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Abstract

Automatically calculating periodic timetables in public railway transport systems is
an NP -complete problem – namely the Periodic Event Scheduling Problem (PESP).
The original model is restricted to basic periodic timetabling. Extending the model by
decisional transport networks with flows induces new possibilities in the timetabling
and planning process. Subsequently, the given flexibility results in a generic model
extension of PESP that can be applied in subsets of the timetabling process. The
successful utilization of this approach is presented for distinct chain paths, duplicated
chain paths and non-connected flow graphs that represent integration of routing and
timetabling, planning of periodic rail freight train paths and track allocation, respectively.
Furthermore, the encoding of this generic model into a binary propositional formula is
introduced and the appropriate usage of several techniques like SAT solving and MaxSAT
to calculate and optimize the corresponding instances will be presented accordingly.
Computational results for real-world scenarios suggest the practical impact and give
promising perspectives for further scientific research.
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1 Introduction

Modeling and automatic solving of large-scaled periodic event networks, like a timetable

for the railway network of Germany, whose capacity network is depicted in Figure 1.1, is

still an open scientific field. The model, the so called periodic event scheduling problem

(PESP) [SU89], is well defined for periodic (cyclic) timetabling of public railway transport

networks [Nac98]. However, since PESP is an NP -complete [Coo71] problem, there exists

always pathological instances which cannot be solved in any reasonably given time frame

unless P = NP . Besides that, recent research [Gro+12a; Nac98; Opi09] has shown that

even large and complex networks can be handled efficiently in a reasonable amount of

time automatically.

Figure 1.1: Real-world instance of Germany’s long-distance train path system depicted
as infrastructure network with corresponding capacity utilization (screenshot
of software system TAKT).

Furthermore, the new techniques use efficient state-of-the-art SAT solvers by encoding

PESP instances into a propositional formula and afterwards, let this formula be solved.

This opens a whole new set of industrial scenarios that can be handled from now on for



2 1 Introduction

feasible timetables. Extending the model by decisional transport networks with flows –

which is briefly visualized in Figure 1.2 – settles new possibilities in the timetabling and

planning process in order to cover more industrial demands. Subsequently, the given

flexibility results in a generic model extension of PESP that can be applied in subsets

of the timetabling process. The successful utilization of this approach is presented for

distinct chain paths, duplicated chain paths and non-connected flow graphs that represent

integration of routing and timetabling, planning of periodic rail freight train paths and

track allocation, respectively.

train path system
(fixed routes of train paths)

periodic event network
(PESP instance)

timetabling
(PESP, SAT, MaxSAT solver)

timetable
(departure times

for train paths)

model

encode

decode

train path system
+ possible routes

(train path transporta-

tion (flow) networks)

periodic event network
with decisional flows

(FDPESP)

timetabling + routing
(SAT, MaxSAT solver)

timetable + paths
(routing choices and departure

times for train paths)

model

encode

decode

Figure 1.2: Extending periodic timetabling (left) with decisional flows by transportation
networks (right).

The connection of PESP and flow graphs – alongside its complexity classifications – will

be presented as well as its appropriate encodings. All of which will be validated by

soundness and completeness proofs in order to ensure the correct usage of the encodings.

Nevertheless, for computational evidence the new methods will be applied to real-world

scenarios to ensure the possible use cases in industrial settings.

Additionally, the interest arises to optimize possible feasible timetables with respect to

a compatible objective functional that suits the practical demand of railway operators.



3

Since the AI1 developed powerful general purpose solvers to optimize propositional

formulas2 the work covers further encodings for the already named applications that

transform the optimization instances into weighted propositional formulas. Likewise,

successful computational results to real-world scenarios suggest a promising outlook for

this approach.

All screenshots in this work are extracted of the software system TAKT which is

developed by TU Dresden’s Chair of Traffic Flow Science [Küm+13; Gro+12b; Gro+13;

WON12; Küm+15] around the group of Nachtigall, Opitz, Weiß, Kümmling et al. in

close collaboration with the most important German railway infrastructure provider

DB Netz AG3 [FP14; PF15; PW14; WL08] around the group of Weigand, Feil, Pöhle et

al.

The outline of this work will be as follows: Firstly, Section 2 introduces the needed base

problems SAT, PESP and MaxSAT as well as the base encoding that reduces PESP to

SAT. Secondly, Using the already introduced SAT encoding [Gro+12a] and introducing

the new encoding for flow graphs and its appropriate connection is presented in Section 3,

as well as its possible applications covering both soundness and completeness theorems

as well as complexity classifications. It follows in Section 4 the objective functionals for

the introduced applications as MIP models as well as appropriate MaxSAT encodings.

Yet again, soundness and completeness theorems show the correct possibility to use the

encoded instances in state-of-the-art solvers. The experimental results in Section 5 will

focus on instances for the industrial application of automated time table calculation of

public railway transport networks with and without decisional flows. In the end, the

work will be concluded in Section 6 with a scientific outlook for further research.

1artificial intelligence
2namely MaxSAT solvers
3DB Netz AG kindly provided the real-world scenario test data as input data for the software system
TAKT that result in the work’s screenshots and the computational results in Section 5



2 Preliminaries

This section covers the most important definitions and represents the foundation of the

whole work. The two main areas propositional logic and periodic event scheduling will be

introduced elementarily in Section 2.1 and Section 2.2, respectively. Furthermore, both

topics are connected by the polynomial reduction from the Periodic Event Scheduling

Problem (PESP) to the satisfiability problem (SAT) in Section 2.3. The latter is the

basis of the subsequent encodings presented in this work. Hence, the given encoding is

fundamental for the consequent understanding of the further encodings and the main

point of interest in this section. The whole process is exemplified in Figure 2.1, whereas

the most time consuming parts heavily depend on the given scenario.1

Since most parts of this section are well covered in the literature [Bie+09; SU89; Nac98;

Gro11; Opi09], most lemmas and theorems will be left without proofs or just proof

sketches.

2.1 Propositional Logic

Propositional logic is a fundamental topic in computer science2 and other areas. More and

more industrial problems are encoded into propositional logic [CDE08; Cla+01; MZ06].

Hence, the need of fast solvers, which can solve these problems in short time, increases.

In this work, propositional logic will be introduced as binary logic, whose values are

in {t, f}. An in depth overview of this topic can be found in the literature [Bie+09;

DW83].

The syntax and semantics are introduced separately in Section 2.1.1 and Section 2.1.2,

respectively. In the end, the satisfiability problem alongside its complexity classification

will be shown followed by a short introduction of the maximum satisfiability problem in

Section 2.1.4.

1Because the SAT solving step is NP -complete whereas the remaining parts have polynomial complexity.
2especially in artificial intelligence
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<Train TrainNumber="10.1 r_t1" FlowId="0">

<Btst DS100="KB" Type="departure">45</Btst>

<Btst DS100="KK" Type="departure">27</Btst>

</Train>

<Train TrainNumber="10.1 r_t2" FlowId="0">

<Btst DS100="EBO" Type="departure">79</Btst>

<Btst DS100="EDG" Type="departure">104</Btst>

<Btst DS100="EDO" Type="departure">68</Btst>

<Btst DS100="EE" Type="departure">90</Btst>

<Btst DS100="KD" Type="departure">117</Btst>

<Btst DS100="KK" Type="departure">140</Btst>

</Train>

<Train TrainNumber="10.1 r_t3" FlowId="0">

<Btst DS100="EBILP" Type="departure">130</Btst>

<Btst DS100="EDO" Type="departure">173</Btst>

<Btst DS100="EHM" Type="departure">157</Btst>

<Btst DS100="HH" Type="departure">81</Btst>

</Train>

<Train TrainNumber="10.1 r_t4" FlowId="0">

<Btst DS100="BLS" Type="departure">102</Btst>

<Btst DS100="BSPD" Type="departure">116</Btst>

<Btst DS100="HH" Type="departure">193</Btst>

</Train>

decode evaluate

variable assignment for

the periodic event network

(PESP schedule)

timetable(s) for the (pe-

riodic/cyclic) train path

system

Figure 2.1: Exemplifying process of timetabling in periodic (cyclic) railway timetabling.

2.1.1 Syntax

Definition 2.1 (Propositional Variable). Let p ∈ R be a propositional variable with R
being the set of propositional variables.

Definition 2.2 (Literal). A literal L is a propositional variable p or its negation ¬p.

Definition 2.3 (Complement). Let L be a literal and p a propositional variable. Then

L̄ is the complement of L such that

L̄ = ¬p :⇔ L = p,

L̄ = p :⇔ L = ¬p.
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Definition 2.4 (Clause). A clause c = (L1 ∨ . . . ∨ Ln) (n ∈ N) is a disjunction of

literals Li (i ∈ {1, . . . , n}).

The clause c := □ is called empty, if n = 0.

Definition 2.5 (Conjunctive Normal Form). F = c1 ∧ . . . ∧ cn ∈ L(R) (n ∈ N) is

a propositional formula in conjunctive normal form (CNF) if it is a conjunction of

clauses ci, i ∈ {1, . . . , n} with L(R) being the set of all propositional formulas.

The propositional formula F := ∅ is called empty, if n = 0. It follows firstly, that

F = □ is the propositional formula in CNF with a single clause, the empty clause.

Secondly, that F = ∅ is a propositional formula in CNF without any clause.

Lemma 2.6. Let c be a clause. Then F = c is a propositional formula in CNF.

Proof. With n = 1 in Definition 2.5, F = c1 = c is a propositional formula in CNF.

Lemma 2.7. Let L be a literal. Then F = L is a propositional formula in CNF.

Proof. Follows directly by Lemma 2.6 with c = L1 = L.

Lemma 2.8. Let p ∈ R be a propositional variable. Then F = p is a propositional

formula in CNF.

Proof. Follows directly by Lemma 2.7 with L = p.

Example 2.9 (Propositional Formulas in CNF). Let p, q, r ∈ R be propositional variables.

Then, with the previous definitions and lemmas it follows that

F1 = (p ∨ ¬r) ∧ (¬q ∨ r),

F2 = ¬p ∧ (q ∨ r),

F3 = (p ∨ q) ∧□

are propositional formulas in CNF.

In the sequel, let all propositional formulas in CNF and clauses may be treated as

finite sets. Hence, the binary set operators in {∪,∩, \,⊆,⊇} may be applied to them,

accordingly. Thus, the empty set of both the formula and a clause will be explicitly

handled in Section 2.1.2. Furthermore, in the following sections let p and q be propositional

variables, L be a literal, c be a clause and F be a propositional formula in CNF.
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2.1.2 Semantic

The mapping J : L(R) → {t, f} is called interpretation. It is sufficient to assign to each

propositional variable p ∈ R a truth value such that pJ ∈ {t, f} in order to evaluate

the truth value of a propositional formula F in CNF [Bie+09], since all evaluations of

the connectives — namely conjunction, disjunction and negation — under J are known

beforehand. This will be covered by the following definitions. In the sequel, let J be an

interpretation.

Definition 2.10. A literal L is satisfied under J , denoted as J |= L, if and only if L

is a propositional variable that is mapped to t under J , or L is a negated propositional

variable that is mapped to f under J .

Definition 2.11. A clause c is satisfied under J , denoted as J |= c, if and only if it

exists a literal in c that is satisfied under J .

Definition 2.12. A propositional formula F ∈ L(R) in CNF is satisfied under J ,

denoted as J |= F , if and only if all clauses in F are satisfied under J .

If F is satisfied under J , then J is called model for F . In case no such interpretation J

for F exists, F is called unsatisfiable.

Example 2.13. Let be the propositional formulas

F1 = (p ∨ ¬r) ∧ (¬q ∨ r),

F2 = ¬p ∧ (q ∨ r),

F3 = (p ∨ q) ∧□

as in Example 2.9 and J be an interpretation such that

pJ = t, qJ = f, rJ = f.

Then, we can imply that FJ
1 = t (or J |= F1), because with Definition 2.10 it follows that

(¬q)J = t and thus, with Definition 2.11 that (p ∨ ¬r)J = t and (¬q ∨ r)J = t. Finally,

with Definition 2.12 it follows that FJ
1 = t.

J ̸|= F2, because (¬p)J = f and thus with Definition 2.12 F2 is not satisfied under J .

J ̸|= F3, because with Definition 2.11 it follows that no literal under J is satisfied for □

and thus, F3 is not satisfied under J .
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Definition 2.14 (Semtically Equivalent). Let F ,G ∈ L(R) be propositional formulas.

Then F and G are called semantically equivalent (or F ≡ G) if and only if for all

interpretations J it holds

J |= F ⇔ J |= G.

Semantical equivalence can be shown in the following famous [Bie+09] examples.

Example 2.15 (without proofs). Let F , G and H be propositional formulas. Then

¬¬F ≡ F

¬(F ∧ G) ≡ (¬F ∨ ¬G) (de Morgan)

¬(F ∨ G) ≡ (¬F ∧ ¬G) (de Morgan)

((F ∨ G) ∨H) ≡ (F ∨ (G ∨ H)) (associativity)

((F ∧ G) ∧H) ≡ (F ∧ (G ∧ H)) (associativity)

(F ∨ G) ≡ (G ∨ F) (commutativity)

(F ∧ G) ≡ (G ∧ F) (commutativity)

(F ⇒ G) ≡ (¬G ∨ F) (implication).

We can get the truth value of a propositional formula F and an interpretation J by

FJ =

⎧⎨⎩t if J |= F

f if J ̸|= F
(2.1)

Hence, we can conduct the following corollary as described in the literature [Bie+09].

Corollary 2.16 (Semantically Equivalent). Let F ,G ∈ L(R) be propositional formulas.

Then with F ≡ G it holds for all interpretations J that

FJ = GJ .

Proof. 1. Let FJ = t. Then, it follows

FJ = t
(2.1)⇔ J |= F
Def 2.14⇔ J |= G
(2.1)⇔ GJ = t
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2. Let FJ = f . Then, it follows

FJ = f
(2.1)⇔ J ̸|= F
Def 2.14⇔ J ̸|= G
(2.1)⇔ GJ = f

If we handle the special cases of an formula in CNF – namely F is empty or a clause c

in F is empty – we get the following lemma.

Lemma 2.17. Let F ∈ L(R) in CNF. It holds for any interpretation J

(i) F = ∅ ⇒ J |= F

(ii) □ ∈ F ⇒ J ̸|= F

Proof. (i): follows by Definition 2.12, because it holds for all clauses in F .

(ii): follows by Definition 2.11, because no literal in □ exists that becomes t under J .

Example 2.18. Let F3 = (p ∨ q) ∧ □ be as in Example 2.9. In Example 2.13 it is

shown that J ̸|= F3. With Lemma 2.17 we know that F3 is unsatisfied for any given

interpretation and thus, it is unsatisfiable.

2.1.3 Satisfiability Problem (SAT)

There exist several classifications of the SAT problem [Bie+09]. This work will concentrate

on SAT being a decision problem, which either says, that the given formula is satisfiable

under a certain interpretation or that the formula is unsatisfiable. This decision can be

computationally calculated by so called SAT solvers.

Definition 2.19 (SAT Problem). Let F ∈ L(R) be a propositional formula in CNF.

Then the satisfiability problem (SAT) is the decision problem whether an interpretation J

exists with J |= F .

If such an interpretation exists, it is denoted as F ∈ SAT.

Example 2.20. Let F1,F3 be the propositional formulas in CNF and J be the interpre-

tation of Example 2.13. Then, with Example 2.18 we know that

F1 ∈ SAT,

F3 /∈ SAT.
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Since it is well known that the SAT problem is NP -complete [Coo71], it is not tractable

to solve this decision problem. Unless it does exist an algorithm with polynomial

complexity that solves an NP -complete problem, it will stay hard to solve such a SAT

instance. This is a common open problem in computer science, that is known as P
?
= NP .

Nearly all state-of-the-art SAT solvers [Man15; ALS13; Bie13] are not based on simple

backtracking with respect to truth value assignments of the propositional variables. The

new technique is called conflict driven back jumping and learning [MS96; MS99; Bie+09;

SE05]. Once the solver detects a conflict it does not simply backtrack to the last decision

point, but analyzes the current conflict with respect to its clauses by searching in a so

called implication graph. This allows to learn a new clause (or lemma) of the current

conflict and jump several decision levels back. This offers two huge improvements: On

the one hand, a lot of search space is skipped, because several decision levels have been

cut. On the other hand, the solver will never run into the same conflict again, since it

learned the problem (clause) of the conflict it was driven beforehand.

Most state-of-the-art SAT solvers require the propositional formula to be in CNF. Hence,

encoding a domain into SAT should consider this fact, since transforming afterwards a

formula into CNF, for example with the rules given in Example 2.15, often ends in an

exponential explosion with respect to the number of clauses.

native domain instance

SAT instance

SAT solution

native domain solution

encoding

SAT solver

decoding

Figure 2.2: SAT solver as general purpose solver.

Several industrial problems have already been reformulated as propositional formulas

and been solved by SAT solvers [CDE08; Cla+01; MZ06]. Since all those domains showed

promising results, this work tries this approach as well: encoding the native domain into

a propositional formula in CNF and then solve the instance by a state-of-the-art SAT
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solver. It can be conducted that SAT solvers can be used as general purpose solvers as

visualized in Figure 2.2 with the SAT solution being either unsatisfiable or a model that

satisfies the formula.

Since SAT solvers are already used in industrial domains, the SAT community came

up with other powerful solvers for other SAT-based domains. One of these domains is

the MaxSAT problem that maximizes the number of clauses that are satisfied under a to

be determined interpretation. This technique will be introduced in the following section

and further used in Section 4.

2.1.4 Maximum Satisfiability

Applying weights for clauses of a propositional formula in CNF as in Definition 2.5 results

in a weighted formula [FM06; Bie+09].

Definition 2.21 (Weighted Propositional Formula). Let ωi ∈ N ∪ {∞} be weights for

clauses ci (i ∈ {1, . . . , n}). Then,

F = (ω1, c1) ∧ . . . ∧ (ωn, cn)

is called weighted propositional formula in CNF (WCNF).

Each clause c with weight ω = ∞ is said to be a hard clause [Bie+09] because it must

be satisfied under any interpretation J . In the remaining work, we assume

∞ · 0 := 0

Example 2.22 (WCNF). Let F1∧F2 = (p∨¬r)∧(¬q∨r)∧¬p∧(q∨r) be a propositional
formula in CNF as in Example 2.9. Then,

F4 = (4, (p ∨ ¬r)) ∧ (3, (¬q ∨ r)) ∧ (∞,¬p) ∧ (2, (q ∨ r))

F5 = (4, (p ∨ ¬r)) ∧ (3, (¬q ∨ r)) ∧ (1,¬p) ∧ (2, (q ∨ r))

are propositional formulas in WCNF that only differ in the weight for the clause (¬p).

Definition 2.23 (MaxSAT Problem). Let F be a propositional formula in WCNF. Then,

the (partial weighted) MaxSAT problem requires an interpretation J such that the sum of

weights of clauses c with J ̸|= c is minimal and less than ∞, which is denoted as J |= F .
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If the sum equals ∞ a hard clause is not satisfied and thus, no such interpretation

exists, respectively for any interpretation the sum of weights that are violated equals

always ∞.

Lemma 2.24. Let F = (∞, c1)∧ . . .∧ (∞, cn) be a propositional formula in WCNF and

J an interpretation. Then it holds for a propositional formula G = c1 ∧ . . . ∧ cn in CNF

J |= F ⇔ J |= G.

Proof.

J |= F Def 2.23⇔ ∀c ∈ F : J |= c
Def 2.12⇔ J |= G.

This lemma shows that a propositional formula in WCNF whose weights equals ∞
can be transformed into an equivalent SAT problem.

The sum of minimal weights (i. e., violations) for a propositional formula in WCNF

F = (ω1, c1) ∧ . . . ∧ (ωn, cn) and an interpretation J can be calculated with W̄ such that

W̄ (F , J) =
n∑

i=1

ωi(1− xi)

with

xi :=

⎧⎨⎩1, J |= ci

0, J ̸|= ci.

Hence, we can equivalently formulate Definition 2.23 for a propositional formula F in

WCNF

W̄ (F , J) → min .

Equivalently, the sum of satisfied weighted clauses W can be calculated with

W (F , J) =
n∑

i=1, ωi ̸=∞

ωixi. (2.2)

Evaluating W for F and J is only useful in case of all hard clauses being satisfied under J

such that

∀i ∈ {1, . . . , n}, ωi = ∞ : J |= ci.
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Example 2.25 (Solution WCNF). Let F4, F5 be propositional formulas in WCNF as in

Example 2.22 and J4, J5 be interpretations such that

pJ4 = f, qJ4 = f, rJ4 = f

pJ5 = t, qJ5 = f, rJ5 = t.

Then, J4 |= F4 and J5 |= F5 and we can evaluate W̄ and W with

W̄ (F4, J4) = 4(1− x1) + 3(1− x2) +∞(1− x3) + 2(1− x4)

= 4 · 0 + 3 · 0 +∞ · 0 + 2 · 1 = 2,

W̄ (F5, J5) = 4(1− x1) + 3(1− x2) + 1(1− x3) + 2(1− x4)

= 4 · 0 + 3 · 0 + 1 · 1 + 2 · 0 = 1,

W (F4, J4) = 4x1 + 3x2 + 2x4 = 4 + 3 = 7,

W (F5, J5) = 4x1 + 3x2 + 1x3 + 2x4 = 4 + 3 + 2 = 9.

No other interpretation as a lower sum of violated weights exists. For example, J5 ̸|= F4

and J4 ̸|= F5 because

W̄ (F4, J5) = 4(1− x1) + 3(1− x2) +∞(1− x3) + 2(1− x4)

= 4 · 0 + 3 · 0 +∞ · 1 + 2 · 0 = ∞ > 2 = W̄ (F4, J4),

W̄ (F5, J4) = 4(1− x1) + 3(1− x2) + 1(1− x3) + 2(1− x4)

= 4 · 0 + 3 · 0 + 1 · 0 + 2 · 1 = 2 > 1 = W̄ (F5, J5).

Furthermore, we can evaluate F5 for J4:

W (F5, J4) = 4x1 + 3x2 + 1x3 + 2x4 = 4 + 3 + 1 = 8 < 9 = W (F5, J5).

Hence, an algorithm that solves MaxSAT as in Definition 2.23 must return an interpre-

tation (model) with minimal violated weighted clauses. The similarities between MaxSAT

and MIP problems has been discussed in the literature [FM06; MMP09]. It has been

shown that it exists efficient state-of-the-art MaxSAT solvers [MML14].
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2.2 Periodic Event Scheduling

Whereas SAT, respectively the corresponding automated software, serves as solvers for

the problems described in this work, periodic event scheduling and its possible extensions

represents the core topic. This section covers the definitions and notations of periodic

event networks in Section 2.2.1 and the basic to be solved problem in Section 2.2.2.

In Section 2.2.3 the current research for periodic event scheduling is discussed which

covers the main point of interest: automatic railway timetabling for a lot of different

applications.

2.2.1 Periodic Event Network

Several time scheduling problems have periodic properties [LW82; SU89; BDP04]. Hence,

an event does not only happen once in time, but periodically often modulo a time bound.

In order to restrict these events in some way, there will be introduced constraints, so

called time consuming processes or activities. Connecting events with constraints will

result in a graph of a so called periodic event network. If all constraints hold for a certain

assignment of all the events, when they periodically happen in time, then this assignment

is called valid schedule. More in depth information can be found in the literature [Nac98;

Opi09; SU89; Kro+08; Kro+09; LM07b].

Definition 2.26 (Interval). Let a, b ∈ Z. Then

[a, b] := {x | a ≤ x ≤ b} ⊆ Z

is the interval from a to b, the lower and upper bound, respectively.

Further Knowledge of interval arithmetic and linear subspaces can be gained in the

literature [Hog06].

Definition 2.27 (Modulo Interval). Let a, b ∈ Z and t ∈ N+. Then

[a, b]T :=
⋃
z∈Z

[a+ z · T, b+ z · T ] ⊆ Z

is called interval modulo T .
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2 3 6 14 15

Figure 2.3: Visualization as in Example 2.28

Example 2.28. Let

I = [2, 4]10

= . . . ∪ [−8,−6] ∪ [2, 4] ∪ [12, 14] ∪ [22, 24] ∪ . . .

= {. . . ,−8,−7,−6, 2, 3, 4, 12, 13, 14, 22, 23, 24, . . .} ⊂ Z

be an interval modulo 10. Then

2 ∈ [2, 4] ⊂ I

3 ∈ [2, 4] ⊂ I

6 /∈ I

14 ∈ [12, 14] ⊂ I

15 /∈ I.

This can be seen visualized in Figure 2.3.

In the literature [Nac98; Opi09; SU89], z is called modulo parameter.

Definition 2.29 (Periodic Event Network). The tuple N = (V , E , T ) is called periodic

event network (PEN) with respect to period T ∈ N that consists of a set of periodic

events V (nodes) and a set of constraints E (edges). Each constraint e ∈ E connects two

periodic events such that

e = (n,m,Ze) ∈ V × V × P(Z),

and ∀i ∈ Ze,∀z ∈ Z : i+ z · T ∈ Ze.

In the literature, the set Ze is typically a modulo interval [le, ue]T . Thus, in many cases

the edge e is denoted as (n,m, [le, ue]T ). Opening the intervals with a set of subsets opens

a lot of varieties to define cleanly preprocessing and cutting techniques like combining

edges between same events or the advanced order encoding presented in Section 2.3.3. The

following lemma ensures the correctness of modulo intervals for these type of constraints.
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Lemma 2.30. Let e = (n,m, [le, ue]T ) be a tuple with n and m being periodic events

and Ze = [le, ue]T a modulo interval for period T . Then e is a constraint with respect to

Definition 2.29.

Proof. ∀i ∈ Ze = [le, ue]T , ∀z ∈ Z : i+z ·T ∈ Ze, which follows directly by Definition 2.27.

However, for several preprocesses and optimization techniques this is always the case.

In the sequel, N denote PENs. It follows the introduction of the semantic part of the

periodic event networks. In order to define a schedule, it is needed to assign each event a

point in time, when it happens.

For convenience, we introduce the following two mappings in order to access parts of

an edge. The function ϵ returns the pair of consecutive events for a constraint e such that

ϵ : V × V × P(Z) → V × V

(n,m,Ze) ↦→ (n,m)

and the function a maps the respective constraint to the integer set such that

a : V × V × P(Z) → P(Z)

(n,m,Ze) ↦→ Ze

Definition 2.31 (Schedule). Let V be a set of events and T ∈ N+ be the period. The

mapping

Π : V → [0, T − 1]

n ↦→ Π(n)

is called schedule for V.

Each mapped event Π(n), n ∈ V , is called potential for event n.

Definition 2.32. Let N = (V , E , T ) be a PEN, e = (i, j,Z) ∈ E be an edge, and Π be a

schedule. The constraint e holds under Π, denoted as Π |= e if and only if

Π(j)− Π(i) ∈ Z.

This property is a time consuming process which describes, how much time within
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i

j

k

[3, 5]10 [2, 2]10

[2, 4]10

Figure 2.4: Periodic event network as in Example 2.35

[l, u] modulo T is needed from an event i to the event j in order to hold with respect to

the constraint e, assuming that the integer interval is a modulo interval.

Example 2.33. Let e = (n,m, [3, 5]10) be a constraint with period T = 10. Then this

constraints holds under a schedule Π(n) = 1,Π(m) = 5, because 5− 1 = 4 ∈ Z = [3, 5]10

and as well for a schedule Π(n) = 9,Π(m) = 2, because 2− 9 = −7 ≡10 3 ∈ [3, 5]10.

Definition 2.34 (Valid Schedule). Let N = (V , E , T ) be a PEN and Π be a schedule. Π

is valid for N , denoted as Π |= N , if and only if each constraint e ∈ E holds under Π.

If a valid schedule for a PEN N exists, then N is said to be feasible. Otherwise, N is

said to be infeasible.

Example 2.35. Let N = ({i, j, k}, E , 10) be a periodic event network with the set of

edges E = {(i, j, [3, 5]10), (j, k, [2, 2]10), (k, i, [2, 4]10)}. This can be displayed as graph

which is shown in Figure 2.4.

Additionally, let Π be a schedule with Π = {i ↦→ 1, j ↦→ 5, k ↦→ 7}. Π is valid for N
(Π |= N ), because

Π(j)− Π(i) = 5− 1 = 4 ∈ [3, 5]10

Π(k)− Π(j) = 7− 5 = 2 ∈ [2, 2]10

Π(i)− Π(k) = 1− 7 = −6 ∈ [−8,−6] ⊂ [2, 4]10.

For further discussions, we introduce the definition of equivalent PENs such that they

can be semantically be compared like in Section 2.3.3 for the advanced SAT encoding.

Definition 2.36 (Equivalent PENs). Let N , N ′ be PENs. Then N and N ′ are equivalent

(denoted as N ≡ N ′) if and only if for any schedules Π it holds

Π |= N ⇔ Π |= N ′.
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An Example follows in Section 2.3.3.

2.2.2 Periodic Event Scheduling Problem (PESP)

The SAT problem in Section 2.1.3 is introduced as decision problem. Likewise, the

Periodic Event Scheduling Problem (PESP) will be introduced as decision problem as

well as in the following definition.

Definition 2.37 (Periodic Event Scheduling Problem (PESP)). Let N be a PEN. Then,

the Periodic Event Scheduling Problem (PESP) is the decision problem whether a valid

schedule for N exists.

Solving a PESP instance can be done in several ways. Firstly, it can be solved

by native domain PESP solvers [Nac98; Opi09; Kro+08]. Secondly, encoding it to a

linear program (LP) and be solved by a state-of-the-art LP solver [LM07b; Opi09], or

thirdly, by the current state-of-the-art solver [Gro+12a] which encodes PESP to SAT

and solves the encoded instance by a state-of-the-art SAT solver. This will be briefly

presented in the following section. It has been shown before in several ways that PESP

is NP -complete [SU89; Gro12b; Nac98].

2.2.3 Related Work and Applied Computational Software

This section covers both theoretical aspects and methods in the current research as well as

their implementation in applied tools used for computations in real-world scenarios. Since

the traditional PESP model has been introduced by Serafini and Ukovich in 1989 [SU89],

a lot of researchers and indirectly practitioners have been tackled the problem and

enhanced it or its respective solution approaches.

Since a decade the Chair of Traffic Flow Science of Nachtigall works in close collabora-

tion with the DB Netz AG (German railway infrastructure company) and developed the

software system TAKT [Nac98; Opi09; Gro+12b; WKO15; Küm+13]. The core module

covers railway timetabling with a given train path system and includes conflict resolv-

ing techniques [Opi09; Gro12b; Gro13] as well as optimization of generated timetables.

Furthermore, traffic passenger flows can be considered in the optimization step [NO08;

Opi09]. As enhancement this tool can insert and optimize railway freight train paths into

a given train path system [WON12; Küm+15] which will have an in depth discussion

in Section 3 and Section 4 which even has recently be enhanced into automated 24 h

timetabling [Gro+13].
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In the Netherlands the powerful and one of the most enhanced tool DONS have been

developed by Kroon, Schrijver, Peeters et al. in collaboration with the dutch railway

company NS [Kro+08; Kro+09]. Basically it does an iterative, interactive process with

the divided parts covering timetabling and station routing in order to generate a feasible

timetable.

Furthermore, they tackled the problem of rescheduling (short-term planning, small

disruptions) for rolling stock [Bud+10] as well as rescheduling under massive (large-scaled)

disruptions [Vee+14] by considering rerouting, cancellation and delays of train paths.

These models are again applied to real-world scenarios of the Dutch railway network.

Recently, the group around Kroon and Peeters modeled a way how to introduce flexible

connections (rolling stock and passenger connections) into a cyclic railway timetable and

present a solving approach of the given problem [Kro+14]. This new technique is applied

in real-world scenarios as the dutch railway network which covers both passenger trains

like the intercity network and freight trains.

Minimization of passenger journey times with PESP has been solved for the Danish

railway network by Sels et al. [Sel+15].

Schmidt and Schöbel developed an integrated approach for timetabling and passenger

routing [SS10; SS15] in order to reduce the delays for passengers which even has been

combined with line planning [Sch14]. An approach for integrated (freight train) routing

and aperiodic (non-periodic) timetabling has been developed by Cacchiani et al. [CCT10;

CGT15].

Caimi, Laumanns et al. enhanced the PESP model by event flexibility [Cai+07] which

allows not just a precise point in time for each event (node) in the PEN but a time interval.

Yet, all intervals fulfill the needed criteria in order to generate feasible timetables. They

transform the problem into a mixed linear program and solve the given instances with

MIP solvers. The advantage they created lays in the interactive and iterative process

with micro-level scheduling.

2.3 Encoding Periodic Event Networks into SAT

As depicted in Figure 2.1, this section covers the encoding of a PESP instance to a

respective SAT instance [Gro11; Gro+12a; Gro12a] which is called as well polynomial

reduction [DW83]. Similarly as converting constraint satisfaction problems into SAT,

the finite domains of the events can be translated in very different ways. In this work,

only the order encoding [TTB11] will be presented. This encoding is superior to other
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encodings like direct encoding.

For most lemmas only proof sketches are provided. An in-depth analysis of the presented

lemmas and definitions and a encoding comparison can be found in the literature [Gro11].

2.3.1 Order Encoding for Variables of Finite Ordered Domains

Since domains in PESP are subsets of Z, especially they are sets of intervals, it is natural

to apply the order relation ≤ on Z.

Example 2.38. Let x ∈ {1, 2, 3, 4, 5} = [1, 5] ⊂ Z be a variable. Then we know

x ≥ 1 ⇒ x ̸≤ 0 ⇒ ¬(x ≤ 0), (2.3)

x ≤ 5, (2.4)

∀i ∈ {1, . . . , 5} : (x ≤ i− 1) → (x ≤ i)

⇔ ∀i ∈ {1, . . . , 5} : ¬(x ≤ i− 1) ∨ (x ≤ i). (2.5)

With facts (2.3) and (2.4), we can conclude

(2.5)
(2.3),(2.4)⇒ ∀i ∈ {2, . . . , 4} : ¬(x ≤ i− 1) ∨ (x ≤ i).

The previous example shows the intension of the order encoding and results in the

following definition.

Let qn,i be a propositional variable with i ∈ [−1, T − 1] and n ∈ V an periodic event.

Then, the variable qn,i is interpreted as Π(n) ≤ i and ¬qn,i as ¬(Π(n) ≤ i) which is

equivalent3 to Π(n) ≥ i+1. The function enc maps the set of events V to a propositional

formula in CNF, such that this ordering holds:

enc(n) = (¬qn,−1 ∧ qn,T−1)
⋀

i∈[0,T−1]

(¬qn,i−1 ∨ qn,i) (2.6)

This encoding for variables of finite ordered domains is discussed in details by Tanjo et

al. [TTB11]. Obviously, the unit clauses4 could be easily propagated and will directly

decrease the amount of clauses and should be considered for possible implementations.

However for better a illustration, these clauses are maintained.

In order to encode all events’ potentials, which will be the decoded schedule afterwards,

3because Π maps to a natural number in [0, T − 1]
4clauses containing only one literal like p or ¬p
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we define

ΩN :=
⋀
n∈V

enc(n). (2.7)

If a model J has been found for this formula, extracting the value of the event n by J

is done by the bijective function ξn(J) with ξn(J) = k such that J ̸|= qn,k−1, J |= qn,k

and k ∈ [0, T − 1].

Example 2.39. Let x ∈ [1, 5] ⊂ Z be the variable in Example 2.38. Applying enc yields

enc(x) = ¬qx,0 ∧ qx,5 ∧ (¬qx,1 ∨ qx,2) ∧ (¬qx,2 ∨ qx,3) ∧ (¬qx,3 ∨ qx,4)

Let J be an interpretation with

qJx,0 = f,

qJx,1 = f,

qJx,2 = f,

qJx,3 = f,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
i < 4 → f

qJx,4 = t,

qJx,5 = t.

}
i ≥ 4 → t

Then we can extract the value for x by applying ξ, which yields

x = 4,

because x ̸≤ 3 (qJx,3 = f) and x ≤ 4 (qJx,4 = t).

The mapping ξn is well-defined and ensures extracting exactly one value due to the

following lemma.

Lemma 2.40. Let N = (V , E , T ) be a PEN, n ∈ V be an event and J an interpretation.

Then

(i) J |= enc(n) ⇔ ∃!k ∈ [0, T − 1] : ∀i ∈ [−1, k − 1] : J ̸|= qn,i,

(ii) ∀j ∈ [k, T − 1] : J |= qn,j.

Proof (sketch). “⇒”: Let J |= enc(n). To show:

1. ∃k ∈ [l, u] : ∀i ∈ [l, k − 1] : J ̸|= qn,i,∀j ∈ [k, u− 1] : J |= qn,j ∧
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Figure 2.5: Feasible (blue) and infeasible (white) regions for constraint a(i, j) = [3, 5]10.
The red square shows an infeasible rectangle.

2. ∄h ∈ [l, u], h ̸= k : ∀i ∈ [l, h− 1] : J ̸|= qn,i,∀j ∈ [h, u− 1] : I |= qn,j

1. is simply shown with mathematical induction.

2. is simply shown without loss of generality h > k implies qJn,k = f , which is in

contradiction to 1.

“⇐”: can be simply shown with mathematical induction as in “⇒”.

Extracting the schedule Π can be done on a per-element basis of a model J with

∀n ∈ V : Π(n) = ξn(J),Π = ξ(J) = {n ↦→ ξn(J) | n ∈ V}. (2.8)

Without proof, we can use an artificial inverse function

ξ−1(Π) = J (2.9)

that returns for the schedule Π the interpretation J that suffices the conditions in (2.8)

and Lemma 2.40.

2.3.2 Polynomial Reduction from PESP to SAT

In order to encode a constraint e = (i, j, [l, u]T ) ∈ E , we take a deeper look at all feasible

pairs (Π(i),Π(j)) that hold under e. Uniting all these pairs is called the feasible region

Se := {(Π(i),Π(j)) | Π(j)− Π(i) ∈ [l, u]T} respectively the union of every other pair the
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infeasible region5

Pe := [0, T − 1]× [0, T − 1] \ Se. (2.10)

The intension of the encoding is presented in the following example.

Example 2.41. Let i, j be two events and e = (i, j, [3, 5]10) be a constraint in Exam-

ple 2.33 with Π(i) and Π(j) the potential of i and j, respectively.

A part of the infeasible region would be for instance

r = ([4, 7]× [3, 6])

with (Π(i),Π(j)) /∈ r. The to be excluded rectangle r is visualized in Figure 2.5.

Thus, all pairs which are not feasible represented as the set

{(i, j) | i ∈ [4, 7], j ∈ [3, 6]} = r.

Then, we know that for each pair (Π(i),Π(j)) /∈ r, if e holds for Π(i), Π(j). With qi,k,

k ∈ [−1, 9] and qj,l, l ∈ [−1, 9] being the propositional variables in (2.6), it follows

∄(Π(i),Π(j)) : Π(i) ≤ 7,Π(i) ≥ 4,Π(j) ≤ 6,Π(j) ≥ 3

⇔ ¬((Π(i) ≤ 7) ∧ (Π(i) ≥ 4) ∧ (Π(j) ≤ 6) ∧ (Π(j) ≥ 3))

⇔ ¬((Π(i) ≤ 7) ∧ ¬(Π(i) ≤ 3) ∧ (Π(j) ≤ 6) ∧ ¬(Π(j) ≤ 2))

⇔ ¬(qi,7 ∧ ¬qi,3 ∧ qj,6 ∧ ¬qj,2)

⇔ (¬qi,7 ∨ qi,3 ∨ ¬qj,6 ∨ qj,2) =: c

Since c is a clause, we can directly connect this conjunctively to the resulting formula.

In general, let e = (i, j, [l, u]T ) ∈ E be a constraint. Then we can exclude all infeasible

pairs of a rectangle [i1, i2]× [j1, j2], that is a subset of the infeasible region Pe, by a single

clause:

enc rec([i1, i2]× [j1, j2]) = ¬qi,i2 ∨ qi,i1−1 ∨ ¬qj,j2 ∨ qj,j1−1 (2.11)

With ⌊·⌋ being the round down function, ⌈·⌉ being the round up function and the

integers u, l ∈ Z with u < l, we can define

δ(l, u) := l − u− 1

5which could be equivalently formulated as Pe := {(Π(i),Π(j)) | Π(j)−Π(i) /∈ [l, u]T }
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Figure 2.6: Evaluated function values δy(3,−5), δx(3,−5) as in Example 2.42.

and thus, the height of a rectangle by

δy(l, u) :=

⌊
δ(l, u)

2

⌋
and likewise, the width of a rectangle by

δx(l, u) :=

⌈
δ(l, u)

2

⌉
− 1.

These definitions allow us to determine a rectangle between u and l, such that it has

maximum area having minimum perimeter. Basically each rectangle has a width of

δx(l, u) and a height of δy(l, u).

Example 2.42. Let i, j be two events and e = (i, j, [3, 5]10) be a constraint in Exam-

ple 2.33 with Π(i) and Π(j) the potential of i and j, respectively.

For example, we choose l = 3, u = −5. Then we can evaluate

δ(3,−5) = 3− (−5)− 1 = 7,

δy(3,−5) =

⌊
δ(3,−5)

2

⌋
=

⌊
7

2

⌋
= 3,

δx(3,−5) =

⌈
δ(3,−5)

2

⌉
− 1 =

⌈
7

2

⌉
− 1 = 3.

The evaluated values are displayed in Figure 2.6.

In order to cover each infeasible pair in the area between u − T and l, we need
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Figure 2.7: Excluded rectangles for constraint [3, 5]10.

approximately T rectangles. The function ζ : P(Z) → P(P(Z)× P(Z)),

ζ([l, u]T ) = {H ×G | |H| = δx(l, u− T ), |G| = δy(l, u− T ), (H ×G) ∩ Se = ∅}, (2.12)

withH,G ∈ P(Z) being intervals, maps to the set of all infeasible rectangles of constraint e.

The application of ζ to constraint [3, 5]10 as in Example 2.42 is depicted in Figure 2.7

which exemplifies the exclusion in the center linear search space. The sufficiency that all

infeasible pairs of a constraint are excluded, is given by the following lemma.

Lemma 2.43. Let e = (i, j, [l, u]T ) be a constraint. Then the following holds

(i) Pe ⊆
⋃

A∈ζ(a(e))

A

(ii) Se ∩
⋃

A∈ζ(a(e))

A = ∅.

The lemma states that in (i) ξ covers the whole infeasible space and in (ii) that ξ is

disjoint with the feasible region. The proof is provided in the literature [Gro11].

Definition 2.44 (Encode Constraint). Let e = (i, j, [l, u]T ) be a constraint. Then

enc con : E → L(R)

e ↦→
⋀

A∈ζ([l,u]T )

enc rec(A)

is the order encoding mapping of the edge e.
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Let the encoding of all edges e ∈ E be

ΨN :=
⋀
e∈E

enc con(e). (2.13)

This results in the encoding of a PESP instance such that

Definition 2.45 (Encoding PESP). Let N = (V , E , T ) be a PEN. Then the function

enc pen(V , E , T ) := ΩN ∧ΨN (2.14)

is the order encoding function of a PESP with respect to N .

It has been shown previously [Gro11] that enc pen maps to propositional formula in

CNF and thus, can be easily given to a state-of-the-art SAT solvers.

As proposed and proved in the literature [Gro11] the cardinality of the set of encoded

clauses and variables is linear to the period T such that

|enc pen(N )| ∈ O(T · (|V|+ |E|))

for a given PEN N = (V , E , T ).
In the following, the proof for soundness and completeness of the polynomial reduction

will be provided. The subsequent lemma ensures that each pair of the encoded rectangle

is not satisfiable with respect to the encoded formula and thus, not part of a feasible

schedule.

Lemma 2.46. Let r = ([i1, i2]× [j1, j2]) ⊆ Pe be a rectangle in the infeasible region of

the constraint e = (i, j, [l, u]T ). Then

J |= enc rec(r) ⇔ (ξi(J), ξj(J)) /∈ r

with J being an interpretation.

Proof. “⇒”:

J |= enc rec(r) ⇒ (¬qi,i2 ∨ qi,i1−1 ∨ ¬qj,j2 ∨ qj,j1−1)
J = t (2.15)

Proof by contradiction: assume (ξi(J), ξj(J)) ∈ r = ([i1, i2]× [j1, j2]). Then

i1 ≤ ξi(J) ∧ i2 ≥ ξi(J) ∧ j1 ≤ ξj(J) ∧ j2 ≥ ξj(J)
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which results in

qJi,i2 = t ∧ qJi,i1−1 = f ∧ ¬qJj,j2 = t ∧ qJj,j1−1 = f

⇒ (¬qi,i2 ∨ qi,i1−1 ∨ ¬qj,j2 ∨ qj,j1−1)
J = f

This is a contradiction to (2.15). Hence,

(ξi(J), ξj(J)) /∈ r

“⇐”: analogous to “⇒”.

It has been shown that the Periodic Event Scheduling Problem can be reduced to

satisfiability testing efficiently [Gro+12a] and that the reduction is sound and complete

as conducted in the next theorem.

Theorem 2.47 (Soundness Completeness Encoding). Let N = (V , E , T ) be a PEN and

F := enc pen(N ) ∈ L(R)

be the order encoded propositional formula of N . Then

∃J : J |= F ⇔ ∃Π : Π |= N

with J being an interpretation and Π a schedule of V.

Proof.

∃J : J |= F Def. 2.45⇔ ∃J : J |= (ΩN ∧ΨN )

⇔ ∃J : J |= ΩN , J |= ΨN
(2.7)⇔ ∃J : J |=

⋀
n∈V enc(n), J |= ΨN

Def. ξn,Lem 2.40⇔ ∀n ∈ V : Π(n) := ξn(J), J |= ΨN
(2.13)⇔ ∃J : ∀n ∈ V : Π(n) := ξn(J), J |=

⋀
e∈E

⋀
r∈ζ(a(e)) enc rec(r)

⇔ ∃J : ∀n ∈ V : Π(n) := ξn(J), ∀e ∈ E ∀r ∈ ζ(a(e)) : J |= enc rec(r)
Lem. 2.46,2.43⇔ ∃J : ∀n ∈ V : Π(n) := ξn(J), ∀e ∈ E : e holds under Π

⇔ ∃J : ∀n ∈ V : Π(n) := ξn(J),Π |= N
Def. ξn,Lem 2.40⇔ ∃Π : Π |= N
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Figure 2.8: Solution space for PEN N as in Example 2.48 constraint [1, 8]10 (left)
and [7, 12]10 (right).

Solving the SAT instance with a state-of-the-art SAT solver requires a very short time

frame compared to a state-of-the-art PESP solver6 [Gro11; Gro+12a]. The reduction to

SAT allows to solve a whole set of larger, more complex instances, which could not be

handled before. Consequently, SAT-based solvers should be taken into consideration for

possible extensions of PESP, as presented in Section 3 and Section 4.

Generalizing this encoding to all constraints and not just the encoding of constraints

with modulo intervals follows in the consecutive section.

2.3.3 Advanced Constraint Encoding

In the previous section, the reduction from PESP to SAT has been introduced for

constraints that are based on modulo intervals like [l, u]T . We will extend this by the

general constraints given as in Definition 2.29. The advanced encoding will not be proved

for soundness and completeness, but follows the same schema as in the proofs in the

literature [Gro11].

Example 2.48 (Constraint Comparison). Let

N = ({n,m}, {(n,m, [7, 12]10), (n,m, [1, 8]10)}, 10)

be a PEN which is depicted in Figure 2.9. Then an equivalent PEN, with respect to

6see Section 5.2
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Figure 2.10: Solution space (left) and infeasible space (right) for PEN N ′ as in Exam-
ple 2.48.

solution and search space, would be N ′ with N ≡ N ′ such that

N ′ = ({n,m}, {(n,m, [1, 2]10 ∪ [7, 8]10)}, 10),

because [1, 8]10 ∩ [7, 12]10 = [1, 2]10 ∪ [7, 8]10 which is depicted in Figure 2.9 as well.

n m

[7, 12]10

[1, 8]10

n m
[1, 2]10 ∪ [7, 8]10

Figure 2.9: PEN N (left) and N ′ (right) as in Example 2.48 with 2 events.

The equivalence of disjunctive constraints is given in the literature [SU89; Opi09]. The

solution space of both constraints in N and N ′ is visualized for any given schedule Π

for V in Figure 2.8 and Figure 2.10 (left), respectively. Consequently, as in the previous

section, we exclude all rectangles that are part of the infeasible space.

Firstly, we need all intervals of the infeasible space which is the complement set of the

disjunctive constraint. With Z being a constraint for period T as in Definition 2.29 such

that ∀i ∈ Z,∀z ∈ Z : i+ z · T ∈ Z we can define

Z := {i ∈ Z | i /∈ Z}. (2.16)
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For instance, the complement of the constraint in N ′ of Example 2.48 is depicted in

Figure 2.10 (right). Evaluating the complement set for Z = [1, 2]10 ∪ [7, 8]10 we get

Z = [3, 6]10 ∪ [9, 10]10.

Subsequently, the size of each rectangle stream has to be evaluated for each linear

infeasible area in the constraint. Since we can use the same rectangle encoding, we have

to extend the function ζ that maps to all rectangles that shall be excluded in (2.12)

by sectioning it to the subintervals as in Z. First of all, with (2.16) we can write a

disjunctive set of modulo intervals as

Z = [l0, u0]T ∪ . . . ∪ [lk−1, uk−1]T , k ∈ N.

Furthermore, we extend ζ for a constraint e = (n,m,Z) with the set of modulo intervals

Z = [l0, u0]T ∪ . . . ∪ [lk−1, uk−1]T , k ∈ N such that

ζ(e) = {H ×G | i ∈ {1, . . . , k}, u = ui, l = li+1mod k :

|H| = δx(l, u), |G| = δy(l, u), |(H ×G) ∩ P(n,m,[l,u]T )| = |H| · |G|}
(2.17)

with Pe as in (2.10), which maps to all rectangles of the infeasible region.

Finally, we can simply apply enc pen as in Definition 2.45 with the new defined

mapping ζ. The soundness and completeness follows directly by the sound definition

of ζ that excludes the whole infeasible search space of each constraint. However, this

proof will be omitted in this work. The advantage in this encoding is not the reduced

amount of rectangles, which in fact are equal, but the additional encoded information

into the propositional formula by excluding additional already known infeasible parts of

constraints.

Regarding the constraints in Example 2.48 it can be easily concluded that

ζ(n,m, [7, 12]10) ∪ ζ(n,m, [3, 8]10) = ζ(n,m, [1, 2]10 ∪ [7, 8]10)

which means that the set of excluded rectangles are exactly the same. Thus, in this

example, the encoding of both PENs N and N ′ would be equivalent such that

enc pen(N ) = enc pen(N ′)

which implies that they are not just semantically equivalent (≡) yet even syntactically
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equivalent. Subsequently, to show the difference between the advanced encoding and the

encoding in Section 2.3.2 we need an extended example as in the following.

Example 2.49. Let N ,N ′ be PENs such that

N = ({n,m}, {(n,m, [0, 6]10), (n,m, [1, 8]10, (n,m, [5, 12]10)}, 10),

N ′ = ({n,m}, {(n,m, [1, 2]10 ∪ [5, 6]10)}, 10)

which implies that N ≡ N ′, since

[0, 6]10 ∩ [1, 8]10 ∩ [5, 12]10 = [1, 2]10 ∪ [5, 6]10.

which implies that

ζ(n,m, [0, 6]10) ∪ ζ(n,m, [1, 8]10) ∪ ζ(n,m, [5, 12]10) ̸= ζ(n,m, [1, 2]10 ∪ [5, 6]10).

We can even conclude that

|ζ(n,m, [0, 6]10) ∪ ζ(n,m, [1, 8]10) ∪ ζ(n,m, [5, 12]10)| > |ζ(n,m, [1, 2]10 ∪ [5, 6]10)|

which results in more clauses with respect to the encoding for N with Definition 2.44.

The previous example shows that the number of clauses are in general less compared

to the base encoding. The diverse computational results can be found in Section 5.2.

This encoding offers a lot of application with respect to preprocessing techniques

which will not be covered in this work and have already been heavily discussed in the

literature [Nac98; Opi09] maintaining equivalence for all applied methods.



3 Flow and Decision Periodic Event

Scheduling Problem

The modelling power of PESP has its drawbacks with respect to conditionally ensuring

constraints. However, this is highly needed in automatic insertion of rail freight transport

paths and other applications alongside the PESP model [Opi09]. These enhanced

requirements contain a flow graph whose (flow) edges are connected to nodes of a

PEN. Subsequently, we have the power to flood PENs with much more information and

possibilities for low granularity of real-world problems. These additional information

must be tackled by newly introduced encodings and solution approaches.

The decision and optimization variants as in this section and Section 4, respectively,

are treated separately, because even the decision version is NP -complete, which will

be shown in the following. Thus, it is important to develop an efficient approach that

evaluates an initial solution – or schedule – of the optimization beforehand.

Firstly, we introduce elementarily the possibility of conditional constraints and nodes

under several given flow graphs in Section 3.1. Secondly, in Section 3.2 we develop the

encoding of these enhanced models by propositional formulas and finally, in Section 3.3

the possible applications with respect to public rail transport systems alongside the new

models are discussed.

3.1 Periodic Event Scheduling Problem with Flows

This section covers an in-depth analysis of the connection of PENs and flow graphs.

Firstly, we enhance the PEN with a decisional structure of constraints and nodes in

Section 3.1.1. This means, given a set of decision nodes and edges, these respective

nodes and edges may not be regarded with respect to valid schedules and are combined

as a so called Decisional Periodic Event Network. Furthermore, the soundness to the

existing models will be shown. This offers not solely new possibilities for optimization,

yet we need this newly gained model in Section 3.1.2 by connecting decisional nodes to



3.1 Periodic Event Scheduling Problem with Flows 33

i

j

k

[3, 5]10 [2, 2]10

[2, 4]10

Figure 3.1: Periodic event network as in Example 3.2

flow edges. These flow edges form a flow graph. Consequently, the newly defined valid

schedule includes a valid path for each given flow graph and are combined as a so called

Flow Decision Periodic Event Network. Again, the soundness will be shown and for both

topics a complexity classification will be given.

3.1.1 Decision Periodic Event Scheduling

Before connecting flow graphs with a periodic event network, we introduce a modified

version of PESP with respect to PENs by extending the tuple with a set of decision

nodes H and a set of decision edges A.

Definition 3.1 (Decision Periodic Event Network). Let N = (V , E , T ) be a PEN. Then

the tuple D = (V , E , T,H,A) is called decision periodic event network (DPEN) if H ⊆ V
and A ⊆ E.

This definition allows us to decide, whether certain nodes in H or certain edges in A
shall be active or not. If they are not active, they shall not be regarded for a valid

schedule. The sets H and A are called decision nodes and decision constraints (or edges),

respectively.

Example 3.2. Let N = (V , E , 10) be a PEN with the set of nodes V = {i, j, k} and the

set of edges E = {e1, e2, e3} as in Example 2.35 such that

e1 = (i, j, [3, 5]10),

e2 = (j, k, [2, 2]10),

e3 = (k, i, [2, 4]10).
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Then with H = {i, j} ⊆ V and A = {e3} ⊆ E we can construct a DPEN D such that

D = (V , E , T,H,A)

= ({i, j, k}, {e1, e2, e3}, 10, {i, j}, {e3}).

The decision nodes and edges are highlighted in Figure 3.1 alongside the DPEN.

Definition 3.3 (Valid Schedule (extended)). Let D = (V , E , T,H,A) be a DPEN, V ′ ⊆ V
be a set of nodes and Π be a schedule for V ′. Further let E ′ ⊆ E be a set of constraints

of D. Then Π is valid for D and E ′ if and only if

∀n ∈ V \ H : n ∈ V ′, (3.1)

∀e ∈ E \ A : e ∈ E ′ (3.2)

and for all e = (i, j,Ze) ∈ E ′ it holds

i, j ∈ V ′ ⇒ Π |= e. (3.3)

Given the set of active nodes V ′ and the set of active edges E ′ the previous definition

states the following: all constraints must hold under Π if both the two nodes and the

constraint are part of the active nodes V ′ and active edges E ′, respectively. Equivalently,

we could require for V ′ and E ′ with respect to (3.1) and (3.2)

(V \ H) ⊆ V ′, (E \ A) ⊆ E ′.

In order to set only nodes in H and edges in A inactive, both (3.1) and (3.2) must

hold, respectively. Hence, only the remaining nodes and edges must hold under Π, which

is given in (3.3).

Example 3.4. Let D = (V , E , T,H,A) be the DPEN as in Example 3.2 and further let

Π1 be a schedule for V1 = {i, j, k} and Π2 be a schedule for V2 = {i, k} with

Π1 = {i ↦→ 1, j ↦→ 5, k ↦→ 7},

Π2 = {i ↦→ 7, k ↦→ 2}.

Schedule Π1 is valid for {e1, e2, e3} because both (3.1) and (3.2) holds and Example 2.35

already showed that this schedule is valid.
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Schedule Π2 is valid for {e1, e2}, since

V \ H = {i, j, k} \ {i, j} = {k} ⊆ V2 = {i, k} ⇒ (3.1)

E \ A = {e1, e2, e3} \ {e3} = {e1, e2} ⇒ (3.2)

and further:

∀e = (n,m,Z) ∈ {e1, e2} : n /∈ V2 or m /∈ V2

since n = j or m = j and j /∈ V2.

Schedule Π2 is not valid for E ′ = {e1, e2, e3} because

e3 = (k, i, [2, 4]10) ∈ E ′ (k, i ∈ V2)

does not hold for Π2 (Π2 ̸|= e3), since for Π2(i) = 7,Π2(k) = 2

7− 2 = 5 /∈ [2, 4]T

which violates (3.3).

Definition 3.3 is sound with Definition 2.34 with respect to a given, fixed set of nodes V ′

and set of edges E ′. This will be ensured by the following lemma.

Lemma 3.5 (Soundness Valid Schedule). Let D = (V , E , T,H,A) be a DPEN, V ′ ⊆ V
be a set of nodes, E ′ ⊆ E be a set of constraints and Π be a schedule for V ′. Then Π is

valid for the PEN N = (V ′, E ′ \ {e | e ∈ E ′, ϵ(e) = (n,m), n /∈ V ′ or m /∈ V ′}, T ), if Π is

valid for D and E ′.

Proof. Let Π be valid for D and E ′. Then it follows with Definition 3.3 that (3.1), (3.2)

and (3.3) holds.

Let e = (i, j,Ze) ∈ E ′ \ {e | e ∈ E ′, ϵ(e) = (n,m), n /∈ V ′ or m /∈ V ′} be an arbitrary, but

fixed constraint of N .

⇒ i, j ∈ V ′ (3.3)⇒ Π(j)− Π(i) ∈ Ze

and thus, Π |= e. Since e is arbitrary, it follows with Definition 2.34 that Π is valid

for N .

The set of constraints, whose nodes – respectively one of the nodes – are not in the set of

active nodes V ′, are inactive with respect to (3.3). Hence, all these edges can be removed

from the resulting PEN N , denoted as {e | e ∈ E ′, ϵ(e) = (n,m), n /∈ V ′ or m /∈ V ′}. All
remaining edges must hold, as stated in the lemma.
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Consequently, without the inactive nodes and inactive edges, the schedule Π is valid

for the remaining PEN N . This allows us the successful application of all evaluations

and analysis with respect to the valid schedule on the remaining PEN.

Obviously, the easiest way to gain such a valid schedule Π would be, if all decision

nodes and decision edges are inactive, such that V ′ = V \ H and E ′ = E \ A. However,

given a to be minimized objective functional f alongside the DPEN, the empty solution

for these sets, is obviously not minimal with respect to the domain-dependent f . A

possible application for such an objective functional is given in Section 4.1.2.

Definition 3.6 (Decision Periodic Event Scheduling Problem). Let D = (V , E , T,H,A)

be a DPEN and V ′, E ′ be given as in Definition 3.3. Then the Decision Periodic Event

Scheduling Problem (DPESP) is the question whether a schedule Π for V ′ exists such

that Π is valid for D and E ′.

A short outlook on the complexity classification can be found in the end of Section 3.1.2

which states that DPESP is NP -complete.

3.1.2 Flow Decision Periodic Event Scheduling

In this section, we combine both PENs and flow graphs such that each flow edge will be

connected to a periodic event. A priori, we define flow graphs and valid paths and show

certain properties in order to simplify the encoding in Section 3.2.2.

Definition 3.7 (Flow Graph). The graph K = (R,F ) with F ⊆ R × R is called flow

graph (FG) if it is directed and acyclic.

In graph theory, this graph is often called flow network or transportation network [Bon08;

Hoc12] with each edge’s weight set to 1.1

Example 3.8 (Flow Graph). Let K = (R,F ) be an FG such that

R = {1, . . . , 6},

F = {e1, . . . , e7}

= {(1, 3), (1, 4), (2, 5), . . . , (5, 6)}

that is depicted in Figure 3.2 which has only directed edges and is obviously acyclic.

1Which results in the keyword DAG (directed acyclic graph.
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Figure 3.2: Exemplifying flow graph.

Furthermore, we introduce the following two mappings as described in the litera-

ture [WON12]. Firstly, let I be the function that maps each node to its set of incoming

edges such that

I : R → P(F )

n ↦→ {(m,n) ∈ F | ∀n ∈ R}

and let O be the function that maps each node to its set of outgoing edges such that

O : R → P(F )

n ↦→ {(n,m) ∈ F | ∀n ∈ R}.

Given an FG K = (R,F ), we can implicitly extract the set of sources

SK := {n ∈ R | I(n) = ∅} (3.4)

and the set of destinations

DK := {n ∈ R | O(n) = ∅}. (3.5)

Often, both functions are indexed with the respective FG K.

Example 3.9. Let K = (R,F ) be an FG as in Example 3.8. Then, the set of sources and

set of destinations can be evaluated such that SK = {1, 2} and DK = {6}, respectively.
Evaluating both the functions I and O we can state for the node 4 ∈ R that

IK(4) = {e2, e4} and OK(4) = {e6}.
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Figure 3.3: Sequences of flow edges ρ3 (left) and ρ2 (right) as in Example 3.11.

Definition 3.10 (Path). Let K = (R,F ) be an FG and ρ = (e1, . . . , ek) ∈ F k, k ∈ N be

a sequence of edges with ei = (ni, ni+1) (i ∈ {1, . . . , k}). Then ρ is called path for K if

and only if

n1 ∈ SK (3.6)

nk+1 ∈ DK (3.7)

∀i ∈ {2, . . . , k + 1} : (ni−1, ni) ∈ F (3.8)

with the set of sources SK and set of destinations DK as in (3.4) and (3.5), respectively.

In other words, a tuple (or sequence) of edges is only a path [Hoc12], if the first node

is a source node (Equation (3.6)), the last node is a destination node (Equation (3.7))

and for all nodes in between it holds that it exists a previous and succeeding edge in the

set of edges F , which is stated in (3.8) that ensures the flow conservation. Since an FG is

acyclic, there is no possibility of a cycle within a path. Hence, we can implicitly assume

(without proof) that the number of edges of a path is finite or k < ∞ and that each edge

only occurs once.

Example 3.11 (Sequences). Let K = (R,F ) be an FG as in Example 3.8. Further,

let ρ1 = (e5, e7), ρ2 = (e1, e4, e7) and ρ3 = (e1, e4, e6) be sequences of flow edges. We can

imply that ρ1 is not a path, because e5 = (3, 5) and 3 /∈ SK and thus, (3.6) is violated.

Likewise, ρ2 is not a path, because e4 = (3, 4) ∈ F , but the next edge in the sequence

is e7 = (5, 6) ∈ F and 4 ̸= 5. Hence, (3.8) is violated.

Furthermore, ρ3 is a path, because

e1 = (1, 3), 1 ∈ SK ⇒ (3.6)

e6 = (4, 6), 6 ∈ DK ⇒ (3.7)

e1 = (1, 3) ∈ F, e4 = (3, 4) ∈ F, e6 = (4, 6) ∈ F ⇒ (3.8)
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and thus, all conditions in Definition 3.10 are fulfilled. Both sequences ρ2 and ρ3 can be

seen in Figure 3.3.

It is sufficient to have the respective set of edges given, in order to extract the

corresponding path. These two structures can be combined by introducing the binary

relation χK such that

χK := {(H, ρ) | ρ = (e1, . . . , ek) ∈ F k path of K : H = {e1, . . . , ek}} (3.9)

Example 3.12. Let K = (R,F ) be an FG as in Example 3.8 and let ρ = (e1, e4, e6) ∈ F k

be a path of K. Then the respective set of edges is H = {e1, e4, e6} such that (H, ρ) ∈ χK .

The sufficiency of the set of edges with respect to the relation χK is ensured by the

following lemma.

Lemma 3.13 (Path Extraction). Let K = (R,F ) be an FG and H ⊆ F be a set of edges

and let k := |H|. Then it holds with ρ = ((n1, n2), . . . , (nk, nk+1))

∃!(n,m) ∈ H : n ∈ SK , n1 := n,

∃!(n,m) ∈ H : m ∈ DK , nk+1 := m,

∀i ∈ {2, . . . , k}∃!(ni−1, n) ∈ H : (ni−1, n) ∈ F, ni := n

⎫⎪⎪⎬⎪⎪⎭ ⇔ (H, ρ) ∈ χK .

Proof. “⇐”: (H, (n1, n2), . . . , (nk, nk+1)) ∈ χK . Hence, with (3.9) it follows

H = {(n1, n2), . . . , (nk, nk+1)}.

To show: it must hold

∃!(n,m) ∈ H : n ∈ SK , n1 := n, (3.10)

∃!(n,m) ∈ H : m ∈ DK , nk+1 := m, (3.11)

∀i ∈ {2, . . . , k}∃!(ni−1, n) ∈ H : (ni−1, n) ∈ F, ni := n (3.12)

Let be ρ = ((n1, n2), . . . , (nk, nk+1)). With (3.6) it follows that n1 ∈ SK is a source node.

All following edges on the path are successor edges (by (3.8)). Since K is directed and

acyclic (Definition 3.7), n1 is the only source node. Hence, it exists exactly one source

node. Likewise, this can be stated for (3.11) and nk+1.

(3.12) follows with (3.8) and n = ni.
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“⇒”: Let H be a set of edges with k = |H| and

∃!(n,m) ∈ H : n ∈ SK , n1 := n, (3.13)

∃!(n,m) ∈ H : m ∈ DK , nk+1 := m, (3.14)

∀i ∈ {2, . . . , k}∃!(ni−1, n) ∈ H : (ni−1, n) ∈ F, ni := n (3.15)

To show: ρ = ((n1, n2), . . . , (nk, nk+1)) ∈ F k is a path of K as in Definition 3.10.

(3.6) and (3.7) follow directly by (3.13) and (3.14), respectively. Equation (3.8) follows

with (3.15).

Lemma 3.13 iteratively constructs the path in the last condition of the equivalence.

Given the source node and destination node in the first two conditions, ensures a valid

path such that (H, ρ) ∈ χK . The relation χK ensures the correct usage of paths and their

respective sets. Hence, for convenience the set H belonging to a path ρ with (H, ρ) ∈ χK

will be called path as well.

The multiplicity of an FG is implicitly one, because it is not explicitly given.2 This

results in the fact that it must be exactly one path inserted, given that the instance is a

decision problem. In general, there may be not just one FG for a DPEN, but a set of

FGs.

In order to connect paths and their respective edges with DPENs and their respective

events, we introduce a bijective label function with H being a set of events and F being

an set of flow edges and |H| = |F | such that

l : F → H

e ↦→ n
(3.16)

with range(l) = H being the range of l. Since l is bijective, we can easily get the flow

edge of an event by the invert function l−1. Subsequently, a set of edges H that represents

a path may be equivalently given as set of periodic events and will be used accordingly.

Example 3.14 (Label Function). Let K = (R,F ) be an FG as in Example 3.8 and H
be a set of nodes such that H = {n1, . . . , n7}. Then, for example, we label each flow

edge such that l(ei) := ni with ei ∈ F and ni ∈ H. For example, we can use the invert

function for node n3 such that l−1(n3) = e3 as depicted in Figure 3.4.

In the sequel, in many cases an application specific label function will be implicitly

2and not needed, either, because we can achieve this goal via the approach in Section 3.3.2
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Figure 3.4: Labeled flow graph.
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Figure 3.5: Flow graph as in Example 3.16.

presupposed and will not be explicitly required in the following definitions, lemmas and

theorems.

Definition 3.15 (Flow Decision Periodic Event Network). Let S be a set of FGs and

D = (V , E , T,H,A) be a DPEN. Then D is a flow decision periodic event network

(FDPEN) for S if and only if ⋃
K=(R,F )∈S

⋃
e∈F

l(e) ⊆ H.

The definition basically requires that all the labeled events of their respective flow

edges are contained3 in the decision node set H. Please note that the FGs may not be

disjoint and thus, some set of nodes may intersect. This opens a lot of opportunities

but never the less, will not be part of this work’s applications. However, the following

definitions are well-defined and sound for the case of intersecting FGs.

3which can be equivalently defined as ∀K = (R,F )∀e ∈ F : l(e) ∈ H
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Figure 3.6: PEN as in Example 3.16.

Example 3.16 (FDPEN). Let K = (R,F ) be an FG with

R = {1, . . . , 6},

F = {e1, . . . , e5}

that is depicted in Figure 3.5 and let l be the labeling function for the given set of

nodes H = {n1, . . . , n5} of Example 3.14 such that l(ei) = ni (i ∈ {1, . . . , 5}).
Further, let D = (V , E , 10,H, ∅) be a DPEN with V = {n1, . . . , n6} and E as depicted in

Figure 3.6. Then, D is an FDPEN for the set of FGs {K}. Please note, that node n6 is

not labeled and even not in the set of decision nodes.

Definition 3.17 (Valid Schedule (extended)). Let D = (V , E , T,H,A) be an FDPEN

for the set of FGs S. Further let V ′ ⊆ V be a set of nodes, E ′ ⊆ E be a set of edges and Π

be a schedule of V ′. Then Π is valid for D, E ′ under S if and only if Π is valid4 for D
and E ′ and it holds for all K = (R,F ) ∈ S that

∃!n ∈ V ′ ∩ range(l), (m, o) = l−1(n) ∈ F : m ∈ SK , (3.17)

∃!n ∈ V ′ ∩ range(l), (m, o) = l−1(n) ∈ F : o ∈ DK , (3.18)

∀n ∈ R, n /∈ DK ∪ SK :

⏐⏐⏐⏐⏐⏐
⋃

(m,n)∈IK(n)

l(m,n) ∩ V ′

⏐⏐⏐⏐⏐⏐ =
⏐⏐⏐⏐⏐⏐

⋃
(n,o)∈OK(n)

l(n, o) ∩ V ′

⏐⏐⏐⏐⏐⏐ ∈ {0, 1}.

(3.19)

4as in Definition 3.3
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Hence, a schedule is only valid, if it suffices the general flow constraints for each FG:

On the one hand, (3.17) and (3.18) states that it must be exactly one source node and

destination node in V ′ (their respective labels), respectively. More precisely, exactly one

outgoing edge of the source nodes and one ingoing edge of the destination nodes must

be in the labeled set V ′. On the other hand, (3.19) ensures the flow conservation, which

means that the number of incoming edges for a flow node must be the number of outgoing

edges alongside the resulting path5.

Example 3.18 (Valid Schedule). Let K = (R,F ) be an FG and D = (V , E , 10,H, ∅) be
an FDPEN for {K} as in Example 3.16 for the set of decision nodes H = {n1, . . . , n5}
and the given label function l. Then, with the set of nodes V ′ = {n2, n3, n5, n6}, the set

of edges E ′ = E and the schedule Π for V ′ with

Π(n2) = 0,

Π(n3) = 2,

Π(n5) = 6,

Π(n6) = 5,

we know that Π is valid for D and E ′, because (3.1)6, (3.2) hold and

Π(n3)− Π(n2) = 2 ∈ [2, 2]10 ⇒ Π |= (n2, n3, [2, 2]10)

Π(n6)− Π(n3) = 4 ∈ [1, 5]10 ⇒ Π |= (n3, n6, [1, 5]10)

Π(n5)− Π(n6) = 1 ∈ [1, 3]10 ⇒ Π |= (n6, n5, [1, 3]10)

as in Definition 3.3. Furthermore, all equations in Definition 3.17 are fulfilled, because

n2 ∈ V ′ ∩ range(l) = {n2, n3, n5}, l−1(n2) = (2, 3) ∈ F, 2 ∈ SK ⇒ (3.17),

n5 ∈ V ′ ∩ range(l), l−1(n5) = (4, 5) ∈ F, 5 ∈ DK ⇒ (3.18),⋃
(m,3)∈IK(3)

l(m, 3) = {n1, n2},
⋃

(3,o)∈OK(3)

l(3, o) = {n3, n4}

⇒ |{n1, n2} ∩ V ′| = |{n3, n4} ∩ V ′| = 1 ∈ {0, 1} (3.20)

5its labeled events
6n6 ∈ V ′
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⋃
(m,4)∈IK(4)

l(m, 4) = {n3},
⋃

(4,o)∈OK(4)

l(4, o) = {n5}

⇒ |{n3} ∩ V ′| = |{n5} ∩ V ′| = 1 ∈ {0, 1} (3.21)

with range(l) = H being the range of the label function l. (3.20) and (3.21) imply (3.19),

because {3, 4} are the flow nodes of the FG that are not source or destination nodes.

Hence, Π is valid for D, E ′ under {K}.
Finally, we can extract a path ρ from V ′ such that ρ = (e2, e3, e5), because

∀n ∈ V ′ ∩ range(l) = {n2, n3, n5} : l(n) ∈ F.

The following lemma ensures that a valid schedule guarantees exactly one path with

respect to each flow graph in the FDPEN.

Lemma 3.19 (Valid Path). Let S be a set of FGs and D = (V , E , T,H,A) be an FDPEN

for S and let E ′ be given as in Definition 3.3. Further let V ′ be a set of nodes and Π

be a schedule for V ′ such that Π is valid for D, E ′ under S. Then it holds for all

K = (R,F ) ∈ S that

∃!H ⊆ F, k = |H| : H =
( ⋃

n∈V ′∩range(l)

l−1(n)
)
∩ F = {e1, . . . , ek},

ρ = (e1, . . . , ek), (H, ρ) ∈ χK .

Proof. Let K = (R,F ) ∈ S be an arbitrary but fixed FG. Firstly, we have to show that

at least one such H exists and with Lemma 3.13 we know that it is sufficient to show

that H must suffice

∃!(n,m) ∈ H : n ∈ SK , n1 := n, (3.22)

∃!(n,m) ∈ H : m ∈ DK , nk+1 := m, (3.23)

∀i ∈ {2, . . . , k}∃!(ni−1, n) ∈ H : (ni−1, n) ∈ F, ni := n, (3.24)

in order to have a path ρ with (H, ρ) ∈ χK .

Secondly, we have to show that it exists not more than one H such that

M := {H | H ⊆
( ⋃

n∈V ′∩range(l)

l−1(n)
)
∩ F,H = {e1, . . . , ek}, k = |H|,

(H, (e1, . . . , ek)) ∈ χK}, |M | ≤ 1.

(3.25)
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with M being the set of extracted paths.

Let be H = V ′ ∩
⋃

e∈F l(e). Both (3.22) and (3.23) follow directly by (3.17) and (3.18),

respectively.

With mathematical induction we can show that (3.24) holds: For the basis (i = 2),

we know with (3.17) that it exists exactly one (n1, n2) ∈ F with n1 ∈ SK and hence,

with (3.19) that⏐⏐⏐⏐⏐⏐
⋃

(m,n2)∈IK(n2)

l(m,n2) ∩ V ′

⏐⏐⏐⏐⏐⏐ =
⏐⏐⏐⏐⏐⏐

⋃
(n2,o)∈OK(n2)

l(n2, o) ∩ V ′

⏐⏐⏐⏐⏐⏐ = 1.

Thus, with the previous deduction we know that m = n1 and since the cardinality of the

sets equals 1 we know that exactly one such (n1, n2) ∈ F exists that suffices (3.24) for

i = 2. For the inductive step, we can easily show with the same technique that (3.24)

holds: let the inductive hypothesis hold such that (3.24) holds for step i. Thus, we know

that it exists exactly one (ni−1, ni) ∈ H. With (3.19) we know that⏐⏐⏐⏐⏐⏐
⋃

(m,ni)∈IK(ni)

l(m,ni) ∩ V ′

⏐⏐⏐⏐⏐⏐ =
⏐⏐⏐⏐⏐⏐

⋃
(ni,o)∈OK(ni)

l(ni, o) ∩ V ′

⏐⏐⏐⏐⏐⏐ = 1,

since with the inductive hypothesis for m = ni−1 |
⋃

(m,ni)∈IK(ni)
l(m,ni) ∩ V ′| = 1 (it

exists exactly one such flow edge) is ensured. Subsequently, we can set ni+1 = o which

ensures step i+ 1

We can indirectly show (3.25) by assuming that

M ≥ 2.

Thus, M has at least 2 paths. Subsequently, we have possibly two different source nodes

or destination nodes, which is a contradiction to (3.17) and (3.18), respectively. If the

source nodes and destination nodes are the same, then there must exist at least one

edge (n,m) ∈ F in between with: |{e | e ∈ OK(m) ∩
⋃

n∈V ′∩range(l) l
−1(n)}| ≥ 2 which

is a contradiction to (3.19). Likewise, this can be stated for the incoming edges. Thus,

M ≤ 1. Even parts of paths (sub-paths) cannot be in the resulting labeled node set,

because it would contradict the given equations.

Finally, since at least one such H exists, we know that M ≥ 1 and with (3.25) it follows

directly that M = 1. Hence, it exists exactly one such H.
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Figure 3.7: Path as in Example 3.20.

Since K is arbitrary, it holds for all K ∈ S.

The proof gives us an constructive instrument on extracting the path H for each

FG (R,F ) with

H := V ′ ∩
⋃
e∈F

l(e) (3.26)

given the set of nodes V ′. Please note as stated above that the path maybe represented

as set of periodic events as in here, since the label function l is bijective. Thus, we could

equivalently evaluate H such that

H =
( ⋃

n∈V ′∩range(l)

l−1(n)
)
∩ F. (3.27)

Example 3.20. As in Example 3.18 let Π be the schedule with V ′ = {n2, n3, n5, n6} for

the FG K. Then with (3.27) we get

H = {e2, e3, e5, e6} ∩ {e1, . . . , e5} = {e2, e3, e5}.

Then with Lemma 3.19 we can safely extract the respective path ρ = (e2, e3, e5) as

depicted in Figure 3.7 such that (H, ρ) ∈ χK .

With respect to the further encodings we will use an alternative definition for valid

schedules under an FG set. In order to have the same results as in Lemma 3.19 the

following theorem is given.

Theorem 3.21 (Alternative Valid Schedule). Let S be a set of FGs and D be an FDPEN

with D = (V , E , T,H,A) for S and let E ′ be given as in Definition 3.3. Further let V ′

be a set of nodes and Π be a schedule for V ′ such that Π is valid for D, E ′. Further, it
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holds (3.17), (3.18). Then the following statements are equivalent for all K = (R,F ) ∈ S:

(i) :

∀n ∈ R, n /∈ DK ∪ SK :

⏐⏐⏐⏐⏐⏐
⋃

(m,n)∈IK(n)

l(m,n) ∩ V ′

⏐⏐⏐⏐⏐⏐ =
⏐⏐⏐⏐⏐⏐

⋃
(n,o)∈OK(n)

l(n, o) ∩ V ′

⏐⏐⏐⏐⏐⏐ ∈ {0, 1}.

(3.28)

(ii) :

∀n ∈ R \ (SK ∪DK) :

⏐⏐⏐⏐⏐⏐
⋃

e∈IK(n)

l(e) ∩ V ′

⏐⏐⏐⏐⏐⏐ ≤ 1, (3.29)

∀n ∈ R \ (SK ∪DK) :

⏐⏐⏐⏐⏐⏐
⋃

e∈OK(n)

l(e) ∩ V ′

⏐⏐⏐⏐⏐⏐ ≤ 1, (3.30)

∀(n,m) ∈ F,m /∈ DK :
(
l(n,m) ∈ V ′ ⇒ ∃o ∈ V ′ ∩ range(l) : l−1(o) ∈ OK(m)

)
(3.31)

with (3.28) as in (3.19).

Proof. Let K = (R,F ) ∈ S be an arbitrary but fixed FG and let

A(n) :=
⋃

(m,n)∈IK(n)

l(m,n) ∩ V ′,

B(n) :=
⋃

(n,m)∈OK(n)

l(n,m) ∩ V ′.

“(i) ⇒ (ii)”: Let (3.28) hold. Then, (3.29) and (3.30) directly holds, because we know

A(n), B(n) ∈ {0, 1}. If it exists a flow edge (n,m) ∈ F,m /∈ DK with l(n,m) ∈ V ′, then

A(m) = 1. With (3.28) we know that B(m) = 1 which results that (3.31) holds.

“(ii) ⇒ (i)”: Let (3.29), (3.30), (3.31) hold. Then we know for all flow edges with (3.29)

and (3.30) that

A(n) ∈ {0, 1} and B(n) ∈ {0, 1}, (3.32)

respectively, for an arbitrary but fixed flow node n ∈ R, n /∈ DK ∪ SK . It remains to

show that |A(n)| = |B(n)|.
We have to show two cases

(1) : |A(n)| = 1 ⇒ |B(n)| = 1
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(2) : |B(n)| = 1 ⇒ |A(n)| = 1

(1): If it exists a flow edge (m,n) ∈ F, n /∈ DK with l(m,n) ∈ V ′, then we know firstly,

that |A(n)| = 1 and secondly, with (3.31) that |B(n)| ≥ 1. Since we already stated

in (3.32) that B(n) ∈ {0, 1} we know that B(n) = 1.

(2): With (3.18) we know that exactly one destination is allowed and with (3.29) that

A(n) ≤ 1 for any node m in R \ (SK ∪DK). Since |B(n)| = 1 there must be a series of

edges (see (3.31)) from a source node (see (3.17)) such that it exists a flow edge (o, n) ∈ F

with l(o, n) ∈ V ′ and thus, |A(n)| = 1.

Because (1) and (2) holds, we can conclude that

A(n) = 1 ⇔ B(n) = 1. (3.33)

For the second case (|A(n)| = |B(n)| = 0) we do the proof by contradiction divided again

into two parts:

(1) : |A(n)| = 0 ⇒ |B(n)| = 0 (3.34)

(2) : |B(n)| = 0 ⇒ |A(n)| = 0 (3.35)

(1): Let be |A(n)| = 0. We assume that |B(n)| = 1. Then, with (3.33) it follows

that |A(n)| = 1 which is a contradiction to the assumption. Thus, |B(n)| ≠ 1 and

with (3.32) (|B(n)| ∈ {0, 1}) we can conclude that |B(n)| = 0.

(2): We assume that |A(n)| = 1. Then with (3.31) it follows that |B(n)| = 1 which

is a contradiction to the assumption in (3.35). Hence, |A(n)| ≠ 0 and with (3.32)

(|A(n)| ∈ {0, 1}) we can conclude that |A(n)| = 0.

Because (1) and (2) hold, we can conclude that

A(n) = 0 ⇔ B(n) = 0. (3.36)

Finally, with (3.36) and (3.33) we can deduct (3.28). Since n is arbitrary, it holds for all

nodes. Since K is arbitrary, it holds for all K ∈ S.

Equations (3.29) and (3.30) are stating for all flow nodes it must hold that at most one

incoming and outgoing flow edge (its corresponding labeled events) in the resulting path

exist, respectively. Having at least one successor flow edge in the path if an incoming

flow edge of a flow node is in the path is stated in (3.31).

As described before, Theorem 3.21 does not require (3.19) to hold. Rather Equa-
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tions (3.29), (3.30) and (3.31) are introduced which serve the same purpose such that it

exists exactly one path for each FG for a valid schedule. This is given because the theorem

ensures the equivalence of both schedule definitions for FGs and thus, Lemma 3.19 can

be applied.

Knowing that all constraints corresponding to their paths hold with Lemma 3.5, we

can conclude the following soundness theorem.

Theorem 3.22 (Soundness Valid Schedule). Let S be a set of FGs and D = (V , E , T,H,A)

be an FDPEN for S and let E ′ be given as in Definition 3.3. Further let V ′ be a set of

nodes and Π be a schedule for V ′ such that Π is valid for D, E ′ under S. Then it holds

for all K = (R,F ) ∈ S with H = V ′ ∩
⋃

e∈F l(e) being the set of extracted labeled path

nodes7 such that (H, ρ) ∈ χK:

∀e ∈ {(n,m,Z) ∈ E ′ | n ∈ H,m ∈ V ′ or m ∈ H,n ∈ V ′} : Π |= e

as in (3.3).

Proof. Let K ∈ S be an FG. We know with Lemma 3.19 that a path H exists. Hence,

for all path nodes n ∈ H it holds: n ∈ V ′. Subsequently, all edges e = (n,m,Z) ∈ E ′

corresponding to node n ∈ H and to node m ∈ V ′ are active and must hold under Π

such that Π |= e. This is ensured by Lemma 3.5, since Π is valid for D and E ′.

Theorem 3.22 states that all constraints belonging to a path H ({(n,m,Z) ∈ E |
n ∈ H,m ∈ V ′ or m ∈ H,n ∈ V ′}) hold under the schedule Π. This is the important

conclusion for valid schedules of FDPENs. Please note, that both nodes (n,m) in the

given set may be contained in H as well, since H ⊆ V ′.

Example 3.23. Let K = (R,F ) be an FG and D = (V , E , 10,H, ∅) be an FDPEN

for {K} as in Example 3.16 for the set of decision nodes H = {n1, . . . , n5} and let Π be

a valid schedule for V ′ = {n2, n3, n5, n6}, E ′ = E under {K}. Then we can evaluate the

set of respective edges of Theorem 3.22

{(n,m,Z) ∈ E ′ | n ∈ H,m ∈ V ′ or m ∈ H,n ∈ V ′} =

{(n2, n3, [2, 2]10), (n3, n6, [1, 5]10), (n6, n5, [1, 3]10)}

and with Example 3.18 we know that for all constraints e ∈ M it holds Π |= e

7Which can be equivalently formulated as set of flow edges.
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Definition 3.24 (Flow Decision Periodic Event Scheduling Problem). Let S be a set of

FGs and D = (V , E , T,H,A) be an FDPEN for S and let E ′ be given as in Definition 3.3.

Then the Flow Decision Periodic Event Scheduling Problem (FDPESP) is the question

whether we find a set of nodes V ′ and a schedule Π for V ′ such that Π is valid for D, E ′

under S.

In the following, we will show that FDPESP is NP -complete by showing first its

hardness and then the corresponding containment in NP .

Lemma 3.25. FDPESP is NP-hard.

Proof. It has already been shown that PESP is NP -hard [SU89; Nac98]. One of the

newer proofs is by reducing SAT to PESP [Gro12b]. Let the set of FGs S = ∅ be empty

and let D = (V , E , T, ∅, ∅) be an FDPEN for S. The we can easily construct a PEN N
for D as in Lemma 3.5. Now, the reduction from SAT to PESP can be done, since D,

and consequently N , is arbitrary.

Lemma 3.26. FDPESP ∈ NP.

Proof. Let S be a set of FGs and D = (V , E , T,H,A) be an FDPEN for S and let E ′ be

given as in Definition 3.3. Further let V ′ be a set of nodes and Π be a schedule for V ′

such that Π is valid for D, E ′ under S. Then, we can easily construct a deterministic

Turing machine such that it checks all conditions in polynomial time in Definition 3.17,

since all Equations (3.17), (3.18), (3.19), (3.1), (3.2), (3.3) with respect to its used sets

and computational effort are finite and linear, respectively.

Theorem 3.27. FDPESP is NP-complete.

Proof. Follows directly by Lemma 3.25 and Lemma 3.26.

As proposed in Section 3.1.1, the previous results can easily be applied to DPENs with

the following corollary.

Corollary 3.28. DPESP is NP-complete.

Proof. Follows directly by Theorem 3.27 with an empty FG set such that S = ∅.

Even the given decision problem whether a valid schedule exists as in Definition 3.24

is difficult8 to solve9 and will be presented in the respective results section.

Nevertheless, it is not “more” difficult than PESP, which is NP -complete as well. This

results in the question, if an efficient encoding for FDPESP exists, which will be answered

in the sequel.

8not tractable
9as shown it is NP -complete



3.2 SAT Encoding 51

3.2 SAT Encoding

Section 2.3 introduced the possibility of encoding a PEN10 into a propositional formula

in CNF. This section extends this encoding by the flow graphs as in Section 3.1.2 and

thus, implicitly the decision PEN as in Section 3.1.1.

Firstly, the DPESP will be encoded into SAT in Section 3.2.1. Subsequently, the

structure of the flow graphs will be added in Section 3.2.2. Hence, the FDPESP will be

encoded into SAT in this section.

3.2.1 Encoding Decision Periodic Event Scheduling

In Section 2.3.2 the encoding from PESP to SAT has been introduced. This encoding

considered that all constraints must hold of a given PEN. However, a DPEN offers the

new structure of having nodes and constraints optional with respect to hold under a valid

schedule. Thus, the implying conditions of holding with respect to nodes and constraints

must be encoded into the propositional formula as well.

We divide the procedure into two parts: Firstly, we introduce the encoding of decision

and constraints secondly, the encoding of decision nodes. After ensuring the valid

application of the encoding by the appropriate lemmas, we conclude both in a soundness

and completeness theorem ensuring the successful application of the presented method.

Example 3.29 (Decision Constraint). Let D = (V , E , T, ∅,A) be a DPEN and e ∈ E
be a constraint of D. If e is not in the set of decision edges such that e /∈ A then it

must hold under any circumstance in order to get a valid schedule Π. However, if it is

in A, then it must only hold under Π if it is in the resulting set of constraints E ′ as in

Definition 3.3. Thus, we can formulate this for a schedule Π as

e ∈ E ′ ⇒ e holds under Π.

Example 3.29 shows the important implication for the decision edges: if e is in the set

of edges E ′, then it must hold under Π. Since it is an implication, we can semantically

equivalently reform this term as

¬(e ∈ E ′) ∨ (e holds under Π). (3.37)

In order to encode this statement as propositional formula, we introduce the new

10respectively the PESP
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propositional variables re ∈ R with the semantics

re :⇔ e ∈ E ′. (3.38)

Hence, we can conclude the two cases for an interpretation J

1. rJe = t ⇒ e ∈ E ′ and

2. rJe = f ⇒ e /∈ E ′.

The term “e holds under Π” in (3.37) can be reformed with the introduced func-

tion enc con as in Definition 2.44. Thus, we can reformulate (3.37) with (3.38) as

¬re ∨ enc con(e). (3.39)

Since enc con(e) is a conjunction of clauses11, the disjunction in (3.39) is not a

propositional formula in CNF. Transforming this formula into CNF results in an encoding

for decision constraints such that

enc con dec : E → L(R)

e ↦→

⎧⎨⎩enc con(e) e /∈ A⋀
A∈ζ(c)(¬re ∨ enc rec(A)) e ∈ A

(3.40)

This mapping simply extends Definition 2.44 by adding disjunctively to each encoded

rectangle the negated propositional variable re if it is a decision constraint.

Because in general the set of decision nodes H is not the empty set, we have to consider

those nodes as well in order to get a valid schedule as in Definition 3.3. This will be

shown in the following example.

Example 3.30 (Decision Node). Let D = (V , E , T,H,A) be a DPEN and n,m ∈ V be

nodes in D and let e = (n,m,Ze) ∈ E be a constraint. As described in Example 3.29,

we have to consider Definition 3.3. If n /∈ H and m /∈ H, then e must hold for any

schedule Π in order to be valid. If n ∈ H and m /∈ H, it must hold

n ∈ V ′ ⇒ Π(m)− Π(n) ∈ Ze

11it is in CNF
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as in (3.3). The general case can be concluded as

n ∈ V ′,m ∈ V ′ ⇒ Π(m)− Π(n) ∈ Ze.

As shown in (3.37), we can reformulate (3.3) as

¬(n ∈ V ′ ∧m ∈ V ′) ∨ (Π(m)− Π(n) ∈ Ze)

≡ ¬(n ∈ V ′) ∨ ¬(m ∈ V ′) ∨ (Π(m)− Π(n) ∈ Ze) (3.41)

Again, we introduce the following propositional variable sn ∈ R with the semantically

meaning

sn :⇔ n ∈ V ′. (3.42)

Subsequently, we again handle the two cases with an interpretation J such that

1. sJn = t ⇒ n ∈ V ′

2. sJn = f ⇒ n /∈ V ′

Inserting the introduced propositional variables in (3.41) and replacing the right term

with the function enc con dec results in

¬sn ∨ ¬sm ∨ enc con dec(e).

Hence, we are able to encode both the decision nodes and decision edges with the following

definition with the same intention as in (3.40).

Definition 3.31 (Encoding Decision Node and Constraint). Let e = (i, j,Ze) ∈ E be

a constraint, A ⊆ E be a set of constraints and H ⊆ V be a set of nodes. Further,

let S = {re ∈ R | e ∈ A} ∪ {sn ∈ R | n ∈ {i, j} : n ∈ H} be the set of propositional

decision variables. Then

enc dec : E → L(R)

e ↦→
⋀

A∈ζ(c)

( ⋁
p∈S

(¬p) ∨ enc rec(A)
)

is the decision order encoding mapping of the constraint e with respect to nodes i, j.

Without a proof, it can be easily shown that enc dec maps to a propositional formula

in CNF, since enc rec is a disjunction of literals.
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The order encoding of the nodes will be as in (2.6), which adds up to the encoding

of all nodes ΩN as in (2.7). Here, no additional decision variables have to be added,

because the encoding of the potentials – respectively the events – have to hold under

any circumstances. Combining this information with Definition 3.31 results in the whole

encoding of DPENs with P(D) = {D | D is a DPEN} being the set of all possible

DPENs.

Definition 3.32 (SAT Encoding DPEN). Let D = (V , E , T,H,A) be a DPEN and let

be N = (V , E , T ) the respective PEN of D. Then

enc dpen : P(D) → L(R)

D ↦→ ΩN ∧
⋀
e∈E

enc dec(e)

is the DPESP order encoding (SAT) of D with ΩN =
⋀

n∈V enc(n) as in (2.7).

The mapping in Definition 3.32 is quite similar to the encoding as in (2.14). However,

each constraint is encoded by the function enc dec. Thus, we have to show the soundness

and completeness separately.

Before showing in Theorem 3.34 the soundness and completeness of the encoding, we

show in the following lemma that an encoded constraint is valid with respect to its set of

decision constraints and set of decision nodes.

Lemma 3.33 (Valid Constraint). Let D = (V , E , T,H,A) be a DPEN, V ′ ⊆ V be a set

of nodes, E ′ ⊆ E be a set of constraints and e = (i, j,Ze) ∈ E be a constraint. Further

let F = enc(i) ∧ enc(j) ∧ enc dec(e) be an encoded constraint with its respective node

encoding, S = {re ∈ R | e ∈ A} ∪ {sn ∈ R | n ∈ {i, j} : n ∈ H} as in Definition 3.31

and J an interpretation. Then it holds

(i) (∃p ∈ S : pJ = f) ⇒ J |= enc dec(e),

(ii) (∀p ∈ S : pJ = t) ⇒ (J |= F ⇔ ∃Π : Π |= Ze)

with Π being a schedule for {i, j}.

Proof. Firstly, we know that (i):

enc dec(e)
Def 3.31
=

⋀
A∈ζ(c)

( ⋁
p∈S

(¬p) ∨ enc rec(A)
)
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De Morgan
≡

( ⋁
p∈S

¬p
)
∨

⋀
A∈ζ(c)

enc rec(A) (3.43)

If it holds

∃p ∈ S : pJ = f,

then it follows

∃p ∈ S : (¬p)J = t

and with Definition 2.11

J |=
⋁
p∈S

¬p.

Since (3.43) is a disjunction and the left term (
⋁

p∈S ¬p) is true under J , it follows

J |=
( ⋁
p∈S

¬p
)
∨

⋀
A∈ζ(c)

enc rec(A).

Hence, we can conclude with semantic equivalence in (3.43)

J |= enc dec(e).

(ii):

F = enc(i) ∧ enc(j) ∧ enc dec(e)

= enc(i) ∧ enc(j) ∧
⋀

A∈ζ(c)

( ⋁
p∈S

(¬p) ∨ enc rec(A)
)

De Morgan
≡ enc(i) ∧ enc(j) ∧

(( ⋁
p∈S

¬p
)
∨

⋀
A∈ζ(c)

enc rec(A)
)

(3.44)

If it holds

∀p ∈ S : pJ = t,

then it follows

∀p ∈ S : (¬p)J = f. (3.45)

With Corollary 2.16 we can conclude for the disjunction in (3.44) and (3.45) that(( ⋁
p∈S

¬p
)
∨

⋀
A∈ζ(c)

enc rec(A)
)J

=
( ⋀

A∈ζ(c)

enc rec(A)
)J

(3.46)
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and thus,

FJ =
(
enc(i) ∧ enc(j) ∧

⋀
A∈ζ(c)

enc rec(A)
)J

Finally, we can conclude for (3.46) with Definition 2.44

FJ =
(
enc(i) ∧ enc(j) ∧ enc con(e)

)J

and thus, with Theorem 2.47 for the single edge e

J |= F ⇔ ∃Π : Π |= Ze.

The previous lemma is the equivalence to Lemma 3.5 and it ensures in (i) that a

constraint holds in the SAT encoding if any decision variable is false, and in (ii) that

if all decision variables are true, the constraint holds only for a valid schedule which

corresponds to Definition 3.3. This results in the following soundness and completeness

theorem.

Theorem 3.34 (Soundness Completeness DPESP Encoding). Let D = (V , E , T,H,A)

be a DPEN, V ′ ⊆ V be a set of nodes and let E ′ ⊆ E be a set of constraints of D. Further

let

F := enc dpen(D) ∈ L(R)

be the encoded propositional formula of D. Then

∃J : J |= F ⇔ ∃Π : Π is valid for D and E ′

with J being an interpretation and Π a schedule of V ′.

Proof. As in proof of Theorem 2.47 by extending the constraint encoding equivalence

with Lemma 3.33, since this lemma can be applied to all constraints of D and their

respective SAT encoding.

3.2.2 Encoding Flow Decision Periodic Event Scheduling

The previous section introduced the encoding of DPENs into SAT. Likewise, this section

covers the corresponding encoding by extending it for FGs. The core encoding of DPENs

will stay equivalently and will soundly connected to the FG structure.



3.2 SAT Encoding 57

The additional encoding must suffice the three additional requests in Definition 3.17.

The appropriate encoding will be done by at-least-one and at-most-one constraints (clauses

and clause sets). After presenting the whole encoding, the section will be concluded in a

soundness and completeness theorem.
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Figure 3.8: Exemplifying flow network with highlighted set of source edges.

Example 3.35 (Source Nodes). Let K = (R,F ) be the FG as in Figure 3.8 with the

set of source nodes SK = {1, 2} for K and l be a label function as in (3.16) such that

l(e1) = n, l(e2) = m, l(e3) = o

with {n,m, o} ⊆ V being periodic events. Then we know with Definition 3.31 that

A := {sn, sm, so} are the corresponding propositional decision variables for all labeled

flow nodes. In order to get a valid schedule, the encoding must suffice (3.17), which

states that it must be exactly one source edge for K in order to have a valid path. In

propositional logic this can be encoded by stating

1. at least one variable in A must be true and

2. at most one variable in A must be true.

The first statement can simply be achieved by a single clause with all variables such that

c1 = sn ∨ sm ∨ so.

Pairwise excluding that two variables are true results in the second statement (at most
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one) such that

c2 = ¬sn ∨ ¬sm
c3 = ¬sn ∨ ¬so
c4 = ¬sm ∨ ¬so.

Connecting all clauses conjunctively in F results in the exactly-one encoding such that

F = c1 ∧ c2 ∧ c3 ∧ c4.

One of the possible interpretations that satisfies F is J with

sJn = f, sJm = t, sJo = f,

since this satisfies all clauses c1, . . . , c4.

A counter example would be that non of the decision variables are true such that

sJn = f, sJm = f, sJo = f,

Then, F is not satisfied since c1 is not satisfied, because it is not at least one variable

true under J .

Another counter example would be if more than one variable is true, for example

sJn = t, sJm = t, sJo = f,

Now, c1 is satisfied. However, c2 is not satisfied, because both J |= sn and J |= sm.
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Figure 3.9: Exemplifying flow network with highlighted set of destination edges.
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The previous example shows the basic idea of encoding that exactly one source node

for an FG must be in the resulting node set V ′. Likewise, this can be applied to the set

of destination edges with the same technique as in Example 3.35 which is visualized in

Figure 3.9.
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Figure 3.10: Exemplifying flow network as in Example 3.36 which highlights the needed
edges for the flow conservation of node flow 4.

Example 3.36 (Flow Conservation). Let K = (R,F ) be an FG which can be visualized

be seen in Figure 3.10. Further let l be a label function as in (3.16) such that

l(e2) = m, l(e5) = r, l(e6) = s

with {n, r, s} ⊆ V being periodic events.

In Definition 3.17 the flow conservation is stated in (3.19) which can be translated as:

If exactly one incoming flow edge (labeled node) is active, then exactly one outgoing

flow edge (labeled node) must be active. Here we only regard the flow node 4. We know

that it must hold for this node, since 4 ∈ R = {1, . . . , 8} and 4 /∈ SK ∪DK = {1, 2, 8}.
Since we have proved in Theorem 3.21 that we can define an alternative schedule but

have the same results with respect to flow conservation, it is sufficient that (3.29), (3.30)

and (3.31) hold for the flow node 4 such that

|
⋃

(i,4)∈IK(4)

l(i, 4) ∩ V ′| ≤ 1, (3.47)

|
⋃

(4,j)∈OK(4)

l(4, j) ∩ V ′| ≤ 1, (3.48)

∀(i, j) ∈ F, j /∈ DK :
(
l(i, j) ∈ V ′ ⇒ ∃k ∈ V ′ ∩ range(l) : l−1(k) ∈ OK(j)

)
(3.49)

holds. Substituting IK(4) = {e2} and OK(4) = {e5, e6} we can conclude that (3.47)
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and (3.48) holds if and only if

|
⋃

(i,4)∈{e2}

l(i, 4) ∩ V ′| ≤ 1,

|
⋃

(4,j)∈{e5,e6}

l(4, j) ∩ V ′| ≤ 1

⇔ |{l(e2)} ∩ V ′| ≤ 1,

|{l(e5), l(e6)} ∩ V ′| ≤ 1

⇔ |{m} ∩ V ′| ≤ 1, (3.50)

|{r, s} ∩ V ′| ≤ 1 (3.51)

As introduced in (3.42) we have the propositional decision variables {sm, sr, ss} which

are only true under an interpretation if and only if the corresponding nodes are in the

set of nodes V ′. The Equations (3.50) and (3.51) are at-most-one constraints which can

be achieved by pairwise excluding that two decision variables are true such that for an

interpretation J it holds

(3.50) ⇔ J |= ∅, (3.52)

(3.51) ⇔ J |= (¬sr ∨ ¬ss). (3.53)

In (3.52) we see that it holds under any interpretation since only one flow edge goes

into the flow node 4 and thus, it is always less or equal than one and in (3.53) we

can deduce that at most one of the decision variables in {sr, ss} can be true under the

interpretation J .

Regarding the last condition and substituting the node j for node 4 in (3.49) we get

∀(i, 4) ∈ F, 4 /∈ DK :
(
l(i, 4) ∈ V ′ ⇒ ∃k ∈ V ′ ∩ range(l) : l−1(k) ∈ OK(4)

)
and thus we only have to regard the flow edge e2 such that

l(e2) ∈ V ′ ⇒ ∃k ∈ V ′ ∩ range(l) : l−1(k) ∈ OK(4)

⇔ m ∈ V ′ ⇒ ∃k ∈ V ′ ∩ range(l) : l−1(k) ∈ {e5, e6}
l is bijective⇔ m ∈ V ′ ⇒ ∃k ∈ V ′ ∩ range(l) : k ∈ {l(e5), l(e6)}

⇔ m ∈ V ′ ⇒ ∃k ∈ V ′ ∩ range(l) : k ∈ {r, s}

⇔ m ∈ V ′ ⇒ |V ′ ∩ range(l) ∩ {r, s}| ≥ 1 (3.54)
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Hence, at least one labeled node must be in the resulting set of decision nodes V ′, if a

preceding labeled node is in V ′. In other words, if a flow edge goes into a flow node, then

at least one flow edge must go out of the flow node. Encoding this circumstance for this

example as propositional formula, we get for an interpretation J .

(3.54) ⇔ (J |= sm) ⇒ (J |= sr) or (J |= ss)

⇔ J |= (sm ⇒ (sr ∨ ss))

⇔ J |= (¬sm ∨ sr ∨ ss) (3.55)

Finally, we can conclude that all conditions for a valid schedule (3.29), (3.30) and (3.31)

hold if and only if all propositional formulas (3.52), (3.53) and (3.55) hold such that we

have the formula

F = (¬sr ∨ ¬ss) ∧ (¬sm ∨ sr ∨ ss)

For example, if sJm = t, sJr = f and sJs = t, then we know that F is satisfied under J ,

which ensures that only e2 and e5 are in the resulting (sub) path.

The previous rather long, extended example shows the idea of encoding the alternative

conditions for a valid schedule as at-least-one and at-most-one propositional formulas.

Both Example 3.35 and Example 3.36 result in the encoding for FGs in order to extract

paths as in the following definition.

Definition 3.37 (Encoding FG). Let K = (R,F ) be an FG, and l be a label function

into the set of nodes H. Further, let U = {sn ∈ R | n ∈ H ∩ range(l)} be the set of

propositional decision variables for K. Then

enc fg l : S → L(R)

K ↦→
( ⋁

n∈SK

⋁
e∈O(n)

sl(e)

)
(3.56)

∧
( ⋀

n∈SK

⋀
e∈O(n)

⋀
m∈SK

⋀
e′∈O(m),e̸=e′

(¬sl(e) ∨ ¬sl(e′))
)

(3.57)

∧
( ⋁

n∈DK

⋁
e∈I(n)

sl(e)

)
(3.58)

∧
( ⋀

n∈DK

⋀
e∈I(n)

⋀
m∈DK

⋀
e′∈I(m),e̸=e′

(¬sl(e) ∨ ¬sl(e′))
)

(3.59)

∧
( ⋀

n∈R\(SK∪DK)

⋀
e∈I(n)

⋀
e′∈I(n),e̸=e′

(¬sl(e) ∨ ¬sl(e′))
)

(3.60)



62 3 Flow and Decision Periodic Event Scheduling Problem

∧
( ⋀

n∈R\(SK∪DK)

⋀
e∈O(n)

⋀
e′∈O(n),e̸=e′

(¬sl(e) ∨ ¬sl(e′))
)

(3.61)

∧
( ⋀

(n,m)∈F,m/∈DK

(
¬sl(n,m)

⋁
e∈OK(m)

sl(e)
))

(3.62)

is the FG encoding for K with respect to U and S being the set of FGs.

The function enc fg l maps to a propositional in CNF, since all Equations (3.56)–(3.62)

are connected conjunctively and all equations are either disjunctions of literals or con-

junctions of disjunctions or literals, respectively. Hence, each mapped FG under enc fg l

can be connected conjunctively and results in a propositional formula in CNF, which is

needed for state-of-the-art SAT solvers [Bie+09].

Comprehensively describing Definition 3.37 we could align the respective equations as

follows

(3.56) → at-least-one source

(3.57) → at-most-one source

}
exactly one source,

(3.58) → at-least-one destination

(3.59) → at-most-one destination

}
exactly one destination,

(3.60) → at-most-one incoming flow edge per flow node,

(3.61) → at-most-one outgoing flow edge per flow node,

(3.62) → successor flow edge active if incoming active.

In other words, (3.56) and (3.57) ensure that exactly one flow edge (its labeled node) is

active that is an outgoing edge of the set of source nodes SK . Likewise, (3.58) and (3.59)

state that exactly one destination flow edge is active, which means that its respective

labeled node is in V ′. Equation (3.60) and (3.61) suffice the condition that at-most-one

incoming and outgoing flow edge of a flow node is active, respectively. Finally, (3.62)

ensures the condition in (3.31) such that if a preceding flow edge (its labeled node) is

active, then at-least-one succeeding flow edge must be active. Please note, that here

we present only the most basic at-most-one encoding12 but it could be simply switched

out by more advanced at-most-one13 encodings like the binary encoding [Fri+05], the

product encoding [Che10], the commander encoding [KK07], etc.

12i. e., the pairwise encoding
13or in general at-most-k
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Example 3.38 (Encode FG). Let K = (R,F ) be an FG as in Example 3.36 and l

be a label function for the set of periodic nodes V = {n1, . . . , n9} such that l(ei) = ni

(i ∈ {1, . . . , 9}). Then, we can encode K with enc fg l such that

enc fg l(K) = (sn1 ∨ sn2 ∨ sn3)

∧ (¬sn1 ∨ ¬sn2) ∧ (¬sn1 ∨ ¬sn3) ∧ (¬sn2 ∨ ¬sn3)

∧ (sn8 ∨ sn9)

∧ (¬sn8 ∨ ¬sn9)

∧ (¬sn4 ∨ ¬sn5) ∧ (¬sn6 ∨ ¬sn7) ∧ (¬sn8 ∨ ¬sn9)

∧ (¬sn5 ∨ ¬sn6)

∧
(
(¬sn1 ∨ sn4) ∧ (¬sn2 ∨ sn5 ∨ sn6) ∧ (¬sn3 ∨ sn7)

∧ (¬sn4 ∨ sn8) ∧ (¬sn5 ∨ sn8) ∧ (¬sn6 ∨ sn9) ∧ (¬sn7 ∨ sn9)
)
.

Encoding further FGs will result in connecting them conjunctively to the resulting

formula.

Inducing that each interpretation J for an encoded FG results in a valid path as in

Definition 3.10 if and only if J is a model14 is given by the following lemma.

Lemma 3.39 (Extract Path from Encoding). Let K = (R,F ) be an FG, and l be a label

function into the set of nodes H. Further, let U = {sn ∈ R | n ∈ H ∩ range(l)} be the

set of propositional decision variables for K. Then it holds with F := enc fg l(K) for an

interpretation J and HJ = {l−1(n) ∈ F | n ∈ H : sJn = t} being the set of satisfied labeled

flow edges:

J |= F ⇔ (HJ , ρ) ∈ χK

for a path ρ and χK being the relation as in (3.9).

Proof. “⇐”: Let ρ be a path for K such that (HJ , ρ) ∈ χK . Then, we can construct the

interpretation J as in the preconditions such that

J = {sn ↦→ sJn | n ∈ H} with sJn =

⎧⎨⎩t, l−1(n) ∈ HJ

f, l−1(n) /∈ HJ
(3.63)

We need to show that all Equations (3.56)–(3.62) hold, because they are connected

conjunctively.

14Which means that it satisfies the propositional formula.
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With Lemma 3.13 we know that it holds

∃!(n,m) ∈ HJ : n ∈ SK , n1 := n, (3.64)

∃!(n,m) ∈ HJ : m ∈ DK , nk+1 := m, (3.65)

∀i ∈ {2, . . . , k}∃!(ni−1, n) ∈ HJ : (ni−1, n) ∈ F, ni := n (3.66)

for the path ρ = ((n1, n2), . . . , (nk, nk+1)) such that (HJ , ρ) ∈ χK . Consequently,

(3.64)
(3.63)⇒ J |= sl(n,m)

Disjunction⇒ (3.56) holds,

(3.64)
(3.63)⇒ ∃!sl(n,m) ∈ R : J |= sl(n,m) ⇒ (3.57) holds,

(3.65)
(3.63)⇒ J |= sl(n,m)

Disjunction⇒ (3.58) holds,

(3.65)
(3.63)⇒ ∃!sl(n,m) ∈ R : J |= sl(n,m) ⇒ (3.59) holds.

With (3.66) (it exists exactly one flow edge) we know that for all n ∈ R \ (SK ∪DK)

|{e ∈ F | e ∈ HJ , e ∈ IK(n)}| = |{e ∈ F | e ∈ HJ , e ∈ OK(n)}| ≤ 1. (3.67)

Subsequently, for all n ∈ R \ (SK ∪DK)

(3.67)
(3.63)⇒ |{sl(e) ∈ R | e ∈ IK(n), J |= sl(e)}| ≤ 1 ⇒ (3.60) holds,

(3.67)
(3.63)⇒ |{sl(e) ∈ R | e ∈ OK(n), J |= sl(e)}| ≤ 1 ⇒ (3.61) holds.

With (3.66) we can conduct for all m ∈ R,m /∈ DK and all edges (n,m) ∈ F

(n,m) ∈ HJ ⇒ ∃(m, o) ∈ F : (m, o) ∈ HJ (3.68)

and thus,

(3.68)
(3.63)⇒ ∃(m, o) ∈ F : J |= sl(m,o), if J |= sl(n,m)

Ex 2.15⇒ (3.62) holds.

Finally, since all Equations (3.56)–(3.62) hold for the constructed interpretation J and

they are connected conjunctively:

J |= F .

“⇒”: Let J |= F and thus, we can extract HJ = {l−1(n) ∈ F | n ∈ H : sJn = t} as
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in the precondition. Since F is in CNF, J models all Equations (3.56)–(3.62). Now,

we construct an FDPEN D = (V , E , T,H,A) for the set of FGs {K} with E = A = ∅
and V = H as in the precondition. Then, we can construct a schedule Π into the set of

nodes V ′ such that

V ′ = {n | n ∈ H, l−1(n) ∈ HJ} (3.69)

with Π(n) = 0 for all n ∈ V ′. Then, since E ′ is empty (A = ∅), we know with Lemma 3.5

that Π is valid for D and E ′ = ∅. Subsequently, with Theorem 3.21 we know that it is

sufficient to show that V ′ suffices the path conditions for valid schedules in (3.17), (3.18)

(source and destination conditions) and (3.29), (3.30), (3.31) (alternative flow conditions)

with V ′ being the extracted labeled nodes given as in the interpretation J in (3.69).

For (3.17) we need to show

A = {j ∈ R | n ∈ V ′, (j, k) = l−1(n) ∈ F, j ∈ SK}, |A| = 1.

Hence, it is sufficient to show

(i) : |A| ≥ 1,

(ii) : |A| ≤ 1.

With (3.69) and the definition of HJ we can conclude

|A| = |{sn | n ∈ H, l−1(n) = (m, o) ∈ F,m ∈ SK : sJn = t}| (3.70)

(i) holds, since (3.56) is satisfied under J and thus, at least one propositional decision

variable as in (3.70) is true under J Consequently, |A| ≥ 1.

(ii) holds, since (3.57) is satisfied under J and thus, at most one propositional decision

variable is true, since all variables are pairwise excluded to be true, which could be

indirectly be proved. Thus, |A| ≤ 1 and hence, (3.17) holds.

Likewise, we can do this for the destination condition in (3.18) with (3.58) and (3.59).

It remains to show the alternative flow conditions in (3.29), (3.30) and (3.31). First, we

show that the cardinality of the set of incoming and outgoing flow edges for each flow

node is less or equal than one as in (3.29) and (3.30), respectively. Again, we show that

both sets are isomorphic and thus, have the same cardinality.

Since (3.60) is satisfied under J it can easily be indirectly proved, that at most one

propositional decision variable is true in the corresponding clauses, since all variables are
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pairwise excluded to be true such that for all n ∈ R \ (SK ∪DK) we can conclude that

|{sl(e) ∈ R | e ∈ IK(n) : J |= sl(e)}| ≤ 1

⇔ |{l(e) ∈ H | e ∈ IK(n) : J |= sl(e)}| ≤ 1

⇔ |{l(e) ∈ H | e ∈ IK(n)} ∩ {n | n ∈ H, J |= sn}| ≤ 1

⇔ |
⋃

e∈IK(n) l(e) ∩ {n | n ∈ H, J |= sn}| ≤ 1

which is equivalent to |
⋃

e∈IK(n) l(e) ∩ V ′| ≤ 1 as in (3.29) if and only if

{n | n ∈ H, J |= sn} = V ′

(3.69)⇔ {n | n ∈ H, J |= sn} = {n | n ∈ H, l−1(n) ∈ HJ}
⇔ ∀n ∈ H : (J |= sn ⇔ l−1(n) ∈ HJ)

Def HJ

⇔ ∀n ∈ H : (J |= sn ⇔ l−1(n) ∈ {l−1(n) ∈ F | n ∈ H : sJn = t})
⇔ ∀n ∈ H : (J |= sn ⇔ l−1(n) ∈ {l−1(n) ∈ F | n ∈ H : J |= sn})

l is bijective⇔ ∀n ∈ H : (J |= sn ⇔ n ∈ {n ∈ R | n ∈ H : J |= sn})
∀n∈H⇔ ∀n ∈ H : (J |= sn ⇔ J |= sn),

which is obviously a tautology and thus, (3.29) holds. Likewise, this can be shown for

the outgoing flow edges in (3.30) with (3.61).

It remains to show that the predecessor-successor relation in (3.31) holds. We know

that (3.62) is satisfied under J and therefore, it holds

J |=
(⋀

(n,m)∈F,m/∈DK

(
¬sl(n,m)

⋁
e∈OK(m) sl(e)

))
Conjunction⇒ ∀(n,m) ∈ F,m /∈ DK : J |=

(
¬sl(n,m)

⋁
e∈OK(m) sl(e)

)
Ex 2.15⇒ ∀(n,m) ∈ F,m /∈ DK : J |=

(
sl(n,m) ⇒ (

⋁
e∈OK(m) sl(e))

)
Def HJ

⇒ ∀(n,m) ∈ F,m /∈ DK :
(
(n,m) ∈ HJ ⇒ J |= (

⋁
e∈OK(m) sl(e))

)
Disjunction⇒ ∀(n,m) ∈ F,m /∈ DK :

(
(n,m) ∈ HJ ⇒ ∃e ∈ OK(m) : J |= sl(e)

)
Def HJ

⇒ ∀(n,m) ∈ F,m /∈ DK :
(
(n,m) ∈ HJ ⇒ ∃e ∈ OK(m) : e ∈ HJ

)
l is bijective, (3.69)⇒ ∀(n,m) ∈ F,m /∈ DK :

(
l(n,m) ∈ V ′ ⇒ ∃e ∈ OK(m) : l(e) ∈ V ′)

V ′⊆H,K is finite⇒ ∀(n,m) ∈ F,m /∈ DK :
(
l(n,m) ∈ V ′ ⇒ ∃l(e) ∈ V ′ ∩H : e ∈ OK(m)

)
l is bijective,⇒ ∀(n,m) ∈ F,m /∈ DK :(

l(n,m) ∈ V ′ ⇒ ∃o ∈ V ′ ∩ range(l) : l−1(o) ∈ OK(m)
)
,

because H = range(l). This is actually the last condition such that (3.31) holds.

Since all Equations (3.17), (3.18), (3.29), (3.30), and (3.31) hold, we can finally conclude
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with Lemma 3.19 that (HJ , ρ) ∈ χK .

As stated before, we can simply connect conjunctively each encoded FG to the final

propositional formula. Furthermore, since we use the same propositional decision variables,

we can use the encoding of DPENs in Definition 3.32 to encode the corresponding

constraints of a given FDPEN, which results in the following Definition.

Definition 3.40 (Encoding FDPEN). Let S be a set of FGs. Further let D be an

FDPEN with D = (V , E , T,H,A) for S and l be a label function into the set of nodes H.

Then

enc fdpen l : P(D)× P(S) → L(R)

(D,S) ↦→
⋀
K∈S

enc fg l(K) ∧ enc dpen(D)

is the FDPESP SAT encoding of D for S.

Subsequently, we added to the mapping enc dpen simply all encoded FGs via enc fg l

conjunctively which results in the function enc fdpen l. Thus, the resulting formula is in

CNF as well.

The following theorem ensures the soundness and completeness of the given encoding

for valid schedules as in Definition 3.17.

Theorem 3.41 (Soundness Completeness FDPESP Encoding). Let S be a set of FGs.

Further let D = (V , E , T,H,A) be an FDPEN for S and l be a label function into the set

of nodes H, V ′ ⊆ V be a set of nodes and let E ′ ⊆ E be a set of constraints of D. Further

let

F := enc fdpen l(D,S) ∈ L(R)

be the encoded propositional formula of D for S. Then

∃J : J |= F ⇔ ∃Π : Π is valid for D, E ′ under S

with J being an interpretation and Π a schedule of V ′.
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Proof.

∃J : J |= F
Def 3.40⇔ ∃J : J |=

⋀
K∈S enc fg l(K) ∧ enc dpen(D)

Lem 3.39, Conjunction⇔ ∃J : J |= enc dpen(D), ∀K ∈ S : (HJ , ρ) ∈ χK

Thm 3.34⇔ ∃Π : Π is valid for D and E ′, ∀K ∈ S : (HJ , ρ) ∈ χK

Def 3.17,Lem 3.19⇔ ∃Π : Π is valid for D and E ′ under S

with HJ as in Lemma 3.39.

Theorem 3.41 ensures the successful application of SAT solvers to the encoded formula

such that we can extract the resulting paths for each FG and the accompanying valid

schedule. Computational results will be shown in Section 5. However, firstly we will display

several possible applications in Section 3.3 to show the usage of the introduced FDPESP.

3.3 Applications

This section covers some of the main applications that are currently used on real-world

scenarios. However, with a general model as given in Section 3.1, it can easily be applied

to wide variety of new problems.

The problems covered in this work are distinct chain paths, duplicated chain paths

and non-connected flow graphs in Section 3.3.1, Section 3.3.2 and Section 3.3.3, respec-

tively [Gro+15a]. The first one manages timetabling for periodic train paths whose

driving (or vehicle) dynamics and paths are not precisely given, yet, discretized. Fur-

thermore, the second handles scheduling of rail freight trains into given public transport

networks. Finally, the last deals with the station track allocation of the corresponding

periodic train paths.

In the following examples, all respective times15 are made up and need to be calculated

automatically in real-world scenarios with a software like TAKT [Opi09; Küm+15].

3.3.1 Distinct Chain Paths

The integration of the trains’ routing and timetabling into a singe planning step for

railway networks has a high necessity in real-world applications. This is reasoned in the

fact that often the train path system is known beforehand, however, the microscopic

15i. e. headways, driving, change
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Figure 3.11: Different possible routes (red, blue) for a periodic train path between DH
(Dresden Hauptbahnhof, Germany) and DCW (Coswig, Germany).

routed train paths are yet open for the planners, since only the stopping stations of the

train path are already fixed. Especially in highly crowded sections that reach the capacity

limit, the possibilities of alternative routes and driving (or vehicle) dynamics yield

more efficient timetables, since the network capacity can be better utilized, maintaining

conflict-freeness.

Consequently, the possible routes and the corresponding driving dynamics can be

passed to the mathematical model. In our case, we use the FDPEN approach to achieve

this goal. First of all, since the number of possible routes is exponentially high and the

driving dynamics are continuous, we need to cut the search space drastically to maintain

low computational time. This can be approached by applying only concrete alternatives

of the corresponding operator or given a maximum detour factor that only regards all

routes between two stations maintaining its maximum deviation (detour). Two possible

routes are visualized in Figure 3.11. Secondly, the driving dynamics need to be discretized

in order to maintain a small search space and stay at least linear with respect to the

model, since it is in general at least quadratic [HP14].

Using the FDPEN technique we construct for each periodic train path L a corresponding

FG KL = (RL, FL) such that between each two consecutive stations along side its given

path a flow edge for each meaningful16 route is contained in FL.

Example 3.42 (Routes for Periodic Train Paths). Let {A,B,C,D,E} be a set of stations
that are visualized as network with routes in Figure 3.12. Further, let 1 (A → B → C)

and 2 (D → B → E) be periodic train paths such that we have two FGs Ki = (Ri, Fi)

(i ∈ {1, 2}) with

R1 = {A1, B1, C1} R2 = {D2, B2, E2}

16as described in the previous paragraph
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A B C

D

E

Figure 3.12: Exemplifying station network.

F1 = {e1, . . . , e4} F2 = {e5, e6}

as in Figure 3.13. Train path 1 has only a single route between A and B and three

different routes between B and C, whereas train path 2 has no variation in its route

which represents the classical timetabling with PESP.

A1 B1 C1 D2 B2 E2

e1

e2

e3

e4

e5 e6

Figure 3.13: Exemplifying possible routes for periodic train path 1 (left) and 2 (right) as
in Example 3.42.

Due to different infrastructural circumstances and possible different driving dynamics,

the headway and driving17 constraints may differ for each route. Hence, we need the

constraints for each labeled flow edge of the corresponding DPEN separately.

Example 3.43 (FDPEN for Distinct Chain Paths). Let 1 and 2 be periodic train paths

as in Example 3.42 as well as its corresponding FGs K1, K2 and let D = (V , E , T,H,A)

be an FDPEN for {K1, K2} with T = 60, H = {n1, . . . , n6} and A = ∅ which is shown

in Figure 3.14 whereas nC and nE represents the last departure nodes of train path 1

and 2, respectively. Further, we need a label function l such that for all i ∈ {1, . . . , 6}

l(ei) = ni

17including minimum and maximum stopping times
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Figure 3.14: FDPEN as in Example 3.43.

that represent the departure events of each sub path (route) if needed. Please note, that

the driving constraints between the nodes in {n2, n3, n4} and nC are different which may

be caused due to the different underlying infrastructure. This is as well manifested in

the different headway constraints between the nodes in {n2, n4} and n6.

Calculating a solution for the given problem means finding a valid schedule for the

DPEN and valid paths for each FG as in Definition 3.17.

Example 3.44 (Timetable for Distinct Chain Paths). Let D = (V , E , T,H,A) be an FD-

PEN for {K1, K2} as in Example 3.43. With the set of nodes V ′ = {n1, n2, nC , n5, n6, nE},
the set of edges E ′ = E and the schedule Π for V ′ such that

Π(n1) = 0,

Π(n2) = 17,

Π(nC) = 24,

Π(n5) = 20,

Π(n6) = 32,

Π(nE) = 38,

the schedule Π is valid for D and E ′ which will be clarified in the following. The

constraints that must hold under Π are highlighted in Figure 3.15 (left) for D. Especially,

the headway constraint for the labeled flow edge between n2 and n6 must hold under Π
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since this route will be used by the resulting periodic train path.

Equations (3.1), (3.2) hold, because nC , nE ∈ V ′, E ′ = E and it holds (3.3), because

Π(n2)− Π(n1) = 17 ∈ [16, 18]60 ⇒ Π |= (n1, n2, [16, 18]60)

Π(nC)− Π(n2) = 7 ∈ [7, 7]60 ⇒ Π |= (n2, nC , [7, 7]60)

Π(n6)− Π(n2) = 15 ∈ [3, 57]60 ⇒ Π |= (n2, n6, [3, 57]60)

Π(n6)− Π(n5) = 12 ∈ [12, 12]60 ⇒ Π |= (n5, n6, [12, 12]60)

Π(nE)− Π(n6) = 6 ∈ [4, 6]60 ⇒ Π |= (n6, nE, [4, 6]60)

as in Definition 3.3. Furthermore, all equations in Definition 3.17 are fulfilled, because

we have for each FG in {K1, K2} exactly one source and exactly one destination and the

flow conservation holds as well, which is all denoted as

n1 ∈ V ′ ∩ range(l) = {n1, n2, n5, n6}, l−1(n1) = (A1, B1) ∈ F, A1 ∈ SK1 ⇒ (3.17),

n5 ∈ V ′ ∩ range(l) = {n1, n2, n5, n6}, l−1(n5) = (D2, B2) ∈ F, D2 ∈ SK2 ⇒ (3.17),

n2 ∈ V ′ ∩ range(l), l−1(n2) = (B1, C1) ∈ F, C1 ∈ DK1 ⇒ (3.18),

n6 ∈ V ′ ∩ range(l), l−1(n6) = (B2, E2) ∈ F, E2 ∈ DK2 ⇒ (3.18),⋃
(m,B1)∈IK(B1)

l(m,B1) = {n1},
⋃

(B1,o)∈OK(B1)

l(B1, o) = {n2, n3, n4}

⇒ |{n1} ∩ V ′| = |{n2, n3, n4} ∩ V ′| = 1 ∈ {0, 1} ⇒ (3.19)⋃
(m,B2)∈IK(B2)

l(m,B2) = {n5},
⋃

(B2,o)∈OK(B2)

l(B2, o) = {n6}

⇒ |{n5} ∩ V ′| = |{n6} ∩ V ′| = 1 ∈ {0, 1} ⇒ (3.19)

with range(l) = H being the range of the label function l. Hence, Π is valid for D, E ′

under {K1, K2}.
Finally, we can extract the paths ρ1 and ρ2 for the periodic train paths 1 and 2 from V ′

such that ρ1 = (e1, e2) and ρ2 = (e5, e6), because

ρ1 : V ′ ∩
⋃
e∈F1

l(e) = {n1, n2, n5, n6} ∩ {n1, n2, n3, n4} = {n1, n2},

ρ2 : V ′ ∩
⋃
e∈F2

l(e) = {n1, n2, n5, n6} ∩ {n5, n6} = {n5, n6}

as in (3.26). The highlighted paths for the FGs are shown in Figure 3.15 (right).
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Figure 3.15: Highlighted constraints (left) and paths (right) for the valid schedule as in
Example 3.44.

Using the SAT-based technique, we have to encode the FDPEN as in Section 3.2.1 with

Definition 3.40. Because the introduction to this method is not yet fully implemented

in the software system TAKT, there will be no computational results for this approach,

yet. Furthermore, this is left for further research18 but seems to provide very high

potential [Wün16] especially on highly crowded sub paths or tracks with multiple choices

for its corresponding main direction as already used in the rail freight train path approach

in the following Section 3.3.2 and Section 5.4.

3.3.2 Duplicated Chain Paths

Inserting rail freight train paths into a given train path system – that is a public transport

network with given periodic train paths – is an ever-growing need for railway infrastructure

companies as DB Netz AG [FP14]. Thus, we need to tackle this problem based on the

given structure (FDPESP) that we developed in Section 3.1.2.

The given input data is a set of source nodes and set of destination nodes that represent

stations – respectively tracks in stations – of rail freight train paths. In Figure 3.16

we can see a railway network of Germany with its highlighted relation (source and

destination) between Mainz and Karlsruhe. Thus, the flow of the respective relation is

already given. However, the driving dynamics and the precise train path is yet open.

Here, we discretize the given parameters based on a given detour factor [WON12; Opi09].

18which is under current scientific investigations at the Chair of Traffic Flow Science [Wün16]
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FMB

RKR

Figure 3.16: Relation of to be inserted rail freight train paths between FMB (Mainz-
Bischofsheim, Germany) RKR (Karlsruhe, Germany) with possible routes.

Then, each possible train path is cut in small pieces19 such that it possibly stops in a

lot of stations in between which results in a train path sub network as needed for an

FG. The flow nodes represent tracks in certain stations and the flow edges represent the

infrastructure in between to reach these tracks, respectively their last signal.

Example 3.45 (Freight Train Sub Flow Graph). Let {A,B,C,D,E} be a set of stations

with tracks in {1, 2} as index. For example, D2 means the track 2 in station D. We

create an FG K = (R,F ) with

R = {A1, A2, B1, C1, C2, D1, E1, E2}

F = {e1, . . . , e7}

as in Figure 3.17. For example, we have a sub train path (flow edge) (B1, C2) ∈ F which

means the resulting freight train may drive from track 1 in station B track 2 in station C.

A resulting path could be possibly ρ = (e2, e4, e7) which is highlighted in Figure 3.18.

Basically, it means that the resulting periodic train path travels from track 2 in station A

to track 2 in station E via station C and D (on track 1).

19i. e., a sub train path
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Figure 3.17: FG as in Example 3.45.

Duplicating the given FG results in more rail freight train paths. Subsequently, we

need to copy the whole structure; that is the set of flow nodes and flow edges. This is

based on the reason, that they use the exact same infrastructure, however, they may

use different paths. Hence, we superscript each flow edge and flow node with a distinct

number for each flow graph. Hence, the set of nodes and paths are disjoint. Let the

number of to be inserted train paths be τ .

Example 3.46 (Duplicated Train Flow Graphs). Let K = (R,F ) be an FG as in

Example 3.45. With the number of to be inserted rail freight train paths τ = 4 we

have the set of FGs {K1, . . . , K4}. Hence, we can construct each FG Ki = (Ri, F i)

(i ∈ {1, . . . , 4}) out of the base FG K such that

Ri = {Ai
1, A

i
2, B

i
1, C

i
1, C

i
2, D

i
1, E

i
1, E

i
2},

F i = {ei1, . . . , ei7}

A1

A2

B1

C1

C2

D1

E1

E2

e1

e2

e3

e4

e5

e6

e7

Figure 3.18: Path as in Example 3.45.
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Figure 3.19: Duplicated FG as in Example 3.46.

with a possible solution (path) ρi for each FG Ki (i ∈ {1, . . . , 4})

ρ1 = (e12, e
1
4, e

1
7),

ρ2 = (e23, e
2
5, e

2
6),

ρ3 = (e31, e
3
4, e

3
6),

ρ4 = (e42, e
4
4, e

4
6),

which is highlighted in Figure 3.19 for each respective FG.

It remains to connect each flow edge to a respective node to the given DPEN. As

described before, each DPEN consists of different constraint types. With respect to

freight train paths, we mainly need headway and drive-stop constraints. Each flow edge

(sub path) is connected to its successor edges by drive-stop constraints and has headway

constraints for each intersecting train path with respect to the infrastructure [Opi09;

Nac98]. This shall be shown by the following simplified network.

Example 3.47. Let K1 = (R1, F 1) and K2 = (R2, F 2) be duplicated FGs as visualized

in Figure 3.20 such that for each i ∈ {1, 2}:

Ri = {Ai, Bi, Ci},

F i = {ei1, ei2}.
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A1 B1 C1

e11 e12

A2 B2 C2

e21 e22

Figure 3.20: Simplified duplicated FG as in Example 3.47.

Further, let D = (V , E , T,H,A) be an FDPEN for {K1, K2} with period T = 60,

H = {n1
1, n

1
2, n

2
1, n

2
2} and A = ∅ which is shown in Figure 3.21 alongside a label function l

such that for all i, j ∈ {1, 2}
l(eji ) = nj

i

that represent the departure events of each sub path if needed. The periodic events mi

(i ∈ {1, 2, 3}) may represent some passenger path like an inter city train. Each constraint

within a (passenger or freight) periodic train path represents a drive-stop constraint and

all constraints in between represent headways. Please note the wide spans within the

freight train paths. These represent possible stopping times in station B for up to 30 min.

These are parameters which may be adjusted accordingly.

n1
1 n1

2

n2
1 n2

2

m1 m2 m3

[8, 38]60

[8, 38]60

[20, 24]60 [17, 18]60

[2, 58]60 [2, 58]60

[2, 55]60

[2, 55]60

[3, 54]60

[3, 54]60

Figure 3.21: FDPEN as in Example 3.47.

In Figure 3.23 a timetable between Gutenfürst and Zwickau (Sachs) Hbf with a period

of 120 min is shown, whereas only the passenger train paths’ timetable can be seen in
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Figure 3.22: Timetable (time-distance graph) for passenger train paths between
DGF (Gutenfürst, Germany) and DZW (Zwickau (Sachs) Hauptbahnhof,
Germany).

Figure 3.22. The inserted periodic rail freight train paths are visualized in blue. If we

discretize the time frame into 2h we detect 9 inserted paths into the existing passenger

train path system maintaining a conflict-free timetable.

Subsequently, with the appropriate encoding enc fdpen l in Definition 3.40 we can solve

these instances with a state-of-the-art SAT solver. In this example we can see headway

constraints between freight train sub paths as well, since if both sub paths are in the

resulting path, they need the safety time.

Experimental results for inserting rail freight trains into passenger train path systems

can be found in Section 5.4.

3.3.3 Non-connected Flow Graphs

Track allocation is an important part of the railway timetabling process that assigns each

periodic train path a track in each station it passes. For example, this problem is solved
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Figure 3.23: Timetable with inserted rail freight train paths (blue) between DGF (Guten-
fürst, Germany) and DZW (Zwickau (Sachs) Hauptbahnhof, Germany).

in the software STATIONS [Zwa+96; ZKV01; Kro+09]. In Figure 3.24 a small station

(Riesa) is visualized, where each box represents a blocking time (y-axis) of a periodic

train path on its corresponding track (x-axis).

This process will be used after the timetabling step of the whole network. Regarding the

track allocation process already in the previous phase would explode20 the computational

complexity. Thus, each train path uses the main track – or side track if stopping – in

each station neglecting the headway constrained within a station. In the next phase,

all possible routes through the station for each train path are regarded, requiring and

holding the headway constraints.

Due to computation time reasons, each periodic train path in all stations has fixed

departure times, excluding the one that is processed. In PESP terms this is reflected by

fixed periodic events. Subsequently, the PEN can be cut into all constraints that only

intersects with events of the processed station where each train path shall be allocated

20at least with the current state-of-the-art techniques and solvers
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Figure 3.24: Track allocation for the small station DR (Riesa, Germany, 4 tracks).

to a certain track.

Each route rL within a station for a train path L will be contained in the set of

routes RL. The set of routes is finite and given in advance due to infrastructural data and

train type restrictions like track priorities and maximum detour factor. In Figure 3.25

4 possible routes for a train path in station Dresden Hbf are visualized that have been

routed with the software system TAKT.

Using the FDPEN technique we construct for each train path L an FG KL = (RL, FL)

such that for each route rL ∈ RL the artificial nodes rL1 and rL2 are contained in RL and

the route itself represents the edge between the defined nodes with r = (rL1 , r
L
2 ) ∈ FL.

Since the set of nodes of all pair of routes are disjoint, no route (flow edge) is connected

to another one.

Example 3.48 (Flow Graphs for Track Allocation). Let A and B be the only periodic

train paths for the to be regarded station. Further, let RA = {aA, bA} and RB =
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Figure 3.25: Four possible routes for a periodic train path in station DH (Dresden
Hauptbahnhof, Germany).

aA1 aA2

bA1 bA2

aB1 aB2

bB1 bB2

cB1 cB2

aA

bA

aB

bB

cB

Figure 3.26: Non-connected flow graphs KA (left) and KB (right) as in Example 3.48.

{aB, bB, cB} be the respective set of routes. Then, we can construct the FGs KA and KB

for the periodic train paths A and B, respectively, such that

RA = {aA1 , aA2 , bA1 , bA2 }, RB = {aB1 , aB2 , bB1 , bB2 , cB1 , cB2 },

FA = {aA, bA}, FB = {aB, bB}.

Both graphs are displayed in Figure 3.26 with possible paths ρA = (aA) and ρB = (cB).

In the previous sections for the distinct and duplicated chain path cases, we needed to

insert headway constraints for each labeled flow edge. Likewise, we have to introduce

the needed label function and need to connect each corresponding node – that is the
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Figure 3.27: FDPEN as in Example 3.49.

departure event of the given route – to its required headway constraints to the other

periodic train paths within the railway network. Again, these are based on the trains’

driving dynamics and the underlying infrastructure.

Example 3.49 (FDPEN for Track Allocation). Let KA and KB be the FGs as in

Example 3.48. Further, let D = (V , E , T,H,A) be an FDPEN for {KA, KB} with the

period T = 120, H = {nA
a , n

A
b , n

B
a , n

B
b , n

B
c } be the set of decision nodes and A = ∅ that

is displayed in Figure 3.27 with a corresponding label function for each periodic train

path L ∈ {A,B} and each r ∈ {a, b}

l(rL) = nL
r

and l(cB) = nB
c . Because these are the only regarded trains, only the corresponding

labeled nodes and its respective constraints are regarded in the FDPEN. We can see

that only headway constraints are contained and the different driving dynamics are

exemplified in the increasing lower bounds of route b for train path A.

If we evaluate a valid timetable for the given FDPEN, we can extract the used tracks

of the given solution. An exemplifying scenario is shown in Figure 3.28 for a medium

sized station. No blocked times are intersecting which indicates that the corresponding

timetable is conflict-free.

The track allocation method offers a promising tool for handling the stations no more

as black boxes. Experimental results suggest a sound integration into the timetabling

process as proposed in Section 5.5.
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Figure 3.28: Allocated tracks for all train paths in station DH (Dresden Hauptbahnhof,
Germany).



4 Optimization in Periodic Event

Scheduling

In the previous section, the presented problems are introduced as decisional prob-

lems. Since all given problems are at least NP -complete, those tasks are until now

not tractable [Coo71]. However, most applications require optimization possibilities in

order to gain even better results [Opi09; Kro+08]. Consequently, this section covers an

overview for some of the already developed optimization approaches, introduces new

models for several applications and covers for most an appropriate MaxSAT encoding.

In Section 4.1 the respective MIP models are presented whereas in Section 4.2 the

corresponding possible encodings to MaxSAT are shown, which ends with a soundness

and completeness theorem for the encoding of optimizing FDPENs.

4.1 Linear Objectives and Applications

First of all, it is important to know that using MIP solvers to optimize the given

instances, we need an initial solution, since state-of-the-art MIP solvers currently lack

to calculate initial solutions efficiently [KN13] or even effectively [GRB15]. However,

applications of the PESP model in real-world railway scenarios have a huge amount

of hard constraints [Küm+13], especially headway, such that no 0 solution1 can be

provided to the solvers. Hence, using MIP techniques in the following for various periodic

scheduling problems still needs the encodings in Section 3.2 alongside state-of-the-art

SAT solvers to generate an initial solution. The base scheme for possible approaches

is shown in Figure 4.1, whereas “heuristic” refers to iterative calls to SAT solvers. The

first step (“model”) and last step (“decode”) are out of scope in this work. However, the

center part is described in this work.

Nevertheless, formulating optimization problems in periodic scheduling problems as

linear objectives are for many researches most intuitive and provides a generic, mathemat-

10 solution means that all variables are set to 0 and is feasible for the given model
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periodic railway optimization problem

FDPEN + objective functional

initial solution MaxSAT instance SAT instance

MIP solution MaxSAT interpretation SAT interpretation
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timetable + specific routing
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SAT solver encode encode

MIP solver MaxSAT solver heuristic

decode decode decode

decode

Figure 4.1: Approaches for optimization in periodic timetabling.

ical formalization of the underlying problem. Some of the introduced model formulations

have been already introduced, however, we need them yet again for the corresponding

MaxSAT encodings in Section 4.2. In Section 4.1.1 the classical optimization of weighted

slacks will be shown. Then, in Section 4.1.2 the maximization of constraints that hold

under a certain schedule is discussed and finally, in Section 4.1.3 optimization criteria for

the FDPEN approaches are presented and discussed.

In the consecutive sections, we will use binary variables like x ∈ {0, 1} for MIP models.

For convenience, we use as well its complement x̄ = 1− x without explicitly appending

these constraints to the model itself.

4.1.1 Minimization of Weighted Slacks

This problem2 has been introduced and discussed heavily in the literature [NO07; Nac98;

Lie06; Kro+09; LM07a]. Given a PEN N = (V , E , T ) with constraints e ∈ E of the

structure a(e) = [l, u]T we can formulate with a weight function ω such that

ω : E → N ∪ {∞} (4.1)

2or variants of this problem
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the set of to be optimized constraints with

Eω := {e ∈ E | ω(e) < ∞}. (4.2)

The remaining constraints E \ Eω are not considered for the optimization. For example,

in the software system TAKT all headway constraints have an infinite weight, because

only symmetry, connection and waiting constraints are optimized [Opi09].

Consequently, for a schedule Π we can define the objective functional∑
e=(i,j,[l,u]T )∈Eω

ω(e)
(
((Π(j)− Π(i)) mod T )− l

)
→ min (4.3)

that minimizes the sum of weighted slacks that represent the deviation of each corre-

sponding constraint’s lower bound. Subsequently, we can calculate the slack for each

constraint e = (i, j, [l, u]T ) ∈ Eω with

σ(e,Π) := ((Π(j)− Π(i)) mod T )− l (4.4)

Because 4.3 is not linear, the PESP constraint e = (i, j, [l, u]T ) can be formulated [Odi94]

with the modulo parameter ze ∈ Z for each constraint with

l ≤ Π(j)− Π(i)− ze · T ≤ u. (4.5)

Subsequently, the objective functional alongside its model can be reformulated linearized

as ∑
e=(i,j,[l,u]T )∈Eω

ω(e)
(
Π(j)− Π(i)− l − ze · T

)
→ min (4.6)

subject to

l ≤ Π(j)− Π(i)− ze · T ≤ u, ∀e = (i, j, [lu]T ) ∈ E

Π(j),Π(i) ∈ [0, T − 1] ⊆ Z, ∀i, j ∈ V

ze ∈ Z, ∀e ∈ E

which is indeed linear, since ω(e) is constant.

The applications of this method have been discussed in the literature [Opi09; Nac98;

Kro+09] and can be used for example for resolving local conflicts [Gro12b] or minimizing

passenger waiting times, which is schematically exemplified for one train path in Figure 4.2.
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Figure 4.2: Regional train path (green) with 2 min slack (left) and 16 min slack (right)
in a station.

4.1.2 Satisfiable Constraint Maximization

Maximizing the number of constraints that hold under a schedule has two major roles

in railway timetabling. On the one hand, in case the PEN is infeasible, two possible

ways can be developed. Firstly, a smallest infeasible subnetwork (local conflict) could

be extracted [Opi09; Gro12b] or secondly, a maximum feasible PEN with respect to the

number of constraints can be generated such that only possibly few constraints do not

hold under the schedule. On the other hand, having a feasible PEN is often extended by

connections resulting of passenger flows such that as many connections as possible shall

hold for transfers between two trains [Opi09]. The latter has already been developed and

successfully applied by Liebchen [Lie08; Lie06].

Both cases need the structure of decisional PENs in form of DPENs. Hence, we need a

DPEN D = (V , E , T,H,A). Furthermore, for convenience we can assume that the set

of decisional nodes is empty such that H = ∅. Again, we apply the weight function as

in (4.1) with

∀e ∈ E \ A : ω(e) = ∞, ∀e ∈ A : ω(e) < ∞ (4.7)

which implies that only decisional constraints have a weight less than ∞. Consequently,
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n1
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ω(e1) = 1
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ω(e2) = 2
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ω(e3) = 3

[1, 1]10
ω(e4) = ∞

Figure 4.3: Decisional PEN as in Example 4.1

we can introduce the objective functional with a set of edges E ′ ⊆ E such that Π is valid

for V ′ = V and E ′ as in Definition 3.3 with∑
e∈E ′∩A

ω(e) → max . (4.8)

If the weight function only maps the constraints to 1 such that for each decisional

edge e ∈ A it holds ω(e) = 1 we can simplify (4.8) to

|E ′ ∩ A| → max .

Example 4.1. Let D = (V , E , 10, ∅,A) be a DPEN with V = {n1, . . . , n4}, E such

that ei = (ni, n(i mod 4)+1, [1, 1]10 ∈ E (i ∈ {1, . . . , 4}) and the set of decisional con-

straints A such that ej ∈ A (j ∈ {1, 2, 3}). Further let ω be the weight function such

that for each ej ∈ A : ω(ej) = j (j ∈ {1, 2, 3}) and ω(e4) = ∞. The graph is visualized

in Figure 4.3.

Let E1 = (e1, e2, e4) ⊆ E , E2 = (e2, e3, e4) ⊆ E be sets of edges and let Π1, Π2 be schedules

for V with

E1 : Π1(n4) = 0,Π1(n1) = 1,Π1(n2) = 2,Π1(n3) = 3,

E2 : Π2(n2) = 0,Π2(n3) = 1,Π2(n4) = 2,Π2(n1) = 3.

Then, Π is valid for E1 and E2, because for each ei ∈ Ej (j ∈ {1, 2}) it holds

ei = (ni, n(i mod 4)+1, [1, 1]10) : Πj(n(i mod 4)+1 − Π(ni) ≡10 1 ∈ [1, 1]10
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Figure 4.4: Highlighted constraints for E1 (left) and E2 (right) as in Example 4.1

The highlighted constraints for E1 and E2 can be seen in Figure 4.4. The evaluated

objective functional in (4.8) can be evaluated such that

E1 :
∑

e∈E1∩A

ω(e) =
∑

e∈{e1,e2}

ω(e) = 1 + 2 = 3,

E2 :
∑

e∈E2∩A

ω(e) =
∑

e∈{e2,e3}

ω(e) = 2 + 3 = 5.
(4.9)

Hence, with respect to maximization E2 is the maximum for the objective functional

in (4.8).

Please note, that the domain in (4.8) is based on the varying set E ′ of the sum.

Subsequently, the objective functional is not linear. Hence, we need to expand the

constraints in (4.5) in two separate constraints

l ≤ Π(j)− Π(i)− ze · T

Π(j)− Π(i)− ze · T ≤ u.
(4.10)

Then, we use the well-established big-M technique [BT05] for each decisional con-

straint e ∈ A with a binary variable xe ∈ {0, 1} such that

l ≤ Π(j)− Π(i)− ze · T +M · x̄e

Π(j)− Π(i)− ze · T −M · x̄e ≤ u.

with M ∈ R,M ≫ 0 being a large number. We could easily calculate smaller upper

bounds to M such that the MIP solvers have better numerical stability, however, this

will be out of scope for this work. The binary variable xe has the semantical meaning

that if xe = 1 the constraint e must hold under the schedule. Finally, we can establish
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the whole MIP formulation such that∑
e∈A

ω(e)xe → max

subject to

l ≤ Π(j)− Π(i)− ze · T +M · x̄e

Π(j)− Π(i)− ze · T −M · x̄e ≤ u, ∀e = (i, j, [l, u]T ) ∈ A

l ≤ Π(j)− Π(i)− ze · T ≤ u, ∀e = (i, j, [l, u]T ) ∈ E \ A

Π(j),Π(i) ∈ [0, T − 1] ⊆ Z, ∀i, j ∈ V

ze ∈ Z, ∀e ∈ E

xe ∈ {0, 1}, ∀e ∈ A.

(4.11)

Having this model, we can encode it to a propositional formula (corresponding MaxSAT

problem) which is given in Section 4.2.2 that can be compared for runtime and primal

values.

Example 4.2. Let D be the DPEN as in Example 4.1. Using the model in (4.11) we get

xe1 + 2xe2 + 3xe3 → max

subject to

1 ≤ Π(ni+1)− Π(ni)− zei · T +M · x̄ei

Π(ni+1)− Π(ni)− zei · T −M · x̄ei ≤ 1, ∀ei = (ni, ni+1, [l, u]T ) ∈ A

1 ≤ Π(n1)− Π(n4)− ze4 · T ≤ 1

Π(ni) ∈ [0, 9] ⊆ Z, ∀i ∈ {1, . . . , 4}

zei ∈ Z, ∀i ∈ {1, . . . , 4}

xei ∈ {0, 1}, ∀i ∈ {1, 2, 3}.

Further let the schedule Π for V, E1 ⊆ E and E2 ⊆ E be as in Example 4.1. Then,

with E ′ ∈ {E1, E2} and

xei =

⎧⎨⎩1, ei ∈ E ′

0, ei /∈ E ′

we can imply for the objective functional that

E1 : xe1 + 2xe2 + 3xe3 = 1 + 2 · 1 + 3 · 0 = 3,
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E2 : xe1 + 2xe2 + 3xe3 = 0 + 2 · 1 + 3 · 1 = 5

which are indeed the same values as in (4.9).

Applying this model to the connection (transfer) optimization, such that as many

connections for the passengers in a railway network shall hold, is successfully applied in

the software system TAKT.

Extending the model to set of constraints3 can be achieved in two ways. Firstly, we

can simply define a set of set of constraints T ⊂ P(E) with each set of constraints in T
to be pairwise disjoint. Then, define a weight mapping ω for T which results in the

objective function for the indexed binary variables x∑
C∈T

ω(C)xC → max .

A set of constraints is domain dependent and could for example represent a geographic

part of the network or parts of train paths with respect to their constraints. Since

train paths in PENs are represented as paths of nodes connected with constraints which

represent driving and stopping times, we can use the tool of flow graphs as well for sets

of nodes and thus its corresponding constraints. Then, we need simply to maximize the

FGs in S for a corresponding FDPEN. However, we either have to adapt the definition

for valid schedules in Definition 3.17 or in each FG we need a dummy flow edge that

is not connected to the remaining network and a dummy periodic event that has no

constraints to the remaining PEN. Then, we can use the same definition and can optimize

the to be used flow graphs by excluding the dummy flow edges in the objective functional.

Each of which can be combined for example with the duplicated chain path approach in

Section 4.1.3 such that not just the total driving time is minimized but the to be inserted

amount of train paths as well which has been already pre-analyzed for non-periodic

freight train paths [KGO15].

4.1.3 Optimization in Periodic Event Networks with Flows

Optimizing FDPENs – respectively its applications – is based on minimizing the sum of

slacks and flow edge weights on the used paths. In public railway timetabling the sum of

slacks and flow edge weights correspond to the sum of stopping times in each station and

the driving times for each sub train path, respectively, for the to be inserted train path

3as already introduced for local conflicts [Gro12b]
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that consists of a route and a timetable. This results in the minimization of the total

travel time for all train paths4.

Consequently, for an FG K = (R,F ) we need to assign to each flow edge e ∈ F a

weight γ(e). For convenience, we may use its corresponding periodic event with the

label function such that γ(e) = γ(l(e)) for an FDPEN D = (V , E , T,H,A). As presented

above, in railway applications, this weight represents the driving time from a station to

its consecutive station.

In the encoding of FGs in Definition 3.37 we used the propositional (binary) decision

variables in

U = {sn ∈ R | n ∈ H ∩ range(l)} (4.12)

for a set of decision nodes H. Likewise, we use these variables within the domain {0, 1}.
Subsequently, we can add this structure to the to be minimized objective functional∑

n∈H

γ(n)sn.

For convenience, since the label function l is bijective, we equivalently use the indexes

for a flow edge e and its corresponding labeled periodic event l(e) with

sl(e) ≡ se

such that both terms are even isomorphic.

Furthermore, as already defined in (4.3) respectively (4.6) in Section 4.1.1 we need the

slack time for each constraint e = (i, j, [l, u]T ) with

Π(j)− Π(i)− l − zeT. (4.13)

With respect to FDPENs we have to enhance (4.13) by the propositional decision

variables in U as in (4.12) for each e = (i, j, [l, u]T ) such that

(Π(j)− Π(i)− l − zeT )sisj

has to be minimized, because the slack shall only be used if si = sj = 1. Subsequently,

4respectively for all relations between its sources and destinations
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this results in the objective functional for the set of to be minimized edges5

Eγ := {e = (i, j, c) ∈ E | i, j ∈ U} (4.14)

such that ∑
n∈H

γ(n)sn +
∑

e=(i,j,[l,u]T )∈Eγ

(Π(j)− Π(i)− l − zeT )sisj → min . (4.15)

Figure 4.5 visualizes an rail freight train path giving examples for the weight γ(n) and

possible slack according to (4.13) for the periodic events n and m. Because the driving

dynamics is fixed, γ(n) is a fixed value (constant).

In the previous Section 4.1.2 we used the big-M method for activating each constraint

depending on its decisional variables corresponding to its constraints. Likewise, we apply

this for each constraint e = (i, j, [l, u]T ) ∈ Eγ with the binary decision variables si, sj ∈ U

such that
l ≤ Π(j)− Π(i)− zeT +Ms̄i +Ms̄j

Π(j)− Π(i)− zeT −Ms̄i −Ms̄j ≤ u.
(4.16)

5more precisely it is the slack that shall be minimized for each constraint
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Again, we could bound M according to the period T which will be skipped here. Yet, we

leave this number as “large” such that the constraints are satisfied if sj = 0 or si = 0.

Combining the objective functional in (4.15) subject to the PESP constraints as in (4.10)

and (4.16) result in the following definition.

Definition 4.3 (Model FDPEN). Let S be a set of FGs and let D = (V , E , T,H,A) be

an FDPEN for S. Then,∑
n∈H

γ(n)sn +
∑

e=(i,j,[l,u]T )∈Eγ

(Π(j)− Π(i)− l − zeT )sisj → min (4.17)

subject to ∑
e∈OK(SK)

se =
∑

e∈IK(DK)

se = 1, ∀K ∈ S (4.18)

∑
e∈I(n)

se −
∑

e∈O(n)

se = 0, ∀K ∈ S,∀n ∈ R \ (SK ∪DK) (4.19)

l ≤ Π(j)− Π(i)− zeT +Ms̄i +Ms̄j (4.20)

Π(j)− Π(i)− zeT −Ms̄i −Ms̄j ≤ u, ∀e = (i, j, [l, u]T ) ∈ Eγ (4.21)

l ≤ Π(j)− Π(i)− ze · T ≤ u, ∀e = (i, j, [l, u]T ) ∈ E \ Eγ
Π(j),Π(i) ∈ [0, T − 1] ⊆ Z, ∀i, j ∈ V

ze ∈ Z, ∀e ∈ E

sn ∈ {0, 1}, ∀n ∈ H.

is the model for minimizing the sum of slacks and flow edge weights for all FGs in S.

In Definition 3.17, we declared that each path needs exactly one source, exactly

one destination and the flow conservation has to be satisfied, which is stated in (4.18)

and (4.19), respectively. Since (4.15) is cubic – and thus, (4.17) as well – we have to

linearize it in order to pass the corresponding MIP instance to an according solver.

Hence, the following theorem gives an equivalent formulation with respect to the to be

minimized objective functional which covers a bijection of the solution space for the

relevant constraints.

Theorem 4.4 (Linearization). Let S be a set of FGs and D = (V , E , T,H,A) be an

FDPEN for S. Then, the objective functional in (4.17) subject to (4.21) and the variable
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definitions is equivalent to∑
n∈H

γ(n)sn +
∑
e∈Eγ

δe → min (4.22)

subject to

Π(j)− Π(i)− zeT −Ms̄i −Ms̄j − δe ≤ l, ∀e = (i, j, [l, u]T ) ∈ Eγ (4.23)

δe −Msi ≤ 0, ∀e = (i, j, [l, u]T ) ∈ Eγ (4.24)

δe −Msj ≤ 0, ∀e = (i, j, [l, u]T ) ∈ Eγ (4.25)

Π(j),Π(i) ∈ [0, T − 1] ⊆ Z, ∀i, j ∈ V

δe ∈ [0, u− l] ⊆ Z, ∀e = (i, j, [l, u]T ) ∈ Eγ
ze ∈ Z, ∀e ∈ E

sn ∈ {0, 1}, ∀n ∈ H.

Proof. For each constraint e = (i, j, [l, u]T ) ∈ Eγ let c := u− l be constant. Then, it holds

for (4.21)

Π(j)− Π(i)− zeT −Ms̄i −Ms̄j ≤ u

u=c+l⇔ Π(j)− Π(i)− zeT −Ms̄i −Ms̄j ≤ c+ l

⇔ Π(j)− Π(i)− zeT −Ms̄i −Ms̄j − c ≤ l (4.26)

Since the first term in the objective functionals are equal, it remains to show that the

second terms ∑
e=(i,j,[l,u]T )∈Eγ

(Π(j)− Π(i)− l − zeT )sisj

and ∑
e∈Eγ

δe

are equal and thus, with respect to an arbitrary but fixed constraint e = (i, j, [l, u]T )

x = (Π(j)− Π(i)− l − zeT )sisj (4.27)

and

y = δe (4.28)

are equal (x = y) subject to its respective constraints.
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We must distinguish two cases: 1. Without loss of generality let si = 0 (could be j as

well). Then, in (4.27) it follows x = 0, since all terms are factors. Furthermore, in (4.28)

it follows y = 0, because with (4.24) it can be implied

δe ≤ Msi = M · 0 = 0

and consequently it holds x = y. Additionally, (4.21) and (4.23) hold in both cases since

si = 0 and hence, M > u and M > l, respectively.

2. it remains to show for si = sj = 1 it holds x = y. We can conclude for (4.27) that

x = Π(j)−Π(i)− l− zeT . On the one hand, we have to show that both constraints (4.21)

and (4.23) are equivalent for all variable assignments and secondly, that the terms x

and y are equal. With c = δe we see directly that (4.26) equals (4.23). This can be

done, because δe is a free parameter within its bound since si = sj = 1 and thus, (4.24)

and (4.25) do not restrict δe at all which implies it can be freely chosen in [0, u− l] whose

upper bound equals c. Since y shall be minimized, we can construct in the optimal case

(y → min) an minimal δe that solves the model in Theorem 4.4. Since δe is minimal, we

can conclude for (4.23)

Π(j)− Π(i)− zeT −Ms̄i −Ms̄j − δe = l.

This can be done, because it can be simply, indirectly shown that an δ′e > δe (with

Π(j)−Π(i)− zeT −Ms̄i −Ms̄j − δ′e ≤ l) would lead to a suboptimal case. Additionally,

because si = sj = 1 we know it is equivalent to

Π(j)− Π(i)− zeT − δe = l

which can be further transformed to

Π(j)− Π(i)− zeT − l = δe

and finally it can be concluded that

x = y.

Since e is chosen arbitrary it holds for any constraint and subsequently, both objective

functionals are equal with respect to any fulfilling variable assignment.

Since no variables are multiplied with other variables in (4.22) and in the modified and

new constraints, the model is linear. The remaining constraints in Definition 4.3 that are
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not covered in Theorem 4.4 do not influence the linearization and thus, can simply be

added to the model in the theorem maintaining equivalence.

The variable δe has the semantic influence that it equals 0 if one of the corresponding

labeled nodes (i or j) is not part of the schedule ((4.24), (4.25)), or equals the slack

(Π(j)−Π(i)− l− zeT ) otherwise. The slack is achieved by the constraint (4.23) as shown

in the proof of the theorem. Hence, it combines the cubic part of the objective function

in one variable.

Extending the model for decisional FGs allows to (for example) maximize the number

of to be inserted duplicated FGs6. Therefore, we need new decisional variables uK for

each FG K. Then, we can simply maximize the number of to be inserted FGs in S such

that ∑
K∈S

uK → max (4.29)

which can be extended to constant weights as well. In the MIP model this can simply

be achieved by the big-M method. The appropriate MaxSAT approach will shortly be

discussed in Section 4.2.3. This method is already successfully applied for non-periodic

train paths [KGO15].

Distinct and Duplicated Chain Paths

Both applications refer to different path choices which are represented as flow edges and

activity times which represent the PESP constraints (see Section 3.3.1 and Section 3.3.2).

Hence, the weights of the flow edges represent the driving times and the PESP constraints

represent waiting and transfer times; as well as headway times which are not regarded in

the objective functional. This results in a direct application of the objective functional

in (4.15). In case of applying this to real-world scenarios we should use the linearized

objective functional in Theorem 4.4 or the to be introduced MaxSAT approach in

Section 4.2.3.

Non-connected Flow Graphs

If the departure times for each periodic train path is already given and fixed, and the

allocation of the tracks is left, we can skip the slack time as in (4.13). This results in a

simplified objective functional such that∑
n∈H

γ(n)sn → min .

6e. g., rail freight train paths
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In case of track allocation, each flow edge (labeled node) is weighted by domain-specific

priorities and driving times [WKO15].

4.2 Encoding Objectives as Boolean Optimization

Problems

This section covers a waste majority of MaxSAT encodings of the presented objective

functionals in Section 4.1. Since both problems, MIP and MaxSAT, are optimization

problems with conjuncted linear constraints there is often a straight forward way to

encode the respective methods.

4.2.1 Minimization of Weighted Slacks

In Section 4.1.1 the linear objective functional is presented for minimizing weighted slacks

for constraints. Here, we want to optimize the same structure, yet, with the MaxSAT

model that needs a propositional formula in WCNF. Firstly, we need to introduce

propositional decision variables for the maximum slack

θe := u− l (4.30)

of each constraint e = (n,m, [l, u]T ) ∈ Eω with Eω as in (4.2) such that

pe,i ∈ {f, t}, i ∈ {0, . . . , θe}

with the semantics whether the current used slack σ(e,Π) as in (4.4) is less or equal

than i such that

pe,i :⇔ Π(m)− Π(n) ∈ [l, l + i]T , i ∈ {0, . . . , θe}.

for a schedule Π. Thus, pe,0 is equivalent to the respective constraint using no slack

σ(e,Π) = 0. Secondly, we need to modify the encoding function enc con as in Defini-

tion 2.44 which encodes each given constraint e = (n,m, [l, u]T ) ∈ Eω into a propositional

formula such that

enc conθ(e) = enc con(n,m, [l, l + θe]T )

∧
⋀

i∈{0,...,θe}

pe,i ∧
(
¬pe,i ∨ enc con((n,m, [l, l + i]T )

) (4.31)
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which conditionally encodes each upper bound slack (l + i) separately. Hence, by setting

each decisional variable pe,i to f , we have the base-encoded to be optimized PEN. This

encoding will be done for all constraints.

In order to minimize the objective function as in (4.3) we have to use the decisional

propositional variables pe,i such that

∑
e∈Eω

θe∑
i=0

ω(e) · pe,i → max (4.32)

which maximizes the weighted number of the decisional variables. Subsequently, the

weighted slacks are minimized.

Applying (4.32) subject to (4.31) conjunctively connected to ΩN as in (2.7) will not be

accepted syntactically7 by MaxSAT solvers. Hence, we have to use the weighted formula

for a weighted partial MaxSAT solver as in Definition 2.21.

First of all, we need to encode each periodic event in V with the weight ∞ because

each potential must be defined uniquely for the resulting schedule. Hence, we modify ΩN

such that for each encoded periodic event n ∈ V

enc max (n) := (∞,¬qn,−1) ∧ (∞, qn,T−1)
⋀

i∈[0,T−1]

(∞,¬qn,i−1 ∨ qn,i)

we can conjunctively connect each encoded periodic event with

Ωmax
N :=

⋀
n∈V

enc max (n) (4.33)

Likewise, each constraint e ∈ E needs a weight ω = ∞ such that

enc con max (e) :=
⋀

r∈ζ(a(e))

(∞, enc rec(r)) (4.34)

and appropriately applied to enc conθ(e) for each to be minimized constraint e ∈ Eω
with e = (n,m, [l, u]T ) yields

enc con max θ(e) := enc con max (n,m, [l, l + θe]T )

∧
⋀

i∈{0,...,θe}

(
(ω(e), pe,i) (4.35)

7this is reasoned because all previous encodings map to a propositional formula in CNF but here we
need a propositional formula in WCNF
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∧
⋀

r∈ζ([l,l+i]T )

(∞,¬pe,i ∨ enc rec(r))
)

which simply adds to each clause the weight ∞, excluding the clauses in (4.35) which

are attached to the corresponding constraint’s weight ω(e).

Consequently, using (4.32) for a PEN N = (V , E , T ), results in the encoding

enc pen max (N ) := Ωmax
N ∧

⋀
e∈E\Eω

enc con max (e) ∧
⋀
e∈Eω

enc con max θ(e).

The not to be minimized constraints e ∈ E \ Eω are all weighted in its respective

clauses with ∞ such that they must hold for any valid schedule. However, the to be

optimized constraints in Eω with its corresponding decision variables are encoded with

the weight ω(e). Decoding a satisfying interpretation has no necessity to be changed and

thus, ξ as in (2.8) can be used directly.

Comparing the values of the objective functional for the interpretation of a weighted

formula as in Definition 2.21 and the linear objective as in (4.3) for an to be optimized

PEN N , an interpretation J and its corresponding schedule Π with (2.8) can be achieved

(without proof) by ∑
e∈Eω

θe∑
i=1

ω(e) · pe,i =
∑
e∈Eω

ω(e) · σ(e,Π)

in case of a global optimum. Hence, we can compare the objective values for both

approaches.

Finally, state-of-the-art MaxSAT solvers can be applied, that efficiently optimize the

objective functional in (4.32) subject to the encoded PESP instance that are reflecting

to be optimized PENs. Results on large and complex networks tend to need a lot of

computation time, however, for medium-sized instances they already suggesting promising

solutions and solving time as presented in Section 5.3.

Extending the set of constraints e of the form [l, u]T to the general structure Z as

Definition 2.29 can be done with the advanced encoding in Section 2.3.3 by either setting le

to the smallest value in the interval [0, T − 1] such that8

le := min((Z ∩ [0, T − 1]) ∪ {0})

or giving each le for the respective constraint separately. Then, we modify the encod-

8we set the minimum to 0 if Z is empty to maintain soundness and infeasibility
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ing enc con max θ for Z ′ := [le, le]T to

enc con max (e)∧
⋀

i∈Z∩[le,le+T−1],Z′:=Z′∪[i,i]T

(
(ω(e), pe,i)∧

⋀
r∈ζ(n,m,Z′)

(∞,¬pe,i∨enc rec(r))
)

with ζ as in (2.17) which simply modifies i ∈ {0, . . . , θe} to i ∈ Z ∩ [le, le + T − 1],Z ′ :=

Z ′ ∪ [i, i]T that iterates over all possible slacks for the constraint.

4.2.2 Satisfiable Constraint Maximization

In Section 4.1.2 the maximization of number of constraints that hold under a schedule is

presented and transformed into a corresponding MIP model. Likewise, we are going to

encode the problem into a propositional formula in WCNF.9

For a DPEN D = (V , E , T,H,A) (H = ∅) with the set of edges in A as in (4.7) qe we

introduce propositional decision variables qe (e ∈ E \ A), which means semantically for a

model J and the corresponding schedule Π (via ξ) as in (2.8)

J |= qe ⇒ Π |= e.

Achieving the maximization as in (4.8) we have to use a propositional formula in

WCNF for a weight function ω (see (4.7))

F := Ωmax
N ∧

⋀
e∈E\A

enc con max (e) ∧
⋀
e∈A

(
(ω(e), qe) ∧

⋀
r∈ζ(a(e))

(∞,¬qe ∨ enc rec(r))
)

(4.36)

with enc con max as in (4.34). All constraints that are not in the set of decisional con-

straints must hold for any satisfying interpretation (enc con max ). If an interpretation J

for the corresponding MaxSAT problem is found the maximum sum of weighted number

of decisional variables qe is set and thus, the corresponding constraints in A hold, because

for an extracted schedule Π it holds

∀e ∈ A : J |= qe
J |=F⇒ J |=

⋀
r∈ζ(a(e))

(∞,¬qe ∨ enc rec(r))

qJe =t⇒ J |=
⋀

r∈ζ(a(e))

(∞, enc rec(r))

Lem 2.24⇒ J |=
⋀

r∈ζ(a(e))

enc rec(r)

9Hence, we are going to optimize the given problems with a state-of-the-art MaxSAT solver.
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Def 2.44⇒ J |= enc con(e)

Thm2.47⇒ Π |= e

which represents the soundness proof.

Example 4.5. Let D = (V , E , 10, ∅,A) be a DPEN as in Example 4.1. Then, using the

encoding as in (4.36) we get

Ωmax
N =

⋀
n∈V

enc max (n) = enc max (n1) ∧ . . . ∧ enc max (n4)⋀
e∈E\A

enc con max (e) =
⋀

e∈{e4}

enc con max (e) = enc con max (e4)

⋀
e∈A

(
(ω(e), qe)

⋀
r∈ζ(a(e))

(∞,¬qe ∨ enc rec(r))
)

=
⋀

e∈{e1,e2,e3}

(
(ω(e), qe)

⋀
r∈ζ(a(e))

(∞,¬qe ∨ enc rec(r))
)

=
(
(1, qe1)

⋀
r∈ζ(a(e1))

(∞,¬qe1 ∨ enc rec(r))
)

∧
(
(2, qe2)

⋀
r∈ζ(a(e2))

(∞,¬qe2 ∨ enc rec(r))
)

∧
(
(3, qe3)

⋀
r∈ζ(a(e3))

(∞,¬qe3 ∨ enc rec(r))
)
.

Both methods – which are the MIP and MaxSAT approach – are successfully applied

in the software system TAKT for large-scaled instances.

4.2.3 Optimization in Periodic Event Networks with Flows

In Section 4.2.1 we introduced propositional decision variables for minimizing slacks.

Here, we will deduce an approach for minimizing the objective functional in (4.15)10

with a sound11 MaxSAT approach. Please note, that both the satisfiable constraint

maximization and the minimization of the objective functional for FDPENs can simply

be combined, yet, will not be part of this section.

Let S be a set of FGs and D = (V , E , T,H,A) be an FDPEN for S. In comprehension,

we have available the propositional variables for each decision node sn (n ∈ H) and

10respectively (4.22)
11and even complete
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the propositional slack variables pe,i (e ∈ Eγ, i ∈ {1, . . . , θe}) with Eγ as in (4.14) for a

weight function γ. Furthermore, for a label function l we have the base encoding for

FDPENs enc fdpen l with Definition 3.40. Since enc fdpen l is in CNF and not in WCNF,

we need a transformation for each sub encoding as already partly applied in Section 4.2.1.

Consequently, we can already use Ωmax
N as in (4.33) for the MaxSAT node encoding

and enc con max as in (4.34) for the hard constraints. We need to modify slightly the

encoding for flow graphs enc fg l as in Definition 3.37 with the weight ∞ for an FG K ∈ S
such that

enc fg max l(K) :=
(
∞,

⋁
n∈SK

⋁
e∈O(n)

sl(e)

)
∧
( ⋀

n∈SK

⋀
e∈O(n)

⋀
m∈SK

⋀
e′∈O(m),e̸=e′

(∞,¬sl(e) ∨ ¬sl(e′))
)

∧
(
∞,

⋁
n∈DK

⋁
e∈I(n)

sl(e)

)
∧
( ⋀

n∈DK

⋀
e∈I(n)

⋀
m∈DK

⋀
e′∈I(m),e̸=e′

(∞,¬sl(e) ∨ ¬sl(e′))
)

∧
( ⋀

n∈R\(SK∪DK)

⋀
e∈I(n)

⋀
e′∈I(n),e̸=e′

(∞,¬sl(e) ∨ ¬sl(e′))
)

∧
( ⋀

n∈R\(SK∪DK)

⋀
e∈O(n)

⋀
e′∈O(n),e̸=e′

(∞,¬sl(e) ∨ ¬sl(e′))
)

∧
( ⋀

(n,m)∈F,m/∈DK

(
∞,¬sl(n,m)

⋁
e∈OK(m)

sl(e)
))

,

because all flow graphs have to fulfill the conditions for a valid schedule as in Defini-

tion 3.17. Since each clause in enc fg max l(K) is weighted, it is a propositional formula

in WCNF. For the minimization of weighted slacks we have to modify the encoding func-

tion enc con max θ in (4.35). We used in Definition 3.31 the encoding function enc dec

for decision nodes and constraints. Likewise, combining this approach with the MaxSAT

approach in Section 4.2.1 for the minimization of slacks for the to be optimized constraints

in Eγ we get the appropriate encoding for constraints with the following definition.

Definition 4.6 (MaxSAT Encode Decision Edges). Let e = (i, j,Ze) ∈ E be a constraint,

A ⊆ E be a set of constraints and H ⊆ V be a set of nodes. Further, let S = {re ∈ R |
e ∈ A} ∪ {sn ∈ R | n ∈ {i, j} : n ∈ H} be the set of propositional decision variables.
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Then

enc dec max : E → M(R)

e ↦→
⋁
p∈S

(¬p) ∨

⎧⎨⎩enc con max θ(e), e ∈ Eγ
enc con max (e), e /∈ Eγ

is the MaxSAT decision order encoding mapping of the constraint e with respect to

nodes i, j.

Please note that as it stands enc dec max does not map to a propositional formula

in WCNF, since it is a disjunction with enc con max θ and enc con max θ. However, we

can simply form an semantically equivalent formula with De Morgan’s laws such that⋁
p∈S

(¬p) ∨ enc con max (e) ≡
⋀

r∈ζ(a(e))

(∞,
⋁
p∈S

(¬p) ∨ enc rec(r)), (4.37)

⋁
p∈S

(¬p) ∨ enc con max θ(e)
(4.37)
≡

( ⋁
p∈S

(¬p) ∨ enc con max ((n,m, [l, l + θe]T )
)

∧
⋀

i∈{0,...,θe}

(
(ω(e), pe,i) (4.38)

∧
⋀

r∈ζ([l,l+i]T )

(∞,
⋁
p∈S

(¬p) ∨ ¬pe,i ∨ enc rec(r))
)
. (4.39)

Consequently, it is in WCNF and can be applied to an according MaxSAT solver. Please

note, that in (4.38) the decisional part (
⋁

p∈S(¬p)) is omitted, because it is subsumed

by (4.39) because all pe,i are free in case one p in S is mapped to false (f). In case of

minimization of waiting time in railway timetabling, we will without loss of generality

assume that in some cases ω(e) = 1.12

Furthermore, we need to optimize the first part of the objective functional in (4.17)∑
n∈H

γ(n)sn → min .

This goal is achieved13 by extending Ωmax
N such that it is conjuncted with⋀

n∈H

(γ(n),¬sn).

12for example in the proof of Theorem 4.8
13which is shown in Theorem 4.8
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Combining all of which leads to the following definition of encoding FDPENs with

respect to the objective functional in (4.17).

Definition 4.7 (MaxSAT Encoding FDPEN). Let S be a set of FGs. Further let D =

(V , E , T,H,A) be an FDPEN for S and l be a label function into the set of nodes H.

Then

enc fdpen max l : P(D)× P(S) → M(R)

(D,S) ↦→
⋀
K∈S

enc fg max l(K) ∧ Ωmax
N (4.40)

∧
⋀
e∈E

enc dec max (e) ∧
⋀
n∈H

(γ(n),¬sn) (4.41)

is the FDPESP MaxSAT encoding of D for S.

The definition conjuncts each previously introduced part for the encoding which

combines the FG and node (event) encoding in (4.40) and the hard and to be optimized

constraints in (4.41). We used in (2.8) in Section 2.3.1 the function ξ to extract the

values for the encoded events. Likewise, since the node encoding is not changed14, we

apply this here for extracting a schedule.

The following theorem gives the soundness and completeness to the approach in

Section 4.1.3 and thus, the objective functional can be solved with an appropriate

MaxSAT solver equivalently.

Theorem 4.8 (Soundness Completeness MaxSAT FDPESP Encoding).

Let S be a set of FGs. Further let D = (V , E , T,H,A) be an FDPEN for S and l be a

label function into the set of nodes H, V ′ ⊆ V be a set of nodes and let E ′ ⊆ E be a set of

constraints of D. With

F := enc fdpen max l(D,S) ∈ M(R)

being the encoded propositional formula in WCNF of D for S. It holds

∃J : J |= F ⇔ ∃Π : Π minimizes g and is valid for D, E ′ under S

with J being an interpretation, g the objective functional in (4.15) and Π a schedule

of V ′.

14besides the prepended ∞
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Proof. For convenience, in order to prevent exploding the already long proof, we will

use in this proof “conjunction” and “comma” quite loosely. They will have in most cases

semantically equivalent meanings and will be given explicitly.

∃J : J |= F
Def 4.7⇔ ∃J : J |= (

⋀
K∈S

enc fg max l(K) ∧ Ωmax
N

∧
⋀
e∈E

enc dec max (e) ∧
⋀
n∈H

(γ(n),¬sn))

Def 2.12 15

⇔ ∃J : J |=
⋀
K∈S

enc fg max l(K), J |= Ωmax
N ,

J |=
⋀
e∈E

enc dec max (e), J |=
⋀
n∈H

(γ(n),¬sn)

Lem 2.24⇔ ∃J : J |=
⋀
K∈S

enc fg l(K), J |= ΩN ,

J |=
⋀
e∈E

enc dec max (e), J |=
⋀
n∈H

(γ(n),¬sn)

Def 4.6⇔ ∃J : J |=
⋀
K∈S

enc fg l(K), J |= ΩN ,

J |=
⋀
e∈Eγ

⋁
p∈S

(¬p) ∨ enc con max θ(e),

J |=
⋀

e∈E\Eγ

⋁
p∈S

(¬p) ∨ enc con max (e),

J |=
⋀
n∈H

(γ(n),¬sn)

(4.35)⇔ ∃J : J |=
⋀
K∈S

enc fg l(K), J |= ΩN ,

J |=
⋀
e∈Eγ

⋁
p∈S

(¬p) ∨
(
enc con max (n,m, [l, l + θe]T )∧⋀

i∈{0,...,θe}

(
(ω(e), pe,i) ∧

⋀
r∈ζ([l,l+i]T )

(∞,¬pe,i ∨ enc rec(r))
))

,

J |=
⋀

e∈E\Eγ

⋁
p∈S

(¬p) ∨ enc con max (e),

J |=
⋀
n∈H

(γ(n),¬sn)

(4.30),Ex 2.15⇔ ∃J : J |=
⋀
K∈S

enc fg l(K), J |= ΩN ,
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J |=
⋀
e∈Eγ

⋁
p∈S

(¬p) ∨
( ⋀

i∈{0,...,θe}

(
(ω(e), pe,i)∧

⋀
r∈ζ([l,l+i]T )

(∞,¬pe,i ∨ enc rec(r))
))

,

J |=
⋀

e=(n,m,[l,u]T )∈Eγ

⋁
p∈S

(¬p) ∨ enc con max (n,m, [l, u]T ),

J |=
⋀

e∈E\Eγ

⋁
p∈S

(¬p) ∨ enc con max (e),

J |=
⋀
n∈H

(γ(n),¬sn)

Def 2.23,(2.2)⇔ ∃J :
∑
n∈H

γ(n)sn → min,

J |=
⋀
K∈S

enc fg l(K), J |= ΩN ,

J |=
⋀
e∈Eγ

⋁
p∈S

(¬p) ∨
( ⋀

i∈{0,...,θe}

(
(ω(e), pe,i)∧

⋀
r∈ζ([l,l+i]T )

(∞,¬pe,i ∨ enc rec(r))
))

,

J |=
⋀

e=(n,m,[l,u]T )∈Eγ

⋁
p∈S

(¬p) ∨ enc con max (n,m, [l, u]T ),

J |=
⋀

e∈E\Eγ

⋁
p∈S

(¬p) ∨ enc con max (e),

Ex 2.15⇔ ∃J :
∑
n∈H

γ(n)sn → min,

J |=
⋀
K∈S

enc fg l(K), J |= ΩN ,

∀e ∈ Eγ :
(
∀p ∈ S, J |= p ⇒ J |=

( ⋀
i∈{0,...,θe}

(
(ω(e), pe,i)∧

⋀
r∈ζ([l,l+i]T )

(∞,¬pe,i ∨ enc rec(r))
)))

,

J |=
⋀

e=(n,m,[l,u]T )∈Eγ

⋁
p∈S

(¬p) ∨ enc con max (n,m, [l, u]T ),

J |=
⋀

e∈E\Eγ

⋁
p∈S

(¬p) ∨ enc con max (e),

Def 2.23,(2.2)⇔ ∃J :
∑
n∈H

γ(n)sn → min,
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J |=
⋀
K∈S

enc fg l(K), J |= ΩN ,

∀e ∈ Eγ :
(
∀p ∈ S, J |= p ⇒

( θe∑
i=0

ω(e)pe,i → max,

J |=
⋀

i∈{0,...,θe}

⋀
r∈ζ([l,l+i]T )

(∞,¬pe,i ∨ enc rec(r))
)))

,

J |=
⋀

e=(n,m,[l,u]T )∈Eγ

⋁
p∈S

(¬p) ∨ enc con max (n,m, [l, u]T ),

J |=
⋀

e∈E\Eγ

⋁
p∈S

(¬p) ∨ enc con max (e),

Def 2.27,maximization⇔ ∃J :
∑
n∈H

γ(n)sn → min,

J |=
⋀
K∈S

enc fg l(K), J |= ΩN ,

∀e ∈ Eγ :
(
∀p ∈ S, J |= p ⇒

(
∃!i ∈ {i, . . . , θe} :

θe∑
i=0

ω(e)pe,i → max,∀k ≥ i :

J |=
⋀

r∈ζ([l,l+k]T )

(∞, enc rec(r))
))

,

J |=
⋀

e=(n,m,[l,u]T )∈Eγ

⋁
p∈S

(¬p) ∨ enc con max (n,m, [l, u]T ),

J |=
⋀

e∈E\Eγ

⋁
p∈S

(¬p) ∨ enc con max (e),

Def 2.32,Thm 2.47,(2.8)⇔ ∃J : Π = ξ(J),
∑
n∈H

γ(n)sn → min,

J |=
⋀
K∈S

enc fg l(K), J |= ΩN ,

∀e ∈ Eγ :
(
∀p ∈ S, J |= p ⇒

(
∃!i ∈ {0, . . . , θe} : ∀k ≥ i :

Π |= (n,m, [l, l + k]T ),

J |=
⋀

e=(n,m,[l,u]T )∈Eγ

⋁
p∈S

(¬p) ∨ enc con max (n,m, [l, u]T )
))

,

J |=
⋀

e∈E\Eγ

⋁
p∈S

(¬p) ∨ enc con max (e),

Def 2.27⇔ ∃J : Π = ξ(J),
∑
n∈H

γ(n)sn → min,
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J |=
⋀
K∈S

enc fg l(K), J |= ΩN ,

∀e ∈ Eγ :
(
∀p ∈ S, J |= p ⇒

(
∃!i ∈ {0, . . . , θe} :

Π |= (n,m, [l, l + i]T ),Π ̸|= (n,m, [l, l + i− 1]T )
))

J |=
⋀

e=(n,m,[l,u]T )∈Eγ

⋁
p∈S

(¬p) ∨ enc con max (n,m, [l, u]T ),

J |=
⋀

e∈E\Eγ

⋁
p∈S

(¬p) ∨ enc con max (e),

minimization⇔ ∃J : Π = ξ(J),
∑
n∈H

γ(n)sn → min,

J |=
⋀
K∈S

enc fg l(K), J |= ΩN ,

∀e ∈ Eγ :
(
∀p ∈ S, J |= p ⇒

∃! min
i∈{0,...,θe}

(Π |= (n,m, [l, l + i]T ))
)

J |=
⋀

e=(n,m,[l,u]T )∈Eγ

⋁
p∈S

(¬p) ∨ enc con max (n,m, [l, u]T ),

J |=
⋀

e∈E\Eγ

⋁
p∈S

(¬p) ∨ enc con max (e),

Thm 2.47,(2.8)⇔ ∃Π : J = ξ−1(Π),
∑
n∈H

γ(n)sn → min,

J |=
⋀
K∈S

enc fg l(K), J |= ΩN ,

∀e ∈ Eγ :
(
∀p ∈ S, J |= p ⇒

Π(j)− Π(i)− l − zeT → min
)

J |=
⋀

e=(n,m,[l,u]T )∈Eγ

⋁
p∈S

(¬p) ∨ enc con max (n,m, [l, u]T ),

J |=
⋀

e∈E\Eγ

⋁
p∈S

(¬p) ∨ enc con max (e),

∀e∈Eγ ,implication⇔ ∃Π : J = ξ−1(Π),
∑
n∈H

γ(n)sn → min,

J |=
⋀
K∈S

enc fg l(K), J |= ΩN ,∑
e=(i,j,[l,u]T )∈Eγ

(Π(j)− Π(i)− l − zeT )sisj → min
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J |=
⋀

e=(n,m,[l,u]T )∈Eγ

⋁
p∈S

(¬p) ∨ enc con max (n,m, [l, u]T ),

J |=
⋀

e∈E\Eγ

⋁
p∈S

(¬p) ∨ enc con max (e),

comma≡conjunction⇔ ∃Π : J = ξ−1(Π),∑
n∈H

γ(n)sn +
∑

e=(i,j,[l,u]T )∈Eγ

(Π(j)− Π(i)− l − zeT )sisj → min,

J |=
⋀
K∈S

enc fg l(K), J |= ΩN ,

J |=
⋀

e=(n,m,[l,u]T )∈Eγ

⋁
p∈S

(¬p) ∨ enc con max (n,m, [l, u]T ),

J |=
⋀

e∈E\Eγ

⋁
p∈S

(¬p) ∨ enc con max (e),

⇔ ∃Π : Π minimizes g and with J = ξ−1(Π) :

J |=
⋀
K∈S

enc fg l(K), J |= ΩN ,

J |=
⋀
e∈Eγ

⋁
p∈S

(¬p) ∨ enc con max (e)

J |=
⋀

e∈E\Eγ

⋁
p∈S

(¬p) ∨ enc con max (e)

E=Eγ∪(E\Eγ)⇔ ∃Π : Π minimizes g and with J = ξ−1(Π) :

J |=
⋀
K∈S

enc fg l(K), J |= ΩN ,

J |=
⋀
e∈E

⋁
p∈S

(¬p) ∨ enc con max (e)

Def 3.31,(4.37)⇔ ∃Π : Π minimizes g and with J = ξ−1(Π) :

J |=
⋀
K∈S

enc fg l(K), J |= ΩN ∧
⋀
e∈E

enc dec(e)

Def 3.32⇔ ∃Π : Π minimizes g and with J = ξ−1(Π) :

J |=
⋀
K∈S

enc fg l(K), J |= enc dpen(D)

proof Thm 3.41⇔ ∃Π : Π minimizes g and is valid for D, E ′ under S

15Since it is an formula in WCNF, a split into subformulas is not equivalent. However, as proposed
we will connect all structures in the end again with a conjuncted meaning with respect to the
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This theorem allows us to equally apply MaxSAT solvers for optimizing FDPENs

with respect to the objective functional in (4.15) maintaining feasibility with respect to

Definition 3.17. Finally, we can conduct that previously presented applications16 can be

correctly solved by this approach.

Maximizing the number of to be inserted FGs is briefly introduced in Section 4.1.3.

Encoding this goal with as MaxSAT problem can be simply done by using the introduced

propositional decision variables uK for each K and modify the encoding enc fg max such

that for each K we use

¬uK ∨ enc fg max (K)

which can be simply transformed semantically equivalent into a propositional formula in

WCNF with de Morgan’s rules as in Example 2.15. The optimization part (see (4.29))

would be simply the conjunction of all introduced variables such that⋀
K∈S

(1, uK)

with S being the set of to be maximized FGs. Please note, that the weight 1 could simply

be set to a domain specific weight.

optimization.
16see Section 3.3
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This chapter covers computational results on real-world data for the applied models

of the previous sections. If possible, different solvers for the same tasks will be used.

The underlying hardware consists of an Intel R⃝ CoreTM i7-4790K CPU and 32GB RAM.

However, the memory limit has never been reached for any used solver and instance.

The general hardware is chosen to show the possible application of the algorithms for

commodity personal computers. Furthermore, the software system TAKT can be used

on such hardware systems efficiently. If possible, all 8 CPUs’ cores are use but only the

real expired time, which contains possible encoding times as well, will be presented.

Figure 5.1: The whole intercity network (red) of Germany combined with the most
important regional train paths (blue) (instance wg).
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Figure 5.2: The whole intercity network of Germany (instance wg2 ).

Different heuristics may use several state-of-the-art SAT solvers in parallel. However,

here we only use the SAT solver glucose (Version 4.0) [AS12; ALS13]. As MIP solver

we use Gurobi 6.0.3 [GRB15]. The initial solution for the MIP solver is generated by

the PESP to SAT method as in Section 2.3.2. For the MaxSAT methods, we apply the

solver open-wbo [MML14].

The section covers an introduction into the instances in Section 5.1 and is followed up

by computational results for the base and advanced encoding and the minimization of

weighted slacks in Section 5.2 and Section 5.3, respectively. Furthermore, the calculations

with FDPENs for duplicated and non-connected flow graphs are presented accordingly in

Section 5.4 and Section 5.5.

5.1 Instances

All instances are generated by the software system TAKT and cover the necessary

constraints for real-world railway timetabling [Opi09], like headway, connection and

symmetry. The based data are provided by the most important German railway infras-
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tructure company DB Netz AG that work in close collaboration with the Chair of Traffic

Flow Science (TU Dresden). The headway constraints are based on a microscopic grained

infrastructure in order to ensure the timetables to be conflict-free maintaining an efficient

use of the capacity. Hence, this type covers around 80% of all constraints [Küm+13].

The PESP instances1 cover networks of south-east Germany (p2 , p15 , b, seg1 , seg2 , dp43 ,

dup), south-west Germany (swg1 , swg2 , swg3 , swg4 , mb12 ), the whole inter city network

of Germany (fernsym, wg3 ) and the whole intercity network of Germany combined

with the most important regional train paths (wg). All of which have a base period

of T = 120. Table 5.1 shows for all used instances the number of nodes and edges

which range from 211 constraints (p2 ) up to 85 034 constraints (wg) for base PENs and

343 765 constraints (mg12 ) for FDPENs, and the maximum relaxation (slack) parameter θ

(if needed) as in Section 4.2.1. The ascending order for the number of constraints is

chosen, since this seems to have the highest impact on computation times. The used

infrastructure networks of wg and wg2 are given in Figure 5.1 and Figure 5.2, respectively.

The largest PEN (wg) consists of 1 470 train paths that shall be planned. The largest

network consists of 3929 stations2 and total railway track length of approx. 25 000 km.

Different sections may use different instances for the respective purposes and will be

given explicitly. Additional information, like flow graphs, size of encodings, are given in

the respective sections.

As divided previously, Section 5.2 shows the solution times of the efficient base encodings.

Furthermore, Section 5.3 covers the minimization of weighted slacks, respectively resolving

infeasible periodic event networks. In the end, Section 5.4 and Section 5.5 shows the

successful application of FDPENs. All given approaches are already used in the software

system TAKT and thus, is already used by practitioners like staff of DB Netz AG.

5.2 Base and Advanced SAT Encoding

The base of all SAT encodings represents the approach in Section 2.3.2 which has been

shown to be the current best method to solve PESP [Gro+12a]. This section covers the

computational results compared with the advanced SAT encoding in Section 2.3.3. We

show that the SAT-based approaches can outperform a native domain solver by up to

four orders of magnitude. For comparison, in the literature [Gro+12a] the SAT solver

riss by Norbert Manthey and Peter Steinke [HMS10] is used.

1Please note, the name of each instance has historical reasons and is maintained for better recognition
and usage of future works.

2a station is given if it has at least two junctions and a at least one platform
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Table 5.1: PESP instances and relaxation parameters.

PEN N = (V , E , T ) relaxation (slack)
instance |V| |E| θ

dr 14 6 -
p2 137 211 5
dh 173 222 -
p15 251 689 5
k 76 788 -

dp43 1 074 5 768 15
swg2 82 1 228 -

fernsym 135 3 368 -
swg3 216 3 162 -
b 953 6 305 -

swg4 191 7 227 -
swg1 259 7 729 -
seg1 3 195 12 839 -
seg2 3 221 14 417 -
we 3 263 17 107 -
wg2 3 652 18 881 4
dup 1 405 22 724 30
save 14 017 81 452 -
wg 14 241 85 034 5
mb12 3 457 343 765 60

The evaluated PENs can be seen in Table 5.2. The native domain solver for solving

PESP instances is described and analyzed by Opitz [Opi09] and Nachtigall [Nac98]. The

solver is equipped with a decision tree method with respect to the events’ potentials.

Additionally, constraint propagation techniques are employed by propagating the current

valid assignments of the events across the network. Once the propagation detects a

potential with an empty domain, a conflict is found. In this case, the tree search will

backtrack. This solver will be referred as pespsolve.

The runtime timeout is set to 24 h. The results in Table 5.2 clearly show that the

SAT-based approaches perform much better than pespsolve for both encodings. The

runtime per PESP instance for the SAT approaches is the sum of the encoding time

and the solving time. Comparing the run times of pespsolve and the SAT approaches3

always results in a significant speedup. Concerning the number of instances, that can be

solved within the timeout, the SAT-based approaches also show a better performance

3i. e., base + glucose and advanced + glucose
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Table 5.2: PESP instances and corresponding solving times in seconds.

instance pespsolve base + glucose in s advanced + glucose in s

k 32 481 11 10
swg2 361 2 1

fernsym 1 599 3 1
swg3 41 2 1
b timeout 95 43

swg4 731 5 3
swg1 timeout 5 2
seg1 timeout 8 7
seg2 timeout 5 5
we timeout timeout timeout
save timeout 24 10

than pespsolve. By using a SAT-based approach, all except one of the tested networks

(we) can be solved. The different solving times compared to the literature [Gro+12a] can

be reduced to the usage of a different SAT solver and better equipped hardware.

It can be concluded as well that the advanced encoding outperforms the base encoding

slightly. The reduction to SAT allows to tackle a whole set of larger instances, which

could not be solved before. Furthermore, it can be applied to iterative techniques as the

binary search heuristic [Gro+15b] in Section 5.3 which requires a lot of instances to be

solved in short time in order to be used efficiently by engineers.

5.3 Minimization of Weighted Slacks

This section covers a computational comparison for real-world public railway transport

networks of both a binary heuristic [Gro+15b] and MaxSAT approach in Section 4.2.1

in order to resolve infeasible PENs. Additionally for comparison, the MIP approach in

Section 4.1.1 [Nac98; ON08] will be applied on each instance.

The given scenarios were previously all infeasible with respect to a valid timetable

and thus, are relaxed by the maximum slack parameter θ in order to use the minimum

amount of relaxation minutes.4

As reference point we are using the binary search heuristic5 [Gro+15b] such that the

4The maximum slack θ is only applied to relaxable constraints whose weight is less than ∞, like waiting
(stopping) and symmetry constraints. Constraints like minimal headway are not relaxable in order to
preserve conflict freeness.

5since this has been already successfully applied in the past [Küm+13]
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objective functional values of both the MaxSAT and MIP approach are compared to the

point in time when the heuristic finishes. Since the heuristic stops in a possible local

minimum, the other approaches6 are allowed to compute even further but are stopped if

the value of the objective is no more improved in a reasonable time frame.

Table 5.3: Computational times and optimization values for the instances

binary heuristic MaxSAT MIP

instance time in s obj. time in s bound obj. time in s bound obj.

p2 6 4 5 4 4 12 4 4

p15 5 5 5 5 5 337 5 5

dp43 125 48 2 47 47 3 300 0 97

wg2 1 659 87 6 306 78 78 10 090 0 117

wg 49 964 2 452 60 587 451 8 859 59 582 458 3 436

In Table 5.3 all computational times, the objective functional values and for the

MaxSAT and MIP approach the best lower bounds are presented. For each instance,

the best objective value is highlighted and in case it is the same, the approach with

the lowest needed time is highlighted. Besides instance wg , the MaxSAT method seems

promising with respect to objective value and computation time. However, the binary

heuristic approach tends7 to get faster better solutions. Furthermore, combining both

approaches in parallel outperform each MIP run besides the lower bound of wg .

In Figure 5.3 the comparison of the objective values (y axis) against the time (x

axis) for most instances is presented. For instance wg , it can be seen that the MIP

approach finds faster a better primal solution, however, the heuristic approach finds

the best objective value after it finishes and crosses the solution quality of the MIP

approach at 3 000 s. Instance p15 follows the same procedure (log-scaled), however, all

approaches result in the same objective value 5 which represents the global optimum. The

MIP approach finds after 88 s the best primal, yet, needs 337 s to verify its optimality.

Omitting the MaxSAT approach in Figure 5.3 for instance dp43 is based on the fast

computation time of its run.

The engineering impact of the instances’ solutions and the general need to do timetable

optimize are discussed in detail in the literature [Küm+15; Opi09]. Any improvement of

the process with respect to computation time or value of the objective leads to a faster or

6which are global optimization approaches
7see Fig. 5.3
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Figure 5.3: Comparison of computational results for instances wg , p15 , dp43 . wg2

better timetable, respectively. Consequently, based on the computational results a hybrid

approach should be investigated such that all solvers run in parallel or the solution of

one solver’s run may be passed as initial solution for the other methods.

5.4 Duplicated Chain Paths

Inserting periodic rail freight paths into an public railway transport system is an important

task for practitioners [FP14]. The introduced application of FDPENs in Section 3.3.3

for this problem will be shown for two instances in this section. The used maximum

relaxation parameters as in Table 5.1 represent the maximum waiting time for each stop
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of each to be inserted rail freight train path.

DGF

DZW

Figure 5.4: Relation of to be inserted rail freight train paths between DGF (Gutenfürst,
Germany) and DZW (Zwickau (Sachs) Hauptbahnhof, Germany) with possible
routes.

The already addressed example in Section 3.3.2 will be given in more detail in this

section. Figure 5.4 displays the relation of the to be inserted flow graphs from FMB

(Mainz-Bischofsheim) to RKR (Karlsruhe). It consists of 77 flow edges for each flow

graph. The number of FGs8 is determined to be 7. In Figure 5.5 a timetable for the

passenger trains is represented. Without the to be inserted rail freight train paths the

PEN consists of 866 periodic events and 2 676 constraints with a base period of 120 min

which represent a total of 72 passenger train paths (8 long-distance, 64 regional) on the

corresponding corridor. The newly to be freight train paths blows up the respective

FDPEN to 1 405 periodic events and 22 724 constraints that consists in major of minimum

headway constraints due to the duplicated paths (flow graphs).

The respective SAT encoding as in Section 3.2.2 consists of 78 246 variables and

2 422 069 clauses. The computation time (including the encoding time) needed was 8 s

and results in the needed amount of to be inserted freight train paths in Figure 5.6.

This rather easy scenario leads to the expectation of more difficult parts of Germany

with a wider spread with respect to distance and flow edges used. Thus, the following

real-world instance represents the most difficult part of Germany for inserting periodic

rail freight train paths.9 The infrastructural relation of the highly frequented corridor lays

between Mannheim (Germany) and Basel (Switzerland) that is presented in Figure 5.7.

The public rail transport system consists of 87 periodic passenger train paths and

8that is the number of to be inserted rail freight rain paths
9that is common sense of the staff of DB Netz AG.
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Figure 5.5: Timetable (time-distance graph) for passenger train paths between DGF
(Gutenfürst) and DZW (Zwickau (Sachs) Hauptbahnhof, Germany).
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Figure 5.6: Timetable with inserted rail freight train paths (blue) between DGF (Guten-
fürst, Germany) and DZW (Zwickau (Sachs) Hauptbahnhof, Germany).

the number of to be inserted rail freight train paths is 12. The number of flow edges

(small construction parts) for each flow graph is 241. The passenger train paths instance

(the PEN) consists of 565 periodic events and 4 195 constraints. The timetable of the

passenger trains is given in Figure 5.8.

Combining this with the FGs to a FDPEN results in an instance of 3 457 periodic

events and 343 765 constraints. This huge instance results in an encoded propositional

formula consisting of 357 393 variables and 42 769 822 clauses which could be solved by

the SAT solver in 476 s including the encoding time. The resulting timetable for the

instances is visualized in Figure 5.9.

Table 5.4 shows the problem sizes with the extracted passenger train system as in

Lemma 3.5 for each FDPEN D = (V , E , T,H,A) with the used computation times of the
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RMF

RBA A

Figure 5.7: Relation of to be inserted rail freight train paths between RMF (Mannheim,
Germany) and RBA A (Basel, Switzerland) with possible routes.

Table 5.4: Instances with corresponding passenger network and encoding sizes.

FDPEN D encoding F
instance |V| |E| |vars(F)| |F| comp. time in s

dup 1 405 22 724 78 246 2 422 069 8
mb12 3 457 343 765 357 393 42 769 822 476

encoding and the SAT solver.

To the best of the authors knowledge, since no other software, nor operator of the

largest German railway infrastructure company DB Netz AG, could automatically insert

the same amount of periodic rail freight train paths with the same quality or time

results in the conduction that this approach is the current state of the art [WON12].

Furthermore, this approach (in TAKT) is used by DB Netz AG to plan all relations in

Germany for possible upcoming timetables.

5.5 Non-connected Flow Graphs

Allocating tracks of stations to certain train paths is the application introduced in

Section 3.3.3 for non-connected FDPENs. This section shows the solution for several

stations based on real-world data that have been partly shown previously, yet here more

in detail.

The previously rather small station DR (4 tracks, Riesa, Germany) as depicted in

Figure 5.10 consists of 10 periodic train paths, that can be divided into 4 long-distance
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Figure 5.8: Timetable (time-distance graph) for passenger train paths between Mannheim
(Germany) and Basel (Switzerland).

Figure 5.9: Timetable with inserted rail freight train paths (blue) between Mannheim
(Germany) and Basel (Switzerland).

train paths (period of 120 minutes) and 6 regional train paths (periods of 60 and

120 minutes). It consists of a total of 14 FGs (possible routes) for all periodic train paths

and results in an FDPEN of 14 periodic events and 6 constraints (instance dr).

The computation of the timetable took less than a second and is depicted previously

in Figure 3.24 which can be seen as a conflict free track allocation since no box is

intersecting.

Another applied use case is the station DH (Dresden main station, Germany) which

covers a total of 32 periodic train paths, whereas there are 8 long-distance trains and

24 regional trains. All train paths may choose different routes according to the station

path rules10 which results in a total of 173 flow graphs (routes). Hence, the resulting

10see Figure 3.25
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Figure 5.10: Infrastructure with train paths of station DR (Riesa, Germany).

FDPEN consists of 173 periodic events and 222 constraints (instance dh).

The solution could be calculated in less than 1 second and can be seen again in

Figure 5.11. Furthermore, if a not a valid track allocation can be done, we can search for

the minimal conflict as presented in the literature [Gro12b]. Please note, that currently

for this iterative process we fix all nodes (events) to its previously calculated departure

times of the timetabling process. A more general way would be achieved by using the

distinct chain path approach as in Section 3.3.1 which is currently under research and

development for to be evaluated use cases [Wün16].
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6 Conclusion and Outlook

In this work, we have shown and computationally verified several important theoretical and

experimental results in the operations research area of solving domain-specific problems

in periodic event scheduling. Firstly, we have shown a novel approach for extending

periodic timetabling with decisional flows (transportation networks) alongside possible

applications for this new model. Furthermore, a complexity classification for periodic

event scheduling with flows is given. The introduction of an appropriate SAT encoding

is concluded by a soundness and completeness theorem. Additionally, we presented the

possibility of optimization extensions with several objective functionals yet again with

appropriate (Max)SAT encodings. Additionally, soundness and completeness theorems

offer us the possibility to use these encoded propositional formulas in state-of-the-art

solvers correctly.

All these theoretical insights have been compared, analyzed and verified in computa-

tional tests. The results suggest a very promising usage of the introduced approaches for

integration of routing and timetabling, planning of periodic rail freight train paths and

track allocation. The state-of-the-art SAT and MaxSAT (and sometimes MIP) solvers

could handle most instances in reasonable time frames.

For future outlook, we can now handle larger and even more complex networks

and hence, it opens a lot of new possibilities to solve new real-world scenarios for

different applications. Nevertheless, a possibly better encoding could result in even faster

computational times or better objective functional values. Additionally, new applications

and use cases for the new approach need to be researched in order to fully (partly) utilize

the new modeling power of periodic event scheduling with flows. A further extension

would be the possible encoding (modeling) of dynamic velocities for the small construction

parts (sub train paths, flow edges) such that they do not need to be discretized. This

could result in a smaller propositional formula and more flexibility (degrees of freedom)

for the railway timetabling problem. However, encoding real (in R) numbers in SAT

is not possible1 and again, needs to be discretized, which probably reduces possible

1since the variable assignment’s domain is {f, t}
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modeling approaches to MIP.

Finally, it can be concluded that integrating path choices with periodic timetabling

for public railway transport networks opens a wide variety of applications and supports

drastically the timetabling process in several domains. The major improvements in

state-of-the-art (Max)SAT solvers and the efficient encodings for the integrated model

allow us to solve these problems satisfactorily with a promising outlook for further

scientific investigations.



Appendix

We want to briefly introduce the possibility of a new native-domain PESP solver that

can learn and backjump over several decision levels which is already successfully applied

in the SAT community [Bie+09].

CDCL SAT Solver Currently all (most) state-of-the-art (non-probabilistic) SAT solvers

that solve propositional formulas in CNF use the so called Conflict Driven and Clause

Learning (CDCL) technique [Bie+09; ALS13]. This approach does not simply backtrack

in case a propositional variable needs to be assigned to true and false, but analyzes the

conflict why it did occur by an implication graph. Consequently, it will backjump over

several decision levels and even can learn a clause which prevents that the algorithm will

ever again get into the same conflict [Bie+09]. Here, we try to apply and transform this

technique for PESP.

Partial Schedule and Constraint Propagation In order to assign possible values

(potentials) to periodic events we introduce the structure of partial schedules. With

N = (V , E , T ) being a PEN and x1, x2, . . . ∈ V being periodic events,

T = ((x1,Z1), (x2,Z2), . . .)

is called partial schedule for V if Zi ⊆ [0, T − 1].

A partial schedule T is a schedule for V , if

∀x ∈ V : Tx :=

⎧⎨⎩
⋂

(x,Z)∈T Z, ∃(x,Z) ∈ T

[0, T − 1]T , else
: |Tx| = 1.

Thus, it holds for all events x ∈ V : Tx = i for Tx = {i}. We can append a new assignment

to the partial schedule via ◦ such that

((x1,Z1), . . . , (xk,Zk)) ◦ (xk+1,Zk+1) := ((x1,Z1), . . . , (xk,Zk), (xk+1,Zk+1)).
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Furthermore, an event is called free if and only if |Tx| > 1. The method of constraint

propagation is well-known [Nac98] and is iteratively applied until no more changes do

appear for

a = (i, j, [l, u]T ) ∈ E : Zj := Zj ∩ ([l, u]T + Zi).

Combining this with a simple backtracking algorithm results in a possible algorithm

to solve PESP [Nac98; Opi09] which performs worse than the PESP to SAT ap-

proach [Gro+12a] (see Section 5.2).

Decision Level For learning PESP solvers we need as well decision levels i ∈ N for each

event n that is denoted as ni. Once a potential (node assignment) is added as decision

to the partial schedule, we increase the decision level by one and mark the event with an

overline. E. g.,

T = ((n1, {0}), (m1, {15, 17}), (p1, {17, 18}), (m2, {15}), (p2, {18}))

is a partial schedule with devision levels.

Example Network Let N = (V , E , 10) be a PEN as in Figure A.1 with the set of nodes

V = {n,m, q, r, s}. Then, these constraints can be disjunctively formulated as

E ={(r, s, [1, 1]10 ∪ [3, 3]10),

(r, q, [1, 1]10 ∪ [6, 6]10 ∪ [9, 9]10),

(q, s, [1, 1]10 ∪ [3, 3]10 ∪ [7, 7]10,

(n, q, [1, 1]10 ∪ [5, 6]10)}

with an exemplifying valid schedule Π such that

Π(n) = 0,Π(m) = 4,Π(q) = 1,Π(r) = 5,Π(s) = 8.

Implication Graph Every implication done by constraint propagation (for example,

(p1, {17, 18})) is based on a reason that is based either on a previous decision (variable/n-

ode assignment) or on a propagation. With these information we can construct a so

called implication graph with nodes

(xi,Zx) ∈ T
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Figure A.1: Example periodic event network for the learning PESP solver.

and edges which represent implications between two nodes (xi,Zx) ∈ T that are the

reasons induced by the constraint propagation.

For the previously introduced exemplifying PEN N we use for the backtracking

approach the sequence n → m → q → r → s as variable assignment method. Using

constraint propagation results in the partial schedule (with decision levels)

T = ((n1, {0}), (m1, {2, 3, 4}), (r1, {5, 6}), (q1, {1, 5, 6}), (s1, {7, 8}),

(m2, {2}), (q2, {5, 6}), (q3, {5}), (r3, {6}), (s3, {8}), (s3, ∅)).

The empty set (∅) indicates that we ran into a conflict and would normally need to

backtrack to level 3 (q3, {5}). However, we want to use a new approach. Consequently, we

can construct for the partial schedule T the previously introduced implication graph that

is depicted in Figure A.2. Please not that in this figure the implications from (m2, {2})
are omitted for a better overview.

Backjumping and Learning Now, we can backjump to the so called 1-UIP (1-unique

implication point) [Bie+09], because ¬(q3, {5})∨¬(n1, {0}) implies a backjump to decision

level 1 with

T = ((n1, {0}), (q1, {0, . . . , 4, 6, . . . , 9})).
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n1, {0}

m2, {2}

q3, {5}

r3, {6} s3, {7}

s3, {8}

conflict

1-UIP cut

Figure A.2: Implication graph for the given partial schedule.

Applying again constraint propagation we get the previously introduced valid schedule Π

without doing any further decision. In case of “normal” backtracking we would have

tested all not valid combinations for q and m until we would have finally chosen the

correct potential Π(m) = 4.

We can conduct that we are now able to not just backtrack by one decision level, but

jump over several decision levels avoiding the same conflict we may have driven into. The

question arises whether we can learn further information by the implication graph as in

the CDCL SAT solvers [Bie+09] that can learn clauses (lemmas) that can be connected

conjunctively to the propositional formula.

For this example we can imply

¬(q, {5}) ∨ ¬(n, {0}) ≡ ¬((q, {5}) ∧ (n, {0}))

⇔ ¬((n, q, [5, 5]10) ∈ E ⇔ (n, q, [6, 14]10) ∈ E .

This constraint can directly be connected to the PEN N (respectively the set of con-

straints E). In the next run the algorithm will never be driven into the same conflict

again.

Yet another question arises: How can we handle cuts which consists of more than three

nodes? How can the algorithm lean these information? Is this possible with classical
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PESP? For example, we could learn

¬(q, {5}) ∨ ¬(n, {0}) ∨ ¬(m, {3})

≡ (¬(q, {5}) ∨ ¬(n, {0})) ∨ (¬(n, {0}) ∨ ¬(m, {3}))

≡ ((n, q, [6, 14]10)) ∈ E ∨ ((n,m, [4, 12]10) ∈ E).

This disjunction is a major problem, because in PESP all constraints are connected

conjunctively, since all constraints must hold for a valid schedule. Hence, a first solution

would be to use a new structure separately for the learnt disjunctive constraints. The

probably better solution would be to transform this into a conjunctive form which is left

open for further research.
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[PW14] D. Pöhle and W. Weigand.
”
The Importance of Automatic Timetabling for a

Railway Infrastructure Company“. In: Operations Research Proceedings 2012.
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”
The Complexity of Integrating Routing De-

cisions in Public Transportation Models“. In: Proceedings of ATMOS10.
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