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Abstract 

Land use / land cover (LULC) change assessment is getting more consideration by global 

environmental change studies as land use change is exposing dryland environments for 

transitions and higher rates of resource depletion. The semiarid regions of northwestern 

Ethiopia are not different as land use transition is the major problem of the region. However, 

there is no satisfactory study to quantify the change process of the region up to now. Hence, 

spatiotemporal change analysis is vital for understanding and identification of major threats 

and solicit solutions for sustainable management of the ecosystem. LULC change studies 

focus on understanding the patterns, processes and dynamics of land use transitions and 

driving forces of change. The change processes in dryland ecosystems can be either seasonal, 

gradual or abrupt changes of random or systematic change processes that result in a pattern or 

permanent transition in land use. Identification of these processes of change and their type 

supports adoption of monitoring options and indicate possible measures to be taken to 

safeguard this dynamic ecosystem. 

 

This study examines the spatiotemporal patterns of LULC change, temporal trends in climate 

variables and the insights of the communities on change patterns of ecosystems. Landsat 

imagery, MODIS NDVI, CRU temperature, TAMSAT rainfall and socio-ecological field data 

were used in order to identify change processes. LULC transformation was monitored using 

support vector machine (SVM) algorithm. A cross-tabulation matrix assessment was 

implemented in order to assess the total change of land use categories based on net change 

and swap change. In addition, the pattern of change was identified based on expected gain and 

loss under a random process of gain and loss, respectively. Breaks For Additive Seasonal and 

Trend (BFAST) analysis was employed for determining the time, direction and magnitude of 

seasonal, abrupt and trend changes within the time series datasets. In addition, Man Kendall 

test statistic and Sen’s slope estimator were used for assessing long term trends on detrended 

time series data components. Distributed lag (DL) model was also adopted in order to 

determine the time lag response of vegetation to the current and past rainfall distribution. 

 

Over the study period of 1972- 2014, there is a significant change in LULC as evidenced by a 

significant increase in size of cropland of about 53% and a net loss of over 61% of woodland 

area. The period 2000-2014 has shown a sharp increase of cropland and a sharp decline of 

woodland areas. Proximate causes include agricultural expansion and excessive wood 

harvesting; and underlying causes of demographic factor, economic factors and policy 
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contributed the most to an overuse of existing natural resources. In both the observed and 

expected proportion of random process of change and of systematic changes, woodland has 

shown the highest loss compared to other land use types. The observed transition and 

expected transition under random process of gain of woodland to cropland is 1.7%, implies 

that cropland systematically gains to replace woodland. The comparison of the difference 

between observed and expected loss under random process of loss also showed that when 

woodland loses cropland systematically replaces it. The assessment of magnitude and time of 

breakpoints on climate data and NDVI showed different results. Accordingly, NDVI analysis 

demonstrated the existence of breakpoints that are statistically significant on the seasonal and 

long term trends. There is a positive trend, but no breakpoints on the long term precipitation 

data during the study period. The maximum temperature also showed a positive trend with 

two breakpoints which are not statistically significant. On the other hand, there is no seasonal 

and trend breakpoints in minimum temperature, though there is an overall positive trend along 

the study period.  

 

The Man-Kendall test statistic for long term average Tmin and Tmax showed significant 

variation where as there is no significant trend within the long term rainfall distribution. The 

lag regression between NDVI and precipitation indicated a lag of up to forty days. This 

proves that the vegetation growth in this area is not primarily determined by the current 

precipitation rather with the previous forty days rainfall. The combined analysis showed 

declining vegetation productivity and a loss of vegetation cover that contributed for an easy 

movement of dust clouds during the dry period of the year. This affects the land condition of 

the region, resulting in long term degradation of the environment.  
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KURZFASSUNG 

Die Erfassung von Landnutzung- und Landbedeckungsveränderungen  (LULC) rückt immer 

mehr in den Fokus globaler Umweltveränderungsstudien. Durch die weitreichenden 

Landnutzungsänderungen in den Trockengebiete werden große Flächen freigelegtn, was zu 

einer Degradation der Ressourcen führt. 

Die semi- ariden Gebiete im Nordwesten Äthiopiens sind von diesen Veränderungen der 

Landnutzung betroffen. In der Region treten durch diesen Wandel schwerwiegende Probleme 

zu tage. Bis dato wurde keine aussagekräftige Studie zu dieser Problematik durchgeführt, 

welche die Veränderungsprozesse des Gebietes manifestieren. Folglich ist eine raum- 

zeitliche  Änderungsanalyse von Notwendigkeit zur Identifikation sowie zum Verständnis der 

Probleme. Solch eine Studie bildete die Grundlage zur Entwicklung von nachhaltigen 

Lösungen hinsichtlich des Ökosystemmanagements. LULC - Veränderungsstudien 

thematisieren die Identifikation von Strukturen, Prozessen und der Dynamik von 

Landnutzungsübergängen sowie deren Ursachen. Die Änderungsprozesse in den 

Trockengebieten laufen entweder saisonal, sukzessiv oder abrupt ab. Diese scheinbar zufällig 

oder systematisch ablaufenden Prozesse resultieren in einem gewissen Muster oder führen zu 

permanenten Wandel der Bodennutzung. Die Identifikation und Typisierung dieser 

Wandlungsprozesse unterstützen die Anpassung von Monitoringmaßnahmen und bieten 

optionale Gegenmaßnahmen zum Schutz und Erhalt der Dynamik in diesem Ökosystem. 

 

Diese Studie untersucht die raum- zeitlichen Strukturen der LULC Veränderung, die 

zeitlichen Trends der Klimavariablen sowie die Erkenntnisse der lokalen Gemeinden 

bezüglich des Wandels des Ökosystems. Landsat Bilder, MODIS NDVI, CRU 

Temperaturdaten, TAMSAT Niederschlagsdaten und sozio-ökologische Felddaten wurden 

analysiert, um die Veränderungsprozesse zu identifizieren. Die LULC-Änderungen wurde 

mittels eine Support-Vektor- Maschine (SVM) Algorithmus detektiert. Aus der 

Veränderungsmatrix konnte die gesamte Änderung der Landnutzungskategorien abgeleitet 

werden, basierend auf der Nettoänderung und dem Nutzungswechsel. Zusätzlich wurde die 

Änderung aus erwartetem Gewinn und Verlust unter einbezug das zufälligen Gewinn/Verlust 

kalkuliert. 

Zeitpunkt, Richtung und Magnitude der saisonalen, sukzessiven sowie der abrupten 

Änderungen innerhalb der Zeitreihe wurden mittels der Breaks For Additive Seasonal and 
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Trend (BFAST) Analyse determiniert. Weiterführend wurde der Mann-Kendall Statistiktest  

und der Theil-Sen Schätzer genutzt, zur Beurteilung der langfristigen Trends auf den 

trendbereinigten Zeitreihendatensätzen. Das Distributed Lag (DL) Modell wurde angewendet, 

um die zeitversetzten Reaktionen der lokalen Vegetation auf die aktuelle sowie die bisherige 

Niederschlagsverteilung zu bestimmen. Während des Untersuchungszeitraumes von 1972 bis 

2014 sind signifikante Änderungen in der LULC zu verzeichnen. Evident durch einen 

bedeutende Flächenzunahme der Anbaufläche von etwa 53% sowie ein Nettoverlust der 

Waldfläche von mehr als 61%. Im Beobachtungszeitraum 2000 bis 2014 wird eine starke 

Flächenzunahme der Agraranbaufläche sowie zeitgleich eine starke Abnahme der Waldfläche. 

Die unmittelbaren Ursachen hierfür sind landwirtschaftliche Expansion und übermäßige 

Abholzung, mittelbare Urschen sind demographische, politische und ökonomische 

Gegebenheiten. Die Wechselwirkung jener Elemente führten zu einer extensiven 

Übernutzung der natürlich vorhandenen Ressourcen.  

Sowohl beider Auswertung der beobachteten als der zu erwarteten Entwicklungsanalyse, 

unter Berücksichtigung der systematischen sowie der vermeintlich zufällig stattfindenden 

Veränderungsprozesse, verzeichnet der Wald die höchsten Verluste verglichen zu den 

weiteren Landnutzungsformen. Die Berechnung des Zufallsprozesses der Zunahme  von Wald 

in Ackerfläche beträgt 1.7%. Dies impliziert, dass die Waldfläche sukzessiv durch Ackerland 

ersetzt wird. Weiterführend verdeutlicht wird diese Annahme im direkten Vergleich der 

Differenz von beobachtenn Verlust zu erwartetenn Verlust. Die Auswertung der Magnituden 

und Zeitpunkte von Regressionen in den jeweiligen Klimadaten und des NDVI weisen 

verschiedene Ergebnisse auf. Dementsprechend weist die NDVI Analyse Regressionen auf, 

welche statistisch signifikant auf die saisonalen und langfristigen Trends sind. Die 

langfristigen Niederschlagsdaten weisen einen positiven Trend während des 

Untersuchungszeitraumes auf, aber keine Regressionen. Ebenso weist die Höchsttemperatur 

einen positiven Trend auf mit zwei reduzierenden Schwankungen, diese jedoch sind 

statistisch nicht signifikant. Die Minimaltemperatur hingegen verzeichnet weder saisonale 

noch sukzessive Anomalien, gleichwohl einen insgesamt positiven Trend während des 

Untersuchungszeitraumes. Der Man-Kendall Statistiktest determiniert im langfristigen 

Durchschnitt der Tmin und Tmax eine signifikante Veränderung, in den langfristigen 

Niederschlagsverteilungen hingegen wurde kein bedeutender Trend manifestiert. Die 

Regressionsverzögerung zwischen dem NDVI und dem Niederschlag zeigen einen Zeitversatz 

von bis zu 40 Tagen auf. Dies lässt die Schlussfolgerung zu, dass die lokale Vegetation im 

Wachstum primär von den vergangenen Niederschlagsereignissen beeinflusst wird, als von 
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den aktuellen. Fusionierte Analysen zeigten den Zusammenhang von sinkender 

Pflanzenproduktivität und dem Rückgang der Vegetationsdecke.  Durch die Abnahme der 

geschlossenen Vegetationsdecke häufen sich die Staubwolken während der Trockenperiode 

des Jahres. Resultierend in der langfristigen Degradation des Bodens in der Region sowie in 

einer Schädigung der Umwelt. 
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1. Chapter 1. Background 

1.1 Introduction 
1.1.1 Dryland degradation in Africa 
 

Drylands cover an estimated area of up to 40 % of the earth's land mass and support the 

livelihood of nearly 2 billion inhabitants (J. Davies & J. Skinner, 2009; Safriel et al., 2005). 

They sustain one third of the Global Conservation Hotspot areas and are habitat for 28 % of 

endangered species (URL 1). Dependencies of population on dryland ecosystems resulted in 

excessive human pressures affecting vegetation cover of the region (Vitousek et al., 1997). 

Ten to twenty percent of these areas are suffering from land degradation and about one to six 

percent of the inhabitants live in degraded areas with most of those being exposed to further 

desertification (Millennium Ecosystem Assessment, 2005) which can destitute the subsistence 

well-being of the dryland community.   

 

According to the United Nations Convention to Combat Desertification (UNCCD, 1994) land 

degradation signifies the reduction or loss of the biological or economic productivity of the 

drylands and desertification is land degradation in arid, semiarid and dry subhumid areas 

resulting from various factors, mainly consisting of climatic variations and human activities. 

The expansion of degradation which devours the biomass and soil of a particular area, 

contributes to the global climate change through releasing green house gases, mainly CO2 

emission and inducing soil erosion. The recurrent droughts and the resulting environmental 

degradation are forcing the dryland inhabitants to immigration, conflicts on resources arise 

and further occupation of new areas which in turn exposes new environments to degradation 

(Appelgren, 2008). These effects have been further paving the way for exposure and 

worsening the condition of dryland environments and their inhabitants coupled with climate 

change and aridification. The degree of the variation in climate variables varies among the 

different dryland regions of the world though all of them are being affected due to either 

increasing, declining or unpredicted changes of the amount and distribution of rainfall and 

increasing mean temperature compared to historical trends (Kotir, 2010; Sarr, 2012;. 

Sivakumar et al., 2005). The variability in the distribution and amount of rainfall affects 

vegetation productivity and agricultural adaptation of the region which influences the 

livelihood of the people and their dynamic ecosystem (Sarr, 2012). 
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The expansion of land degradation not only created an imbalance between the demand of 

inhabitants and the services provided by ecosystems (Millennium Ecosystem Assessment, 

2005), but can also be a major anthropogenic contributor for the emission of global CO2 due 

to the loss of natural vegetation and soils. Even if there is a difference in scenarios in the 

amount of carbon content in different vegetation types, there is an estimated amount of about 

271 ± 16 Pg of carbon in tropical forests and woodlands with soil organic matter contributing 

the most (Grace et al., 2014). Each year, roughly about 2 % of the global terrestrial net 

primary production (NPP) is lost due to dryland degradation (Zika & Erb, 2009).Tropical 

deforestation, as one of the key components of the global carbon budget, also accounts  for 

about 20 % of the anthropogenic carbon emission (IPCC, 2007). The loss of dryland 

vegetation, mainly due to deforestation is becoming a concern of environmental safety. The 

trend in shift of vegetation cover is continuing as a major threat to the dynamic dryland 

ecosystems. 

 

The drylands of Africa encompass 43 percent of the continent, and have a population of some 

325 million people (UNCCD, 2009). Dryland degradation in Africa is contributing to the 

continual decline in the ability of dryland ecosystems to supply a range of ecosystem services 

for the livelihood of the people (Scholes, 2009). The decrease in productivity of the land 

coupled with regional climate variability is aggravating in several parts of Africa especially 

where population growth and improper utilization of the natural resources are significant 

(Maitima et al., 2009). Though some studies show recovery of vegetation cover in some parts 

of the Sahel due to changes in rainfall distribution and positive contribution of humans 

towards maintaining their natural vegetation (Anyamba & Tucker, 2005; Dardel et al., 2014; 

Herrmann et al., 2005; Hickler et al., 2005; Olsson et al., 2005), other parts of Africa are still 

under sever exposure to degradation. Studies at the landscape level in some parts of the Sahel 

re-greening showed fluctuations with both increasing and decreasing trends depending on the 

amount and distribution of rainfall through the years (Ouedraogo et al., 2014). The change in 

land use in some parts of East Africa has also transformed the natural vegetation towards 

human-dominated land use systems, resulting in deforestation, biodiversity loss and land 

degradation (Lemenih et al., 2014; Maitima et al., 2009). The global assessment of human 

induced land degradation indicates about 16 % of Africa has been degraded in the period 

1981- 2003 with soil erosion being the main factor contributing to land degradation and the 

regions south of the equator mostly affected within this period (Bai et al., 2008). Different 

studies at the local level assessing land use change and land degradation also confirmed a 
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significant amount of decline in the functioning of the ecosystem and more attention for 

protection and reclamation of the degraded environments is needed (Bakr et al., 2010; Biazin 

& Sterk, 2013; Kindu et al., 2013; Mekasha et al., 2014; REGLAP, 2012; Zewdie & 

Csaplovics, 2014). The changes observed in these regions are mainly accounted to a shift 

from natural ecosystems to human-dominated landscapes. 

 

The anthropogenic endeavors on these regions have exposed tropical dry forests to 

degradation, deforestation and loss of soils. Land use / land cover (LULC) change assessment 

of drylands is getting more consideration by studies of global environmental change as land 

use transformation is inducing high rates of resource depletion (Lambin et al., 2003). LULC 

studies focused on understanding the patterns, processes and dynamics of land transitions and 

its drivers over time (Bajocco et al., 2012; Braimoh, 2006; Carmona & Nahuelhual, 2012; 

Guida Johnson & Zuleta, 2013; Manandhar et al., 2010). The processes of these land use 

transitions can be categorized into either random or systematic changes based on identifying 

their pattern of categorical changes (Braimoh, 2006; Pontius, Shusas, & McEachern, 2004). A 

random process of change occurs when a LULC category loses to or gains from other 

categories by abrupt changes while systematic transitions are driven by the regular processes 

of transition characterized by a constant or gradual gradient of change (Braimoh, 2006; Guida 

Johnson & Zuleta, 2013). The transformation in land uses together with climate variability is 

enforcing changes in landscapes that can deprive the vegetation covers of dryland ecosystems. 

 

1.1.2 Dryland degradation in Ethiopia 
 
The loss in dryland vegetation of Africa has been significantly increased, resulting in land 

degradation that became a source of dust emissions and loading (Yoshioka et al., 2007). The 

situation in Ethiopia is not different as forests are cleared and exposed to severe landscape 

changes (Garedew et al., 2012; Lemenih et al., 2014; Zewdie & Csaplovics, 2014). Ethiopia is 

known for its varied agro-ecology among which drylands cover an estimated area of over 

65% of the land mass with a population of about 12 - 15 million of mainly pastoral and agro-

pastoral communities who depend on livestock raising (Lemenih & Kassa, 2011; REGLAP, 

2012). The drylands of Ethiopia, despite their richness in biodiversity, are shrinking in size 

due to the pressure of subsistence and large scale agricultural expansion, population growth 

and unwise utilization of the natural vegetation (Eshete et al., 2011; Lemenih et al., 2014). 

Global assessment of land degradation indicated that more than 26 % of the country has 
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already been degraded and that the livelihood of about 30% of the population in the period 

1981 – 2003 has been affected(Bai et al., 2008). Several studies demonstrated the exposure of 

drylands to anthropogenic activities mainly due to the involvements of subsistence and large 

scale farming and overharvesting of woods (Dejene, Lemenih, & Bongers, 2013; Garedew et 

al., 2012; Mekasha et al., 2014; Zewdie & Csaplovics, 2015). As loss in dryland vegetation is 

prevalent in arid and semi-arid regions, it could be a significant contributor for the 

degradation of drylands of the country. The fundamental causes of land degradation emanated 

from poverty, expansion of resettlement, limited opportunities for alternative livelihoods, 

inadequate policy support, improper investment and inadequacy of law enforcement (Lemenih 

et al., 2014; Zewdie & Csaplovics, 2015).  

 

Most of the drylands of the country are dominated by scattered vegetation types of Acacia 

woodlands, bush lands, wooded savannah and scrublands (WBISPP , 2005). Dryland areas are 

very sensitive to climate change and the existence of woodlands play a vital role in combating 

expansion of aridity (Gimona et al., 2012). The understanding of drylands degradation 

processes, incorporating the main driving forces and their effects on ecosystem performance, 

are crucial to adopt strategies in order to mitigate and avoid land degradation. The 

northwestern woodlands of Ethiopia, which are acting as a buffer zone in sheltering the 

southward encroachment of Sudano-Sahelien deserts, require strategies to assess and monitor 

the severity of deforestation and degradation processes in order to create awareness among all 

responsible stakeholders for sustainable management of the natural resources. In spite of their 

immense socioeconomic contribution, these woodlands are still experiencing deforestation 

and degradation mainly attributed to anthropogenic activities (Lemenih et al., 2014; Zewdie & 

Csaplovics, 2014). It is known that development priorities have focused on how much 

humanity can take from ecosystems, and too little attention has been given for assessing the 

impacts of human activities and reduction of the pressure exerted on the ecosystems of 

drylands (White et al., 2000).  

 

Northwestern Ethiopia became the focus for the governmental initiatives to expand 

mechanized agriculture and resettlements. Mechanized farming is attracting annually over 

200,000 casual workers from various regions of the country and neighbouring Sudan (URL 

2), which in one or other way directly compete with the existing natural vegetation of the 

region. The degradation of this ecosystem could be a threat to the current agricultural 

investments and it could be an environmental challenge to assure the well-being of the 
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community. The impact on this fragile ecosystem needs continuous monitoring in order to get 

long lasting, sustainable production of all the ecosystem services and also to maintain the 

livelihood of the local community.  
 

In order to sustainably address the current exposure of the dryland ecosystems of 

northwestern Ethiopia, it requires spatiotemporal information that can address their previous 

and current status. The assessment and organisation of information on the status and dynamics 

of change in the environment allow for a thorough analysis of occurring spatiotemporal 

changes through the monitoring period. The analysis of land use changes facilitates the 

documentation of varying ecosystem responses due to existing disturbances and the degree of 

their significant contribution to the changes (DeFries et al., 2004). The processes of change 

are governed by proximity causes which are dependent on the underlying drivers of changes 

like fundamental social and biophysical processes (Fig.1). The proximate causes of land use 

transition depict how and why local land cover and ecosystem processes are modified directly 

by humans, while underlying causes describe the broader context and primary forces 

supporting these local actions. The change in ecosystem services of the woodlands that results 

from LULC changes is significantly modifying the underlying drivers and proximate causes 

resulting in a feedback loop. According to Reid et al (2006) policy plays a vital role in 

avoiding positive feedback mechanisms which can accelerate unsustainable land use. Local 

policy has the higher potential to impact the proximate causes of change when there exists a 

simultaneous action on the underlying causes of change to have a sustainable land use 

management (Reid et al., 2006). Proximate causes mainly function at the local level and 

underlying causes originate from regional (districts, provinces, or country) or even global 

levels, though complex interplays between these levels of organization are common (Reid et 

al., 2006). However , the dryland vegetation of northwestern Ethiopia though having higher 

potentials for economic contribution (mainly gum and resin production) and ecosystem 

services, has been little supported through the local policies that are adopted from the regional 

and federal organizational structures and policies (Lemenih et al., 2014). In the current era of 

climate change that could potentially become a threat to modifying ecosystems, it is vital to 

maintain the integrity of policies that should avoid damages on ecosystems. It is commonly 

known that climate change, land degradation, and biodiversity are interrelated, and the 

imbalance change trajectory could potentially affect maintaining and restoring healthy 

ecosystems for adaptation and mitigation of climate change. The influx of human activities 

into this exposed dryland ecosystem exacerbates their exposure for further modification and 
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transition to an irreversible situation where species loss and land degradation are prevalent 

consequences. Timely intervention in both assessing the extent of the damage and soliciting 

solutions to overcome its adverse effect is vital. The population increase and the expansion of 

subsistence and large scale agriculture within the dryland ecosystems are competing with the 

sustainable management of the system. Developing countries like Ethiopia are aiming at 

increasing their production and export of products compromising the adverse effects on the 

natural vegetations. 
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1.1.3  Dryland forest change and resettlement in Ethiopia 
 

According to WBISPP(2005) the dry forest of Ethiopia covers about 26% of the country. 

There is a significant amount of spatiotemporal loss of these forests due to deforestation and 

degradation in different dryland areas of the country. However, no official organized data 

available for quantification of the exact size of loss of the dry forests of the country. There are 

few case studies documenting the existence of loss of dry forests due to various driving 

factors, mainly from anthropogenic factors that includes cropland expansion, overharvesting 

of woods, overgrazing and fire (Biazin & Sterk, 2013; Eshete et al., 2011; Garedew et al., 

2012; Lemenih et al., 2007; Lemenih et al., 2014; Tolera et al., 2013; Zewdie & Csaplovics, 

2014). The total forest (both the high forest and woodland) loss of the country is estimated to 

reach an annual rate of over 2% (WBISPP, 2005). However, this figure may differ 

significantly through years as there is a prevalent variation of population growth and cropland 

expansion in most forest areas of the country. Nevertheless, there is no update on the 

assessment of forest loss considering the economic activities and the considerable changes on 

population size.  

 

The population size of Ethiopia has more than doubled in the last three decades from 40 

million in 1984 to over 87 million in 2014 (CSA, 2014). This has led to overexploitation of 

the natural resources and consequent land degradation of the highlands. The population of the 

degraded highlands was resettled to the lowlands which brought a significant threat to the dry 

forests due to lack of monitoring mechanisms and of integration of the newly arrivals with 

existing residents (Dessalegn & van den Bergh, 1991; Lemenih et al., 2014). Several case 

studies showed that the pressure exerted from the increasing population and expansion of 

agriculture within the dryland vegetation resulted in landscape changes (Garedew et al., 2012; 

Lemenih et al., 2014; Mulugeta Lemenih & Kassa, 2011; Mekasha et al., 2014; Zewdie & 

Csaplovics, 2015). 

 

Despite the degradation of the highlands of the country for decades, the efforts made to 

reclaim and overcome the loss of soil and vegetation is very minimal. The country has rather 

focused on translocations of the people to other areas since the 1970’s, mainly drylands, 

which were considered as potentially fertile regions for inhabiting communities from the 

degraded highlands (Kloos et al., 1990; Kloos & Aynalem, 1989). The difference in culture, 

origin of immigrants and weak formal regulatory systems are among the major contributing 
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factors to facilitate easy access to the woodland vegetation by the newcomers (Kloos & 

Aynalem, 1989; Lemenih et al., 2014). Improper human activities have changed major parts 

of the dryland ecosystems in order to fulfil the demands of the growing population for crop 

production, firewood and construction wood supply (Lemenih et al., 2014). The continuing 

change in ecosystems affected the functioning and services provided by the ecosystem to 

fulfil the ever increasing demands of the population. The degradation of dry forests has 

economic, social, ecological, policy and institutional dimensions that can affect the livelihood 

of the society along the years (Cubbage et al., 2007). Among the anthropogenic factors, 

deforestation has played the significant role for the decline in size of the woody resources of 

the drylands of Ethiopia (Eshete et al., 2011; Lemenih et al., 2014).  

 

The increase in population size has brought pressure on sustainable resource utilization 

facilitating land degradation, resource exhaustion and forest loss. The decline in productivity 

of some of these highland areas forced the government to identify lowlands as potential 

productive regions for expanding resettlement. Among them the northwestern lowlands have 

been used as resettlement for populations affected by recurrent droughts and land degradation 

since the 1970’s (Rahmato & van den Bergh, 1991). This trend has been continuing with 

resettling more households from resource poor areas to the northwestern woodlands and other 

lowland areas which are considered as potential for agricultural expansion (Fesseha, 2007). 

This is becoming a major threat in competing with the existing woody vegetation as these 

areas are identified as centers for establishing new settlements for the incoming populations. 

In addition, there is expansion of commercial agriculture within these woodland regions 

which also compete with the available dry forests of the region. The demand of sesame on the 

world market highly promoted foreign investments and also local farmers for intensively 

involving in sesame cultivation (Dejene et.al, 2013; Lemenih et al., 2014; Tadele, 2005). This 

has significantly competes with the woodlands as most incomers are farming on more than 

their allocated farming sizes (Lemenih et al., 2014). The livestock size has also significantly 

increased with the addition of new settlers and labour forces, who permanently establish 

themselves once brought from other parts of the country, induce pressure on the remaining 

dryforests. Fire is also among the factors that affect the woodlands which comprise Boswellia 

papylifera, one of the endangered lowland tree species of the drylands (Lemenih et al., 2007). 

The disturbances in the woody vegetation can disrupt the ecosystem and air quality (Opdam 

& Wascher, 2004). The intensification of land use as well as the transition in size of land use 

has contributed for affecting the functioning of ecosystems (IPCC, 2007). Due to the ever 
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increasing degradation of the environment, the drylands of Africa are under heavy movement 

of dust clouds. It is common to observe the dust movement during the dry period of the year 

as the dust continued to hover over central Sudan and to spread into neighbouring countries of 

Eritrea and Ethiopia (URL 3, Fig. 2). The sand dune movement is also widespread in most 

Saharan and Sahelian regions of Africa transporting the very fine soil particles towards the 

Atlantic and the Caribbean depleting the soil mineral of the region (Muhs et al., 2010; 

Prospero & Lamb, 2003). The degree of these dust emissions could be linked to the amount of 

rainfall distribution of the sources , and possibly would be aggravated due to the current 

change in climate and loss of vegetation cover of most dryland regions of Africa (Prospero & 

Lamb, 2003). 

 

 
Figure 2. Dust movement towards Ethiopia and Eritrea on May 11, 2009 (Source: 
http://earthobservatory.nasa.gov/IOTD/view.php?id=38464  (accessed on March 2013). 
 

Accordingly, there are dust storms over northwestern parts of the country which may 

originate from the borders of Sudan and northwestern Ethiopia (Fig.3 and URL 4). The 

existence of dust clouds can be linked to loss of the woodlands that exposed the topsoil to 

heavy winds and climate change may exacerbate the easy movements of fine soil particles 

(Prospero & Lamb, 2003; Zewdie & Csaplovics, 2014). It is known that dryland woody 

http://earthobservatory.nasa.gov/IOTD/view.php?id=38464
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vegetation has the potential to combat land degradation through stabilizing soils, reducing 

water and wind erosion and also maintaining nutrient cycling (URL 5). Several woodland 

regions of the country are currently under sever threat from the ever increasing population 

pressure and the expansion of agricultural investments. The current trend of agricultural 

expansion was focused mainly in different lowland parts of the country competing the 

woodland resources (Shete, 2011). There has been a wide debate in the allocated investment 

areas and the fate of the remnant woodlands of the country. The increasing trend of cropland 

expansion and loss of natural resources could be an enormous barrier for the sustainable 

development plan of the country. The continuous degradation and deforestation of the dry 

forest of northwestern Ethiopia may lead to an irreversible state and result in desertification. 

The current dust clouds in the northwestern drylands of the country might be an indication for 

the loss in vegetation cover related to land degradation activities. 

 

 
Figure 3. MODIS satellite image showing dust covered areas between Ethiopia, Sudan and 
South Sudan on March 10,2009 (source: 
http://earthobservatory.nasa.gov/NaturalHazards/view.php?id=37452 (accessed on March 
2013)) 
 

 

http://earthobservatory.nasa.gov/NaturalHazards/view.php?id=37452
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1.2 Problem statement and rationale of the study 
 

The drylands of Ethiopia, despite their richness in biodiversity, are shrinking in size due to 

pressures from cropland expansion, fire, expansion of resettlement, over exploitation and 

unwise utilization of trees coupled with climate change. As a result, expansion of land 

degradation is evident in most parts of the country. The highlands of the country with 

elevation ranges of over 1500m are critically degraded for long period of times (Holden & 

Shiferaw, 2004) and most of the residents are either resettled in lowland areas to have a better 

agricultural plots or living in critical condition to sustain their livelihood. Nevertheless, there 

is no sign of minimizing the ever increasing loss of biodiversity, deforestation, overgrazing 

and degradation in most parts of the country (Biazin & Sterk, 2013; Garedew et al., 2012; 

Lemenih et al., 2014; Mekasha et al., 2014). The driving factors for land use change attributed 

to different features which includes poverty, expansion of settlement, inadequate policy 

support, inappropriate investment and inadequacy of law enforcement (Lemenih et al., 2014; 

Zewdie & Csaplovics, 2014).  

 

The periodic monitoring of changes in LULC in vast areas based on ground measurement is 

very costly and time consuming. Moreover, intensive ground surveys cannot keep pace with 

the rate of changes over large areas and developing and applying new approaches for 

monitoring and assessing landscape changes is crucial (Lambin & Geist, 2001). Remote 

sensing imagery has been used in land use and land cover transitions assessment for more 

than 40 years with ongoing improvements in algorithms, sensor’s spectral and spatial 

resolution and software developments (Archibald & Fann, 2007; Haralick et al., 1973; Lee & 

Philpot, 1991; Liu & Zhou, 2004; Roy et al., 2014; Waske et al., 2009). The development of 

remote sensing and GIS has enabled to get timely data and perform periodical monitoring and 

detection of changes that have occurred in a specific area of interest (Liu & Zhou, 2004). In 

addition, satellite imagery helps to assess the historic trends of land use changes and develop 

scenarios for predicting future change trends and uncertainties that help long term planning.  

 

The loss in vegetation is prevalent in northwestern drylands occupied with new settlements 

and there is a limited participation in tree planting, soil conservation and natural forest 

management (Walle, Rangsipaht, & Chanprasert, 2011). The weak formal regulatory system 

and the custom of the incoming people plays a considerable role in aggravating the exposure 

of woodlands for deforestation (Lemenih et al., 2014). During certain dry periods of the year, 
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it is common to see dust clouds over the northwestern drylands of the country. Yet, the main 

causes for the existence of dust clouds have not been assessed so far.  

 

There are vegetation surveys, ecological and socio-economic studies within the northwestern 

drylands of Ethiopia in order to investigate vegetation conditions and perceptions of the local 

population on the conservation of the natural vegetation (Dejene et al., 2013; Eshete et al., 

2011; Lemenih et al., 2007, 2014; Walle et al., 2011). However, there is limited effort to 

spatiotemporally interrelate changes in LULC extent, climate variables and the resulting land 

degradation over the northwestern drylands of Ethiopia. In addition, there is no attempt in 

identification of magnitude of land degradation across northwestern drylands. Therefore, it is 

crucial to assess the occurring land use transitions, vegetation trends and changes in climate 

variables in order to identify their implication on the sustainable utilization of the natural 

vegetation of northwestern semiarid regions of Ethiopia.  

 

1.3 Objectives and scope of the study 
 

1.3.1 Conceptual framework  
 

The dryland ecosystem of northwestern Ethiopia existed for centuries with a balanced trade-

off between satisfying immediate human needs and maintaining the functioning of the 

ecosystem. However, this balanced equilibrium will be interrupted when there is an exceeded 

output out of the ecosystem which affects the self maintaining ecosystem functions. The 

woodland ecosystem of Kaftahumera is exposed to over utilization of the woody vegetation 

due to increasing population pressure from settlement, overexploitation of woodlands, and 

subsistence and large scale cropland expansion. The ecosystem of this dryland region 

responds to the change in land use resulting in a change in the functioning of the ecosystem 

which could have temporal and spatial effects. The loss of vegetation cover, woodland 

degradation and climate change of semi-arid regions like Kaftahumera could lead to loss of 

topsoil to erosion particularly during the dry period of the year. The consequence of all these 

activities will lead to land degradation. Subsequently, the current dust clouds of the region 

resulted from either the change in vegetation cover combined with change in climate variables 

or a result of land degradation due to loss of vegetation cover. The availability of long term 

satellite imagery and geospatial processing techniques support the detection of inter-

categorical land use transitions, temporal and spatial changes, and the relationship between 



 

14 
 

vegetation change and climate change in order to distinguish trends in land use shifts and 

climate. This study examines the relationship between the existing changes and driving forces 

of changes across the northwestern drylands of Ethiopia. 

1.3.2 Objectives 
 

The main intent of this study was to contribute to laying the foundation for an incorporated, 

reliable and widely applicable land degradation monitoring system in semiarid lands of 

northwestern Ethiopia. This approach incorporates time series analysis and socio-ecologic 

data for a consistent identification of climate-induced and human-induced land use transitions. 

Consequently, dryland monitoring using consistent spatiotemporal data facilitates better 

understanding of the spatiotemporal land conditions for integrated land use management. In 

order to address these interconnected problems for dryland monitoring, an analytical method 

was followed in order to realize the following objectives: 

 

1. Monitoring land use change processes using satellite and socio-ecological data forcing at 

spatiotemporal and elevation gradients.  

2. Identification of systematic and random categorical land use change processes.  

3. Characterisation of breakpoints and contributing factors in temporal NDVI and climate 

data.  

4. Modelling NDVI and climate data for estimating climate and vegetation variations and time 

lag along the temporal profile. 

 

1.4 Organization of the dissertation 
 

This dissertation is organized into chapters covering different aspects of the work 

incorporated to investigate land use change, land degradation and climate change: 

Chapter 1 covers the general introduction to land use change, land degradation, dust 

movements and the trends in dryland land use change and resettlement in northwestern 

Ethiopia. It also discusses the main challenges of northwestern drylands, the theoretical 

framework and objectives of the study.  

Chapter 2 deals with remote sensing datasets, processing concepts and their application in 

land use change monitoring and degradation assessment. It also describes the importance of 

consideration of time lag in temporal vegetation responses. 
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Chapter 3 discusses the geographical location, climate and vegetation of the study area. 

Chapter 4 encompasses the data set used, the detailed methodological approach and data 

analysis performed for the whole study framework. 

Chapter 5 deals with the temporal image analysis and its result in determining land use 

changes using supervised image classification mainly SVM. 

Chapter 6 focuses on intercategorical image analysis for identifying systematic and random 

process of changes during assessment of land use transitions. 

Chapter 7 deals with trends in vegetation productivity and climate changes on temporal and 

spatial gradients. It also discusses the breakpoints on vegetation productivity and climate 

variables on a temporal scale to identify causative factors for the breaks in vegetation 

productivity. 

Chapter 8 focuses on identifying the length of time lag during modeling vegetation responses 

to amount and distribution of precipitation. 

Chapter 9 summarizes the main findings of the whole study, indicates limitations and 

recommendations for future work. 
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2. Chapter 2. Geospatial data, processing and land use monitoring 

2.1 Contribution of remote sensing for LULC monitoring 
 

Remote sensing is among the major techniques of earth observation for continuous 

monitoring and assessment of ecosystems in a spatiotemporal perspective at different scales 

(Chen et al., 2008; DeFries, 2008; Dymond et al, 2001; Xia et al., 2014). Consequently, data 

obtained through remote sensing observations have brought the opportunity for monitoring 

changes of ecosystems over a long period of time providing information for decision makers 

for better understanding and management of the ecosystems (Coppin & Bauer, 1996; DeFries, 

2008; Jørgensen et al., 2008). The data obtained through remote sensing techniques helps for 

assessing land condition (Ludwig et al., 2007), monitoring functioning of ecosystems 

(Cabello et al., 2012) and identifying human induced and climate driven LULC change 

processes (Evans & Geerken, 2004; Wessels et al., 2004) for better understanding and 

conservation of ecosystems (Rocchini, 2010). There are also geostationary and polar-orbiting 

meteorological satellites that provide raw radiance data in order to describe Earth's 

atmospheric, oceanic, and terrestrial domains (URL 6). The derivative products from these 

satellite observations play a major role for continuous global environmental observations, 

monitoring and predicting weather and environmental events. 

 

Among the remote sensing observation satellites, Landsat satellite series are one of the 

longest continuous record of satellite-based observation which helps for monitoring global 

changes (Chander et al., 2009; Goward et al., 2006). Landsat 1 was launched in 1972, Landsat 

2 in 1975, Landsat 3 in 1978 ,Landsat 4 in 1982, Landsat 5 in 1984, Landsat 6 in 1993 and 

Landsat 7 in 1999 (Loveland & Dwyer, 2012; Wulder et al., 2008). Landsata 8, launched in 

February 11, 2013, carries two sensors, the Operational Land Imager (OLI) and the Thermal 

Infrared Sensor (TIRS) (Li et al., 2013) with enhancements in its scanning technology that 

replaced whisk-broom scanners by two separate push-broom OLI and TIRS scanners (Roy et 

al., 2014). OLI is responsible for collecting imagery in the visible, near infrared, and short 

wave infrared portions of the spectrum with a 30 m spatial resolution of all bands except for a 

15 m panchromatic band while TIRS collects imagery with 100 m resolution for its two 

thermal bands over a 185 km swath (Roy et al., 2014). Landsat 8 has also improved 

capabilities with the addition of new spectral bands in the blue and cirrus portion, improved 

sensor signal-to-noise performance, and the ability to collect more imagery per day compared 

to its predecessors (Roy et al., 2014). Hence regarding the new bands in Landsat 8, band 1 is 
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helpful in coastal and aerosol studies while band 9 is useful for cirrus cloud detection. Landsat 

imagery provides significant contribution for monitoring dynamics of land use changes 

covering large areas of applications (Vittek et al., 2013). Moreover, the free availability of 

Landsat imagery allows for identifying continuous changes and categorical land use 

transitions adopting in-depth analysis of transition matrices (Braimoh, 2006).  

 

Table 1. Landsat imagery acquisition date and sensors(source: http://landsat.usgs.gov) 
Satellites Duration Sensors Bands Pixel size in meters 
Landsat 1 July 23,1972 – January 

6, 1978 
MSS B4-B7 57x79  

Landsat 2 January 22, 1975 - July 
27 1983 

MSS B4-B7 57x79  

Landsat 3 March 5, 1978 - 
September 7, 1983 

MSS B4-B8 57x79  

Landsat 4 July 16, 1982 - 
December 14, 1993  

MSS,TM MSS(4-7) 
TM(1-7) 

TM (30  reflective, 120  
thermal), MSS (57x79) 

Landsat 5 March 1, 1984 – 
January 2013 

MSS,TM MSS(4-7) 
TM(1-7) 

TM (30 reflective, 120  
thermal), MSS (57x79) 

Landsat 6 October 5, 1993 (not 
reached orbit) 

ETM B1-B8 30  reflective, 120  thermal 

Landsat 7 April 15, 1999 - present ETM+ B1-B8 30  reflective, 60 m thermal 
Landsat 8 February 11, 2013 - 

present 
OLI, TIRS B1- B11 30  reflective, 100  thermal 

 

Other coarse scale earth observation sensors like National Oceanic and Atmospheric 

Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR), Satellite 

Pour l'Observation de la Terre (SPOT) Vegetation, MODIS and MEdium Resolution Imaging 

Spectrometer (MERIS) obtain images on a daily basis with a spatial resolution ranging from 

250 to 1000 m (Fensholt et al., 2009; Fisher & Mustard, 2007). The derived global 

Normalized Difference Vegetation Index (NDVI) data from these sensors has a range of 

applications among which terrestrial vegetation monitoring and climate change modelling are 

dominant (Ichii et al., 2002; Mao et al., 2012; Elena et al., 2008). The relatively better spatial 

resolutions and its processing time step of 8 to 16 days made MODIS NDVI to be used 

frequently for different applications. MODIS products are vital for deriving leaf area index 

(LAI) and fraction of absorbed photosynthetically active radiation (fAPAR) as an input for 

climate, hydrological modelling, assessment of vegetation productivity and yield estimation 

(Fensholt et al, 2004). 

 

The availability of this satellite imagery and their derived indices are playing a significant role 

in assessing changes and functioning of ecosystems. The products support LULC change 
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detection which quantifies variation in the status of vital environmental indicators or change 

process of a landscape over time (Singh 1989). The assessment of land use transition 

facilitates to determine the size of degradation, deforestation, desertification and other 

changes in habitats (Adamo & Crews-Meyer, 2006; Lung et al., 2012) for better 

understanding and sustainable management of ecosystems. Different studies demonstrate the 

importance of categorical land use dynamic analysis to identify the magnitude and direction 

of land use transitions in different ecosystem types and their degree of exposure for transition 

(Braimoh, 2006; Manandhar et al., 2010). In depth analysis of transition matrix provides 

identification of direction of changes and also categorizes transitions among land use classes 

(Pontius et al., 2004). In addition, it supports to categorize systematic and random process of 

changes among the land use classes (Manandhar et al., 2010; Pontius et al., 2004). Moreover 

remote sensing imagery records landscape dynamics to assess cumulative impacts of climate 

change and anthropogenic disturbances (Chen et al., 2014). These changes produce different 

spatiotemporal reflectance trajectories of unique magnitude and shape based on the direction 

and size of occurring transitions (Olthof & Fraser, 2014). Satellite imagery has also shown its 

potential to detect the link between land use changes and finer particles in the air for 

monitoring air quality (Superczynski & Christopher, 2011).  

 

2.2 Image classification 
 

Image classification is categorizing raw digital images into land cover classes for 

representation of the real world and its accuracy depends on many factors among which are 

complexity of landscape, quality of remote sensing data selected, image processing and 

classification methods (Manandhar et al., 2009). The spectral pattern of the digital imagery is 

the numerical basis for land cover class categorization with appropriate usage of algorithms to 

result in best classification outputs (Lee & Philpot, 1991; Xie et al., 2008). There are two 

main approaches of image classification methods, namely: supervised and unsupervised 

classification. Supervised classification utilizes training datasets which are representatives for 

the spectral classes on the imagery while unsupervised classification examines unknown 

pixels to divide into a number of discrete classes based on gray levels to compare to each 

cluster to see which one it is closest to (Lee & Lewicki, 2002; Long & Srihann, 2004).  

 

Among the supervised classification approaches, the support vector machine (SVM) 

technique is employed in image classification and change detection assessments by different 
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scholar(Archibald & Fann, 2007; Huang et al., 2002; Otukei & Blaschke, 2010; Szuster et al., 

2011; Zewdie & Csaplovics, 2014). SVM is a machine learning process based on statistical 

learning theory which is not dependent on the assumption of prior normal distribution of the 

input data to be used for classification (Cortes & Vapnik, 1995; Vapnik, 1999; Waske et al., 

2009; Waske et al., 2010). It applies structural risk minimization discriminating two classes 

by fitting an optimally separating hyperplane which is nearest to the respective training 

samples (García et al., 2011; Vapnik, 1999). SVM includes a penalty parameter that allows a 

certain degree of misclassification, which is particularly important for non-separable training 

sets. The penalty parameter controls the trade-off between allowing training errors and forcing 

rigid margins (Foody & Mathur, 2004). The increase in the value of the penalty parameter 

increases the cost of misclassifying points and forces the creation of a more accurate model 

but may not generalize well. 

 

SVM was originally developed as a binary classifier, but two approaches are designed to 

multiclass classification, namely “one against all” and ”one against one” (Foody & Mathur, 

2004; Huang et al., 2002). The “one against all” approach involves the division of an N class 

dataset into N two-class cases and compares one class to the rest of the classes; and the class 

value is assigned based on the majority vote (Foody & Mathur, 2004). On the other hand, the 

“one against one” approach implies constructing a machine for each pair of classes resulting 

in N(N-1)/2 machines and gives one vote to the winning class in which point is subsequently 

labelled for a class having the most votes (Huang et al., 2002). A detailed description of 

methods, algorithms and application of SVM for image classification and change detection 

can be found elsewhere (Archibald & Fann, 2007; Burges, 1998; Camps-Valls et al., 2008; 

Foody et al., 2006; Chengquan Huang et al., 2008; Szuster et al., 2011). 

 

During image analysis, accuracy assessment shows how the classified land cover classes 

represent the real world by comparing the classification result with the ground truth 

information (Jensen, 1986; Jensen, 2004). Pixel by pixel comparison of classified image to the 

raw data is hardly possible. A randomly selected, identified reference pixel of the classified 

imagery, is compared to the ground truth (Jensen, 1986;Congalton, 1991). A confusion matrix 

is developed based on comparison of selected samples from the classified images with the 

ground features. In this process an overall accuracy, producer’s and user’s accuracies, kappa 

coefficient, and errors of commission and omission are calculated for each classified classes. 

Producer accuracy is the probability of a reference pixel being correctly classified while 
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user’s accuracy is indicative of the probability that a pixel classified on a map actually 

represents that category on the ground (Congalton, 1991). The classification algorithm used 

during image classification is compared only when an accuracy assessment is made on the 

classified images.  

 

2.3 Time series analysis 
 
Time series analysis has been adopted for wider remote sensing applications using either 

individual spectral bands or derived indices for remote sensing based forecasts of land surface 

or biophysical parameters (Main-Knorn et al., 2013; Omuto et al., 2010; Schmidt et al., 2015). 

The spatial and temporal variation in climate, vegetation and soil moisture necessitates 

consideration of their linkage during time series assessment. Hence, time series vegetation 

indices analysis provides a better understanding of spatial and temporal dynamics of 

vegetation. The analysis of time series data has components that help in differentiating 

changes in trends and seasonality from noise. The decomposition of these components 

depends on the temporal resolution of the time series dataset that are heavily influenced by 

seasonal climatic variations (Verbesselt et al., 2010). Identification of changes in the 

decomposition of time series enables for recognizing changes within trend like disturbances 

(e.g. fire, insects) and changes in seasonal component which identifies phenological changes 

(e.g. change in land cover type) (Verbesselt et al., 2010). The long term trend in vegetation 

dynamics is an important descriptor for identifying increase or decrease of vegetation 

productivity and dynamics of environmental changes.  

 

A pixel wise regression of NDVI and rainfall data determines the condition of the land use 

recognizing the symptoms of change in trends either due to change in climate variable or 

human impacts (Li et al., 2004). The regression of NDVI along time also determines the slope 

to measure the magnitude and direction of changes in vegetation gradients (Forkel et al., 

2013). However, temporal trend analysis requires accurate geometric and radiometric pre-

processing in order to produce comparable data for the designated period of analysis. Several 

studies dealt with effects of variation in spatial mis-registration and variation in radiometric 

pre-processing for assessing land use transitions (Tan et al., 2012; Teillet, 1992). The 

reduction of noise in temporal image processing maximizes the quality of the result of change 

detection by deriving accurate natural ecosystem change information from satellite imagery 

(Coppin et al., 2004). Time series analysis is widely applicable in identifying land cover 
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condition considering temporal NDVI and climate gradient variations across space and time 

(Li et al., 2004; Omuto et al., 2010).  

 

2.4 Time lag in temporal NDVI data analysis 
 

The growth of vegetation mainly depends on climatic factors of temperature, precipitation, 

and radiation (Beer et al., 2010; Bonan, 2008; Wu et al., 2015). The effect of these factors on 

vegetation growth and productivity varies on geographic locations. Accordingly, radiation in 

rainforest regions, precipitation in arid and semiarid areas, and temperature at high northern 

latitudes plays vital role for vegetation growth (Nemani et al., 2003). However, different 

studies showed the responses of vegetation to climate have a certain time lag which needs 

consideration during exploration of climate vegetation interaction.(Chen et al., 2014; Davis, 

1989; Guo, Zhou, Wang, & Tao, 2014; Rammig, 2014)  

 

In order to assess the dependency of vegetation growth on precipitation, there is a need to 

explore the relationship of NDVI and rainfall considering time lag responses (Eklundh, 1998; 

Ji & Peters, 2005; Kileshye Onema & Taigbenu, 2009). Eklundh (1998) has analyzed 

temporal relationship between AVHRR NDVI and rainfall data over East Africa at 10-day 

and monthly time scales and found current and preceeding rainfall explains the variation in 

NDVI value. The vegetation growth responds to the available soil moisture which is an effect 

of the current and previous amount and distribution of rainfall (Foody, 2003). This could 

significantly affect vegetation condition and needs consideration of time lag to evaluate the 

time lag differences in vegetation responses. In order to consider NDVI assessment within the 

study area, NDVI should be related to each time lag of rainfall from current time (t0) to 

backward time lags of tn. Therefore NDVI is expressed as a function of time as:  

NDVIt= f(Pt, Pt-1,….Pt-n) +t                                                                                                       (1) 
 

where:  

                      NDVIt is NDVI at time t, 

                  P is the rainfall amount  

                  t is time  

                  n is the lag length, 

                  t  is the random error. 



 

22 
 

The association of lag difference to vegetation productivity indicates different lag lengths 

based on the study regions, vegetation types, land use and the degree of degradation of the 

environment (Ji & Peters, 2005). The lag regression between NDVI and precipitation is also 

affected by seasonality as there is a shorter time lag in the early growing season and a longer 

time lag in the mid to late growing season (Ji & Peters, 2005; Wang et al., 2003). The lag 

length of the relationship also varies accordingly from one to two weeks to several months in 

association with responsible time lag factors (Chamaille‐Jammes et al., 2006; Eklundh, 1998; 

Fathian et al., 2014; Ji & Peters, 2005; Kileshye et al., 2009; Udelhoven et al., 2009; Wang et 

al., 2003). Identification of the time lag supports the mapping of the response of vegetation 

activity to the variation in rainfall particularly in arid and semiarid regions in which water is 

the dominant limiting factor of vegetation growth. Kaftahumera is also among the semiarid 

regions where available moisture plays a vital role in determining the vegetation productivity 

of the region. Hence, the analysis of lag responses of vegetation is crucial in order to identify 

vegetation responses due to the variation in distribution and amount of rainfall. In addition, it 

also helps to differentiate the main causative factors of vegetation loss considering other 

variables that affect the surrounding vegetation cover. 
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3. Chapter 3. Study area 

3.1 Geographical location 
 

The drylands of Ethiopia covers an area of over 65 % of the land mass and are inhabited by 

12- 15 % of the total population of the country (Lemenih & Kassa, 2011). Kaftahumera, 

among the semiarid regions in northwestern Ethiopia, is situated in a geographical location of 

13° 40′N and 14° 28′ N latitude and 36° 27′E and 37° 32′ E longitude (Fig.4). It covers an 

area of about 6,200 km2 with an elevation range of 537 m to 1865 m above sea level. The 

landscape is diverse in scenery and consists of flat plains, rolling hills and ridges, chains of 

mountains, valleys and gorges. Its population increased from about 50,000 in 1994 to over 

110,000 in 2014 with a likelihood of continuous increase due to enormous inflow of casual 

workers from other parts of the country (Central Statistic Agency(CSA), 2014). The 

livelihood of the residents is diverse with mixed farming comprising of crop and livestock 

production. Among the cultivated crops, sesame is currently the major crop type produced in 

both the private and commercial farms (Dejene et al., 2013).  
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Figure 4. Location of the study area. The background image is Landsat 8 false colour 
composite (RGB-753) acquired on March 2015, with vegetation shows up in shades of green. 
 

3.2  Soil 
 

The soil of Kaftahumera is characterized by early tertiary volcanic and Pre-Cambrian rocks 

with Vertisol as the dominant soil type (Ethiopian Agricultural Research 
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Organization(EARO), 2002). Vertisols are extremely exposed to soil erosion, especially 

during the onset of the rains that causes tremendous soil loss (Kadu et al., 2003; Kanwar et al., 

1982). It has high water-holding capacity resulting in a very low hydraulic conductivity and a 

low infiltration rate with shrinkage and cracking properties (URL 7). In addition, there are 

other soil types that exist in Kaftahumera which includes Cambisols, Leptosols, Lixisols, 

Luvisols, Nitisols and Regosols (Fig.5, EARO, 2002). 

  

 
Figure 5. Soil map of Kaftahumera. 

3.3 Climate 
 

Kaftahumera is among the hottest semiarid lowlands of the country. The maximum 

temperature varies across months with the highest temperature reaching about 42 °C and the 

mean minimum temperature ranges between 16 °C - 27 °C (Fig.6, NMA, 2010). It has an 

erratic annual rainfall distribution; a unimodal rainfall pattern with the main rainy season 

falling between June and September. The mean annual rainfall differs spatially with variation 
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in altitude. The northern part receives as low as up to 450 mm and the southern part has as 

high as up to 1102 mm rainfall per year. The agricultural production depends on the available 

rains solely during the summer season of the year. 

 

 
Figure 6. Climate graph of Kaftahumera, Ethiopia (Source:National Meteorology Agency of 
Ethiopia, 2010). 
 

3.4 Vegetation 
 

Kaftahumera is one of the dryland areas of the country dominated by Combretum–Terminalia 

woodlands (Eshete et al., 2011, WBISPP, 2005). The woodland of the regions characterized 

by hosting small trees with fairly large deciduous leaves of over fifty-two tree and shrub 

species (WBISPP, 2005). Among the woody species Combretum spp., Terminalia spp., 

Boswellia papyrifera, Anogeissus lieocarpa,  Acacia mellifera, Balanites aegyptiaca, 

Dalbergia melanoxylm and Dicrostachy cineria are some of the dominant species which share 

the vegetation types of Kaftahumera. These species are vital for the local communities in 

providing both timber and other products for commercial and household usage (Eshete et al., 

2012; Tilahun et al., 2011). However, the vegetation cover has severely dwindled and 

degraded due to several driving factors. Main contributing forces are expansion of subsistence 

and large scale agriculture coupled with population pressure that impacts the woodland for 

different purposes. The lowlands of northwestern Ethiopia are nominated for resettlements of 

farmers from overpopulated and degraded highlands of the country since the 1980s which 

0 

20 

40 

60 

80 

100 

120 

140 

160 

180 

200 

0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

Jan Feb Mar Apr May Jun  Jul Aug Sep Oct Nov Dec 

P
re

ci
p

it
at

io
n

(m
m

) 

Te
m

p
e

ra
tu

re
(°

C
) 

Climate graph of Kaftahumera,Ethiopia 

Mean annual rainfall(mm) Mean Tmax(°C) Mean Tmin(°C) 



 

27 
 

affects the woodland ecosystem dynamics of the region (Rahmato & van den Bergh, 1991; 

Rahmato, 2003).  

4. Chapter 4. Data and methodology 

4.1  Data 
4.1.1 Landsat imagery 
 

Satellite imagery used for this study consists of multispectral Landsat data that includes MSS 

1972, TM 1984, TM 1986, TM 2000 and Landsat 8 2014 (Table 2). The Landsat series of 

satellite imagery are used for multitemporal land use transition and land degradation 

assessment over a period of more than four decades. Landsata-8 launched in February 11, 

2013 carries two sensors: OLI and TIRS both with enhancements in scanning technology by 

replacing whisk-broom scanners by two separate push-broom (OLI and TIRS) scanners (Li et 

al., 2013; Roy et al., 2014). All the Landsat imagery is geometrically corrected Level 1T 

(L1T) data obtained from the United States Geological Survey (USGS) 

(http://glovis.usgs.gov). The imagery used for this study acquired during the dry season and is 

free of cloud cover. As there is vibrant behavior of phenological changes over time, it is vital 

to consider using similar season imagery in order to avoid natural phenological changes 

during the interpretation of actual land use changes (Verbesselt et al., 2010). Multitemporal 

imagery was selected based on some policy changes, sociopolitical transitions and availability 

of suitable imagery. Since the change in government in 1991, the country has adopted an 

Agricultural Development Led Industrialization (ADLI) strategy mainly focusing on export 

led development which calls for huge foreign investments (MoA, 2013). 

 

Table 2. Data used for land use/land cover change analysis. 

Imagery Path/row Acquisition date 

Landsat MSS 83/50,83/51 29 November 1972 

Landsat TM 170/50,70/51 29 November 1984 

Landsat TM 170/50,70/51 29 November 1986 

Landsat TM 170/50,70/51 29 November 2000 

Landsat TM 170/50,70/51 9 December 2010 

Landsat 8 170/50,70/51 01 January 2014 

Topographic map 1:50,000 1979  

http://glovis.usgs.gov/
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4.1.2  MODIS NDVI 
 

Terra MODIS (MOD13Q1 V005) time series NDVI are produced at 250 m spatial resolution, 

in 16-day compositing periods and decadal eMODIS (EROS Moderate Resolution Imaging 

Spectroradiometer) NDVI were used for this study. The MODIS NDVI dataset is a 

complement of the NOAA's AVHRR NDVI products and provides continuity of time series 

for applications of vegetation monitoring (Tucker and Yager, 2011). The MODIS NDVI was 

obtained through the online data pool at the NASA Land Processes Distributed Active 

Archive Center (LPDAAC) (https://lpdaac.usgs.gov/) covering the period from February 2000 

to October 2014. MOD13Q1 data are provided every 16 days at 250 meter spatial resolution 

as a gridded level-3 product in tiles of 10 by 10 degrees and distributed in sinusoidal 

projection. The 16 days MODIS VIs were produced from MODIS Terra Surface Reflectance 

(MOD09) and MODIS Aqua Surface Reflectance (MYD09) daily image series using the 

maximum value compositing method to minimize the influence of effects from cloud 

coverage and atmospheric artifacts (Huete et al., 2002). The MOD09 and MYD09 are a 

seven-band product computed from the MODIS Level 1B land bands 1 (620-670 nm), 2 (841-

876 nm), 3 (459-479nm), 4 (545-565 nm), 5 (1230-1250 nm), 6 (1628-1652 nm), and 7 

(2105-2155 nm) (Solano et al., 2010).  

 

NDVI is widely used for monitoring vegetation photosynthetic capacity and the spatio-

temporal dynamics of green vegetation (Tucker and Yager, 2011). It is a proxy for measuring 

vegetation biomass and also for assessing the condition of vegetation growth in relation to 

climate variables (Duan et al., 2011; Santin-Janin et al., 2009). It is a reflection of the amount 

of chlorophyll contained in vegetation and calculated as follows (Huete et al., 2002; Rouse et 

al., 1973): 

 

     
       

       
                                                                                                         (2) 

 

where NIR is the near-infrared reflectance and RED is the red reflectance.  

 

MODIS NDVI products are continually used for monitoring land condition and phenology 

changes due to the dynamic behavior of vegetation over time (Jacquin et al, 2010; Verbesselt 

et al., 2010). However, the relevance of MODIS data for vegetation studies has encountered 

problems in data management issues owing to its projection and data format (Jenkerson and 

https://lpdaac.usgs.gov/
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Maiersperger, 2010). USGS has produced a MODIS product called eMODIS in order to 

overcome its usability concerns (e.g. projection, file format, composite interval) raised by 

end-users (Jenkerson et al., 2010). The eMODIS NDVI was developed to solve the 

aforementioned problems with either 7 or 10 days of compositing interval at a spatial 

resolution of 250 m to 1 km (URL 8). The repeated data acquisition date of MODIS compared 

to Landsat and its higher spatial resolution compared to AVHRR makes MODIS more 

desirable for monitoring environmental changes (Jenkerson et al., 2010).  

 

The eMODIS Africa data is produced in 10 day intervals with a valid NDVI range between -

1999 to 10,000. This NDVI product is developed in near-real time and using GeoTIFF format 

as well as in non-sinusoidal map projection (Jenkerson et al., 2010). A 10-day maximum-

value composite eMODIS NDVI with 250 m pixel size was used for monitoring the 

vegetation condition and land degradation over the study area. In addition, the NDVI data is 

inline with the acquisition timespan of TAMSAT rainfall data for assessing the lag effect of 

rainfall on vegetation growth.  

 

MODIS NDVI data is mosaicked and a subset corresponding to the spatial extent of the study 

area is created using a MODISTools package (Tuck et al., 2014) coded in the R statistical 

computing software (R Development Core Team, 2014). The datasets are projected to UTM 

(Universal Transverse Mercator) coordinate system with WGS_1984 datum. In this study 

both smoothed MODIS NDVI and eMODIS NDVI of Kaftahumera was used for assessing the 

long term vegetation trend and for comparisons of NDVI and precipitation over the coinciding 

period in order to assess land condition. 
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Figure 7. Original time-series of NDVI (solid line) and smoothed time-series NDVI (dotted 
line) for a sample pixel of MODIS NDVI of the study area. 
 

4.1.3  Rainfall data 
 

In order to assess trends in the temporal variation of precipitation, the dekadal product of 

TAMSAT time series data from January 1983 to December 2014 was used. TAMSAT is 

derived from Meteosat Thermal Infrared (TIR) channels based on the detection of storm 

clouds and calibrated against ground observations for estimating rainfall over Africa with a 

4km spatial resolution (Grimes et al., 1999; http://www.met.reading.ac.uk). There have been 

several satellite rainfall estimation products that give global or near-global coverage, but few 

are tailored solely for measuring temporal and spatial rainfall distribution for Africa 

(Tarnavsky et al., 2014). Among these data sets some are temporally consistent but cover 

short time periods of less than 15 years while longer-term data products are not calibrated 

against gauge data (Maidment et al., 2014). These data products may not be useful for 

monitoring long term time series of changes in rainfall and may be subject to biases due to 

changing satellite data inputs. Nevertheless, the TAMSAT gridded TIR-based precipitation 

data sets are calibrated over several gauge data to overcome the aforementioned biases with 

over three decades of continuous measurements (Dinku et al., 2007; Tarnavsky et al., 2014). 

TAMSAT rainfall estimation algorithm, which was originally developed for monitoring West 

African rainfall distribution during the 1980s, has recently been extended to all parts of Africa 

(Tarnavsky et al., 2014). TAMSAT rainfall estimation evaluated over Ethiopia and has shown 

the best agreement with the gauge data (Dinku et al., 2007). This dataset was used for 

evaluating breakpoints and magnitude of change considering the NDVI time series dataset. In 

addition, a long term change analysis was made for the time period 1983- 2014.  

http://www.met.reading.ac.uk/
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4.1.4 Shuttle Radar Topographic Mission (SRTM) digital elevation model (DEM) 
 

Digital elevation data of the SRTM DEM was obtained from http://earthexplorer.usgs.gov 

with a spatial resolution of 90 m and was used for the classification of geomorphological 

terrain features of Kaftahumera. SRTM provides digital elevation data with a near global 

coverage thus representing the most comprehensive high-resolution digital topographic 

database on a global level. SRTM DEM data was transformed from geographic coordinates 

to Cartesian coordinates of the UTM projection system. DEM data was geometrically 

rectified to the UTM coordinate zone 37 North, Spheroid Clarke 1880, Datum Adindan. The 

90 m resolution DEM data was resampled to 30 m pixels using a nearest neighbor algorithm 

in order to fit the spatial resolution of Landsat imagery. All DEM raster cells of Kaftahumera 

were reclassified into five elevation ranges (537-750 m, 750-1000 m, 1000-1250 m, 1250-

1500 m and 1500-1865 m) in order to assess the magnitude of land use transitions in relation 

to elevation differences (Fig. 8). The reclassified elevation ranges were overlayed with the 

classified Landsat imagery to distinguish LULC changes along the gradients. 

 

Figure 8. DEM classification of Kafthumera (Source: http://earthexplorer.usgs.gov.) 
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4.1.5 Temperature data 
 

The Climate Research Unit Time Series (CRU-TS 3.22) global long-term climate database 

was acquired from Climatic Research Unit (CRU) of the University of East Anglia (Harris et 

al., 2014). CRU-TS 3.22 is a gridded global dataset with a spatial resolution of 0.5° covering 

a period of 1901 – 2013. It is a monthly observation based on datasets obtained from more 

than 4000 meteorological stations distributed all over the world (Harris et al., 2014). The 

dataset comprises of different climate variables namely mean temperature, diurnal 

temperature range, precipitation, wet-day frequency, vapor pressure and cloud cover (Harris 

et al., 2014). In order to observe the change in temperature of the study region, this analysis 

used only monthly average minimum temperature and monthly average maximum 

temperature. The two temperature datasets of the study area were extracted for the period 

1983 – 2013. The period 2000 – 2013 was used for magnitude and time of breakpoints 

analysis in both minimum and maximum temperature, considering the time span covered by 

NDVI and TAMSAT rainfall data products. In addition, long term temperature change 

assessment was made over the period of 1983 to 2013.  

4.2  Image pre-processing 

4.2.1 Geometric corrections  
 

For monitoring multitemporal land cover transitions covering large areas based on time series, 

it is crucial to have imagery with consistent geometric corrections at hand (Hansen & 

Loveland, 2012). Historical Landsat imagery was produced without geometric correction and 

a separate way of in-house correction of the imagery was applied for a longer period of time. 

In due progress with the utilization of Landsat imagery for monitoring large areas, a standard 

orthorectified and geodetically accurate global land dataset was created for Landsat MSS, 

TM, and ETM+ from the 1970s, from ca. 1990, and ca. 2000 respectively (Tucker et al., 

2004). The availability of improved digital elevation models and ground control network 

facilitated the adoption and use of consistent Landsat image geometry across epochs (Hansen 

& Loveland, 2012). All Landsat imagery is currently distributed as orthorectified Level 1 

Terrain-corrected data (L1T). In this study, a terrain corrected (L1T) Landsat imagery of 

1972, 1984, 1986, 2010 and 2014 were used.   

 

The imagery was processed using Environment for Visualizing Images (ENVI version 5.1) 

and ArcGIS 10 software packages as well as R Development Core Team 2014. Due to the 
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availability of reference data in 2000, the Landsat TM 2000 image was geometrically rectified 

to UTM coordinate zone 37 North, Spheroid Clarke 1880, Datum Adindan, using control 

points collected from topographic maps of the study area. An image to image registration was 

applied between MSS 1972, TM 1984, TM 1986, TM 2010 and Landsat 8 imagery based on 

the TM 2000 reference image using the nearest neighbor algorithm. The root mean square 

error (RMSE) amounts between 0.3 to 0.5 pixels.  

 

4.2.2 Atmospheric correction 

4.2.2.1 Landsat data 
 

All the Landsat imagery used for this study is free of cloud cover during image acquisition. 

However, in order to remove scene variation due to atmospheric scattering, atmospheric 

correction was employed in all Landsat imagery to have a common radiometric scale (Chavez 

Jr, 1989; Song et al., 2001). The digital numbers were recalculated to top of atmosphere 

radiance (Chander et al. 2009) and then imagery was corrected using the Fast Line-of-sight 

Atmospheric Analysis of Hypercubes (FLAASH) tool in Exelis Visual Information Solutions 

(ENVI 5.1; http://www.exelisvis.com) that integrates the MODTRAN algorithim (moderate 

resolution atmospheric transmittance and radiance code) (Berk et al., 1999). Five major land 

use categories were identified as woodland, cropland, grassland, residence and water for 

assessing land use transitions (Table 3). 

 

Table 3. Land cover classification scheme. 

Land cover class Description 

Woodland Woody plants with a canopy cover of more than 10% 

Cropland Crop fields, parklands, fallows 

Grassland Pasture lands, grass with scattered trees, shrubs 

Residential Cities, villages, roads 

Waters Rivers, lakes, reservoirs, streams 

 
  

http://www.exelisvis.com/
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4.2.2.2 NDVI data 
 

The effects of cloud contamination and atmospheric variability could disturb the feasibility of 

applying time series of NDVI data for monitoring temporal land cover changes as erroneous 

results are produced (Atkinson et al, 2012). The improvement of MODIS NDVI data 

minimizes the contamination from clouds and other spurious artifacts that can affect the 

temporal analysis of time series data. Despite the preprocessing of MOD13Q1 NDVI to avoid 

low values, there exists a significant amount of residual noise in the time-series NDVI data 

(Lunetta et al., 2006). Hence, a modified Whittaker Smoother (WS) algorithm was used for 

temporal filtering of MODIS NDVI time series in order to avoid anomalous values from the 

dataset (Atzberger & Eilers, 2011; Eilers, 2003; R Development Core Team, 2014). This 

approach is an iterative process in which the filter smoothes the observed time series using the 

basic Whittaker algorithm and then all observed values that lie below the fitted curve are 

replaced by their fitted value (Atzberger & Eilers, 2011). The iteration continues till the 

values below the curves are replaced by the curve values that can be used for the analysis of 

temporal NDVI changes. A temporal time series data stack is generated from the smoothed 

data during temporal NDVI analysis. 

 

4.2.3 Radiometric corrections  
 

Radiometric correction is mainly performed for normalization of differences among scenes of 

imagery taken at different time periods (Coppin et al., 2004). Top of atmosphere reflectance 

(TOA), surface reflectance, bi-directional reflectance distribution, viewing angle 

normalization, and terrain normalization are among the commonly applied radiometric 

correction methods to improve the information obtained from satellite imagery (Hansen & 

Loveland, 2012). Sun angle and earth-sun distance adjustment can be made mainly using the 

calculation of top of atmosphere reflectance. This correction is applied to the whole scene as 

there is no separate Landsat solar geometry supplied for each pixel and hence there is no 

distinctive variation in TOA adjustment per each pixel within a scene (Chander et al., 2009; 

Hansen & Loveland, 2012). TOA calibration is significant for normalization of differences 

between imagery taken at different time intervals in order to cross-calibrate sensor radiometry 

(Chander et al., 2009). The rescaling factor developed by Chander et al (2009) was adopted 

for consistent evaluation of Landsat imagery obtained at different dates and different sensors 

from 1972 to 2014 as:  
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where 

L =Spectral radiance at the sensor’s aperture (W/m2srm) 

calQ = Quantized calibrated pixel value (DN) 

mincalQ =Minimum quantized calibrated pixel value corresponding to LMIN (DN)  

maxcalQ =Maximum quantized calibrated pixel value corresponding to LMAX (DN) 

LMIN =spectral at-sensor radiance that is scaled to mincalQ (W/m2srm) 

LMAX =Spectral at sensor radiance that is scaled to maxcalQ (W/m2srm) 

Multi-temporal image analysis needs reduction of variation in scene to scene and can be 

achieved through the conversion of at-sensor spectral radiance to exoatmospheric reflectance 

(TOA reflectance). The TOA can be computed according to the equation (Chander et al. 

2009) ; 

sESUN
dL









 cos.

.. 2

                                                                                                          (4)                                                        

where 

 = Planetary TOA reflectance (unitless) 

= constant3.14159 (unitless) 

L = Spectral radiance at the sensor’s aperture (W/m2srm) 

d= Earth sun distance (astronomical units) 

ESUN = Mean exoatmospheric solar irradiance (W/m2m) 

s = Solar zenith angle 

 

The solar elevation angle provided with the Landsat metadata was used to calculate the solar 

zenith angle. Sine of solar elevation angle is equal to the cosine of solar zenith angle. 

Reflectance is unitless.  

 

4.3  Image classification using SVM  
 
The use of multi-temporal image classification has the advantage of producing change 

trajectories in between the period of data coverage for monitoring the ongoing transitions in 
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areas of changing ecosystems such as northwestern Ethiopia. In this study a multi-temporal 

classification approach using support vector machines (SVM) algorithm was used for land use 

mapping and land use transition assessment. SVM is a supervised classification method 

derived from statistical learning theory ( Foody & Mathur, 2004).  

 

Statistical learning theory was introduced in the late 1960s and the theory of the SVM was 

originally proposed by Vapnik & Chervonenkis(1971). A SVM algorithm is a non-parametric 

supervised classifier which can be used for image classification and regression analysis. The 

theoretical and algorithmic aspects of SVM were given by Vapnik (1999).  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 9. Classification using support vectors and separating hyper-plane (after Foody and 
Mathur, 2004). The two circle types indicate two classes in feature space. The circles 
represent size of sample pixels.  
 

The algorithm is not dependent on a prior assumption of normal distribution during image 

classification and estimates linear dependency between pairs of n-dimensional input vectors 

and a target variable by fitting an optimal approximating hyperplane to a set of training 

samples (Vapnik, 1999; Fig.9). SVM fits a linear hyperplane between two classes in a multi-

dimensional feature space by maximizing the margin between training samples of the two 

classes (Foody and Mathur, 2004). It separates the classes based on the optimal hyperplane, 

which maximizes the margin between the classes. SVM uses kernel functions to transform 

training data into a higher dimensional feature space where linear separation is possible 
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(Huang et al., 2002). SVM implement the structural risk minimization principle, which 

attempts to minimize an upper bound on the generalization of error by striking a right balance 

between the training error and the capacity of the machine (Tripathi et al., 2006). The risk of 

misclassification is minimized by maximizing the margin between the data points and the 

decision boundary. 

 

In this study among the SVM kernels, the Gaussian radial basis function kernel (RBF) was 

selected for mapping and change detection assessment. RBF kernel requires setting of two 

parameters, the optimum Gaussian radial basis function (γ) that controls the kernel width and 

the regularization parameter (C) which controls the penalty of misclassification errors in 

order to handle non-separable classification problems (Huang et al., 2008). The Library for 

Support Vector Machines (LIBSVM) program developed by Chang & Lin ( 2001) was used 

for classification. The model was parameterized based on the training samples of each land 

use type. A cross validation test was applied combining γ and C to obtain optimum values of 

these parameters for best classification outputs. A “one-against-one” approach, was used in 

which each class was compared to every other class individually for multi-class SVM 

classification (Melgani & Bruzzone, 2004).  

 

All four bands of MSS, bands 1-5 and 7 of TM and bands 1-7 of OLI imagery were used for 

extracting biophysical features. In 2012 stratified random reference samples and their 

attributes were collected in the field using handheld Garmin Oregon 450. The field samples 

were divided into two as ground-truthing which was used as training dataset during image 

classification while the remaining samples were used for accuracy assessment of classified 

imagery. 

 

A classification accuracy assessment was performed using stratified random sampling 

representing the five land use classes. A confusion matrix was developed relying to the 

comparison of selected samples of classified imagery with respective ground sampling. In 

this process an overall accuracy, producer and user accuracies and kappa coefficient were 

calculated for each of classified imagery from 1972 to 2014 (Congalton, 1991).The whole 

workflow of the methodological approach of the study is illustrated in the following 

flowchart (Fig.10). 
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dates (Mundia & Aniya, 2006; Yuan et al., 2005). PCC identifies changes by comparing 

independently classified multi-date imagery on a pixel-by-pixel basis using a change detection 

matrix (Yuan & Elvidge, 1998). However the accuracy of PCC approaches depends on the 

reliability of image classification outputs. This method is supportive in determining “from-to” 

changes in order to identify the transformations among the land cover classes (Jensen, 1996; 

Yuan et al., 2005). In this study, the change detection assessment was performed using 

individual image classification outputs of the best performing SVM model in order to identify 

respective two-date change trajectories: 1972-1984, 1984-2000, 1986-2014 and 2000-2010. 

MSS imagery was downscaled to 30 m pixel cell size in order to have spatial compatibility 

with the remaining Landsat imagery before performing the change trajectory analysis. 

 

An overlay analysis between the classified imagery was made in order to produce a transition 

matrix to display the amont of LULC transition from 1972 to 2014. The diagonals of the 

matrix indicate the amount of land use category which remained unchanged throughout the 

study period while the off-diagonal entries account for a transition from one category to other 

land use categories. 

 

The gain, loss, persistence, absolute value of net change, swap and total change were 

calculated for all the four classified images for each class (Braimoh, 2006; Pontius et al., 

2004). A gain in land use category is a measure of the size of land use added between time 1 

and 2 whereas loss accounts for reduction in size of a land use class between time 1 to time 2. 

Persistence is the land use class that does not change from time 1 to time 2. Swap 

discriminates quantity of both loss and gain in order to account for a land use category lost in 

one site whereas equivalent dimension is added in different site (Pontius et al., 2004). It is the 

simultaneous loss and gain of a land use class in a landscape, which implies that a given area 

of a land use is lost at one location, while the same size is gained at a different location (Equ. 

5). The investigation of swap change requires coupling pixels of both gain and loss of the land 

use categories (Braimoh, 2006; Pontius et al., 2004). For a land use class j, amount of swap sj 

was calculated as: 

 

 Sj=2min (Pj+ - Pjj; P+j - Pjj)                                                                                         (5) 
 

where Sj = amount of swap, 

 Pj+ = Total column proportion of a land use class within the landscape,  
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Pjj = Persistence of land use classes within the landscape, and  

P+j = Total row proportion of a land use class within the landscape. 

 

The overall change in a land use category could be either the sum of the net change and the 

swap or the sum of the gains and losses (Pontius et al., 2004). In addition, loss to persistence 

ratio (lp) that measures the level of prevalence of a land use class for a change, gain to 

persistence ratio (gp) that accounts for the amount of increment in a land use category 

compared to its initial size , and net change to persistence ratio (np) which is an indicative of 

direction and magnitude of transition of a land use class were also calculated (Braimoh, 

2006). 

4.5 Trend analysis 
 

Mann (1945) proposed a test for randomness against time that incorporates a specific use of 

Kendall’s test for correlation commonly known as the ‘Mann–Kendall’ or the ‘Kendall t test’ 

(Kendall, 1962). Mann-Kendall (MK) test is one of the widely used non-parametric tests for 

assessing seasonal variations of mainly hydrological time series (Fathian et al., 2014; Hamed 

& Ramachandra Rao, 1998; Modarres & de Paulo Rodrigues da Silva, 2007). However, it is 

currently more commonly applied for testing the significance of changes in NDVI trends 

(Alcaraz-Segura et al., 2010; de Jong et al., 2011). The MK trend test is less sensitive to 

missing data values, irregular data distribution and outliers (Udelhoven, 2011). The test 

involves assessing the Kendall score and its variance separately in each season of the 

observations. 

 

In this study, the MK was used for assessing long term trends both in NDVI and climate 

variables using their detrended data component. The MK test requires the data to be serially 

independent in order to avoid larger uncertainty in estimating the trend of serially correlated 

data like temperature, rainfall and NDVI (Önöz & Bayazit, 2012; Yue & Wang, 2002).  

 

The occurrence of serial correlation in time series data affects the variance of the estimate of 

MK statistic and the existence of trend can change the estimate of amount of serial correlation 

(Yue et al., 2002). In this study, the Yue and Pilon Trend Free Pre-whitening (TFPW) 

procedure was applied before MK statistics and Theil-Sen’s slope analysis in order to remove 

serial correlation from the time series based on the slope estimates (Yue et al., 2002). The 
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TFPW is applied inorder to remove lag1 autocorrelation during the time series processing. If 

the estimated slope is equal to zero, it is not necessary to carry out trend analysis as the slope 

is estimated using the Theil-Sen approach. When there is a deviation of slope from zero, a 

TFPW procedure is applied to the time series data. An MK test is performed on the blended 

trend and residuals to assess the significance of the trend (Yue et al., 2002). A pre-whitening 

using the following formula was adopted in order to account for serial correlation of time 

series data (Yue et al., 2002; Yue & Wang, 2002): 

  
                                                                                                          (6)   

  

where: 

Xi is the pre-whitened series 

X1….Xi is original data series 

r1 is is lag-1 serial correlation coefficient. 

The pre-whitened data series has the same trend as the original data and also has serially 

uncorrelated residuals.  

 

The Mann–Kendall time series for x= x1, x2,… xn, the trend test statistic (S) is defined as: 

               
 
     

      
                                                                                   (7) 

where: 

sign(x)= 
               

              

                

       

 

 where n is the length of the time series data set and xi ,… xj are the observations at times i to 

j, respectively. 

The mean of S is E(S)=0 and the variance of S is calculated as: 

     
                      

 
          

  
                                                                 (8) 

where j is the number of tied groups and ti is the size of the ith  tied group. 

As a result, the standardized Z test statistics follow a normal standardized distribution: 
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                                                                                               (9)                                                     

A significance test is determined based on the result of the Z value. The sign of Z either 

positive or negative indicates an upward or downward trend of the tested variable. Based on 

the outputs of the Z value, the trend is not rejected when the Z value is greater in absolute 

value than the critical value Zα, at a selected significance level of α which was 0.05 in our 

analysis. 

 

4.6 Sen’s slope estimator test  
 

In order to evaluate the slope magnitude of an existing trend within the time series data, the 

Sen’s non-parametric method was used. Here, the slope (Ti) for all data pairs is computed as 

(Sen, 1968): 

   
     

   
 , i=1,2,…N.                                                                                       (10) 

 

where xj and xk are considered as data values at time j and k for j > k. If there are n values of x 

in the time series, we obtain as many as N=n (n-1)/2 slope estimates of Ti. The median of 

these N values of Ti is the Sen’s estimator of slope ranked from the smallest to the largest 

which is given as:  

Ti=   
    

 

                 

 

 
   

 

     

 

              
                                                                             (11) 

 

4.7 Identification of breaks for additive season and trend 
 

The seasonal changes in NDVI are useful for monitoring the dynamics of the growing season 

and changes in vegetation distribution (Hmimina et al., 2013). Several change detection 

algorithms were developed for monitoring vegetation dynamics which consider time series 

changes through aggregating data over the years or compare specific periods between the 

years without accounting for seasonal variations (Coppin et al., 2004). The BFAST algorithm 

is vital for change detection within trends of time series as it accounts for changes in trend and 

seasonal variation over time (Schmidt et al., 2015; Verbesselt et al., 2010).  
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The assessment of breaks on season and trend based on locally weighted regression helps to 

identify breaks on the trend of continuous vegetation index considering the whole study 

period (Verbesselt et al., 2010). BFAST model uses the locally weighted regression smoother 

(LOESS) temporal decomposition method for decomposing trends in vegetation growth 

(Verbesselt, et al., 2010). This approach decomposes the original NDVI time series into three 

additive components: trend, season and remainder (Fig.11). The three components are related 

to vegetation condition at different time scales and taken into account the undergoing changes 

along the study period. It is the best approach for determining the magnitude, direction and 

time of breakpoints of both climate variables and NDVI based on seasonal and long term 

trend time series. It determines abrupt changes to identify significant variations of the long 

term time series data that helps to identify causative factors of change on the breakpoints. The 

BFAST model is an additive decomposition algorithm which iteratively fits a piecewise linear 

trend and seasonal model expressed as: 

 

Yt = Tt + St + t, t=1,..., n                                                                                              (12)  
 
where: Yt is the original data at time t;  
            Tt is the trend component;  
            St is the seasonal component and  
            t is the noise component (residuals remaining after the elimination of the trend and     
 the seasonal components). 

The model checks for existence of abrupt changes before fitting Tt and St. The ordinary least 

squares (OLS) residuals based moving sum (MOSUM) test is used to check the availability of 

breakpoints in the time series data before fitting the piecewise linear models (Zeileis & 

Kleiber, 2005; Zeileis, 2005). If there is significant changes in the temporal NDVI value at < 

0.05, the optimal number and position of breakpoints in the time series data returned 

following the method of Bai & Perron (2003). In this study the harmonic model was used to 

fit the seasonality since it is considered as the most suitable model for natural vegetation 

phenology change detection (Verbesselt et al., 2010). The breakpoints for MODIS NDVI and 

climate variables were assessed based on four sample plots collected from the study area. 

Each plot covers an area of about 1.25 km x 1.25 km which was selected based on the history 

of land use changes. The mean NDVI of each sample plot was used for BFAST 

decomposition to identify breakpoints. The minimum amount of observations between two 

breaks  was set to be three years and the minimum segment size between potentially detected 

breaks within the trend model (h) to 0.15. Similar sample size, location and method were used 

for detecting breakpoints in precipitation and temperature time series data of Kaftahumera. 
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All the analysis was performed using R statistical computing and graphics software (R Core 

Team, 2014). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. BFAST decomposition of MODIS NDVI time series over 2000-2014 for a single 
pixel converted from woodland to cropland 
 

4.8 Systematic transition of land use categories 
 

The systematic transition of a land use category within the landscape was assessed based on 

the comparison of the off-diagonal changes of each land use class to their expected values of 

change for the period 1986 to 2014. The systematic shift in random process of change within 

the transition matrix can be expressed considering the changes in relation to the amount of the 

classes and anticipated shifts under a random process of gain (Pontius et al., 2004) 
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where Gij is the expected land use shift of class i to class j under random process of gain;  

P+j is sum of column of category j in the transition matrix;  

Pjj is the persistence for the category j;  

Pi+ is the row total of land use class i, and  

Pj+ the row total of category j. 

 

Equation 13 presumes that the increase in each land use class in 2014 is unchanging, and 

accordingly allocates the gain to each category based on their proportional size of 1986. The 

expected proportion and the observed proportion of the diagonals are set as equal, so that the 

shift in off-diagonal land use classes can be estimated considering the changes in land use 

classes. If the variation between the observed and expected proportion of a land use category 

is positive, the category in the row lost more than the category in the column than would be 

expected under a random process of gain in that category of the column (Pontius et al., 2004). 

On the other hand, when the deviation is negative, then the land use class in that row lost less 

in the category in column than would be expected by a random process of gain of that 

category of the column. 

 

Expected loss under a random process of loss is also calculated following Pontius et al. (2004) 

as: 
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where Lij is the anticipated shift from category i to j; Pi+ is the row total of category i;Pii is 

persistence land use category in the period 1986 - 2014 for category i; P+j is the column total 

of category j, and P+i is the column total of category i. 

 

Equation 14 presumes loss in each land use class is constant and disburses according to their 

relative size of the remaining classes in 2014. The expected value of the diagonals remains the 

same to evaluate the off-diagonal transitions in the period 1986-2014. The gain and loss 

between categories in the row and column is computed considering the difference between 

expected and observed changes of land use classes under a random process of loss. The land 

use class in the column is considered as gain when the difference between observed and 

expected transition under random process of loss is positive. On the other hand, if the value is 
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negative, the category in the column gained less from the category in the row than would be 

expected under a random process of loss in the category of the row (Pontius et al., 2004). 

4.9 NDVI rainfall correlation analysis 
 

Land use monitoring and estimation of biomass accumulation can be made using NDVI 

(Pereira Coltri et al., 2013; Singh et al., 2003; Zhao et al., 2014). NDVI temporal and spatial 

dynamics depend significantly on the precipitation amount and distribution in which the 

biomass accumulation follows the precipitation gradient (Xia et al., 2014). The variation in 

vegetation productivity of arid areas could be dominantly linked to either change in land use 

or variation in rainfall distribution. The assessment of the spatiotemporal relationship between 

NDVI and rainfall of each pixel facilitates the understanding of vegetation productivity and 

land condition (del Barrio et al, 2010; Higginbottom & Symeonakis, 2014). Accordingly, a 

pixel-wise spatiotemporal Ordinary Least Squares (OLS) linear regression analysis between 

the long term average NDVI and the long term average TAMSAT rainfall data was made to 

evaluate spatial vegetation productivity variation over the whole study area. The OLS 

regression model is given as: 

 

NDVI= α + β*rainfall +                                                                                                  (15) 
 

where NDVI is the dependent variable, rainfall is the independent variable, α is intercept and 

β is the slope coefficient for variable rainfall and  is the random error. 

 

The TAMSAT data were resampled to a grid common to the spatial resolution of NDVI data 

using a nearest neighbor resampling method. The correlation between the resampled and 

original TAMSAT data showed a high correlation coefficient (R2) of over 0.98 (p<0.05).  

The pixel-wise spatial regression between TAMSAT and NDVI determines the correlation 

coefficient for assessing the status of land conditions. Moreover, the decadal NDVI data were 

aggregated to annual NDVI time series in order to have a good estimation of temporal NDVI 

profiles (Forkel et al., 2013). The regression of accumulated NDVI along the time gradient 

was calculated to evaluate the trend in vegetation productivity. An OLS linear regression 

analysis was adopted to evaluate the slope and the significance of annual NDVI changes at a 

95 % confidence level (p< 0.05). 
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4.10 Modelling lag NDVI and rainfall  
 

Vegetation growth responds following a time lag in precipitation in which its growth responds 

to the availability of precipitation and soil moisture (Foody, 2003; Udelhoven et al., 2009). It 

is vital to consider time lag during establishing relationship between vegetation productivity 

and rainfall. The seasonal variations in both NDVI and rainfall should be removed in order to 

discriminate the long term trend in NDVI and rainfall. With the aim of removing the 

seasonality, the dataset was standardized using the following formula: 

 

          
   

 
                                                                                                                                     (16) 

where X is the filtered data value of each decade,  
 µ is the decadal long term average and  
 σ is the decadal standard deviation.  
 

In this study, a distributed Lag model (DL) is used for assessing vegetation responses to the 

distribution of current and previous precipitation amount. DL is a distinct kind of a regression 

model that accounts for the lagged time responses between the input variables and was used to 

investigate the relationship between rainfall and NDVI in East Africa (Eklundh, 1998) 

considering the non-stationarity of NDVI and rainfall.  

 

 
Figure  12. Mean NDVI and NDVI anomaly for a sample pixel 
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A regression analysis using DL models was made between the NDVI and rainfall anomalies 

after removing the trends and seasonal variation. DL regression analysis accounts for the 

lagged effects of the explanatory variable on the response variable and takes the form:   

  
Yt=a+b0xt+b1xt-1+b2xt-2+……..+et                                                                         (17)   
 

where vector b is weight of each x series, t is time and e is the model residual.   

Accordingly, the formula was adopted assigning rainfall as the explanatory variable and 

NDVI as the response variable as:   

  
               

    
                                                            (18) 

  
where bj is the impulse response weight vectors describing the weights assigned to current and 

past rainfall, a is the constant term and  is the model residual.   

 

In this study, the maximum lag time is fixed to 8 (in 10 days scale) and a continuous 

regression fit was made starting from a model containing zero as first order time lag. A 

detailed methodology for assessing NDVI and rainfall time lag using DL model is discussed 

in Udelhoven et al.(2009) and elsewhere for assessing response of vegetation to climate 

variables (Eklundh, 1998; Fathian et al., 2014; Ji & Peters, 2005; Kileshye Onema & 

Taigbenu, 2009). The optimal lag between rainfall and NDVI is determined testing the 

significance of t-statistics when the p value is less than 0.05. 
 
4.11. Socio-ecological survey 
 

In order to understand LULC change dynamics and perception of the society on climate 

change, major drivers of changes were assessed using key informants. The key informants 

were identified from eight purposefully selected villages within the study area. Random 

sampling was adopted for selecting 78 households for individual interviews. A structured 

questionnaire was used for gathering socio-ecological information on specific land use 

transitions and main contributing factors. Descriptive statistics were employed to analyze the 

collected information. 
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5. Chapter 5. Land use and land cover dynamics in northwestern 
Ethiopia 
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5.1  Dynamics of LULC transition matrix 
 

LULC change assessment and analysis are based on multitemporal cloud free Landsat 

imagery obtained on 29 November 1972, 29 November 1984, 29 November 2000 and 9 

December 2010. Accordingly, the land cover classification was assessed using an SVM 

supervised classification algorithm (Fig.13). The results show the dynamics of spatial 

changes observed during a period of four decades. Confusion matrices were produced to 

signify class separation performance for 1972, 1984, 2000, and 2010 resulting in an overall 

accuracy of 84.4%, 92.0%, 90.6%, and 92.7% and Kappa values of 0.78, 0.90, 0.88, and 0.91 

respectively. User’s and producer’s accuracies of individual classes also range from 70% to 

100%. 

 

Figure 13. Land use and land cover (LULC) classification of Kaftahumera. 
 

Table 4 summarizes the land cover transition matrix in which the diagonals of each matrix 

demonstrate the proportion of land use classes that showed persistence from 1972 to 2010. 

The off-diagonal entries comprise land uses that showed transitions from one land use 

category to the other categories during the study period. Woodland, cropland and grassland 
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are the dominant land use categories within the study area during the study period. In 1972 

and 1984, cropland occupied about 3 % and 13 % of the total area respectively, expanding 

into the western part of the region. Woodlands are the major contributor (about 11 %) to the 

newly emerging croplands. The decline in woodland is attributed to the agricultural land 

expansion and wood harvesting for charcoal and firewood. A socioeconomic survey made by 

Lemenih et al. (2014) in one district of the northwestern arid region of Ethiopia has 

confirmed excessive wood harvesting and cropland expansion as the significant drivers of 

land use changes. During the period from 1984 to 2000, the cropland further expanded to 

22.56 % of the landscape. Woodland was the major contributor (14.60%) to the newly added 

cropland. During the period 2000 to 2010, the cropland area further stretched to 55.23 % of 

the study region. Woodland is the major contributor (33.01%) for the newly emerged 

cropland. These significant increases in size of croplands contributed to major deforestation 

and woodland degradation coupled with rapid population growth.  
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Table 4. Land use/land cover transition matrices (%) (a) 1972 to 1984 (b) 1984 to 2000 (c) 
2000 to 2010 and (d) 1972 to 2010. 

(a) 1972-1984 Woodland Cropland Grassland Water Residential Total 1972 Loss 
Woodland 76.55 10.84 4.64 0.00 0.00 92.03 15.48 
Cropland 0.62 1.39 0.45 0.02 0.00 2.47 1.08 
Grassland 2.74 0.80 1.85 0.01 0.00 5.40 3.55 
Water 0.00 0.02 0.01 0.06 0.00 0.09 0.03 
Residential 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Total 1984 79.9 13.05 6.94 0.09 0.00 100 20.14 
Gain 3.36 11.65 5.09 0.03 0.00 20.14  

(b) 1984-2000 
Woodland Cropland Grassland Water Residential Total 1984 Loss 

Woodland 59.91 14.60 5.38 0.01 0.00 79.91 20.00 
Cropland 4.86 7.53 0.65 0.00 0.00 13.05 5.52 
Grassland 2.45 0.42 4.05 0.03 0.00 6.94 2.90 
Water 0.01 0.00 0.01 0.07 0.00 0.09 0.02 
Residential 0.00 0.00 0.00 0.00 0.00 0.01 0.00 
Total 2000 67.24 22.56 10.08 0.11 0.01 100 28.43 
Gain 7.32 15.03 6.04 0.04 0.01 28.43  

(c) 2000-2010 
Woodland Cropland Grassland Water Residential Total 2000 Loss 

Woodland 26.96 33.01 7.26 0.01 0.01 67.24 40.28 
Cropland 1.85 20.11 0.59 0.00 0.00 22.56 2.45 
Grassland 1.81 2.09 6.15 0.01 0.01 0.08 3.93 
Water 0.00 0.01 0.01 0.08 0.01 0.11 0.03 
Residential 0.00 0.00 0.00 0.00 0.01 0.01 0.00 
Total 2010 30.62 55.23 14.01 0.10 0.05 100 46.69 
Gain 3.66 35.11 7.85 0.02 0.04 46.69  

(d) 1972-2010 
Woodland Cropland Grassland Water Residential Total 1972 Loss 

Woodland 29.68 51.96 10.35 0.01 0.03 92.03 62.35 
Cropland 0.12 1.63 0.71 0.01 0.01 2.48 0.85 
Grassland 0.82 1.63 2.95 0.00 0.00 5.40 2.45 
Water 0.00 0.01 0.01 0.08 0.00 0.10 0.02 
Residential 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Total 2010 30.62 55.23 14.01 0.10 0.05 100 65.66 
Gain 0.94 53.60 11.06 0.02 0.05 65.66  

 

During the period 1972 to 2010 woodland had the highest loss of over 62 % of the total land 

cover, and cropland had the highest gain of about 54 % of the land cover (Fig. 13; Tab. 4). 

The cross-tabulation matrices show that the most prominent transition from 1972 to 2010 is a 

conversion from woodland to cropland, which accounts for about 52 % of the total area. 
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Other studies also showed an increase in area of cropland in other parts of the country 

(Garedew et al., 2012; Kindu et al., 2013; Lemenih et al., 2014; Mekasha et al., 2014; Reid et 

al., 2000) and globally (Hanafi & Jauffret, 2008; Lambin et al., 2003) always competing with 

natural vegetation. The woody vegetation of Kaftahumera has also faced a continuous decline 

from 1972 to 2010 (Fig. 14). The rapid vegetation removal has an impact on environmental 

sustainability due to loss of the natural resources.  

 

Figure  14. Percentage of change areas per LULC in the period 1972-2010. 
 

Table 5 indicates the values for gain, loss, total change, swap and net change for each LULC 

class. The land use categories that experienced the highest gains in the period 1972-2010 

were cropland (53.60%) and grassland (11.06%). The largest losses in the same period were 

observed for woodland (62.35%). The total net decline of woodland is at 61.41%, while the 

total long-term net increase in cropland (i.e., from 1972 to 2010) reaches 53% consuming the 

dry forest of the region. Grassland has shown high levels of swap about 5 % compared to 

other land use classes. 

 

The analysis of the amount of cropland gain compared to its loss is 63.06, which is the 

highest value and indicates that cropland has gained 63 times more from other land use 

categories compared to its loss between 1972 to 2010. Gain in grassland is from woodland 

and abandoned cropland. Changes in woodland, cropland and grassland show both swap and 
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net change. Water and residential do not show significant change in swap and net change, 

which indicates a minimal transition of both land uses within the landscape. The landscape 

change (gain and loss) increased from 20.14 % in 1972 - 1984 to 65.67 % in 1972 - 2010 

showing a significant transition within the landscape along the temporal gradient.  

 

Table 5 .LULC change within the landscape in 1972 and 2010 (%). 

 Total 
1972 

Total 
2010 Persistence Gain Loss Total 

change Swap Absolute value 
of net change 

Woodland 92.03 30.62 29.68 0.94 62.35 63.29 1.88 61.41 
Cropland 2.48 55.23 1.63 53.60 0.85 54.45 1.70 52.75 
Grassland 5.40 14.01 2.95 11.06 2.45 13.51 4.90 8.61 
Water 0.10 0.10 0.08 0.02 0.02 0.04 0.04 0.00 
Residential 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 
Total 100.00 100.00 34.34 65.67 65.67 65.67 4.26 61.41 
 

The main spatial distribution of land use transitions within the landscape is shown in Figure 

15. The spatial extent of the land cover types and the land use transition rates vary 

significantly over different periods. The majority of these changes concern the conversion of 

woodlands to other land use types. The land use change has a considerable effect on 

vegetation distribution and on the natural ecosystems of the region. 

 

Table 6 shows the trends in the annual mean change rates of land covers. A rapid reduction in 

woodland cover and a sharp increase in cropland took place from 1972 to 2010 within the 

landscape. The highest annual rate of woodland reduction occurred during the period 2000 to 

2010 (-36.62%). The estimated annual deforestation of Ethiopia reaches about 2% (WBISPP, 

2005). However, the annual rate of change of Kaftahumera is over three percent which is 

more than the annual deforestation rate of the country during the period of 2000-2010. On the 

other hand, 3.27 % of average annual rate of increase in cropland was observed from 2000 to 

2010. Higher demand and the price of oil crop, namely sesame, in the world market induced 

conversion of dryforests and expansion of croplands (Lemenih et al., 2007; Dejene et al., 

2103). This has attracted both subsistence and large scale farms to allocate more land for 

sesame farming in comparison to other crop types along the years. 
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Table  6.LULC change per class and annual rate of change (%). 

Land cover Percentage change (trend) Annual rate of change (%) 

1972-1984 1984-2000 2000-2010 1972-1984 1984-2000 2000-2010 

Woodland -12.12 -12.67 -36.62 -0.87 -0.91 -3.66 

Cropland 10.57 9.51 32.67 0.76 0.68 3.27 

Grassland 1.54 3.14 3.92 0.11 0.22 0.39 

Residential  0.01 0.03  0.00 0.01 

Water 0.00 0.02 -0.01 0.00 0.00 0.00 
 

5.2 Status of land use transitions 
 

During the study period, major land use classes have shown a significant transition like in 

most parts of the country (Reid et al., 2000; Garedew et al., 2009; Tsegaye et al., 2010) and 

in other dry land areas (Lambin et al., 2003; Hanafi and Jauffret, 2008). The land cover 

transition rate is higher for woodland, cropland and grassland within the landscape. The 

amount of persistence i.e. the percentage of unaffected landscape, was 34.34% between 1972 

- 2010. The study area has shown transitions of about 66 % of the landscape. 

 

The loss to persistence ratio (lp) assesses the exposure of a land cover for transition 

(Braimoh, 2006). As the value of lp is higher than one, the land cover is rather exposed to 

changes to other land cover classes than to persistence. All land use classes except woodland 

have an lp value of lower than one. Woodland has a lp value of over 2.0 indicating a higher 

vulnerability to lose than to persist. On the other hand the remaining classes with values 

lower than one have a lower tendency of transition to other land uses (Tab. 7). 

 
Table 7. Gain to persistence (gp), loss to persistence (lp) and net change to persistence (np) 
ratios of land covers in the period 1972 and 2010. 
Land cover gp lp np 

Woodland 0.03 2.10 -2.07 

Cropland 32.88 0.52 32.36 

Grassland 3.75 0.83 2.92 

Water 0.25 0.25 0.00 

Residential 0.00 0.00 0.00 
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Gain to persistence ratio (gp) values higher than one indicate a greater chance of a land use to 

gain than to persist (Braimoh, 2006). Cropland (32.88) and grassland (3.75) have the highest 

gp ratio indicating more gain than persistence. The gp of woodland is almost zero, indicating 

that the gain of woodland is insignificant compared to its persistence during the whole study 

period. 

 

The net change to persistence ratio (np) of cropland is higher (32.36) indicating the net gain 

of cropland is 32 times higher than its persistence. The net loss of woodland (-2.07) is more 

than doubled to its persistence within the landscape. Grassland (2.92) also got a net gain of 

about three fold of its persistence during the study period. The net change to persistence ratio 

is closer to zero for water and residential land uses indicating that they had a lower tendency 

to change. 

 
 

Figure  15 - Spatial distribution of LULC change from 1972 to 2010 (WL: Woodland, CL: 
Cropland, GL: Grassland). 
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5.3  Distribution of land use changes along an elevation gradient 
 

Overlaying the LULC map with the DEM reveals that the areas with elevations below 1000 

m asl cover about 82 % of the study area (Fig. 16 and Tab. 8). Land use transition process 

and extent vary considerably across altitudinal ranges. The most significant change in 

woodlands occurred in the areas with lower altitude within a range of 537 m to 750 m where 

88.47% of the woodlands was lost from 1972 (2409.6 km2) to 2010 (277.68 km2). A 

significant increase in cropland is also exhibited in the same altitudinal range from 1972 

(45.44 km2) to 2010 (2096.01 km2). The remaining woodland areas which are located at 

elevations below 1250 m have also experienced expansion of settlements and cropland. Loss 

of woodland cover exposes soils to wind and water erosion which leads to land degradation. 

The dust movement during the dry period of the year is aggravated due to this loss of 

woodlands and replacement by other human-dominated land use types. This loss of woody 

vegetation in connection with the variability of climate of semiarid regions increases the 

intensity of loss of top soil particles and leads to further depletion of the cultivated lands.  

 

 

Figure  16. Land use distribution along an elevation gradient. 
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5.4 Drivers of LULC changes 
 

In order to understand LULC change dynamics, major drivers of changes were assessed 

using key informants. The key informants were identified from eight purposefully selected 

villages within the study area. Random sampling was used to select 78 households for 

individual interviews. A structured questionnaire was used for gathering socio-ecological 

information on specific land use transitions and main contributing factors.  

 

According to the respondents of the socio-ecological field survey (Tab. 9), most significant 

factors that contributed to the loss of vegetation cover were bushfire, agricultural land 

expansion, resettlement and overharvesting of trees. 64.9%, 78.4%, 78.4%, 94.6% and 94.7% 

of the respondents agree that overgrazing, bushfire, cropping extension, settlement expansion 

and overharvesting of trees respectively are the major causes of loss of tree cover. Bushfire is 

both natural and human induced and damages both properties of settlers and the woodlands. 

The natural occurrence of fire is linked to the dry climatic conditions of the region in which 

the dry biomass acts as a fuel. In addition, humans also set fire to clear the debris of their 

agricultural plots in which the fire escapes into the woodlands. According to the respondents, 

increase in human activities mainly agricultural expansion, collection of firewood and of 

construction wood and increase in population size significantly contributed to overutilization 

of the natural vegetation. Similar studies in northwestern Ethiopia and other semiarid regions 

also identified resettlement as a major driving factor for causing significant pressure on 

natural vegetation leading to deforestation and forest degradation (Hanafi and Jauffret, 2008; 

Lemenih et al., 2014). 

 

Both underlying causes and proximate causes are responsible for LULC change in 

Kaftahumera. Among the underlying causes, demographic increment due to expansion of 

resettlement and casual workers, is among the factors for loss of vegetation cover in 

Kaftahumera. Available documents reveal the beginning of resettlement in Kaftahumera 

dates back to 1976 when there were 1000 households on 2500 hectars of land (Rahmato, 

2003). This trend continues until recently when 16830 households from 2003 to 2005 were 

relocated (Hagos, 2005). Demographic change brought LULC transitions which contributed 

to the loss of vegetation of the area (Table 8). In addition, among the proximate causes, 

expansion of agriculture supported by other underlying causes like policy changes 

contributed to loss of woodlands. The current government promotes agricultural investment. 
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The Ethiopian Development Bank supports an accepted project with upto 70 % financial 

loan, with only 30% of the capital is required from the investor (MoA, 2013). There is also 

an exemption of payment of income tax from any income derived from this investments for 

up to 5 years. The annual land rent is determined based on location, access to irrigation and 

distance from the capital city of the country. Even if the land rent is cheapest as compared to 

any other countries; the government gives 2 to 5 years of grace period based on the 

commercial crop harvest period (MoA, 2013). All this factors attracted over 400 investors to 

the region to participate in crop production. The rise in population number and the expansion 

of investments is significantly competing with the available woodlands which is a threat to 

the sustainability of the ecosystem of the region. 

 

Table 8 - Classification of 2010 LULC categories of Kaftahumera overlaying the digital 
elevation model (DEM) acquired by the Shuttle Radar Topography Mission (SRTM). 

Elevation 
classification (m) 

Area  
(km2) 

% of 
total Dominant LULC types, respectively 

537-750 276.24 44.70 Woodland, agriculture, grassland and settlement 
750-1000 2295.53 37.16 Woodland, agriculture and grassland 
1000-1250 786.65 12.73 Woodland, agriculture and grassland 
1250 -1500 215.20 3.48 Woodland and agriculture 
1500-1865  118.60 1.92 Woodland and agriculture 
Total study area 677.22 100  

 

The other underlying LULC change factor is population growth. The population of 

Kaftaumera increased from about 50,000 to over 110,000 over a period of about 20 years 

(CSA,2014, Fig. 17). This has brought competition on the available resources of the region. 
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Figure 17. Population size of Kaftahumera (Source: CSA, 2014) 
 

The cropland expansion is marked by a sustained growth in population, increasing 

agricultural investments, a rise in oil crop price and a sharp increase in agricultural 

employment (Dejene et al., 2013). For instance, in 2011 the investment attracted more than 

200,000 casual laborers in search of employment (http: //www.dppc.gov.et. accessed on 8 

April 2011) with the number of incoming casual workers is annually increasing. As the 

region is semi-arid, the combination of overgrazing, drought, human population growth and 

agricultural expansion played a significant role in aggravating degradation of the natural 

vegetation and soil conditions. Over the last forty years woodlands have steadily declined in 

size and human actions have established the basis for an increase of wind erosion and the 

subsequent emergence of more and more drifting dust clouds originating from northwestern 

Ethiopia. 

Table 9 - Perceptions of local people about the causes of the land use/cover change (%). 

Causes Disagree Not sure Agree 

Bush fire 10.8 10.8 78.4 
Cropping extension 8.1 13.5 78.4 
Overgrazing 13.5 21.6 64.9 
Settlement 2.7 2.7 94.6 
Over harvesting of trees 0.0 5.3 94.7 
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5.5 Summary 
 
LULC change detection evaluates spatiotemporal change patterns and identifies the 

quantitative dimension of transitions within a landscape. This study examines the LULC 

changes of the semi-arid regions of Kaftahumera using multitemporal satellite imagery for 

the period 1972-2010 that provides current and historical LULC conditions. Supervised 

classification algorithm using SVM algorithm was employed to monitor LULC 

transformations. A cross-tabulation matrix was used to assess the total change of land 

categories based on net change and swap. Over the study period, there is a significant change 

in LULC, as evidenced by a sharp increase in cropland of about 53% and a net loss of over 

61% of woodland within the landscape. The period 2000-2010 has shown a sharp increase of 

cropland and a sharp decline of woodland areas. The underlying causes mainly policy 

changes, population growth and proximate causes like cropland expansion, wood harvesting 

are the main driving factors of LULC change in Kaftahumera. Changes in economic growth 

and human activities contributed to an overuse of existing natural resources, which resulted 

in significant variations in the spatiotemporal patterns of land use changes with respect to 

specific altitudinal ranges. The dominant changes are exhibited in areas with elevations 

below 1000 m with a loss of 74% of woodlands from 1972 to 2010. 

 

Human activities, such as agriculture and settlement expansion, severely influenced the 

drylands by modifying the landscape and diminishing its natural ecosystem. Over the last 

forty years the woodlands have steadily declined in size and have been replaced by 

croplands. The combination of overgrazing, population growth and agricultural expansion 

contributed to the degradation of the woodlands of the region. The disturbance of the 

respective woodland ecosystem is closely related to the occurrence of significant land use 

transformation within the region. This change may result in an irreversible loss of 

biodiversity and in the depletion of ecological services provided by the natural environment. 

The results of this study quantify dynamics of land cover change and point towards 

appropriate action to implement sustainable use of the ecosystem. In the face of increasing 

population size and consequent need for intensifying exploitation of resources, it is vital to 

maintain a balance of sustainable utilization. Thus, it is crucial to further develop and 

enhance methods of periodical monitoring and assessment of LULC change in order to 

evaluate the environmental influences on semi-arid ecosystems that are increasingly affected 

by human impact. 
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6. Chapter 6: Categorical land use transition and land degradation in 
the northwestern Ethiopia. 
  





 

65 
 

An assessment of bi-temporal images analysis is vital to display the overall changes among 

the land use classes but it is not able to explain the observed and expected losses and gain 

under random process of loss and gain respectively (Braimoh, 2006; Pontius et al., 2004). The 

assessment of inter-categorical land use shifts assists in order to differentiate the categorical 

land use changes under random process of change from systematic changes among the land 

use classes. 

Table  10. Confusion matrix for 2014 classification.  

Reference data 

C
la

ss
ifi

ed
 d

at
a 

 Residence Grass Water Woodland Cropland Row 
total 

User's 
accuracy(%) 

Residence 77.0 22.0 0.0 0.0 0.0 99.0 77.8 
Grass 6.0 52.0 0.0 0.0 0.0 58.0 89.7 
Water 0.0 0.0 79.0 0.0 0.0 79.0 100.0 
Woodland 3.0 0.0 4.0 170.0 5.0 182.0 93.4 
Crop 4.0 22.0 1.0 10.0 149.0 186.0 80.1 
Total column 90.0 96.0 84.0 180.0 154.0 604.0  
Producer's 
accuracy(%) 

85.6 54.2 94.1 94.4 96.8   

Overall accuracy  87.25% 
 

Figure 19 illustrates LULC categories in the period 1986 - 2014. There is a significant amount 

of spatial changes among the land use classes during three decades. In 1986 woodland was the 

dominant category covering about 79 % of the landscape. However the dominance of 

woodland was reshuffled by cropland as cropland acquires the largest extent in 2014 

dominating over 53 % of the landscape with a net gain of about 40 %. Among the land cover 

classes, woodland suffered the highest net loss of about 44 %. This significant reduction in 

size of woodland cover is attributed largely to the excessive wood harvest and cropland 

expansion. Cropland has the highest gain to loss ratio (gl=19.8) among the land use classes 

signifying about 20 times additional growth in size than loss in relation to the increase in 

other land use categories. The gain in cropland is related to the need of extra cultivation areas 

as a result of population growth, agricultural investments and expansion of resettlement  
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Figure 19. Land use /land cover categories distribution for 1986 and 2014. 
 

6.2  Persistence in the landscape 
 

The temporal changes in the period 1986-2014 for all land cover classes are shown in figure 

20. During this period, nearly 54 % of the landscape has undergone a transition from one land 

use category to another. However about 10 % of this transition occurred due to swap change, 

in which there existed a coinciding gain and loss among the land use categories. During the 

study period, the persistence of the landscape shares only about 46 % of the area, whereas the 

larger proportion experienced land use shifts (Table 11). Woodland experienced the 

uppermost persistence of over 32 %. However, the dominance in the persistence of woodland 

during the study period is mainly due to its higher proportion in 1986 covering 79.0 % of the 

landscape. This land use class suffered the largest loss among the land use categories i.e. a net 

loss of about 44 %. On the other hand cropland increased significantly in size covering about 

53 % of the landscape in 2014. It has also the lowest amount of loss (2 %) and a persistence of 

over 11 %. Cropland loss is mostly attributed to crop fallowing and abandoning of cultivated 

areas as a result of loss of soil fertility. The loss in soil fertility might be attributed to the soil 

erosion during the dry period of the year, which removes the topsoil of the cultivated lands.  
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Table 11. LULC changes in the period 1986-2014 (%). 

Land use class Total 
1986 

Total 
2014 

Persistence Gain Loss Total 
Change 

Swap Absolute value of 
net change 

Woodland 79.00 35.12 32.20 2.92 46.80 49.72 5.85 43.87 
Cropland 13.44 52.80 11.30 41.50 2.14 43.64 4.28 39.35 
Grassland 7.08 11.50 2.50 9.00 4.58 13.58 9.16 4.42 
Water 0.39 0.25 0.30 0.05 0.09 0.04 0.00 0.04 
Residence  0.09 0.33 0.10 0.30 0.10 0.40 0.20 0.24 
Total 100.00 100.00 46.30 53.70 53.70 53.70 9.70 44.00 
 

The gp ratio values higher than one indicate a significant likelihood that a land use class 

increases compared to its initial size (Braimoh, 2006). Accordingly cropland, grassland and 

residence all have a gp value of more than one demonstrating their trend to grow in 

comparison to their original extent in 1986 (Table 12). On the other hand woodland and water 

have a value of below 1 signifying the size of added extent is less than the size of their 

unchanged extent.  

 

The ratio of lp larger than one designates the inclination of a category to be exposed for 

transition rather than persistence during the period of assessment (Braimoh, 2006). Among 

the land use categories, residence and cropland have lp ratios of below one displaying their 

lower amount of loss in comparison to the unchanged extent. This is an indicator that their 

tendency of loss is minimal with a better chance of expansion than loss. In contrast woodland 

and grassland have lp ratios of above one show their exposure to transition. This has been 

confirmed by a significant amount of loss of woodlands along the study period. However the 

higher value of grassland is attributed to its higher swap changes of both gain and loss. 

 

The net change to persistence (np) is negative for woodland and water indicating their net loss 

compared to their persistence. The loss in water areas may be related to the shrinkage of water 

bodies due to expansion of croplands at the cost of woodland and wetland areas in the study 

area. The np of cropland (3.5) demonstrates a net expansion of about four times of its extent in 

1986. Grassland also got a net increase in size but it also has a comparable loss in the same 

period. The size of built-up also significantly increased having an np of 2.4. The expansion of 

built up areas is related to an increase in residential areas attributed to the demographic 

change occurring within the region.  
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Table 12. LULC ratios for the period 1986-2014. 

Land use 
class 

gain to 
persistence (gp) 

loss to 
persistence(lp) 

Net change to 
persistence (np) 

Woodland 0.09 1.45 -1.36 
Cropland 3.67 0.19 3.48 
Grassland 3.60 1.83 1.77 
Water -0.17 0.30 -0.46 
Residence  2.32 -0.07 2.39 

 

 
 
Figure 201. Land use shifts in the period 1986 – 2014 (WL=Woodland; CL=Cropland; 
 GL=Grassland). 
 

6.3 Net change and swap change 
 

Assessment of land use transition is complemented by gross gains and gross losses among 

land use categories in the study area. Woodland has a gross loss of about 47 %, while 

cropland has a gross gain of 42 % (Table 11). The net change of woodland and cropland is 44 

% and over 39 % respectively. Among the land use categories grassland shows a significant 

amount of swap change of over 9 % related to other land use categories. Water and residence 

have the lowest swap change among the land use categories. The net change within the 
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landscape is 44 %, whereas the observed total change is about 54 % proving that both swap 

change and net change are vital to recognize the total transition within the landscape. An 

analysis of land use transition considering only net change weakens the existing total changes 

of the ecosystem. There is swap changes during the study period that needs consideration due 

to both gain and loss on different locations (Pontius et al. 2004). 

 

6.4 Inter-categorical transitions in the landscape 
 

The LULC shift in the landscape under a random process of gain is shown in table 13 

highlighting observed land use categories in bold, expected changes in italics and the change 

between the observed and expected proportion in normal font respectively. The comparison of 

observed and expected proportions identifies and separates the random process of change 

from the systematic change based on the deviation of their values from zero. Accordingly, 

when the values of their difference approach zero, the transition is considered as a random 

process of change, whereas if the values are farther from zero, the change is systematic 

(Braimoh, 2006). Woodland has the highest loss compared to other land use types. However, 

the higher value of loss in woodland is not sufficient to decide that the change was systematic 

as woodland is the dominant land use category within the landscape during the first point in 

time of the study in 1986. The systematic transition can be identified by interpreting the 

transitions with respect to the size of the categories. 

 

During the evaluation of observed transition and expected transition under random process of 

gain, it was found that observed gains for some land use categories are farther from zero. The 

difference between the observed and expected proportion of woodland to cropland under a 

random process of gain is 1.7%, which means that cropland systematically gains to replace 

woodland. The difference between cropland and woodland is 1.4 % (negative) implies that 

woodland does not systematically gain from cropland. The difference between observed and 

expected gains for grassland-cropland is -0.8%, which means that if cropland gains it does not 

replace grassland. On the other hand the difference between cropland-grassland is 0.2%, 

indicating a systematic transition of cropland to grassland. The difference between the 

observed and expected gains for woodland-grassland is -0.2%, implying that when grassland 

gains it systematically does not gain from woodland. On the other hand the difference 

between grassland-woodland is 0.9 %, which means that woodland gains systematically from 

grassland. In most cases the gain of woodland from grassland is related to the practice of 
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fallow within the region. The degraded lands will be left in order to regain their loss of 

fertility in which tree species grow in moist parts of Kaftahumera. 

 

Table 13. Percentage of landscape transition in terms of gains: observed (in bold), expected 
under random process of gain (in italics), difference between observed and expected (in 
normal font) 

1986 2014 
Total 1986 Loss 

Residence Water Woodland Cropland Grassland 
Residence 0.0 0.0 0.0 0.0 0.0 0.1 0.1 

0.0 0.0 0.0 0.0 0.0 0.1 0.1 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Water 0.0 0.3 0.0 0.1 0.0 0.4 0.1 
0.0 0.3 0.1 0.2 0.0 0.6 0.3 
0.0 0.0 -0.1 -0.1 0.0 -0.2 -0.2 

Woodland 0.1 0.0 32.2 39.2 7.4 78.9 46.7 
0.2 0.0 32.2 37.5 7.6 77.5 45.3 
-0.1 0.0 0.0 1.7 -0.2 1.4 1.4 

Cropland 0.1 0.0 0.5 11.5 1.5 13.6 2.1 
0.0 0.0 1.9 11.5 1.3 14.7 3.2 
0.1 0.0 -1.4 0.0 0.2 -1.1 -1.1 

Grassland 0.2 0.0 1.7 2.7 2.6 7.2 4.6 
0.0 0.0 0.8 3.5 2.6 6.9 4.3 
0.2 0.0 0.9 -0.8 0.0 0.2 0.3 

Total 2014 0.4 0.3 34.4 53.5 11.5 100.0 53.7 
0.4 0.3 34.4 53.5 11.5 100.0 53.7 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Gain 0.4 0.0 2.9 42.0 8.9 53.7  
0.4 0.0 2.9 42.0 8.9 53.7  
0.0 0.0 0.0 0.0 0.0 0.0  

 

The same comparison of the difference between observed and expected losses under random 

process of loss is shown in table 14. The differences for woodland-cropland, cropland-

grassland, and grassland-residence are 1.3 %, 1.0 % and 0.2 % respectively. Hence, when 

woodland loses cropland systematically replaces it, when cropland loses grassland 

systematically replaces it and when grassland loses residence systematically replaces it. The 

difference between observed and expected losses for woodland-grassland and cropland-

woodland is -0.9 % and -0.9 % respectively. This implies that woodland does not 

systematically lose areas to grassland and cropland does not systematically lose to woodland.  
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Table 14. Percentage of landscape transition in terms of losses: observed (in bold), expected 
under random process of loss (in italics), difference between observed and expected (in 
normal font) 
  
 1986 

2014 Total 1986 
 

Loss 
 Residence Water Woodland Cropland Grassland 

Residence 
  
  

0.0 0.0 0.0 0.0 0.0 0.1 0.1 
0.0 0.0 0.0 0.1 0.0 0.1 0.1 
0.0 0.0 0.0 -0.1 0.0 0.0 0.0 

Water 
  
  

0.0 0.3 0.0 0.1 0.0 0.4 0.1 
0.0 0.3 0.0 0.1 0.0 0.4 0.1 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Woodland 
  
  

0.1 0.0 32.2 39.2 7.4 78.9 46.7 
0.2 0.2 32.2 37.9 8.3 78.9 46.7 
-0.1 -0.2 0.0 1.3 -0.9 0.0 0.0 

Cropland 
  
  

0.1 0.0 0.5 11.5 1.5 13.6 2.1 
0.0 0.0 1.4 11.5 0.5 13.6 2.1 
0.1 0.0 -0.9 0.0 1.0 0.0 0.0 

Grass 
  
  

0.2 0.0 1.8 2.7 2.6 7.2 4.6 
0.0 0.0 1.7 2.7 2.6 7.2 4.6 
0.2 0.0 0.1 0.0 0.0 0.0 0.0 

Total 2014 
  
  

0.4 0.3 34.5 53.5 11.5 100.0 53.7 
0.2 0.5 35.3 52.2 11.4 100.0 53.7 
0.2 -0.2 -0.8 1.3 0.1 0.0 0.0 

Gain 
  
  

0.3 0.0 2.3 42.0 8.9 53.7   
0.2 0.2 3.1 40.7 8.8 53.7   
0.1 -0.2 -0.8 1.3 0.1 0.0   

 

6.5  Land degradation in drylands of northwestern Ethiopia 
 

There are pertinent land-use changes, mainly characterized as gradual transitions, over 

Kaftahumera. LULC change assessment of the region shows that about 54 % of the area 

undergoes transitions from natural ecosystem to human dominated activities. The removal of 

the protective cover leaves the soil highly vulnerable to wind erosion, particularly during the 

dry period of the year. Human activities, mainly firewood collection, agricultural land 

expansion and expansion of settlement are the main driving forces influencing the change in 

vegetation cover of semiarid woodlands of northwestern Ethiopia.  

 

The Sudano-Sahelian region is known as a source of soil-derived aerosols into the atmosphere 

which moves southwards towards the northwestern drylands of Ethiopia and further to the 

Red Sea (Middleton, 1985). However, in recent years, it is common to observe dust clouds 

hovering over the northwestern regions of the country originating between the borders of 

northwestern drylands of Ethiopia and Sudan (URL 4). The change in vegetation cover and 

the degradation of woodlands that protect the topsoil from wind erosion play a vital role in the 
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accelerated wind erosion. The remarkable changes in agricultural practices and open access to 

dryforests have been exacerbating the exposure of the dryforests for change. These 

anthropogenic activities are among the driving factors for the degradation of the dryland 

ecosystem functions (Foley, 2005). Hence dryland vegetation change contributes to land 

degradation in terms of increase of surface albedo and soil moisture retention, exposing the 

inherently weak topsoil for both wind and water erosion (Sivakumar, 2007). The change in 

vegetation cover of Kaftahumera has affected dust emission and loading which can be directly 

attributed to man-made degradation of the environment.  

  

Human land degradation which removes the vegetation cover increases the vulnerability of 

the region for wind erosion (Cook et al., 2009). The loss of vegetation, accompanied by 

cropland expansion, plays the main role in exposing the topsoil of Kaftahumera for wind 

erosion. The severity of loss of vegetal cover is aggravating in most woodland areas of 

Kaftahumera. Due to the extended land use changes, there might be a reduction in the 

capacity of the land to provide ecosystem goods and services. Image analysis confirmed the 

conversion of about 47% of the woody vegetation to other land use types affecting the natural 

vegetation. The intensive mechanized farming, mainly for production of oil crops for 

international markets, has contributed to the shrinking of the woodlands (Lemenih et al. 2014; 

Zewdie & Csaplovics, 2014). In addition, the expansion of subsistence agriculture with ever 

increasing population pressure competes with the natural vegetation of the region (Zewdie & 

Csaplovics, 2015). The continuous exposure of the landscape for degradation eases the loss of 

soil from the region. The soils being blown away from the landscape drain the soil through 

transporting sediments and nutrients. Studies on climate change also show a stronger link 

between vegetation change and dust aerosols in which precipitation of the Sahel region is 

reduced due to changes in vegetation cover and increased occurrence of dust storms 

(Yoshioka et al., 2007).  

 

The bi-temporal change assessment of Landsat imagery is augmented by temporal NDVI and 

rainfall analysis for detecting land condition. Accordingly a pixel-wise regression analysis 

between rainfall data and NDVI was applied to investigate spatial relationships of vegetation 

patterns and rainfall over the whole study area (Fig.21). The result shows a high spatial non-

stationary relationship between rainfall and NDVI within the landscape. The coefficient of 

determination (R2) between rainfall and NDVI demonstrates a major difference in spatial 

distribution, with about 55 % of the study area having low R2 values of below 0.5. The spatial 
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patterns of R2 between rainfall and NDVI correspond to the status of vegetation condition. 

NDVI measures vegetation conditions considering the temporal biomass accumulation and its 

historical changes (Tucker et al., 2005). The low correlation between rainfall and NDVI is a 

sign of loss in biomass accumulation. Similar studies in other drylands also indicates, lower 

correlation of NDVI and rainfall due to loss of vegetation cover (Budde et al., 2004;  Li et al., 

2004). In the absence of human intervention, NDVI correlates with the annual precipitation.  

 

 

Figure  21. Spatial regression of NDVI and rainfall over Kaftahumera for the period 2000-2014, 
the values indicate pixelwise R2 of NDVI vs rainfall.  
 

Among the land cover categories, mainly woodland areas converted to cropland, show the 

lowest R2 values between the points in time of 2000 and 2014. The northern part of the study 

area which is covered by undisturbed woodland and grassland shows an R2 of over 0.5. The 

lower spatial relationship of NDVI and rainfall in the study area is an indicator of 

disturbances which can be attributed to the deforestation of the dry forests (Budde et al., 

2004). The loss in vegetation is a signal of land degradation. The inter-categorical analysis of 

Landsat imagery also identified conversion of over 39 % of woodland to cropland as a 

dominant signal of change in the landscape within the period of 1986-2014. This systematic 
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land use transition has contributed to the land degradation of the semiarid ecosystem of 

Kaftahumera. The occurrence of dust clouds on the edge of northwestern drylands of Ethiopia 

during the dry period of the year can be linked to the loss of vegetation cover which hampers 

the topsoil movement due to wind erosion. 

  

 

Figure 22. Slope of the annual sum of NDVI over Kaftahumera over the period 2000 – 2014 
with a confidence level of 95% (p < 0.05). 
 

The spatiotemporal linear regression analysis of the slope of the annual sum of NDVI is 

illustrated in figure 22. The slope is a measure of the direction and strength of annual NDVI 

variation from 2000 to 2014, in which a negative slope depicts a reduction in vegetation 

productivity over the study period. The assessment shows a significant reduction in 

productivity of vegetation as most parts of the study area showed negative slope. The 

temporal reduction in NDVI resulted from the change in spatial distribution of the woody 

vegetation and other human-induced changes in ecosystem. The woodlands of Kaftahumera 

affected by human activities showed a significant reduction in vegetation productivity with 

negative trends in areas where settlement and cropland was expanding. The pressure 

originating from the incoming settlers and cropland expansion exert loss of the available 
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woodland resources of the region. This human activity systematically replacing woodlands by 

cropland resulting in wind-induced soil erosion. 

 
Figure 23. Linear correlation coefficient of the annual sum of NDVI over the period of 2000-
2014 with a confidence level of 95%. 
 

The spatiotemporal linear regression coefficient of annual cumulative NDVI is shown in 

figure 23 in order to investigate the significance of the undergoing change at the 95 % 

confidence level (p < 0.05). The outcomes indicate that most parts of the study area have 

shown a decrease in vegetation productivity over the last 15 years due to overexploitation of 

the natural vegetation. The reduction in NDVI values is a prominent indicator of loss in 

biomass accumulation which ends up in woodland degradation (Jacquin et al., 2010). The 

majority of woodland areas, with human dominated activities like cropland and settlement, 

have shown significant changes in annual cumulative NDVI temporal trends. The NDVI 

analysis is in agreement with the respective Landsat image classification outputs which prove 

for a conversion of most of woodland vegetation to croplands. The deforestation and 

degradation of the woodlands result in lower vegetation productivity and hence in a negative 

NDVI trend.  
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Figure 24. Linear correlation coefficient of rainfall over the period (2000-2014) with a 
confidence level of 95% (p < 0.05). 
 

The linear correlation of rainfall across time for the period of 2000-2014 is shown in figure 

24. The assessment proves no significant changes at 95 % confidence level (p < 0.05). 

However, there is a positive trend in rainfall over the study period. Hence, the reduction in 

NDVI over Kaftahumera is not a result of change in rainfall distribution. The absence of 

significant trends in rainfall over the 15 year period buttresses the reduction in vegetation 

productivity related to anthropogenic factors than to the availability of rainfall distribution.  

 

Deforestation of woodlands and loss of topsoil are large sources of anthropogenic greenhouse 

gases mainly CO2 emissions that contribute to the loss of carbon from both woody biomass 

and soil, which can lead to land degradation and reduction in ecosystem services (Alam et al., 

2013; Carranza et al., 2014). Consequently, Kaftahumera also contributing greenhouse gas 

via loss of vegetation and soil. The human impacts have geared up the phase for an enhanced 

emission from northwestern Ethiopia. However, it needs further assessment in order to 

estimate the amount of loss of carbon both from the soil and the woody vegetations. 
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6.6 Summary 
 

There is a significant amount of spatial changes among the land use classes during the period 

of three decades, which mainly contributed to an ongoing degradation of woodland 

ecosystems. In 1986 woodland is the dominant land use category covering about 79 % of the 

area. However the dominance of woodland reshuffled with cropland as cropland acquires the 

largest extent in 2014 covering over 53 % of the total area with a net gain of about 40 %. The 

net change within the landscape is 44 %, while swap change accounts for about 10 % of the 

transition.  

 

The LULC transition matrix of land cover categories under random process of gain identifies 

that cropland systematically gains to replace woodland while woodland systematically avoids 

to gain from cropland. This proves the loss in vegtal cover of Kaftahumera is associated with 

changes due to human activities. The replacement of woodland vegetation by cropland 

exposes the topsoil to wind erosion and it is common to observe dust clouds during the dry 

period of the year. This approach is helpful in an accounting loss of ecosystem for prioritizing 

better options of semiarid environmental managements. 

 

The loss of woodland vegetation is an indicator of ecosystem degradation within the region. 

The spatial correlation of NDVI and rainfall shows R2 values of lower than 0.5 in over 55 % 

of the study area in the period 2000 - 2014. The temporal change in rainfall is not significant 

but there is a negative trend in NDVI in areas of woodlands converted to cropland. The lower 

value of R2 between NDVI and rainfall is an indicator of land degradation due to the low 

response of degraded landscapes to rainfall. A result of this research indicates a systematic 

land use transition and calls for proper measures to combat ecosystem degradation.  
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7. Chapter 7:  Trend and change assessment of NDVI and climate 
variables over northwestern Ethiopia 
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7.1 NDVI trend analysis and break points 
 

The BFAST technique performs the decomposition of time series into trend, seasonal, and 

remainder components in order to detect abrupt changes within the seasonal and trend 

components (Verbesselt et al., 2010). The bi-temporal land use change assessment using 

Landsat imagery exhibited significant inter-categorical land use shifts affecting the vegetation 

distribution of the region (Zewdie & Csaplovics, 2015). Hence it is important to consider 

temporal trend changes in order to detect the timing and significance of changes in vegetation 

growth.  

 

Figure 25 demonstrates the behavior of different trend changes for a selected sample of 

MODIS NDVI data. Accordingly, there is a seasonal break in plot b and d but not in the other 

two sample plots within the seasonal component of the time series. The existence of seasonal 

breaks indicates changes in phenology resulting from land use changes mainly from woodland 

to cropland showing a shift in annual phenology cycles within the time series (Verbesselt et 

al., 2010). In all the sample plots, there are three distinctive breakpoints with different time of 

breaks and statistical significance. In plot a and b, a declining trend is observed till the third 

breakpoint and there is a positive trend after the third breakpoint displaying the browning and 

greening state of vegetation respectively within the trend series. In both sample plots, the 

NDVI continues to decline significantly till 2009 with a distinct state of browning which is 

captured in the trend component by the three breakpoints. On the other hand, there is a state of 

greening from 2009 to 2014 with a statistically significant positive trend segment. This may 

be related to the ongoing demarcation of some of the previous allocated woodlands to national 

park. The positive increase in rainfall can also contribute to the enhancement in vegetation 

productivity in BFAST sample plot analysis. 

 

In plot c, there are three distinctive breakpoints with varying statistical significance across the 

study period. The breakpoints display both positive and negative magnitude in slope. The 

declining trend continues till 2008 and then appears a positive trend. However the trend is 

statistically significant only in the time period of 2000-2003 (declining trend) and 2012 – 

2014 (increasing trend). The period between 2008- 2012 has shown an incremental trend but 

not statistically significant. In plot d, two negative and one positive trend is observed with 

significant trends in all the three trend phases. However, the period from 2009 to 2014 has 
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zero slopes with no change in its trend. The trend changes between browning and greening are 

an important indicator for assessing long term vegetation conditions (de Jong et al., 2011).  

In most of the sample plots, NDVI shows negative and positive trends but precipitation has no 

significant long term trend (Fig. 25 and Fig. 26). Rainfall significantly influences the 

vegetation productivity in arid regions. However the assessments of these two datasets signify 

the lower dependency of vegetation change on the long term precipitation changes. Hence, 

land use change and forest degradation are crucial aspects to be considered in the semi-arid 

northwestern regions of Ethiopia which highly contribute for abrupt and gradual vegetation 

changes (Dejene et al., 2013; Eshete et al., 2011; Lemenih et al., 2007, 2014; Zewdie & 

Csaplovics, 2015). Consequently, the breakpoints in NDVI are attributed to loss in vegetation 

productivity resulting from the loss of vegetation cover and forest degradation due to 

expansion of subsistence and large scale agriculture and other driving forces of change. The 

availability of vegetation cover is vital for controlling the annual cycle of surface hydrology 

and water balance where water is the main limiting factor for vegetation productivity in 

dryland regions like Kaftahumera (Gentine et al., 2012). A NDVI-rainfall model is a good 

indicator to evaluate the impacts of land use management on dryland ecosystems. 
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Figure 25. Yt (original data), Fitted St (seasonal), Tt (trend) and et (remainder) components of 
MODIS NDVI time series for selected four sample plots. 

a) 

   b) 

  d) 

c) 
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7.2 Long term trend and break points of precipitation 
 

The seasonal and annual distribution of rainfall is imperative for vegetation growth and 

productivity in semi-arid ecosystems. In order to evaluate changes in these climate variables, 

a long term trend and breakpoints analysis using BFAST was performed. The assessment of 

breakpoints within the long term trends of precipitation is illustrated in figure 26 for the 

period 2000-2014 in line with the assessment period of NDVI. In contrast to the NDVI 

results, there are no breakpoints in precipitation for the specified study periods. The main 

abrupt change in NDVI is an indication of variation in vegetation productivity which is not in 

connection to variation in precipitation distribution and thus rather linked to other 

contributing factors that disturbed vegetation growth. The temporal disturbance of vegetation 

growth is likely to be caused by changes in biophysical and socioeconomic factors (Schulz et 

al., 2011) which affect vegetation cover. As precipitation is the primary constraint of 

vegetation growth for semi-arid regions (Fensholt et al., 2012; Nemani et al., 2003), the 

absence of a significant trend in precipitation strengthens the contribution of other limiting 

factors to the decline in vegetation productivity. Hence, the ecosystem dynamics in 

Kaftahumera are attributed to land use changes resulting from socioeconomic factors rather 

than to a change in the distribution of climate variables. 
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Figure 26.Yt is original data, Fitted st (seasonal), Tt (trend) and et (remainder) components of 
TAMSAT rainfall time series for selected four sample plots. 
 
 

c) 

a) 

b) 

d) 
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On the other hand, the MK test for seasonal rainfall analysis shows variations among the 

seasons of the year. The change in seasonal distribution and inter-annual variability of 

precipitation in arid and semiarid regions has an effect on the phenology and productivity of 

vegetation (Feng et al., 2013; Singh and Kushwaha, 2005; Weltzin et al., 2003). Among the 

four seasons two seasons (season 1= December (D), January (J) and February (F) and season 

3= June (J), July (J), and August (A), depict a significant variability in rainfall distribution 

within the study period (Tab.15). Even if the variation in seasons 2 and 4 are not significant, 

there has been an increasing seasonal precipitation trend over the years. The structure and 

functioning of semi-arid ecosystems are dominantly dependent on seasonal precipitation 

availability. The increasing trend in amount of rainfall during the main rainy season (season= 

3 (JJA)) is favorable for the growth and productivity of vegetation of the region. Hence the 

decline in the NDVI cannot be associated with the shortage and variability of seasonal rainfall 

distribution as all the seasonal precipitation showed incremental trend with different degree of 

statistical significance. This proves land use change plays vital role for the vibrant change in 

vegetation productivity. 

Table 15.MK test statistics of Kaftahumera for the four seasons (1=DJF; 2=MAM; 3=JJA; 
4=SON).  

Seasons S Tau Var (S) P-value 
1 143 0.288 3533 0.016136 

2 112 0.226 3802.7 0.069333 

3 154 0.31 3802.7 0.012513 

4 56 0.113 3802.7 0.363814 

 

7.3 Long term trend and breakpoints of monthly mean Tmax and monthly 
mean Tmin 
 
Air temperature is not a limiting factor for vegetation growth in arid regions (Fensholt et al., 

2012; Nemani et al., 2003) but the variation in trend affects the moisture conditions of the 

region. Time series data analysis could support the identification of vegetation responses to 

changes in temperature. Hence, the average Tmax and Tmin time series for the period 2000 - 

2013 and their components resulting from BFAST analysis are displayed in figure 27 and 28 

respectively. In all the four sample plots there are no seasonal breaks for Tmax, but two 

breakpoints exist in the period of 2006 – 2011. However, these breakpoints are not 

statistically significant (< 0.05). The long term trend in average Tmax is positive, but the 

increment is not statistically significant using the BFAST analysis algorithm. On the other 
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hand, there are no seasonal and trend breakpoints in all the four sample plots of Tmin though, 

there is an overall positive trend along the study period. As there is no decline in the seasonal 

and annual rainfall of the region, no link could be established to prove temperature to be a 

contributing factor for the decline in vegetation productivity. 

 

 

Figure 27. 2Tmax time series for the period 2000-2013 and components resulting from BFAST 
for four sample plots of Kaftahumera. There is an overall positive trend with 2 breaks (early 
2007 and early 2011), and an abrupt decrease in temperature at the largest magnitude break. 

a) 

b) 

d) 

c) 
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Figure 28. Tmin time series for the period 2000-2013 and components resulting from BFAST 
for four sample plots of Kaftahumera. There is an overall positive trend without significant 
breaks.  

a) 

b) 

c) 

d) 
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7.4  Magnitude of breakpoints for NDVI 
 

Resettlement expansion to overcome famine in Ethiopia has severely affected the vegetation 

cover of the country (Lemenih et al., 2014; Rahmato, 2003), particularly resulting in severe 

woodland ecosystems loss (Dejene et al., 2013; Lemenih et al., 2014; Zewdie & Csaplovics, 

2015). The anthropogenic effect has contributed to the declining trend in vegetation 

productivity, affecting the growth cycle of vegetation and thus deteriorating the ecosystem of 

the region. The contribution of climate variables is negligible on the decreasing trend of 

vegetation productivity. The existence of significant breakpoints in NDVI are attributed 

directly to changes between natural and human-modified ecosystems impairing the size of the 

woody vegetation. 

 

In all the four sample plots, the highest change in magnitude occurred from 2000 to 2009 with 

some degree of improvement afterwards (Fig.29). This period shows significant abrupt 

changes due to the disturbance of the woody vegetation and subsequent recovery. Some of the 

woodland areas which were previously allocated for resettlement have been demarcated back 

to be used as a national park (personal communication) and may be among the contributing 

factors for improvement of NDVI trend after the year 2009. In addition, the positive 

increment in precipitation can support a more rapid response in vegetation productivity in 

dryland ecosystems (Andela et al., 2013). However, the length of break points shows the 

severity of loss in productivity of vegetations compared to the length of its recovery. The 

abrupt changes in magnitude and breakpoints of NDVI are indicators counting the severity of 

loss in biomass as NDVI is a proxy for vegetation biomass measurement. 
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Figure 29.Time of breakpoints and magnitude of most significant change detected in the trend 
component.Vt is the deseasonalized NDVI data Yt–St for the period 2000 - 2014. The 
numbers indicate the time of breakpoints (eg. 69 is the 69th image). The analysis begins from 
2000. 
 

7.5 Long term pattern of annual total rainfall 
 

Monitoring time series patterns within annual rainfall supports the identification of trends in 

available moisture for vegetation growth. Accordingly, long-term rainfall patterns of 

Kaftahumera have been assessed using standardized annual precipitation time series data for 

the period 1983 – 2014 (Fig. 30). In order to minimize the local fluctuations, the annual time 

d) 

a) 

c) 

d) 

b) 
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series was fitted using Locally Weighted Scatter plot Smoothing (LOWESS) regression 

curves for identifying patterns over time (Cleveland, 1984). LOWESS provides a generally 

smooth curve determining the value of rainfall amount at a particular location based on the 

points in that neighborhood along the years. Thus, it makes no assumptions about the form of 

the relationship between data values but allows the form to be revealed using the annual 

rainfall dataset. 

 

The LOWESS curve for the annual precipitation time series showed an overall constant trend 

throughout the time series period. Even if there is a positive trend in the annual rainfall 

amount, it is no statistically significant for the study period of 1983 - 2014. Similar studies 

using gauge measurements also show non-significant trend in annual rainfall total for northern 

Ethiopia (Cheung et al., 2008; Seleshi & Zanke, 2004; Viste et al.,  2013). Hence, there is no 

supporting evidence that the decline in annual vegetation productivity over the study region is 

due to annual fluctuation of amount of precipitation distribution. 

 

 
Figure 30. LOWESS regression line for the annual standardized precipitation of Kaftahumera. 
 

7.6 Trend analysis of mean annual rainfall  
 

The available gauge dataset without missing values between the years 1982 to 1989 was used 

to assess its relationship with the TAMSAT rainfall data. A correlation between the gauge 

measurements and the TAMSAT data has a R2 value of about 0.8 and suggests the importance 

of TAMSAT data sets for areas like Kaftahumera with irregular or non-existent continuous 

data measurements. However TAMSAT data overestimate the annual rainfall compared to the 

gauge measurements (Dinku et al., 2007). 
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Table 16. Results of Mann-Kendall and Sen’s slope of mean annual precipitation of 
Kaftahumera 
 

 

The output of the analysis for S, Z, slope (Ti), and P-values is presented in table 16. 

Accordingly the annual increment in mean annual rainfall of Kaftahumera is 4.87 mm/yr. The 

standardized test statistic (Z) computed on the final detrended time series is 0.20 indicating an 

upward annual incremental trend in hydrological time series. The Kendall's P-value also 

calculated for the final detrended time series and is 0.12 suggesting the annual mean 

increment in rainfall is not significant with confidence of 95 % over a study period of 1983 – 

2014. The annual trend analysis also confirms the decline in vegetation productivity is not 

related to variation in the amount of annual rainfall distribution. It is expected that the 

continuous annual increase in rainfall will be accompanied with a comparable vegetation 

productivity without interference of antropgenic factors. It suggests that other factors 

contributed to the abrupt changes in NDVI that resulted in several breakpoints which 

significantly related to loss of vegetation cover. 

 

The mean annual rainfall time series is illustrated in Figure 31. The corresponding 

interpolated regression line is also plotted. During the study period from 1983-2014, there is 

statistically non-significant increasing trend in annual mean rainfall time series.  

 

Figure 31.Annual rainfall of Kafthumera for the period 1983- 2014. The blue line indicates a 
5 year moving average, the red line is a mean annual trend, and the black line is an annual 
rainfall. 

S Z P- value Ti  (mm/yr) 
313 0.20 0.12 4.87 
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7.7 Analysis of long term trends in annual maximum temperature (Tmax) 
 

The long term climate data analysis is crucial for determining the annual variations in climate 

variables in support of adaptation and mitigation activities. Thus the mean annual Tmax is 

demonstrated in figure 32 together with the corresponding interpolated regression line. There 

is a positive trend for the period 1983 - 2013 within the time series dataset. The test in 

autocorrelation for this time period does not appear significant. The increase in temperature 

particularly in semiarid regions like that of Kaftahumera, can affect the available moisture 

through evaporation. 

 

 

Figure 32.Mean maximum annual temperature of Kaftahumera for the period 1983 - 2013. 
The black line depicts mean maximum temperature, the blue line is a 5 year moving average, 
the red line is the LOWESS trend line. 
 

The output of mean maximum temperature for determining Sen's slope and Kendall test for 

significance is depicted in table 17. Standardized test statistic (Z) of the final detrended time 

series has a value of 0.29 indicating a positive increment in mean annual temperature. The 

Sen’s slope of mean annual maximum temperature is 0.04 °C showing an annual increase of 

0.04 °C. The Kendall significance test is also lower than <0.05 indicating a significant 

annual increase in the trend of the mean annual maximum temperature over the study period. 

Table 17. Results of Mann-Kendall and Sen’s slope of Tmax (°C) and Tmin (°C) in 
Kaftahumera 
Tmax(°C) Tmin(°C) 
S Z P value Ti  (°C/year) S Z P value Ti  (°C/year) 
331 0.29 0.03* 

 
0.04 356 0.41 0.002* 

  
0.03 
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The standardized mean annual maximum temperature for the entire Kaftahumera with 

LOWESS smooth time series plot is illustrated in figure 33. LOWESS curve was fitted over 

time based on the annual precipitation time series data in order to reduce local fluctuations. 

The standardized mean annual maximum temperature analysis also indicates a positive trend 

over the study region within the period of 1983-2013. 

 

Figure 33. Standardized mean maximum temperature trend of Kaftahumera. The red line is 
the LOWESS regression for the period 1983 - 2013. 
 

7.8 Trend in minimum annual temperature. 
 

The trend in minimum annual temperature time series for the period 1983-2013 is presented 

in figure 34 together with the interpolated regression line and five year moving average. The 

mean minimum annual temperature indicates an overall positive increasing trend for the 

period of 1983-2013. However, there is few lower measurement records along the years with 

the lowest minimum temperature recorded in 1989. 
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Figure 34.Minimum temperature of Kaftahumera for the period 1983-2013. The black line is 
mean minimum temperature,the blue line is 5 year moving average, the red line is Lowess 
trend line. 
 

The trend analysis using a pre-whitened trend of the mean minimum annual temperature 

(Tmin) for Sen’s slope and significance test are illustrated in table 17. Hence, annual increment 

in Tmin is 0.03 °C per year for the period 1983 – 2013. This annual rise in Tmin is significant at 

< 0.05. The LOWESS regression line on the standardized Tmin also indicates a significant 

positive increment during the assessment period of 1983 - 2013 (Fig.35). This significant 

increase in Tmin can influence the available amount of water that can be utilized by the 

vegetations. It can also influence the evapotranspiration by increasing amount of water loss 

from soil and vegetation (Lawrence & Chase, 2010).  

 

The overall increase in temperature and significant change in land use of Kaftahumera has 

consequences on surface warming of the region. The expansion of land degradation and 

deforestation increase local surface temperature and affect the hydrological cycle of the local 

environment (Lawrence & Chase, 2010). 
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Figure 35. Standardized minimum temperature over Kaftahumera for the period 1983-2013. 
Red line indicates the LOWESS regression line over the study period. 
 

7.9 Summary 
 

The dynamic changes in woodlands of Kafthumera can be interpreted through analysis of time 

series data comprised of long term observations. However, the use of only linear ordinary 

least squares regression (OLS) slope coefficient for determining long-term trend often might 

not often capture seasonal and abrupt trend changes within the long term trend series. Time 

series analysis requires decomposing the component into trend, season, and noise in order to 

identify and characterize the time and magnitude of significant changes within the time series. 

BFAST handles trend break analysis considering these components for better understanding 

of trends in long term time series data.  

 

The BFAST analysis of long term trends of NDVI of Kaftahumera shows both positive as 

well as negative magnitudes along the study period. In most parts of the study region, there is 

a negative trend with at least three breakpoints resulting in a significant decline in NDVI till 

the year 2009. The trend of decreasing NDVI is attributed to the loss of woody vegetation of 

the region due to human activities that accounts for a lower NDVI trend over the study period. 

The transition of woodlands to other land use types has been the main contributing factor 

affecting the change in trends of NDVI. There is a greening trend after the breakpoints of 

2009/10 in most of the sample plots indicating woodland recovery due to some policy 

changes that demarcated some of the already allocated woodlands back to be part of a national 

park. 
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The trend in annual precipitation shows an increment of 4.87 mm per year. However, this 

overall positive trend in rainfall pattern of Kaftahumera is not statistically significant within 

the period of 1983 – 2014. In addition, there is no time of breakpoint along the time series 

dataset of rainfall suggesting resulting land use changes dominantly contributed to the 

breakpoints in long term NDVI trend.  

 

The mean minimum and maximum annual temperatures have risen during the last 30 years. 

Both the minimum and maximum temperature of the region show significant increase in 

annual trend. Tmax shows an annual increase of 0.04 °C while Tmin shows an annual increment 

of 0.03 °C. The increase in both Tmax and Tmin has an effect on the available moisture, which 

is very crucial for dryland vegetation growth. The loss of vegetation cover can raise local 

surface temperature. However, further assessment is needed to quantify its effect on the 

current and future status of vegetation growth.   
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8. Chapter 8: Temporal relationship of rainfall and NDVI anomalies 
over northwestern Ethiopia using distributed lag models 
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8.1  Mean NDVI and rainfall 
  

Drylands are characterized by water insufficiency with lower ratio between annual rainfall 

and annual potential evapotranspiration. Due to scarcity of rainfall stations in the 

northwestern drylands of Ethiopia, it is hardly possible to analyze the exact distribution of 

rainfall. However, the use of satellite imagery permitted the assessment of phenological 

indicators for identifying a complete growing season in semi-arid region of Kaftahumera. 

These data are vital for revealing plant life-cycle trends over time and detecting the impacts of 

climate change on ecosystems. 

 
eMODIS NDVI data are provided with quality raster, rating the quality of each pixel within 

the scene for quality checking and pre-processing prior to analysis in order to determine 

changes in vegetation biomass or land condition. Quality imagery has been used assigning 

low weights to bad quality pixels during raw image pre-processing. Through the filtering 

process, bad quality imagery with low weighted pixels is less considered during the 

construction of the new raster image during our assessment of vegetation responses.  

 

The long term mean eMODIS NDVI and mean dekadal rainfall of Kaftahumera is illustrated 

in figure 36 and 37. The distribution of mean long term NDVI varies spatially according to 

the land use history and spatial location. The NDVI also varies spatially but with different 

patterns of distribution. The woodland areas have higher mean NDVI as an indication of the 

existence of higher green biomass in the parts covered by woodland. However, most parts of 

Kaftahumera which is mostly dominated by human activities have lower mean NDVI. In most 

of the southern parts of the study area, there is lower vegetation productivity measured by the 

amount of NDVI. Areas which were once covered with woodlands located in the central and 

northwestern parts of Kaftahumera, have lower NDVI values which results from expansion of 

subsistence and large scale agricultural activities and human pressures.  
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Figure  36. Mean spatial annual NDVI of Kaftahumera 
 

The mean dekadal rainfall and eMODIS NDVI is shown in figure 37. As expected the NDVI 

value is higher during the main rainy season with their corresponding higher rainfall 

measurements. However the value of the NDVI and rainfall have shown variations among the 

years. The long term mean NDVI (2001-2010) is higher compared to some years NDVI 

measurements during the main rainy season. In 2014 there is a higher dekadal rainfall 

measurement, but the corresponding 2014 NDVI is lower mainly during the growing season 

indicating the lag effect in vegetation response to rainfall. However the NDVI for the year 

2014 is higher than the remaining years during both the start of the growing season and end of 

the growing season. This supports the importance of assessing the time lag comparing both 

the NDVI and a matching season of rainfall. The association of time of vegetation growth 

helps in identifying the time lag length in which vegetation responds to the available rainfall 

distribution within the region.  
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Figure 37. Long term dekadal and mean dekadal of eMODIS and rainfall of Kaftahumera for 
the period of 2000-2014. 
 

The mean annual rainfall and evaporation distribution is illustrated in figure 38. The rainfall 

showed variation in spatial distribution. The PET is higher in the west and north as well as in 

the southern lowland parts of Kaftahumera. The northwestern lowland parts which are 

dominated by croplands having the highest PET. There is a spatial variation between PET and 

mean annual rainfall in lowland areas , with higher mean annual temperature show higher 

PET. The lower mean annual rainfall coupled with higher PET in most parts of the lowland 

region of Kaftahumera, the lower the amount of available water for plant growth. In addition, 

the higher rate of deforestation further exposes the soil to erosion and diminishes the 

productivity of the region thus accelerating land degradation.  
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Figure 38. Mean annual rainfall (mm) and potential evapotranispiration (mm)of Kaftahumera  
 

A higher correlation was found between the mean NDVI and mean annual rainfall across the 

study area. Nevertheless, the spatial variation in mean rainfall is not significant at p < 0.05. 

On the other hand the annual trend of PET is increasing following the mean annual increase 

of the temperature of the region (Fig. 39). The increase in evapotranspiration is going to rise 

with the increase in loss of vegetation cover. In addition, loss in vegetation further exposes the 

soil to erosion that does affect the fertility of the soil and hence leads to land degradation 

(Appelgren, 2008; Holden & Shiferaw, 2004; Ravi et al., 2010; Sivakumar, 2007; Zika & Erb, 

2009).   

 

 

 

 

 

 

 
 
Figure 39. Potential evapotranspiration (PET) (mm/year)  annual PET (black line); five year 
moving average (blue line) and annual trend (red line) 

a)Mean annual rainfall b)PET 
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(Fig.41). The eMODIS NDVI values at time t (decade) are plotted with the values of rainfall 

at time t (decade) and its lagged values of up to 8. The regression plot begins with NDVI at 

lag time t against rainfall lag time t-0 to t-8. Accordingly, the correlation values between the 

two datasets range from 0.53 to 0.89 within the time lag of 0 to 8 decades (Fig.41). The lag 

test statistics per each pixel was also tested and the value ranges between 0.43 to 0.90. The 

correlation between the two datasets from lag t-2 to lag t-4 has shown positive and strong 

correlations whereas the other lags have positive correlations with more scattered 

relationships and do not predict strong association between the two datasets. The time lag in 

this region is about forty days. This reveals the inevitability of water for vegetation growth in 

these areas. It also points out that the vegetation growth in this area is not primarily 

determined by the current precipitation rather with the previous forty days rainfall of the 

region. Accordingly the land productivity is determined by the past forty day rainfall amount 

during assessment of land conditions. 

 

Figure 41. Scatter plots of NDVI and rainfall for different time lags. 
 
 
The spatial regression between eMODIS NDVI and rainfall displays a higher spatial non-

stationary (Fig.42) across the landscape. The slope and intercept of the regression between the 

two datasets showed an intrinsically different values geographically. The spatial patterns of 

the relationship follow the patterns of distribution of vegetation and land cover types. There is 

a higher coefficient of determination (R2) between rainfall and NDVI in areas covered with 

woody vegetation. The lower association was found in the lowland arid areas and those 
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than all at once. This means the effect of the current rainfall on vegetation growth is seen 

some days after its occurrence 

 

Figure 43 demonstrates the spatial lag regression between NDVI and rainfall. The spatial lag 

relationship between the two time series dataset indicates the diminishing effect of rainfall 

after a time lag of 4. The lag correlation between rainfall and NDVI has a value of R2 of up to 

0.5 at lag 0. This pixel wise regression adopting time lag has also shown that the lagged effect 

of rainfall on vegetation growth approaches almost zero after the time lag of 4(40 days). This 

implies that the current rainfall has effects on vegetation growth only after a lag length of 40 

days. This characterizes on how the temporal distribution of rainfall affects the growth and 

development of vegetation in semi-arid regions of Kaftahumera. Similar studies on semi arid 

environments and other dryland areas have proven a rainfall lag effect of from two weeks to 

several months of time lags (Chamaille-Jammes et al., 2006; Ji & Peters, 2005; Kileshye 

Onema & Taigbenu, 2009; Udelhoven et al., 2009). 
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Figure 43. Spatial lag regression (R2) between NDVI and rainfall up to time lag of 4 decades.  
 

8.4 Summary 
  

The availability and distribution of rainfall is among the determinant factors for plant productivity 

in semi-arid regions (Wang et al., 2001). In addition, other factors like temperature, 

evapotranspiration and soil properties affects the growth of dryland vegetation (Ji & Peters, 

2004). LULC is the other significant component which affects the vegetation condition in the 

semiarid environments. Population growth and excessive utilization of natural resources have 

threatened the world for complex environmental degradation (Chalkley, 1997) while moving to 

new areas where there is remaining scarce resources. This effect mainly demonistrated via loss in 

vegetation cover as a result of excessive utilization of trees, conversion to farmlands, increase in 

grazing land and fire (Lambin et al., 2003; Lemenih et al., 2014). The loss in vegetation is 

contributing to the release of CO2 that can be one of the greenhouse gases emitted with higher 

potential contribution to the current global warming (Bala et al., 2007; Strassburg et al., 2009).  

 

Lag 1 Lag 2 Lag 0 

Lag 4 Lag 3 
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The availability of long term satellite measurements of both NDVI and rainfall has helped in 

assessing the condition of vegetation and land degradation in data scarce regions of Africa where 

there is limited gauge measurements (Maidment et al., 2014; Roy et al., 2014). NDVI is strongly 

dependent on climatic variables for both temporal and spatial patterns with time lag effects on 

vegetation growth (Li et al., 2004). The change in NDVI could either be a result of anthropogenic 

land use changes or variation in the distribution of climate variables of the study region. Hence 

the assessment and identification of climate variability is vital to distinguish environmental 

changes resulted from either human induced or from the effect of climate change (Evans & 

Geerken, 2004).  

 

The evaluation of time of biomass accumulation and its relation to climatic variables is vital in 

determining vegetation responses to climate lag effects. An assessment of the time lag 

relationship between rainfall and NDVI is fundamental to estimate the time and also to 

quantitatively estimate the temporal changes in vegetation productivity as a result of the available 

moisture amount for vegetation growth. Hence, a time lag regression between eMODIS NDVI 

and rainfall was made for the period 2000 to 2014 using DL models. The autocorrelation of the 

two datasets removed before testing for time lag correlation using the autoregressive model.  

 

A lag regression from t-0 to t-8 was assessed between the two datasets of eMODIS NDVI and 

rainfall. The scatter plot analysis between time lag of the predictor (rainfall) and the response 

(NDVI) has a maximum lag of 50 days (t-5). The time lag is a measure of the lag length when the 

previous rainfall has an effect on vegetation productivity. Hence the significance test of lag length 

on vegetation productivity showed only up to a time lag of t-4(forty days) that explains the effect 

of previous rainfall on the current growth of vegetation of the surrounding. The spatial lag cross-

correlation between NDVI and rainfall also showed higher significant correlations of up to t-4 

across the study area. The time lag analysis with the consideration of land use types and time of 

the growing season might help to better understand the lag effects across the land use types.  
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9. Chapter 9. Discussion, overall conclusion and recommendation for 
future work 
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9.1 Discussion and conclusion  
9.1.1  Land cover dynamics in northwestern Ethiopia 

 

Despite their significant contribution to both economic and ecological services, dry forests of 

Ethiopia are currently under severe threats both from anthropogenic and natural calamities 

(Lemenih et al., 2014). Agriculture, expansion of resettlements, fire, population growth and 

climatic variation are among the factors that significantly contribute to the decline in size and to 

the fragmentation of the dry forests of Ethiopia (Eshete et al., 2011; Lemenih et al., 2007). 

Several of these studies attempted to link the loss in dry forests with human activities but lacks 

estimates of the spatial extent of the declining woody resources and the major driving forces. In 

addition, the extent and severity of land use transition in the ecosystems of the surrounding arid 

environment is not well studied. During some periods of the dry season, clouds of haze extend 

along the borders of Sudan and northwestern Ethiopia, which may be rooted from the degradation 

of the natural woody vegetation of the region. The present study assesses land cover transition 

using SVM classification algorithms for examining major contributing factors that influence land 

cover transitions. The SVM classification model works well in spectrally complex land cover 

categories for enhancing better classification results (Tuia & Camps-Valls, 2011) and 

understanding of the significant transitions in land cover.  

 

Kaftahumera like other woodland areas of the country encountered significant land use transitions 

during the study period (Biazin & Sterk, 2013; Garedew et al., 2012; Lemenih et al., 2014; 

Mekasha et al., 2014; Zewdie & Csaplovics, 2014). The spatiotemporal distribution of land cover 

dynamic in the period 1972- 2014 indicates cropland and woodland as the dominant land use 

types varying in size along the years. The woodland land use category shows decreasing trend 

while cropland has an increased trend at the expense of woodlands. In the period 1972 - 2014, 

woodland shows a significant decline from an extent of about 92 % to about 35 %, whereas 

cropland showed an increase in size from about 3 % to over 52 %. These noticeable spatial 

changes and degradation in woodland occurred mainly in the south, west and southwest parts of 

the study area which was replaced subsequently by croplands. However, the change among the 

land use classes was unevenly distributed across the study area, with the greatest loss occurring 

within the woodland. Overall, the region exhibited a broad conversion of woodland to cropland 

during the study period without showing any noticeable gain in size and spatial pattern of 

woodlands. The critical period for the deforestation and degradation of woodland is the period 

from 2000 to 2014 where woodland experienced the largest amount of loss (Fig.44).  
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studies as land use alteration is exposing them for transitions and high rates of resource depletion 

(Lambin et al., 2003). The annual deforestation rate of Ethiopia is estimated at about 2% with the 

dry forest loss being prevalent due to the resulting pressure from population growth and cropland 

expansion (Eshete et al., 2005; Lemenih et al. 2014 and WBISPP, 2005). The population size of 

Ethiopia has more than doubled in the last three decades from 40 million in 1984 to over 87 

million in 2014 (CSA, 2014). This has led to overexploitation and consequent land degradation of 

the highlands. The population of the degraded highlands was resettled to the lowlands which 

brought a significant threat to the dry forests due to lack of monitoring mechanisms and of 

integration of the new arrivals with existing residents (Lemenih et al., 2014). The loss in dryland 

vegetation of Kaftahumera has been significantly increased, resulting in land degradation that 

became sources of dust emissions and loading. 

 

The loss of dryland vegetation needs a temporal image analysis in order to capture the time of 

change and trace the driving forces. Post classification change detection is beneficial as it utilizes 

a transition matrix comprising two date imagery to investigate the net change among the land use 

categories (Braimoh, 2006; Petit et al., 2001). However the analysis of net change alone may not 

describe the total change as there might be zero net change due to a simultaneous gain and loss of 

a land use category within the landscape (Braimoh, 2006). In addition, it is crucial to discriminate 

the significant signals in the process of categorizing land use shifts (Pontius et al., 2004). The 

identification of systematic land use changes from a random process of change is also helpful in 

determining the severity of land use transitions in a landscape. The large inter-categorical change 

may not always indicate systematic land use transitions as large land use shifts may occur in large 

land use classes in a random process of change (Braimoh, 2006).  

 

In most studies the occurring net changes were considered as a measure of land use transitions. 

However, net change quantifies only the difference between total quantity of each category at 

time one and time two of the study period without considering swap changes (Pontius et al., 

2004). A lack of net change along the study period does not mean that there is no change in the 

landscape. However , there may be a change in the landscape between time one and time two 

without having difference in the quantity of change due to swap changes. This type of change is 

characterized by a simultaneous gain and loss of a category within the landscape resulting in zero 

net changes over a period of time (Braimoh, 2006; Pontius et al., 2004). Therefore a net change in 

the quantity of the category indicates a definite change of land use but lack of net change is not 
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necessarily representative for transitions among the land use classes as it does not account the 

swapping component of changes (Pontius et al., 2004). 

 

During the assessment of land use transition of Kaftahumera, the basic concept of net change and 

swap change was properly addressed in order to capture all significant transitions along the 

temporal gradient. Accordingly the values of gain, loss, net change, swap and total change for the 

period 1972 – 2014 for each LULC class are presented in previous chapters of this dissertation. 

Along the study period, cropland and grassland are the dominant categories that experienced the 

highest gains. The gain in cropland and grassland is about 54 % and over 11 % of the study area 

respectively. On the other hand woodland has the highest loss in over 62 % of the area, followed 

by grassland with about 3 % of the area. The swap levels of woodland, cropland and grassland are 

1.9, 1.7, and 4.9 respectively. The three dominant land categories: woodland, cropland and 

grassland show a significant amount of net change over the study period respectively. The loss in 

woodland is attributed to expansion of subsistence and large scale farming and underlying causes 

like population growth which competes over the natural vegetation of the region. The growth in 

population, both from resettlement and immigration due to casual labor pave the way for directly 

exerting pressure on the woodlands. The weak approach to set and implement legal procedure for 

protecting the natural ecosystem is another factor which allows easy access for the exploitation of 

woodlands (Lemenih et al., 2014). In general, the main driving forces for land use transitions in 

Kaftahumera are both proximate and resulting from underlying causes of land use changes. This 

resulted in systematic transitions affecting mainly the woodland vegetation of the region. The 

socio-ecological field survey also confirmed the involvement of human activities and policy 

intervention (resettlement and agricultural investment) that played the major role in exposing the 

woodland vegetation for change. 

 

9.1.3 Land degradation in Kaftahumera  
 

Mankind has made a considerable amount of progress in scientific innovations to utilize the 

available natural resources of the environment for its welfare. However, in the face of increasing 

human population and subsequent demand for resource utilization, there is an imbalance between 

the resource usage and maintenance of the ecosystem (Bretschger & Smulders, 2012). This has 

caused significant changes in the environment in regions with vibrant human dominated 

ecosystems (Zewdie & Csaplovics, 2014). Among these ecosystems, the overutilization of 

dryland resources has been intensifying land degradation in conjunction with climate change 
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which can result in desertification (Sivakumar, 2007). Desertification is a type of land 

degradation process in which a dryland region becomes increasingly arid, typically losing its 

bodies of water as well as vegetation and wildlife (Geist and Lambin, 2004) 

 

Satellite measurements are capable of capturing the vulnerability of drylands to change resulting 

from both climate and human modification of the landscape. The assessment of the status and 

trends of Kaftahumera drylands is decisive in order to evaluate their evolution with respect to 

fluctuating rainfall and temperature patterns for developing long-term ecosystem conservation 

schemes. The variations in trends of long-term NDVI are influenced by changes in seasonal 

climate and other disturbance factors that lead to abrupt changes in NDVI time series. Monitoring 

of long term changes incorporating trend and seasonal components is crucial for a better 

understanding of change trajectories. Accordingly, no significant decline in precipitation was 

observed in Kaftahumera during the study period. However, there is a negative trend in NDVI 

with varying degree of change in magnitude. 

 

The loss in vegetation cover leads to land degradation if sustainable utilization is not in action. 

Hence the land degradation in Kaftahumera is dominantly related to human activities than the 

change in climate variables. The continuous expansion in cropland and associated human growth 

is exerting significant pressure on the vegetation of the region. This has ended in exposing the 

woody vegetation for change resulting in loss of soil and other vegetal covers. The current change 

trends is alarming which needs due attention in order to curve the continuous loss of resources. 

As Kaftahumera is one of the semiarid agro-climatic zones of the country, it is at risk of 

desertification unless vital improvements are made in land use management. 

 

9.1.4 Detection of breakpoints in NDVI and climate variables 
 

Satellite remote sensing has played a vital role in monitoring ecosystem changes at the regional, 

continental, and global scales (Coppin et al., 2004) and derived vegetation indices (VIs) 

demonstrate significante importance in monitoring light dependent physiological processes 

(Cracknell, 2001; Fensholt et al., 2009; Glenn et al., 2008; Tucker and Yager, 2011). The change 

in vegetation cover affects the amount of light absorbed by the plant canopy as a result of change 

in vegetation density and hence VIs can be one of the indicators for measuring the status of 

environmental conditions. 

 

http://en.wikipedia.org/wiki/Land_degradation
http://en.wikipedia.org/wiki/Land_degradation
http://en.wikipedia.org/wiki/Drylands
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Several change detection methods have been developed to evaluate remotely sensed datasets for 

assessing land use/land cover change (Lu et al., 2004; Yuan et al., 2005). However, few methods 

are able to detect both seasonal patterns and long term changes during NDVI analysis without 

identifying abrupt changes (Jacquin et al., 2010; Verbesselt et al., 2010). NDVI trends are not 

always monotonic but can be either positive or negative changes. The increase in rainfall in semi-

arid regions of Kaftahumera results in increase in NDVI while decrease in rainfall results in 

decrease in NDVI. In addition these changes can be either gradual or abrupt changes depending 

on contributing factor of change. The change in rainfall results in gradual change of NDVI while 

disturbances like fire and disease results in abrupt changes. Hence the identification of changes in 

LULC requires proper methods that evaluate seasonal variations and long term trends to account 

for systematic changes in the environment (Verbesselt et al., 2010). The application of efficient 

change analysis methods prevents the masking of seasonal variability and also helps to identify 

abrupt changes for properly designing measures to protect on sensitive ecosystems like the 

semiarid regions of Kaftahumera.  

 

In most case studies, change detection assessment is followed a method of either using socio-

ecological survey or bi-temporal change detection approaches. However, gradual and abrupt 

changes in ecosystem should be identified in order to provide information on when and where 

changes occurred (Verbesselt et al., 2010). The BFAST algorithm decomposes time series data 

into trend, seasonal and noise components taking into account abrupt and gradual changes. The 

analysis involves investigating changes in vegetation responses along the temporal gradient and 

spatial domain in order to separate the possible causes and timing of changes.  

 

The assessment of breakpoints in NDVI data over the period 2000 to 2014 shows different extent 

and number of breaks in the study area. A sample of pixels was analyzed for time and magnitude 

of changes in breakpoints of temporal NDVI during the study period. During the assessment of 

sample points, there are up to 3 breakpoints over the study period. The evaluation of the timing of 

breakpoints in NDVI proves a link to the period of expansion of croplands and resettlement in the 

study area. The significant inflow of people following the resettlement caused overutilization of 

the natural woody vegetation. The decline in NDVI and the points in time of breakpoints coincide 

with the period of expansion of resettlements and cropland. The breakpoints occur during the 

period 2000 to 2009 (Fig. 45). The sharp decline in 2009 and the increase afterwards could be an 

indication of changes in NDVI magnitude of both downwards and upwards respectively. The 
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decline might be an abrupt loss in vegetation cover due to anthropogenic activity. There is no 

other occurrences like fire or disease during this period which can affect the trend in NDVI. 

 

 
Figure 45. Time of breakpoints (BP) in a long term NDVI trend in the period 2000 - 2014 for 
a single pixel of Woodland. Vt is the deseasonalized data Yt – St for each iteration of NDVI 
time series data. Yt is the original data for the period 2000-2014 and St is the seasonal 
component. 
 

The overall trend assessment in NDVI slope showed a variation within the range between -0.001 

to about 0.029 (Fig. 45 and 46). In most cases there is a negative slope in breakpoints until the 

year 2009 proving a loss in vegetation productivity up to the year 2009. However, there is a slight 

increase in the magnitude of slope from 2009 to 2014. The changes in breakpoints are statistically 

significant (α < 0.05) indicating the existence of both increase and decrease in vegetation 

productivity along the temporal gradient. 

 

On the other hand, there is no seasonal and long-term breakpoint for precipitation time series 

data. As indicated above, the changes in NDVI are attributed to both underlying and proximate 

causes of land use change rather than the temporal distribution of rainfall. There is a lower 

tendency for rainfall to be among the major contributing factor of breakpoints in NDVI. The 

change in policy of agricultural investment and resettlement regulations paved the way for 

increased access to the woody vegetation of Kaftahumera. Land use changes and land degradation 
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is the main factor for breakpoints in NDVI as the region has undergone significant loss in woody 

vegetation and land degradation in the period 2000 – 2010 (Zewdie & Csaplovics, 2015).    

 

 

Figure 46. Slope () and significance ( < 0.05) of NDVI breakpoints for the period 2000 - 
2014. 
 

The analysis in breakpoints for the rainfall and mean minimum temperature over the entire time 

period did not show any breakpoints. However, there are breakpoints in the mean maximum 

temperature time series though not statistically significant at the breakpoints. On the other hand, 

all three datasets demonstrate an increasing trend, but the increment is significant only for mean 

minimum and maximum temperature time series data. The absence of breakpoints in rainfall time 

series signifies that the occurrence of breakpoints in NDVI is due to other contributing factors 

that play a major role to the loss of vegetation productivity. The increase in temperature in the 

region could contribute for an increment of evapotranspiration both from soils and the vegetation.  
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Figure 47. Trend shifts within the rainfall time series of Kaftahumera. A season-trend model 
(red line) was fitted to the rainfall time series (gray).  
 
 

The decadal raw rainfall allow for the assessment of the shift in trends of seasonal rainfall 

distribution over the period of 1983 – 2014 (Fig.47). A season-trend model (red line) was fitted to 

the rainfall time series (gray). The dashed line indicates the detected trend shift and the 

confidence interval for the period 1997. However, this trend is not statistically significant (p< 

0.05).  

 

The Mann-Kendall long term trend test shows that there is no trend in the annual rainfall total but 

there is trends in seasonal rainfall total over Kaftahumera in the period 1983 – 2014. Similar 

studies using gauge measurement revealed the absence of trend in the annual total rainfall over 

northwestern Ethiopia (Seleshi & Zanke, 2004). On the other hand the mean minimum 

temperature and mean maximum temperature of the region show a significant trend with an 

annual increase per year respectively.  

 

The assessment of time lag between NDVI and rainfall is vital in understanding vegetation and 

climate interaction during temporal analysis. The lag response of NDVI to rainfall depends on 

vegetation type, soils and climate. Hence encompassing all the contributing factors better define 

the response of vegetation to the available moisture. In this study DL model was used in order to 

identify the relationship between NDVI and lagged precipitation in Kaftahumera. The time lag 

was up to forty days and then diminishes both spatially and in temporal gradient. This means that 

the current rainfall has no effect on the current NDVI but vegetation greenness can be predicted 
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using antecedent rainfall. Rainfall during the forty day span ending with the current period has the 

strongest association with NDVI during the current period. This proves the vegetation growth in 

Kaftahumera is not primarily determined by the current precipitation but rather depends on the 

previous forty days rainfall. 
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9.2 Conclusion 
 

An assessment of land use transition, long term trends in climate and land condition over 

Kaftahumera was made for the period 1972 – 2014 using Landsat imagery, MODIS NDVI, 

TAMSAT rainfall and CRU temperature data. Image classification and change detection analysis 

was performed using SVM and inter-categorical land use transitions. Among the land use classes, 

woodland to cropland was the dominant land use transition within the long term temporal 

gradient. The inter-categorical shift among the land use classes varies in size and in spatial 

distribution. Over the study period, woodland has encountered a significant amount of reduction 

in size. This decline in size is mainly attributed to the expansion of cropland and due to the 

pressure of the continuous inflow of population and subsequent resettlement that consumed the 

woodlands of the region. This transition from woodland vegetation cover to cropland has exposed 

the topsoil to continuous erosion, which exacerbates during the dry period of the year. It is 

common to observe clouds of dust in recent years during certain times in the annual dry season. 

 

The spatial and temporal assessment of the relation between NDVI and climate variables also 

indicates a significant change in the amount of NDVI over the study period from 2000 to 2014. 

The NDVI shows breakpoints in this period with about three breakpoints in NDVI until the year 

2009 and a significant greening afterwards. The decline up to 2009 seems to be related to the 

expansion of cropland which is confirmed by the bi-temporal analysis of Landsat imagery. This 

has significantly consumed the woodland cover of Kafathumera. On the other hand the greening 

after the year 2009 could be linked to the demarcation of some of the agricultural plots to national 

parks. The protection of the woodlands coupled with an annual increment in rainfall favors fast 

recovery of vegetation covers. The spatial regression between NDVI and rainfall also 

demonstrates significant changes both spatially and in temporal trends. An overlay analysis 

between land use and rainfall has proven the significant reduction in NDVI in areas with loss in 

woodlands. However, there is no significant trend in the assessment of long term temporal 

precipitation time series data. The temporal reduction in NDVI is likely to be rather a result of 

man-induced changes in vegetation than of fluctuations in the distribution of rainfall. 

 

The Mann-Kendall test of long term annual variation in rainfall displays no trend during the study 

period of 1983 – 2014. However, the change in magnitude of annual total rainfall demonstrates an 

annual increase of 4.87 mm per year over the study period. The temporal assessment in 

temperature within the similar study period shows incremental trends in mean minimum and 
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mean maximum temperature. There is an annual increase of 0.03 °C per year and 0.04 °C per year 

in mean minimum and mean maximum temperature respectively. The test in temporal trend 

points towards a significant increase in both minimum and maximum temperature time series 

over the study period. This significant increase in temperature can contribute for higher 

evapotranspiration of the available moisture both from soil and vegetation. 

 

A time lag relationship assessment between NDVI and rainfall is crucial for a better 

understanding of vegetation and climate interaction. A regression model between the two data 

shows strong relationships and significant time lag of about forty days observed during the study 

period. This indicates the current NDVI is affected not by the current rainfall distribution, but 

rather by the previous forty days rainfall amount and distribution. 

 

The overall results of the study show a significant change in the environment and ecosystem of 

Kaftahumera with significant expansion of human-dominated ecosystems. The change in natural 

ecosystem of the region exposed the land surface to erosion resulting in the emergence and drift 

of dust clouds during the dry period of the year. It is evident that human pressure that affects the 

natural system of the region has to be reduced. The intensified over-utilization of the woody 

vegetation resulted in degradation and deforestation of the region.  

9.3 Limitation of the study 
 

 Land degradation of the region is identified. However the use of higher spatial 

resolution data will improve the identification and mapping of land degradation 

process. 

 Evaluation of the association between NDVI and rainfall has increased the 

understanding of the interaction between vegetation and climate of the region. The 

relationship of time lag between NDVI and rainfall may vary based on the time of 

growing season and land cover types.  

 The loss in vegetation and significant increase in temperature of the region exposed 

the topsoil to erosion. Size and content of dust movement are not analyzed. 
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9.4  Recommendation 
 
 Time series analysis of imagery and climate variables has shown the decline in 

vegetation productivity. It is advisable to associate and assess the variation in trends of 

crop yields and carbon loss of the region. 

 Detection of breakpoints in NDVI could be attributed to several factors and land use 

change is one of them. However, land use change could occur due to several natural 

and human induced activities. It would increase the understanding of these processes if 

details of other causes of changes, if any, fire, diseases were assessed. 

 The incorporation of the individual land cover type and growing season may improve 

the assessment of the time lag. The consideration of other climate variables (like 

temperature, soil moisture,..) and land use during the lag regression modeling may 

also improve the identification of the dependencies and lag length. 

 The dust movement could be aggravated due to the current trend in loss of vegetation 

cover. It is prudent to evaluate the trend, the amount and content of dust clouds of 

Kaftahumera for a better monitoring of changes in the environment. 
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Questionnaire for the household survey  for assessing land use change and 

climate variability 

A. Background information 

1. Date………. 

2. Respondent’s name……. 

3. Peasant Association…. 

4. Sex: M                       F 

5. Age: 30-40 ……… 41-50………. 51-60……………over 60 

6. Household size 

7. Primary occupation……….. 

B. Perception to adapt to climate variability 

8. How would you describe the climate over the past 10- 20 years? 

a. Drier………. b.Wetter……c. No change 

d. Give reasons for changes……………… 

9. To what extent would you agree or disagree that the options indicated in the table 

below apply as possible responses by your household to the climate trend you 

indicated above? 

Options 1.Strongly 
disagree 

2.Disagree 3.Not sure 4.Agree 5.Strongly 
agree 

a.Diversifying the 
crops planted 

     

b.Diversifying livestock      

c.Integrating livestock 
into the cropping or 
integrating crops into 
livestock raising 

     

d.Adopting moisture 
conservation 
measures 

     

e.Irrigation      

f.Land use extension      

g.land use 
intensification 

     

 

Others (specify)………………………. 

10. If by crop and livestock diversification, name new crops and livestock involved  

Crops                                                                        Livestock 

a………………………………………………………………………………………………….. 

b……………………………………………………………………………………………………… 

C. Perception of and adaptation to land degradation 

11. What is your view of the general trend in the status of the land in terms of amounts of 

vegetation cover and wildlife size over the past 10- 20 years? 

a. Vegetation cover and wildlife size are stable…… 
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b. Vegetation cover and wildlife size are declining……. 

c. Vegetation cover and wildlife size are increasing……. 

12. If the natural vegetation cover and wildlife size are decreasing, to what would you 

attribute the change? 

Causes 1.Strongly 
disagree 

2.Disagree 3.Not sure 4.Agree 5.Strongly 
agree 

Bush fire      

Cropping 
extension 

     

Overgrazing      

Settlement 
expansion 

     

Overharvesting of 
wood 

     

 

Others (Specify)……………………………………………….. 

13. How do you evaluate the general trend in the status of natural vegetation diversity? 

Vegetation 1.Strongly 
disagree 

2.Disagree 3.Not sure 4.Agree 5.Strongly 
agree 

Diversity is stable      

Diversity is 
decreasing 

     

Diversity is 
increasing 

     

 

14. Name species of plants and wildlife that have become rare(upto five in each case) 

Plants                                                                                   animals  

a…………………………………………………………………………………………………………………………… 

b…………………………………………………………………………………………………………………………… 

c…………………………………………………………………………………………………………………………… 

d…………………………………………………………………………………………………………………………… 

e………………………………………………………………………………………………………………………….. 

15. If the diversity of plants and animals is declining, to what could you attribute the 

change 

Causes 1.Strongly 
disagree 

2.Disagree 3.Not sure 4.Agree 5.Strongly 
agree 

Bush fire      

Cropping 
extension 

     

Overgrazing      

Settlement 
expansion 

     

Overharvesting of 
wood 
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Others……………………………………………………………………………………………………….. 

 

16. The general trend in soil fertility or productive capacity of the soil is………………… 

 

Option 1.Strongly 
disagree 

2.Disagree 3.Not sure 4.Agree 5.Strongly 
agree 

Stable      

Decreasing      

Increasing      

 

17. Declining fertility/productive capacity of the soil is attributed to……………………………… 

 

Causes 1.Strongly 
disagree 

2.Disagree 3.Not sure 4.Agree 5.Strongly 
agree 

Bush fire      

Cropping 
extension 

     

Overgrazing      

Settlement 
expansion 

     

Overharvesting 
of wood 

     

 

Others( specify)…………………………………………………………………………………………………………….. 

 

18.  If in your view , the land is degrading, especially in terms of soil fertility/ productive 

capacity, how could your household seek to adapt to or cope with this adverse 

situation? 

Options 1.Strongly 
disagree 

2.Disagree 3.Not sure 4.Agree 5.Strongly 
agree 

Application of 
chemical 
fertilizer 

     

Crop 
intensification 

     

Mixed farming      

Irrigation      

Integration of 
trees 

     

Crop rotation      

Moisture 
conservation, 
eg. mulching 
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D. Vulnerable groups of people 
19. Which of the following categories of people in your household suffer the most in case 

of food shortage in the wake of adverse environmental conditions? 

Categories 1.Strongly 
disagree 

2.Disagree 3.Not sure 4.Agree 5.Strongly 
agree 

Children      

Pregnant and 
nursing women 

     

Other women      

Men      

All suffer equally      

 

E. Vulnerable plant and animals 

20. Name plants and animals that are most vulnerable to adverse environmental changes( 

dry climate, deforestation, declining soil fertility)….rank up to 5 

Plants                                                                                                  Animals 

a…………………………………………………………………………………………………………………… 

b………………………………………………………………………………………………………………….. 

c………………………………………………………………………………………………………………….. 

d………………………………………………………………………………………………………………….. 

e………………………………………………………………………………………………………………… 

Other additional comments if any………………………………………………………………….. 

 

Thank you. 

 




