Metadata, citation and similar papers at core.ac.uk

Provided by Technische Universitat Dresden: Qucosa

TECHNISCHE UNIVERSITAT DRESDEN
Fakultat Informatik

Institut fiir Software- und Multimediatechnik
Lehrstuhl Softwaretechnologie

DIPLOMA THESIS

Design and Implementation of Role-based Architectural
Event Modules

submitted by: Frank Rohde

born: 31.12.1985 in Berlin

to obtain the degree of
Diplomingenieur
(Dipl.-Ing.)

First Examiner: Prof. Dr. Uwe ABmann
Second Examiner: Dr. Sebastian Gotz
Supervisor: Dr. Somayeh Malakuti

Submitted: 23.05.2016

https://core.ac.uk/display/236374259?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

Introduction
1.1 Motivation and Problem Statement
1.2 Overview
Background
2.1 System of Systems
2.2 EventArch 2.0
221 Concepts. e
2.2.2 Implementation
223 Diagramso
2.3 Role-based Modeling oo
2.4 Coupling Strategies
Related Work
3.1 Requirements
3.2 Features
3.3 OT/J . o
3.4 Other Role-based Languages
3.5 Areas of Improvemento
3.5.1 OT/J ..o
3.5.2 Other Role-based Languages
Concepts of EventArch 3.0
4.1 Base, Role, and Compartment
4.2 Dynamic Composite AEM and Role-Binder
4.3 Inner Roles and Atomic Block
4.4 Diagramso
Internal Design of EventArch 3.0
5.1 Implementation of the Concepts
5.1.1 Base, Role, and Compartment
5.1.2 Dynamic Composite AEM and Role-Binder
5.1.3 Inner Roles and Atomic Block
5.1.4 Other Concepts

5.2 Further Discussion and Design Alternatives.

N —

Contents

6 Evaluation of EventArch 3.0

6.1 Advantages
6.2 Disadvantages

6.3 Reflections on the Fulfillment of the Requirements

6.4 Usecase
6.5 Application to the Example Use case
6.5.1 Presentation of the implementation

6.5.2 Advantages shown by the implementation

7 Conclusion

7.1 Future Work

8 Appendix

8.1 Additional Source-Code
8.1.1 OT/Jsource-code
8.1.2 “State’-coordination rule

8.2 Internal Design of EventArch 2.0
821 Abstract
8.2.2 Detailed L.

8.3 Grammar of EventArch 3.0.

8.4 EventArch 3.0 Diagrams

Bibliography

Chapter 1

Introduction

1.1 Motivation and Problem Statement

Current technology is developing towards “Systems-of-Systems” (SoS). A System-of-
Systems is constituted by a - potentially large - group of individual, collaborating
systems. The individual systems are characterized by operational and managerial
independence. Moreover, they are developed independently. Those characteristics
cause the behaviour of a constituent system to be subject to “emergence”. This
emergence has to be considered when managing a System-of-Systems (see 2.1).

This thesis is situated in the context of “Systems-of-Systems” as a current field of
study. In particular, it is concerned with the management of the behaviour of con-
stituent systems on SoS-level. One management goal is to keep the behaviour of the
overall system unaffected by the emergent behaviour of its constituent systems. To
achieve that goal, the SoS-manager may define and implement certain “coordination
rules”. Coordination rules are definitions of certain interactions that are forbidden or
that are required among constituent systems. The successful application of coordina-
tion rules to constituent systems suppresses unintended behaviour that might have
been introduced by emergence ([22]).

The concern of coordination is a cross-cutting concern. It involves multiple con-
stituent systems that participate in a SoS. Moreover, this concern crosscuts through
multiple components of individual constituent systems. Therefore, the concern of
coordination is applicable on a level of abstraction that resides above the level of
individual applications. It can be applied on the architectural level. Such concerns
can be nicely modeled by architecture description languages (ADLs). An ADL allows
for the desired separation of applicational concerns and architectural concerns like
“coordination”. The ADL “EventArch” is oriented towards coordinated behaviour
of systems that are collaborating as “constituent systems” of a SoS. It distinguishes
itself from other approaches by providing means to modularize coordination as a cross-
cutting concern that is transparent to the code of the constituent system (see [22]).

Systems-of-systems can be divided into static SoS and dynamic SoS. A static SoS is
assumed to consist of a static set of constituent systems. A dynamic SoS consists
of a dynamic set of constituent systems, i.e., constituent systems may join or leave

Chapter 1 Introduction

a dynamic SoS at any moment in time. Coordination rules are meant to prevent
unintended behaviour on the SoS-level that was caused by the simultaneous operation
of specific constituent systems. To prevent that behaviour, coordination rules may
be designed to be more or less restrictive. For the same coordination rule, several
more- or less restrictive variants may exist. The desired level of restrictiveness of
a coordination rule may depend on the composition of constituent systems that is
prevailing in the SoS at a certain moment in time. The desired level of restrictiveness
may rise if more systems join the SoS and may fall if certain systems leave the SoS.

This creates the following problem: If the level of restrictiveness of the current vari-
ant of the coordination rule would not match the level of restrictiveness that is actually
desired, the behaviour of the constituent systems is either over- or under-restricted.
Both cases may give rise to unintended behaviour of the constituent systems that
may complicate or prevent achieving the goals on SoS-level. The main goal of this
thesis is to devise a mechanism to dynamically apply a coordination rule to a SoS,
depending on the composition of constituent systems. The mechanism that is to be
developed in this thesis is understood to be a contribution to solving the problem
that has been stated above. To finally solve that problem, another mechanism has to
be developed to initialize the coordinators of the more- or less restrictive variant of
the coordination rule. A proper initialization is necessary, as the coordinators of the
new variant are expected to preserve the state of the former coordinators, to ensure
a seamless continuation of the coordination services in the SoS.

The aspired solution should allow for a modular implementation of the cross-cutting
concern of coordination. The ADL EventArch 2.0 is a promising approach with
respect to that condition. Therefore, EventArch 2.0 has been chosen for extension in
this thesis. The described problem is solved by extending the architecture description
language “EventArch 2.0” to support the dynamic application of a coordination rule
to a System-of-Systems. This will increase the applicability of EventArch to dynamic
SoS. The application of a coordination rule may be conditioned by the composition
of constituent systems in the SoS.

The application of a coordination rule is achieved by composing the coordinators that
are associated to that rule, with the constituent systems of the SoS. Each coordinator
bears responsibility for a specific constituent system. This architectural setup can be
related to concepts that originate in the field of “Role-based Modeling”. Therefore, a
solution is devised that is based on those concepts, namely “Base”, “Role” and “Com-
partment”. An exemplary architectural specification is presented that consists of two
constituent systems that dynamically ignore or comply to a specific coordination rule,
depending on the presence of the respective other system.

1.2 Overview

In the following, the structure and line of argumentation of this thesis is presented.

Chapter 1 Introduction

In the “Background”-chapter, the reader is equipped with knowledge about con-
cepts and fields of study that are related to the concern of this thesis. The description
includes “System-of-Systems”, “EventArch 2.0”, and concepts from the field of “Role-
based modeling”. The subsequent chapter “Related Work” develops requirements
in order to solve the problem that has motivated this work and identifies relevant
language-features. It introduces current role-based modeling- and programming lan-
guages, analyzes their respective approach to “Role-based Design” with respect to
the features that have been identified before, and reflects on their capability to solve
the problem of coordination in dynamic SoS, that has been described in the pre-
ceding section. Then, the thesis’ solution to this problem is presented. EventArch
3.0 is described as a loosely-coupled architecture description language that provides
the language-elements “Dynamic Composite AEM”, “Cross-cutting Roles”, “Role-
Binder”, and “Compartment” to achieve a dynamic application of coordination rules
through consistent role-binding. Role-binding may depend on the composition of
constituent systems in the SoS. Moreover, the language-support for a modular imple-
mentation of the cross-cutting concern of coordination is described. This description
is provided on a rather conceptual level in the chapter “Concepts of EventArch
3.0”. The next chapter, “Internal Design of EventArch 3.0”, provides a more
detailed description that concerns the implementational level as well. This chapter
will be useful for readers that intend to extend EventArch 3.0. EventArchs approach
to solving the problem of coordination in dynamic SoS, that has motivated that work,
is evaluated in the next chapter. This chapter, “Evaluation of EventArch 3.07,
identifies advantages and disadvantages of EventArchs 3.0 features, reflects on the
way in that those features fulfill the requirements that have been stated in the “Re-
lated Work”-chapter, and finally applies EventArch 3.0 to a use case that involves
two constituent systems.

At the end of this work it is concluded that EventArch 3.0 is capable to solve the
thesis’ problem of coordination in dynamic SoS by providing support for the dynamic
application of coordination rules in a dynamic SoS in dependence of the composition
of constituent systems in the SoS.

Chapter 2

Background

This chapter is concerned with concepts and notions that are relevant for the rest of
that thesis. The reader is introduced to the notion of “System-of-Systems” (SoS).
Constituent systems are distinguished from ordinary system-components according
to certain characteristics. EventArchs 3.0 tribute to those distinguishing characteris-
tics is described. EventArch 3.0 is an extended version of EventArch 2.0. Therefore,
concepts- and implementation of EventArch 2.0 are described in that chapter as well.
This part is especially important for understanding later parts of the thesis that are
concerned with the language-extension that was applied to EventArch 2.0. In the
following, role-related concepts are described. A short introduction into the develop-
ment of the scientific field of “role-based modeling” is given. This part of that chapter
is concluded by the derivation of an interesting mapping from role-related concepts
to concepts that relate to peer-to-peer coordination. Finally, the coupling strate-
gies “loose-coupling” and “tight-coupling” are explained. Certain design-decisions of
EventArch 3.0 are associated to those strategies.

2.1 System of Systems

Large organizations implement computing- and controlling services that solve increas-
ingly complex tasks. Examples include “traffic and transportation” [12], “power gen-
eration and distribution” ([5]) and “space exploration”([13]) The complezity of those
tasks has grown out of a level at which they could have been implemented by an individ-
ual system. Instead, multiple systems have to achieve the desired complex computing-
and controlling services. Such “Systems-of-Systems” are characterized in the follow-
ing. Those problems of SoS are emphasized, that FventArch 3.0 has been designed to
approach. An illustrative example of a System-of-Systems is presented and discussed
in conclusion of this section.

To understand the advantage of EventArch 3.0 over EventArch 2.0, the distinction
between static SoS and dynamic SoS is crucial. In a static SoS all constituent systems
are known at compile-time. Moreover, it can be assumed that all constituent systems
will be statically available throughout the lifetime of a static SoS. In a dynamic SoS
constituent systems may join or leave the SoS at runtime. Those constituent systems

Chapter 2 Background

may be of an unanticipated type.

According to [9], constituent systems can be distinguished from software that is
merely a component of an individual system. The relevant criteria would be:
“autonomy”’, “belonging”’, “connectivity”, “diversity” and “emergence”. The
pecularities of constituent systems give rise to special tasks for the SoS-manager.
Those special tasks should be reflected in an ADL by features that are tailored to-
wards them. EventArch 3.0 can be understood as a step in that direction.

Constituent systems are autonomous in that they are independently developed and
managed [10]. Moreover, they may be operated independently of each other without
failing to achieve their original requirements. [27]. The essential difference between
constituent systems and system-components with respect to “autonomy” is, that
a system-component has no purpose in its own right, but is incorporated into the
system to achieve a system-level purpose. Opposed to that, a constituent system has
a purpose in its own right. This purpose can be achieved without contributions of
any other constituent system. To illustrate that pecularity, Boardman refers to the
example of a brake ([9]), which is merely a component of the system “car”, as it was
deliberately designed to achieve the system-level purpose “velocity-control” and has
no purpose in its own right. Opposed to that, one could regard a car in a sophisticated
controlled transport system as a constituent system if it was not deliberately designed
to serve a purpose in that system, but can still be used independently of that system,
e.g., in areas where this transport system is not prevailing.

To not interfere with the autonomous development of the constituent system, an ADL
should not have any impact on the legacy-code of that constituent system. While this
is difficult to achieve, EventArch 3.0 respects that characteristic by implementing the
concern of coordination transparently to the code of the constituent system.

Constituent systems can also be distinguished from system-components with respect
to “belonging”. While system-components have been designed for later incorpora-
tion into that system, constituent system have been designed to pursue their original
purposes. To allow for useful interaction with other constituent systems in order to
achieve a SoS-level purpose, additional development effort has to be invested. It can
not be assumed for a candidate system that this effort may be justified in order to
contribute to the SoS. This characteristic includes that a constituent system might
decide to participate in more than a single SoS ([10]).

To allow for reuse in different SoS, that characteristic requires an ADL in the SoS-
context to tie a constituent system as tight as necessary, but as loosely as possible
to existing SoS-level institutions. Such an institution might be a manager that is
concerned with preventing unintended behaviour or a set of coordinators that imple-
ment a coordination rule. EventArch 3.0 respects that characteristic by being based
on event-based communication to allow for a loosely-coupling between constituent
systems and SoS-level institutions.

Constituent systems do also face special conditions with respect to “connectivity”.

Chapter 2 Background

System-components have been designed to perform specific interactions. Achieving
connectivity is a matter of system-design. In a dynamic SoS new types of constituent
systems may join or leave throughout the lifetime of the SoS. Therefore, there is
recurring pressure for constituent systems towards adding or removing connectivity.
This may blur the original system boundary of the constituent system as other sys-
tems may achieve “access to some of its inner connectivity that does not normally
appear at its surface, or system boundary” ([9]). This interference with the orig-
inal encapsulation of the systems functionality may be one reason for unintended
behaviour.

In EventArch additional connectivity may be added to a constituent system in two
levels. The first level is added at compile-time and may provide fundamental ser-
vices. Based on those fundamental services, more specialized services may be added
at runtime. One use case is to provide complex connectivity by deploying special
“coordinators” to the second level at runtime. To allow for flexibility between the
constituent systems and its coordinators, all communication is based on events. To
prevent unintended behaviour that may conflict with SoS-level goals, EventArch 3.0
supports the definition of coordination rules.

Another contrasting issue between a System-of-Systems and an individual system
is the type and level of their inherent “diversity”. Systems can unfold diversity
with respect to their “parts”, with respect to the “relationship” between those parts,
and with respect to their “system behaviour” as a whole. Individual systems have a
comparably short lifetime. Throughout their lifetime they unfold a certain level of
diversity with respect to their “system behaviour”. But this level of diversity is limited
by what was designed in at design time. The diversity of individual systems with
respect to their “system behaviour” is limited by design. Opposed to that, Systems-
of-Systems have a much longer lifetime. They may be hosted by large organizations
that may consider to change their configuration but not to “replace” them. Often, a
single instance of a SoS is in operation. Throughout its lifetime a SoS is faced with
“rampant uncertainty, persistent surprise, and disruptive innovation” on the side of
its constituent systems ([9]). To be able to quickly respond to those challenges, a
System-of-Systems should be capable to achieve a much higher level of diversity with
respect to “system behaviour” than individual systems.

A System-of-Systems can be also distinguished from an individual system by the way
the emergence of the respective parts and the overall system can be approached. In
the case of an individual system, the desired system-behaviour is relatively obvious
to the system-developer. Nevertheless, emergence can take place over the lifetime
of the system. This emergence can be anticipated at design-time. This allows the
system-developer to design emergence deliberately into the components and into their
respective relationships. He may try to anticipate unintended behaviour and provide
tests to show its absence. Constituent systems are developed independently. A SoS
is committed to a relatively high level of diversity as a whole. Therefore, unintended
behaviour is likely to get introduced into the SoS in an unanticipated way. This may

Chapter 2 Background

take place throughout the lifetime of the SoS. Moreover, the SoS-manager may not
have knowledge about the detailed behaviour of each constituent system. In a chang-
ing context, a constituent system may behave in a way that was not expected by the
SoS-manager. In this way, the emergence of constituent systems can be described as
“unanticipated” from point of view of the SoS-manager. This discourages to show the
absence of unintended behaviour by writing tests. Instead, the SoS-manager should
“create a climate in which emergence can flourish, and an agility to quickly detect
and destroy unintended behaviors, much like the human body deals with unwanted
invasions.” ([9])

EventArch 3.0 approaches that climate by establishing specific coordination rules
among constituent systems and by achieving their acceptance, even in the face of
unanticipated emergence.

The SoS-characteristics described above contribute to the capability of a SoS to cope
with the increasingly large complexity of todays tasks in computing and controlling.
They enable the constituent systems of a SoS to have through collaboration (i.e. as
a SoS) a substantially more developed impact on their environment than the same
systems could have in isolation. To conclude this section a natural example of a SoS
is described.

Researchers may be concerned with multiple fields within their subject. From time
to time a research conference is held that brings many representatives of that field
together. At such an occasion intense discussions among the assembled researchers
can develop. This setup can be understood as a natural example for a System-of-
Systems. It is in accordance with all the characteristics that are described above.

Every individual researcher has “autonomy”. His research was not established in
order to make him a participant of such a conference. It was an option to attend at
the conference and an investment in time and money. A decision had to be taken
to go there or not to go there. Therefore, the researcher also has “belonging”. At
the conference he will meet new colleagues and will have to adhere towards thoughts
that are new and challenging to him. He has to put effort in “connecting” to these
new colleagues and their thoughts. Therefore, a researcher at such a conference is
also subject to “connectivity”. The conference is an assembly of expert researchers
in that field. In the course of several of those conferences, the composition of in-
volved researchers may change. But what is even more striking is the change of ideas
throughout the conference or in its aftermath. The conference unfolds a great deal of
diversity in that it allows the expert researchers to get in an intelligent discussion that
results in the development of new thoughts and insides. In that way, the conference
unfolds a great diversity of thought. This can be understood as an extraordinary
high level of diversity with respect to “system behaviour”. Therefore, the confer-
ence has the characteristic of “diversity” as well. Finally, the emergence of thought
at the conference can not be anticipated prior to the conference. Nobody can test
whether the expected inspiration has been gained by each individual researcher at
the conference. Emergence takes place in an unanticipated way due to the other

Chapter 2 Background

factors. Researchers have autonomy, i.e., they are concerned with individual topics
within that field and may contribute to the conference the one or the other thought
that has originated from their work with respect to their individual topics. At every
conference the composition of researches may change, i.e., due to “belonging” a new
combination of researchers may be achieved. This new combination may cause new
inspirations. The well-established researchers have to “connect” to the ideas of the
newcomers. This may be a source of inspiration for them. The researchers will finally
achieve a diversity of thoughts through intense discussion. All those characteristics
give rise to a sort of emergence that is specific for those conferences and could not
have been achieved by the individual researchers in isolation.

2.2 EventArch 2.0

FEventArch 3.0 has been derived by extension from the architecture description lan-
guage “EventArch 2.07. In this section EventArch 2.0 is described. An overview of
important concepts and intentions of the language is presented first. A detailed ezx-
planation of FventArchs 2.0 internal design follows. Due to the close relationship
between FEventArch 3.0 and EventArch 2.0, this section contains useful background
for understanding subsequent chapters that are primarily concerned with EventArch
3.0. Additional material concerning EventArch 2.0 can be found in the appendiz. (see

8.2)

2.2.1 Concepts

EventArch 2.0 is an architecture description language (ADL) that was devised in an
effort to improve the language-support for coordination in System-of-Systems (see [22]
and [23]). In particular it strives for

e Modularizing the cross-cutting concern of coordination at the granularity of
coordination rules

e Improving the separation of the concern of coordination from the original con-
cerns of constituent systems.

e Providing flexibility by supporting various coordination patterns

e Achieving a uniform representation of constituent systems and coordination
logic

e Supporting constituent systems that are implemented in heterogenous program-
ming languages

Current solutions in the fields of aspect-oriented programming, coordination languages
and system modeling languages would fail to provide satisfactory support for coor-
dination in SoS. EventArch would combine all desirable qualities ([23]). To even

Chapter 2 Background

improve its unique combination of qualities, EventArch 2.0 was chosen for extension
in this thesis.

In EventArch 2.0 all members of a System-of-Systems are uniformly represented as
“Architectural Event Module” (AEM). One can distinguish two sorts of SoS-
members: constituent systems and coordinators. Coordinators encapsulate coordi-
nation logic that is employed to achieve a coordinated execution of the constituent
systems. They may be implemented as a statemachine. EventArch 2.0 provides
language-support for that design-decision. (see below 2.2.2). From point of view of
“coordination”, an AEM can be understood as a system or application that is either
in need for coordination or provides coordination-services. From a more technical
point of view, an AEM is a wrapper around an existing system or application. The
wrapped system is termed “Reactor”. The AEM is therefore a representation of the
reactor on an architectural level that is primarily concerned with coordination. Java
and C++ are supported as reactor-implementation language. The AEM extends the
reactor by event-based interfaces. AEMs do therefore rely solely on event-based
communication.

An event-based interface specifies the events that it can receive and process. Those
events are specified in the “required”-part of the Primitive Interface (for details see
appendix 8.2). Based on that “required”-part of the specification of the Primitive
Interface, it can select events of interest out of the stream of incoming events. Selected
events are further processed by the interface. They may give rise to calls of certain
functions of the reactor. The “provided”-part of the interfaces specification is meant
to describe all events that it can publish. It is a description of all possible outgoing
events. Events may be published in response to certain state-changes or function-calls
in the reactor. Event-based interfaces are used to publish the state of the reactor
that is relevant for coordination to a coordinator. Moreover, they can be used to
interfere with the state of the reactor in order to achieve a change in the behaviour
of the reactor in response to events that have been sent by a coordinator. The
event-based interfaces of an AEM are stateless and are therefore termed Primitive
Interfaces. Those interfaces are cross-cutting in that they may be employed by
multiple components of the constituent system to contribute to the implementation
of cross-cutting concerns, e.g., “coordination”. They contribute to the separation of
the concern of coordination in that they do not rely on available public interfaces that
are related to the original concerns of the constituent system, but are solely meant
to be used for coordination-purposes. Moreover, they are implemented transparently
to the original concerns of the constituent system using aspect-technology (see 8.2).

A coordinator might be used to implement all coordination logic that adheres to a
coordination rule. In this case, all constituent systems that are concerned by that
coordination rule would have to set up communication relations with that coordina-
tor. Coordination that is organized in that way is said to adhere to the “centralized”
coordination pattern. An alternative to that is “Peer-to-Peer” coordination. To
achieve coordination according to the “Peer-to-Peer” pattern, each constituent sys-

Chapter 2 Background

tem is associated a coordinator that is responsible for providing coordination services
exclusively to that constituent system. This coordinator does merely implement that
part of coordination-logic that is relevant for that constituent system, i.e., that sys-
tems “share” of the coordination logic. To increase modularization of coordination at
the granularity of coordination rules, each coordinator can be designed to implement
the constituent systems share of coordination logic with respect to a specific coordi-
nation rule. As a constituent system may be subjected to several coordination rules,
several coordinators might be associated to that system in that way. To improve
language-support for the “Peer-to-Peer” pattern, the AEM-concept was extended
by the notion of a “Composite AEM” (CAEM) in EventArch 2.0. A Composite
AEM encapsulates a constituent system and all coordinators that are associated to
it according to the “Peer-to-Peer” coordination pattern. In that way, a CAEM con-
stitutes a higher-level facade of the reactor. The reactor is not represented by an
AEM that provides Primitive Interfaces, but by a CAEM that provides coordinators.
To emphasize their dedication to a specific constituent system, those coordinators
that are encapsulated together with that constituent system in a CAEM are called
“Composite Interfaces” of that CAEM. The AEM that makes use of the coordi-
nators to achieve coordination, is called “Composite Reactor” of that CAEM. To
distinguish AEMs that do not have that composite structure from the CAEM’s, they
are termed Primitive AEM. Therefore, a CAEM can be described to consist of a
Primitive AEM and certain Composite Interfaces.

A concise graphical description of the concepts of EventArch 2.0 is presented in figure
2.1

For further description of the conceptual design of EventArch 2.0, see [22] and [23].

2.2.2 Implementation

The language-implementation has to cope with the following challenges:
e AEMs exchange information using events. Therefore, events had to be defined

e The compiler has to achieve an integration of the constituent systems code
(“legacy-code”) with the coordination-services that are provided by its AEM
and remote coordinators.

— Events have to be published in response to certain state-changes of the
constituent system that may be of interest to other systems or coordinators
to achieve coordination

— Events of interest have to be selected out of the stream of incoming events.
To achieve coordination, certain state-changes should be commanded to
the constituent system in response to receiving an event of interest.

e A communication platform for communicating events had to be established

e A statemachine-language had to be provided and implemented that could

10

Chapter 2 Background

SoS8

' |
Event

: ven AEM

-attributes

/)

0l.n :fll
| |

Primitive 1 composite reacior ? Cnmposite

T

Composite interrace

| 1 |1..r
Primitive Primitive
Reactor | ! h.n Event-based Interface
-visibility
\ -events

Application

provideg/requires

Figure 2.1: EventArch 2.0 concepts (taken from [22])

be used for coordinator-definition.

e Those coordinators that were designed according to the “Peer-to-Peer” pattern,
had to be encapsulated in a Composite AEM. The constituent system that
is coordinated by those coordinators had to be included in that CAEM as well

e The more technical aspects of compiler-implementation and code generation
had to be tackled

The following description will give an overview about the implementation of Event Arch
2.0 with respect to the sketched challenges. Example code of EventArch 2.0 can be
found in listing (2.1).

1 CoordinatedAdaptiveSoftware [Composite] := {StateCoordinatorASPeer} <—>
2 {WrappedAdaptiveSoftware}
3 WrappedAdaptiveSoftware [Java] := {ISwitchCoordinatorAS,

4 IStateCoordinatorAS} <—> {"AdaptiveSoftware"}
5

6 interface ISwitchCoordinatorAS{

7 requires {

8 CoordinationCommand e_CoordinationCMD =

9 {E | E instanceof "CoordinationCommand"

10 && E.publisher = "SwitchCoordinatorLBPeer"
11 && E.target =— "WrappedAdaptiveSoftware"}
12

13 on (e_CoordinationCMD) {

11

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Chapter 2 Background

invoke ("org.application.Optimizer", "reconfigure",

e_CoordinationCMD) ;

}
}

provides {
ConstituentState e_EndedSwitch := after execution (
static void org.Optimizer.reconfigure (..)){
applicationState = "SwitchEnd";}

}
}

private interface IStateCoordinatorAS{
requires {
CoordinationCommand e_CoordinationCMD =
{E | E instanceof "CoordinationCommand"
&& E.publisher =— "StateCoordinatorASPeer"

}

provides {
ConstituentState e_StartedAS := before execution (
void org.ApplicationComponent.execute (..)){
applicationState = "StartExecuting";
target = "StateCoordinatorASPeer";}

}
}

Listing 2.1: EventArch 2.0 code-example: definition of AEM and Primitive Interface

EventArch relies on events. The language allows to specify events by type and
attribute. An event-type consists of a type-name and a set of attributes. Each
attribute has a name and a type. Attributes are of a primitive type. Supported types
include string, int, float.

The AEM provides the coordination-services “state publication” (provided events)
and “command execution” (required). The Primitive Interfaces are responsible for
providing both coordination services. State publication is implemented using aspect-
technology: AspectJ.

For each event that is specified in the “provided”-part of the specification of the
Primitive Interface, a pointcut is generated. The pointcut is triggered if certain
functions of the legacy-code are executed. In response to a triggered pointcut the
specified event is published. In that way, Primitive Interfaces can be used to indicate
state-changes of the constituent system to other systems or coordinators in the SoS.
All pointcuts and advice-code of a Primitive Interface is contained in an aspect. For
each Primitive Interface such an aspect is generated. Relying on aspect-technology
achieves the transparency of the concern of coordination for the code that implements
the original concerns of the constituent system. But still, the coordination-code has
to be tightly incorporated into the legacy-code to some extend. Each aspect has to

12

Chapter 2 Background

be woven into the legacy-code at compile-time.

The “required”-part of the Primitive Interface specifies those incoming events that
are of interest to the module and should therefore be selected. The criteria to
select an incoming event are encapsulated as a set of selector-specifications. Each
selector encapsulates a set of conditions according to which an incoming event might
be selected for further processing. The conditions can be concerned with the type
of the event and its attributes. They are implemented as a combination of boolean
expressions. Expressions can check the received events type and attributes against
fixed values. Expressions can be combined using the boolean and- and or-operator.
For each selector that is specified in the “required”-part of the Primitive Interface a
selector-object is generated at compile-time. This is used to represent the specified
selector at runtime. Received events are checked against that object at runtime.
In response to a selected event, certain functions of the constituent system can be
executed. This feature can be used to command state-changes to the constituent
system in an effort to achieve coordination. It is implemented using the reflection-
functionality of the respective implementation language.

To implement the coordination-services, events (i.e. “messages”) have to be delivered
from a source to several targets. To achieve that, a communication-platform
had to be established. Communication-services are implemented using an existing
message-oriented middleware solution: Java Messaging Service (JMS, see [1]). The
dissemination of events from a single source to multiple receivers is achieved using
JMS’ “Topic”-concept. A topic is conceptually a symbolic name that can be mapped
to different concrete names. A message-source can publish a message (e.g. an event)
to a topic. In response to that, this message will be delivered to all participants that
have registered for that topic. The mechanism is implemented by a central entity that
is dedicated to providing communication-services: the “communication-provider”.

Composite AEMs (CAEM) are implemented as topics. To publish an event into
the scope of its CAEM, a constituent system publishes it to the topic that represents
its CAEM. The event will be delivered to all coordinators that are contained in that
CAEM. No other SoS-member can listen to communication that is published in this
way to a CAEM. The communication is private to a CAEM.

In EventArch 2.0, coordination decisions are taken by coordinators. Coordinators are
informed about certain state-changes of the constituent systems that may be of inter-
est for the concern of coordination. Coordinators might try to keep an overall state
that considers all state-changes of the individual systems. Coordination-decisions can
be taken depending on that overall state. To ease the implementation of such stateful
coordination, EventArch 2.0 provides a statemachine-language that can be used to
implement coordinators. Incoming events may be selected to trigger state-transitions.
Events might be published in response to entering or leaving a specific state. Depend-
ing on the current state, incoming events may cause the publishing of different outgo-
ing events. An extract of a coordinator-definition using the statemachine-language is
presented in listing 2.2. The depicted state-machine defines the states Start, Wait-

13

Chapter 2 Background

ForSwitch and WaitForRestart. Start is the initial state, i.e., it is the state that
the state-machine will assume after startup. On-expressions associate certain actions
(state-transition, event-publishing) to selected incoming events. Send-expressions are
used to publish a specific event that was specified in the “provided”-part of the re-
spective interface. This is done when entering or leaving a specific state (keywords
“entry”, “exit”). While a specific state is active (keyword “during”), state-transitions
can be triggered. They are indicated by the arrow “->”. They are performed in re-
sponse to selecting certain incoming events.

1 initial state Start {

2 during:

3 on (ISwitchCoordinator.e_StartedLB) —> WaitForSwitch;

4 on (ISwitchCoordinator.e_TerminatedAS) —> WaitForRestart;
5

6 exit:

7 send ISwitchCoordinator.e LB_CoordinationCMD =

8 new CoordinationCommand (){

9 command = "suspend";

10 target = "WrappedLoadBalancer";

11 H

12}

13 state WaitForSwitch {

14 entry:

15 send ISwitchCoordinator.e_AS_CoordinationCMD =

16 new CoordinationCommand () {

17 command = "switch";

18 target = "WrappedAdaptiveSoftware";
19 =

20 during:

21 on (ISwitchCoordinator.e_EndedSwitch) —>Start ;

22 on (ISwitchCoordinator.e_TerminatedAS) —> WaitForRestart;
23 exit:

24 send ISwitchCoordinator.e LB_CoordinationCMD =

25 new CoordinationCommand (){

26 command = "proceed";

27 target = "WrappedLoadBalancer";

28 b

29 }

30 state WaitForRestart {
31 during:

32 on (ISwitchCoordinator.e_InitializedAS) —> Start;

33 on (ISwitchCoordinator.e_StartedLB){

34 send ISwitchCoordinator.e LB_CoordinationCMD =

35 new CoordinationCommand (){

36 command = "proceed";

37 target = "WrappedLoadBalancer";
38 H

39 }

40

41}

Listing 2.2: EventArch 2.0 statemachine-language code-example

14

Chapter 2 Background

The compiler-implementation is based on the Xtext-framework ([4]). It provides
automatic parser-generation from a grammar-definition. The classes that model syn-
tax rules are generated likewise. Their names and attributes model the names, ref-
erences, and attributes of the syntax rules. The generated classes form an abstract
syntax tree. The “Model”-class is the root of that tree. Code-generation depends on
that tree. While traversing an instance of the tree at runtime (“tree-object”), the
code-generator stops at every node and performs code-generation for every attribute
and for every reference that was found at the node. Custom validators can be defined
to perform semantic-checks on the tree-object that represents the parsed architectural
specification.

In the code-example that was presented at the beginning of this subsection (see
2.1), the Composite AEM Coordinated AdaptiveSoftware is defined. It consists of the
Primitive AEM WrappedAdaptiveSoftware and the Composite Interface StateCoor-
dinatorASPeer. This Composite Interface acts as a peer-to-peer coordinator for the
Primitive AEM. It is associated to the “State”-coordination rule (see example use case
in section 6.4). The Primitive AEM WrappedAdaptiveSoftware provides the Primi-
tive Interfaces ISwitchCoordinatorAS and IStateCoordinatorAS. It is implemented in
the programming-language “Java”. This interface specifies certain provided events
and selectors for required-events. In response to a received event, that could be
selected by the selector e_CoordinationCMD, the function reconfigure of the class
org.application. Optimizer is executed. The received event is passed as an argument.
The event e_EndedSwitch is provided in response to finishing the execution of the
reconfigure-function of the class org.application. Optimizer.

2.2.3 Diagrams

This section gives a broad overview about the organization of EventArchs 2.0 code-
implementation. It presents two package-diagrams. One is concerned with pack-
ages that contribute to providing runtime-services like event-reception, command
execution, and state-dependent behaviour. The other is concerned with providing
compilation-services like parsing, code-generation, and validation.

The implementation-code of EventArch 2.0 is organized according to the abstract
design depicted in figures 8.1 and 8.2. They just contain packages and their rela-
tionships to one another. The short hints at the “uses”-dependencies clarify what
the supplier-package is used by the client-package for. The abstract design allows a
birds-eye view on the implementation.

For single packages, compile-, and runtime-behaviour refer to the appendix 8.2.

The packages that are concerned with code-generation and the compilation-process
are depicted in figure 8.1. Those concerned with runtime-issues are depicted in figure
8.2. Both parts of the implementation make use of one another. Compilation-related
packages are denoted by numbers, runtime-related packages by letters.

15

Chapter 2 Background

The parser of the EventArch 2.0-language (package 4) is automatically generated by
the Xtext-framework. It accepts an architectural specification that is written in the
EventArch 2.0-language. Its output is an object-tree representing the specification.
Package 2 contains classes whose instances serve as nodes of this tree.

A more detailed description of the internal design of EventArch 2.0 can be found in
the appendiz (8.2).

16

Chapter 2 Background

\create intermediate
jcode from app

|
| «WrappedB:
W ppedby

|
|
|
|
|
|
| org.eventarch.core.applevel _ i
|
|
|
|
|
|
|

A |

oa.m<m3ﬁmaj.ooﬂm.m_m:._msm_ s
c |

«generate»

generated_classes

Abstract-Design

org.eventarch.language.generator

Compilation-Part

1

|
| €use»

|model-objects represent
/_\m_umo_zamﬁ_o n-statements

org.eventarchlanguage.validation _

9 |

org.eventarch.anguage.eventarch|

org.eventarch language. parser.antir |

IIIIIIIII p) _Awohmmﬁmsl 2
T \7
- _wuse» | |
employ as _ __ _ «usen
wrapper-object i | fenwrapy |parse app to get
| | | xtext-dependent
| | _oc_.mnﬁ.qmm
org.eventarch.core I
IIIIIIIIIIIIIIIIIII 3 - ___ 1
| .\7
|
g . __ I
(store wrapped object-tree | |
for compile time) | _*:mms
| parse config and app:

r |wrap object-tree; -

| |generate intermrediate cod"d-eventarch core.compiler parser

| | 5

| | D |

[org.eventarch.core.compiler [et [

| 5 L _' IIIIIIII |compile generated classes |

_ U T:mmmvv

| kusen | |getInfos focreate
|(parse and store _a:mma compilation classpath
|app-configuration) _Um_.m_mﬁ wrapped object-tree land filenames

| Vi S —— |

| org.eventarch.core.serializer _ get required | 5rg eventarch.utils /v

| 7 _ file pathes 8 _

| 0

- - _____ 4

Figure 2.2: Package diagram of the compilation-part of the EventArch 2.0-

implementation

17

Chapter 2 Background

org.eventarch.core _

org.eventarch.language.eventarch _

e I | |
| P e mm e m e — = — ———— = Fe—mm ==
_ [I «usen _ Abstract-Design |
[_ _m:.._u_o{ as _ «WrappedBy» Runtime-Part _ «TranslatedTo»
_ | wrapper-object, |
| | W W 174
| | |org.eventarch.core.applevel generated_classes
! _ A _ wusen B
I _ ———— e — — .
leuser | I M event publishing |
| | I _ ullean application logic |
| ﬂmﬁ.cﬂm E_,mmnmﬁ: | represent and execute <ysen |
jobject-treg | z‘m:mﬁjon-_géamﬁ_c:m (Adaptee; [
|

(for nciu__m_-ﬁ_ﬂ:m_..”_
|

org.eventarch.

core.applevel.commands

publish standard-events)

|
|
|
|
|
|
|
_ “usen
|
|
|
|
|
|
|

| |
| |
| |
| |
| |
_ _ (command representation;
| |
| |
| |
| |
| |
|

L gOcan__mn_m.ﬁ_V

|
|
|
|
|
|
|
G || cuse: |
| initialize |
|
_ #usen _ e I _
) | |
levent representation; _ | |
m<m3.uaommm:@ data-structures; | | cusen I
ygonnection-details) | _ﬁaﬁ_‘_me.m wrapped object-tree) _
org.eventarch.core.elements _ _ | org.eventarch.core.runtime _ I
C g ——- D _
[M _ |
| | | |
| ! [_
_ [L 8E
. _ «Lsen (deserialize
| . ject-
|standard-event representation | basic event wrapped object-tree)
_ _ functionality
|
A4

org.eventarch.core.eventtypes _

ICompilation-Part |

Yoo 4

org.eventarch.language.generator _

1

org.eventarch.core.serializer _

7

EventArch 2.0-

diagram of the runtime-part of the

implementation

Figure 2.3: Package

18

Chapter 2 Background

2.3 Role-based Modeling

The behaviour of objects or systems can be modeled. “Role-based Modeling” is one
modeling approach. In this thesis a modeling solution with respect to the concern of
coordination in dynamic SoS is developed (1.1). Role-based modeling is a promising
modeling approach to model such implementations. The reason is that core-concepts
of peer-to-peer coordination ([18]) can be mapped very closely to concepts that are
native to role-based modeling. Therefore, the concepts of role-based modeling are of
interest to this thesis. This section gives a short introduction to the modeling approach
“Role-based Modeling”. The early scientific work on that topic is sketched and some
concepts are introduced that are relevant for understanding the application of this
approach to the modeling-problem of this thesis. Finally, those concepts are mapped
to concepts of peer-to-peer coordination.

Early works

“Role-based Modeling” is a modeling approach that has received a certain attention
inside the research community. A basic observation to motivate that approach has
been done by Beck and Cunningham in 1989: “No object is an island”. Objects would
“stand in relationship” with each other and “reply on services and control” ([8])
To cultivate that notion for practical modeling tasks, they devised the “CRC-cards”
concept ([11]). A CRC-card associates a class with responsibilities and collaborations
(CRC: Class, Responsibility, Collaboration). To capture the contributions of the same
class for different collaboration contexts, different CRC-cards can be written for the
same class. A collaboration context that involves different classes, can be captured
by a group of CRC-cards, each being concerned with one of those classes. To reflect
this connection between CRC-cards and role-based modeling, Kendall has suggested
to rename them into RRC (Role, Responsibility, Collaboration) ([15])

Based on the outlined development, Zhao ([28]) describes a role to characterize for
an object a “position in a context meaningful from a particular viewpoint”. Such
a viewpoint would constitute an “abstraction” that would select for an object the
detail relevant to its position and “suppress the irrelevant information”. Roles would
be “stereotypical, describing an object from different viewpoints”.

Current support

Motivated by those early works, role-related concepts have been supported by various
languages. Existing role-based languages can be categorized as role-based modeling
languages and role-based programming languages. A survey on the existing language
support has been done by Kiihn et al. ([20]). In this paper, 26 characteristic features
of roles have been identified. Available languages have been rated with respect to
those features. They are centered around the concepts of Role, Relationship and
Compartment and correspond to the three natures of roles: behavioural-, relational-,
and contextual nature. Those concepts are explained in the following. Moreover,
the important notion of shared identity is explained and some significant differences
between role-binding and inheritance are explained.

19

Chapter 2 Background

Natures of roles

In this thesis a “nature” is understood to be a property that can not be dropped. As
stated above, a role can be regarded to hold three natures: behavioural-, relational-
, and contextual nature. Each nature is reflected by certain features of the role.
The behavioural nature is reflected by the roles feature to have properties and
behaviour. Moreover, it is related to the notion that a role-object is meant to act
influencing the behaviour of a base-object. Whatever a role does is done on behalf of
a base-object.

A role-object acts on behalf of a base-object, but there is one property that holds true
for all role-behaviour in the same way: a role-object is concerned with behaviour that
involves specific other role-objects. This is the essence of the relational nature of a
role. It may be cultivated in a role-based language by the notion of a “relationship”.
A relationship may be understood to represent (in part or as a whole) a collaborative
behaviour between two specific roles. At runtime, relationships may be instantiated.
Those instances can be understood to represent an ongoing collaborative behaviour
between two specific roles. This concept shall be illustrated by an example.

FExample: In an effort to model educational processes in an university, one could de-
fine the roles “Supervisor”, “Student”, and “Professor”. Two relationships “Weekly
Consultation” and “Monthly Consultation” could be defined. The “Weekly Consul-
tation” could be constrained to include one instance of a “Supervisor” role and one
instance of a “Student” role and the “Monthly Consultation” could be constrained
to include additionaly one instance of the “Professor” role. At runtime, the exist-
ing relationship-instances could represent the currently ongoing consultations in the
university.

Roles are not just involved in certain “relations” between bases, but in certain re-
lations with respect to a certain context. Each role is involved in this context and
adheres to the conditions that are imposed by this context. These conditions in-
clude the presence of specific other roles and can include additional properties and
behaviour that may be exclusively available to roles that participate in this context.
The inevitable involvement of a role in such a context can be understood as the
contextual nature of a role. It can be cultivated by a role-based programming lan-
guage by representing this context by a dedicated language-construct. Kiihn suggests
to denote such a language-construct by the general term “compartment”. The term
“context” is specifically avoided as it would be suffering of inconsistent usage in the
research community ([20]). The contextual nature of a role shall be illustrated by
an example as well.

FExample: The roles “Supervisor”, “Student”, and “Professor” of the previous exam-
ple could be encapsulated inside a compartment “University”. Besides those three
roles this compartment would comprise other roles, e.g., “Researcher”, “Research
Assistant”, “Teaching Assistant”. Moreover, additional properties and behaviour
might be defined in the university: the name of the university and administra-
tion services. Note, that the compartment-concept allows the programmer to define

20

Chapter 2 Background

context-dependent behaviour. In our example one could define different versions of
the three roles. They may be included in another compartment named “Engineering
School”. Depending on whether a Person-object plays the “Supervisor”’-role in the
“University”-context or in the “Engineering School”-context, it may urge the respec-
tive “Student”-role to write a research-oriented thesis or to find a practice partner
for the final assignment to gain some desirable practical experience.

The mapping of role-related concepts to concepts related to peer-to-peer
coordination

Some of the described concepts of role-based modeling can be nicely mapped to
concepts that are relevant for peer-to-peer coordination in a dynamic SoS.

According to the role-based modeling approach, base-objects are objects whose be-
haviour should be modeled context-dependently. In a coordinated dynamic SoS-
scenario the behaviour of constituent systems should be modeled somehow in depence
of coordination rules that are defined in a dynamic SoS. A coordination rule can be
understood as a special context that imposes certain conditions on constituent sys-
tems. Therefore, the concept “base-object” of the role-based modeling approach
is promising to be mapped to the concept “constituent system” in a coordinated
dynamic SoS-scenario.

According to the role-based modeling approach, role-objects are meant to act on
behalf of a specific base-object with respect to a specific context. They are bound to-
and unbound from a specific base-object at runtime. In a peer-to-peer coordination
scenario a coordinator is associated to every constituent system. This coordinator is
meant to act on behalf of the constituent system with respect to a specific coordination
rule. In a dynamic SoS coordination rules are applied at runtime. This requires the
coordinators to be attached to the constituent systems at runtime as well. Therefore,
the concept “role-object” of the role-based modeling approach is promising to be
mapped to the concept “coordinator” in a peer-to-peer coordination scenario within
a dynamic SoS.

According to the role-based modeling approach compartments represent a context
that constitutes a specific viewpoint on several related objects. This viewpoint se-
lects certain detail of those objects that is relevant with respect to this context and
suppresses unnecessary details. The concerned objects are collaborating with respect
to this viewpoint. In a dynamic peer-to-peer coordination scenario, a coordination
rule is implemented by a set of coordinators. Each coordinator is designed to provide
functionality that is relevant for the constituent system that it is associated to. It
is relevant to achieve compliance to a specific coordination rule. The coordinators
are interacting with each other to achieve compliance with respect to the coordi-
nation rule. Due to the apparent compatibility of the concepts “Compartment”
and “Coordination Rule” it is promising to map both concepts to each other in a
role-based architecture description language that aims at supporting peer-to-peer co-
ordination in a dynamic SoS. In a peer-to-peer coordination scenario a compartment
can be understood to encapsulate the behaviour of the constituent systems that is

21

Chapter 2 Background

relevant from point of view of a specific coordination rule.

The compatibility of certain concepts of both domains motivated the application of
the role-based modeling approach to implement a solution to the modeling problem
of this thesis that adheres to the peer-to-peer coordination pattern.

Shared identity

The usage of role-based programming languages allows to apply the notion of roles to
runtime objects. An important question in the design of a role-based programming
language concerns the way to bind and unbind a role from a base-object at runtime.
A role-based programming language may implement role-binding by making access to
a specific role available to a base-object at runtime. This is done in EventArch 3.0 as
well. As a consequence, the identity of the obtained “complex-object” (i.e. the object
that is composed of the base-object and several role-objects) has to be considered.
In EventArch 3.0, the base-object and the role-objects share a common identity.

“Sharing identity” means that the base and its roles are not regarded as “base” and
“roles” from their collaborators point of view, but as a self-contained entity that can
be uniquely identified. The practical meaning of this condition is that a collaborator
can not refer to the base or to a specific role, but just to the “group” of the base and
its associated roles.

Role-binding vs inheritance

Objects may achieve functionality through role-binding or by means of inheritance.
Both mechanisms can be distinguished from each other. Relevant points include the
following;:

e Role-binding is dynamic, i.e., the functionality can be achieved and lost at
runtime, while inherited functionality is added to/removed from the objects
class at compile-time

e A base-object may be allowed to play several different instances of the same
role, while inherited data can be instantiated at most once

e Base and role may be implemented in different programming languages and be
combined at runtime using classical component technology (CORBA, EJB) or
architecture description languages (EventArch 3.0). Opposed to that, a sub-
class is conceptually an extended variant of the super-class and is therefore
implemented in the same programming language.

2.4 Coupling Strategies

In this section the coupling strategies “loose-coupling” and “tight-coupling” are ex-
plained. They are described with respect to the facets “binding”, “interaction”, “model”,
“state”, “conversation”, and “identification”. The coupling level of FventArch 3.0 is
described for the facets “binding” and “interaction”.

22

Chapter 2 Background

The phrase “coupling” is intuitively associated with the notion of certain entities
being subject to mutual dependency. In software engineering, people will typically
think of interdependent components as being concerned. The level of impact that
the established coupling may have on the behaviour of those components depends on
the algorithmic decisions that have been taken in the design of those components.
Nevertheless, the systems infrastructure to achieve interdependency may encourage
a rather loosely or rather tightly coupling. Both strategies are shortly described in
the following. EventArchs support with respect to the one or the other strategy is
indicated.

Wilde ([24]) identifies 12 facets to describe the level of coupling intensity for service-
oriented systems that rely on web-services. The facets “binding” and “interaction”
are especially meaningful for EventArch. Binding refers to the “process of resolving
symbolic names into identifiers” ([24]). Components are regarded as tightly-coupled
with respect to the binding-facet if symbolic names are resolved into identifiers long
before being looked up during operation. Therefore, compile-time- or deploy-time
binding is regarded as tightly-coupled, while runtime-binding is regarded as loosely-
coupled. An example for tightly-coupled binding is the internets naming system:
DNS. An example for loosely-coupled binding is the mapping of the identifier of a
mailing-list to the email-adresses of its receivers.

In EventArch 3.0, components may communicate by publishing events to a symbolic
name. The mapping of that name to specific component-names is specified at runtime.
EventArch 3.0 is not restricted to that mode of communication (see “Composite
AEM” in 2.2.1). Nevertheless, EventArch 3.0 may be used in that way to achieve
loosely-coupling with respect to the facet “binding”.

Components can be loosely- or tightly-coupled with respect to interaction. The cou-
pling is considered to be tightly if all concerned components have to be simultaneously
available in the system to interact successfully. If messages can be delivered to an
unavailable component when it becomes available again, the coupling is considered
to be “loosely” with respect to the facet “interaction”. Therefore, the asynchronous
mode of communication gives rise to loose-coupling and the synchronous mode of
communication to tight-coupling. EventArch employs synchronous communication.

The facet of interaction can be described in further detail. A characteristic property of
that facet is the significance of feedback that is typically expected during interactions.
Feedback may be a response-value or an acknowledgement /error-message to indicate
successful /erroneous processing. In a tightly-coupled interaction a component would
block until an awaited feedback has arrived. In a loosely-coupled interaction a com-
ponent would not expect any feedback. Loosely-coupled interactions may be imple-
mented using event-based interfaces. Nevertheless, acknowledgements and response-
values may be implemented in an event-based system using callbacks. Tightly-coupled
interactions can be implemented using function-based interfaces. EventArch 3.0 em-
ploys event-based interfaces and can be described to be rather loosely-coupled than
tightly-coupled with respect to the facet “interaction”. Nevertheless, it is possible to

23

Chapter 2 Background

achieve blocking-behaviour if the need arises (“wait-when-block”, see 8.2).

According to ([24]) the facets “model”, “state”, “conversation”, and “identification”
may be considered as well. Components are tightly-coupled with respect to the facet
model if they share a common application-level data-model. In this case, all com-
ponents have to base their algorithms on this model. Components with a shared
data-model are often restricted to a certain toolset to achieve marshaling/unmar-
shaling. In contrast to that, components that are loosely-coupled with respect to
“model” do not base their algorithms on a common model. Messages are processed
as documents. No special toolset is required to achieve marshaling/unmarshaling.
Components may employ an individual data-model. In this case, marshaling/unmar-
shaling would produce instances of that model.

Another facet of a coupling strategy is state. In a stateful interaction it is possible
to relieve a service-provider from having to manage the state of interaction of each
individual client by encapsulating the relevant state-information in the messages that
are exchanged between service-client and service-provider. This approach is regarded
as loosely-coupled with respect to the facet “state”. Managing the state of each
interaction in the service-provider is regarded as a tightly-coupled solution.

The desired behaviour of a system may require components to apply themselves to
several related interactions. In this case, the desired behaviour is said to be achieved
by a “conversation”. The interactions of two components are tightly-coupled with
respect to the facet conversation if the permitted sequence of interactions has been
strictly defined at compile-time. They are regarded as loosely-coupled if the permitted
sequence can be discovered at runtime. To achieve that, a component would have to
provide its interaction-partner a set of possible interaction-options to choose from at
runtime.

Finally, coupling strategies can be distinguished with respect to the facet identi-
fication. Tightly-coupled solutions rely on a central identification service. This
renders components to be unable to interpret a known identity of another component
if this identification service should become unavailable. Opposed to that, in a loosely-
coupled solution, all components bear the competence to interpret a known identity
correctly. To achieve that, comprehensive identities have to be used. An example are
the Uniform Resource Identifiers (URIs) ([2]).

24

Chapter 3
Related Work

EventArch 3.0 was designed in an effort to improve language support for the concern
of coordination in dynamic SoS. Certain requirements and features of a programming
language are desirable to achieve that support. Those requirements and features are
described in that chapter. EventArch 3.0 is a solution that provides all those features.
The devised solution relies on concepts that originate from the field of “role-based
modeling”. This field has inspired other languages as well. In this chapter current
role-based languages are described. They are analyzed with respect to the desirable
features. Areas of improvement of their role-based language support for the concern
of coordination in dynamic SoS are pointed out. The presentation will use OT/J as
a reference-example. Therefore, this language is considered in greater detail.

3.1 Requirements

In this section requirements are defined and clarified, that would be desirable to be
met by an ADL in order to provide a proper support for the dynamic application of
coordination rules in a dynamic SoS.

In a static SoS no constituent systems will join or leave the SoS at runtime. This
relieves an ADL from providing a mechanism for applying/withdrawing a coordina-
tion rule to/from a group of constituent systems at runtime. Instead, coordination
rules can be applied at compile-time. Compile-time mechanisms are not sufficient
for scenarios that involve dynamic SoS. In such scenarios constituent systems may
join or leave the SoS at runtime. The following requirements have been identified to
achieve applicability for an ADL to scenarios that involve dynamic SoS.

1. To cope with coordination scenarios that involve a dynamic SoS,
ADLs should support to condition the application of coordination
rules with respect to the presence and absence of constituent sys-
tems in the SoS.

Compile-time application of coordination rules is insufficient for the following
reason: applying a specific coordination rule may just be appropriate if specific
constituent systems have joined the SoS. While the presence of those systems

25

Chapter 3 Related Work

can be assumed for a static SoS, it can not be assumed for a dynamic SoS.

In those cases, the coordination should not be applied prematurely, i.e., before
all required systems have joined the SoS. Premature application may impose
unnecessary restrictions to the systems that are present. Instead, the coor-
dination rule should be applied if all required systems have finally joined the
SoS. To support those use cases, an ADL should support defining conditions
for the application of coordination rules. Those conditions should be based on
the presence and absence of certain constituent systems.

. In order to dynamically integrate constituent systems with coordina-
tors of the coordination rules, connectors should be employed that
can be activated/deactivated at runtime and that provide a modu-
lar implementation of that cross-cutting concern, i.e., the concern of
connecting all components of the constituent system to the respective
coordinators.

The goal of this thesis is to devise a mechanism to allow for the application
of coordination rules at runtime. To impose the behavioural restrictions of a
coordination rule on the behaviour of constituent systems, certain coordinators
can be installed. Those coordinators have the task to take influence on the
behaviour of the constituent systems as a whole. To connect the constituent
systems to those coordinators, connectors are required that are able to process
the commands that have been issued by those coordinators to take influence
on the behaviour of the constituent system as a whole. To implement those
commands, the connectors have to take influence on the constituent system
as a whole. That means that they may have to take influence on each of the
components of the constituent system. Therefore, those coordinators can be
thought of having to implement a cross-cutting concern. An ADL would there-
fore benefit from providing means to achieve a cross-cutting implementation of
those connectors.

Moreover, activating and deactivating those coordinators at runtime would al-
low the constituent system to dynamically uphold and give up the cooperation
with the coordinators. This can be used to implement the dynamic application
of coordination rules and should therefore be provided by an ADL that aims at
supporting the dynamic application of coordination rules.

. In a dynamic SoS-environment the dynamic application of coordi-
nation rules should be not performed by the individual constituent
systems, but by a specialized SoS-member.

In a static SoS coordination rules are applied at compile-time. That means that
the rules state of application will not change at runtime. There is no transition
from “unapplied” to “applied”. This is different for a dynamic SoS. In a dynamic
SoS there will be such a transition at a certain moment in time. At this moment
in time all concerned constituent systems have to establish compliance with that

26

Chapter 3 Related Work

coordination rule consistently. In case of inconsistent application, malfunctions
might occur (e.g. a system will not receive the expected response-messages as
it is the only system that is currently complying to that coordination rule).
To relieve the constituent systems from the necessary synchronization effort to
achieve consistent application, a specialized SoS-member should be concerned
with that task.

. A constituent system should be open to new coordination rules and
allow for integrating them into its behaviour at runtime.

In a dynamic SoS, constituent systems may join or leave at runtime. The
presence of those systems may require coordination with respect to the other
systems. To achieve that coordination, new coordination rules have to be de-
fined and integrated into the behaviour of the existing systems. Stopping and
recompiling the constituent systems in order to integrate the coordination rules
into its behaviour, may be not feasible. In a static SoS this pressure towards
runtime-integration of new coordination rules is not present. Opposed to that,
the constituent systems of a dynamic SoS are more likely to face the problem of
runtime-integration of new coordination rules into their behaviour. Therefore,
a core concern of an ADL that aims at coordination in dynamic SoS-scenarios
should be to allow for the integration of coordination rules into its behaviour
at runtime.

If recompiling the constituent system in order to integrate a new coordination
rule is unavoidable, the extent of necessary code-changes should be kept to a
minimum. This is true for both, dynamic SoS and static SoS. In other words,
constituent systems should be open for new coordination rules in that their in-
tegration should require as few code-changes as possible. This requirement may
be supported by an ADL by a proper separation of the concern of coordination
from the original concerns of the constituent system.

Systems-of-Systems are characterized by the emergent behaviour of constituent
systems. Those systems may be managed independently from each other. New
constituent systems may join the SoS unanticipatedly at runtime and the be-
haviour of existing constituent systems may change at runtime in an unantici-
pated way. Therefore, in a SoS the need may arise to integrate new coordination
rules into the behaviour of constituent systems at runtime that have not been
anticipated at design-time. Therefore, to be “open” for new coordination rules,
an ADL should also provide means to easily integrate new coordination rules
into the behaviour of constituent systems at runtime that have not been antic-
ipated at design-time.

. In a dynamic SoS-environment all communication that is done on be-
half of a specific coordination rule should be performed in a separated
scope.

A coordination rule concerns a group of constituent systems. Those systems are

27

Chapter 3 Related Work

somehow related with respect to their SoS-level functionality and are in need of
coordination to achieve their SoS-level goals. Such a scenario encourages to not
rely on individual communication relations, but to rely on a common message
scope for all related systems. In a dynamic SoS the global scope can not be
used for that as it is unsafe, as unknown systems could join this scope and
thereby get access to confidential information that is contained in the stream
of coordination-related messages. Therefore, all communication that is done on
behalf of a specific coordination rule should be performed in a separated scope.

3.2 Features

In this section language-features are described that may be provided in order to meet
the requirements that were described above. The description is given on an abstract
level. A more detailed description that is specifically concerned with EventArch 3.0
can be found in the section 6.1. A description in what way the identified features do
actually contribute to the requirements is given in section 6.3

1. Event-based System: To facilitate communication between components, an
architecture description language (ADL) might solely rely on events. The pur-
poseful exclusion of function-based interaction is understood to be a feature in
this thesis. This feature facilitates base-role integration by means of a common
message scope (see 6.1). To achieve event-based communication, an ADL might
allow for the definition of event-types and event-based interfaces.

2. Dynamic Composite AEM: An architecture description language might pro-
vide for the integration of base and roles by means of a common message scope.
This would simplify role-binding from a technical point of view. Moreover, it
would simplify integrating roles with bases at runtime that have not been antic-
ipated at design-time. Such a common message scope will be termed “Dynamic
Composite AEM” in those chapters of this thesis that are primarily concerned
with EventArch 3.0.

3. Cross-cutting Roles: An architecture description language might provide a
solution to encapsulate systems in a way that allows for both, modularizing
concerns that cross-cut through multiple components of a system (like “coordi-
nation”) and for the dynamic activation and deactivation of the code that im-
plements those modularized concerns. Such a solution is termed “Cross-cutting
Role” in this thesis.

4. Programmable Role-Binding - Role-Binder: The task of role-binding may
involve complex information that originated in different constituent systems of
the SoS. Role-binding may be required to facilitate the consistent application
of a specific coordination rule to all constituent systems of the SoS that are
concerned by it. To implement that complex task - that may be subject to
change throughout the lifetime of the SoS - an architecture description language

28

Chapter 3 Related Work

may prefer a modular solution. A “Role-Binder” is presented as such a modular
solution in this thesis.

5. Support Notion of Compartment: Entities that are related by collaboration
might be encapsulated in a common message scope. This achieves privacy
and increases the comprehensibility of the purpose of collaboration. On the
architectural level, entities may collaborate in order to achieve compliance with
a certain collaboration rule. In this thesis an architecture description language
is presented that facilitates the encapsulation of those entities by means of a
common message scope. That message scope is termed “Compartment”.

6. Two-layered Role-Binding: A role may be concerned with interfering with
the behaviour of its base at certain critical points of execution. To achieve that,
the behaviour of the base has to be monitored and analyzed, the interference
has to be planned, and the interference has to be performed, i.e., executed.
The tasks of monitoring, analyzing, and executing can be separated from the
task of planning. Both, the entity that is responsible for monitoring, analyzing,
and executing and the entity that is responsible for “planning for interference”
may be exchanged at runtime, depending on certain criteria. Both entities may
be designed as interacting roles. In that way, it might be useful for an ADL
to introduce two levels of role-binding. Such a feature is termed “Two-layered
Role-Binding” in this thesis.

7. Base-Role Integration on Architectural Level: An architecture descrip-
tion language may introduce base and roles as separated components that pro-
vide relatively fixed interfaces. To achieve that, the base-code and the role-code
is encapsulated in a component that adheres to a certain component model.
This would allow for the implementation of a role in a programming language
that is different from the programming language that the base has been imple-
mented in. An ADL that features the described separation of base and roles
can be described to support the feature “Base-Role Integration on Architectural
Level”.

3.3 OT/J

This section gives a short description of the role-based language “OT/J”. Support for
the role-related concepts and the mechanics of role-binding are emphasized. The pre-
sentation is enhanced by a code-example. Familiarity with the role-concept is assumed
(see 2.3).

ObjectTeams/Java (OT/J) is a role-based language extension for the “Java” programming-
language ([17]). It was devised in an effort to improve support for the role-based con-
cepts in mainstream programming languages. Its support was analyzed and rated in
([20]). OT/J is interesting for this thesis as it is the “most sophisticated approach to
context-dependent roles so far” ([20]) Moreover, it is actively developed. OT/J’s lan-

29

1
2

Chapter 3 Related Work

guage support for role-based programming primarily relies on the language elements
“Team”, “Role”, “played-by clause”, “Call-In-/Call-Out Binding” and “Guards”.

OT/J’s language-element “Team” is an implementation of the role-related concept
“Compartment” (see 2.3). A teams definition may contain class-definitions and other
properties and functionality. Teams can be related by inheritance. They also can
be nested. Each class-definition that is contained in a team is understood by the
OT/J-compiler as definition of a role-type.

A “Role” is therefore an instance of a class that is defined within a team. A role is
restricted to the scope of its Team-definition. That means that it may only reference
other classes that are defined within this definition and only employ properties and
functionality that are defined within it likewise. In other words, a role may only
collaborate with other roles of the same team and resort to functionality that is
collectively owned by all its members.

Roles are associated to a specific base-class. Role-instances can only be played by
instances of their base-class. This association is defined by a “played-by clause”
that is added to the head of the role-types class definition.

Role-functionality is not deliberately called by the respective base-class. The avail-
ability of role-functionality is actually transparent to the base-class. Instead, a call to
a method of the base-class may be forwarded to a method of the role-class. The call
to the roles method may either replace the call to the base-method or be performed
before or after it. The described behaviour can be specified in the definition of the
role by so-called “Call-In Bindings”. A call-in binding contains the names of the
methods to be associated and one of the qualifiers replace, before, after.

The language element of “Call-In Binding” is complemented by the language element
“Call-Out Binding”. Call-out bindings are specified in the role-class as well. They
associate a method that is defined in a role-class to a method that is defined in a base-
class. Calls to the roles method will be replaced by calls to its associated base-method
at runtime.

To further condition the execution of role-methods due to call-in binding, guards can
be defined. A guard is a boolean expression that is evaluated before a role-method
is invoked due to a call-in binding. Guards can apply to individual call-in bindings,
all call-in bindings that refer to a specific role-method, all call-in bindings of a role,
or all call-in bindings of all roles that are defined within a specific team.

Listing 3.1 contains a part of the definition of a role-class named Observer. It is
contained in a team named ObserveLibrary. A played-by clause is defined to associate
the role-class to the base-class BookManager. Calls to the roles method update are
forwarded to the bases method updateView due to a call-out binding. Three call-in
bindings are defined. For example, calls to the bases method buy are followed by calls
to the roles method afterBuy.

public team class ObserveLibrary extends ObserverPattern {
public class Observer playedBy Bookmanager {

30

—_

O © 00~ O Uk Ww

Chapter 3 Related Work

// Callout method binding: bind an action to the update event.

update —> updateView;

// Callin method bindings: bind events to trigger the start/stop
operations.

start <— after buy;

stop <— before drop;

afterBuy <— before buy;
Listing 3.1: OT/J example code: role definition

The following information are relevant with respect to the mechanics of role-binding:

e Roles are not bound individually, but collectively at Team-activation

e Teams can be activated imperatively by calling the activate-method of a Team-
instance.

e On activation of a Team-instance, all objects that are instances of a base-class
that is a role-player of one of the teams role, get a role-instance bound.

e A role-instance is created and associated to a base-instance when the Team-
instance is activated for the first time. The same role-instance will be bound to
the same base-instance at subsequent activations of the Team-instance.

3.4 Other Role-based Languages

This section shortly describes the role-based languages “SMAGs”, “SCROLL”, “He-
lena Approach”, “powerJava”, “Rumer”, “BE-CARGO”. It presents background- infor-
mation to understand the next section, which is concerned with areas of improvement
that those languages have with respect to supporting coordination in dynamic SoS.
The description focuses on the central language-intentions and on the support for
role-related concepts.

SMAGs

Smart Application Grids (SMAGs) is a role-based composition system that aims
at providing support for unanticipated, dynamic adaptation of the grids compo-
nents (application-components or systems). Unanticipated, dynamic adaption can
be distinguished from anticipated, dynamic adaption. It is achieved at runtime by
adaptation-measures that have not been foreseen or planned for at design-time. Dy-
namic adaption can be modeled by means of a feedback-loop ([14]). SMAGs is
primarily concerned with applying modifications to applications at runtime, i.e., with
the “act”-phase of that feedback-loop. In the following, SMAGs component model,
-composition technique, and -composition language are outlined.

An application grid consists of interacting applications. A running application can be
understood as a runtime-component of that grid. According to SMAGs component
model a SMAGs-component implements certain “PortTypes”. Those PortTypes are

31

Chapter 3 Related Work

specified by the components “ComponentType”. Therefore, a SMAGs-component
implements a ComponentType. PortTypes are implemented by “Ports”. Ports are
instantiated as well.

Ports can be attached and detached to applications at runtime. Their instances
can be therefore understood as “Roles”. Consequently, Ports can be understood to
implement a (concrete) “Role-Type” whose interfaces have been (abstractly) specified
by the PortType. The described conceptual setup of SMAGs component model is
depicted in figure 3.1. The figure has been taken from [25].

<<ComponentType>> offers <<PortType>>
NavigationSystem RoutePlanner -
@ o
© 1 v o
© 1 implements | implements 4
w 1 1 %
<<Component>> <<Port>> o
JavaNavigationSystem AStarRoutePlanner
- 7 3
_ 1 instance of | instance of
g ' ! : =
g navi:JavaNavigationSystem [astar:AStarRoutePlanner] s
£ 3

Figure 3.1: Illustration of SMAGs component model

A PortType may specify functions and properties (“BehavioralPortType”) or events
(“EventPortType”) that are provided by this SMAGs component to other compo-
nents. Other components can register for events of an EventPortType. A SMAGs
component may require certain other PortTypes to provide the specified functionality.
Those required PortTypes are specified in a PortType as well.

The functions that are specified by a PortType may be implemented by both, a Port
and the application that is encapsulated by the component. Calls to the functions are
delegated to the Port-implementation first. The Port-implementation can process the
call partially and pass it to the application-implementation. Ports can be stacked,
i.e., a Port-instance can decide to pass it to a subsequent Port-instance as well.

To allow for automatic composition at runtime, metadata can be added to a compo-
nent.

SMAGs offers means to compose applications and to achieve interface-compatibility.
This composition technique includes the concepts of “passive connectors”, “Adapter-
Ports”, and “FilterPorts”. For details see [25]. Components can be composed with
PortTypes and Ports using the composition operators “extend” and “bind/unbind”.
The extend-operator can be used to add new PortTypes to a component at runtime.
This is a prerequisite to achieve unanticipated, dynamic adaption of applications. The
bind- and unbind-operator are used to attach a specific Port-instance to a component-
instance at runtime.

32

Chapter 3 Related Work

The composition of components can be described at two levels. SMAGs can therefore
be thought of to provide a two-tiered composition language. At the metaarchitec-
tural level, ComponentTypes and PortTypes can be composed with each other. At
the architectural level, ComponentTypes can be mapped to components and Port-
Types can be mapped to Ports. The architectural specification is represented at
runtime by a runtime-model. The extend-operator (see above “composition tech-
nique”) is implemented as an extension of that runtime-model of the architectural
representation. Changes to that model are reflected by corresponding changes to the
interface-structure of the running component-instance.

SCROLL

SCROLL (SCala ROles Language) is “a simple implementation pattern for role-based
objects” ([21]) to solve programming tasks that are characterized by increased com-
plexity and context-dependence. SCROLL emerged out of the desire to popularize
the application of the role-concept in the software-development practice. Therefore,
the pattern is defined independent of a specific runtime system and can be imple-
mented as a library for an existing system. The “SCROLL library” is a lightweight-
implementation of the pattern for the programming language SCALA. Certain re-
quirements for a system to implement the pattern are identified, but workarounds are
presented as well in [21].

Besides popularizing the role-concept, SCROLL wants to demonstrate its applica-
bility for enabling view-based programming. Views are understood as partial repre-
sentations of a system whose composition might achieve the system as a whole. In
this case views are described to be “constructive”. Views represent a related set of
concerns and can therefore be used to further the separation of concerns in a system.
In SCROLL, views are implemented as a set of related roles which are encapsulated
by compartments. The compartment represents a certain “viewpoint” on the system.
The activation of a compartment causes all encapsulated roles to be activated that
are currently bound to a role-player.

Roles can be bound dynamically by the play- and unplay-operation. They can contain
additional functionality and be related by inheritance. SCROLL features an elaborate
dispatch-mechanism that allows the programmer to dynamically define dispatching
rules prior to each function call. Role-binding functionality can be encapsulated by
means of a statemachine (see [3]). SCROLL is subject to an ongoing development
which strives to increase its feature-base with respect to the criteria identified by [20].
The evaluation in this thesis is primarily based on the description published in ([21])

Helena Approach

Helena Approach provides a formal foundation for the modeling of massively dis-
tributed systems that involve “complex interaction structures of concurrently run-
ning individuals” ([16]). Roles encapsulate attributes and operations that enable
the respective role-player to collaborate as participant of a specific ensemble. They
condition participation to the ensemble by requiring their role-players to be of one
of several component types. Role-relations can be restricted by “role-connectors”. A

33

Chapter 3 Related Work

role-connector permits the use of certain functions of two role-types for the purpose
of interaction. The allowed sequence of operation-calls can be further restricted for
a specific role by a so-called “Role Behavior”.

Helena Approach clearly distinguishes the description of type-level restrictions and
the description of the behaviour of ensemble-instances at runtime. A specific runtime-
state is represented by a “Y-ensemble state”. The modeled state-properties include
the current instances and instance-data of base and roles and the current played-
by relation. A “Y-ensemble automaton” specifies allowed state-transitions. State-
transitions can be restricted by transition-guards. A state-transition can be associated
with a role-binding/-unbinding action or with a function call.

powerJava

powerJava is an extension of the programming language “Java” ([6]). It adds support
for role-based concepts. powerJava intends to improve available solutions like Object-
Teams/Java by providing a better support for the inherent dependency of role, con-
text, and role-player. Role-instances are created as part of a context (“institution”),
empowering a role-player to affect the state of this context and access its behaviour
through his role. A role-instance can be bound to any instance of a base-type that im-
plements the “required interface” specified within the role-definition. Role-binding is
done manually, constrained by interface-compatibility. The programmer can employ
Java application-logic to restrict role-binding. Grouped role-binding is not possible.
A context is not activated, each role of an institution is bound manually one by one.
The institution imposes a soft relational constraint: collaborations are just allowed
among roles within the institution. However, any collaboration is allowed within this
institution. A role-player can directly call his roles methods to affect institution-state
and access institution-behaviour from outside the institution. The player can not call
any role-method, but just those specified by the “offered interface” of the role. Roles
are bound at instance level.

Rumer

Rumer is a relational model that allows for the specification of systems that are
composed of classes and relationships ([7]). It was designed to introduce a repre-
sentation of object-collaborations by a specific language construct: relationships. A
relationship-definition describes the structure of a collaboration by defining the par-
ticipating roles and the necessary class-types of the corresponding role-players. At
runtime, a relationship is a container for sets of tuples of instances of the respec-
tive classes. Roles are just placeholders for logical “places” within the tuples of a
relationship. They have no behaviour, but can have attributes. Those attributes
(“interposed member”) are understood to describe the base-object with respect to
the relationship. Roles are assigned automatically to a certain base-object in the
moment in that it is added to the relationship. The language supports the definition
of different types of constraints to restrict the participationship of base-objects to
the relation. Constraints may have an intra-relational or inter-relational orientation.
Moreover, they can be distinguished to be structural- or value-based. Relationships

34

Chapter 3 Related Work

can be understood as mechanism to group collaborating roles. A base-object can be
arranged to play several roles of a relationship, having multiple roles bound to it at
once.

E-CARGO

E-CARGO has been proposed as a “model [...] for role-based collaboration”([29]).
It supports modeling human collaboration scenarios like the collaboration of several
employees of a firm in different working-groups. Its application domain is the devel-
opment of computer-supported cooperative work (CSCW) - systems. Roles are used
to represent rights and responsibilities of an employee. Roles provide certain capabili-
ties (support certain incoming-/outgoing-messages) and resources (other roles/classes
with other i/o-messages) to their role-players. They do not encapsulate additional
state or behaviour. Therefore, the same role can be assigned to multiple role-players.
The model distinguishes between human-participants: “users” ; and their logical rep-
resentations: “agents”. Roles are played by agents, not by users. Users use agents to
make use of the capabilities granted by the role. An employee is assumed to play at
a certain moment in time at most one role. An agent can therefore not play multiple
roles simultaneously. The decision whether a role is to be bound or not, is not taken
by logic or other predefined conditions. A participant willing to play a role or change
his role, starts a negotiation with another participant. This other participant plays a
role that allows him to take the decision. Depending on his decision the role is bound
or not.

There are special roles that allow a participant to define new roles at runtime that can
be played afterwards by other participants. Roles enable the role-players to access
certain resources. Roles and their respective capabilities and resources are grouped
in “Environments” and “Groups”. To obtain all i/o-messages of all roles of a Group,
the Group is simply added to the roles set of resources.

3.5 Areas of Improvement

This section describes in what way OT/J and the other languages still lack support for
the concern of coordination in dynamic SoS. Areas of improvement are identified. The
languages are rated with respect to their support for the features that were described
in section 3.2.

3.5.1 OT/J

OT/J’s approach to role-based programming shows certain disadvantages if applied
to the coordination-problems that are prevailing in a dynamic SoS (see 1.1). The
following disadvantages have been identified:

e Call-in-/Call-out bindings constitute a tight-coupling between base-class and
role-classes. No newly created role-classes can be integrated with the base-class

35

Chapter 3 Related Work

at runtime. Therefore, role-behaviour that was unanticipated at design-time
can not be integrated at runtime.

e Role-functionality that cross-cuts through several base-classes can not be mod-
ularized.

e The language does not support stateful role-binding. Instead, the user has to
implement a Role-Binder on his own.

Call-in-/Call-out bindings constitute a tight-coupling between base-class
and role-classes.

In OT/J, role-base integration is not achieved through the exchange and interpreta-
tion of messages. Instead, an involvement of base and role is created using call-in- and
call-out bindings. A call-in binding defines a runtime-interference of a roles method
with a method of the base. It can be implemented by equipping the source-code of
the base with suitable calls to role-functions at compile-time. Call-out bindings can
be implemented in a similiar way. This introduces a tight-coupling between the im-
plementation of the base-class and the implementation of the role-classes. While this
would allow for the dynamic application of coordination rules, this tightly-coupled
mechanism would be not sufficient to integrate a coordination rule into a running
system that has been unanticipated at design-time. Roles could be bound to- and
unbound from a base that act as a coordinator for the base with respect to a specific
coordination rule. But it would not be possible to bind a role to a base that has been
defined after the OT/J-compiler has finished the compilation-process. The reason
is, that certain function-calls have to be incorporated into the base-code at compile-
time to implement a call-in binding. An alternative would have been to connect a
base with its roles by means of a common message-scope. Then, a message-based
integration of base and roles would have been possible.

That solution would have allowed to exchange the implementation of a role at runtime.
The common message-scope would have decoupled the base from the roles. The
call-in bindings could have been designed to facilitate an involvement between the
base-object and the common message-scope. The base-code would have had to be
equipped with new code at compile-time, but this new code would not have called a
specific role-method. Instead, that code would have published a certain message to
the common message scope of base and roles. With such a mechanism at hand, it
would have been possible to load the new role-implementation from a jar-file using
a custom classloader and to instantiate a new instance of that class using Javas
reflection-capabilities.

A workaround in todays OT/J to decouple base and roles with respect to call-in
binding would be to define a role that is responsible for creating all instances of
the other roles. This role would process a call-in binding by publishing a suitable
message to all other role-instances. The implementation of that workaround is rather
unintuitive and can not be recommended.

Role-functionality that cross-cuts through several base-classes can not be

36

00 3 O U= Wi+~

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

Chapter 3 Related Work

modularized. In certain use cases, concerns exist whose relevance is distributed
across the structural units of an entity. The concerns of logging and security are
examples for that. Those cross-cutting concerns can be implemented in a modular
way. Moreover, those concerns may gain and loose applicability, depending on the
current context of the entity. In another case, a different implementation of those
concerns may be desirable depending on that context. In both cases, roles may
be used to modularize those cross-cutting concerns. In OT/J, those “Cross-cutting
Roles” are not optimally supported as it is not possible to associate a role-class with
several base-classes. Instead, multiple roles have to be defined and individually bound
to multiple base-classes. The following code-example illustrates that problem with
respect to the use case that is described later in this thesis in section 6.4.

public team class StateCoordinationRule {
public class LoadBalancerMigrator playedBy Migrator {
notifyAdaptiveSoftware <— after migrate; //when the Migrator—
//component has finished the migration—process, it has to
//be interrupted

public void notifyAdaptiveSoftware (){
updateAppCompCoordinator ();
appCompCoordinator. releaseCurrentLock (); //migration has been
//finished —> the lock of the AdaptiveSoftware can be released.

}
}

public class LoadBalancerMigrationPlanner playedBy MigrationPlanner {
waitForProceed <— before plan; //when the MigrationPlanner—
//component is about to start planning, it has to be interrupted.

public void waitForProceed (String load){
updateAppCompCoordinator (); //update the teams reference to the
//coordinator of the other system
if (load.equals("underutilized")){
LockRequest 1bRequest = new LockRequest("loadBalancer");
//LoadBalancer and AdaptiveSoftware should not run
//simultaneously. Therefore, the respective other has
//to be locked.

enqueueRequest (1bRequest); //dont forget that you, the
//LoadBalancer , have requested a lock.
appCompCoordinator . enqueueRequest (1bRequest); //the
//coordinator—role of the AdaptiveSoftware has to know,
//that you requested to lock the AdaptiveSoftware

LockRequest headRequest = getQueueHead (); //what is the current
//lock that we have to respect?
while (true){
if (headRequest.responsibleSoftware.equals("loadBalancer")){
return; //proceed if not the AdaptiveSoftware has requested
//a lock.
telseq

37

Chapter 3 Related Work

40 waitForLockRelease (); //if the AdaptiveSoftware has

41 //requested a lock, wait until the AdaptiveSoftware
42 //releases that lock.

43 }

44 }

45 }

46 }

Listing 3.2: OT/J code-example implementation of “State” coordination rule

According to this use case, the “State”’-coordination rule has to be applied if the
LoadBalancers MigrationPlanner-component is about to start migrating the VM from
an “underutilized” server to another server. The “State”-coordination rule requires
the LoadBalancer to wait until the current request for software-adaption has been
serviced by the AdaptiveSoftware. After finishing the migration-process, the Load-
Balancer has to indicate this to the AdaptiveSoftware as well. In order to implement
that coordination rule the respective coordinator of the LoadBalancer would have to

e Interrupt the LoadBalancers MigrationPlanner-component when it is about to
start the migration process

e Continue the LoadBalancers MigrationPlanner-component when the AdaptiveSoft-
ware has indicated to have finished servicing the current request

e Interrupt the LoadBalancers Migrator-component when it has finished the mi-
gration process

MagrationPlanner and Migrator are different components of the constituent system
“LoadBalancer”. Hence, the concern of “State”’-coordination is a cross-cutting con-
cern in this example. Therefore, the coordinator is favourably implemented as a
Cross-cutting Role. That coordinator can not be implemented in OT/J as Cross-
cutting Role. Instead, the coordination logic has to be distributed across two roles.
They are named LoadBalancerMigrator and LoadBalancerMigrationPlanner in the
code-example. This example has shown, that in OT/J the coordination logic to im-
plement a cross-cutting coordination rule has to be scattered around the code of
multiple role-classes. A possible improvement would be to support the feature of
Cross-cutting Roles.

The complete code of this example can be found in the Appendix (see 8.1.1).

The language does not support stateful role-binding. Instead, the user
has to implement a Role-Binder on his own. Language-support for stateful
role-binding is especially interesting for this thesis. OT/J provides language features
that allow for the implementation of a stateful Role-Binder. Nevertheless, it does not
support the feature “stateful role-binding” by a dedicated language construct.

Implementing a stateful Role-Binder is not particularly difficult in OT/J. The pro-
grammer can take advantage from the following language-features:

e OT/J’s team-activation mechanism automatically creates role-instances and as-
sociates them to base-objects.

38

00 ~J O UL = W N+~

[R e el e e e e S R e e
—H O © 00O Uik W~ OO

22
23
24
25
26
27
28
29
30
31
32
33
34

Chapter 3 Related Work

e OT/J is an extension of the programming language “Java”. Therefore, all Java-
features can be used.

e In OT/J, teams may provide properties and behaviour. A Role-Binder that
shall be responsible for a specific team can be implemented as an additional
team-function.

While OT/J provides useful language features for implementing a stateful Role-
Binder, the user still has to discover those features and their applicability for that
purpose. Moreover, the user has to discover the stateful role-binding strategy on his
own and is not encouraged by the language to consider a stateful design of the role-
binding mechanism. Those disadvantages could be relieved by supporting the feature
of “stateful role-binding” by introducing a language-construct that is dedicated to
implementing a stateful Role-Binder.

Figure 3.3 depicts an extract from an example-implementation of a stateful Role-
Binder in current OT/J.

public team class StateCoordinationRule {

private
private
private

private
private

State
State
State

State
State

noApplicationThere = new NoApplicationThere ();
oneApplicationThere = new OneApplicationThere ();
twoApplicationsThere = new TwoApplicationsThere ();

currentState = noApplicationThere;
nextState = noApplicationThere;

public void informRoleBinder (String information){
nextState = currentState.getNextState (information);

if (!currentState.equals(nextState)){
currentState . doExitAction ();
nextState.doEntryAction ();
currentState = nextState;

}
}

public class TwoApplicationsThere implements State{

@OQOverride
public State getNextState(String information) {
switch(information){
case "LoadBalancerLeft": return oneApplicationThere;

case

default:

}
}

@Override
public void doEntryAction() {
activate (Team.ALL.THREADS);

}

"AdaptiveSoftwareLeft": return oneApplicationThere;

return twoApplicationsThere;

39

35
36
37
38
39
40

Chapter 3 Related Work

@Override
public void doExitAction() {
deactivate (Team.ALL THREADS);

1
}
Listing 3.3: OT/J code-example implementation of stateful Role-Binder

In this example, the stateful Role-Binder is implemented according to the “State”
design pattern. Incoming informations are passed to the currentstate-object to deter-
mine whether a state change is necessary. If this is the case, the currentstates exit-
action- and the nextstates entry-action are executed. The respective constituent sys-
tem may inform the Role-Binder about its presence by calling the informRoleBinder-
function. If all awaited systems are present, the Role-Binder will activate the team.
This is done on entering- and leaving the state TwoApplications There. Role-instances
are automatically bound to all instances of all relevant system-components. On leav-
ing the TwoApplications There-state, the Role-Binder will deactivate the team. This
is done if one system has informed the Role-Binder that it is going to leave the SoS.

The complete code of this example can be found in the Appendix (see 8.1.1).

3.5.2 Other Role-based Languages

The features that have been identified in section 3.2 further the ability of an archi-
tecture description language to dynamically apply coordination rules, based on the
composition of constituent systems in the SoS. Most of the role-oriented program-
ming languages, that have been described in section 3.4, do not intend to describe
behaviour on the architectural level. Nevertheless, their language-design provides a
certain applicability for the task that is of interest to this thesis, namely the dynamic
application of coordination rules in dependence of the composition of constituent
systems in the SoS. To determine the individual applicability of each language with
respect to this purpose, its fittness to support the features that have been identi-
fied in section 3.2 has been analyzed. The result of that analysis is presented in the
feature-table 3.1.

In the following, for each language the most striking areas of improvement are high-
lighted, that exist with respect to its respective support for the concern of coordina-
tion in dynamic SoS.

SMAGs

SMAGs does currently not support the notion of a common message scope of base
and roles. (“Dynamic Composite AEM). To achieve that notion, PortTypes may
publish in response to each function call a message that represents that function
call to a message scope that includes all Ports that are currently associated to the
SMAGs-component. Nevertheless, it is possible to exchange the implementation of a
Port at runtime and to extend the SMAGS-component by new PortTypes at runtime,

40

Chapter 3 Related Work

<
Q
= = g
o ™ 2
<= = o} < @)
2 - g < = &)
5 = < = Q = 8 o = <<
g 3 o g & T 5 2 9
== B »m n O €2 T =T e €2
Event-based System + +/- - - + - - _ T
Dynamic Composite AEM | + - - -+ - - - _
Cross-cutting Roles + +/- +/- -+ /- - - 4/
Role-Binder + +/- + - +/- - _ i
Compartment + +/- + + - + + 4/ +/-
Two-layered Role-Binding | + - +/- - +/- - - - -
Architectural-level + + - +/- + - /- - -

Table 3.1: Feature table for EventArch 3.0 and related languages

even without a dcaem. But still, supporting the notion of a DCAEM may simplify the
implementation of those features. To attach a certain Port to a specific PortType, it
would just have to be included in a certain message scope. All PortTypes would pub-
lish all messages by default to this message scope. As a disadvantage, the described
solution would require an additional mechanism to select a Port out of multiple Ports
of the scope that implement the function that is represented by that message.

In SMAGs, Ports can be attached to SMAGs-components. SMAGs-components rep-
resent applications or systems. Therefore, Port-functions can be called by different
classes or system-components. Nevertheless, SMAGs ports do not modularize a cross-
cutting concern, as the function-calls still scatter around those classes and system-
components and are tangled with the implementation of other concerns. Therefore,
SMAGs partly supports the notion of “Cross-cutting Roles”.

SCROLL

In SCROLL, a base can start to play a role-object at runtime. The playedBy-relation
is defined dynamically. When a compartment is activated, all role-objects that are
instances of role-classes defined in it are bound to their respective role-players. This
is implemented by SCALAs feature “dynamic mixin”. To implement the SCROLL-
architectural pattern in another programming language, this language has to support
“dynamic mixins” as well. Currently, this feature is not widely supported among
programming languages. A common message scope of a base and all its roles (“Dy-
namic Composite AEM”) would be easier to implement for most languages and might
be therefore a factor in easing the task of implementing the SCROLL-architectural
pattern in other programming languages.

To implement that message scope, function-calls would have to be represented as
messages. A mechanism would have to be implemented to deliver messages to all

41

Chapter 3 Related Work

members of that scope. If multiple members implement the function that is repre-
sented by the message, a specific member would have to be selected that is responsible
for processing that message. Possibly, the dynamic-dispatch mechanism that is avail-
able in the current version of the language can be reused in a certain way for that
purpose. It may be used to determine an order in that the messages are published to
the members of the scope. The first member that implements the function may be
responsible to compute the return value.

Currently, SCROLL does not support a notion of Cross-cutting Roles. Nevertheless,
there exist cross-cutting concerns that may be subject to context-dependency on the
applicational level. Examples include logging and security. For example, a Cross-
cutting Role could be used to attach logging-functionality to a set of objects. This
logging functionality may depend on the context that the object is experiencing at
logging-time. For example, a more exhaustive logging could be required if the ob-
ject is experiencing at logging time a context that is more critical to achieving the
applications goal than another context.

EventArch 2.0

EventArch 2.0 is concerned with integrating constituent systems with coordinators
that implement coordination rules. It aims at achieving comprehensibility and pre-
serving the reusability of the constituent systems in other SoS or outside any SoS-
context. While EventArch 2.0 is able to achieve the integration of constituent sys-
tems and coordinators for static SoS, it is not capable to achieve that integration
for dynamic SoS. Composite AEMs are static entities. They can not gain and loose
Composite Interfaces at runtime. Therefore, coordinators can not be bound to- and
unbound from a DCAEM at runtime. Primitive interfaces modularize a cross-cutting
concern. Nevertheless, they lack support for dynamic behaviour as well. They can
not be activated and deactivated. Moreover, the coordinators of a coordination rule
that is implemented according to the “Peer-to-Peer”-coordination pattern can not
be encapsulated in a common message-scope. Instead, messages are published into
global scope.

E-CARGO

E-CARGO has been proposed as a model for CSCW (computer supported collabo-
rative work) scenarios. This model integrates several concepts that are relevant in
that application domain (e.g. human-collaborators, resources, groups). E-CARGO
is described on a rather conceptual level. No syntax for specifying a CSCW-scenario
has been proposed ([29]). The description does not approach questions concerning
the implementation of that model in current programming languages. Nevertheless,
it can be argued in what way the features that have been identified in section (3.2)
could help to improve the design of that model and could allow for a seamless imple-
mentation in current programming languages.

Agents may act independently or on behalf of a human user of the CSCW-system. An
agent can send messages to other roles that are provided by its own roles. An agent
could be integrated with its roles by means of a common message scope (DCAEM).

42

Chapter 3 Related Work

This scope would contain at most a single role, as a human can not play multiple roles
simultaneously, according to the E-CARGO model. With a common message scope,
the agent could keep publishing messages to that scope and would not have to switch
the destination of its messages whenever a new role is played. Moreover, the common
message scope would allow for a feasible implementation in current programming
languages.

Helena Approach

Helena Approach has been proposed as a “formal foundation for ensemble modeling”
([16]). Certain concepts that are relevant for ensemble modeling are developed and
formally defined. Examples include the “Ensemble Automata”, which defines the de-
sired behaviour of an ensemble, and the “Ensemble Specification”, which encapsulates
a specification of allowed role-to-role relationships and defines certain behavioural re-
strictions for individual roles. Helena Approach is open for different implementations
of those concepts. Nevertheless, it might be advisable to associate a component to
all its roles of a certain ensemble by means of a common message scope. In that
way, an individual message scope could be established for each ensemble that the
component is participating in. Calls to specific role-functions could be represented
by specific messages. Role-binding and -unbinding could be implemented by adding
and removing roles to that message-scope. But still, a mechanism would have to be
implemented to determine which role should be responsible for processing a specific
message if multiple roles implement that function.

In Helena Approach, roles act on behalf of components. Components can be thought
of as consisting of multiple structural units. Every role of an ensemble can be under-
stood as a representation of “capabilities that a component needs when participating
in a specific ensemble” ([16]). A “capability” may be functionality to implement a
concern that cross-cuts through multiple structural units of the component. There-
fore, it would be advantageous to allow for a role-implementation that modularizes
this cross-cutting concern and prevents its scattering around the structural units and
its tangling with other concerns of the component. Such a role-implementation could
be achieved by supporting the notion of “Cross-cutting Roles”.

Supporting the notion of “Cross-cutting Roles” would make it advisable to separate
the task of extracting the state-information that is relevant for the cross-cutting con-
cern from the component and the task of implementing the concern itself. This would
encourage to support the notion of “inner roles” that are responsible for observing
the current state of the multiple structural units of the component and translating
that state into a representation that the outer-roles can use to implement the concern
on their own.

Rumer

In Rumer, roles are used to associate an object with a planned position in a relation-
ship. They may have properties and their state can be processed by the methods of
their relationship. Nevertheless, a role can not define own methods and is therefore
not capable to change the state of other roles in the relationship. Moreover, roles are

43

Chapter 3 Related Work

automatically bound to an object when it is added as part of a tuple to a relationship.
This design can hardly be improved by most of the features that have been identified
in section 3.2.

But still, different relationships may be associated to a common context. In ([7]) the
example relationships “teaches”, “assists”, “worksFor”, and “attends” are defined.
They capture the relationship between professors and courses (teaches), student as-
sistant and courses (assists), students and faculties (worksFor), and students and
lectures (attends). All those relationships can be associated to the context “univer-
sity”. Therefore, it might be useful to group those relationships in a certain way.
To achieve that, support for the notion of “Compartment” could be introduced to
the language. A compartment may represent a common context for specific relation-
ships. It may contain additional properties that are specific to that context, as well.
Therefore, grouping of relationships may be regarded as an area of improvement in
Rumer.

powerJava

powerJava is a role-oriented language that is situated at the applicational level. In
powerJava, compartments (institutions) can be instantiated and different implemen-
tations of the same role can be defined within the same compartment. Therefore, pow-
erJava requires the programmer to specify at every function-call the compartment-
instance and the type of the role-implementation explicitly. To allow for a greater
flexibility and to separate function-calls from function-dispatch, Role-Binders could
be employed. A Role-Binder could be concerned with selecting the compartment-
instance that should be used. Moreover, another Role-Binder could be concerned
with selecting the appropriate role-implementation that is available within a specific
compartment. Moreover, base and roles could be integrated by a common message-
scope. The Role-Binders decision to select the one or the other compartment-instance
for activation might be implemented by letting certain roles join or leave the com-
mon message scope. In the same way, its decision to select the one or the other
role-implementation could be implemented.

44

Chapter 4

Concepts of EventArch 3.0

In this chapter core-concepts of EventArch 3.0 are explained. This includes role-
related concepts like “Base”, “Role”, and “Compartment” as well as concepts like
“Dynamic Composite AEM” and “Atomic Block” that are inspired by other fields of
knowledge. The description is concerned with the implementation of this concepts
in EventArch 3.0, but it is given on a rather conceptual level. It is enhanced by
certain diagrams that illustrate the concepts on an abstract level: package-diagrams,
a class-diagram, and a sequence diagram. A more detailed description can be found
in the subsequent chapter.

4.1 Base, Role, and Compartment

This section introduces EventArchs 3.0 concepts of “Base”, “Role”, and “Compart-
ment”. Their relationship to the concepts “Constituent System”, “Coordinator”, and
“Coordination Rule” 1s sketched.

As stated in the motivation (see 1.1), EventArch 3.0 was designed to support dynamic
application of coordination rules. This task is related to the following concepts that
originate in the problem area “coordination of constituent systems”: constituent sys-
tem, coordinator, and coordination rule. EventArch 3.0 is dedicated to coordination
according to the “Peer-to-Peer” pattern (see [18]). According to this pattern, a co-
ordinator is responsible for a single constituent system to achieve compliance with a
specific coordination rule. Related constituent systems may be subjected to the same
coordination rule. This rule guarantees a certain operational compatibility of the
constituent systems that are concerned by it, with respect to achieving the SoS-level
goals. It imposes certain restrictions on the behaviour of the constituent systems,
e.g., to stop operation if another system has reached a critical state.

Those concepts can be mapped to the concepts base, role, and compartment that
originate in the modeling approach “Role-based Modeling” (see 2.3). Roles can be
dynamically bound to- and unbound from a base. A compartment comprises a set
of related roles. The roles may be related by a common purpose. In this case a
compartment may be understood to be dedicated to achieving that purpose. From

45

Chapter 4 Concepts of EventArch 3.0

point of view of a role, a compartment establishes a context of potential collaboration
partners. A base is placed into this context by becoming a role-player, i.e., by getting
a role bound.

In EventArch 3.0, a role is understood to represent a coordinator that is associated
to a single constituent system (“Peer-to-Peer” pattern). The constituent system is
understood as the “Base” of that role. The role can be dynamically bound to- and
unbound from that base. This is a prerequisite to achieve the dynamic application
of coordination rules. The preceding description applies to EventArchs 3.0 “Outer
Roles”. A description of the related concept “Inner Role” is given below (see 4.3).

In EventArch 3.0, a compartment is understood to represent- and implement a cer-
tain coordination rule. The contained roles represent coordinators that are associated
to this coordination rule. A base represents a constituent system that is subjected
to this coordination rule by getting a role bound. In EventArch 3.0, a compartment
establishes a common scope for all contained roles. It may contain a Role-Binder (see
4.2), but no additional functionality. It contains a fixed set of roles that can not be
reduced or extended at runtime (see 6.2).

4.2 Dynamic Composite AEM and Role-Binder

In this section FEventArchs 3.0 concepts “Dynamic Composite AEM” and “Role-
Binder” are explained. Their relation to the role-concept and their relevance for
the concern of coordination in dynamic SoS is pointed out.

The dynamic application of coordination rules is backed by the concepts “Dynamic
Composite AEM” and “Role-Binder”. Coordination rules are applied by binding
coordinators to constituent systems. A coordinator is responsible for implementing a
specific coordination rule into the behaviour of a constituent system. The binding of
a coordinator is done by establishing a communication relation between a constituent
system and that coordinator. Therefore, the dynamic application of a coordination
rule can be achieved by dynamically establishing a communication relation between
coordinators and constituent systems.

In EventArch 3.0, this is achieved by the language element “Dynamic Composite
AEM” (DCAEM). A DCAEM is implemented as a common scope for a constituent
system and all coordinators that act on behalf of this constituent system. This
may include coordinators of different coordination rules. Coordinators can join and
leave this scope at runtime. Therefore, a DCAEM can be understood as a dynamic
mapping from a symbolic name (i.e. the name of the DCAEM) to a set of coordinator-
identifiers. In this way, the concept is contributing to establishing a loose-coupling
between a constituent system and its coordinators (the mapping is not fixed, but can
be changed at runtime).

From point of view of role-based modeling, the DCAEM can be understood as a

46

Chapter 4 Concepts of EventArch 3.0

“complex object”. It comprises the base-object (constituent system) and all its role-
objects (coordinators). The DCAEM-concept of EventArch 3.0 is a variant of the
concept “Composite AEM” of EventArch 2.0 (see 2.2.1). In EventArch 2.0, con-
stituent systems and coordinators are encapsulated as Architectural Event Module
(AEM). A DCAEM is therefore a common scope for certain AEMs that represent a
constituent system and its coordinators. Certain Primitive Interfaces of the AEMs
can be associated to the DCAEM. Communication within the scope of a DCAEM is
just possible for an AEM using Primitive Interfaces that are currently associated to
this DCAEM.

Coordination rules may be employed to prevent unintended behaviour in a SoS. In a
dynamic SoS, coordination rules have to be applied at runtime (see 1.1). Therefore,
in a dynamic SoS, a point of execution has to be selected at which the coordination
rule should be applied to the concerned constituent systems. In EventArch 3.0, this
decision is taken by a Role-Binder. The Role-Binder decides upon the point of
execution and achieves the application of a coordination rule by composing relevant
coordinators with constituent systems that are concerned by that rule. A Role-Binder
can be responsible for applying a single coordination rule or for applying several
coordination rules. In the latter case, it may be used to select one coordination rule
out of several alternatives for application. The Role-Binders decision is based on
events that have been published by constituent systems. The entry- and exit of a
constituent system can be indicated to the Role-Binder by publishing those events.
In this way, the Role-Binder may be brought in a position to consider the current
composition of constituent systems in the SoS with respect to its binding decisions,
and therefore with respect to its decision to dynamically apply a specific coordination
rule to the SoS. A Role-Binder provides special statements (“bind”, “unbind”) to
bind a coordinator to a constituent system, i.e., establish a communication relation
between a coordinator and a constituent system.

Moreover, a Role-Binder can create and destroy a DCAEM (statements “create”,
“destroy”). To create a DCAEM, one AEM that represents a constituent system
is determined to be the “Base” of that DCAEM (a DCAEM can be understood as
a complex object of base and roles, see above). Additionally, a Primitive Interface
of this AEM has to be selected to get associated to the DCAEM. In this way, the
Role-Binder may be used to select one Primitive Interface out of several alternatives
(this is one of the advantages of EventArch 3.0, see 6.1).

Role-Binders are defined as statemachines. State-transitions can be performed in
response to certain events that have occured within the SoS. Binding actions can be
performed on entering a specific state. This can be used to apply a coordination
rule consistently to all constituent systems that are concerned by it. (see 6.1) In this
way, the Role-Binder can be used to activate a specific coordination rule, or to select
several coordination rules for application.

47

Chapter 4 Concepts of EventArch 3.0

4.3 Inner Roles and Atomic Block

This section introduces the concepts of “Inner Roles” and “Atomic Block”. The
significance of these concepts is motivated by their contribution to EventArchs 3.0
language-support for the concern of coordination in dynamic SoS.

In a SoS, several constituent systems may be in need for coordination. Coordination
can be used to prevent unintended behaviour on SoS-level. The task of coordination
can be decomposed into the following subtasks:

e Monitor the current state of the constituent systems

o Analyze the current state and plan your interference with the constituent systems
behaviour

o [nterfere with the constituent systems behaviour

The first task may be accomplished by the constituent systems themselves. They
might be concerned with informing relevant members of the SoS about their cur-
rent state. The constituent systems do also have their share in accomplishing the
third task. They have to execute the commands that have been sent to achieve the
interference. In dynamic SoS a problem arises with respect to accomplishing that
task. The need for coordination may appear and vanish at runtime. Therefore, in a
dynamic SoS, constituent systems should refrain from monitoring their current state
and should refrain from executing received commands if no need for coordination
exists. In EventArch 3.0, the concept of “Inner Roles” was introduced to cope with
that problem.

The concept of “Inner Roles” is derived from the concept of “Primitive Interface” of
EventArch 2.0 (see 2.2.1). An inner role is a Primitive Interface that can be deacti-
vated. It is associated to an AEM that represents a constituent system. Deactivation
suspends the ability to publish state-changes of the constituent system to coordina-
tors. It also suspends the ability to translate command-events that were received by
the coordinators into actions of the constituent system. Deactivating an inner role
equals establishing ignorance of all coordination rules whose coordinators depend on
this inner role to communicate with the constituent system.

Inner roles are meant for communication of a constituent system within a DCAEM,
i.e., between a constituent system and its coordinators. They can not be used for
communicating events outside of a DCAEM. Therefore, all inner roles are deactivated
if the constituent system is currently not the “Base” of a DCAEM. When a DCAEM
is created around a constituent system (i.e. when the constituent system is declared
to be the “Base” of a DCAEM), certain inner roles of the constituent system are
activated. This is done by a Role-Binder. The Role-Binder can decide which inner
roles to activate. In this way, the Role-Binder can decide which state-changes of the
constituent system should be communicated to the coordinators and which command-
events should be processed in which way by the constituent system. This increases
the adaptivity of constituent systems with respect to the concern of coordination

48

Chapter 4 Concepts of EventArch 3.0

(6.1).

Opposed to the outer roles (or just termed “roles” in this description), the inner roles
are tightly-incorporated into the constituent system (see 5.1.3). They encapsulate
the tasks of translating the current state of the constituent system into a stream of
events and of translating received command-events into actions of the constituent
system. Moreover, inner roles can be activated and deactivated. In that way, the
inner roles of a constituent system establish an “inner layer of role-binding”. This
layer can be distinguished from the “outer layer of role-binding” that is constituted
by the (outer-)roles of the DCAEM.

A coordination rule is concerned with multiple constituent systems. Activating a
coordination rule does therefore require to bind several constituent systems to their
coordinators. To prevent malfunctions, a consistent application of the coordination
rule to all constituent systems is necessary. (6.1) In EventArch 3.0, this consistent
application can be achieved by a Role-Binder. To do that, the Role-Binder can
execute several binding commands on entering a specific state (see preceding section).
Each command would bind a specific coordinator to a specific constituent system. To
guarantee consistency, the successful execution of all binding commands has to be
guaranteed. This successful execution can be guaranteed by means of an “Atomic
Block”.

An “Atomic Block” is a sequence of binding commands that is executed atomically.
Either all binding commands of this set are executed or none of them. An atomic
block is in fact a transaction that is concerned with changing the state of a SoS with
respect to binding relations. The beginning and end of this block do mark the BoT-
point (begin of transaction) and the commit-point of the transaction respectively. If
one of the contained commands can not be executed, the state of the binding relations
inside the SoS is restored that was active at the beginning of the atomic block. This
operation can be understood as a “rollback” of the state of the binding relations. The
following commands can be executed in an atomic block: create/destroy DCAEM
bind /unbind role.

4.4 Diagrams

This section presents certain diagrams that describe the implementation of EventArch
3.0 on an abstract level. Two package-diagrams are contained that describe the depen-
dencies among packages that have been changed or extended with respect to the im-
plementation of EventArch 2.0. The role-binding process is illustrated by a sequence-
diagram. Two class diagrams illustrate on a conceptual level the relationship between
role-related concepts and concepts that are related to coordination in dynamic SoS.

Language-concepts
Figure 4.1 contains two UML class-diagrams to support the above description by a
concise graphical presentation. One diagram captures EventArchs 3.0 concepts from

49

Chapter 4 Concepts of EventArch 3.0

point of view of “Role-based Modeling”. The other captures EventArchs 3.0 concepts
from point of view of “coordination in dynamic SoS”.

Role-base management

Figure 4.2 describes different Role-Binder activities to manage role-base relations
(create, bind) on a conceptual level. The issued binding-commands were defined in
an atomic block. This diagram clearly shows the dynamic nature of the Dynamic
Composite AEM (DCAEM).

Figures 4.3 and 4.4 describe the code-changes on package-level (only changed/ex-
tended dependencies are contained). There were two new package-dependencies in-
troduced in the compilation-part (4.3): code-generation employs a validator. It gets
interrupted if the validator detects an error. Also, the core-package provides stan-
dard interfaces to the applevel-package (see next section for details). Moreover, two
package-dependencies were extended. The generator makes use of the model-objects
that represent the newly created binding- and creation-statements. Also, the gen-
erator added the functionality to the generated classes to respect the new DCAEM
scope-restrictions.

Some new dependencies have been added to the packages of the runtime-part. Also,
some code-changes have been made that contribute to existing dependencies. Figure
4.4 depicts all new and changed dependencies. The details of necessary code-changes
are discussed in the next section.

50

Chapter 4 Concepts of EventArch 3.0

Dynamic
Composite AEM

m:nmnmc_mﬁmmwmmmmsam:
its (currently) bound roles

detachable

Dynamic
Composite AEM

o/from constituent

primitive interface

Role-Binder

Compartment

encapsulates related
roles

coordination rule

SyStarm

encapsulates constituent
system and all its {currently)

bound coordinators

<
<>

encapsulates related
coordinators

Figure 4.1: EventArchs 3.0 concepts from point of view of “Role-based Modeling”

(right) and “coordination in dynamic SoS” (left)

ol

Chapter 4 Concepts of EventArch 3.0

compartment J

role-binder base a role_1 role 2

| | Il |

| | | |
A A A 1
current_state

create dcaem A

deaem activate
A inner role
<

acknpwledge
Cleate

bind decaem A
acknowledge
bind
bind dcaem A
acknowledge
bind
current_state current_state

currgnt_state

unbind decaem A

acknowledge
ur{bind

unbind dcaem

acknowledge
unbind

destroy dcaem A

acknowledge
destroy

Figure 4.2: Conceptual role-base management

52

Chapter 4 Concepts of EventArch 3.0

Fl-_ _______ =
| ime- |
generated_classes | R_uzt[ni EET_ i
B | rd
i
: «generate» Abstract-Design
|respect new Compilation-Part
| scope-restrictions (dcaem)
1
org.eventarch.language.generator |
1 - - T
I I
| cusen | «usen
|employs new model-objects jemploys validator before
jthat represent new binding- | code-genaration
|and creation- statements \L”
org.eventarch.language.eventarch | org.eventarch.language. validation |
2 | 9
org.eventarch.core.compiler | org.eventarch.language.parser.antlr |
(5] 4
org.eventarch.core.serializer | org.eventarch.core.compiler.parser |
7 5
org.eventarch.utils org.eventarch.core
8 3 |
I
Laprovidas

I provide standard interfaces
\Lset type of module

org.eventarch.core.applevel |
A |

Figure 4.3: Changed dependencies within compilation-part

53

Chapter 4 Concepts of EventArch 3.0

Drg.eventarch.utils| Drg.euentarc:h.mre| "F(,‘___._______‘
8 | 3 | :CDmpHEIf_IDn—PElrt:
e A i
- Lo £
| Mo
armplo “Runtimepart
[| Exception- [a
Iemp sl L | «provide»

|
org.eventarch.core.applevel |

| provide standard interfaces
\Lset type of module

T
|
|
|
I (publish new events: bin{!ingfcmati‘#n) :wisibilit;.r
|
|
|
|

| €usen
lemploy new Event-types

| (binding-events, creation-events)

I
Ny

org.eventarch.core.eventtypes |

oo Bmsw | €USERD
event publishing 1 |respect dcaem-

I |
generated_classes ‘

E

Drg_evemarch_mre_mntime|

org.eventarch.core.elements

D

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
- |
I
|
|
|
|
I
I
I
I
I
I
I
I
I
I
I

Figure 4.4: Changed dependencies within runtime-part

54

—

O © 0O Ui W+~

Chapter 5

Internal Design of EventArch 3.0

This chapter presents an in-depth discussion of the implementation of concepts of
EventArch 3.0 that are relevant for the concern of coordination. Moreover, design
alternatives are considered. An even more detailed discussion of the internal changes
that had to be applied to EventArch 2.0, can be found in the appendix (see 8.4). The
presentation goes down to the level of names of individual classes and functions. It
will provide a useful introduction for readers who intend to extend EventArch 3.0.
Some additional lower-level concepts are explained as well.

5.1 Implementation of the Concepts

The new language concepts (see chapter 4) had to be incorporated into the EventArch-
language. To achieve that, the grammar of FEventArch 2.0 had to be changed. New
language elements had to be introduced. Listing 5.1 shows a piece of code that em-
ploys these new elements. A Role-Binder is depicted that employs the binding- and
creation commands inside of an atomic block. This section will explain the detailed de-
sign solutions that have been taken to introduce the described concepts of “Role-based
Modeling” into EventArch 2.0 to increase its language-support for the concern of coor-
dination in dynamic SoS. Certain other concepts that are relevant for EventArchs 3.0
implementation are explained as well. EventArchs 3.0 implementation is described in
detail. The description includes class-diagrams that illustrate the structural changes
that have been made to the implementation of FventArch 2.0. The detailed descrip-
tion is given on a per-package level. This chapter will especially be useful for readers
that intend to extend EventArch 3.0.

roleBinder SwitchCoRoleBinder [StateMachine]| := {IExzternal} <—> {
initial state noSystemThere{
during:
on(IExternal.lb_started || IEzternal.as_started) {} —>
oneSystemThere ;
}
state oneSystemThere{
during:
on(IEzternal.lb_terminated || IExzternal.as_terminated) {} —>

55

Chapter 5 Internal Design of EventArch 3.0

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
10 }

noSystemThere;
on(IEzternal.lb_started || IExzternal.as_started){} —>
twoSystemsThere;

}

state twoSystemsThere{
entry:
atomic {
DcaemLoadBalancer [composite] := {LoadBalancerCoord.
IBaseDirectedLB} <—>
{WrappedLoadBalancer . ISwitchCoordinatorL B}
DcaemAdaptiveSoftware [composite] = {} <>
{WrappedAdaptiveSoftware. ISwitchCoordinatorAS}
DcaemAdaptiveSoftware [composite] += {AdaptiveSoftwareCoord.
IBaseDirectedAS}
}

during:
on(IEzternal.lb_terminated || IEzternal.as_terminated) {} —>
oneSystemThere;

exit:
DcaemLoadBalancer [composite] —= {LoadBalancerCoord.
IBaseDirectedL B}
destroy DcaemLoadBalancer [composite |
DcaemAdaptiveSoftware [composite] —= {AdaptiveSoftwareCoord.
IBaseDirectedAS}
destroy DcaemAdaptiveSoftware [composite]

}

Listing 5.1: EventArch 3.0 example-code: Role-Binder with binding- and creation

commands in atomic block

5.1.1 Base, Role, and Compartment

This subsection describes the implementation of EventArchs 3.0 “Base”-, “Role”-, and
“Compartment”-concept. Important properties of “Roles” are described from point of
view of language-implementation. Based on that description, the implementation of
the concepts “Base” and “Compartment” is described.

From point of view of implementation, EventArchs 3.0 roles are characterized by the
following properties:

e A module that is able to receive and process bind- and unbind-events

e A module that can be distinguished from modules of the types “Role-Binder”
and “Base”

e A module that belongs to a compartment and publishes its events by default
into the scope of that compartment

56

Chapter 5 Internal Design of EventArch 3.0

e A module that may have interfaces that are associated to a DCAEM and are
therefore restricted to publish to the scope of that DCAEM

Those properties are implemented in the following way:

A module that is able to receive and process bind- and unbind-events:
Every module that has been identified as “Role” by the compiler is added a so called
“StandardBindingInterface”. This standard interface can select Bind- and Unbind
events that have been sent by the Role-Binder. The standard interface is created
and associated to the role-module by the Loader-class. Those binding-events are
processed by establishing or suspending connectivity to the topic (see section 2.2.2)
that represents the DCAEM that the role is to be bound to/unbound from. This
functionality is implemented in the class ERGeneratedAppEventmodule.

A module that can be distinguished from modules of the types “Role-
Binder” and ”base”: roles, bases and Role-Binders are specified by the SoS-
manager in the EventArch 3.0 specification. Roles are modules that are marked
by the keyword “role” in the specification. Role-Binders are marked by “roleBinder”.
The definitions of modules of type “Base” are not marked in the specification. The
pieces of information that have been provided by the SoS-manager in the specification
are represented in the compiler by objects of type “PrimitiveAEM”. This is done for
modules of type “Role”, as well as for modules of type “Base” and “Role-Binder”.
Alternatives to this solution exist. But in case of EventArch 3.0, the indicated solu-
tion should be prefered. (see 5.2) To allow for a distinction of the three module types
at runtime and in the process of compilation, the compiler associates each module
with the PrimitiveAEM-object AND with a TypeOfModule Marker. The TypeOfMod-
uleMarker allows for qualifying a module as “Base”, “Role”, or “Role-Binder”. The
TypeOfModuleMarkers are created and associated to the respective modules by the
Loader-class.

A module that belongs to a compartment and publishes its events by
default into the scope of that compartment: EventArch 2.0 provides a concept
called “instance-group”. An AEM-instance can be specified to belong to an instance-
group. Instance-groups are implemented as topics. All events of an AEM-instance are
published by default to its instance-group. The concept of “instance-group” could be
reused in EventArch 3.0 to restrict a role-module to publish its events by default to
its compartment. The compiler creates an instance-group for each compartment. All
roles that are defined within that compartment are joined into this instance-group at
compile-time. No further code-changes had been necessary. Primitive interfaces of a
role-module that are currently not associated to a DCAEM do publish their events
by default to the scope of the compartment that they belong to. This is actually not
enough to guarantee that the role would be unable to publish its events deliberately
to another scope than the compartments scope. This guarantee is not achieved by
means of code-generation, but by means of semantic-checks (see below).

A module that may have interfaces that are associated to a DCAEM and
are therefore restricted to publish to the scope of that DCAEM: Interfaces

57

Chapter 5 Internal Design of EventArch 3.0

that are associated to a DCAEM can not publish their events to another scope than
that of their DCAEM. To achieve that behaviour, the state of DCAEM-association
was represented in the class ERApplInterface. The class was extended by a new prop-
erty that provided information about the current DCAEM-association. The com-
piler was adjusted to make the generated code (Primitive Interface-implementation,
statemachine-implementation) aware of the current DCAEM-association of the ER-
ApplInterface-objects. If the interface is currently associated to a DCAEM, the event
is published to the topic of this DCAEM by force. If not, it is published to the
default-topic. In case of role-modules, this is the topic that represents the roles com-
partment.

The concept of “Base” is implemented in a similiar way like the concept of “Role”.
A base-module receives a standard interface of the type “StandardCreationlnter-
face”. This enables the module to receive Create- and Destroy events that have
been sent by the Role-Binder. Those events are processed by creating a topic at the
communication-provider (JMS, see 2.2.2). Base-modules are associated a TypeOf-
ModuleMarker, as well. The marker allows for qualifying them as base-modules. In
contrast to roles, bases are not specifically marked in the EventArch 3.0 specifica-
tion. Modules that are not marked in the specification are qualified by the compiler
as base-modules. Primitive Interfaces of base-modules may also get associated to a
DCAEM. Opposed to roles, not arbitrary Primitive Interfaces can get associated to a
DCAEM but just those Primitive Interfaces that have been marked “private” in the
EventArch 3.0 specification. Private interfaces are restricted to publish events to the
scope of that DCAEM that they are associated to. Moreover, they are deactivated
as long as they are not associated to a DCAEM. Private interfaces implement the
“Inner Role”-concept of EventArch 3.0 (see 4.3).

In EventArch 3.0, compartments are implemented as a message scope. Therefore,
a compartment is represented by a topic (see section 2.2.2). More specifically, they
are implemented reusing EventArchs 2.0 concept “instance-group” (see above, imple-
mentation of the concept “Role”). Compartments do not provide behaviour and can
not be nested.

5.1.2 Dynamic Composite AEM and Role-Binder

In this subsection EventArchs 3.0 implementation of the concepts “Dynamic Com-
posite AEM” and “Role-Binder” is explained. The DCAEMs implementation as a
message-scope 1s revealed. The implementation of the Role-Binder is explained ac-
cording to the characteristics “Statefulness”, “Accessibility”, “Fxclusiveness”, “Qual-
ification”, “Dedication”.

DCAEMs: Implementation and membership

A DCAEM is conceptually a complex object of a base and all its roles (role-based point
of view). From point of view of coordination, it encapsulates a constituent system
and all its coordinators. As a DCAEM is not meant to implement any additional

58

Chapter 5 Internal Design of EventArch 3.0

functionality, it was possible to implement it as a common scope for a base and all
its roles, or a constituent system and all its coordinators respectively.

A scope can be understood as a symbolic name that is dynamically mapped (i.e., at
runtime) to a set of names of event-receivers (roles/coordinators). JMS provides a
solution for scope-implementation: topics (see 2.2.2). Therefore, DCAEMs are im-
plemented as a topic that a base and all its roles can get assigned to. The creation
of a DCAEM is commanded by a Role-Binder (see below), but the topic is physi-
cally created by the base-module itself. The Role-Binder specifies, which Primitive
Interfaces of the base-module should publish/subscribe to this topic. If one of those
Primitive Interfaces is not marked “private”, the base rejects to create the DCAEM
(see also above, implementation of concept “Base”). Multiple Primitive Interfaces of
the base-module can be assigned to the same DCAEM, but a base-module can be the
“Base” of at most one DCAEM. A Primitive Interface is either assigned to a DCAEM
or to a Composite AEM (CAEM), not to both. To initiate DCAEM-creation, the
Role-Binder sends a Create-event to the base. It contains the following information:
name of DCAEM and names of Primitive Interfaces that should get connected to
the DCAEM.

Roles are added to a DCAEM at runtime (binding). On binding, certain Primitive
Interfaces of the role are granted to publish/receive events to/from the topic that
represents the DCAEM, i.e., connectivity to that topic is created /removed. A specific
Primitive Interface can get assigned at most to a single DCAEM. A role can not be a
member of a Composite AEM. Binding is implemented by the Role-Binder by sending
a Bind-event. It contains the following information: name of DCAEM and names of
Primitive Interfaces that should get access to the DCAEM. The role is responsible
for checking whether the DCAEM that it should be bound to, is actually existing. If
not, it rejects to process the event.

Role-Binder
From the “Role-Binder” concept the following characteristics can be identified, which
are relevant for implementation:

e Statefulness: Role-Binders provide stateful role-binding.

e Accessibility: Role-Binders are meant to handle events of many different con-
stituent systems (e.g. “notification of entry” to the SoS) and should therefore
maintain a high level of accessibility.

Moreover, the Role-Binder implementation has to ensure:

e Exclusiveness, i.e., no role-modules or base-modules should be able to provide
binding-services that are reserved for Role-Binders

e Qualification, i.e., Role-Binder modules should be qualified as such, and be
distinguishable from base-modules and role-modules

e Dedication, i.e., Role-Binders can be dedicated responsibility for a specific co-
ordination rule.

59

Chapter 5 Internal Design of EventArch 3.0

The mentioned characteristics of Role-Binders are implemented in the following way:
statefulness is achieved by reuse of EventArchs 2.0 statemachine-concept. Role-
Binders are a special type of statemachine. Role-binding is achieved in the following
way: Role-Binders are not concerned with technically binding a role to a base, but
by commanding this to a role-module. To achieve that, Role-Binders have been pro-
vided access to special binding-commands: “bind” and “unbind”. Those commands
cause the transmission of Bind- and Unbind-Events to a role-module. Role-Binders
are moreover concerned with commanding the creation or destruction of a DCAEM
to a base-module. This is accomplished by “create” and “destroy” commands and
CreateDcaem-Event and DestroyDcaem-Event respectively.

Role-Binders are sent “notifications of entry” by potentially every system that joins
the SoS. To achieve accessibility, all Role-Binders are associated to a common
scope (see below “standard-scopes”). Instead of publishing events to individual Role-
Binders, constituent systems publish their “notifications of entry” to the standard-
scope that includes all Role-Binders.

Role-Binders should be exclusively allowed to issue binding- and creation-commands.
Exclusiveness is achieved by semantic checks (see below). The compiler checks
whether other modules than “Role-Binders” make use of binding- and creation-
commands and rejects compilation if this is the case. Qualification is achieved
in the same way like it is achieved for role-modules and base-modules (see above).
Role-Binder modules are associated a specific TypeOfModuleMarker that allows for
their qualification as “Role-Binder”. Dedication is currently not enforced, but en-
couraged by allowing to define a Role-Binder within a compartment. This can be used
by the SoS-manager to indicate the responsibility of this Role-Binder for applying the
coordination rule that is represented by that compartment.

5.1.3 Inner Roles and Atomic Block

This subsection explains the implementation of the concepts “Inner Roles” and “Atomic
Block” in EventArch 3.0. The process of activating and deactivating an inner-role is
explained, as well as the implementation of the inner roles scope-restrictions. Two
features of the language-element “Atomic Block” are identified: “error-sensitivity”
and “recoverability”. The implementation of both features is described.

Atomic Block

The implementation of the atomic block (see 4.3) has to ensure recoverability and
error-sensitivity. Recoverability is the ability to restore the state that the SoS had
adopted with respect to binding relations prior to entering the atomic block. This
should be done in case of errors. Therefore, error-sensitivity is required as well. To
achieve error-sensitivity, acknowledgements are employed. Every role-module and
every base-module that has received a binding- or creation-event has to acknowledge
the successful processing of this event. If the acknowledgement fails to appear, roll-
back is triggered. To achieve recoverability, the strategy “sequential processing of

60

Chapter 5 Internal Design of EventArch 3.0

statements” is employed. The commands of the atomic block are executed one-by-one,
i.e., the Role-Binder publishes a binding- or creation event and does not proceed until
the awaited acknowledgement has arrived or a certain period of time has elapsed. By
this approach the Role-Binder has at any point of execution definite knowledge about
the successful command-execution. When executing a specific binding- or creation-
command, the Role-Binder can assume that all preceding commands in the atomic
block have been executed successfully. This allows a rollback-implementation in the
following way: the Role-Binder internally stores information about all binding- and
creation-commands that have been executed successfully up to the current point of
execution. In case of a failed acknowledgement, this information can be employed. To
achieve rollback, all commands that have been successfully executed are undone. To
undo a Bind-Event an Unbind-Event is sent and vice versa. To undo a CreateDcaem-
Event a DestroyDcaem-Event is sent and vice versa.

Inner Roles

The concept of “Inner Roles” requires dedication to a DCAEM. The inner roles should
be disabled as long as no DCAEM has been created around their base-module. Inner
Roles should not be able to publish events outside the scope of the DCAEM that
they are associated to.

The concept of “Inner Roles” is closely related to EventArchs 2.0 concept of “Prim-
itive Interface”. An inner role can be defined by defining a Primitive Interface and
marking it by the keyword “private”. Due to the close relationship of the two con-
cepts, the concept of “Inner Roles” could be implemented by extending the existing
implementation of the “Primitive Interface”-concept. In particular, the FRAppInter-
face-class has been extended by the property currentActivationState. This property
is checked whenever an event is published by the module or an event is received by
the module. Received events can not be selected by an ERAppInterface-object that is
currently deactivated. State-changes of a constituent system that would give rise to
an event-transmission using that FRApplInterface-object, are ignored by that object
if it is currently deactivated. ERApplInterface-objects that represent an inner role
are deactivated by default. This renders inner roles to be disabled as long as no
DCAEM has been created around their base-module.

As described above, roles are “modules that may have interfaces that are associated
to a DCAEM and are therefore restricted to publish to the scope of that DCAEM”.
The description that was given above applies to the “Inner Roles”-concept as well.
The DCAEM is represented by another property of the FRAppInterface-object. This
property is employed to enforce scope-restrictions.

Diagrams

A detailed listing of the changes that had to be applied to the implementation of
EventArch 2.0 in order to implement the described concepts is presented in the ap-
pendix (8.4). The presentation contains numerous class-diagrams and a sequence-
diagram.

61

Chapter 5 Internal Design of EventArch 3.0

5.1.4 Other Concepts

This subsection explains certain other concepts that are relevant for the implemen-
tation of FventArch 3.0. Standard-scopes are a means to facilitate communication
between modules and Role-Binders. The SystemMonitor may be used to visualize the
ongoing activity among constituent systems. Semantic checks are employed to relieve
the runtime-environment of EventArch 3.0 from having to check on all semantic rules
that an EventArch 3.0-specification has to comply to.

Standard-scopes
To facilitate communication between certain participants of the role-based system,
certain standard scopes had to be established:

e All modules are connected to a global scope

e Each Role-Binder is listening to a standard scope that is meant to make all
Role-Binders globally available (“Role-Binders standard scope”).

The global scope is used for the events that are directed from Role-Binders to base-
modules (for a discussion see next section). All base-modules use the Role-Binders
standard scope to notify all Role-Binders about relevant state-changes. The modules
are connected to their respective standard scopes at initialization.

SystemMonitor

EventArch 3.0 provides a possibility to visualize the ongoing activities (event-reception,
successful event-processing) of the SoS. A new built-in module has been defined: the

“SystemMonitor”. The SystemMonitor depicts running base-modules, role-modules,

and compartments by named boxes. The boxes are also coloured. Colours are mapped

to DCAEMs and indicate the current membership of base and roles to a DCAEM.

The described behaviour has been implemented in the following way: modules (role,
base, Role-Binder) can decide to notify the SystemMonitor about successfully pro-
cessed events. To notify the SystemMonitor, a special event named “Acknowledge-
ment” is sent. The Acknowledgement-event holds a copy of the event whose recep-
tion/processing is to be acknowledged. The relevant information of the acknowledged
event is extracted at the SystemMonitor and changes are performed to the graph-
ical representation accordingly. The changes are encapsulated as commands. The
“Command” design-pattern is used. Warnings are issued if received events indicate
an inconsistent state in the SoS (e.g., a role is bound to a DCAEM that has not been
created yet).

Semantic checks

The semantical correctness of an EventArch-specification can be checked at compile-
time or at runtime. EventArch 3.0 relies primarily on compile-time checks. For a
discussion see chapter 5.2.

The Xtext-framework (see 2.2.2) provides several methods to define compile-time
checks. The following methods are employed in the EventArch 3.0 language- imple-
mentation:

62

1
2
3

4

Chapter 5 Internal Design of EventArch 3.0

e Language-specific validation
e Scope-provider

The language-specific validation (in contrast to automatic validation, which is a built-
in feature of Xtext) is performed by a language-specific validator. The EventArch 3.0
validator checks the following semantic rules:

e Only Role-Binders are allowed to make use of bind-, unbind-, create-, destroy-
statements.

e A role is only allowed to send events to a topic that either represents its com-
partment or the DCAEM that it is currently bound to.

e If a destroy-statement, that is meant to destroy a specific DCAEM, is present
in the specification, a corresponding create-statement to create this DCAEM
has to be present as well.

The following scopes are provided by the EventArch 3.0 scope-provider:

e Bind- and unbind-statements can only bind role-modules to a DCAEM. (i.e.,
can only “see” role-modules)

e Create- and destroy-statements can only create a DCAEM at a base-module
(i.e., can only “see” base-modules).

5.2 Further Discussion and Design Alternatives

In this section certain alternatives with respect to the design of FventArchs 3.0 im-
plementation are considered. This section is mostly concerned with low-level concepts
like the internal representation of the architectural specification or the validation of
semantic rules. Moreover, alternatives to the current standard-scopes and standard-
interfaces are considered. Additionally, alternatives to EventArchs 3.0 current syntax

are concerned and it is discussed in what way advantageous use can be made of a
Role-Binder.

Syntax

Figure 5.1 also shows the new binding- and creation-expressions of EventArch 3.0 (see
listing 5.2). Roles can be added to existing DCAEMs and DCAEMs can be created
having multiple roles initially bound.

atomic
{

DcaemLoadBalancer [composite] := {LoadBalancerCoord.IBaseDirectedLB}
<—>{WrappedLoadBalancer.{ ISwitchCoordinatorLB, IStateCoordinatorLB}}
DcaemAdaptiveSoftware [composite| := {} <> {WrappedAdaptiveSoftware.{
IStateCoordinatorAS , ISwitchCoordinatorAS}}
DcaemAdaptiveSoftware [composite] += {AdaptiveSoftwareCoord.
IBaseDirectedAS}

63

Chapter 5 Internal Design of EventArch 3.0

6 }
Listing 5.2: Extract of definition of EventArch 3.0 Role-Binder

An extract of EventArchs 3.0 grammar is presented in the appendix (see 8.3). The
syntax to create DCAEMs and bind/unbind roles to/from it shows an apparent si-
miliarity to the EventArch 2.0 syntax to define Composite AEMs (see 2.1). An
alternative syntax is used in listing 5.3.

1 atomic

2 {

3 createDcaem DcaemLoadBalancer at WrappedLoadBalancer. {
ISwitchCoordinatorLB , IStateCoordinatorLB} with LoadBalancerCoord
.IBaseDirectedL B

4 createDcaem DcaemAdaptiveSoftware at WrappedAdaptiveSoftware.{
IStateCoordinatorAS , ISwitchCoordinatorAS}

5 bind AdaptiveSoftwareCoord . IBaseDirectedAS to DcaemAdaptiveSoftware

6}

Listing 5.3: Alternative syntax for definition of EventArch 3.0 Role-Binder

The advantage of the first solution is, that similiar concepts are syntactically repre-
sented in a similiar way (all that the DCAEM-concept adds to the CAEM-concept
are member-changes at runtime). It saves the programmer from having to get used
to different notations of similiar concepts.

Standard-interfaces

An advantage of having standard-interfaces is that they encapsulate the conditions to
select/discard events in the established way of the EventArch 2.0 language. Primitive
interfaces contain a certain set of selectors (see 2.2.2) that represent those conditions.
Making binding- and creation-selectors part of “just another interface” of the module
integrates them well into the existing infrastructure of the language-implementation
to access and employ selectors. All future language-features that rely on selector-
checking will have seamless access to the modules binding- and creation-selectors. An
alternative would have been to not encapsulate the binding- and creation-selectors
in an interface, but to make them available to the module as another variable that
is globally available. This solution would have taken away the described advantage
from the language.

Representation of information that is provided in the specification

The information that have been provided in the specification are represented as an
object of type “Primitive AEM”. This is done for all module-types: role, base, Role-
Binder. An alternative would have been to introduce specific object-types for each
type of module. Those object-types could be subclasses of “Primitive AEM”. This
would have avoided to introduce the TypeOfModuleMarkers. On the other hand,
it would have been an interference with the type “PrimitiveAEM” which is used
all over the code of EventArch 2.0. The classes ERGeneratedAppFEventModule and
ERAppEventModule are responsible for publishing and processing events for all types
of modules: role, base, Role-Binder. A clean solution to allow the mentioned classes

64

Chapter 5 Internal Design of EventArch 3.0

to take advantage of those subclasses of “PrimitiveAEM” would have been to subclass
them as well. Moreover, the code that implements serializing/deserializing to achieve
persistence would have had to be enabled to process the subclasses as well. This
would have been an acceptable solution if the concepts base, role, and Role-Binder
would require the SoS-manager to provide different information in the specification.
But in EventArch 3.0 those concepts share a common information-base. The main
difference are the type of events that the respective module-types are allowed to
process or to publish. But this difference is respected during operation due to the
standard interfaces. Hence, there is no necessity to interfere with the well-established
object-type “Primitive AEM”.

Role-Binders

Role-Binders are not intended to be used as wrapper for another Java or C++4-
application. They should be used as an EventArch-statemachine. The events that
are sent to the Role-Binder inform it about the present state of execution of the
SoS. They can be used to trigger state-changes. A state of the Role-Binder would
then correspond to a state of the SoS as observed by the Role-Binder. Binding
and creation-statements can be put in every defined state, but to take advantage
of the Role-Binders advantage “consistent application of a coordination rule to all
constituent systems that are concerned by it”, (see 6.1) all commands that are relevant
for activating a specific coordination rule should be executed as entry-actions of a
specific state. Example code is presented at the beginning of this chapter. (see 5.1)

Scopes

The communication between Role-Binder and base-modules is done in a global scope.
An alternative would have been to establish an individual destination point for each
base-module. The advantage of having a global scope is a lower occupation of re-
sources at the jms-provider. Disadvantages are a decreased scalability through a
much higher count of events sent through the system and a greater vulnerability to
sniffing-attacks, as all modules do basically receive events that were addressed to
specific unrelated base-modules.

Validation

The validator was used to enforce several semantic rules for the language (see section
5.1.4). It is a general advantage to rely on compile-time checks instead of runtime-
checks, as present errors are communicated to the programmer earlier and definitely.
An alternative would have been to implement these semantic rules by additional
functionality of the language core (“runtime-check”). In this case, the language-core
would have had to distinguish between bases, roles, and Role-Binders, which would
have made it severely more difficult and practically impossible to implement the dis-
tinction between base-modules, role-modules, and Role-Binder-modules by the simple
TypeOfModuleMarkers. This would have taken away all the described advantages that
are connected with that (see above “Representation of information provided in the
specification”). Another disadvantage is, that the error would not have been detected
if the erroneous statement was not executed at runtime.

65

Chapter 6

Evaluation of EventArch 3.0

This thesis is concerned with the problem area of “coordination in dynamic SoS”. An
architecture description language is devised that allows for a dynamic application of
coordination rules. In this chapter the obtained solution, EventArch 3.0, is evaluated
argumentatively by analyzing its advantages and disadvantages and reflecting on its
capability to fulfill the requirements that have been stated in the “Related Work”-
chapter. Moreover, a coordination problem that originated in the field of energy-
efficient computing is solved using EventArch 3.0. The application to this use case
shall demonstrate the applicability of the obtained solution to practical coordination
problems.

6.1 Advantages

This section provides a further discussion about the features that have been identified
in section 3.2. It is concerned with the implementation of those features in EventArch
3.0. The advantages that have been gained by that implementation are pointed out.

Event-based System

Event-based interfaces are superior to function-based interfaces with respect to com-
municating the entry and exit of a system to the scope of a SoS and with
respect to establishing a dynamic, common scope of base and roles. The
claimed advantages are shown in the following.

In an inter-system communication scenario both, event-based interfaces and function-
based interfaces give rise to the transmission of messages between specific systems.
Those systems may define provided- and required interfaces. Communication be-
tween two specific systems may be restricted by interface-compatibility. Despite that
commonality there is a fundamental difference between event-based interfaces and
function-based interfaces. Functions are typically used to obtain a required piece of
information. Moreover, functions are typically used to introduce a dependency of
the caller on the success of information-processing at the callee’s side. If information
processing can not be accomplished successfully, the caller may resort to exception-
handling.

66

Chapter 6 Evaluation of EventArch 3.0

In contrast to that, messages that were sent through an event-based interface are
typically used to indicate a specific state that may be of interest to the receiving
party. The sender is not in need of a desired piece of information. There are typically
no return-messages expected in response to an event. Moreover, acknowledgements
concerning successful event-processing are not typically expected.

These characteristics render event-based interfaces to be advantagous with respect
to communicating the entry and exit of a system to the members of a SoS.
The reason for that is that the entry- and exit-information are such informations
that a sender does typically not expect a response on. Nor it typically expects an
acknowledgement.

Functions are typically used to obtain a specific piece of information. This also im-
plies, that it would be impractical to allow a message that originated from a function-
call to be delegated to multiple receivers. The caller would have to take the decision
which of the multiple received pieces of information to make use of. Moreover, deter-
mining the identity of the sender of a response to a function call is external to the
function-concept and would require additional language support. Opposed to that,
events can be dispatched to multiple receivers, as typically no response is expected.
Therefore, relying on event-based interfaces is a prerequisite to connect a constituent
system to all of its coordinators (i.e., “multiple” receivers) by means of a common
message scope. Messages can be published to this scope instead of to be addressed
to individual receivers. From point of view of role-based modeling, event-based inter-
faces allow for connecting a base (constituent system) to all of its roles (coordinators)
by means of a common message scope. Therefore, event-based interfaces are supe-
rior to function-based interfaces with respect to establishing a dynamic,
common scope of base and roles.

Dynamic Composite AEM

The feature “Dynamic Composite AEM” (DCAEM) puts a SoS-participating system
in the position to cope with the need for dynamics in system-to-system relations which
is prevailing in a dynamic SoS, especially with respect to compliance with relevant
coordination rules. This is shown in the following.

A DCAEM is conceptually a mapping between a symbolic name and a set of addresses
of specific members in the scope of a SoS, which can be changed at runtime (“dynamic
mapping”). These members can be coordinators that are associated to a specific co-
ordination rule. Compliance to a coordination rule can be achieved by establishing a
communication relation between the system-to-be coordinated and a suitable coordi-
nator. The roles of a compartment act as coordinators for the coordination rule that
is represented by the compartment. Changing the mapping at runtime to include a
suitable role (“binding a role”) is therefore a proper means to dynamically achieve
compliance to a coordination rule for a SoS-participating system.

Supporting the concept of Dynamic Composite AEM does also allow for the integra-
tion of coordinators that have been unanticipated at design-time. Messages are not
published to individual members of the SoS, but to the DCAEM, which is a common

67

Chapter 6 Evaluation of EventArch 3.0

message scope of base and roles (i.e., coordinators). Integrating a coordinator that
has been unanticipated at design-time can be performed solely by including this co-
ordinator into the DCAEM at runtime. The code of the constituent system does not
have to be changed. There is no need to address the new coordinator directly. The
constituent system may keep publishing to the common message scope of base and
roles. This can be used to exchange the implementation of a coordinator at runtime
as well. While other solutions allow for the same dynamics in base-role relations
(e.g., SCROLL achieves this feature by means of SCALAS feature “dynamic traits”,
see 3.4), the integration of base and roles by means of a common message scope is
a solution that can be implemented relatively easy. No special language features are
required. Available message-oriented-middleware (MOM)-solutions can be employed.
EventArch 3.0 employs the messaging-platform “JMS” to implement that feature.

Three further advantages of this feature can be identified.

e A DCAEM preserves the privacy of the SoS-participating system by excluding
all members of the SoS-scope from the coordination, but those that are relevant
for coordination.

e DCAEMs can be used to allow a base-application to provide an identical, steady
stream of events to all currently bound roles. This synchronizes the roles with
respect to their knowledge of the base-applications by providing a consistent
pool of information.

e The feature can be used to exchange the implementation of an existing coordi-
nation rule by remapping a symbolic name to roles of a different compartment.

The described advantages of the feature “Dynamic Composite AEM” open up the
static “Composite AEMs” to contribute to EventArchs 3.0 support for coordination
scenarios in dynamic SoS, where the application of a coordination rule depends on
the presence or absence of certain participating systems.

Cross-cutting Roles

The possibility to dedicate roles to a cross-cutting concern increases the modularity
and adaptability of a SoS-participating system with respect to the concern of co-
ordination. Moreover, the process of role-binding has become less complex due to
Cross-cutting Roles. Both claims are shown in the following.

Cross-cutting concerns are characterized by a widespread dissemination across differ-
ent parts of the application in question. Aspect technology is a means to modularize
a cross-cutting concern and to separate it from other concerns of the application. It
even may provide an implementation of a cross-cutting concern that is transparent
to the other concerns of the application. A code-unit that implements a cross-cutting
concern may be dynamically bound and unbound from the base-code that it is at-
tached to. Such an implementation of a cross-cutting concern that can be bound and
unbound at runtime is termed a “Cross-cutting Role” in this thesis.

The “Inner Roles” of EventArch 3.0 are understood as Cross-cutting Roles, as they
encapsulate services that are concerned with a cross-cutting concern (“coordination”),

68

Chapter 6 Evaluation of EventArch 3.0

and can be activated and deactivated at runtime. A specific inner role can be associ-
ated to a specific coordination rule. It implements connection-services with respect to
that coordination rule that may cross-cut through all components of the constituent
system. An alternative would have been to associate an inner role with a specific
component of the constituent system. This would be a less valuable solution as it
implies the scattering of the concern of coordination across several components of the
SoS-participating system. The inner-roles of EventArch 3.0 encapsulate the concern
of coordination from point of view of the constituent system that they are bound
to. They can be transparently employed by each of its components. In particular,
the coordination-related code is neither scattered around the base nor tangled with
the original concerns of the original codebase. This increases the modularity of
the concern of coordination. Moreover, this provides an increased reusability of the
constituent system in other SoS with different coordination rules.

The transparency that is gained by the cross-cutting implementation of roles has an-
other advantage with respect to the adaptability of the legacy code of the constituent
system. If a new inner role is to be incorporated into the legacy-code of the con-
stituent system, this legacy-code does not have to be changed. The incorporation
is not achieved by manually changing the legacy-code, but by weaving additional
functionality into this code at compile-time. Moreover, the reflection-functionality
of the respective programming language is used to perform function calls. This also
furthers the ability of EventArch to incorporate inner roles at runtime that have not
been anticipated at design-time. The legacy-code would not have to be changed at
runtime. This increases the adaptability of the SoS-participating system with
respect to the concern of coordination. But still, the cross-cutting implementation of
the inner roles would have to be woven into the constituent system at runtime. This
is currently not possible, but may be achieved by future work.

The feature of “Cross-cutting Roles” also renders the process of role-binding to be
less complex. The Role-Binder may be concerned with binding one inner role per
coordination rule to the constituent system. It would be even possible to encapsulate
all functionality that is relevant to connect the constituent system to all relevant
coordinators within a single inner role. Without the possibility to implement the
cross-cutting concern of coordination in a modular way, the Role-Binder would be
concerned with binding a specific inner role to each individual component of that
constituent system that is concerned with the respective coordination rule. This
would render the process of role-binding more complex. Therefore, the process of
role-binding has become less complex due to the feature of “Cross-cutting Roles”.

Programmable Role-Binding: Role-Binder

Supporting programmable role-binding by means of a Role-Binder increases the mod-
ularity, evolvability, and comprehensibility of a SoS with respect to the concern of
coordination. Moreover, it increases the feasibility of the consistent application of a
specific coordination rule to a set of constituent systems. The claimed advantages
are shown in the following.

69

Chapter 6 Evaluation of EventArch 3.0

Having support for dynamic application of coordination rules requires a SoS-oriented
composition system to take the decision at which point of execution which coor-
dination rule should be applied to which SoS-participating system. This decision
may be put in the field of responsibility of the individual systems. Alternatively, a
Role-Binder can be employed that is responsible for taking this decision for several
systems. This Role-Binder may be responsible for applying a specific coordination
rule to certain applications. If it is responsible for multiple coordination rules, it may
select one out of many coordination rules for application to the participating systems.
In both cases, not the individual system is concerned with the binding decision, but
the Role-Binder. Depending on this decision, compliance with a specific coordination
rule is achieved at a specific point of execution. The decision is encapsulated by the
Role-Binder. It is a specific member of the SoS-scope that provides a well-known
interface. This increases the modularity of the SoS with respect to the concern
of coordination.

This member can be replaced without interfering with the share of the architectural
specification that concerns the participating system in question. This increases the
evolvability of the SoS with respect to the concern of coordination.

Coordination rules are applied to a SoS to achieve a particular coordinated behaviour.
A coordination rule in general concerns multiple constituent systems. The application
of a coordination rule may be just appropriate if all constituent systems that the rule is
concerned with, have joined the SoS (e.g., coordination to achieve mutual exclusion).
In those cases, a consistend application of the coordination rule to all concerned
constituent systems is required. The reason for that is the following:

Acting in compliance with a specific coordination rule induces into a specific con-
stituent system dependencies on the behaviour of certain other systems that are
participating in the SoS. In a coordination scenario, these dependencies may be a de-
termining factor for the behaviour of the constituent system. In those cases, applying
the coordination rule constitutes a tight-coupling between the constituent systems
that are concerned with that coordination rule. Tight coupling implies that a partic-
ipant may depend on return values that another participant would send in response
to a request. The participant may be even unable to proceed, unless this return
value or an awaited acknowledgement has been received. A coordinative behaviour
under those conditions requires all concerned systems to have applied that coordi-
nation rule at the same time and therefore being ready to act according to it in a
tightly-coupled manner. If one concerned system is not ready to act according to
the coordination rule, malfunctions may occur due to unnecessary blocking of the
other applications. To prevent such malfunctions, compliance to the coordination
rule should be established consistently.

As a Role-Binder maintains communication relations to numerous SoS-participating
systems and decides upon applying specific coordination rules on them or not, it
may decide to apply a specific coordination rule consistently to all relevant SoS-
participating systems. If the individual systems would be responsible for taking

70

Chapter 6 Evaluation of EventArch 3.0

binding decisions, they would have to maintain an elaborate mechanism to achieve
synchronization with respect to conditions for a consistent application of a specific
coordination rule. The Role-Binder relieves the systems from having to establish
that synchronization-mechanism. It achieves the simultaneous composition of all co-
ordinators of the same coordination rule with those constituent systems that are
concerned by that rule. This increases the feasibility of the consistent appli-
cation of a specific coordination rule to a set of constituent systems.

A SoS-oriented composition system that supports the dynamic application of a coor-
dination rule has to provide means to identify the point of execution of the SoS at
which the application of the coordination rule should be performed. The conditions
that identify this point of execution can be nicely modeled as a state-machine. This
is true for the following reason: role-binding is a cross-cutting concern that involves
several systems. Each system maintains local state information. The aggregated
knowledge about the local state of several systems can be represented as an overall
system-state. The role-binding conditions can be described in terms of this overall
system state. A state-machine is therefore well-suited to model role-binding condi-
tion and may provide nice specifications that are easy to understand. A Role-Binder
is dedicated to the purpose of taking role-binding decisions and may therefore be
defined as state-machine. EventArch 3.0 features a Role-Binder that is implemented
as a state-machine. This increases the comprehensibility of the SoS with respect
to the concern of coordination.

Support Notion of Compartment

Supporting the notion of Compartment increases the evolvability, modularity, and
comprehensibility of a SoS with respect to the the concern of coordination. This is
shown in the following.

The notion of Compartment originated in the field of role-based modeling. It can be
understood to encapsulate a context of related roles. With respect to the problem
that this thesis is concerned with, the “relation” between roles can be interpreted
as a relation with respect to the aspect of coordinated collaboration. It is therefore
promising to use the notion of Compartment as an encapsulation of coordinators
that are related by a common coordination rule. All roles inside a compartment can
be understood to be coordinators that try to achieve for certain related constituent
systems compliance with respect to a certain coordination rule. A compartment may
be used to encapsulate all coordinators of a specific coordination rule. This associates
each coordinator with a certain coordination goal and relates it to a context of other
coordinators. Therefore, it is easier for the SoS-maintainer to understand the purpose
of each coordinator, as well as its behaviour. This increases the comprehensibility
of the SoS with respect to the concern of coordination.

The definition of a compartment contains the definition of the roles that act as coor-
dinators and may contain the code of relevant Role-Binders. All code that is relevant
for a specific coordination rule may therefore be packaged as compartment. A com-
partment sets up a common scope for all roles that act as coordinators with respect

71

Chapter 6 Evaluation of EventArch 3.0

to the associated coordination rule. This separates the coordination-related commu-
nication from communication that is done on behalf of other concerns. Both points
increase the modularity of the SoS with respect to the concern of coordination.

The coordinators that are responsible for a specific coordination rule are designed
as roles of a compartment. This prevents the SoS-maintainer from tangling their
behaviour with behaviour that corresponds to other concerns (e.g., coordination ac-
cording to a second coordination rule). Having all code that is relevant for a specific
coordination rule packaged as compartment, allows for replacing this code by a differ-
ent implementation. Both points increase the evolvability of a SoS with respect
to the concern of coordination.

Two-layered Role-Binding

Partitioning role-responsibilities into an inner- and outer layer increases the separa-
tion of the concern of coordination from the original concerns of the SoS-participating
systems and increases the adaptivity of the constituent system with respect to the
concern of coordination. Both claimed advantages are shown in the following. More-
over, it is shown, in what way EventArchs 3.0 “Inner Roles” contribute to the solution
of the problem of this thesis.

The coordinated execution of several SoS-participating system requires interactions
between the individual systems and their coordinators. The interactions between a
constituent system and its coordinators can be understood as interactions between a
base-application and its role-applications. To achieve the desired transparency of the
concern of coordination from the original concerns of the SoS-participating system,
the concern of coordination was implemented in EventArch transparently to the orig-
inal concerns of the constituent system. This was achieved using aspect-technology.
This causes the original concerns to be unaware of the concern of coordination. There-
fore, it is more likely that changes to the code that implements the original concerns
of the system will be performed in ignorance of the coordination-related code and
break it.

To ease this problem, the code that the base-application is unaware of, should be not
concerned with any coordination logic. Instead, it should be solely concerned with
translating the observed base-applications activity into a representation that can be
processed by downstream entities that are concerned with the desired coordination
logic. Realizing this functional model will reduce and encapsulate the portion of the
exogenous code which could be broken by changes that are committed to the code
that implements the original concerns of the constituent system.

This model is realized in EventArch 3.0 by the partitioning of the role-responsibilities
into a layer that is only concerned with observing and representing the base-applications
state (inner roles) and another layer that is only concerned with the coordination
logic, i.e., achieving compliance to a specific coordination rule (outer roles). This
model reduces the maintenance effort in case of conflicting base-code changes to the
inner roles and renders the outer roles to be independent from code-changes to the
base-application. This increases the separation of the concern of coordination

72

Chapter 6 Evaluation of EventArch 3.0

from the original concerns of the SoS-participating systems.

In EventArch 3.0, the inner roles are concerned with observing the state of the base-
application and providing a representation of it to the outer roles. Moreover, they
provide a command-interface to the outer roles that allows them to get certain func-
tions executed. The SoS-maintainer may define several different implementations
in the specification of the Architectural Event Module. When creating a DCAEM,
the Role-Binder may choose one out of several available inner-role implementations.
This allows to adapt the published state-representation and the provided command-
interface at creation-time of the DCAEM. This increases the adaptivity of the
constituent system with respect to the concern of coordination.

The inner roles connect the constituent systems to coordinators that are associated
to certain coordination rules. Every coordinator employs coordination logic to issue
certain event-based commands to the constituent systems in order to achieve com-
pliance with the behavioural restrictions that are set up by that coordination rule.
The inner roles do also have their share in achieving that rule-compliant behaviour of
the constituent systems. They execute the commands and can cause the constituent
system to suspend execution and wait for further commands of a coordinator. This
is implemented by EventArchs 2.0 “wait-when blocks” (see 8.2.1). In EventArch 2.0,
it was not possible to deactivate the Primitive Interfaces. Therefore, the execution of
a constituent system has been suspended by a wait-when block regardless of whether
the necessity to comply to a coordination rule actually existed for that constituent
system or not. This was possible for EventArch 2.0 as this ADL assumes a static
SoS. In a static SoS all constituent systems that have been anticipated at design-time
are assumed to have joined the SoS at runtime. Under that condition it was feasible
to not allow a Primitive Interface to get unbound from the constituent system at
runtime. This is not sufficient for EventArch 3.0 as this ADL assumes a dynamic
SoS. The need to comply to a coordination rule may vanish at runtime, depending
on the composition of constituent systems in the SoS. Therefore, the necessity for
a constituent system to have its execution suspended at certain points of operation
may vanish as well. The “Inner Roles” of EventArch 3.0 are Primitive Interfaces that
can be deactivated at runtime. The deactivation of a Primitive Interface deactivates
all its “wait-when blocks” as well. Therefore, this feature allows EventArch 3.0 to
relieve a constituent system from having to stop its operation at runtime if no need
for coordination exists. This feature is central for EventArchs 3.0 ability to solve
the problem that is relevant for this thesis. It enables this ADL to allow constituent
systems to dynamically comply to a coordination rule or ignore it.

Base-Role Integration on Architectural Level

EventArch 3.0 is an architecture description language (ADL). An Architectural Event
Module (AEM) encapsulates a running application or a running system. EventArchs
3.0 outer roles are AEMs that are bound to other AEMs - their bases - at run-
time. Both, bases and roles are independent processes that have been provided an
AEM-representation on the architectural level. Therefore, EventArchs 3.0 role-base

73

Chapter 6 Evaluation of EventArch 3.0

integration is situated on the architectural level. Base and roles can be understood as
components that communicate across relatively fixed interfaces. The implementation
of base and roles is decoupled from each other by the AEM (a wrapper around the
legacy code) with its Primitive Interfaces. This basically allows EventArchs 3.0 roles
to be implemented in a different programming language than the base. Nevertheless,
the advantage of “language independent base-role integration” is currently not ex-
ploited. “Dcaem” and “Inner Roles” can currently just be employed in conjunction
with constituent systems that are implemented in the programming language “Java”.
Extending EventArch 3.0 to support other programming languages (e.g., C++) would
be a subject for future work.

6.2 Disadvantages

In this section disadvantages that have been introduced through the respective features
to the language are pointed out.

Event-based System

With event-based interfaces a base can be dynamically connected to its roles by a
common message scope. But the roles of EventArch 3.0 act as coordinators of their
bases with respect to a certain coordination rule.

And the constituent systems do not merely provide state information to their coordi-
nators, but also require a specific piece of information. It is the information, whether
they can safely continue with their execution or whether they should suspend. For
that use case event-based interfaces have a poor applicability. Therefore, a mechanism
had to be introduced that allowed for selectively introducing a tight-coupling between
sender and receiver for specific events (wait-when block). The solution is somewhat
clumsy and less intuitive to the programmer than a function-based solution would
have been.

Dynamic Composite AEM

In a Composite AEM, events of the base-application are published to multiple Com-
posite Interfaces (see 2.2.1). The scope that is established by the Composite AEM
will not change at runtime. To prevent unintended behaviour, the SoS-maintainer
has to choose for the event such a type and such attributes that it is not selected and
processed by a Composite Interface that was actually not intended to select it.

The SoS-maintainer can relatively easy check for that problem in case of Compos-
ite AEMs, as all members of its scope are known at compile-time. With Dynamic
Composite AEMs, the SoS-maintainer has to run through all Role-Binders and check
whether they might bind a coordinator to that DCAEM or not. Moreover, the binding
decision may depend on the state of the SoS at runtime. Depending on that state, it
may be safe or may not be safe to use a specific event type and attributes. The prob-
lem of unintended event-processing is therefore harder to solve for the SoS-maintainer
using a Dynamic Composite AEM.

74

Chapter 6 Evaluation of EventArch 3.0

Cross-cutting Roles

In EventArch 3.0, the inner roles are understood as Cross-cutting Roles. Cross-
cutting Roles are not associated to an individual component but to a group of related
components. This expansion of responsibilities makes it more difficult to depend
event-processing on the component that the event originated from.

It follows an example for the cross-cutting concern of logging: a system designer might
decide to associate a priority level to a logging message. In this case, the cross-cutting
logging implementation would have to assign a priority level to a logging message. An
easy criteria for setting the priority level would be the name of the component that
the message originated from. This introduces a dependency between the cross-cutting
logging information and individual components.

It is more difficult to implement such behaviour with Cross-cutting Roles as they
maintain responsibility for multiple components. The relevant component has to be
identified out of several components that come into question. The ease of implemen-
tation depends on the support for such problems in the employed aspect-technology.

In EventArch 3.0, the inner roles would be responsible for determining the relevant
component and making it available to the outer-role as an additional event-attribute.
The inner roles are implemented in AspectJ. In this language one would have to
introduce additional pointcuts or introduce a single complex pointcut that depends
on the type of the calling object. Both solutions increase the maintenance effort of
the aspect-code, as it is more likely to be affected by changes to the base-code.

Moreover, in EventArch 3.0 the inner roles connect a constituent system to its coor-
dinators in a transparent way. The legacy-code of the constituent system does not
have to be changed in order to provide a representation of the coordination-relevant
state of the constituent system to its coordinators. The inner roles can process com-
mands that have been sent by the coordinators in a transparent way, as well. This
renders the concern of coordination to be transparent to the original concerns of the
SoS-participating system. While this increases the evolvability of the concern of co-
ordination, it also increases the maintenance effort of the coordinated system. This
is shown in the following.

Transparency allows the maintenance of the core-system to be separated from the
maintenance of the coordination-code. If this is the case, all changes to the base-code
are performed in ignorance of the coordination-code which makes them more likely to
break that code. If they are not separated, the maintenance effort of the core-system is
increased. The reason is, that due to transparency the system maintainer is basically
unaware of the potential consequences of his code-changes for the coordination code.
To be on the safe side, he would have to assume for every code-change that it is
incompatible with the coordination code and check for possible consequences. Both
cases increase the maintenance effort of the coordinated system.

Even if all changes to the base-code are compatible with the coordination-code, there
remains a basic uncertainty about the behaviour of the base-application at runtime.

75

Chapter 6 Evaluation of EventArch 3.0

Due to the transparency of the concern of coordination, one can not safely understand
the runtime-behaviour of the system from the base-code alone. For each function,
one would have to expect interference of the coordination code and have to check for
that. This decreases the comprehensibility of the coordinated system.

Support Notion of Compartment

EventArch 3.0 supports the notion of Compartments, but it is a relatively poor sup-
port with respect to the classifying features identified in [20]. Compartments can
neither be nested nor play roles. Compartments do not provide additional properties
and behaviour that might be used by the contained roles. Roles are defined inside a
specific Compartment and can not be part of several Compartments. Compartments
can not inherit structure and behaviour from each other.

Programmable Role-Binding: Role-Binder
Having a Role-Binder may complicate coordinative behaviour for the constituent
systems. This is shown in the following.

The Role-Binder is a member of the SoS-scope, but no participant of the SoS. This
renders all state-information that was sent to it to be lost for the purpose of co-
ordination. That means, that the SoS-participating systems have to deal with the
problem that the specific state-information that caused the Role-Binder to decide in
favour of a specific coordination rule is lost for the purpose of coordination. But this
state-information is typically relevant for this purpose.

The reason is, that this state-information allowed the Role-Binder to take a decision
on a specific coordination rule. That means, that it allowed the Role-Binder to tell
that a certain coordinative behaviour will be necessary in the near future for a specific
SoS-participating system. The fact that he typically used for his decision is the fact,
that this information is relevant for particular that coordinative behaviour. But in
those cases it would be relevant for the entity that implements the rule for the system
as well. This is the coordinator that the Role-Binder is meant to bind to the system.
So, the constituent system may have to await binding and republish this information
after successful binding to the coordinator. This complicates coordinative behaviour
for the SoS-participating System.

The Role-Binder is no single point of failure, as it may be defined for a particular
coordination rule. Nevertheless, it can not be called a decentralized solution, as it
is still responsible for a group of constituent systems. While this group is less likely
to grow that much to achieve a size that would overburden the single Role-Binder,
the probability for that is not zero. So, if there is a high volatility with respect
to accepting compliance (binding) and giving up compliance (unbinding) with the
coordination rule of that single Role-Binder, the Role-Binder is more likely to fail
due to overloading, than a truly decentralized solution.

Two-layered Role-Binding
In EventArch 3.0, the outer roles are decoupled from the code of the base-application
by the inner roles. Therefore, changes to the base-code are transparent to the outer

76

Chapter 6 Evaluation of EventArch 3.0

roles. The outer roles process the state-representation of the constituent system
that is provided by the inner roles. This prevents the SoS-maintainer from having
to change the code of the outer roles in response to changes to the base-code, but
the code of the inner roles still has to be changed. The necessary effort is lowered
due to the fact that the inner roles encapsulate the translation of base-behaviour
into state-representation and are not concerned with taking coordination-decisions.
Nevertheless, a seamless integration of base-code changes into the coordi-
nated system is not possible. The reason is, that EventArch 3.0 employs aspect
technology that is based on compile-time weaving and not on runtime-weaving. The
consequence is that the coordinated system has to be recompiled after every change
to the base-code that required an inner role to be changed.

6.3 Reflections on the Fulfillment of the Requirements

In this section it is analyzed in what way EventArch 3.0 fulfills the requirements that
have been stated in section 3.1

To cope with coordination scenarios that involve a dynamic SoS, ADLs
should support to condition the application of coordination rules with
respect to the presence and absence of constituent systems in the SoS.
EventArch 3.0 fulfills this requirement due to the features “Event-based System”,
“Dynamic Composite AEM” and “Programmable Role-Binding”.

Event-based System: Constituent systems may indicate their entry and exit to
the other constituent systems of the SoS. This is done by messages. Those messages
are meant as a general information and may be published to all participants of the
SoS. They do not necessarily require a response or acknowledgement from a specific
constituent system. Nor do they require specific exception-processing in the case of
failed processing. For such use cases, event-based interfaces are superior to function-
based interfaces (see 6.1). Therefore, the information concerning the entry or exit of
a constituent system is preferably disseminated based on events. Due to EventArchs
feature “Event-based System” all communication among constituent systems is based
on events. In this way, the feature “Event-based System” contributes to fulfilling this
requirement.

Dynamic Composite AEM: This requirement demands from ADLs to provide
means to condition the application of coordination rules. A prerequisite for that is
the ability to apply a coordination rule at runtime. The dynamic application of a
coordination rule may be implemented by dynamically establishing a communication
relation between a constituent system and a coordinator. EventArchs feature “Dy-
namic Composite AEM” allows such a dynamic establishment of a communication
relation. This is conceptually achieved by changing the mapping of a symbolic name
to a set of addresses at runtime (see 6.1). The feature “Dynamic Composite AEM”
is the core contribution of EventArch 3.0 to fulfill this requirement.

7

Chapter 6 Evaluation of EventArch 3.0

Programmable Role-Binding: A conditioned application of a coordination rule is
a dynamic application of a coordination rule. It includes a transition of the activation-
state of the coordination rule from “unapplied” to “applied”. To prevent malfunctions
from the concerned constituent systems due to this transition at runtime, the applica-
tion has to be performed consistently to all constituent systems that are subjected to
that coordination rule (see 6.1). The Role-Binder improves the ability of EventArch
to achieve a consistent application of a coordination rule by relieving the constituent
systems from having to synchronize in order to achieve a consistent application of
that coordination rule. Instead, the Role-Binder allows for an effortless application
of a coordination rule to several constituent systems in a consistent way. By this
means, the Role-Binder contributes to fulfilling this requirement.

In order to dynamically integrate constituent systems with coordinators of
the coordination rules, connectors should be employed that can be activat-
ed/deactivated at runtime and that provide a modular implementation of
that cross-cutting concern, i.e., the concern of connecting all components
of the constituent system to the respective coordinators.

Cross-cutting Roles: To achieve this requirement, entities are required that can be
activated- and deactivated at runtime and that provide a modular implementation of
a cross-cutting concern. EventArchs 3.0 “Cross-cutting Roles” can be regarded as an
implementation of such entities. They are incorporated into the constituent systems
using aspect-technology and are designed to be a modular implementation of the
cross-cutting concern of coordination. They can be used as a connector to connect
the constituent system to the coordinators that are responsible for coordinating it
with the other systems according to a specific coordination rule. Moreover, they can
be activated and deactivated by the Role-Binder.

In a dynamic SoS-environment the dynamic application of coordination
rules should be not performed by the individual constituent systems, but
by a specialized SoS-member.

Dynamic Composite AEM: Like the first requirement, this requirement expects
an ADL to provide means to perform an application of a coordination rule at runtime.
The feature “Dynamic Composite AEM” does therefore contribute to the fulfillment
of this requirement in the same way as it does for the first one.

Programmable Role-Binding: This requirement expects from an ADL to concen-
trate the responsibility for applying a coordination rule to related constituent systems
at a specific member of the SoS. This member would be specialized on that task. The
“Role-Binder”, which was introduced in EventArch 3.0 to provide the feature “Pro-
grammable Role-Binding”, can be understood as such a specialzed member. The
Role-Binder allows for the consistent application of a coordination rule to all con-
stituent systems that are concerned by it. It can be made responsible for a specific
coordination rule or for multiple coordination rules.

A constituent system should be open to new coordination rules and allow

78

Chapter 6 Evaluation of EventArch 3.0

for integrating them into its behaviour at runtime.

Two-layered Role-Binding: In EventArch 3.0, the implementation of a new coor-
dination rule requires the implementation and deployment of new outer roles. The
outer roles are independent processes that act as coordinators for the constituent
systems. In EventArch 3.0, the outer roles are not concerned with extracting relevant
state-information. Alle state-information that is relevant for the concern of coordina-
tion is extracted by the inner roles. This allows new outer roles to reuse the existing
inner roles in order to get access to relevant state-information. This simplifies the
implementation of the outer roles and contributes to the desire to render ADLs to be
open for new coordination rules, which is expressed in this requirement.

As the outer roles are independent processes, they can be deployed independently
of the constituent systems. A new outer role may start servicing the constituent
system at runtime. This relieves the SoS-manager from having to recompile several
constituent systems to integrate a new coordination rule. It is a prerequisite to allow
for the integration of new coordination rules at runtime. In this way, the feature
“T'wo-layered Role-Binding” contributes to fulfilling this requirement.

Inner roles provide a representation of the state of the constituent system that is
relevant for the concern of coordination. This state-representation is provided to the
outer roles. The inner roles can be used as a modular implementation of the task
of providing that state-representation. This allows for exchanging inner roles more
easily. If a particular state-representation is not sufficient for a new outer role, a
new inner role may have to be defined and incorporated into the constituent system.
This would still require a recompilation of the constituent system. Nevertheless, the
adaption can be done more easily due to the high level of modularity of the inner
roles. In this way, the feature “Two-layered Role-Binding” eases the integration of a
new coordination rule as well and thereby contributes to fulfilling the requirement to
be open for new coordination rules.

Dynamic Composite AEM: A coordination rule can be integrated into the be-
haviour of a constituent system by activating a coordinator that is responsible for
implementing that coordination rule. The activation of this coordinator can be done
by establishing a communication relation between the constituent system and this
coordinator. To integrate a new coordination rule at runtime, the communication
relation has to be established dynamically. The feature “Dynamic Composite AEM”
allows for establishing communication relations between a constituent system and its
coordinators at runtime. Coordinators can be bound and unbound from that con-
stituent system at runtime. In this way, DCAEMs allow for integrating coordination
rules into the behaviour of constituent systems at runtime.

A DCAEM is implemented as a common message scope of base and roles. To bind
a role to a base, it is included in that common message scope. This is a relatively
simple solution. It can be used to integrate coordination rules into the behaviour of
constituent systems at runtime that have not been anticipated at design-time. This
can be achieved by simply including the relevant coordinator of the coordination

79

Chapter 6 Evaluation of EventArch 3.0

rule into that message scope at runtime. By providing the possibility to achieve that
dynamics in a relatively simple way, DCAEMs contribute to fulfilling the requirement
of being “open” for new coordination rules.

Base-Role Integration on Architectural Level: In EventArch 3.0, the outer
roles do conceptually provide coordination services to a specific constituent system.
Depending on the nature of the desired services, an implementation in the one or the
other programming language may be preferable. SoS are characterized by emergence
and longevity (see [9]). This reinforces the need for language-independent base-role
integration, as new coordination services may be diverse in nature and require imple-
mentation in different programming languages. Moreover, new software technology
may emerge over the lifetime of a SoS. This may put pressure towards reimplementing
some coordination services in a new programming language on the SoS-manager.

The feature “Base-Role Integration on Architectural Level” is a prerequisite to allow
the SoS-manager to implement an outer role independently from the constituent
system. Therefore, the SoS-manager is basically not restricted to implement the outer
role in the same programming language like the constituent system. This renders
EventArch 3.0 to be more open towards new coordination rules. In this way, the
feature “Base-Role Integration on Architectural Level” contributes to fulfilling the
requirement to be open towards new coordination rules.

Cross-cutting Roles: Due to this feature, the concern of coordination is not tangled
with the original concerns of the constituent system and does not scatter around the
base-code. Inner roles are implemented transparently to the base-code, e.g., by means
of aspect technology. The increased modularity allows to adjust or even exchange the
implementation of an inner role more easily. This renders EventArch to be more open
towards new coordination rules.

Other Features: Certain other features contribute to fulfilling this requirement
as well. The comprehensibility of the concern of coordination is increased through
the features “Support Notion of Compartment”, “Programmable Role-Binding”, and
“Cross-cutting Roles” (for details see section 6.1). The implementation of a new
coordination rule is simplified by “Programmable Role-Binding”, especially with re-
spect to the necessary synchronization effort. The mentioned features allow the SoS-
manager to understand and maintain the SoS more easily. Moreover, new coordina-
tion rules can be implemented more clearly. Both advantages render EventArch to
be more open for new coordination rules.

In a dynamic SoS-environment all communication that is done on behalf
of a specific coordination rule should be performed in a separated scope.

EventArch 3.0 is able to meet this requirement due to the features Support Notion
of Compartment and Dynamic Composite AEM. This is shown in the following.

In a SoS, two types of members are relevant with respect to coordination: constituent
systems and coordinators. According to this requirement, all communication that is
related to coordination should be encapsulated in a separated scope. A coordination-

80

Chapter 6 Evaluation of EventArch 3.0

rule can be implemented according to the “Centralized”-coordination-pattern or the
“Peer-to-Peer”-coordination pattern (see [18]). In case of a “Centralized” implemen-
tation, communication between constituent systems and the central coordinator is
relevant. In case of an implementation according to the “Peer-to-Peer”-coordination
pattern, in addition, the communication between coordinators that implement a com-
mon coordination rule is relevant.

EventArch 3.0 encapsulates both sorts of communication in a separated scope. Due
to the feature “Dynamic Composite AEM”, DCAEMs can be created in EventArch
3.0. DCAEMs provide a common scope for a constituent system and all its coordi-
nators. This scope encapsulates all communication of a constituent system that is
done on behalf of the concern of coordination. Due to the feature “Support Notion
of Compartment”, Compartments can be created in EventArch 3.0. Compartments
can be used to provide a common scope for all coordinators that implement a specific
coordination rule in a peer-to-peer coordination-scenario. Therefore, in EventArch
3.0 all communication that is related to the concern of coordination is encapsulated
in a separated scope.

6.4 Use case

To increase the value of this evaluation of FventArch 3.0, the language is applied to
a use case that originated in the field of energy-efficient computing. This use case is
introduced in the following.

The worlds energy ressources are constantly diminishing, while the worlds energy
demand is constantly growing. To cope with the problem of limited energy ressources,
the available ressources have to be used efficiently. Due to that challenge, the question
of how to increase energy-efficiency has become an interesting topic in science
and technology. Several approaches have been developed to increase energy-efficiency.
Energy-aware software-adaption and load-migration are two of them.

In [26], possible interference between the load-balancing- and software-adaption ap-
proach have been shown. In [22], a use case is concluded from that to evaluate
EventArch 2.0. This use case shall be reused in this thesis to evaluate EventArch
3.0.

An increased energy-efficiency can be achieved by migrating a virtual machine that is
executing some application, from one computing-service (“server”) to another. This
approach is termed “load-balancing”. It is situated on “platform-level”. As an alter-
native approach, the algorithm of the running application can be adapted at runtime
(“software-adaption”). Both approaches can be combined. To evaluate EventArch
3.0, two coordination rules are defined for a SoS that consists of a constituent system
“LoadBalancer” and a constituent system “AdaptiveSoftware”. The LoadBal-
ancer consists of the components “LoadMonitor”, “LoadAnalyzer”, “MigrationPlan-

79

ner”, and “Migrator”. The AdaptiveSoftware consists of several “Application Com-

81

Chapter 6 Evaluation of EventArch 3.0

ponents” and several “Optimizer Components”. To prevent unintended behaviour
that may be caused by the simultaneous operation of both constituent systems, two
coordination rules are defined.

The “State” coordination rule shall apply if the AdaptiveSoftware is running and
the LoadBalancer detects the underutilization of the server. The “Switch” coordi-
nation rule shall apply if the LoadBalancer detects the overutilization of the server.
According to the “State” coordination rule, the LoadBalancer does not stop the
current adaption-process immediately, but waits until the current request for software-
adaption has been processed. Subsequent requests shall be postponed until the Load-
Balancer has finished migration. According to the “Switch” coordination rule, the
AdaptiveSoftware is stopped and the migration is performed by the LoadBalancer im-
mediately. Prior to that, the AdaptiveSoftware shall be commanded to switch to the
least energy-consuming algorithm. The use case is illustrated by the figure 6.1

The load balancer must postpone the
migration if the server is underutilized
and the adaptive software is serving a

request.
The migration must immediately take -
place if the server 1s over-utilized, The *u
least memory consuming apphication “ "\
components must be selected. i 1"‘
r L]
A H \
1
N i 1
................................ &
1 \i Y]
] : . r
¥ N l LoadMonitor | Migrator []
] b I
-]
‘l o Optimizer : F L
‘.‘ components LoadAn i!|}-'r’0l.‘ Mi gration ¢
Planner
LY
~
-

Application
components

----- # coordination-specific communication

The adaptive saftware

]
]
I
1
]
1
]
]
I
1
]
1
]
! The load balancer
]
i
1
]
i
1
]
1
1
1
I

=i application-specific communication

- - - -
)

Figure 6.1: Illustration LoadBalancer/AdaptiveSoftware use case (taken from [22])

It is assumed that the load-balancing facilities and the software-adaption facilities
of the respective constituent systems can be enabled and disabled at runtime. It is
further assumed that if one of the two constituent systems is disabled, the respec-
tive other can not continue operating if the coordination rules remain active. Such
a scenario would require the dynamic application of the two coordination rules in
dependence of the composition of constituent systems in the SoS.

82

1
2

Chapter 6 Evaluation of EventArch 3.0

6.5 Application to the Example Use case

This section presents an application of FventArch 3.0 to the use case that has been
described in the preceding section. An architectural specification is presented that
specifies the dynamic architectural setup of the use case. It is pointed out, in what
way the devised specification could take advantage from the distinguishing features of
FEventArch 3.0.

6.5.1 Presentation of the implementation

The described use case involves two approaches for optimizing the energy-efficiency
of the running software: the LoadBalancer achieves an optimized energy-efficiency by
migrating the running software to a different server, i.e., to different computing hard-
ware. The AdaptiveSoftware achieves an optimized energy-efficiency by exchanging
the employed algorithms, i.e., by adapting the software-algorithms at runtime. To
prevent mutual interference, both LoadBalancer and AdaptiveSoftware should not
impact the running software simultaneously, i.e., the software should not be migrated
in a moment in that its algorithms are exchanged.

The described scenario can be solved by the dynamic application of coordination rules.
Depending on the internal state of the LoadBalancer, the “Switch”- coordination rule
or the “State”-coordination rule is dynamically applied. The dynamic application is
conditioned by the composition of constituent systems in the SoS. If both systems
are available, the rules are applied, i.e., the coordinators are composed with the
constituent systems. If one constituent system leaves the SoS, the coordination rules
are unapplied from the respective other. Due to those dynamic facets, implementing
this scenario in EventArch 3.0 would show the fittness of this ADL for specifying the
dynamic application of different coordination rules in dependence of the composition
of constituent systems in the SoS.

In the following, the architectural setup according to the “Switch”-coordination rule
is presented. The presentation includes the specification of relevant inner roles and
outer roles of the constituent systems. Moreover, the specification of the Role-Binder
is explained. The specification of the “State”-coordination rule can be found in the
appendix (see 8.1.2). The implementation of the “State”-coordination rule is not
described, as the Role-Binder is currently not concerned with selecting one of the
two coordination rules for application(see future work: 7.1). The Role-Binder is just
concerned with determining the current composition of constituent systems in the
SoS. Moreover, the presentation is dedicated to the inherent dynamics and not to the
implementation and functionality of the individual coordinators.

In the architectural specification, constituent systems are represented as “modules”.
The specification of the constituent systems is shown in figure 6.1.

modules {
WrappedLoadBalancer [Java]:= {ISwitchCoordinatorLB

83

DO W

CO J O UL i W N+~

Nej

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Chapter 6 Evaluation of EventArch 3.0

IStateCoordinatorLB} <—> {"LoadBalancer"}
WrappedAdaptiveSoftware [Javal:= {ISwitchCoordinatorAS ,
IStateCoordinatorAS} <—>{"AdaptiveSoftware"}
}

Listing 6.1: Specification of the module-section of the LoadBalancer/AdaptiveSoft-
ware use case

The LoadBalancer and the AdaptiveSoftware are wrapped inside an Architectural
Event Module (AEM). Therefore, the modules are called WrappedLoadBalancer and
WrappedAdaptiveSoftware. For each constituent system, Primitive Interfaces are de-
fined in the specification. The module-definition associates each constituent system
with its Primitive Interfaces.

Figure 6.2 contains the specification of the Primitive Interface “ISwitchCoordina-
torLB” of the LoadBalancer. This Primitive Interface is marked “private”. That
means, that it is regarded as an “Inner Role” of the module WrappedLoadBalancer.
Inner roles are deactivated by default and can be activated at DCAEM-creation.
Inner roles are deactivated at DCAEM-destruction.

private interface ISwitchCoordinatorLB for WrappedLoadBalancer{
requires {
CoordinationCommand e_CoordinationCMD = {E | E instanceof
"CoordinationCommand"
&& E.coordRule = "SwitchCoordinationRule"

}

provides {
ConstituentState e_StartLB := before execution (
void org.dummy.loadbalancer.MigrationPlanner.plan (String load))
if (load ="OverUtilized") {
serverLoad = load;
applicationState = "StartExecuting";

}

wait when (e_StartLB) until (e_CoordinationCMD){
switch (e_CoordinationCMD .command){
case "proceed": proceed;
case "suspend": suspend ;

}
}

ConstituentState e EndLB := after execution (
void org.dummy.loadbalancer.Migrator.migrate (..)){
applicationState = "EndExecuting";

}
}
}

Listing 6.2: Specification of LoadBalancers inner role that is responsible for connect-
ing it to the coordinator of the “Switch”-coordination rule

84

OO UL W N+

e e el e sl
N O Ul W+ OO

Chapter 6 Evaluation of EventArch 3.0

The inner roles connect the constituent system to its coordinators. The constituent
system is associated to one coordinator per coordination-rule. The coordinators are
understood to be the “Outer Roles” of the constituent system. They are encapsulated
in a Compartment. A Compartment may represent a coordination rule. It would then
contain all coordinators that implement that coordination rule. In figure 6.3

compartment SwitchCoordination {
role LoadBalancerCoord [StateMachine] := {IBaseDirectedLB ,
ICompDirectedLB} <—> {...}
interface IBaseDirectedLB for LoadBalancerCoord{...}
interface ICompDirectedLB for LoadBalancerCoord{...}

role AdaptiveSoftwareCoord [StateMachine] := {IBaseDirectedAS,
ICompDirectedAS} <— {...}

interface IBaseDirectedAS for AdaptiveSoftwareCoord{...}

interface ICompDirectedAS for AdaptiveSoftwareCoord {...}

roleBinder SwitchCoRolebinder [StateMachine] := {IEzternal,
IComplIntern} <—>{...}

interface IEzternal for StateCoRoleBinder{...}

interface ICompIntern for StateCoRoleBinder{...}

}

Listing 6.3: Sketch of the definition of a Compartment that represents the “Switch”-
coordination rule in the architectural specification.

a Compartment is sketched that contains all coordinators of the “Switch”-coordination
rule. It can therefore be understood to represent the “Switch”-coordination rule in
the architectural specification. This Compartment contains a Role-Binder as well.
The Role-Binder is dedicated to this Compartment.

In listing 6.4,

role LoadBalancerCoord [StateMachine] := {IBaseDirectedLB,
ICompDirectedLB} <—> {
initial state Idle{
during:
on(IBaseDirectedLB.e_StartedLB){//If the LoadBalancer is started
// ...suspend it
send I[BaseDirectedLB.e_LB_CoordinationCMD =

new CoordinationCommand (){

command = "suspend";
coordRule="SwitchCoordinationRule";

b

// ...and command the AdaptiveSoftware to switch algorithms
send ICompDirectedLB.e_AS_CoordinationCMD =

new CoordinationCommand (){
command = "switch";
coordRule = "SwitchCoordinationRule";
H

} — LB_underutilized _waiting for_switch; //change to

85

Chapter 6 Evaluation of EventArch 3.0

20 //another state
21}

22

23 state LB_underutilized _waiting for_switch {

24 during:

25 on(ICompDirectedLB.e_EndedSwitch){ //if the AdaptiveSoftware has
26 //finished switching algorithms ...
27 //...let the LoadBalancer proceed
28 send IBaseDirectedL B.e LB_CoordinationCMD =

29 new CoordinationCommand (){
30 command = "proceed";

31 coordRule="SwitchCoordinationRule";
32 =

33 }—> LB_migrating;

34 3

35

36 state LB_migrating {

37 during:

38 //if the LoadBalancer has finished the migration—process,

39 //switch to the Idle—state

40 on(IBaseDirectedLB.e_EndedMigrate) —> Idle;

41 3}

42 3

Listing 6.4: Definition of the coordinator that will act as outer-role of the LoadBal-
ancer to achieve compliance with the “Switch”-coordination rule

the specification of the coordinator is presented that will be responsible for coordinat-
ing the LoadBalancer with the other modules according to the “Switch”-coordination
rule. It is therefore contained in the Compartment that represents that rule. This
coordinator can be dynamically bound to the LoadBalancer by a Role-Binder. The
coordinator is therefore understood to be an outer-role of the LoadBalancer. It is
labeled with the keyword “role” and named “LoadBalancerCoord”.

The specification of the Primitive Interfaces of this coordinator is presented in figure
6.5

1 interface IBaseDirectedLB for LoadBalancerCoord{

2

3 requires {

4 ConstituentState e_StartedLB = {E | E instanceof ’ConstituentState’
5 && E.applicationState = ’StartExecuting’
6 && E.serverLoad = ’0verUtilized’}

7

8 ConstituentState e_EndedMigrate = {E | E instanceof ’ConstituentState’
9 && E.applicationState =— ’EndExecuting’}
10 }

11

12 provides {

13 CoordinationCommand e_LB_CoordinationCMD;

14}

15

86

16
17
18
19
20
21
22
23
24
25
26
27
28

26

Chapter 6 Evaluation of EventArch 3.0

}
interface ICompDirectedLB for LoadBalancerCoord{
requires{
ConstituentState e_EndedSwitch = {E | E instanceof ’ConstituentState’
&& E.applicationState = ’SwitchEnd’}
}
provides {
CoordinationCommand e_AS_CoordinationCMD;
}
}

Listing 6.5: Definition of the Primitive Interfaces of the coordinator that will act as
outer-role of the LoadBalancer to achieve compliance with the “Switch”-
coordination rule

The Primitive Interface IBaseDirectedLB is intended to be used for DCAEM- com-
munication. It is therefore marked by the keyword “private”. The Primitive Interface
ICompDirectedLB is not marked “private”. Therefore, its events are not published
to the roles DCAEM, but to the scope of the Compartment that it is defined in.

The coordinator of the AdaptiveSoftware and its interfaces are presented in figure
6.6.

role AdaptiveSoftwareCoord [StateMachine] := {IBaseDirectedAS,
ICompDirectedAS} <—> {
initial state forward {
during:
on (ICompDirectedAS.e_SwitchCommand _required) {
send IBaseDirectedAS.e_SwitchCommand_provided =
new CoordinationCommand (){

command = ’switch’;
coordRule = ’SwitchCoordinationRule’;};

}

on (IBaseDirectedAS.e_ EndSwitchState_required){
send ICompDirectedAS.e_ EndSwitchState_provided =
new ConstituentState(){applicationState = ’SwitchEnd’;};

}
}

interface ICompDirectedAS for AdaptiveSoftwareCoord{

requires {
CoordinationCommand e_SwitchCommand_required = { E | E instanceof
’CoordinationCommand’
&& E.command = ’switch’

}
}
provides{
ConstituentState e_EndSwitchState_provided;

87

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

00 3 O U= Wi+~

Ne)

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Chapter 6 Evaluation of EventArch 3.0

}
}

interface IBaseDirectedAS for AdaptiveSoftwareCoord{

requires {
ConstituentState e_EndSwitchState_required = { E | E instanceof
’ConstituentState’
&& E.applicationState = ’SwitchEnd’
}
¥
provides {
CoordinationCommand e_SwitchCommand_provided;
}
¥

Listing 6.6: Definition of the behaviour and the Primitive Interfaces of the coordinator
that will act as outer-role of the AdaptiveSoftware to achieve compliance
with the “Switch”-coordination rule.

It is just concerned with forwarding certain messages from the LoadBalancers coor-
dinator to the AdaptiveSoftware and vice versa. That coordinator could have been
omitted, but according to EventArchs 3.0 compartment-concept each constituent sys-
tem that is concerned with the coordination rule is represented by a role in the Com-
partment that represents that coordination rule.

Listing 6.7 contains the definition of an EventArch 3.0 Role-Binder.

roleBinder SwitchCoRoleBinder [StateMachine] := {IEzternal} <—> {
initial state noSystemThere{
during:
on(IFEzternal.lb_started || IExzternal.as_started) {} —
oneSystemThere;
¥
state oneSystemThere{
during:
on(IEzternal.lb_terminated || IExzternal.as_terminated) {} —>
noSystemThere;
on(IEzternal.lb_started || IExzternal.as_started){} —>
twoSystemsThere;
}
state twoSystemsThere{
entry:
atomic {
DcaemLoadBalancer [composite] := {LoadBalancerCoord.
IBaseDirectedLB} <—>

{WrappedLoadBalancer . ISwitchCoordinatorLB}
DcaemAdaptiveSoftware [composite] = {} <>
{WrappedAdaptiveSoftware. ISwitchCoordinatorAS}
DcaemAdaptiveSoftware [composite] += {AdaptiveSoftwareCoord.
IBaseDirectedAS}

88

Chapter 6 Evaluation of EventArch 3.0

26
27

28

29

30

31

32

33

34

35

36

37

38
39}
40 }

}
during:
on(IExzternal.lb_terminated || I[Ezternal.as_terminated) {} —>
oneSystemThere ;
exit:
DcaemLoadBalancer [composite] —= {LoadBalancerCoord.
IBaseDirected LB}
destroy DcaemLoadBalancer [composite |
DcaemAdaptiveSoftware [composite] —= {AdaptiveSoftwareCoord.
IBaseDirectedAS}

destroy DcaemAdaptiveSoftware [composite |

Listing 6.7: Definition of the rolebinder that is responsible for binding the coordina-

tors of the “Switch”-coordination rule

Listing 6.8 contains its Primitive Interface IExternal.

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21}
22 }

interface IExzternal for SwitchCoRoleBinder{
requires {
ApplicationStarted lb_started = {E | E instanceof

’ApplicationStarted’
&& E.publisher = ’WrappedLoadBalancer’

ApplicationStarted as_started = {E | E instanceof

’ApplicationStarted’
&& E.publisher = ’WrappedAdaptiveSoftware’

}

ApplicationTerminated lb_terminated = {E | E instanceof

’ApplicationTerminated’
&& E.publisher = ’WrappedLoadBalancer’

}

ApplicationTerminated as_terminated = {E | E instanceof

’ApplicationTerminated’
&& E.publisher = ’WrappedAdaptiveSoftware’

}

Listing 6.8: Definition of the Primitive Interface of the rolebinder of the “Switch”-

coordination rule

The Role-Binder is contained in the Compartment that represents the “Switch”-
coordination rule. It is therefore just responsible for binding the coordinators of that
rule to the constituent systems. The Role-Binder has a critical task in the archi-
tectural setup. It has to process information concerning the current composition of
constituent systems in the SoS to take a binding decision. Moreover, it has to exe-
cute this binding decision by performing role-binding. The Role-Binder integrates the

89

Chapter 6 Evaluation of EventArch 3.0

other features, that have been added to EventArch, to achieve a dynamic application
of coordination rules in dependence of the composition of constituent systems in the

SoS.

The Role-Binder is informed by events about the presence and absence of constituent
systems in the SoS. Whenever a new constituent system enters the SoS, an Ap-
plicationStarted event is sent to the Role-Binder. Whenever a consituent system
leaves the SoS, the Role-Binder is informed by an ApplicationTerminated event,
likewise. The Role-Binder employs a special representation of the current compo-
sition of coordination-rules. It introduces states to represent a specific composition.
For that purpose, the states noSystemThere, oneSystemThere, and twoSystemsThere
have been introduced into the Role-Binder. Changes to the composition of the con-
stituent systems in the SoS are reflected by state-changes of the Role-Binders statema-
chine. When both constituent systems, WrappedLoadBalancer and WrappedAdap-
tiveSoftware, are available in the SoS, the respective Dynamic Composite AEMs
(DCAEM) are created. Relevant inner roles are activated and outer roles are in-
cluded into the DCAEM. The described binding- and creation-actions are performed
on entering the state twoSystemsThere.

The statement

DcaemLoadBalancer [composite] := {LoadBalancerCoord.IBaseDirectedLB} <—>
{WrappedLoadBalancer . ISwitchCoordinatorLB}

creates the DCAEM DcaemLoadBalancer. The module WrappedLoadBalancer is in-
cluded as the base of this DCAEM. The Primitive Interface ISwitchCoordinatorLB
serves as inner role of the DCAEM. The coordinator LoadBalancerCoord (see listing
6.4) serves as an outer role of this DCAEM.

Additional outer roles may be bound after the creation of the DCAEM as well. The
DCAEM DcaemAdaptiveSoftware is created by the line

DcaemAdaptiveSoftware [composite] := {} <— {WrappedAdaptiveSoftware.
ISwitchCoordinatorAS}

An outer role is bound to this DCAEM after its creation. This is done by the line

DcaemAdaptiveSoftware [composite] += {AdaptiveSoftwareCoord.
IBaseDirectedAS}

A formal description of the syntax of EventArch 3.0 can be found in the appendix
(8.3). It is an extract of the grammar that defines the language of EventArch 3.0.
A similiar Role-Binder has been defined inside the Compartment that represents the
“State”-coordination rule.

6.5.2 Advantages shown by the implementation

The application of EventArch 3.0 to the use case has shown the following advantages:

90

Chapter 6 Evaluation of EventArch 3.0

e The integration of the base and roles could be achieved by means of a common
message scope. The coordinators LoadBalancerCoord and AdaptiveSoftware-
Coord could be included as “outer roles” into this message scope. From point
of view of the architectural developer, defining role-binding is not so much differ-
ent in EventArch 3.0 from defining it in other languages. Like in SCROLL and
SMAGs, roles are explicitly added to a base by specific statements. Two syntac-
tical variants have been presented in the presentation of the Role-Binder. The
real advantage is hidden from the architectural developer: a role is not bound
to a base by dynamically incorporating it into the base-object (like it is done in
SCROLL using SCALAs dynamic traits feature), but by a simple message-based
mechanism. Messages are sent using a message-oriented-middleware platform
(EventArch 3.0 uses JMS). This would allow to easily exchange the imple-
mentation of a role at runtime. It would not be necessary to interfere with
a base-object (or “base-system” in the case of EventArch 3.0), but to merely
include the new implementation of the role into a message scope and to exclude
the old implementation from that scope.

e The implementation of the use case has concerned the behaviour of multi-
ple components of the constituent systems in order to implement the concern
of coordination. In the example-implementation, those cross-cutting concerns
could be implemented without scattering the relevant code across those com-
ponents and without having to tangle it with the original concerns of the con-
stituent system. This could be achieved by EventArchs 3.0 Cross-cutting
Roles. EventArchs 3.0 “private” Primitive Interfaces can be understood as
Cross-cutting Roles in that they could be activated and deactivated by the
Role-Binder. Moreover, they could be concerned with multiple components of
the constituent systems. For example, the Primitive Interface IStateCoordina-
torLB of the constituent system WrappedLoadBalancer (see appendix: 8.5) is
concerned with the LoadBalancers components MigrationPlanner and Migra-
tor and can therefore be understood as an implementation of a cross-cutting
concern.

e The information concerning the entering and leaving of the LoadBalancer and
AdaptiveSoftware could be disseminated by events. The constituent systems
could take advantage from that, in that they could publish the Application-
Started- and ApplicationTerminated-events to both available Role-Binders. This
could be done due to the loose-coupling that was induced by this scheme of
communication. Event-publishers do not have to process a return value and
can therefore publish the information to multiple receivers. The Role-Binder
could also take advantage from the event-based communication. Instead of
mapping a received message to specific function-code, they were encouraged
to install a dispatch- and handling mechanism. The defined statemachine can
be understood, together with the defined “on(...)" expressions, as a state-
dependent dispatch- and handling mechanism. For example, depending on
the current state, the ApplicationStarted-event of the WrappedLoadBalancer

91

Chapter 6 Evaluation of EventArch 3.0

triggers a state-transition to the state oneSystemThere or twoSystemsThere.
That means, depending on the current state, the “on(...)"-dispatch statements,
dispatch the event to a “handler” whose action consists in switching to the
oneSystem There-state, or the “on(...)”-dispatch statements dispatch the event
to a “handler” whose action consists in switching to the twoSystemsThere-state.

The current composition of constituent systems of a SoS could be represented by
a stateful Role-Binder. Changes in the composition of constituent systems in
the SoS could be reflected by statechanges in the Role-Binder. The states could
be given intuitive names: noSystemThere, oneSystemThere, twoSystemsThere.
The simultaneous composition of all coordinators of the same coordination rule
with concerned constituent systems could be accomplished. Currently, it is not
possible to select a specific coordination rule for application based on the in-
ternal state of the constituent systems. This prevented the devised solution
to select the “State”-coordination rule for application if the LoadBalancer has
found the server-load to be “UnderUtilized” and the “Switch”-coordination rule
if the LoadBalancer has found the server-load to be “OverUtilized”. The in-
ability of the solution to select a specific coordination rule for application, not
only based on the composition of constituent systems in the SoS, but also on
the current state of the constituent systems, is a serious disadvantage that has
to be solved by future-work.

The architectural setup could be specified transparently to the code of the con-
stituent system. The base-code did not have to be changed in order to achieve
compliance to coordination rules. Instead, Primitive Interfaces werde defined
outside the base-code. To interfere with the constituent systems, pointcuts
were defined and internal functions were triggered. For example, the Primitive
Interface IStateCoordinatorLB (see appendix: 8.5) of the constituent system
WrappedLoadBalancer defined the pointcuts

before execution (void org.dummy.loadbalancer.MigrationPlanner.plan

(String load))
after execution (void org.dummy.loadbalancer.Migrator.migrate (..))

Moreover, the Primitive Interface ISwitchCoordinatorAS of the constituent sys-
tem WrappedAdaptiveSoftware called the internal function
“org.dummy.application. Optimizer.reconfigure” of the AdaptiveSoftware by the
line.

on (e_CoordinationCMD) {invoke (’org.dummy.application.Optimizer’,
’reconfigure’ ,e_CoordinationCMD); }

In the OT/J implementation, that was presented in section 3.3, the code of the
base-classes had to be changed. The start of the system had to be explicitly
communicated to the team that implemented the coordination rule, and relevant
components had to be registered at the FrampleRunner. The relevant figure
can be found in the appendix: 8.1.1

92

Chapter 7

Conclusion

The conclusion of this thesis presents a restatement of the problem that it has been
motivated by. Then, the prevailing line of argumentation of this thesis is reproduced.
Finally, the main contributions of EventArch 3.0 for achieving a solution for the
stated problem are emphasized.

Currently, the value of independent systems is increased by arranging them as con-
stituents of a “System-of-Systems” (SoS). Constituent systems may be subject to
emergence. To prevent the failure to fulfill certain SoS-level goals due to unintended
behaviour that is caused by emergence, coordination rules can be defined. In a dy-
namic SoS, constituent systems may join or leave at runtime. This creates a problem
with respect to the application of coordination rules. The level of restrictiveness of a
coordination rule that is applied to the SoS at a certain moment in time should match
the level of restrictiveness that is actually required by the current composition of con-
stituent systems in that SoS. This creates the desire to dynamically apply variants
of a coordination rule to the SoS that differ with respect to their level of restrictive-
ness. More-restrictive coordination rules should be generally applied if constituent
systems join the SoS and less-restrictive coordination rules should be generally ap-
plied if constituent systems leave the SoS. Depending on the current composition of
constituent systems, a coordination rule should be applied that matches the level of
restrictiveness that is actually required with respect to that specific composition of
constituent systems. As a prerequisite, those application scenarios require means to
dynamically apply coordination rules in dependence of the current composition of
constituent systems in the SoS.

In this work, several requirements have been identified that would be desirable
for an architecture description language in order to provide support for the dynamic
application of coordination rules in a dynamic SoS in dependence of the current
composition of constituent systems in the SoS.

Moreover, certain features have been identified, that would render an architec-
ture description language capable to fulfill all requirements. Current object-oriented
programming- and modeling-languages have been considered as related work and
have been analyzed with respect to those features. Their support for those features
has been rated. Focus has been put on the role-based programming-language “OT/J”.

93

Chapter 7 Conclusion

The architecture description language “EventArch 2.0” has been selected for exten-
sion in order to achieve support for the features that have been identified. As a
solution, the architecture description language “EventArch 3.0” has been devised.
The concepts of EventArch 3.0 that contribute to the described application sce-
nario have been thoroughly described in that work. Moreover, an in-depth description
of EventArchs 3.0 implementation has been given.

Finally, it has been shown by evaluating EventArch 3.0 that this ADL fulfills all
requirements that would be desirable to achieve support for the dynamic application
of coordination rules in a dynamic SoS in dependence of the current composition of
constituent systems in the SoS. An example has been presented that involved two
constituent systems and consequently features the alternating ignorance- or compli-
ance with respect to a specific coordination rule, depending on the presence of the
respective other system.

The major contributions of EventArch 3.0 with respect to providing support for the
dynamic application of coordination rules in a dynamic SoS in dependence of the
current composition of constituent systems in the SoS, can be described as follows:

1. The language-element “Dynamic Composite AEM” (DCAEM) allows for
the integration of coordinators with constituent systems at runtime. A DCAEM
is a common message-scope for a constituent system and its coordinators. It
implements a loose coupling between them. A DCAEM can be used to ap-
ply a coordination rule at runtime, depending on the current composition of
constituent systems in the SoS. That feature is a prerequisite to allow for an
integration of new coordination rules into the behaviour of constituent systems,
that have been unanticipated at design-time. This runtime-integration may be
necessary in response to emergence that has been experienced with respect to
the behaviour of individual constituent systems.

2. The capability of an architecture description language to modularize cross-
cutting concerns can be used to modularize the cross-cutting concern of co-
ordination. In the design of EventArch 3.0, the capability to modularize cross-
cutting concerns has been combined with the notion of adding and removing
functionality at runtime. That functionality has been represented as “Role”.
Consequently, the feature “Cross-cutting Role” was devised and implemented
into the language EventArch 3.0. It has been shown, that it is feasible to repre-
sent coordinators as Cross-cutting Roles and to dynamically apply coordination
rules by combining those coordinators with constituent systems at runtime.

3. A Role-Binder has been devised as a modular solution that allows for the
consistent application of a coordination rule to constituent systems. The con-
sistent application of a coordination rule requires the simultaneous application
of all coordinators that are associated to the same coordination rule to those
constituent systems that are concerned by that rule. A Role-Binder may be de-
fined as a statemachine and state-transitions may be conditioned by the entry
and exit of constituent systems to the SoS. In that way, the Role-Binder can

94

Chapter 7 Conclusion

be used to achieve the desired dependence of its decisions with respect to the
current composition of constituent systems in the SoS.

4. Coordination rules can be implemented according to the “Peer-to-Peer” coor-
dination pattern. In EventArch 3.0, the role-related concept “Compartment”
has been used to represent a coordination-rule that is implemented according to
that pattern. A compartment encapsulates all coordinators that implement a
coordination rule and creates a common message scope for them. This message
scope separates their communication from the other constituent systems of the
SoS. In that way, communication that is related to the coordination rule is sep-
arated from constituent systems that are unrelated to that coordination rule.
This achieves privacy with respect to the concern of coordination and is there-
fore desirable in an effort to achieve the dynamic application of coordination
rules in a dynamic SoS.

7.1 Future Work

In this thesis an extension of the architecture description language EventArch 2.0
has been devised that has increased EventArchs support for adaptive coordination in
dynamic SoS, considerably. Nevertheless, further improvements could be achieved by
applying some further extension to the language. In this section potential starting
points for future extensions are pointed out.

Provide support for the integration of unanticipated coordination rules
into SoS.

In a dynamic SoS, constituent systems may join or leave at runtime. This requires
the dynamic application of coordination rules to the SoS by composing coordina-
tors with those constituent systems that are concerned by the rule. Currently, it is
only possible to integrate coordination rules that have been anticipated at design-
time into the behaviour of constituent systems. Coordination-rules that have been
unanticipated at design-time can not be integrated without stopping and restarting
all constituent systems and all coordinators of the SoS. For future support for the
integration of unanticipated coordination rules at runtime, a mechanism is needed
to integrate changes to the architectural specification into a running SoS. To achieve
that, it would be required to update the metadata that represents the architectural
representation at runtime and to selectively compile those Architectural Event Mod-
ules whose specifications have been changed.

Provide support for the replacement of a coordination rule by a variant of
itself at runtime.

As indicated in the motivation (see 1.1), EventArch 3.0 does not intend to support
the replacement of a coordination rule by a variant of itself at runtime. Neverthe-
less, this would be a useful feature, as it would allow to integrate a variant of the
coordination rule into a running SoS. This variant could be designed to match the

95

Chapter 7 Conclusion

level of restrictiveness that is currently desired in the SoS. This would help to prevent
unintended behaviour on SoS-level.

To achieve that support, a mechanism would have to be implemented that allows for
a proper initialization of the coordinators of the new variant. Those coordinators
would have to be initialized in a way that allows for the seamless continuation of the
coordination services in the SoS. To achieve that, the state of the coordinators of the
deselected variant has to be translated into a suitable initial state of the coordinators
of the selected variant. This state-translation has to be performed in the moment of
rule-change.

Improve support for the selection of a coordination rule for application
based on the internal state of the constituent systems.

EventArch 3.0 supports the dynamic application of coordination rules based on the
current composition of constituent systems in the SoS. Currently, poor support is
provided for basing that decision on the internal state of constituent systems. To allow
the Role-Binder to take an informed role-binding decision, the constituent systems
have to provide a representation of their internal state to the Role-Binder. Currently,
EventArch 3.0 assumes that a constituent system is in need of coordination when it
publishes certain state-informations. Therefore, the inner roles have to be activated
to publish state-information and the wait-when blocks are activated as well. In an
improved version of EventArch it might be possible to activate the inner roles, publish
state-information to the Role-Binder, but to depend the activation of the wait-when
blocks of the inner roles on the current need for coordination, i.e., on the current
composition of constituent systems in the SoS.

A possible solution would be to allow the Role-Binder to command the activation
of specific wait-when blocks in the inner roles based on the current composition of
constituent systems in the SoS. For example, the LoadBalancer might have to sus-
pend execution when it publishes the current server-load to the Role-Binder if the
AdaptiveSoftware is currently present in the SoS. But it would not have to suspend
execution when it publishes the current server-load to the Role-Binder while the
AdaptiveSoftware is currently not present in the SoS. This would allow the Role-
Binder to select the application of the “Switch”-coordination rule or the “State”-
coordination rule based on the internal state of the LoadBalancer (“server-load”),
without interfering with the LoadBalancers behaviour by unnecessary suspension.

Provide extended support for the dispatching and handling of events.
Functions are often used as a tight mapping between a symbolic name and a piece of
implementation-code. Opposed to that, events are not used to identify a specific piece
of implementation-code. Instead, they are typically dispatched at the receiver. Event-
based Systems typically provide a dispatch- and handling-mechanism. They can be
dispatched according to certain criteria and be handled by specific implementation
code.

In EventArch, coordinators can be implemented as statemachines. A statemachine
can be understood as a state-oriented dispatch- and handling-mechanism. Depending

96

Chapter 7 Conclusion

on the current state, incoming events are selected by different “On”-expressions.
Depending on the “On”-expression that has selected the event, different actions are
executed. The defined statemachine-actions that process the event, can be understood
as the “handler” of the event. Then, the “On”-expressions and the state-dependence
of event-selection can be understood as the dispatch-mechanism. Currently, both
mechanisms (dispatch- and handling-) are defined using EventArchs statemachine-
language. Other programming languages can not be employed.

To allow the SoS-manager to implement event-handling in a programming language
of his choice (e.g. Java or C++), but to still take advantage of EventArchs event-
dispatch mechanism, it would be desirable to separate event-dispatch from event-
handling in EventArchs statemachine. To achieve that, EventArchs statemachine
would have to be implemented as a wrapper around a legacy-application. Then,
it would be possible to integrate calls to specific functions of that legacy-code as
a specific type of “statemachine-action” into the definition of a statemachine. As
the Role-Binder is implemented as a statemachine, this extension could be used to
enhance the process of role-binding as well.

Other extensions

In the following, further possible extensions are briefly sketched.

e EventArch 3.0 supports the notion of Compartment. Nevertheless, it is a rela-
tively poor support with respect to the criteria defined in [20]. In the future,
EventArch could be extended to support more of those criteria. For example,
compartments could be allowed to be nested.

e To increase the support for anticipated adaptation of coordination rules at run-
time, statemachines could be allowed to dynamically change the selectors of
event-based interfaces and to create new selectors at runtime.

e In a dynamic SoS, the number of constituent systems that are concerned by
a specific coordination rule may be unclear. New constituent systems that
are concerned by the coordination rule could join the SoS unanticipatedly at
runtime. To allow for a dynamic application of such coordination rules, it would
be necessary to instantiate new roles at runtime. Currently, EventArch 3.0 is
not up to that. Therefore, EventArch 3.0 could be extended in the future to
support the dynamic instantiation of roles.

e Currently, the features of “Inner Roles” and “Dynamic Composite AEM” are
just supported for constituent systems that are implemented in the program-
ming language “Java”. That support could be extended by including other pro-
gramming languages, e.g., C++. This would exploit the advantage “Language-
Independent Base-Role Integration”.

e EventArchs 3.0 support for the dynamic application of coordination rules that
are implemented according to the “Centralized”-coordination pattern could still
be improved. Primitive interfaces could be allowed to be bound to multiple
DCAEMs, or a common message scope for all constituent systems that are

97

Chapter 7 Conclusion

interacting with a specific central coordinator could be introduced.

To allow for the runtime-integration of new coordination rules on the “Inner
Roles”-level, EventArchs 3.0 implementation of the inner roles could be changed
to employ aspect technology that provides the possibility of runtime-weaving.
This would increase the ability of the ADL to integrate a coordination rule into
the behaviour of constituent systems at runtime that has not been anticipated
at design-time.

98

1
2
3
4
)
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21

Chapter 8

Appendix

The Appendix contains an in-depth discussion of the implementation of the EventArch
2.0-compiler and additional source-code. The grammar of EventArch 3.0 is described.
Moreover, the extension that has been applied to EventArch 2.0 is described in detail
by numerous class-diagrams and a sequence-diagram.

8.1 Additional Source-Code

8.1.1 OT/J source-code

In the following, the complete source code of the OT/J-solution of the described
use case 6.4 is printed. The first listing contains the definition of the team that
implements the “State”’-coordination rule. The following listing contains a dummy-
implementation of the constituent system “LoadBalancer”.

public team class StateCoordinationRule {

private
private
private

private
private

State
State
State

State
State

noApplicationThere = new NoApplicationThere () ;
oneApplicationThere = new OneApplicationThere () ;
twoApplicationsThere = new TwoApplicationsThere () ;

currentState = noApplicationThere;
nextState = noApplicationThere;

public void informRoleBinder (String information){
nextState = currentState.getNextState(information);

if (!currentState.equals(nextState)){
currentState.doExitAction () ;
nextState.doEntryAction () ;
currentState = nextState;

}
}

public class TwoApplicationsThere implements State{

@OQOverride

99

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
95
o6
o7
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

Chapter 8 Appendix

public State getNextState(String information) {
switch (information){
case "LoadBalancerLeft": return oneApplicationThere;
case "AdaptiveSoftwarelLeft": return oneApplicationThere;
default: return twoApplicationsThere;

}

@Override

public void doEntryAction() {
activate (Team.ALL THREADS) ;

}

@Override

public void doExitAction() {
deactivate (Team.ALL THREADS) ;

}

}

public interface State{

public State getNextState(String information);
public void doEntryAction () ;
public void doExitAction();

}

public class NoApplicationThere implements State({

@Override
public State getNextState(String information) {
switch (information){
case "LoadBalancerJoined": return oneApplicationThere;
case "AdaptiveSoftwareJoined": return oneApplicationThere;
default: return noApplicationThere;

}
}

@Override
public void doEntryAction() {}

@Override
public void doExitAction() {}

}

public class OneApplicationThere implements State{

@Override
public State getNextState(String information) {
switch (information){

case "LoadBalancerJoined": return twoApplicationsThere;
case "AdaptiveSoftwareJoined": return twoApplicationsThere;
case "LoadBalancerLeft": return oneApplicationThere;

100

74
75
76
7
78
79
80
81
82
83
84
85
86
87

88
89
90
91

92
93
94
95
96

97
98
99

100
101

102
103

104
105
106
107
108
109

110
111

Chapter 8 Appendix

}

case "AdaptiveSoftwareLeft": return oneApplicationThere;
default: return oneApplicationThere;

@Override
public void doEntryAction() {}

@Override
public void doExitAction() {}

public class LoadBalancerMigrator playedBy Migrator {

}

notifyAdaptiveSoftware <— after migrate; //when the Migrator—

component has finished the migration—process, it has to be
interrupted

public void notifyAdaptiveSoftware (){
updateAppCompCoordinator () ;
appCompCoordinator. releaseCurrentLock (); //migration has been

finished —> the lock of the adaptive software can be released.

public class LoadBalancerMigrationPlanner playedBy MigrationPlanner {

waitForProceed <— before plan; //when the MigrationPlanner—component

is about to start planning, it has to be interrupted

public void waitForProceed (String load)({
updateAppCompCoordinator(); //update the teams reference to the

coordinator of the other system

if (load.equals("underutilized"))({

LockRequest lbRequest = new LockRequest("loadBalancer"); //
LoadBalancer and AdaptiveSoftware should not run

simultaneously . Therefore, the respective other has to be
locked .

enqueueRequest (1bRequest); //dont forget that you, the
LoadBalancer , has requested a lock.

appCompCoordinator . enqueueRequest (1bRequest); //the coordinator—
role of the adaptive software has to know, that you
requested to lock the adaptive software

LockRequest headRequest = getQueueHead (); //what is the current
lock , that we have to respect?
while (true) {
if (headRequest.responsibleSoftware.equals("loadBalancer")){
return; //proceed if not the adaptivesoftware has requested
a lock.
}else{
waitForLockRelease(); //if the adaptiveSoftware has
requested a lock, wait until the adaptiveSoftware

101

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

143
144
145
146
147
148
149
150
151
152

153
154
155
156

157
158

Chapter 8 Appendix

releases that lock.

public void enqueueRequest(LockRequest lockRequest){
//attach the lockRequest to the Request—Queue
}

public LockRequest getQueueHead () {
//return the head of the Request—Queue
¥

public void waitForLockRelease (){
//wait until the adaptive software—coordinator releases the
current lock

}

public void releaseCurrentLock (){
//release the current lock
}

}

protected AdaptiveSoftwareAppComponent appCompCoordinator;

public void updateAppCompCoordinator (){
ExampleRunner . updateTeamsApplicationComponent (this) ;

}

public void updateApplicationComponent (ApplicationComponent as
AdaptiveSoftwareAppComponent appCompCoordinator) {
this.appCompCoordinator = appCompCoordinator;

}

protected LoadBalancerMigrationPlanner migPlanCoordinator;

public void updateMigPlanCoordinator () {
ExampleRunner . updateTeamsMigrationPlannerComponent (this) ;

}

public void updateMigrationPlannerComponent (MigrationPlanner as
LoadBalancerMigrationPlanner migPlanCoordinator){
this.migPlanCoordinator = migPlanCoordinator;

}

public class AdaptiveSoftwareAppComponent playedBy
ApplicationComponent {

waitForProceed <— before execute;

102

159
160
161
162
163

164

165

166

167
168
169

170
171

172
173
174
175
176
177
178
179
180
181
182

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

Chapter 8 Appendix

notifyLoadBalancer <— after execute;

public void waitForProceed (){
updateMigPlanCoordinator () ;
LockRequest asRequest = new LockRequest("adaptiveSoftware"); //
this represents your requested lock
enqueueRequest (asRequest); //dont forget , that you have requested
a lock
migPlanCoordinator . enqueueRequest (asRequest); //announce your
request for a lock to the loadbalancer
LockRequest headRequest = getQueueHead (); //what is the current
lock , that we have to respect?
while (true){
if (headRequest.responsibleSoftware.equals("adaptiveSoftware")){
return; //proceed if not the loadbalancer has requested a lock

telse{
waitForLockRelease(); //if the loadBalancer has requested a
lock , wait until the loadbalancer releases that lock.

}
}
}

public void notifyLoadBalancer (){
updateMigPlanCoordinator () ;
migPlanCoordinator . releaseCurrentLock () ;

}

public void waitForLockRelease () {
//wait until the loadbalancer—coordinator releases the current
lock

}

public void releaseCurrentLock () {
//release the current lock

public LockRequest getQueueHead () {
//return the head of the LockRequest—queue
}

public void enqueueRequest (LockRequest lockRequest){
//engueue lockRequest into the queue of LockRequests

}

public class AdaptiveSoftwareOptimizer playedBy Optimizer {
//call “‘reconfigure’ —function if needed

103

201

0O ~J O UL W N+

Nej

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Y U W N~

Chapter 8 Appendix

}

Listing 8.1: Definition of the team that implements the “State”-coordination rule of
the example-implementation of the use case in the role-based language
OT/J

The second listing contains a dummy-implementation of the constituent system “Load-
Balancer”. As can be seen from this listing, the code of the LoadBalancer had to be
changed in order to connect this system to its “State”-coordinator that is defined as
a role in the respective team-definition.

package LoadBalancer;

import AdaptiveSoftware.ApplicationComponent ;
import lb_asw_usecase.ExampleRunner;
import lb_asw_usecase.StateCoordinationRule;

public class LB_Main extends Thread {

private StateCoordinationRule stateCoordinationRule;
private MigrationPlanner migrationPlanner;

private Migrator migrator;

private ApplicationComponent appcomp;

public LB_Main(StateCoordinationRule stateCoordinationRule){
this.stateCoordinationRule = stateCoordinationRule;
this. migrationPlanner = new MigrationPlanner () ;
this.migrator = new Migrator () ;
ExampleRunner . registerMigrationPlannerComponent (migrationPlanner) ;

}

public void run(){
stateCoordinationRule.informRoleBinder ("LoadBalancerJoined");
migrationPlanner. plan ("underutilized");
migrator.migrate () ;

}
}

Listing 8.2: Dummy-implementation of the constituent system “LoadBalancer” in the
role-based language OT/J

The following listing contains the “ExampleRunner”. It maintains a reference to the
components of the constituent systems, that are of interest to the coordinators of the
“State”-coordination rule. It provides a mechanism for component-registration to the
constituent systems “LoadBalancer” and “AdaptiveSoftware”.

package lb_asw_usecase;
import AdaptiveSoftware.ASW_Main;
import AdaptiveSoftware. ApplicationComponent ;

import LoadBalancer.LB_Main;
import LoadBalancer.MigrationPlanner;

104

Chapter 8 Appendix

7

8 public class ExampleRunner {

9
10
11

12
13
14
15

16
17
18
19
20
21

22

23
24
25

26
27
28
29
30

31
32
33
34
35
36
37
38 }

private static ApplicationComponent appComponent ;

public static void updateTeamsApplicationComponent (
StateCoordinationRule stateCoordinationRule){
stateCoordinationRule.updateApplicationComponent (appComponent) ;

}

public static void registerApplicationComponent (ApplicationComponent
appComponent) {
ExampleRunner . appComponent = appComponent ;

}

private static MigrationPlanner migPlanComponent;

public static void updateTeamsMigrationPlannerComponent (
StateCoordinationRule stateCoordinationRule){
stateCoordinationRule.updateMigrationPlannerComponent (
migPlanComponent) ;
}

public static void registerMigrationPlannerComponent (MigrationPlanner
migPlanComponent) {

ExampleRunner . migPlanComponent = migPlanComponent ;
}
public static void main(String[] args) {
StateCoordinationRule stateCoordinationRule = new

StateCoordinationRule () ;

LB_Main lb_Main = new LB_Main(stateCoordinationRule);
Ib_Main . start () ;

ASW_Main asw_Main = new ASW_Main(stateCoordinationRule);
asw_Main . start () ;

}

Listing 8.3: Module “ExampleRunner” of the example-implementation of the use case

in the role-based language OT/J

8.1.2 “State”-coordination rule

In the following, additional parts of the architectural specification of the “State”-
coordination rule are printed. For brevity, the respective Compartment is not printed
in full. The specification of the “State”-coordinator of the AdaptiveSoftware and
the “State”’-Role-Binder are omitted. The specification of the “State”-coordinator
of the AdaptiveSoftware is very similiar to the printed specification of the “State”-
coordinator of the LoadBalancer. The specification of the “State”-Role-Binder is

105

Chapter 8 Appendix

very similiar to the specification of the “Switch”-Role-Binder. The specification of
this Role-Binder is printed in section 6.5

1 Compartment StateCoordination {

2

3 role LoadBalancerCoord [StateMachine| := {IBaseDirectedLB,

4 ICompDirectedLB} <—> {
5 PriorityEventQueue pending_requests;

6 initial state Idle {

7 during:

8 on (IBaseDirectedLB.e_StartedLB_UnderUtilized) {

9 print ">>>>>> During Idle>>>>> Load Balancer >>> insert in
10 queue";
11 ICompDirectedL B.e_LockRequestByLB = new LockRequest ();

12 pending_requests.add(ICompDirectedLB.e_LockRequestByLB);

13 send ICompDirectedLB.e_LockRequestByLB;

14 send IBaseDirectedL B.e_.LB_CoordinationCMD =

15 new CoordinationCommand (){
16 command = ’suspend’;

17 coordRule = ’StateCoordinationRule’;
18 =

19 } — Waiting;

20

21 on(ICompDirectedLB.e_LockRequestByAS){

22 print ">>>>>> During Idle>>>>> LB >>> insert AS in queue';
23 pending_requests.add(ICompDirectedLB.e_LockRequestByAS);

24 send ICompDirectedLB.e LockReplyByLB = new LockReply ();

25 }

26

27 on (ICompDirectedLB.e_LockReleaseByAS){

28 print ">>>>>> During Idle>>>>> LB >>> remove queue";

29 pending_requests.remove ();

30 }

31

32 on (IBaseDirectedLB.e_TerminatedLB)—> AlwaysGrant;

33 }

34

35 state AlwaysGrant {

36 during:

37 on(ICompDirectedB.e_LockRequestByAS){

38 print ">>>>>> During AlwaysGrant >>>>> LB >>> insert AS in
39 queue";
40 pending_requests.add(ICompDirectedLB.e_LockRequestByAS) ;

41 send ICompDirectedLB.e LockReplyByLB = new LockReply ();

42 }

43 on (ICompDirectedLB.e_LockReleaseByAS){

44 print ">>>>>> During AlwaysGrant>>>>> LB >>> remove queue";
45 pending_requests .remove ();

46 }

47

48 on(IBaseDirectedLB.e_InitiatedLB) —> Idle;

49 }

50

106

51
52
93
54
55
56
o7
o8
99
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

Chapter 8 Appendix

state Waiting {
during:
on(ICompDirectedLB.e LockReplyByAS)|[pending_requests.peek (). get(
’publisher’) = ’LoadBalancerCoord’] —> Running;

on(ICompDirectedLB.e_LockReleaseByAS){
print ">>>>>> During Waiting>>>>> LB >>>remove AS from queue";
pending_requests.remove ();
pending_requests.peek ().get(’publisher’)==’LoadBalancerCoord’

—> Running;
}

on(ICompDirectedLB.e LockRequestByAS) {
print ">>>>>> During Waiting>>>>> AS >>> insert AS queue";
pending_requests.add(ICompDirectedB.e_LockRequestByAS) ;
send ICompDirectedLB.e_LockReplyByLB = new LockReply ();

}

}
state Running {
entry:
print ">>>>>> Entry Running >>>>> Load Balancer >>> Proceed LB";
send I[BaseDirectedLB.e_ LB_CoordinationCMD = new
CoordinationCommand () {
command = ’proceed’;
coordRule = ’StateCoordinationRule’;
b
during:
on (IBaseDirectedLB.e_EndedLB) — Idle;
on(ICompDirectedB.e_LockRequestByAS){
print ">>>>>> During Run>>>>> LB >>> insert AS in queue';
pending _requests.add(ICompDirectedLB.e_LockRequestByAS);
send ICompDirectedLB.e LockReplyByLB = new LockReply ();
}
exit:

print ">>>>>> During Run>>>>> LB >>> remove LB queue";

pending_requests.remove ();
send ICompDirectedLB.e_LockReleaseLB = new LockRelease ();

}

private interface IBaseDirectedLB for LoadBalancerCoord{

requires {
ConstituentState e_StartedLB_UnderUtilized = {E | E instanceof

’ConstituentState’
&& E.applicationState = ’StartExecuting’
&& E.serverLoad = ’UnderUtilized’}

ConstituentState e.EndedLB = {E | E instanceof ’ConstituentState’
&& E.applicationState =— ’EndExecuting’}

107

Chapter 8 Appendix

103

104 ApplicationTerminated e_TerminatedLB = { E | E instanceof

105 ’ApplicationTerminated’}
106 ApplicationStarted e_InitiatedLB = { E | E instanceof

107 ’ApplicationStarted’}
108 }

109

110 provides {

111 CoordinationCommand e_LB_CoordinationCMD ;

112}

113 }

114

115 interface ICompDirectedLB for LoadBalancerCoord{

116 requires {

117 LockRequest e LockRequestByAS = { E | E instanceof ’LockRequest’}
118 LockRelease e LockReleaseByAS = { E | E instanceof ’LockRelease’}
119 LockReply e_LockReplyByAS = { E | E instanceof ’LockReply’}
120 }

121

122 provides {

123 LockRequest e_LockRequestByLB;

124 LockReply e_LockReplyByLB;

125 LockRelease e_LockReleaseByLB;

126}

127 }

Listing 8.4: Specification of the LoadBalancers “State”-coordinator

1 private interface IStateCoordinatorLB for WrappedLoadBalancer{

2 requires {

3 CoordinationCommand e_CoordinationCMD = {E | E instanceof

4 ’>CoordinationCommand’
) && E.coordRule = ’StateCoordinationRule’}
6

7 provides {

8 ConstituentState e_StartedLB :=

9 before execution (void

10 org .dummy. loadbalancer . MigrationPlanner.plan(String load))
11 if (load =’UnderUtilized’) {

12 serverLoad = load;

13 applicationState =

14 >StartExecuting’;
15 }

16

17 wait when (e_StartedLB) until (e_CoordinationCMD){

18 switch (e_CoordinationCMD .command){

19 case ’proceed’: proceed;

20 case ’suspend’: suspend;

21 }

22 }

23

24 ConstituentState e EndedLB := after execution (void

25 org .dummy. loadbalancer . Migrator. migrate (..)){

108

26
27
28
29

Chapter 8 Appendix

applicationState = ’EndExecuting’;

}
}
}

Listing 8.5: Specication of LoadBalancers inner role that is responsible for connecting
it to the coordinator of the “State”-coordination rule

8.2 Internal Design of EventArch 2.0

This section gives a textual description of the internal design of EventArch 2.0 and
a graphical overview of the defined packages and their relations to each other. This
description is given on a rather abstract level. An overview of the internal design
of EventArch 2.0 is presented. It is an extended version of the section of the thesis
that is concerned with the implementation of EventArch 2.0. In the following, a more
detailed description is given. The design of each package is presented in the form of
a UML class-diagram. The description is intended to provide background knowledge
for future extension of the language.

8.2.1 Abstract

This subsection gives a textual description and a graphical overview of the internal
design of EventArch 2.0. The purpose of each major package is explained shortly.

Design-Description

The internal design of the language can be divided in a compilation-part and a
runtime-part. The overall task of the compilation part is to read an architectural
specification that was written by the architectural designer in the EventArch 2.0
language (short: “EventArch 2.0 specification”) and to translate it to certain target-
languages (Java, C++, AspectJ, AspectC++). Several files are created from that
specification, each in a specific target language.

The overall task of the runtime-part is to implement the representation of the to-
be-coordinated applications on the architecural-level and to provide an environment
that allows for integrating them with each other. Integration is achieved according
to the architectural setup that is defined in an EventArch 2.0-specification. The
runtime-part can be further devided into classes that have been generated from the
EventArch 2.0 specification and into classes that constitute the runtime-environment
of the language. Important to note here is, that not every Architectural Event Module
(AEM, see section 2.2.1) is wrapping legacy code. The architectural designer can
define EventArch-statemachines in the specification. Those are translated into Java-
code and can be used at runtime. In case of statemachines, the AEMs are wrapping
generated applications. For further details on this topic, consult the paragraphs about
the packages of the runtime-part in this section.

109

Chapter 8 Appendix

As described in section 2.2.2 of the thesis, incoming events are selected by “Selectors”.
Every interface-action (e.g. method invocation and wait-when-block) is associated to
a specific selector. Selector-design is a crucial part of defining an EventArch 2.0
specification.

Another language-feature is the “wait-when-block”. A defined wait-when-block causes
the wrapped application to suspend operation after having published a certain event.
Execution can be proceeded if a specific event has been selected. The wait-when-
block commands the wrapped application to wait for a specific event after having
sent a specific event. It is a means to induce tight-coupling between AEMs.

In EventArch 2.0, AEM-instances can be encapsulated into “instance-groups”. An
instance-group is a common scope for the contained AEM-instances. Instance-groups
can be the target of an event-transmission. The implementation of instance-groups
relies on JMS-topics as well. Instance-groups can be nested.

Composite AEMs are implemented as topics (see 2.2.2). To associate each event to a
certain scope, EventArch 2.0 introduced a standard-attribute “targetGroup”. Every
event is published to the scope that is indicated by its targetGroup-attribute.

Graphical Overview
The package-diagrams that have been presented in section 2.2.2 are reprinted here
for the sake of completeness.

Compilation-part and runtime-part are briefly described in the following. The output
of parsing a specification is an “object-tree”. That object-tree represents the specifi-
cation at runtime and contains all information that is relevant for code-generation. As
the object-tree was generated by an Xtext-generated parser, it has to be considered
Xtext-dependent and is therefore likely to be subject to future change. To become
independent from future Xtext-changes, this object-tree is wrapped by Wrapper-
classes that are contained in the applevel-package (package A). The wrapping is per-
formed by the core-package (package 3). The wrapped object-tree is used at runtime
from numerous other packages. It is encapsulated in a container (“DataCatalogue”)
that is defined in the elements-package (package C). It is persisted after compilation
and loaded at runtime by the Serializer-package (package 7). The Xtext-dependent
object-tree is used in the generator-package (package 1) to generate the target code
(Java, C++, AspectJ, AspectC++). The code-generation maps the architectural
setup that was defined in the EventArch-specification to application-code (wrappers,
event-definitions, statemachine-definitions, aspect-code). This code is written in one
of the target-languages (Java, C++, AspectJ, AspectC++). The generated code em-
ploys the EventArch-runtime environment to implement the desired behaviour. The
target code is compiled to executable code by the parser-package (package 5). To do
this, the language-processors of the respective target languages are employed. The
whole compilation-process is controlled by the compiler-package (package 6).

The runtime-behaviour is implemented mainly by the applevel-package (package A)
and the generated classes (package B). Generated aspects are concerned with trig-

110

Chapter 8 Appendix

\create intermediate
jcode from app

|
| «WrappedB:
W ppedby

|
|
|
|
|
|
| org.eventarch.core.applevel _ i
|
|
|
|
|
|
|

A |

oa.m<m3ﬁmaj.ooﬂm.m_m:._msm_ s
c |

«generate»

generated_classes

Abstract-Design

org.eventarch.language.generator

Compilation-Part

1

|
| €use»

|model-objects represent
/_\m_umo_zamﬁ_o n-statements

org.eventarchlanguage.validation _

9 |

org.eventarch.anguage.eventarch|

org.eventarch language. parser.antir |

IIIIIIIII p) _Awohmmﬁmsl 2
T \7
- _wuse» | |
employ as _ __ _ «usen
wrapper-object i | fenwrapy |parse app to get
| | | xtext-dependent
| | _oc_.mnﬁ.qmm
org.eventarch.core I
IIIIIIIIIIIIIIIIIII 3 - ___ 1
| .\7
|
g . __ I
(store wrapped object-tree | |
for compile time) | _*:mms
| parse config and app:

r |wrap object-tree; -

| |generate intermrediate cod"d-eventarch core.compiler parser

| | 5

| | D |

[org.eventarch.core.compiler [et [

| 5 L _' IIIIIIII |compile generated classes |

_ U T:mmmvv

| kusen | |getInfos focreate
|(parse and store _a:mma compilation classpath
|app-configuration) _Um_.m_mﬁ wrapped object-tree land filenames

| Vi S —— |

| org.eventarch.core.serializer _ get required | 5rg eventarch.utils /v

| 7 _ file pathes 8 _

| 0

- - _____ 4

Figure 8.1: Package diagram of the compilation-part of the EventArch 2.0-

implementation

111

Chapter 8 Appendix

org.eventarch.core _

org.eventarch.language.eventarch _

e I | |
| P e mm e m e — = — ———— = Fe—mm ==
_ [I «usen _ Abstract-Design |
[_ _m:.._u_o{ as _ «WrappedBy» Runtime-Part _ «TranslatedTo»
_ | wrapper-object, |
| | W W 174
| | |org.eventarch.core.applevel generated_classes
! _ A _ wusen B
I _ ———— e — — .
leuser | I M event publishing |
| | I _ ullean application logic |
| ﬂmﬁ.cﬂm E_,mmnmﬁ: | represent and execute <ysen |
jobject-treg | z‘m:mﬁjon-_géamﬁ_c:m (Adaptee; [
|

(for nciu__m_-ﬁ_ﬂ:m_..”_
|

org.eventarch.

core.applevel.commands

publish standard-events)

|
|
|
|
|
|
|
_ “usen
|
|
|
|
|
|
|

| |
| |
| |
| |
| |
_ _ (command representation;
| |
| |
| |
| |
| |
|

L gOcan__mn_m.ﬁ_V

|
|
|
|
|
|
|
G || cuse: |
| initialize |
|
_ #usen _ e I _
) | |
levent representation; _ | |
m<m3.uaommm:@ data-structures; | | cusen I
ygonnection-details) | _ﬁaﬁ_‘_me.m wrapped object-tree) _
org.eventarch.core.elements _ _ | org.eventarch.core.runtime _ I
C g ——- D _
[M _ |
| | | |
| ! [_
_ [L 8E
. _ «Lsen (deserialize
| . ject-
|standard-event representation | basic event wrapped object-tree)
_ _ functionality
|
A4

org.eventarch.core.eventtypes _

ICompilation-Part |

Yoo 4

org.eventarch.language.generator _

1

org.eventarch.core.serializer _

7

EventArch 2.0-

diagram of the runtime-part of the

implementation

Figure 8.2: Package

112

Chapter 8 Appendix

gering event-publishing. The employed pointcuts are triggered (as defined by the
EventArch-programmer) at certain “state-changes of interest” (function calls) of the
wrapped application. The generated statemachines implement the state-based be-
haviour that was defined by the architectural designer in the Event Arch-specification.
Moreover, the applevel package implements general communication services like event-
reception and JMS-interfacing. For details see the respective sections in the “detailed
design”-subsection of this section and the following sequence-diagrams.

Sequence-Diagram The sequence diagram in figure 8.3 describes the sequence of
actions for the compilation process on package-level. As part of abstract design, there
are no concrete method-names used in the figure. Instead, the purpose of each action
is described. The sequence diagram of the compilation part presents the compilation-
process. The actions have been described in the “Graphical Overview”-part of this
subsection.

Figure 8.4 indicates the sequence of actions that are typically performed at runtime.
At AEM-startup, the wrapped object-tree has to be loaded from hard disk. It has
been saved to hard disk at the end of the compilation process. The Serializer-package
is also responsible for this deserialization of the wrapped object-tree. Thereafter,
the unwrapped object-tree has to be recreated again, as it could not be persisted at
the end of the compilation process. The references between the wrapped object-tree
and the unwrapped object-tree also have to be recreated. In the following, the JMS-
connection is set up by classes of the applevel-package. Having JMS-connectivity
established, the applevel-package and the generated classes are responsible for event-
processing. The approach depends on whether the AEM wraps an applicatioin that
was written in EventArchs 2.0 statemachine-language, or whether the AEM wraps
legacy-code. For details see the generator/generated-classes description in subsection
8.2.2.

113

Chapter 8 Appendix

7c@.m<m3ﬁm33.c:_ 7 7 org.eventarch.core 7

7 org.eventarch.core.compiler : org.eventarch.language.parser.antir org.eventarch.

parse configuration of

—

QGRS_ compilati
process

employ util, antlr-parser

C compilation process

and generator;
make object-tree
xtext-independent;

create xtext-dependent object-tr

to represent EventArch-applicaito

generate intermediate code (Java, lmumnﬁ:_“ C++, AspectCPP)

language.generator

org.eventarch.
core.compiler.parser

org.eventarch.
core.serializer

from xtext-dependent pbject-tree

compile intermediate code to binary files
T

for reuse atruntime

|
|
T
|
|
|
|
|
|
persist xtext-independent object-tree
|
|
|
|
1
|
|
|

Figure 8.3: Sequence diagram of the compilation-part of the EventArch 2.0-

implementation

114

Chapter 8 Appendix

org.eventarch.core.applevel 7 7

generated Classes

. control
startup-process

initialize and setup

org.eventarch.
core.runtime

employ serializer-

and core-package

org.eventarch.
core.serializer

org.eventarch.
core

obtain xtext-independent

object-tree from harddisk

recreate xtext-dependent object-tree

and link its elements as wrapped-objects
to xtext-independent objedt-tree obtained
from harddisk

JMS-connections

receive required events and

invoke certain methods
of wrapped-application
in response

make use of event-publishing

«aspect-based activity»

capabilities

inform about reception

tear-down JMS-connectign

at shut-down

of awaited events

provide events
in response to
certain function-calls
of wrapped-application;
implement wait-behaviou

r

______________________________________I

EventArch 2.0-

runtime-part of the

Figure 8.4: Sequence diagram of the

implementation

115

Chapter 8 Appendix

8.2.2 Detailed

This subsection describes major packages of the internal design of EventArch 2.0 in
further detail. The design of each package is presented in the form of a UML class-
diagram. The diagrams contain all classes of the respective package with important
functions, plus those classes of other packages that serve as magjor collaboration part-
ner. This description will prove to be useful for possible future extensions of the
language.

org.eventarch.core

Diagram: 8.5.

This package consists of a single class, the Loader. It is responsible for wrapping
the Xtext-generated object-tree (therefore: Xtext-dependent). This object-tree con-
tains all information of the EventArch 2.0-specification that is to be compiled. The
result of the wrapping-operation is an Xtext-independent object-tree. The loader
employs classes of the applevel-package as Wrapper-classes. Several other packages
are employed to achieve the following tasks:

e utils-package: parse configuration file
— contains pathes to the to-be-coordinated applications

— contains output-pathes of the code that was generated from the EventArch
2.0 specification

e antlr-package: parse EventArch 2.0 specification (antlr-parser generated by
Xtext-framework)

e generator-package: translate parsed specification (object-tree) to target lan-
guages (Java, Aspect], C++, AspectC++)

The loader is called by the compiler-package and finally returns control to it.

116

Chapter 8 Appendix

117

org.eventarch.language.parser.antir
0 guage.p org.eventarch core.compiler
EventArchP
Ve ane EventArchCompiler
A |
| |
| |
| wusen ——_———————— |
e : __ I parse user-defined |
lpt Pt s e wllate il _m<m3r933-m.nn__nm:cj (.er-file) lgusen
< (to obtain a representation as _:umﬂmm compilation-config and
ERGroup I | xtext-dependent object-tree |user-defined EventArch-application;
T_.__mms org.eventarch.core I generate javalc++ intermediate code;
(employ as _ Iwrap object-tree to not longer depend
lwrapper-object | _o: xtext-dependent object-tree)
ERCompositeAEM __Hcﬂ wrapping | |
| Xtext-dependent : [tarch] o _
|object-tree Loader U E | |org.eventarch.language.generator
ERSelector ”I |||||||| | _ « Ir_m%WIIIIIIIW EventArchGenerator
toad() [cileate infermediate
+_omaLE:ﬂ_3.mc . codeg from user-defined
-parse specification EventArch-application)
ERAppinterface T
|
|
|
ERAppEventModule _
| wusen
_:um:mm and store app-configuration

*c‘cgm._:_jm_ input-path of
|to-be-parsed files and
|output-path of generated files)

org.eventarch.utils

ConfigParser

Figure 8.5: Class-diagram of EventArchs 2.0 core-package

Chapter 8 Appendix

org.eventarch.core.compiler

org.eventarch.core |

Loader

N

| wusen

'(parse compilation-config and
|user-defined EventReactor-application;
jgenerate java/c++ intermediate code;
Iwrap object-tree to not longer depend
:Dn xtext-dependent object-tree)

Drg.everrtarch.aol'e.mmpiler
I org.eventarch.core.compiler.parser

EventArchC il
Ve ompne AspectJParser AspectCPPParser

+CompileAppLevel()

(compile intermediate code)

I
| sy

|{persist wrapped object-tree
yfor later reuse at runtime)

org.eventarch.core.serializer |

Serializer

Figure 8.6: Class-diagram of EventArchs 2.0 compiler-package

Diagram: 8.6
The compiler-package consists of a single class, EventArchCompiler. It controls the
compilation process by delegating certain tasks to other packages:

e Loader-package: translate EventArch 2.0 specification to target languages (Java,
AspectJ, C++, AspectC++) and wrap object-tree (see above)

e parser-package: translate the target-code into executable-code by employing
the respective compilers

o serializer-package: persist wrapped object-tree for later use

118

Chapter 8 Appendix

org.eventarch.core.applevel

Diagram: 8.7

The applevel-package implements all standard-functionality of an Architectural Event
Module (AEM). This functionality is mainly encapsulated in the classes ERGen-
eratedAppFEventModule, ERGeneratedAppFEventModule, and FERApplInterface. The
standard-functionality is used by the generated classes, i.e., the code that has been
generated from the EventArch 2.0 specification. The following functionality is pro-

vided:

receive incoming events and determine the matching selectors of the respective
Primitive Interfaces (ERGeneratedAppEventmodule.getMatchingSelectors())

employ commands-package to invoke methods of the wrapped applications (ER-
GeneratedAppEventModule.addInvocation())

employ generated statemachine to perform event-processing according to the
EventArch 2.0 specification

publish events according to their targetGroup-attribute
(ERAppEventModule.publish())

inform wrapped application if an event has arrived, that it is currently waiting
for (wait-when-block) (ERGenerated App EventModule.getCommand())

provide interfacing to communication-platform (JMS, see chapter 2.2.2; FR-
GeneratedAppEventModule.init())

119

Chapter 8 Appendix

org.eventarch.language.eventarch generated_classes

Téqmnnmamw\s

|see detailed class diagram of package
lorg.eventarch language eventarch

|

A

|

|

|

| €usen

Isee detailed class diagram of
mmjm.mﬁmaln,mmmmm

org.eventarch.core.applevel W
ERSelector - Eamnwm_ujcm%amma:
gel ulel
*+getQuery() +addSelector() —
ERBaseEventModule
+getSelectors()

ERAppEventModule
ERApplinterface +init() L _________suse»r|
+publish() (connection-det:

+getSelectors()

+addinterface()
+getinterfaces()

registered tapics)

usex»

?cMms " | scope-representation
|(encapsulates event-conditions like uses: | for event-publishing)
10nExpressions, Selectors; publisH event; “
lvisibility managed on per-Interface basis) manage jprimitive | v
“ T | ERCompositeAEM
| _g:mmz +gethModule()

L _ﬁmcnnm%muﬂmmm:ﬁmgo:
ERGeneratedAppEventModule |for event-publishing)
|
+activeConsumers() “
+addInvocation() |
+getCommand() z_\
+init()
-invokelnvocation() ERGroup ERBaseGroup
+publishEvent() +getName() +getKey()
-recelveEvents() ——
+registerEvent()
+run()

T
|
|
| L e
|

(command representation
for command execution)

| wusen

|{obtain app-representation
“ e.g.: ERGroup,
|ERCompositeAEM-objects)

(connection-detail
number of consumers)

| Kusen

I{event representation
W_.oq event-processing)

oﬂ.m<m3m-nr.gv‘m.m_m3m:m

|
AV

7 ERBaseEventType

Il DataCatalogue

ActiveMQUI

i ERSelector

L ProceedCommand
A
-

1 RetryCommand
FV

rz SuspendCommand
,

fk ReturnCommand

«usey
|define matching-conditions
| for event-matching

|

1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Class-diagram of EventArchs 2.0 applevel-package

Figure 8.7

120

Chapter 8 Appendix

generator
Diagram: 8.8

The generator is responsible for generating classes that represent types and instances
of Primitive AEMs that were defined in the EventArch-specification. The follow-
ing classes/aspects are generated (curly-braces represent names that the generator
extracts from the specification):

e {EventModuleName}: class represents the type of a Primitive AEM. This
class inherits most of its functionality from the class ERGenerated AppEvent-
Module (applevel-package)

e {EventModuleName} _ {InstanceName}: class represents a Primitive
AEM-instance of a specific type. It is responsible for attaching the instance
to an instance-group (see 8.2.1) and triggering initialization and start of the
Primitive AEM

¢ {EventModuleName}StateMachine: class implements an
EventArch-statemachine. It is responsible for determining and executing state-
dependent actions

e {EventModuleName}{InterfaceName }Interface: aspect implements the
wrapped legacy-applications event-publishing which is done in response to calls
on certain methods of the legacy-code

{EventName}: class implements a user-defined event

The generator performs code-generation as a mapping of the object-tree (represents
the EventArch-specification) to source-code. More specifically, specific model-objects
of the object-tree are mapped to specific classes, functions, aspects of the target
language(Java or C++). To generate code, the object-tree is traversed and the
code-blocks that were obtained from translating specific model-objects into code are
combined. Specific functions of the generator are responsible for translating specific
types of model-objects. The call-graph of the functions resembles the hierarchy of
the model-objects in the object-tree. There are specific functions to translate the
following model-objects:

e user-defined events (compile Bvent TypeJava(), compileEvent Type CPP())

e Primitive Interfaces (compile PrimitivelnterfaceJava,
compile PrimitiveInterface CPP)

e Primitive AEMs (compilePrimitiveAEMJava, compilePrimitiveAEMCPP)
— with EventArch 2.0-statemachine (compileJavaStateMachine())
e Composite AEMs (generateElementsCompositeModuleAssociation())

The following functions are concerned with generating code for

121

Chapter 8 Appendix

generated_classes

«generated»

{EventModuleN ame}StateMachine

wgenerateds
{EventModuleName}

wgenerateds
{EventName}

«genarated»
waspect»
{EventModuleN ame}
{InterfaceMName}interface

-"T\«generate»

itranslates model-objects to

| class/aspect-definitions

org.eventarch language generatar ‘
T

EventArchGenerator

+compileEventTypeCPP()
+compileEventTypeldaval()
+compileJavaStateMachine()
+oompilePrimitivelnterfaceCPP()
+compilePrimitivelnterfaceJaval)
+compilePrimitive AEMCPP()
+compilePrimitive AEMJava()
+getJavaCodeForState()
+getJavaCodeForTransitionAction()

|
peuses

|model-objects represent
\L;pen:ificatiu n-statements

org.eventarch.language.eventarch ‘

Composite AEM

Primitive AEM

Interface

Selector

EventCreation

Invoke

Figure 8.8: Class-diagram of EventArchs 2.0 generator-package

122

Chapter 8 Appendix

EventArch 2.0-statemachines.
o compileJavaStateMachine(): structure the code, call the other functions

e getJavaCodeForState(): generate code to map a matched selector to a transition
action for a specific state

o getJavaCodeForTransitionAction(): generate code to perform a transition ac-
tion, e.g., “send an event”, “call a function in the wrapped system”

generated classes
Diagram: 8.9

The generated classes are concerned with processing received events and publishing
new events. To perform both activities, the runtime-environment is used. Events
to be sent are created in the interface-aspects or the statemachine-class. They are
sent using the runtime-environment, especially the applevel-package. Sending events
is necessary in response to a triggered pointcut or in response to a received event
(statemachine-action). Events are received by the runtime-environment (applevel-
package) and either passed to the generated code for further processing (statema-
chines) or translated into method-invocations (legacy-applications). Method-invocations
are implemented using the respective languages reflection-features. The WaitOn-
behaviour is implemented by the generated aspect: the execution is not returned to
the wrapped legacy-application until the expected event has been received.

8.3 Grammar of EventArch 3.0

This subsection contains an extract of the grammar that defines the architecture
description language “EventArch 3.0”. According to this grammar

e roles are PrimitiveAEMs that have been marked by the keyword “role”

e Role-Binders are PrimitiveAEMs as well. They may be defined inside Com-
partments or in the module-section

e the binding- and creation commands are special “TransitionActions” (used in-
side statemachine)

e the atomic-block may just include binding- or creation commands

e roles can be bound at DCAEM-creation or by a subsequent “Bind”-command

1

2 ModuleSection:

3 {ModuleSection} ’modules’ ’{’ (primitivemodules+=PrimitiveAEM |
compositemodules+=CompositeAEM | roleBinders+=RoleBinder)
*7}’

4

123

Chapter 8 Appendix

org.eventarch.core.elements _

generated_classed

wusess

method-invocation)

StateMachine

<l

r T T T T T T (event-pubfishing; ~—~ ~~~~ ~

|

|

I
LV

[l
org.eventarch.cote.applevel
T

ERGeneratedAppEventModule

«generated» «generateds
{EventModuleName}StateMachine | [{EventModuleMame} {InstanceMName}
-doTransition() +main()
+input()

use for:
- represent user-defined
Commands and Events
«generated» «generated»
{EventName} {EventModuleName}

+getinstance()

+getinstance()

+start()

«generated»
waspect»
{EventModuleName}
{InterfaceMame}interface

+init()
+publish()

+run()

P +activeConsumers()
-executeCommand()

-receiveEvents()

major share of
functionality
is inherited

used for

- publishing of

provided events

- reception of input-event
of WaitOn-Expression

Figure 8.9: Class-diagram of EventArchs 2.0 generated classes

124

10
11
12

13

14
15
16

17

18
19
20

21

22
23
24

25

26
27
28

29 ;

30
31
32

33
34
35
36

37

38
39
40

41

42
43
44

45

Chapter 8 Appendix

Compartment :
‘compartment’ name=ID ’'{’ (roleAEMs += RoleAEM | interfaces+=
Interface | roleBinders+=RoleBinder)x '}’
RoleAEM :
"role’ (primitiveAEM=PrimitiveAEM)
RoleBinder:
‘roleBinder ' primitive AEM=PrimitiveAEM

Transition:

'on’ (7 (events+=[Selector| QualifiedName] (’||’ events+=]
Selector| QualifiedName])«)? ’)’ (’[’ condition=Condition
'17)? (’{’ transitionActions+=TransitionAction* ’}’)? name
='—>’ nextState=[State] ’;’

TransitionAction:

(action=EventCreation /x| action=Send x/| action=Invoke | action=Print |
action=VarAssignment | action=EventSend | action=
ConditionalTransition | action=DcaemAction | action=AtomicBlock)

AtomicBlock:

“atomic’ ’{’ actions+=DcaemAction+ '}’

DcaemAction:

action=Bind | action=Unbind | action=CreateDcaem | action=
DestroyDcaem

Bind:

dcaem=ID ’[’ ’composite’ ']’ '+=" '{’ (roleReference =
RoleReference) '}’

Unbind :

dcaem=ID ’[’ ’composite’ ']’ '—=" "{’ (roleReference =
RoleReference) '}’

Y

CreateDcaem:

dcaem=ID ’[’ ’composite’ ']’ ’:=’ ’{’ (roleReferences+=
RoleReference (’,’ roleReferences+=RoleReference)*)? '}’
'<—>" "{’ (baseReference=BaseReference) '}’

125

46
47
48

49

50
o1
52

53

54
95
o6
57

Chapter 8 Appendix

BaseReference:
primitive=[PrimitiveAEM] ’.7 ((’{’ primitivesInterfaces+=]
Interface] (’,’ primitivesInterfaces+=[Interface])x ’}’) |
primitivesInterfaces+=[Interface])
RoleReference:
(compartment=[Compartment] ’.7)? (role=[PrimitiveAEM]) 7.7 (
rolesInterface=[Interface])
DestroyDcaem :
"destroy > dcaem=ID ’[’ ’composite’]’

8.4 EventArch 3.0 Diagrams

This section presents several class-diagrams to describe the necessary changes to
FEventArch 2.0 in standard UML-notation. The following class diagrams just contain
functions that have been added or severely modified in EventArch 3.0. One sequence-
diagram is contained in that subsection. It is concerned with the process of respecting
scope-restrictions when publishing an event.

org.eventarch.core.applevel

class-diagram: figure 8.10

As indicated by the package-diagram 4.4, the applevel-package got several new or
changed dependencies:

e It is used by the generated classes (see figure 8.12) to determine the current
DCAEM-association of a Primitive Interface

— ERAppEventModule. getInterface ByName()
— ERApplnterface.isLocalToDcaem()
e [t is used by the generated classes to publish the new built-in events
— ERGenerated AppEventModule. publish BindingEvent()
— ERGenerated AppEventModule. publishCreation Event()

e To receive special-events (bind/unbind, create/destroy), the applevel-package
relies on the standard-interfaces provided by the core-package

— ERGenerated AppEventModule. getMatchingSelectors()

Several functions have been added to the applevel-packages, especially to the class
ERGEnerated AppEventModule:

e these functions are concerned with processing the received bind- /creation-events:

126

Chapter 8 Appendix

org.eventarch.core.eventtypes |

BindEvent CreateDcaemEwvent

UnbindEvent DestroyDcaemEvent

generated_classes

| USER ‘
lemploy new Exception-types |
org.eventarch.core.applevel | !

|

|
|
| 1
| |
| o _euse»_ | _‘ ERSelector
: publish new binding/creation events):
| v ! 0
: ERGeneratedAppEventModule : ‘ EROnExpression
| |
| |
| +doRequestedBindingAction() |
I | _ |+doRequestedBindingAction() I ERBaseEventModule -
+enforcelnterfacesVisibilityRestrictionsOnEvent() :
+getMatchingSelectors() |
+getMatchingBindingSelectorOrNull() | 2 -
+getMatchingC reationSelectorOrull() |respect dcpem-visibility
+processBindEvent() :
+processCreateEvent() | ERAppinterface
+processDestroyEvent() (N
+processUnbindEvent()
+publishBindEvent() +setDcaem()
+publishBindingEvent() +isLocalToDcaem()
+publishCreationEvent()
+publishCreateEvent()
+publishDestroyEvent()
+publishEventToAllRoleBindersIfBaseModule()
+publishEventToGlobalScope() ERAppEventModule
+publishUnbindEvent() +getinterfaceByNamef() |
+setEventsVisibilityAttributes
ty, 0 f
LN T «usen
: :employ new Exception-types
| |
| | ‘ ERBaseGroup 1 ERCompositeAEM
| |
| | IS
: _ : ‘ ERGroup ‘
wprovide»
| provide standard)interfaces
|
: org.eventarch.utils
I
org_eventarch_oore| | EventMotProcessedException ‘

| EventNotPublishedException ‘

Figure 8.10: Internal changes to applevel-package

127

Chapter 8 Appendix

getMatchingBindingSelectorOrNull()
doRequested BindingAction()
processBindEvent()
processUnbindEvent()
getMatchingCreationSelectorOrNull()
doRequestedCreationAction()
processCreateEvent()
processDestroyEvent ()

e many functions are concerned with publishing the new special events or with
publishing events to the new standard scopes:

publishBindEvent()

publishUnbindEvent()

publishBindingFEvent()

publishCreate Event()

publishDestroyFEvent()
publishCreationEvent()
publishEventToAllRoleBindersIfBaseModule()
publishEventToGlobalScope()

e many of the added functions of the applevel-package are concerned with managing-
or determining the visibility of events and the visibility-restrictions imposed by
their Primitive Interfaces:

ERGenerated AppEventModule. enforceInterfaces Visibility RestrictionsOnFEvent()
ERApplnterface.setDcaem()

ERApplnterface.isLocal ToDcaem()

ERGenerated AppEventModule. set Events Visibility Attributes()

org.eventarch.core
class-diagram: figure 8.11
The core-package experienced the following changes:

e an enumeration was introduced to mark a module as role-module, base-module,
or Role-Binder module:

TypeOfModuleMarker

e the Loader associates the module with the respective marker:

extractPrimitiveA EMsFromCompartment()
extractPrimitiveA EMsFromModuleSection()

128

Chapter 8 Appendix

org.eventarch.core.applevel

ERGeneratedAppEventModule

M

!

| wprovides
|provide standard interfaces
 set type of module

org.eventargh.core

Loader

€enums»
TypeOfModuleMarker

-extractPrimitiveAEMsFromCompartment()
-extractPrimitiveAEMsFromModuleSection()
-produceStandardinterface()
-produceTypeSpecificStandardinterface()

BASE_MODULE
ROLE_BINDER
ROLE_MODULE

Figure 8.11: Internal changes to core-package

129

Chapter 8 Appendix

e the Loader creates a standard interface for the module.

depends on the marker:

— produce TypeSpecificStandardInterface()
— produceStandardInterface()

Generator and generated classes
class-diagrams: 8.13 and 8.12

org.eventarch.core.elements |

StateMachine

generated_[lasses% |

«uses»

mmT T publish binding-/creaflon-events; ~ ~ ~ ~ |

respect dcaem-association of
primitive interfaces

org.eventarch.core.applevel

«generateds
{EventModuleN ame}
StateMachine

{EventModuleName}
_{InstanceName}

«generateds»

+setTopic()

wgenerateds
{EventName}

{EventModuleName}

wgenerateds»

| major share of]
functjional t)&

is inherited
wgenerateds
waspects

ERAppEventModule

+getinterfaceByNamel)

ERAppinterface

+isAttachedToDcaem()

ERGeneratedAppEventModule

+publishBindEvent
+publishUnbindEvent
+publishCreateEvent
+publishDestroyEvent

The type of which

{EventModuleName}
{InterfaceName}interface

i

uses:
respect dcaem-association of
primitive interfaces

Figure 8.12: Internal changes generated-classes

To implement EventArch 3.0, the generator also had to be changed:

e the generator can handle the new binding- and creation-statements. Relevant

130

Chapter 8 Appendix

generated classes |

org.eventarch.language.validation

M,
| «generatex»
Irespect dcaem scope when publishing events;
:publish binding-/creation events

EventArchValidator

M

org.eventarch.| Elr'IE.]IUEI
I

ge.generator

“usern

EventArchGenerator

+getlJavaCodeForDecaemAction()
+getSendBindingCommandCode() |-————— — —
+getRespactDeaemScopeCoda()
+printErorsAndAbortifAny()

|
|
|
|
|
|
|
:semantic: check
|
|
|
|
|

I
| USER

Ireprasent
:Df EventA

N

aorg.eventarch.language.eventarch

binding/creation statements
rch-specification

DecaemAction

Bind

CreateDcaem

Unbind

DestroyDcaem

Figure 8.13: Internal changes generator-package

13

1

Chapter 8 Appendix

functions:
— getJavaCodeForDcaemAction()
— getSendBindingCommandCode()

e the generator is aware of the scope-restrictions that are imposed on a Primi-
tive Interface by its current DCAEM-association. Changed behaviour: event-
publishing in statemachine; event-publishing on triggered pointcut. Relevant
function:

— getRespectDcaemScopeCode()

e the generator employs the validator for a semantic check and stops if errors are
found. Relevant function:

— printErrorsAndAbortIfAny()

Consequently, the generated classes have experienced some property- and behavioural
changes:

e those generated classes that represent module-instances (class-diagram:
{EventModuleName} _ {InstanceName}) that are contained in a Compartment,
have built-in access to the scope of this Compartment. Responsible function:

— setTopic()

e generated statemachines that are used as Role-Binder employ the applevel-
package to send binding- and creation-events. Relevant class:

— {EventModuleName}StateMachine

e generated statemachines employ the applevel-package to check the DCAEM-
association of a Primitive Interface. Relevant class:

— {EventModuleName}StateMachine

Sequence: respect DCAEM scope

The sequence diagram 8.14 describes the sequence of actions to check the DCAEM-
association of a Primitive Interface before event-publishing. These actions are per-
formed whenever a user-defined statemachine creates and publishes an event. The
depicted sequence of actions constitutes a dependency between the generated classes-
package (class {EventModuleName}StateMachine) and the language-core (applevel-
package). This in part implements the loose coupling of base and roles: neither roles
nor bases have to determine the receiver of the event specifically. Instead, the events
“scope” -attribute (determines destination-scope of the event) is set automatically to
the name of the common scope (DCAEM) of base and roles.

132

Chapter 8 Appendix

{EventModuleName}StateMachine ERAppEventModule ERAppinterface
sm em linter

T T T
|
input{) I

|
|
|
getinterfaceByName("inter") !

ERApplnterfaceinter

isAttachedToDcaem()

isAttached

getNameOfDecaemOrNull()

myDcaem

[
|
|
!
[
|
[
|
[
T
|
|
!
|
event setAttribute("scope", myDch?nem)
[
|

:

publish{event)

Figure 8.14: Sequence-Diagram: Respect DCAEM scope

133

Bibliography

1]

2]

[10]

JSR 343: JavaTM Message Service 2.0.
https://jcp.org/en/jsr/detail?id=343

RFC3986. Uniform Resource Identifier (URI): Generic Syntaz.
https://tools.ietf.org/html/rfc3986

SCROLL role-binder feature. https://github.com/max-
leuthaeuser/SCROLL /wiki/Implementation-Role-Feature-6.

XText web-presentation.
https://eclipse.org/Xtext/

Datu Buyung Agusdinata and Daniel DeLaurentis. Specication of system-of-
systems for policymaking in the energy sector. IAJ - The Integrated Assessment
Journal, 8(2):1-24, 2008.

Matteo Baldoni, Guido Boella, and Leendert van der Torre. powerjava: Onto-
logically founded roles in object oriented programming languages. In Proceedings
of the 2006 ACM Symposium on Applied Computing, SAC 06, pages 1414-1418,
New York, NY, USA, 2006. ACM.

Stephanie Balzer, Thomas R. Gross, and Patrick Eugster. ECOOP 2007 -
Object-Oriented Programming: 21st Furopean Conference, Berlin, Germany,
July 30 - August 3, 2007. Proceedings, chapter A Relational Model of Object
Collaborations and Its Use in Reasoning About Relationships, pages 323-346.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

K. Beck and W. Cunningham. A laboratory for teaching object oriented thinking.
In Conference Proceedings on Object-oriented Programming Systems, Languages
and Applications, OOPSLA ’89, pages 1-6, New York, NY, USA, 1989. ACM.

John Boardman and Brian Sauser. System of systems the meaning of of. In Pro-
ceedings of the 2006 IEEE/SMC' International Conference on System of Systems
Engineering, 03 2006.

Radu Calinescu and Marta Kwiatkowska. Foundations of Computer Software.
Future Trends and Techniques for Development: 15th Monterey Workshop 2008,
Budapest, Hungary, September 24-26, 2008, Revised Selected Papers, chapter
Software Engineering Techniques for the Development of Systems of Systems,
pages 59-82. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

134

Bibliography

[11]

[12]

[20]

[22]

Ward Cunningham and Kent Beck. A diagram for object-oriented programs.
In Conference Proceedings on Object-oriented Programming Systems, Languages
and Applications, OOPLSA 86, pages 361-367, New York, NY, USA, 1986.
ACM.

Daniel DeLaurentis. 43rd AIAA Aerospace Sciences Meeting and Ezxhibit, chapter
Understanding Transportation as a System-of-Systems Design Problem, pages

323-346. American Institute of Aeronautics and Astronautics, Berlin, Heidel-
berg, 2005.

Daniel DeLaurentis, Oleg Sindiy, and William Stein. SPACE Conferences and
Ezxposition, chapter Developing Sustainable Space Exploration via System-of-
Systems Approach. American Institute of Aeronautics and Astronautics, 2006.

Simon Dobson, Spyros Denazis, Antonio Fernandez, Dominique Gaiti, Erol Ge-
lenbe, Fabio Massacci, Paddy Nixon, Fabrice Saffre, Nikita Schmidt, and Franco
Zambonelli. A survey of autonomic communications. ACM Trans. Auton. Adapt.
Syst., 1(2):223-259, December 2006.

E.A.Kendall. Agent roles and role models: New abstractions for multiagent
system analysis and design. International Workshop on Intelligent Agents in
Information and Process Management, 1998.

Rolf Hennicker and Annabelle Klarl. Foundations for Ensemble Modeling — The
Helena Approach, pages 359-381. Springer Berlin Heidelberg, Berlin, Heidelberg,
2014.

Stephan Herrmann. Programming with roles in objectteams/java. Papers from
the AAAI Fall Symposium, November 2005.

Valentin Kennke. Adopting Event-Based Modularization for modular implemen-
tation of coordination patterns. Diplomarbeit, TU Dresden, 2015.

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. An overview of aspectj. In Proceedings of the 15th Furo-
pean Conference on Object-Oriented Programming, ECOOP 01, pages 327-353,
London, UK, UK, 2001. Springer-Verlag.

Thomas Kiithn, Max Leuthauser, Sebastian Gotz, Christoph Seidl, and Uwe AB-
mann. Software Language Engineering: Tth International Conference, SLE 2014,
Visteras, Sweden, September 15-16, 201/. Proceedings, chapter A Metamodel
Family for Role-Based Modeling and Programming Languages, pages 141-160.
Springer International Publishing, Cham, 2014.

Max Leuthauser and Uwe Afimann. Enabling view-based programming with
scroll: Using roles and dynamic dispatch for etablishing view-based program-
ming. In MORSE/VAO 15 Proceedings of the 2015 Joint MORSE/VAO Work-
shop on Model-Driven Robot Software Engineering and View-based Software-
Engineering, 2015.

Somayeh Malakuti. An overview of event-based facades for modular composition

135

Bibliography

23]

[24]

[25]

[20]

[27]

[28]

[29]

and coordination of multiple applications. Technical Report, 08 2015. http://nbn-
resolving.de/urn:nbn:de:bsz:14-qucosa-203204.

Somayeh Malakuti and Mariam Zia. Adopting architectural event modules
for modular coordination of multiple applications. Technical Report, 07 2015.
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-175973.

Cesare Pautasso and Erik Wilde. Why is the web loosely coupled? a multi-
faceted metric for service design. In IN: PROC. OF THE 18TH WORLD WIDE
WEB CONFERENCE, 2009.

Christian Piechnick, Sebastian Richly, Sebastian Gotz, Claas Wilke, and Uwe
ABmann. Using role-based composition to support unanticipated, dynamic
adaptation-smart application grids. Proceedings of ADAPTIVE, pages 93-102,
2012.

Kateryna Rybina, Waltenegus Dargie, Rene Schone, and Somayeh Malakuti. Mu-
tual influence of application- and platform-level adaptations on energy-efficient
computing. Conference Paper, 04 2006.

Andrew P. Sage and Christopher D. Cuppan. On the systems engineering and
management of systems of systems and federations of systems. Inf. Knowl. Syst.
Manag., 2(4):325-345, December 2001.

Liping Zhao. Designing application domain models with roles. In Model Driven
Architecture. European MDA Workshops: Foundations and Applications, Lecture
Notes in Computer Science, 2005.

Haibin Zhu and MengChu Zhou. Role-based collaboration and its kernel mech-
anisms. [EEE Transactions on Systems, Man, and Cybernetics, Part C (Appli-
cations and Reviews), 36(4):578-589, July 2006.

136

Confirmation

I confirm, that I created this work independent of foreign contributions, using no
other sources than those, that have been indicated in this work.

Dresden, 23.05.2016

	Introduction
	Motivation and Problem Statement
	Overview

	Background
	System of Systems
	EventArch 2.0
	Concepts
	Implementation
	Diagrams

	Role-based Modeling
	Coupling Strategies

	Related Work
	Requirements
	Features
	OT/J
	Other Role-based Languages
	Areas of Improvement
	OT/J
	Other Role-based Languages

	Concepts of EventArch 3.0
	Base, Role, and Compartment
	Dynamic Composite AEM and Role-Binder
	Inner Roles and Atomic Block
	Diagrams

	Internal Design of EventArch 3.0
	Implementation of the Concepts
	Base, Role, and Compartment
	Dynamic Composite AEM and Role-Binder
	Inner Roles and Atomic Block
	Other Concepts

	Further Discussion and Design Alternatives

	Evaluation of EventArch 3.0
	Advantages
	Disadvantages
	Reflections on the Fulfillment of the Requirements
	Use case
	Application to the Example Use case
	Presentation of the implementation
	Advantages shown by the implementation

	Conclusion
	Future Work

	Appendix
	Additional Source-Code
	OT/J source-code
	``State''-coordination rule

	Internal Design of EventArch 2.0
	Abstract
	Detailed

	Grammar of EventArch 3.0
	EventArch 3.0 Diagrams

	Bibliography

