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Abstract

In this thesis, we study the physics of the pulled polymer loops motivated by a bi-
ological problem of chromosome alignment during meiosis in fission yeast. During
prophase I of meiotic fission yeast, the chromosomes form a loop structure by binding
their telomeres to the Spindle Pole Body (SPB). SPB nucleates the growth of micro-
tubules in the cytoplasm. Molecular motors attached to the cell membrane can exert
the force on the microtubules and thus pull the whole nucleus. The nucleus performs
oscillatory motion from one to the other end of the elongated zygote cell. Experimental
evidence suggests that these oscillations facilitate homologous chromosome alignment
which is required for the gene recombination. Our goal is to understand the physical
mechanism of this alignment. We thus propose a model of pulled polymer loops to
represent the chromosomal motion during oscillations.

Using a freely-jointed bead-rod model for the pulled polymer loop, we solve the
equilibrium statistics of the polymer configurations both in 1D and 3D. In 1D, we
find a peculiar mapping of the bead-rod system to a system of particles on a lattice.
Utilizing the wealth of tools of the particle system, we solve exactly the 1D stationary
measure and map it back to the polymer system. To address the looping geometry,
the Brownian Bridge technique is employed. The mean and variance of beads position
along the loop are discussed in detail both in 1D and 3D. We then can calculate the
three-dimensional statistics of the distance between corresponding beads from a pair
of loops in order to discuss the pairing problem of homologous chromosomes. The
steady-state shape of a three-dimensional pulled polymer loop is quantified using the
descriptors based on the gyration tensor.

Beyond the steady state statistics, the relaxation dynamics of the pinned polymer
loop in a constant external force field is discussed. In 1D we show the mapping of
polymer dynamics to the well-known Asymmetric Simple Exclusion Process (ASEP)
model. Our pinned polymer loop is mapped to a half filled ASEP with reflecting
boundaries. We solve the ASEP model exactly by using the generalized Bethe ansatz
method. Thus with the help of the ASEP theory, the relaxation time of the polymer
problem can be calculated analytically. To test our theoretical predictions, extensive
simulations are performed. We find that our theory of relaxation time fit very well to
the relaxation time of a 3D polymer in the direction of the external force field.

Finally, we discuss the relevance of our findings to the problem of chromosome
alignment in fission yeast.
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Chapter 1

Introduction

Many biological processes can be described by classic models of statistical physics.
For example, random walk models [1, 2] were applied to describe the transcription of
mRNA [3-5] as well as the spatially distributed ecological systems [6-8]. The corre-
sponding length scale spreads from microns to kilometers. Analysis of these idealized
models provides important insights on the governing mechanism in the respective bio-
logical processes. This thesis is yet another example of application of statistical physics
modeling to a fundamental biological process.

The segregation of chromosome pairs is a crucial process during cell division. Its
malfunction is related to many diseases such as the Down Syndrome [9]. Dramatic
chromosome movements during that stage, which has been observed across broadly
divergent eukaryotic phyla from yeast to human, have been suggested to be important
for the segregation [10, 11]. In addition, experimental evidence shows that chromo-
somes cannot segregate properly when the movements are inhibited [11, 12]. However,
the exact role of these movements and the mechanism to ensure proper segregation is
still ambiguous [10, 11].

This thesis focuses on modeling the motion of chromosomes in fission yeast during
meiotic cell division [13-15]. In meiosis, two fission yeast cells merge to form a zygote
cell with a “banana” shape [14] and then the nuclei of the two cells also merge together.
During Prophase I of meiotic fission yeast, the nucleus, which contains three pairs
of chromosomes, moves from one pole of the elongated zygote to the other. These
oscillations last for about two hours [12]. The period of the oscillation is ~ 10 — 15
minutes [12]. The cell proceeds to division after the oscillations stop. It is believed
that the oscillations are required for the alignment of homologous chromosomes which
is required for proper gene recombination [12, 16, 17].

This thesis presents quantitative description of the chromosomal movements with
the chromosomes represented by polymer models [18, 19]. The results we obtain from
the model provide relevant information about the chromosome alignment as necessary
for gene recombination [20].

In this chapter, we introduce the biological background and some previous related
studies about modeling chromosomes as polymers. Our research goals and the overview
of the thesis are given at the end of the chapter.



2 Chapter 1: Introduction

1.1 Nuclear oscillations in fission yeast

In this section, we introduce the biological basis of nuclear oscillations in fission yeast.
We firstly introduce our model organism, fission yeast, followed by an overview of
meiosis. Next, we go into the nuclear structure of fission yeast and the movements of
chromosomes, specifically during meiosis, followed by the discussion about biological
processes like chromosome alignment and recombination. In the last subsection, we
discuss some experimental findings about the biological role of the nuclear oscillations.

1.1.1 Fission yeast

Fission yeast (Schizosaccharomyces pombe) is a model organism that is widely used in
the study of molecular and cellular biology [21, 22]. It is a unicellular eukaryote and
has a rod-like shape. The typical size of fission yeast is 3-4 micrometres in diameter
and 7-14 micrometres in length [21, 22]. Fig. 1.1 presents a microscopic image of fission
yeast cells.

Figure 1.1: Microscopic view of a fission yeast culture. The scalar bar indicates
10 pum. Image reprinted from [23] with permission.

Fission yeast is widely used in traditional brewing and baking. It was first discovered
in 1893 in the sediment of millet beer [22]. As a single-celled fungus, fission yeast has
a simple genome with three chromosomes [24]. The genome of fission yeast is fully
sequenced and the three chromosomes contain about 14Mb of DNA [25]. With a rapid
growth rate and plenty of mutants, fission yeast has become a model organism for
genetic studies [24].

Fission yeast is normally a haploid cell [23, 26]. The growth of the fission yeast begins
with the elongation at the ends. After mitosis, division occurs by the formation a cell
plate that cleaves the cell at its midpoint [21]. However, when put under stressful
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conditions, such as nitrogen deficiency, two cells can conjugate to form a diploid and
then form four spores via meiosis [26]. This is observed experimentally and this stage
is exactly when the interesting nuclear oscillations happen [13]. In the next subsection,
some basis of the meiosis in fission yeast are explained.

1.1.2 Basis of meiosis

Meiosis is a process of cell division that reduces the number of chromosomes in the
parent cell by half and produces four genetically distinct gamete cells. This process
occurs in all the sexually reproducing organisms, including human [23, 27

Meiosis begins with a parent cell with two copies of each chromosome, followed by
two rounds of cell divisions which produce four potential daughter cells, each has half
number of chromosomes as their parent cell [27]. The two rounds of cell division are
called Meiosis I and Meiosis I, respectively [27]. Tt is during Meiosis I that the pair of
chromosomes, one from the father and the other from the mother, separates into two
offspring cells [27]. Meiosis I is very similar to the mitosis where two sister chromatins
contained in one chromosome separate [27, 28]. Fig. 1.2 illustrates an overview of the
meiosis process.

[E—

Daughter
Nuclei Il

Daughter
Nuclei

N\

N
/

N\ ﬂ/

Interphase \| Meiosis | A
Homologous Meiosis |l
Chromosomes

Figure 1.2: Overview of meiosis and an illustration of recombination between ho-
mologous chromosomes resulting in four unique daughter cells. Image reprinted
from [29] with permission.

As in mitosis, each round of cell division can be divided in prophase, metaphase,
anaphase, and telophase [27]. We elaborate Meiosis I in details, especially the Prophase
I when the nuclear oscillations take place. Fig. 1.3 shows the time-lapse snapshots of
the oscillations.
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e Prophase I: prophase I is an important stage when many processes happen. Two
of the examples are bouquet formation [30] and homologous recombination [17, 31],
both occurring in generic organisms. In the early state of Prophase, chromosomes are
reorganized spatially [13, 30, 32]. Usually, the telomeres, protein complexes at chro-
mosome ends, are clustered and attached to a small region of the nuclear membrane,
forming a bouquet structure. This is called bouquet formation or telomere cluster-
ing [32]. Fig 1.4 shows an example of fission yeast during Prophase I. In the process
of recombination, the homologous chromosomes, which are paternal and maternal
pairs, align and exchange parts of their DNA and usually result in the chromosomal
crossover [27]. Homologous recombination is critical for pairing and accurate segrega-
tion of the chromosomes in the later stage of Meiosis I and also plays an important
role for generic diversity in nature [23, 27]. More interestingly, this stage is the exact
period when the nuclear oscillations happen in fission yeast [33, 34]. We explain this
part in the next subsection.

o Metaphase I: at this stage, homologous pairs move together along the middle
plate, and the microtubules from centrosomes attach to their respective chromosomes,
the paired homologous chromosomes align along an equatorial plane that bisects the
spindle [27]. However, in fission yeast, the centromere is replaced by a functional
equivalent organelle called Spindle Pole Body (SPB) [31].

e Anaphase I: at this stage, the microtubules shorten, pulling homologous chro-
mosomes to opposite poles. Notice here, chromosomes still consist of a pair of sister
chromatids. The cell body elongates, preparing for cell division [27].

e Telophase I: at the last stage of Meiosis I, chromosomes arrive at the poles. The
microtubules network of spindle disappears. New nuclear membrane appears. The
two daughter cells now only have half the number of chromosomes [27].

After Meiosis I, Meiosis II occurs without DNA replication in between [23, 27].
The process is similar to Meiosis I except the sister chromatids segregate instead
of homologous chromosomes [27]. Four unique daughter cells are formed after the
completion of Meiosis.

1.1.3 Nuclear oscillations

As mentioned in the previous subsection, nuclear oscillations take place during prophase
I of meiosis, and so as the important processes of homologous chromosomes alignment
and recombination [33]. Because of the peculiar nuclear shape during this stage, nu-
clear oscillations are also often mentioned as horse-tail movements [10, 31, 34]. Fig. 1.3
shows a time-lapse sequence of the nuclear oscillations.

The looping structure of chromosomes

Before the nuclear oscillations, chromosomes are reorganized and the bouquet forma-
tion happens [23, 27]. In fission yeast, the SPB is anchored in the nuclear envelope,
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Figure 1.3: Time-lapse experiments of nuclear oscillations in fission yeast, DNA
marker in green (Rec8-GFP) and SPB marker in magenta (Sid4-mCherry) also
indicated by asterisk. Reprinted from [11] with permission.

telomeres of chromosomes are clustered to the SPB region of the inner nuclear mem-
brane [28, 30]. The chromosomes are condensed to be the rod-like chain. There are
two sister chromatins contained in one chromosome [28]. With all the telomeres bond
to the SPB, chromosomes form the loop structure [35], illustrated in Fig. 1.4.

Redistribution of dynein motors drives the nuclear oscillations

While the inner side of SPB bonds the chromosome telomeres, the outer side is at-
tached to the microtubules in the cytoplasm [12, 14]. During the oscillation, dynein
motors generate the force [14]. As one motor is not enough for the oscillation, the
collective behavior of motors is observed to drive the nucleus motion [14]. The spatial
distribution of motor molecules varies during the oscillation. Motors accumulate in
the side of fission yeast that the nucleus moves toward to. It was found that the dynein
pulling force is the main contribution that drives the oscillation [14]. Fig. 1.5 shows
the redistribution of dynein motors during the oscillation.

Related biological parameters of nuclear oscillations

For construction of the quantitative model, we found the values of most relevant
parameters in the available experimental literature. These parameters are summarized
in table 1.1.

1.1.4 The role of nuclear oscillations for chromosome alighment

Although the nuclear oscillations in fission yeast can be observed clearly in the experi-
ments, the biological role of it is not thoroughly understood. One intuitive hypothesis
is that the movement facilitates the pairing of homologous chromosomes [12, 37]. How-
ever, Koszul et al. proposed that the chromosome movement might play other roles
than pairing, such as to resolve homologous entanglements or non-homologous connec-
tions [10]. Also, Chacén et al. stated a dual role for the nuclear oscillations, promoting
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Meiotic prophase

@ centromere
@ tclomere

® serB

Figure 1.4: The meiotic prophase | of fission yeast. Telomeres are clustered to
form a bouquet structure. Location of centromeres and telomeres is determined
by FISH analysis [35] using specific probes. The SPB is detected by indirect
immunofluorescence. Right figures are schematic models of spatial organization
of the nucleus. Image modified and reprinted from [35] with permission.

Dynein (Dhc1-3GFP)
Tubulin (mCherry-Atb2

L
4.5’ 5.3 747 4

Figure 1.5: Distribution of dynein motors during nuclear oscillations. Dyneins are
labeled as green and tubulins are labeled as red. The position of SPB is indicated by
asterisk. Time point scales in minutes. Image reprinted from [14] with permission.
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Table 1.1: Parameters of fission yeast during meiosis

Parameter

Value

Typical size of the nucleus
Number of chromosomes
Compaction ratio of the chromatin
Kuhn length of the chromatin
Duration of the nuclear oscillations
Period of the nuclear oscillations
Moving speed of the nucleus
Viscosity of the nucleoplasm
Length of Chromosome I

Length of Chromosome II

Length of Chromosome III

3pum [14, 36]

Three pairs [14, 36]
10*bp/nm [36]

200 ~ 300nm [37, 38]
~ 2 hours [14]

~ 10 min [14]
2.5pm/min [14]

~ 1000 X Jivater [39, 40]
5.58 Mb [25]

4.54 Mb [25]

2.45 Mb [25]

initial pairing and restricting the time of chromosome associations to ensure proper
segregation [11].

Experimental evidence suggests the nuclear oscillations plays an important role for
the chromosome alignment [10, 11]. However, it seems that there is no study using
the mathematical modelling to test the hypothesis that is otherwise not possible to do
in the experiments. One of the aims of this thesis is to propose a quantitative model
for this specific problem in fission yeast. By studying the statistical and dynamical
details of the model, the machinery of chromosome pairing and the role of chromosome
movements can be understood in a more quantitative way.

1.2 Polymer models and DNA

In this section, we briefly introduce the theoretical models used to quantify the DNA.
These models are characterized by beads connected by rods or springs, which composes
a significant portion of models in polymer physics. More specifically, we discuss the
model we used for the chromosomal DNA during nuclear oscillations and summarize
previous works of applying the polymer models to the chromosomal DNA [41-44]. The
theoretical models about looped polymer and pulled polymer are discussed. Finally,
we discuss the conditions that allow us to use the equilibrium setting to study the
intrinsically non-equilibrium biological polymer problems.

1.2.1 Models of chromosomal DNA

To quantitatively describe the chromosome, it is natural to view it as a polymer. In
fact, there are already many examples in this direction [41-44]. However, depending
on the scenario, different polymer models may apply.
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In physics, a polymer model is described by beads connected by massless springs or
rods [19, 45]. The interactions, usually characterized as different types of potentials,
specify the setting of the model [19]. As our aim is to model the chromosome during
nuclear oscillations in fission yeast, there are two major factors we need to take into
account. First, the topology of the chromosome is a loop structure as shown in Fig. 1.4.
Second, all chromosomes are bound to the SPB and pulled by an external force.
Combining these biological facts and the experimental observations, like shown in
Fig. 1.4, we propose a pulled polymer loop model for the chromosomes. Fig. 1.6 shows
a sketch of the model. We leave the discussion of the model details to Chapter 2.

—

microtubules Nuclear envelope

st

Figure 1.6: The sketch of pulled chromosomes in meiotic fission yeast. Three
pairs of chromosomes with all ends bound to SPB (shown in magenta) in the
nucleus are indicated by different colors. The SPB is pulled by multiple dynein
motors (not shown) walking along microtubules (dark green). The SPB is anchored
to the nuclear envelope (light green) and entrains the whole nucleus.

chromosomes

To the best of our knowledge, there are not many works which focus on both the
looping geometry of the polymer and the polymer being pulled by an external force.
In the following subsections, we discuss previous works related to this problem.

1.2.2 Polymer loop and pulled polymer
Polymer loop

Polymers forming a loop structure are ubiquitous in chemistry and biology [43, 46].
The study of ring polymer dates back to the years when polymer physics was first
established [47, 48]. Kramers developed an equilibrium theory of macromolecules that
possesses branch points and rings of the dilute polymer solution in 1946 [47]. Zimm
calculated the statistics of mean square radii of molecules containing branches and
rings in 1949 [48]. However, comparing to the simplest polymer chain model, research
focus on polymer loop are far less than the former. We review here some interesting
and most relevant results.

Since Kramers and Zimm, there is a number of works trying to study the static and
dynamical properties of the ring polymer from the theoretical point of view. In 1965,
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Casassa derived some statistical properties of flexible ring polymers, including mean
square radius, the second Virial coefficient and angular distribution of scattering [49].
In 1980, Burchard and Schmidt calculated the static and dynamical structure factors
of flexible ring polymers [50]. Baumgértner considered the self-avoiding effect of ring
polymers in 1984 and found that the asymptotic scaling exponents of gyration radius
and structure function are the same as linear polymers [51]. In 1986, Cates et al. stud-
ied the nor-concatenated ring polymer melt and found the size of polymer R scaled
with the polymerization index N as R ~ N2/ and the diffusion constant D scaled as
D ~ N72 [52]. In 1994, Obukhov et al. considered the dynamics of a ring polymer
in a gel and obtained the diffusion coefficient to scale with the molecular weight M
as D ~ M~2 and the longest relaxation time 7" as T' ~ M®°/% [53]. Carl investigated
the configurational and rheological properties of multiple-twisted ring polymers using
a long cyclic finitely extensible bead-spring model in 1995 [54]. He also presented
a study on bead-spring chains in steady flows, various properties such as the power
spectrum, the autocorrelation functions of configurational quantities were discussed
in [55]. In 2001, Panyukov and Rabin studied the effects of thermal fluctuations on
elastic rings. Analytical expressions were derived for correlation function of Euler an-
gles, mean-square distance between points on the ring contour, radius of gyration, and
probability distribution of writhe fluctuations [56]. Mukherji et al. studied a polymer
ring or chain diffusing near attractive surfaces. They found the diffusion constant scal-
ing as D ~ N73/2 for a linear chain and solid strong adsorbing surfaces, and D ~ N~
for a ring polymer and soft surfaces [57]. Sakaue proposed a simple mean-field the-
ory for the structure of ring polymer melts which takes into account the many-body
effects [58, 59]. In 2012, Kim et al. presented a self-consistent field theory formalism
of topologically unconstrained ring polymers [60]. In 2013, Reigh performed lattice
Monte Carlo simulations to investigate the dependence of ring polymer conformation
to the concentration, where the scaling of gyration radius R, with the concentration
¢ that R, ~ ¢~ %% was found [61]. In 2014, Lang et al. studied the tumbling dy-
namics of semiflexible ring polymers as a model of the cytoskeletal filament in a shear
flow. They found the tumbling frequency f. to scale with the Weissenberg number
Wi as f. ~ Wi%* in contrast to the prediction of the classical theory of both flexible
polymers and rigid rods that f. ~ Wi%/3 [62].

A looped polymer with high concentration, like polymer melts, are often used in
modeling interphase chromosomes. Interestingly, it is found that during interphase,
the spatial organization of the multiple chromosomes in the nucleus is neither homoge-
neous nor well mixed. Instead, each chromosome forms its own “territory” [43]. Many
interesting works can be found discussing this problem. For example, in 2008, Rosa
and Everaers used the simulation results of polymer rings to explain the existence
and stability of territories of interphase chromosomes in yeast, Drosophila, and hu-
man [63]. In generally, the computation power required to simulate the whole genome
is huge, they also developed an efficient multiscale numerical approach to study the
conformational statistics of ring polymers melts [64]. Dorier employed a very simple
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non-permeable freely jointed polymer model and recovered the chromosomal territories
in crowded nuclei [65]. This part of work is nicely reviewed in Ref. [43].

It is possible that looping structures of the polymer are formed temporarily in chro-
mosomes. This could be caused by the DNA replication process or binding proteins
connecting two loci of chromosomes. In 1995, Sachs used a looping random walk model
to study the interphase chromosomes and compared the results with the fluorescence
labeled data, showing that “giant” loops as large as 3 Mbp can be formed [66]. Marko
considered a model of two polymer loops tethered together and its application to chro-
mosome segregation [67]. The looping probabilities of interphase chromosomes were
also discussed in Ref. [68]. In 2011, Zhang et al. modeled the mitotic chromosomes
as polymers that could form internal loops by binding proteins. They found the loops
play an important role in the mechanical properties of the polymer [69]. Wong set
up a polymer model and used it to predict the whole nuclear architecture of fission
yeast [70]. Dekker and Giorgetti employed the computational polymer model to ex-
plain the 3C/HiC data [71, 72]. In 2014, Youngren employed thermodynamic ring
polymer model to study the duplication and segregation of F. coli chromosomes, the
chromosome organization and structure dynamics were explained in Ref. [73].

The confinement such as the nuclear membrane or cell wall could also play an
important role in chromosome dynamics. One of the examples is Fritsche’s work in
2011, where they studied the influence of confinement on the spatial organization
of semiflexible ring polymers [74]. They found the elongated confinement induced a
pronounced ordering with respect to the long axis while the spherical confinement
induced no such preferred orientational axis. The studies of the polymers (including
chains and rings) under confinements were reviewed by Ha el al. in [75].

There is also many experimental work related to polymer loops. In 1992, Tead et al.
used polystyrene molecules to compare the diffusion of linear and ring polymers and
found the diffusion coefficients of deuterated linear chains in ring matrices were nearly
identical to those in linear chain matrices [76]. Kapnistos et al. found the stress
relaxation of entangled ring polymer follows a power-law, see Ref. [77]. Structure
and dynamics of polymer loops by neutron scattering were studied by Bras et al.
in [78] where it was found that the Rouse model was violated by the fast diffusion.
Witz et al. employed the atomic force microscopy to study 2D circular DNA and
confirmed that the topologically invariant exponent v = 3/4, where the gyration
radius R, ~ L* [79, 80]. Goofen et al. studied dynamics of polymer loops using
neutron spin echo spectroscopy which allows one to observe the space-time evolution
of segmental motion [81, 82].

Besides what we have mentioned above, the shape of ring polymers is studied in
[83-86]. Also, there are a series of works considering the ring polymer with entangle-
ments and topological knots [87-95]. Thus, the investigation of polymer loops is quite
intensive and draws the attention of many researchers nowadays.
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Pulled polymer

As we mentioned above, in order to model the nuclear oscillations of fission yeast, we
have to consider the pulling dynamics. After the change of coordinate system to the
one co-moving with the SPB (see Section 2.1), a pulled polymer can be mapped to
a pinned polymer in an external force field. In this section, we review some previous
works in this direction. Most of them are about pulled polymer chain. Nevertheless,
we think it is still helpful to know what have been done about pulled polymers or
tethered polymers in an external field.

A polymer chain with one end free and the other end pulled by an external force
was discussed by de Gennes, he found that the internal friction was negligible for a
polymer chain with large monomer number [18]. Pincus considered the pulled poly-
mer as a sequence of independent “blobs”, and calculated the extension of the pulled
polymer [96, 97]. Brochard-Wyart further developed the “trumpet” and the “stem-
flower” pictures of pulled polymer chain [98-101]. When the pulling force is not too
strong, the polymer can be presented as a series of independent blobs with increas-
ing size, i.e. the portion of polymer near to the free end fluctuates more. As the
pulling force further increases to a strong force regime, the polymer portion near to
the fixed end is completely stretched, forming a “stem-flower” like picture, see Fig.
1.7. Using fluorescence microscopy and optical tweezers, Perkins et al. performed the
pulling experiments on single DNA molecule and measured the relaxation time of the
polymer during the stretch-coil transition [102, 104]. They obtained the relaxation
time 7 scaling with the polymer contour length L as 7 ~ L% [104]. Wirtz measured
transport properties of a single DNA molecule in [105] and found results consistent
with the blob theory.

(b)
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Figure 1.7: lllustration of “stem-flower” picture for pulled polymer chain. (a)
Trumpet picture at moderate pulling force; (b) Stem-flower picture at strong
pulling force.

Rzehak et al. considered pinned polymer in a uniform flow with hydrodynamic in-
teraction and found neither the free-draining nor the non-draining models can describe
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the polymer-flow interaction appropriately, so an f-shell blob model was proposed to
describe the partial draining situation [106]. Larson et al. performed Brownian Dy-
namics simulation for a DNA in an external flow field and found the unraveling pro-
cesses were consistent with the experimental findings [107]. In 2000, Doyle measured
the cyclic and stretching dynamics of a tethered DNA molecule in the shear flow and
found temporal fluctuations could be enhanced by the shear flow [108, 109]. Sebastian
studied theoretically the dynamics of pulling a polymer chain out of a potential well
and found that the time ¢,, required to pull out a polymer of N segments scales as
tpo ~ N? [110]. Cui performed the stretching and releasing experiment by pulling a
single chicken erythrocyte chromatin fiber with the optical tweezers, where the per-
sistence length of 30 nm and a stretch modulus of 5 pN are calculated [111]. Rzehak
found that the blob theory can describe the conformation fluctuation and relaxation
of a tethered polymer in uniform flow only when the finite extensibility of the polymer
was unimportant [112]. In 2007, Mohan et al. employed Rouse theory to study the
unraveling dynamics of tethered semiflexible polymer in uniform solvent flow whereas
a convective mechanism of tension propagation in wormlike chains under conditions
of strong flow was demonstrated [113]. Sing et al. studied flexible and semiflexible
tethered polymers in the limit of high shear flows and consequently near-full extension
of the chains and observed an universal “tether kink” geometry that is independent of
the shear rates [114]. Sakaue et al. studied the conformation and dynamics of a single
flexible polymer chain that is pulled by a constant force applied at its one end. The
generalized dynamical equations describing the extension and friction laws in steady-
state were elucidated and the propagation of tension in the transient process were
discussed [115]. Varghese et al. derived the force fluctuations relation in stretching a
tethered polymer [116]. In 2013, Dai and Doyle found in [117] that the scenario of a
pulled polymer is very similar to a polymer confined in a cylinder with proper radius.

To the best of our knowledge, the discussion of pulled polymer loops is missing
except for our own work [20]. So we have reviewed here two classes of works: the
works on polymer loops and that on pulled polymers. In next subsection, we discuss
the equilibrium and non-equilibrium situations of a pulled polymer loop.

1.2.3 Equilibrium vs non-equilibrium

Usually, a system of pulled polymer in solution is referred as a non-equilibrium sys-
tem [18, 19]. However, the equilibrium statistics can be applied under certain con-
ditions. As it is usually easier to derive the equilibrium theory, these conditions are
discussed in this subsection.

In prophase I of meiotic fission yeast, chromosomes oscillate in the cell [14]. Here, we
simplify the picture of one oscillation period to two pieces of steady pulling motion with
opposite moving direction. Experimental evidence suggested that the moving velocity
of SPB during nuclear oscillations is nearly constant when moving in one direction, as
shown in Fig. 1.8 [14]. We do not consider the turning process of the oscillations and
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only discuss chromosomes pulled with a constant velocity in one direction.
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Figure 1.8: Experimental trajectory and velocity of the SPB measured by fluores-
cence microscopy. The upper panel shows the trajectory of the SPB along the cell
main axis. The green line is the boundary of the cell. The lower panel shows the
corresponding velocity of the SPB. Image reprinted and modified from [14] with
permission.

Steadily pulled chromosomes in solution still cannot be classified as an equilibrium
system. One reason is the active processes in the biological environment [118]. Various
proteins are involved in the nuclear oscillations [14]. Moreover, the thermal fluctua-
tions are important in the length scale of the chromosomes (several microns) [14, 19].
However, we assume all these activities together with the thermal fluctuations can be
represented by an effective temperature of the system. It means that a homogeneous
fluctuating environment is assumed, although the effective temperature could be dif-
ferent from the real laboratory temperature. This is a key assumption that allows us
to apply the equilibrium theory on the system.

In order to apply the equilibrium theory of the pulled polymer loops, additional
assumptions should be made. We ignore the hydrodynamic interactions between
monomers can in our model. In other words, the system is a free-draining sys-
tem [18, 19]. With all these assumptions mentioned above, the equilibrium statistics
of pulled polymer loops can be applied to the chromosome movements in fission yeast.

In physics, the criterion to classify a system as equilibrium or non-equilibrium sys-
tem is whether the detailed balance is satisfied or not [119, 120]. Non-equilibrium
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system in stationary state violates the detailed balance, but there exists an invariant
probability measure of the system. The moving chromosomes under assumptions can
be considered as an equilibrium system, which means the detailed balance is fulfilled.
However, the dynamics of the system can be discussed in the situation of the system
approaching equilibrium. An example of non-equilibrium system breaking the detailed
balance is the Asymmetric Simple Exclusion Process (ASEP) with open or periodic
boundaries. Interestingly, we found a peculiar mapping from the pulled polymer loop
model to ASEP system with reflecting boundaries. The ASEP model is discussed in
next section.

1.3 ASEP and Bethe ansatz

ASEP is a 1D lattice model with many particles hopping on the lattice. The number of
particles sitting on one lattice site cannot be larger than one, which means the particle
are exclusive to each other. Normally, the hopping rates of the particle to right and
left are not the same, which brings asymmetry. It is one of the simplest models for
the systems out of equilibrium. In this thesis, we found a very peculiar mapping from
the polymer dynamics to the ASEP model. With this mapping, using advanced tools
such as Bethe ansatz, we can solve the problem of polymer dynamics. In this section,
we briefly introduce the history of the ASEP model and the Bethe ansatz method we
used to find the exact solution of the model.

1.3.1 Brief introduction of ASEP

ASEP model is said to be a minimal non-equilibrium model similar to the Ising model
in equilibrium statistical physics [121, 122]. Interestingly, it was first proposed for the
study of a biological problem. In 1968, MacDonald et al. proposed a mathematical
model for the kinetics of protein synthesis by ribosomes, which is essentially the ASEP
model [3]. However, the name of ASEP was introduced later in 1970 by Spitzer with
the aim of rigorously deriving macroscopic hydrodynamic behavior from a microscopic
model of particles [123]. This task was accomplished by Varadhan et al. on this
specific simple model [124]. ASEP model has numerous applications besides those
mentioned above. Other examples ranging from the motion of motor molecules along
the microtubules to the traffic systems, see review [4, 125].

The simplest ASEP model is ASEP with periodic boundaries [122], see a schematic
in Fig. 1.9 (a). The stationary measure of periodic ASEP is simply a uniform distri-
bution. If the hopping rate is asymmetric, then a steady current can be induced in the
stationary measure. This is one of the simplest examples where the detailed balance
is not satisfied in the stationary state. The full dynamics in this case can be solved
by the Bethe ansatz method [126], which we discuss later.

ASEP on an infinite line is also an interesting case [5, 127, 128]. For example, one



1.3 ASEP and Bethe ansatz 15

(a) (b)

0N

N
Q u g|g|gl m IQI | | u
)
Qe I

- af

Figure 1.9: Schematics of ASEP model. (a) ASEP with periodic condition. (b)
ASEP with open boundary condition.

can rigorously describe the diffusion of a tagged particle for the special case of the

symmetric hopping rate:
9 1—p |t
(2%) =2——4/ =, (1.1)
p s

where p is the density of particles. As we can see it is a sub-diffusion process with a
mean squared displacement scaling t'/? as long as p # 0. The sub-diffusive behavior
has been demonstrated in various experimental realizations [129-132].

ASEP with open boundaries is considered to be the minimal discrete microscopic
model of transportation [122, 133], see Fig. 1.9 (b). In this model, the two ends of
the lattice are connected to two different reservoirs. The rate of insertion and removal
at the two ends are not the same in general. For instance, in the simplest case,
particles can only be inserted at one end and removed at the other end. A current
can be induced by the bias of hopping rates. In 1991, Krug et al. studied the ASEP
with open boundaries and discovered the boundary induced phase transitions in the
model [134]. Depending on the insertion or removal rates at the ends, the stationary
state of the system can be in high density, low density or maximum current phase.
The phase transition can occur by adjusting the boundary conditions [134].

In order to solve the stationary state of the open ASEP, Derrida et al. proposed an
approach which is now called Matrix Product Ansatz. It is a brilliant method far more
useful than it was thought to be at the beginning. Interested readers are referred to the
review paper for more details [121]. The work of Derrida and co-workers significantly
boosted the research on ASEP. Many significant contributions were made to the field
of ASEP. For example, De Gier found the exact solution of open ASEP with certain
special constraints in 2005 [135]. Spohn et al. constructed an exact solution of the
KPZ equation using the ASEP in 2010 [136].

Despite the simplicity of the ASEP model, the way to find the solution of general
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open ASEP system is still an open question [122, 133]. Although the Matrix Product
Ansatz is widely used in the study of the stationary state ASEP, the Bethe ansatz
method is more powerful when it comes to the dynamics.

Besides the periodic ASEP and open ASEP, the model we discuss in this work is the
ASEP with reflecting boundaries. There are not so many results for this case. One of
the exceptions is the work of Schiitz et al. in 1994. They investigated the reflecting
ASEP using the U,(SU(2)) quantum group approach [137]. The exact stationary
solution was found but not the dynamics. The reason for the lack of study on this
specific case might be the inanimate steady state. There is no current in the stationary
state, which makes the system looks less interesting to explore. However, we show that
it is actually quite intriguing especially when we notice the mapping from ASEP to
polymer dynamics.

The reflecting ASEP can be solved completely by using the Bethe ansatz method,
which we briefly introduce below.

1.3.2 Bethe ansatz

Bethe ansatz is a method proposed by Hans Bethe in 1931 in order to solve the
Heisenberg spin chain model with periodic boundary conditions [138]. At that time,
he probably did not realize his great work would open a new branch of physics which is
now called the integrability theory [126]. In 1963, Lieb-Liniger used the Bethe ansatz
method to solve the dynamics of Bose gas with d interaction potential [139, 140].

Another important application of the Bethe ansatz is the six-vertex model which
was also solved by Lieb [141-143]. The next big step was the discovery of the Yang-
Baxter equation, which was introduced independently by Chen-Ning Yang and Rodney
Baxter [144, 145]. The Yang-Baxter equation provides a criterion to find out whether
a model is integrable or not [126]. The investigation of the Yang-Baxter equation
led to the introduction of quantum group theory and the theory of topological knot
invariants [126].

During the 1970s and 1980s, advanced Bethe ansatz methods like functional Bethe
ansatz and algebraic Bethe ansatz were developed [122]. After the introduction of the
ASEP model, these Bethe ansatz methods were quickly adopted to find the solution
of these many particle systems because of the intrinsic connection from ASEP to a
spin chain system. For example, the solution of the periodic ASEP is almost identical
to the Heisenberg spin chain with periodic boundary conditions [122]. The study of
ASEP and Bethe ansatz is still a very active field. There are a lot of references one
can refer to [121, 122, 146-148].
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1.4 OQutline

With the introduction of the biological problem and the background of polymer mod-
eling as well as ASEP in previous sections, we are ready to go into the details of our
study. But before that, our research goals and the overview for the organisation of
this thesis are discussed.

1.4.1 Research goals

The research goals of this thesis are as follows:

e To propose a polymer model in order to describe the chromosomes in fission yeast
during nuclear oscillations. We will refer to it as a pulled polymer loop model.

e To develop the quantitative theory for our pulled polymer loop model and to find
the analytic solution for the steady state and dynamics of the model with a simple
setting.

e To perform numerical simulations for the polymer model. These numerical results
verify our analytic theory. Also, by performing more realistic simulations, the results
can be used to justify the assumptions of our simplified model.

e To understand the biological processes such as chromosome alignment through
the physical insight gained by the above studies. Understanding the biology of this
process is our ultimate goal.

In short, we want to quantitatively model the chromosome dynamics during the nu-
clear oscillations. We will critically discuss the relevance of our results to the biological
process.

1.4.2 Overview of the thesis

A brief outline of the thesis is as follows:

In chapter 2, we discuss the details of our pulled polymer loop model. Two real-
izations of the model, i.e. bead-rod model and bead-spring model are introduced. By
introducing a coordinate transformation, it is shown that the pulled polymer loop can
be transferred to the pinned polymer loop in an external force field. We then discuss
the simulation techniques of the polymer model, including the Brownian Dynamics
simulation and the Monte Carlo simulation specifically for the bead-rod model.

In chapter 3, we solve the equilibrium statistics of pinned polymer loop in a constant
external force field. The system is solved firstly in 1D by two different methods. The
mapping from polymer loop to a particle system on a lattice is illustrated. Then
we extend our solution to the three-dimensional setting. To address the alignment
of homologous chromosomes we consider the statistics of the distance between two
identical loops. We also show how this distance changes if additional contact points
between loops are introduced to mimic recombination contacts between chromosomes.
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Based on the solution of equilibrium statistics, we also quantify the shape of the pinned
polymer loops in the external force field.

In chapter 4, we investigate the relaxation dynamics of the pinned polymer loop
in an external force field. First we show that within the Rouse theory of pinned
polymer loop, the relaxation time is independent of the external force. This is clearly
not what we see in numerical experiments. To understand the relaxation dynamics
we introduce the mapping from polymer dynamics to the particle hopping of ASEP.
The pinned polymer loop model is mapped to reflecting ASEP system with exactly
half of the lattice sites occupied. The Bethe ansatz method is employed to find the
exact solution of the ASEP system. Results from ASEP are mapped back to the
polymer loop model to discuss the relaxation dynamics of the polymer where we
recover the relaxation time dependence on external force. The dynamics of stretch
and coil transition is discussed briefly.

In the last chapter, chapter 5, we first summarize our results and discuss their rele-
vance to the problem of chromosome alignment in fission yeast. Finally, we conclude
with an outlook in the final section.



Chapter 2

Theoretical Model and Numerical
Simulation Methods

To model the chromosome movements during nuclear oscillation in fission yeast, we
begin with a single chromosome modeled by a single polymer loop. This chapter
presents the details of the polymer model for chromosomes and the simulation methods
used in the study of the dynamics and statistics of the polymer.

2.1 Stochastic models of polymer loops

There are three pairs of chromosomes in fission yeast [12]. During nuclear oscillation,
these three pairs of chromosomes bound to one point, i.e. the spindle pole body (SPB).
We begin with the simplest case, neglect the interactions between chromosomes, and
consider only a single chromosome. It is a polymer with a loop geometry, and an
external force is exerted on the SPB. There are two standard ways to model a polymer,
namely the bead-rod model and the bead-spring model. In the bead-spring model, the
beads are connected by massless springs, whereas in the bead-rod model, the beads are
connected by massless rods with fixed length. We use both models in this thesis but
more emphasis will be put on the bead-rod model. Both models have their own benefits
and shortcomings. Computationally, it is easier to work with the bead-spring model
than with the bead-rod. However, the bead-rod has the intrinsic property of finite
extensibility without resorting to some complex nonlinear spring potentials [149, 151].
In fact, we will show that the finite extensibility takes an important role for the
polymer dynamics in Chapter 4. In this section, we establish both the bead-rod and
bead-spring model for modeling the polymer loop.

2.1.1 Coordinate transformation

Consider a single chromosome pulled at the SPB. Due to the large viscosity of the
fission yeast nucleoplasm (1000 times of the viscosity of water) [39], the chromosome
can be assumed to be in an overdamped regime [151]. The chromosome is pulled to
move with a constant velocity v, see Fig. 1.8. In our model, the SPB is represented as
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one monomer in the polymer loop. Other monomers modelling the rest of the polymer
move together to follow the SPB, see Fig. 2.1 (a).
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Figure 2.1: lllustration of reference frame transformation. (a) a pulled polymer
loop before transformation; (b) pinned polymer loop in an external field after
transformation.

Now we perform a change of reference frame to the co-moving frame of the SPB.
Then effectively, the SPB is not moving, and the polymer loop is immersed in a fluid
flow with a velocity —v (Fig. 2.1 (b)). Assuming the Stoke’s law is valid, there is a
force F¢ = —¢v acting on every bead. Here ¢ is the friction coefficient for the bead
in a fluid. The free-draining assumption is applied, which means that there is no
hydrodynamic interactions between beads.

Using this co-moving reference frame, the pulled polymer loop model is transformed
to the pinned polymer loop in a uniform external force field. In the following, the
pinned polymer loop picture is employed for easier numerical and analytical calcula-
tions. For example, in simulations, a very large pulling force might be required if the
first picture is adopted, that might become a bottleneck for the choice of the integra-
tion time step. In theory, the force field picture offers a clean way to calculate the
energy of polymer configurations. Thus the pinned picture is used in the following.
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2.1.2 Bead-rod model

Now we discuss a concrete polymer model for modeling the chromosomes, namely the
bead-rod model. The beads representing chromosome segments are connected by the
massless rigid rods. For simplicity, we assume the length of every rod to be identical,
and denote it by a. The rigidity of the rod means that the distance between two
neighboring beads is fixed.

Figure 2.2: Sketch of the bead-rod loop model. The magenta bead represents
the SPB and other cyan beads represent the polymer segments.

The dynamics of the polymer is specified by the motion of the beads. We shall first
formulate the dynamics equations. The contour length of the polymer loop is La, i.e.,
there are L beads (including the SPB) and L rods with the length a in the polymer.
Denote the beads by their index ¢+ = 0,1,2,---,L — 1, L. The periodic indexing is
used due to the looping geometry, namely for any indexed quantity =, o = x. The
equation describing the dynamic of the bead ¢ in the overdamped regime reads

dI‘i

o= F! 4 F¢ 4+ FPev® L pe 4 Fo, (2.1)

§

where ¢ is the friction coefficient of the bead in a fluid, r; is the bead position, F}
is the interaction force specified by interacting potentials, F¢ is the constraint force
which keeps the rod length fixed, F¢ is the external force, and F? is the Brownian force
caused by fluctuations. FP*““% is a pseudo force introduced to the bead-rod model in
order to preserve the “correct” statistics under fluctuations (see the next section for
more details).

Now we provide several remarks on Eq. (2.1). Firstly, F¢ is a random force, so
Eq. (2.1) is a stochastic differential equation. Secondly the left-hand side of Eq. (2.1)
is just the friction force of the bead in the fluid —¢v,;. We assumed the fluid is homo-
geneous so that the friction coefficient is independent of the space and time. Thirdly,
the inertia of the bead is neglected which means the polymer is in the overdamped
regime. In other words, Eq. (2.1) essentially can be written as Fi°a! = 0 which is the
Newton’s second law with neglected inertia. This kind of dynamics is commonly used
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in polymer physics and referred to as Brownian Dynamics [150, 151].
In the following, we explain the terms of the right-hand side of Eq. (2.1) in details.

Brownian force F?

The Brownian force is a consequence of the instantaneous collisions of the fluid molecules
and other interactions between chromosomes and proteins in the nucleus. The level
of fluctuation is assumed to be characterized by an effective temperature 7. Mathe-
matically, the Brownian force is modelled by a Gaussian process with the zero mean,
non-zero second moment and J-correlated in time, which can be written as:

(FY) =0, (2.2a)
(FY(O)FUt)) = 2kpTE0;;6(t — 1), (2.2b)

here, kp is the Boltzmann constant. ¢;; is the Kronecker delta meaning there is no
correlation for the Brownian force exerted on different beads. The second ¢ is the
Dirac delta function.

External force FY

The external force in our pinned polymer loop model is exerted by the equivalent
flow field, which follows from coordinate transformation. In the co-moving frame of
reference, F¢ = {vgpp. In general, vspp = vspp(t) is a function of time. However, in
the simplest case where the chromosome is pulled to move steadily in one direction
during half period of one oscillation, vgpg is considered to be a constant.

Constraint force F¢

The constraint force is the tension and stress applied to the rod to keep its length
fixed. Therefore, the direction of the force is along the rod orientation. The rigid rod
constraint can be written as

v —ria| —a =0, (2.3)

and ro = ry for the periodic indexing. The constraint force is an implicit force that
depends on the other forces acting on the beads. We leave the discussion of how to
calculate this force to the next section which is devoted to simulations.

Pseudo force F?**"%

The pseudo force is a special virtual force that is added in order to recover the “correct”
statistics. If we neglect the bending energy, excluded volume effects, and other com-
plex interactions, the model is essentially the simplest freely jointed polymer model.
For such a simple model, the orientation of two consecutive rods is considered to be
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independent. In other words, the distribution of the angle between two rods should
be uniform. However, we cannot obtain such statistics in the bead-rod model without
introducing the pseudo force.

For example, let us consider a simple trimer in 3D. Denote angle between two rods
of the trimer as 6. Notice that the 3D spherical uniform distribution can be written
as

p(0) = %sin 0. (2.4)

However, the distribution of rigid bead-rod trimer without pseudo force can be derived
using the generalized coordinates [152]

120

1
= ﬁ(l — =~ cos? 6)1/2 sin 6. (2.5)

p(0) 1

The reason for the discrepancy between Eq. (2.4) and Eq. (2.5) is the rigidity of the rod
constraints. Because the constraint is rigid, the phase space of a bead-rod trimer is a
4-dimensional manifold [153]. The simple Brownian force ensures that the probability
is uniform among the manifold but not 6.
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Figure 2.3: The distribution of the angle of a bead-rod trimer. (a) without pseudo
force; (b) with pseudo force. The blue bins are from Brownian Dynamics simulation
results. Inset of (a) is a sketch for the trimer.

To solve the problem and obtain the statistics of the freely jointed chain, Fixman
introduced an effective pseudo potential which depends on the polymer configuration
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[154]. The explicit form of the pseudo force can be written as

ovU,
Fpseudo _ met 2.6
prsio __ et (262
1
Uner = 5kpT In(det G), (2.6b)

where G is the metric matrix of the bead-rod system [149]. The details of G and the
calculation of pseudo force are given in the next section.

Other potential forces F}

Other potential forces account for the forces derived from bending energy, excluded
volume effect, hydrodynamic interactions and other interaction potentials. The general
form of this force can be written as

. oU

U

where U is a sum over all potentials taken into account. For instance, the bending
potential can be calculated as

L
K
Uen:——E PRI 2.8
bend ai:1u ;1 (2.8)

where u; = (r; —r;_1)/a is the unit vector of rod orientation, & is the bending stiffness
and a is the rod length.

For the excluded volume effect, the repulsive interactions might be modeled by a
pure repulsive Lennard-Jones potential

0 {4e (&= @] i< 2.9

0, if r > rg

where 7 is the distance between two beads and 7. = 2/%¢. € and ¢ are two parameters
that specify the repulsive strength and the effective size of the beads, respectively.

One can add more interaction potentials into the model. However, adding more
potentials could easily lead to a complex model with many parameters. For simplicity,
we ignore these forces in most of our analysis unless otherwise specified.

2.1.3 Bead-spring model

Bead-spring model is another commonly used polymer model [151]. There are several
reasons to use the bead-spring model complementary to the bead-rod model. Firstly,
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the bead-spring model can serve as a benchmark for the bead-rod model. Unlike the
bead-rod model where a pseudo force has to be added to obtain the freely jointed chain
statistics, the model of beads connected by Hookean springs naturally exhibits such
statistics. Secondly, the role of finite extensibility of the chain can be understood by
comparing the inextensible bead-rod model to infinitely extensible bead-spring model.
Thirdly, the computation power needed for the bead-spring model simulations is often
less than that required for the bead-rod, because we avoid calculating the pseudo force
and implicit constraint force.

Figure 2.4: Sketch of the bead-spring loop model. The magenta bead represents
the SPB and other cyan beads represent the polymer segments.

To model the chromosome in fission yeast during nuclear oscillation, we need to
impose a looping structure. The first bead represents the SPB, as shown in Fig. 2.4.
The equation of motion is similar to that of the bead-rod model, and can be written
as:

dri u spring e b
5% =F;/+F, +F; +F,. (2.10)
The notations here are the same as in the bead-rod model. In addition, the Brownian,
external and the potential forces also are the same as in the bead-rod model. However,
here the pseudo force is not needed and the constraint force is replaced by the spring
force FP"™9. We notice that for a bead in the loop, there are two springs connected
to it. Thus

Ffpring = Qi )iy — F(Qi)w, (2.11)

where F?(Q;) is the tension of the spring i, @); is the length of the spring, and u; is
the unit vector for the orientation of the spring .

There are different types of springs one can use for this model. Here, we introduce
two most commonly used ones.
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Hookean spring

Hookean spring is a linear spring, where the tension of the spring depends linearly on
its length:
FHookean _ H(Q _ QO): (212)

where H is the spring constant and () is the natural length of the spring. In practice,
Qo is set to a, which equals to the length of the bead-rod model. However, sometimes
the zero length springs are also used [150, 151].

Finite Extensible Nonlinear Elastic (FENE) spring

FENE spring is another commonly used spring. The force law of this spring is

__ HQ
FFENE _ TP (2.13)

where Ry is the maximal allowed length of the spring. As we can see in Eq. (2.13),
FFENE 5 0 when Q — Ry [150, 151].

In this section, we specified the equations describing the dynamics of the polymer in
our model. Next we discuss the detail of numerical simulations of used to solve these
equations.

2.2 Brownian Dynamics simulations

In Brownian Dynamics (BD) simulations, the governing equation of beads are inte-
grated to deliver their trajectories. Physical quantities are measured by ensemble av-
erage over trajectories of monomers. In our case, the governing equations are Eq. (2.1)
or Eq. (2.10). Examples quantities in which we are interested are the average spatial
distance between any of the two beads, the typical size of the polymer, and the char-
acteristic time scale of the system dynamics. These quantities can be obtained by BD
simulations.

In the following subsections, we introduce the algorithms used to perform the bead-
rod and bead-spring simulation separately. The simulation code is implemented in
C++2011. Most of the simulation are computed in the clusters of MPI-PKS with
X 86 architecture.

2.2.1 BD simulation of the bead-rod model

The goal of the simulation is to solve the stochastic differential equation Eq. (2.1)
numerically. However, the simple integration algorithm such as the Euler-Maruyama
algorithm would not work here. This is because of the implicit constraint force F¥.
Here we use the predictor-corrector algorithm introduced by Liu [155].
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To simplify the illustration of the algorithm, we assume that all complex potential
forces and the external force in Eq. (2.1) are zero, i.e. F¥ = F{ = 0. The dynamic
equation is then simplified as

dr; 1
= (P EP B 2.14
G =g (FEHFr 4w (2.14)

The predictor-corrector algorithm is a two-step algorithm and can be divided into
the prediction step and correction step.

Prediction step

In the prediction step, the estimation of next time step bead position is evaluated
without considering the constraints

1
i (t+ At) = r(t) + E(Ff“)’e“d" +F)AL (2.15)

In order to perform the calculation, we need to evaluate the Brownian force and the
pseudo force first.

e Evaluation of the Brownian force F®

The Brownian force is generated by a Gaussian distributed pseudo random number.
Eq. (2.15) can be written more practically as

r;(t+ At) =1i(t) + %Fﬁ’“ud"At +4/ ngTAt N;(0,1), (2.16)

where N;(0,1) is a multi-dimensional Gaussian random number with mean 0 and
variance 1.

e Evaluation of the pseudo force FP*“%

The expression for pseudo force is given in Eq. (2.6). However, the evaluation is
numerically expensive. To perform, we first write down the metric tensor G.

e’ B
Cop =Y OgA .99 (2.17)

where ¢g“ is the constraint equation indexed « that can be written as a function of
beads position:
g*(ry,re, -+ ,r) =0. (2.18)

In the case of a bead-rod loop, Eq. (2.3) is the concrete representation of Eq. (2.18).
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The L x L metric tensor takes the form

_dl C1 0 cee Cyr, ]
C1 dg Co te 0
G=|: . . . (2.19)
0 -+ cr—o dp—1 cp—1
ce - 0 cpr dp |

where diagonal elements d; = 2, and the off-diagonal elements
G, = —Uu;-Uu;1 (220)

Again here, the periodic index is applied, i.e. uyg = uy. Now, the pseudo force can be

calculated as
1 Jln(det G)

Fpseudo — — kT
! 2 B 8ri
_ Lr 1 9det G 9Gag
2 — det G 9Gas Oy (2.21)

1 _18Ga5
:_ﬁkBTZBGﬂa o

In order to calculate the pseudo force, the matrix G has to be inverted. This operation
is very expensive. Fortunately, the symmetric shape of G in Eq. (2.19) guarantees an
efficient algorithm to do the computation. We use the algorithm developed by Pasquali
and Morse in [149], which is invented for the BD simulation of a bead-rod chain. We
modified it to adopt the loop geometry and applied it on our BD simulations. See
Appendix A for details.

Correction step

The correction step utilizes the result of the prediction, and corrects it with the con-
straint force to obtain the real next time step bead position.

1
ri(t + At) =ri(t+ At) + EF‘;At. (2.22)

The rigid rod constraints must be satisfied after the correction. Substitute Eq. (2.22)
into Eq. (2.3) and also notice that

]:—“ZC = >\i+1ui+1 — )\iui (223)
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where )\; is the magnitude of tension on the i*" rod. Thus we obtain

2Atb; - (Nisqwi— — 200 + A1)
(At)? (2.24)

=¢ (a® —b;-b;) — N1y — 200 + A wig)?

Here b; = rf(t+ At) —r}_,(t+ At). This is a set of nonlinear algebraic equations. The
second term at the right hand side is the nonlinear term. The nonlinear term is small
when the time step At is small enough. Numerically, it is suitable to use the iteration
methods, for example the Picard’s method, to solve this set of equations. High order
methods such as the Newton’s method are also applicable, but require the calculation
of Jacobian matrix in every time step. In practice, a small time step is necessary for
the convergence of root searching. We use a time step between 107° — 10~ depending
on different situations. Once we solve the tension \;, plug them in to Eq. (2.23) and
then Eq. (2.22), the next time step bead position is obtained.

Finally, we want to remark on how to pin the first bead of the bead-rod model. One
has several possible ways to do this. The first one is to use a very stiff zero-length
spring attached the first bead at a certain point. This method is straightforward to
implement. However, the use of the pining spring introduces a high-frequency factor
into the polymer dynamics, which is not desired for analyzing. Also, the attached
spring length is not perfectly zero when the polymer is subjected to a strong force
field. Instead, we use another method, i.e. pin the first bead use the zero-length rigid
rods. In fact, we need three of this kind of “ghost” rods in 3D, the orientation of the
being rods along three axes respectively. This method requires solving the additional
constraint forces. The calculation is similar to the way of calculating F¥.

2.2.2 BD simulation of the bead-spring model

The BD simulation of the bead-spring model is more straightforward. Neither implicit
constraint force nor complex interaction forces are needed to be evaluated during every
time step. Of course, one can also use an implicit algorithm which allows the use of a
larger time step [150, 151]. However, we simply use the explicit algorithms [150, 151]
here, which are the Euler and the stochastic Runge-Kutta methods.

Euler method

Euler method, also called Euler—Maruyama method, is a 1/2 order integration scheme.
In principle, the convergence is only guaranteed when At — 0. However, it is still
widely used because of its simplicity, especially when the variation of the drift and dif-
fusive term in the stochastic differential equation is not too large. The beads connected
by Hookean spring is a good example that fits in this method.

Using this method, the next time step bead position in our simple example can be
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1 2kgT
ri(t + At) :ri(t)+gFgﬂetm+,/ f At N;(0, 1), (2.25)

where Féet = F¥ + F{""™ + F¢ is the total deterministic force. Also notice that, the
F:*" is evaluated by Eq. (2.11) and the spring force law Eq. (2.12) or Eq. (2.13).

calculated as

Stochastic Runge—Kutta method

Stochastic Runge-Kutta method is a higher order explicit integration scheme than the
Euler method. It was proposed by Honeycutt [156]. In this method, the next time
step bead position can be calculated as

ri(t + At) = 1;(t) + %(F?et - F?et)% +4/ 2k§TAt N;(0, 1), (2.26)

where Fé and F are the total deterministic force evaluated using different bead
position.

F;?let = Ffet (ro(t),ry(t), - ,rp_1(t)),
Flglet — ]':-:\Zdet (I.S’ I.L . 71'271) ,

and r} is the mid-step bead position

1 2kgT
= nlt) + (FEA [P A N, D). (2:28)

Last but not least, in the simulations, the dynamic equations are made dimensionless
by rescaling the variable in the following way:

(2.27)

v = r/a; t' —t/(€a®/kgT); F' — F/(kgT/a). (2.29)

The rescaled factor £a?/kpT means the diffusion time of a free immersed bead over a
distance of rod length a and kgT/a is the magnitude of the entropic force. After the
rescaling, the length unit is set to the size of the rod. The rescaling is helpful to avoid
calculations with too small or too large values, which is prone to higher numerical
eITors.

2.3 Monte Carlo simulation of the bead-rod model

In the previous section, we presented the BD simulation technique of the bead-rod
and bead-spring polymer loop. The algorithm used to simulate the bead-rod model
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is quite complex and consequently time-consuming. Sometimes we do not need to do
that if we only want to sample the equilibrium properties of the bead-rod system. In
this section, a much faster and efficient Monte Carlo algorithm is introduced to obtain
the equilibrium statistics of the bead-rod loop model.

Monte Carlo technique has been used to simulate polymer systems for a long
time [157-159]. However, there are some special factors one need to take into ac-
count for our pinned polymer loop model. Basically, one has to preserve the loop
structure and keep the rod length fixed when trying to perform a Monte Carlo flip.
Here we give a brief stepwise description of the Monte Carlo simulation method, which
has been used in Ref. [85].

e Step [: prepare an initial configuration and compute the energy of this configu-
ration. The way of calculating system energy depends on the setting of the model,
whether the excluded volume effect or other interactions are taken into account or not.
For example, the energy of a pinned bead-rod loop in a constant external force field

can be written as
L

E=U-) Fr (2.30)
i=1
where U is other kind of interaction energy such as Lennard-Jones potential. In the
simplest case, we assume U to be independent of the configurations. To compare with
the later evaluation, we denote the energy calculated here as E,4.
e Step II: randomly choose two beads in the polymer loop, use the connecting line
between the two beads as a rotation axis.

Figure 2.5: lllustration of the Monte Carlo configuration flip.
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e Step III: choose the unpinned side of the polymer, and rotate this part of the
polymer by a random angle 6 € [—¢, ¢|. ¢ is a parameter between [0, 7] and can be
tuned to improve the efficiency of the algorithm (see Fig. 2.5). If the pinned bead is
selected, then randomly choose one side of the polymer to perform the rotation.

e Step IV: calculate the energy of the configuration after rotation in the same way
as F,q. Let us denote the new energy as F,cy-

e Step V: the new configuration is accepted with probability

p = min {1, exp (—?—?) } , (2.31)
B

where AE = F,., — Egq. If not accepted, then the polymer returns to the old
configuration. Repeat the process with new rotation axis. An efficient sampling
algorithm can be tuned by parameter ¢ so that the accept probability is around 0.5.

e Step VI: go back to step I and loop again and again to get enough independent
samples. Physical quantities such as the statistical distance between two beads can
be calculated by averaging over these samples.

The Monte Carlo method introduced in this section is efficient and fast, we use it to
calculate most of the equilibrium quantities in next chapters. On the other hand, the
Monte Carlo results also work as a benchmark of the BD simulation and vice-versa.

2.4 Summary

In this chapter, we elaborated the details of our pulled polymer model for the chro-
mosomes in meiotic fission yeast. We have shown that the pulled polymer loop can
be transferred to the pinned polymer loop in an external force field after a coordi-
nate transform. The concrete bead-rod and bead-spring polymer loop models were
discussed. The BD simulation technique was discussed in details. A Monte Carlo al-
gorithm was introduced to calculate the equilibrium statistics of the bead-rod system
and to overcome the disadvantages of heavy computation of the BD simulation.

In the next chapter, we discuss the theory of equilibrium statistics of the pinned
polymer loop model.



Chapter 3

Equilibrium Statistics of the Forced
Pinned Polymer Loop

In this chapter, we investigate the equilibrium statistics of the model and use the
results to understand the chromosome alignment in fission yeast.

In order to treat the model analytically, we neglect the complex interactions such
as bending energy, excluded volume effect, and hydrodynamical interactions. In other
words, our model for analytical investigation is the simplest freely-jointed polymer loop
model. The transformation of coordinates is utilized so that the first bead representing
SPB is pinned in space, and an external force field is applied to the rest of the polymer.

We begin with the description of the model in the first section. The equilibrium
statistics in 1D and 3D are discussed separately in section two and three, respectively.
In the fourth section, we discuss the shape of the steady pinned polymer loop in an
external force field. The studies that are described in the Section. 3.2 and Section. 3.3
were done in cooperation with Yen-Ting Lin.

3.1 Pinned polymer loop in a constant force field

7, —_ [

Y Vip 71
Figure 3.1: Sketch for the pinned bead-rod loop and notations.

We consider a pinned polymer loop in a constant external force field. We first
establish the notations. There are L beads (including the SPB) in the loop and the
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SPB is denoted by ry or r; with periodic indexing. Without loss of generality, we
assume that it is pinned to the origin of the coordinate system, ro = r;, = 0. The
length of each rod is defined to be a constant a. The constant external force field
F = Fe, is in the z direction. The potential energy of the pinned polymer loop can

be written as:
L

E=FEy—a) F-r, (3.1)
i=1
where FEj is assumed to be a constant that denotes configuration independent energy.
Ey is not relevant for the study of equilibrium statistics, but we keep it here for
completeness. The orientation of the rod j is denoted by u; = (r; — rj_1)/a. The i
bead position can be written as:

r; = aZuj. (3.2)
j=1

By plugging it into Eq. (3.1), we arrive at

E:EO—aZi:F-uj. (3.3)

i=1 j=1
Notice that the looping condition indicates

L

> u;=0. (3.4)

Jj=1

In the following two sections, we solve the equilibrium statistics in 1D first and then
extend the theory to 3D.

3.2 Pinned Polymer Loop in 1D

The one-dimensional polymer is a theoretical construction where we neglect the ex-
clusion volume effect so that the beads and rods can overlap freely. We will show that
there exists a peculiar mapping from the one-dimensional pinned polymer loop to a
classical particle-lattice model.

3.2.1 Mapping to a particle system on 1D lattice

The configuration of the one-dimensional polymer can be specified by the orientation
of the rods in 1D. There are only two possible orientations, i.e., +e, or —e,. We denote
the j™ rod orientation by u; € {—1,+1}, where u; = +1 means the rod orientates
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along +e. and u; = —1 means the rod orientates along —e.. Again, the ith bead
position in 1D is z; = a Z;:l uj. We introduce a shifted and rescaled variable

nj = (u; +1)/2. (3.5)

Then n; € {0,1}, and the configuration of the 1D polymer can be represented by
{n1,ng9,--- ,nr}. Since n; is a binary variable, we can interpret n; = 1 as a lattice
site occupied by a particle, and n; = 0 as an empty lattice site. In this way, we find a
one-to-one mapping from the configuration of polymers to particles on lattice sites (see
in Fig. 3.2). Here, the number of rods equals to the number of lattice sites. Without
loss of generality, we set the right-orientated rod corresponding to an occupied site
and the left-oriented rod corresponding to an empty site (see in Fig. 3.2).

Ground state: .mg 20000, . ., f
1St Excited state: .m 9.9,0.9, .9, L1l 1

Figure 3.2: lllustration of the mapping of 1D pinned polymer loop to Fermionic
particles on 1D lattice sites.

2nd Excited state:

Here are some remarks for the mapping:

e The mapped particles are exclusive to each other. It is not possible for one
lattice to be occupied by more than one particles. In other words, these particles are
Fermions. This is because the rod points to either right or left.

e According to the looping condition Eq. (3.4), the total number of rods pointing
to the right must be exactly L/2. Similarly, the total number of particles also must

be exactly L/2:
L
L
Z nj =3 (3.6)
j=1

Furthermore, the number of particles must be conserved for all possible configurations.
e The dynamics of a 1D polymer can be mapped to the particle hopping process on
the 1D lattice. We leave the discussion of this part to Chapter 4.
e The mapping is essentially from a two-state system to a two-state system. One
can also interpret the two states as spin up and spin down or any other two-state
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systems. We use the particle-lattice interpretation in this thesis.
Rewriting the energy Eq. (3.3) in 1D we get

E:Eo—FaZiuj. (3.7)

i=1 j=1

Exchanging the summation order in Eq. (3.7) and utilizing the loop condition Z]LZI uj =

0 we obtain
L

E=Ey+Fa)  juj. (3.8)

j=1

Let us look at the energy from the particle-lattice perspective. Substituting Eq. (3.5)

into Eq. (3.8), we arrive at
L

E=FEy+AE) jn; (3.9)

j=1

where AE = 2Fa and Ey = Ey — L(L+ 1)AE/4 is the irrelevant energy offset, which
is interpreted as ground state energy. Eq. (3.9) can be reinterpreted as the summation
energy of L lattice sites. When n; = 1 (occupied site), we gain an energy of jAE
and zero otherwise. One can clearly see that Eq. (3.9) is the energy of a system with
L/2 fermions distributed over L equal energy levels AE,2AFE,---  LAE. The lowest
energy (ground state) corresponds to the configuration where the left half of the lattice
is fully filled by particles, and the corresponding polymer picture is the fully stretched
configuration. The correspondence of the 15 and the 2"¢ excited states are illustrated
in Fig. 3.2.

The mapping from the polymer to the particle-lattice picture is very useful for
searching the solution of equilibrium statistics. In the following subsections, we solve
the 1D statistics using two different methods. The first one based on the grand canoni-
cal ensemble is an approximate solution with a simpler formalism, while the second one
is the exact solution based on the canonical ensemble but a more complex formalism.

3.2.2 Grand canonical ensemble solution

The 1D particle-lattice system is in principle a canonical ensemble system since the
total particle number is conserved to L/2. However, in order to directly use the
known results of Fermi-Dirac statistics, we first release the constraint by allowing the
particles to be exchanged with the reservoir at both sides of the lattice. Thus the
grand canonical ensemble can be applied to the system. After that, we can reimpose
the constraint using the Brownian bridge technique [160, 161]. We can obtain accurate
values for the mean and variance of the position of each bead using this method.
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The Fermi-Dirac statistics

As we have mentioned above, the particles on the lattice are fermions. One benefit of
working in the grand canonical ensemble is that we can directly use the Fermi-Dirac
distribution. Consequently, the probability of a lattice site being occupied can be

written as 1

1+ exp [—Aiﬁj;“)}

P{n; =1} = (3.10)

where p is the chemical potential p = (L + 1)/2 obtained from the requirement that
on average there are L/2 particles in the system. Accordingly, the probability that a
lattice site is empty can be written as

P{n; =0} =1—-P{n; =1}. (3.11)
Next we define a dimensionless quantity which we call dimensionless temperature:

ksT  kpT

In Fig. 3.3 we present an illustration of the Fermi-Dirac distribution at different 7.
When T is small, namely Fa > kgT, the distribution exhibits a strong bias. The
left half sites are more likely to be occupied and the right half sites are more likely
to be empty. In the polymer picture, this means the orientation of the first half rods
is biased in the direction of force, whereas the second half of rods are more probable
to point against the force field. Physically, it means the pinned polymer in a strong

force field is mostly stretched.

With Eq. (3.10), the mean and variance of the random variable n; can be calculated
straightforwardly as follows:

(nj) =P{n; =1}, (3.13a)
var [n;] =P {n; =1} -P{n; = 0} — (n,)*. (3.13b)

The position of beads can be calculated from Eq. (3.2) and Eq. (3.5):

zi:a<2in]~—i> . (3.14)

If we assume nq,ng, - -+ ,ny are all mutually independent, then the mean and variance
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Figure 3.3: Fermi-Dirac distribution compared with the exact solution from the
number partition theory. Solid lines are the exact solution while the dots are
Fermi-Dirac approximations. Different dimensionless temperature is indicated by
different colors as shown in the legend. (a) L = 100, (b) L = 10.

of bead position can be simply calculated as

(z))=a (22 (n;) — z) : (3.15a)

var [z;] = 4a* Z var [n] (3.15b)

j=1

The results from the above equations can be compared to the Monte Carlo simulation
(see Appendix B for details). We found that the formula works perfectly for mean
bead position. However, significant error emerges for the variance of Eq. (3.15b).
Notice that Eq. (3.15b) is monotonically increasing with the index i. We can try
to use the simple symmetric argument that the var [z;] = var[z;_;]. The result with
symmetric argument is shown in Fig. 3.4, which still differs significantly from the
numerical result.

The reason for this mismatch is that the loop condition is fulfilled only on average
by choosing of the chemical potential ;= (L + 1)/2 in Eq. (3.10). We need to select
from the possible trajectories that come back exactly to the starting point. In the
following part, we will show how to solve this problem using the Brownian bridge
technique.
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Figure 3.4: Mean and variance of the 1D pinned polymer bead positions. MC
simulation results (dots) are compared with theoretical results (solid lines) Eq.
3.15. The length of the polymer loop L = 10. The black dash line indicates the
case T — 00, i.e. no external force field.

The Brownian bridge condition

Let us consider the polymer loop as a random walk that returns to the origin point after
L steps. This sort of random walk process is called the Brownian bridge [160, 161].
So each rod represents a random walk step. The segment connecting the k' and
the [ bead with positions at z and 2’ corresponds to the propagator p(z = 2’|z, =
z). According to the Lindeberg-Feller central limit theorem [160], this propagator is
Gaussian with the mean and variance equal to the sum of the mean and variance of
all individual steps from k to (.

As we mentioned above, the grand canonical ensemble only ensures the loop condi-
tion on average. To solve the problem, we now impose the Brownian bridge condition
so that every single trajectory fulfills the loop condition. The Brownian bridge can be
formulated as follows:

p(zi = z|z0 = 0)p(zp—; = 2|z = 0)
p(zp = 0]z = 0)

pr(zi=2) = : (3.16)

where p(z; = 2) is the probability density function of finding the i*® bead at position
z, p(zx = z|z; = 0) are the propagators. Eq. (2.2) means that the probability density
is calculated by requiring two pieces of random walk trajectory of length ¢ and L — ¢
meet at position z on a condition that they belong to the same loop.

Notice that the propagators in Eq. (3.16) are Gaussian with the variance that is
the sum of the variance of individual steps, i.e Eq. (3.15b), so that p”(z; = 2) is also
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Figure 3.5: Mean and variance of the 1D pinned polymer bead positions. MC
simulation results (dots) are compared with theoretical results (solid lines) Eq.
3.18. The length of the polymer loop L = 10. The black dash line indicates the
case T — 00, i.e. no external force field.

Gaussian. Its variance is given by

Zézo var [n;] Z]L:L—i var [n;]

Zf:o var [n]

Plugging in Eq. (3.13b) and Eq. (3.15b) we can obtain the variance of bead position
in the loop. For T >> 1, we can obtain the close form expressions for mean and
variance of bead position by converting the summations in Eq. (3.15a) and Eq. (3.17)
to integral

var [z;] = 4a”

(3.17)

oo )
exp (%) + exp (g;)
_ sinh <L1i> sinh <i~>
var [] = 20°T - L2T 2 LQ_TQZ'
sinh <ﬁ> cosh <T>

We have solved the mean and variance of bead position for 1D pinned polymer loop
in an external force field by using the Fermi-Dirac statistics and re-enforcing the loop
condition through the Brownian bridge technique. We can see from the above formulae
that the z; — z_; symmetry is automatically satisfied. In Fig. 3.5, these results are
compared with Monte Carlo simulation results. It is evident from the figure that a
strong external force field leads to a stretched configuration and a small fluctuation of

() = 2aT In (3.18a)

(3.18b)
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the bead position. Excellent agreement with the Monte Carlo simulations is obtained.
However, this method is not an exact solution. In the next subsection, we use the
canonical ensemble to obtain the exact solution.

3.2.3 Canonical ensemble solution

In the particle-lattice picture, the system is a canonical ensemble system because of
the conservation of particle number. In this section, we calculate the exact partition
function using this ensemble. More interestingly, we show here the calculation can
be recoded to a number partition problem. Exact results are obtained and compared
with the results from the approximate approach above.

The number partition theory

Before the calculation of the exact partition function, let us discuss an interesting
number partition problem that shares a lot of similarities with the former.

We consider a non-negative integer number K, which can be expressed into the
summation of N non-negative integers:

K = i k; (3.19)

J=1

However, there is a constraint on the summation components 0 < k1 < ky--- < ky <
M. This kind of problem can be best visualized by the Young diagram [162], shown in
Fig. 3.6. In the Young diagram, each row represents a integer number. The number

k4 k4. k4 k4

k, k, k, k,

kz kz kz k2

kl kl kl kl

K=k +k,+k +k, K=k +k,+k,+k, K=k +k,+k,+k, K=k +k,+k,+k,
=0+0+0+0=0 =0+0+0+1=1 =1+2+2+3=8 =1+1+2+4=8

Figure 3.6: Some examples of the Young diagram.

of blue boxes means the value of the ;' integer. Starting from the bottom, because
of the constraint, the diagram is non-decreasing.

The question is, given a certain integer K, how many different ways are there to
partition it into N non-decreasing pieces {kq, ko, -+, kn}? For the simple cases, one
can tell the answer immediately. For example, in the first two cases of Fig. 3.6, we
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illustrate that there is only one way to partition integer 0 or 1 into 4 non-decreasing
integers. However, this question in the general case is not intuitive. Fortunately, this
problem is well studied by mathematicians. Let g(M, N; K) denote the number of
partitions of K with at most N parts, each of size at most M. Equivalently, these are
the partitions whose Young diagram fits inside an N x M rectangle. Then we have
the following generating function:

®(q) =Y g(M,N; K)¢" = (M; N) (3.20)

where ¢ is an auxiliary number, and the notation at the right hand side of Eq. (3.20)
is called g-binomial coefficient or Gaussian binomial coefficient. It is defined as

Ly _ [L]q!
(N)q - [L — N![N],! (3.21)

and [N],:=1+q+¢*+---+¢" ! is a g-number [162].

Exact partition function

Now, let us calculate the partition function of our pinned polymer in the particle-
lattice picture. The partition function Z of a canonical ensemble system with discrete
energy can be written as:

Z(T)=> g(E)exp <_kB_T> , (3.22)

E

where g(F) is the degeneracy of the microscopic states which have the same energy
E. Once g(FE) is known, the partition function can be calculated straightforwardly.

Let us take a look at the energy of the system, i.e. Eq. (3.9). It is represented in
the way of rod orientation wu; or occupation variable n;. Here, we can use another way
to represent the energy. In the particle-lattice picture, the system consists N = L/2
particles. So the energy can be rewritten as:

N
E=E,+ ) Ej, (3.23)
j=1

where F; is the energy of the j™ particle in the external force field. Again, Ey is an
unimportant constant energy offset. We denote the position of the j™ particle as x;,
which is an integer z; € [1, L]. Then we can write E; = x;AE. Notice that, because
of the exclusive condition, the sample space of the particle system is constrained in
Q={x|1<z1 <2< ---<ay <L}
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Let us do a shift for the particle position by defining

Now the constraint on z; is transferred to 0 < k; < ko --- < ky < N, and the energy
of the system can be rewritten as:

N
E=Fy+AE) kj=Ey+ KAE, (3.25)

j=1

Again, F, here is an unimportant constant energy offset, AEAO =Ey+ N (N+1)/2. Tt
is not difficult to find that the range of the energy is Fy, Fy + AE,--- | E + N?AE.

Now we are close to the number partition problem. As K = Zjvzl k;, we have
the same type of constraint as in the number partition problem. Since the mapping
from integer K to energy E is one-to-one, the degeneracy function g(F) is exactly
the number of ways of partitioning the integer K. Furthermore, by denoting ¢ :=
exp (—AFE/kgT), we have

s ()

E NxN
_ 0 . K
= exp (— kBT) Z g(N,N; K)q (3.26)

K=0
B E, L
= exp KT N q.

With the exact partition function Eq. (3.26), the equilibrium distribution P¢ can
be calculated straightforwardly:

. 1 E\ g
P x %exp (_kBT> = (f,)q. (3.27)

We can see here the offset energy is not in the distribution function. That is why we
have commented that it is not important. In principle, one more constant pre-factor
should be added to Eq. (3.27), which can be fixed by the normalization condition
Z%io P¢ = 1. However, this constant is not important for our discussions, so we just
keep it in the form of Eq. (3.27).

With Eq. (3.26) and Eq. (3.27), in principle, one can calculate any kind of equilib-
rium quantities. Here, we calculate the probability distribution of rod orientation in
order to compare with our previous approach based on the grand canonical ensemble.
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Exact probability distribution of the rod orientation

The probability distribution of the rod orientation is equivalent to the probability
distribution of the lattice site occupation. Previously, we have employed the Fermi-
Dirac distribution. In this subsection, we calculate the exact distribution of P{n; = 1}
to show how accurate the Fermi-Dirac distribution is.

We first rewrite the equilibrium distribution (Eq. (3.27)) in the coordinate of particle
position:

N+ [ L 1N
Pe(xlsz’... 7xN) :qi 2 (N) qu”z (328)
q

Now let us denote Pj(z) as the probability that the i*® particle is at position z in
equilibrium. Then P;(x) can be calculated as

P(z) = Z P(xy, 20, 2N)

I<z1<-<xj_1<z—1

X Z Pe(xthv"')xN)

r<xip1<-<xnN<L

(i) (679 /),
1—1 . N —1 . N .

Finally, the probability that the ;' site is occupied can be calculated as

(3.29)

Pln; =1} = Pz =) (3.30)

Eq. (3.30) means the probability that one site is occupied is the sum of the probability
that it is occupied by any of the N particles. Plugging in Eq. (3.29), one can obtain
the exact occupation probability distribution. The exact result is compared with the
Fermi-Dirac distribution in Fig. 3.3. As we can see in the figure, the discrepancy
is quite small. It is only noticeable for a small lattice size at very strong external
force field (Fig. 3.3 (b)). So the Fermi-Dirac distribution is actually a very accurate
approximation.

In this section, we have solved the equilibrium statistics of the pinned polymer loop
model in 1D. Utilizing the mapping from the polymer to a particle-lattice system,
we solve the statistics by two different approaches. The first one employs the Fermi-
Dirac distribution and the Brownian bridge technique. However, it is an approximate
method. The second method based on canonical ensemble and number partition theory
is an exact solution. The exact results are compared with the first method as well as
the Monte Carlo simulations. Our theory matches very well to the simulation results.
In the next section, we extend our theory to the 3D system.
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3.3 Equilibrium statistics in 3D

In 3D, the equilibrium statistics of the pinned polymer loop model can be calculated
using the grand canonical ensemble and Brownian bridge condition. The orientation
of rods have two more degree of freedom in 3D. As shown in section 3.1, the external
force is assumed in the z direction. Let us use the spherical coordinates to describe
the polymer system. We denote 6; as the angle between the j™ rod and the z-axis,
and ¢; as the rotational angle along z-axis. Then the loop condition along the force
direction can be written as

L
Zcost = 0. (3.31)
=1

Using the above condition, the energy of the 3D polymer Eq. (3.3) can be rewritten

as
L

E=FEy+Fa) jcost;. (3.32)
j=1
In the following subsections, we first derive the partition function and then calculate
the mean and variance of the position of the three-dimensional beads.

3.3.1 Partition function

To calculate the equilibrium statistics of a 3D bead-rod system, we use the approach
of grand canonical ensemble combined with the Brownian bridge condition. The grand
canonical ensemble partition function can be written as:

L L

2w s .
(j — ) cosOAEY .
z=1]z=1] . . .
11 g j:1/0 dgb/o exp( T sin 0do (3.33)

Here, 1 = (L + 1)/2 is the chemical potential, the same as in 1D. However, AE = Fa
is different from the 1D case by a factor of 2. Again, let us define the dimensionless
temperature:

-~ kgT kT
7 Bl _ FB

= —— = : 3.34
AFE Fa ( )
There is also a factor of 2 compared to the dimensionless temperature in 1D.
The integration in Eq. (3.33) can be performed to obtain
T sinh =£
z,=—-2=1 (3.35)
J—H

Thus, the mean and variance of the j™ rod orientation u;, = cos6; can be directly
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calculated as

8 —j T
(cosb;) =T0,In Z; = coth R=J _
L (3.36)
v

- o
— cschQ‘Yf
T

(= m)?
Notice that, because of the x — y symmetry, the average projection for x and y direc-
tions are zero: (u;,) = (uj,) = 0. The second moment of these component can be

calculated as
<u3w> = <u32y> =(1- <COS2 0j>)/2 (3.37)

The above equations give the statistical properties of individual rod orientation. In
the next subsection, we will use the Brownian bridge technique to calculate the mean
and variance of bead position.

var [cos 6;] = T285 InZ; =

3.3.2 Mean and variance of the bead position

In the case of 3D pinned polymer, according to Lindeberg-Feller central limit theorem
[160, 161], the corresponding random walk is a multi-variate Gaussian process. It can
be factorized into the product of three Gaussian processes, each corresponding to a
coordinate axis. Let us first discuss it in the z direction, i.e. the direction along the
force field. The propagator in the z direction p(z; = z|zg = 0) is Gaussian with the
following mean and variance:

k
(zr) =a ) (cosb;),
7 (3.38)
O, = 0 Z var [cos 6] .
j=1

Finally, by imposing the Brownian bridge condition similar to Eq. (3.17), the vari-
ance of bead position can be written as

9 Z?ZO var [cos 6] Z]L: 7. var [cos 6;]
Z]L:o var [cos 0]

The analytical results above are compared with the 3D Monte Carlo simulations (see
Section 2.3). We can see in Fig. 3.7 that an excellent agreement between the theory
and the simulation is obtained.

Now let us discuss the directions perpendicular to the force direction. By symmetry
arguments, we can immediately conclude that the statistics in  and y directions are
identical. In addition, the mean position in both directions should vanish because

(3.39)

var [zx] = a
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Figure 3.7: Mean and variance of the bead position in the direction along the
force field. Solid lines are theory and dots are Monte Carlo simulation results. The
black dash line indicates the case T' — o0, i.e. no external force field.

there is no bias. We can write this as

(zk) = (yx) = 0. (3.40)

On the other hand, using Eq. (3.37), the variance of z and y components of the j**
rod orientation can be written as

var [u; ;| = var [u;,] = <u§m — <uj7x)2 =(1- <6082 €j>)/2 (3.41)

Again, by imposing the Brownian bridge condition similar to Eq. (3.39), the variance
of x and y components of the bead position can be obtained. It is worth mentioning
here that the variance in x and y directions are different from the variance in z di-

rection. This is shown in Fig. 3.8 where our theory is compared to the Monte Carlo
simulations.

3.3.3 The pairing of loops

In fission yeast, the homologous chromosomes are appearing in pairs during nuclear
oscillation, which means there are two mechanically identical chromosomes. Biologi-
cally, recombination occurs during nuclear oscillation. It is essential for homologous
chromosomes to come close spatially in order to recombine, which is done by a pairing
process. The biological facts motivate us to consider a pair of polymer loops pinned at
the same point. To understand the pairing process, it is meaningful to study the sta-
tistical distance between two “homologous” beads (Fig. 1.4) belonging to two identical
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Figure 3.8: Comparison of fluctuations in z, y and z directions. Symbols de-
note the Monte Carlo simulations. Circles show the fluctuations along the z axis,
whereas stars and triangles along = and y axis respectively. Colors correspond to
different dimensionless temperatures. Solid and dash lines are theoretical predic-
tions for fluctuations along and orthogonal to the force field, respectively.

polymer loops. Fig. 3.9 is the schematic diagram of this case. Due to the symmetry
reason and no excluded volume effect in the model, the three-dimensional mean dis-
tance between two corresponding beads is zero. The statistical distance is defined as
the square root of its variance with the variance calculated as:

var [d;] = var [r; — r}] = 2var [r;] = 2 (var [z] + var [y] + var [2]) . (3.42)

In Fig. 3.10 we show that the statistical distance varies with the dimensionless tem-
perature, the later being the inverse measure of the external force field strength. We
can see from the figure that strong force field reduces the statistical distance for all
beads and thus facilitates pairing. BD simulations are performed and results are found
to match our theory.

3.3.4 Intersecting loops

The paring process of homologous chromosomes connects two homologues by proteins
along their lengths [163]. However, it is hypothesized that some connections between
homologues could have been formed before the pairing of other parts. One of the
hypotheses is that the centromeres of homologues are still bond together during the
nuclear oscillation. In this subsection, we discuss a pair of pinned polymer loops with
an additional connection in the middle part of the loop. The schematic diagram of the
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Figure 3.9: A Pair of polymer loops pinned at the same point representing the
homologues. The distance of a pair of loci is illustrated as d;.

10-2 107 100 101 102 108

Figure 3.10: The distance between corresponding loci of polymer pair loops varies
with the dimensionless temperature. Different curves indicate different locations
along the loop. The shaded region represents the pairing distance. Dots are BD
simulation data and solid lines are results from our theory. Inset is a sketch of the
observing loci along the chromosome. Here L = 300, kT = 1.
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intersecting loops is shown in Fig. 3.11. The pair of polymer loops (denoted by 1 and

Figure 3.11: The sketch of two intersecting loops 1 and 1’ which are connected
at one additional bead with index ¢. Shaded regions indicate the redefined loops A
and B. The distance d between two homologous beads h and 2¢c — h is illustrated.

1") are pinned at the same point 0 with an additional constraint at some intermediate
bead position (indexed by ¢, where 0 < ¢ < L). However, bead ¢ is not pinned so that
it can still move around.

In order to solve this problem, we redefine the loops as shown in Fig. 3.11. The loop
A starts at the pinned point, continues along the loop 1, to the constraint point ¢ and
then returns to the origin along the loop 1’ by the path of the same length as shown
in Fig. 3.11 shaded with cyan color in between. The loop B is shown in Fig. 3.11
shaded with orange color in between. We are interested in the distance d between
two homologous beads as shown in the figure. We denote the first bead position with
index h, then the other one can be denoted by 2¢ — h considering the loop A.

To calculate the probability density function (PDF) of d := rj, — ra._j, which is
denoted as p(d), let us first calculate the joint positional PDF pjacp(r1,re). We
denote the propagator as py_,;(r1|rs) = p(ry = r1|r; = ry). The propagator is a multi-
variate Gaussian function with a mean and variance summing up by path steps. We
can apply the similar Brownian bridge condition, obtaining

phze_n(T1,Ts) = pOHh(rl‘O)ph%2c7h<r1’r2)p0a2c7h(r2|0>‘ (3.43)
pO—)ZC(O’O)

Then the PDF p(d) can be calculated as

p(d) == //drler(S(d — (I’l - rz))phygc_h(rl, I‘Q), (344)

Without evaluating the integrals in Eq. (3.44), one can conclude that p(d) is Gaussian
because ppoc—n(r1,re) is Gaussian. It is not difficult to obtain the mean distance
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Figure 3.12: Variance of the distance between pinned polymer loops with an ad-
ditional constraint. The constraint is located at the bead with index ¢ = 100.
Circles denote the simulation results while the solid lines represent the theory. The
dashed lines show the variance of the unconstrained case with different color indi-
cates different dimensionless temperature. The black dashed line shows the limit
of unconstrained force-free Brownian bridge.

(d) = 0 because of symmetry and no excluded volume effect. The variance can be
calculated in the same way as Section 3.3.2. For example, the z-component variance

1S
2 2

of o
var [d,] = 222 hoes (3.45)
UO%C,Z
where each variance is calculated according to Eq. (3.36). The result compared with
simulations is shown in Fig. 3.12. We see that fluctuations of the distance is reduced
globally with the additional constraint point compared to the unconstrained case.

3.3.5 Excluded volume effect

In this subsection, we discuss the influence of excluded volume effects on to the statis-
tics of the polymer loops. To do this, we resort to the BD simulations, add the
Lennard-Jones interactions in the model (see section 2.2), and compare the results to
the case without excluded volume.

In particular, in Fig. 3.13, we compare the simulation results of mean and variance
of bead position along the force field with excluded volume effect to the analytical
results without excluded volume effect. In general, the polymer loop with excluded
volume in a force field is more elongated than in the case without excluded volume.
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Figure 3.13: Mean and variance of the bead position in the direction along the
force field. Solid lines are the theory without excluded volume effect, dots are
Monte Carlo simulation results with excluded volume effect. The black dash line
corresponds to the theory of no external force field case. Different cases of external
forces are indicated by different colors shown in the legend.

However, the excluded volume effect is minor if the force field is strong and the polymer
is almost fully stretched. The effect of excluded volume on the position fluctuations is
interesting. In weak external force field, the polymer loop is in a coiled configuration,
and we observe that the excluded volume amplifies the fluctuation of bead position.
In contrast, the fluctuations are reduced by the excluded volume effect in a moder-
ate external force field. In strong external force field, the excluded volume effect is
negligible.

The excluded volume effect on different directions is shown in Fig. 3.14. As we can
see in the figure, the excluded volume increases the fluctuation of the bead position
perpendicular to the force direction, even in a strong external force field. These results
are expected. Because of the excluded volume effect, it is not possible for two beads
to overlap. Beads become more “excited” under the Lennard-Jones interactions when
they come close enough.

To summarize, in Section 3.3, we discussed the three-dimensional pinned polymer
loop model and its equilibrium statistics. The mean and variance of each bead po-
sition are calculated using the grand canonical ensemble combined with Brownian
bridge technique. Fluctuations of distance between corresponding beads of pinned
polymer pair loops are calculated analytically to quantify the pairing process. All
theoretical results are verified by simulations. In addition, by discussing the case of
two intersecting polymer loops, we find that the additional constraint helps to reduce
the fluctuations, thus facilitate the pairing process. Finally, the influence of excluded
volume effect is discussed. We found that the excluded volume reduces the fluctuation
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Figure 3.14: Comparison of the fluctuations in x, y and z directions. Solid and
dash lines are are theoretical predictions for fluctuations along and orthogonal to
the force filed without excluded volume effect, respectively. Symbols denote the
Monte Carlo results with excluded volume effect. Different cases of dimensionless
temperature are indicated by different colors shown in the legend.

along the force direction when the external force field is moderate and amplifies the
fluctuation when the polymer loop is in a coiled configuration. In the next section, we
use the theory of equilibrium statistics to quantify the shape of polymer loops in an
external force field.

3.4 Characterizing the shape of pinned polymer loops

In Fig. 1.3, we have shown the fluorescent labeled chromosomes during nuclear os-
cillation. Experimentally, it is possible to measure the shape of the chromosomes,
which is believed to be an important factor for nuclear oscillations in fission yeast.
For example, it is reported in [11] that an elongated nucleus promoted accumulation
of the LinE component Rec25, which could in turn promote recombinatory pathways,
leading to the accumulation of irresolvable recombination intermediates at the end of
meiotic prophase. So it is meaningful to characterize the shape of the chromosomes
quantitatively.

In this section, we introduce several indicators commonly used to quantify the shape
of steady state chromosomes, which is modeled by the pinned polymer loops. The
three-dimensional gyration tensor, asphericity and the nature of asphericity are dis-
cussed. The simulation results are compared with the theory based on preceded sec-
tions.
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3.4.1 The gyration tensor

Before explaining the shape of the pinned polymer loops, let us first have a look at
the simulation results for several typical cases. We show in Fig. 3.15 the segment
density distribution of a 3D pinned polymer loop projected in the 2D x — z plane. The
upper panel shows the marginal distribution of density along the force direction, while
the right panel shows the marginal distribution of density perpendicular to the force
direction. The red lines represent the theoretical predictions which we will discuss
next.

In section 3.3, we calculated the mean and variance of the bead position in 3D.
When the dimensionless temperature is not too small (7" > 1), the distribution of the
bead position can be considered as Gaussian. We thus have

p(z) = ;[Z] exp ( (i <ZZ>)2) (3.46a)

2mvar 2var [Zz

]
() = ———exp (—(M#) (3.46b)

2mvar [z], [zi]

Then the marginal particle density function can be calculated as

Pe) = 730l (3.47a)
Plz) = % > o). (3.47D)

Substituting the mean and variance we obtained in section 3.3, the theoretical results
shown by red lines in Fig. 3.15 can be obtained.

Although the density profile of monomers can be calculated as Eq. (3.47), the intu-
ition of the polymer shape is still unclear. In order to quantify the shape, we calculate
the 3D gyration tensor of the polymer, which is defined as following;:

QII Qxy Qa:z )\2 0 0
Q= |Qu Qu Qu| — |0 A 0 (3.48)
er sz sz 0 0 /\2

where the elements of the Q tensor @),,, can be written as

Z OMY (ra(i) — rSM), (3.49)

b' |

with m,n € {x,y, 2} and 7™ is the center of mass position. The arrow in Eq. (3.48)
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Figure 3.15: The density distribution of pinned polymer shape indicated by the
color map for (a) strong external force field with F' = 1, (b) moderate external
force field with F' = 0.1, (c) weak external force field with ' = 0.01. Other
parameters are set as following a = 1, kg7 = 1, L = 100. See more explanations
in the main text.
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indicates the diagonalization, and A2, A?, A2 represent the three non-negative eigen-
values of the gyration tensor. Physically, the intuition of the three eigenvalues can be
interpreted as the magnitude of three principal axes of a fitted ellipsoid enclosing the
polymer loops. For convenience, we order them by A3 < A2 < A2,

Based on the gyration tensor, the first shape indicator introduced here is the gyration
radius of the polymer, which is defined and can be calculated as following:

L
ZZ i—rom) = A2+ A2+ A2 (3.50)
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Figure 3.16: The distribution of gyration radius of pinned polymer loop under
different strength of external force field. L = 100, kpT = 1.

In Fig. 3.16, we show the distribution of the gyration radius under several force fields.
Interestingly, we can see that the height of the distribution varies non-monotonically
with the strength of the external force. In other words, the gyration radius is more
fluctuating and distributed in a broader regime under a moderate force field. The un-
derlying reason for this non-monotonic behavior is not clear yet. The looping geometry
of the polymer might play a role since the non-monotonic behavior disappears once
we cut the pinned polymer loop at the middle and turn it into two pinned polymer
chains (data not shown here).

In next subsection, we introduce two more descriptors of the polymer shape, which
is the asphericity and the nature of asphericity.
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3.4.2 Asphericity and the nature of asphericity

The asphericity and the nature of asphericity are two descriptors that are commonly
used to quantify the shape of the polymer. The definition of them is based on the
gyration tensor [85]. More specifically, the asphericity is defined by

3 TrQ?
=S X 51
2 (TrQ)?’ (3:51)
where Qij = Qi; — 0;;TrQ)/3. The nature of asphericity is given by
4 det Q
(fmr2)

However, in order to compare the shape of the pinned model with that described in the
literature [85, 164], we adopt the parameter p = 2v/A € [0,2] and § = arccos ¥/3 €
[0, 7/3]. The physical interpretation of these parameters is illustrated in Fig. 3.17 (a).
Basically, p = 0 corresponds to a fully spherical object while p = 2 means the shape
of the object is rod-like, and # measures whether the object is prolate or oblate.

As we can see from Fig. 3.17, the shape of the pinned polymer loop is spread over a
sickle-shaped area. In addition, the prolate and elongated shape is preferred no matter
the external force is strong or not. The diagrams we found here are similar to those
of semi-flexible unpinned polymer loops in [85].

In this section, we introduce several quantitative shape descriptors of a pinned poly-
mer loop based on the 3D gyration tensor. The theory of segment density distribution
was shown and compared to the Monte Carlo simulation data and a good consis-
tency is obtained. In the future, we can use the theory here to quantify the shape of
chromosomes from the experimental data.

3.5 Summary

In this chapter, we discussed the equilibrium statistics of pinned polymer loops in an
external force field, which is used as the model for chromosomes in meiotic fission
yeast.

We first solved the statistics of the polymer configuration in an idealized 1D model.
A technique which combines the Fermi-Dirac statistics and Brownian bridge condition
was introduced to solve the problem in grand canonical ensemble. The solution found
was compared to the exact solution, which can be obtained after utilizing the analogy
to a number partition problem. However, we found that the results from Brownian
bridge technique are quite accurate while the exact solution is quite cumbersome for
later calculations. Thus the first approach is preferred. Using these results, we are
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Figure 3.17: The shape of pinned polymer loop distributed over the phase diagram
of asphericity and the nature of asphericity. (a) The meaning of asphericity and
the nature of asphericity are illustrated. (b) The p — 6 phase diagram for F' = 1.
(c) The p — 6 phase diagram for F' = 0.1. (d) The p — 6 phase diagram for
F = 0.02. (e) The p — 0 phase diagram for F' = 0.001. Other parameters are
kT =1, L=1, a=1.
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able to calculate the mean and variance of bead position.

We then extended our theory to the three-dimensional system. The same method
of Brownian bridge was used to solve the equilibrium statistics of the polymer con-
figuration. Also, the three-dimensional mean and variance of the bead position were
calculated. Moreover, the pairing process of two identical polymer loops pinned at the
same point was discussed. We calculated the statistical distance of the corresponding
beads along the polymer loops. We found that the external force field can reduce the
statistical distance significantly. Thus the mechanism of facilitating pairing by pulling
was illustrated. In addition, we also considered the intersecting polymer loops in order
to study the role of additional constraints in the pairing process. The results show
that the additional constraints further reduce the fluctuation and facilitate the paring
process.

In the last section, we employed our theoretical results to discuss the shape of pinned
polymer loops in an external force field. The marginal distribution of segment density
was calculated in both parallel and transverse direction of the force field. We then
quantified the shape based on the three-dimensional gyration tensor. Interestingly,
we found that the width of gyration radius distribution varies non-monotonically with
the strength of the external force field. The diagram of asphericity and the nature
of asphericity were shown which imply a rod-like and prolate shape of the pinned
polymer loops in both weak and strong force field. The shape measurements discussed
here could be compared with the experimental data in the future.

In next chapter, we delve deeper to study the dynamical properties of the pinned
polymer loop in an external force field.






Chapter 4

Relaxation Dynamics of the Forced
Pinned Polymer Loop

In the previous chapter, the equilibrium statistics of pinned polymer loops in an exter-
nal force field were discussed in detail. However, we have assumed that the relaxation
time of the system is much smaller than the oscillation period to make our discussion
relevant for the biological circumstances. This assumption needs to be justified. The
dynamical properties of pinned polymers in an external field is an interesting topic
from the theoretical point of view. To the best of our knowledge, the way to calcu-
late the relaxation time of a pinned bead-rod model in an external force field is still
missing.

In this chapter, we study the dynamical properties of the pinned polymer loop
model. In the first section, we illustrate how to apply the Rouse theory on the pinned
polymer loop model in an external filed. In the second section, we introduce the
mapping from 1D polymer dynamics to the ASEP and show some interesting results
from the Kinetic Monte Carlo simulations. In the third section, we use the Bethe
ansatz method to solve the ASEP problem exactly and calculate the relaxation time
analytically. In the fourth section, we try to apply our calculation to the 3D bead-rod
model. Finally, a summary is given in the last section.

4.1 Rouse theory of the pinned bead-spring loop

Rouse theory is a theoretical framework to calculate the dynamics of a bead-spring
polymer [19]. In the case of modeling chromosomes in fission yeast, we mainly use
the bead-rod model instead of the bead-spring model. However, the study of Rouse
theory is still useful because of several reasons. On one hand, we can see later that
the Rouse theory can correctly represent the dynamics of the bead-rod model when
the external force field is vanished. On the other hand, the Rouse theory describing
the infinite extensible bead-spring polymer allows us to study the role of extensibility
when compared with the result of finite extensible bead-rod model.

Despite of the simplicity of the Rouse theory, we have not seen a calculation of the
Rouse theory on the pinned polymer loop model. To the best of our knowledge, what
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we present here is new. Let us start by writing down the dynamical equations of the
model.

4.1.1 Dynamical equation

Figure 4.1: The sketch of pinned bead-spring loop with notations.

We consider a pinned polymer loop modeled by beads and connecting springs
(Fig. 4.1). As in our previous discussion of the bead-rod model, the bead labeled
by 0 is assumed to be pinned at the origin and there are L beads in total in the
loop. Again, the periodic indexing is used. We can write the pinned condition as
ro=r;, =0.

The dynamical equation for a single bead in the loop is Eq. (2.10). Here, we rewrite
it for the convenience of later calculation as:

dr;

— =k A fe+ f 4.1
S sz: ke + £ + 17, (4.1)
where € is the friction coefficient of bead in fluid, r; is the bead position of the i*" bead,
kp is the spring constant with a linear Hookean spring assumed. ff is the external
force exerted on beads, f{ is a typical Brownian force satisfying Eq. (2.2). For a
pinned loop, A is a (L — 1) x (L — 1) matrix and has the following form

A= | o (4.2)

We do not take into account any complex terms of interaction such as bending
energy and excluded volume effect in this simple model.
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4.1.2 The normal modes

For convenience, we use the vector notation and rewrite Eq. (4.1) as:

d
R = —kyAR + F° + F’, (4.3)

S

where R = [ry,ro, - - ,rL_l]T. Similar vector notation is also applied for F¢, F’. In
order to solve this set of dynamical equations, we first notice that the connecting
matrix A is a very special type of matrix called tridiagonal Toeplitz matrix [166].
Fortunately, it can be diagonalized exactly. To do this, let us introduce a similarity
transform such that

[Q'AQ] =Dy = \dji, (4.4)

here €2 is normalized to be a unitary matrix, and )\ is the eigenvalue of matrix A. The
calculation details are shown in Appendix C. The results can be written as following

k
A = 4sin? <£>,k:1,2,-~,L—1; (4.52)

Qe = Uy = [0 e = [0y = \/% sin (MTW) | (4.5b)

Multiplying both sides of Eq. (4.3) by Q~!, we arrive at

-1
5% = —kgQ TAQQ TR+ Q'F + Q'R (4.6)

Here Q1AQ = D. Using the notation such that R = Q 'R, we get the set of
decoupled dynamical equations

dis L
=L = —ku\E + B + 8. (4.7)

Eq. (4.7) can be solved easily by standard methods. The general solution can be
written as:

y 1 t kpr ) , t kprhj ,
Bi(t) =1;(0)e € t+g (/ fee e (”)dt’+/ fre= e (“)dt’). (4.8)
0 0

Here the transformed Brownian force also fulfills
<fjb> = 0; (4.9a)
(o0 F2s(t) ) = 26k T6 0055t — 1) (4.90)
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Given the solution of Eq. (4.8), the position of each bead can be obtained by the
inverse transformation R = QR. In the simple case of constant external force field,

= f¢e., Eq. (4.8) can be rewritten as
kH)\] t) /
3

Finally, the bead position can be obtained by the inverse transformation:

t)=> Qi) (4.11)

Fi(1) = £(0)e €t l;in (1— (4.10)

Now the equilibrium statistics of the polymer, such as the mean and variance of each
bead position can be calculated easily. Substituting r;(¢) from Eq. (4.10) to Eq. (4.11)
and taking the limit £ — oo, we get

fre. _ fee. sin () sin (%)
0o\ o — ) 4.12
&) Z "kyX;  2Lkg Z sin? (”—”) (4.12)
J ]7 2L
The summation of j can be calculated explicitly, we get
fe L1 sin <i(2k:L—1)7r>
(r>) Z (4.13)

(2k—1)7\
— 1)msin <T>

One can clearly see from Eq. (4.13) that (r{°) = (r{° ;) as expected. In addition, the
components of mean position perpendicular to the force field direction are vanished.

In order to calculate the variance of the bead position, it is nontrivial to firstly
calculate the two-time correlation of normal coordinate position as

kpdm , kpAm g

(Fr ()T (£)) = (Fpn (0)F, (0)) e € '€

(fe)2 EH2m ¢ EHAn 4

L85 wewd CT R | (i IR CRPY
3kBT kHE/\mt(Smn.
ki,

Then the second moment of the bead position can be calculated as:

<I‘12(t)> = Z szQm <I~'m(t)f'n(t>> : (415)

m,n



4.1 Rouse theory of the pinned bead-spring loop 65

Finally, taking the limit ¢ — oo, we get the equilibrium variance of the bead position

L-1

. 2
3kgT sin (1) 3kgT
oo 00\2 00\\2 B § : L BL . .
var [rl ] <(r7, ) > <(rl )) 2LkH e Sin (];z) kHL Z( Z) ( )
It is worth mentioning here we also have the symmetry that var [r°] = var [r%"_i].

Moreover, we want to point out that the variance does not depend on the external
force. It means that the statistical distance between two beads does not depend on the
external force field. This is essentially because infinite extensible Hookean springs are
employed in the Rouse theory. Furthermore, we also want to remark that the result
of Eq. (4.16) is idential to the Brownian bridge result without external force.

4.1.3 Relaxation time

We discuss in this subsection the relaxation time of the pinned polymer loop. To
extract the relaxation time, we calculate the autocorrelation function of diameter
vector, defined as rqy = rL —ro=r, to obtain

(ra(t)ra(0)) = D Qe Q1 (E(t)Fa(0)) - (4.17)

From Eq. (4.14) we can readily get the relaxation time

_ & §
N kH)\l N 4]{?H Sill(ﬂ'/QL)7

T

(4.18)

71—2 9
the unpinned polymer chain [18, 19], called Rouse time. Like the variance of bead

position, the relaxation time does not depend on the external force.

when L is large we can expand the sin term arriving at 7 = k:ii which coincides with

4.1.4 Comparison to the bead-rod model

Now we try to fit the Rouse theory to the pinned bead-rod loop. To do this, we take the
spring in the bead-spring model as entropic spring and then relate the spring constant
to the length of the rod. If the spring in the polymer is the three-dimensional entropic
spring, then the spring constant can be evaluated by the equipartition theorem as

1 3
—kya® = ZkgT 4.1
2 Ha 2 BL, ( 9)

where a can be interpreted as the equilibrium length of the spring and is set to the
length of a rod for the comparison. We obtain ky = 3*2Z. Plugging it into Eq. (4.13)

a
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Figure 4.2: The equilibrium mean and variance of bead position for the bead-
spring model, compared with the bead-rod model. (a) Mean bead position of
the z component. (b) The variance of bead position. Dots are BD simulation
results of the bead-spring model, solid lines are the Rouse theory. Dashed lines are
the theory of the bead-rod model. Different color denotes different dimensionless
temperature 7" which is indicated in the legend. The black dash line in both (a)
and (b) shows the limit of no external force field.

and Eq. (4.16) we arrive at

Lyl . (i(2k—1)m
1 i sm( - ) (4.208)
<rfo> = —=ae, 3 .zUa
3T 13 2k — Drsin? (207
(L
var [r{°] = a22( J (4.20b)

where T = kpT/AE = kgT/f¢a. Now we can compare these results with the bead-
rod results obtained in previous chapter. From Fig. 4.2, we notice that unlike the
bead-rod model, the variance of bead position does not depend on the external force
field here. This is a fundamental difference between the bead-rod and bead-spring
model.

For the relaxation time, plugging Eq. (4.19) into the Eq. (4.18) and let L > 1, we
obtain ca2L?

a
T = 3T (4.21)

Interestingly, it coincides with the relaxation time of a free bead-spring polymer chain
with L monomers. Again, it does not depend on the external force field. We remark
here that kz = kgT/a? in case of 1D, which results in a factor of 3 for the relaxation
time. More discussions can be found in the Section 4.4.
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In this section, we discussed the Rouse theory for pinned polymer loop in an external
force field. Using the theory, the equilibrium statistics of the bead position and the
relaxation time of the pinned polymer loop were calculated. The equilibrium results
were compared to the results from the bead-rod model. We found that the relaxation
time of the bead-spring model does not depend on the external force field. Physically,
it is caused by the infinite extensibility of the springs. To further explore the role
of finite extensibility, in following sections, we try to solve the relaxation time of the
rigid bead-rod model.

4.2 1D pinned bead-rod loop can be mapped to ASEP

We have illustrated the mapping from one-dimensional polymer loop to particles on
lattice sites in Chapter 3. Here, we further show that the same mapping can also
be used to study the polymer dynamics. The dynamics of the bead-rod polymer can
be mapped to the hopping process of the exclusive particles, which is well known as
ASEP.

4.2.1 The mapping to ASEP

We recall that in the mapping from 1D bead-rod polymer to the particle-lattice system,
right oriented rods are interpreted as sites occupied by one particle, left oriented rods
are interpreted as empty sites. L rods map to exactly L lattice sites and the reflecting
boundaries are applied. The number of particles must be exactly L/2 because of the
looping condition.

Now, let us consider the dynamical problem in the picture of particle-lattice. It is
intuitive to imagine that the particle can hop to the empty neighboring sites. Multiple
occupations are forbidden because the phase space is restricted to be binary. This
kind of one-dimensional particle hopping process is exact ASEP. The hopping rates
to left and right are usually not the same. The reflecting boundaries can be imposed
representing ASEP with reflecting boundary conditions. In Fig. 4.3 (a), we present a
schematic diagram of the reflecting ASEP. The question is what is the corresponding
process of particle hopping in the polymer picture.

Let us consider just one particle with its neighboring sites and take the example of
the particle hopping to the left site. The particle that hops to the left affects the states
of two neighboring sites and thus the states of two neighboring rods in the polymer
picture. Correspondingly, the orientation of the two rods change from left-right to
right-left. So one step of particle hopping corresponds to a flip of two rods connecting
to the same bead in the polymer picture. The same analysis can be applied to the case
when the particle hops to the right. Fig. 4.3 (b) illustrates the mapping of the hopping
process. Then the next question is how to determine the hopping rates corresponding
to the flipping of rods.
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Figure 4.3: The schematic of ASEP and the mapping of dynamics. (a) lllustration
of ASEP, orange beads represent particle and reflecting boundary is indicated.
(b) Nlustration of one step particle hopping process maps to the flipping of two
neighboring rods in the polymer picture.

We denote the rate of particle hopping to the right and to the left as a and
respectively. We start with the case of no external force field, i.e. F' = 0. In this case,
there is no hopping bias, so we have o = 3. The value of the hopping rates is related
to the flipping time scale of two rods in the polymer picture. Here we estimate the
flipping time by a typical timescale 7y for a bead to diffuse a distance of the order of
the rod length a. Then the total hopping rate r := a + [ can be estimated as

2D 2kpT

T_l/TO— a2 —57

(4.22)
where we used the diffusion constant of the bead given by Einstein relation D = kgT'/¢,
and ¢ being the friction coefficient. As a result, we have a = § = r/2 in the case of
F=0.

Now we turn to the case when F' # 0. In this case, the hopping of particles

is biased by the external force field. Here, we assume the “local” detailed balance
condition [147, 165] to be fulfilled:

a/f =exp(—AE/kgT), (4.23)

where AFE is the energy change between the pre-hopping configuration 1 and post-
hopping configuration 7. n and n’ are different by a single hopping step of one particle
to the left. We emphasise that Eq. (4.23) in general does not mean the system is in
equilibrium, for which the global detailed balance condition oo/ = P (n)/P(n’) has
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to be fulfilled. Here P¢Y(n) is the equilibrium probability of the configurations. ASEP
with periodic boundary condition is an example where the “local” detailed balance
holds while the global detailed balance is violated because P (n) is uniform. How-

ever, the global detailed balance is satisfied for the case of reflecting ASEP discussed
here [137, 147].

In order to fully determine the hopping rates o and 3, one more constraint is required
in the case of F' # 0. Here, we adopt the same argument used in Driven Lattice Gas
systems [147]. Namely, by introducing an external force field, the hopping rate along
the force field 8 is enhanced by a factor k so that § = kr/2, and the hopping rate
against the force field « is reduced by the same factor so that a = k~'r/2. Then, from
Eq. (4.23), we can easily obtain x = exp (AE/2kgT), and the corresponding left and
right hopping rates for the ASEP system become

kT

a= ca? exp (—AE/2kgT) (4.24a)
b= ZZ;F exp (AE/2kgT) (4.24b)

With Eq. (4.24), we now have a well defined reflecting ASEP model that can be
mapped to the polymer dynamics. Here are several remarks about the mapping:

e For simplicity, we have assumed that only single-particle hopping is allowed in the
ASEP system. In the polymer picture, this corresponds to demanding that only the
smallest segment of the loop — a single bead — is allowed to move at any given time,
and there are no simultaneous movements in longer segments.

e We have assumed here that «, [ are the same for different lattice sites, i.e. a
homogeneous hopping system is assumed.

e In the polymer picture, AFE is the energy change caused by the flipping of two
neighboring rods. In the strictly one-dimensional setting, we cannot define the con-
tinuous process of flipping but only its initial and final states. We have AE = 2Fa in
1D. However, when we try to fit the mapping to a 3D system, where the continuous
rotation of rods is possible, AE = Fa should be used. The intuition is that rota-
tion over 7/2 already changes the orientation of two neighboring rods. The setting of
AFE = Fa is also consistent with the calculation of equilibrium statistics of 3D pinned
polymer loops in Section 3.3.

Although ASEP is a well studied non-equilibrium model, not so many works focus
on the particular case of reflecting boundary conditions. To the best of our knowledge,
the exact solution of the full dynamics of the reflecting ASEP system is still missing.
In the next section, we solve the problem completely using a generalized Bethe ansatz
method. However, we would like to discuss some interesting numerical results before
that in order to highlight certain features of the reflecting ASEP system.



70 Chapter 4: Relaxation Dynamics of the Forced Pinned Polymer Loop

4.2.2 Some numerical results

We solved the equilibrium statistics of the 1D particle-lattice model in the Chapter
3. To solve the dynamics, we first resort to numerical simulations to get some hints.
Since the 1D reflecting ASEP is a well-defined model, we can forget about the mapping
to polymer system and focus on the ASEP model itself in this moment. We illustrate
some of the numerical details in this subsection.

We are mainly interested in the relaxation time of the system. Relaxation time
characterizes how long the system takes to return to the stationary state when it
is subjected to a small perturbation. In the reflecting ASEP system, we trace the
trajectory of a tagged particle, then calculate the auto-correlation function of the
trajectory to extract the relaxation time. Usually, we choose a particle in the middle.
If we denote the position of this particle as x N, and the total number of particles in

the system as IV, the autocorrelation function can be written as

(zx(t)ey(0)) ~ zk:exp (—Tik) . (4.25)

In the long time regime, the largest 7, which we denote by 7 for simplicity, dominates
the relaxation. By fitting the autocorrelation function in the long time regime, we can
obtain the relaxation time numerically.
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Figure 4.4: The relaxation time of 1D reflecting ASEP system varies with hopping
bias. Total number of lattice site is L = 100, and kT /¢a® = 1. Different markers
denote different total number of particles on the lattice.

In our simulations of 1D reflecting ASEP, we use the Kinetic Monte Carlo algo-
rithm to simulate the particle hopping process. Details of this algorithm are shown in
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Appendix B. Then the autocorrelation function Eq. (4.25) is measured and fitted to
extract the longest relaxation time. In Fig. 4.4, we show that the relaxation time of a
1D reflecting ASEP model varies with a dimensionless parameter b, which is defined
as

b:=1In (é) € [0, 00). (4.26)

«

When there is no hopping bias, i.e., « = 3, we have b = 0, and b increases as the bias
becomes stronger. Fig. 4.4 illustrates the simulation results of a system with total
lattice sites L = 100 but different particle number N on the lattice. We can read
from Fig. 4.4 that the three curves of 7(b) are almost overlapped. The crucial point
hinted by the simulation results is that the relaxation time of the system seems to
be independent of the total particle number on the lattice (as long as it is neither all
empty nor all occupied). Intuitively, one can imagine the relaxation time of a system
with N particles and L — N particles should be the same because of the particle-
hole symmetry. However, our simulation results suggest that it is far more than one
expected.
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Figure 4.5: Eigenvalues of a small 1D reflecting ASEP system with different par-
ticle number on the lattice. L = 10 and the number of particle N € {1,2,--- ,9}.
(a) All eigenvalues, the eigenvalue is marked by bars. (b) Zoom in view for the
shaded regime in (a), eigenvalues are marked by asters, the back line denotes the
zero line and the red line shows that the second largest eigenvalues are all the
same. Parameters are setasa =1, § = 2.

To understand this observation, we write down the master equation which describes
the dynamics of the ASEP system:

P, t) ;Z’t) = M- P(n,1), (4.27)
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where M is a (f,) X (ﬁ,) matrix, called Markov matrix. Numerically, the matrix M
can be constructed by enumerating all possible many-particle configurations {n} of
the ASEP. The transition rate M, ,, is set to o if a configuration 1 can be reached
from an other configuration 1’ # n by an event of a single particle hopping to the
right. Similarly, M, , = 3. The diagonal elements are prescribed by conservation of
probabilities, M, = — >, My .

The dynamical information of the system is encoded in the Markov matrix M. By
diagonalizing the matrix, we can obtain the full dynamical information in terms of
eigenvalues and eigenvectors. For example, the stationary state corresponds to the
eigenvector with zero eigenvalue, and the longest relaxation time of the system is
related to the second largest eigenvalue A;. For a stochastic system with stationary
state, the eigenvalues of the Markov matrix are always non-positive. The longest
relaxation time can thus be calculated as

1

i (4.28)

T =

In Fig. 4.5, we use the brute force algorithm to diagonalize a small size system with
L = 10 lattice sites and different particle number. In these results, we observe the
following:

e All eigenvalues are non-positive as expected.

e The eigenvalues satisfy the particle-hole symmetry, i.e. the eigenvalues for N
particle system and L — N particle system are exactly the same. This is well illustrated
in Fig. 4.5 (a).

e By carefully examining Fig. 4.5 (a), we can find that the set of eigenvalues in case
of N =1 is a subset of the case N = 2. In general, the set of eigenvalues for the case
N is contained in the set of eigenvalues for the case N + 1 as long as N < L/2. This
is another interesting key feature of the reflecting ASEP system.

e As indicated by the red line in Fig. 4.5 (b), we can see that the second largest
eigenvalue for all the cases is the same. The result explains our observation shown in
Fig. 4.4. For more general cases, detailed discussions are presented in next section.

In this section, we introduced the mapping from polymer dynamics to the ASEP
model with reflecting boundaries. Moreover, we discussed some interesting simulation
results of the reflecting ASEP model. Some interesting features of the reflecting ASEP
system was illustrated. In next section, we use the generalized Bethe ansatz method
to solve the reflecting ASEP model exactly. With the exact solution, we map it back
to understand the polymer dynamics.

4.3 The Bethe ansatz solution of ASEP

As introduced in Section 1.3, the Bethe ansatz method is a powerful tool used for
seeking the complete solution of the ASEP system. For instance, the standard Bethe
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ansatz solution which is composed by plane wave functions works perfectly on the
ASEP system with periodic boundaries. However, the standard Bethe ansatz does not
work in the case of reflecting boundaries.

In this section, we show that a generalized Bethe ansatz method can be used to solve
the dynamics of the ASEP model with reflecting boundaries. Unlike the standard
Bethe ansatz, the generalized Bethe ansatz is constructed by more complex building
functions. We find that the single particle eigenfunctions, which take into account the
boundary conditions, can be used as the building functions. In order to construct the
solution, let us first discuss the single particle solution of the reflecting ASEP system.

4.3.1 Solution of single particle

The master equation of a single particle on a closed lattice with L sites can be written
as:

%P(m, B = aP(z — 1,#) + BP(x + 1,1) — (a + B)P(x, 1), (4.292)
CP(1,1) = BP(2.1) — aP(1,1), (4.29b)
%P(L, t) = aP(L —1,t) — BP(L, 1), (4.29¢)

where P(z,t) is the probability of a particle sitting on site x at time ¢, and z is
confined to be an integer in the range of z € {1,2,--- ,L}. Eq. (4.29b) and (4.29¢)
are the special cases of the master equation at the boundaries. It is more convenient
to rewrite Eq. (4.29b) and (4.29¢) as the following boundary conditions:

aP(0,t) = BP(1,1), (4.30a)
aP(L,t) = BP(L + 1,1). (4.30D)

The notation of Eq.(4.30) might be confusing. Because z = 0,L + 1 sites are out
of the domain and one would expect the corresponding P(z,t) = 0. However, this
notation actually employs a technique called “ghost coordinate”, which is often used
in the analysis of discrete stochastic processes [147]. To clarify the concept, we remark
several points here:

e By writing down Eq. (4.30), we have introduced an auxiliary space with infinite
lattice sites where the master equation Eq. (4.29a) is satisfied. In the auxiliary space,
P(0,t) and P(L + 1,t) are not necessarily vanished.

e Based on the auxiliary space, we then impose additional constraints. Eq. (4.30a)
can be interpreted as the flux from site 0 to site 1 equals to the flux from site 1 to
site 0. Similarly, the same interpretation can also be applied to Eq. (4.30b). So the
boundary condition simply means that the net flux at the boundaries is vanished.
Namely, the reflecting boundary condition is imposed.
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e Physically, P(x,t) in the real space is normalized in the domain z € {1,2,--- | L},
and the probability outside the domain is zero.

e Mathematically, Eq. (4.30) can be derived straightforwardly by assuming Eq.
(4.29a) is valid in the whole space and subtracting Eq. (4.29a) by Eq. (4.29b) and
Eq. (4.29¢), respectively.

Now, our task is to solve the master equation Eq. (4.29a) and boundary conditions
Eq. (4.30). Let us take the ansatz of separation of variables P(x,t) = ¢(x)eM and
plug it into Eq. (4.29a), obtaining

Bo(x+1) — (a+ B+ No(x) + ap(z — 1) = 0. (4.31)

Given that x is an integer number, Eq. (4.31) is essentially a set of liner difference
equations. Substituting the ansatz of P(z,t) into Eq. (4.30), we obtain

ag(0) = Be(1), (4.32a)
ap(L) = Bo(L +1). (4.32b)
The standard method to find the solution of ¢(x) is to take an ansatz ¢(x) = Az",

where z is an arbitrary complex number. We arrive at the quadratic characteristic
equation:

B2 — (a+ B+ Nz +a=0. (4.33)
If we denote the two roots of Eq. (4.33) as z; and z_ respectively, we have z,z_ = %

The solution of Eq. (4.31) can be written as
Pla) = Apzl + A", (4.34)

By applying Eq. (4.32) to Eq. (4.34), we can find all the eigenvalues and corresponding
eigenvectors. The results are summarized as following. The stationary eigenmode with
zero eigenvalue is

¢s(x) = A (—)x , A = const. (4.35a)
A = 0. (4.35D)

There are L — 1 non-stationary eigenmodes and corresponding eigenvalues, which can

be written as
sin (]%w) — \/gsin (]%(a: - 1))] , (4.36a)

a3

Ak:—(a+5)+2\/@cos(l%); k=1,2,...,L—1. (4.36b)

NIE]
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The eigenvalue A\; = 0 and the corresponding eigenvector represent the stationary
mode ¢g(x). We define a scalar product between any two functions by

CXOEDYS % (4.37)

The definition Eq. (4.37) makes ¢s(x) identical to the stationary distribution P¢(z),
where x is an integer. By properly choosing the constant pre-factor and let L — oo,
one can check the orthogonality and completeness of the eigenfunctions:

> dr(@)di(x) = iy, (4.382)
> 61(@)6k(y) = ay- (4.38b)
k=1

For an arbitrary initial distribution of P(x,0), we can decompose it as

P(z,0) =Y cxdn(x), (4.39)

k

where ¢, can be calculated by

=Y ¢r(x)P(x,0). (4.40)
Finally, the solution of single particle on reflecting lattice can be written as

P(z,t) =Y ¢p(x)e™ Y dp(a’)P(2',0). (4.41)
k a!

For the special case that P(x,0) = d,,, solution (4.41) can be simplified to

Pz, t) = on(x)on(y)e™". (4.42)

With the complete solution of reflecting ASEP with single particle, we can step
further to the system of more particles. The idea is that the single particle solution
can work as the building blocks of the N-particle solution. To illustrate that, we start
with the case of N = 2 in next subsection.
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4.3.2 Solution of two particles

We denote the probability of the two particles sitting at x; and x5 respectively at time
t as P(xy,z9;t), assuming z; < x9. Firstly, we shall write down the master equation,
which is

dP it
% —aP(z) = 1,m9:t) + BP(my + 1,02:1)
= 2(a + B)P(x1, w23 ).
Taking the same eigenfunction expansion as in the single particle case, we get
P(xy,19,t) = Z Wy (1, 29) et (4.44)
k

Plugging it into the master equation Eq. (4.43) we have

AV (xy,29) =a¥(x; — 1, 29) + fU (21 + 1, 29)
+ 06\11(1’1, Ty — 1) + ﬁ‘l’(l‘l, To + 1) (445)
—2(a+ B)¥(zq, z2).

The reflecting boundaries are

a¥(0,x9) = fY(1, x9), (4.46a)
a¥(zy, L) = Y (xy, L+ 1). (4.46D)

For the case of more than one particle, we need to take into account the exclusion
effect, i.e., one site can be occupied by at most one particle. Mathematically, it can
be written as an additional boundary condition

a¥(z,z)+ pY(x+ 1, z+1) = (a+ B)¥(z,z+1). (4.47)

Notice that the exclusive condition must hold for any z. The notation of ¥ (z, z) may
look strange, but we keep in mind that it is a boundary condition that denotes the
limiting situation x; = z5. We can understand it in the same way of understanding
the “ghost coordinate”. In appendix D for a detailed derivation of Eq. (4.47) is given.

To construct the Bethe ansatz solution, we summarize the eigenfunctions Eq. (4.35)
and Eq. (4.36) into a set and rewrite them as following:

W(z) € {0s(x), tns(z)} = {A (%) (%) (AL e + Aeipw)}, (4.48)

where 15 and 9,5 represent stationary eigenfunction and non-stationary eigenfunctions
respectively. A, A,, A_ are amplitude coefficients, p is the wave vector of excited
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eigenmodes. In case of single particle above, these coefficients can be fixed by applying
the boundary conditions Eq. (4.30). Here, however, we keep them arbitrary and use
the general form to construct the Bethe ansatz solution. Boundary conditions can be
imposed afterwards and all arbitrary coefficients can be solved then.

The idea to construct the two-particle solution is inspired by the standard Coor-
dinate Bethe ansatz. However, instead of using the plane wave function as building
blocks, we use (z) drawn from Eq. (4.48) here. The ansatz for V(zy, xs) reads

(21, v2) = Y1 (21)Pa(2) + 1;2(901)1/;1(562)- (4.49)

Since there are two particles in the system, we have ¢; and 1), in the ansatz. The
functional form of ¢y and 1y can be drawn from the set of Eq. (4.48), either in
stationary form )5 or in non-stationary form ,s. However, the argument variable of
11 and 15 can be either x; or x5. In general, one has N! ways to permute the function
1, and the argument variable x,. In the case of N = 2, there are only two ways.

We classify o1, 1 as one class and 1y, 1o as the other class. Functions in the

same class (e.g. ¥ and @Zl) share the same functional form but different amplitude
1

coefficients. For example, (1) = (%) F (AT 4 Ay_emm) and oy (z,) =

(%)7 <f~11+eip112 + Al_e*"pw?). In general Ay, # le and A;_ # fll_, but v; and

1, share the same functional form v, and the same wave vector p;. It is important
that ¢, and v, might have different amplitude coefficients. The main idea is to tune
these amplitude coefficients so that W(x,zs) satisfies the reflecting boundaries Eq.
(4.46) and the exclusive condition Eq. (4.47).

With the ansatz Eq. (4.49), the remaining task is to impose the constraints Eq.
(4.46) and Eq. (4.47) and fix amplitude coefficients as well as the wave vectors. There
are three types of W(zy,x5) depending on the combination of the two constructed
classes: both stationary, both non-stationary and the mixed type with one stationary
and the other non-stationary. In the following paragraph, we will discuss these cases
separately.

Both stationary

Let us first check the case when W(zq, xz) is constructed by only s, namely ¢y (z) =

A1 (5) . vale) = 42(5) . dil@) = A (§) . dale) = & (5) . Plugging in to

(4.49) we obtain

r1+x2
Pxy,a0) = U(w1,20) = A (%) ; (4.50)

where A = A;A; + AsA5. One can readily check that Eq. (4.50) is exactly the
stationary eigenfunction of the two-particle system as expected, the corresponding
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eigenvalue being A; = 0. The reflecting boundaries Eq. (4.46) and the exclusive
condition Eq. (4.47) are both fulfilled.

The prefactor A can be fixed by normalization. However, it is not a trivial work
because of the constraint ;1 < x5. We postpone the discussion of normalization to the
N-particle solution later.

Mixed non-stationary

The mixed type is a non-stationary eigenmode. Without loss of generality, we choose
{Y1(x),11(x)} to be in the stationary form 1), then W(x1,z5) can be written as

\Ij(ﬁla x?) =4, (%) (%) <A2+eip2fc2 + AQ_e—ip2x2>

+ Ay (%) N (%) N <A2+eip2“ + Ag_e_ip”l) :

Plugging Eq. (4.51) in to the master equation, we can find the corresponding eigen-
value. Plug it in to the reflecting boundaries and exclusive condition, A;, Ay, Asy
and A,y can be tuned to fulfill these conditions. Consistency condition gives us the
Bethe equation for the wave vector ps.

We first insert the solution Eq. (4.51) to the master equation Eq. (4.45), obtaining
the corresponding eigenvalue:

A= —(a+ B)+2v/af cos(ps), (4.52)

where p, is the wave vector to be determined. Accordingly, the reflecting condition
Eq. (4.46) gives us

(4.51)

Agy (O./ — \/WG*"W) e~ir2l

= — : : , 4.53
Ay (a — \/ozﬂe’m) ep2L (453)
A — ./ —ip2
Ase o= Vape (4.53b)

Ay a—aBer:

We now check the exclusive condition Eq. (4.47). Substituting Eq. (4.51) into Eq. (4.47),
we find that

Ady, €T (@t P), /5 + Vb

Ay Ay T e — (a+ B)e + /aB’ (4.54a)
e — (a4 ), /% +VaB
- \/; (4.54b)

A, ae 2 — (a+ B)e2 + JaB
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Finally, using the consistency condition that

Ayy (A2_> Ay A,y <A1A2_)
2+ ) (222 ) o i 4.55
<A2_> A2+ A1A2+ A1A2_ ( )

we obtain the Bethe equation

el — 1, (4.56)

Solving the equation we get py = kf” Plugging it into the eigenvalues Eq. (4.52), we
note that the eigenvalues are exactly the same as the those of the single particle case.
Now, we can re-substitute the solution of py into Eq. (4.53) and Eq. (4.54) to get the
corresponding eigenfunctions. The results of this type of non-stationary eigenvalues
and corresponding eigenfunctions are summarized as follows

Ak:—(a—l—ﬁ)—i—Q\/a_ﬁcos(l%), k=1,2,...,L—1; (4.57a)
Wy, 22) = A [% (%) no(2) + (%) ¢k<x1>] . (4.57b)

Here ¢r(z) are the single particle non-stationary eigenfunctions and A is a constant
normalization coefficient.

Both non-stationary

We now turn to non-stationary eigenmodes constructed by both non-stationary classes
of single particle modes. The number of remaining unknown eigenfunctions and eigen-
values in this case is L(L — 1)/2 — L. Let us first write down the ansatz:
T]+x9
o

\Il(xl,xQ) — (B) 2 [(AH_eipmn _|_A1_€—ip1r1) (A2+eipgzg + A2_€_ip2r2)

+ <A1+6ip1x2 + Al_e—ip1m2> <A2+€imx1 + 1[12_6—@‘1)2351)] '

(4.58)

Plugging it in to the master equation, we get the corresponding eigenvalues as

2

A=Y [—(a +B) +2v/aB cos(pn)] . (4.59)

n=1
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Plugging it in to the reflecting boundaries, we obtain

Ay a—yafe

= (4.600)
Ay (a—VaBer ) et (4:60b)
Ay (oz — mgi?l) el '
Aoy __o—voPe (4.60¢)
Ay a — /aBerz’

Avy (o= Vo) e (4.60d)

Ay (a — m&m) g2l

To simplify the notation, we define the function a(p, p') := /aBe!®*?) — (a + B)e® +
vap. Then the exclusive condition gives

AL A
A Aoy _ a(pl p2)’ (4.61a)
A1+A2+ a(p27p1>
AL Ay
A Ao alpy, —p2), (4.61b)
AnAs a(—pap)
/~1171‘~12+ a( 191,]92)7 (4.61c)
Al_A2+ a(p27 pl)
A_ Ay -
Ao a( p1, —Pp2) (4.61d)
Al_AQ_ (1( b2, pl)
The similar consistency conditions as Eq. (4.55) give the following Bethe equation:
o2l _ a(p1, p2) a(ps, p1)7 (4.62a)
a(p2,p1)@( p1;p2)
o2l _ a(pa; p1) a(p1, —pa) (4.62b)
a(p1,p2) a(—pa2, 1)

Now it would be interesting to interpret the Bethe Equation and compare it with the
well known Bethe Equation of ASEP with periodic boundaries (see in Appendix E).
The interpretation can be useful to derive N-particle Bethe Equations. We can inter-
pret Eq. (4.60) as a reflector that reflects the particle and change the direction of wave
vector, i.e., p, <> —p,. Meanwhile, Eq. (4.61) can be interpreted as a permutator
that permutes two neighboring particles n <+ (n + 1). Imagine particle 1 starts from
the left side of the lattice and then permutes with all the particle on its right side
until it reaches the right boundary (in the case of two particles, only one particle is
found at the right side of particle 1), and then is reflected by the boundary, becomes
a particle traveling in the opposite direction, and then permutes with all the left side
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Figure 4.6: The interpretation for the Bethe Equations of the reflecting ASEP as
if it is a periodic ASEP system.

particles until it reaches the left side boundary, and then reflects again, which recovers
the initial state. A schematic diagram of this process is shown in Fig. 4.6. In this
sense, the particle works as if it is sitting on a lattice with periodic boundary. Us-
ing this interpretation and the well known result of periodic Bethe Equation (see in
Appendix E), one can easily recover exactly Eq. (4.62).

By solving the Bethe equation Eq. (4.62), one can get p; and ps and thus all am-
plitude coefficients up to a constant normalization factor. Then Eq. (4.59) gives the
eigenvalues and Eq. (4.58) gives the eigenfunctions. Unfortunately, it might not be
possible to solve the Bethe equation analytically. So we resort to numerical solutions.
We have verified the resulting eigenvalues and eigenfunctions by comparing with the
results from brute force diagonalization of the transition matrix for small system size
L < 10.

To summarize, the complete solution of two-particle hopping system with reflecting
boundaries is found. The solution is shown in the form of eigenfunction expansion, i.e.
Eq. (4.45). The stationary eigenfunction with eigenvalue Ay = 0 is listed as Eq. (4.50),
while the two types of non-stationary eigenvalues and corresponding eigenfunctions
are listed in Eq. (4.52), (4.59) and Eq. (4.51), (4.58), respectively. They can be fully
determined by solving the Bethe Equation Eq. (4.56) and Eq. (4.62). Part of them
are analytically shown in Eq. (4.57).

Finally, we would like to make some remarks here. Firstly, as one can see from
Eq. (4.57) that the eigenvalues of two-particle system always contain the eigenvalues
of the single particle system. We can show later this can be generalized such that
the eigenvalues of N + 1 particle system always contain the eigenvalues of N particle
system for N < L/2. Secondly, the relaxation time of the system is related to the
second largest eigenvalue A;. Eq. (4.57) suggests Ay = —(a + 3) + 2v/afS cos (%)
However, since there is no analytical solution for all Bethe Equations, it is difficult to
rigorously prove that. Numerical evidence is provided to verify the conjecture. In the
next subsection, we generalize the solution to the N particle system. The procedure
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is quite straightforward after we solved the two-particle case.

4.3.3 Solution of general N particles

Now we consider the system with N particles. Notice that, N = L/2 has to be set
considering the mapping to polymer loop. However, our method of finding solution
works for arbitrary N. As before, we first write down the master equation of a N
particles system:

dP(-rla"' 7-7:N;t> al

(4.63)

j=

_<a+ﬂ>P(... L, ;t)]

Similarly, after the eigenfunction expansion the reflecting boundaries can be written
as

aV(0,z9, -+ ,xn) = PU(1, 29, -+ ,xN) (4.64a)
aV(xy, - ,ony_1,L) =BV (xy, - ,an_1, L+ 1) (4.64b)

The exclusive condition for N particles case is more tricky. In principle, one has to
consider the case of three body collision, four body collision and so on. Luckily, in the
simple model of ASEP, one can prove that these many body exclusive conditions are
not new but just linear recombination of two body exclusive conditions. For example,
the three body exclusive condition of particles denoted by 1, 2, 3 can be written as
the sum of two body exclusive conditions of 1, 2 and 2, 3. Consequently, the exclusive
condition of a N-particle system can be written as

V(- oz, )+ B+ Lo+l )=(a+BV( zx+1,---) (4.65)

The reason that the exclusive condition can be written in such a simple way origi-
nates from the Yang-Baxter Equation, which encodes the integrability of the ASEP
system [126].

Stationary mode

Intuitively, we construct the N particles stationary solution as

Zj

N
Pé(xy, 29, ,xy) = W(21,29, - ,ZN) = AH (%) (4.66)
j=1

One can plug it in the master equation to check that the corresponding eigenvalue is
Ag = 0, and also verify the exclusive condition as well as the reflecting boundaries are
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fulfilled by inserting the solution into Eq. (4.65) and Eq. (4.64) separately.

We now try to fix the parameter A by normalization. Let us denote ¢ :=
we can write A as following

AT =R = Y g (4.67)
Q

r1<T2< - <TN

a
5 then

Let us do a variable change so that
K = Z ZL‘j — K(),
J

where Ko =1+24---4+ N = N(N +1)/2. It is easy to see that K is an integer in
the range of 0,1,--- , N(L — N). Eq. (4.67) can be rewritten as

N(L-N)
AT =g Y g(E)g", (4.68)

K=0

where g(K) is the number of partitions of positive integer K to N parts with each
part having maximum possible value L — N. From the number partition theory, we
identify

« (L 7],
2 oK) :(N)QZ[L—[NL[NM (4.69)

K=0

where [N], =1+ ¢+ ¢*+ -+ + ¢~ is a ¢ number, and Eq. (4.69) is a g-binomial
coefficient [162]. Finally, we arrive at

. Cwvoven (LY TN .
Pé(xy, 29, ,xn) =¢q 2 N Hqﬂ. (4.70)
¢ j=1

The above equation is exactly the same as the Eq. (3.28) in Section 3.2, where a
different approach is used. Also, in [137], Schiitz used a quantum group formalism to
obtain the same result with a different notation.

Non-stationary modes

Inspired by the calculation of two particles case, we try to find the Bethe solution of
the N particles system by taking the following ansatz:

\I](xba:?? e 7Q:N> = Z Hwﬂﬂﬂa(n)), (471)

ceSy n=1
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where Sy is the group of permutations of N elements and 7 is the building block
function drawn from Eq. (4.48), either stationary or non-stationary. The subscript n
denotes the index of class in which all functions share the same functional form and
wave vector p,. For example, in the notation of the two-particle case, {1, 1/;1} is the
class with index n = 1. Notice that n € {1,2,---, N} and N is the total number of
particles in the system. The superscript o is the N-element index arrangement used to
distinguish different functions in one class, which is equivalent to the tilde notation in
two-particle case. These functions are different by the amplitude coefficients A9 or A7,
depending on whether it is a stationary or a non-stationary class. For example, in the
two-particle case, the class n = 1 contains two functions with coefficients {A}%, A?'}
or {Ajf, AL}

Now, we assume Eq. (4.71) is constructed by N functions v from the stationary
class and N — N non-stationary 1,s. Notice that Ny = 0 corresponds to the both
non-stationary type in the two-particle system, and 1 < Ny < N corresponds to the
mixed non-stationary type. We discuss them separately here.

Inserting the ansatz Eq. (4.71) into the master equation Eq. (4.63), we obtain the

corresponding eigenvalue
N—N;

A=A, (4.72)
n=1

where )\, = —(a+3)+2+v/aB cos(p,). Notice that, as in the case of two-particle system,
pn can be determined by the Bethe Equations which is discussed in the following. The
eigenvalues can be obtained according to Eq. 4.72. In general, there are more than
one solution because Bethe Equations are nonlinear, and different solution can lead
to different eigenvalues.

In the case of Ny = 0, plugging Eq. (4.71) into the reflecting boundaries Eq. (4.64)
we can obtain

AZL‘:(I):" a — /aBe Pn

= — 4.73a
A=~ T a Japer (4.73a)
AT (o= VaBe ) et (4.73b)
AZ':’(N):” - (a — VaBeirn) eipnL :
Substituting the ansatz in the exclusive condition Eq. (4.65) we get
AeAGine a(Epe, 2pan)
Ao\n<—>n+1Aa\n<—>n+1 - _a(:I:p :|:p )7 (474)
n+ (nt1)+ n+1, n

where a(p,p') = VaBe'?) —(a+pB)eP++/af. Then one can either use the consistency
condition or the interpretation of the Bethe Equations we discussed in the two-particle
case and the well known periodic Bethe Equation, the following set of Bethe Equations
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for the N particles system can be obtained:

o1 A(Dn, Pm) (P, —Pn)
el = L A % 4.75
n!;[n a(pmapn) a(_pmpm) ( )
By solving Eq. (4.75) we get all the p,, and then one can plug them back in Eq. (4.72)
and Eq. (4.71) for the corresponding eigenvalues and eigenfunctions.
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Figure 4.7: The left panel: the embedding structure of eigenvalues illustrated by
a system of L = 10 with one, two and three particles. The right panel: eigenvalue
obtained from brute force digitalization of Markov matrix and from the Bethe
equations. a« =2, f =1, L =10 for both panel and N = 2 for the right panel.

Now let us discuss the case that 0 < Ny < N. The calculation of the two-particle
system is a good illustration. We can easily find that there is nothing different except
we have only N — N, wave vectors and 2N — Ng amplitude coefficients. So one just
need to use the relation similar to Eq. (4.54) together with Eq. (4.73) to build the
Bethe Equations. Moreover, Eq. (4.56) suggests that the obtained Bethe Equations
are exactly the same as the Bethe Equations of a N — Ny particle system with all
non-stationary type building block functions 5. According to Eq. (4.72) for the
eigenvalues, we can conclude that the eigenvalues of N — N particles system are
always contained in the eigenvalue set of the N-particle system. Notice that this is
only true for N < L/2. For N > L/2, one can use the particle-hole duality which
means that the eigenvalue of N particle system should be the same as the L— N particle
system. This important structure of the solution explains our simulation results in
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Section 4.2.2.

This kind of embedding structure is verified by our simulations. In Fig. 4.7, we show
in the left panel that eigenvalues of case N = 1 are contained in the set of eigenvalues
N = 2, and all eigenvalues of case N = 2 are contained in the set of N = 3. In
the right panel, the eigenvalues obtained from the brute force diagonalization of the
Markov matrix are compared with those from the solution of the Bethe Equations
Eq. (4.75). We can see that they are identical to each other.

Finally, we remark that one has to solve the Bethe Equations numerically in most
cases. However, there is a small set of non-stationary eigenvalues and eigenvectors
we can obtain analytically, which correspond to the case of only one excitation mode.
The results are summarized as follows:

Ak:—(a+5)+2\/a_ﬁcos(l%r), k=1,2,...,L—1; (4.76a)
N n—1 Tm
Up(wr,wp, - an) =AY (%) onlza) I (%) . (4.76b)
n=1 m#n

Notice that this set of eigenvalues is exactly the single particle spectrum, and again
or(x) is exactly the single particle eigenfunction. Fortunately, the numerical evidence
shows that the most interesting eigenmode, i.e. the slowest relaxation mode, is con-
tained in this set. We discuss it in the following subsection.

4.3.4 Relaxation time

With the complete Bethe solution of the reflecting ASEP system, the relaxation time
can be calculated. Here, we first discuss the relaxation time of the ASEP system and
then map it back to the relaxation of the polymer system.

Relaxation time of the reflecting ASEP

The relaxation time of the ASEP system is determined by the second largest eigen-
value of the Markov matrix. In principle, one has to solve all the Bethe equations to
obtain the second largest eigenvalue. However, it is a difficult task to solve them all
analytically except the single excitation mode listed in Eq. (4.76). The second largest
eigenvalue can be written down explicitly in the single particle case, which is

A =—(a+B) +2\/@cos(%). (4.77)

We argue that Eq. (4.77) is the second largest eigenvalue of general N-particle cases.
On one hand, this conjecture can be verified by our simulation results. Two facts from
the simulation results support the conjecture. The first one is the relaxation time of a
reflecting ASEP system does not depend on the particle number. The second one lies
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on the eigenvalues structure obtained from brute force digitalization of the Markov
matrix. On the other hand, for the continuous limit of ASEP with particle density
N/L, which corresponds to a single file diffusion process, we can prove Eq. (4.77)
is truly the second largest eigenvalue (see Appendix F). In addition, Labbé et. al.
studied the mixing time problem of the reflecting ASEP and found the same second
largest eigenvalue as in Eq. (4.77) using a hydrodynamical approach [174]. Thus
we are confident that Eq. (4.77) is indeed the second largest eigenvalue of general
N-particle systems. If we assume L > 1, Eq. (4.77) can be expanded as

Ar = —(y/B = yay: = Yoo (4.78)

12
Then the relaxation time can be calculated as 7 = _A%‘
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Figure 4.8: Relaxation time of 1D reflecting ASEP varies with the hopping bias
defined in Eq. (4.26). The relaxation time is normalized with the Rouse relaxation
time. The ACF curves for several typical cases are shown in the inset. The
corresponding relaxation time is fitted and show with dashed black lines, which
are also marked with the cycle of the same color in the simulation dots.

We now discuss the strong and weak hopping bias regime separately. For strong
bias 5 > «, then A; — —f and the relaxation time is 7 — 1/8. So the relaxation
time of the system tends to be a constant which is independent of the system size.
Moreover, the relaxation time 7 — 0 as § — oo. In the weak bias @ = 3, we can
obtain 7 ~ L—:Q The scaling 7 ~ L? means the dynamical exponent of the system is
2. The result of relaxation time as a function of hopping bias is shown in Fig. 4.8. The

Kinetic Monte Carlo results are compared with the theory and we find that they match



88 Chapter 4: Relaxation Dynamics of the Forced Pinned Polymer Loop

well to each other. The asymptotic behaviors of strong and weak bias are illustrated
to be consistent with our analysis above. The autocorrelation function (ACF) used for
extracting the relaxation time is shown in the inset for several typical cases of hopping
bias.

Map back to 1D polymer

Now, we can re-map the ASEP model back to the picture of polymer dynamics to
discuss the relaxation time of 1D polymer model. Utilizing Eq. (4.24) and plugging it
into Eq. (4.77), the relaxation time can be calculated explicitly.

B £a? 1
kpT exp <,€AB—];> + exp (—é—?) — 2cos (%)
Here, AF is the energy of flipping of two neighboring rods to change the orientations,

AFE = 2Fain 1D. T is the effective temperature. Since exp (é—?) +exp (—é—?) =2,

we have

(4.79)

T

2
r< sa S— (4.80)
4kpT sin (i)
Expanding the sine term as L > 1, we get
£a®L?
mar = ———- 4.81
7 7T2kiBT ( )

The result above can be compared with the prediction of one-dimensional Rouse the-
ory. According to our calculation in Section 4.1, the one-dimensional relaxation time
of a pinned polymer loop is 3 times that of the three-dimensional model. We found it
is exactly the same with our results here. Also, we note that the Rouse scaling with
system size L? is recovered.

In Rouse theory, the relaxation time does not depend on external force. In contrast,
we have an obvious force dependence of the relaxation time here. This point highlight
the fundamental difference between the infinite extensible bead-spring model and the
finite extensible bead-rod model. Unfortunately, it is not possible to perform the BD
simulation for a one-dimensional bead-rod model since the flipping is not a continuous
process. However, the relaxation behavior postulated by Eq. (4.79) can be verified by
Kinetic Monte Carlo results shown in Fig. 4.8. Furthermore, we present a comparison
of BD simulations and the theory in 3D in the next Section. 4.4.

In this section, we used the generalized Bethe ansatz methods to solve the ASEP
model with reflecting boundaries exactly. The stationary distribution obtained here
matches to our calculation in Chapter 3. The explicit form of the relaxation time
was analyzed in different cases. We then re-mapped it back to the polymer system
to discuss the relaxation time of pinned polymer loop in 1D. In contrast to the bead-
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spring model, an explicit force dependence of the relaxation time is demonstrated.
In the next section, we try to use the results obtained here to further analyze the
three-dimensional pinned polymer loop system.

4.4 Dynamics of 3D bead-rod polymer loop

Unlike the 1D model discussed in the previous section, the 3D bead-rod model can be
studied directly by the BD simulations. We discuss the BD simulation results in this
section and apply the theory obtained in 1D ASEP to explain our observations.

4.4.1 Relaxation time of 3D pinned bead-rod loop

Similar to the 1D model, our main interest of the polymer dynamics is the relaxation
time. To measure the relaxation time of the 3D pinned bead-rod polymer loop, we
perform the BD simulation using the methods described in Chapter 2. The trajectory
of diameter vector, defined as ry = r L — Ty, is monitored. Then the autocorrelation
function of the diameter vector is calculated to extract the relaxation time. Since ry
is a three-dimensional vector, we measure both the relaxation time along the external
force direction and the relaxation time perpendicular to the external force direction,
viz. 7 and 7, respectively.

1072

L \ | »
0 200 400 600 800 1000
t

Figure 4.9: lllustration of the autocorrelation function along the external force
direction under several cases of different external force. The dashed black lines
are the fittings for extraction of relaxation time.

In Fig. 4.9 we show some examples of extracting relaxation time 7 from the auto-
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correlation functions (ACF). We can see clearly in the figure, the slope of ACF become
steeper when external force increases, which leads to a faster relaxation time.

Based on the simulations, we plot the parallel relaxation time 7 against the strength
of external force field, which is shown in Fig. 4.10. On can immediately find that the
result is very similar to the 1D theory. Thus we use the theory from the 1D ASEP,
and try to match it to the 3D BD simulations.

— Theory
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T / TRouse
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Figure 4.10: Relaxation time along external force direction of pinned 3D bead-rod
model varies with the external force. Inset is the relaxation time perpendicular to
the external force direction compared with the same theory. L = 100 and T' = 1.

To get insights of the relaxation time for the 3D pinned polymer loop, let us first
discuss the case without external force field. In this case, the relaxation time of the
3D pinned polymer loop is correctly predicted by the Rouse theory, we have

£a’L?
ouse = ——— 4.82
Thouse = Bk T (4.82)
Moreover, for symmetric reasons we have 7 = 7| = Tgouse in this case. This prediction
is verified by the BD simulations as shown in Fig. 4.10. Compare Eq. (4.82) with
Eq. (4.81), we find that the only difference is the factor 3 in the denominator, which
is easy to understand because of the dimensionality of the system.

We now discuss how does the relaxation time vary with the external force. Assuming
that 7 varies with external force the same way as in 1D, we can simply divide Eq. (4.77)
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by a factor of 3, obtaining:
B £a? 1
3kpT exp (%) + exp (—,53—‘;) — 2cos (%)

Here, AEF = Fa is used. In 3D, rods can rotate continuously in the space. The
orientation is changed when a rod rotates over a length scale of a along the external

force field direction. Correspondingly, the energy change is Fa in 3D. Again, we can

recover the Rouse limit of the relaxation time by noting exp (é—%) +exp (—é—%) > 2

and assuming L — oo in Eq. (4.83). The theory of Eq. (4.83) is compared with the
simulation results in Fig. 4.10, and we can see an excellent agreement of 7| with the
numerical results. However, 7, is not well described by the theory as we can see in
the inset of Fig. 4.10. Given that it is the relaxation perpendicular to the force field
direction, the result is not surprising. Nevertheless, we can still see that 7, depends
on the external force.

(4.83)
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Figure 4.11: Relaxation time of 3D pinned polymer loop varies with the level of
noise. Dots are simulation results while solid lines are the theory. L = 100.

To further test the theory, we also do the simulation by changing other parame-
ters such as the effective temperature T'. Interestingly, according to the prediction of
Eq. (4.83), the non-monotonic curve of 7(7") can be obtained in a strong external force
field. Physically, it means that the relaxation of a bead-rod system is slower if we in-
crease the noise level of the system under a certain force field. It is a counter-intuitive
result as one usually expects faster relaxation in a more fluctuating system. However,
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the results from the BD simulation verify this prediction, as shown in Fig. 4.11. Mean-
while, we also see in the figure that the non-monotonic behavior disappears when the
external force is weak enough.

4.4.2 Stretch coil relaxation

Now, let us discuss the relaxation behavior of two different processes. The first one
is that the polymer loop relaxes from a stretched configuration to a coiled configura-
tion when the external force field is stopped at some point. The second one is that
the pinned polymer loop relaxes from a coiled configuration to a stretched configu-
ration when the external force field is exerted at a certain point. Experimentally,
the measurement of ACF function is more tricky when the fluctuations are relatively
small. It is more convenient to measure the stretch-coil transition using the optical
tweezer [103, 104].
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Figure 4.12: The stretch-coil transition of a pinned polymer loop. The relaxation
of the middle bead position is monitored for different initial stretched cases. The
inset shows the short time relaxation of the polymer initially stretched by external
force F' =1, dashed black line is a linear fit. L =100, T = 1.

From the theoretical point of view, these two transitions are not the same, because
one process is under external force field while the other is not. To illustrate more
details, we discuss them one by one.

In Fig. 4.12, we show how the free end of a pinned polymer loop, i.e. the middle bead,
relaxes to the coiled position. We can see from the figure that the decay is exponential
except for the initial part. Moreover, the same slope in the figure indicates that
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the relaxation time scale are the same, although the initial states are different. We
verified that the time scale here is the same as the Rouse time calculated in Eq. (4.82).
However, certain distinctions are also observed between these curves, mainly in the
short time regime. As we show in the inset of Fig. 4.12, the initial relaxation of a
stretched polymer is linear. Thus the bead moves ballistically with a certain velocity.
In contrast, we do not see this regime when the polymer is relaxed from a coiled
configuration (see the blue line in Fig. 4.12). The observations can be interpreted as
following. Once we stop the external force field, the polymer is driven by an entropic
force, which makes the polymer to move ballistically in the initial stage. Moreover, the
entropic force is stronger for a stretched polymer and weaker for a coiled polymer. This
leads to the more profound linear regime for the relaxation of a stretched polymer.
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Figure 4.13: The coil-stretch transition of a pinned polymer loop. Here, the
polymer is stretched by different force fields. The inset shows the fitted parallel
velocity of the middle bead against different external forces. L =100, T = 1.

In Fig. 4.13, we show the coil-stretch transition of a pinned polymer loop. The
transition can also be divided into two parts. The first part is a ballistic shooting as
indicated by the initial linearity of the curves. The second part is again an exponential
relaxation to the equilibrium position. However, as we can see from the figure, the
ballistic regime dominates for a strong stretching force. In the inset of the figure, we
fit the velocity of the ballistic part. As expected, we find that it linearly depends on
the external force. The linear regime is reasonable because the effect of the external
force field dominates in the early stage, which drives the polymer to move linearly
towards the direction of the force field.

In this section, we discussed the relaxation behavior of 3D pinned polymer loops in
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an external force field. By 3D BD simulations, we are able to extract the relaxation
time of the polymer numerically. We then applied our theory obtained from the
reflecting ASEP model to match the relaxation time of the 3D polymer along the
force direction. We find that they match well. Moreover, we also discussed the stretch-
coil relaxation of the pinned polymer. One linear and one exponential regime were
identified for both stretch-coil and coil-stretch transitions.

4.5 Summary

To summarize, we discussed the dynamical properties of pinned polymer loop in a
constant external force field in this chapter. More specifically, the relaxation time was
discussed in detail.

Firstly, we solved the dynamics of a bead-spring polymer loop using the Rouse
theory, which turns out to be the only work for the pinned bead-rod without external
force field. Utilizing the mapping from 1D bead-rod to the particle lattice system, the
dynamics of the polymer can be mapped to the ASEP on a reflecting lattice. Kinetic
Monte Carlo results are shown which indicate that the relaxation time of the system
is independent of the total particle number on the lattice. Next, we introduced the
generalized Bethe ansatz method to solve exactly the reflecting ASEP system and re-
mapped the analytical results to the polymer system to discuss the relaxation behavior
of the pinned polymer loop. Extensive BD simulations were performed and the results
match quite well with our theory. Finally, the stretch-coil transition was discussed in
the 3D polymer model.

The generalized Bethe ansatz method we used here can be applied to broader sys-
tems as long as the total number of particles is conserved. Moreover, since reflecting
boundary is one of the typical boundary conditions, we think that it is important to
solve it exactly for the celebrated ASEP model from the theoretical point of view. The
mapping from polymer dynamics to the ASEP system offers a new way to study the
polymer problems. We only discussed here the biologically relevant pinned polymer
loop system. The extension of the mapping to other polymer systems is also quite
straightforward. In the next chapter, we employ the insights obtained from the the-
oretical study to discuss the biological system and the known experimental results.
Finally, a summary of the whole thesis and some outlooks are provided



Chapter 5

Discussions and Outlook

In preceding chapters, the equilibrium statistics and relaxation dynamics of pinned
polymer loop were discussed with a focus on mathematical modeling and numerical
simulations. In this chapter, we come back to the biology of fission yeast and discuss
the new insights we gained in our study. Here, we also relate some of our results to
previous works, both theoretical and experimental. In the last section, we provide a
summary of the thesis.

5.1 Discussions

In this section, our discussion is divided into two parts. The first part discusses the
biological system of fission yeast, while the second part is devoted to the comparison
of our theory to previous results on the pulled polymer systems.

5.1.1 Chromosome paring and alignment

In the prophase I of fission yeast, the pair of chromosomes is supposed to align in
space to undergo recombination between homologous chromosomes, which means the
distance between the corresponding loci should be below a certain threshold. This
process is important for the correct segregation of homologous chromosomes in the
later stage of meiosis I.

The nuclear oscillations period in fission yeast was divided into two pieces of steady
motion in our discussions. In addition, the pulled polymer was transferred to the
scenario of pinned polymer loops in an external force field. It is reasonable that
the chromosome tends to be in a stretched configuration if the external force field is
strong. As a result, the statistical distance between two corresponding loci is short-
ened. Experimentally, two homologous chromosomes are assumed to be aligned when
the statistical distance between them is less than 400 nm. It is interesting to ask how
does the pulling facilitate the pairing of homologous chromosomes. We now apply our
theory to get insights of the pairing problem of chromosomes.

In order to fit our theory to the real biological problem, we need to estimate the
number of monomers of our polymer loop model, which would correspond to the
chromosomes in fission yeast. Here we focus on the longest chromosome out of the three
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in fission yeast. During meiosis, chromosomes are highly condensed. As a consequence,
the Kuhn length is large (~ 200 nm). The length of the longest chromosome in base
pairs is about 5.58 Mb, and the compact ratio is about 100 bp/nm (see in Table 1.1).
So the total number of monomers needed to represent the longest chromosome in our
model is about 230.

Our next question is what is the magnitude of the actual pulling force on the
monomer in vivo fission yeast. To answer this question, we employ the Stokes’ re-
lation F' = 67nRv. Here, n is the viscosity of nucleoplasm which is listed in Table 1.1,
R is the radius of the monomer which can be estimated as half of the Kuhn length
R ~ 100 nm. The moving velocity v &~ 2.5um/min is measured from the experiment.
As a result, we can obtain F ~ 7 x 1074 N.

As mentioned in the first chapter, the nuclear oscillations are driven by the dynein
motors. We now ask the question whether the number of motor molecules involved in
the nuclear oscillations is sufficient for driving the motion. To answer this question, we
first estimate the total force needed for the pulling motion. Using the genomic length
of each chromosome listed in Table. 1.1, the total number of monomers in fission yeast
~ 1260 can be estimated in the same way of estimating the number of monomers of
the longest chromosome. Thus the total pulling force required is Fjyq =~ 100 pN. The
stall force of dynein motors has been reported within the range of 1 —7 pN [167, 168].
This corresponds to 14 — 100 dynein motors pulling together. Previous measurements
show that there are 50 — 100 dynein motors engaged in the pulling of the SPB [169].
Thus the experimentally observed number of dynein motors is sufficient to generate a
force for the alignment of the chromosomes.

Now, let us apply the theory from the equilibrium statistics to discuss the pairing
process of the homologous chromosomes. In Section 1.2.2, we calculated the distance
between two corresponding beads of the polymer pair with L = 300, as illustrated in
Fig. 3.9. These two beads are meant to represent the same loci of the homologous
chromosomes. The pairing process is supposed to bring them together with a statistical
distance less than 400 nm. The theoretical and numerical results of how the distance
varies with the dimensionless temperature 7' was shown in Fig. 3.10. Notice that the
T=k T/ Fa is the only dimensionless parameter in our equilibrium system. T can be
considered as the inverse measure of pulling force F' if the effective temperature T is
fixed. We can clearly see from Fig. 3.10 that the strong external pulling force (small T )
significantly decreases the distance between beads. In other words, the model shows
that pulling facilitates the chromosome pairing.

The next question is whether the magnitude of external force in fission yeast suffi-
cient for the success pairing of the whole chromosome or not. To answer the question,
let us estimate what is the corresponding T in the circumstance of the meiotic fission
yeast. It is easy to find T' &~ 0.3 according to the estimations above. This is a pa-
rameter locates at the lower left strong force regime in Fig. 3.10. As we can see from
the figure, the distance between corresponding beads is smaller and mostly below the
pairing threshold, which is indicated by the shaded area in Fig. 3.10. So the conclusion
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is the pulling motion of chromosomes in fission yeast supplies a sufficient force for the
pairing.

Now we use our theory to estimate the relaxation time of the longest chromosome.
We assume the effective temperature (including the thermal and non-thermal contri-
butions, see in Section 1.2.3) 7" = 300 K, which is near to the room temperature. With
these parameters, we are able to calculate the relaxation time of the polymer according
to Eq. (4.83). Plugging in the estimated parameters, we can obtain the parallel relax-
ation time is about 6 seconds. According to our BD simulation results, the transverse
relaxation time in such a strong external force regime is about 10 folds of the parallel
relaxation time. So the transverse relaxation time is about 1 minute. It is still less
than half of the nuclear oscillation time, which is about 5 mins. So the movements of
chromosomes toward to one direction can be considered as an equilibrium problem.
Our assumption of short relaxation time is justified.

Finally, we have not discussed the role of nuclear envelope during the nuclear oscilla-
tions in fission yeast. In contrast to the mammal cell, the nuclear envelope breakdown
does not happen in fission yeast during meiosis [170, 171]. The nuclear oscillation hap-
pens in the presence of the intact nuclear envelope [170, 171]. However, since there are
many nuclear pores in the nuclear membrane and the structure of the membrane is
soft [170], we assume that the fluid is freely draining through the nuclear membrane.
In other words, the effects of the nuclear membrane is neglected in our model.

To summarize, we can provide some new relevant insights regarding the alignment
process of fission yeast chromosomes using the theory of our quantitative model. Next,
we want to discuss how our theory is related to previous works.

5.1.2 The blob theory of pulled polymer

Coming from a problem of modeling fission yeast chromosomes during nuclear oscil-
lation, we discussed in this thesis mostly about the pinned polymer loop model. Our
study is very special in the sense that the polymers not only retain a loop structure
but also pulled by an external force at one point. To the best of our knowledge, no
previous study was focused on this specific case. However, the pulled polymer chain
model was well studied by F. Brochard-Wyart et al. [96-101]. They developed the
blob theory of grafted polymer chains under flow. Three steady-state regimes, namely
the unperturbed state, the trumpet regime and the stem-flower regime were found.
Before delving into the comparison between our theory and the blob theory, we want
to highlight several differences between the setting of these two models.

e Obviously, the looping structure of fission yeast chromosome is a very special case
and different from the chain model.

e In our model, we ignore all the complex interactions including the excluded volume
effect and hydrodynamic interactions. However, these facts were taken into account
in studies of Brochard-Wyart et al. Actually, the hydrodynamic interaction is crucial
to formulate the blob theory of pinned chain.
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e The ideal polymer with the size scaling R ~ Lza is used in our model instead
of the Flory scaling R ~ Lsa (18, 19]. Here L is the number of monomers in the
polymer and a is the size of one monomer. The ideal behavior has been claimed
in the experiments for DNA under 20 microns [172]. Notice that, the fission yeast
chromosomes are exactly in this ideal regime since the size of fission yeast is around
10 microns.

With these notes in mind, we now discuss the results from our model and compare
it with the blob theory. In order to do the comparison, it is better to have the blob
theory of pinned polymer loops in hand. It is not much different from the pinned
polymer chain and is discussed in Appendix G.

The blob theory states that the configuration of the pinned polymer in a flow is
composed by a sequence of blobs with increasing size along the flow direction. In a
certain regime of external flow, the blobs near to the pinned end vanish to a “stem”
structure, while the free end forms a “flower” structure (Fig. 1.7). However, these
pictures are the equilibrium configurations. Here, we focus on the relaxation behaviors.
The main result of the blob theory for the dynamics is about the stretch-coil transition.
For an initially stretched pinned polymer chain, the “stem” starts to retract when
the external flow is stopped at some point. The retraction rate scales with time as
lo — | ~ t'/2, where [, is the initial length of the “stem”. This scaling was then seen
in experiments on stretch-coil relaxation of the free DNA molecules in the Poiseuille
flow [173]. In another experiment with a DNA molecule held by an optical tweezer in
the flow, a different scaling for the relaxation time was reported 7 ~ L6 [103, 104]
by looking at the stretch-coill transition by turning off the flow.

In comparison, we do not observe the t'/? scaling for stretch-coil transition in our
model (Section 4.4). In our model, the relaxation from stretched configuration to coiled
one is characterized by an initial ballistic shooting followed by a long exponential decay
(Fig. 4.12).

To explain the discrepancies, recall that our model is without excluded volume
effect and hydrodynamical interactions. Physically, the results of these interactions
slow down the response of the system. So a power law scaling is obtained instead
of the exponential decay. Our study of the simple analytically tractable model also
stresses the importance of hydrodynamic interactions in modeling chromosomes.

The relaxation time problem was discussed in a very recent work by Labbé and
Lacoin [174]. They solved the problem of mixing time of a biased card shuffling process,
which can be mapped to the ASEP with reflecting boundaries. The identical results
as Eq. (4.77) was obtained. However, a different approach based on the hydrodynamic
limit of ASEP was used and the full eigenfunctions were not reached in their work.

In this section, we used our results to discuss the biological problem of chromosome
movements in fission yeast. A comparison of the dynamics of our model to the blob
theory was discussed. The distinctions between them highlight the importance of
hydrodynamic interactions and excluded volume effect in modeling polymer dynamics.
In next section, we summarize the whole thesis and give some outlooks of the future
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studies.

5.2 Summary and outlook

To summarize, we investigated the pinned polymer loops in an external force field in
order to quantify the chromosome movements in fission yeast during nuclear oscillation.
More specifically, the steady state and relaxation dynamics of the pinned polymer
loops were studied. The equilibrium statistics were solved analytically by applying
the Brownian bridge technique. The relaxation dynamics were solved by mapping
the polymer system to the particle-lattice system. The mapped reflecting ASEP was
solved exactly and then remapped to the polymer system to discuss the relaxation
dynamics. Extensive BD simulations and MC simulations were performed to verify
our analytical results.

Many results and techniques developed in this thesis are novel. We believe that
they are very useful in the discussion of a large range of problems. For example,
the Brownian bridge technique in an external field is useful to discuss any stochastic
system with a looping structure. The generalized Bethe ansatz method can be applied
to any system with conserved number of particles. Moreover, the exact solution of
the reflecting ASEP system we find here complements the knowing results of this
important non-equilibrium model. The peculiar mapping from polymer to particle
system is also an interesting way to solve both polymer problems and particle problems.

In addition to the work we have discussed in this thesis, there are still a lot of
exciting problems waiting for further exploration. We list a few here.

e In Section 3.2, we solved the 1D pinned polymer loop exactly by using the canonical
ensemble and number partition theory. In 3D, we have shown in Section 3.3 that the
statistics of the equilibrated polymer loop can be obtained using grand canonical
ensemble and Brownian bridge condition. It is interesting to find out whether the
canonical ensemble method can be extended to the 3D case or not.

e The discussion of mapping the polymer to the particle system is restricted to 1D
lattice model in this thesis. However, the generalization of the mapping from 1D to
more than 1D is also an exciting issue. In 1D, the two states of rod orientation can be
mapped to the two states of lattice site occupation. In a 2D lattice model of polymers,
there are four states of the rod orientation. One possible solution is to map them to
a multi-species particle-lattice system. However, one has to go much deeper to check
whether the idea works or not.

e Most of our discussions in the thesis are about one single pinned polymer loop
system. As we known, there are three pairs of chromosomes in fission yeast, but the
multiple loops effect should be weak because the excluded volume effect is ignored in
our simple model, it can become important when we consider more complex models.
So it is interesting to study the inter-loop interactions and the impact of the crowded
environment in the future work.
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e In this thesis, the nuclear oscillation is divided into two parts of chromosomes
moving in opposite directions. We only study the polymers moving with steady speed
without changing directions. So our theory is not applicable to discuss the turning
process of the nuclear oscillation. We think it is important to model the oscillation
behavior as a whole in the future work.

e We have discussed a lot of theoretical insights regarding the meiotic chromosome
movements in fission yeast. With the development of experimental techniques such
as optical tweezer, it should be possible to manipulate the chromosomes in the lab.
Especially the measurement of the relaxation time of the chromosomes should be
possible. It would be interesting if we can perform some relevant experiments to test
our theory in the future.

To conclude, we presented a theoretical framework in this thesis and established a
link between the physics of polymers and statistics of many particle systems. From
biological perspective, our theory helps to understand the crucial role of physical forces
during nuclear oscillation of meiotic fission yeast.
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Appendix A

An efficient algorithm to compute
pseudo force of bead-rod loop

We have mentioned that the calculation of the pseudo force in BD simulation is time-
consuming. In fact, a plain algorithm without optimization takes about 80% of the
total simulation time. Thus we need to develop an efficient algorithm to calculate the
pseudo force. Recall that
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where G is the metric matrix shown in Eq. (2.19). Notice that G is a symmetric matrix
with constant diagonal elements. The summation in Eq. (A.1) can be reduced to the
summation of terms with ¢, ¢y, -+, ¢ where ¢; = —u;-u;_;. Thus we can rewrite
Eq. (A1) as
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Again, the periodic indexing is applied for Gj’_ll’j. The derivative in the sum term of
Eq. (A.2) can be evaluated as

ou; 1
r. = o0y = 0ig) (T = ujuy), (A.3)

where I is the unit tensor. According to Cramer’s rule, we can write

cof G;._4
Gl = ——2 A4
J=L detG ' (A4)
where cof G j_1 is the cofactor of GG ;_;, which is the minus determinant of a L —1 x
L —1 sub-matrix. So now we reduce the problem to the calculation of the determinant

of a matrix.
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To calculate det G, let us first expand matrix G by the last line to obtain

L
det G = —c3 det S — ¢2_, det Sy — 2(—1)* H c; +2det Ss, (A.5)

j=1

where Sy, Sy, S3 are symmetric tridiagonal sub-matrices of G. S;isa L —2 x L — 2

sub-matrix with off-diagonal elements co,--- ,cp_1, Sg is a L — 2 X L — 2 sub-matrix
with off-diagonal elements ¢, - ,¢cp_o and Sg is a L — 1 x L — 1 sub-matrix with
off-diagonal elements cq,--- ,cp_1.

For a symmetric tridiagonal matrix, an efficient algorithm can be employed to cal-
culate the determinant [149]. Let S be a N x N symmetric tridiagonal matrix with
diagonal elements d;, ds, - - - , dy and off-diagonal elements s;, S9, - - , sy_1. Taking TV
as the top left sub-matrix of S with j rows and j columns and B’ the bottom right
sub-matrix of S with N — j rows and N — j columns, we have

det TV = dj g det TV — 57 det TV, (A.6a)
det B! = d;_; det BY — s7_; det B/, (A.6b)

where T? = BN*! =T and S = TV = BY. Using this algorithm and Eq. (A.5), det G
can be calculate efficiently.

Finally, the cofactor cofG; ;_, which is essentially a determinant, can be calculated
in the same way as det G. Using the algorithm above, the computation time of pseudo
force can be reduced to 15% of the total simulation time.
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Monte Carlo simulation of 1D
particle-lattice model

The Monte Carlo simulation technique is widely used to study the particle-lattice
model. In equilibrium, the standard simple Monte Carlo algorithm can be applied to
sample the stationary measure. However, what we discuss here is the Kinetic Monte
Carlo algorithm [175]. This algorithm allows us to go beyond equilibrium to the
dynamics. We list the main steps of the algorithm as follows:

e Step 1: set the initial time ¢ = 0 and choose an initial state of the system.
The initial state can be N particle randomly distributed over L lattice sites or other
specified configurations. For the convenience of later discussion, we denote the initial
state as state k.

e Step 2: find all the possible hopping events and the corresponding hopping rates
of the system, denoting the total number of hopping events as N}, and the transition
rate to a new state i as ;. For example, if both sides of the ;'™ particle are empty
sites, then two possible hopping events are that the particle hops either to right or
to left. The corresponding hopping rates are a or 3, respectively. Notice that, the
reflecting boundaries are specified here in the simulation. Namely, if the first particle
is already sitting on the first lattice site, then the hopping rate for it to the left is zero.
Similar setting applies for the last particle.

e Step 3: order the possible hopping events in a list and calculate the cumulative
hopping rate Ry; = Z;Zl Ty for e =1,--- | Ni. The total hopping rate is Qi := Ryn,

e Step 4: draw a uniform random number u € (0, 1], and find out the corresponding
event ¢ such that Ry,—1 < uQy < Ry;.

e Step 5: update the system from state k to state 7.

e Step 6: update the system with ¢t =t + At. Here, At is drawn from the Poisson
distribution, which can be calculated as

1 1

where v’ is a new uniform random number different from u, also v’ € (0, 1].
e Step 7: return to step 2 and do the iteration.
One has to wait for the system to reach equilibrium if the equilibrium statistics
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are the main interests. Usually, the simulation runs quite fast. For a system of 1000
lattice sites and 500 particles, 10° update steps take less than 10 minutes.



Appendix C

The Toeplitz matrix

Toeplitz matrices are a special type of matrices that all elements along each diagonal
parallel to the main diagonal are the same. Here, we focus on the tridiagonal Toeplitz
matrix shown in Eq. (4.2).

To calculate the eigenvalues of matrix given by Eq. (4.2), we have to solve the
equation

(A — M\)x = 0. (C.1)

Then we can obtain a set of linear difference equations such that
ZEj_l—(Q—/\)l'j—f-l'j_H:O,jzl,"',L—l. (CQ)

Here, o = 2 = 0 is set for the boundaries. The characteristic equation for Eq. (C.2)
is

P —(2-Nr+1=0. (C.3)

Denoting the two roots of Eq. (C.3) as r1, rq, the solution of Eq. (C.2) can be written
as , ,
. ar{—l—ﬁ?ﬁ% ' ¥f7“17£7“2, (C.4)
ap? + Bjp" it ri=ry=p,
where o and [ are arbitrary constants. The case of r; = ry can be eliminated because
the resulting solution zy = x5 = - -- = x, = 0 is trivial. Hence we have z; = ar{ + Or3.
Plugging it into the boundary condition xy = x; = 0 we obtain

a+p =0, (C.ha)
art 4 Bri = 0. (C.5b)
From the above equations we can obtain r; = ryexp(i2wk/L) for k =1,2,--- | L — 1.

Meanwhile, we can obtain from the Eq. (C.3) that

r1Tr9 = 1, (CGa)
T1+T2:2—>\. (Cﬁb)

Therefore, we can solve r; = exp(irk/L) and ry = exp(—imk/L). The eigenvalues of
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A can be written as

/\k:4sin(§—z), k=1,2,---,L—1. (C.7)

The corresponding normalized eigenvectors are

shr) | (C.8)

XL =




Appendix D

Derivation of the exclusion condition

To derive the exclusion condition, which might be confusing at the first sight, we
use the example of two-particle system and then generalize it to the N particle case.
Firstly, let us rewrite the master equation of the two particle system as:

dp(l'l, T2, t)

o7 =aP(xy — 1,29;t) + BP (21 + 1, 12; 1)

4 aP(z1, 79 — 1;) + BP(x1, 20 + 1;£) (D.1)

— 2(a+ B)P(x1, x93 1)

We assume that the above equation is valid for the whole space. However, this is
actually not true when these two particles are sitting on the neighboring sites. Let us
now consider this special case separately, remembering that o = x1 + 1. The master
equation of this special case can be written as

dP(xq,x9;t
% =aP(xy — 1,x9;t) + BP(x1, 20+ 1;1) (D.2)
— (o + B)P(x1, 2231)
Now, we can do a subtraction, i.e. (D.1) — (D.2), obtain
aP(xy, 29 — 1;t) + BP(x1 + 1,295 t) = (a + B) P(x1, x93 1) (D.3)

Denoting x := z; and plugging in 9 = 21 +1 = £+ 1 in the above equation, we finally
arrive at
aP(z,z;t) + fP(x+ 1,2+ 1;t) = (a + B)P(z,x + 1;) (D.4)

In summary, the sole master equation Eq. (D.1) does not contain the exclusion
cases. In order to represent the exclusive setting, we assume Eq. (D.1) is valid for
the whole space, and then apply an additional condition (Eq. (D.4)) on it. In the
continuous space, the terms in Eq. D.4 is equivalent to the partial derivative of the
probability density function at the collision boundary z; = x».

In a similar way, we can derive the exclusion condition for N > 2. Here we take the
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example of N = 3 for illustration purpose. The master equation can be written as

dP(Il, To, T3, t)
dt

=aP(xy — 1,29, x3;t) + BP(x1 + 1, 29, 23; 1)

+ aP(xy,x9 — 1, z3;t) + fP(x1, 20 + 1, 23; 1) (D.5)
+ aP(xy, 19,73 — 1;t) + BP(11, 72, 23 + 1;1)
—3(a+ B)P(xy1, x2, w3;t).

The two body exclusion conditions can be derived exactly the same way as above.
The results can be written as

aP(x,x,z3;t) + P(x + 1,z + 1,23;t) = (o + B)P(z,x + 1, 235 1),

D.6
oP(er, 7, 2:0) 4 BP(r, 2+ Lo+ Lt) = (0 + B)Pm,z e+ L1, OO

Now, let us consider the three body collision, namely, when the three particles are
sitting on three consecutive sites. The special master equation for this case can be
written as

dP(SCl, X2, T3, t)
dt

=aP(xy — 1,29, x3;t) + BP (21, 22, 23 + 1;1)
— (a+ B)P(x1, x2, 3;1).

(D.7)

Subtracting Eq. (D.5) from Eq. (D.7) and taking x3 = o +1 =2, +2 = 2+ 2, we get

aP(z,x+ 1, x4+ 1;t) + fP(x,x + 2,2 + 2;1)+
aP(x,z,z+2;t)+ 6Pz + 1,z + 1,2 + 2;t) = 2(a+ B)P(z,x + 1,z + 2;t).

(D.8)

We immediately find that Eq. (D.8) can be recovered by adding up the two equations

in Eq. (D.6). So it is not a new constraint. Actually, one can check in the same way

that all the N body collision can be reduced to the summation of two body collisions

for N > 2. Fundamentally, this is the feature guarantees that the ASEP system is

integrable.



Appendix E
Bethe equations of the periodic ASEP

The ASEP model with periodic boundaries is the simplest model that was solved long
ago [122, 138]. The mater equation and exclusion condition of periodic ASEP are the
same as the case of reflecting ASEP, shown in Eq. (4.63) and Eq. (4.65). The periodic
boundary conditions can be written as

‘I’(l’l,ﬂﬂz, ce nyflamN) = ‘I’(sz;ﬂUS, c TN, T F L)- (El)

The Bethe ansatz of the periodic ASEP is constructed by the standard plane wave
functions, which can be written as

N
\Ij(l'la Lo, 7xN) = Z AO’ H €xXp [ipn$a(n)] 3 (E2)
n=1

geSN

where Sy is the group of N-permutation, and A, is the amplitude of the waves. p, is
the wave vectors and 2,(,) is the position of the o(n)™ particle.

By applying the exclusion condition Eq. (4.65) and the periodic boundary condition
Eq. (E.1), one can derive the following set of Bethe equations

eian _ (_1>N71 H a(pn’pm) (E3)

in, WPy Pn)’

where a(p, p') = VaBe!PP) — (o + B)e® + v/ap.
By solving the Bethe equations, the wave vectors p, can be obtained. Then the
eigenvalues of the system can be calculated as

A= i [—(a + B) + 2\/@005(@1)] : (E4)

n=1






Appendix F

Single-file diffusion with reflecting
boundaries

Single-file diffusion is the continuous limit of the discrete ASEP model. The connection
from ASEP can be shown by transferring the hopping rate «, 5 to the diffusivity of
particle D and drifting velocity pu:

D= —(a+p), (F.1a)
w=p—a. (F.1Db)

The dynamical equation of the single-file particle system can be describe by the Fokker-
Planck Equation

Op(x,t|x d” 0 02
et (2 7t 2 it

F.2
0 + 0 + + 0 (x,t|x0) "
— —_— — PR —_— X X
H 8ZE1 8x2 8$N P, 0/
where X = (21,79, -+ ,xy)? is the vector that denotes the position of each particle and

Xg is the initial position of particles. The reflecting boundaries of the ASEP system
can be rewritten as

(Daixlp(x,t]xo) — ,up(x,t]x@) =0, (F.3a)

x1=0

(D%p(x,tlx()) - up(x,ﬂx())) o, (F.3D)

zny=L

where L = 2N in our case. Furthermore, we note that the exclusive condition which
means the particle can not overtake each other can be formulated as

~0. (F.4)

Ti=Ti+1

0 0
(vl txa) = pix i)



114 Appendix F: Single-file diffusion with reflecting boundaries

Finally, the initial condition we assumed here is
p(x,0[x0) = d(x1 — 10)0(x — x2p) -+ - 0(xN — TNp)- (F.5)

The solution of Eq. (F.2) together with Eq. (F.3),(F.4),(F.5) can be found by the
continuous version of generalised coordinate Bethe Ansatz. We assume the solution
of p(x,t|xg) can be written in the following form

p(x, t[xo) = Z Y(x1, To(1); )V (T2, Tog)s ) - V(TN To(ny; ), (F.6)

ocESN

where o is a N-permutation of ;. This means the expanded form of Eq. (F.6) reads

P(x, t|xo) =t(21, 21,0; 1) (2, X2,0;t) - - (TN, TN )+
(21, T20; 1) (T2, 21,0:1) - - (TN, TN )+ (F.7)

all other permutations of {1, 20, - ,ZNo}-

Now, it is important to find out the correct ¥(x;, To(;);t). We show here that ¢ (z;, £5;); t)
is simply the form of one single Brownian particle with a drifting velocity p and dif-
fusivity D in the reflecting box of size L, as indicated by the reflecting ASEP model.
However, before diving into the derivation, let us explain the intuition why this method
works. The reason might be rooting from the reflecting boundaries of the system. Be-
cause of the reflecting boundaries, the response of particles in the middle or in the
periphery is exactly the same, i.e. reflecting. This leads to a factorized form of the
N-particle PDF, i.e. Eq. (F.6). The conjecture is that Eq. (F.6) is the solution of the
1D N-particle system as long as the boundary is reflecting, even if the external force
field is much more complex than the constant one. We give a proof next.

Here, we show that Eq. (F.6) is indeed the solution of the reflecting single file diffu-
sion problem. It is actually quite simple and straightforward. We denote ¢ (z;, z,0;t)
as the solution of single particle in the box so that

(i, xj05t) 0 _ G, L
at — Daw?d}(ajzax],o;t) Maxiw<xz,x]707t), (FSa)
0
(D%w(*xiv 4,05 t) - /“?(3% Zj0; t)) =0; (F,gb)
' x; =0
0
(D%d’(% 503 t) — (@i, T 50; t)) =0; (F.8c)
‘ xr;=L
(@i, 2507 0) = 6(2i — j0). (F.8d)

Let us first check that Eq. (F.6) satisfies the Fokker-Planck equation. Substituting
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Eq. (F.6) into Eq. (F.2) we obtain

N
a ir La(i)s
_ Z aniﬂ(%a%(j);ﬂ

oceSy i=1 jFi
N
82 xlaxa t 8 xhxaz
s = 3 3 (0Pt - P T ey 0,
ceSy i=1 Z i

It is obvious that lhs = rhs because of Eq. (F.8a). Other permutation terms of
Eq. (F.6) can be proved in the same way.

Next, we show that the reflecting boundary conditions are satisfied. Plugging
Eq. (F.6) into Eq. (F.3), we obtain

0
(Do ptoxtbx) — (.t

x1=0

_ Z ( 8%0 xl,xa ) t) _ (a1, T )wa],xg

cESN Jj#1

=0.

x1=0

Eq. (F.8b) is utilized in the last step. Similarly, the boundary condition at xy = L is
also satisfied because of Eq. (F.8¢).

We then show that the exclusive condition Eq. (F.4) is also fulfilled. We take a pair
of permutation terms that we can always find in the ansatz of Eq. (F.6),

¢ :w(xluxm,(];t)w xz+laxn07 H w xj7x0'(j )

JFi,i+1

+ (@i, Tno; OY(Tig1, T3 t) H Y(xj, To(jyst).

JFLi+1

It is easy to verify that

OY(Ti1, Tno; t)

op 9o ~(OY(wit1, Tmoi t) _ .
(0$i+1 8%’) _( 041 Yl Tnoit) + Oxit ¥ T )
Ti=T441
OY(4, T 03 t O (i, Tpp;t
—MTi’())Qﬁ(xi+1, Tn,05 t) - Ma—xio)wxwh Tm,0; t))
< I ¢ zapyt)
J#LI+1 Ti=Ti41

=0.

Because p(x,t|xg) can be written as the summation of ¢, the exclusive condition
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Eq. (F.4) is proved.

Finally, we come to the initial condition. Simply plugging Eq. (F.8d) into the
solution Eq. (F.6) we get

p(X, O‘Xo) :(5(.T1 — Il,o)é(l’g — .1'270) e (5(.7)]\[ — IEN’(])
+ 5(331 — 1'270)(5(1'2 — .’EL()) s 6($N — .I'N’(])

all other permutations of {z 9,220, - ,ZNo}-

All the other terms vanish except for the first in the above equation because by defi-
nition we have x; < x9 < --- < 2y and x19 < 29 < -+ < n,0. We thus proved the
initial condition Eq. (F.5). Finally, we have proved that Eq. (F.6) with Eq. (F.8) is
the solution of our problem. Notice that this procedure of proof is still valid in the
case where external force field is more complex than a constant field.

Now let us come back to the solution Eq. (F.6). The close form solution of our
problem can be written down if we know the exact form of v (x;, x,0;t). Luckily,
Y(x;,j0;t) is known from the work of Linetsky [176]. In our notation, ¢ (z;,x;0;t)
can be written as

(s, xj0;t) = Yolx;) + Z exp(—=Ant)pn(xi, z50), (F.9)

n=1

where 1g(x;) is stationary measure that does not depend on time and the initial
condition. )\, is the eigenvalue related to n'* relaxation mode, On(zi,250) is the
function related to the initial condition. These functions are summarized as follows:

% for u=0,
) = exp( BTi F.10
to(:) %—QX;E%I;_)I for i # 0. (F.10a)
2 Dp2r2
A, = f_D + 722” : (F.10b)
D72 exp(Ls (2 — 49))
(i, Tj0) = Wi T X () X (20); (F.10c)
2n nmwr . nTxT
Xo(z) = A COS(T) + - sm(T). (F.10d)

Plugging Eq. (F.9) and (F.10) into Eq. (F.6), we get the close form of N-particle solu-
tion. However, it is so lengthy and not clean enough for us to understand the physics.
Here, we are mainly interested in the stationary state and the longest relaxation mode.
So we keep only these two terms after the substitution to get

p(X,t|x0) = po(X) + p1(x, t|x0) + pu (X, t|x0). (F.11)
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where py is the summation of all higher mode terms n > 1, pg and p; are stationary
mode and longest relaxation mode, respectively, which can be written as

po(x) = N!y(x1) 1__[ Yo (2i41)O(Tip1 — 24); (F.12a)
P1(X, tx0) = A1 (X, Xo) exp(=Ait); (F.12b)

N N N
Ar(x,x0) = (N = D)UY wo(z:) Y D on(wy, wro)- (F.12¢)
i=1 j#i k=1
Here, O(x) is the Heaviside step function and A; is the amplitude of the longest
relaxation mode which only depends on the position of particles. We can see clearly
from here that the second largest eigenvalue of the N-particle system is A, which is
exactly the second largest eigenvalue of one particle system.






Appendix G

The blob theory of pinned polymer
loop

We discuss here the blob theory of a pinned polymer loop. The polymer is supposed
to be an ideal chain model, which means the typical size of the polymer R scales with
the number of monomers L as R ~ L'/2.

The blob theory claims that the pulled polymer is composed by a succession of
independent blobs with the size of the blob
kgT

Ripjop = N (G.1)

where f is the magnitude of the local pulling force, and Ry, is the typical size of the
blob which can be measured by either the end to end distance or the gyration radius.

We emphasize here that all constant pre-factors are ignored in this calculation. Then
the number of monomers in one blob can be estimated as

2
Liop = (%) : (G.2)

where a is size of one monomer. The total extension of the polymer chain along the
force direction can be written as

——La. (G.3)

From the above equation, we obtain the local deformation of the polymer dz/dl, which
can be written as J F
z a
— = -—a. G.4
dl ~ kgT" (G4)
Notice that for the pinned chain in an external force field, the local force f is accu-
mulated by the tension from the non-pinned end. Namely, we have f ~ Fz/a, where
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F'is the strength of the external force field. Thus we arrive at

_ [kgT\? Fa \ _ - z
z2(l)=a (F_a) exp (kB_Tl) = aT2 exp (T) : (G.5)

We purposefully write it in this form which makes the comparison to our theory easier.

Now we discuss the different regimes of the steady state. The first regime is the
unperturbed regime. In this regime, the external force field is weak, and the configu-
ration of the polymer is nearly coiled. The boundary of this regime can be estimated
by

From Eq. (G.6), we can obtain the critical dimensionless temperature T.=L.

The second regime is characterized by a series of blobs with increasing size, which
is called the trumpet regime. The smallest blob is the one right next to the pinned
point. Consequently, the smallest possible size of a blob is a. We have

ksT = fa = FL., (G.7)

where L, = z(L) can be calculated by Eq. (G.5). By solving the above equation,

we can obtain the boundary of the trumpet regime as \/_ = exp Z L Thus we have

T = WM. Here LambertW () is a special function that denotes the inverse

function of f(z) = zexp(z). In the case of L € [100,1000], we have T,, ~ L/3.

The next regime is called the stem-flower regime, where the part of polymer near to
the pinned point is almost stretched while the part far from the pinned point is still
composed by blobs. Denoting the extension of the “flower” part as zy and number of
monomers in the “flower” as lf, we have

kgT = fa= Fz. (G.8)

Again, we can calculate z; by Eq. (G.5). Thus we have

T = l
zp=—=—0L, = \/Eexp (—f) a; (G.9a)
c2 T
- (L 1 - 1 -

lf:T(~——|——lnT——lnTcg). (G.9b)
c2 2 2
By further increasing the external force field, we can finally arrive at the fully
stretched regime where the whole polymer is stretched. The critical T¢3 can be calcu-
lated from Eq. (G.9) by setting [y = 1. Interestingly, we can obtain T3 = m ~
2.35 which is independent of the system size.
Finally, let us discuss the impact of the looping structure. In the ideal chain model,
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there is no excluded volume effect. The pinned polymer loop is the same as the pinned
polymer chain except for that a factor of 1/2 has to be multiplied to L. In the scaling
discussion above, this pre-factor is negligible.
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