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Introduction

In the 1960s, Courrège and von Waldenfels proved that the generator of a Feller semigroup
is represented by an integro-differential operator under some reasonable assumptions.
By Fourier inversion, we immediately derive that the generator of a Feller process is a
pseudo-differential operator

Au(x) = −q(x,D)u(x) = −(2π)
d
2

∫

Rd

eix
>ξq(x, ξ)û(ξ) dξ, ∀u ∈ C∞

c (Rd),

with symbol q(x, ξ). Since every Markov process is associated with a semigroup, this
result establishes a connection between Feller processes and symbols of pseudo-differential
operators.

For a Lévy process, this relation is quite natural. It is well-known that a Lévy process
(Lt)t≥0 is characterized by the characteristic exponent ψL,

E
x(ei(Lt−x)>ξ) = e−tψL(ξ),

and that the generator of a Lévy process is given by

Au(x) = −(2π)
d
2

∫

Rd

eix
>ξψL(ξ)û(ξ) dξ.

Hence, the characteristic exponent and the symbol of the pseudo-differential operator
coincide.

Many results for Lévy processes are based on the characteristic exponent. In other
words, it is possible to deduce properties of a Lévy process from its symbol. In recent
years, this approach has generated new insights to Feller processes, e.g. path properties,
through their symbol. However, most applications require the assumption of bounded
coefficients,

sup
x∈Rd

|q(x, ξ)| ≤ c(1 + |ξ|2) for all ξ ∈ R
d.

Hence, this thesis is devoted to the study of Feller processes with unbounded coefficients
through their symbol. We address this task by focusing on affine processes. This wide
class of processes has a symbol with coefficients which are affine dependent on x and
hence unbounded. We develop new techniques and tools to handle the affine case and
then expand our results to Feller processes with unbounded coefficients.
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Introduction

This analytic approach to stochastic processes requires elementary harmonic analysis.
Therefore, we introduce the notion and relevant results of positive and negative definite
functions in Chapter 1. Making the thesis self-contained, we provide a brief exposition
of Markov process, semigroups and pseudo-differential operators.

The second chapter contains several results for Feller processes whose symbols have
unbounded coefficients. We start with probability estimates, the maximal inequality and
an extension of the upper bound of the tail probability. With the aid of these important
tools, we are able to prove a law of iterated logarithm as well as path properties by the
Blumenthal-Getoor-Pruitt indices. The analysis of pseudo-differential operators with
unbounded coefficients requires weighted norms, which compensate the growth of the
coefficients. Section 2.3 provides essential properties of weighted norms, allowing us to
characterize the domain of a pseudo-differential operator.

Since affine processes are a major example in this thesis, we thoroughly examine them
on the so-called canonical state space D = Rm

+ × Rn in Chapter 3. An affine process
is defined as a Markov process whose characteristic function is exponential-affine depen-
dent on x. Basic examples show that in general, we have no explicit representation of
this definition. However, an affine process is uniquely characterized by its admissible pa-
rameters. After establishing some basic properties and identifying the affine semigroup
as a Feller semigroup, we use harmonic analysis to verify the admissibility conditions.
The parameters correspond to negative definite functions which form the symbol of the
pseudo-differential operator. Based on the results of Chapter 2, we give accessible proofs
of the domain and cores of an affine process. In Section 3.6, we deduce several path
properties through the symbol.

Chapter 4 deals with affine processes on the space of symmetric positive semidefinite
matrices. The program is similar to the canonical case. However, the matrix-valued state
space causes slight differences. Nevertheless, we see that the study of affine processes
through their symbol is independent of the state space to a certain extent.

In Chapter 5, we look at Ornstein-Uhlenbeck processes from a potential theoretical point
of view. We consider the corresponding semigroups on the L2 space. We will see that
the Ornstein-Uhlenbeck process generates an L2 sub-Markov semigroup, and hence a
Dirichlet operator. Furthermore, we are interested in the invariance and symmetry of
the operator. By a criterion, based on the symbol, we calculate the invariant measure
for an Ornstein-Uhlenbeck process. The symmetry of the generator of an Ornstein-
Uhlenbeck process implies a functional equation. The solution of the latter shows that
the symmetry requires that the process has no jumps. These results also carry over to
pertubed Ornstein-Uhlenbeck processes.

The Markov chain approximation is a simulation scheme based on the symbol of the
generator. In Chapter 6, we generalize this method to Feller processes with symbols
whose drift and diffusion coefficient satisfy a linear growth condition. For affine processes
we exploit the special structure of the state space to expand the linear growth condition
to all coefficients of the symbol. Furthermore, our results carry over to more general state
spaces as positive semidefinite matrices since we use an approach based on the symbol.
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Index of Notation

This list is intended to aid cross-referencing, so notation that is specific to a single section is
generally not listed. Some symbols are used locally, without ambiguity, in senses other than
those given below.

General notation: Analysis

a ∨ b, a ∧ b max(a, b), min(a, b)

a+, a− max(a, 0), −min(a, 0)

i imaginary unit

|x| Euclidean vector and matrix norm

〈x, y〉 =∑d
k=1 xkyk for x, y ∈ Cd

eξ(x) eξ
>x, x, ξ ∈ Cd

suppf support, {f 6= 0}

∇ gradient
(

∂
∂x1

, . . . ∂
∂xd

)>

∇α ∂α1+···+αd

∂x
α1
1 ···∂xαd

d

Fu = û Fouier transform of a function u

(Tt)t≥0 semigroup of operators

(A,D(A)) generator

q(x,D) pseudo-differential operator

q(x, ξ) continuous negative definite
symbol

p(x, ξ) probabilistic symbol

S+
d space of d× d dimensional

symmetric positive semidefinite
matrices

Sd space of d× d dimensional
symmetric matrices

〈x, y〉 = Tr(xy) for x, y ∈ Sd

General notation: Probability

(Ω,F,P) probability space

∼ ‘is distributed as’

a.s. almost surely

(Xt,Ft)t≥0 adapted process

B = (Bt)t≥0 Brownian motion

L = (Lt)t≥0 Lévy process

ψL characteristic exponent of a Lévy
process (Lt)t≥0

(l, Q, ν) Lévy triplet

χ truncation function

τxr inf{t > 0; Xt ∈ B
c
(x, r)}

Sets and σ-algebras

Ac complement of the set A

A◦ open interior of the set A

A closure of the set A

B(x, r) open ball, centre x, radius r

B(x, r) closed ball, centre x, radius r

B(D) Borel sets of D

FXt σ(Xs : s ≤ t)

Spaces of measures and functions

B(D) Borel functions on D

Bb(D) — —, bounded

C(D) continuous functions on D

Cb(D) — —, bounded

C∞(D) — —, lim
|x|→∞

u(x) = 0

Cc(D) — —, compact support

Ck(D) k times continuously diff’ble
functions on D

Ck∞(D) — —, 0 at infinity (with
their derivatives)

Ckc (D) — —, compact support
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Introduction

‖u‖∞ = supx |u(x)| supremum norm

‖u‖(k)
∑

|α|≤k ‖u‖∞
C
p
ρ,∞ weighted function space

‖u‖(p),ρ =
∑

|α|≤p ‖ρDαu‖∞ weighted norm

Lp(D,µ), Lp(µ), Lp(D) Lp space w.r.t. the
measure space (D,F , µ)

‖f‖Lp(µ)

( ∫
|f |p dµ

)1/p

S(Rd) Schwartz space of rapidly
decreasing smooth functions

Affine processes

Rm
+ {x ∈ Rm; xi ≥ 0 ∀i = 1, . . . ,m}

Cm− {x ∈ Cm; Re(xi) ≤ 0 ∀i =
1, . . . ,m}

D = Rm
+ ×Rn "canonical" state space

d = m+ n

I = {1, . . . ,m} index set

II = {m+ 1, . . . , d} index set

xI = (x1, . . . , xm)
> projection on I

coordinates for x ∈ Rm
+ ×Rn

xII = (xm+1, . . . , xd)
> projection on II

coordinates for x ∈ Rm
+ ×Rn

F , R functional characteristics

Further abbreviations

CIR Cox-Ingersoll-Ross process

GOU generalized Ornstein-Uhlenbeck
process

SDE stochastic differential equation

vi



Chapter 1

Preliminaries

This chapter presents some preliminaries including a brief introduction to Markov pro-
cesses. From there, we continue with semigroups, in particular Feller semigroups. Fi-
nally, we summarize relevant results on generators and pseudo-differential operators.
Since continuous negative definite functions appear in all these parts, we start by briefly
introducing them in the next section.

1.1 Continuous Negative Definite Functions

Let us recall several known facts on positive and negative definite functions. Usually,
these functions are considered on the spaces Rn as well as Rm

+ . For our purpose, we require
a more general setting. Therefore, we examine positive and negative definite functions on
abelian semigroups1 with an involution2 ∗ : S → S, cf. Berg, Christensen and Ressel [8]
and Ressel [43]. Naturally, Rn with x∗ = −x and Rm

+ with x∗ = x are abelian semigroups
with involutions. Further examples are the product space D = Cm

− × iRn including the
special cases3 m = 0 or n = 0 and the space of matrices4 D = S+

d × iSd, both equipped
with the complex conjugate as the involution x∗ = x. We are mainly interested in the
latter examples. Therefore, we choose the general approach of positive and negative
definite functions on semigroups unless it yields unreasonable technicalities.

We use the definitions of positive and negative definiteness according to Berg et al. [8,
Definition 4.1.5, Definition 4.1.8].

Definition 1.1. A function φ : S → C is called positive definite if

n∑

j,k=1

cjckφ(s
∗
j + sk) ≥ 0

1An abelian semigroup is a set S with a binary operation + : S × S → S which is commutative and
associative.

2A mapping ∗ : S → S is called involution, if (s+ t)∗ = s∗ + t∗ and (s∗)∗ = s for all s, t ∈ S.
3The case iRn is very similar to the usual space Rn. In a sense, the paramater already contains the

imaginary unit.
4In Section 4.1 we give a short introduction to the space of positive definite matrices S+

d and symmetric
matrices Sd.
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Chapter 1 Preliminaries

for all n ∈ N, s1, . . . , sn ∈ S and c1, . . . , cn ∈ C.
A function ψ : S → C is called negative definite if it is hermitian, i.e. for any s, t ∈ S
holds ψ(s+ t∗) = ψ(s∗ + t), and

n∑

j,k=1

cjckψ(s
∗
j + sk) ≤ 0 (1.1)

for all n ∈ N, s1, . . . , sn ∈ S and c1, . . . , cn ∈ C with
∑n

j=1 cj = 0,
or, equivalently, if ψ is hermitian, ψ(0) ≥ 0 and

n∑

j,k=1

cjck

(
ψ(sj) + ψ(sk)− ψ(s∗j + sk)

)
≥ 0

for all n ∈ N, s1, . . . , sn ∈ S and c1, . . . , cn ∈ C.

Positive definite functions naturally appear in probability theory. Bochner’s theorem
establishes a connection between positive definite functions and bounded Borel measures
which include probability measures. We present a version based on Berg et al. [8, Section
4.2] suitable for our needs.

Corollary 1.2. A function φ : Cm
− × iRn → C is continuous bounded positive definite if

and only if it is the Fourier-Laplace transform of a bounded Borel measure µ on Rm
+×Rn.

Furthermore, we have the representation

φ(ξ) =

∫

Rm
+×Rn

e
∑m+n

k=1 xkξkµ( dx)

=

∫

Rm
+×Rn

ex
>ξµ( dx), ξ ∈ C

m
− × iR

n.

From a probabilistic point of view, this means that the characteristic function of a prob-
ability measure is a continuous positive definite function. The next lemma generalizes
a result from Jacob [27, Corollary I.3.6.10]. It shows how to derive a negative definite
function from a positive definite one. We present a general version for any semigroup
S.

Lemma 1.3. Let φ : S → C be a positive definite function. Then the function ψ : S → C

with ψ(s) = a− φ(s) is negative definite for all a ∈ R such that a ≥ φ(0).

Proof. The proof follows the lines of Jacob [27, Corollary I.3.6.10]. We just have to
replace φ(0) by a. Let us mention that the condition a ≥ φ(0) is essential. Otherwise we
would have ψ(0) = a− φ(0) < 0, which contradicts the definition.

We continue with the Lévy-Khintchine integral representation for a negative definite
function, see Berg et al. [8, Theorem 4.3.19].

2



1.1 Continuous Negative Definite Functions

Theorem 1.4. A continuous function ψ : (Cm
− × iRn) → C is negative definite with Reψ

bounded below if and only if there exists a triplet (l, Q, ν) such that

ψ(ξ) = ψ(0) + l>ξ +
1

2
ξ>Qξ +

∫

(Rm
+×Rn)\{0}

(
1− ey

>ξ + χ(y)>ξ
)
ν( dy), (1.2)

where l ∈ Rm+n, Q is a symmetric positive semidefinite matrix in R(m+n)×(m+n), χ :
Rm

+ ×Rn → Rm+n is a truncation function componentwise given by

χk(y) =

{
0 k ∈ {1, . . . ,m}
h(yk) k ∈ {m+ 1, . . . , d},

with h(x) a bounded measurable function from R to R that behaves like x in a neigh-
bourhood of zero, and ν is a Lévy measure on (Rm

+ ×Rn)\{0} such that
∫
(Rm

+×Rn)\{0}(1−
Re ey

>ξ)ν( dy) <∞ for all ξ ∈ Cm
− × iRn.

The integral condition is equivalent to5
∫
(Rm

+×Rn)\{0}
(
(|yI |+ |yII |2) ∧ 1

)
ν( dy) < ∞,

where y = (yI , yII) with yI ∈ Rm
+ and yII ∈ Rn.

The above parameters are subject to further conditions. In Chapter 3, we specify them
in detail by considering the subspaces. In the case of iRn we have the standard Lévy-
Khintchine formula where the parameter ξ already contains the imaginary unit i, cf.
Jacob [27, Theorem. 3.7.7] or Schilling, Song and Vondraček [53, Theorem 4.15]. For
Cm

− , see Berg et al. [8, Theorem. 4.3.20], the drift term is positive, i.e. l ≥ 0, the quadratic
term vanishes, i.e. Q = 0, and no truncation function is required, i.e. χ ≡ 0.

The next lemma gives estimates on the growth of continuous negative definite func-
tions.

Lemma 1.5 (Growth of continuous negative definite functions). Let ψ : Cm
− × iRn →

C be a continuous negative definite function with Lévy-Khintchine representation as in
Theorem 1.4.

1. For all ξ ∈ Cm
− × iRn holds |ψ(ξ)| ≤ c′|ξ|2, where c′ = sup|η|≤2 |ψ(η)|.

2. For all ξ ∈ Cm
− × iRn holds |ψ(ξ)| ≤ cψ(1 + |ξ|2), where cψ = 2 sup|η|≤1 |ψ(η)|.

A proof of the these statements can be found in Jacob [27, Lemma I.3.6.22].

5The fact that the above condition is sufficient follows from applying Taylor’s formula twice, cf. proof
of Theorem 3.21.
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Chapter 1 Preliminaries

1.2 Markov Processes

Our approch to define Markov processes and their transition functions is adapted from
Ethier and Kurtz [19], Bauer [5] and Schilling and Partzsch [51]. In the following, we
investigate two examples, a Lévy process and a generalized Ornstein-Uhlenbeck process,
cf. Sato [46] and Behme and Lindner [6], respectively. To keep notation simple, we choose
Rd as a state space. However, all subsequent definitions and statements are still valid
for more general spaces, D = Rm

+ × Rn and D = S+
d , we will use in the succeeding

chapters.

Definition 1.6 (Markov process). Let X = (Xt)t≥0 be a stochastic process defined on a
probability space (Ω,F ,P) with values in Rd, and set FX

t = σ(Xs; s ≤ t). Then X is a
Markov process if

P(Xt+s ∈ B|FX
t ) = P(Xt+s ∈ B|Xt)

for all s, t ≥ 0 and B ∈ B(Rd).

Observe, that we do not impose any regularity conditions such as stochastic continuity so
far. However, there exists a modification such that the process is separable, c.f. Wentzell
[65, Section 5.2.9]. Without the assumption of separability, expressions as lims→tXs are
not necessarily measurable or even meaningful. Obviously, stochastic continuity implies
separability.

A function pt(x,B) : [0,∞) × Rd × B(Rd) → [0, 1] is called a (time-homogeneous)
transition function if

1. B 7→ pt(x,B) is for all t ≥ 0 and all x ∈ Rd a probability measure;

2. p0(x,B) = δx(B) holds for all x, where δ is the Dirac measure;

3. (t, x) 7→ pt(x,B) is for all B ∈ B(Rd) measurable;

4. pt+s(x,B) =
∫
Rd ps(y, B)pt(x, dy) for all s, t ≥ 0, x ∈ Rd and B ∈ B(Rd).

The last equation is commonly known as Chapman-Kolmogorov equation.
We call a Markov processX time-homogeneous if a time-homogeneous transition function
is associated with X, i.e.6

pt(x,B) = P
x(Xt ∈ B) = P(Xt ∈ B|X0 = x) for all t ≥ 0, x ∈ R

d, B ∈ B(Rd).

In the following, we always consider time-homogeneous Markov processes and, hence,
briefly speak of Markov processes. One important subclass, which we frequently use, are
Lévy processes.
A stochastic process L = (Lt)t≥0 with values in Rd is called a Lévy process if it

0. starts in zero: L0 = 0 a.s.;

6As usual, Px and Ex are the probability measures P(·| X0 = x) and the corresponding expectation,
respectively.

4



1.2 Markov Processes

1. has independent increments: Lt − Ls is independent of FL
s for all 0 ≤ s ≤ t;

2. has stationary increments: Lt − Ls ∼ Lt−s for all 0 ≤ s ≤ t;

3. is stochastically continuous.

Well-known examples for Lévy processes are the Poisson process and Brownian motion.
In the following, we always assume that a Lévy process L has càdlàg paths7 since L has
a modification L̃ for which t 7→ L̃t is a.s. càdlàg, see Sato [46, Theorem 11.5]. A Lévy
process is a Markov process with transition function pt(x,B) = pt(B − x) := P(Lt ∈
B − x), where B − x = {b− x; b ∈ B}. Observe that a Lévy process is homogeneous in
space. In this work, we are interested in processes which are not homogenous in space.
One example is the generalized Ornstein-Uhlenbeck process which can be defined by a
Lévy process.

Example 1.7 (Generalized Ornstein-Uhlenbeck process). Let (ξt, ηt)t≥0 be a bivariate
Lévy process and V0 be a random variable on the same probability space. Then the
process V = (Vt)t≥0 defined by

Vt = e−ξt

(∫ t

0

eξs− dηs + V0

)
, t ≥ 0,

is called the generalized Ornstein-Uhlenbeck (GOU) process driven by (ξ, η)> with start-
ing random variable V0. The generalized Ornstein-Uhlenbeck process driven by (ξ, η)>

is the unique solution of the stochastic differential equation

dVt = Vt− dUt + dLt, t ≥ 0, (1.3)

where (U,L)> is a bivariate Lévy process given by


Ut
Lt


 =


−ξt +

∑
0<s≤t(e

−∆ξs − 1 + ∆ξs) + tσ2
ξ/2

ηt +
∑

0<s≤t(e
−∆ξs − 1)∆ηs − tσξ,η


 , t ≥ 0,

where σ2
ξ and σξ,η are the (1, 1) and (1, 2) elements of the Gaussian covariance matrix of

the bivariate Lévy process (ξ, η)>.

If ξ is deterministic, i.e. ξt = at, we get the usual Ornstein-Uhlenbeck[-type] process
driven by a Lévy process, see also Example 3.2.iv. If we additionally use the Brownian
motion B = (Bt)t≥0 as driving process, i.e. (ξt, ηt) = (at, Bt), we obtain the classical
Ornstein-Uhlenbeck process.

7A function is càdlàg if it is right-continuous with finite left-hand limits.

5



Chapter 1 Preliminaries

1.3 Semigroups

This section contains a short introduction to the theory of semigroups based on the
monographs of Böttcher, Schilling and Wang [11], Jacob [27] and Rogers and Williams
[45].

The analysis of semigroups highly depends on function spaces. Therefore, we briefly
introduce the main definitions.
The support of a function u : Rd → C is defined by

supp(u) := {x ∈ Rd; u(x) 6= 0}
and we say the function u vanishes at infinity if

∀ε > 0 ∃K ⊆ R
d compact ∀x ∈ R

d\K : |u(x)| < ε.

Let α ∈ Nd
0 be a multiindex. Then for k ∈ N0 ∪ {∞}, we define the spaces

Bb(R
d) := {u : Rd → C; u is measurable and bounded},

Ck(Rd) := {u : Rd → C; u is k-times continuously differentiable},
Ck
c (R

d) := {u ∈ Ck(Rd); supp(u) is compact},
C∞(Rd) := {u ∈ C(Rd); u vanishes at infinity},
Ck

∞(Rd) := {u ∈ Ck(Rd); ∂αu ∈ C∞(Rd) for |α| ≤ k}.
Observe that these function spaces are also well defined if we replace Rd by an open
subset G ⊆ Rd. The space Ck

∞(Rd) equipped with the norm

‖u‖(k) :=
∑

|α|≤k
‖∂αu‖∞,

where

‖u‖∞ := sup
x∈Rd

|u(x)|,

is a Banach space. Elements of the test functions C∞
c (Rd) are smooth functions with

compact support. It is well known that the test functions are dense in Ck
∞(Rd) and

C∞(Rd) with respect to the norm ‖ · ‖(k) and ‖ · ‖∞, respectively.

For a Markov process X, we get by

Ttu(x) := E
x(u(Xt)) =

∫

Rd

u(y)pt(x, dy) for t ≥ 0, u ∈ Bb(R
d)

a family of linear operators T = (Tt)t≥0 on the bounded Borel measurable functions
Bb(R

d).8 By the Markov property or, equivalently, by the Chapman-Kolmogorov equa-
tion we see that T is a (one-parameter operator) semigroup, i.e.

T0 = id and TtTsu = TsTtu = Tt+su for all u ∈ Bb(R
d), s, t ≥ 0.

Furthermore, it holds that a semigroup generated by a Markov process

8All subsequent definitions and statements are still valid for more general spaces, D = Rm
+ × Rn and

D = S+

d .

6



1.3 Semigroups

1. is positivity preserving: Ttu ≥ 0 for u ∈ Bb(R
d), u ≥ 0;

2. has the sub-Markov property: Ttu ≤ 1 for u ∈ Bb(R
d), u ≤ 1.

Hence, we call such an operator semigroup a sub-Markov semigroup.
In the case of a Lévy process we have a nice representation of the semigroup. Using the
homogeneity in space we get for u ∈ C∞(Rd)

Ttu(x) =

∫

Rd

u(y + x)pt( dy) = p̃t ∗ u(x),

where p̃t(B) = pt(−B) for all B ∈ B(Rd) and t ≥ 0. In other words, we can write the Lévy
semigroup as a convolution. Furthermore, we deduce from the semigroup property that
pt+s = pt ∗ ps and, hence, the semigroup of a Lévy process is a convolution semigroup.

Many semigroups generated by Markov processes satisfy further properties. We inves-
tigate several attributes in the next chapters and introduce them as required. We now
focus on a very important subclass, Feller semigroups. In the literature, several defini-
tions of Feller semigroups exist. We define a Feller semigroup and, hence, a Feller process
according to Böttcher, Schilling and Wang [11, Definition 1.2].

Definition 1.8 (Feller semigroup and process). A Feller semigroup is a sub-Markov
semigroup (Tt)t≥0, which satisfies the Feller property

Ttu ∈ C∞(Rd) ∀u ∈ C∞(Rd), t > 0 (1.4)

and which is strongly continuous

lim
t→0

‖Ttu− u‖∞ = 0 ∀u ∈ C∞(Rd). (1.5)

A Feller process is a time-homogeneous Markov process whose transition group Ttu(x) =
Exu(Xt) is a Feller semigroup.

Other definitions of a Feller semigroup distinguish themselves by the function space on
which the semigroup is defined.

Definition 1.9 (Cb-Feller semigroup). A sub-Markov semigroup (Tt)t≥0 is called a Cb-
Feller semigroup if it enjoys the Cb-Feller property, i.e.

Ttu ∈ Cb(R
d) ∀u ∈ Cb(R

d), t > 0

and if t 7→ Ttu is continuous in the topology of locally uniform convergence in the space
Cb(R

d).

Finally, we introduce the notion of a strong Feller semigroup.

Definition 1.10 (Strong Feller semigroup). A sub-Markov semigroup (Tt)t≥0 is called a
strong Feller semigroup if Tt : Bb(R

d) → Cb(R
d) for all t > 0.

7



Chapter 1 Preliminaries

For all these "Feller" semigroups exist examples which satisfy one but none of the other
definitions, cf. Böttcher et al. [11, Section 1.1]. The semigroup T = (Tt)t≥0 of a Lévy
process is a Feller semigroup. Indeed, for a function u ∈ C∞(Rd) we have by homogeneity
in space

Ttu(x) = E
x
(
u(Xt)

)
= E

0
(
u(Xt + x)

)
.

An application of the dominated convergence theorem shows that t 7→ Ttu(x) is continu-
ous and that Ttu vanishes as |x| tends to infinity. Since a Lévy process is stochastically
continuous, the corresponding semigroup satisfies the strong continuity.
The semigroup of a generalized Ornstein-Uhlenbeck process is also a Feller semigroup.
However, it is more involved to show this and we thus refer to Behme and Lindner [6,
Theorem 3.1].

1.4 Generators and Pseudo-Differential Operators

This introduction to the theory of generators and pseudo-differential operators is adapted
from Böttcher, Schilling and Wang [11], Jacob [27, 28] and Ethier and Kurtz [19]. The
references [27, 28] are the standard work on pseudo-differential operators in the field of
stochastic processes. However, this section is primarily adapted from [11].

As in the previous sections, we simplify the notation by considering the space Rd instead
of more general spaces, e.g. D = Rm

+ × Rn and D = S+
d . In the following, we require

several tools from Fourier analysis. Since there are several conventions for defining the
Fourier transform, we introduce our notation. The Fourier transform of a (real-valued
or even complex-valued) function u ∈ L1(Rd, dx) is defined as

F(u)(ξ) = û(ξ) = (2π)−d/2
∫

Rd

e−ix>ξu(x) dx,

and the inverse Fourier transform is

F−1(u)(x) = ǔ(x) = (2π)−d/2
∫

Rd

eiξ
>xu(ξ) dξ.

The Fourier transform F and the inverse Fourier transform F−1 are inverse operations
on the Schwartz space S(Rd) of rapidly deacreasing C∞-functions. By Plancherel’s
identity

∫

Rd

u(x)v̂(x) dx =

∫

Rd

û(x)v(x) dx,

the Fourier transform has an extension to L2(Rd).

The next definition establishes a connection between stochastic processes and operator
theory.

8



1.4 Generators and Pseudo-Differential Operators

Definition 1.11 (Generator). Let (Tt)t≥0 be a Feller semigroup on C∞(Rd) or (Xt)t≥0

a Feller process on Rd. Then the linear operator (A,D(A)) defined by

Au := lim
t→0

Ttu− u

t

(
the limit is taken in (C∞(Rd), ‖ · ‖∞)

)
, (1.6)

D(A) :=

{
u ∈ C∞(Rd); ∃g ∈ C∞(Rd) : lim

t→0

∥∥∥∥
Ttu− u

t
− g

∥∥∥∥
∞

= 0

}
(1.7)

is the (infinitesimal) generator of the semigroup (Tt)t≥0 or of the process (Xt)t≥0.

In general it is not possible to determine the domain of the generator explicitly. However,
for many applications it is sufficient to know the generator on a suitable dense subset.

Definition 1.12 (Operator core). Let (A,D(A)) be a densely defined, closed linear
operator and D ⊆ D(A) be a dense subset. If D determines A in the sense that the
closure of (A,D) is (A,D(A)), then D is called an (operator) core. In other words, D is
an operator core if

∀u ∈ D(A) ∃(un)n≥1 ⊆ D : lim
n→∞

(
‖u− un‖∞ + ‖Au− Aun‖∞

)
= 0.

The test functions C∞
c (Rd) are a core of the generator of a Lévy process, see Sato [46,

Theorem 31.5]. However, it is often difficult or even impossible to determine a core.

In the case of Lévy processes we have a representation of the generator for u ∈ C2
∞(Rd)

given by

Au(x) = l>∇u(x)+1

2
divQ∇u(x)+

∫

Rd\{0}

(
u(x+y)−u(x)−y>∇u(x)1{|y|≤1}(y)

)
ν( dx),

where l ∈ Rd, Q ∈ Rd×d is symmetric positive semidefinite and ν is a positive measure
on Rd such that

∫
Rd\{0}(|y|2 ∧ 1)ν( dx) < ∞. Here we used y1{|y|≤1}(y) as a truncation

function for the integral term. However, it is possible to replace y1{|y|≤1}(y) by a different
truncation function χ : Rd → Rd, which is a bounded measurable function and behaves
like y in a neighbourhood of zero.
For the generator of a generalized Ornstein-Uhlenbeck process we can give a similar
representation. For the proof we refer to Behme et al. [6, Theorem 3.1].

Example 1.13 (Generator of a generalized Ornstein-Uhlenbeck process). As in Example
1.7, let (Zt)t≥0 =

(
(Ut, Lt)

>)
t≥0

be a bivariate Lévy process with characteristic triplet

(lZ , QZ , νZ), where lZ = (lU , lL)
>, QZ =


 σ2

U σU,L

σU,L σ2
L


 and νZ(( dz1, dz2)

>) such that

νZ((−1, dz2)
>) = 0. Then the process (V x

t )t≥0 given by

V x
t = x+

∫

(0,t]

V x
s− dUs + Lt, t ≥ 0

9



Chapter 1 Preliminaries

is a Feller process. For any u ∈ C∞
c (R), the generator can be written as

AV u(x) = (xlU + lL)u
′(x) +

1

2
(x2σ2

U + 2xσU,L + σ2
L)u

′′(x) (1.8)

+

∫

R2\{0}

(
u(x+ xz1 + z2)− u(x)− (xz1 + z2)u

′(x)1{|z|≤1}
)
νZ( dz1, dz2).

The similarity of the structure of the last two examples is no coincidence as the next
theorem shows.

Theorem 1.14 (Courrège; v. Waldenfels). Let (A,D(A)) be an infinitesimal generator
of a Feller semigroup. If C∞

c (Rd) ⊆ D(A), then A is of the following form

Au(x) = −c(x)u(x) + l(x)>∇u(x) + 1

2
divQ(x)∇u(x)

+

∫

Rd\{0}

(
u(x+ y)− u(x)− χ(y)>∇u(x)

)
N(x, dy), u ∈ C∞

c (Rd),

where c(x) ≥ 0, (l(x), Q(x), N(x, ·)) is, for fixed x ∈ Rd, a Lévy triplet, i.e. l(x) ∈ Rd,
Q(x) ∈ Rd×d is symmetric positive semidefinite and N(x, ·) is a positive Radon measure
on Rd\{0} satisfying

∫
Rd\{0}(|y|2 ∧ 1)N(x, dy) < ∞, and χ : Rd → Rd is a bounded

measurable function such that χ(y) behaves like y in a neighbourhood of 0.

This result by Courrège [14] and von Waldenfels [60, 62, 61] gives a representation of the
generator as an integro-differential operator if the test functions C∞

c (Rd) are contained
in the domain. In the above representation of the operator A, we call the differential
operator −c(x)u(x)+ l(x)>∇u(x)+ 1

2
divQ(x)∇u(x) the local part9 of A and refer to the

integral
∫
Rd\{0}

(
u(x+ y)− u(x)− χ(y)>∇u(x)

)
N(x, dy) as the non-local part.

Using Fourier inversion, the previous theorem links Feller processes and their generators
to pseudo-differential operators.

Definition 1.15 (Pseudo-differential operator, symbol). Let q : Rd × Rd → C be a
function which is, for every x ∈ Rd, continuous and negative definite. Then

−q(x,D)u(x) = −(2π)−
d
2

∫

Rd

eix
>ξq(x, ξ)û(ξ) dξ, u ∈ C∞

c (Rd) (1.9)

is a pseudo-differential operator (with negative definite symbol) and q(x, ξ) is called the
symbol of the operator.

This allows to reformulate Theorem 1.14.

9An operator L is called local, if supp(Lu) ⊆ supp(u).
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1.4 Generators and Pseudo-Differential Operators

Corollary 1.16. Let (A,D(A)) be an infinitesimal generator of a Feller semigroup. If
C∞
c (Rd) ⊆ D(A), then A is a pseudo-differential operator with symbol q(x, ξ),

Au(x) := −q(x,D)u(x) := −(2π)−
d
2

∫

Rd

eix
>ξq(x, ξ)û(ξ) dξ, u ∈ C∞

c (Rd),

where for every x ∈ Rd the function q(x, ·) is a continuous negative definite function
with a Lévy-Khintchine representation with an x-dependent triplet (l(x), Q(x), N(x, dy))
relative to a truncation function χ, i.e.

q(x, ξ) = q(x, 0)− il(x)>ξ +
1

2
ξ>Q(x)ξ

+

∫

Rd\{0}

(
1− eiy

>ξ + iχ(y)>ξ
)
N(x, dy).

We now rewrite the generator of a Lévy process as

Au(x) = −(2π)−
d
2

∫

Rd

eix
>ξq(x, ξ)û(ξ) dξ, u ∈ C∞

c (Rd),

where

q(x, ξ) = ψL(ξ) = −il>ξ +
1

2
ξ>Qξ +

∫

Rd

(
1− eiy

>ξ + iy>ξ1{|y|≤1}(y)
)
ν( dy).

Obviously, the symbol q(x, ξ) is independent of x. Furthermore, it coincides with the
characteristic exponent ψL : Rd → C of the Lévy process X given by

Eeiξ
>Xt = e−tψL(ξ).

In general, the coefficients of the symbol of a generator are x-dependent. Since the
symbol has the same structure, i.e. an x-dependent Lévy-Khintchine representation, we
use a similar notation to the Lévy case and call

(l(x), Q(x), N(x, dy) the x-dependent Lévy triplet

l(x) the drift coefficient

Q(x) the covariance matrix

N(x, dy) the jump or Lévy measure.

As an x-dependent continuous negative definite function, the symbol is subject to several
properties. The next proposition shows a selection from Böttcher et al. [11, Proposition
2.27] together with a method to calculate the symbol from the generator.

Proposition 1.17. Let (A,D(A)) be an infinitesimal generator of a Feller semigroup
satisfying C∞

c (Rd) ⊆ D(A) and denote by q(x, ξ) its symbol. Then

1. q(x, 0) is locally bounded;

2. −q(x, ξ) = e−ξ(x)Aeξ(x) where eξ(x) := eix
>ξ;

11



Chapter 1 Preliminaries

3. |q(x, ξ)| ≤ γ(x)(1 + |ξ|2) for some locally bounded function γ : Rd → [0,∞).

The last item states that the symbol is locally bounded in x. However, many applications
based on the symbol require the stronger condition of global boundedness, i.e.

sup
x∈Rd

|q(x, ξ)| ≤ c(1 + |ξ|2) for all ξ ∈ R
d,

where c ≥ 0 is some suitable constant. Equivalent to this inequality we can demand that
the coefficients (l(x), Q(x), N(x, dy)) of the symbol satisfy

sup
x∈Rd

|l(x)|+ sup
x∈Rd

|Q(x)|+ sup
x∈Rd

∫

Rd\0
(1 ∧ |y|2)N(x, dy) <∞.

If this holds we say that the symbol has bounded coefficients. In the same manner
we speak of a symbol with unbounded coefficients if this conditions fails, i.e.

sup
x∈Rd

|l(x)|+ sup
x∈Rd

|Q(x)|+ sup
x∈Rd

∫

Rd\0
(1 ∧ |y|2)N(x, dy) = ∞.

Since the symbol of a generator of a Lévy process is independent of x, it has bounded
coefficients. An example for a symbol with unbounded coefficients is the generator of a
generalized Ornstein-Uhlenbeck process.

Example 1.18 (Symbol of a generalized Ornstein-Uhlenbeck process). By Proposition
1.17, we can compute the symbol of the generator corresponding to the generalized
Ornstein-Uhlenbeck process defined as in Example 1.7. Set eξ(x) := eixξ. Then equation
(1.8) yields

q(x, ξ) = −e−ξ(x)Aeξ(x)

= −e−ξ(x)
[
(xlU + lL)iξeξ(x) +

1

2
(x2σ2

U + 2xσU,L + σ2
L)(iξ)

2eξ(x)

+

∫

R2\{0}

(
eξ(x+ xz1 + z2)− eξ(x)− (xz1 + z2)iξeξ(x)1{|z|≤1}

)
νU,L( dz1, dz2)

]

= −i(xlU + lL)ξ +
1

2
(x2σ2

U + 2xσU,L + σ2
L)ξ

2

+

∫

R2\{0}

(
1− eiξ(xz1+z2) + i(xz1 + z2)ξ1{|z|≤1}

)
νU,L( dz1, dz2),

where lU , lL ∈ R, QZ =


 σ2

U σU,L

σU,L σ2
L


 is a symmetric positive semidefinite matrix and

νU,L(( dz1, dz2)
>) with νU,L((−1, dz2)

>) = 0 such that
∫
(1 ∧ |z|2)νU,L( dz) < ∞ stem

from the bivariate driving Lévy process Z = (U,L)>.
If the driving processes U and L are independent we have

q(x, ξ) = ψL(ξ)− ixlUξ +
1

2
x2σ2

Uξ
2 +

∫

R\{0}

(
1− eiξxy + ixyξ1{|y|≤1}

)
νU( dy).
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Chapter 2

General Results for Generators with

Unbounded Coefficients

There exist several applications based on the symbol of the generator. In most cases,
however, it is required that the symbol has bounded coefficients, i.e. supx∈Rd |q(x, ξ)| ≤
c(1+ |ξ|2) for all ξ ∈ Rd. This chapter covers relevant known and new results concerning
path properties for unbounded coefficients. We close this chapter with an excursion
to study the domain of the generator of a Feller process. A convergence result for a
path approximation of Feller processes having a symbol with unbounded coefficients is
presented later in Chapter 6.

2.1 Probability Estimates

In this section, we introduce two important probability estimates for Feller processes.
First, we state the upper maximal inequality. In the next step, we present an extension
for an upper bound of the tail probability. To this for the latter a global sector condition
for the symbol is required in the literature, see inequality (2.2) below. We will show,
however, that a local version is sufficient. In the end of this section, we apply the
estimates and prove a law of iterated logarithm for a generalized Ornstein-Uhlenbeck
process.
For x ∈ Rd and r > 0 we define the first exit time of a process X = (Xt)t≥0 from the
closed ball B(x, r) by

τxr := τB(x,r) := inf{t > 0; Xt ∈ B
c
(x, r)}.

With this notation we state the first estimate.

Theorem 2.1 (Upper maximal inequality). Let X be a d-dimensional Feller process with
generator (A,D(A)), symbol q(x, ξ) and C∞

c (Rd) ⊆ D(A). Then we have for all x and
every r, t > 0

P
x
(
τxr ≤ t

)
≤ ct sup

|y−x|≤r
sup

|ξ|≤1/r

|q(y, ξ)|

13
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and

P
x
(
sup
s≤t

|Xs − x| > r
)
≤ ct sup

|y−x|≤r
sup

|ξ|≤1/r

|q(y, ξ)|

holds with an absolute constant c > 0.

For a proof we refer to Böttcher, Schilling and Wang [11, Theorem 5.1, Corollary 5.2].
The second key inequality presents an upper bound for the tail probability of the first
exit time from a ball.

Theorem 2.2. Let X be a d-dimensional Feller process with generator (A,D(A)), symbol
q(x, ξ) and C∞

c (Rd) ⊆ D(A). If the symbol satisfies a local sector condition for the ball
B(x, r), i.e.

∣∣Im q(y, ξ)
∣∣ ≤ cx,r Re q(y, ξ) ∀y ∈ B(x, r), ξ ∈ R

d,

then we have for x and r > 0 and every t > 0

P
x(τxr ≥ t) ≤ c

(
t sup
|ξ|≤1/(k0r)

inf
|y−x|≤r

Re q(y, ξ)

)−1

and

P
x
(
sup
s≤t

|Xs − x| ≤ r
)
≤ c

(
t sup
|ξ|≤1/(k0r)

inf
|y−x|≤r

Re q(y, ξ)

)−1

with k0 :=
(
arccos

√
2/3
)−1

∨ 2cx,r and c = 4/ cos
√
2/3.

Proof. This statement follows from a generalization of the proof of Böttcher et al. [11,
Theorem 5.5]. Here, we focus on the modifications and give only the main steps of the
remaining part.
Let ε ∈ Rd such that |ε| ≤ 1

k0
, then

P
x(τxr > t) = P

x(|Xt − x| ≤ r, τxr > t)

≤ P
x

(
cos

(Xt∧τxr − x)>ε

r
≥ cos

1

k0

)
,

because
(Xt∧τxr

−x)>ε
r

≤ π
4

and x 7→ cos x is decreasing on [0, π
4
].

The function cos (·−x)>ε
r

is in the domain of the extended generator1. Especially, we have

A

(
cos

(· − x)>ε

r

)
(z) = A


Re

(
exp

i(· − x)>ε

r

)
 (z)

= −Re

(
exp

i(z − x)>ε

r
q(z, ε/r)

)
.

1The domain of the extended generator of a Feller process (Xt)t≥0 is given by D̂(A) := {f ∈
B(Rd); ∃!g ∈ B(Rd) : (f, g) ∈ Â}, where Â := {(f, g) ∈ B(Rd) × B(Rd); (f(Xt) − f(X0) −∫ t

0
g(Xs) ds,FX

t )t≥0 is a local martingale}, cf. Böttcher et al. [11, page 25].
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If we combine these estimates, we get

P
x(τxr > t) ≤ 1

cos 1
k0

E
x

(
cos

(Xt∧τxr − x)>ε

r

)

=
1

cos 1
k0

(
1− E

x

∫ t∧τxr

0

cos
(Xs − x)>ε

r
Re q(Xs, ε/r)

+ sin
(Xs − x)>ε

r
Im q(Xs, ε/r) ds

)

≤ 1

cos 1
k0

(
1− E

x

∫ t∧τxr

0

cos
(Xs − x)>ε

r

·
(
Re q(Xs, ε/r)−

3|ε|
2

| Im q(Xs, ε/r)|
)
ds

)
.

Before using the sector condition we restrict the relevant domain. Therefore, we change
Xs to Xs− to avoid a jump at time τxr . This is possible since we are integrating with
respect to Lebesgue measure and a càdlàg process (Xt)t≥0 has at most countably many
jumps on [0, t], i.e. {s ∈ [0, t]; Xs 6= Xs−} is almost surely a set of Lebesgue measure

zero. In order to apply the estimate (Xs−x)>ε
r

≤ |ε| ≤ 1
k0

on {τxr < t}, we note that the

integral below should be read
∫ σ
0
=
∫
[0,σ)

. Hence, we obtain

P
x(τxr > t) ≤ 1

cos 1
k0

(
1− E

x

∫ t∧τxr

0

cos
(Xs − x)>ε

r

·
(
Re q(Xs, ε/r)−

3|ε|
2

| Im q(Xs, ε/r)|
)
ds

)

≤ 1

cos 1
k0

(
1− cos

1

k0
E
x

∫ t∧τxr

0

Re q(y, ε/r)− 3|ε|
2

| Im q(y, ε/r)|
∣∣∣
y=Xs

ds

)

=
1

cos 1
k0

− E
x

(∫ t∧τxr

0

Re q(y, ε/r)− 3|ε|
2

| Im q(y, ε/r)|
∣∣∣
y=Xs−

ds

)

=
1

cos 1
k0

− E
x

(∫ t∧τxr

0

(
Re q(y, ε/r)

− 3|ε|
2

1{|y−x|<r}| Im q(y, ε/r)|
)∣∣∣∣

y=Xs−

ds

)
.

Now the local sector condition for the ball B(x, r) yields

1{|y−x|<r}
Re q(y, ξ)

|ξ|| Im q(y, ξ)| ≥
1

|ξ|cx,r
.
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The right-hand side is greater than 2r if |ξ| ≤ 1
2rcx,r

. Since |ε| ≤ 1
k0

≤ 1
2cx,r

, we get

P
x(τxr > t)

≤ 1

cos 1
k0

− E
x

(∫ t∧τxr

0

(
Re q(y, ε/r)− 3|ε|

2
cx,r Re q(y, ε/r)

)∣∣∣∣
y=Xs−

ds

)

≤ 1

cos 1
k0

− 1

4
E
x

(∫ t∧τxr

0

Re q(y, ε/r)

∣∣∣∣
y=Xs−

ds

)

≤ 1

cos 1
k0

− 1

4

(
inf

|y−x|≤r
Re q(y, ε/r)

)
E
x(t ∧ τxr )

≤ 1

cos 1
k0

− t

4

(
inf

y−x|≤r
Re q(y, ε/r)

)
P
x(τxr > t).

Solving for Px(τxr > t) we obtain

P
x(τxr > t) ≤ 4

cos 1
k0

(
4 + t inf

|y−x|≤r
Re q(y, ε/r)

)−1

≤ 4

cos
√

2/3

(
t inf
|y−x|≤r

Re q(y, ε/r)
)−1

.

Eliminating ε by taking the infimum with respect to |ε| ≤ 1
k0

leads to

P
x(τxr > t) ≤ 4

cos
√

2/3

(
t sup
|ξ|≤1/(k0r)

inf
|y−x|≤r

Re q(y, ξ)
)−1

.

The continuity of measures shows that the above inequality also holds for {τxr ≥ t} =⋃
n≥1{τxr > t− 1

n
}.

A first application of the above inequalities is a law of iterated logarithm type result
for a generalized Ornstein-Uhlenbeck process. Similar to Knopova and Schilling [34,
Proposition 9] we prove an upper bound using an adaption of Khintchine’s criterion.

Example 2.3. Let V be a generalized Ornstein-Uhlenbeck process as defined in Example
1.7 which has the symbol

q(x, ξ) = −i(xlU + lL)ξ +
1

2
(x2σ2

U + 2xσU,L + σ2
L)ξ

2

+

∫

R2\{0}

(
1− ei(xz1+z2)ξ + i(xz1 + z2)ξ1{|z|≤1}

)
νU,L( dz1, dz2)

as computed in Example 1.18. Then we have for every x 6= 0

lim
t→0

sup0≤s≤t |Vs − x|√
t| log(t)|1+ε

= 0 P
x − a.s.,

where ε > 0.
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2.1 Probability Estimates

Proof. To shorten notation we write (V·−x)∗t := sups≤t |Vs−x| and v(t) =
√
t| log(t)|1+ε.

The process V satisfies the upper maximal inequality, cf. Theorem 2.1. Let h � 1 and
set tk :=

h
2k

. Then for θk ∈ [tk, tk+1) we get

P
x
(
(V· − x)∗θk > v(θk)

)
≤ P

x
(
(V· − x)∗θk > v(tk+1)

)

≤ cθk sup
|y−x|≤v(tk+1)

sup
|ξ|≤1/v(tk+1)

|q(y, ξ)|, (2.1)

where we used the monotonicity in the first inequality. To simplify the calculations we
separately discuss the diffusion part qD and the jump part qJ of the symbol q(x, ξ).
Starting with the diffusion part we get

sup
|y−x|≤v(t)

sup
|ξ|≤1/v(t)

|qD(y, ξ)|

≤ sup
|y−x|≤v(t)

sup
|ξ|≤1/v(t)

(
|i(ylU + lL)ξ|+ |1

2
(y2σ2

U + 2yσU,L + σ2
L)ξ

2|
)

≤
(
|x|+ v(t)

)
|lU |+ |lL|

|v(t)| +
1

2

(
|x|+ v(t)

)2
σ2
U + 2

(
|x|+ v(t)

)
σU,L + σ2

L

|v(t)|2

≤ cl

(
1

|v(t)| + 1

)
+ cσ

(
1

|v(t)|2 +
1

|v(t)| + 1

)

≤ C1
1

|v(t)|2 + C2
1

|v(t)| + C3.

Using Taylor’s formula, we obtain

sup
|y−x|≤v(t)

sup
|ξ|≤1/v(t)

|qJ(y, ξ)|

≤ sup
|y−x|≤v(t)

sup
|ξ|≤1/v(t)

∣∣∣∣
∫

R2\{0}

(
1− ei(yz1+z2)ξ + i(yz1 + z2)ξ1{|z|≤1}

)
νU,L( dz1, dz2)

∣∣∣∣

≤ sup
|y−x|≤v(t)

sup
|ξ|≤1/v(t)

∫

|z|≥1

∣∣∣1− ei(yz1+z2)ξ
∣∣∣νU,L( dz1, dz2)

+ sup
|y−x|≤v(t)

sup
|ξ|≤1/v(t)

∫

B(0,1)\{0}

∣∣∣1− ei(yz1+z2)ξ + i(yz1 + z2)ξ
∣∣∣νU,L( dz1, dz2)

≤
∫

|z|≥1

2νU,L( dz1, dz2)

+ sup
|y−x|≤v(t)

sup
|ξ|≤1/v(t)

∫

B(0,1)\{0}

1

2
(yz1 + z2)

2ξ2νU,L( dz1, dz2)

≤ cν + sup
|y−x|≤v(t)

1

v(t)2

∫

B(0,1)\{0}

1

2
(1 + |y|)2|z|2νU,L( dz1, dz2)

≤ cν +

(
1 + |x|+ v(t)

)2

v(t)2
Cν

≤ C4
1

v(t)2
+ C5

1

v(t)
+ C6.
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Chapter 2 General Results for Generators with Unbounded Coefficients

Substituting these inequalities into (2.1), we obtain

P
x
(
(V· − x)∗θk > v(θk)

)
≤ cθk

(
c1

1

v(tk+1)2
+ c2

1

v(tk+1)
+ c3

)
.

Since the following integrals

∫ δ

0

1

v(t)2
dt =

∫ δ

0

1

t| log(t)|1+ε dt <∞,

∫ δ

0

1

v(t)
dt =

∫ δ

0

1√
t| log(t)|1+ε

dt <∞,

∫ δ

0

1 dt <∞

(*)

exist for suitable δ > 0, we have

∞∑

k=1

P
x
(
(V· − x)∗θk > v(t)

)
<∞.

The Borel-Cantelli lemma implies that

lim sup
t→0

(V· − x)∗t
v(t)

≤ 1 P
x − a.s.

For λ ∈ (0, 1) the above calculations also hold and lead

P
x
(
(V· − x)∗θk > λv(θk)

)
≤ cθk

(
c1

1

λ2v(tk+1)2
+ c2

1

λv(tk+1)
+ c3

)

≤ cθk
1

λ2

(
c1

1

v(tk+1)2
+ c2

1

v(tk+1)
+ c3

)
.

Thus the Borel-Cantelli lemma is valid and we get

1

λ
lim sup
t→0

(V· − x)∗t
v(t)

= lim sup
t→0

(V· − x)∗t
λv(t)

≤ 1 P
x − a.s.

Now letting λ→ 0 finally proves the statement.

Note that this result also holds for other norming functions v(t). The only condition is
that the integrals (*) converge. Although the symbol depends on x, the norming function
is independent of x.

From Theorem 2.1 and 2.2 further estimates can be derived, see Böttcher, Schilling and
Wang [11, Section 5.1] and the references given there.

18



2.2 Path Properties

2.2 Path Properties

In this section we compile relevant results on path properties of Feller processes. First,
we consider the Blumenthal-Getoor-Pruitt indices introduced by Blumenthal and Getoor
[9] and Pruitt [41]. These indices were generalized by Schilling [48] to Feller processes.
We use a slight modification in accordance with Schnurr [57].

Before defining the various indices we introduce the following helpful quantities for x ∈ Rd

and R > 0

H(x,R) := sup
|y−x|≤2R

sup
|ε|≤1

∣∣∣q
(
y,
ε

R

) ∣∣∣

H(R) := sup
y∈Rd

sup
|ε|≤1

∣∣∣q
(
y,
ε

R

) ∣∣∣

h(x,R) := inf
|y−x|≤2R

sup
|ε|≤1

Re q

(
y,

ε

4κR

)

h(R) := inf
y∈Rd

sup
|ε|≤1

Re q

(
y,

ε

4κR

)
,

where κ = (4 arctan(1/2c0))
−1 with c0 > 0 in the last two equations is from the sector

condition

| Im q(x, ξ)| ≤ c0 Re q(x, ξ) for all x, ξ ∈ R
d. (2.2)

In particular, the quantities h(x,R) and h(R) are non-trivial only if the sector condition
is satisfied and only in this case they will be used. For example, an Ornstein-Uhlenbeck
process driven by a Brownian motion with symbol q(x, ξ) = iβξx+ 1

2
ξ2 does not satisfy

the sector condition as for every ξ ∈ R we find an x ∈ R such that | Im q(x, ξ)| = |βxξ| >
c′(1 + ξ2) ≥ cReψL(ξ).

Definition 2.4. 2 Let q(x, ξ) be a negative definite symbol. The generalized Blumenthal-
Getoor-Pruitt indices (at infinity) are the numbers

βx∞ := inf

{
λ ≥ 0; lim sup

R→0
RλH(x,R) = 0

}

βx∞ := inf

{
λ ≥ 0; lim inf

R→0
RλH(x,R) = 0

}

δ
x

∞ := inf

{
λ ≥ 0; lim sup

R→0
Rλh(x,R) = 0

}

δx∞ := inf

{
λ ≥ 0; lim inf

R→0
Rλh(x,R) = 0

}
.

2This definition is due to Schilling [48, Definition 4.2 and 4.5]. Note that Böttcher, Schilling and Wang
[11, Definition 5.13 and 5.14] introduced a streamlined version of the indices without the quantities
h and H. For our purpose however, the notation of this definition is more convenient.
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Chapter 2 General Results for Generators with Unbounded Coefficients

The Blumenthal-Getoor-Pruitt indices (at zero) are the numbers

β0 := sup

{
λ ≥ 0; lim sup

R→∞
RλH(R) = 0

}

β
0
:= sup

{
λ ≥ 0; lim inf

R→∞
RλH(R) = 0

}

δ0 := sup

{
λ ≥ 0; lim sup

R→∞
Rλh(R) = 0

}

δ0 := sup

{
λ ≥ 0; lim inf

R→∞
Rλh(R) = 0

}
.

In the case of symbols with unbounded coefficients we have to be careful. For example
take an Ornstein-Uhlenbeck process driven by a Brownian motion. Its symbol is given by

q(x, ξ) = iβξx + 1
2
ξ2 with β 6= 0. Then we have H(R) = supy∈R sup|ε|≤1

∣∣∣q
(
y, ε

R

) ∣∣∣ = ∞.

Hence, bounded coefficients are usually assumed for the indices at zero. However, in the
next example we calculate the indices of a generalized Ornstein-Uhlenbeck process.

Example 2.5. Let V be a generalized Ornstein-Uhlenbeck process as in Example 1.18
driven by two independent rotationally stable Lévy processes. Then the symbol is given
by

q(x, ξ) = ψL(ξ) +

∫

R\{0}

(
1− eixyξ + ixyξ1{|y|≤1}

)
νU( dy)

= |ξ|α1 +

∫

R\{0}

(
1− ei(ξx)y + i(ξx)y1{|y|≤1}

)
cα2 |y|−1−α( dy)

= |ξ|α1 + |xξ|α2 .

Note that this symbol satisfies the sector condition for all x ∈ R. Further we get

H(x,R) = sup
|y−x|≤2R

sup
|ε|≤1

(∣∣∣ ε
R

∣∣∣
α1

+
∣∣∣yε
R

∣∣∣
α2
)

≤ R−α1 +
∣∣∣ |x|+ 2R

R

∣∣∣
α2

≤ R−α1 + cα2 |x|α2R−α2 + c,

where cα2 = 2α2−1, if α2 ≥ 1, and cα2 = 2
1−α2
α2 , if 0 < α2 < 1. Moreover, we obtain

h(x,R) = inf
|y−x|≤2R

sup
|ε|≤1

Re
(∣∣∣ ε

4κR

∣∣∣
α1

+
∣∣∣ yε
4κR

∣∣∣
α2
)

= inf
|y−x|≤2R

(∣∣∣ 1

4κR

∣∣∣
α1

+
∣∣∣ y

4κR

∣∣∣
α2
)

=
( 1

4κ

)α1

R−α1 + inf
|y−x|≤2R

∣∣∣ y

4κR

∣∣∣
α2

.
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2.2 Path Properties

Hence, we have βx∞ = βx∞ = min{α1, α2} and δ
x

∞ = min{α1, α2}.
Since the symbol q(x, ξ) has unbounded coefficients, the quantity H(R) equals infinity
and the indices at zero β0 and β

0
are set ∞. However, we can calculate the indices at

zero δ0 and δ0 due to the positivity of q(x, ξ). In particular, we have

h(R) = inf
y∈Rd

sup
|ε|≤1

Re
(∣∣∣ ε

4κR

∣∣∣
α1

+
∣∣∣y ε

4κR

∣∣∣
α2
)

=
∣∣∣ 1

4κR

∣∣∣
α1

and hence δ0 = δ0 = α1.

A variety of applications is based on these indices, see Böttcher et al. [11, Chapter 5]
and the references given there. In this section we restrict ourselves to the path behaviour
of Feller processes but we also refer to Section 3.6 which contains a discussion of path
properties of affine processes.
A main application of the Blumenthal-Getoor-Pruitt indices is the asymptotic behaviour
of the sample paths. For a full treatment of those growth and Hölder conditions for the
paths of a process we refer to Schnurr [57, Theorem 3.11 and 3.12] and to Schilling [48,
Theorem 4.3 and 4.6]. The proof of these results is based on Borel-Cantelli techniques,
which can be seen in Example 2.6 where we investigate the path behaviour of an Ornstein-
Uhlenbeck process. The sample path behaviour is based on two probability estimates,
the upper maximal inequality and an upper bound of the tail probability. The latter
estimate requires the global sector condition which is required in the quantities h(R),
h(x,R) and, thus, in the indices δ0, δ

x
∞. Based on our extension of the upper bound

of the tail probability, see Theorem 2.2, the next example shows that it is sometimes
enough to assume the local sector condition.

Example 2.6. Let V be an Ornstein-Uhlenbeck process with symbol q(x, ξ) = iβxξ +
ψL(ξ), where ψL is the characteristic exponent of the driving Lévy process, such that
| ImψL(ξ)| ≤ c0 ReψL(ξ) and |βξ| ≤ c1 ReψL(ξ) hold for some c0, c1 > 0. Then V
satisfies the local sector condition but not the global sector condition. Indeed, we have

| Im q(y, ξ)| ≤ |yβξ|+ | ImψL(ξ)|
≤ c1|y|ReψL(ξ) + c0 ReψL(ξ)

≤ (c1(|x|+ r) + c0)︸ ︷︷ ︸
=:cx,r

ReψL(ξ) ∀y ∈ B(x, r).

Furthermore, it holds that

lim sup
t→0

t−
1
λ (V· − x)∗t = ∞ for all δ̄x∞ > λ ≥ δx∞

lim
t→0

t−
1
λ (V· − x)∗t = ∞ for all λ < δx∞,

where δx∞ and δ̄x∞ are the indices derived from the negative definite function ψL, i.e. the
symbol of the driving Lévy process.
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Chapter 2 General Results for Generators with Unbounded Coefficients

Proof. We only prove the second statement and refer to Schilling [48, Theorem 4.3] for
the first one since this method carries over to our case.
Let λ < α2 < α1 < δx∞. Then by Theorem 2.2 we have

P
x
(
(V· − x)∗t < t1/α2

)
≤ c

(
t sup
|ξ|≤1/(k0t1/α2 )

inf
|y−x|≤r

Re q(y, ξ)

)−1

= c

(
t sup
|ξ|≤1/(k0t1/α2 )

ReψL(ξ)

)−1

≤ c

(
t sup
|ε|≤1

ReψL

( ε

k0t1/α2

))−1

.

For all λ < δx∞ we find some C ≥ 0 such that Rλh(x,R) ≥ C as R → 0. Since

sup|ε|≤1 ReψL

(
ε

k0t1/α2

)
= hL(x, 4κk0t

1/α2), where hL is the quantity corresponding to the

symbol ψL of the driving Lèvy process L, we get for α1 with α2 < α1 < δx∞

P
x
(
(V· − x)∗t < t1/α2

)
≤ c

(
t sup
|ε|≤1

ReψL

( ε

k0t1/α2

))−1

≤ ct−1C(4κk0t
1/α2)α1

= c′t−1kα1
0 t

α1/α2 .

Substituting k0 =
(
arccos

√
2/3
)−1

∨ 2cx,t1/α2 = c1(|x|+ t1/α2) + c0, we obtain

P
x
(
(V· − x)∗t < t1/α2

)
≤ c′t−1kα1

0 t
α1/α2

≤ c′′t−1(|x|α1 + tα1/α2)tα1/α2

≤ c′′(|x|α1tα1/α2−1 + t2α1/α2−1).

Now, we take tk := 2−k, k ∈ N, and find

∞∑

k=1

P
x
(
(V· − x)∗tk < t

1/α2

k

)
≤ c̃

∞∑

k=1

(
2−k(α1/α2−1) + 2−k(2α1/α2−1)

)
<∞,

as α1 > α2. Hence by the Borel-Cantelli Lemma we know that (V· − x)∗tk ≥ t
1/α2

k for
eventually all k ∈ N. For fixed ω there exists an N(ω) ∈ N such that for all k ≥ N(ω)
and t ∈ (tk+1, tk] we have

(V·(ω)− x)∗t ≥ (V·(ω)− x)∗tk ≥ t
1/α2

k ≥ 21/α2t1/α2 .

Consequently, for λ < α2

t−1/λ(V· − x)∗t ≥ 21/α2t1/α2−1/λ −→ ∞

holds Px − a.s. as t→ 0.
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2.2 Path Properties

Since t tends to 0, the radius of the sector condition decreases such that the inequality
has to be valid for a small area. On the contrary, the radius of the sector condition
increases as t → ∞, for the path property related to the index δ0. However, the sector
condition does not hold globally which illustrates why a similar modification cannot be
applied for the Blumenthal-Getoor-Pruitt index δ0.

For many investigations it is important that the process does not explode in finite time.
This behaviour is described in the following definition.

Definition 2.7. A Feller semigroup (Tt)t≥0 is conservative if Tt1 = 1 for all t ≥ 0.

If the Feller semigroup is conservative, the corresponding stochastic process has a.s.
infinite life-time, i.e.

P
x
(
inf{t ≥ 0; Xt /∈ R

d} = ∞
)
= 1 for all x ∈ R

d.

There are two possibilities that the process has no infinite life-time. There can be a
killing, i.e. q(x, 0) 6= 0, or the coefficients grow too fast and cause an explosion. The
next theorem presents a sufficient criterion based on the symbol to guarantee infinite
life-time.

Theorem 2.8. Suppose that the symbol q(x, ξ) is locally bounded and that q(x, 0) = 0
for every x ∈ Rd. If in addition for all x ∈ Rd,

lim inf
k→∞

sup
|y−x|≤k

sup
|ξ|≤ 1

k

|q(y, ξ)| <∞,

then the process X is non-explosive.

For the proof we refer to Wang [63, Theorem 2.1].

Example 2.9. Let V be a generalized Ornstein-Uhlenbeck process as defined in Def-
inition 1.7. Then the process is non-explosive or, in other words, the semigroup is
conservative.
Indeed, by the triangle inequality we get

lim inf
k→∞

sup
|y−x|≤k

sup
|ξ|≤ 1

k

|q(y, ξ)|

≤ lim inf
k→∞

sup
|y−x|≤k

sup
|ξ|≤ 1

k

∣∣∣− i(ylU + lL)ξ +
1

2
(y2σ2

U + 2yσU,L + σ2
L)ξ

2

+

∫

R2\{0}

(
1− ei(yz1+z2)ξ + i(yz1 + z2)ξ1{|z|≤1}

)
νU,L( dz)

∣∣∣

≤ |lU |+
1

2
|σ2
U |

+ lim inf
k→∞

sup
|y−x|≤k

sup
|ξ|≤ 1

k

∣∣∣
∫

|z|≤1

(
1− ei(yz1+z2)ξ + i(yz1 + z2)ξ

)
νU,L( dz)

+
∣∣∣
∫

|z|>1

(
1− ei(yz1+z2)ξ

)
νU,L( dz)

∣∣∣.
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Chapter 2 General Results for Generators with Unbounded Coefficients

Using Taylor’s formula yields

lim inf
k→∞

sup
|y−x|≤k

sup
|ξ|≤ 1

k

|q(y, ξ)|

≤ |lU |+
1

2
|σ2
U |

+ lim inf
k→∞

sup
|y−x|≤k

sup
|ξ|≤ 1

k

(∫

|z|≤1

1

2

∣∣∣(yz1 + z2)ξ
∣∣∣
2

νU,L( dz)

+

∫

|z|>1

∣∣∣1− eiξ(yz1+z2)
∣∣∣

︸ ︷︷ ︸
≤2

νU,L( dz)
)

≤ |lU |+
1

2
|σ2
U |+ lim inf

k→∞
sup

|y−x|≤k
sup
|ξ|≤ 1

k

(|ξ|2|y|2 + 2)

∫

R2\{0}
(|z|2 ∧ 1)νU,L( dz)

≤ |lU |+
1

2
|σ2
U |+ 3

∫

R2\{0}
(|z|2 ∧ 1)νU,L( dz) <∞.

Hence the condition of Theorem 2.8 is satisfied as νU,L is a Lévy measure. Consequently,
a generalized Ornstein-Uhlenbeck process has infinite life-time.

2.3 Domain of a Generator

Describing the domain of a generator is a difficult task especially in the case of unbounded
coefficients. It is even more complex to describe the domain as a Banach space. Since the
coefficients of the symbol are unbounded, weighted norms are required to compensate
the growth of the generator. In the following we introduce a weighted norm and show
that it is equivalent to the unweighted norm of the weighted function. This result allows
us to derive essential properties of the weighted function space.
The equivalence of weighted norms is motivated by Schmeisser and Triebel [55, Section
5.1] who treated weighted Lp function spaces.

Definition 2.10. A function ρ ∈ Cp(Rd, (0,∞)) is called an admissible weight if for all
multi-indices α with |α| ≤ p there exists a constant cα such that

∣∣∣Dαρ(x)
∣∣∣ ≤ cαρ(x) ∀x ∈ R

d. (**)

The function ρ(x) = (1 + |x|)r satisfies the above condition for all r > 0, i.e. it is an
admissible weight.

Lemma 2.11. Let p ∈ N0 and ρ : Rd → (0,∞) be an admissible weight. Then the norms

‖u‖(p),ρ :=
∑

|α|≤p

∥∥∥ρDαu
∥∥∥
∞
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and

‖ρu‖(p) :=
∑

|α|≤p

∥∥∥Dα(ρu)
∥∥∥
∞

are equivalent3.

Proof. We begin by proving ‖ρ · ‖(p) ≤ c‖ · ‖(p),ρ. For a function u, we have

‖ρu‖(p) =
∑

|α|≤p

∥∥∥Dα(ρu)
∥∥∥
∞

=
∑

|α|≤p

∥∥∥
∑

β≤α

(
α

β

)
Dβρ︸︷︷︸
|·|≤cβρ

Dα−βu
∥∥∥
∞

≤
∑

|α|≤p
c̄α

∥∥∥ρDαu
∥∥∥
∞

≤ cp

∥∥∥ρDαu
∥∥∥
(p),ρ

,

where c̄α := maxβ≤α cβ and cp := max|α|≤p c̄α = max|β|≤p cβ.
For the converse estimate

‖u‖(p),ρ =
∑

|α|≤p

∥∥∥ρDαu
∥∥∥
∞

≤ C‖ρu‖(p)

we separately consider the terms on the right-hand side. We will prove by induction that∥∥∥ρDαu
∥∥∥
∞

≤ Cα

∥∥∥ρu
∥∥∥
(p)

for all |α| ≤ p. The base case |α| = 0 is clear. Now assume that

the induction hypothesis holds for all β < α. Then the reverse triangle inequality yields
∥∥∥ρDαu

∥∥∥
∞

≤
∣∣∣∣
∥∥∥ρDαu

∥∥∥
∞
−
∥∥∥
∑

β<α

(
α

β

)
Dα−βρDβu

∥∥∥
∞

∣∣∣∣+
∥∥∥
∑

β<α

(
α

β

)
Dα−βρDβu

∥∥∥
∞

≤
∥∥∥ρDαu+

∑

β<α

(
α

β

)
Dα−βρDβu

∥∥∥
∞
+
∑

β<α

(
α

β

)∥∥∥ Dα−βρ︸ ︷︷ ︸
|·|≤cα−βρ (∗∗)

Dβu
∥∥∥
∞

≤
∥∥∥Dα(ρu)

∥∥∥
∞
+
∑

β<α

(
α

β

)
cα−β

∥∥∥ρDβu
∥∥∥
∞

≤
∥∥∥ρu

∥∥∥
(p)

+
∑

β<α

(
α

β

)
cα−βCβ

∥∥∥ρu
∥∥∥
(p)

≤ Cα

∥∥∥ρu
∥∥∥
(p)
,

where Cα = 1 +
∑

β<α

(
α
β

)
cα−βCβ. Since by induction this holds for each term, we have

shown

‖u‖(p),ρ ≤ C‖ρu‖(p),
3Two norms ‖ · ‖1 and ‖ · ‖2 are equivalent if we have c‖ · ‖1 ≤ ‖ · ‖2 ≤ C‖ · ‖1 for some c, C > 0.
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Chapter 2 General Results for Generators with Unbounded Coefficients

where C =
∑

|α|≤p 1 + Cα =
∑

|α|≤p

(
1 +

∑
β<α

(
α
β

)
cα−βCβ

)
.

From the equivalence of the weighted norms we can deduce the Banach property.

Lemma 2.12. The function space

Cp
ρ,∞ :=

{
u ∈ C; ∀|α| ≤ p : ρu ∈ Cp and ρDαu ∈ C∞

}

is a Banach space with respect to the norm ‖ · ‖(p),ρ.

Proof. Let (un)n∈N ⊂ Cp
ρ,∞ be a Cauchy sequence with respect to ‖ · ‖(p),ρ. Then due to

the equivalence of the norms (ρun)n∈N is a ‖ · ‖(p) Cauchy sequence. In particular, we
have ρun ∈ Cp

∞ since

ρDαu ∈ C∞ ∀|α| ≤ p⇐⇒ Dα(ρu) ∈ C∞ ∀|α| ≤ p.

We know that (Cp
∞, ‖ · ‖(p)) is a Banach space. Hence, there exist some g ∈ Cp

∞ such that
ρun −→ g for n −→ ∞ with respect to ‖ · ‖(p).
Now we set u = 1

ρ
g ∈ Cp

ρ,∞ and get

‖ρ(un − u)‖(p) = ‖ρun − ρ
1

ρ
g‖(p) −→ 0 (n −→ ∞).

The equivalence of the norms implies

‖un − u‖(2),ρ −→ 0 (n −→ ∞).

Thus (Cp
ρ.∞, ‖ · ‖(p),ρ) is a Banach space.

If a function space is a complete normed vector space, we can extend linear operators
by the following important theorem, see for instance Reed and Simon [42, Theorem I.7,
p.9].

Theorem 2.13 (B.L.T. theorem). Suppose T is a bounded linear transformation from
a normed linear space (V1, ‖ · ‖1) to a complete normed linear space (V2, ‖ · ‖2). Then T
can be uniquely extended to a bounded linear transformation, from the completion of V1
to (V2, ‖ · ‖2).

Example 2.14. Let V be a generalized Ornstein-Uhlenbeck process as in Example 1.13
with generator AV given by

AV f(x) = (xlU + lL)f
′(x) +

1

2
(x2σ2

U + 2xσU,L + σ2
L)f

′′(x)

+

∫

R2\{0}

(
f(x+ xz1 + z2)− f(x)− f ′(x)(xz1 + z2)1{|z|≤1}

)
νZ( dz1, dz2)
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2.3 Domain of a Generator

for f ∈ C∞
c (R). By applying Taylor’s theorem on the set {|z| ≤ 1

2
}, we find a ζ ∈ R

with 0 ≤ |ζ| ≤ |xz1 + z2| ≤ (1 + |x|)|z| such that for the integrand holds

|f(x+ xz1 + z2)− f(x)− f ′(x)(xz1 + z2)1{|z|≤1}|

≤ 1

2
|f ′′(x+ ζ)|(xz1 + z2)

2
1{|z|≤1

2
}

+ 2‖f‖∞1{|z|>1
2
} + sup

x∈R
|f ′(x)(xz1 + z2)|1{1

2
<|z|≤1}

≤ 1

2

∣∣∣f ′′(x+ ζ)(1 + |x+ ζ|)2
∣∣∣ (1 + |x|2)
(1 + |x+ ζ|)2 |z|

2
1{|z|≤1

2
}

+ 2‖f‖∞1{|z|>1
2
} + (sup

x∈R
|xf ′(x)|+ ‖f ′‖∞)|z|1{1

2
<|z|≤1}

≤ 1

4
K2

(
sup
x∈R

|x2f ′′(x)|+ ‖f‖(2)
)
1{|z|≤1

2
} + ‖f ′‖∞1{1

2
<|z|≤1}

+ 2‖f‖∞1{|z|>1
2
} + sup

x∈R
|xf ′(x)|1{1

2
<|z|≤1},

where we set

K2 :=
1

2
sup
y∈R

sup
|ζ|≤(1+|y|)/2

(1 + |y|)2
(1 + |y + ζ|)2 .

As ν is a Lévy measure, we have

‖AV f‖∞ ≤ c

(
‖f‖(2) + sup

x∈R
|xf ′(x)|+ sup

x∈R
|x2f ′′(x)|

)
=: cq‖f‖GOU .

It is clear that ‖ · ‖GOU is a norm. Furthermore, the space

C2
GOU(R) :=

{
f ∈ C2

∞(R); lim
|x|→∞

(
|xf ′(x)|+ |x2f ′′(x)|

)
= 0

}

equipped with ‖ · ‖GOU is a complete normed linear space4. Now let χ ∈ C∞
c (R) be

a (smooth) cut-off function such that 1B(0,1) ≤ χ ≤ 1B(0,2) and set χn(·) := χ(·/n) for
n ∈ N. Then for every f ∈ C2

GOU(R) the sequence (fn)n≥1 defined by fn := f ·χn ∈ C2
c (R)

converges to f with respect to the norm ‖ · ‖GOU .
Indeed, this is obvious for ‖ · ‖(2) and it also applies to the remaining terms. Note that
an N ∈ N exists such that |x2f ′′(x)| < ε, |xf ′(x)| < ε and |f(x)| < ε for all x ∈ Kc with
K compact and K ⊆ B(0, n) as n ≥ N . Furthermore, we employ χ′

n(x) =
d
dx
χn(x) =

d
dx
χ(x

n
) = χ′(x

n
) 1
n
. As 1B(0,n) ≤ χn ≤ 1B(0,2n), we investigate each region separately and

4We refer to Lemma 2.16 below for a proof that this space is complete.
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Chapter 2 General Results for Generators with Unbounded Coefficients

get

sup
x∈R

∣∣∣xf ′(x)− xf ′
n(x)

∣∣∣

= sup
|x|<n

∣∣∣xf ′(x)− xf ′
n(x)

∣∣∣+ sup
|x|≥n

∣∣∣xf ′(x)− xf ′
n(x)

∣∣∣

= sup
|x|<n

∣∣∣xf ′(x)− xf ′(x)χn(x)︸ ︷︷ ︸
=1

−xf(x)χ′
n(x)︸ ︷︷ ︸
=0

∣∣∣

+ sup
|x|≥n

∣∣∣xf ′(x)− xf ′(x)χn(x)− xf(x)χ′
n(x)

∣∣∣

≤ sup
|x|<n

∣∣∣xf ′(x)− xf ′(x)
∣∣∣

+ sup
|x|≥n

∣∣∣xf ′(x)(1− χn(x))
∣∣∣+ sup

|x|≥n

∣∣∣xf(x)χ′
n(x)

∣∣∣

≤ 2 sup
|x|≥n

∣∣∣xf ′(x)
∣∣∣

︸ ︷︷ ︸
≤ε

+ sup
n≤|x|<2n

∣∣∣xf(x)χ′
n(x)

∣∣∣+ sup
|x|≥2n

∣∣∣xf(x)χ′
n(x)︸ ︷︷ ︸
=0

∣∣∣

≤ 2ε+ sup
n≤|x|<2n

∣∣∣2nf(x)χ′(x/n)
1

n

∣∣∣

≤ 2ε+ 2ε sup
n≤|x|<2n

∣∣∣χ′(x/n)
∣∣∣

≤ Cε

and similarly

sup
x∈R

∣∣∣x2f ′′(x)− x2f ′′
n(x)

∣∣∣

= sup
|x|<n

∣∣∣x2
(
f ′′(x)− f ′′(x)χn(x)︸ ︷︷ ︸

=1

−f ′(x)χ′
n(x)︸ ︷︷ ︸
=0

−f(x)χ′′
n(x)︸ ︷︷ ︸
=0

)∣∣∣

+ sup
|x|≥n

∣∣∣x2
(
f ′′(x)− f ′′(x)χn(x)− f ′(x)χ′

n(x)− f(x)χ′′
n(x)

)∣∣∣

≤ sup
|x|≥n

∣∣∣x2f ′′(x)(1− χn(x))|+ sup
|x|≥n

∣∣∣x2
(
f ′(x)χ′

n(x)− f(x)χ′′
n(x)

)∣∣∣

≤ 2ε+ sup
n≤|x|<2n

∣∣∣x2
(
f ′(x)χ′

n(x)− f(x)χ′′
n(x)

)∣∣∣

+ sup
|x|≥2n

∣∣∣x2
(
f ′(x)χ′

n(x)︸ ︷︷ ︸
=0

−f(x)χ′′
n(x)︸ ︷︷ ︸
=0

)∣∣∣

≤ 2ε+ sup
n≤|x|<2n

∣∣∣2nxf ′(x)χ′(x/n)
1

n

∣∣∣+ sup
n≤|x|<2n

∣∣∣4n2f(x)χ′′(x/n)
1

n2

∣∣∣

≤ C ′ε.

Since ε > 0 is arbitrary C2
c (R) is dense in C2

GOU(R) with respect to ‖ · ‖GOU .
Using the Friedrichs mollifier, see Friedlander and Joshi [22, Theorem 1.2.1], we obtain
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2.3 Domain of a Generator

that C∞
c (R) is dense in C2

c (R) with respect to ‖·‖GOU , see Lemma 2.15 below. Hence, by

the B.L.T. theorem 2.13 we conclude that the generator AV extends to C∞
c (R)

‖·‖GOU ⊆
C2
GOU(R).

It is important that the norm ‖ · ‖(2) is part of ‖ · ‖GOU . Otherwise C∞
c (R)

‖·‖GOU
would

contain functions f /∈ C2(R). To see this, consider a sequence of functions (fk)k≥1

that equals tanh(kx) for |x| small enough. This sequence approximates around zero the
signum function which equals −1 for negative x, 0 for x = 0 and 1 for x positive. Indeed,
for all ε > 0 we find k big enough such that fk(x) = sgn(x) for |x| ≥ α, where α <

√
ε.

Hence, the distance between fk and sgn with respect to supx |x2f(x)| around zero is
smaller than ε, i.e.

sup
|x|≤α

∣∣∣x2(fk(x)− sgn(x))
∣∣∣ ≤ sup

|x|≤α
|x2| · 1 < α2 < ε.

This shows that the limit of the sequence with respect to the weighted seminorm need
not to be continuous. As ‖ · ‖(2) is part of ‖ · ‖GOU , it guarantees that the limit is in
C2(R).
The next lemma is a modification of an approximation result in Friedlander and Joshi
[22, Theorem 1.2.1] with respect to weighted norms.

Lemma 2.15. Let f ∈ Ck
c (R

d) with 0 ≤ k ≤ ∞ and let ρ ∈ C∞
c (Rd) such that

ρ ≥ 0, supp(ρ) ⊆ B(0, 1),

∫
ρ(x) dx = 1.

Let ε > 0 and

fε(x) := ε−d
∫
f(y)ρ

(x− y

ε

)
dy

then fε ∈ C∞
c (Rd), supp(f) ⊆ supp(fε) + B(0, ε) and for |α| ≤ k we have

x|α|∂αfε
‖·‖∞−→ x|α|∂αf (ε→ 0).

Proof. We see at once that fε ∈ C∞
c (Rd) since repeated differentiation under the integral

sign is permissible and fε = 0 when the distance of x from suppf exceeds ε. Following
the lines of Friedlander and Joshi [22, Theorem 1.2.1] we write

fε(x) :=

∫
f(x− εz)ρ(z) dz.

Then we conclude from the properties of ρ that

|xfε(x)− xf(x)| =
∣∣∣x
∫

(f(x− εz)− f(x))ρ(z) dz
∣∣∣

≤ |x|
∫

|f(x− εz)− f(x)|ρ(z) dz

≤ K

∫
|f(x− εz)− f(x)|ρ(z) dz,
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Chapter 2 General Results for Generators with Unbounded Coefficients

with K > 0 such that for all |x| ≥ K we have x /∈ supp(f) and x /∈ supp(fε). Note that

|fε(x)− f(x)| ≤ sup
{
|f(x+ y)− f(x)|; |y| ≤ ε

}
.

This tends to zero uniformly as ε→ 0, by uniform continuity of f .
Since we can differentiate under the integral sign, i.e. for |α| ≤ k

∂αfε(x) :=

∫
∂αf(x− εz)ρ(z) dz,

the same arguments as above prove the statement.

The next lemma shows that the function space C2
GOU(R) is complete with respect to the

norm ‖·‖GOU . The proof is similar to the well-known argument that uniform convergence
implies differentiability.

Lemma 2.16. Let (fn)n∈N ⊆ C2(R) and f, g ⊆ C(R) such that fn converges to f with
respect to ‖ · ‖(2) and xf ′

n converges uniformly to g. Then obviously f ∈ C2(R) and
g(x) = xf ′(x) for all x ∈ R.

Proof. Integration by parts yields

∫
xf ′

n(x) dx = xfn(x)−
∫
fn(x) dx.

Both integrands converge uniformly to g and f , respectively. Moreover, xfn(x) converges
pointwise to xf(x). Hence, we have g(x) = xf ′(x).

Applying integration by parts twice, the same argument also holds for x2f ′′(x).
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Chapter 3

Affine Processes on Canonical State

Space

In 2003, Duffie, Filipović and Schachermayer [18] published a seminal paper on affine
processes with canonical state space D = Rm

+ ×Rn. Special cases of this state space were
already well-known in the literature , like Ornstein-Uhlenbeck[-type] process on Rd or
continuous state branching processes with immigration (CBI), cf. Kawazu and Watanabe
[29], Watanabe [64] or Pinsky [40]. Combining these two special cases to the canonical
state space was necessary for applications in mathematical finance and lead to a broader
class of processes.
In the next section, we introduce affine processes and examine various properties. A
discussion of the Feller property and some consequences thereof follow in Section 3.2. In
Section 3.3 and 3.4, we look more closely at the functional characteristics of an affine
process. Using techniques from harmonic analysis we introduce a new approach to char-
acterize the admissibility of the parameters. Section 3.5 establishes the relation between
affine processes and pseudo-differential operators. In particular, we explicitly determine
the symbol of an affine process. In the last section of this chapter we present some
applications based on the symbol of an affine process.

3.1 Affine Processes

After introducing the definition of an affine process and showing some immediate proper-
ties, we present several examples which indicate the wide range of this class of processes.
Throughout this chapter we have the following setting. We consider the so-called canon-
ical state space for affine processes which is a product space D = Rm

+ × Rn, where
R+ = {x ∈ R; x ≥ 0}. Although this kind of state space seems artificial, Example
3.2.v shows that it appears naturally in the context of mathematical finance. In order to
simplify some formulas, we introduce the following notations d = m+n, I := {1, . . . ,m},
II := {m + 1, . . . , d} and xI , xII are the projections on the components with index in
I and II, respectively. For vectors x, y ∈ Cd we define x>y :=

∑d
i=1 xiyi and write

ey(x) := ex
>y. Furthermore, the sets C− := {x ∈ C; Re(x) ≤ 0} and U := Cm

− × iRn are
frequently used.
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Chapter 3 Affine Processes on Canonical State Space

In accordance with Duffie et al. [18, Definition 2.1], we define an affine process as fol-
lows.

Definition 3.1 (Affine process). A time-homogeneous Markov process
(
X, (Px)x∈D

)
,

and its semigroup (Tt)t≥0 is called affine if for every t ∈ R+ the characteristic function
of the transition function pt(x, ·) has exponential-affine dependence on x. That is, for
every (t, ξ) ∈ R+ × iRd there exist φ(t, ξ) ∈ C and ψ(t, ξ) ∈ Cm × Cn such that

Tteξ(x) = E
x
(
eξ

>Xt

)
= eφ(t,ξ)+x

>ψ(t,ξ) ∀x ∈ D. (3.1)

The next examples show some affine processes where the functions φ and ψ mostly are
explicitly known. In general, φ and ψ do not have an explicit representation, cf. the
Heston model (Example 3.2.v).

Example 3.2. i) Every Lévy process is an affine process.
A Lévy process L = (Lt)t≥0 is uniquely determined by its characteristic exponent
ψL : Rn → C and the relation

E(eiξ
>Lt) = e−tψL(ξ).

The function ψL is a continuous negative definite function and has the following
Lévy-Khintchine representation

ψL(ξ) = −il>ξ +
1

2
ξ>Qξ −

∫

Rn\{0}

(
eiξ

>y − 1− iξ>y1{|y|≤1}

)
ν( dy),

where l ∈ Rn, Q ∈ Rn×n is a symmetric positive semi-definite matrix and ν is a
measure on Rn\{0} such that

∫
Rn\{0}(|y|2 ∧ 1)ν( dy) < ∞. The triplet (l, Q, ν) is

called the generating triplet or Lévy triplet. If we rewrite the characteristic function,

E
x
(
eiξ

>Lt

)
= E

0
(
eiξ

>(Lt+x)
)

= e−tψL(ξ)+x
>
iξ,

we see that the Lévy process L fulfills the affine property with the functions

φ(t, iξ) = −tψL(ξ) and ψ(t, iξ) = iξ.

ii) The squared Bessel process on R+ given as strong solution of the stochastic differ-
ential equation

dXt = 2
√
Xt dBt + δt, X0 = x,

where δ ≥ 0 is the dimension of the squared Bessel process and (Bt)t≥0 is a Brownian
motion, is an affine process with

φ(t, ξ) = −δ
2
ln(1− 2ξt), ψ(t, ξ) =

ξ

1− 2ξt
,

see for instance Revuz and Yor [44, Corollary XI.1.3].
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3.1 Affine Processes

iii) The Cox-Ingersoll-Ross (CIR) process on R+ given as strong solution of the stochas-
tic differential equation

dXt = (b− βXt) dt+ σ
√
Xt dBt, X0 = x,

where b ≥ 0, β ∈ R, σ > 0 and (Bt)t≥0 is a Brownian motion, is an affine process
with

φ(t, ξ) = −2b

σ2
ln(1− ξ

σ2

2β
(1− e−βt)), ψ(t, ξ) =

ξe−βt

1− ξ σ
2

2β
(1− e−βt)

.

Note that the CIR process is a shifted and time-scaled squared Bessel process, i.e.

Xt = e−βtY
(σ2

4β
(eβt − 1)

)
,

where (Y (t))t≥0 is a squared Bessel process with dimension δ = 4b
σ2 . In Figure 3.1,

we see a simulated path of a CIR process.1
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time
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Figure 3.1: Path simulation of a CIR process starting at x = 0.05 with parameters b =
0.2, β = −2 and σ2 = 0.1.

1All simulations presented in this chapter are generated by an approximation scheme whose convergence
is shown in Chapter 6.
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Chapter 3 Affine Processes on Canonical State Space

iv) The Ornstein-Uhlenbeck process on R given as strong solution of the stochastic
differential equation

dXt = dLt + βXt dt, X0 = x,

where β ∈ R and (Lt)t≥0 is a Lévy process with characteristic exponent ψL, is an
affine process with

φ(t, iξ) = −
∫ t

0

ψL(e
βsξ) ds, ψ(t, iξ) = eβtiξ.

This property can be found in Sato [46, Lemma 17.1]. A simulated sample path of
an Ornstein-Uhlenbeck process driven by a Cauchy process is presented in Figure
3.2.
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Figure 3.2: Path simulation of an Ornstein-Uhlenbeck process starting at x = −1.9 with
parameter β = −1.2 and driven by a Cauchy process with characteristic
exponent ψL(ξ) = |ξ|.

v) Heston [26] introduced the so-called Heston stochastic volatility model which is an
extension of the well-known and widely used Black-Scholes model. Assuming a
constant interest rate r(t) ≡ r ≥ 0, the price of one risky asset S = eX2 , where
X = (X1, X2) is an affine process on the state space R+ ×R, is determined by

dX1 = (k + κX1) dt+ σ
√

2X1 dB1

dX2 = (r −X1) dt+
√

2X1(ρ dB1 +
√

1− ρ2 dB2)
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3.1 Affine Processes

for some constant parameters k, σ ≥ 0, κ ∈ R and some ρ ∈ [−1, 1] and B1, B2 are
one-dimensional independent Brownian motions.
If ξ1 ∈ C− and 0 ≤ Re ξ2 ≤ 1, an explicit representation of the functions φ and ψ
exists. Furthermore, for ξ1 = 0 we have

φ(t, ξ) =
k

σ2
log


 2λe

λ−(2ρσξ2+κ)
2

t

λ(eλt + 1)− (2ρσξ2 + κ)(eλt − 1)


+ rξ2t

ψ(t, ξ) = − 2(ξ2 − ξ22)(e
λt − 1)

λ(eλt − 1)− (2ρσξ2 + κ)(eλt − 1)
,

where λ =
√
(2ρσξ2 + κ)2 + 4σ2(ξ2 − ξ22), see Filipović and Mayerhofer [21, Section

6] for more details.
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Figure 3.3: Path simulation of the Heston model starting at x = (x1, x2) = (0.01, 0.0)
with parameters r = 0.02, k = 0.02, κ = −2, σ = 0.1 and ρ = 0.5.
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Chapter 3 Affine Processes on Canonical State Space

vi) Let x0 ∈ D. Then the functions

φ(t, ξ) =

{
0, if t = 0,

ξ>x0, if t > 0,
ψ(t, ξ) =

{
ξ, if t = 0,

0, if t > 0,

belong to the affine process with the transition function

pt(x, dξ) =

{
δx, if t = 0,

δx0 , if t > 0,

where δx is the Dirac measure at x, cf. Duffie et al. [18, Remark 2.11].

The last example, originally from Kawazu and Watanabe [29], shows a special case of
affine processes, for which the functions φ and ψ are not continuous. As we will see in
the following, this is an essential property of affine processes. Therefore we introduce the
next definition.

Definition 3.3 (Stochastic continuity). An affine process (X) is called stochastically
continuous if ps(x, ·) → pt(x, ·) weakly on D as s→ t for (t, x) ∈ R+ ×D.

If X is affine, the continuity theorem of Lévy implies that (X, (Px)x∈D) is stochastically
continuous if and only if φ(t, ξ) and ψ(t, ξ) are continuous in t ∈ R+ for every ξ ∈ iRm+n.
In the following, we always assume that an affine process is stochastically continuous.
Under this assumption, we give an alternative characterization of affine processes in
Section 3.5. Using Definition 3.1, we cannot identify the stochastic process of the Heston
model from Example 3.2.v as an affine process. However, it follows from Example 3.20.iv
and Corollary 3.23 that this process is indeed an affine process.

Lemma 3.4. Let X be an affine process. Then

O =
{
(t, ξ) ∈ R+ × U; Tseξ(0) 6= 0 ∀s ∈ [0, t]

}
(3.2)

is open in R+ × U and there exists a unique continuous extension of φ(t, ξ) and ψ(t, ξ)
to O, such that (3.1) holds for all (t, ξ) ∈ O.

A proof can be found in Duffie et al. [18, Lemma 3.1], which is an adaptation from Bauer
[5, Lemma 23.7]. Although this proof is stated for regular affine processes, it is still valid
in general since only stochastic continuity is required.

Example 3.2.v showed that the functions φ and ψ often have no explicit representation.∗

Nevertheless, these functions are a key to examine affine processes as they possess several
properties independent of their representation.

∗
Note Added: A complete explicit representation of the functions φ and ψ in the Heston model
can be found in Aurélien Alfonsi. Affine Diffusions and Related Processes: Simulation, Theory and

Applications. Springer, 2015, Proposition 4.2.1.
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3.1 Affine Processes

Proposition 3.5. Let X be a stochastically continuous affine process. Then the functions
φ and ψ have the following properties

i) φ maps O to C−.

ii) ψ maps O to U.

iii) φ(0, ξ) = 0 and ψ(0, ξ) = ξ for all ξ ∈ U.

iv) φ and ψ enjoy the "semi-flow property", i.e.

φ(t+ s, ξ) = φ(t, ξ) + φ(s, ψ(t, ξ)), (3.3)

ψ(t+ s, ξ) = ψ(s, ψ(t, ξ)), (3.4)

for all t, s ≥ 0 with (t+ s, ξ) ∈ O.

v) φ and ψ are jointly continuous on O.

vi) With the remaining arguments fixed, ξI 7→ φ(t, ξ) and ξI 7→ ψ(t, ξ) are analytic
functions in {ξI ; Re(ξI) < 0, (t, ξ) ∈ O}.

vii) Let (t, ξ), (t, ζ) ∈ O with Re ξi ≤ Re ζi for all i = 1, . . . ,m.2 Then

Reφ(t, ξ) ≤ φ(t,Re ζ)

Reψ(t, ξ) ≤ ψ(t,Re ζ).

Proof. (i) and (ii) stem from the fact that the semigroup maps bounded functions to
bounded functions.
(iii) This is a consequence of T0eξ(x) = eξ(x).
(iv) The semi-flow property follows immediately from the semigroup property. Let t, s ≥
0 with (t+ s, ξ) ∈ O. Then we have

eφ(t+s,ξ)+x
>ψ(t+s,ξ) = T(t+s)eξ(x)

= TsTteξ(x)

= Ts(e
φ(t,ξ)eψ(t,ξ)(·))(x)

= eφ(t,ξ)Tseψ(t,ξ)(x)

= eφ(t,ξ)eφ(s,ψ(t,ξ))+x
>ψ(s,ψ(t,ξ)).

(v) We show that for (t, ξ) ∈ O

∣∣∣eφ(t,ξ)+x>ψ(t,ξ) − eφ(s,η)+x
>ψ(s,η)

∣∣∣ =
∣∣∣Ex
(
eξ

>Xt − eη
>Xs

)∣∣∣

≤
∣∣∣Ex
(
eξ

>Xt − eξ
>Xs

)∣∣∣+
∣∣∣Ex
(
eξ

>Xs − eη
>Xs

)∣∣∣
−→ 0 as O 3 (s, η) → (t, ξ).

2Observe that for ξ ∈ U = Cm
− × iRn we have Re ξj = 0 for all j = m+ 1, . . . , d.

37



Chapter 3 Affine Processes on Canonical State Space

We start with the second term. As the integrand is bounded by 2, we apply the dominated
convergence theorem

lim
η→ξ

∣∣∣Ex
(
eξ

>Xs − eη
>Xs

)∣∣∣ ≤ E
x lim
η→ξ

∣∣∣eξ>Xs − eη
>Xs

∣∣∣ = 0.

To deal with the first term, we rewrite it as an integral and split it up to obtain
∣∣∣Ex
(
eξ

>Xt − eξ
>Xs

)∣∣∣

≤
∣∣∣
∫

{|Xt−Xs|>δ}
(eξ

>Xt − eξ
>Xs)︸ ︷︷ ︸

|·|≤2

dPx
∣∣∣+
∣∣∣
∫

{|Xt−Xs|≤δ}

(
eξ

>Xt − eξ
>Xs

)
dPx

∣∣∣

≤ 2Px(|Xt −Xs| > δ) +
∣∣∣
∫

{|Xt−Xs|≤δ}
(eξ

>(Xt−Xs) − 1)︸ ︷︷ ︸
|·|≤ε

eξ
>Xs︸ ︷︷ ︸

|·|≤1

dPx
∣∣∣

≤ 2Px(|Xt −Xs| > δ) + εPx(|Xt −Xs| ≤ δ)︸ ︷︷ ︸
≤1

−→ ε as s→ t

−→ 0 as ε→ 0.

Here we applied the stochastic continuity which tells us that Px(|Xt −Xs| > δ) → 0 as
s→ t for all δ > 0. In the second term, we use the continuity of the exp-function.
Since Lemma 3.4 showed that φ and ψ are unique continuous extensions to O, we deduce
from the above calculation that φ and ψ are jointly continuous on O.
(vi) Having fixed t and ξII , the mappings are essentially Laplace transforms. This yields
the analyticity property by Widder [66, Theorem II.5a].
(vii) For all x ∈ D we have by the monotonicity

∣∣∣∣Ex
(
eξ

>Xt

)∣∣∣∣ ≤ E
x

(∣∣∣eξ>Xt

∣∣∣
)

= E
x
(
eRe ξ>Xt

)
≤ E

x
(
eRe ζ>Xt

)
.

If (t, ξ) and (t, ζ) are in O, we deduce from the affine property (3.1) that

Reφ(t, ξ) + x> Reψ(t, ξ) ≤ φ(t,Re ζ) + x>ψ(t,Re ζ).

For a detailed proof we refer to Keller-Ressel [30, Proposition 1.3].

3.2 Feller Property

The Feller property of an affine process was first proven by Duffie et al. [18, Theorem
2.7], however, under the assumption of regularity. The more difficult part is to prove
the Feller property for an affine process, in particular, to show that Ttu vanishes at
infinity for u ∈ C∞(D). Having the Feller property, the strong continuity follows from
the stochastic continuity of X. Additionally, we investigate the Cb- and the strong Feller
property.

First, we state two auxiliary results from Keller-Ressel [30, Proposition 1.9 and 1.10].
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3.2 Feller Property

Proposition 3.6. Let (Xt)t≥0 be an affine process on D = Rm
+ ×Rn and denote by II its

Rn-valued components. Then there exists a real n×n-matrix β such that ψII(t, ξ) = etβξII
for all (t, ξ) ∈ O.

Proposition 3.7. Suppose that (t, u) ∈ O. If u ∈ U◦, then ψ(t, u) ∈ U◦.

Based on these two propositions, it is possible to prove that the Feller property holds for
an affine semigroup and, hence, that an affine process is a Feller process.

Theorem 3.8. Every affine process is a Feller process.

Sketch. We will present the main ideas and refer to Keller-Ressel [30, Theorem 1.11] for
a detailed proof.
We first need to find a suitable dense subset of C∞(D) such that we can apply the affine
property (3.1). Therefore, we set

Θ :=

{
h(ξI ,g)(x) = eξ

>
I xI

∫

Rn

eix
>
IIzg(z) dz; ξI ∈ C

m
− s.t. Re ξI < 0 g ∈ C∞

c (Rn)

}
,

where Re ξI < 0 means that we have Re ξi < 0 for all i ∈ I = {1, . . . ,m}. Note3 that the

linear span of the set
{
eξ

>
I xI ; ξI ∈ Cm

− s.t. Re ξI < 0
}

is a dense subset of C∞(Rm
+ ). The

integral term is the inverse Fourier transform of a smooth function with compact support.
We know that C∞

c (Rn) is dense in the Schwartz space S(Rn). The inverse Fourier
transform is a linear continuous operator from S(Rn) into itself, i.e. F−1(S(Rn)) =
S(Rn), cf. Jacob [27, Theorem 3.1.6]. Therefore, the inverse Fourier transform of C∞

c (Rn)
is dense in the Schwartz space. As the Schwartz space is a dense subset of C∞(Rn), we
conclude that the inverse Fourier transform of C∞

c (Rn) is dense in C∞(Rn).
Hence the linear span of Θ is dense in C∞(D).
Next, we verify the Feller property. Observe that Lemma 3.4 states that Tteξ(x) =

eφ(t,ξ)+x
>ψ(t,ξ) for (t, ξ) ∈ O and Tteξ(x) = 0 for (t, ξ) /∈ O. Let h = h(ξI ,g) ∈ Θ, then

Tth(x) = E
x

(
eξ

>
I XI(t)

∫

Rn

eiz(XII(t))g(z) dz

)

=

∫

Rn

E
x
(
e(ξI ,iz)(X(t))

)
g(z) dz

=

∫

{z∈Rn;(t,(ξI ,z))∈O}
Tte(ξI ,iz)(x)g(z) dz

=

∫

{z∈Rn;(t,(ξI ,z))∈O}
eφ(t,(ξI ,iz))+x

>ψ(t,(ξI ,iz))g(z) dz

=

∫

{z∈Rn;(t,(ξI ,z))∈O}
ex

>
IIe

tβ
iz eφ(t,(ξI ,iz))ex

>
I ψI(t,(ξI ,iz))g(z)︸ ︷︷ ︸

=:h̃xI (z)

dz,

3This follows by a Stone-Weierstrass argument. The functions eξ
>
I
xI are point separating for each

pair of disjoint points in Rm
+ , i.e. span(Θ) separates Rm

+ . Since for each point x ∈ Rm
+ we find a

xI ∈ Cm
− with Re ξI < 0 such that eξ

>
I
xI does not vanish, we can apply a Stone-Weierstrass theorem,

cf. Semadeni [58, Corollary 7.3.9].
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Chapter 3 Affine Processes on Canonical State Space

where we used Proposition 3.6 in the last line. Now, if xI tends to infinity ex
>
I ψI(t,(ξI ,iz))

vanishes because ψ : U◦ → U◦ and, especially, ReψI(t, (ξI , iz)) < 0.
If |xII | → ∞, then Tth(x) also vanishes by the Riemann-Lebesgue lemma. Indeed,

we have Tth(xI , xII) =
∫
ex

>
IIe

tβ
izh̃xI (z) dz = (2π)n/2F(h̃xI )(e

tβ>xII). Hence, xII 7→
Tth(xI , xII) is a Fourier transform and the integrand is a continuous function with com-
pact support.
For h ∈ Θ, the continuity of Tth(x) follows immediately by the dominated convergence
theorem as the integrand is a continuous and bounded function. Since the linear span of
Θ is dense in C∞(D), we have TtC∞(D) ⊆ C∞(D).
It remains to show the strong continuity of the semigroup. However, this is implied by
the stochastic continuity of the process X, cf. Böttcher, Schilling and Wang [11, Lemma
1.18].

Knowing that an affine process is a Feller process it is easy to show that it is also a
Cb-Feller process, see Definition 1.9.

Corollary 3.9. Every affine process is a Cb-Feller process.

Proof. According to Böttcher, Schilling and Wang [11, Theorem 1.9], it is enough to
show that the affine semigroup fulfills Tt1 ∈ Cb(D).
Indeed, as 1 = ex

>0 for every x ∈ D and (t, 0) ∈ O for all t ≥ 0, we have due to the affine
property (3.1)

Tt1 = Tte0(x) = eφ(t,0)+x
>ψ(t,0).

We see that Tt1 ∈ Cb since φ(t, 0) ∈ C− and ψ(t, 0) ∈ U for all t ≥ 0.

We continue with strong Feller semigroups, see Definition 1.10.

Lemma 3.10. The semigroup (Tt)t≥0 of an affine process is strongly Feller if we have
eReφ(t,ξ) ∈ L1( dξ) for all t ≥ 0.

Proof. We show that the semigroup is ultracontractive under the given assumption. Then
the assertion follows from Schilling and Wang [54, Theorem 2.8]. Note that we consider
the Young function Φ(x) = |x| and thus the ordinary Lp space with respect to Lebesgue
measure.
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3.2 Feller Property

Let u ∈ C∞
c (D). Using Fourier inversion and |û(ξ)| ≤ (2π)−

d
2‖u‖1, we get

‖Ttu‖∞ = sup
x∈D

|Ttu(x)|

= sup
x∈D

|Tt
∫

eix
>ξû(ξ) dξ|

= sup
x∈D

|
∫
Tteiξ(x)û(ξ) dξ|

≤ sup
x∈D

∫
|Tteiξ(x)||û(ξ)| dξ

≤ (2π)−
d
2‖u‖1 sup

x∈D

∫
|Tteiξ(x)| dξ.

Now, we apply the affine property (3.1) to conclude from ψII ∈ iRn and ψI ∈ Cm
− that

‖Ttu‖∞ ≤ (2π)−
d
2‖u‖1 sup

x∈D

∫
|eφ(t,ξ)+x>ψ(t,ξ)| dξ

≤ (2π)−
d
2‖u‖1 sup

x∈D

∫
|eφ(t,ξ)| · |ex>I ψI(t,ξ)|︸ ︷︷ ︸

≤1

· |ex>IIψII(t,ξ)|︸ ︷︷ ︸
=1

dξ

≤ (2π)−
d
2‖u‖1

∫
|eφ(t,ξ)| dξ.

Note that supxI∈Rm
+
|ex>I ψI(t,ξ)| = e0

>ψI(t,ξ) = 1 for all t, ξ.

Remark 3.11. i) If a semigroup is strongly Feller then the transition function pos-
sesses a density with respect to some probability measure, cf. Schilling and Wang
[54, Theorem 2.1].

ii) By Example 3.2.i we know that a Lévy process is an affine process such that φ(t, iξ) =
−tψL(ξ) and ψ(t, iξ) = iξ, where ψL is the characteristic exponent of the Lévy
process. Hence, the condition of Lemma 3.10 reads e−tRe(ψL(ξ)) ∈ L1( dξ).

Example 3.12. i) Consider the squared Bessel process X on D = R+ defined as in
Example 3.2.ii. The function φ is given by

φ(t, ξ) = −δ
2
ln(1− 2ξt).

Using Lemma 3.10 we get

‖Ttu‖∞ ≤ (2π)−
1
2‖u‖1

∫

R

|eφ(t,iξ)| dξ

= (2π)−
1
2‖u‖1

∫

R

|e− δ
2
ln(1−2iξt)| dξ

= (2π)−
1
2‖u‖1

∫

R

|(1− 2iξt)−
δ
2 | dξ

= (2π)−
1
2‖u‖1

∫

R

(1 + 4ξ2t2)−
δ
4 dξ.

We see that X is strong Feller for δ > 2.
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Chapter 3 Affine Processes on Canonical State Space

ii) For an Ornstein-Uhlenbeck semigroup, cf. Example 3.2.iv, the strong Feller property
depends on the driving Lévy process. For sake of simplicity, we consider only the
one-dimensional case. Since x 7→ e−x is a convex function, Jensen’s inequality yields

∫

R

∣∣∣eφ(t,ξ)
∣∣∣ dξ =

∫ ∣∣∣e−
∫ t
0 ψL(e

−κsξ) ds
∣∣∣ dξ

≤
∫

R

∣∣∣1
t

∫ t

0

e−tψL(e
−κsξ) ds

∣∣∣ dξ

≤ 1

t

∫

R

∫ t

0

∣∣∣e−tψL(e
−κsξ)

∣∣∣ ds dξ.

As the integrand is positive, we apply Tonelli’s theorem, see Schilling [50, Satz 16.1],
and then the substitution η = e−κsξ

∫

R

∣∣∣eφ(t,ξ)
∣∣∣ dξ ≤ 1

t

∫ t

0

∫

R

∣∣∣e−tψL(e
−κsξ)

∣∣∣ dξ ds

=
1

t

∫ t

0

∫

R

∣∣∣e−tψL(η)
∣∣∣e−κs dη ds

=
1

t

∫

R

∣∣∣e−tψL(η)
∣∣∣ dη

∫ t

0

e−κs ds.

The calculations shows that eReφ(t,ξ) ∈ L1( dξ) if e−tReψL(ξ) ∈ L1( dξ). Using the
Lévy-Khintchine representation of the characteristic exponent of the driving Lévy
process, Lemma 3.10 states that the semigroup Tt is strong Feller if

∫

R

exp
{
− ξQξ −

∫

y 6=0

(
1− cos(ξy)

)
ν( dy)

}
dξ <∞.

In particular, an Ornstein-Uhlenbeck semigroup is strongly Feller if for large ξ it
holds that ReψL(ξ) ≥ |ξ|r with some constant r > 0. This is especially true if the
driving Lévy process has a Brownian part. Another sufficient criteria for the above
inequality is a logarithmic growth of the characteristic exponent. If we require

lim
|ξ|→∞

ReψL(ξ)

log(1 + |ξ|) > C

for some C > 1, then we get

∫
e−ReψL(ξ) dξ <

∫
e−C log(1+|ξ|) dξ

=

∫
(log(1 + |ξ|))−C dξ <∞.

In the multidimensional case, an Ornstein-Uhlenbeck semigroup is strong Feller if
the diffusion matrix of the driving Lévy process is (strictly) positive definite. This
is necessary for the existence of the integral

∫
e−ξQξ dξ.
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3.3 −F and −R as Negative Definite Functions

We close this section with an excursion to regularity of affine processes.

Definition 3.13. An affine process which satisfies the affine property with the functions
φ and ψ is called regular if the derivatives

F (ξ) :=
∂

∂t
φ(t, ξ)|t=0+ and R(ξ) :=

∂

∂t
ψ(t, ξ)|t=0+ (3.5)

exist for all ξ ∈ U, and are continuous at ξ = 0.

A short calculation shows that this definition from Keller-Ressel [30, Definition 2.1] is
equivalent to the one given by Duffie et al. [18, Definition 2.5], who based regularity on
the differentiability of the affine semigroup Tt,

∂

∂t
Tteξ(x)|t=0+ =

∂

∂t
eφ(t,ξ)+x

>ψ(t,ξ)|t=0+ =
∂

∂t

(
φ(t, ξ) + x>ψ(t, ξ)

)∣∣∣
t=0+

.

In their paper, regularity was a major assumption. Nevertheless, it was not clear un-
der which conditions an affine process is regular. Note that in Example 3.2.vi a non-
regular affine process is given which, however, is degenerate. Kawazu und Watanabe
[29, Lemma 1.2 and 1.3] proved that a stochastically continuous affine process with
state space D = Rm

+ is regular. This statement was extended to the canonical state
space D = Rm

+ × Rn by Keller-Ressel, Schachermayer and Teichmann [32] by reducing
the problem to the case D = Rm

+ for which it was solved. Based on properties of the
state space, regularity was shown for more general state spaces, in particular for positive
semidefinite matrices by Cuchiero, Filipović, Mayerhofer and Teichmann [15] and for
symmetric cones by Cuchiero, Keller-Ressel, Mayerhofer and Teichmann [16].
Further works generalized the above statements - Keller-Ressel, Schachermayer and Te-
ichmann [33] by a probabilistic argument as well as Cuchiero and Teichmann [17] by
theory of Markovian semimartingales.

Theorem 3.14. For all possible state spaces, every stochastically continuous affine pro-
cess is regular.

It is worth mentioning that the regularity combined with the semi-flow property yields
the so-called generalized Riccati equations

∂

∂t
φ(t, ξ) = F (ψ(t, ξ)), φ(0, ξ) = 0

∂

∂t
ψ(t, ξ) = R(ψ(t, ξ)), ψ(0, ξ) = ξ.

(3.6)

3.3 −F and −R as Negative Definite Functions

In this section, we will look more closely at the functions F and R, which were introduced
in Definition 3.13. These functions are often refered to as functional characteristics of an
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Chapter 3 Affine Processes on Canonical State Space

affine process in the literature. Although F and R are central elements in the theory of
affine processes, they were never associated to negative definite functions. We will prove
this statement in this section. This result gives an easier proof for the admissibility
conditions for the parameters and, finally, for the representation of the affine generator
as a pseudo-differential operator in the subsequent sections.
For a short overview containing the required arguments from harmonic analysis we refer
to Section 1.1. The functions F and R are defined on U = Cm

− × iRn, which is an abelian
semigroup equipped with the involution Cm

− × iRn 3 ξ 7→ ξ̄.

Now let ξ ∈ U and set

λt(x, ξ) := E
x(eξ

>(Xt−x)) = e−ξ
>x

E
x(eξ

>Xt)

= e−ξ
>x

∫

D

eξ
>ypt(x, dy).

As λt(x, ξ) is the characteristic function of a probability measure pt(x, ·), ξ 7→ λt(x, ξ) is
a positive definite function, cf. Corollary 1.2. According to the affine property (3.1), we
have λt(x, 0) = eφ(t,0)+x

>ψ(t,0) ≤ 1 as φ(t, 0) ∈ C− and ψ(t, 0) ∈ U for all t ≥ 0. Lemma
1.3 now implies that the function ξ 7→ 1− λt(x, ξ) is negative definite. The same is true

for ξ 7→ 1−λt(x,ξ)
t

. Whenever the following limit exists, the function

ξ 7→ p(x, ξ) := lim
t→0

1− λt(x, ξ)

t
(3.7)

is a negative definite function for all x ∈ D because the set of all negative definite func-
tions is a convex cone which is closed under pointwise convergence, cf. Berg, Christensen
and Ressel [8, §3.1.11]. We adapt the terminology from the literature and refer to p(x, ξ)
as the (probabilistic) symbol of the process X. The limit above exists for all ξ ∈ U

because every stochastically continuous affine process is regular. Indeed, we have

p(x, ξ) = lim
t→0

1− λt(x, ξ)

t

= lim
t→0

e−x
>ξ eξ(x)− Tteξ(x)

t

= −∂+t e−x
>ξTteξ(x)|t=0

= −∂+t eφ(t,ξ)+x
>(ψ(t,ξ)−ξ)|t=0

= −∂+t
(
φ(t, ξ) + x>(ψ(t, ξ)− ξ)

)∣∣∣
t=0
.

Note that the derivative exists by regularity. This implies the existence of the limit in
the first line.

Remark 3.15. The above calculation shows that regularity is equivalent to the existence
of the probabilistic symbol of an affine process. Results on the existence of the probabilis-
tic symbol have been obtained by Schnurr [56], using the semimartingale characteristics,
as well as by Schilling and Schnurr [52], using the strong Markov property. Cuchiero and
Teichmann [17] proved the regularity of an affine process by theory of semimartingales.
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3.3 −F and −R as Negative Definite Functions

The main steps of this proof are to show right-continuity of the filtration, a cádlág ver-
sion of an affine process, the strong Markov property, the semimartingale property and
finally the regularity and representation. We conjecture that one can shorten the proof
by extending the methods from Schilling and Schnurr [52].

For x = 0 we immediately see that

−F (ξ) = −∂+t φ(t, ξ)|t=0 = lim
t→0

1− λt(0, ξ)

t
= p(0, ξ)

is a negative definite function since p(x, ξ) is negative definite for all x ∈ D and, in
particular, for x = 0. We also know that for all x ∈ D

−x>R(ξ)− F (ξ) = −∂+t
(
φ(t, ξ) + x>(ψ(t, ξ)− ξ)

)∣∣∣
t=0

= p(x, ξ),

i.e. the right-hand side is negative definite for every x as well as the summand −F (ξ) on
the left-hand side. With the right choice of x, we can show for every i = 1, . . . , d that
−Ri is a negative definite function.
For that purpose assume that −Ri is not negative definite. According to Definition 1.1,
there is a k ∈ N and ξ1, . . . , ξk ∈ U, λ1, . . . , λk ∈ C such that

k∑

j,l=1

(−Ri(ξ
j)−Ri(ξl) +Ri(ξ

j + ξ
l
))λjλl < 0.

Substituting x = rei ∈ D, where ei is the ith unit vector with i = 1, . . . , d, we obtain

0 ≤
k∑

j,l=1

(
p(rei, ξ

j) + p(rei, ξl)− p(rei, ξ
j + ξ

l
)
)
λjλl

=
k∑

j,l=1

(
− F (ξj)− reiRi(ξ

j) + (−F (ξl)− reiRi(ξl))

+ F (ξj − ξl) + reiRi(ξ
j + ξ

l
)
)
λjλl

=
k∑

j,l=1

(
−F (ξj)− F (ξl) + F (ξj + ξ

l
)
)
λjλl

+ rei

k∑

j,l=1

(
−Ri(ξ

j)−Ri(ξl) +Ri(ξ
j + ξ

l
)
)
λjλl.

The first sum is nonnegative as −F is negative definite and the second sum is negative by
assumption. This holds for all r, where rei ∈ D. Thus, for r big enough, the right-hand
side is negative. This contradicts that p(rei, ξ) is negative definite and shows that −Ri

is a negative definite function for all i = 1, . . . , d.
We know that x = rei ∈ D = Rm

+ × Rn as well as x = −rei ∈ D for i = m + 1, . . . , d.
Hence, the above argument for x = −rei yields that for i = m + 1, . . . , d the function
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Chapter 3 Affine Processes on Canonical State Space

Ri is also negative definite4. By regularity, cf. Definition 3.13, F and R are continuous
in ξ = 0. Bochner’s theorem, cf. Ressel [43, Theorem 4], now implies that F and R are
also continuous on the product space U = Cm

− × iRn. Thus we have proved the following
theorem.

Theorem 3.16. Let F and R be the functional characteristics of an affine process. Then
−F and −R are continuous negative definite.

3.4 Admissible Parameters of F and R

Having shown that the negative functional characteristics −F and −R of an affine process
X are continuous negative definite, we can now give their Lévy-Khintchine representa-
tion. We will see that the affine property as well as the state space D = Rm

+ × Rn

imply certain restrictions on the parameters. As these conditions follow from the neg-
ative definiteness of −F and −R, which was derived from the probabilistic symbol of
the process, every Feller process with an affine probabilistic symbol is subject to the
admissible parameters; in other words the restrictions are necessary.

Theorem 3.17. The functions F and Ri for i = 1, . . .m+ n may be written as

F (ξ) = b>ξ +
1

2
ξ>aξ − c+

∫

D\{0}

(
eξ

>y − 1− ξ>χ(y)
)
µ( dy)

Ri(ξ) = βi
>
ξ +

1

2
ξ>αiξ − γi +

∫

D\{0}

(
eξ

>y − 1− ξ>χi(y)
)
µi( dy),

where a, αi are positive semidefinite matrices in Rd×d, b, βi ∈ Rd, c, γi ∈ R+, χ, χi : D →
Rd are truncation functions and µ, µi are Lévy measures on D. The parameters satisfy
the following conditions:

akl = 0 if k or l ∈ {1, . . . ,m} (3.8)

αj = 0 for all j ∈ {m+ 1, . . . , d} (3.9)

αikl = 0 if k or l ∈ {1, . . . ,m}\{i} (3.10)

b ∈ D (3.11)

βik ≥ 0 for all i ∈ {1, . . . ,m} and k ∈ {1, . . . ,m}\{i} (3.12)

βjk = 0 for all j ∈ {m+ 1, . . . , d} and k ∈ {1, . . . ,m} (3.13)

γj = 0 for all j ∈ {m+ 1, . . . , d} (3.14)

supp(µ) ⊆ D and

∫

D\{0}

(
(|xI |+ |xII |2) ∧ 1

)
µ( dx) <∞ (3.15)

µj = 0 for all j ∈ {m+ 1, . . . , d} (3.16)

4We will show later in the proof of Theorem 3.21 that this implies that the mapping Ri is linear for
i = m+ 1, . . . , d.
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3.4 Admissible Parameters of F and R

supp(µi) ⊆ D for all i ∈ {1, . . . ,m} (3.17)∫

D\{0}

(
(|xI\{i}|+ |xII∪{i}|2) ∧ 1

)
µi( dx) <∞ for all i ∈ {1, . . . ,m}. (3.18)

The parameters are called admissible if these conditions are satisfied. The truncation
functions are componentwise given by

χk(y) =

{
0 k ∈ {1, . . . ,m}
h(yk) k ∈ {m+ 1, . . . , d}

χik(y) =

{
0 k ∈ {1, . . . , i− 1, i+ 1, . . . ,m}
h(yk) k ∈ {i,m+ 1, . . . , d}

for all i ∈ {1, . . . ,m}

χj ≡ 0 for all j ∈ {m+ 1, . . . , d},

where h : R → R, z 7→ h(z) is a bounded measurable function from R to R, that behaves
like z in a neighbourhood of 0. Frequently used are h(z) = z

1+|z|2 and h(z) = z1{|z|≤1}.

A truncation function that is continuous and has compact support is given by h(z) =
z1{|z|≤1} + z(2 − |z|)1{1<|z|≤2}. Note that a change of the truncation function h affects
the linear terms b, βi.

Remark 3.18. Due to the admissibility conditions of the parameters for j = m+1, . . . , d,
i.e. αj = 0, γj = 0 and µj = 0, the representation of the characteristic function R
simplifies for j = m+ 1, . . . , d to

Ri(ξ) = βi
>
ξ.

Remark 3.19. In Example 3.20 we present the admissible parameters of some affine
processes. However, the examples given there are mostly one-dimensional. Hence, we
now give a general visualization of the admissible parameters,

a =


 0 0

0 +


 , αi =




0
...
0

0 · · · 0 αiii 0 · · · 0 ∗ · · · ∗
0
...
0
∗
... +
∗




,

for i = 1, . . . ,m, where αiii ≥ 0. The symbol + presents a positive semidefinite n × n
matrix and ∗ can be an arbitrarily real entry.

47



Chapter 3 Affine Processes on Canonical State Space

Furthermore, we have αj = 0 for j = m+ 1, . . . ,m+ n, and

b =




+
...

+

∗
...

∗







∈ Rm




∈ Rn

, βi =




+
...

+

βii

+
...

+

∗
...

∗








∈ Rm




∈ Rn

, βj =




0
...

0

∗
...

∗







∈ Rm




∈ Rn

for i = 1, . . . ,m, where βii ∈ R, and j = m+1, . . . ,m+n. Now, + is a non-negative real
and ∗ an arbitrary real number.

Proof. We start with the function F . Since −F is negative definite, it has a Lévy-
Khintchine representation, cf. Theorem 1.4 with b ∈ Rd, a is a positive semidefinite d×d
matrix and µ is a Lévy measure on D.
Now we take a look at the subspace Cm

− . Therefore we write ξ = (ξI , ξII) with ξI ∈ Cm
−

and ξII ∈ iRn. Setting ξII = 0, we see that ξI 7→ −F (ξ) is a continuous negative definite
function. We thus get a Lévy-Khintchine representation, see Berg et al. [8, Theorem
4.3.20], for which the parameters are given by bI ∈ Rm

+ , aII = 0, χI ≡ 0 and mI is
a measure on Rm

+ such that
∫
Rm

+ \{0}(1 ∧ |y|)µI( dy) < ∞. Especially, as a is positive

semidefinite, it follows from the Cauchy-Schwarz inequality, |akl| ≤
√
akkall, that akl = 0

for k, l ∈ {1, . . . ,m} implies akl = 0 for k or l ∈ {1, . . . ,m}.
Next we set ξI = 0 and consider the continuous negative function ξII 7→ −F (ξ). Ac-
cording to the Lévy-Khintchine formula on iRd, cf. Schilling, Song and Vondracek [53,
Theorem 4.15], we get bJ ∈ Rn, aII is a positive semidefinite n×n matrix, χII is a trunca-
tion function on Rn and the Lévy measure µII on Rn satisfies

∫
Rn\{0}(1∧|y|2)µII( dy) <∞.

Combining the two cases, we see that the parameters of F fulfill the above conditions.

For Ri with i ∈ {1, . . . ,m} we proceed similarly to above. However, we have to take
special care of the ith component. Therefore, we set I− = {1, . . . , i − 1, i + 1, . . . ,m}
and II = {m + 1, . . . d}; i.e. ξI− ∈ C

m−1
− and ξII ∈ iRn. Then ξI− 7→ −Ri(ξ) is a mul-

tidimensional continuous negative definite function on the semigroup R
m−1
+ equipped

with identical involution. Consequently, the corresponding parameters of the Lévy-
Khintchine representation are βiI− ∈ R

m−1
+ , αiI−I− = 0, χI− ≡ 0 and µiI− is a Lévy

measure on R
m−1
+ such that

∫
R

m−1
+ \{0}(1 ∧ |y|)µI−( dy) < ∞. Again, by the Cauchy-

Schwarz inequality αikl = 0 for k, l ∈ I− = {1, . . . , i− 1, i+ 1, . . . ,m} implies αikl = 0 for
k or l ∈ I− = {1, . . . , i− 1, i+ 1, . . . ,m}.
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3.4 Admissible Parameters of F and R

Considering the mapping ξII 7→ −Ri(ξ) implies that βiII ∈ Rn, αiII is a positive semidef-
inite n× n matrix, χiII is a truncation function on Rn and the Lévy measure µiII on Rn

satisfies
∫
Rn\{0}(1 + |y|2)µiII( dy) <∞.

Now, we set ξI− = 0 and ξII = 0 and consider ξi 7→ −Ri(ξ). Recall that −Ri(ξ) =

−e>i R(ξ) = 1
r
F (ξ) + p(rei, ξ) =

1
r
F (ξ) + limt→0

1−Erei (e(Xi(t)−rei)ξi )
t

. Since r > 0, the term
rei shifts the support of the integral.5 Hence, in the ith component, −Ri has the pa-
rameters of a continuous negative function on R, i.e. αiii ≥ 0, βii ∈ R, χi is a truncation
function and the Lévy measure µii satisfies

∫
R+

(1 + |y|2)µii( dy) < ∞. Again, combining
the factors yields that the parameters of Ri for i = 1, . . . ,m are admissible.

Finally, we examine Rj for j ∈ II. At the end of the last paragraph we showed that −Rj

as well as Rj is negative definite. Especially, we know that

k∑

i,l=1

(−Rj(ξ
i)−Rj(ξl) +Rj(ξ

i + ξ
l
))λiλl = 0.

Setting k = 1 and λ1 = 1, we immediately see that

−Rj(ξ)−Rj(ξ) +Rj(0) = 0 for all ξ ∈ iR
d,

and consequently that ReRj ≡ 0; i.e. Rj is purely imaginary. Now we set k = 2,

λ1 = 1/
√
2, λ2 = i/

√
2. Since Rj is purely imaginary, we have Rj(ξ) = Rj(ξ) = −Rj(ξ)

for ξ ∈ iRd. Thus we get for ξ1 = ξ, ξ2 = −η ∈ iRd the functional equation

0 =
2∑

i,l=1

(−Rj(ξ
i)−Rj(ξl) +Rj(ξ

i + ξ
l
))λiλl

= (−Rj(ξ) +Rj(−η) +Rj(ξ + η))(−i)/2 + (−Rj(η) +Rj(+ξ) +Rj(−η − ξ))i/2

= i(Rj(ξ) +−Rj(η)−R(η + ξ)).

The continuous solution of this equation is Rj(ξ) = βj
>
ξ, cf. Aczél [1, §5.1]; i.e. αj = 0,

γj = 0, µj = 0 and thus χj ≡ 0 for j ∈ {m + 1, . . . ,m + n}. Moreover, choosing again
k = 1, λ1 = 1, we obtain for ξ ∈ Rm

− × {0}

−Rj(ξ)−Rj(ξ) +Rj(ξ + ξ) = −Rj(ξ) +Rj(ξ) +Rj(2ξ)

= Rj(2ξ) = 0 for all ξ ∈ R
m
− × {0}.

Hence, we have βjI = 0 ∈ Rm.

Example 3.20. i) Let X be a one-dimensional Lévy process as in Example 3.2.i and
(l, Q, ν) be its Lévy triplet. Then the admissible parameters are given by

a = Q, α1 = 0, b = l, β1 = 0, µ = ν, µ1 = 0.

5Observe that by substitution we have E(u(X(t) − x)) =
∫
D
u(y − x)PXt( dy) =

∫
D−x

u(ỹ)PXt( dỹ).

Since D − x ⊂ Rd and D − x * D for x ∈ D, the shift creates a integral over Rd.
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ii) Let X be a Cox-Ingersoll-Ross (CIR) process on R+ defined by

dXt = (b− βXt) dt+ σ
√
Xt dBt, X0 = x,

then the admissible parameters are

a = 0, α1 = σ2, b = b, β1 = −β, µ = 0, µ1 = 0.

iii) For an Ornstein-Uhlenbeck process on R driven by a Lévy process L with Lévy
triplet (l, Q, ν), i.e.

dXt = dLt + βXt dt, X0 = x,

we have

a = Q, α1 = 0, b = l, β1 = β, µ = ν, µ1 = 0.

iv) As in Example 3.2.v, let the Heston model be given by

dX1 = (k + κX1) dt+ σ
√

2X1 dB1

dX2 = (r −X1) dt+
√

2X1(ρ dB1 +
√

1− ρ2 dB2).

Then the admissible parameters are

a =


0 0

0 0


 , α1 =


2σ2 2σρ

2σρ 2


 , α2 =


0 0

0 0




b =


k
r


 , β1 =


 κ

−1


 , β2 =


0

0




and µ, µ1, µ2 = 0.

3.5 Representation as Pseudo-Differential Operator

In the following section, we give a representation of the generator of an affine process
as a pseudo-differential operator. The operator of an affine process has been studied
by Duffie et al. [18, Theorem 2.7]. Our viewpoint sheds some new light on the class of
symbols with unbounded coefficients since the affine symbol has linear growing coeffi-
cients. Furthermore, our proof provides a shorter and more accessible approach to the
representation and characterization of the generator. Using weighted norms, see Section
2.3, we determine the domain of the generator by the B.L.T. theorem. We also present a
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3.5 Representation as Pseudo-Differential Operator

simplified proof for the fact that the test functions6 C∞
c (D) are a core of the generator,

which is originally shown by Duffie et al. [18, Proposition 8.2].

As we have pointed out in Section 3.3, the functions −F and −R are continuous negative
definite. We will use this fact and some properties in the following proof.

Theorem 3.21. The infinitesimal generator (A,D(A)) of a stochastically continuous
affine process restricted on the test functions C∞

c (D) has a representation as a pseudo-
differential operator with symbol

q(x, ξ) = −F (iξ)− x>R(iξ)

= −ib>ξ +
1

2
ξ>aξ + c+

∫

D\{0}

(
1− eiξ

>y + iξ>χ(y)
)
µ( dy)

− i

m+n∑

i=1

xiβ
i>ξ +

m∑

i=1

xi
1

2
ξ>αiξ +

m∑

i=1

xiγ
i

+
m∑

i=1

xi

∫

D\{0}

(
1− eiξ

>y + iξ>χi(y)
)
µi( dy)

for (x, ξ) ∈ (Rm
+ ×Rn)×Rd.

Proof. We consider the pointwise generator Ap, i.e. the pointwise limit in x. For a
function f ∈ C∞

c (D), the pointwise calculation leads to

Apf(x) = lim
t→0

Ttf(x)− f(x)

t

= lim
t→0

(2π)−
d
2

∫

Rd

Tteiy(x)− eix
>y

t
f̂(y) dy

= (2π)−
d
2

∫

Rd

lim
t→0

Tteiy(x)− eix
>y

t
f̂(y) dy

= (2π)−
d
2

∫

Rd

eix
>y(F (iy) + x>R(iy))f̂(y) dy,

where we have to verify that the interchange of the limit and the integral is allowed
by the dominated convergence theorem. Substituting the affine property (3.1) into the

6Observe that D = Rm
+ × Rn differs from the usual open domain on which smooth functions with

compact support are investigated. We refer to the next subsection for a discussion of this definition.
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equation and applying Taylor’s theorem we obtain
∣∣∣∣∣
Tteiy(x)− eix

>y

t

∣∣∣∣∣

=

∣∣∣∣∣
eφ(t,iy)+x

>ψ(t,iy) − eix
>y

t

∣∣∣∣∣

=

∣∣∣∣∣∣∣
1

t

(
eφ(0,iy)+x

>ψ(0,iy)
︸ ︷︷ ︸

e0+iy>x=eiy
>x

+t∂t

∣∣∣
t=0

eφ(t,iy)+x
>ψ(t,iy) +O(t)− eix

>y

)
∣∣∣∣∣∣∣

=

∣∣∣∣∂t
∣∣∣
t=0

eφ(t,iy)+x
>ψ(t,iy) +

1

t
O(t)

∣∣∣∣ .

By regularity, cf. (3.5), we continue
∣∣∣∣∣
Tteiy(x)− eix

>y

t

∣∣∣∣∣

≤
∣∣∣F (iy) + x>R(iy)

∣∣∣+ c

≤
(
cF (1 + |y|2) + |x|cR(1 + |y|2)

)
+ c

≤ cF,R(1 + |x|)(1 + |y|2),

where we used in the second to last line that negative definite functions are bounded by
quadratic functions, see Lemma 1.5.

Obviously, f ∈ C∞
c (D) is sufficiently smooth, so that

Tteiy(x)−eix
>y

t
f̂(y) admits an in-

tegrable dominating function. Based on this result, we next show that Apf(x) =
−q(x,D)f(x) vanishes at infinity for f ∈ C∞

c (D). Therefore we rewrite the pseudo-
differential operator as an integro-differential operator

−q(x,D)f(x) =
d∑

j,k=1


ajk +

m∑

l=1

xlα
l
jk


 ∂j∂kf(x)

+
(
b+

d∑

l=1

(xlβ
l)
)>

∇f(x) +
(
c+ γ>x

)
f(x) (3.19)

+

∫

D\{0}

(
f(x+ y)− f(x)− χ(y)>∇f(x)

)
µ( dy)

+
m∑

l=1

xl

∫

D\{0}

(
f(x+ y)− f(x)− χl(y)>∇f(x)

)
µl( dy).

If we choose |x| large enough, we have x /∈ supp(f) and the above equation simplifies to

−q(x,D)f(x) =

∫

D\{0}
f(x+ y)µ( dy) +

m∑

l=1

xl

∫

D\{0}
f(x+ y)µl( dy).
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3.5 Representation as Pseudo-Differential Operator

As before, we want to apply the dominated convergence theorem. We get an estimate of
the integrand by applying Taylor’s theorem twice. We first consider the constant part.
Denote by

ỹl =

{
0 for l = 1, . . . ,m

yl for l = m+ 1, . . . , d,

then χ(y) = ỹ1{|ỹ|≤1} and we get for y ∈ D\{0} ∩ B(0, 1) that

f(x+ y)− f(x)− ỹ>∇f(x)
= f(x+ y)− f(x+ ỹ) + f(x+ ỹ)− f(x)− ỹ>∇f(x)

= ∇f(x+ ỹ + θ(y − ỹ))(y − ỹ) +
1

2

d∑

j,k=m+1

∂j∂kf(x+ θ̃ỹ)yjyk,

where θ, θ̃ ∈ (0, 1). For x /∈ supp(f) this leads to

∣∣∣
∫

D\{0}
f(x+ y)µ( dy)

∣∣∣

≤
∣∣∣
∫

B(0,1)\{0}
f(x+ y)− f(x)− y>∇f(x)µ( dy)

∣∣∣+
∣∣∣
∫

D\B(0,1)

f(x+ y)m( dy)
∣∣∣

≤
(∫

B(0,1)\{0}
(|y − ỹ|+ |ỹ|2)µ( dy) +

∫

D\B[0,1]

1µ( dy)

)

︸ ︷︷ ︸
=
∫
D\{0}[(|y−ỹ|+|ỹ|2)∧1]µ( dy)=M<∞

‖f‖(2) <∞.

Note that the estimate can be chosen stronger. By a similar argument we get an inte-
grable dominating function which allows us to apply the dominating convergence theorem
for the linear integral parts.

Now let |x| tend to infinity. First consider that xj → ∞ for some j ∈ {1, . . . ,m}. We
can choose xj large enough such that x /∈ supp(f). Since D = Rm

+ × Rn, this implies
that x+ y /∈ supp(f) for all y ∈ D. Hence, if xj is sufficiently large, we have

xj

∫

D\{0}
f(x+ y)︸ ︷︷ ︸

=0

µj( dy) = 0.

For the same reason, the other integrals also vanish for xj → ∞. Next, consider that
xj ≤ K for some constant K and for all j = 1, . . . ,m and that |xl| → ∞ for some
l ∈ {m+ 1, . . . , d}. Since the first m coordinates of x are bounded and f ∈ C∞

c (D), the
integrands are always bounded. Due to the above estimates, we can apply the dominated
convergence theorem for j = 1, . . . ,m

lim
|x|→∞

xj

∫

D\{0}
f(x+ y)µj( dy) =

∫

D\{0}
lim

|x|→∞
xjf(x+ y)

︸ ︷︷ ︸
=0

µj( dy) = 0.
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Chapter 3 Affine Processes on Canonical State Space

This shows that x 7→ −q(x,D)f(x) ∈ C∞(D) vanishes for all functions f ∈ C∞
c (D) as

|x| tends to infinity. According to Sato [46, Lemma 31.7], the pointwise generator equals
the generator. As a result, C∞

c (D) ⊆ D(A) and for f ∈ C∞
c (D) we have

Af(x) = Apf(x) = −(2π)−
d
2

∫

Rd

eix
>y(−F (iy)− x>R(iy))f̂(y) dy for all x ∈ D.

Hence, −A
∣∣∣
C∞

c

is a pseudo-differential operator with symbol q(x, ξ) = −F (iξ)−x>R(iξ).

Example 3.22. i) The symbol of a one-dimensional Ornstein-Uhlenbeck process, see
Example 3.2.iv, is given by

q(x, ξ) = iβξx+ ψL(ξ),

where ψL is the characteristic exponent of the driving Lévy process.

ii) The symbol approach is advantageous in the case of jump processes. For instance,
the symbol of an CIR process which is not driven by a Brownian motion but by a
symmetric α-stable process with α ∈ (0; 2) is given by

q(x, ξ) = ibξ + iβxξ + x|ξ|α.

Note that by solving the generalized Riccati equations7, we can give an explicit
representation of the functions ψ and φ

ψ(t, ξ) =

(
ξ1−αe(1−α)βt +

1

β
e(1−α)βt − 1

β

) 1
1−α

,

φ(t, ξ) =

∫ t

0

b · ψ(s, ξ) ds.

The symbol of an affine process is subject to several restrictions, cf. Theorem 3.17. One
might ask whether more general symbols with affine x-dependent coefficients give rise to
pseudo-differential operators or even stochastic processes.

Corollary 3.23. Let q(x, ξ) be the negative definite symbol of a pseudo-differential op-
erator with state space D = Rm

+ ×Rn such that its coefficients are affine dependent of x.
Then the symbol has a representation as illustrated in Theorem 3.21 such that it satisfies
the admissible parameter condition and gives rise to an affine process. In particular,
there are no other symbols with an affine structure than those from affine processes.

7Sketch: Using the method of characteristics with t = t(x) = x + c, ξ = ξ(x) = c such that ψ(t, ξ) =
ψ(x), we obtain the differential equation y′ = b · y + yα. With u = y1−α, this is transformed into a
Bernoulli differential equation for which the solution is known.
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3.5 Representation as Pseudo-Differential Operator

Proof. The symbol of a pseudo-differential operator has to be continuous negative defi-
nite. In Section 3.3 we have shown that the functions −F and −Ri, i = 1, . . . ,m satisfy
this property. In the proof we only used the assumption that F + x>R is an affine func-
tion along with the geometry of the state space. Therefore, affine processes are the only
processes with symbols whose coefficients are affine x-dependent.
It is well known that the admissible parameters and, hence, a symbol with an affine
structure give rise to an affine process, cf. Duffie et al. [18, Theorem 2.7].

3.5.1 Domain of the Generator

The above theorem shows that the generator A of an affine process is a pseudo-differential
operator on the test functions C∞

c (D). This operator (−q(x,D), C∞
c (D)) can easily be

extended to an operator on C2
c (D), see Schnurr [56, Theorem 3.8], by approximating

C2
c (D) functions with a sequence of test functions obtained by a Friedrichs mollifier.

This also shows that C2
c (D) ⊂ D(A). Using the B.L.T. theorem we even extend the

representation to the weighted space C2,1
(1+xI),|xII |,∞(D), see Lemma 3.24. In this section,

we will characterize the maximal domain of the generator. Using results of Section 2.3,
we give a representation of the maximal domain as a Banach space.

Since we investigate function spaces related to the affine generator, we now give a proper
introduction to spaces with domain D = Rm

+ ×Rn. The literature, cf. Jacob [27, Section
2.1], defines for an open set G ⊆ Rd and k ∈ N0 ∪ {∞}

Ck(G) := {f : G→ C; f is k-times continuously differentiable}.

This function space can be extended to the closed domain G if we require ∂δf(x) = 0
for x ∈ ∂G = G\G and |δ| ≤ k. In contrast to that, we assume that a function in
Ck(D) takes a finite value on the boundary. Furthermore, we only require ones-sided
continuity and one-sided differentiability from the inside at the boundary. For simplicity
of notation, we write Df and ∂xf instead of D+f and ∂+x f , respectively. Hence, we
define

Ck(D) := {f : D → C; Dδf ∈ C(D) ∧ |Dδf(0, xII)| <∞ for all |δ| ≤ k}.

The spaces Cb(D), Cc(D), C∞(D) and variations thereof are defined in the same way.

Lemma 3.24. Let X be an affine process with generator A and the usual admissible
parameters as in Theorem 3.17. Then for a function f ∈ C2,1

(1+xI),|xII |,∞(D), where

C2,1
(1+xI),|xII |,∞(D) =

{
f ∈ C2(D); (1 + xI)D

δf(x) ∈ C∞(D) ∀δ ∈ N
d, |δ| ≤ 2,

xj
∂

∂xj
f(x) ∈ C∞(D) ∀j ∈ II

}
,
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Chapter 3 Affine Processes on Canonical State Space

the generator has a representation as an integro-differential operator given by

Af(x) =
d∑

j,k=1

(
ajk +

m∑

l=1

xlα
l
jk

)
∂j∂kf(x)

+
(
b+

d∑

l=1

xlβ
l
)>

∇f(x) +
(
c+ γ>x

)
f(x)

+

∫

D\{0}

(
f(x+ y)− f(x)− χ(y)>∇f(x)

)
µ( dy)

+
m∑

l=1

xl

∫

D\{0}

(
f(x+ y)− f(x)− χl(y)>∇f(x)

)
µl( dy).

Proof. The idea is to take the bounded linear transform (B.L.T.) theorem, see for instance
Reed and Simon [42, Theorem I.7] or Theorem 2.13. Therefore, we have to prove that
C2,1

(1+xI),|xII |,∞(D) equipped with the norm

‖f‖(2),(1),(1+|xI |),|xII | := ‖f‖(2),(1+|xI |) +
d∑

j=m+1

∥∥∥xj
∂

∂xj
f
∥∥∥
∞

=
∑

|δ|≤2

∥∥∥(1 + |xI |)Dδf
∥∥∥
∞
+

d∑

j=m+1

∥∥∥xj
∂

∂xj
f
∥∥∥
∞

is a complete normed linear space.8 Applying the same reasoning as in Example 2.14, i.e.
using Lemma 2.15 and 2.16, we see that the above function space is a complete normed
linear space. It remains to prove that C∞

c (D) is a dense subset.
This argument will be divided into two steps. We first show that C2,1

c (D) is dense in
the set C2,1

(1+xI),|xII |,∞(D). Applying the Friedrichs mollifier gives that C∞
c (D) is dense in

C2,1
c (D).

Let χ ∈ C∞
c (Rd) be a smooth cut-off function such that 1B(0,1) ≤ χ ≤ 1B(0,2) and set

χn(·) := χ(·/n). This function is defined for all x ∈ Rd but we restrict the domain to D.
Then a similar calculation as in Example 2.14 shows that for every f ∈ C2,1

(1+xI),|xII |,∞(D)

the sequence (fn)n≥1 defined by fn := f · χn ∈ C2,1
c (D) converges to f with respect to

the norm ‖ · ‖(2),(1),(1+|xI |),|xII |.
We now proceed analogously to Example 2.14 and apply a Friedrichs mollifier, see Lemma
2.15, to show that C∞

c (D) is dense in C2,1
c (D) with respect to ‖·‖(2),(1),(1+|xI |),|xII |. Observe

that the mollified functions have to be restricted to the domain D such that they are an
element of C∞

c (D).
The requirements for the B.L.T. theorem are satisfied and the lemma follows.

From the representation as an integro-differential operator we see that if a function f
lacks one of the conditions required in C2,1

(1+xI),|xII |,∞(D) the generator does not map this

8The weighted norm is defined as in Section 2.3.
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3.5 Representation as Pseudo-Differential Operator

function into C∞(D). Therefore, we call C2,1
(1+xI),|xII |,∞(D) the maximal domain of the

generator.9

For many applications based on the symbol it is important to know that the test functions
C∞
c (D) are a core of the generator, cf. Definition 1.12. Based on the norms and spaces

previously introduced, we show that C∞
c (D) are a core. Therefore, we verify that the

affine semigroup satisfies the following criterion.

Lemma 3.25. Let (Tt)t≥0 be a Feller semigroup, (A,D(A)) the generator and D0 ⊆ D ⊆
D(A) be dense subsets of C∞(D). Then D is an operator core for (A,D(A)) if

Tt(D0) ⊆ D for all t ≥ 0.

This result can be found in Ethier and Kurtz [19, Proposition 3.3, p. 16]. Now we will
apply it to the generator of an affine process.

Proposition 3.26. Let X be an affine process with semigroup (Tt)t≥0 and generator
(A,D(A)). Then C2,1

(1+|xI |),|xII |,∞(D) is a core of (A,D(A)).

Our approach to prove this result is based on the proof of Duffie et al. [18, Proposition
8.2] with several simplifications. Especially, the approximation of the functions in our
case is easily accessible due to an application of a reflection argument.

Proof. The main idea of the proof is to apply Lemma 3.25. Therefore, we set D0 as the
linear span of the set

Θ =

{
h(ξI ,g)(x) = ex

>
I ξI

∫

Rn

eix
>
IIzg(z) dz; ξI ∈ C

m
− s.t.Re ξI < 0, g ∈ C∞

c (Rn)

}

and D1 = C2,1
(1+|xI |),|xII |,∞(D). Now we have to show that span(Θ) ⊆ C2,1

(1+|xI |),|xII |,∞(D) ⊆
D(A) is dense in C∞(D) and that the semigroup Tt maps Θ into C2,1

(1+|xI |),|xII |,∞(D).

From Theorem 3.8 we know that the linear span of Θ is dense in C∞(D). In order to
show that D0 is a subset of D1, we choose a function f ∈ Θ. As Θ ⊆ C∞(D), we
only need to consider the cases |xI |DδIf with δI ∈ Nm

0 × {0}n and |δI | ≤ 2 as well as
xj

∂
∂xj
f(x) ∈ C∞(D) for all j ∈ II.

As Re ξI < 0, we see immediately that xif(x) = xie
x>I ξI

∫
Rne

ix>IIzg(z) dz vanishes for
xi → ∞, for arbitrary i ∈ {1, . . . ,m}. The terms xID

δIf can be treated in a similar way.
For the second case, let j, k ∈ {m+1, . . . , d} and, as usual, denote by ∂j =

∂
∂xj

the partial

derivative with respect to the variable xj. Then we have by the Riemann-Lebesgue
Lemma for Fourier transforms∣∣∣∣xj∂k

∫

Rn

eix
>
IIzg(z) dz

∣∣∣∣ =
∣∣∣∣xj
∫

Rn

eix
>
IIzzkg(z) dz

∣∣∣∣

=

∣∣∣∣
∫

Rn

eix
>
IIz ∂j(zkg(z))︸ ︷︷ ︸

∈C∞
c (Rn)

dz

∣∣∣∣ −→ 0 as |xj| → ∞.

9Note that the integro-differential operator is defined on a larger space, in particular, on C2
b (D).
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Hence, we conclude that span(Θ) ⊆ C2,1
(1+|xI |),|xII |,∞(D) ⊆ C∞(D).

It remains to show that Ttf ∈ C2,1
(1+|xI |),|xII |,∞(D) for f ∈ Θ. We recall from the proof of

Theorem 3.8 that for f ∈ Θ we have

Ttf(x) =

∫
ex

>
II(e

tβ
iz)eφ(t,(v,iz))ex

>
I ψI(t,(ξI ,iz))g(z) dz,

and, of course, that Ttf ∈ C∞(D) as Tt is Feller. Since Re v < 0, Proposition 3.7 shows
that ReψI(t, (ξI , iz)) < 0, hence that xie

x>I ψI(t,(v,iz)) is bounded for i ∈ {1, . . . ,m}, and
finally that we can apply the dominated convergence theorem. This yields

lim
xi→∞

xiTtf(x) =

∫
eix

>
II(e

tβz)eφ(t,(ξI ,iz)) lim
xi→∞

xie
x>I ψI(t,(ξI ,iz))

︸ ︷︷ ︸
=0

g(z) dz = 0.

In a similar way, we obtain for i ∈ {1, . . . ,m}, l ∈ {1, . . . ,m}

lim
xi→∞

xi∂lTtf(x) = lim
xi→∞

∫
eix

>
II(e

tβz)eφ(t,(ξI ,iz))xi∂le
x>I ψI(t,(ξI ,iz))g(z) dz

= lim
xi→∞

∫
eix

>
II(e

tβz)eφ(t,(ξI ,iz))xie
x>I ψI(t,(ξI ,iz))ψl(t, (ξI , iz))g(z) dz.

Due to the boundedness of xie
x>I ψI(t,(ξI ,iz)), we can use the dominated convergence theorem

and, as xie
x>I ψI(t,(v,iz)) vanishes for xi → ∞, so does xi∂lTtf(x).

Next, we show that xjTtf(x) → 0 for |xj| → ∞ with j ∈ II. Therefore, note that
Ttf ∈ D(A) and ATtf = d

dt
Ttf , cf. Schilling and Partzsch [51, Lemma 7.10]. Using the

above representation of Ttf and the differentiation of parameter dependent integrals –
note that its requirements are met as φ and ψ are differentiable in t and jointly continuous
– we get

ATtf(x) =
d

dt
Ttf(x)

=

∫
d

dt
eφ(t,(ξI ,iz))ex

>ψ(t,(ξI ,iz))g(z) dz

=

∫ (
F
(
ψ(t, (ξI , iz))

)
+ x>R

(
ψ(t, (ξI , iz))

) )
eφ(t,(ξI ,iz))ex

>ψ(t,(ξI ,iz))︸ ︷︷ ︸
=Tte(ξI ,iz)(x)

g(z) dz

=

∫ (
F
(
ψ(t, (ξI , iz))

)
+ x>I RI

(
ψ(t, (ξI , iz))

)
︸ ︷︷ ︸

=:hxI ,ξI (z)∈C(Rn)

+ x>II(βe
βt
iz)
)
Tte(ξI ,iz)(x)g(z) dz

=

∫
hxI ,ξI (z)Tte(ξI ,iz)(x)g(z) dz +

∫
x>II(βe

βt
iz)Tte(ξI ,iz)(x)g(z) dz

=

∫
ex

>
II(e

tβ
iz) hxI ,ξI (z)e

φ(t,(ξI ,iz))ex
>
I ψI(t,(ξI ,iz))g(z)︸ ︷︷ ︸

=:h̃xI ,ξI (z)∈Cc(Rn)

dz + x>IIβ∇IITtf(x).

58



3.6 Path Properties

As Ttf ∈ D(A), we have ATtf ∈ C∞(D). The integral in the last line is a shifted Fourier
transform and, thus, by the Riemann-Lebesgue lemma it vanishes as |xj| → ∞. Since
the left-hand side as well as the integral term on the right-hand side is in C∞(D), we
deduce that x>IIβ∇IITtf(x) ∈ C∞(D) and, in particular, that xj∂jTtf(x) vanishes as
|xj| → ∞. Hence, we have shown that Ttf ∈ C2,1

(1+|xI |),|xII |,∞. Now Lemma 3.25 applies

and the assertion that C2,1
(1+|xI |),|xII |,∞(D) is a core holds.

Lemma 3.27. Let X be an affine process with generator (A,D(A)). Then C∞
c (D) is a

core of (A,D(A)).

Proof. By the definition of the operator core, cf. Definition 1.12, it is sufficient to show
that the smooth functions with compact support are dense in the core C2,1

(1+|xI |),|xII |,∞(D)

with respect to the graph norm ‖ · ‖∞ + ‖A · ‖∞.
Let us first remark that the generator has a representation as an integro-differential oper-
ator for all functions f ∈ C2,1

(1+|xI |),|xII |,∞(D), see Lemma 3.24. For f ∈ C2,1
(1+|xI |),|xII |,∞(D),

we obtain

‖Af‖∞ ≤
∑

|δ|=2

∥∥∥(1 + |xI |)Dδf
∥∥∥
∞
(‖a‖+

m∑

i=1

‖αi‖)

+
∑

|δ|=1

∥∥∥(1 + |xI |)Dδf
∥∥∥
∞
(‖b‖+

m∑

i=1

‖βi‖) +
d∑

j=m+1

∥∥∥xj
∂

∂xj
f
∥∥∥
∞
‖βj‖

+ ‖(1 + |xI |)f‖∞

+ ‖(1 + |xI |)f‖(2)
(∫

D\{0}

(
(|xI |+ |xII |2) ∧ 1

)
µ( dx)

+
m∑

i=1

∫

D\{0}

(
(|xI\{i}|+ |xII∪{i}|2) ∧ 1

)
µi( dx)

)

≤ cA

(∑

|δ|≤2

∥∥∥(1 + |xI |)Dδf
∥∥∥
∞
+

d∑

j=m+1

∥∥∥xj
∂

∂xj
f
∥∥∥
∞

)

= ‖f‖(2),(1),(1+|xI |),|xII |.

The estimate of the integral terms is based on an application of Taylor’s theorem as used
in the proof of Theorem 3.21. Applying the same argument as in Example 2.14, we deduce
that C∞

c (D) is dense in C2,1
(1+|xI |),|xII |,∞(D) with respect to the norm ‖ · ‖(2),(1),(1+|xI |),|xII |.

Therefore, the smooth functions with compact support, C∞
c (D), are a core.

3.6 Path Properties

In this section, we take a short look at path properties of affine processes. We will use
some of the results from Section 2.2. However, we obtain further results due to the ex-
plicit structure of the symbol and knowledge of the semigroup of the affine process. In
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Chapter 3 Affine Processes on Canonical State Space

particular, we attain an easily usable criterion based on the symbol for the conservative-
ness of affine processes.

Mayerhofer, Muhle-Karbe and Smirnov [39, Theorem 3.4] have given a full characteriza-
tion of conservativeness for affine processes.

Theorem 3.28. An affine process X is conservative if and only if its functional charac-
teristics holds that F (0) = 0 and that there exists no non-trivial Rm

− -valued local solution
g(t) of

∂tg(t) = RI(g(t), 0)

with g(0) = 0.

It is quite interesting to see that the real-valued coordinates have no influence on the
conservativeness condition. Note that on the real space an affine process is an Ornstein-
Uhlenbeck process which does not explode. Hence, it is not surprising that only the
Rm

+ components affect the conservativeness. However, it is not clear whether the half-
space coordinates can induce explosion to the real-space coordinates. This problem also
appears in the criterion for conservativeness based on the symbol, cf. Theorem 2.8.

Corollary 3.29. An affine process X with admissible parameters as in Theorem 3.17 is
conservative if c = 0, γi = 0 and

∫

D\{0}
|y|µi( dy) <∞

for all i = 1, . . . ,m.

Proof. We use the criterion of Theorem 2.8 which states that a stochastic process is
non-explosive if the corresponding symbol q(x, ξ) is locally bounded, satisfies q(x, 0) = 0
and

lim inf
k→∞

sup
|y−x|≤k

sup
|ξ|≤ 1

k

|q(y, ξ)| <∞

for all x ∈ D.
We start by considering the constant part of the affine symbol q(x, ξ) = F (iξ)+x>R(iξ),

lim inf
k→∞

sup
|y−x|≤k

sup
|ξ|≤ 1

k

| − F (iξ)|

≤ lim
k→∞

1

2
|a| 1
k2

+ |b|1
k
+ sup

|ξ|≤ 1
k

∣∣∣
∫

D\{0}

(
1− eiξ

>z + iξ>χ(z)
)
µ( dz)

∣∣∣.

Since the integral exists and is finite for all ξ, we get by dominated convergence that
limk→∞ sup|y−x|≤k sup|ξ|≤ 1

k
| − F (iξ)| = 0.
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3.6 Path Properties

We continue with the linear part of the affine symbol, namely x>R(iξ), which we split
up in a local and a non-local part,

lim inf
k→∞

sup
|y−x|≤k

sup
|ξ|≤ 1

k

|
m∑

i=1

yi
1

2
ξ>αiξ − i

m+n∑

i=1

yiβ
i>ξ|

≤ lim inf
k→∞

m∑

i=1

(|x|+ k)
1

2
|αi| 1

k2
+

m+n∑

i=1

(|x|+ k)|βi|1
k

≤ ‖β‖ <∞.

Hence, the local part always meets the requirement.
For the non-local part, fix i ∈ {1, . . . ,m}. If we use χi(z) = 1{|zII+|≤1}zII+ as truncation
function, we get10

1− eiξ
>z + iξ>χi(z)

= eiξ
>(z−zI−) − eiξ

>z + 1− eiξ
>(z−zI−) + iξ>χi(z)

= eiξ
>zII+

(
1− eiξ

>zI−
)

+ 1{|zII+|≤1}

(
1− eiξ

>zII+ + iξ>zII+

)
+ 1{|zII+|>1}

(
1− eiξ

>zII+
)
.

Taking the absolute value and applying Taylor’s theorem for each term yields
∣∣∣1− eiξ

>z + iξ>χi(z)
∣∣∣

≤
∣∣∣eiξ>zII+

∣∣∣
∣∣∣1− eiξ

>zI−

∣∣∣

+ 1{|zII+|≤1}

∣∣∣1− eiξ
>zII+ + iξ>zII+

∣∣∣+ 1{|zII+|>1}

∣∣∣1− eiξ
>zII+

∣∣∣
≤ c1|zI−| · |ξ|+ 1{|zII+|≤1}|zII+|2 · |ξ|2 + 1{|zII+|>1}|zII+| · |ξ|.

Substituting this into the criterion, we obtain for i ∈ {1, . . . ,m}

lim inf
k→∞

sup
|y−x|≤k

sup
|ξ|≤ 1

k

∣∣∣yi
∫

D\{0}

(
1− eiz

>ξ + iξ>χi(z)
)
µi( dz)

∣∣∣

≤ lim inf
k→∞

sup
|ξ|≤ 1

k

(|x|+ k)

∫

D\{0}

(
c1|zI−| · |ξ|

+ 1{|zII+|≤1}|zII+|2 · |ξ|2 + 1{|zII+|>1}|zII+| · |ξ|
)
µi( dz)

≤ lim inf
k→∞

c(|x|+ k)
1

k

∫

D\{0}

(
|zI−|+ |zII+|

)
µi( dz)

≤ C

∫

D\{0}
|z|µi( dz),

where the second term in the second line can be neglected because of the integrability
condition for µi.

10Again, for i ∈ {1, . . . ,m} we denote II+ = II ∪ {i} = {i,m + 1, . . . ,m + n} and I− = I\{i} =
{1, . . . , i− 1, i+ 1, . . . ,m}.
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Chapter 3 Affine Processes on Canonical State Space

This criterion is interesting because it is easier to check than the condition of Theorem
3.28. However, we should mention that the criterion based on the symbol is sufficient
but not necessary as the following example, see Mayerhofer et al. [39, Example 3.6] for
more details, shows.

Example 3.30. Let δk be the Dirac measure supported by the one-point set {k}. We
define the parameters of an affine process on the state space D = R+, i.e. m = 1 and
n = 0, by

a = 0, α1 = 0, b = 0, β1 =
∞∑

k=1

1

k2
, c = 0, γ1 = 0, µ = 0, µ1 =

∞∑

k=1

δk
k2
.

Then the corresponding affine process X does not satisfy the condition of Corollary 3.29
as

∫

R+\{0}
|y|µ1( dy) =

∞∑

k=1

|k|
k2

= ∞.

However, Mayerhofer et al. [39, Example 3.6] have shown that this process is conservative.

In Section 2.2 we have introduced the so-called Blumenthal-Getoor-Pruitt indices, see
Definition 2.4. Now we will use these indices to characterize sample path properties of
affine processes.

Example 3.31. Consider an Ornstein-Uhlenbeck process driven by a Lévy process L,
i.e. dX =

∑n
j=1Xjβ

j dt+ dL.

Then X is an affine process on Rn with symbol q(x, ξ) = −F (iξ)− i
∑n

j=1 ixjξ
>βj, where

−F (iξ) = ψL(ξ) with ψL as the characteristic exponent of the Levy process L. The
quantity H(x,R) is given by

H(x,R) := sup
‖y−x‖≤2R

sup
‖ε‖≤1

∣∣∣q
(
y,
ε

R

)∣∣∣

≤ sup
‖y−x‖≤2R

sup
‖ε‖≤1

∣∣∣
n∑

j=1

xj
ε>βj

R

∣∣∣+ sup
‖ε‖≤1

∣∣∣ψL
( ε
R

)∣∣∣

≤ (|x|+ 2R)‖β‖ 1
R

+ sup
‖ε‖≤1

∣∣∣ψL
( ε
R

)∣∣∣.

Hence we get for x 6= 0 the indices βx∞ and βx∞

βx∞ = 1 ∨ βL∞
βx∞ = 1 ∨ βL∞,

where βL∞ and βL∞ are the corresponding indices of the Lévy process L.
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3.6 Path Properties

Example 3.32. The symbol of an affine process is given by

q(x, ξ) = −F (iξ)−
m∑

i=1

xiRi(iξ)−
m+n∑

j=m+1

ixjβ
j>ξ.

Considering the terms separately, we get for the quantity H(x,R) that

H(x,R) ≤ HF (R) +
m∑

i=1

(|xi|+ 2R)HRi(R) + (|xII |+ 2R)
1

R
,

where HF and HRi are the quantities corresponding to the negative definite functions F
and Ri for i = 1, . . . ,m. Thus we get for the index of q(x, ξ) at infinity for x 6= 0

βx∞ = βF∞ ∨ ( sup
i∈{1,...,m}

βRi
∞ ) ∨ 1.

We can describe the asymptotic sample path behaviour of an affine process similar to
Example 2.6 since the same reasoning applies here.
Having the Blumenthal-Getoor-Pruitt indices, we can determine the strong variation of
a process. Therefore, let p ∈ (0,∞) and f : [0,∞) → Rd be a (non-random) càdlàg
function. Then the (strong) p-variation is defined as

Vp(f, [0, t]) = sup
k−1∑

l=0

|f(tl+1)− f(tl)|p,

where the supremum is taken over all finite partitions 0 = t0 < t1 < · · · < tk−1 < tk = t,
k ≥ 1, of the interval [0, t].
The following criterion for the p-variation of a Feller process is given by Böttcher, Schilling
and Wang [11, Proposition 5.21].

Proposition 3.33 (p-variation). Let (Xt)t≥0 be a Feller process with symbol q(x, ξ) and
denote by β∗ := supK β

K
∞, where the supremum ranges over all compact sets K ⊂ Rd.

Then

P
x(Vp(X, [0, t]) <∞) = 1 ∀p > β∗, x ∈ R

d, t > 0.

As we have seen in Example 3.32, the index is independent of x for x 6= 0. Hence, we
get for an affine process β∗ = βF∞ ∨ (supi∈{1,...,m} β

Ri
∞ ) ∨ 1, It also shows that for any

p > βF∞ ∨ (supi∈{1,...,m} β
Ri
∞ ) ∨ 1 the p-variation of the sample function (Xt)t≥0 is finite

almost surely.
The Besov regularity is concluded for affine processes in the same way as the p-variation,
cf. Böttcher et al. [11, Proposition 5.31].

We close this section with an improvement of the upper bound for an affine process. The
following result is an extension of Knopova and Schilling [34, Proposition 9] for affine
processes similar to Example 2.3.
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Chapter 3 Affine Processes on Canonical State Space

Proposition 3.34. Let X be an affine process with corresponding symbol q(x, ξ) and
admissible parameters as in Theorem 3.17 such that, in addition,

∫

D\{0}
|y|µ( dy) <∞

∫

D\{0}
|y|µi( dy) <∞

for all i = 1, . . . ,m and q(x, 0) = 0 holds. Then

lim
t→0

sup0≤s≤t |Xs − x|√
t| log(t)|1+ε

= 0 (Px − a.s.),

where ε > 0.

We see that the small time sample path behaviour does not depend on x, i.e. it is
independent of the current position of the process.
We skip the proof as its outline is analogous to the argument used in Example 2.3, only
a minor change in the estimation of the jump part of the symbol is necessary. These
calculations are analogous to the proof of Corollary 3.29.
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Chapter 4

Affine Processes on Positive

Semidefinite Matrices

In recent years, research in stochastic processes has laid more and more focus on positive
semidefinite matrices as a non-trivial state space. This development was triggered by the
need for and existence of new models, especially in mathematical finance, which applies
affine processes defined on positive semidefinite matrices. There are a lot of differences to
the canonical state space Rm

+ ×Rn, which we will point out in the following. If possible,
however, i.e. if the proofs are analogous to the canonical state space, we will refer to the
corresponding results in Chapter 3.
In Section 4.1, we compile relevant basic facts concerning the space of positive semidefi-
nite matrices. Section 4.2 provides an introduction to affine processes on this state space
including some properties of affine processes, in particular, the Feller property. Using
techniques from harmonic analysis, we examine in Section 4.3 the characteristic functions
of an affine process and characterize the admissibility of the parameters. Section 4.4 pro-
vides the representation of the generator of an affine process as a pseudo-differential
operator. Furthermore, we determine the symbol of an affine process and derive a fur-
ther condition for the parameters. The last section outlines some applications based on
the symbol of an affine process.

4.1 Some Facts on S+
d

The space of positive semidefinite matrices differs in many aspects from the vector space
Rd and from the half-space Rd

+. Therefore, we give a brief introduction to this space
and show some properties. Further, we set up notation and terminology. Observe that
it is possible to regard the space of positive semidefinite matrices as an example of a
symmetric cone. However, we will not develop this point here. At the end of the section,
we indicate this connection and give references.

Definition 4.1. The space of d × d dimensional positive semidefinite matrices is given
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Chapter 4 Affine Processes on Positive Semidefinite Matrices

by

S+
d =

{
x ∈ R

d×d; x symmetric positive semidefinite
}

=
{
x ∈ R

d×d; x = x>, ∀y ∈ R
d : y>xy ≥ 0

}
.

Obviously, S+
d is a subspace of the space of symmetric d × d dimensional matrices,

Sd =
{
x ∈ Rd×d; x symmetric

}
.

The standard basis in Sd is given by {cij, i ≤ j} with cijkl = δikδjl + δjkδil(1− δij), where
δij denotes the Kronecker symbol. Furthermore, there exists a basis consisting of positive
semidefinite matrices {eij, i ≤ j}, where

eij =

{
cii if i = i

cii + cij + cjj if i 6= j.

Example 4.2. Let d = 3. Then basis matrices are given by

c11 =




1 0 0

0 0 0

0 0 0


 , c12 =




0 1 0

1 0 0

0 0 0


 , c13 =




0 0 1

0 0 0

1 0 0




and by

e11 =




1 0 0

0 0 0

0 0 0


 , e12 =




1 1 0

1 1 0

0 0 0


 , e13 =




1 0 1

0 0 0

1 0 1


 .

On Sd, we define a scalar product,

〈x, y〉 := Tr(xy) =
d∑

i=1

d∑

k=1

xikyki.

Note that Sd is isomorphic, but not isometric, to the Euclidean space Rd(d+1)/2. This can
be realized by the mapping

vec : Sd → R
d(d+1)/2;

x = (xik)i,k=1,...,d 7→ (x11,
√
2x21, . . . ,

√
2xd1, x22,

√
2x32, . . . ,

√
2xd(d−1), xdd)

>.

With this mapping, we have

〈x, y〉Sd
= Tr(xy) = vec(x)>vec(y).
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Figure 4.1: Isomorphic representation of S+
2 in R3

For example, the isomorphic representation of S+
2 in R3 is an open cone. Figure 4.1

shows that even in this simple example the boundary of the state space is curved and
non-trivial, getting more complex in higher dimensions. The boundary of S+

d is given
by ∂S+

d = S+
d \S++

d , where S++
d are the symmetric strictly positive definite matrices. A

partial and strict order relation is induced on Sd by the two cones, S+
d and S++

d ,

x � y if y − x ∈ S+
d and x ≺ y if y − x ∈ S++

d .

Without further proof, there are more representations of S+
d ,

S+
d =

{
x ∈ Sd; ∀y ∈ S+

d : 〈x, y〉 ≥ 0
}

=
{
x2; x ∈ Sd

}
.

The first equality shows that S+
d is self-dual. The second representation is valuable for

further generalizations of the state space of an affine process.1 The cone S+
d can be

defined in the same way as general symmetric cones. In a Euclidean vector space V
with an inner product 〈·, ·〉 and a multiplication ◦, i.e. V is an algebra over a field, these
symmetric cones K are characterized by K = {x ◦x; x ∈ V }. Hence, S+

d is an accessible
example of a more general class of state spaces. Especially, most results carry over to
the general case with only few modifications.

1Cuchiero, Keller-Ressel, Mayerhofer and Teichmann [16] studied affine processes on symmetric cones.
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Chapter 4 Affine Processes on Positive Semidefinite Matrices

We use similar function spaces as for the canonical state space and, therefore, adopt
the usual notation. Observe that the boundary ∂S+

d = S+
d \S++

d belongs to S+
d . Hence,

we assume that a function in Ck(S+
d ) as well as its derivatives take finite values on the

boundary. Moreover, we only require one-sided continuity and one-sided differentiability
from the inside at the boundary.2 If not mentioned otherwise, the function spaces are
equipped with the supremum norm, ‖u‖∞ := sup

x∈S+
d

|u(x)|. Furthermore, the Fourier

transform for an integrable function u ∈ L1(Sd, dx) is defined as

F(u)(ξ) = û(ξ) = (2π)−(d+1)d/2

∫

Sd

e−〈x,iξ〉u(x) dx.

Observe that the isomorphic representation of Sd as a vector space R(d+1)d/2 allows us to
reduce the above definition to a Fourier transform on a vector space

F(u)(ξ) = û(ξ) = (2π)−(d+1)d/2

∫

R(d+1)d/2

e−ix>vec(ξ)u(vec−1(x)) dx.

Therefore, we can take two different viewpoints. We can reduce the space S+
d to a vector

space and derive many results from the known case or we can directly work within the
space of symmetric positive semidefinite matrices and use its characteristics.
The next example, a quadratic form A : Sd 7→ Sd, reveals these different approaches. By
the isomorphism we can write the quadratic form as A(x) = vec(x)>Avec(x), where A ∈
Rd(d+1)/2×d(d+1)/2 is a symmetric matrix. This yields A(x) =

∑d
i,j,k,l=1 xijAijklxkl, where

A ∈ Rd×d×d×d, and thus, by abuse of notation, A(x) =
∑d

i,j=1 xij(
∑d

k,l=1Aijklxkl) =

〈x,Ax〉. The last expression again is similar to the well-known Rd case where we have
A(x) = x>Ax.

4.2 Introduction to Affine Processes on S+
d

The definition of an affine process on S+
d is very similar to the canonical state space.

The Fourier-Laplace transform of the transition probability has to have exponential-
affine dependence on the initial state. We look at some examples which will show the
motivation of an affine process on positive semidefinite matrices. After that, we present
several basic properties and observe that they are obtained by minor modifications of
the methods from Chapter 3. In particular, the Feller property is derived by the same
argument.

Consider a time-homogeneous Markov process X = (Xt)t≥0 with state space S+
d , then

the semigroup (Tt)t≥0 is given by

Ttf(x) =

∫

S+
d

f(y)pt(x, dy), x ∈ S+
d

for bounded Borel measurable functions on S+
d , f ∈ Bb(S

+
d ).

2This definition is similar to that of Chapter 3, see page 55.
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d

Definition 4.3 (Affine process). A Markov process X on S+
d and its semigroup (Tt)t≥0

is called affine if it is stochastically continuous, i.e. lims→t ps(x, ·) = pt(x, ·) weakly on S+
d

for every t ≥ 0 and x ∈ S+
d , and if its Fourier-Laplace transform has exponential-affine

dependence on the initial spate, i.e.

Tte
〈·,ξ〉(x) =

∫

S+
d

e〈y,ξ〉pt(x, dy) = eφ(t,ξ)+〈ψ(t,ξ),x〉 (4.1)

for all t ≥ 0 and x ∈ S+
d and ξ ∈ U := {−S+

d + iSd}, for some functions φ : R+×U → C−
and ψ : R+ × U → U.

In the literature, the definition of an affine process on a symmetric cone, especially,
on positive semidefinite matrices, is sometimes based on the Laplace transform, i.e.
ξ ∈ U = S+

d and Tte
−〈·,ξ〉(x) = e−φ(t,ξ)−〈ψ(t,ξ),x〉. Although an affine process is fully

characterized the Laplace transform we choose the more general approach as we want to
consider pseudo-differential operators.
Moreover, we include the stochastic continuity in the definition as it is an essential
assumption for our further study of the generator of an affine process.

Example 4.4. In the following examples,
√
x denotes the symmetric positive semidefi-

nite square root of x ∈ S+
d .

i) The Wishart process was first defined by Bru [13]. A stochastic process S = (St)t≥0

is called a Wishart process if it is governed by the stochastic differential equation3

dSt =
√
St dBt + dB>

t

√
St + δI dt,

where S0 = s ∈ S+
d is the initial value, δ > d−1 and (Bt)t≥0 is a d×d matrix-valued

Brownian motion. The Fourier-Laplace transform is given by

E
s
(
e〈St,ξ〉

)
=
(
det(I + 2tξ)

)−δ/2
exp

(
− 〈s, (I + 2tξ)−1ξ〉

)
.

Hence, we have

φ(t, ξ) =
δ

2
log
(
det(I + 2tξ)

)
, ψ(t, ξ) = (I + 2tξ)−1ξ.

Comparing this with Example 3.2.ii, we see that the Wishart process is a matrix-
valued generalization of the squared Bessel process.

ii) Another example for an affine diffusion process is the non-central Wishart process
on S+

d . This process is determined by the stochastic differential equation

dXt =
√
Xt dBtQ+Q> dB>

t

√
Xt + (2pQ>Q+ βXt +Xtβ

>) dt,

3For δ > d− 1, it is defined as a weak solution and for δ ≥ d+ 1 as a strong solution.
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where X0 = x ∈ S+
d is the initial value, Q ∈ Rd×d satisfies Q>Q = α, β ∈ Rd×d and

B is a d× d matrix-valued Brownian motion, see for instance Mayerhofer [38]. The
affine property is satisfied by the functions

φ(t, ξ) = p log
(
det(I + ξσβt (α))

)
, ψ(t, ξ) = eβ

>t(ξ−1 + σβt (α))
−1eβt,

with σβt (x) := 2
∫ t
0
eβsxeβ

>s ds for all t ≥ 0 and x ∈ S+
d .

Setting β = 0, δ = p/2 and Q = I, we see that this is an extension of the first
example.

iii) A multivariate stochastic volatility model with an application to credit risk, due
to Gouriéroux and Sufana [24], models the logarithm of a price process S with a
stochastic volatility matrix Σ. The processes are given by the stochastic differential
system

d logSt =
(
µ+




Tr(D1Σt)
...

Tr(DdΣt)



)
dt+

√
Σt dB

S
t ,

dΣt = (ΩΩ> +MΣt + ΣtM
>) dt+

√
Σt dB

Σ
t Q+Q>( dBΣ

t )
>
√

Σt,

where BS
t and BΣ

t are a d-dimensional vector and a d×d matrix, respectively, whose
elements are independent one-dimensional Brownian motions, µ ∈ Rd, D1, . . . , Dd,
Ω,M,Q ∈ Rd×d with Ω invertible.
Then the joint process (log St,Σt) is an affine process4, see Gouriéroux and Sufana
[24, Section 2.2]. Similar to the Heston model 3.2.v the functions ψ and φ cannot
be explicitly given.5

We continue with several properties of the functions φ and ψ.

Proposition 4.5. Let X be an affine process on S+
d . Then the following statements hold:

i) The functions φ and ψ satisfy the semi-flow property

φ(t+ s, ξ) = φ(t, ξ) + φ(s, ψ(t, ξ)), (4.2)

ψ(t+ s, ξ) = ψ(s, ψ(t, ξ)), (4.3)

for all t ∈ R+ and ξ ∈ U.

ii) For all ξ, ζ ∈ U with Re ξ � Re ζ and for all t ≥ 0, the order relations

Reφ(t, ξ) ≤ φ(t,Re ζ) and Reψ(t, ξ) � ψ(t,Re ζ)

hold true.

4It is an affine process on the product space Rd × S+

d .
5However, we can numerically calculate ψ and φ by recursively solving the corresponding generalized

Riccati equations.
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4.3 Admissible Parameters

iii) The functions φ and ψ are jointly continuous in R+ × U. Furthermore, ξ 7→ φ(t, ξ)
and ξ 7→ ψ(t, ξ) are analytic on S++

d .

iv) Let ψ : R+ × U → U be arbitrary mapping satisfying ψ(0, ξ) = ξ with the above
properties (regarding ψ). Then ψ(t, ξ) ∈ U◦ for all (t, ξ) ∈ R+ × U◦.

The statements are analogous to the canonical state space, cf. Proposition 3.5. Hence,
they can be proved in a similar way. We refer to Proposition 3.5 for a sketch of the main
ideas and to Cuchiero et al. [15, Proposition 3.2 and 3.3] for a detailed proof. Observe
that the last assertion is the key result showing the Feller property of an affine process
on positive semidefinite matrices.

Theorem 4.6 (Feller property). Let X be an affine process with state space S+
d . Then

X is a Feller process or, equivalently, the affine semigroup is a Feller semigroup.

The proof is very similar to that of the canonical state space. For this reason, we only
give a sketch of the proof.
Based on a Stone-Weierstrass theorem, it suffices to consider the set of exponential
functions, e〈ξ,x〉 with ξ ∈ −S++

d × iSd, since their linear span is dense in C∞(S+
d ). By

Proposition 4.5.iv, we have 〈ψ(t, ξ), x〉 < 0 for ξ ∈ −S++
d × iSd and all x 6= 0. Hence,

Tte
〈·,ξ〉(x) = eφ(t,ξ)+〈ψ(t,ξ),x〉 vanishes for x → ∞. Proposition 4.5.iii now implies the

continuity of Tte
〈·,ξ〉(x). By the density of the linear span, we conclude that TtC∞(S+

d ) ⊆
C∞(S+

d ). For a detailed proof, we refer to Cuchiero et al. [15, Proposition 3.4] or to
Cuchiero, Keller-Ressel, Mayerhofer and Teichmann [16, Proposition 3.3], which also
covers the case of symmetric cones.

Similar to Chapter 3, cf. Definition 3.13, we call an affine process regular, if the deriva-
tives

F (ξ) :=
∂

∂t
φ(t, ξ)|t=0+ and R(ξ) :=

∂

∂t
ψ(t, ξ)|t=0+ (4.4)

exist for all ξ ∈ U and are continuous at ξ = 0. The functions F and R are referred to
as functional characteristics of an affine process.

In contrast to the canonical state space, we have already included in Definition 4.3
the assumption that an affine process X is stochastically continuous since we focus on
regular affine processes. As shown in Cuchiero and Teichmann [17] as well as in Keller-
Ressel, Schachermayer and Teichmann [33], an affine process is regular if and only if it
is stochastically continuous.

4.3 Admissible Parameters

The isomorphic representation of S+
d in Rd(d+1)/2 suggests that the parameters describing

an affine process on positive semidefinite matrices are subject to the same constraints
as in the real vector-valued case. In this section, we will show that many conditions
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Chapter 4 Affine Processes on Positive Semidefinite Matrices

are indeed similar to those of the canonical state space. However, there is one major
difference. On S+

d the linear diffusion coefficient has to be smaller than the constant
drift term. This constraint follows from the nonlinear curved boundary. Furthermore,
the dimension d also affects this inequality.
The next theorem states all conditions for the admissibility of the parameters. The proof
is divided in several parts. The main idea is to use methods from harmonic analysis to
examine the functional characteristics. Note that the linear diffusion condition is proven
in the next section, see Proposition 4.17, since it is based on the infinitesimal generator
of the affine process.

Theorem 4.7. For ξ ∈ −S+
d + iSd = U, the functions ξ 7→ −F (ξ) and ξ 7→ −〈R(ξ), x〉

are continuous negative definite for all x ∈ S+
d and may be written as

F (ξ) = −〈b, ξ〉 − c+

∫

S+
d \{0}

(
e〈ξ,y〉 − 1

)
m( dy)

R(ξ) = −2ξαξ − B>(ξ)− γ +

∫

S+
d \{0}

(
e〈ξ,y〉 − 1− 〈χ(y), ξ〉

)
µ( dy),

where α ∈ S+
d , b ∈ S+

d , B>
ij (ξ) = 〈βij, ξ〉 with βij ∈ Sd, c ∈ R+, γ ∈ S+

d , χ : S+
d → S+

d is
a truncation function and m,µ are Lévy measures on S+

d . Additionally, the parameters
satisfy the following conditions:

(d− 1)α � b,

B : Sd → Sd with B(x) =
d∑

i,j=1

βijxij, where

βij = βji ∈ Sd,

supp(m) ⊆ S+
d and

∫

S+
d \{0}

(
‖x‖ ∧ 1

)
m( dx) <∞,

µ = (µij)i,j=1,...,d such that supp(µij) ⊆ S+
d ,

µ(E) ∈ S+
d for all E ∈ B(S+

d \{0}),

M(x, dy) :=
〈x, µ( dy)〉
‖y‖2 ∧ 1

satisfies

∫

S+
d \{0}

〈χ(y), ξ〉M(x, dy) <∞ for all x ∈ S+
d , ξ ∈ U s.t. 〈x, ξ〉 = 0,

〈B(x), ξ〉+
∫

S+
d \{0}

〈χ(y), ξ〉M(x, dy) ≥ 0 for all x ∈ S+
d , ξ ∈ U s.t. 〈x, ξ〉 = 0.

The parameters are called admissible if these conditions are satisfied.

Outline of the proof. We first show that −F and −〈R, x〉 are continuous negative definite
functions, see Proposition 4.8. Applying Berg, Christensen and Ressel [8, Theorem 3.19]
gives us the Lévy-Khintchine representation of F and the corresponding conditions, cf.
Corollary 4.10. To get the admissibility conditions for the parameters of R, we start with
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4.3 Admissible Parameters

a Lévy-Khintchine representation of 〈R, x〉 but have to consider the linear shift due to
x. In Proposition 4.13, a representation of R independent of the choice of x is shown.
For the condition on the linear diffusion coefficient we refer to Proposition 4.17.

Proposition 4.8. The mappings ξ 7→ −F (ξ) and ξ 7→ −〈R(ξ), x〉 are continuous nega-
tive definite for all x ∈ S+

d .

Proof. It is known that the Fourier-Laplace transform of a measure is a positive definite
function, hence

ξ 7→ Tte
〈·,ξ〉(x) =

∫

S+
d

e〈y,ξ〉pt(x, dy) = eφ(t,ξ)+〈ψ(t,ξ),x〉

is positive definite for all x ∈ S+
d . Setting

λt(x, ξ) := e−〈x,ξ〉
∫

S+
d

e〈y,ξ〉pt(x, dy) = e−〈x,ξ〉Tte
〈·,ξ〉(x)

for x ∈ S+
d and ξ ∈ U yields that ξ 7→ λt(x, ξ) is positive definite for all x ∈ S+

d . From
Lemma 1.3 we deduce that ξ 7→ 1− λt(x, ξ) is negative definite and thus

p(x, ξ) = lim
t→0

1− λt(x, ξ)

t
= lim

t→0
e−〈x,ξ〉 e

〈x,ξ〉 − Tte
〈·,ξ〉(x)

t

= −∂+t e−〈x,ξ〉Tte
〈x,ξ〉
∣∣∣
t=0

= −∂+t
(
eφ(t,ξ)+〈ψ(t,ξ)−ξ,x〉

) ∣∣∣
t=0

= −∂+t
(
φ(t, ξ) + 〈ψ(t, ξ)− ξ, x〉

) ∣∣∣
t=0

= −F (ξ)− 〈R(ξ), x〉

is negative definite for all x ∈ S+
d . Since an affine process is regular, F and R are

continuous in 0.
Setting x = 0 immediately implies that ξ 7→ −F (ξ) is a continuous negative definite
function. Applying the similar argument as in Section 3.3, i.e. inserting x̃r = r · x in the
above equation for some sufficiently large r ≥ 0, shows that ξ 7→ −〈R(ξ), x〉 is also a
continuous negative definite function for every x ∈ S+

d .

Remark 4.9. Using the order relation induced on Sd and the self-duality of S+
d , it follows

directly that the continuous negative definiteness of ξ 7→ −〈R(ξ), x〉 for all x ∈ S+
d implies

the negative definiteness of ξ 7→ −R(ξ) with respect to the order relation �, i.e. R is
hermitian and

n∑

j,k=1

cj c̄kR(ξ̄j + ξk) � 0

for all n ∈ N, ξ1, . . . , ξn ∈ U and c1, . . . , cn ∈ C with
∑n

j=1 cj = 0.

As the function −F is continuous negative definite, the next result quite naturally states
the Lévy-Khintchine representation for the semigroup S+

d .
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Chapter 4 Affine Processes on Positive Semidefinite Matrices

Corollary 4.10. The function −F : U → C is given by a Lévy-Khintchine formula

−F (ξ) = c+ 〈b, ξ〉+
∫

S+
d \{0}

(1− e〈y,ξ〉)m( dy) (4.5)

where c ≥ 0, b ∈ S+
d , supp(m) ⊆ S+

d and
∫
S+
d \{0}

(
‖x‖ ∧ 1

)
m( dx) <∞.

Proof. This follows from Berg et al. [8, Theorem 3.20].

We can deduce almost the same result for −〈R, x〉 for all x ∈ S+
d . Due to a shift in

the Fourier-Laplace transform, the state space of the Lévy-Khintchine representation,
if directly applied, is Sd. Hence, in contrast to −F , a quadratic term and a truncation
function appear in the Lévy-Khintchine formula. However, the parameters have to satisfy
several admissibility conditions as the next proposition shows.

Proposition 4.11. For all x ∈ S+
d the mapping ξ 7→ −〈R(ξ), x〉 is given by a Lévy-

Khintchine representation

−〈R(ξ), x〉 = γ(x)+
1

2
A(x)(ξ)+〈B(x), ξ〉+

∫

S+
d \{0}

(1−e〈y,ξ〉+〈χ(y), ξ〉)M(x, dy) (4.6)

where γ(x) is non-negative, A(x) is a symmetric positive form, B(x) ∈ Sd and M(x, ·)
is a measure on S+

d such that

〈ξ, A(x)(ξ)〉 = 0 for all ξ ∈ Sd with ξx = xξ = 0,∫

S+
d \{0}

〈χ(y), ξ〉M(x, dy) <∞,

〈B(x), ξ〉+
∫

S+
d \{0}

〈χ(y), ξ〉M(x, dy) ≥ 0 for all x, ξ ∈ S+
d with 〈ξ, x〉 = 0.

Proof. We restrict the function R to the domain ReU = −S+
d for the proof since the

representation (4.6) for a real variable ξ ∈ −S+
d extends to −S+

d × iSd = U.
From the proof of Proposition 4.8,

−〈R(ξ), x〉 = F (ξ) + p(x, ξ) = F (ξ) + lim
t→0

1− Ex(e〈Xt−x,ξ〉)

t
,

follows that the support of the integral is shifted6. Hence, −〈R(·), x〉 behaves like a
negative definite function with domain Sd. Applying Berg et al. [8, Theorem 3.19] to the
mapping ξ 7→ −〈R(ξ), x〉, we get representation (4.6) such that the parameters satisfy

• A(x)(·) is a symmetric positive semidefinite form,

• B(x) ∈ Sd,

6Observe that by substitution we have E(u(Xt − x)) =
∫
S

+

d

u(y − x)PXt( dy) =
∫
S

+

d
−x
u(ỹ)PXt( dỹ).

Since S+

d − x ⊆ Sd and S+

d − x * S+

d for x ∈ S+

d , the shift creates an integral over Sd.
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4.3 Admissible Parameters

• γ(x) ≥ 0,

• M(x) is a measure on Sd such that
∫
Sd\{0}〈χ(y), ξ〉M(x, dy) <∞.

Next, we show the constraints of the parameters. Recall that −〈R(·), x〉 is a negative
definite function on S+

d −Rx ⊆ Sd with a Lévy-Khintchine representation. The main idea
now is to apply a suitable shift and examine the composed function which is negative
definite on S+

d . Thus we obtain new restrictions which we retransfer to the original
function −〈R(·), x〉. This approach is based on the concept of Schoenberg triples, cf. Berg
et al. [8, Section 5.1]. Let T : Sd → Sd be a linear mapping such that T (S+

d −Rx) ⊆ S+
d .

Observe that (S+
d −Rx, S+

d , T ) is a Schoenberg triplet, cf. Berg et al. [8, Definition 5.1.4]7.
Therefore, a result from Berg et al. [8, Corollary 5.1.8] ensures that −〈R ◦ T>(·), x〉 is a
negative definite function on S+

d with representation

−〈x,R ◦ T>(η)〉 = γ(x) +
1

2
A(x)(T>(η)) + 〈B(x), T>(η)〉

+

∫

S+
d \{0}

〈χ(y), T>(η)〉M(x, dy) +

∫

S+
d \{0}

(1− e〈T
>(η),y〉)M(x, dy).

Since this is a negative definite function on S+
d , the parameters have to satisfy the

conditions from the Lévy-Khintchine representation for semigroups with an identical
involution, see Berg et al. [8, Theorem 4.3.20]8. In other words, the quadratic term
vanishes, the drift is positive and M(x) is a measure on S+

d , i.e. for all x ∈ S+
d we have

〈T>η, A(x)T>η〉 = 0, ∀η ∈ Sd,

〈B(x), T>η〉+
∫

S+
d \{0}

〈χ(y), T>η〉M(x, dy) ≥ 0, ∀η ∈ S+
d ,

∫

S+
d \{0}

(‖Ty‖ ∧ 1)M(x, dy) <∞.

For x ∈ ∂S+
d , there exists an ξ ∈ Sd with ξx = xξ = 0. The function Tξ : Sd → Sd, η 7→

ξηξ defines a mapping from S+
d −Rx onto S+

d . Especially, for all η ∈ Sd or η ∈ S+
d exists

a ξ ∈ Sd or ξ ∈ S+
d , respectively, such that Tξη = ξ, see Cuchiero et al. [15, Lemma 4.3].

Hence, the above equations with such a function Tξ are equivalent to

〈ξ, A(x)ξ〉 = 0, ∀ξ ∈ Sd with ξx = xξ = 0,

〈B(x), ξ〉+
∫

S+
d \{0}

〈χ(y), ξ〉M(x, dy) ≥ 0, ∀ξ ∈ S+
d with ξx = xξ = 0,

∫

S+
d \{0}

〈χ(y), ξ〉M(x, dy) <∞, ∀ξ ∈ S+
d with ξx = xξ = 0.

7Our triplet meets the requirements of the definition since T (0) = 0, T (ξ) = T (ξ), T (S+

d −Rx) = S+

d

and T (e〈y,·〉) is positive definite for all y ∈ S+

d −Rx.
8These conditions are similar to that of a Bernstein function, i.e. a negative definite function on R+.
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The linearity of 〈R, x〉 in x implies the linearity in x of the corresponding parameters.
This allows us to rewrite the parameters independently of x

γ(x) =
d∑

i,j=1

xijγ
ij with γij = γji = (1 + δij)

γ(cij)

2
∈ R,

A(x) =
d∑

i,j=1

xija
ij with aij = aji = (1 + δij)

A(cij)

2
: Sd → Sd linear,

B(x) =
d∑

i,j=1

xijβ
ij with βij = βji = (1 + δij)

B(cij)

2
∈ Sd,

∫

E

(‖y‖2 ∧ 1)M(x, dy) = 〈x, µ(E)〉 =
d∑

i,j=1

xijµij(E) for every E ∈ B(S+
d \{0}),

E 7→ µij(E) = µji(E) = (1 + δij)

∫
E
(‖y‖2 ∧ 1)M(cij, dy)

2
,

where µij are finite measures on S+
d .

Since the killing term has to be non-negative for all x ∈ S+
d , the self-duality of S+

d implies

(γij)i,j=1...,d ∈ S+
d . Therefore, we write γ(x) =

∑d
i,j=1 xijγ

ij = 〈γ, x〉 in the sequel.

Remark 4.12. However, we cannot conclude that the linear drift B has to map into
S+
d . Due to the shift, the linear jump term also effects the drift. This effect is similar to

the canonical state space Rm
+ × Rn, where for i ∈ {1, . . . ,m} the ith coordinate of the

linear drift vector βi is an element of R and does not have to be non-negative.

Writing B as the sum of matrices allows us to reformulate the linear drift term. In fact,
for x ∈ S+

d and ξ ∈ U we get

〈B(x), ξ〉 = 〈
d∑

i,j=1

xijβ
ij, ξ〉 =

d∑

k,l=1

d∑

i,j=1

xijβ
ij
klξkl

= 〈x,
d∑

k,l=1

βklξkl〉 = 〈x,B>(ξ)〉.

The next proposition allows us to write the linear diffusion coefficient in a compressed
form.

Proposition 4.13. Let A(x) : Sd → Sd be the linear diffusion coefficient of an affine
process as above. Then there exists α ∈ S+

d such that for all ξ ∈ U and x ∈ S+
d

〈ξ, A(x)ξ〉 = 4〈ξαξ, x〉.

This result is analogous to the state space D = Rm
+ , where only one entry appears in each

linear diffusion matrix, cf. Remark 3.19. The proof is based on Hilbert space methods
and can be found in Cuchiero et al. [15, p. 24].
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4.4 Representation as Pseudo-Differential Operator

Using the above result, we are able to give a representation of F and R which is inde-
pendent of x,

−F (ξ) = c+ 〈b, ξ〉+
∫

S+
d \{0}

(1− e〈y,ξ〉)m( dy), (4.7)

−R(ξ) = 2ξαξ +B>(ξ) + γ +

∫

S+
d \{0}

(
1− e〈ξ,y〉 + 〈χ(y), ξ〉

)
µ( dy). (4.8)

Furthermore, all admissibility conditions for the parameters except the linear diffusion
condition have been shown.

4.4 Representation as Pseudo-Differential Operator

Most authors deal with infinitesimal generators on Rd since stochastic processes are
mainly considered on this state space. Obviously, many results are valid on more general
spaces. For a treatment of our case, i.e. a locally compact Hausdorff space with a
countable base, which includes the cone S+

d , we refer to Rogers and Williams [45, Section
III.2].

In analysis, pseudo-differential operators have been extended from Rd to more general
state spaces like Lie groups. In stochastic analysis, however, the focus for pseudo-
differential operators has remained on Rd for a long time. Only in recent years some
approaches to pseudo-differential operators on Lie groups have been done in probability,
see for instance Applebaum [3]. The next definitions are a step in a slightly different
direction to cone states spaces. Since we choose S+

d as a state space, many results can
be derived from Rn by using the isomorphic embedding of S+

d in R(d+1)d/2. Furthermore,
we can easily access the characteristics of cone state spaces and use this approach as
a basis for further extensions of the state space. Therefore, we recall some definitions
from Section 1.4 in the light of the state space S+

d . Then we continue with the main
theorem of this section, the representation of the generator of an affine process as a
pseudo-differential operator and the determination of the symbol. Our proof also pro-
vides the representation as an integro-differential operator. Based on this, we finish the
proof of the admissibility of the parameters, see Theorem 4.7, by verifying the linear
diffusion condition.

Definition 4.14 (Generator). Let (Tt)t≥0 be a Feller semigroup on C∞(S+
d ). Then

Au := lim
t→u

Ttu− u

t

(
the limit is taken in (C∞(S+

d ), ‖ · ‖∞)
)
, (4.9)

D(A) :=

{
u ∈ C∞(S+

d ); ∃g ∈ C∞(S+
d ) : lim

t→0

∥∥∥Ttu− u

t
− g
∥∥∥
∞

= 0

}
(4.10)

is the (infinitesimal) generator of the semigroup (Tt)t≥0.
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Definition 4.15 (Pseudo-differential operator, symbol). Let q : S+
d × iSd → C be a

function which is, for every x ∈ S+
d , continuous and negative definite. Then

−q(x,D)u(x) = −(2π)−
(d+1)d/2

2

∫

Sd

e〈x,iξ〉q(x, iξ)û(ξ) dξ, u ∈ C∞
c (S+

d ) (4.11)

is a pseudo-differential operator (with negative definite symbol) and q(x, ξ) is called the
symbol of the operator.

The next theorem ensures the existence of the pseudo-differential operator and the symbol
of an affine process. Furthermore, we get an explicit representation of the generator.

Theorem 4.16. The infinitesimal generator of an affine process restricted to the test
functions C∞

c (S+
d ) has a representation as a pseudo-differential operator which has the

symbol q(x, ξ) = −F (ξ)− 〈x,R(ξ)〉, for (x, ξ) ∈ S+
d × iSd.

Proof. Using a similar approach as in Section 3.5, we explicitly calculate the pointwise
generator Ap. If it vanishes as x tends to infinity, we deduce that the pointwise generator
coincides with the infinitesimal generator, cf. Sato [11, Theorem 1.33]. The calculations
immediately give us a representation as a pseudo-differential operator and, hence, the
symbol.
We first determine the pointwise generator for a function f ∈ C∞

c (S+
d ),

Apf(x) = lim
t→0

Ttf(x)− f(x)

t

= lim
t→0

(2π)−
(d+1)d/2

2

∫

Sd

Tte
〈iy,·〉(x)− e〈iy,x〉

t
f̂(y) dy

= (2π)−
(d+1)d/2

2

∫

Sd

lim
t→0

Tte
〈iy,·〉(x)− e〈iy,x〉

t
f̂(y) dy

= (2π)−
(d+1)d/2

2

∫

Sd

e〈iy,x〉(F (iy) + 〈R(iy), x〉)f̂(y) dy,

where we have to verify that the interchange of the limit and the integral is allowed
using dominated convergence. Therefore, we start with the affine property (4.1) and
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apply Taylor’s theorem to obtain

∣∣∣∣∣
Tte

〈iy,·〉(x)− e〈iy,x〉

t

∣∣∣∣∣

=

∣∣∣∣∣
eφ(t,iy)+〈x,ψ(t,iy)〉 − e〈iy,x〉

t

∣∣∣∣∣

=

∣∣∣∣∣
1

t

(
eφ(0,iy)+〈x,ψ(0,iy)〉 + t∂t

∣∣∣
t=0

eφ(t,iy)+〈x,ψ(t,iy)〉 +O(t)− e〈iy,x〉
)∣∣∣∣∣

=

∣∣∣∣e〈iy,x〉∂t
∣∣∣
t=0

eφ(t,iy)+〈x,ψ(t,iy)〉 + tO(t)

∣∣∣∣

≤
∣∣∣e〈iy,x〉

(
F (iy) + 〈x,R(iy)〉

)∣∣∣+ c

≤ cF (1 + ‖y2‖) + ‖x‖cR(1 + ‖y2‖) + c

≤ cF,R(1 + ‖x‖)(1 + ‖y2‖),

where we used the growth property of continuous negative definite functions, cf. Lemma
1.5.
Obviously, f ∈ C∞

c (S+
d ) is sufficiently smooth such that Tte〈iy,·〉(x)−e〈iy,x〉

t
f̂(y) admits an

integrable dominating function.
Based on this result, we next show that Apf(x) = −q(x,D)f(x) vanishes at infinity
for f ∈ C∞

c (S+
d ). Therefore, we rewrite the pseudo-differential operator as an integro-

differential operator

−q(x,D)f(x) =
1

2

d∑

i,j,k,l=1

Aijkl(x)∂ij∂klf(x)

+ 〈b+B(x),∇f(x)〉+
(
c+ 〈γ, x〉

)
f(x) (4.12)

+

∫

S+
d \{0}

(
f(x+ y)− f(x)

)
m( dy)

+

∫

S+
d \{0}

(
f(x+ y)− f(x) + 〈χ(y),∇f(x)〉

)
M(x, dy).

A similar argument as in Theorem 3.21 shows that this converges to zero for ‖x‖ → ∞.
The result is that x 7→ −q(x,D)f(x) ∈ C∞(S+

d ) and Af = Apf = −q(·, D)f for f ∈
C∞
c (S+

d ). This finally shows that C∞
c (S+

d ) ⊆ D(A) and, in particular, that −A|C∞
c

is a
pseudo-differential operator with symbol q(x, iξ) = −F (iξ)− 〈x,R(iξ)〉.

Observe that we have given an integro-differential representation of the generator, see
(4.12). This representation is based on the isomorphism of S+

d and Rd(d+1)/2. In this
sense, one can interpret (Aij,kl)i,j,k,l=1,...d as a matrix. In order to write the integro-
differential operator as an S+

d based version, we recall some notation. Using the tensor
product ⊗, defined by (u⊗ v)x = 〈x, v〉u, and the trace for linear operators Tr, defined
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Chapter 4 Affine Processes on Positive Semidefinite Matrices

by Tr(AB) =
∑

i≤j〈A 1√
2
cij, B 1√

2
cij〉 = 1

2

∑
i≤j〈Acij, Bcij〉, where (cij)i≤j is the basis of

Sd as given in Section 4.1, we obtain the following integro-differential representation

Af(x) = −q(x,D)f(x)

=
1

2
Tr

(
A(x)

( ∂
∂x

⊗ ∂

∂x

))
f(x) + 〈b+B(x),∇f(x)〉+ (c+ 〈γ, x〉)f(x)

+

∫

S+
d \{0}

(
f(x+ y)− f(x)

)
m( dy) (4.13)

+

∫

S+
d \{0}

(
f(x+ y)− f(x) + 〈χ(y),∇f(x)〉

)
M(x, dy).

Now, we use this to show the linear diffusion condition.

Proposition 4.17. Let X be an affine process with generator A which has a represen-
tation (4.12). Then (d− 1)α � b.

Proof. We first define a set of functions in C∞
c (S+

d ) which depend on a parameter v ∈ R+.
Applying the generator A on such a function, we get a Laplace transform depending
on v and hence a one-dimensional continuous negative definite function on R+, i.e. a
Bernstein function. The parameter restrictions for Bernstein functions then imply the
linear diffusion condition. This proof is motivated by Cuchiero et al. [16, Proposition
4.5].
Let y ∈ ∂S+

d and f ∈ C∞
c (S+

d ) such that f ≥ 0 and f(x) = det(x) for all x in a
neighbourhood of y. For instance, this can be done by mollifying the det function. For
any v ∈ R+, x 7→ e−vf(x) − 1 is a smooth function with compact support, i.e. an element
of C∞

c (S+
d ).

Since y is positive semidefinite but not strictly positive definite we have f(y) = det(y) =
0, e−vf(y) − 1 = 0 and ∇(e−vf(y) − 1) = e−vf(y)(−v∇f(y)) = −v∇f(y). Furthermore, the
second derivative becomes

∂ij∂kl(e
−vf(y) − 1) = ∂ij

(
e−vf(y)(−v∂klf(y))

)

= e−vf(y)(−v∂ijf(y))(−v∂klf(y))− e−vf(y)
(
−v∂ij∂klf(y)

)

= v2∂ijf(y)∂klf(y) + v∂ij∂klf(y).

Applying the generator A with representation (4.12), the above calculations yield

A(e−vf(·) − 1)(y) =
1

2

d∑

i,j,k,l

Aijkl(y)(v
2∂ijf(y)∂klf(y)− v∂ij∂klf(y))

− v〈b+B(y),∇f(y)〉

+

∫

S+
d \{0}

(e−vf(y+z) − 1)m( dz)

+

∫

S+
d \{0}

(e−vf(y+z) − 1− v〈χ(z),∇f(y)〉)M(y, dz).
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4.4 Representation as Pseudo-Differential Operator

However, the function v 7→ −A(e−vf(·) − 1)(y) is a negative definite function on R+. To
show this, let n ∈ N, v1, . . . , vn ∈ R+ and c1, . . . , cn ∈ C satisfying

∑n
j=1 cj = 0. Then

n∑

j,k=1

cj c̄k

(
−A(e−(vj+vk)f(·) − 1)(y)

)

= −
n∑

j,k=1

cj c̄k lim
t→0

1

t

∫

S+
d

(
e−(vj+vk)f(z) − 1

)
pt(x, dz)

= − lim
t→0

1

t

∫

S+
d

n∑

j,k=1

cj c̄k

(
e−(vj+vk)f(z) − 1

)
pt(y, dz)

= − lim
t→0

1

t

∫

S+
d

n∑

j,k=1

cj c̄ke
−vjf(z)e−vkf(z)pt(y, dz)

= − lim
t→0

1

t

∫

S+
d




n∑

j=1

cje
−vjf(z)






n∑

k=1

cke−vkf(z)


pt(y, dz)

= − lim
t→0

1

t

∫

S+
d

∣∣∣∣∣∣

n∑

j=1

cje
−vjf(z)

∣∣∣∣∣∣

2

pt(y, dz).

This expression is negative for every t > 0, and, consequently, the function is negative
definite. Since the set of negative definite functions is a convex cone and the above
limit exists, the mapping v 7→ −A(e−vf(·) − 1)(y) is negative definite. In particular, this
function has a representation as a Bernstein function, see Berg et al. [8, Theorem 4.3.20].
Therefore, the parameters of the above Lévy-Khintchine representation satisfy the usual
conditions of a Bernstein function. In particular, there is no quadratic term, i.e.

d∑

i,j,k,l

Aijkl(y)∂ij det(y)∂kl det(y) = 0.

Furthermore, the linear term has to be positive, i.e.

1

2

∑

i,j,k,l

Aijkl(y)∂ij∂kl det(y) + 〈b,∇ det(y)〉

+ 〈B(y),∇ det(y)〉+
∫

S+
d \{0}

〈χ(z),∇ det(y)〉M(y, dz) ≥ 0.

Proposition 4.11 states that the sum of the last two terms is positive for all y ∈ ∂S+
d ,

since Jacobi’s formula shows that

〈∇ det(y), y〉 = Tr(adj(y)y) = det(y) = 0,

and hence that y∇ det(y) = 0 for y ∈ ∂S+
d .

The Leibniz formula for the determinant yields that the first two terms of the above
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Chapter 4 Affine Processes on Positive Semidefinite Matrices

inequality are polynomials of degree d − 1, whereas the last two terms are polynomials
of degree d for all y ∈ ∂S+

d . Consequently, for small |y| → 0 the first two terms govern
the inequality and we get

1

2

∑

i,j,k,l

Ai,j,k,l(y)∂ij∂kl det(y) + 〈b,∇ det(y)〉 ≥ 0,

or, equivalently,

1

2
Tr

(
A(y)

(
∂

∂y
⊗ ∂

∂y

))
det(y) + 〈b,∇ det(y)〉 ≥ 0. (4.14)

In the next step, we deduce from this inequality that (d − 1)α � b. For the following
calculation, we need the derivative of the determinant, in particular the representation
for invertible matrices x ∈ S++

d given by

∇ det(x) = det(x)x−1.

In order to use this representation of the derivative, we consider in the following cal-
culation x ∈ S++

d instead of y ∈ S+
d . Remark that cij is the standard basis in Sd as

introduced in Section 4.1. Hence, we obtain by the chain rule

Tr

(
A(x)

(
∂

∂x
⊗ ∂

∂x

))
det(x)

=
1

2

∑

i≤j

〈
A(x)cij,

∂

∂x

〈
∂

∂x
, cij
〉
det(x)

〉

=
1

2

∑

i≤j

〈
A(x)cij,

∂

∂x
det(x)

〈
x−1, cij

〉〉

=
1

2

∑

i≤j

〈
A(x)cij, det(x)x−1

〈
x−1, cij

〉
+ det(x)

∂

∂x

〈
x−1, cij

〉〉

=
1

2

∑

i≤j

〈
A(x)cij, det(x)(x−1 ⊗ x−1)cij + det(x)(−x−1cijx−1)

〉
.

Substituting the representation formula of the linear diffusion term Tr
(
A(x)(z ⊗ z)

)
=

4〈x, z−1αz−1〉 and applying cyclic permutation9 〈x, yz〉 = 〈y, zx〉 = 〈z, xy〉 yields

=
1

2
det(x)


Tr

(
A(x)(x−1 ⊗ x−1)

)
−
∑

i≤j

〈
A(x)cij, x−1cijx−1

〉



= 2det(x)
〈
x, x−1αx−1

〉
− 1

2
det(x)

∑

i≤j

(〈
cijx−1, A(x)cijx−1

〉)

9The cyclic permutation leaves the trace and, hence, the scalar product unchanged.
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= 2det(x)
〈
x−1, α

〉
− 1

2
det(x)

∑

i≤j

(
4
〈
x, cijx−1αcijx−1

〉)

= 2det(x)
〈
x−1, α

〉
− 2 det(x)

∑

i≤j

(〈
αcij, cijx−1

〉)

= 2det(x)
〈
x−1, α

〉
− 2 det(x)

∑

i≤j

(〈
x−1, αcijcij

〉)
.

For i = j, cii has only entries on the main diagonal and hence ciicii = cii. In the case
i 6= j, a short calculation shows that cijcij = cii + cjj. This gives

= 2det(x)


〈x−1, α

〉
−

d∑

i=1

〈
x−1, αcii

〉
−
∑

i<j

〈
x−1, α(cii + cjj)

〉



= 2det(x)


〈x−1, α

〉
−
〈
x−1, αId

〉
− (d− 1)

d∑

i=1

〈
x−1, αcii

〉



= 2det(x)
(〈
x−1, α

〉
−
〈
x−1, α

〉
− (d− 1)

〈
x−1, αId

〉)

= 2det(x)
(
−(d− 1)

〈
x−1, α

〉)

= −2(d− 1)
〈
∇ det(x), α

〉
.

For y ∈ ∂S+
d , however, ∇ det(y) ∈ S+

d is also well-defined as a derivative of a polynomial
function det : S+

d → R. Hence, by an approximation argument (xn)n∈N ⊆ S++
d , xn → y,

it also holds for y ∈ S+
d that

Tr

(
A(y)

(
∂

∂y
⊗ ∂

∂y

))
det(y) = −2(d− 1)

〈
∇ det(y), α

〉
.

Substituting this result into equation (4.14), we conclude

− (d− 1)
〈
∇ det(y), α

〉
+ 〈b,∇ det(y)〉

=
〈
∇ det(y), b− (d− 1)α

〉
≥ 0.

Now, the self-duality of S+
d implies that the last inequality holds if and only if b−(d−1)α ∈

S+
d . Finally, we have (d− 1)α � b.

This linear diffusion condition does not appear in the canonical state space, see Chapter
3. However, in the case of general symmetric cones, a similar condition applies. For
details we refer to Cuchiero et al. [16, Proposition 4.5].
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4.5 Further Properties

It is possible to derive several properties of the previous chapter for an affine process
on positive semidefinite matrices. Using the B.L.T. theorem 2.13, we can immediately
extend the infinitesimal generator to the weighted space (C2

(1+‖x‖),∞(S+
d ), ‖·‖(2),(1+‖x‖)), cf.

Section 2.3, as the arguments are still valid due to the isomorphism of S+
d and Rd(d+1)/2.

Furthermore, we show that the test functions C∞
c (S+

d ) are a core of the generator.
Again, using the isomorphism, we can immediately get several path properties from
Section 3.6. For example we obtain an accessible criterion for the conservativeness of an
affine semigroup. However, we are not going to study these properties in detail. At last,
we state a result on the boundary attainment of an affine process on S+

d .

Proposition 4.18. Let X be an affine process with semigroup (Tt)t≥0 and generator
(A,D(A)). Then C∞

c (S+
d ) is a core of (A,D(A)).

Proof. The main idea of the proof is to apply Lemma 3.25 with D0 = C∞
c (S+

d ) and
D = C2

(1+‖x‖),∞(S+
d ). It is obvious that these sets are dense subsets of C∞(S+

d ) and

contained in the domain of the generator. It remains to show that the semigroup (Tt)t≥0

maps a function f ∈ C∞
c (S+

d ) into C2
(1+‖x‖),∞(S+

d ). This can be shown in the same manner
as in Proposition 3.27.

Similar to Mayerhofer et al. [39], there exists an equivalent condition for conservativeness
of an affine semigroup on S+

d . It requires that there is no killing, i.e. q(x, 0) = 0, and
that a unique local solution of the matrix-variate generalized Riccati equation exists.
However, the last condition is often difficult to verify. The next proposition presents an
accessible and sufficient criterion.

Proposition 4.19. An affine semigroup is conservative. In other words, an affine pro-
cess has infinite life-time if c = 0, γ = 0 and

∥∥∥
∫

S+
d \{0}

‖y‖µ( dy)
∥∥∥ <∞.

Theorem 3.29 establishes this criterion when applied to representation (4.7) and (4.8).
One may ask whether an affine process hits the boundary of the cone S+

d . The following
result is an analogue of the Feller condition for R+-valued square root processes.

Proposition 4.20 (Boundary non-attainment). Let X be a conservative affine process
on S+

d such that
∫

S+
d

(‖y‖ ∧ 1)〈µ(dy), x〉 <∞

for all x ∈ S+
d . If ((d− 1) + 2)α � b, then for each x ∈ S++

d , we have Px-a.s.

Tx := inf{t > 0; Xt− /∈ S++
d } = ∞.

This statement was proved for a more general setting, in particular for irreducible sym-
metric cones, by Cuchiero et al. [16, Proposition 6.1].
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Chapter 5

Ornstein-Uhlenbeck Processes in Lp

Space

Having examined affine processes on the space of positive semidefinite matrices D = S+
d ,

we now consider the real state space D = Rn. However, we change the function space
of the operators. This means, that we will discuss in this chapter the semigroup of
an Ornstein-Uhlenbeck process as an operator on the Lp space. Our specific interest
is to show that the semigroup is an L2 sub-Markovian semigroup. This, and several
related results, are contained in Section 5.1. In Section 5.2 we will be concerned with
the invariance and symmetry of operators. For this purpose, we focus on the state
space D = R, i.e. we consider an operator corresponding to a one-dimensional Ornstein-
Uhlenbeck process. However, we will see that the results extend to perturbed operators.

5.1 Ornstein-Uhlenbeck Processes and Dirichlet

Operators

In this section we examine an Ornstein-Uhlenbeck semigroup and its generator defined
as in the previous chapter, cf. Definition 3.1, as operators on an Lp space1 , 2 ≤ p <∞.
The main result, Theorem 5.2, states that an Ornstein-Uhlenbeck process generates an
L2 sub-Markov semigroup. This enables further extensions, e.g. that its generator is a
Dirichlet operator. The proof gives more, namely the exponential convergence of the
semigroup in L2.
We start with an auxiliary lemma, a monotonicity result for Reψ(·, ξ) and Reφ(·, ξ).

Lemma 5.1. Let X = (Xt)t≥0 be an affine process, as defined in Definition 3.1, with
corresponding functions φ and ψ. Then the mappings t 7→ Reφ(t, ξ) and t 7→ Reψ(t, ξ)
are monotonically decreasing for all ξ ∈ Cm

− × iRn.

1In the following section the Lp space is equipped with the Lebesgue measure if not mentioned other-
wise. Hence, we write Lp(Rn) instead of Lp(Rn, dx).
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Proof. By the Riccati equations (3.6), we have

∂

∂t
Reφ(t, ξ) = ReF (ψ(t, ξ)) ≤ F (0) ≤ 0,

∂

∂t
Reψ(t, ξ) = ReR(ψ(t, ξ)) ≤ R(0) ≤ 0,

where the second to last inequalities stem from the negative definiteness of −F and −R,
respectively. The t-derivatives are non-positive which shows the assertion.

This monotonicity is a key element to the next theorem that an Ornstein-Uhlenbeck
semigroup maps L2 functions into L2.

Theorem 5.2. The semigroup (Tt)t≥0 of an Ornstein-Uhlenbeck process on Rn with sym-
bol2 q(x, ξ) = ψL(ξ) + ix>Bξ is a strongly continuous contraction semigroup on L2(Rn)
if traceB ≥ 0.

Proof. It is well known that C∞
c (Rn) is dense in the Schwartz space, see Jacob [27,

Corollary I.2.6.1] and that the Fourier transform is a linear bijective and continuous
operator from the Schwartz space into itself, cf. Jacob [27, Theorem I.3.1.6]. Since
the Schwartz space is dense in L2(Rn), so are the functions x 7→

∫
Rn e

ix>zg(z) dz for
g ∈ C∞

c (Rn) in L2(Rn). Hence, it is sufficient to show that ‖Ttf‖L2 ≤ ‖f‖L2 for f(x) =∫
Rn e

ix>zg(z) dz with some g ∈ C∞
c (Rn). Using the affine property (3.1) and Proposition

3.6 we get

‖Ttf‖2L2(Rn) (5.1)

=

∫

Rn

∣∣Ttf(x)
∣∣2 dx

=

∫

Rn

∣∣∣∣Tt
∫

Rn

eix
>zg(z) dz

∣∣∣∣
2

dx

=

∫

Rn

∣∣∣∣
∫

Rn

Tteiz(x)g(z) dz

∣∣∣∣
2

dx

=

∫

Rn

∣∣∣∣
∫

Rn

eix
>etBzeφ(t,iz)g(z) dz

∣∣∣∣
2

dx. (5.2)

Since eφ(t,iz)g ∈ Cc(R
n) ⊆ L2(Rn), by Plancherel’s identity and a substitution for multiple

2The function ψL is the characteristic exponent of the driving Lèvy process.

86



5.1 Ornstein-Uhlenbeck Processes and Dirichlet Operators

variables, x̄ = −(etB)>x, see Schilling [50, Satz 20.1], the integral term becomes

∫

Rn

∣∣∣∣
∫

Rn

ei((e
tB)>x)

>
zeφ(t,iz)g(z) dz

∣∣∣∣
2

dx

=

∫

Rn

∣∣∣∣
∫

Rn

e−ix̄>zeφ(t,iz)g(z) dz

∣∣∣∣
2

| det(etB)>| dx̄

= (2π)n/2 e−t trace(B)
︸ ︷︷ ︸

=:c

∫

Rn

∣∣∣F(eφ(t,i·)g)(x̄)
∣∣∣
2

dx̄

= (2π)n/2c

∫

Rn

∣∣∣eφ(t,ix)g(x)
∣∣∣
2

dx.

Using this result and Plancherel’s identity again finally gives

‖Ttf‖2L2(Rn) ≤ (2π)n/2c

∫

Rn

∣∣∣ eφ(t,ix)︸ ︷︷ ︸
|·|2≤1

g(x)
∣∣∣
2

dx

≤ (2π)n/2c

∫

Rn

∣∣∣g(x)
∣∣∣
2

dx

= c

∫

Rn

∣∣∣
∫

Rn

eix
>zg(z) dz

∣∣∣
2

dx

= e−t trace(B)

∫

Rn

∣∣f(x)
∣∣2 dx

= e−t trace(B) ‖f‖2L2(Rn) .

The above calculations prove that every Ornstein-Uhlenbeck semigroup maps L2(Rn)
into L2(Rn). Furthermore, it is a contraction semigroup if trace(B) ≥ 0.
It remains to prove the strong continuity. Let f be as before. Then f ∈ C∞(Rn) and by
dominated convergence theorem we get

lim
t→0

‖Ttf − f‖L2(Rn) = lim
t→0

∫

Rn

|Ttf(x)− f(x)|2 dx

=

∫

Rn

lim
t→0

|Ttf(x)− f(x)|2 dx

= 0.

Note that for continuous functions we have already shown the continuity, see Theorem
3.8. A standard density argument proves the assertion.

The above proof gives more, namely we have explicitly determined the contraction fac-
tor

‖Ttf‖L2(Rn) ≤ e−
t
2
trace(B)‖f‖L2(Rn).

This exponential decay of the semigroup is sharp as the following example of a one-
dimensional Ornstein-Uhlenbeck process driven by a Brownian motion shows.
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Example 5.3. Let (Xt)t≥0 be an Ornstein-Uhlenbeck process defined by the stochastic
differential equation

Xt = x0 + b

∫ t

0

Xs ds+

∫ t

0

dBs, x0 ∈ R,

where b ∈ R is a constant and (Bt)t≥0 is a one-dimensional Brownian motion. The
solution is given by

Xt = ebtx0 + ebt
∫ t

0

e−bs dBs, t ≥ 0.

This can be found in Schilling [51, Example 19.5]. Hence the calculation of the L2-norm
of the semigroup is straightforward. Using the substitution y = ebtx+

∫ t
0
eb(t−s) dBs and

dy = ebt dx we get

‖E(f(Xt))‖2L2(R) =

∫

R

∣∣∣E
(
f(ebtx+ ebt

∫ t

0

e−bs dBs)
)∣∣∣

2

dx

= e−bt
∫

R

∣∣∣E
(
f(y)

) ∣∣∣
2

dy

= e−bt‖f‖2L2(R).

We see that the Ornstein-Uhlenbeck semigroup is a contraction with factor e−
t
2
b if b > 0.

Remark 5.4. Ornstein-Uhlenbeck processes driven by a Brownian motion are usually
defined on the space Lp(µ), where µ is an invariant measure of the semigroup, see below
Definition 5.11. For a treatment of this case, we refer to Bakry, Gentil and Ledoux [4].

The natural question arises whether general affine processes also correspond to L2 semi-
groups. Therefore, we take a look at a squared Bessel process. The transition probability
of the squared Bessel semigroup is explicitly known, see Revuz and Yor [44, Section XI.1].
Hence, the semigroup is given by

Ttf(x) =

∫ ∞

0

f(y)
1

2

(
y

x

)ν/2
e−

x+y
2t Iν

(√xy
t

)
dy, (5.3)

where Iν(x) =
∑∞

m=0
1

m!Γ(m+ν+1)

(
x
2

)2m+ν
is the modified Bessel function of first kind of
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index ν. For simplicity, we set t = 1 and ν = 4 to obtain

‖Ttf‖2L2(R+, dx)

=

∫

R+

∣∣∣∣
∫ ∞

0

f(y)
1

2

(
y

x

)2

e−
x+y
2 I4(

√
xy) dy

∣∣∣∣
2

dx

=

∫

R+

∣∣∣∣
∫ ∞

0

∞∑

m=0

1

m!(m+ 4)!
f(y)

1

2

(
y

x

)2

e−
x+y
2

(√
xy

2

)2m+4

dy

∣∣∣∣
2

dx

=

∫

R+

∣∣∣∣
∫ ∞

0

∞∑

m=0

1

m!(m+ 4)!
f(y)

1

2

(
y

x

)2

e−
x+y
2

(
xy

4

)m+2

dy

∣∣∣∣
2

dx

=

∫

R+

∫ ∞

0

∫ ∞

0

∞∑

m=0

∞∑

k=0

1

m!(m+ 4)!

1

k!(k + 4)!

[
f(y)

1

2

(
y

x

)2

e−
x+y
2

(
xy

4

)m+2 ]

·
[
f(z)

1

2

(
z

x

)2

e−
x+z
2

(
xz

4

)k+2 ]
dy dz dx

=

∫

R+

∫ ∞

0

∫ ∞

0

∞∑

m=0

∞∑

k=0

1

m!(m+ 4)!

1

k!(k + 4)!

[
f(y)

16

2
e−

y
2

(
y

4

)m+4 ]

·
[
f(z)

16

2
e−

z
2

(
z

4

)k+4 ]
e−xxm+k dy dz dx.

Observe that
∫
R+

x(m+k+1)−1e−x dx = Γ(m+ k+1) = (m+ k)! since the integrand is the
density of a Gamma distribution. Hence, the above calculation becomes

‖Ttf‖2L2(R+, dx)

= 16

∫ ∞

0

∫ ∞

0

∞∑

m=0

∞∑

k=0

(m+ k)!

m!k!

1

(m+ 4)!

1

(k + 4)!

[
f(y)e−

y
2

(
y

4

)m+4 ]

·
[
f(z)e−

z
2

(
z

4

)k+4 ]
dy dz.

By the Stirling formula, see Krengel [35, Satz 5.1], we have the following upper and lower
bound for the factorial,

√
2πnnne−n ≤ n! ≤

√
2πnnne−ne1/(12n).

Therefore, we obtain

(m+ k)!

m!k!
≤

√
2π

√
m+ k(m+ k)m(m+ k)ke−(m+k)e1/(12(m+k))

√
2π

√
mmme−m

√
2π

√
kkke−k

≤ e1/24√
2π

√
m+ k

mk︸ ︷︷ ︸
≤
√
2

(
1 +

m

k

)k

︸ ︷︷ ︸
≤em

(
1 +

k

m

)m

︸ ︷︷ ︸
≤ek

≤
√
2e1/24√
2π︸ ︷︷ ︸

=:c

ekem.
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Substituting this into the above equation yields

‖Ttf‖2L2(R+, dx)

≤ 16

∫ ∞

0

∫ ∞

0

∞∑

m=0

∞∑

k=0

cekem
1

(m+ 4)!

1

(k + 4)!
f(y)e−

y
2

(
y

4

)m+4

· f(z)e− z
2

(
z

4

)k+4

dy dz

= c′
∫ ∞

0

∞∑

m=0

1

(m+ 4)!
f(y)e−

y
2

(
ey

4

)m+4

·
∫ ∞

0

f(z)e−
z
2

∞∑

k=0

1

(k + 4)!

(
ez

4

)k+4

dy dz

≤ c′
∫ ∞

0

∞∑

m=0

1

m!
f(y)e−

y
2

(
ey

4

)m
·
∫ ∞

0

f(z)e−
z
2

∞∑

k=0

1

k!

(
ez

4

)k
dy dz

≤ c′
[ ∫ ∞

0

f(y)e
ey
4
− y

2 dy

]2
.

This calculation shows that for functions of a weighted space, L2(R+, ρ(x) dx), with an
exponential weight ρ(x) = eCx, the squared Bessel semigroup maps into L2. However,
this does not prove that the semigroup does not map L2 into L2. We did not manage
to construct a suitable lower bound and numerical estimates failed due to the involved
Bessel function.

We now return to the Ornstein-Uhlenbeck semigroup. By a variant of the Riesz-Thorin
theorem, we can extend the above theorem.

Corollary 5.5. The Ornstein-Uhlenbeck semigroup (Tt)t≥0 defined on L2(Rn) extends to

a strongly continuous contraction semigroup (T
(p)
t )t≥0 on Lp(Rn) for all 2 < p < ∞, if

traceB ≥ 0, where B is the linear drift coefficient.

Proof. From Theorem 5.2 and Theorem 3.8 we know that

‖Ttf‖L2(Rn) ≤ e−
t
2
trace(B)‖f‖L2(Rn)

‖Ttf‖∞ ≤ ‖f‖∞.

In particular both extensions coincide on L1(Rn) ∩ Bb(R
n). Hence from Farkas, Jacob

and Schilling [20, Theorem 1.10] it follows that (Tt)t≥0 extends to a strongly continuous
contraction semigroup on Lp(Rn) for 2 < p <∞. Furthermore, setting p = 1−s

2
for some3

s ∈ (0, 1) we obtain the following estimate, see Stein and Weiß [59, Theorem V.1.3],

‖Ttf‖Lp(Rn) ≤ e−
t
2
trace(B)(1−s)‖f‖Lp(Rn) = e−

t
p
trace(B)‖f‖Lp(Rn),

which shows the assertion.

3We adopt the usual convention and let 1

∞ = 0.

90



5.1 Ornstein-Uhlenbeck Processes and Dirichlet Operators

To state a consequence of Theorem 5.2 we introduce the following notion.

Definition 5.6. Let (Tt)t≥0 be a strongly continuous contraction semigroup on Lp(Rn),
1 ≤ p < ∞. We call (Tt)t≥0 a sub-Markov semigroup on Lp(Rn), 1 ≤ p < ∞ if for
f ∈ Lp(Rn) such that 0 ≤ f ≤ 1 almost everywhere it follows that 0 ≤ Ttf ≤ 1 almost
everywhere.

Corollary 5.7. The semigroup (Tt)t≥0 of an Ornstein-Uhlenbeck process on Rn is sub-
Markovian on Lp(Rn) with p ≥ 2 if traceB ≥ 0, where B is the linear drift coefficient.

Now we want to turn towards the generator of an Ornstein-Uhlenbeck process. The first
result is a consequence of the above theorem and its corollary.

Corollary 5.8. The infinitesimal generator (A,D(A)) of an Ornstein-Uhlenbeck process
on Rn is a Dirichlet operator on L2(Rn), i.e.

∫

Rn

Af(x) · (f − 1)+(x) dx ≤ 0 for all f ∈ D(A),

if its parameter B satisfies traceB ≥ 0.

Proof. In Theorem 5.2 we have proven that an Ornstein-Uhlenbeck semigroup is a
strongly continuous contraction semigroup on L2(Rn). This statement is equivalent to
(A,D(A)) being an L2 Dirichlet operator. A proof of this can be found in Ma and
Röckner [37, Proposition I.4.3].

Lemma 5.9. Let (A,D(A)) be the generator of a stochastically continuous affine process
on Rm

+ ×Rn. Denote by q(x, ξ) its corresponding symbol such that A is given by

Af(x) = −q(x,D)f(x) =
d∑

j,k=1

(
ajk +

m∑

l=1

xlα
l
jk

)
∂j∂kf(x)

+
(
b+

d∑

l=1

βlxl

)>
∇f(x) +

(
c+ γ>x

)
f(x)

+

∫

D\{0}

(
f(x+ y)− f(x)− χ(y)>∇f(x)

)
µ( dy)

+
m∑

l=1

xl

∫

D\{0}

(
f(x+ y)− f(x)− χl(y)>∇f(x)

)
µl( dy),

for f ∈ C∞
c (Rm

+ ×Rn). Then A maps C∞
c (Rm

+ ×Rn) into Lp(Rm
+ ×Rn) for all p ≥ 1. In

particular, we have

‖Af‖Lp ≤ c‖f‖W 2
p,(1+|x|)

,

where

W 2
p,(1+|x|)(R

m
+ ×R

n) =
{
f ∈ Lp(Rm

+ ×R
n); ‖f‖W 2

p,(1+|x|)
=
∑

|α|≤2

‖(1+ |x|)Dαf‖Lp <∞
}

is a weighted Sobolov space.
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Proof. For f ∈ C∞
c (Rm

+ × Rn) the estimate follows by the same method as in Schilling
[49, Lemma 3.4]. Since C∞

c (Rm
+×Rn) ⊆ W 2

p,(1+|x|)(R
m
+×Rn) is a dense subset, a standard

argument finishes the proof.

Remark 5.10. Schmeißer and Triebel [55, Theorem 5.1.4] show that the norm of the
weighted Sobolev space ‖f‖W 2

p,(1+|x|)
=
∑

|δ|≤2 ‖(1 + |x|)Dδf‖Lp is equivalent to the norm

‖(1 + |x|)f‖W 2
p
=
∑

|δ|≤2 ‖Dδ
(
(1 + |x|)f

)
‖Lp .

One may ask whether affine processes are related to Dirichlet forms. For Ornstein-
Uhlenbeck processes driven by a Brownian motion this is well known, cf. Barky, Gentil
and Ledoux [4, Section 4.1]. For general Ornstein-Uhlenbeck processes there are no
results in the literature. Since we have shown that its generator is a Dirichlet operator
according to Jacob [27, Theorem I.4.7.5 and Corollary I.4.7.6], it is left to show that the
generator (A,D(A)) of an Ornstein-Uhlenbeck process satisfies the sector condition

|〈−Af, g〉L2 | ≤ c(〈−Af, f〉L2)
1
2 (〈−Ag, g〉L2)

1
2 , f, g ∈ D(A).

It would be desirable to verify this inequality but we have not been able to do this.

5.2 Invariant Measures and the Symmetry Property

Invariant measures and symmetry appear quite naturally in the examination of semi-
groups and operators on Lp spaces. In this section we focus on affine processes with
state space D = Rn, in other words general Ornstein-Uhlenbeck processes but we will
extend the results to Lévy-type processes. For affine processes on D = Rm

+ we refer the
reader to Keller-Ressel and Mijatovic [31] and Handa [25]. For Ornstein-Uhlenbeck pro-
cesses driven by a Brownian motion it is well-known that e−x

2
dx is an invariant measure

and that the semigroup is symmetric with respect to that measure. We will extend this
result and consider general Ornstein-Uhlenbeck processes. First we examine the exis-
tence of invariant measure. To this end, we use an approach based on the symbol of the
generator.4 In a next step, we prove that Ornstein-Uhlenbeck processes are µ-symmetric
if and only if they have no jumps. This result extends to perturbed Ornstein-Uhlenbeck
processes.

Definition 5.11 (Invariant measure). A probability measure µ on Rd is invariant (or
stationary) for the Feller process X with semigroup (Tt)t≥0 if

∫

Rd

Ttf(x)µ( dx) =

∫

Rd

f(x)µ( dx), ∀f ∈ C∞(Rd), t ≥ 0.

In the following, we will use a criterion for invariant measures that is based on the
symbol.

4There exist other methods to study invariant measures of Ornstein-Uhlenbeck semigroups, e.g. Sato
and Yamazato [47] used an operator based approach and Fuhrmann and Röckner [23] recognized
them as a special case of Mehler semigroups.
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Theorem 5.12. Let (A,D(A)) be the infinitesimal generator of a d-dimensional Feller
process X such that C∞

c (Rd) ⊆ D(A) and symbol q(x, ξ).
If µ is an invariant measure for X such that

∫
Rd |q(x, ξ)|µ( dx) <∞, then

∫

Rd

eix
>ξq(x, ξ)µ( dx) = 0 ∀ξ ∈ R

d.

Conversely, if there exists a probability measure µ such that
∫
Rd |q(x, ξ)|µ( dx) <∞ and∫

Rd e
ix>ξq(x, ξ)µ( dx) = 0, then

∫

Rd

Af(x)µ( dx) = 0 ∀f ∈ C∞
c (Rd).

In particular, µ is an invariant measure for X if C∞
c (Rd) is a core of the generator A.

Both statements, the necessity and the sufficiency, can be found in Behme and Schnurr
[7, Theorem 3.1 and Theorem 4.1]. The addition is due to an equivalent condition for
invariant measures, cf. Liggett [36, Theorem 3.37], which states that for Feller semigroups
a measure µ is invariant if and only if

∫
Af dµ = 0 ∀f ∈ D,

where D is a core of the generator A.
The key to our proof of the existence of an invariant measure for Ornstein-Uhlenbeck
processes is the following lemma.

Lemma 5.13. Let ψ : R −→ C be a continuous negative definite function with Lévy-
Khintchine representation

ψ(ξ) = −ilξ +
1

2
Qξ2 +

∫

y 6=0

(
1− eiyξ + iξy1{|y|≤1}

)
ν( dy),

such that
∫
|y|≥1

ln |y|ν( dy) <∞. Then the function

ξ 7→
∫ ξ

0

ψ(η)

η
dη

is continuous negative definite.

Proof. Starting with the local part of ψ we have

∫ ξ

0

−ilη + 1
2
Qη2

η
dη =

∫ ξ

0

−il +
1

2
Qη dη

= −ilξ +
1

4
Qξ2,
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Chapter 5 Ornstein-Uhlenbeck Processes in Lp Space

which is obviously continuous negative definite.
Before calculating the non-local part, we verify the existence of the integral. To do this,
we use Taylor’s theorem and Tonelli’s theorem,

∫ ξ

0

∫

y 6=0

∣∣∣∣
1

η

(
1− eiyη + iyη1{|y|≤1}

)∣∣∣∣ ν( dy) dη

=

∫ ξ

0

∫

0<|y|≤1

∣∣∣∣
1

η

(
1− eiyη + iyη

)∣∣∣∣ ν( dy) +
∫

|y|>1

∣∣∣∣
1

η

(
1− eiyη

)∣∣∣∣ ν( dy) dη

≤ 1

2

∫ ξ

0

∫

0<|y|≤1

1

|η| |yη|
2ν( dy) dη +

∫

|y|>1

∫ ξ

0

∣∣∣∣
1

η

(
1− eiyη

)∣∣∣∣ dην( dy)

≤ 1

4
|ξ|2

∫

0<|y|≤1

|y|2ν( dy)
︸ ︷︷ ︸

<∞

+

∫

|y|>1

∫ ξ

0

∣∣∣∣
1

η

(
1− eiyη

)∣∣∣∣ dην( dy).

The first integral poses no problem because ν is a Lévy measure. Note that in the
first inequality we used Fubini’s theorem which is allowed as shown now. For this we
substitute z = yη, dz = dη

y
and obtain

∫

|y|>1

∫ ξ

0

∣∣∣∣
1

η

(
1− eiyη

)∣∣∣∣ dην( dy)

=

∫

|y|>1

∫ yξ

0

∣∣∣∣
1

z

(
1− eiz

)∣∣∣∣ dzν( dy)

=

∫

|y|>1

[ ∫ ε

0

1

|z|
∣∣∣1− eiz

∣∣∣
︸ ︷︷ ︸

≤|z|

dz +

∫ yξ

ε

1

|z|
∣∣∣1− eiz

∣∣∣
︸ ︷︷ ︸

≤2

dz

]
ν( dy)

≤
∫

|y|>1

[ ∫ ε

0

dz + 2

∫ yξ

ε

1

|z| dz
]
ν( dy)

≤
∫

|y|>1

(
ε+ 2 ln |yξ| − 2 ln |ε|

)
ν( dy)

≤ 2

∫

|y|>1

ln |y|ν( dy) +
(
ε+ 2 ln |ξ| − 2 ln |ε|

)∫

|y|>1

ν( dy) <∞ ∀ξ ∈ R,

where ε ∈ (0, yξ) is a constant. This allows us to apply Fubini’s theorem and the
substitution η = ξ

y
t, dη

η
= dt

t
,

∫ ξ

0

∫

y 6=0

1

η

(
1− eiyη + iyη1{|y|≤1}

)
ν( dy) dη

=

∫

y 6=0

∫ ξ

0

(
1− eiyη + iyη1{|y|≤1}

) dη

η
ν( dy)

=

∫

y 6=0

∫ y

0

(
1− eiξt + iξt1{|y|≤1}

) dt

t
ν( dy).
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It is clear that the integrand ξ 7→
(
1− eiξt + iξt1{|y|≤1}

)
1
t

is a negative definite function.

Since both measures are positive, the non-local part and thus ξ 7→
∫ ξ
0
ψ(η)
η

dη is continuous
negative definite.

The above lemma is already known if the state space is R+. In this case, negative
definite functions are Bernstein functions and for all Bernstein functions λ 7→ f(λ)/λ is
a completely monotone function, cf. Schilling, Song and Vondraček [53, Corollary 3.7].

Hence, ξ 7→
∫ ξ
0
f(λ)/λ dλ again is a Bernstein function if the integral exists. This holds

for a Bernstein function f(λ) = a+ bλ+
∫
(0,∞)

(1− e−λt)ν( dt) if
∫
ln(|y|)ν( dy) <∞.

In the case of α-stable processes, i.e. ψ(ξ) = |ξ|α, we can directly calculate

∫ ξ

0

|η|α
η

dη =
|ξ|α
α
.

We continue with a result on invariant measures of Ornstein-Uhlenbeck processes.

Theorem 5.14. Let X be an Ornstein-Uhlenbeck process on R with symbol q(x, ξ) =
ψL(ξ)+ iβxξ, where β > 0 and ψL : R −→ C is the characteristic exponent of the driving
Lévy process.5 Assume that ψL satisfies the log-moment condition,

∫
|y|≥1

ln |y|ν( dy) <∞.

If the characteristic function φµ(ξ) = exp{−
∫ ξ
0
ψL(η)
βη

dη} defines a probability measure µ

such that
∫
|x|µ( dx) <∞, then µ is an invariant measure for X.

Proof. The main idea of the proof is to take a continuous negative definite function,
defined as in the previous lemma using ψL. We show that this function generates a
probability measure µ which is invariant.
By the lemma above, we know that the function ξ 7→

∫ ξ
0
ψL(η)
βη

dη is negative definite. Then

it follows by Schoenberg’s theorem that ξ 7→ exp{−t
∫ ξ
0
ψL(η)
βη

dη} is positive definite for

every t > 0, in particular, φµ(ξ) = exp{−
∫ ξ
0
ψL(η)
βη

dη}. Hence, by Bochner’s theorem it

is the characteristic function of a probability measure µ, as φµ(0) = 1. Note that the
derivative φ′

µ exists which gives

−
∫ ξ

0

ψL(η)

βη
dη = lnφµ(ξ) =

∫ ξ

0

φ′
µ(η)

φµ(η)
dη

and, in consequence, for almost all ξ ∈ R

φ′
µ(ξ)

φµ(ξ)
= −ψL(ξ)

βξ
.

5Such a process is given by the stochastic differential equation dXt = −βXt dt + dLt, where (Lt)t≥0

is the driving Lévy process.
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In order to apply the criterion of Theorem 5.12, we have to check two conditions. The
first one follows by a short calculation

0 = ψL(ξ)φµ(ξ) + βξφ′
µ(ξ)

= ψL(ξ)φµ(ξ) + βξ

∫

R

∂ξe
ixξµ( dx)

=

∫

R

eixξ(ψL(ξ) + ixβξ)µ( dx)

=

∫

R

eixξq(x, ξ)µ( dx).

Next we have to show that
∫
Rd |q(x, ξ)|µ( dx) <∞ which reduces by

∫

R

|q(x, ξ)|µ( dx) ≤
∫

R

(|ψL(ξ)|+ |xβξ|)µ( dx)

≤ |ψL(ξ)|+ |βξ|
∫

R

|x|µ( dx)

to the question whether
∫
R
|x|µ( dx) < ∞. The assumptions of the theorem ensure this

last condition, and the proof is complete.

The existence of the first moment of the invariant measure cannot be dropped as it is
essential to Theorem 5.12. Although we know that the first derivative of the character-
istic function exists, we cannot conclude that the measure µ possesses a first moment.
The above technique extends to some special cases of affine processes on R+. This class
has already been studied by Keller-Ressel and Mijatović [31].
Furthermore, our approach allows us to extend the result of Albeverio, Rüdiger and
Wu [2] who studied invariant measures for perturbed Ornstein-Uhlenbeck processes with
α-stable jumps. Therefore we are interested in regular invariant measures, i.e. we addi-
tionally require that the measure µ is absolutely continuous with respect to the Lebesgue
measure.

Corollary 5.15. Let X be an Ornstein-Uhlenbeck process on R satisfying the conditions
of Theorem 5.14. In addition, we assume for ψL : R −→ C that

ReψL(ξ) ≥ c|ξ|r

holds with some constants c > 0, r > 0 for large |ξ|, ξ ∈ R. Then an invariant probability
measure µ and a function ρ ≥ 0 almost everywhere with µ( dx) = ρ(x) dx exists.

Proof. Due to Theorem 5.14, we get an invariant measure µ and in particular its char-
acteristic function φµ(ξ) = exp{−

∫ ξ
0
ψL(η)
βη

dη}. If φµ is integrable there exists an almost
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everywhere positive function ρ such that φµ(ξ) = ρ̂(ξ) and µ( dx) = ρ(x) dx. The inte-
grability indeed holds as

∫
|φµ(ξ)| dξ =

∫
exp{−Re

∫ ξ

0

ψL(η)

βη
dη} dξ

≤ c1 +

∫

|ξ|>k
exp{−

∫ ξ

0

c|η|r
βη

dη} dξ

≤ c1 +

∫

|ξ|>k
exp{−c sgn(ξ)

∫ ξ

0

|η|r−1

β
dη} dξ <∞.

This corollary holds, in particular for ψL(ξ) = |ξ|α. Furthermore, we can state the result
for perturbed Ornstein-Uhlenbeck processes6.

Theorem 5.16. Let L be an operator given by

Lf(x) = a1f
′′(x) + β(x)f ′(x) +

∫

y 6=0

(
f(x+ y)− f(x)− f ′(x)y1{|y|≤1}

)
ν( dy),

where f ∈ C∞
c (R) and ν is a measure such that an Ornstein-Uhlenbeck process driven

by a Lévy process with characteristic exponent ψL(ξ) =
∫
y 6=0

(
1− eiyξ+ iξy1{|y|≤1}

)
ν( dy)

satisfies the assumptions of Corollary 5.15. Further, set β2(x) = −x and ρ2 is an almost
everywhere nonnegative function such that ρ2 dx is an invariant measure of an Ornstein-
Uhlenbeck process with symbol q(x, ξ) = ψL(ξ) + ixξ. Then for all

β ∈
{
(β1ρ1) ∗ ρ2(x) + ρ1 ∗ (β2ρ2)(x)

ρ1 ∗ ρ2(x)
; β1 ∈ A1, ρ ∈ Q(β1)

}
,

where

A1 :=

{
β; β̂ exists , ∃γ > 0 ∃θ > 1

2γ2
s.t.

∫
eθ|β(x)+γx|

2−(1/2)|x|2 dx <∞
}
,

Q(β) =
{
ρ; ρ ≥ 0, ρ 6≡ 0, −a1|ξ|2ρ̂(ξ) + iξ(̂βρ)(ξ) = 0

}
,

there exists a function ρ such that µ( dx) = ρ(x) dx is an invariant probability measure
for L.

For the proof we refer to Albeverio et al. [2, Theorem 3.1] as it follows from theirs
by adopting the extended result for invariant measures of general Ornstein-Uhlenbeck
processes, Corollary 5.15. The idea of the proof is to construct an invariant measure
of the perturbed process as a convolution of the measure of an Ornstein-Uhlenbeck
process driven by a pure jump Lévy process and the one of a Brownian motion with

6In our context the perturbation affects the drift coefficient, i.e. we look at drift coefficients β(x) instead
of βx+ l.
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Chapter 5 Ornstein-Uhlenbeck Processes in Lp Space

drift parameter β(x). To achieve this, the invariant measure of the perturbed Brownian
motion has to exist and the nonlinear drift β(x) has to satisfy a variation condition.
These requirements are represented by the sets Q and A1, respectively.
Assume that the function β is bounded and locally Lipschitz. Then this is a special case
of a result by Behme and Schnurr [7, Proposition 3.8]. Consider a process X given as
the unique solution of the stochastic differential equation

dXt = b dZt + β(Xt−) dLt, t ≥ 0,

where L and Z are independent Lévy processes with characteristic functions φZ and φL,
respectively. Then µ is an invariant measure for X if

∫

Rd

eix
>ξ
(
φL(β(x)

>ξ) + φZ(bξ)
)
µ( dx) = 0. (5.4)

In the next part of this section we give a condition when an Ornstein-Uhlenbeck process
is µ-symmetric and extend this result to perturbed Ornstein-Uhlenbeck processes.

Definition 5.17. An operator (A,D(A)) in L2(Rd, dµ) is said to be µ-symmetric on
D ⊆ D(A) if

∫
f · Ag dµ =

∫
Af · g dµ ∀f, g ∈ D.

If 1 ∈ D and7 A1 = 0, then the µ-symmetry of an operator implies that µ is an invariant
measure for A. Taking g = 1, we conclude from the conservativeness that Ag = A1 = 0.
Hence, the definition above gives

∫
Af dµ = 0.

The next theorem expresses the equivalence of µ-symmetry of Ornstein-Uhlenbeck pro-
cesses and the absence of jumps. A similar result for affine processes on D = Rm

+ is due to
Handa who proved that under µ-symmetry for a nondegenerate probability measure the
process coincides with a Cox-Ingersoll-Ross process, cf. Example 3.2.3. The first steps of
our proof are adapted from Handa [25, Theorem 2.3]. However, their requirement that
the functions F and R are analytical fails in our case. Our main idea is to derive and
solve a functional equation.

Theorem 5.18. The generator of an Ornstein-Uhlenbeck process is µ-symmetric for a
nondegenerate probability measure if and only if the process is driven by a Brownian
motion.
In this case, the symbol of the Ornstein-Uhlenbeck process is given by q(x, ξ) = xiβξ +
1
2
qξ2 − ibξ and the characteristic function of µ by φµ(ξ) = exp{− q

4β
ξ2 + i

b
β
ξ}.

Proof. It can be found in Bakry, Gentil and Ledoux [4, Section 2.7.1, p. 103] that the
Ornstein-Uhlenbeck process driven by a Brownian motion is µ-symmetric.
It remains to prove that µ-symmetry implies that the driving process is a Brownian
motion. The symbol of an Ornstein-Uhlenbeck process is given by q(x, ξ) = iβξx+ψL(ξ),

7For a Feller generator this is true if the semigroup is conservative.

98



5.2 Invariant Measures and the Symmetry Property

where ψL is the characteristic exponent of the driving Lévy process. Due to the µ-
symmetry, we know that µ is an invariant measure. Therefore we have

∫
eixξµ( dx) = φµ(ξ) = e−ψµ(ξ),

where ψµ(ξ) =
∫ ξ
0
ψL(η)
βη

dη, cf. Theorem 5.14. By differentiation of the last equality we
get

ψ′
µ(ξ)βξ = ψL(ξ) (5.5)

and by the differentiation rules of the Fourier transform

∫
xei(ξ+η)xµ( dx) = −iφ′

µ(ξ + η) = iψ′
µ(ξ + η)φµ(ξ + η).

Now Proposition 1.17.2 combined with the last two equalities yields

∫ (
Aeiξ(x)

)
eiηxµ( dx) =

∫ (
iβξx+ ψL(ξ)

)
eiξxeiηxµ( dx)

= iβξ
(
iψ′

µ(ξ + η)φµ(ξ + η)
)
+ ψL(ξ)φµ(ξ + η)

= βξ
(
−ψ′

µ(ξ + η) + ψ′
µ(ξ)

)
φµ(ξ + η).

The same calculation holds true if we interchange the roles of ξ and η,

∫ (
Aeiη(x)

)
eiξxµ( dx) = βη

(
−ψ′

µ(η + ξ) + ψ′
µ(η)

)
φµ(η + ξ).

By µ-symmetry we have 〈f, Ag〉L2( dµ) = 〈Af, g〉L2( dµ). Hence the left-hand sides of the
last two equations coincide, and we obtain

βξ
(
−ψ′

µ(ξ + η) + ψ′
µ(ξ)

)
φµ(ξ + η) = βη

(
−ψ′

µ(ξ + η) + ψ′
µ(η)

)
φµ(ξ + η).

Rewriting this as

β(ξ + η)ψ′
µ(ξ + η)(ξ − η) =

(
ψ′
µ(ξ)ξ − ψ′

µ(η)η
)
β(ξ + η)

allows us to substitute (5.5) into this equality

ψL(ξ + η)(ξ − η) =
(
ψL(ξ)− ψL(η)

)
(ξ + η).

This is a functional equation for ψL, which we will solve now.
Let η = 0 and ξ be arbitrary. Then ψL(ξ)ξ =

(
ψL(ξ)− ψL(0)

)
ξ implies ψL(0) = 0.

Choosing ξ = 1− ζ and η = ζ we get

ψL(1)(1− ζ − ζ) = ψL(1− ζ)− ψL(ζ).
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If we set f(ζ) := ψL(ζ)− ψL(1)ζ, the functional equation simplifies to

f(1− ζ) = f(ζ), (5.6)

and from ψL(0) = 0 we deduce f(0) = 0 and f(1) = 0. In particular, the function f also
satisfies the functional equation from above

f(ξ + η)(ξ − η) = (ψL(ξ + η)− ψL(1)(ξ + η))(ξ − η)

=
(
ψL(ξ)− ψL(η)

)
(ξ + η)− ψL(1)(ξ − η)(ξ + η)

=
(
f(ξ)− f(η)

)
(ξ + η). (5.7)

By setting ξ = λ and η = 2− λ in (5.7) we get

f(2)
(
λ− (2− λ)

)
= 2

(
f(λ)− f(2− λ)

)

⇐⇒ f(2)

2
(2λ− 2) = f(λ)− f(2− λ). (5.8)

To simplify the right-hand side we start again with equation (5.7) and now choose ξ = 1
and η = 1− λ, which, combined with (5.6), leads to

f(2− λ)
(
1− (1− λ)

)
=
(
f(1)︸︷︷︸
=0

− f(1− λ)︸ ︷︷ ︸
=f(λ)

)
(2− λ)

⇐⇒ f(2− λ)λ = −f(λ)(2− λ). (5.9)

Substituting (5.9) into (5.8) we conclude

f(2)

2
(2λ− 2) = f(λ)− f(2− λ)

⇐⇒ f(2)

2
(2λ− 2)λ = f(λ)λ+ f(λ)(2− λ)

⇐⇒ f(2)

2
λ(λ− 1) = f(λ)

⇐⇒ f(λ) =
f(2)

2
(λ2 − λ).

Consequently, we get ψL(ξ) =
f(2)
2
(ξ2−ξ)+ψL(1)ξ. As ψL is a negative definite function,

we have a Lévy Khintchine representation, i.e.

ψL(ξ) =
1

2
qξ2 − ibξ +

∫

y 6=0

(
1− eiξy + iξy1{|y|≤1}

)
ν( dy),

with q ≥ 0, b ∈ R and ν is a Lévy measure such that
∫
y 6=0

(1∧|y|2)ν( dy) <∞. Comparing
this representation with the solution of the functional equation, we see that the integral
part of ψL drops out. Furthermore, it follows that Im f(2)

2
= 0 and Re f(2)

2
= ReψL(1),

since the imaginary part of ψL is linear and the real part of ψL is quadratic. Hence,
we have ψL(ξ) =

1
2
qξ2 − ibξ, where q is the diffusion and b is the drift parameter of the
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driving Lévy process.
The additional assertion has already been shown in Theorem 5.14. The characteristic
function of µ is given by

φµ(ξ) = exp
{
−
∫ ξ

0

ψL(η)

βη
dη
}

= exp
{
−
∫ ξ

0

1
2
qη2 − ibη

βη
dη
}

= exp
{
− q

4β
ξ2 + i

b

β
ξ
}
,

in other words, µ is a Gaussian measure.

Since µ is an invariant measure, the linear drift parameter has to be positive, β > 0.
This result also extends to perturbed Ornstein-Uhlenbeck processes. For the proof we
need the following result which is a counterpart to Schnurr [56, Proposition 6.2] who
showed that the only continuous negative definite function vanishing at infinity is con-
stantly zero. In particular, our statement follows by the same method.

Proposition 5.19. The only continuous negative definite function vanishing in a neigh-
bourhood of zero is constantly zero.

Proof. Let ψL be a continuous negative definite function which vanishes in a neighbour-
hood of zero, i.e. for ε > 0 we have ψL(ξ) = 0 if ξ ∈ B(0, ε). For every γ there exists
an integer k ∈ N such that γ/k ∈ B(0, ε). By sub-additivity of

√
|ψL|, cf. Jacob [27,

Lemma I.3.6.21], we obtain

√
|ψL(γ)| =

√√√√
∣∣∣ψL
( k∑

l=1

γ/k
)∣∣∣ ≤

k∑

l=1

√
|ψL(γ/k)|︸ ︷︷ ︸

=0

= 0,

which completes the proof.

By another method Jacob [27, Lemma I.3.6.28] showed that a negative definite function
that is zero on an arbitrary interval [a, b] with a < b is identical to zero.
The next theorem is an extension of Alberevio et al. [2, Proposition 4.4]. In contrast to
their approach, we do not restrict ourselves to α-stable jumps. Furthermore, we use a
different technique for the proof which allows us to drop the assumption that the support
of the invariant measure and its density function equals the real line.

Theorem 5.20. Let L be an operator given by

Lf(x) = a1f
′′(x) + β(x)f ′(x) + a2

∫

y 6=0

(
f(x+ y)− f(x)− f ′(x)y1{|y|≤1}

)
ν( dy),

where f ∈ C∞
c (R), with symbol q(x, ξ) whose domain D(L) contains the test functions

C∞
c (R). Assume µ is an infinitesimal invariant probability measure on R such that

µ( dx) = ρ(x) dx,
∫
|β(x)| dµ(x) < ∞ and β̂ρ exists. If L is µ-symmetric, then a2 = 0.

If in addition supp(ρ) = R, we have β = a1∇ρ/ρ.
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Chapter 5 Ornstein-Uhlenbeck Processes in Lp Space

Proof. We denote the symbol of the operator L by q(x, ξ) = iβ(x)ξ + ψL(ξ), where
ψL(ξ) = a1ξ

2 + a2
∫
y 6=0

(
eiξy − 1− iyξ1{|y|≤1}

)
ν( dy). Then by Theorem 5.12 we have

∫
eixξq(x, ξ)µ( dx) = 0

⇐⇒
∫

eixξ
(
iβ(x)ξ + ψL(ξ)

)
µ( dx) = 0

⇐⇒ iξ

∫
eixξβ(x)µ( dx) = −ψL(ξ)φµ(ξ). (5.10)

By Proposition 1.17 it follows that

∫ (
Leiξ·(x)

)
eiηxµ( dx) =

∫
q(x, ξ)eixξeixηµ( dx)

=

∫
iξβ(x)eix(ξ+η)µ( dx) + ψL(ξ)φµ(ξ + η)

=
ξ

ξ + η

∫
i(ξ + η)β(x)eix(ξ+η)µ( dx) + ψL(ξ)φµ(ξ + η)

=
ξ

ξ + η

(
−ψL(ξ + η)

)
φµ(ξ + η) + ψL(ξ)φµ(ξ + η)

=

(
− ξ

ξ + η
ψL(ξ + η) + ψL(ξ)

)
φµ(ξ + η),

where we used equation (5.10) in the second to last line. By µ-symmetry we can inter-
change ξ and η which yields

(
− ξ

ξ + η
ψL(ξ + η) + ψL(ξ)

)
φµ(ξ + η) =

(
− η

ξ + η
ψL(η + ξ) + ψL(η)

)
φµ(ξ + η).

The characteristic function φµ is continuous and φµ(0) = 1. Hence, there exists an ε > 0
such that φµ(ζ) > 0 for all ζ ∈ B(0, ε). Therefore, for all ξ, η such that |ξ + η| < ε, we
can divide the above equality by φµ(ξ + η) to obtain

− ξ

ξ + η
ψL(ξ + η) + ψL(ξ) = − η

ξ + η
ψL(η + ξ) + ψL(η) |ξ + η| ≤ ε.

We proceed in the same manner as in the proof of Theorem 5.18. Therefore, we set
εk = ε/k for large k ∈ N and η = εk − εkζ, ξ = εkζ with arbitrary ζ ∈ R. Since
|ξ + η| = εk < ε, we get for all ζ ∈ R

−εkζ
εk
ψL(εk) + ψL(εkζ) = −εk − εkζ

εk
ψL(εk) + ψL(εk − εkζ).

Introducing f(ζ) := εkψL(εkζ)− εkζψL(εk), we have for all ζ ∈ R

f(1− ζ) = f(ζ),
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and f(0) = f(1) = 0 as ψL(0) = 0. A calculation similar to (5.7) yields that the function
f satisfies the functional equation for all |ξ + η| ≤ k. Furthermore, (5.8) and (5.9) hold
for all λ ∈ R and all |2−λ| ≤ k, respectively. Hence, on |λ| ≤ k− 2 we have the solution

f(λ) =
f(2)

2
(λ2 − λ).

Substituting this into ψL, we conclude for |λ| ≤ k − 2

ψL(ελ) =
f(2)

2ε
λ2 +

(
ψL(ε)−

f(2)

2ε

)
λ.

Since by assumption ψL has no linear part, we have f(2)
2ε

= ψL(ε) = ε2a1 and thus for |ξ| ≤
εk−2

k
we have ψL(ξ) = a1ξ

2. The integral part ξ 7→ a2
∫
y 6=0

(
eiξy − 1− iyξ1{|y|≤1}

)
ν( dy) is

a continuous negative definite function and vanishes in a neighbourhood of zero. Hence,
Proposition 5.19 gives a2 = 0.
Furthermore, we now suppose that supp(ρ) = R. Then substituting ψL(ξ) = a1ξ

2 and
µ( dx) = ρ(x) dx into (5.10) gives

iξ

∫
eixξβ(x)ρ(x) dx = −

∫
eixξa1ξ

2ρ(x) dx.

This is equivalent to

∫
eixξβ(x)ρ(x) dx = a1iξ

∫
eixξρ(x) dx

= a1

∫
∇xe

ixξρ(x) dx

= a1

∫
eixξ∇ρ(x) dx.

We conclude from the uniqueness of the Fourier transform that

β(x) = a1
∇ρ(x)
ρ(x)

almost everywhere.

As we observed before, if β is a bounded locally Lipschitz function, such a process is a
special case of the stochastic differential equation

dXt = b dZt + β(Xt−) dLt, t ≥ 0. (5.11)

The next corollary shows that we can treat another special case of this type if we assume
that L is a Brownian motion without drift. Then we can proceed similar as in the
previous proof.
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Chapter 5 Ornstein-Uhlenbeck Processes in Lp Space

Corollary 5.21. Let X be the unique solution of the stochastic differential equation
(5.11), where β : R → R is a bounded locally Lipschitz function and L is a one-
dimensional Brownian motion without drift, independent of the one-dimensional Lévy
process Z with the characteristic exponent ψZ. If the invariant probability measure µ is
symmetric then the process Z has no jumps.

Proof. Starting in the same manner as in Theorem 5.20, i.e. using the invariance of the
measure µ, cf. (5.4), and the µ-symmetry, cf. Definition 5.17, gives for ξ, η ∈ R

(
− ξ2

(ξ + η)2
ψZ(b(ξ+η))+ψz(bξ)

)
φµ(ξ+η) =

(
− η2

(ξ + η)2
ψZ(ξ+η)+ψZ(η)

)
φµ(ξ+η).

By rearranging the terms we get

(
ψz(bξ)− ψZ(η)

)
φµ(ξ + η) =

ξ2 − η2

(ξ + η)2
ψZ(b(ξ + η))φµ(ξ + η)

=
ξ − η

ξ + η
ψZ(b(ξ + η))φµ(ξ + η).

This is the same functional equation as in Theorem 5.20 and we conclude that ψZ(ξ) =
ilξ + 1

2
σ2ξ2, i.e. the process Z has no jumps.

This method cannot be further exploited in the case of the stochastic differential (5.11)
since we need that the x-dependent part of the symbol q(x, ξ) splits into a product of a
function depending on x and a function depending on ξ.
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Simulation of Feller Processes

There are several approaches to simulate stochastic processes, in particular Feller pro-
cesses. The most popular method is the Euler scheme which is based on the representa-
tion of the stochastic process as a solution of a stochastic differential equation. In this
chapter, however, we present a Markov chain approximation. This approach is based
on the symbol. In many cases, in particular for jump processes, the symbol is easily
accessible. Böttcher and Schilling [10] introduced the Markov chain approximation for
Feller processes with bounded symbols which is extended to Feller processes with sub-
linear growth conditions, cf. Böttcher, Schilling and Wang [11]. As the Euler scheme
suggests the Markov chain approximation should converge for symbols subject to lin-
ear growth conditions. In Section 6.1 we show that this is valid for the drift and
diffusion parameters of the symbol and that in this case the approximation coincides
with the Euler scheme. Although affine processes have linearly x-dependent parameters,
we treat this case separately in section 6.2. Using the special geometry of the affine
processes, the Markov chain approximation even applies to a linearly growing jump part.
Furthermore our scheme allows general state spaces, like positive semidefinite matrices,
cf. Chapter 4.

6.1 Simulation of Feller Processes

We start with the main result of this section, a proof of the convergence of the Markov
chain approximation. As an application of the theory, we simulate paths of a generalized
Ornstein-Uhlenbeck process. Finally, we establish a relation between the Markov chain
approximation and the Euler scheme.

Theorem 6.1. Let (Xt)t≥0 be a d-dimensional Feller process with infinitesimal generator
(A,D(A)) such that

C∞
c (Rd) is an operator core of A,

i.e. the closure of A|C∞
c (Rd) is (A,D(A)). The corresponding symbol q(x, ξ) is given by

q(x, ξ) = q(x, 0)− il(x)>ξ +
1

2
ξ>Q(x)ξ +

∫

Rd\{0}

(
1− eiξ

>y + iξ>χ(y)
)
N(x, dy).
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Assume that for all x ∈ Rd and some constants cl, cQ

q(x, 0) = 0,

‖l(x)‖max ≤ cl(1 + |x|),
‖Q(x)‖max ≤ cQ(1 + |x|2)

lim
|x|→∞

sup
|ξ|≤ 1

|x|

∣∣∣
∫

Rd\{0}

(
1− eiξ

>y + iξ>χ(y)
)
N(x, dy)

∣∣∣ = 0.

(6.1)

For each n ≥ 1 define a Markov chain (Y n(k))k≥1 with Y n(0) := x0 and transition kernel
µx, 1

n
( dy) given by

∫
eiy

>ξµx, 1
n
( dy) = eix

>ξ− 1
n
q(x,ξ), x ∈ D, ξ ∈ R

d, n ≥ 1.

Then

Y n(b·nc) d−→ X (n→ ∞).

Here bxc = max{k ∈ Z; k ≤ x} and
d−→ denotes convergence in distribution in the space

of right continuous functions with left limits equipped with the Skorohod J1 topology.

Proof. Our proof starts with the observation that the convergence of the Markov chain
is equivalent to the uniform convergence of the difference quotient of the Markov chain
transition operator to the generator of X.
Let (Tt)t≥0 be the semigroup associated to the Feller process (Xt)t≥0 having the generator
A. For u ∈ C∞(Rd) we have E(u(Y n(k))) = W k

1
n

u(x0), where

W 1
n
u(x) =

∫

Rd\{0}
u(y)µx, 1

n
( dy)

is the operator generated by the transition kernel µx, 1
n
. For u ∈ C∞

c (Rd) we get by
Fourier inversion

W 1
n
u(x) =

∫

Rd

eix
>ξe−

1
n
q(x,ξ)û(ξ) dξ. (6.2)

We will now show that

lim
n→∞

∥∥∥∥∥
W 1

n
u− u
1
n

− Au

∥∥∥∥∥
∞

= 0 ∀u ∈ C∞
c (Rd). (6.3)

For this, we introduce some further notation. Let ε > 0, u ∈ C∞
c (Rd) and r = r(u) > 0

such that supp(u) ⊆ B(0, r). Equation (6.2) shows that the transition operator W 1
n

corresponds to a Lévy process L = (L
(x)
t )t≥0 with characteristic exponent ξ 7→ q(x, ξ)

and starting point L
(x)
0 = x. Note that the symbol q(x, ξ) with fixed x is a continuous
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negative definite function. Hence the characteristic function of the random variable L
(x)
t

is given by eix
>ξ−tq(x,ξ). For x ∈ Rd and r > 0 we denote the exit time of a process

Y = (Yt)t≥0 starting in x by

τYB(x,r) := inf{t > 0; Yt /∈ B(x, r)}.

First, we verify equation (6.3) on compact sets. This part is identical to the proof in
Böttcher, Schilling and Wang [10]. Let K ≥ 0 and u ∈ C∞

c (Rd) then

sup
|x|≤K

∣∣∣∣∣
W 1

n
u(x)− u(x)

1
n

− Au(x)

∣∣∣∣∣

= sup
|x|≤K

∣∣∣∣∣∣

∫
eix

>ξ

(
e−

1
n
q(x,ξ) − 1

1
n

+ q(x, ξ)

)
û(ξ) dξ

∣∣∣∣∣∣

≤ sup
|x|≤K

∫
s|q(x, ξ)|2e−hRe q(x,ξ)|û(ξ)| dξ (0 < h, s < 1

n
)

≤ c2K
n

∫
|(1 + |ξ|2)|2|û(ξ)| dξ (q is locally bounded)

≤ 1

n
C̃,

where C̃ = C̃(cK , u) is some constant. Note that the mean value theorem is used twice
in the first inequality and that the symbol of a Feller process is locally bounded. If we
choose an N large enough, possibly dependent on C̃ and ε, we get

1

n
C̃ ≤ ε

3
∀n ≥ N.

Next, we look at (6.3) outside of a compact set. Therefore we consider each term sepa-
rately.
Since C∞

c (Rd) ⊆ D(A) (it is even a core of (A,D(A))), we know that Au ∈ C∞(Rd) for
u ∈ C∞

c (Rd). Hence there exists a constant KA = K(A, u) such that

|Au(x)| ≤ ε

3
∀|x| ≥ KA.

It remains to show that
W 1

n
u−u
1
n

converges strongly to zero outside of a sufficiently large

compact set. Let |x| ≥ K such that x /∈ supp(u). Since L(x) is the Lévy process
corresponding to the transition operator W 1

n
, we get

∣∣∣∣∣
W 1

n
u(x)− u(x)

1
n

∣∣∣∣∣ = n
∣∣∣W 1

n
u(x)

∣∣∣

= n
∣∣∣Eu

(
L
(x)
1
n

)∣∣∣

≤ n‖u‖∞P

(
L
(x)
1
n

∈ B(0, r)

)
,
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N(x, dy). Note that in order to exit the ball at least one of three independent parts of
the process has to leave the smaller ball with one third of the radius.

nP

(
L
(x)
1
n

∈ Bc(x, |x| − r)

)

≤ nP

(
x+ l(x)

1

n
+D(x) 1

n
+ J(x) 1

n
∈ Bc(x, |x| − r)

)

= nP

(
l(x)

1

n
+D(x) 1

n
+ J(x) 1

n
∈ Bc(0, |x| − r)

)

≤ nP

((
l(x)

1

n
∈ Bc(0, 1

3
(|x| − r))

)
∪
(
D(x) 1

n
∈ Bc(0, 1

3
(|x| − r))

)

∪
(
J(x) 1

n
∈ Bc(0, 1

3
(|x| − r))

))

≤ nP

(
l(x)

1

n
∈ Bc(0, 1

3
(|x| − r))

)
+ nP

(
D(x) 1

n
∈ Bc(0, 1

3
(|x| − r))

)

+ nP
(
J(x) 1

n
∈ Bc(0, 1

3
(|x| − r))

)
.

Now we are able to examine each term on its own. Note that the d-dimensional hypercube
1√
d
Q(0, 1) is contained in the ball B(0, 1). Using the linear growth condition for the drift

coefficient, we get the following estimate for the drift process

nP

(
l(x)

1

n
∈ Bc(0, 1

3
(|x| − r))

)
≤ nP

(
l(x)

1

n
∈ 1√

d
Qc(0, 1

3
(|x| − r))

)

= nP

(
‖l(x)‖max

1

n
>

1√
d

1

3
(|x| − r)

)

≤ nP

(
cl(1 + |x|) 1

n
>

1√
d

1

3
(|x| − r)

)
.

It is obvious that we can find some N = N(l, Kl, d, r) independent of x such that for
every |x| ≥ Kl the above probability equals 0 for all n ≥ N .
The increment of the Q(x)-Brownian motion is normally distributed with mean zero
and covariance matrix 1

n
Q(x), i.e. D(x) 1

n
∼ N

(
0, 1

n
Q(x)

)
. Hence, there exists a d-

dimensional vector Z = (Z1, . . . , Zd)
>, whose components are standard normal distri-

butions, and a matrix A(x) such that D(x) 1
n
=
√

1
n
A(x)>Z ∼ N

(
0, 1

n
Q(x)

)
. Since the

covariance matrix Q(x) is positive semidefinite, there exists a matrix A(x) such that
Q(x) = A(x)A(x)>. Inserting this in the subsequent calculation, we obtain

nP
(
D(x) 1

n
∈ Bc(0, 1

3
(|x| − r))

)

≤ nP

(
D(x) 1

n
∈ 1√

d
Qc(0, 1

3
(|x| − r))

)

= nP

(√
1

n
A(x)>Z ∈ 1√

d
Qc(0, 1

3
(|x| − r))

)
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≤ nP

(√
1

n
‖A(x)‖max(|Z1|+ . . .+ |Zd|) >

1√
d

1

3
(|x| − r)

)

≤ n

d∑

i=1

P

(√
1

n
‖A(x)‖max|Zi| >

1

d

1√
d

1

3
(|x| − r)

)

≤ ndP

(
|Z1| >

√
n

1

d
√
d

1

3︸ ︷︷ ︸
:=cd

|x| − r

‖A(x)‖max︸ ︷︷ ︸
:=r(x)

)
.

In the last step we used the fact that all Zi, i = 1, . . . , n, are identically distributed.
Since the standard normal distribution Z1 is symmetric, we can rewrite the above term
as a tail probability and use the standard upper bound for normal random variables, cf.
Schilling and Partzsch [51, Lemma 10.5]. The growth condition for the covariance matrix
implies ‖A(x)‖max ≤ cA(1 + |x|). In particular, since r is fixed, we have for all |x| ≥ KQ,
|x| � r

r(x) =
|x| − r

‖A(x)‖max

≥ |x| − r

cA(1 + |x|) > cr.

Combining these inequalities we obtain for all |x| > KQ

nP
(
D(x) 1

n
∈ Bc(0, 1

3
(|x| − r))

)
≤ ndP

(
|Z1| >

√
ncdr(x)

)

≤ 2ndP
(
Z1 >

√
ncdcr

)

≤ 2nd
1√
2π

1√
n

1

cd

1

cr
exp

(
−nc

2
dc

2
r

2

)

n→∞
−−−−→ 0.

For the estimation of the jump process J(x) 1
n

we use the upper maximal inequality, cf.
Theorem 2.1,

nP

(
J(x) 1

n
∈ Bc(0, t

1

3
(|x| − r))

)

≤ nP

(
τ
J(x)

B(0,t 1
3
(|x|−r)) ≤

1

n

)

≤ n
c

n
sup

|ξ|≤ 3
|x|−r

∣∣∣
∫

Rd\{0}

(
1− eiξ

>y + iξ>χ(y)
)
N(x, dy)

∣∣∣

≤ ε ∀|x| ≥ Kq,

where Kq = Kq(r, ε, q) is chosen suitable and independent of x. Note that J(x) is a Lévy
proccess, i.e. x is fixed when we use the upper maximal inequality. Hence the supremum
of x drops out.
Combining these three estimates, we find a constant K = max{Kl, KQ, Kq} independent
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of x such that

sup
|x|≥K

∣∣∣∣∣
W 1

n
u(x)− u(x)

1
n

∣∣∣∣∣ ≤ sup
|x|≥K

n‖u‖∞P

(
L
(x)
1
n

∈ B(0, r)

)

n→∞
−−−−→ 0.

Now we can choose some sufficiently large N such that

∥∥∥∥∥
W 1

n
u− u
1
n

− Au

∥∥∥∥∥
∞

≤ sup
|x|≤K

∣∣∣∣∣
W 1

n
u(x)− u(x)

1
n

− Au(x)

∣∣∣∣∣+ sup
|x|≥K

∣∣∣∣∣
W 1

n
u(x)− u(x)

1
n

∣∣∣∣∣+ sup
|x|≥K

∣∣Au(x)
∣∣

≤ ε

3
+
ε

3
+
ε

3
= ε,

for all n ≥ N .
By Ethier and Kurtz [19, Theorem 6.5, p.31] we know that

lim
n→∞

∥∥∥∥∥
W 1

n
u− u
1
n

− Au

∥∥∥∥∥
∞

= 0

is equivalent to

lim
n→∞

∥∥∥∥W
btnc
1
n

u− Ttu

∥∥∥∥
∞

= 0 ∀t > 0, ∀u ∈ C∞(Rd).

It follows by Böttcher, Schilling and Wang [11, Theorem 7.1] that this is equivalent

to the convergence in distribution of the Markov chain, i.e. the assertion Y n(b·nc) d−→
X (n→ ∞).

This extension allows us to simulate a generalized Ornstein-Uhlenbeck process whose
driving process U has no jumps1.

Example 6.2. Let V be a generalized Ornstein-Uhlenbeck process as in Example 1.18
with the additional condition that the driving process U has no jumps, i.e. νU = 0. In
other words, the symbol has the representation

q(x, ξ) =− i(xlU + lL)ξ +
1

2
(x2σ2

U + 2xσU,L + σ2
L)ξ

2

+

∫

R\{0}

(
1− eiξz + iξz1{|z|≤1}

)
νL( dz).

1This restriction is necessary since we can only show that lim|x|→∞ sup|ξ|≤ 1
|x|

|
∫
R\{0}

(1 − eiξxz −
iξxz1{|z|≤1})νU ( dz)| ≤ c, c > 0, cf. Example 2.9.
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Obviously we have

|xlU + lL| ≤ max(|lU |, |lL|)(1 + |x|),
|x2σ2

U + 2xσU,L + σ2
L| ≤ 2max(|σ2

U |, |σ2
L|, σU,L)(1 + |x|2).

In order to show the last condition of (6.1) we use Taylor’s formula twice

∣∣∣∣
∫

R\{0}

(
1− eiξz + iξz1{|z|≤1}

)
νL( dz)

∣∣∣∣

≤
∫

0<|z|≤1

∣∣∣1− eiξz + iξz
∣∣∣νL( dz)

+

∫

1<|z|≤
√

|x|

∣∣∣1− eiξz
∣∣∣νL( dz) +

∫

|z|≥
√

|x|

∣∣∣1− eiξz
∣∣∣νL( dz)

≤ 1

2

∫

0<|z|≤1

|ξ|2|z|2νL( dz) +
∫

1<|z|≤
√

|x|
|ξ||z|νL( dz) +

∫

|z|≥
√

|x|
2νL( dz)

≤ (|ξ|2 + |ξ|
√
|x|)

∫

0<|z|≤
√

|x|
(|z|2 ∧ 1)νL( dz) + 2νL

(
Bc(0,

√
|x|)
)
.

Since νL( dz) is a Lévy measure, it holds that νL
(
Bc(0, R)

)
−→ 0 for R → ∞ and∫

R\{0}(|z|2 ∧ 1)νL( dz) <∞. As a result, we have shown that

lim
|x|→∞

sup
|ξ|≤ 1

|x|

∣∣∣∣q(x, ξ)− il(x)ξ − 1

2
ξ2Q(x)

∣∣∣∣

= lim
|x|→∞

sup
|ξ|≤ 1

|x|

∣∣∣∣
∫

R\{0}

(
1− eiξz + iξz1{|z|≤1}

)
νL( dz)

∣∣∣∣

≤ lim
|x|→∞

(
1

|x|2 +
1

|x|
√

|x|
)∫

R\{0}
(|z|2 ∧ 1)νL( dz) + 2νL

(
Bc(0,

√
|x|)
)
= 0,

and that the assumptions of Theorem 6.1 are fulfilled. Figure 6.2 shows the result of the
simulation of such a generalized Ornstein-Uhlenbeck process.

Böttcher and Schnurr [12] have shown that the Markov chain approximation coincides
with the Euler scheme if the symbol has bounded coefficients, i.e. |q(x, ξ)| ≤ c(1 + |ξ|2)
for all x and ξ, where c > 0 is a constant. For the Euler scheme the coefficients are
usually required to satisfy a linear growth condition. The above theorem also ensures
convergence of the Markov chain approximation for symbols with drift and diffusion
having linear growth. Furthermore, both approaches still coincide under these extended
conditions as our next theorem shows.

Theorem 6.3. Let (X)t≥0 be a d-dimensional Feller process with generator (A,D(A)).
Assume that

C∞
c (Rd) is an operator core of A,
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Figure 6.2: Simulation of a Generalized Ornstein-Uhlenbeck process starting at x = 0.5
with parameters lU = 0.3, lL = 0.2, σ2

U = 0.4, σU,L = 0, 2, σ2
L = 1 and νL is

the Lévy measure of a Cauchy process

and that the corresponding symbol q(x, ξ) satisfies the growth conditions of Theorem
6.1. Then the Euler scheme for the corresponding SDE converges to (Xt)t≥0 weakly
in D([0,∞),Rd). Moreover, given that X̄m·h = x, the next step of the Euler scheme
X̄(m+1)·h has the characteristic function

eix
>ξe−hq(x,ξ).

Proof. This theorem is an extension of the main theorem of Böttcher and Schnurr [12].
Their proof is divided in three steps:

1. Show the convergence of the Markov chain approximation;

2. Calculate the SDE of the Feller process explicitly;

3. The characteristic functions of the increments of the Euler scheme coincide with
the characteristic functions of the Markov chain increments.

The first step of the proof is covered by Theorem 6.1. The second part only requires
the process to be conservative. Indeed, a conservative Feller process is an Itô process,
cf. Schnurr [56, Theorem 3.14], and an Itô process has a representation as a stochastic
differential equation, cf. Schnurr [56, Proposition 5.6]. In our case, conservativeness
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Chapter 6 Simulation of Feller Processes

follows from Wang [63, Theorem 2.1], see also Theorem 2.8, due to the growth conditions
of the symbol. The proof of the last part is identical to that in Böttcher and Schnurr
[12].

Since the Markov chain approximation coincides with the Euler scheme, we conjecture
that the growth conditions for the jump part of the symbol can be replaced by a linear
growth condition.

6.2 Simulation of Affine Processes

Although the drift and diffusion coefficients of affine processes meet the assumptions of
the previous convergence result, Theorem 6.1, the jump part fails to do so as it is linearly
dependent of x. Using the structure of the state space we are however able to extend the
approximation. Furthermore, we show that the approach is also valid on the state space
of positive semidefinite matrices, cf. Corollary 6.5.

Theorem 6.4. Let X be an affine process on D = Rm
+×Rn without killing, i.e. q(x, 0) = 0

for all x ∈ D, such that the corresponding symbol is given by

q(x, ξ) =
1

2
ξ>aξ − ib>ξ +

∫

D\{0}

(
1− eiξ

>y + iξ>χ(y)
)
µ( dy)

+
m∑

i=1

xi
1

2
ξ>αiξ − i

m+n∑

i=1

(xiβ
i)>ξ

+
m∑

i=1

xi

∫

D\{0}

(
1− eiξ

>y + iξ>χi(y)
)
µi( dy),

where (a, α, b, β, µ, µi) satisfy the usual admissibility conditions, see Theorem 3.17.
For each n ≥ 1 define a Markov chain (Y n(k))k≥1 with Y n(0) := x0 and transition kernel
µx, 1

n
( dy) as in Theorem 6.1. Then

Y n(b·nc) d−→ X (n→ ∞).

Here bxc = max{k ∈ Z; k ≤ x} and
d−→ denotes convergence in distribution in the space

of right continuous functions with left limits equipped with the Skorohod J1 topology.

Proof. Before proving the result for general spaces D = Rm
+ × Rn, we consider the

subspace Rm
+ individually. Therefore we set D = Rm

+ and n = 0. The symbol q of
the affine process corresponds to a continuous time branching process with immigration
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(CBI) and simplifies to

q(x, ξ) =
m∑

i=1

xi
1

2
ξ>αiξ − ib>ξ − i

m∑

i=1

(xiβ
i)>ξ

+

∫

Rm
+ \{0}

(
1− eiξ

>y
)
µ( dy)

+
m∑

i=1

xi

∫

Rm
+ \{0}

(
1− eiξ

>y + iξ>χi(y)
)
µi( dy).

Following the lines of the proof of Theorem 6.1, for u ∈ C∞
c (D) fix some r = r(u) > 0

with supp(u) ⊆ B(0, r). Then the main step is to show that for every ε > 0 there is
some constant K � r such that for all |x| ≥ K the increment of the Markov chain
approximation satisfies

nP

(
L
(x)
1
n

∈ B(0, r)

)
≤ ε,

where L = (L
(x)
t )t≥0 is a Lévy process with characteristic exponent ξ 7→ q(x, ξ) and

starting point L
(x)
0 = x, i.e. characteristic function eiξ

>x−tq(x,ξ). Applying the Lévy-Itô
decomposition we split the Lévy process L(x) into a drift process l(x), a diffusion process

D(x)t, and a jump process J(x)t, i.e. L
(x)
t = x+ l(x)t+D(x)t+J(x)t. First, we use that

l(x) = b+
∑m

i=1 xiβ
i is affine and deterministic. Now we choose n sufficiently large such

that
∣∣∣ bn
∣∣∣,
∣∣∣
∑m

i=1
βi

n

∣∣∣ ≤ δ � 1√
m

to get

nP

(
L
(x)
1
n

∈ B(0, r)

)
= nP

(
x+ l(x) 1

n
+D(x) 1

n
+ J(x) 1

n
∈ B(0, r)

)

= nP
( m∑

i=1

xi β
i 1

n︸︷︷︸
|·|≤δ

+ b
1

n︸︷︷︸
|·|≤δ

+D(x) 1
n
+ J(x) 1

n
∈ B(−x, r)

)

≤ nP
(
D(x) 1

n
+ J(x) 1

n
∈ B(−x, |x|δ + r + δ︸ ︷︷ ︸

=r̃

)
)
.

As B(−x−∑m
i=1 xiβ

i 1
n
+ b 1

n
, r) ⊆ B(−x, |x|

∣∣∣
∑m

i=1
βi

n

∣∣∣+
∣∣∣ bn
∣∣∣+ r) ⊆ B(−x, |x|δ + δ + r),

we expanded the radius instead of shifting the ball B(−x, r).
We note that the jump process J(x)t is spectrally positive. In other words, it has only
Rm

+ -valued jumps, i.e. µ(Rm
−\{0}) = 0 and µi(Rm

−\{0}) = 0 for i = 1, . . . ,m. Exploiting
this property, leads to

nP
(
L
(x)
1
n

∈ B(0, r)
)
≤ nP

(
D(x) 1

n
+ J(x) 1

n︸ ︷︷ ︸
≥0

∈ B(−x, |x|δ + r̃)
)

≤ nP
(
D(x) 1

n
∈

m×
i=1

(−∞, |x|δ + r̃ − xi)
)
.

115







Chapter 6 Simulation of Feller Processes

show that the Markov chain approximation of an affine process coincides with the Euler
scheme. If the affine process is conservative this statement is true. In order to show the
consistency of these approaches in the general case we need the representation of the
affine process as a stochastic differential equation and the existence of a solution.

For examples of path simulations using the Markov chain approximation we refer to
Chapter 3, Figures 3.1, 3.2 and 3.3.

This approach can easily be extended to affine processes on the state space of symmetric
positive semidefinite matrices. Since the jump measures allow only jumps into the space
S+
d , we can use the same estimation as for CBI processes in the proof of Theorem 6.4.

Corollary 6.5. Let X be a stochastically continuous affine process with state space S+
d .

Assume that the corresponding symbol, given by

q(x, ξ) = 〈b, ξ〉+
∫

S+
d \{0}

(1− e〈y,ξ〉)µ( dy)

− ξαξ +B>(ξ) + γ +

∫

S+
d \{0}

(
1− e〈ξ,y〉 + 〈χ(y), ξ〉

)
µ( dy),

has admissible parameters, cf. Theorem 4.7, and no killing, i.e. q(x, 0) = 0. For each
n ≥ 1 define a Markov chain (Y n(k))k≥1 with Y n(0) := x0 and transition kernel µx, 1

n
( dy)

given by

∫
ei〈y,ξ〉µx, 1

n
( dy) = ei〈x,ξ〉−

1
n
q(x,ξ), x ∈ S+

d , ξ ∈ Sd, n ≥ 1.

Then

Y n(b·nc) d−→ X (n→ ∞).

Here bxc = max{k ∈ Z; k ≤ x} and
d−→ denotes convergence in distribution in the space

of right continuous functions with left limits equipped with the Skorohod J1 topology.

This result shows that the Markov chain approximation using the symbol of the process
does not depend on the state space. Therefore this approach can easily be extended to
more general state spaces as already indicated by the above corollary.
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