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Abstract

Fat-tailed distributions, characterized by the relation P(x) ∝ x−α−1, are an emergent statistical
signature of many complex systems, and in particular of social activities. These fat-tailed distri-
butions are the outcome of dynamical processes that, contrary to the shape of the distributions,
is in most cases are unknown. Knowledge of these processes’ properties sheds light on how the
events in these fat tails, i.e. extreme events, appear and if it is possible to anticipate them. In
this Thesis, we study how to model the dynamics that lead to fat-tailed distributions and the
possibility of an accurate prediction in this context. To approach these problems, we focus on the
study of attention to items (such as videos, forum posts or papers) in the Internet, since human
interactions through the online media leave digital traces that can be analyzed quantitatively. We
collected four sets of time series of online activity that show fat tails and we characterize them.
Of the many features that items in the datasets have, we need to know which ones are the most
relevant to describe the dynamics, in order to include them in a model; we select the features that
show high predictability, i.e. the capacity of realizing an accurate prediction based on that infor-
mation. To quantify predictability we propose to measure the quality of the optimal forecasting
method for extreme events, and we construct this measure. Applying these methods to data, we
find that more extreme events (i.e. higher value of activity) are systematically more predictable,
indicating that the possibility of discriminate successful items is enhanced. The simplest model
that describes the dynamics of activity is to relate linearly the increment of activity with the last
value of activity recorded. This starting point is known as proportional effect, a celebrated and
widely used class of growth models in complex systems, which leads to a distribution of activity
that is fat-tailed. On the one hand, we show that this process can be described and generalized in
the framework of Stochastic Differential Equations (SDE) with Normal noise; moreover, we for-
malize the methods to estimate the parameters of such SDE. On the other hand, we show that the
fluctuations of activity resulting from these models are not compatible with the data. We propose
a model with proportional effect and Lévy-distributed noise, that proves to be superior describing
the fluctuations around the average of the data and predicting the possibility of an item to become
an extreme event. However, it is possible to model the dynamics using more than just the last
value of activity; we generalize the growth models used previously, and perform an analysis that
indicates that the most relevant variable for a model is the last increment in activity. We propose
a new model using only this variable and the fat-tailed noise, and we find that, in our data, this
model is superior to the previous models, including the one we proposed. These results indicate
that, even if present, the relevance of proportional effect as a generative mechanism for fat-tailed
distributions is greatly reduced, since the dynamical equations of our models contain this feature
in the noise. The implications of this new interpretation of growth models to the quantification of
predictability are discussed along with applications to other complex systems.
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Abbreviations and most used variables

X ∼ Y Random variable X is Y -distributed.

P Probability.

fX Probability density function of the variable X.

E Expectation.

V Variance.

α Index of fat-tailed distributions (P(X > x) ∝ x−α).

A Alarm.

E Event.

Π Predictability.

Xt Activity aggregated up to time t.

dXt Increments in activity (Xt+1 −Xt).

Wt Wiener process.

Lt Lévy-stable process.

AR Autoregressive model.

k-NN k Nearest Neighbors method.

Distributions:

GP Generalized Pareto.

S Lévy-stable.

N Normal.

LN Lognormal.

CEV Constant Elasticity of Variance.
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1. Introduction

The present Thesis is concerned with the challenges to dynamical models and prediction posed by
fat-tailed distributions. In particular, we focus on the implications for these two problems that
this statistical feature has in time series of social activities, where it is typical. This introductory
chapter motivates the importance of understanding the causes and effects of fat tails in physical
and social systems.

Fat-tailed distributions are a prominent pattern in the statistics of complex systems. There
is a variety of distributions that are fat-tailed, but in general they are approximated by P(X =

x) ∝ x−α−1 for large x. From a purely theoretical point of view, such distributions will have no
defined n-th moment, 〈Xn〉, for any n > α, which is very relevant if we consider that moments
are usually used to characterize distributions. From the point of view of statistical physics, fat
tails are a characteristic feature of a system at a critical state, e.g. the distribution of clusters’
size in a second order phase transition like in percolation [SA94], or when the system is far
from equilibrium, e.g. distribution of turbulent wind gusts [BRWP03, KHRV04] or earthquakes’
magnitude [GR56]. In the study of social activity, these distributions are even more common, and
have been used to describe a wide range of phenomena, from the distribution of population in
cities to the distribution of citations that papers accrue [Gab99, Red98]. This ubiquity in both
social and natural systems generated in the last two decades an ever increasing interest in topics
related to heavy tails, which range from establishing statistically the presence or absence of such
tails in empirical data [GMY04, CSN09] to studying their consequences in each of the fields where
it was found, and in particular in the field of complex networks [BA99, ALPH01].

The importance of understanding fat-tailed distributions in social activity can be hardly over-
estimated. As an example, consider the income distribution, the frequency of people with a given
amount of income; this distribution was first studied by Vilfredo Pareto in 1896, who observed that
it was fat-tailed [Par96]. This implies that few people concentrate a large amount of wealth, i.e.
there is a strong (likely undesirable) inequality, with a vast impact in the organization of economy
and society as a whole. Pareto himself called the group of people in the far end of the tail the
elite, and considered that society was ruled always by a particular elite, claiming that changes in
history were fundamentally caused by changes in the dominant cliques of society (theory of the
circulation of elites). However, the starting point of Pareto (his null model) was that the distri-
bution of income should have been approximately random, and by random he meant Normally
distributed. Although Pareto could not conceive a form of randomness other than the Gaussian
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2 Chapter 1. Introduction

Figure 1.1.: Dynamics of views in YouTube. Colored histograms: distributions of videos’ views
at fixed times after publication (0.3 million videos from our database). Gray lines at the bottom:
trajectories of 120 videos which had the same early success (50 views 2 days after publication).
Black histogram: distribution of views of the 120 selected videos 2 months after publication.

error distribution, the question of the nature of the fat tail remains, namely, up to which point the
distribution of income (or any other) is the result of a random process? How does this distribution
changes? Is it possible for an individual to move within its ranks? Is not difficult to see that the
answers to these questions have an implication on the interpretation of how society works.

Fat tails are then associated with extreme values, rare items or events that display a dispropor-
tionate importance in the system [AJK06]. Since these items are rare, two main issues must be
addressed:

• how do these extreme values appear?

• is it possible to anticipate them?

These two questions define the themes of this Thesis, namely the models and prediction in social
activity with fat tails. In order to address them, we have to go beyond the statistical analysis and
understand the dynamical process that leads to these distributions.

The most celebrated dynamical models of ensembles that lead to fat-tailed distributions are
the growth processes with proportional effect, i.e. models where the variable X of an item grows
with time, such that the increment dX is proportional to X. These models are almost as old as
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the observation of fat tails itself, with Gibrat proposing it for the income distribution studied by
Pareto in 1931 [Gib30]. The argument of proportional effect has been used as a general underlying
principle to explain the appearance of fat tails in the large variety of situations studied; due to its
flexibility, many times it has been modified accordingly to fit the particularities of each observation.
However, as we will see, these models generally show a predictability (the capacity of predicting
accurately the variable of interest) much higher than in real data; this is because these models
are usually focused in explaining the existence of the fat-tailed distributions. It is important to
remark that predictability is not absolute (a yes/no question) but can be quantified, although it
is required to do it in a way that is robust also for systems exhibiting fat-tailed distributions. We
are also interested in prediction: in that case the dynamical features of the system have to be
modeled as well, in order to reproduce the randomness, not only in the overall distribution, but
also in the movement among its ranks.

Online social media, such as forums, websites’ views or online videos, are a natural starting
point for studying aggregate behavior of social activity: each interaction in these media is tracked,
generating an unprecedented amount of data that can be analyzed. The variable of interest in this
case will be a proxy for attention, the time that a user invests in viewing a given item. Thus the
objects of study consist of an ensemble of time series of users’ activity. The dynamics of the activity
are, at first sight, non-deterministic, as seen in Fig. 1.1, where a schematic representation of the
views of YouTube videos (one of the four databases used in this Thesis) is shown. Videos that
earlier in their lifetime have the same amount of views rapidly take radically different, seemingly
random, paths. Therefore, a probabilistic modeling approach seems better suited to account the
fluctuations from the average behavior; one framework that fit these needs is the one of Stochastic
Differential Equations (SDE), a formal way of dealing with Langevin equations. It is possible
to model activity as a first order SDE, or using higher order equations. In first order SDEs,
the activity at a given time is only dependent on the immediately previous value; proportional
effect models would enter in this class. While higher order equations are more complex, and
would in principle allow for a more detailed description of the dynamics, the improvement in
the description’s accuracy should be estimated, in order to quantify the net advantage of this
approach. Beyond the specific results of our analysis that clarify the dynamics of this economy of
attention, we aim to establish a framework to study the dynamics of systems (also biological and
physical) where fat-tailed distributions appear.

This Thesis is organized as follows. Fat-tailed distributions are formally introduced in Chapter 2,
along with a review of the mechanisms for their appearance, and their implications for forecasting
social activity. In Chapter 3 the data used in the Thesis is introduced; four databases of online
social media were collected, and a statistical characterization of them is presented. In Chapter 4
a measure of predictability with respect to features that is robust against heavy tails is proposed,
based on the possibility of classifying extreme events correctly, independently from the forecasting
method chosen. Applications to data are presented, where it is established which are the more
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important features to be modeled. Proportional effect is studied in Chapter 5 in the YouTube
database. Although the data present proportional effect (the views in one day are proportional
to the aggregated views since publication), it is shown, by taking into account the fluctuations
of the data, that it is not the main cause of fat-tailed distributions. Accordingly, a model that
reproduces the features of data, namely the presence of Lévy-stable fluctuations, is presented in
the context of SDE. The parameter estimation of this model from data is discussed in detail, and
a rigorous statistical comparison with respect to previous competing models is performed. The
problem of modeling activity with generalized models, also beyond first order SDEs, is approached
in Chapter 6, where other time-series models are discussed and a new model based on daily activity
is introduced. A comparison with the model proposed in Chapter 5 is presented; the results
indicate that evidence for proportional effect can be observed in systems that are better described
by models with Lévy fluctuations, even without an explicit dependence on the total activity. A
summary of the main conclusions, an outlook, and a discussion on some open questions is presented
in Chapter 7.

This Thesis is the result of studies performed at the Max Planck Institute for the Physics
of Complex Systems between 2011 and 2016 under the supervision of Dr. Habil. Eduardo G.
Altmann.



2. Fat-tailed distributions in social activity:
evidence and models

Fat-tailed distributions are ubiquitous in social activities, where they are used to describe very
diverse variables, such as cities’ population, personal income and wealth, and, in particular, online
activity patterns. The prevalence of these distributions triggered plenty of research devoted to
understand why they are so common, and aiming to unveil, if any, the universal mechanism
underlying their emergence. This problem is one of the oldest in social complex system research and
is considered a fundamental one as well, due to the variety of systems where fat tails appear, from
physics, biology and social sciences, and the wide implications that these particular mechanisms
have.

The problem of the prevalence of fat tails in social activity is intimately related with the problem
of how this activity dynamically evolve, because many different mechanisms can originate such
distributions. In this chapter these ideas will be briefly reviewed, and one in particular, the class of
growth models with proportional effect, will be explored more in detail. Moreover, the implications
for the problem of forecasting will be mentioned, pointing out the necessity of methods that are
robust with respect to fat-tailed distributed variables.

2.1. Distributions with fat tails

2.1.1. Definitions

Let X be a continuous random variable, with a probability density function fX . We say that X
is fat-tailed distributed if fX is such that some of the moments of X diverge, i.e. if exists a value
α such that the expectation value EXβ , defined as

EXβ ≡
∫
xβfX(x)dx , (2.1)

diverges for all β such that β > α > 0 but is finite for all β < α. We make a subtle distinction
with heavy-tailed distributions, which are distributions that decay slower than exponentially, i.e.

lim
x→∞

eλxP(X > x) =∞ (2.2)

5



6 2.1 Distributions with fat tails

for all λ > 0, which is equivalent to state that their Moment Generating Functions is infinite for
any positive argument. (A notable example of a heavy-tailed, but not fat-tailed distribution is the
Lognormal.) Note that there is no universal consensus in these two definitions, so fat and heavy
tails in this Thesis should be intended in the word sense above described.

If X is a discrete random variable, then the probability mass function is used, which we note
simply by P(X = x); the above definitions hold, replacing the integral with the sum in the
expectation value calculation,

EXβ ≡
∑
x

xβP(X = x) . (2.3)

In both cases (continuous and discrete) the cumulative density function will be denoted as FX(x)
or simply as P(X < x). A related term often used is the power-law distribution, which refers to
any distribution that decays as a power of X:

P(X > x) ∝ x−α , (2.4)

with α > 0 (throughout the Thesis, α will always denote this exponent). This notion falls into
the category of fat-tailed distribution, which is the notion that we discuss in this Thesis.

2.1.2. Fat-tailed distributions in nature

Fat-tailed distributions are present in a variety of situations. In statistical mechanics they are
typically considered as signatures of systems in their critical state [Sor06], in particular in a
second order phase transition. Is the case, for example, of clusters’ distribution in the simplest
models of percolation [SA94] and spin systems as the Ising model [CN86]; the lack of a typical
scale in a cluster of sites is directly related to an infinitely large correlation length, which can
be regarded as the hallmark of a critical point [Bax07]. Clusters in percolation and Ising models
exhibit fractal properties as well, i.e. a non-trivial scaling of the surface of the cluster with its
size, a notion that relates with surface growth in interfaces [BS95].

While Ising model and percolation have a fundamental importance in order to understand
strictly physical problems such as magnetism, conductivity, and porous media, they have been used
as paradigmatic models for a much larger class of phenomena of other natural sciences in geophysics
and ecology. In these systems, fat tails are observed but the fundamental mechanisms are not well
established, because they are a result of a complex interplay of many elements (see Fig. 2.1 for
examples of these distributions). This is the case of the Gutenberg-Richter law [GR56], which
states that the amount of earthquakes is inversely proportional to their magnitude (the released
energy) up to an exponent to be estimated from data (a power-law); it has been proposed [SRS93]
that the earthquakes’ magnitudes are related with the geometry of faults’ patterns, which is given
by percolation theory.
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There are also fat-tailed distributions in the natural sciences that are not related with these
statistical physics models. A well-known example belongs to ecology, where a power-law shape
has been found for the frequency distribution for sizes of genera of flowering plants; this topic
was studied by Udny Yule in 1922 [WY22], and constitutes one of the earliest examples of the
observation of fat tails in nature. Notice that this is a case where the objects of study (flowers)
are already a complex system on its own.

(a) (b)

Figure 2.1.: Examples of fat-tailed distributions in natural sciences. (a) Frequency of earth-
quakes’ magnitudes, from [New05], logarithmic scale for the frequency, magnitudes are in Richter
scale (proportional to the logarithm of the released energy). (b) Frequency of genera’s number
of species, from [WY22], logarithmic scale in both axes.

2.1.3. Fat-tailed distributions in social activity

In an even higher level of complexity, we have the so-called social systems, where the individual
elements of the distribution are the result of the interactions among humans, which are not just
complex in the biological sense, but they are also conscious of their own interactions (see Fig. 2.2
for examples of these distributions). Two examples of social systems with fat-tailed distributions
are notable, since their analysis were seminal in their respective fields. Vilfredo Pareto found that
the income distribution [Par96] was fat-tailed in 1896; his study was focused on data of England,
Prussia, Saxony, and Italy, already pointing at some universal feature of income distribution that
would be confirmed for many other times and places (for modern analysis see Ref. [CG05]). George
Zipf, instead, found the same property for the frequency distribution of words in 1936 [Zip36],
which, up to certain limitations, is considered valid for a large range of datasets from different
years and languages [GA13].

It is difficult to overestimate the importance of the observation of fat-tailed distributions in these
disciplines. For instance, heavy tails in the income distribution and the lack of a characteristic scale
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(a) (b)

Figure 2.2.: Examples of fat-tailed distributions in social sciences. (a) Distribution of citations
up to the year 2010 on papers published in the APS in 1990 (20 years after the publication; see
Section 2.3 for details about the data). (b) Rank-frequency distribution of cities’ population for
five datasets of cities, from [LMGA16]. The Rank-frequency distribution is built by ordering the
cities according to their population, where the rank 1 is given to the most populated city. This
representation is equivalent to the cumulative density function [AH02] (in this plot the axis are
inverted).

of income imply high inequality, where the index α of the distribution is a proxy for concentration
of wealth [DY00].

2.1.4. Social activity in Online Media

A particular type of social systems are the Online Media. The development of Internet had a
wide impact on the society as a whole. Intended as a form of communication, Internet is based on
the digitization of its content, which has as a consequence not only the storage of such content,
but also the storage of the information about the people who communicate. The appearance, and
increase over time, of communication data lead to scientific research that analyzes social systems
from this data, since it mediates a great deal of our activity. In fact, many social scientists
understand data in Internet as a proxy for features in society that would be otherwise hard to
observe [FC10, AG05, SDW06]. This fact does not only explain the rise of the study on complex
networks in the last twenty years [BA99, WS98], but also the central role occupied by machine
learning methods. These approaches, respectively fulfill the need for models of interpersonal links
on the one hand, and for tools suited to cope with complex, high-dimensional data on the other.

Mass media are characterized by their easy access, so that they can be consumed by the so-
called masses. Examples of it include the Internet, newspapers, radio, and television. It has been
proposed [Sim71, DB13] that when a product is practically free, the attention (of the consumers)
becomes the scarce commodity of the market, because people have only a limited amount of it,
a capacity [Kah73]. This is the concept that regulates the economy of mass media, an economy
of attention, where companies profit mostly from advertisement and where the time a person
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dedicates to the product is the valuable asset.

In the Internet, in particular, typical mass broadcasting is intertwined with social media, where
the publication (in a wide sense) of content is left to the public. This innovation is due to the
relatively cheap, as well as technically undemanding, possibilities of publication, usually through
platforms that enable it. A familiar example for the reader, although not directly related with
Internet, may be the one of scientific publishing. This modality, where scientists instead of a
passive audience are both writers and readers, is now common to other types of communication,
such as general prose writing, music and videos.

The massive increase of producers and content poses naturally the problem of how the attention
of the consumers will be distributed in this new situation. Not surprisingly, in view of the examples
described above, data analysis shows that attention is fat-tailed distributed (see for example
Refs. [LAH07, RFF+10, Pri76] and Table 2.1). This is, again, a problem with a clear commercial
interest, but also of scientific interest, because the scale of the reach of online media is the highest
(worldwide), and the impact of the dominant items can be determinant for the overall culture
and/or politics.

It remains to explain how these fat tails appear, how they evolve, and why do they appear, i.e.
to model the distribution of attention (activity). The second problem to address is what happens
with the individual objects (items), if it is possible to predict the attention that they gather,
what are the factors that determine this prediction, and how they are related with the overall
distribution. Modeling and predicting social activity are the focus of this Thesis.

2.1.5. Measuring attention

Attention, defined as the fraction of time that people spend in a particular item from the media,
is not usually measured in a direct way. There are, however, different proxies for attention, mostly
traces of online activity by individuals. Table 2.1 shows some examples of proxies for attention
where fat tails have been reported. In Chapter 3 we describe in detail the datasets that are
used in this Thesis. In some of these reported contexts, attention can be understood as well
as popularity or success [WSB13, WH07a]. This flexibility in the terms actually points out a
double nature of the origin of attention. Take the example of scientific papers. Scientific papers
(and scientists) often are evaluated by the number of citations they accrue. By being numerical,
citations have the advantage of being objective measures of the impact of a paper in its field, if
the intention of measuring the intrinsic quality of the researcher with a proxy. Many criticisms
to this interpretation can be made: the field of a particular paper may be more popular than
other fields (thus being popular among fields), some papers become cited as references because
other papers made it already, some citations are “generic” (usually used as examples that can be
replaced) thus leaving space for choosing the citation with non-scientific considerations, etc. This
criticisms reveal that citation dynamics, and attention dynamics in general, is governed by an
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interplay of quality and popularity mechanisms [WSB13].

System Item Attention measure/activity (X) Refs.
Online Videos video views, likes [CS08]
Discussion Groups threads posts, answers [APM11]
Publications papers citations, views [Pri76, SSPA10, WSB13, PPP+13]
Twitter tweet retweets [WFVM12]
WWW web page views [RFF+10]
Online Petitions petition signers [YHM13]

Table 2.1.: Examples of reported fat-tailed distributions of proxies for attention.

Another aspect of the dynamics of citations is the distinction between endogenous and exogenous
disturbances [CS08, SDGA04, GGMA14]. Exogenous bursts are triggered by a sudden interest in
a particular topic, or item, while the endogenous bursts are a result of a dynamical process that
has as main variable the past activity itself. This distinction has the advantage that if data about
a related observable is available (an example of an exogenous factor may be the mentions of a
certain research paper in the mass media), it is possible to recover, in principle, the evolution of
the attention given just by the sharing of people among each other, something usually modeled as
an epidemic-like process. In general, in online media there is a coexistence among many forms of
communication, as broadcasting, direct sharing, public sharing, and navigating, and additionally,
there is a feedback among these forms. To distinguish these factors is a difficult task, because it
usually requires detailed information of user activities [WFVM12, CSF10].

Proxies, or measures of attention will be noted with the variable X, where X(i)
t is the amount of

activity accrued up to time t by the i-item. We will use dX(i)
t as the difference in the consecutive

values of X(i)
t ,

dX
(i)
t ≡ X

(i)
t −X

(i)
t−1 . (2.5)

2.2. General arguments for the prevalence of fat tails

Reviews on the subject of fat-tailed distributions in data [CSN09] and their origin [Mit04, Per14]
focus mostly on observations from social systems; in fact, it is often said that fat tails are ubiquitous
in social systems. The reason for the ubiquity of fat-tailed distribution in social activity can be
approached in two ways. The first is the mathematical approach, where fat-tailed distributions are
the attractor of Central Limit-like theorems, detailed in Section 2.2.1. A second less mathematical
approach is based on models, i.e. when fat-tailed distributions are the result of mechanistic models,
which is discussed in Section 2.2.2.
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2.2.1. Fat-tailed distribution as attractors of stochastic processes

The observation of distributions with fat tails can be explained by probabilistic arguments. The
first of them, involves Extreme Value Theory, which deals with the probability of having very
high values in an unknown stochastic process. Two fundamental theorems in this theory describe
this probability in different ways. The so-called First Extreme Value Theorem (Fisher-Tippett-
Gnedenko [DHF07]) states that the probability distribution of the maximum in a collection of
values can be of only three types, among the Frechét, Gumbel, or the inverse Weibull distributions.
These three distributions define basins of attraction in the space of all possible distributions.

A Second Extreme Value Theorem (Pickands-Balkema-de Haan [BDH74, PI75]) states that the
probability distribution of values above a given threshold is the Generalized Pareto distribution.
More formally, consider a random variable X with cumulative density function F (x) that is non
trivial in all the range of the real numbers, i.e. F (x) 6= 1, ∀x ∈ R; for a sufficiently large threshold
xp, the distribution function for X > xp can be approximated by

1− F (x) ≈ (1− F (xp))
(
1−Hγ

(
x− xp
σ(xp)

))
, (2.6)

where σ(xp) is a constant that depends on the threshold xp, and Hγ is the Generalized Pareto
distribution, defined as

Hγ(x) = 1− (1 + xγ)−1/γ , (2.7)

where for γ = 0 the right hand side is interpreted as 1 − e−x. For example, if X is normally
distributed, i.e. X ∼ N(0, 1), then γ = 0; we are interested in the case where the variables do not
follow normal statistics, i.e. γ 6= 0, so we will replace γ by α = 1/γ to ease the notation.

Since 1 − F (x) is the probability of X being higher than x, the conditional probability of X
being higher than x given that X is higher than the threshold can be written as

P (X > x | X > xp) ≈
(
1 +

x− xp
σ(xp)α

)−α
. (2.8)

With α > 0, Eq. (2.8) becomes a power-law distribution and, as such, a fat-tailed one. This
theorem is valid for any random variable X, implying that if we have a set of empirical data
obtained from any stochastic process, a threshold can be set such that we observe the Generalized
Pareto distribution, which, if α > 0, is a fat-tailed distribution.

A second probabilistic argument involves the sum of variables instead of their maxima. A
distribution is called Stable (or Lévy-stable, or α-stable) if the sum of i.i.d. (independent, identically
distributed) Stable random variables is also Stable-distributed. Notably, there is no analytical
form for the probability density function (and the cumulative) of a Stable random variable X
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(X ∼ S(α, β, µ, σ)), which has instead a characteristic function, φX(k) ≡ E [exp(ikX)]:

log φX(k) =

iµk − sα|k|α
[
1− iβ tan

(
πα
2

)
sign(k)

]
α 6= 1

iµk − s|k|
[
1 + iβ 2

π sign(k) log(|k|)
]

α = 1
, (2.9)

where µ is its expected value EX, σ is a positive scale parameter, β regulates the asymmetry (β ∈
[−1, 1]) and α is the index of the tail, which is heavy if α ∈ [0, 2); if α = 2 this distribution coincides
with the Normal distribution, where β has no effect and σ is the usual standard deviation. (These
parameters’ choice correspond to the so-called parametrization 1 of Ref. [Nol12].) The previous
expression can be deduced from the property of stability, which is easily tractable by means of the
characteristic function (equivalent to the Fourier transform). Although the probability function
of the stable distribution has no analytical form, it is possible to approximate its tail (x → ∞),
by the formula

P(X > x) ≈ sin
(πα

2

) Γ(α)

π
(1 + β)

(x
σ

)−α
. (2.10)

It is visible from this approximation that the Stable distribution is fat-tailed. The Central Limit
Theorem in its usual form gives the asymptotic distribution of the sum of random variables when
the variance (V(X) = EX2 − (EX)2) is bounded. A Generalized Central Limit Theorem [Zol86,
Nol12], which instead makes no requirements on the variance, states that the sum converges to a
Stable distribution (also known as Lévy-stable or α-stable). If we have a sequence {xi}i of i.i.d.
realizations of X, such that EX <∞, the distribution of the sum of N terms converges to a Stable
distribution (convergence in distribution), when N tends to infinity:

N∑
i

xi
d−→ S(α, β,Nµ,N1/ασ) . (2.11)

When V(X) <∞, the resulting distribution has α = 2, which is the Normal distribution.
It is worth to notice that these two theorems (Second Extreme Value Th. and Generalized

Central Limit Th.) use the notion of stability, i.e. applying a function between two i.i.d. random
variables returns the same distribution. In the case of extreme values, that function is the maxi-
mum, which is used in the First Extreme Value Theorem, and it leads to the Generalized Pareto
distribution; in the case of the Central Limit Theorem, the function is the sum that preserves
the Stable distribution, given that they belong to the same class (same α). The stability of these
(similar) distributions implies that they are attractors in the probability-distribution space of the
repeated application of the functions with respect to which they are stable.

The generality of these arguments account for the emergence of fat-tailed distributions, although
it gives no explanation on how these distributions appear, i.e. why the extreme events are in the
basin of attraction that correspond to α > 0 or why the variance is not finite.
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2.2.2. Mechanistic Models for fat-tailed distributions

Models that lead to fat-tailed distributions are almost as old as their observation, and although
time has brought rigorousness and variety derived from different applications to specific problems,
the underlying ideas are essentially the same and can be reduced to three classes: growth processes,
multiplicative random walks, and cost optimization.

The first two classes rely on proportional effect, and are being detailed below, while the cost
optimization approach states that this type of distributions exists because they are minimizing
a certain cost function, as originally stated by Mandelbrot [Man53]. In more recent times, the
argument has been generalized to designed systems in the Highly Optimized Tolerance frame-
work [CD99], where heavy-tailed distributed configurations are also very robust under perturba-
tions, and other models [PDD13, MMR13], although different, maintain the same spirit. A recent
family of models added to the list of generators of fat-tailed distributions is the Self-Organized
Criticality [BP95] (SOC). The inspiration for these models clearly comes from Physics: physical
systems in a critical state show fat-tailed distributions, implying that these statistical patterns are
indication of criticality. However, to reach a critical state in physics it is needed to tune a given
order parameter to its critical value, which is a fine tuning of the system. The idea behind SOC
is that in certain systems the critical state can be an attractor of the dynamical evolution of the
system.

If we are interested in modeling not only the distributions of activity, but also the dynamics
of how this activity evolves for each item, the ideas above will not play a big role because they
lack a mechanistic dynamical model. A class of stochastic processes is often applied in describing
such mechanisms by which activity grows, the growth processes [Per14]. Udny Yule proposed
first a model for the distribution of species among genera of plants [Yul25], in the context of an
evolutionary process, where new species are naturally created, the growth element of the process.
The number of species per genus would increase exponentially with time, since genera with more
species are more likely to produce new mutations, introducing a dynamic element. With these
simple assumptions it is possible to obtain a power-law distribution of species dynamically, from
an initial condition where each genus have only one species. The essential ingredient here is the
proportionality between the probability of having new species and the number of already existing
species in a genus, later dubbed as proportional effect1 by Gibrat [Gib30], who used, perhaps
unknowingly, the same idea to explain the fat tail of the income distribution. Simon [Sim55]
generalized this mechanism and proposed it as a model to explain the many fat-tailed distributions
observed in social systems, while at the same time formalized the mathematics of the problem.
Models with proportional effect were since then widely used for different applications with many

1the word proportionate is also used; little difference between the two terms exists, but while proportional is mostly
used quantitatively or in a relative sense (the hand is proportional to the body), proportionate can be used in absolute
way (with the sense of appropriate) or with concepts not so clearly measurable (that human body is proportionate;
proportionate response) [OED16]; in this Thesis the word proportional is preferred.
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variations that adapt it to each particular situation [Per14]. An example worth to be mentioned is
that known as preferential attachment [BA99, New01, JNB03], due to its leading role in the study
of Complex Networks.

A second class of processes was originally proposed by Champernowne, who was also interested
in the income distribution [Cha53]. He arrived to the same conclusions as Gibrat through a master
equation approach, where the basic postulate is that people move from one (logarithmic) class of
income to another as a random walk. This argument was formalized by Kesten [Kes73] in general
terms and by Gabaix [Gab99] for cities’ population distribution, and in modern term it can be
formulated as follows: consider a stochastic process where the variable X(i)

t is the fraction of total
income of the person i at time t. A growth rate of income is assigned to each person; this growth
rate should account for the different mechanisms in the economy, and we assume that the total
effect of these mechanisms can be described by a Normally distributed random variable. Moreover,
a reflecting barrier of income x0 is set, such that if the person is below the barrier, it can receive
only a positive growth rate. Since the growth rate is an increase relative to X(i)

t , and it is random,
it is said that X(i)

t is subject to a multiplicative noise and a reflecting barrier at some low x0.
The average growth rate when the income is above x0 should be (slightly) negative, in order to
compensate the positive growth guaranteed to the items below x0. The process can be written for
continuous time as a Stochastic Differential Equation (SDE),

dX
(i)
t =

aX
(i)
t dt+ bX

(i)
t dW

(i)
t X

(i)
t > x0

max
(
aX

(i)
t dt+ bX

(i)
t dW

(i)
t , 0

)
X

(i)
t ≤ x0

, (2.12)

where dW (i)
t is the infinitesimal increment of the Wiener process associated to the item i (infor-

mally, it can be thought as an infinitesimal step of a random walk), and a < 0, b > 0. (This
particular SDE is known as Geometric Brownian Motion [KPS12].) The distribution converges
(for large t) to a power-law [Gab99]

P(X > x) =

(
x

x0

)−α
, (2.13)

where α = 1/(1 − x0/EX). The barrier is important, since it makes the difference between the
typical Lognormal distribution output of a simple multiplicative noise process and the power-law
distribution obtained here. Paradoxically, in the limit where the barrier x0 → 0, the exponent
α→ 1, although if it is exactly zero, the distribution is Lognormal.

It has been early noted by Simon himself [Sim55], that the two previous classes of models
(growth processes and the Geometric Brownian Motion with barrier) share the same property,
namely the linear proportionality of the average increment dXt with respect of the current value
of the variable of interest, Xt. However, both approaches have advantages and disadvantages. The
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growth processes are better suited to define sophisticate models, since it is possible to introduce
complex mechanisms that modify the amount of X assigned to a particular item, and how this
item is chosen, as well as the possibility to control the number of items in the system. The SDE
approach, instead, even if less flexible, allows to use the mathematical machinery developed for
this kind of equations [KPS12]. Additionally, mechanistic models with proportional effect are
usually defined discretely (both X and the holders of X (the items) are discretized), while SDE
are continuous both in time as in space. It is possible, however, to use SDEs as an approximate
formalism to the more general class of growth processes; a particular case where this approximation
can be done will be shown in Section 5.2 and Section 5.3.

As stated above, the common feature between the two classes of models previously described is
that the expectation of the increment of an item’s activity is proportional to the total activity

EdX(i)
t = aX

(i)
t , (2.14)

for some proportionality constant a, which for us defines the class of processes with proportional
effect. We focus now on how to model both the dynamics and the fat-tailed distributions of
attention in empirical data.

2.3. Estimation of the Proportional effect

We can continue the example of citations to illustrate how the proportional effect is established in
empirical data. From the database of Web of Science (provided via the Max Planck Digital Library)
it is possible to extract the total amount of citations a paper i gathered since its publication up
to t years, X(i)

t ; these time series are shown in Fig. 2.3(a). By taking two time points, in this
case 3 and 20 years, we can try to establish a relation between X3 and the increment up to 20

years, dX = X20 −X3, variables that we expect to be proportional. This relation is illustrated in
Fig. 2.3(b) and suggests the presence of the proportional effect dX ∼ X3.

Two methods are typically used to estimate proportional effect from empirical data [Per14,
GS13]: the averaging method and the cumulating method.

• The averaging method consists in averaging the values of dX for each of a set of predefined
bins [New01], 〈dX | Xt ∈ bin〉. In Fig. 2.3(c) these bins where selected to have a width 1,
thus effectively computing an average of dX for each different Xt, with the consequence of
having noisy data in the end of the curve. A different selection of bins can be made, but
it has to be noted that any selection is arbitrary, and as such will have its own problems.
Two issues are: to which Xt the average dX has to be assigned and the disparity on the
amount of items that fall in each bin, which makes some points statistically more reliable
than others. A partial solution to this issue is detailed in Section 5.4.1.
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Figure 2.3: Proportional effect in
citations’ dynamics. In order to en-
hance the effect, the increment in ci-
tations is taken between the years 20
and 3, as function of the citations at
year 3. The data belongs to all the
papers published by the American
Physical Society in 1990, according
to the Web of Science (8878 papers).
(a) Time series of citations for a sub-
set of 100 papers that have more than
10 citations after 20 years. In orange,
papers that had 15 citations up to the
year 3 (X3 = 15) (b) Increment be-
tween year 3 to year 20 as function
of X3, where each point is a paper;
in orange, the points that correspond
to papers with X3 = 15. (c) Averag-
ing (blue) and Cumulating (orange)
the citations reveal a clear pattern
of proportional effect. The blue and
orange lines are the weighted least-
squares fit for the non-linear fit for
each dataset, dX = aXβ

3 . The red
line is the least-squares fit for the log-
arithm of the cumulated data.

• The method of cumulation [JNB03, EL03] consist just in summing the averages of dX
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correspondent to all the items with Xt < x, defining a cumulative function

κ(x) =
∑

i:Xt≤x
〈dX | Xt〉 (2.15)

shown in Fig. 2.3(c). This cumulative function will have the functional form of the integral of
the relation between Xt and dX, so in the case of proportional effect, we expect a quadratic
function. Since more items are summed in each point of κ, the noise is greatly reduced by
this method.

Both methods operate on the data creating a new set of points with a lower noise than the
original; in this sense, cumulation is equivalent to use the cumulative probability distribution
instead of the probability density. The result of any of these processes is typically fitted by a
non-linear function of form y(x) ∝ xβ , and it has been found that β ≈ 1 in a variety of situations.

However, the implementation of the estimation procedures mentioned above yields results that
are not always consistent, as illustrated in the citations example. The points that result from
averaging and cumulating are fitted with a non-linear regression, shown in Fig. 2.3(c) with the best
fit for the function y(x) = a ∝ xβ by the weighted least-squares method, where the weight is given
by the amount of points at each value of Xt. The results of fitting both datasets (cumulated and
averaged data) is clearly not the same; while the fit of the averaged data results in β = 0.974±0.006,
the fit of the cumulated data yield β = 0.35 ± 0.02 because it is dominated by the points of
high Xt. A commonly used procedure is avoiding the non-linear fit altogether, applying the
logarithm to linearize the data [JNB03]; this type of regression on the cumulated data results in
β = 0.772± 0.001.

The inconsistency among methods can be understood by noticing that these fitting procedures
are generally inadequate to account for fluctuations, except in very few cases [MSSVK08]. In these
methods, the weights in the fit fulfill the role of assigning a fluctuation to the data points, making
more certain averaged values of more data. The aim of cumulating data is to reduce the error,
but that is achieved by summing the increments dX, which correlates the points to be fitted; at
the same time, it is not clear what the weight should be (the amount of the cumulated data up to
X, or the amount of data that is being added exactly for X?); a fit with constant weights results
in a value of β even further from β = 1. In Section 5.4.2 these issues will be addressed by the
introduction of the Maximum Likelihood method for this particular problem, where an explicit
model for the data fluctuations is defined.

Fluctuations away from proportional effect can be analyzed in two general frameworks, where we
consider Xt to be the result of a dynamical process. The first option is to consider the fluctuations
as a random noise to be added to an average behavior common to all the items; this approach is
considered and implemented in Chapter 5, where the limitations of SDE models are discussed and
it is shown that the choice of the form of the fluctuations is crucial to the correct interpretation
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of the dynamics of the system, and the formation of fat tails as well.
The second possibility is to consider the fluctuations as the aggregated effect of mixing items

that are not in the same state, but just the same Xt. The assumption here is that the state of an
item is given by more than one value of the activity, e.g. Xt andXt−1, generalizing the proportional
effect described until now. The implications of this possibility are discussed in Chapter 6, where
models in which the increment depends on many previous times are implemented.

The interpretation of these fluctuations is not important only because of the accuracy of the
model, but also because these models would forecast in a radically different way the unobserved
future.

2.4. Forecasting social activity

Forecasting social activity is, on the one hand, a way of testing the accuracy of models, and on
the other hand, a goal on itself, where most of the commercial interest is focused [YK12]. A
forecasting method is any algorithm that estimates the value of a variable (e.g. Xt) for a time still
not observed; forecasting methods will use a set of variables, that we call in this context features,
to make predictions.

In the context of time series prediction, forecasts can be deterministic (e.g. the paper i will
have 100 citations 10 years after its release, X̂(i)

10 = 100) or probabilistic (e.g. the probability of
paper i to have 100 citations 10 years after the release is p, P̂(X(i)

10 = n) = p). The deterministic
forecast can be thought as an extreme case of a probabilistic forecast (the probability of paper i to
have 100 citations 10 years after the release is 1), so it carries potentially more information. Both
types of forecasts will use information available before the predicting time t. Let’s note with H(i)

t ,
the set of values X(i)

t−1, X
(i)
t−2, · · · , X

(i)
0 , the history of the i item and with M (i) all the features of

the item that do not depend explicitly with time (e.g. observables that depend on the content or
properties of the item such as the publication date). The most general forecasting method is a
function f that uses as input H(i)

t and M (i), it has some parameters θ, and returns an estimate for
the activity at a desired future time, X(i)

t , or a probability distribution of its value (deterministic
or probabilistic forecast, respectively). As an intermediate step, the parameters θ of the method
must be established; the general name for this process is learning, where θ are adjusted such that
the accuracy of the forecast is maximized.

The choice of the accuracy measure of the prediction is a fundamental point in the forecasting
problem, since the measure of accuracy chosen will determine the optimal forecasting method. For
a deterministic forecast at time t, one natural and widely used measure is the mean squared error,

ε2 =
1

N

N∑
i=1

(
X̂

(i)
t −X

(i)
t

)2
(2.16)
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which is the euclidean distance between the set of predictors X̂(i)
t , and the real values, X(i)

t , for
each item.

In general, the parameters θ are used to weight the importance of each of the available in-
formation, i.e. the components of H(i)

t and M (i). Having a high number of parameters makes
the forecasting method more flexible to adequate the prediction to the real value; however, this
flexibility may fit the model to data that is actually a fluctuation from the standard behavior. For
this reason the evaluation of a forecasting method is done by dividing the set in two subsets, the
training and the target sets. The training set is the set of data used to choose the parameters of
the method, maximizing the accuracy, and the target set is the set of data used to measure the real
accuracy of the method (out-of-sample error). Usually increasing the complexity of the method
(most of the times this is equivalent to increase the number of parameters) at first improves the
accuracy measured both on the target and on the training set, but then decreases the accuracy on
the target while still increasing the accuracy in the training set, a behavior named overfitting. In
order to avoid overfitting, it is important to find the most important features that determine the
accuracy of the forecast, in order to use only them in the forecasting method. Notice that when
the forecasting method is based in a model (some methods are not), solving this problem is equiv-
alent to finding the minimal set of relevant features that explain the observations. It is possible
in certain cases to approximate the out-of-sample error by a regularization technique [FHT01],
penalizing more complex models (see Section 5.4.2).

The problem of finding the most important features is usually addressed in the context of a
particular forecasting method [MJG90], determined by the chosen accuracy measure. However,
the question can be framed regardless of it, i.e. what are the features that contain information
about the activity dynamics? Here we get to the idea of Predictability [KAH+06], the capacity
of a variable to be predicted given a certain feature. The study of the predictability is a main
theme of this Thesis, and has an importance in itself, since it is part of our daily experience that
seemingly ordinary items (videos, news, publications, etc.) unexpectedly gain an enormous amount
of attention, propelling the idea that systems with fat-tailed distributions are unpredictable [Tal07,
COS+13, Sor09]. Therefore, there is a need for a measure of the predictability that is independent
from the forecasting method; this topic is addressed in Chapter 4.

It remains the problem of estimating the accuracy in presence of fat tails. When the accuracy
measure is the mean squared error, there is a trivial forecasting method that consists in predicting
the same value for each item, regardless of the other available information. If such method is used,
then the predictor that maximizes the accuracy can be found by deriving Eq. (2.16) with respect
to X̂t and equating to 0, the result being exactly the mean of the training set,

X̂t =
1

N

N∑
i=1

X
(i)
t . (2.17)
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(Notice that the forecasting method is not using the information that is trying to predict directly,
but it uses indirectly if the parameters θ are fitted using the forecast accuracy; here for example,
the method has an output equal to a constant value, that when fitted results in this equation.) The
mean squared error computed with this forecasting method is equal to the variance of the training
set, and can be used as a baseline to compare other forecasting methods [Brö09]. However, if Xt is
distributed with a fat-tail, the variance is not defined if the exponent α < 2, a common situation
in social data. In finite datasets, this has the consequence that the variance of the training set
can have large fluctuations since the empirical variance is a convergent estimator of a quantity
that is not defined (in particular, the variance will depend on the size of the training set, N – see
Section 5.4.1), another challenge to cope with if we desire to measure predictability.

Evaluation of accuracy in fat-tailed data can be approached in two ways. One of them is to
explicitly measure the impact of the sample size. This can be done by using a resampling technique
such as bootstrap aggregating [Bre96], i.e. creating sets of pairs training/target sets from the
original dataset and considering the statistics of the accuracy of each pair. By these methods, for
each size N ′ < N , a probability distribution of the accuracy is obtained; this approach is taken in
Section 6.4.

The other approach is to consider instead forecasts that are robust with respect to the type
of distribution that the variables have. If we assume that the target and the training sets have
the same distribution (which is reasonable if the process is stationary or if both sets are an
unbiased partition of the original dataset), then the simplest robust variables are the quantiles,
i.e. the values of the type P(Xt > x), which, for values of x chosen accordingly, is the definition
of extreme events given by the Second Extreme Value theorem. In summary, the prediction of
extreme events, which in the context of attention are the big hits, is not valuable only because of
the interest that these events have in itself, as mentioned before, but also because they constitute
a robust test of accuracy for forecasting methods and, more generally, for models. This idea is a
recurring theme throughout this Thesis.



3. Datasets used and relevant properties

In this chapter we describe the four datasets used throughout this Thesis. The datasets were
chosen because they fit into the phenomenon that we want to study: each of them has proxies for
attention, which are fat-tailed distributed, and can be tracked along time. As a result, from each
original source, a dataset consisting of a large set of time series of online activity was produced.
Two of these sources were collected by the author, while the other two are used with permission. A
characterization of the datasets in terms of extreme value distributions is realized, and a partition
by features is described. The datasets consist of

• views received by 16.2 million videos in YouTube.com between Jan. 2012 and Apr. 2013;

• posts written in 0.8 million threads in 9 different Usenet discussion groups between 1994 and
2008;

• votes to (all) 4.6 million questions published in Stack-Overflow between Jul. 2008 and Mar.
2013;

• views of (all) 72246 papers published in the journal PLOS ONE from Dec. 2006 to Aug.
2013.

All these datasets are openly provided in Ref. [MA14b].

3.1. Characterization of data

Each dataset is composed by a collection of time series of activity (views, posts, etc.), each
corresponding to one of the items (videos, threads, etc.) in the original source. As explained in
Section 2.4, the items have particular features, that characterize them: the content, the metadata
(together denoted by M (i)), and, of course, their past activity (denoted as a whole by H(i)

t .
The content is, naturally, the item itself, what the user is actually interested in. The content is

not always accessible, and in some cases, even if accessible, is not useful to make a prediction. An
example of lack of accessibility is the previous example of papers (see Chapter 2): individually they
are available to read, but a large collection of them to perform statistical analysis is more difficult
to get and to automatically read. An example of low utility is the one of online videos: they can be
collected in bulk, but its content is highly difficult to interpret by machines, because it is a process

21



22 3.1 Characterization of data

that involves speech and image recognition, very complex fields on their own. If the content is
available in machine-readable format (imagine a dataset of full-text of papers), this content has to
be processed and converted into some numeric or categorical variables usable to forecast; in this
process is where concepts like keyword spotting [LFL98] or sentiment analysis [DD10, CST+11]
play an important role, since their goal is to create measures that represent features of the content
that most humans do understand and most machines do not.

Metadata, instead, is simpler by definition. The metadata of an item is a set of machine-
readable information about it that serves to categorize, i.e. to be able to find the item fast, by
filtering of the relevant metadata values. The title of some item (or the abstract of a paper) is
usually the most complex metadata that can be found, but typical examples include the length
of a text, or a video, the publisher’s name, his/her location and any other information available
about him/her, the size of a file, the date of publication, the journal of a paper, etc. In this sense,
if there is an algorithm that translates features of the content into alphanumerical values, then
this values would become metadata, so there is metadata given at the moment of publication, and
the metadata computed from the content. Here we are not analyzing the content, so we consider
only the original metadata (given by the dataset without further analysis).

A partition in groups by a single feature of the metadata is performed to each dataset, for the
purpose of analyzing later its impact on the predictability (see Chapter 3). In order to characterize
in general terms the data, a fixed time after publication t∗ was chosen for each database, so in this
chapter X will be used to note Xt∗ . The tails of the distribution P(X) of activity X received by the
items at a time t∗ after publication is characterized without loss of generality using Extreme Value
Theory, as explained in Section 2.2.1. For large thresholds xp the probability P (X > x | X > xp)

follows a Generalized Pareto distribution [Col01]:

P (X > x|X > xp) ≈
(
1 +

x− xp
σα

)−α
(3.1)

for x > xp. In our analysis it is essential to consider the discretization of the observations (specially
for small values), since it has a direct impact on the estimation of the parameters [CSN09]. There-
fore a discretized version of the Generalized Pareto Distribution is used, which has a probability
mass function

P(X = x) =
(σα)−(α+1)

ζ(α+ 1, σα)

(
1 +

x− xp
σα

)−α−1
, (3.2)

where ζ is the Hurwitz Zeta function.



3.2 Fit of fat-tailed distributions 23

3.2. Fit of fat-tailed distributions

Our goal is to characterize the tails of the distributions of the collected datasets, by fitting the
Generalized Pareto distribution to the data at a given time t∗; particular relevance has the pa-
rameter α, that defines how fast the distribution decays (the higher the α the faster is the decay
of P (X = x) with respect to x). The parameters of each distribution P (X = x) are estimated by
Maximum Likelihood Estimation [Gri93] (MLE). MLE consists in maximizing the probability of
the data given the model parameters α and σ

L =
N∏
i=1

P(X = X(i) | α, σ;xp) . (3.3)

This maximization is computationally done by minimizing the related quantity, ` = − lnL, there-
fore equal to

` = −
N∑
i=1

lnP(X = X(i) | α, σ;xp) . (3.4)

The value xp is not a parameter, but is selected through a modification of the criterion proposed
in Ref. [CSN09], which consists in selecting the lowest possible value of xp for which the fit is
statistically significant; here, xp is selected as the lowest threshold that guarantees statistical
significance for at least 80% of the groups analyzed for each database. Significance is estimated
by the computation of the p-value, the probability of measuring in data sampled from the model a
given statistic as extreme as in the data; the chosen statistic is the Kolmogorov-Smirnov [CSN09]
(KS) distance between two distributions with cumulative density function F and G,

KS = max
x

(|FX(x)−GX(x)|) . (3.5)

The result of the fitting procedure is reported in Table 3.1, where a time after publication t of
interest is selected.

Additionally to the fit of the overall distribution, a fit of each partition of the database is
realized. These fits yield α ∈ [0.50, 4.36] and are statistically significant already for relatively
small xp’s, with a p-value> 0.05 in 52 out of 59 fits. These results confirm the presence of fat tails,
and indicate that our databases are representative of social media more generally (while scientific
publications are usually not classified as social media items, from the point of view of their online
views, they are subject to a similar attention-gathering process).
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Database α σ xp KS p Nfit N t∗
YouTube 0.69 55.3 20 0.003 0.00 7621233 13284409 20 days
Usenet 1.56 5.15 1 0.028 0.96 344608 871931 20 days
Stack-Overflow 2.03 7.7 15 0.027 0.38 12193 4397194 1 year
PLOS ONE 1.41 1083.22 2300 0.009 0.14 5948 72244 2 years

Table 3.1.: Summary of all the databases. Additionally to the parameters of the Generalized
Pareto distribution, are reported the selected threshold xp, the Kolmogorov-Smirnov distance
between the data and the fit (KS), the p-value, the amount of items fitted by the distribution,
Nfit (i.e. the ones that exceed xp), the total amount of items in the database N , and the time
t∗ after publication that is selected to fit the distributions.
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Figure 3.1.: Cumulative distribution functions for each dataset. Blue solid line: distribution for
the combined data; red dashed line: fit of the generalized Pareto distribution for the combined
data; dotted vertical red line: location of xp, the threshold of the fitted distribution; gray solid
lines: distribution for each of the metadata features selected.

3.3. YouTube

YouTube (www.youtube.com) is the main platform for sharing videos online, being the third more
viewed website (at the time of the writing of this Thesis, according to Alexa rank). Some of
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the videos published in it reached more than 1 billion people, and the data of views is recorded
daily. The data was obtained through the YouTube API, a service that the parent company,
Google, provides, using two particular functions: one that allows to retrieve a list of the last
videos published with their metadata, updated approximately every four hours, and another one
that retrieves the time series of views, shares and ratings.

The metadata available for each video includes the publication date, publisher, and category,
one of fifteen predefined thematic groups selected by the users. The categories will be used to
partition the dataset. The threshold used in the reported results is xp = 20. The fit of the overall
distribution here is not statistically significant: visually (see Fig. 3.1(a)), this can observed in the
deviation of the fit with respect to the data (around x ∼ 105); nevertheless, the fit is significant
for most of the individual groups (Table 3.2), whose deviations are tolerated by the lower amount
of data available. The exact description of the distributions is not the goal here, but is worth to
notice that the distribution of the data does not decay abruptly in the tail; instead, it seems that
there is a second fat-tailed regime.

3.4. Stack Overflow

Stack Overflow (www.stackoverflow.com) is the most used platform of question and answers
among programmers; these questions and answers compose the dataset. Additionally, the questions

Group α σ KS p Nfit P(g)
Autos & Vehicles 0.75 62.9 0.005 0.78 711022 7.4%
Comedy 0.84 55.2 0.005 0.85 571719 8.3%
Education 0.61 45.3 0.009 0.07 502299 7.0%
Entertainment 0.88 46.2 0.007 0.54 494318 7.7%
Film & Animation 0.64 63.5 0.006 0.81 375084 5.1%
Gaming 0.58 74.8 0.009 0.12 575361 6.3%
Howto & Style 0.69 48.8 0.006 0.81 445804 6.4%
Music 0.70 59.3 0.006 0.84 530635 6.4%
News 0.50 51.7 0.017 0.02 232925 2.9%
Nonprofits & Activism 0.92 40.4 0.004 1.00 428223 7.3%
People & Blogs 0.97 33.8 0.007 0.57 476004 7.6%
Pets & Animals 0.71 101.1 0.017 0.00 752916 8.2%
Science & Technology 0.65 76.8 0.012 0.01 655954 7.1%
Sports 0.86 53.5 0.005 0.94 479078 6.6%
Travel & Events 0.70 43.8 0.005 0.99 389891 5.6%

Table 3.2.: Summary of the YouTube database. Along the estimated parameters of Eq. (3.2),
we report the corresponding KS distance, the p-value of the fit, the amount of items fitted Nfit
and P(g), the proportion of items of a given category with respect to the total.
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and the answers are tagged to improve search and classification and can be voted, according
to their quality and insight. The whole website is available at http://archive.org/details/

stackexchange, and from their databases it is possible to extract time series of votes for each
question.

A grouping of questions based on tags was used, and since each question has many tags, a
classification procedure was performed. In particular, programming languages were used as the
grouping factor, since the majority of tags are related to them. The 10 more common tags of this
type were selected (see list in the table below), and the items with a tag if that tag was a substring
of a longer, different, tag were merged into them. Similarly, tags that could be associated to a single
programing language were also merged. The remaining tags were grouped in a group labeled rest,
which included also all cases in the intersection of two or more programming language groups; this
rest group is therefore much larger than others. The complete grouping of the tags can be seen
in our publication, Ref. [MA14b] in the file "Stack-Overflow Lemmas". The threshold used for
the fits is xp = 15, and all these fits are significant (see Table 3.3), which can be corroborated by
visual inspection in Fig. 3.1(c).

3.5. Usenet

Usenet is a worldwide distributed discussion system established in 1980, and is a widely used
precursor to Internet forums, where users would debate on the most variate topics. Discussions
are threaded, which means that there are original posts that can be replied by the other users,
creating a sequence of posts on a particular topic.

Group α σ KS p Nfit P(g)
.net 2.06 7.4 0.039 0.74 1802 12.2%
c 1.54 8.0 0.030 1.00 348 1.5%
c++ 1.82 7.1 0.036 0.94 1125 3.5%
css 2.35 7.9 0.049 1.00 163 1.4%
html 1.86 6.5 0.050 1.00 114 1.0%
java 1.87 7.8 0.045 0.81 909 7.6%
javascript 1.83 7.9 0.031 0.99 747 8.6%
php 2.10 7.9 0.040 0.99 293 5.6%
python 2.11 6.5 0.055 0.91 516 4.1%
rest 2.14 8.0 0.029 0.76 5969 49.7%
sql 3.14 8.9 0.054 0.97 207 4.8%

Table 3.3.: Summary of the Stack Overflow database. Along the estimated parameters of
Eq. (3.2), we report the corresponding KS distance, the p-value of the fit, the amount of items
fitted Nfit and and P(g), the proportion of items with a given language tag with respect to the
total.

http://archive.org/details/stackexchange
http://archive.org/details/stackexchange
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Topics are divided in Discussion Groups, which are a natural partition of the dataset, and is the
partition used here. The dataset is a collection of threads used originally in Ref. [APM11], and
retrieved through Google Groups (for example, for the discussion group on the operative system
Linux, comp.os.linux, visit https://groups.google.com/forum/#!forum/comp.os.linux). The
threshold used is xp = 1, and while most of the fits are significant (see Table 3.4), the amount
of items in the groups is heterogeneous, specially for the amount of posts that have 0 replies
(see Fig. 3.1(b)).

3.6. PLOS ONE

The PLOS ONE dataset is a collection (72246) of publicly available scientific publications of the
journal PLOS ONE, between Dec. 2006 and Aug. 2013. The data was retrieved through the API
provided by PLOS (http://api.plos.org), but is identical to the one published in Ref. [FL13].

The amount of authors in a paper was chosen as the grouping factor (the group labeled 12

contains all the papers with 12 or more authors). The threshold used for the fits is xp = 1400;
the data and the fits for each category are quite similar (see Fig. 3.1(d) and Table 3.5), indicating
that the number of authors is not a strong indicator of differences in the amount of views.

Group α σ KS p Nfit P(g)
alt.rap 4.36 4.6 0.046 0.25 23112 7.3%
comp.os.linux.misc 3.60 3.4 0.061 0.00 69099 18.6%
rec.arts.poems 1.67 4.0 0.028 1.00 42199 23.5%
rec.arts.sf.written 1.15 8.2 0.020 0.23 39040 9.1%
rec.music.classical 2.03 5.6 0.030 0.60 36151 10.0%
rec.music.country.western 2.02 4.9 0.032 0.84 29131 8.6%
rec.music.hip-hop 3.36 5.8 0.033 0.83 48792 12.1%
sci.physics.fusion 2.08 4.5 0.033 0.89 4622 1.7%
talk.origins 1.63 12.7 0.017 0.10 52454 9.1%

Table 3.4.: Summary of the Usenet database. Along the estimated parameters of Eq. (3.2), we
report the corresponding KS distance, the p-value of the fit, the amount of items fitted Nfit and
and P(g), the proportion of items of a given discussion group with respect to the total.

https://groups.google.com/forum/#!forum/comp.os.linux
http://api.plos.org
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Group α σ KS p Nfit P(g)
1 1.64 1262.7 0.043 0.46 187 1.1%
2 1.27 897.9 0.015 0.82 941 6.7%
3 1.61 904.5 0.016 0.44 1393 10.5%
4 1.47 686.5 0.009 0.97 1498 12.2%
5 1.52 723.4 0.019 0.10 1565 12.6%
6 1.59 672.3 0.014 0.66 1313 11.4%
7 1.50 682.6 0.018 0.49 1142 10.3%
8 1.65 643.5 0.023 0.13 931 8.6%
9 1.85 666.9 0.034 0.03 794 6.8%
10 1.60 642.7 0.033 0.07 587 5.3%
11 1.74 693.8 0.040 0.04 474 3.9%
12+ 1.88 767.1 0.020 0.08 1665 10.6%

Table 3.5.: Summary of the PLOS database. Along the estimated parameters of Eq. (3.2), we
report the corresponding KS distance, the p-value of the fit, the amount of items fitted Nfit and
and P(g), the proportion of items with a given amount of authors with respect to the total.



4. Extreme events predictability

4.1. Introduction

An important question is how to quantify the extent into which prediction of individual items is
possible, i.e. their predictability [KAH+06]. Of particular interest –in social and natural systems–
is the predictability of extreme events [AJK06, HAHK07, HK08, Sor02, GYH+11, BB11], the
small number of items in the tail of the distribution that gather a substantial portion of the public
attention.

As motivated in Section 2.4, measuring predictability is difficult because it is usually impossible
to disentangle how multiple factors affect the quality of predictions. For instance, predictions
of the future activity of individual items rely on (i) information on properties of the item (e.g.,
metadata or previous activity) and (ii) a prediction strategy that converts the information into
predictions. The quality of the predictions reflect the interplay between these two factors and
the dynamics of attention in the system. In particular, the choice of the prediction strategy is
crucial. Instead, predictability is a property of the system and is by definition independent of the
prediction strategy (it is the upper bound for the quality of any prediction based on the same
information on the items). A proper measure of the predictability should provide direct access to
the properties of the system, enabling a quantification of the importance of different information
on the items in terms of their predictive power.

In this chapter we introduce a method to quantify the predictability of extreme events and
apply it to data from social media, motivated in Section 4.2. This is done by formulating a
simple prediction problem which allows for the computation of the optimal prediction strategy.
In Section 4.3 we consider the problem of providing a binary (yes/no) prediction to whether or
not an item will be an extreme event (attention passes a given threshold). Predictability is then
quantified in Section 4.4 and Section 4.5 as the quality of the optimal strategy. In Section 4.6 we
apply this method to the four different systems introduced in Chapter 3: views of YouTube videos,
comments in threads of Usenet discussion groups, votes to Stack-Overflow questions, and number
of views of papers published in the journal PLOS ONE. The most striking empirical finding is
that in all cases the predictability increases for more extreme events (increasing threshold). We
show that this observation is a direct consequence of differences in (the tails of) the distributions
of attention conditioned by the known property about the items, as summarized in Section 4.7.
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4.2. Robust estimation and Extreme Events

An important property of a statistic (a measure realized on a sample of data) is robustness, the
capacity of the statistic to have a good performance even if outliers are present in the data. This
quality is usually quantified through the concept of breakdown point, the smallest proportion of
observations that can result in the statistic to take an arbitrary value (statistically incompatible
with the true distribution). The outliers here are these problematic observations, uncommon
points in the data that stands out against the rest.

As an example, if we consider the estimation of the (well-defined) mean of a variable X, µX ,
we can see that the breakdown point of the sample mean is 1/N , i.e. a single point of the data
is enough to change arbitrarily the value of the estimate of the mean. The mean is, from this
point of view, the worst possible statistic that represent the location of an unknown distribution;
in contrast, the median is the best possible statistic, since it has a breakdown point of 1/2, the
maximum achievable. The median is just the point of X that divides the total distribution in two
parts with equal mass, a particular quantile of the distribution.

While the mean is the optimal statistic of the location of the normal distribution, it can be
substantially sub-optimal for distributions close to the normal [VR13]. Filtering the outliers out
of the data is not a solution to this problem. In the first place, a method to identify outliers
from an unknown distribution has to be defined, but this is a rather subjective task, since a data
point is an outlier always with respect to some underlying distribution, that must be assumed.
In the second place, in some distributions, big, rare values cannot be considered outliers at all.
In particular, fat-tailed distributions can be approximated by power-law scalings P(x) ≈ x−α−1,
thus there is no characteristic scale after which an outlier can be defined. The mean does not
even exists for α < 1, and for α < 2, the standard deviation does not exists, which means that
the Central Limit Theorem cannot be used to estimate the distribution of the mean. In systems
with fat-tailed distributions, such as social systems, if predictions are issued based on estimators
of the moments there is a high chance of having unreliable results, therefore, there is a need for a
different approach to prediction of social activity.

A solution comes from the previous example, using the median to replace the mean as an
estimator of location. More generally, the quantiles’ measurements are essentially robust: the
quantile corresponding to q, xq, is defined as the value such that

P(X < xq) = q , (4.1)

with a the breakdown point of q if q < 1/2 and 1 − q if q > 1/2. From Eq. (4.1), we see that
the quantile is the threshold that a value has to surpass to be considered extreme, when the
probability of having such extreme values is 1 − q. We therefore consider the problem of event
prediction instead of the value prediction.
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We say an extreme event E happens at time t if the cumulative activity until time t, X(i)
t , is

bigger than a fixed threshold x∗, Xt > x∗, The variable to be predicted for each item is then
binary: E or Ē (not E). As the observable is binary, we issue binary predictions for each item (E
will occur or not), which is equivalent to a classification problem and different from a probabilistic
prediction (E will occur with a given probability). Fat tails do not affect the robustness of the
method because all items for which Xt > x∗ count the same (each of them as one event), regardless
of their size x. Indeed, the tails of P(Xt > x∗) determine simply how the probability of an event
P(E) depends on the threshold x∗.

4.3. Predictability of Events

In this section we introduce a method to quantify predictability based on the binary prediction
of extreme events. This is done by arguing that, despite the apparent freedom to choose among
different prediction strategies, it is possible to compute a single optimal strategy for this problem.
We then show how the quality of prediction can be quantified and argue that the quality of the
optimal strategy is a proper quantification of predictability.

Predictions are based on information on items which generally lead to a partition of the items
in groups g ∈ {1, . . . , G} that have the same feature [SB94]. As a simple example of our general
approach, consider the problem of predicting at publication time t = 0 the YouTube videos that
at t∗ = 20 days will have more than x∗ = 1000 views (about P(E) ≈ 6% of all videos succeed). As
items’ information, we use the category of a video so that, e.g., videos belonging to the category
music correspond to one group g and videos belonging to sport correspond to a different group
g′. Since the membership to a group g is the only thing that characterizes an item, predictive
strategies can only be based on the probability of having E for that group, P (E | g).

In principle, one can think about different strategies on how to issue binary predictions on
the items of a group g. They can be based on the likelihood (L) P (E | g) or on the posterior
(P) probability P (g | E)[HAHK07], and they can issue predictions stochastically (S), with rates
proportional to the computed probabilities, or deterministically (D), only for the groups with
largest P (g | E) or P (E | g). These simple considerations lead to four (out of many) alternative
strategies to predict events (raise alarms) for items in group g

(LS) stochastically based on the likelihood, i.e., with probability min{1, βP (E | g)}, with β ≥ 0;

(LD) deterministically based on the likelihood, i.e., always if P (E | g) > p∗, with 0 ≤ p∗ ≤ 1;

(PS) stochastically based on the posterior, i.e., with probability min{1, β′P (g | E)}, with β′ ≥ 0;

(PD) deterministically based on the posterior, i.e., always if P (g | E) > p′∗, with 0 ≤ p′∗ ≤ 1.

In the limit of large number of predictions (items), the fraction of events that strategy (LS)
predicts for each group g matches the probability of events P (E | g) and therefore strategy (LS) is
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reliable [Brö09] and can be considered a natural extension of a probabilistic predictor. Predictions
of strategies (LD), (PS) and (PD) do not follow P (E | g) and therefore they are not reliable.

Being now the observable to predict binary, a way of assessing the quality of prediction must
be defined. Comparing predictions and observations gives four possible results, given by the
combination of the prediction (positive or negative) and its success (true or false). If A denotes
the prediction of an event (an alarm), the hit rate (or True Positive Rate) and the false alarm rate
(or False Positive Rate) are defined as

hit rate ≡ number of true positives
number of positives

= P (A | E) ,

false alarm rate ≡ number of false positives
number of negatives

= P
(
A | Ē

)
).

(4.2)

These are analogous to measures like Accuracy and Specificity or Precision and Recall [BYRN99].
Prediction strategies typically have a specificity parameter (e.g., controlling the rate of false pos-
itives). Varying this parameter, a prediction curve that goes from (0, 0) to (1, 1) is built in the
hit×false-alarm space, the ROC curve (see Fig. 4.1(a)). The amount of desired false alarms of the
strategy (β, p∗, β′, and p′∗ in the examples above) are the specificity parameters by definition.

The overall quality is usually measured by the area below this curve, known as Area Under
the Curve (AUC) [HM82]. For convenience, we use the area between the curve and the diagonal
(hits=false-alarms), Π = 2AUC− 1 (equivalent to the Gini coefficient). In this way, ΠS ∈ (−1, 1)
represents the improvement of strategy S against a random prediction. In absence of information
ΠS = 0 and perfect predictions lead to Π = 1. In the YouTube example considered above, we
obtain ΠPS < ΠLS < ΠPD < ΠLD (17%, 18%, 29%, 32%), indicating that strategy (LD) is the
best one.

We now argue that, as it will be shown in detail in Section 4.4, that Strategy (LD) is optimal
(or dominant [PFK98]), i.e., for any false alarm rate it leads to a larger hit rate than any other
strategy based on the same set of P (E | g). The strategies listed lead to piecewise linear functions
(see Fig. 4.1(b)), and the True Positive Rate can be maximized by using the Simplex algorithm,
a very popular linear programming method. In fact, strategy (LD) is the only ordering of the
groups that enforces convexity in the hit×false-alarms rates space, a property that, as the Simplex
algorithm shows, maximizes the True Positive Rate if the False Positive Rate is constrained (see
Section 4.4 for a formal derivation).

The ranking of the groups by P (E | g) implies a ranking of the items, an implicit assumption
in the measure of the performance of classification rules [HM82, HT01]. The existence of an
optimal strategy implies that the freedom in choosing the prediction strategy argued above is
not genuine and that we can ignore the alternative strategies. In our context, it implies that
the performance of the optimal strategy measures a property of the system (or problem), and
not simply the efficiency of a particular strategy. Therefore, we use the quality of prediction of
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the optimal strategy (Π ≡ ΠLD) to quantify the predictability (i.e., the potential prediction) of
the system for the given problem and information. By geometrical arguments we obtain from
Fig. 4.1(b) (see Section 4.5)

Π =
∑
g

∑
h<g

P(g)P(h) (P (E | h)− P (E | g))
P(E)(1− P(E))

, (4.3)

where P(g) is the probability of group g and g is ordered by decreasing P (E | g), i.e., h < g ⇒
P (E | h) > P (E | g).

The value of Π can be interpreted as the probability of a correct classification of a pair of E and
Ē items [HM82, HT01]. In practice, the optimality of this strategy is dependent on the estimation
of the ordering of the groups according to P (E | g). Wrong ordering may occur due to finite
sampling on the training dataset or lack of stationarity in the data. In fact, any permutation of
indexes in Eq. (4.3) reduces Π.

Figure 4.1.: Quantifying the quality of event-prediction strategies requires measuring both the
hit and false alarm rates. (a) Performance of Strategy (LS) and Strategy (LD) for the problem
of predicting views of YouTube videos 20 days after publication based on their categories. The
symbols indicate where the rate of issued predictions for a given group equals 1 (the straight lines
between the symbols are obtained by issuing predictions randomly with a growing rate). (b)
Illustration of the prediction curve (red line) for an optimal strategy with three groups g = 1, 2, 3
with P(1) = P(2) = P(3) = 1/3 and P (E | 1) = 0.3,P (E | 2) = 0.2,P (E | 3) = 0.1.



34 4.4 Proof that strategy LD (Bayes classifier) is dominant

4.4. Proof that strategy LD (Bayes classifier) is dominant

A strategy is dominant when for any given false alarm rate, the hit rate is maximized. Following
the definition in Eq. (4.2), we write the x and y coordinates of the hit×false-alarm plot as

hit rate ≡ P (A | E) =
G∑
g=1

P (A | g)P (g | E) =
G∑
g=1

πgyg ≡ y,

false-alarm rate ≡ P
(
A | Ē

)
=

G∑
g=1

P (A | g)P
(
g | Ē

)
=

G∑
g=1

πgxg ≡ x,

(4.4)

where for notational convenience yg ≡ P (g | E), xg ≡ P
(
g | Ē

)
, and πg ≡ P (A | g). Since pre-

dictions are issued based only on the information about the groups, strategies (both deterministic
and stochastic) are defined uniquely by πg, while xg and yg are estimated from data. The com-
putation of the dominant strategy corresponds to finding the set {πg}g<G that maximize y with
the constraint

∑G
g=1 πgxg = x. This problem can be solved exactly by applying the Simplex

method [Dan98]. Define h such that
∑

g<h xg < x <
∑

g≤h xg; we write Eq. (4.4) as:

y −
∑
g<h

yg = −
∑
g<h

(1− πg)yg +
∑
g>h

πgyg + πhyh,

x−
∑
g<h

xg = −
∑
g<h

(1− πg)xg +
∑
g>h

πgxg + πhxh.

Isolating πh in the lower equation and introducing it in the top one we obtain

y =
∑
g<h

yg + x
yh
xh
−
∑
g<h

(1− πg)xg
(
yg
xg
− yh
xh

)
+
∑
g>h

πgxg

(
yg
xg
− yh
xh

)
. (4.5)

Notice that yg/xg is the contribution of the group g to the slope of the prediction curve in
the hit×false-alarm space. If the G groups are ordered by decreasing P (E | g), then yg/xg also
decreases with g. Therefore (yg/xg − yh/xh) > 0 for g < h and (yg/xg − yh/xh) > 0 for g > h

and Eq. (4.5) is maximized by choosing πg such that the two last terms vanish. This is achieved
choosing

πg =


1 g < h,
x−
∑
g<h xg
xh

g = h,

0 g > h,

(4.6)

which corresponds to issuing positive predictions only to the h groups with largest P (E | g) and
is equivalent to the strategy (LD). Positive events are predicted for the group h in Eq. (4.6) as
much as needed to reach the required false positive rate x.
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4.5. Computation of Predictability for the optimal strategy

As illustrated in Fig. 4.1(b), the partition performed by the optimal strategy defines G different in-
tervals in the hit and false alarm axis (the points for which P (E | g) = P∗, g ∈ {1 . . . G}) and there-
foreG2 rectangles in the hit×false-alarm space. The (g, h) rectangle has height P(h)P (E | h) /P(E),
and therefore it is equal to P (h | E), and a width P

(
g | Ē

)
Its area is thenAg,h = P (h | E)P

(
g | Ē

)
.

The curve of strategy (LD) is the union of the diagonals of the g = h rectangles (which are ob-
tained by increasing p∗). Π is two times the sum of the rectangles and triangles under this curve
minus half of all the area:

Π = 2

∑
g

∑
h<g

Ag,h +
1

2

∑
g

Ag,g −
1

2

∑
g

∑
h

Ag,h



=
∑
g

∑
h<g

Ag,h −
∑
g

∑
h>g

Ag,h

=
∑
g

∑
h<g

(Ag,h −Ah,g)

=
∑
g

∑
h<g

P (h | E)P
(
g | Ē

)
− P

(
h | Ē

)
P (g | E)

=

∑
g

∑
h<g P(g)P(h) (P (E | h)− P (E | g))

P(E)(1− P(E))
,

where we used
∑

g

∑
hAg,h = 1.

4.6. Application to Data

Here we apply our methodology to the four social-media data described above. We consider the
problem of predicting at time t1 ≥ 0 whether the attention X(i)

t∗ of an item at time t∗ > t1 passes
a threshold x∗. In practice, the calculation of Π from the data is done counting the number of
items: (i) in each group g (P(g) = {# items in g}/{# items}); (ii) that lead to an event (P(E) =

{# items that cross the threshold x∗ at t∗}/{# items}); and (iii) that lead to an event given that
they are in group g (P (E | g) = {# items in g that cross the threshold x∗ at t∗}/{# items in g}).
Finally, the groups are numbered as g = 1, 2, . . . , G by decreasing P (E | g) and the sum over all
groups is computed as indicated in Eq. (4.3). In Ref. [MA14b] a python script, which performs
this calculation in the data, is provided.
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We report the values of Π obtained from Eq. (4.3) considering two different information on the
items:

1) the attention at prediction time Xt1 ;

2) information available at publication time t = 0 (metadata).

In case 1), a group g corresponds to items with the same Xt1 . These groups are naturally ordered
in terms of P (E | g) by the value of Xt1 and therefore the optimal strategy is equivalent to
issue positive prediction to the items with Xt1 above a certain threshold. In case 2), the groups
correspond to items having the same meta-data (e.g., belonging to the same category). In this case,
we order the groups according to the empirically observed P (E | g) (as discussed above). Before
performing a systematic exploration of parameters, we illustrate our approach in two examples.

YouTube

Consider the case of predicting whether YouTube videos at t∗ = 20 days will have more than
x∗ = 1, 000 views. For case 1), we use the views achieved by the items after t1 = 3 days and
obtain a predictability of Π = 90%. For case 2), we obtain that using the day of the week to
group the items leads to Π = 3% against Π = 31% obtained using the categories of the videos.
This observation, which is robust against variations of x∗ and t∗, shows that the category but not
the day of the week is a relevant information in determining the occurrence of extreme events in
YouTube. Previous views, however, are much more informative than categories.

PLOS ONE

Consider the problem of identifying in advance the papers published in the online journal PLOS
ONE that received at least 7500 views 2 years after publication, i.e. t∗ = 2 years and x∗ = 7500

(only P(E) = 1% achieve this threshold). For case 1), knowing the number of views at t1 = 2

months after publication leads to a predictability of Π = 93%. For case 2), a predictability
Π = 19% is achieved alone by knowing the number of authors of the paper –surprisingly, the
chance of achieving a large number of views decays monotonously with number of author (g
increases with number of authors).

The examples above show that formula Eq. (4.3) allows for a quantification of the importance
of different factors (e.g., number of authors, early views to the paper) to the occurrence of ex-
treme events, beyond correlation and regression methods (see also Ref. [PPP+13]). Besides the
quantification of the predictability of specific problems, by systematically varying t1, t∗, and x∗ we
can quantify how the predictability changes with time and with event magnitude. The significant
finding in this systematic analysis is that in all tested databases and grouping strategies the pre-
dictability increases with x∗, i.e., extreme events become increasingly more predictable, as shown
in Fig. 4.2.
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Figure 4.2.: Predictability increases for extreme events. If the attention an item receives at time
t∗ is above a threshold, Xt∗ > x∗, an event E is triggered. The plots show how the predictability
Π changes with x∗ using two different information to combine the items in groups {g}. Black
circles: Π at time t = 0 using metadata of the items to group them. The red lines are computed
using as probabilities P (E | g) the Extreme Value distribution fits for each group at a threshold
value xp, see Eq. (2.7) and Section 3.1. Blue squares: Π at time t1 < t∗ using Xt1 , i.e., the
attention the item obtained at day t1. The dashed lines are the values of the 95% percentile of
the distribution generated by measuring Π in an ensemble of databases obtained shuffling the
attribution of groups (g) to items (the colors match the symbols and symbols are shown only
where Π is at least twice this value). Results for the four databases are shown (see Chapter 3 for
details): (a) YouTube (X: views of a video; metadata: video category); (b) Usenet discussion
groups (X: posts in a thread; metadata: discussion group of the thread); (c) Stack-Overflow
(X: votes to a question; metadata: programming language of the question); (d) PLOS ONE (X:
online views of a paper; metadata: number of authors of the paper).
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4.7. Discussion

4.7.1. Dependence of Predictability with respect to extreme events

We now explain why predictability increases for extreme events (increasing x∗). This increase is
not due to the reduction of the number of events P(E). Consider the case in which E is defined
in the interval [xf − Δx, xf + Δx), instead of [x∗,∞). Assuming P(X) to be smooth in X, for
Δx → 0 at fixed xf we have that P(E) → P(xf )Δx and P (E | g) → P (xf | g)Δx (P(g) remains
unaffected), and Eq. (4.3) yields

Π =

∑
g

∑
h>g P(g)P(h) (P (xf | h)− P (xf | g))

P(Ef )[1−ΔxP(xf )]
, (4.7)

which decreases with Δx→ 0. This shows that the increased predictability with x∗ is not a trivial
consequence of the reduction of P(E) (Δx → 0), but instead is a consequence of the change in
P (E | g) for extreme events E.

Systematic differences in the tails of P (X | g) lead to an increased predictability of extreme
events. Consider the case of two groups with cumulative distributions P (E | g) that decay as a
power law as in Eq. (2.7) with exponents α and α′ = α+ ε, with P(1) = P(2). From Eq. (4.3), Π
for large x∗ (1− P(E) ≈ 1) can be estimated as

Π =
1

4

P (E | 1)− P (E | 2)
P (E | 1) + P (E | 2)

=
1

4

x−α∗ − x
−(α+ε)
∗

x−α∗ + x
−(α+ε)
∗

≈ 1

8
log(x∗)ε, (4.8)

where the approximation corresponds to the first order Taylor expansion around ε = 0. The
calculation above can be directly applied to the results we obtained issuing predictions based on
metadata. The logarithmic dependency in Eq. (4.8) is consistent with the roughly linear behavior
observed in Fig. 4.2(a,b). A more accurate estimation is obtained using the power-law fits of
Eq. (2.7) for each group g, which were performed in Chapter 3, and introducing the P (E | g)
obtained from these fits in Eq. (4.3). The red line in Fig. 4.2 shows that this estimation agrees
with the observations for values x∗ ' xp, the threshold used in the fit. Deviations observed for
x∗ � xp (e.g., for PLOS ONE data in panel (d)) reflect the deviations of P (E | g) from the
Pareto distribution obtained for small thresholds xp � x∗. This allows for an estimation of the
predictability for large thresholds x∗ even in small datasets (when the sampling of E is low).

A similar behavior is expected when prediction is performed based on the attention obtained at
short times t1. Eq. (4.7) applies in this case too and therefore the increase in predictability is also
due to change in P (E | g) with x∗ for different g (and not, e.g., due to the decrease of P(E)). For
increasingly large x∗ the items with significant probability of passing the threshold concentrate
on the large xt1 and increase the predictability of the system. We have verified that this happens
already for simple multiplicative stochastic processes, such as the geometric Brownian motion
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(see Fig. 4.3). This provides further support for the generality of this finding. The dynamics of
attention in specific systems affect the shape of predictability growth with respect to the threshold.

Figure 4.3: Predictability of simple
stochastic processes. An ensem-
ble of random walkers evolve through
the dynamics X

(i)
t+1 = X

(i)
t (1 + ε),

where ε ∼ N (µi,
√
µi), a Geomet-

ric Brownian Motion with Gaussian
steps. The predictability of extreme
events Π was computed for t1 = 3
steps and t∗ = 15 steps. GBM:
µi = 2 ∀i and X0 ∼ U(0, 1); GBM
heterogeneous: µi ∼ N (2, 0.7) and
X0 ∼ U(0, 1), fixed in time; GBM,
init exp: µi = 2 ∀i and X0 ∼ E(1/6);
GBM, t1 = 1 the same as GBM for
t1 = 1; GBM, time decay: model
proposed in Ref. [WSB13], similar to
GBM heterogeneous but with a rate
that decays in time (X(i)

t+1 = X
(i)
t (1+

εfi(t) with µi ∼ N (1, 0.5); fi(t)
is a Lognormal surviving probability
with parameters µti ∼ LN (6.5, 0.5)
and σ ∼ LN (1, 0.2)).

Altogether, we conclude that the difference in (the tails of) the distribution of attention of
different groups g is responsible for the increase in predictability for extreme events: for large x∗,
any informative property on the items increases the relative difference among the P (E | g). This
corresponds to an increase of the information contained in the grouping which leads to an increase
in Π.

4.7.2. Probabilistic Forecast

In this chapter we used a deterministic forecast, i.e. the forecast is stating if the event E is going
to happen or not. As discussed in Section 2.4, a different type of forecast is the probabilistic
forecast, where the forecast consists in expressing the probability for something to happen, in our
case, an extreme event.

The most used performance measure for probabilistic forecasts is the Brier Score [Bri50], which
is defined as

BS =
1

N

N∑
i=1

(πi − oi)2 , (4.9)

where πi is the forecasted probability of an event for the i-item, and oi is an indicator variable of
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the event, which value is 1 if the item i crosses the threshold and 0 otherwise. The Brier score can
be conveniently decomposed [Bri50, Brö09] in three terms,

BS = ō(1− ō)− 1

N

G∑
g=1

Ng(ōg − ō)2 +
1

N

G∑
g=1

Ng(πg − ōg)2 , (4.10)

where the items are partitioned in groups with the same πg (equivalent to partition the groups
arbitrarily and assign the same probability πg to each item of the same group, πi = πg∀i ∈ g). The
three terms have an interpretation. The first, the uncertainty, is the baseline score, achievable by
just predicting for all items the probability of an event to happen, ō. The second, the resolution,
is the deviation of ōg from respect to its average value ō. The third term is the reliability, and is
the deviation of the forecasting method with respect to the rate for the group g.

The elements of Eq. (4.10) can be readily replaced by the concepts used in this chapter: the
average probability of an event to occur is ō = P(E), and it can be conditioned by the group,
ōg = P (E | g). We get

BS = P(E)(1− P(E))−
G∑
g=1

P(g)(P (E | g)− P(E))2 +
G∑
g=1

P(g)(πg − P (E | g))2 . (4.11)

It becomes clear that the best strategy here is the one that makes the reliability term to vanish,
i.e. πg = P (E | g), which is related to the previously defined strategy (LS) (stochastic based
on the likelihood P (E | g)), although not equal, because here the forecast is a probability, while
in the LS strategy the forecast is binary, and attributed stochastically among the items of the
same group. The baseline score is the uncertainty P(E)(1 − P(E)), so the maximum increase in
score is equal to the resolution term, which quantifies the difference between the average behavior
and the conditional one, as the measure Π proposed does. In the context of binary deterministic
prediction, there is no intrinsic baseline like the uncertainty, since the True Positive Rate would
match the False Positive Rate if we would predict items with a fixed probability, resulting in a
null predictability.

4.7.3. Conclusions

In summary, we propose a method, Eq. (4.3), to measure the predictability of extreme events for
any given available information on the items. We applied this measure to four different social
media databases and quantified how predictable the attention devoted to different items is and
how informative are different properties of the items. We quantified the predictability due to
metadata available at publication date and due to the early success of the items and found that
usually the latter quickly becomes more relevant than the former. Our results can also be applied
for combinations of different information on the items (e.g., a group g can be composed by videos
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in the category music with a fixed xt1). In practice, the number of groups G should be much
smaller than the observations in the training dataset to ensure an accurate estimation of P (E | g).
The most striking finding is that extreme events are better predictable than non-extreme events, a
result previously observed in physical systems [HK08] and in time-series models [HAHK07, BB11].
For social media, this finding means that for the large attention catchers the surprise is reduced
and the possibilities to discriminate success enhanced.

These results are particularly important in view of the widespread observation of fat-tailed dis-
tributions of attention, which imply that extreme events carry a significant portion of the total
public attention. Similar distributions appear in financial markets, in which case our methodology
can quantify the increase in predictability due to the availability of specific information (e.g., in
Ref. [PMS13] Internet activities were used as information to issue predictions). For the numerous
models of collective behavior leading to fat tails [Pri76, SSPA10, WFVM12, ORT10, RFF+10,
PPP+13, WSB13], the predictability we estimate is a bound to the quality of binary event pre-
dictions. Furthermore, the identifications of the factors leading to an improved predictability
indicate which properties should be included in the models and which ones can be safely ignored
(feature selection). For instance, the relevant factors identified in our analysis should affect the
growth rate of items in rich-get-richer models [RFF+10, Per14] or the transmission rates between
agents in information-spreading models [CFL09]. The use of Π to identify relevant factors goes
beyond simple correlation tests and can be considered as a measure of causality in the sense of
Granger [Gra80].

Predictability in systems showing fat tails has been a matter of intense debate. While simple
models of self-organized criticality suggest that prediction of individual events is impossible [BP95],
the existence of predictable mechanisms for the very extreme events has been advocated in different
systems [Sor02]. In practice, predictability is not an yes/no question [SDW06, KAH+06] and the
main contribution of this paper is to provide a robust quantification of the predictability of extreme
events in systems showing fat-tailed distributions.





5. Stochastic dynamics of growth processes

5.1. Introduction

Figure 5.1.: Mixing of views dynamics The sets of videos selected according to their earlier
success will rapidly mix, since they evolve into broad distributions. However, these final distri-
butions are similar and depend on the initial success. Orange histogram: distribution of views
3 days after publication (0.3 million videos from our database). Blue and green lines: trajecto-
ries of the videos which had the same early success 3 days after publication (50 and 100 views
respectively). Blue and green histograms: distributions of views 20 days after publication of the
respective groups of items selected.

In this chapter we use our largest dataset (YouTube) to investigate the dynamics of activity
with proportional effect, the idea on which most growth model rely (see Chapter 2). We consider
models that are fully determined by the distributions P (dXt | Xt) (i.e. with the Markov property),
being Xt and dXt the activity at time t and its increment respectively. Such distributions will
define the overall evolution in time, as seen in Fig. 5.1, where the activity of videos with 50 and
100 views three days after publication is shown.

As described in Chapter 2, most growth models rely on the idea of proportional effect. We
considered part of this class of models any process such that the expectation of the increment in

43
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the activity is proportional to the total activity, Eq. (2.14)),

E (dXt | Xt) = aXt , (5.1)

where the increment dX(i)
t is defined as

dX
(i)
t = X

(i)
t+1 −X

(i)
t (5.2)

and the units of t are the minimal time step possible given by the data.

From the point of view of data analysis, this equation implies that the sample average of the
increments over all the items with the same Xt has to be proportional with respect to Xt

〈dXt | Xt〉 = aXt . (5.3)

This is the statistical foundation of the averaging method described in Section 2.3.

In Fig. 5.2 an example of this type of measure is shown, where the amount of views that
videos receive in the third day after its release is related with the amount of views it received
up to that point. However, if the aim is to analyze the full distribution P (dXt | Xt), it is

Figure 5.2: Mean of dXt condi-
tioned on Xt; t = 3 days, dt = 1
day. Each measurement is made on
bins of N items, as explained in Sec-
tion 2.3. The mean follows roughly a
linear shape, which is constant with
respect to the sampling size. Note
that, since the overall distribution of
Xt is heavy-tailed, the points with
low Xt are close, while for high Xt

data is very sparse.

needed to use a process that models how the activity is accumulated. Two frameworks for such
processes are presented: in Section 5.2 we discuss the model of allocation, and in Section 5.3
the Stochastic Differential Equations (SDE), which is a more general class of models, and in
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particular we introduce a model with a fat-tail distribution of the increments, in order to model the
fluctuations. In Section 5.4 we introduce the Maximum Likelihood estimation for SDE parameters,
and in Section 5.5 we confirm that indeed the model with fat-tailed fluctuations is better at
describing the data. In Section 5.6 we use the fitted models to issue predictions on the future
items’ activity, and we show that fat-tailed increment distributions are necessary in order to
estimate correctly the amount of big hits, i.e. the extreme events of activity. The chapter is
concluded with a discussion in Section 5.7.

5.2. Allocation model of Proportional Effect

In this section we discuss a model that results process of allocation where tokens (a view, a citation,
a person) are assigned to items (a video, a paper, a city), with a probability proportional to their
amount of tokens (this is the proportional element). This model is the core idea of the growth
process described in Section 2.2.2, and we analyze it in detail since it relies on a microscopic picture
that can be tuned in order to fit different phenomena. Formally, for a set of Nt items where X(i)

t

is the amount of tokens of the i-th item at time t,

P(i) =
X

(i)
t∑Nt

i=1X
(i)
t

. (5.4)

Note that the amount of items Nt will increase with time, since it is a growth processes. The
condition Eq. (5.1) is retrieved directly from Eq. (5.3) if it is assumed that the probabilities P(i)
do not change when X

(i)
t increases (like a multinomial process). Beyond this approximation, we

derive the exact distribution P (dXt | Xt) for this process in Section 5.2.1, from which the average
and the fluctuations will be estimated.

5.2.1. Solution of the Allocation model

We want to estimate the distribution P (dXt | Xt) of the model of allocation with proportional
effect, in order to compare it with the data. Fortunately, this problem is part of the class of
problems denominated Polya’s urn (in our case the urns are the items, the balls are the tokens).

The setting of Polya’s urn is exactly the same as ours: consider a box with colored balls belonging
to M different colors, and there are exactly Xt balls of each color. (The balls represent the views
and the colors the videos.) The process is defined by picking randomly a ball from the box, and
returning k balls of the same color to the box. This action is repeated until N balls are added
(or taken away). Note that k = 0 is sampling colors with replacement, k = −1 (removing the
chosen ball) is sampling without replacement, and k > 0 is the usual setting of proportional effect,
where the colors represent the items, and the balls represent the tokens. In fact, the probability
of choosing a color (item) is proportional to the amount of balls (tokens), and at each step k balls
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(tokens) are assigned to each color (item). We are interested in the final distribution of dXt, the
amount of new tokens of each item after N iterations of the process, which is equivalent to the
distribution P

(
X

(i)
t+1 | X

(i)
t

)
.

In order to compute this probability, we will consider an operational time s, the time step of
the process, the random variable Ii,s, which takes the value 1 if the item i is chosen at the time
step s and 0 otherwise, and the value ni,s, the amount of tokens that each item has at the i-item
up to the operational time s. The initial value is ni,0 = X

(i)
t and dX(i)

t will be equal to ni,T −ni,0.

Consider first the probability of an item i to be chosen. When the process starts (s = 0) all the
items have the same probability,

P(i, 0) = E(Ii,0) =
X

(i)
t∑

iX
(i)
t

=
1

M
.

After the first round, we can compute this probability again:

E(Ii,1) =
ni,0 + k

Mni,0 + k
P(Ii,0) +

ni,0
Mni,0 + k

(1− P(Ii,0)) =
1

M
= E(Ii,0) .

This is a general property of Polya process, i.e. valid under any distribution of ni,0, and implies
that the probability of choosing an item at any time is constant, if considered without taking into
account the history of the process (it can be understood as that the random variable Ii,s possess
the martingale property)[KPS12]. A corollary of this result is that the expectation of dXt at any
time is proportional to its initial value, up to a constant that represents the increment in the
amount of tokens, as seen below.

We now show that the number of tokens of a given item in the end of the process is distributed
with a Beta Binomial distribution, also called Polya distribution, which is a well known result in
Probability Theory [EP23]. The proof is as follows. Consider k = 1 from now on; the amount of
tokens added to the item i, up to the time step N is ni,N ,

ni,N =
∑
s≤N

Ii,s .

We compute now the probability of the sequence {Ii,s}s≤N to occur. We simply state it as a
sequence of conditional probabilities:

P({Ii,s}s≤N ) = P(Ii,1 = i1)P (Ii,2 = i2 | Ii,1 = i1) · · ·P (Ii,N = iN | Ii,1 = i1, · · · Ii,N−1 = iN−1) .

Each conditional probability is known, and at first sight it depends on the whole history of chosen
items. Actually, it only depends on the previous amount of the tokens assigned, because the
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conditional probability is given by Eq. (5.4), which only depends on it. In fact,

P (Ii,t = it | Ii,1 = i1, · · · Ii,t−1 = it−1) =
ni,t−1

ni,0 + (t− 1)
.

Notice that since the sequence ni,t increases by at most 1 at each time step; if the probability of
the tokens having a particular value is computed, ni,N−ni,0 = x, necessarily ni,t has to take values
from ni,0 to ni,0 + t, independently from the order. When N tokens are added, then x times the
item i is chosen and N −x is not. Not choosing the i-item can be considered as a second (merged)
item, and the previous argument of the independence of the order can be used again. The values
of the factors in the other item go from (M −1)ni,0 to (M −1)ni,0−x+N . Now we can see that if
the last equation are replaced into the previous one, we will have in the numerator a product of all
the the numbers between ni,0 and ni,0 + x and a product of all the numbers between (M − 1)ni,0

and (M − 1)ni,0 − x+N . In the numerator, we have the product of all the numbers between M0

and Mni,0 +N ; all together,

P({It}t≤N ) =

∏ni,0+x
j=ni,0

j
∏(M−1)ni,0+N−x
j=(M−1)ni,0 j∏Mni,0+N

j=Mni,0
j

=
B(x+ ni,0, N − x− ni,0)

B(ni,0, N − ni,0)
(5.5)

where B is the Beta function, defined as

B(x, y) =
Γ(x)Γ(y)

Γ(z + y)
=

(x− 1)!(y − 1)!

(x+ y − 1)!
(5.6)

where the last form is valid only when x, y ∈ N, by the equivalence of the Gamma function with the
factorial in the natural numbers. Notice that the probability P({It}t≤N ) is independent from the
order of the variables It. This property allow us to write the probability of ni,N as the probability
of having a sequence of It that sums x in N time steps, which is the probability of each individual
sequence times the possible combinations,

P(ni,N − ni,0 = x) =

(
N

x

)
B(x+ ni,0, N − x− ni,0)

B(ni,0, N − ni,0)
. (5.7)

This distribution is called Beta Binomial, referring to the functions present in the last equation.
It can be readily computed the expectation and the variance of the increment ni,N − ni,0. The
expectation is, as expected from the independence of P(i) with respect of time,

E(ni,N − ni,0) = E
(
dX

(i)
t | X

(i)
t

)
=
N

M
. (5.8)
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The variance is instead,

V(ni,N − ni,0) = V
(
dX

(i)
t | X

(i)
t

)
=

(M − 1)N(N +MX
(i)
t )

M2(1 +MX
(i)
t )

. (5.9)

Interestingly, the number of tokens assigned to the items is not independent from X
(i)
t ; in the

context of proportional effect, the condition E
(
dX

(i)
t | X

(i)
t

)
= N/M = aX

(i)
t is set, which corre-

sponds to equate the expectation of the distribution to Eq. (5.1). A new variance in this condition
and its limit for M � 1 and M � a (a is a number usually smaller than 1) can be computed:

V
(
dX

(i)
t | X

(i)
t

)
=

(M − 1)a(1 + a)(X
(i)
t )2

(1 +MX
(i)
t )

→ a(1 + a)X
(i)
t . (5.10)

This result is important, because it indicates that the standard deviation that we expect for dX(i)
t

from a Polya-like process scales as the square root of X(i)
t . This is the same scaling that we expect

from a sum of variables with finite variance by Central Limit Theorem. In this case, the random
variables being summed are the indicator functions on the items Ii,s, which are correlated, but
their probability distribution is the same along the whole process.

The Beta Binomial distribution is discrete, but the limit to a continuous function, suitable for
large values of h, can be easily taken by replacing the binomial factor by the equivalent Beta
function:

P
(
dX

(i)
t = x | X(i)

t

)
=

B(x+X
(i)
t , (M − 1)X

(i)
t − x)

(MX
(i)
t + 1)B(MX

(i)
t − x+ 1, x+ 1)B(X

(i)
t , (M − 1)X

(i)
t )

. (5.11)
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Figure 5.3.: Beta Binomial Distribution. Blue: probability mass function for parameters
Xt = 50, M = 200 and N = 5000, and continuous probability density function with the same
parameters. Orange: normal probability density function with same mean and variance as the
Beta Binomial shown. Left panel: linear scale; Right panel: logarithmic scale.
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The Fig. 5.3 shows an example of this function, the continuous version and a Normal distribution
with the same mean and variance.

5.3. Stochastic Differential Equations framework

While simple generative processes where tokens are allocated, as preferential attachment, allow
us to go from microscopic dynamics to macroscopic distributions, their simplicity will restrict
considerably the range of possible observations that they can explain. In fact, the allocation
process results in a particular type of fluctuations, which, as it will be seen, is unrealistic. Here
we consider Stochastic Differential Equations (SDE) as a way to extend the type of dynamics that
we can describe.

About SDEs

SDEs are the mathematical formalization of Langevin equations. A first order Langevin equation
can be written as

ẋ = f(x, t) + g(x, t)ξ(t) , (5.12)

where x is the variable of interest, f, g are known function and ξ is a random variable such that

〈ξ(t)〉 = 0 (5.13)

〈ξ(t)ξ(t′)〉 = qδ(t− t′) (5.14)

. (5.15)

This type of formulation is troublesome because it can generate spurious drifts. For instance, in
the case where f = 0 and g = ax, the quantity d

dt〈x〉t=0 = a2x, is not zero as expected from f = 0.
This apparent paradox arises from the integration of the stochastic term, a process that can be
defined in many ways, or interpretations [KPS12]; the naive way of computing the derivative of the
average position leads to this spurious drift, which corresponds to the Stratonovich interpretation.
Here, we use always the so called Ito interpretation, where a given function F is integrated against
a stochastic term φ according to

∫ τ

0
F (φ(t′), t′)dφ(t′) ≡ lim

Δ→0

N−1∑
i=0

F (φ(τi), τi, ) (φ(τi+1)− φ(τi)) (5.16)

where Δ = max(ti+1− ti) and 0 = τ0 < · · · < τN = τ . With this definition [Øks03], the derivative
of the average is only given by the deterministic function f , meaning that the stochastic term of
the equation is independent from previous realizations of itself.
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The most common stochastic process to be integrated is the Wiener process Wt, a continuous
process that has Normally distributed increments Wt+u−Wu ∼ N(0,

√
u) which are independent.

The Wiener process can be seen as the limit of a rescaled random walk, result of the Functional
Central Limit Theorem [Don52], which explains its ubiquity.

When integrating a function f of the process Xt against Wiener noise, we have then equations
of the type

Yt =

∫ t

0
f(Xs, s)dWs . (5.17)

The term dWt is such that when integrated is equal to the Wiener noise difference, i.e.∫ t

0
dWs =Wt1 −Wt0 . (5.18)

If Xt itself is the result of one of these integrals, we will have a (stochastic) differential equation,
that can be written as well in differential form; for example, if Yt = Xt, we would write Eq. (5.17)
as

dXt = f(Xt, t)dWt . (5.19)

Proportional effect in SDEs

We will use first order SDEs to model the dynamics of videos’ views; the most general form of
(first order) SDEs with Wiener noise is

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt , (5.20)

where µ(t,Xt) is the average growth, and σ(t,Xt) scales the fluctuations. Since we want propor-
tional effect to hold, we enforce Eq. (5.1) by using

µ(Xt, t) = µtXt . (5.21)

We keep here a dependence of the proportionality constant with respect to time, allowing for
effects such as attention decay [WH07b]. With respect to the fluctuations size dependence with
respect to Xt, we use a dependence given by

σ(Xt, t) = σtX
β
t , (5.22)

which has been reported extensively in a variety of contexts, known as Taylor’s Law (see Ref. [EBK08]
for a review on this subject). This scaling of the fluctuations is usually dependent on time or on
the size of the ensemble, while here, it is dynamically dependent on the variable itself. It is
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worth to notice that the choice of σ as a power-law still gives a lot of flexibility. For example,
β = 1 corresponds to the Geometric Brownian Motion, and β = 0 to the Ornstein-Uhlenbeck
process [Ros14, Doo42]. Instead, β = 1/2 corresponds to a linear scaling in the variance of the
fluctuations, a typical result of Central Limit Theorem; notice that the exact process described in
Section 5.2.1 falls as well into this value of β. In summary, the SDE with proportional effect that
we investigate here is

dXt = µtXtdt+ σtX
β
t dWt . (5.23)

5.3.1. Solution of the SDE with proportional effect: Lognormal and CEV
distributions

Here we show the result of integrating Eq. (5.23), also called Constant Elasticity of Variance
process [CL10] (CEV), in a time unit Δt = 1 (e.g. 1 day). The complete derivation can be found
in Ref. [CL10], and it involves changing variables a few times using Ito’s lemma, yielding an SDE
of the form

dXt = adt+ b
√
XtdWt , (5.24)

where a and b depend on µt, σt and β. The result of this equation, which is known as the Cox-
Ingersoll-Ross process [GJY03], is then transformed back to correspond to the original SDE. We
evaluate the resulting distribution in a time t + 1 (exactly one time unit after t). When β < 1,
this distribution has the form

P(Xt+1 = x|Xt = x0) = 2(1− β)k
1

2(1−β)
(
xz1−4β

) 1
4(1−β)

e−x−zI∣∣∣ 1
2(1−β)

∣∣∣ (2√xz) , (5.25)

with

k =
µ

σ2(1− β)(e2µ(1−β) − 1)

x = k(x0e
µ)2(1−β)

z = kx2(1−β)

where I is the modified Bessel function of the first kind. The expression simplifies using the
substitution p = 2(1− β):

P(Xt+1 = x|Xt = x0) = pk
1
p
(
xz2p−3

) 1
2p e−x−zI∣∣∣ 1p ∣∣∣

(
2
√
xz
)

, (5.26)
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with

k =
2µ

σ2p(eµp − 1)

x = kxp0e
µp

z = kxp .

When β > 1, the probability function is just the same as above but multiplied by −1. Note that
the β parameter is the exponent of the power law tail that the distribution has asymptotically.
To get dXt here Xt is subtracted to obtain a distribution of dXt. In the analysis of the YouTube
data, the distributions are also truncated, discretized and normalized, in order to be compatible
with the data.

When β → 2, the solution to Eq. (5.23) is the Lognormal distribution, given by

P(Xt+1 = x|Xt = x0) =
1√

2πσXt+1

exp

(
−(ln dXt − µ− lnx0)

2

2σ2

)
(5.27)

For numerical reasons these two models will be kept separated, because even if the fit of the CEV
distribution can in principle result in a value of β = 1, that value of the fit has measure zero. We
call the model that results in Lognormal distributions, Lognormal model (LN), and the one with
β 6= 1 (0 < β < 2), the CEV model.

5.3.2. A SDE model with Lévy fluctuations

In this section we propose a model similar to Eq. (5.23) but with Stable (or Lévy-Stable) noise,
instead of Wiener noise, which is a noise with a heavy-tailed distribution. (Lévy-Stable noise should
not be confused by the noise of a Lévy process, given by the Lévy-Khintchine representation.) The
motivation for introducing this model comes from empirical observations, and will become clear
in the next section.

Stable random variables were introduced in Section 2.2.1, and are a result of summing variables
without finite variance by means of a general Central Limit Theorem, which is why Stable dis-
tributions are preferred to any other fat-tailed distributions. The parameters of this distribution
are: α, the index of the power-law tail; β, a parameter of asymmetry; µ, a location parameter
equal to the average of the distribution; σ, a scale parameter; then, when a random variable X is
Stable, we will denote it as X ∼ S(α, β, µ, σ).

The observation of fat-tailed noise in the fluctuations is due to Mandelbrot [Man63], who noticed
it in financial assets, but only in the 1990s there was an intent to integrate it into a dynamical
model [MS95]; nevertheless, it was ultimately shown that, even if at some time scale the return
rate of financial assets is fat-tailed distributed, it is not a Lévy distribution [CPB97]. Formally, it
is needed to replace the Wiener noise term dWt by the term dLt [JW93]. We can understand this
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replacement as a generalization, since Normal distributions are the limiting case of Stable ones,
for α = 2. dLt is such that, if integrated, leads to a Lévy-stable distribution, given by, in analogy
with Eq. (5.18),∫ t1

t0

dLt = Lt1 − Lt0 , (5.28)

where Lt1 −Lt0 ∼ S(α, β, 0, (t1− t0)1/α), analogously to the distribution of the Wiener increment.
SDEs with Lévy-Stable noise have been considered in . Having a noise term defined, we can
construct a linear SDE,

dXt = (µtXt + ct)dt+ (atXt + bt)dLt , (5.29)

where the asymmetry parameter of dLt is set to β = 1, based on empirical observations. Here
we added two extra parameters, bt and dt; this inclusion makes the model more general, although
it will be seen that ct is not very relevant. We call the model with the four parameters S4, with
ct = 0, S3, and with only µt and at, S2.

5.4. Estimation of the SDE parameters

We focus now on the estimation from data of the parameters of the SDEs equations

dXt = µtXtdt+ σtX
β
t dWt (5.23)

and Eq. (5.29), corresponding to SDE with Wiener noise and Lévy-stable noise respectively.

5.4.1. Averaging estimation

The parameters of the SDE can be estimated using the averaging method considered in Section 2.3
to investigate the proportional effect in the data. This method would first consider the set of points(
X

(i)
t , X

(i)
t

)
, then compute the average, 〈Xt | Xt ∈ bin〉 for a given set of bins, and finally fit the

averaged points with the function dXt = µtXt, through the method of least squares. In the context
of time series analysis this method was considered extensively (see Ref. [FP97], and [FPST11] for
a review of the main methods and applications).

The set of bins can be chosen arbitrarily; a trivial choice is to consider a bin for each Xt, but
that leave us with a great fluctuation in the resulting points, since the distribution of the data
with respect to Xt is very inhomogeneous. Here a binning was chosen such that the amount of
items in each bin is the same, N ; avoiding the aforementioned problem. The averaged points are
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given then by

(x, y) =

(
1

N

N∑
i=1

X
(i)
t ,

1

N

N∑
i=1

dX
(i)
t

)
, (5.30)

which are shown in Fig. 5.2 for two bin sizes, N = 102, 104, where the value of the average in the
bigger window is converging, i.e. visually the noise over a straight line is decreasing. The straight
line behavior over 7 decades confirm the linearity of the proportional effect.

In the same way that the expectation E (dXt | Xt) is estimated, it is possible to estimate the
fluctuation around it, as computed before, i.e. the standard deviation is computed in the defined
window. From the relationship between the standard deviation and Xt, the form of the σ(Xt, t)

function can be estimated, in particular the parameter β if we assume Xβ
t is the functional form.

It is important to notice that in this type of estimation, if the standard deviation is an estimator
for σ(Xt, t), it means that we are implicitly assuming that dXt | Xt is normally distributed, with
mean aXt and variance σ(Xt, t). This is a valid assumption only if we consider that an infinitesimal
time passed from t to t+1, i.e. that the equation Eq. (5.23) is not integrated in time. If we do not
assume this condition, it is needed to integrate equation Eq. (5.23), as explained in Section 5.3.1.

Figure 5.4: Standard deviation of
dXt conditioned on Xt at t = 3 days.
Two different bin sizes, N = 102, 104

were chosen, and it is visible that ag-
gregating the bins does not make the
points less noisy.

In Fig. 5.4, the standard deviations of dXt | Xt for the bin sizes N = 102, 104 are shown; while
visually a scaling given by β = 1 can be seen, the values are not converging, but are overall
increasing with N . We do not expect this behavior for distributions that result from SDEs with
Wiener noise, i.e. Eq. (5.23); a possible explanation is that the particular binning used is mixing
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distributions with different Xt, that could lead to this observation. This argument is ruled out in
the Appendix B, in favor of explaining this effect by the presence of fat tails in the fluctuations.

5.4.2. Estimation by Maximum Likelihood

A different way of estimating the parameters of the SDEs that considers the possibility of using
other distributions to model the fluctuations, is by fitting each of the probability distributions
P (dXt | Xt). This is done by maximizing the likelihood of the data for each different bin (all the
items in the bin are considered to have the same Xt),

L = P (data | model) =
N∏
i=1

P
(
dX

(i)
t | Xt, model

)
, (5.31)

where here we refer to model as the choice of the distribution and the set of parameters that define
it (i.e. Lognormal, CEV or Stable distribution). distributions [CSN09]. Most of the times, instead
of the likelihood, minus the logarithm of the likelihood is minimized, because the probabilities
tend to be quite small and it can cause troubles numerically,

` = − lnL = −
N∑
i=1

logP
(
dX

(i)
t | Xt, model

)
. (5.32)

This can be re-written as a sum over all the values that takes dXt,

` = −
∑
dXt

N(dXt, Xt) logP (dXt | Xt, model) , (5.33)

where N(dXt, Xt) is the amount of items in the data such that dX(i)
t = dXt and X

(i)
t = Xt.

This formulation is equivalent but is more convenient when applied numerically, since the data is
already grouped in the observable N(dXt, Xt).

Once the parameters of the distributions for each bin are computed, it would be necessary to fit
the resulting parameters with respect to Xt in order to obtain the parameters of the SDE model.
This procedure is not rigorous and can be avoided by an improvement in the Maximum Likelihood
Estimation.

However, we can look at a particular histogram of dXt conditioned on Xt in Fig. 5.5; here the
data corresponds to t = 3 and Xt ∈ [513, 527] views, along with the best fits for the Lognormal,
CEV and Stable distributions; Stable distributions, at first sight, provide a superior description of
the tail of this distribution. In fact, the difference in the log-likelihood ` with respect to the CEV
distribution is about 70, which means that the Stable distribution is e70 times more likely, i.e. it
has a very high statistical support.

Before proceeding with the fit of the Eq. (5.29), we will analyze the quantiles of the distributions
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Figure 5.5: Data and fits of dXt for
a bin of size N = 104. S: Stable, LN:
Lognormal, CEV: Constant Elastic-
ity of Variance. In the main panel,
the PDF; in the inset, the comple-
mentary CDF; t = 3 days, dt = 1
day. The size N = 104 for the bin
Xt ∈ [513, 527] is used because this
size is suggested to be the minimal
amount of data necessary to distin-
guish Lognormal from power law dis-
tributions [CSN09].

P (dXt | Xt), in order to confirm that the functional form of Eq. (5.29) is consistent with the data.
In Fig. 5.6, the quantiles 5%, 25%, 50%, 75% and 95% are shown. The quantiles are linearly

Figure 5.6: Quantiles of the dis-
tributions of dX3 conditioned on
X3. The quantiles are computed on
groups of items of size N ≥ 104.
The lines are linear functions and are
shown as references.

related with respect to the condition Xt, as indicated by the straight lines in Fig. 5.6, except for
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the items with low amount of views. From the quantiles it is possible to estimate the Lévy-stable
distribution parameters for each bin [FR71, McC86], however the aforementioned problems related
with the binning persist.

The Maximum Likelihood Estimation can be improved, by fitting the parameters of model
directly from data, without the need of binning. Here we fit actually Xt+1 instead of dXt; this
is necessary because the integration of the SDE results in distributions of Xt+1 that cannot be
readily translated in formulas for dXt. From the parameters of the SDE, the parameters of the
distributions for each Xt can be deduced.

This approach is pursued by Ref. [KFNP05], where it is proposed to iteratively minimize the
Kullback-Leibler divergence between the empirical distributions and the distributions that result
from solving the Fokker-Planck equation associated to the SDE for a finite time. In our case, these
distributions are known (Lognormal and CEV), thus avoiding altogether the problems related with
the estimation at finite time [RK01, FRSP02, HF11] and the numerical integration of the Fokker-
Planck equation when the divergence is minimized. (The log-likelihood ` is equal to the Kullback-
Leibler divergence between the empirical distributions and the distributions of the model.) If the
SDE is not integrated in time, i.e. the fluctuations are Normal or Stable, then the distributions
are just the distributions of the standard noise but translated by µ(Xt, t) and scaled by σ(Xt, t).
If instead the SDE is integrated in time, the fluctuations will be Lognormal or CEV, and the
parameters of each distribution of Xt+1 conditioned on Xt can be readily obtained from their
definitions (see Equations 5.26 and 5.27).

Again a log-likelihood will be minimized, but we consider all the data points together; the total
probability of the data with respect to the model is then

` = −
Ntot∑
i=1

logP
(
dX

(i)
t | X

(i)
t

)
. (5.34)

An equivalent form, more suitable to computation, is

` = −
∑
Xt

∑
dXt

N(dXt, Xt) logP (dXt | Xt) . (5.35)

In this way, all the Xt are considered, increasing to the maximum the size of the dataset to be
fitted, thus eliminating the need of binning the data. Some numerical problems of this process are
detailed in Appendix A.

We performed estimation of the parameters for the five models (LN, CEV, S3, S3 and S4), and
for different times, t ∈ (1, 30). As shown in the next section, the result of the model S3 (bt = 0

in Eq. (5.29)) is the best. Agreement with respect to the data can be seen in Fig. 5.7, where a
small set of the histograms P(dXt | Xt) are being shown in the panels (a) and (c), as well as the
collapse of the rescaled distributions in the panels (b) and (d). This collapse is due to the closure
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of the Stable distribution under translation and scaling. (Both PDFs and CDFs are shown in the
figure, since visual agreement can be present in one representation and not in the other.)

Figure 5.7.: Agreement between data and the S3 Lévy-Stable model. Five subsets of points are
selected, where each subset is respectively the set of items with Xt=3 ∈ {10, 55, 100, 196, 496}.
(a) PDFs of dXt=3 given Xt (solid lines), and Lévy PDFs with parameters that correspond to
the same Xt (dashed lines), based on the global fit of the S model. (b) Rescaling of the PDFs
according to the fitted parameters and Lévy CDF with µ = 0, σ = 1. (c) CDFs of dXt given Xt

(points), and Lévy CDFs with parameters that correspond to the same Xt (dashed lines), based
on the global fit of the S model. (d) Rescaling of the CDFs according to the fitted parameters
and Lévy CDF with µ = 0, σ = 1.

5.5. Model selection

In this section we compare quantitatively the agreement of the models proposed with respect to
data. The models compared are summarized in Table 5.1. It has to be noted that the models
that we compare have a different amount of parameters. We use the Bayes Information Criterion
(BIC), a conservative way of penalizing additional parameters. The BIC is defined as

BIC = −2`+ k lnN , (5.36)
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Model name P(dXt|Xt) functional form Parameters
LN Lognormal µt, σt
CEV CEV µt, σt, βt
S2 Lévy-stable αt, µt, at
S3 Lévy-stable αt, µt at, bt
S4 Lévy-stable αt, µt at, bt, ct

Table 5.1.: Summary of the models considered.

where L is the likelihood of the data with respect to the model, k is the amount of parameters of
the model, and N is the amount of data points; the BIC is the result of the Laplace approximation
on the Bayes Factor [FHT01].

A similar approach for non-linear fit was implemented in Ref. [LMGA16], where non-linear
scaling was studied in the context of scaling in cities, i.e. if a given observable measured on cities
scales with respect to the population linearly or not. Integrating the fluctuations as part of a
model naturally leads to consider the full likelihood function as a measure of quality, compensated
by some factor that accounts for overfitting, like the k lnN in the BIC. Even if the function to
estimate is relatively simple, the estimation process is particularly difficult to interpret: most of
the items (or cities) have low activity (or low population), while few items concentrate most of the
activity; if fluctuations decrease with size (as some models propose), then the few data points in
the tail of the population distribution can be very important to determine the value of the fitted
parameters. In our databases, the high volume of data allows us to have an educated guess on the
shape of the fluctuations, given by the quantiles (see Fig. 5.6).

When we compare the models the BIC difference between any S model and the LN or CEV is,
for different values of t, always bigger than 105, indicating extremely strong support for our model
with Stable fluctuations. In Fig. 5.8 the BIC difference among S3 and the other models is shown:
S4 and S3 have a similar likelihood, while S2, LN and CEV are very unlikely in comparison. The
addition of the parameter ct is then not adding much with respect of S3, so we will select the model
S3 among all. Altogether, these analysis support our proposal of stochastic differential equation
with Lévy noise, Eq. (5.23), to describe the dynamics of popularity in YouTube.

We can, moreover, analyze the particular values of the parameters of the S3 model, shown in
Fig. 5.9. The parameters show a strong dependence in t in the the first week. In particular, µt
decays in this period (reflecting a decay in the gain of views) and αt ≈ 1.75 for t > 5. This decay is
also observed in other media [WH07b, LBK09] where also there is a constant inflow of new items.
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Figure 5.8: Quality of the models.
The difference in Bayes Information
Criterion (ΔBIC) is shown with re-
spect to the model S3. Values as high
as 105 indicate a very high support
for the S3 model.

Figure 5.9: Evolution of the param-
eters of the model, 0 ≤ t ≤ 20. After
the first week, there is a tendency to
stabilization.

5.6. Forecasts of popularity

We now focus on the possibility of forecasting popularity with the models proposed, and in par-
ticular with the S3 model (model S from now on).

Having a model for the probability P (dXt | Xt) enables us to predict the evolution of the videos’
views, using the SDE equations. In order to do that, it is needed to know how many views an item
had at a given time t, Xt, which is the initial condition; the probability of having x views in the
next day is the probability P(dXt = x−Xt|Xt), given by the SDE equations with the appropriate
parameters.

To compute the probability of having x views at a time tf = t + τ the probabilities of all the
possible paths have to be integrated. Specifically, for τ > 1 we will have the Chapman-Kolmogorov
equation,

P (Xt+τ = x | Xt = x0) =

∞∑
x1=0

P (Xt+τ = x | Xt+τ−1 = x1)P (Xt+τ−1 = x1 | Xt = x0) . (5.37)
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This recursive equation allow us to numerically compute the probability distribution of views at
any time, but requires, of course, the parameters for all the times between t and t+ τ , which were
previously computed and shown in Fig. 5.9. This procedure is used in the next section to analyze
the possibility of a video becoming a big hit.

5.6.1. Optimal deterministic forecast

If we want to issue a deterministic forecast of the views, instead of a probability, it is needed to
define a cost with respect to which we issue an optimal predictor X̂(i)

t+τ . The cost function usually
used is the mean squared error (see Section 2.4, which has as optimal predictor the mean value
of X̂(i)

t+τ . The mean value can be estimated by computing the expectation value of Xt+τ , an easy
calculation, since the average increment of views scales linearly with the previous amount of views,
Eq. (5.1). In practical terms, the optimal prediction forXt+τ is given by E (Xt+τ | Xt = x0). Using
Eq. (5.37), we evaluate the expression

E (Xt+τ | Xt = x0) =
∞∑

x1=0

E (Xt+τ | Xt+τ−1 = x1)P (Xt+τ−1 = x1 | Xt = x0)

and now we use the fact that E (Xt+τ | Xt+τ−1 = x1) = at+τ−1x1,

E (Xt+τ | Xt = x0) = at+τ−1

∞∑
x1=0

x1P (Xt+τ−1 = x1 | Xt = x0) .

Here, it is assumed that 〈dXt〉 = atXt, which is a valid assumption only for large Xt (because the
truncation and the discretization of the Lévy distribution would shift the average from the 0; this
effect is stronger for small values of Xt).

The sum left is just the expectation value of Xt+τ−1,

E (Xt+τ | Xt = x0) = at+τ−1E (Xt+τ−1 | Xt = x0) .

In this way, it is possible to go back τ iterations, and as result the optimal predictor for a video
such that Xt = x0 is

X̂
(i)
t+τ = E (Xt+τ | Xt = x0) =

τ−1∏
i=0

at+i x0 . (5.38)

It has to be noted that this predictor is optimal, but its properties have to be considered
carefully. If the mean is estimated directly from the data available (e.g. by taking the videos
with same Xt and computing the average of Xt+τ ) it may be the case that this value is not
close to the expected value previously computed. This happens because the average of Stable-
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distributed random variables is Stable-distributed as well, with the same exponent α and with the
scale decaying with N1/α−1, as result of the Central Limit Theorem mentioned in Section 5.3.2.
In conclusion, means estimated directly from data may be unreliable estimators of the expected
value, specially when the set of items considered is small (large Xt); for this reason we consider
in the next section quantile predictions.

5.6.2. Predictability of big hits

We now focus on the estimation of the probability of an item becoming a big hit after a given
time (larger than one time unit). We define as a big hit at time t the top q% videos with highest
Xt (Xt > xqt ), where we note with xqt the value of Xt for which only a fraction q of items is more
popular. This is a definition of a big hit as an extreme event; notice however, that the threshold
of activity is not given a priori as in Chapter 4, but it instead evolves with time, since naturally
the total activity of any item increases.

We are particularly interested in estimating the probability P (Xt > xqt |Xt0 = x0) of videos
that are not big hits at time t0 < t (i.e., x0 < xqt0) becoming big hits at time t. This probability
quantifies how unpredictable the system is. For instance, in a deterministic (proportional growth)
model, the rank of the videos does not change and therefore such probability is zero (perfect
predictability).

As an example, the videos that had 100 views one day after publication are selected, X1 = 100,
which belong to a rank of q ≈ 15%. We are interested in the probability of these videos having
Xt � 100 at t > 1. To obtain the expectations of the models, we computed P (Xt|X1 = 100)

iteratively from P (dXs|Xs) for s = 1, . . . t, using X1 = 100 and the method described in the
previous section. We also compute the same distribution for the LN and CEV models, in order to
show the difference that these models imply in the long run. An example of this simulation is given
in Fig. 5.10 where we show the expected distribution of views of the selected videos after 5 days
(t = 6). We can see that there is a good agreement between our model and the real distribution,
while the LN and CEV models fail to describe the empirical distribution after only around 300

views. Moreover, the Lévy model predicts a substantially higher probability for large Xt than the
alternative models, as expected. The agreement of our model with the data also points out that
the assumption of independent uncorrelated increments is valid, at least in the short run.

In order to investigate the temporal dependence, we focus on the probability of the videos
improving their rank and being by day t in the top q = 5%, using the previously computed prob-
abilities from the models and the thresholds xqt estimated from data. The results are summarized
in Fig. 5.11 and show that the Lévy-stable model succeeds in estimating this probability in the
short-term, while for the long-term the data shows an even higher probability (mixing of ranks).
The other models assign a video a substantially lower possibility of becoming a big hit, an effect of
their highly predictable dynamics. The fact that our model provides a good account for short-time
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Figure 5.10: Expected distribution
of views after 5 days for videos such
that X1 = 100.

intervals but not in the long run suggests the existence of correlations in the attribution of views
that span multiple days and that are not accounted by our assumption of an independent noise.

Figure 5.11: Expected amount of
videos in the top 5% among the ones
such that X1 = 100.

5.6.3. Correlations in the S model

In this section we analyze the time correlations of the S model. We assumed until now that the
noise in the SDEs is distributed identically and independently. If the first condition of identity is
fulfilled, we say that the model agrees with the data in a descriptive way, as seen. The second
condition, independence, is much more restrictive; measuring the correlations and testing if they
are consistent with the model is a way to assess this condition.

Each item has its own time-series of stochastic elements dL(i)
t ; they can be estimated by ex-

tracting them from a stochastic differential equation whose drift and diffusion term depend on the
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history H(i)
t through functions µ and σ (fitted for all items):

dL
(i)
t =

dX
(i)
t − µ(X

(i)
t , t)

σ(X
(i)
t , t)

. (5.39)

The increments are Lévy distributed, as described previously, and now we want to get closer as
we can to test for independence, which in the most cases is to test for correlations. The usual
indicator used in time-series analysis is to estimate the autocorrelation function ρ(t, τ), defined as

ρ(t, τ) =
E
(
dL

(i)
t dL

(i)
t+τ

)
V
(
dL

(i)
t

) . (5.40)

In this definition we used that E
(
dL

(i)
t

)
= 0. The expectation value is taken on the sample

space of the time series realizations; usually (e.g. time-series of temperature anomalies, or climate
records applications) it is assumed that the time-series is stationary and ergodic, such that this
expectation value can be estimated by an average in time. In our context this assumption cannot
be made, so we will use as estimator an average in the ensemble of items, which we consider
indistinguishable:

ρ̂(t, τ) =

∑n
i=1 dL

(i)
t dL

(i)
t+τ∑n

i=1(dL
(i)
t )2

. (5.41)

However, there is a problem in using the autocorrelation function for time-series with heavy-tailed
increments, namely that we are trying to estimate the variance (in the denominator) of a variable
that has no defined variance. If an extreme event occurs at time t, that value will bias the
estimation of all the correlation measures that involve that particular day; in other words, it is
needed an estimation of correlation that is robust under the presence of fat tails.

A solution to this problem is given by the Spearman rank correlation [Ken48, Spe04]. As the
name indicates, it consists in a correlation between two sets of ranks; this ranks are generated by
ordering the values of dL(i)

t and dL(i)
t+τ , where average rank values are given to tied items, and the

definition of correlation is as before, but instead of using the values dL, their ranks are used, R(i)
t

(the position of the i-th item in an ordered list of items according to Xt):

ρS(t, τ) =
E
(
R

(i)
t R

(i)
t+τ

)
V
(
R

(i)
t

) . (5.42)

Since we are evaluating the correlation among sets of ranks, the value of the particular dL is
not important: on the one hand, the Spearman rank correlation allow us to measure correlation
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when outliers are present, and in particular when values are heavy-tailed distributed; on the other
hand, it is also more general than the usual correlation, because there is no dependence on the
functional form of the relationship between the two sets. The correlation given by Eq. (5.40)
measures the dispersion from a linear relationship between two sets of points, while the Spearman
rank correlation measures the dispersion from a general monotonic relationship, that can be non
linear. The estimator of the Spearman rank correlation is given by the formula [Spe04]

ρ̂S(t, τ) = 1−
6
∑N

i=1

(
R

(i)
t −R

(i)
t+τ

)2
N(N2 − 1)

. (5.43)

If we assume the model as valid, the correlation between the sets of dL terms should be zero; we
will use this assumption as a null hypothesis. In the case of the Spearman rank correlation is quite
easy to compute the p-value of this hypothesis. It is known in fact [Ken48] that the statistic

t = ρ

√
N − 2

1− ρ2
(5.44)

is distributed as a Student t-distribution withN−2 degrees of freedom. In summary, the Spearman
rank correlation provides a complete framework to study the presence of correlations between sets
of heavy-tailed distributed values.

5.6.4. Dependence of correlation with respect to lag and time

In Fig. 5.12 show the dependence of the correlation with respect to the chosen lag τ is shown. In the
S model the correlation between a fixed day t and the day t+ τ is decreasing when time advances,
but only when t = 0 it reaches zero, while for t > 0, the correlation never decays completely. This
means that knowing if an item receives an increment in activity above the average at a particular
time implies that is more likely that this item will receive an increment in activity above the
average in the future, except for the information of the very first day, which decays in the first
two weeks to zero. It has to be noted that activity at time t = 0 may not correspond to a full day
(24 h), so this has to be considered as a special case.

The lag can be fixed, to observe the dependence with respect to the initial day of the comparison
t. The results are shown in Fig. 5.13: the noise in the S model is increasingly correlated as
time advances. In essence, the forecast attempted using the SDE model with Stable-distributed
fluctuations is affected by long-term correlations, that are statistically significant. This type of
analysis of correlations is usually overlooked in the context of proportional effect models, but we
can see that is important, since the random process that the model has is strongly constrained. A
new model that we propose in Chapter 6 will solve this problem.
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Figure 5.12: Correlation of the es-
timated Lévy noise with respect to
the lag τ . Different times of the
first observation were used, t =
1, 2, 5. Where the correlation is not
significantly different than zero (p-
value>0.05), the symbols are filled,
while where the null hypothesis is re-
jected are not filled. The correlation
in the S model decays to zero only
when t = 0; this is the correlation
between the activity of the first day
and the activity of the day τ .

Figure 5.13: Correlation of the es-
timated Lévy noise with respect to
time of the first observation t. Differ-
ent lags were used, τ = 1, 2, 5. Where
the correlation is not significantly dif-
ferent than zero (p-value>0.05), the
symbols are filled, while where the
null hypothesis is rejected are not
filled.

5.7. Discussion and Conclusions

In this chapter, we established the presence of both proportional effect and Lévy fluctuations in
the stochastic dynamics of the YouTube videos’ views. Moreover, we showed that a model with
both elements is better than previous proposals in terms of descriptive power and represents better
the predictability of the dynamics.

These findings have important consequences for the mathematical modeling of complex sys-
tems. First, it shows that, even if proportional growth is present, it cannot be attributed as the
responsible for the origin of the heavy tails because this is a feature already present in the fluctu-
ations. Second, the use of Gaussian-based stochastic equations, such as Eq. (5.23) or traditional
Fokker-Planck equations, overestimate the predictability of videos, by neglecting the mobility of
popularity. We showed that better results are obtained in YouTube using a stochastic equation
with Lévy noise, Eq. (5.29), an approach that has been previously proposed in Physics [JW93].
With respect to applications to empirical data, while the observation of fat-tailed distributed dis-
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placements is a well-studied field of research (see Refs. [SZF95] and [ZDK15] for an overview on
Lévy flights and Lévy walks respectively), the modeling of time series with this type of SDE is rare
(see Ref. [Dit99] for an example in time series analysis of climate change). This formalism, and
possibly also kinetic equations of the fractional type [MBK99, BS02], can be successfully applied
to describe the dynamics of social media as well.

New insights are brought on the attention economy of the Internet as well. The fact that
the multiple factors affecting the popularity of videos can be effectively modeled by a Lévy-
stable distribution shows that the decision of different individuals are correlated to each other
and lead itself to strong fluctuations. The Lévy-stable distribution is invariant under convolution,
i.e. if X1,X2 are stable, also X1 + X2 is stable, and therefore it is a natural attractor for the
combination of multiple (fat-tailed) processes, as the ones that creates the bursty activity patterns
that characterize online social media as well. The presented analysis of fluctuations are enabled
by the large availability of data in YouTube videos and we expect similar results to hold also in
more general systems in which items compete for the attention of users.





6. Generalized growth models

6.1. Introduction

A forecast method to predict the activity, Xt, can use a variety of input variables. The analysis of
Chapter 4 tells us that the variables that do not depend with time, M , are not very informative in
comparison with the previous activity of the item. In the last chapter, instead, models based on a
simple dependence with respect to the past were discussed, i.e. the future activity Xt comes from
a distribution that depends only on the total activity one time unit before, Xt−1. However, more
values of the past activity can be used; in fact, even the full history of the item, Ht can be used
as input in a forecasting method. Moreover, the correlation found in the noise in Section 5.6.3
suggests that this generalization is needed.

In Section 6.2 we present two very general time series forecasting methods, the Autoregressive
Model and the k-Nearest Neighbors Algorithm; the results of these methods indicate that the
best forecast of Xt is achievable knowing only Xt−1 and Xt−2, and in particular, that the forecast
depends directly on the quantity dXt−1 = Xt−1 − Xt−2. This result is be used to construct a
new SDE-based model in Section 6.3, the D model. The estimation and the agreement of the D
model is analyzed in Section 6.3.2, its usage for long-term forecast in Section 6.4 and the time
correlations of its fluctuations in Section 6.5; in all this three points the D model proves to be
superior to the best model of Chapter 5, which here is called the S model. The results have as
implication that proportional effect can be measured and even modeled if an underlying, different,
model is more likely, as discussed in Section 6.6.

6.2. Forecasting popularity with longer histories

Until now we focused on models where the the future activity Xt+1 is dependent only on the
previous activity Xt. This dependence is of the form

P (dXt | o) = f(dXt, o) , (6.1)

where o is the observable used (Xt for S) and f is a probability mass function of dXt (or probability
density function if X is continuous) where o is taken as a parameter. The abundance of time
series of the datasets considered allows the study of each individual distribution P(dXt|o = Xt).

69
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In the YouTube data, for example, the typical number of different values of Xt, KX is around
KX ∼ 55000, where the total number of items is Ntot ∼ 107, leaving an average number of items
per Xt of 200. Of these groups, most of them have only one item, and some of them will have
many more items, since the distribution of Xt is heavy-tailed, which is the original motivation for
merging the data in groups of similar Xt, described in Section 5.4.1, with the problems associated
to it. By the modifications on the likelihood calculation introduced in Section 5.4.2, each step of
the maximization requires to compute around 7000 Lévy-stable probability mass functions (instead
of KX).

If a second observable is included, say q = Xt−1, since the probability of having the same
amount of activity on two consecutive days is virtually null, a very large number of distinct pairs
(o, q) will exist (K(o,q) ∼ 4.5 · 105 – roughly a tenfold increase), leaving the average number of
items per key at 20. If an analogous method to the one described in Section 5.4.2 is used in this
context, it would be needed to compute roughly 25000 Lévy-stable probability mass function in
each maximization step, which is a much larger computational requirement.

In summary, if the goal is to model the fluctuations on a given model, increasing the amount of
input information would make highly impractical the estimation procedure. Thus, in this section a
different approach is pursued, where the fluctuations around the expected value are not modeled,
but instead are indicators of the quality of the model, as in many time-series studies. We propose
two simple models, which capture different features of the items’ activity history, and we compare
their predictive power, the criterion that ultimately selects the best model. The goal is to evaluate
qualitatively which type of features o are more significant and if there is general information that
these models can point out, such as if using larger histories (i.e. more information) results in
better predictions.

The two forecasts, namely the Autoregressive and the k-nearest neighbors, are tailored to the
particular case of an ensemble of time-series of items’ activity. In the following paragraphs we
motivate each of them, we describe how they are implemented, and then we summarize and discuss
the results.

6.2.1. Autoregressive models

Autoregressive models are one of the classes of models most used in linear time-series analy-
sis [BJRL15], and applied as well for YouTube data [PAG13]. The models of the class AR(τ) are
the ones where the current value of an observable X is a linear function of its τ last values plus a
noise

Xt =

τ∑
s=1

asXt−s + σξt . (6.2)
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This definition can be seen as a discretization of an SDE, essentially equal to the S model for τ = 1,
i.e. Xt depends only on Xt−1, but with a different noise term. The usual context where this model
is used is climate or finance research, where a particular observable (temperature anomaly in a
geographic location or return rate of an equity) is registered for a long time, and this observable
is assumed to be stationary. In the context of time series of items’ activity, there are many, short,
time dependent time-series. A consequence of this is that the parameters as will depend with
time, changing the model to

Xt =

τ∑
s=1

as,tXt−s + σξt . (6.3)

It means that now there are τ parameters as,t for each time step t modeled, which implies that
the estimation of the parameters cannot be done in the usual way (i.e., through the Yule-Walker
equations [Yul27, Wal31]), but it has to be considered as a common linear regression. The second
consequence is that the statistical ensemble is not given by observations distributed in time, but at
the same time over all the time series. In practice, for each time step t, the parameters as,ts will be
estimated as the coefficients of a linear regression between the set of τ ·N previous observations,
namely the matrix X(t,τ) and the N observations at time t, the vector Xt. The least squares
estimator of the parameters (equivalent to the Maximum likelihood estimator if the fluctuations
ξt are assumed i.i.d. normally distributed) is

ât =
(
XT

(t,τ)X(t,τ)

)−1
XT

(t,τ)Xt . (6.4)

This is the estimator that minimizes the squared distance between the prediction X̂t and the
observations X̂t, where the predictor for a particular time series i is

X̂
(i)
t =

τ∑
s=1

âs,tX
(i)
t−s . (6.5)

The parameters represent then the average behavior of the item’s activity time series. In the
context of real-time forecasts, there are then two possible situations in which the predictor X̂(i)

t

is built, depending if the values X(i)
t−s used are the real ones (only possible if the forecast of the

next day is desired) or result of a forecast themselves, which is necessary if a forecast more than
one day ahead is desired, a very likely situation.

A fundamental assumption for this model is that the fluctuations σξt must be i.i.d. normally
distributed and independent from Xs∀s < t. (A variation of this model would be to have het-
eroskedastic, and independent fluctuations, but it requires to have an ansatz for the size of the
fluctuations.) However, if the forecast accuracy of the S model is measured in terms of the square
distance between its predictor and the observation, the error made would be very large, and in-
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creasing with the sample size, because of the presence of heavy-tails, as discussed in Chapter 5.
This empirical observation is not directly modeled by the AR model. If the addition of more
information, i.e. increasing τ , removes these properties, a model without heavy tails would have
been reached, where the heavy tails observed previously would be explained as the result of a
mixture of initial conditions and parameters of the items.

6.2.2. k-Nearest Neighbors algorithm

The AR(τ) process is the simplest way of introducing the history of a video H(i)
t into a model. Its

simplicity is as well its limitation, since such a linear model cannot possibly reproduce many of
the observed features of social activities. We introduce here a second class of methods which can
address this issue by being solely based on the available data, without entering into the estimation
of non-linear models, or even parameter estimation itself. The so called k-Nearest Neighbors (k-
NN) algorithm [FHT01] relies on the intuitive idea that similar items should behave in similar
fashion. (An essentially equal technique is known in the time-series domain as Lorenz’s method
of analogues [Lor69]; an important difference to the method of analogues is that for k-NN the
amount of neighbors is fixed, no matter how far away they are from the item.) It is a very
common and simple algorithm used in machine learning, and is completely data-based, in the
sense that its prediction relies almost solely in data and not in any parametric model. As such,
its main limitation is its lack of a clear physical interpretation; it has as well some other practical
limitation, which will be discussed below.

For a given that a notion of distance between items in the features space d(i, j), the method
consists in choosing the k items that are closer to the i-th item, and predict for the i-th item the
average of them,

X̂
(i)
t =

1

k

k∑
j=1

X
(j)
t = 〈Xt〉k , (6.6)

where the notation 〈·〉k indicates the average over the k neighbors of the i-th time series. Since
the space of features considered is the history of the videos Ht, a natural choice for distance is to
think the features as an Lp space, so that the distance between two videos will be

d(i, j) =

(
τ∑
s=1

∣∣∣X(i)
t−s −X

(j)
t−s

∣∣∣p)1/p

, (6.7)

where p = 2 is the most common choice. A more general version of this algorithm introduces
weights into these definitions. The motivation for doing this is to introduce some natural assump-
tions, like to give more importance to some videos more than others (e.g. closer to i), or to some
days more than others (e.g. closer to t). In this sense, the above definitions will change accordingly



6.2.2 k-Nearest Neighbors algorithm 73

to

X̂
(i)
t =

1

k

k∑
j=1

wi,jX
(j)
t (6.8)

and

d(i, j) =

(
τ∑
s=1

ωt,s

∣∣∣X(i)
t−s −X

(j)
t−s

∣∣∣p)1/p

. (6.9)

For now, these options will be ignored because a particular choice of the weights cannot be justified
a priori.

While k-NN is a reasonable algorithm, its limitations surface when we are confronted with finite
size datasets, since the algorithm assures convergence only asymptotically with N . In order to
clarify this point, let’s consider a dynamics only dependent on the last state (τ = 1):

Xt = f(Xt−1) + σξt . (6.10)

For a given distance d(i, j), the predictor of i-th time series is

X̂
(i)
t = 〈Xt〉k = 〈f(Xt−1)〉k . (6.11)

The predictor is optimal only if its expectation matches the one of the model, i.e.,

EX(i)
t = EX̂(i)

t = 〈f(X(j)
t−1)〉k . (6.12)

This is a necessary condition for the algorithm in order to give meaningful results. Although it
seems trivial, it is not, since the average over the k neighbors is actually dependent on the sampling
of Xt−1. If Xt−1 is distributed according to ρ(x), in a small interval Δ there will be approximately
Nρ(x)Δ items. In order to have k neighbors in a space Δ the following condition must stand

k

N
∼ ρ(x)Δ . (6.13)

If ρ(x) is small, then Δ must be big, decreasing the chances for Eq. (6.12) to hold. In the case of
ρ(x) being a heavy-tailed distribution, which is the case of interest, a large range of x where the
data is sparse will always exist. More formally, Δ is given by

k

N
=

∫ Xt−1+Δ/2

Xt−1−Δ/2
ρ(x)dx =

∫
Ix(Δ)ρ(x)dx , (6.14)

where Ix(Δ) is a shorthand notation for the indicator function of x in the interval Xt ±Δ/2; the
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expectation of the predictor is

EX̂t =

∫
Ix(Δ)ρ(x)f(x)dx

/∫
Ix(Δ)ρ(x)dx =

N

k

∫
Ix(Δ)ρ(x)f(x)dx . (6.15)

require that the real expected value to be equal to the expected value of the average over the
neighbors, by integrating over the density ρ: This means that in order for k-NN to be a consistent
predictor, the k neighbors have to be in a space Δ small enough such that the density ρ is
approximately flat. Additionally, Δ is naturally given by the selection of the k neighbors: These
two last equations regulate the k-NN algorithm sensitivity.

6.2.3. Results

Verification of the forecast

The forecasts produced by the AR and k-NN algorithms are single values, so their quality can be
assessed just by measuring the distance between the forecast and the target,

ε2 =
1

N

N∑
i=1

(
X̂

(i)
t −X

(i)
t

)2
. (6.16)

Note that this value is related to the log-likelihood of the AR model, because according to the
model, X(i)

t should be distributed normally around X̂
(i)
t . In addition to this absolute error, we

consider also the relative error,

δ2 =
1

N

N∑
i=1

(
X̂

(i)
t −X

(i)
t

X
(i)
t

)2

. (6.17)

This second type of error will indicate if the absolute error is driven by some items with very high
activity.

The protocol to measure the errors in the forecast is the standard for this type of analysis,
where two non-intersecting sets are used. The first, the training set, is used to fit the models, and
the second, the target set, is used to verify the forecasts; in this section, N is the total number of
items, so each set has N/2 items.

The analysis is repeated for different sizes of sets N , where the items have been randomly chosen
among the ones with an aggregated activity bigger than 500 at the third day (X3 ≥ 500), in order
to ensure that they have a non-trivial activity. This set has a size of roughly 107000 items, so the
the maximum size of training and target sets is set to 50000 items. This analysis was realized with
the Python library scikit-learn, which significantly reduces the computational effort required.
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Results for AR

In Fig. 6.1 the results for the AR forecasts are shown. The forecast is made for the day t = 10,
using the information of the last τ days. The increase of the size of the sets N is visible in the
shrinking of the range of the fluctuations of the errors, which do not decay in average. With respect
to the dependence with τ , the error is generally higher for τ = 1 than for τ = 2, and increasing
τ does not improves significantly the quality. This can be, more formally, assessed by the Akaike
Information Criterion (AIC) [Aka74], which takes into account, in addition to the quality of the
model, its complexity; the AIC is defined as

AIC = −2`+ 2k , (6.18)

where k is the number of parameters of the model. While similar to the BIC, the AIC is based
on information theory arguments, and is particularly suited to the problem of complexity in the
AR model [Aka74, BJRL15]. The correction due to the amount of parameters is τ/2, marginally
small with respect to the total value of the log-likelihood. Therefore, the model with τ = 2 is the
best model of the AR class for this data.

The choice τ = 2 gives the best description, and since there are only two parameters in the
model, it is possible to analyze in a straightforward manner how they are distributed in a bootstrap
sample; the results are shown in Fig. 6.2. In this example, where t = 10, the average AR(2) model
is

X10 = 1.9603X9 − 0.9609X8 + ξt = 0.9994X9 + 0.9609dX8 + ξt , (6.19)

which can be approximated as

dX9 ∼ 0.9609dX8 + ξt . (6.20)

In Fig. 6.2, the sum of the parameters a1,t, that multiplies Xt−1, and a2,t, that multiplies Xt−2,
is insignificantly different than 1. This result comes from bootstrapping the process 300 times,
where the sets are sampled with N = 105; in the figure are shown the averages of the parameters
and the 90% confidence intervals, which overlap with 1 for all the t considered. The confidence
intervals are very narrow, which means that a1,t + a2,t is close to one for each bootstrap (i.e. for
each random selection of training and target set).

This property, a1,t + a2,t = 1, is remarkable, since the AR model coefficients are computed by
a simple linear regression through least-squares; if dXt−1 is the variable on which dXt depends,
we expect to have fat tails the fluctuations, which is a feature that in principle would invalidate
this estimation method. If a different type of fluctuation is desired, then a more detailed analy-
sis is needed, likely through Maximum Likelihood Estimation, that requires a full model of the
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Figure 6.1: Quality of the AR fore-
casting method. Solid lines: average
error; shaded area: 90% percentiles
of the error. The time of the target
is t = 10, and information of the pre-
vious τ days is used. (a) Absolute
error ε as function of τ . (b) Relative
error δ as function of τ . (c) Absolute
and relative errors as function of N
for a fixed τ = 2.

fluctuations, which is increasingly complex as the number of features analyzed grows, as discussed
before.

The presence of fat tails has still to be established, but for τ = 2, there is an increase on the
absolute forecast error with the increase of the dataset size N , as shown in Fig. 6.1(c) (different
τ do not change this behavior – see Fig. 6.1(a)). This is an observation that encourages us to not
discard fat-tailed fluctuations, because the absolute error is an estimator of the standard deviation
of the fluctuations of the data with respect to the model, which has a dependence on N when
fluctuations are fat-tailed, as explained in Section 5.4.1.
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Figure 6.2: Bootstrap of the AR(2)
model parameters. The sum of the
parameters is very close to 1, an ob-
servation that supports the D model.
Notice that the confidence intervals
of the sum are very narrow, indicat-
ing that the sum is close to 1 for
each subset of the bootstrap, and not
only in average. The parameter a2 is
multiplied by −1 for graphical con-
venience. Solid lines: average (300
times, N = 105); shaded areas: 90%
confidence interval.

Results for k-NN

Although the k Nearest Neighbors is an algorithm that can, in principle, overcome non-linearities
and large fluctuations, Fig. 6.3 shows that the quality of the forecast is much worse than for the
AR model; in fact, the average error is an order of magnitude bigger. Nevertheless, this forecast
scales in a different way with respect to N . While in the AR model τ indicates the complexity
of the model (and has an impact on the AIC), in the k-NN method the complexity is given by k
[FHT01], while a change in τ modifies just the feature space.

The k-NN method performs marginally worse for high τ , indicating that the new features added,
although not increasing the complexity, are not relevant for a better prediction. However, increas-
ing the feature space has the effect of selecting neighbors that are closer in the new, extended,
space but not necessarily close in the old, reduced, space. Increasing the dataset size has no effect
for the absolute error, but reduces significantly the relative error of the method, a feature that is
not present in the AR model.

6.2.4. Summary

From these two simple models we can extract as a conclusion that there is no indication that
taking elements in H

(i)
t beyond τ = 2 would improve the forecast quality. In particular, the

AR model results for τ = 2 suggest further study of a model where the increments dXt depend
on Xt−1 and Xt−2 with the particular property a1,t + a2,t = 1, which is equivalent to a model
where the increments dXt depend on the previous increment dXt−1; moreover, the increase of
the fluctuations with respect to N indicate the possibility of having fat-tailed fluctuations. These
elements are included in the model proposed in the next section.
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Figure 6.3: Quality of the k-NN
forecasting method. Solid lines: av-
erage error; shaded area: 90% per-
centiles of the error. The time of the
target is t = 10, and information of
the previous τ days is used; the num-
ber of neighbors was set to k = 10
throughout all the analysis, the dis-
tance used is the euclidean and the
weights given to the neighbors are
uniform (i.e. all the neighbors wight
the same). (a) Absolute error ε as
function of τ . (b) Relative error δ as
function of τ . (c) Absolute and rela-
tive errors as function ofN for a fixed
τ = 2.

6.3. A new dynamical model: the Daily model

We propose a new dynamical model, where the dependence of the increment with respect to the
past is expanded (with respect to the models of Chapter 5) to the pair (Xt−1, Xt−2). This equal to
the one of Xt−1, dXt−1, i.e. the total activity since the release and the previous day activity, two
variables that are analogous to the position and the velocity of a particle in a physical system. In
particular, based on the results of the previous section, we define a model that only uses dXt−1;
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such daily model, that is denoted with the letter D, should be of the form

dXt = µ(dXt−1, t)dt+ σ(dXt−1, t)dξt . (6.21)

Note that integrating this equation does not result in a trajectory of total activity Xt, but in a
trajectory of daily activity dXt, which has to be integrated again to get the total activity Xt. So
even if the increment only depends on dXt−1, in a simulation it is needed to follow the value of
Xt−1 as well.

The noise term ξ is not specified, but since clearly there are correlations between the total
activity Xt and the present activity dXt (conditioning on one of them preselect values of the
other), based on our previous results, it is expected that the distribution of ξt is distributed with
heavy tails as well. In particular,

P(dXt|dXt−1) =
∑
Xt

P(dXt|Xt)P(Xt|dXt−1) , (6.22)

meaning that P(dXt|dXt−1) is a linear combination of the Lévy distributions P(dXt|Xt).

6.3.1. Parametric proposal of the Daily model

Here we define the functions µ and σ of Eq. (6.21), by a method analogous to the one of Sec-
tion 5.4.2. We define histograms P(dXt|dXt−1) with a minimal amount of items (N ≥ 104), and
we compute the quantiles of these distributions, shown in Fig. 6.4, for the quantiles 5%, 25%, 50%,
75% and 95%. The quantiles are linearly related with respect to the condition dXt−1, in a similar
fashion as the quantiles of the data conditioned by Xt. In Fig. 6.4 straight lines with slope 1

(linear functions, since the scale is logarithmic in both axes) have also been plotted, which match
the quantiles in a large range of values of dXt−1 (essentially for dXt−1 > 50), with a divergence
from linearity in the very low values. Therefore, we use as functional forms for µ and σ linear
functions, as it was done in the last chapter with the S models.

By the analysis of the quantiles, and in analogy with Eq. (5.29), we therefore propose the model

dXt = (atdXt−1 + bt)dt+ (ctdXt−1 + dt)dLt , (6.23)

where dLt is again a Lévy-stable noise as in Chapter 5.
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Figure 6.4: Quantiles of the dis-
tributions of dX3 conditioned on
dX2. The quantiles are computed
on groups of items of size N ≥ 104.
The lines are linear functions and are
shown as references.

6.3.2. Estimation by Maximum Likelihood

The estimation procedure is equal to the one performed for the S model in Section 5.4, where the
composite likelihood of dXt given dXt−1 is maximized, i.e. the function ` is minimized with

` = −
∑
dXt−1

∑
dXt

N(dXt, dXt−1) logP (dXt | dXt−1) . (6.24)

Here P (dXt | dXt−1) is the probability of dXt conditioned on dXt−1 as given by Eq. (6.23), i.e. a
Lévy-stable distribution with location parameter equal to atdXt−1 + bt and scale parameter equal
to ctdXt−1 + dt. Additionally to α, the parameter of the Lévy distribution β is left free, since the
distributions are not necessarily skewed as in the analysis of the S model. The result is a set of
six parameters (αt, βt, at, bt, ct, dt), where for most of the values of t, the estimated β is 1 and
the estimated bt is very close to 0, while dt is again larger than 0. The rescaling of the data by
the fitted location and scale parameters is shown in Fig. 6.5. While the bulk of the distribution
is notably well adjusted, the tails show some difference with respect to the data. Maximum
Likelihood methods basically weight the data points by the logarithm of their probability, so if
the tail is not adjusted so well as in the S model, there has to be an improvement in the bulk of
the distribution.

The parameters of the model were computed for t ≤ 30, as in the previous chapter, and are
shown in Fig. 6.6. In comparison with the S model, the parameters of change slower with time, with
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Figure 6.5.: Agreement between data and the D model. Five subsets of points are selected,
where each subset is respectively the set of items with dXt=2 ∈ {10, 25, 40, 72, 153}. (a) PDFs
of dXt=3 given dXt−1 (solid lines), and Lévy PDFs with parameters that correspond to the
same dXt−1 (dashed lines), based on the global fit of the S model. (b) Rescaling of the PDFs
according to the fitted parameters and Lévy PDF with µ = 0, σ = 1. (c) CDFs of dXt given
dXt−1 (points), and Lévy PDFs with parameters that correspond to the same dXt−1 (dashed
lines), based on the global fit of the S model. (d) Rescaling of the CDFs according to the fitted
parameters and Lévy CDF with µ = 0, σ = 1.

at, which controls the proportion of activity that persists, tending to 1 as time advances, meaning
that for long times the aggregated activity increases linearly, Xt ∝ mt + q. On the other hand,
the change in the parameters stabilizes after the first week; moreover, the index αt → α∗ ≈ 1.75

for t > 7. Both observations have resemblance to what obtained for the S model.

Comparison with the S model

To select the best model in terms of descriptive power (between the S and the D model), we
employ again the Bayes information Criterion (BIC), which is related to the likelihood of the data
being drawn by a model. In Fig. 6.7 the BIC difference is plotted for each time when the analysis
was realized, showing overwhelming support for the D model.
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Figure 6.6: Evolution of the param-
eters of the D model with respect to
time. The parameters stabilize after
roughly a week, as in the aggregate
model.

Figure 6.7: Quality of the models.
The magnitude (105) of the differ-
ence in Bayes Information Criterion
(ΔBIC) between the D and the S
model indicates indicate a very high
preference for the D model.

6.4. Forecast of popularity

In order to forecast, as in Section 5.6 we have to compute the probability P (Xt+τ = x | Xt = x0),
i.e. evolving the model from an initial condition x0.

The distribution of increments dXt conditioned on the views Xt is, in the S model, given by
the fit of the model itself; this is not the case for the D model, where the increments are related
with the previous increments. In order to get the distribution of the increments with a condition
on Xt is necessary to include the information of dXt−1, such that

P (dXt | Xt) =
∑
dXt−1

P (dXt | dXt−1)P (dXt−1|Xt) . (6.25)

If a simulation of the distribution of activity is initialized for items that have the initial activity
Xt, for a later time, say t+ τ , the sum will run over all the Xt+τ and dXt+τ−1. This requirement
is a product of actually using two variables, Xt and Xt−1, even if the fit is made only on the
condition dXt. As a consequence, the computational effort is much bigger in comparison with the
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S models.

6.4.1. Prediction of big hits

We use the same example as in Section 5.6 to evaluate the quality of the long-term forecast of
finding big hits.

The result of evolving the model with the initial condition X1 = 100 is shown in Fig. 6.8, with
the result of the S model as well. While in the long term both models seem to misrepresent the
real distribution of activity, the D model preserves the overall shape of the data. In particular,
the distribution of the S model has at some point a decay faster than data, indicating that items
are underdispersed; the D model instead, has a distribution shifted with respect to data, although
since the scale in the plot is logarithmic, it should be said actually that the activity is scaled.
A common feature in both models is the underestimation of the amount of items without any
activity, which can be seen visually by looking where the distributions begin to decay from 1: for
t = 30, the distribution of the data decreases immediately at the initial value X30 = X1 = 102,
while the models do it at higher values of activity, indicating that very few items are predicted to
have small increase in activity. In reality, many items have no activity at all, getting stuck at a
certain cumulated value for a certain time, instead of entering and leaving the null activity state
constantly. The models we are proposing do not consider a time correlation of this type; the most
extreme case is the one where the items have no activity at all. The estimation of the amount of
items that have this property is straightforward; if we consider lack of activity for a period of time
τ , it is just the product of the probability of having null increments,

P (Xt+τ = x | Xt = x) =

τ∏
s=1

P(dXs = 0) , (6.26)

which, if P(dXs = 0) has a stable value, would decay approximately as an exponential function
with τ . In fact, the exact probability P (X30 = 100 | X1 = 100) is 2 × 10−14 for the S model and
0.0004 for the D model, while for the data is 0.002.

As in Section 5.6, the quality of the model was measured by predicting the amount of extreme
events after a certain time, given a condition. The results are shown in Fig. 6.9, where the D
model reproduces better the probability of extreme events than the S model. However, as, the S
model, the D model shows as well a long-term tendency to deviate from data; while the S model
stalls in a certain probability, the D model, instead, overestimate the probability with time. The
observations made for Fig. 6.8 can also explain this behavior.
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Figure 6.8: Cumulative Distribu-
tion Functions of the S and D mod-
els , for long-term prediction at t ∈
{2, 10, 30}. The D model follows
the data for more time than the S
model(see t = 10), and eventually
a shift to higher values of x occurs,
visible in t = 30; note in particular
the lack of decay for low x, which
implies an underestimation of such
items with no activity.

Figure 6.9: Conditional probability
of an item to belong to the top 5%
quantile , for both S and D models
and data. The conditioning is made
to select items with X1 = 100.

6.5. Correlations of the models’ fluctuations

In this section we compare the correlations measured in the S model with the ones in the D model.
The Spearman rank correlation is used over the estimated increments dL(i)

t as in Section 5.6.3.
We recall that both models use the simplifying assumption of i.i.d. noise, and therefore predict
zero correlation. In Fig. 6.10 the dependence of the correlation with respect to the chosen lag τ is
shown. In the D model, the correlation is very low in general, which indicates support to the idea
that the D model represent in a more realistic way the dynamics of the items’ activity than the S
model.

In Fig. 6.11, instead, the results for fixed lags τ are shown. The correlation in the noise of the
D model is mostly negligible for τ > 1, while for τ = 1, there is an apparently systematic presence
of a small (negative) correlation since the day t = 12. The correlation of the D model remains in
any case much lower in absolute values than the correlation of the S model.

To summarize, the study of the correlations of the data fluctuations indicated by each model
indicates that the D model is better suited to model the data, since these fluctuations appear to
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Figure 6.10: Correlation of the es-
timated Lévy noise with respect to
the lag. Different times of the first
observation were used, t = 1, 2, 3 for
(a), (b) and (c) respectively. Where
the correlation is not significantly dif-
ferent than zero (p-value>0.05), the
symbols are filled, while where the
null hypothesis is rejected are not
filled. The correlation in the S model
decays to zero only when t = 0; this
is the correlation between the activ-
ity of the first day and the activity of
the day τ .

be uncorrelated, one of the hypothesis of stochastic processes to represent faithfully the observed
dynamics of activity.
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Figure 6.11: Correlation of the es-
timated Lévy noise with respect to
time of the first observation t. Dif-
ferent lags were used, τ = 1, 2, 3 for
(a), (b) and (c) respectively. Where
the correlation is not significantly dif-
ferent than zero (p-value>0.05), the
symbols are filled, while where the
null hypothesis is rejected are not
filled.

6.6. Discussion and Conclusions

In this chapter we explored the possibility of having a dynamical model with a longer time depen-
dence than just the last value; this analysis showed that the variable of interest should be instead
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the last increment. A stochastic model was constructed with this dependence, which is superior to
the model proposed in Chapter 5 both in descriptive power as in estimating the predictability of
extreme events, and it practically solves the problem of the correlations of the noise. These results
support the idea that fat-tailed fluctuations are inherent to the dynamical process of views accrual,
and not an artifact due to the low dimensionality of the model. On the one hand, AR models with
longer time span were not better than the D model; on the other hand, potential non-linearities
were not uncovered by the k-NN method, where the prediction is based on the behavior of similar
items. This is a very important result, because it makes Lévy-stable fluctuations not only suitable
for describing the data under proportional effect growth models, but also necessary for a other
models of the dynamics of items’ activity.

Moreover, the temporal dependence of the parameters offers an additional insight on the dy-
namics of attention. According to the S model, the expectation of Xt+1 is

ES (Xt+1) = (1 + at)E (Xt) , (6.27)

where at is given by E (dXt) = atXt. According to the D model, it is

ED (Xt+1) = (1 + bt)E (Xt)− btE (Xt−1) = E (Xt) + btE (dXt−1) , (6.28)

where bt is given by E (dXt) = btdXt−1. When time increases, both models show the effect of
novelty; in the S model at decreases approaching 0, while in the D model, bt increases approaching
1. The fact that at → 0 can lead to the interpretation that attention fades until ultimately
nobody is willing to view the item. On the other hand, bt → 1 can lead to the interpretation
that attention actually stabilizes into a regime where the amount of new viewers is constant, i.e.
EdXt = const. ≥ 0, indicating (i) an average constant interest of the public into the item, or (ii)
the sharing of the item is such that a viewer leads to, on average, one other viewer on the next
day; to disentangle these two pictures, more detailed information about the process of accruing
views is needed, specially on how the item was released. Both possibilities point to a different
understanding of how novelty manifests in proportional effect models.

In the D model, however, the increments are not related as a proportional effect in the usual
way it is intended. The mentioned trend, bt → 1, corresponds asymptotically to the persistence
forecasting method, i.e. predicting an increment equal to the last increment [Ahr12]. Nevertheless,
proportional effect (dXt ∝ atXt) is still being observed; this means that, even very simple models
like persistence can superficially look like proportional effect, thus putting into another perspective
the ubiquity of this observation.





7. Conclusion

In this Chapter we conclude the Thesis by summarizing and discussing the results. A list of the
main specific results is presented in Section 7.1. In Section 7.2 we discuss these results and their
relevance in the context of the analysis of systems with fat-tailed distributions and in particular
of social activities with proportional effect. In Section 7.3 we present possible extensions of the
results and open problems that originate from this work.

7.1. Summary of the results

The main novel results presented in this Thesis are summarized in the following list.

1. Predictability of Extreme Events (Chapter 3 and Chapter 4); these results are published in
Ref. [MA14a], while the data is published in Ref. [MA14b].

• We characterized the distributions of online activity in our datasets by fitting the Gen-
eralized Pareto distribution; this was done also for each of the groups in which the data
can be categorized. This fit was most of the times statistically significant, indicating
that our datasets are representative of the class of fat-tailed social activity.

• We proposed a measure of Predictability Π, defined as the capacity of forecasting an
extreme event by using a given information. This measure is the quality of the best
possible forecasting method; since the observable (if the activity of the item will become
an extreme event or not), and the predictions are binary, we used the area under the
ROC curve as measure of the forecast accuracy. We showed that an optimal strategy
exists, i.e. the amount of correct predictions is maximal for a given rate of false positives,
and consists in predicting extreme events for all the items in the groups with higher
rates of extreme events. This result was shown by using the Simplex algorithm. A
straightforward formula is given to compute Π based solely on the probabilities of
having an extreme event given the items’ group.

• Applying our proposal for the measure of Predictability, we showed that, in our data,
past activity is more informative than any other type of information, in particular
release date or simple topical variables.

• We showed that varying the definition of extreme event, i.e. increasing the threshold
by which it is defined, the Predictability increases in all cases, i.e. the more extreme
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are the events, the more predictable are. We show that this behavior is a direct conse-
quence of the difference of the tails of the probability of having an event given the used
information.

2. Stochastic growth models (Chapter 5); these results are published in Ref. [MKA16], while
the program necessary to reproduce the results (in particular the Lévy distributions and
their estimation) is publicly available (see Appendix C).

• We computed the exact result of the growth model by allocation with proportional effect
described in Section 2.2.2; the result is a probability distribution P (dXt | Xt) of a Beta
Binomial form, which can be reasonably approximated by a Normal distribution with a
certain mean and variance proportional to the mean. We showed that this distribution
is not the observed in our data; instead, data must follow much broader distributions.

• Using the framework of Stochastic Differential Equations (SDE) to generalize the allo-
cation model, we showed that the class of linear SDE with Wiener noise dWt predicts
distributions P (dXt | Xt) that do not match the observed data, ruling out the classical
SDE argument for growth models described in Section 2.2.2. We showed that, instead,
Lévy-Stable distributed noise dLt describes these distributions much better.

• We defined a formal method to estimate the parameters of SDE models, in terms of
Maximum Likelihood. We used it to show that the SDE with Lévy-Stable noise as
a whole, has a higher Likelihood than the SDE with Wiener noise. Moreover, the
evolution in time of the parameters can be assessed, showing a decay in the overall
activity after the first week, confirming previous observations of such an effect.

• We showed that the Lévy-Stable SDE model (the "S model") is better than the Wiener
SDE models at predicting the amount of extreme events after a longer time than one
day. This was done by simulating the distribution through the Chapman-Kolmogorov
equation and the conditional distributions predicted by the SDE models. In particular,
in the Wiener SDE models the items are very predictable in comparison with empirical
data. The S model results in a predictability that is in line with the data, but as
time evolves the model departs from data, an effect that we attribute to neglected
correlations present in the data.

• We found that, the estimated Lévy-Stable noise dLt for the S model has correlations
(measured by the Spearman Rank correlation coefficient) that are not only statistically
significant, but also strong enough to imply a departure in the predictability of the
model.

3. Generalized stochastic growth models (Chapter 6).

• We performed an exploratory analysis to understand if a model with more dependencies
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was necessary, and if the fat-tailed fluctuations observed are genuine or a spurious effect
due to a more complex dynamics. We used the Autoregressive model (AR) and the
k-Nearest Neighbors method and we evaluated for both the (out-of-sample) forecast
accuracy. The results indicate that a model that includes a dependence of dXt on both
Xt and Xt−1 can provide better results than a model only dependent on Xt. Moreover,
the AR model with these dependencies has coefficients that strongly indicate linear
dependence of dXt with dXt−1.

• We defined a new model, the "D model", where dXt depends on dXt−1 as it depended
from Xt in the S model, including Lévy-stable noise. We showed that the Maximum
Likelihood estimation technique used before can be used for this model as well, showing
a stronger statistical support for the D model. The temporal dependence of the param-
eters was also analyzed, showing that asymptotically the model tends to a "persistent"
state.

• We repeated the test for predicting extreme events after a certain time, and we showed
that the D model performs better than the S model. The correlations of the estimated
noise was analyzed for the D model and compared with the S model. We found that
correlations are greatly reduced in the S model, and, in most cases, not even statistically
significant. However, some long-term correlations exist still in the data; in particular,
there are items that get systematically 0 views.

7.2. Discussion and outlook

In this Thesis we investigated the dynamics of growth processes with fat-tailed distributions, and
in particular online activity, a prominent example of social dynamics, and the consequences that
these processes have on the problem of forecasting. The abundance and detail of the datasets,
specially the YouTube dataset, allowed us to characterize the temporal evolution of the activity Xt

with an improved accuracy when compared with previous works. In particular, we characterized
not only the average behavior but also the fluctuations, which we show are fundamental.

We collected datasets from online social media that possess similar characteristics, in particular
the presence of fat-tailed distributions of activity, and thus are representative of a larger class of
social systems. Fat-tailed distributions require a careful treatment of forecasts, since they can cause
lack of robustness in the estimators based on the distributions’ moments. Our general approach
throughout this Thesis was to use the quantiles of distributions as observables, or, equivalently,
if an item would be an extreme event, E = (Xt > η), or not. This serves two main purposes.
The first is to establish a measure of the predictability of the system, Π given by Eq. (4.3), based
solely on the values of P (E | g), the probabilities of E given that the information being used is
g; we define predictability as the best forecast accuracy attainable by only knowing g, thus it is a



92 7.2 Discussion and outlook

property of the system alone. This means as well that any model that includes that information
will be at most as good as Π; in particular, we found that previous activity is the most informative
variable among the available in all datasets, in consonance with similar analysis realized in other
social media [MHS+16].

The second purpose is the one of measuring how items mix among each other, i.e. how their
ranks change. Analyzing this feature of the dynamics is a step beyond the modeling of the average
behavior, and has implications on its own, in the context of fat-tailed distributions in society. For
instance, it is important to understand the possibility of a person to raise among the ranks of the
income distribution (see Chapter 1); in this sense, the problem of measuring economic mobility
can be understood as the one of measuring predictability. To predict the amount of extreme
events after some time, as done in Section 5.6 and Section 6.4.1, not only tests how appropriate
the fluctuations of the model are (as in Chapter 5), but also how much correlation data has if a
model is assumed (as in Chapter 6).

The role of models with proportional effect was studied in detail in Chapter 2 and Chapter 5;
these are the typical models used to explain fat tails in complex systems []. While previous studies
focused only in the average behavior due to proportional effect and the observation of fat tails,
we try to match the full probabilistic model that leads to such observations to empirical data.
We showed that, in our data, even if proportional effect is observed, the fat-tailed distributions of
activity P(Xt) are driven by the fluctuations around this average behavior, P (dXt | Xt), which are
fat-tailed themselves. This is an important result. On the one hand, having the correct fluctuations
in the model allows to predict more accurately the amount of extreme events, as explained before.
On the other hand, it indicates that the observation of proportional effect is not enough to explain
the statistical properties of the system [RFF+10]. Instead, care is needed when linking directly
proportional effect and fat tails: we showed that the distribution that results from proportional
effect cannot lead to the fat-tailed distributions of increments measured in the data.

We proposed the Lévy-stable distribution as a candidate model for P (dXt | Xt), which resulted
to be a better fit than other distributions previously proposed. Noise with this distribution, being
the most general distribution for sum of random variables, generalizes in a natural way the Wiener
noise in the SDE models. The SDE model, given by Eq. (5.29), encompasses both proportional
effect and fat-tailed distributions, and proved to be a better description of the data, in comparison
with models that do not take into account the leading role of fluctuations in the dynamics. The
framework of SDEs for activity dynamics provides a full probabilistic description, and allows to use
Maximum Likelihood methods to estimate their parameters; while this framework was previously
used in many areas of natural sciences [FPST11], this is one of the first attempts to apply it
to growth processes [MSSVK08, MM15], and the first to integrate it with fat-tailed fluctuations.
Moreover, the particular setting of the estimation we perform is novel, since we apply it over an
ensemble of time series at a certain t, while it is usually done over a single, long time series.

In Chapter 6 models for activity growth that go beyond proportional effect were considered,
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and the D model was proposed, given by Eq. (6.23). Besides the fact that its likelihood is higher
(in a decisive way) than the S model, this model has also the property of having a practically
uncorrelated estimated noise (i.e. the scaled residuals from the average behavior). This observation
is decisive to consider the Lévy-stable noise not as a spurious effect from the mixing of items in
different dynamical states, but as inherent in the modeling of activity. Notably, the D model
can coexist with the observation of proportional effect, which leads to an inferior model. This
can be understood in views of the correlation that exists between dX and X (see Eq. (6.25)):
it is expected that items with high activity X would be likely to have a bigger increment dX
(proportional effect), but at the same time the converse is true, i.e. items with high increments
dX will logically have high X. It is needed, therefore, to understand better the nature of the
ubiquity of proportional effect, in view of these results.

7.3. Open issues and directions for future work

• We proposed a predictability measure Π and we used to find the most important variables
to model and we analyzed how the extreme events threshold affected it. An interesting
application beyond these, is to measure how the predictability of the system changes when the
fluctuations scale in different ways. Assuming a model where Taylor Law is valid, Eq. (5.23),
the variation in β should increase (or decrease) the overall predictability of the system.

• The SDE models make use of a set of different parameters for each time step (i.e. 5 param-
eters per day); even if the model is not overfitting, it is desirable to find a model with less
parameters. In particular, it is possible to replace the particular values of the parameters
(αt, at, etc.) with temporal dependent functions (α(t), a(t), etc.). The functional form can
be deduced from the shape of the parameters, as seen in Fig. 5.9 and Fig. 6.6, with a given
number of parameters. The estimation of these new parameters can be performed in the very
same framework of Maximum Likelihood, generalizing Eq. (5.31) by considering a likelihood
function for data of all the different times together,

` = −
∑
t

∑
Xt

∑
dXt

N(dXt, Xt) logP (dXt | Xt) , (7.1)

where now P (dXt | Xt) is a Lévy-stable distribution with α = α(t), µ = a(t)Xt + b(t),
etc. The same can be done for models where dXt depends on dXt−1. While the method
for estimation is clear, it is desirable as well to have an underlying mechanistic model that
results in these temporal functions.

• Within the SDE framework, we showed that fluctuations around the average are Lévy-Stable
distributed; however, there can be multiple possible sources of these fluctuations.
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– One possibility is to consider the noise as the result of bursts of interest in a particular
topic; in that case, correlating these sudden peaks in activity with events (from a
news database, for instance) may give an insight of how this interest enters into social
media [FBA11].

– The problem of the origin of the fat-tailed noise can be also thought as an "internal"
process, without the need of external influence. The problem can be first approached
by considering the activity of an item as a Branching process [Jac10], where each view
of an item by a person triggers some other person to view the same item, a model for
sharing (as well as epidemics [BBV08] and information diffusion [IM09]). The total
views in a day, for instance, will be the sum of all these views; in this hypothesis the
number of persons that can be triggered should be distributed with a fat tail, in order to
allow the sum of views to be Lévy distributed. This feature can be naturally introduced
if the sharing process occurs on a social network, which usually has fat-tailed degree
distribution [BJN+02, KW06].

• We analyzed models with Wiener or Lévy noise, which in order to be compared to the data,
needed to be discretized. Online activity can also be modeled with Point Processes [DVJ07],
where views arrive randomly in time, at a given rate that can be time-dependent. The
Poisson process is the most famous model of this class, where the rate of arrivals is constant,
but in our case a model that allows for burstiness in the time series is needed. A possibility is
to use the self-excited Hawkes process [HO74], which was proposed for the YouTube [CS08,
MC09] and papers’ citations accrual [SWSB14]; datasets where the timestamp of each action
is available (like the Stack-Overflow or the Usenet dataset) would allow for a deeper study
of the burstiness issue.

• Another possible approach to modeling the activity is to assign a common dynamics to all
the items, but with different parameters for each of them. Such an approach was proposed,
for example, for citations accrual [WSB13]; while it is not parsimonious (because a certain
number of parameters are needed for each item), it can potentially increase the overall
forecast accuracy. A comparison by means of the BIC difference like the one we propose in
Section 5.5 and Section 6.3.2 would establish if this approach is better or not; in particular,
the presence of fat tails cast doubts on whether the improvement in quality is enough to
justify the huge increase in the number of parameters.

• A problem ignored in this Thesis is how an item’s content affects its success. Addressing
this issue requires to be able to analyze this content, usually a difficult task, specially for
video [FABG14]; however, machine-readable formats, like text, are more promising for this
type of analysis.

• The mechanism of sharing allows the spreading of an item through the viewers, but at
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the same time a viewer can be interested in related content. The user behavior is hard to
analyze because users’ data is usually protected by privacy regulations; in this case, however,
it is possible to analyze the correlations among time series of different items. Additional
information can be retrieved using the recommendation systems that online platforms usually
have, to find automatically items with related content. An analysis on these lines can also
shed light on overall trends of interest from the public [Fig13].





Appendices

A. Computation of the Likelihood

The Maximum Likelihood Estimation proposed needs the computation of P(dXt | Xt) for all the
pairs (dXt, Xt) in the data; however, dXt is always discrete, and dXt ≥ 0. For this reason, the
continuous distributions P(dXt | Xt) are truncated at 0, and discretized. Then, a normalization is
applied, since the sum over all the values of dXt is no longer 1; this requires to compute this sum,
for all the values of Xt. Typically, the number of different values that Xt takes, KX , is around
KX ∼ 55000 for t < 10. With time this value increases because items spread over Xt. This implies
that for each evaluation of the log-likelihood `, the distribution function P(dXt | Xt) is evaluated
over a large number of values (choosing a range of increments up to 50000 is enough for numerical
purposes) and then summed, KX times. ` is likely to be evaluated hundreds of times during
the minimization process, so it is critical to compute it efficiently in order to avoid very lengthy
numerical calculations. The minimization of ` was performed using the fmin function from the
scipy Python package (an implementation of the downhill simplex algorithm); the process was
repeated 30 times initializing the parameters in random values in order to avoid the algorithm
getting stuck in a local minimum.

In order to improve the efficiency of the computation of `, we will perform approximations,
mainly to reduce the number of numerical evaluations of P(dXt | Xt). This evaluation is straight-
forward for the case of the Lognormal distribution (and even if more cumbersome, also in the
CEV distribution), but not for the Stable distribution, which notably has no explicit formula for
its probability density function. The Stable distribution is precomputed numerically through its
characteristic function Eq. (2.9) for a grid of values of α ∈ [0.5, 2] and β ∈ [0, 1] (values of α below
cause problems in the numerical integration, and for β < 0, the distribution can be computed by
mirroring the distribution with the correspondent β′ = −β). Then, an interpolation is used to
compute the values of the distribution for intermediate values of (α, β). All this process makes
the evaluation of the Stable distribution expensive computationally.

We use two approximations for the Stable distribution. The first is to consider a threshold
x∗ such that P(X = x | X > x∗) is a power-law. An exact formula for this approximation
exists [Nol12],

P(X = x) ≈ ασαcα(1 + β)x−(α+1) , (A.1)

97
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(where cα = sin(πα/2)Γ(α)/π) and we use it to speed up the computation of P in the tail;
moreover, when the normalization of P is computed, it is possible to use the sum of the full
evaluation of P up to x∗ and an exact formula for the sum of the values larger than x∗, since
this sum can be expressed in terms of the Hurwitz Zeta function (as the normalization of the
Generalized Pareto distribution in Eq. (3.2)). This approximation is implemented in the package
pyLevy (see Appendix C.2).

The second approximation is by replacing the discrete distribution by the continuous one. This
can be done only for high enough values ofXt: this is the region where the importance of truncation
is lowered (since the bulk of the distribution of dXt moves away from the 0), and the same time
the discretization is less relevant, since the probability is distributed over many more points. In
practice, we select all items such that the number of items that have the same Xt is lower than 10,
which is a way of taking the items in the tail of the distribution of Xt. The increments of these
items, dX(i)

t are transformed by subtracting the mean of their correspondent Stable distribution,
µ(X

(i)
t , t), and scaled by their correspondent scaling factor, σ(X(i)

t , t), leaving points that should
be distributed according to a Standard Stable distribution (µ = 0, σ = 1), thus making possible
to evaluate the (Standard) Stable distribution only once for the whole tail. This approximation
reduces drastically the amount of evaluations of the Stable distribution, from KX ∼ 55000 to
7000.
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B. Scaling of fluctuations is incompatible with Wiener noise

The bin size is given by the distribution of Xt, as mentioned; by denoting the borders of the
window as x0, x1, they are given by∫ x1

x0

P(Xt = x)dx =
N

Ntot
(B.1)

where Ntot is the total size of the data set. In order for the method to work, the average of the
data has to converge to its expectation value, formally meaning that

〈dXt | Xt〉 =
1

N

N∑
i=1

dX
(i)
t ∼

∫ x1

x0

E (dXt | Xt = x) ρ(Xt = x)dx→ E (dXt | Xt) (B.2)

when N →∞. From the last two equations it can be seen that an increase in N , while reducing
the fluctuation of the average, increases at the same time the distance between x0 and x1 if Ntot

is kept constant, mixing variables dXt that belong to different Xt. Hereafter we consider a model
for such mixture and test whether our observations of σ growing with N are explained by it. The
expected fluctuation can be estimated from the expectation by considering

V (〈dXt | Xt〉) = N−1
∫ x1

x0

V (dXt | Xt = x)P(Xt = x)dx
/∫ x1

x0

P (Xt = x) dx . (B.3)

Here it is needed to specify the form of the variance V (dXt | Xt); the proposal for the variance
scaling of Eq. (5.23), V (dXt | Xt) ∝ X2β

t , is therefore used. Additionally, we consider a power-law
decay of the Xt distribution, P(Xt) ∝ X−α−1t , and that x1 = x0+Nγ, a first order approximation
of the dependence of x1 with respect to N , with γ as proportionality constant that depends on the
exact shape of P(Xt) and x0. The value of the integral in the denominator, N/Ntot, is also known.
With these hypothesis, we can get an idea of how the estimation of E (dXt | Xt) gets better with
N . Replacing, we get

V (〈dXt | Xt〉) ∝ N−1
[∫ x0+Nγ

x0

x2β−α−1dx

]/
(N/Ntot) ∝

(x0 +Nγ)2β−α − x2β−α0

N2
. (B.4)

This means that the fluctuation of the mean, for very high N , scales with N as

σ̂ (〈dXt | Xt〉) ∝ Nβ−α/2−1 (B.5)

where the Central Limit Theorem expected relationship is recovered if β = α/2+1, meaning that
there is a region of combinations (α, β) for which the error in the estimation does not decay at
all, β > (α + 1)/2, although this condition is rather extreme. On the other hand, from the same
calculation the scaling of the expected standard deviation of the window’s data points can be
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computed, being

σ̂ (dXt | Xt) ∝ Nβ−α/2−1/2 . (B.6)

Although this relationship predicts that there can be a regime where a substantial difference in
the standard deviation exists, we show that for the data taken into account the increase is actually
negligible.

In Chapter 3 we showed that the distribution of views in YouTube can be described by a power
law with exponent α ∼ 0.7 for x > 20, Ntot ∼ 7 · 106; with these values, and using only Xt = 103,
the ratio between the standard deviation of the two values of N can be computed, and is plotted
against α and β in Fig. B.1.

Figure B.1: Ratio of standard devi-
ation with N = 102, 104. The red
dot coordinates are α = 0.7, β = 1,
roughly the values given for this par-
ticular data set.
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The ratio for the α, β values given by the data is no more than 2% away from 1. The change
measured in the data, instead, is consistently higher, reaching peaks of 850%, therefore is not
compatible with the SDE that we are proposing, Eq. (5.23). This can be seen as well in Fig. B.2,
where a window of 102 videos at Xt=3 = 1000 is enlarged until 104 videos are included; the ratio of
the standard deviation of the window with size N with respect to the original, of size 102, observed
in the data is compared with the ratio expected from the mixture model (the same estimation
used in Fig. B.1) and with the expected ratio scaling from a model where the fluctuations are
fat-tailed. If the distribution is fat-tailed, and even if the standard deviation is not defined, it
is possible to compute an estimate for the fluctuations, by considerations based in extreme value
theory [BG90]; the scaling according to this estimate scales with N as N1/α, where α is the index
of the tail of the distribution. By this analysis it becomes clear that the lack of convergence of the
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standard deviation of the bins is not due to the merging of items with different Xt.
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Figure B.2: Ratio of standard devi-
ations with N0, N1 sizes, for Xt=3 =
1000. The blue line is the ra-
tio for the mixture model that fol-
lows Eq. (5.23) with α = 0.7 and
β = 1; the orange line is the ratio
for a model where the distribution of
dXt | Xt is Lévy-stable with expo-
nent α = 1.64. The points are the
values observed in the data for an in-
creasing window at Xt = 1000; no-
tice that there are shocks given by
the appearance of very large jumps in
Xt. Although the values of the data
points seem close to the unit, already
at N1/N0 = 7 there is a 30% in-
crease in the standard deviation. The
maximum is reached at an increase of
850%.
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C. Packages released

In this Appendix we mention the main features of two numerical packages in Python language that
were mainly created for and used in this Thesis and released to the public. datagram is a small
package that is useful to handle sparse histograms, as the ones with fat-tailed distributions, and
was used throughout the whole Thesis, while pyLevy was used to evaluate the Lévy distributions
in Chapter 5 and Chapter 6.

C.1. datagram

datagram features a Data class, which uses a dictionary as a container for sparse histograms,
avoiding unnecessary requirements. This is particularly useful if the data is discrete, since then
the keys of the dictionary are integers. If the data is not discrete, the keys of the dictionary will
be rational numbers, appropriately rescaled. The Data class can transform the dictionaries, used
to aggregate data, to histograms and probability density functions when needed by the user.

The package is available at https://pypi.python.org/pypi/datagram/0.1.

C.2. pyLevy

pyLevy is a package that produces Lévy-distributed random numbers and evaluates its probability
density function. The code is based in a package of Paul Harrison (https://pypi.python.org/
pypi/PyLevy), but it has been modified by adding the tail approximation and implementing the
code described in Appendix A.

The computation of the Lévy probability density function is performed by numerical integration
of the characteristic function (Eq. (2.9) under parametrization 0 of Ref. [Nol12]), on a grid of values
of α and β (every 0.05 for α ∈ (0.5, 2) and β ∈ (0.1)) (values of α < 0.5 are very unlikely, and
for β < 0, the distribution can be computed through the one of −β using symmetry). For general
values of α, β the distribution is computed as an interpolation of the distributions computed
already over the grid, through the Catmull-Rom cubic splines.

The package is available at https://github.com/josemiotto/pylevy.

https://pypi.python.org/pypi/datagram/0.1
https://pypi.python.org/pypi/PyLevy
https://pypi.python.org/pypi/PyLevy
https://github.com/josemiotto/pylevy
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