
 

 

 

Developing a Decision Making Approach 

for District Cooling Systems Design using 

Multi-objective Optimization 

 

A Dissertation Submitted  

to Faculty of Mechanical Science and Engineering  

at TU Dresden by  

 

Aslan Mohamed Mustafa Kamali 

 

Submitted on 26.04.2016 

Defended on 29.06.2016 

to Attain Doctoral Degree in Engineering 

 

Supervisor:  

Prof. Dr.-Ing. Clemens Felsmann 

Institute of Power Engineering 

Chair of Buildings Energy Systems and Heat Supply 

 

Dresden, Germany 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



i 

 

 

 

 

 

﴿يَا أَيُّهَا النَّاسُ إِنَّا خَلَقْنَاكُمْ مِنْ ذَكَرٍ وَأُنْثَى وَجَعَلْنَاكُمْ شُعُوباً وَقَبَائِلَ 
 لِتَعَارَفُوا إِنَّ أَكْرَمَكُمْ عِنْدَ اللَّهِ أَتْقَاكُمْ إِنَّ اللَّهَ عَلِيمٌ خَبِيرٌ﴾

 13الآية  – سورة الحجرات

 
“O people, we created you all out of a male and a 

female, and have made you into nations and tribes, so 

that you might come to know one another. Verily, the 

noblest of you in the sight of God is the one who is 

most deeply conscious of Him. Behold, God is all-

knowing, all-aware” 

Quran 49:13 
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Abstract 

 

Energy consumption rates have been dramatically increasing on a global scale within the last 

few decades. A significant role in this increase is subjected by the recent high temperature 

levels especially at summer time which caused a rapid increase in the air conditioning 

demands. Such phenomena can be clearly observed in developing countries, especially those 

in hot climate regions, where people depend mainly on conventional air conditioning systems. 

These systems often show poor performance and thus negatively impact the environment 

which in turn contributes to global warming phenomena. In recent years, the demand for 

urban or district cooling technologies and networks has been increasing significantly as an 

alternative to conventional systems due to their higher efficiency and improved ecological 

impact. However, to obtain an efficient design for district cooling systems is a complex task 

that requires considering a wide range of cooling technologies, various network layout 

configuration possibilities, and several energy resources to be integrated. Thus, critical 

decisions have to be made regarding a variety of opportunities, options and technologies.  

 

The main objective of this thesis is to develop a tool to obtain preliminary design 

configurations and operation patterns for district cooling energy systems by performing 

roughly detailed optimizations and further, to introduce a decision-making approach to help 

decision makers in evaluating the economic aspects and environmental performance of urban 

cooling systems at an early design stage. 

 

Different aspects of the subject have been investigated in the literature by several researchers. 

A brief survey of the state of the art was carried out and revealed that mathematical 

programming models were the most common and successful technique for configuring and 

designing cooling systems for urban areas. As an outcome of the survey, multi objective 

optimization models were decided to be utilized to support the decision-making process. 

Hence, a multi objective optimization model has been developed to address the complicated 

issue of decision-making when designing a cooling system for an urban area or district. The 

model aims to optimize several elements of a cooling system such as: cooling network, 

cooling technologies, capacity and location of system equipment. In addition, various energy 

resources have been taken into consideration as well as different solar technologies such as: 

trough solar concentrators, vacuum solar collectors and PV panels. The model was developed 

based on the mixed integer linear programming method (MILP) and implemented using 

GAMS language.  
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Two case studies were investigated using the developed model. The first case study consists 

of seven buildings representing a residential district while the second case study was a 

university campus district dominated by non-residential buildings. The study was carried out 

for several groups of scenarios investigating certain design parameters and operation 

conditions such as:  Available area, production plant location, cold storage location 

constraints, piping prices, investment cost, constant and variable electricity tariffs, solar 

energy integration policy, waste heat availability, load shifting strategies, and the effect of 

outdoor temperature in hot regions on the district cooling system performance. The 

investigation consisted of three stages, with total annual cost and CO2 emissions being the 

first and second single objective optimization stages. The third stage was a multi objective 

optimization combining the earlier two single objectives. Later on, non-dominated solutions, 

i.e. Pareto solutions, were generated by obtaining several multi objective optimization 

scenarios based on the decision-makers’ preferences. Eventually, a decision-making approach 

was developed to help decision-makers in selecting a specific solution that best fits the 

designers’ or decision makers’ desires, based on the difference between the Utopia and Nadir 

values, i.e. total annual cost and CO2 emissions obtained at the single optimization stages.  
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Zusammenfassung 

 

Die Energieverbrauchsraten haben in den letzten Jahrzehnten auf globaler Ebene dramatisch 

zugenommen.  Diese Erhöhung ist zu einem großen Teil in den jüngst hohen 

Temperaturniveaus, vor allem in der Sommerzeit, begründet, die einen starken Anstieg der 

Nachfrage nach Klimaanlagen verursachen. Solche Ereignisse sind deutlich in 

Entwicklungsländern zu beobachten, vor allem in heißen Klimaregionen, wo Menschen vor 

allem konventionelle Klimaanlagensysteme benutzen. Diese Systeme verfügen meist über 

eine ineffiziente Leistungsfähigkeit und wirken sich somit negativ auf die Umwelt aus, was 

wiederum zur globalen Erwärmung beiträgt. In den letzten Jahren ist die Nachfrage nach 

Stadt- oder Fernkältetechnologien und -Netzwerken als Alternative zu konventionellen 

Systemen aufgrund ihrer höheren Effizienz und besseren ökologischen Verträglichkeit satrk 

gestiegen. Ein effizientes Design für Fernkühlsysteme zu erhalten, ist allerdings eine 

komplexe Aufgabe, die die Integration einer breite Palette von Kühltechnologien, 

verschiedener Konfigurationsmöglichkeiten von Netzwerk-Layouts und unterschiedlicher 

Energiequellen erfordert. Hierfür ist das Treffen kritischer Entscheidungen hinsichtlich einer 

Vielzahl von Möglichkeiten, Optionen und Technologien unabdingbar. 

 

 

Das Hauptziel dieser Arbeit ist es, ein Werkzeug zu entwickeln, das vorläufige Design-

Konfigurationen und Betriebsmuster für Fernkälteenergiesysteme liefert, indem aureichend 

detaillierte Optimierungen durchgeführt werden. Zudem soll auch ein Ansatz zur 

Entscheidungsfindung vorgestellt werden, der Entscheidungsträger in einem frühen 

Planungsstadium bei der Bewertung städtischer Kühlungssysteme hinsichtlich der 

wirtschaftlichen Aspekte und Umweltleistung unterstützen soll. 

 

Unterschiedliche Aspekte dieser Problemstellung wurden in der Literatur von verschiedenen 

Forschern untersucht. Eine kurze Analyse des derzeitigen Stands der Technik ergab, dass 

mathematische Programmiermodelle die am weitesten verbreitete und erfolgreichste Methode 

für die Konfiguration und Gestaltung von Kühlsystemen für städtische Gebiete sind. Ein 

weiteres Ergebnis der Analyse war die Festlegung von Mehrzieloptimierungs-Modelles für 

die Unterstützung des Entscheidungsprozesses. Darauf basierend wurde im Rahmen der 

vorliegenden Arbeit ein Mehrzieloptimierungs-Modell für die Lösung des komplexen 

Entscheidungsfindungsprozesses bei der Gestaltung eines Kühlsystems für ein Stadtgebiet 

oder einen Bezirk entwickelt. Das Modell zielt darauf ab, mehrere Elemente des Kühlsystems 

zu optimieren, wie beispielsweise Kühlnetzwerke, Kühltechnologien sowie Kapazität und 

Lage der Systemtechnik. Zusätzlich werden verschiedene Energiequellen, auch solare wie 

Solarkonzentratoren, Vakuum-Solarkollektoren und PV-Module, berücksichtigt. Das Modell 

wurde auf Basis der gemischt-ganzzahlig linearen Optimierung (MILP) entwickelt und in 

GAMS Sprache implementiert. 

https://www.dict.cc/deutsch-englisch/Optimierung.html


x 

 

Zwei Fallstudien wurden mit dem entwickelten Modell untersucht. Die erste Fallstudie 

besteht aus sieben Gebäuden, die ein Wohnviertel darstellen, während die zweite Fallstudie 

einen Universitätscampus dominiert von Nichtwohngebäuden repräsentiert. Die Untersuchung 

wurde für mehrere Gruppen von Szenarien durchgeführt, wobei bestimmte Designparameter 

und Betriebsbedingungen überprüft werden, wie zum Beispiel die zur Verfügung stehende 

Fläche, Lage der Kühlanlage, örtliche Restriktionen der Kältespeicherung, Rohrpreise, 

Investitionskosten, konstante und variable Stromtarife, Strategie zur Einbindung der 

Solarenergie, Verfügbarkeit von Abwärme, Strategien der Lastenverschiebung, und die 

Wirkung der Außentemperatur in heißen Regionen auf die Leistung des Kühlsystems. Die 

Untersuchung bestand aus drei Stufen, wobei die jährlichen Gesamtkosten und die CO2-

Emissionen die erste und zweite Einzelzieloptimierungsstufe darstellen.  Die dritte Stufe war 

ein Pareto-Optimierung, die die beiden ersten Ziele kombiniert. Im Anschluss wurden nicht-

dominante Lösungen, also Pareto-Lösungen, erzeugt, indem mehrere Pareto-Optimierungs-

Szenarien basierend auf den Präferenzen der Entscheidungsträger abgebildet wurden. 

Schließlich wurde ein Ansatz zur Entscheidungsfindung  entwickelt, um Entscheidungsträger 

bei der Auswahl einer bestimmten Lösung zu unterstützen, die am besten den Präferenzen des 

Planers oder des Entscheidungsträgers enstpricht, basierend auf der Differenz der Utopia und 

Nadir Werte, d.h. der jährlichen Gesamtkosten und CO2-Emissionen, die Ergebnis der 

einzelnen Optimierungsstufen sind. 
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Chapter One 

  Introduction, Motivation and Objectives 
 

1.1  Introduction 

It is globally observed that annual electricity consumption is continuously increasing, especially in 

summer seasons, within the last few decades. A significant role in this increase is subjected by the 

recent high temperature levels at summer time which causes rapid increase in the air conditioning 

demands keeping in consideration that the vast majority of air conditioning and refrigeration systems 

are electrically powered systems. This can be clearly observed in developing countries, especially 

those in hot climate regions, where they depend mainly on conventional air conditioning systems. 

These systems have a huge negative impact on the environment which in turn amplifies the global 

warming phenomena. Meanwhile, it’s widely believed nowadays that district energy systems have a 

great potential to confront the global warming phenomena by reducing the greenhouse gas emissions 

caused by the energy sector, mainly heating, electricity and increasingly cooling. Therefore, many 

developed countries have started since a decade or two to adopt and promote the use of centralized or 

decentralized district cooling systems as a result of several factors such as the uncertainty of the 

energy prices, the limitation of the existing energy resources and newly imposed environmental 

regulations. A great deal of focus is being paid specially to hybrid integrated systems using fossil fuels 

and renewable energy sources. These district cooling systems are offering an alternative solution due 

to their high-energy efficiency and more friendly impact towards the environment and thus an option 

for a more sustainable development.  

 

However, these district systems involve a wide range of possible technologies to be integrated with 

several possible configurations to be adopted, and are supposed to provide energy to a certain range of 

users, i.e. buildings, with varying energy demand profiles depending on each user’s type of application 

and purpose of use.  All that makes it very difficult to obtain a design that offer the desired best 

economic and environmental benefits as much as possible. Therefore, designing such a system 

requires a sophisticated method or tool developed specifically to obtain an optimized system that 

meets the energy requirements of a certain district while achieving minimum possible cost and CO2 

emissions.  

 

Many researchers in the literature have used various energy tools available in market or developed 

customized mathematical models to carry out the task of designing and evaluating district cooling 

systems. The aim of this work is to develop and introduce a new mathematical model to address the 

complicated issue of decision making when designing an optimized district cooling system (DCS) 

while considering various plant design options and possible DC network layouts as well as taking 

several  energy resources into consideration to achieve the ultimate goals of meeting the cooling 

demands in a district with best possible energy conservation, economic effectiveness and environment 

preservation levels. In addition a special focus was paid to design of DCS in context of hot climate 

regions. This first chapter introduces the current status of the cooling market and the technologies 

utilized within both developed and developing countries. The potentials of the district cooling market 

in hot climate regions in the scope of the global campaign to address the climate warming challenges 

which represent the motivation of this work are presented. Finally, the objectives of the developed 

decision making model within this study are stated and explained. The second chapter presents an 

 



4 

 

overview of the main ideas and techniques implemented in the commonly used energy evaluation tools 

a long with decision making algorithms and optimization models developed by other researchers to 

address similar design and optimization problems in the scope of district energy systems. The 

mathematical optimization model developed in this work and the optimization environment are 

described in chapter three alongside decision making approach adopted. The modelling of the different 

DC units and equipment are explained in details in the same chapter. Chapters four and five present 

detailed descriptions of two different case studies, with various buildings characteristics, investigated 

in this work using the developed optimization model and adopted decision making approach. The 

results obtained for both single objective optimizations, i.e. cost and CO2 emissions separately, and 

multi objective optimizations, i.e. cost and CO2 emissions combined, are discussed for each case study 

and for several scenarios regarding different design and operational conditions. At the end of this 

thesis, the general conclusions obtained during the investigation and future work recommendations are 

listed and discussed in chapter six.   

 

1.2 Background  

Since the first United Nations Conference regarding sustainable development that took place in 

Stockholm 1972, the notion of sustainability has been gradually gaining worldwide attention. Since 

then the United Nations has been assessing the link between climate change, sustainability and 

greenhouse gas emissions throughout the works of hundreds of researchers around the globe. 

Eventually, the Kyoto Protocol was adopted in 1997 and became effective in 2005. However, many 

measure and policies are still to be adopted and implemented in order to achieve a worldwide impact. 

The European Environment Agency has stated in 2002 that “addressing climate change and the 

activities causing climate change is a key challenge for the 21
st
 century, for both developed and 

developing countries, if sustainable development is to be attained”. Thus, many laws, programs and 

action plans have been adopted on a worldwide level represented by UN as well as local levels 

represented by individual governments and private companies especially in developed countries. 

However, many developing countries are still falling short on this matter when compared to the 

measures implemented by developed countries.  

 

The main sectors responsible of the greenhouse emissions are the building, industry and transportation 

sectors.  According to the United Nations Environment Program (UNEP) the building sector 

contributes up to 30% of global annual greenhouse gas emissions and consumes up to 40% of all 

energy [1]. In Europe, Buildings are responsible for 40% of energy consumption and 36% of CO2 

emissions in the EU, states the European Commission. Two thirds of the energy consumption in 

buildings is used for heating and cooling. Although heating represent the major part of building energy 

consumption in Europe, cooling is becoming increasingly important in the recent years due to the 

rising ambient temperatures. The rapid growth of technologies and thus the increasing use of electric 

appliances in buildings, and the less space per capita in offices and commercial buildings, are other 

major factors that contribute in the increasing cooling demand in the building sector. Today cooling 

systems available in the cooling market can be categorized into five main types or configurations: 
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1) Single-Zone AC systems: Also known are room air conditioners (RAC). These are the most 

common used systems for single rooms or zones. There are two conventional arrangements of 

these systems. A) Window-Type air conditioner where all the components, i.e. compressor, 

condenser, expansion valve or coil, and evaporator are enclosed in a single box, Figure  1.1a. This 

unit is usually fitted in a slot made in the wall of the room, or more commonly a window sill. B) 

Ductless Split-Unit air conditioner where the components are split into two parts: the outdoor unit 

and the indoor unit, Figure  1.1b. The outdoor unit, fitted outside the room, contains components 

like the compressor, condenser and expansion valve. The indoor unit comprises the evaporator or 

cooling coil and the cooling fan. For this unit no slot in the wall or window of the room is 

needed. Sometimes one outdoor unit is connected to more than one indoor unit to serve multiple 

zones.  

 

   
Figure  1.1: Single-Zone AC systems: a) Window-Type. b) Ductless Split-Unit. Source: http://www.n-

m-services.eu   

 

 

2) Multi-Zone AC systems: these are used to cool two or more zones/rooms within one building. 

The most common known examples of these systems are: A) Packaged AC Systems where all 

the components, namely the compressor, condenser (which can be air cooled or water cooled), 

expansion valve and evaporator are housed in a single box. This box is usually installed outside 

the building and often on top of the roof. Cooled air is thrown by the high capacity blower out of 

the evaporator, and it flows through the ducts laid through various rooms. B) Ducted Split-Unit 

AC system where the components of a packaged system are split into two units with the 

compressor and condenser in an outdoor casing and the expansion valve and cooling coil in an 

indoor casing and the compressed refrigerant being the energy transmitter between the two units 

however cooled air is transferred from the indoor units to multiple rooms via a duct network. C) 

VRF (Variable Refrigerant Flow) is another arrangement that is becoming very popular recently 

which is basically a ductless Split-Unit AC system style but with multiple indoor units. The 

compressed gas/refrigerant passes through several individual indoor units located in various 

rooms.  

 

3) Central Chillers or Stand-Alone AC systems where the cooling energy is produced locally in 

each individual location or building. The cooling energy is then distributed throughout the 

various zones within the building either by cold air via ducts or cold water via pipeline. The 

prominent element in these systems is the chiller unit that comprises all the four major 

components of an AC system. Cold storage tanks are also a common unit to be used within these 

systems.  

[a] [b] 

http://www.n-m-services.eu/
http://www.n-m-services.eu/
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Figure  1.2: Multi-Zone AC systems: a) Packaged AC, b) Ducted Split-Unit AC, and c) VRF (Variable 

Refrigerant Flow). Source: http://www.carrier-comfort.com  & http://ceu.construction.com   

 

 

4) Centralized District Cooling systems these systems are used to serve more than one buildings 

where the cooling energy is produced at a central plant and then distributed to the distanced 

locations or buildings, also known as consumers, through a cold water pipelines networks. 

Multiple production plants, i.e. chillers units, and multiple storage tanks can occurs in these 

systems at different location.  

 

5) Distributed/De-Centralized District Cooling systems where the cooling energy can be 

produced in multiple locations and distributed through several relatively small pipelines networks 

that might or might not be interconnected for support and reliability purposes. Certain buildings 

might have their own Stand-Alone Chillers where cooling energy is produced and consumed 

locally.  

 

 

[a] [b] 

[c] 

http://www.carrier-comfort.com/
http://ceu.construction.com/
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1.3 District Cooling  

District Cooling (DC) is one of the main cooling trends that offer a promising solution with much 

better energy efficiency and environmental impact than conventional cooling technologies. In general, 

the term District cooling (DC) is widely associated with systems where mass production and 

distribution of cooling energy is the main theme. The basic idea of such systems is that the production 

of cooling energy, often in the form of chilled water, takes place in a central plant installed at one 

location and then distributed to the consumers throughout a network of pipelines.  Such a district 

cooling system is named as Centralized DCS in this work. In many modern cases the single 

production plant is replaced by few distanced plants each serving a group of final consumers 

connected to its sub-network. The sub-networks might be interconnected themselves for backup 

concerns. This kind of systems is named De-centralized DCS in this work. The location of the 

production plants, in both centralized and de-centralized systems, is dependent of several factors most 

importantly is the availability of free or cheap primary energy within or near by the served region. The 

geographical distribution between the served consumers can play an important role as well. In fact, 

this later factor has a major role in the decision making between a centralized or decentralized DC 

system. Cold storage tanks can interfere in the distribution network with the purpose of enhancing 

performance. They might be installed at the production plants, consumer buildings, or intermediate 

stations with in the DC network. If the chilled water, or any other cooling agent, is designed to return 

back to the production plant using a return line, then the system is known as a closed circuit or loop. 

Other systems might consist of an open circuit network where the cooling agent is not returned back. 

Free or Natural cooling is a good example of that where cold water is taken from a cold source nearby, 

e.g. ground water or lakes …etc., and pumped into a building for cooling purposes then returned back 

to the ground or lake. F demonstrates a general example of District Cooling systems and their work 

concept. 

 
Figure  1.3: District Cooling System general scheme and main work concept [2]. 
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1.3.1 District Cooling advantages  

From a cooling perspective, primary energy consumption and CO2 emissions are the two essential 

indicators of how environmental friendly a cooling system is. Many studies view district cooling 

technology as a key player in the struggle against global warming phenomena. This is due to the fact 

that the maximum cooling capacity requirement in DCS is less than the maximum cooling capacity 

requirements of all individual separated, i.e. stand alone, cooling systems replaced by that DC system 

and thus less primary energy consumption and eventually less CO2 emissions. The final report of the 

Renewable Smart Cooling in Urban Europe (RESCUE) project [2] states that, in general, DC needs 

around 15% less capacity for the same cooling loads than separated cooling systems. According to the 

same project, if district cooling would cover 25% of the cooling market in Europe, CO2 emissions 

could be reduced by 42 to 50 million tons per year which is equivalent to the average annual emissions 

from 9,500,000 passenger vehicles. Another major environmental advantage of DC systems is their 

large potential of using resources that are not aggravating the environment such as energy from 

different kinds of renewable energy resources as well as energy from low temperature of subsoil, 

surface and underground water. In addition, DCS have high ability to combine different kinds of these 

energy resources in the same time which offers a high flexibility in selecting most effective and 

economic production of chilled water which in turn represents an advance level of environmental 

consciousness. Other environmental advantages of DC systems involve contributing in reducing the 

urban island effect as the cooling energy production plant can be installed in a location where it will 

not thermally overload the urban region and also reducing the noise level by eliminating noise created 

by the stand alone air-conditioning units.   

 

On top of these environmental advantages, DC systems offer great help in reducing electricity 

consumption and peak shaving. Meeting peak loads of electricity demand profiles represent a 

significant challenge for many cities, countries and regions especially in summer. Such a challenge 

can be rationally dealt with by DC systems due to their high full-load COPs which allows reducing 

overall electricity consumption and to their high potential of adapting storage technologies in peak 

shaving. RESCUE project stated that if DC would cover 25% of cooling market in Europe, electricity 

consumption could be reduced by 50 to 60 TWh per year which is equivalent to the average 

consumption of 10 million citizens [2]. Such benefit can be much greater in hot climate regions where 

the greater part of the electrical demand occur in the summer period due to cooling purposes.  

 

On municipality level, district cooling systems provide significant benefits through the significant 

amount of infrastructure that will be added to the municipality where DCS is built. Such infrastructure 

gives those municipalities advantages in attracting new development in comparison to other 

communities where district energy systems are not available. DCS also provide an ability to capture 

cash flows that were previously leaving the community to pay for the natural gas and electricity that is 

imported. The opportunities of using local energy sources like combined heat and power and 

renewables within DC serves the goal of keeping more of the money used to import energy circulating 

within the community. 

 

On property owner level, DC systems offer a better rational management ability of cooling energy 

production, if any, in comparison with lots of scattered stand-alone systems and reduce the amount of 

non-beneficial space in buildings such as boiler and chiller space which can be used for other 

beneficial uses instead once a DC system is adopted. This contributes in reducing the overall capital 

costs in newly constructed buildings due the elimination of chiller rooms or the reallocation of that 

space into a revenue generating space which is a significant benefit for commercial and industrial 
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buildings.  In addition, building owners can expect more stability in energy consumption costs due to 

the higher efficiencies of DCS and their ability to combine different primary energy resources. District 

cooling systems are often designed with standby cooling capacity and their distribution networks are 

usually built with backup measures. Such measures provide DCS with greater reliability than most 

buildings can achieve with stand-alone systems. This eventually results in reduced insurance costs due 

to lower risks.                

                                                                                                                                                                             

1.3.2 DC Resources and Technologies 

When planning a district cooling system, two major elements of the system have to be designed or 

chosen with great consideration. These are cooling energy production (cooling source and technology) 

and the distribution system, i.e. DC network. The aim is to plan an   optimized DC system with 

performance and economics in mind in addition to environmental aspects.  

Typically, there are three common ways to produce chilled water, i.e. cooling energy, at district 

cooling plant: Compressor driven chillers with high efficiencies, absorption chillers benefiting from 

surplus heat, or other sources like “Free Cooling” from nearby water resources such as deep lakes, 

rivers, aquifers or oceans. The decision of which technology to adopt for certain DCS has to be made 

with deep consideration of the local conditions residing in that district.  The option of combining two 

or more of these technologies is also possible and should be made in a way to achieve most possible 

profit or better performance within the available energy resources, economic and environmental 

parameters. The following sections describe each one of these three technologies with brief details: 

 

1. Vapor Compression Chillers 

It is the most common technology in air conditioning systems. Vapor-compression chillers are 

most often driven by electricity and in some other cases by turbines or reciprocating engines. 

Centrifugal or screw compressor-chillers are the most common in central chilled water 

applications. Coefficient of Performance (COP) of conventional mechanical vapor-compression 

chillers varies in the range of 3.0 to 8.0 [3]. District cooling systems are typically cooled with 

water from natural resources.  

 

2. Absorption Chillers 

Absorption chillers are another type of heat pumps that work with a similar concept to that of 

vapor-compression chillers with the distinct that they use heat as a driving energy instead of 

electricity where they utilize an absorption cycle, consisting of a generator and absorber, instead of 

the electric driven compressor.   According to the way the heat is used as a driving source, 

absorption chillers can be classified into indirect fired or direct fired chillers. Indirect fired 

absorption chillers are commonly used in chilled water production system for a district cooling 

network due to their ability to utilize waste or surplus heat available. Absorption chillers can be 

described by number of “effects” or number of “stages”. Number of effects represents the number 

of times the heat input into the chiller is used internally. While number of stages in an absorption 

chiller refer to the number of evaporator/absorber pairs operating at different temperature levels 

within an absorption chiller. Typical COP’s for commercially available absorption chillers range 

from 0.65 to 0.8 for single effect units and 0.9 to 1.2 for double effect units. In addition to the cold 

water cycle, a source of cooling water is required to reject heat from the unit condenser. The 

higher investment cost of absorption chillers and their lower COPs in compare to vapor-

compression chillers make it very difficult to justify the use of absorption chillers in district 

cooling applications on economic basis without a source of surplus or low cost waste heat energy 

being available. A good example would be the use of absorption chillers in combination with 
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district heating systems using the over-capacity of CHP units during summer periods. Sometimes 

specific technical reasons or local regulations require the use of absorption chillers. 

 

3. Free Cooling 

Free cooling or ‘Natural Cooling’ is a term used to describe utilizing the available natural 

resources of cold energy in the surroundings such as air, underground water, lakes, rivers, oceans, 

snow and ice. In this technology there are no expenses of producing the cooling energy other than 

the electricity consumed by fans or pumps to circulate the cooling medium, e.g. air or water. Using 

air as a free cooling source is limited to regions where it’s cold outside for most of the year. The 

most common source for free cooling is the cold water from lakes and oceans. In the northern 

regions the temperature of water at or near the surface of a lake or stream will be variable with 

ambient temperature. If the lake or stream is deep enough, the temperature of the water will at a 

minimum temperature that is almost constant throughout the year. Thus, deep levels of lakes, 

rivers, or oceans can be used as a source of chilled water. The chilled deep water may be 

employed directly in cooling systems, or indirectly by providing cooling energy through a heat 

exchanger to a circulating network of chilled water. Another possible source for free cooling is 

snow or ice where a large amount of one of them can be stored during the winter season to be used 

later as a source of cooling energy during the summer. This kind of applications is available for 

example in Sundsvall, Sweden. 

 

A very important element in rational planning for district cooling systems is the use of cold storages. 

Thermal storages are often integrated in the systems to reduce the chillers’ equipment requirements 

and lower operating costs by shifting peak load to off-peak times. Their concept of work is to produce 

cooling energy during the non-peak periods, especially if electricity prices were lower than peak load 

periods, store it and then use it later at peak load periods.    

 

1.4 Cooling Market  

The relatively new regulations adopted by several developed countries and international organizations 

which have put enormous restrictions on conventional cooling technologies along with the rapid 

increase in cooling load demands resulting from the global warming phenomenon have created a 

market situation that is thriving for new environmentally friendly cooling technologies. On the other 

hand, developing countries has been falling short on environmental regulation which left the 

introduced environmentally friendly technologies in an open market competition against the 

conventional cooling systems and technologies. This has left design engineers with various competing 

technologies and design options to select from in addition to a great deal of uncertainty regarding the 

claimed performance of the new technologies and their suitability to certain applications and regions. 

Hence, the task of deciding for which cooling system to invest in has become a complicated process 

that requires taking many aspects into consideration such as performance and economics in addition to 

the environmental aspects of each of these systems and their sub options and technologies. Therefore, 

it is useful to have an overview to the cooling market in developed and developing countries.  
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1.4.1 Cooling in developed countries: Europe as an example  

At the end of 2006, Euroheat & Power, in cooperation with 13 partners across Europe and with 

support from the Intelligent Energy Europe programme, has concluded a two years project known as 

the ECOHEATCOOL project. The project covered 32 countries including EU 27 Member States, two 

accession and three EFTA countries. The main objective was to assess the heating and cooling 

markets, to look for possibilities for more district heating and district cooling in Europe, to provide 

recommendations for policy makers and develop a tool for assessing the efficiency of heating and 

cooling options [4]. The project results report has stated that the largest slice of the primary energy 

consumption in Europe is used for heating and that cooling seems to be catching up. The project has 

observed a strong cooling market expansion during the previous decade due to the fact that the 

standard of living has made this type of equipment affordable and that peoples comfort standard 

requirements have increased.  The second work package final report has predicted that with saturation 

rate of 60% for the service sector and 40% for the residential sector the cooling market will show a 

four fold increase between 2000 and 2018, corresponding to 500 TWhc for the EU-15 and 660 TWhc 

for all 32 countries [5]. The project has concluded that a fast and wide implementation of energy 

efficient District Cooling has a major role to play in order to meet the challenges for Europe, in order 

to provide a robust and environmentally sound framework for future energy solutions.  

  

 

Figure  1.4 published in a report on the economic and market analysis of air conditioning products, 

carried out for the European Commission (DG ENTR) by a group of contractors including Armines 

(lead contractor), BRE and VHK [6], shows the market shares, by cooling capacity, for different air 

conditioning systems. The term ‘Rooftop’ in this figure represent the packaged systems and the term 

‘Chiller’ include all three central cooling systems. The figure indicates that 59% of the European 

cooling demand is met with Central chillers, i.e. Stand-Alone Chillers, Centralized, or De-Centralized 

District cooling systems. However, official statistics of DC in the EU27 countries show that the 

district cooling market corresponds only to 1% of the present of the cooling market in EU27 countries 

[7]. 

 
 

Figure  1.4: Estimated market share of Air Conditioning Systems by Type in Europe in 2008 (Shares 

by Cooling Capacity) [6]. 
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In order to handle the climate change challenges, the European Union has adopted an Energy policy 

with environmental targets to be met by 2020 for EU-27. The targets are to reduce Greenhouse gas 

emissions by 20%, reach a share of 20% of renewable energy and reduce primary energy consumption 

by 20% in 2020. Many legal definitions, quantifications and legislations have been put forward to 

achieve these targets. Regarding achieving the energy efficiency target of reducing primary energy, the 

Energy Efficiency Directive (EED) 2012 has recognized District Cooling as one of the potential 

solutions and set forward several obligations for the EU-27 member states to comply with such as 

carrying out comprehensive assessment of the potential high efficiency cogeneration and efficient 

district heating and cooling application, to be updated every 5 years, and taking adequate measures for 

efficient district heating and cooling infrastructure to be developed.  

 

With the background of the potential contribution of district cooling in achieving the EU 2020 

environmental targets, the RESCUE project was conducted from June 2012 to May 2015. The aims of 

the project were to address the key challenges for the further development and implementation of 

district cooling using low and zero carbon emitting sources and to enable local communities to reap 

the environmental and economic benefits of this energy efficiency and mature technology [2].  

 

Based on above, it can be concluded that the European cooling market is witnessing a rapid growth 

which will eventually lead into a higher use of primary energy and thus increasing the greenhouse gas 

emissions if no energy efficient solutions were adopted. The potential of District cooling to reduce the 

use of primary energy and the substantial CO2‐emissions is recognized by the European Union and 

therefore some legislation were adopted and implemented to promote district cooling investments 

within European local authorities and municipalities.  

 

1.4.2 Cooling in developing countries: Middle East as an example  

The status of cooling market in Middle East differs extremely from that in Europe. However, the 

underlying problems and challenges to be face are surprisingly similar. For a region that holds around 

49% of the world’s oil reserve, it’s hard to believe most of the Middle East countries are face domestic 

power concerns. The region is known for its high, and increasing, electricity consumption rates 

especially during the summer season when temperature reaches levels about 50ᵒC. Frost and Sullivan’s 

recent research suggests that the demand for power, water & energy in the Middle East could triple 

over the next 25 years.  Abhay Bhargava, Associate Director and Regional Head – MENA, Energy & 

Environment, Frost & Sullivan has stated: “Some of the highest per capita energy intensive countries, 

globally, are based in the Middle East and North Africa (MENA) region. This drives growth in 

demand for power in the region, which is expected to increase by over 7.0 percent annually until 2018. 

This is expected to create substantial opportunities for power generation projects across the region, 

based on not just conventional sources (hyrdocarbons), but also alternate sources,” 

 

Considering the climatic condition of the region cooling is an indispensable part of required living 

condition almost throughout the year. The hot climate of the region during the long summer period has 

made air conditioning the major power consuming sector. According to Frost & Sullivan, air 

conditioning consumes about 50% of the peak power load in Middle East [8]. What increases the 

energy crisis is that the cooling market is overwhelmingly dominated by conventional air conditioning 

systems. Single-Zone AC systems, e.g. window-type and split-unit systems represent the number one 

choice for consumers in Middle East especially in the residential sector. Although the same systems 

occur continuously in many non-residential areas, e.g. office building, packaged and VRF are the 

prominent choice in that sector.  
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Figure  1.5: A common seen in residential or office area in developing countries.  

 

However, the recent years have witnessed a growing interest for the authorities in Middle East, 

especially the golf region, to invest more in environmentally friendly air conditioning systems. The 

governments’ efforts to bring down energy consumption have paved the way for District cooling to 

enter the cooling market in Middle East. District Cooling industry was growing in the region since late 

90s, however growth between 2003 and 2008 has reached staggering rates of more than 60% [8].  

Thus, the regions hot climate, the authorities desire to reduce energy consumption, and the increased 

construction activities have set a great potential for district cooling in the Middle East cooling market.  

  

Today, Middle East continues to offer promising opportunities for District Cooling industry as it 

develops large green-field site and build new residential and commercial districts and cities. 

Prospering markets exist in most golf countries such as Saudi Arabia, Bahrain and Qatar with United 

Arab Emirates (UAE) being a leading robust market. Other regions in Middle East such as the 

Kurdistan region in northern of Iraq has also growing construction activities and plans for expanding 

Urban areas.  

 

From the above, is can be concluded that due to the energy crisis in the region and the current 

conventional status of the cooling market in Middle East along with the urban expansion going on in 

the region, district cooling will be the preferred technology  for new buildings coming up in the 

Middle East. However, significant efforts need to be spent on informing local authorities on the 

advantages and benefits of this energy efficiency and mature technology.  

 

 

 

 

 

 

 

 



14 

 

1.5 Cooling in hot climate regions 

Operating a cooling system in a hot climate region usually face many obstacles. One of the main 

obstacles is the high ambient temperature which has a negative impact on the COP values of the 

compression chillers. Most of the chillers produced and offered in the market are designed to work 

within a range of 30-35°C. However, ambient temperatures in many areas, e.g. sub-tropical regions, 

exceed the designed ambient temperature. In some cases it reaches up to 55 °C. Such high ambient 

temperatures can reduce the compression chiller COP sufficiently. More details on the impact of the 

hot climate effect on the chillers performance is to be presented in the case studies in this work. 

Investigating this phenomenon within this study has the aim of projecting some attention on the 

problem and providing some general recommendations for decision makers when designing a cooling 

system in hot climate regions. 

 

1.6 Motivation 

The current status of the energy sector and it dependence on fossil fuel clearly has a huge role in the 

global warming phenomenon. Cooling being one of the prominent sectors of energy consumption 

market has attracted great attention in recent years to attempts to enhancing the energy performance of 

cooling systems. The wide range of cooling technologies and design options has left decision makers 

in what can be described as blind spot regarding what is the best option to investing in in terms of not 

only economics but environmental aspects as well.  

 

Moreover, decision makers in developing countries seem to lack the informative background regarding 

total life cycle economics and efficient performance of cooling technologies. This can be clearly 

observed in the high rates of decisions made to invest in single-zone cooling systems which are mainly 

due to these systems low first investment costs and ease of installation.  

 

This background was the main motive of this work. Thus, a multi-objective, both total cost and 

greenhouse gas emissions, optimization model was developed to assist decision makers at early design 

stages to decide what the best technologies or design options to be adopted are in terms of economics 

and ecological aspects.    
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1.7 Work Objectives 

Considering the wide range of networking options, cooling energy producing technologies and energy 

resources integrating possibilities, optimal design and operation of the system comes out as an 

essential aspect in designing DCS especially when limited information is available such as at the first 

stages of the decision making process. The main objective of this thesis is to develop a methodology, 

approach, or tool to help decision makers evaluating the economic viability, potential energy savings 

and thus potential greenhouse gas emission reduction at the very early design stage. The tool has to 

include modellings for different energy conservation unit that can be included in cooling system. It 

also has to be flexible enough to consider different cooling technologies and various design 

configurations.  

 

Considering the main objective of this thesis, the following specific sub-objectives are adopted:   

 To carry out a comprehensive literature review regarding the main energy tools and 

methodologies currently available. This review will include energy evaluation, system 

simulation as well as mathematical optimization models for cooling systems. Based on this 

review, the type and methodology to be adopted in this thesis will be decided.  

 

 To develop a methodology, tool, or model to assist decision makers at early design stage.  

 

 To validate the developed tool or model on several small examples to assure results accuracy.  

 

 To implement the use of the developed methodology, tool, or model in investigating two 

different case studies with different categorization of buildings to be considered. The case 

studies will be taken from a hot climate region.   

 

 To generate estimated cooling load profiles for case study buildings to be investigated using 

the developed decision making assisting tool or model.  

 

 To develop a method to select representative days for buildings based on their estimated or 

measured cooling load profiles and function of use.  

 

 To investigate the performance of urban cooling systems in hot climate regions.  

 

 To attempt to obtain general conclusions and design recommendation from the two 

investigated case studies.  
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Chapter Two 

  Literature Review 
 

2.1 Introduction 

Each city district or urban area has its energy supply systems which often include cooling energy 

supply system.  Cooling systems can be consisting of centralized, de-centralized or stand-alone, 

completely separated, units. In order to design, synthesize and evaluate these systems and to analyze 

or enhance their performances often energy tools, decision making algorithms and optimization 

models are used. The selection of these tools, algorithms or models must not only fit the requirements 

of the user but also be compatible with the input data available such as cooling energy demand 

profiles, energy prices, cost of cooling technologies, building characteristic, available areas to be 

utilized and the local legal restrictions. 

 

This chapter represents an overview of the main ideas and techniques implemented in the energy 

evaluation tools, decision making algorithms and optimization models, been reviewed with in this 

research, which are used very commonly in the literature for the purpose of design, evaluation and 

optimization of cooling energy supply systems. It also represents an investigation of the suitability of 

these tools and models for different case studies and scenarios evaluated in the literature.  The main 

simulation and energy evaluation tools used to analyze the performance of the cooling energy systems 

in city districts or urban areas are reviewed in section 2.2. A brief overview of the common and recent 

decision making algorithms and criteria is presented in section 2.3. Optimization models and their 

implemented methodologies and techniques are presented in section 2.4 where different optimization 

approaches were reviewed for different application. Many investigated case studies found in the 

literature are presented in this section as well. Tools and models dealing with the topic of multi 

objective optimization are reviewed in section 2.5. 

 

The objective of the chapter is to define the scope of application of these tools and models and 

compare them in terms of applicability, usability and performance in order to come out with the 

suitable methodology or approach that serves the ultimate objectives of this work.    

 

2.2 Energy System Evaluation for District Cooling 

Since that energy performance analysis of an urban area often embrace a high scale investigation due 

to the technologies to be integrated and  the amount of data to be processed, most researchers tend to 

perform such investigations using energy evaluation tools. These tools are used to simulate and 

analyze energy performance of pre-designed or pre-existing systems. Some researcher use these tools 

for design purposes by running several simulations after implementing  certain design changes on a 

pre-designed systems to achieve a better overall performance. The type of energy tool to be selected 

usually depends on the geographical scale of the investigation, amount of input data, i.e. level of 

detail, and the time period to be investigated. It is observed that when investigating a case, where one 

of these three aspects is relatively big (i.e. big scale, highly detailed or long time), a simplification or 

reduction of complexity on the other two aspects is required in order to keep the simulation 

performable in a reasonable manner. In some cases, a simplified energy tool is chosen to evaluate a 

complicated case study which might lead to obtaining results that are not representative of the actual 
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case. On the other hand, certain tools can be too complicated to use sometimes when the required level 

of detailed input data is not available. Therefore, it is up to the user to find the suitable tool for certain 

evaluation based on level of complexity of the case study in terms of scale, data and time.   

 

A review of 37 different energy tools was presented by Connolly et al [9]. The possibility of 

integrating renewable energy resources was a major investigation goal in this review. The energy tools 

were classified into seven groups according to their function of purpose and approach as shown in 

Table  2.1. According to the Connelly different energy tools are not necessarily to be of one type but 

rather can be included in more than one group.  The study also specifies the different types of analyses 

that can be completed with each of the tools investigated as well as the energy-sectors considered by 

each tool including renewable-energy resources. Moreover, each of the energy tools reviewed is 

discussed separately in a great level of detail. The classification obtained and details specified by 

Connelly can quickly reduce the number of tools that need to be considered for a specific 

investigation. 

 

 

Table  2.1: Energy tools classification into seven groups by Connolly et al [9].  

Type 

No. 
Energy tool type Functionality and approach 

1 Simulation tool 

Simulates the operation of a given energy-system to supply a given set of 

energy demands. Typically a simulation tool is operated in hourly time-steps 

over a one-year time-period. 

2 Scenario tool 

Usually combines a series of years into a long-term scenario. Typically scenario 

tools function in time-steps of 1 year and combine such annual results into a 

scenario of typically 20–50 years. 

3 Equilibrium tool 

Seeks to explain the behavior of supply, demand, and prices in a whole 

economy or part of an economy (general or partial) with several or many 

markets. It is often assumed that agents are price takers and that equilibrium can 

be identified. 

4 Top-down tool 

is a macroeconomic tool using general macroeconomic data to determine 

growth in energy prices and demands. Typically top-down tools are also 

equilibrium tools (Type 3). 

5 Bottom-up tool 
Identifies and analyses the specific energy technologies and thereby identifies 

investment options and alternatives. 

6 Operation optimization tools 

Optimize the operation of a given energy-system. Typically operation 

optimization tools are also simulation tools (Type 1) optimizing the operation of 

a given system. 

7 Investment optimization tools 

Optimize the investments in an energy-system. Typically optimization tools are 

also scenario tools (Type 2) optimizing investments in new energy stations and 

technologies. 
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The energy tools reviewed by Connelly et al [9] and their classification into the seven types are shown 

in Table  2.2. One can notice directly some tools can be used to perform more than one approach or 

purpose while others can perform only one. As explained in Chapter 1, the aim of this study is to carry 

out both investment and operational optimizations to analyze a typical life cycle (approx. 20 years) for 

a cooling energy system while performing several scenarios where parameter such as: technology 

prices, energy prices, energy demand profiles, and operational constraints vary from one scenario to 

another. From that we conclude that only few tools, from those presented in Table  2.2, represent 

suitable candidates. These are the tools that can perform all three objectives desired in this work: 

Scenario analysis, investment and operation optimization. Those suitable candidates are marked with 

blue color within Table  2.2. 

 

According to the reviews provided by Connelly BALMOREL and EnergyPLAN are tools that deal 

with design of large scale systems varying from regional to national to international scale. The first 

emphasis on electricity sector and CHP and can simulate some of the heat sector while the second 

assist the design of national or regional energy planning strategies by simulating the entire energy-

system including heat and electricity supplies as well as the transport and industrial sectors and it 

simulate one year at a time. MESSAGE is a system engineering optimization tool used for the 

planning of medium to long-term energy-systems, analyzing climate change policies, and developing 

scenarios for national or global regions. However, the time step in MESSAGE is relatively big (5 - 10 

years) to perform detailed operational optimization. The ORCED tool dispatches power-plants in a 

region to meet the electricity demands for any given year up to 2030 but simulates only the electricity 

sector and mainly for a US country at a regional to national level.  

 

This leaves us with EnergyPRO and TRNSYS16 which are similar tools regarding the scale of the 

analysis. EnergyPRO is specifically designed for a single thermal or CHP power-plant investigation. It 

can model all types of thermal generation except nuclear, all renewable generation, and all energy 

storage units to complete the analysis. Similar to EnergyPro, TRNSYS16 is primarily used to analyze 

single project, local community, or island energy systems and it also can simulate most thermal and 

renewable energy generation. While EnergyPRO carries the analysis out using a one-minute time-step 

for a maximum duration of 40 years, TRNSYS16 allows the user to define the time-step within a range 

of 0.1 second to 1 hour and it can analyze a time-horizon of multiple years. The use of TRNSYS16 has 

been quite extended to simulate thermal systems, including renewable energy sources such as solar 

energy applications and biological processes. However, these two tools are designed to simulate 

energy systems with a high level of details. And since the ultimate aim of this study is: to provide 

assistance to decision makers through presenting preliminary systems based on rough detailed 

optimization to ease the process of selection between the wide technological, environmental and 

economic options where these preliminary systems are to be subjected into further investigation 

through detailed simulation, it has been concluded that these two tools are too detailed for the purpose 

of this work. Besides the investment (design) optimization of the system is often carried out with these 

tools as selection process among limited number of design options which is not the exact 

understanding of optimization within this work. However, TRNSYS17 was used to generate the 

cooling load profile of the buildings in the case studies investigated within this work as it will be 

explained in the following chapters.  

 

 



22 

 

Table 2.2: Classification of energy tools reviewed by Connelly et al [9]. 

Reviewed Tools 
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AEOLIUS  Yes – – – Yes – – 

BALMOREL  Yes Yes Partial – Yes Yes Yes 

BCHP Screening Tool  Yes – – – Yes Yes – 

COMPOSE – – – – Yes Yes Yes 

E4cast – Yes Yes – Yes – Yes 

EMCAS  Yes Yes – – Yes – Yes 

EMINENT  – Yes – – Yes – – 

EMPS  – – – – – Yes – 

EnergyPLAN  Yes Yes – – Yes Yes Yes 

EnergyPRO  Yes Yes – – – Yes Yes 

ENPEP-BALANCE – Yes Yes Yes – – – 

GTMax  Yes – – – – Yes – 

H2RES  Yes Yes – – Yes Yes – 

HOMER  Yes – – – Yes Yes Yes 

HYDROGEMS – Yes – – – – – 

IKARUS  – Yes – – Yes – Yes 

INFORSE  – Yes – – – – – 

Invert  Yes Yes – – Yes – Yes 

LEAP Yes Yes – Yes Yes – – 

MARKAL/TIMES  – Yes Yes Partly Yes – Yes 

Mesap PlaNet  – Yes – – Yes – – 

MESSAGE  – Yes Partial – Yes Yes Yes 

MiniCAM  Yes Yes Partial Yes Yes – – 

NEMS  – Yes Yes – – – – 

ORCED  Yes Yes Yes – Yes Yes Yes 

PERSEUS  – Yes Yes – Yes – Yes 

PRIMES  – – Yes – – – – 

ProdRisk  Yes – – – – Yes Yes 

RAMSES  Yes – – – Yes Yes – 

RETScreen  – Yes – – Yes – Yes 

SimREN  – – – – – – – 

SIVAEL  – – – – – – – 

STREAM  Yes – – – – – – 

TRNSYS16  Yes Yes – – Yes Yes Yes 

UniSyD3.0  – Yes Yes – Yes – – 

WASP  Yes – – – – – Yes 

WILMAR Planning Tool  Yes – – – – Yes – 
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2.3 Multi Criteria Decision Making for DCS 

Traditionally, cooling systems used to be designed based on single criteria decision making where the 

main aim normally would be maximization of benefits and/or minimization of costs. Increasing 

awareness toward environmental aspects during the 1970s directed the energy planning efforts towards 

energy models aimed at exploring the energy–economy relationships established in the energy sector 

[10]. Particularly, ore focus was given for energy conservation and energy substitution after the oil 

crisis in 1973. Thus, multi-criteria approaches became widely adopted due to the increasing public 

demand to incorporate environmental and social in energy planning.  

 

Today, designing a district cooling system requires making decisions among a variety of opportunities, 

options and technologies. A decision making process include choosing among quantifiable or non-

quantifiable and multiple criteria. And because many objectives usually conflict each other, decisions 

made are highly dependent on the preferences of the decision-maker and often a result of a long 

process of study, analysis and compromise. Such a decision making rule is not merely the 

responsibility of design engineers anymore. In fact, it’s more often to be carried out in cooperation 

with local governments (e.g. municipalities), investors, city planners, company managers, feasibility 

analyzers … etc. Many different methods have been developed to assist the decision makers such as 

weighted averages, priority setting, outranking, fuzzy averages and their combinations.  

 

Generally, more and more attention from economic/thermo-economic, technical, and environmental 

aspects is being paid for evaluation of cooling system systems. Traditional economic analysis was 

applied to virtually, if not actually, all cooling projects. Thermo-economic analysis is an additional 

supplement method that applies the laws of thermodynamics to economic theories [11, 12]. While 

technical analysis is related to the feasibility of cooling systems besides to their economic 

performance. Terms such as: Primary energy consumption, primary energy ratio, primary energy 

saving, fuel energy saving ratio and energy-efficiency are often employed to evaluate the technical 

performance of cooling systems [13, 14, 15, 16], and [17]. In addition to the economic and technical 

analysis, many researchers evaluated and analyzed cooling systems environmentally [18, 19].  

 

Such focus on different aspects of evaluation is increasingly presented in Multi criteria approaches. 

Wang et al. [20, 21] employed grey relational method and fuzzy analytical hierarchy process method 

to compare five Tri-generation schemes for a building in Shanghai, China, from technical, economic, 

environmental and social aspects, respectively. Cho et al. [22] used operational cost, primary energy 

consumption and CO2 emission to evaluate the operation modes of Tri-generation systems for different 

cities. Jiang-Jiang et al. [23] employed three relative criteria: 1) primary energy saving, 2) CO2 

emission reduction, and 3) Annual total cost saving, to evaluate the respective performances of CCHP 

systems for a hypothetical building in five different climate zones from the technical, environmental 

and economic aspects following two main operation modes: Thermal demand management mode and 

electrical demand management mode.   
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Figure 2.1: Network flow model of a typical CHP system presented by Cho et al. [22] 

 

 

Pohekar and Ramachandran [24] presented a review of more than 90 published articles in order to 

analyze several methods commonly used in multi criteria decision making and their applicability. A 

classification based on application areas of these methods was presented as well. Moreover, the 

methods were classified into two major groups based on approach of decision making: 

 

 Multiple Attribute Decision Making: Where a small number of alternatives are to be evaluated 

against a set of attributes which are often hard to quantify. The best alternative is usually 

selected by making comparisons between alternatives with respect to each attribute. 

 

 Multiple Objective Decision Making: Where alternatives are not predetermined but instead a 

set of objective functions is optimized subject to a set of constraints. The most satisfactory and 

efficient solution is to be determined by the optimization model. 

 

Many decision making methods have been briefly explained within their review, however they found 

that commonly applied methods are multi-objective optimization, AHP, PROMETHEE, ELECTRE, 

MAUT, fuzzy methods and decision support systems (DSS). The review also classified the application 

areas in which these methods are commonly, yet not exclusively, used. As shown in Table 2.3.  
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Table 2.3: Classification of methods reviewed by Pohekar and Ramachandran based on their common 

area of application [24]. 

Method of Decision 

Making 

Renewable 

energy 

planning 

Energy 

resource 

allocation 

Building 

energy 

management 

Transporta-

tion energy 

systems 

Project 

planning 

Electric utility 

planning 

Multi-Objective  X X X – – X 

M
u

lt
i-

A
tt

ri
b
u

te
 

MAUT X – – – – X 

AHP X X – X X X 

PROMETHEE X – X X X – 

ELECTRE X – X X X – 

Others X X – X – X 

 

 

The survey observed that Analytical Hierarchy Process (AHP) is most popular for prioritizing 

alternatives and suggested that this might be due to provisions of converting a complex problem into a 

simple hierarchy, flexibility, intuitive appeal, its ability to mix qualitative as well as quantitative 

criteria in the same decision framework. In contrary to the Multi Attribute Utility Theory, outranking 

methods belonging to PROMETHEE and ELECTRE techniques are extensively used in energy 

planning. Other miscellaneous methods including DSS, genetic algorithms and fuzzy approaches were 

found to be used in a verity of applications such as electric utility planning, renewable resources and 

building energy management.  

 

However, efforts to develop new methods to assist decision making are still present. Haiwen Shu et 

al.[25] stated that techno-economic evaluation method, which is traditionally used in evaluating 

different DCH schemes and select among alternatives throughout quantitative comparison, is actually 

only from the investor’s point of view, so it does have limitations in multi-attribute decision-making 

problems such as the DCH scheme selection. For instance, the differences of the energy-saving and 

environmental protection properties between each DCH scheme cannot be fully displayed in the 

techno-economic evaluation method. Therefore, the value engineering method was adopted in his 

work to help make the final decision on the DCH scheme selection problem for the first seawater 

source heat pump DCH project in China. The function analysis of different DCS source scheme 

options was done by using the AHP method to evaluate the degree of importance for 10 function 

factors for each scheme: Occupied area of equipment plant (F1), system adjustability (F2), 

effectiveness of system control (F3), safety and protection performance (F4), plant noise level (F5), 

equipment service life (F6), equipment failure rate (F7), energy-saving property (F8), environment 

protection performance (F9) and privileges of policy (F10). A judgment matrix was created through 

comparing and scoring each pair of function factors by consulting experts as shown in Figure  2.2. 

Each function factor of every scheme was evaluated and scored separately by the same invited experts. 

Later on, an engineering cost analysis was used. Ultimately, the value coefficient of each DCH source 

scheme is calculated after the function coefficient and total cost coefficient are obtained through above 

process. The scheme that has the highest value coefficient is the best one from value engineering 

perspective.  
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Although the approach adopted by Shu et al. take many economic, operational and environmental 

factors into consideration, however the weight of every function factor (F1–F10) has to be dependent 

on experts’ experience which makes the criterion of scheme comparison seems to be subjective more 

or less. Therefore, a generalization for the use of a certain judgment matrix created by a certain group 

of experts will always remain a point of debate. Moreover, decision making by using the adopted 

Value engineering method is limited among a group of predetermined schemes.  

 

 
Figure 2.2: Judgment matrix adopted by Shu et al. as comparative degree of importance of function 

factors [25].  

 

It is important to keep in mind that many of the Multi criteria approaches presented by the researchers 

mentioned above are Multi Attribute methods, i.e. they do not create or suggest solutions but rather 

select among a number of predefined alternatives. While Multi Objective programing is very wildly 

used in formulating new alternative solution. 

 

2.4 Optimization Tools and Models 

The design of district cooling system requires several input data and parameters such as cooling load 

profiles, investment and operation costs of different components of the system and time dependent 

energy prices… etc.  In order to achieve a higher efficiency than that of a conventional system, an 

optimal matching between the cooling energy production and its consumption rates is required, 

especially in residential districts which are normally characterized by highly variable cooling demand 

profiles, which makes an optimal design of the cooling energy supply system highly essential. 

Optimization methodologies have and are still being used extensively for obtaining optimal design and 

operation of district cooling energy systems in the literature.  However, the methodologies adopted to 

obtain such system are different from one researcher to another.  Some example of the optimization 

models adopted for investigating district cooling, cogeneration, tri-generation or poly-generation 

systems are presented in this section while examples of multi-objective optimization models are 

presented in the next section ( 2.5).    
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Chicco et al [26] outlined the main aspects of the district energy systems, or what they called 

distributed multi-generation (DMG), framework, illustrated its characteristics and presented a 

summary of optimization models for DMG systems classification where they classified the models as 

short-term and long-term according to their time scale and the type of objective to be optimized. 

Where short-term, considers the operational planning of the system in a given period (e.g., one year) 

while long-term, consistent with the formulation of the plant design problem over the plant useful life. 

 

It can be observed in the literature that research efforts were focused on various fields of interests such 

as the effectiveness of district systems, the layout of the DC network, the technologies to be 

considered and the feasibility of their integration, and the mathematical programing methodology 

adopted in the optimization process.  Weber   [27] has pointed out that very few papers deal with the 

issue of the network configuration of district energy systems and suggested that researchers may not to 

be so interested in this topic due to the belief by some of them that the design of the distribution 

network is anyway solved by politicians and urban planners, without involving any quantitative 

support, and that it is therefore useless to include the design of the distribution network when studying 

the thermo-environomic (economic, energetic and environmental) optimization of district energy 

systems. However, Weber also believed that quantitative support tools, when and if available, can be 

very interesting for politicians and urban planners. 

 

Regarding optimization methodologies, mathematical programming techniques were found to be the 

most extended methodology for optimization of cogeneration and poly-generation systems, and for a 

lesser degree of application, evolutionary algorithms such as genetic algorithms. Ortiga [28] have 

stated that the design of district energy systems is often carried out with the aid of mathematical 

models that are solved and optimized minimizing the investment and operational costs, but these 

optimization techniques are applied frequently for industrial applications and rarely for building or 

district heating and cooling (DHC) applications.  

 

These mathematical programming techniques consist of a mathematical model for minimizing or 

maximizing an objective function which can represent total cost (investment and operational costs), 

environmental parameters (such as CO2 emissions), or a mixture of both (i.e. multi-objective 

optimization).  The model usually includes a multivariable objective function and a set of constraints 

as a consequence of the physical and operational limitations of the modelled system. Models found in 

the literature often developed common resolution algorithms such as: linear programming models 

(LP), mixed integer linear programming models (MILP), non-linear programming models (NLP), and 

mixed integer non-linear programming models (MINLP). 

 

Kong et al [29]  presented simple linear programming model (LP) to minimize the overall energy costs 

for a cogeneration system for combined cooling, heating and power production (CCHP) consisting of a 

gas turbine, an absorption chiller and a heat recovery boiler. They used several sets of fixed loads of 

the form of ratios respect to the turbine size. Figure  2.3 shows the configuration of the energy system 

considered. It was shown in their work that the optimal operation of such system is dependent upon 

load conditions to be satisfied and that when the electricto-gas cost ratio is very low, it may not be 

optimal to operate the gas-turbine in the view of energy cost.  
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Linear programming take advantage of that linear objective function is convex which means that a 

local minimum is the global minimum within the feasible region. However, the optimum is not 

necessarily unique where it is possible to have a set of optimal solutions covering an edge or face of 

the feasible region. In linear programming is relatively is easier and faster to solve however 

computational expense dependent mostly on the number of constraints and not so much on the number 

of variables. A major disadvantage is that there are some situations where no optimal solution can be 

found such as when the constraints contradicts between them (the feasible region is empty) or when 

the problem is unbounded in the direction of the objective function. 

 

 
Figure 2.3: Energy flow layout of a gas turbine based CCHP scheme by Kong et al [29]. 

 

On the other hand, mixed integer linear programming models (MILP) is an extension of LP where a 

subset of the variables is restricted to integer values (usually 0-1). Here are several methods to solve 

MILP problem but the most common one is branch and bound method. The computational expense for 

this method tends to be proportional to the number of integer variables, constraints, and continuous 

variables, ordered by importance. This means, the more integer variables the more computational 

power and time will be required.  

 

Piacentino et al [30] proposed some simplifications into the mixed integer linear programming (MILP) 

optimization of tri-generation systems like the exclusion of binary variables for the hour by hour unit 

commitment problem which significantly reduced the consumption of computational resources. They 

presented an hourly optimization model applied two large buildings in the civil sector where the 

optimization was carried out for several times considering different numbers of typical days to 

represent the whole year in order to estimate the minimum number of typical days that must be 

considered in such optimization model. Figure  2.4 shows the super-configuration and its energy 

supply system considered in comparison to the conventional, i.e. separate production, system. This 

work was only intended to offer a new perspective on the problem of the improvement of MILP 

techniques for district energy systems.  
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Figure 2.4: Super-configuration of Tri-generation system presented in Piacentino et al [30] compared 

to a conventional system.  

 

In general, it has been found in the literature that MILP models are the most common used ones 

between other mathematical models when optimizing the design and operation of district energy 

systems [31, 32, 33, 34, 35]. The following are some of the works reviewed which are very close to 

the approach and aim of the work presented in this thesis.  

 

Lozano et Al. [36] have developed an optimization model, using mixed integer linear programming 

(MILP), to determine the preliminary design of CHCP systems with thermal storage. The objective 

function is the minimization of the total annual cost taking into account the legal constraints imposed 

on cogeneration systems in Spain: minimum equivalent electrical efficiency and minimum electrical 

self-consumption. In this model cogeneration, absorption chillers, thermal storage tanks and the option 

of distributed boilers and cooling towers were considered as shown in Figure  2.5. However, the model 

was only concerned with design and operation of the production plant itself but not the energy 

distribution pipeline network.   
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Figure 2.5: Superstructure of the Tri-generation energy supply system presented by Lozano et al [36] 

including: (1) cogeneration modules (mc), consisting of natural gas engines and heat recovery 

equipment, (2) auxiliary boilers (aux), (3) vapor compression refrigerators (mf), (4) single effect 

absorption refrigerators (abs), (5) cooling towers (tr), (6) heat storage (ACUc), and (7)  cold storage 

(ACUf). 

 

Söderman [37, 38] presented overall cost optimization models that include the number and location of 

possible production sites, the number of possible district pipeline routes and the number of possible 

energy storage sites. In these models, the possible locations of the generation plants, storages and the 

main pipelines are to be predefined and the optimization model curries the task of choosing the best 

possibilities of those locations. In addition, the model assist the decision of which costumers are to be 

connected to the predefined main network routes and which ones are to be left with individual 

separated systems. However, only conventional compression cooling machines were considered in this 

work. Figure  2.6 presents both the predefined main routes network and the optimal layout obtained by 

the model. 

 

  
Figure 2.6: Optimization results obtained by Söderman [38]: a) predefined main routes network and 

locations of plant and storages and b) optimal layout obtained. 

 

[a] [b] 
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Figure 2.7: Superstructure of the tri-generation system at Node (k) developed by Buoro [39].  

 

Buoro et al. [39] developed a tri-generation model based on MILP that includes micro-cogeneration 

gas turbines, absorption chillers, boilers and compression chillers. The optimization model specifies 

the kind, number and location of the cogeneration equipment and the absorption devices, the size and 

position of the network pipelines. The investment costs of boilers and compression chillers have not 

been taken into consideration, because in the case under study of this work users were already 

equipped with one boiler and one compression chiller. In each building up to 4 micro-turbines and up 

to 4 absorption chillers can be chosen by the optimization procedure. All these devices are size pre-

defined. As shown in the scheme of the single user in Figure  2.7, each absorption chiller is directly 

connected to a corresponding micro-turbine, so that a specific absorption chiller cannot be adopted if 

the related micro-turbine does not exist, inside the optimal solution. 

 

Chinese [40] has stated that the issue of designing new district cooling and heating systems from the 

beginning has hardly been addressed in operations research literature up to now. A mixed integer 

programming model (MILP) was developed for decentralized DHCSs design optimization combining 

and comparing central and distributed production of heat and cooling under consideration of network 

costs. Figure  2.8 represent the superstructure of developed model.  Both compression and absorption 

cooling machines were considered however thermal storage technologies and alternative energy 
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resources were not considered in the model. The objective function to be minimized was representing 

the annual equivalent system cost combining components for capital and operational costs and 

revenues. The smart grid (tri-generation) model was applied to two real case studies. The study 

concluded that Distributed generation solutions may lead to better economic performances than 

centralized solutions. 

 

A more realistic, however less present in the literature, approach to implement and optimize district 

energy systems is non-linear programming modelling (NLP). More specifically, mixed integer non-

linear programming (MINLP), due to the synthesis of district energy systems which requires a large 

number of integer and continuous variables to be involved particularly when taking design layout 

optimization into consideration.  MINLP problems are usually the hardest to solve, mathematically, 

unless a special structure can be exploited. However, several researchers have developed models using 

MINLP [41, 42, 43, 44].  

 
Figure 2.8: Superstructure of the energy subsystem at each node (i) presented by Chinese [40]. 

 

Weber et al. [27, 45] have developed a new method to design district energy systems, by decomposing 

a multi-objective MINLP optimization problem into two sub-problems: 1) A master optimization 

problem, a multi-objective optimization minimizing CO2 production and total costs, responsible of the 

selection of the technologies to be used and their design size, the temperature of the fluid in the 

ongoing-piping of the network, the temperature difference  between the ongoing-pipe and the return-

pipe of the district network and finally the thickness of the insulation around the pipes. 2)  A slave 

optimization problem, a mono-objective optimization minimizing the costs, defining the optimal 

network design and operation from the solutions obtained from the master optimization problem. 

Evolutionary algorithm was adopted to optimize the master problem by computing the trade-offs 

between the multiple objectives while the slave problem was solved by using MILP model.  The 

resolution method developed comprises three processing phases as shown in Figure  2.9. The study has 

observed that the results of the optimization were very dependent on the input parameters provided by 

the model user such as equipment prices.  
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Figure 2.9: Multi-objective decomposition resolution strategy adopted by weber [45].  
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Coronas and Bruno [46] developed a mathematical model to propose an initial size and analyze the 

operational conditions and economic analysis of a poly-generation plant. Both linear programming 

(LP) and non-linear programming (NLP) equations were used to implement the different units and 

technologies considered in the optimization. The optimal size and operation of each technology is 

optimized by minimizing economic costs. A simplified block diagram for the complete energy supply 

system is shown in Figure  2.10. The obtained nominal size of the cogeneration units were almost the 

same in both LP and NLP models however the total cooling energy production was lower in the NLP 

case, for the same consumed energy. They suggested that this slight difference was due to the different 

variation of the COPs with ambient conditions between the two models.  

 

 
Figure 2.10: Superstructure of the energy supply system for poly-generation presented by Coronas and 

Bruno [46]. 
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2.5 Multi Objective Optimization  

The design of district cooling system also requires the consideration of various technical, economic 

and environmental aspects. Since that multi attribute methods does not provide decision makers with 

alternatives especially on design level, multi objective programing became the focus researchers who 

want to provide decision makers with new alternative solutions based on comprehensive comparisons 

not only between predetermined systems but also between different individual aspects, e.g. production 

technologies, within the one system itself.  

 

In multi objective optimization two, or more, of conflicting and non-comparable objective functions 

are to be optimized. Cost objective function is usually one these objectives and often the first to be 

thought of. Another common objective is the environmental aspect which is usually represented in the 

CO2 emissions resulted from the system. Other objectives, and to a lesser degree, include quality, 

flexibility, safety …etc. Multi objective solutions are usually generated by solving each single 

objective several times in respect to each singular solution obtained from the other objective. Thus a 

set of optimal solutions, each having a certain value for each objective, are found. These solutions are 

non-dominating points where no other pair can be considered a better solution when compared on all 

criteria. In other words, it’s not possible to improve one of the objectives of an optimal solution 

without worsening the other objective. These non-dominating optimal solutions are known as Pareto 

domain. Later on, it’s up to the decision maker to pick the most suitable solution within the Pareto 

domain based on their experience and knowledge.  

 

Many mathematical methods have been developed as an attempt to substitute the role of decision 

makers, however most of them require some preferences input from the decision maker side either at 

the beginning of the optimization. It has been observed in the literature that there are two common 

techniques used extensively to address multi objective problems. Those are:  

 

 Weighted sum method: which is basically the summation of the scalar objective functions 

after the normalizing them since they often are in different units. This is usually performed by 

adopting different normalizing weights for each objective function. These weights can also 

include representation for the relative importance between objectives. Defining the values of 

these weights is the most critical obstacle in this method.  

 

 Normal constraint method: In which, one of the objectives is selected as objective function 

while the others are transformed into constraints. Here, defining the limits of the new 

constraints can be a challenge since these values are very critical in defining the optimal 

solution for modified problem.  

 

By changing the values of the weights, in the first method, or the constraints values, in the second 

method, Pareto can be generated especially if the problem was convex. If the problem is non-convex 

then Pareto domain might still be generated but at a high time computational cost [47]. The advantages 

and drawbacks of these methods along with other proposed methods to solve multi objective problems 

are presented by Pohekar [24], Messac [47] and Martinez [48]. However, it has been observed 

throughout this survey that the normalized weighted sum and its modified versions is the most 

common adopted technique. 
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Multi-objective optimization applied to district energy systems, e.g. cogeneration, tri-generation or 

poly-generation systems, can be found in literature widely [49, 50]. Ren et al. [51] developed a multi-

objective optimization model to analyze the optimal operating strategy of a district energy system 

while combining the minimization of energy cost with the minimization of environmental impact as 

shown in Figure  2.11. Aki et al [52] used the normal constraint method, where they adopted the annual 

cost as objective function and took the CO2 emissions into consideration in the form of constraints, in 

their investigation of three different energy service systems for urban areas.  Another approach was 

presented by weber [27, 45], reviewed previously, to deal with multi objective MINLP optimization 

problem by decomposing it into a master and slave problems solve by two different techniques 

(Figure  2.9).  

 
Figure 2.11: Flow chart of the multi-objective optimization model developed by Ren et al. [51]. 

 

Genetic Algorithms is another technique that has been adapted, but into a lesser degree, for multi-

criteria problems. Kavvadias et al [53] used genetic algorithms to solve a multi objective model for tri-

generation plants considering three objectives indicators: economic, energetic and environmental. The 

adaptation of genetic algorithm was due the non-linearity of equipment efficiency curves as well as the 

inclusion of economy of scales on the capital cost calculation. Both the energy and information flow 

diagrams of the multi objective model are shown in Figure  2.12.  
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Figure 2.12: Multi-objective optimization model developed by Kavvadias et al [53]: a) Energy flow 

diagram, and b) information flow diagram.  
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-b- 



38 

 

2.6 Summary and Conclusion 

The objective of this work is to develop a decision making tool or model and to use it in obtaining 

preliminary, i.e. roughly optimized, design configuration and operation strategies for district cooling 

energy systems while performing economic and performance comparison for different design, e.g. 

cooling technologies, options with in the process. It has been found in the literature that such 

assistance can be provided throughout different tools and methodologies depending on how detailed 

the suggested solutions are intended to be. Energy simulation tools such as TRNSYS and EnergyPro, 

for example, are supposed to be used to simulate and optimize energy supply systems with high level 

of details. Actually, the high complexity of the issue regarding the energy planning and management 

of district energy systems calls for powerful analysis tools at a certain stage in the design process. 

However, since the preliminary configurations aimed to be obtained in this work are intended to serve 

as preliminary suggestions for design engineers, urban planners and decision makers where extensive 

performance investigations are expected to be carried out later on by using scenario simulation tools, it 

came to our believe that a high detailed model is not a desired option especially at early stages of the 

design.  

 

After carrying out a brief survey in the state of the art and reviewing several surveys presented by 

other researchers in the literature regarding different aspects of the subject, it has been concluded that 

multi objective optimization model can be a useful instrument to support the decision making process. 

Genetic algorithms and mathematical programming are widely used in the literature for the purpose of 

optimizing energy supply systems for their high flexibility when developing customized models for 

certain application or user.  Usually adopting genetic algorithm technique requires developing the 

genetic algorithm to be used in solving the model, while mathematical programming requires only 

developing the model and not the solving algorithm, which is usually developed by mathematicians. 

Typically, optimizing the design and operation of a district cooling energy system using mathematical 

programming is a nonlinear problem with integer variables. Such models can be solved by using 

mathematical solvers. However, when the model is relatively complex, due to high number of decision 

variables with several time periods, the problem might not be possible to solve. Therefore reducing the 

complexity of the problem is essential in mathematical programming. One solution can be dividing the 

problem into sub-problems or farther reduction in the complexity of the model, e.g. reducing the 

number of technologies considered or the research space. The most reliable simplification, without 

having to drop some options out of consideration, is to linearize the non-linear equations in the model. 

Thus, a mixed integer linear programming MILP model was chosen to develop a multi objective 

optimization model to carry out the main aim of this work.    
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Chapter Three 

  Optimization Model and Environment 
 

3.1 Introduction 

Cooling Systems in urban areas are generally categorized into three main types or configurations: 

Centralized District Cooling Systems where the cooling energy is produced in a central plant and then 

distributed to the distanced locations, e.g. consumers, through pipelines networks; Separated, or Stand-

Alone, Systems where the cooling energy is produced locally in each individual location; and 

Distributed, or De-centralized, District Cooling Systems where the cooling energy might be produced 

in multiple locations and distributed through several relatively small pipelines networks or consumed 

locally. The first and second categories represent the conventional systems in the market while the 

third category is a new trend which has been promoted, increasingly, throughout the last two decades 

due to its lower life time cost, higher control possibilities and better impact on the environment [40]. 

Considering the wide range of networking options, cooling energy producing technologies and energy 

resources integrating possibilities, optimal design and operation of the system comes out as an 

essential aspect in designing urban cooling systems especially when limited information is available 

such as at the first stages of the decision making process. The extensive literature survey has shown 

that mathematical programming is widely used for optimizing the design and operation of cooling 

systems for urbans under both economic and ecologic objectives. Hence, mathematical programming 

implemented in GAMS (General Algebraic Modeling System) language is used for developing the 

optimization model in this work.   

 

The goal of this chapter is to present the different models for the cooling system units and equipment 

as well as the mathematical algorithm of the optimization model. The optimization environment is 

another integral part of this chapter. Section 3.2 investigates the cooling energy demands of the 

buildings and while the method used for selecting typical days for the simulation is presented in sub-

section 3.2.1, the following sub-section presents the energy simulating technique used to model the 

residential and office building in the case studies. Section 3.3 provides a comprehensive overview to 

the optimization model through: Defining the problem of the urban cooling system to be optimized 

(sub-section 3.3.1); a super structure comprising all the equipment and technologies to be considered 

in the design process (sub-section 3.3.2); the energy balances controlling energy transaction 

throughout the superstructures of each location and the pipeline networks connecting them (sub-

section 3.3.3); the cost objective function along with the pricing system (sub-section 3.3.4);  units and 

equipment models and their governing equations and constraints (sub-section 3.3.5); CO2 emissions 

and primary energy consumption objectives (sub-section 3.3.6); multi objective model (sub-section 

3.3.7). A general overview of the GAMS optimization environment and the mathematical solver are 

presented in section 3.4.  

 

 

 

 

 



42 

 

3.2 Cooling Energy Demand  

Using an optimization model to design a cooling energy supply system requires many inputs such as 

weather data, locations characteristics, equipment prices, primary energy prices, etc. Cooling energy 

demand profiles are essential inputs for the optimization process. Therefore, these profiles have to be 

estimated at the very beginning based on a suitable methodology depending on the available 

information. Cooling energy demand profiles differ according to the type and use of the urban area. 

Residential districts are categorized with high variable cooling demand profiles while industrial or 

commercial districts have a more constant cooling demand profiles due to the nature of the use. Swan 

et al [54] presented a review of modelling energy demand where two main approaches were identified: 

1) Top-down approach, where overall sectors are treated as an energy sink without distinguishing 

energy consumption due to individual end-uses. 2) Bottom-up approach, where the energy 

consumption of individual or group of houses are calculated and then extrapolated to represent a 

region or district. Since that the cooling energy demand profiles for each individual building is 

required in this work, only bottom-up approach will be considered.  

 

Bottom-up approach can be conducted through statistical or simulation models.  In statistical models 

the cooling energy demand is estimated based on historical information and measurements collected 

for each particular building type. In the simulation models buildings are simulated based on heat 

transfer and thermodynamic relationships. Simulation is the only approach that can estimate cooling 

load profiles for non-existing, i.e. planned to be built, buildings where no historical information are 

available. 

 

3.2.1 Typical Days 

When using optimization models to simultaneously optimize both configuration and operation many 

factors, parameters and variables are to be considered in the optimization process such as type and 

number of units, nominal capacities of technologies and pipelines, primary energy consumed, cooling 

energy produced, investment operation costs, …etc. Due to the large number of parameters, variables 

and the possible feasible combinations of equipment and networking, optimization models might 

require a very long run time to reach the optimal solution. In other words, the more detailed the model, 

the more complex and difficult it is to solve. One of the most important factors in an optimization 

process is the time periods. When the model is too complex, the time periods should be reduced and 

when the time periods considered are too high then the model should be simplified.  

 

Ortiga J. [55] has stated that there are two main schemes for time steps according to type of the 

building or district being considered. 1) Multi-period or long time periods for industrial applications 

due to their constant cooling energy demands which depends on the production process where it tends 

to be constant at each time period and fairly independent of ambient conditions. 2) Hourly periods of 

representative days for residential applications which are, usually, highly influenced by the ambient 

conditions and occupation pattern. 

 

Many researchers, in the literature, have used different approaches to select the typical days and their 

number to represent a full year or certain periods.  Yokoyama et al [56], Renedo et al [57] and Chicco 

et al [17] presented three typical days demand profiles, one day for winter, one day for midseason and 

another day for summer.  Each one of these days represents the common pattern of its season. Beihong 

et al [42], Seo et al [58] and Lozano et al [36] have used twelve typical days, one representing each 

month of the year. Yoshida et al [33] used two more days representing the heating and cooling peak-

demand days in addition to the twelve typical days of the year. Ortiga J. [55] proposed selecting a 
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minimum number of typical days where he found out that it is not necessary to distinguish between 

working and non-working days and that some variables could be more affected by the profiles of the 

selected typical days more than the number of days selected. However, he also stated that other criteria 

in the selection of typical days, such as one representative day for each month, should be used when 

considering variable tariff prices. Since that variable electricity and primary energy prices are in the 

consideration of this work, representative days for each month are used here. And because this work is 

concerned only with the cooling season, summer, only 6 typical days are chosen representing the 

months of April to September. The selection criteria and process of selecting these representative days 

are to be presented within each case study in the following chapters.   

 

3.2.2 Estimating the Energy Demand for Buildings 

Many simulation tools exist in the literature which can be used to simulate individual buildings or a 

whole district to estimate the cooling energy demand profile of that building or district. The use of 

these simulation tools requires the availability of some input data depending on the chosen tool, such 

as construction materials of the building, type and schedule of the occupancy pattern, weather data, 

and the number, sizes and/or capacities of equipment and devices located in the buildings. 

 

In this work the cooling energy demand for each individual building was estimated using TRNSYS 

which is a transient simulation tool with an open modular structure that simulates different energy 

sectors of an energy system. Each equipment or unit in the energy system is represented by a TYPE 

(or block) that can be connected to other types (equipment) to create the energy system. Every single 

building investigated in this work was simulated using TRNSYS and thus the cooling demand profiles 

were generated. These profiles are essential inputs for the optimization model. Table 3.1 shows 

examples of input data required for two different buildings considered in this work. More details about 

the buildings are to be presented in the case studies which are to be presented in details in the 

following chapters. Figure  3.1 demonstrates the TRNSYS simulation model for a one zone building 

used to estimate the energy demand. 

 

Table  3.1: Examples of the main input data to the TRNSYS simulation. 

Building type / data 
Residential Building 

(from CS1) 

Office building 

(from CS2) 

Building name/code N1a1 N1 (Mech.) 

Area 675 m2 1380 m2 

Height 9.5 m 14 m 

Orientation S-N SE-NW (45º) 

Glass area percentage of the front outside 

surface area 
22 % 26 % 

Max. number of occupants 36 Persons 1000 Persons 

Occupancy schedule at a week day 
12 Persons (7am - 2pm) 

36 Persons (2pm - 7am) 

1000 Persons (7am - 3pm) 

0 Persons (3pm - 7am) 

Occupancy schedule at a weekend day 36 P (24 hours) 0 (24 hours) 

Ventilation 0.5 Air-ch/hr (24 hours) 0.5 Air-ch/hr (7am - 3pm) 

Average lightening 5 W/m2 5 W/m2 

Infiltration 0.5 Ach/hr 0.5 Ach/hr 

Computers /Equipment /Printers 
60 Units (7 am - 12 am) 

12 Units (12 am - 7 am) 

300 Units 

(7 am - 3 pm) 

Cooling set temperature 24ºC (24 hours) 24ºC (7am - 3pm) 
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Figure  3.1: TRNSYS model for one zone building using type 56. 

 

3.3 Optimization Model 

The literature survey carried out in this work, i.e. chapter two, has concluded that multi objective 

optimization model can be a useful instrument to support the decision making process especially after 

taking into consideration that the different objectives in consideration are conflicting. Total annual 

cost and CO2 emissions, which are the focus of this work, are conflicting objectives.  It was also 

observed that simplification of the a complex mathematical model, such as optimizing the design and 

operation of a district cooling energy system, is essential to obtain solutions in a reasonable time frame 

especially that this model is support to support early stage decision making process. Considering the 

wide range of possible network structures and capacity planning options, it becomes extremely 

essential to compare and analyze the trade-off between the scale economies in centralized solutions 

and those in the decentralized solutions in order to reach optimal solutions. This can be achieved by 

using binary variables accounting for fixed cost components [40]. Mixed integer linear programming 

MILP techniques have been applied in the optimization of cogeneration and tri-generation systems by 

several authors [36]. 

 

Therefore, linearizing the complex model into a MILP model was adopted as an approach to address 

the aims of this work which is obtaining DC solutions that fulfill the conflicting objectives in a 

satisfactory manner for the decision makers. Furthermore, the choice of using MILP in urban cooling 

systems was driven by the necessity of producing a realistic comparison of centralized and 

decentralized solutions. Thus, Pareto Frontier is to be generated by obtaining several solutions based 

on the decision makers’ preferences. Figure  3.2 presents a simplified demonstration of Pareto Frontier. 

A Pareto solution is basically defined as a solution that no further enhancement to any of the 

objectives is possible without harming at least one of the other objective. Enhancement on all 

objectives beyond the Pareto Frontier is mathematically infeasible.    
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Figure  3.2: Pareto Frontier distinguishing between feasible and infeasible solutions in multi-objective 

optimization.   

 

3.3.1 Problem Definition  

A typical urban cooling system consists of several cooling consumption locations, i.e. buildings, 

which are usually different in application type and occupation pattern and therefore, different cooling 

load profiles. It comprises also one, or more, cooling energy production plants. The pipelines network 

is a common element in the DC system to distribute the cold water among the production, storage and 

consumption sites. A very important component in the UC system would be the cold water storages 

and their locations. These locations are used to store the circulation water during low consumption 

periods and re-supply the cold water into the network during high consumption periods.  

 

The decision of integrating solar technologies into urban cooling, especially in sub-tropical regions, is 

a technically feasible way to replace the electric refrigeration machines, minimize the consumption of 

fossil fuels, subsequently reduce the greenhouse gas emission and eventually reduce the effect of 

climate change and global warming [59, 60].       

 

In this work, two cooling technologies to produce cooling energy have been considered: a) 

Compression chillers powered by electricity grid, PV-panels or both. b) Absorption chillers connected 

to a boiler powered by natural gas supply line or to solar energy technologies, e.g. vacuum tube 

collectors and/or trough solar concentrators. Figures  3.3 and  3.4 represent the possible constructions of 

the cooling energy generation unit to be installed at each site including all the technologies integrated 

to the model. 

 

 

 

Source: http://www.noesissolutions.com/  

http://www.noesissolutions.com/
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Figure  3.3: First configuration option for the cooling energy generation plant on site (i). 

 

 

 
 

Figure  3.4: Second configuration option for the cooling energy generation plant on site (i). 
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3.3.2 Super Structure and Energy Balances 

A MILP model was developed, considering local energy balances and overall network configuration, 

to optimize the structural design and operational parameters of the cooling system. That includes the 

size and location of each equipment in the system, the size and location of the each distribution 

pipeline, the energy flow rates in those pipelines and how the production and storage units should be 

hourly operated to cover the hourly cooling load of each building in the district. The model comprises 

a group of sets:  

 

1) Site or Node Set (i) representing all possible locations for cooling plant sites, cold storages or 

consumers.  

2) Equipment set (equ) representing all possible units to be installed at site (i) i.e. compression 

chiller (comp), absorption chiller (abs), boiler (blr), cold storage tank (str1), hot storage tank 

(str2), heat dissipater (dis), heat exchangers (ex1 & ex2), PV-panels (pv), vacuum tube 

collectors (sol1), trough solar concentrators (sol2) and user-site unit (usr).  

3) Time set (t) containing a number of representative days of the year with each day having a 

number of time steps or periods. 

 

In this model, each location is a possible plant, storage, consumer or all three together. It’s up to the 

optimization model to decide which type of technology is to be installed in each site. If a certain 

location has a cooling demand profile, then a consumer (user) unit is to be installed there. Later the 

model is to decide how the cooling demand of this user is to be covered. Basically a costumer would 

have one of three options. The first one is to have its own separated or stand-alone cooling system. 

The second is to be connected to a full district network known as centralized district cooling system 

where everyone else is connected to it. The third option is to be combined with few other costumers in 

a small district network other than the main network which known in this work as de-centralized 

district cooling systems. 

 

Each location also has the possibility to serve as a cooling energy production plant as long as it has the 

free space required to install such plant. Thus there are no pre-defined possible plant locations. 

Figure  3.5 shows, schematically, the basic energy flow structure of the cooling network. The nodes (i, 

j and k) represent the physical locations where the cooling energy can be offered or requested, e.g. 

buildings, storages, or plants. The nodes can also be a pure network connection point of few or several 

network branches.  The lines, arrows, represent the possible network branches connecting one node to 

another as well as the energy flow direction.  

 

Figure  3.6 shows a superstructure at any location (i), comprising all equipment and technologies which 

are possible to be installed at this site. The blue arrows represent the cooling energy flow direction 

among the equipment. The red arrows represent the hot energy flow direction. While the yellow and 

green arrows represent the flow direction of the electrical and fuel energies respectively. Each site (i) 

has the possibility to receive cooling from the DC network through the heat exchanger (ex1) and also 

to provide cooling energy to the DC network through heat exchanger (ex2). It is logical that in most 

cases only one of these scenarios is going to be chosen depending on whether this site is going to serve 

as a consumer or as a provider.  When the location is to serve as both consumer and provider, the heat 

exchanger (ex1) might not be needed because the local cooling demand will more likely be covered by 

the cooling energy produced in the same location. Regardless of the cases explained above the 

optimization model is still designed so that it allows any location to be connected to the network 

through ex1 or ex2 or even both of them together. The reason of that is that to take a very special case 
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into consideration. When a certain site is serving as production plant but with a limited capacity or 

time-depended capacity (such a case is highly expected to be faced when including the solar energy as 

a driving power of the absorption chillers), extra cooling energy might be imported from the DC 

network at the high cooling load hours while the same location might still serves as a provider to the 

network in the low cooling load hours. 

 

 

 
Figure  3.5: Energy-flow structure of the UC network at site (i). 

 

 

 
Figure  3.6: Local Cooling Energy System (Superstructure) at site (i). Where: Gi represents the local 

fuel (Gas) supply system, Ei represents the local electricity supply grid and Ci represents the local 

cooling supply piping system. 
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Looking back to the overall problem, an optimal structure can only be reached when considering the 

optimal operation of the system’s different components on an hour-by-hour basis throughout the year, 

which in turn depends on energy market prices [36]. In this study, an hourly local cooling demand 

(LCD) is presented for each location, as shown in Figure  3.6, which is expected to have a great 

influence on the optimization process. 

 

3.3.3 Energy Balances 

A local system cooling energy balance at site i (at point Ci in Figure  3.6) have been obtained, eq. (  3.1). 

This equation is essential to assure that the cooling demand at each location is being satisfied either by 

costumers own cooling device or from the DC network. By considering a network cooling energy 

balance at each node, e.g. node i in Figure  3.5, it is observed that the sum of all flows entering the 

node i equals the sum of all flows exiting that node, i.e. eq. (  3.2). An overall energy balance for the 

network can be obtained by considering that the sum of cooling energy quantities entering the DC 

network from various substations should equal in every time period (t) the sum of cooling energy 

quantities leaving the DC network to the substations, i.e. eq. (  3.3). 

 

𝑄𝑂"𝑒𝑥1",𝑖,𝑡
+ 𝑄𝑂"𝐶𝑜𝑚𝑝",𝑖,𝑡

+ 𝑄𝑂"𝐴𝑏𝑠",𝑖,𝑡
+ 𝑄𝑂"𝑆𝑡𝑟1",𝑖,𝑡

= 𝑄𝑖𝑛"𝑒𝑥1",𝑖,𝑡
+ 𝑄𝑖𝑛"𝑢𝑠𝑟",𝑖,𝑡

+ 𝑄𝑖𝑛"𝑆𝑡𝑟1",𝑖,𝑡
     

  ∀𝑖 , ∀𝑡 
(  3.1) 

 

𝑄𝑡𝑜−𝑛𝑒𝑡𝑖,𝑡
+ ∑ 𝐹𝐿𝑝𝑖𝑝𝑘,𝑖,𝑡𝑘,𝑖∶𝑘≠𝑖 = 𝑄𝑓𝑟𝑜𝑚−𝑛𝑒𝑡𝑖,𝑡

+ ∑ 𝐹𝐿𝑝𝑖𝑝𝑖,𝑗,𝑡𝑖,𝑗∶𝑖≠𝑗                           ∀𝑖 , ∀𝑡   (  3.2) 

 

∑  𝑄𝑡𝑜−𝑛𝑒𝑡𝑖,𝑡𝑖 = ∑  𝑄𝑓𝑟𝑜𝑚−𝑛𝑒𝑡𝑖,𝑡𝑖                                                                                              ∀𝑡  
(  3.3) 

 

3.3.4 Cost Objective Function 

The optimization was defined, at first stages, as to minimize the overall annual cost of the cooling 

system. As presented in eq. (  3.4), the objective function considers both the investment and operational 

costs of all equipment and network of the DC system.  

 

min. 𝑍𝐶  = {𝐶𝑖𝑛𝑣 +  𝐶𝑜𝑝𝑟} (  3.4) 

 

The MILP model for the multi-period, i.e. multiple time steps, design and operational planning 

problem is characterized by integer variables which determines the location and number of units 

installed, and also by continuous variables for the representation of nominal capacities and energy 

flows. 
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3.3.4.1 Pricing System  

The investment cost of each equipment (e.g. chillers, storage tanks, boilers, heat exchangers, PV-

panels, solar collectors, … etc.) or pipeline is defined using the annuity method as presented in 

equation (  3.5), which represents also the linearized price function of the equipment or pipeline. It 

consists of two main parts: 

 

 A size-depended price coefficient (CCv) multiplied by a continuous variable representing 

the nominal capacity of the equipment at site i (CAPi). For the network pipelines, the 

nominal energy flow rate (NFLpipi,j) is used. 

 

 A fixed price coefficient (CCf) multiplied by a binary variable (Yi) representing the 

existence of the equipment. The binary variable gets a value of (1) only in the case of 

equipment existence (a positive value for the capacity variable), otherwise it obtains the 

value of (zero).  

 

𝐶𝑖𝑛𝑣 =   𝑓𝑒𝑞𝑢 . [𝐶𝐶𝑣𝑒𝑞𝑢. 𝐶𝐴𝑃𝑖 + 𝐶𝐶𝑓𝑒𝑞𝑢. 𝑌𝑖]  (  3.5) 

 

The annuity is obtained using an annuity factor (f), which is calculated as presented in equation (  3.6). 

Where (n) is the unit (equipment or pipeline) life time in years and (r) is the Investment factor. The 

values of n for each equipment and pipeline in this work are assumed to be 20 and 50 years, 

respectively, and r is 5%. Different annuity factors for different equipment can be obtained using 

different life time investment factors. 

 𝑓𝑒𝑞𝑢 =  
(𝑟+1)𝑛.𝑟

(𝑟+1)𝑛−1
  (  3.6) 

 

Figure  3.7 shows an example of linearized cost function of a single-stage absorption chiller. The 

values of the size-dependent and fixed cost (price) coefficients of various equipment are listed in Table 

(3.2). 

 

 
 

Figure  3.7: Linearized costs function of a single-stage absorption chiller. Original function being: [Cinv. 

= (14740*X
-0.6849

+3.3)*X]. Where, X represents the Nominal Capacity in (kW). 
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Table  3.2: Size-dependent and fixed cost coefficients of cooling system equipment. 

Equipment CCv (Euro/kW) CCf (Euro) Price Function 7 [61] 

Compression Chiller 112.14 27679 =(4732*X -0.7382+109.3)*X 

Absorption Chiller 

(Single Stage) 

116.230 1 52176 1 
= (14740*X -0.6849+3.3)*X 

26.019 2 110870 2 

Heat Dissipater 

(Cooling Tower ) 
37.42 312.93 = 37.42*X+312.93 

Network Pipes 

(Digging+supply+ 

return) 

0.2487 3 1432.3 3 
=[21.4*D2+201.36*D+163.89] 

+ 2 * [2775*D+207.9] 

D= X0.5/183.43 

User-end Utility 56.335 17093 ----- 8 

Cold storage 23.817 4 4781.1  =[59.656 X -0.1051 ]* X 

Hot Storage 19.259 4  1279.5 = 18.179 V 0.6347  

Heat Exchanger 7.8401 3010.2 =198.93 * A0.8641 + 524.92 

Boiler 30.776 15525 
=F *[4521.33+675.3492*X 0.5753] 

 F= 1.1706 

Electrical heater 8.1714 269.29 [62] 

PV-panels 1751 5 0.0 = 1751 * X peak  [63] 

Solar 1 (V. tube) 519.95 6 2600 [62] 

Solar 2 (Trough) 200 6 0.0 [64] 

1
     For X below 500 kW  

2     
For X above 500 kW 

3     
The units for the pipelines are per (m) of length

 

4     
The units for the storage tanks are (Euro/kW. h) 

5     
The units for the PV panels are (Euro/kW peak) 

6     
The units for the solar collectors are in (Euro/m2 of gross area)

 

7     
X= Nominal Capacity (kW) [except for the Cold Storage (kWh)], V= Volume (m3), A= surface area (m2), D= Diameter (m)

 

8     
Assumed based on the Author’s best knowledge 

 

 

3.3.4.2 Investment Cost: 

The total investment cost is the sum of the investment costs of equipment and network pipelines, i.e. 

eq. (  3.7). The annuity method has been used to calculate the investment cost of the equipment units as 

shown in eq. (  3.8). For the network investment cost, i.e. eq. (  3.9), the annuity method was also used 

where the size-dependent cost coefficient was related to the nominal energy flow rate through the 

pipeline (NFLpipi,j) and not to the diameter. This simplification was intended to avoid the complexity 

of considering the pipeline diameters and the forthcoming need to meet the acceptable commercial 

diameter sizes in markets. This equation comprises also the network maintenance costs, expressed as a 

fraction (mCn) of the capital cost. In fact, maintenance costs for network pipelines are mainly 

attributed to inspection and preventive activities and can be approximated as a fixed yearly amount 

[40]. 
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𝐶𝑖𝑛𝑣 = 𝑃𝐶𝑖𝑛𝑣 + 𝑁𝐶𝑖𝑛𝑣  (  3.7) 

  

𝑃𝐶𝑖𝑛𝑣 =  ∑  ∑  𝑓𝑒𝑞𝑢 . [𝐶𝐶𝑣𝑒𝑞𝑢. 𝐶𝐴𝑃𝑒𝑞𝑢,𝑖 + 𝐶𝐶𝑓𝑒𝑞𝑢. 𝑌𝑒𝑞𝑢,𝑖]𝑒𝑞𝑢𝑖   (  3.8) 

  

𝑁𝐶𝑖𝑛𝑣 =  ∑  [𝑓𝑝𝑖𝑝 + 𝑚𝐶𝑛] . [𝐶𝐶𝑣𝑝𝑖𝑝. 𝑁𝐹𝐿𝑝𝑖𝑝𝑖,𝑗
+ 𝐶𝐶𝑓𝑝𝑖𝑝. 𝑌𝑝𝑖𝑝𝑖,𝑗

]  . 𝐿𝑖,𝑗𝑖,𝑗∶𝑖≠𝑗   (  3.9) 

 

The nominal capacity variable (CAPequ,i), in kW, was used to calculate the investment cost of most 

equipment. However this variable was replaced with the nominal cooling energy storage capacity, in 

kW.h, for the Cold- and Hot-Storage tanks and with the surface area, in m2, for PV-panels and both 

thermal solar collectors (Vacuum collectors and Trough concentrators).  

 

3.3.4.3 Operation Cost: 

While the annuity method has been used to calculate the investment cost of the equipment units and 

the network pipes, the annual operational costs were calculated as the sum of operational costs in all 

time periods as presented in eq. (  3.10). Equations (  3.11) to (  3.16) represent the operational costs which 

are proportional to operation hours and the instantly outputs (i.e. generated, stored, consumed or 

distributed cooling effects) [38]. Operation costs taken into account in this model are:  

 

 Equipment operation costs: eq. (  3.11). 

 Electricity cost for water pumping throughout the network: eq. (  3.12). 

 Cost of purchased electricity to operate the compression chillers, heat dissipation fans at the 

cooling towers and electrical heaters after considering PV panels electricity production: eq. 

(  3.13) to (  3.15).  

 Cost of fuel used to operate the absorption chillers: eq. (  3.16). 

 

𝐶𝑜𝑝𝑟 = 𝑃𝐶𝑜𝑝𝑟 + 𝐸𝐶𝑛𝑒𝑡−𝑜𝑝𝑟 + 𝐸𝐶𝑝−𝑜𝑝𝑟 + 𝐹𝐶𝑜𝑝𝑟  (  3.10) 

 

𝑃𝐶𝑜𝑝𝑟 =  ∑  ∑ ∑  [𝑂𝐶𝑒𝑞𝑢. 𝑄𝑂𝑒𝑞𝑢,𝑖,𝑡
 . ∆𝑡]𝑡𝑒𝑞𝑢𝑖   (  3.11) 

 

𝐸𝐶𝑛𝑒𝑡−𝑜𝑝𝑟 =  ∑  ∑ [ 𝐶𝑒𝑡  . 𝑝𝑓 . 𝐹𝐿𝑝𝑖𝑝𝑖,𝑗,𝑡
 . 𝐿𝑖,𝑗 . ∆𝑡]𝑡𝑖,𝑗∶𝑖≠𝑗   (  3.12) 

 

𝐸𝐶𝑝−𝑜𝑝𝑟 =  𝐸𝐶𝑝𝑢𝑟𝑐ℎ −  𝐸𝐶𝑠𝑜𝑙𝑑  (  3.13) 

 

𝐸𝐶𝑝𝑢𝑟𝑐ℎ = ∑  ∑ 𝐶𝑒𝑡 (𝐸𝑝𝑖,𝑡 + 𝑅𝑑𝑖𝑠. 𝑄𝑂"𝑑𝑖𝑠",𝑖,𝑡
+ 𝑄𝑖𝑛"ℎ𝑡𝑟",𝑖,𝑡

− 𝐸𝑝𝑣𝑖,𝑡) . ∆𝑡𝑡𝑖   (  3.14) 

 

𝐸𝐶𝑠𝑜𝑙𝑑 =  ∑  ∑ 𝐶𝑝𝑣 (𝑒𝑥𝑡𝑟𝑎𝐸𝑝𝑣𝑖,𝑡) . ∆𝑡𝑡𝑖   (  3.15) 

 

𝐹𝐶𝑜𝑝𝑟 =  ∑  ∑ 𝐶𝑓𝑖 . 𝑄𝑖𝑛"𝑏𝑙𝑟",𝑖,𝑡
 . ∆𝑡𝑡𝑖   (  3.16) 

 

Both electricity and fuel (natural gas) prices are time dependent in this model. Thus a time related 

purchase tariff including various prices of electricity (depending on the hour of the day) and fuel 

(depending on the time of the year) can be easily adopted. Table  3.3 shows the energy prices and the 

running cost coefficients for different equipment of the cooling system. The model was designed so 

that the electricity production of PV panels would be consumed in the system instantly, at each time 

step, otherwise sold to the national grid as demonstrated in eq. (  3.15). 
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The annual demand is expressed considering a number of representative days throughout the summer 

season (e.g. one representative day for each month from April to September) divided into 24 periods 

of 1 hour each. However, although only representative days have been included in the time set of the 

model, the operational costs were calculated for the full period considered by assuming similar 

operational costs at similar time periods.  

 

Table  3.3: Energy prices and the running cost coefficients of cooling system equipment. 

Equipment Coefficient Value Units Ref. 

Compression Chiller 𝑂𝐶𝐶𝑜𝑚𝑝 0.015 €/kWh [38] 

Absorption Chiller 

(Single Stage) 
𝑂𝐶𝐴𝑏𝑠 0.01 €/kWh [39] 

Heat Dissipater 

(Cooling Tower ) 
𝑂𝐶𝐷𝑖𝑠 0.015 €/kWh [38] 

Boiler 𝑂𝐶𝐵𝑙𝑟 0.001 €/kWh [40] 

User-end Utility 𝑂𝐶𝑈𝑠𝑟 0.0004 €/kWh * 

Cold storage 𝑂𝐶𝑆𝑡𝑟 0.0023 €/kWh [38] 

Heat Exchanger 𝑂𝐶𝐸𝑥1& 𝑂𝐶𝐸𝑥2 0.0004 €/kWh * 

Network Pipes 

(maintenance) 
𝑚𝐶𝑛 4.4 % ----- [40] 

Selling price of PV panel 

electricity to the national grid 
𝐶𝑝𝑣 0.16 €/kWhel [65] 

Electricity Price 

𝐶𝑒𝑡8−𝑡17 (Load hours) 0.26  

€/kWhel [66] 
𝐶𝑒𝑡1−𝑡7 & 𝑡18−𝑡24  
(Off-load hours) 

0.194 

Fuel price 𝐶𝑓 0.067 €/kWhth  

electricity consumption ratio at 

the heat dissipater 
𝑅𝑑𝑖𝑠 4.5 % kWhel / kWhth * 

pumping stations power factor 𝑝𝑓 0.0000095 kWhel / m.kWhth * 

Electrical heater 𝑂𝐶ℎ𝑡𝑟 0.0 €/kWh * 

PV-panels 𝑂𝐶𝑃𝑉 0.0 €/kWh * 

Solar 1 (V. tube) 𝑂𝐶𝑆𝑜𝑙1 0.0001 €/kWh * 

Solar 2 (Trough) 𝑂𝐶𝑆𝑜𝑙2 0.0001 €/kWh * 

     * Assumed based on the Author’s best knowledge  
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3.3.5 Constraints   

The objective function is subjected into several constraints regarding energy balances, capacity limits, 

consistency bounds and available area constraint. All of which were applied on the local equipment 

and the pipeline network. 

 

3.3.5.1 General Equipment Capacity and Consistency Constraints 

There are some logical capacity limits and consistency bounds which have to be satisfied in the 

optimization model. For example, equipment’s output should not exceed, at any location of time, the 

nominal capacity of that equipment which is expressed in eq. (  3.17). An input-output balance has been 

applied for each equipment unit, stating that the output of energy conversion equipment is the product 

of the process input and the equipment COP, presented in eq. (  3.18). For non-cooling generation 

equipment (e.g. Boilers, cooling towers, heat exchangers … etc.), COP was substituted with that 

equipment’s efficiency. However, equations (  3.17) till (  3.19) are not to be applied to the storage tanks, 

solar thermal collectors nor to the PV panels as it is going to be presented in the following segments. 

Table (3.4) shows the equipment parameters used within this work. 

 

𝑄𝑂𝑒𝑞𝑢,𝑖,𝑡
 ≤  𝐶𝐴𝑃𝑒𝑞𝑢,𝑖                                             ∀𝑖 , ∀𝑡  (  3.17) 

 

𝑄𝑂𝑒𝑞𝑢,𝑖,𝑡
=  𝑄𝑖𝑛𝑒𝑞𝑢,𝑖,𝑡

 . 𝐶𝑂𝑃𝑒𝑞𝑢                                     ∀𝑖 , ∀𝑡  (  3.18) 

 

𝜇𝑒𝑞𝑢. 𝑌𝑒𝑞𝑢,𝑖  ≤  𝐶𝐴𝑃𝑒𝑞𝑢,𝑖  ≤  𝑀𝑒𝑞𝑢 ∙  𝑌𝑒𝑞𝑢,𝑖                     ∀𝑖  (  3.19) 

 

Where 𝑀𝑒𝑞𝑢 & 𝜇𝑒𝑞𝑢 can be defined as a large and small arbitrary numbers, respectively, or as the 

max. and min. commercial limits for that equipment. 

 

Equation (  3.19) is a consistency bound, basically stating that if a certain type of equipment was not 

installed at site i then the nominal capacity of that equipment should be set to zero. And vice versa, if 

the capacity has been set to zero by the optimization model then the binary variable, representing the 

existence of that equipment, should be set to zero as well.   

 

3.3.5.2 Cooling energy production units (Chillers)  

Implementing the constraints presented in equations (  3.17) to (  3.19) to the compression chillers, their 

capacity and consistency constraints will lead to:  

 

𝑄𝑂"𝑐𝑜𝑚𝑝",𝑖,𝑡
 ≤  𝐶𝐴𝑃"𝑐𝑜𝑚𝑝",𝑖                                                          ∀𝑖 , ∀𝑡  (  3.20) 

 

𝑄𝑂"𝑐𝑜𝑚𝑝",𝑖,𝑡
=  𝑄𝑖𝑛"𝑐𝑜𝑚𝑝",𝑖,𝑡

 . 𝐶𝑂𝑃"𝑐𝑜𝑚𝑝"                                         ∀𝑖 , ∀𝑡  (  3.21) 

 

𝜇"𝑐𝑜𝑚𝑝". 𝑌"𝑐𝑜𝑚𝑝",𝑖 ≤  𝐶𝐴𝑃"𝑐𝑜𝑚𝑝",𝑖 ≤  𝑀"𝑐𝑜𝑚𝑝" ∙  𝑌"𝑐𝑜𝑚𝑝",𝑖                 ∀𝑖  (  3.22) 

 

While for absorption chillers: 

 

𝑄𝑂"𝑎𝑏𝑠",𝑖,𝑡
 ≤  𝐶𝐴𝑃"𝑎𝑏𝑠",𝑖                                                          ∀𝑖 , ∀𝑡  (  3.23) 

 

𝑄𝑂"𝑎𝑏𝑠",𝑖,𝑡
=  𝑄𝑖𝑛"𝑎𝑏𝑠",𝑖,𝑡

 . 𝐶𝑂𝑃"𝑎𝑏𝑠"                                          ∀𝑖 , ∀𝑡  (  3.24) 
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𝜇"𝑎𝑏𝑠". 𝑌"𝑎𝑏𝑠",𝑖  ≤  𝐶𝐴𝑃"𝑎𝑏𝑠",𝑖  ≤  𝑀"𝑎𝑏𝑠" ∙  𝑌"𝑎𝑏𝑠",𝑖                       ∀𝑖  (  3.25) 

 

Where Mcomp , Mabs , μcomp & μabs represent the max. and min. commercial limits for the 

compression and absorption chillers, respectively .  

 

Table  3.4: Technical parameters of DC equipment. 

Equipment COP η 

Compression Chiller 4 , 5.5 or 7 --- 

Absorption Chiller 0.8 --- 

Heat Dissipater 

(Cooling Tower ) 
--- 100 % 

User-end Utility --- 100 % 

Cold storage --- 100 % 

Hot storage --- 100 % 

Heat Exchanger --- 100 % 

Boiler --- 90 % 

Electrical heater --- 95 % 

PV-panels --- 14 % 

Solar 1 (V. tube) --- 100 % 

Solar 2 (Trough) --- 100 % 

 

 

As shown in Figure  3.3, the energy input of the compression chiller (Qin"comp",i,t) is actually the 

electricity consumed by the chiller (Epi,t). On the other hand, the energy input of the absorption chiller 

(Qin"abs",i,t) can be obtained through an energy balance over the connection point in Figure  3.4: 

 

𝑄𝑖𝑛"𝑐𝑜𝑚𝑝",𝑖,𝑡
=  𝐸𝑝𝑖,𝑡                                                               ∀𝑖 , ∀𝑡  (  3.26) 

 

𝑄𝑖𝑛"𝑎𝑏𝑠",𝑖,𝑡
=  𝑄𝑂"𝑠𝑡𝑟2",𝑖,𝑡

− 𝑄𝑖𝑛"𝑠𝑡𝑟2",𝑖,𝑡
+ 𝑄𝑂"𝑏𝑙𝑟",𝑖,𝑡

+ 𝑄𝑂"ℎ𝑡𝑟",𝑖,𝑡
+ 𝑄𝑂"𝑠𝑜𝑙1",𝑖,𝑡

+

                         𝑄𝑂"𝑠𝑜𝑙2",𝑖,𝑡
                                                                                                    ∀𝑖 , ∀𝑡  

(  3.27) 
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3.3.5.3 Heat dissipaters / Cooling towers  

The total heat dissipated at each energy production location is the sum of heat dissipated from the 

cooling energy production units, chillers, in that location: 

 

𝑄𝑖𝑛"𝑑𝑖𝑠",𝑖,𝑡
=  𝑄𝑑"𝑐𝑜𝑚𝑝",𝑖,𝑡

+ 𝑄𝑑"𝑎𝑏𝑠",𝑖,𝑡
                                  ∀𝑖 , ∀𝑡  (  3.28) 

 

Where: 

𝑄𝑑"𝑐𝑜𝑚𝑝",𝑖,𝑡
=  𝑄𝑖𝑛"𝑐𝑜𝑚𝑝",𝑖,𝑡

+ 𝑄𝑂"𝑐𝑜𝑚𝑝",𝑖,𝑡
                           ∀𝑖 , ∀𝑡  (  3.29) 

 

𝑄𝑑"𝑎𝑏𝑠",𝑖,𝑡
=  𝑄𝑖𝑛"𝑎𝑏𝑠",𝑖,𝑡

+ 𝑄𝑂"𝑎𝑏𝑠",𝑖,𝑡
                                    ∀𝑖 , ∀𝑡  (  3.30) 

 

3.3.5.4 Storage Tanks 

Logically, equations (  3.17) and (  3.18) do not apply to the cold and hot storage tanks. Instead, 

equations (  3.31) to (  3.34) were used in a way that the capacity constraints are applied in terms of the 

amount of cooling energy stored in the Cold- and Hot-Storages, HStr1i,t
 and HStr2i,t

, respectively. The 

constraints for cold storage tanks were presented as: 

 

𝐻𝑆𝑡𝑟1𝑖,𝑡
 ≤  𝐶𝐴𝑃"𝑆𝑡𝑟1",𝑖                                                                    ∀𝑖 , ∀𝑡  (  3.31) 

 

𝐻𝑆𝑡𝑟1𝑖,𝑡
− 𝐻𝑆𝑡𝑟1𝑖,𝑡−1

 =   (𝑄𝑖𝑛"𝑆𝑡𝑟1",𝑖,𝑡
−  𝑄𝑂"𝑆𝑡𝑟1",𝑖,𝑡

) ∙  𝑡            ∀𝑖 , ∀𝑡  (  3.32) 

 

Similar equations were introduced for the hot storage tanks: 

 

𝐻𝑆𝑡𝑟2𝑖,𝑡
 ≤  𝐶𝐴𝑃"𝑆𝑡𝑟2",𝑖                                                                      ∀𝑖 , ∀𝑡  (  3.33) 

 

𝐻𝑆𝑡𝑟2𝑖,𝑡
− 𝐻𝑆𝑡𝑟2𝑖,𝑡−1

 =   (𝑄𝑖𝑛"𝑆𝑡𝑟2",𝑖,𝑡
−  𝑄𝑂"𝑆𝑡𝑟2",𝑖,𝑡

) ∙  𝑡            ∀𝑖 , ∀𝑡  (  3.34) 

 

The efficiencies of the storage tanks were assumed to be (100 %) as shown in equations (  3.32) and 

(  3.34), i.e. energy loses through storage tank walls were neglected. Moreover, storage tanks were 

allowed to have initial stored energy value at each representative day. However, they were required to 

compensate those initial values by the end of the optimization, i.e. the final stored energy value at each 

representative day should be equal to the initial value on that day, as presented in equations (  3.35) and 

(  3.36).  

𝐻𝑆𝑡𝑟1𝑖,𝑡𝑖𝑛𝑡
 =  𝐻𝑆𝑡𝑟1𝑖,𝑡𝑒𝑛𝑑

                                                     ∀𝑖 , ∀𝑡 , ∀𝑑  (  3.35) 

 

𝐻𝑆𝑡𝑟2𝑖,𝑡𝑖𝑛𝑡
 =  𝐻𝑆𝑡𝑟2𝑖,𝑡𝑒𝑛𝑑

                                                      ∀𝑖 , ∀𝑡 , ∀𝑑  (  3.36) 

 

Extra constraints were applied to the storages also. For example, storages were not allowed to store or 

discharge more than 25% of their nominal storage capacities in each time step, which is one hour. In 

other words they need minimum 4 hours to charge from zero-energy storage level to a full-energy 

storage level or the other way around. 

|𝑄𝑖𝑛"𝑆𝑡𝑟1",𝑖,𝑡
−  𝑄𝑂"𝑆𝑡𝑟1",𝑖,𝑡| = 0.25 ∗ 𝐶𝐴𝑃"𝑆𝑡𝑟1",𝑖                     ∀𝑖 , ∀𝑡  (  3.37) 

 

|𝑄𝑖𝑛"𝑆𝑡𝑟2",𝑖,𝑡
−   𝑄𝑂"𝑆𝑡𝑟2",𝑖,𝑡| = 0.25 ∗ 𝐶𝐴𝑃"𝑆𝑡𝑟2",𝑖                     ∀𝑖 , ∀𝑡  (  3.38) 
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3.3.5.5 Boilers 

The boiler is, usually, the main driver of the absorption chiller. The energy input of the boiler 

(Qin"blr",i,t) represent the primary fuel, e.g. Natural Gas, energy consumed by the system. Equation 

(  3.18) was adapted to serve as control equation for the energy flow and heat production through the 

boiler where the COP parameter, shown in the equation, was replaced with a boiler efficiency of 90% 

as presented in equation (  3.39). 

𝑄𝑂"𝑏𝑙𝑟",𝑖,𝑡
=  𝑄𝑖𝑛"𝑏𝑙𝑟",𝑖,𝑡

 .  𝜂"𝑏𝑙𝑟"                                                      ∀𝑖 , ∀𝑡  (  3.39) 

 

3.3.5.6 Heat exchangers  

The heat exchangers represent the energy transaction units between the production units or the local 

energy handling units from one side and the cooling network from the other side. Where the energy 

flow rate entering each location i from the DC network represents the energy input of heat exchanger 

ex1 and the energy output of heat exchanger ex2 represents the energy flow rate leaving each location 

i to the DC network. 

Qfrom−neti,t
 =  Q𝑖𝑛"ex1",i,t

                                                            ∀𝑖 , ∀𝑡  (  3.40) 

 

Q𝑂"ex2",i,t
=  Qto−neti,t

                                                                 ∀𝑖 , ∀𝑡  (  3.41) 

3.3.5.7 User-site unit  

This unit represents the local cooling energy handling unit for each consumer. It is to be installed only 

when there is a cooling demand on that location where the energy output of the user-unit (QO"usr",i,t
) 

must meet the instant local cooling demand (LCDi,t) at each location and time step as shown in 

equation (  3.42). The input energy to the user-site unit is controlled by the energy balance at site i in 

Figure  3.6 represented by equation (  3.1).  

 

Q𝑂"usr",i,t
=  𝐿𝐶𝐷𝑖,𝑡                                                                  ∀𝑖 , ∀𝑡  (  3.42) 

 

Equation (  3.43) indicate that the model should not install a user-site unit in a certain location if the 

there was no cooling demand at all time periods on that location. 

 

𝜇"𝑢𝑠𝑟". 𝑌"𝑢𝑠𝑟",𝑖 ≤  ∑  𝐿𝐶𝐷𝑖,𝑡 𝑡                                                ∀𝑖  (  3.43) 

 

3.3.5.8 Electrical heaters 

An electrical heater is to be equipped inside the hot storage tank to be used at high demand periods to 

operate the absorption chiller. This is a supplement considered so often in solar energy driven cooling 

systems in the market. The efficiency of the electrical heater is assumed to be 95%. Equations (  3.45) 

and (  3.46) are constraints to avoid the option of installing an independent electrical heater or to exceed 

the nominal storage capacity of the hot storage tank. 

 

𝑄𝑂"ℎ𝑡𝑟",𝑖,𝑡
=  𝑄𝑖𝑛"ℎ𝑡𝑟",𝑖,𝑡

 .  𝜂"ℎ𝑡𝑟"                                                     ∀𝑖 , ∀𝑡  (  3.44) 

 

𝑌"ℎ𝑡𝑟",𝑖 ≤  𝑌"𝑠𝑡𝑟2",𝑖                                                                                 ∀𝑖  (  3.45) 

 

𝐻𝑆𝑡𝑟2𝑖,𝑡−1
+  Q𝑂"htr",i,t

+  Q𝑖𝑛"str2",i,t
≤  𝐶𝐴𝑃"𝑆𝑡𝑟2",𝑖                              ∀𝑖 , ∀𝑡  (  3.46) 
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3.3.5.9  Thermal solar units 

Two different solar thermal technologies are considered in this work: Vacuum Solar Collectors (sol1) 

and Trough Solar Concentrators (sol2). The investment costs of these units were based on the surface 

area of the collectors installed in the locations. 

 

𝑃𝐶"𝑠𝑜𝑙1" =  ∑   𝑓"𝑠𝑜𝑙1" . [𝐶𝐶𝑣"𝑠𝑜𝑙1". 𝐴"𝑠𝑜𝑙1",𝑖 + 𝐶𝐶𝑓"𝑠𝑜𝑙1". 𝑌"𝑠𝑜𝑙1",𝑖]𝑖   (  3.47) 

 

𝑃𝐶"𝑠𝑜𝑙2" =  ∑   𝑓"𝑠𝑜𝑙2" . [𝐶𝐶𝑣"𝑠𝑜𝑙2". 𝐴"𝑠𝑜𝑙2",𝑖 + 𝐶𝐶𝑓"𝑠𝑜𝑙2". 𝑌"𝑠𝑜𝑙2",𝑖]𝑖   (  3.48) 

 

The capacity constraints of the thermal solar units were also based on the surface area along with 

nominal solar radiation available. Equations (  3.49) to (  3.54) show the capacity constraints of these 

units in relation to their surface area and efficiencies.  

 

𝑄𝑖𝑛"𝑠𝑜𝑙1",𝑖,𝑡
 ≤  𝑆𝑅𝑎𝑑𝑡 . 𝐴"𝑠𝑜𝑙1",𝑖                                                ∀𝑖 , ∀𝑡  (  3.49) 

 

𝑄𝑖𝑛"𝑠𝑜𝑙2",𝑖,𝑡
 ≤  𝑆𝑅𝑎𝑑𝑡 . 𝐴"𝑠𝑜𝑙2",𝑖                                                ∀𝑖 , ∀𝑡  (  3.50) 

 

𝑄𝑂"𝑠𝑜𝑙1",𝑖,𝑡
=  𝑄𝑖𝑛"𝑠𝑜𝑙1",𝑖,𝑡

 .  𝜂"sol1",𝑡                                           ∀𝑖 , ∀𝑡  (  3.51) 

 

𝑄𝑂"𝑠𝑜𝑙2",𝑖,𝑡
=  𝑄𝑖𝑛"𝑠𝑜𝑙2",𝑖,𝑡

 .  𝜂"sol2",𝑡                                           ∀𝑖 , ∀𝑡  (  3.52) 

 

𝜇"𝑠𝑜𝑙1".  𝑌"𝑠𝑜𝑙1",𝑖 ≤ . 𝐴"𝑠𝑜𝑙1",𝑖 ≤  𝑀 ∙ 𝑌"𝑠𝑜𝑙1",𝑖                             ∀𝑖  (  3.53) 

 

𝜇"𝑠𝑜𝑙2".  𝑌"𝑠𝑜𝑙2",𝑖 ≤ . 𝐴"𝑠𝑜𝑙2",𝑖 ≤  𝑀 ∙ 𝑌"𝑠𝑜𝑙2",𝑖                             ∀𝑖  (  3.54) 

 

Where 𝜇𝑠𝑜𝑙1 & 𝜇𝑠𝑜𝑙2 represent the minimum commercial limits available in the market for a single unit 

for both technologies, respectively. On the other hand, M represents an arbitrary large number. 

 

3.3.5.10 PV panels 

Similar to the thermal solar units, investment cost and capacity constraints for PV panels were 

calculated based on the surface area, solar radiation and PV efficiencies. The efficiency of the PV 

panels was assumed to be 14% while the efficiency of inverter used to transfer DC electricity from PV 

to AC was assumed to be 92%. 

 

𝑃𝐶"𝑝𝑣" =  ∑   𝑓"𝑝𝑣" . [𝐶𝐶𝑣"𝑝𝑣". 𝐴"𝑝𝑣",𝑖 + 𝐶𝐶𝑓"𝑝𝑣". 𝑌"𝑝𝑣",𝑖]𝑖   (  3.55) 

 

𝑄𝑖𝑛"𝑝𝑣",𝑖,𝑡
 ≤  𝑆𝑅𝑎𝑑𝑡 . 𝐴"𝑝𝑣",𝑖                                                ∀𝑖 , ∀𝑡  (  3.56) 

 

𝑄𝑂"𝑝𝑣",𝑖,𝑡
=  𝑄𝑖𝑛"𝑝𝑣",𝑖,𝑡

 .  𝜂"𝑝𝑣",𝑡                                               ∀𝑖 , ∀𝑡  (  3.57) 

 

𝐸𝑝𝑣𝑖,𝑡 =  𝑄𝑂"𝑠𝑜𝑙1",𝑖,𝑡
 . .  𝑅𝐸𝑝𝑣  .  𝜂inv                                       ∀𝑖 , ∀𝑡  (  3.58) 

 

𝜇"𝑝𝑣".  𝑌"𝑝𝑣",𝑖 ≤ . 𝐴"𝑝𝑣",𝑖 ≤  𝑀 ∙  𝑌"𝑝𝑣",𝑖                                      ∀𝑖  (  3.59) 

 

Where:  REpv represents the ratio of PV electricity allowed to be sold to the national grid, 𝜇𝑝𝑣  is the 

minimum commercial limits available in the market for PV panels and M is an arbitrary large number.  
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3.3.5.11 Available Area Constraints 

Each location has a free available area inside the building which is to be utilized to install cooling 

system equipment. The amount of this area can be entered into the model by the user (e.g. decision 

maker, design engineer or feasibility analyzer) according to reality characteristics of the location in 

consideration. Each main DC unit has a required area to be installed at a certain location that is related 

to its capacity.  The sum of areas required for the equipment to be installed at site (i) should not exceed 

the maximum available area at that site as shown in equation (  3.61). Heat exchangers, electrical 

heaters and user-site units were not included in equation (  3.61) due to their relatively small required 

areas. However, heat dissipater (cooling tower) was also not included under the assumption that there 

will be enough area for it on the roof or right beside the location (i). 

 

𝐴𝑒𝑞𝑢,𝑖 =  𝐶𝐴𝑃𝑒𝑞𝑢,𝑖/ 𝑎𝑟𝑒𝑞𝑢                                           ∀𝑖  (  3.60) 

 

𝐴"𝐶𝑜𝑚𝑝",𝑖 + 𝐴"𝐴𝑏𝑠",𝑖 + 𝐴"𝐵𝑙𝑟",𝑖 + 𝐴"𝑆𝑡𝑟1",𝑖 + 𝐴"𝑆𝑡𝑟2",𝑖  ≤  𝐴𝑚𝑎𝑥𝑖           ∀𝑖  (  3.61) 

  

3.3.5.12 Roof Area Constraints 

The available roof area is essential for the solar energy technologies (Vacuum Tube Collectors, 

Trough Concentrators and PV panels). Since that these technologies are to share the same roof area for 

each site (i), some governing constraints were required. First the surface areas of these units were 

transferred into a ground area, i.e. the actual roof area to be occupied by each one of these units, by 

using the area ratio factor (arequ). 

 

𝐺𝐴"𝑠𝑜𝑙1",𝑖 = 𝑎𝑟"𝑠𝑜𝑙1" . 𝐴"𝑠𝑜𝑙1",𝑖                                               ∀𝑖  (  3.62) 

 

𝐺𝐴"𝑠𝑜𝑙2",𝑖 = 𝑎𝑟"𝑠𝑜𝑙2" . 𝐴"𝑠𝑜𝑙2",𝑖                                               ∀𝑖  (  3.63) 

 

𝐺𝐴"𝑝𝑣",𝑖 = 𝑎𝑟"𝑝𝑣" . 𝐴"𝑝𝑣",𝑖                                                       ∀𝑖  (  3.64) 

 

The governing constraint adopted in this work was that the total ground area used to install solar 

technologies should not exceed 75% of the whole available roof area at each location as shown in 

equation (  3.65).  Another constraint was developed to control the mount of roof area to be invested for 

installing PV panels in case such limitation is required, i.e. equation (  3.66). Where (RA"pv") is ratio of 

area allowed to be used for installing PV panels. 

 

𝐺𝐴"𝑠𝑜𝑙1",𝑖 +  𝐺𝐴"𝑠𝑜𝑙2",𝑖 + 𝐺𝐴"𝑝𝑣",𝑖  ≤ 0.75 ∗  𝐴𝑟𝑜𝑜𝑓(𝑖)                    ∀𝑖  (  3.65) 

 

𝐺𝐴"𝑝𝑣",𝑖  ≤ 𝑅𝐴"𝑝𝑣" . 𝐴𝑟𝑜𝑜𝑓(𝑖)                                                                 ∀𝑖  (  3.66) 
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3.3.5.13 Other logical and Consistency Constraints 

By reviewing Figures  3.3,  3.4 and  3.6 some logical conclusions stand to reason. For example: 

 

 Since that heating is not included in this study, if there was no absorption chiller installed at site 

(i) then no boiler, hot storage tank, electrical heater or thermal solar units are to be installed at 

that site: 

𝑌"𝑏𝑙𝑟",𝑖 + 𝑌"𝑠𝑡𝑟2",𝑖 +  𝑌"ℎ𝑡𝑟",𝑖 + 𝑌"𝑠𝑜𝑙1",𝑖 +  𝑌"𝑠𝑜𝑙2",𝑖  ≤  𝑀 .  𝑌"𝑎𝑏𝑠",𝑖           ∀𝑖  (  3.67) 

  

 It’s not allowed to install a hot storage tank that works merely on electrical heaters: 

𝑌"𝑏𝑙𝑟",𝑖  ≤   𝑌"𝑠𝑡𝑟2",𝑖 + 𝑌"𝑠𝑜𝑙1",𝑖 + 𝑌"𝑠𝑜𝑙2",𝑖                                               ∀𝑖  (  3.68) 

 

 A heat dissipater is to be installed at site (i) only if a compression or an absorption chiller is 

installed at that site: 

𝑌"𝑏𝑖𝑠",𝑖 ≤    𝑌"𝑎𝑏𝑠",𝑖 +  𝑌"𝑐𝑜𝑚𝑝",𝑖                                     ∀𝑖  (  3.69) 

 

3.3.5.14 Network Capacity and Consistency Constraints 

In this work, we are concerned with the cooling energy flow throughout the DC network in order to 

meet the cooling demands with the lowest costs possible. The difference between the supply and 

return temperature has been assumed to be constant. Similar to the DC equipment, DC network 

pipeline have capacity limitations and consistency bounds. This was implemented by introducing 

Binary variables (𝑌𝑝𝑖𝑝) for each possible pipeline, i.e. each arc connecting two nodes (i & j), 

representing the existence of that pipeline and continuous variables (𝑁𝐹𝐿𝑝𝑖𝑝) for each pipeline 

representing the nominal energy flow rate of that pipeline. The cooling energy flow rate (𝐹𝐿𝑝𝑖𝑝) 

transmitted through a certain pipeline (i,j) at any time (t) should not exceed its nominal energy flow 

rate, i.e. eq. (  3.70). If a certain arc was to be installed between two nodes, then the corresponding 

binary variable has to be set to 1 to allow a positive value for the nominal flow rate variable of that 

arc. Otherwise the both variables will be set to Zero. On the other hand, if the nominal flow rate has 

been set to zero by the optimizer, i.e. no energy transmit is needed between the two nodes, then the 

binary variable, representing the existence of the pipeline connecting those two nodes, should be set to 

zero as well, i.e. eq. (  3.71). Another consistency bound is that if there was no instant (hourly) heat 

flow rate at every time period (t) then a pipeline should not be installed at (i,j), i.e. eq. (  3.72). Where; 

(M) and (μ) represent large and small arbitrary numbers, respectively.  

 

𝐹𝐿𝑝𝑖𝑝𝑖,𝑗,𝑡
 ≤  𝑁𝐹𝐿𝑝𝑖𝑝𝑖,𝑗

                                           ∀(𝑖, 𝑗)   , ∀𝑡  (  3.70) 

 

𝜇 . 𝑌𝑝𝑖𝑝𝑖,𝑗
≤   𝑁𝐹𝐿𝑝𝑖𝑝𝑖,𝑗

 ≤  𝑀 . 𝑌𝑝𝑖𝑝𝑖,𝑗
                  ∀(𝑖, 𝑗)  (  3.71) 

 

𝜇 . 𝑌𝑝𝑖𝑝𝑖,𝑗
≤  ∑  𝐹𝐿𝑝𝑖𝑝𝑖,𝑗,𝑡𝑡                                        ∀(𝑖, 𝑗)  (  3.72) 

 

In sake of simplification we assumed that if a pipeline, i.e. double pipe: both supply and return, is 

installed from i to j, then a pipeline from j to i is not to be installed as presented in equation (  3.73). A 

bi-direction flow over the time periods might be considered in future work to obtain a more 

sophisticated operational optimization model. 

 

𝑌𝑝𝑖𝑝𝑖,𝑗
 ≤  1 −  𝑌𝑝𝑖𝑝𝑗,𝑖

                                           ∀(𝑖, 𝑗)  (  3.73) 
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3.3.6 CO2 emissions and primary energy consumption objectives 

The model contained extra objective functions in addition to the cost reduction objective. Additional 

objectives into the multi objective optimization model were the reduction of the CO2 emissions and the 

primary energy consumptions of the system. Since CO2 emissions are, originally, related to the 

primary energy consumption, both objective functions were mostly depended on the operation pattern 

of the system as presented in equation (  3.74). Where most of the CO2 emitted is related to the amount 

of electricity and fuel consumed in the various units in the system and the amount of electricity 

consumed in the pipeline network to circulate the supply and return cooling water. Other sources of 

CO2 emissions are the energy consumed at installing the pipelines and the various system units.  

 

𝑍𝐶𝑂2 = 𝐶𝑜2𝐸 + 𝐶𝑜2𝐹 + 𝐶𝑜2𝐸𝑞𝑢 + 𝐶𝑜2𝑁𝑒𝑡  (  3.74) 

 

The amount of electricity consumed at the system can be calculated as the sum of consumption at the 

major electrical equipment, i.e. compression chiller, heat dissipater, electrical heater, and water pumps 

in the DC network, after subtracting the amount of electricity produced locally by the PV-panels. 

   

𝐶𝑜2𝐸 = 𝐶𝑜2𝐸𝑐𝑜𝑚𝑝 + 𝐶𝑜2𝐸𝑑𝑖𝑠 + 𝐶𝑜2𝐸ℎ𝑡𝑟 + 𝐶𝑜2𝐸𝑛𝑒𝑡 − 𝐶𝑜2𝐸𝑝𝑣  (  3.75) 

 

𝐶𝑜2𝐸𝑐𝑜𝑚𝑝 =  ∑  ∑  [𝑂2𝐸 .  𝐸𝑝𝑖,𝑡  . ∆𝑡]𝑡𝑖   (  3.76) 

 

𝐶𝑜2𝐸𝑑𝑖𝑠 =  ∑  ∑  [𝑂2𝐸 .  𝑅𝑑𝑖𝑠 . 𝑄𝑂"𝑑𝑖𝑠",𝑖,𝑡
 . ∆𝑡]𝑡𝑖   (  3.77) 

 

𝐶𝑜2𝐸ℎ𝑡𝑟 =  ∑  ∑  [𝑂2𝐸 .  𝑄𝑖𝑛"ℎ𝑡𝑟",𝑖,𝑡
 . ∆𝑡]𝑡𝑖   (  3.78) 

 

𝐶𝑜2𝐸𝑛𝑒𝑡 =  ∑  ∑ [𝑂2𝐸  . 𝑝𝑓 . 𝐹𝐿𝑝𝑖𝑝𝑖,𝑗,𝑡
 . 𝐿𝑖,𝑗 . ∆𝑡]𝑡𝑖,𝑗∶𝑖≠𝑗   (  3.79) 

 

𝐶𝑜2𝐸𝑝𝑣 =  ∑  ∑  [𝑂2𝐸 .  𝐸𝑝𝑣𝑖,𝑡 . ∆𝑡]𝑡𝑖   (  3.80) 

 

 

Another major source for CO2 emissions is the fuel consumed at the boiler in order to provide hot 

water to drive the absorption chillers. These emissions can be estimated as the sum of the thermal 

energies entering the boiler throughout its operation periods multiplied by a conversion factor, 

presented in Table  3.5.  

 

𝐶𝑜2𝐹 =  ∑  ∑ 𝑂2𝑓 . 𝑄𝑖𝑛"𝑏𝑙𝑟",𝑖,𝑡
 . ∆𝑡𝑡𝑖   (  3.81) 

 

The process of installing DC pipelines, chillers, boilers, storages and other system units also result, 

usually, in some CO2 emissions which are mostly related to the size of the equipment or pipeline being 

installed. In order not to limit the CO2 emission objective to the operation pattern only, some 

conversion factors that estimate the amount of CO2 emitted at installing different DC system units and 

network pipelines were assumed.  

 

𝐶𝑜2𝐸𝑞𝑢 =  ∑  ∑  [𝑂2𝑒𝑞𝑢.  𝐶𝐴𝑃𝑒𝑞𝑢,𝑖 . ∆𝑡]𝑒𝑞𝑢𝑖   (  3.82) 

 

𝐶𝑜2𝑁𝑒𝑡 =  ∑  ∑ 𝑂2𝑁𝑒𝑡 .  𝑁𝐹𝐿𝑝𝑖𝑝𝑖,𝑗,𝑡
 . 𝐿𝑖,𝑗 . ∆𝑡𝑡𝑖,𝑗∶𝑖≠𝑗   (  3.83) 
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Table  3.5: CO2 emissions and primary energy conversion factors of electricity and natural gas. 

Factors Energy source Factor symbol
 

Value Units Ref. 

CO2 

emissions 

factors 

Electricity 𝑂2𝐸 633 gco2 /kWhel [67] 

Fuel (natural gas) 𝑂2𝑓 244 gco2 /kWhth [67] 

Primary 

energy 

factors 

Electricity 𝑃𝑟𝐸 3.0 kWhpr/kWhel [68] 

Fuel (natural gas) 𝑃𝑟𝑓 1.1 kWhpr/kWhth [68] 

 

Similar to CO2 emissions, the primary energy consumption was also calculated mostly depending on 

the operation pattern of the system. Thus, a similar estimation method of primary energy consumed at 

pipelines and equipment installation was adopted.  

 

𝑍𝑃𝑟 = 𝑃𝑟𝑚𝐸 + 𝑃𝑟𝑚𝐹 + 𝑃𝑟𝑚𝐸𝑞𝑢 + 𝑃𝑟𝑚𝑁𝑒𝑡  (  3.84) 

 

𝑃𝑟𝑚𝐸 = 𝑃𝑟𝑚𝐸𝑐𝑜𝑚𝑝 + 𝑃𝑟𝑚𝐸𝑑𝑖𝑠 + 𝑃𝑟𝑚𝐸ℎ𝑡𝑟 + 𝑃𝑟𝑚𝐸𝑛𝑒𝑡 − 𝑃𝑟𝑚𝐸𝑝𝑣  (  3.85) 

 

 

𝑃𝑟𝑚𝐸𝑐𝑜𝑚𝑝 =  ∑  ∑  [𝑃𝑟𝐸 .  𝐸𝑝𝑖,𝑡  . ∆𝑡]𝑡𝑖   (  3.86) 

 

𝑃𝑟𝑚𝐸𝑑𝑖𝑠 =  ∑  ∑  [𝑃𝑟𝐸 .  𝑅𝑑𝑖𝑠 . 𝑄𝑂"𝑑𝑖𝑠",𝑖,𝑡
 . ∆𝑡]𝑡𝑖   (  3.87) 

 

𝑃𝑟𝑚𝐸ℎ𝑡𝑟 =  ∑  ∑  [𝑃𝑟𝐸 .  𝑄𝑖𝑛"ℎ𝑡𝑟",𝑖,𝑡
 . ∆𝑡]𝑡𝑖   (  3.88) 

 

𝑃𝑟𝑚𝐸𝑛𝑒𝑡 =  ∑  ∑ [𝑃𝑟𝐸  . 𝑝𝑓 . 𝐹𝐿𝑝𝑖𝑝𝑖,𝑗,𝑡
 . 𝐿𝑖,𝑗 . ∆𝑡]𝑡𝑖,𝑗∶𝑖≠𝑗   (  3.89) 

 

𝑃𝑟𝑚𝐸𝑝𝑣 =  ∑  ∑  [𝑃𝑟𝐸 .  𝐸𝑝𝑣𝑖,𝑡  . ∆𝑡]𝑡𝑖   (  3.90) 

 

𝑃𝑟𝑚𝐹 =  ∑  ∑ 𝑃𝑟𝑓 . 𝑄𝑖𝑛"𝑏𝑙𝑟",𝑖,𝑡
 . ∆𝑡𝑡𝑖   (  3.91) 

 

𝑃𝑟𝑚𝐸𝑞𝑢 =  ∑  ∑  [𝑃𝑟𝑒𝑞𝑢.  𝐶𝐴𝑃𝑒𝑞𝑢,𝑖 . ∆𝑡]𝑒𝑞𝑢𝑖   (  3.92) 

 

𝑃𝑟𝑚𝑁𝑒𝑡 =  ∑  ∑ 𝑃𝑟𝑁𝑒𝑡 .  𝑁𝐹𝐿𝑝𝑖𝑝𝑖,𝑗,𝑡
 . 𝐿𝑖,𝑗 . ∆𝑡𝑡𝑖,𝑗∶𝑖≠𝑗   (  3.93) 
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3.3.7 Multi objective optimization 

The extensive literature survey has showed that there are different methods and theories to obtain the 

multi objective optimal solution [47, 69, 70, 71, 72]. Messac et. al. [47] has presented a concise 

comparison of the most notable methods for generating Pareto solutions. They importantly emphasized 

that generating Pareto solutions is an objective task while selecting a specific Pareto solution is a 

subjective task that depends extremely on the decision maker preferences. The earlier task, i.e. 

generating Pareto solutions, seeks to objectively generate Pareto points in the design space regardless 

of their desirability. One of the most common methods is the normalized weighted sum method where 

two, three or more contradicting objective functions are turned into a one normalized objective 

function.  

 

min 𝑍𝑀𝑢𝑙𝑡𝑖 = 𝑊𝐶  . 𝑍𝐶 + 𝑊𝐶𝑂2 . 𝑍𝐶𝑂2 + 𝑊𝑃𝑟 . 𝑍𝑃𝑟  (  3.94) 

 

Where 𝑊𝐶 , 𝑊𝐶𝑂2 and 𝑊𝑃𝑟 are the weights adopted to combine the different single objectives into one 

function. Ideally the weight of each single objective function is to be assigned by the decision makers 

based on their collective knowledge. However, because different objective functions can have 

different magnitudes, the weights assigned by decision makers need to be normalized. Thus the 

weights are considered to be formed of fragments, DM weights and normalization factors.  

Three different methods to define the values of the normalization weights have been commonly 

utilized in this method [69, 70]: 

 

 The objective functions are normalized by each objectives magnitude at an initial point (xo): 

𝑊𝐶     = 𝑈𝐶  .
1

 𝑍𝐶
 (𝑥𝑜)

  , 𝑊𝐶𝑂2 = 𝑈𝐶𝑂2 .
1

 𝑍𝐶𝑂2
 (𝑥𝑜)

  , 𝑊𝑃𝑟   =  𝑈𝑃𝑟  .
1

 𝑍𝑃𝑟
 (𝑥𝑜)

  (  3.95) 

 

Where UC, UCO2 and UPr are weights assigned by the decision maker according to the importance of 

each objective.  

 

 The objective functions are normalized by each objectives minimum value when optimized alone, 

known as Utopia value, see Figure  3.8:   

 

𝑊𝐶     = 𝑈𝐶  .
1

 𝑍𝐶
𝑈   , 𝑊𝐶𝑂2 = 𝑈𝐶𝑂2 .

1

𝑍𝐶𝑂2
𝑈   , 𝑊𝑃𝑟   = 𝑈𝑃𝑟 .

1

 𝑍𝑃𝑟
𝑈  (  3.96) 

  

 The objective functions are normalized by difference between each objectives magnitude when the 

other objective is minimized, also known as Nadir value demonstrated in Figure  3.8, and each 

objectives minimum value when optimized alone , i.e. Utopia value:  

  

𝑊𝐶 = 𝑈𝐶  .
1

𝑍𝐶
𝑁− 𝑍𝐶

𝑈   , 𝑊𝐶𝑂2 = 𝑈𝐶𝑂2 .
1

𝑍𝐶𝑂2
𝑁 − 𝑍𝐶𝑂2

𝑈  , 𝑊𝑃𝑟 = 𝑈𝑃𝑟  .
1

𝑍𝑃𝑟
𝑁 − 𝑍𝑃𝑟

𝑈  (  3.97) 

   

According to Grodzevich and Romanko  [69], the initial point, i.e. first scheme, may provide very poor 

representation of the function behavior at optimality and in addition in case that f(xo) is equal to zero, 

which is often, this scheme cannot be used. The use of optimal solutions, i.e. second schemes, to 

individual problems can lead to very distorted scaling since optimal values by themselves are not 

related to the geometry of the Pareto set. Based on this, the first two schemes have been found to be 

ineffective and non-practical. On the other hand, the third scheme provides the best normalization 

results as the objective function is being normalized by the true intervals of their variation over the 

Pareto optimal set. Therefore, the third normalization set was adopted in this work.  
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Figure  3.8: Utopia and Nadir points for a two objectives optimization case. 

 

 

3.4 Optimization Environment 

The optimization model has been implemented using GAMS (General Algebraic Modeling System). It 

is an optimization environment that utilizes several mathematical programming algorithms, i.e. 

solvers. Those algorithms are chosen and applied according to the type of the developed model, i.e. 

LP, NLP, MIP, or MINLP. In General, DC systems are complicated to model due to their high variety 

of possible combinations of technologies and different operational conditions [73]. The optimization 

model developed in this work is a mixed integer linear programing (MILP) model. The decision of 

choosing GAMS was due its flexibility to model energy systems and the availability of a high number 

of state of the art solvers. 

 

Figure  3.9 shows the GAMS modeling interface, known as GAMS IDE (Integrated Development 

Environment), where all parameters are to be entered, variables to be defined and equations to be 

written down. Usually, the programmer or user can write the optimization model using GAMS without 

caring for which solving algorithm is going to be used to solve the problem. After implementing the 

model, setting all essential energy balances and constraints, adjusting the GAMS solving options, e.g. 

solving tolerance, to suitable values, and selecting the desirable solver algorithm to be used, the model 

can be solved mathematically and thus optimized. The solutions obtained, i.e., optimal cooling system 

for the proposed case, are then retrieved by GAMS as shown in Figure  3.10 where an optimized value 

is assigned to each continuous and binary variable in the model.  Now the user can read the obtained 

design configuration and operational parameters directly from GAMS IDE results window.   
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Figure  3.9: GAMS IDE (Integrated Development Environment) screenshot. 

 

 

 
Figure  3.10: A screenshot of GAMS IDE results window after optimization. 
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3.5 Summary 

Based on the ultimate aim of this work, that is to help decision makers at early design stages, and brief 

survey in the state of the art that was presented in the previous chapter, a multi objective optimization 

model was developed using mixed integer linear programming MILP and introduced as a useful 

instrument to support the decision making process. 

 

Different strategies or methods of selecting time periods and representative days presented by several 

researchers were reviewed and discussed. Considering the characteristics of each strategy, type of 

building, and nature application the method of selecting a single representative day for each moth was 

adopted in this work especially that variable electricity and primary energy prices are in the 

consideration of this work. The adopted method does not require making any distinction between 

different types of days such as working and non-working days. Some variables can be more influenced 

by the profiles of selected days than the number of these days therefore a minimum number of 

representative days can be suggested.  Because this work is concerned only with the cooling season, 

only 6 typical days are to be chosen representing the months of April to September. The number of 

selected representative days and their time steps can be easily adjusted in the optimization model 

depending on the complexity of the problem. The selection criteria and process of selecting these 

representative days are to be presented within each case study in the following chapters.   

 

The developed multi objective optimization model to optimize the structural design and operational 

parameters of the cooling system has been presented in this chapter. The model is to optimize the size 

and location of each equipment in the system, the size and location of the each distribution pipeline, 

the energy flow rates in those pipelines and how the production and storage units should be hourly 

operated to cover the hourly cooling load of each building in the district. A superstructure comprising 

all equipment and technologies which are possible to be installed was developed. The model consists 

of different sub-models for the cooling system units and equipment as well as the mathematical 

algorithm of the optimization model that include the objective function and lots of constraints such as 

energy balances and operational constraints. Each unit in the cooling system is represented with a set 

of equations controlling its behavior and interaction with other units in the system. Multiple objective 

functions were implemented in the model, including annual total cost and annual CO2 emissions, and 

then combined into one universal objective function using the weighted sum method. The aim of the 

multi objective optimization stage is to generate Pareto solution sets. Generating Pareto solutions is an 

objective task while selecting a specific Pareto solution is a subjective task that depends extremely on 

the decision maker preferences.  

 

The optimization model was implemented using GAMS and solved using CPLEX 12 solver. In 

General, DC systems are complicated to model due to their high variety of possible combinations of 

technologies and different operational conditions. The optimization model developed in this work is a 

mixed integer linear programing (MILP) model. The decision of choosing GAMS was due its 

flexibility to model energy systems and the availability of a high number of state of the art solvers. 

Two examples of case studies are presented in the following chapters, i.e. Chapter 4 and 5.   
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Chapter Four 

Case Study I 
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Chapter Four 

  Case Study I 

4.1  Introduction 

After an extensive validation process through researching and obtaining optimal systems for several 

small cases using the developed model, the research was carried on  into another stage were different 

case studies are to be investigated.  Two case studies, with different dominant occupation patterns, 

were chosen to be investigated within this work. The first case study, presented in this chapter, is 

dominated with residential buildings. It consists of seven buildings including five residential buildings. 

Several major assumptions were adopted in different combinations and various scenarios were 

investigated where cooling systems were optimized and analyzed taking into consideration changes in 

parameters and conditions such as equipment prices, electricity tariffs, cooling loads, available areas, 

distances between buildings, availability of resources, variability of efficiencies and COPs as well as 

some common and logical operation control conditions. 

 

In this chapter a detail description of the first case study and the characteristics of the buildings are 

presented in Section 4.2 along with a brief overview to the optimization approach adopted in the work. 

Cost optimization investigations are introduced in section 4.3 where various scenarios were analyzed 

to study the sensitivity of the cost optimal solution to a group of design and operational parameters. 

Section 4.4 discusses the CO2 emission optimization which was carried out as the second single 

objective optimization stage in this study. Multi objective optimization scenarios that combine both 

cost and CO2 objectives with an approach to include decision makers in the optimization process are 

offered in section 4.5.  

 

4.2  Overview of the case study 

In the two recent decades, many new modern urban cities, mostly occupied by residential buildings, 

have been constructed around the world. A significant amount of these urban areas is located in the 

Middle East, a subtropical region that has a high cooling energy demand which requires considerable 

design and operation optimization efforts to obtain cost-effective systems and networks with 

environment-friendly solutions. The hot climate of this region supports the aims of this investigation; 

therefore, a part of a prospective planned residential district was chosen to be investigated using the 

developed optimization model. The following sections offer a detailed description of the chosen 

district, the cooling load profiles of the buildings and an explanation of the optimization approach.  

 

4.2.1 Description of Selected District 

A small area was chosen out of a prospective planned residential district in a hot climate region. Based 

on the similarity between the several residential in the original plan (Figure 4.1a), a group of 

residential building were selected to be investigated in the case study along with other non-residential 

buildings. The selected district is presented in Figure 4.1b & c. The subtracted area includes seven 

buildings. Two of them are public none-residential buildings, a school and a town council. The other 

five buildings are multi-residents apartments with almost identical cooling load profiles. The distances 

between the buildings in this case study are relatively small and the peak cooling loads are in a range 

of 220-340kW.  
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Figure 4.1: a) The prospective planned residential area; b) selected section to be investigated as case 

study 1; c) a schematic map for Case Study 1.    
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4.2.2 Buildings’occupationandcooling load profiles  

In order to estimate the cooling load profiles for the buildings in case study 1, each of the buildings in 

Figure 4.1 was assumed to have an amount of available area which can be used to install cooling 

system equipment and auxiliaries. The occupation pattern for the residential buildings was assumed to 

be the same while the two none-residential buildings (N2 and N3) were quite different. The buildings’ 

construction data, occupation profiles, lightening and other design assumptions are presented in 

Table  4.1.  As described in Chapter 3, the buildings were simulated using TRNSYS to obtain the 

cooling load profiles for an entire year. Later on, six representative days, each representing one month 

during the summer season (April – September), were chosen.   

 

 

Table 4.1: Construction, occupation and design data of the buildings in case study 1. 

Building name/code 
N1a1, N1a2,  

N1b1, N1b2 & N1b3 
N2 N3 

Building type  Residential Building 
None-residential 

building 
None-residential 

building 

Floor Area  675 m2 1,210 m
2 351 m

2 

Building Height  9.5 m 7 m 6 m 

Wall Orientation and Area 
1
 

S,N wall = 202 m
2
  

E,W wall = 270m
2
 

S,N wall = 350 m
2
 

E,W wall = 336 m
2
 

S,N wall = 136 m
2
 

E,W wall = 65m
2
 

Total glass area 
percentage of the outside 
surface area  

22 % 23 % 30 % 

Max. number of 
occupants  

36 500 30 

Occupancy schedule at 
week days 

12 Per.  
(from 7 am to 2 pm) 

500 Per. 
 (from 8 am to 2 pm) 

30 Per.  
(from 8 am to 2 pm) 

Occupancy schedule at 
weekend days 

36 Per. 
(for 24 hours) 

0 Per.  
(for 24 hours) 

0 Per.  
(for 24 hours) 

Ventilation  
0.5 A-ch/hr 

 (for 24 hours) 
0.5 A-ch/hr 

 (from 8 am to 2 pm) 
0.5 A-ch/hr  

(from 8 am to 2 pm) 

Lightening  5 W/m
2
 5 W/m

2
 5 W/m

2
 

Infiltration  0.5 A-ch/hr 0.5 A-ch/hr 0.5 A-ch/hr 

Computers, equipment  & 
printers 

60 (from 7 am to 12 am) 
12 (from 12 am to 7 am) 

60 devices 
(from 8 am to 2 pm) 

30 devices 
(from 8 am to 2 pm) 

Cooling set temperature 
24 ºC 

(for 24 hours) 
24 ºC  

(from 8 am to 2 pm) 
24 ºC  

(from 8 am to 2 pm) 

 1
 The orientation of N1b1, N1b2 and N1a3 buildings is rotated by 90 degrees.  
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Figure 4.2: Selection of a representative day for September based on the minimum sum of square 

differences to the average cooling profile of the month. 

 

The selection of a representative day for each month, except of July, was based of finding the best 

match of a daily cooling load profile within the month to the average cooling load profile of that 

month as shown in Figure 4.2. This was achieved by calculating the minimum sum of the hourly 

square difference between each day and the average cooling load profile of the month. Figure 4.3 

shows the estimated cooling load profile for building (N1a1) for six representative days. It can be 

noticed that the peak cooling load occurs in July afternoon with a value of around 270 kW. Since 

building (N1a2) has the same architectural construction and occupation pattern, the same simulated 

load profile from building (N1a1) was used. The other three residential buildings (N1b1, N1b2 and 

N1b3) show a difference in their orientation which reflects very slightly on the cooling load profile 

and peak value as shown in Figure 4.4, demonstrating building (N1b1) as an example. The same 

profile was used for the other two buildings.  The two buildings left in the case study are none-

residential buildings (a school and a town council); therefore, their cooling demand is limited to the 

working hours of the day. Their peak cooling load is estimated to be around 340 kW for N2 (school) 

and 226 kW for N3 (town council) as shown in Figures 4.5 and 4.6, respectively.   
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Figure 4.3: Cooling load profiles for 6 representative days for building (N1a1). 

 

 

 
 

Figure 4.4: Cooling load profiles for 6 representative days for building (N1b1). 
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Figure 4.5: Cooling load profiles for 6 representative days for building (N2). 

 
 

 
 

Figure 4.6: Cooling load profiles for 6 representative days for building (N3). 
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4.2.3 Optimization Methodology and Approach 

As presented in chapter 3, a MILP optimization model was applied using GAMS language and solved 

using the commercial solver CPLEX12. The investigation has been carried out at three different stages 

of optimization.  

 

 First stage: A single objective optimization for minimizing annual investment and operational 

costs was investigated and tested for different cases and conditions (scenarios). 

 Second stage: Another single objective optimization approach was carried out for minimizing 

CO2 emissions for a variety of design and operation scenarios.  

 Third stage: Optimal solutions were approached and obtained by means of multi-objective 

optimization including both, overall cost and CO2 emission objectives.   

 

Moreover, two major investigation assumptions were adopted when investigating the above three 

stages. The first was whether to have centralized district cooling system (DCS) or a de-centralized 

DCS where a group of, or all, buildings can have their own separated individual cooling systems. The 

second major assumption was whether to adopt a constant COP for the compression chillers or a 

variable COP depending on the chiller size. These two assumptions were taken into consideration in 

this work in four combinations which were referred to as major investigation categories: 

 

 Category 1: De-centralized DCS with constant COP. 

 Category 2: Centralized DCS with constant COP. 

 Category 3: De-centralized DCS with variable COP. 

 Category 4: Centralized DCS with variable COP. 

 

In the de-centralized DCS investigations the optimization model was given a free choice weather to 

install a full network connecting all buildings, a group of small networks or no network at all, i.e. 

leaving all buildings with individual systems. On the other hand, only one network, connecting all 

buildings, with one production site was allowed in the centralized DCS investigations. These major 

investigation categories were implemented in all three stages of optimization: Cost, CO2 and Multi-

objective optimizations. The study was carried out for several groups of scenarios; each of them being 

analyzed for the sensitivity of the optimal solution toward a certain design parameter or operation 

conditions. The analysis approach for the case study was designed in a way that starts with a reference 

scenario with minimum design and operational constraints. Later on, more realistic conditions were 

integrated in each new scenario toward the actual conditions of the case study. Table  4.2 shows the 

main scenario groups considered in each optimization stage. These main scenarios and their sub-

scenarios will be explained in more details in the following sections.  
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CS1  3  A 1  01  0 

Case Study 1 

Optimization 

stage: 

Table 4.2: Main scenario groups investigated in each investigation category. 

Optimization Main Scenario Groups Stage 1 Stage 2 Stage 3 

Reference 

Scenario 
1. A: Reference Scenarios (Tariff A) X X X 

Design 

Constraints 
 

2. Available Area Constraints Scenarios X   

3. Chiller Location Constraints Scenarios X   

4. Storage Location Constraints Scenarios X   

5. Piping prices Scenarios X   

6. Investment Cost Optimization Scenarios X   

Operational 

Constraints 
   

1. B: Reference Scenarios (Tariff  B) X X X 

7. Waste Heat Availability Scenarios X   

8. Load Shifting Condition Scenarios X   

9. Outdoor Temperature Effect Scenarios X   

Investigation 

categories 

Category 1: De-centralized DCS with constant COP X X  

Category 2: Centralized DCS with constant COP X   

Category 3: De-centralized DCS with variable COP X X X 

Category 4: Centralized DCS with variable COP X X X 

 

The coding system adopted to label each of these scenarios is:  

  

 

                                                                        

                                                                        

                                                                                 

 

     

 

 

 

 

 

 

 

3  Cost-obj. 

5  CO2-obj. 

7  Multi-obj. 

Electricity tariff (A or B) 

Investigation 

category: 

1  De-centralized DCS + const. COP  

2  Centralized DCS + const. COP 

3  De-centralized DCS + var. COP 

4  Centralized DCS + var. COP 

Main scenario group (as numbered in Table 4.2) 

Sub-scenario 
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4.3  Cost Optimization Objective   

The investment cost of a cooling system is a major aspect to be considered in any decision-making 

criteria. Additionally, many design companies take the life time operational cost of the proposed 

systems into consideration during their decision-making procedure.  Therefore, the first investigation 

stage for the first case study was a single objective optimization for the annual cost of the cooling 

system which included both investment and operational costs. The objective cost function is explained 

in details in chapter 3 of this work. This objective was optimized for all the investigation categories 

and the scenarios stated in Table  4.2. 

 

4.3.1 Investigation category 1: Reference Scenario 

The analysis approach was initiated with a reference scenario with a group of assumptions: 

 

 All buildings were assumed to have an entire floor or basement as free space to install the 

cooling system equipment. 

 30% of the roof area was preserved for installing heat dissipaters, e.g. cooling towers, while 

the rest was utilized by the optimization model. 

 Chilled water entering the buildings at 6°C and leaving at 12°C. 

 Fixed tariff for the electricity was implemented (Tariff A). 

 Waste heat availability was not considered.  

 No operation conditions such as load shifting were applied.  

 Fixed COPs for the chillers regardless of partial load and outdoor temperature variation were 

considered at this stage of the research. 

 Fixed COPs for the chillers regardless of the chiller size, which is to be obtained by the model, 

were assumed as well. 

 

Figure 4.7 shows that the optimized solution for a reference scenario for case study 1 for electricity 

tariff A (constant prices) and a constant COP for the compression chillers of 3, would be a group of 

individual systems at each building. Compression chillers of reduced size were chosen to meet the 

cooling load with the assistance of cold storage tanks where peak cooling load periods were met with 

the energy stored in the cold storage tanks. The full capacities of the chillers were around 76-77% of 

the peak load for the residential buildings while 69% and 63% of the peak load for the school and city 

council, respectively. This is because non-residential buildings have several hours of no-load which 

allows installing smaller chillers, operating them during these hours and store the cooling energy to be 

used at peak load hours. Such strategy is very limited by the cooling load profile when applied for 

residential buildings. For the non-residential buildings, the lower the peak load is, the lower 

percentage of chiller capacity to the peak load can be achieved by installing smaller chiller and storage 

tank.  

 

PV panels were installed on 70% of the roof area which was also assumed to be free to use. The 

energy produced by these panels is either to be used to operate the chillers, if the chillers were ON at 

the time of production, or to be sold to the national electricity grid. The selling price of the produced 

energy, 0.16 Euro/kWh, was lower than the purchase price of the electricity from the grid, 0.26 

Euro/kWh,  which makes local consumption, whenever possible, of the energy produced by the PV 

panels a much cost effective within this case study.   
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Figure 4.7: Annual cost optimization reference scenario for case study 1 with electricity tariff A and 

constant COP for the compression chillers of 3. 

 

Observing Figure 4.8 indicates that the cooling demands for each individual building were fully met 

by the separated systems suggested by the optimization model. The cold storages were assumed to 

have initial stored energy values which were optimized within the range of 25% to 75% of the full 

capacity of the storage tanks under the condition that these values should be re-obtained by the system 

at the end of the day. The optimized capacities of the storage tanks might have been overestimated as a 

result of another implemented restriction that limits the hourly output of a storage tank to, by 

maximum, 25% of its capacity. That is a fully charged storage tank will need 4 hours minimum to 

fully discharge is stored energy. 

 

The reference scenario was re-optimized under the same conditions but with different values for the 

compression chiller COP. The investigated COP values were 4, 5, 6 and 7. The results showed that a 

de-centralized system, similar to the system in Figure 4.7, consisting of a group of separated individual 

cooling systems for each building was still chosen as optimal solution. This is due to the fact that the 

COPs were considered as constant values, regardless of their sizes, in each scenario. However, the 

capacities of the installed compression chillers and cold storage tanks were slightly varying, especially 

for the residential systems, from one scenario to another as shown in Figure 4.9. The obtained 

solutions when adopting higher COPs were heading towards a balance point between the installed 

capacities of chillers and storage tanks. 
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Figure 4.8: Cooling energy provided by individual systems in scenario CS13A1010 to meet cooling 

load profiles of three buildings (N1a1, N2 & N3) at a typical hot day in July. 

 

 

Figure  4.10 show the annual total, investment, and operational costs and annual CO2 emissions 

obtained for the investigated sub-scenarios with COP values of 3, 4, 5, 6 and 7. Adopting a 

compression chiller with COP=7 instead of 3 has resulted in 35% reduction in the total annual cost and 

55% reduction in operational cost. However, no DC network pipelines were installed. This COP 

sensitivity investigation is to be carried out again when optimizing CO2 emissions objective.   
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Figure 4.9: Capacities of compression chillers and storage tanks for reference scenarios optimized with 

different values for Chiller COPs with electricity tariff A. 

 
As it is noticed the model suggested compression chillers instead of absorption chillers for all 

buildings. This can be described as a reasonable option since compression chillers have lower 

investment cost compared to absorption chillers and also considering that no waste heat resources 

were assumed to be available in this scenario. Although absorption chillers have higher investment 

costs and much lower COPs than compression chillers, they might still represent an optimal solution 

for certain cases depending on market prices for electricity and fuel as well as the availability of free 

or cheap heat resources. For example, if COPs for absorption and compression chillers were assumed 

to be 0.8 and 4, respectively. That means a compression chiller will require 0.25 kWhel of electricity to 

produce one kWh of cooling for one hour (kWhcl). While an absorption chiller will require 1.389 kWhf 

of fuel energy to produce one kWhcl, assuming 90% boiler efficiency. Electricity price was 0.26 

€/kWhel and fuel price was 0.067 €/kWhf. The total cooling load for all the buildings in the case study 

was approximately 2750000 kWh for the entire 6 months period. By multiplying the total load by 

energy requirement for each chiller and by their input-energy prices, we get the total cost of the total 

required energy as shown in Table  4.3.   
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Figure 4.10: Total, investment and operational annual costs and CO2 emission obtained for the COP 

sensitivity analysis with electricity tariff A under minimizing total annual cost as the objective of 

optimization.  

 

 

Table 4.3: Operational costs compression for compression and absorption chillers. 

Operational Costs compression chillers absorption chillers 

Cost of one kWh of cooling 
0.25*0.26 = 0.065 

 €/kWhcl 

1.389*0.067 = 0.093 

 €/kWhcl 

Operational energy cost 
0.065*2750000 

= 178750 € per year 

0.093*2750000 

= 255750 € per year 

 

By repeating the same calculations under the same conditions and assumptions, values can be derived 

for which absorption chillers may be preferable to traditional compression chillers, based on 

operational costs, as presented in Figure 4.11 where the blue line represents the cooling energy in 

respect to the fuel cost while the red dashed lines demonstrate the cooling energy costs in respect to 

four different electricity prices. The blue dashed line represent the fuel price used in this work and its 

corresponding cooling energy cost. For Example, by observing Figure 4.11, when the local fuel cost, 

at a certain city, is (0.04 €/kWhf), then the cost of the cooling energy produced by absorption chiller 

would be (0.055 €/kWhcl). This exact cooling energy cost can be provided by compression chiller 

when the electricity cost is (0.22 €/kWhel). If the electricity price in that city is higher than this value 

then it is recommended to select absorption chiller. However, if the electricity price in that city is 

lower than (0.22 €/kWhel) then a compression chiller would be more reasonable. 
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This cost analysis, Figure 4.11 , represent only the consumption related operational cost per kWh of 

cooling for both chiller types without taking in consideration the difference in investment costs for 

each of them which are usually in favor of compression chillers as well. However, there are sufficient 

cases where absorption chillers might be a cost-effective solution such as when electricity prices are 

high and fuel can be provided at adequate prices. Absorption chillers are also recommended when 

sufficient amount of waste heat is available. Several sub-scenarios investigating the effect of waste 

heat availability are presented later on in this chapter.  

 

 
 

Figure 4.11: Estimated cost of cooling energy (€/kWhcl) in relation to fuel cost (blue line) along with 

four cooling energy costs in relation to different electricity costs (red dashed lines). 

 

It was noticed that operational cost has a big impact on the optimal solution. Therefore, some sub-

scenarios were investigated to optimize the investment cost solution regardless of the operational cost 

in the following sections.   
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4.3.2 Investigation category 2 (Centralized DCS with constant COP) reference 

scenarios 

After obtaining an optimal solution for the reference scenario, several centralized district cooling sub-

scenarios were carried out where a single central cooling energy production plant was installed to meet 

the overall cooling load of the entire district. The aim of these investigations is to compare centralized 

DC systems to the reference scenario. Two different restrictions were used to force the model to 

choose a central district cooling system: 

 

 Available area restrictions 

 Chiller location restrictions 

  

In the first restriction, the amount of available area to install DC equipment were limited to each 

building one by one, at each sub-scenario, while other buildings were assumed to have no available 

areas. This kind of restriction forces the optimization model to install all system equipment in a one 

central station. The actual available area situation was that only the local school (N2) has enough 

available area to install cooling equipment, e.g. chillers. However, hot and cold storages were possible 

to install in all other buildings. Therefore, the second restriction method was introduced.  

 

The second restriction method was to force the model to choose one central chiller at each building 

one by one, at each sub-scenario, while other equipment, e.g. cold storage tanks, were allowed to be 

installed at the other buildings. Thus, each of the buildings in the case study was assumed to be the 

central cooling energy production station at a certain sub-scenario.  

 

The total annual costs of sub-scenarios of both restriction methods are presented in Table  4.4. In both 

restriction methods, building (N2) was proven to be the optimal location to install a central DCS 

although it is not the central location in the case study. This is due to its relatively high cooling load in 

compare to the other buildings as well as its relatively bigger roof area which allow installing more PV 

panels that can be integrated to the DC energy production plant.   

 

Table 4.4: Total annual costs of the central district cooling systems scenarios.   

Central Unit 
Availability area restriction  Chiller location restriction  

Code Cost (Euro/year) Code Cost (Euro/year) 

At building (N1a1) CS13A1021 428,135.50 CS13A1031 427,493.60 

At building (N1a2) CS13A1022 428,800.00 CS13A1032 427,858.50 

At building (N1b1) CS13A1023 427,915.30 CS13A1033 427,487.90 

At building (N1b2) CS13A1024 429,524.30 CS13A1034 428,641.30 

At building (N1b3) CS13A1025 428,148.80 CS13A1035 427,836.40 

At building (N2) CS13A1026 426,435.80 CS13A1036 425,937.10 

At building (N3) CS13A1027 432,926.20 CS13A1037 432,743.70 
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Figure 4.12 demonstrates the optimized systems for the two optimal solutions, at building (N2), within 

the two restriction methods. For the purpose of validation, a separated centralized DC optimization 

where the model was free to select the location of the central chiller, CS13A2010, was performed by 

merely limiting the number of chillers to be installed to one. This sub-scenario resulted in the same 

system shown in Figure 4.12b which represents the optimal centralized district cooling system. It is 

noticed that the difference between the total annual costs for the two obtained solutions in Figure 4.12 

is too small thus the advantage of second restriction was merely mathematical. From a practical point 

of view these annual costs are almost identical therefore a final decision is expected to be made based 

on other aspects.   

 

Since that building N3 (city council) occurred to be the most expensive option when chosen as the 

central production plant, a cost comparison with optimal scenario, when N2 is the central production 

plant, is presented in Table  4.5. Unlike the expectations, it is noticed that investment cost has less 

impact since the difference between the investment costs of the two scenarios, for both restriction 

methods, is small in comparison to the operational costs difference. The pipeline network cost had 

higher costs, both investment and operational, in the optimal solution, CS13A1026; when N2 is the 

central production plant, than the scenario CS13A1027, when N3 is the central plant. However, it was 

the electricity purchase costs that had the biggest impact. This particular aspect is very much 

dependent on the PV panels’ energy consumption profile. Where the optimization was modeled in a 

way that, energy produced by PV panels is either to be locally consumed, i.e. used to operate the 

chillers if the chillers were ON at the time of production, or to be sold to the national electricity grid. 

However, only the energy produced at the same building where the chiller is installed can be used for 

local consumption. Energy produced at other buildings had to be sold to the grid. And since that the 

electricity selling price to the grid (0.16 €/kWh) is lower than the purchase price of electricity from the 

grid (0.24 €/kWh), any further selling of PV panels’ energy to the grid will result in income loses. The 

PV electricity income for scenarios CS13A1027 and CS13A1037, in Table  4.5, is higher than that of 

scenarios CS13A1026 and CS13A1036. This indicates that more electricity was sold to the grid, at the 

low price, and thus more income lose for those systems, i.e. CS13A1027 and CS13A1037, than if that 

energy was locally consumed. Where the best case scenario should be when as much as possible of PV 

panel electricity is locally consumed and thus the lowest income achieved from selling PV panels’ 

energy to the grid. The electricity production and local consumption of PV panels form both scenarios, 

when N2 or N3 are production sites, is presented in Figure 4.13. Results of optimizations without 

installing PV will be presented later on in this chapter. 
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Figure 4.12: Cost optimization under: a) Available area restriction, and b) Chiller location restriction, 

to (N2) for electricity tariff A. 

 

[a] 

[b] 

/ 

CS13A2010 
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Table 4.5: Details of costs for the scenarios of Centralized DC at buildings N2 and N3 and for both 

restriction methods with electricity tariff A. 

Type of cost 
1
 

Availability area restriction  

Central Pl. at N2 

CS13A1026 

Central Pl. at N3 

CS13A1027 
Difference 

Total annual costs 426,435.80 432,926.20 -6,490.40 

1. Total plant investment cost 118,386.01 118,537.78 -151.77 

2. Total Network investment cost 32,336.77 31,071.40 1,265.37 

3. Total operational cost 275,713.03 283,317.10 -7,604.07 

3.1. Plant site operational cost 100,761.61 100,846.01 -84.40 

3.2. Electrical network (pumping) cost 806.13 552.857 253.27 

3.3. Electrical plant site operational cost 174,145.27 181,918.23 -7,772.96 

3.3.1. Comp. chiller electricity cost  209,379.60 229,589.28 -20,209.68 

3.3.2. PV panels electricity income 
2
 78,681.69 91,118.42 -12,436.73 

3.3.3. Heat dissipater electricity cost  43,447.36 43,447.36 0.00 

Type of cost 
1
 

Chiller location restriction  

Central Pl. at N2 

CS13A1036 

Central Pl. at N3 

CS13A1037 
Difference 

Total annual costs 425,937.10 432,743.70 -6,806.60 

1. Total plant investment cost 118,525.99 118,623.14 -97.15 

2. Total Network investment cost 31,668.78 30,731.67 937.11 

3. Total operational cost 275,742.37 283,388.91 -7,646.54 

3.1. Plant site operational cost 100,790.95 100,871.81 -80.86 

3.2. Electrical network (pumping) cost 806.13 552.85 253.28 

3.3. Electrical plant site operational cost 174,145.27 181,964.24 -7,818.97 

3.3.1. Comp. chiller electricity cost  209,379.60 229,708.92 -20,329.32 

3.3.2. PV panels electricity income 
2
 78,681.69 91,192.04 -12,510.35 

3.3.3. Heat dissipater electricity cost  43,447.36 43,447.36 0.00 
1  All costs are in Euro.   
2  The PV electricity income is to be subtracted when calculating the electrical plant site operational cost. 

 

Total costs for chiller location restrictions were lower than the area restriction conditions due to the 

possibility to install other equipment at different locations in the district. For the restricted available 

area, a compression chiller with a capacity of (1,439.2 kW), 74.6% of the total peak load, was always 

installed at the central production location along with cold storage with a capacity of (1,798.4 kWh) as 

shown in Figure 4.12a. Storage tank was always installed at the central production location due to the 

area restrictions. This resulted in relatively bigger cold storage and network pipeline sizes leading to 

higher network investment costs than that of the chiller location restriction sub-scenario. See 

Table  4.5. 
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Figure 4.13: PV panels electricity production and local consumption of both scenarios, when N2 or N3 

are production sites. 

 

On the other hand, for the chiller location restrictions, as shown in Table  4.6, a compression chiller 

with an approximate capacity of (1290kW), around 67% of the total peak load, was installed when the 

production location was restricted to be at any of the residential buildings along with two cold storages 

with approximate capacities of (1050 kWh) and (1800kWh). However, when the production location 

was restricted to be at any of the two none-residential buildings (N2 or N3), a relatively bigger 

compression chiller (1439.2 kW) ), 74.6% of the total peak load, was installed with two smaller cold 

storages (approx. 935 kWh and 860 kWh) as shown in Figure 4.12b. In most of these sub-scenarios the 

locations of the storage tanks were not at the production plant but rather at the far end of the DC 

network. 

 

Table  4.6 shows that the location of the storage tanks, within the chiller location restrictions sub-

scenarios, is effected by the location of the compression chiller itself. Two storage tanks were installed 

in all sub-scenarios. When compression chiller is installed at one of the none-residential buildings, N2 

or N3, storage tanks were installed at the two buildings on the other end of the network, i.e. building 

N1a2 and N1b2. This enables the system to have smaller sizes for the network pipelines which are 

used to transport a more steady flow of cooling energy to charge the cold storages during off-peak load 

hours. On the other hand, when compression chiller is installed at one of the residential buildings, 

building N2 was a permanent choice to install one of the storage tanks. The other storage tank location 

was changing, between N1b2 and N1b3, depending on how far the chiller is installed. Thus, three 

buildings were found as recommended locations for installing storage tanks: 

 

 Building N2, especially if this building was not the chiller site itself, due to its high peak 

cooling load in comparison to the other buildings. 

 Building N1b2, because it represents the building on the other end of the network. 

 Building N1b3, where it has a central location and it represent the connection point between 

residential and none-residential buildings. 
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Table 4.6: Location and capacity of chillers and storage tanks in the chiller location restriction sub-

scenarios with electricity tariff A.   

Scenario Code 

Central Chiller  Cold Storage Tanks  

Location Capacity (kW) 

Percentage of 

capacity to the 

total peak load
*
 

Location 
Capacity 

(kWh) 

CS13A1031 N1a1 1296.31 67.2 % 
N1b2 

N2 
1015.64 

1807.33 

CS13A1032 N1a2 1289.01 66.8 % 
N1b3 

N2 
1064.04 

1858.35 

CS13A1033 N1b1 1290.02 66.9 % 
N1b2 

N2 
1064.04 

1803.35 

CS13A1034 N1b2 1289.01 66.8 % 
N1b3 

N2 
1064.04 

1898.29 

CS13A1035 N1b3 1290.15 66.9 % 
N1b2 

N2 
1064.04 

1778.05 

CS13A1036 N2 1439.25 74.6 % 
N1a2      
N1b2 

934.14 

864.31 

CS13A1037 N3 1439.25 74.6 % 
N1a2      
N1b2 

938.97 

859.48 
* The total peak load of all buildings is 1929 kW. 

 

The operational production profiles of the two optimal solutions of Figures 4.12a and 4.12b to meet 

the overall hourly cooling load of the whole system are presented in Figures 4.14  and 4.15. As it is 

shown in the energy production curve of the compression chiller, the production was not on a fixed 

steady rate. This is due to the high difference between the peak load and the lowest point in the load 

profile which means that the system will need cold storage tanks with high capacities or multi-storages 

at each building.  

 

An additional optimization was carried out with a condition of installing 7 storage tanks, i.e. one 

storage at each building, to observe the chiller production performance and system total cost in 

comparison to the obtained optimal systems within both area and chiller location restrictions. Where 

CS13A1026 represent the option of installing one central storage tank at the same location of the 

chiller, CS13A1036 represent installing and optimized number of storages for a centralized network 

and CS13A1047 represent a centralized system with a storage tank at each building.  The total and 

operational costs are presented in  

Table 4.7. Investigations have shown that the first and third cases, i.e. CS13A1026 and CS13A1047, 

do not represent optimal cost systems however the difference in their total annual costs to that of the 

system with optimized number of storages, i.e. CS13A1036, is less than 0.5%. And the operation 

profiles of the chillers, shown in Figure 4.16, do not indicate a significant advantage of either scenario. 

However it is expected that greater impacted would be observed when different electricity tariff, with 

lower prices at night, is adopted. Thus, for constant electricity tariff, installing one central storage tank 

or an optimized number of storages is recommended unless installing a storage tank at each building 

would provide some kind of flexibility in controlling the system. Figure 4.17 shows the investment 

and operational cost of the three DC systems in comparison to the De-Centralized optimal scenario. 

The three centralized DC systems have around 15% percentage increase in the annual total cost in 

compare to De-centralized system. This shows that designing a DC system under constant COP and 

electricity tariff does not favor installing DC networks.  
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Figure 4.14: Cooling energy provided by the centralized DC system at building (N2) in scenario 

(CS13A1026: Figure 4.12a) to meet overall cooling load of all buildings at a typical summer day in 

July. 

 

 
 

Figure 4.15: Cooling energy provided by the centralized DC system at building (N2) in scenario 

(CS13A1036: Figure 4.12b) to meet overall cooling load of all buildings at a typical summer day in 

July. 
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Table 4.7: Total and operation costs for three centralized DC systems with different number of storage 

tanks for electricity tariff A. 

 

 

 

 

 

 
 

Figure 4.16: Chillers energy production profiles of three centralized DCSs with: a) Central storage, b) 

Optimized no. of storages, and c) One-storage at each building, for electricity tariff A. 
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CS13A1026: Chiller production profile with one central cold storage

CS13A1036: Chiller production profile for optimized number of storages

CS13A0047: Chiller production profile with one storage at each building

Constant electricity tariif A

Scenario Description 
Annual operational 

cost (Euro) 

Total annual cost 

(Euro) 

Percentage of 

difference in 

total cost 

CS13A1026 
One central storage 

tank 
275,713.03 426,435.80  0.12 % 

CS13A1036 
Optimized number of 

storage tanks  
275,742.37 425,937.10  --- 

CS13A1047 
One storage tank at 

each building 
275,778.67 427,838.40  0.45 % 
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Figure 4.17: Annual investment, operational costs and percentage of increase in total cost of three 

centralized DCSs with: a) Central storage, b) Optimized no. of storages, and c) One-storage at each 

building, in comparison to the De-centralized optimal solution CS13A1010 with electricity tariff A. 

 

4.3.3 Piping Prices Scenarios 

Since the reference optimization scenario (CS13A1010) suggested a group of separated cooling 

systems at each building as a cost optimal solution, a sensitivity analysis towards piping investment 

costs was carried out to obtain common conclusions that support decision-makers when considering 

district cooling systems. During this analysis, the investment cost function of network pipelines, as 

presented in chapter 3, was used. While gradually decreasing the price by 20, 35, 50, 65 and 80%, 

holding all other variables constant, the effects of these price changes on the optimal solution were 

observed. 

 

It was noticed that network pipeline investment costs did not have a big impact on the obtained 

optimal solution even when they were reduced by up to 50%. The impact of reducing the piping 

investment cost was starting to be effective when reducing the piping prices by around 65% with 

electricity tariff A. Only then an additional pipeline was added between the school building (N2) and 

the residential building (N1b2) as a replacement for the cold storage and a smaller chiller in that 

building, in comparison to the reference scenario (Figure 4.7). The same network and system was 

selected by the model when reducing the pipeline prices by 80%, as demonstrated in Figure 4.18. This 

pipeline complements the local chiller at (N1b2) in covering the peak load hours by energy provided 

from (N2). However, the reduction in the total annual cost for this case (CS13A1055) was 0.37% 

which is very low considering the high decrease of piping prices. However, considering that the 

investment cost of DC pipeline network of the centralized DC systems, see Table 4.5, is too small in 

compare to the overall annual cost of the system, it seems to be reasonable that such high reduction in 

pipeline prices would not have great impact on the system design. Table  4.8 presents the total annual 

costs and cost reduction percentages due to various reductions in network piping prices, given in 

percentages. 
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Table 4.8: Total annual costs of piping pricing sub-scenarios for total cost optimizations under 

electricity tariff A.   

Reduction Percentage in 

Piping investment costs 

Optimizing total annual costs 

Code 
Total Cost 
(Euro/year) 

Reduction 

Percentage 
Standard prices CS13A1010 369,277.70 --- 

20 % reduction CS13A1051 369,277.70 0 % 

35 % reduction CS13A1052 369,277.70 0 % 

50 % reduction CS13A1053 369,277.70 0 % 

65 % reduction CS13A1054 368,966.41 0.08 % 

80 % reduction CS13A1055 367,883.31 0.37 % 

   

 

 
 

Figure 4.18: Cost optimization with 80% reduction in DC network pipeline prices with electricity 

tariff A. 

 

This investigation have shown reducing the pipeline prices has little impact on the system design 

especially that the investment cost of a full centralized DC system is too small in comparison to the 

total annual cost of the system. These results indicate that optimizing the total annual cost of a cooling 

system under the conditions of constant COP for the chillers, regardless of their capacities, and 

constant electricity tariff would result in separated individual systems for each building excluding the 

option of installing a centralized DC system even when the pipeline prices are significantly low. 
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4.3.4 Investment cost optimization Scenarios 

Another attempt was carried out in order to validate the so far obtained conclusion, that separated 

individual systems are preferable within investigation categories 1 and 2 with electricity tariff A. The 

same conditions and assumptions used in reference scenario CS13A1010 were optimized once again 

by the developed model but by adopting only the investment cost as the objective function. 

 

Figure 4.19 shows the system obtained when optimizing investment cost only. Operational cost was 

not considered in the optimization objectives and therefor energy incomes from PV panels were 

ineffective and thus no PV panels were installed in the obtained system. Cold storage tanks were 

installed merely at the none-residential buildings, while the residential buildings were equipped with 

compression chillers only. However, there was no network implemented in the obtained system.  

 

 
 

Figure 4.19: Investment cost optimization of the reference scenario with electricity tariff A. 

 

 

Although the optimization has achieved a 54% reduction, in compare to CS13A1010, in the 

investment cost, it has resulted in a high increase in the operational cost since it is not included in the 

minimization objective.  As a result, the total annual cost of the obtained system was 20% higher than 

that of the reference system, when optimizing total cost, as presented in Figure  4.20.  

 

, 
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Figure 4.20: Annual investment, operational costs and percentage of increase in investment and total 

cost of the reference systems when optimizing; a) total cost, i.e. CS13A1010; b) Investment cost only, 

i.e. CS13A1060, with electricity tariff A.  

 

Similar investigations, with minimizing investment cost only, were carried out with pipeline prices 

reductions at percentages of 20, 35, 50, 65 and 80%. Table  4.9 presents the investment costs, total 

annual costs and reduction percentages in the investment cost due to various reduction percentages in 

network piping prices within investment cost optimization scenarios. A reduction by up to 35% of 

piping costs did not have any impact on the optimized system under standard prices (CS13A1060). 

However, a network connecting building (N1b3) as a production location to buildings (N3) and 

(N1b1) has been selected by the model when pipeline prices were reduced by 50%, as shown in 

Figure  4.21. The reduction percentage in the investment cost was 0.26% in comparison to the standard 

prices scenario (CS13A1060). This percentage was dramatically increased with further reductions in 

pipeline prices by 65 and 80 %. However, such high price reductions are unlikely to occur in the 

market. Low investment cost for network pipeline would encourage installing bigger grids however 

this would also result in operational cost to circulate the chilled water. Because it was not considered 

in the objective function, operational cost was slightly fluctuating and thus the total cost. The 

reduction in the total cost for the last scenario, CS13A0065, is due to lower investment rather 

operational cost. And yet it is still not competitive to the total annual cost of the reference scenario, 

CS13A1010.   

 

Table 4.9: Total annual costs of piping pricing scenarios for investment cost optimizations.   

Reduction Percentage 

in Piping investment 

costs 

 Optimizing investment costs only 

Code 
Investment cost 

(Euro/year) 

Operational cost 

(Euro/year) 

Total Cost 

(Euro/year) 

Reduction in 

Inv. cost 

Standard prices 

(Figure 4.19) 
CS13A1060 60,017.20 383,724.33 443,741.53 --- 

20 % reduction CS13A1061 60,017.20 383,723.54 443,740.77 0 % 

35 % reduction CS13A1062 60,017.20 383,724.33 443,741.53 0 % 

50 % reduction CS13A1063 59,860.92 384,386.62 444,247.54 0.26 % 

65 % reduction CS13A1064 57,627.64 386,439.45 444,067.09 3.98% 

80 % reduction CS13A1065 53,182.34 386,430.60 439,612.94 11.39% 
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Figure 4.21: Investment cost optimization with 50% reduction in pipeline prices. 

 

This investigation was carried to validate the previous conclusion obtained in section  4.3.3 that is DC 

pipeline investment cost has little impact on system design. Based on the investigations carried out so 

far, it is recommended to implement more focus on the operation cost when designing a cooling 

system within the assumption of constant COP for the compression chillers regardless of their 

capacities.  

 

4.3.5 Operation Constraints Scenarios for investigation categories 1 and 2 

For all the previous optimized scenarios, there were no restrictions for the operational pattern obtained 

by the model except for that the storage tank cannot charge or discharge more than 25% of its total 

capacity per one hour. Realistically, various operational restrictions should be included to present a 

more reliable operational pattern. Therefore, four different operational restrictions will be applied into 

the optimization model to analyze their impact on the optimal solutions in this section. These 

operational restrictions include:  

 Variation in electricity prices during day and night periods (Tariff B). 

 Availability of waste heat energy. 

 Load shifting strategy.  

 Variation in the values of COPs between day and night due to a change in ambient 

temperature.    

 

The first restriction will be investigated for both Centralized and De-centralized DC systems to 

analyze impact of having variable electricity tariff on the design outcomes of both investigation 

categories. The other three operational restrictions will be applied on both Electricity tariffs A and B 

within the De-centralized investigation category to observe which one would have a positive impact 

towards implementing DC networks.  

 , 
 , 
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4.3.5.1 Day and Night Electricity Prices Scenarios (Tariff B) 

4.3.5.1.1.    Investigation category 1 (De-Centralized DCS with constant COP) scenarios 

Until this point, all implemented scenarios assumed electricity tariff A representing a constant tariff 

over the whole day. A variable electricity tariff that changes between day and night hours was also 

considered. This variable electricity price system is known throughout the following chapters as tariff 

B. The electricity prices for both tariffs are presented in Table  4.10. All previous investigated 

scenarios under electricity tariff A will be re-investigated and compared to the equivalent scenarios 

under tariff B.  

 

Table 4.10: Electricity prices in (€/kWhel) according to the two tariffs A and B [66].  
Time period Tariff A  Tariff B  

Day time (6:00 – 21:00) 0.26 0.26 

Night time (22:00-5:00) 0.26 0.19 

 

 
 

Figure 4.22: Total annual cost optimization for de-centralized reference scenario - electricity tariff B. 

 

The first impact to be recognized on the optimized design of the De-centralized DC system for the 

reference scenario with electricity tariff B (CS13B1010: Figure 4.22), in comparison to reference 

scenario with electricity tariff A (CS13A1010: Figure 4.7),  is the change in the sizes of chillers and 

storage tanks for all buildings except N2, as presented in Figure  4.23. For the residential buildings, 

chiller capacities were reduced by 5-6 % while bigger cold storage tanks were installed with an 

increase in capacity around 33 – 37%. This change in design option is due to the lower electricity 

prices at night hours which allow a special operation pattern to be adopted. This operational pattern 

can be clearly observed in building (N1a1) as presented in Figure  4.24a. Where, the chiller is operated 

at full capacity during night hours as well as at load hours during the day in order to charge the storage 

tank. This stored energy is to be utilized later, at peak load hours.  
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Figure 4.23: Capacities of compression chillers and storage tanks for reference scenarios optimized 

with electricity tariffs A (CS13A1010) and B (CS13B1010). 
 

The operation strategy suggested for building (N1a1) was not adopted for the school (building N2), 

see Figure 4.24b, neither were the capacities of the chiller or storage tank in this building changed in 

comparison to the refrence scenario with tariff A (CS13A1010) as presented in Figure 4.23. This is 

due to the relatively high cooling peak load meaning that a high capacity storage tank would be 

required to meet the peak load, in case the chiller was wished to operate on low full capacity for 24 

hours, which would result in a higher investment cost. In other words, the savings in operational costs 

resulting from adopting the same operation strategy as in the residential builings would be lower than 

the required additional investment cost. 

 

A similar operation strategy of the one adopted for (N1a1) was also adopted for the city council 

(building N3) as shown in Figure  4.24c. Where, the chillers are operated at almost full capacity at 

some night hours when electricity prices are low, with the surplus energy being stored up in the tanks. 

Later, at high tariff periods, the amount of energy produced drops down in order to decrease the 

system’s operational costs. At load hours, Chillers are restarted again to meet the cooling load. When 

the load hours reach their peak and cannot be met with the chillers anymore, stored energy from 

storage tanks is discharged to meet the peak load. Another possible solution could be to only produce 
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energy at night when electricity prices are low and meet the cooling load entirely from the storage 

tanks. However, this approach would require a larger storage tank which in turn might be a more 

expensive option depending on the On/Off peak load ratio. The optimization model offers here a good 

consultation service in the form of mathematical comparison between the above mentioned design and 

operation trade-offs.   

 

 
Figure 4.24: Cooling energy provided by individual systems in scenario CS13B1010 to meet cooling 

load profiles of three buildings (N1a1, N2 & N3). 

 

As with electricity tariff A, a COP sensitivity analyses were carried out to observe the impact of 

various compression chiller COP values on the obtained solution. Once again, because the COPs were 

considered as constant values regardless of their sizes in each scenario, which eliminate the advantage 

of installing a high capacity chiller with a network, a group of separated individual cooling systems 

were installed in each building as can be seen in Figure 4.25. This type of No-network de-centralized 

system solution was chosen by the optimization model for each of the investigated COP values, from 3 

to 7.  However, the change in capacities of the installed compression chillers and cold storage tanks 

was taking a certain pattern with the increase of compression chiller COP at each sub-scenario.  
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Figure 4.25: Capacities of compression chillers and storage tanks for reference scenarios optimized 

with different values for Chiller COPs with electricity tariff B. 

 
For the residential buildings, adopting a higher value for the compression chiller COP resulted in 

choosing a smaller storage tank and slightly bigger chiller, as shown in Figure 4.25. Basically, a one-

step higher COP allows the system to make advantage by producing more cooling energy from the 

same amount of consumed energy and thus meeting the cooling load of the building with less 

electrical energy consumption. The savings achieved in operational cost are used to install bigger 

chiller, which means smaller storage tanks are needed, however a balance has to be made between 

decrease in chiller operational cost and storage tank investment cost from one side and the increase in 

the chiller investment cost from the other side. Thus optimization model finds a balance point where 

any further increase in chiller capacity would not be useful because the additional investment cost will 

be higher than the gain in the operational cost. This search for the balance point occurs every time the 

COP changes. A similar pattern occurs for the none-residential buildings but only for the first one or 

two COP values. Later on, compression chiller and storage tank capacities stay on the same level 

regardless of further increase in the COP. Where the savings in operational cost resulted from adopting 

higher COPs are not sufficient yet to make the system cross the achieved balance point into another 

one. Figure 4.26 show the annual, investment, and operational costs and annual CO2 emissions 
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obtained for the investigated sub-scenarios. The obtained annual values are very close to those 

obtained with electricity tariff A, i.e. Figure 4.10, with very slight differences in operational costs.    

 

 
 

Figure 4.26: Annual total, investment, and operational cost and CO2 emission obtained for the COP 

sensitivity analyses with electricity tariff B under minimizing total annual cost as the objective of 

optimization. 

 

4.3.5.1.2.     Investigation category 2 (Centralized DCS with constant COP) scenarios 

Since the investigation for the reference scenario under tariff B has come out as such, i.e. a group of 

separated cooling systems for each building, centralized district cooling scenarios were carried out 

again under the new tariff. The same two restriction methods used previously, i.e. on area availability 

and chiller location, were used. Total annual costs of these sub-scenarios are presented in Table  4.11. 

Similar to what investigations with electricity tariff A have shown in Figure 4.12, the possibility to 

install other equipment at different locations in the district, especially cold storage tanks, resulted in 

lower total costs for the chiller location restrictions with electricity tariff B as well.  

 

It was noticed once again that building N2 represents the best location for a central production station 

in the case of a centralized district cooling system due to having the highest cooling peak load among 

all other buildings which opens the possibility of installing pipelines with minimized sizes within the 

DC network. In addition, building N2 has required the lowest chiller capacity and lowest total storage 

tank capacities compared to the other six buildings when serving as the central production location. 

The optimized systems for the two optimal solutions at building (N2) under the two restriction 

methods are presented in Figure 4.27. A separated centralized DC optimization where the model is 

free to select the location of the central chiller within electricity tariff B, CS13B2010, was performed 

as well and resulted in the same system shown in Figure 4.27b which represents the optimal 

centralized district cooling system. 
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Table 4.11: Total annual costs of Centralized DC systems sub-scenarios under electricity tariff B.   

Central Unit 
Availability area restriction  Chiller location restriction  

Code Cost (Euro/year) Code Cost (Euro/year) 

At building (N1a1) CS13B1021 399,664.53 CS13B1031 399,238.57 

At building (N1a2) CS13B1022 400,326.96 CS13B1032 399,571.19 

At building (N1b1) CS13B1023 399,441.99 CS13B1033 399,218.55 

At building (N1b2) CS13B1024 401,044.47 CS13B1034 400,410.86 

At building (N1b3) CS13B1025 399,670.10 CS13B1035 399,503.51 

At building (N2) CS13B1026 398,018.21 CS13B1036 397,507.07 

At building (N3) CS13B1027 404,215.23 CS13B1037 404,020.22 

 

A detailed cost comparison between optimal sub-scenario, when N2 is the central production plant, 

and the sub-scenario with highest total annual cost, which is when N3 is the central production plant, 

is presented in Table  4.12. Unlike the situation electricity tariff A, where operational cost difference 

seemed to have higher impact, both investment and operational cost seemed to share a balanced 

impact within investigation with electricity tariff B especially at the chiller location restriction sub-

scenarios. The investment costs within electricity tariff B were higher than those within electricity 

tariff A. This is due to installing higher capacities for the storage tanks to benefit from the lower 

electricity prices at night within tariff B. Choosing building N2 as a central production plant achieved 

a evident advantage over building N3 in plant site investment cost yet obtained higher pipeline 

network investment cost. Generally, it was the electricity purchase costs that made the scenario with 

building N2 as a central production plant the optimal solution due to a bigger amount of locally 

consumed PV panels’ electricity as explained previously in section 4.3.2.  

 

While the cold storages were always installed at the central production location for the first set of sub-

scenarios due to the area restrictions, two or three storage tanks were installed at different locations in 

the second set of sub-scenarios. This enables the system to have smaller sizes for the network pipelines 

which are used to transport a more steady flow of cooling energy to charge the cold storages during 

off-peak load hours. One of these storage tanks has a relatively high capacity and located at central 

production plant. Such central storage was not evident at the investigations within electricity tariff A. 

This storage main aim is to benefit from electricity price different by operating the central chiller at 

night hours and store the cold water for peak load hours. The operational production strategies of the 

two optimal solutions of Figure 4.27 to meet the overall hourly cooling load of the whole system are 

presented in Figures 4.28 and 4.29. See Figures 4.14 and 4.15 for electricity tariff A. Other smaller 

storage tanks, additional to the central storage, were added depending on the location of compression 

chiller and type of the building where the chiller is installed, as shown in Table  4.13.  It was observed 

that when the compression chiller is installed at most of the residential buildings, two additional 

storage tanks were installed at the two buildings: 

 

 Building N2, due to its high peak cooling load in comparison to the other buildings. 

 Building N1b3, except for when the chiller location is next to it, where N1b3 has a central 

location and it represent the connection point between residential and none-residential 

buildings. 

 

However, these were not the chosen locations when the chiller is installed at one of the none-

residential buildings. 
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Figure 4.27: Cost optimization under: a) Available area restriction, and b) Chiller location restriction, 

to (N2) for electricity tariff B. 

 

[a] 
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Table 4.12: Details of costs for the scenarios of Centralized DC at buildings N2 and N3 and for both 

restriction methods with electricity tariff B. 

Type of cost 
1
 

Availability area restriction  

Central Pl. at N2 

CS13B1026 

Central Pl. at N3 

CS13B1027 
Difference 

Total annual costs 398,018.21 404,215.23 -6,197.02 

1. Total plant investment cost 122,642.11 125,257.08 -2,614.96 

2. Total Network investment cost 32,336.77 31,071.41 1,265.37 

3. Total operational cost 243,039.33 247,886.75 -4,847.43 

3.1. Plant site operational cost 102,415.18 102,769.04 -353.86 

3.2. Electrical network (pumping) cost 760.154 522.181 237.97 

3.3. Electrical plant site operational cost 139,863.99 144,595.53 -4,731.54 

3.3.1. Comp. chiller electricity cost  180,327.67 197,959.88 -17,632.21 

3.3.2. PV panels electricity income 
2
 78,681.69 91,118.42 -12,436.73 

3.3.3. Heat dissipater electricity cost  38,218.02 37,754.07 463.95 

Type of cost 
1
 

Chiller location restriction  

Central Pl. at N2 

CS13B1036 

Central Pl. at N3 

CS13B1037 
Difference 

Total annual costs 397,507.08 404,020.22 -6,513.14 

1. Total plant investment cost 122,364.09 125,992.12 -3,628.03 

2. Total Network investment cost 31,329.61 30,586.04 743.58 

3. Total operational cost 243,813.37 247,442.06 -3,628.69 

3.1. Plant site operational cost 102,398.62 102,846.57 -447.96 

3.2. Electrical network (pumping) cost 728.381 509.266 219.12 

3.3. Electrical plant site operational cost 140,686.37 144,086.22 -3,399.85 

3.3.1. Comp. chiller electricity cost  181,024.60 197,528.26 -16,503.66 

3.3.2. PV panels electricity income 
2
 78,681.69 91,118.42 -12,436.73 

3.3.3. Heat dissipater electricity cost  38,343.46 37,676.38 667.08 
1  All costs are in Euro.   
2  The PV electricity income is to be subtracted when calculating the electrical plant site operational cost. 
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Figure 4.28: Cooling energy provided by the centralized DC system at building (N2) in scenario 

(CS13B1026: Figure 4.27a) to meet overall cooling load of all buildings at a typical summer day in 

July. 

 

 
 

Figure 4.29: Cooling energy provided by the centralized DC system at building (N2) in scenario 

(CS13B1036: Figure 4.27b) to meet overall cooling load of all buildings at a typical summer day in 

July. 
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Table 4.13: Location and capacity of chillers and storage tanks in the chiller location restriction sub-

scenarios with electricity tariff B.   

Scenario Code 

Central Chiller  Cold Storage Tanks  

Location Capacity (kW) 

Percentage of 

capacity to the 

total peak load
*
 

Location Capacity (kWh) 

CS13B1031 N1a1 1245.21 64.5 % 

N1a1 
N1b3 

N2 

3694.31 

1077.78 

1283.59 

CS13B1032 N1a2 1251.97 64.9 % 

N1a2 
N1b3 

N2 

3694.31 

1131.89 

1283.59 

CS13B1033 N1b1 1224.94 63.5 % 
N1b1 

N2 
4724.72 

1131.49 

CS13B1034 N1b2 1254.99 65.1 % 

N1b2 
N1b3 

N2 

3668.77 

1131.89 

1334.66 

CS13B1035 N1b3 1232.29 63.9 % 

N1b2 
N1b3 

N2 

1028.92 

3770.36 

1131.49 

CS13B1036 N2 1179.70 61.2 % 

N1a1      
N1b2 

N2 

1232.60 

1016.13 

3143.87 

CS13B1037 N3 1310.50 67.9 % 
N1a2      

N3 
1232.60 

5205.95 

* The total peak load of all buildings is 1929 kW. 

 

Central production chillers were operated at their full capacity during the night hours due to lower 

electricity prices and then dropped to a lower rate during day hours when electricity prices goes up. In 

order to obtain a more steady energy production pattern for the central chillers, an additional sub-

scenario was carried out where seven storage tanks were installed, i.e. one at each building. Table  4.14 

presents the total and operational annual costs for the three different energy storing strategies: 

 

 Central storage at the central production plant location (CS13A1026) 

 Optimized storage pattern, i.e. optimized number and capacities of storages (CS13A1036)  

 One-storage at each building (CS13B1047). 

 

 

Table 4.14: Total and operation costs for three centralized DC systems with different number of 

storage tanks. 

 

 

Scenario Description 
Annual operational 

cost (Euro) 

Total annual cost 

(Euro) 

Percentage of 

difference in 

total cost 

CS13B1026 
One central storage 

tank 
243039.32 398,018.21 0.13 % 

CS13B1036 
Optimized number of 

storage tanks  
243813.36 397,507.07 --- 

CS13B1047 
One storage tank at 

each building 
243690.39 398,467.61 0.24 % 
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Figure 4.30: Chiller energy production profiles of three centralized DCSs with: a) Central storage, b) 

Optimized no. of storages, and c) One-storage at each building, for electricity tariff B. 

 

 

Although, sub-scenario CS13B1036 had the lowest total annual cost, the increase in the total cost of 

the Centralized DC system is around 0.13% when adopting the central storage and 0.24% when 

implementing one-storage at each building theme as shown in Table  4.14. None of the three strategies 

did have significant advantage over the other two in terms of total annual cost where they all benefited 

from the low electricity prices at night even though they had different energy storing strategies. 

However, Figure 4.30 shows that the third sub-scenario, CS13B1047, provides a more steady cooling 

energy production profile. Thus it is recommended to invest in a multi-storage system with one storage 

tank at each building when designing a centralized DC system within variable electricity tariff. 

However, this investigation was carried out under the assumption of constant COP for the 

compression chillers. Hence, the concluded recommendation is limited to this assumption. A variable 

COP investigation is to be carried out later on in this chapter. Moreover, comparing the three 

centralized DC sub-scenarios to the De-centralized reference sub-scenario, CS13B1010, shows an 

evident increase in the total annual cost exceeding 14%, as shown in Figure  4.31, which indicates that 

designing DC system with constant COP for the compression chillers does not favor centralized DC 

system even when variable electricity tariffs are adopted.   
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Figure 4.31: Annual investment, operational costs and percentage of increase in total cost of three 

centralized DCSs with: a) Central storage, b) Optimized no. of storages, and c) One-storage at each 

building, in comparison to the De-centralized optimal solution CS13B1010 with electricity tariff B. 

 

4.3.5.1.3.     Optimizing without considering solar energy  

Investigation category 2, i.e. Centralized DC system with constant COP, for both electricity tariffs A 

and B have showed that it is the installed PV panels that gives building N2 the advantage to serve as 

central production plant through a relatively high amount of locally consumed PV panels’ electricity 

which lowers the electricity purchase costs from the grid. Therefore, two other sub-scenarios were 

carried out for each of the electricity tariffs in order to validate this conclusion. In these sub-scenarios 

no PV panels or solar collectors were allowed to be installed. The adopted coding for these two sub-

scenarios were CS13A1039 and CS13B1039 for electricity tariffs A and B, respectively. To ensure 

adopting of a central DC network the optimization model was free to select the location of the chiller, 

however only one chiller was allowed to be installed. Such restriction method was previously 

performed, with PV panels, and the results were the exact same obtained systems of CS13A1036 and 

CS13B1036.  

 

The first major impact of excluding PV panels and solar collectors was the change of the central 

production plant where N2 is no longer serving as optimal solution for this task. Instead, building 

N1b1, which has a central location in the district, is serving as the central production plant, as shown 

in Figure 4.32. The storage adopted pattern was similar to the observed pattern so far where two 

storage tanks were installed at the ends of the network within electricity tariff A. While, in electricity 

tariff B, one was installed at the production plant and another one at building N2 due to its relatively 

high peak cooling load.  

 

Cost comparison of the optimized sub-scenarios, presented at Table  4.15 and Figure  4.33, indicates 

that the systems obtained without utilizing solar energy, i.e. CS13A1039 and CS13B1039, have less 

investment cost than that of the systems when installing PV panels, i.e. CS13A1036 and CS13B1036. 

However, these later systems had a big advantage in operational cost especially electricity cost. 

Therefore, the total annual costs of the systems with PV panels where less and thus a better solution to 

adopt.  
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Figure 4.32: Cost optimization sub-scenarios without utilizing solar energy, i.e. PV or solar collectors 

within a) Electricity tariff A, and b) Electricity tariff B. 

 

 

[a] 
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Table 4.15: Costs comparison for optimized Centralized DC sub-scenarios obtained with and without 

utilizing PV panels for both electricity tariffs A and B. 

Type of cost 
1
 

Tariff A  

CS13A1036 CS13A1039 Difference 

Total annual costs 425,937.10 462,851.28 -36,914.18 

4. Total plant investment cost 118,525.99 47,268.04 71,257.95 

5. Total Network investment cost 31,668.78 29,608.53 2,060.25 

6. Total operational cost 275,742.37 385,974.72 -110,232.35 

6.1. Plant site operational cost 100,790.95 100,817.28 -26.33 

6.2. Electrical network (pumping) cost 806.13 335.827 470.30 

6.3. Electrical plant site operational cost 174,145.27 284,821.61 -110,676.34 

6.3.1. Comp. chiller electricity cost  209,379.60 241,374.25 -31,994.65 

6.3.2. PV panels electricity income 
2
 78,681.69 0.00 78,681.69 

6.3.3. Heat dissipater electricity cost  43,447.36 43,447.37 0.00 

Type of cost 
1
 

Tariff B  

CS13B1036 CS13B1039 Difference 

Total annual costs 397,507.08 433,946.57 -36,439.50 

4. Total plant investment cost 122,364.09 56,489.20 65,874.90 

5. Total Network investment cost 31,329.61 29,847.01 1,482.60 

6. Total operational cost 243,813.37 347,610.36 -103,796.99 

6.1. Plant site operational cost 102,398.62 102,738.58 -339.96 

6.2. Electrical network (pumping) cost 728.381 310.954 417.43 

6.3. Electrical plant site operational cost 140,686.37 244,560.83 -103,874.46 

6.3.1. Comp. chiller electricity cost  181,024.60 207,254.94 -26,230.34 

6.3.2. PV panels electricity income 
2
 78,681.69 0.00 78,681.69 

6.3.3. Heat dissipater electricity cost  38,343.46 37,305.89 1,037.58 
1  All costs are in Euro.   
2  The PV electricity income is to be subtracted when calculating the electrical plant site operational cost. 
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Figure 4.33: Annual investment and operational costs of sub-scenarios with and without PV panels 

with electricity tariffs A and B. 

 

4.3.5.1.4.     Piping Prices Scenarios within electricity Tariff B 

Since that reference scenario for investigation category1, i.e. De-Centralized DCS with constant COP, 

has resulted in a group of separated individual systems for each building with no DC network being 

installed within electricity tariff B as well, a sensitivity analysis for piping investment costs, similar to 

that with electricity tariff A, was carried out with tariff B to validate and generalize the common 

conclusions drawn from the investigation as a further supporting mechanism for decision-makers. The 

investment costs of the network pipelines were reduced by percentages of 20, 35, 50, 65, and 80 % of 

their standard prices.  

 

As in investigating tariff A scenarios, limited impact of the pipelines investment cost on the obtained 

optimal solution, was observed within tariff B sub-scenarios as well. A partial network, connecting 

four buildings, was installed by the optimization model when reducing the pipeline prices by 80%, as 

demonstrated in Figure  4.34. This network is supplied by energy provided from the main chiller at the 

school (N2) to meet the cooling loads at the city council (N3) and production building (N2) itself and 

to complement the local chillers at (N1b1 and N1b3) in meeting the cooling load at  peak load hours. 

A 0.44% reduction in the total annual cost was the outcome of 80% reduction in pipelines investment 

cost. Such a low impact of a large price reduction is understandable considering the relatively low DC 

network investment cost in this case study.  Table 4.12 shows that the investment cost for the DC 

network of the centralized system represent only 7% – 8% of the total annual cost of the entire system. 

Table  4.16 presents the total annual costs and cost reduction percentages due to various reductions in 

network piping cost. Based on these results it is concluded that pipeline investment costs should have 

very low impact on the decision making process at least under the assumption of constant COP for the 

compression chillers. 
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Figure 4.34: Total annual cost optimization with 80% reduction in network pipeline prices for 

electricity tariff B. 

 

Table 4.16: Total annual costs of piping pricing sub-scenarios for total cost optimizations with 

electricity tariff B.   

Reduction Percentage in 

Piping costs 

Optimizing total annual costs 

Code 
Total Cost 

(Euro/year) 

Reduction 

Percentage 

Standard prices CS13B1010 348,327.44 --- 

20 % reduction CS13B1051 348,327.44 0 % 

35 % reduction CS13B1052 348,327.44 0 % 

50 % reduction CS13B1053 348,327.44 0 % 

65 % reduction CS13B1054 347,460.20 0.25 % 

80 % reduction CS13B1055 346,774.35 0.44 % 

 

4.3.5.1.5.     Investment cost optimization within electricity tariff B 

Investigating a reference scenario to minimize the investment cost only under tariff B (CS13B1060) 

have led to the same de-centralized system obtained previously under electricity tariff A, i.e. 

CS13A1060, shown in Figure 4.19, since changing the electricity tariff has no impact on the new 

objective function, i.e. investment cost. This further validates the conclusion that operation cost has a 

higher impact on the optimization process and, consequently, the resulting cooling system designs. 

However, it is noticed that optimizing the investment cost alone causes an increase of around 20% in 

the total cost. Figure  4.35 shows that annual costs, when optimizing investment cost only, are higher 

than when optimizing total costs. This is because the model does suggest the smallest possible size of 

equipment in order to reduce investments costs regardless of the number of hours the chillers and other 

equepment have to operate which results in a higher operational cost for the system. Therefore, 

making decisions based on optimizing investment cost only should be avoided. 
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Figure 4.35: Annual investment and total costs of four reference scenarios for both electricity tariffs A 

& B and with optimizing total, CS13A1010 and CS13B1010, and investment, CS13A1060 and 

CS13B1060, costs. 

 

4.3.5.2 Waste Heat Availability Scenarios 

In order to investigate the competitiveness of absorption chillers to compression chillers and the 

impact of available free of charge heat, from different resources, on the decision making within the 

DCS design process under constant COP assumption, new investigations were carried out with new 

additional assumptions: 

 

 The main adopted assumption within these sub-scenarios was that a certain percentage of the 

driving energy, e.g. waste heat, solar, or geothermal energy, of the absorption chiller is 

available at the location of the cooling energy production plant for free.  

 This free of charge energy is to be named as ‘waste heat’ within this work.  

 The availability of waste heat to drive the absorption chillers was investigated in five sub-

scenarios where 20, 35, 50, 65 and 80% of the total driving energy of the absorption chillers, if 

chosen by the model, is to be provided from waste heat. The rest of the driving heat is to be 

provided by conventional boilers and electrical heaters.  

 

The total annual costs of these scenarios and the reduction percentages in the total cost due to utilizing 

waste heat are shown in Table  4.17.  The separated compression chillers system for each building was 

still representing the optimal solution for the first three scenarios, i.e. even when up to 50% of the 

absorption chillers input energy was provided through waste heat. This is due to the high investment 

and operational costs of the absorption chillers and their boilers compared to compression chillers. 

However, when 65% of the absorption chillers input energy was assumed to be provided through local 

waste heat, a district cooling system connecting all the residential buildings was suggested with an 

absorption chiller powered by a boiler in central production plant at building (N1a1), as shown in 

Figure 4.36, where (N1a1) represent the geographical central building among the residential buildings. 

The two remaining buildings, i.e. none-residential buildings, were provided with individual 

compression chillers combined with a storage tank for each building due to limited cooling load hours 

and thus run time.  
 

 opt opt 

opt opt 

Tariff B Tariff A 
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Table 4.17: Total annual costs of waste heat availability scenarios with electricity tariffs A and B.   

Waste heat 

availability 

percentage to 

driving energy of 

absorption chillers  

Electricity Tariff A Electricity Tariff B 

Code 
Total Cost 
(Euro/year) 

Reduction 

Percentage 
Code 

Total Cost 
(Euro/year) 

Reduction 

Percentage 

No waste heat CS13A0010 369,277.70 --- CS13B0010 348,327.44 --- 

20% of input energy CS13A0071 369,277.70 0 % CS13B0071 348,327.44 0 % 

35% of input energy CS13A0072 369,277.70 0 % CS13B0072 348,327.44 0 % 

50% of input energy CS13A0073 369,277.70 0 % CS13B0073 348,327.44 0 % 

65% of input energy CS13A0074 344,643.13 6.7 % CS13B0074 339,676.20 2.5 % 

80% of input energy CS13A0075 309,245.09 16.3 % CS13B0075 304,582.11 12.6 % 

   

 

In the case of 80% availability of waste heat, two slightly different DC systems were suggested for 

each tariff. See Figure 4.37. The none-residential building with lower peak load, i.e. city council (N3), 

was connected directly to the district network with the central production unit at (N1a1) for both 

electricity tariffs. The annual investment and operational costs of the 65% and 80% electricity tariffs 

are presented in Figure 4.38. On the other hand, the school (N2) which has a higher peak load was 

provided with an individual compression chiller for electricity tariff A and a smaller individual 

absorption chiller for electricity tariff B. This is due to the difference in the electricity energy 

consumed by the cooling tower, maintenance costs and the investment cost between the two cases. 

Cooling towers consume electrical energy in order to dissipate heat. The cost of dissipating this energy 

is related to the electricity prices. Operating the chillers at night, i.e. during low electricity prices 

period, would result in lower heat dissipating costs since cooling towers have to operate in parallel to 

the chillers.  

 

As shown in Figure  4.39, cooling energy produced via absorption chillers have lower total operational 

cost, i.e. including cooling tower operational costs, than those when produced via compression chillers 

for both 65 % and 80 % waste heat availability scenarios. However, compression chillers have lower 

investment costs than absorption chillers. When adding the investment and maintenance costs of the 

compression chiller to the total operational cost, the total annual cost will be less than that of the 

absorption chiller for the 65% waste heat availability scenario for both electricity tariffs. On the other 

hand, for the 80% waste heat availability scenario, absorption chillers have even a lower operational 

costs for the produced cooling energy while the operational cost of the compression chiller is still the 

same because they are not affected by the available free waste energy. When adding the investment 

and maintenance costs of the absorption chiller to the total operational cost, absorption chillers emerge 

as optimal solution for tariff B only. Figure 4.40 demonstrate the difference in the costs for building 

(N2) between compression and absorption chillers for the two scenarios. 

 

We conclude from this, that the question of how much waste heat should be available to switch the 

decision from investing in compression chiller into absorption chillers is dependent on many factors 

including not only the market prices of these chillers and prices of electricity and fuel available but 

also the cooling load profile, peak load and fluctuation, which makes the decision making process a 

complicated one. Therefore, the use of mathematical models, similar to the one developed in this 

work, emerge as a highly recommended method in taking on such complicated tasks in decision 

making.    
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Figure 4.36: Cost optimization with 65% waste heat availability for: a) electricity tariff A, and b) 

electricity tariff B. 

[a] 

[b] 
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Figure 4.37: Cost optimization with 80% waste heat availability for: a) electricity tariff A, and b) 

electricity tariff B. 

[a] 

[b] 
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Figure 4.38: Annual investment and operational costs of sub-scenarios with 0, 65 and 80% availability 

of waste heat within electricity tariffs A and B. 

 

 

 
 

Figure 4.39: Estimated operational cost of cooling energy (€/kWhcl) in relation to fuel cost and 

electricity tariffs A & B, along with four cooling energy costs (red dashed lines) in relation to different 

electricity costs. 
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Figure 4.40: A graph demonstrating the difference in total costs for building (N2) between 

compression and absorption chillers for waste heat availability scenarios. 
 

4.3.5.3 Load Shifting Scenarios  

Another operation pattern condition that was investigated is load shifting. Hot climate areas have high 

peak cooling load amplitude which is mostly simultaneous to the peak electricity or energy demand. 

Therefore, a load shifting strategy is a common demand for decision makers. This operation strategy 

was investigated to observe its effects on both operation pattern and overall annual cost in comparison 

to the reference scenarios.  

 

The strategy was implemented throughout a control condition that restricts the summation of all 

cooling energy productions within the district during the peak energy load period, i.e. from 12:00 to 

15:00, to be less than 50% of the total district cooling energy consumption for that period. The 

individual production of each building is not necessarily to drop to 50% of its cooling load because the 

constraint is designed to apply for the overall production of all buildings in the case study, regardless 

if there is a network connecting the buildings or not, and not each building as individual.  

 

The obtained systems for these conditions showed that load shifting strategy had a different impact on 

the optimized systems for residential buildings from that on none-residential buildings. As shown in  

Figure 4.41, systems obtained for residential buildings were slightly affected in compare to the 

reference scenarios (Figures 4.7 and 4.22). Where, the suggested compression chillers were with, 

slightly, higher capacities for both electricity tariffs. The reference system for tariff B already had 

bigger storage tanks than that for tariff A which are important to utilize the low electricity prices at 

night. With applying load shifting strategy, relatively higher capacities for cold storage tanks were 

required, for both different tariffs scenarios, in order to store the cooling energy required to meet the 

cooling load at load shifting hours.  
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When observing the cooling energy production profiles of the compression chillers in residential 

buildings, presented in Figure  4.42, it is noticed that the cooling load distribution over the whole 24 

hours of the day and the relatively small amplitude of the cooling load has limited the possibility of 

installing smaller chillers which was the expected result of implementing load shifting where load 

shifting condition has limited the cooling energy production during peak load hours. This requires 

bigger chiller capacities to produce cooling energy during off-peak periods and meet the peak cooling 

load through stored energy. 

 

On the other hand, more sufficient measures were implemented when applying load shifting strategy 

on none-residential buildings, especially on the city council building (N3) due to its relatively smaller 

cooling load amplitude. Lower capacity for the compression chiller was suggested by the optimizer 

along with the assistance of storage tanks to meet peak load periods. The high amplitude of the cooling 

load profile of the school building (N2) has limited the possibility to install smaller chillers which 

would require electively big storage tanks. This was not the case for tariff B where storage tanks were 

to be installed either way to utilize the lower night tariff of electricity.  

 

In conclusion, applying load shifting strategy would require the same, if not higher, chiller sizes for 

residential buildings with relatively bigger storage tanks. None-residential buildings have better 

potentials to utilize load shifting strategies through installing smaller chillers and store the cooling 

energy at off-load hours. However, it will be considerable to install the same chiller size, of the 

optimized scenario without load shifting, for none-residential buildings with high cooling load 

amplitude even when implementing load shifting strategy. However, such modifications are highly 

dependent on the adopted strategy of load shifting.     
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Figure 4.41: Cost optimization with load shifting strategy for: a) electricity tariff A, and b) electricity 

tariff B. 

 

 

 

[a] 

[b] 
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Figure 4.42: Cooling energy provided by individual systems to meet cooling load profiles of three 

buildings (N1a1, N2 & N3) with and without load shifting at a typical day. 

 

Implementing load shifting strategy would cause a slight increase in total annual cost as shown in 

Figure 4.43. It is important to keep in mind that the developed optimization model in this work does 

not count for the reduction in chillers’ COPs due to partial cooling load periods which in fact represent 

the major reason behind adopting load shifting strategies. This result should be investigated further to 

determine the critical factor producing the difference in response and verify that the result is not 

spurious. However, the slight increase in total annual cost evident in this work still can be considered 

as a quite reasonable compromise for the benefits obtained from applying this strategy especially in 

hot climate regions as it will be explained in the next section (Sec. 4.3.5.4). 
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Figure 4.43: Annual investment and operational costs of two reference scenarios (without load 

shifting) and two load shifting scenarios. 

 

4.3.5.4 Outdoor Temperature Effect Scenarios 

One of the main problems that face cooling systems operating in hot climate regions is the high 

ambient temperature which has a negative impact on the COP values of the compression chillers. Most 

of the chillers produced and offered in the market are designed to work with around 30-35°C. 

However, ambient temperatures in many areas, e.g. sub-tropical regions, exceed the designed ambient 

temperature. In some cases it reaches up to 55 °C. Figure  4.44 shows the ambient temperature profile 

for the city of Basra for the entire year of 2013. While, Figure  4.45 present the hourly ambient 

temperature profile of a typical hot day in Baghdad.  

 

Such high ambient temperatures reduce the compression chiller COP sufficiently. For example, 

Figure  4.46 introduces the drop in the COP values of chiller produced by carrier (30XA) due to the 

high out door temperatures. The effect of these phenomena on the district cooling systems was 

investigated in this study to provide considerable measures for decision makers when designing a DCS 

in a hot climate region. 
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Figure 4.44: Ambient temperature profile for the city of Basra, 30°30′N latitude and 47°49′E 

longitude, at 2013.   

 

 
 

 

 

Figure 4.45: Hourly ambient temperature profile of a typical hot day in Baghdad, 33°20′N latitude and 

44°26′E longitude.  

Source: http://weatherspark.com/history/32872/2013/Basrah-Al-Basrah-Iraq 

 

Source:   https://weatherspark.com/#!graphs;a=Iraq/Baghdad   

 

http://weatherspark.com/history/32872/2013/Basrah-Al-Basrah-Iraq
https://weatherspark.com/#!graphs;a=Iraq/Baghdad
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Figure 4.46: COP values of the carrier chiller (30XA) in relation to outdoor temperatures.  

 

By combining the hourly ambient temperature profile for a typical hot day, e.g. Figure 4.45, and the 

polynomial formula of COP relation to outdoor temperature, presented in Figure 4.46, we can obtain a 

direct correlation between the two parameters as shown in Figure  4.47.  

 

 
Figure 4.47: Example of COP correlation with daily ambient temperature profile obtained at the city of 

Baghdad on 2
nd

 August 2011 as an example. 

 

Since that outdoor temperature in subtropical regions often vary between the temperatures of 35°C and 

55°C between day and night hours and that the corresponding COP values to these temperatures vary 

between 3 and 4, the analysis of this phenomena is carried out by comparing the effects of COP 

variation scenario to the fixed COP scenarios at the values of COP=3 (CS13A/B1010), i.e. Figures 4.7 

and 4.22,  and COP=4 (CS13A/B1011), i.e. Figure 4.48. The optimal cooling system obtained with the 

COP variation in correlation to ambient temperature, i.e. sub-scenario CS13A/B0091, is presented in 

Figure 4.50.  
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By comparing Figures 4.7, 4.22 and 4.48 it was noticed that increasing the value of the fixed COP 

from 3 to 4 had an impact on the optimal solution of slightly increasing the sizes of the compression 

chillers for the residential buildings and selecting smaller storage tanks with around 30 or 40% size 

reduction. However, such impact was not observed in the optimal solutions obtained for none-

residential buildings as explained in section 4.3.5.1.1. On the other hand, the annual total cost of the 

optimized system was significantly affected by the COP increase where about 16% cost reduction was 

achieved. Moreover, CO2 emissions were reduced by 50%. This is due lower primary energy 

consumption as a result of implementing higher COP value where CO2 emissions rely mostly on 

operational energy consumption. However, the value of the emitted CO2 did not change between the 

obtained systems for the two electricity tariffs A and B. That is partially due to the adopted 

assumptions of constant COP and neglecting heat loses in storage tanks. And since that no network 

was adopted as a result of changing the electricity tariff, the consumed primary energy to meet the 

cooling load stayed the same and thus CO2 emissions.  
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Figure 4.48: Cost optimization with fixed COP =4 for: a) electricity tariff A, and b) electricity tariff B. 

 

 

 

 

[b] 

[a] 
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Figure 4.49: Cooling energy provided by individual systems to meet cooling load profiles of three 

buildings (N1a1, N2 & N3) with fixed COP values of 3 and 4 at a typical hot day. 
 

 

Including the phenomenon of COP drop in correlation with high ambient temperature resulted in 

obtaining a new optimized system, presented in Figure 4.50. Comparing this newly obtained system to 

the system in Figure 4.48 shows that residential and none-residential buildings require different 

measures to face such phenomenon under the two different electricity tariffs. For electricity tariff A, 

residential buildings would require a sufficient increase in the installed storage tanks capacity, up to 

triple the original size, along with a slight decrease in the compression chiller capacity. None-

residential buildings witnessed a different impact. Building N3 required a bigger storage tank, almost 

double the size, and its chiller size was reduced significantly. Where the required energy to meet the 

cooling demand was produced at off-load hours and particularly when the COP values are high as 

shown in Figure  4.51. On the other hand, building N2 which has a relatively higher cooling load did 

not witness such major changes. Only a slight decrease in the chiller size and a corresponding increase 

in the storage tank were implemented. This indicates that imposing similar changes to those 

implemented at building N3 on building N2 is not a cost effective option.  
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A different impact was observed with electricity tariff B where residential buildings required double 

the sizes for both compression chillers and storage tanks. This is because of the tendency of the model 

to operate chiller during night hours to utilize low electricity tariff. This tendency were previously, i.e. 

without the ambient temperature effect, obstructed by the peak cooling load during day hours which 

would require high capacity storage tanks which in its turn would mean more investment cost. Now, 

that operating the chiller at night hours would be with higher COP values which will mean less energy 

consumption and eventually lower operational cost, installing high capacity storage tanks became 

reasonable. Similar analysis can be used to explain the increase in storage tank sizes for none-

residential building as well. However, smaller compression chillers were installed at none-residential 

building which is due to the possibility of operating them at off-load hours as presented in Figure  4.52. 

 

As a general conclusion for choosing compression chiller capacity when designing under outdoor 

temperature effect in a hot climate, it is recommended to choose: 

 

 For residential buildings: A chiller capacity that covers around 70% of the peak load of the 

building at constant electricity tariff. This capacity may be changed significantly when the 

electricity tariff is variable depending on the tariffs amplitude and at which hours of the day 

does the electricity price drop.  

 For none-residential buildings: A chiller capacity that covers around 50% of the peak load of 

the building within both electricity tariffs. However, individual cost investigation for each 

building is recommended especially for building with high peak cooling load.  
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Figure 4.50: Cost optimization with COP drop due to ambient temperature variation for: a) electricity 

tariff A, and b) electricity tariff B. 

 

 

 

[b] 

[a] 
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Figure 4.51: Cooling energy provided by individual systems to meet cooling load profiles of three 

buildings (N1a1, N2 & N3) with fixed COP values of 3 and 4 and variable COP in correlation to 

ambient temperature within electricity tariff A investigation at a typical hot day. 

 

 

Figure 4.53Figure 4.53 presents the annual total costs of investigated COP drop phenomenon in 

comparison to the reference scenarios at COP=3 and 4. It is noticed that this phenomenon has a 

considerable impact on the optimized total cost. Although its total costs are slightly lower than that of 

the reference sub-scenario with COP=3,  it has a total cost increase that reaches up to 15% for tariff A 

and 13 % for tariff B over the reference sub-scenario with COP=4. This phenomenon is not an 

optional strategy that a decision maker can decide to consider it in the system or not. The obtained 

systems, shown in Figure 4.50, present the optimal systems for the investigated district in the case that 

hot climate was taken into consideration. Adopting any other DC system or operation plan would 

result in additional cost. The reference scenario did not put into consideration the effects of ambient 

temperature on chillers COP. If the reference scenario is to be implemented in a hot region, the system 

would probably require some costly design or operational modifications to operate without which the 

system might fail to operate. 
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Figure 4.52: Cooling energy provided by individual systems to meet cooling load profiles of three 

buildings (N1a1, N2 & N3) with fixed COP values of 3 and 4 and variable COP in correlation to 

ambient temperature within electricity tariff B investigation at a typical hot day. 

 

 

When comparing the operational plan with implemented load shifting strategy (Figure 4.42) to that 

obtained with considering COP drop within electricity tariff A (Figure  4.51), similarities between both 

operational plans are noticeable. Based on all previously described observations, one can conclude that 

load shaving strategies with smaller chillers and bigger storages can serve effectively to deal with 

effect of high ambient temperature in hot climate regions especially for non-residential buildings.  

However, customized operation optimization is highly recommended.  
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Figure 4.53: Total annual investment and operational costs of 6 sub-scenarios (CS13A1010, 

CS13A1011, CS13A1091, CS13B1010, CS13B1011 and CS13B1091). 
 

 

4.3.6 Investigation category 3 (De-Centralized DCS with variable/size-dependent 

COP) scenarios 

One of the advantages of district cooling systems is that high capacity chillers used in these systems 

usually have higher COP than the small/medium size chillers used in distributed systems for individual 

buildings. Air-cooled reciprocating chillers have a peak load power requirement of 1.0–1.3 kW per 

refrigeration ton (TR), thus peak load COP range of 2.70-3.52, depending on capacity and ambient air 

temperature. They are manufactured in capacities from 0.5 to 150 TR, i.e. 1.8-527.5 kW, [74]. 

ASHRAE (the American Society of Heating, Refrigerating, and Air-Conditioning Engineers) provide 

COP value for water cooled reciprocating chillers in its 90.1 standard as 4.2 for capacities less than 

150 TR (527.5 kW), see Table  4.18 [75]. 

 

Typical water-cooled screw chillers have a COP of 5.0–7.0 and are available with cooling capacities 

between 70 and 750 TR, i.e. 246-2637 kW, [74]. According to Burba [3], COP values for inverter 

screw compressors can attain more than 8.0. However, ASHRAE standard has listed lower efficiency 

specifications in its 90.1, as stated in Table  4.18. Centrifugal chillers are generally manufactured in 

capacities from 90 to 1,000 TR, i.e. 316.5-3516.8 kW, with most units being in the range of 150 to 300 

TR, i.e. 527.5-1055 kW, [74]. They are most efficient at peak load and they consume the least power 

(kW per TR) at full load operation. Their efficiencies have been improving even further over the past 

recent years. According to ARI standard rating conditions, centrifugal chillers COP at full design 

capacity ranges from 5.0-5.8 for capacities bellow 300 TR (1055 kW) to 6.6 for capacities exceeding 

300 TR [76]. 
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Table  4.18: ASHRAE 90.1-2001 and 2004 minimum required efficiencies for water-cooled chillers.  

Chiller size Centrifugal  Screw  Reciprocating  

Less than 150 TR (i.e. 527.5 kW) 5.0 4.45  4.2  

150 – 300 TR (i.e. 527.5-1055 kW) 5.55 4.90 - 

Higher than 300 TR (i.e. 1055 kW) 6.10 5.5 - 

 

This variation in compression chillers’ COP in regards to their capacities has been implemented in a 

new model for optimizing decentralized DCS for the case study. A COP value of 4 was chosen for 

chillers with capacities below 500 kW (142.2 TR), 5.5 for bellow 1000kW (284.3 TR), and 7 for 

chillers with capacities higher than 1000 kW (285 TR) as shown in Figure 4.54. The aim of this 

modification in the optimization model was to integrate the advantage of high capacity chillers over 

small and medium size chillers in consuming less primary energy to provide a certain amount of 

cooling energy. 

 

 
 

Figure 4.54: adopted COP values for compression chillers in investigation categories 3 and 4. 

 

4.3.6.1 Reference scenario for investigation category 3 

The optimization of the reference sub-scenario for investigation category 3 was carried out with the 

same assumption adopted for investigation category 1 except for the chiller COP values and their 

variation in regards to the chiller size. Figure 4.55 shows the optimal solution for a reference scenario 

for case study 1 within investigation category 3 for both electricity tariffs A and B. The major impact 

on the obtained solution to be noticed is that, unlike the investigation category 1 where separated 

individual systems were chosen for each building, de-centralized DC networks were implemented in 

investigation category 3 connecting a group of building to a cooling energy production plant installed 

at a certain building. Higher COP values for bigger chillers allow saving a certain amount of 

operational cost by reducing the primary energy consumption needed to produce a certain amount of 

cooling energy. Thus, by choosing bigger chillers, the model is using the savings in operational costs 

to install and operate a network connecting a small group of building whose cooling load demand is 

met by one production plant. However, instead of having one central network a couple of small 

networks were installed.  
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Figure 4.55: Annual cost optimization reference scenario for case study 1 within investigation 

category 3 for both electricity tariffs A and B. 

 

 

[a] 
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Some buildings were left unconnected to any network within electricity tariff A as shown in 

Figure 4.55a. The total installed capacity was 3000 kW where the buildings hosting the energy 

production plants were equipped with the big size chillers, i.e. 1000 kW, to benefit from the higher 

COP and the separated buildings were equipped with medium size chillers, i.e. 500 kW. This indicate 

an extra, not needed, installed cooling capacity were the cooling load of the buildings is lower than the 

capacity of the installed chillers. However, the model did install such oversized chillers to benefit from 

the higher COPs. On the other hand, within electricity tariff B, all buildings were connected but into 

two networks with a production capacity of 1000 kW for each network. Thus the total installed 

capacity was 2000 kW which is slightly higher than the total peak cooling load of the whole district 

which is 1929 kW. This indicates that installing an oversized chiller can be more cost efficient than 

installing a chiller that is the exact same or smaller than the peak cooling load if that oversized chiller 

would provide a higher COP.  

 

Due to installing oversized chillers, there was no need to install any cold storage tanks within 

electricity tariff A sub-scenario, CS13A3010, and only one storage tank was installed within electricity 

tariff B sub-scenario, CS13B3010, as shown in Figure 4.55. This raises the question about the 

feasibility of these systems and their ability to operate in case of sudden changes in operational 

conditions. Therefore, an extra optimization was carried out for checking purposes where each on the 

obtained systems in Figure 4.55 for each electricity tariff was re-optimized under the other electricity 

tariff. The locations and capacities of the main equipment, e.g. chillers, storage tanks, and DC 

pipelines, were forced to be the same as in Figure 4.55 throughout this re-optimization process. 

Capacities of heat exchangers and user site units were allowed to be changed. Re-optimizing the 

system obtained at electricity tariff A. i.e. CS13A3010, under electricity tariff B sub-scenario was 

named CS13A3010B. Similarly, re-optimizing the system obtained at electricity tariff B. i.e. 

CS13B3010, under electricity tariff A sub-scenario was named CS13B3010A. The results have shown 

that both obtained systems were able to operate with the change of the electricity tariffs with no 

significant design changes being required. The annual investment and operational costs are shown in 

Figure 4.56.  

 

 

 



135 

 

 
 

Figure 4.56: Annual costs of the reference scenarios for investigation category 3 in comparison to the 

same systems operating under switched electricity tariffs.    

 

4.3.6.2 Optimizing without considering solar energy 

Since that we have concluded within investigation category 2, i.e. Centralized DC system with 

constant COP, for both electricity tariffs A and B that installed PV panels have a significant impact on 

the obtained system, PV panels impact on investigation category 3 was investigated as well. Two new 

sub-scenarios were carried out for each of the electricity tariffs where no PV panels or solar collectors 

were allowed to be installed. The adopted coding for these two sub-scenarios were CS13A3019 and 

CS13B3019 for electricity tariffs A and B, respectively. Excluding PV panels and solar collectors 

from the design options of the optimization model had a major impact on the obtained systems where 

new DC networks were adopted as shown in Figure 4.57. An almost full DC network was installed for 

the district within electricity tariff A with only building N2 being not connected in the network, 

whereas, within electricity tariff B, all buildings were connected to the network. In both cases building 

N1a1 was chosen to be the production plant. Table  4.19 presents a cost comparison of the optimized 

sub-scenarios with and without considering PV panels and solar collector in the optimization.  As 

previously noticed in investigation category 2, systems obtained without utilizing solar energy, i.e. 

CS13A3019 and CS13B3019, have about half the investment cost of the systems when installing PV 

panels, i.e. CS13A3010 and CS13B3010, however, it is the operational cost and in particular the 

electrical plant site cost that is giving the advantage to the sub-scenarios with PV panels due to the 

amount of locally consumed PV energy, which lowers the amount of electricity purchased from the 

grid, and also the income of the PV from selling the extra electricity to the grid. Figure  4.58 shows the 

annual investment and operational costs of the compared sub-scenarios.  
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Figure 4.57: Cost optimization sub-scenarios for investigation category 3 without utilizing solar 

energy, i.e. PV or solar collectors within a) Electricity tariff A, and b) Electricity tariff B. 

 

[a] 

[b] 
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Table 4.19: Costs comparison for optimized DC systems obtained with and without utilizing PV 

panels sub-scenarios for both electricity tariffs A and B. 

Type of cost 
1
 

Tariff A  

CS13A3010 CS13A3019 Difference 

Total annual costs 264,229.33 308,188.13 -43,958.80 

7. Total plant investment cost 134,884.01 50,382.09 84,501.91 

8. Total Network investment cost 12,737.16 22,866.68 -10,129.52 

9. Total operational cost 116,608.16 234,939.36 -118,331.19 

9.1. Plant site operational cost 91,776.97 92,463.17 -686.20 

9.2. Electrical network (pumping) cost 77.316 250.077 -172.76 

9.3. Electrical plant site operational cost 24,753.88 142,226.11 -117,472.23 

9.3.1. Comp. chiller electricity cost  50,153.41 104,919.22 -54,765.81 

9.3.2. PV panels electricity income 
2
 62,840.14 0.00 62,840.14 

9.3.3. Heat dissipater electricity cost  37,440.60 37,306.89 133.71 

Type of cost 
1
 

Tariff B  

CS13B3010 CS13B3019 Difference 

Total annual costs 256,542.62 297,448.13 -40,905.51 

7. Total plant investment cost 123,509.91 48,028.38 75,481.53 

8. Total Network investment cost 24,640.21 29,552.17 -4,911.96 

9. Total operational cost 108,392.50 219,867.57 -111,475.08 

9.1. Plant site operational cost 92,574.52 94,040.83 -1,466.31 

9.2. Electrical network (pumping) cost 275.461 294.893 -19.43 

9.3. Electrical plant site operational cost 15,542.51 125,531.85 -109,989.34 

9.3.1. Comp. chiller electricity cost  49,221.21 92,302.83 -43,081.62 

9.3.2. PV panels electricity income 
2
 68,735.14 0.00 68,735.14 

9.3.3. Heat dissipater electricity cost  35,056.44 33,229.02 1,827.42 
1  All costs are in Euro.   
2  The PV electricity income is to be subtracted when calculating the electrical plant site operational cost. 

 

 

 
 

Figure 4.58: Annual investment and operational costs of sub-scenarios with and without PV panels 

with electricity tariffs A and B for investigation category 3. 
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4.3.7 Investigation category 4 (Centralized DCS with variable/size-dependent COP) 

scenarios 

As performed in the constant COP investigations, centralized DC systems were optimized for size-

dependent COP investigation. The same model and COP variation pattern used in investigation 

category 3, presented in section  4.3.6, was adopted here. The centralized system was enforced by 

limiting the number of chillers allowed to be installed to one chiller. However, the location and 

capacity of the chiller were to be optimized by the model. The purpose of this investigation category is 

to compare the costs of centralized DC systems to the optimal de-centralized DC systems obtained 

previously. 

 

4.3.7.1 Reference scenario for investigation category 4 

With the same assumptions adopted for the previous investigation categories, optimization of the 

reference sub-scenario for this investigation category was carried out. Figure 4.59 shows the optimal 

solution for a reference scenario for the case study within investigation category 4 for both electricity 

tariffs A and B. Building N2 which has the highest peak cooling load was chosen to be the central 

production plant for both electricity tariffs. It is noticed that, unlike within investigation category 3, no 

oversized chillers were installed where the size of the central chiller was already above the minimum 

chiller capacity that provides the highest COP in the model which is 7 for capacities above 1000kW. 

Instead the total installed cooling capacities were lower than the peak cooling load. The obtained 

system for tariff A, shown in Figure 4.59a, was the identical to the system obtained for investigation 

category 2, labeled CS13A2010 and presented in Figure 4.12b, except for a small design difference in 

the size of the cooling tower, which was reduced due to higher COP value, causing a slight difference 

in the total investment cost. However it had a significant reduction in total annual cost as shown in 

Figure 4.60. This indicated that adopting a size-dependent COP model did not influence the design of 

the system that much but had a high impact on the operation cost within electricity tariff A. On the 

other hand, the size-dependent COP model had a bigger impact on the design of the system when 

optimized within electricity tariff B in comparison to the obtained system for investigation category 2, 

presented in Figure 4.27b. Similar to tariff A, the total annual cost was reduced by almost 35% as 

shown in Figure 4.60.  

 

As performed in investigation category 3, an extra optimization was carried out to check the feasibility 

and reliability of the obtained systems and their ability to operate in case of sudden changes in 

electricity tariffs. Each on the obtained systems in Figure 4.59 for each electricity tariff was re-

optimized under the other electricity tariff. The locations and capacities of the main equipment, e.g. 

chillers, storage tanks, and DC pipelines, were forced to be the same throughout the re-optimization 

process except for the capacities of heat exchangers and user site units. The results of the re-

optimization, presented in Figure 4.61, show that both obtained systems were able to operate with the 

change of the electricity tariffs without any design changes being required. This in turn indicates that 

centralized DC systems have a good reliability towards operating with changing operational 

conditions.  
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Figure 4.59: Annual cost optimization reference scenario for case study 1 within investigation 

category 4 for both electricity tariffs A and B. 

[a] 

[b] 
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Figure 4.60: Annual costs of the reference scenarios for investigation categories 2 and 4 within under 

electricity tariffs A and B.    

 

 

 
 

Figure 4.61: Annual costs of the reference scenarios for investigation category 4 in comparison to the 

same systems operating under switched electricity tariffs.   
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4.3.7.2 Optimizing without considering solar energy 

As performed in the previous investigation categories, the impact of installing PV panels on the design 

of the reference sub-scenario was investigated by carrying out optimizations where PV panels and 

solar collectors were not allowed to be installed. The model was still forced to install a centralized DC 

network by the one chiller constraint. The adopted coding for these two sub-scenarios were 

CS13A4019 and CS13B4019 for electricity tariffs A and B, respectively. Observing the obtained new 

DC systems under the mentioned conditions, which are presented in Figure 4.62, show that locations 

of the central production plants were changes for both electricity tariffs. Building N1b1 was chosen for 

electricity tariff A and building N1a1 for electricity tariff B. Both of these buildings are central 

buildings, geographically, in the case study.  

 

A cost comparison of the optimized sub-scenarios with and without considering PV panels and solar 

collectors is presented in Table  4.20. Once again it was noticed that systems obtained without utilizing 

solar energy have about half the investment cost of the systems when installing PV panels but a much 

higher operational cost. On the other scenario, the advantage of having locally consumed PV energy is 

reducing amount of electricity purchased from the grid. Another advantage is PV income from selling 

the extra electricity to the grid when PV energy is not consumed by the chillers directly. These two 

advantages are reducing the electrical plant site cost and thus the operational costs of the systems with 

PV panels. This attribute residence in most of the investigations carried out so far. The annual 

investment and operational costs of the sub-scenarios with and without solar energy utilization within 

investigation categories 3 and 4 are shown in Figure 4.63.  
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Figure 4.62: Cost optimization sub-scenarios for investigation category 4 without utilizing solar 

energy, i.e. PV or solar collectors within a) Electricity tariff A, and b) Electricity tariff B. 
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Table 4.20: Costs comparison for optimized Centralized DCSs obtained with and without utilizing PV 

panels sub-scenarios for both electricity tariffs A and B. 

Type of cost 
1
 

Tariff A  

CS13A4010 CS13A4019 Difference 

Total annual costs 273,538.77 310,021.05 -36,482.28 

10. Total plant investment cost 117,701.80 46,529.54 71,172.26 

11. Total Network investment cost 31,668.78 29,608.92 2,059.86 

12. Total operational cost 124,167.16 233,881.83 -109,714.67 

12.1. Plant site operational cost 92,835.83 92,859.30 -23.47 

12.2. Electrical network (pumping) cost 806.139 335.827 470.31 

12.3. Electrical plant site operational cost 30,525.19 140,686.71 -110,161.51 

12.3.1. Comp. chiller electricity cost  72,790.01 103,446.11 -30,656.10 

12.3.2. PV panels electricity income 
2
 79,505.41 0.00 79,505.41 

12.3.3. Heat dissipater electricity cost  37,240.60 37,240.60 0.00 

Type of cost 
1
 

Tariff B  

CS13B4010 CS13B4019 Difference 

Total annual costs 261,304.57 297,448.13 -36,143.56 

10. Total plant investment cost 118,339.68 48,027.46 70,312.21 

11. Total Network investment cost 31,726.87 29,552.17 2,174.70 

12. Total operational cost 111,237.03 219,867.57 -108,630.54 

12.1. Plant site operational cost 94,008.40 94,040.83 -32.43 

12.2. Electrical network (pumping) cost 741.935 294.893 447.04 

12.3. Electrical plant site operational cost 16,486.69 125,531.85 -109,045.16 

12.3.1. Comp. chiller electricity cost  62,467.58 92,302.83 -29,835.25 

12.3.2. PV panels electricity income 
2
 79,505.41 0.00 79,505.41 

12.3.3. Heat dissipater electricity cost  33,524.53 33,229.02 295.51 
1  All costs are in Euro.   
2  The PV electricity income is to be subtracted when calculating the electrical plant site operational cost. 
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Figure 4.63: Annual investment and operational costs of sub-scenarios with and without PV panels 

with electricity tariffs A and B for investigation categories 3 and 4. 

 

4.3.8 Operation Constraints Scenarios for investigation categories 3 and 4 

Comparing the annual cost of the sub-scenarios presented in Figure 4.63 show that centralized systems 

have slightly higher costs than de-centralized. This raises the question if such a slight cost difference, 

2- 4%, is enough to make a decision to adopt the optimal solution obtained by the model, i.e de-

centralized DCS. Therefore, reliability investigations were carried out concerning two operational 

constrains that often has a big impact on any operating system: 

 

 Load shifting strategy.  

 Outdoor temperature effect, i.e. variation of COP values between day and night due to a change in 

ambient temperature.    

 

As explained previously, load shifting is an optional strategy adopted by decision makers and system 

operators when needed while the second constraint, i.e. outdoor temperature effect, is a special 

phenomenon that occurs in hot climate regions. The reliability check was carried out in the form of 

several optimization sub-scenarios, starting with a full optimization of the case study within the 

applied operational constraint and comparing it to the reference sub-scenario. Later on, the reference 

sub-scenario would be re-optimized under the operational constraints to see if this system is able to 

operate under the investigated operational conditions.  

 

 

 

1
4

7
.6

2
 €

 

7
3

.2
5

 €
 

1
4

9
.3

7
 €

 

7
6

.1
4

 €
 

1
4

8
.1

5
 €

 

7
7

.5
8

 €
 

1
5

0
.0

7
 €

 

7
7

.5
8

 €
 

1
1

6
.6

1
 €

 

2
3

4
.9

4
 €

 

1
2

4
.1

7
 €

 

2
3

3
.8

8
 €

 

1
0

8
.3

9
 €

 

2
1

9
.8

7
 €

 

1
1

1
.2

4
 €

 

2
1

9
.8

7
 €

 

 € 

100 € 

200 € 

300 € 

400 € 

A
n

n
u

al
 c

o
st

 (
Eu

ro
/y

r)
 Th

o
u

sa
n

d
s 

Sub-scenarios 

Investment Cost Operational Cost

Centralized 
DCS 

Centralized 
DCS 

De-centralized 
DCS 

De-centralized 
DCS 

Tariff B Tariff 

A 



145 

 

4.3.8.1 Load Shifting Strategy  

Load shifting strategy has been investigated previously in section  4.3.5.3 to observe its effects on the 

design, operation pattern and overall annual cost of the obtained systems in comparison to the 

reference scenarios. The same was be performed here and in addition the reference scenarios, i.e 

CS13A/B3010 and CS13A/B4010 presented in Figures 4.55 and  4.59 respectively, were re-optimized 

under the load shifting conditions but their original designs were kept the same in order to check their 

reliability in operating with load shifting.  

 

The obtained systems through optimizing the case study with considering load shifting strategies are 

presented in Figures 4.64 and 4.65, for investigation categories 3 and 4, respectively. It is noticed that 

major design changes have been adopted within investigation category 3, i.e. de-centralized systems 

shown in Figure 4.64, when compared to the reference sub-scenario of category 3 presented in 

Figure 4.55. The increase in the total annual costs was around 3.5 % and 1.5% for electricity tariffs A 

and B, respectively. On the other hand, less extreme design changes were adopted within investigation 

category 4, i.e. centralized systems shown in Figure 4.64, when compared to the reference sub-

scenario of category 4 presented in Figure 4.59, where the increase in the total costs was around 1.7 % 

and 0.5% for electricity tariffs A and B, respectively. However, these design modifications cannot be 

added on the system obtained at the reference scenario because they include changing the capacities of 

the chillers and storage tanks and implementing new pipeline network branches as well. This raises 

questions regarding the reliability of the reference scenarios  

 

Therefore, the ability of the reference systems to operate when adopting load shifting strategy has been 

investigated in this work. Reference systems were re-optimized with constraints that the locations and 

capacities of all major equipment, e.g. chillers, storage tanks, heat exchangers, cooling towers, user 

site units, and DC pipelines, had to be maintained as the same as in the reference scenario before re-

optimization. This make the re-optimization process limited to operational parameters. If the system 

was successfully optimized without changing the design that means the system was able to operate 

with load shifting even though such operation strategy was not considered when the system was 

designed at the beginning. And if no solution was obtained by the optimization model then another 

sub-scenario was carried out with a single modification being allowed. A set of 6 possible 

modifications were adopted in this investigation as presented in Table  4.21. 
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Figure 4.64: Cost optimization sub-scenarios for investigation category 3 with load shifting strategy 

within: a) Electricity tariff A, and b) Electricity tariff B. 

[a] 

[b] 
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Figure 4.65: Cost optimization sub-scenarios for investigation category 4 with load shifting strategy 

within: a) Electricity tariff A, and b) Electricity tariff B. 

[a] 

[b] 
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Table 4.21: Description of design modifications adopted in sub-scenarios to investigate applying load 

shifting strategy on the optimal solutions adopted in investigation categories 3 and 4. 

 

Figure 4.66 shows the total annual costs of the sub-scenarios described in Table  4.21. For the first five 

sub-scenarios, i.e. M0 to M4, of the de-centralized DCS investigation with electricity tariff A the 

reference system was not able to operate, even with the implemented changes, unless additional design 

modification was allowed. Often, these additional design modifications would be changing the 

capacity of the cooling tower, which can be substituted by adding hot water storage in the heat 

dissipation circle, or installing additional chillers. Only the last two sub-scenarios, i.e. CS13A3086 & -

87, with modifications M5 and M6 were able to operate with the suggested modifications in the 

system design which was adding an optimized number of cold storage tanks, 4 tanks in this case, to the 

network without requiring additional modifications. A similar pattern was observed with electricity 

tariff B except that the optimized number of required cold storage tanks was 2, i.e. one storage tank 

additional to the original one in the reference system in Figure 4.55b. On the other hand, for the 

centralized DCS investigation, adding one cold storage tank to the reference system, i.e. M3 sub-

scenario, was sufficient to make the reference system able to operate with load shifting strategy. In 

general, it was noticed for both investigation categories that the total annual cost of the sub-scenarios 

where the system was able to operate with the suggested changes were very close to the annual cost of 

the reference scenario systems. This indicates that optimized DCS systems can be adapted to operate 

with load shifting strategy, even if they were not designed to, with relatively low additional costs.  

 

Title of sub-scenario Code Description  

Reference  CS13A/B (3/4) 010 Optimized without load shifting constraint 

Load shifting CS13A/B (3/4) 080 Optimized with load shifting constraint 

M0: Applying load 

shifting 
CS13A/B (3/4) 081 

Reference scenario re-optimized under load shifting 

constraint with no changes allowed 

M1: Bigger chillers CS13A/B (3/4) 082 
Reference scenario re-optimized under load shifting 

constraint with bigger chillers allowed 

M2: Bigger storages CS13A/B (3/4) 083 
Reference scenario re-optimized under load shifting 

constraint with bigger storages allowed 

M3: One additional 

storage 
CS13A/B (3/4) 084 

Reference scenario re-optimized under load shifting 

constraint with 1 extra storage allowed 

M4: Two additional 

storages 
CS13A/B (3/4) 085 

Reference scenario re-optimized under load shifting 

constraint with 2 extra storages allowed 

M5: Opt. storages CS13A/B (3/4) 086 

Reference scenario re-optimized under load shifting 

constraint with number of extra storages to be 

optimized  

M6: 7 additional storages CS13A/B (3/4) 087 
Reference scenario re-optimized under load shifting 

constraint with 7 storages being forced 
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Figure 4.66: Annual investment and operational costs of sub-scenarios of applying load shifting 

strategy in DCS within: a) Investigation category 3, and b) Investigation category 4. 
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4.3.8.2 Outdoor Temperature Effect  

The outdoor temperature effect on compression chillers COP has been explained and investigated in 

section  4.3.5.4 for investigation categories 1 and 2, i.e. constant COP models. The obtained systems 

were compared to the reference scenarios of these investigation categories. A similar investigation was 

carried out for investigation categories 3 and 4, i.e. variable COP models. Where new systems were 

obtained with the consideration of the outdoor temperature effect and compared to the reference 

scenarios of these categories. Later on, similar to the previous approach with load shifting, the 

reference scenarios were re-optimized under the outdoor temperature effect constraints but their 

original designs were preserved as they were and only operation parameters were subjected to the re-

optimization process. The purpose of this re-optimization was to check the ability of the reference 

systems to operate with this phenomenon.  

 

The obtained systems with considering outdoor temperature phenomenon for investigation categories 

3 and 4 are presented in Figures 4.67 and 4.68, respectively. For investigation category 3, no network 

pipelines were installed. Every building was equipped with a separated individual system. The absence 

of any DC network, in comparison to the reference scenario in Figure 4.55, indicates the important 

impact that this phenomenon has on the optimal design of cooling systems. The sizes of the chosen 

chillers were in the range of the lowest COP in the model which is 4.  The chillers were equipped with 

relatively big storage tanks in comparison to the separated individual systems obtained with the fixed 

COP model with a value of 4, i.e. Figure 4.48. This increase in storage capacity was necessary to 

enable the system to deal with drop in the COP value due to the outdoor temperature effect. Although 

they had lower investment costs, the total annual costs of the newly obtained systems were higher than 

the reference systems of investigation category 3, i.e. Figure 4.55, with 34% and 29% for electricity 

tariffs A and B, respectively. Requiring bigger storage tanks was present in the obtained centralized 

DC system within investigation category 4 as well as shown in Figure 4.68. However, the route of the 

DC network was kept the same as in the reference scenario, i.e. Figure 4.59, where building N2 was 

still chosen by the model as production plant.  The increase in the total annual costs was around 47% 

and 51% for electricity tariffs A and B, respectively, when compared to the reference system of 

investigation category 4 presented in Figure 4.59. 
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Figure 4.67: Cost optimization sub-scenarios for investigation category 3 with COP drop due to 

ambient temperature variation within: a) Electricity tariff A, and b) Electricity tariff B. 
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Figure 4.68: Cost optimization sub-scenarios for investigation category 4 with COP drop due to 

ambient temperature variation within: a) Electricity tariff A, and b) Electricity tariff B. 
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The same approach used in analyzing the reliability of the obtained reference systems with load 

shifting strategy was used with the outdoor temperature effect phenomenon as well. Where reference 

systems were re-optimized with the locations and capacities of all major equipment, e.g. chillers, 

storage tanks, heat exchangers, cooling towers, user site units, and DC pipelines, being forced to be the 

same as in the reference scenario system. Table  4.22 shows a list of the sub-scenarios performed in 

this analysis including the 6 possible modifications adopted in the reliability investigation.  The total 

annual costs of the obtained systems for the described sub-scenarios are presented in Figure 4.69. 

 

Table 4.22: Description of design modifications adopted in sub-scenarios to investigate applying the 

effect of outdoor temperature on reference systems of investigation categories 3 and 4. 

 

 

Title of sub-scenario Code Description  

Reference  CS13A/B (3/4) 010 Optimized without outdoor Temp. effect 

Outdoor Temp. Effect CS13A/B (3/4) 090 Optimized with outdoor Temp. effect 

M0: Applying outdoor 

temperature effect 
CS13A/B (3/4) 091 

Reference scenario re-optimized under outdoor Temp. 

effect constraint with no changes allowed 

M1: Bigger chillers CS13A/B (3/4) 092 
Reference scenario re-optimized under outdoor Temp. 

effect constraint with bigger chillers allowed 

M2: Bigger storages CS13A/B (3/4) 093 
Reference scenario re-optimized under outdoor Temp. 

effect constraint with bigger storages allowed 

M3: One additional 

storage 
CS13A/B (3/4) 094 

Reference scenario re-optimized under outdoor Temp. 

effect  constraint with 1 extra storage allowed 

M4: Two additional 

storages 
CS13A/B (3/4) 095 

Reference scenario re-optimized under outdoor Temp. 

effect constraint with 2 extra storages allowed 

M5: Opt. storages CS13A/B (3/4) 096 

Reference scenario re-optimized under outdoor Temp. 

effect constraint with number of extra storages to be 

optimized  

M6: 7 additional storages CS13A/B (3/4) 097 
Reference scenario re-optimized under outdoor Temp. 

effect constraint with 7 storages forced 
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Figure 4.69: Annual investment and operational costs of sub-scenarios of investigating outdoor 

temperature effect on DCS within: a) Investigation category 3, and b) Investigation category 4. 
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For the de-centralized DCS investigation within electricity tariff A, only the last two sub-scenarios, i.e. 

CS13A3096 & -97, were able to operate without any modifications in the design other than the 

permissible change according to the sub-scenarios themselves, i.e. M5 and M6. The other sub-

scenarios required some modifications such as changing the cooling tower capacity. The optimal 

permissible modification was to add an optimal number of storage tanks, which was 4 in these 

particular circumstances, to the reference system. The same pattern was observed when re-optimizing 

the reference scenario within electricity tariff B except that installing two storage tanks, i.e. one 

storage tank additional to the original one in the reference system in Figure 4.55b, was enough to 

enable the reference system to operate with considering the outdoor temperature effect on compression 

chillers COP. 
 

However, for the centralized DCS investigation, it was sufficient to re-optimize the reference system 

with allowing different sizes for the storage tanks available in the system already to enable the system 

to operate with the outdoor temperature phenomenon and for both electricity tariffs. The optimal 

modification for electricity tariff A reference system was to install one additional storage tank to the 

original two tanks in the reference system CS13A4010 in Figure 4.59a. On the other hand, re-

optimizing the capacities of the two existing storage tanks represented the optimal modification for 

electricity tariff B reference system CS13B4010, shown in Figure 4.59b. In general, it was noticed that 

although the optimized solutions for the phenomenon, i.e. CS13A/B(3/4)090, has higher total annual 

cost than the reference systems with a percentage that reaches up to 50%, the total annual cost of the 

optimized modification to the reference systems were very close to the optimal solutions for the 

phenomenon especially for the centralized DCS as shown in Table  4.23. Based on this, it was 

concluded that decision makers need to implement only some simple modifications to the reference 

systems to make these systems reliable and able to handle the outdoor temperature phenomenon but 

with a high cost.  
 

Table 4.23: Total costs of optimal solutions and the optimal modified reference systems under the 

outdoor temp. effect and their percentage of increase in comparison to the reference systems.  

 

 

 

 

Investigation 

category 

Reference system Optimal solution 
Optimal modified reference 

system 

Code 
Cost 

(Euro) 
Code 

Cost 

(Euro) 
% Code 

Cost 

(Euro) 
% 

Category 3 with 
tariff A 

CS13A3010 264229.3 CS13A3090 354584.3 34.2 CS13A3096 389244.3 47.3 

Category 3 with 
tariff B 

CS13B3010 256542.6 CS13B3090 332025.2 29.4 CS13B3095 364905.2 42.2 

Category 4 with 
tariff A 

CS13A4010 273538.7 CS13A4090 403035.8 47.3 CS13A4094 404578.2 47.9 

Category 4 with 
tariff B 

CS13B4010 261304.5 CS13B4090 368599.4 41.1 CS13B4093 375928.4 43.8 
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4.4  CO2 Emissions Optimization Objective 

Over the last few decades, climate change phenomena have driven researchers, designers and DC 

companies to pay more and more attention to the CO2 emissions coming out of their cooling systems. 

Therefore, optimizing CO2 emission was one of the concerns of this work as part of the adopted multi 

criteria approach. A single objective optimization model was developed as a preliminary stage to 

combine both cost and CO2 emissions objectives in one multi-objective optimization model on a later 

stage. 

 

The objective function of the CO2 emissions model is presented in details within Chapter 3 of this 

work. Generally, the amount of CO2 emitted from a DCS is mostly related to the type of energy 

resources being utilized, type of technology being used and the efficiencies of these technologies. The 

model developed is concerned with optimizing the operational patterns of the selected cooling 

technologies. CO2 emissions resulting from design stages such as manufacturing and installing the 

cooling technologies, network pipelines and other DC equipment were symbolically implemented in 

the model. For example, for each chiller 1g of CO2 was assumed to be emitted in manufacturing 

process for each kW of the chiller capacity and 1kg of CO2 for the installation process. Similar 

assumptions were implemented also for other DC equipment and piping. Such assumptions were 

adopted due to the lack of CO2 emission parameters for these processes in the literature. However, 

operational emissions were the dominant factor in the objective function of the model and the values 

of their parameters are presented in chapter 3.  

 

The approach for investigating optimal CO2 solutions was carried out on two stages or main scenario 

groups. 

 

 First stage: A de-centralized scenario was investigated to obtain a reference solution to be 

compared with on a later stage. Several compression chiller COP values and models were 

adopted in this stage  

 Second stage: An optimal centralized district cooling system scenario was obtained and 

compared to the reference system.  

 

4.4.1 Reference Scenarios 

Similar to the adopted approach in the cost minimization objective, a simplified scenario was 

investigated as a reference for comparison purposes. It is basically an optimization for the case study 

without considering the restriction and operational conditions that might affect the optimal solution. 

Waste heat availability was not considered and no other operation conditions such as load shifting 

were applied. All buildings were assumed to have an entire floor or basement as free space to install 

the cooling system equipment. Two tariffs for the electricity were investigated and two COP models 

were adopted:  

 

 Fixed COP model where several COP values were adopted regardless of the size of the chillers. 

 Variable COP model where the COP value varies depending on the size of the chiller. 
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4.4.1.1 Fixed COP model 

The system obtained for the first reference sub-scenario for case study 1 with electricity tariff A and a 

constant COP of a value of 3 for the compression chillers, presented in Figure 4.70a, show that no DC 

network was installed. Relatively small individual compression chillers were chosen to be installed at 

each building. The main difference of this system from the one obtained under the same conditions but 

with cost optimization objective is that no storage tanks were needed since that storing cooling energy 

for later uses does not alter the primary energy consumption and hence the CO2 emissions. Thus the 

cooling load of the building is to be met by the local compression chiller instantly, i.e. hour by hour. 

Such design can be understood as a result of the CO2 objective function that relays mainly on the 

operational patterns of the system. Where selecting a one central chiller for the entire district would 

not make a significant difference, neither positive nor negative, in terms of CO2 emissions since that 

the latest depends majorly on the primary energy consumed during the operation time. This is under 

the assumed simplification that COP values are fixed for both low and high capacity chillers. On the 

other hand, a DC network would have additional CO2 emissions coming out of the energy consumed 

by the cold water pumps used to circulate the water within the network. PV panels were installed on 

70% of the roof area which was also assumed to be free to use. The same amount of PV panels was 

installed in the cost objective reference scenario, i.e. Figure 4.7, as well. Changing the electricity tariff 

from tariff A to tariff B did not have any impact on the optimal solution as shown in Figure 4.70b, yet 

a different total annual cost was obtained. The cost of energy consumed is not considered in the CO2 

objective therefore changing electricity tariff does not have any impact on the amount of CO2 being 

emitted. However, such change in electricity prices would naturally affect the total cost of the system. 

For the following sub-scenarios, investigation was focused merely on results obtained with electricity 

tariff A.   
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Figure 4.70: CO2 emissions optimization with compression COP=3 for: a) electricity tariff A, and b) 

electricity tariff B. 

 

 

[b] 

[a] 
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A rough COP sensitivity analysis was carried out to observe the impact of changing compression 

chillers COPs on the optimal solution. COP was still assumed to be fixed regardless of the installed 

chiller size and regardless of the outdoor temperature variation. It was observed that  the obtained 

optimized systems with compression chillers with COP values of 4,5,6 and 7, shown in Figures  4.71 

and  4.72, represent the same optimized solution obtained for COP=3, presented in Figure  4.70. The 

amount of CO2 emitted was reduced whenever a higher COP was adopted since that higher COP 

means less primary energy would be needed to produce the same amount of cooling energy. However 

increasing the COP here does not have any impact on the obtained optimized design for the system 

because these COPs are not changing with the change of the installed chiller sizes. Hereby, installing a 

bigger chiller at a certain location and connecting the other buildings to that central location would 

result only in additional CO2 emissions due to the DC network operational pumps unless that central 

chiller would have a higher COP due to its bigger size. Based on this remark, centralized DCS 

investigation was carried out only within the variable COP model in this work. 

 

It was noticed that the sub-scenarios with COP values of 6 and 7 (CS25A0013 & CS25A0014) had 

negative values for the total annual emitted CO2. This is due to the amount of CO2 emission avoided 

by implementing PV-panels into the system. This means that these two scenarios have environment 

friendly cooling systems.  

 

Figure 4.73 shows the total annual cost and annual CO2 emissions obtained for the investigated sub-

scenarios with COP values of 3, 4, 5, 6 and 7 for both cost and CO2 optimization objectives. Changing 

the optimization objective had a significant impact on the total annual cost. However, it did not have 

any impact on the CO2 emissions. This is due to the simplifications implemented in the model where 

the COP was assumed to be fixed and no energy loses from the storage tanks were considered. As a 

consequence, as long as no DC network is installed, the mount of primary energy consumption and 

thus CO2 emissions would be the same for the same total sum of cooling energy demand regardless of 

the number and capacities of chillers and storage tanks installed as long as these assumptions are 

maintained. 

 

The values of percentage decrease in the total annual cost and CO2 emissions of these systems in 

reference to the COP=3 sub-scenario are presented in Figure 4.74. Adopting a compression chiller 

with COP=7 instead of 3 can cause a 31% reduction in the total annual cost under CO2 emission 

optimization and 35% reduction under cost optimization objective.  
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Figure 4.71: CO2 emissions optimization with:  a) Compression chiller COP=4 and, b) Compression 

chiller COP=5. 

[a] 

[b] 
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Figure 4.72: CO2 emissions optimization with:  a) Compression chiller COP=6 and, b) Compression 

chiller COP=7. 

[a] 

[b] 
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Figure 4.73: Total annual cost and CO2 emission (without avoided CO2 by PV panels) obtained for the 

COP sensitivity analysis for both cost and CO2 emissions minimization objectives.  

 

 
 

Figure 4.74: Reduction in total annual cost and CO2 emission obtained for the different COP sub-

scenarios with minimizing CO2 as the objective in reference to COP=3 sub-scenario.  
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4.4.1.2 Variable COP model 

Since it was concluded that changing the objective function into optimizing the CO2 rather than cost 

did not affect the amount of emitted CO2 due to the fixed COP assumption and the absence of DC 

network, investigation was carried out with a variable COP model. The same model and COP variation 

pattern used in section  4.3.6, was adopted here. The same three values of compression chiller COPs 

were introduced according to the chiller capacity as presented in Figure 4.54. The higher chiller 

capacity chosen by the model the higher COP implemented which would lead to less CO2 emissions.  

 

Figure 4.75 shows the obtained system by the variable COP model with CO2 minimization objective. 

Although the amount of CO2 emissions was reduced in comparison to the variable COP reference 

scenario under cost optimization objective, i.e CS13A3010 presented in Figure 4.55a, it was the same 

amount of emissions obtained by the fixed COP model at COP=7 as shown in Figure 4.76. This is due 

to the obtained individual systems where each building has been provided with a separated individual 

chiller with a capacity of 1000 kW to ensure maximum COP possible in the model. These high chiller 

sizes are considered as oversizing of the system in order to benefit from higher values of COP as 

explained previously in section ( 4.3.6.1). Such oversizing attitude is expected in a CO2 optimization 

model since that the additional cost of installing bigger chillers do not influence the CO2 objective 

function.  

 

Although, installing DC network pipelines would not result in significant extra CO2 emissions, no DC 

network was installed because operating this network would result some CO2 emission due to energy 

consumption for pumping the cold water throughout the network. In general, it is concluded that 

optimizing the de-centralized DC system with a variable COP model under CO2 objective function 

would result in obtaining as much high capacity as possible for the chillers to secure a higher COP and 

that such oversizing would eliminate the need of installing storage tanks or DC networks.  
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Figure 4.75: CO2 emissions optimization for a de-centralized DC reference system with variable COP 

model for: a) electricity tariff A, and b) electricity tariff B 

[a] 

[b] 
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Figure 4.76: Investment and Operational costs and CO2 emissions for the variable COP and fixed COP 

(at COP=7) models for both total costs and CO2 emissions optimization objectives. 

 

4.4.2 Centralized DC system 

After the results and conclusions obtained from optimizing the case study for a de-centralized DC 

system with a CO2 minimization objective, it was necessary to investigate optimizing the case study 

for a centralized DC system for comparison and conclusion validation purposes.  The centralized DC 

system was imposed by limiting the number of chillers to be installed to one chiller. The model was 

free to choose the location and capacity of the central chiller.  

 

Figure 4.77 shows the obtained centralized DC system by the variable COP model with CO2 

minimization objective. As it was expected, forcing the model to obtain a centralized system, i.e. 

CS15A4010, has increased the total annual CO2 emissions in comparison to the variable COP 

reference scenario CS15A3010, i.e. Figure 4.75. These additional CO2 emissions are results of 

implementing and operating the DC network. However, the obtained total annual costs were very close 

to each other as presented in Figure 4.78.  
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Figure 4.77: CO2 emissions optimization for a centralized DC system with variable COP model for: a) 

electricity tariff A, and b) electricity tariff B 
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Figure 4.78: Investment and Operational costs and CO2 emissions for centralized and de-centralized 

DCS obtained with variable COP model for both total costs and CO2 emissions optimization 

objectives. 

 

Observing the obtained centralized system, we notice that the size of the central chiller is above 1000 

kW, above the minimum capacity required to achieve the highest COP, which eliminates the 

oversizing phenomenon. However, the adopted DC network was a point of interest where the adopted 

pipelines were connecting the central production plant to several buildings in a form of a star network 

rather than connect each building to the one next to it. This is because the length of the pipeline has 

not so much of a significant impact on the CO2 optimization objective. Rather it is amount of the 

energy flow rate being transmitted throughout the pipeline that can cause additional CO2 emissions. 

Therefore, the model has selected a network of direct narrow pipelines in a star form, regardless of 

pipeline lengths, and equipped every building with a storage tank to ensure minimum cooling energy 

transmission through the DC pipelines. It is logical that such a system would have higher investment 

and operational cost than the DC network obtained for the centralized system with cost optimization 

objective, i.e. CS13A4010 presented in Figure 4.59. A cost and CO2 emissions comparison between 

the systems obtained at both objective functions is demonstrated in Figure 4.78. In this comparison, 

there are two very important observations: 

 

 The cost deference between the centralized and de-centralized systems is so low (3.5% 

increase for the cost objective function and less than 1% increase for the CO2 emissions 

objective function). This validates the previous conclusion obtained in this work that 

optimized centralized DC systems do not cost that much higher than optimized de-centralized 

systems.  That slight increase in total annual cost can be easily deemed as reasonable in return 

of all the benefits that centralized DC systems offer such as  higher operating reliability and 

availability,  higher energy efficiency, lower  maintenance costs, lower construction cost of 

buildings, and a more environment friendly impact. 
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 The deference in CO2 emissions between the centralized and de-centralized systems gives 

another insight. The CO2 emissions level for the centralized DC systems under the two 

objective functions were almost the same. However, they were not that far from the de-

centralized systems levels. Deciding for centralized DC system has lowered the total annual 

CO2 emissions by 2.8% within the cost optimization objective function, yet caused an increase 

of 0.4% within the CO2 emission optimization objective function. Such a low impact of 

choosing centralized systems can be explained by that the comparison is being carried out 

against optimized systems, which in this case study happened to be de-centralized DC system.  

Most statistical studies and reports in the literature has reported that centralized DC systems  

can reduces CO2 emissions by high margins because they were comparing it to un-optimized 

conventional cooling systems, often distributed stand-alone systems, which are known for 

having high energy consumption rates. In fact, these results lead to the conclusion that 

investing in centralized DC systems will automatically reduce CO2 emissions even when 

optimizing annual cost is the objective. 

 

 More importantly, the highest possible reduction in CO2 emission when optimizing de-

centralized DC system under CO2 emission objective function, i.e. CS15A3010 which is 

supposed to present the lowest emissions level possible, has a value of 3.3% only when 

compared to the de-centralized DC system obtained within cost optimization objective 

function, i.e. C13A3010. This indicates that optimizing this case study under reducing CO2 

emissions objective does not achieve a significant impact. Again, this is because the cost 

optimizing process already includes reducing operational cost by lowering the amount of 

primary energy being consumed. Such a low impact of the second objective function raises 

question regarding its role in the multi objective optimization stage and whether such a stage 

is actually needed or reasonable.  
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4.5 Multi-Objective Optimization: Annual Cost and CO2 Emissions  

The main goal of this work is to provide decision makers with a tool that assist them in obtaining 

preliminary design configuration and operation strategies for district cooling energy systems based on 

multi objective optimization considering both environmental and economic aspects. Single objective 

optimizations have been carried out for both total annual cost and CO2 emissions objectives in two 

separated optimization stages. The results obtained at the second stage have raised questions regarding 

whether such a stage is actually needed or reasonable to be considered at decision making process. In 

the third stage the tool will be upgraded into multi objective optimization model by combining both 

total annual cost and CO2 emissions objectives into one objective function. At this stage of the 

investigation the same assumptions adopted in both cost and CO2 emission optimizations were adopted 

as well. Most importantly, COPs were considered constant in regards to the partial load and outdoor 

temperature variation however the investigation was carried out with the variable COP model, in 

regards to the chiller size, only. Investigations were performed for de-centralized DC systems for both 

electricity tariffs A and B. The purpose of this stage is to investigate the impact of combining the two 

objectives on optimized solutions. A much more detailed investigation concerning multi objective 

optimization is to be carried out in the second case study investigated within the scope of this work. 

The combination of the two objectives has been performed by adopting the Normalized Weighted Sum 

method where the two contradicting objective functions were turned into a one normalized objective 

function by means of normalizing weights, as demonstrated in eq. (3.88):   

𝑍𝑀𝑢𝑙𝑡𝑖 = 𝑊𝐶  . 𝑍𝐶 + 𝑊𝐶𝑂2 . 𝑍𝐶𝑂2                                                                                        Eq. (3.88) 

 

These weights were calculated in correlation with the difference between each objectives magnitude 

when the other objective is minimized (also known as Nadir value Z
N
) and each objectives minimum 

value when optimized alone (Utopia value Z
U
): 

𝑊𝐶 = 𝑈𝐶  .
1

𝑍𝐶
𝑁− 𝑍𝐶

𝑈                                                                                                  

𝑊𝐶𝑂2 = 𝑈𝐶𝑂2 .
1

𝑍𝐶𝑂2
𝑁 − 𝑍𝐶𝑂2

𝑈                                                                                      

Where UC and UCO2 are importance weights assigned by the decision maker according to the 

importance of each objective in the decision making process. Table  4.24 shows the Nadir and Utopia 

value obtained at each single objective optimization.  

 

Table  4.24: Nadir and Utopia values obtained at each single objective optimization for the de-

centralized DC systems in case study 1. 

Single objective optimization 
Total annual cost  

(Euro/yr) 

Total annual CO2 emission 

(Ton/yr) 

Total annual 

cost objective 

CS13A3010 𝑍𝐶
𝑈 = 264,229.32 𝑍𝐶𝑂2

𝑁 = -35.1 

CS13B3010 𝑍𝐶
𝑈 = 256,542.61 𝑍𝐶𝑂2

𝑁 = -45.9 

CO2 emission  

objective 

CS15A5010 𝑍𝐶
𝑁 = 283,437.24 𝑍𝐶𝑂2

𝑈 =  -46.6 

CS15B5010 𝑍𝐶
𝑁 = 276,388.42 𝑍𝐶𝑂2

𝑈 = -46.6 
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The Utopia and Nadir values of the single objective optimization scenarios represent the far limits, i.e. 

best results, one can obtain in regards to that particular objective. Any obtained system under multi-

objective optimization would be somewhere between these two far limits.  These two far limits along 

with a certain number of multi objective optimization scenarios can give a clear imagination of Pareto 

Frontier. Based on several importance weights assigned by decision makers, a group of Pareto 

solutions can be obtained. Generating Pareto solutions is an objective task that seeks to objectively 

generate Pareto points in the design space regardless of their desirability.  On the other hand, selecting 

a specific Pareto solution is a subjective task that depends extremely on the decision maker 

preferences. Since that the (Nadir-Utopia) gap is not so big for both objectives, only one multi 

objective scenario, with importance weights of (1-1), was investigated. The aim is to see the impact 

that considering both objectives together in a multi objective optimization would have on each single 

objective solution.  

 

The Utopia and Nadir values, presented in Table  4.24, give a good overview about possible 

enhancement on both objectives. The gap between the two values for the CO2 objective is 11.5 

ton/year for electricity tariff A and 0.7 ton/year for electricity tariff B. This gap represent the 

maximum possible enhancement in CO2 emissions which can only be achieved when the optimization 

is completely shifted from optimizing merely annual cost to optimizing CO2 emissions only. Similarly, 

the gap in the Utopia and Nadir values for the annual cost at each electricity tariff, which is 19207.92 

and 19845.81 Euro/year, respectively, represent the maximum possible enhancement in annual cost 

that can only be achieved when the optimization is completely shifted from optimizing merely CO2 

emissions to optimizing annual cost only. Figure  4.79 shows the obtained solution for de-centralized 

DC systems at multi objective optimization with (1-1) importance weights. Observing these DC 

systems confirms the expectations that a multi objective optimization solution will be somewhere 

between the two single objective optimization scenarios. The obtained DC system when optimizing 

CO2 emissions, i.e. Figure 4.75, consist of separated over-sized individual systems at each building, 

whereas the obtained system at the annual cost optimization, i.e. Figure 4.55, contains a de-centralized 

DC network. The obtained system under multi-objective optimization was somewhere between these 

two options where de-centralized DC was implemented while the phenomena of oversizing some 

chillers was preserved for certain buildings. Figure 4.80 presents the total annual costs and CO2 

emissions of the multi objective scenario. The value of the two objectives lay between the Nadir and 

Utopia values of the two objectives. Pareto Frontier can be obtained by adopting CO2 emissions as X-

axis and annual cost as Y-axis as demonstrated in Figure 4.81.  All solutions lying on the Pareto 

Frontier are known as non-dominated solutions where no enhancement to one of the objectives is 

possible without harming the other objectives. Solutions in the area to the right-upper side of Pareto 

frontier are known as dominated solutions. It is not possible to obtain any solution at the left-lower 

side of Pareto Frontier in reality. 

 

The gap between the Nadir and Utopia values for this case study was relatively small, 0-3% of the 

Utopia value for CO2 emissions objective and about 7-8% of the Utopia value for the total annual cost 

objective. Adopting a multi objective optimization with importance weights of (1-1) has reduced the 

Nadir-Utopia gap of the CO2 emissions and total cost objectives by around 88 and 85%, respectively 

at the electricity tariff A investigations. The reduction the Nadir-Utopia gaps for both objectives at 

electricity tariff B were around 57 and 70%, respectively. Thus, the total annual cost and CO2 

emissions of the obtained solution were very close to the Utopia values of both objectives. This 

indicates that decision makers can avoid a significant loss both economically and environmentally if 

multi objective optimization is to be adopted.   
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Figure 4.79: De-centralized DC network scenario at Multi objective (cost 1-1 CO2) optimization stage 

for case study 1 with electricity tariffs A and B. 
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This multi objective investigation can be expanded into several importance weights allowing decision 

makers more options and more flexibility in the decision making process. However, since that the 

Nadir-Utopia gaps for both objectives were relatively small, and since that the (1-1) weights scenario 

has managed to reduce both Nadir-Utopia gaps with significant margins already, deciding to be 

content with this solution as a final choice is recommended. A detailed multi objective optimization 

investigation a long with a decision making approach are presented in the next chapter. 

 

 

 
 

Figure 4.80: Annual cost and CO2 emissions for the multi objectives de-centralized & centralized DC 

scenarios at different importance weights for case study 2 

 

 
 

Figure 4.81: Pareto Frontiers for De-centralized DC systems for case study 1. 
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4.6 Summary  

A small area was chosen out of a prospective planned residential district in a hot climate region as the 

first case study in this work. The selected district includes seven buildings where two of them were 

public none-residential buildings, a school and a town council while the other five buildings were 

multi-residents apartments with almost identical cooling load profiles. Detailed description of the 

chosen district including building characteristics and the cooling load profiles of the buildings is 

presented. A criterion for selecting representative days for each building was developed. An 

optimization approach consisting of three stages was introduced with total annual cost and CO2 

emissions being the first two single objective optimization stages. The third stage was a multi 

objective optimization combining the two single objectives. 

 

The developed optimization model went through a major upgrade throughout the investigation. At 

first, a constant COP model for the compression chillers was adopted. Later on, a variable COP model 

depending on the chiller size was introduced. The investigation examined the possibility of 

implementing both Centralized and De-centralized DC systems. The study was carried out for several 

groups of scenarios; each of them being analyzed for the sensitivity of the optimal solution toward a 

certain design parameter or operation conditions including:  Available area, Production plant location, 

Cold storage location Constraints, Piping prices, Investment cost, Constant and variable electricity 

tariffs, Waste heat availability, Load shifting strategies, and the Effect of outdoor temperature in hot 

regions on the DC system performance. 

 

The results obtained for several scenarios within the case study have showed that the results were 

highly affected by the type of the buildings in general and their occupation pattern in particular. It was 

noted that the well-known strategy of installing relatively small chiller capacity, e.g. 60 or 70 % of the 

peak load, accompanied with storage tanks is more desired at non-residential buildings due to the 

several zero load hours such buildings usually have in their load profile. It was noticed that 

compression chillers come ahead of absorption chillers in terms of both investment and operational 

costs for the market prices provided in the case studies investigated. However, there are other 

sufficient cases where absorption chillers might be a cost-effective solution such as when electricity 

prices are high and fuel can be provided at adequate prices or when sufficient amount of waste heat is 

available. Moreover, constant COP investigations have concluded that carrying out preliminary DCS 

design investigation with the simplification of assuming constant COPs for the compression chillers 

would overlook one of the major advances of DC that is high capacity chillers operate with higher 

COP than stand-alone systems. Adopting several values for chiller COP depending on the chiller 

capacity has lowered the total annual cost of the fully centralized DC systems by around 35% for both 

electricity tariffs and made adopting DC network a favorable option.  

 

It was found that operation cost has a higher impact on the optimization process and, consequently, the 

resulting cooling system designs. In fact, optimizing the investment cost alone causes an increase of 

around 20% in the total cost. Therefore, making decisions based on optimizing investment cost only is 

not recommended.  
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Investigating load shifting strategy has showed that optimized DCS systems can be adapted to operate 

with load shifting strategy, even if they were not designed to, with relatively low additional costs. 

Noting that Centralized DC systems require much less modifications than de-centralized DC systems. 

On the other hand, investigating the outdoor temperature effect on chiller performance has showed that 

it is very crucial for decision makers to count for this effect where it cause up to 50% increase in total 

annual cost. However, it was found that some simple, but expensive, modification on the reference 

scenario, such as replacing the storage tanks with bigger ones, is sufficient to adapt the system to 

operate with the effect especially for the Centralized DC systems which have shown more flexibility 

and reliability in dealing with this phenomenon. In addition, adopting load shaving strategies can serve 

effectively to deal with effect of high ambient temperature in hot climate regions for non-residential 

buildings. However, residential buildings might require different measure to deal with the 

phenomenon. As a general conclusion for choosing compression chiller capacity when designing 

under outdoor temperature effect in a hot climate, it is recommended to choose: 

 

a. For residential buildings: A chiller capacity that covers around 70% of the peak load of the 

building at constant electricity tariff. This capacity may be changed significantly when the 

electricity tariff is variable depending on the tariffs amplitude and at which hours of the day 

does the electricity price drop.  

b. For none-residential buildings: A chiller capacity that covers around 50% of the peak load of 

the building within both electricity tariffs. However, individual cost investigation for each 

building is recommended especially for building with high peak cooling load. 

 

It was noticed that the two objective functions, i.e. total annual cost and annual CO2 emissions, had a 

close influence on the optimization process. Both objectives seek to reduce the amount of primary 

energy consumed by adopting the highest COP possible and reducing the amount of operation hours as 

much as possible. Thus, optimizing the system under one of the objectives would automatically 

improve the other one. For example, adopting a compression chiller with COP=7 instead of 3 can 

cause a 31% reduction in the total annual cost under CO2 emission optimization and 35% reduction 

under cost optimization objective and in the same time achieving the same amount of minimal annual 

emitted CO2 at both objectives. Analyzing the obtained annual cost and CO2 emissions at both single 

objective optimizations for this case study has led to some important observations:  

 

a. Optimized centralized DC systems cost slightly higher than optimized de-centralized systems.  

This slight increase in total annual cost can be easily deemed as reasonable in return of all the 

benefits that centralized DC systems offer such as  higher operating reliability and availability,  

higher energy efficiency, lower  maintenance costs, lower construction cost of buildings, and a 

more environment friendly impact.  

b. The CO2 emissions level for the centralized DC systems under the two objective functions 

were almost the same. However, they were not that far from the de-centralized systems levels.  

These results lead to the conclusion that investing in centralized DC systems will 

automatically reduce CO2 emissions even when optimizing annual cost is the objective.  

c. Optimizing the first case study under reducing CO2 emissions objective did not achieve a 

significant impact in compare to cost optimization reference scenario. This is due to that cost 

optimizing process already includes reducing operational cost by lowering the amount of 

primary energy being consumed.  
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Observing the obtained DC systems at the single objective optimizations and their Utopia and Nadir 

values can provide a sufficient help for decision makers. The gap between the Nadir and Utopia values 

for this case study was relatively small, 0-3% of the Utopia value for CO2 emissions objective and 

about 7-8% of the Utopia value for the total annual cost objective. Adopting a multi objective 

optimization with importance weights of (1-1) has reduced the Nadir-Utopia gap of the CO2 emissions 

and total cost objectives by around 88 and 85%, respectively at the electricity tariff A investigations. 

The reduction the Nadir-Utopia gaps for both objectives at electricity tariff B were around 57 and 

70%, respectively. Thus, the total annual cost and CO2 emissions of the obtained solution were very 

close to the Utopia values of both objectives. This indicates that decision makers can avoid a 

significant loss both economically and environmentally if multi objective optimization is to be 

adopted. This multi objective investigation can be expanded into several importance weights allowing 

decision makers more options and more flexibility in the decision making process. However, since that 

the Nadir-Utopia gaps for both objectives were relatively small, and since that the (1-1) weights 

scenario has managed to reduce both Nadir-Utopia gaps with significant margins already, deciding to 

be content with the (1-1) solution as a final choice was recommended.  
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Chapter Five 

  Case Study II 
 

5.1  Introduction 

Through observing and analyzing optimized systems obtained at the various scenarios for the first case 

study, shown in the previous chapter, it was concluded that the results obtained are highly affected by 

the type of the buildings in general and their occupation pattern in particular. As residential buildings 

were the dominant type of the buildings investigated within case study 1, it was obvious that there is a 

significant need to focus on optimizing a district dominated with office buildings and compare the 

obtained results in an attempt to further validate the obtained conclusions from the first case study. 

Thus, a university campus with dominantly office buildings was chosen to be investigated as case 

study 2 within this work. The chosen district consists of four buildings where three of them are 

university buildings, containing staff offices and lecture halls, and one student dormitory building.  As 

in the first case study, several scenarios were investigated with some major assumptions to obtain 

optimized cooling systems taking into consideration changes in design parameters and operation 

conditions. More focus was paid in this case study on investigating scenarios that help further 

investigating or validating the results and conclusions obtained within case study 1 such as the effect 

of the PV connection strategy within the cooling system on the obtained location for the cooling 

energy production plant. Outdoor temperature effect was also investigated but within the multi criteria 

optimization stage.  

 

In this chapter, section 5.2 presents a detail description of the second case study and the characteristics 

of the buildings along with their cooling load profiles. An overview to the optimization approach 

adopted is explained within this section as well. The results of the cost optimization and CO2 

emissions optimization are discussed in sections 5.3 and 5.4, respectively. Deeper focus investigating 

the multi objective optimization scenarios, that combine both cost and CO2 objectives, is presented in 

section 5.5. 

 

5.2 Overview of the case study 

Although urban cities consist mostly of residential districts, it is logically understandable that newly 

established urban would contain many non-residential districts as well and for various utilizations. 

Common examples of such non-residential districts are: governmental compounds, multi-building 

hospitals, university campuses, commercial and industrial districts …etc. This kind of district is more 

likely to require a complete different approach when designing a cooling system for it. It was noticed, 

when investigating case study 1, that the existence of office buildings can have a great impact on the 

obtained optimized cooling system depending on the location, size, and cooling load profile of the 

building. In order to further validate these conclusions and investigate if a non-residential district 

would acquire similar solutions to those obtained for residential district, a part of a university campus 

was selected to be investigated as case study 2 in this work. The following sections offer a detailed 

description of the selected district, the cooling load profiles of the buildings and an explanation of the 

optimization approach.  
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5.2.1 Description of Selected District 

Four buildings from a university campus, see Figure  5.1a, which is located in a hot climate region 

were selected. Three of the four chosen buildings represent the engineering departments of Mechanics 

(N1), electronics (N2) and Architecture (N3), respectively.  These three university buildings consist 

majorly of staff offices, labors and lecture halls. The fourth building is a student’s dormitory (N4).  

The selected buildings are presented in Figure  5.1b.  The distances between the buildings in this case 

study are relatively big, in comparison to case study 1, and the peak cooling loads are in a range of 

490-560 kW.  

 

5.2.2 Buildings’occupationandcoolingloadprofiles 

The same cooling load profile estimation methodology used in case study 1 was used in case 

study 2 as well where each of the investigated buildings was assumed to have an amount of 

available area that can be used to install cooling system equipment and auxiliaries. The 

occupation pattern for the three non-residential buildings was assumed to be the same while 

the dormitory (N4) a quite different occupation pastern. Two of the non-residential buildings, 

N1 and N2, have a similar construction with a difference in the orientation.  Table  5.1 shows 

the buildings’ construction data, occupation profiles, lightening and other design assumptions. 

TRNSYS was used to simulate the four buildings in order to obtain their annual cooling load 

profile. Out of this annual cooling load profile, six days were chosen to represent the summer 

season, April-September, in the optimization process.  
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Figure  5.1: a) Map of university campus emphasizing the selected buildings to be investigated within 

case study 2; b) a schematic map for Case Study 2.    
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Table  5.1: Construction, occupation and design data of the buildings of case study 2. 

Building name/code N1   N2 N3 N4 

Building type 
None- residential  

Building 
None-residential  

Building 
None-residential 

Building 
Residential 

Building 

Floor Area 1,380 m
2
 1,380 m

2
 2,018 m

2
 2,310 m

2
 

Building Height 14 m 14 14 m 12 m 

Wall Orientation and Area  

E, W = 238m
2
 

NE, SW = 700m
2
 

NW , SE = 35m
2
 

N, S = 210m
2
 

N, S = 700m
2
 

NE, SW = 238m
2
 

NW, SE = 210m
2
 

SE, NW = 840 m
2
 

NE, SW=1134 m
2
 

SE,NW=1140m
2
 

NE, SW=636 m
2
 

Total glass area 
percentage of the outside 
surface area 

25.6 % 25.6 % 27 % 29.5 % 

Max. number of 
occupants 

1000 1000 1000 400 

Occupancy schedule at 
week days 

1000 P. 
( 7 am - 3 pm) 

1000 P. 
( 7 am - 3 pm) 

1000 P. 
( 7 am - 3 pm) 

400 Per. * 
(3 pm – 7 am)

 
 

Occupancy schedule at 
weekend days 

0 P. 
(for 24 hours) 

0 P. 
(for 24 hours) 

0 P. 
(for 24 hours) 

200 Per. 
(for 24 hours) 

Ventilation 
0.5 A-ch/hr 

( 7 am - 3 pm) 
0.5 A-ch/hr 

( 7 am - 3 pm) 
0.5 A-ch/hr 

( 7 am - 3 pm) 
0.5 A-ch/hr 

(for 24 hours) 

Lightening 5 W/m
2
 5 W/m

2
 5 W/m

2
 5 W/m

2
 

Infiltration 0.5 A-ch/hr 0.5 A-ch/hr 0.5 A-ch/hr 0.5 A-ch/hr 

Computers, equipment  & 
printers 

300 devices 
(7 am - 3 pm) 

300 devices 
(7 am - 3 pm) 

300 devices 
(7 am - 3 pm) 

500 devices * 
(3 pm – 7 am)

 
 

Cooling set temperature 
24 ºC 

(7 am - 3 pm) 
24 ºC 

(7 am - 3 pm) 
24 ºC 

(7 am - 3 pm) 
24 ºC 

(for 24 hours) 

 * These numbers are reduced to the half for N4 during the working hours (7 am - 3 pm) due to students 

attending lectures. 

 

The selection of a representative day for each month was performed using the same method used for 

the first case study in the previous chapter. The Method is based on finding the best match of a daily 

cooling load profile within the month to the average cooling load profile of that month, by calculating 

the minimum sum of the hourly square difference between each day and the average cooling load 

profile of the month, as shown in Figure  5.2.  
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Figure  5.2: Selection of a representative day for September based on the minimum sum of square 

differences to the average cooling profile of the month 
 

Figure  5.3 shows the estimated cooling load profiles for the four buildings (N1, N2, N3 and N4) at six 

representative days for each building. Building N2 has almost the same architectural construction and 

occupation pattern as Building N1. Therefore their cooling load profiles are almost identical with a 

peak cooling load of around 500 kW occurring in July. Building N3 had a slightly higher peak load 

with a value around 550 kW. The representative days of these buildings were chosen among the 

working days since their cooling loads at holidays are null. The remaining buildings (N4) is a 

residential building, student dormitory, and since that it was assumed that at least half of the occupants 

will be leaving the building during working hours 7:00am to 3:00pm, to attend the lectures,  a 

significant drop down in its cooling load profile can be noticed during the working hours. Their peak 

cooling load of this building is estimated to be around 460 kW occurring in July as well.    
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Figure  5.3: Cooling load profiles for 6 representative days for the buildings of case study 2. 
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5.2.3 Optimization Methodology and Approach 

The same MILP optimization model, developed in chapter 3 and used in case study 1, was utilized to 

investigate case study 2. GAMS modeling language was used to implement the model and the 

optimization was carried out by the commercial solver CPLEX12. As in case study1, a three stages 

optimization approach was adopted: 1) Total annual cost optimization, 2) Annual CO2 emissions 

optimization, and finally 3) Multi-objective optimization combining both total cost and CO2 emission 

objectives. While first and second stages focus on the effect of the integrating solar energy equipment, 

e.g. PV panels, into the optimization process and their effect on the obtained systems, the third stage 

was dedicated to further investigate specific operation strategies related to hot climate regions such as 

the outdoor temperature effect phenomena.  

 

The investigation within case study 1 was categorized into four investigation categories based on two 

major assumptions.  The first was the decision between to have either a centralized district cooling 

system (DCS) or a de-centralized DCS where a group of, or all, buildings can have their own separated 

individual cooling systems and the second was the decision between to adopt either a constant COP 

for the compression chillers or a variable COP depending on the chiller size. The first assumption is 

further investigated within case study 2 in order to draw more general conclusions based on the results 

obtained in both case studies regarding the issue of centralized or de-centralized DCS. However, only 

variable COP for the compression chillers is to be investigated from now on.  The investigation of case 

study 1 has concluded that adopting constant COP will eliminate one of the major advantages of 

investing in high capacity chillers which has resulted in showing that a group separated individual 

cooling systems would be more cost efficient than a district cooling system, when COP was 

considered to be constant, while district cooling systems appeared to be a better choice, with lower 

total annual cost, when COP is dependent on chiller size. And since variable COPs are the actual case 

in reality, a decision was made drop the constant COP investigation categories and focus on variable 

COP scenarios. Therefore, there are two investigation categories within case study2: 

 

 Category 1: De-centralized DCS with variable COP. 

 Category 1: Centralized DCS with variable COP. 

 

In the de-centralized DCS investigations the optimization model was given a free choice to install a 

full network connecting all buildings, a group of small networks or no network at all leaving all 

building with individual systems. On the other hand, only one network, connecting all buildings, with 

one production site was allowed in the centralized DCS investigations. These major investigation 

categories were implemented in all three stages of optimization: Cost, CO2 and Multi-objective 

optimizations.  

 

The study was carried out for several groups of scenarios; each of them being analyzed for the 

sensitivity of the optimal solution toward a certain design parameter or operation conditions. The 

analysis approach for the case study was designed in a way that starts with a reference scenario with 

certain set of design and operational constraints. Later on, more realistic constraints were integrated in 

each new scenario depending on the type of design parameter or operation condition being 

investigated. As shown in  

Table  5.2, the first two optimization stages will focus mainly on the solar energy integration policy 

while the third stage will investigate some of the hot climate operation conditions as well.   
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CS2  3  A 1  01  0 

Case Study 2 

Optimization 

stage: 

 

Table  5.2: Main scenario groups investigated at each investigation category in case study 2. 

Optimization 

stages 
Main Scenario Groups 

Cost Opt.  

10. Reference Scenario   

11. Solar energy integration policy  

CO2 Opt.    

1. Reference Scenario   

2. Solar energy integration policy 

Multi-Objective 

Opt. 

1. Reference Scenario   

2. Solar energy integration policy 

3. Outdoor Temperature Effect Scenarios 

 

 

The coding system adopted to label each of these scenarios in case study 2 is:  

  

 

                                                                        

                                                                        

                                                                                 

 

     

 

 

 

 

 

 

 

 

 

 

 

3  Cost-obj. 

5  CO2-obj. 

7  Multi-obj. 

Electricity tariff (A or B) 

Investigation 

category: 

1  De-centralized DCS + var. COP 

2  Centralized DCS + var. COP 

Main scenario group (as numbered in  

Table  5.2) 

Sub-scenario 
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5.3  Cost Optimization Objective   

Total annual cost is considered the main decision making criteria in most cooling systems design 

application. As it was obvious in the previous chapter, both investment and operational costs have 

major impact of the decision making process. Therefore, total annual cost was chosen as the objective 

function of the first optimization stage in case study 2 as well. The objective cost function is explained 

in details in chapter 3 of this work. This objective was used to obtain optimized cooling systems for 

case study 2 with the different scenario conditions and investigation categories. 

 

5.3.1 Reference Scenario 

A reference scenario was obtained at first with a certain set of assumptions for the purpose of 

investigating the effect of changing other design and operation parameters later on. The assumptions 

adopted to obtain the reference scenario are:  

 

 All buildings were assumed to have an entire floor or basement as free space to install the 

cooling system equipment. 

 30% of the roof area was preserved for installing heat dissipaters, e.g. cooling towers, while 

the rest was utilized by the optimization model. 

 Chilled water entering the buildings at 6°C and leaving at 12°C. 

 Two different electricity tariffs were implemented (Tariff A and B). 

 Waste heat availability was not considered.  

 No operation conditions such as load shifting were applied.  

 Fixed COPs for the chillers regardless of partial load and outdoor temperature variation were 

considered within the reference scenario. 

 Variable COP values for the chillers depending on the chiller size, which is to be determined 

by the model, were implemented in this case study. 

 

The variation in compression chillers’ COP in regards to their capacities has been implemented in 

optimization model as explained in Chapter 4. A COP value of 4 was chosen for chillers with 

capacities below 500 kW (142.2 TR), 5.5 for below 1000kW (284.3 TR), and 7 for chillers with 

capacities higher than 1000 kW (285 TR) as shown in Figure  5.4. Thus, the realistic advantage of high 

capacity chiller over small and middle size chillers in consuming less primary energy to provide a 

certain amount of cooling energy was firmly implemented in the model used to investigate this case 

study. 
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Figure  5.4: Adopted COP values for compression chillers in case study 2. 

 

 

The obtained optimized system for the reference scenario for case study 2 is presented in Figure  5.5.  

A de-centralized DC cooling system was implemented where two buildings, N2 and N4, were 

connected in a small network with building N4 being the production plant. The two other buildings, 

N1 and N3, were equipped with separated individual cooling systems. It is also noticed that no cold 

storage were installed. This was against the expectations where non-residential building are more 

likely expected to be equipped with storage tanks that make use of the no-load hours by storing 

cooling energy produced by the chillers during these periods and use it at load hours which in turn 

allow for the installing chillers smaller than the peak load of the system and thus reducing the 

investment costs. However this was not the case here. Instead the installed chillers were either the 

exact capacity needed to meet the peak cooling load or oversized. Higher COP values for bigger 

chillers allow saving a certain amount of operational cost by reducing the primary energy consumption 

needed to produce a certain amount of cooling energy. Since the peak loads of the building in this case 

study where somewhere around 500 kW which the value of shifting the COP from 4 to 5.5 in the 

model, installing chillers with capacities over 500 kW was preferred. In other words, choosing 

relatively high chillers capacities, that offer higher COP, seems to be, in this case study, more cost 

effective than the option of installing small chillers, i.e. smaller COP, with storage tanks due the 

saving potentials in operational cost. Such an attribute might have occurred because the developed 

model for implementing COP variation, depending on the chiller capacity, was a step by step linear 

model. 
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Figure  5.5: Annual cost optimization reference scenario for case study 2 with electricity both tariffs A 

and B. 
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Similarly, installing chillers with capacities over 1000 kW would offer even higher COP and thus by 

choosing bigger chillers, the model can use further savings in operational costs to install and operate a 

network connecting a couple of building whose cooling load demand is met by one production plant. 

That was the case of connecting buildings N2 and N4. The chiller installed at building N4 was of 1000 

kW capacity which is in fact an oversized chiller since the peak loads of buildings N2 and N4 do not 

occur at the same time as shown in Figure  5.3. The savings in operational cost resulting from installing 

a chiller with high COP were invested to install piping network connecting the two buildings and thus 

supplying building N2 with the required cooling energy. By observing the decisions made in both case 

studies 1 and 2, it was concluded that for residential buildings that have long operational hours it 

might be more cost effective to install oversized chillers if the higher capacities of these chillers would 

offer a significant increase in the value of COP. It is important here to mention that the optimization 

model developed in this work does not count COP down fall during partial load operation. Therefore, 

this conclusion might not be valid for the more realistic cases when COP values vary with partial 

loads.  

 

The distance between the two buildings connected with a pipeline, N2-N4, is the shortest in 

comparison to other buildings. However, the question of which buildings to connect within the 

network is related not only to the distances between the different buildings but also to the cooling load 

profiles of these buildings because transporting high rates of energy requires bigger pipelines which 

means higher investment cost. For example when two buildings have cooling load profiles that are 

similar to each other, i.e. have their non-load and full load periods at the same time and also have their 

peak load and the same hour, it will be required to install big pipelines to assure high energy 

transportation capacity which is needed at peak load hours. The option of installing storage tanks and 

benefit from off-load hours is a possible solution. However that is also highly dependent on the 

investment costs of such storage tank. To further investigate this issue a comparison between four 

scenarios, with four possible pipeline networks, was carried out:   

 

CS23A1010:  Connection N4N2 only, which is the reference scenario outcome presented in 

Figure  5.5. 

CS23A1011:    No network connection: Where line N4N2 was forced to be removed and thus N2 

was equipped with its own cooling system. See Figure  5.6. 

CS23A1012:    Connection N3N2 only: Where line N4N2 was forced to be removed and N3 was 

connected to N2 instead. See Figure  5.7. 

CS23A2010:    Centralized DCS: all buildings where connected in one pipeline network as shown in 

Figure  5.8. 
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Figure  5.6: No DC network scenario for case study 2 with electricity tariffs A and B. 
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Figure  5.7: A test scenario for case study 2 by implementing N3N2 pipeline instead on N4N2, 

with electricity tariffs A and B. 
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Figure  5.8: Centralized DC network scenario for case study 2 with electricity tariffs A and B. 
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Figure  5.9: Total annual costs of several sub-scenarios with different DC networks. Note: PV savings 

(pink) are to be subtracted from the total annual cost, i.e. comparison is to be made at the red color. 
 

 

In general, it was noticed that installing DC network would notably reduce the operational cost of the 

cooling system, however it increases the investment cost due to the added DC pipelines and storage 

tanks, if any. Therefore the model tries to find out the best option by balancing between the two major 

cost categories, investment and operation, and thus the reference scenario came out to be with a single 

pipeline connecting N2 to N4. This pipeline has reduced the operation cost, in comparison to the No-

Network scenario, with an amount that exceeds its investment cost. Not to forget the reduction in plant 

investment cost due to eliminating the chiller at N2. Installing further pipelines, or another pipeline, 

would cause the network investment cost to increase to a point where it exceeds the savings in 

operational costs which makes such investment not cost effective. This was the same case with 

installing a full DC network connecting all buildings where the system had a higher total cost, in 

comparison to the other three sub-scenarios, despite having a lower operational cost.  A certain point 

of interest was the location chosen to be the central energy production plant. Building N4 was chosen 

by the model to serve as production plant instead building N2 which has a central position in the 

investigated district. More focus is paid for this issue in the following segment.  
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5.3.2 Solar energy integration policy 

The investigations within case study 1 have strongly showed that PV panels have a significant impact 

on the obtained systems and their DC networks. Where the obtained cooling systems were having 

significantly different layout from the systems obtained for the same scenarios with no PV panels 

allowed. One of the very obvious impacts was the location of the chilled water production plant, 

especially within centralized DCS. The same impact has been observed within case study 2 as well. 

Building N2 which has a centralized location was expected to serve as the central production plant, 

however the model chose building N4. A couple of testing and validating sub-scenarios were carried 

out to analyze this phenomenon.  

 

Figure  5.10 shows the obtained system when no PV panels are allowed to be installed. The results of 

this scenario presented building N2 as the central production plant. However this system has a much 

higher total annual cost due to the lost PV energy savings. The testing and validating sub-scenarios, in 

addition to the comparison between the two central DC systems, have led to the conclusion that 

choosing building N4 within CS23A2010, i.e. Figure  5.8, was mainly due to the PV panels’ energy 

integration policy adopted in the optimization model. Therefore, a new yet slightly different 

integration policy was introduced:  

 

CS23A2010:   Old PV integration policy, see Figure  5.8, where energy produced by PV panels is 

either to be locally consumed, i.e. used to operate the chillers if the chillers were ON 

at the time of production, or to be sold to the national electricity grid. However, only 

the energy produced at the same building where the chiller is installed can be used for 

local consumption. Energy produced at other buildings had to be sold to the grid. And 

since that the electricity selling price to the grid (0.16 €/kWh) is lower than the 

purchase price of electricity from the grid (0.24 €/kWh), any further selling of PV 

panels’ energy to the grid will result in income loses. 

 

CS23A2020:    New PV integration policy, see Figure  5.11, where energy produced by PV panels is 

also either to be locally consumed when the cooling chillers are ON at the time of 

production or to be sold to the national electricity grid when the chillers are OFF. The 

difference is that electricity produced by PV panels at any building can be used to 

operate any chiller within the DC system even if they were installed in other buildings.  
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Figure  5.10: Centralized DC network scenario, with no PV panels, for case study 2 with electricity 

tariffs A and B.  
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Figure  5.11: Centralized DC network scenario, with new PV panel integration policy, for case study 2 

with electricity tariffs A and B. 
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Similar to what was observed within case study 1, the results of the scenarios with no PV panels 

allowed, i.e. Figure  5.10, have showed that the obtained systems without utilizing solar energy have 

much less investment cost in comparison to those with PV panels installed. The savings in operational 

cost that PV panels offer were the main reason giving the lead to the DC systems with integrated PV 

panels. Namely, the locally consumed PV energy within the DC system which lowers the amount of 

electricity purchased from the grid and also the PV income from selling the extra electricity to the 

grid. The latter is presented in Figure  5.12 in pink color.  

 

As shown in Figure  5.11, the DC systems with new policy to integrate PV panels had the central 

located building N2 as their central cooling energy production plant which has led to the conclusion 

that choosing N4 in the previous systems was mainly due to the old PV integration policy. However, 

despite the fundamental changes in the system layout, it was very clear that both investment and 

operational costs were close to each other with a slight advantage for the DC systems with new PV 

integration policy. The reductions in total annual cost were 1.7% and 1.2% for both electricity tariffs A 

and B, respectively, as presented in Figure  5.12. However, it is decided that from this point on the new 

PV integration policy will be permanently adopted with further investigations within this work.  

 

 
 

Figure  5.12: Total annual costs of Centralized DC network scenarios with: old, no and new PV panels 

integration policies. Note: PV savings (pink) are to be subtracted from the total annual cost, i.e. 

comparison is to be made at the red color. 
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5.4 CO2 Emissions Optimization Objective 

As a second stage of investigating case study 2, a single objective optimization investigation was 

carried out with minimizing CO2 emissions being the main objective function. This single objective 

optimization is to be combined with total annual cost optimization within multi-objective optimization 

stage. The CO2 emissions objective function developed at earlier stage of this work focus majorly on 

optimizing operational patterns of the DC systems and selects the best cooling technology and 

equipment’s to be installed in the system based on the lowest CO2 emissions possible during the 

system operation. Design CO2 emissions were implemented symbolically in the model as explained 

previously in this work.  

 

The same set of assumptions adapted to in the total annual cost optimization was adopted at this stage 

also to obtain a reference scenario. This include that COP are considered constant in regards to the 

partial load and outdoor temperature variation, however  COPs were considered variable in regards to 

the chiller size. Three values of compression chiller COPs were introduced according to the chiller 

capacity as shown in Figure  5.4. Hence, the higher chiller capacity chosen by the model the higher 

COP implemented which would lead to less CO2 emissions. All buildings were assumed to have an 

entire floor or basement as free space to install the cooling system equipment. Waste heat availability 

was not considered and no other operation conditions such as load shifting were applied. The obtained 

reference system is to be compared to other systems such as centralized DC later in the investigation. 

The values of total annual cost and CO2 emissions obtained at this stage are crucial for the multi-

optimization stage. Both old and new PV panels’ integration policies were investigated.  

 

After obtaining the reference scenario for both electricity tariffs A and B, comparison with the no PV 

panels systems was performed. Then the investigation was expanded to centralized DC systems in the 

same approach, i.e. old and new PV integration policy and no-PV DC systems:  

 

CS25A/B1010:  Old PV integration policy for de-centralized DC system. See Figure  5.13. 

CS25A/B1019:  No PV panels allowed in de-centralized DC system. See Figure  5.14. 

CS25A/B1020:  New PV integration policy for de-centralized DC system. See Figure  5.15. 

CS25A/B2010:  Old PV integration policy for centralized DC system. See Figure  5.16. 

CS25A/B2019:  No PV panels allowed in de-centralized DC system. See Figure  5.17. 

CS25A/B2020:  New PV integration policy for de-centralized DC system. See Figure  5.18. 
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Figure  5.13: Total annual CO2 emissions optimization reference scenario for case study 2 with 

electricity tariffs A and B. 
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Figure  5.14: De-centralized DC network scenario at CO2 emission optimization stage with no PV 

panels allowed to be installed for case study 2 with electricity tariffs A and B. 
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Figure  5.15: De-centralized DC network scenario at CO2 emission optimization stage with new PV 

panel integration policy for case study 2 with electricity tariffs A and B. 
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Figure  5.16: Centralized DC network scenario at CO2 emission optimization stage for case study 2 

with electricity tariffs A and B. 
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Figure  5.17: Centralized DC network scenario at CO2 emission optimization stage with no PV panels 

allowed to be installed for case study 2 with electricity tariffs A and B. 



205 

 

 
 

Figure  5.18: Centralized DC network scenario at CO2 emission optimization stage with new PV panel 

integration policy for case study 2 with electricity tariffs A and B. 
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The results obtained for the investigated sub-scenarios have showed that:  

 Changing the electricity tariff had notable impact only on the total annual cost of the systems 

but the design layouts of the systems and the CO2 emission values were unaffected and for 

both De-centralized and centralized DC systems as shown in Figures  5.13 to  5.18. This is 

because cost of energy consumed is not considered in the CO2 objective which eliminates the 

effect of changing tariffs. However, such change in electricity prices would naturally affect the 

total cost of the system. Therefore, the CO2 investigation will focus only on electricity tariff A 

from this point on. 

 

 Changing the PV integration policy also did not have any impact on the design layout for 

neither de-centralized nor centralized DC systems. The amount of CO2 emitted was almost 

unaffected within the de-centralized DC systems, as shown in Figures   5.13 and  5.15, because 

there was no DC network installed which eliminate the advantage of changing the integration 

policy. However there was a very slight impact on the CO2 emissions within the centralized 

DC systems where changing the integrating policy can allow for more local energy 

consumption resulting in less electricity purchase from the grid and thus less CO2 emission. 

However this impact was a matter of some kilograms of CO2 per year therefore it is not clearly 

demonstrated in Figures  5.16 and  5.18. 

 

 Utilizing PV panels, with either integration policy, had a great impact on the total annual CO2 

emissions in comparison to the no-PV panel sub-scenarios. However, the new policy did not 

affect the design layout of the system, i.e. chillers and other equipment sizes remained 

unaffected as well as the DC network, which opens the possibility to optimize the cooling 

system in separation from the PV panels being integrated into it. The amount of CO2 

emissions of the sub-scenarios with integrated PV panels had negative values, as shown in 

Figure  5.19. These negative values are a result of CO2 savings due to the use of PV panels 

where these savings had higher values than the amount of CO2 emitted from the system. It was 

noticed that the CO2 savings had the same value, 597.7 Mg/yr, in most of the scenarios where 

it is mostly dependent on the installed PV panels area. 

 

 In General, it was concluded that CO2 optimization in de-centralized systems push towards 

maximizing the capacity of chillers, where the cost is not considered here, for the sake of 

increasing the COP value and thus reducing the amount of primary energy needed. Whereas, 

in centralized systems, once the chiller capacity that guarantee the highest possible COP is 

exceeded, the model starts to install oversized storage tanks, which are not used to their full 

capacity, and use them to meet peak load demands since that the installed central chiller can 

meet around 60% of the total peak load only. This attitude is expected to have a significant 

impact on the systems obtained at the multi-objective optimization where CO2 objective 

function will be considered a long side the cost function. 
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Figure  5.19: Total annual CO2 emissions of de-centralized and centralized sub-scenarios at the CO2 

optimization stage. 

 

 

 
 

Figure  5.20: Total annual costs of de-centralized and centralized sub-scenarios at the CO2 optimization 

stage. Note: PV savings (pink) are to be subtracted from the total annual cost, i.e. comparison is to be 

made at the red color. 
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Figure  5.21: Investment and operational costs and CO2 of de-centralized and centralized DCS obtained 

at the total annual cost and CO2 single objective optimization stages. Note: values of the CO2 do not 

include PV savings.  

 

 Comparing the obtained annual costs for both single objective optimizations, presented in 

Figure   5.21, indicate a slight difference to results obtained at case study 1 where the 

centralized DC systems has 11.7% increase in total cost to the de-centralized system at cost 

optimization scenario and 16% at the CO2 emissions optimization scenario. Such increase in 

total annual cost is relatively high and it is up to the decision maker to decide whether to 

invest in a centralized system or not.  

 

 On the other hand comparing the annual CO2 emission results for the two single objective 

scenarios has showed a similar pattern to the one observed at case study 1 where deciding for 

centralized DC system has lowered the total annual CO2 emissions by 4.6% within the cost 

optimization objective function, yet caused an increase of only 0.4% within the CO2 emission 

optimization objective function. Again, CO2 emissions level for the centralized DC systems 

under the two objective functions were almost the same and very close to that obtained at de-

centralized systems under CO2 emission optimization. This validates the previous conclusion 

that investing in centralized DC systems will automatically save CO2 emissions even when it 

is not counted for. 

 

 The reduction in CO2 emissions achieved by switching the objective function from 

minimizing total cost to minimizing CO2 emissions, i.e. from CS23A1020 to CS25A1020, was 

5%. Similar to case study 1, optimizing case study 2 under reducing CO2 emissions objective 

does not achieve a significant impact in comparison to that obtained at cost objective since 

cost optimizing process already includes reducing operational cost by lowering the amount of 

primary energy consumed and thus already having achieved enhanced CO2 emission results.  
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In the next section, multi objective optimization combining both annual cost and CO2 emissions for 

this case study will be carried out. A simplified version of Pareto frontier will be obtained and the 

reliability of DC systems within hot climate regions will be investigated. 

 

5.5 Multi-Objective Optimization: Cost and CO2 Emissions  

The scope of this work is expanded to include multi objective optimizations combining both total 

annual cost and CO2 emissions objectives. The purpose of this stage is to investigate and analyze the 

impact of including environmental objectives in the decision making process as an addition to the 

traditional cost criteria. At this stage of the investigation the same assumptions adopted in both cost 

and CO2 emission optimizations were adopted as well. Most importantly, COPs were considered 

constant in regards to the partial load and outdoor temperature variation, however variable in regards 

to the chiller size. Only the new PV panels’ integration policy was considered at this stage. 

Investigations were performed for de-centralized and centralized DC systems for both electricity 

tariffs A and B. 

 

5.5.1 De-Centralized DC systems 

As explained in Chapter 3, the combination of the two objectives has been performed by adopting the 

Normalized Weighted Sum method where the two contradicting objective functions were turned into a 

one normalized objective function by means of normalizing weights, see eq. (3.88). These weights 

were calculated by difference between each objectives magnitude when the other objective is 

minimized (also known as Nadir value Z
N
) and each objectives minimum value when optimized alone 

(Utopia value Z
U
):   

 

𝑍𝑀𝑢𝑙𝑡𝑖 = 𝑊𝐶  . 𝑍𝐶 + 𝑊𝐶𝑂2 . 𝑍𝐶𝑂2                                                                                               Eq. (3.88) 

𝑊𝐶 = 𝑈𝐶  .
1

𝑍𝐶
𝑁− 𝑍𝐶

𝑈                                                                                                  

𝑊𝐶𝑂2 = 𝑈𝐶𝑂2 .
1

𝑍𝐶𝑂2
𝑁 − 𝑍𝐶𝑂2

𝑈                                                                                      

 

Where UC and UCO2 are importance weights assigned by the decision maker according to the 

importance of each objective in the decision making process. Table  5.3 shows the Nadir and Utopia 

value obtained at each single objective optimization.  

 

Table  5.3: Nadir and Utopia values obtained at each single objective optimization for the de-

centralized DC systems. 

Single objective optimization 
Total annual cost  

(Euro/yr) 

Total annual CO2 emission 

(Ton/yr) 

Total annual 

cost objective 

CS23A1020 𝑍𝐶
𝑈 = 178977.63 𝑍𝐶𝑂2

𝑁 = -304.995 

CS23B1020 𝑍𝐶
𝑈 = 175065.84 𝑍𝐶𝑂2

𝑁 = -304.995 

CO2 emission  

objective 

CS25A1020 𝑍𝐶
𝑁 = 186365.47 𝑍𝐶𝑂2

𝑈 =  -319.731 

CS25B1020 𝑍𝐶
𝑁 = 182453.68 𝑍𝐶𝑂2

𝑈 = -319.731 
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Observing the obtained DC systems at the single objective optimizations and their Utopia and Nadir 

values can give us a sufficient overview of where a multi objective optimization solution may lay 

where each of the single objective optimization scenarios represents the far limit to which one can 

reach in regards to that particular objective. Any obtained system under multi-objective optimization 

would be somewhere between these two far limits.  These two far limits along with a certain number 

of multi objective optimization scenarios can give a clear imagination of Pareto Frontier. The Utopia 

and Nadir values, presented in Table  5.3, also tell a lot about possible enhancement. For example, the 

value of CO2 emissions at the total annual cost optimization, i.e. CO2 Nadir value, for both electricity 

tariffs was (-304.995 Ton/year), while the CO2 Utopia value, when CO2 is the objective to be 

optimized, was (-319.731 Ton/year). The difference between the two values, 14.7 ton/year, represents 

the maximum possible enhancement in CO2 emissions which can only be achieved when the 

optimization is completely shifted from optimizing merely annual cost to optimizing CO2 emissions 

only. Similarly, the differences in the Utopia and Nadir values for the annual cost at each electricity 

tariff represent the maximum possible enhancement in annual cost that can only be achieved when the 

optimization is completely shifted from optimizing merely CO2 emissions to optimizing annual cost 

only. In order to generate the Pareto Frontier, several values for the importance weights, i.e. UC and 

UCO2, were adopted.  These values are very important to analyze the impact of considering each 

objective and its impact on the outcomes of the other objective in in the decision making process. The 

values of these weights considered in this work were:  

 

CS27A/B102(0-1): Cost 0-1 CO2 (i.e. Single objective, CO2 only: CS25A/B1020), Figure  5.15. 

CS27A/B102(1-0): Cost 1-0 CO2 (i.e. Single objective, Cost only: CS23A/B1020), Figure  5.22. 

CS27A/B102(1-1): Cost 1-1 CO2 (i.e. Multi objective with equal importance), Figure  5.23. 

CS27A/B102(1-2): Cost 1-2 CO2 (i.e. Multi objective with environmental focus), Figure  5.24. 

CS27A/B102(2-1): Cost 2-1 CO2 (i.e. Multi objective with economic focus), Figure  5.25.  

CS27A/B102(2-3): Cost 2-3 CO2, Figure  5.26. 

CS27A/B102(3-2): Cost 3-2 CO2, Figure  5.27. 

CS27A/B102(1-5): Cost 1-5 CO2, Figure  5.28. 

CS27A/B102(5-1): Cost 5-1 CO2, Figure  5.29. 

CS27A/B102(1-9): Cost 1-9 CO2, Figure  5.30. 

CS27A/B102(9-1): Cost 9-1 CO2, Figure  5.31. 
 

Figures  5.23 to  5.31 show the obtained solutions for de-centralized DC systems with the adopted 

importance weights. Observing these DC systems confirms the expectations that a multi objective 

optimization solution will be somewhere between the single objective optimization scenarios. The 

obtained DC system when optimizing CO2 emissions, i.e. Figure  5.15, consist of separated over-sized 

individual systems at each building, whereas the obtained system at the annual cost optimization, 

Figure  5.22,  contains a small de-centralized DC network connecting buildings N2 and N4. All the 

obtained system under multi-objective optimization were somewhere between these two options where 

de-centralized DC connecting the two buildings was preserved but the capacities of the installed 

chillers were varying from one multi objective scenario to another. When CO2 emissions have higher 

importance values then chiller capacities tend to be over-sized to the value of 1000 kW which provides 

the highest COP. On the other hand, when annual cost had significant higher importance weight than 

that of CO2 emissions, i.e. Figures  5.29 and  5.31, chiller capacities were obtained at the same values of 

the cost single objective scenario, i.e. Figure  5.15. However, when annual cost had slightly higher 

importance weight than that of CO2 emissions, i.e. Figures  5.25 and  5.27, chiller at building N3 was 

over-sized. This is due to the effect of considering the CO2 emissions objective which resulted in 

better, i.e. lower, CO2 emissions for the obtained system.  
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Figure  5.22: De-centralized DC network scenario at single objective (cost) optimization stage with 

new PV panels integration policy for case study 2 with electricity tariffs A and B. 
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Figure  5.23: De-centralized DC network scenario at Multi objective (cost 1-1 CO2) optimization stage 

for case study 2 with electricity tariffs A and B. 
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Figure  5.24: De-centralized DC network scenario at Multi objective (cost 1-2 CO2) optimization stage 

for case study 2 with electricity tariffs A and B. 
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Figure  5.25: De-centralized DC network scenario at Multi objective (cost 2-1 CO2) optimization stage 

for case study 2 with electricity tariffs A and B. 
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Figure  5.26: De-centralized DC network scenario at Multi objective (cost 2-3 CO2) optimization stage 

for case study 2 with electricity tariffs A and B. 
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Figure  5.27: De-centralized DC network scenario at Multi objective (cost 3-2 CO2) optimization stage 

for case study 2 with electricity tariffs A and B. 
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Figure  5.28: De-centralized DC network scenario at Multi objective (cost 1-5 CO2) optimization stage 

for case study 2 with electricity tariffs A and B. 
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Figure  5.29: De-centralized DC network scenario at Multi objective (cost 5-1 CO2) optimization stage 

for case study 2 with electricity tariffs A and B. 
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Figure  5.30: De-centralized DC network scenario at Multi objective (cost 1-9 CO2) optimization stage 

for case study 2 with electricity tariffs A and B. 
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Figure  5.31: De-centralized DC network scenario at Multi objective (cost 9-1 CO2) optimization stage 

for case study 2 with electricity tariffs A and B. 
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Figure  5.32: Annual cost and CO2 emissions for the multi objectives de-centralized DC scenarios at 

different importance weights for case study 2 with electricity tariff A. 

 

Figure  5.32 shows the total annual costs and CO2 emissions of the various multi objectives scenarios. 

Pareto Frontier can be obtained by adopting CO2 emissions as X-axis and annual cost as Y-axis as 

presented in Figure  5.33.  Pareto Frontier represents the group of non-dominated multi objective 

solutions, i.e. no enhancement to one of the objectives is possible without harming the other 

objectives. It is possible to obtain solutions to the right-upper side of the frontier which are known as 

dominated solutions. A dominated solution is not considered as Pareto solution since that improving at 

least one of its objectives without harming the other objectives is still possible. However, it is 

realistically not possible to obtain a solution at the left-lower side of Pareto Frontier which is 

considered as idealistic region.  

 

 
 

Figure  5.33: Pareto Frontier for De-centralized DC systems at various cost and CO2 importance 

weights.  
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Based on the results demonstrated in Figures  5.32 and  5.33, two multi objective solutions stand out as 

reasonable solutions. The first one is the multi objective solution with importance weights (1-1) where 

it has achieved almost the same Utopia value for CO2 emissions obtained at the single objective 

optimization scenario. This scenario has reduced the Nadir-Utopia gap for the cost objective by around 

30-40% of the gap value. The second candidate solution is the multi objective solution with 

importance weights (3-2), which is the same solution with (2-1) weights. This solution has reduced the 

Nadir-Utopia gap for the total cost and CO2 emissions objectives by around 75% and 50%, 

respectively.  Thus the second candidate solution, i.e. solution (3-2), emerges as the preferred solution. 

However, since that the total annual cost Nadir-Utopia gap represents only 4% increase to the Utopia 

values, i.e. lowest total cost achievable, and the CO2 emission Nadir-Utopia gap represents about 4.5 

% increase to the CO2 emission Utopia values, deciding for the first candidate solution, i.e. solution 

(1-1),  would be a reasonable choice as well.      

 

5.5.2 Centralized DC systems 

Since the obtained DC systems at multi objective optimizations were always somewhere between the 

two single objective scenarios, this indicated that full centralized DC systems are out of the Pareto 

Frontier. Therefore, an investigation was carried out to obtain a set of centralized DC systems through 

multi objective optimization. In order to achieve that the Utopia and Nadir, presented in Table  5.4, 

were obtained from the single objective optimization scenarios, where: 

 

CS27A/B202(0-1): Cost 0-1 CO2 (i.e. Single objective, CO2 only: CS25A/B2020), Figure  5.18. 

CS27A/B202(1-0): Cost 1-0 CO2 (i.e. Single objective, Cost only: CS23A/B2020), Figure  5.11. 
 

 

Table  5.4: Nadir and Utopia values obtained at each single objective optimization for the centralized 

DC systems. 

Single objective optimization 
Total annual cost  

(Euro/yr) 

Total annual CO2 emission 

(Ton/yr) 

Total annual 

cost objective 

CS23A2020 𝑍𝐶
𝑈 = 199,962.03 𝑍𝐶𝑂2

𝑁 = -318.548 

CS23B2020 𝑍𝐶
𝑈 = 197,207.00 𝑍𝐶𝑂2

𝑁 = -318.549 

CO2 emission  

objective 

CS25A2020 𝑍𝐶
𝑁 = 216,191.53 𝑍𝐶𝑂2

𝑈 =  -318.621 

CS25B2020 𝑍𝐶
𝑁 = 207,034.27 𝑍𝐶𝑂2

𝑈 = -318.621 

  

By observing the centralized DC systems obtained at the single objective scenarios it was noticed that 

the difference between Utopia and Nadir values is relatively smaller than that of the de-centralized DC 

systems. Figure  5.34 shows the annual cost and CO2 emissions values of these single objective 

solutions in relative to the de-centralized Pareto Frontier. As mentioned previously, all multi objective 

scenarios will be somewhere between the two single objective solutions. Such small differences 

between Utopia and Nadir values, especially for CO2 emission objective, indicate that a Pareto 

Frontier analysis is not needed since the multi objective solutions will not achieve big enhancements. 

In such cases single objective scenario with importance weights of (1 – 0) is sufficient and 

recommended due to the very small enhancement potential in the CO2 emissions when switching the 

objectives.  However, to validate this particular recommendation, the same importance weights 

adopted within the de-centralized DC scenarios were adopted to obtain the Pareto Frontier for the 

centralized DC systems as well: 
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CS27A/B202(1-1): Cost 1-1 CO2 (i.e. Multi objective with equal importance), Figure  5.35.  

CS27A/B202(1-2): Cost 1-2 CO2 (i.e. Multi objective with environmental concern), Figure  5.36. 

CS27A/B202(2-1): Cost 2-1 CO2 (i.e. Multi objective with economic focus), Figure  5.37.  

CS27A/B202(2-3): Cost 2-3 CO2 , Figure  5.38. 

CS27A/B202(3-2): Cost 3-2 CO2 , Figure  5.39. 

CS27A/B202(1-5): Cost 1-5 CO2 , Figure  5.40. 

CS27A/B202(5-1): Cost 5-1 CO2 , Figure  5.41. 

CS27A/B202(1-9): Cost 1-9 CO2 , Figure  5.42. 

CS27A/B202(9-1): Cost 9-1 CO2 , Figure  5.43. 

 

 
 

Figure  5.34: Pareto Frontier for De-centralized DC systems at various cost and CO2 importance 

weights along with the centralized DC systems obtained at single objective scenarios. 

 
  

Figures  5.35 to  5.43 show the obtained centralized DC systems for various importance weights 

adopted in this work. The optimization process was forced to select one central cooling energy plant. 

Therefore very limited changes occur on the DC network. A clearer impact can be observed on the 

location and sizes of cold storage tanks attached to the network. The annual cost of single objective 

reference scenario, i.e. Figure  5.11, had a central storage tank at the same location of the central 

chiller. On the other hand, the annual CO2 emission of single objective reference scenario, i.e. 

Figure  5.16, had three cold storage tanks distributed at the various ends of the network with no storage 

installed at the central cooling energy production plant. Therefore, it was expected that higher 

importance weights for CO2 emissions objective will push in the direction of distributing the storage 

tanks while higher importance weights will push in the direction of installing a central storage tank. 

However, no specific pattern of the chosen sizes or location was detected.  

174

179

184

189

194

199

204

209

214

219

-322 -320 -318 -316 -314 -312 -310 -308 -306 -304

A
n

n
u

al
 C

o
st

 (
Eu

ro
/y

r)
 Th

o
u

sa
n

d
s 

Annual CO2 emissions (Ton/yr) 

Centralized - tariff A Centralized - tariff B de-centralized - tariff A De-centralized - tariff B

Cost 1-0 CO2 

Cost 0-1 CO2 



224 

 

 
 

Figure  5.35: Centralized DC network scenario at Multi objective (cost 1-1 CO2) optimization stage for 

case study 2 with electricity tariffs A and B. 
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Figure  5.36: Centralized DC network scenario at Multi objective (cost 1-2 CO2) optimization stage for 

case study 2 with electricity tariffs A and B. 
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Figure  5.37: Centralized DC network scenario at Multi objective (cost 2-1 CO2) optimization stage for 

case study 2 with electricity tariffs A and B. 
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Figure  5.38: Centralized DC network scenario at Multi objective (cost 2-3 CO2) optimization stage for 

case study 2 with electricity tariffs A and B. 
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Figure  5.39: Centralized DC network scenario at Multi objective (cost 3-2 CO2) optimization stage for 

case study 2 with electricity tariffs A and B. 
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Figure  5.40: Centralized DC network scenario at Multi objective (cost 1-5 CO2) optimization stage for 

case study 2 with electricity tariffs A and B. 
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Figure  5.41: Centralized DC network scenario at Multi objective (cost 5-1 CO2) optimization stage for 

case study 2 with electricity tariffs A and B. 
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Figure  5.42: Centralized DC network scenario at Multi objective (cost 1-9 CO2) optimization stage for 

case study 2 with electricity tariffs A and B. 
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Figure  5.43: Centralized DC network scenario at Multi objective (cost 9-1 CO2) optimization stage for 

case study 2 with electricity tariffs A and B. 
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The values of the total annual costs and CO2 emissions of the obtained centralized DC systems are 

presented in Figure  5.44. As it can be clearly observed from these values, improving, i.e. reducing, one 

of the objectives is not possible without harming, i.e. increasing, the other objective. This is a sign that 

Pareto Fortier can easily be visualized by projecting the values of obtained objective on the “CO2 

emissions – Cost” diagram. Since that all the multi objective solutions, and their objective values, lay 

down between the Utopia and Nadir values of the two single objective reference scenarios and since 

the later values were too close to each other in relative to the de-centralized DC system as shown in 

Figure  5.34, a separated Pareto Frontier diagram was created for the centralized DC scenarios as 

presented in Figure  5.45 where the far two edges of the frontier represent the single objective 

scenarios.   

 

 
 

Figure  5.44: Annual cost and CO2 emissions for the multi objectives centralized DC scenarios at 

different importance weights for case study 2 with electricity tariff A. 

 

It was observed that the differences between the objective values for the obtained systems are 

reletively small especially for the CO2 emissions in comparison to the de-centralized DC systems. That 

means paying so much attention to CO2, by putting a high importance weight for it, will cause a 

significant increase in the total annual cost for a very little enhancement in the amount of CO2 emitted 

annually. This observation was made at the very early stage when obtaining the Utopia and Nadir 

values of the signle objective scenarios and based on these values a recommendation was made to 

select the single objective scenario with importance weights of (1 – 0), i.e. only cost, due to the very 

small Nadir-Utopia gap in the CO2 emissions objective. Such low gap between the two values, i.e. 

Utopia and Nadir for one or both of the objectives, should make the decision maker re-think about the 

worthness, in terms of time and effort,  of going into obtaining several multi objective scenarios and 

generating Pareto Frontier. However, this selection is merely concerned with the particular situation of 

case study 2. Other case studies might have higher gap between their Utopia and Nadir values which 

leaves the door open for the decision maker to carry out a multi objective investigation.  
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Figure  5.45: Pareto Frontier for Centralized DC systems at various cost and CO2 importance weights  

 

Based on this, it is recommended for decision makers who want to take more than one objective into 

their consideration when designing a DC system to first obtain the Utopia and Nadir values of each 

single objective separately. The difference between these two values, for each objective function, will 

give them a solid imagination about how much enhancement is achievable at each objective separately 

and how much damage such enhancement on one objective can cause on the other objective.  Then the 

decision making process should go through these possibilities: 

 

I. If the gap between the Utopia and Nadir values for one objective is too small, i.e. few Euros or 

CO2 grams, while the difference between these values for the other objective is relatively big, 

then it is recommended to focus only on the objective high (Z
N
-Z

U
) value by either adopting 

the single objective scenario or adopting a multi objective scenario with a high importance 

weight for that particular objective. 

 

II. If the (Z
N
-Z

U
) gap was too small for both or all objectives, then it is recommended to obtain 

one multi objective scenario with importance weight of 1 for all objectives. This will 

guarantee that consideration has been paid to all objectives without wasting unnecessarily time 

and effort on multi objective investigations.  

 

III. If the (Z
N
-Z

U
) gap was high for both or all objectives, then more attention and effort should be 

paid through carrying out extensive multi objective investigations where shifting from one 

solution to another can achieve significant improvement of one objective but in the same time 

can cause significant damage to the other objectives. In this case, decision maker should be 

very careful in adopting importance weights that fit the projects goals and preferences.   
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5.5.3 Operational Constraints:  Outdoor Temperature Effect 

This work has a major focus on design and operation of DC systems in hot climate regions. As 

explained previously in details in Chapter 4 of this thesis, see sections 4.3.5.4 and 4.3.8.2, one of the 

major problems that face operating cooling systems in general in hot climate regions is the variation in 

Chiller COP value during day and night due to change in outdoor temperature as shown in 

Figure 4.46. 

  

This is a special phenomenon which occurs in hot climates that has a major impact on the cooling 

system performance where the high ambient temperature has a negative impact on the COP values of 

the compression chillers. This is because most of the chillers in the market are manufactured to work 

with around 30-35°C outdoor temperature. The high ambient temperatures in hot climate regions can 

reach up to 55 °C. Figures 4.44 and 4.45 present sample profiles of ambient temperature for the cities 

of Basra and Baghdad, respectively. 

 

Optimized solutions were obtained for case study 2 while taking the operational constraint, i.e. impact 

of high outdoor temperatures on chiller COP, into consideration. That is a full optimization of the case 

study within the applied operational constraint. This investigation was carried out within the multi 

objective optimization scope of this work using the decision making approach obtained in the previous 

section.    

 

1. De-centralized DC systems: 

CS27A/B103(1-0): Cost 1-0 CO2 (i.e. Single objective, Cost only), Figure  5.46. 

CS27A/B103(0-1): Cost 0-1 CO2 (i.e. Single objective, CO2 only), Figure  5.47.   

CS27A/B103(1-1): Cost 1-1 CO2 (i.e. Multi objective with equal importance), Figure  5.48.   

 

2. Centralized DC systems: 

CS27A/B203(1-0): Cost 1-0 CO2 (i.e. Single objective, Cost only), Figure  5.49.   

CS27A/B203(0-1): Cost 0-1 CO2 (i.e. Single objective, CO2 only), Figure  5.50.  

CS27A/B203(1-1): Cost 1-1 CO2 (i.e. Multi objective with equal importance), Figure  5.51.  
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Figure  5.46: De-centralized DC network scenario at single cost objective optimization stage with 

Outdoor Temperature Effect constraint for case study 2 with electricity tariffs A and B. 
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Figure  5.47: De-centralized DC network scenario at single CO2 objective optimization stage with 

Outdoor Temperature Effect constraint for case study 2 with electricity tariffs A and B. 
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Figure  5.48: De-centralized DC network scenario at Multi objective (cost 1-1 CO2) optimization stage 

with Outdoor Temperature Effect constraint for case study 2 with electricity tariffs A and B. 
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Figure  5.49: Centralized DC network scenario at single cost objective optimization stage with Outdoor 

Temperature Effect constraint for case study 2 with electricity tariffs A and B. 
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Figure  5.50: Centralized DC network scenario at single CO2 objective optimization stage with Outdoor 

Temperature Effect constraint for case study 2 with electricity tariffs A and B. 
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Figure  5.51: Centralized DC network scenario at Multi objective (cost 1-1 CO2) optimization stage 

with Outdoor Temperature Effect constraint for case study 2 with electricity tariffs A and B. 
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Figure  5.52: Annual cost and CO2 emissions for the multi objectives de-centralized & centralized DC 

scenarios at different importance weights for case study 2. 

 

 

 
 

Figure  5.53: Pareto Frontiers for Centralized and De-centralized DC systems for case study 2 with 

taking outdoor temperature Phenomena into consideration. 
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Figures  5.52 and  5.53 illustrate how important and helpful the proposed multi objective analysis using 

Pareto solutions can be for decision makers. It is clear that the gap between the Nadir and Utopia 

values is too big that it reaches up to 150-160% of the Utopia value for the cost objective and around 

17-27% of the utopia value of the CO2 emissions objective. Adopting a multi objective optimization 

with importance weights of (1-1) has achieved a significant enhancement on both objectives as 

presented in Figure  5.53. The reduction in the (Nadir – Utopia) gaps for both annual total cost and CO2 

emissions objectives is around 80-90% for all the investigated scenarios. That means that the total 

annual cost and CO2 emissions of the resulting solution is very close to the Utopia values of both 

objectives. By adopting such a solution, decision makers can avoid a significant loss both 

economically, if the system was optimized only for environmental objectives, and environmentally, in 

case the system was optimized only for economic objectives.    

 

It possible to expand this investigation into other scenarios with several importance weights which 

would provide the decision makers with more options and flexibility in the decision making process. 

However, the fact that the (1-1) weights scenario has managed to reduce both Nadir-Utopia gaps with 

up to 90%, indicate that this solution will be considered as compelling solution for the decision 

makers. If the decision maker is interested in paying more focus on one objective more than the other 

then carrying out further optimizations with different importance weights is entirely justified.    

 

5.6 Summary 

A detail description of the second case study and the characteristics of the buildings along with their 

cooling load profiles and the criteria of selecting representative days for each building were presented. 

Based on the results obtained in the first case study, only the variable COP model was adopted to 

investigate the second case study. The investigations focused mainly on Centralized and De-

centralized DC systems as well as the impact of the PV panels’ integration policy on these systems. 

The optimization approach adopted to investigate the case study was explained. The investigation was 

carried on three stages: Cost optimization, CO2 emissions optimization, and Multi objective 

optimization.  The results of the three optimization stages were presented and discussed 

 

The obtained results have showed that different PV panel’s integration policies had some significant 

impact on the Centralized DC systems layout. In addition, utilizing PV panels, with either integration 

policy, had a great impact on the total annual CO2 emissions in comparison to the no-PV panel sub-

scenarios. However, the new policy did not affect the design layout of the system. Thus it was 

concluded that the new PV integration policy makes it possible to optimize the cooling system in 

separation from the PV panels being integrated into it.  

 

Analyzing the obtained annual total cost and CO2 emissions at both single objective optimizations for 

this case study has indicated the following: 

a. Centralized DC systems have 11 – 16 % increase in total cost in comparison to the de-

centralized systems. Such increase in total annual cost is relatively high and it is up to the 

decision maker to decide whether to invest in a centralized system or not based on other 

preferences, e.g. environmental aspects.  

b. CO2 emissions level for the centralized DC systems, at both objective functions, were 

almost the same and very close to that obtained at de-centralized systems at CO2 emission 

optimization. This validates the conclusion obtained previously that investing in 

centralized DC systems will automatically save CO2 emissions even when it is not 

counted for. 
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c. The reduction in CO2 emissions achieved by switching the objective function from 

minimizing total cost to minimizing CO2 emissions was around 5%. Similar to case study 

1, optimizing case study 2 under reducing CO2 emissions objective did not achieve a 

significant impact in comparison to that obtained at cost objective. That is because cost 

optimizing process already includes reducing operational cost by lowering the amount of 

primary energy consumed and thus already having achieved enhanced CO2 emission 

levels.  

 

Observing the obtained DC systems at the single objective optimizations and their Utopia and Nadir 

values can provide a sufficient overview of where a multi objective optimization solution may lay. It is 

recommended for decision makers who want to take more than one objective into their consideration 

when designing a DC system to first obtain the Utopia and Nadir values of each single objective 

separately. A decision making approach has been developed in this work to help decision makers in 

selecting a specific solution based on the difference between the Utopia and Nadir values (ZN-ZU) 

obtained at the single objective optimizations. This approach was applied to the multi objective 

optimization investigation carried out for this case study. Different multi objective solutions where 

selected out of the Pareto solutions set for de-centralized DC systems and centralized DC systems. The 

same approach was implemented to select a solution for both de-centralized and centralized DC 

systems with outdoor temperature effect. By adopting the developed approach, decision makers can 

avoid a significant loss both economically, if the system was optimized only for environmental 

objectives, and environmentally, in case the system was optimized only for economic objectives.    
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Chapter Six 

  Conclusion and Outlook 

6.1  Work Summary  

To obtain an optimal, or even efficient, configuration and design of cooling systems for certain 

residential or non-residential sector is a very complex task. Critical decisions have to be made 

regarding a variety of opportunities, options and technologies. In addition to that, the high variability 

of the energy demand profiles of different buildings and the number of possible combinations when 

several technologies are to be considered to obtain high efficiency performance add to the complexity 

of the task. This complicated decision making process is usually the responsibility of a wide variety of 

people that often have different backgrounds such as local governments (e.g. municipalities) officials, 

urban planner, air-conditioning engineers, investors, business managers, and environment policy 

makers … etc. The design of a cooling system for an urban area or district that consist of a number of 

buildings with cooling load profiles should address several design issues such as:  

 

 Which energy conversion technologies to be invested in and in which combination if more 

than one technology were to be installed. 

 The size and location of each energy conversion technology and equipment in the system.  

 The energy production and operation pattern of the installed technologies. 

 Does it make sense to install one, or more, district cooling network or not at all.  

 Which buildings are to be connected to the district cooling network and which not to be 

connected.   

 The size and location of the each distribution pipeline within the district cooling network if 

any.  

 The energy flow rates through the DC network pipeline.  

 How the produced cooling energy should be stored in certain period to meet the peak load 

periods of the buildings in the district. 

 

The main objective of this work is to develop a decision making approach to use it in obtaining 

preliminary design configuration and operation strategies for district cooling energy systems based on 

rough detailed optimization throughout performing environmental, economic and performance 

comparison for different design options with in the process. These preliminary solutions are intended 

to serve as preliminary suggestions for design engineers, urban planners and decision makers to ease 

the process of decision making at the design stage where extensive performance investigations are to 

be carried out later on by using scenario simulation tools. Therefore, it was concluded that a high 

detailed model is not a desired option especially at early stages of the design.  

 

A brief survey in the state of the art was carried out reviewing several surveys presented by other 

researchers in the literature regarding different aspects of the subject. It has been concluded that multi 

objective optimization model can be a suitable instrument to support the decision making process. In 

the literature review, mathematical programming models are the most common technique for 

optimally configuring and designing cooling systems for urban areas. GAMS environment was 

commonly used to implement and solve optimization models. 
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Optimizing the design and operation of a district cooling energy system using mathematical 

programming is typically a nonlinear problem. Non-linear programming is more appropriate for 

detailed models, which have a lower number of time periods and possible configurations. However, 

when the model is relatively complex, due to high number of decision variables with several time 

periods, the problem might not be possible to solve. Therefore reducing the complexity of the problem 

is essential in mathematical programming. The most reliable simplification, without having to drop 

some options out of consideration, is to linearize the non-linear equations in the model by 

implementing binary variables to discretize non-linear functions into several linear sections. Binary 

variables are widely used in mathematical programming models and are necessary for unit selection, 

operational states (ON/OFF) and control purposes. In the literature most of the models for multi-period 

operational optimization are mixed integer linear programming (MILP) models.  

 

Linear programming models are less complex and more flexible than Non-linear models and have 

shorter resolution times which mean that larger models can be implemented. This can be very useful at 

early design stages. Although the level of detail that can be obtained in MILP models is relatively 

lower, that level of rough detailed modelling was considered to be within the scope of this work. Thus, 

mixed integer linear programming MILP was chosen to develop a multi objective optimization model 

to address the main aim of this work.    

 

A comprehensive mathematical multi-objective optimization model, based on MILP, was developed 

and introduced to address the complicated issue of decision making when designing an optimized 

cooling system for an urban area or district while considering various plant design options and 

possible DC network layouts as well as taking several fossil and renewable energy resources into 

consideration to achieve the basic goals of meeting the cooling demands in the district with best 

possible energy conservation, economic effectiveness and environment preservation levels. Two main 

conflicting objective functions, which are the total annual cost and CO2 emissions, were considered in 

this work. Each type of technology, equipment, or unit was modelled using linearized equations and 

annuity method. The model facilitates the investment, operational and maintenance costs of these 

equipment as well as their environmental parameters. Two different electricity price patterns were 

considered. The model was implemented and solved in GAMS calculation engine.  

 

Cooling load profiles are essential inputs for the optimization process. These profiles can be obtained 

either by statistical models or simulation models. In statistical models the cooling energy demand is 

estimated based on historical information and measurements collected for each particular building. 

While simulation models generate cooling load profiles by simulating buildings based on heat transfer 

and thermodynamic relationships. Simulation approach that can estimate cooling load profiles for non-

existing, i.e. planned to be built, buildings where no historical information are available. In this work 

the cooling energy demand for each individual building was estimated using TRNSYS. Later, a 

selection methodology was developed to select 6 representative days representing the 6 months 

cooling season, i.e. April to September, since that selecting a minimum number of typical days was 

widely recommended in the literature.  

 

Single- and multi- objective optimizations were carried out for two case studies to analyze a typical 

life cycle, approx. 20-50 years, for cooling systems while performing several scenarios where 

parameter such as: technology prices, energy prices, energy demand profiles, and operational 

constraints as well as environmental parameters vary from one scenario to another. Different major 

and sub scenarios were investigated for each case study such as: 
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 De-centralized DCS with constant COP (major investigation scenario).  

 Centralized DCS with constant COP (major investigation scenario).  

 De-centralized DCS with variable COP (major investigation scenario). 

 Centralized DCS with variable COP (major investigation scenario). 

 Reference Scenarios (based on reference assumptions). 

 Fixed and Variable electricity tariffs scenarios. 

 Available Area Constraints Scenarios. 

 Chiller Location Constraints Scenarios. 

 Storage Location Constraints Scenarios. 

 Piping prices Scenarios. 

 Investment Cost Optimization Scenarios. 

 Solar energy integration policy scenarios. 

 Waste Heat Availability Scenarios. 

 Load Shifting Condition Scenarios. 

 Outdoor Temperature Effect Scenarios. 

 

Later on, Pareto Frontier was generated by obtaining several multi objective optimization solutions 

based on the decision makers’ preferences. At the end, a decision making approach was developed to 

select the solutions that fit the designers’ or decision makers’ desires best based on the difference 

between the Utopia and Nadir values obtained at the single optimization stages.  

  

6.2 Conclusions 

A major task of designers and decision makers when designing cooling system for urban areas is to 

make tradeoffs between disparate and conflicting design objectives. Thus, multi-objective 

optimizations offer a significant opportunity in enhancing the engineering design, management, and 

decision making process. Ultimately, the art and science of decision making can be taken into a higher 

and more efficient level by implementing multi-objective optimization models. Addressing decision-

making tasks by solving optimization problem using multi-objective optimization models yields a 

group of candidate solutions that prominently categorized as non-dominant to each other. Such a group 

of solutions is known as Pareto domain solutions.  

 

In this work, two case studies were investigated using two single objective optimization models 

separately. First objective being the total annual cost and second objective is total annual CO2 

emissions.  At first, reference scenarios were obtained for each single objective optimization under a 

certain set of assumptions. Later, several scenarios were investigated with different constraints to 

obtain optimized cooling systems taking into consideration changes in design parameters and 

operation conditions. The following points represent some of the conclusions, remarks, and 

observations obtained within these investigations:  

 

 Within the two investigated case studies in this work it has been observed that the obtained 

results were highly affected by the type of the buildings in general and their occupation pattern 

in particular.  

 

 It was noted that the well-known strategy of installing relatively small chiller capacity, e.g. 60 

or 70 % of the peak load, accompanied with storage tanks is more desired at non-residential 

buildings due to the several zero load hours such buildings usually have in their load profile.  
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 At the early stage of the investigation certain assumptions have been implemented to the 

model including assuming fixed COP for chillers and no energy loses from the storage tanks. 

As a consequence the mount of primary energy consumption and thus CO2 emissions would 

be the same for the same total sum of cooling energy demand regardless of the number and 

capacities of chillers and storage tanks installed as long as these assumptions are maintained. 

Thus, changing the optimization objective from minimizing total annual cost to minimizing 

CO2 emissions had a significant impact on the total annual cost however it did not have any 

impact on the CO2 emissions. It was concluded that carrying out preliminary DCS design 

investigation with the simplification of assuming constant COPs for the compression chillers 

would overlook one of the major advances of DC that is high capacity chillers operate with 

higher COP than stand-alone systems.  

 

 Most of the investigations carried out for both case studies have showed that compression 

chillers come ahead of absorption chillers in terms of both investment and operational costs 

for the market prices provided in the case studies investigated. However, there are other 

sufficient cases where absorption chillers might be a cost-effective solution such as when 

electricity prices are high and fuel can be provided at adequate prices. Absorption chillers are 

also recommended when sufficient amount of waste heat is available.  

 

 The amount of waste heat required to be available to switch the decision from investing in 

compression chiller into absorption chillers is dependent on many factors including not only 

the market prices of these chillers and prices of electricity and fuel available but also the 

cooling load profile, peak load and fluctuation, which makes the decision making process a 

complicated one. Therefore, the use of mathematical models, similar to the one developed in 

this work, emerge as a highly recommended method in taking on such complicated decision 

making task.   

 

 It was observed that the PV panel’s electricity integration policy into the cooling system has a 

significant impact on the system optimized design layout where the location of the central 

plants was decided by the amount of the available roof area. Therefore, a different PV energy 

integration policy was adopted. Adopting the second PV panel’s integration policy had a 

different impact on the systems layout where the location of the central plants was decided 

geographical location of the building within the district. However, both investment and 

operational costs were close to each other with a slight advantage for the DC systems obtained 

with new PV integration policy.  

 

 Systems obtained without utilizing solar energy have about half the investment cost of the 

systems when installing PV panels but a much higher operational cost. On the other hand, the 

advantage of having locally consumed PV energy is reducing amount of electricity purchased 

from the grid. Another advantage is PV income from selling the extra electricity to the grid 

when PV energy is not consumed by the chillers directly. These two advantages are reducing 

the electrical plant site cost and thus the operational costs of the systems with PV panels. This 

attribute residence in most of the investigations carried out in this work.  
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 Utilizing PV panels, with either integration policy, had a great impact on the total annual CO2 

emissions in comparison to the no-PV panel sub-scenarios. However, the second policy did 

not affect the design layout of the system that was obtained without PV panels. Thus it was 

concluded that it is possible to optimize the cooling system in separation from the PV panels 

being integrated into it if an appropriate integration policy was adopted.  

 

 For most of the centralized DC system investigation, a central chiller with a capacity of 65 -75 

% of the total peak load of all buildings combined together was adopted. The system is usually 

provided with a central cold storage tank at the production plant in case of no available area in 

other buildings or two cold storage tanks often at the far two ends of the DC network. This 

enables the system to have smaller sizes for the network pipelines which are used to transport 

a more steady flow of cooling energy to charge the cold storages during off-peak load hours.  

 

 Once decided for centralized DC system, installing one central storage tank or an optimized 

number of storages is recommended, in case of constant electricity tariff, unless installing a 

storage tank at each building would provide some kind of flexibility in controlling the system. 

On the other hand, for variable electricity tariff, it is recommended to invest in a multi-storage 

system with one storage tank at each building because it provides a more steady cooling 

energy production profile even though there was no significant difference in total annual cost.  

 

 It was found that operation cost has a higher impact on the optimization process and, 

consequently, the resulting cooling system designs. In fact, optimizing the investment cost 

alone causes an increase of around 20% in the total cost. For example, reducing the pipeline 

prices had little impact on the system design where investment cost of a DC network was very 

small in comparison to the total annual cost of the system.  

 

 Investigating load shifting strategy has showed that optimized DCS systems can be adapted to 

operate with load shifting strategy, even if they were not designed to, with relatively low 

additional costs. Noting that Centralized DC systems require much less modifications than de-

centralized DC systems. On the other hand, investigating the outdoor temperature effect on 

chiller performance has showed that it is very crucial for decision makers to count for this 

effect where it cause up to 50% increase in total annual cost. However, it was found that some 

simple, but expensive, modification on the reference scenario, such as replacing the storage 

tanks with bigger ones, is sufficient to adapt the system to operate with the effect especially 

for the Centralized DC systems which have shown more flexibility and reliability in dealing 

with this phenomenon. In addition, adopting load shaving strategies can serve effectively to 

deal with effect of high ambient temperature in hot climate regions for non-residential 

buildings. However, residential buildings might require different measure to deal with the 

phenomenon. As a general conclusion for choosing compression chiller capacity when 

designing under outdoor temperature effect in a hot climate, it is recommended to choose: 

 

a. For residential buildings: A chiller capacity that covers around 70% of the peak load of 

the building at constant electricity tariff. This capacity may be changed significantly when 

the electricity tariff is variable depending on the tariffs amplitude and at which hours of 

the day does the electricity price drop.  
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b. For none-residential buildings: A chiller capacity that covers around 50% of the peak load 

of the building within both electricity tariffs. However, individual cost investigation for 

each building is recommended especially for building with high peak cooling load.  

 

 Adopting several values for chiller COP depending on the chiller capacity has made adopting 

DC network a favorable option. The installed DC networks in these case studies were de-

centralized one. In addition, the total annual cost of the fully centralized DC systems was 

lower than that of the constant COP model by around 35% for both electricity tariffs.  

 

 It is observed that optimizing the de-centralized DC system with a variable COP model under 

CO2 objective function only would result in obtaining as much high capacity as possible for 

the chillers to secure a higher COP and that such oversizing would eliminate the need of 

installing storage tanks or DC networks.  

 

 It was noticed that the two objective functions, i.e. total annual cost and annual CO2 

emissions, had a close influence on the optimization process. Both objectives seek to reduce 

the amount of primary energy consumed by adopting the highest COP possible and reducing 

the amount of operation hours as much as possible. Thus, optimizing the system under one of 

the objectives would automatically improve the other one. However, further enhancement is 

possible by adopting multi objective optimizations. 

 

 Although changing the electricity tariff had a notable impact on the total annual cost of the 

systems, it did not have any impact on CO2 emission values. This is because cost of energy 

consumed is not considered in the CO2 objective which eliminates the effect of changing 

tariffs.  

 

 Analyzing the obtained annual cost and CO2 emissions at both single objective optimizations 

for both case studies has led to some important observations:  

 

a. Centralized DC systems cost about 2-4% more than De-centralized DC systems for the 

first case study. This slight increase in total annual cost can be easily deemed as 

reasonable in return of all the benefits that centralized DC systems offer such as  higher 

operating reliability and availability,  higher energy efficiency, lower  maintenance costs, 

lower construction cost of buildings, and a more environment friendly impact. On the 

other hand, Centralized DC systems have 11 – 16 % increase in total cost in comparison 

to the de-centralized systems for the second case study. Such increase in total annual cost 

is relatively high and it is up to the decision maker to decide whether to invest in a 

centralized system or not based on other preferences, e.g. environmental aspects. 

 

b. The CO2 emissions level for the centralized DC systems under the two objective 

functions were almost the same. However, they were not that far from the de-centralized 

systems levels.  These results lead to the conclusion that investing in centralized DC 

systems will automatically reduce CO2 emissions even when optimizing annual cost is the 

objective.  
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c. The reduction in CO2 emissions achieved by switching the objective function from 

minimizing total annual cost to minimizing CO2 emissions for both case studies was 

around 5% which relatively low. That is because cost optimizing process already includes 

reducing operational cost by lowering the amount of primary energy consumed and thus 

already having achieved enhanced CO2 emission levels.  

 

 Multi objective optimizations aim to generate non-dominant solutions known as Pareto 

solutions. Generating these solutions is an objective task. Later on, selecting a specific Pareto 

solution is the decision maker’s responsibility. This selection is a subjective task that depends 

extremely on the decision maker preferences. Observing the obtained DC systems at the single 

objective optimizations and their Utopia and Nadir values can provide a sufficient overview of 

where a multi objective optimization solution may lay where each of the single objective 

optimization scenarios represents the far limit to which one can reach in regards to that 

particular objective. Therefore, it is recommended for decision makers who want to take more 

than one objective into their consideration when designing a DC system to first obtain the 

Utopia and Nadir values of each single objective separately 

 

 A decision making approach has been developed in this work to help decision makers in 

selecting a specific solution based on the difference between the Utopia and Nadir values (Z
N
-

Z
U
) obtained at the single objective optimizations. In this approach the decision making 

process go through three possibilities: 

 

a. If the gap between the Utopia and Nadir values for one objective is too small while the 

difference between these values for the other objective is relatively big, then it is 

recommended to focus only on the objective with high (Z
N
-Z

U
) value by either adopting 

the single objective scenario or adopting a multi objective scenario with a high importance 

weight for that particular objective. 

 

b. If the (Z
N
-Z

U
) gap was too small for both or all objectives, then it is recommended to 

obtain one multi objective scenario with importance weight of 1 for all objectives. This 

will guarantee that consideration has been paid to all objectives without wasting 

unnecessarily time and effort on multi objective investigations.  

 

c. If the (Z
N
-Z

U
) gap was high for both or all objectives, then more attention and effort 

should be paid through carrying out extensive multi objective investigations where 

shifting from one solution to another can achieve significant improvement of one 

objective but in the same time can cause significant damage to the other objectives. In this 

case, decision maker should be very careful in adopting importance weights that fit the 

projects goals and preferences. 

 

 

 The gap between the Nadir and Utopia values for case study 1 was relatively small, 0-3% of 

the Utopia value for CO2 emissions objective and about 7-8% of the Utopia value for the total 

annual cost objective. Therefore, a decision was made to carry out one multi objective 

optimization only. Both Nadir-Utopia gaps for CO2 emissions and total cost objectives were 

reduced with significant margins: 88 and 85%, respectively, at the electricity tariff A and 57 

and 70%, respectively, at electricity tariff B. 
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 Analyzing the Pareto solutions obtained for de-centralized DC systems for the second case 

study showed that the Nadir-Utopia gap for both single objectives are relatively small but still 

have a considerable margin of difference. Based on the approach developed in this work, a 

multi objective solution was recommended.  

 

 For the multi objective centralized DC systems investigation for case study 2 the difference 

between Utopia and Nadir values were too small especially for CO2 emission objective in 

comparison to that of the de-centralized DC systems which indicate that a Pareto Frontier 

analysis is not needed since the multi objective solutions will not achieve big enhancements. 

In such cases, it’s recommended to either select the multi objective scenario with importance 

weights of (1–1) or to adopt the total cost single objective solution.  

 

 Adopting a multi objective optimization with importance weights of (1-1) for case study 2 

with Outdoor temperature effect has achieved a significant enhancement on both objectives 

where the reduction in the (Nadir – Utopia) gaps for both annual total cost and CO2 emissions 

objectives was around 80-90% for all the investigated scenarios. That means that the total 

annual cost and CO2 emissions of the resulting solution is very close to the Utopia values of 

both objectives. By adopting such a solution, decision makers can avoid a significant loss both 

economically, if the system was optimized only for environmental objectives, and 

environmentally, in case the system was optimized only for economic objectives.    

 

 

6.3 Outlook 

The main contribution of this work is introducing a an approach to help decision makers evaluating the 

economic viability, potential energy savings and thus potential greenhouse gas emission reduction at 

the very early design stage. The work presented in this thesis can be further improved in the future on 

several aspects:  

 

 For a preliminary decision making approach or tool, several simplifications and assumptions 

are usually adopted to ease the decision making process. However, this work has shown that 

certain assumption can have extreme impact of the decision making process by overlooking 

some major advantages of certain solutions. Therefore, it is believed that more investigations 

need to be carried out on the amount of details vs roughness of model for a preliminary 

decision making optimizations.   

 

 Adopting variable chiller COP model showed that DC networks make a better choice that 

installing separated stand-alone system at each building. However the chiller capacities were 

oversized because the developed model for implementing COP variation, depending on the 

chiller capacity, was a step by step linear model. To avoid such problem, COPs have to be 

integrated as a formula in terms of chiller capacity. This will lead into a non-linear 

optimization model where the objective function will be a function of two variables, chiller’s 

capacity and COP. Developing such model might give some new insights however, it might 

result in a much complex model and thus extensive running time.     
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 It was concluded that integrating every single equipment and possible technology in the 

cooling system with a great deal of details is an extremely complicated task that would 

eventually overwhelm the computation power of the optimization tool.  Therefore, breaking 

down the system components for separated performance analysis using detailed simulations is 

highly recommended however after the preliminary decision making process. Feedback from 

such performance analysis can be used later to validate and update the decisions made earlier.  

 

 The conclusions drawn in this work are based on investigation carried out on two case studies. 

However, it was found that drawing general conclusions is not possible with 2 case studies 

only. To generalize any conclusion more investigations on several different case studies are 

required.  

 

 A lot of research has been conducted in this work in effort to come out with general 

conclusions and recommendations in particular regarding the DC pipeline network and the 

connection between the peak cooling load of buildings and the distance separating them. It 

was found that the decision of installing a certain DC pipeline lay on many factors in in 

addition to peak cooling load and distance such as the type of building, operation pattern, 

market prices, electricity prices …etc. This particular aspect requires a detailed investigation 

for a wide range of building pairs. 

 

 Further investigations on different case studies should be made in particular regarding the 

effectiveness of the CO2 emission objective function in order to reach a permanent conclusion 

concerning whether to continue with the multi-objective optimization approach or to keep the 

decision making limited to single cost optimization approach.  

 

 Another particular field to be further investigated is the integration policy of PV panels and 

their impact on the system design and DC network layout.  

 

 Further development on the introduced optimization model can be performed in the future 

such as integrating power supply grid and district heating pipeline in addition to the district 

cooling to form a Tri-generation optimization model. Another suggested modification to the 

model is to count for bi-direction pipelines where energy can flow in different directions in 

each pipeline on different time steps. 
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