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Abstract

Industrial development processes as well as research in physics, materials and engineering
science rely on computer modelling and simulation techniques today. With increasing com-
puter power, computations are carried out on multiple scales and involve the analysis of
coupled problems. In this work, continuum modelling is therefore applied at different scales
in order to facilitate a prediction of the effective material or structural behaviour based on the
local morphology and the properties of the individual constituents. This provides valueable
insight into the structure-property relations which are of interest for any design process.

In order to obtain reasonable predictions for the effective behaviour, numerical models which
capture the essential fine scale features are required. In this context, the efficient represen-
tation of discontinuities as they arise at, e.g. material interfaces or cracks, becomes more
important than in purely phenomenological macroscopic approaches. In this work, two dif-
ferent approaches to the modelling of discontinuities are discussed: (i) a sharp interface

representation which requires the localisation of interfaces by the mesh topology. Since
many interesting macroscopic phenomena are related to the temporal evolution of certain
microscopic features, (ii) diffuse interface models which regularise the interface in terms of
an additional field variable and therefore avoid topological mesh updates are considered as
an alternative.

With the two combinations (i) Extended Finite Elemente Method (XFEM) + sharp interface
model, and (ii) Isogeometric Analysis (IGA) + diffuse interface model, two fundamentally
different approaches to the modelling of discontinuities are investigated in this work. XFEM
reduces the continuity of the approximation by introducing suitable enrichment functions
according to the discontinuity to be modelled. Instead, diffuse models regularise the interface
which in many cases requires even an increased continuity that is provided by the spline-
based approximation. To further increase the efficiency of isogeometric discretisations of
diffuse interfaces, adaptive mesh refinement and coarsening techniques based on hierarchical
splines are presented. The adaptive meshes are found to reduce the number of degrees of
freedom required for a certain accuracy of the approximation significantly.

Selected discretisation techniques are applied to solve a coupled magneto-mechanical prob-
lem for particulate microstructures of Magnetorheological Elastomers (MRE). In combina-
tion with a computational homogenisation approach, these microscopic models allow for the
prediction of the effective coupled magneto-mechanical response of MRE. Moreover, finite
element models of generic MRE microstructures are coupled with a BEM domain that repre-
sents the surrounding free space in order to take into account finite sample geometries. The
macroscopic behaviour is analysed in terms of actuation stresses, magnetostrictive deforma-
tions, and magnetorheological effects. The results obtained for different microstructures and
various loadings have been found to be in qualitative agreement with experiments on MRE
as well as analytical results.
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Zusammenfassung

Industrielle Entwicklungsprozesse und die Forschung in Physik, Material- und Ingenieur-
wissenschaft greifen in einem immer stärkeren Umfang auf rechnergestützte Modellierungs-
und Simulationsverfahren zurück. Die ständig steigende Rechenleistung ermöglicht dabei
auch die Analyse mehrskaliger und gekoppelter Probleme. In dieser Arbeit kommt daher ein
kontinuumsmechanischer Modellierungsansatz auf verschiedenen Skalen zum Einsatz. Das
Ziel der Berechnungen ist dabei die Vorhersage des effektiven Material- bzw. Strukturver-
haltens auf der Grundlage der lokalen Werkstoffstruktur und der Eigenschafen der konsti-
tutiven Bestandteile. Derartige Simulationen liefern interessante Aussagen zu den Struktur-
Eigenschaftsbeziehungen, deren Verständnis entscheidend für das Material- und Strukturde-
sign ist.

Um aussagekräftige Vorhersagen des effektiven Verhaltens zu erhalten, sind numerische
Modelle erforderlich, die wesentliche Eigenschaften der lokalen Materialstruktur abbilden.
Dabei kommt der effizienten Modellierung von Diskontinuitäten, beispielsweise Material-
grenzen oder Rissen, eine deutlich größere Bedeutung zu als bei einer makroskopischen
Betrachtung. In der vorliegenden Arbeit werden zwei unterschiedliche Modellierungsan-
sätze für Unstetigkeiten diskutiert: (i) eine scharfe Abbildung, die üblicherweise konforme
Berechnungsnetze erfordert. Da eine Evolution der Mikrostruktur bei einer derartigen Mo-
dellierung eine Topologieänderung bzw. eine aufwendige Neuvernetzung nach sich zieht,
werden alternativ (ii) diffuse Modelle, die eine zusätzliche Feldvariable zur Regularisierung
der Grenzfläche verwenden, betrachtet.

Mit der Kombination von (i) Erweiterter Finite-Elemente-Methode (XFEM) + scharfem
Grenzflächenmodell sowie (ii) Isogeometrischer Analyse (IGA) + diffuser Grenzflächen-
modellierung werden in der vorliegenden Arbeit zwei fundamental verschiedene Zugänge
zur Modellierung von Unstetigkeiten betrachtet. Bei der Diskretisierung mit XFEM wird
die Kontinuität der Approximation durch eine Anreicherung der Ansatzfunktionen gemäß
der abzubildenden Unstetigkeit reduziert. Demgegenüber erfolgt bei einer diffusen Gren-
zflächenmodellierung eine Regularisierung. Die dazu erforderliche zusätzliche Feldvariable
führt oft zu Feldgleichungen mit partiellen Ableitungen höherer Ordnung und weist in ihrem
Verlauf starke Gradienten auf. Die daraus resultierenden Anforderungen an den Ansatz
werden durch eine Spline-basierte Approximation erfüllt. Um die Effizienz dieser isoge-
ometrischen Diskretisierung weiter zu erhöhen, werden auf der Grundlage hierarchischer
Splines adaptive Verfeinerungs- und Vergröberungstechniken entwickelt.

Ausgewählte Diskretisierungsverfahren werden zur mehrskaligen Modellierung des gekop-
pelten magnetomechanischen Verhaltens von Magnetorheologischen Elastomeren (MRE)
angewendet. In Kombination mit numerischen Homogenisierungsverfahren, ermöglichen
die Mikrostrukturmodelle eine Vorhersage des effektiven magnetomechanischen Verhaltens
von MRE. Außerderm wurden Verfahren zur Kopplung von FE-Modellen der MRE-Mi-
krostruktur mit einem Randelement-Modell der Umgebung vorgestellt. Mit Hilfe der en-
twickelten Verfahren kann das Verhalten von MRE in Form von Aktuatorspannungen, mag-
netostriktiven Deformationen und magnetischen Steifigkeitsänderungen vorhergesagt wer-
den. Im Gegensatz zu zahlreichen anderen Modellierungsansätzen, stimmen die mit den hier
vorgestellten Methoden für unterschiedliche Mikrostrukturen erzielten Vorhersagen sowohl
mit analytischen als auch experimentellen Ergebnissen überein.
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1 Introduction

Multi-material lightweight designs and active devices with characteristic microscopic mate- Motivation

rial structures are the key feature for the development of innovative products. The computer
aided design of these sophisticated structures requires efficient numerical methods for the
solution of the underlying coupled field problems. These techniques also have to take into
account the multi-scale nature of the materials and components. Multi-scale modelling ap-
proaches provide valueable insight into the structure-property relations of the investigated
novel materials as they predict the effective behaviour based on the local morphology and
the material behaviour of the individual constituents. They also provide knowledge about the
local fields within the heterogeneous material structure. In order to obtain reasonable predic-
tions for the effective material behaviour, numerical models which capture the essential fine
scale features are required. In this context, the efficient representation of discontinuities as
they arise at, e.g. material interfaces or cracks, becomes more important than in purely phe-
nomenological macroscopic approaches. Since many interesting macroscopic phenomena
are related to the temporal evolution of certain microscopic features such as the decomposi-
tion and coarsening of different material phases or the initiation and propagation of cracks,
modelling techniques have to capture these evolutions in a robust and efficient way.

In this work, magnetoactive polymers will be considered as an example for the large variety Contents

of active materials with a distinct local material structure. The coupled magneto-mechanical
behaviour of these novel materials will be modelled on a fine scale that still allows for the
application of continuum theories. Homogenisation techniques are used to analyse structure-
property relations for different local material structures. The theory of the coupled magneto-
mechanical boundary value problem including the used constitutive relations will be outlined
in Part I. Part II is dedicated to the extended finite element modelling of the microstructure.
This method facilitates the representation of material interfaces in a regular non-conforming
mesh by incoporating discontinuous functions into the approximation. In Part III spline-
based, so called isogeometric, approximations are introduced as an alternative discretisation
approach. The numerical properties of both methods are first analysed for the coupled prob-
lem for classical sharp interface representations. Eventually, the superior regularity of the
spline basis is used to discretise diffuse interface models which require a higher-order conti-
nuity of the approximation and the representation of strong gradients.

1.1 Magnetorheological Elastomers

Field-controllable functional polymers represent a new class of applied materials which ex- Magneto-
rheological
elastomers

hibit a strong coupling of their response to mechanical and non-mechanical, e.g. electric or
magnetic, loads. A prominent example are Magnetorheological Elastomers (MRE) [31, 46].
In the simplest case, MRE represent a two-component system in which magnetisable parti-
cles are embedded in a cross-linked non-magnetic polymer. The characteristic length of the
local material structure on the microscale is determined by the size of the particles which is
typically in the range of several microns, Fig. 1.1. On the macroscale, i.e. the component
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(a) Macroscale Microscale

Polymeric matrix

B

C

Magnetisable particles

(b)

PolymerParticles

(c)

Figure 1.1: Magnetorheological elastomers: (a) hierarchical material structure at two distinct length
scales. The effective stiffness C can be altered and mechanical deformations can be in-
duced by the application of an external magnetic field B, (b) photo micrograph of ran-
domly distributed magnetisable particles in a liquid polymer without any external mag-
netic induction (|B| = B = 0), and (c) formation of chain-like clusters of magnetised
particles aligned with the external magnetic induction B > 0.

level, the material is assumed to be homogeneous with characteristic magneto-mechanical
coupling effects. Depending on the local morphology it can be convenient to introduce addi-
tional scales, e.g. a mesoscale where particle clusters are treated as a homogeneous medium
with effective properties. Moreover, the definition of the different scales is not unique. In
the physics community the particle level is often referred to as the mesoscale.

The spatial distribution of the magnetisable particles in an MRE can be either isotropic orMorphology of
MRE anisotropic [18, 85, 181, 182, 233] depending on whether the particles have been aligned by

an applied magnetic field before the cross-linking of the polymer. MRE with an isotropic
distribution of magnetic particles are synthesised by cross-linking of a polymer melt with
well-dispersed particles without any external field (|B| = B = 0), Fig. 1.1 (b). If a homoge-
neous magnetic field B with B > 0 is applied to a polymer melt with magnetisable particles,
chain-like particle structures can be obtained, see Fig. 1.1 (c).

An external magnetic field induces interactions between the magnetised particles and mayMagneto-
mechanical
coupling

even cause an evolution of the local material structure due to particle migration. As a conse-
quence of the microscopic interactions and morphological changes, MRE feature two major
magneto-mechanical coupling effects [67, 82, 200]:

• Magnetorheological effect, i.e. magnetically induced changes of mechanical moduli,

• Magnetostrictive effect, i.e. magnetically induced deformations and mechanical actua-
tion stresses.

These features make MRE very attractive for a variety of technical implementations, espe-
cially diverse actoric devices. Since the effective coupled magneto-mechanical behaviour is
of special interest in these applications, an in-depth understanding of the structure-property
relations in MRE is required. A multi-scale modelling approach will be followed in this work
to simulate the material behaviour of MRE because the effective response o n the macroscale
is determined essentially by the MRE microstructure, i.e. the properties of the individual ma-
terial phases and their geometrical arrangement in the composite, Fig. 1.1 (a). Beside MRE,
the proposed modelling strategy is suitable to capture the behaviour of any magnetoactive
composite [52].
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1.2 Modelling of Magnetorheological Elastomers

Magnetostrictive and magnetorheological effects have been studied by two principal mod- Discrete
modelselling approaches, namely discrete models which consider dipole-dipole interactions and

purely phenomenological continuum formulations. Both methods are essentially based on
the minimisation of a free energy functional. These functionals consist of an elastic energy
accounting for the mechanical deformation of the MRE and a magnetic term that arises from
interactions between the magnetisable particles placed in an external magnetic field. Discrete
models have been employed to analyse the influence of the microscopic particle arrange-
ment on the macroscopic magneto-mechanical response. Ivaneyko et al. [100, 101, 103]
investigated the effect of different particle arrangements for infinite regular lattices. As a
consequence of the regular particle distributions, contraction of the samples in the direction
of the applied magnetic field is predicted which is rarely observed in experiments, e.g. in
[40, 233] for chain-like microstructures. More commonly MRE exhibit an elongation in the
direction of the magnetic field [43, 51, 233] for both isotropic and anisotropic particle struc-
tures. According to Han et al. [88] the consideration of irregular microstructures, e.g. wavy
chains, is required to model this behaviour. Further interesting aspects which can affect the
magneto-mechanical response of the discrete models are the influence of a finite sample size
[102, 234, 235] and the required assumption on the coupling of the elastic and magnetic
behaviour. In the models above affine deformations, i.e. a homogeneous deformation which
neglects the underlying microstructure and the local particle-particle interactions, have been
utilised. Pessot et al. [165] have demonstrated recently that this assumption leads to in-
creasingly erroneous results if more realistic irregular particle distributions are considered.
The same has to be expected for very soft, weakly crosslinked polymer matrices in which
the flexibility of polymer sub-chains between cross-links allows for a considerable degree of
particle motion.

The second major approach to the modelling of the magneto-mechanical behaviour are con- Continuum
modelstinuum models which have been used in two different ways. Firstly, they can be applied

to describe the overall macroscopic behaviour of MRE. That is, models which consider mi-
croscopic features such as the orientation of particle chains in a phenomenological way can
be fitted to experimental data. A recent formulation by Danas et al. [43] based on the the-
ory developed by Kankanala and Triantafyllidis [111] accurately reproduces experimental
results for small and large external magnetic fields. Further continuum theories have been
presented by de Groot and Suttorp [48], Eringen and Maugin [63], Brigadnov and Dorfmann
[23], Dorfmann and Ogden [55], Bustamante and Ogden [28], and Han et al. [88, 87]. On
the other hand, continuum models can be used to describe the material behaviour of particles
and polymers on the microscopic scale. The effective macroscopic response of the heteroge-
neous material can then be predicted using homogenisation techniques. To this end, relations
between microscopic field variables and their effective macroscopic values are established
in terms of volume averages. Suitable equivalence criteria, e.g. the energy equivalence pos-
tulated by Hill [94], are used to compute the effective behaviour taking into account the
microscopic morphology as well as the material behaviour of the individual constituents.
Comprehensive reviews on the method can be found in, e.g., [78, 112, 168]. Regarding
the application to magneto-mechanical problems, different formulations of the field problem
and boundary conditions for the homogenisation process have been presented by Chatzige-
orgiou et al. [34]. In several works by Ponte Castañeda et al. [170, 171] and Galipeau et al.
[73, 74, 75] analytical homogenisation schemes which are limited in terms of the material
behaviour and the complexity of the local material structure have been applied.
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(a) (b)

Diffuse Interface

Figure 1.2: Two approaches to the modelling of interfaces: (a) In sharp interface models the internal
boundaries have to be localised and the discontinuities of the field variables y and their
derivatives have to be modelled. (b) Diffusive interface models regularise the discontinu-
ity in terms of a continuously varying order parameter φ which represents an additional
field variable. In this way an explicit localisation of interfaces can be avoided in the nu-
merical models.

If the considered microstructure is complex and cannot be described analytically, homogeni-Numerical
approaches sation techniques can be combined with numerical models of the local material structure

based on finite element discretisations which remove restrictions that are typical for analytic
methods, e.g. regarding the particle shape and the material behaviour. Predictions for the
macroscopic response are either made in terms of effective properties, characteristic curves
or the computational multi-scale simulation involving a direct coupling of the numerical
models of different length scales. Applications can be found in, e.g., [106, 141, 230] for
magneto-mechanical and in [142, 180] for electro- and electro-magneto-mechanical field
problems. This approach will be used in this work.

1.3 Numerical Modelling of Discontinuities

For the computational homogenisation approach numerical models of the local materialDiscontinuities

structure have to be generated. These microscale models have to account for material in-
terfaces, cracks, or localisation phenomena which require the approximation of non-smooth
fields such as the representation of discontinuities, singularities, and high gradients. With
respect to MRE, in particular the modelling of material interfaces is of interest in this work,
Fig. 1.2. They can be modelled by two principal approaches:

(i) Sharp interface models: Classical continuum theories treat internal boundaries as a
sharp interface, Fig. 1.2 (a). That is, the governing equations of the field problem
describe the physical behaviour in the homogeneous material phases while jump con-
ditions state the continuity requirements between different phases in the analysis do-
main. In the case of material interfaces the primary field variables are required to be
continuous across the interface while jumps may occur for certain components of their
gradient. This is called a weak discontinuity. The numerical solution of sharp interface
models therefore requires the localisation of the interfaces and the approximation of the
discontinuous field variables. Moreover, the evolution of the microstructural features
will involve topological changes of the discretisation.
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(ii) Diffuse interface models: This approach treats interfaces in a smeared manner which
is achieved through a continously varying order parameter, Fig. 1.2 (b). This additional
field variable φ accounts for the spatial distribution of different material phases and
the associated material properties, e.g. in terms of rules of mixture. Such an approach
allows to fully capture the physics at the interfaces without the need to explicitly locate
them. In this way topological changes are avoided in the discrete models and structured
meshes can be employed. Therefore, diffuse interface representations and phase-field

models [197] are widely used to simulate phase transformations and structural evolu-
tion processes.

The discretisation of classical continuum models and the associated sharp interface repre- Discretisation
of sharp
interface
models

sentation can be accomplished by the standard Finite Element Method (FEM), Fig. 1.3 (a).
It utilises approximations based on Lagrangian polynomials which provide C0 continuity
across the boundaries of individual elements. Therefore, weak discontinuities between dif-
ferent material phases are modelled by conforming meshes, i.e. material interfaces are rep-
resented explicitly by element edges or faces. However, for complex microstructures the
process of mesh generation can be a tedious task. In order to enable a more flexible mod-
elling of internal discontinuities and to improve the accuracy and effiency in comparison to
the standard FEM, two alternative discretisation methods are in the focus of this work:

(i) Extended FEM (XFEM): This method introduced by Belytschko et al. [9, 145] uses an
enriched approximation based on Lagrangian polynomials which allow for the repre-
sentation of discontinuities and singularities in non-conforming meshes, i.e. material
interfaces may intersect element domains, see Fig. 1.3 (b). XFEM therefore provides
an effective means for the discretisation of different particle arrangements required for
the analysis of MRE.

(ii) Isogeometric FEM (IGAFEM): In this approach developed by Hughes et al. [99] con-
forming meshes and approximations based on different types of splines are utilised.
The spline basis leads to a reduced overall error compared to Lagrangian basis func-
tions. It can also provide higher-order continuity which is required for the efficient dis-
cretisation of diffuse interface models that typically involve higher than second-order
spatial derivatives. However, the increased regularity results in a non-interpolatory
basis, Fig. 1.3 (c).

A comparison of major features of these discretisation techniques is given in Tab. 1.1.
Apart from the stated differences all approaches are essentially finite element methods. The
derivation of the governing discrete equations starts from a weak form of the problem us-
ing compactly supported approximations which allow for an element point of view. In the
following XFEM and IGAFEM will be briefly reviewed.

XFEM [9, 145] offers the possibility to use non-conforming meshes which do not have to XFEM

be adapted to internal details, e.g. cracks or material interfaces. Instead the location of the
discontinuity is located implicitly in terms of a level set [9, 159, 202, 204] and the physi-
cal behaviour is modelled by a local enrichment of the approximation. In order to handle
discontinuous integrands, the element domains which are intersected by a discontinuity are
divided into integration subdomains, Fig. 1.3 (b). Originally, XFEM was applied to model
strong discontinuities, i.e. jumps in the primary field variables, as they occur at a crack
[44, 145]. In this case XFEM enables the simulation of crack growth without remeshing
as the mesh is virtually independent of the crack topology. In rapid succession the method
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Table 1.1: Comparison of FEM, XFEM, and IGAFEM [41]

Feature FEM XFEM IGAFEM

Representation of geometry Explicit Implicit (Level-sets) Explicit

Mesh Conforming Non-conforming Conforming

Basis Polynomial Enriched, polynomial Splines

Interpolation property Interpolatory Non-interpolatory

Field variables defined at Nodes Control points

Geometry Approximate Exact (in terms of CAD)

Continuity C0 Higher-order

Refinement hp-refinement hpk-refinement

Pointwise positiveness Not guaranteed Pointwise positive

has been used to model material interfaces [9, 114, 144, 204] which represent weak dis-
continuities in the mechanical boundary value problem. The combination of XFEM with
cohesive zone models facilitates the modelling of interface failure [95, 115, 152]. XFEM
has also been applied to non-mechanical problems, e.g. dielectric interfaces with constant
values of the electric potential are modelled in [173], and the failure of electro-mechanically
coupled solids is analysed by elements with embedded discontinuities in [130]. The problem
of fracture in magnetoelastics is modelled by XFEM in [174]. Moreover, XFEM offers the
possibility to convert CT scans into numerical analysis models [126]. Different from voxel
approaches [96, 97, 118] stepped interface representations which result in oscillations of
the local field variables in the vicinity of material interfaces are avoided. A comprehensive
review of methodological issues of XFEM and various applications is given by Fries and
Belytschko [71].

As mentioned above, spline-based discretisations are considered here because of their su-IGA

perior efficiency and continuity properties. However, the idea originates from the demand
to remove the disjunction between geometric component models, commonly described by
NURBS in Computer Aided Design (CAD) software, and FE analysis, often relying on La-
grangian polynomial approximations of geometry and field variables. Therefore, the concept
of Isogeometric Analysis (IGA) was developed by Hughes et al. [99]. The central idea of
IGA is to directly use CAD geometry representations to approximate field variables in the
numerical model. This essentially eliminates the need for meshing of component models.
Hence, the geometric discretisation errors resulting from the approximation of the geometry
by Lagrangian polynomials are eliminated – the geometry used in the analysis is exactly
the one defined by CAD. As a consequence, any mesh refinement required to resolve high
gradients, etc. starts from the exact geometry. Isogeometric finite element analysis has
been applied to a variety of problems. They include structural vibration analysis [42], fluid-
structure interaction [7, 6, 8], electromagnetics [27, 212] and shape optimisation [222] as
well as damage modelling [214, 215, 216] and contact problems [49, 208]. The approach
has also been used with partition of unity based methods including XFEM [12, 50, 86].
Since CAD models are commonly given in terms of a NURBS-based surface description,
the method is extensively applied to the analysis of shell-like structures [12, 13, 58, 120].
Throughout these different fields of application IGA has been found to allow for efficient FE
formulations [7, 26]. More detailed reviews on isogeometric discretisations can be found in
[41, 156].
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(a)

Standard / Isogeometric finite elements

(b) (c)

Elements intersected by interface

Nodes / Control points

Enriched Nodes

Integration subdomains

Figure 1.3: Application of the dicretisation methods considered in this work to model a bimaterial
problem consisting of a circular inclusion (grey) embedded in a square domain of different
material properties: (a) standard FEM using bilinear Lagrangian polynomials (p = 1) and
conforming meshes, (b) XFEM using linear Lagrangian polynomials and non-conforming
meshes. Material interfaces are modelled by an enriched approximation which requires
additional degrees of freedom at nodes whose support is intersected by the discontinuity
and a further subdivision of the element into integration subdomains, and (c) minimal
IGAFEM mesh based on biquadratic NURBS (p = 2) shape functions which represent
the geometry of the circular inclusion exactly. Due to the non-interpolatory basis, control
points may not lie on element edges.

The higher-order continuity obtained from the spline basis makes isogeometric discretisa- Isogeometric
phase-field
modelling

tions attractive for the combination with phase-field models [36, 60, 143, 197] which use
a diffuse interface respresentation. In this way, the material interface still considered in
XFEM is replaced or regularised by a steep gradient of the order parameter. Consequently,
difficulties related to the consistent update of the interface location as well as the need for
element subdivision, which actually represents a topological update, are eliminated. Since
phase-field models generally involve higher than second-order partial differential operators,
which impose continuity requirements that cannot be fulfilled by standard C0-continuous
Lagrangian polynomials, spline-based approximations are of special interest and facilitate a
direct discretisation of the resulting weak forms [80].

Despite its advantages that have been demonstrated in numerous applications, isogeometric 3D solid
modelsanalysis faces severe mathematical and methodological challenges. Probably the most ur-

gent have to be seen in ensuring higher-order continuity of the approximation for arbitrary
geometries, and in the need for 3D solid models. That is, a suitable volume analysis mesh has
to be derived from the surface representation of the structure, a task for which efficient new
procedures are needed. A few attempts have been made starting from a triangulation of the
boundary [136, 224, 231] or spline-based surface descriptions [232]. However, those proce-
dures are complex and restricted to very specific model geometries and, hence, the problem
remains a topic of ongoing research. An interesting alternative could be seen in the finite cell
or immersed boundary approaches [57, 176, 217] which share certain common features with
XFEM.
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1.4 Outline

In the main part of this work, the numerical discretisation techniques introduced in theContents

preceding section are combined with homogenisation techniques to predict the effective
magneto-mechanical behaviour of MRE. Beyond that, ideas for the efficient modelling and
simulation of structural evolution processes are discussed. The presented results have been
obtained in the framework of the European Centre for Emerging Materials and Processes

(ECEMP) Dresden, within the Priority Programme (SPP) 1681 Field controlled particle ma-

trix interactions: synthesis, multiscale modelling and application of magnetic hybrid ma-

terials, and during a research visit to the University of Glasgow. In addition, first results
regarding isogeometric phase-field modelling and adaptive hierarchical refinement strategies
which will be further investigated in the SPP 1713 and the SPP 1748 have been included.
Hence, this work is based on eight journal publications whose contents has been updated and
complemented:

[HMK16] P. Hennig, S. Müller, and M. Kästner. Bézier extraction and adaptive refine-
ment of truncated hierarchical NURBS. Comput. Methods Appl. Mech. Engrg.,
305:316–339, 2016.

[KMdB16] M. Kästner, P. Metsch, and R. de Borst. Isogeometric analysis of the Cahn-
Hilliard equation – a convergence study. J. Comput. Phys., 305:360–371, 2016.

[KMG+13] M. Kästner, S. Müller, J. Goldmann, C. Spieler, J. Brummund, and V. Ulbricht.
Higher-order extended FEM for weak discontinuities – level set representation,
quadrature and application to magneto-mechanical problems. Int. J. Numer.

Meth. Engng, 93:1403–1424, 2013.

[MKMU14] S. May, M. Kästner, S. Müller, and V. Ulbricht. A hybrid IGAFEM/IGABEM
formulation for two-dimensional stationary magnetic and magneto-mechanical
field problems. Comput. Methods Appl. Mech. Engrg., 273:161–180, 2014.

[SKG+13] C. Spieler, M. Kästner, J. Goldmann, J. Brummund, and V. Ulbricht. XFEM
modeling and homogenization of magnetoactive composites. Acta Mech.,
224:2453–2469, 2013.

[SKU14] C. Spieler, M. Kästner, and V. Ulbricht. Analytic and numeric solution of a
magneto-mechanical inclusion problem. Arch. Appl. Mech., 2014.

[SMKU14] C. Spieler, P. Metsch, M. Kästner, and V. Ulbricht. Microscale modeling of
magnetoactive composites undergoing large deformations. Tech. Mech., 34:39–
50, 2014.

[ZZB+14] K. Zimmermann, I. Zeidis, V. Böhm, T. Kaufhold, T. Volkova, M. Krautz,
A. Waske, M. Schrödner, J. Popp, M. Kästner, and C. Spieler. Mechanics of
actuators based on magnetic hybrid material with applications for robotics fluid
control and sensor technology. Problems of Mechanics, 4, 2014.

In particular the remainder of this first part which will give an introduction to the continuumPart I

formulation of the coupled magneto-mechanical boundary value problem, has been compiled
from three different publications to provide a coherent statement of the underlying bound-
ary value problems for the case of finite deformations. After a brief review of the required
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foundations of continuum mechanics, the mechanical and magnetic field problems, as well
as the coupling of both boundary value problems will be explained. An outline of the ap-
plied constitutive models and the presentation of two demonstration problems with available
analytical solution complete this introduction.

The second part is dedicated to the XFEM modelling of magneto-mechanical boundary Part II

value problems. At first, the non-standard discretisation approach of XFEM is explained
and advanced procedures for the localisation of interfaces and the quadrature of the weak
form are introduced. The developed methods are verified and their numerical properties are
analysed in a convergence study. The following two chapters illustrate the application of
XFEM to model the microstructure in MRE. Using homogenisation techniques, the effective
magneto-mechanical material behaviour is predicted for unit cell models and more complex
random, isotropic and anisotropic particle distributions. The simulated magnetostrictive ef-
fect is found to be in very good agreement with experimental results.

The final part reviews isogeometric analysis and presents its application to model magneto- Part III

mechanical problems and structural evolution processes. At first, spline basis functions as
well as the essential concept of Bézier extraction that allows for a seamless transition from
standard FEM towards isogeometric analysis are explained. Following a numerical con-
vergence study which demonstrates the superior numerical properties of IGA, isogeometric
finite element analysis is coupled to an isogeometric boundary element method in order to
analyse magnetic boundary value problems defined on open domains in an efficient way.
Motivated from magnetically induced structural evolution processes observed in MRE, iso-
geometric discretisations of phase-field models are developed and combined with adaptive
spatial discretisations based on hiearchical meshes. The described methods will be applied in
future work to simulate the microstructure evolution in MRE as well as the crack propagation
in heterogeneous materials.
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2 Boundary Value Problems
[KMG+13, SKG+13, SMKU14]

The modelling of the coupled magneto-mechanical behaviour on different scales is accom- Continuum

plished in this work by continuum theories, i.e. models that describe physical processes in
terms of scalar or tensorial field variables which are functions of space and time, [1, 2, 90,
98, 211]. The atomistic structure of matter is completely disregarded. Instead, the material
behaviour is taken into account by phenomenogical constitutive models which can, and to
a certain extent have to, be motivated by the underlying material structure in order to pro-
duce reasonable result. Parameters of these models can be obtained either from testing of
specimens or, as proposed in this work, by multi-scale modelling approaches assuming a
hierarchical and heterogeneous local morphology.

The mathematical modelling in terms of a continuum approach leads to a set of governing Boundary
value problemsequations which define the temporal and spatial variation of the involved field variables.

Together with appropriate boundary conditions which prescribe values of the field variables
on the boundary of the considered domain, they define a boundary value problem. The set of
governing equations consists of general kinematic relations, balance equations and the above
mentioned constitutive relations which account for the material behaviour. In this chapter the
governing equations of the mechanical, the magnetic, and the coupled magneto-mechanical
boundary value problems will be summarised. All equations are stated with respect to the
current configuration described in terms of a Cartesian frame using mostly index notation
and the Einstein summation convention.

2.1 Kinematics

A set of material particles defines a material body B which assumes different configura- Material body

tions due to deformation caused by mechanical and non-mechanical loads, Fig. 2.1. At the
time t = t0, the material body occupies the domain Ω0 with volume V0 separated from its
surrounding by the boundary ∂Ω0. This state is called reference configuration. Material par-
ticles are identified by the coordinates of their position vector X. At a time t > t0, the body
reaches a current configuration with domain Ω, boundary ∂Ω and volume V . The material
particle X = XKeK is then located at the spatial position x = xkek. In the index nota-
tion, lower case indices indicate reference to the current configuration while quantities with
capital indices are related to the reference configuration. The coordinates XK are typically
called material or Lagrangian coordinates, while xk are referred to as spatial or Eulerian
coordinates.

The motion of the material body defines a generally non-linear relation between both con- Motion,
displacement
and velocity

figurations. This bijective map is given by x = χ(X, t), in the following abbreviated by

xk = xk(XL, t) . (2.1)
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2 Boundary Value Problems

Reference configuration Current configuration

Material body

Figure 2.1: Mechanical and non-mechanial loads cause a motion χ of the material body B. Material
points identified by their position X in a defined reference configuration can be tracked in
terms of their current spatial position x.

If the same Cartesian frame is used for both configurations, the displacement u(X, t) is
defined as the difference between its current and original position of a material particle

uK(XL, t) = δKmxm(XL, t)−XK . (2.2)

The velocity v(X, t) is the rate of change of the position vector for a material point

vK(XL, t) =
∂uK(XL, t)

∂t
= u̇K(XL, t) , (2.3)

i.e. the time derivative of u(X, t) with X held constant [10] and hence a material or total
time derivative. Corresponding spatial descriptions can be obtained by exploiting the motion
map (2.1), i.e.,

uk(xl, t) = δkMuM (xl(XN , t), t) (2.4)

vk(xl, t) = δkMvM (xl(XN , t), t) . (2.5)

The partial derivative of the motion with respect to the Lagrangian coordinatesDeformation
gradient

FkL =
∂xk(XM , t)

∂XL

= xk,L (2.6)

is defined as deformation gradient F. From a physical point of view, the deformation gradient
relates a differential line element in the current configuration to its reference state

dxk = FkLdXL . (2.7)

Similar transformations for infinitely small volume (dV ) and surface elements dS are given
by

dV = JdV0 (2.8)

dSk = JF−1
Lk dSL . (2.9)
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2.2 Mechanical Boundary Value Problem

These formulae involve the determinant J = det(FkL) > 0 of the deformation gradient F
and its inverse

F−1
Kl =

∂XK(xm, t)

∂xl
. (2.10)

Since the deformation gradient is related to the transformation of infinitesimal line elements, Deformation
measuresit enables the definition of suitable deformation measures, e.g. the left (b) and right (C)

Cauchy-Green deformation tensors

bkl = FkMFlM (2.11)

CKL = FmKFmL . (2.12)

Different from the deformation gradient F the deformation tensors do not contain contribu-
tions from rigid body rotations. Alternatively, the Euler-Almansi (e) or Green-Lagrange (E)
strain tensors

ekl =
1

2

(
δkl − b−1

kl

)
(2.13)

EKL =
1

2
(CKL − δKL) (2.14)

can be used. In the limit case of small deformations both strain tensors coincide with the
infinitesimal strain tensor

εkl =
1

2
(uk,l + ul,k) (2.15)

which is defined as the symmetric part of the displacement gradient uk,l.

Another kinematic measure is the rate of deformation Rate of
deformation

Dij =
1

2
(vi,j + vj,i) (2.16)

computed as the symmetric part of the velocity gradient

Lij =
∂vi
∂xj

= vi,j = ḞiKF
−1
Kj . (2.17)

2.2 Mechanical Boundary Value Problem

In this section the governing equations of the mechanical boundary value problem will be Balance of
massspecified. The conservation of the total mass of the material body is stated in local form by

̺ =
̺0
J

(2.18)

where ̺ and ̺ denote the mass density with respect to the current and reference configura-
tions, respectively.

The mechanical stress tensor σ has to fulfill the balances of linear momentum Balances of
momentum

σkl,k + ̺ (fl − v̇l) = 0 (2.19)
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2 Boundary Value Problems

and angular momentum. The latter results in the symmetry of the stress tensor

eklmσlm = 0. (2.20)

In equation (2.19) σ is the Cauchy stress tensor, e represents the permutation tensor, and f

denotes the mechanical body force density. In the case of static mechanical problems, inertia
body forces ̺v̇ are neglected.

The behaviour across a material interface Γd is defined in terms of jump conditions whichJump and
boundary
conditions

occur during the transition from the global to the local form of the balance equations. The
displacement field is supposed to be continuous across an interface. The same holds for the
traction vector tl = σklnk unless an additional surface traction p is applied.

JukK = 0 (2.21)

JσklKnk + pl = 0. (2.22)

In the equations above J·K = (·)+ − (·)− is the jump of a physical quantity across Γd with
the unit normal vector n pointing from the subdomain Ω− to Ω+, Fig. 2.2 (a). Boundary
conditions for the external boundary ∂Ω of the material material body are obtained from the
jump conditions (2.21) and (2.22). On the part ∂Ωu the essential condition

uk = ûk (2.23)

holds for the k-th coordinate of the displacement vector. The natural boundary condition

σklnk = p̂l (2.24)

is prescribed on ∂Ωp, where p̂ is an external surface traction. In addition, ∂Ωu ∩ ∂Ωp = ∅

and ∂Ωu ∪ ∂Ωp = ∂Ω hold for each coordinate.

As for the deformation measures, various stress tensors can be defined with respect to theStress
measures reference and current configurations. These different stress tensors are of special interest for

the convenient formulation of constitutive models. The Cauchy stress tensor σ represents
the stresses in the current configuration. The weighted Cauchy stress tensor

τkl = Jσkl (2.25)

is also known as Kirchhoff stress. The definition of further stress tensors [2, 10, 90] is based
on the equivalence of infinitesimal surface forces dfk = tkdS = t0kdS0 in the current and
reference configuration, respectively. From the relations

tk = σlknl (2.26)

t0k = PLknL (2.27)

and the transformation (2.9), which relates the infinitesimal surface elements dSk = dSnk
and dSK = dS0NK in the current and reference configuration, the definition of the non-
symmetric first Piola-Kirchhoff stress tensor

PKl = JF−1
Kmσml = F−1

Kmτml (2.28)

is obtained. A symmetric, purely material stress tensor is given by the second Piola-Kirchhoff
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2.3 Stationary Magnetic Boundary Value Problem

(a) (b) (c)

Figure 2.2: Mechanical and magnetic boundary value problems (BVP): (a) internal surface Γd with
unit normal vector n separating the domain Ω of the material body into two domains Ω+

and Ω−, (b) mechanical BVP – prescribed displacements û on ∂Ωu, surface tractions p̂
on ∂Ωp as well as mechanical (̺f ) body force densities in Ω, and (c) magnetic BVP –
prescribed vector potential Â on ∂ΩA, current k̂ on ∂Ωk and current j in Ω.

stress
SKL = PKmF

−1
Lm = JF−1

KmσmnF
−1
Ln = F−1

KmτmnF
−1
Ln . (2.29)

Since the stress tensor can generally not be fully determined from the balances of momentum, Constitutive
relationsthe deformation has to be computed. The relation between the stress and deformation states

are given by constitutive relations which represent the mechanical material behaviour of the
body B. The mechanical material models used in this work are specified in Section 2.6.

2.3 Stationary Magnetic Boundary Value Problem

The continuum formulation of the electro-magnetic field problem is given by the Maxwell Maxwell
equationsequations [104]. They constitute a system of four coupled partial differential equations.

The equations have two major variants. The atomistic set of Maxwell equations uses total
charges and total currents, including those in the material at an atomic scale. From statistics
and suitable averaging procedures, a macroscopic set of Maxwell equations can be derived
which only considers free charges and currents. The complicated processes in the material
are instead described in terms constitutive relations for the polarisation and magnetisation.
More details can be found in textbooks by de Groot and Suttorp [48] as well as Eringen and
Maugin [63]. In the case of stationarity, the electric and magnetic fields decouple and can
therefore be treated separately. In this contribution only magnetic fields are of interest. The
local form of the Maxwell equations with respect to the current configuration reads in this
case

Bk,k = 0 (2.30)

eklmHm,l = jk (2.31)

with the magnetic induction B, the magnetic field H and the vector of free current density j.
The first equation is called Gauss’ law and states the solenoidality of the magnetic induction,
i.e. the fact that no magnetic charges or monopoles exist. Equation (2.31), typically known
as Ampere’s law, mathematically states the experience that magnetic fields are generated by
electric currents.
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2 Boundary Value Problems

At a surface of discontinuity Γd the jump conditionsJump
conditions

JBiKni = 0 (2.32)

eijkJHkKnj − ki = 0 (2.33)

hold for the magnetic induction and field strength. Equation (2.32) represents the continuity
of the normal component of the magnetic induction. If no current density k acts on Γd,
the tangential components of the magnetic field strength have to be continuous according to
equation (2.33). A detailed derivation of the jump conditions is presented in [25].

The magnetic induction B is related to the magnetic field H by the general relationMagnetisation

Bk = µ0(Hk +Mk) (2.34)

where µ0 = 4π × 10−7 N/A2 is the permeability of free space. While equation (2.34) holds
for any material, the choice of a constitutive relation for the magnetisation M defines the
material behaviour of a magnetisable material. Magnetic material models used in this work
will be introduced in Section 2.6.

In order to solve the Maxwell equations (2.30) and (2.31), it is convenient to introduce aVector
potential potential which a priori satisfies one of the equations. This potential than serves as the

primary variable in an FE implementation and hence takes the role of the displacement field
in a purely mechanical boundary value problem, Tab. 2.1. One possible choice is to use the
magnetic vector potential A which is related to the magnetic induction by

Bk = eklmAm,l . (2.35)

Consequently, the vector potential automatically satisfies Gauss’ law (2.30) and only (2.31)
has to be considered for the solution of the stationary magnetic boundary value problem. In
order to fully define the vector field A, a gauge condition for its divergence is required for
three-dimensional problems. Often the Coulomb gauge

Ak,k = 0 (2.36)

is applied. For the two-dimensional problems considered here, equation (2.36) is automati-
cally satisfied. At a surface of discontinuity, equation (2.35) requires the tangential compo-
nent of A to be continuous, while the Coulomb gauge results in the continuity of the normal
component. Therefore, the vector potential is continuous across Γd and the jump condition
(2.32) is replaced by

JAkK = 0 . (2.37)

The boundary ∂Ω represents a special case of a surface of discontinuity. Boundary conditions
can be deduced from the evaluation of the jump conditions (2.33) and (2.37). On the part
∂ΩA of the external boundary the essential condition

Ak = Âk (2.38)

is imposed for the k-th coordinate of the vector potential. The part of ∂Ω with the natural
bounadry condition

eklmHmnl = −k̂k (2.39)

is labelled ∂Ωk. The prescribed value k̂ has to represent the effects of any external magnetic
field outside the domain Ω and of a surface current k applied on ∂Ωk. For the well-posed
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2.4 Coupled Magneto-Mechanical Boundary Value Problem

definition of the boundary conditions ∂ΩA ∩ ∂Ωk = ∅ and ∂ΩA ∪ ∂Ωk = ∂Ω have to be
valid for each coordinate direction. A detailed discussion of the influence of gauging and
the choice of different boundary conditions in vector potential formulations is presented by
Stark et al. [196].

Alternatively to the vector potential, the magnetic scalar potential ϕ defined by Scalar
potential

Hk = −ϕ,k (2.40)

can be used. Equation (2.40) automatically fulfills Ampère’s law (2.31) for the case of van-
ishing current densities. Similar to the vector potential, the scalar potential is continuous
across Γd

JϕK = 0 (2.41)

which automatically requires the tangential component eijkJHkKnj = 0 of the magnetic field
to be continuous for vanishing surface current densities k = 0 and therefore corresponds
to the jump condition (2.33). From equation (2.41) and the jump condition (2.32) for the
magnetic induction the following essential and natural boundary conditions can be deduced:

ϕ = ϕ̂ on ∂Ωϕ (2.42)

Bknk = η̂ on ∂Ωη . (2.43)

Again, for the well-posed definition of the boundary conditions ∂Ωϕ ∩ ∂Ωη = ∅ and ∂Ωϕ ∪
∂Ωη = ∂Ω have to be valid for each coordinate direction.

The availability of two magnetic potentials rises the question of which formulation to use. Comparison

In this work the magnetic vector potential is used as it provides more flexibility for future
applications, i.e. it facilitates the simulation of instationary processes and the application of
current densities. In addition, the resulting magneto-mechanical problem is of minimum-
minimum type which enables the use of efficient solvers whereas the magnetic scalar poten-
tial ends up in a saddle point problem which excludes the use of certain efficient solution
procedures [141, 142]. On the other hand, the scalar potential naturally comes along with a
reduced number of degrees of freedom compared to the vector valued formulation. This is
of interest especially for large and three-dimensional models as well as during the analysis
of strongly coupled magneto-mechanical problems which generally require the simultaneous
analysis of the magnetic and mechanical problem. Furthermore gauging is not required.

2.4 Coupled Magneto-Mechanical Boundary Value Problem

The formulations of the two previously outlined boundary value problems can be combined Considered
couplingto specify a strongly coupled magneto-mechanical field problem which accounts for the fol-

lowing bidirectional coupling:

(i) Mechanics → Magnetics: The influence of mechanical deformations on the current
magnetic fields are modelled in terms of continuum formulations and numerical pro-
cedures suitable for finite deformations.

(ii) Magnetics → Mechanics: The effect of magnetic forces and couples on the deforma-
tion of the material body is accounted in terms of magnetic contributions to the total
stress tensor.
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2 Boundary Value Problems

(iii) Constitutive Coupling: Magnetorheological and -strictive effects in the individual ma-
terial phases can be represented by appropriate constitutive models.

Since the individual microscopic constituents, i.e. the magnetisable particles and the poly-
meric matrix, do not exhibit magnetorheological or magnetostrictive coupling effects (iii),
constitutive models for the representation of these effects are beyond the scope of this work.
However, microscopic interactions between the magnetisable particles result in magnetically
induced macroscopic stiffness changes and deformations which are predicted using a multi-
scale approach outlined in Chapter 4.

While the effect of mechanical deformations on the magnetic field (i) is accounted for byMagnetic body
force the evaluation of the governing equations in the current configuration, the formulation of the

mechanical boundary value problem presented in Section 2.2 has to be extended in order to
represent the influence of the magnetic field on the mechanical deformations (ii). This is
accomplished in terms of a magnetic body force density fm

σkl,k + ̺ (fl − v̇l) + fm
l = 0 (2.44)

which according de Groot and Suttorp [48] is given by

fm
k = eklmjlBm + Bl,kMl. (2.45)

For convenience, the problems will formulated in terms of the symmetric total Cauchy stressMechanical
and magnetic
stress tensors

tensor σtot which has to fulfill the balances momentum identical to the purely mechanical
case. The total stress

σtot
kl = σkl + σm

kl (2.46)

can be split additively into a mechanical σ and magnetic stress tensor

σm
kl =

1

µ0

BkBl −
1

2µ0

BmBmδkl −BkMl + BmMmδkl (2.47)

which is in agreement with microscopic theories [48]. In the absence of any magnetisation
σm reduces to the Maxwell stress tensor. The magnetic body force and the stress tensor are
related by fm

l = σm
kl,k.

In the stationary coupled magneto-mechanical case, the total stress has to fulfill the balancesBalances of
momentum of linear momentum

σtot
kl,k + ̺ (fl − v̇l) = 0 (2.48)

and angular momentum which results in the symmetry of the total stress tensor

eklmσ
tot
lm = 0 . (2.49)

Although the total stress tensor will always be symmetric, both mechanical and magnetic
stress tensors lose their symmetry for anisotropic magnetic material behaviour. It is therefore
preferable from a numerical point of view to decompose the total stress into the symmetric

pseudo-mechanical Eσ and pseudo-magnetic σ̂ stress tensors according to [63]

σtot
ij = Eσij + σ̂ij, Eσij = σij +MiBj, σ̂ij = σm

ij −MiBj. (2.50)
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2.5 Energy and Entropy Balances

As a consequence of the introduction of the total stress tensor, the jump condition for the Jump and
boundary
conditions

traction vector is formulated in terms of a total traction vector

Jσtot
kl Knk + pl = 0 . (2.51)

The corresponding natural boundary condition

σtot
kl nk = p̂l (2.52)

is prescribed on ∂Ωp, where the effective external surface load p̂ has to account for any
contribution due to mechanical tl = σklnk and magnetic tractions tml = σm

klnk from the
exterior of the material body as well as an applied mechanical surface load p. The conti-
nuity of the displacement field (2.21) also holds in the magneto-mechanical case. Hence,
essential boundary conditions for the displacement are prescribed on ∂Ωu. Eventually, it
can be noted that in the case of vanishing magnetic fields, the formulation of the coupled
magneto-mechanical problem reduces to the mechanical field problem of Section 2.2.

In the preceding sections, the principal structure of boundary value problems that includes Analogies

balance equations, kinematic relations or the definition of a magnetic potential, and con-
stitutive equations accompanied by suitable boundary conditions was outlined. Table 2.1
compares the different sets of equations which govern the mechanical, magnetostatic and
electrostatic1 boundary value problems. In the stationary magnetic and electric cases the
governing equations are given by subsets of the Maxwell equations, i.e. two equations for
each problem. One of these equations is automatically satisfied by the definition of a po-
tential. In the mechanical case the problem is usually stated by the balance of momentum
and the assumed kinematics. This kinematic relation actually represents the definition of a
mechanical potential, namely the displacement field. This complete analogy to the magnetic
and electric case becomes obvious if the compatibility conditions are explicitly considered.
They are, as in the other cases, fulfilled by the definition of strain-displacement relation.

Table 2.1: Analogies of the mechanical, magnetic, and electric boundary value problems.

Equations Mechanical Magnetic Electric

Governing equations σij,i + ̺fj = 0 eijkHk,j = ji Di,i = ̺e

eijkelmnεnk,mj = 0 Bi,i = 0 eijkEk,j = 0

Potential εij =
1
2 (ui,j + uj,i) Bi = eijkAk,j Ei = −ϕ,i

Constitutive equations σij = σij(εkl) Hi = Hi(Bj) Di = Di(Ej)

Jump conditions JuiK = 0 JAiK = 0 JϕK = 0

JσijKni + pj = 0 eijkJHkKnj = ki JDiKni = r

2.5 Energy and Entropy Balances

In order to formulate thermodynamically consistent material models, the balances of energy Energy
balance

1The electric field quantities are: the dielectric displacement Di, the eletric field strength Ei, the electric potential ϕ, and
body ̺e as well as surface charge density r.
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and entropy are considered in the following. They establish a connection between the me-
chanical and magnetic field variables and the energetic state of the material body. This state
will change due to the transfer of mechanical and non-mechanical, i.e. magnetic, electric,
or thermal power to the material body. The local form of the balance of the specific internal
energy u is given by

̺u̇ = σklvl,k −MkḂk + jkEk − qk,k + ̺r . (2.53)

In equation (2.53) q represents the heat flux vector and r is a specific heat source density.
Although the electric field is not explicitly involved in the analysis of the stationary magnetic
field problem outlined in Section 2.3, the product of the free current density j and the electric
field strength E enters the balance of the internal energy. Since the energetic state is not con-
sidered explicitly in this work, the electric field does not have to be computed. However, the
term is of importance for the discussion of the thermodynamic admissibility of constitutive
equations.

The entropy balance, which is also known as second principle of thermodynamics, is com-Entropy
balance monly stated in terms of an inequality for the entropy production

̺γ = ̺ṡ+

(
1

T
qk

)

,k

− 1

T
̺r ≥ 0 . (2.54)

where γ is the specific entropy production and s is the specific entropy. Moreover, it was
assumed that the entropy flux is parallel to the heat flux vector q. Equation (2.54) expresses
restrictions on the admissibility of a thermodynamic process. While the limit case of zero
entropy production corresponds to an ideal, reversible process, negative entropy production
is not meaningful from a physical point of view. Introducing the free Helmholtz energy ψ =
u− Ts and using the balance of the internal energy (2.53), the Clausius-Duhem inequality

̺Tγ = −̺
(

ψ̇ + Ṫ s
)

σklvl,k −MkḂk + jkEk −
1

T
qkT,k ≥ 0 (2.55)

is obtained. It is utilised in the following to test the thermodynamic admissibility of the
constitutive relations introduced in the next section.

2.6 Constitutive Equations

The equations discussed so far are valid irrespectively of the material in the analysis domainMotivation

Ω. It is however known from experience that the deformation behaviour of a component will
depend on the stiffness of the material and the presence of magnetisable matter will have an
influence on any magnetic field. In the continuum formulation applied here, phenomenolog-
ical constitutive models which neglect the underlying atomistic structure are used to account
for the behaviour of the individual materials. From a mathematical point of view, the consti-
tutive equations resolve the difference between the number of unknown field variables and
balance equations.

2.6.1 Structure and Classification

A constitutive equation relates a (tensorial) constitutively dependent variable Y to the his-Explicit
representation tory of a set of m constitutively independent variables Zα, α = 1 . . .m. The most general
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structure of a constitutive equation is given by the functional

Y (t) = F
τ≤t

[Zα (τ)] (2.56)

where t is the current time and τ indicates any point of time in the process history.

Since a closed form representation cannot be stated explicitly for all classes of material Implicit
representationmodels, implicit representations

Y (t) = Y [Zα(t),qβ(t)] (2.57)

q̇β(t) = q̇β [Zα(t),qβ(t)] , (2.58)

are of special practical importance. In this formulation the history dependence, which results
from, e.g., rate dependent or independent flow or magnetisation processes, is modelled by
a set of n (tensorial) internal variables qα, α = 1 . . . n and the corresponding evolution
equations (2.58). The equivalence to the closed form notation of equation (2.6.1) can be
demonstrated by integration of the evolution equations and combination with (2.57).

In order to properly represent a material behaviour observed in experiments, a suitable mate- Classification
of constitutive
behaviour

rial model has to be chosen and its parameters have to be identified. For special phenomena,
new constitutive models have to be constructed. A guideline therefor is given by general
principles of the theory of materials [211]. Moreover, the constitutive equations have to
be consitent with the balance equations [179], e.g. the Clausius-Duhem inequality (2.55)
places restrictions on the particular relations and the chosen parameters. For the system-
atic development of constitutive models and their application, it is convenient to classify
the behaviour of materials and to define a set of fundamental experiments which allow for
their classification. Regarding the phenomena observed in mechanical experiments, Haupt
[89, 90] has suggested four categories of stress-strain behaviour as discussed in more detail
in [113, 116]. This classification can also be generalised to non-mechanical phenomena. In
the simplest case of material behaviour the process history has no influence on the current
state Y and the functional (2.6.1) reduces to a function

Y (t) = Y (Zα(t)) (2.59)

of the current variables Zα(t). Typical mechanical and magnetic examples for this class of
behaviour are all stress-strain and magnetisation curves without hysteresis as used in this
work.

2.6.2 Thermodynamic Consistency

In order to obtain thermodynamically consistent material models, the Clausius-Duhem in- Thermodyn.
consistencyequality (2.55) which imposes restrictions on the constitutive relations has to be examined.

Assuming that the material behaviour depends on the mechanical deformation, the magnetic
field and the temperature, i.e. ψ = ψ(Zα) = ψ(FlM , BK , T ), equation (2.55) can be stated
in the form

− ̺

[
∂ψ

∂FlM
ḞlM +

∂ψ

∂BK

ḂK +
∂ψ

∂T
Ṫ + Ṫ s

]

+
(

σkl +MkBlḞlM

)

F−1
Mk −

1

J
MKḂK ≥ 0

(2.60)
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where the definition of the velocity gradient vk,l (2.17) has been utilised. The postulated
independence of the material behaviour from the electric field and the temperature gradient
results in the residual inequality

jkEk −
qk
T
T,k ≥ 0 . (2.61)

According to the procedure of Coleman and Noll [39] the general constitutive relations

Eσkl = ̺FkM
∂ψ

∂FlM
= σkl +MkBl (2.62)

MK = −̺0
∂ψ

∂BK

(2.63)

s = −∂ψ

∂T
(2.64)

are derived from the inequality (2.60) and therefore guarantee thermodynamic consistency.
With the limitation to isothermal processes, the relations (2.61) and (2.64) are not of interest
in the following and the temperature is not considered in the set of independent constitutive
variables. Specific equations for stress and magnetisation are obtained from this framework
by the definition of a particular Helmholtz free energy as outlined subsequently. It is noted
that only for non-magnetisable materials the stress tensor Eσ equals the mechanical stress
tensor σ according to (2.62).

The formulation of a free energy functional depends on the physical phenomena to be mod-Helmholtz free
energy elled. In order to conform with the principle of objectivity, field variables of the refer-

ence configuration are chosen as constitutively independent variables. The free energy
ψ = ψ (CKL, BM) is assumed to depend on the right Cauchy-Green deformation tensor
CKL, the material magnetic induction BK . Due the representation of magneto-mechanical
coupling effects, the free energy will involve mechanical and magnetic contributions. Here,
an additive decomposition

ψ (CKL, BM) = ψmag (CKL, BM) + ψmech (CKL, BM) (2.65)

is employed. For the multi-scale approach pursued in this contribution a free energy func-
tional for each constituent has to be specified:

(i) Matrix: Typical polymeric matrices (superscript M) of MRE have a very low stiffness
and are therefore likely to undergo large deformations. The matrix is non-magnetisable
and the free energy functional will be purely mechanical and does not depend on the
magnetic induction

ψM = ψmech (CKL) . (2.66)

(ii) Particles: The particles (superscript P) are magnetisable and will deform. However,
they are very stiff compared to the surrounding matrix and the deformations resulting
from the loading of the MRE will be small. It is therefore assumed that the magnetic
and mechanical contributions to the total free energy decouple according to

ψP = ψmag (BK) + ψmech (CLM) . (2.67)

These assumptions are in line with the analytical description of rigid magnetisable inclusions
in a non-magnetisable elastomer by Ponte Castañeda and Galipeau [170]. Therefore, mate-
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rial models, which describe the coupled behaviour in a purely phenomenological manner,
are not required to model the material behaviour of the individual constituents on the mi-
croscale. The magnetic field quantities of the reference configuration which are used during
the derivation of the constitutive equations are available from a set of pull back operations
[63]

BK = FlKBl (2.68)

HK = JF−1
KlHl (2.69)

MK = JF−1
KlMl . (2.70)

It should be mentioned that the choice of these transformations is not unique. Starting from
the same constitutive relation in the Lagrangian formulation, the use of a different set of
pull back transformations [111] will result in a different material behaviour in the current
configuration.

2.6.3 Magnetisation Behaviour

Carbonyl iron powder, e.g. BASF CIP CC which is often used in MRE, exhibits a non- Experiment

linear magnetisation behaviour dominated by saturation effects with a negligible hysteresis,
Fig. 4.2. Since the experimental characterisation does not induce any relevant deformation
of the magnetic specimen, the measured values represent material quantities.

Different functions have been used in the literature to model non-linear isotropic magneti- Magnetisation
M(H)sation behaviour of the particles. Three of the most frequently used two-parameter relations

are the Langevin function

MK = a1

[

coth (a2H)− 1

a2H

]

HK , (2.71)

the Ising relation
MK = c1 tanh (c2H)HK , (2.72)

and the Fröhlich-Kennelly model

MK =
d1

1 + d2H
HK . (2.73)

These equations all use the magnetic fieldHK as independent constitutive variable withH =√
HKHK . The Langevin model (2.71) is applied in Chapter 4 to model the magnetisation

behaviour for small deformations.

In the case of large deformations the magnetic induction BK is preferred as constitutively Modified Ising
relation M(B)independent variable according to equation (2.63). It has been found in [139] and [SMKU14]

that a modified Ising relation

MK =Ms tanh (δB)
BK

B0

(2.74)

with B0 =
√
BKBK the norm of the material magnetic induction provides a good approxi-

mation to the experimental magnetisation curve. The parameters c1 and c2 have been iden-
tified as the saturation magnetisation Ms, and a scaling factor δ. A linearisation of equation
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(2.74) in the vicinity of B0 = 0, yields the linear relation

MK = χBBK =MsδBK =
µr − 1

µ0µr
BK = (µr − 1)HK . (2.75)

Free energy functions that correspond to the expressions (2.74) and (2.75) are obtained fromMagnetic
free energy integration according to the constitutive relation (2.63). For the magnetically non-linear case,

the potential

ψmag = −Ms

̺0δ
ln [cosh (δB0)] (2.76)

found, while

ψmag = − 1

2̺0
χBB

2
0 (2.77)

holds for linear magnetic material behaviour, respectively. Since ̺0 and B0 are quantities of
the reference configuration, the derivative of ψmag with respect to the deformation gradient
F according to (2.62) does not result in any stress contribution.

2.6.4 Mechanical Material Behaviour

In order to capture finite deformations which can occur in MRE, a hyperelastic materialIntroduction

model is used to represent the mechanical behaviour of the polymeric matrix. The large
deformation characteristics of elastomers have been modelled by statistical models and con-
tinuum mechanics approaches. Comprehensive reviews have been presented by, e.g., Boyce
and Arruda [19] and Steinmann et al. [199] who also provide a comparison of the perfor-
mance of different models. In this work continuum models will be applied and according to
the previous section, the pseudo-mechanical stress tensor

Eσkl = σkl +MkBl = ̺FkM
∂ψmech

∂FlM
(2.78)

is determined by the mechanical fraction ψmech of the free energy only. Since the material
behaviour of unreinforced elastomers will be isotropic, the required free energy ψmech is
formulated in terms of invariants Ik of the deformation tensors or principal stretches λi,
respectively.

Here a model derived by Ogden [157, 158] is applied which is defined by the free energyOgden model

function

ψmech (λi) = ρ0

N∑

α=1

µα
cα

(λcα1 + λcα2 + λcα3 − 3) (2.79)

formulated in terms of principal stretches λi which are the square root of the eigenvalues of
the deformation tensors C and b. These principal stretches allow for representation of the
deformation gradient and the deformation tensors in terms of a spectral decomposition

FkL =
3∑

i=1

λ2in
i
kN

i
L , CKL =

3∑

i=1

λ2iN
i
KN

i
L , bkl =

3∑

i=1

λ2in
i
kn

i
l (2.80)

with the i-th eigenvectors Ni of the reference and current configuration ni, respectively. The
material parameters µα und cα have to be identified from experiments. Two conditions on
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2.6 Constitutive Equations

the material parameters
n∑

α=1

µαcα = 2µ , µ(α)c(α) > 0 (2.81)

ensure the compatibility to the limiting case of linear elasticity for small deformation as well
as polyconvexity [228].

The Ogden formulation represents a class of models formulated in principal stretches that Neo-Hooke

includes the Neo-Hooke model [228]. Its free energy

ψmech(λi) = ρ0
µ

2

(
λ21 + λ22 + λ23 − 3

)
(2.82)

follows from the general relation (2.79) for n = 1, µ1 = µ und c1 = c = 2.

As mentioned above, the pseudo-mechanical stress tensor Eσ can be computed directly from Incompressi-
bilitythe mechanical free energies (2.79) or (2.82) using relation (2.62) for the considered types

of local constituents. Since rubber-like polymers are usually assumed to be incompressible
which is mathematically represented by J = λ1λ2λ3 = 1, the stress state is however not
fully determined by the free energy. In addition, the hydrostatic pressure p which can be
interpreted as a Lagrangian multiplyer that enforces incompressibility has to be considered

Eσkl = −pδkl + ̺FkM
∂ψmech

∂FlM
(2.83)

= −pδkl + 2̺FkMFlN
∂ψmech

∂CMN

. (2.84)

A convenient way to compute the stress tensor is obtained from its spectral representation

Eσkl =
3∑

i=1

σin
i
kn

i
l . (2.85)

The principal stresses σi follow from equation (2.84) as

σi = −p+ λ(i)
∂ψmech

∂λ(i)
(2.86)

where relations between the deformation tensor and the principal stretches as outlined by
Simo and Taylor [190] have been used.

Although incompressibility is widely assumed for elastomers, their behaviour is in real- Compressi-
bilityity only nearly incompressible. Accurate models will therefore have to account for non-

isochoric deformations. In addition to a more accurate representation of the material be-
haviour, compressible formulations avoid mixed FE formulations which consider the hydro-
static pressure p as a separate field quantity. In this case the incompressibility condition is
removed and the free energy function is amended by an additional term related to volumetric
deformations in terms of J . Two different approaches are typically used:

(i) In the first approach a bulk strain energy term ψb(J) is added to an existing free energy
function ψa given by equations (2.79) or (2.82)

ψmech = ψa(λi) + ψb(J). (2.87)
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2 Boundary Value Problems

In this case, both terms contain volumetric contributions to the total free energy. Con-
sidering J = λ1λ2λ3, the stress tensor is fully determined in terms of the free energy

Eσkl =
3∑

i=1

σin
i
kn

i
l with σi = λi

∂ψmech

∂λi
. (2.88)

(ii) A convenient free energy formulation for compressible material behaviour that distin-
guishes between purely deviatoric and volumetric contributions to the mechanical free
energy

ψmech = ψdev(λ̃i) + ψvol(J) (2.89)

is obtained from replacing the principal stretches λi in equations (2.79) or (2.82) by
principal deviatoric stretches

λ̃i = J−1/3λi , λ̃1λ̃2λ̃3 = 1 . (2.90)

A purely volumetric contribution to the free energy ψvol(J) accounts for volumetric
changes. According to [190] the stress is given by

Eσkl =
dψvol(J)

dJ
δkl +

3∑

i=1

[

λ̃i
∂ψdev

∂λ̃i
−

3∑

j=1

λ̃j
∂ψdev

∂λ̃j

]

nikn
i
l . (2.91)

All large deformation computations in Chapter 5 are carried out based on the numericalUsed models

implementation [110] of a compressible Ogden model in conjunction with the volumetric
free energy contribution [228]

ψvol(J) =
κ

4

(
J2 − 2 ln J − 1

)
(2.92)

with the compression modulus κ. As mentioned above, this implementation includes the
Neo-Hooke2 model for n = 1, µ1 = µ und c1 = c = 2 and does not require further con-
sideration. The limiting case of incompressibility is realised numerically for both models
by Poisson ratios close to ν = 0.5 which did not result in problems for the computations
in this work. Analytical reference solutions for the incompressible case are however di-
rectly obtained from equation (2.86). All models outlined in this section recover the classical
Hookean law

Eσkl = 2µεkl + Λεmmδkl. (2.93)

in the case of small deformations. Therefore, the Neo-Hooke model can also be applied to
represent the elastic behaviour of the carbonyl iron particles according to equation (2.67). In
the relations above the LAMÉ parameters µ and Λ have been used. These constants and the
compression modulus κ are related to the engineering constants E and ν by

µ =
E

2 (1 + ν)
= G , Λ =

Eν

(1 + ν)(1− 2ν)
, κ =

E

3 (1− 2ν)
. (2.94)

2Remark: The same Neo-Hooke material is obtained from the first approach for
ψb(J) = Λ

4
(J2

− 2 ln J − 1)− µ ln J .
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2.7 Analytical Reference Solutions

2.7 Analytical Reference Solutions

For the verification and analysis of the numerical solution schemes developed in this work Introduction

analytical solutions are of special interest as they allow for the computation of numerical
errors and the quantification of the convergence behaviour. There are few analytical treaties
of coupled magneto-mechanical boundary value problems documented the literature, e.g.
[3, 63, 160]. However, none of the published solutions considers heterogeneous material
structures with at least two different magnetisable constituents.

During the verification process of the implemented algorithms two problems have been Considered
problemsutilised as reference solutions in this work:

(i) The first demonstration problem considers a magnetic field which generates a force
acting on a magnetisable inclusion. Solutions for the inhomogeneous magnetic field
generated by a current-carrying wire and the resulting force were derived by Engel
et al. [61]. As these results were available at the beginning of this work, all XFEM
procedures and the coupling of finite element and boundary element formulations are
verified using this solution. The problem investigated by Engel, however, allows only
for convergence analyses with respect to the magnetic field and the force acting on
the cylinder which represents an integral quantity. Solutions for the mechanical fields
are not available. Moreover, the singularity of the magnetic field at the location of the
conducting wire can influence the convergence behaviour.

(ii) Therefore, a new reference solution for a magneto-mechanical bimaterial problem
which involves mechanical deformations and magnetisation effects in both material
domains has been derived [195]. Analytical results for all magnetic and mechanical
field quantities facilitate comprehensive convergence studies. Being available late dur-
ing the development of the numerical procedures, it is mainly employed during the
comparison of the convergence behaviour of Lagrangian and spline-based approxima-
tions.

Both examples are two-dimensional (planar) settings which result from three-dimensional Assumptions

problems that are homogeneous in the out-of-plane direction, i.e. a circular inclusion rep-
resents a cylinder in the three-dimensional case. The magnetic and mechanical material
behaviour are assumed to be linear and small deformations are presumed.

As mentioned above, the first demonstration problem considers a circular inclusion of radius Problem (i)

R, elastic properties E−, ν− and relative magnetic permeability µ−
r . The magnetisable in-

clusion is surrounded by free space, i.e. µ+
r = 1 holds. At a distance a from the centre of the

inclusion, a conducting wire carries the current J . Both, the displacements of the centre of
the cylinder and of the wire are set to zero. The complete setup is illustrated in Fig. 2.3 (a).
An analytic solution in terms of the magnetic field H is available from [61]. The integration
of their results yields the magnetic potential in the inclusion and its surrounding as presented
in detail in [KMG+13]. In an FE model of this problem the infinite domain Ω∞ is replaced
by a rectangular finite domain Ω = Ω+∪Ω−. In order to avoid truncation errors, the analytic
solution for the magnetic potential is prescribed to the boundary ∂Ω.

The setting of the second demonstration problem is given by a circular inclusion Ω− of Problem (ii)

radius R embedded in an infinite surrounding matrix domain Ω+, Fig. 2.3 (b). Both material
phases are characterised by constant relative permeabilities µ+

r and µ−
r as well as linear

elastic parameters E+, ν+ and E−, ν−. A homogeneous magnetic induction B1 = 0, B2 =
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2 Boundary Value Problems

(a) (b)

Figure 2.3: Setup of the demonstration problems with analytical solutions (homogeneous in x3-
direction): (a) a stiff, magnetisable circular inclusion (domain Ω−) of radius R with rel-
ative magnetic permeability µ−

r in free space (domain Ω+ = Ω∞, µ+
r = 1). At distance

a from its centre, a conducting wire carries the current J , and (b) a circular inclusion
(domain Ω−, radius R, properties µ−

r , E−, ν−) embedded in an infinite matrix domain
Ω+ (properties µ+

r , E+, ν+) subjected to homogeneous far field loads B1 = 0, B2 =
∞B

and σ11 =
∞σ11, σ22 = ∞σ22, σ12 = 0.

∞B and constant mechanical stresses σ11 = ∞σ11, σ22 = ∞σ22, and σ12 = 0 are applied
in a large distance compared to the characteristic size R. While the problem of an infinite
medium with a long cylindrical hole has already been considered by Paria [160] as well
as Eringen and Maugin [63], the solutions for the stationary magnetic field and the coupled
mechanical field problem for the bimaterial case have been derived in [195]. The solution can
accomodate any combinations of mechanical and magnetic parameters, i.e. it is not limited
to the typical case of a stiff magnetisable inclusion representing an iron particle embedded
in a soft non-magnetisable matrix. Furthermore, it incorporates several other settings. In the
case of a zero external magnetic field a purely mechanical bimaterial problem, i.e. a circular
inclusion problem with the uniaxial loading ∞σ11 = p and ∞σ22 = 0 as presented in [153],
is obtained. If the modulus of the inclusion is set to zero, a circular hole in an infinite plane
is described. Eventually, the biaxial tension problem which is applied in [204] to study the
convergence of XFEM is included.
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Part II

XFEM Modelling
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3 Higher-Order Extended Finite Element
Method [KMG+13, SKG+13]

In this section linear and quadratic extended finite element formulations are applied to model Introduction

weak discontinuities in the magnetic and coupled magneto-mechanical boundary value prob-
lems outlined in the previous chapter. To properly resolve the location of curved interfaces
and the discontinuous physical behaviour, methods for the level set representation of curved
interfaces and the numerical integration of the weak form are reviewed and developed in
the context of higher-order XFEM. In order to reduce the complexity of the representation
of curved interfaces, an element local approach to the automated computation of the nodal
level set values is proposed. In this way also the compatibility between the level set rep-
resentation and the integration subdomains is improved. Integration rules for polygons and
strain smoothing are applied in conjunction with quadratic elements and compared to the
division into curved integration subdomains. Eventually, a coupled magneto-mechanical
demonstration problem described in Section 2.7 is modelled and solved by XFEM. Errors
and convergence rates are analysed for the different level set representations and numerical
integration procedures as well as their dependence on the contrast of material parameters
at an interface. The developed and analysed numerical procedures are employed in the fol-
lowing chapter to generate numerical models of random MRE particulate microstructures.

The XFEM formulation for weak discontinuities in the stationary magnetic and the coupled Assumptions

magneto-mechanical field problem outlined in this chapter is restricted to small deforma-
tions. This results in a one-sided coupling, i.e. the magnetic field is not influenced by the
deformation but magnetic loads are considered in the solution of the mechanical problem.
The location of the discontinuities is assumed to be identical for the stationary magnetic
and the coupled magneto-mechanical field problem. For simplicity and demonstration pur-
poses, only problems homogeneous in the x3-direction will be considered. In these two-
dimensional problems A1 = A2 = 0 is an appropriate choice and the vector potential A
contains only one non-zero component A3 = A. Since there are no gradients in the third
direction, the Coulomb gauge (2.36) is fulfilled and does not require further consideration.

As it is not necessary to distinguish quantities of the reference and current configuration, Notation

lower case indices (i, j, k, . . . = 1, 2) are generally used in the index notation of vectors
and tensors while capital indices (I, J,K, . . . = 1 . . . n) are used to indicate vector-matrix
notation where n is the length of a vector or a coloumn/row of a matrix, respectively.

3.1 Extended Finite Element Modelling of Weak Discontinuities

Generating numerical models of RVE is a problem in particular if complex local material Motivation

structures are considered. In this case, the application of the standard FEM tends to result
in an extensive modelling and meshing effort. XFEM [9, 145] offers the possibility to use
non-conforming meshes which do not have to be adapted to internal details, e.g. cracks or
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3 Higher-Order Extended Finite Element Method

material interfaces, of the structure under consideration, Fig. 3.1 (a). Hence, it is used here
to model the local heterogeneous material structure of MRE.

3.1.1 Fundamentals of the Extended Finite Element Method

By a local enrichment of the FE approximationEnrichment

ψh,XFEM =
∑

I

NIψI

︸ ︷︷ ︸

FEM

+
∑

J∈N enr

NJψ
∗
JF

︸ ︷︷ ︸

Enrichment

, (3.1)

of the primary field variables ψ = {A, u}, where h characterises the mesh size, discon-
tinuities can be modelled within a non-conforming mesh. The first sum over the product
of shape functions NI and the nodal vector ψI of ordinary degrees of freedom at node I
represents the standard FE approximation. The enrichment consists of additional degrees of
freedom ψ∗

J and an enrichment function F which accounts for the physical behaviour at a
surface of discontinuity. By a suitable choice of the enrichment function, discontinuities in
the approximated functions can be modelled. The different summation indices in equation
(3.1) indicate that only those nodes J ∈ N enr have additional degrees of freedom, whose
support contains a discontinuity.

The implementation of XFEM is realised by the definition of special X-elements which re-X-elements

place the ordinary finite elements intersected by a discontinuity, Fig. 3.1 (a). It is assumed
that the local enrichment can be restricted to a single element domain, so that no further
elements have to be enriched, i.e. blending elements [70] are not required. This has to be
ensured by the formulation of the enrichment function F .

In order to represent surfaces of discontinuity within the non-conforming mesh, the standardLevel set
representation XFEM procedure is to compute the signed distance

ϕI = (xI − xmin) · nmin (3.2)

of the node I with the position vector xI to Γd, Fig. 3.1 (b), where nmin is the unit normal
vector to the interface at xmin pointing in the direction of Ω+. By interpolating the nodal
values ϕI using the shape functions NI

ϕh =
∑

I

NIϕI =







= 0 on Γd

< 0 in Ω−

> 0 in Ω+

, (3.3)

the values of the discretised level set function ϕh can be computed for every point in the
element domain. Hence, the surface of discontinuity Γd is located by ϕh = 0. The works of
Belytschko et al. [9], Sukumar et al. [204] and Stolarska et al. [202] closely link the concept
of implicitly represented internal surfaces by level sets [159] to the XFEM.

In addition to the localisation of the interface, the approximated level set ϕh is used to for-Enrichment
function mulate an enrichment function F . In both, the magnetic and the mechanical field problem, a

material interface represents a surface of weak discontinuity. While the potential A and the
displacement vector u have to be continuous in the element, jumps of the magnetic induction
B (tangential to Γd) and the strain ε (normal to Γd) will occur and have to be modelled by
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3.1 Extended Finite Element Modelling of Weak Discontinuities

(a) x3

x2

x1
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Extended FE

InterfaceΓd

Enriched nodes

(b)
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Figure 3.1: XFEM modelling of discontinuities: (a) intersection of a surface of discontinuity Γd with
a regular mesh defines the location of X-elements and the nodes with additional degrees
of freedom, (b) computation of the nodal level set values as the signed distance to the in-
terface, and (c) modified abs-enrichment F according to [144] as a function of the natural
element coordinates ξ.

the enrichment function. Although the governing equations of both problems are different,
the enrichment function

F =
∑

I

NI |ϕI | −
∣
∣
∣
∣
∣

∑

I

NIϕI

∣
∣
∣
∣
∣

(3.4)

proposed by Moës [144] for modeling weak discontinuities in the mechanical field problem
is also suitable for the magnetic case, Fig. 3.1 (c). Regarding the implementation of ele-
ments with enriched approximations into a commercial finite element code, this so-called
modified abs-enrichment (3.4) is of special interest, as the influence of additional degrees of
freedom at node I is limited to the element domain intersected by a material interface. It
can be seen that F = 0 for all elements, whose nodal values of the signed distance satisfy
ϕIϕJ > 0, I 6= J . As mentioned before, due to this feature of the enrichment no blending
elements are required. The superior convergence of the modified abs-enrichment F over a
simple abs-enrichment

∣
∣ϕh

∣
∣, is reported in [37, 70, 144]. From equation (3.4) it can be seen

that the particular enrichment function depends on the nodal values of the level set ϕI . As
a consequence, the geometry representation directly enters the approximation of the field
variables. Therefore, a closer link between approximation and geometry exists than in the
case of strong discontinuities.

3.1.2 Elements for Weak Discontinuities in Magneto-Mechanical Problems

Due to the considered one-sided coupling, which is limited to magnetic loads entering the Solution
schememechanical equilibrium condition, the finite element analyses of both problems are per-

formed consecutively starting with the magnetic boundary value problem. The magnetic
loads are then computed from the obtained magnetic solution and applied in the mechanical
pass.

A weak form of the stationary magnetic boundary value problem is obtained from multi- Weak forms

plying equation (2.31) with a weight function which can be identified as a virtual magnetic
potential δA. Hence, the principle of virtual magnetic work

∫

Ω

HiδBi dV −
∫

Ω

jδA dV −
∫

∂Ωk

k̂δA dS = 0 (3.5)

is obtained. The first term represents the internal virtual work and the latter two are the
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3 Higher-Order Extended Finite Element Method

external virtual works of the currents j and k̂, respectively. The weak form of the mechanical
equilibrium condition

∫

Ω

(Eσij + σ̂ij) δεij dV −
∫

Ω

ρfjδuj dV −
∫

∂Ωp

p̂jδuj dS = 0 (3.6)

is derived from equation (2.48). The involved terms can be interpreted as the internal vir-
tual work of the pseudo-mechanical and -magnetic stresses and the external virtual work
of the mechanical body forces and surface loads accounting for mechanical and magnetic
contributions from the exterior of the domain Ω.

The spatial discretisation of the domain Ω ≈ Ωh =
⋃ne

I=1 ΩIe is performed by a regularDiscretisation

mesh with ne quadrilateral elements, both ordinary FE and X-elements with an enriched ap-
proximation, Fig. 3.1 (a). The ordinary isoparametric elements use the same shape functions
NI(ξ) for mapping the element geometry from the natural ξ (with |ξi| ≤ 1, i = 1, 2) to
the physical coordinates x as well as for the approximation of the primary field variables
ψ = {A, u} in the element domain Ωe.

While the mapping of the geometry is retained for the X-elements in the case of small defor-Approximation

mations, the enriched approximation

ψh,X-element(ξ) =
nn∑

I=1

NI (ξ) [ψI +ψ
∗
IF (ξ)] = N∗

ψ
(ξ)ψ∗

e
(3.7)

of the field variables is used to model discontinuities within the element domain. As a conse-
quence, all nn nodes of the element have a vector of additional degrees of freedom ψ∗

I which
results in a subparametric element formulation as far as small deformations are considered.
Different from the isoparametric elements, N∗

ψ
is a matrix that contains shape functions and

products of shape and enrichment functions. The components of the row vector ψ∗
e

are the
ordinary and additional degrees of freedom of the X-element.

The approximations of the magnetic induction and the strain in the ordinary and the X-Derivatives

elements are given by

Bh(ξ) = B
A
(ξ)Ae , Bh,X-element(ξ) = B∗

A
(ξ)A∗

e (3.8)

εh(ξ) = B
u
(ξ)ue , εh,X-element(ξ) = B∗

u
(ξ)u∗

e . (3.9)

The matrices B∗
A

and B∗
u

contain the partial derivatives of the shape and enrichment functions
with respect to the natural coordinates and account for the mapping of the geometry.

The required element matrices and vectors of the X-elements are obtained from insertingDiscrete
system of
equations

the approximations of equations (3.7) - (3.9) into the corresponding weak forms. In vector-
matrix notation are given by

∫

Ω

δBTH dV −
∫

Ω

δAT j dV −
∫

∂ΩK

δAT k̂ dS = 0 (3.10)

∫

Ω

δεT Eσ dV −
∫

Ω

(
δuTρf − δεT σ̂

)
dV −

∫

∂Ωp

δuT p̂ dS = 0 . (3.11)
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3.2 Implicit Interface Representation by Higher-Order Level Sets

The discrete formulations of the problems

δA∗T
{

ne⋃

I=1






∫

ΩIe

B
∗T

A
C

A
B

∗

A
dV






︸ ︷︷ ︸

K∗

A

A∗
−

ne⋃

I=1






∫

ΩIe

N
∗T
A j dV −

∫

∂ΩIe

N
∗T
A k̂ dS






︸ ︷︷ ︸

−P∗

A

− J∗
}

=0

(3.12)

δu∗T
{

ne⋃

I=1






∫

ΩIe

B
∗T

u
C

u
B

∗

u
dV






︸ ︷︷ ︸

K∗

u

u∗
e−

ne⋃

I=1






∫

ΩIe

(

N
∗T

u
ρf −B

∗T

u
σ̂

)

dV −

∫

∂ΩIe

N
∗T

u
p̂ dS






︸ ︷︷ ︸

−P∗

u

− F∗
}

=0

(3.13)

are obtained from a standard Galerkin or Ritz approximation. The operator
⋃ne

I=1 indicates
the assembly of contributions from all ne elements ΩIe. In the equations above, the constitu-
tive matrices C

A
and C

u
are obtained from a vector-matrix representation of linear magnetic

and mechanical constitutive relations according to equations (2.75) and (2.93) specified in
Section 2.6. In the case of material non-linearities they have to be replaced by appropriate
tangent matrices and an update algorithm for the constitutive variables is required. The vec-
tors J∗ and F∗ account for discrete nodal loads. Eventually, the systems of discrete equations

K∗
A
A∗ = P∗

A + J∗ and K∗
u
u∗ = P∗

u + F∗ (3.14)

follow from the argument of arbitrary virtual potentials and displacements.

3.2 Implicit Interface Representation by Higher-Order Level Sets

In contrast to standard isoparametric finite elements, the representation of the geometry and Motivation

the approximation of the field variables can be separated, because the mesh is independent
of internal details such as voids, material interfaces or cracks. In this way problems related
to the meshing of complex geometries seem to be bypassed. However, these difficulties
are shifted to the representation of interfaces in non-conforming meshes and the numerical
integration of the weak form [11, 144]. For the evaluation of the integrals of the weak forms
in an X-element the interface intersecting the element domain has to be located, i.e. the
nodal values of the level set representation have to be computed. In this section two different
procedures for the calculation of the nodal level set values will be outlined for linear and
quadratic approximations.

The combination of XFEM and level sets originated from linear or bilinear discretisations Refined linear
subgridsof the level set function. Nevertheless, curved interfaces are of major importance espe-

cially with respect to the generation of complex microstructure models and have motivated
quadratic or higher-order XFEM formulations. One approach considered in the literature is
to use a linear discretisation of the level set which is defined on a highly refined triangular
subgrid derived from the initial mesh (background mesh) in the vicinity of the discontinuity
[56, 127, 147]. In addition to the implicit representation of curved boundaries, the subgrid
is used to integrate the weak form by applying standard quadrature rules. Higher-order ap-
proximations of field quantities ensure that the coarse background mesh is able to represent
the solution.
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(a) (b)
Triangular and quadrilateral
integration subdomains

Intersection points of level set
and element edges

Material subdomains

Figure 3.2: Global level set representation of a discontinuity Γd: (a) computation of global level set
values ϕI at nodes, and (b) subdivision into integration subdomains.

As this method can be hardly combined with the modified abs-enrichment for weak discon-Curved
subdomains tinuities, a second technique proposed by Cheng and Fries [37] is applied in this work. In

this approach higher-order level set representations of the interface corresponding to the or-
der of the underlying finite element mesh are used in conjunction with curved integration
subdomains which results in a closer link of geometry and approximation than in the pre-
vious method. However, from convergence studies in the aforementioned papers it can be
concluded that the resolutions of geometry and approximation have to be balanced, i.e. the
approximation mesh must be able to reproduce the fields resulting from certain geometries
which is inherent to the second method.

3.2.1 Global Level Set

The standard procedure for the localisation of the discontinuity in the non-conforming mesh
is to compute the nodal values ϕI of the signed distance to the interface Γd for each node I in
the mesh as exemplarily shown in Fig. 3.2 (a) for four quadrilateral elements, three of them
are intersected by a discontinuity of circular shape. The interpolation of these values over
the element domains using the standard shape functions leads to an implicit representation
of the interface ϕh = 0 which is slightly curved. Therefore, ϕh = 0 will generally be
inconsistent with the subdivision of the element into integration subdomains with straight
edges, Fig. 3.2 (b).

3.2.2 Element Local Level Set

As analytical expressions for the geometry of interfaces are available only in special cases,Motivation

e.g. for an ellipse or a sphere, the computation of the nodal level set values can be cumber-
some. Efficient algorithms for complex interface geometries therefore have to be localised,
i.e. the level set values have to be computed from limited information on the interface in
the vicinity of the considered element. Based on this idea, an automated model generation
algorithm which transforms a geometric model of the local material structure into an XFEM
mesh has been developed in a previous publication [114]. Pereira et al. used similar proce-
dures for the representation of cracks in [163].

In the bilinear case, Fig. 3.3, the original interface is converted into straight segments definedBilinear
interface
representation

by the intersection points of a discontinuity Γd with the edges of the structured mesh. The
following algorithm is applied element by element:
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3.2 Implicit Interface Representation by Higher-Order Level Sets

(a) (b)
Triangular and quadrilateral
integration subdomains

Intersection points of
and element local level set

with element edges

Material subdomains

Figure 3.3: Element local level set representation of a discontinuity Γd: (a) approximation of the
original interface by straight segments and computation of different nodal level set values
for two adjacent elements, and (b) elementwise level set approximation ϕh,J = 0 and
subdivision into integration subdomains.

(i) Find the points of intersection of the interface Γd with the element edges, indicated by
crosses in Fig. 3.3 (a).

(ii) Obtain a linear parameter representation for the straight segment connecting the inter-
section points.

(iii) For each node I in element J compute the element local nodal level set values ϕJI as the
signed distance to the parameter function of step 2. The interface is hence implicitly
represented by ϕh,J =

∑

I NIϕ
J
I = 0, Fig. 3.3 (b).

(iv) Subdivide the element domain into triangular and quadrilateral integration subdomains.
The vertices of the tesselation are given by the points of intersection and the element
nodes.

In this approach the interface is, irrespectively of its original shape, approximated by a Incompatibili-
tiesstraight line in each X-element. The implicit interface approximation will therefore be con-

sistent with the subdivision of the element domain used for integration purposes, Fig. 3.3 (b).
However, the element local level set is defined by two different nodal values ϕ1

I and ϕ2
I , one

for each of the two elements 1 and 2 in Fig. 3.3 (a). As illustrated in Fig. 3.4 (b), these dif-
ferent nodal values ϕ1,2

I in the adjacent elements cause a loss of interelement continuity of
the enrichment function F , defined by equation (3.4), and hence the primary field variables.
Convergence studies in Section 3.4.1 show that the error and the convergence rate in the en-
ergy norm are identical for the global and element local versions of interface approximation.
But the error and convergence in the L2 norm are deteriorated by the elementwise level set
representation.

The element local level set representation is now applied higher-order elements, Fig. 3.5. It Quadratic
interface
representation

is expected that the increased variability of the higher-order basis will reduce the geometric
discretisation error between the original interface Γd and its representation ϕh,J = 0. In
addition, an improved interelement continuity of the modified abs-enrichment and the pri-
mary field variables is anticipated. The procedure is identical to the linear case except for
the following changes:
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Figure 3.4: Implicit bilinear interface representation over four quadrilateral elements: (a) comparison
of global and element local level set representation, (b) C0 continuity of the modified
abs-enrichment function F according to equation (3.4) for the global level set, and (c) C0

discontinuity for the element local level set. The loss of interelement continuity is caused
by different nodal level set values in the two adjacent elements.

(a) (b)
Curved triangular and quadrilateral
integration subdomains

Material subdomains

Midpoints and intersection points of
element local level set
with element edges

Figure 3.5: Quadratic, element local level set representation of a discontinuity Γd: (a) approximation
of the original interface by quadratic segments and computation of different nodal level set
values for two adjacent elements, and (b) elementwise level set approximation ϕh,J = 0
and subdivision into curved integration subdomains.

(i) In addition to intersection points with the element edges, find a third point in the middle
of the interface, Fig. 3.5 (a).

(ii) Fit a quadratic parameter function through the intersection points and the midpoint.

(iii) ϕJI are signed distances to the quadratic parameter function of step 2, Fig. 3.3 (a).

(iv) Obtain curved integration subdomains, defined by the representation ϕh,J and the ele-
ment edges, Fig. 3.3 (b).

From Fig. 3.6, which shows a comparison of the interface representation for global and local
level sets, it can be found that both versions provide a reasonable interface approximation
even for the coarse discretisation used in the four element example. The original discontinu-
ity Γd and its global and element local level set representation are virtually indistinguishable.
Compared to the bilinear version, Fig. 3.4, problems with interelement discontinuities in the
case of the element local level set are drastically reduced. The apparently very good per-
formance of the quadratic element local approach will be further verified and quantified in
Section 3.4.1.
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Figure 3.6: Implicit quadratic interface representation over four quadrilateral elements: (a) compar-
ison of the global and the element local level set representation, (b) C0 continuity of
modified abs-enrichment function F for the global level set, and (c) improved interele-
ment continuity for the element local level set in comparison to bilinear representations,
Fig. 3.4.

3.3 Numerical Integration of Higher-Order Elements

The integrals of the element matrices will involve discontinuous kernel functions, because Subdivision

discontinuities are represented in a single element domain. Since Gauss quadrature rules
are derived from the integration of polynomials, they will generally produce poor results
when applied to non-polynomial functions. This problem is commonly handled by a subdi-
vision of the element Ωe into nint integration subdomains Ωint. The integration of the weak
form

∫

Ωe
. . . dV =

∑nint
I=1

∫

ΩintI
. . . dV is then performed in each of the subdomains using

standard quadrature rules.

To avoid or at least to reduce the necessary partitioning of the element domain, other meth- Alternatives

ods have been proposed to handle the numerical integration of discontinuous functions. In
an earlier approach by Ventura [213] discontinuous, non-polynomial functions are replaced
by equivalent continuous polynomials which can be integrated by standard quadrature rules
without subdividing the element. More recent developments can be grouped into four major
approaches, conformal mappings [154, 155], transformations that resolve certain singulari-
ties [148, 161], generalised quadratures for polygons [149, 150, 151] and strain smoothing
techniques [15, 16, 35].

Natarajan et al. [154, 155] apply Schwarz-Christoffel conformal mapping techniques to Mapping
techniquesintegrate the discontinuous or singular weak form. The polygonal subdomains resulting from

the intersection of a discontinuity with the element are mapped to unit discs where integration
is carried out using midpoint or Gauss-Chebyshev quadrature rules. In this fashion, the need
to further subdivide the element domain into triangular quadrature subcells is omitted. The
major drawback of the method is its limitation to the two-dimensional case as it is based on
mappings on the complex plane. In a similar way, accurate results can be obtained by using
transformations that resolve the singularity. A generalised duffy transformation, i.e. from a
triangle to a unit square, is used in [148] to integrate vertex and power singularities. Park
et al. [161] developed a similar mapping method applicable to two- and three-dimensional
problems with triangular and tetrahedral meshes.

Different from transformations which remove the singular integrands, Mousavi and Suku- Lasserre’s
methodmar [151] apply adapted quadrature rules for elements with strong discontinuities based on

integration over arbitrarily shaped polygons [150]. In [149] the same authors use Lasserre’s
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3 Higher-Order Extended Finite Element Method

integration [124, 125] for the definition of adapted quadrature rules for convex polygons by a
least square optimisation and prove its applicability to discontinuous functions. The method
will be briefly outlined below and numerical results are presented in Section 3.4.2.

In order to avoid integration subdomains, Bordas et al. [16] investigated the combination ofStrain
smoothing strain smoothing and XFEM. Strain smoothing was first used with meshfree methods and

later in the framework of mesh based methods [131]. Convergence studies in [15] illustrate
that the smoothed version of XFEM leads to comparable convergence rates and errors in the
case of polynomial integrands, i.e. enrichments used for strong and weak discontinuities and
linear or bilinear elements. On the other hand, singular enrichments as they are used at a
crack tip deteriorate the error level while convergence rates seem to be unaffected. So far, no
detailed investigations on the numerical properties exist for higher-order elements. However,
the results presented in [15] for quadratic smoothed FEM formulations indicate that only a
suboptimal order of convergence is obtained for quadrilateral elements in the energy norm
(1.98 for FEM vs. 0.98 for smoothed FEM). Convergence studies carried out here confirm
these results also for higher-order X-elements.

In Section 3.4.2 the performance of different integration schemes for discontinuous inte-Used methods

grands will be investigated for bilinear (Q4) and quadratic quadrilateral (Q8) elements. In
particular, the subdivision of the element into curved integration subdomains [37], Lasserre’s
method [149] as well as strain smoothing [15] are considered. While the technique to use
curved integration subdomains has already been mentioned in connection with higher-order
interface representations, some details on the implementation of the latter two methods are
given below. More details can be found in [KMG+13].

3.3.1 Integration over Polygonal Subdomains

Lasserre’s method allows for the integration of a continuous positively homogeneous func-Concept

tion f , i.e. f(λx) = λqf(x) for all λ > 0, on a convex n-dimensional polytope Ω. If f is
continuously differentiable, the integration can be reduced to a weighted integration over the
(n− 1)-dimensional faces ΓI

∫

Ω

f(x)dnx =
m∑

I=1

dI
n+ q

∫

ΓI

f(x)dn−1x (3.15)

with the algebraic distance dI of ΓI from the origin [124, 125]. In this way the integration of
subdomains with complex shape is transferred to boundary integrals which can be evaluated
by standard Gauss quadrature. That is, the triangulation of two-dimensional polygonal mate-
rial subdomains is avoided. However, equation (3.15) only holds for homogeneous functions
but the integration of the weak form involves linear combinations of homogeneous func-
tions g(x) =

∑p
K=1 gK(x). This requires the individual integration of p functions gK . With

respect to the application of the method in context of a finite element formulation gK are
usually not known explicitly which requires an extension of Lasserre’s method presented by
Mousavi and Sukumar [149].

In order to apply Lasserre’s integration, m discrete points xI ∈
{
x|ϕh(xI) = 0

}
on the levelApplication to

XFEM set representation of the interface are computed, Fig. 3.7. Together with element nodes and
intersection points with element edges these points define a polygonal representation of the
material subdomain in which Lasserre’s integration can be used. Discontinuous integrands
could in principle be handled by simply defining polygons on each side of the interface in
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3.3 Numerical Integration of Higher-Order Elements

(a)

Material subdomains

Local convex polygonal subdomain (b)

Figure 3.7: Application of Lasserre’s integration method to higher-order XFEM: (a) polygons repre-
senting material subdomains in X-elements. Boundary integrals have to be evaluated over
the edges of the convex material subdomain and the whole element, and (b) splitting the
integration of a discontinuous function F into two integrals with continuous integrands
F± (1D illustration).

which continuous polynomials can be integrated. However, considering curved interfaces,
X-elements will generally be split into a convex and a concave material subdomain. Since the
presented method is only applicable to convex polygons, the integration of a discontinuous
function F is split into an integral over the whole element Ωe and the convex subdomain Ω−

as illustrated for the 1D case in Fig. 3.7 (b). Lasserre’s integration is applied to both, the
element and subdomain integration.

3.3.2 Strain Smoothing

The basic idea of strain smoothing is to average the discretised derivatives γh of a generalised Concept

primary field variable ψ over so called smoothing cells Ωc, Fig. 3.8. The integral over the
subdivided element can be replaced by the integration over the boundaries of smoothing cells
which also removes the influence of the Jacobian of the geometric map. Depending on the
choice of the smoothing cells a reduction of the computational effort related to quadrature of
the weak form can be expected.

The smoothed field of the derivatives which is constant in each cell is given by Smoothing of
derivatives

γ̄hc =

∫

Ω

γh(x)Φ(x− xc) dV with Φ(x− xc) =

{

1/Vc ∀ x ∈ Ωc

0 ∀ x /∈ Ωc
, (3.16)

where xc is an arbitrary point in Ωc and Vc is the volume of the cell. Φ(x− xc) is the typical
choice for the smoothing function satisfying Φ ≥ 0 and

∫

Ω
Φ(x)dV = 1. With respect to the

application to magneto-mechancial field problems, the generalised tensor quantity γ stands
for the symmetric strain tensor ε or the vector of magnetic induction B.

According to equations (3.8) and (3.9) the discrete enriched derivatives are given by γh = Application to
XFEM

B∗ψ∗. Strain smoothing results in an averaged enriched matrix of partial derivatives B̄
c
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(a)

Material subdomains

Triangular smoothing cells (b)

Figure 3.8: Application of strain smoothing to higher-order XFEM: (a) subdivision of the element
domain into triangular smoothing cells Ωc, and (b) smoothed generalised derivatives γ̄hc
in smoothing cells.

being constant in each smoothing cell Ωc

γ̄hc =

∫

Ω

B∗(x)Φ(x− xc)dV ψ
∗ =

1

Vc

∫

Ωc

B∗dV ψ∗ = B̄
c
ψ∗. (3.17)

This smoothing is of interest for XFEM because the matrices B∗ contain terms of the form
∂NI/∂xj and ∂(NIF )/∂xj . Using the divergence theorem, smoothing integrals over these
partial derivatives over Ωc

∫

Ωc

∂NI

∂xj
dV =

∫

Γc

NInjdS and
∫

Ωc

∂(NIF )

∂xj
dV =

∫

Γc

NIFnjdS (3.18)

can be transformed into surface integrals over products of shape functions or enrichment
functions with the outward unit normal vector n of the boundary Γc of smoothing cells
[15, 16]. The coefficient matrices of a strain smoothed XFEM K̄

e
are finally obtained without

explicitly computing any domain integrals from the contributions of each smoothing cell

K̄
e
=

∫

Ωe

BTD
I
B dV =

nc∑

I=1

∫

ΩcI

B̄
T

cI
D
I
B̄

cI
dV =

nc∑

I=1

B̄
T

cI
D
I
B̄

cI
VcI , (3.19)

where D
I
, B̄

cI
and VcI are the material matrix, the smoothed discrete matrix of partial deriva-

tives and the volume of the Ith smoothing cell, respectively. Hence, the need to compute and
integrate derivatives of shape functions including the influence of isoparametric mappings
are eliminated and the methods are known to be less sensitive to mesh distortion.

For X-elements with straight interfaces a single smoothing cell with straight edges per ma-Choice of
smoothing
cells

terial subdomain would be sufficient to represent the topology. This would eliminate the
need to further subdivide the material domains into integration triangles. Since this choice
causes spurious modes similar to reduced integration, at least two smoothing cells have to be
used in each subdomain [15]. In order to prevent spurious modes and to sufficiently repro-
duce curved material subdomains, higher-order element formulations require an even larger
number of smoothing cells per subdomain. In this case, smoothing cells can be created us-
ing Delaunay triangulation based on the element nodes and discrete interface points similar
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(a) /mm
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Figure 3.9: Magnetic field lines obtained from the numerical solution of the first demonstration prob-
lem outlined in Section 2.7: (a) solution on a mesh of 32 × 32 elements, and (b) 256
× 256 elements. The boundary of the inclusion is indicated by a black line. Grey lines
showing the regular mesh have been omitted for the finer discretisation for clarity.

to the Lasserre’s method as illustrated in Fig. 3.8 (a). However, the principal advantage of
avoiding a further subdivision of the material subdomains is lost.

3.4 Convergence Analysis

In this section the applicability of XFEM to the modelling of weak discontinuities in the Parameters

stationary magnetic and the coupled magneto-mechanical field problem is to be demonstrated
and numerical properties are studied in terms of errors and convergence rates. The first
demonstration problem outlined in Section 2.7 is used for verification purposes, Fig. 2.3 (a).
Analytic and numerical results in this section have been obtained for the following set of
parameters:

a = 5mm J = 10A E− = 210GPa

R = 2.49mm µ−
r = 1000 ν− = 0.3.

Plots of the numerical solutions obtained for the stationary magnetic boundary value problem XFEM solution

are shown for two different discretisations of 32 × 32 in Fig. 3.9 (a) and 256 × 256 X- and
ordinary finite elements in Fig. 3.9 (b). From the plots of the magnetic field lines it can
be seen that even the coarse mesh of 32 × 32 elements is able to reproduce the principal
characteristics of the solution of the stationary magnetic field problem, for instance the flux
lines entering the highly permeable cylinder at an angle of approximately 90°. Compared to
the solution obtained from the fine mesh, two major sources of error can be identified. The
first one is directly related to the X-elements in the vicinity of the outline of the cylinder
and occurs due to the large differences in the relative magnetic permeabilities entering the
element matrices by µ−1

r . The error which appears through non-smooth magnetic field lines
is only observable in the highly permeable cylinder. A second source of error is caused by
the wire modelled by a nodal current which represents a singularity of the magnetic field
problem. The error is clearly recognisable by the deviation from circularity of the magnetic
field lines in the vicinity of the wire, Fig. 3.9 (a).
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3 Higher-Order Extended Finite Element Method

The order of convergence is analysed for two different measures, the L error of the magneticError norms

potential

||A||L2 =

[∫

Ω

(
Ah − A

)2
dV

∫

Ω
A2 dV

]1/2

(3.20)

is computed from with respect to the exact solution A stated explicitly in [KMG+13] which
allows for a comparison to [37]. The normalised error of derivatives of the primary field
variable

||A||en =

[∫

Ω
1
µ

(
Ah,k − A,k

)2
dV

∫

Ω
1
µ
A,k

2dV

]1/2

(3.21)

is measured by the energy norm. As indicated by the name this is the average relative error
of the magnetic energy in the considered domain Ω. In addition, the magneto-mechanical
coupling will be assessed by the relative error

|∆F | =
∣
∣
∣
∣
∣

F h
1 cylinder − F1 cylinder

F1 cylinder

∣
∣
∣
∣
∣

(3.22)

of the resulting force per unit length acting on the cylinder. The exact solution F1 cylinder is
available from [61] and [KMG+13].

3.4.1 Approximation Order and Interface Representation

The convergence analysis is performed for four different cases which can be distinguishedInvestigated
cases by the order of approximation and the procedure used for level set computation in the X-

elements (Section 3.2):

(i) bilinear (Q4) elements and global level set values,

(ii) bilinear (Q4) elements and element local level set values,

(iii) quadratic (Q8) elements and global level set values,

(iv) quadratic (Q8) elements and element local level set values.

For each version the error measures mentioned above are computed for six discretisations of
the domain Ω with 2n × 2n, n = 4 . . . 9 square elements. Additionally, the errors have been
calculated for three different relative permeabilities of the inclusion. The value µ−

r = 101

allows for a comparison with other publications like [144, 37] using a ratio of 10 in material
properties. Further investigated values are µ−

r = 103 and µ−
r = 106, the latter representing

an upper bound for technically possible relative permeabilities.

The obtained results are plotted against the mesh size h for µ−
r = 103 in Fig. 3.10. TheResults

numerical values of the orders of convergence are summarised in Tab. 3.1. Since asymptotic
convergence is observed only for higher resolutions, the numerical values of the convergence
rates are computed using only the four finest meshes. Optimal orders of convergence in the
energy norm ||A||en are 1.0 and 2.0 for bilinear and quadratic elements, respectively. For the
L2 norm ||A||L2 values of 2.0 and 3.0 are expected.

At first, the bilinear elements and the different versions for the computation of the levelBilinear
elements set values will be discussed. The error in the L2 norm of the magnetic potential is clearly
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(a) (b)

(c)

Figure 3.10: Results of the convergence analysis for different level set representations (µ−
r = 103):

(a) L2 norm ||A||L2 of the magnetic potential, (b) energy norm ||A||en, and (c) relative
error |∆F | of the resulting force per unit length acting on the cylinder plotted over the
mesh size parameter h.

Table 3.1: Convergence rates for the error measures ||A||L2 , ||A||en and |∆F | obtained for different
approximation orders, level set representations, and permeabilities.

error measure ||A||L2 ||A||en |∆F |
relative permeability µ−

r 101 103 106 101 103 106 101 103 106

(i) Q4 global 2.00 2.37 1.63 1.02 1.03 1.03 1.16 1.14 1.14

(ii) Q4 local 1.99 1.81 0.83 1.01 1.02 0.92 1.18 1.17 1.16

(iii) Q8 global 2.47 2.68 2.35 1.64 1.84 1.99 1.91 1.91 1.91

(iv) Q8 local 2.47 2.78 2.80 1.64 1.84 2.17 1.91 1.91 1.91

47



3 Higher-Order Extended Finite Element Method

influenced by the used level set approach, Fig. 3.10 (a). The accuracy of the element lo-
cal approach is deteriorated by the problems of interelement continuity outlined in Section
3.2. It is therefore one order of magnitude below the global level set approach. In addi-
tion, it cannot be recommended to use the bilinear elements with element local level sets for
extremely high contrasts of the permeability as the order of convergence decreases signif-
icantly, Tab. 3.1. Regarding the energy norm ||A||en it can be observed that both, the error
and the orders of convergence, are virtually independent of the computation of the level set
values, Fig. 3.10 (b). Optimal orders of convergence are obtained, Tab. 3.1.

For quadratic approximations a very good performance of the element local level set ap-Quadratic
elements proach is noticed. That is, both versions produce almost identical errors and orders of con-

vergence. However, the element local version is easier to handle due to its locality. Different
from the global approach, the orders of convergence of the L2 and energy error increase
with the ratio of relative permeabilities µ−

r /µ
+
r . The maximum and close to optimal rates are

obtained for µ−
r = 106, Tab. 3.1.

In summary, the use of quadratic shape functions does not yield optimal convergence ratesDiscussion

for any of the investigated relative permeabilities, Tab. 3.1. A comparable study of a mechan-
ical problem with a ratio of Young’s moduli of 10 between inclusion and matrix, performed
by Cheng and Fries [37], reports values of 2.4 and 1.4 in the L2 and the energy norm, re-
spectively. In this study biquadratic elements (Q9) and subdivision using four points for the
interface approximation have been used which is slightly different from the present investi-
gation. While the convergence rate for the L2 norm observed here is in good agreement to
their results, the energy norm converges more rapidly in the present study, Tab. 3.1.

Because no analytic solution was available for the mechanical fields at the time of the study,Coupled
problem the solution of the coupled field problem has to be assessed by the convergence of the rel-

ative error of the resulting force per unit length acting on the cylinder, Fig. 3.10 (c). Its
computation is based on the pseudo-mechanical stress tensor Eσ and therefore depends on
the gradient of the displacement field. However, the error is also influenced by the gradients
of the magnetic field, as σ involves the first-order partial derivatives of A. That is why the
improved approximations of the magnetic potential and the geometry will come into effect
twice which results in convergence rates of 1.14 . . . 1.18 for the bilinear and 1.91 for the
quadratic elements. As only gradients of the primary field variables are analysed, virtually
no difference between the different approaches of level set approximation can be discovered.
Furthermore, the convergence rates of |∆F | are independent of the permeability.

3.4.2 Numerical Integration

The convergence analysis regarding the influence of numerical integration schemes is per-Investigated
cases formed for six different cases, distinguished by the order of approximation (Q4/Q8) and the

integration procedure used in the X-elements:

(i) Subdivision into triangular and quadrilateral integration subdomains (IS),

(ii) Lasserre’s integration (L),

(iii) Strain smoothing (SM).

It is noted that standard Gauss quadrature is applied in all ordinary finite elements. The con-
vergence studies are performed using the same discretisations as in Section 3.4.1. Results
are given for the ratio of the relative permeabilities µ−

r /µ
+
r = 103 and the use of element
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(a) (b)

(c)

Figure 3.11: Results of the convergence analysis for different integration procedures (IS – integra-
tion subdomains, L – Lasserre’s integration, SM – strain smoothing, µ−

r = 103): (a)

normalised L2 norm ||A||L2 of the magnetic potential, (b) energy norm ||A||en, and (c)

relative error |∆F | of the resulting force per unit length acting on the cylinder plotted
over the mesh size parameter h.

local level sets. In the case of Q8 elements, curved triangular and quadrilateral integration
subdomains are used, Fig. 3.5 (b). For Lasserre’s integration and strain smoothing the in-
terface in the element is divided into two segments for Q4 elements. For Q8 elements with
curved interfaces the required number of segments per element is chosen to ensure equiva-
lent integration results from the polygonal approach (Lasserre’s method) and the subdivision
into integration subdomains. A number of 20 segments leads to identical results. However,
on further numerical inspection it was found that already 5 segments per element, despite
a slightly worse integration error, produce the same error and convergence behaviour with
respect to L2 and energy norm as 20 segments. In order to have comparable results the same
number of interface segments is used with strain smoothing.

The obtained results are plotted against the mesh size h for µ−
r = 103 in Fig. 3.11 and the con- Lasserre

integration vs.
subdomains

vergence rates are summarised in Tab. 3.2. As in the previous section, numerical values are
computed using only the four finest meshes. At first, the performance of Lasserre’s method
(L) will be compared to the subdivision into integration subdomains (IS). From Fig. 3.11 it
can be deduced that Lasserre’s method and the use of integration subdomains show equal
performance regarding the error level for L2 and energy norm as well as convergence rates
for both Q4 and Q8 elements, if a fine segmentation of the interface is used. The computa-
tion time for preprocessing and integration for Lasserre’s method is longer and scales with
an average factor of 2.6 (5 segments per element) compared to integration subdomains. De-
spite the fact of being computationally more expensive, the method is advantageous from a
methodic point of view since the need for a further element subdivision is eliminated which
is particularly interesting for 3D implementations of higher-order methods.
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3 Higher-Order Extended Finite Element Method

Table 3.2: Convergence rates of error measures ||A||L2 , ||A||en and |∆F | obtained for different inte-
gration procedures and approximation orders.

error measure ||A||L2 ||A||en |∆F |
integration procedure Q4 Q8 Q4 Q8 Q4 Q8

(i) Integration subdomains 1.81 2.78 1.02 1.84 1.17 1.92

(ii) Lasserre’s method 1.81 2.78 1.02 1.84 1.17 1.92

(ii) Strain smoothing 1.86 2.49 1.02 1.32 1.17 2.08

For strain smoothing a mixed picture can be asserted. A good overall performance is ob-Strain
smoothing served for Q4 elements in comparison to the other methods. In addition, the results are in

good agreement with [15]. For the L2 norm Bordas et al. report an order of 1.69 . . . 1.79
for the strain smoothed XFEM which is slightly less than the value of 1.86 obtained here,
Tab. 3.2. The orders of convergence for the energy norm are approximately 1.3 compared to
1.02. As expected from the performance of strain smoothing with ordinary Q8 elements in
[15], a loss of accuracy can be discovered for Q8 X- and ordinary elements, especially re-
garding the energy norm, Fig. 3.11 (b). The fairly good performance in conjunction with Q8
elements regarding the L2 norm and the coupled problem must be assessed having in mind
that strain smoothing is only applied in X-elements, while Gauss quadratures are used in
standard isoparametric elements. The preprocessing and integration time of strain smooth-
ing scales with an average factor of 1.25 compared with integration subdomains which is
faster than Lasserre’s method.

3.5 Conclusion

In this section one of the first applications of XFEM to non-mechanical boundary valueSummary

problems has been presented. A one-sided magneto-mechanical coupling due to magnetic
stresses has been considered and studied for a two-dimensional demonstration problem. Al-
though both bilinear (Q4) and quadratic (Q8) elements are considered for comparative pur-
poses, the major part of this chapter was devoted to the review and the development of
methods for level set representation and numerical integration of the weak form for curved
interfaces in higher-order XFEM formulations.

In order to reduce the complexity of the representation of curved interfaces, an element localInterface
representation approach has been developed which allows for an automated element by element computa-

tion of the level set values and also ensures the compatibility of the level set representation
and the integration subdomains. For Q4 elements equal orders of convergence in the energy
norm are observed while the standard approach shows a superior convergence behaviour in
the L2 norm. In the quadratic cases the results from both methods are identical for reasonable
discretisations.

In addition to the interface representation, numerical integration procedures for curved inter-Quadrature

faces and material subdomains have been addressed. Lasserre integration and strain smooth-
ing have been applied in conjunction with higher-order interface representations. From the
obtained results it can be concluded, that only Lasserre’s method offers the possibility of
avoiding the subdivision of material domains into integration subdomains. This advantage
becomes particularly interesting for 3D implementations as presented in [152], even though
the computational costs increase compared to the division into integration subdomains. The
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3.5 Conclusion

application of strain smoothing to Q8 elements cannot be recommended for performance
reasons and due to the fact that a fine grid of smoothing cells is required to avoid spurious
modes and to properly capture a curved interface.

While mechanical problems feature typical ratios in the order of 101 between the stiffness Contrast in
material
properties

properties of different materials, there are much higher ratios to be found in common mag-
netic applications. Therefore, the dependence of errors in XFEM on the magnitude of the
jump of material properties across a discontinuity has been investigated. For ratios up to
106 a significant impact on the order of convergence in the L2 and energy error norm of the
magnetic field problem is found. This dependence turned out to be qualitatively different for
the presented discretisations and level set procedures.

In the following Chapter, the described methods will be applied to model the heterogeneous Application

material structure of the magnetoactive composite material outlined in Section 1.1. XFEM
models of representative volume elements are used in combination with homogenisation
techniques to predict the effective magnetic and mechanical material behaviour of the com-
posite using only geometrical and constitutive information from the micro- and mesoscale.
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4 Effective Response of Magnetorheological
Elastomers [SKG+13]

In this chapter XFEM is applied to generate numerical models of Representative Volume Introduction

Elements (RVE) which are characteristic of the local material structure of a specific MRE.
Based on these RVE models the effective coupled magneto-mechanical response of the com-
posite is predicted numerically by a homogenisation procedure. The scale transition process
is based on the energy equivalence condition which is satisfied by periodic boundary condi-
tions for the primary magnetic and mechanical field variables, i.e the magnetic potential and
the displacements.

4.1 Homogenisation Approach

This section presents an algorithm for the computation of the macroscopic magnetic and cou- Volume
averagespled magneto-mechanical response of MRE. The underlying microscopic structure is repre-

sented by a two-dimensional RVE of rectangular shape with two pairs of opposite boundaries
∂ΩI±, I = 1, 2. All nodes at the boundary of the discrete model can be grouped into node
pairs which are connected by two vectors ∆xI , Fig. 4.1 (a). Volume averages

〈(·)〉 := 1

VRVE

∫

Ω

(·) dV (4.1)

over the RVE domain Ω with the volume VRVE are used to relate the local field variables in
the RVE to effective values on a larger length scale, e.g. the macroscale, which are labelled
by (̄·).
The basis of the presented scale transition process is the equivalence of the effective virtual Equivalence

criterionwork and an average virtual work for the heterogeneous microstructure [94]. These so-called
macro-homogeneity conditions are given by

H̄iδB̄i = 〈Hi〉〈δBi〉 = 〈HiδBi〉 (4.2)

σ̄tot
ij δε̄ij = 〈σtot

ij 〉〈δεij〉 = 〈σtot
ij δεij〉 (4.3)

for the magnetic and coupled mechanical problem, respectively. Depending on the specific
material behaviour of the local constituents, different computational homogenisation pro-
cedures based on the macro-homogeneity conditions can be used to predict the effective
material behaviour:

(i) Simulation of the effective material response: Effective magnetisation or stress-strain
curves can be simulated for different load cases based on numerical RVE models and
suitable boundary conditions. This procedure gives valueable insight into structure-
properties relations. In addition, the parameters of macroscopic models can be obtained
from parameter fitting to the numerically predicted effective responses.
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4 Effective Response of Magnetorheological Elastomers

(a) (b) Support

M1

M2

Figure 4.1: Two-dimensional representative volume element (RVE): (a) pairs of opposite surfaces
∂ΩI± and characteristic vectors ∆xI with I = 1, 2 that define the size of the RVE, and
(b) non-conforming regular XFEM mesh with nodal degrees of freedom coupled to two
additional master nodes M I and support to prevent rigid body motions.

(ii) Adapted homogenisation procedures: For certain material models, e.g. linear elastic
and viscoelastic models, it is possible to directly compute effective material parameters
from the simulation of the local material in the RVE for specific load cases.

(iii) Coupled multi-scale simulations: As effective constitutive relations will generally not
be available for complex heterogeneous materials, it is possible to couple an RVE of
the local material structure to macroscopic analysis models which is known as the FE2

approach. In this method, effective material tangents and the update of the macro-
scopic constitutive variable are obtained from RVE models attached to the integration
points of the macroscopic model, i.e. the RVE computations replace the definition and
evaluation of a macroscopic material model. However, the approach comes at enor-
mously high numerical costs which so far prevented its utilisation in realistic, large
scale applications.

All three approaches are essentially based on the simulation of the local material responseBoundary
conditions in an RVE which requires a set of boundary conditions. In this work the effective induction

B̄ and strain ε̄ are used as control variables, i.e. they define the effective load state of the
RVE. Boundary conditions for the magnetic potential A and the displacement field u are
used to prescribe the effective variables to the RVE. The effective response is then computed
in terms of H̄ and σ̄. Feasible boundary conditions for the RVE problem arise from the
macro-homogeneity theorem together with the balance equations (2.31) and (2.48) exclud-
ing body loads j and ρf . Here, periodic boundary conditions for the vector potential and the
displacement are used. They consist of a linear term to define the macroscopic values of B̄
and ε̄ but allow for periodic fluctuations of the potential and the displacements. The conju-
gated variables of the tangential magnetic field and the total traction have to be antiperiodic.

The local magneto-mechanical field problem that has to be solved in the RVE has beenNumerical im-
plementation formulated in Chapter 2 and a numerical model is generated using XFEM as outlined in the

context of Chapter 3. Fig. 4.1 (b) schematically shows the non-conforming mesh together
with two additional master nodesM I and a support to prevent rigid body motions. Following
[113, 114], periodic boundary conditions are realised by prescribing the potential and the
displacement to the master nodes which are coupled to node pairs on opposite edges of the
RVE.
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4.1 Homogenisation Approach

4.1.1 Effective Magnetic Response

By choosing the vector potential according to the mentioned periodic boundary conditions Periodic
boundary
conditions

A3 = e3pqB̄pxq + Ã3 , (4.4)

the macro-homogeneity condition (4.2)

1

VRVE

∫

Ω

HlBl dV =
1

VRVE

∫

∂Ω

Hlelmn

(

δn3e3pqB̄pxq + δn3Ã3

)

nm dS (4.5)

=
1

VRVE

∫

Ω

(

HlB̄l −H3B̄3 +Hlelm3Ã3,m

)

dV

is fulfilled. The second term on the right hand side of the equation above vanishes, because
of the homogeneity in the x3-direction H3 = 0. The last term in equation (4.5) is equal to
zero, if an antiperiodic surface current density kI+3 = −kI−3 and a periodic fluctuation of the
vector potential ÃI+3 = ÃI−3 are assumed. In addition to this fluctuation term, equation (4.4)
contains a linear part e3pqB̄pxq required to prescribe the macroscopic value B̄ to the RVE.

The macroscopic field strength H̄ can be computed as the volume average (4.1) of the local Effective
responsemagnetic field which simplifies to

H̄k =
1

VRVE

∫

Ω

Hk dV =
1

2VRVE

∫

∂Ω

ekmneqsnHqxmns dS =
1

ARVE

∑

I=1,2

ekl3∆x
I
l j
I
3 (4.6)

for the two-dimensional RVE under consideration. In equation (4.6) ARVE is the area of the
RVE domain, and jI3 are the master node reaction currents which are calculated from the
one-dimensional boundary integral

jI3 =

∫

lI+

e3qsHqns dl . (4.7)

The effective magnetisation M̄ is obtained from equation (2.34) and the values B̄ and H̄.

4.1.2 Effective Magneto-Mechanical Response

Similar to the magnetic relation (4.5), it can be shown that the two-dimensional displacement Periodic
boundary
conditions

field
ui = ε̄ijxj + ũi (4.8)

satisfies the Hill-Mandel lemma (4.3), together with the condition that the total traction has
to be antiperiodic, i.e. pI+i = −pI−i . The equation above consists of a linear termε̄ijxj which
prescribes the macroscopic strain state to the RVE and a periodic fluctuation part ũI+i = ũI−i .
Plane strain states are assumed on both, micro- and macroscale.

The effective response in terms of the mechanical stress tensor Effective
response

σ̄ij =
1

ARVE

∑

I=1,2

∆xIiF
I
j (4.9)
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4 Effective Response of Magnetorheological Elastomers

is computed from the dyadic product of the characteristic RVE vectors ∆xI with the reaction
forces divided by the area of the RVE. The mechanical master node reaction forces

F I
j =

∫

lI+

σijni dl (4.10)

are equal to the integral of the mechanical surface tractions along the positive edges of the
RVE.

4.2 Unit Cell Model of an Anisotropic Microstructure

In this section the introduced homogenisation algorithm is validated for a particular periodicIntroduction

microstructure. After the definition of the considered microstructure and the magnetisation
behaviour of the particles which is motivated from experimental investigations, a conver-
gence study on the effective linear magnetic and mechanical properties demonstrates the
applicability of the outlined approach. Moreover, the effective anisotropic magnetisation be-
haviour, and the coupled response to three different magnetic loadings are analysed under
the assumption of zero macroscopic deformation, ε̄ = 0. Despite the effective deformation
state set to zero, the RVE will still deform due to periodic fluctuations.

4.2.1 Problem Definition

The considered idealised two-dimensional microstructure is illustrated in Fig. 4.2 (a). Its in-RVE model

ternal structure is motivated by the chain-like arrangement of magnetisable particles which
typcially results from the crosslinking of the polymeric matrix under an applied magnetic
field, Fig. 1.1 (c). The RVE in Fig. 4.2 (a) contains three particles modelled as circular inclu-
sions in the two-dimensional setting. All inclusions are assigned with a material behaviour
representing carbonyl iron powder BASF CIP CC and have the diameter d. In the x1-x2-
system the centers of the inclusions are located at (3; 12) µm, (9; 8) µm and (9; 16) µm.

Experimental results regarding the magnetisation behaviour of the BASF CIP CC materialMaterial
behaviour obtained by the group of S. Odenbach1 are presented in Fig. 4.2 (b). The analysed mate-

rial exhibits a non-linear, isotropic magnetisation behaviour with negligible hysteresis which
can be represented in terms of the Langevin function (2.71). This function has two pa-
rameters which have to be determined from the experimental data. Results obtained for a
saturation magnetisation a1 = MS = 8.4× 105 Am−1 and a scaling parameter a2 = δ =
2.2× 10−5 mA−1 are plotted in Fig. 4.2 (b). A linearisation of equation (2.71) in the vicinity
of H = 0 yields the constant relative permeability

µr =
MSδ

3
+ 1 (4.11)

and equation (2.34) can be rewritten in the simple formBl = µ0µrHl representing a linear ap-
proximation to the magnetic material behaviour of the particles (superscript P). As expected,
this linear approximation with µP

r = 7.2 is only reasonable for small values of the magnetic
field. The elastomeric matrix (superscript M) consists of Wacker Chemie AG Elastosil® RT
745 which is assumed to be non-magnetisable µM

r = 1. With respect to the assumed small

1TU Dresden, Chair of Magnetofluiddynamics, Measuring and Automation Technology.
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4.2 Unit Cell Model of an Anisotropic Microstructure
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Figure 4.2: Idealised periodic microstructure: (a) RVE containing three circular inclusions with di-
ameter d, and (b) non-linear magnetisation behaviour of BASF CIP CC powder assumed
for the circular inclusions – experimental results and models according to equations (2.71)
and (4.11).

deformations, both constituents are modelled as isotropic linear elastic according to equation
(2.93) with the parameters EP = 2.1× 105MPa and EM = 0.2MPa as well as the Poisson
ratios νP = 0.3 and νM = 0.4 for the particles and the matrix, respectively.

4.2.2 Convergence Study for the Effective Linear Response

In this section the convergence of the effective parameters is studied for different mesh res- Considered
meshesolutions using either linear or quadratic elements. A total number of six discretisations with

8 × 16, 16 × 32, 32 × 64, 64 × 128, 128 × 256 and 256 × 512 elements are considered,
Fig. 4.3 (a). The mesh resolution is specified by the size of the element edge h. All inclu-
sions have a diameter of d = 3.8 µm which results in a volume fraction of approximately
12%.

At first, the effective magnetic behaviour is analysed. As a consequence of the geometrical Magnetisation

arrangement of the circular inclusions, the macroscopic magnetic behaviour is anisotropic
and can be described in terms of the second-order tensor of effective relative permeability µ̄r

B̄ = µ0µ̄rH̄ . (4.12)

In order to determine µ̄r, two magnetic load cases are defined by different choices of the
effective magnetic induction B̄ and solved numerically for the effective magnetic field H̄.
The first considers B̄ parallel to the x1-axis and the second a magnetic field parallel to the
x2-direction. In Fig. 4.3 (b) the convergence of µ̄r 11 is plotted for all six meshes of linear and
quadratic elements, respectively. A monotonic convergence is observed for both element
types. Even with the coarsest mesh, the results obtained with the quadratic elements produce
errors of less than 0.2%. All results lie in between the Reuss (µ̄R

r 11 = 1.1) and Voigt (µ̄V
r 11 =

1.7) bounds.

To obtain the effective stiffness C̄, a purely mechanical homogenisation (B = 0) is per- Stiffness

formed under the assumption of a plane strain state. Three macroscopic deformation states,
i.e. two uniaxial strain and one shear mode, are prescribed to the RVE in terms of the ef-
fective strain ε̄ applied by periodic displacement boundary conditions. The effective linear
elastic stiffness is computed from the corresponding macroscopic stresses according to equa-
tion (4.9). The results of the convergence study in terms of C̄11 are plotted in Fig. 4.3 (c).
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4 Effective Response of Magnetorheological Elastomers

(a) (b) (c)

Figure 4.3: Selected results of a convergence study for the effective material behaviour using dif-
ferent discretisations of linear and quadratic elements: (a) numerical RVE model with
d = 3.8 µm and h = 0.75 µm – ordinary finite elements together with triangular and
quadrilateral integration subdomains of the X-elements, (b) relative permeability µ̄r 11,
and (c) stiffness C̄11.

Again, significantly smaller errors are obtained for quadratics. It is noted that coarse discreti-
sations produce higher relative errors in the mechanical case than for the effective magnetic
behaviour at the same resolution. This is due to the large contrast of the elastic moduli of
inclusion and matrix of almost six orders of magnitude. In comparison, the relative perme-
abilities of both components differ only by the factor 7.2. However, all numerical values
obtained lie in between the Reuss (C̄R

11 = 0.49MPa) and Voigt (C̄V
11 = 3.34× 104 MPa)

bounds. Since the matrix is very soft and has a high volume fraction compared to the par-
ticles, the numerical results for periodic boundary conditions are close to the Reuss bound
which assumes a homogeneous stress field. The magnetic and the mechanical macroscopic
properties converge from different directions (Fig. 4.3 (b) and (c)), because the tensor of the
relative permeability µ̄r has the nature of a compliance rather than a stiffness, as B̄ can be
interpreted as a kinematic and H̄ as the conjugated kinetic variable.

4.2.3 Effective Magnetisation Behaviour

The effective magnetic behaviour of the MRE is now predicted in terms of macroscopicRVE model
and loading magnetisation curves M̄(H̄). All particles have a diameter of d = 5 µm resulting in a particle

volume fraction of approximately 20%. The RVE domain is discretised by 49×98 quadratic
elements. Both, non-linear (2.71) and linear (4.11) magnetisation behaviour of the inclusions
will be considered. A macroscopic magnetic induction with an intensity of 2T is applied to
the RVE within 20 increments for three different directions: parallel (0°), perpendicular
(90°) and under an angle of 45° to the internal chain direction, Fig. 4.4. The application of
such a high magnetic induction which is hardly achievable in experiments without losing the
homogeneity of the macroscopic field is required to investigate the full range of the physical
non-linearity.

The results in Fig. 4.4 show the obtained effective magnetisation curves for the non-linearEffective
magnetic
response

magnetic behaviour of the particles and its linear approximation. As a consequence of the
internal material structure, the effective magnetic material behaviour is anisotropic. This
effect decays for strong magnetic fields due to the magnetic saturation characteristics in the
non-linear case. Corresponding experimental have been reported by Danas et al. [43]. For
the linear material behaviour the magnetisation is anisotropic for all values of the magnetic
field H̄ .
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Figure 4.4: Numerically computed effective magnetisation curves for three different load cases with
non-linear (solid lines) and linear (dashed lines) behaviour of the particles and a non-
magnetisable matrix material.

4.2.4 Effective Magneto-Mechanical Behaviour

The effective coupled magneto-mechanical behaviour is analysed by evaluating mechanical Actuation
stressesactuation stresses according to equation (4.9). These stresses occur in the coupled magneto-

mechanical problem if the macroscopic deformation is set to zero, i.e. ε̄ = 0, and the MRE
is loaded magnetically. However, as a consequence of the periodic displacement boundary
conditions (4.8), the RVE is allowed to deform locally due to the fluctuation terms.

At first, two load cases are considered with the effective magnetic induction either aligned 0°direction

with or perpendicular to the internal chain-like structure. Again, the macroscopic induction
of |B̄| = 2T is applied to the RVE within 20 increments. Fig. 4.5 (a) shows the mechanical
actuation stresses for the macroscopic magnetic induction aligned with the internal chain-
like structure. The small inserted picture of the local displacement field u2 illustrates that
the two inclusions on the right attract each other. In this contour plot red corresponds to
positive and blue to negative values of the local vertical displacement field u2. Since the
macroscopic deformation is set to zero, an elongation of the RVE in the x1-direction is pre-
vented which results in a negative actuation stress σ̄11 < 0. In the x2-direction the attraction
of the inclusions is compensated by a tensile stress σ̄22 > 0. The initial behaviour of the
actuation stresses versus the magnetic induction is quadratic as the pseudo-magnetic stress
σ̂ is a quadratic function of the magnetic field. This is in accordance to analytical results of
Galipeau and Ponte Castañeda [73]. For |B| & 0.6T the saturation becomes dominant in the
non-linear case, but in the linearised regime (µP

r = const.) the behaviour remains quadratic
in |B̄|.
If the macroscopic induction is applied perpendicular to the chain direction, there is a repul- 90°direction

sive interaction which result in the actuation stresses σ̄11 > 0 and σ̄22 < 0, Fig. 4.5. Again,
the initial dependence is quadratic in |B̄| before saturation effects become relevant. The
plotted shear stress components σ̄12 and σ̄21 are almost zero for the linear and the non-linear
magnetic case and both loading directions.

The results shown in Fig. 4.6 correspond to the macroscopic induction applied at an angle of 45°direction

45°. In Fig. 4.6 (a) the contour plots of the local magnetic induction on the deformed RVE are
displayed. The resulting actuation stresses are qualitatively different from the stresses dis-
cussed for the parallel and the perpendicular orientations of the magnetic field, Fig. 4.6 (b).
Here, the normal stress components σ̄11 and σ̄22 are smaller than the shear stresses σ̄12 and
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(a) (b)

Figure 4.5: Macroscopic mechanical actuation stresses for magnetic loading |B̄| = 2T within 20
increments and ε̄ = 0: (a) macroscopic magnetic induction applied parallel, and (b)

perpendicular to the internal chain-like structure. Non-linear magnetic response of the
inclusions is represented by solid lines and the linear approximation with dashed lines.

(a)

0.7T
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B2B1
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Figure 4.6: Magnetic loading |B̄| = 2T at an angle of 45° and ε̄ = 0: (a) local magnetic induction in
the deformed RVE, and (b) macroscopic mechanical actuation stresses for the non-linear
(solid lines) and linear (dashed lines) magnetic material behaviour of the inclusions.

σ̄21. An essential aspect of the results is that the macroscopic mechanical stress tensor is
unsymmetric with σ̄12 < 0 and σ̄21 > 0. This is due to the anisotropic microstructure. The
non-symmetric macroscopic shear components of the actuation stress equilibrate a macro-
scopic torque, which acts counterclockwise on the structure. Since the magnetic induction
is not applied parallel to the principal axes of the composite, the internal chain-like structure
of the composite, Fig. 4.2 (a), intends to rotate and align with the external magnetic field.
This causes a macroscopic torque acting on the composite. Again, the initial behaviour is
quadratic in |B̄| for the non-linear magnetic model and quadratic over the whole range of
|B̄| for the linear approximation.

4.3 Random Isotropic and Anisotropic Microstructures

In this section numerical simulations are carried out for more complex microstructures withGeneration of
random RVE random, polydisperse, isotropic or anisotropic particle distributions. XFEM models of these

local material structures are generated by a random sequential adsortion algorithm [210]
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4.3 Random Isotropic and Anisotropic Microstructures

which can be used very efficiently with the XFEM procedures for interface representation.
Circularly shaped particles (radius rI) are added sequentially to the RVE domain Ω. Intersec-
tions of the I-th particle domain with adjacent particles are avoided by testing the criterion

||xI − xJ || < rI + rJ + d (4.13)

for any particle J already added to the domain. That is, the distance of the center points
of two neighbouring inclusions must be larger than the sum of their radii rI and rJ , respec-
tively. The parameter d is chosen to prevent numerical problems that may result from thin
matrix domains. Polydisperse microstructures are defined in terms of a set of radii r and
associated partial concentrations φ which can be parametrised by experimentally obtained
particle size distributions as demonstrated in Section 4.3.2. The algorithm produces random,
quasi-isotropic particle distributions. To generate anisotropic arrangements, the coordinates
of the particle centers xI have to be constrained. As a result of the circular particle shape,
the particle-matrix interface is given analytically and a level set representation of the particle
boundary is defined by the center xI and radius rI of the I-th particle. All elements inter-
sected by the material interface become X-elements and the resulting material subdomains as
well as the ordinary finite elements are assigned with the corresponding properties of particle
or matrix, respectively.

4.3.1 Effective Magnetostrictive Behaviour

The random adsortion algorithm has been used to generate two-dimensional RVE models of RVE models

random isotropic and anisotropic particulate microstructures with particle volume fractions
of c = 0.3 and c = 0.08, respectively. Particles distributions defined by three different
radii r = {1, 2, 3}µm which account for φ = {20, 40, 40}% of the total particle volume
fraction are used for the isotropic and anisotropic case. The mechanical behaviour of both
constituents is modelled as isotropic linear elastic with the parameters EP = 2.1× 105 MPa
and EM = 0.2MPa as well as the Poisson ratios νP = 0.3 and νM = 0.4. Linear magnetisa-
tion behaviour (µP

r = 7.2) is assumed for the particles while the matrix is non-magnetisable
(µM

r = 1). The assumption of linear magnetic material behaviour is reasonable for the ap-
plied magnetic inductions of B̄ = 0.3T.

The coupled magneto-mechanical response of the random microstructures has been simu- Discussion

lated for a macroscopic magnetic induction B̄ which is applied to the RVE. Two different
perpendicular orientations are considered according to Fig. 4.7 (a). Macroscopically trac-
tion free boundaries allow for the analysis of magnetically induced deformations ε̄, i.e.
the prediction of magnetostrictive effects, Fig. 4.7 (b). It is found that both, isotropic and
anisotropic, RVE elongate (ε̄ > 0) parallel to the applied magnetic field. Lateral contrac-
tion is observed due to the Poisson effect. It has to be noted, that an ideal chain of finite
length would show a contraction if the magnetic field is applied parallel to the chain. The
elongation observed for the random chain-like microstructure results from the motion of the
particles that try to form an ideal chain, Fig. 4.7 (a). This has been previously explained
by Danas et al. [43]. Similarly, Han et al. [88] have performed microscopic finite element
computations which underline the importance of a wavy chain geometry on the direction
of the resulting magnetostriction. While the random particle distribution yields an isotropic
effective response, the chain-like RVE shows an anisotropic behaviour with stronger magne-
tostrictive effects observed in the direction of the particle chain. Again, even linear magnetic
and mechanical properties translate into a progressive coupling behaviour which is in line
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(a) (b)

Figure 4.7: Effective magnetostrictive behaviour of isotropic and anisotropic RVE: (a) random
isotropic microstructure of particle volume fraction c = 0.3 and chain-like distribution
of c = 0.08. Two load cases for external magnetic field B̄ are considered. The parti-
cles in the anisotropic RVE move to form a perfectly aligned chain which results in an
elongation of the RVE in the direction of external magnetic field, and (b) macroscopic
magnetostrictive strain as a function of the applied magnetic induction.

with the preceding section and theoretical results [73].

4.3.2 Experimental Validation

Following the comparison of numerical results for different microstructures, the predictionsProblem
definition for RVE with random, polydisperse isotropic particle distributions are to be validated by

experimental results obtained in the group of M. Schrödner2. Similarly to the preceding the-
oretical study, RVE with randomly distributed magnetisable particles (BASF CIP-SQ with
properties EP = 210GPa, νP = 0.3, and µP

r = 7.2) are generated. Particles with four
different radii r = {1, 2, 3, 4}µm accounting for φ = {10, 40, 30, 20}% of the total par-
ticle volume fraction are embedded into the non-magnetisable (µM

r = 1.0) polymeric matrix.
The matrix material Bayer Desmopan 481 is assumed to show almost incompressible linear
elastic behaviour (EM = 14.6MPa, νM = 0.49). The chosen radii and the corresponding
volume fractions originate from a particle size distribution reported in [ZZB+14]. Clusters
of particles, which have been detected by a computed tomography analysis, are not included
in the simulations. Examplary isotropic RVE with different total particle volume fractions c
are presented in Fig. 4.8. In addition to the experimentally used volume fractions which have
been derived from the mass contents of CIP-SQ, the values of c = 23.0% and c = 33.0%
have been included only for the purpose of simulation.

First, the effective mechanical behaviour is to be computed and compared to analytical asEffective
mechanical
behaviour

well as experimental results. According to Lopez-Pamies et al. [133, 134, 135] the effective

2Thuringian Institute of Textile and Plastics Research.
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4.3 Random Isotropic and Anisotropic Microstructures

c = 9.2% c = 13.2% c = 18.6% c = 23.0% c = 26.3% c = 33.0% c = 37.8%

Figure 4.8: Isotropic RVE with randomly distributed particles of different volume fractions c.
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Figure 4.9: Effective magneto-mechanical behaviour of isotropic MRE – comparison of analytical,
numerical and experimental results: (a) effective Young’s modulus, and (b) macroscopic
magnetostrictive strain, normalised by its maximum value, as a function of the particle
volume fraction c.

Young’s modulus is calculated from

Ē(c) =
1

(1− c)2
EM , (4.14)

i.e. the effective behaviour of the isotropic RVE will be exactly the same as für the pure ma-
trix except for a concentration dependent amplification factor, see Section 5.2.2 for further
details. In order to predict the effective mechanical behaviour, XFEM models of the random
particulate microstructure are loaded mechanically by a prescribed uniaxial macroscopic
strain ε̄. Figure 4.9 (a) presents experimental data and results of the multiscale XFEM sim-
ulation together with the theoretical prediction according to equation (4.14). It can be seen
that the effective stiffness of the isotropic MRE in terms of the macroscopic Young’s modu-
lus Ē grows with increasing volume content of magnetisable particles. Both, theoretical and
experimental curves predict the same characteristic dependence with the analytical approach
slightly overestimating the effective stiffness.

The coupled magneto-mechanical response of the considered real MRE is analysed in terms Effective
magneto-
mechanical
behaviour

of magnetostrictive strains, Fig. 4.9 (b). A macroscopic magnetic induction B̄ is applied to
the RVE while macroscopically traction free boundaries allow for a magnetically induced
macroscopic deformation ε̄. The resulting magneto-mechanical boundary value problem is
solved numerically using quadratic standard and X-elements. Linear magnetic material be-
haviour is assumed for the particles as only moderate magnetic inductions of B̄ = 0.3T are
applied. Similarly to the previous section, the RVE elongates parallel to the applied magnetic
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4 Effective Response of Magnetorheological Elastomers

field. As it can be seen in Fig. 4.9 (b), the macroscopic magnetostrictive effect increases up
to an extremal value at c = 26.3%. After this maximum, the mechanical stiffening effect
dominates for a further increase of the particle volume content. Actually, this value is in
excellent accordance with results of Davis [46] where an optimal concentration of c = 27%
is found to yield the maximum magnetorheological effect. All values in Fig. 4.9 (b) are given
normalised with respect to the maximum magnetostrictive deformation.

4.4 Conclusion

In this section a computational homogenisation approach to predict the effective magneticSummary

and coupled magneto-mechanical response of MRE has been presented. It was applied to
a generic unit cell model as well as more complex random microstructures which can be
modelled efficiently using XFEM. The convergence of the approach regarding the effective
linear magnetic and mechanical material behaviour has been demonstrated for linear and
quadratic approximations.

For the initially analysed unit cell, actuation stresses for three different magnetic loadingEffective
response of
MRE

directions are found to be in qualitative agreement with experiments on MRE as well as ana-
lytical findings. The model predicts an elongation of the composite, if the magnetic stimulus
is applied parallel to the chains of magnetisable particles. Physically sensible predictions are
also obtained for isotropic and anisotropic RVE with random particle distributions that have
been validated by experimental results.

With the combination of the continuum formulation of the magneto-mechanical boundaryOutlook

value problem and the efficient discretisation of complex microstructures using XFEM with
homogenisation techniques for the coupled problem, a modelling strategy has been proposed
that enables a qualitative and quantitative analysis of the structure-property relations of MRE.
The method is very flexible regarding the microstructure to be modelled and a variety of
material models can be used to represent the microscopic constituents. This approach is to
be further developed in order to directly convert computed tomography scans into numerical
analysis models or to work with statistically similar RVE models. However, it has to be
noted that discrete approaches [100, 101, 103, 165] are more efficient if a large number of
particles has to be modelled. In the future it seems reasonable to combine both approaches,
i.e. to use finite element simulations to thoroughly analyse particle-particle interactions and
to incorporate these results into the discrete models in terms of modified potentials. In this
way short-range interactions that cannot be represented with the typically used dipole-dipole
model could be included.
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5 Modelling of the Large Deformation
Behaviour of Magnetorheological
Elastomers [SMKU14]

Polymeric matrices of MRE are often designed to exhibit a very low mechanical stiffness Motivation

in order to maximise the relative magnetorheological effect, i.e. the ratio of the stiffness
with and without an applied magnetic field. These soft polymers may also lead to large
overall deformations of the MRE especially under mechanical loads and allow for large
displacements of the particles due to magnetic interactions. A first step to take these effects
into account in the numerical simulations is presented in this section. An updated Lagrangian
FE formulation for the magneto-mechanical BVP is developed which can accomodate a two-
sided coupling according to Section 2.4, That is, the influence of mechanical deformations on
the current magnetic fields is now considered in terms of a configurational update. After the
derivation of the FE formulation in the following section, the numerical implementation of
XFEM for large deformations will be explained and verified using results from an analytical
homogenisation scheme. Eventually, first results representing a comparison with the small
deformation model introduced in Chapter 3 and Chapter 4 point out the consequences of the
two-sided coupling. As in the previous chapter two-dimensional problems homogeneous in
the thickness direction are considered.

5.1 Finite Element Formulation

The finite element formulation for the solution of the coupled magneto-mechanical problem Introduction

is to be generalised to large deformations below. After the presentation of the numerical
coupling, weak forms for the stationary magnetic and coupled magneto-mechanical bound-
ary value problems which can account for large deformations are developed. For the solution
of the non-linear system of equations resulting from the FE discretisation of the weak forms
the Newton-Raphson method is applied which requires a linearisation of the discrete equa-
tions.

5.1.1 Numerical Coupling Scheme

There are two different approaches to treat the two-sided coupling of field problems numer- Strong vs.
weak
numerical
coupling

ically:

(i) Strong coupling: In this numerical solution scheme both problems are consistently
linearised. This results in a monolithic system of equations, i.e. both problems are
solved at the same time and interated until a certain accuracy criterion is met.

(ii) Weak coupling: This numerically simpler scheme uses a staggered solution procedure
with a load vector coupling similar to the case of small deformations. The magnetic
problem is solved with respect to the configuration of the previous mechanical load
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5 Modelling of the Large Deformation Behaviour

step. Magnetic loads from this computation are then considered in the subsequent
mechanical pass to update the configuration.

Since the weak coupling approach misses the consistent linearisation of the strong coupling
scheme, it is generally more susceptible to instabilities and therefore less robust. On the
other hand, virtually the same implementation as for small deformations can be used and the
systems of equations to be solved are smaller and feature symmetric system matrices which
is not the case for the monolithic approach.

The work presented in this chapter is primarily intended to demonstrate the principal dif-Staggered
solution ferences between small and large deformation simulations. Therefore, a staggered solution

procedure is applied. This approach turned out to be suitable for the demonstration problems
considered in the following. The incremental analysis using the weak coupling scheme starts
from solving the magnetic field problem with respect to the undeformed reference config-
uration. With this solution at hand the mechanical problem is solved. After each pass of
both calculations a convergence criterion is checked, i.e. the corrections of the primary field
variables of the current iteration are compared to their incremental changes. If these relative
changes are smaller than a given value, then the solution is assumed to be in equilibrium and
the analysis continues with the next increment by increasing the magnetic load. Otherwise
the configuration is updated and both field problems are solved again. To reach a converged
state, at least two cycles have to be passed.

5.1.2 Weak Forms and Linearisation

In this section the governing discrete equations of large deformation finite element formula-Lagrangian
meshes tions for the magnetic and magneto-mechanical field problems are developed. As it is typical

for solid mechanics applications, a Lagrangian mesh is used, i.e. the analysis mesh deformes
with the material body and a material point is always assigned to the same natural coordinate
ξ. This is essential for the handling of inelastic constitutive equations which require an up-
date of internal variables at an integration point level. For severe deformations this geometric
map may cause numerical problems regarding the conditioning of the system of equations
and remeshing can be required to recover acceptable element shapes.

Two principal Lagrangian finite element formulations result from the discretisation of theTotal vs.
Updated
Lagragian

weak forms formulated with respect to the reference and current configuration, respectively:

(i) Total Lagrangian FEM: This formulation is based on the balance equations with re-
spect to the undeformed reference configuration Ω0.

(ii) Updated Lagrangian FEM: Here, the balance equations with respect to the deformed
current configuration Ω are employed.updated during analysis.

The expressions for the discrete equations are different for both formulations and they will
involve different representations of constitutive equations, etc. However, the equations can
be converted into each other and the same numerical values of the coefficient matrices are
obtained after integration. Both formulations will actually predict exactly the same solution.
The choice of one of the formulations is merely a question of convenience. Here, the updated
Lagrangian approach is used, because the structure of the underlying matrices is essentially
the same as for the small deformation approach which eases implementation. Some details
of the underlying non-linear FE procedures will be given in Section 5.2 including a general-
isation to XFEM. For further details the textbooks of, e.g., Belytschko et al. [10], de Borst
et al. [47], and Wriggers [228] are recommended.
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5.1 Finite Element Formulation

Similarly to the case of small deformations, a weak form for the stationary magnetic field Magnetic BVP

problem is obtained from mutiplying equation (2.31) with a weight or test function function,
i.e. the virtual potential δAk which fulfills δAk = 0 on ∂ΩA. By applying integration by parts
and using the relations (2.35) and (2.39), the weak form of the magnetic problem

∫

Ω

HkδBk dV −
∫

Ω

jkδAk dV −
∫

∂Ωk

k̂kδAk dS = 0 (5.1)

is obtained.

Using a standard isoparametric FE approximation with the matrix of shape functions N
A

and Discretisation

their partial derivatives expressed by B
A

, the weak form (5.1) of ne assembled elements is
given by the discrete Ritz formulation

δAT







ne⋃

I=1






∫

ΩIe

BT

A
H dV






︸ ︷︷ ︸

jint

−
ne⋃

I=1






∫

ΩIe

NT

A
j dV −

∫

∂ΩIe

NT

A
k̂ dS




− J

︸ ︷︷ ︸

−jext






= 0 . (5.2)

In the equation above the vector J accounts for discrete nodal loads typically applied in FE
analysis. From the argument of arbitrary but admissible virtual potentials δA, finally the
nonlinear FE system is defined by the equilibrium of the internal and external nodal loads

jint − jext = 0 . (5.3)

For an iterative solution of the underlying FE system, a linearisation of the discrete weak Linearisation

form (5.2) is required. To be consistent with the weak numerical coupling scheme, the con-
figuration is assumed to be constant during the iteration of an increment. Furthermore, the
external loads, expressed by the last two terms in the equation above, are assumed to be
independent of A. Eventually, a materially non-linear problem has to be solved on a config-
uration updated from increment to increment. The iterative solution within each increment
using the Newton-Raphson method is based on the linearised relation

K
A
∆A = jext − jint , (5.4)

where ∆A indicates the change of the magnetic potential during a single iteration step. The
magnetic tangent stiffness matrix

K
A
=

ne⋃

I=1





∫

ΩIe

BT
A
C
A
B
A
dV



 (5.5)

contains only contributions from the magnetic material tangent CA. After transforming the
linear and non-linear magnetic constitutive relations given in section 2.6.3 to the current
configuration by applying the transformations (2.68) and (2.69), CA can be calculated using
the chain rule of differentiation. For linear magnetisation behaviour according to equation
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5 Modelling of the Large Deformation Behaviour

(2.75) the coefficients of CA read

∂Hk

∂Bl

=
1

µ0

δkl −
1

J
χBbkl . (5.6)

For the non-linear case of equation (2.74) the elements of CA are given by

∂Hk

∂Bl

=
1

µ0

δkl −
Ms

JB0

tanh(δB0)bkl +
Ms

JB2
0

[
tanh(δB0)

B0

− δ

cosh2(δB0)

]

bkmblqBmBq .

(5.7)

The weak form of the coupled mechanical subsystemMechanical
problem

∫

Ω

δvk,lEσkl dV −
∫

Ω

(̺fkδvk − δvk,lσ̂kl) dV −
∫

∂Ωp

p̂kδvk dS = 0 (5.8)

is obtained from multiplying the balance of momentum (2.48) by a weight function and
integrating over the domain Ω which represents the current configuration of the material
body. If the weight function is said to be a virtual velocity field δvk satisfying δvk = 0 on
∂Ωu, equation (5.8) represents the principal of virtual power. In addition, the split of the
total stress tensor according to (2.50) and the boundary condition (2.52) have been used in
the derivation.

The approximation and FE discretisation with the matrices of shape functions N
u

and theirDiscretisation

partial derivatives included in B
u

yields a discrete representation

δvT







ne⋃

I=1





∫

ΩIe

BT

u Eσ dV





︸ ︷︷ ︸

f int

−
ne⋃

I=1





∫

ΩIe

(

NT

u
̺f −BT

u
σ̂
)

dV −
∫

∂ΩIe

NT

u
p̂ dS



− F

︸ ︷︷ ︸

−f ext






= 0

(5.9)
for the weak form (5.8) of the coupled mechanical subsystem. The non-linear discrete system
of equations states the equilibrium of internal and external nodal forces

f int − f ext = 0 . (5.10)

Consistency with the weak coupling requires the magnetic contribution to the external load
vector to be constant during the iteration of one increment. As no other external forces are
present in the demonstration problems of this section, the external force vector is assumed to
be constant and can be excluded from the linearisation process.

As the mechanical consitutive model proposed in section 2.6.4 is formulated for the pseudo-Linearisation

mechanical stress tensor Eσ, standard linearisation procedures [10] can be applied to the
internal nodal force vector which results in two contributions to the tangent stiffness matrix

[
Kmat +Kgeo

]
∆u = f ext − f int , (5.11)

a material part Kmat which accounts for the non-linearity of the material behaviour and a
geometrical part Kgeo representing the effects of deformation on the existing stresses. The
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material tangent stiffness results from the linearisation of the constitutive equations

Kmat =
ne⋃

I=1





∫

ΩIe

BT

u
C
u
B
u
dV



 (5.12)

with C
u

the material tangent stiffness matrix. For Neo-Hooke material and two-dimensional
plane strain problems C

u
is given by

C
u
=

1

J







2µ+ λ λJ2 0

λJ2 2µ+ λ 0

0 0 µ− λ

2
(J2− 1)







. (5.13)

Submatrices of the geometrical tangent stiffness matrix Kgeo are computed from the relation

Kgeo
KL

=
ne⋃

I=1

IHI
KL , (5.14)

with the two-by-two identity matrix I and the matrix

HI =

∫

ΩIe

BgeoT

EσBgeo dV . (5.15)

5.2 Updated Lagrangian XFEM

In this section the derivation of the updated Lagrangian formulation of the mechanical bound- Introduction

ary value problem will be reviewed in more detail to point out differences between a standard
FEM and XFEM. In addition, the structure of the matrices B

u
and Bgeo will become apparent

from this derivation.

5.2.1 Comparison of Updated Lagrangian FEM and XFEM

For brevity of the notation and without a loss of generality, a purely mechanical BVP will be Isoparametric
approximationconsidered in the following

∫

Ω

δvi,jσij dV −
∫

Ω

ρfiδvi dV −
∫

∂Ω

piδvi dS = 0 . (5.16)

In a standard isoparametric element formulation, the geometry x and the velocity fields v,
δv

xh (ξ, t) = NI(ξ)xI(t) (5.17)

vh(ξ, t) = NI(ξ)vI(t) (5.18)

are approximated by shape functions NI(ξ) of the natural element coordinates ξ.
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The spatial velocity gradient which appears in the principal of virtual power (5.16) is ex-
pressed by

vhi,j =
∂vhi
∂xhj

=
∂vhi
∂ξk

∂ξk
∂xhj

. (5.19)

As in the case of small deformations, the partial derivatives of the natural coordinates ξ with
respect to x can be computed from the geometrical map (5.18) which involves the Jacobian

F ξ
ij (ξ, t) =

∂xhi (ξ, t)

∂ξj
=
∂NI (ξ)

∂ξj
xiI(t) (5.20)

that depends on the current deformation state. The symbol Fξ in the above equations indi-
cates that the Jacobian can be interpreted as deformation gradient with respect to the natural
element coordinates. Its determinant

Jξ = det (Fξ) (5.21)

relates the spatial volume element dV = JξdVξ to an infinitesimal volume dVξ in the numer-
ical domain.

Applying the approximations defined above to discretise the weak form (5.16) yieldsInternal load
vector

δviI

[ ∫

Ω

∂NI

∂xj
σij dV

︸ ︷︷ ︸

f int
iI

−
∫

Ω

NIρfi dV −
∫

∂Ω

NIpi dS

︸ ︷︷ ︸

−f ext
iI

]

= 0 (5.22)

with f int
iI being an index notation of the nodal vector of internal forces

f int
iI =

∫

Ω

∂NI

∂xj
σij dV =

∫

Ω

∂NI

∂ξk
F ξ
kj

−1
σij dV . (5.23)

In order to recover the vector-matrix expression of the nodal force vector in equation (5.9)Matrix B
u

f int =

∫

Ω

BT

u
σ dV (5.24)

which involves the matrix B
u
, the symmetry of the Cauchy stress tensor which also holds

for the pseudo-mechanical stress tensor is exploited. Then the virtual stress power

δvi,jσij = δLijσij = (δDij + δWij) σij = δDijσij (5.25)

can be rewritten in terms of the deformation rate D. According to equation (2.16), D is the
symmetric part of the velocity gradient vk,l. Due to the similarity of equation (2.16) to the in-
finitesimal strain-displacement relation (2.15) between ε and the displacement vector u, the
matrix B

u
will be the same for the small deformation and updated Lagrangian formulation.

However, as a consequence of the continuous configurational update it is now a function of
the displacement field.

Due to the deformation dependence of B
u
, a linearisation of the internal load vector withMatrix Bgeo

respect to the displacement field will involve two contributions Kmat and Kgeo as outlined in
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the previous section. The first part accounts for the non-linearity of the constitutive relation
while the second part results from the linearisation of B

u
and yields the geometric stiffness

which represents the effect of deformation on the existing stresses. All entries in the matrices
B
u

and Bgeo are partial derivatives of the shape functions ∂NI

xj
with respect to the spatial

coordinates [10] and will therefore involve the Jacobian Fξ of the geometric map.

With the results of the previous derivation and knowledge on the structure of B
u

and Bgeo
Updated
Lagrangian
FEM vs.
XFEM

it is possible to identify the effect of the enriched XFEM approximation and to point out
differences to a conventional updated Lagrangian FEM. As in the case of small deformations,
enriching the displacement and velocity fields

uh,XFEM(ξ, t) = NI(ξ)uI(t) +NI(ξ)F (ξ)u
∗
I(t) = N∗u∗ (5.26)

vh,XFEM(ξ, t) = NI(ξ)vI(t) +NI(ξ)F (ξ)v
∗
I(t) = N∗v∗ (5.27)

will introduce derivatives
∂N∗

xj
in B∗

u
and B∗geo. While the geometric map of a small strain

formulation did not involve the additional degrees of freedom, updating the geometry now
yields an enriched geometry approximation

xh,XFEM(ξ, t) = X(ξ) + uh(ξ, t)

= X(ξ) +NI(ξ)uI(t) +NI(ξ)F (ξ)u
∗
I(t) (5.28)

= xh(ξ, t) +NI(ξ)F (ξ)u
∗
I(t) (5.29)

which has to be considered during the evaluation of the Jacobian

F ξ,XFEM
ij (ξ, t) = F ξ

ij(ξ, t) +
∂ (NI(ξ)F (ξ))

∂ξj
u∗iI(t) (5.30)

and its determinant JXFEM
ξ = det

(

F ξ,XFEM
ij

)

. Compared to the updated Lagrangian FEM,

XFEM requires minor changes to the code structure which result from the influence of the
additional degrees of freedom on the Jacobian of the isoparametric map and its determinant.

5.2.2 Verification – Large Deformation Homogenisation

As there are no analytical solutions available for large deformation problems, e.g. the dis- Analytical
resultsplacement or stress fields of an inclusion problem, the verification of XFEM will be carried

out in terms of the effective response of a particle reinforced elastomer. Recently, Lopez-
Pamies et al. [133, 134, 135] have used an iterative homogenisation procedure to derive
analytical estimates for the effective response of a Neo-Hookean rubber reinforced by an
isotropic, polydisperse distribution of rigid particles. Essentially they predict that the macro-
scopic behaviour of the composite will be exactly the same as the pure matrix except for
a concentration dependent amplification factor. This relation has already been applied to
the small deformation case considered in the previous chapter. For large deformations, the
macroscopic free energy ψ̄ for an effective deformation state defined by the macroscopic
stretches λ̄i is related to the free energy ψ of the elastomer by

ψ̄
(
λ̄i, c

)
=

1

(1− c)2
ψ
(
λ̄i
)

(5.31)

with c the concentration of the particles.
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(a) (b) (c) (d) (e)

Figure 5.1: Two-dimensional RVE with random, isotropic, polydisperse particle distributions with
different concentrations (a)–(e) of 5, 10, 15, 20, and 25%.

As the analytical predictions are in excellent agreement with numerical results of Moraleda
et al. [146], the effective response according to equation (5.31) will serve as a reference
solution. In the following, the XFEM modelling approach outlined in the previous sections
will be combined with numerical homogenisation procedures suitable for large deformations
in order to compute the effective response of the reinforced elastomer. The results in terms
of macroscopic stress-strain curves obtained for different concentrations of particles will be
compared with the analytical predictions.

Numerical simulations are carried out for the pure matrix material and five different parti-Problem
description cle concentrations of c = {0.5, 0.10, 0.15, 0.20, 0.25}. The unit square RVE domain is

discretised by a regular mesh of quadratic elements. Random, isotropic and polydisperse
particle distributions in the RVE as illustrated in Fig. 5.1 are generated by the random se-
quential adsortion algorithm [210] explained in Section 4.3. Particles of three different radii

r = R1

{

1 1√
2

1
2

}

are sequentially added. The number of particles of each size are chosen

such that the largest particles amount to 50% of the total volume fraction while the remainder
is equally split into the medium and small size particles. Both, matrix and particles are mod-
elled by a compressible Neo-Hooke model defined by the free energy according to equations
(2.82), (2.89), and (2.92), see Section 2.6.4 for details. The particles are charaterised by an
elastic modulus of E− = 10GPa and a Poisson ratio ν− = 0.3 while E+ = 1GPa and
ν+ = 0.45 hold for the matrix material.

The macroscopic response for each RVE is computed using a large deformation homogenisa-Numerical ho-
mogenisation tion scheme as outlined in [121]. In this case the macro-homogeneity condition, cf. Chapter

4,

P̄JiδF̄iJ = 〈PJi〉0〈δFiJ〉0 = 〈PJiδFiJ〉0, 〈(·)〉0 =
1

|V0|

∫

Ω0

(·)dV0 (5.32)

is stated in terms of the first Piola-Kirchhoff stress tensor P and the deformation gradient F
with 〈(·)〉0 indicating volume averages over the reference configuration. Similar to the small
deformation case, a macroscopic deformation state F̄ is assigned to the RVE using periodic
displacement boundary conditions

ui = F̄iJXJ +ũi (5.33)

while the stresses are directly available from the reaction forces at the master nodes used
to control the deformation state. Two different macroscopic deformation modes, uniaxial
tension and compression, i.e. F̄11 = λ̄1, F̄22 = λ̄2, and F̄iJ = 0 otherwise, are considered
under the assumption of plane strain λ̄3 = 0.
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(a) (b)

Figure 5.2: Two deformation modes of one realisation of a random, isotropic, polydisperse particle
distribution (c = 0.2): (a) uniaxial tension (colors show F11), and (b) uniaxial compres-
sion (colors show F22) in the x1 direction.

The effective stress response in terms of the Cauchy stress

σ̄ij = J̄−1F̄iKP̄Kj 6= 〈σij〉 =
1

|V |

∫

Ω

σijdV (5.34)

is computed from the macroscopic Piola-Kirchhoff stress using the transformation (2.28). It
is noted that this value is generally not equal to the average 〈σij〉 of the Cauchy stress over
the current RVE configuration.

The simulation of the local deformation behaviour in the generated RVE as illustrated in Results

Fig. 5.2 allows for the computation of effective stress-strain curves. These numerical results
are compared with the analytical estimates obtained from the iterative homogenisation pro-
cedure according to equation (5.31). For the considered uniaxial macroscopic stress states
the principal directions coincide with the Cartesian coordinates and the effective analytical
stress response

σ̄11 = σ̄1 =
1

λ̄1

∂ψ̄(λ̄i)

∂λ̄1

=
1

(1− c)2
1

λ̄1

∂ψ(λ̄i)

∂λ̄1
(5.35)

=
1

(1− c)2

[

µ
(
λ̄1 − 1

)
+

Λ

2

(
λ̄21λ̄

2
2 − 1

)
]

is obtained from combining equations (2.88) and (5.31). The principal stretch

λ̄2 =

[

µ+ Λ
2

µ+ Λ
2
λ̄21

] 1

2

(5.36)

in the lateral direction follows from the condition of a uniaxial stress state σ̄2 = 0.
Both, analytical and numerical stress-strain curves, are compared in Fig. 5.3 for uniaxial
tension and compression. The numerical results represent averages of five different random
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Figure 5.3: Comparison of analytical (solid lines) and numerical results (dash-dotted lines with sym-
bols) for the effective response of Neo-Hookean rubber reinforced by random, isotropic,
polydisperse particle distributions: (a) uniaxial tension, and (b) uniaxial compression.

realisation of the same particle volume fraction. However, no significant deviations between
the individual random distributions have been recognised which indicates an adequate choice
of the RVE. In Fig. 5.3 a very good agreement of the numerical and analytic predictions can
be concluded which verifies the implementation of the homogenisation procedure as well
as the updated Lagrangian XFEM formulation. The XFEM scheme will subsequently be
applied to the simulation of magneto-mechanical problems.

5.3 Large Deformation Magneto-Mechanical Problems

In the following section, the proposed modelling strategy is applied to two heterogeneousIntroduction

microstructural arrangements which are schematically depicted in Fig. 5.4. A comparison
of selected results with the small deformation model utilised in Chapter 4 allows for an
evaluation of the influence of configurational changes on the magneto-mechanical coupling
for both, magnetically linear and non-linear material behaviour.

5.3.1 Two Interacting Circular Inclusions

Motivated by chain-like particle structures observed in oriented MRE, the interaction be-Problem
description tween two circular inclusions is investigated. The domain of interest illustrated in Fig. 5.4 (a)

has a size of 20 µm×10 µm. Both embedded circular inclusions have a radius of 2.49 µm and
an initial distance of 10 µm. The mechanical deformation behaviour of both constituents is
assumed to be Neo-Hookean as outlined in Section 2.6.4. However, due their high stiffness
the inclusions are essentially rigid compared to the soft polymer matrix. The magnetisation
behaviour of the particles is modelled by the modified Ising relation (2.74) and the response
is compared to a saturation free model (2.75) resulting from the linearisation of the Ising
relation. The inclusions are characterised by the mechanical parameters E− = 210GPa,
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(a) (b)

Figure 5.4: Demonstration problems for the comparison of the small and large deformation magneto-
mechanical response: (a) two interacting circular inclusions, and (b) reorientation of an
elliptic inclusion. The displacements of the boundary are set to zero and a vector potential
varying linearly between the lower and upper boundary is applied.
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Figure 5.5: Numerical simulation results for two interacting inclusions: (a) horizontal displacement
of the left particle’s center, and (b) magnetic induction B1 at the point X1 = X2 = 0

ν− = 0.3 while M−
s = 868 kAm−1, δ− = 0.883T−1 and χ−

B = 767 kAm−1 T−1 are used
for the magnetically non-linear and linear case, respectively. The parameters E+ = 75 kPa,
ν+ = 0.4 and χ+

B = 0 are assigned to the soft, non-magnetisable matrix material. On the
boundary ∂Ω the displacement is fixed and a linear vector potential results in an effective
magnetic field pointing into the X1-direction. The difference of ∆Â3 = ∆Â between the
upper and lower boundary defines the macroscopic magnetic field. Motivated by the range
of experimental magnetisation data available for the non-linear material model, a value of
∆Â = 14T µm has been chosen.

Being located close to each other, the inclusions become magnetised inhomogeneously. As Results

a consequence, resultant forces act on each particle which cause their mutual attraction.
Fig. 5.5 (a) shows the computed displacement u1 of the center of the left inclusion as a func-
tion of the external magnetic field ∆Â. There is a significant difference between the curves
of the magnetically linear and non-linear behaviour. This material non-linearity, caused by
magnetic saturation effects, limits the attractive forces and consequently the displacements
of the inclusions. In the magnetically linear case the large deformation model yields larger
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deformations because the attractive forces are inversely proportional to the distance of the
particles. This change of configuration is not incorporated in the small deformation model.
However, in the magnetically non-linear case the large and small deformation model predict
virtually the same displacement as the magnetic saturation limits the displacements of the
particles. An impact of the different models on the magnetic field variables is analysed in
terms of the magnetic induction B1 of the point X1 = X2 = 0 and shown in Fig. 5.5 (b).
Again, the influence of the saturation is obvious. If the particles approach each other, the
field lines between them are more concentrated which is an effect of the present configura-
tion dependence.

5.3.2 Reorientation of an Elliptic Inclusion

Beside the geometric arrangement, another important aspect of real particulate microstruc-Problem
description tures is the shape of the individual particles. To this end, the behaviour of an elliptic inclusion

embedded in a soft matrix and subjected to an external magnetic field which is not aligned
with the major axis of the ellipse [74, 189] is analysed below, Fig. 5.4 (b). The square analy-
sis domain has an edge length of 2 µm while the major and minor axes of the ellipse are given
by 1 µm and 0.4 µm, respectively. In accordance to the previous example of section 5.3.1,
the parameters E− = 210GPa, ν− = 0.3, M−

s = 868 kAm−1 and δ− = 0.883T−1 or
χ−
B = 767 kAm−1 T−1 characterise the material of the inclusion. E+ = 1MPa, ν+ = 0.4

and χ+
B = 0 are assigned to the non-magnetisable matrix. The elastic modulus of the elastic

matrix was chosen to be almost two orders of magnitude larger than in the previous section
to limit the deformations, because the magneto-mechanical coupling effects of the reorienta-
tion problem are significantly higher than for the previous example. Again, the boundary dis-
placements are set to zero and a linear vector potential with a difference of ∆Â = 2.5T µm
is prescribed on the boundary.

As the externally applied magnetic field is not parallel to the effective field inside the inclu-Results

sion, a resultant torque occurs which tends to align the ellipse with the external magnetic
field. This results in a clockwise rotation of the inclusion. The magnetic torque is equili-
brated by mechanical stresses in the surrounding matrix material. The rotation of the inclu-
sion is presented in Fig. 5.6 (a) in terms of the angle ϕ defined in Fig. 5.4 (b). Interestingly
and different from the first example, the small deformation model predicts larger rotations
than the finite deformation model for the magnetically linear cases. This is due to the pro-
portionality of the magnetic torque to the angle between the external magnetic field and the
major axis which decreases with increasing ϕ. In the small deformation model all calcula-
tions are performed with respect to the undeformed reference configuration. Hence, it does
not account for the reduction of the torque with the rotation of the inclusion. As in the pre-
vious example, the magnetically linear behaviour results in a significant overestimation of
the deformation due to the lack of saturation. Fig. 5.6 (b) shows the dependence of the mag-
netic induction B1 at the point X1 = X2 = 0 on the magnetic field. The magnetisation in
the X1-direction inside the inclusion increases with the alignment and reaches a theoretical
maximum at ϕ = 45°. However, this state is not achieved for the applied magnetic loads.

5.4 Conclusion

The large deformation finite element formulation proposed in this section accounts for theLarge
deformations influence of configurational changes on the magnetic field. It facilitates the modelling of

76



5.4 Conclusion

(a)

0 0.5 1 1.5 2 2.5
0

5

10

15

20
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Figure 5.6: Numerical results for the reorientation of an elliptic inclusion: (a) rotation angle of major
axis, and (b) magnetic induction B1 at the point X1 = X2 = 0.

a two-side magneto-mechanical coupling. The used staggered solution scheme was appro-
priate for the demonstration problems considered. Recently, a monolithic approach which
uses a consistent linearisation of both problems to avoid numerical stability issues for more
complex settings has been implemented. With the generalisation of XFEM to the large de-
formation case, the procedures for interface representation developed in Chapter 3 can be
applied to analyse more realistic microstructural models in the future.

The presented results show that there is no significant difference between the small and Small vs. large
deformationsthe large deformation model in particular for a realistic non-linear magnetisation behaviour.

However, in many loading situations MRE can undergo finite strains, e.g. induced by me-
chanical loadings which cause significant changes to the internal structure. Taking into ac-
count these microstructural changes during the solution of the coupled magneto-mechanical
field problem will require the application of the large deformation procedures developed in
this section.
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Isogeometric Modelling
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6 Isogeometric Analysis

The development of the second major discretisation technique considered in this work – the General
conceptIsogeometric Analysis (IGA) – was motivated by the fact that the conversion of a geometrical

model into a numerical one, i.e. the generation of a suitable finite element mesh, has been a
tedious and sometimes cumbersome task which can be hardly automated. The disjunction be-
tween the Computer Aided Design (CAD) geometry, commonly described by Non-Uniform
Rational B-Splines (NURBS), and a finite element model, based on Lagrangian polynomial
approximations of the geometry and the field variables, can be overcome using the idea of
IGA. In this concept, which was pioneered by Hughes et al. [99], the same functions which
represent the geometry of the CAD model are used to approximate the field variables in
the numerical model. As a consequence, the geometric discretisation errors that result from
the approximation of the CAD geometry by Lagrangian polynomials are eliminated – the
geometry used in the analysis is exactly the one defined by CAD.

6.1 Fundamentals

The essential difference between a standard and an isogeometric finite element formulation Spline-based
approxima-
tions

results from replacing the Lagrangian polynomial basis by spline-based approximations. B-
splines and NURBS possess several features which make them attractive for analysis. Ac-
cording to [6] they can be summarised as:

(i) The basis functions are non-negative and form a partition-of-unity.

(ii) The support of each basis function is local.

(iii) Many relevant geometries for engineering applications can be represented exactly.

(iv) Besides standard h- and p-refinement techniques, k-refinement allows for a systematic
control of the continuity properties.

However, spline-based approximations will generally be non-interpolatory, i.e. discrete con-
trol values which are an equivalent to nodal values in a standard FEM do not represent the
value of the approximated field variable at its geometric location. That is way projections
are required, e.g. for the application of boundary or initial conditions.

This chapter will briefly outline B-splines, NURBS, and the concept Bézier extraction in- Outline

troduced by Borden et al. [17] which is a unified approach to the implementation of spline-
based approximations into any existing finite element framework. This short review essen-
tially follows [17]. More details with similar notation can be found, e.g., in [17, 183, 192].
For a comprehensive review please refer to the NURBS book of Piegl and Tiller [167] as
well as the textbook on IGA [41]. In the remainder of this chapter, an isogeometric finite
element formulation is developed for the coupled magneto-mechanical field problem. A con-
vergence study based on an analytic solution presented in Section 2.7 provides the basis for
a comparison of XFEM and IGA in terms of errors and convergence rates.
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6 Isogeometric Analysis

6.1.1 Basis Functions

Below, all univariate functions will be introduced with respect to a dimensionless parameterBézier curves

coordinate ξ. Since the procedure of Bézier extraction involves Bézier curves, the review
will start from there. A Bézier curve of degree p

C(ξ) =

p+1
∑

I=1

BI,p(ξ)PI (6.1)

is defined by the linear combination of I = 1 . . . p + 1 univariate Bernstein polynomials
BI,p(ξ) of order p and the control point vectors PI according to the spatial dimension d of
the problem. A corresponding vector-matrix notation is obtained from defining a vector of
Bernstein basis functions B = {BI,p}p+1

I=1 and a matrix P = {PI}p+1
I=1 of control points of

size [p+ 1× d]
C(ξ) = PTB(ξ). (6.2)

For ξ ∈ [−1, 1] the Bernstein basis functions are computed recursively from

BI,p(ξ) =
1

2
[(1− ξ)BI,p−1(ξ) + (1 + ξ)BI−1,p−1(ξ)] (6.3)

B1,0 ≡ 1

BI,p = 0 if I < 1 ∨ I > p+ 1.

Similar equations can be obtained for the computation of the first- and second-order deriva-
tives

dBI,p

dξ
(ξ) =

1

2
p (BI−1,p−1(ξ)−BI,p−1(ξ)) (6.4)

d2BI,p

dξ2
(ξ) =

1

2
p (p− 1)

[
1

2
(BI,p−2(ξ) + BI−2,p−2(ξ))−BI−1,p−2(ξ)

]

. (6.5)

A B-spline curveB-spline
curves

C(ξ) =
n∑

I=1

NI,p(ξ)PI = PTN(ξ) (6.6)

is given by the univariate B-spline basis functions N = {NI,p(ξ)}nI=1 of order p and a set
of n control points P = {PI}nI=1, Fig. 6.1. The basis functions are defined by a knot vector
Ξ = {ξI}mI=1 which contains I = 1 . . . m non-decreasing coordinates ξI , ξ ≥ 0. From the m
elements of the knot vector a set of n = m− p− 1 B-spline basis functions can be computed
according to the Cox-de Boor recursion formula

NI,p(ξ) =
ξ − ξI
ξI+p − ξI

NI,p−1(ξ) +
ξI+p+1 − ξ

ξI+p+1 − ξI+1

NI+1,p−1(ξ) for p ≥ 1 (6.7)

NI,0(ξ) =

{

1 if ξI ≤ ξ < ξI+1

0 otherwise
for p = 0 .

As an example, a second-order B-Spline curve and the corresponding B-spline basis func-
tions are plotted in Fig. 6.1. The curve is defined by a set of n = 8 control points illustrated
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(a) (b)

Figure 6.1: B-spline curve defined by a set of control points {PI}8I=1 (symbol ◦), and the knot vector
Ξ = [0 0 0 1

6
1
3

1
2

2
3

5
6 1 1 1]T (symbol ×): (a) Plot of the curve and the associated

control points in the physical x1-x2 domain, and (b) B-spline basis functions NI,2(ξ) in
the parameter domain.

by circles in Fig. 6.1 (a) and a corresponding knot vector Ξ = [0 0 0 1
6

1
3

1
2

2
3

5
6
1 1 1]T

of length m = n + p + 1 = 11. The basis functions for the given knot vector Ξ are non-
interpolatory in the interior but interpolatory at both ends because the first and last knot are
repeated k = p + 1 = 3 times. B-spline curves are generally Cp−k continuous at a knot.
Therefore, the curve illustrated in Fig. 6.1 is C−1 continuous at the ends and C1 continuous
in the interior domain.

Since B-spline basis functions consist of polynomial functions, shapes like circles and el- NURBS

lipses cannot be modelled exactly. This can be achieved by geometric representations based
on NURBS curves and surfaces. They are therefore commonly used in CAD and IGA has
been strongly linked to NURBS. A NURBS curve of order p

C(ξ) =
n∑

I=1

RI,p(ξ)PI = PTR(ξ) (6.8)

is defined by a set of univariate NURBS basis functions R(ξ) = {RI,p(ξ)}nI=1 which are
weighted (weights wI) rational B-spline basis functions of the same order p

RI,p(ξ) =
NI,p(ξ)wI
n∑

J=1

NJ,p(ξ)wJ

. (6.9)

In order to apply Bézier extraction to both, B-splines and NURBS, equation (6.9) can be
recast into the vector-matrix representation

R(ξ) =
1

wTN(ξ)
W N(ξ) (6.10)

with w = {wI}nI=1 and W = diag{wI}nI=1.

In the same fashion B-spline and NURBS surfaces Surfaces

S(ξ) =
n∑

I=1

m∑

J=1

Np1,p2
IJ (ξ)PIJ , S(ξ) =

n∑

I=1

m∑

J=1

Rp1,p2
IJ (ξ)PIJ (6.11)
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Parent domain

Bézier element

NURBS patch

Figure 6.2: Bézier extraction: NURBS patch in the physical domain, knots in the parametric domain,
Bézier element in the parent domain, and three sets of associated Cartesian coordinates.

are defined by a mesh of control points PIJ and bivariate B-spline Np1,p2
I,J (ξ) or NURBS

basis functions Rp1,p2
IJ (ξ), respectively. The bivariate basis functions are tensor products of

the associated univariate basis functions of order p1 and p2

Np1,p2
IJ (ξ) = NI,p1(ξ1)NJ,p2(ξ2) (6.12)

Rp1,p2
IJ (ξ) =

NI,p1(ξ1)MJ,p2(ξ2)wI,J
n∑

K=1

m∑

L=1

NK,p1(ξ1)ML,p2(ξ2)wK,L

(6.13)

corresponding to the knot vectors Ξ1 = {ξ11 , ξ12 , . . . , ξ1n+p1+1} and Ξ2 = {ξ21 , ξ22 , . . . , ξ2m+p2+1}.

6.1.2 Bézier Extraction

Isogeometric analysis based on NURBS does not use elements in the classical sense butMotivation and
concept patches, Fig. 6.2. The knot vectors that define a NURBS patch or surface in the physical

domain can be represented by two-dimensional rectangles in the parameter space. Although
isogeometric finite element methods can be implemented directly using the previously de-
fined B-splines and NURBS basis functions defined on patches, it is more convenient to ap-
ply Bézier extraction [17] to map the B-spline or NURBS basis onto a local, C0-continuous,
piecewise polynomial Bernstein basis. Using this transformation, the original NURBS patch
is decomposed into C0 continuous Bézier finite elements, one for each non-zero knot span
[ξI ξI+1] in the original knot vector Ξ, Fig. 6.2. These Bézier elements can be handled in
the same way as standard finite elements. That is, every existing finite element code can be
enhanced with isogeometric analysis features using Bézier extraction. The only information
to compute the Bézier elements for a given B-spline or NURBS is its knot vector. In the
following, Bézier extraction will be outlined for the one-dimensional case. Due to the tensor
product nature of the two-dimensional basis functions, all procedures can be generalised to
surfaces and volumes.
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Bézier extraction is essentially based on the insertion of knots which will therefore be briefly Knot insertion

outlined in the following. A new knot at ξ̂ can be inserted into the knot vector Ξ which

is altered to Ξ̂ =
[

ξ1 ξ2 . . . ξI ξ̂ ξI+1 . . . ξn+p+1

]T

, (I > p). This results in a set of

new basis functions that are computed from equation (6.7). If a new knot is inserted at the
location of an existing one, the continuity of the basis is reduced by one at this position.
In order to retain the shape and the continuity of the geometry, namely the curve C(ξ),
while changing the continuity of the basis functions, the position of control points has to be
adjusted according to

P̂J =







P1 J = 1

αJPJ + (1− αJ)PJ−1 1 < J < m

Pm J = m

, (6.14)

αJ =







1 1 ≤ J ≤ I − p
ξ̂−ξJ

ξJ+p−ξJ k − p+ 1 ≤ J ≤ I

0 J ≥ I + 1

. (6.15)

Bézier extraction is actually accomplished by repeated knot insertion. For every inserted B-spline Bézier
extraction

knot ξJ , J = 1 . . . m a new matrix of control points P̂
J+1

=
(

C
J

)T

P̂
J

with P̂
1
= P has

to be computed. The operator C
J

follows directly from equations (6.14) and (6.15), see [17]
for details. Repeating all interior knots of the given knot vector to a multiplicity of p results
in a set of Bézier control points

Q = P̂
m+1

=
(

C
m

)T (

C
m−1

)T

. . .
(

C
1

)T

P = CTP . (6.16)

The matrix C is called Bézier extraction operator. It relates the B-spline control points to
their Bézier counterparts. Due to the one-to-one correspondence of control points and basis
functions, the B-spline basis

N
(
ξ̄
)
= CB

(
ξ̄
)

(6.17)

can now be expressed in terms of the Bernstein polynomial basis1 which is C0 continuous at
each knot. This leads to the representation

C
(
ξ̄
)
= QTB

(
ξ̄
)
=

(
CTP

)T
B
(
ξ̄
)
= PTCB

(
ξ̄
)

(6.18)

for any univariate B-spline geometry or approximation.

As an example, the B-spline curve according to Fig. 6.1 is now represented in terms of Demonstration

Bernstein basis functions, Fig. 6.3. Bézier extraction converts the B-spline functions that
are active over a Bézier element domain into p + 1 Bernstein shape functions. Different
colours indicate the domains and shape functions of the associated Bézier elements. It can
be seen from Fig. 6.3 (a) that the approximation is interpolatory at the element boundaries
with identical Bézier control points of adjacent elements. While the B-spline or NURBS ba-
sis functions will in general be different for each knot span, Fig. 6.1 (b), the same Bernstein
polynomials are used in each knot intervall [ξI ξI+1], Fig. 6.3 (b). They therefore take the

1To facilitate numerical integration of the weak form over each element domain, the Bernstein shape functions according
to equation (6.3) have been defined for the intervall ξ̄ ∈ [−1, 1] that spans a single Bézier element.
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(a) (b)

Figure 6.3: Bézier extraction for the B-spline curve according to Fig. 6.1: (a) Plot of the curve and
the associated Bézier control points Q (symbols ◦) in the physical x1-x2 domain, and (b)

Bernstein basis functions BI,2(ξ) in the parameter domain. Colors in both figures indicate
different Bézier elements.

role of a classical shape function in each Bézier element.

Since the NURBS basis functions consist of weighted B-splines, Bézier extraction can beNURBS Bézier
extraction directly applied to equation (6.10) using the results of the preceding paragraph and of [17]

R(ξ) =
1

wTCB(ξ̄)
W CB(ξ̄) = W C

B(ξ̄)

W (ξ̄)
. (6.19)

From the denominator of the equation above it follows that the weights corresponding to
the Bézier basis functions are wQ = CTw. Using a diagonal matrix representation W

Q
=

diagwQ as shown in [17], the required set of Bézier control points for NURBS are computed
as

Q = W−1

Q
CTWP . (6.20)

6.2 Isogeometric Discretisation of the Magneto-Mechanical

Boundary Value Problem

In this section IGA will be applied to model the coupled magneto-mechanical boundaryIntroduction

value problem assuming small deformations and hence a one-sided coupling. Only two-
dimensional problems homogeneous in the x3-direction will be considered (A3 = A, A1 =
A2 = 0). After a brief outline of the isogeometric discretisation, the numerical properties of
IGA are compared to XFEM using one of the demonstration problems described in Section
2.7. In the case of IGA NURBS basis functions are applied in order to exactly represent the
geometry of the circular inclusion while Lagrangian polynomials used with XFEM can only
approximate the circular interface.

6.2.1 Discretisation

Similar to the standard finite element approach, the domain Ω =
ne⋃

I=1

ΩIe is discretised by aGeometry

number of ne Bézier elements ΩIe. The geometric map of a two-dimensional finite element
domain Ωe from the parametric domain to the physical domain according to equation (6.11)
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is defined by

x(ξ) =

p1+1
∑

I=1

p2+1
∑

J=1

Re
IJ (ξ)x

e
IJ (6.21)

based on (p1 + 1) × (p2 + 1) bivariate NURBS basis functions Re
IJ and their associated

control points x̂e
IJ . Bézier extraction based on an element local extraction operator C

e
[17]

allows to express the geometry representation

x
(
ξ̄
)
= xT

e
W

e
C

e

Be

(
ξ̄
)

W
(
ξ̄
) (6.22)

in terms of Bernstein polynomials similar to equation (6.19). This facilitates a direct geo-
metrical map between the physical and parent domain where numerical integration is carried
out. The quadrature of the weak form involves the Jacobian of the geometrical map

dx1dx2 =

∣
∣
∣
∣
∣

∂x
(
ξ̄
)

∂ξ̄

∣
∣
∣
∣
∣
dξ̄1dξ̄2 = |J

e
|dξ̄1dξ̄2 = Jdξ̄1dξ̄2 . (6.23)

An isogeometric finite element formulation for the stationary magnetic field problem is ob- Magnetic BVP

tained from the discretisation of the weak form (3.5) introduced in Chapter 3. Following
the idea of isogeometric analysis, the same functions which represent the geometry of the
element (6.22) are used to approximate the potential

Ah
(
ξ̄
)
= AT

e We
C

e

Be

(
ξ̄
)

W
(
ξ̄
) . (6.24)

The vector Ae contains the control values of the magnetic potential, i.e. discrete values at
control points associated to the element. However, as the spline-based approximation will
generally be non-interpolatory, the control values do not represent physical values of the
magnetic potential at the geometric location of the control points. The Bézier extraction
algorithm is practically implemented in a shape function routine to compute a vector NA

operating on the control values which allows to rewrite the approximation of the magnetic
potential

Ah
(
ξ̄
)
= NA

(
ξ̄
)
Ae (6.25)

in a form similar to standard FEM. In the same manner, the magnetic induction is related to
the control values of the potential by

Bh
(
ξ̄
)
= B

A

(
ξ̄
)
Ae (6.26)

with the matrix B
A

representing a discrete version of the definition of the vector potential
(2.35). The form of the global system of equations that results from the isogeometric dis-
cretisation is therefore exactly the same as for a Lagrangian FEM and reads

KAA = PA + J . (6.27)

All changes due to the spline-based approximation are essentially contained in an adapted
shape function routine. The non-interpolary nature of the spline basis may, however, require
some consideration during the application of non-homogeneous boundary conditions. The
coefficient matrix and the vector of equivalent currents are obtained from assembling the
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contributions of all ne elements defining the domain Ω

K
A
=

ne⋃

I=1

∫

ΩIe

BT

A
C
A
B
A
dV (6.28)

PA =
ne⋃

I=1





∫

ΩIe

NT
Aj dV +

∫

∂ΩIe

NT
Ak̂ dS



 . (6.29)

The vector J allows for the application of discrete currents at control points.

The discretisation of the domain Ω used in the mechanical pass is the same as for the mag-Magneto-
mechanical
BVP

netic problem with the following isogeometric approximation of the displacement field

uh
(
ξ̄
)
= N

u

(
ξ̄
)
ue . (6.30)

The vector ue contains the control values of the displacement associated to the considered
element. A matrix representation of the infinitesimal strain-displacement relation is given by

εh
(
ξ̄
)
= B

u

(
ξ̄
)
ue (6.31)

with the operator matrix B
u

involving partial derivatives of the shape functions. Applying
these approximations to the weak form (3.6) results in the global system of equations for the
magneto-mechanical problem considering a one-sided coupling due to magnetic stresses

Ku u = Pu + F (6.32)

with

K
u
=

ne⋃

I=1

∫

ΩIe

BT

u
C
u
B
u
dV (6.33)

Pu =
ne⋃

I=1





∫

ΩIe

(

NT

u
ρf −BT

u
σ̂
)

dV −
∫

∂ΩIe

NT

u
p̂ dS



 (6.34)

and additional control point forces contained in the vector F.

6.2.2 Convergence Analysis

Following the derivation of the isogeometric finite element formulation for the coupledIntroduction

magneto-mechanical field problem, its convergence behaviour will be investigated numer-
ically and compared to XFEM. In Chapter 3 as well as in [KMG+13] the convergence of
XFEM has been studied primarily for the magnetic field problem using the solution of Engel
et al. [61]. Having at hand the analytical solution of the magneto-mechanical problem out-
lined in Section 2.7, convergence studies have been carried out for the coupled problem and
purely magnetic or mechanical subproblems considering both discretisation approaches.
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6.2 Isogeometric Discretisation of the Magneto-Mechanical Boundary Value Problem

(a) (b) (c)

Figure 6.4: Isogeometric and XFEM discretisations used in the convergence analysis: (a) Definition
of the geometry in terms of nine NURBS patches, (b) coarsest Bézier mesh (refinement
level 1) considered in the analysis, and (c) XFEM mesh of Q8 elements. In addition, the
used integration subdomains and the circular interface are depicted.

The investigated problem is given by a circular inclusion Ω− of radius R which is embedded Problem
descriptionin an infinite matrix domain Ω+, cf. Fig. 2.3 (b). Both domains can be magnetisable but

are assumed to exhibit linear magnetic and mechanical material behaviour. For the present
study, the parameters µ+

r = 1, E+ = 1× 109 Pa, ν+ = 0.3, and µ−
r = 10, E− = 1× 108 Pa,

ν− = 0.4 are used for inclusion and matrix, respectively. The numerical model comprises a
square domain Ω of size 10m × 10m containing a circular inclusion of radius R = 3

4
πm.

The exact solution of the problem derived in [195] is utilised to prescribe essential boundary
conditions for the magnetic and mechanical problems. Based on the analytic solution which
is able to represent a multitude of qualitatively different settings by varying the material and
loading parameters, three subproblems will be analysed in the following:

(i) A stationary magnetic problem with a loading of ∞B = 1T,

(ii) a coupled magneto-mechanical problem with ∞B = 1T and ∞σ11 = ∞σ22 = 0, and

(iii) a purely mechanical problem with ∞B = 0 and ∞σ11 = ∞σ22 = 3× 106 Pa which
represents a biaxial tensile loading, cf. [204].

As outlined in Chapter 1, both discretisation methods are fundamentally different with re- Discretisation

spect to the representation of details of the modelled structure. The isogeometric approach
uses a conforming mesh defined in terms of several NURBS patches which represent the
geometry. The circular inclusion of the considered problem can be modelled exactly by
quadratic NURBS. A total number of nine patches has been used to generate a convenient
parametrisation of the geometry, Fig. 6.4 (a). The associated Bézier mesh of the first con-
sidered refinement level is shown in Fig. 6.4 (b). During the convergence study, each of the
patches undergoes uniform h-refinement which ensures nestedness of the solution and yields
meshes of ne ∈ {8, 16, 32, 64, 128, 256, 512} elements. In contrast, XFEM uses a regular
non-conforming mesh in combination with an implicit interface representation by level sets.
For this convergence study, seven different discretisations with ne = n × n elements and
n ∈ {8, 16, 32, 64, 128, 256, 512} have been used. All computational results are obtained us-
ing the element local level set representation of the interface in combination with quadratic
approximations (Q8 elements). The computational mesh with 8×8 Q8 elements is illustrated
in Fig. 6.4 (c).
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Magnetic BVP (i) Mechanical BVP (iii)Coupled BVP (ii)

Figure 6.5: Convergence behaviour of the quadratic isogeometric finite element formulation
(IGAFEM, solid lines) and XFEM (dashed lines) for the magnetic, coupled magneto-
mechanical and mechanical problems as a function on the characteristic element size h:
(a) L2 norm, and (b) energy norm.

The convergence behaviour for quadratic NURBS and XFEM in the L2 and the energy normDiscussion

is illustrated in Fig. 6.5. Monotonic convergence is obtained for both discretisation methods
and all analysed problems. However, there is a significant difference between the isogeomet-
ric approach and XFEM regarding the overall error level and the convergence rate. While the
isogeometric discretisations show optimal orders of convergence of almost exactly p+1 = 3
in the L2 norm. The convergence behaviour in the energy norm even exceeds the theoreti-
cal optimal order of p = 2. The quadratic XFEM formulation convergences suboptimally
which has already been reported in Section 3.4, in [KMG+13] as well as by Cheng and Fries
[37]. This discrepancy is partly due to the exact geometry representation of the isogeomet-
ric approach. The rather poor convergence of the XFEM solutions is typically caused by
small triangular integration subdomains which produce large errors and deteriorate the con-
ditioning of the global system of equation. Eventually, it turns out that the appealing XFEM
approach to mesh generation, whose advantages have been demonstrated with the genera-
tion of numerical models for random microstructures in the previous sections, is numerically
far from optimal. The isogeometric approach features excellent numerical properties but re-
quires conforming meshes which will be hard to obtain for solid three-dimensional problems.

While the order of convergence does not depend on the solved boundary value problem, aInfluence of
problem type clear influence on the error level is observed. In terms of the L2 norm, the error for the

magnetic boundary value problem (i) is the smallest one, followed by the purely mechanical
problem (iii). The displacement field of the coupled problem (ii) possesses the largest error.
This applies to both discretisations. With respect to the energy norm, the error levels of the
problems (i) and (iii) nearly coincide, while the one of (ii) is higher again. A reason for
this apparently systematic error is to be seen in the realisation of the weak coupling in the
magneto-mechanical case: At first the magnetic problem is solved. This approximate numer-
ical solution enters the coupled mechanical subproblem by means of the pseudo-magnetic
stress tensor which contains the first derivatives of the vector potential, i.e. the magnetic
loads entering the magneto-mechanical problem are erroneous and cause the observed offset
in the error levels.
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7 Hybrid Isogeometric Finite Element and
Boundary Element Formulation [MKMU14]

In this chapter a coupling of the Finite Element (FEM) and the Boundary Element Method Motivation

(BEM) is proposed. The development is motivated from the characteristics of magnetic fields
which are not only present in the material body but also in the surrounding free space. If a
finite element approach is used, the free space domain has to be meshed in order to avoid
truncation errors and to solve scatter problems, e.g. the analysis of electro-magnetic radiation
resulting from electronic components. This meshing effort can be avoided by BEM whose
integral formulation inherently deals with infinite domains. As the BEM is very limited
regarding the modelling of heterogeneous structures as well as material non-linearities, a
coupling of both methods is pursued in the following.

FEM is used in this coupled approach to model heterogeneous materials or components Hybrid
approachthat may exhibit non-linear magnetic and mechanical behaviour. The BEM accounts for the

surrounding free space. Both methods are coupled on the boundary of the finite element do-
main. Due to this hybrid approach, no meshing of the free space is necessary and truncation
errors are avoided for problems to be solved on open, infinite or semi-infinite domains. Once
the solution for the magnetic problem is obtained by the hybrid formulation, FEM is used
to solve the magneto-mechanical field problem with one-sided coupling in a subdomain of
the magnetic problem. Here, the hybrid method is applied in conjunction with spline-based
approximations to form a hybrid isogeometric FEM/BEM approach which offers efficient
discretisations and an exact representation of typical engineering geometries.

This chapter is outlined as follows. After a short review of the Isogeometric Boundary El- Outline

ement Method (IGABEM), a boundary integral formulation for the magnetic field problem
is developed. Subsequently, the coupling of IGABEM with the Isogeometric Finite Element
Method (IGAFEM) is outlined and the numerical properties of the proposed approach in
terms of errors and convergence rates are investigated. Results obtained from discretisations
based on NURBS and Lagrangian polynomials are compared using the first demonstration
problem described in Section 2.7. Eventually, the simulation of magnetically induced defor-
mations of an elliptic sample representing a generic, magnetoactive material that consists of
magnetisable particles embedded in a polymeric matrix with non-linear viscoelastic consti-
tutive behaviour.

7.1 Isogeometric Boundary Element Method

The idea of IGABEM was first mentioned in [41]. Early contributions focus on the mod- IGABEM

elling of potential-flow problems [169] and structural shape optimisation [128]. In order
to handle the dense coefficient matrices of BEM efficiently even for large models, Taka-
hashi and Matsumoto [206] combined IGABEM with the Fast Multipole Method to solve
problems of Laplace type. Scott et al. [184] used T-splines to eliminate shortcomings in
the smoothness of NURBS-based geometry representations. The idea of partition-of-unity
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7 Hybrid Isogeometric Finite Element and Boundary Element Formulation

based enrichments was recently transferred to IGABEM by Peake et al. [162]. As BEM
requires only the boundary of objects to be meshed, it is even more attractive in combina-
tion with isogeometric analysis. Computer aided design models only describe the boundary
of objects. This surface representation has to be converted into a three-dimensional solid
model in the case of IGAFEM which is one of the key challenges in isogeometric analysis.
This problem is avoided for BEM and the method has therefore been applied to elastostatic
analysis by Simpson et al. [191, 192].

7.2 Hybrid Approach – Coupling IGAFEM and IGABEM

Despite being advantageous for infinite or semi-infinite domains and the attractive combi-Hybrid
methods nation with IGA, boundary integral methods have restrictions regarding the representation

of non-linear material behaviour, especially for materials models that involve internal con-
stitutive variables, cf. Section 2.6. While certain approaches for non-linear isotropic [21]
and anisotropic [164, 219] elastic and linear viscoelastic [76, 175] material models exist,
the consideration of more complex non-linear constitutive relations remains cumbersome –
not to say impossible – due to the requirement of an appropriate fundamental solution. In
order to allow for the modelling of complex components, which involve non-linear mate-
rial models, and the surrounding free space, FEM and BEM can be coupled to combine the
adavantages of both approaches. An early attempt for such a hybrid modelling strategy has
been presented by Fredkin and Koehler [69] for computing scatter fields. Applications to
electric field problems can be found in [66]. Recent contributions by Daveau and Menad
[45], Pusch and Ostrowski [172], Bruckner et al. [24], Fritze et al. [72] as well as Peters et
al. [166] discuss various direct coupling techniques for conforming and non-conforming dis-
cretisations. Here, the hybrid FEM/BEM method is applied in conjunction with spline-based
approximations to form a hybrid IGAFEM/IGABEM approach.

The infinite domain Ω∞ is decomposed into two separate parts ΩBEM and ΩFEM, Fig. 7.1. TheSolution
procedure domain ΩFEM involves the heterogeneous material body with arbitrarily complex material

behaviour while the domain ΩBEM models the free space surrounding the material. Both do-
mains have the common boundary Γ = ∂Ω = ∂ΩFEM = ∂ΩBEM which represents the surface
of the material body. In this way no meshing of the free space is necessary. This approach is
applied to the model magneto-mechanical problems according to Chapter 2 assuming small
deformations and a one-sided coupling. That is, magnetically induced deformations result
from attractive or repulsive interactions between the particles modelled in terms of magnetic
stresses. The following staggered solution procedure is used:

(i) Hybrid IGAFEM/IGABEM is applied to compute the magnetic field in Ω∞, i.e. within
and outside the magnetisable body.

(ii) IGAFEM is used to simulate magneto-mechanical interactions in the magnetisable
body which covers ΩFEM. During this pass magnetic loads according to step (i) are
applied.

Moreover, the domain ΩBEM is assumed to be free of mechanical stresses and the magneto-
mechanical problem (ii) can be solved by only FEM or IGAFEM, respectively. Nevertheless,
magnetic loads that result from the exterior of the domain ΩFEM are considered in terms of
magnetic surface tractions on Γ which are also obtained from the solution of the magnetic
field problem in step (i).
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x
1

x3

x2

= FEM

= FEMBEM \

= FEM= = BEM
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Figure 7.1: Modelling problems on infinite or semi-infinite domains Ω∞ using a hybrid approach that
couples FEM and BEM on the common boundary Γ. This boundary can be fictitious but
will often coincide with the boundary ∂Ω of a material body or device Ω in the open
domain Ω∞. While FEM can be used to model heterogeneous materials with complex
history dependent constitutive relations in ΩFEM, BEM is utilised to account for fields in
the free space ΩBEM.

7.3 Hybrid Isogeometric Discretisation of the Magnetic

Boundary Value Problem

In this section a hybrid formulation for the stationary magnetic problem is developed. Em- Introduction

phasis is placed on the isogeometric discretisation of the boundary, the derivation of the
boundary integral equation, and the discrete system of equations. Subsequently, IGABEM
is coupled to IGAFEM which requires some changes to the formulation outlined in Section
6.2.

7.3.1 Boundary Discretisation

While the domain ΩFEM is divided into a number of ne finite elements Ωe, cf. Fig. 6.2, the Geometric
mapboundary Γ is split into nẽ boundary elements Γẽ, Fig. 7.2

Γ =

nẽ⋃

I=1

ΓI ẽ . (7.1)

As in the two-dimensional case, elements are defined by unique non-zero intervalls of the
knot vector. The geometry of the boundary element Γẽ is a NURBS curve according to
equation (6.8)

x(ψ) =

p+1
∑

k=1

RI,p (ψ)x
ẽ
I (7.2)
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Figure 7.2: Isogeometric discretisation of the boundary of a NURBS patch and three sets of Cartesian
coordinates describing the physical, parametric and parent domains.

defined in terms of p+1 univariate NURBS basis functionsRI,p(ψ) and control point coordi-
nates associated to the element Γẽ. Using Bézier extraction, the basis functions are expressed
in terms of Bernstein polynomials that are functions of the parent domain coordinate ψ̄

x
(
ψ̄
)
= xT

ẽ
W

ẽ
C

ẽ

Bẽ

(
ψ̄
)

W
(
ψ̄
) . (7.3)

Quadrature of the boundary integral formulation is performed in the parent domain and the
geometric mapping between the physical and parent domain requires the determinant of the
Jacobian of the geometric map to be considered

dΓẽ =

√
(
dxẽ

1(ψ̄)

dψ̄

)2

+

(
dxẽ

2(ψ̄)

dψ̄

)2

dψ̄ = Jẽdψ̄ . (7.4)

7.3.2 Isogeometric Boundary Element Formulation

In the linear magnetic case Bi = µHi, the stationary magnetic field problem described byPoisson
problem equations (2.30) and (2.31) can be represented in terms by the Poisson type partial differential

equation
A,ii = −µ j (7.5)

for which a detailed derivation of the boundary integral equation can be found in [77]. In
order to obtain the typical structure of the discrete BEM equations, the normal derivative of
the magnetic potential is defined by Q = A,ini and jump conditions (2.32) as well as (2.33)
across an interface Γ can be recast in the form

JAK = 0 (7.6)s
Q

µ

{
= −k . (7.7)
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Figure 7.3: Definitions of the outward unit normal vectors: (a) nBEM, and (b) nFEM.

A corresponding boundary integral formulation of the stationary magnetic field problem is Boundary
integral
equation

derived by multiplying (7.5) with a test function A∗(x,x′) which satisfies

A∗
,ii = −δ(x,x′), (7.8)

with the Dirac distribution δ. Integrating over the domain ΩBEM, applying integration by
parts twice and using Gauss’ theorem yields the boundary integral equation for the two-
dimensional stationary magnetic field problem to be solved on the open, infinite domain
ΩBEM

A(x′) =

∫

Γ

A∗(x,x′)Q(x)−Q∗(x,x′)A(x) dS + µ

∫

ΩBEM

A∗(x,x′)j(x) dV . (7.9)

In the equation above Q = A,in
BEM
i is the normal derivative of the magnetic potential A with

the outward unit normal vector nBEM of the BEM domain, Fig. 7.3 (a). The fundamental
solution A∗ of the magnetic potential obtained from (7.8) and its normal derivative Q∗ are
given by

A∗(r) = − 1

2π
ln r, Q∗(r) = A∗

,in
BEM
i = − 1

2πr

∂r

∂nBEM
(7.10)

with the Euclidean distance r = |x− x′| between source x′ and field point x.

It is important to mention that terms in the boundary integral equation (7.9) related to the Boundary
integral for Γ∞fictitious boundary Γ∞, cf. Fig. 7.1,

lim
r→∞





∫

Γ∞

A∗(x,x′)Q(x)−Q∗(x,x′)A(x) dS



 = 0 (7.11)

cancel each other out in two dimensions. In the three-dimensional case, each of the terms in
(7.11) approaches zero for r → ∞ [20]. As a consequence, Γ∞ never has to be considered
explicitly nor discretised and no boundary conditions have to be assigned.

Using the boundary integral equation (7.9), the magnetic potential can be computed for any Collocation

point in the domain ΩBEM once the potential and its normal derivative are known on Γ. In
this work, the missing boundary values will be computed by collocation which is, however,
not the only discretisation strategy for generating a system of equations. Problems in this
procedure arise from the fact that the source point x′ is restricted to the interior of ΩBEM and
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Figure 7.4: Definition of the planar angle α for (a) straight C0-continuous boundary elements, and
(b) for C1-continuous boundary elements or integration points inside elements (α =
180°, c = 0.5).

can approach a point on the boundary Γ only in a limit sense. From an implementation point
of view, collocation with points on Γ will lead to singular integrals in (7.9) which require
special treatment as explained in more detail in [MKMU14]. This results in the modified
integral equation valid to compute values on Γ

c(x′)A(x′) + C
∫

Γ

Q∗(x,x′)A(x) dΓ−
∫

Γ

A∗(x,x′)Q(x) dS = µBEM

∫

ΩBEM

A∗(x,x′)j(x) dV

(7.12)
where c is a free term coefficient defined by

c(x′) =







1− α
2π

for x′ ∈ Γ

1 for x′ ∈ ΩBEM

0 for x′ /∈ Γ,x′ /∈ ΩBEM

(7.13)

with the planar angle α according to Fig. 7.4. The symbol C
∫

indicates that the first integral
in (7.12) – which is strongly singular (singularity at r = 0) – is evaluated in the Cauchy
Principal Value limiting sense.

A discrete form of the boundary integral equation which forms the basis for IGABEM isDiscrete
boundary
Integral
equation

finally obtained from utilising univariate approximations of the magnetic potential and its
normal derivative

Ah
(
ψ̄
)
= NA

(
ψ̄
)
Aẽ (7.14)

Qh
(
ψ̄
)
= NQ

(
ψ̄
)
Q

ẽ
. (7.15)

Similar to two-dimensional case of Section 6.2.1, equation (6.25), the above vector-matrix
notation of the approximations is implemented in terms of a modified shape function routine
that is on the framework of Bézier extraction suitable for both, B-spline and NURBS.
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The resulting discrete boundary integral equation is given by

c(x′)NA

(
ψ̄′)A¯̃e +

nẽ⋃

I=1



 C
∫

ΓI ẽ

Q∗(x(ψ̄),x′)NA(ψ̄)Jẽ(ψ̄)dψ̄



Aẽ (7.16)

−
nẽ⋃

I=1





∫

ΓI ẽ

A∗(x(ψ̄),x′)NQ(ψ̄)Jẽ(ψ̄)dψ̄



Q
ẽ

= µ

nJ∑

K=1

JKA
∗(xK ,x

′) .

In the equation above Aẽ and Q
ẽ

represent the control values of the magnetic potential and
its normal derivative associated to the boundary element Γẽ, ψ̄′ denotes the coordinate of the
collocation point in the parent space, and ¯̃e indicates the element containing the collocation
point ψ̄′. The first term in equation (7.16) takes into account that the rational basis functions
are not interpolatory at the collocation coordinate ψ̄′. For the right-hand side it is assumed,
that a number of nJ concentrated current sources JK act at field points xK in ΩBEM

j(x) =

nJ∑

K=1

JKδ(x− xK) (7.17)

which is a reasonable choice to model the demonstration problems presented in Section 7.4.

As previously mentioned, collocation which was already applied by Simpson [192] in the System of
equationsframework of IGABEM, is used to finally set up a system of equations to compute the un-

known values of A and Q on Γ. The source points in the parametric space are defined by

ψ̄′
I =

ψ̄I+1 + ψ̄I+2 + . . .+ ψ̄I+p
p

for I = 1, 2, . . . , n− 1 (7.18)

which yields a corresponding collocation point for each control point. Collocation at ψ̄′

produces one line of the system of equations

HABEM +GQBEM = AS . (7.19)

In equation (7.19) the vectors ABEM and QBEM contain the control values of the potential and
its normal derivative while the coefficient matrices H and G result from the quadrature of
the integrals in (7.16). The vector AS exists due to currents in the domain ΩBEM according
to (7.17).

Special treatment has to be taken for the integration of the integrals in (7.16). If the colloca- Singular
integralstion point ψ̄′ does not lie in the element ẽ over which integration is performed, the integral

is regular. In case that the collocation point lies in the element which is integrated, a method
proposed by Guiggiani [84, 83] is applied to calculate the resulting strongly singular integral
and the coordinate transformation proposed by Telles [207] for the weakly singular integral
– for more details see the appendix of May et al. [MKMU14]. The number of integration
points used is given explicitly in the numerical studies in section 7.4. Regular and nearly
singular integrals are treated in the same manner.
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7.3.3 Coupling of the Finite Element and Boundary Element Formulations

In order to compute the magnetic potential in the domain Ω∞, the IGAFEM approach ofReformulation
of IGAFEM Section 6.2 has to be coupled to the present IGABEM formulation taking into account the

interactions between the two domains ΩBEM and ΩFEM. They are given by the jump condi-
tions according to equations (7.6) and (7.7) which hold on the interface Γ. The system of
equations (6.27) has to be slightly altered to accomodate the jump condition (7.7). Equa-
tion (6.27) was derived from a weak form that considers current density boundary conditions
k̂, i.e. the jump condition (7.7) has already been evaluated assuming that Γ is an external
boundary. A weak form which allows for a coupling of the domains ΩBEM and ΩFEM reads

∫

ΩFEM

1

µFEM
BiδBi dV −

∫

ΩFEM

jδA dV −
∫

Γ

1

µFEM
QδA dS = 0 (7.20)

and requires an approximation of the normal derivative Q on the edges of the finite elements
representing the interface Γ. In view of the aspired coupling of IGAFEM and IGABEM, the
same approximation (7.15) which is used for the boundary elements Γẽ

Qh(ψ̄) = NQ(ψ̄)Q
ẽ
FEM (7.21)

is applied here. In equation (7.21) Qẽ
FEM are the control values of the normal derivative of

the magnetic potential at the control points associated to the edge Γẽ of a finite element Ωe.
Consequently, the discrete IGAFEM formulation now reads

KAAFEM −TQFEM = PA, (7.22)

with the coefficient matrix K
A

defined by equation (6.28). Since currents on the boundary
are assumed to be zero in order to simplify the coupling procedure, the vector of equivalent
nodal currents

PA =
ne⋃

I=1

∫

ΩIe

NT
A j dV (7.23)

only accounts for contributions due to body current densities. In addition, the approximation
of Q results in the matrix

T =
ne⋃

I=1

∫

ΓI ẽ

1

µFEM
NT
AN

ẽ
Q dS . (7.24)

The vectors ABEM, QBEM and QFEM involve values at the same control points because theBoundary
control values IGAFEM/-BEM approximations (7.14), (7.15) and (7.21) used for A and Q on the boundary

Γ are identical. In contrast, the vector AFEM contains values from all control points of the
domain ΩFEM. As illustrated in Fig. 7.5, the representation of the geometry and the element
approximation of the magnetic potential (6.25) in the finite element domain Ωe

xh
(
ξ̄
)
= N

(
ξ̄
)
xe = Ni

(
ξ̄
)
xe,i +Nb

(
ξ̄
)
xe,b (7.25)

Ah
(
ξ̄
)
= NA

(
ξ̄
)
Ae

FEM = Ni
A

(
ξ̄
)
Ae,i

FEM +Nb
A

(
ξ̄
)
Ae,b

FEM (7.26)

can be split into control values Ae,i
FEM associated to the interior of the element and control

values Ae,b
FEM associated to its boundary. As Ne,i

A = 0 for points on the element edge which
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Figure 7.5: Decomposition of geometry representation and approximation into contributions from
control points xe,i

I associated to the interior of the element domain Ωe and xe,b
J associ-

ated to its boundary which are identical to the control points xẽ
J of the boundary element

Γẽ.

corresponds to the boundary element Γẽ, only the control values Ae,b have influence on the
approximation of A on Γ. Consequently, equation (7.26) reduces to

Ae
(
ξ̄
)∣
∣
Γ
= Nb

A

(
ξ̄
)
Ae,b

FEM = NA(ψ̄)A
e,b
FEM (7.27)

which is identical to the approximation in the boundary element Γẽ given by equation (7.14).

From the discussion above it follows, that due to matching IGAFEM and IGABEM ap- Coupling of
control valuesproximations along the boundary Γ, the jump conditions (7.6) and (7.7) can be satisfied by

conditions for the control values of IGAFEM and IGABEM, respectively,

AFEM|Γ = ABEM (7.28)
1

µFEM|Γ
QFEM = − 1

µBEM
QBEM . (7.29)

The negative sign in equation (7.29) results from the opposite direction of the normal vectors
nFEM and nBEM, cf. Fig. 7.3, and no surface current density k is applied. Eventually, the
following system of equations

[

KA
µFEM|Γ
µBEM

T

H̃ G

][

AFEM

QBEM

]

=

[

PA

AS

]

(7.30)

which can be solved for the unknowns AFEM and QBEM is obtained. The matrix H̃ contains
the entries of the matrix H in a special order because it operates on AFEM and not on the
subset of boundary values ABEM.
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Figure 7.6: Hybrid model of the demonstration problem according to Fig. 2.3 (a): (a) rigid cylinder of
radius R with relative magnetic permeability µrFEM ; in free space µrBEM = 1. At distance
a from its centre, a conducting wire carries the current J , (b) initial mesh for the mag-
netisable cylinder, and (c) mesh after applying uniform h-refinement with the collocation
points on the boundary Γ for the IGAFEM/-BEM coupling

7.4 Demonstration

The formulation presented the previous sections is used to simulate two different magne-Introduction

to-mechanical problems below. In the first example, based on the demonstration problem
of Fig. 2.3 (a), outlined in Section 2.7, numerical properties of the hybrid formulation are
studied in terms of error norms and convergence rates for the magnetic field problem. The
accuracy of the predicted magneto-mechanical coupling effect is analysed by the relative
error of a magnetic force acting on a magnetisable inclusion fixed in free space due to an
inhomogeneous magnetic field. In the second example magnetostricitive effects are investi-
gated in a heterogeneous magnetoactive material. The sample consists of magnetisable parti-
cles embedded in a polymer matrix with typical strain rate dependent constitutive behaviour
modelled by a non-linear viscoelastic material model [116] underlining the usefulness and
variability of the proposed hybrid approach. The two-dimensional problems are assumed to
be homogeneous in the x3-direction. Due to the considered one-sided coupling, the numeri-
cal analyses of the magnetic and magneto-mechanical problems are performed consecutively,
starting with the magnetic field problem. As previously outlined, the magnetic loads are then
computed from the obtained solution and applied in the mechanical pass.

7.4.1 Convergence Analysis

The hybrid numerical model of the first demonstration problem according to Section 2.7 isProblem
description illustrated in Fig. 7.6. For the computations the same material properties as in Chapter 3

are used. While the infinite domain Ω∞ is considered for the magnetic case and therefore
solved using the hybrid approach, only the subdomain ΩFEM is of interest for the mechanical
analysis. It is assumed that the mechanical stresses in the surrounding free space vanish.
Since no additional mechanical surface tractions are applied, all boundary loads are purely
magnetic. In order to prevent rigid body motions, the displacements of the centre of the
cylinder are set to zero.
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(a)

A / Vsm
-1

(b)

A / Vsm
-1

Figure 7.7: Contour plot of the magnetic potential obtained from the numerical solution of the sta-
tionary magnetic boundary value problem illustrated in Fig. 7.6: solutions obtained using
the NURBS discretisation with a refinement level of (a) 1, and (b) 4. The outline of the
cylinder is indicated by a black line.

Starting from the NURBS representation of the magnetisable cylinder with the order p1 = Mesh
refinementp2 = p = 2 illustrated in Fig. 7.6 (b), uniform h-refinement has been applied to study the

convergence. The first refinement level is shown in Fig. 7.6 (c). In the same manner NURBS
of order p = 3 have been examined. Numerical integration was performed using the same
number of Gauss points for both, NURBS and Lagrangian dicretisations of equal order.
In detail, 8 integration points have been used for regular boundary integrals, 20 for weakly
singular ones and strongly singular kernels have been integrated using a number of p2 sample
points.

Contour plots of the magnetic potential are depicted in Fig. 7.7. The solution has been ob- Contour plots

tained using a second-order NURBS approximation with the refinement levels of 1 and 4,
respectively. It is noted that already the coarse NURBS approximation with only 121 control
points is capable of describing the principal characteristics of the solution of the station-
ary magnetic field problem, e.g. the flux lines entering the highly permeable cylinder at
angle of approximately 90 degrees. Furthermore, Fig. 7.8 shows a contour plot of the two
non-vanishing components of the magnetic induction. Both components are continuous in
regions where they align with the normal vector of the cylinder surface which demonstrates
the proper handling of the jump conditions.

Results of the convergence study are presented for the error of the potential in the L2 norm Convergence
studyand the energy norm for both, the domain ΩFEM and the boundary Γ, Fig. 7.9. Additionally,

the relative error for the force has been computed in order to assess the quality of the so-
lution of the coupled magneto-mechanical field problem. From Fig. 7.9 it can be seen that
Lagrangian and NURBS-based discretisations show a monotonic convergence behaviour al-
though very coarse NURBS meshes are not within the range of asymptotic convergence.
The convergence rates given in the error plots have therefore been computed using only the
three finest meshes. It is noted, that Lagrangian approximations provide rates of convergence
that are close to the optimal order for both, the L2 and the energy norm. As expected, the
NURBS-based modelling outperforms the Lagrangian polynomials in terms of the overall
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7 Hybrid Isogeometric Finite Element and Boundary Element Formulation

Figure 7.8: The two non-vanishing components of the magnetic induction. The outline of the cylin-
der is indicated by a black line. Regions with a high magnitude, e.g. the area near the
conducting wire, have been blanked out in order to properly illustrate the field near the
cylinder.

error level. The convergence rates obtained for IGA are also significantly higher than the
optimal values which was not observed to this extent in the convergence study performed
for IGAFEM in Section 6.2.2. This effect may originate from the improved continuity of the
boundary representation. The relative error of the resulting force |∆F1| seems actually less
affected by the type of basis functions as both approximations produce almost the same error
levels and convergence rates. Possible explanations are that the force represents an integral
quantity and that the solution of the coupled magneto-mechanical problem is affected by
results from the solution of the stationary magnetic field problem.

7.4.2 Heterogeneous Magnetoactive Material in an External Field

The second example illustrates the modelling of magnetostriction by the hybrid IGAFEM/-Problem
description BEM approach. It considers an elliptic sample which consists of magnetisable particles

embedded in a soft polymeric matrix, Fig. 7.10. Similar to the periodic unit cell in Chap-
ter 4, a simple two-dimensional arrangement of three particles is considered. To allow for
magnetically induced deformations of the sample while preventing rigid body motions, the
displacements of a set of control points on the horizontal axis of symmetry have been con-
strained, Fig. 7.10 (a). The NURBS mesh used in the entire analysis is given in Fig. 7.10 (b).

The magnetic stimulus is provided by a coil which is represented by several conducting wiresMagnetic loads

in the two-dimensional setting. These wires carry opposite currents J = ±2A and generate
an almost homogeneous external magnetic field B̄. However, the local fields induced by the
magnetisation of the particles will result in attractive or repulsive interactions between the
particles. These particle-particle interactions generate an observable magnetostriction of the
elliptic sample. Two principal loadings are considered. The horizontal orientation of the coil
generates a magnetic field B̄ =

[
B̄1, 0

]T
, red in Fig. 7.10 (a), while the vertical arrangement

leads to B̄ =
[
0, B̄2

]T
, blue in Fig. 7.10 (a).
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Figure 7.9: Results of the convergence analysis: (a) error ||A||L2 in the domain ΩFEM, (b) error
||A||L2 on the boundary Γ, (c) error ||A||en in the domain ΩFEM, and (d) relative error
|∆F1| of the resulting force per unit length acting on the cylinder as a function of the max-
imum characteristic element size h of the domain ΩFEM and the boundary Γ, respectively.

(a) (b)

Figure 7.10: Elliptic sample of a magnetoactive material consisting of magnetisable particles and a
polymeric matrix: (a) model arrangement with two possible external magnetic fields,
horizontal (red) or vertical (blue), and (b) initial NURBS mesh used for analysis.
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Table 7.1: Material parameters of the viscoelastic matrix.

Eeq ν Eov τ s0

0.2MPa 0.4 1MPa 10 s 0.15MPa

The particles are assumed to show a linear isotropic magnetisation behaviour with the rel-Material
behaviour ative permeability µP

r = 1× 103. The polymer matrix is non-magnetisable, µM
r = 1. The

linearity of the stationary magnetic field problem allows for its solution in a single loadstep.
In contrast, the magneto-mechanical field problem exhibits physical non-linearities due to
the considered non-linear strain rate dependence which is typical for polymers. Therefore, it
is solved iteratively in a Newton-Raphson scheme using several load steps. The mechanical
behaviour is formulated in terms of the pseudo-mechanical stress Eσ. While the particles are
modelled isotropic linear elastic (EP = 2.1× 105 MPa, νP = 0.3), a non-linear viscoelastic
material model with a stress dependent viscosity [116] is used to represent the polymeric ma-
trix. It consists of a linear elastic equilibrium relation and a non-linear viscoelastic overstress
branch. The fundamental relations are given by

Eσ = Eσ
eq + Eσ

ov, Eσ
eq = Eeqε, (7.31)

Eσ̇
ov +

1

τ̃
Eσ

ov = Eovε̇, τ̃ = τ exp
(

− || Eσ
ov||

s0

)

. (7.32)

In these constitutive equations, Eσ is the pseudo-mechanical stress, and Eσ
eq and Eσ

ov

are its equilibrium and strain rate dependent overstress parts, respectively. Eeq and Eov are
fourth-order elasticity tensors whose elements are computed from the material parameters
Eeq, Eov, and ν. The load dependent viscosity is taken into account by an overstress depen-
dent relaxation time τ̃ . A set of material parameters has been chosen in order to account for
a soft polymer matrix, Tab. 7.1.

The time frame of the magneto-mechanical simulation has been set to t ∈ [0, 200]s. StartingSimulation

from an undeformed stress-free configuration, the magnetic field quantities known from the
previous solution of the magnetic field are gradually applied in 20 equidistant time incre-
ments until t = 100 s. This is followed by 20 additional increments covering another 100
seconds. During this time the magnetic field is kept constant and the viscoelastic character-
istics of the polymer results in an ongoing motion of the particles due to creep deformations
of the matrix.

The magnetic potential as well as the deformation of the sample at the end of the simulationResults

are illustrated in Fig. 7.11 for both orientations of the magnetic field B̄. It can be seen that
the magnetically induced attractive or repulsive interactions of the particles cause either an
elongation or contraction of the sample, i.e. a magnetostrictive effect can be observed. The
deformation behaviour is in agreement with the numerical results for effective macroscopic
actuation stresses in Chapter 4. Displacement-time (ux2 − t) curves that illustrate the ver-
tical motion of the particle centres for both orientations of the magnetic field are plotted in
Fig. 7.12. While the vertical position of particle (P1) remains constant due to the symmetry
of the arrangement, the upper (P2) and lower (P3) particles attract or repel each other depend-
ing on the orientation of the magnetic field. In correspondence to the previously described
loading, two time domains can be identified. In the first (grey domain), the displacement of
the particles increases progressively with the magnetic field. In the second (white domain),
the magnetic field and therefore the magnetic forces remain constant. The ongoing deforma-
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(a)

(b)

Figure 7.11: Local magnetic fields and magnetically induced deformation of an elliptic sample for
(a) a vertically, and (b) a horizontally aligned magnetic field B̄. The dashed grey lines
illustrate the original undeformed configuration, while the solid black lines show the
position of the particles at the end of the simulation.

tion is caused by creep effects in the viscoelastic matrix material and approaches a state of
equilibrium.
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Figure 7.12: Displacement-time curves of the particle centres for (a) a vertical, and (b) a horizontal
orientation of the magnetic field. Two time regimes can be identified. In the first (grey
region), the displacement increases progressively due to the increasing magnetic field. In
the second (white region), the deformation continues to increase at a constant magnetic
field due to creep effects in the viscoelastic matrix.
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7.5 Conclusion

In this chapter isogeometric analysis has been utilised to solve two-dimensional stationary
magnetic and coupled magneto-mechanical field problems. The magnetic problem was han-
dled by a hybrid IGAFEM/-BEM approach. While IGAFEM was used to model the mag-
netisable body, IGABEM accounted for the infinite domain representing the free space. As
a consequence, truncation errors are avoided and no meshing of the free space was required.
The subsequent solution of the magneto-mechanical field problem was obtained from apply-
ing IGAFEM to discretise the domain of the magnetisable body which allows for inelastic
material behaviour. Magnetic contributions to the total stress as well as to the surface traction
acting on this body were obtained from the solution of the stationary magnetic field prob-
lem provided by the hybrid IGAFEM/-BEM method. Compared to discretisations based on
Lagrangian polynomial shape functions the isogeometric approach was proved to be more
efficient.
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8 Isogeometric Phase-Field Modelling of
Structural Evolution Processes [KMdB16]

In the first chapter of this work sharp and diffuse interface models have been introduced. Motivation

Owing to the classical continuum formulation of the underlying boundary value problems,
only sharp interface representations were used in the preceding chapters. With the diffuse
interface model being a fundamental part of the phase-field method, the Cahn-Hilliard model
[29, 30] will be considered as an illustrative example for the diffuse approach below. The
Cahn-Hilliard model was originally derived to describe the spinodal decomposition of binary
mixtures but has later been used in more complex phase-field models. A difficulty regarding
the solution of phase-field models including the Cahn-Hilliard model is that they typically
involve spatial differential operators that are higher than second-order. Therefore, standard
finite elements based on C0-continuous Lagrangian polynomial shape functions do not pro-
vide converging solutions when directly applied to the phase-field equation. Starting with
the work of Gómez [80] a new approach has emerged which combines phase-field models
with spline-based approximations. The higher-order continuity of splines allows for a direct
discretisation of the weak forms as explained below. In this way isogeometric analysis en-
ables an accurate and efficient resolution of steep gradients that can occur when higher-order
derivatives are introduced.

Phase-field models have become a powerful tool for the modelling of phase transformations Phase-field
modelsand morphological changes in different fields of physics as well as materials and engineer-

ing science. Compared to sharp interface models their advantage is that topological changes
are avoided, since interfaces are treated in a diffuse manner which is achieved through a
parameter which varies continously. This phase-field parameter accounts for the different
material phases and/or the concentration of the different components. Such an approach
allows to fully capture the physics of the individual interfaces without the need to explic-
itly track them. Typical applications include the modelling and simulation of solidification
processes, spinodal decomposition, coarsening of precipitate phases, shape memory effects,
re-crystallisation, and dislocation dynamics [36, 60, 143, 197]. Phase-field models have been
successfully applied to model tumor growth [91, 218, 226], and image impainting [14]. The
phase-field approach has also been used to model crack propagation [93, 123, 138, 140, 194].
Diffuse interface representations can also be of interest to predict microstructural changes
under external fields [198, 122]. They are therefore considered in this work.

This chapter is organised as follows: Section 8.1 will briefly review the derivation of the Outline

Cahn-Hilliard equation. In Section 8.2, two different finite element formulations for the
numerical solution of the Cahn-Hilliard problem, i.e. a mixed form and a direct approach,
are discussed. These formulations are compared and their numerical properties are analysed
in terms of error norms and convergence rates in Section 8.3. Eventually, it will be shown
that both formulations provide statistically similar results for two exemplary demonstration
problems in Section 8.4.
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8.1 Cahn-Hilliard Model of Spinodal Decomposition

The governing equation of the Cahn-Hilliard model can be derived from a concentrationFree energy

dependent free energy density f(c). In order to incorporate gradients and interfacial energy
terms, a truncated Taylor series expansion of f(c) with respect to c

f̄(c) = f(c) + Lic,i +Kijc,ic,j + . . . (8.1)

is employed. Since Li = 0 for symmetry reasons, and Kij = λδij for isotropic systems, the
truncated free energy can be written as

f̄(c) = f(c) + λc2,i . (8.2)

Here, λ is the interface parameter that governs the thickness of the diffuse interface. Integra-
tion over the domain Ω yields the total Ginsburg-Landau free energy functional

F = Fbulk + Fint =

∫

Ω

(
f(c) + λc2,i

)
dV (8.3)

which contains two contributions, a configurational or bulk energy Fbulk, and an interface
energy Fint. It is actually the interface energy term which leads to the fourth-order derivatives
in the phase-field approaches.

The chemical potential follows as variational derivative of the free energy densityChemical
potential

µ =
δf̄

δc
=
∂f̄

∂c
−
(
∂f̄

∂c,i

)

,i

= f ′(c)− λc,ii with (·)′ = d(·)
dc

. (8.4)

It is the thermodynamical driving force which governs the structural evolution process and
is therefore used in the constitutive equation defining the concentration flux

Ji = −M(c)µ,i . (8.5)

This equation involves the mobility M(c) as a concentration dependent material property.

The Cahn-Hilliard equation is finally obtained from considering the balance of mass (2.18)Cahn-Hilliard
equation in the form

dc

dt
=
∂c

∂t
= −Ji,i . (8.6)

Combining equations (8.5) and (8.6) yields the fourth-order Cahn-Hilliard equation

∂c

∂t
=

[

M(c) (f ′(c)− λc,kk),i

]

,i
(8.7)

which is valid in the domain Ω. To fully define the boundary value problem of structural
evolution, two sets of boundary conditions and an intial condition for the concentration field
c (xk, t) are required, cf. Section 8.2.

As it can be seen from equation (8.7), the evolution process depends on the interaction ofMobility

bulk and interfacial energy terms. Their ratio is governed by the interface parameter λ. The
mobility M(c) characterises the ability for diffusion processes. Mainly two different choices
for the mobility M(c) are considered in the literature: (i) M = const. or (ii) M = Dc(1−c).
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Figure 8.1: Plot of the free energy density function (8.8) as a function of B = ω
kT : A double well

shape is observed for ratios B > 2.

The latter is known as degenerate mobility and restricts diffusion processes primarily to the
interface zones, because M(c) is significantly lower in domains of pure phases than across
the interface which is assumed to be a more realistic assumption than a constant value.

Whether decomposition occurs depends on the free energy Double well
potential

f(c) = A [c ln(c) + (1− c) ln(1− c) + Bc(1− c)] . (8.8)

Its pararameters A = NkT and B = ω/kT depend on the absolute temperature T , the
number of molecules per unit volume N , Boltzmann’s constant k, and a parameter ω related
to the mixing enthalpy. For B > 2, the chemical free energy is non-convex, Fig. 8.1. Its
two wells drive phase separation into domains whose concentrations are defined by the min-
ima of f(c). They are called binodal points. For B ≤ 2 the free energy has a single well
which leads to homogeneously distributed phases. Decomposition is only observed for cer-
tain temperature ranges, i.e. when the temperature decreases, mixtures with a concentration
in between the two spinodal points become unstable [201]. Only isothermal processes with
B > 2 are considered here.

8.2 Finite Element Formulation

As a consequence of the fourth-order spatial derivatives in the Cahn-Hilliard equation (8.7), Spatial
discretisationthe corresponding weak form will involve second-order partial derivatives. To obtain con-

verging solutions, a direct discretisation will require at least C1 inter-element continuity of
the used approximations. Lagrangian polynomials that provide only C0 continuity can there-
fore not be applied directly. Consequently, three major alternative approaches to the finite
element discretisation of the Cahn-Hilliard equation have been pursued:

(i) Mixed formulation: The fourth-order equation is decomposed into a coupled system of
two second-order partial differential equations [4, 59]. Since the corresponding weak
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8 Isogeometric Phase-Field Modelling of Structural Evolution Processes

forms will contain only first-order derivatives, the need for higher-order continuity
across element boundaries is avoided andC0-continuous Lagrangian interpolations can
be applied.

(ii) Discontinuous Galerkin: The application of this method was proposed in [229]. A
slightly different approach by Wells et al. [225] combines features of continuous and
discontinuous Galerkin methods as outlined in [62], i.e. it uses a lower-order continuity
of the basis functions than actually required by the weak form. Hence, C0-continuous
Lagrangian basis functions are applicable and the first-order inter-element continuity
is weakly enforced by Nitsche’s method.

(iii) Direct discretisation: The weak form of the Cahn-Hilliard equation is discretised by
elements that provide at least C1 continuity. Approaches include Hermite elements
[33, 201] as well as isogeometric discretisations [80, 132].

These different discretisation strategies come along with certain advantages and drawbacks.Discussion

The solution of the coupled system can lead to stability issues [201] which motivated the
development of the direct discretisation approach. Zhang et al. [232] have presented a quan-
titative comparison of the coupled formulation with quadratic Lagrangian polynomials and
the direct approach with C1-continuous cubic Hermite elements. It was observed that both
solution schemes deliver optimal convergence rates. Since different polynomial orders have
been used with both methods, a direct comparison of error levels and convergence rates is
however not possible. Therefore, a ratio of accuracy vs. computational costs has been in-
vestigated with similar results for both procedures. Despite the promising results obtained
for the Hermitean elements, one has to keep in mind that there are only few elements with
C1 continuity in two dimensions and none for three-dimensional problems. Moreover, both
formulations involve degrees of freedom in addition to the primary field variable c. The only
approach avoiding them is the continuous/discontinuous Galerkin formulation [225] but it
requires a change of the data structure due to the weak enforcement of the C1 continuity
across element boundaries. Besides this, the penalty parameter has to be carefully chosen in
order to avoid instabilities or accuracy issues, respectively. In this work, isogeometric anal-
ysis, cf. Chapter 6, will be applied to the spatial discretisation of the Cahn-Hilliard equation
which was first proposed by Gómez et al. [80]. Different from all previous approaches it
offers higher-order continuity without introducing additional degrees of freedom. In Section
8.2.1, the mixed formulation as well as the direct discretisation of the fourth-order partial
differential equation will be briefly outlined. All equations are given for a concentration de-
pendent mobilityM(c) and the most general case of boundary conditions. Both formulations
have been implemented and are employed in a comparative convergence analysis in Section
8.3.

8.2.1 Spatial Discretisation

As outlined in Section 6.1.2, Bézier extraction facilitates the incorporation of isogeometricApproximation

analysis into any existing finite element code by simply replacing the shape function routines.
Therefore, a finite element point of view can be adopted for both FEM and IGAFEM. The
analysis domain Ω is discretised by a set of ne either standard or Bézier finite elements
Ω =

⋃ne

I=1 ΩIe. In addition, Lagrangian and spline-based approximations of a generalised
primary field variable u = {c, µ}, and its spatial derivatives in each element domain Ωe are
given by

u = N u, u,k = B u, u,kk = B′u (8.9)
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8.2 Finite Element Formulation

with N, B, and B′ row vector or matrix representations of the element shape functions and
their corresponding first- and second-order spatial derivatives. All nodal or control point
degrees of freedom are contained in the column vector u. Following a standard Ritz or
Galerkin approach, the same approximations will be used for the weight functions.

In the mixed formulation approach, the fourth-order Cahn-Hilliard equation is split into a Mixed
formulationsystem of two second-order partial differential equations

∂c

∂t
= (M(c)µ,i),i (8.10)

µ = f ′ − λc,ii . (8.11)

This is accomplished by introducing the chemical potential µ, cf. equation (8.4), as an ad-
ditional primary field variable. The corresponding weak form of the system is obtained by
multiplying the equations (8.10) and (8.11) by test functions w and v, respectively. Integra-
tion by parts and applying Gauss’ theorem eventually lead to

∫

Ω

∂c

∂t
w dV +

∫

Ω

M(c)µ,iw,i dV =

∫

∂Ω

M(c)µ,iniw dS (8.12)

∫

Ω

µv dV −
∫

Ω

f ′(c)v dV −
∫

Ω

λc,iv,i dV = −
∫

∂Ω

λc,iniv dS . (8.13)

The right hand sides of equations (8.12) and (8.13) allow for the identification of the corre- Boundary
and initial
conditions

sponding boundary conditions

c = g1 on ∂Ω1g ∨ µ,ini = h1 on ∂Ω1h (8.14)

µ = g2 on ∂Ω2g ∨ c,ini = h2 on ∂Ω2h . (8.15)

The parts of the boundary with essential or natural boundary conditions satisfy ∂Ωig∪∂Ωih =
∂Ω and ∂Ωig ∩ ∂Ωih = ∅. Due to the presence of a time derivative which accounts for the
temporal evolution of the concentration field an appropriate initial condition

c(xk, t = 0) = c0(xk) in Ω (8.16)

is required. Initial values µ(xk, t = 0) of the potential that are consistent with c(xk, t = 0)
are computed from equation (8.11).

As exclusively homogeneous essential and natural as well as periodic boundary conditions Semidiscrete
equationsare used in this work, the boundary integrals in equations (8.12) and (8.13) vanish and will

therefore be omitted in the remainder. Inserting the approximations (8.9) into the weak form
and taking into consideration the arbitrariness of the control point values of the test functions,
yields the following non-linear system of equations for each element Ωe:

rc =

∫

Ωe

NTN ċ dV +

∫

Ωe

BTM(c)B µ dV = 0 (8.17)

rµ =

∫

Ωe

NTN µ dV −
∫

Ωe

NTf ′(c) dV −
∫

Ωe

BTλB c dV = 0 . (8.18)

Here, rc and rµ represent the residuals, while ċ = ∂c/∂t replaces the partial derivative with
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8 Isogeometric Phase-Field Modelling of Structural Evolution Processes

respect to time. Because the connection between ċ and c is determined by the employed time
integration scheme presented in section 8.2.2, equations (8.17) and (8.18) are often referred
to as the semidiscrete weak form.

Following the same lines, the corresponding weak form for the direct discretisation is ob-Direct
discretisation tained from taking the weighted residual (test function w) of equation (8.7). Using integra-

tion by parts, the weak form
∫

Ω

(
∂c

∂t
w +M(c)f ′

,i(c)w,i +M,i(c)λc,kkw,i +M(c)λc,kkw,ii

)

dV = . . .

. . . =

∫

∂Ω

M(c) (f ′(c)− λc,kk),iwni dS +

∫

∂Ω

M(c)λc,kkw,ini dS (8.19)

ensues. The boundary conditions

c = g1 on ∂Ω1g ∨ (f ′(c)− λc,kk),i ni = µ,ini = h1 on ∂Ω1h (8.20)

c,ini = g2 on ∂Ω2g ∨ c,kk = h2 on ∂Ω2h (8.21)

can be identified from the boundary integrals forming the right hand side of the weak form
(8.19). While the set of conditions found for ∂Ω1 match equation (8.14), a permutation
of the essential g2 and natural h2 boundary conditions can be observed for ∂Ω2. However,
the second set of boundary conditions is equivalent to (8.15) as the condition c,kk = h2 in
combination with g1 corresponds to a given value for the chemical potential µ. The parts of
the boundary with essential or natural boundary conditions satisfy ∂Ωig ∪ ∂Ωih = ∂Ω and
∂Ωig ∩ ∂Ωih = ∅.

Taking into account the special choice of homogeneous or periodic boundary conditions thatSemidiscrete
equations lead to vanishing boundary integrals in equation (8.19), the semidiscrete form of the direct

approach reads

r =

∫

Ωe

NTN ċ dV +

∫

Ωe

BTM(c)f ′′(c)B c dV + . . .

. . .+

∫

Ωe

BTλM ′(c)B′cB c dV +

∫

Ωe

B′TλM(c)B′c dV = 0 (8.22)

with r the residual vector.

8.2.2 Temporal Discretisation

For the temporal discretisation it is necessary to apply an efficient but accurate time integra-Generalised-α
method tion algorithm. In order to achieve an optimal ratio of high- and low-frequency dissipation,

Chung and Hulbert [38] introduced the generalised-α method. In case of linear, first-order
differential equations in time having the form r (u, u̇) = 0, the method is given by the set of
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8.2 Finite Element Formulation

equations

0 = r
(
un+αf

, u̇n+αm

)
(8.23)

un+1 = un +∆tn + γ∆tn
(
u̇n+1 − u̇n

)
(8.24)

un+αf
= un + αf

(
un+1 − un

)
(8.25)

u̇n+αm
= u̇n + αm

(
u̇n+1 − u̇n

)
. (8.26)

Here, ∆tn = tn+1− tn represents the current time step size, while the constants αf, αm and γ
are algorithmic parameters controlling numerical dissipation. For an unconditionally stable,
second-order accurate time integration scheme, they can be expressed in terms of a single
parameter ρ∞ [105]

αf =
1

1 + ρ∞
, αm =

3− ρ∞
2(1 + ρ∞)

and γ =
1

2
+ αm − αf . (8.27)

A good performance of the algorithm can be achieved by setting ρ∞ = 0.5 [80, 105]. It
is noted that for αf = αm = γ = 1, the generalised-α method contains the implicit Euler
method as a special case.

The non-linear governing equation r
(
un+αf

, u̇n+αm

)
= 0 has to be linearised in order to Linearisation

solve for the field variable un+1 at time tn+1 starting from given values un and u̇n at time
tn. Different from [80, 105] the linearisation is taken with respect to un+1 which leads to the
tangent stiffness matrix

K =
∂r

(
un+αf

, u̇n+αm

)

∂un+1

= αf
∂r

(
un+αf

, u̇n+αm

)

∂un+αf

+
αm

γ∆tn

∂r
(
un+αf

, u̇n+αm

)

∂u̇n+αm

. (8.28)

The factors that precede the derivatives with respect to un+αf
and u̇n+αm

result from the
relations (8.23)-(8.26).

Starting from an initialisation of the solution vector Iterative
solution

u0
n+1 = un (8.29)

u̇0
n+1 =

γ − 1

γ
u̇n , (8.30)

a Newton-Raphson algorithm based on the linearised system of equations

K(i)∆u
(i)
n+1 = r(i)

(
un+αf

, u̇n+αm

)
(8.31)

is used to determine the update of the field variable ∆uin+1. Herein, the superscript i denotes
the current iteration. After each iteration the field variables are updated

u
(i)
n+1 = u

(i−1)
n+1 +∆u

(i)
n+1 (8.32)

u̇
(i)
n+1 = u̇

(i−1)
n+1 +

1

γ∆tn
∆u

(i)
n+1 (8.33)

and convergence criteria related to the norms of the residual r
(
un+αf

, u̇n+αm

)
and of the

change in un+1 are checked.

113



8 Isogeometric Phase-Field Modelling of Structural Evolution Processes

As the processes involved in spinodal decomposition proceed at different time scales, anAdaptive time
stepping adaptive time stepping scheme has to be adopted for an efficient numerical solution. In this

work, the algorithm proposed by Gómez et al. in [80] is employed. Since the generalised-α
(GA) method contains the backward Euler (BE) method as a special case, it is possible to
produce second-order accurate results uGA

n+1 as well as first-order accurate results uBE
n+1 in

order to estimate the local error from

ε =

∥
∥uGA

n+1 − uBE
n+1

∥
∥
∞∥

∥uGA
n+1

∥
∥
∞

. (8.34)

By setting an admissible tolerance εadm and a safety factor θ with preferably θ < 1 [193], the
new step size ∆tnew

n can be computed from the current one ∆told
n according to

∆tnew
n =

(
θεadm

ε

) 1

2

∆told
n . (8.35)

This elementary error control allows to keep ε close to εadm. If the estimated error of a com-
puted solution exceeds the chosen tolerance, the current time step is rejected and recomputed
with an adapted step size. In the present simulations, a tolerance εadm = 10−3 and a safety
coefficient θ = 0.85 have been used.

8.3 Convergence Analysis

In this section the numerical properties of the presented finite element formulations willManufactured
solution be compared in terms of a quantitative analysis of error levels and convergence rates for

different approximations:

(i) Mixed formulation: first- and second-order Lagrangian polynomials, and second- to
fourth-order B-splines,

(ii) Direct discretisation: second- to fourth-order B-splines.

As there is no analytical solution available, the technique of manufactured solutions [117,
232], is utilised. The general idea is to use an arbitrary function as analytic reference so-
lution. Since this function will not fulfill the governing differential equations exactly, the
resulting residual has to be added to the right hand side of the discrete system of equations.
Due to the non-linearity of the problem, optimal convergence rates available for the linear
case can only serve as an indicator. However, as there are no discontinuities and a smooth
free energy functional is used, these rates should be recovered fairly well.

8.3.1 Manufactured Solution Approach

Herein, a manufactured solution is employed that varies harmonically with respect to spaceResidual

and time. Taking α, β, and δ as constants, it is described by

ĉ(xk, t) = cos (απx1) cos (βπx2) cos (δπt) . (8.36)
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8.3 Convergence Analysis

In order to handle concentrations c ∈ [−1, 1] which are possible with the solution (8.36), the
polynomial free energy function

f(c) =
1

4
(1− c2)2 (8.37)

is used instead of equation (8.8). Evaluating the Cahn-Hilliard equation (8.7) for the manu-
factured solution (8.36) and assuming a constant mobility yields

∂ĉ

∂t
−
[

M (f ′ (ĉ)− λĉ,kk),i

]

,i
= Q (xk, t) (8.38)

with the residual

Q (xk, t) = − cos (απx1) cos (βπx2)
{
δπ sin (δπt) +Mπ2 cos (δπt) · . . . (8.39)

. . . ·
[

α2 + β2 − λπ2
(
α2 + β2

)2
+ 3 cos2 (δπt) · . . .

. . . ·
(
α2 cos2 (βπx2)

(
2 sin2 (απx1)− cos2 (απx1) + . . .

. . .+ β2 cos2 (απx1)
(
2 sin2 (βπx2)− cos2 (βπx2)

)]}
.

In the convergence studies carried out for the spatial and the temporal discretisation this
residual Q (xk, t) represents an external body load which is completely defined in terms of
the manufactured solution (8.36).

For the convergence analysis, a set of boundary conditions has to be defined. Analytical Boundary
conditionsvalues ĉ are prescribed on the boundary ∂Ω. In isogeometric analysis, the non-interpolary

nature of the basis functions does not allow to directly assign analytical values of the concen-
tration or chemical potential to the control point values. Instead, a transformation procedure
is employed to compute the control point values [223]. For the mixed form the zero flux
boundary condition c,ini = 0 which is compatible to ĉ for α, β = 1, 2, . . . n is utilised in
addition to prescribing ĉ.

In the direct discretisation approach c,ini = 0 is an essential condition which requires some Strong
imposition of
zero flux
condition

consideration, i.e. it is not sufficient to prescribe control values at control points associated
to the immediate boundary of the domain. Instead, two consecutive rows or columns of
control points in the vicinity of the boundary have to be considered. Due to the geometric
map xk(ξl) between the physical and parametric domain, the boundary ∂Ω of the physical
domain is represented in terms of one varying parametric coordinate ξ∂Ω with the second
coordinate being constant. Therefore, homogeneous conditions on the normal derivative of
the concentration reduce to

dc

dξ∂Ω

(
ξ∂Ω1

)
=

dc

dξ∂Ω
(ξ∂Ωn+p+1) = 0 . (8.40)

For a univariate, open knot vector spline basis the relations

dc

dξ∂Ω
(ξ∂Ω1 ) = (c2 − c1)

dN2(ξ∂Ω)

dξ∂Ω
(ξ∂Ω1 ) = 0 (8.41)

dc

dξ∂Ω
(ξ∂Ωn+p+1) = (cn−1 − cn)

dNn+p+1(ξ∂Ω)

dξ∂Ω
(ξ∂Ωn+p+1) = 0 (8.42)

hold. Hence, the homogeneous essential zero flux condition can be imposed by setting the
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Figure 8.2: Quantitative comparison between the mixed formulation and the direct discretisation of
the Cahn-Hilliard equation for second-order (N2), third-order (N3), and fourth-order (N4)
B-splines: (a) L2 error of the concentration c, and (b) L2 error of the chemical potential
µ as function of the element size h. In case of the direct discretisation µ is computed
from µ = f ′(c) − λc,kk. Therefore, the error is governed by the H2 error norm of the
concentration field c.

control variables to c1 = c2 and cn−1 = cn. It can be observed that due to the homogeneity of
the boundary condition, there is no influence of the derivatives of the basis functions. This,
however, does not hold for the case for periodic boundary conditions discussed in Section
8.4.

8.3.2 Convergence Analysis for the Spatial Discretisation

All results of this study have been obtained using the following set of parameters: λ =Mixed vs.
direct
formulation

0.1 Jm−1, M = 500m3 s kg−1, α = β = 6, and δ = 2
3
. Five meshes of a unit square

domain Ω with 2n × 2n elements (n = 3 . . . 7) have been considered. The focus is first put
on a comparison of the performance of the mixed formulation and the direct discretisation
of the Cahn-Hilliard equation. Results of isogeometric finite element analyses are shown
in Fig. 8.2. The L2 error of the concentration field in Fig. 8.2 (a) shows a monotonic con-
vergence for both formulations. For the mixed formulation, convergence rates are obtained
which are similar to the optimal value of hp+1 valid for linear problems with p the order of
the approximation. The results of the direct discretisation approach match the mixed formu-
lation in terms of error levels and convergence rates for the third-order and the fourth-order
approximations. For the second-order shape functions a lower convergence rate is observed
for the direct approach. This is in accordance with theoretical findings for higher-order dif-
ferential operators, see the discussion in Section 8.3.3.

For the chemical potential µ in Fig. 8.2 (b), the two formulations are fundamentally different.Chemical
potential The mixed approach uses the same order of approximation for c and µ and, hence, provides

the same accuracy and convergence behaviour for both variables. For the direct discretisa-
tion, the chemical potential µ = f ′(c) − λc,kk is computed from the primary field variable
which involves second-order derivatives. The error of the chemical potential is therefore
governed by the H2 error norm of the concentration field c, for which an optimal conver-
gence rate of p − 1 is expected in the linear case. It is almost identically recovered by the
numerical convergence study of Fig. 8.2 (b).

In Fig. 8.3 the same information is plotted as a function of the total number of degrees ofEfficiency

freedom. It illustrates the fact that the direct discretisation requires less degrees of freedom
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Figure 8.3: Quantitative comparison between the mixed formulation and the direct discretisation of
the Cahn-Hilliard equation for second-order (N2), third-order (N3), and fourth-order (N4)
B-splines as function of the total number of degrees of freedom (DOF): (a) L2 error norm
of the concentration c, and (b) L2 error norm of the chemical potential µ.
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Figure 8.4: Quantitative comparison of the error ||c||L2 between the mixed formulation discretised by
quadratic Lagrangian polynomials (L2) and B-splines (N2). In addition, cubic B-splines
(N3) and quartic B-splines (N4) are plotted: (a) L2 error with respect to element size h,
and (b) with respect to the total number of degrees of freedom (DOF).

to obtain a given level of accuracy. Indeed, it involves only half the number of degrees of
freedom compared to the mixed formulation to achieve the same accuracy of the concen-
tration field c, see Fig. 8.3 (a). The less accurate approximations of the chemical potential
illustrated in Fig. 8.3 (b) are of minor importance.

Although the main motivation to apply isogeometric analysis in this case is the requirement FEM vs.
IGAFEM
(mixed)

of C1-continuous approximations, it is also competitive when used in the mixed formulation.
Fig. 8.4 demonstrates that spline basis functions are more efficient than Lagrangian polyno-
mials considering the total number of degrees of freedom. Moreover, the L2 error converges
at similar rates for both variants.

8.3.3 Convergence Analysis for Higher-Order Linear Partial Differential
Equations

The preceding convergence study of the non-linear Cahn-Hilliard equation revealed a pe- A priori error
estimatesculiar convergence behaviour for quadratic splines in the L2 error norm, i.e. an order of

convergence of approximately p rather than the expected value of p + 1. In fact, an a priori
error estimate for linear, second-order and higher-order partial differential equations can be
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(a) (b)

Figure 8.5: Simply supported circular Kirchhoff plate of radius a, thickness t and linear elastic mate-
rial behaviour E, ν loaded by a constant pressure p: (a) problem definition, and (b) single
patch isogeometric mesh in the physical domain.

derived using the Aubin-Nitsche argument [203, 205]

‖u− uh‖Hσ ≤ Cσh
β‖u‖Hr (8.43)

with uh the approximate solution of the primary field variable u. It turns out that the optimal
order of convergence

β = min{δ − σ, 2(δ −m)} with δ = min{p+ 1, r} (8.44)

depends not only on the order of approximation p, and on the error norm Hσ, but also on the
order of the partial differential equation, 2m. For a linear fourth-order differential equation
(m = 2) and the infinitely continuous reference solution r = ∞, cf. equation (8.36), the
optimal orders of convergence are

‖u− uh‖H0≡L2 ≤ C0h
min{p+1, 2(p−1)}‖u‖Hr , (8.45)

‖u− uh‖H1 ≤ C1h
min{p, 2(p−1)}‖u‖Hr , (8.46)

‖u− uh‖H2 ≤ C2h
min{p−1, 2(p−1)}‖u‖Hr . (8.47)

For p = 2 these equations show that the error in the L2 and H1-norms actually converges
with the same order of β = 2, which is in good agreement with the results of the preceding
study.

In order to demonstrate that the results of equations (8.45)-(8.47) can be recovered exactly forCircular plate

linear partial differential equations, an additional convergence study has been carried out for
the linear fourth-order problem of a simply supported circular Kirchhoff plate according to
Fig. 8.5. It is noted that this example involves a singular geometric map, see Figure 8.5 (b).
The isotropic plate of radius a, thickness t, and stiffness K = Et3

12(1−ν2) , with E Young’s
modulus and ν Poisson’s ratio, is loaded by a constant pressure p, see Fig. 8.5 (a). The static
problem is governed by

Kw,kkll − p = 0 . (8.48)

The rotationally symmetric analytical reference solution

w(r) =
pa4

64K

5 + ν

1 + ν
− pa2

32K

3 + ν

1 + ν
r2 +

p

64K
r4 (8.49)

for the subsequent convergence study is a function of the radius r = 0 . . . a. The correspond-
ing numerical solution is given in Fig. 8.6 (a).
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Figure 8.6: Quantitative convergence analysis for a circular Kirchhoff plate for second-order (N2),
third-order (N3), and fourth-order (N4) NURBS: (a) Shape of the deformed plate with
maximum deflection wmax = 2.07mm obtained for E = 2.1× 105MPa, ν = 0.3,
a = 250mm, t = 10mm, p = 0.16MPa, (b) L2 norm, (c) H1 norm, and (d) H2 norm
for the error in the deflection w.

The h-refinement analysis considers 2n × 2n elements, with n = 1, 2, . . . 8, and NURBS Numerical
analysisapproximations of the orders two, three, and four. The error for the deflection is given

in Fig. 8.6 in terms of the L2, H1, and H2 norms and is in agreement with the analytical
findings. A similar behaviour has been found in qualitative convergence studies for plates
and shells in [119, 120]. It is noted that no negative effect of the singular geometry map on
the convergence behaviour could be observed.

8.3.4 Convergence Analysis for the Temporal Discretisation

The application of higher-order time integration schemes is essential for an efficient sim- Generalised-α
vs. implicit
Euler

ulation of the structural evolution described by the Cahn-Hilliard equation. Jansen et al.
[105] have proved that the generalised-α method provides second-order accuracy in time
for linear problems. With regard to the adaptive time stepping scheme presented in Sec-
tion 8.2.2, it is important that this also holds for non-linear problems. For this reason, a
convergence analysis has been performed for the temporal discretisation. In order to avoid
interference with the spatial discretisation error, the parameters of the manufactured solution
have been chosen as α = β = 1 and δ = 2

3
while the unit square domain is discretised

by 128 × 128 elements using cubic B-splines (p = 3). The mobility and the interface pa-
rameters are set to M = 1m3 s kg−1 and λ = 0.1 Jm−1, respectively. Considering a total
time of t = 0.5 s, equation (8.38) is solved five times in 2n time steps (n = 0 . . . 4). The
convergence behaviour of different temporal discretisations is shown in Fig. 8.7. Results for
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Figure 8.7: Quantitative comparison of time integration via the backward Euler (BA) and the
generalised-α method (GA): (a) plot of the adapted manufactured solution according to
equation (8.36) with parameters α = β = 1, and δ = 2

3 to avoid the influence of the
spatial discretisation error, and (b) convergence of the L2 error norm of the concentration
field c with respect to the time increment ∆t.

the generalised-α method are complemented by those for the implicit Euler method. For
both methods, the convergence rates match the optimal value ∆tp, as can be observed for the
L2 error norm of the concentration c. As a result, the accuracy obtained by the generalised-
α method is significantly higher for reasonable sizes of the time step. Therefore, the error
control according to equation (8.35) should be effective.

8.4 Simulation of Structural Evolution Processes

In the following examples the predictions of the mixed formulation and the direct discreti-Introduction

sation will be compared for the spinodal decomposition of a binary system. As the different
stages of the structural evolution can be identified by the free energy and its individual parts,
special attention is paid to them. Starting from an initial concentration distribution in which
small perturbations promote the evolution of the system, each problem is considered until
a steady state is reached. The course of the decomposition is influenced by the initial con-
centration distribution. Considering the averaged concentration in a small region c̃, different
morphologies can occur [80, 227]. While c̃ = 0.5 leads to deeply interconnected phases,
values of c̃ 6= 0.5 favor one phase and result in nucleation phenomena. Moreover, the choice
of a degenerate mobility

M(c) = Dc (1− c) (8.50)

with a positive constant D has a significant influence on the coarsening behaviour of the
system, as it prevents the evolution of pure phases. In the simulation, the domain of interest
has been taken as 1m× 1m and is discretised into 128× 128 elements with a cubic B-spline
basis (p = 3). Considering a free energy according to equation (8.8), the following set of
parameters is assumed: A = 3000 J, B = 3, D = 1m3 s kg−1, λ = 1Jm−1.

Depending on the discretisation, the imposition of periodic boundary conditions intendedPeriodic
boundary
conditions

for the subsequent simulation requires some consideration. In the mixed formulation, the
periodicity of the two primary field variables c and µ can be imposed by constraining their
control values at opposite edges of the boundary, i.e. by setting c1 = cn and µ1 = µn.
For the direct discretisation periodicity has to be ensured for the concentration c and its
normal derivative cknk. The direct imposition of these conditions is achieved by setting
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(a) (b)

(c)

Figure 8.8: Generation of a periodic spline basis via periodic Bézier extraction according to [132]:
(a) original spline basis (p = 2), (b) modified periodic spline basis, and (c) representation
of the B-spline curve of Fig. 6.1 in terms of the original (thin solid blue line) as well
as periodic spline basis (coloured thick solid lines). For the considered polynomial order
p = 2, the positions of original P (◦) and periodic control points Pper (♦) are different
only for the first and last control points.

cper
I = cper

n−p+I for I = 1 . . . p and the periodic basis functions

N per(ξ̄) = TperN (ξ̄) = TperCM (ξ̄) = CperM (ξ̄) (8.51)

with the periodic transformation matrix Tper and the periodic Bézier extraction operator Cper

[132], cf. Fig. 8.8. As the basis transformation should not affect the geometry representation

x(ξ) = PTN(ξ) = PperTNper(ξ) , (8.52)

a new set of control point coordinates

Pper = T−TP (8.53)

for the periodic basis has to be computed. Fig. 8.8 (c) exemplarily shows the representation
of the B-spline curve introduced in Fig. 6.1 in terms of the new periodic basis of order p = 2.
Different colors indicate the contributions of the various Bézier elements.

8.4.1 Random Concentration Distribution

Firstly, an initially stochastic concentration distribution c = c̃ + r is considered with mean Problem
definitionvalue c̃ = 0.63 and standard deviation r = 0.005. Since c̃ is a constant, the characteristics of
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(a) t = 2.851×10
−6

s (b) t = 7.364×10
−6

s (c) t = 4.036×10
−5

s

(d) t = 1.603×10
−4

s (e) t = 1.013×10
−3

s (f) t = 1s

Figure 8.9: Spinodal decomposition from a random concentration distribution with c̃ = 0.63: tempo-
ral evolution of an initially stochastic concentration distribution into phases of different
composition.

the evolution will be the same, locally and globally. In view of the above considerations and
taking into account that periodic boundary conditions are applied, it is anticipated that in the
steady state only one circular inclusion remains.

Figure 8.9 shows the progress of the structural evolution. From its initial concentrationTemporal
evolution distribution the system separates into two phases whose composition is determined by the

minima of the bulk free energy (8.8) which are called binodal points. This process is very
fast and leads to a considerable reduction of the bulk free energy as can be seen in Figure
8.10 (a), which presents the temporal evolution of F and its individual parts Fbulk and Fint.
The figure also shows that the formation of interfacial regions is accompanied by an increase
of the gradient energy – the instant of time where Fint reaches its maximum value therefore
marks the end of the decomposition. Subsequently, the evolution is dominated by coarsening
which takes place over several orders of magnitude of time. In this process, the inclusions
interact locally in order to minimise the gradient energy by reducing the number while in-
creasing their characteristic length. Each decline of Fint in Figure 8.10 (a) is related to such
an interaction. The circular shape of the single inclusion that results is an outcome of the
minimisation procedure.

Figure 8.10 (a) reveals that the total free energy decreases monotonically during the structuralValidation

evolution. This is a basic property of the Cahn-Hilliard model, because F , characterised by
equation (8.3), is a Lyapunov functional. Moreover, conservation of mass is used to derive
the Cahn-Hilliard equation. As a consequence, the average concentration c̃ calculated by
numerical integration should remain constant throughout the simulation. In compliance with
this requirement, the variation in the temporal evolution of c̃ in Fig. 8.10 (a) is not noticeable.
Essentially the same characteristics of F and c̃ are found for the mixed formulation and the
direct discretisation.
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Figure 8.10: Spinodal decomposition from a stochastic concentration distribution with c̃ = 0.63: (a)

temporal evolution of c̃ and F compared for the direct (solid lines) and mixed (dashed
lines) formulation of the Cahn-Hilliard equation, and (b) evolution of the adaptively
controlled time step.

An important feature of the simulation is the adaptive time stepping scheme. According Adaptive time
steppingto Fig. 8.10 (b) the step size ∆t ranges from ∆t = 5× 10−8 s to ∆t = 5× 10−2 s. This

can only be achieved if the time step increases when the evolution shows low activity and
decreases in case of larger structural changes. For this reason, every major decrease in the
size of ∆t corresponds to a variation of the systems structure. This is particularly obvious
when comparing Figures 8.9 (c) – 8.9 (e) to Fig. 8.10 (b). A total of 2042 time steps were
needed to complete the simulation. On top of that 253 steps, which is fewer than 12%,
have been rejected in order to keep the estimated error close to the chosen tolerance εadm.
With an average of 4 Newton iterations per time step the computational effort is significantly
lower than in an approach with constant step size while the results are comparable to those
presented in [80, 227] for a second-order accurate time integration.

8.4.2 Linear Concentration Distribution

The purpose of the second example is to show the evolution of different morphologies as Problem
definitiona function of the local average concentration c̃. Therefore, an initial distribution c = c̃ +

r is considered, with −0.005 ≤ r ≤ 0.005, which represents a random perturbation to
promote the evolution of the system. Herein, c̃ = x1, 0 ≤ x1 ≤ 1, is a concentration which
varies linearly in the x1-direction. For this reason, regions with different characteristics of
the evolution should develop that can be distinguished clearly [81]. As the average of the
concentration is c̃ = 0.5 and homogeneous Neumann boundary conditions are applied, the
steady state of the system is expected to consist of two phases of an equilibrium composition,
separated by a straight interface at x1 = 0.5m.

The progress of the evolution is depicted in Fig. 8.11 for six representative times. Again, the Temporal
evolutionperiod of time needed for the separation process is very short. In contrast to the first exam-

ple, the separation process emanates from regions where c̃ ≈ 0.5, because the degenerate
mobility (8.50) reaches its maximum value at this concentration. Hence, an interconnected
pattern evolves around x1 = 0.5m, while nucleation of one phase into the other is the domi-
nant mechanism if the local average concentration differs considerably from c̃ = 0.5. Since
the mobility decreases with an increasing level of decomposition, the structural evolution at
the boundaries with x1 = 0m and x1 = 1m hardly exists.
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Figure 8.11: Spinodal decomposition from a linear, randomly perturbed concentration distribution
with c̃ = 0.5: temporal evolution of the initial concentration field into two phases sepa-
rated by a straigth interface.

Similar to the example presented in Section 8.4.1 the formation of interfacial areas leads toValidation

an increase of the gradient energy Fint, Fig. 8.12. The minimisation of Fint via coarsening
prevails at the later stages of the evolution. While the bands forming the interconnected
pattern broaden, the characteristic length of the interacting inclusions increases. Once again,
every decrease in the free energy corresponds to a significant change of the structure of the
system which is evident when comparing Figures 8.11 (c) – 8.11 (e) to the temporal evolution
of F depicted in Fig. 8.12. Eventually, the shape of the remaining interface is optimised –
the curved transition zone located at x1 = 0.5m develops into a straight line. In compliance
with the theoretical aspect of F being a Lyapunov functional, the total free energy decreases
monotonically. Furthermore, the average of the concentration c̃ shows no variation during the
entire simulation, which implies that the finite element model of the Cahn-Hilliard equation
fulfills the basic requirements. A comparison of the times needed by the system to reach
a steady state reveals another influence of the initial condition. Different from the example
shown in Section 8.4.1, the structural evolution advances much faster which is mainly caused
by a smaller region of activity in the current example. The phenomenon is also in agreement
with the findings in [80] where the coarsening process for deeply interconnected phases is
shown to be much smoother than for droplet-type morphologies.

8.5 Conclusion

In this chapter a detailed convergence analysis of the Cahn-Hilliard phase-field model has
been presented. Two different discretisations of the model have been analysed within the
framework of isogeometric analysis. Due to the lack of an analytic reference solution, the
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Figure 8.12: Spinodal decomposition from a linear, randomly perturbed concentration distribution
with c̃ = 0.5: (a) temporal evolution of c̃ and F , and (b) evolution of the adaptively
controlled time step.

method of manufactured solutions has been adopted. With respect to the spatial discretisa-
tion, convergence rates are obtained that match analytical error estimates available for linear
problems. Irrespective of the problem, the direct discretisations of higher-order partial dif-
ferential equations provide superior efficiency compared to mixed formulations. However,
optimal convergence rates are only obtained if approximations of sufficient order are utilised.
Further investigations on the convergence behaviour of the generalised-α method justify the
application of an adaptive time stepping scheme based on elementary error control. Two
numerical examples of spinodal decomposition have been used to compare the physical pre-
dictions of the mixed formulation and direct discretisation approach and to validate the latter.
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9 Adaptive Isogeometric Phase-Field
Modelling [HMK16]

As it was shown in the preceding chapter, the phase-field method provides a convenient way Motivation

to model structural evolution processes because interfaces are represented fully implicitly in
terms of an order parameter field. The accurate approximation of these field variables how-
ever requires highly refined meshes. If fixed grids are used, practical applications will cause
tremendous numerical costs which limits the applicability of the approach. Therefore, local
adaptive mesh refinement and coarsening procedures are required to improve the numerical
efficiency of finite element discretisations of phase-field models.

Isogeometric analysis seems to be an ideal discretisation technique to be combined with Patch
refinementadaptivity features as already the coarsest mesh provides an exact geometry representation

which is preserved during refinement. Consequently, tedious interaction with an underlying
geometry model is avoided. However, if B-splines or NURBS are considered as a basis, their
tensor product nature will prohibit a purely local refinement within a single NURBS patch.
Local refinement with these bases would require the subdivision of the analysis domain into
several patches which can then be refined uniformly [41, 109]. In addition, the continuity
across patches will only be C0 which is not sufficient for the direct discretisation of higher-
order differential equations as the Cahn-Hilliard model presented in the previous chapter.

Three major approaches to overcome the restrictive tensor product structure have been de- Local
refinementveloped:

(i) T-splines introduced by Sederberg [187, 188] result from the insertion of extra vertices
into the tensor product mesh. This produces so called T-junctions which are compa-
rable to hanging nodes in the standard FEM. T-splines were firstly used to represent
complex and watertight geometries. Bazilevs et al. [5] introduced T-splines into iso-
geometric analysis. Recent contributions have focussed on analysis suitable T-splines
which ensure the linear independence of the basis [129, 137, 186]. Local refinement
based on T-splines is presented in [54, 183].

(ii) Locally refined (LR) B-splines have been presented by Dokken et al. [53]. They are
in some way dual to T-splines, i.e. tensor product B-splines are locally refined by the
insertion of knot line segments instead of extra vertices. The properties of LR-B-splines
have been analysed by Bressan [22] and first applications to adaptive isogeometric
analysis can be found in [108].

(iii) Hierarchical splines use basis functions defined by knot vectors of different levels of
nested meshes that result from sucessive uniform h-refinement. They were introduced
by Forsey and Bartels [68] already in 1988. With the recent works of Vuong et al.
[220, 221], Schillinger [176], Gianelli et al. [79], and Scott et al. [185] hierarchical B-
splines have been further developed to meet the requirements of isogeometric analysis.
Recent applications are presented in [177, 178].
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(a)

Discontinuity

(b) (c)

Figure 9.1: Two approaches to local mesh refinement in IGA: (a) initial mesh with an interal
layer/discontinuity, (b) local mesh refinement using hierarchical splines, and (c) T-splines.

In particular T-splines and hierarchical B-splines have been utilised to facilitate adaptive
isogeometric analysis. Local mesh refinement with both approaches is illustrated in Fig. 9.1
for the benchmark case of a sharp internal layer. Since ensuring linear independence imposes
restrictions on the T-spline mesh, the refinement will not be as local as with hierarchical
splines, cf. Fig. 9.1. Despite their deficit regarding locality, local refinement of T-splines
is essential for complex engineering geometries which cannot be respresented conveniently
by B-splines or NURBS. The hierarchical approach to refinement has been generalised to
T-splines by Evans et al. [64] which provides a highly localised refinement strategy for
complex geometries.

In this chapter adaptive local refinement will be applied to the isogeometric analysis of phase-Outline

field models. As a consequence of the typically used simple unit square domains, hierarchical
refinement strategies are employed in conjunction with B-splines. Firstly, a local refinement
procedure based on hierarchical B-splines will be outlined in Section 9.1. This introduction
exploits the one-dimensional case to present the construction of a hierarchical basis and
to illustrate modifications which are useful for analysis. For the selection of active basis
functions an element based approach similar to [185] is applied. Section 9.2 presents a new
way to assemble the hierarchical system of equations based on Bézier extraction. It will
be shown that this novel procedure produces the truncated hierarchical basis [79] without
the need to explicitly compute the hierarchical basis. Eventually, the numerical properties
of the approach will be analysed. In Section 9.3, adaptive local refinement and coarsening
based on hierarchical splines will be used for the isogeometric analysis of the Cahn-Hilliard
phase-field model introduced in Chapter 8.

9.1 Univariate Hierarchical B-Splines

In this section the foundations of local refinement and coarsening using hierarchical splinesAssumptions

are outlined. In contrast to many works a finite element viewpoint is used as it allows for the
straight forward identification of active elements and the associated basis functions. Further-
more, it is easily combined with Bézier extraction. Without loss of generality only B-splines
are considered. The hierarchical basis consists of splines of only one polynomial degree
and strong conditions on the boundaries of different hierarchy levels are assumed [221], i.e.
elements of two consecutive levels are not allowed to overlap.
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9.1 Univariate Hierarchical B-Splines

Figure 9.2: Multi-level univariate B-spline basis defined by multi-level nested knot vectors, n =
3, p = 2, knots are indicated by the symbol ×.

9.1.1 Multi-Level Basis and Multi-Level Mesh

As a simple univariate example consider a unit domain Ω : x ∈ [0, 1]. A hierarchy of n Multi-level
basisknot vectors Ξℓ, ℓ = 0 . . . n − 1 is created by successive uniform h-refinement within the

domain Ω starting from the knot vector Ξ0 of the coarsest mesh (ℓ = 0). The resulting knot
vectors are nested, i.e. Ξℓ ⊂ Ξℓ+1, and each knot vector Ξℓ defines a set of B-spline basis
functions Nℓ = {N ℓ

I,p}n
ℓ

I=1 of degree p. The approximation spaces N ℓ of each level are
spanned by the vectors of basis functions Nℓ. The h-refinement is accomplished via uniform
knot insertion and results in a new spline space N ℓ+1 with more B-splines and therefore more
flexibility than the original spline space. It contains the original spline space as a subspace,
i.e. N ℓ ⊂ N ℓ+1. Therefore, any spline in the original space can also be represented in terms
of the B-splines in the refined space. An examplary three-level basis is illustrated in Fig. 9.2
for the case p = 2.

The basis functions of two consecutive levels are related by Refinement
operator

Nℓ = Mℓ,ℓ+1Nℓ+1 (9.1)

with M the subdivision, knot insertion or refinement operator [183]. From the two-scale
relation (9.1) it can be seen that the coarse basis (level ℓ) can be fully expressed as a linear
combination of basis functions of the finer level ℓ+1. The individual entries of the refinement
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operator are the coefficients of this linear combination and can be computed from recursion
formulae. A corresponding algorithm developed by Casciola and Romani [32] for open,
non-uniform knot vectors with repeated knots is used in this work. Refinement operators for
two non-consecutive levels are obtained according to

NI = MI,JNJ =
J−1∏

ℓ=I

Mℓ,ℓ+1NJ . (9.2)

The relations between basis functions translate directly into transformation rules for control
point values P if the same curve x is to be represented in terms of a refined basis

x =
(
Pℓ

)T
Mℓ,ℓ+1 Nℓ+1 (9.3)

Pℓ+1 =
(
Mℓ,ℓ+1

)T
Pℓ. (9.4)

In addition to the basis functions, the nested knot vectors define a multi-level element struc-Multi-level
element
structure

ture. According to the framework of Bézier extraction, cf. Section 6.1.2, a number of nℓe
elements Ωe,ℓ

I are defined by non-zero intervals of the knot vectors on the individual hierar-

chy level ℓ. The union of elements on each level covers the analysis domain Ω =
⋃nℓ

e
I=1 Ω

e,ℓ
I .

Assuming that two consecutive levels result from a uniform refinement splitting each coarse
knot interval into two fine scale intervals, a hierarchy of nested elements is obtained. In this
tree-like element structure each parent element on level ℓ possesses two children on level
ℓ + 1 in the one-dimensional case. Every element on level ℓ is associated to p + 1 basis
functions in Nℓ which will facilitate an element-based refinement procedure outlined later in
this section.

9.1.2 Hierarchical Basis – Selection of Active Basis Functions and Elements

In the hierarchical approach to local refinement, basis functions from the vector Nℓ of differ-Hierarchical
basis ent levels ℓ are combined into the vector of hierarchical basis functions Nh which spans the

hierarchical basis space H. However, building the hierarchical basis cannot be accomplished
by simply adding basis functions from finer hierarchy levels to the coarse scale basis. This
would result in the loss of linear independence because coarse level basis functions are linear
combinations of the fine-scale functions according to equation (9.1). Therefore, coarse level
basis functions have to be removed from the approximation space. To facilitate the imple-
mentation of hierachical splines into the existing framework which uses Bézier extraction,
an element-based approach to the proper selection of active basis functions will be outlined
in the following. In this way, typical FE procedures for evaluating error measures and mark-
ing elements for refinement or coarsening, respectively, can be seamlessly transferred to the
framework of isogeometric analysis.

The element-based selection of active basis functions for the hierarchical approximation usesActive basis
functions two essential definitions which are examplarily illustrated in Fig. 9.3 which results from the

three-level basis of Fig. 9.2 by the following procedure:

(i) Active elements: By some criterion elements of different hierarchy levels have to be
chosen to discretise the analysis domain. The elements of this set are called active
elements. As it can be seen in Fig. 9.3 (a) where active elements are marked in green,
the union of these elements fully covers the domain Ω without any overlap. The active
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elements represent the finest possible hierarchy level at a considered position in the
mesh. They are therefore the leafs of the tree-like element structure and also referred
to as leaf elements [185].

(ii) Active basis functions Aℓ of level ℓ: Each of the active elements is associated to a
number of p+ 1 basis functions. On each level ℓ these functions form a set Aℓ

a plotted
in colour in Fig. 9.3 (a). However, to ensure a linearly independent basis not all of
these functions can contribute to the hierarchical approximation, i.e. attention has to
be paid to basis functions whose support overlaps with the domains of active elements
on higher or lower hierarchy levels. In this context, the definition of two subsets is
convenient:

a) Basis functions below active elements Aℓ
ba: To ensure a linear independent hier-

archical approximation, basis functions in Aℓ+1
a that have support below an active

element of level ℓ cannot contribute to the hierarchical basis. Functions belonging
to these sets Aℓ

ba are plotted by dotted coloured lines in Fig. 9.3 (a). The subscript
ba indicates below active elements.

b) Basis functions above active elements Aℓ
aa: In a similar fashion the support of

basis functions in Aℓ
e will intersect the domains of active elements on level ℓ+ 1.

They form the set Aℓ
aa and contribute actively to the hierarchical approximation.

Corresponding functions are indicated in Fig. 9.3 (a) by dashed coloured lines.

A linearly independent, i.e. analysis suitable, hierarchical basis H is therefore defined
by

Aℓ = Aℓ
ba \ Aℓ

a . (9.5)

It is depicted in Fig. 9.3 (b). As this basis does not possess the partion of unity prop-
erty1, Giannelli et al. [79] propose the scaling and truncation of basis functions in the
set Aℓ

aa which results in the truncated hierarchical basis, Fig. 9.3 (c).

9.2 Implementation of Truncated Hierarchical B-Splines using

Bézier Extraction

In the preceding section, procedures for selecting the elements and basis functions which Introduction

contribute to the hierarchical approximation have been introduced. In the following, an im-
plementation of the truncated hierarchical B-spline basis will be outlined which does not
require to carry out the truncation and scaling operations explicitly. Instead, the basis is ob-
tained from Bézier extraction performed for the multi-level basis, i.e. for all active elements
or functions in the sets Aℓ

a, respectively. The required scaling and trunction are accomplished
in terms of a hierachical subdivision operator. This procedure consists of three steps:

(i) At first the element matrices of all active elements are computed without considering
information on whether the basis function contributes to the hierarchical basis or not.
This ensures the applicability of standard Bézier extraction.

(ii) Once element matrices for all active elements of one level ℓ have been obtained, they
are assembled to form sub-systems for each hierarchy level.

1Remark: Although the hiearchical basis in Fig. 9.3 (b) does not form a partition of unity it is able to represent constant
fields and is therefore a valid basis as explained in [185].
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(a)

(b)

(c)

Figure 9.3: Hierarchical approximation (n = 3 levels of hierarchy) and differents sets of basis func-
tions: (a) Aℓ

a – basis functions belonging to active elements (all coloured lines), Aℓ
ba –

basis functions below active elements (dotted lines), and Aℓ
aa – basis functions supported

by inactive elements (dashed lines), (b) the basis functions of the hierarchical basis H,
and (c) the truncated hierarchical basis [79] which results from the scaling and truncation
of basis functions in the sets Aℓ

aa.
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(iii) Finally, these sub-systems are combined to form the global system of equations. This
process is accomplished by a transformation matrix M

h
which can be identified as a

hierarchical subdivision operator, i.e. simple matrix multiplication ensures that only
basis functions in H contribute to the approximation.

9.2.1 Assembly of Global System of Equations

The operations carried out in steps (i) and (ii) are standard procedures in isogeometric anal- Multi-level
systems of
equations

ysis. Using Bézier extraction outlined in Section 6.1.2 the B-spline basis is mapped onto
a unique set of Bernstein polynomials which act as shape functions of the Bézier elements.
Then numerical quadrature is applied to obtain the coefficient matrices of all active elements.
The matrices of active elements of each hierarchy level ℓ are assembled into sub-systems of
equations

Kℓuℓ = Fℓ (9.6)

with uℓ and Fℓ column vectors containing the control values of generalised degrees of free-
dom and the associated generalised forces. Their length is nℓ · nDOF where nℓ is the total
number of basis functions or control points on level ℓ, and nDOF is the degree of freedom at
each control point. Consequently, Kℓ is a square matrix of size [nℓ · nDOF × nℓ · nDOF]. The
sub-systems of the individual levels ℓ can be arranged into a system of multi-level equations
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In the multi-level system of equations (9.7) individual levels are not linked to each other. Hierarchical
system of
equations

This interconnection will be introduced in the following by a hiearchical refinement operator
M

h
. It acts as a transformation matrix on the multi-level system

K
h
= M

h
KMT

h
(9.8)

Fh = M
h
F (9.9)

which results in the hierarchical system of equations

K
h
uh = Fh. (9.10)

The sparsity pattern of the refinement operator M
h

is shown in Fig. 9.4 (b) while the popu-
lation of the resulting coefficient matrix K

h
is plotted in Fig. 9.4 (c). It is noted that in order

to reduce memory requirements, efficient matrix libaries with adjusted indexing should be
used to avoid zero rows and columns in the multi-level as well as the hiearchical system
matrices and in the refinement operator. A more efficient, condensed matrix representation
is illustrated in Fig. 9.4 (d). The matrix K of the hierarchical basis according to Fig. 9.3 pos-
sesses the sparsity pattern illustrated in Fig. 9.4 (a). Empty spaces in the characteristic band
structure result from inactive elements on each level.
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Figure 9.4: Sparsity patterns of the coefficient matrices and the hierarchical refinement operator: (a)

multi-level coefficient matrix K with clear separation of the different levels ℓ, (b) hiearchi-
cal refinement operator M

h
with entries on the diagonal resulting from the activity indi-

cators Aℓ and off-diagonal elements due to M̃
I,J

, (c) hierarchical coefficient matrix K
h
,

and (d) rearranged hiearchical coefficient matrix K
h
.
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9.2.2 Hierarchical Refinement Operator and Equivalence to the Truncated
Hierarchical Basis

As indicated by Fig. 9.4 (b), the hierarchical refinement operator M
h

is an upper triangular Structure

matrix. Its elements are given by

M
h
=











A0 M̃
0,1

M̃
0,2

. . . M̃
0,n−1

A1 M̃
1,2

. . . M̃
1,n−1

A2 . . . M̃
2,n−1

0
. . .

An−1











. (9.11)

It has to transfer the contributions from all active shape functions of the multi-level to the
hierarchical system of equations. This is accomplished in terms of an activity indicator
matrix for each level

Aℓ(II) =

{

1 for N ℓ
I ∈ Aℓ

0 else
and AℓIJ = 0 for I 6= J . (9.12)

In addition, it can be observed that basis functions belonging to active elements but not to the
hierarchical basis, i.e. the functions in the sets Aℓ

ba, have been used during the integration of
the coefficient matrices of hierarchy levels ℓ > 1. The contribution of these basis functions
on level ℓ + 1 has to be mapped to active shape functions of level ℓ, i.e. those in the set
Aℓ

aa. The relation between these shape functions is given in terms of the refinement operator
according to equation (9.1). Since these are the only transformations required, a modified
refinement operator

M̃ ℓ,ℓ+1
IJ =

{

M ℓ,ℓ+1
IJ for N ℓ

I ∈ Aℓ
aa ∧N ℓ+1

J ∈ Aℓ+1
ba

0 else
(9.13)

is used in M
h
.

Although the hierarchical basis is never computed explicitly in the present approach, it can Truncated
hierarchical
basis

be shown that the resulting approximation is identical to the truncated hierarchical basis
[79, 92], cf. Fig. 9.3 (c). This basis varies from the hierarchical set of basis functions,
Fig. 9.3 (b), in terms of the contribution of some active basis functions in the sets Aℓ

aa, i.e.
the functions plotted as dashed coloured lines in Fig. 9.3 (a). The correspondence of the
present approach and the truncated basis in [79, 221] results from the procedure used to
compute the coefficient matrices and from the mapping of contributions of basis functions
in Aℓ+1

ba to those in Aℓ
aa. In order to understand this effect, the basis functions N0

3 and N0
4

according to Fig. 9.3 (a) are to be considered as an illustrative example, Fig. 9.5.

During the multi-level Bézier extraction, standard extraction operators are computed for each Bézier
extractionactive element and numerical integration is carried out subsequently. This has two major

implications:

(i) All basis functions supported in an active element will be considered during quadrature
irrespectively of the fact if they are part of the hierarchical basis.

(ii) The contribution of basis functions on level ℓ is limited to the domains of active ele-
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Figure 9.5: Relation of the hierarchical refinement operator to the truncated hierarchical B-spline ba-
sis of Gianelli et al. [79]: When the hierarchical system is build using the operator M

h
,

contributions of the active basis functions N0
3 and N0

4 are expressed in terms of N1
5 and

N1
6 . The limitation of their support to Ωe,1

5 and Ωe,1
6 results in the truncation and scaling

of N0
4 which is identical to the truncated hierarchical basis in [79]. Hence the hiearchical

basis possesses the partition of unity property.

ments, i.e. the integrated domain.

That is, the basis functionsN0
1 toN0

4 fully add to the coefficient matrix K0 during quadrature

of the active elements Ωe,0
1 and Ωe,0

2 . However, the remainder of the support of N0
3 and N0

4

on the coarsest level ℓ = 0 is not considered during numerical integration as it is not covered
by an active element. Instead, integration continues with the elements Ωe,1

5 and Ωe,1
6 . In these

two elements, the basis functions N1
5 and N1

6 , which are not part of the hierarchical basis,
contribute to the coefficient matrix K1.

Eventually, the hierarchical refinement operator will account for the activity of the basis func-Effect of M
h

tions and recover the correct support of active basis functions. The matrix elements resulting
from N1

5 and N1
6 are mapped onto those due to N0

3 and N0
4 . In this way the contribution of

the active basis functions N0
3 and N0

4 in the domains Ωe,1
5 and Ωe,1

6 is taken into account. As
the support of N1

5 and N1
6 is limited to these two active elements on level ℓ = 1, the support

domain of N0
4 is truncated which also results in a scaling of the basis function. The result is

identical to the proposal in [79]. Therefore, the presented approach provides approximations
that possess the partition of unity property. As a consequence, the control point polygon will
be a convex hull to any B-spline curve represented in terms of the truncated basis.
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0

1.25

(a) (b)

Figure 9.6: Laplace problem on an L-shaped domain: (a) domain modelled by two patches (C0-
continuous patch boundary indicated by dashed line) with boundary conditions, and (b)

analytical solution.

9.2.3 Convergence Analysis

In this section a numerical example is considered to analyse the numerical properties of the Problem
definitionpresented refinement approach. The results of the adaptive local refinement algorithm are

compared with results obtained from globally refined NURBS and given analytical solutions
that are commonly used as benchmarks in adaptive IGA [54, 221]. Below, the Laplace
problem

∆u = 0 in Ω , ū = 0 on ΓD ,
∂ū

∂n
= g on ΓN , (9.14)

is solved for the temperature u on a two-dimensional L-shaped domainΩ. The exact solution
of the problem is given by

ū = r
3

2 sin
2φ− π

3
. (9.15)

On the Neumann boundary ΓN, the exact heat flux g = ∂ū/∂n and on the Dirichtlet boundary
ΓD, homogeneous boundary conditions are applied. The definition of the boundary value
problem is illustrated in Fig. 9.6.

The domain is modelled by two NURBS patches resulting in a C0-continuous line, dashed Isogeometric
discretisationin Fig. 9.6. Note that the L-shaped geometry could also be modelled by a C1-continuous

basis. But as already shown by Vuong [220], who used hierarchical B-splines to adaptively
refine the mesh, the continuity of the approximation does not influence the convergence
rates, neither for uniform nor for local refinement if the marking criterion is adjusted ac-
cordingly. Only an offset between the convergence curves can be found which implies that a
C1-continuous basis provides a better overall approximation.

The geometry of the problem leads to a singularity at the re-entrant corner. In this case Singularity

classical convergence theory does not hold and the order of convergence with respect to the
total number of degrees of freedom

k = −1

2
min

(

p,
π

2π − β

)

(9.16)

is governed by the angle β of the re-entrant corner. In the case of global h-refinement this
leads to a convergence rate of k = −1/3 ∀p for the L-shaped domain with β = 90°.
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(a) (b)

Figure 9.7: Bézier meshes for the Laplace problem: (a) initial mesh of 32 elements, and (b) adaptive
mesh refinement resolves the corner singularity after h = 3 and h = 5 refinement steps.

The optimal order of convergence k = −p/2 can be recovered by local mesh refinementRefinement
criterion in the vicinity of the singularity. The adaptive refinement in this study is controlled by a

measure for the element error and a treshold value θ. An element I whose error ηI exceeds
the threshold (ηI > θ) will be marked for refinement. Having at hand the reference solution
(9.15), the H1 norm of the error

η2I = ‖(ū− u)‖L2 + ‖∇(ū− u)‖L2 (9.17)

serves as a measure for ηI . The domain error η2 =
∑

I η
2
I is obtained as the sum over all

elements. According to Dörfel et al. [54] two principal choices for the threshold can be used:

(i) Maximum error marking: In this case the threshold

θ = α · max
I

(ηI) with α ≈ 0.5 (9.18)

is defined relative to the maximum element error. That is, those elements will be
marked for refinement whose error exceeds α·100% of the maximum element error
in the mesh.

(ii) Quantile marking: In the second major criterion the α-quantile of element errors de-
fines the threshold

θ = α-quantile (ηI) with 0 < α < 1. (9.19)

All elements exceeding this error level will be refined, e.g. for α = 0.8 the 20% of
elements with the largest error will be marked for refinement.

The results presented below have been obtained for a quadratic and a cubic basis with anAnalysis

initial mesh of 32 elements, Fig. 9.7 (a), and L = 6 adaptive refinement steps. The mesh
refinement is controlled by quantile marking with α = 0.8. In Fig. 9.7 (b) meshes for the
quadratic basis are given. It can be seen that the corner singularity is well detected within
the refinement process. Figure 9.8 shows a comparison of the convergence for adaptive local
and global mesh refinement. While the convergence of uniform h-refinement is governed by
the singularity, i.e. the expected order of convergence of k = −1

3
is found, optimal orders

of convergence are achieved for the quadratic (k = −1) and the cubic basis (k = −1.5) in
the case of adaptive local refinement. This implies that the approach generates well graded
meshes in the vicinity of the corner singularity.
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Figure 9.8: Convergence rates for the Laplace problem measured in the H1 norm: As expected, local
refinement improves the convergence rate to k = −1 for the quadratic (a) and to k = −1.5
for the cubic (b) basis.

9.3 Adaptive Isogeometric Analysis of the Cahn-Hilliard Model

In the following, the hierarchical refinement introduced and analysed in the preceding sec- Introduction

tions will be applied to the adaptive isogeometric analysis of the Cahn-Hilliard model pre-
sented in Section 8.1. Different from the convergence analysis of Section 9.2.3 where com-
putations have been restarted from the initial state after each refinement step, the adaptive
analysis of a typical structual evolution process will require the mapping of field quantities
between the meshes of two consecutive time steps. While only refinement operations have
been considered so far, the efficient analysis of decomposition processes necessitates the
coarsening of the mesh. In Section 9.3.1 three suitable projection algorithms are introduced
and compared. A demonstraction problem is presented in Section 9.3.2.

9.3.1 Projection of Field Quantities

Assume a solution tch has been computed for the time increment t using the hierarchical Refinement

basis tH spanned by the set of basis functions tNh. For the subsequent increment t + ∆t,
certain elements will be marked for refinement or coarsening. This results in the activation
or deactivation of Bézier elements and their associated basis functions and control points.
Therefore, the solution tch has to be mapped to the new hierarchical basis t+∆tH in order
to generate a new initial solution vector t+∆t

0 ch for the subsequent time step. If the hier-
archical mesh t+∆tH results from a refinement of tH, this mapping will always be exact
because the fine scale basis functions are able to excatly represent the coarse scale solution.
Consequently, new control variables

t+∆t
0 cℓ+1 =

(
Mℓ,ℓ+1

)T tcℓ (9.20)

can be obtained from a simple matrix operation which according to the two-scale relation
(9.1) involves the subdivision operator Mℓ,ℓ+1 relating two successive hierarchy levels ℓ and
ℓ+ 1.

Contrarily, mapping the solution from level ℓ+1 to ℓ, which is required if the mesh has been Coarsening

coarsened during analysis, will generally introduce an approximation error as the coarse
scale basis functions do not include the fine scale basis. Therefore, suitable projection meth-
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ods are required. Three different approaches will be briefly reviewed and compared regarding
the resulting discretisation error. The time increment is omitted for brevity of the notation:

(i) Linear L2 projection: The aforementioned fact that the coarse scale basis does not
contain the fine scale basis functions is reflected by the non-square structure of the
subdivision operator Mℓ,ℓ+1. Therefore, a direct inversion of the two-scale relation
(9.20) is not possible. However, a linear least square projection can be obtained from

cℓ =
(
Mℓ,ℓ+1

)+
cℓ+1 (9.21)

with
(
Mℓ,ℓ+1

)+
the pseudo-inverse of the subdivision operator defined by

(
Mℓ,ℓ+1

)+
=

[

Mℓ,ℓ+1
(
Mℓ,ℓ+1

)T
]−1

Mℓ,ℓ+1 . (9.22)

(ii) Non-linear L2 projection: A generally more accurate result for the projection of the
fine scale approximation cℓ+1(x) to the control values cℓ of a coarser level can be
obtained from a standard L2 projection. In this case the error between the fine and
coarse scale approximations

∫

Ω

(
cℓ(x)− cℓ+1(x)

)2
dV =

∫

Ω

(
Nℓcℓ −Nℓ+1cℓ+1

)2
dV = min (9.23)

is to be minimised which yields a system of equations for the computation of the coarse
scale control variables.

(iii) Bézier projection: Bézier extraction has been combined with spline reconstruction
techniques by Thomas et al. [209] to form a general method for the projection be-
tween modified, e.g. refined, coarsened, or degree-elevated spline bases. For the con-
sidered case of a projection from J = 1 . . . nm fine-scale elements Ωe,ℓ+1

J which are to
be merged into a single coarse-scale element Ωe,ℓ

I , Bézier projection consists of a se-
quence of matrix operations to compute the control values cℓI of the coarse level Bézier
element

cℓI =
(

Rℓ

I

)T

︸ ︷︷ ︸

Reconstruction

nm∑

J=1

φIJG
−1A−T

J
G

︸ ︷︷ ︸

Projection

(

Cℓ+1

J

)T

cℓ+1
J

︸ ︷︷ ︸

Extraction

(9.24)

which are detailed in Algorithm 4.3 of [209]. Firstly, the approximation in the fine-
scale elements is localised, i.e. Bézier control variables, cf. Section 6.1.2, are obtained
using the element-local Bézier extraction operators Cℓ+1

J
. These values are then pro-

jected onto the coarse Bézier element based on relations between the differently scaled
Bernstein basis functions in the elements of the levels ℓ and ℓ+1. According to Farouki
[65] the relations are given in terms of the matrix A

J
and the Gramian G. For details

see [209], equations (12)-(16). The contribution of each element J is weighted ac-

cording to its volume fraction φIJ =
vol(Ωe,ℓ+1

J
)

vol(Ωe,ℓ
I

)
. Eventually, the coarse-scale Bézier

control variables are tranformed into control variables using the reconstruction oper-

ator Rℓ

I
=

(

Cℓ

I

)−1

. As the control value for a given function produced by Bézier
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(a)

Exact solution

(b)

Exact solution

approximation

Figure 9.9: Comparison of three approaches to the projection of field quantities: (i) linear L2 projec-
tion, (ii) non-linear L2 projection, and (iii) Bézier projection [209] of a fine-scale approx-
imation (p = 2, 64 elements) of c(x) according to (9.26) to a coarse mesh of 32 elements
(p = 2): (a) interface width ε = 0.05m which can be resolved by the coarse scale, and (b)

increased projection error for a reduced interface thickness of ε = 0.01m which cannot
be approximated by the coarse mesh.

projection will be different for each element in the support of the function, smoothing

cℓA =
∑

I∈supp(NA)

ωAIc
I,ℓ
A (9.25)

is required to generate a globally continuous approximation. In the equation above cI,ℓA
is the control value in cℓI associated to the basis function N ℓ

A.

Comparing these three principal approaches to the projection of control variables, it can Discussion

be noted that both, linear least squares (i) and Bézier projection (iii), are quadrature free
procedures which gives them the edge over the standard L2 projection from a computational
point of view. As the subdivision operators required to compute the pseudo-inverse are used
in the implementation of the truncated hierarchical basis, the linear least square projection
(i) is employed in the present implementation. In addition, it has to be remarked, that the
approaches mentioned above do not have to be applied to a full hierarchy level. In order to
increase their efficiency all transformations can be applied locally. Local L2 projections are
proposed by Jiang and Dolbow [107], and Bézier projection can be applied to any number of
elements to be merged [209].

In order to justify the choice of the linear L2 projection (i) over Bézier projection (iii), the ac- Accuracy
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Table 9.1: L2 error ||c||L2 between fine- and coarse-scale approximations for three different projection
methods.

Projection ε = 0.05m ε = 0.01m

(i) Linear L2 projection 1× 10−9 1.724× 10−7

(ii) Non-linear L2 projection 0.992× 10−9 1.711× 10−7

(iii) Bézier projection 1.097× 10−9 1.921× 10−7

curacy of the projection is analysed for a one-dimensional demonstration problem involving
a highly localised concentration distribution

c(x) =
1

2

[

1 + tanh

(
x− xint

ε

)]

. (9.26)

Again ε is an adjustable interface width and the location of the interface is at xint = 0.5m.
Figure 9.9 shows the exact solution, the fine scale approximation, and projections to the
coarse scale produced by the methods (i)-(iii) for two different values ε = 0.05, 0.01m.
For the thick interface (ε = 0.05m), all curves are virtually identical by visual expection
because the coarse level mesh can represent the exact solution. This is also confirmed by the
numerical approximation error between the two levels

||c||L2 =

∫

Ω

(
cℓ(x)− cℓ+1(x)

)2
dx (9.27)

in the L2 norm listed in Tab. 9.1. For the thin interface (ε = 0.01m) the projection to
the coarse level results in larger approximation errors, Fig. 9.9 (b). As the interface cannot
be resolved by the coarse level mesh all projection methods produce similar results with
characteristic overshoots in the vicinity of the steepest gradient. Table 9.1 reveals similar
errors for the linear and non-linear L2 projections while a slightly increased error is found
for Bézier projection.

9.3.2 Demonstration

The projection of field variables is now applied in conjunction with the adaptive hierarchicalCoarsening

refinement strategy to track an evolving interface. As outlined in Section 8.4, the spinodal
decomposition process of a binary system can be divided into two principal phases. The
initial nucleation phase produces a large number of inclusions which then coalesce to form
larger but fewer inclusions which minimises the interface energy. A fine mesh is required to
capture the nucleation process and it has to be used until the mixture is fully decomposed.
As this state corresponds to the maximum of the interface energy, the value Fint can serve
as a criterion for the activation of adaptive mesh refinement. The process of coalescence
leads to domains with virtually constant concentration which do not require fine meshes.
Coarsening the mesh in these domains will therefore allow to reduce the total number of
degrees of freedom. In conjunction with an adaptive time stepping scheme, the efficiency of
the computations can be improved. However, as the shape and the position of inclusions will
change significantly until the stationary state is achieved, cf. Fig. 8.9, previously coarsened
domains of the mesh have to be refined again to properly track the moving interface.
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t = 1× 10−5 s t = 4.9× 10−4 s t = 3.4× 10−3 s t = 1 s

Figure 9.10: Simulation of two coalescing inclusions with an overall concentration c̃ ≈ 0.14: tempo-
ral evolution of the concentration field and adaptive mesh refinement/coarsening.

Below, two coalescing inclusions will be considered as a simplified preliminary demonstra- Coalescing
inclusionstion problem. The initial configuration is defined by

c(x, t = 0) = 1− 1

2

2∑

I=1

tanh

( ||x− xIc || −R√
2ε

)

(9.28)

with xI1c = [0.35, 0.65]m and xI2c = [0.5, 0.5]m the coordinates of the center points of two
overlapping circular inclusions. A radius R = 0.15m that is identical for both inclusions
and an interface thickness ε = 1× 10−2 m result in an overall concentration of c̃ ≈ 0.14.
The mobility M = 1m3 s kg−1 was chosen to be constant and the interface parameter was
set to λ = 1× 10−2 Jm−1. Adaptive time stepping with an initial time step of ∆t0 =
1× 10−5 s has been applied during the solution. Figure 9.10 shows the temporal evolution
of the concentration field in the intervall t ∈ [0, 1] s. Energy minimisation results in the
complete coalescence of both inclusions. In the second part of this optimisation process, the
oblate shape approaches a circular configuration.

In addition to the adaptive time stepping scheme, the analysis mesh has been refined in the Mesh
adaptivityvicinity of the interface and coarsened in domains of approximately constant concentration.

A four-level hierarchical mesh was used and the solution starts from the finest resolution
of 128 × 128 elements. An adaptation of the spatial discretisation is carried out in the first
and every fifth increment. Mesh adaptivity is controlled in terms of the order parameter c,
i.e. elements are selected for coarsening if cI ≥ 0.95 ∨ cI ≤ 0.05 within an element ΩIe.
Otherwise it is flagged for refinement. Additional constraints, e.g. that adjacent elements
have to belong to two consecutive hierarchy levels and that elements can only be coarsened
if all other children of the common parent element have been marked for coarsening, are
imposed to ensure a well graded mesh. The hierarchical meshes which follow from these
procedures are illustrated in Fig. 9.10.

Figure 9.11 (a) presents a comparison of the energies and concentrations between a uniform Discussion

and the hierarchical discretisation. It can be concluded that both uniform and adaptive mesh-
ing result in exactly the same physical behaviour. As a consequence of the lower number of
active elements of approximately 2000 compared to 16384 in the uniform mesh, the solution
time of the adaptive model, which includes time for mesh refinement and coarsening and the
projection between different levels, is found to be less than one third of the time required for
the solution using a uniform mesh, Fig. 9.11 (b).
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Figure 9.11: Temporal evolution of (a) the total concentration c̃ and different energy contributions
F . The adaptively refined and coarsened four-level hierarchical mesh (dashed lines)
produces identical results compared to a uniform mesh (128×128 elements, solid lines),
and (b) comparison of the total computation time.

t = 1× 10−5 s t = 4.9× 10−4 s t = 3.4× 10−3 s t = 1 s

Figure 9.12: Spinodal decomposition from a linear, randomly perturbed concentration distribution
with c̃ = 0.5: temporal evolution of the initial concentration field into two phases sepa-
rated by a straigth interface and adaptively refined/coarsened mesh.

The purpose of the second example is to demonstrate the applicability of the approach toLinear
concentration
field

more complex distributions c(x). To this end, the linearly varying initial distribution c = x1+
r, with 0 ≤ x1 ≤ 1 and −0.005 ≤ r ≤ 0.005, already analysed in Section 8.4.2 is revisited
here. During the first stage of the decomposition process new inclusions are generated. These
newly formed inclusions are coarsened during the later stages of the evolution, Fig. 9.12.
While the nucleation phase can only be captured by a highly refined uniform mesh, adaptive
mesh refinement/coarsening will increase the efficiency of the computations during the latter
phase. Adaptive meshing is therefore activated for t ≥ 1× 10−4 s, i.e. after the interfacial
energy contribution has reached its maximum, Fig. 9.13 (a). Bézier elements are selected for
refinement if |∇c| ≥ 0.5 while they are flagged for coarsening otherwise. The restrictions
on the refinement and coarsening mentioned above ensure well graded meshes. Snapshots of
the temporal evolution of the microstructure and the associated adaptive mesh can be seen in
Fig. 9.12.

In order to allow for a quantitative comparison, Fig. 9.13 (a) shows the results for the tempo-Discussion

ral evolution of the concentration and various energies for both uniform and adaptive meshes.
It can be observed, in particular from the detail plot, that both approaches produce almost
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Figure 9.13: Spinodal decomposition from a linear, randomly perturbed concentration distribution
with c̃ = 0.5: (a) temporal evolution of c̃ and F , and (b) evolution of the adaptively
controlled time step.

identical results. In compliance with the theoretical aspect of F being a Lyapunov functional,
the total free energy decreases monotonically. Furthermore, the average of the concentration
c̃ is constant as expected for a conserved phase-field model described by the Cahn-Hilliard
equation. However, the adaptive solution procedure significantly reduces the number of ac-
tive elements compared to the uniform mesh. This results in a speed-up of the computation
of almost factor two.

9.4 Conclusion

It has been shown that the adaptive isogeometric analysis of phase-field models provides
identical predictions as highly refined uniform meshes, however, at significantly reduced
computational costs. These preliminary results indicate that there is a great potential in
adaptive isogeometric discretisations. Moreover, a novel approach to the implementation of
hierarchical approximations has been introduced in this chapter. It is based on Bézier ex-
traction and avoids the explicit computation of the hierarchical basis. As different levels of
the hierarchical mesh are treated independently, standard procedures can be applied at each
level. The communication between different levels is incorporated in terms of a hierarchical
refinement operator and corresponding matrix operations. It was also shown that these pro-
cedures implicitly define the truncated hierarchical B-spline basis. The presented approach
will therefore ensure linear independence and provide the partition of unity property. Future
work will focus on the mapping of internal variables, the implementation of periodic hierar-
chical meshes, and the application to more complex distributions as well as to the adaptive
isogeometric phase-field modelling of crack propagation.
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Industrial development processes as well as research in physics, materials and engineering Modelling and
simulationscience rely on computer modelling and simulation techniques today. Numerical challenges

arising from these applications led to the development of new numerical methods and the
continuous enhancement of existing approaches. With increasing computer power, compu-
tations are carried out on different scales ranging from the atomistic level to the macroscopic
scale of engineering structures. Various modelling techniques, e.g. molecular dynamics,
coarse grained approaches or finite element discretisations of continuum models, that are
suitable for different scales can be combined into multi-scale techniques. They facilitate a
prediction of the effective material or structural behaviour based on the local morphology
and the properties of the individual constituents. This provides valueable insight into the
structure-property relations which are of interest for any design process.

In this work, it was assumed that the influence of the atomistic structure of the material at the Interfaces and
Discontinuitiesconsidered scales can be neglected. Therefore, a phenomenological continuum approach has

been applied in conjunction with two different representations of interfaces. In a continuum
formulation, the physics of the problem to be solved is described in terms of partial differ-
ential equations for a certain set of field variables. The behaviour at interfaces is governed
by jump conditions that occur during the transition from global to local forms of the balance
equations. That is, classical continuum models use a sharp interface representation which
requires the localisation of interfaces in the numerical models. In standard finite element
discretisations this is achieved by conforming meshes, i.e. element edges with reduced con-
tinuity have to be aligned with the discontinuity. However, if the structure to be modelled
changes with time, e.g. due to evolution processes in the material or the initiation and propa-
gation of cracks, the sharp interface representation requires a topological update of the finite
element mesh. Therefore, diffuse interface models which regularise the interface in terms of
an additional field variable have been considered as an alternative. These models allow to
decouple the localisation and representation of the discontinuity from the analysis mesh but
fine discretisations are required to obtain reasonable solutions. If finite elements are to be
applied, adaptive mesh refinement strategies are essential to limit the computational costs.

With extended and isogeometric finite element discretisations two up-to-date modelling tech- XFEM for
sharp interface
models

niques have been considered in this work. At first, both methods have been applied to discre-
tise sharp interface models and their numerical properties have been studied and compared.
XFEM uses a non-conforming mesh and an implicit interface representation in terms of level
sets. The physics at the interface is modelled by a local enrichment of the approximation.
In order to improve its applicability, an element local level set representation was presented
and procedures for the consistent handling of curved discontinuities have been investigated.
Eventually an Update-Lagrangian formulation suitable for finite deformations was presented
and differences to the standard formulation have been outlined. It was demonstrated that
XFEM provides an ideal means to generate numerical models of random particulate mi-
crostructures. The regular XFEM mesh is also beneficial if periodic boundary conditions
have to be applied. However, the flexibility of the approach comes at the cost of numerical
accuracy. It was shown in two convergence studies that quadratic approximations provide

147



10 Summary and Outlook

only suboptimal convergence rates. In comparison to both, standard and isogeometric finite
elements, an increased error level is to be expected for XFEM. Despite its implicit interface
representation in terms of the level set, the capability to model evolving discontinuities is
limited as the division of elements into integration subdomains still represents a topological
update.

The application of isogeometric discretisations to the modelling of sharp interfaces is veryIGA of sharp
interface
models

similar to the standard finite element method as a conforming mesh is required. Different
from the standard approach, the adjustable continuity of the spline basis can be used to switch
between different interface characteristics. That is, knot insertion could be used to transform
a C0-continuous material interface into an interface crack. Moreover, it could be shown that
the method has excellent approximation properties. The spline-based approximation pro-
vides optimal convergence rates and is very efficient. Lower error levels have been found in
comparison to the standard and extended FEM. As a consequence of the NURBS basis, ge-
ometric discretisation errors were avoided for the considered demonstration problems. This
is of even greater advantage for macroscale computations because typical computer aided
design geometry models can be used directly for structural analysis.

A conceptually interesting approach results from the isogeometric discretisation of diffuseIGA of diffuse
interface
models

interface representations. The spline basis handles the high gradients of the order parameter
in the vicinity of an interface very efficiently and it can provide the increased continuity re-
quired by higher-order differential operators. It was shown in this work that optimal orders
of convergence can be achieved with a spline basis of sufficient order. To further increase
the efficiency of isogeometric discretisations of diffuse interfaces, adaptive mesh refinement
and coarsening techniques based on hierarchical splines have been developed. These pro-
cedures allow for an finite element point of view and avoid the explicit computation of the
analysis suitable truncated hierarchical basis. The locally refined meshes were found to re-
duce the number of degrees of freedom required for a certain accuracy of the approximation
significantly.

It is noted that the two combinations (i) XFEM + sharp interface model, and (ii) IGA +Comparison

diffuse interface model, represent two fundamentally different approaches to the modelling
of discontinuities. XFEM reduces the continuity of the approximation in terms suitable
enrichment functions according to the discontinuity to be modelled. Instead diffuse models
regularise the interface which requires an increased continuity that is provided by the spline-
based approximation.

Except for the phase-field models which were considered to demonstrate the diffuse inter-Modelling of
MRE face approach, the developed discretisation techniques have been applied to solve a coupled

magneto-mechanical problem for particulate microstructures of MRE. In combination with
a computational homogenisation approach these microscopic models allowed for the predic-
tion of the effective coupled magneto-mechanical response of MRE. Moreover, finite ele-
ment models of generic MRE microstructures have been coupled with a BEM domain that
represents the surrounding free space in order to take into finite sample geometries. The
macroscopic behaviour was analysed in terms of actuation stresses, magnetostrictive defor-
mations, and the magnetorheological effect. The results obtained for different microstruc-
tures and various loadings have been found to be in qualitative agreement with experiments
on MRE as well as analytical results. The presented results show in addition that there is no
significant difference between the assumption of small or finite deformations in particular
for a realistic non-linear magnetisation behaviour. However, MRE can undergo finite strains
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due to mechanical loadings which cause significant changes to the internal structure. Tak-
ing into account these microstructural changes during the solution of the coupled magneto-
mechanical field problem will require the application of the large deformation procedures
presented here.

All of the discretisation techniques and models presented in this work have been imple- Outlook

mented into a Matlab-based finite element code which provides further analysis features,
e.g. thermo-mechanical coupling and several phase-field models for the simulation of crack
propagation. This enables the adaptive isogeometric phase-field modelling of crack propa-
gation. A possible future application that is interesting from a physical point of view is the
simulation of the complex fracture behaviour of polymers under thermo-mechanical load-
ings. From a modelling point of view it is interesting to combine sharp and diffuse interface
representations to improve the efficiency in comparison to a pure phase-field representation.
Moreover, gradient damage models are very similar to phase-field models of crack propa-
gation but they may resolve problems reported regarding the convergence of the phase-field
approach with mesh refinement.
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