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A B S T R A C T

Mobile devices such as smartphones and smart watches are ubiquitous com-
panions of humans’ daily life. Since 2014, there are more mobile devices on

Earth than humans. Mobile applications utilize sensors and actuators of these de-
vices to support individuals in their daily life. In particular, 24% of the Android
applications leverage users’ mobility data. For instance, this data allows applications
to understand which places an individual typically visits. This allows providing her
with transportation information, location-based advertisements, or to enable smart
home heating systems. These and similar scenarios require the possibility to access
the Internet from everywhere and at any time. To realize these scenarios 83% of
the applications available in the Android Play Store require the Internet to operate
properly and therefore access it from everywhere and at any time.

Mobile applications such as Google Now or Apple Siri utilize human mobility data
to anticipate where a user will go next or which information she is likely to access
en route to her destination. However, predicting human mobility is a challenging
task. Existing mobility prediction solutions are typically optimized a priori for a
particular application scenario and mobility prediction task. There is no approach
that allows for automatically composing a mobility prediction solution depending
on the underlying prediction task and other parameters. This approach is required to
allow mobile devices to support a plethora of mobile applications running on them,
while each of the applications support its users by leveraging mobility predictions in
a distinct application scenario.

Mobile applications rely strongly on the availability of the Internet to work prop-
erly. However, mobile cellular network providers are struggling to provide necessary
cellular resources. Mobile applications generate a monthly average mobile traffic vol-
ume that ranged between 1 GB in Asia and 3.7 GB in North America in 2015. The
Ericsson Mobility Report Q1 2016 predicts that by the end of 2021 this mobile traffic
volume will experience a 12-fold increase. The consequences are higher costs for both
providers and consumers and a reduced quality of service due to congested mobile
cellular networks. Several countermeasures can be applied to cope with these prob-
lems. For instance, mobile applications apply caching strategies to prefetch applica-
tion content by predicting which applications will be used next. However, existing
solutions suffer from two major shortcomings. They either (1) do not incorporate
traffic volume information into their prefetching decisions and thus generate a sub-
stantial amount of cellular traffic or (2) require a modification of mobile application
code.

In this thesis, we present novel human mobility and application usage prediction
algorithms for mobile devices. These two major contributions address the aforemen-
tioned problems of (1) selecting a human mobility prediction model and (2) prefetch-
ing of mobile application content to reduce cellular traffic.

First, we address the selection of human mobility prediction models. We report on
an extensive analysis of the influence of temporal, spatial, and phone context data
on the performance of mobility prediction algorithms. Building upon our analysis



results, we present (1) SELECTOR – a novel algorithm for selecting individual human
mobility prediction models and (2) MAJOR – an ensemble learning approach for hu-
man mobility prediction. Furthermore, we introduce population mobility models
and demonstrate their practical applicability. In particular, we analyze techniques
that focus on detection of wrong human mobility predictions. Among these tech-
niques, an ensemble learning algorithm, called LOTUS, is designed and evaluated.

Second, we present EBC – a novel algorithm for prefetching mobile application
content. EBC’s goal is to reduce cellular traffic consumption to improve application
content freshness. With respect to existing solutions, EBC presents novel techniques
(1) to incorporate different strategies for prefetching mobile applications depending
on the available network type and (2) to incorporate application traffic volume pre-
dictions into the prefetching decisions. EBC also achieves a reduction in application
launch time to the cost of a negligible increase in energy consumption.

Developing human mobility and application usage prediction algorithms requires
access to human mobility and application usage data. To this end, we leverage in
this thesis three publicly available data set. Furthermore, we address the shortcom-
ings of these data sets, namely, (1) the lack of ground-truth mobility data and (2)
the lack of human mobility data at short-term events like conferences. We contribute
with JK2013 and UbiComp Data Collection Campaign (UbiDCC) two human mobil-
ity data sets that address these shortcomings. We also develop and make publicly
available a mobile application called LOCATOR, which was used to collect our data
sets.

In summary, the contributions of this thesis provide a step further towards support-
ing mobile applications and their users. With SELECTOR, we contribute an algorithm
that allows optimizing the quality of human mobility predictions by appropriately
selecting parameters. To reduce the cellular traffic footprint of mobile applications,
we contribute with EBC a novel approach for prefetching of mobile application con-
tent by leveraging application usage predictions. Furthermore, we provide insights
about how and to what extent wrong and uncertain human mobility predictions
can be detected. Lastly, with our mobile application LOCATOR and two human mo-
bility data sets, we contribute practical tools for researchers in the human mobility
prediction domain.



K U R Z FA S S U N G

Mobile Geräte wie Smartphones sind allgegenwärtige Begleiter des alltäglichen
Lebens der Menschen. Seit 2014 gibt es mehr mobile Geräte auf der Erde

als Menschen. Mobile Anwendungen nutzen Sensoren und Aktuatoren dieser Gerä-
te zur Unterstützung der Menschen im Alltag. Über 24% der mehr als einer Milli-
on Android-Anwendungen nutzen dazu vor allem Mobilitätdaten ihrer Nutzer. Bei-
spielsweise können diese Daten den Anwendungen ermöglichen nachzuvollziehen
welche Orte ein Nutzer in der Regel besucht, um dem Nutzer gezielte Angaben
zum Transport und Werbung bereitzustellen oder die Realisierung von sogenann-
ten Smart-Home Automatisierungssystemen zu bewerkstelligen. Diese und ähnliche
Szenarien setzen die Möglichkeit voraus, von überall und jeder Zeit auf das Internet
zuzugreifen. Um diese Szenarien zu realisieren erfordern 83% der Anwendungen,
die im Android Play Store angeboten werden, einen Zugriff auf das Internet um
einwandfrei zu funktionieren, auf das sie von überall und zu jeder Zeit zugreifen.

Mobile Anwendungen wie Google Now oder Apple Siri nutzen bereits heute die
Mobilität der Menschen um zu antizipieren, wo ein Nutzer hingehen wird oder wel-
che Informationen er auf dem Weg zu seinem Ziel benötigen würde. Die Mobilität
der Menschen vorherzusagen ist jedoch eine herausfordernde Aufgabe. Bestehende
Lösungen zur Vorhersage menschlicher Mobilität sind in der Regel im Voraus für ein
bestimmtes Anwendungsszenario optimiert. In diesem Sinne gibt es keinen Ansatz,
der automatisiert eine Lösung zur Vorhersage menschlicher Mobilität in Abhängig-
keit des liegenden Anwendungsszenarios und anderer Parameter zusammensetzt.
Diese Vorgehensweise ist jedoch erforderlich, um mobilen Geräten zu ermöglichen
eine Vielzahl von mobilen Anwendungen realisieren zu können, von denen dann je-
de dieser Anwendungen den Nutzer basierend auf den Vorhersagen seiner Mobilität
in unterschiedlichsten Anwendungsszenarien unterstützt.

Diese Anwendungen setzen stark auf die Verfügbarkeit des Internets, um richtig
funktionieren zu können. Die Betreiber der zellulären Mobilfunknetze haben jedoch
große Schwierigkeiten dieser Anforderung nachzukommen. Im Jahr 2015 verzeichne-
te der durchschnittliche monatliche zelluläre Datenverkehr pro mobiles Gerät einen
Anstieg von 60% im Vergleich zum vorherigen Jahr. Insgesamt betrug diese Daten-
menge zwischen 1 GB in Asien und 3.7 GB in Nordamerika. Der Ericsson Mobility
Bericht Q1 2016 prognostiziert, dass bis Ende 2021 diese Datenmenge sich um das
12-fache erhöhen wird. Die Folgen sind höhere Kosten für Betreiber und Nutzer als
auch eine geringere Qualität der Dienstleistung aufgrund der überlasteten zellulären
Mobilfunknetze. An dieser Stelle können verschiedene Gegenmaßnahmen angewen-
det werden. Ein Beispiel dafür ist die Nutzung von Caching-Strategien durch mobile
Anwendungen, um die entsprechenden Inhalte basierend auf der Vorhersage wel-
che Anwendungen als nächsten genutzt werden, im Voraus herunterzuladen. Es gibt
jedoch zwei nennenswerte Mängel mit diesen Lösungen. Erstens, sie vernachlässi-
gen beim Vorladen der Daten die Information über die entsprechende Datenmenge,
wodurch eine erhebliche Menge am zellulären Datenverkehr entsteht. Zweitens, sie
erfordern teilweise eine Änderung der mobilen Anwendungen.



In dieser Dissertation präsentieren wir mit neuartigen Algorithmen zur Vorhersage
menschlicher Mobilität und mobiler Anwendungsnutzung zwei wichtige Beiträge
um die oben genannten Probleme zu adressieren, nämlich (1) die Auswahl eines
Vorhersagemodells für die Mobilität der Menschen und (2) das Vorladen der Inhalte
der mobilen Anwendungen, um zellulären Datenverkehr zu reduzieren.

Wir gehen zunächst auf den ersten Punkt ein und berichten über eine umfassende
Analyse des Einflusses der zeitlichen, räumlichen und kontextualen Daten auf die
Leistung der Algorithmen zur Vorhersage menschlicher Mobilität. Aufbauend auf
unseren Analyseergebnissen, präsentieren wir (1) SELECTOR – ein neuartiges Algo-
rithmus zur gezielten Auswahl der Modelle zur Vorhersage menschlicher Mobilität
und (2) MAJOR – ein ensemble learning Ansatz für die Vorhersage menschlicher Mo-
bilität. Darüber hinaus entwickeln wir Populationsmobilitätsmodelle und demons-
trieren ihre praktische Anwendbarkeit bei der Analyse der Techniken, die darauf
abzielen falsche Vorhersagen der menschlichen Mobilität zu erkennen. Unter diesen
Techniken entwickeln und evaluieren wir den Algorithmus LOTUS, der auf ensemble
learning basiert ist.

Als zweiten Hauptbeitrag dieser Dissertation, präsentieren wir EBC – ein neuarti-
ges Algorithmus für das Vorladen von Inhalten der mobilen Anwendungen basie-
rend auf den Vorhersagen der Anwendungsnutzung. Das Ziel von EBC ist es den
zellulären Datenverkehr dieser Anwendungen zu reduzieren bei gleichzeitiger Si-
cherstellung der Aktualität der Inhalte der Anwendungen. In Bezug auf bestehende
Lösungen präsentiert EBC zwei neuartige Techniken. Erstens, es setzt verschiedene
Strategien für das Vorladen von Inhalten der Anwendungen in Abhängigkeit des
verfügbaren Netztypes. Zweitens, EBC integriert in seine Entscheidung welche An-
wendungen vorgeladen werden sollen die Vorhersagen des Datenverkehrs den eine
Anwendung bei der Nutzung erzeugen wird. Des Weiteren erreicht EBC eine Redu-
zierung der Anwendungsstartzeit zu den Kosten einer vernachlässigbaren Erhöhung
des Energieverbrauchs der mobilen Geräte.

Die Entwicklung der Algorithmen zur Vorhersage menschlicher Mobilität und An-
wendungsnutzungen erfordert die Verfügbarkeit der entsprechenden Daten. Deshalb
nutzen wir in dieser Dissertation drei große und öffentlich zugängliche Datensätze.
Des Weiteren gehen wir auf die Mängel dieser Datensätze ein, nämlich (1) die Verfüg-
barkeit von validierten Mobilitätsdaten der Nutzer und (2) die Verfügbarkeit der Mo-
bilitätdaten der Nutzer auf kurzdauernden Veranstaltungen wie Konferenzen. Unse-
re Beiträge sind mit JK2013 und UbiComp Data Collection Campaign (UbiDCC) zwei
Datensätze mit menschlicher Mobilität, die diese Mängel adressieren. Letzten end-
lich stellen wir die für die Datensammlung entwickelte mobile Anwendung LOCATOR

ebenfalls frei zur Verfügung.
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I N T R O D U C T I O N A N D B A C K G R O U N D





1
I N T R O D U C T I O N

Humans have always been interested in predicting what the future holds for
them. They have developed techniques to predict weather conditions [178, 37],

stock exchange indexes [101], outcome of sport events [62], spread of epidemics [145,
201, 136], or results of presidential elections [64, 216]. In ancient Greece seers and
oracles were often consulted for these and similar purposes [1]. One of the best-
documented oracles in ancient Greece is Pythia, best known as the Oracle of Del-
phi [91, 2]. Croesus, the king of Lydia, is known to be the one who held the earli-
est prediction tournament to decide which of the existing oracles is the most reli-
able one [86]. He asked these oracles to predict his plans for that day and Pythia
was the only oracle to give the correct answer. Full of confidence about having
an oracle that is able to correctly predict the future, he asked Pythia whether he
should attack Persia. Pythia answered that in case of an attack, a mighty empire
will be destroyed [1, 86]. Croesus attacked and was defeated as he misinterpreted
Pythia’s statement. This example shows a few important things about predicting fu-
ture events. First, selecting the appropriate source for predictions is crucial. Second,
predicting future events is difficult and requires dealing with uncertainties. Third, a
single wrong or wrongly interpreted prediction has different consequences depend-
ing on the scenario in which the prediction is used.

Today, predictions are often obtained thanks to the availability of Information and
Communications Technology (ICT) and a large amount of heterogenous data. This
technological progress encourages researchers to analyze and understand how indi-
viduals and machines can leverage historical and current information to anticipate
future events. For instance, Philip Tetlock, a professor at University of Pennsylvania
and co-author of the best selling book Superforecasting: The Art and Science of Predic-
tion, held a prediction tournament between 1984 and 2004 [199, 200]. The goal of
this tournament was to study the accuracy of judgments of real-world events. The
tournament revealed techniques individuals leverage to predict complex real-world
events. It also revealed that as the prediction horizon, i.e., the time span indicating
how far in the future the event lies that is to be predicted [138], increases, the predic-
tion performance drops. Tetlock compares the performance of experts in predicting
long-term events with a dart-throwing chimpanzee, i.e., close to a random decision.
He also points out that more than two hundred studies revealed that statistical al-
gorithms beat or tie subjective judgment, in particular, with today’s availability of
ICT [199].

Building upon the relevance of predicting future events and the opportunities re-
sulting from that, the main goal of this thesis is to provide the technical foundations
for the design and implementation of human mobility and application usage predic-
tion algorithms for mobile devices.

3
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1.1 motivation

With the proliferation of mobile devices such as smartphones, technology becomes
ubiquitous and pervasive. Today, there are more mobile devices on Earth than hu-
mans [36]. Beside the computational power of these devices, they are also able to
collect a substantial amount of heterogeneous data. This data contains information
about individuals and their surrounding to help humans by carrying out more than
200 tasks a day for them [197]. Jeff Nick, a Chief Technology Officer (CTO) at EMC,
a computer data storage company, refers to such data as the “people data” [164]. In
2009, he predicted that “Within just a few years “people data” will be 90% of the world’s
collective data.”.

Emerging mobile applications and, in particular, Mobile Personal Assistants (MPAs)
such as Google Now, Apple Siri, and Microsoft Cortana running on mobile devices
utilize “people data” to support individuals in their daily life. In general, at least
24% of the applications available in the Android Play Store use human mobility data
to build their services on top of it [156]. This data becomes one of the richest peo-
ple data types for inferring behavior of individuals [180]. Mobility data is leveraged
to provide humans with transportation information [18], targeted product advertise-
ments [121], or to enable smart home heating systems [122, 118, 179]. To support
these scenarios, predicting human mobility becomes relevant and feasible as human
“behaviour is much more predictable than is generally thought” [42, 158]. However, pre-
dicting human mobility is a challenging task. Existing mobility prediction solutions
are typically optimized a priori for a particular application scenario and mobility
prediction task. The first problem addressed in this thesis is the lack of an approach
that allows mobile devices to automatically compose a mobility prediction solution
depending on the underlying prediction task and other parameters. This solution is
required to allow mobile devices to support a plethora of mobile applications run-
ning on them. These applications can then support their users in distinct application
scenarios by leveraging mobility predictions.

More than 83% of over a million of the Android applications rely strongly on
the availability of the Internet to work properly [156]. However, mobile cellular net-
work providers are often struggling to provide the required cellular resources [10,
172, 157, 60]. Ericsson reports that mobile cellular traffic volume increased by 60%
in 2015 compared to the previous year [80]. In 2015, it ranged across geographical
regions between 1 GB and 3.7 GB on average per month and smartphone. Ericsson
predicts a 12-fold increase of cellular traffic volume over the next six years compared
to 2015 [80]. The consequences are a reduced quality of service due to congested mo-
bile cellular networks and higher costs for both operators and consumers. Further-
more, researchers at the Ericsson ConsumerLab and Neurons Inc. have found that the
resulting mobile delays cause a level of stress on humans that is slightly higher than
watching a horror movie and comparable to solving a math problem [79]. Several
countermeasures can be applied to cope with these problems. For instance, mobile
operators install Wi-Fi access points at public places [61] and mobile applications
apply caching strategies to prefetch content [78, 170]. However, the latter solutions
suffer from two major shortcomings. First, they do not leverage information about
traffic volume for their prefetching decisions. This often results in the generation of a
substantial amount of cellular traffic. Second, they require a modification of mobile
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applications, which does not scale. These shortcomings accumulate to the second
problem addressed in this thesis.

Given the importance of human mobility and application usage predictions for
both society and individuals, this thesis provides solutions to the aforementioned
two problems by proposing novel human mobility and application usage prediction
algorithms for mobile devices. In particular, we provide the following contributions:

• We derive population models for human mobility prediction. To do so, we de-
sign and present SELECTOR – a novel algorithm for deriving individual mobility
models. We describe the underlaying challenges in Section 1.2 in detail.

• We propose a novel algorithm for prefetching of mobile application content
based on application usage prediction. The goal of prefetching is to reduce
cellular traffic footprint by keeping the application content as fresh as possible.
We describe the particular challenges in Section 1.3 in detail.

• Beside that, we also deal with the problem of the identification of uncertain
human mobility predictions. To this end, we design, implement, and evaluate
LOTUS – a novel algorithm for detecting uncertain human mobility predictions.
More details on the particular challenges are shared in Section 1.4.

• Lastly, the design, implementation, and evaluation of our prediction algorithms
rely on large, human mobility and application usage data. To this end, we uti-
lize several publicly available data sets. However, these data sets have their
limitations. Namely, (1) the availability of records about when and which where-
abouts the individuals have visited and (2) the human mobility data at short-
term events, e.g., conferences or concerts. Therefore, we contribute two data
sets and the corresponding mobile data collection application.

1.2 human mobility prediction model selection problem

One reason why human mobility prediction is a challenging task is the availability of
a multi-dimensional space of parameters that influence human mobility. In this thesis,
we consider human mobility prediction tasks, performance metrics, prediction algorithms,
and data features as the four major parameters. These parameters build up to a hu-
man mobility prediction model. We refer to a model that is optimized for a particular
individual as an individual human mobility prediction model or simply individual model.
The existing human mobility prediction models are typically optimized a priori for
a particular application scenario and will therefore not achieve the best possible per-
formance if used by mobile applications that support different application scenarios.
Do and Gatica-Perez demonstrated this fact by measuring accuracy while predicting
users’ next visited place [71]. The accuracy values ranged between 32.1% and 54.3%
for different combinations of six considered data features. Furthermore, the accuracy
values ranged between 36.8% and 65.7% while different prediction algorithms were
applied. We conclude that choosing a wrong mobility prediction model results in a
poor performance of mobile applications that rely on human mobility predictions.

Depending on the application scenario, different mobility prediction tasks are re-
quired to be solved. For instance, predicting at which time instant an individual
will leave her home and return back supports home automation scenarios [193, 119,
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Figure 1.1: Overview of human mobility prediction algorithms published in the last years.
The upper part of this figure highlights milestones that correlate with an increase
in papers published every year.

116, 179, 122, 21]. Alternatively, predicting the next visited relevant place of an indi-
vidual becomes crucial for mobile applications that provide traffic updates to their
users [176, 153, 123, 22, 71]. In this thesis, a relevant place describes a place at which
an individual spends a substantial amount of time or one that is frequently visited
by an individual [110]. In total, we consider four common prediction tasks, which
we introduce in Section 2.2.

In addition to the prediction task the specific performance metric that needs to be
optimized has also an impact on the choice of a human mobility prediction model.
Raj Jain provides in his seminal book The Art of Computer System Performance Analysis
several techniques for choosing the right performance metrics and argues for their
relevance [104]. Sokolova analyzes a large set of performance metrics for different
types of classification tasks [189, 190]. Her insights reveal the necessity for a careful
choice of performance metrics with respect to the classification task. With the hetero-
geneity of the aforementioned application scenarios and the underlying prediction
tasks, it is thus necessary to select an appropriate set of performance metrics.

A human mobility prediction algorithm or simply predictor is an algorithm that
aims to solve a given human mobility prediction task by optimizing the particular
metric. Given a set of prediction algorithm candidates, the candidate that optimizes
the given performance metric for the particular prediction task is chosen to be the
predictor of the human mobility prediction model. Finding such a candidate depends
on the heterogeneity of prediction tasks and performance metrics. Any change to
one of these two parameters might require a new choice of the prediction algorithm,
because no universal algorithm exists [73]. Many predictors were proposed over the
last decade [9, 194, 193, 123, 6, 153, 147, 48, 46, 44, 205, 176, 179, 122, 65, 149, 222, 70,
21, 22, 66, 87, 143, 119, 16, 71, 74, 116, 120, 93, 211]. Figure 1.1 lays out these predictors
on a timeline that is shown on the x-axis. The upper part of this graph shows events
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that correlate with the increase in the rate on which new human mobility prediction
algorithms have been presented in the literature.

Song et al. evaluated a set of predictors and concluded that none of the candidates
performed uniformly well [193]. The authors observed that “the prediction quality
varies widely from user to user” [193]. The presence of the individual is relevant as all
of the aforementioned predictors operate on historical mobility data and other types
of information. These algorithms learn from this data, extract specific patterns such
as which relevant places the individual is typically visiting and at which time, and
leverage these patterns to solve the given prediction task. In this thesis, we consider
three categories of data (features): spatial, temporal, and phone context.

Computing individual models is a resource intensive task. It further requires to
collect data for weeks or months to capture enough mobility patterns so that pre-
dictors can provide accurate mobility predictions. This problem is well-known as
the so-called cold-start problem [177, 143]. To overcome this problem, human mobil-
ity prediction models that capture generic mobility characteristics and patterns of
a given population of individuals have been derived [111, 70, 71, 143, 222]. These
characteristics and patterns are shared amount the majority of the considered indi-
viduals. At the same time, individually unique mobility patterns are partially or fully
discarded. Without lack of generality, we use the term population model to describe
these models. They can be used at startup and possibly be replaced at runtime by
individual models as soon as sufficient historical mobility data has been collected.
However, this might be necessary only for a portion of individuals if the absence of
their unique mobility patterns in population models significantly reduces quality of
mobility predictions. To prevent unnecessary data collection and resource usage, it is
thus relevant to identify these particular individuals. We address all these challenges
with the contributions introduced in Section 1.5.1.

1.3 prefetching of mobile application content

Predicting human mobility allows answering the questions such as “when will the
individual leave the vicinity of a Wi-Fi Access Point (AP)?” or “how long will she be trav-
eling without access to Wi-Fi?”. If an answer to these questions is available, timely
mobile application content prefetches are possible to reduce cellular traffic footprint
by keeping the application content as fresh as possible. However, prefetching all
mobile applications installed on a mobile device is impractical for several reasons.
Individuals have hundreds of mobile applications installed on their mobile devices,
on average [185]. Yan et al. report that half of the applications considered in their
study required 10 seconds to launch, including both startup and fetch of network
content time [219]. Furthermore, the launch process consumed for half of the appli-
cations at least 0.05% of the battery capacity. Let us assume the following example.
A mobile device has 150 applications installed on it and each application requires
10 seconds to launch (median values as reported above) and consumes 0.05% of the
battery capacity at launch. If this mobile device attempts to prefetch all applications
whenever its owner moves from one place to another, then it will take 25 minutes
and consume 7.5% of battery to prefetch all mobile applications, every time.

This strategy is impractical due to the amount of consumed resources and time.
Therefore, several existing strategies predict which applications the individual will
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access in the near future [219, 159, 218, 185]. However, none of these approaches
consider the amount of traffic that will be prefetched or which type of network (i.e.,
cellular or Wi-Fi) is used to prefetch the content. The negative consequences are an
increase in cellular traffic and energy consumption compared to if no prefetching is
executed. We address these issues with our contributions described in Section 1.5.2.

1.4 identifying uncertain human mobility predictions

A human mobility prediction model typically solves a specific human mobility pre-
diction task. However, human behavior is also characterized by uncertainties in hu-
man mobility predictions that lead to prediction errors. A state-of-the-art technique
for measuring uncertainty in information theory is the Shannon entropy [181, 63, 191].
Cover and Thomas define entropy as “a measure of the uncertainty of a random vari-
able” [63]. It expresses the expected value of information on average that is contained
in a given message. Measuring uncertainty contained in historical mobility data of
an individual allows answering how predictable her mobility is, on average. How-
ever, it does not provide any insights about the uncertainty of the current mobility
prediction. This is, in particular, relevant for mobile applications that perform tasks
based on human mobility predictions.

McInerney et al. introduce a metric called Instantaneous Entropy (IE) that adopts
Shannon entropy [142]. This metric estimates momentarily predictability of an indi-
vidual at a given time instant. To show an example of differences in regularity of
individuals over a week, we compute IE for 37 individuals. To do so, we leverage
cell tower records from the Nokia data set that we will introduce in Section 3.1. For
each hour of the day, we compute IE values for each individual and then compute
the weekly average. Figure 1.2 shows the computed IE values averaged over a week.
This picture emphasizes the differences in weekly human mobility regularity. The
higher the value, the lower is individuals’ mobility regularity at this time instant of
week. In other words, the higher the IE value, the higher the human mobility predic-
tion uncertainty at the particular time instant. We observe clear differences in human
predictability across a week.

Beside the IE metric, machine learning classifiers often provide prediction proba-
bility, activation score [71], or prediction reliability [50] that can all be used to detect
uncertain mobility predictions. For simplicity, we group all these terms and refer to
them as the Level of Trust (LoT). We further say that an algorithm that estimates the
LoT is a LoT estimator.

Given existing research on predictability of human mobility, less emphasis has
been placed on understanding whether and how any of these LoT estimators sup-
port practical application scenarios by identifying wrong mobility predictions. In
particular, this is necessary to allow mobile applications to decide whether (A) the
corresponding action should be executed autonomously, (B) the user has to be asked
for a confirmation, or (C) no actions should be taken. We describe how we address
this shortcoming in Section 1.5.3.
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Figure 1.2: Average Instantaneous Entropy (IE) values of mobility data for a set of 37 users.
The higher the IE value, the less regularity is observed for the given time instant
of week.

1.5 research questions and contributions

The main goal of this thesis is to provide the technical foundations for the design
and implementation of human mobility and application usage prediction algorithms
for mobile devices. In particular, we focus on the following three main research
questions.

1. How to select parameters to allow optimizing the quality of human mobility predic-
tions?

2. How to reduce cellular traffic volume caused by mobile applications while keeping the
application content as fresh as possible and without causing a substantially higher
energy overhead?

3. How accurately can uncertain human mobility predictions be identified?

1.5.1 Algorithm for Human Mobility Prediction Model Selection

We answer the first research question with our first major contribution. In particu-
lar, we analyze the influence of temporal, spatial, and phone context features on the
performance of mobility predictors [22]. Building upon these quantitative results, we
design, implement, and evaluate SELECTOR – a novel individual mobility prediction
model selection algorithm. SELECTOR takes a set of data features, mobility prediction
algorithms, and the prediction task for which the selected metric should be opti-
mized as input. It then determines which features and predictor performs best for
the given individual. We leverage the resulting individual models to derive popula-
tion mobility prediction models [25]. These models allow us to tackle the cold-start
problem [177, 143]. Lastly, we analyze whether and how our population models are
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robust against demographics. Parts of this contribution have already appeared in the
following publications:

• Paul Baumann, Wilhelm Kleiminger, and Silvia Santini. The Influence of Tem-
poral and Spatial Features on the Performance of Next-place Prediction Algo-
rithms. In Proceedings of the 2013 ACM International Joint Conference on Pervasive
and Ubiquitous Computing (UbiComp), 2013.

• Paul Baumann, Christian Koehler, Anind Kumar Dey, and Silvia Santini. An-
alyzing the Influence of Phone Context Data on the Performance of Human
Mobility Predictors. In Proceedings of the Main Conference on the Scientific Analy-
sis of Mobile Phone Datasets (NetMob), 2015.

• Paul Baumann, Christian Koehler, Anind Kumar Dey, and Silvia Santini. A Pop-
ulation Model for Predicting Human Mobility. In Proceeding of the 2015 ACM
International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Pub-
lication (UbiComp Adjunct), 2015.

1.5.2 Practical Algorithm for Prefetching Mobile Application Content

We answer the second research question by proposing a novel application usage pre-
diction algorithm to which we refer as EBC. Our algorithm deals with the problem of
when to prefetch which applications and leaves it to the applications themselves and
other complementary approaches [170, 210] to determine what to prefetch. EBC explic-
itly considers the amount of traffic an application is expected to generate as a param-
eter to schedule application prefetches. Furthermore, it applies different prefetching
strategies depending on whether a cellular or Wi-Fi connection is available. We make
EBC be very conservative in prefetching when the user accesses the Internet through
a cellular connection. At the same time, EBC prefetches aggressively when a Wi-Fi
connection is available. This way, the exchange of data over cellular connections can
be further reduced. We evaluate EBC using data traces from two publicly available
data sets and directly compare EBC to the approach presented by Parate et al. [159]
and other application usage prediction algorithms. Parts of this contribution have
already appeared in the following publications:

• Paul Baumann and Silvia Santini. How the Availability of Wi-Fi Connections
Influences the Use of Mobile Devices. In Proceedings of the 2014 ACM Interna-
tional Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication
(UbiComp Adjunct), 2014.

1.5.3 Quantitative and Qualitative Analysis of Level of Trust Estimators

We further evaluate how accurate existing LoT estimators can detect wrong Next-
place (NP) predictions. In particular, we focus on a special case of mobile appli-
cations, namely, Mobile Personal Assistants (MPAs). These are applications that exe-
cute tasks on individuals’ behalf. To do so, we first conduct a qualitative, questionnaire-
based user study. Furthermore, we analyze the predictability of mobility traces and
residence times. Our analysis allows us to identify three situations in which mobil-
ity predictions might be wrong. We evaluate whether and how accurate the existing
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metric IE is capable of detecting these situations. We finally highlight practical impli-
cations of these results.

Along with considering the IE metric and other LoT estimators, we propose an
ensemble learning estimator to which we refer as LOTUS. To compare LOTUS to existing
LoT estimators, we define a score function to capture individuals’ willingness to
lose the comfort of automatically executed actions at the cost of a higher reliability
in executing them. To simulate mobility predictions, we integrate our population
mobility prediction models and demonstrate their practical applicability. We conduct
this analysis on two large and publicly available data sets.

Parts of this contribution have already appeared in the following publications:

• Paul Baumann, Wilhelm Kleiminger, and Silvia Santini. How Long are You
Staying? Predicting Residence Time from Human Mobility Traces. In Proceed-
ings of the 19th Annual International Conference on Mobile Computing Networking
(MobiCom), 2013.

• Paul Baumann and Silvia Santini. On the Use of Instantaneous Entropy to Mea-
sure the Momentary Predictability of Human Mobility. In Proceedings of IEEE
14th Workshop on Signal Processing Advances in Wireless Communications (SPAWC),
2013.

• Paul Baumann, Marc Langheinrich, Anind Kumar Dey, and Silvia Santini. Quan-
tifying the Uncertainty of Next-Place Predictions. In Proceedings of the 8th EAI In-
ternational Conference on Mobile Computing, Applications and Services (MobiCASE),
2016 (accepted for publication).

1.5.4 Human Mobility Data Sets

We evaluate all our contributions on several large data sets, which are introduced
in Chapter 3. In addition to the existing data sets, we contribute with JK2013 and
UbiComp Data Collection Campaign (UbiDCC) two human mobility data sets [113,
24]. These data sets address the shortcomings of the existing data sets, namely, (1)
the availability of mobility ground-truth data and (2) the human mobility data at
short-term events, such as conferences or concerts. To collect the JK2013 data set, we
develop and contribute LOCATOR – an Android application that can be re-used for any
other Data Collection Campaigns (DCCs) [23]. We demonstrate the reusability and
flexibility of LOCATOR by conducting a second DCC in the context of an international
scientific conference with 700 attendees. The resulting UbiDCC data set contains mo-
bility traces from over 1,200 devices over the period of three days at a conference
venue [24]. The data set is publicly available and can be used for studying mobility
patterns at short-term events. Parts of this contribution have already appeared in the
following publications:

• Paul Baumann, Johannes Klaus, Bjoern Richerzhagen, Wilhelm Kleiminger, and
Silvia Santini. The UbiDCC Data Set: Collecting Wi-Fi and Bluetooth Scans Dur-
ing a Large-scale Conference. In Proceedings of the 1st Workshop on Context Sens-
ing and Activity Recognition (CSAR), in conjunction with the 13th ACM Conference
on Embedded Networked Sensor Systems (SenSys), 2015.
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Figure 1.3: Outline of this thesis.

• Paul Baumann, Johannes Klaus, and Silvia Santini. Locator: A Self-adaptive
Framework for the Recognition of Relevant Places. In Proceedings of the 2014
ACM International Joint Conference on Pervasive and Ubiquitous Computing: Ad-
junct Publication (UbiComp Adjunct), 2014.

1.6 thesis outline

The structure of this thesis is depicted in Figure 1.3 and described below. Chapter 2
contains background information about basic concepts and technical tools that are
used in this thesis. Chapter 3 provides descriptions of human mobility and appli-
cation usage data sets that are used throughout this thesis. Two of the data sets
introduced in this chapter were collected in the context of this thesis and are thus
part of the contributions. In Chapter 4, we present the design of SELECTOR and MAJOR

as well as the corresponding analysis results regarding the human mobility predic-
tion selection problem. Our comparison of existing LoT estimators including LOTUS

is covered in Chapter 5. Chapter 6 presents the design, implementation, analysis, and
the corresponding evaluation results of our novel algorithm EBC. We summarize this
thesis along with conclusions, limitations, and outlook in Chapter 7.



2
B A C K G R O U N D

This thesis adopts and builds upon several existing techniques and concepts. This
chapter provides a brief overview and introduction to these techniques and

concepts. Furthermore, we outline terminology and notation that is used throughout
this work. In particular, we cover in Section 2.1 the definition of mobility traces
and further related notations. Section 2.2 gives an overview of the prediction tasks
considered in this thesis. A list of prediction algorithms used in this work is given
in Section 2.3. The performance of these prediction algorithms is typically measured
with a set of metrics. We describe them in Section 2.4. Lastly, Section 2.5 provides an
introduction to predictability of human mobility.

2.1 mobility traces and slotted mobility traces

There are several application scenarios in which human mobility prediction plays a
crucial role. This thesis focuses, in particular, on the mobility of an individual. We
describe the individuals’ mobility as a sequence of relevant places visited within a
given time frame, e.g., a day.

Definition 2.1.1 (Relevant place)
We adopt the definition of a relevant places given by Kim et al. [110] and refer
to a relevant place as a location: “Where the user spends a substantial amount of time
and/or visits frequently” [110].

Individuals’ home, office, or gym are typical examples of users’ relevant places.

Definition 2.1.2 (Set of relevant places)
In a population of NU users U = {U1,U2, . . . ,UNU

}, we indicate the set of rele-
vant places of a generic user Ui as

L(Ui) = {L1(Ui),L2(Ui), . . . ,LNLUi
(Ui)}. (2.1)

Then, NLUi
is the total number of relevant places of user Ui and Lj(Ui) is the jth

most visited place of user Ui. In the following, we use the terms place and location in-
terchangeably. The same applies for the terms user and individual. Also, for simplicity,
we avoid explicitly indicating user Ui in the formulas whenever possible.

Definition 2.1.3 (Irrelevant place)
Physical locations (coordinates) that cannot be associated to one of the NL rele-
vant places of a user are assigned to a symbolic irrelevant place. We denote this
place as Lx.

13
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For each relevant place Lj, we further define the probability pj of the user of being
at place Lj at any time. This probability can either be known a priori or be estimated
a posteriori from the actual mobility traces of the user. If L1 corresponds, for instance,
to the home of the user, p1 = 60% implies that the user spends 60% of her time at
home. Without loss of generality, we assume that p1 ≥ p2 ≥ . . . ≥ pNL , i.e., Lj is the
(a priori) jth most visited place of the user. Therefore, a naïve prediction algorithm
that always returns L1 as the next location of the user achieves a prediction accuracy
equal to p1.

Definition 2.1.4 (Mobility trace)
We further define the mobility trace of a user Ui over a time interval �t as the
list of places visited by the user Ui during �t and indicate it as ⌦(Ui,�t). If, for
instance, in an interval �t the user moves from place L1 to L2 through L4 the
corresponding mobility trace is: ⌦(Ui,�t) = [L1,L4,L2].

Example 2.1.1: Mobility trace ⌦

Table 2.1 shows an example of a mobility trace of an individual. The first row
indicates time instants at which the individuals arrived at the particular place.
The corresponding relevant places are indicated in the second row. Given this
representation, the currently visited places is thus Home at which the individual
arrived at time instant tk.

Table 2.1: Example of a mobility trace ⌦.

Time instant t1 t2 . . . ti . . . tk

Relevant place Home Work . . . Gym . . . Home

In this work, we use mobility traces for the Next-place (NP) prediction task, which
we introduce in Section 2.2.3. The representation of a mobility trace ⌦ is very com-
pact but it does not contain specific information about how long the individual stays
at each relevant place.

Definition 2.1.5 (Slotted mobility trace)
To capture temporal information, we define the slotted mobility trace ⌦s(Ui,�t)
as the mobility trace that contains an entry for each time slot of length s, where
�t describes the time frame. Using the same example as above, if the slot length
s is equal to 15 minutes and the user stays 30 minutes at L1, 15 minutes at L4
and 1 hour at L2, the corresponding slotted mobility trace is: ⌦15min(Ui,�t) =[L1,L1,L4,L2,L2,L2,L2].
We deal with slotted mobility traces in the context of the Next-slot place (NSP)

and Next-slot transition (NST) prediction tasks throughout this thesis. Both predic-
tion tasks are introduced in Sections 2.2.1 and 2.2.2 along with concrete examples,
respectively.
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Example 2.1.2: Slotted mobility trace ⌦s

Table 2.2 shows an example of a slotted mobility trace of an individual. This
slotted mobility trace represents 15-minutes time slots (⌦15min) so that each
of the slots indicate the individual’s relevant place at the corresponding time
instant (first row). Given this representation, the currently visited places is thus
Work at which the individual arrived at time slot 9:00 a.m..

Table 2.2: Example of a slotted mobility trace with 15-minutes time slots ⌦15min.

Time instant 5:00 p.m. 5:15 p.m. . . . 3:00 a.m. . . . 9:00 a.m.

Relevant place Work Work . . . Home . . . Work

Given these definitions and notations, we next describe the already partly men-
tioned prediction tasks that we cover in this thesis.

2.2 prediction tasks

The basic notation introduced at the beginning of this chapter allows us to describe
the specific prediction tasks we address in this thesis. In particular, we address four
human mobility prediction tasks, namely, the Next-slot place (NSP) prediction task in
Section 2.2.1, the Next-slot transition (NST) prediction task in Section 2.2.2, the Next-
place (NP) prediction task in Section 2.2.3, the Residence time (RT) prediction task in
Section 2.2.4, and finally the Application usage (AU) prediction task in Section 2.2.5.

2.2.1 Next-slot Place Prediction Task

Given the aforementioned definition of the individual’s slotted mobility trace, predic-
tion algorithms can leverage this information to anticipate which place the individual
will visit in one of the future time slots.

Definition 2.2.1 (Next-slot place (NSP) prediction task)
We define the Next-slot place (NSP) prediction task as the attempt to estimate the
individual’s relevant place for the particular time slot in the future given her
slotted mobility trace.

We introduce in Section 2.3 a set of prediction algorithms that we leverage in this
work to solve the NSP prediction task.

Definition 2.2.2 (Slot-based mobility prediction algorithm)
We refer to a slot-based mobility prediction algorithm as an algorithm that computes
the estimate ⌦̂s[k + n] of the place at which user Ui will be at n time steps
ahead of k. In other words, the prediction algorithm computes the n-step ahead
prediction.
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To evaluate the performance of these n-step ahead prediction algorithms, we lever-
age several metrics, which we introduce in Section 2.4 and in other sections whenever
appropriate.

Definition 2.2.3 (N-step ahead prediction accuracy)
An algorithm is then said to compute a correct n-step ahead prediction if ⌦̂s[k+n] =
⌦[k+n]. On the contrary, a wrong prediction occurs if ⌦̂s[k+n] ≠⌦[k+n]. In
particular, the n-step ahead prediction accuracy An of a prediction algorithm over
an interval of Ns steps is defined as the ratio of the number of correct predictions
computed in the interval and Ns.

Example 2.2.1: Next-slot place prediction task

Consider the slotted mobility trace ⌦s given in Table 2.3. Given ⌦s[k] =Work at
9:00 a.m., a slot-based mobility prediction algorithm attempts to predict ⌦̂s[k+ 1]
and ⌦̂s[k+ 2] as a 1-step ahead and 2-step ahead prediction, respectively. If the
1-step ahead prediction is correct, but the 2-step ahead prediction is wrong and
there are no other NSP predictions, then we say that the 1-step ahead prediction
accuracy is 100% and the 2-step ahead prediction accuracy is 0%.

Table 2.3: Example of the next-slot place prediction task.

Time instant 5:00 p.m. 5:15 p.m. . . . 3:00 a.m. . . . 9:00 a.m. 9:15 a.m. 9:30 a.m.

Relevant place Work Work . . . Home . . . Work ⌦̂s[k+1] ⌦̂s[k+2]

We focus on the NSP prediction task in Chapter 4 and consider the corresponding
predictability in Chapter 5.

2.2.2 Next-slot Transition Prediction Task

Some application scenarios, such as home automation, do not require to know at
which exact relevant place the individual will be in the next time slot. Instead, they
rely on the information whether the individual will change her place between the
current and the next time step or not, e.g., leave her home.

Definition 2.2.4 (Place (self) transitions)
In this case, we further say that a place transition T occurs at time step k+ 1 when
⌦s[k+ 1] ≠⌦s[k]. Accordingly, a self-transition occurs when ⌦s[k+ 1] =⌦s[k].
Given the definitions of place transitions and self-transitions, we define the Next-

slot transition (NST) prediction task as follows.

Definition 2.2.5 (Next-slot transition (NST) prediction task)
The Next-slot transition (NST) prediction task estimates whether the individual
will change her relevant place between two consecutive time steps, for instance,
k and k+ 1.
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Example 2.2.2: Next-slot transition prediction task

Table 2.4 depicts an exemplarily chosen slotted mobility trace and the corre-
sponding representation of place transitions. The second row shows the relevant
places visited by the individual. The third row is the transformed representation
of these places indicating, with respect to the previous time step, whether a tran-
sition or a self-transition occurred. Given the current time instant 6:30 p.m., the
NST prediction task estimates whether the individual will still be at Home at
6:45 p.m. (self-transition) or change her place (transition). To clarify, we assume
that the individual is at Work at 4:45 p.m.; therefore, a self-transition is recorded
at 5:00 p.m..

Table 2.4: Example of the next-slot transition prediction task.

Time instant 5:00 p.m. 5:15 p.m. 5:30 p.m. 6:00 p.m. 6:15 p.m. 6:30 p.m. 6:45 p.m.

Relevant place Work Work Gym Gym Home Home ⌦̂s[k+1]
Transition

self-
transition

self-
transition transition self-

transition transition self-
transition ???

2.2.3 Next-place Prediction Task

Modeling human mobility in terms of slotted mobility traces has its strengths and
drawbacks. On the one side, slotted mobility traces elegantly capture and unify both
temporal and spatial components of human mobility. On the other side, the high
number of self-transitions and visits at a small number of relevant places make it
challenging to solve the NSP and NST prediction tasks, as we will detail in Chapter 4.
Therefore, splitting temporal and spatial information into two separate prediction
tasks is an alternative and widely used approach.

Definition 2.2.6 (Next-place (NP) prediction task)
The Next-place (NP) prediction task focuses on anticipating which relevant place
the individual will visit right after leaving the current one. In this case, temporal
information is not considered and thus it is not predicted.

Example 2.2.3: Next-place prediction task

Table 2.5 shows our exemplarily mobility trace from Section 2.1. The NP predic-
tion task estimates ⌦̂[k + 1] as the place the individual will visit after leaving
Home.

Table 2.5: Example of the next-place prediction task.

Time instant t1 t2 . . . ti . . . tk tk+1
Relevant place Home Work . . . Gym . . . Home ⌦̂[k+1]
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2.2.4 Residence Time Prediction Task

Temporal information can now be modeled in terms of temporal events that are
described by time instants instead of particular time slots.

Definition 2.2.7 (Residence times, departure and arrival events)
In particular, we define a departure event from place Lj that occurs when ⌦s[k] =
Lj and ⌦s[k+ 1] ≠ Lj. Similarly, an arrival event at place Lj occurs when ⌦s[k] ≠
Lj and ⌦s[k+ 1] = Lj.

The time instants at which an arrival or departure event occurs are indicated
as arrival time and departure time, respectively. The temporal difference between
arrival and departure events is indicated as residence time [193, 176, 47].

The ability to predict when a person will arrive and how long she will stay at
a specific place is fundamental to enable a number of applications such as smart
heating control or urban navigation [179].

Definition 2.2.8 (Residence time (RT) prediction task)
We define the Residence time (RT) prediction task as the attempt to estimate how
long the individual will stay at the current relevant place.

A number of algorithms that can perform these predictions have been presented
in the literature [193, 47, 22]. We introduce further algorithms in Section 2.3. For
our work on uncertainties in human mobility prediction (cf. Chapter 5), we further
introduce the following notation.

Definition 2.2.9 (Arrival time trace)
We define the arrival time trace tarrive(Lj) as the vector containing the ordered
sequence of arrival times of a user at place Lj.

In this case, the first element (index 0) corresponds to the time slot spanning the
period from 12:00 a.m. to 12:15 a.m. and the last elements (index 95) to the slot
from 11:45 p.m. to 12:00 a.m.. The length of the vector is not fixed a priori since the
number of arrival events occurring in the mobility trace might vary from user to user
and from place to place. The values of the elements of tarrive(Lj) are the indexes of
the time slots at which arrival events takes place.

Definition 2.2.10 (Residence time trace)
Finally, we define the residence time trace tresidence(Lj) as the vector containing
the sequence of residence times at place Lj.

We indicate the length of a residence time is thereby indicated as the number of
slots the individual stays at place Lj before moving to another place. The follow-
ing example incorporates all the introduced notations to demonstrate how they are
related to each other.
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Example 2.2.4: Residence time prediction task

Consider the mobility trace ⌦ that is indicated in Table 2.6 in the first row. The
second and third rows indicate the arrival and departure events in terms of the
corresponding arrival and departure time instants, respectively.

Consider further, for instance, an individual for whom L1 is her home and that
during the observation period she had come back home at 5:00 p.m., then went
out again and returned at 10:00 p.m.. The corresponding arrival time trace, which
is indicated in the fourth row of Table 2.6, for L1 = Home will be: tarrive(Home) =[68,88].

Using again the example mentioned above and assuming the individual stayed
at home between 5:00 p.m. and 6:30 p.m. and then again from 10:00 p.m. until the
next morning 7:30 a.m., then the corresponding residence time trace is described
as tresidence(Home) = [6,38].

Lastly, the RT prediction task attempts to estimate in this example, given the
fact that the individual has now arrived at work, how long she will stay there.

Table 2.6: Example of the residence time prediction task.

Relevant place Home Gym . . . Home . . . Gym Work

Arrival time 5:00 p.m. 7:00 p.m. . . .
10:00
p.m. . . . 8:00 a.m. 9:30 a.m.

Departure time 6:30 p.m. 8:30 p.m. . . . 7:30 a.m. . . . 8:45 a.m. ???

Arrival time
trace

68 76 . . . 88 . . . 32 38

Residence time
trace

6 12 . . . 38 . . . 8 ???

2.2.5 Application Usage Prediction Task

In addition to the four human mobility prediction tasks, we also consider the appli-
cation usage prediction task in this work, in particular, in Chapter 6.

Definition 2.2.11 (Application usage prediction task)
Given a sequence of historical application usage sessions A, we define the Appli-
cation usage (AU) prediction task as the attempt to estimate which applications
will be used by the individual in the current application usage session k. An
application usage session is described by the two consecutive mobile device unlock
and lock events.

Example 2.2.5: Application usage prediction task

Assume three previously recorded application sessions A1 = {A1,A2}, A2 ={A4,A2}, and A3 = {A1}, whereas Aj indicates the particular application used
in the given session. The application usage task attempts to predict which ap-
plications will be used in the current session Ak by considering the historical
sessions and further context data, e.g., time of day or Wi-Fi availability.
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2.3 prediction algorithms

A large number of techniques can be used to solve the prediction tasks listed above.
In this thesis, we consider several prediction algorithms (predictors) that we utilize de-
pending on the requirements of the corresponding study. We introduce the Markov
models in Section 2.3.1. After that, Section 2.3.2 gives a brief overview of state-of-the-
art machine learning techniques that we use in this thesis. Lastly, Section 2.3.3 covers
three naïve predictors that we regularly utilize as the baselines.

2.3.1 Markov Model

In this thesis, we utilize, analyze, and measure the performance for a set of widely
used prediction algorithms and models. One of them is the Markov model.

Definition 2.3.1 (Markov model of nth order)
A Markov model is a stochastic model describing a sequence of observations
and the corresponding probabilities for transiting from one state to another [33].
Given a sequence of observations, each of the unique observations is modeled by
a state. The Markov model learns from the sequence of observations the corre-
sponding probabilities to transit from one state to another. In this case, different
orders of the Markov model are possible. For instance, if we assume that the
transition from the current state to the next one depends on the current state
only, then we refer to this model as the 1st order Markov model. If the transition
now depends on the sequence of the current and the previous states, we refer to
the model as the 2nd order Markov model, and so on.

Given this definition of the Markov model, we observe that it allows us to model
the transitions between relevant places and to incorporate spatial information into
the computation of the conditional probabilities.

Example 2.3.1: Markov model on a human mobility example

Consider ⌦s = {Home,Home,Work,Gym,Work,Home} as the slotted mobility
trace in this example. We observe that ⌦s contains three distinct relevant places
Home, Work, and Gym. These places represent our states in the Markov model.
If we now want to derive a 1st order Markov model, we need to compute the
conditional probabilities between the three states as p(Lj�⌦s[k]), i.e., the proba-
bility of visiting Lj in time step k+ 1 depends on the relevant place ⌦s[k] visited
at time step k. Given the aforementioned slotted mobility trace ⌦s, Figure 2.1
shows the resulting 1st order Markov model.

50% 

50% 

100% 

50% 

50% 

Self-
transition 

Transition 

Home% Work% Gym%

Figure 2.1: Example of a 1st order Markov model.
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2.3.2 Machine Learning Algorithms

Beside the Markov models, we also utilize a set of state-of-the-art prediction algo-
rithms. For all of them, we use the implementation provided in the Python sklearn1

library. Depending on the conducted study in each of the chapters of this thesis, we
select a different subset of the following algorithms.

support vector machine (svm) The Support Vector Machines (SVMs) are con-
sidered to be a must try classification algorithm [217, 33]. Similar to other clas-
sification algorithms, SVM assigns a new instance x ′ to one of the already
known output classes Y. Before that, SVM is trained on a set X of instances,
where each of them is marked with the corresponding output class. During the
training process on the set X, SVM can utilize different both linear and non-
linear discriminant functions to separate the given training instances. To do so,
it applies a kernel function to map the instances to a high-dimensional feature
space. This allows SVM to produce a more accurate separation. Furthermore,
SVM guarantees to find the best separation by maximizing the margin between
the discriminant and the corresponding instances. Lastly, SVM is known to be
insensitive to the number of dimensions (data features) and is therefore con-
sidered as one of the most robust algorithms [217]. All these characteristics of
SVM motivate the choice to use it in this thesis.

k-nearest neighbor (k-nn) The k-Nearest Neighbor (k-NN) algorithm is one of
the simplest but still very powerful classification algorithms [217, 33, 146].
Given a set X of instances with the corresponding output classes Y, k-NN es-
timates for every new instance x ′ one of the possible classes ŷ given by the
already known classes in Y. To do so, k-NN utilizes a given distance metric
D, e.g., Euclidian or Hamming distance, to find k nearest neighbors in X ac-
cording to the chosen distance metric D. It then applies a simple majority vote
on these k closest instances to determine to which class ŷ the instance x ′ should
be assigned. In the case of parity, different strategies such as a random decision
are applicable. There are different issues with the k-NN algorithm. In particular,
the algorithm is sensitive to the choice of k. One approach to tackle this issue is
to weight the vote of each of the k closest neighbors by their distance. We use
k-NN in this thesis due to its simplicity and possibility to already operate on a
few instances.

classification and regression trees (cart) The Classification and Regression
Trees (CART) algorithm represents one of the major milestones in the domain
of Artificial Intelligence [217, 39, 146]. The algorithm is a binary decision tree.
It assembles the tree based on the splitting rule if CONDITION is met, then
the instance goes left, otherwise right. The key features of CART is the possibility
to automatically balance the output classes, handle missing values, allow cost-
sensitive learning, and to estimate probabilities of each tree [217]. We choose to
include CART in our set of prediction algorithms due to its historical relevance,
the aforementioned features that are relevant in the human mobility prediction
domain, and its possibility to achieve very good results.

1 http://scikit-learn.org/stable/
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perceptron The Perceptron algorithm is a linear discriminant model and is known
to be one of the first neural networks [33]. The originally proposed algorithm
was a binary classifier. Today, several implementations of the multi-class ver-
sion of Perceptron also exist. Given a set of instances X and the corresponding
labels, Perceptron learns a linear hyperplane to separate instances of different
classes. We include Perceptron due to its historical relevance and the current
success of neural networks [73].

naïve bayes (nb) Another very relevant and widely used prediction algorithm is
Naive Bayes (NV) [217, 33]. Although it is not the most powerful one, its robust-
ness and the simplicity are often the main reasons for the choice. In particular,
classification results provided by NV are easy to interpret and understand. To
achieve all these, NV is based on a very strong and naïve assumption, namely,
that all features that describe a given instance are independent.

Example 2.3.2: Treating features independently

For instance, if we want to predict which relevant place the individual will
visit next and we use time of day and current place as the two features for
the input of NV, then these two features are treated independently, i.e., no
correlation between them is assumed.

Given this assumption, NV first derives a probabilistic model for each output
class. These models can then be combined and used as a classifier. In this case,
the Maximum Likelihood (ML) strategy [192] is applied to determine the resulting
output class ŷ.

Definition 2.3.2 (Maximum Likelihood)
In the context of human mobility, the Maximum Likelihood (ML) strategy is
based on placing the individual into the most likely relevant place. In this
case, any prediction based on the mobility trace ⌦ (or ⌦s) “cannot do better
than the one that places the user in his/her most likely location” [192].

linear regression (lr) The Linear Regression (LR) approach is a linear combi-
nation of the input features [33]. Therefore, for a given set F of features LR
attempts to predict the outcome ŷ by utilizing a linear model. This model is
again learned from a set of instances X with the corresponding class labels.
As the name of the approach says, LR assumes linearity between data. We uti-
lize LR in our analysis in Chapter 5, mainly due to its popularity in different
application domains.

gradient boost (gb) The Gradient Boost (GB) approach is based on the ensemble
learning technique [33, 69]. In other words, it combines several simple predic-
tors to improve the overall prediction quality. The model is build in several
iterative steps. Given an initial and imperfect prediction model Pm at iteration
step m, GB attempts to improve Pm by introducing a new model P ′m that are
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both combined to Pm+1 = Pm +P ′m. The goal of the new model P ′m is to reduce
the difference between ŷ as the output of Pm and the true value of y. Ensemble
learning algorithms such as GB are known to have a better generalization abil-
ity than single predictors [217]. Therefore, we leverage the ensemble learning
technique along with GB in several parts of this work.

2.3.3 Naïve Predictors

The three naïve predictors are quite simple and help us to benchmark the perfor-
mance of the other, more sophisticated predictors.

random classifier The Random classifier chooses as output one of the possible
classes uniformly at random – irrespective of the current input.

distribution-based (db) classifier The distribution-based (DB) classifier is sim-
ilar to the random classifier but it preserves the actual class distribution. Thus,
if a class is known to be more probable than another, it will have a higher
probability to be chosen as the predicted class and vice versa.

0r classifier The 0R classifier (majority vote) always predicts the most frequent
class.

We refer to the set of these three naïve classifiers as Pb.

2.4 performance metrics

The performance of the predictors listed in Section 2.3 – and in general of most
classifiers – can be evaluated using different performance metrics. Depending on
the study conducted in this thesis, we utilize different metrics. Most of them are,
however, partly based on a set of the well-known performance metrics: the accuracy,
the F1 score and the Matthews Correlation Coefficient (MCC) [104, 190, 189]. We indicate
withM the set containing these three metrics.

To derive these three metrics, the computation of four other quantities is necessary.
These quantities are computed for each output class, individually. In other words,
given a mobility trace ⌦ with NL = 3, i.e., three distinct places, the following quanti-
ties are computed for each of these places, separately.

Definition 2.4.1 (True positive, true negative, false, positive, false negative)
These quantities are true positive (TP), true negative (TN), false positive (FP), and
false negative (FN). Assuming that we compute these quantities for L1, then TP is
the number of predictions that indicate ⌦̂[k + 1] = L1 and indeed ⌦[k + 1] = L1.
TN corresponds to the number of predictions that indicate ⌦̂[k + 1] ≠ L1 and
indeed ⌦[k+ 1] ≠ L1. FP is the number of predictions that indicate ⌦̂[k+ 1] = L1,
but ⌦[k + 1] ≠ L1. Lastly, FN defines the number of predictions that indicate
⌦̂[k+ 1] ≠ L1, but ⌦[k+ 1] = L1.

Given these quantities, the aforementioned performance metrics are defined as
follows.
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Definition 2.4.2 (Accuracy)
In the context of this thesis, the metric accuracy describes the closeness of the
output of a prediction algorithm to the true values. It is thus defined as:

Accuracy = TP + TN
TP + TN+ FP + FN . (2.2)

The F1 score [33] – also known as F measure or balanced F score – is defined as the
harmonic mean of two other quantities, namely, precision and recall.

Definition 2.4.3 (Precision)
For a given class, the precision describes the fraction of data points that are pre-
dicted to belong to that class and are relevant (i.e., actually belong to that class).
It can easily be calculated from the values of TP and FP and is defined as:

Precision = TP

FP + TP . (2.3)

Definition 2.4.4 (Recall)
On the other hand, recall describes how many relevant instances are retrieved
among all instances by utilizing the values of TP and FN and is defined as:

Recall = TP

FN+ TP . (2.4)

F1 score allows us to evaluate how well a predictor can balance the values of
precision and recall.

Definition 2.4.5 (F1 score)
Using the values of precision and recall, F1 score is defined [33] as:

F1 = 2 ∗ Precision ∗Recall
Precision+Recall . (2.5)

As just shown, the F1 score provides complementary information on the perfor-
mance of a predictor with respect to the accuracy. However, it does not take into
account the value of TN. To take also this parameter appropriately into account
other performance measures such as the Matthews Correlation Coefficient (MCC)
are typically used [141].
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Definition 2.4.6 (Matthews Correlation Coefficient)
The metric Matthews Correlation Coefficient (MCC) allows us to compactly yet
comprehensively describe the performance of a predictor even when there is a
strong imbalance between the classes. The MCC metric is defined as:

MCC = TP ⋅ TN− FP ⋅ FN�(TP + FP)(TP + FN)(TN+ FP)(TN+ FN) (2.6)

As stated above, we use much more performance metrics throughout this thesis.
However, many of them are build upon the metrics introduced in this section.

2.5 predictability

In a seminal paper published in 2010, Song et al. [191] explore the fundamental limits
of predictability that characterize human mobility.

Definition 2.5.1 (Predictability)
In the context of this thesis, we adopt the definition of predictability ⇧ as the
“upper bound that fundamentally limits any mobility prediction algorithm in predicting
the next location based on historical records” [135].

To support their findings, Song et al. leverage a very large data set of mobile phone
Call Detail Records (CDRs) from 50,000 individuals and three months of observation
period [191]. They define the location visited by the user at a given time instant as
the area covered by the cell tower to which the phone of the user is connected at
that time instant. In this way, a sequence of locations visited by each user during
the whole observation period is constructed. The considered temporal granularity
is one hour, i.e., only the location at which the user stayed for the longest time
during a one-hour interval is stored. For each individual U, they define a mobility
trace ⌦. We omit in the following the subscript U for the sake of readability. The
probability, based on historical data, for the individual U to visit the relevant place Lj
is indicated as p(Lj). Using this notation, Song et al. then define three fundamental
quantities to characterize human mobility patterns: the random entropy Srand, the
temporal-uncorrelated entropy Sunc, and the actual entropy S [191].

Definition 2.5.2 (Actual entropy)
The actual entropy S captures “the full spatiotemporal order present in a person’s
mobility pattern” [191] and is defined as:

S = − �
⌦ ′⊂⌦

P(⌦ ′) log[P(⌦ ′)], (2.7)

whereas P(⌦ ′) denotes the probability of finding the (ordered) subsequence ⌦
′

in the trace ⌦ of all locations previously visited by the user.

Using this definition of entropy, Song et al. then provide a quantitative answer to
the question of with which probability the next location of the user can be predicted
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accurately given the entropy of the sequence of previously visited locations. Song
et al. show that ⇧ is upper-bounded by the probability ⇧max, which is achieved by a
ML algorithm that whose strategy is given by Definition 2.3.2. The exact computation
of the quantities here described requires the knowledge of true probabilities, which
are however typically not available in real settings (i.e., for real data traces). Thus,
Song et al. make use of the Lempel-Ziv estimator [88] – which is known to quickly
converge to the true entropy – to compute the values of entropy and thus those of
predictability [192].

Definition 2.5.3 (Predictability upper bound ⇧max)
To map the estimated entropy value into an upper bound of predictability
⇧max(S,NL) for the given individual U, Song et al. derive the following formula:

S = −[⇧maxlog2⇧
max + (1−⇧max)log2(1−⇧max)]

+(1−⇧max)log2(NL − 1), (2.8)

where NL is the number of distinct relevant places visited by the individual U
in the past and up to the moment the entropy value S is estimated.

A main contribution of Song et al.’s work is thus to have shown: (1) how to mea-
sure the entropy of human mobility traces; and (2) how to relate this value to the
predictability that can be achieved in practice using mobility prediction algorithms
that use only past mobility traces as their input. Using this theoretical framework
they analyze the mobility traces of a large number of users and show that for most
of them average predictability values lie around 93%. This indicates that there is
a large potential in the exploitation of regularities in human mobility. In this the-
sis, we leverage the technical foundations of predictability in Chapter 5 to analyze
uncertainties in human mobility prediction.

Building upon the work by Song et al., McInerney et al. address the problem of
measuring the momentary predictability of individuals instead of its long-term aver-
age [142]. In contrast to the actual entropy S, which captures the entropy of a mobil-
ity trace over a given time interval, the introduced metric Instantaneous Entropy (IE)
aims at measuring the momentary predictability of an individual at each time instant.
Thus, while S is computed a posteriori for offline analysis, IE should be determined
while the individual is moving.

Definition 2.5.4 (Instantaneous entropy estimation)
The Instantaneous Entropy (IE) metric measures the individual’s momentary pre-
dictability. To this end, for a given mobility trace ⌦ (slotted mobility trace ⌦s by
analogy), the estimation of IE at time instant k is defined as:

Ŝk = log2(k)
�k

, (2.9)

where �k represents the length of the shortest subsequence ⌦
′

ending at time
instant k that did not previously occur in ⌦ = {⌦[1],⌦[2], . . . ,⌦[k− �k]}.
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The IE metric estimates the entropy rate at the given instant k, i.e., it tells the
amount of entropy that can be expected if the entire underlying mobility trace ⌦
exhibits the predictability it currently has [142]. To calculate the IE at time instant k,
McInerney et al. adapt the iterative part of the Lempel-Ziv (LZ) estimator.

Hence, the output of Equation 2.9 depends only on the previously generated sym-
bols, i.e., in the context of human mobility it depends only on the sequence of visited
relevant places without considering any time components. McInerney et al. demon-
strate the correctness of the aggregated values by comparing them to the results
presented by Song et al. [192].

To demonstrate the suitability of IE to measure individuals’ actual predictability
the authors show the existence of a correlation between the estimated values with the
frequency at which users consult a map application on their phones. Thereby, it is
assumed that the higher the frequency at which users consult maps, the lower their
predictability. The authors use this indirect validation method because, as mentioned
above, it is not possible to exactly compute the predictability analytically for real
mobility traces.

We consider the IE metric in Chapter 5 to first analyze its ability to capture predic-
tion errors on some corner case examples and then adopt it in our analysis on how
good the existing LoT estimators are able to detect wrong mobility predictions.





3
H U M A N M O B I L I T Y A N D A P P L I C AT I O N U S A G E D ATA S E T S

Studying human mobility and application usage requires the availability of data
sets containing this particular information. The larger and diverse the corre-

sponding data set is, the more conclusive are the obtained insights. In particular,
leveraging multiple data sets for analysis allows reducing the risk of conclusions ob-
tained due to biases in the data set used to retrieve the insights. In this thesis, we
utilize three publicly available data sets and contribute two additional, along with
the corresponding Android application LOCATOR that was developed and used for our
DCCs. These data sets are the (1) Nokia, (2) Device Analyzer, (3) LiveLab, (4) JK2013,
and (5) UbiDCC data sets. The former three were collected and distributed by the third
parties and are described in Sections 3.1, 3.2, and 3.3, respectively. The latter two are
complementary to the first three data sets and were collected in the context of this
thesis to compensate for the shortcomings of already existing data sets. In the fol-
lowing, we describe all five data sets in detail. For the JK2013 and UbiDCC data sets,
we also describe how we collected, prepared, and distributed both of them as part of
this thesis. Lastly, we briefly review other existing human mobility and application
usage data sets and finally compare them to each other. In particular, parts of this
chapter are based on the previous publications of the author of this thesis [23, 24].

3.1 the nokia ldcc/mdc data set

The Nokia LDCC/MDC data set has been collected in the context of the Lausanne
Data Collection Campaign (LDCC) [112, 3]. Part of this data set was made available
to the public in 2012 in the context of the Nokia Mobile Data Challenge (MDC) [127].
The entire data set was released to the public in 2013 and is now managed by the
IDIAP Research Institute. In general, the data collection involved nearly 200 partic-
ipants who were equipped with Nokia N95 mobile devices. The participants were
asked to use these devices as their primary phones to ensure capturing individuals’
natural activities. Most of the participants were residents of the area of Lausanne
and to some extent related to the Nokia research center or one of the partners of the
campaign. The collected data includes, among other information, Global Positioning
System (GPS) traces, records of Wi-Fi and Bluetooth scans, phone calls, application
usage, cell towers to which the devices were associated, and user demographics in-
cluding age and gender. In the following, we describe both the MDC and LDCC data
sets. Although the MDC data set is a subset of the LDCC data set, some of their char-
acteristics differ due to the context in which they both were released. For simplicity
reasons and without lack of generality, we refer to both data sets as the Nokia data set.
However, whenever it is necessary, we refer to one of them explicitly.

29
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3.1.1 The MDC Data Set

The MDC data set is a subset of the LDCC data set; however, it was released in the
context of a challenge with some practical implications. The data set contains data
collected on the mobile phones of 37 individuals over about 1.5 years. In contrast
to the LDCC data set, it does not contain any ground-truth mobility data, which is
necessary for our analysis and evaluation of human mobility predictors. Therefore,
we first describe how we derive individuals’ relevant places for the MDC data set
before reviewing mobility statistics of the considered individuals. Lastly, we examine
demographic data of the individuals included in the MDC data set.

Utilizing PlaceSense to Derive Relevant Places

To obtain individuals’ relevant places, we utilize Wi-Fi scans and PlaceSense – a
fingerprint-based algorithm proposed by Kim et al. for deriving relevant places from
Wi-Fi data [110]. PlaceSense searches for similarities in Wi-Fi fingerprints among sev-
eral consecutive scans to detect whether the individual is currently arriving or de-
parting from a relevant place. While being at a relevant place, PlaceSense assembles
a cumulative Wi-Fi fingerprint for this particular place. It is later used to recognize
the relevant places of each individual. To this end, PlaceSense utilizes a similarity
parameter, similar to the one introduced by Hightower et al. [96]. We use the de-
fault settings as described by Kim et al. [110] apart from the value of the similarity
parameter.

To find the right value for similarity, we assign to each Wi-Fi AP the corresponding
GPS coordinates. To do so, we cross-reference Wi-Fi and GPS data by searching for
a GPS record in the data of the given individual that is within a one minute time
interval to the corresponding Wi-Fi record. Building upon the extracted GPS data
for each Wi-Fi AP, we compute centroid for both latitude and longitude values and
assume this point to be the geographical location of the corresponding Wi-Fi AP. A
similar technique is applied by Montoliu et al. on the same data set [148]. We validate
the results by visually inspecting the distance between each considered GPS record
and the computed centroid of the Wi-Fi APs, which is shown in Figure 3.1. Each
marker in the plot is one Wi-Fi AP. For each AP, the x-axis indicates how many GPS
records are associated with the given WI-Fi AP. At the same time, the y-axis shows
the computed standard deviation of the distance between the computed centroid
of the given AP and the associated GPS records. We observe that for most APs the
standard deviation is within the expected communication range of a typical Wi-Fi
AP. This result backs up the aforementioned process of linking GPS coordinates with
Wi-Fi records. It is worth to note that utilizing GPS data directly is not an option due
to the sparsity of the GPS data in the Nokia data set.

Being now able to compute geographical distances between relevant places, we
experimentally test several values for PlaceSense’s similarity. We end up adopting
the similarity parameter of 30% instead of using the 68% value originally proposed.
The reason for this choice is that the default value of 68% causes a high number of
close-by relevant places to be identified. This observation is shown in the boxplot in
Figure 3.2. The x-axis indicates the distance between the relevant places and the y-
axis shows the fraction of relevant places (Cumulative Distribution Function (CDF))
with the maximum distance of the corresponding x-value to the next relevant place.
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Figure 3.1: Standard derivation of the distance between each assigned GPS coordinate to the
particular Wi-Fi AP and the corresponding centroid of the cluster. Each marker
corresponds to one Wi-Fi AP. The x-axis shows the number of GPS coordinates
assigned to the particular Wi-Fi AP.

The results are aggregated for all 37 participants with the median values in the
middle of each box. The box itself encloses the 25th and 75th percentiles and the
whiskers correspond to approximately ±2.7� coverage. We observe that for half of
the participants nearly 80% of the detected relevant places have a median distance
to their closest relevant place equal to or less than 10 meters. As for our analysis this
fine-grained place detection is not appropriate, we experimentally reduce the value
of the PlaceSense’s similarity parameter to 30%. This way, half of the participants
have 54% of the detected relevant places with a median distances of less than 100
meters to the closest relevant place.

Residence Time Spend at Relevant Places

We now analyze the distribution of residence times spend at the top relevant places
by each individual. This analysis allows us to understand whether the outcome of
our computational process in deriving relevant places corresponds to the statistical
distribution of residence times as measured by other researchers [38, 148]. With re-
spect to the total amount of visited places, the residence times distribution reflects
how balanced the aforementioned output classes, i.e., relevant places, are. Figure 3.3
shows the percentage of time participants in the MDC data set spend at their three
most visited relevant places. The x-axis indicates the Identifier (ID) of the participant
as obtained from the data set, while the y-axis reports percentage of time with re-
spect to the whole observation period. On average, participants spend 56% of their
time at the relevant place L1, 14% at the second most visited relevant place L2, and
7% at L3. About 8% of the time is spend at other relevant places while for 15% of
the time PlaceSense does not recognize the visited place as a relevant one. The mo-
bility traces derived from the MDC data set thus show very similar characteristics
to those analyzed by Montoliu et al. [148]. Similarly, we find that users spend most
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Figure 3.3: Percentage of time spent by the 37 users in their three most visited places. The
plot also indicates the percentage of time spent in other places rather than the
three most visited ones and the percentage of time for which the actual place is
unknown (Lx).

of their time at their two most visited relevant places.1 This shows that the mobility
traces we derived for the MDC data set exhibit characteristics similar to those used
by other researchers and data sets. We thus expect our results to be representative
also beyond the specific data set considered here.

Demographics

Lastly, we briefly review demographics of the individuals whose data is contained in
the MDC data set. Table 3.1 summarizes this information according to four categories.
The first three categories reflect gender, occupation, and age of the individuals. The
last one represents means of transportation individuals typically use to commute

1 The fact users in the MDC data set shows lower values for L1 and L2 with respect to those reported
in [148] might be traced back to missing data, partially due to participants’ mobile phones being turned
off. (According to a number of studies [160, 68], individuals turn off their mobile phones about ∼22%
of time.)
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Table 3.1: Demographic data of the MDC data set participants.

Label Description Total number Fraction

u_female Female 8 21.1%

u_male Male 20 52.6%

u_work Working full time 17 44.7%

u_study Studying full time 6 15.8%

u_work_other Other occupation 6 15.8%

u_16_21 Between 16 and 21 years old 1 2.6%

u_22_27 Between 22 and 27 years old 1 2.6%

u_28_33 Between 28 and 33 years old 10 26.3%

u_34_38 Between 34 and 38 years old 3 7.9%

u_39_44 Between 39 and 44 years old 6 15.8%

u_45_50 Between 45 and 50 years old 6 15.8%

u_car Car 13 34.2%

u_bus Bus 13 34.2%

u_train Train 7 18.4%

u_metro Metro 7 18.4%

u_bike Bike 7 18.4%

u_walking Walking 6 15.8%

between home and work.2 We observe that more than half of participants are male
and nearly every second participant works full time. Most of the participants are
between 28 and 50 years old, given a pretty fair distribution with a slight tendency
for younger individuals. Please note that the numbers do not always sum up to the
total number of 37 participants. This is mainly due to the missing demographic data
as the participants opt-out to report them.

3.1.2 The LDCC Data Set

The LDCC data set was released to the public in 2013 and differs with respect to
the MDC data set in some aspects. First, it contains data collected from the mobile
phones of nearly 200 participants for a period of about 18 months. Second, it also
contains ground-truth information about individuals’ visits to their respective rele-
vant places. According to the documentation accompanying the data set, these places
were computed using an approach similar to [148]. The results are validated by the
data set participants themselves. Building upon this new type of data, we select 141
participants for our study. The selection criteria are (1) the number of days with
individuals’ mobility data and (2) the availability of demographic data. We select
participants with at least three months of data. The number of days these partici-
pants have with mobility data ranges from 93 to 531 (mean: 324). We now briefly
review the demographics provided by the participants in the LDCC data set.

2 The total amount of answers for the last category might sum up to more than 100%. This is due to the
possibility given to the participants provide multiple answers.



34 human mobility and application usage data sets

Table 3.2: Demographic data of the LDCC data set participants.

Label Description Total number Fraction

u_female Female 50 37.6%

u_male Male 83 62.4%

u_work Working full time 70 53%

u_study Studying full time 39 29.7%

u_16_21 Between 16 and 21 years old 12 9%

u_22_27 Between 22 and 27 years old 47 34.9%

u_28_33 Between 28 and 33 years old 40 30%

u_34_38 Between 34 and 38 years old 18 13.4%

u_39_44 Between 39 and 44 years old 12 9%

u_45_50 Between 45 and 50 years old 2 1.4%

u_no_kids No kids in the household 108 76.6%

u_par Kids in the household 26 18.4%

u_par_f Kids in the household + female 10 7%

u_par_m Kids in the household + male 15 11%

u_single Lives alone 14 10%

u_family Lives with at least one other person 64 45.4%

Demographics

Similar to the MDC data set, the LDCC data set contains a number of different
types of demographic information. Table 3.2 summarizes 15 demographic groups
that we derive to consider in this thesis. The table covers all of the demographic
information available in the data set except for whether or not the user is the one
who pays the phone bill. Several demographic groups are derived based on the fu-
sion of low-level information. For instance, u_par_m covers male individuals with
children in the household. This information is obtained from the gender data and
the number of people living in the household that are younger than 18 years. Fur-
thermore, u_single and u_family represent individuals that live alone or with at
least one other individual, respectively. However, these two groups do not indicate
the presence of a committed relationship. The third column in Table 3.2 indicates
how many individuals belong to the corresponding demographic group. The fourth
column expresses these numbers as a fraction over all 141 individuals.3

Among the participants of the LDCC data set, at least 50 and 83 of them are female
and male, respectively. Almost 20% of the participants reported to have children
younger than 18 years old in the household. Furthermore, at least 70 participants
have a full time job while the remaining half of the participants belong to the groups
of students, half time employees, homemakers, and retired individuals. Some of the
participants have a social link to other participants of the LDCC data set that creates
social graphs presented in the data set. Due to the diversity of the LDCC data set,

3 Please note that for some groups the number of people might not sum up to the total number of
participants because not all users provided all the demographic information.
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we believe that our results can be generalized and hold for other populations in at
least developed countries too.

3.2 the device analyzer data set

The Device Analyzer data set has been first made publicly available in the context
of the UbiComp/ISWC 2014 Programming Competition [208, 207].4 The publicly
available version of the data set contains over 100 billion sensor data records from
over 30,000 individuals across the world.5 The data is collected either on a 5-minutes
polling period or whenever the corresponding event occurs, e.g., phone call.

We leverage the Device Analyzer data set for our work on uncertainties in hu-
man mobility prediction (cf. Chapter 5) and for the evaluation of our algorithm on
prefetching of mobile application content (cf. Chapter 6). To this end, we select dif-
ferent subsets of individuals from the Device Analyzer data set, depending on the
study requirements and the availability of particular data, e.g., traffic information.
To do so, we utilize a tool available along with the data set.

how wi-fi availability fosters mobile application usage For our work
on understanding how Wi-Fi availability fosters mobile application usage (cf.
Section 6.1), we select a set of 790 individuals for whom at least 10 months of
Wi-Fi, cellular, and traffic data is available.

uncertainties in human mobility prediction For our work on uncertain-
ties in human mobility prediction, we utilize data from the aforementioned 790
individuals and apply a heuristic to extract the corresponding relevant places.
The heuristic is similar to the one used by Bao et al. [15] and is described in Sec-
tion 3.2.1 more in detail. Finally, we consider 268 users, out of 790, with at least
100 relevant place visits and at least 10 unique places recorded. We manually
inspect the number of relevant place visits and unique places per individual
and found the aforementioned parameters to be a good fit to select individuals
with a good coverage in terms of the recorded mobility.

prefetching of mobile application content Lastly, to evaluate the perfor-
mance of EBC (cf. Section 6.3), we select a subset of 70 users that provide appli-
cation usage records, corresponding traffic information, and Wi-Fi scans. This
small number of individuals compared to the total number of users available
in the Device Analyzer data set, is explained by the fact that only since the
version of the Device Analyzer logger, released in November 2013, the possi-
bility to record application usage and the corresponding generated traffic was
included. We therefore use in this study data collected between November 2013
and January 2014, for a total of eight weeks. To extract application usage ses-
sions, we partly adopt the strategy presented by Hintze et al. [97] that we detail
in Section 3.2.2.

4 http://ubicomp.org/ubicomp2014/calls/competition.php
5 Many of these individuals, however, contributed data for a period of a few hours or days only. There-

fore, the number of individuals with useful data records is much smaller.
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3.2.1 Algorithm for Deriving Relevant Places

To derive individuals’ relevant places, we adopt the strategy presented by Bao et al. [15]
for the same data set. Due to the fact that Wi-Fi and cellular records are available on
a 5-minutes basis and some of the records might miss, we first divide each day into
15-minutes time slots. In particular, this strategy is composed out of the following
steps.

1. Determine for each time slot the Wi-Fi AP to which the individual was con-
nected at longest.

2. Treat each Wi-Fi AP, to which the individual was ever connected, as a unique
relevant place.

3. For each Wi-Fi AP, to which the individual was connected in at least one time
slot, record other cellular tower IDs and Wi-Fi APs that were observed in the
same time slots.

4. Resolve concurrent associations (i.e., same cellular tower was observed with
multiple Wi-Fi APs) by the fraction of time each of the association candidates
were observed in the data set.

5. Fill out time slots, in which the individual’s mobile device is not connected to a
Wi-Fi AP, based on the associated Wi-Fi APs and cellular towers, as determined
in Step 3.

This strategy allows us to derive relevant places of individuals contained in the
Device Analyzer data set. Please note that it is not possible to use the same heuristic
as it is done for the MDC data set (cf. Section 3.1.1) due to the high (5-minutes)
sampling intervals.

3.2.2 Application Session Extraction Process

We extract application usage sessions from the Device Analyzer data as follows. We
derive phone lock and unlock events using the approach presented by Hintze et al. [97].
In other words, we combine information about screen status and explicit unlock
events. Combining different pieces of information allows us to cope with errors such
as missing entries in the data set. As for the LiveLab data set, which we introduce in
Section 3.3, we exclude the Android Launcher from the application usage data. How-
ever, unlike the LiveLab data set, application names in the Device Analyzer data set
are hashed. Therefore, we adopt a heuristic to identify the Android Launcher. We
observe that immediately after the display is turned on and shortly before an un-
lock event occurs, the same hash value is recorded as the launched application. For
each user, we thus count how often a hashed application name appears in this short
time frame and we identify the application with the highest count as the Android
Launcher.

3.3 the livelab data set

The LiveLab data set has been collected in the period between February 2010 and
April 2011 and contains up to 14 months worth of data for 34 participants [183].
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The participants were mainly undergraduate students at Rice University who have
been equipped with an iPhone. A data logger installed on the phones collected Wi-Fi
scans, display status (on/off), Central Processing Unit (CPU) state, application usage
with clear text names, and other data.

We use this data set mainly for the evaluation of our algorithm for prefetching
of mobile application content (cf. Chapter 6). In particular, we utilize the precise
application usage records, i.e., application names in clear text and timestamps for
both launch and close events. Furthermore, the data set also contains information on
whether and to which Wi-Fi AP the individual’s phone was connected.

To derive application usage sessions, we apply a similar technique that we use
for the Device Analyzer data set, as described in Section 3.2.2. To do so, we com-
bine display status, CPU state information, and application record information. The
combination of these information is necessary to compensate for several issues in
the recording process. The ideal case is a correct record that the screen was turned
on, followed by an application usage. However, often an application usage record
appeared without the corresponding record that the display was turned on. In these
cases, we utilize the records about the CPU state and leverage the time instant in
which the CPU woke up as the starting point of the application session. Further-
more, we exclude the Apple Launcher from the list of applications to prefetch.

3.4 the jk2013 data set

The MDC data set is one of the first that was publicly released and contain mobil-
ity data from a large population of individuals. Unfortunately, it does not contain
ground-truth mobility data that is necessary for human mobility analysis in this
thesis. Deriving relevant places with algorithms such as PlaceSense also requires
adaptation of parameters such as similarity without the possibility to conclusively
validate the parameters set for PlaceSense.

To address this shortcoming, we design and carry out a five week long DCC with
six participants. This DCC’s primary goal is to collect mobility ground-truth data
along with the corresponding sensor data to be able to evaluate relevant place extrac-
tion algorithms such as PlaceSense and validate the obtained results. The outcome of
this DCC is the JK2013 data set with very accurate mobility ground-truth data and
the corresponding sensor information.

In the following, we first elaborate the design of this DCC and then share details
on how it was implemented and carried out. Finally, we summarize the resulting
JK2013 data set.

3.4.1 LOCATOR – Android Application to Collect Mobility Data

With this DCC, we target the goal of collecting highly reliable mobility ground-truth
data with the corresponding sensor readings. To this end, we design and develop
LOCATOR – an Android application that allows collecting both mobility ground-truth
and sensor data. Complimentary to LOCATOR, we also develop a server application
that periodically receives data collected by LOCATOR and allows participants to review,
edit, and delete parts of the collected data. The latter feature is part of our privacy
concept and will be discussed in the next subsection.
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Figure 3.4: Overview of the screens of LOCATOR.

LOCATOR is comprised on five main screens that are shown in Figure 3.4. The screen
in the middle is the main screen allowing participants to navigate between different
features of LOCATOR. The two screens on the left are dedicated for the mobility ground-
truth data collection. They allow participants to indicate their relevant places on a
map and to compile a diary with place visits. These two screens are discussed in the
next subsection more in detail. The two screens on the right allow participants to
review the collected data and to visualize them either on a map, which is shown in
the second screen from the right, or as a weekly schedule as shown in the most right
screen.
LOCATOR collects a set of sensor data including GPS, call logs, Wi-Fi and Bluetooth

scans, screen and battery status, as well as accelerometer data. Dealing with the trade-
off between data granularity and battery consumption, we decide to set the sampling
rate to one minute. The data is stored locally and transmitted to our server every two
hours, but only if the mobile device is connected to a Wi-Fi network. Otherwise, the
transmission is skipped and another attempt is taken two hours later.

3.4.2 Acquisition of Mobility Ground-truth Data

Collecting mobility ground-truth data is challenging and since the primary goal of
this DCC is to do so, we need to carefully design a strategy to accomplish it. In other
DCCs, different strategies for collecting ground-truth data were applied. They range
from scripted tours [110], to self-recalling visited relevant places every evening [127],
to interrupting individuals on a predefined frequency to ask them to annotate the
data. All these strategies have their advantages and disadvantages. The strategy for
collecting mobility ground-truth data that we follow with LOCATOR is similar to the
one applied during the LDCC [112, 127]. To recall, for the Nokia data set, before par-
ticipants annotate the places they visited, an algorithm [148] extracts these relevant
places based on both Wi-Fi and GPS data. The result is a set of tens and hundreds
of relevant places, on average, per individuals. This is because the utilized algorithm
for extracting relevant places considers every place at which the individuals spend
more than ten minutes as relevant. The resulting list of places is then simply anno-
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tated by the participants of the LDCC without reviewing whether or not all of the
places are indeed relevant for them.

In contrast to this strategy, LOCATOR allows participants to indicate their relevant
places on a map, as shown by the second screen from the left in Figure 3.4. The
most left screen allows participants to fill out their mobility diary by choosing one
of the defined relevant places and indicating the time frame at which the particular
relevant place was visited. The participants can also indicate a time frame as being
“On the way”.

To increase the accuracy of these entries and their completeness, we apply two
additional strategies. First, LOCATOR checks every six hours for missing mobility an-
notations and sends a notification to the participant on their mobile device by asking
to fill out the blanks. Second, LOCATOR offers suggestions with both temporal and
spatial information to the participants for these blanks. To do so, LOCATOR draws a ra-
dius of 100 m for each defined relevant place. It then detects in which time frames the
participant was within one of these circles and offers this information as a suggestion
for the diary. The main advantage of this strategy, in comparison to simply recalling
the place visits once a day, is the possibility to indicate the visits on a minute-basis,
which makes the diary more accurate.

3.4.3 Privacy Concerns

Individuals are very sensitive about their privacy, in particular, when it comes to
tracking their location [17]. Therefore, we undergo several steps to ensure partici-
pants’ privacy and to comply with the ethics. Figure 3.5 depicts the corresponding
steps that we now briefly describe. First, we prepare and distribute a privacy policy
that informs all participants about the goal of our DCC, which data will be collected
and where it will be stored, how the data will be used and by whom, how the partic-
ipants can withdraw from the campaign, and how they can review, edit, and delete
the collected data. Before participating in the campaign, each individual need to sign
the policy allowing us to collect the data as stated there. The privacy policy is shown
in Appendix B. Second, we ensure that the entire communication between LOCATOR

and our server is encrypted with state-of-the-art security approaches. Third, we de-
velop a secure web portal that can be used by the participants to review their col-
lected data. If necessary, the web portal allows modifying and deleting participants’
data too. Fourth, LOCATOR offers a feature to deactivate the DCC at any time and for
as long as the participant wishes. In contrast to that, Device Analyzer application
that is used to collect the Device Analyzer data set resumes automatically the data
collection after one day. Fifth, for some data, LOCATOR already performs anonymiza-
tion of the mobile device. For instance, all phone numbers are already hashed before
they are transmitted to the server unit.

3.4.4 Description of the JK2013 Data Set

The outcome of our five weeks DCC is the JK2013 data set containing data from six
participants. Table 3.3 shows an overview of all tables of the JK2013 data set. The
first nine tables contain sensor raw data such as Bluetooth scans or battery status.
Each entry has its own unique ID. The six participants are identified according to
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Automatic upload
of user data every 1 hour

User smartphone

Deactivate
sensor collection on
smartphone itself

Device with web browser

Edit or delete user data
every time with user login

Online storage database

Figure 3.5: Data flow of sensor and ground-truth data of our data collection campaign. The
data of the smartphones is uploaded regularly to an online storage database. The
user has privacy options on the device itself and additional access for modifica-
tions with a web browser and his own user login.

a hashed unique ID of their mobile device in the data set. Therefore, each data set
entry is also linked to one participant. Another helpful characteristic of the JK2013

data set is the fact that all sensor readings whose collection was triggered at the same
time, also contain the same timestamp regardless of the potential delays during the
acquisition phase. This feature allows individuals who work with this data set to
easily link entries of the different tables.

In addition to raw data, we also store mobility ground-truth information in two
separate tables for each participant. The first table describes each participants’ rele-
vant places and is called data_<PARTICIPANT_ID>_contextplaces. It has three values
for each entry, namely, the name of the place and its GPS coordinates (latitude and
longitude). The second table is the participants’ diary of their visits to these places
and is called data_<PARTICIPANT_ID>_diary. Each entry corresponds to one visit in
the diary indicating the name of the relevant place and two unix timestamps that
correspond to the arrival and departure events.

Lastly, the last data set table survey contains participants’ answers to the interview
that we conducted after the DCC. These answers categorize participants’ relevant
places according to a given schema.

Amount of Collected Data

As stated earlier, the goal of this DCC is to collect highly accurate and complete
records of participants’ mobility. Table 3.4 shows for each participant how many
data is collected for each sensor. It also shows the temporal data coverage, i.e., the
amount of time LOCATOR was running on the participants’ mobile device with respect
to the entire collection period. We also observe that half of the participants turned
off the data collection for the accelerometer during the campaign.

For each participant, we compute the temporal data coverage as follows. First, we
extract the first and last timestamp for the given participant. We then compute how
many records should be expected between these two timestamps given the sampling
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Table 3.3: Database tables and their content of the data collection campaign.
Data set table Content

accelerometerProbe Accelerometer sensor

batteryProbe Battery sensor

bluetoothProbe Bluetooth sensor

calllogProbe Call logs

cellProbe Connected cell towers

helperProbe Virtual helper sensor

locationProbe Location sensor

screenProbe Screen activity

wifiProbe Wi-Fi sensor

data_2ac_contextplaces Relevant places of the mobile device 2ac

data_2ac_diary Diary of the mobile device 2ac

data_2d3_contextplaces Relevant places of the mobile device 2d3

data_2d3_diary Diary of the mobile device 2d3

data_605_contextplaces Relevant places of the mobile device 605

data_605_diary Diary of the mobile device 605

data_a17_contextplaces Relevant places of the mobile device a17

data_a17_diary Diary of the mobile device a17

data_b16_contextplaces Relevant places of the mobile device b16

data_b16_diary Diary of the mobile device b16

data_cbe_contextplaces Relevant places of the mobile device cbe

data_cbe_diary Diary of the mobile device cbe

survey Results of the survey and place categorizations

rate of one minute. We then divide the number of records of the virtual helper sensor,
which is a dummy sensor that generates an entry according to the sampling rate, by
the number of records we should expect given the two aforementioned timestamps.
For instance, the collection campaign was officially kicked-off on June 10, 2013 and
ended on July 14, 2013. This corresponds to exactly 35 days or five weeks. Given
the sampling rate of 1/60 Hz, i.e., one minute, we end up with 50,400 expected data
entries in this period. However, some of the participants did not stop to collect data
after July 14 corresponding to the amount of data that exceeds the expected number.
This is, for instance, the case for the participant a17. Table 3.4 shows that five out of
six participants have a temporal data coverage of above 94.1% that corresponds to at
most two days of missing data. Furthermore, two participants have a data coverage
of above 99.2% corresponding to roughly six hours of missing data.

3.4.5 Categories of Relevant Places

During the data collection every participant indicated her relevant places on a map.
After the DCC, we conducted a set of interviews with the participants to link their
places to a set of predefined place categories. In total, the relevant places of the six
participants accumulate to 158 relevant places. We divide these places into private
and public ones. While private places can only be visited by a restricted group of
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Table 3.4: The amount of collected sensor raw data and the accumulated temporal data cov-
erage per participant.
Type of data 2ac 2d3 605 a17 b16 cbe

Virtual helper 44,215 49,336 48,664 51,486 48,156 50,063

Battery 43,811 48,692 48,379 50,789 47,749 49,588

Accelerometer 32,994 5,254 36,507 44,849 423 24

Cell 44,128 49,034 48,602 51,153 47,916 49,785

Bluetooth 7,221 2,872 3,238 2,715 17,971 6,410

Wi-Fi 41,173 31,774 43,498 44,803 31,582 40,078

Screen 5,877 10,822 5,326 9,946 3,336 11,671

Call logs 87 38 34 35 31 13

Location 27,818 36,983 32,834 40,706 35,792 40,087

Temporal data coverage 85.2% 95.4% 94.1% 99.3% 95.2% 99.2%

individuals, e.g., the particular home, public places can accumulate hundreds and
thousands of other individuals. The latter group of places can also be shared among
individuals to obtain, for instance, a broader view of certain metropolitan areas. In
addition, assigning place categories allows restricting the set of the potential output
classes of a human mobility predictor. For instance, during lunch time, the given
predictor needs only to consider places that are labeled as restaurants as the potential
prediction. We review the literature and come up with the following place categories
that we consider:

• Private, 54 places

– Home, 6 places

– Work, 10 places

– Friends (Friends, Family, Colleagues), 37 places

– Vacation, 0 places

– Other, 1 place

• Public, 104 places

– Food and Drink (Restaurant, Bar, Cafe), 12 places

– Shopping (Supermarket, Stores), 15 places

– Cultural and Entertainment (Theater, Cinema, Church, Events), 20 places

– Educational (School, University, Library), 13 places

– Sports (Indoor, Outdoor), 15 place

– Parks, Outdoor and Public Places , 16 places

– Transportation (Station, Airport), 7 places

– Service (Doctor, Bank, Hairdresser), 5 places

– Other, 1 place

Lastly, Figure 3.6 shows the distribution of all 158 relevant places across the de-
fined place categories. We observe that there are almost twice as many public places
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Figure 3.6: Distribution of relevant places across the predefined place categories.
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Figure 3.7: Percentage of time spent by the six participants at their three most relevant places.
The plot also indicates the percentage of time spend in other places rather than
the three most relevant ones and the percentage of time for which the participant
was “on the road” or the data is missing (Lx).

than private. The most dominated category is related to places of participants’ friends.
This observation backs up the rationale behind the incorporation of social context
data into human mobility predictions [65, 66].

3.4.6 Residence Time Spend at Relevant Places

Similar to the previously discussed human mobility data sets, we also examine the
distribution of residence times across participants relevant places. Figure 3.7 reports
the amount of time each participant of our DCC spends at the three most relevant
places L1, L2, and L3. We also include the accumulated value for the remaining places
as well as Lx that corresponds to the participants diary entry “On the way”.

The residence times range between 38% and 75% for L1 with an average of 59%
of time. For the second most visited place L2, the participants spend 14% of their
time there, on average. The participants spend about 5% of their time at L3, on
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average. Lastly, the remaining places and Lx account to the average of 13% and 10%
of participants’ time, respectively. The results show that the three relevant places at
which the participants spend most of their time accumulate to 78% of the entire time.

3.4.7 Demographics of the DCC Participants

Finally, we now briefly review participants’ demographic data. All six participants
are related to the organizers of the DCC. Their age ranges between 22 and 26 years
and there are five male and one female participants. They all live and work or study
in the same mid-size city in Germany. Lastly, we provide an anonymized description
of each participant by indicating her unique ID.

• a17: This participant is a student working most of the time at home. Sometimes
the participant visits the university in about 25 km distance. Most of the rele-
vant places of this participant are in the same city. As means of transportation,
the participant mostly uses a bicycle and a train.

• b16: This participant is an employee with two workplaces and flexible work
time about 8 km away from home. Most of the relevant places of this participant
are in the same city. The own car or bicycle is the most frequently used means
of transportation.

• cbe: This student regularly visits the university in about 25 km distance. The
most relevant places of this participant are distributed among two close-by
cities. The own car, bicycle, or train are the most frequently used means of
transportation.

• 605: This employee has fixed work time about 2 km away from home. The
most relevant places are located in the same city. The own bicycle is the most
preferred means of transportation.

• 2d3: This participant is a student working most of the time at home. Sometimes
the participant visits the university in about 25 km distance. Most of the rele-
vant places of this participant are in the same city. As means of transportation,
the participant mostly uses the own car, bicycle and train.

• 2ac: This employee has flexible work time and lives 3 km away from workplace.
Several relevant places are distributed among three cities. Public transportation
is the mostly preferred way to commute.

3.5 the ubidcc data set

Several researchers focus on exploring parameters that influence (1) human mobility
in daily life and (2) performance in predicting it [22, 47, 71]. To this end, historical
mobility data is studied to reveal and extract latent patterns. These patterns are
used to predict users’ mobility, e.g., which place will the user visit next. Predicting
human mobility is relevant in many application scenarios. For instance, predicting
at which point in time a person will arrive at home fosters the realization of smart
heating systems. However, predicting human mobility at short-term events, such as
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conferences or sport events, gained much less attention by the research community.
This is not at least due to the lack of existing human mobility data sets from such
events.

Therefore, we design, deploy, and report on our DCC at an international confer-
ence with over 700 attendees. In particular, we collect (1) Bluetooth and Wi-Fi raw
data of 37 active participants and (2) their demographic data. Furthermore, we pro-
cess raw data and contribute mobility traces of nearly 1,200 devices at the venue.
We then describe and publish our data set to which we refer as the UbiComp Data

Collection Campaign (UbiDCC) data set [24]. In addition to the anonymized raw
data, we inject auxiliary information extracted after data processing. This informa-
tion includes location data of devices and Wi-Fi APs, a schedule of scientific talks
given during the conference, corresponding rooms and their relative location to each
other, and session names. Demographic data for almost all participants included in
the UbiDCC is available too. Lastly, we make our client-server implementation of the
Android application publicly available [24]. It was used during the campaign and is
a slight adaptation of LOCATOR that we presented in Section 3.4.1. Our work allows
researchers to reduce their effort to run further DCCs by reusing and adopting our
code.

3.5.1 Setup of our DCC

To conduct this DCC, several steps are necessary. First, we adopt LOCATOR and the
corresponding back-end service for the requirements of the UbiDCC. Second, we de-
sign strategies for collecting participants’ ground-truth location data at the venue.
Third, we develop strategies to advertise the campaign and to incentivize people to
participate in it. Lastly, we address the potential privacy and security aspects.

Android Application for Data Collection

We adopt LOCATOR and the corresponding back-end service to run the UbiDCC. The
resulting Android application consists of five screens, as shown in Figure 3.8. The
screen in the middle of Figure 3.8 provides the description of our DCC. This is the
first screen participants see after starting the application for the first time. How-
ever, users can navigate back to this screen at anytime and from any other screen
of the application. The two screens on the left side allow participants to enter, re-
view, edit, or delete their demographic data. The second screen from the right is the
one participants see most of the time when interacting with the application. It pro-
vides participants with an overview of their own status of participance. For instance,
whether the application is currently collecting data or whether participant’s demo-
graphic data has been uploaded to our server successfully. Finally, we implement a
certain condition that needs to be met to activate the rightmost screen. This screen
allows participants to register for a lottery to win a voucher, which is part of our
incentive initiative.

Static Encounters

We are interested in capturing participants’ mobility at the conference venue. To do
so, we obtain approximate location data of each Wi-Fi AP from the Wi-Fi network
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Figure 3.8: Screens of our Android application.

operator at the venue. Second, we install 24 mobile phones at fixed locations. We
refer to these phones as the static encounters.

There are two major reasons behind the choice to install static encounters. First,
having static encounters that collect data allows us to extract a more fine-grained lo-
cation data and thus mobility of participants with respect to relying on data collected
by the participants of our DCC only. Second, a high temporal and spatial coverage
by the static encounters at the conference venue allows us to passively track individ-
uals’ devices such as phones, laptops, or Google Glasses. This strategy is similar to
the approach introduced by Musa et al. [149].

We use 24 Samsung Nexus Galaxy devices as static encounters. We place them in
sealed plastic cases for security reasons. Figure 3.9 shows one of the static encounters
that we use in our DCC. We attach all encounters to a power outlet to ensure their
continuous availability and to be able to sample data at high rates.

Advertisements, Incentives, and Privacy

To attract a critical mass of participants we pursue a number of strategies. First,
we publish an article in the official UbiComp 2013 blog introducing our DCC [202].
Second, we ask several conference attendees to spread the word about the campaign
among their friends and colleagues at the conference. Lastly, we distribute flyers as
shown in Figure 3.10. The front side of the flyer provides instructions on how to
participate in our DCC. The back side contains a description of our DCC.

We further establish a lottery to incentivize conference attendees to participate in
our DCC. To this end, we allow participants who contribute at least 1.5 days of data
to register for this lottery. Each of the registered participants get the same chance to
win one of the three $100 Amazon vouchers. Finally, we compile a two-page long
privacy policy that summarizes all the important information about our DCC that is
also shown on the flyer in Figure 3.10.

3.5.2 Preparing the UbiDCC Data Set

The key outcome of our DCC is the UbiDCC data set. The data set contains Bluetooth
and Wi-Fi sensor readings collected by 37 participants and three static encounters.



3.5 the ubidcc data set 47

(a) Phone inside a case. (b) Prepared for deployment.

Figure 3.9: Static encounters installed at the venue.

Table 3.5: UbiDCC data types and the amount for each type.

Data type
Quantity

Bluetooth Wi-Fi

Number of unique devices 1,200 4,815

Number of observations 234,746 853,636

Number of unique device classes 21 –

Unfortunately, 21 out of 24 encounters were not able to collect data due to a software
update that forced them to restart about 30 minutes after our DCC was kicked-off.
Due to the lack of a monitoring solution for these devices, we were only be able
to detect this issue shortly before the end of the campaign. Nevertheless, we show
how we manage to overcome this issue by leveraging location data of the Wi-Fi APs,
the remaining three encounters, and by self-recalling sessions visited by the DCC
organizers. This step allows us to boost the amount of devices and their mobility
being tracked at the conference venue in these three days.

Table 3.5 summarizes the amount of raw data collected during the campaign. Ta-
ble 3.6 reports demographic data provided by the participants. In the following, we
explain (1) the anonymization process, (2) how we track devices passively, and (3)
how we assign location data to the observed devices.

6 The total number of answers might be lower than the number of participants as some of them did not
indicate their demographics.

7 The fraction is computed over the number of people participated in our DCC, i.e., excluding the static
encounters.
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 UbiComp 2013 Data Collection Campaign   
What is the UbiComp 2013 Data Collection Campaign? 
The UbiComp 2013 Data Collection Campaign -- UbiComp 2013 DCC for short -- is an effort to 
collect a data set for research purposes. The goal of the UbiComp 2013 DCC is to gather 
mobility traces of individuals in indoor environments.  
Which data is collected? 
The app scans regularly for visible Wi-Fi access points and Bluetooth devices and logs their 
identifiers (along with a timestamp). The data is stored on the phone first and offloaded to a 
remote server whenever a Wi-Fi connection is available.  
When is the data collected? 
The app will run during the whole UbiComp 2013 conference. However, it will actually only 
record its data during the official “conference hours” – from the start of the first session until 
the end of the last session of each day. The rest of the time the app just sleeps. You can of 
course manually suspend all tracking at any time, directly in the app. 
What do you plan to do with the data?  
We want to analyze individuals’ and groups’ “micro-mobility” behavior. Hopefully, enough 
attendees will install the app so that we can collect a valuable data set for the research 
community. 
Is the data going to be publicly available?  
Yes, that is definitely the plan. Also, those who will help us with the collection by installing the 
app will get “early access” to it – as soon as we have done the initial clean-up of the data. The 
only catch is that we ask you to leave the app running for at least 40% of the conference hours 
for this. An indicator within the app will show you how close you are to that goal. As an 
additional incentive we will raffle three Amazon gift vouchers in the amount of 100.- USD 
among these participants!  
How do you know where to send my voucher to?  
Once you reach that 40% goal, you will be able to submit your e-mail address directly in the 
app. This will allow you to participate in the raffle and to be included in the “early access” list. 
Who are the organizers of the UbiComp 2013 DCC? 
The UbiComp 2013 DCC is a joint project of the Wireless Sensor Networks Lab (WSN Lab) and 
Multimedia Communication Lab (KOM) of TU Darmstadt, Germany and of the Distributed 
Systems Group (DS Group) of ETH Zurich, Switzerland. The team is composed of Paul Baumann 
and Silvia Santini (WSN Lab), Björn Richerzhagen (KOM), and Wilhelm Kleiminger  (DS Group).  
Should you have any other question contact us at:  ubidcc@wsn.tu-darmstadt.de.    
More information: www.wsn.tu-darmstadt.de/ubidcc  
UbiComp 2013 DCC privacy policy: www.wsn.tu-darmstadt.de/ubidcc/policy   

(b) Back side of the flyer.

Figure 3.10: Both sides of our flyer that advertises our DCC.

Anonymization of the Data Set

To protect privacy of the participants of our DCC, we apply an anonymization tech-
nique similar to the one used by Laurila et al. [127]. We differentiate between three
types of devices. Namely, (1) personal devices, (2) Wi-Fi APs belonging to the con-
ference venue to which we refer as the on-site Wi-Fi APs, and all other Wi-Fi APs to
which we refer as the external Wi-Fi APs. We further split the personal devices into
active devices and passive devices. The former ones collect the corresponding sensor
readings. The latter ones are observed in Bluetooth scans by the active devices.

We anonymize only data related to personal devices, e.g., device’s Unique Iden-
tifier (UID) or name, and external Wi-Fi APs. The rationale behind this step is to
maintain the data set as less altered as possible and thus as valuable for research pur-
poses as possible. For the Wi-Fi records, the most sensitive data fields are the Media
Access Control (MAC) addresses and Service Set Identifier (SSID). For the Bluetooth
records containing information about personal devices, these sensitive fields are the
device names, their UID, and MAC addresses. We leave the Received Signal Strength
Indication (RSSI) values and frequency unaltered. We leverage a SHA256 hash func-
tion and two private salts, similar to [127]. Anonymized data is derived as follows:
SHA256(salt1||value||salt2), where value represents the information that should
be anonymized.

SSIDs, MAC addresses, location, and other data related to the on-site Wi-Fi APs
remain in clear text. The first six digits of all MAC addresses also remain in clear
text as they refer to the manufacturer (Organizationally Unique Identifier (OUI)). We
anonymize the last six digits, which specify the Network Inferface Controller (NIC),
of all MAC addresses belonging to personal devices and external Wi-Fi APs. The
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Table 3.6: Collected demographic data for the UbiDCC data set.

Label Code Description Total6 Fraction7

u_female 0 Female 10 29.4%

u_male 1 Male 23 67.6%

u_academia 0 Academia 26 76.5%

u_industry 1 Industry 7 20.6%

u_student 0 Student or PhD student 20 58.8%

u_senior 1 Post-doc / senior researcher 4 11.8%

u_faculty 2 Faculty member 4 11.8%

u_other 3 Other 5 14.7%

u_22_27 0 Between 22 and 27 years old 10 29.4%

u_28_33 1 Between 28 and 33 years old 14 41.2%

u_34_38 2 Between 34 and 38 years old 3 8.8%

u_39_44 3 Between 39 and 44 years old 3 8.8%

u_45 4 Older than 45 years 2 5.9%

names of all personal devices, their UID, and Wi-Fi SSIDs of the external Wi-Fi APs
are hashed too. Lastly, we bin age information of participants to similar bins as used
by Laurila et al. [127] and present them in Table 5.1.

Passive Device Tracking

Achieving a critical mass of participants to collect a substantial amount of data and
thus to make a data set valuable for research purposes is challenging. In comparison
to the open-world DCCs in which participants can move wherever they want, collect-
ing data at conferences has a significant advantage. Wi-Fi and Bluetooth readings
collected by active devices and static encounters has both high temporal and spatial
coverage. It allows us to adopt passive tracking techniques – like those presented by
Musa et al. [149] – to passively track users’ devices at the conference. This advantage
allows us to increase the amount of mobility traces and data points available in the
data set.

We analyze whether and to what extent we are able to increase the quality of the
UbiDCC data set after utilizing the passive tracking technique. We measure the impact
of this technique in terms of the amount of mobility traces collected and data sparsity
for each trace. Figure 3.11 shows the percentage of time slots for which location data
is available. For instance, a data point (x=10, y=50) on the plot indicates that there
are 10 active devices exist for which location data is available in at least 50% of time
slots. We observe that by adding data from passively tracked devices, the number
of unique devices increases from 37 to over 1,200. Furthermore, the amount of time
slots with location data also increases. We exemplary choose 15-minutes time slots
without claiming it to be the best choice. Other techniques can be applied by the
researchers who use this data set to fill the gaps between sensor readings.
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Figure 3.11: Percentage of 15-minutes time slots for which location data is available.

Table 3.7: Location data of our static encounters and the corresponding database ID.

Database ID Venue area

2 UbiComp-room3

15 UbiComp-room2

17 Main area (registration desk)

Assigning Location Data

The UbiComp/ISWC 2013 conference featured four parallel tracks, each of them
held in a separate room in two buildings that share a stairway. Further venue areas
are the Student Volunteer (SV) lounge, HPH-corridor (corridor of the building in
which the UbiComp rooms and the main area are located), HPV-corridor (corridor
of the building in which the ISWC room and SV lounge are located), and the main
area that was used for all breaks, reception, and poster and demo sessions. This
results in eight distinct venue areas in total. The size of the main area is the largest
one. Therefore, we split it into multiple room areas. These areas are shown in the floor
plan of the main area in Figure 3.12. Users of the UbiDCC data set can then apply
further processing techniques to estimate devices’ location within the main area.

To assign a venue area to each device, we apply a multi-stage process, which we
adopt from related work [205, 206]. We estimate for each sensor reading of an ac-
tive device its location by leveraging the following data sources. First, we leverage
ground-truth location data of the on-site Wi-Fi APs. Second, we collect location data
in terms of the venue area of our static encounters. This information and the corre-
sponding data set ID (Table devices) of our encounters are shown in Table 3.7. Third,
we self-recall which sessions the organizers of this DCC attended and indicate them
in a user diary.

We assign location label UNKNOWN to all external APs to comply with our privacy
policy. For each Wi-Fi scan performed by an active device, we apply a majority vote
to location data associated with the observed Wi-Fi APs. For instance, if a Wi-Fi scan
contains information about 10 Wi-Fi APs, while six of them belong to the main area
and four of them belong to the HPH-corridor, then the majority vote assigns the
main area as the venue area to the given Wi-Fi scan.

We validate the quality of majority vote for estimating devices’ location. To this
end, we run experiments in which we compare ground-truth location data obtained
from the static encounters and user diaries to those extracted by the majority vote.
Our observations indicate that applying majority vote allows us to accurately sepa-
rate and assign venue areas.
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Notes HPH floor D

4

3

2

main 
entrance

stairs to lecture rooms
G1,G2,G3,G4 (floor G)

1: registration & information desk
2: sponsors & exhibitors
3: demos & posters
4: ISWC design exhibition
5: lunch & coffee breaks: downstairs (floor C)

1

stairs to lunch & 
coffee breaks (floor C)

5

5

Front&le)&area& Back&le)&area&

Front&right&area& Back&right&area&

Figure 3.12: Floor plan of the main area.

Lastly, location data of each active device is transitively assigned to all passive
devices observed in the temporally closest Bluetooth scan. We set the range of the
temporal closeness to ±1 minute. We believe that one minute is a fair range to cope
with the unsynchronized readings of Wi-Fi and Bluetooth sensors. Overall, we obtain
286,765 location data points in total. Given that, 88.9% of them contain location data
referring to one of the venue’s areas.

3.5.3 Data Set Description

The resulting structure of our UbiDCC data set is shown in Figure 3.13. It is com-
prised of eight tables that contain both raw sensor data and additional information
obtained as described in Section 3.5.2. Primary Key (PK) in all tables is the field
id. We further store all MAC addresses both for Wi-Fi and Bluetooth readings in
two separate data set fields that correspond to OUI and NIC. Some of these tables
contain Foreign Keys (FKs) to another tables. For instance, tables demographic_data,
bluetooth_scans, location, and wifi_scans can use FK device_id to obtain addi-
tional information about the particular device by linking it to the table devices. We
now describe these tables more in detail.
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rooms%
!  PK:$id$
!  name$
!  building$
!  floor$

loca)on%
!  PK:$id$
!  unix_4mestamp$
!  FK:$device_id$
!  FK:$top_1_room_id$
!  FK:$top_2_room_id$
!  top_1_confidence$
!  top_2_confidence$
!  is_passive_observed$

conference_schedule%
!  PK:$id$
!  FK:$room_id$
!  start_4me$
!  end_4me$
!  session_4tle$
!  talk_4tle$
!  is_best_paper_award$
!  is_best_paper_nominee$

wifi_scans%
!  PK:$id$
!  FK:$device_id$
!  FK:$wifi_ap_id$
!  unix_4mestamp$
!  rssi$
!  frequency$
!  capabili4es$

wifi_aps%
!  PK:$id$
!  FK:$room_id$
!  ssid$
!  wifi_mac_oui$
!  wifi_mac_nic$
!  area_in_room$

bluetooth_scans%
!  PK:$id$
!  FK:$observer_device_id$
!  unix_4mestamp$
!  rssi$
!  FK:$observed_device_id$

devices%
!  PK:$id$
!  uid$
!  name$
!  wifi_mac_oui$
!  wifi_mac_nic$
!  bluetooth_mac_oui$
!  bluetooth_mac_nic$
!  device_class$
!  is_encounter$
!  is_dcc_par4cipant$

$

demographic_data%
!  PK:$id$
!  FK:$device_id$
!  age$
!  gender$
!  role$
!  work_area$

Figure 3.13: Structure of the UbiDCC data set.

Devices

This table contains information about active and passive personal devices. For each
record in this table, we store devices’ Bluetooth MAC address, which is split into
OUI and NIC, device class, e.g., phone, laptop, or wearable, whether it is an en-
counter (is_encounter), and whether it is a participant (active device) of this DCC
(is_dcc_participant).8 We also store Wi-Fi MAC addresses and the devices’ UID,
both anonymized as described in Section 3.5.2, for active devices only.

Demographic_data

This table contains demographics provided by the participants of our DCC. In partic-
ular, we asked for participants’ age, gender, working area, and whether the person
works in academia or industry. We replace the clear text answers by numerical codes
to decrease the size of our data set and to allow users’ to create database indices for
the particular columns. The corresponding data set codes for each label are shown
in the second column from the left in Table 5.1.

Bluetooth_scans

This table contains Bluetooth records captured by active devices. Each active device
performs and collects Bluetooth scans every 20 seconds. Each of these scans contain
information about passive devices observed in the certain proximity. For each record
in the data set, we store the unix timestamp, corresponding RSSI value, and device
class.

Furthermore, two FKs that can be linked to the table devices are stored. The
numeric value in the field observer_device_id corresponds to PK id of the active
device that performed the particular Bluetooth scan. Finally, observed_device_id
corresponds to the passive device observed in the given scan.

8 http://developer.android.com/reference/android/bluetooth/BluetoothClass.Device.html
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Wifi_scans

It contains Wi-Fi records captured by active devices. In particular, the unix times-
tamp, RSSI value, frequency, and capabilities of the corresponding Wi-Fi AP are
stored. Each record of this table contains FK wifi_ap_id allowing to link it to the ta-
ble wifi_aps. This step allows users of our data set to obtain additional information
about the Wi-Fi AP, e.g., MAC address or its location at the venue.

Wifi_aps

This table contains data about both on-site and external Wi-Fi APs observed during
our DCC. Beside SSID and MAC address, it also includes information about APs’
location at the venue. First, FK room_id can be linked to the table rooms. It allows
us to get information about the venue area at which the particular Wi-Fi AP is de-
ployed. Second, several Wi-Fi APs provide additional textual information about their
approximate room area, e.g., front or back with respect to the position of the speaker
podium. Finally and similar to the table devices, MAC addresses are split into OUI
and NIC. The latter data field is anonymized for all external APs.

Rooms

This table provides information about the eight venue areas as introduced in Sec-
tion 3.5.2. In particular, we store the clear text name of each venue area, in which
building (HPH or HPV) the particular venue area is located, and on which floor. Re-
garding the floor information, we differentiate between Floor D (lower) and Floor G
(upper). The main area is located on Floor D and all remaining areas on Floor G.

Conference_schedule

Our data set also features a detailed list of all sessions that took place during the
conference. The start and end times of each session represent the official sched-
ule. Almost all sessions managed to stay in time. We also indicate the names of
the sessions and talks in clear text as well as FK to the room in which the ses-
sion was held. For each talk, we indicate with the keys is_best_paper_award and
is_best_paper_nominee whether it is awarded best paper or nominated, respectively.
Finally, the corresponding FK to the venue area in which the particular session took
place is stored too. In addition to the scientific sessions, this table also contains lunch
and coffee breaks, which took all place in the main area.

Location

For each active and passive device contained in a Wi-Fi or Bluetooth scan, its most
likely and second-most likely venue areas are stored by that FKs top_1_room_id and
top_2_room_id, respectively. We further indicate the confidence of these estimations
with the keys top_1_confidence and top_2_confidence. The confidence value is
computed as the fraction of Wi-Fi APs observed in the given Wi-Fi scan and deployed
in the particular venue area over the total number of APs in the same scan. For
instance, if the Wi-Fi scan contains data of four Wi-Fi APs {AP1,AP2,AP3,AP4}
and the first three APs {AP1,AP2,AP3} are all located in the main area, then the
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confidence that the given observation is made at the main area is 75%. In this case,
we store the value 0.75 for the key top_1_confidence in the data set.

Finally, is_passive_observed indicates whether the location data is estimated
based on our passively tracking technique.

3.6 overview of other data sets and their comparison

In this thesis, we leverage three large, publicly available data sets. Furthermore, we
contribute two additional human mobility data sets. Although there are several other
data sets existing and publicly available, there are several major differences to the
contributed JK2013 and UbiDCC data sets.

With the JK2013 data set, we focus on collecting fine-grained, high quality ground-
truth mobility data. With the UbiDCC data set, we focus on capturing mobility at
short-term events instead of daily life routines. In this sense, the set of visitable
places at the venue is fixed and is the same for all participants. With respect to other
existing data sets that were collected at conferences, we focus on capturing mobility
data in addition to Bluetooth records. Overall, we consider our both data sets as
complementary to the already existing.

In general, several attempts were undertaken to collect users’ mobility data [23,
45, 75, 100, 127, 167, 173, 194, 205, 207]. Song et al. collected Wi-Fi syslog messages
for almost two years at Dartmouth College in order to track Wi-Fi devices on the
campus [194]. Eagle and Pentland collected data from almost 100 students over a
period of up to nine months in the context of the RealityMining project [75]. Chon et al.
implemented a mobility monitoring system called LifeMap and collected mobility
data from eight graduate students [46]. Vu et al. collected Bluetooth and Wi-Fi traces
of 123 participants at the campus of University of Illinois for nearly six months [205].

Some DCCs took place during conferences [100, 167, 173]. Rodrig et al. moni-
tored Wi-Fi traffic to understand how well 802.11 operates in real deployment [173].
Hui et al. equipped 54 conference participants with Bluetooth beacons [100]. The re-
sulting data allowed the authors to analyze the time between node contacts in order
to design novel packet forwarding algorithms in a Delay Tolerated Network (DTN).
Similarly, Pietilainen et al. collected Bluetooth scans, social profiles, and other data
of 28 participants at a scientific conference [167]. The rationale behind this study
was to evaluate a middleware for forming and exploiting ad hoc social networks to
disseminate content. Given the amount of available and related data sets, Table 3.8
compares them in terms of some selected characteristics.
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Part II

H U M A N M O B I L I T Y P R E D I C T I O N





4
M O D E L S E L E C T I O N F O R H U M A N M O B I L I T Y P R E D I C T I O N

Predicting human mobility has long been a topic of interest for both researchers
and practitioners. Many application scenarios for mobile applications running

on mobile devices relies on the ability to predict human mobility. For instance,
the availability of accurate mobility predictions enables applications such as home
automation [179, 116], handover management [193], or dissemination of location-
related data [4].

However, accurately predicting human mobility requires careful attention to a
number of important parameters: the choice of an adequate prediction algorithm
– or predictor [193, 71, 47, 22]; the identification of data features to input into the
selected predictor [70, 71]; and the selection of adequate metrics for evaluating the
predictors’ performance [22]. Do and Gatica-Perez measured accuracy while predict-
ing users’ next visited place [71]. The values ranged between 32.1% and 54.3% for
different combinations of six considered data features. Furthermore, the accuracy
values ranged between 36.8% and 65.7% while different predictors were applied. In
our experiments, we measured similar differences in performance for a set of per-
formance metrics and prediction tasks. From the practical point of view this implies
that a mobile application running on a mobile device produces twice as much errors
in the worst case compared to the best case. This occurs just because of a wrong
choice of data features and predictor.

These noteworthy differences in performance measured with respect to the chosen
data features and predictors motivate our work. We argue that identifying best per-
forming data features and prediction algorithms needs to be set in the perspective
of the underlying prediction problem and metric that is required to be optimized. In
this chapter, we first take a holistic and quantitative approach to investigate which
data features and predictors can be used to optimize metrics for a set of different
prediction tasks. Then, we design and propose SELECTOR – a novel algorithm for
comparing and selecting human mobility prediction models that allow optimizing a
certain prediction metric while solving the particular prediction task.

4.1 terminology and contributions of this chapter

We define the human mobility prediction model selection problem as the problem of
finding a combination of data features and a predictor that optimizes a specific met-
ric while solving a human mobility prediction task. Mobile devices allow leveraging
several promising data sources that can be used for mobility prediction. We divide
these sources into three categories: spatial, temporal, and phone context, which corre-
spond to the three mobility perspectives defined by Kakihara and Sørensen [107, 108].
We refer to spatial features as those that are related to any data describing individu-
als’ geographical location such as GPS coordinates or symbolical locations, e.g., home
or work. An individual’s most recently visited relevant place and the current one are
two examples of spatial features. Temporal features describe any type of temporal
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information such as current hour of day, day of week, whether it is a work day or
weekend, or month of year. Additionally, calendar entries, applications usage logs,
and call logs were successfully used in different domains [185, 195, 71]. We refer to
this type of data as the phone context data. However, collecting such data is a sig-
nificant intrusion in users’ privacy. Furthermore, it is still unclear how and to what
extent this information can be used to increase a predictor’s performance. As part of
this work, we address this shortcoming by focusing on understanding the impact of
temporal, spatial, and phone context data on the ability to predict human mobility.

Definition 4.1.1 (Individual (mobility prediction) model)
We define an individual mobility prediction model – or simply individual model – IM

as the tuple IM(M, T) = {P, F ′} of user U, whereas P is the predictor and F ′ is
a feature subset of a feature set F . We refer to all tuples of P and F ′ as candidate
individual models, regardless whether they are able to optimize the performance
metric M for the prediction task T . Given a set of candidate individual models,
there is at least one of them that optimizes the metric M for the prediction task
T , to which we then refer as the user’s individual model.

An accurate choice of a predictor and features allows us to maximize performance
in solving a particular prediction task with respect to a given metric. This choice is
made based on the analysis of historical mobility data. However, having a substan-
tial amount of historical mobility data for an individual is not always possible. In
particular, historical mobility data is not available when users install new services
on their mobile devices. It requires weeks or months to collect enough mobility data
before the user can start benefiting from such services. This problem is known as the
cold-start problem [177, 143].

To overcome this problem, models that capture generic mobility properties of indi-
viduals were introduced. These models do not require any a priori knowledge about
the mobility patterns of individuals [111, 70, 71, 143, 222].

Definition 4.1.2 (Population (mobility prediction) model)
We refer to such models as the population models [68, 143], as they capture generic
mobility characteristics of a given population. We define a population model
PM as the tuple PM(M, T) = {P, F ′} of the given population, whereas P is the
predictor and F ′ is the feature subset of the set F . Similar to the individual
models, we define candidate population models and indicate those models that
optimize the given metric for the particular prediction task as the population
models.

Despite the number of existing population models, limited emphasis has been
placed on the analysis of which predictors and features allow for the optimization
of a specific metric while predicting human mobility. Over the last decade several
methods to predict human mobility have been introduced. Furthermore, with the
availability of mobile devices and the possibility to extract user-related data from
sensors and social networks, the number of potential data features that can be used
for predictions has also increased. All of these aspects make it challenging to under-
stand which features and predictors allow for the optimization of a specific metric
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for a given prediction task. We address this challenge in our work by deriving popu-
lation models and comparing their performance to individual models.

Deriving population models from data of the entire population might, however,
introduce noise and thus decrease the models’ performance as some groups of indi-
viduals might exhibit different mobility patterns than others [222]. At the same time,
individuals in the same demographic group might have more similarities in their
mobility patterns in comparison to individuals of other demographic groups [143].
Therefore, we are interested in understanding whether and how demographics can
be used to group individuals so that deriving population models based on their data
improves predictors’ performance. We address this question by deriving population
models for 15 demographic groups and evaluating their performance.

Lastly, less effort is invested in the research community in understanding whether
building population models for different day-periods of time would improve mobil-
ity predictions. We also address this question. In summary, we provide the following
contributions.

temporal and spatial features analysis We conduct an exhaustive analy-
sis of temporal and spatial features on the performance of 18 Markov models
– all parametrized with different combinations of these features. Our results
reveal that temporal features optimize transition predictions, while the spa-
tial features are more reliable for optimizing predictors’ 1-step ahead accuracy.
Building upon these results, we inspect the potential performance gains of uti-
lizing ensemble learning. To this end, we combine the predictive power of all
considered 18 feature combinations and refer to this model as MAJOR. The pre-
diction accuracy of MAJOR is comparable to that of state-of-the-art approaches.
MAJOR can however also reliably predict transitions. Furthermore, we can esti-
mate the confidence of MAJOR’s predictions.

novel algorithm for selecting mobility models We present the design of
SELECTOR – a novel algorithm for selecting mobility models. We demonstrate
its effectiveness by deriving individual models for the individuals included in
the Nokia data set. Given these models, we analyze the impact of phone con-
text data on predictors’ performance. We show that the use of phone context
features does not lead to substantial performance improvements in solving the
considered prediction tasks. This implies that collecting such highly sensitive
information, e.g., phone call logs or application data, is often not justifiable
because it does not substantially improve predictions.

population mobility models By leveraging the aforementioned individual mo-
bility prediction models, we demonstrate how we derive population models to
tackle the cold-start problem. We show that our population models achieve a
comparable performance to that achieved by individual models. Furthermore,
despite a large number of features and predictors considered in this work, only
five features and two predictors appearing among eight out of nine population
models. We conclude that most of the individuals’ mobility decisions can be
captured with a small set of parameters. Researchers can use our population
models without the necessity of making any a priori assumptions about users’
mobility. These models are shown to achieve comparable performance results
to those achievable by individual models.
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robustness of our population models We show that our population mod-
els are robust against demographics. To this end, we derive population models
for different demographic groups. Our evaluation results show only slight me-
dian improvements in performance. We conclude that our population models,
which we derived using data from the entire population, are robust against
demographic data. Thus, demographics alone have a negligible influence on
predictors’ performance.

multiple mobility models to cope with day-periods of time We demon-
strate how much performance gains are achievable for population models by
considering different day-periods of time. Our results show median accuracy
and F1 score improvements of up to 4 percentage points for all demographic
groups. We conclude that considering separate models for different day-periods
of time allows improving the ability to predict human mobility.

The remainder of this chapter is partly based on previously published results [25,
22] by the author of this thesis and is structured as follows. Section 4.2 introduces
terminology, notation, data set, and metrics that we leverage for the analysis of tem-
poral and spatial features. We then describe this analysis in Section 4.3 along with
the performance results. In Section 4.4, we inspect the potential performance gains
achievable through applying ensemble learning. We then move on with the analysis
of phone context data, the design of SELECTOR, and constructing population models.
Section 4.5 describes our analysis setup, the rationale behind our specific choices of
predictors, prediction tasks and performance metrics, and our data pre-processing
steps. Section 4.6 introduces SELECTOR and presents its design. Then, we analyze the
influence of phone context features on the predictors’ performance and report the
results in Section 4.7. We derive population models to address the cold-start prob-
lem in Section 4.8 by also investigating which features and predictors are the best for
solving different prediction tasks. After that, we cover the analysis of the influence
of demographic data and day-periods of time on the predictors’ performance in Sec-
tion 4.9 and Section 4.10, respectively. We conclude this chapter with related work in
Section 4.11 and practical implications from our results in Section 4.12.

4.2 introducing temporal and spatial features

In the following, we focus on the influence of temporal and spatial features on the
predictors’ performance in solving the NSP and NST prediction tasks (cf. Section 2.6).
The performance of these prediction algorithms is typically evaluated in terms of the
1-step ahead prediction accuracy A1. High values of A1 – which is defined as the
ratio of the number of correct predictions and the number of all prediction attempts
– are easy to achieve even by naïve predictors. This is mainly due to the fact that
humans spend most of their time in few, well-defined places. For instance, Mon-
toliu et al. have shown that humans spend between 60% and 65% of their time at
home [148]. An algorithm that predicts home to always be the users’ place in the
next time slot can thus achieve accuracy values between 60% and 65% for most users.
Montoliu et al. have also shown that for most users the second most relevant place
is either the individual’s workplace or school/university. They also found that peo-
ple spend between 20% and 25% of their time at this location. A typical user thus
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spends, on average, about 20%–30% of her time at locations that are neither her home
nor her workplace (or school). A naïve mobility prediction algorithm can thus easily
achieve accuracies of about 80% by predicting the next place visited by the user in
time interval �t to be the same as the current one.1 Such an algorithm will, however,
always fail to correctly predict a transition of the user from home to the workplace
(or school) and vice versa. The ability to reliably predict transitions is, however, cru-
cial to support many applications such as urban navigation or smart heating control.
For instance, the more accurately transitions from and to the home can be predicted,
the higher the energy savings that can be achieved through an automatic heating
control system [179, 122, 116, 117]. These observations allow us to point out that
evaluating the performance of human mobility prediction algorithms only in terms
of accuracy might lead to biased conclusions. In particular, optimizing algorithms
only towards high values of accuracy might lead to approaches that are prone to
failure in practical settings.

To illustrate this issue in a quantitative manner, we analyze the performance of 18
Markov-based mobility predictors – each of them parametrized with a different com-
bination of temporal and spatial features. We run our analysis using actual human
mobility traces from the MDC data set – a large, publicly available data set as intro-
duced in Section 3.1.1. To measure the performance of the considered algorithms we
use a set of metrics that allow us to evaluate both the average prediction accuracy
as well as the ability of the algorithms to predict transitions. In the following, we
describe further terminology and notations that we utilize for this analysis part. The
results of our analysis are then presented and discussed in Section 4.3.

4.2.1 Parametrizing Markov Models with Temporal and Spatial Features

As defined in Section 2.1, we indicate with p[k] = {p1[k],p2[k], . . . ,pNL[k]} the
probabilities, at time step k, of the next location of the user being L1,L2, . . . ,LNL ,
respectively. For simplicity, we use the notation p to indicate p[k]. In their seminal
work Song et al. [191, 192] have shown that given the probabilities p the highest
prediction accuracy A1 is obtained by a predictor that chooses, at each time step k,
the next location as the location of the user Lj such that pj[k] = max(p[k]). This
Maximum Likelihood (ML) predictor is thus the one that can achieve the highest
accuracy among all predictors that use the same strategy to compute the probabilities
p.

For our analysis, we consider a set of predictors that use the ML strategy to deter-
mine the next-slot place but differ from each other for how they compute the prob-
abilities p. The simplest predictor that we consider computes the value of pj[k],∀k
as the probability pj of the user being at place Lj at any time. This algorithm – to
which we refer as the Prior predictor – will thus always choose the most visited place
L1 as the next-slot place. Most of the approaches existing in the literature use more
complex methods to compute p. In particular, they involve other features in the com-
putation of p, including the current location of the user (spatial features) or the time
of the day (temporal features). In other words, the probabilities p become conditional
probabilities.

1 This is consistent with the result obtained by Song et al. that the lower limit of the predictability of
human mobility is about 80%, on average [191].
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Several approaches vary the values of p depending on the current location of the
user ⌦s[k] [9]. Other approaches such as [193, 153] consider also the previous loca-
tion of the user ⌦s[k − 1]. These two approaches correspond to the use of a 1st or
2nd order Markov model, respectively. Comparing several different prediction algo-
rithms, Song et al. have indeed shown that 2nd order Markov models provide for
the best overall performance in terms of A1, on average [193].2 Besides making the
probabilities p depend on the current or previous locations of the user, several ap-
proaches also consider temporal features. For instance, Scott et al. consider whether
the prediction needs to be computed for a weekday or weekend while Song et al. also
use the time of the day and the day of the week [192, 179].

From the behavior of NSP and NST prediction algorithms existing in the literature,
we thus define a set of predictors that takes into account also the aforementioned
spatial or temporal features. In particular, we identify five main features that can be
considered when computing the probabilities p∗: (1) the current location of the user,
(2) the current and previous location of the user, (3) the time of the day, (4) the day
of the week, and (5) the day being a weekday or a day of the weekend. We refer to
these five features with the symbols P1, P2, H, D, and W, respectively. Features P1
and P2 indicate a dependency of p from the location of the user while features H, D,
and W account for time-dependencies.

The rationale behind each combination is described in the following. First, we ob-
tain the users’ mobility traces until time slot k. Then we derive the values of all five
temporal and spatial features at time slot k. For instance, if the time slot k of the slot-
ted mobility trace ⌦s, as defined in Section 2.1, corresponds to 6 p.m. on a Monday,
the user returns home at 6 p.m. but was still at work at 5:45 p.m., then the values of
the features P1, P2, H, D, and W are: Home, {Work,Home}, 6 p.m., Monday, and
Weekday, respectively. We define different combinations of these features to derive
a set of 18 different prediction algorithms, listed in Table 4.1. The first column of
the table specifies the name of each algorithm. A symbol is included in the name
of a predictor if the predictor uses the corresponding feature to compute p. For in-
stance, the P1 approach corresponds to a Markov-based prediction algorithm where
the probabilities p depend on the current place of the individual. If Lj is the current
place, the probability for a place Lk to be visited next is computed as the ratio of
the number of times the user has visited Lj and the number of times the user has
visited Lk after having been in Lj. The place with the highest probability of “being
in the next time slot k+1” is then taken as the prediction. This corresponds to the use
of a 1st order Markov model. The approach named WP1 also relies on a 1st order
Markov model as described above but it computes different sets of probabilities for
weekdays and weekends. DP2 considers the day of the week as well as both the cur-
rent and previous location of the user. The remaining combinations are interpretable
by analogy.

The second and third column of Table 4.1 specify the features used by each of
the predictors. We recall that all the algorithms listed in Table 4.1 choose, at time
step k, the location at which the user will be in the next time slot by utilizing the
ML strategy [192], as given by Definition 2.3.2. The place with the highest value of
p[k] is thus the predicted place for time slot k + 1. This ensures that performance

2 More specifically, the best performance is provided by a 2nd order Markov model with fallback option
to 1st order. This means that a 1st order model is used whenever no sufficient data is available to
compute the probabilities necessary to run the 2nd order model.
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Table 4.1: Spatial and temporal feature combinations considered in our analysis.

Name Spatial features Temporal features

Prio none none

W none weekday/weekend

WP1 current location weekday/weekend

WH none weekday/weekend and time of day

WHP1 current location weekday/weekend and time of day

D none day of week

DP1 current location day of week

DH none day of week and time of day

DHP1 current location day of week and time of day

P1 current location none

H none time of day

HP1 current location time of day

P2 current and previous location none

WP2 current and previous location weekday/weekend

WHP2 current and previous location weekday/weekend and time of day

DP2 current and previous location day of week

DHP2 current and previous location day of week and time of day

HP2 current and previous location time of day

differences between the algorithms are only due to the different strategies used to
compute the probabilities p from the historical mobility traces.

4.2.2 Performance Metrics

We characterize the ability of a prediction algorithm to capture transitions using a
set of metrics that draw upon the definitions of the well-known classification met-
rics typically used in classification problems [215] and introduced in Section 2.4. The
mathematical definitions of all the metrics introduced below are reported in Table
4.2. We define a transition true positive event as the event that occurs when a transition
is predicted and it actually occurs. In mathematical terms this corresponds to the
condition [⌦̂s[k + 1] ≠ ⌦s[k])&(⌦s[k + 1] ≠ ⌦s[k])] being fulfilled. We indicate the
number of these events over an interval of Ns slots as TTP. The corresponding transi-
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tion true positive rate TTPR is defined as the ratio of TTP over the sum of all transition
events. A transition false positive event occurs when a transition is erroneously pre-
dicted to occur. We indicate with TFP the number of false positive transition events
over an interval of Ns slots and define the corresponding transition false positive rate
TFPR as the ratio of TFP over the sum of all self-transitions. Further, a transition true
negative event occurs when the next location is correctly predicted as being the same
as the current one. The number of such transitions over an interval of Ns slots is
indicated as TTN and the corresponding rate as TTNR. Finally, a transition false nega-
tive event occurs when a transition occurs but is not correctly predicted. Accordingly,
TFN indicates the number of such events occurring over an interval of Ns slots and
the corresponding rate TFNR is defined as the ratio of TFN and the actual number
of transitions in the same interval.

We further define the transition precision TPre as the ratio of the number of correctly
predicted transitions (TTP) and the total number of predicted transitions (TTP+TFP).
Similarly, we define the transition recall TRec as the ratio of the number of correctly
predicted transitions (TTP) and the sum of all actually occurred transitions. Finally,
to capture the dependency between precision and recall, we define the transition
harmonic mean TF1 that is indicated in Equation 4.11 in Table 4.2.

Besides looking at transitions in general, we also analyze the performance of the
considered algorithms in terms of their ability to predict arrival and departure events
to a specific place Lj. We accordingly define the metric TF1ArrLj as the TF1 computed
over those time slots in which the condition [(⌦s[k] ≠ Lj)&(⌦s[k + 1] = Lj)] is ful-
filled. Similarly, we define TF1DepLj as the metric TF1 computed only for the time
slots in which [(⌦s[k] = Lj)&(⌦s[k+ 1] ≠ Lj)] is fulfilled. We focus in particular on
transitions to and from L1 and L2 and thus consider the metrics TF1ArrL1, TF1DepL1,
TF1ArrL2, and TF1DepL2. We further measure the distance between the empirically
observed places distribution Q, depicted in Figure 3.3, and the corresponding dis-
tribution R computed by each predictor. To this end, we use the Kullback-Leibler
Divergence (KL-Divergence) defined as in Equation 4.12 in Table 4.2.

4.3 influence of temporal and spatial features on predictors’ per-
formance

Table 4.3 shows the results obtained running the 18 predictors described in the previ-
ous section over the mobility traces of the 37 users. Each row reports the performance
of one of the considered predictors in terms of the metrics introduced above. Each
column thus reports the value of one of the metrics for all 18 predictors. The figures
in the table are median values of all 37 users. Each predictor was used to predict the
next location 1-time step ahead. The last row of Table 4.3 reports the performance
of a fictive optimal algorithm to which we refer as the optimum posteriori. If at least
one of the 18 considered predictors correctly predicts the location in time slot k + 1,
Best will pick this prediction as its own. The four-but-last rows of Table 4.3 report
the performance of the MAJOR approach that will be introduced in the next section.

We make multiple observations from the results reported in Table 4.3. For instance,
the first column of the table shows the performance of all predictors in terms of pre-
diction accuracy A1. The highest accuracy (87%) is achieved by WP1 and P1 imme-
diately followed by DP1, P2, and WP2 (86%). This shows that using Markov models
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Table 4.2: Performance metrics derived and leveraged in this work.

Performance metric Equation

Transition true positive (TTP) = ∑N
s

k=1 [(⌦̂s[k+ 1] ≠⌦s[k])&(⌦s[k+ 1] ≠⌦s[k])] (4.1)

Transition true positive rate (TTPR) = TTP∑N

s

k=1 (⌦s

[k+1]≠⌦
s

[k]) (4.2)

Transition false positive (TFP) = ∑N
s

k=1 [(⌦̂s[k+ 1] ≠⌦s[k])&(⌦s[k+ 1] =⌦s[k])] (4.3)

Transition false positive rate (TFPR) = TFP∑N

s

k=1 (⌦s

[k+1]=⌦
s

[k]) (4.4)

Transition true negative (TTN) = ∑N
s

k=1 [(⌦̂s[k+ 1] =⌦s[k])&(⌦s[k+ 1] =⌦s[k])] (4.5)

Transition true negative rate (TTNR) = TTN∑N

s

k=1 (⌦s

[k+1]=⌦
s

[k]) (4.6)

Transition false negative (TFN) = ∑N
s

k=1 [(⌦̂s[k+ 1] =⌦s[k])&(⌦s[k+ 1] ≠⌦s[k])] (4.7)

Transition false negative rate (TFNR) = TFN∑N

s

k=1 (⌦s

[k+1]≠⌦
s

[k]) (4.8)

Transition Precision (TPre) = TTP
TTP+TFP (4.9)

Transition Recall (TRec) = TTP
TTP+TFN (4.10)

Transition F1 score (TF1) = 2 ∗ TPre∗TRec
TPre+TRec (4.11)

Kullback-Leibler Divergence (DKL) = ∑i=1 R(i) ∗ log R(i)
Q(i) (4.12)

CP(Nmax
p ) = ∑N

s

k=1 [(⌦̂s

[k]=⌦
s

[k])&(Nmax

p

=Nmax

p

[k])]
∑N

s

k=1 Nmax

p

=Nmax

p

[k] (4.13)

TrP[k] = ∑N
ALG

alg=1 ⌦̂s[k+ 1] ≠⌦s[k] (4.14)

of 1st or 2nd order – i.e., including the features P1 or P2 in the computation of p –
guarantees for the best performance in terms of A1, on average. This confirms what
was also observed by Song et al. [193] as well as by other authors [47]. The same
predictors show different abilities to correctly predict the occurrence of a transition.
For instance, the TTPR of P2 is only 10% – meaning that only each 10th transition os
correctly predicted.

To gain a better understanding of the performance of our predictors we report a
subset of our results in Figure 4.1. The two plots depict the correlation between A1

and TTPR (left) and A1 and TF1DepL1 (right). A data point is reported on the plot
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Figure 4.1: Correlation between A1 and TTPR (left) and A1 and TF1DepL1 (right).

for each of the 18 predictors. A data point represents the median value, computed
over all 37 users, of the corresponding metric. Different markers represent different
categories of the considered predictors. Prior, Optimum posteriori, and MAJOR are as
defined above. We then differentiate between algorithms using spatial features (SF),
temporal features (TF), or both (SF+TF).

The first category includes predictors P1 and P2, which compute probabilities p

using information about the place of the user only. The second category includes W,
WH, D, DH, and H, i.e., predictors that consider temporal features only. The third
category finally includes all other approaches – WP1, WHP1, DP1, DHP1, HP1, WP2,
WHP2, DP2, DHP2, HP2 – that combine both spatial and temporal features.

Figure 4.1 (left) shows a negative correlation between A1 and TTPR. This means
that the higher the accuracy A1 of a predictor, the less the same predictor will be able
to capture transitions. In other words, being effective at capturing transitions makes
predictors more prone to failures, as a higher risk is taken when computing the
prediction. This observation is supported by the existence of a negative correlation
between TTPR and TTNR. Figure 4.1 also shows that the MAJOR approach approach
achieves a very good trade-off between the values of A1 and TTPR.

Figure 4.1 (right) shows that most algorithms can correctly detect departure events
from the most frequently visited place L1 in less than 20% of the cases. This oc-
curs despite the overall accuracy A1 being very high. Indeed, high values of A1

are obtained thanks to the fact that most self-transitions (i.e., situations in which
⌦s[k+ 1] = ⌦s[k]) are correctly detected. The plot also shows that MAJOR (ensemble
learning approach introduced in the next section) outperforms other predictors in
correctly detecting departures from L1. The performance achieved by the Best ap-
proach implies that in almost 75% of the situations there exists at least one of the 18

predictors that correctly predicts the occurrence of a departure event from L1. This
allows us to infer that depending on the specific situation the use of spatial, tempo-
ral, or both types of features might allow us to correctly predict the occurrence of
departure events. Further results about the ability of the single algorithm to correctly
predict arrival and departure events (from L1 and L2) are also reported in Table 4.3.

The last column of Table 4.3 shows the values of KL-Divergence (DKL) for each of
the considered predictors. Most predictors, including MAJOR, exhibit very low values
of DKL. This indicates that the empirically observed places distribution Q (see Fig-
ure 3.3) and the corresponding distribution R computed by each predictor are very
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similar. The results in Table 4.3 also show that the higher the value of A1, the better
the match between the observed and the predicted distribution.

The main conclusion we can draw from the results reported and discussed above
is that none of the considered predictors is able to provide good performance both in
terms of A1 and in terms of the ability to reliably predict transitions. To overcome this
drawback, we investigate the potential performance gains achievable by combining
several predictors instead of relying on a single one. We describe and discuss this
approach in the following section.

4.4 evaluating performance gains of utilizing ensemble learning

The results discussed in the previous section show that the approach named Best
achieves an average accuracy A1 of 93% and at the same time a TTPR of 90% and
TTNR of 99%. Best picks in each time slot the correct NSP prediction if at least one
of the 18 considered algorithms actually computed the correct estimate. The fact that
Best has an accuracy of 93% thus means that in 93% of the time slots at least one
of the 18 predictors is able to correctly predict which place the user will visit in the
next time slot. This in turn implies that only in 7% of the situations none of the 18

predictors was able to correctly estimate the NSP of the user. A TTPR of 90% further
indicates that in 90% of the cases at least one of the 18 predictors correctly predicted
the occurrence of a transition. And a TTNR of 99% indicates that in 99% of the cases
at least one of the 18 predictors correctly predicted the occurrence of a self-transition.
Interestingly, the 93% accuracy value achieved by Best coincides with the upper limit
of the predictability of human mobility reported by Song et al. [191]. This indicates
that by combining the predictive power of several predictors the performance of the
Best approach achieves values that are very close to the theoretical predictability lim-
its intrinsic in human mobility. Therefore, we conclude that the spatial and temporal
features considered in this paper allow us to exhaustively capture this predictability.
Building upon these considerations we thus inspect the potential performance gain
achievable by utilizing the ensemble learning technique, i.e., combining the predic-
tive power of several algorithms.

We refer to this approach as MAJOR that lets a number NALG of NSP predictors run
in parallel. In particular, we set NALG = 18 and use the 18 predictors described in
Table 4.1. At each time step k, MAJOR counts the number of predictors Np[k+ 1](Lj)
that indicate the place Lj as the place the user will visit at time step k+ 1. We collect
these counters in the vector Np[k + 1] = [Np[k + 1](L1),Np[k + 1](L2), . . . ,Np[k +
1](LNL)]. Please note that Np[k + 1] is computed at time step k. The value of each
Np[k+ 1](Lj) can vary between 0 and NALG and ∑NL

j=1 Np[k+ 1](Lj) =NALG,∀k. At
time step k, the estimate of the location visited by the user at time step k+ 1 is then
chosen as the place Lj for which Np[k + 1](Lj) = maxNp[k+ 1]. If two or more of
the Np[k + 1](Lj) counters reach the maximum value, MAJOR chooses the next place
randomly among those receiving the maximum number of votes.

The row labeled as MAJOR in Table 4.3 shows the performance achieved by this sim-
ple version of MAJOR. The data in the table shows that the 1-step ahead accuracy A1

of MAJOR is 82%. This is 5% lower than the two best performing individual predictors
WP1 and P1 but 12% higher than the average accuracy of all 18 individual predictors,
which is 70%. MAJOR also shows very good performance in terms of TTNR and TFPR
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(b) Wrong predictions.

Figure 4.2: Number of approaches that agree on the next-slot place prediction for situations
in which the prediction is correct (a) or wrong (b).

but is able to correctly detect the occurrence of a transition only in 21% of the cases
(TTPR). This is due to the fact that many of the individual predictors are indeed un-
able to detect such transitions. Relying on simple majority voting as described above
thus makes MAJOR also unable to reliably detect transitions. In order to cope with this
problem, we refine the design of MAJOR as described below.

4.4.1 Confidence of MAJOR’s Estimates

In order to improve MAJOR’s ability to detect transitions we first measure the number
of predictors that return correct or wrong predictions. We define Nmax

p [k + 1] as
the maximum number of predictors that provide, at time step k, the same estimate
for time step k + 1 (i.e., Nmax

p [k + 1] = max(Np[k + 1]). We then calculate, for each
user in our data set, the values assumed by Nmax

p [k + 1] for the cases in which the
Nmax

p [k+ 1] predictors estimate the correct place in time slot k+ 1 of the user.
Figure 4.2a shows the corresponding results. The segment in each box shows the

median, the edges of the box indicate the 25th and 75th percentiles, and the whiskers
cover 99.3% of the data (assuming it is normally distributed). We observe that for
most users the value of Nmax

p [k + 1] for correct 1-step ahead predictions is higher
than 12 in more than 75% of the cases. In other words, when 12 or more predictors
signal the same place as the one the user will visit in time slot k+ 1, then in 75% of
the cases the corresponding prediction is correct.

We then run the same analysis for situations in which wrong predictions are com-
puted. The corresponding results are depicted in Figure 4.2b and show that the value
of Nmax

p in this case varies roughly between 6 and 12. This means that when the max-
imum number of predictors agree on an incorrect prediction, then their number is
between 6 and 12 in most cases. The fact that so many predictors might compute
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Figure 4.3: The x-axis shows the maximum number of algorithms agreeing on the same NSP
prediction. The corresponding y-values represent the number of times the pre-
diction is correct (showed as a percentage over the whole number of computed
predictions). Different lines correspond to different users in the data set.

a wrong estimate is due to the inability of most predictors to correctly detect tran-
sitions. In particular, algorithms that rely on spatial features have a strong bias in
predicting self-transitions and thus tend to miss the occurrence of actual transitions
in most cases. On the other side, predictors relying on temporal features incur in
high false positive rates because they tend to predict transitions more often than ap-
proaches based on spatial features. Combining the capabilities of both spatial and
temporal features is MAJOR’s strength. In order to leverage the full potential of this
strength we slightly adapt MAJOR’s majority voting approach and differentiate be-
tween situations in which self-transitions or transitions are predicted, as described
below.

Before going further, we would like to outline that the considerations above also
allow us to use the value of Nmax

p [k + 1] as an empirical measure of the confidence
of the predictions ⌦̂s[k+ 1] computed by MAJOR. To illustrate this point, we analyze
the ratio of the number of correct 1-step ahead predictions and the total number of
predictions for each possible value of Nmax

p . The ratio is indicated as CP(Nmax
p ) and

defined by Equation (4.13) in Table 4.2. We compute CP(Nmax
p ) for each user and

for Nmax
p values between 2 and 18.

Figure 4.3 shows the corresponding results whereas each line corresponds to one
of the 37 users we selected from the MDC data set. The plot shows the existence
of a positive correlation between the value of Nmax

p and the percentage of correct
predictions. Hence, as expected, higher values of Nmax

p indicate a higher probability
of MAJOR computing correct 1-step ahead predictions. The value of CP(Nmax

p ) thus
indicates, even though only empirically, the confidence of the prediction �⌦s[k+ 1].
4.4.2 MAJOR’s Ability to Predict Transitions

The considerations reported above hint at the hypothesis that the ability of MAJOR to
correctly predict transitions can be improved by considering the actual number of
predictors pointing at or not at a transition. To verify this hypothesis, we discuss
the results reported in Figure 4.4. We first compute the number of predictors that,
at each time slot k, correctly predict a transition to occur (irrespectively of from or
to which place the transition occurs). The leftmost boxplot in Figure 4.4 shows the
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Figure 4.4: Number of algorithms that predicts the occurrence of a transition in the cases
indicated on the x-axis.

corresponding results, plotted over all time slots. The plot shows that the median
number of approaches correctly predicting a transition to occur is 8. The second box-
plot from the left in Figure 4.4 shows instead that the median number of approaches
predicting a transition when actually none will occur is 3.

We thus suggest to introduce a threshold ↵ that allows us to differentiate between
these two cases. In particular, along with the majority vote policy described above,
MAJOR will predict a transition to occur when the number of approaches predicting
a transition to occur is higher than ↵. In other words, even if the majority of the
approaches predicts a self-transition, as soon as at least ↵ approaches predict a tran-
sition to occur, then MAJOR will also predict the transition to occur.

If training data is available the actual value of ↵ can be set offline. For instance, we
found that ↵ = 6 allows MAJOR to achieve the highest TF1 value for the MDC data set.
We indicate this version of MAJOR as MAJOR6 and its performance metrics are reported
in the corresponding row in Table 4.3. Noticeably, the performance of MAJOR6 exceeds
those of individual predictors for most of the considered metrics.

For some applications it might be interesting to tune MAJOR so as to increase its
ability to detect transitions from and to specific places such as L1, L2, or even Lx.
We thus now focus on arrival and departure events as well as self-transitions from
and to these locations. The 3rd, 4th, and 5th boxplots from the left in Figure 4.4 are
computed considering only those time slots in which the place at k or k+1 is L1. The
first of these three plots shows the number of predictors that indicate a transition
to L1 to occur (arrival event) when it actually occurs. The second plot shows the
number of predictors that indicate a transition from L1 to occur (departure event)
when actually no transition occurs (in this case thus a self-transition to L1 occurs).
The third plot shows the number of predictors that indicate a transition from L1 to
occur when a transition from L1 actually occurs. The other plots in Figure 4.4 (6th to
11th from left) show results related to L2 and Lx.

The 5th plot in Figure 4.4 allows us to make an interesting observation. When a
transition from L1 occurs, the median number of algorithms predicting it correctly is
0. Also, in 75% of the cases less than 4 approaches will correctly predict a transition
from L1. Keeping the threshold ↵ = 6 will thus cause many of these transitions not to
be recognized by MAJOR. We thus perform an exhaustive search and find that setting
↵ = 4 allows us to achieve the highest value of the TF1DepL1 metric (see also results
in Table 4.3, row MAJOR4).
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At the same time, ↵ = 6 allows us to achieve better performance for most of the
other metrics. We thus introduce a second threshold called � to differentiate these
cases. We make MAJOR use ↵ as a threshold to decide that a transition will actually
take place. For departure events from L1, however, MAJOR will predict the transition
to occur when at least � algorithms will accordingly predict it to occur. According
to the observations summarized above, we set ↵ = 6 and � = 4. The performance
achieved by MAJOR through the combined use of both thresholds ↵ and � are sum-
marized in Table 4.3, row MAJORcomb. These results show that utilizing ensemble
learning, as it is done by MAJOR, not only achieves a high accuracy A1 (82%) but also
shows a superior overall performance in detecting transitions when compared to the
individual predictors.

4.4.3 Conclusions from the Analysis of Temporal and Spatial Features

In the first part of this chapter, we investigated the performance of 18 Markov-based
NSP predictors – all parametrized with different combinations of temporal and spa-
tial features. Our analysis shows that high average prediction accuracies can be ob-
tained even by naïve predictors that are largely unable to detect transitions between
different places. We further defined a set of metrics that allow us to characterize the
ability of a predictor to capture such transitions. We advocate that a comprehensive
description of the performance of NSP and NST predictors must include an analy-
sis of these metrics – or at least of a subset thereof. Furthermore, we observed that
temporal features optimize transition predictions, while the spatial features are more
reliable for optimizing predictors’ 1-step ahead accuracy.

Building upon the results of our analysis, we inspected the potential gains achiev-
able by utilizing the ensemble learning technique in the form of MAJOR that can both
achieve high prediction accuracy and reliably predict transitions. MAJOR’s good per-
formance is obtained by combining the 18 individual Markov-based predictors con-
sidered in our analysis in a single algorithm and using a majority vote approach
to compute the final prediction. We also showed that the number of individual pre-
dictors agreeing on the same NSP prediction can be used as an indicator for the
confidence of MAJOR’s prediction.

4.5 introducing phone context, demographics , and further features

Beside the traditional temporal and spatial features, other types of data can also
be utilized for human mobility prediction. In this part of our work, we extend the
analysis reported in the previous section by also considering phone context data
and demographics. We also now include the NP prediction task, as introduced in
Section 2.2. Lastly, the following analysis is based on the LDCC data set (see Sec-
tion 3.1.2) that contains data from 141 participants and ground-truth mobility traces.

To conduct this study, we first apply multiple pre-processing steps that are illus-
trated in Figure 4.5. We start with the description of our feature extraction step that
is labeled as Step 1.1. In terms of Step 1.2, we already described how we extract mo-
bility and slotted mobility traces in Chapter 2. Our analysis of temporal and spatial
features is conducted by utilizing Markov models. We now make a step further and
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Figure 4.5: Pre-processing steps that allows us to extract features and derive users’ mobility
traces from raw data.

leverage more sophisticated predictors described in Section 2.3. The performance of
these predictors is evaluated on the metrics that we also introduced in Section 2.4.

4.5.1 Feature Extraction

The human mobility predictors that are used throughout this work need adequate
input data to be able to compute the required prediction. Previous studies often
considered features of the mobility trace ⌦ (or ⌦s) as the input data of choice to
train and run mobility predictors. Algorithms that aim to predict the future indeed
typically leverage historical data in order to identify and extract mobility patterns to
increase their predictive power. In the previous sections of this chapter, we already
analyzed how the use of temporal and spatial features influences the performance
achievable by mobility predictors. Now, we consider other types of features in addi-
tion to the temporal and spatial data as input for the predictors.

The list of all features considered in this study, along with their corresponding de-
scription, is shown in Table 4.4. We indicate the set of all considered features as the
set F = {F1,F2, . . . ,FNF

}, where NF indicates the total number of available features
and Fj is the jth feature in the set. We further divide the features into four groups:
network, temporal, spatial, and phone context features. We indicate the four correspond-
ing feature sets as Fn, Ft, Fs, and Fpc, respectively. The number of features in these
sets is indicated as NFn , NFt , NFs , and NFpc .

Table 4.4 shows that the set Fn contains the features n_wifi, n_bluetooth, n_gsm_rx,
and n_gsm_id. These are features that can be extracted using a network interface such
as Bluetooth, Wi-Fi, or a cellular module and are therefore named network features.
Temporal features capture temporal characteristics of the mobility trace of a user like
the current day of the week (t_day_w) or the time elapsed after the user arrived at
the place (t_cur_res).

Spatial features accordingly capture spatial characteristics of the mobility trace of
the user including the current place visited by the user (s_cur_place) or the number
of different places visited on the current day (s_places_today). Lastly, phone context
features describe context information extracted from users’ mobile phones like the
amount of time elapsed since the last call received by the user (c_time_call) or the
current status of the battery of the phone (c_battery).

While the sets of features Ft and Fs build upon and extend the feature sets con-
sidered in the previous sections, the sets NFn and in particular NFpc are introduced
in this study to investigate their influence on the overall performance of the mobility
predictors. The actual values of the features listed in Table 4.4 can be computed for
each user from the available (slotted) mobility traces and the corresponding addi-
tional data. In this study, we rely on the LDCC data set, as described in Section 3.1.2.
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Table 4.4: List of features considered in this study.

Label Description

N
et

w
or

k

n_wifi Wi-Fi similarity between the last two 5-min. scans

n_bluetooth Bluetooth sim. between the last two 5-min. scans

n_gsm_rx GSM signal strength

n_gsm_id GSM cell ID

Te
m

po
ra

l

t_tran_cur3 Time a transition from current place occurs

t_res_last Residence time at last relevant place

t_day_w Day of week

t_day_m Day of month

t_weekday Weekday or weekend

t_time Time of day

t_season Season

t_cur_res Current residence time

t_res_cur3 Residence time at current place

Sp
at

ia
l

s_cur_place Current place

s_pre_place Previous place

s_places_today Number of visited places today

s_is_known Current place has been visited before

Ph
on

e
co

nt
ex

t

c_time_call4 Time since last call/sms made/received

c_calllog_type Last calllog type

c_calllog_direction Last calllog direction

c_sms_status Last sms status

c_last_call_duration Last call duration

c_last_cal5 Information about last calendar entry

c_next_cal3 Information about next calendar entry

c_time_last_app Time since last application used

c_last_app Last used application

c_phone_charging Current phone charging status

c_last_charge Time since last charge

c_battery Current phone battery status

c_ring Current ring profile

c_profile Current user profile

c_last_action Time since last phone interaction

Due to the scarcely available GPS data in this data set, we do not include any GPS-
related features in the feature set F .

3 We consider the mean, median, standard deviation, and variance values for this feature.
4 For this feature, we differentiate between phone calls and text messages for both incoming and outgo-

ing directions.
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Figure 4.6: SELECTOR in a nutshell.

As we will detail in the next sections, the fact that the set F contains a large number
of features might allow the corresponding performance of the predictors to improve
with respect to the cases in which a smaller feature set is considered. However, this
is only a possibility and by no means does a larger feature set automatically implies
better performance [212]. For this reason, we apply a feature selection (FS) procedure
before evaluating the performance of each predictor.

Feature selection is a well-known procedure that is applied to reduce the overall
number of features in a feature set [169, 212, 103]. This not only allows for the re-
duction of the overall computational overhead of a predictor but also avoids having
too large feature sets that may introduce noise in the predictor and ultimately cause
its performance to deteriorate. We indicate the feature set obtained after a feature
selection procedure as F ′.

Lastly, we derive for each place Lj in ⌦ or ⌦s of user U information for each
feature contained in F . This results in a N⌦ ×NF data matrix for a mobility trace ⌦.
We refer to such a data matrix of user U as �(U) – or simply � – and describe it in
Section 4.7.

4.6 deriving individual mobility prediction models with selector

We introduce SELECTOR – a novel algorithm to select an individual model as defined
in Definition 4.1.1. Figure 4.6 presents SELECTOR in a nutshell. The algorithm takes
the mobility trace ⌦ of the individual U (⌦s by analogy), the feature set F , and the
set of predictors P , performance metric M, and lastly prediction task T as its input.
In then produces an individual model IM containing predictor P and feature subsetF ′. In the following subsections we elaborate on how SELECTOR computes individual
models.

4.6.1 Computing Individual Models

A straightforward way to determine the feature subset F ′ that allows maximizing the
given metric for the specific task is to perform an exhaustive search, i.e., to evaluate
all possible feature combinations. In our case – with a total of 51 features (i.e., 251

combinations), four predictors, three prediction tasks, and three performance metrics
– applying exhaustive search would require performing 81,064,793,292,668,928 runs
to test all combinations for one user.

5 For each calendar entry, we consider the information about the date of creation, status, title, location,
type, and confidence class.
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Figure 4.7: An overview of how we derived users’ individual models. The different steps of
this process are marked with the labels 2.1 – 2.3. Input arguments are encapsu-
lated in grey boxes.

Example 4.6.1: Brute-force computation of the best feature set

Assuming that we are able to run the exhaustive search on a server farm, it will
still require multiple years to complete the entire task of feature selection for
each user. Furthermore, as users’ mobility might change over time or differ with
respect to time of year, the entire process of deriving individual models needs to
be repeated from time to time.

Fortunately, there exist heuristic feature selection methods – like Sequential For-
ward Selection (SFS) [212] and Sequential Forward Floating Selection (SFFS) [169] –
that help us to reduce the computational overhead of selecting features. Ferri et al.
ran a comparative study of FS algorithms [84]. They showed that SFFS was able to
outperform other considered methods in solving a FS problem with 50 features. Re-
call that in our work we consider 51 features. Furthermore, for a FS problem with 20
features and ground-truth data about the optimum, SFFS was able to nearly achieve
it. Therefore, we adopt the SFFS method that was also used by other authors in
different disciplines [120, 27].

A detailed view of how SELECTOR derives individual models is shown in Figure 4.7.
Step 2.1 covers the selection of an initial set of features and the update of a previously
selected one. After that, SELECTOR uses the feature subset selected in Step 2.2 for
predicting users’ mobility. In Step 2.3, SELECTOR evaluates the performance achieved
by the candidate individual model based on the predicted mobility, ground-truth
data, and performance metrics. The performance results are afterward returned to
feature selection at Step 2.1.

We define two criteria that need to be met in order to terminate this iterative
process, which is described in the previous paragraph. These criteria are (1) the
maximum number of iterations of SFFS (NSFFS) and (2) the maximum size of F ′,
which we define as �F ′�max. We experimentally set NSFFS = 15 and �F ′�max = 10
because we observed that the average size of the feature sets extracted by SFFS is
less than 7 for all candidate IMs. Furthermore, for almost all candidate IMs, at least
95% of the resulting feature subsets contain less than 9 features. Most of these feature
subsets were extracted after less than 10 iterations of SFFS. The output of FS is the
feature set derived for the given predictor, task, and metric.
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4.6.2 Feature Selection

We apply feature selection (Steps 2.1–2.3 in Figure 4.7) to analyze which feature
subset F ′ of the feature set F allows maximizing the performance of the considered
predictors. We run feature selection separately for each user, predictor, prediction
task, and metric.

We derive the data matrix � containing in its jth row the values of the features
listed in Table 4.4 for the jth time slot (in case of NSP and NST tasks) or for the jth

visited place (for the NP task). This matrix is computed on a user’s mobility trace
and additional raw data (e.g., phone usage data) available in the Nokia data set.

We split the data available in the Nokia data set in three subsets, similar to [120].
The first (optimization – �opt) and second (training – �train) subsets are used by
SFFS. The predictors are trained (Step 2.2) on the optimization subset and evaluated
(Step 2.3) on the training subset. After a candidate individual model is derived, we
train the model’s predictor on the training subset and evaluate the model’s perfor-
mance on the third (validation – �val) subset.

Each subset contains a different number of days of data for each user. We assume
Ndays(U) to be the number of days for which data in the Nokia data set is available
for the user U. The value of Ndays(U) for users in the Nokia data set ranges from
93 to 531 (mean: 324). We set the value for the smallest size of a data subset to 30
days since the user with the lowest amount of data has records for 93 days. In this
case, we guarantee that all data subsets have at least 30 days of data. For users with
more than 90 days of records, we allow the training and validation subsets to grow.
We indicate the number of days of data included in the optimization, training, and
validation subsets of the user U as

Nopt
days(U), Ntra

days(U), and Nval
days(U), (4.15)

respectively. We set:

Nopt
days(U) =min(30,Ndays(U) � 3), (4.16)

Ntra
days(U) =min(90, (Ndays(U)−Nopt

days(U)) � 2), (4.17)

Nval
days(U) =Ndays(U)− (Nopt

days(U)+Ntra
days(U)). (4.18)

Days of data are then assigned at random to the subsets.
Listing 1 summarizes the computational steps of SELECTOR as pseudocode. The

computational steps behind the method call SFFS are shown in Figure 4.7 and has
been already discussed. Lines 1–2 describe the aforementioned data split into three
non-overlapping subsets. Within the loop (Lines 7–14), SELECTOR utilizes SFFS to
compute the feature set F ′i that optimizes the performance metric M if the currently
selected predictor Pi is used. To do so, SELECTOR first applies SFFS by leveraging�opt

and �train. After that, it trains the prediction model based on the derived feature
subset F ′i. The resulting model is then used to capture its performance by using a
previously unseen data subset �val. In Lines 16–17, SELECTOR then finally selects the
individual model.
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Algorithm 1 Pseudocode describing how SELECTOR derives individual models.
Input: ⌦: User’s mobility trace

M: Performance metricP= {P1, . . . ,PNP}: Set of predictorsFP: Feature set

Output: IM = {F ′,P}: User’s individual model

1: �← compute_feature_matrix(⌦,FP)
2: {�opt,�train,�val}← split(�) ▷ Disjoint subsets
3:
4: F ′ ← � ▷ Set of feature subsets
5:  ← � ▷ Set of performance results
6:
7: for i ← 1 to NP do ▷ Iterate for each predictor
8: F ′i ← SFFS(FP,�opt,�train,M,Pi)
9: modeli ← train(F ′i,�train,Pi)

10:  i ← test(modeli,�val,M) ▷ Compute performance
11:
12: F ′ ← F ′ ∪ F ′i ▷ Add feature subset to the set of candidates
13:  ←  ∪  i ▷ Add performance result to the set of candidates
14: end for
15:
16: j← argmax( ) ▷ Index of the best performing predictor
17: IM← {F ′j,Pj}, F ′j ∈ F ′,Pj ∈ P ▷ User’s individual model
18:
19: return IM ▷ Return user’s individual model IM

4.7 influence of phone context data on predictors’ performance

We demonstrate the applicability of SELECTOR on our analysis of the influence of
phone context data on predictors’ performance. Phone context data, as defined in
Section 4.5, is a rich and promising information source that is successfully used
in several domains [71, 185, 195]. Shin et al. used accelerometer, call logs, and screen
status to predict which applications on a user’s mobile device will be used next [185].
Srinivasan et al. used phones’ charging status, battery level, and information about
available networks to recognize users’ activities [195]. These activities can then be
linked to particular places and thus provide help in predicting mobility.

However, collecting such data is an enormous intrusion in users’ privacy as it con-
tains highly sensitive information. Furthermore, it is still unclear how and to what
extent this information can increase the performance of human mobility predictors.
Therefore, we analyze the influence of phone context data on the performance of hu-
man mobility predictors. The goal of this analysis is to understand whether phone
context data increases the predictors’ performance and is worth of being collected on
the costs of users’ privacy. To this end, we leverage three human mobility prediction
tasks, four state-of-the-art predictors, and the LDCC data set, which is introduced
in Section 3.1.2 and to which we also refer as the Nokia data set. In terms of the
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predictors, we select SVM, k-NN, Perceptron, and CART. All of them are introduced
in Section 2.3. We refer to this set of predictors as Ps. We measure the predictors’ per-
formance with three widely used metrics that we introduced in Section 2.4, namely,
accuracy, F1 score, and MCC.

The amount of phone context features that we measure in the following and how
often they occur in users’ feature sets allow us to reason about their impact on the
predictors’ performance. In this part of the study, we consider all candidate indi-
vidual models. Figure 4.8 shows a performance comparison for each predictor in
solving the particular prediction task. Each marker corresponds to the median value
with the 5th and 95th percentiles. For the sake of readability, Table 4.5 summarizes
median performance results in each row that we describe more in detail.

The results in Table 4.5 are aggregated over all users in terms of accuracy, F1 score,
and MCC. The performance results for the three considered prediction tasks are split
by a horizontal line. These results are achieved by the considered predictors before
and after feature selection, which is represented by the corresponding columns (“No
FS” vs “FS”). In all cases, we differentiate between using the entire feature set F
(labeled as “All”) and using only the reduced feature set by excluding phone context
features (labeled as “NoPC”). The best performance achieved by the corresponding
predictor is highlighted in bold. The results for the predictors are shown in the
columns that are separated by the vertical double lines. We further underline values
in Table 4.5 in cases for which adding phone context data leads to performance
improvements with respect to performance achieved without phone context data.
Otherwise, performance measured without phone context data is underlined.

4.7.1 Impact of Phone Context Data after FS

There are 36 candidate individual models for each combination of prediction tasks
(3), metrics (3), and predictors (4). In all of these cases, applying FS leads to the same
or higher performance results with respect to the performance measured without
applying FS. This is not surprising as the purpose of the feature selection algorithms
such as SFFS is to find the best performing set of features by helping to overcome
the curse of dimensionality issue [30]. At the same time, feature selection reduces the
computational effort and the necessity to collect, process, and store data for all fea-
tures indicated in the set F . Therefore, we focus on the impact of phone context data
on the performance measured for the considered predictors after applying FS.

In Table 4.5, focusing on the columns “FS”, we observe that only in four out of
36 cases, phone context features lead to performance improvements. The maximum
improvement accounts to 2 percentage points. In the remaining 32 cases, the predic-
tors achieve at least the same performance after excluding phone context data. In
most of these cases, the observed performance differences are in the range of a few
percentage points.

4.7.2 Impact of Phone Context Data before FS

Since SFFS is a heuristic, there is no guarantee that it will provide the global optimum
in terms of the derived feature subset. To remove the potential bias of too often
excluding phone context features, we analyze and discuss the results achieved by
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Figure 4.8: Performance comparison for each predictor in solving the particular prediction
task. For each predictor, we differentiate between utilizing all features (NoFS(F)),
all but phone context features (NoFS(F�Fpc)), all features and FS (FS(F)), and all
but phone context features with FS (FS(F�Fpc)).
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leveraging all features (i.e., without applying feature selection). These results are
indicated in Table 4.5 in the columns “No FS”.

We observe that in 14 out of 36 cases, including phone context features leads to
performance improvements. However, in all these cases, the improvements are in the
range of 1 to 4 percentage points. Furthermore, we observe that these improvements
are outperformed if phone context features are excluded and feature selection is
applied, as it is shown in Table 4.5 by the values in bold in the columns “FS”.

Lastly, the three columns from the right in Table 4.5 report the results achieved
by the naïve predictors. They achieve a lower performance with respect to the most
candidate IMs. However, we observe that the 0R predictor achieves a higher accuracy
and F1 score for the NSP and NP prediction tasks than Perceptron. This allows us to
conclude that Perceptron is not a well-suited predictor for these prediction tasks, as
it achieves a lower performance than a naïve predictor with no predictive power.

4.7.3 Conclusions from the Analysis of Phone Context Data

We conclude that the use of phone context data does not lead to significant perfor-
mance improvements. To draw this conclusion, we leveraged three well-known and
widely used prediction tasks for human mobility, four state-of-the-art predictors, and
a large data set with 141 users collected over a period of up to 18 months. We mea-
sured the performance with three widely used metrics. Our findings allow us to
focus on capturing other data types, e.g., temporal and spatial, to leverage them for
mobility predictions. Furthermore, the missing relevance of phone context data for
predicting mobility supports preserving users’ privacy since no applications, calls,
or calendar content needs to be collected.

Nevertheless, alternative ways of using phone context data might be useful in the
context of human mobility prediction. For instance, we believe that instead of cap-
turing temporal information (e.g., time since last action) a correlation between the
appearances of phone data events (e.g., received a phone call and a corresponding
upcoming mobility behavior) may uncover additional potential for improving per-
formance in predicting human mobility. Proving this hypothesis might be a starting
point for other authors for potential follow-up work.

4.8 creating population models

The individual models derived by SELECTOR allowed us to analyze the influence
of phone context data on the performance of mobility predictors. To derive these
models, we used a substantial amount of historical mobility data for each user. Often,
however, historical data is not always available. For instance, when users start using
an application that leverages mobility predictions for the first time. Researchers and
practitioners often refer to this issue as the cold-start problem [177, 143].

To help overcoming this problem, several authors derived models that capture
generic mobility properties of users [111, 70, 71, 143, 222]. For instance, Zheng et al.
define users’ daily behavioral patterns as a set of temporal probability distributions
of being at a particular place [222]. Kang et al. derive a set of mobility characteristics
(e.g., speed of movement or direction) from traces of Wi-Fi scans collected over 13
months [109]. The authors show that these characteristics can be modeled as either
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Figure 4.9: Process of deriving population models based on the extracted individual mobility
models.

log-normal or exponential probability distributions. Given a set of context variables,
Do and Gatica-Perez learn conditional probability distributions for a set of possible
outcome variables (e.g., the next visited place) [70]. These and other similar studies
mainly focus on learning (conditional) probability distributions to model mobility-
related variables as well as on estimating the parameters of a specific distribution.

Despite the number of existing population models, limited emphasis has been
placed on the analysis of which predictors and features allow optimizing a chosen
metric while predicting human mobility. Addressing this shortcoming is challeng-
ing because over the period of the last decade, many predictors were introduced.
Furthermore, with the availability of mobile devices and the possibility to extract
user-related data from sensors and social networks, the number of potential data
features that can be used for predictions also increased dramatically. With respect
to previous approaches, we consider a larger and more diverse set of features that
might influence the performance of mobility predictors. In summary, we present a
generic approach for deriving population models that is agnostic to the set of con-
sidered features, prediction tasks, performance metrics, and predictors.

Models that describe generic mobility properties are referred to as general models
[111, 70], multi-user models [222], or population models [68, 143]. Without lack of gener-
ality, we use the term population model. In the context of our work, a population model
is a mobility prediction model that can describe with sufficient accuracy the mobility
behavior of a population of users. These models can be used at startup and possibly
be replaced by individual models as soon as sufficient historical mobility data was
collected. In the following, we derive these models for the population of users rep-
resented in the Nokia data set. We define population models in Definition 4.1.2 and
compute each of them for a given prediction task and metric. Hence, as we consider
three prediction tasks and three metrics, we obtain nine population models in total.

We derive the population models in two steps as shown in Figure 4.9. First, we
determine in Step 3.1 a reasonably small set of features that the predictors can use as
their input. To this end, we analyze the feature sets that are selected through FS when
we computed individual models in Section 4.7. In particular, we identify features that
are selected for a large part of users in the considered population. We refer to such
features as top features and describe how we identify them in Section 4.8.1. Second,
we determine in Step 3.2 a set of candidate population models. The actual population
model is then chosen as the one in this set that optimizes a quality metric, as detailed
in Section 4.8.2.
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4.8.1 Identifying Top Features

As discussed in Section 4.7, a careful choice of the feature set used as input to a
mobility predictor is crucial to obtain good performance. To define an adequate pop-
ulation model, it is thus necessary to identify an adequate feature set. To this end,
we leverage the results presented in Section 4.7 and consider those features as top
that occur most frequently in the feature sets that are part of the users’ individual
models.

We illustrate our method to identify top features exemplary for the prediction
problem NP+Accuracy. We recall from Section 4.7 that for each combination of pre-
diction task and metric we computed 141 individual models, one for each user. The
population model we are looking for is meant to be representative for these 141
users, i.e., able to predict their mobility behavior with ideally the highest achievable
overall accuracy. To find the features from which to determine the feature set of this
population model, we first count how often each feature appears in the feature set
of each of the 141 individual models. We indicate with fFi

the resulting frequency
of occurrence of each feature Fi. For instance, the feature s_cur_place appears in
126 of the 141 feature sets, thus fs_cur_place = 126

141 = 89.4%. We also indicate with rFi

the rank of Fi. For instance, s_cur_place is the feature that appears most often in
the computed 141 individual models, so rs_cur_place = 1. The second most frequently
occurring feature has rank 2, the third 3, and so forth.

For simplicity, in the following we do not indicate explicitly Fi in fFi
or rFi

, if possi-
ble. We should also note at this point that we exclude the phone context features Fpc

from this analysis. This is because the results we report in Section 4.7 show that the
use of phone context features does not bring significant performance improvements.
After obtaining the rank of each feature, we determine the set of top features Ftop,
which simply includes the Ntop highest ranked features. We determine the value of
Ntop as follows.

To derive the value of Ntop, we first compute feature frequencies and ranks for all
the features that appear in all individual models derived in Section 4.7. We report
the obtained frequencies and ranks in Figure 4.10. The figure shows the rank r of a
feature on the x-axis and the corresponding frequency on the y-axis. Each line corre-
sponds to one of the considered prediction problems. For the exemplary prediction
problem considered above (NP+Accuracy) we see for instance that the third, fourth,
and fifth most frequently occurring features appear in less than 30% of the feature
sets. At the same time, the feature with r = 1 (s_cur_place) appears in almost 90%
of the feature sets.

Overall, we observe that for all prediction problems there is at least one feature that
appears in at least 60% of the feature sets of the corresponding individual models.
In seven out of nine cases, this value is higher than 85%. This observation shows
that for all considered prediction problems, there is at least one and the same feature
that is shared among a large number of individual models. We further observe that
for all the considered prediction problems the value of f rapidly drops as the rank
r grows. For instance, for the problem NSP+F1 the third most frequently occurring
feature (r = 3) occurs in less than 5% (f = 5%) of the feature sets.

To find the value of Ntop, we apply the same technique as used by Kang et al. [109]
to set threshold values when computing the number of relevant places of a user. In
particular, we visually inspect Figure 4.10 and determine in correspondence of which
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Figure 4.10: Frequency of occurrence of features in users’ individual model.

value of r a noticeable knee in each curve can be observed. For some curves, e.g.,
NST+Accuracy, we observe a clear knee at r = 3. However, for NP+MCC the knee
is less sharp but observable at about r = 5. From this visual inspection we conclude
that the first five features can be considered to be the top features. Thus, we set
Ntop = 5. For simplicity, we set for Ntop one and the same value for each of the
nine considered prediction problems. However, we do not expect a different value of
Ntop to bring significant novel insights or significantly different results with respect
to those reported below.

Table 4.6 shows the five top features identified for each of the nine considered
prediction problems. We observe that the feature s_cur_place is included in theFtop of all prediction problems. The feature n_gsm_id is in the Ftop of six out of
nine problems. We will provide more comments about the composition of these
feature sets later in this section. In the following, we describe how we use Ftop as a
starting point to determine the feature set and predictor that is actually included in
a population model.

4.8.2 Selecting Population Models from Candidates

We next discuss how we define candidate population models and select among them
our population models. For simplicity, we describe our method exemplarily for the
problem NP+Accuracy.

We recall that the population model PM is given by the combination of a feature
set and predictor. Identifying a population model thus means identifying such a
combination. The population model we are looking for must be representative of
the entire population of users, for instance, individuals in the Nokia data set. In
other words, it must approximate well the individual models. This means that the
performance achieved by the population model must be as close as possible to that
achieved by the corresponding individual models. In practice, a population model
typically performs slightly worse – but occasionally also slightly better – than indi-
vidual models. A metric to quantify the overall quality of a population model must
thus be defined.

In the previous section, we identified the set of top features Ftop that represents
the starting point to search for the actual feature set to include in the population
model. In particular, the feature set to include in the population model is either



88 model selection for human mobility prediction

Ftop or a subset thereof. Since the size of Ftop is 5, there exist in total 25 − 1 = 31

distinct potential (candidate) feature subsets.6 As for the predictors, in our work we
consider four candidates: SVM, k-NN, CART, and Perceptron. To find the population
model that better approximates the 141 individual models computed in Section 4.6,
we evaluate exhaustively the performance of all possible combinations of feature
sets and predictors. In other words, we consider 31 ∗ 4 = 124 candidate population
models. This is computationally feasible because the maximal number of features in
a feature set is low (just 5). In Section 4.6, we instead considered 51 features. This
made an exhaustive search computationally infeasible and thus required the use of
a feature selection heuristic.

We compute the quality of each candidate population model as follows. We train
and evaluate the candidate model for each user in the Nokia data set. Thereby, we
use the same data used to train and evaluate the corresponding individual models
in Section 4.6. We accordingly obtain for each candidate model 141 accuracy values.
We refer to these values as RU, whereas the index U indicates the specific user (thus:
U = 1, . . . ,141). We then compute the difference between these values and the cor-
responding accuracy achieved by the individual models derived in Section 4.6. We
refer to these latter values as IU. To evaluate the quality of each candidate model we
could then simply compute the root-mean-square error (RMSE) between the values
RU and IU that is defined as follows:

RMSE =
����∑NU

U=1(IU −RU)2
NU , (4.19)

whereas NU is the number of users (141). The RMSE is indeed a typical metric to
compare two sets (or sequences) of values [33]. However, using RMSE in this simple
form is not adequate to evaluate the quality of a population model. This is because
RMSE only considers the magnitude of an error, not its sign. Thus, RMSE treats pos-
itive and negative differences in accuracy equally. However, a candidate population
model that performs better than individual models (negative differences) is clearly
to prefer to the one that performs worse (positive differences).

Example 4.8.1: Implications of ignoring the sign in computing RMSE

Assume hypothetically that individuals’ individual models achieve an accuracy
of 50% for all users. Now assume that there are two population models – PM1

and PM2. Their accuracy results are grouped as sets R1 and R2, respectively.
PM1 and PM2 achieve for all users 49% and 51% in accuracy, respectively. Com-
puting RMSE value between I and each of the setsR1 andR2 with Equation 4.19
will indicate that both population models perform equally well.

To cope with this obviously wrong conclusion, it is thus necessary to take into
account also the sign of the difference in performance between population and in-
dividual models, not only its magnitude. To this end, we define the vector � =[I1 −R1, I2 −R2, . . . , I141 −R141] as the vector that contains the differences in accuracy
between the individual models and the candidate population model. We indicate the

6 The number of subsets of a set of n elements is 2n. Since the empty set does not makes sense in our
case then the resulting total number of potential subsets is 2n − 1.
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elements of � as �u, with u = 1, . . . ,141. We then split � in �+ and �−, whereas
the former contains all positive values of � and the second all other values. Thus,
�+ groups accuracy values of users for whom the individual model performs better
than the population model. Similarly, �− groups accuracy values of users for whom
the population model performs better than (or the same as) the individual models.
We further define ↵ ∈ [0,1] as the ratio of the number of elements in �+ and the
number of elements in �. Using the notation introduced above, we can finally define
the desired, weighted quality metric for candidate models as follows:

⇥ = ↵� �
�∈�+

�2 − (1−↵)� �
�∈�−

�2 (4.20)

The rationale behind this quality metric is the computation of RMSE values for two
distinct subsets of users, as described above and modeled by the two parts of Equa-
tion 4.20. The difference computed between these two parts of the equation measures
the overall loss in performance across the entire population if the population model
is used. For a specific prediction problem, e.g., NP+Accuracy as used as an exam-
ple in this section, we compute ⇥ for each of the 124 candidate population models.
The candidate population model that provides the lowest value of ⇥ is selected as
the population model for the prediction problem at hand, i.e., the disadvantages of
using this candidate population model are minimized by the model’s advantages.

4.8.3 Population Models

Building upon the sets and equations defined in the previous sections, Table 4.6
reports our population models. The three rightmost columns indicate population
models that are optimized for the corresponding metric. The three groups of rows
separated by a double line report our population models for each of the prediction
tasks, which are indicated in the leftmost column. For each prediction task, Table 4.6
contains information about the predictor P and feature subset F ′ that are part of the
population model. We report the sets Ftop in Table 4.6. However, features that are
part of the corresponding population model are underlined.

Next-slot Place Prediction Task

We observe in Table 4.6 that for the NSP prediction task relying only on the informa-
tion about the user’s current place allows us to achieve the best performance results
for all three metrics. This conclusion confirms our observation made in Figure 4.10,
in which the f value for almost all features but s_cur_place is lower than 10%. This
observation is explainable by the fact that users tend to stay at relevant places for
long periods of time, i.e., the relevant place in the next time slot is often the same as
the current one [22]. In terms of predictors, SVM provides the best solution in opti-
mizing accuracy. CART achieves the best results in optimizing F1 score and MCC.

Next-slot Transition Prediction Task

We also consider the NST prediction task that focuses on predicting place transitions.
We consider three metrics. In Section 4.3, we showed that considering one metric
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Table 4.6: Identified population models. Underlined features belong to the corresponding
population model.

Accuracy F1 Score MCC

N
SP

P SVM CART CART

F to
p

s_cur_place s_cur_place s_cur_place

t_tran_cur_med t_tran_cur_med t_tran_cur_med

n_gsm_id n_gsm_id n_gsm_id

t_tran_cur_std t_tran_cur_std s_is_known

t_weekend n_bluetooth n_gsm_rx

N
ST

P SVM CART CART

F to
p

t_tran_cur_arg n_gsm_id n_gsm_id

n_gsm_id s_cur_place s_cur_place

n_gsm_rx n_gsm_rx n_gsm_rx

s_cur_place t_weekday t_weekday

t_tran_cur_med s_is_known s_is_known

N
P

P SVM SVM CART

F to
p

s_cur_place s_cur_place s_cur_place

t_weekend t_weekend t_time

n_wifi s_places_today t_weekend

s_places_today n_wifi t_pre_place

s_bluetooth t_tran_cur_std t_res_cur_med

only does not allow to accurately capture predictors’ ability to predict place transi-
tions [22]. In contrast to the NSP prediction task, NST is a binary prediction task, i.e.,
it focuses on predicting whether or not the user will change the current place in the
next time slot. However, since these changes occur only a few times per day, NST
has highly unbalanced output classes (transition vs no transition) for the considered
15-minutes time slots.

Table 4.6 reveals that all three models contain almost the same features (under-
lined). However, the sets of top features differ. In particular, (n_gsm_id and n_gsm_rx)
as the network features appear in a large number of individual feature sets and thus
are included in the population models. These features play an important role in help-
ing to overcome the issue of highly unbalanced output classes, as described above.
The feature n_gsm_id is the most prominent feature while optimizing the metrics F1
score and MCC, highlighting its ability to predict transitions. One of the reasons for
that is its ability to detect changes in users’ environment and link them to a potential
place change. We conclude that to accurately predict place transitions information
about users’ network environment helps to increase predictors’ performance results,
along with temporal features [22]. Similar to the NSP prediction task, SVM provides
the best solution in optimizing accuracy and CART achieves the best results in opti-
mizing F1 score and MCC.
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Next-place Prediction Task

Finally, for the NP prediction task, we observe that users’ current relevant place
(s_cur_place) plays a crucial role in predicting users’ next relevant place. Further-
more, the feature t_weekday appears in all three population models. For the metrics
accuracy and F1 score, information about the number of already visited places on
the current day is also part of the feature subset F ′. The population model that opti-
mizes the metric MCC has the largest feature subset F ′. One of the reasons is a fairly
high f value computed for the less prominent features, as shown in Figure 4.10. This
implies the necessity to include more features. Furthermore, the knee in the curve,
for which we were looking for in Section 4.8.1, is also less obvious observable as in
all other cases. In contrast to the other two prediction tasks, SVM outperforms the
predictor CART while optimizing F1 score.

Discussion

To solve the NSP prediction task, information about the individual’s current relevant
place is sufficient to achieve the best metric results while predicting the individual’s
place in the next time slot. For the NST prediction task, information about the net-
work environment in the combination with spatial data allows increasing predictors’
performance for all three metrics. For the NP prediction task, temporal and spa-
tial information allows optimizing the three metrics. Given these observations, we
conclude that configurations of our population models depend more on the corre-
sponding prediction task than on the performance metric. Furthermore, despite a
large number of features and predictors considered in this work, only five features
and two predictors appear among all but one population models. The only excep-
tion is the population model for the prediction problem NP+MCC. It contains three
further features that are not part of other population models. This allows us to con-
clude that most of users’ mobility decisions can mainly be captured by a small set of
parameters.

Among the predictors considered in this work, only SVM and CART appear in our
population models. We observe that in cases in which CART is preferred over SVM,
the features with a higher rank have a higher f value than in opposite cases.

4.8.4 Comparing Individual and Population Models

We compare our population models to the individual models in terms of their perfor-
mance results. To this end, we plot in Figure 4.11 � as computed in Section 4.8.2. The
marker inside of each box indicates the median value while the box itself encloses
the 25th and 75th percentiles. The whiskers cover the 5th and 95th percentiles. The
outliers are marked with red crosses.

The evaluation results show that our population models are able to achieve a
performance that is comparable to that achieved by individual models. For more
than 25% of users, all population models achieve the same or better performance as
individual models. For more than 75% and 95% of users, the performance achieved
by individual models is up to 3 to 7 percentage points higher than that achieved by
our population models, respectively. An exception is the population model for the
problem NST+MCC.
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Figure 4.11: Performance differences between individual and population models.
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Figure 4.12: Performance results achieved by our population models.

Finally, Figure 4.12 presents performance achieved by our population models. The
results are reported in the same way as in Figure 4.11. The median performance for
all metrics for the NSP task and accuracy for the NST task are higher than 89%. This
observation is explainable by (1) the fact that people spend most of their time at few
places [90] and (2) the highly unbalanced classes (transition vs no transition) for the
NST prediction task (i.e., people change their place only few times per day [22]). In
these four cases, for over 95% of the users the corresponding performance results are
at least at 85%. For the remaining five prediction problems, our population models
achieve a comparable performance to those reported in the literature [6, 153, 147,
44, 205, 70, 71]. This highlights the ability of our population models to accurately
capturing human mobility behavior. We in particular observe that the performance
of solving each of these prediction problems depends on how the mobility data is
modeled and how many relevant places per individual are considered.

4.8.5 Conclusions from Deriving Population Models

Despite a large number of features and predictors considered in this work, only five
features and two predictors appear among eight out of nine population models. We
conclude that most of users’ mobility decisions can mainly be captured by a small
set of parameters. Furthermore, our results allow us to conclude that configurations
of our population models depend more on the corresponding prediction task than
on the performance metric. With respect to the performance results achieved by our
population models, we observe that some models offer room for improvements in
terms of deriving better prediction algorithms. In particular, this is the case for all
metrics for the NP prediction task and for the metrics F1 score as well as MCC for
the NST prediction task. Therefore, in the next sections we analyze two possibilities
to improve these five population models.
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4.9 influence of demographic data on predictors’ performance

In the previous section, we derived population models and showed that their perfor-
mance is comparable to individual models, which are optimized for each individual.
These models were derived by considering all users in the Nokia data set. How-
ever, deriving population models from data of the entire population might introduce
noise and thus decrease the models’ performance. Zheng et al. showed that some
groups of individuals might exhibit different mobility patterns than others [222]. At
the same time, individuals of the same demographic group might have more simi-
larities in their mobility patterns in comparison to individuals of other demographic
groups [143].

Therefore, in this section, we stress the point of the robustness of our popula-
tion models against demographic data. Furthermore, we are interested in answering
the question whether predictors’ performance can be improved by building popula-
tion models for demographic groups. We derive population models for each of the
15 considered demographic groups. We compare the performance achieved by the
population models that are derived for specific demographic groups to population
models that we derived in the previous stages of our work for the entire population.
Our evaluation results, which we present in the following, show only slight me-
dian performance improvements of up to 2 percentage points for one demographic
group. The improvements for other groups are even lower. We conclude that our
population models derived based on data of the entire population are robust against
demographic data in terms of predictors’ performance.

4.9.1 Demographic Groups

The Nokia data set contains a number of different types of demographic information
that we summarized in Section 3.1.2. The list covers all of the demographic infor-
mation available in the data set except for whether or not the user is the one who
pays the phone bill. Building upon the performance results shown in Figure 4.12, we
focus in this part of our study on the NP prediction task with all three metrics as
well as the metrics F1 score and MCC for the NST prediction task. The reason for
this decision is because the median performance achieved in all other cases is at least
at 89% and therefore the room for improvements is very small.

First, we group by demographic groups the performance results achieved by the
population models that are derived for the entire population. The rationale behind
this step is to uncover potential differences in performance achieved by demographic
groups individually.

In the case of the prediction problem NP+Accuracy, we observe in Figure 4.13 that
the predictors’ performance is highly comparable across all demographic groups.
The bars indicate median values and whiskers cover the 25th and 75th percentiles.
For the NST prediction task, there are slight differences in the performance for some
demographic groups, e.g., between people between 16 and 21 years old and other
groups. The results for the F1 score and MCC are shown in Figure 4.13. At the
same time, the group of women with children in the household achieves the highest
performance results among all demographic groups.
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Figure 4.13: Performance results of our population models that are derived from data of the
entire population. The results are grouped by demographic groups.
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Figure 4.14: Performance improvements of population models that are built by considering
demographic group members only over the population models that are built by
considering the entire data set.

4.9.2 Performance Results and Discussion

We next compute population models for each demographic group, individually. This
is done for all three metrics for the NP prediction task as well as for F1 score and
MCC for the NST prediction task. We omit reporting the results for F1 score and
MCC for the NP prediction task in the following graphs for ease of readability. The
shapes of the performance results achieved for these two metrics are very similar to
the plotted accuracy across all considered demographic groups and without reveal-
ing any other interesting observations.

Figure 4.14 shows the improvements achieved by the population models that are
built by considering demographic group members only over the population models
that are built by considering the entire population. The bars in Figure 4.14 indicate
median values and whiskers the 25th and 75th percentiles.

The largest performance improvement of up to 2 percentage points is achieved for
the group of users who are between 16 and 21 years old and the prediction problem
NST+F1. Nevertheless, the highly comparable performance across the demographic
groups confirms the robustness of our population models, which we derive based
on the data of the entire population.

4.10 influence of day-periods of time on predictors’ performance

We next focus on potential performance improvements in predicting mobility by
computing population models for different day-periods of time. In this analysis step,
we consider the NP prediction task only, as we expect a measurable influence of day-
periods of time on the performance achieved in solving this task. Our evaluation
results show performance improvements when considering different day-periods for
deriving population models.

In our earlier experiments we observed that the lowest performance among all
three metrics is measured during the day, especially at noon when people typically
tend to go for lunch. The highest performance was observed during the night, espe-
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Figure 4.15: Top class, fraction of places, and fraction of arrival time statistics of users’ mo-
bility splitted over a day in 2-hours slots.
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Figure 4.16: Probability over a day for the different demographic groups of being at L1, i.e.,
place where people spend most of their time. This place is usually users’ home.

cially between 2 a.m. and 4 a.m., when most people are at home. Figure 4.15 pro-
vides explanation for these observations with a number of user mobility statistics.
Although some of the observations might not be surprising, they clearly support the
rationale behind building mobility models for different day-periods of time.

First, the left bar in Figure 4.15 (labeled as Top class) shows the median posterior
probability of all users of being at the most relevant place L1, enclosed with the 25th

and 75th percentiles. This place is mostly the users’ home [148, 38]. In addition to a
high variance among the users, the plot shows that this probability is at its lowest
point at midday.

The middle bar indicates a fraction of users’ unique relevant places that the partic-
ular user visits in the particular time slot of day. From the set of relevant places each
user has ever visited, almost half of these places are visited at least once at noon. This
observation shows that the set of the potential output classes (i.e., relevant places)
that a predictor can predict is much higher during the day than at night.

The rightmost bar in Figure 4.15 shows the fraction of arrivals distributed over
the whole day. A slight increase in arrivals is observed in the morning, during the
lunchtime, and in the evening. We assume that these increases capture the events of
arriving at work, going for lunch, and arriving at home, respectively.

Furthermore, different demographic groups might also exhibit different mobility
behavior over a day. A simple example of the posterior probability of being at the
most relevant place (L1) is shown in Figure 4.16. The four considered demographic
groups are divided by gender and the presence of children in the household. We
observe that for women with children, the median probability of being at L1 after 6
p.m. is at almost 78%. In comparison to women without children in the household,
it is an increase of nearly 33 percentage points. A similar, however, not so large a
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Figure 4.17: Performance gains achieved by deriving population models for different day-
periods of time and demographic groups.

difference is observed for men, too. This example supports the rationale behind the
necessity to evaluate the potential performance improvements in predicting mobility
by considering combinations of demographic groups and day-periods of time.

Therefore, we compute population models for three non-overlapping day-periods
of time: (1) 10 p.m. to 10 a.m., (2) 10 a.m. to 3 p.m., and (3) 3 p.m. to 10 p.m.,
individually. We expect to be able to separate the groups of routines of (1) being at
home and going to work, (2) being at work and going for lunch, and (3) returning
home after work. The day-periods of time are selected based on the observations
made in Figure 4.15. The performance results for the three day-periods of time are
then averaged and weighted by the fraction of predictions for each of them.

4.10.1 Performance Results and Discussion

We compare performance results achieved by the population models that consider
day-periods of time and demographic groups to the performance achieved by pop-
ulation models that are computed for entire day and all users. Figure 4.17 shows
improvements in accuracy and F1 score for all demographic groups. At the same
time, we observe that MCC values drop for almost all demographic groups. We indi-
cate in this plot median values as well as 25th and 75th percentiles.

The reason for the dramatic drop in MCC across all groups is shown in Figure 4.10
and was already discussed in Section 4.8.3. As we observe in this plot, the features
are almost equally distributed among individual models. By reducing the amount of
data by splitting it in different demographic groups and day-periods of time, features
with less impact on predicting users’ mobility are selected as top features (Ftop).
This observation demonstrates the effect of the amount of data on the goodness of
selected features by the heuristics. We assume that increasing the size of the set Ftop

for NP+MCC will reduce performance drops.
We conclude that taking different day-periods of time into consideration helps

improving accuracy and F1 score for the NP prediction task for all considered demo-
graphic groups. However, it decreases the performance in terms of the metric MCC.
In this case, for optimizing NP+MCC the population model that is derived based on
the data of the entire population is recommended.
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4.11 related work

After having presented our own contributions, we review the existing literature on
human mobility prediction. We therefore put the particular emphasis on: (1) feature
selection, (2) human mobility predictors, and (3) utilizing demographics and social
ties for human mobility prediction. We would like to further point out the existence
of research work analyzing and proposing algorithms for simulating human mobility
in metropolitan regions or after the occurrence of disasters such as earthquakes [223,
161, 111, 48, 191, 192, 28, 44, 154, 171, 209, 102, 16, 34, 184, 105, 83, 165, 136, 108, 41,
90, 129, 147, 29, 196]. We consider the insights presented in this extended literature,
however, we do not present it in detail in this thesis due to its main focus on generic
characteristics of human mobility.

4.11.1 Feature Selection

The optimum feature set to accurately predict human mobility likely differs from the
originally assembled one [212]. Furthermore, too many features result in the well-
known curse of dimensionality issue [30]. Although these facts are known for nearly
half a century already, their consequences and influence on the domain of human
mobility prediction became relevant not before the last few years. In particular, these
aspects become relevant with the tremendous success of mobile devices and thus the
possibility to collect, aggregate, and analyze heterogenous mobile phone data from
hundreds and thousands of individuals.

Doug Laney, Vice President Distinguished Analyst at Gartner, the world’s leading
information technology research and advisory company, associated back in 2001 the
term Big Data with (1) data volume, (2) data variety, and (3) data velocity [126]. We
argue that at least the former two categories apply, nowadays, to the data gener-
ated by mobile devices and thus often available for research and practical purposes.
Therefore, identifying which type of data is necessary to accurately predict human
mobility is crucial – not at least for privacy reasons. To this end, different techniques
were introduced and applied in a variety of research domains to select and under-
stand which type of data is relevant for which prediction, classification, or related
tasks [27, 71, 116, 120, 134, 163, 185, 195, 155].

Lin et al. present a-Loc – a system for localizing mobile devices in an energy-
efficient manner [134]. To do so, they first investigate how accurate each of the
available sensors on mobile devices – Bluetooth, Wi-Fi, GPS, and cell towers – can
estimate a mobile device’s location. On the costs side, the authors evaluate the en-
ergy consumption for each of these sensors. Given these costs and benefits, Lin et al.
present an algorithm to select a location data source that maximizes the cost-benefit
ratio by meeting the given location accuracy requirements.

Noulas et al. exploit the possibility to predict where an individual will check-in
next on FourSquare [155]. To analyze millions of check-ins and build prediction
models based on them, the authors design several temporal and spatial features.
Although the authors do not perform any additional feature selection procedure –
beside carefully extracting the features – some of the proposed features are included
in our work.
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Do and Gatica-Perez analyze six features – including representatives from tempo-
ral, spatial, and context groups of features – in terms of their predictive power for
the NSP and application prediction task [71]. Although the results reported in their
study consider only six combinations of these features, the authors demonstrate that
individuals’ location has the highest predictive power, followed by time of day and
phone context data.

Shin et al. utilize another technique to determine which features are most valu-
able for predicting mobile applications [185]. They first design 37 features including
spatial, temporal, and phone context data. After that, the application prediction al-
gorithm was developed as an Android application and released on the Android
Market. For each of the 111 users of this application, the application then measured
the Information Gain (IG) of each feature, individually. The results reveal among the
information about the last used application that cellular ID and hour of day were
considered as the three most valuable features.

Another approach was taken by Pejovic and Musolesi to determine which mobile
phone features are most helpful in determining individuals’ interruptability [163].
The authors carefully select the features that support the defined hypotheses by as-
suming that these features will confirm or decline the hypotheses. Utilizing this kind
of expert knowledge during feature extraction phase allows avoiding the necessity
of feature selection in the later phase. However, this approach does not scale given
the number of potential human mobility prediction tasks and data sources.

Although all the aforementioned approaches measure the predictive power of fea-
tures, there is one major difference to our work: the features are all considered inde-
pendently to each other. In other words, there is nearly no analysis on the synergy
effects achievable by fusing multiple features. The following literature attempts to
bridge this gap and is thus more related to our work.

Srinivasan et al. present MobileMiner – a service that runs on mobile devices to
discover which events in individuals’ daily life frequently occur together [195]. Mo-
bileMiner attempts to learn rules that indicate that a group of actions is typically
a consequence of a set of other actions that occurred before. Each of these rules is
assembled using a set of features. For instance, “having breakfast at home in the
morning” mostly implies that the individual will also read a newspaper. The feature
information is extracted by utilizing mobile devices’ sensors and then grouped ac-
cording to their temporal closeness into baskets. To detect which basket A correlates
with a follow-up basket B, MobileMiner computes the joint probability p(A,B) and
the conditional probability p(B�A) for each pair of baskets. This allows MobileM-
iner to identify baskets, i.e., groups of features, with the highest predictive power in
determining which actions – summarized by the basket B – will follow next.

Another group of techniques covers the greedy algorithms SFS and SFFS [212, 169].
These algorithms start with an empty feature set and try to improve its predictive
power by continuously adding new features and removing the already selected ones
(SFFS only). The success of these steps is then measured with a chosen figure of
merit, such as accuracy, precision, or any other metric. Beckel applies SFFS in the
domain of household classification [27]. To this end, he designs a set of features
and then attempts to identify which subset of these features provides the most ac-
curate classification of households for energy consulting purposes. Related to this,
Koehler et al. [120] with the system Indoor-ALPS and Kleiminger et al. [116] apply
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Table 4.7: Comparison of related work in terms of feature selection.

References Feature selector Type of features Application scenario

a-Loc [134]
Individual comparison
through a cost-benefit
function

Spatial Energy-efficient mobile device
localization

Noulas et al. [155] Careful a priori design of
features

Temporal, spatial,
and social

Prediction of next check-ins on
FourSquare by an individual

Do and Garica-
Perez [71] Individual comparison Temporal, spatial,

phone context
NSP and application predic-
tion tasks

Shin et al. [185] Computing IG for each fea-
ture

Temporal, spatial,
phone context

Application prediction task

Pejovic and Mu-
solesi [163]

Careful a priori design of
features

Temporal, spatial,
phone context

Interruptability prediction

MobileMiner [195]
Joint and conditional prob-
abilities of groups of fea-
tures

Temporal, spatial,
and phone context

Mining daily life patterns

Beckel [27] SFFS
Energy consump-
tion Household classification

Indoor-ALPS [120] SFFS
Temporal and spa-
tial Indoor location prediction

Kleiminger et al. [116] SFS Temporal and spa-
tial Occupancy prediction

SELECTOR [25] SFFS Temporal, spatial,
phone context

NSP, NST, and NP prediction
tasks

these techniques in the context of office rooms and household occupancy prediction,
respectively. Both problems are human mobility prediction tasks.

In our work, we adopt the SFFS algorithm to identify most valuable features due to
its demonstrated applicability in the domain of human mobility prediction. Table 4.7
summarizes the discussed related work in terms of three categories. The bold entries
are the more closely related to our work. In contrast to the existing literature, we
consider in this work three different and widely used human mobility prediction
tasks instead of focusing on one particular scenario. Furthermore, we design and
evaluate more features related to human mobility than it was before. We also inspect
how the influence of these features affects the state-of-the-art performance metrics
– something that was not investigated before. Finally, our analysis is based on the
largest data set among all previous analyses and is thus to be considered as the
most representative. In summary, we conduct our feature selection analysis on three
widely used human mobility prediction tasks, with 51 features, three performance
metrics, and seven prediction algorithms making our work unique with respect to
the previously conducted research.
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4.11.2 Human Mobility Prediction Algorithms

Although we do not develop a novel human mobility prediction algorithm in this
work, our primary goal is still to identify the best performing combinations of fea-
tures and predictors for particular prediction tasks to optimize performance metrics.
We also demonstrate how to perform this selection on an example with seven pre-
dictors, three metrics, three prediction tasks, and 51 features. Nevertheless, the set
of candidate predictors can seamlessly be adapted and replaces with other novel
approaches that should be considered for the selection process. Therefore, we now
review existing human mobility prediction algorithms by outlining under which cir-
cumstances they are suitable candidates.

Ashbrook and Starner propose a human mobility prediction algorithm for the
NP prediction task that is based on a Markov model of different orders [9]. They
show that the 1st order Markov model already achieves good results in predicting
which place an individual will visit next. Increasing the model’s order allows for also
improving the predictive power. The authors highlight, in particular, that Markov
models of a higher order are useful to capture mobility trajectories that include less
frequently visited places, such as bus stations or coffee shops. As also outlined by the
authors, the higher the order of the model, the more data is required to achieve solid
predictions. The algorithm presented by Ashbrook and Starter is primarily designed
for the NP prediction task. However, since it relies on a Markov model, it can also
be extended to serve for other prediction tasks, e.g., NSP or NST. With our analysis
on temporal and spatial features in Section 4.3, we indeed demonstrate how this can
be accomplished.

In contrast to Ashbrook’s work, Krumm and Horvitz utilize GPS trajectories of
individuals to predict where individuals are heading as a trip progresses [123]. Their
method called Predestination requires a probabilistic map of the considered geograph-
ical region to infer the candidate destinations. This map is assembled based on trends
in the data of all considered individuals and further properties of each of the loca-
tions depicted on the map. This introduces an important advantage over other ex-
isting algorithms because Predestination is able to also predict destinations that the
particular user has never visited before. Although Predestination operates when the
individual is already en-route to her destination, it is able to support all three pre-
diction tasks considered in this chapter of our work. This is because Predestination
not only infers where the individual will arrive but also when. The latter prediction is
achieved by building trip time and efficient driving likelihood distributions of each
user, individually. The difference to our work lies mainly in the type of data, i.e., GPS
trajectories of vehicles, that is considered by Predestination. Our algorithm SELECTOR

is still applicable to this type of algorithms. Another work on trip destination pre-
diction was presented by Ganti et al. [87]. In contrast to Predestination, Ganti et al.
focus on taxicabs by predicting at which place the particular trip will end. We rank
this algorithm in the group of those that tackle the NP prediction task.

Nicholson and Noble introduce BreadCrumbs – an algorithm for forecasting mobile
connectivity [153]. Similar to Ashbrook and Starner, the authors build a 2nd order
Markov model to predict in which geographical region the individual will be in t

seconds and which Wi-Fi network connectivity she has to expect. The derived model
is built upon GPS records obtained from data of one participant. BreadCrumbs is
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modeled to operate on a slotted mobility trace. It is thus a suitable candidate for
solving the NSP and NST prediction tasks.

There are several approaches that primarily focus on the temporal aspects of mo-
bility predictions. In other words, they attempt to solve the residence time prediction
task, i.e., estimating when the individual will visit the particular place next instead
of which place vill be visited next, as it is the case for the NP prediction problem.
For instance, the NextPlace algorithm by Scellato et al. uses non-linear time series
analysis to predict both the arrival and residence time at users’ relevant places [176].
It does not use information about previously visited places and is thus agnostic of
the spatial information inherent in users’ mobility traces. Therefore, they rely only
on temporal features of the mobility trace. In contrast, Vu et al. introduce Jyotish – a
framework that attempts to predict both the place the individual will visit next and
at which time it will happen [205, 206].

Occupancy Prediction

A subdomain of human mobility prediction is occupancy prediction. This field is
motivated, in particular, by the smart heating and smart home application scenar-
ios [179, 122, 119, 120, 114, 115, 116, 117, 118]. For instance, Scott et al. introduce
PreHeat – a household occupancy prediction algorithm [179]. PreHeat relies on slot-
based household occupation records of 15 minutes, i.e., for each time slot of 15 min-
utes there is an indicator of whether the household was occupied or not. Building
upon this data, the algorithm derives the probability that the household will be oc-
cupied k time slots ahead. We thus rank PreHeat in the category of algorithms that
solve NSP and NST prediction tasks due to its reliability on slot-based data. To im-
prove prediction results, the authors allow PreHeat to differentiate historical data
based on whether it is a workday or weekend.

Krumm and Brush present a similar approach to PreHeat [122]. Their approach
is based on probabilistic schedules and is build as a fixed one-week occupancy
timetable. Furthermore, their approach does not attempt to find routines in occu-
pancy history, but assumes that the occupancy prediction mainly depends on the
individual’s mobility at the current day.

Koehler et al. contribute two algorithms – TherML and Indoor–ALPS – to the do-
mains of occupancy and indoor mobility prediction, respectively [119, 120]. TherML
operates on individuals’ GPS data obtained from mobile devices to automatically
control home heating system. The authors compare TherML to the approach that
allows the participants of the study to also control their home heating system man-
ually. As the result, the authors advocate for a mixed system that incorporates the
positive aspects of both possibilities to automatically and manually controll home
heating systems. With Indoor–ALPS, the authors take a step further and attempt to
predict occupancy on room-level basis by predicting when the individual will leave
her current indoor place and to which room she will be heading after that. This
approach operates on 10-minutes time slots and thus predicts individuals’ indoor
mobility for k time slots ahead. Lastly, Kleiminger et al. conduct several research
on occupancy sensing and prediction as well as comparing occupancy prediction
algorithms in terms of achievable heating savings [114, 115, 116, 117, 118].

Both occupancy and individuals’ mobility prediction tasks are complementary to
each other and also to our work. In this sense, SELECTOR can be utilized to select, for
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instance, which occupancy predictors optimize the particular performance metric or
which type of data is the most valuable for predictions.

Selecting Best Performing Human Mobility Predictors

Finally, we review approaches that either analyze how human mobility prediction
algorithms perform under the given circumstances or apply additional techniques to
improve the performance of predictors proposed in the same particular paper.

Song et al. compare two major families of predictors: Markov-based and compression-
based [194]. As Markov predictors, the authors utilize 1st, 2nd, 3rd, and 4th order
Markov predictors with the fall-back option. In other words, if it is not possible to
operate the 4th order Markov predictor due to the data sparsity then the 3rd order
Markov predictor is used and so on. The compression-based algorithms are Lempel-
Ziv (LZ) and the fusion of LZ and Prediction by Partial Matching (PPM). The au-
thors found that the lower order Markov predictors perform at least as good as the
much more complex compression-based algorithms. The authors extend their work
by also comparing the 1st and 2nd order Markov predictors to the performance of
the moving-average and CDF predictors [193]. They demonstrate on the application
scenario of provisioning Wi-Fi bandwidth through mobility predictions that the 2nd

order Markov predictor performs best in this scenario. The authors also outline that
the gain an application scenario can obtain from mobility predictions depends on
the scenario’s ability to compensate for prediction errors.

Chon et al. compare another two families of prediction algorithms, namely location
dependent (LD) and location independent (LI) algorithms [47]. As the LD algorithm,
they assemble Markov models of different orders. The NextPlace predictor [176]
serves as the representative for the group of LI predictors. This work is similar to
ours in terms of analyzing temporal and spatial features. However, Chon et al. lever-
age different types of predictors making it difficult to draw reasonable conclusions
about the influence of the features on predictors’ performance. This is because their
work aims to quantify the difference between existing predictors. Furthermore, in
our work we also consider mixtures of features from both groups. The results pre-
sented by Chon et al. show that LD predictors are better than LI predictors in terms
of estimating temporal behavior of individuals.

As we discussed earlier, human mobility records are highly unbalanced in terms of
the frequency each relevant place is visited. For instance, individuals spend 60%–65%
of their time at home, 20%–25% at work/school, and the rest of their time at other
places [148, 38]. Furthermore, given the diversity in human mobility prediction tasks,
it is unlikely that one predictor can achieve best results for all of them. Therefore,
hierarchical prediction algorithms are utilized by several researchers [187, 152, 222,
143, 71, 70, 77, 143].

Silla and Freitas review a set of existing prediction and classification tasks that are
suitable for hierarchical classification and those that are not [187]. They further de-
fine different hierarchical approaches and compare their performance. Ekman et al.
create a composition of different mobility models that describe daily life of an in-
dividual [77]. Their model includes home activity, office activity, evening activity,
and transport submodels to cope with the mobility differences of individuals over
a day. Similarly, Nguyen et al. propose instead of using one predictor for different
human mobility prediction tasks, to assemble different predictors for solving, for
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instance, the NP prediction task and to estimate when the individual will arrive at
a particular place [152]. Other authors investigate the possibility of using mobility
data from other individuals to overcome the cold-start problem [222, 143, 71]. Finally,
Do and Gatica-Perez propose to use the ensemble learning method to fuse multiple
conditional distributions related to human mobility to achieve better mobility pre-
dictions [70].

In our work, we also leverage the ensemble learning technique to investigate how
the weaknesses of the 18 considered Markov predictors can be reduced by fusing
their predictive power. Overall, with SELECTOR we define a unifying algorithm for hu-
man mobility model selection. We demonstrate its applicability on a set of different
prediction algorithms, tasks, features, and metrics, which highlights its generality.

4.11.3 Leveraging Demographics and Social Ties for Human Mobility Prediction

User demographics and phone data are considered in other studies on mobility pre-
diction. For instance, Song et al. analyze whether there are fundamental differences
between the predictability of the mobility of female and male individuals and con-
clude there are none [191]. Eagle and Pentland show that the mobility traces of differ-
ent demographic groups – faculty members, students, and lab staff of the MIT Media
Lab and MIT Sloan School – show different average weekly entropy [75]. Krumm and
Rouhana use individuals’ demographics to improve the accuracy in the semantic la-
beling of relevant places [124]. De Domenico et al. utilize a nonlinear predictor to
exploit mobility data of friends of the particular individual to improve her mobility
predictions [65, 66]. However, none of these studies has investigated quantitatively
how the use of demographic data can help improve the performance of mobility
predictors. This is also due to the fact that large enough data sets that allow conduct-
ing such studies are very rare and – to the best of our knowledge – the Nokia data
set is the first publicly available data set that contains both mobility traces and user
demographics for a large number of users, collected over a long period of time.

4.11.4 Summary of Related Work on Human Mobility Prediction Algorithms

These and similar previous studies mainly focus on learning (conditional) probability
distributions for a set of outcome variables or aiming to estimate parameters for a
given distribution. In our work, we however focus on understanding which features
as well as combinations of those and a predictor are most relevant for solving a wide
range of human mobility prediction tasks. We not only consider a larger number of
and more diverse set of features that might influence the performance of mobility
predictors – including phone context data and user demographics – but we also
explore their impact on different prediction tasks and metrics at the same time, which
is novel with respect to previous approaches. Furthermore, our analysis is based on
a far larger and richer data set than previous studies.

Table 4.8 compares the detailed related work in this section to SELECTOR by point-
ing out for each work the particular contributions related to our work. Please note
that we compare the feature selection process in Table 4.7 and therefore exclude it
from Table 4.8 for the sake of readability. The bold entries highlight related parts of
other approaches to ours. In particular, the third group of literature as the most re-
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lated to ours because the authors either focus on understanding which predictor per-
forms better for the given application scenario or how the aforementioned cold-start
problem can be addressed. The first two groups of approaches are more considered
as complementary work because they mainly present novel mobility or occupancy
prediction algorithms. These algorithms can then be integrated in SELECTOR. The last
group simply summarizes a brief overview of literature that also consider other types
of data, such as demographics and social ties in the context of human mobility.

4.12 summary and practical implications from our results

In this chapter of the thesis, we identified and analyzed a set of parameters that in-
fluence human mobility predictors’ performance. In particular, we first focused on
an empirical understanding of the impact of temporal, spacial, and phone context
data on their ability to predict users’ mobility. We showed that temporal features
optimize transition predictions, while the spatial features are more reliable for opti-
mizing predictors’ 1-step ahead accuracy.

We then designed and proposed SELECTOR – a novel human mobility prediction
model selection algorithm. We demonstrated its abilities by deriving individual mod-
els that were then utilized in further analysis. For instance, we leveraged these indi-
vidual models to analyze the influence of phone context data on the predictors’ per-
formance. Although phone context data is a rich and promising information source,
which has been successfully used in different domains [185, 195, 71], collecting such
data can be an enormous intrusion on users’ privacy. Furthermore, it is still unclear
how and to what extent this information can be used to increase the performance of
predictors. With our results, we showed that for the Nokia data set, the use of phone
context features does not lead to substantial performance improvements in solving
the considered prediction tasks. This implies that collecting such highly sensitive in-
formation is not necessary since it does not improve predictions for this large data
set.

We further addressed the cold-start problem [177, 143]. To this end, we took a holis-
tic and quantitative approach for investigating which data features and predictors
can be used to optimize performance metrics for a set of different prediction tasks.
The outcome of our investigation is a set of population models that achieve a perfor-
mance that is highly comparable to users’ individual models. This result means that
for this data, we can more easily overcome the cold-start problem by utilizing our
proposed population models.

We also analyzed the robustness of our population models by considering demo-
graphic data and building models for different day-periods of time. Deriving pop-
ulation models from data of the entire population might introduce noise and thus
decrease the models’ performance. However, our results confirmed that our popula-
tion models, which are derived from data of the entire population, are robust against
demographic data. Lastly, we showed that deriving population models for different
day-periods of time improves the accuracy and F1 score for all demographic groups.

Building upon our results, we next highlight three practical implications that we
believe can be drawn from our results. These implications cover (1) the cold-start
problem, (2) the possibility to use SELECTOR as a building block for other research
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and practical purposes, and (3) the availability of the population models as baseline
for comparing novel human mobility prediction algorithms.

4.12.1 Implications for the Cold-start Problem

The first implication from our results is the possibility to reduce the effect of the
cold-start problem on the three considered human mobility prediction tasks. The
cold-start problem describes the fact of not having enough historical mobility data
of the particular user to derive an individual model for her. In this work, we defined
and performed the necessary steps to derive users’ individual models. We observed
that a substantial amount of historical data and computational power is required
to run all these steps. The amount of data and computational power increases if
the individual models should be split into multiple models, for instance, to cover
different day-periods of time.

Therefore, the reported population models can be used by researchers and practi-
tioners for applications that leverage human mobility predictions. Users then are able
to benefit from these applications short time after the installation without the neces-
sity to collect data over a long period of time, initially. With the reported performance
results of the individual and population models, developers of such applications can
easily decide which parts of the initial population model should be optimized. These
optimizations are achievable by considering data of the particular user, e.g., mobility
behavior or demographics, to run their applications more reliably and at a higher
performance than with the default population models.

4.12.2 Implications for Using Mobility Predictions as a Building Block

The second practical implication from our results is similar to the first one. It con-
cerns the possibility to use SELECTOR and the population models as a building block
in other research domains or practical implementations of prediction applications on
mobile devices. For instance, if a researcher is interested in developing an algorithm
for estimating the confidence of a particular mobility prediction, she requires an up-
and-running prediction system for multiple prediction tasks in order to evaluate the
performance of the designed and proposed confidence estimator. We demonstrate
the practical feasibility of this example with our contribution in Chapter 5 of this
thesis. In comparison to the first practical implication, the researcher in this case
does not necessarily require to achieve the highest potential performance in predict-
ing users’ mobility by deriving individual models for all users. Instead, she is more
interested in quickly setting up a prediction system to perform the research on top
of it by utilizing population models as an underlying building block.

Similarly, a mobile application relying on human mobility predictions, can im-
plement SELECTOR and let it continuously optimize the corresponding mobility pre-
diction model by re-running the feature and predictor selection periodically. For
instance, when the individual is sleeping and her phone is charging.
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4.12.3 Implications for Using Population Models as a Baseline

Lastly, we propose to use SELECTOR and the derived population models as baselines
for the comparison of novel human mobility prediction algorithms. New predictors
are often evaluated and compared to some widely used but naïve baseline predictors
such as random or majority vote predictors. This makes it difficult to estimate the
actual impact of the proposed predictor since achieving a better performance than
these naïve baseline predictors is not very challenging. Comparing to more sophisti-
cated predictors is, however, not always feasible. For instance, their implementation
is often not publicly available requiring additional effort to re-implement them from
scratch based on the reported details. We further argue that the absence of any pre-
dictive power in the naïve predictors makes them highly reliable on the underlying
data that is used for the performance evaluation. Therefore, it might lead to biased
comparison results.

In this work, we presented population models for different prediction tasks. We
believe that these models – including predictors for which different implementations
are publicly available – can be used as baselines for comparing novel mobility pre-
diction algorithms. This will allow capturing their impact more accurately and make
them comparable to others.
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Table 4.8: Summary and comparison of related work.

References Brief summary of related contributions
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Ashbrook and Starner [9] Markov-based NP predictor

Predestinator [123] Trip destination predictor (NP)

Ganti et al. [87] Trip destination predictor (NP)

BreadCrumbs [153] Slot-based mobile connectivity predictor (NSP, NST)

NextPlace [176] Time instant at which a place will be visited next predictor

Jyotish [205, 206] NP and residence time predictor
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PreHeat [179] Slot-based occupancy predictor (NSP, NST)

Krumm and Brush [122] Slot-based occupancy predictor (NSP, NST)

TherML [119] Occupancy predictor

Indoor-ALPS [120] Slot-based occupancy and mobility prediction (NSP, NST)

Kleiminger [114] Slot-based occupancy and mobility prediction (NSP, NST), performance com-
parison of existing occupancy predictors
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n Song et al. [194] Performance analysis of Markov-based and compression-based predictors

Song et al. [193] Performance analysis of Markov-based, moving-agerage, and CDF predic-
tors

Chon et al. [47] Performance analysis of LD and LI predictors

Silla and Freitas [187] Comparison of hierarchical classifiers

Ekman et al. [77] Composition of multiple mobility models for different daily life situations

Nguyen et al. [152] Composition of multiple predictors for different prediction tasks

Zheng et al. [222] Leveraging mobility data of other individuals to tackle the cold-start prob-
lem

McInerney et al. [143] Leveraging mobility data of other individuals to tackle the cold-start prob-
lem

Do and Garica-Perez [71] Population mobility models to tackle the cold-start problem

Do and Garica-Perez [70] Applying ensemble learning technique to improve mobility predictions
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s
&
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Song et al. [191] Mobility predictability of male and female individuals

Eagle and Pentland [75] Mobility entropy for different academic groups

Krumm and Rouhana [124] Improving semantic labeling of places through demographics

De Domenico et al. [65, 66] Improving individuals’ mobility predictions by exploiting mobility data of
friends

SELECTOR [25]
Evaluation system to select individual mobility models from the considered
candidates; population models to tackle cold-start problem; demonstration of
which demographics allow improving mobility models





5
U N C E RTA I N T I E S I N H U M A N M O B I L I T Y P R E D I C T I O N S

The vision of Ubiquitous Computing promises what Salber et al. have called Se-
mantic Transparency, “a system that anticipates the user’s intent and performs the task

for her” [174]. Today’s smartphones have been getting ever closer to this vision, with
all major smartphone platforms now offering a certain type of mobile applications
that can be referred to as a Mobile Personal Assistant (MPA). These mobile applica-
tions such as Google Now and Cover (both Android), Tempo and Cue (both iOS),
and Cortana (Windows Phone) attempt to predict upcoming information needs of
their users. MPAs use current context such as location and time of day, and combine
it with individual’s movement patterns, calendar entries, or emails, to provide the
user with answers to as-of-yet unasked questions (“When is the next bus leaving for
home from this stop?”) or to even bring up reminders (“Leave now to catch your 2 p.m.
flight!”).

Today, this new wave of anticipatory computing [139] or predictive intelligence [76], as
it has been called in the press, still largely focuses on proactively providing informa-
tion. However, first attempts has been already undertaken to use such predictions
to execute actions, e.g., controlling a home heating system [179, 122] (i.e., turning
the heating on or off) according to the expected presence of the individual during
the day. As MPAs move from simply displaying information to actually executing
actions on behalf of the user, the risk of “getting it wrong” rises significantly.

We argue that this potential for mistakes will prevent individuals from transfer-
ring the authority to take actions to their MPAs in the future. Depending on the
individual application scenario, users might require different levels of certainty for a
prediction before they would feel comfortable letting an MPA act on their behalf. In
particular, leveraging predictions of human mobility is an important driver for MPAs,
since much of human activity is highly dependent on one’s location. Therefore, we
derived population models for a set of human mobility prediction tasks in the previ-
ous chapter. Guaranteeing accurate mobility predictions is, however, not trivial. For
instance, it is known that humans also tend to move spontaneously and therefore
cause mobility prediction errors [90]. Metrics such as IE [142] or machine learning
classifiers often provide prediction probability, activation score [71], or prediction reliabil-
ity [50] that can all be used to detect uncertain mobility predictions. Without lack of
generality, we group all these terms and refer to them as the Level of Trust (LoT). We
further say that a technique that estimates such a LoT is a LoT estimator. However,
little emphasis has been placed on understanding how and to what extent real-world
application scenarios can benefit from these techniques.

With this work, we reduce this gap by analyzing the performance of five ap-
proaches that measure the LoT of Next-place (NP) predictions in the context of three
prominent application scenarios. We model these scenarios as MPAs and parametrize
them with results that we obtained from a qualitative user study with 188 partic-
ipants from six continents. In other words, we calibrate for all three application
scenarios how many wrong actions based on wrong mobility predictions the indi-
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viduals are willing to accept. For those individuals who would transfer the authority
to execute actions to an MPA only if it operates extremely accurate, we evaluate dif-
ferent approaches to estimate the LoT of mobility predictions. These LoT estimates
allow the MPA to decide whether (A) the corresponding action should be executed
autonomously, (B) the user has to be asked for a confirmation, or (C) no actions
should be taken. The fine-grained contributions of our work in this chapter are as
follows:

questionnaire-based user study We conduct a qualitative, questionnaire-based
user study that (1) affirms the general value users see in MPAs; (2) confirms
our understanding that different usage scenarios will require significantly dif-
ferent certainty levels for a NP predictor; and (3) reveals that the required level
of trust depends on the potential for negative consequences stemming from
MPAs’ actions.

predictability of mobility traces and residence times We analyze the
predictability of mobility traces and residence times. Our results reveal that
mobility traces are more predictable than residence and arrival times. We also
show that mobility predictors tend to underestimate residence times. Given
these observations, we highlight the corresponding implications for the three
considered application scenarios.

evaluation of the instantaneous entropy metric We identify three situ-
ations in which mobility predictions are often wrong. We evaluate how accurate
the IE metric is capable to detect these situations. Our results reveal situations
in which IE either over- or underestimates momentary predictability of the in-
dividuals. We finally motivate the use of the IE metric as part of our analysis of
how much the considered application scenarios in form of MPAs benefit from
the LoT estimators.

analysis on how much mpas benefit from lot estimators We then eval-
uate how accurate existing LoT estimators are able to detect wrong NP pre-
dictions. To this end, we assemble an ensemble learning based estimator that
we dub LOTUS. We define a score function to capture individuals’ willingness
to lose the comfort of automatically executed actions in relation to the costs
of a higher reliability in executing them. We integrate our population models
to simulate three practical application scenarios. We measure that 82%, 50%,
and 17% of the individuals in the Nokia data set benefit from at least one
LoT estimator in the context of the home automation, traffic updates, and data
prefetching scenarios, respectively.

The remainder of this chapter is partly based on the previously published re-
sults [21, 19, 26] by the author of this thesis and is structured as follows. Section 5.1
describes our questionnaire study by highlighting the hypotheses we aim to verify,
the study design, and the obtained results. We analyze the predictability of mobility
traces and residence times in Section 5.2 and the IE metric in Section 5.3. We describe
the considered LoT estimators and our score function in Section 5.4. The evaluation
setup is given in Section 5.5 and the corresponding evaluation results of comparing
the LoT estimators in Section 5.6. Finally, we discuss related work in Section 5.7 and
draw conclusions in Section 5.8.
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5.1 questionnaire-based user study

The motivation of this work is based on four hypotheses that we formulate as follows:

• H1 (Utility): Users see utility in having MPAs take autonomous actions on their behalf.

• H2 (Context-dependence): A user-acceptable error rate for an MPA depends on the
underlying use-case scenario.

• H3 (Confidence): Users want MPAs to estimate the level of trust of their predictions
when taking autonomous actions.

• H4 (Adequacy): The level of trust needed depends on the potentially negative conse-
quences of autonomous actions.

To verify these hypotheses, we conducted a questionnaire-based qualitative user
study with 188 participants from 18 countries across six continents. To explore H2
and H4, we consider three representative application scenarios in our study: home
automation, providing traffic updates, and prefetching mobile application data. These three
scenarios not only span a broad spectrum of use cases but also feature very different
risks, i.e., the negative consequences from the unnecessary execution of tasks are
very different in each scenario. Participants received short explanations similar to
the sections below, describing the three scenarios.

Home Automation

In the context of home automation, the MPA on a user’s mobile device predicts that
the user will return home soon. Using this prediction, the MPA remotely switches
on the heating so that the user returns to a warm home. Similarly, the MPA auto-
matically switches off the heating when it detects that the user is about to leave the
house soon. Incorrect predictions may lead to a waste of energy – and hence money
– if the heating system is turned on too early (or off too late), or a loss of comfort
when it is turned on too late (or off too early).

Traffic Updates

In order to provide traffic updates, the MPA on a user’s mobile device predicts that
the user will soon go to another place. The MPA automatically verifies current traffic
conditions en-route to this new place and alerts the user when it is time to leave.
Incorrect predictions may lead to unnecessary notifications for wrongly predicted
trips (which might annoy the user) or a lack of alerting the user to leave, in case the
MPA misses a trip (which may result in the user being late).

Data Prefetching

Given Wi-Fi connectivity at the current place, the MPA will start prefetching data for
those applications that the user will most likely use at the next predicted place, or
while en-route. Incorrect predictions in this scenario may lead to the prefetching of
unneeded data (which may lower battery life), or to the lack of availability of needed
data (or additional costs from using cellular data instead).
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Figure 5.1: Mobile device usage statistics indicated by the participants of the study.

5.1.1 Methodology

The questionnaire is divided into four parts: Part 1 asks for demographic data (e.g.,
age, gender, country of origin, country of residence); Part 2 collects information
about the participant’s mobile device usage behavior (e.g., how often they use a
specific feature on their mobile device); Part 3 focuses on if and when a participant
would like to have an autonomously acting MPA (H1 and H2); and Part 4 focuses on
issues involving the uncertainty of an MPA’s decisions (H3 and H4). Our question-
naire is in Appendix B available.

Recruitment Process

After testing several iterations of the questionnaire design with volunteers not in-
volved in the design process, we distributed the questionnaire both by word-of-
mouth through our personal network, as well as by posting links to it on social media
and mailing lists. In particular, we used four different communication channels to
reach potential participants: (1) talking to people in person, (2) using a synchronous
communication channel, e.g., Skype, WhatsApp, or phone calls, (3) using an asyn-
chronous communication channel, e.g., e-mail, and (4) broadcasting on social media
networks or mailing lists.

During our initial recruitment, we did not focus on a particular demographic
group, but leveraged our personal and professional contacts, and asked them to
forward the questionnaire to their contacts. In later rounds, we explicitly reached
out to groups of persons that were initially underrepresented, e.g., females, people
from specific geographic regions, or people over 50 years old.

5.1.2 Results

We received a total of 188 completed replies to our questionnaire. Table 5.1 sum-
marizes the demographics. Due to our recruitment channels, the large majority of
our participants are male (79%) and are members of the academic community (90%).
More than half are heavy phone users who use their mobile device almost every
hour (see Figure 5.1). We also asked participants how often they currently use an
MPA, e.g., Google Now, and how satisfied they are with it. The results reported in
Figure 5.1 and Figure 5.2a indicate that the majority of participants never use an
MPA, and those who have done so are largely not satisfied with them.
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Table 5.1: Demographic groups and their statistics.

Label Description Total Fraction

u_total Number of participants 188 100%

u_res_c Number of residence countries 18 100%

u_origin_c Number of origin countries 40 100%

g_female Female 38 20%

g_male Male 148 79%

p_student Student 50 27%

p_phd_student Research assistant or PhD student 83 44%

p_postdoc Postdoctoral researcher 17 9%

p_faculty Faculty member 19 10%

p_employee Employee 16 9%

p_other Other 2 1%

a_22 Below 22 years old 2 1.1%

a_22_27 Between 22 and 27 years old 70 37.2%

a_28_33 Between 28 and 33 years old 71 37.8%

a_34_38 Between 34 and 38 years old 24 12.8%

a_39_44 Between 39 and 44 years old 8 4.3%

a_45_50 Between 45 and 50 years old 2 1.1%

a_50 Above 50 years old 5 2.7%

Perceived Value of Autonomous Actions

While most participants were happy to live without an MPA (see Figure 5.2b), par-
ticipants generally found using an MPA potentially helpful (see Figure 5.3), con-
firming our hypothesis “H1: Utility”. Only 7% indicated that having an MPA that
autonomously executes tasks on their behalf would not help them at all. For the
three scenarios, the perceived value of an MPA was even higher (see Figure 5.3), in
particular for the scenario of prefetching data. This correlates with previous findings
[20] that the availability of Wi-Fi influences and fosters the usage of mobile devices.

To investigate hypothesis “H2: Context-dependence”, we asked participants to in-
dicate what percentage of MPA errors they would tolerate when it is autonomously
executing a specific task before they stopped using the MPA. Figure 5.4 reveals that
for the home automation scenario, almost two-thirds of participants would only ac-
cept an error rate of less than 10%. In the case of traffic updates, it was 50% of
participants. For data prefetching, participants were willing to accept substantially
more errors than for the other two application scenarios. This seems to confirm H2.

Trustworthiness

To verify hypotheses “H3: Confidence” and “H4: Adequacy”, we asked participants
to assume that for each of the three application scenarios, there were two MPAs
on the market: MPA1 does not use any kind of level-of-trust estimation and hence
autonomously executes tasks whenever it predicts a change of place. MPA2 instead
uses a level-of-trust estimator and only executes a task if the level of trust in its
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(a) Users’ satisfaction in
using MPAs.

(b) Users’ willingness of
living without an MPA.

Figure 5.2: Satisfaction in using an MPA and willingness of living without it.

Figure 5.3: The users’ perceived value of having support from an MPA for different applica-
tion scenarios.

prediction is very high. Participants were asked to indicate their preference between
these two MPAs on a 7-point Likert scale.

In different scenarios, participants preferred different MPAs (see Figure 5.6). In
the case of home automation, and to a lesser extent for traffic updates, MPA2 was
preferred. For the prefetching scenario, participants preferred MPA1. This seems to
confirm H4. Almost 60% of participants found the idea of an MPA that can esti-
mate the level of trust of its predictions valuable or very valuable (see Figure 5.5),
confirming H3.

5.1.3 Discussion of the Questionnaire Study Results

According to the first hypothesis (H1), users believe that autonomous actions taken
on their behalf would support them while performing daily tasks. The third part of
our questionnaire focuses on verifying this hypothesis.

From the statistics reported in Figure 5.1, we observe that most of the participants
never used or rarely use an MPA and more than one-third of the participants did not
see any value in having such an application on their mobile device. However, at the
same time, Figure 5.3 reports that participants are interested in having an MPA that
autonomously takes action on their behalf. This is the case for all three application
scenarios as well as for application-independent scenarios.
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Figure 5.4: Percentage of acceptable errors according to users’ opinion for the different appli-
cation scenarios.

Figure 5.5: The users’ perceived value of having an MPA that is capable of estimating the
level of trust of a prediction.

A qualitative identification of the reasons for this substantial shift in participants’
opinion is outside of the scope of this work. However, we believe that there are at
least two potential explanations. First, participants are willing to delegate the au-
tonomous execution of specific tasks to their mobile device, but are not aware that
existing MPAs can support them in performing common tasks. Therefore, they per-
ceive a limited value of having such an application. Second, participants are aware
of the capabilities of the existing MPAs, however, the provided support or the sup-
ported use cases do not satisfy participants’ needs. Independent of the underlying
reasons, the results confirm hypothesis H1: participants believe an MPA taking au-
tonomous actions on their behalf would support them while they are performing
daily life tasks.

The second hypothesis (H2) states that the acceptable error rate in autonomously
taken actions differs depending on the underlying use-case scenario. The results that
support this hypothesis are depicted in Figure 5.4 and Figure 5.6. In the latter figure,
we observe differences in users’ preference for an MPA among the three application
scenarios. We recall that MPA1 is an application that will produce more errors but
will autonomously execute more actions on the users’ behalf, while MPA2 will only
execute a task if it is very confident about the need for its execution. A higher pref-
erence for MPA1 indicates that a participant is willing to accept more errors while
having a greater number of autonomously executed tasks.

From Figure 5.4, we observe that for home automation, participants have a high
preference to have as few errors as possible. To achieve this goal, they are willing to
accept a more limited degree of support. In the case of data prefetching, participants
are willing to accept more errors with a higher preference for MPA1 that will always
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Figure 5.6: Users’ preferences for a particular behavior of an MPA for the three considered
application scenarios.

prefetch data whenever it believes it should do so. We believe that a very important
aspect that influences participants’ decision of how many errors she is willing to ac-
cept is the impact of the potential negative consequences. The negative consequences
for a user arise if an MPA takes an autonomous action, but was not supposed to do
so. Home automation has the largest negative consequences with the potential for
waste of energy and money. For traffic updates, the negative consequences are, for
instance, incorrect notifications that might annoy the user. For prefetching of appli-
cation data, the negative consequences are the lowest among the three scenarios. The
prefetched and unused content can simply be deleted at a later point in time by the
mobile device. The reported results correlate with the expected impact of the nega-
tive consequences for users. Therefore, our findings confirm the second hypothesis.

Our third hypothesis (H3) states that users agree that for autonomous actions
taken by the MPAs, the MPAs must be able to estimate the level of trust of their
predictions. We find evidence that support this hypothesis in Figure 5.5. Here, we
observe that more than half of the participants indicated that such a feature would
be valuable (answered with a score of 6 or 7 out of 7).

Our last hypothesis (H4) states that the level of trust depends on the potential neg-
ative consequences for users from the autonomous actions taken on their behalf. This
hypothesis is related to H2 and the corresponding results are depicted in Figure 5.5
and Figure 5.6. For the three scenario applications, we observe differences among
the preferences for an MPA, i.e., MPA1 and MPA2. As already discussed, we believe
that the potential negative consequences from wrongly taken actions influence users’
decision in this situation. Therefore, the corresponding level of trust depends on the
underlying application scenario.

In summary, over 90% of our study participants were owners of either an Android,
Apple, or Microsoft smartphone. While most of these will most likely run a recent
OS-version that comes with an MPA (e.g., Google Now or Microsoft Cortana), almost
70% of all participants did not use an MPA at all. Almost 45% of participants indi-
cated that they do not see an immediate need in having an MPA. However, 93% of
our participants saw the benefit in having an MPA that acts on their behalf. Clearly,
there is much room for improvement when it comes to anticipatory computing in
today’s MPAs.

Figure 5.4 and Figure 5.6 reveal that the acceptable error rate for incorrectly exe-
cuted tasks on a user’s behalf depends on the underlying scenario. In our data, we
also saw a high variability between users, with some being more risk averse than
others across all three scenarios. It is hence important to have an MPA that is able
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to adapt to the required level of trust of a scenario, as well as a user’s individual
comfort level. Users also expressed a strong interest in having MPAs estimate the
corresponding level of trust of predictions (see Figure 5.5). We see this as a key chal-
lenge before users will be willing to delegate the authority of taking actions on their
behalf to MPAs.

5.2 predictability of next places and residence times

So far, we have focused on the NSP, NST, and NP prediction tasks. However, to sup-
port application scenarios such as those selected for this work, it is also necessary not
only to predict where the individual will go next but also when. To do so, techniques
presented in Chapter 4 can be utilized to derive individual and population models.
In this part of our work, we explore the concept of human mobility predictability to
investigate and compare the predictability of arrival times, next visited places, and
residence times.

To this end, we build upon recent work by Song et al. [191]. In their research,
Song et al. focus on predicting where the individual will be at a given time instant,
provided that the sequence of places she visited so far is known. They show how the
value of predictability ⇧ can be computed from the entropy SU of the sequence of
places visited by an individual U. Building upon this approach, we investigate the
predictability of arrival and residence times. We compare the predictability results to
those of users’ mobility traces. Our analysis allows us to evaluate how close the per-
formance of existing algorithms is to the theoretical limits and which consequences
these results have on the three considered application scenarios. In particular, we in-
vestigate the actual performance achieved by eight predictors in predicting residence
times and show that these values are underestimated by most of them. We then out-
line the consequences of our results for the three considered application scenarios
that we introduced in Section 5.1.

5.2.1 Terminology and Evaluation Setup

We first introduce the mathematical notation and describe the setup of our study. We
would like to point out that we focus here on the average predictability of a user over
a given period of time – as in Song et al.’s work [191] – and not on the momentary
predictability as done in [19, 142] as well as in Section 5.3.

We use the same notation to indicate individuals’ relevant places and slotted mo-
bility traces as in Chapter 4. We describe this notation in Section 2.1. We run our
analysis on the Nokia MDC data set, which we introduced in Section 3.1.1, and the
corresponding slotted mobility traces ⌦s. The description of the data set is given
in Section 3.1.1. Given ⌦s, we compute individuals’ residence and arrival times
given by the vectors tresidence(L), tresidence(L1), tresidence(L2), tresidence(L3),
tarrive(L), tarrive(L1), tarrive(L2), and tarrive(L3), whereas L is the union of all
relevant places of an individual. We provide the definition of both residence and
arrival times in Section 2.2.4.

We compute the predictability of these traces obtaining one data point per vec-
tor and per user. For instance, we compute the predictability associated with the
sequence of values in tresidence(L) for each of the 37 users and combine these val-
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ues in the predictability vector ⇧tresidence(L). Similarly, we compute the predictability
vectors ⇧tresidence(L1), ⇧tresidence(L2), ⇧tresidence(L3), ⇧tarrive(L), ⇧tarrive(L1), ⇧tarrive(L2),
⇧tarrive(L3). The predictability of the arrival time traces and residence time traces is
computed using the same method used by Song et al. to compute the predictability
of mobility traces [191]1.

5.2.2 Results

Figure 5.7 shows the normal probability plot of the predictability vectors ⇧tresidence(L),
⇧tresidence(L1), ⇧tresidence(L2), ⇧tresidence(L3), ⇧tarrive(L), ⇧tarrive(L1), ⇧tarrive(L2), ⇧tarrive(L3)
and of the slotted mobility traces predictability. On a normal probability plot data
showing a normal distribution fits on a line [140]. The x-axis indicates the predictabil-
ity computed as described above. The y-axis indicates the probability that the arrival
time, residence time, or slotted mobility trace of an individual shows a predictability
equal or lower than the corresponding value on the x-axis. For instance, the large
’X’ marker in Figure 5.7 shows that the residence time of 50% of the individuals has
a predictability of 71% or less (when all relevant places in L are considered). This
implies that the prediction accuracy achievable by an algorithm that predicts the
residence time does not exceed 71% for about 50% of the individuals.

Figure 5.7 also shows that the overall predictability of the slotted mobility traces
is higher than that of the arrival and residence times. This means that it is in general

1 The results by Song et al. are obtained under the assumption that the sequence of locations is the
realization of a stationary ergodic process. This assumption is not likely to be fulfilled if long sequences
(e.g., over several years) are considered. In our work, however, we consider shorter sequences (e.g.,
several months).



5.2 predictability of next places and residence times 119

0%

20%

40%

60%

80%

100%

Fr
ac

tio
n 

of
 d

ur
at

io
n 

pr
ed

ict
io

n 
un

de
re

st
im

at
io

n

 

 

Exact
< 15 min
15ï30 min
30ï60 min
1ï2 h
2ï6 h
> 6 h

LD O(1)
LI O(1) MarkovCDFïTA O(1)

MarkovCDF O(1) LD O(2f)
LI O(2f)

MarkovCDF O(2f)
MarkovCDFïTA O(2f)

    Best

(a) Correct and underestimated residence time predictions.

0%

20%

40%

60%

80%

100%

Fr
ac

tio
n 

of
 d

ur
at

io
n 

pr
ed

ic
tio

n 
ov

er
es

tim
at

io
n

 

 

Exact
< 15 min
15ï30 min
30ï60 min
1ï2 h
2ï6 h
> 6 h

LI O(1)
MarkovCDF O(1)

MarkovCDFïTA O(1)
LD O(2f)

LI O(2f)
MarkovCDF O(2f)

MarkovCDFïTA O(2f)
    BestLD O(1)

(b) Correct and overestimated residence time predictions

Figure 5.9: Fractions of residence time under- and overestimated predictions.

easier to predict where the individual will be in the next time slot rather than the
arrival or residence time at specific relevant places. The curves in Figure 5.7 further
show that the predictability of the arrival times at place L1 is low (about 60%) and
lower than the predictability of the arrival times at places L2 and L3. Furthermore,
the predictability of the arrival times is in general lower than the predictability of the
residence times.

Figure 5.8 shows the CDF of the residence time at places L1, L2, L3, and Lx av-
eraged over all 37 individuals in the data set. The curve corresponding to L1 is
significantly “smoother” than the L2, L3, and Lx. This indicates that the amount of
time individuals spend at L1 varies more than the time spent at other relevant places.
This offers an explanation of the predictability values observed above, namely that
the high dispersion of residence times at L1 increases the number of potentially pre-
dictable values (output classes), leading to an lower overall predictability.

5.2.3 Evaluation Results for the Residence Time Prediction Task

After exploring the theoretical bounds for the predictability of users’ arrival and res-
idence times, we focus on the accuracy achieved by existing, practical residence time
prediction algorithms in this section. We consider eight different residence time pre-
dictors selected from the literature [193, 47] that we also introduce in our background
chapter. In the following, we briefly elaborate on those predictors that we utilize in
this part of the work. We select these predictors because they were also used for a
similar study, however, on the NP prediction task by Chon et al. [47].

We use the location dependent (LD), location independent (LI), MarkovCDF, and
MarkovCDF time-aided (MarkovCDF-TA) predictors. The Markov 1st O(1) and 2nd
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O(2) order LD predictor with the fallback option O(2f) are described in [193, 47] and
are used without further modifications. As a LI predictor, we use the LD predictor
by removing the explicit location dependency. For the predictors MarkovCDF and
MarkovCDF time-aided (i.e., the residence time depends on the arrival time), we use
the implementations proposed in [47]. We further consider a fictitious algorithm –
dubbed Best – which always takes, among the predictions computed by the other
algorithms, the one known to result in the smallest prediction error. We utilize the
RMSE metric, which was already introduced and used in Section 4.8, to measure the
prediction error. This gives us nine predictors in total for the following analysis.

We compute the average prediction error of each algorithm and split the results
into correct predictions, overestimation, and underestimations, i.e., zero, positive, or
negative error values. Figure 5.9a shows the percentage of both correct and under-
estimated predictions (the percentage is to be interpreted as the total of correct and
underestimated predictions) for each of the nine considered algorithms. Figure 5.9b
shows comparable results across all predictors when – along with correct – overes-
timated predictions are also considered. Apart from the Best algorithm – which, as
expected, always shows the best performance – all the predictors exhibit similar per-
centages of prediction error ranges when the error is underestimated. The LI O(1)
predictor, however, generates the highest number of underestimated predictions.

Overall, the number of overestimations with respect to the correct predictions is
much smaller than the number of underestimations. In particular, the LI Markov
1st order predictor together with the fictitious Best approach produce the smallest
amount of overestimated predictions. This observation is accordance with our analy-
sis on the influence of spatial and temporal features on predictors’ performance that
we described in Section 4.3. The presence of temporal data, as it is the case for the LI
Markov 1st order predictor, forces the predictor to be more risky in predicting place
transitions, which leads to a smaller residence time estimation.

5.2.4 Implications for the Considered Application Scenarios

In this part of the thesis, we consider three application scenarios, namely home au-
tomation, traffic updates, and data prefetching, as introduced in Section 5.1. Given
our results on the analysis of the predictability of residence times, mobility traces,
and arrival times, we deduce the following practical implications for the realization
of these application scenarios.

home automation Our results indicate that the residence and arrival times pre-
dictability increases as the place relevance decreases. In the case of the home
automation scenario, this implies that the estimations of when the individual
will arrive at home (L1) or leave it exhibit the lowest predictability among
all relevant places. This implies an increased amount of prediction errors that
automatically result in either comfort loss (arrival time prediction) or waste
of money (residence time prediction). While realizing home automation sce-
nario, the corresponding service should consider this observation and corre-
spondently adapt its strategy depending on individuals’ preference to either
reduce comfort loss or monetary costs for operating the home heating system.
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traffic updates In the case of traffic updates, we observe a large difference in
residence time predictability between considering all places L and the most
relevant places L1, L2, and L3. This implies that depending on which place
the individual is currently visiting, the corresponding service that provides
traffic updates should adapt its information delivery strategy depending on
how relevant the currently visited place is.

data prefetching The same as for traffic updates holds for the data prefetching
application scenario. Whenever the individual is visiting a more relevant place,
the corresponding service must incorporate the corresponding predictability
values in its decision when to start data prefetching. A mobile application that
aims to reduce cellular traffic should start prefetching data at an earlier time
instant than then one predicted.

5.3 analyzing instantaneous entropy

In the previous section, we analyzed how predictable residence times, slotted mobil-
ity traces, and arrival times of individuals are, on average. However, a high average
predictability does not imply an individual to be highly predictable at any time.
Indeed, even humans with highly predictable mobility patterns can (and do) un-
dergo phases during which they are highly unpredictable. To capture this variability
of human predictability, McInerney et al. have introduced the concept of Instanta-
neous Entropy (IE) [142]. IE is a measure of an individual’s momentary or transient
predictability and is therefore related to our work. We now examine IE’s ability to
capture individuals’ momentary predictability on a set of synthetic use cases. In par-
ticular, we create synthetic mobility traces and show the pitfalls that might make the
use of IE unreliable in real scenarios. Lastly, we discuss our observations and the cor-
responding implications of the design of our novel algorithm for detecting uncertain
mobility predictions.

5.3.1 Using Instantaneous Entropy to Measure the Momentary Predictability of Human
Mobility

As mentioned in the previous section, McInerney et al. have introduced the IE metric
to measure the momentary predictability of human mobility [142]. They show how
IE can vary strongly during a day or across days of a week. We are now interested
in understanding how well IE really captures changes in predictability. To this end,
we identify three situations in which predictors that rely on past mobility traces are
likely to fail. Such “unpredictable” situations are described as follows:

1. At time instant k, the most likely next place of the user is Lp. However, the user
visits a less probable place Lq.

2. At time instant k, there exist NL different equiprobable candidates as the most
likely next place to be visited at the next time step. Hence, each of the next
places has probability 1�NL to be visited.
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Figure 5.10: Synthetically generated schedule, exemplary shown for a weekday. Different
markers indicate the probability of the user to be observed at a specific loca-
tion. For example, the probability of the user to be at home on a weekday after
5:45 a.m. and before 6:00 a.m. is 2/3.

3. At time instant k, the user is at a previously unseen place or in an unusual
situation. Hence, none or a very limited amount of historical data is available
to predict the next place.

We show that IE is not robust against the presence of several unseen places in the
actual mobility trace. To this end, we generate synthetic mobility traces. As IE mea-
sures the entropy, its computation accordingly returns values in bits. To link these
values to the actual predictability (which is a probability), we use the methodology
presented by Song et al. [191]. In particular, we apply Equation 2.8 using IE as the
entropy. Since we use synthetic schedules, we can compute the theoretical values of
p(Lj) for all relevant places Lj, j = 1, . . . ,NL. This way, we can compare the computed
values of IE with the actual predictability.

5.3.2 Synthetic Human Mobility Schedule

To capture the behavior of the IE in the three critical situations described in the
previous section, we construct a synthetic schedule. We define a very regular slotted
mobility trace ⌦s in which the individual moves across only four different relevant
places every day: (1) home, (2) office, (3) canteen, and (4) road. The latter place
includes all the places visited by the individual on her way between home and office
that are considered to be irrelevant in this example (Lx). We detect the presence of
the individual at a specific place every 15 minutes (i.e., a new element is added to
the sequence of places visited by the individual every 15 minutes). In this simplistic
example, we assume the individual to visit the same places and in the same order
every day.

Figure 5.10 shows our exemplary slotted mobility trace of the individual for one
weekday. The x-axis shows the time of day and the y-axis summarizes the proba-
bilities of being at the given place at the given time. During the nights and early
morning hours, the individual is at home. Then, she leaves (the earliest at 6 a.m.)
her home and is on the road en-route to her office. With the exception of going to
the canteen for lunch, the user stays at work until late afternoon. She then leaves her
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office to go home where she stays until the next morning. The trace considers statis-
tical residence time distributions for a typical workday as reported in [38, 148]. We
introduce randomness in the trace by choosing the time instants when the individual
leaves her home to go to work uniformly at random within a 45-minutes interval. We
generate ten weeks of data using this daily synthetic schedule.

5.3.3 Evaluation Results

In the following, we provide quantitative results to support our observations about
the feasibility of the IE to be used to estimate the momentary predictability.

Influence of Unknown Locations on the IE Estimations

When working with real (slotted) mobility traces it cannot be guaranteed that for
all considered time intervals actual data about the whereabouts of the individual is
available. When collecting data using mobile phones, for instance, users might switch
it off during the night or the phone might run out of batteries. There exist a num-
ber of techniques to deal with this issue and compensate for missing data, e.g., [9],
but a number of undefined data points will always occur in the data trace. McIner-
ney et al. [142] label such undefined data points as if they were previously unseen
places. To this end, they define a fictive unknown location that we label as Lx. The IE
estimator always treats Lx as a previously unseen place. We are interested in showing
the effect of the presence of unknown places in the trace on the computation of the
IE. We thus assume that all places visited during the transition from home to work
and vice versa in the synthetic schedule described above are labeled as Lx. This corre-
sponds to the (frequent) case in which algorithms that detect relevant places do not
recognize places as relevant if their corresponding residence time is too low [110].

Under this assumption, we compute the IE over the synthetic slotted mobility
traces and transform the obtained entropy values into predictability values using
Equation 2.8. Figure 5.11 shows the obtained predictability values for each week
and time of day. The first two weeks are considered for training and therefore no
IE estimates are computed. The darker a region in the plot is, the lower is the pre-
dictability for the corresponding week and time of day. Since the road is classified
as the unknown place Lx, the IE registers the highest possible entropy when the in-
dividual moves from home to work and vice versa. These situations correspond to
the darkest regions in Figure 5.11. In these regions, the predictability is 25%, since
there are four equiprobable possible next places: home, office, office canteen, and the
unknown place Lx. Figure 5.11 also shows that the predictability values derived by
the IE estimator only slowly increase from the lowest value of 25% after observing
the unknown place Lx. This is shown by the color gradient from dark to white re-
gions on the picture, whereas lighter regions indicate an increase of predictability.
This slow recovery effect is due to the fact that the computation of the IE metric is
influenced by the entire history of previously visited places.

Comparing Predictability Theoretical Upper Bound to IE Estimations

To conclude our exploration of the suitability of IE to measure the momentary pre-
dictability, we compare the predictability obtained through the IE with the theoretical
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Figure 5.11: Momentary predictability values computed from the IE over a period of ten
weeks by discarding the first two weeks. Each week follows a schedule like the
one shown in Figure 5.10. In this example, all locations labelled as road have
been re-labelled as previously unseen locations Lx.
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Figure 5.12: Comparison between true predictability values and the corresponding estimates
obtained using the Instantaneous Entropy (IE) metric. The values have been ob-
tained using a randomly selected weekday from the synthetic data set. The pre-
dictability computed using the IE metric often under- or overestimates the true
values, irrespectively of the strategy used to deal with unknown locations or
missing data.
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upper and lower bounds. We can perform this comparison since we can analytically
derive all probabilities involved in the computation of the predictability (thus, we do
not need to compute an approximation using, e.g., the Lempel-Ziv estimator). We
randomly select a weekday out of the ten weeks of data available in the synthetic
data set. We compute the IE and the corresponding predictability value using two
different strategies to deal with unknown places. The first strategy is the one men-
tioned above in which Lx is always treated as a new place. The second corresponds
to the case in which all places classified as Lx are treated as the same relevant place.
We then compute the theoretical upper and lower bounds of predictability. Accord-
ing to Song et al. [192] the upper bound for the predictability for any time instant is
equal to the probability of the most likely location based on the history of previously
seen places. The lower bound is instead given by the so called regularity R, defined
in [192].

Figure 5.12 shows the values of these quantities for the exemplary weekday se-
lected as described above. The figure shows the time of day on the x-axis and the
corresponding values of predictability on the y-axis. Different markers correspond
to the upper and lower bounds and to the predictability computed by the IE esti-
mator using the two strategies mentioned above. In particular, the upper bound on
predictability is highlighted with a circle (O) and the lower bound with a cross (X).
The predictability values estimated using the IE are reported with a plus (+) or a
square (�) depending on whether they are computed using the first or the second
strategy mentioned above, respectively. A predictability equal to 100% at time instant
k indicates that the relevant place the individual will visit at time instant k + 1 can
be predicted correctly with 100% probability.

Figure 5.12 shows that in several situations, using the IE causes the predictability
to be either over- or underestimated. For instance, the individual typically leaves
her home with an equal probability after 5:45 a.m. and before 6:30 a.m.. Therefore,
the probability of observing the individual on the road in the first 15-minutes, i.e.,
exactly at 6:00 a.m., is 1/3. Accordingly, the probability of the individual to stay at
home at this time step is 2/3. Between the next 15-minutes interval (i.e., from 6:00
a.m. to 6:15 a.m.) the probabilities swap while the lower bound for the predictability
remains at 2/3. For the last 15-minutes interval (i.e., from 6:15 a.m. to 6:30 a.m.) the
individual is either already en-route her office or is about to leave her home. In any
case, the probability for the individual to be en-route her office at the next time step
is 100%. These lower bounds are shown in Figure 5.12 with the crosses (X) and only
depend on the regularity R of the individual at the corresponding time instant.

As indicated at the bottom of the graph in Figure 5.12, the individual has left her
home and is en-route her office at 6:00 a.m.. The upper bound of her predictability
thus increases for the next 15-minutes interval to 100%. This behavior demonstrates
the increase of predictability by considering the sequential places history and the
gap of ∼33% between the lower and upper predictability bounds. The corresponding
values of predictability estimated using the IE (marked with pluses (+) in the plot) re-
main at nearly 100% until the individual actually leaves her home (i.e., one time step
too late). When this happens, the predictability drops to 25%, which corresponds to
the predictability achievable by a random predictor. Between 7:00 a.m. and 7:15 a.m.
the individual arrives at work. Her lower and upper predictability bounds increase
to 100% and remain at this level. In contrast, the predictability expressed by the IE
metric after arriving at work remains at the lowest level for about 60 minutes (i.e.,
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four consecutive 15-minutes time intervals). After that, the estimated values begin
to increase and exceed the level of 90% after more than three hours. This is a clear
example of slow recovery mentioned in the previous section.

The points indicated in Figure 5.12 with squares correspond to the case in which
Lx is treated as a unique relevant place. The comparison to the theoretical lower and
upper predictability bounds shows that the predictability captured by the IE metric
is always overestimated by up to 32%.

5.3.4 Conclusions from the Analysis of the IE Metric

In this part of our work, we investigated the suitability of the IE metric to estimate
the momentary predictability of human mobility. We showed how the predictability
computed using IE often over- or underestimates the true predictability. We ground
our analysis on synthetic mobility traces that gives us a unique advantage over real
mobility traces, namely the possibility to analytically estimate theoretical lower and
upper predictability bounds. Regardless of the aforementioned limitations of the IE
metric, it is still capable to at least capture changes and indications of the individuals’
momentary predictability. Therefore, we adopt IE for our analysis in the next section.

5.4 estimating levels of trust of mobility predictions

The results of our qualitative and quantitative studies reported above highlight the
importance of estimating what we call the Level of Trust (LoT) of a prediction. The
LoT captures the probability that a prediction is correct. State-of-the-art implemen-
tations of standard predictors often provide score values that correspond to the level
of trust. For instance, the implementation of the SVM classifier in the widely used
scikit-learn Python library provides, for each classified sample, the probability that
the sample belongs to each class.2 Researchers working in the human mobility predic-
tion domain have also investigated ways to estimate how “predictable” users are at
certain time instants [142]. This estimation can in turn be used to determine whether
those predictions can be trusted or not.

In this work, we consider five approaches to estimate the LoT of mobility predic-
tions: (1) majority vote (0-R), (2) thresholding over the score values (TTH) provided by
mobility predictors, (3) thresholding over the IE metric (IETH), (4) a dummy estima-
tor that assumes all mobility predictions to be correct, and (5) an ensemble learning
based technique that we dub LOTUS. For a given mobility prediction, each of these
approaches classifies the prediction to be either correct or wrong. Depending on
how accurate each of the LoT estimators perform, the corresponding set of metrics
is computed. We then use these metrics along with a novel score function – as intro-
duced in Section 5.4.3 – to analyze three aspects. First, which of the state-of-the-art
predictors should be used for our ensemble learning approach LOTUS. Second, which
of the considered LoT estimators, including LOTUS, performs best. Third, given the
accuracy requirements provided in our questionnaire study, for how many individu-
als the particular LoT estimator was successful in identifying wrong predictions and
therefore meets the participants’ requirements.

2 http://scikit-learn.org/stable/modules/svm.html.
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Figure 5.13: Sketch showing how LOTUS is placed between the mobility predictor and the
MPA.

5.4.1 Majority Vote, Thresholding, and Dummy Estimators

We now briefly describe the first four LoT estimators in this subsection and LOTUS in
detail in the next. The majority vote (0-R) estimator observes the accuracy achieved
by the mobility predictor at runtime. If the accuracy is higher than 50%, then the 0-R
estimator assumes the mobility predictor is always right and always classifies the
prediction of mobility predictor as correct (and vice versa if the accuracy is ≤ 50%).
The TTH approach estimates the output of the mobility predictor to be correct if
the correspondent score value px̂, which is given by a mobility predictor, is higher
than a pre-specified threshold TH. The IETH approach is similar to TTH, but applies
a thresholding over IE values [142] instead of over the mobility predictors’ px̂ val-
ues. For both TTH and IETH we use thresholds of 20%, 40%, 60%, and 80%. Lastly,
the dummy estimator simply assumes that all mobility predictions are correct and
thus no further search for wrong predictions is necessary. We expect this approach to
perform best if mobility predictions are accurate enough to meet individuals’ require-
ments for the particular application scenario. At the same time, other LoT estimators
fail to accurately separate a substantial amount of wrong predictions to provide more
benefit to individuals than using the dummy estimator.

5.4.2 An Ensemble Learning Based Level of Trust Estimator

The fifth approach to estimate LoT of mobility predictions is LOTUS – an ensemble
learning based technique that utilizes several state-of-the-art machine learning tech-
niques and context data. Our approach for improving the behavior of MPAs consists
of placing the LoT estimator between the mobility predictor that computes the pre-
diction and the MPA that consumes it, as exemplarily shown for LOTUS in Figure 5.13.
LOTUS takes as input the output of the mobility predictor as well as other potentially
available raw input data (e.g., time of day). The output of LOTUS is then a binary
decision about whether the output of the predictor is correct or not. Along with this
binary value, LOTUS also outputs the level of trust in its own decision.

To compute its decision, LOTUS first trains a set of state-of-the-art classifiers (e.g.,
SVM or k-NN) on a subset of the input data. A further, non-overlapping subset of the
input data is then used to evaluate the performance of each classifier. Given a user’s
trust requirement, LOTUS then selects the best performing classifier and uses it at
runtime to determine whether to trust a prediction or not. The rationale behind this
approach is that different classifiers might provide better performance depending on
the mobility patterns of the user, the available input data, and the particular use case
of the prediction, i.e., how much tolerance the user has for the MPA to either miss a
correct prediction or make an incorrect one. The best performing classifier is hence
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the one that maximizes the score function. This score function tunes the precision
achieved by the classifiers according to the preferences of the user, as detailed below.
The best performing classifier may change over time, so a periodical repetition of
the training and evaluation phase of the individual classifiers is necessary. In the
context of this work we assume that LOTUS selects the best performing classifier after
an initial training and evaluation phase and subsequently uses it at runtime.

To train and evaluate the classifiers, LOTUS assumes ground-truth data to be avail-
able – both during training and at runtime. For instance, when LOTUS is used to
determine the correctness of a prediction at time instant ti, then the actual correct-
ness of all prior predictions up to and including time instant ti−1 must be available.
In the context of the NP prediction task, this requires having access to the actual
places visited, which is very much feasible for today’s mobile devices using only
data that can be collected on the device itself (e.g., Wi-Fi scans or GPS coordinates)
[23, 110, 148]. In the following, we assume for simplicity that such ground-truth in-
formation is provided by the mobility predictor itself, though it can be provided by
any other component.

The input to the classifiers running within LOTUS is a set of Nf features F ={f1, f2, . . . , fNf
}. The first two features are always the current output of the mobil-

ity predictor. In particular, f1 is the prediction itself, which we indicate with x̂, while
f2 is the estimated score value (i.e., level of trust) of x̂ computed by the mobility
predictor, which we indicate as px̂. Please note that although the values of x̂ and px̂

change in principle at every time step ti, we omit the subscript i, for simplicity. Other
features might be included depending on the available input data. For instance, time
of day might be part of the input data and the corresponding hour of day can be
used as a feature.
LOTUS must be configured before it can be used. The configuration is simply a

specification of the classifiers that LOTUS will use and the set of features F taken as
input by the classifiers. We specify both classifiers and features used for our imple-
mentation of LOTUS in Section 5.6. Of course, many other configurations of LOTUS are
possible, such as using different sets of classifiers or features.

We further consider an alternative implementation of LOTUS in which the best
performing classifier is selected as the one that achieves the highest classification
accuracy. We refer to this estimator as the Best Accuracy (BA) estimator.

5.4.3 Score Function

As explained above, LOTUS selects the best performing classifier in combination with
the computed features out of a set of candidates.3 These classifiers estimate whether
the current prediction is correct or not, e.g., they classify the input as belonging to
one of two classes, the correct and the incorrect classes. In the training phase, the
classifiers take as input both the feature set F and the ground-truth data. This way,
they can compute their internal parameters so as to optimize their classification ac-
curacy, which is defined as the ratio of the number of correct classifications and the
total number of classifications. In the evaluation phase, the classifiers only take the
feature set F as input – which is computed over a different set of input data than

3 We exemplarily demonstrate our score function on LOTUS, however, its applicability for comparing
other LoT estimators is by analogy.
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the one used for training. Ground-truth data is used in the evaluation phase only to
assess the actual performance of the classifiers.

We use three metrics to describe this performance and to derive the level of trust
for both predictions that are classified as correct and those that are classified as in-
correct. The first metric is the precision of the classifier, indicated as PRE. We already
defined the precision of a classifier in Section 2.4, which we now briefly repeat in the
context of the work in this chapter. PRE is computed as the ratio of the number of
correct predictions that are also classified to be correct (i.e., TPs), and the total num-
ber of predictions that are classified to be correct, which includes also the FPs [33].
Thus:

PRE = TP

TP + FP . (5.1)

The second metric, which is known as Negative Predictive Value (NPV), is the ratio
of the number of correct predictions that are classified to be incorrect (i.e., TNs), and
the total number of predictions that are classified to be incorrect, which also includes
the FNs. The metric is defined as:

NPV = TN

TN+ FN . (5.2)

At runtime, we use the values PRE and NPV , derived from our best performing
classifier and feature set, as the level of trust values for predictions that are classified
as correct and incorrect, respectively.

The third metric, which we dub Positive Prediction Rate (PPR), is the ratio between
the number of predictions that are classified as correct, irrespective of whether the
prediction is actually correct or not, and the total number of predictions. The numer-
ator of this ratio is thus the sum of TP and FP classifications while the denominator is
the total number of classifications, i.e., the sum of TP, TN, FP, and FN classifications.
We define PPR as:

PPR = TP + FP
TP + TN+ FP + FN . (5.3)

A false positive classification occurs when LOTUS classifies a prediction of the mo-
bility predictor to be correct when it is actually incorrect. Thus, the metric PPR ex-
presses the total number of instances for which LOTUS states that a prediction of the
mobility predictor is correct. Since we assume that an MPA may potentially execute
an autonomous action when LOTUS estimates a prediction to be correct, the metric
PPR actually represents the upper bound for the total number of instances in which
an autonomous action is executed by the MPA, regardless of whether executing this
action is correct or not. Without LOTUS, the MPA would assume all predictions to
be correct, and thus potentially execute autonomous actions whenever the predictor
says so. This is equivalent to the case in which the dummy classifier estimates all
predictions of the mobility predictor to be correct, resulting in PPR = 1 (100%).

As we saw in our survey, certain use cases (e.g., data prefetching) might see a
user preferring to have the MPA perform autonomous actions whenever possible,
regardless of whether the action is actually correct or not (PPR = 1). For other use
cases (e.g., home automation), users may instead prefer to have the MPA perform an
action only when the level of trust in the prediction is very high (highest achievable
PRE).
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To capture this trade-off, we make LOTUS choose the classifier to use at runtime
according to a score function that combines the two performance metrics PPR and
PRE. In particular, we indicate our score function with the symbol SFw and define it
as:

SFw = PRE+ tan(w× 45)×PPR, (5.4)

where tan represents the trigonometric function tangent and the weight w captures
the preferences of the user. LOTUS selects the classifier with the highest value of SFw
to be the classifier to use at runtime.

The rationale behind this approach is the following. When the weight w is set to 0,
the value of SFw is equal to PRE. Thus, the classifier that provides the highest preci-
sion (i.e., the highest true positive ratio) is chosen and used at runtime. This implies
that the number of false positives “seen” by the MPA is decreased with respect to
the case in which LOTUS is not used. Since a false positive classification causes the
execution of an unnecessary autonomous action, the total number of these actions
is reduced. This clearly comes “at the cost” of an overall lower number of executed
autonomous actions (lower PPR). The weight w should thus be set to 0 when the
user prefers the MPA to execute autonomous actions only when it is very confident
that the action is really necessary (i.e., that the prediction of the mobility predictor
is correct). On the other hand, the weight w should be set to 1 when the user prefers
the MPA to execute autonomous actions whenever possible, irrespective of whether
those actions were actually needed. In other words, setting w = 0 corresponds to a
strong preference of the user for the systems labeled as MPA2 in our study, while
setting w = 1 corresponds to MPA1. While in principle, any value between 0 and
1 can be chosen for w, we consider in the following and in our evaluation values
of w equal to 0, 1�6, 2�6, 3�6, 4�6, 5�6, and 1. This corresponds to the 7-point Lik-
ert scale used in our questionnaire. We thus exploit the data collected through our
questionnaires to derive realistic values that could be set for w.

We further illustrate this point for a specific example, reported in Figure 5.14. The
figure shows the case in which LOTUS is used to classify the predictions of a mobility
predictor that achieves a prediction accuracy of 40%. The x-axis reports the value
of PPR obtained by LOTUS’s classifiers while the y-axis reports the corresponding
precision PRE. The point Q (PPR = 40%, PRE = 100%) indicates the performance
that would be achieved by a perfect classifier. This classifier would indeed identify
all the correct predictions output by the mobility predictor, which are 40% of the
total, and thus have a PPR of 40% (where FP=0) and a PRE of 100%. The point P

(PPR = 100%, PRE = 40%) in the figure reports the performance that the dummy
classifier mentioned above would achieve, which also corresponds to the case in
which LOTUS is not used. Indeed, if 40% of the predictions of the mobility predictor
are correct and the classifier estimates all predictions to be correct (PPR = 100%), then
its precision is necessarily equal to 40%.

For a given value of PPR, the corresponding point on the curve indicated as upper
boundary in Figure 5.14 indicates the highest precision achievable by any classifier.
Moving beyond the upper boundary requires improvements of the mobility predic-
tor’s performance. The colored region in Figure 5.14 is the region in which the per-
formance of the classifier chosen by LOTUS should lie. We define the lower boundary
as the boundary that is achieved by a random classifier.
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Figure 5.14: An illustrative example of how the score function allows LOTUS to select the best
performing classifier. The example refers to a situation in which the mobility
predictor achieves a precision of 40% and the user-defined weight w is set to 0.5
(3/6).

Let us assume in this example that w is equal to 3�6, i.e., the solid line labeled with
w = 3�6, represents the decision boundary. Thus, the entire colored region above the
decision boundary can be used to search for a suitable classifier. A suitable classifier
is in this case any classifier that can improve (+X%) upon the 40% precision of the
dummy classifier. The costs for this improvement in terms of the reduced PPR, i.e.,
number of the executed actions, must be lower than

X

tan(3�6× 45) . (5.5)

In this case the term tan(3�6 × 45), which is equal to 0.4142, describes the slope
of the decision boundary. In other words, for an improvement of PRE of 0.41% the
user is willing to give up no more than 1% of the executed actions (PPR). The value
45 describes the degree of the angle (slope = 1) between the decision boundary for
w = 0 and w = 1. The rationale behind setting w = 1 to the angle of 45 degree is
that no classifier can reach the area above the upper boundary. Therefore, we define
the decision boundary for w = 1 as the line that connects the points P and Q. As
we observe, our function SFw then divides this area into seven parts (equal angles).
Developing a non-linear function that reflects users’ preferences more accurately
than a linear function is a potential starting point for future research. In general, the
closer the value of w is to 0, the readier is the user to give up PPR for more precision.

Figure 5.14 shows the performance of three classifiers – indicated as A, B, and C.
Since w is equal to 0.5, the classifier B cannot be chosen, because its achieved SFw
value is lower than that of the dummy classifier. Both A and C are above the decision
boundary and are preferred over the dummy classifier. In this example, we observe
that the classifier A is further from the decision boundary than classifier C (dA > dC).
This is reflected as a higher value of the function SF3�6. Therefore, the best solution
for the given user’s preferences is classifier A.

In the next section we show the performance that can be achieved by LOTUS for
a specific, representative configuration. However, we recall that the generic design
described above can be adapted to several different scenarios.
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5.5 evaluation setup

This subsection describes how we set up our evaluation of the performance of LOTUS
and other LoT estimators. Our setup includes two large, publicly available data sets,
the description of the mobility prediction task, data features, and classifiers that are
incorporated in LOTUS. In Section 5.6, we will then report the obtained results.

5.5.1 Prediction Task and Mobility Predictor

To evaluate LOTUS’s performance and those of other considered LoT estimators in
a practical application scenario, we select the NP prediction task, i.e., we focus on
the problem of predicting the next place that will be visited by a user. This predic-
tion task has been introduced in Section 2.2.3. The reason for this choice is that the
NP prediction task is one of the most commonly addressed prediction problems in
studies of human mobility [9, 123, 147, 176].

We now utilize our population models that we derived, presented, and extensively
evaluated in Section 4.8. In other words, we choose SVM as the mobility predictor
that computes NP predictions. As of the data features, we assume three pieces of
information to be available as input features for this predictor: (1) the individual’s
current place (f_cur_place), (2) the information about the current day being a work-
day or weekend (f_is_weekend), and (3) the number of places already visited on the
current day (f_places_today). We choose this combination of mobility predictor and
features because it is the one that achieves the highest average prediction accuracy
across all users of the Nokia data set. More precisely and to recall our computational
steps from Section 4.8, we select for each individual in the Nokia data set the com-
bination of a set of features and a predictor that achieves the highest accuracy in
predicting the next places visited by the user. We call this combination the individual
model of the user. We further compute the performance of several population mod-
els, i.e., combinations of a set of features and a predictor trained and evaluated over
the data of all users. We then compute the difference between the performance ob-
tained for each individual model and each population model. The population model
with the smallest difference to individual models in terms of RMSE is chosen. This
model corresponds to the combination consisting of the predictor SVM and the set
of features F = {f_cur_place,f_is_weekend,f_places_today}.

5.5.2 Data Sets

We run our evaluation on the Nokia LDCC data set and the Device Analyzer data set.
Both data sets are introduced in Section 3.1.2 and Section 3.2, respectively. We use
the same set of 141 individuals from the Nokia LDCC data set as it was the case
in our previous analysis on individual and population mobility models, which we
conducted in Section 4.5. In terms of the Device Analyzer data set, we use a different
subset of individuals in this chapter as it will be the case in Chapter 6. This is mainly
due to the different type of data that is required for both chapters and therefore the
corresponding availability of this data for each of the individuals in the Device Ana-
lyzer data set. For further details on the selection process, please refer to Section 3.2.
At the end, we consider 268 users with at least 100 relevant place visits and at least
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10 unique places recorded. We manually inspect the number of relevant place visits
and unique places per individual and found the aforementioned parameters to be a
good fit to select individuals with a good coverage in terms of the recorded mobility.

To run our evaluation, we split the data of each individual in four subsets of equal
size. We call these subsets �1, �2, �3, and �4. We use �1 to train the mobility
predictor. We then use the trained predictor to compute NP predictions using �2

and �3 as input. The output of the mobility predictor is then given as the input to
LOTUS. The data from�2 (�3) and the corresponding output of the mobility predictor
are then used by LOTUS to train (evaluate) its set of classifiers. Finally, we use data
from �4 to evaluate LOTUS’s performance.

5.5.3 LOTUS’s Implementation Details

To run the evaluation reported in this section we configure LOTUS as follows. We in-
clude the following six state-of-the-art approaches as the set of classifiers: Support
Vector Machine (SVM) [33, 217], k-Nearest Neighbor (k-NN) [33, 217], Classifica-
tion and Regression Trees (CART) [39, 217], Naive Bayes (NV) [217], Linear Regres-
sion (LR), and Gradient Boost (GB). We choose these approaches because they are
representative of different classification strategies. Also, four of these six classifiers –
SVM, k-NN, CART, and NV – are listed in the top-10 list of algorithms for data min-
ing reported by Wu et al. [217]. We rely on the implementations of these classifiers
available from the scikit-learn Python library.4

We include a total of six features in the feature set F . The first two are the out-
puts of the mobility predictor, i.e., x̂ and px̂. The third, fourth, and fifth features
are the same used by the mobility predictor, thus f_cur_place, f_weekday, and
f_places_today. Finally, the sixth feature is the IE value computed as specified by
McInerney et al. [142] and which we already introduced and analyzed in Section 5.3.
The IE metric is computed over the sequence of previously visited places (including
the current one). It has been introduced as an indicator of users’ momentary pre-
dictability and thus represents a way to determine the level of trust of a prediction.

5.6 evaluation results

In the following, we describe the performance achievable by LOTUS and other LoT
estimators in identifying wrong mobility predictions. In particular, we first show
that LOTUS can adapt to different users’ mobility patterns and available input data
by choosing different classifiers to operate at runtime. Then, we show that LOTUS

can achieve an overall higher classification accuracy with respect to competing ap-
proaches. We further show that LOTUS can achieve a higher value of SFw for the
highest percentage of users with respect to its competitors. Lastly, we discuss the im-
plications of our results on the three application scenarios considered in our study.

5.6.1 User-dependent Choice of LOTUS’s Classifier

We have already mentioned that LOTUS may select a different classifier depending on
the specific mobility pattern of a user as well as depending on the available input

4 http://scikit-learn.org/stable/
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(a) Nokia data set.

(b) Device Analyzer data set.

Figure 5.15: Classification accuracy achieved by LOTUS and other LoT estimators. The boxes
cover the 25th and 75th and the whiskers the 5th and 95th percentile. The
marker within the boxes correspond to median values.

data. To show that this is actually the case we compute, exemplary for the Nokia
data set, the percentage of cases in which each of the classifiers included in LOTUS’s
classifiers set has been selected as the best one across all users and all weights w. In
half of the cases, either k-NN or LR are chosen (26% and 25%, respectively). In 17% of
the cases CART is selected. In the remaining cases the choice is almost equally split
among NV (12%), GB (11%), and SVM (10%). This simple statistic shows that none
of the six considered classifiers can be considered to clearly be the “best” one for all
users and weights. This motivated our design choice of making LOTUS dynamically
select the best classifier out of a set of candidates.

5.6.2 Accuracy of the LoT Estimators

The goal of this part of the evaluation is to measure the performance of the consid-
ered LoT estimators in terms of their ability to classify predictions in the groups of
correct and incorrect predictions. The rationale behind classifying predictions into
these two groups is that the better the classification is, the accurate the LoT values –
PRE and NPV – are. Therefore, we consider two performance metrics in this part of
the evaluation: (1) the accuracy in classifying predictions to be either correct or incor-
rect, and (2) the difference between the LoT values PRE and NPV . In this subsection,
we focus of the first part and cover the results on the difference between PRE and
NPV in the next one.

Figure 5.15 shows the classification accuracy achieved by LOTUS and its competi-
tors. The boxes cover the 25th and 75th and the whiskers the 5th and 95th percentile.
The marker within the boxes correspond to median values. Overall, we observe that
LOTUS achieves higher accuracy than competing approaches. For instance, the highest
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accuracy is achieved by SF2�6 and BA for both the Nokia dat set and the Device An-
alyzer data set. The next best median accuracy (excluding our estimator) is achieved
by the 0-R estimator (59% and 64%, respectively). The superior performance of LOTUS
is due to its ability to select the best performing classifier out of a set of candidates.

For SF3�6, we observe that the median accuracy drops to just above 62% and 71%
for the Nokia data set and the Device Analyzer data set, respectively. This decrease
in performance is due to the fact that when the weight w is equal to 3�6 or w =
4�6, LOTUS gives a higher priority to classifying predictions to be correct in order to
increase the PPR value instead of increasing the PRE value. In other words, for the
cases in which w is equal to 3�6 or 4�6, LOTUS focuses on detecting those predictions
that are incorrect with high probability. At the same time, it assumes that all other
predictions are correct. This corresponds to a situation in which the user is willing
to accept more errors from the execution of autonomous actions in exchange for a
higher number of autonomously executed actions.

In Figure 5.15, we report the performance of LOTUS in correspondence of four
values of the weight w (1�6, 2�6, 3�6, and 4�6), in accordance with the results of our
study. Study participants were indeed asked to indicate their preference for either
MPA_1 or MPA_2 using a 7-point Likert scale, where a value of 1 indicated strong
preference for MPA_1 and a value of 7 a strong preference for MPA_2. For the home
automation scenario, the median score indicated on the Likert scale was 5, which is
equivalent to w = 2�6. However, since the number of users that choose a score of 5 or
smaller in this scenario is very close to the number of users that choose a score of 6
or higher, we also consider w = 1�6, which corresponds to a score of 6. Similarly, the
median score indicated for the traffic updates scenario is 4, which is equivalent to
w = 3�6. Finally, for the data prefetching scenario, the median value score is 3, which
is equivalent to w = 4�6. Therefore, we run our evaluation with the four values of w
indicated above.

5.6.3 Estimation of the Level of Trust

As pointed our in the previous subsection, we define trustdelta = �PRE−NPV �.5 The
rationale behind computing trustdelta is that the particular estimator might not be
able to achieve a high accuracy in classifying predictions. However, it is able to detect
a small group of predictions that are with a high certainty correct or incorrect. In this
case, having a small number of predictions for which the corresponding LoT value
significantly differs from the classifiers’ accuracy helps MPAs to decide upon the
execution of autonomous actions.

Figure 5.16 shows the computed trustdelta values for all considered LoT estima-
tors for both data sets. We observe that LOTUS clearly performs better in deciding
whether a given mobility prediction is correct or not in comparison to other ap-
proaches. The fact that most of the estimators score better for the Device Analyzer
data set is due to the lower number of relevant places recorded per individual.

5 Please note that we set �PRE−NPV � = 0 if all predictions are assigned to one group.
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(a) Nokia data set.

(b) Device Analyzer data set.

Figure 5.16: The trustdelta results for all considered LoT estimators.

5.6.4 Performance in Terms of Achievable Values of SFw

Recall that we assume MPAs executing autonomous actions if and only if the partic-
ular LoT estimator classifies the correspondent prediction computed by the mobility
predictor as correct. The ratio of these positive classifications over the total number of
classifications performed by the LoT estimators is given by PPR. The level of trust of
each positive classification is given by the precision PRE of the classifier. Instead, the
level of trust of each negative classification is given by the negative predictive value
NPV of the classifier. If no level of trust estimator is used – or, equivalently, a dummy
estimator is used – PPR is equal to 100% and PRE corresponds to the accuracy of the
mobility predictor.

Figure 5.17 shows the gain achievable in using the considered LoT estimators with
respect to the case in which no estimator – or a dummy estimator – is used. Each
curve in Figure 5.17 corresponds to the performance of an estimator. The perfor-
mance of each estimator is computed as the value of SFw defined in Equation 5.4.
Each point on a curve represents the percentage of users for whom the correspond-
ing estimator provides, for the weight indicated in the x-axis, a higher value of SFw
than a dummy classifier. We observe that LOTUS outperforms, for both the Nokia data
set and the Device Analyzer data set, any other estimator for all weights but w = 1.
In other words, LOTUS is able to maximize the value SFw for the highest number of
users. As already mentioned on previous occasions, the case w = 1 corresponds to a
situation in which users prefer MPAs to execute all potentially useful autonomous
actions irrespectively of whether or not the prediction of the mobility predictor is
correct. Thus, in this case there is in any case no need to use a LoT estimator.

We finally compare the performance of all LoT estimators to each other. Each curve
in Figure 5.18 shows the percentage of users for whom the corresponding classifier
achieves the highest value of SFw among all the considered estimators. It allow us,
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(a) Nokia data set.

(b) Device Analyzer data set.

Figure 5.17: Fraction of users for whom a level of trust estimator achieves a better perfor-
mance than the dummy classifier in terms of the achieved score and with respect
to weight w.

in particular, to understand how many individuals do not benefit from any of the
considered LoT estimators for the selected weight w. In these cases, the dummy
classifier achieves the best result in terms of our score function SFw. For instance,
for w = 2�6 LOTUS achieves the highest value of SFw for 57% and 76% of users for
the Nokia and Device Analyzer data set, respectively. However, for the same weight
w, we observe that 22% and 9% of individuals do not receive benefit from any of
the LoT classifiers for the Nokia and Device Analyzer data set, respectively. As the
weight w increases, the percentage of users for whom using the dummy classifier
represents the best option also increases.

5.6.5 Applicability to Application Scenarios

After presenting our evaluation results, we now discuss the applicability of the con-
sidered estimators to the three application scenarios considered in our study. We pri-
marily focus on the ensemble technique LOTUS since it outperforms other approaches.

Home Automation

From the results of the study, we observe that almost half of participants indicated
their preference between MPA1 (1) and MPA2 (7) with a value 6 or higher on a 7-
point Likert scale, which corresponds to the weight w = 1�6. Furthermore, nearly
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(a) Nokia data set.

(b) Device Analyzer data set.

Figure 5.18: Comparison of the different estimators in terms of the achieved score. For each
estimator the figure shows the fraction of users for those the corresponding
estimator achieves the best score with respect to weight w.

two-thirds of participants indicated their preference with (5) or higher, which corre-
sponds to the weight w = 2�6. Thus, selecting w = 2�6, 82% and 91% of users will
benefit from any of the considered LoT estimators for the Nokia and Device Ana-
lyzer data sets, respectively (see Figure 5.18). Among those users, 78% and 91% of
them benefit from LOTUS– compared to the dummy classifier that executes all actions
– for the Nokia and Device Analyzer data sets, respectively (see Figure 5.17). Com-
paring to other approaches, LOTUS (considering SF2�6 only) provides for 59% and
78% of users the best solution for the Nokia and Device Analyzer data sets, respec-
tively (see Figure 5.18). Therefore, we conclude that LOTUS outperforms other LoT
estimators for the majority of users in the home automation scenario.

Traffic Updates

For the traffic updates scenario, almost 45% of participants indicated their preference
with a value 5 or higher on a 7-point Likert scale. At the same time, 60% of them
indicated it with a value 4 or higher on a 7-point Likert, which corresponds to the
weight w = 3�6. The results for w = 2�6 are the same as for the home automation
scenario, so we now discuss the results for w = 3�6 only. With respect to the dummy
classifier, 50% (Nokia) and 77% (Device Analyzer) of users benefit from any other
LoT estimator for the weight w = 3�6. Among those individuals, 44% (Nokia) and
75% (Device Analyzer) of them benefit, in particular, from LOTUS. Comparing to other
approaches, LOTUS (again considering SF3�6 only) provides for 35% (Nokia) and 60%
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(Device Analyzer) of users the best solution. Given these observations, we conclude
that the majority of users still benefit from at least one LoT estimator in the context
of the traffic updates scenario.

Data Prefetching

Lastly, we consider the data prefetching scenario for which 55% of participants in-
dicated their preference with a value 3 or higher on a 7-point Likert scale, which
corresponds to the weight w = 4�6. With respect to the dummy classifier, only 17%
and 48% of users benefit from any of the LoT estimators for the weight w = 4�6 for the
Nokia and Device Analyzer data sets, respectively. The most sophisticated approach
LOTUS is, again, the one that covers most of these individuals. Comparing to other
estimators, LOTUS (again considering SF4�6 only) provides for 15% (Nokia) and 41%
(Device Analyzer) of users the best solution. Given these observations, we conclude
that the majority of users will the best results in terms of the score function SFw if all
actions are executed. However, LOTUS is still able to identify users who benefit from
using it in comparison to the dummy classifier, which executes all actions.

5.7 related work

With this work, we take a quantitative approach to understand how particular appli-
cation scenarios can benefit from LoT estimations. To this end, we further incorporate
the results obtained from a qualitative questionnaire-based study. Throughout this
work, we use the NP prediction task as an example. To solve this particular prediction
task, several approaches have been proposed in the past [176, 9, 22, 71, 147]. Other
authors have also considered using social-ties to improve the predictive power of
predictors or to extract users’ behavior [66, 125]. Predicting household occupancy is
related to the NP prediction task with several solutions have been proposed recently
[179, 122, 115]. Furthermore, predicting which applications on users’ mobile device
will be used next has also gained attention in recent years [218, 71, 185, 219]. We in-
stead utilize our proposed population mobility models in Chapter 4 to demonstrate
their practical applicability and to support one of the outlined practical implications
of the reported results.

Given this large amount of related work and diversity in prediction tasks, it is im-
portant to note that our work is complementary to the approaches mentioned above.
Although Chow already discussed an optimum error and reject tradeoff for classifi-
cation tasks in 1970, it has gained less attention in the domain of human mobility
prediction [49, 50]. Our LoT estimator provides a more accurate estimation of the
LoT value than the existing solutions do due to its ensemble learning nature. This
is necessary since many of the proposed solutions for solving the mentioned predic-
tion tasks aim on supporting different application scenarios on top of them. Many of
these scenarios support users or provide them with useful services. The degree and
direction of the user support has been intensively debated among researchers and
practitioners [137, 186]. One of these directions is the development of automated ser-
vices that take autonomous actions on users’ behalf. Our work goes in this direction
by helping services such as MPAs to make a decision whether a particular action
should be executed or not.
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In his seminal work, Horvitz [98] proposed LookOut – a system for scheduling and
managing meetings. Whenever the user receives an email, LookOut assists the user
with reviewing her calendar in order to schedule an indicated appointment in the
received email. LookOut assigns probabilities (LoT) of an user intention by leverag-
ing SVM text classification method. To decide whether an action should be taken or
not, LookOut uses a threshold-based approach. This approach has also been used by
other authors [179, 71, 185]. For instance, Do and Gatica-Perez analyze the predictive
power of a set of features and predictors on solving the NP and application predic-
tion tasks [71]. They utilize the so-called activation score of a predictor to determine
which prediction is to prefer. This activation score corresponds to the prediction
confidence value that is typically reported by the state-of-the-art machine learning
classifiers along with the prediction. In our work, we compare the performance of
LOTUS to the threshold-based approach that relies on the assigned LoT values by the
applied mobility predictor.

Belotti and Edwards argue that autonomous actions might “depend on myriad fac-
tors that cannot be reliably sensed or inferred” [31]. We argue that one of these “myriad
factors” is the user herself who tend sometimes to act spontaneously or for reasons
that cannot be sensed or inferred. Therefore, we consider information about users’
predictability in the design of LOTUS. Several researchers consider users’ predictabil-
ity [191, 106, 135, 66] as an indicator of how well the particular prediction tasks
might be performed. In particular, they analyze how the different data and its granu-
larity influence the possibility to capture users’ behavior. The rationale behind these
approaches is to increase the performance in predicting users’ mobility. By apply-
ing the techniques such as computing the entropy of the derived users’ time series,
authors show that it is possible to determine how regular or predictable a person is.

The approaches described above focus on deriving probabilities for the particular
prediction and on using them to decide which potential output is the most likely. To
this end, the presented approaches in related work search for similar contextual situ-
ations in the past to determine the most likely prediction for the next visited place or
the used application. Unlike these approaches, our work focuses on the correctness
of the predictions that have been made in the past and the corresponding additional
information, e.g., time of day, users’ momentary predictability at the particular point
in the past, or the estimated predictions’ probability. By considering this information,
we aim to detect situations in which, for instance, the NP prediction will be incor-
rect with very high probability because of the suddenly changed user behavior. For
instance, if the user receives a phone call and changes her plans for the whole day.
At the same time, there might be situations in daily life in which individuals tend to
act spontaneously, e.g., when it comes to the choice of a lunch place. In contrast to
that, we also expect to identify situations in which the considered data indicates a
high confidence of the current NP prediction.

In their seminal work, Song et al. consider the predictability of human mobility
from a theoretical point of view [191]. They analyze Call Detail Records (CDRs) from
50,000 individuals over a time period of three months to derive the theoretical lower
and upper bounds of the human mobility predictability. Jensen et al. build upon
this work by analyzing how human mobility predictability changes with respect to
the changes in temporal scalability of human mobility [106]. To this end, they lever-
age Global System for Mobile Communications (GSM), GPS, Bluetooth, Wi-Fi, and
phone calls from 14 participants to capture their mobility. They show that if trivial
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behavior, such as visits at the less relevant places, are excluded, the predictability of
human mobility increases. In addition to leveraging different temporal scales for hu-
man mobility, Lin et al. also include the spatial dimension [135]. Given mobility data
records of 40 individuals, the authors demonstrate how human mobility predictabil-
ity changes if either the temporal and spatial resolution of mobility data changes too.
Smith et al. refine previous work on the theoretical upper bound for human mobility
predictability by considering real-world topology constraints [188]. This allows them
to derive a tighter upper bound that is lower than previously claimed.

Unlike our work, the related work presented so far focuses on providing a state-
ment of how predictable the particular person is in general, without focusing on
each prediction individually. McInerney et al. [142] aims on identifying situations in
users’ daily life that exhibit a low predictability. For instance, there is low predictabil-
ity in situations in which people tend to act spontaneously or there is not enough
historical information to provide a conclusive prediction of people’s mobility. This
goal is achieved by computing the IE metric. We adopt this approach in our work by
leveraging the information of IE as a feature in our estimator.

In our work, we focus on estimating the level of trust for a given prediction. With
respect to the highlighted related work, we leverage three information sources: (1)
input data such as individual’s current place, (2) output of the utilized mobility
predictor, e.g., current mobility prediction, and (3) the instantaneous entropy of the
user in terms of the IE metric [142]. This combination makes LOTUS unique with re-
spect to existing approaches, as described above. Table 5.2 summarizes the aforemen-
tioned related work by highlighting the corresponding focus of each of the related
approaches and a brief summary. The two approaches by McInerney et al. [142] and
Do and Gatica-Perez [71] are the most related to our work and therefore highlighted
in bold in Table 5.2.

5.8 conclusions and final remarks

To have individuals trust MPAs to take actions on their behalf, we need to be able to
better control the required confidence of an MPA in its predictions. As we have seen
from an online survey involving 188 participants, users have different requirements
with respect to the prediction quality of an MPA, depending on different use cases.

Therefore, we first analyzed the predictability of mobility traces and residence
times, since this information is relevant for supporting MPAs. After that, we also an-
alyzed the existing metric IE to understand how this metric performs in the selected
corner cases. We further analyzed whether and to what extent real-world applica-
tion scenarios benefit from LoT estimations. In terms of the scenarios, we included
(1) home automation, (2) traffic updates, and (3) data prefetching. We conducted our
analysis with real-world data from two public data sets – Nokia and Device Analyzer.

In summary, we analyzed five LoT estimators for three application scenarios on
two large data sets and in the context of the NP prediction task. Our key insights
are:

• It is harder to predict residence times than predicting which place the indi-
vidual will visit next. Furthermore, predictors often tend to underestimate the
residence times.
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• The existing metric to capture individuals’ momentary predictability – IE – is
able to capture situations in which mobility predictions will probably be wrong
with some limitations.

• All three application scenarios benefit from the LoT estimations; however, these
benefits highly depend on the application scenario and the associated costs of
executing an unnecessary action.

• The most sophisticated among all considered LoT estimators, LOTUS, clearly
outperforms the trivial approaches such as thresholding or majority vote. For
instance, if individuals’ trust requirements are located exactly between the two
extrema MPA1 and MPA2, then no more than 18% of these individuals will
benefit from the best performing trivial LoT estimator. In contrast to that, with
LOTUS, at least 43% of individuals benefit.

• In general, we observe that the higher the accuracy requirements on mobility
predictions and thus correctly executed actions are, the more individuals ben-
efit from the considered LoT estimators. In particular, for the Nokia data set
82%, 50%, and 17% in the context of the home automation, traffic updates, and
data prefetching scenarios, respectively.

• Furthermore, if the weight w is small, as in the case for the home automation
scenario, then only a small fraction of actions is executed. In these cases the
overall benefit for the individuals is higher than executing all actions. The in-
creasing weight w forces the MPAs to execute more actions leading to a higher
error rate and thus reduced benefit for the individuals.

• The aforementioned performance results let us conclude that all these LoT esti-
mators are primarily targeting the identification of correct mobility predictions
instead of wrong.

One of the noteworthy limitations of our analysis is the reliability on the question-
naire results to decide for each application scenario how many wrongly executed
actions the individuals are willing to accept (weight w). To derive these weights
more accurately, practical implementations of the three application scenarios within
MPAs are necessary and can be considered as a potential follow-up work. Neverthe-
less, we expect the corresponding weights w for each of the application scenario to
differ only slightly, and the clear difference among the three application scenarios to
remain the same.
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P R E F E T C H I N G O F M O B I L E A P P L I C AT I O N C O N T E N T

Users’ patience and attention are notoriously scarce in mobile settings [175, 89, 183,
58, 219]. Interactions with mobile applications are usually brief, and short launch
delays and fast responsiveness are crucial to keep users engaged [219, 170]. Nonethe-
less, launch delays of popular applications are fairly high, reaching even tens of
seconds [219, 159]. Launch delays occur mainly because applications load images
and other data objects when they are launched. In many of these cases, applications
also prefetch data from the Internet. They do so to reduce the need for establishing
a connection and downloading data while the user is interacting with the applica-
tion. This way, applications can quickly react to user actions as they maintain the
application content freshness. Ensuring a smooth user experience is fundamental for
a mobile application and thus several existing approaches use prefetching conspic-
uously [219, 159]. These methods predict which applications will be used next and
prefetch them in advance. This way, data objects are prefetched locally or from the
Internet before users start interacting with the application. Perceived launch delays
can be reduced dramatically using these methods [219, 159].

However, these techniques cause a substantial amount of traffic to be exchanged
over cellular and energy-hungry connections, because applications are prefetched
irrespectively of whether a Wi-Fi or cellular connection is available. This, in fact,
has negative consequences for both mobile application users and cellular network
providers, as we outlined in Chapter 1. Therefore, addressing this trade-off between
reducing cellular traffic footprint and guaranteeing application content freshness is a
challenging task. Some approaches attempt to reduce the energy and traffic overhead
caused by prefetching as they limit the amount of data objects applications retrieve
from the Internet once launched [95, 170, 210]. However, these approaches require
modifications of the application code [95], can intervene only after an application
has been launched [170], or focus on a single application (Twitter) [210].

Therefore, we propose a novel strategy to prefetch applications on mobile devices
and thus to address the goal of reducing cellular traffic footprint. We assume that
each application has its own prefetching strategy, which is triggered when the ap-
plication is launched. We thus deal with the problem of when to prefetch which ap-
plications and leave it to the applications themselves and other complementary ap-
proaches – such as Procrastinator [170], IMP [95], or EarlyBird [210] – to determine
what to prefetch.

We refer to our approach as EBC because it makes “every byte count”. EBC differs
from previous work in several ways. First, we explicitly consider the amount of
traffic an application is expected to generate as a parameter to schedule application
prefetches. Previous approaches do not differentiate between applications with high
or low traffic volumes when taking prefetching decisions. This is partially due to the
cumbersomeness of collecting data about per-application traffic volume. Luckily, a
recently published data set does contain such fine-granular data [207]. To the best of
our knowledge, we are the first to evaluate prefetching approaches on this data set.

147
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Second, we apply different prefetching strategies depending on whether a cellular
or Wi-Fi connection is available. We design EBC to be very conservative in prefetching
when the user accesses the Internet through a cellular connection. At the same time,
EBC prefetches aggressively when a Wi-Fi connection is available. This way, the ex-
change of data over cellular connections can be further reduced. The rationale behind
this approach is that fetching data over Wi-Fi is much cheaper – both in monetary
and energy terms – compared to prefetching over a cellular network [43]. As “pay for
what you use” schemes gain in popularity [85], users are likely to become even more
sensitive to every byte they consume over cellular networks. Prefetching schemes that
operate too aggressively on these networks are thus bound to disappoint users. Fur-
thermore, mobile providers often struggle to provision enough bandwidth to mobile
users [59, 43]. Prefetching over Wi-Fi is thus beneficial for them too [128]. By oper-
ating conservatively on cellular networks, EBC might miss prefetching opportunities.
However, the availability of Wi-Fi has increased substantially in the last few years.
Wi-Fi coverage levels of at least 60% are common in developed countries [130]. EBC
can leverage this wide availability of Wi-Fi and reduce its overhead over cellular net-
works. In previous work, the available Wi-Fi coverage was largely underestimated.
For instance, the data traces used by Higgins et al. [95] correspond to a Wi-Fi cover-
age level lower than 30%. By using very recently collected data traces [207, 168], we
ensure that our results apply in current network environments.

Third, EBC is adaptive and lightweight. Unlike FALCON [219], it can operate as
soon as very few (currently three) usage instances of an application have been ob-
served. It further refines its models through incremental learning [33] as more observa-
tions become available. Furthermore, EBC adapts its parameters to the current context.
Unlike in PREPP [159], the number of applications to prefetch must not be fixed a
priori. Instead, EBC estimates this value from historical data and on a per-user basis.
This way, EBC adapts better to the peculiar application usage patterns of users.

We evaluate EBC using data traces from two publicly available data sets: (1) the
Device Analyzer [207, 168] and (2) the LiveLab data sets [183]. The first contains fine-
grained application usage records including traffic volume data. The second allows
us to reproduce results obtained by other authors and compare the performance of
their approaches to those of EBC. In particular, we directly compare EBC to PREPP,
the approach presented by Parate et al. [159].

Our results show that EBC reduces cellular traffic footprint by nearly 10% or 4.4 MB
on average per day compared to its closest competitor. The consequences are savings
in terms of monetary costs and startup delay. Furthermore, EBC improves the average
application content freshness by 36%. It further serves for more than twice as much
mobile applications on users’ mobile devices as its closest competitor.

This chapter is partly based on the previously published results [20] by the author
of this thesis and is organized as follows. We first motivate our work by quantita-
tively showing differences in mobile device usage behavior depending on the avail-
ability of Wi-Fi in Section 6.1. In Section 6.2, we then present goals and constraints
that we incorporate and consider in the design of EBC. After that, we describe our
design choices in Section 6.3 by drawing upon our own analysis results and existing
literature on mobile application usage [35, 131]. Section 6.4 presents the correspond-
ing details of the design of EBC. We present our evaluation setup in Section 6.5 by
including the metrics and EBC’s competitors. Before presenting the evaluation results
in Section 6.7 and Section 6.8, we first exhaustively microbenchmark EBC’s parame-
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ters and their influence on the metrics introduced in Section 6.5. In Section 6.9, we
discuss the concept of the prefetchability of a mobile application and show an exper-
imental setup that can be leveraged to measure the prefetchability. We conclude this
chapter with an extended overview of related work in Section 6.10 and final remarks
in Section 6.11.

6.1 how wi-fi availability fosters mobile application usage

Many mobile phone users rely nowadays on flat-rate data plans offered by mobile
operators, which provide users with unlimited access to the Internet from their mo-
bile devices. However, flat-rate plans often do limit the amount of data traffic users
can generate within a given period of time. Also, the coverage and bandwidth pro-
vided by mobile phone operators’ data connections might not always be sufficient to
guarantee a desired level of user satisfaction. The availability of Wi-Fi access points
might compensate for these limitations by providing a fast – and often free! – data
connection. This might be enabled by open Wi-Fi APs or access points made available
by employers to their employees.

We show in this motivating study for our further design of EBC that the availability
of different types of data connections influences the behavior of mobile device users
with respect to the amount of data traffic they generate. In particular, we show that
users tend to actively use their phones and generate data traffic with a higher proba-
bility if they can rely on a Wi-Fi instead of a cellular connection. We also observe that
users tend to generate the same amount of data traffic over the day, although this
amount is slightly higher in the late afternoon. We obtain these results by analyzing
the mobile phone usage statistics of 790 users whose data records are included in
the Device Analyzer data set (see Chapter 3 and [207]).

The ultimate goal of performing this type of quantitative analysis is to provide
means to preload data on mobile devices depending on both the current and future
availability of Wi-Fi connections. The results presented in the next section represent
a first step toward the design of EBC to prefetch mobile application content. For our
analysis we selected users from the data set that generated data for a period of at
least ten months. Thus, the results described below comprise data from 790 users
that satisfy this criterion. The specific sensor data we consider includes records of
battery level, screen status, last accessed application, and information about network
statistics.

In the following, we present three selected results from our analysis. The first result
shows that users tend to actively use their phones and generate data traffic with a
higher probability when they can rely on a Wi-Fi connection rather than when they
are connected to the cellular network. The second result shows that users tend to
generate the same amount of data traffic over the day, although it is slightly higher
in the late afternoon. The third result shows that fair-use policies do not seem to
influence the amount of data generated by users over subsequent weeks of a month.

6.1.1 The Availability of a Wi-Fi Connection Fosters the Use of Mobile Devices

To derive the first of the three results mentioned above we consider time slots of
length Tslot=15 minutes, which results in a day being divided into 96 slots. For each
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Figure 6.1: Median probabilities aggregated for a week over a observation period of multiple
months and 790 users.

day of the week and each time slot we then count the number of time slots in which
a user has generated data traffic while actively using the phone. We consider a user
to be actively using the phone if the screen of the phone is on (this information is
included in the data set). We also differentiate between data traffic being generated
when the phone accesses the Internet through a Wi-Fi connection or using a cellular
data connection (e.g., GSM or LTE) provided by the mobile operator.

We thus compute for each slot k and user U the values of the following counters:
Nuse(k,U) is the number of times user U has generated data traffic in slot k while
actively using the phone and while the phone was connected to the Internet through
a cellular network; Nuse,wifi(k,U) is the number of times user U has generated data
traffic in slot k while actively using the phone and while the phone was connected to
the Internet through Wi-Fi; Nwifi(k,U) is the number of times the phone of user U

was connected to the Internet through Wi-Fi in slot k; Ncell(k,U) is the number of
times the phone of user U was connected to the Internet through a cellular network
in slot k.

The data points plotted through round markers in Figure 6.1 show the median
value, for each slot and computed over all users, of the ratio Nuse,wifi�Nuse. In
other words, each data point shows the median relative number of times (or: the
median empirical probability) of a user being connected to Wi-Fi while generating
data traffic and actively using the phone. The plot shows that during the day in more
than 50% of the instances the user is connected through Wi-Fi when she generates
data traffic and actively uses the phone. In the rest of the instances the user relies
on the connection provided by the mobile phone operator. The plot also shows that
the (median) probability of the user to exploit a Wi-Fi connection during the night
is 100%. This is most likely because most users have an own Wi-Fi access point at
home, where they also spend most of their nights.

The data points plotted using crosses (x) as markers show for each slot the median
value, computed over all users, as the ratio Nuse,wifi�Nwifi. In other words, these
data points show the probability of a user to actively use the phone and generate
data traffic when she is connected to the Internet through Wi-Fi. The data points
plotted using stars (*) as markers show for each slot the median value, computed
over all users, of the ratio Nuse,cell�Ncell. More precisely, these data points show
the probability of a user to actively use the phone and generate data traffic when she
is connected to the Internet through the cellular network. The systematic difference
between the two curves shows that users are about twice more likely to actively use
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Figure 6.2: Median percentage values aggregated for a week over a observation period of
multiple months and 790 users.

the phone and generate data traffic when a Wi-Fi connection is available rather than
when only the cellular network is available.

6.1.2 Overall Generated Data Traffic and Battery Level

We now consider the amount of generated data traffic for each time slot of a week.
To this end, we sum the generated data traffic over the Wi-Fi and cellular network
for each user and each time slot. We then compute the percentage of traffic that has
been generated over Wi-Fi, plotted as a median value across all users in Figure 6.2 by
the solid line. The black bars cover the 95% median confidence interval. We observe
that during the night, the traffic is mainly generated over Wi-Fi, since most of the
persons are at home. During the day, the percentage of the generated data traffic
that goes over a Wi-Fi connection drops below 50%. The shape of the plot has also a
strong correlation to the plot in Figure 6.1 that represents the probability of having
a Wi-Fi connection when accessing the network data.

Furthermore, Figure 6.2 shows the percentage of daily transmitted network traffic
per 2-hours time slots, resulting in twelve time slots per day. We observe a constant
shape over the whole day with a small peak during the evening hours and minimum
values during the night. Considering these results together with the results for the
probability of having a Wi-Fi connection for each time slot, we observe a negative
correlation. For instance, the peaks of the transmitted data are at the same time
periods as the lowest values for the probability of having a Wi-Fi connection. We
conclude that our results provide reasonable arguments for prefetching application
content in advance to support these situations in users’ daily life.

Beside the influence of the absence of a Wi-Fi network connection, we consider
further potential sources that might prevent users from using their mobile devices.
One of these sources might be the mobile devices’ battery level. By leveraging the
battery level information in the Device Analyzer data set, we computed the users’
average battery power for each weekly 15-minutes time slot. Figure 6.2 shows the
median values of the average battery level for each time slot across all the considered
users as a dotted line.

We observe multiple insights. The curve exhibits a shape of a wave form with
peaks in the morning hours and minimums in the evening hours. Furthermore, these
points correlate with the time slots at which the median probability of having a Wi-Fi
connection is 100% for the last time in the morning of each day. At the same time,
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the minimum battery level correlates with the time slots at which the probability of
having a Wi-Fi connection becomes 100% again. We expect that these points mark
the situations at which users usually leave or arrive at home.

6.1.3 Conclusions and Further Implications for Our Work

With these results, we show that there several factors exist that prevent users from
using their phones while they are not in the vicinity of a Wi-Fi connection. In partic-
ular, our results reveal that users tend to actively use their phones and generate data
traffic with a two times higher probability when they can rely on a Wi-Fi connection
rather than when they are connected to the cellular network. We further observe that
the median value of batteries’ average level is with 60% at the lowest point. However,
our hypothesis is that in situations in which users expect to not be able to recharge
their mobile device for a long period of a day, they adapt their appropriate usage
behavior of their mobile device. Therefore, we also consider energy as one of the
metrics in the design of our algorithm for prefetching mobile application content.

6.2 goals for prefetching mobile application content

Building upon our previous analysis on how Wi-Fi availability influences mobile ap-
plication usage, we derive a set of goals, costs, and constrains that we incorporate and
consider in the design of EBC. The main goal of EBC is to reduce the amount of traffic
consumed over a metered connection. This reduction has several benefits for both
users and operators of cellular networks [128]. As we demonstrated in Section 6.1,
the reduced necessity to fetch network content over a cellular network correlates
with the usage probability of mobile devices. Furthermore, it provides monetary
benefits for both consumers and network operators [128, 43]. Lastly, it is known that
Wi-Fi communication is less energy-hungry than cellular networks [14, 99, 166]. This
fact reduces the frequency to recharge the mobile devices’ battery and improves its
availability for its owner.

Furthermore, several work has focused on improving application content freshness
by anticipating which applications should be prelaunched for which session. Even if
an application is not expected to generate traffic, prelaunching it in advance reduces
the startup time. This is because modern mobile Operating System (OS), such as
Android, iOS, or Microsoft Mobile, keep some of the most recently used applications
in memory to quickly relaunch them if needed. Therefore, the better the application
content freshness, which we define in Section 6.5, the higher the probability that the
particular application will still be in memory of the mobile OS if relaunched again.

On the downside, pursuing these goals introduces costs such as energy consump-
tion if unnecessary traffic is prefetched and prefetch delays caused by the prefetching
activities. To manage these costs and pursue the goals, we introduce three restric-
tions. First, we allow only those applications to be prefetched over a cellular network
that are predicted to generated no more traffic than a certain threshold. Second, EBC
allows defining how many applications at most should be prefetched during one
prefetch activity.1 Third, depending on how many content is transmitted per appli-

1 In our work, this defines how many application at most should be prefetched at the beginning of an
application session.
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Table 6.1: Summary of EBC’s goals, costs, and constraints.

Name Category Symbol Brief description

Cellular traffic Goal Wc

Reducing cellular traffic is the primary goal of EBC. It allows
for monetary and energy savings as well as for reducing the
startup delay of applications.

Freshness Goal Wf

The secondary goal of EBC is to improve the application
freshness, i.e., to keep the time difference between the last
application access and the current launch as low as possible.
This increases the probability that the application is still in
memory and thus can be launched faster.

Energy Cost E

Unnecessary prefetches and missed opportunities to
prefetch application content over an energy-efficient Wi-Fi
connection contribute to the energy consumption of mobile
devices. The lower the costs are, the longer the mobile de-
vices are available for their owners without the necessity to
recharge them.

Prefetch duration Cost tfetch

Prefetch duration is directly linked to the number of appli-
cations and the amount of content that is prefetched. The
higher the prefetch duration, the better can the two goals of
EBC be achieved. At the same time, mobile device users are
expected to see a decrease in user experience quality due
to the increase in prefetch duration and thus waiting time
after unlocking their mobile device.

Amount of allowed cel-
lular traffic to generate

Constraint Tmax

To reduce cellular traffic, EBC allows restricting selected ap-
plications from actively prefetching their content if metered
connection is presented.

Number of applica-
tions to prefetch

Constraint l̂x

Another tunable parameter is the limitation of the number
of applications that should be prefetched for an application
session. This parameter has been already used in previous
work such as PREPP [159]. We adopt this concept for the
design of EBC.

Maximum prefetch du-
ration

Constraint tfetch,max

Prelaunching applications and prefetching their content
causes potential delays and waiting time for mobile device
users. The time required to load an application in memory
and to transmit required application content over a network
contribute to the prefetch duration. Therefore, EBC also pro-
vides an opportunity to restrict it by introducing the thresh-
old tfetch,max.

cation during prefetching, the accumulated prefetch duration varies. Therefore, EBC
allows defining how long a prefetching activity should last at most.

In the following sections, we will define these goals, constrains, and costs more for-
mally and in detail. For now, we provide a high-level summary of them in Table 6.1
to support the reader on the next steps. Achieving an adequate balance between the
costs and benefits in terms of the aforementioned goals is challenging and part of
the following design of EBC.
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Figure 6.3: Cumulative Distribution Function (CDF) of inter-session intervals for both the
LiveLab and the Device Analyzer data sets.

6.3 how to make every byte count

Our prefetching algorithm executes the following five steps each time the screen of
the phone is unlocked.

• Step 1: Determine – for each application installed on the mobile device – the
probability that the application will be used in the current session and estimate
the traffic volume the application will generate if used.

• Step 2: Determine how many applications should be prefetched in the current
session.

• Step 3: Determine which applications should be prefetched considering their
usage probability and estimated traffic volume. Two different rankings are pro-
duced depending on whether the user is connected to a metered (e.g., 3G or
LTE) or non-metered connection (e.g., Wi-Fi).

• Step 4: Prefetch applications to maximize the benefit in terms of achieving the
two goals defined in Section 6.2 and by considering the given restrictions. The
number of applications to prefetch is the one determined in Step 2.

• Step 5: At the end of each session (i.e., upon screen lock), update the values
computed at Step 1 and Step 2 using the application usage records from the
current session.

In the remainder of this section we describe each of these steps and motivate our
design choices. We focus in particular on the description of Step 3, as well as on
the reasons why we choose to perform prefetching upon screen unlocks. We provide
more details about Step 1 and Step 2 in the next section. Lastly, for the sake of a better
overview of different parameters, constants, and thresholds, we summarize them all
in Table 6.2.
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Table 6.2: Summary of the EBC parameters, constants, and thresholds.

Symbols Description

Application usage probability computation

fu(A,k) Feature indicating whether the application A was used in session k.

fw(k) Feature indicating whether Wi-Fi is available in session k.

fh(k) Feature indicating hour of day in session k.

fc(A,k) Feature indicating in how many most recent sessions until session k the application A was used.

p(A,k) Probability of using application A in session k.

pt(A,�t) Probability of using application A after �t time elapsed since the last usage of application A.

Application traffic computation

T(A) The total traffic volume generated by the application A until session k.

Ns(A) Number of sessions in which application A was used.

T̂(A,k) Estimation of the traffic volume that will be generated by the application A in session k.

T̂c(A,k) Estimation of the expected traffic volume that will be generated by the application A over cellular
networks upon the next launch after session k.

Session cardinality computation

lx(k) Session cardinality, i.e., number of applications used in session k.

l̂x(k) Estimation of session cardinality for session k.

D Factor for stretching l̂x(k) to the number of applications that should be prefetched in session k.

Prefetch parameters

w
The weight parameter determining how many resources to use for prefetching data-intensive
applications.

Tmax
Threshold restricting applications with a higher T̂(A,k) value to be prefetched if no Wi-Fi
connection is available.

tfetch(A,k) Time required to prefetch the application A for session k.

tfetch,max Maximum time that should be consumed for prefetching of any given session.

Knapsack weights and costs

W, Wf, Wc

Overall benefit achieved after prefetching the scheduled applications W = ∑L
AW(A). The sub-

scripts f and c determine the corresponding benefit for applications that are prefetched with the
goal of optimizing freshness and cellular traffic, respectively.

C, Cf, Cc

Overall cost for prefetching the scheduled applications C = ∑L
A C(A). The subscripts f and c

determine the corresponding cost for applications that are prefetched with the goal of optimizing
freshness and cellular traffic, respectively.

W(A) Tuple determining benefit that will be achieved if application A is prefetched.

C(A) Tuple determining cost for prefetching the application A.

Wf Benefit in terms of freshness.

Wc Benefit in terms of cellular traffic.

 , f, c

Capacity for prefetching a session. The subscripts f and c determine the two capacities computed
based on the selected weight w. These capacities are available for prefetching applications that
are likely to be used in the current session and data-intensive applications, respectively.

L,L ′,L ′′ Different lists of applications.



156 prefetching of mobile application content

6.3.1 Why Prefetching Upon Screen Unlock?

EBC borrows the idea of prefetching upon screen unlock from PREPP [159], a recently
presented prefetching algorithm. Previous work instead relied on other triggers, like
for instance the usage of a particular application or sequence of applications [219].
There are two main reasons why it is reasonable to execute prefetching at the begin-
ning of a session.2

First, network connections exhibit a tail-energy overhead after each data transmis-
sion [67, 159, 95, 130]. In practice, connections remain active after data transfers have
completed, causing energy consumption. The more the separate connections, the
higher the overhead. By grouping data prefetches at the beginning of a session, EBC
can reduce its overall energy expenditure. Parate et al. show that this type of parallel
prefetching can reduce the energy overhead of prefetching by more than 40% with
respect to sequential fetches [159].

Second, prefetching at the beginning of a session does not compromise freshness
because sessions are usually short. The median session length for the LiveLab and
Device Analyzer data sets is 87 s and 90 s, respectively. Böhmer et al. report simi-
lar results for their data set [35]. Time intervals between consecutive sessions are
instead typically longer. Figure 6.3 shows the cumulative distribution function of
inter-session intervals for the LiveLab and Device Analyzer data sets. For the De-
vice Analyzer data set, the inter-session time is higher than 15 minutes for more
than 80% of the sessions. Scheduling prefetches between sessions would thus result
in an unnecessary loss of freshness of application content. For the LiveLab data set
inter-session intervals are shorter, on average. Also in this case, however, prefetching
between sessions is not beneficial to ensure content freshness.

Prefetching while the phone is not in stand-by mode is also a pragmatic solution.
As noted by Parate et al. [159], for instance, Android applications typically prefetch
data by spawning background processes from the main thread. However, the main
thread can only run when the device is active. Thus, prefetching when the device
is in stand-by mode is impractical on Android devices, but similar considerations
apply for iOS and Windows Phone as well [159]. To enforce prefetching, applications
must be launched and – even if they are already loaded and in memory – briefly
brought to the foreground. As discussed in [159], this takes below 1 s for most appli-
cations. From our analysis of the LiveLab and Device Analyzer data sets, we observe
in Figure 6.4 that the median time between a screen unlock and the usage of the first
application is approximately 5 s in both data sets. This indicates that there is usu-
ally enough time at the beginning of a session to prefetch at least few applications
before the user starts interacting with them. To further improve EBC’s performance,
an implementation of EBC on a mobile device can embed a mechanism that delays
prefetches in case an application starts being used while EBC is still operating.

6.3.2 Step 1: Computing Application Usage Probabilities and Traffic Volume Estimates

At the beginning of each session, EBC computes the probability p(A,k) of an applica-
tion A to be used in the current session k. EBC further estimates how much traffic an

2 We define a session as the time period between a screen unlock event and the successive screen lock event.



6.3 how to make every byte count 157

Figure 6.4: Time between a new session is detected and the first application is launched. In
this case, we exclude Android and iOS Launchers from the consideration.

application will cause if used in the current session. We indicate this estimate with
T̂(A,k). We describe how EBC computes p(A,k) and T̂(A,k) in Section 6.4.

6.3.3 Step 2: Determining How Many Applications to Prefetch

The number of applications to prefetch in each session is an important parameter. If
too many applications are prefetched, precious resources are wasted for unnecessary
prefetches increases. If too few applications are prefetched, relevant prefetching op-
portunities are missed. We make EBC estimate at runtime the number of applications
to prefetch. We indicate this value as l̂x(k), whereas k is the index of the current
session and lx(k) corresponds to the exact number of applications used in session k.

6.3.4 Step 3: Determining Which Applications to Prefetch

A core difference between EBC and existing approaches resides in the way it deter-
mines which applications should be prefetched. Listing 2 shows pseudocode of EBC’s
decision engine, which executes the operations described below. First, EBC creates a
list L of all applications for which a usage probability exists. It computes weights
for the benefit W(A) and cost C(A) of prefetching for all applications A to trans-
form the application selection task into a 0-1 knapsack problem. The weight W(A) of
an application A is a tuple {Wf,Wc}, where Wf is equal to p(A,k) ×�f and is the
application usage probability multiplied by the difference between the freshness the
application A will have if prefetched and freshness if not prefetched. The weight Wc

corresponds to the traffic volume expected to be generated over cellular networks.
We explain the computation of both quantities later in this section in detail. Optimiz-
ing the weight Wf improves application freshness and thus targets applications that
are expected to be used in the current session. In contrast to that, optimizing Wc

targets the reduction of cellular traffic. Optimizing these weights is directly linked
to the corresponding costs represented by the tuple C(A) = {tfetch(A,k),1}, where
tfetch(A,k) expresses how long it would take to prefetch the particular application



158 prefetching of mobile application content

Algorithm 2 Determining which applications should be prefetched
Input: w – Weight determining how many resources to use for prefetching data-intensive applications

 – Capacity restrictions in terms of costs on the entire prefetching activity
Tmax – Threshold for determining which applications are allowed to be prefetched over cellular networks
p(A,k)∀A – Application usage probabilities
T̂(A,k)∀A – Predicted application traffic
T̂c(A,k)∀A – Weighted application traffic that is expected to be generated over cellular networks

Output: L – List of applications to prefetch

1: Create list L with all applications A
2: Compute weightsW(A) and costs C(A) based on p(A,k) and T̂c(A,k) ∀A ∈ L
3:
4: if fw(k) = 0 then ▷ No Wi-Fi connection
5: Discard from L applications with T̂(A,k) > Tmax

6: Execute the 0-1 knapsack solver on L with Wf and Wc as the primary and secondary goal, respectively
7: Retain in L applications that maximize ∑L

AW(A) and satisfy the condition ∑L
A C(A) ≤  

8: else
9: Initialize the capacity  f as (1−w)× 

10: Execute the 0-1 knapsack solver on L with Wf and Wc as the primary and secondary goal, respectively
11: Retain in L ′ applications to maximize ∑L ′

A W(A) and satisfy the condition ∑L ′
A C(A) ≤  f

12:
13: Discard from L applications with T̂(A,k) ≤ Tmax and those included in L ′
14: Initialize the capacity  c as  −∑L ′

A C(A)
15: Execute the 0-1 knapsack solver on L with Wc and Wf as the primary and secondary goal, respectively
16: Retain in L ′′ applications to maximize ∑L ′′

A W(A) and satisfy the condition ∑L ′′
A C(A) ≤  c

17:
18: Concatenate L ′ and L ′′ to L
19: end if
20: return L

A and the constant 1 refers to the number of applications prefetched. The latter con-
stant is used as a counter of applications that are already selected for prefetching
in order to limited the total number according to the estimate l̂x. This parameter is
part of the restriction capacity  that we define as the tuple {tfetch,max, l̂x}, where
tfetch,max is the constraint referring to the total amount of time that should be spent
on prefetching of all selected applications in a session and l̂x limits the number of
applications to prefetch.

After deriving weights, costs, and the prefetch capacity  , EBC then verifies whether
the device can access the Internet through a cellular or Wi-Fi connection. If only a
cellular connection is available (Lines 5–7 in Listing 2), EBC discards from L all ap-
plications having T̂(A,k) > Tmax. The rationale behind this approach is as follows.
When the user accesses the Internet through a cellular connection, wrong prefetching
decisions have high follow-up costs. They waste precious bytes as well as energy. The
more traffic volume an application is expected to generated if wrongly prefetched,
the higher the cost. EBC thus uses a low risk strategy when prefetching over cellu-
lar networks: it prefetches only applications that are expected to cause low traffic
volume. This is why we use the threshold Tmax (same value for all applications) to
discard applications from the list L. Setting Tmax to zero, for instance, would make
EBC prelaunch only those applications that are expected to cause no traffic at all. This
is typically the case for many utility applications such as the calculator or the alarm
clock. For these and other applications that cause very little data volume, the cost
of a wrong prelaunch is negligible. As for data-intensive applications – i.e., those
having a large value of T̂(A,k) – EBC’s approach is to prefetch them as much as pos-
sible when Wi-Fi is available. EBC thus tries to maintain content freshness of these
applications as long as the cost of prefetching is low. When the cost is high, however,
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Algorithm 3 0-1 knapsack solver for optimizing Wf as an example
Input: W – WeightsC – Costs

 – Capacity restrictions in terms of costs on the entire prefetching activity
i – Sequence number of the current candidate application to be selected to the list L

Output: W – Sum of weights for all applications in L
C – Sum of costs for all applications in L
L – List of applications to prefetch

1: if ∃ ∈  < 0 then ▷ Do not select the current application if the capacity is exceeded
2: return W = {−∞,−∞}, C = {−∞,−∞},L = �
3: end if
4:
5: if i ==NW then ▷ No further candidate applications exist
6: return W = {0,0}, C = {0,0},L = �
7: end if
8:
9: W ′, C ′,L ′ ← knapsack(W ,C, , i+1) ▷ Currently valid solution

10: W ′′, C ′′,L ′′ ← knapsack(W ,C, − C(Ai), i+1) ▷ Candidate solution that improves weights
11:
12: W ′′ ←W ′′ +W(Ai)
13: C ′′ ← C ′′ + C(Ai)
14: L ′′ ← L ′′ ∪Ai

15:
16: if (W ′′

f >W ′
f) or (W ′′

f ==W ′
f and W ′′

c >W ′
c) then

17: W, C,L←W ′′, C ′′,L ′′ ▷ Select the candidate solution if it improves weights
18: else
19: W, C,L←W ′, C ′,L ′ ▷ Stay with the current valid solution if no improvement achieved
20: end if
21: return W, C,L

it does not even try to guess user actions and leaves it to her to decide upon – and
carry the “blame” for – launching an application that will cause a large amount of
data to be downloaded over a cellular network.

Of the remaining applications in the list L, EBC applies our own implementation
of a 0-1 knapsack solver to maximize the benefit of prefetching and thus the goals
of reducing cellular traffic and keeping the application content as fresh as possible.
Our implementation of the 0-1 knapsack solver is shown in Listing 3. It is exemplary
demonstrated for the case in which Wf is supposed to be optimized in first place.
For prioritizing Wc as the primary goal the implementation is by analogy.

The solver takes weights W(A) and costs C(A) for all applications in L and the
corresponding capacity restrictions on the entire prefetching activity defined by the
tuple  . If only a cellular connection is available (Lines 5–7 in Listing 2), the 0-1
knapsack solver optimizes the goal of improving application freshness Wf in first
place and then, for instance if two applications have the same values for Wf and
costs C(A), it optimizes the goal of reducing cellular traffic that is expressed by the
weight Wc. The 0-1 knapsack solver returns the list L with applications to prefetch
and the corresponding overall benefit W = ∑L

AW(A) and costs C = ∑L
A C(A) for all

applications in L.
When a Wi-Fi connection is available, EBC uses a two-sided approach (Lines 9–

18 in Listing 2). It first utilizes the resources capacity  f = �(1 −w) × � to select
applications that maximize the overall benefit Wf as the primary goal and then Wc as
the secondary one. In this case, we introduce the weight parameter w that determines
how many resources to use for prefetching data-intensive applications. For instance,
if w = 0 then the entire resources  are used to prefetch the applications that are
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most likely to be used in the current session. Since Wi-Fi is available, EBC prefetches
them irrespectively of the traffic volume they are expected to cause. EBC then (Lines
13–16 in Listing 2) utilizes the remaining capacity  c =  −Cf to select data-intensive
applications, where Cf = ∑L ′

A C(A) are the costs of prefetching applications that are
likely to be used in the current session (Line 11 in Listing 2). To this end, the 0-1
knapsack solver now optimizes the weight Wc in first place and then Wf as the
secondary goal. In other words, EBC exploits the availability of a Wi-Fi connection to
prefetch data-intensive applications.

EBC chooses these applications by utilizing the weight Wc that we compute as
follows. First, EBC uses a temporal model to determine the probability of each appli-
cation to be used next given the time �t elapsed from the recent usage. We indicate
this probability as pt(A,�t). To compute pt(A,�t), EBC records the value of �t each
time an application is used over a cellular network. Values of �t if the application
A is used over a Wi-Fi network are thus omitted from further consideration. With
this decision we expect to obtain a much more accurate probability distribution of
using data-intensive applications in the near future. EBC then uses this data to build
a corresponding CDF. The value of pt(A,�t) can then be determined reading the
value of the CDF that corresponds to �t. It is important to note that the absolute
values of the individuals pt(A,�t) are not relevant. Only their relation to each other
is. EBC uses the values of pt(A,�t) only to obtain a ranking of the applications to
prefetch, as described below.

EBC then retrieves the estimated traffic T̂c(A,k), also computed only considering
the sessions in which Wi-Fi was not available. Furthermore, EBC memorizes for each
application the amount of traffic that has been already prefetched since the last us-
age. We denote this quantity as Tfetch(A, j), whereas the index j indicates that the
data prefetches occurred between the j − 1 and jth usage of A. It thus allows us to
compute the remaining differences T̂remain(A,k) as max(0, T̂c(A,k)− Tfetch(A, j)).
Using these values, EBC can compute the weighted traffic volume that each applica-
tion A is expected to additionally generate over a metered connection in the near
future as:

T̂weight(A,k) = pt(A,�t)× T̂remain(A,k) (6.1)

Having now derived the weights Wc = T̂weight(A,k), EBC applies our 0-1 knapsack
solver with the primary goal to optimize Wc and the secondary goal Wf (Lines 13–
16 in Listing 2). The restriction capacity for this part is now  c after selecting L ′.
The solver returns a new list L ′′ containing data-intensive applications that might be
used in the near future when no Wi-Fi is available. Due to this split of L given by
the weight w, EBC thus “sacrifices” some of the slots in L for these data-intensive ap-
plications. As detailed in the next section, we include a constant D in the estimation
of lx(k) to make room for these applications as well as to gain more control on the
total number of prefetches performed by EBC.

An alternative option would consist in using all the slots in L to prefetch appli-
cations likely to be used in the current session and creating a second list L+ for the
mentioned data-intensive applications. Prefetching a fixed number of applications
per session is also possible, although this method would not take advantage of the
fact that the number of applications used per session varies, as also shown in [35]
and in the later parts of this work.
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In some situations, neither Wi-Fi nor a metered connection is available during a
session – e.g., when the phone is set in flight mode. In this case, EBC operates as if it
were connected to a cellular network and the threshold Tmax were set to zero. This
logic is not included in Listing 2, for simplicity.

6.3.5 Step 4: Prefetching

At this stage, the list L of applications to prefetch is available. EBC launches the
applications in L from top to bottom. In practice, EBC briefly brings the application
to the foreground, as done by Parate et al. [159]. This way, the application is loaded
and it prefetches the content it needs. We let EBC launch applications back-to-back,
so that only one data connection is needed for all prefetches, as discussed above. At
this point, approaches like IMP [95], Procrastinator [170], and EarlyBird [210] may
come into play to further control what should be prefetched. EBC, however, does not
interfere with applications’ internal prefetching mechanisms.

6.3.6 Step 5: Updating EBC’s Parameters

At the end of each session, EBC records application usage data and uses it to pre-
compute application usage probabilities and estimated traffic volumes. Indeed, the
values of these estimations do not change between sessions. EBC thus only needs to
retrieve the precomputed values when the phone is unlocked and can then directly
proceed with the execution of Step 3. This further reduces the time EBC needs to
complete prefetching before the user starts interacting with its mobile device.

6.4 the nitty gritty details

After having presented the main rationale behind EBC’s design in the previous sec-
tion, we detail how we compute its parameters. In particular, we detail how EBC com-
putes the application usage probability, the expected traffic volume, and the number
of applications to prefetch in the current session.

6.4.1 Application Usage Probabilities

EBC computes the probability of an application to be used in the current session from
historical data. In each session, EBC records which applications have been used. For
each application usage, it stores the corresponding time of the day and whether Wi-Fi
was available during the session.3 Furthermore, EBC records the number of consecu-
tive sessions in which the application has been used. Thus, for each application A and
session i, EBC retains a tuple of features: F(A, i) =< fu(A, i), fw(i), fh(i), fc(A, i) >.
For the sake of clarity, we refer to any unspecific session as i and to the current ses-
sion for which the probability computation is executed as k. We set fu(A, i) to 1 if
the application A is used in session i and to 0 otherwise. Furthermore, fw(i) is set to
1 if Wi-Fi is available in session i and to 0 otherwise. The feature fh(i) takes values

3 We thereby assume that if Wi-Fi is available at the beginning of a session, it will also be available for
the entire session. This assumption holds in most practical situations since sessions are usually short.
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Figure 6.5: Usage factor for selected users in the Device Analyzer data set. The plot shows
that several applications are used predominantly when Wi-Fi is available, others
when no Wi-Fi is available.

between 0 and 23 and indicates the corresponding hour of day (h=0 corresponds to
the time between 12:00 a.m. and 12:59 a.m., h=1 to 1:00-1:59 a.m., and the remaining
values by analogy). Finally, fc(A, i) indicates the number of consecutive session dur-
ing which the application was used before session i. For instance, if A was used both
in sessions i − 1 and i − 2 then fc(A, i) = 2. If A was not used in session i − 1, then
fc(A, i) = 0.

We have decided to use these three features – the time of the day, the number of
consecutive sessions in which the application has been used before the current one,
and whether Wi-Fi is available or not – for the following reasons.

First, several authors have already shown that time of day has a significant impact
on the likelihood of application usage [35, 219]. We therefore include this feature in
the computation of the application usage probability.

Second, from our analysis of the LiveLab and Device Analyzer data sets, we have
noticed that some applications tend to be used over multiple consecutive sessions,
while others do not. In the LiveLab data set, for instance, we observed that the
MobileSMS application is often used in several consecutive sessions. This increases
the probability of the application to be used in the current session if it was used in the
last one. On the other hand, the probability of the Weather application drops to nearly
0% if this application was already used in the last session. Other researchers have
already reported in the literature that the most recently used applications influence
which applications will be used next [185, 71, 159]. We however explicitly focus on
the fact that the use of the same application is correlated across sessions.

Lastly, we consider the availability of Wi-Fi to be an important feature to predict
application usage. This is motivated by our analysis of the LiveLab and Device An-
alyzer data sets. Figure 6.5 shows, exemplary for a subset of users of the Device
Analyzer data set, the likelihood of an application to be used when Wi-Fi is avail-
able and when not. Each circle represents an application; the bigger a ball, the more
often an application is used; balls of the same color correspond to the same user.



6.4 the nitty gritty details 163

The “Usage Factor” indicates how much more often an application is likely to be
used when the user is connected to Wi-Fi versus when she is not. This data shows
that for some applications – in particular those clustered around the point (1,1) in
the plot – the connectivity status has no influence in the usage pattern. For several
others, however, there indeed is an influence. In other words, users tend to use appli-
cations differently depending on their connectivity status. Similar observations can
be drawn by observing the data available from the Cisco Data Meter [57].

If in the current session k Wi-Fi is available, the current hour of day is h, and
fc(A, i) = 0 (i.e., the application has not been used in the previous session), then EBC

computes the probability p(A,k) of application A to be used in session k as:

p(A,k) = ∑k−1
i=1 COUNTIF(fu(A, i) = 1, fw(i) = 1, fh(i) = h)
∑k−1

i=1 COUNTIF(fw(i) = 1, fh(i) = h) (6.2)

whereas the function COUNTIF returns 1 when all the conditions expresses in its ar-
gument list (separated by commas) are true, and 0 otherwise. If Wi-Fi is not available,
p(A,k) is computed as in Equation 6.2 whereas the condition fw(i) = 1 is replaced
with fw(i) = 0.

When fc(A,k) ≥ 1 – i.e., the application was used in session k−1 and possibly also
in the previous ones – p(A,k) is computed as:

p(A,k) = ∑k−1
i=1 COUNTIF(fu(A, i) = 1, fw(i) = 1, fh(i) = h, fc(A, i) ≥ fc(A,k))

∑k−1
i=1 COUNTIF(fu(A, i) = 1, fw(i) = 1, fh(i) = h)) (6.3)

assuming Wi-Fi is available and the current hour of day is h. If Wi-Fi is not available,
the condition fw(i) = 1 must again be replaced with fw(i) = 0.

Equations 6.2 and 6.3 show that EBC basically leverages historical data to compute
the application usage probabilities using a simple maximum likelihood approach.
However, EBC actually uses values of p(A,k) only if a specific combination of the fea-
tures < fu(A, i), fw(i), fh(i), fc(A, i) > occurs at least Td times up to session k− 1. In
other words, the result of the COUNTIF operation at the numerator of Equations 6.2
and 6.3 must be higher or equal to Td. This is to ensure that the resulting values of
probabilities are “mature” enough, i.e., computed using sufficient actual data points.
If a probability value is not yet mature, EBC applies a hierarchical fallback mecha-
nism. First, it ignores the hour of day – i.e., it eliminates the condition relative to fh
in Equations 6.2 and 6.3. If the resulting value is also not yet mature then EBC also
discards the feature fc. Lastly, feature fw is discarded. Then EBC computes its usage
probability as the number of sessions in which the application has been used over
the total number of sessions. This value is the last stage in EBC’s fallback chain since
it can be computed using the least number of data points. We should also note at this
point that in order to compute the probabilities p(A,k), EBC does not need to keep
in memory all the tuples F(A, i). It instead just needs to update adequate counters at
the end of each session.

We would like to outline that machine learning approaches could also be used to
compute the application usage probability. Each application would then represent
a class predicted by a classifier that uses the tuples F(A, i) as input feature vectors.
The confidence estimate of the classifier for the likelihood of each class (i.e., appli-
cation) would then represent the application usage probability. However, our goal is
with the just introduced application probability computation to establish the base-
line performance achievable by using EBC’s decision engine. Using more complex
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methods to compute the usage probabilities might then allow EBC to achieve further
performance gains. Our approach is similar to the one followed in [218], where a
simple Nearest Neighbor Classifier (NNC) model was used to establish the baseline
performance of an application prediction framework.

EBC can thus also operate using existing methods for application usage prediction
– for instance [185, 218, 11, 133, 221, 150, 224]. The only constraint is that the method
must be framed to perform predictions for each session. However, we believe that
methods requiring significant amount of contextual data and long training periods
are ill-suited in our scenario. Using significant amount of contextual data might rep-
resent a significant overhead and invasion of users’ privacy. For instance, the use
of a microphone to collect contextual data as done in [218] might be controversial,
even if the data is only processed on the device. More importantly, the more contex-
tual data is considered, the longer it takes for a model to be trained. Long training
times represent a significant drawback because users often use mobile applications
only for short times, as also outlined in [183, 159]. Additionally, several authors have
shown that very few features – e.g., hour of day, location, and previously used appli-
cation – often suffice to predict application usage with high accuracy [203, 35, 219].
We thus advocate the use of a lightweight method – like the one discussed above –
to compute the probability of an application to be used next. We leave it to follow-
up research efforts to investigate potential performance gains EBC could achieve by
using alternative application usage prediction methods.

6.4.2 Traffic Volume Estimates

After computing the usage probability of an application, EBC estimates how much
traffic it will generate if used. This value is then combined with the application usage
probability to determine which applications should be prefetched. We propose also
in this case to use a lightweight method, to which we refer as the Average Traffic
Model (ATM), to compute traffic volume estimates.
EBC uses the average from historical data as the estimate of future traffic volume.

Let T(A) be the total traffic volume generated by application A over all past sessions
and let Ns(A) be the number of sessions in which A was used up to session k − 1.
The average traffic volume of A in session k is computed as:

T̂(A,k) = T(A)
Ns(A) . (6.4)

To let this simple model respond to application usage dynamics, we further pa-
rameterize it with respect to the Wi-Fi state (fw) and hour of day (fh).

Example 6.4.1: Parametrized estimation of traffic

For instance, the value T̂(A, fw = 1, fh = 5) represents the average traffic gener-
ated by application A, when it was used between 5 a.m. and 6 a.m. (h=5) and
the mobile device was connected to a Wi-Fi network.

We use the same fallback mechanism described above for the application usage prob-
abilities and also use the same threshold Td. The last fallback option is thus repre-
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sented by T̂(A). As for the application usage probability, alternative methods could
also be used to compute the estimates T̂(A,k).
6.4.3 Numbers of Applications to Prefetch

EBC computes the number of applications to prefetch in session k – indicated as l̂x(k)
– using a procedure analogue to the one followed to compute traffic estimates.

At the end of each session, EBC records the number of distinct applications that
were used in the session. We refer to this number as the session cardinality and denote
it as lx(k). As for the traffic volume estimates, we learn incrementally how the value
of the session cardinality varies with respect to the features fw (= 1 if the mobile
device is connected to a Wi-Fi network) and fh (hour of day). Through this procedure
we obtain an estimate of the number of applications that will be used in the current
session.

Equation 6.5 shows how we compute l̂x(k) for the exemplarily chosen case in
which both features fw and fh are used and the mobile device is connected to Wi-Fi
in the current session k, i.e., fw(k) = 1. The COUNTIF statement in the enumerator
evaluates to 1 if both conditions are fulfilled for the given session i. It is then used to
decide whether the session cardinality of the session i should be considered in the
calculation or not. The denominator simply counts sessions in which both conditions
represented with the features fw and fh are met.

l̂x(k) = ∑k−1
i=1 COUNTIF(fw(i) = 1, fh(i) = h)× lx(i)
∑k−1

i=1 COUNTIF(fw(i) = 1, fh(i) = h) (6.5)

We finally allow EBC to stretch or squeeze the estimation l̂x(k) with the factor D.
By doing so, the number of application to prefetch in session k is computed as:

l̂x(k) ∶=D ⋅ l̂x(k). (6.6)

We use the parameter D to allow EBC to accommodate for errors in the prediction
of application usage as well as to make space for slots EBC can use to prefetch data-
intensive applications when Wi-Fi is available.

6.5 evaluation setup

EBC attempts to achieve two goals: 1) keeping the application content as fresh as pos-
sible and 2) reducing the traffic volume over cellular connections. We describe below
the metrics we adopted to evaluate the performance of EBC in achieving these goals
and the corresponding costs. We further describe a set of approaches against which
we compare EBC’s performance as well as the two data sets used in our evaluation.
The actual evaluation results are reported in the next two sections.

6.5.1 Data Sets

We evaluate EBC using data traces from two publicly available data sets: LiveLab [183]
and Device Analyzer [207]. Both data sets are introduced in Section 3.3 and Sec-
tion 3.2 more in detail, respectively. The LiveLab data set [183] has been collected
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Table 6.3: Summary of the adopted parameters from [166, 99] for the downlink bandwidth
values of the four network types: 2G, 3G, LTE, and Wi-Fi.

Network type Symbol Bandwidth

2G ⌥(2G) 0.044 MB/s [166]

3G ⌥(3G) 1 MB/s [166]

LTE ⌥(LTE) 12.74 MB/s [99]

Wi-Fi ⌥(Wi− Fi) 4.12 MB/s [99]

in the period between February 2010 and April 2011 and contains up to 14 months
worth of data for 34 participants. The participants were mainly undergraduate stu-
dents at Rice University who have been equipped with an iPhone. For the Device
Analyzer data set, use in this study data collected between November 2013 and Jan-
uary 2014, for a total of eight weeks. In particular, we select a subset of 70 users with
application usage records, corresponding traffic information, and Wi-Fi scans.

6.5.2 Network Quality Model

To estimate how long it takes to download a given amount of data over a specific type
of network, we adopt a simplistic network model. This model assumes a constant
bandwidth ⌥(∗), where ∗ is a placeholder for one of the four considered network
types: 2G, 3G, LTE, and Wi-Fi. Furthermore, we also omit considering any further
characteristics such as Transmission Control Protocol (TCP) slow start, i.e., the entire
traffic T is transmitted over a communication channel with the bandwidth ⌥(∗) on
a constant rate.

For instance, assume a 3G network with ⌥(3G) = 1MB�s and a traffic volume
to transmit with T = 5MB. According to these values, it will take 5MB

1MB�s = 5 s to
complete the transmission. In our settings, we utilize the parameters reports in [166,
99] as the bandwidth of the four types of communication networks. Table 6.3 reports
these values along with the corresponding symbols and a brief description.

6.5.3 Application Launch Time Model

Regardless of whether an application is required to fetch data over the network upon
its launch or not, it still takes time to load an application in memory of mobile de-
vices. We assume that on each application launch – either triggered intentionally
by users or during prefetching activities – the application is required to be loaded
in memory of a mobile device. This is the most pessimistic assumption because in
reality a mobile OS usually implements strategies to keep most recently used appli-
cations in memory. We make this assumption due to the lack of the corresponding
data, i.e., we cannot verify whether an application is already in memory or not.

Thus, we denote the launch time, i.e., without considering the additional time
required to fetch data over a network, of an application A as tlaunch(A). Yan et al.
show that the net OS loading time for applications is negligible and by far less than a
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second [219]. To still be able to associate some sort of costs with the net launch time
of an application, we set tlaunch(A) = 0.5 s for all applications in our evaluation.

6.5.4 Application Fetch Duration Model

The amount of time it takes before an application can be used – to which we refer
as tload(A,k) – depends on the two factors: 1) the net OS loading time of an ap-
plication in memory (tlaunch(A)) and 2) the amount of time it takes to fetch the
necessary network content before the application is ready for using. We refer to the
latter quantity as the fetch time of an application A in session k and denote it as
tfetch(A,k). Whereas we already explain the computation of tlaunch(A), we now
focus on estimating tfetch(A,k).

Alongside with estimating traffic volume T̂(A,k), we also estimate how much
traffic is necessary to be transmitted by the application A upon its launch before it
is ready to be used. We denote this quantity as Tstart(A,k). Therefore, Tstart(A,k)
is directly linked to tfetch(A,k) as this amount of traffic is required in our scenario
to be fetched upon application launch. The remaining traffic T(A,k) - Tstart(A,k) is
then transmitted in the background when the application is already in use.

To get the corresponding estimation T̂start(A,k), we first recall that the granular-
ity of traffic records in the Device Analyzer data set is five minutes. Therefore, we
assume that the first record appearing in the data set right after the application A is
launched, corresponds to Tstart(A,k). Given historical Tstart(A) values, we adopt
the same technique as introduced in Section 6.4.2 to derive T̂start(A,k). As already
mentioned, we consider the already prefetched traffic Tfetch(A, j). Therefore, we can
compute the remaining startup traffic T̂start,remain(A,k) as:

T̂start,remain(A,k) =max(0, T̂start(A,k)− Tfetch(A, j)). (6.7)

Finally, the resulting value of tfetch(A,k) is computed as:

tfetch(A,k) = Tstart,remain(A,k)
⌥(∗) , (6.8)

where ∗ is the wildcard for the network type used to transmit tfetch(A,k).
6.5.5 Energy Model

We mainly adopt the energy model proposed by Huang et al. for the 3G, LTE, and Wi-
Fi networks [99]. Only a very small fraction of data set records indicate a 2G network.
In these cases, we adopt the energy model proposed by Balasubramanian et al. [14].
Models from both sources were already used in hundreds of other research work.
For the 3G, LTE, and Wi-Fi networks, Huang et al. [99] define the net transfer power
P as a linear function described as:

P = ↵d ⋅⌥(∗)+�. (6.9)

Depending on the underlying network type, the values for the parameters ↵d and
� differ. In addition to the net transfer power, the model also incorporates the power
required to initialize a transmission (promotion) and the power required to finish it
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Table 6.4: Parameters for the linear power models for the downlink as proposed by
Huang et al. [99] and adopted in this work.

Network Transmission Promotion Tail

type ↵d(mW�Mbps) � Power (mW) Duration (ms) Power (mW) Duration (ms)

3G 122.12 817.88 659.4 582.1 (803.9 + 601.3) (8088.2 + 824.2)

LTE 51.97 1288.04 1210.7 260.1 1060 11576

Wi-Fi 137.01 132.86 124.4 79.1 119.3 238.1

(tail). In other words, the total power required to transmit a given amount of data
is the sum of all three quantities: promotion+ transfer + tail. Table 6.4 reports the
corresponding quantities of the utilized model for the 3G, LTE, and Wi-Fi networks.

For the 2G networks, Balasubramanian et al. [14] propose the following model to
compute the net transfer energy:

R(x) = 0.036(x) J+ 1.7 J, (6.10)

where x is the amount of bytes of data. Additionally, after transmitting x bytes of
data, the tail energy of 2G networks is also considered. According to Balasubrama-
nian et al., the tail energy accounts to 0.25 J/s over a period of 6 s, i.e., 1.5 J in total [14].

Given these models, it is clear that prefetching applications upon screen unlock
reduces the impact of the promotion and tail overhead due to parallel fetches. In this
case, both promotion and tail overhead need to be considered only once.

6.5.6 Performance Metrics

The performance metrics that we leverage to evaluate EBC are explained in the fol-
lowing paragraphs. Along them, we also compute the precision, recall, and F1 score
to measure the quality of predicting which applications will be used in the given
session. All three metrics are introduced in Section 2.4.

Traffic Volume

The first goal of EBC is to reduce the traffic volume over metered connections. To
measure how well EBC and its competitors achieve this goal, we utilize five metrics:
total prefetched traffic, correctly prefetched traffic, missed traffic, wasted traffic, and total
traffic over cellular networks. These metrics can however only be computed for the
Device Analyzer data set because the LiveLab data set does not contain traffic volume
information.

To compute the total prefetched traffic, we record – for each usage of an application
A – how much traffic was downloaded for A due to prefetches (induced by EBC or
other approaches) since its last usage (i.e., since the last time it was closed). We es-
timate this value from the information we have available in the data sets as follows.
We assume that if EBC (or another method) triggers a prefetch in session k, then the
amount of data that is downloaded corresponds to the difference (Tremain(A,k))
between traffic estimate T̂(A,k) and the already prefetched traffic Tfetch(A, j) since
the last application usage j− 1 by the individual. The index j indicates that the data
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Figure 6.6: Demonstration of the indexes used for the calculation of prefetched traffic. In this
example, the application Netflix is used in sessions k− 3, k− 2, and k. Thus, the in-
dex j−1 of the most recent application usage shows to the time instant Netflix was
used in session k− 2. The corresponding traffic labeled with Tfetch(Netflix, j) is
the sum of the traffic prefetched in sessions k− 1 and k, but not k− 2.

prefetches occurred between the j− 1 and jth usage of A. Thereby, we account sepa-
rately for the traffic volume generated over Wi-Fi or cellular networks. We indicate
these values as Tfetch,cell(A, j) and Tfetch,wifi(A, j), respectively. There might be
multiple sessions between two usages of an application. The total prefetched traffic
is the sum of the traffic prefetched over these sessions.

Example 6.5.1: Indexes used for the calculation of traffic prefetched

For instance, consider Figure 6.6 in which different applications are used and
prefetched across four shown sessions. We now would like to identify how much
traffic for the application Netflix was prefetched and can be used in session k. In
this case, Netflix is launched in session k at time instant j. We observe that Netflix
was used in session k−2 for the last time. Therefore, we indicate the time instant
at which it was used in session k − 2 as j − 1. We now count the entire traffic
that was prefetched for Netflix between the time instants j − 1 and j. From this
picture, we observe that Netflix was prefetched in sessions k− 1 and k. Therefore,
Tfetch(Netflix,k) is the sum of the traffic prefetched in these two sessions.

EBC’s competitors clearly benefit from this design decision for estimating how
much traffic was prefetched because even if one of the competitors prefetches ap-
plication A multiple times, it will not result in additional unnecessary traffic. As EBC

keeps track of which applications were already prefetched and accounts this informa-
tion into its prefetch decision, there is no advantage from the aforementioned design
decision for EBC. We further explore the possibility to utilize a linear decay function
for application content, but did not find any evidence for a connection between traffic
volume and time elapsed since last usage of application A.

The correctly prefetched traffic is the amount of traffic that was prefetched and later
actually used by the application. We refer to this quantity as Thit(A,k). Computing
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the exact value of Thit(A,k) is however not possible given the data we have. This is
because we do not have information about which of the prefetched bytes where ac-
tually used by the application. We thus make a simplifying assumption and assume
that all the prefetched traffic is consumed by the application.

Example 6.5.2: Calculation of the correctly prefetched traffic

For instance, if 5 MB were prefetched for application A and at its next usage A

generates 6 MB of traffic, then the amount of correctly prefetched traffic is exactly
5 MB.

Formally, Thit(A,k) is computed as min(Tfetch(A, j), T(A,k)), where Tfetch(A, j)
is the sum of Tfetch,cell(A, j) and Tfetch,wifi(A, j). Although this is an optimistic
assumption, it affects all approaches considered in our evaluation in the same way.
The comparability between EBC and its competitors is thus still guaranteed.

In the example above, 5 MB of 6 MB of data was correctly prefetched. Prefetch-
ing thus failed to download 1 MB of data needed by the application. We refer to
this quantity as the missed traffic. We again account separately for the traffic volume
generated over Wi-Fi or cellular networks and indicate the corresponding quantities
as Tmissed,wifi(A,k) and Tmissed,cell(A,k). If Wi-Fi is available when the appli-
cation is started, we set Tmissed,cell(A,k) = 0 and Tmissed,wifi(A,k) = T(A,k) −
Thit(A,k), whereas T(A,k) is the actual traffic generated by A in session k (this in-
formation is available in the Device Analyzer data set). If Wi-Fi is not available, then
Tmissed,wifi(A,k) = 0 and Tmissed,cell(A,k) = T(A,k) − Thit(A,k). We generalize
and refer to this traffic as Tmissed if it is not relevant over which network type the
application content will be downloaded.

If, in the example above, 10 MB of data was prefetched instead of 5 MB, then
4 MB would have been prefetched in excess. We refer to this quantity as wasted
traffic. We account separately for bytes wasted over Wi-Fi or cellular networks and
indicate them as Twasted,cell(A,k) and Twasted,wifi(A,k). In particular, we com-
pute Twasted,cell(A,k) = min(Tfetch(A, j) − T(A,k), Tfetch,cell(A, j)) because cellu-
lar traffic could have been saved if enough content would have been prefetched over a
Wi-Fi connection. If the difference between the sum of Wi-Fi and cellular prefetched
traffic and T(A,k) is larger than Tfetch,cell(A, j), we assign the remaining wasted
traffic to Twasted,wifi(A,k).

The last metric we consider is the total traffic over cellular networks, Ttotal,cell(A, j).
It comprises the total cellular traffic caused by both prefetching actions between the
j−1th and jth consecutive usage of application A and the actual usage of application
A in session k. In other words, Ttotal,cell(A, j) = Tfetch,cell(A, j)+Tmissed,cell(A,k).
By analogy, the aggregated values by user U and calendar day d are defined as
Ttotal,cell(U,d). In this case, Ttotal,cell(U,d) refers to the total cellular traffic gener-
ated by user U on day d.

Application Content Freshness

Another metric we use to evaluate EBC’s performance is the freshness of application
content. We compute freshness as done in [159] and [219] as the interval between the
latest network data access and the time of actual application usage. If between two
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consecutive usage sessions no prelaunch takes place, we consider the time of the
latest network data access to be the time instant at which the application was closed.

The LiveLab data set contains data about when an application was started and
how long each application usage was. This data allows us to determine when the
application was closed. For the Device Analyzer data set, we do have information
about when the application was started but not about how long the application was
used. We thus consider the latest network data access to occur when the application
was last started. We present freshness results as both percentiles and mean, where
P −X corresponds to the Xth percentile. For instance, P − 50 represents the median.

Number of Applications that Benefit from Prefetching

We further introduce the metric BA(U) ∈ [0,1]. It refers to the fraction of applications
that benefit from prefetching per user U. This metric is computed for each user U as
follows, individually:

BA = Number of distinct applications ever prefetched

Number of distinct applications ever launched
. (6.11)

It is clear that the higher BA is, the more applications benefit from prefetching.

Prefetch Duration

Prefetching applications results in potential waiting time for users, for instance, if
the particular application needs to be launched initially, as it is the case for Android
OS [159]. Therefore, we compute tfetch(k) that gives the amount of time a prefetch
activity lasts in session k. Assuming that NL applications contained in the list L

need to be prefetched and ⌥(∗) is the currently available network, then tfetch(k) is
computed as follows:

tfetch(k) = ∑L
A Tstart,remain(A,k)

⌥(∗) + L�
A

tlaunch(A) (6.12)

Energy Consumption

To estimate the energy consumption of network activities, we only consider the
amount of traffic and the currently available network type as the two sources that
influence the energy consumption. We thus ignore other aspects such as mobile de-
vice display. The energy model that we leverage in this work, which is introduced
in Section 6.5.5, takes these two parameters as input. Please note that this model is
not intended to accurately reflect the energy footprint. Our intention behind measur-
ing the energy consumption is to obtain an rough indicator of how energy-hungry
a particular action is. For instance, whether prefetching session k will draw 50% of
battery or 1%.

To estimate the energy consumption E(k) for prefetching the session k, we first
compute ∑L

A Tremain(A,k),∀A ∈ L. Then, we utilize the energy model with the ag-
gregated traffic volume and the currently available network type to estimate the en-
ergy consumption. By analogy, we compute the energy consumption E(A) for using
application A. However, in this case, the traffic volume is determined by the quantity
Tmissed. Similarly to the traffic computation, we aggregate the energy consumption
for user U and calendar day d. We refer to this quantity as E(U,d).
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Table 6.5: Summary of the performance metrics used in the following evaluation of this work.

Symbol Brief description

P −X freshness Xth percentile value of applications’ freshness.

Mean freshness Mean value of applications’ freshness.

Tfetch,cell(k) Traffic volume prefetched in session k over cellular networks.

Tmissed,cell(A,k) Traffic volume that is required to be transmitted over cellular networks upon the usage
of application A in session k.

Ttotal,cell(U,d) Total amount of traffic that is transmitted over a cellular connection. We will present this
value aggregated for each calendar day and user.

E(k) Energy consumption caused by prefetching in session k.

E(A,k) Energy consumption caused by the transmission of data over any type of network upon
usage of application A in session k.

E(U,d) Total energy consumption that is aggregated for each calendar day d and user U.

tload(A,k) Time required to load application A in memory and to fetch network content
Tstart,remain(A,k).

BA(U) Fraction of applications that benefit from prefetching for user U.

tfetch(k) Time required to complete prefetching of session k.

We express all energy values in Joules(J) for comparison reasons. To demonstrate
the impact of the estimated energy consumption on the mobile device battery in
the following evaluation, we will transform J into the fraction of an exemplarily
chosen mobile device battery. To this end, we exemplarily choose the battery of LG
Nexus 5, which is one of the most widely spread devices to the date this thesis
is written. A Nexus 5 device has a 3.8 V battery with 2,300 mAh that corresponds to
8 Wh according to the specification. Transforming 8 Wh into J results in 8Wh ⋅3,600 =
28,800 J. So, if we consume 288 J to prefetch a session then it equals to consuming
~1% of the battery.

Summary of Performance Metrics

Table 6.5 summarizes the performance metrics adopted in this work along with a
brief description and the corresponding symbol.

6.5.7 Heuristic for Our 0-1 Knapsack Solver

The exact 0-1 knapsack solver as introduced in Listing 3 has a complexity of O(2n).
Considering that individuals have approximately 140 applications installed on their
mobile devices, as underlined by our data sets, on average, the exact 0-1 knapsack
solver will require up to 2140 = 1393796574908160000000000000000000000000000 eval-
uation steps. Recall that this needs to be executed at the beginning of a application
session. Therefore, we apply several preprocessing steps to reduce this computa-
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tional nightmare. First, we filter out all applications that already exceed the capacity
 . Second, we reduce the candidate applications to the top X.

To decide which top X candidate applications to select, we perform several com-
putational steps by adopting the approach used by Yan et al. [219], however, with
the necessity to adapt it to our multi-weights and multi-costs problem. Our inten-
tion is to compute a cost-benefit value � for each application and then to select the
top X applications with the highest �. First, we compute for each application the
fraction of capacity  the application will reserve if selected. We refer to this quan-
tity as Cacc(A,k, ) for the given application A in session k and capacity  . The
computation of this quantity is as follows:

Cacc(A,k, ) =
tfetch(A,k)
tfetch,max

+ 1
l̂x

2
∀A ∈ L, = {tfetch,max, l̂x}. (6.13)

We now assume in the following computation that Wf, i.e., application content fresh-
ness, is the primary goal that should be optimized. By analogy, we can perform
the following computation for Wc as the primary goal. Given Cacc(A,k, )∀A, we
compute the cost-benefit value �(W(A),Cacc) by leveraging the weights W(A) of
application A and the computed accumulated costs Cacc as follows:

�(W(A),Cacc) = {�f = Wf

Cacc
,�c = Wc

Cacc
}, (6.14)

where �f and �c are the cost-benefit values for the weights Wf and Wc, respectively.
Finally, we sort all applications according to decreasing values of �f and then in
case of multiple applications with the same value of �f, we sort these entries in the
decreasing order of �c. This process gives us a sorted list of applications having the
most valuable applications in terms of their cost-benefit calculation on top of it.

We exhaustively experiment with different values for X and finally decide to
choose X = 10 to keep the execution time as low as possible but still be able to
achieve a high quality output result. After selecting the top X applications, we apply
our 0-1 knapsack solver on them.

6.5.8 EBC’s Competitors

We compare EBC against four other prefetching strategies. The first is No prefetching,
which does not prefetch anything. The second and third strategies are the two ver-
sions of the recently proposed PREPP algorithm [159]. We refer to these two versions
as PREPP–B and PREPP–B Wi-Fi only. The original version of PREPP (not included in
our evaluation for the following reasons) runs at each application change event and
first computes the probability of applications to be used next. It then uses a temporal
model to estimate when applications are likely to be used. This latter step is in place
to improve the freshness of application content. For the application prediction step
the authors rely on a method typically used in text compression and known as PPM.
The temporal model is instead a CDF constructed from historical data. The total
number of prefetches allowed per application is NA ×CA, where NA is the number
of times the application A has been used so far and CA represents the acceptable
network bandwidth cost. In practice, for each usage of the application A, PREPP is
allowed to prefetch it CA times before the application A is used again. We observe
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in our experiments that due to the fact that PREPP does not operate on application
sessions, it achieves very poor performance in terms of the selected metrics.

Therefore, we utilize the proposed modification of PREPP as presented in the same
paper as the original version [159]. We refer to this modification as PREPP–B due to
its ability to operate on application sessions. The main difference to PREPP is that
applications are immediately prefetched upon a screen unlock event. Thus, the tem-
poral model mentioned above is not used. Furthermore, the number of applications
to prefetch is fixed for all sessions.

The second version of PREPP (third competitor) that we consider is our Wi-Fi
only implementation of PREPP–B. In this case, we adopt PREPP–B by allowing it to
prefetch only if Wi-Fi is available. We dub this modified approach as PREPP–B Wi-Fi
only.

Lastly, we implement an oracle version of EBC to which we refer as EBC: Oracle.
In this case, EBC: Oracle operates with the same parameters as EBC; however, it
knows exactly which applications need to be prefetched to optimize the two goals
of improving application content freshness and reducing the cellular traffic footprint.
This knowledge corresponds to the applications that will be used in the current
session and those that will be used in the next time period in which Wi-Fi will not
be available.

6.6 microbenchmarking ebc’s parameters

To optimize EBC’s performance we first need to understand how the designed param-
eters and prediction engines influence it. To this end, we inspect these parameters
and prediction engines by including the prediction of lx, estimation of the applica-
tions’ probabilities, and classification of traffic volume in those that will exceed the
given threshold Tmax upon the next launch and those that will stay below.

6.6.1 Predicting Number of Applications in a Session

We start our microbenchmarking with inspecting how many distinct applications
individuals typically use per session and then compare these numbers to the predic-
tions provided by EBC’s prediction engine. To recall, EBC estimates lx as a mean of
the previous sessions by selecting the sessions that should be considered based on
the two features fw (is connected to a Wi-Fi network?) and fh (hour of day). There-
fore, we compare the ground-truth lx values to those provided by each of the four
possible feature combinations. Table 6.6 summarizes EBC’s setting in the following
evaluation. Parameters that do not have influence on the results are omitted for the
sake of readability.

Comparing Ground-truth and Prediction of lx

Figure 6.7 demonstrates the comparison between the predicted lx that is indicated
as l̂x and the ground-truth value of lx for both Device Analyzer and LiveLab data
sets. The results are summarized as a violin plot, which is a combination of a box-
plot and a density plot. The six violins represent different cases. While the first two
from the left are ground-truth values of lx, the other four show l̂x values for each
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Table 6.6: Configuration of EBC for evaluating lx prediction.

Parameter description Configuration

Application probability features fw, fh, fc = < IRRELEVANT >

Traffic volume features fw, fh = < IRRELEVANT >

Traffic volume threshold Tmax = < IRRELEVANT >

Number of applications to prefetch in a session features fw, fh = {0, 1} X {0, 1}

Number of applications to prefetch in a session l̂x = < IRRELEVANT >

Stretch factor for l̂x D = < IRRELEVANT >

Fraction of capacity  to prefetch data-intensive applications w = < IRRELEVANT >

Maximum prefetch duration tfetch,max = < IRRELEVANT >

combination of the features fw and fh, separately. The y-axis shows the number of
distinct applications per session.

The difference between the two violins representing lx is as follows. The most
left violin incorporates all lx values for all considered individuals. For the second
violin from the left, we first compute the average session cardinality for each user
and denote it as lx. Then, we represent these values as a violin plot. The rationale
behind the latter violin is to inspect potential differences across individuals in terms
of the amount of applications used in a session.

For the Device Analyzer data set in Figure 6.7a, we observe that at least one ap-
plication is used in more than 75% of sessions across all users, which is indicated by
the white circle (median) and the grey box (P − 25 and P − 75) in the inner boxplot of
the violin. Sessions with one application only has also the highest frequency as it is
shown by the highest density of the data points in the violin. In over 25% of sessions
three or more applications are used, as shown by the whiskers of the inner boxplot.
The consequence is that two applications per session are used on average due to the
existence of a non-negligible amount of sessions with three or more applications. We
also observe the existence of sessions with no applications used in them. Recall that
we use device unlock and screen status information to detect sessions. A user who
simply unlocks her phone and then puts in back to sleep will start a session in which
no application but the home launcher is used. The existence of these sessions was
also observed and modeled by Hintze et al. [97].

Considering the average lx values separately for each user in the second violin
from the left, we observe that for at least half of the individuals two or more applica-
tions are used per session on average. The average lx is located for most of the users
between one and three applications per session. This observation reveals differences
in terms of lx across users.

For the LiveLab data set in Figure 6.7b, we observe a slightly difference picture.
There is much less variation in the amount of applications used per session than in
the Device Analyzer data set. However, the median number of applications used in a
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(a) Device Analyzer data set.

(b) LiveLab data set.

Figure 6.7: Number of applications predicted (l̂x) to prefetch for a session vs. the exact num-
ber of applications used in a session (lx).

session is lx = 1 too. Furthermore, users tend to have 1.6 applications per session on
average, which is a slightly lower number compared to the Device Analyzer data set.
Furthermore, the variation among the individuals in terms of the average amount of
applications used per session is lower.

We now inspect the lx estimations (l̂x) provided by EBC for all four combinations
of the features fw and fh. The corresponding four violins with their inner boxplots
are shown in the right part of Figure 6.7. The results are shown for all sessions and
individuals. We observe that both metrics (median and mean) and the corresponding
density of the data points are very similar across the four feature combinations.

In all four cases for the Device Analyzer data set, for most of the sessions the value
of l̂x is between 1 and 4 with 2 as the median and approximately 2.5 as the average.
For the LiveLab data set, nearly all predictions are l̂x = 2 due to the much lower
variation in ground-truth data. Considering the feature fh leads to a slightly higher
number of estimations with l̂x = 1 and l̂x = 4 for the Device Analyzer data set and
l̂x = 3 for LiveLab. This is observable by the slightly higher density of the data points
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in these areas of the violins. Furthermore, despite the existence of sessions with no
applications, none of the four approaches has a prediction with l̂x = 0.

Prediction Error of lx

We next investigate the error between l̂x and lx for each of the four combinations
of the features fw and fh. We further compare EBC’s computation of l̂x to static
values. In this case, we set l̂x to each of the values {1, 2, 3, 4}, which results in eight
approaches for estimating lx. Figure 6.8 shows the error in estimating lx for all eight
approaches, which are shown on the x-axis and both data sets. The error is computed
as a difference l̂x - lx for each session across all individuals and is depicted on the y-
axis. We further visualize the mean absolute error for each approach with a star marker
in the plot. The mean absolute error is computed as:

∑ �l̂x − lx�
Nlx

. (6.15)

In Figure 6.8, the four violins on the left hand-side correspond to the estimation
technique implemented in EBC with respect to the particular combination of the fea-
tures fw and fh. The four violins on the right hand-side correspond to the fix values
for l̂x. Considering the results estimated by EBC, we observe for both data sets that
in over 50% of sessions, the estimation is either exact or is overestimated by no more
than one application. The median and the peak density of the data points are located
for all four approaches on the left hand-side of the plot at the overestimation by one
application only. For most of the sessions, the error ranges between the underestima-
tion by no more than one application and the overestimation by no more than two
applications. We also observe differences in the density of the data points if hour of
day (fh) is considered. If so, the number of exact estimations of lx slightly increases
for the Device Analyzer data set, but at the same time also the number of higher
under- and overestimations. This behavior supports the observations drawn from
Figure 6.7.

In the four cases in which we set l̂x to a fix value, we make the following observa-
tions. As expected, the density of each of the four violins shifts by one application
toward overestimation as l̂x increases. Although l̂x = 1 achieves a slightly better ab-
solute mean error than EBC for both data sets, for the majority of the sessions this
approach underestimates the number of applications used in a session.

For the Device Analyzer data set, for 50% of the sessions the estimation is either
exact or is underestimated by up to 2 applications, as it is shown in Figure 6.8a with
the box of the inner boxplot. This error range is twice as large as for the estimation
provided by EBC. We observe a similar picture for almost the entire error range that
is captured by the whiskers of the inner boxplot in Figure 6.8a. It is twice as large as
for the estimations given by EBC. For instance, for l̂x = 2, the error range is between
-4 (i.e., underestimation by four applications) and +2 (i.e., overestimation by two
applications). For the LiveLab data set in Figure 6.8b, we observe that a fix value
for l̂x provides a slightly better approximation of lx than EBC. This is due to a low
variation in the ground-truth values of lx.
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(a) Device Analyzer data set.

(b) LiveLab data set.

Figure 6.8: lx prediction error (l̂x - lx) for the different strategies.

Total Number of Prefetches per Individual

Assuming that l̂x represents the number of applications that will be prefetched in a
session, we compare the estimations provided by EBC to the fix values of l̂x in terms
of the number of total prefetches executed for each user, individually. To this end, for
each user we sum up all l̂x values (∑ l̂x) and all ground-truth values (∑ lx). Figure 6.9
shows the ratio between ∑ l̂x and ∑ lx for all eight approaches, individually. Similar
to Figure 6.8, the four violins on the left hand-side of the plot are the estimations
given by EBC for the different feature combinations. The four violins on the right
hand-side correspond to the strategies of using a fix value for l̂x. The results are
presented for both data sets.

We observe that regardless which features are used, EBC estimates the total number
of prefetches for nearly all individuals by at least matching the exact number of
applications used in sessions. The error for most of the users does not exceed the
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(a) Device Analyzer data set.

(b) LiveLab data set.

Figure 6.9: Ratio between the number of application prefetched for a user in total over the
exact number of applications used.

1.5-fold of the total number of applications used in sessions with a 1.25 times higher
median for the Device Analyzer data set and a 1.35 times higher median for LiveLab.

Considering now the results of the four approaches with the fixed l̂x, we make sev-
eral observations. First, with the increase of l̂x, the error range increases too. Second,
the approach with l̂x = 1 underestimates (below 1) the total number of applications
used in sessions for almost all individuals. With l̂x = 2 for the Device Analyzer data
set, the underestimation still applies to half of the individuals.

Conclusions

Our results highlight the strength of EBC to adaptively select the appropriate value
for lx with respect to the particular user and situation. The diversities in terms of
the amount of applications used in a session across users lead to a much higher
error in predicting how many applications will be used in a session if a fix value is
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Table 6.7: Configuration of EBC for evaluating application usage prediction.

Parameter description Configuration

Application probability features fw, fh, fc = {0, 1} × {0, 1} × {0, 1}

Traffic volume features fw = 0, fh = 0

Traffic volume threshold Tmax =∞
Number of applications to prefetch in a session features fw, fh = < IRRELEVANT >

Number of applications to prefetch in a session l̂x = 4
Stretch factor for l̂x D = < IRRELEVANT >

Fraction of capacity  to prefetch data-intensive applications w = 0
Maximum prefetch duration tfetch =∞

used. Furthermore, the small error range of EBC compared to using a fix value opens
opportunities to further reduce it if required by a particular application scenario. For
instance, the already introduced factor D can be learned for each individual to shrink
or stretch l̂x to either come closer to ∑ lx or the multiple of it by computing D× l̂x.

Comparing the both data sets, EBC achieves better results in estimating l̂x for the
Device Analyzer data set than using a fix value. For the LiveLab data set, utilizing
l̂x = 2 provides slightly better results than EBC due to the much lower variation in lx
among sessions and individuals. In terms of the features used to estimate lx by EBC,
we observe no substantial impact of any of the feature combinations. We only observe
that utilizing the feature fh slightly increases the amount of exact estimations of l̂x.
Given these results, we decide to utilize both features in estimating lx to operate
EBC.

6.6.2 Application Probability Features

Beside estimating how many applications should be prefetched for each session,
EBC also predicts which applications should be prefetched for which session. We
now inspect the influence of the three considered features fw, fh, and fc on the
performance in predicting which applications should be prefetched. After that, we
analyze how the choice of a feature combination influences the achievement of EBC’s
goals defined in Section 6.2. Table 6.7 summarizes EBC’s setting in the following
evaluation. Parameters that do not have influence on the results are omitted for the
sake of readability.

Predicting Applications for the Current Session

We express how accurate each feature combination predicts which applications should
be prefetched for the current session by utilizing three well-known metrics: precision,
recall, and F1 score (cf. Section 2.4). We further run this analysis by varying the num-
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ber of prefetches with lx = {2,4} and by leveraging the Device Analyzer and the
LiveLab data sets. Although we show that EBC estimates lx more accurately than
a fix value, we use a fix value for lx. This is done to ensure a fair comparison by
guaranteeing the same number of prefetches to be executed for all eight combina-
tions of features. Furthermore, this also guarantees that the potential performance
differences are not caused by EBC’s estimation of lx.

Beside the computation of these metrics for all eight combinations of the three con-
sidered features, we also compute an optimum posteriori solution for each individual.
In this case, instead of using the same feature combination for all individuals, we
identify a feature combination that provides the best performance in terms of the
given metric for each user, individually. In the following plots, these combinations
are derived by inspecting predictions for all application sessions (posteriori). In prac-
tice, this step can be done much earlier. For instance, every night when the user is
sleeping and her mobile device is charging, EBC can re-evaluate the past predictions
and adjust the feature combination accordingly.

Figure 6.10 reports the precision measured for the eight combinations of features
and the optimum posteriori solution derived for each user and evaluated on two
data sets. The results are depicted as violin plots reflecting the density of the data
points with an inner boxplot. The numeric values on top of each violin represent
the corresponding median. To put the following results in a brighter context, please
recall that in both data sets individuals have approximately 140 applications installed
on their mobile devices.

For the Device Analyzer data set, the median precision fluctuates between 26% and
29% for lx = 2 and 20% – 21% for lx = 4 if the same feature combination is applied to
all users. For the LiveLab data set, the median precision fluctuates between 37% and
39% for lx = 2 and 27% – 28% for lx = 4. The optimum posteriori solution reveals that
if a feature combination is selected for each user individually, the median precision
for lx = 2 increases by only 2 percentage points for the Device Analyzer data set.

In terms of the recall, as shown in Figure 6.11, we observe a similar pattern. Apply-
ing the same feature combination to all users leads to a median recall between 28%
and 31% for lx = 2 and between 44% and 47% for lx = 4 for the Device Analyzer data
set. A similar picture is observed for the LiveLab data set in Figure 6.11b. The recall
values are between 46% and 49% for lx = 2 and between 66% and 67% for lx = 4. If
EBC selects the features for each user individually, the median recall for lx = 2 is at its
peak with 31% and 49% for the Device Analyzer and LiveLab data sets, respectively.

Finally, we measure the F1 score. Since this metric is a combination of both preci-
sion and recall, it reflects the already discussed observations. We measure a median
F1 score between 27% and 29% as well as 38% and 44% – regardless of the lx value
– for the Device Analyzer and LiveLab data sets, respectively.

We conclude that with respect to the chosen features, only small performance
changes are observable in how accurate EBC predicts which applications will be used
in the given session. This includes the individual selection of the features for each
user as shown by the optimum posteriori solution. The increase of lx causes an
increase in recall as more applications are prefetched. At the same time, the precision
decreases. For both data sets, regardless of the value of lx, the F1 score remains nearly
constant.

If the feature fc is used, then the precision slightly decreases for some individuals.
Similar for the recall, we observe a few percentage points lower results if the feature
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(a) Device Analyzer data set.
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(b) LiveLab data set.

Figure 6.10: EBC’s precision in predicting which applications will be used in session k.

fc is used. Using the feature fw alone tends to maximize the recall. For the feature
fh, we do not observe any noteworthy implications on the medians of the three
considered metrics.

However, capturing the EBC’s performance with these three metrics has its draw-
backs. This is because precision, recall, and F1 score treat wrong prefetches, i.e., an
application is prefetched in a session in which it is not used, as entirely useless. For
instance, assume that EBC prefetches all applications correctly but one session too
early. In this sense, all three metrics will evaluate EBC’s performance close to zero.
However, individuals will still have a great benefit from EBC due to the prefetched
application content – it is just one session too old. Therefore, instead of treating
wrong prefetches as entirely useless, we next inspect their influence on the achieve-
ment of EBC’s goals defined in Section 6.2.
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(a) Device Analyzer data set.
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(b) LiveLab data set.

Figure 6.11: EBC’s recall in predicting which applications will be used in session k.

Application Content Freshness

We evaluate the impact of EBC’s three features on the freshness of application con-
tent [159, 219]. The bar plot in Figure 6.13 shows the freshness results for each of
the feature combinations and the optimum posteriori solution, which corresponds to
the individual selection of features for each user. The results are presented for both
Device Analyzer and LiveLab data sets in Figure 6.13a and Figure 6.13b, respectively.

Nearly all of the following plots in this section follow the same representation.
Therefore, in following we describe it in detail and omit the description in later
parts of the section whenever possible. Each bar represents one specific configuration
of EBC. Each group of bars corresponds to a metric. The five groups from the left
correspond to the Xth percentile that are indicated with P −X. The most right group
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(a) Device Analyzer data set.
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Figure 6.12: EBC’s F1 score in predicting which applications will be used in session k.

of bars corresponds to the mean. The y-axis indicates the particular metric values
that are also shown by the numeric values on top of each bar.

We compute the freshness values for each application launch, individually, and ag-
gregate the results in the plot by considering all individuals. The lower the freshness
value, the better. The optimum posteriori solution is computed by minimizing the
metric mean. We exclude all application launches that appear for the first time in the
data set, i.e., the computation of the corresponding content freshness is not feasible.

Figure 6.13 shows the corresponding freshness values for both data sets and lx = 4.
We observe that the higher the percentile, the larger the freshness difference be-
tween the feature combinations. For 25% of application launches (P − 25) the fresh-
ness is equal across all feature combinations for both data sets. For half of application
launches (P− 50), the difference increases to up to 3 and 4 seconds for the Device An-
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alyzer and LiveLab data sets, respectively. In this case, the best freshness is achieved
if the features fw and fh are used with 84 and 35 seconds for the Device Analyzer
and LiveLab data sets, respectively. The worst freshness among all feature combina-
tions (excluding the optimum posteriori solution) with 87 (Device Analyzer) and 38
(LiveLab) seconds is achieved if the feature fc is used.

For the higher percentile values with P − 75 and P − 90, the freshness difference
among the feature combinations substantially increases and ranges for P − 90 with
11.26 and 2.64 hours for the Device Analyzer and LiveLab data sets, respectively.
The optimum posteriori solution that is computed based on minimizing the mean
value outperforms the fix sets of features for all individuals for the high percentile
values (P − 90+) only. In contrast to the lower percentile values (P − 10, P − 25, P − 50),
the higher percentiles benefit from the combination of all features in terms of the
average application content freshness. Lastly, we observe that despite the almost
similar performance results in precision, recall, and F1 score, there are substantial
differences in freshness values among feature combinations.

Cellular Traffic

One of the major goals of EBC is to reduce the cellular traffic. Therefore, we next
examine the amount of cellular traffic both prefetched in each session by EBC and
transmitted upon application launch with respect to the chosen feature combination.

To this end, we first compute the amount of cellular traffic EBC prefetches in a ses-
sion k, which we introduced as Tfetch,cell(k). Figure 6.14a shows how much cellular
traffic is prefetched and in how many sessions. The results are grouped on the x-axis
for the metrics percentile (P −X) and mean. The corresponding Tfetch,cell(k) values
are shown on the y-axis.

For instance, we observe that for at least 75% of sessions no traffic over a cellular
connection is prefetched across all feature combinations and the optimum posteriori
solution. We further observe differences in cellular traffic prefetched in a session
as the percentiles increase (P − 90, P − 90, and P − 97.5). For instance, for P − 90 the
cellular traffic ranges between 2.30 MB if the optimum mean posteriori solution is
used and 3.59 MB if all features are applied. For P − 97.5 the difference in cellular
traffic increases between the feature combinations. The values for Tfetch,cell(k) now
range between 10.15 MB and 15.38 MB.

We further observe that utilizing the feature fc causes an increase in prefetched
cellular traffic for the three highest percentiles and the mean results. The feature fw
allows minimizing the amount of cellular traffic prefetched for a session.

Cellular traffic is directly linked to the monetary costs for the individuals and
energy consumption of their mobile devices. Therefore, we inspect the potential dif-
ferences among the feature combinations in terms of the cellular traffic that is still re-
quired to be transmitted if an application is launched and used. Figure 6.14b shows
for how many application launches on the x-axis how much cellular traffic is con-
sumed (y-axis). For at least 90% of application launches, less than 0.38 MB of traffic
is required to be transmitted if no features are in-place. The feature fc and its ability
to prefetch more traffic for more applications reduces the consumption of cellular
traffic when the corresponding application is used. We conclude that for at least
97.5% of application launches that consume the lowest amount of cellular traffic the
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(a) Device Analyzer data set.
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(b) LiveLab data set.

Figure 6.13: Application content freshness evaluated for the different combinations of appli-
cation probability features and l̂x = 4.

utilization of all features for all individuals comes close to the optimum posteriori
solution.

Lastly, we combine the amount of cellular traffic generated for prefetching appli-
cation and using them at the end. Figure 6.14c shows the amount of cellular traffic
generated per day (ttotal,cell(U,d)). We observe that although the utilization of the
feature fc reduces the amount of cellular traffic required to be additionally down-
loaded upon application launch, it still consumes more cellular traffic in total on a
day. This is due to the high amount of traffic prefetched over cellular connections.
The feature combinations {fw} and {fw, fh} tend to minimize the overall daily cellu-
lar traffic.

Energy Consumption

The now inspect the energy consumption of EBC’s prefetch activities and application
usage. As the energy consumption is directly linked to the amount of traffic that is
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(a) Application content volume prefetched over cellular networks per session.
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(b) Application content volume downloaded over cellular networks per application usage.
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(c) Daily cellular traffic consumption. The consumption is computed per day and user.

Figure 6.14: Daily cellular traffic footprint caused by prefetching activities, application usage,
and in total per day.
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prefetched at the beginning of a session, we expect to observe similar results as for
the analysis on cellular traffic.

Figure 6.15a shows how much energy is consumed by the network activities during
application prefetches in a session. As expected, the utilization of the feature fc leads
to the increase in energy required to prefetch a session because of a higher amount
of traffic that is prefetched. The average energy consumption per session ranges
between 20 J for the optimum posteriori solution and 40 J if fc and at least fw are
used. Furthermore, the optimum posteriori solution is almost as good as if only
the feature fw is used. This makes it unnecessary to derive best performing feature
combinations for each user, individually.

Figure 6.15b shows how much energy is consumed due to the necessity to transmit
application content if the application is used. For 90% of application usages, the en-
ergy consumption is not larger than 16.05 J – 18.48 J. Similar to the previous results, if
the feature fc is used, the energy consumption is slightly lower. For 2.5% of applica-
tion usages, the difference between the lowest and the highest energy consumption
caused by a feature combination is 14.92 J. On average, an application usage con-
sumes between 46.61 J and 48.96 J. However, mean values are highly influenced by
the outliers. We observe that nearly 95% of application launches consume at most
the same amount of energy as the mean value. In all cases, the highest energy con-
sumption is caused if no features or only fw are used to predict which applications
to prefetch. This is because the lowest number of applications benefit from EBC if no
features are used, as we will see in Section 6.6.6.

Lastly, we summarize the energy consumption per day and user. Figure 6.15c
shows how much energy is consumed by the network activities of prefetches or
application usages on a day. Overall, applying the optimum mean posteriori solu-
tion optimizes the energy consumption. Among fix sets of features, leveraging fw
minimizes the energy consumption for both mean and percentiles.

Application Load Time

Prefetching application content has implications on how long it takes to launch an
application when used. Figure 6.16 shows how much time it requires to load an
application and for how many application launches. The results on the x-axis are
grouped by the corresponding metrics. Recall that the launch time tlaunch(A) of an
application A is fixed to 0.5 s as introduced in Section 6.5.3.

We observe that for 90% of application launches, the load time is between 1.07
and 1.52 seconds, depending on which feature combination is used. The load time is
lower if the feature fc is used because fc is responsible for prefetching more traffic for
more applications. With percentile increasing, e.g., P − 95 or P − 97.5, the difference
of 1–2 seconds remain constant. However, the load time increases. We conclude that
utilizing the feature fc slightly reduces the load time because more traffic volume is
prefetched in advance.

Number of Applications that Benefit from Prefetching

We inspect how many applications benefit from prefetching, i.e., the application is
prefetched at least once. To this end, we utilize the defined metric BA(U) that is the
ratio of the number of distinct applications ever prefetched for the individual U over
the total number of distinct applications used by the same individual U.
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(a) Energy footprint for prefetching a session.
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(b) Energy footprint of application usage.
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(c) Daily energy consumption. The consumption is computed per day and user.

Figure 6.15: Daily energy footprint caused by prefetching activities, application usage, and
in total per day.



190 prefetching of mobile application content

P-50 P-75 P-90 P-95 P-97.5 Mean
Metrics

0

2

4

6

8

10

12
T

im
e

(s
ec

on
ds

)

0.
50

0.
53

1.
52

4.
68

11
.8

6

2.
86

0.
50

0.
50

1.
12

3.
66

9.
96

2.
56

0.
50

0.
51

1.
35

4.
29

11
.2

7

2.
77

0.
50

0.
50 1.

09

3.
51

9.
83

2.
55

0.
50

0.
52

1.
44

4.
50

11
.6

5

2.
84

0.
50

0.
50 1.

09

3.
59

9.
92

2.
56

0.
50

0.
51

1.
30

4.
17

11
.0

4

2.
76

0.
50

0.
50 1.

07

3.
46

9.
63

2.
55

0.
50

0.
50 1.

07

3.
40

9.
37

2.
52

fw = 0, fh = 0, fc = 0

fw = 0, fh = 0, fc = 1

fw = 0, fh = 1, fc = 0

fw = 0, fh = 1, fc = 1

fw = 1, fh = 0, fc = 0

fw = 1, fh = 0, fc = 1

fw = 1, fh = 1, fc = 0

fw = 1, fh = 1, fc = 1

Optimum mean posteriori

Figure 6.16: Amount of time required to load application A in memory and to transmit re-
quired startup network content.

Figure 6.17 shows the fraction of individuals with at least the corresponding value
BA in both Device Analyzer and LiveLab data sets. The results are shown as violin
plots with the corresponding feature combination on the x-axis and the associated
BA value on the y-axis. The numeric values on top of each violin are the medians. For
instance, for the Device Analyzer data set, considering that no features are used (the
second violin from the left), 19% of applications installed on half of the individuals’
devices (median) benefit from prefetching. This number drops down to 9% for the
LiveLab data set.

Comparing the results for each feature combination, we observe noteworthy dif-
ferences. For instance, if no features are used, the corresponding median value for
BA is at its lowest point. In contrast to that, including the feature fc results in a 1.5
times higher median BA with 29% for the Device Analyzer data set and a 4.8 times
higher median corresponding to 43% for the LiveLab data set. The shapes of the cor-
responding violins and the inner boxplots also highlight the increase of the fraction
of applications that benefit from prefetching for a set of individuals in both data sets.
The feature hour of day fh has also impact on BA. However, the impact is not as high
as for the feature fc. The feature fw has only an incremental impact on BA. Lastly,
there is no additional benefit from selecting features for each user, individually. Nev-
ertheless, we conclude that utilizing all three features allows maximizing the number
of applications that benefit from prefetching.

Prefetch Duration

We lastly focus on tfetch(k), i.e., how long it takes to complete prefetching of a
session by EBC. Figure 6.18 shows how long it takes to complete prefetching (y-axis)
for the corresponding number of sessions (x-axis). The results are presented for the
Device Analyzer data set only, because there is no traffic information in the LiveLab
data set.

We observe that for at least 50% of sessions (P − 50), almost or completely no
data is required to be transmitted. The only delay corresponds to the necessity to
launch the applications themselves (4× 0.5 s with lx = 4). In at least 25% of sessions,
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Figure 6.17: Number of applications that benefit from prefetching. The value BA(U) is com-
puted per user U as a ratio between the number of distinct applications that are
ever prefetched over the total number of distinct applications ever launched by
user U.

additional data is transmitted during the prefetch activity. For the 10% of sessions
with the highest tfetch(k) values, the difference between time required to complete
prefetching among the feature combinations ranges between 7.59 and 10.24 seconds.
We observe that tfetch(k) increases if the feature fc is used because more traffic
is prefetched as we observed it earlier. Furthermore, this is also explainable by our
observation in Figure 6.17 that indicates that due to the feature fc the number of
applications benefiting from prefetches also increases. In summary, if the goal is to
reduce the amount of time required to complete prefetching, then the feature fc
should be excluded. However, this will also result in a lower amount of applications
that benefit from EBC.
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Figure 6.18: The amount of time it takes to prefetch a session.

Conclusions from Microbenchmarking Application Probability Features

Our microbenchmarking of the application probability features reveal a set of rele-
vant observations and implications for the EBC’s goals and constraints that we now
briefly summarize. The most important observation is that application prefetches
executed in a session in which the corresponding application is not used are not
entirely useless. The second most important observation is that the features selected
to decide which applications should be executed have partly substantial effects on
the quality of achieving the particular defined goals by EBC.

Table 6.8 summarizes the insights obtained in the previous sections with respect
to the particular goals, costs, and constraints as defined in Section 6.2.

We further visualize for each feature combination the performance results for the
metrics P−50 freshness, mean freshness, mean cellular traffic per day (Ttotal,cell(U,d)),
mean energy consumption per day (E(U,d)), and application load time (tload(A,k))
in radar charts in Figure 6.30. The closer to the outer boundary the particular point
on each of the five axis is, the better. The top values on the outer boundary of the
radar are determined by the optimum mean posteriori solution. We observe in Fig-
ure 6.19g that using the features fw and fh and excluding fc allows for optimizing
most of the metrics by covering the largest area on the radar chart. Therefore, in the
following, we utilize these two features to compute application probabilities p(A,k).
6.6.3 Classifying Application Traffic Volume

EBC’s primary goal is to reduce cellular traffic. To this end, we define the threshold
Tmax that is used as a discrimination threshold to decide whether an application
should be prefetched over a cellular network or not. We evaluate how accurate EBC

classifies traffic volume of each application launch. To this end, we keep a record of
each application launch, the generated traffic volume, and the corresponding traffic
prediction T̂(A,k). We exemplarily vary the threshold Tmax = {0KB,1MB,10MB}.
For each threshold and user, we count the number of record entries in which either
the predicted traffic T̂ is below or equal to Tmax, but the traffic generated by the
application T is above (false positive – underestimation) or vice versa (false negative
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(a) fw = 0, fh = 0, fc = 0 (b) fw = 0, fh = 0, fc = 1

(c) fw = 0, fh = 1, fc = 0 (d) fw = 0, fh = 1, fc = 1

(e) fw = 1, fh = 0, fc = 0 (f) fw = 1, fh = 0, fc = 1

(g) fw = 1, fh = 1, fc = 0 (h) fw = 1, fh = 1, fc = 1
Figure 6.19: Summary of performance metric results for each application probability feature

combination.
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Table 6.8: Conclusions from microbenchmarking the application probability features and im-
plications for the EBC’s goals, costs, and constraints.

Goals, costs, and constraints Conclusions

Application content freshness

The combination of features fw and fh allows for the highest freshness
mean and median improvement. The average freshness is slightly better if
an individual feature set is determined for each user. The worst freshness
results are achieved if no features are used.

Cellular traffic

The feature fw has the highest impact on reducing cellular traffic. In combi-
nation with fh, EBC achieves a slightly higher cellular traffic consumption.
The worst results in terms of the cellular traffic are observed if the feature
fc is used.

Energy consumption

The energy consumption is directly linked to the traffic volume transmitted
for prefetching and application usage. We therefore draw the same conclu-
sions in terms of the features as for the cellular traffic.

Application load time

The prefetch overhead pays off in terms of the reduced load time of appli-
cations. We achieve the best results for the load time if the feature fc is
used in deciding which applications to prefetch. The highest load time is
measured for the case in which no features are used.

Number of applications that
benefit from EBC

The feature fc plays a crucial role in maximizing the number of applications
that benefit from EBC (BA). In the combination with the features fh and fw
the median peaks are achieved with 29% and 43% for the Device Analyzer
and LiveLab data sets, respectively. If no features are used, BA reaches its
lowest median with 19% and 9% for the Device Analyzer and LiveLab data
sets, respectively.

Prefetch duration

The feature fc has the largest impact on how long it takes to prefetch a
session. The prefetch duration increases if the feature fc is used, because
more distinct applications benefit from EBC and thus involve the necessity
to prefetch the application content for them.

Table 6.9: Configuration of EBC for evaluating traffic prediction.

Parameter description Configuration

Application probability features fw, fh, fc = < IRRELEVANT >

Traffic volume features fw, fh = {0, 1} × {0, 1}

Traffic volume threshold Tmax = < IRRELEVANT >

Number of applications to prefetch in a session features fw, fh = < IRRELEVANT >

Number of applications to prefetch in a session l̂x = < IRRELEVANT >

Stretch factor for l̂x D = < IRRELEVANT >

Fraction of capacity  to prefetch data-intensive applications w = < IRRELEVANT >

Maximum prefetch duration tfetch = < IRRELEVANT >

– overestimation). Table 6.9 summarizes EBC’s settings in the following evaluation.
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Parameters that do not have influence on the results are omitted for the sake of
readability.

Given these quantities, we compute the fraction of application launches for which
the traffic is overestimated by dividing the number of false negatives by the total
number of application launches. By analogy, we compute for each user the fraction of
application launches for which the traffic is underestimated. The ratio of the number
of correctly classified application traffic volume over the total number of launches is
the corresponding to accuracy.

Figure 6.20 shows the error fraction of traffic volume classifications with over- and
underestimations together with the corresponding accuracy. The results are grouped
on the x-axis based on the feature combination. Thus, each violin aggregates values
for all individuals in the Device Analyzer data set. The corresponding metric value is
depicted on the y-axis. The numeric values on top of the plot correspond to the me-
dians (half of individuals) of each of the underlying violin. The results are reported
for different threshold values of Tmax.

Similar to the previous evaluation parts, we compare the solution of leveraging
a fix feature combination for all users to selecting the best performing feature com-
bination for each user, individually. For all three subplots, we observe that the me-
dian error fraction for over- or underestimating the traffic never exceeds 9%. For
all thresholds but Tmax = 1MB the total error fraction (over- and underestimation)
never exceeds 10% for at least 75% of individuals. The peak error fraction is observed
for Tmax = 1MB because this is the amount of traffic that is frequently generated by
the applications.

Figure 6.21 confirms this observation. It shows the fraction of application launches
per user (y-axis) that generate the corresponding amount of traffic (x-axis). The num-
bers on top of each violin represent the medians. Although a high number of ap-
plication launches does not generate any traffic, the median peak for the amount of
traffic generated by the remaining application launches is observed for the group
100 KB–1 MB with the median value of 17%.

With respect to the features leveraged to classify application traffic volume, we
observe almost no differences according to Figure 6.20. The feature fw has a slightly
higher accuracy for Tmax = 0KB but at the same time a slightly lower for Tmax =
1MB. The results for Tmax = 10MB are equal across all feature combinations and
the optimum posteriori solution.

We conclude that in case of small values of a few KBs for Tmax, the features fw and
fh provide slightly better classification results. This is the opposite case if Tmax is
set to 1 MB. Overall, EBC achieves a high median accuracy ranging between 83% and
93% in classifying application traffic volume that allows making precise decisions
whether an application should be prefetched over a cellular network or not.

6.6.4 Predicting Application Traffic Volume

Building upon the possibility to classify application traffic volume, a more difficult
task is to predict how much traffic will be generated upon next application usage
and thus how much traffic should be prefetched. Recall that we use a simplistic
application content model in this work. We assume that the entire content prefetched
for a particular application can be used upon next launch of this application and we
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(a) Tmax = 0 KB

(b) Tmax = 1 MB

(c) Tmax = 10 MB

Figure 6.20: Application traffic classification results.
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Figure 6.21: Fraction of applications per user that transmit the corresponding traffic volume
is used in a session. The inner boxplot covers the results of all individuals. The
numbers on top of each violin represent the corresponding medians (half of
individuals).

only need to match the remaining traffic difference if less content was prefetched
than required. In this case, prefetching a fix amount of 10TB for each application will
reduce the cellular traffic to almost zero but will dramatically increase the associated
energy costs of prefetching over Wi-Fi, prefetch duration, and reduce the available
Wi-Fi bandwidth.

Therefore, EBC utilizes a prediction technique to estimate the amount of traffic an
application will generate upon next launch as described in Section 6.4.2. We now
evaluate the performance of this technique. Table 6.9 summarizes EBC’s settings in
the following evaluation. These are the same settings as in the previous evaluation
part. Parameters that do not have influence on the results are omitted for the sake of
readability.

Figure 6.22 shows for how many application launches the corresponding gener-
ated traffic is underestimated or overestimated and by which margin. The corre-
sponding margin is shown on the x-axis and the fraction of application launches
on the y-axis. Each bar corresponds to either a feature combination for all users or
the optimum posteriori solution. The optimum posteriori solution is computed by
minimizing the root-mean-square error (RMSE) metric that we compute as:

�����∑NL(k)
i=1 �T̂(Ai,k)− T(Ai,k)�2

NL(k) , (6.16)

where NL(k) is the number of distinct applications in session k represented by the
list L(k). Lastly, we do not differentiate between Wi-Fi and cellular traffic for now.

Figure 6.22a shows for how many application launches the corresponding traffic
was overestimated by EBC. We consider all application launches regardless whether
the traffic was prefetched or not. We observe no difference between using a fix feature
combination and the optimum posteriori solution. Furthermore, if both features fw
and fh are used, in 19% of the application launches EBC overestimates the traffic
volume by more than 1 MB and in 7% of the cases by more than 5 MB.
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(a) Number of application launches for which the traffic volumes is overestimated.

(b) Number of application launches for which the traffic volumes is underestimated.

Figure 6.22: Traffic volume prediction error per application launch.

Figure 6.22b shows traffic volume estimations in which EBC underestimates appli-
cation traffic volume and thus potentially misses to prefetch it. Similar to the previ-
ous plot, we do not observe any advantages of the optimum posteriori solution to
reduce the traffic underestimation. In nearly 12% of application launches, the traffic
is underestimated by EBC by more than 1 MB and in nearly 6% by more than 5 MB.

Comparing the two plots together, we conclude that EBC tends to overestimate
application traffic volume. These observations support the challenging nature in es-
timating application traffic volume. We therefore inspect potential reasons for that.
Figure 6.23 shows application traffic volume by plotting the average and standard
deviation for each application as a CDF. This plot considers applications with at least
two launches over the observation period and an average value larger than zero. We
observe that for 65% of these applications, the traffic volume has a standard devi-
ation that is larger than 1 MB. For 20% of applications, the standard deviation is
even larger than 10 MB. These results demonstrate the challenging nature of accu-
rately estimating traffic volume. Nevertheless, in nearly 33% of application launches
(cf. Figure 6.22) the traffic volume is estimated exactly and for nearly 68% of applica-
tion launches the error is below ±1 MB.
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Figure 6.23: Average and standard deviation for the traffic volume that is generated by each
application, individually. Only applications with T(A) > 0 and NT > 1 are con-
sidered in this plot to obtain meaningful results.

Table 6.10: Configuration of EBC for evaluating the influence of the parameters w and Tmax.

Parameter description Configuration

Application probability features fw = 1, fh = 1, fc = 0

Traffic volume features fw = 1, fh = 1

Traffic volume threshold Tmax = {0 KB, 100 KB, 1 MB, 10 MB}

Number of applications to prefetch in a session features fw, fh = < IRRELEVANT >

Number of applications to prefetch in a session l̂x = 4

Stretch factor for l̂x D = < IRRELEVANT >

Fraction of capacity  to prefetch data-intensive applications w = {0, 0.5, 1}

Maximum prefetch duration tfetch =∞

6.6.5 Parameters for Controlling Cellular Traffic

Beside the different features that EBC utilizes to predict which applications should be
prefetched or how much traffic to transmit, there are also two other relevant parame-
ters. We now examine the influence of the parameters w and Tmax on the quality of
achieving the defined goals in Section 6.2. The former parameter controls how many
applications should be prefetched for the future sessions if Wi-Fi is available. The lat-
ter restricts prefetching activities over cellular networks if the predicted application
traffic volume exceeds this threshold.

For the parameter w, we experiment with the three values w = {0,0.5,1}. The first
one indicates that no capacity defined by  will be made available to prefetch data-
intensive applications. The other two values indicate that half of the capacity or the
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entire resources are used for prefetching data-intensive applications with w = 0.5
and w = 1, respectively. The second restrictive parameter is Tmax. For our exem-
plary experiments, we choose the values Tmax = {0,100KB,1MB,10MB} based on
observations made in Figure 6.21.

The following structure of our analysis is the same as we followed already to
inspect application feature probabilities. Therefore, we omit repeating it in detail
and refer the reader to Section 6.6.1 for more details. All results are presented for the
Device Analyzer data set only, because of the lack of traffic volume information in the
LiveLab data set. Table 6.10 summarizes EBC’s settings in the following evaluation.
Parameters that do not have influence on the results are omitted for the sake of
readability.

Application Content Freshness

Figure 6.24 shows application content freshness on a set of percentiles and the cor-
responding mean value. For the percentiles until P − 75, we observe that the best
(lowest) freshness values are achieved if w = 0 and Tmax = 10MB is used. This config-
uration applies the smallest restrictions on which applications should be prefetched.
On the opposite side, the configuration w = 1 and Tmax = 0KB causes the worst
(highest) freshness values for the percentiles P − 75 and lower. This is because this
configuration has the highest restrictions on which applications to prefetch. The me-
dian freshness values (P − 50) range between 85 and 153 seconds. For the metric
P − 75, the range increases dramatically. It now spans the region between 31 minutes
and 3:28 hours.

In contrast to that, for the metric P − 90 the configuration w = 1 and Tmax = 0KB
provides better freshness results than the configuration w = 0 and Tmax = 10MB.
This is because due to the higher restrictions applied by the latter configuration, EBC
is forced to prefetch less frequently used applications and thus improves their fresh-
ness values. The best freshness values on average are observed for the configuration
w = 0.5 and Tmax = 0KB. In this case, no applications are prefetched over cellular
networks if EBC expects them to generate any traffic and half of the available capacity
 in sessions with Wi-Fi is used to prefetch data-intensive applications.

We conclude that the lower the restrictions on which applications to prefetch are,
the better is the application content freshness for at least 75% of application launches.
However, high restrictions allow for optimizing the average freshness values and the
freshness of applications that are less frequently used.

Cellular Traffic

The next three metrics – tfetch,cell(k), tmissed,cell(A,k), and ttotal,cell(U,d) – fo-
cus on the cellular traffic consumption. Figure 6.25a shows how much cellular traffic
is prefetched in how many sessions. The results reveal that setting Tmax = 1MB

leads to prefetching up to 40 KB on traffic over cellular connections per session on
average. With Tmax = 10MB the average cellular traffic volume increases to 0,57 MB
per session. Furthermore, in 5% of the sessions more than 3.88 MB of cellular traffic
is consumed, depending on the weight w. For the threshold values of Tmax = 0KB
and Tmax = 100KB, the cellular traffic volume prefetched in sessions is negligible.

Figure 6.25b shows how much traffic is still required to be transmitted over cellular
networks upon application launch. With a non-zero parameter w, the missed cellular
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Figure 6.24: Application content freshness evaluated for the different combinations of w and
Tmax and l̂x = 4. The results are presented for the Device Analyzer data set.

traffic per application launch decreases. This is because we allow EBC to prefetch data-
intensive applications with the predicted traffic volume that is higher than Tmax over
Wi-Fi. By increasing the threshold Tmax, the missed cellular traffic decreases too. We
conclude that increasing both parameters allows reducing the cellular traffic when
an application is used. This however does not guarantee the best cost-benefit solution
including the prefetching overhead and the reduced cellular traffic. To this end, we
analyze the daily cellular traffic in Figure 6.25c that is the sum of the prefetched and
missed cellular traffic per user and day. We observe that the configuration Tmax ={0KB,100KB} and w = 0.5 has the lowest daily average cellular traffic consumption.
The highest consumption is observed for Tmax = 10MB and w = 0, because none
of the available capacity  is used to prefetch data-intensive applications over Wi-Fi.
Furthermore, EBC is allowed to prefetch application with an expected cellular traffic
of up to 10 MB. We conclude that any of the configurations with a non-zero value of
w and Tmax value of up to a few hundreds of KB might be a suitable option to reduce
cellular traffic. With any of these configurations, the cellular traffic consumption is
within a range of no more than 30 KB (4.60 MB – 4.63 MB) on average per day.

Energy Consumption

We next analyze the energy consumption for prefetching sessions, using applications,
and on average per day for both activities together. Figure 6.26a shows the energy
consumption for prefetching a session. With a non-zero value of w, the energy con-
sumption increases due to prefetching of data-intensive applications. The highest
energy consumption is measured for the highest value of Tmax that we consider in
this evaluation and the non-zero value of w. In these cases EBC prefetches applica-
tions with the predicted cellular traffic of up to 10MB over cellular networks and
uses a fraction of the resource capacity  to prefetch data-intensive applications over
Wi-Fi. These two aspects contribute to the highest energy consumption. The lowest
energy consumption is guaranteed with the parameter values w = 0 and Tmax = 0KB,
because no data-intensive application are prefetched.
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(c) Daily cellular traffic consumption. The consumption is computed per day and user.

Figure 6.25: Daily cellular traffic footprint caused by prefetching activities, application usage,
and in total per day.
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(a) Energy footprint for prefetching a session.
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(b) Energy footprint of application usage.
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(c) Daily energy consumption. The consumption is computed per day and user.

Figure 6.26: Daily energy footprint caused by prefetching activities, application usage, and
in total per day.
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Figure 6.27: Amount of time required to load application A in memory and to transmit re-
quired startup network content.

Figure 6.26b shows how much energy is consumed by transmitting traffic upon ap-
plication launch that was not prefetched before. Here, we consider both cellular and
Wi-Fi traffic. Similar to the previous results, the lowest average energy consumption
per application launch is measured for w = 0.5 an Tmax = 10MB. For 5% of applica-
tion launches the energy consumption ranges between 45.71 J and 58.22 J. Consider-
ing our exemplary chosen mobile device battery, this difference corresponds to 0.04%
of its capacity. The difference increases as we focus on the higher percentiles. With
P − 97.5, i.e., the 2.5% of the most energy-hungry application launches, the energy
consumption is between 115.41 J and 137.58 J, depending on the two parameters w

and Tmax.
Considering the prefetch and application usage energy consumption together on

a daily basis in Figure 6.26c, we observe that the EBC’ configuration w = 0 an Tmax =
0KB has the lowest daily average energy footprint. On the opposite side, EBC with
w = 1 an Tmax = 10MB has the highest energy footprint among all 12 analyzed
configurations.

Application Load Time

The EBC’s prefetching activities attempt to reduce application load time, cellular traf-
fic, and energy consumption. We now examine whether and to which extent this
overhead caused by prefetching pays off in terms of reducing application load time.
Figure 6.27 shows how long it takes to load an application A and to finish trans-
mitting the required startup application content (Tstart,remain(A,k)) that was not
prefetched. The load time reduces with its lowest point if we allow EBC to prefetch
application content of up to 10MB over cellular networks and additionally prefetch
data-intensive applications over Wi-Fi. Running EBC with the configuration w = 0 an
Tmax = 0KB results in a 1.2-fold increase in load time tload(A,k) compared to the
EBC configuration with the lowest average value of tload(A,k).
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Figure 6.28: Number of applications that benefit from prefetching. The value BA(U) is com-
puted per user U as a ratio between the number of distinct applications that are
ever prefetched over the total number of distinct applications ever launched by
user U. The results are presented for the Device Analyzer data set.

Number of Applications that Benefit from Prefetching

We inspect how the choice of the parameters w and Tmax influence the amount
of applications that benefit from prefetching, which we previously defined as BA.
Figure 6.28 shows the fraction of users’ applications that benefit from prefetching.
We observe that for half of the individuals at least 58% of applications benefit from
prefetching if the most restrictive configuration of the two considered parameters is
chosen (w = 1.0 and Tmax = 0KB). This is because restricting EBC from prefetching the
most likely applications due to the set parameters, forces EBC to prefetch less likely
applications. The median BA decreases if we allow EBC to increase the threshold
Tmax. We conclude that if the goal of EBC should be to serve for the highest possible
number of distinct applications installed on mobile devices, then the most restrictive
configuration with w = 1.0 and Tmax = 0KB should be used.

Prefetch Duration

The time required to complete prefetching a session is the consequence of traffic
volume to prefetch. Figure 6.29 shows how long it takes to prefetch application
startup content (y-axis) for the entire session k. This value corresponds to the met-
ric tfetch(k). Due to the set parameter lx = 4, the offset for prefetching a session is
already 2 seconds.

For the higher percentiles, e.g., P − 75 and P − 90, we observe that tfetch(k) in-
creases. For the same value of w, tfetch(k) increases as the threshold Tmax increases
too. This is because in these cases more application content is prefetched over cel-
lular networks, which takes longer than prefetching over Wi-Fi due to the reduced
bandwidth. In general, the smaller the both parameters Tmax and w are, the lower
the prefetch duration. The reason for that is the smaller amount of the prefetched
application content volume.
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Figure 6.29: The amount of time it takes to prefetch a session.

Conclusions from the Analysis of the Parameters w and Tmax

The radar charts in Figure 6.30 summarize the discussed performance results for
each combination of the parameters w and Tmax. The most restrictive combination of
these two parameters in terms of which applications should be prefetched is w = 1.0
and Tmax = 0KB. The opposite case is for w = 0 and Tmax = 10MB. We observe
that according to Figure 6.30b and Figure 6.30e setting w = 0.5 and Tmax to either
0 KB or 100 KB allows optimizing average application content freshness and daily
cellular traffic consumption. Comparing these two settings to each other, we observe
for Tmax = 100KB an improvement in median application content freshness. EBC with
w = 0 or Tmax = 10MB tends to focus on optimizing one or two metrics only. At the
same time, the remaining metrics score poorly.

After inspecting the charts in Figure 6.30 and considering the aforementioned ar-
guments, we choose w = 0.5 and Tmax = 100KB as the default setting for EBC.

6.6.6 Limiting Prefetch Duration

So far, we exhaustively evaluated EBC’s parameters by keeping, however, two param-
eters always fix. Namely, (1) the number of applications that should be prefetched
per session lx = 4 and (2) the maximum amount of time that should be spent to
prefetch a session tfetch,max =∞. In this section, we change the settings and exper-
iment with the different values for tfetch,max, namely, {1,2,3,4,5,6,7,8}, and let lx
be unbounded with lx = ∞. Table 6.11 summarizes the EBC’s settings for the follow-
ing evaluation. Parameters that do not have influence on the results are omitted for
the sake of readability.

Application Content Freshness

We start with application content freshness results that are reported in Figure 6.31.
As expected, we observe an improvement in freshness while the value of tfetch,max

increases. These improvements are, however, not linear but logarithmic. For instance,
the median (P − 50) improves from tfetch,max = 1 s to tfetch,max = 2 s by 44%. From
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(a) w = 0, Tmax = 0KB (b) w = 0.5, Tmax = 0KB (c) w = 1, Tmax = 0KB

(d) w = 0, Tmax = 100KB (e) w = 0.5, Tmax = 100KB (f) w = 1, Tmax = 100KB

(g) w = 0, Tmax = 1MB (h) w = 0.5, Tmax = 1MB (i) w = 1, Tmax = 1MB

(j) w = 0, Tmax = 10MB (k) w = 0.5, Tmax = 10MB (l) w = 1, Tmax = 10MB

Figure 6.30: Performance results for the difference combinations of w and Tmax.
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Table 6.11: Configuration of EBC for evaluating the influence of the constraint tfetch,max.

Parameter description Configuration

Application probability features fw = 1, fh = 1, fc = 0

Traffic volume features fw = 1, fh = 1

Traffic volume threshold Tmax = 100 KB

Number of applications to prefetch in a session features fw, fh = < IRRELEVANT >

Number of applications to prefetch in a session l̂x =∞
Stretch factor for l̂x D = < IRRELEVANT >

Fraction of capacity  to prefetch data-intensive applications w = 0.5

Maximum prefetch duration tfetch = {1 s, 2 s, 3 s, 4 s, 5 s, 6 s, 7 s, 8 s}
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Figure 6.31: Application content freshness evaluated for the different values of tfetch,max

and l̂x = 4. The results are presented for the Device Analyzer data set.
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Figure 6.32: Daily cellular traffic consumption. The consumption is computed per day and
user.

tfetch,max = 2 s to tfetch,max = 3 s the improvement stagnates at 21% only. In terms
of the mean values, we observe a lower stagnation ratio in improving application
content freshness. Comparing these results to those in Figure 6.24 for the same values
of w and Tmax, we observe that EBC achieves better freshness results for tfetch,max ≥
3 s.

Cellular Traffic

Figure 6.32 reports the daily average cellular traffic measured across all individ-
uals. In contrast to the previous analysis steps, we omit reporting the results for
Tfetch,cell(k) as well as Tmissed,cell(A,k) and instead of focus immediately on the
daily average cellular traffic consumption. We observe that none of the evaluated val-
ues of tfetch,max allows achieving better mean results than reported in Section 6.6.5.
This is because we keep Tfetch,cell(k) fix while in Figure 6.29 we observe that in
10% of the sessions EBC requires more than 5 s to complete prefetching for the same
settings w = 0.5 and Tmax = 100KB.

Energy Consumption

Figure 6.33 reports the daily energy consumption of the network activities, i.e., appli-
cation prefetches and usages. We observe that the daily average reduction of cellular
traffic, which is shown in Figure 6.32, comes at the costs of the increased daily aver-
age energy consumption. The energy consumption increases due to the possibility to
prefetch more application content at a session start as tfetch,max increases. We make
an interesting observation for the highest reported percentile P − 97.5. We observe
that for tfetch,max ≥ 5 s the daily energy consumption for these 2.5% of days de-
creases compared to, for instance, tfetch,max = 4 s. For these few days, the increased
opportunity to prefetch more application content pays off in terms of the energy
consumption.
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Figure 6.33: Daily energy consumption. The consumption is computed per day and user.
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Figure 6.34: Amount of time required to load application A in memory and to transmit re-
quired startup network content.

Application Load Time

Figure 6.34 reports how long it takes to launch an application and to fetch the cor-
responding startup network content (tload(A,k)). The results indicate that the more
time is given to EBC to prefetch a session, the less time is required for an applica-
tion to be loaded. However, similar to the observation made in Figure 6.32 for the
daily cellular traffic, the average results for tload(A,k) even with tfetch,max = 8 s

are 1.12 times higher than those reported in Section 6.6.5. This is again because of
the restriction of tfetch,max.

Number of Applications that Benefit from Prefetching

Figure 6.35 reports the number of applications per user that benefit from EBC’s
prefetching activities for the different setting of tfetch,max. Comparing to the pre-
vious results with tfetch,max =∞, we observe that already for tfetch,max = 4 s more
applications benefit from prefetching. The value for BA logarithmically increases
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1 2 3 4 5 6 7 8
tfetch,max [s]

0.0
0.1
0.2
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1.0
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A

0.23 0.42 0.54 0.61 0.68 0.76 0.81 0.86

Figure 6.35: Number of applications that benefit from prefetching. The value BA(U) is com-
puted per user U as a ratio between the number of distinct applications that are
ever prefetched over the total number of distinct applications ever launched by
user U. The results are presented for the Device Analyzer data set.
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Figure 6.36: The amount of time it takes to prefetch a session.

while tfetch,max is increased too. With tfetch,max = 8 s for half of the individuals
86% of applications benefit from EBC.

Prefetch Duration

Although we keep tfetch,max fix in these experiments, we inspect how much time in
fact was used for prefetching sessions. Figure 6.36 reports the measurements of the
ground-truth values of tfetch,max. We observe for at least 50% of the sessions not all
resources are utilized if tfetch,max > 4 s. We have two explanations for this observa-
tion. First, there are sometimes no applications that can be additionally prefetched
without violating the restriction tfetch,max. Second, in particular, at the beginning
of the observation period, EBC simply does not observe enough distinct applications
to prefetch them. In these cases, EBC needs to wait until the user have used enough
distinct applications on her mobile device.
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Conclusions

We conclude this evaluation part with the overview of performance results grouped
by each considered value of tfetch,max in Figure 6.37. We observe that the higher
tfetch,max value is, the more energy is consumed on average per day. The other
four metrics improve, however, with the increasing value of tfetch,max. Although
we observe that EBC with tfetch,max ≥ 3 s outperforms the previous results with
tfetch,max = ∞ and lx = 4, the load time and cellular traffic consumption is, how-
ever, higher (worse). This is because EBC is restricted from prefetching the most data-
intensive applications.

For the rest of this work and our default setting of EBC, we keep tfetch,max = ∞
and point the reader to these results to remind her that EBC also supports the possi-
bility to restrict tfetch,max if required by an application scenario.

6.7 performance evaluation of ebc and its competitors

In the previous section, we microbenchmarked EBC’s parameters to select those that
support achieving the goals defined in Section 6.2 while respecting the constraints
and keeping the costs as low as possible. Table 6.12 shows the default configuration
of EBC that we select based on the microbenchmark results and to which we refer
as EBC+. We now evaluate EBC+’s performance in the same manner by inspecting
application content freshness, cellular traffic, energy consumption, application load
delay, number of application that benefit from prefetching, and finally prefetch du-
ration. We compare EBC+ to (1) the two versions of PREPP, (2) EBC with a fix value
l̂x = 4 for fair comparison reasons with PREPP, (3) the no prefetching strategy, and
(4) lastly EBC: Oracle. The latter is initialized with the same parameters as shown in
Table 6.12, however, it is able to perfectly predict which applications will be used in
session k and which data-intensive applications to prefetch. All results are presented
for the Device Analyzer data set. Whenever possible due to the data availability, we
also present the results for the LiveLab data set as well.

6.7.1 Application Content Freshness

Figure 6.38a presents results for the application content freshness measured for the
Device Analyzer data set. The plot is organized by grouping the different approaches
on the x-axis according to the respected metric and showing the corresponding met-
ric value on the y-axis. The numbers on top of each bar correspond to the values on
the y-axis. We observe that although EBC+ and EBC: l̂x = 4 achieve slightly better or
comparable results to PREPP–B in terms of lower percentiles (P − 10, P − 25, P − 50),
both EBC approaches clearly outperform its competitors for the second half of appli-
cation launches. For instance, for 25% of application launches (P−75) the application
content is 80 minutes fresher if EBC+ is deployed instead of PREPP–B and 7.4x fresher
compared to PREPP–B Wi-Fi only.

Similarly, Figure 6.38b presents the results for the LiveLab data set. EBC+ reduces
the median freshness value by 50% compared to PREPP–B. In terms of the mean
performance, EBC+ performance nearly the same as on the Device Analyzer data set.
Furthermore, its competitor PREPP–B tends to operate better on the LiveLab data
set than on the Device Analyzer data set in terms of the average freshness results.
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(a) tfetch,max = 1 s (b) tfetch,max = 2 s

(c) tfetch,max = 3 s (d) tfetch,max = 4 s

(e) tfetch,max = 5 s (f) tfetch,max = 6 s

(g) tfetch,max = 7 s (h) tfetch,max = 8 s
Figure 6.37: Evaluation results for the considered performance metrics that are grouped by

each tfetch,max value.
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Table 6.12: Default configuration of EBC to which we refer as EBC+.

Parameter description Configuration

Application probability features fw = 1, fh = 1, fc = 0

Traffic volume features fw = 1, fh = 1

Traffic volume threshold Tmax = 100 KB

Number of applications to prefetch in a session features fw = 1, fh = 1

Number of applications to prefetch in a session l̂x = dynamically estimated by EBC

Stretch factor for l̂x (irrelevant if l̂x is fix) D = 2

Fraction of capacity  to prefetch data-intensive applications w = 0.5

Maximum prefetch duration tfetch,max =∞

Overall, all approaches perform better on the LiveLab than on the Device Analyzer
data set. This is because of the lower inter-session intervals as shown in Figure 6.3.

6.7.2 Cellular Traffic

We next focus on the cellular traffic footprint of EBC+ and its competitors. Figure 6.39a
shows how much traffic is prefetched at a session start. We observe that all but
one approach do not prefetch nearly any application content over cellular networks.
In case of all versions of EBC, this results from the configuration of the parameter
Tmax = 100KB. For the PREPP–B Wi-Fi only and no prefetching strategy, this decision
is made by design. Only the competitor PREPP–B prefetches application content over
cellular networks due to its ignorance of the associated costs in terms of the increased
energy footprint and the potential monetary costs for mobile device owners. In the
case of all versions of EBC, we observe that although we allow to prefetch up to 100KB

of data per application prefetch over cellular networks, the accumulated cellular
traffic footprint remains very low. For 2.5% of sessions, the accumulated cellular
traffic is 50 KB for EBC+ and 40 KB for EBC: l̂x = 4.

Figure 6.39b shows the amount of traffic that is required to be fetched over cellu-
lar networks upon application launch. This traffic corresponds to the missed cellu-
lar traffic, i.e., it was not prefetched before. We observe that PREPP–B’s aggressive
prefetching strategy slightly pays off for percentiles until P − 97.5. However, on av-
erage per application launch, both EBC+ and EBC: l̂x = 4 still require to fetch less
content over cellular networks than all its competitors. This results from EBC’s ability
to identify data-intensive applications and to prefetch the related content over Wi-Fi
when possible.

Lastly, we accumulate the entire cellular traffic on a daily basis and present the
results in Figure 6.39c. We observe that PREPP–B has the highest cellular traffic foot-
print due to its aggressive prefetching strategy. For 25% of days with the highest cel-
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Figure 6.38: Application content freshness evaluated for EBC+ and its competitors.
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lular traffic footprint, PREPP–B consumes 2.25 times more cellular traffic than EBC+.
On average per day, it consumes 1.31 times more cellular traffic that corresponds to
approximately 15 MB per day or to approximately 450 MB if scaled up to a month.
Our own modification of PREPP–B that restricts it from prefetching any cellular traf-
fic (PREPP–B Wi-Fi only) performs better than PREPP–B. However, it still performs
only slightly better than the no prefetching strategy by underlining its inability to
compensate for the restricted prefetch policy. Comparing EBC+ to EBC: Oracle, we ob-
serve that there is still room for improvement. We therefore inspect the reasons for
this gap in Section 6.8.

Lastly, there are several reasons why EBC: Oracle still consumes cellular traffic.
First, applications that are used for the first time in the observation period are unpre-
dictable. Second, there are many situations in which application A is used in several
sessions with no session in-between in which the mobile device is connected to Wi-Fi.
In this sense, even if EBC: Oracle prefetches application A for session k, there is no
traffic prefetched for the same application if it is used in session k+ 1 again with no
Wi-Fi availability. Third, due to the limiting parameter l̂x, it is impossible for EBC:
Oracle to prefetch all data-intesive applications that will be used in the next time
period with no Wi-Fi.

6.7.3 Energy Consumption

In our evaluation scenario, the cellular traffic footprint and the prefetch activities are
the two major factors for the energy consumption of mobile devices. Figure 6.40a
summarizes how much energy is consumed for prefetching a session, regardless of
whether application content is fetched over a cellular or a Wi-Fi connection. We ob-
serve that all versions of EBC and PREPP–B have a comparable energy footprint when
prefetching applications. In case of PREPP–B, it is mainly caused by its prefetch ac-
tivities over cellular networks. For EBC, the main reason for the comparable energy
footprint is its strategy to prefetch data-intensive applications over Wi-Fi to reduce
cellular traffic consumption combined with the potentially associated energy con-
sumption for fetching over cellular networks, which is much higher than for Wi-Fi.

To inspect this aspect, Figure 6.40b depicts how much energy each application us-
age causes. We observe that for both the percentiles – in particular the data-intensive
applications – and on average, EBC+ consumes less energy than its competitors. We
further observe that by utilizing perfect predictions for application usage and its
content, the average energy consumption is reduced by nearly 40% and 49% com-
pared to EBC+ and no prefetching strategy, respectively. This results from avoiding
unnecessary prefetches and prefetching the correct amount of content.

Figure 6.40c accumulates the energy footprint on a daily basis. Here we observe
that among all competitors (EBC: Oracle excluded) the no prefetching strategy con-
sumes the lowest average amount of energy per day. This is due to the prefetching
activities of all other approaches. However, if EBC+ has a perfect knowledge of which
applications to prefetch and when, the daily average energy consumption can be re-
duced by 122.5 J, which corresponds to 0.42% of our exemplarily chosen LG Nexus
5 battery with 28,800 J in total. Similar to our analysis on the cellular traffic foot-
print, we inspect the potential reasons for this gap in energy consumption in the
next section.
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Figure 6.39: Daily cellular traffic footprint caused by prefetching activities, application usage,
and in total per day.
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(b) Energy footprint of application usage.
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Figure 6.40: Daily energy footprint caused by prefetching activities, application usage, and
in total per day.
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Figure 6.41: Amount of time required to load application A in memory and to transmit the
required startup network content.

6.7.4 Application Load Time

Figure 6.41 shows how long it takes to load an application in memory and to fetch
startup traffic upon each application launch. We observe that EBC: Oracle achieves
the best results with 2.15 s on average. The runner-up is our EBC+ with 2.8 s on aver-
age and 2.85 s if l̂x = 4 is used. Compared to that, both versions of PREPP achieve
worse results with 2.89 s for the prefetch-aggressive version PREPP–B and 3.4 s for
the restrictive version PREPP–B Wi-Fi only. The worst results are measured for the
no prefetching strategy. PREPP–B’s aggressive style to prefetch application content
pays off for 2.5% (P − 97.5) of application launches only.

6.7.5 Number of Applications that Benefit from Prefetching

Figure 6.42 summarizes how many applications per user benefit from prefetching ac-
tivities of the particular approach. Figure 6.42a presents these results for the Device
Analyzer data set. We observe that EBC+ is able to serve nearly the same amount of
applications as its oracle sibling EBC: Oracle. The EBC version with l̂x = 4 is still able
to serve for 51% of applications for at least half of the individuals in the Device An-
alyzer data set. Both version of PREPP target a much smaller audience with median
values of 21% and 17% for PREPP–B and PREPP–B Wi-Fi only, respectively.

Figure 6.42b shows these results for the LiveLab data set. We observe that all but
the EBC: Oracle approach are able to address less than 8% of applications. The much
lower value of BA is simply due to the fact that there is no traffic volume information
available in the LiveLab data set. In this case, all applications are treated the same
and thus none of them are restricted in being prefetched. In contrast to the Device
Analyzer data set, this results in the behavior that the most likely applications to the
used in a session are also those which are prefetched.
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Figure 6.42: Number of applications that benefit from prefetching. The value BA(U) is com-
puted per user U as a ratio between the number of distinct applications that are
ever prefetched over the total number of distinct applications ever launched by
the user U.

6.7.6 Prefetch Duration

Lastly, we inspect tfetch(k), i.e., the time required to complete prefetching of session
k. These results are presented in Figure 6.43. We observe that EBC+ requires 4.2 s on
average, while PREPP–B Wi-Fi only tends to spend approximately 1.7 s on average.
This results from the fact that PREPP–B Wi-Fi only does not prefetch any applications
in sessions with no Wi-Fi, which yields to this low value. EBC+, however, still requires
less time on average to prefetch a session than its competitor PREPP–B.

6.7.7 Conclusions

We conclude our evaluation of EBC by summarizing the performance results and
drawing conclusions. Figure 6.44 shows the five performance metrics aggregated for
each approach in a separate radar chart. In this case, we only consider the five realis-
tic approaches, i.e., we exclude EBC: Oracle with its perfect knowledge. Figure 6.44a
reports the results for our default configuration EBC+. We observe that in four out of
five categories, EBC+ outperforms its competitors. Even by keeping l̂x = 4 for a fair
comparison with PREPP, EBC performs better in all but one category, which corre-
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Figure 6.43: The amount of time it takes to prefetch a session.

sponds to the daily average energy consumption. Here, the no prefetching strategy
achieves the best result. As already mentioned, we investigate this observation in
Section 6.8.

Overall, we conclude that EBC’ potential to identify and to actively prefetch data-
intensive applications allows reducing the daily average cellular traffic footprint, av-
erage application load time, and improves both median and average application con-
tent freshness. This comes at additional daily average energy costs of 51 J compared
to the best performing no prefetching solution. This corresponds on our exemplarily
chosen mobile device battery to 0.18% of the total energy budget.

6.8 hunting down the reasons for the energy overhead

Our evaluation results from Section 6.7 reveal two interesting aspects that require
a follow-up analysis. First, all non-oracle approaches consume more energy on av-
erage per day than the no prefetching strategy. Second, there is a gap in the daily
average cellular traffic footprint of nearly 9 MB between EBC+ and EBC: Oracle. Our
microbenchmarking results from Section 6.6.4 revealed inaccurate traffic estimations
for a fraction of data-intensive applications. Therefore, we now inspect the impact
of these traffic prediction errors by equipping all considered prefetching strategies
with a traffic oracle. This oracle is able to accurately estimate how much traffic will
application A generate upon its next launch. We make this decision because we want
to eliminate part of the estimated values to reduce the search space for sources that
decrease the approaches’ performance in terms of the energy footprint.

We start with the traffic volume estimation because our microbenchmark results in
Section 6.6.4 demonstrate the toughness in accurately predicting how much traffic an
application will generate upon its next launch. The consequences of this inaccuracy
are either the additional overhead costs that are associated with multiple fetching of
network content or wasting unnecessary energy for prefetching too much applica-
tion content. This strategy simulates the behavior that other authors in related work
already consider as necessary [95, 211]. To be more precise, applications should be
responsible to monitor user activities and accurately estimate which content parts
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(a) EBC+ (b) EBC: l̂x = 4

(c) PREPP–B (d) PREPP–B Wi-Fi only

(e) No prefetching

Figure 6.44: Performance metrics grouped for each approach, individually. The better the
result for each metric, the closer the corresponding point on the axis is to the
outer boundary.
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Figure 6.45: Daily cellular traffic consumption. The consumption is computed per day and
user. The results are computed by utilizing traffic oracle for all approaches.

the user will access next time and to which traffic volume this content accumulates.
This information is then passed to the prefetching algorithms such as EBC or PREPP
to make the final decision on which applications should be prefetched. Therefore, we
adopt this assumption to inspect the impact of accurately predicting traffic volume
on cellular traffic and energy footprint.

6.8.1 Cellular Traffic

Figure 6.45 reports on the daily cellular traffic consumption. We observe that all
approaches improve in terms of cellular traffic footprint if they are provided with
the accurate traffic volume estimations. In particular, EBC+ improves its daily average
cellular traffic footprint by 6.25 MB and is now only 2.69 MB above the optimum that
is set by EBC: Oracle. Improvements for both versions of PREPP are less tremendous
than for EBC+. This underlines EBC+’s ability to accurately schedule prefetches of
data-intensive applications.

6.8.2 Energy Consumption

The aforementioned observations directly influence the energy footprint. Figure 6.46
shows daily energy consumption for EBC and its competitors if the traffic oracle is
used. We observe that, in particular, EBC+ now outperforms the no prefetching strat-
egy by 85 J on average per day and is only 37.48 J above the optimum. The PREPP–B
Wi-Fi only strategy now also slightly consumes less energy than the no prefetching
strategy. However, it still consumes 70.6 J more energy than EBC+ on average per day.

6.8.3 Conclusions

Figure 6.47 groups the performance metrics for each approach, individually. By fix-
ing the inaccuracies in estimating traffic volume, we observe in Figure 6.47a that
EBC+ is now able also to optimize its daily average energy consumption by reducing
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Figure 6.46: Daily energy consumption. The consumption is computed per day and user. The
results are computed by utilizing trafficoracle for all approaches.

it dramatically. Comparing EBC+ to any version of PREPP, we observe that although
the energy and cellular traffic footprints reduces for PREPP too, it still however lacks
behind EBC+ and EBC: l̂x = 4 in terms of four out of five metrics. PREPP–B tends
to slightly improve its average load time with 2.65 s and thus 0.1 s better than EBC+
because of its high efforts and costs to also prefetch application content over cellular
networks.

6.9 discussion : prefetchability of mobile applications

In our work we utilize a simple scheme to model how much traffic for a given ap-
plication was successfully prefetched (hit traffic) and how much of it still needs to
be fetched upon application launch (missed traffic). To do so, we assume that every
byte prefetched before the launch, can be used by the application. This step was
necessary to cope with a fundamental issue from which all prefetching approaches
suffer. Namely, quantifying how many bytes of the traffic consumed during an ap-
plication use could have been prefetched. We first provide a brief definition on the
prefetchability of a mobile application in Definition 6.9.1, then the longer one.

Definition 6.9.1 (Prefetchability of a mobile application)
We define the prefetchability ⇧(A) of the mobile application A as the ratio of the
traffic volume that could have been prefetched and used over the total traffic
volume generated during corresponding application usage.

Estimating prefetchability of mobile applications is important for prefetching algo-
rithms as it allows them to better prioritize which applications should be prefetched
by explicitly considering their prefetchability. The metrics prefetching precision and
prefetching recall capture the performance of prefetching algorithms. We define the
prefetching precision as the amount of traffic prefetched and used by the application
over the total prefetched amount of traffic. Similarly, the prefetching recall is the ratio
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(a) EBC+: Traffic oracle (b) EBC: l̂x = 4, Traffic oracle

(c) PREPP–B, Traffic oracle (d) PREPP–B Wi-Fi only, Traffic oracle

(e) No prefetching

Figure 6.47: Performance metrics grouped for each approach, individually. The better the
result for each metric, the closer the corresponding point on the axis is to the
outer boundary.
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of the amount of traffic prefetched and used by the application over the generated
traffic by the application in total.

However, capturing applications’ prefetchability is challenging. It requires moni-
toring not only the amount of traffic generated by the application but also the specific
content. This allows measuring two aspects. First, how much of the traffic content
was already available before the application was launched. Second, how much of
the traffic content was generated as the application was used and is therefore not
prefetchable. We refer to this traffic content as the interactive traffic. Definition 6.9.1
gives us an upper bound of the prefetchability of applications as it assumes a perfect
scenario in which the application knows exactly which content to prefetch and to
store for later user requests. In practice, this is often not the case as it requires each
application to anticipate the content the user will access and to keep the correspond-
ing content in cache.

Falaki et al. made a first attempt to define the interactive traffic as traffic that was
“generated when the screen is on” [82]. Although this definition provides a first step
toward understanding what classifies traffic as interactive, there is no guarantee that
indeed the traffic generated while the screen is on could not have been prefetched
before and vice versa. Therefore, we now briefly discuss a potential experimental
approach that allows us to get a first impression of the prefetchability of mobile
applications. Our approach is motivated by the work done by Ravindranath et al. who
used automated monkeys to evaluate how accurate Procrastinator is able to prevent
mobile applications from downloading content [170]. In this sense, an automated
monkey is a script that runs on a mobile device and executes particular predefined
tasks. These tasks might be random swipes, clicks, or reproduced actions of an actual
user. Figure 6.48 depicts the envisioned setup to measure the prefetchability ⇧ of
mobile applications.

The setup involves multiple mobile devices with identical hardware and software
configurations. Each of these devices runs a different prefetching strategy. While
executing the same actions on the mobile devices, these prefetching strategies at-
tempt to prefetch application content. To measure the achievable benefit of each of
the prefetching strategies, we could run the no prefetching strategy in parallel. To
measure the applications’ prefetchability, we further define a prefetching algorithm
to which we refer as the Repeater. For each given application action, Repeater first
empties the cache of the given application and then executes this action twice back-
to-back. For each of these two executions, Repeater measures the amount of traffic
generated. Given these two pieces of information, we compute the prefetchability
⇧(A) of the application A as:

⇧(A) = 1− T(A,2)
T(A,1) , (6.17)

where the denominator corresponds to the traffic volume generated during the first
application launch after the cache was cleared. Similarly, the enumerator reflects the
traffic volume generated upon the second launch of the application. The limitation
of this computation is that there is still a probability that the application content
will change between these two executions even if they are performed immediately
back-to-back.
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Figure 6.48: An exemplarily experimental setup to measure the prefetchability of mobile ap-
plications and the corresponding prefetch precision and recall of the existing
prefetching algorithms.

To utilize this information in EBC, we would initialize a public repository that
contains values of ⇧(A) measured for mobile applications. EBC could then retrieve
this data and adapt its estimation of the traffic that could be re-used by the particular
application if the estimated traffic volume is prefetched. EBC would use the product
of ⇧(A) and T̂remain(A,k) as the new benefit estimation that will be achieved if
the given application A is prefetched. To obtain realistic application usage behavior,
recording application usage behavior in a wild and then replaying the records might
be an option. Alternatively, possibilities to reproduce the application usage behavior
of a selected individual on-the-fly by the aforementioned experimental setup can
also be evaluated for its practical feasibility.

6.10 related work

We now examine existing literature that is related to our work. Similar to human
mobility prediction, mobile application usage prediction supports practical appli-
cation scenarios. For instance, application usage predictions can be used to show
applications that are most likely to be used next [185, 204], delay data transmis-
sions [170, 153, 159], prefetch application content [218, 95], reduce mobile devices’
energy consumption [14, 130], reduce startup time of mobile applications [219, 159],
and others [71, 128]. We divide the following section into four parts. First, we cover
in Section 6.10.1 several analysis work toward understanding how individuals inter-
act with their mobile devices to satisfy their information needs. In Section 6.10.2, we
then review related work on application usage prediction. Furthermore, we consider
existing approaches on mobile application content prefetching in Section 6.10.3 and
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on mobile application content offloading through Wi-Fi in Section 6.10.4. Lastly, we
summarize related work by highlighting novelty in the design of EBC.

6.10.1 Understanding Mobile Application Usage Habits

To develop a mobile application usage prediction algorithm, it is necessary to under-
stand when, how, and why individuals use mobile applications and which aspects
influence their usage. This section is dedicated for this reason. Making phone calls
and receiving short text messages were among the first “killer applications” on mo-
bile devices. With the proliferation of cellular data plans and millions of mobile
device applications in online stores such as Google Play Store, Apple’s App Store, or
Microsoft Store, there is literally a mobile application for any purpose available. The
traditional communication channels such as sending text messages or making phone
calls are continuously replaced by applications like WhatsApp [51]. WhatsApp enjoys
over a billion of subscribers [214] who generate billions of messages every day. Other
applications such as YouTube are although not the most frequently used ones, but are
responsible for over 20% of the entire mobile traffic in the US [213]. Therefore, it is
crucial not only to understand which applications and how individuals will use next,
but also which of them are pivotal to be prefetched. The following research work is
related to ours in the sense as it provides us with insights toward designing EBC.

Church et al. investigate individuals’ information needs and how these needs are
satisfied [52, 53, 54, 55]. In one of their earlier work, they run a comprehensive survey
of mobile Internet usage [53]. Their results are drawn from 30 million mobile Internet
requests generated by 600,000 European mobile Internet users within a time span of
24 hours in late 2005. Back in 2005 search engines and web portals operated by
the network providers were the primary source for retrieving mobile content. In
contrast to that, today individuals have hundreds of applications installed on their
mobile devices to access content. The authors report on the daily average amount
of traffic generated by search and browsing sessions that accumulates to 270 KB and
67 KB, respectively. Today, this traffic volume is 25 to 50 times higher corresponding
to several tens or even hundreds of MB per day [56].

In a further publication, Church et al. report on a four-week, paper-based study
of mobile information needs [52]. The goal of this work is to understand why the
participants have accessed the particular information content. A group of 20 partici-
pants are asked to keep a diary of their information needs and document how these
needs were satisfied. In addition, the participants are also asked to indicate temporal
and spatial context. The latter is required to compare between the information needs
in situations in which individuals are in a static context, e.g., at home of work, and
those in a mobile context. The results of this study reveal that in the latter case there
is a strong correlation between the types of arising information needs, e.g., traffic
updates or restaurant recommendations, and temporal and spatial context.

Teevan et al. extend and confirm the results obtained by Church et al. by running
a survey with almost 1,000 participants at a large company [198]. The goal of their
work is to understand the importance of spatial, temporal, and social context for
mobile phone search behavior. One of the findings the authors reveal is that local
searches tend to be highly contextual, i.e., they depend on individuals’ environment.
For instance, the most prominent information need is to find a route to a desired des-
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tination. Furthermore, study participants report that the location they were searching
for should be visited in the near future. The authors report that 64% of the informa-
tion needs arise in a mobile context with a high interest in traffic updates and route
information. These results are relevant for our work for multiple reasons. First, two-
third of information needs arise when individuals are not at home or work. This
provides a solid motivation for our work on prefetching of mobile application con-
tent. Second, there is a strong correlation between the type of information needs
and both individuals’ temporal and spatial context. This indicates that predicting
mobile application usage will benefit from context data. Third, with the increasing
number of existing mobile device applications that aim to satisfy individuals’ infor-
mation needs, predicting their usage and prefetching their content supports plethora
of application scenarios.

Do et al. analyze whether and how currently visited places correlate with applica-
tion usage [72]. To this end, the authors leverage part of the Nokia data set, which
we also use in our work (cf. Section 3.1). For each application and relevant place, the
hourly usage frequency metric is computed. It is defined as a number of times the par-
ticular application was used over the total staying time in hours at the given relevant
place. Do et al. show that a correlation exists between application usage and individ-
uals’ relevant places. For instance, an application is very frequently used whenever
the particular place is visited or almost never. We explore individuals’ spatial infor-
mation with the goal to improve application usage predictions.

Furthermore, temporal information also plays a crucial role in predicting mobile
application usage. Boehmer et al. run a large-scale study with 4,125 participants who
installed an Android application on their mobile device and allowed logging which
applications are used at which time of day [35]. The resulting data set is available
upon request and contains the logs of over 22,000 applications for up to 127 days.
The authors categorize the applications based on their categories in the Google Play
Store. Two of the findings outlined by Boehmer et al. are particularly relevant to
our work. First, the existence of a correlation between hour of day and application
category. Second, the fact that this correlation varies from category to category. For
instance, while applications in the Browser category tend to be used in the morning
hours very frequently, the applications related to communication are mostly used in
the afternoon. These insights motivate us to also incorporate individuals’ temporal
context toward predicting application usage.

Lastly, Falaki et al. analyze the connection between application usage and the net-
work traffic generated by the applications [81, 82]. To this end, the authors leverage
two data sets with 33 and 222 individuals. The authors’ results reveal high diversity
across mobile applications in terms of the amount of daily generated traffic. The ap-
plications receive from 1 MB to 1,000 MB of data per day. However, unlike our work,
there is no differentiation between the Wi-Fi and cellular traffic. Making this differ-
entiation is necessary to prefetch data-intensive applications over a Wi-Fi instead of
cellular connection. This allows reducing the cellular traffic. The authors take a piv-
otal step toward classification of traffic into interactive and non-interactive one. Doing
so is a challenging task as we discussed it in Section 6.9. Falaki et al. define interactive
traffic as the one that “was generated when the screen is on” [82]. Although this defini-
tion provides a step forward, it misclassifies traffic in several situations. For instance,
the initial messages of messengers such as WhatsApp are typically received when
the screen is off kicking-off a conversation. In this case, given the aforementioned
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definition of interactive traffic, part of these messages would be classified as non-
interactive. In contrast to that, multimedia content such as YouTube videos, which
account to about 20% of the network traffic in the U.S. [213], are typically watched
when the mobile device screen is on. However, this content could have been eas-
ily prefetched in advance. By considering the traffic received one minute before the
screen is turned on as interactive too, Falaki et al. take a first step toward tackling
the aforementioned drawbacks. Building upon this definition of interactive traffic,
the authors’ results reveal that for about 90% of users, over 50% of traffic is interac-
tive. We believe that the latter value might be lower after refining the definition of
interactive traffic.

6.10.2 Mobile Application Usage Prediction

We now review different approaches that predict mobile application usage. These
approaches are very relevant to our work because the ability to predict application
usage is a pre-condition to enable the prefetching application content. Shin et al. con-
duct a comprehensive analysis of multiple context features obtained from a mobile
device and their relationship to mobile device application use [185]. To this end, the
authors consider 37 features that describe individuals’ context. Among these fea-
tures, data from sensors such as GPS, battery, cellular network, or accelerometer are
used. The Greedy Thick Thinning technique is applied to reduce the feature space with
the goal to maximize the Bayesian score function [151]. As a machine learning tech-
nique, the authors use the Naïve Bayes (NB) classifier. They do so because their goal
is to derive a probabilistic model – one for each application. These models calculate
the probability that the corresponding application will be used in the given context.
Finally, to demonstrate the applicability of these models, the authors design and de-
velop an application for a dynamic Android main screen that suggests the most likely
applications to its users. This application was released in the Google Play Store and
extensively used by 23 users for at least one month. The analysis of which features
has the highest predictive power reveals that the most prominent features are last
used application, cellular network ID, and time of day. These results confirm the obser-
vations presented in the previous subsection that spatial and temporal information
correlate with the use of mobile applications.

Do and Gatica-Perez confirm parts of the aforementioned observations by ana-
lyzing the correlation between a set of different features and applications used in
the next ten minutes [71]. To this end, the authors define six features including
last application, time of day, and individuals’ current location. For their analysis, the
authors leverage part of the Nokia data set, which is introduced in Section 3.1. Do
and Gatica-Perez train a LR and Random Forest (RF) model to measure the perfor-
mance achieved by several combinations of these six features. Information about the
last application used and individuals’ location are observed to have the highest cor-
relation with applications that will be used in the next ten minutes. We leverage the
results presented by Shin et al. and Do and Gatica-Perez to select features for the
application probabilities computation in EBC.

One of the prominent application scenarios for mobile application usage predic-
tion is the reduction of launch times of these applications. Yan et al. propose Fast App
Launching with Context (FALCON) – a system that predicts mobile application us-
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age and prelaunches them in advance to reduce their startup time by avoiding stale
application content as much as possible [219]. FALCON relies on individuals’ con-
text derived through mobile device sensors and recognized patterns in the sequence
of the most recently used applications. The proposed cost-benefit function accounts
for both the potential negative consequences from a wrong prediction, e.g., wasted
energy, and the expected latency benefit of correct application predictions. FALCON
is designed based on the insights obtained from analysis of the Rice LiveLab data
set [183]. Similar to the work by Do and Gatica-Perez [71], Yan et al. first identify fea-
tures that the authors claim to be important for mobile application usage prediction,
ending up with six features in total. One of these features is the so-called trigger,
indicating starts of specific application sequences. For instance, if the individual is
currently using the application A, then it is most likely that she will use the appli-
cations D and E in the next few minutes. After the prediction is made, a novel cost-
benefit learner decides which of these applications should be prelaunched. To this
end, the authors measure applications’ startup time and the energy costs of a startup
a priori. Given these values and estimated performance metrics for the application
predictions, the proposed cost-benefit function makes the final decision upon which
applications to prelaunch. Although FALCON aims to reduce applications’ startup
time, we adopt its cost-benefit learner by extending it to a multi-weights (benefits)
and multi-costs problem solver. Unlike EBC, FALCON triggers the prefetching pro-
cess shortly before it anticipates that the particular applications will be used. In this
case, the entire content of these applications will be transmitted over the currently
available network, which might be cellular. In contrast to FALCON, EBC prefetches
data-intensive applications as long as Wi-Fi connection is available.

Another framework for mobile application prediction is proposed by Xu et al. [218].
The solution supports both faster prelaunching of applications and prefetching of
their content. Similar to other related approaches, the authors incorporate applica-
tion usage history and currently sensed individuals’ context into their prediction
framework. A novel aspect of their work consists in the fact that they consider a
third information source for predictions: shared application usage patterns of other
individuals. More precise, individual prediction models are enriched with predic-
tion models of other individuals after a predefined amount of time. A novel metric
measures similarity between application usage behavior of individuals that allows
defining weights of the outputs of each particular prediction model. The framework
relies on a set of features that are found to be strongly linked with application usage
such as spatial and temporal context. However, instead of describing each applica-
tion usage with one representation of each feature, the proposed framework first
collects sensor data for the entire application usage period as an App Bag and then
computes the particular features based on these records. To measure similarity be-
tween App Bags, the authors define a kernel function that satisfies the Mercer condi-
tion. This condition is relevant for finding the global optimum [182]. Lastly, a novel
metric for finding similar individuals is introduced by Xu et al. [218]. It incorporates
both context and application usage similarities between individuals. The introduced
framework is agnostic to the particular prediction algorithm; however, the authors
apply the k-NN classifier in the evaluation phase. The important result with respect
to our work is that enriching individual prediction models with prediction models
from other individuals provides more accurate prediction results. In contrast to our
work, the authors do not incorporate any network traffic information in their appli-
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cation forecasts. Furthermore, the proposed framework by Xu et al. does not offer
any mechanism that allows deciding which of the predicted applications should be
prefetched and when.

Lastly, Parate et al. propose PREPP – a system for predicting mobile applications
and prefetching their content [159]. We now briefly describe how PREPP computes
the application usage probabilities and in the next subsection discuss its prefetch de-
cision engine. PREPP addresses the issues of the mobile content freshness, the mobile
OS constraints while implementing PREPP, the privacy concerns by omitting using
any contextual data, and the cold-start issue [177]. To predict which applications will
be used next, the authors design Application Prediction by Partial Matching (APPM)
– an application prediction model based on the concept of PPM [40]. This model con-
siders a sequence of individual’s application usage history as a text string. It then
extracts sequences of up to K most recently used applications, i.e., most recent K,
K − 1, . . . , K −K, and searches for the same sequences in the application usage his-
tory. Based on the results, APPM builds conditional probabilities for the applications
that are used after each of the extracted application sequences according to their
occurrence. To address the temporal predictions, i.e., to answer the question when
the particular application will be used next, PREPP derives for each application a
conditional CDF. This CDF incorporates all time spans between those the particular
application was not used. PREPP is similar to our approach as we also derive condi-
tional probabilities that indicate when and which application will be used. However,
we incorporate additional contextual data and show that they increase predictive
power. In particular, we compare EBC to PREPP and show that EBC’s two-sided strat-
egy for handling the prefetching of mobile applications depending on the availability
of Wi-Fi allows it to achieve better reduction in cellular traffic footprint.

6.10.3 Prefetching Mobile Application Content

Among different application scenarios that leverage mobile application usage pre-
dictions, prefetching of mobile application content is one of them. Higgins et al. pro-
pose Informed Mobile Prefetching (IMP) – a system for prefetching mobile applica-
tion content [95]. IMP provides a cost-benefit function that allows deciding whether
and when the particular content should be prefetched. It also hides the entire back-
ground prefetching complexity from applications by providing a well-defined inter-
face with a set of function calls. Whenever an application decides that the particular
content, e.g., an e-mail or a news article, should be prefetched, because the user will
probably access it in the near future, a set of IMP function calls is triggered. In this
case, the application informs IMP about the content that needs to be prefetched and
its size. Building upon this information and the current network conditions such
as Wi-Fi and cellular network bandwidth, IMP leverages its cost-benefit function to
decide whether the content should be prefetched and over which network interface.
IMP’s cost-benefit function combines three metrics: network performance, energy
costs, and probability that the prefetched data will be used. The design of this func-
tion is inspired by the Transparent Informed Prefetching (TIP) algorithm [162]. If the
decision is to prefetch application content, then it is passed to the lower layer that im-
plements Intentional Networking (IN) – an abstraction for multiplexing traffic over
multiple network interfaces [94]. Lastly, each application can prioritize its content by
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assigning different labels. The proposed cost-benefit function incorporates the three
aforementioned metrics that are also relevant for our work. Thus, it is a source of
inspiration for the design of the EBC’s cost-benefit function. The major difference be-
tween our work and IMP is that in the latter case applications request the specific
content to prefetch, i.e., IMP operates reactively. EBC, however, provides a centralized
solution to predict which application should be prefetched. We opted for this design
decision for mainly three reasons. First, it allows reducing computational overhead
on resource-constrained mobile devices. Second, a decentralized decision, such as
the one proposed by Higgins et al. [95], requires each application to have access to
all relevant sensor data, while some of them might be sensitive, to infer when and
which content should be prefetched. This behavior raises serious privacy and secu-
rity concerns. Third, unlike IMP, EBC does not require any modification to the mobile
applications and thus has a higher scalability than IMP.

As described in the previous Subsection 6.10.2, Parate et al. propose a system
named PREPP that is able to predict when and which application will be used [159].
These predictions are then used to decide whether and when the particular applica-
tions should be prefetched. So far, we focused on PREPP’s ability to predict mobile
applications. We now review the prefetching algorithm of PREPP. The aforemen-
tioned conditional probabilities of when and which applications will be used are
fused by the decision engine of PREPP. Based on an offline analysis of application
usage history, PREPP is able to adaptively extract a probability threshold that is used
to decide which applications should be prefetched according to the fused probabili-
ties. The evaluation results show that PREPP outperforms FALCON [219] in a set of
performance metrics. Comparing to EBC, PREPP does not consider any information
about the expected network traffic generated by the predicted applications. It fur-
ther does not attempt to prefetch applications, for instance, those that are expected
to generate a high amount of traffic, by leveraging Wi-Fi at an earlier point in time.
We address this issue with EBC by incorporating both Wi-Fi status and the expected
network traffic caused by the predicted applications.

Balasubramanian et al. focus on prefetching of websites based on individuals’
queries [12]. They develop and deploy a system called Thedu that acts as a proxy
between individuals’ mobile devices and search engines such as Google or Yahoo!.
Thedu targets mobile individuals that experience a bad cellular network connectiv-
ity, but are able to connect to a Wi-Fi AP en route their destination. Whenever a
user submits a search query, Thedu prefetches search results returned by a search
engine, prioritize these results, and allows individuals to download them as soon as
the user is connected to Wi-Fi again. By doing so, Thedu ensures that the relevant
content is ready before the next request is issued. Furthermore, favorite websites are
already prefetched and can be delivered even faster. To reduce the prefetched content
to the most relevant one, Thedu applies a Bayesian classifier to identify the type of
request, e.g., homepage or content. It then applies an Information Retrieval (IR) tech-
nique to compute a relevance score of each search engine result. Finally, it returns
the most relevant results to the users if the score exceeds a pre-defined threshold. In
contrast to our work, Thedu focuses on prefetching of search query results while we
focus on mobile applications.

In another publication by Balasubramanian et al., the authors contribute an energy
model for the three communication interfaces 3G, GSM, and Wi-Fi [14]. They show
that in 3G over 60% of the energy required to transmit a given message is overhead.
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Furthermore, 3G consumes three times more energy than Wi-Fi, in cases in which
Wi-Fi is only available 50% of the time. This insight supports the rationale behind
EBC to prefetch data-intensive applications as long as Wi-Fi is available. Balasubra-
manian et al. also show that grouping transmission activities allows reducing energy
consumption for all three network interfaces. This is because the overhead is shared
among all grouped transmissions. Building upon the obtained insights, the authors
propose an energy model that allows computing how much energy will be used
for a transmission of the given message with respect to its size. Given this energy
model, the authors propose TailEnder – a system for prefetching web search query
results. To this end, TailEnder prefetches the top X search results. The amount of doc-
uments to prefetch (X) is maximized based on the estimated probability that these
documents will be used, energy consumption, and documents’ size. In this sense,
both Thedu and TailEnder are complementary to our work. All three approaches at-
tempt to transfer as much required data as possible over Wi-Fi. However, while both
Thedu and TailEnder act reactively by waiting for individuals’ requests to prefetch
data, EBC leverages mobility predictions and other contextual information to antic-
ipate which mobile applications to prefetch in advance. Furthermore, although all
three approaches prioritize the application that should be prefetched, the underly-
ing rationale behind each of the prioritization technique differs substantially as the
type of the prefetch content differs too. We adopt the GSM energy model proposed
by Balasubramanian et al. [14] in EBC.

As several existing mobile applications already implement a functionality to prefetch
data to reduce interaction latency, Ravindranath et al. introduce Procrastinator – a sys-
tem that delays prefetching [170]. Procrastinator aims to identify parts of the content
that the given application is trying to prefetch, but is unlikely to be used immediately.
The prefetching operation for this particular content is then delayed. Procrastinator
achieves this goal through a static analysis of the applications’ binary file while
searching for network calls with a set of common prefetching patterns. All network
calls of the given application are then redirected to the Procrastinator Runtime. Pro-
crastinator requires users to specify how much cellular traffic is covered by the user’s
data plan. Procrastinator then uses this information to determine which parts of the
content in which situation should not be prefetched. Another parameter that is used
for the prefetching delay decision is the current view of the open mobile application.
The far the detected network call, which tries to prefetch data, in the current UI tree
is, the more likely it is that Procrastinator will delay its execution. In contrast to our
work, Procrastinator focuses on delaying the execution of network call instead of
prefetching of mobile applications.

Lastly, Wang et al. present EarlyBird – a network content prefetcher that wraps
another Twitter mobile application with the goal to prefetch the user’s feeds [210].
EarlyBird uses a regression-based content prediction model in a combination with
several features to decide which feeds and associated links should be prefetched.
Similar to our work, EarlyBird prefetches if Wi-Fi is available. However, unlike EBC,
EarlyBird requires the modification of the particular Twitter application to operate.
This requirement restricts the scalability of EarlyBird.
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6.10.4 Delayed and On-the-spot Offloading of Mobile Application Content

Although several approaches exists that link human mobility predictions to network
connectivity, they all take a central authority point of view to allow anticipating how
much network resources to pre-provision [32, 8, 220, 161, 132, 7, 193]. One of the few
approaches that considers individuals’ point of view to connect human mobility pre-
dictions with connectivity forecasts is BreadCrumbs, which is proposed by Nicholson
and Noble [153]. BreadCrumbs predicts Wi-Fi up- and downstream bandwidth for
k time slots ahead. The authors set one time slot to be 10 seconds; however, Bread-
Crumbs can also operate with other time slot lengths. Before predicting whether
Wi-Fi will be available k time slots ahead and with which bandwidth, BreadCrumbs
first predicts the location for the given individual in the corresponding time slot. To
this end, it leverages a 2nd order Markov model with fallback to the 1st order [193].
The authors define a location as a geographical square region in a given area such
as a metropolitan area. Given the individual’s mobility history, BreadCrumbs first
derives a 2nd order Markov mobility prediction model. This model outputs a prob-
ability distribution for visiting one of the previously visited locations. Then, when-
ever the individual visits one of these locations, BreadCrumbs estimates the up- and
downstream bandwidth of the available Wi-Fi APs. This information is used to build
a posteriori distribution of the observed Wi-Fi bandwidth at the particular location.
Finally, BreadCrumbs fuses both the probabilities for the next visited location and
the derived Wi-Fi bandwidth distributions of each location. By applying the ML
approach, BreadCrumbs predicts which location will be visited k time slots ahead
and the corresponding Wi-Fi connectivity in terms of bandwidth. These predictions
are achieved by recursively predicting location and bandwidth for each time slot be-
tween the current one and k ahead and accumulating the forecasts. Unlike our work,
BreadCrumbs does not forecast which mobile applications will be used in the near
future, nor estimates how much traffic will be generated by them.

With TailEnder, Balasubramanian et al. are not only able to prefetch data, but also
to delay their transmission [14]. To this end, TailEnder groups outgoing transmis-
sions from individuals’ mobile device. In this case, each transmission must specify
a deadline until its transfer must be accomplished. By grouping the outgoing traf-
fic, TailEnder reduces the tail time of each transmission, i.e., the time spent in the
high-power state after a transmission occurred. If multiple transmissions occur one
after each other, only the last one exhibits the tail time, which is responsible for a
substantial energy consumption regardless of the network interface. As soon as one
transmission occurs, because of the specified deadline, TailEnder attaches the queued
transmissions to the initial one.

Another system proposed by Balasubramanian et al. is called Wiffler and augments
3G using Wi-Fi [13]. To this end, Wiffler uses Wi-Fi over 3G whenever possible. How-
ever, experiments show that Wi-Fi is only available in 11% of time and often has a
substantially lower throughput than 3G. These observations are due to at least two
facts. First, the experiments rely on publicly available Wi-Fi APs that are known
for having restricted connectivity. Second, the Wi-Fi traces were collected by driv-
ing busses and not individuals who tend to spend most of their time at home or
work, i.e., at places with an often available Wi-Fi AP. Wiffler predicts Wi-Fi connectiv-
ity for the next minutes and then delays transmissions of the mobile devices’ content
if possible. This decision depends on both mobile application delay tolerance, which



236 prefetching of mobile application content

must be specified by each application, and the predicted Wi-Fi conditions. A sim-
ple equation estimates whether the predicted Wi-Fi conditions are sufficient enough,
with respect to the size of the transmission, to transmit data before the delay tol-
erance threshold expires. If so, the transmission is postponed until either the delay
tolerance threshold expires or individuals’ mobile device connects to Wi-Fi. Other-
wise, the queued messages are transmitted immediately. Wiffler leverages a simple
technique to predict Wi-Fi connectivity. It computes the average throughput of the
latest N Wi-Fi encounters and the average time between them. These two values are
then used to predict when Wi-Fi will be available and its corresponding throughput.
However, this technique does not predict for how long Wi-Fi will then be available.
The authors compare Wiffler to a slightly adapted version of the aforementioned
system BreadCrumbs [153]. Wiffler achieves comparable performance regardless its
much simpler Wi-Fi prediction technique. This might be due to the fact that busses
typically run according to a fixed schedule. Thus, a simple prediction technique that
learns from the history is sufficient enough to provide accurate results.

Han et al. address the target-set selection problem that aims to select k individuals to
whom the particular application content should be delivered through a cellular net-
work [92]. The remaining individuals should then receive the same content from the
original k individuals through Bluetooth or Wi-Fi. To this end, the authors propose
three algorithms that select such a subset of individuals. One of these algorithms
explores mobility history of each individual to predict where the particular individ-
ual will be at the given future time instant. The prediction algorithm infers at which
location the particular individual was in the past at the given time instant and then
predicts the most likely location to be the individual’s future location. Building upon
these predictions, one of the proposed algorithms selects a fraction of individuals to
whom the particular content is disseminated through a cellular network. The authors
focus on how these three algorithms can disseminate the particular content by ignor-
ing the question whether or not the selected k individuals are really interested in the
content. Given the amount of the potential content that is provided by the existing
mobile applications, such an assumption might be impracticable. Furthermore, un-
like our work, Han et al. do not consider individuals’ information needs and when
the particular content should be delivered. Lastly, although the aforementioned dis-
semination algorithms are suitable for stale and generic content such as news articles,
they are not suitable for personalized content such as Facebook updates or e-mails.
Therefore, we see EBC as complementary to the work presented by Han et al..

Similar to Balasubramanian et al. [12, 14, 13] and Nicholson and Noble [153],
Lee et al. run a quantitative study with 97 participants on the performance of 3G
mobile data offloading [130]. In contrast to the prior work, Lee et al. show that on-the-
spot offloading already transmits about 65% of data over Wi-Fi by achieving about
55% energy savings for mobile devices. However, short delays of a few seconds or
minutes, as suggested in related work, accounts to less then 2-3% of additional gains.
Building upon this observation, the authors compute interconnection times, i.e., time
periods without a Wi-Fi connection, for their data set that was collected in South Ko-
rea. The average of the interconnection times lies at about 40 minutes with a heavy-
tailed distribution. The distribution shows that 10% of the interconnection times are
longer than 162 minutes. This observation indicates the necessity for delay tolerance
thresholds that are longer than the previously suggested in related work.
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Other researchers analyze the potential benefits of Wi-Fi offloading or transfer de-
lays from economical or analytical point of view. Mehmeti et al. propose a queueing
analytical model to understand the potential gains achievable by offloading data
through Wi-Fi [144]. Their model incorporates parameters such as Wi-Fi availability,
user mobility, and data traffic. In contrast to the work by Mehmeti et al., Lee et al. an-
alyze economical incentives for both providers and users of cellular networks from
delayed offloading of parts of the traffic through Wi-Fi [128]. To this end, the au-
thors propose a model of a market with a monopoly network operator and users.
The market is based on a two-stage sequential game with operators controlling the
price and users are price-takers. This model incorporates four price strategies: flat,
volume, two-tier, i.e., the operator provides different data plans, and congestion, i.e.,
dynamic pricing with respect to time and location. Building upon this model, the
authors show that Wi-Fi offloading is economically beneficial for both stakeholders.
The benefits depend on the pricing strategy and delay tolerance. In this case, the
increase in monopolistic operator’s revenue ranges from 21% to 152%. Furthermore,
the model shows that Wi-Fi offloading, both delayed and on-the-spot, decreases sub-
scription prices for users leading to an increase from 73% to 319% in users’ surplus.
These observations clearly support intentions behind the aforementioned as well as
our approach to prefetch or offload traffic generated by mobile device applications
through Wi-Fi.

6.10.5 Summary of Related Work

After reviewing related work on different subtopics, we now summarize the exist-
ing approaches according to a set of identified categories. These categories reflect
the identified relevant building blocks of both the reviewed related work and EBC.
The categories are application prediction model, application traffic prediction model, Con-
sideration of the network type, and finally application scenarios. Table 6.13 provides this
summary that we now briefly discuss for each category.

application prediction model To prefetch application content, EBC must be
able to predict which applications will be used in the current application ses-
sion and in the near future. Approaches such as FALCON [219], PREPP [159],
and the one proposed by Shin et al. [185], derive individual application predic-
tion models by carefully selecting features for each individual independently.
In addition to these approaches, Xu et al. [218] as well as Do and Gatica-
Perez [71] utilize population prediction models to extend individual models
with application usage patterns that are shared among a wide population of
individuals. EBC is designed to be adaptive and lightweight. It operates as soon
as very few usage instances of an application have been observed. It further
refines its models through incremental learning [33] as more observations be-
come available.

application traffic prediction model Several approaches exist that build
their services on top of application predictions. However, none of them estimate
how much traffic the given application will generate in the given time frame.
This is pivotal for the prioritization of applications for which the content should
be prefetched, because some of them might be not frequently used, but if so
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then they generate a substantial amount of traffic. A well-known example of
this kind of application is YouTube. IMP assumes that each application on its
own will provide the traffic estimation [95]. In contrast to prior work and for the
first time to the best of our knowledge, EBC incorporates a novel per-application
and individual probabilistic application traffic prediction model by leveraging
the Device Analyzer data set, which is introduced in Section 3.2.

consideration of the network type One of the EBC’s core features is to prefetch
data-intensive applications as long as individuals’ mobile devices are connected
to Wi-Fi and to prevent these application from being prefetched over a cellu-
lar network. The goal of EBC is to reduce data transfers over a cellular net-
work and thus to reduce both energy and cellular traffic footprint. Although
existing approaches attempt to predict Wi-Fi availability and further parame-
ters [153, 13, 95] too, their prediction horizon is limited to a few seconds or
minutes only. However, according to the study by Lee et al., the average time
individuals’ mobile devices are not connected to Wi-Fi is more than 40 min-
utes [130]. This observation makes the aforementioned short prediction hori-
zons of tens of seconds impracticable. Therefore, we propose a threshold-based
approach to identify data-intensive applications based on the predicted appli-
cations’ traffic volume.

application scenarios Most of the considered related work targets data of-
floading or prefetching as one of their application scenarios. With respect to all
prior work, EBC sets apart from all of them with a unique combination of the
three aforementioned categories. In particular, application traffic predictions
and the two-sided strategy depending on the available network type improve
the ability in predicting both mobile application usage and the content that
should be prefetched.

6.11 conclusions and final remarks

In this chapter of the thesis, we presented the design, implementation, and evalu-
ation of EBC – a novel approach to schedule and execute application prefetches on
mobile devices. We exhaustively microbenchmarked EBC’s parameters to select a con-
figuration that achieves the best performance in terms of the defined goals and costs.
Lastly, we compared EBC to a set of competitors by drawing the lower and upper
bounds of the utilized performance metrics.

There are two major achievements of EBC. First, it reduces cellular traffic footprint
by nearly 10% or 4.4 MB on average per day compared to its closest competitor. This
traffic is caused by applications when the device is connected to a cellular network.
The consequences are savings in terms of monetary costs and startup delay. Second,
EBC improves the average application content freshness by 36%. It further serves for
more than twice as much mobile applications on users’ mobile devices as its closest
competitor.
EBC achieves both goals by reliably predicting which applications will be used in

the current session and by adapting its strategy to the availability of Wi-Fi. We evalu-
ated EBC on two publicly available data sets and demonstrated that it can outperform
other approaches presented in the literature. We further observed how challenging
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and for which reasons the estimation of traffic volume is on a number of conducted
experiments. We therefore inspected the potential gains EBC and its competitors will
receive if traffic estimations improve. Our results showed that EBC will then be able
to reduce the cellular traffic footprint by further 13% or 6.17 MB on average per day
and come close to the demonstrated optimum. The improvements in this case for
EBC’s competitors are less tremendous demonstrating EBC’s strength in accurately
identifying and scheduling data-intensive applications. Same observations are made
for the energy footprint.

Given these potential gains in both energy and cellular traffic footprint, we ad-
vocate for further research and techniques on how to accurately estimate mobile
application traffic that will be consumed by applications upon their next launch.
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S U M M A RY, L I M I TAT I O N S , A N D O U T L O O K





7
C O N C L U S I O N S A N D O U T L O O K

With this thesis we provided the technical foundations for the design and implemen-
tation of human mobility and application usage prediction algorithms for mobile
devices. In particular, we addressed the following three research questions:

1. How to select parameters to allow optimizing the quality of human mobility predic-
tions?

2. How to reduce cellular traffic volume caused by mobile applications while keeping the
application content as fresh as possible and without causing a substantially higher
energy overhead?

3. How accurately can uncertain human mobility predictions be identified?

The following sections summarize the contributions of this thesis that address the
raised research questions. After that, we discuss limitations and outline future re-
search directions based on the presented results. Finally, this thesis ends with the
last concluding remarks.

7.1 human mobility prediction model selection

We answered the first research question by contributing SELECTOR – a novel approach
to select best performing combinations of features and mobility predictor for a given
metric and prediction task. To do so, we first analyzed the influence of temporal and
spatial features on the performance of mobility predictors [22]. In particular, we con-
sidered time of day, day of week, differentiation between workday and weekend, cur-
rent place, and the sequence of current and previous place as the five features. Given
these features, we built 18 Markov models with different feature combinations. We
further considered the Next-slot place (NSP) and Next-slot transition (NST) predic-
tion tasks and a set of widely used performance metrics. We showed that temporal
features optimize transition predictions, while the spatial features are more reliable
for optimizing predictors’ 1-step ahead accuracy. This implies that relying on only
one performance metric across different prediction tasks leads to false interpretations
about the quality of mobility predictions.

We then assembled an ensemble learning based combination of these 18 Markov
models that we dubbed MAJOR. Although it is known that ensemble learning allows
achieving a higher performance than a single predictor, we were interested in quan-
tifying these improvements in the context of human mobility prediction. To this end,
we evaluated MAJOR and observed that the corresponding threshold for the number
of predictors voting for a transition to occur, is sensitive to relevant places. Following
this observation, we extended MAJOR by implementing thresholds ↵ and � to compen-
sate for the large number of self-transitions occurring when the most relevant place
is visited. Our evaluation results showed that these two thresholds allow MAJOR to im-
prove its ability in detecting place transitions by keeping the 1-step ahead accuracy
comparable to other best performing Markov models.

243
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In the next step, we extended our analysis by including phone context data. We
also considered a larger human mobility data set with 141 individuals compared to
the aforementioned analysis. Our results revealed that phone context data does not
provide substantial performance improvements. To draw this conclusion, we lever-
aged the NSP, NST, and Next-place (NP) prediction tasks for human mobility and
four state-of-the-art predictors, namely, Support Vector Machine (SVM), Classifica-
tion and Regression Trees (CART), k-Nearest Neighbor (k-NN), and Perceptron. We
measured the performance with the metrics accuracy, F1 score, and Matthews Cor-
relation Coefficient (MCC). Our findings underlined the limited benefit of including
phone context data in addition to the already available temporal and spatial infor-
mation. This limited relevance of phone context data for predicting human mobility
has its advantages. It preserves users’ privacy since no application usage logs, calls
logs, or calendar content need to be collected.

Building upon these quantitative results, we designed, implemented, and evalu-
ated SELECTOR – a novel individual mobility prediction model selection algorithm. In
general, SELECTOR takes a set of data features, mobility prediction algorithms, and the
prediction task for which the selected metric should be optimized as input. It then
determines which features and predictor performs best for the given individual. To
select which features perform best, we tested different feature combinations for each
of the considered prediction tasks, metrics, and predictors. Since an exhaustive eval-
uation of all feature combinations was impractical due to 251 possible combinations,
we adopted Sequential Forward Floating Selection (SFFS) – a widely used heuristic.
We leveraged the resulting individual models to derive population mobility mod-
els [25]. These models allowed us to address the cold-start problem [177, 143].

While deriving our population models, we exemplarily demonstrated the process
on the NP+Accuracy prediction problem. We compared the resulting population
models to the individual models in terms of their performance. The results showed
that our population models are able to achieve performance that is comparable to
that achieved by individual models. Despite a large number of features and predic-
tors considered in this work, only five features and two predictors appear among
eight out of nine population models (all permutations of the three prediction tasks
and three performance metrics). We concluded that most of the individuals’ mo-
bility decisions can mainly be captured by this small set of parameters. However,
we also observed a small fraction of individuals for whom individual models per-
formed much better than population models. Furthermore, our results allowed us to
conclude that configurations of our population models depend more on the corre-
sponding prediction task than on the performance metric.

Lastly, we evaluated the robustness of our population models against demograph-
ics and whether different population models for different day-periods of time im-
prove the overall performance. The results showed that our population models are
robust against demographics. Furthermore, deriving separate population and indi-
vidual models for difference day-periods of time improves accuracy and F1 score for
nearly all demographic groups of up to 4 percentage points.
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7.2 prefetching of mobile application content

We answered the second research question by introducing EBC – a novel algorithm
for prefetching of mobile application content by utilizing application usage predic-
tion. EBC focuses on the question when to prefetch which applications and leaves it to
the applications themselves and other complementary approaches such as [170, 210]
to determine what to prefetch. The strength of EBC is that it explicitly considers the
amount of traffic an application is expected to generate. This information is incorpo-
rated as a parameter in EBC’s design and supports the decision of scheduling appli-
cation prefetches. EBC applies different prefetching strategies depending on whether
a cellular or Wi-Fi connection is available. We made EBC be very conservative in
prefetching when the user accesses the Internet through a cellular connection. At the
same time, EBC prefetches aggressively when a Wi-Fi connection is available. This
way, the cellular data exchange can be further reduced as reported below.

To decide which applications to prefetch, we designed three features that are lever-
aged to compute the applications’ conditional usage probabilities. These features are
(1) hour of day, (2) network type, and (3) the number of consecutive sessions in which
the particular application has been recently used. We exhaustively evaluated all com-
binations of these features and measured the performance they achieve in terms of
application content freshness, energy consumption, cellular traffic footprint, startup
delay, number of unique applications that benefit from prefetching, and prefetch du-
ration. Given the fact that EBC was designed to reduce cellular traffic by keeping the
application content as fresh as possible, our results revealed that the combination of
hour of day and network type provides best results in supporting these goals.

To further reduce cellular traffic, we evaluated the parameters w and Tmax that
control whether the application should be prefetched over cellular networks or sched-
uled for aggressive prefetching when Wi-Fi is available. The requirement is the es-
timated traffic volume the application will generate upon its launch. Our results re-
vealed that allowing applications that are expected to generate up to Tmax = 100KB
per launch to be still prefetched over cellular networks, allows EBC to optimize both
cellular traffic footprint and application content freshness.

We also microbenchmarked EBC’s ability to estimate application traffic. The results
revealed an accuracy ranging between 83% and 93% in classifying an application
launch to the group of those that will exceed this threshold Tmax or the opposite
group. We observed that these results depend on the set threshold Tmax. In terms
of accurately estimating traffic volume, we observed moderate results. The results
revealed that in nearly 33% of application launches the traffic volume is estimated
exactly and for nearly 68% of application launches the error was below ±1 MB. How-
ever, in the remaining cases the traffic estimation error was much higher. We traced
back the reasons for these errors and observed that a fraction of applications, in par-
ticular those that sometimes generate tens of megabytes per launch, highly fluctuated
without any meaningful pattern in terms of the traffic they generated.

Finally, we compared EBC to a set of competitors by leveraging two large data sets.
Our results showed that EBC reduces cellular traffic footprint by nearly 10% or 4.4 MB
on average per day compared to its closest competitor. The consequences are savings
in terms of monetary costs and startup delay. Furthermore, EBC improved the average
application content freshness by 36%. It further served for more than twice as much
mobile applications on users’ mobile devices as its closest competitor.
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7.3 identifying uncertain human mobility predictions

Furthermore, we evaluated how accurate existing Level of Trust (LoT) estimators
are able to detect wrong NP predictions by answering the third research question.
To do so, we first conducted a qualitative, questionnaire-based user study with 188
participants from six continents. The results revealed several interesting and relevant
insights. First, although only a small fraction of participants extensively use the exist-
ing Mobile Personal Assistants (MPAs), the majority of them saw the general value
in their concept. Second, the considered application scenarios require substantially
different certainty level requirements for NP predictions. Third, the required level
of trust depends on the potential for negative consequences stemming from MPAs’
actions.

Building upon these results, we analyzed the predictability of arrival and resi-
dence times, and compared them to those of mobility traces. Our results revealed
that mobility traces are more predictable than the residence and arrival times. We
also showed that mobility predictors tend to underestimate residence times. To do
so, we considered nine mobility predictors parametrized with different spatial and
temporal features. We then highlighted the resulting implications for the three con-
sidered application scenarios: (1) home automatic, (2) traffic updates, and (3) data
prefetching.

Our further analysis allowed us to identify three situations in which mobility pre-
dictions might be wrong. We therefore evaluated whether and how accurate the
existing metric Instantaneous Entropy (IE) is capable to detect these situations. Our
results revealed several situations in which IE either over- or underestimates the
individuals’ momentary predictability.

Lastly, we assembled an ensemble learning based LoT estimator that we dubbed
LOTUS, along with considering IE metric, thresholding, and majority vote as the LoT
estimators. We defined a score function to capture individuals’ willingness to lose
the comfort of automatically executed actions at the cost of a higher reliability in ex-
ecuting them. This score function allowed us to compare the existing LoT estimators.
To simulate mobility predictions, we integrated our population mobility prediction
models by demonstrating their practical applicability.

Our results revealed several interesting insights. First, the higher the accuracy re-
quirements on mobility predictions and thus correctly executed actions are, the more
individuals benefit from the considered LoT estimators. For instance, we measured
that 82%, 50%, and 17% of the individuals in the Nokia data set benefit from at
least one LoT estimator in the context of the home automation, traffic updates, and
data prefetching scenarios, respectively. Furthermore, if there is a high requirement
to execute confident actions only, e.g., home automation scenario, then only a small
fraction of actions is executed. In these cases the overall benefit for the individuals is
higher than executing all actions. The increasing requirement to execute more actions
by the MPAs leads to the higher error rate. The consequence is the reduced benefit
for the individuals. These observations let us conclude that all considered LoT esti-
mators are primarily targeting the identification of correct mobility predictions. This
allows application scenarios such as home automation to benefit at most.
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7.4 human mobility data sets

The design of our human mobility and application usage algorithms was rooted in
the quantitative analysis of a set of large data sets. The Nokia and Device Analyzer
data sets, however, become available in the period this thesis was written. Therefore,
we conducted two Data Collection Campaigns (DCCs) to close the gap of missing
but required data. With JK2013 and UbiComp Data Collection Campaign (UbiDCC)

data sets, we contributed two human mobility data sets [113, 24]. The former data
set addresses the shortcoming of the lack of mobility ground-truth data. It contains
mobility data from six participants collected over five weeks. The particular strength
of this data set is its high quality mobility ground-truth data along with further Wi-Fi,
GPS, GSM, and Bluetooth information. We detailed the JK2013 data set in Section 3.4.
The applicability of this data set was shown on the evaluation of a novel algorithm
for identification and recognition of relevant places [113]. This data set is available
upon request due to the highly sensitive information available in it.

In contrast to that, the UbiDCC data set contains human mobility data collected at a
3-day long international conference with 700 attendees. In particular, it contains mo-
bility traces from 1,200 devices that were carried around by the conference attendees.
We deployed several ground-truth stationary beacons to collect fine-grained mobility
ground-truth data in an indoor environment. The anonymized version of this data
set has been made publicly available [24].

Both DCCs were conducted with our Android mobile application that we called
LOCATOR. The application builds upon the funf framework to collect and transmit
sensor data [5]. It further contains the possibility to explicitly record ground-truth
mobility data as a diary. Different innovative techniques are in-place to (1) guarantee
that the diary is as complete as possible and (2) to support individuals in recalling
temporal information regarding their visits to the particular places. We made both
the Android application and the corresponding server part publicly available and
encourage researchers to re-use them for their own DCCs [24].

7.5 limitations and outlook

We now discuss the potential limitations of the work presented in this thesis. Build-
ing upon these limitations, we suggest research directions and potential follow-up
work that can leverage the results presented in this thesis.

7.5.1 Human Mobility Prediction

With our quantitative research on human mobility prediction model selection we
took a crucial step toward understanding which parameters and how influence the
mobility prediction quality. We now outline directions for future work that can build
upon our results.

Sensor Cost-benefit Comparison

Our analysis on phone context data revealed that this data does not provide addi-
tional predictive power if spatial and temporal information is already utilized. How-
ever, spatial information, which is often obtained by leveraging GPS or Wi-Fi, is



248 conclusions and outlook

typically considered as highly sensitive and energy-hungry. Therefore, identifying
alternative information sources and sensor fusion that might replace the aforemen-
tioned costly sensors can support individuals’ privacy and reduce energy footprint
of mobile devices.

Transition from Population to Individual Models

In this thesis, we derived both individual and population models for human mobil-
ity prediction. In general, population models help tackling the cold-start problem
and individual models improve prediction quality for a fraction of individuals in the
Nokia data set. Therefore, it is necessary to understand how much data needs to be
collected to derive reliable individual models. Second, as human mobility evolves,
the question arises regarding the update period of individuals models. Third, we
need to understand and identify those individuals a priori for whom individual
models will provide a benefit, e.g., based on their demographics or mobility charac-
teristics.

Incorporating Mobility Predictions in a Practical Real-world Deployment

Evaluating how our mobility models perform in a real-world setting is the conse-
quent next step. To do so, several application scenarios can be designed and im-
plemented as MPAs. These MPAs would then operate on mobility predictions and
attempt to support individuals in daily life. Such a real-world deployment will al-
low understanding the corresponding resources footprint of mobile devices and the
actual perceived benefit from mobility predictions.

7.5.2 Application Usage Prediction

We now focus on the limitations and potential research directions in the context of
the proposed algorithm for prefetching of mobile application content by predicting
which applications will be used next.

Integration of Mobility Predictions

The limitation of EBC is the fact that we focus in this thesis on human mobility and ap-
plication usage predictions, independently. Therefore, EBC misses potential benefits
from mobility predictions by scheduling the corresponding application prefetches
more precisely or prefetching more content if the individual will not be in the vicin-
ity of a Wi-Fi Access Point (AP) for a long time. Therefore, bringing these two predic-
tions tasks together and evaluating their synergy effects is the consequent next step.
To do so, our population models and SELECTOR can be integrated in EBC. The EBC’s
decision engine would then leverage mobility predictions upon each screen unlock
to decide not only which applications to prefetch but also how many of them. For in-
stance, if the mobility prediction indicates that the individual will stay in the vicinity
of a Wi-Fi AP for many hours, then EBC can focus on prefetching those applications
that will be used in the current session and vice versa. We expect this combination to
further improve freshness of application content and reduce cellular traffic footprint.
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Measuring How Much of the Prefetched Traffic is Used in a Practical Setting

Another limitation of EBC is the lack of understanding how much of the prefetched
traffic can actually be reused. In our evaluation, we considered as simplistic model
assuming that the entire prefetched traffic can be reused. This was done due to
the missing information regarding the actual content in the data set. Furthermore,
we assumed that upon application launch, the particular application will take care
of prefetching the estimated among of traffic. However, this requires the particular
application to implement such kind of functionality. To address these limitations, an
implementation of EBC as a mobile application is necessary. This application can then
be deployed in a practical setting to measure EBC’s performance in the wild.

Traffic Volume Estimation

We observed in our evaluation that, in particular data-intensive applications, exhibit
a high fluctuation in traffic volume consumed when used. The consequences are
partly high prediction errors defined as the difference between the estimated traffic
volume and the consumed. These errors contribute to the slightly higher energy
consumption observed in our evaluation in comparison to the no prefetching strategy.
We also demonstrate how dramatically the energy consumption can be reduces if
these high prediction errors can be omitted. Therefore, we clearly see the necessity
for further research in this direction to understand how traffic volume estimations
can be improved. Solutions that assume each application to provide the exact amount
of traffic it will generate upon next launch [95, 210], are noteworthy as the potential
starting points.

7.6 concluding remarks

The contributions of this thesis underline the necessity to accurately identify and
select parameters for both human mobility and application usage prediction. Our
prefetching algorithm that leverages application usage predictions reduces cellular
application traffic and thus supports both cellular network operators and customers.
Our extensive range of insights and technical contributions in the human mobility
prediction domain open opportunities for mobile applications to build their services
on top of them. This trend is by no means a long-term vision, but an ongoing reality
as highlighted in the introduction. Therefore, we believe that our technical contribu-
tions and presented insights will support the realization of mobile applications that
rely on human mobility and application usage predictions.
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[169] Pavel Pudil, Jana Novovičová, and Josef Kittler. Floating Search Methods in
Feature Selection. Pattern Recognition Letters, 15(November), 1994.

[170] Lenin Ravindranath, Sharad Agarwai, Jitendra Padhye, and Chris Riederer.
Procrastinator: Pacing Mobile Apps’ Usage of the Network. In Proceedings
of the 12th International Conference on Mobile Systems, Applications, and Services
(Mobisys), 2014.

[171] Injong Rhee, Minsu Shin, Seongik Hong, Kyunghan Lee, Seong Joon Kim, and
Song Chong. On the Levy-Walk Nature of Human Mobility. IEEE/ACM Trans-
actions on Networking, 19(3), 2011.

[172] Mikael Ricknäs. Mobile Operators Struggle with Explosion in Data Us-
age. http://www.infoworld.com/article/2626633/wide-area-networking/

mobile-operators-struggle-with-explosion-in-data-usage.html, 2010.

[173] Maya Rodrig, Charles Reis, Ratul Mahajan, David Wetherall, and John Zahor-
jan. Measurement-based Characterization of 802.11 in a Hotspot Setting. In
Proceeding of the 2005 ACM SIGCOMM Workshop on Experimental Approaches to
Wireless Network Design and Analysis (E-WIND), 2005.

[174] Daniel Salber, Anind Kumar Dey, and Gregory D. Abowd. Ubiquitous Comput-
ing: Defining an HCI Research Agenda for an Emerging Interaction Paradigm.
Georgia Tech GVU Technical Report GIT-GVU-98-01, 1998.

[175] Mahadev Satyanarayanan. Pervasive Computing: Vision and Challenges. IEEE
Personal Communications, 8(4), 2001.

[176] Salvatore Scellato, Mirco Musolesi, Cecilia Mascolo, Vito Latora, and Andrew
Campbell. NextPlace: A Spatio-Temporal Prediction Framework for Pervasive
Systems. In Proceedings of the 9th International Conference on Pervasive Computing
(Pervasive), 2011.

[177] Andrew Schein, Alexandrin Popescul, Lyle Ungar, and David Pennock. Meth-
ods and Metrics for Cold-start Recommendations. In Proceedings of the 25th
Annual International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval (SIGIR), 2002.

[178] Djeevan Schiferli. Big Data Takes On Big Weather. http://www.

europeanbusinessreview.com/?p=308, 2014.

[179] James Scott, Alice Jain Bernheim Brush, and John Krumm. PreHeat: Control-
ling Home Heating Using Occupancy Prediction. In Proceedings of the 13th
ACM International Conference on Ubiquitous Computing (UbiComp), 2011.

[180] SenseNetworks. MacroSense Technology Platform. http://www.

sensenetworks.com/products/macrosense-t, 2011.

[181] Claude Shannon. A Mathematical Theory of Communication. The Bell System
Technical Journal, 27, 1948.



bibliography 265

[182] John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis.
Cambridge University Press, 2004.

[183] Clayton Shepard, Ahmad Rahmati, Chad Tossell, Lin Zhong, and Phillip Ko-
rtum. LiveLab: Measuring Wireless Networks and Smartphone Users in the
Field. ACM SIGMETRICS Performance Evaluation Review, 38(3), 2010.

[184] Masamichi Shimosaka. Forecasting Urban Dynamics with Mobility Logs by
Bilinear Poisson Regression. In Proceedings of the 2015 ACM International Joint
Conference on Pervasive and Ubiquitous Computing (UbiComp), 2015.

[185] Choonsung Shin, Jin-Hyuk Hong, and Anind K. Dey. Understanding and Pre-
diction of Mobile Application Usage for Smart Phones. In Proceedings of the
14th ACM International Conference on Ubiquitous Computing (UbiComp), 2012.

[186] Ben Shneiderman and Pattie Maes. Direct Manipulation vs. Interface Agents.
Interactions, 4(6), 1997.

[187] Carlos Silla and Alex Freitas. A Survey of Hierarchical Classification Across
Different Application Domains. Data Mining Knowledge Discovery, 22(1–2),
2011.

[188] Gavin Smith, Romain Wieser, James Goulding, and Duncan Barrack. A Refined
Limit on the Predictability of Human Mobility. In Proceedings of the IEEE Inter-
national Conference on Pervasive Computing and Communications (PerCom), 2014.

[189] Marina Sokolova and Guy Lapalme. A Systematic Analysis of Performance
Measures for Classification Tasks. Information Processing & Management, 45(4),
2009.

[190] Marina Sokolova, Nathalie Japkowicz, and Stan Szpakowicz. Beyond Accu-
racy, F-Score and ROC: A Family of Discriminant Measures for Performance
Evaluation. In Advances in Artificial Intelligence, 2006.

[191] Chaoming Song, Zehui Qu, Nicholas Blumm, and Albert-László Barabási. Lim-
its of Predictability in Human Mobility. Science, 327(5968), 2010.

[192] Chaoming Song, Zehui Qu, Nicholas Blumm, and Albert-László Barabási. Sup-
plementaring Online Material on Limits of Predictability in Human Mobility.
Science, 327(5968), 2010.

[193] Libo Song and Udayan Deshpande. Predictability of WLAN Mobility and
its Effects on Bandwidth Provisioning. In Proceedings of the IEEE International
Conference on Computer Communications (INFOCOM), 2006.

[194] Libo Song, David Kotz, Ravi Jain, and Xiaoning He. Evaluating Next-cell Pre-
dictors with Extensive Wi-Fi Mobility Data. IEEE Transactions Mobile Computing,
5(12), 2004.

[195] Vijay Srinivasan and Emmanuel Munguia Tapia. MobileMiner: Mining Your
Frequent Patterns on Your Phone. In Proceedings of the 2014 ACM International
Joint Conference on Pervasive and Ubiquitous Computing (UbiComp), 2014.



266 bibliography

[196] Jacopo Staiano, Nuria Oliver, Bruno Lepri, Rodrigo de Oliveira, Michele Car-
aviello, and Nicu Sebe. Money Walks: A Human-Centric Study on the Eco-
nomics of Personal Mobile Data. In Proceedings of the 2014 ACM International
Joint Conference on Pervasive and Ubiquitous Computing (UbiComp), 2014.

[197] Tecmark. Tecmark Survey Finds Average User Picks Up Their Smartphone 221
Times a Day. http://www.tecmark.co.uk/smartphone-usage-data-uk-2014/,
2016.

[198] Jaime Teevan, Amy Karlson, Shahriyar Amini, Alice Jain Bernheim Brush, and
John Krumm. Understanding the Importance of Location, Time, and People
in Mobile Local Search Behavior. In Proceedings of the 13th International Confer-
ence on Human Computer Interaction with Mobile Devices and Services (MobileHCI),
2011.

[199] Philip Tetlock and Dan Gardner. Superforecasting: The Art and Science of Predic-
tion. Crown, 2015.

[200] Philip Tetlock, Barbara Mellers, Nick Rohrbaugh, and Eva Chen. Forecasting
Tournaments: Tools for Increasing Transparency and Improving the Quality of
Debate. Current Directions in Psychological Science, 23(4), 2014.

[201] The Economist. Ebola and Big Data: Waiting on Hold. http://goo.gl/0nEllv,
2014.

[202] UbiComp 2013 Blog. Data Collection at #ubicomp13. http://www.ubicomp.

org/ubicomp2013/blog/?p=409, 2013.

[203] Hannu Verkasalo. Contextual Patterns in Mobile Service Usage. Personal Ubiq-
uitous Computing, 13(5), 2009.

[204] Akos Vetek, John Flanagan, Ashley Colley, and Tuomas Keränen. SmartAc-
tions: Context-aware Mobile Phone Shortcuts. In Proceedings of the Human-
Computer Interaction (INTERACT), 2009.

[205] Long Vu, Quang Do, and Klara Nahrstedt. Jyotish: A Novel Framework for
Constructing Predictive Model of People Movement from Joint Wifi/Bluetooth
Trace. In Proceedings of the IEEE International Conference on Pervasive Computing
and Communications (PerCom), 2011.

[206] Long Vu, Phuong Nguyen, Klara Nahrstedt, and Björn Richerzhagen. Charac-
terizing and Modeling People Movement from Mobile Phone Sensing Traces.
Pervasive and Mobile Computing, 17, 2014.

[207] Daniel Wagner, Andrew Rice, and Alastair Beresford. Device Analyzer: Under-
standing Smartphone Usage. In Proceedings of the 10th International Conference
on Mobile and Ubiquitous Systems: Computing, Networking and Services (MobiQui-
tous), 2013.

[208] Daniel Wagner, Andrew Rice, and Alastair Beresford. Device Analyzer: Large-
scale Mobile Data Collection. ACM SIGMETRICS Performance Evaluation Re-
view, 41(4), 2014.



bibliography 267

[209] Dashun Wang, Dino Pedreschi, Chaoming Song, Fosca Giannotti, and Albert-
László Barabási. Human Mobility, Social Ties, and Link Prediction. In Proceed-
ings of the 17th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD), 2011.

[210] Yichuan Wang, Xin Liu, David Chu, and Yunxin Liu. EarlyBird: Mobile
Prefetching of Social Network Feeds via Content Preference Mining and Us-
age Pattern Analysis. In Proceedings of the 16th ACM International Symposium on
Mobile Ad Hoc Networking and Computing (MobiHoc), 2015.

[211] Yingzi Wang, Nicholas Jing Yuan, Defu Lian, and Linli Xu. Regularity and Con-
formity: Location Prediction Using Heterogeneous Mobility Data Categories
and Subject Descriptors. In Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD), 2015.

[212] Albert Wayne Whitney. A Direct Method of Nonparametric Measurement Se-
lection. IEEE Transactions on Computers, 100(9), 1971.

[213] Wired. WhatsApp is How Facebook will Dom-
inate the World. http://www.wired.com/2015/12/

new-stats-show-whatsapp-is-how-facebook-will-dominate-the-world/,
2015.

[214] Wired. One Billion People Now Use WhatsApp. http://www.wired.com/2016/
02/one-billion-people-now-use-whatsapp/, 2016.

[215] Ian Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools and
Techniques. Morgan Kaufmann, 2011.

[216] Alex Woodie. Big Data and the Race To Be President. http://www.datanami.

com/2016/02/09/big-data-and-the-race-to-be-president/, 2016.

[217] Xindong Wu, Vipin Kumar, Ross Quinlan, Joydeep Ghosh, Qiang Yang, Hiroshi
Motoda, Geoffrey J. McLachlan, Angus Ng, Bing Liu, Philip Yu, Zhi-Hua Zhou,
Michael Steinbach, David Hand, and Dan Steinberg. Top 10 Algorithms in Data
Mining. Knowledge and Information Systems, 14(1), 2007.

[218] Ye Xu, Mu Lin, Hong Lu, Giuseppe Cardone, Nicholas Lane, Zhenyu Chen,
Andrew Campbell, and Tanzeem Choudhury. Preference, Context and Com-
munities: A Multi-faceted Approach to Predicting Smartphone App Usage Pat-
terns. In Proceedings of the 2013 International Symposium on Wearable Computers
(ISWC), 2013.

[219] Tingxin Yan, David Chu, Deepak Ganesan, Aman Kansal, and Jie Liu. Fast App
Launching for Mobile Devices Using Predictive User Context. In Proceedings
of the 10th International Conference on Mobile Systems, Applications, and Services
(Mobisys), 2012.

[220] Fei Yu and Victor Leung. Mobility-based Predictive Call Admission Control
and Bandwidth Reservation in Wireless Cellular Networks. Computer Networks,
38(5), 2002.



268 bibliography

[221] Chunhui Zhang, Xiang Ding, Guanling Chen, Ke Huang, Xiaoxiao Ma, and
Bo Yan. Nihao: A predictive smartphone application launcher. In Proceedings
of 4th International Conference on Mobile Computing, Applications, and Services (Mo-
biCASE), 2012.

[222] Jiangchuan Zheng and Lionel Ni. An Unsupervised Framework for Sensing
Individual and Cluster Behavior Patterns from Human Mobile Data. In Proceed-
ings of the 14th ACM International Conference on Ubiquitous Computing (UbiComp),
2012.

[223] Yu Zheng, Licia Capra, Ouri Wolfson, and Hai Yang. Urban Computing: Con-
cepts, Methodologies, and Applications. ACM Transactions On Intelligent Sys-
tems and Technology, 6(9), 2014.

[224] Xun Zou, Wangsheng Zhang, Shijian Li, and Gang Pan. Prophet: What App
You Wish to Use Next. In Proceedings of the 2013 ACM Conference on Pervasive
and Ubiquitous Computing: Adjunct Publication (UbiComp Adjunct), 2013.

All web sources cited in this work have been checked on June 16, 2016. However, due
to the dynamic nature of the World Wide Web, the locations of such web sources can
change.



Part V

A P P E N D I C E S





A
L I S T O F A C R O N Y M S

AP Access Point

APPM Application Prediction by Partial Matching

ATM Average Traffic Model

AU Application usage

CART Classification and Regression Trees

CDF Cumulative Distribution Function

CDR Call Detail Record

CPU Central Processing Unit

CTO Chief Technology Officer

DCC Data Collection Campaign

DTN Delay Tolerated Network

FALCON Fast App Launching with Context

FK Foreign Key

FN false negative

FP false positive

FS feature selection

GB Gradient Boost

GPS Global Positioning System

GSM Global System for Mobile Communications

ICT Information and Communications Technology

ID Identifier

IE Instantaneous Entropy

IG Information Gain

IMP Informed Mobile Prefetching

IN Intentional Networking

IR Information Retrieval
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Q U E S T I O N N A I R E A N D P R I VA C Y P O L I C Y

The following nine pages contain our questionnaire used for the qualitative study
that we described in Section 5.1.1. The remaining two pages show the privacy policy
that we used to collect the JK2013 data set.
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Using Human Mobility Predictions to Enhance
Mobile Personal Assistants
Techniques to predict human mobility -- i.e., to predict future whereabouts of individuals and 
groups of people -- can be leveraged by mobile personal assistants to provide information and 
services to users. We refer to mobile personal assistants (MPA) as applications that run on mobile 
devices and can help users to get their everyday tasks done. For instance, an MPA running on a 
smartphone or on a smart watch can detect when the user is about to go back home and 
accordingly switch on the heating. 

Examples of existing commercial MPAs are applications like Google Now or Apple’s Siri.

Our research focuses on the development of techniques to predict human mobility and on their 
integration into MPAs. In particular, we aim to make existing MPAs able to exploit human mobility 
predictions and autonomously adapt to the context of the user. 

By filling out this questionnaire, you will allow us to better understand the general attitude of users 
towards both human mobility predictions and the services they enable within existing and future 
MPAs.

The questionnaire contains 4 parts. Each part contains a number between 4 and 11 questions. 
Filling out the questionnaire should take approximately 15 minutes.

We thank you in advance for your invaluable help!

Paul Baumann, Silvia Santini

Preliminary questions

In this first part of the questionnaire, we ask you to provide some information about yourself and 
answer a few preliminary questions. This information will be used to analyze whether and how 
demographic factors influence the attitude of users towards MPAs that rely on human mobility 
predictions.

1. What is your gender?
Mark only one oval.

 Female

 Male

2. How old are you?

3. What is your country of origin?
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4. What is your country of residence?

5. What is your profession?
Mark only one oval.

 Student

 Research assistant / PhD student

 Postdoctoral researcher

 Faculty member

 Employee

 Self-employed

 Retired / Unemployed

 Other: 

Capturing your mobile device usage behavior

6. If you do use a mobile device, which operating system runs on your main mobile
device?
Mark only one oval.

 Android

 Apple iOS

 Microsoft Windows Mobile

 Blackberry

 I do not use a mobile device

 Other: 
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7. Please indicate whether and how often you use the following features on your mobile
device.
Mark only one oval per row.

Never
A few

times a
week

Almost
every
day

At least
once a

day

At least
multiple

times a day

Almost
every
hour

Every
hour while

awake

Using a mobile
device in general
Making phone
calls
Sending short
text messages
(SMS)
Using chat
applications
(e.g., WhatsApp,
Facebook chat)
Checking for
road traffic
updates using
dedicated
applications
Reading news
with a dedicated
news application
Watching movie
clips or other
video content
(e.g., on
YouTube)
Using mobile
personal
assistant
applications
(e.g., Apple Siri,
Google's Now)

8. What is your overall opinion about mobile personal assistant applications (MPAs)
available on your mobile device?
Mark only one oval per row.

I am totally
unsatisfied with
existing MPAs

I am not
satisfied with
existing MPAs

I do
not

know

I am
satisfied

with existing
MPAs

I am totally
satisfied with
existing MPAs

What is your
overall opinion
about MPAs
available on your
mobile device?
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9. Would you be willing to live without MPAs?
Mark only one oval.

1 2 3 4 5

Yes, totally, I do not need MPAs
in my life

No, I could not
live without MPAs

Scenarios for Predictions of Human Mobility
This part of the questionnaire focuses on specific scenarios in which MPAs can leverage human 
mobility predictions. Through these questions we aim to understand in which scenarios users 
would like their MPAs to perform actions (e.g., switching the heating on or off, checking traffic 
conditions for the planned journey, or pre-fetching media content that will be accessed while 
commuting) automatically. Furthermore, we aim to investigate if and how prediction errors might 
affect the acceptance of the actions performed by the MPAs.

10. How many places do you consider as
relevant for you?
Consider a relevant place to be a place where
you spend a substantial amount of time and/or
you visit frequently

11. Independent of a specific application scenario, how much do you believe it would help
you in your daily life if MPAs on your mobile device would take over the execution of
tasks you have to perfom regularly or frequently?
Examples of these tasks might be switching the heating on or off, checking traffic conditions
for the planned journey, pre-fetching media content that will be accessed while commuting,
and many more.
Mark only one oval.

1 2 3 4 5 6 7

Not helpful at all Totally helpful

Automatically controlling the home heating system

Assume an MPA on your mobile device can predict at which point in time you arrive at home. 
Using this prediction, the MPA remotely switches on the heating early enough to make you return 
to a warm home but not too early to avoid a waste of energy. Similarly, the MPA automatically 
switches off the heating when it detects that you are about to leave the home.

12. In this scenario, how often, on average per
day, would you like your MPA to
automatically intervene?
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13. How helpful would be to you the ability of the MPA to automatically switch on and off
your heating system?
Mark only one oval.

1 2 3 4 5 6 7

Not helpful at all Totally helpful

14. Wrong predictions might cause the MPA to switch on or off the heating at the wrong
moment. The percentage of errors of the MPA in this context is the number of
erroneous interventions (i.e., erroneous switching on or off) over the total number of
interventions. Which percentage of errors would you consider acceptable?
Give the maximal percentage of errors that would still make you want the MPA to
automatically control your heating system.
Mark only one oval.

 0-10% of errors is acceptable

 11-20% of errors is acceptable

 21-30% of errors is acceptable

 31-40% of errors is acceptable

 41-50% of errors is acceptable

 51-60% of errors is acceptable

 61-70% of errors is acceptable

 71-80% of errors is acceptable

 81-90% of errors is acceptable

 91-100% of errors is acceptable

Getting notifications about traffic conditions

Assume an MPA on your mobile device can predict that you will leave your current place in the 
near future and travel to another place. The MPA automatically verifies the current traffic conditions 
on the route to the place you are expected to visit and visualizes on your mobile device information 
about the ideal route and potential issues that might delay your trip.

15. In this scenario, how often, on average per
day, would you like your MPA to
automatically intervene?

16. How helpful would be to you the ability of the MPA to automatically verify traffic
conditions and suggest routes?
Mark only one oval.

1 2 3 4 5 6 7

Not helpful at all Totally helpful
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17. Wrong predictions might cause the MPA to visualize unnecessary or inappropriate
notifications. The percentage of errors of the MPA in this context is the number of
erroneous interventions (i.e., provision of unnecessary or inappropriate notifications)
over the total number of interventions. Which percentage of errors would you consider
acceptable?
Give the maximal percentage of errors that would still make you want the MPA to
automatically provide you notifications about traffic conditions.
Mark only one oval.

 0-10% of errors is acceptable

 11-20% of errors is acceptable

 21-30% of errors is acceptable

 31-40% of errors is acceptable

 41-50% of errors is acceptable

 51-60% of errors is acceptable

 61-70% of errors is acceptable

 71-80% of errors is acceptable

 81-90% of errors is acceptable

 91-100% of errors is acceptable

Pre-fetching data on a mobile device

Assume an MPA on your mobile device can predict that you will soon leave your current place and 
travel to another place. The MPA knows that at the current place a free and reliable Wi-Fi 
connection is available, while at the next place you will visit – or along the road that brings to it – 
you will have to rely on a cellular connection to access the Internet. The MPA can thus pre-fetch 
data for those applications you will most likely use at the next place or while travelling to it before 
you leave your current place.

18. In this scenario, how often, on average per
day, would you like your MPA to
automatically intervene (i.e., to pre-fetch
data)?

19. How helpful would be to you the ability of the MPA to automatically pre-fetch data?
Mark only one oval.

1 2 3 4 5 6 7

Not helpful at all Totally helpful
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20. Wrong predictions might cause the MPA to pre-fetch unnecessary data. The percentage
of errors of the MPA in this context is the number of erroneous interventions (i.e.,
unnecessary pre-fetching of data) over the total number of interventions. Which
percentage of errors would you consider acceptable?
Give the maximal percentage of errors that would still make you want the MPA to
automatically pre-fetch data.
Mark only one oval.

 0-10% of errors is acceptable

 11-20% of errors is acceptable

 21-30% of errors is acceptable

 31-40% of errors is acceptable

 41-50% of errors is acceptable

 51-60% of errors is acceptable

 61-70% of errors is acceptable

 71-80% of errors is acceptable

 81-90% of errors is acceptable

 91-100% of errors is acceptable

Trustworthiness of Mobility Predictions
Prediction errors might cause MPAs perform wrong or unnecessary actions. To mitigate the 
negative effects of these errors, predictions can be endowed with an estimation of their 
trustworthiness (“level of trust”). The goal of the following questions is to understand if and how a 
good estimation of the level of trust of a prediction can influence the acceptance of MPAs. To this 
end, we consider again the scenarios introduced above.

Automatically controlling the home heating system

Consider two MPAs – MPA_1 and MPA_2 -- that are both able to switch on or off your home 
heating system according to predictions about your presence or absence at home. MPA_1 and 
MPA_2 use different strategies to deal with the level of trust of predictions, as detailed below.

MPA_1: This MPA will turn on your heating system each time it will predict that you are about to go 
back home (and switch it off when it predicts you will leave the home), irrespectively of the level of 
trust of the prediction. Advantage: The MPA will always intervene when it is supposed to intervene. 
Disadvantage: Due to wrong predictions, the MPA might intervene too often in situations in which it 
was not supposed to do so.

MPA_2: This MPA will intervene only when the level of trust of its predictions is very high. 
Advantage: There is a high probability that if the MPA intervenes then it was supposed to do so. 
Disadvantage: Due to a low level of trust of some predictions, the MPA will intervene only in a 
subset of the potentially useful situations.
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21. Which of the two systems MPA_1 or MPA_2 would you prefer as your own MPA?
Mark only one oval.

1 2 3 4 5 6 7

Strong preference for
MPA_1

Strong
preference
for MPA_2

Getting notifications about traffic conditions

Consider two MPAs – MPA_1 and MPA_2 -- that are both able to predict which place you will visit 
next and can accordingly provide information about traffic conditions along the route to this place. 
MPA_1 and MPA_2 use different strategies to deal with the level of trust of predictions, as detailed 
below.

MPA_1: Whenever the MPA predicts that you will leave the current place, it will provide information 
about traffic conditions. Advantage: The MPA will always intervene when it is supposed to 
intervene. Disadvantage: Due to wrong predictions, the MPA might intervene too often in situations 
in which it was not supposed to do so.

MPA_2: This MPA will provide information about traffic conditions only when the level of trust of its 
predictions is very high. Advantage: There is a high probability that if the MPA intervenes then it 
was supposed to do so. Disadvantage: Due to a low level of trust of some predictions, the MPA will 
intervene only in a subset of the potentially useful situations.

22. Which of the two systems MPA_1 or MPA_2 would you prefer as your own MPA?
Mark only one oval.

1 2 3 4 5 6 7

Strong preference for
MPA_1

Strong
preference
for MPA_2

Pre-fetching data on a mobile device

Consider two MPAs – MPA_1 and MPA_2 -- that are both able to predict which place you will visit 
next and can accordingly pre-fetch data on your mobile device. MPA_1 and MPA_2 use different 
strategies to deal with the level of trust of predictions, as detailed below.

MPA_1: Whenever the MPA predicts that you will leave the current place for one that does not 
have a free or good connection to the Internet, it will pre-fetch data. Advantage: The MPA will 
always intervene when it is supposed to intervene. Disadvantage: Due to wrong predictions, the 
MPA might intervene too often in situations in which it was not supposed to do so.

MPA_2: This MPA will pre-fetch data only when the level of trust of its predictions is very high. 
Advantage: There is a high probability that if the MPA intervenes then it was supposed to do so. 
Disadvantage: Due to a low level of trust of some predictions, the MPA will intervene only in a 
subset of the potentially useful situations.
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23. Which of the two systems MPA_1 or MPA_2 would you prefer as your own MPA?
Mark only one oval.

1 2 3 4 5 6 7

Strong preference for
MPA_1

Strong
preference
for MPA_2

Trustworthiness of mobility predictions in general

24. How valuable is it for you to have an MPA that is able to estimate the level of trust of its
predictions?
Mark only one oval.

1 2 3 4 5 6 7

Not valuable at all Totally valuable
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 Privacy Policy 
  
  
 Locator – An Android Application for Identification of Relevant Places using Location Sensors 

 
Johannes Klaus 
johannes.klaus@gmx.net 
 

   
 
What is this study about: 
This Android application was implemented in the course of my ongoing master thesis 
and it is able to gather different sensor data for evaluating relevant places of the user. 
The goal is to use algorithms for reliable detection of visited places. For this purpose a 
data collection is needed with the sensor records and user generated places and diary. 
The application field of such data is to provide actions based on the contextual place.  
So it would be possible to display adapted to-do lists, traffic information or to do home 
automation based on the users behaviour. 

Fachbereich Elektrotechnik 
und Informationstechnik 

 
Fachgebiet Drahtlose Sensornetze 

Prof. Dr. Silvia Santini 
What kind of data will be collected: 
The app gathers every minute different sensor data. The sensor data will be used for place evaluation algorithms. 
Additional data added by the user is used to measure how accurate different algorithms work. 
The sensors can divided in three categories. 
Exact position records are based on 

- GPS location of every scan 
- Network location of every scan (Wi-Fi-based and cell-tower-based) 
- Relevant places set by user 

Wireless sensors for usage in algorithms 
- Connected or visible cell tower 
- Wi-Fi access points in range 
- Bluetooth devices in range 

Logging information 
- Hashed call data records 
- Screen on time 
- Battery level 
- Diary of places maintained by user 

No personal data will be collected.  
 
What is the data used for: 
The collected data is only used to build and evaluate algorithms for generating relevant places. 
 
How long will the data be collected: 
The data mentioned above will be collected for 5 weeks until 14.07.2013. 
 
How is the data stored and secured: 
For better accessibility, the collected data will be sent from your smartphone to a web-server through the internet 
periodically. The user decides about when to save his own generated data. The data can be accessed on the 
webserver with username and password in order to see what data is available and to delete it if wanted. 
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Who will use the data 
I will use the collected data for evaluating algorithms in my master thesis to detect user places and it will be used in 
university for research in place detection. 
 
What do I have to do: 
You only have to install the Locator app and carry your smartphone with you. For collection of data the sensors have 
to be activated in the settings. You also have to keep a diary of every visited place and to mark them on a map. This 
is necessary to have ground truth for the evaluation. 
 
How to quit: 
You can stop participating in our data collection anytime without giving any reasons by deinstalling the app from 
your smartphone. The collected data can be deleted immediately upon your request. 
 
 
 
 
 
 
 
 
I hereby confirm that I have read the privacy policy above and agree with the data collection. 
 
Name:  
Email:  
Phone:  
 
 
___________________________________ 

Date, Signature 
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