaria and middle southern Turkmenistan show decreasing trends, 

particularly with ECHAM5. IPSL-CM4 shows for nearly entire Mongolia an increasing trend 

and CNRM-CM3 for the North and West. ECHAM5 leads to a decrease in water availability 

in the Southeast (Gobi Desert) and to an increase in the Altai Mountains. In comparison, 

Ragab and Prudhomme (2002) projected for the Aral Sea basin an increasing precipitation 

by 5–20 % in summer and winter, and also Batimaa et al. (2011) expected a sharp increase 

of winter precipitation for Mongolia which leads in combination with increasing air 

temperature to changes in evapotranspiration and water availability. 

 

Figure 15: Modelled annual average water availability on river basin level for the baseline period 1971–2000 
 and for the scenario time period 2071–2100, separately shown for each GCM/emission scenario 
 combination 
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The robustness of trends (Figure 16) confirms the above named changes in water 

availability. Modelled water availability (absolute values) shows an increasing trend for 

both scenarios in the south of the study region (Chinese Xinjiang region), for the north of 

Mongolia and the Mongolian Altai, and in the A2 scenario also for the Tobol and Ural basin. 

A decreasing trend can be found in the Aral Caspian Depression, North-Northwest and 

Southwest of the Aral Sea. For relative values the same patterns can be found, whereas an 

increasing trend also in Russian Altai and the Ob river basin can be observed. Ragab and 

Prudhomme (2002) expected a change in water availability due to alterations in 

precipitation and high interannual variability in semi-arid and arid regions.  

Figure 16: Robustness of trends (all GCMs show the same direction of change; threshold of 5 % for the 
 relative trends and 5 mm for absolute trends) in modelled water availability for the scenario period 
 2071–2100 and the two emission scenarios A2 and B1 

 

The seasonal variability in the study region (cp. Figure 17) shows two peaks in water 

availability during the year, a high spring peak which is caused by snow melting and a minor 

peak in summer. For example in Mongolia the highest precipitation rates are during the 

summer months. In this study no shift in the seasonal variability of modelled water 
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availability could be found, except ECHAM5 which does not show the second peak during 

July. The spring peak increases for all scenarios and GCMs until 2100, but with an earlier 

and sharper rise. In the case of IPSL-CM4 and CNRM-CM3 also the second peak during the 

summer increases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: Seasonal variability of modelled monthly water availability (WA) for time period 2071–2100 in 
 comparison to baseline time period (1971–2000) 

 

3.5.  Conclusions 
 

In this study the hydrology model WaterGAP 3 has successfully been applied in order to 

analyse the water resources of Central Asia, driven by daily and monthly WATCH forcing 

and driving data. Generally, an increase in mean annual water availability was found in the 
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scenario analyses. This increase might be overestimated – especially for the trends to 

wetter conditions- because the baseline was simulated with observed data and not with the 

GCM baselines. Also, an offset between observed baseline and modelled scenario climate 

data has been evident. Not only today’s wetter regions in Central Asia, such as the Pamir 

and Tien Shan Mountain ranges feature this increase in water availability but also arid 

regions, e.g. Taklamakan, show an increasing trend. In contrary, the Aral Caspian 

Depression has a robust trend to dryer climate conditions until 2100. In case of the three 

applied GCMs CNRM-CM3 shows the highest increase in water availability for both 

scenarios A2 and B1, whereas ECHAM5 leads to the driest conditions. Our results for the 

study region also show that the range between the different GCMs is larger than between 

the emission scenarios A2 and B1. Seasonal changes in runoff characteristics could be 

encountered only for ECHAM5 during the summer. Also, according to this study the spring 

and summer runoff peaks are expected to significantly increase, especially for the CNRM-

CM3 model output. Further work needs to be done to verify the results obtained for the 

scenario period. In detail, the results should be analysed in the context of regional climate 

classifications e.g. Köppen-Geiger, or elevation. Also, future changes of major hydrological 

events, such as droughts and floods, with their frequency, duration and occurrence, are 

important for the study region and should be examined. Furthermore, the impacts of land-

use change and water uses on the water resources and future conditions in Central Asia are 

of high importance, in particular for the regions with growing population density and/or 

anthropogenic water abstractions.  
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4. Water resources and socio-economic development in a water 

scarce region on the example of Mongolia 
 

4.1.  Abstract 
 

Mongolia is characterized by a highly continental semi-arid to arid climate, characterised by 

low precipitation and therefore low water availability. The limited water resources may 

impede socio-economic development of the country. Consequently, climate change 

impacts as well as anthropogenic water use and its potential change are of crucial 

importance. In combination with IPCC-SRES climate change scenarios, socio-economic 

scenarios were developed in order to analyse the impact of changes in anthropogenic 

water uses on Mongolian water resources. Induced by low natural water availability, special 

attention was paid to overexploitation of river basins. For this purpose, different water 

stress indicators were applied to point out water stressed basins. As drivers for calculating 

the impacts on water resources and water use sectors, socio-economic parameters (e.g. 

population development, and Gross Domestic Product) as well as technological and land 

use changes were used. The results show a strong increase of anthropogenic water uses 

until end of the 21st century, and hence, increasing pressure on Mongolian water 

resources. Intensification of water stress was strongest in the river basins surrounding the 

capital Ulaanbaatar. 

 

4.2.  Introduction 
 

For hundreds of years mankind influenced natural processes through changes in land use 

and land cover. The ability to gain and exploit natural resources increased rapidly during 

the centuries (RAMANKUTTY ET AL. 2006). At this, change can be for example an intensified 

use or change in land cover (MEYER & TURNER II 1994). Water availability and water 

demand is strongly influenced by land use changes due to, for instance, changes of socio-

economic activities such as irrigation (NUNES & AUGE 1999, GIAMBELLUCA 2005). 
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Subsequently, the hydrological cycle is affected in terms of e.g. evaporation, runoff, or soil 

moisture (GIAMBELLUCA 2005, GIERTZ ET AL. 2010), but impact level depends on 

vegetation type, climate conditions, and soil properties (CHABBRA & GEIST 2006). 

Worldwide, water abstraction for irrigation purposes (66 %) is the main water user 

(GIAMBELLUCA 2005). These current and future anthropogenic as well as natural water 

demands are highly correlated to climate, which especially holds true for the continental 

Mongolian climatic conditions. The climate of Mongolia is characterized by high daily and 

annual fluctuations. The mean annual air temperature ranges from -7.8 °C in the Darkhad 

depression to +8.5 °C in the Gobi desert and south Altai; the nationwide average annual air 

temperature is +0.7 °C. Mean annual precipitation spans from 50 mm to 400 mm. In detail, 

the Gobi desert features the lowest precipitation with 50-100 mm, followed by 100-

150 mm in the steppe-desert, and 150-250 mm in the steppe. The wettest region with 300-

400 mm can be found in the mountainous regions of Khangai, Khentii, and Khuvsgul. On the 

basis of low annual precipitation, water availability is low as well, and overall the Mongolian 

climate can be characterized as arid to semi-arid (BATIMAA 2006). On this account, 

Mongolia is very vulnerable for Climate Change as well as for changes in anthropogenic 

water uses. ROST et al. (2007) have shown for Inner Mongolia the complex interactions and 

impacts of climate and anthropogenic changes on desertification. For these reasons the 

estimation of future water resources is very important to avoid their overexploitation. 

Further, water scarce regions and hotspots of anthropogenic water abstractions can be 

detected for the present and the future in order to set up a sustainable water 

management. 

 

4.3.  Study area and methods 

4.3.1. Characteristics of Mongolia 

 

Mongolia (see Figure 18) is a landlocked country which is dominated by opposing land 

characteristics of Siberian taiga, Central Asian steppe, Gobi deserts and Altai Mountains 

(MNETM 2001). The altitude ranges from 4,734 m in the far West at Huyten Orgil to 560 m 

in the eastern plain (WORDEN & SAVADA 1991). Even though plain steppe is dominating 
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the landscape, 81 % of the territory lies above 1,000 m and 50 % above 1,500 m (DAMIRAN 

2005). Rivers extensively exist in the North with the Selenge as main river basin. The 

Mongolian rivers drain in three directions: to the Arctic Ocean (North), to the Pacific (East) 

and to the deserts and depressions of Inner Asia (South) (WORDEN & SAVADA 1991). The 

water regime can be divided into four main seasons: Winter low-flow period from 

December to April, spring-runoff period due to snow melting from April to June, summer 

runoff period due to rainfall from June to September, and warm season low-water period, 

which usually follows the rainy season and lasts to the winter low-flow period (BATIMAA 

2006). Dryness is one of the biggest issues in Mongolia as in 2003 of 5,565 rivers in total 

683 dried out during the last years. Further on 1,484 springs of in total 9,600 and 760 lakes 

of in total 4,193 dried out as well. Additionally glaciers decreased by 30 % in Kharkhiraa, 

Turgen, Tsambagarav and Tavanbodg mountains between 1940 and 2002 (BATSUKH ET AL. 

2008).  

 

 

 

 

 

 

 

Figure 18: Study region of Mongolia with runoff stations (Altitude is mean value per grid cell) 

 

In terms of climate Mongolia is characterized by a high continental semi-arid to arid climate 

with a high altitude in daily and annual temperature, long cold winter, dry and hot summer 

and low precipitation (BATIMAA 2006, NANDINTSETSEG ET AL. 2007). In general, Mongolia 

features a seasonal climate but with less distinctive spring and autumn. Large seasonal (up 

to 90 °C) and daily (up to 30 °C) fluctuations in air temperature are present. Annual 
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precipitation is low but with a high intensity, whereat 50-60 % of total precipitation falls in 

July and August. During the last 60 years an increase in air temperature of 1.8 °C was 

determined, whereas for precipitation no statistically significant trends were detected. 

Furthermore, dust storms, summer droughts, blizzards, and harsh winter (“Dzud”) are 

common (BATIMAA 2006, JAMIYANSHARAV ET AL. 2006). “Dzud” events strongly influence 

the well-being of livestock dependent Mongolian herders, because they occur with on-

going reduced water and fodder availability, which leads to an increased livestock death 

rate (BATIMA 2006, IWASAKI 2006, and LIU ET AL. 2010). With a population of 2,800,114 

and a land area of 1,564,100 km² Mongolia is a very sparsely populated country (1.79 

people per km²), but with an annual population growing rate of 1.6 % (THE WORLD BANK 

2012). Since the 1960s an urbanization trend can be determined which leads to an urban 

population rate of 68.5 % in 2011, while in 1960 just 35.7 % lived in urban settlements. As 

result, the capital Ulaanbaatar grew rapidly from 179,063 inhabitants in 1960 to 965,961 in 

2010. The Gross Domestic Product (GDP) quintupled during the last ten years from 568 US$ 

(GDP/capita) in 2002 to 3,129 US$ in 2011 with “mining and quarrying” as the most 

important sector followed by “agriculture, forestry and fishing.” The section “Other” 

consists mainly of “Net taxes on products”, “Real estate activities” and “Information and 

communication” (see Figure 19) (MEF 2012, THE WORLD BANK 2012, NSO 2013). 

 

 

 

Figure 19: Change of important divisions of Mongolian Gross Domestic Product between 1997 and 2011 
(source :MEF 2012, adjusted colours) 
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4.3.2. Land and water use in Mongolia 

 

According to BATSUKH ET AL. 2008 water use is dominated by water abstractions for mining 

purposes (26.7 %) followed by domestic (20.3 %) and livestock (20.2 %). Irrigation (14.9 %) 

is the fourth biggest water user (see Figure 20 right) with a rapid increasing trend. Water 

uses for irrigation tripled between 2000 and 2005, but are still below the level of the late 

1980s and early 1990s, where irrigation was organized by the Soviet occupation. During the 

last few years Mongolia has invested in new irrigation and agricultural technology in order 

to be independent of food imports (JAMIYANSHARAV ET AL. 2006, PRIESS ET AL. 2011), 

which was succeeded for the first time in 2011 (SDC 2011). The mining sector includes 182 

mines (mainly gold, coal, copper, and construction materials) in 2005. Focus of the mining 

industry is on the Selenge Aimag in the North (BATSUKH ET AL. 2008), in addition, mining 

activities are increasing in the Gobi desert and in the Southwest. Domestic water use is 

characterized by a sharp disparity between rural and urban water use. While in cities and 

bigger settlements the daily water use is 230-250 l per person, for ger areas, rural herders, 

and most province towns just 5-10 l per person are used (BATSUKH ET AL. 2008), which is 

far below minimum requirements (GLEICK 1996). High domestic water use in cities can be 

explained by tremendous losses of up to 40 % (e.g. City of Darkhan) caused by old and 

broken water supply pipes (SCHARAW & WESTERHOFF 2011) and inefficient technology.  

 

 

 

 

 

 

Figure 20: Sectoral land uses (2010, left) and water uses (2005/2006, right) in Mongolia 
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Consequently, 92 % of domestic water is abstracted for the apartments in the central area 

of the cities, whereas only 30 % are connected to the drinking water system in total. People 

without connection to the drinking water system receive their water mainly from water 

kiosks (~35 %), water trucks (~24 %), or wells and rivers (~9 %) (BATSUKH ET AL. 2008, 

BATIMAA ET AL. 2011). In 2005, the number of livestock was ten times higher (30.4 million) 

than human population with substantial fluctuations that greatly depend on the occurrence 

of “Dzuds”. These “Dzuds” have a big impact on number of livestock, due to the high 

dependence on access to grassland for grazing purposes. The reoccurring cold-dry “Dzud” 

events are often accompanied by a loss of many animals; for example, the “Dzud” of 2009-

2010 affected over 50 % of the Mongolian herders, with 75,000 herders who lost all or 

more than half of their livestock (IPCC 2012). “Dzuds” can be also the reason for decreasing 

access to drinking water, because of reduced groundwater levels and drying out of wells 

and springs (BRUTSAERT & SUGITA 2008). In terms of land use Mongolia is dominated by 

agricultural land (see Figure 20 left). On this occasion, arable land accounts only for 0.8% of 

the agricultural land, while pasture is the dominating land use type (MNETM 2010). 

Livestock provides the main income for rural population and, therefore, the main element 

in the agricultural sector (UN 2002). After the political change in the early 1990s the 

number of livestock increased rapidly, because many Mongols, which became unemployed 

due to the economic change, started to work as herders (SAIZEN ET AL. 2010). Cropland 

septupled from 2000 (117,600 ha) to 2008 (835.700 ha) and is mainly used for wheat, 

barley, and oat production. However, only 17,637 ha (2005) are being irrigated, but tripled 

as well since 2000 (BATSUKH ET AL. 2008). Spatial focus of cropland is on the Selenge 

Aimag, because of advantageous climate conditions compared to other parts of Mongolia 

(MENZEL ET AL. 2010). Sprinkler technique is with 75 % the most common irrigation 

technique (FAO 1999, FAO 2012). Forest covers 8 % and is located predominantly in 

Northern Mongolia. The forests are mostly affected by wildfires, overgrazing, mining, illegal 

wood harvesting, and insect plagues (BATSUKH 2004, TSOGTBAATAR 2004, MNETM 2010, 

and YKHANBAI 2010). 
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4.4.  Data and methods 
 

The simulation of present and future water resources were conducted with the large-scale 

hydrology and water use model WaterGAP 3 (Water – Global Assessment and Prognosis) 

(VERZANO 2009). WaterGAP 3 is a further development of WaterGAP 2 (ALCAMO ET AL. 

2003, DÖLL ET AL. 2003) and operates on a five arc minute grid (~7x8 km²) in daily internal 

time steps (VERZANO 2009). WaterGAP 3 still can operate on a global scale, whereas in this 

study a Mongolian landmask derived from river basins has been applied. In total, Mongolia 

features 403 basins; at this many basins especially in the South are closed depressions. The 

calibration and validation of the model was done with the global meteorological dataset 

WATCH forcing data (WFD). The WFD is based on a half degree grid in daily time steps 

(WEEDON ET AL. 2011). As baseline time period 1971-2000 was used.  

The future projections were conducted with the WATCH driving data (WDD). This dataset 

provides transient bias-corrected scenarios on a half degree grid for two IPCC-SRES 

scenarios (A2, B1) (IPCC 2000) and three General Circulation Models (GCMs): IPSL-CM4 

(Institute Pierre Simon Laplace, France), ECHAM5 (Max Planck Institute for Meteorology, 

Germany) and CNRM-CM3 (Centre National de Recherchés Météorologiques, France) 

(PIANI ET AL. 2010, HAGEMANN ET AL. 2011). Both input datasets were rescaled to the 

model resolution of five arc minutes. The water use model contains five sub models for 

irrigation, domestic, manufacturing, electricity production, and livestock water uses (AUS 

DER BEEK 2010, FLÖRKE 2013). For this study, additionally a mining sub model was included 

for the first time in an application of the WaterGAP model. The estimation of mining 

withdrawals bases on annual production statistics, target values for water use, and the 

location of mining districts (MINISTRY OF ENVIRONMENT 1995, USGS 2007, MINISTRY OF 

MINING 2007, BATSUKH ET AL. 2008,). In the next step mining water consumptions were 

assessed by the average ratio of consumption to withdrawal water use per mineral type 

according to QUAN 1988. As not all types of mines could be derived from literature, the 

water uses for mining purposes are probably underestimated. The distinction between 

water use, water withdrawals, and water consumption follows the definition in HUTSON ET 

AL. 2004. By analysing past and recent changes in Mongolia’s socio-economy two scenarios 

were developed in order to quantify the effects of anthropogenic activities on future water 
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resources. Based on global datasets also regional datasets –if available- were integrated. 

Basis for the development of socio-economic scenarios were population development, 

growing rate, household size, population density, GDP per capita, Gross Value Added (GVA) 

which are main drivers for quantification of water abstractions for mining, manufacturing, 

electricity production, irrigation, domestic, and livestock purpose. Anymore, access to 

water, land use management, and technological change was as well considered in the 

scenario development process. Following the IPCC-SRES scenarios A2 and B1 two socio-

economic scenarios, A (economic growth) and B (sustainable development), were build (cp. 

Tab. 1). These qualitative changes were spatially explicit quantified and fed into the water 

use models of WaterGAP 3. Quantitative estimation bases on a trend matrix (Table 6), 

national and international statistics, and local newspaper articles. The general development 

trend, was calculated on basis of national statistics (NSO 2001-2010, NSO 2013), while the 

development of livestock bases on historic data with interruptions by „Dzud “events (IPCC 

2012). Further development of population bases on the Global Environmental Outlook 

(GEO-4) report (UNEP 2007) as well as on national statistics (NSO 2001-2003, NSO 2013). 

The economic indicators bases on the World Development Indicators (THE WORLD BANK 

2012) and the GEO-4 report (UNEP 2007). At this, beside historical data further planning 

such as new power plants (PADCO, 2005), new mines (THE WORLD BANK 2004) or 

agricultural land (PRIESS ET AL. 2011) was considered to estimate further development. 

 

Table 6: Trend matrix for the development of socio-economic scenarios A and B 

Indicators / driving 

forces 

Scenario A (Economy) Scenario B (Sustainability) 
urban rural urban rural 

Population development +++ + + + 
Growing rate +++ + + + 

Household size -- 0 - 0 
Population density +++ + ++ + 

GDP / capita +++ ++ 
Gross value added (GVA) +++ ++ 

Access to water + + +++ ++ 
Land use management ++ ( in terms of forest - ) + 

Technological change + ++ 
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In order to compensate natural inter-annual climate variability, irrigation water demand 

and water availability were computed for 30-year time slices (1971-2000 and 2071-2100) 

and subsequently aggregated to long-term annual averages. In a last step two water stress 

indicators were applied in order to examine the present and future pressure on water 

resources. As indicator the withdrawal to availability ratio (w.t.a.) and the consumption to 

Q90 ratio (c.t.Q90) were applied. While the first indictor (w.t.a) compares the total 

available water in a basin to the total abstracted water, the second indicator (c.t.Q90) 

focuses on long term low-flow conditions in a basin (ALCAMO ET AL. 2007). Correspondingly 

to the applied indicators for the baseline period 1971-2000, simulated and observed annual 

water availability as well as low-flow conditions (Q90) were compared to validate the 

model results (see Figure 21).  

 

 

Figure 21: Comparison of mean simulated and observed annual water availability (left, R²=0.96) as well as low 
flow conditions (right R²=0.66) 

 

However, it needs to be mentioned that Mongolia is a data scarce region where only 13 

runoff stations with a long time period (>30 years) are available (see Figure 18). Regarding 

mean annual water balance, simulated and observed annual discharges show a very good 

agreement (R²= 0.96). The correlation between simulated and observed low-flows is less 

reliable (R²=0.66), whereas simulated low-flows are mostly overestimated (see Figure 21). 
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4.5.  Results 
 

This section provides the present and future modelled water uses and their impact on 

natural water resources. Future scenarios of modelled water availability show an increasing 

trend in northern and western Mongolia. At this, a bias between observed baseline (WFD) 

and GCM baseline was found. The smallest deviation exists between the observed data and 

ECHAM5, while IPSL and CNCM3 are distinctly wetter. On the whole, all GCMs tend to a 

baseline overestimation in terms of precipitation and probably lead to an overestimation of 

future water resources as well. For a detailed description of potential water availability 

changes see Malsy et al. 2012. Furthermore, two water stress indicators (water to 

availability ratio (w.t.a.) and consumption to availability ratio (c.t.Q90) are applied to clarify 

the impacts of water use on water resources and to avoid catchment overexploitation. At 

this, special attention is paid on the one hand to the total amount of water which is 

withdrawn from a basin (w.t.a) and on the other hand, if enough water for consumption 

needs is available during low flow periods (c.t.Q90).  

 

4.5.1. Current and future water uses 

 

Six sectoral water users were considered in the model setup (electricity production, 

manufacturing, irrigation, livestock, mining, and domestic) (see Figure 22). In the baseline 

period, electricity production (347 M m³) is the biggest water user, due to water intensive 

once through cooling. The second biggest user is irrigation (235 Mio m³) followed by 

domestic (82 M m³), mining (81 M m³), and livestock (71 M m³). Manufacturing shows the 

least water withdrawals with 41 M m³.  
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Figure 22: Sectoral water withdrawals for baseline and scenario period; for irrigation the GCM average is 
shown 

 

Compared to water withdrawal data in BATSUKH ET AL. 2008 the sectors electricity 

production and irrigation are overestimated. One reason for the overestimation of the 

irrigation sector is the much larger irrigated area (59,178 ha) in WaterGAP compared to 

BATSUKH ET AL. 2008. Generally, irrigated area highly varies between different authors (see 

Table 7). Thus, in GANBAATAR 2003 irrigated area is in 1989 nearly twice as high compared 

to BATSUKH ET AL. 2008. In subsequent years the irrigated area decreased rapidly in 

GANBAATAR 2003 and BATSUKH ET AL. 2008, while FAO 1999 shows the highest value 

(57,300 ha) in 1993. In general, it can be noticed that after the political change irrigated 

area decreased, because of high operation costs, huge energy consumption, and a shortage 

of skilled manpower (GANBAATAR 2003). Since 2000 irrigated area has been increasing and 

tripled until 2006 (BATSUKH ET AL. 2008). As described, variation and uncertainty in the 

extent of irrigated area are apparent and lead likewise to varying annual water withdrawals 

(cf. Table 7). 
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Table 7: Comparison of irrigated area and irrigation water withdrawals 

 1989 1990 1991 1992 1993 1996 1998 2005 2006 
Irrigated Area [ha] 

GANBAATAR 2003 
41,170     10,443 8,140   

Irrigated Area [ha] 

BATSUKH ET AL. 2008 

22,178 39,342 27,347 17,435  11,393 5,331 17,637 17,200 

Water Withdrawals 

[Mio. m³ / yr.] 

BATSUKH ET AL. 2008 

59.8 106.5 74.9 46.9  31.3 14.0 52.3 50.7 

Water withdrawal 

per ha for Batsukh et 

al. [m³] 

2,696 2,707 2,739 2,690  2,747 2,626 2,965 2,948 

Irrigated Area [ha] 

FAO 1999,2012,2013 
    57,300     

Water withdrawal / 

requirement 

[Mio. m³ / yr.] 

FAO 1999,2012,2013 

    108    94 

Water withdrawal 

per ha for FAO [m³] 
    1,885     

Irrigated Area [ha] 

WaterGAP3 (constant 

for baseline) 

59,178 59,178 59,178 59,178 59,178 59,178 59,178   

Water Withdrawals 

[M. m³ / yr.] 

WaterGAP3 

294 234 220 238 182 223 288   

Water withdrawal 

per ha for 

WaterGAP3 [m³] 

4,968 3,984 3,718 4,022 3,076 3,768 4,867   

 

It has to be concluded that the values for Mongolia ranges widely and substantially 

fluctuate during the years. BATSUKH ET AL. 2008 estimates water withdrawals for 2005 in 

the livestock and irrigation sector to 123.3 M m³ / yr., while 227 M m³ are mentioned in 

FAO 2012. With regard to electricity production it was assumed that all power plants in 

Mongolia use once-through cooling. This was necessary, because no data supporting the 
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cooling type is available. For this reason all power plants are in the highest water use 

category and lead therefore to an overestimation of water withdrawals compared to 

BATSUKH ET AL. 2008. The two socio-economic scenarios lead in terms of Scenario-A 

(economic growth) to an increase (63 %) of total water withdrawals up to 1397 M m³, 

whereas Scenario-B (sustainable production) leads to a slight decrease (9 %) to 784 M m³. 

For both scenarios electricity production is decreasing sharply, because of technological 

change and a switch from once-through to tower cooling. With regard to once-through 

cooling abstracted water is returned immediately after it is cooled down, which leads to 

very low water consumption (0.36 % of water withdrawals). For tower cooling water 

withdrawals are 45 times smaller than for once-through systems, but water consumption is 

twice as high compared to once-through cooling, due to water flows in a closed loop 

(VASSOLO & DÖLL 2005). In Scenario-A the sectors manufacturing (514%), domestic (448 %) 

and mining (425 %), and in Scenario-B the sectors mining (289 %) and domestic (184 %) 

show the strongest increase. Whilst in Scenario-A the sectors domestic (367 Mio. m³), 

irrigation (355 M m³) and mining (343 M m³) become the biggest water users, in Scenario-B 

just irrigation (263 M m³) and mining (234 M m³) feature the biggest water withdrawals. 

The percentage shares of each sector for the baseline period and their changes in the socio-

economic scenarios A and B are given in Figure 23. Key drivers for domestic water use are 

GDP, population density / distribution, and the technological change rate (FLÖRKE ET AL. 

2013). At this, Scenario-A features a higher population growth rate and urbanization trend 

compared to Scenario-B. Due to higher per capita water demand in urban areas than in 

rural areas, domestic water uses increase rapidly. Scenario-B features additionally a smaller 

GDP increase and a more intense technological change, which reduces the potential water 

demands. Triggers for changes in the manufacturing sector are structural water intensity, 

the GVA, and the technological change rate (FLÖRKE ET AL. 2013). On this occasion, 

Scenario-A is characterized by stronger impacts on these key drivers, except the 

technological change rate. In terms of mining again the strong economic development leads 

to higher water withdrawals, due to initiation of new mines and intensified exploitation of 

the existing mines. Irrigation is the only sector, which depends on climate changes, whereat 

increasing temperature leads to increasing water demands, due to higher evaporation 

losses. Further on, irrigation efficiency is an important part, as upgraded irrigation 

technique (e.g. drip irrigation instead of sprinkler) leads to water savings and therefore 
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reduced water demands (ROHWER ET AL. 2006). In terms of electricity production the 

location and number of power plants, the annual thermal electricity production and the 

intensity factor are the key drivers. Here as well, increasing technological change leads to 

reduced intensities (FLÖRKE ET AL. 2013). At this, the change from once-through to tower 

cooling leads to a sharp decrease in water abstractions for electricity production (VASSOLO 

& DÖLL 2005) and covers almost completely the effects of the other triggers for Mongolia. 

 

Figure 23: Percentage of current and future sectoral water uses 

 

4.5.2. Water stress (w.t.a. indicator) 

 

The withdrawal to availability ratio (w.t.a) examines pressure on water resources induced 

by external sources. At this, w.t.a. compares the sum of water withdrawals per basin to the 

natural water availability, whereat water stress is categorized in three divisions: low, 

medium, and severe water stress. Low water stress ranges from 0 to 20, medium water 

stress from 20-40, and in case of severe water stress more than 40 percent of the water 

availability is withdrawn (ALCAMO ET AL. 2003a, 2007). The results show for baseline time 

period severe water stress in a few basins in the South and Southwest (see Figure 24). This 
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water stress is induced by very low water availability in these basins, where already small 

amounts of consumed water (e.g. livestock, domestic or irrigation), can trigger water stress. 

Similar results for Mongolia can be found in ARNELL 1999 and 2004, who could not detect 

water stress in Mongolia. Due to different spatial resolutions (five arcminutes versus half 

degree) the water basins which are stressed in our results are probably too small and not 

separately examined in Arnell´s half degree model analyses. The results for Scenario-A 

(economic growth, 2071-2100) show an increasing water stress level, especially around the 

capital Ulaanbaatar (Tuul +13 %, Kharaa +15 %, and Orkhon +7 %), in the Gobi desert 

(+13,5 %, and + 6,5 %.), in the eastern steppe (+11 %), and in west Mongolia (+7 %). The 

increasing trend outside the basins around Ulaanbaatar is induced by increasing water 

withdrawals for mining purposes. In the Kharaa, Orkhon, and Tuul River water stress 

increase is mainly caused by growing domestic and mining sectors. On the other hand, a 

decreasing trend can be found in the water stressed basins of the baseline and additionally 

in basins in the Southeast, due to both, increasing water availability and decreasing water 

uses. For Scenario-B (sustainable production) similar spatial patterns can be found 

compared to Scenario-A, but less severe. In particular, in terms of an increasing trend 

Kharaa (+2 %) and Orkhon (+2 %) river basin show a much lower change compared to 

Scenario-A. For basins with decreasing trend in water stress no big contrast between the 

results of scenario A and B can be found.  



88 
 

 

Figure 24: w.t.a. indicator for baseline (top) and scenario time period (bottom); scenario period is shown for 
ECHAM5 (Scenario-A, bottom-left, Scenario-B, bottom-right) as a baseline percentage difference 

 

 

4.5.3. Water stress (c.t.Q90 indicator) 

 

The consumption to Q90 indicator (c.t.Q90) is used to describe low-flow characteristics at 

river basin scale and incorporates long term effects. It is defined as the ratio of consumed 

water per river basin to Q90 low-flow, whereby Q90 means that the monthly discharge is 

higher than Q90 in 90 % of the time. The indicator is categorized in three divisions: low 

water stress 0-0.5, medium 0.5-1.0 and severe >1.0 (ALCAMO 2007). The c.t.Q90 provides a 

completely different picture compared to the w.t.a. indicator (see Figure 25). For the 

baseline, the most affected areas are located in the Southwest, South, and especially in the 

Southeast, while the northern part of Mongolia is nearly completely in the lowest category. 

The water stressed basins feature a very low precipitation and, therefore, small low-flows. 

Thus, water consumption surmounts the Q90 in the baseline period. For Scenario-A 

(economic growth) a clear decreasing trend in water stress can be found in the Southwest, 



89 
 

while in the South, basins with increasing trend and decreasing trend are located next to 

each other. An increasing trend can be found in the Southeast of Ulaanbaatar and around 

the capital in the Tuul and Kharaa catchment. Scenario-B (sustainable production) leads to 

similar spatial patterns, but with a less severe trend. The biggest difference between both 

scenarios can be found around Ulaanbaatar, as Scenario-B does not show a water stress 

increase for the Kharaa and Tuul catchment. It has to be mentioned that the simulated low-

flows are probably overrated, due to the overestimation of precipitation of the climate 

models and water stress is more severe than in the presented results. 

 

Figure 25: c.t.Q90 indicator for baseline (top) and scenario time period (bottom); scenario period is shown for 
ECHAM5 (Scenario-A, bottom-left, Scenario-B, bottom-right) as a baseline percentage difference 

 

The results show, in terms of water stress, that Mongolia is divided into two parts. On the 

one hand, the northern part with higher water availability, but also higher water uses and 

on the other hand the southern part with low water availability and in general low water 

uses. Even though Mongolia is a very sparsely populated country, it features a growing 

population and an intense urbanisation trend. This will lead to rising water stress, especially 

in basins surrounding the capital Ulaanbaatar, as already nowadays 35 % of Mongolians live 

in Ulaanbaatar with an expected further increase (THE WORLD BANK 2012), although the 

water availability scenarios lead to increased water availability. In this connection, Tuul, 



90 
 

Kharaa and Orkhon river basins are particularly affected. Furthermore, simulated future 

water availability is probably overestimated due to a bias between GCMs and observed 

WFD baseline. In this study, seasonality is not examined. At this point, even if no water 

stress was found on an annual basis, water stress can be an issue in several months of the 

year. It also needs to be mentioned that local water stress in sub-basins of a non-stressed 

river basin can occur, as the here applied method only looks at average water availability 

and use values of the entire river basin. Furthermore, the Tuul River basin may be affected 

by a planned multi-purpose dam to improve water supply of Ulaanbaatar (DAVAASUREN & 

BASANDORJ 2008). This leads to the conclusion that basins surrounding Ulaanbaatar need a 

water management strategy for a sustainable development and to avoid overexploitation 

of natural resources, and increasing water scarcity. As mentioned above Mongolia is a data 

scarce region and therefore a Monitoring network and long term measurement of water 

fluxes is essential. The southern part is characterised by very low precipitation and 

therefore low water availability and low-flows. Already nowadays many basins show water 

stress conditions due to higher water consumptions compared to Q90. Overexploitation of 

basins in the South in terms of withdrawal to availability ratio is induced by mining 

activities. In future it is planned to build canals from northern Mongolia to Gobi desert to 

supply mining activities. This will have a high impact on the water system of Mongolia and 

lead to increasing water stress in Kherlen and Orkhon river basin (see DAVAASUREN & 

BASANDORJ 2008, ENKHBAATAAR 2012). Also, water quality issues, which have not been 

tackled by this study, will become more important as they already are (HOFMANN ET AL. 

2011) as the pressure on Mongolian water resources will increase. Additionally, 

environmental flow limits which ensure the survival of the riverine ecosystems need to be 

defined for each basin separately before additional industries and irrigation projects are 

planned in order to avoid the crossing of natural tipping points. 

With regard to water uses a huge difference between global datasets and the national 

report (BATSUKH ET AL. 2008) has been found for the baseline in terms of irrigation and 

electricity production. All water use sectors rise rapidly for both socio-economic scenarios 

except electricity production. Irrigation is nowadays still mainly conducted with sprinkler 

technique, which leads to high evaporation losses and holds a big potential to reduce water 

abstractions due to more efficient irrigation techniques (e.g. drip irrigation). Also, a high 
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daily amount for domestic water uses per capita was found in cities. At this, a high potential 

to water-saving measures (e.g. replacement of old technical equipment, use of water 

meters, raise of environmental awareness, introduction to water pricing) exists. For future 

research seasonal aspects and changes as well as trends in extreme events, especially 

droughts, should be examined to provide a better picture of the potential future changes 

and thus, for the basis for a sustainable water management. 
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5. What drives the water quality changes in the Selenga Basin: 

climate change or socio-economic development? 
 

5.1.  Abstract  
 

Lake Baikal is the largest near-surface global freshwater source and of high interest for 

water quality alterations, as deterioration of water quality is a main global and an 

increasing issue in the Selenga River Basin. Here, the Selenga River Basin as main 

contributor to the inflow of Lake Baikal is extremely important. Pressure on ecosystems and 

water resources increased due to population growth, rapid urbanization and rising 

industrial activities, particularly in the mining sector. In this study the large-scale water 

resources model WaterGAP 3 is applied to calculate loadings of conservative substances 

(total dissolved solids) and non-conservative substances (faecal coliform bacteria and 

biological oxygen demand) in a spatially explicit way as well as in-stream concentrations to 

get an insight into the state of water quality under current and future scenario conditions. 

The results show a strong increase of loadings in the scenario period and consequently 

increasing concentration levels. Comparing the sectoral contributions of the loadings, 

domestic and industry are by far the main contributors today and expected to be in the 

future. Furthermore, for all modelled substances and time periods water quality thresholds 

are exceeded posing a potential risk to aquatic ecosystems and human health. 

 

5.2.  Introduction 
 

Deficient water quality induced by water pollution is one of the main global issues, as it is 

causing risk to human health, biodiversity, and food security. Generally, freshwater 

ecosystems are facing "increasing and multiple threats, including overgrazing, dams and 

irrigation systems, growing urbanization, mining and gravel extraction, impact of climate 

change and lack of water management policies and institutional framework” (FAO 2012). 

Lake Baikal, as the world’s largest freshwater reservoir, and its corresponding catchments 
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are already affected by global changes, and sensitive regarding alterations in water quality. 

The mostly semi-arid environment is highly vulnerable and influenced by climate change as 

observed by an increasing temperature trend during the last decades (Batimaa 2006; Malsy 

et al. 2012; Törnqvist et al. 2014) accompanied by increasing water temperatures causing 

chlorophyll a and zooplankton grazers intensification (Hampton et al. 2008). The Selenga 

River Basin contributes more than 60 % to the total inflow of Lake Baikal (Törnqvist et al. 

2014), meaning that changes in the Selenga River system in terms of water quantity and 

quality are of high importance concerning potential impacts on Lake Baikal. Mining 

increased strongly during the last decades accounting for about 25 % of the total national 

Gross Domestic Product (GDP) in 2014 (compared to ~10 % at the beginning of the 21st 

century, Mongolian Statistical Information Service 2015) as well as the highest share of 

total nationwide water use (cf. Batsukh et al. 2008; Malsy et al. 2013). Here, washing 

processes for mining from both licensed and unlicensed mining activities have severe 

impacts on surface water quality (Farrington 2005; Bolormaa et al. 2006; Krätz et al. 2010; 

Thorslund et al. 2012). During the last years, particularly in the Mongolian part of the 

Selenga River Basin, an expansion of agriculture and land-use intensification took place 

(Hofmann et al. 2011; Sorokovikova et al. 2013). Furthermore, increasing industrial 

activities accompanied by a rapid urbanization trend put additional pressure on water 

resources. Low connection rates to wastewater treatment plants, mal-functioning 

wastewater treatment plants, and use of cyanide and arsenic in gold mining are of high 

concern and can lead to water quality deterioration (Hofmann et al. 2011; Sorokovikova et 

al. 2013). Studies focusing on the Kharaa River sub-basin showed high heavy metal 

concentrations in the surface water as well as high levels of boron, chloride and electrical 

conductivity in the groundwater (Hofmann et al. 2010; Hofmann et al. 2015). 

In the Selenga River Basin, water quality studies have so far been focusing on a sub-basin 

level (e.g. Hofmann et al. 2011; Hofmann et al. 2013; Karthe et al. 2013; Sorokovikova et al. 

2013; Hofmann et al. 2015,) while water quantity related topics were addressed by sub 

basin and large-scale studies (Stubblefield et al. 2005; Batimaa 2006; Malsy et al. 2012; 

Malsy et al. 2013; Törnqvist et al. 2014; Chalov et al. 2015; Nadmitov et al. 2015). A 

comprehensive spatially explicit water quality assessment covering the entire Selenga River 

Basin has, to our knowledge, not yet been carried out. Therefore, this study applies the 
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large-scale modelling framework WaterGAP 3 to simulate current and future scenario 

loadings and in-stream concentrations of conservative (total dissolved solids - TDS) and 

non-conservative substances (biological oxygen demand - BOD, faecal coliform bacteria - 

FC) in the Selenga River Basin to gain insight into the sectoral (agriculture, industry, and 

domestic) contributions as well as spatial patterns of potential water pollution. These 

substances were chosen as they represent different kinds of pollution and indicate 

potential risks for human health (FC) and aquatic ecosystems (BOD, TDS). In general, 

Mongolia is not only a water scarce region but also scarce in terms of environmental data 

(Karthe et al. 2015) which require a comprehensive water quality modelling study. 

 

5.3.  Materials and Methods  

5.3.1. The WaterGAP 3 modelling framework 

 

The global integrated water resource model WaterGAP 3 (see Figure 26) operates on a five 

arc minutes spatial resolution and consists of three main components: (a) a water balance 

model to simulate the terrestrial water cycle with the aim to estimate the available water 

resources (Verzano et al. 2009; Schneider et al. 2011; Müller Schmied et al. 2014), (b) the 

water use sub-models to estimate anthropogenic water abstractions (withdrawal and 

consumption) for the sectors agriculture (irrigation, livestock), industry (manufacturing 

processes, thermal electricity production), and domestic households and small businesses 

(aus der Beek et al. 2010; Flörke et al. 2012; Flörke et al. 2013), and c) a water quality 

model (WorldQual) to calculate loadings and in-stream concentrations of conservative (e.g. 

TDS) and non-conservative (e.g. BOD) substances (Voß et al. 2012; Williams et al. 2012; 

Reder et al 2015).  
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Figure 26: WaterGAP modelling framework (Verzano 2009, modified) 

 

Climate data on precipitation, air temperature, and radiation from the WATCH forcing data 

(WFD, Weedon et al. 2011) was used to calculate the daily water balance for each grid cell 

for the time period 1971 to 2000, taking into account physiographic characteristics like soil 

type, slope, and vegetation. Runoff generated on the grid cell is routed to the basin outlet 

based on a global drainage map (Lehner et al. 2008). The routing approach considers the 

influence of lakes, wetlands, reservoirs, and dams (Döll et al. 2009). For the scenario period 

2071 to 2100, bias-corrected climate input developed within the WATCH project (Piani et 

al. 2010; Hagemann et al. 2011) was used as a basis to derive representative conditions for 

a wet, dry, and average year to cover the whole range of future projections. 

Based on the results of the hydrological and water use modelling, simulations with the 

water quality module WorldQual of TDS, BOD and FC were conducted following the 

methodology described in Voß et al. (2012); Williams et al. (2012); and Reder et al. (2015). 

For this study, effects of water use in mining were also considered as described in Malsy et 

al. (2013). Pollutant loadings are calculated for point and diffuse sources separately (see 

Figure 27) where point sources include domestic sewage, wastewater from industries and 
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mining, and urban surface runoff. Diffuse sources comprise agricultural inputs such as 

manure (livestock), industrial fertilizer, and natural background emissions. Additionally, 

domestic – non sewered are considered as point (e.g. hanging latrines) and diffuse (e.g. 

open defecation) sources depending on the type of disposal. 

 

Figure 27: Pollutant loading sectors represented in WorldQual categorized as either point sources or diffuse 
 sources (Reder et al. 2015, modified) 

 

Diffuse loadings from manure application are calculated by multiplying the substance-

specific loading in livestock manure with a substance specific release rate and the 

respective surface runoff. Domestic - non sewered sources cover loadings from population 

not connected to wastewater treatment plants (WWTPs). In this context, three different 

classes of sanitary waste disposal were distinguished: 

• (a) Settlements with some type of private onsite disposal, such as septic tanks or pit 

toilets, etc.: calculated by multiplying the connected population with a per-capita emission 

factor. To achieve the final loadings inflowing into the stream a reduction factor is used. 

•  (b) Settlements with open defecation: calculated analogously to loadings from 

manure application by multiplying the load of a pollutant in human faeces by a substance 

specific release rate and the respective surface runoff. 

• (c) Settlements with hanging latrines: calculated by multiplying the per-capita load 

by a per-capita emission factor. 
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The domestic loadings from sewage are calculated by multiplying a per-capita emission 

factor by the urban and rural population connected to wastewater treatment plants. 

Loadings reaching WWTPs are reduced depending on the treatment level, i.e. primary, 

secondary and tertiary treatment. Loadings from urban surface runoff are calculated by 

multiplying a typical event mean concentration with the urban surface runoff. The loadings 

resulting from industries are estimated by multiplying the average raw effluent 

concentration by the return flow from industries. An overview of the input assumptions 

used for Mongolia is given in Table 8. 

Table 8: Input data assumptions for Mongolia 

Input variable 
Spatial 

Resolution 

Temporal 

Resolution 

Assumptions for 

Mongolia 

Connection rate [%] Country Annual 21 

Treatment level [%] 

Primary; secondary; tertiary; untreated but 

collected 

Country Annual 0 ; 15 ; 0 ; 6 

Treatment efficiency [%] 

 Primary; secondary; tertiary 
Global Static 

BOD 50; 90; 90 

FC 43; 97; 99 

TDS 1; 1; 1 

WWTP not working properly [%] Country Static 59 

Effluent concentration (manufacturing; 

irrigation; mining) 

BOD [mg/l]; TDS [mg/l]; FC [ 10^10 cfu/L] 

Country Static 

BOD (400; 0; 0) 

FC (0.0004; 0; 0) 

TDS (3000; 165 – 

3500; 3000) 

Human emission factor 

BOD [g/cap*d]; TDS [g/cap*d] 

FC [10^10cfu/cap*d] 

Country Static 

BOD 40 

FC 1.9 

TDS 100 

Event mean concentration  

(urban surface runoff) 

BOD/TDS [mg/l]; FC [cfu/100ml] 

Country Static 

BOD 105 

FC 105000 

TDS 246 

Emission from Livestock  

(excretion of one livestock unit) 

BOD/TDS [t/a*livestock unit (lsu)]; FC 

[10^10 cfu/a*lsu] * 

FAO Region Static 

BOD 0.31 

FC 16.79 

TDS 0.17 
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The estimated cell-specific pollutant loadings are divided by the river discharge of each grid 

cell to calculate the in-stream concentration. In addition, the model simulates substance-

specific sedimentation and decay processes depending on temperature and/or solar 

radiation that reduce the in-stream concentration. 

In this study, atmospheric deposition, background concentration from vegetation and 

loadings from inorganic fertilizers are not considered. Furthermore, background 

concentration from soil and rock is only used for TDS calculations. 

The simulations in this study concentrate on the Mongolian part of the Selenga River Basin 

because the socio-economic projections and information on mining water use were only 

available for this particular part of the basin. Further, no information was available on the 

future development of connection rates and treatment levels, and therefore, baseline 

values were kept constant in the scenario period. 

 

5.3.2. Study region 

 

The Selenga River basin (see Figure 28 left) accounts for over 60 % of the total inflow and 

contains 80 % of the total drainage basin of Lake Baikal (Törnqvist et al. 2014). Hereby, 

around two-thirds of the Selenga River basin area is located in Mongolia, one-third is in 

Russia. In Mongolia, increasing impacts due to mining activities, urbanization and land-use 

changes have already been observed and further growth is expected (Hofmann et al. 2011; 

Priess et al. 2011; Sorokovikova et al. 2013; Priess et al. 2015). The Strahler-stream number 

for the Selenga River Basin network based on the model stream net is of order six, which is 

comparable to e.g. the Colorado River in the USA (Strahler 1957; Pierson et al. 2008; see 

Figure 28 right). The climate is continental with cold, dry winters and short mild summers, 

while most of the precipitation occurs in summer (Batimaa et al. 2006). The basin is 

underlayed by mountain and arid-land permafrost (Gruber 2012; Kopp et al. 2014, and 

Törnqvist et al. 2014). During the last decades, air temperature has been increasing with a 

warming rate almost twice as high as the global average, especially during the winter 
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period (+3.6 °K between 1940-2001), whereas no clear trend could be detected for the 

summer season (Batimaa et al. 2005; Malsy et al. 2012; Törnqvist et al. 2014).  

 

Figure 28: left: Overview of the study region including the sub-basins contributing to the Selenga-Lake Baikal 
 River System; right: Strahler stream order number for the Selenga River Basin 

 

Runoff showed a slight decrease in the mid-1990s but without a long-term trend, although 

precipitation as well as evapotranspiration has been increasing (Törnqvist et al. 2014). 

Projections, on the other side, show a further increase in temperature as well as in 

precipitation until the end of the 21st century (Malsy et al. 2012; Törnqvist et al. 2014). The 

dry, wet and average conditions as derived from various GCM outputs and used in this 

study are characterized by a high temperature increase of more than 5 °K and a 

precipitation increase of 2.3 mm (dry) to 96.3 mm (wet) for the entire basin compared to 

the baseline period (cf. Table 10). The socio-economic scenario applied in this study is 

marked by an increasing trend in population growth, urbanization, and industrial 

development and based on the assumptions given in Table 9. According to the assumptions 

an ongoing trend of rising water abstractions is very likely. However, the quantification of 
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the scenario resulted in an increase in water abstractions, particularly in the domestic (from 

82 mill. m³ to 367 mill m³) and mining (from 81 mill. m³ to 343 mill. m³) sectors. The water 

abstractions for thermal electricity production is expected to rapidly decrease due to a 

change from one-through cooling to tower cooling systems in the future as assumed under 

the given scenario (Vassolo and Döll 2005; Malsy et al. 2013).  

Table 9: Key drivers of the socio-economic scenario for Mongolia taken from Malsy et al. 2013 

Indicators / driving forces urban rural 

Population development +++ + 

Growing rate +++ + 

Household size -- 0 

Population density +++ + 

GDP / capita +++ 

Gross value added (GVA) +++ 

Access to water + + 

Land use management ++ ( in terms of forest - ) 

Technological change + 

 

Table 10: Changes of Temperature and Precipitation comparing the baseline period (1971-2000) and the wet, 
dry and average scenario 

 
Scenario 

wet dry average 
Temperature [°K] 5.27 5.05 5.29 

Precipitation [mm] 96.29 2.32 43.70 
 

5.4.  Model validation 
 

As already mentioned, Mongolia can be described as a data scarce region (cf. Törnros and 

Menzel 2010; Malsy et al. 2013; Karthe et al. 2015) and only few measurements are 

available to validate the water quality model. The validation of the hydrological model is 

described in Malsy et al. 2012 and Malsy et al. 2015. In this study, BOD and TDS 
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measurements at Tuul River in Ulaanbaatar for the time period 1996-2000 were used 

(Altansukh 2008), but no values for FC validation could be found. The model results (see 

Figure 29) show a peak overestimation for BOD during the winter period, while the overall 

dynamics and the level of simulated concentrations are in a good agreement with the 

observed data. In contrary to BOD, for TDS, the higher concentrations during winter could 

not be reproduced by the model, while the concentration levels during summer match with 

the observed data quite well. During winter the water availability is in general very low in 

Mongolia and leads therefore to larger deviations, i.e. higher uncertainties, in the modelled 

results. Because of missing information on measured surface water quality data, 

particularly consistent time series, a validation of model results could not be carried out for 

wide regions.  

 

 

 

 

 

 

 

 

Figure 29: Validation of simulated BOD (top) and TDS (bottom) in-stream concentration at Ulaanbaatar for 
the time period 1996-2000 

 

5.5.  Results and Discussion 
 

The simulation results for the Mongolian part of the Selenga River Basin (cf. Table 11) show 

a strong increase of BOD, FC, and TDS loadings in the future. TDS loadings are expected to 

be 4.5 times higher in the scenario period compared to the baseline conditions, while BOD 
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loadings may increase by a factor 3.4 and FC by 1.5, respectively. Overall, the climate 

change effect represented by dry, wet and average climatic conditions in the scenario runs 

on the calculation of future loadings is negligible compared to the effect of socio-economic 

development. However, to our knowledge no information is available on recent BOD, TDS 

and FC loadings for the entire catchment or a sub-catchment for model testing. 

Nevertheless, Hofmann et al. (2013) report a nearly doubling in total nitrogen loadings in 

the Kharaa River Basin for the time period 2007 to 2012. 

Looking at the main sources contributing to the annual loadings (cf. Table 12) for biological 

oxygen demand, Domestic - sewered (41.5 %) and Industry (39.8 %) are the main sources in 

the baseline period followed by Domestic - non-sewered (12.7 %) and Livestock (5.3 %). 

Urban surface runoff has little to no effect on the loadings of the different substances for 

the baseline and scenario periods and its share remains below one percent of the total 

loadings. For the scenario period, Industry has by far the highest share (74.6 %) followed by 

Domestic - sewered (16.2 %), Domestic non-sewered (7.1 %) and Livestock (2.0 %). For FC, 

Domestic (sewered and non-sewered) is clearly the dominant source in the baseline as well 

as in the scenario period. Here, the share of Domestic - sewered decreases from 73.7 % in 

the baseline to around 63 % in the scenario period, but persists as dominant source 

followed by Domestic - non sewered with about 29 %. This is caused by a population 

increase which is not accompanied by enhanced connection rates or wastewater 

treatment. Industry increases from 0.5 % to above 5 %, while the shares of Livestock and 

Urban surface runoff stay on the same low level as in the baseline period.  

Table 11: Annual loading per parameter in the Mongolian Part of the Selenga River Basin for the baseline 
 (water use base year 2000) and scenario time period (water use base year 2085). For TDS only the 
 anthropogenic loadings (without natural background) are shown 

Parameter Loadings BOD, TDS [t/a], FC [10^10 cfu/a] 

 Baseline Scenario - average Scenario - dry Scenario - wet 

BOD 9,832 33,537 33,328 33,616 

FC 265,535,194 391,406,316 388,859,560 392,848,370 

TDS 96,433 449,532 446,450 450,062 
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In terms of TDS, Industry is in the baseline period as well as in the scenario period the 

biggest contributor with 62.2 % and 87.8 %, respectively. Domestic sewered and Irrigation 

shares drop from 15.1 % and 17.9 % to 5.6 % and 4.8 % in the scenario period. 

Furthermore, Livestock, Domestic – non-sewered and Urban surface runoff are a minor 

contributor in both time periods. The Industry sector dominates the generation of TDS 

loadings as it contains both, manufacturing as well as mining processes. These are already 

the major water user (Batsukh et al. 2008) and are expected to increase in the future (cf. 

Hofmann et al. 2010; Malsy et al. 2013) which in turn poses a risk to surface water quality. 

Table 12: Sectoral contribution to total annual loading for the baseline and scenario period; values are given 
in percent 

Parameter - 

Time Period 

Domestic - 

sewered 
Industry 

Domestic - 

non sewered 
Livestock Irrigation 

Urban Surface 

Runoff 

BOD Baseline 41.5 39.8 12.7 5.3 - 0.7 

BOD Scenario 

- average 
16.2 74.6 7.1 2.0 - 0.2 

BOD Scenario 

- dry 
16.2 74.6 7.1 2.0 - 0.2 

BOD Scenario 

- wet 
16.2 74.5 7.1 2.0 - 0.3 

FC Baseline 73.7 0.5 23.0 2.5 - 0.3 

FC Scenario - 

average 
63.2 5.2 29.0 2.5 - 0.2 

FC Scenario - 

dry 
63.2 5.2 29.2 2.3 - 0.1 

FC Scenario - 

wet 
63.0 5.1 28.9 2.6 - 0.3 

TDS Baseline 15.1 62.2 3.2 1.4 17.9 0.2 

TDS Scenario 

- average 
4.8 87.8 1.3 0.4 5.7 0.1 

TDS Scenario 

- dry 
4.7 87.8 1.3 0.4 5.6 0.1 

TDS Scenario 

- wet 
4.8 87.8 1.3 0.4 5.6 0.1 
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Looking at spatial patterns of simulated loadings (see Figure 30) hot spots of FC loadings are 

next to bigger settlements, and in the Tuul River around the capital Ulaanbaatar. 

Comparing the baseline and scenario periods, FC loadings increase in the south-western 

part of the Selenga River Basin. In general, FC loadings are spread throughout the Selenga 

River Basin, while BOD loadings are spottier distributed mainly along the Tuul, Orkhon, and 

Kharaa River. In the scenario period increasing loadings can be found particularly in the 

urbanized areas of Ulaanbaatar, Darkhan, Sukhbaatar and Erdenet as increasing 

urbanization, and population growth lead to rising pollution loadings. TDS loading hot spots 

are at Ulaanbaatar, in the Orkhon River Basin as well as in the Kharaa River Basin, which is 

the main region of irrigation and gold mining in Mongolia (cf. Hofmann et al. 2010; Krätz et 

al. 2010; Karthe et al. 2013). 

 

Figure 30: Spatial patterns for BOD (top), FC (middle) and TDS (bottom) loadings for the baseline and scenario 
period. For TDS background loadings are not show in this Figure 
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Concentrations for BOD, FC, and TDS (see Figure 31) are shown for May, as this month 

shows on the one hand effects of snow-melt (i.e. increased dilution capacity) and on the 

other hand of increasing precipitation during spring (i.e. increased wash-off capability) and 

is therefore particularly sensitive to potential climatic and socio-economic changes. High 

BOD values can be found around and downstream of the cities Ulaanbaatar and Erdenet 

but also in the Kharaa River Basin. The dry and wet scenarios show very similar spatial 

patterns of simulated concentrations compared to the baseline period, but with increasing 

maximum values, while the average scenario results in lower concentrations, particularly in 

the Tuul River. High FC concentrations are more widely spread throughout the basin with 

hot spot areas around Ulaanbaatar and Darkhan in the baseline period. Increasing 

concentrations can be found in the south-western part of the basin for the average and dry 

scenarios, while concentrations decrease under the wet scenario conditions. The decrease 

is induced by the high dependency of FC concentrations on loadings from domestic sources 

(cf. Table 12) and the higher dilution capacity in the wet scenario. The hotspot areas in the 

Tuul and Kharaa River remain in all scenarios analysed in this study. For TDS, values 

exceeding the water quality guidelines can be found in the Tuul River Basin, particularly in 

the dry scenario period. Furthermore, river stretches downstream of Erdenet, and in the 

Tuul and Kharaa River Basin feature increasing TDS concentrations. Beside spatial 

alterations maximum values differ clearly between the scenarios and are up to seven times 

higher in the dry scenario compared to the baseline period. 
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Figure 31: Spatial patterns for FC (top), BOD (middle) and TDS (bottom) in-stream concentration in May for 
the baseline and scenario period 

 

To gain further insight in the development of concentrations, for May cumulative 

distribution functions (see Figure 32) of simulated BOD, TDS, and FC concentration were 

compared. For FC, the limit for primary contact and irrigation of 1000 cfu/100 ml (WHO 

2000; Britz et al. 2013) was used as a threshold to describe the impact of future changes on 

water quality. Compared to the baseline period, the wet scenario results in fewer values 

exceeding the threshold, and is generally characterized by more “low values” due to a 

higher dilution capacity. The dry scenario is indicated by a similar gradient and behaviour as 

the baseline period, while the average scenario builds a flatter curve with one sixth of the 

grid cells exceeding the threshold. A threshold of 4 mg/l was set for BOD as a concentration 

threshold in surface waters as guidelines consider this level as moderately polluted with 
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increasing impact on freshwater, fisheries and water supply (PCD 2004; Ministry of the 

Environment 2012). BOD shows similar cumulative distribution functions across the 

baseline and scenario periods as well as within the different scenario projections. 

Generally, BOD is characterized by lower concentration levels with spatially sparse loadings 

(cf. Figure 30), which leads to the similarity of curves and median concentrations. BOD 

concentrations reach high levels in densely populated areas with industrial production like 

Ulaanbaatar. For TDS, 500 mg/l was used as a threshold as restrictions for drinking water, 

freshwater and irrigation water use are unlikely below this level (FAO 1985; El Bouraie et al. 

2011; Ministry of the Environment 2012). In general, the cumulative distribution functions 

of the baseline and scenario period are similar, with a sharper increase in TDS values and 

more values exceeding the threshold of the scenario curves.  

As Mongolia is a data scarce region, particularly in the western sub-basins of the Selenga 

River Basin, water quality studies conducted in the study region focused mainly on one sub-

basin like Kharaa River (see MoMo Consortium 2009; Hofmann et al. 2010; Inam et al. 2011; 

Hofmann et al. 2013) or Tuul River (Byambaa and Todo 2011; Thorslund et al. 2012). 

Nevertheless, high pollution loadings are reported in these studies focussing on heavy 

metals, nutrients or sediment loads, especially downstream of mining areas. According to 

Nadmitov et al. (2015), heavy metal concentrations are high in the Selenga River Basin, in 

particular in the Tuul, Kharaa, and Orkhon River. Batsukh et al. (2008) stated a high 

sediment load in the Yeroo River, a high pollution level in the Orkhon River, while the 

Khangal River is highly affected by mining. Aquatic ecosystems can not only be harmed by 

large mines (e.g. Erdenet mine), but also a lot of small mining sites are located and placer 

mining, i.e. the mining of stream bed deposits, is used in the study region, which leads to 

increasing pollution (Krätz et al. 2010). Stubblefield et al. (2005) reported a salinity range 

between 21 mg/l (Yeroo River Basin) and 171 mg/l (Sharyn Gol) for August 2001 and long-

term mean annual concentrations of total dissolved solids are between 129 mg/l in the 

Yeroo River and 282 mg/l in the Kharaa River (UNESCO 2013), but exceed thresholds, e.g., 

for drinking water and irrigation, occasionally (cf. KEI 2006). According to Kelderman and 

Batimaa (2006), high TDS concentrations mainly occur after snow melt and during 

rainstorms, but no correlation between TDS and river discharge could be detected. As high 

chloride concentrations are toxic for fishes, TDS concentrations, as proxy, can be useful for 
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the identification of river stretches where water quality deterioration is a potential threat 

to fish species. Even if species are not directly affected by TDS concentrations, habitat 

alteration may be a greater threat to aquatic ecosystems (Dunlop et al. 2005). Kaus et al. 

(this issue) detected the accumulation of heavy metals in fish tissue. Here, endemic red list 

species, e.g., Hucho taimen, are of high importance. 

 

Figure 32: Cumulative distribution function for FC (top), BOD (middle), and TDS (bottom) for the baseline and 
the scenario period 

 

From the literature only little is known about FC in Mongolia. Considering a number of 

livestock units of about 40 million in Mongolia (Hofmann et al. 2013) and low connection 

and treatment rates, coliform bacteria should be monitored; with priority in densely 

populated areas. Sorokovikova et al. (2013) reported FC pollution with 227 to 6600 

cfu/100 ml for the Naushki settlement located at the Selenga River at the Russian-

Mongolian border, which exceeds the thresholds of international standards for primary 
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contact and drinking water (e.g. DWA 1996; WHO 2000). However, according to our model 

results, FC concentrations are an issue in the Selenga River Basin affecting surface water 

quality. As shown for Ulaanbaatar, simulated and measured BOD values can reach high 

levels of pollution and can be used as an indicator for WWTPs effectivity and organic water 

pollution. For instance, Hofmann et al. (2010) stated that the WWTP of Darkhan is not 

working properly and MEGD (2012) reported that 67 % of Mongolian wastewater treatment 

plants are in a poor condition. 

 

5.6.  Conclusions 
 

In this study loadings and concentrations of BOD, FC and TDS were modelled to assess 

current and future water quality in the Mongolian part of the Selenga River. So far no 

comprehensive study exists analysing all Mongolian sub-basins of the Selenga River Basin, 

and therefore, a large-scale modelling approach was applied. Further, we used cumulative 

distribution functions to analyse the change in concentrations between current and future 

conditions. The key findings of this study are as follows: 

Overall, our model results show a strong increase in loadings for the scenario period 

(average, dry, and wet) likely leading to rising pressure on freshwater resources. 

Connection rates and treatment levels are low, treatment plants often do not work 

properly, and large urban areas are initial loading hotspots. Hence, pollution prevention 

becomes important to reduce the impacts of urbanization, population growth, and 

increasing manufacturing and mining activities on the wastewater generated and 

discharged into surface waters. 

High BOD loadings are generated by the domestic (23 %-55 %) and industry (40 %-75 %) 

sectors and hotspots can be found in the Tuul and Kharaa sub-basins where densely 

populated areas and/or areas with industrial activities, e.g., mining, are major areas of 

concern. Depending on the dilution capacity, BOD concentrations exceed a threshold of 4 

mg/l in the Tuul and Kharaa rivers and therefore may pose a risk to aquatic ecosystems. 
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A major source of FC loadings is the domestic sector (> 90 %) and hotspots are the big 

settlements, especially Ulaanbaatar and Darkhan. In comparison, FC loadings originating 

from livestock (about 3 %) are lower but spread over large areas in the south-western part 

of the Selenga river basin. High TDS loadings are produced by industries (62 %-88 %), in 

particular mining, with some contribution from the domestic (6%-18%) and agricultural 

(6 %-19 %) sectors. Hotspots can be found in the Tuul, Kharaa, and Orkhon sub-basins, 

indicating the areas where industrial activities are high. Overall, TDS concentrations are on 

a moderate level, however, high concentration spots are located in the Tuul River and 

downstream Erdenet mine. 

High BOD, FC and TDS in-stream concentrations are a result of high loadings entering 

surface waters with low dilution capacity. Törnros and Menzel (2010) and Törnqvist et al. 

(2014) stated that an increasing temperature and in turn increasing evapotranspiration will 

lead to a decrease in runoff in the study area in the future. Therefore, rising concentrations 

can be expected in surface waters in the future due to reduced river discharge and 

increased point source pollution. 

It can be expected that the above mentioned key findings will lead to major changes in 

water quality of the Selenga River and consequently affect the Lake Baikal, which is the 

world's biggest freshwater source. In addition, Mongolia is planning several major projects 

in the basin, which will have huge effects on water resources and water quality, in 

particular the Orkhon-Gobi canal and the Shuren Hydropower project (Sorokovikova et al. 

2013; Ministry of Energy 2014; Withanachchi et al. 2014). Nevertheless, as consistent, 

reliable and sufficient environmental data is not available for large parts of the study region 

(Karthe et al. 2015) the presented results include uncertainties in regard to input data and 

therefore calculated emissions and in-stream concentration. This study is the first 

comprehensive water quality modelling study in this region leading to potential hotspots of 

insufficient water quality and shows the need of a consistent monitoring programme in 

Mongolia to get further insight of water quality in the Selenga River Basin. 
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