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Chapter 1

Introduction

Quantum mechanics describes the processes at the length scale of atoms and
molecules, which in turn make up the objects of our everyday life. Thus,
there is essentially no single physical movement that does not involve quan-
tum mechanics - and yet, physical science was able to describe much of the
world before quantum effects were even discovered. The reason behind this
astonishing occurrence is that quantum effects tend to average out on longer
length scales, leading to behaviour for macroscopic objects which can be well
described by classical theories. There is, of course, a multitude of observa-
tions which can only be explained by an explicit use of quantum theories -
a famous example is the photoelectric effect, which has contributed much to
the initial development of quantum mechanics. Also some states of matter,
such as superconductivity, are impossible to understand on a classical basis.
Still, quasi-classical theories continue to be very useful for describing exper-
iments on a macroscopic length scale, as they commonly occur in the study
of condensed matter physics.

In the last decades, there has been an enhanced interest in systems where
quantum effects need to be dealt with explicitly. One way to achieve this
is to reduce the system size, which is realised in the field of nanophysics.
However, macroscopic objects may also display exotic properties caused by
quantum phenomena. Such compounds are the centre of interest in the
field of strongly correlated electron systems, which deals with the electronic
properties of solids that require theories beyond the mean-field description.

One of the compound classes of strongly correlated electron systems is
the so-called heavy fermions. They are metals, usually containing f-elements,
whose charge carriers at low temperatures have effective masses which are
hundreds of times higher than that of the free electron [Ful95, Mis08]. Within
the Fermi-liquid concept [Lan57], this is explained by interactions between
the electrons in the solid - loosely speaking, the interactions slow down the
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8 Chapter 1. Introduction

charge carriers, making them appear ’heavy’. Heavy fermions are important
in the study of quantum phenomena, as they can be used to investigate quan-
tum criticality: Here, critical fluctuations occur at zero temperature, which
implies that they are not thermal, but quantum in nature. Quantum fluc-
tuations can be observed if a second-order phase transition happens at zero
temperature. Many heavy-fermion compounds have a magnetically ordered
state at temperatures as low as ≈ 1 K; the value of the transition tempera-
ture is often rather sensitive to the application of pressure or magnetic field,
so that it can easily be tuned to T = 0. Such a point in the p, T or B, T
phase diagram is called a quantum critical point [LRVW07]. In its vicin-
ity, quantum fluctuations dominate the physical properties, which results in
unusual behaviour and possibly exotic phases.

The concept of quantum criticality goes far beyond heavy fermions. The
appearance of exotic phases around quantum critical points seems to be a
generic observation. This is particularly discussed for unconventional super-
conductivity, which is thought to be driven by magnetic excitations rather
than by phonons. Phases of unconventional superconductivity have been fre-
quently found close to magnetic quantum critical points for heavy fermions,
and also for cuprate and pnictide compounds [Sca12]. The latter two have
attracted much attention, also outside of basic research, due to their high
transition temperatures: For the cuprates, these often far exceed liquid nitro-
gen temperature (77 K), while for pnictides the record is still above 50 K. In
heavy-fermion compounds the relevant energy scales are around two orders
of magnitude smaller, meaning that transition temperatures are far below
any commercially interesting values. However, these low temperatures have
a principal advantage: The electronic properties can often be studied much
more clearly, since phonons are frozen out and have little impact on the ther-
modynamic properties of the system. Furthermore, the large effective masses
enhance the magnitude of electronic properties. For this reason, the study of
quantum criticality in heavy-fermion compounds can give insights that are
relevant for a much wider class of solids, and show the origins behind unusual
phases and properties.

In this thesis, the behaviour of heavy fermions is studied based mainly on
neutron scattering experiments. These give crucial complementary informa-
tion to thermodynamic measurements, since they yield a microscopic view
on magnetism. Neutron scattering directly measures the spin-spin correla-
tion function, giving access to the relevant magnetic interactions in both time
(energy) and space (momentum) [Col89]. Three different heavy-fermion com-
pounds are investigated here, CeCu2Si2, CePdAl and YbNi4P2. These were
chosen due to their ability to be tuned to a quantum critical point. CeCu2Si2
was in fact the first unconventional superconductor ever reported [SAB+79]
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and has therefore received much attention over the last decades. The other
two compounds have more recently been discovered for the study of quantum
criticality; they do not show superconductivity, but display other unusual
properties. CePdAl has a partially frustrated magnetic state [DEM+96],
offering the possibility to study the interplay of frustration and quantum
criticality [GHU+02, FBG+14]. YbNi4P2 is a very rare example of a ferro-
magnet that can be tuned to a quantum critical point [KLS+11, SKL+13],
making the study of the associated fluctuations particularly interesting.

This thesis is organised as follows. In chapter 2, a basic introduction to
the theory behind the experimental work is provided by discussing elemen-
tary concepts of phase transitions, quantum criticality, heavy fermions and
neutron scattering. Chapter 3 is concerned with neutron spectroscopy on
CeCu2Si2: The compound displays a variety of ground states ranging from
antiferromagnetic (’A-type’) to superconducting (’S-type’) including mixed
states (’A/S-type’), and the spectroscopic response of these different states
will be compared. Some of the crystals were synthesised particularly for
this work and therefore a short section on sample preparation is also given.
In chapter 4, results of single-crystal neutron diffraction on CePdAl are re-
ported. The role of frustration on the magnetic structure, and also its po-
tential effects on the quantum critical behaviour, will be discussed. Chapter
5 deals with powder neutron spectroscopy of YbNi4P2. This includes the
measurement of excitations in the crystal electric field, which are then com-
pared to simulations, and a discussion of ferromagnetic and local magnetic
fluctuations. Finally, a concluding discussion for all compounds is given in
chapter 6.
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Chapter 2

Basics of quantum phase
transitions

In the following, a few important concepts for the understanding of this thesis
will be presented. In section 2.1, I start by introducing critical phenomena at
phase transitions. Here I follow mainly the account given by Collins in his ex-
cellent book [Col89], as well as the basic textbook by Nolting [Nol02]. These
concepts will then be extended to quantum phase transitions, an approach
pioneered by Hertz [Her76] and later refined by other authors [Mil93, MT95].
Next, the case of heavy-fermion compounds is discussed in more detail, be-
fore I turn to the role of neutron scattering in the study of (quantum) critical
phenomena. This last section will again lend many of its ideas from Collins’
book [Col89].

2.1 Phase transitions

Phase transitions occur in a large variety of systems, from everyday phenom-
ena such as the melting of ice to the low-temperature magnetic transitions
which are the topic of this thesis. Some common thermodynamic concepts
can be used to describe these processes. In classical phase transitions, the
transformation from one phase to the other occurs at a critical temperature
Tc. At Tc, the (Gibbs) free energy of both phases must be identical:

F1(Tc, V ) = F2(Tc, V ) or G1(Tc, p) = G2(Tc, p) (2.1)

For the magnetic case, one would write

F1(Tc,M) = F2(Tc,M) or G1(Tc,H) = G2(Tc,H), (2.2)

11



12 Chapter 2. Basics of quantum phase transitions

where the vector nature of magnetisation M and magnetic field H needs to
be taken into account. It is assumed in all cases that the particle number is
conserved.

While the free energy is continuous through the phase transition, its
derivatives with respect to temperature may not be equal in both phases
at Tc. If the first derivatives are not identical,

∂F1

∂T
6= ∂F2

∂T
, or lim

T→T+
c

∂F

∂T
6= lim

T→T−

c

∂F

∂T
, (2.3)

the respective phase transition is called a first-order transition. This implies
that there is a jump in the entropy

∆S = − lim
T→T+

c

(
∂F1

∂T

)

V

+ lim
T→T−

c

(
∂F2

∂T

)

V

, (2.4)

which translates to the latent heat ∆Q = T∆S. Examples are the well known
cases of heat of fusion or heat of condensation. The first derivative of the free
energy may also be continuous through the phase transition, and a jump will
appear only in the second derivative ∂2F/∂T 2, which is the heat capacity.
These transitions are called second-order transitions [Col89, Nol02].

The idea of first-, second-, and possibly higher order transitions was in-
troduced by Ehrenfest [Ehr33]. It was later realised that phase transitions
can more conveniently be classified as discontinuous, which corresponds to
first order, and continuous transitions, which corresponds to any order higher
than one. The name is derived from the behaviour of the order parameter,
a suitably defined quantity whose average value is zero in one phase but
finite in the other. For magnetic systems, this would be the magnetisation
(for ferromagnets, FM) or the sublattice magnetisation (for antiferromagnets,
AF). In a discontinuous phase transition, the value of the order parameter
jumps at Tc, while a gradual onset is observed for continuous transitions. A
continuous phase transition always involves symmetry breaking.

In the case of discontinuous transitions, the latent heat allows for a co-
existence of both phases at Tc, which also makes phenomena such as super-
cooling possible. For large ∆S, the two phases will have radically different
properties and the transition from one to the other proceeds from nucle-
ation points. Continuous phase transitions, on the other hand, involve two
phases of equal entropy at the transition. Thus, fluctuating microregions
of one phase can be found in the other if the temperature is close to Tc.
These order-parameter fluctuations are characterised by a typical correlation
length ξ and lifetime ξτ , which both diverge at Tc. Due to this divergence, it
is common to speak of critical fluctuations and also critical phase transitions
[Col89].
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The fascination of critical phenomena stems from the fact that the same
concepts can be used for very diverse systems, which is called universality.
The divergence of ξ and ξτ causes power-law behaviour of many physical
properties close to the critical temperature. This is quantified by critical
exponents, which are commonly defined with respect to the reduced temper-
ature

t =
T − Tc
Tc

. (2.5)

For small |t|, power-law behaviour f(t) = tψ with a single exponent ψ is
expected. For example, the critical exponent for the correlation length ξ is
generally called ν and defined as

ξ(t) ∝ t−ν or ξ(t) ∝ (−t)−ν′ , (2.6)

if the transition temperature is approached from above or below, respec-
tively. Analogous definitions exist for the thermodynamic exponents α (spe-
cific heat), β (order parameter, e.g. magnetisation) and γ (susceptibility).
Furthermore, the exponent δ is defined for the behaviour of the order param-
eter at Tc as a function of (magnetic) field. Less common is the correlation
function exponent η. Generally, the critical exponent ψ with respect to a
property x is defined as

ψ = lim
x→0+

(
ln f(x)

ln x

)
or ψ′ = lim

x→0−

(
ln f(x)

ln x

)
. (2.7)

The values of the various exponents are not independent of one another, but
connected by inequality relationships on the basis of thermodynamic stability
arguments.

The idea of universality is that the value for each exponent does not
depend on the microscopic details of a specific system, but only on these
three conditions:

• the dimensionality d of the system;

• the symmetry of the order parameter, which can often be unambigu-
ously replaced by its dimensionality D;

• whether the effective interactions are long or short range.

If the idea of universality holds, it implies that only the simplest model
within each class needs to be solved in order to know the exact solution
for all possible critical transitions within that class. Often, the simplest
models are magnetic models, such as the Ising model (D = 1), the XY
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model (D = 2), the Heisenberg model (D = 3) and the spherical model
(D = ∞). Unfortunately, even for these ’simple’ models exact solutions are
mostly not known. Exceptions are the case d = 1 (Ising’s solution), which
does not show a finite-temperature phase transition, the case d = 2, D = 1
(Onsager’s solution), the spherical model, all cases where d ≥ 4 and all cases
where the range of the interactions is infinite. For all other models, including
the most relevant case D = 3, only approximate solutions are known [Col89].
In the following paragraphs, a few important approaches to understanding
second-order transitions are presented.

The Ginzburg-Landau model treats transitions involving symmetry break-
ing without explicitly considering the divergence of the correlation length.
The free energy in the vicinity of Tc is expanded as a power series in the
order parameter φ:

F (T, φ) = F0(T ) + α2(T )φ
2 + α4(T )φ

4 + . . . (2.8)

Odd terms vanish, since the free energy is an even function of φ. The expan-
sion is often truncated after the 4th order and α4(T ) assumed to be constant,
which must be positive to ensure a minimum of the free energy. α2(T ) drives
the system through the phase transition: It is proportional to (T − Tc) and
thus changes sign at Tc. This simple description ensures that the free energy
has a minimum at φ = 0 for T > Tc, but at φ > 0 for T < Tc, and that
the development of φ is continuous through the transition. The critical ex-
ponents can be evaluated by differentiating the free energy with respect to
the appropriate variables.

The Ginzburg-Landau theory does not rely on any microscopic model or
any further assumptions, except the validity of the above expansion around
Tc. This turns out to be equivalent to assuming mean-field behaviour. Un-
fortunately, this condition is rarely met in reality, as it requires either spacial
dimensions d ≥ 4 or an infinite range of the interaction [Col89].

An important step towards the general understanding of critical phenom-
ena was the concept of scaling. It is based on the assumption that the free
energy is a generalised homogeneous function of temperature and field. Using
the example of a paramagnet in a magnetic field, the appropriate function is
G(t, h) (with the dimensionless magnetic field h), and the following scaling
relation is supposed to hold:

ldG(t, h) = G(t̃, h̃) = G(lyt, lxh). (2.9)

Here l is the scaling factor and x and y the scaling exponents. The idea is to
start with a block of length L, which contains Ld spins; L is large compared
to the unit cell size a, but small compared to the correlation length ξ. If the
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block size is rescaled to the length l · L, then the functional form of the free
energy should stay the same, but the variables t and h need to be rescaled to
t̃ = lyt and h̃ = lxh. Furthermore, since the correlation length is independent
of the chosen cell size L, the following relation must hold:

l−1ξ(t, h) = ξ(lyt, lxh). (2.10)

From these assumptions, the scaling laws can be derived. They predict that
critical exponents above and below Tc (λ and λ′) are identical; furthermore,
they give relations between the exponents α, β, γ, δ, ν, x and y, such that
if any two exponents are known, the others can be calculated. Some of
the scaling laws involve the dimensionality d; these are called hyperscaling
laws. While scaling laws not containing d are supported by both theory
and experiment, hyperscaling laws seem to hold only for certain dimensions
[Col89].

The renormalisation group (RG) technique is based on similar ideas as
scaling theory, but goes further in giving values for the critical exponents.
This requires moving from the very general arguments of scaling to the ex-
plicit evaluation of Hamiltonians. The basic idea is that the Hamiltonian
should keep its functional form when the system size is rescaled, and only
the variables are modified to renormalised values. The approach is based on
the work of Wilson, who used a reciprocal space formalism [WK74]. This
typically requires evaluating a number of integrals in momentum space which
include the relevant interaction terms. An increase of the system size in real
space corresponds to a smaller momentum cut-off of the integrals in recip-
rocal space. Physically this means that as the correlation length gets large,
only small momentum transfers determine the behaviour. After a certain
number of renormalisation steps, a fixed point may be reached where further
renormalisation does not alter the renormalised values of the variables. If
a variable is rescaled to zero during this process, it is said to be irrelevant
[Col89].

This explicit treatment of the Hamiltonian provides full solutions to any
model, however under the condition that the integrals appearing in the model
are solvable. Generally, this is the case when they are of Gaussian type,
i.e. when they only contain quadratic terms; these situations correspond
to mean-field behaviour, and the renormalisation group solution will repro-
duce the Landau exponents. The success of the method lies in the fact that
non-Gaussian terms can be treated in a perturbative way, thus allowing for
approximate solutions for more complicated models.

So far, only static critical exponents have been discussed. However, it was
already mentioned that the critical fluctuations have a characteristic lifetime
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ξτ , which diverges at Tc. The divergence of the correlation length and the
lifetime are related via the dynamical critical exponent z by

ξτ ∝ ξz (2.11)

so that the lifetime behaves as

ξτ (t) ∝ t−ν·z. (2.12)

For classical phase transitions at finite temperature, the value of z is indepen-
dent of the values of the static critical exponents, since dynamics and statics
decouple. There are no exact solutions for the dynamical critical exponent.
However, it is assumed that universality also holds, if one further condition
is added:

• z depends also on the conservation laws of the system.

This implies that z will be different for ferromagnets and antiferromagnets
[Col89, HH69].

2.2 Quantum phase transitions

In the last section, phase transitions at finite temperature have been dis-
cussed. Although quantum mechanics will often be important for the forma-
tion of the ordered state (e.g., the exchange interaction), these transitions
are termed classical, since quantum effects are not important for the critical
behaviour. This is because the energy scale of the order-parameter fluctu-
ations, expressed by a characteristic frequency ωc, goes to zero close to the
phase transition,

~ωc ∝ 1/ξτ ∝ tν·z, (2.13)

while the energy scale of the thermal fluctuations stays roughly constant at
kBTc. Thus, for finite Tc the immediate proximity of the transition will be
dominated by thermal fluctuations.

The situation is different for a transition at T = 0. Here, thermal fluc-
tuations are absent, and the critical behaviour is dominated by quantum
fluctuations. Such a transition can be driven by a non-thermal control pa-
rameter r, which might be magnetic field, pressure or element substitution.
The transition occurs at the critical value rc at T = 0, which is called a
quantum critical point (QCP). For r > rc, the system is said to be quantum
disordered at low temperatures, while it is in its ordered state for r < rc. A
finite transition temperature exists for r < rc which gradually goes to zero
as r approaches rc [Voj03]. In some cases, e.g. the case d = 2, D = 3,
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long-range order at finite temperature is suppressed by fluctuations so that
the ordered phase exists only at T = 0.

Close to a quantum critical point, critical behaviour is expected both as
a function of r at T = 0 and as a function of T for r = rc. Of course, T = 0
can never be realised in experiment, so that the study of quantum critical
phenomena would be merely academic, if quantum effects disappeared at any
finite temperature. However, in the vicinity of the QCP both the thermal
and the quantum energy scale approaches zero, so that there will generally
be an experimentally accessible temperature range where ~ωc & kBT . Thus,
quantum fluctuations are important, and their dynamics will influence the
critical behaviour. This is different from the classical transition, where the
dynamics decouple from the static critical behaviour.

Hertz pointed out that the importance of the dynamics will reveal itself
in an apparent increase of the dimensionality, since the fluctuations in time
will appear as additional dimensions [Her76]. The scaling laws will involve
an effective dimensionality deff = d+ z.

Formally, quantum phase transitions are treated by analysing the proper-
ties of the order-parameter field Φ(q, ω) for small momenta q and frequencies
ω. The explicit treatment of the dynamics requires knowledge of the relevant
microscopic excitations; Hertz considered itinerant magnetic systems, where
the excitations are spin-waves. Looking at the transition as a function of r
at T = 0, the second-order term of the field Φ takes the form

Φ2 =
1

2

∑

qω

(r + q2 +
|ω|
q
)|Φ(q, ω)|2 (2.14)

for ferromagnets, and

Φ2 =
1

2

∑

qω

(r + q2 + |ω|ξτ )|Φ(q, ω)|2 (2.15)

for antiferromagnets [Her76]. The difference arises due to the different damp-
ing mechanisms for FM and AF spin-waves. The forth-order term is propor-
tional to a parameter u, which parametrises the interactions. The treatment
of this field theory proceeds very similarly to the RG theory developed by
Wilson, but is has one additional feature: During the renormalisation proce-
dure, not only large momenta will be excluded from the explicit integration,
but also large frequencies. While the momenta are rescaled with the scale
factor l, the frequencies are rescaled by z · l, so that the scaling procedure
yields the same coefficients for both terms. This causes the dynamical critical
exponent to influence the values of all other critical exponents. Equations
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critical exponents will not simply take the Landau values, but be dependent
on z. For example, Millis derived for the temperature dependence of the
correlation length in d = 3 [Mil93]

ξ−2 ∝ T 1+1/z. (2.16)

This is valid in a quantum critical cone whose limits are given by T ∝
|r− rc|ν·z. At higher temperature, there will be a cut-off energy scale, which
is non-universal and determines the temperature range over which quantum
critical behaviour can be studied experimentally. These ideas are summarised
in the generic phase diagram for quantum critical points, see figure 2.1.

For deff < 4, also the quantum phase transition will be below the critical
dimension for mean-field behaviour. Since the interaction parameter u is
relevant, solutions to the RG equations are more difficult to find. For the
special case deff = 4, which includes the 2-dimensional antiferromagnet, u
is said the be marginal. Here, logarithmic corrections to the power-law be-
haviour appear in the RG solution [Mil93]; however, it has been pointed out
that the RG treatment might generally not be valid for this case [LRVW07].

An alternative theoretical approach to quantum phase transitions was in-
troduced by Moriya and Takimoto [MT95], which is called the self-consistent
renormalisation (SCR) theory. Here the spin-fluctuations are described in a
random-phase approximation, but allow for weak interactions between fluc-
tuation modes. An expression for the susceptibility is derived that depends
on a number of microscopic parameters, which can in principle be obtained
from experiments such as neutron scattering. Critical exponents for the be-
haviour of the specific heat for T → 0 agree with those given by Millis [Mil93]
for the antiferromagnet in d = 3. Furthermore, Moriya and Takimoto could
also derive an expression for the resistivity contribution of scattering from
spin fluctuations.

Hertz and Millis developed their theories for itinerant electrons. Moriya’s
approach was first derived for weakly antiferromagnetic itinerant systems,
but in reference [MT95] it is shown that essentially the same formalism can
be used to treat 4f-based magnetism, which is more localised. This might
serve as a justification for applying the Hertz-Millis theory also to 4f-based
compounds. Both approaches, RG and SCR, are valid only in the paramag-
netic state and make no predictions for the behaviour in the ordered phase.

In tables 2.1 and 2.2, some explicit results from the Hertz-Millis-Moriya
model are given. Table 2.1 illustrates the difference between classical and
quantum critical exponents, using the example of the correlation length ex-
ponent ν in 3 dimensions. Apart from the dependence on z for the quantum
case, already mentioned above, there is one further striking point: In the
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classical, d = 3 HMM, d = 3
D = 1 D = 3 z = 2 z = 3

ξ ∝ t−ν 0.63 0.705 ξ ∝ r−ν 0.5 0.5
ξ ∝ T−ν 0.75 0.666

Table 2.1: Calculations for the critical exponent ν for classical and quan-
tum phase transitions in d = 3; classical values, for Ising (D = 1) and
Heisenberg (D = 3) symmetry, are taken from reference [Nol02], values for
the Hertz-Millis-Moriya (HMM) theory from [Mil93]. z = 2 corresponds to
antiferromagnetic spin fluctuations, z = 3 to ferromagnetic spin fluctuations.

HMM theory Fermi
d = 2, z = 2 d = 3, z = 2 d = 2, z = 3 d = 3, z = 3 liquid

C/T ∝ ln(1/T ) −T 1/2 T−1/3 ln(1/T ) const.

Table 2.2: Predictions for the specific heat coefficient by the Hertz-Millis-
Moriya approach [Mil93], contrasted with the behaviour expected within
Fermi-liquid theory.

Hertz-Millis-Moriya theory, there is no dependence of the exponents on the
dimensionality of the order parameter, i.e. whether the magnetism is of Ising
or Heisenberg type.

Table 2.2 highlights another feature of quantum criticality, which has at-
tracted much attention: The predictions for the temperature dependence are
not in agreement with Fermi-liquid (FL) theory [Lan57] (see also section 2.3).
In the table this is shown for the specific heat coefficient γ = C/T , which is
constant at lowest temperatures for a Fermi liquid. Also other predictions
of Fermi-liquid theory, e.g. the ρel ∝ T 2 dependence of the electronic contri-
bution to the resistivity, are often found to be violated at QCPs. It should
be noted, however, that this does not imply that no well-defined electronic
quasi-particles exist, but merely that the low-energy excitations associated
with the quantum phase transition dominate thermodynamic and transport
properties [LRVW07].

The work summarised in this section only concerns the principal publi-
cations [Her76, Mil93, MT95] that laid the groundwork for the Hertz-Millis-
Moriya (HMM) theory. There has since been further development in the
theoretical understanding of quantum phase transitions, both extending and
contradicting its initial statements; an overview is given in [LRVW07]. An
example for a further important prediction is the divergence of the Grüneisen
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parameter Γ, which gives the ratio of the thermal expansion to the specific
heat: While it does not diverge at a classical phase transition, Zhu and co-
workers calculated that it will diverge at a quantum critical point both for
T → 0, r = rc and for T = 0, r → rc [ZGRS03]. It thus gives a unique
signature of a QCP.

Among the developments that showed the limits of the HMM scenario,
two shall be mentioned here. One is the work by Kirkpatrick, Belitz and co-
workers [KB03, BBGK15] who analysed the complications arising in the case
of ferromagnetic quantum criticality: They predict that electronic particle-
hole excitations are likely to drive a transition to be first order when it
is tuned towards zero temperature. Thus, in case of ferromagnetism the
quantum critical point can be avoided.

The second case is the possibility that other degrees of freedom, in addi-
tion to the magnetic order parameter, will become critical at r = rc. This
has in particular been discussed for a critical breakdown of the Kondo effect,
which is often called local criticality since the Kondo effect is a local phe-
nomenon [Si06, LRVW07]. In such a scenario, the critical exponents will be
strongly modified from the HMM-prediction.

Furthermore, it should be mentioned that the concept of quantum crit-
icality is not limited to magnetism; most studies, both theoretical and ex-
perimental, have focussed on magnetic transitions, but the concept is more
general. A quantum critical point is expected for any second-order transi-
tion that can be tuned to T = 0 by a suitable tuning parameter. For exam-
ple, quantum critical points have been reported for ferroelectric [RSS+14] or
structural transitions [GTS+15].

2.3 The case of heavy-fermion compounds

This thesis is concerned with quantum criticality in heavy-fermion systems.
These are intermetallic compounds containing 4f or 5f magnetic moments,
which are paramagnetic at high temperature and frequently show magnetic
order, mostly antiferromagnetic, at low temperatures. The ordering tem-
peratures are often as low as ≈ 1 K and are very sensitive to pressure and
magnetic field, so that they can be tuned to zero relatively easily. Thus, they
are ideal model systems for the study of quantum criticality.

Heavy-fermion properties are only observed at temperatures below a char-
acteristic energy scale, which is typically a few Kelvin. At higher temper-
atures, the compounds behave like local-moment paramagnets with Curie-
Weiss susceptibility. For T → 0, they display the following behaviour [Ful95,
Mis08]:
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• A linear specific heat cV = γT with strongly enhanced coefficient γ,
usually a factor of 100 to 1000 larger than for simple metals like lithium
or sodium.

• A temperature-independent Pauli susceptibility χs, which is also en-
hanced by a factor of 100 to 1000.

• The Wilson ratio between heat capacity and susceptibility [EH00]

R =
π2k2B
µ0µ2

eff

χs
γ

(2.17)

is approximately one, as for free electrons. µeff is the effective magnetic
moment, kB the Boltzmann constant and µ0 the vacuum permeability.

A further, frequent observation for heavy fermions concerns the transport
behaviour:

• The coefficient A of the electronic resistivity, ρel = ρ0 + A · T 2, is very
large.

These are characteristic properties of a Fermi liquid which has a strongly
enhanced effective mass m∗ of the quasi-particles, since γ ∝ m∗, χs ∝ m∗

and A ∝ m∗2. Thus they are named heavy Fermi liquids or heavy fermions.
The key to understanding the particular low-temperature properties are

the strong local correlations of the f-electron site, in combination with a weak
coupling to the conduction electrons. In the simplest (and very common)
cases of Ce3+ and Yb3+ ions, the electron configurations are 4f1 and 4f13,
respectively, the latter being (in first approximation) the hole analogon of the
former. The f-levels are strongly localised and typically lie a few eV below
the Fermi energy. The metallic character of many compounds containing
Ce3+ and Yb3+ ions is usually due to the d-bands of the ligands.

An appropriate Hamiltonian to describe the coupling of localised f-levels
with a conduction band is given by the Anderson model [Ful95]:

H =
∑

kσ

ε(k)c+kσckσ + εf
∑

m

nfm +
U

2

∑

m 6=m′

nfmn
f
m′

+
∑

kmσ

[Vmσ(k)f
+
mckσ + V ∗

mσ(k)c
+
kσfm] (2.18)

The first sum describes the kinetic energy of the (non-interacting) conduction
electrons with spin σ and dispersion ε(k), the second sum the kinetic energy
of the dispersionless f-electrons, m being the z-component of the total spin
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and nfm = f+
mfm the number operator for the f-site. U is the on-site interac-

tion and Vmσ(k) measures the interaction between conduction electrons and
f-electrons. The Hamiltonian 2.18 is given for a single magnetic impurity
atom; to treat a lattice of f-electrons, a summation over different f-sites has
to be introduced. The single-ion Hamiltonian can be solved exactly, while
approximations are required for the lattice case [Ful95].

In the following, the degeneracy of the f-level will be set to 2; this is often
justified from an experimental point of view by typical values of spin-orbit
coupling and crystalline electric field splitting, which are large compared to
the low-temperature energy scale. Then the ground state of the f-level is a
doublet, and the index m can be replaced by a spin index1. Furthermore,
the limiting case of a large on-site interaction U and a weak coupling V is
considered. Thus, the probability for a double occupancy of the f-level is
completely suppressed, the f1 configuration is stabilised and charge fluctua-
tions are small, since they cost a lot of energy. On the low-energy scale, only
spin excitations are present.

In such a situation, it is appropriate to project out the charge degrees
of freedom from the treatment of the low-energy physics. This is done in a
Schrieffer-Wolff transformation, which yields an effective Hamiltonian that
only considers spin degrees of freedom [Ful95]:

H =
∑

kσ

ε(k)c+kσckσ − 2J s(0) · S (2.19)

This is called the Kondo Hamiltonian. The spin coupling constant J is given
by

J = − V 2U

|εf |(|εf |+ U)
, (2.20)

which is antiferromagnetic. Kondo has studied the properties of 2.19 by per-
turbation theory [Kon64], the second term forming the perturbation Hamil-
tonian. He found that the coupling J leads to a term proportional to J ln(T )
in the low-temperature resistivity. This results in a minimum of the resistiv-
ity at a characteristic temperature, since the phonon contribution increases
with temperature.

A further effect of the antiferromagnetic coupling to the conduction elec-
trons is the compensation of the local spin for T → 0 and thus to the forma-
tion of a singlet state. This happens below a temperature scale [Ful95]

kBTK = D exp

(
1

2N(0)J

)
, (2.21)

1For cubic site symmetry, a quartet ground state is possible.
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Figure 2.2: (a) Schematic representation of the spectral weight of the f-
electron in a heavy-fermion compound. Note that the spectral weight of the
conduction electrons is not shown in this panel. (b) Quasi-particle bands in
the coherent Kondo state (solid black lines). Also shown are the energy of
the Kondo resonance (dotted red line) and the dispersion of the conduction
bands before hybridisation (dotted blue line), as well as the Fermi energy
(dashed grey line). After reference [Ful95].

where the treatment by perturbation theory will eventually break down. TK
is the Kondo temperature, D the band width of the conduction electrons and
N(0) the density of states at the Fermi energy. The exponential dependence
is a crucial point for heavy-fermion physics: It implies that small changes in
J , which might for example be caused by the application of pressure, will
have a large influence on many observable properties, which depend on the
energy scale kBTK.

The solution of the single-ion Anderson Hamiltonian gives a satisfactory
explanation of experimental findings in metals with dilute magnetic impuri-
ties. To understand compounds with one (or more) magnetic ions per unit
cell, such as heavy-fermions, one needs to look at the Anderson lattice model.
Again, the same splitting of charge and spin degrees of freedom occurs. Fig-
ure 2.2(a) illustrates this by showing schematically the spectral weight of the
f-electrons in such compounds, as measured by photo emission spectroscopy.
The sharp peak close to the Fermi energy is called the Kondo resonance and
corresponds to spin excitations. It should be noted that an enhancement
of the density of states at the Fermi level occurs also for the case of dilute
impurities. However, since the concentration of f-electrons is small, the effect
is not as pronounced.

Figure 2.2(a) shows only the contribution of the f-electrons to the spectral
weight. For a more complete picture, the conduction electrons should also be
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included. It is found that together with the Kondo resonance, quasi-particle
bands form at low temperature. This is sketched in figure 2.2(b). From a
cosine-like conduction electron band (which has a steep, linear dispersion
around EF) and the dispersionless f-resonance, two new bands have formed,
which bend close to the Fermi energy. A gap emerges between these two
bands; however, this gap arises at least partially from the mean-field approach
and is expected to wash out for more thorough treatments [BPV11].

When the hybridised bands are formed, the f-electrons contribute to the
Fermi volume. This will be the case at low temperatures. For T ≫ TK,
only the conduction electron band crosses the Fermi energy. One speaks
of a large and a small Fermi volume for the two limiting situations. The
formation of the large Fermi volume upon lowering the temperature is not
a sharp transition, but a gradual crossover [Ful95, BPV11]. When the new
bands are fully formed, the respective quasi-particles form a coherent state,
which displays Fermi-liquid characteristics. The shallow slope of the quasi-
particle bands at EF produces the large effective masses of the charge carriers
in heavy-fermion compounds. As discussed in the beginning of this section,
this is seen from the enhancement of the Pauli susceptibility and the specific
heat coefficient.

Generally, the temperature below which a coherent state is formed, Tcoh,
is lower than the single-ion Kondo temperature. This leads to a typical be-
haviour of the resistivity, with a minimum around TK, when Kondo scattering
sets in, followed by a maximum around Tcoh < TK, when coherence is estab-
lished. Below the maximum, the resistivity typically follows the Fermi-liquid
expectation ∆ρ ∝ AT 2. Often the temperature where minimum and maxi-
mum occur are taken as experimental measures for TK and Tcoh. However,
since both are crossover phenomena and not well separated, there is no one-
to-one correspondence with definitions used in theory, such as equation 2.21.
Furthermore, different experimental methods for determining these tempera-
tures often lead to slightly different results. For example, TK is also frequently
extracted from heat capacity measurements as twice the temperature where
the entropy reaches 0.5R ln 2 [DS82], or from spectroscopic measurements as
the half-width of the Kondo resonance [CBW86]. All these measurements
give similar but not identical results.

So far, interactions between the f-electrons have been neglected. This
can be justified from the fact that the f-orbitals are rather localised and
have little overlap with neighbouring f-orbitals or ligand-orbitals; thus, direct
exchange and superexchange are usually very weak in intermetallic f-based
compounds. However, the f-electrons interact with each other via the conduc-
tion electrons. This is called the Ruderman-Kittel-Kasuya-Yosida (RKKY)
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interaction [Mis08]

HRKKY = −9π

8
N2(0)

J2

εF

∑

〈ij〉

Si · Sj
r3ij

[
2kF cos(2kFrij)−

sin(2kFrij)

rij

]
, (2.22)

which describes the interaction between two localised spins Si and Sj at
distance rij through a coupling J to the conduction electrons. kF is the mag-
nitude of the wave vector at the Fermi energy εF. The coupling constant
J is the same as the one appearing in the Kondo Hamiltonian. This form
of the RKKY interaction was first derived by Ruderman and Kittel for the
interaction of nuclear spins [RK54] and then applied to localised electron
spins by Kasuya [Kas56] and Yosida [Yos57]. The cosine-dependence im-
plies an oscillatory behaviour of the interaction, periodically changing sign
with distance r. For a lattice of localised moments, the Hamiltonian 2.22
leads to a magnetically ordered ground state, which can be ferromagnetic or
antiferromagnetic depending on the distances rij in the lattice.

Doniach realised that such an interaction, in a Kondo-lattice compound,
is in competition with the Kondo effect [Don77]. He argued qualitatively
that the competition between the Kondo energy scale, which is proportional
to exp (−1/(N(0)J)), and the RKKY energy scale, which is proportional
to J2N(0), would induce a T = 0 phase transition from an ordered mag-
netic state at low J to a Kondo-state at large J . Since this transition is
continuous, the ordered state close to Jc should have nearly-quenched or-
dered moments. This is indeed the situation found in many heavy-fermion
compounds: Magnetic order, mostly antiferromagnetic, is found at smaller
values of an experimental parameter that controls J , such as (inverse) pres-
sure or magnetic field; the ordered moment is often substantially reduced
compared to the high-temperature effective moment, which is not affected
by the Kondo interaction. The size of the ordered moment scales with the
transition temperature. At a critical value (pressure pc, field Bc), quantum
critical behaviour is found. On the right of the quantum critical point, the
compounds enter the Fermi-liquid state.

It should be noted that the two ground states mentioned so far, i.e. the
ordered state and the Fermi-liquid state, are not the only ones observed in
heavy-fermion compounds. The most important of other possible ground
states is superconductivity, which is frequently found close to a magnetic
quantum critical point. Often, a superconducting dome appears in the J, T -
phase diagram, with the maximum Tc at Jc, where the ordering temperature
of the magnetic phase vanishes. The superconducting state is formed out of
the heavy-fermion state, meaning that the Cooper pairs are formed by the
heavy quasi-particles. This was first observed for CeCu2Si2 by Steglich and
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co-workers [SAB+79]. By now many other heavy-fermion superconductors
are known, some without application of an external parameter, some under
pressure or element substitution [Pfl09]. These superconducting phases are
unconventional in the respect that the superconductivity is not mediated by
phonons, but most likely by magnetic fluctuations [MPL07, Sca12].

2.4 Neutron scattering as a tool to probe critical phenomena

The neutron has an intrinsic magnetic moment and is therefore ideally suited
for the study of magnetism on a microscopic level. When travelling through
a sample, the spin of the neutron will interact with unpaired electrons in
the sample, and might be scattered in this process. Since it is not charged,
the neutron does not interact with the charge of either electrons or protons.
Therefore, it has rather long mean free path of the order of 1 cm in solids,
much longer than that of photons. Neutrons do, however, interact with the
nuclei via the strong force, which is extremely short ranged (10−15 m); this
can lead to either scattering or absorption of the neutron. In the following,
the focus will be on scattering events, and absorption is only mentioned when
necessary.

A scattering event can change both the momentum and the energy of the
neutron through a transfer to or from the sample. The property of interest
is the partial differential cross section, which measures the probability that
a neutron with initial momentum k and energy E is scattered into the solid
angle Ω + dΩ with energy between E ′ and E ′ + dE ′ [Col89]:

d2σs
dΩ dE ′

=
k′

k

( m

2π~2

)2

|〈k′σ′Λ′|V |kσΛ〉|2 δ(EΛ − EΛ′ + E − E ′). (2.23)

Here k′ is the momentum of the scattered neutron,m the mass of the neutron,
and Λ and Λ′ are the quantum states of the scattering centre before and
after scattering, with energies EΛ and EΛ′ . V is the interaction potential,
which depends on the type of interaction. In a typical neutron scattering
experiment, the wavelength of the neutrons λ = 2π/k is of the order of a
few Å, so that is is compatible with lattice spacings in solid. Their energy
E = ~

2k2/(2m) is in the meV range, like many elementary excitations of
condensed matter. Photons of the same momentum have energies that are
six orders of magnitude larger. Inelastic scattering events are therefore much
easier to detect with neutrons.

In case of nuclear scattering, the interaction potential can be approxi-
mated by the Fermi pseudopotential

V =
2π~2

m
b δ(r−R), (2.24)
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with the nuclear scattering length b and the positions r and R of the neutron
and the nucleus, respectively. The delta function gives a good approximation,
since the wavelength of the neutron is much larger than the radius of the
nuclei. The wave functions of the neutron before and after scattering can be
described by the plane waves exp(ik · r) and exp(ik′ · r), so that the matrix
element 〈k′|V |k〉 will be proportional to exp(iκ · R), with the scattering
vector κ = k − k′. For an array of nuclei at positions Rj with scattering
length bj, equation 2.23 then takes the form:

d2σs
dΩ dE ′

=
k′

k
|〈Λ′|

∑

j

bj exp(iκ ·Rj)|Λ〉|2 δ(EΛ − EΛ′ + E − E ′). (2.25)

Here it has been assumed that the scattering is independent of the spin state,
or that the spin state dependence can be incorporated in bj.

The scattering length bj is a constant. However, its value depends not
only on the element, but also the isotope, because the neutron interacts with
all nucleons. Indeed, the scattering lengths of various isotopes of the same
element can differ drastically and even have opposite sign. Furthermore, if the
nucleus has a non-zero spin, the scattering length also depends on its relative
orientation to the spin of the neutron. For both isotope distribution and
nuclear spin states, a random distribution is assumed. With the definition
Fj = 〈Λ′| exp(iκ · Rj)|Λ〉, the effect of randomness on the matrix elements
can be formalised as follows [Col89]:

|〈Λ′|
∑

j

bje
iκ·Rj |Λ〉|2 =

∑

jl

bjblFjF
∗
l

=
∑

jl,j 6=l

(b̄)2FjF
∗
l +

∑

j

b̄2FjF
∗
l

= (b̄)2
∑

jl

FjF
∗
l + (b̄2 − (b̄)2)

∑

j

FjF
∗
l . (2.26)

In the second line, the sum is split up into one part that contains all terms
with j 6= l, and one sum with j = l. In the first term, the square of the
mean value of b is taken, while in the latter the mean of the square of b
appears. In the third line, the term j = l is re-inserted into the first sum
and then needs to be subtracted from the second sum. (b̄)2

∑
jl FjF

∗
l is

called the coherent contribution to scattering, while (b̄2 − (b̄)2)
∑

j FjF
∗
l is

the incoherent term, which causes a constant background at all scattering
angles. Values of bcoh = b̄ and binc =

√
b̄2 − (b̄)2 for all elements can be found

in tables, e.g. reference [Neu03].
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The interaction potential for magnetic scattering takes a slightly more
complicated form, since the interaction is not point-like. The neutron’s mag-
netic moment µn interacts with the magnetic field B of an unpaired electron
via [Col89]

V = −µn ·B = µn ·
µ0

4π

[(
curl

µe ×R

|R|3
)
− 2µB

~

p×R

|R|3
]
. (2.27)

µ0 is the vacuum permeability, µB the Bohr magneton, µe the magnetic
moment of the electron and R and p its position and momentum. The first
term in the brackets describes the field due to the electron spin and the second
term the field due to its orbital motion. Inserting the magnetic interaction
potential into the partial differential cross section 2.23 leads to [Col89]

d2σs
dΩ dE ′

=

(
γµ0e

2

4πme

)2
k′

k
|〈σ′Λ′|σ ·Q⊥|σΛ〉|2 δ(EΛ − EΛ′ + E − E ′), (2.28)

with the elementary charge e and the electron massme. Q⊥ is the component
of a vector Q perpendicular to the scattering vector κ, with Q defined by

2µBQ =

∫
M(r) exp(iκ · r)dr, (2.29)

the Fourier transform of the magnetisation densityM(r), which is also known
as the magnetic form factor f(κ).

The cross sections 2.25 and 2.28 will now be expressed via the nuclear
and magnetic correlation functions. First the scattering function S(κ, ω) is
introduced, so that equation 2.25 becomes

d2σs
dΩ dE ′

=
k′

k
Nb2S(κ, ω),

S(κ, ω) =
1

N

∑

Λ

pΛ
∑

Λ′

|〈Λ′|
∑

j

eiκ·Rj |Λ〉|2δ(EΛ − EΛ′ + ~ω), (2.30)

where ~ω = E−E ′. N is the number of nuclei, which are assumed to have the
same scattering length b for simplicity, and pΛ is the probability to find the
system in state Λ initially. Now the delta function in energy is replaced by
an integration over time τ , and time-dependent operators and the operator
expectation value

〈O〉 =
∑

Λ

pΛ〈Λ|O|Λ〉 (2.31)
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are introduced. Then the scattering function can be written as [Col89]

S(κ, ω) = (hN)−1
∑

jl

∫ ∞

−∞

exp(iωτ)dτ

×〈exp(−iκ ·Rl(0)) exp(−iκ ·Rj(τ))〉. (2.32)

The term in the second line is the nuclear correlation function; it states math-
ematically how strongly the positionRj(τ) of atom j at time τ is linked to the
position Rl(0) of atom l at time zero. The separation into a coherent and an
incoherent part can also be done within the correlation-function formalism;
the incoherent part will then contain an auto-correlation function.

An analogous expression can be derived for the magnetic scattering func-
tion [Col89]:

Sαβ(κ, ω) = (2πN)−1
∑

jl

exp(iκ · (Rj −Rl))

×
∫ ∞

−∞

exp(iωτ)〈Slα(0)Sjβ(τ)〉dτ. (2.33)

In this notation, the partial differential cross section for magnetic scattering
is given by

d2σs
dΩ dE ′

=
k′

k

N

~

(
γµ0e

2

4πme

)2

|f(κ)|2
∑

αβ

(δαβ − κ̂ακ̂β)S
αβ(κ, ω). (2.34)

The proportionality of the neutron scattering signal to the spin-spin corre-
lation function is a crucial point for the study of critical phenomena. It means
that both the correlation length ξ and the correlation time ξτ can be directly
measured. In this thesis, it is generally assumed that the correlation function
decays exponentially in space (∝ exp(−|R|/ξ)) and time (∝ exp(−τ/ξτ )), so
that Lorentzian functions are expected for measurements in inverse space
and in the frequency domain. However, the correlation function in real space
might have a more complicated dependence on ξ, particularly for d 6= 3
[Col89]. Such effects will be disregarded in this work.

In a crystalline lattice, the atomic positions are correlated over infinite
length and time scales. The scattering cross section therefore involves two
delta functions: δ(~ω), which implies E = E ′ and |k| = |k′|, and

∑
g δ(κ−g),

which implies κ = k − k′ = g, with the reciprocal lattice vector g = (hkl).
In this situation, the following equality holds:

g = 2k sin θ or λ = 2d sin θ, (2.35)
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which is known as Bragg’s law. θ is half the angle enclosed between k and
k′ and d the lattice spacing given by d = 2π/g.

Bragg’s law is also fulfilled for the case of magnetic scattering inside a
magnetically ordered state, giving rise to magnetic Bragg peaks at g±τ , with
the magnetic ordering vector τ =(τh τk τl). For ferromagnetic order, τ = 0,
so that the positions of magnetic and nuclear Bragg peaks coincide. For
antiferromagnetic order, the nuclear and the magnetic unit cell are generally
not identical, and magnetic Bragg peaks appear at (h±τh k±τk l±τl). If all
τi can be expressed as rational numbers, the order is called commensurate,
otherwise one speaks of incommensurate order.

For inelastic scattering, the measured intensity depends on the occupation
probability of the initial quantum state of the respective excitation. This is
expressed in the Bose factor

n(~ω) + 1 =
1

1− exp(−~ω/(kBT ))
(2.36)

with the Boltzmann constant kB. The term ω · (n(~ω)+1) is often called de-
tailed balance [Col89]. For kBT ≫ |~ω|, excitations are thermally populated,
and the Bose factor has approximately the same value for ω and −ω. Then
the spectrum will look symmetric with respect to ω = 0. For kBT ≪ |~ω|,
the Bose factor goes to zero for negative energy transfers: The system is in
its ground state and cannot be de-excited.

To close this section, a brief description of the instruments is given which
are used for the measurement of critical scattering [FMS09].

• Neutron sources: Experiments with neutrons require beams of large
flux (neutrons per second per unit area). These can be produced either
by nuclear reactors, where the neutrons are emitted during the fission
of uranium nuclei, or by spallation sources, where a target of heavy
elements, e.g. lead, is bombarded with high-energy protons, which leads
to the evaporation of nucleons from the excited nuclei. A spallation
source usually works in pulses with a frequency of a few 10 Hz, due to
the periodical acceleration of the protons. Nuclear fission produces a
continuous neutron beam, as long as a stable chain reaction is running
in the reactor.

Both fission and spallation produce high-energy neutrons which are
not suitable for research with condensed matter. Therefore, they are
thermalised in a moderator, usually water or heavy water, which is
roughly at room temperature. These thermal neutrons will then have
a Maxwellian wavelength distribution with a mean energy of kB ·300K,
which peaks around λ = 1 Å. If larger or smaller wavelengths are
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needed for experiments, a so-called cold source (liquid hydrogen) or
hot source (heated graphite) can be used for thermalisation.

Neutrons leave the source via exit slits. To accommodate many ex-
perimental set-ups at one source, the instruments are often situated
at a considerable distance, several or even a few dozen meters, from
the source. To prevent flux losses according to I ∝ r−2, neutrons fly
through special guides whose surfaces reflect neutrons via total reflec-
tion at small angles. Relatively large critical angles (a few degrees) can
be achieved by multilayer materials, which are made from alternating
layers of, e.g., Ni and Ti.

• Monochromators, analysers and detectors: A neutron beam at the end
of a neutron guide has a Maxwellian energy distribution. However,
many experiments require monochromatic beams with a defined inci-
dent energy. These can be produced in two different ways: Either,
a certain wavelength is reflected out of the initial beam by Bragg re-
flection from a suitable crystal or crystal array. To fulfill the Bragg
condition 2.35, at different wavelengths λ, the crystal can be rotated
around an axis perpendicular to the beam. A general problem exists
for this type of monochromator, which is that Bragg scattering occurs
also for λ/2, λ/3 and so on. These contributions need to be filtered out
of the beam by materials which are opaque for neutrons of wavelength
λ, but absorb neutrons of wavelength λ/2 and smaller. Monochromator
crystals are generally used at continuous neutron sources.

The second way to produce a monochromatic beam, mainly employed
at pulsed sources, are disk choppers which rotate around an axis par-
allel to the beam. They are coated with a neutron-absorbing material,
so that neutrons can only pass through slits in the disks. A set of two
or more choppers are placed successively in the beam and rotated at
the same speed but with a phase difference between their opening and
closing periods; this ensures that only neutrons of a certain velocity
can pass. The energy of the monochromatic beam may be varied by
changing the rotation speed of the choppers. Instead of a set of chop-
pers, it is also possible to use a single drum that has long slits curved
around its rotation axis, so that again the flight path of the neutrons
needs to match the rotation speed; this is called a velocity selector. It
can also be used in combination with a crystalline monochromator to
suppress λ/2 contamination.

Monochromator crystals are also used to analyse the energy of the beam
scattered by the sample, and then are called analysers.
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The detection of neutrons requires isotopes with a large cross section for
nuclear reactions with thermal neutrons. The most important are 3He,
10B and 6Li. The reactions cause ionising radiation to be emitted, and
the ionisation products can be detected by conventional electronics such
as Geiger counters (for gas detectors) or photo multipliers (solid scin-
tillation detectors). The same detection principle is used for neutron
monitors, which measure the flux to the sample; however, while detec-
tors are optimised to count every incoming neutron, monitors should be
insensitive and only react with a small fraction of the passing neutrons.

• Diffractometer: A diffractometer measures the differential cross section

dσs
dΩ

=

∫ ∞

−∞

d2σs
dΩdE ′

dE ′. (2.37)

This means that the scattered neutrons are detected irrespective of
their energy and only their scattering angle is analysed. In most cases,
the above integral will be dominated by elastic scattering ~ω = 0, so
that diffractometers are mainly used for the study of crystal or mag-
netic structures. However, also diffuse scattering from short-lived and
short-ranged correlations will be visible. Inelastic scattering, for exam-
ple from phonons, appears as an enhanced background in the diffrac-
togram.

A typical powder diffractometer at a continuous neutron source uses
monochromatic neutrons, so that every reciprocal lattice vector g, or
lattice spacing dhkl, gives rise to a peak at the respective scattering
angle 2θ. This requires a bisecting geometry, which can generally be
assumed to be fulfilled for all vectors g due to the random arrangement
of the crystallites in a powder sample. The scattering intensity as a
function of angle 2θ is usually measured with a detector bank, which
can measure a large range of angles simultaneously. This is called
an angular-dispersive diffractometer. At a pulsed source, it is more
efficient to use a white beam and distinguish the reflections via energy
dispersion.

In a single crystal, only few vectors g fulfill the bisecting geometry for
any orientation of the crystal to the beam if a monochromatic beam is
used. Thus, it is generally not necessary to have a detector bank, and
instead a single counter detector is used, that can be driven to differ-
ent 2θ angles. To measure a large number of reflections, the sample
needs to be rotated in the beam on a goniometer. The most flexible
goniometers allow the sample to be brought to any possible angle with
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energy of the scattered neutrons through their velocity v = h/(mλ),
i.e. their flight time τ over the known distance L from sample to detec-
tor. This requires that the velocity of the neutrons before scattering is
known, i.e. a monochromatic beam, as well as knowing the time when
they were scattered by the sample; to achieve this, neutrons must ar-
rive in pulses. At a spallation source, this naturally is the case. At
a nuclear reactor, the continuous beam is cut into pulses by a Fermi
chopper. ToF spectrometers are usually equipped with a detector bank
covering a large angular segment. A ToF dataset thus consists of inten-
sities I(2θ, τ) for each pulse, which needs to be converted into energy
and momentum transfer via

~ω(τ) =
mL2

2

τ 2 − τ 20
τ 2τ 20

(2.38)

and

Q =
mL

~

√
τ 2 + τ 20 − 2τ0τ cos(2θ)

τ 2τ 20
. (2.39)

τ0 is the flight time of an elastically scattered neutron.

In table 2.4, a short overview of the instruments used in this thesis is
given.
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instrument wavelength sample(s) sample
(source) environment

Triple-axis spectrometers (samples single crystals)

IN12 (ILL) λf = 5.45 Å CeCu2Si1.96Ge0.04 dilution cryostat

IN14 (ILL) λf = 5.45 Å CeCu2Si2 dilution cryostat
Bmax = 2.5 T

IN12 (ILL) λf = 5.45 Å CeCu2Si1.96Ge0.04 dilution cryostat

V2 (HZB) λf = 4.19 Å CeCu2Si1.96Ge0.04 dilution cryostat
and 5.61 Å Bmax = 5 T

Single-crystal diffractometers (samples single crystals)

D10 (ILL) λ = 2.36 Å CePdAl 4He flow cryostat

D10 (ILL) λ = 2.36 Å CePdAl 4He bath cryostat

RESI (FRM2) λ = 1.03 Å CePdAl 3He cryostat

E4 (HZB) λ = 2.45 Å CePd0.9Ni0.1Al
3He cryostat

E4 (HZB) λ = 2.45 Å CePdAl 3He cryostat
CePd0.9Ni0.1Al
CePd0.95Ni0.05Al

Time-of-Flight spectrometers (powder samples)

IN4 (ILL) λi = 1.5 Å YbNi4P2
4He bath cryostat

and 3.0 Å LuCo4Ge2
FOCUS (PSI) λi = 5 Å YbNi4P2 dilution cryostat

ToFToF (FRM2) λi = 5 Å YbNi4P2 dilution cryostat

Table 2.3: Neutron scattering instruments used in this work. The neutron
sources at ILL (Institut Laue-Langevin), HZB (Helmholtz-Zentrum Berlin)
and FRM2 (Forschungsreaktor München 2) are reactor sources, at PSI (Paul
Scherrer Institut) a spallation source is operated. All magnetic fields are
applied vertically to the scattering plane. For triple-axis spectrometers, the
wavelength λf refers to the scattered (final) neutron beam, since it is constant
during the experiment. For Time-of-Flight spectrometers the wavelength
of the initial neutron beam, λi, is given instead. Further details to the
experimental set-ups can be found in the respective chapters.



Chapter 3

Various ground states of
CeCu2Si2 studied by inelastic
neutron scattering

3.1 The compound CeCu2(Si1-xGex)2

CeCu2Si2 is a model compound among the heavy fermions in at least two
respects: First, it shows an antiferromagnetic quantum critical point that
can be well described by the standard scenario proposed by Hertz, Millis and
Moriya [Her76, Mil93, MT95], both thermodynamically [SS11] and from a
microscopic point of view [ASS+11]. Second, it was the first heavy-fermion
superconductor ever discovered [SAB+79]. The superconductivity and its re-
lation to the magnetic phase remain intensively studied, particularly in com-
parison to cuprate- and pnictide-superconductors. Even though the latter
have much higher transition temperatures, the mechanism behind the su-
perconductivity is presumed to be of magnetic origin in all three compound
classes [Sca12].

Although the superconducting phase [SAB+79] as well as the Kondo char-
acteristics [ABMC84] of CeCu2Si2 have been known for several decades, sys-
tematic studies of the low-temperature properties have long been problematic
due to a strong dependence of the results on the sample: Different samples of
seemingly similar composition have displayed very different properties. Later
it was discovered that the ground state is highly sensitive to the exact ratio
of Cu to Si, and can be tuned by using an excess of either in the synthesis
[SGG+96, SDJ+10]: Si-rich samples have an antiferromagnetic ground state
(’A-type’), while Si-deficient samples become superconducting (’S-type’), and
samples with a Cu-Si ratio very close to 1 might show both phenomena, with
TN > Tc (’A/S-type’). The schematic phase diagram is shown in figure 3.1;
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Figure 3.1: (a) Schematic phase diagram of CeCu2Si2. The coupling g can
be tuned by varying the Cu:Si ratio, or by pressure (details see text). (b)
Crystallographic unit cell of CeCu2Si2. Images by Oliver Stockert.

the figure also includes an image of the unit cell of CeCu2Si2, which crys-
tallises in the tetragonal ThCr2Si2 structure. Typical transition temperatures
are TN ≈ 0.8 K and Tc ≈ 0.6 K, and the critical magnetic field for suppressing
the superconductivity in S-type CeCu2Si2 is Bc2 = 1.7 T [ASS+11].

Pressure and germanium substitution can serve as further tools to tune
the properties of CeCu2Si2. The isoelectronic substitution of Ge for Si acts as
negative pressure, which stabilises antiferromagnetism, while pressure sup-
presses magnetism. Apart from the superconducting dome at the antiferro-
magnetic quantum critical point (see figure 3.1), another dome is observed
at larger pressures, which is assumed to be related to valence fluctuations
[YGD+03, SS11]. In this work, all measurements were done under ambient
pressure, so that they only relate to the first superconducting dome. Some
of the samples in this study were doped with 2% Ge. It has been sug-
gested that superconductivity and magnetism can coexist in Ge-doped sam-
ples [KIO+02], while they compete in CeCu2Si2 [FAG

+97, FSS+07]. However,
data by Arndt et al. indicate that samples with low Ge content behave like
undoped CeCu2Si2 [ASB+09, Arn10].

The possibilities to investigate the quantum-critical fluctuations and the
interplay of magnetism and superconductivity on a microscopic level were
largely improved by the discovery of the antiferromagnetic ordering vector of
CeCu2Si2: Stockert et al. found magnetic Bragg peaks at the incommensu-
rate position τ = (0.22 0.22 0.52), which could be shown to be due to Fermi-
surface nesting by comparison to renormalised band structure calculations
[SFZ+04]. Additionally, the growth of single crystals has made significant
advances in recent years, so that large crystals are available which allow in-
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elastic neutron experiments. Several spectroscopic measurements have been
performed in the last years, most notably the study of the spin fluctuations in
S-type CeCu2Si2 [SAF+11, ASS+11], which is located close to the quantum
critical point.

In this chapter, several remaining questions of the inelastic response of
CeCu2Si2 are addressed: First, the magnetic excitations of an A-type crys-
tal are presented and compared to those of the S-type sample. Then, the
study of the critical fluctuations of S-type CeCu2Si2 is extended to the Q-
dependence of the response. In the last part, spectra of A/S-type CeCu2Si2
are presented, which had not been previously measured. Before the neutron
data are discussed, some details will be given about the crystal growth of the
A-type and the A/S-type sample, which I have synthesised for the purpose
of inelastic neutron scattering experiments.

3.2 Crystal growth of CeCu2(Si1-xGex)2

Single crystal synthesis of CeCu2Si2 and CeCu2(Si1-xGex)2 has been estab-
lished at the MPI CPfS in the group of Christoph Geibel. Using copper flux
and a Bridgman-type furnace, single crystals of around 2 g could be synthe-
sised. Hirale S. Jeevan has performed a systematic study on the influence of
the composition of the starting materials on the properties of the resulting
crystals [Jee10]. The S-type CeCu2Si2 crystal (2.0 g) used in the measure-
ment of section 3.4 originated from these experiments. However, neither
the size of the crystals nor their exact composition can be controlled very
accurately. The stoichiometry of the starting materials will only make the
formation of certain ground states more likely, but does not directly relate to
the composition of the crystals formed during synthesis. Therefore, several
attempts of synthesis might be necessary to get a large single crystal of a
desired type.

With the aim of making a large single crystal of A/S-type, I have syn-
thesised five batches of CeCu2(Si1-xGex)2. Initially, I used the starting com-
position Ce0.95Cu2Si2, as suggested by Hirale S. Jeevan for A/S-type crystals
[Jee10]. Later I also tested the influence of substituting germanium for sili-
con and of varying the cerium content. Similarly, the furnace parameters for
the crystal growth were initially taken from Jeevans work and then slightly
modified. A survey of the composition as well as some details of the synthesis
for all batches can be found in table 3.1. Generally, the synthesis followed
the same steps: First, the elements were weighted according to the desired
starting composition and melted in an arc furnace to give a polycrystalline
pellet. Due to the large total mass of the ingot (30/50 g), this was done sep-
arately for fractions of the sample of ≈ 6 g. These pellets were then crushed
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and filled into a cylindrical Al2O3 crucible, together with copper shot which
serves as flux in the synthesis (sample:copper 60:40 [mol]). The crucibles had
a conical shape at the bottom to facilitate the growth of the first crystals
in the melt. To protect the sample from oxidation, the crucible was closed
with a lid and the lid wrapped in Zr foil. Then, the crucible was placed into
a Bridgman furnace, which was heated to 1530◦C (1510◦C for batch 83104)
at 150◦C/h. This resulted in a sample temperature—measured at the bot-
tom of the crucible—of 1540◦C (1525◦C). Keeping the furnace at constant
temperature, the sample was then cooled by moving the hot zone of the fur-
nace up. Thus, the bottom tip of the crucible is always the coldest point
of the melt. After leaving the sample at maximum temperature for half an
hour, the sample was cooled rapidly by about 20◦C by moving the furnace
at high speed.1 Then, the furnace is moved very slowly to achieve an initial
cooling speed of around 0.75◦C/h. When the sample reaches approximately
1200◦C, furnace and sample are cooled to room temperature at 150◦C/h. In
total, the crystallisation takes around one week. The slow cooling process
should not only result in good crystallisation conditions but also allows for
in-situ annealing. When cooled down, the single crystals can be separated
mechanically from the flux and from polycrystalline material.

For all batches, the heat capacity was measured for approximately five
different samples. These always included the largest single crystal(s) of the
batch as well as a few others from different positions in the crucible. Gen-
erally, crystals from the same batch showed a large variety of sizes, proper-
ties and ordering temperatures. EDX (energy-dispersive x-ray spectroscopy)
spectra and XRD (x-ray diffraction) patterns were measured for one crystal
of each batch to confirm the formation of CeCu2(Si1-xGex)2. The accuracy
of EDX does not allow for a precise determination of the Ce:Cu:(Si,Ge) ratio
so that all crystals will be referred to as having stoichiometry CeCu2Si2 or
CeCu2(Si0.98Ge0.02)2.

Summing up the experiences gained from all batches, it seems easier to
make A/S-type crystals when a small amount of germanium is added. How-
ever, since germanium substitution stabilises the antiferromagnetic ground
state, the cerium content should be slightly higher than Jeevan’s suggestion
of 95% for CeCu2Si2. For obtaining large single crystals it appears that thor-
ough melting is crucial: For batch 83101 the crystallisation process seems to
have been too fast, and for batch 83104 the initial temperature was probably
too low. The largest single crystals could be obtained from batches 83102 and

1For the first three batches, rapid cooling was done by moving the furnace at speed
0, which takes around one minute. For the later two, the furnace was moved at speed 1,
which takes over an hour; then, the waiting period of 30 minutes was omitted.
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sample number, sample mass, growth largest
nominal composition flux mass conditions crystal

83101 49.97 g 1540◦C to 1516◦C (fast) 0.6 g
Ce0.95Cu2Si2 6.69 g to 1160◦C in 170 h

83102 29.96 g 1540◦C to 1519◦C (fast) 3.5 g
Ce0.95Cu2Si1.96Ge0.04 3.99 g to 1170◦C in 167 h

melted twice
83103 29.94 g 1543◦C to 1524◦C (fast) 1.7 g

Ce0.95Cu2Si2 4.02 g to 1175◦C in 186 h
new thermocouple

83104 29.96 g 1525◦C to 1500◦C (fast) 0.9 g
Ce0.975Cu2Si1.96Ge0.04 3.95 g to 1100◦C in 187 h

83105 29.98 g 1540◦C to 1522◦C (fast) 4.5 g
Ce0.975Cu2Si1.96Ge0.04 3.95 g to 1214◦C in 168 h

melted twice

Table 3.1: Details of the synthesis of CeCu2(Si1-xGex)2, aimed at making
large single crystals for neutron scattering. For a description of the synthesis
procedure, see main text.

Figure 3.2: Single crystals for neutron scattering. a,c: Photos of the samples;
b,d: Neutron Laue backscattering images, for incident neutron beam along
the c-axis, taken at Orient-Express at ILL, Grenoble. a and b show the
sample 83102 01, an A-type crystal of composition CeCu2(Si0.98Ge0.02)2, and
c and d show sample 83105 01, an A/S-type crystal of the same nominal
composition.
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83105, which were both accidentally melted twice: After heating to 1540◦C,
the engine of the furnace failed during synthesis 83102, and a power cut oc-
curred during synthesis 83105. Thus, the samples cooled completely before
the synthesis could be restarted and proceeded as described.

From these two batches, three large single crystals, suitable for inelastic
neutron scattering, were synthesised: 83102 01, an A-type single crystal of
3.5 g; 83105 01, an A/S-type single crystal of 4.5 g; 83105 02, an S-type
single crystal of 3.3 g (masses before polishing). The first and the second
were used for the neutron scattering experiments presented in section 3.3
and 3.5, respectively. Their pictures as well as neutron Laue images are
shown in figure 3.2. The third has not been used for any experiments, since
a large S-type crystal was already available. Moreover, the shape of the
superconducting transition was not as sharp for 83105 02 as for the older
crystal.

3.3 Magnon dispersion in A-type CeCu2(Si0.98Ge0.02)2

For S-type CeCu2Si2, the magnetic excitations have been studied in some
detail both in the superconducting and the normal state [SAF+11, ASS+11].
They appear at the same position inQ-space where antiferromagnetic order is
observed in the A-type samples. The excitations were found to be dispersive
with a mode velocity of 4.4 meV Å in the superconducting state and around
7 meV Å in the normal state, for either B > Bc2 or T > Tc. These magnetic
excitations are supposed to be the driving force of superconductivity [MPL07,
Sca12]. So far, the relation of the paramagnons to the magnons of the ordered
state is not known. Thus, the aim of the experiment presented in this section
was to measure the magnetic excitations in an A-type crystal for comparison.

Neutron scattering experiments were performed with a crystal of compo-
sition CeCu2(Si0.98Ge0.02)2. So far, no other A-type crystal of identical stoi-
chiometry has been studied by neutron scattering. Since a comparison with
S-type CeCu2Si2 is intended, it needs to be verified that the Ge-substituted
A-type crystal shows no principal differences to A-type CeCu2Si2. There-
fore, the first step of the data analysis will be the comparison to neutron
diffraction and neutron spectra of A-type samples without Ge substitution.

As a next step, the spin-wave dispersion of the A-type sample is analysed
in detail and differences or similarities with the S-type sample are discussed.
While the dispersion in the latter has only been measured along the [110]
direction, this study also includes the dispersion along [001], to see if the
magnetic interactions in CeCu2Si2 are isotropic.
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Details of the experiments

Neutron scattering was performed at the cold triple axis spectrometer IN12
at ILL, Grenoble, with a doubly focussing monochromator and a doubly
focussing analyser. For all measurements, the final neutron wave vector was
fixed to kf = 1.15 Å−1 (λf = 5.45 Å, Ef = 2.74 meV), which resulted in an
energy resolution of 65 µeV (full width at half maximum, FWHM) at E = 0.
Higher order contamination of the incident beam was prevented by a velocity
selector in front of the monochromator. A neutron monitor in front of the
sample was used for normalisation. The sample was a 3.0 g single crystal
of composition CeCu2(Si0.98Ge0.02)2 (sample number 83102 01) with lattice
constants a = 4.10 Å and c = 10.00 Å. The sample was glued onto a surface
perpendicular to the [110] direction on a copper sample holder. Cooling to a
base temperature of 100 mK was achieved by a dilution cryostat.

The heat capacity was first measured in a commercial Quantum Design
PPMS (Physical Property Measurement System) on a small fraction (5 mg)
of the crystal to examine the ground state. To have a proper reference for
the neutron scattering data, the heat capacity of the entire crystal was also
measured. This was done in a SHE dilution cryostat using the compensated
heat pulse technique [WLRS04]. Due to the large sample mass it was nec-
essary to provide an additional heat link from the sample to the thermal
bath via a gold wire. Still, the sample temperature never fell below 230 mK
within reasonable cooling times, even though the mixing chamber reached a
base temperature of 50 mK. Furthermore, the AC susceptibility of the whole
crystal was measured in a dilution cryostat down to 50 mK.

Results

The single crystal 83102 01 shows antiferromagnetic order below TN ≈ 0.85 K,
which is evidenced by the appearance of a Bragg peak at τ = (0.215 0.215
0.52). It can be measured more easily in the second Brillouin zone, at QAF =
(0.215 0.215 1.48), due to a much larger signal-to-background ratio; two rep-
resentative scans are shown in figure 3.3(a). The position of the peak, par-
ticularly along [110], is temperature-dependent above 0.4 K, reaching h ≈
0.228 around the Néel temperature (figure 3.3(c)). TN could be confirmed by
bulk heat capacity measurements (figure 3.3(b)); the transition is only mildly
affected by a moderate field of 2 T (B ‖ [110]), as expected for an antifer-
romagnet well below its critical field. The lock-in transition of the ordering
vector at 0.4 K could not be resolved within the accuracy of the heat capac-
ity data. All observations are in close agreement with the measurements on
A-type CeCu2Si2 [SFZ+04, SFS+06].
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Figure 3.3: Magnetic order in A-type CeCu2(Si0.98Ge0.02)2 (crystal 83102 01).
(a) Scans across the magnetic Bragg peak at QAF = (0.215 0.215 1.48), at
0.4 K and 0.9 K; the solid line is a Lorentzian fit. (b) Bulk heat capacity
measured in zero field and in 2 T (B ‖ [110]), plotted as C/T vs. T . (c)
Fitted value of the h component of QAF for different temperatures. (d)
Normalised integrated intensity of the magnetic Bragg peak for scans along
ω (sample rotation) or along [110], as well as normalised correlation length,
vs. temperature.
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Temperature-dependent measurements of the magnetic Bragg peak have
been performed both as a function of sample rotation ω and in scans along
[110]. Figure 3.3(d) shows the fitted intensity, extracted from Lorentzian fits
to both types of scans. Also included is the normalised correlation length,
which has been extracted from the Lorentzian width of the scans along [110].
The fits involve a convolution with the instrument resolution, which is slightly
smaller than the total peak width. Both intensity and correlation length pass
through a weak maximum at around 0.4 K. It has been reported earlier that
the lock-in transition is coincident with the appearance of a superconducting
minority phase, which limits the domain size [SFS+06], and also the lifetime
[ASF+10], of the magnetic order. In a measurement of the AC susceptibility
it was confirmed that the crystal is not bulk superconducting at low tem-
peratures. Instead, a slight gradual decrease of the susceptibility is observed
below 0.4 K. A broadened transition is also seen in the zero-field heat capac-
ity data (figure 3.3(b)). In earlier neutron measurements only a broadening
of the Bragg peak, but not a reduction of its intensity was observed [SFS+06].
This suggests that a larger fraction of this crystal becomes superconducting
than in the measurement of A-type CeCu2Si2.

The inelastic response can also be compared to prior measurements. Spec-
tra taken at QAF show that the response is quasi-elastic for temperatures
between 0.1 K and 5 K. It can be fitted with Lorentzian functions centred
at zero and multiplied with the Bose-factor:

S(E) =
1

1− exp(− E
kBT

)
· 2Eχ

πΓ
(
1 + 2E

Γ

)2 . (3.1)

Here Γ is the full width of the fluctuations, and χ their susceptibility. This
function is then convoluted with a Gaussian function for the instrument
resolution. All spectra also feature a temperature-independent, incoherent
elastic line, and the spectra below TN include a magnetic Bragg peak. Two
spectra, measured at 0.4 K and 5 K, are shown in figure 3.4(a), together with
the total fit function and the magnetic contribution to the fit.

The fitted inverse susceptibility 1/χ and width Γ (FWHM, inverse life-
time) of the A-type crystal are displayed in figures 3.4(b) and 3.4(c), respec-
tively. The figure also includes the fit results for the S-type sample from
reference [ASS+11], which will be discussed later. 1/χ and Γ of the A-type
crystal decrease with decreasing temperature; a divergence of susceptibility
and lifetime τ ∝ 1/Γ is expected on entering the ordered phase, but the fits
suggest small residual values for 1/χ and Γ. The exact magnitude of sus-
ceptibility and width is difficult to extract from a fit according to equation
3.1, because the separation of the inelastic magnetic signal and the magnetic
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Figure 3.4: (a) Spectra of the A-type crystal at 0.4 K (black) and 5 K (pur-
ple), measured at QAF = (0.215 0.215 1.48); solid black/purple lines show
total fit functions, dashed the inelastic magnetic contribution, which was
fitted with a Bose-weighted Lorentzian function. (b) Fitted inverse suscep-
tibility 1/χ and (c) width Γ (FWHM) of the inelastic magnetic signal at
QAF, for the A-type crystal and for the S-type crystal at 1.7 T (taken from
reference [ASS+11]). χ(QAF) is normalised to the intensity of the incoherent
elastic line. Lines are guides to the eye.

Bragg peak becomes problematic when Γ is small, i.e. close to the instrument
resolution. In earlier measurements on A-type CeCu2Si2, a triple-axis experi-
ment suggested a truly elastic signal well below TN [SFS+06], while spin-echo
data, which have a better energy resolution, indicated that the lifetime of
the magnetic order in A-type CeCu2Si2 is limited in the presence of filamen-
tary superconductivity [ASF+10]. In the A-type crystal studied here, the
lifetime-broadening seems to be more significant, so that it can already be
detected with the resolution of a triple-axis spectrometer. It is worth noting
that the effect can be observed not only at 0.1 K, but also at 0.4 K, where
filamentary superconductivity only just sets in.

It can be concluded that the Ge-substituted crystal investigated here
shows magnetic order very similar to A-type CeCu2Si2, with the restriction
that the influence of domains and minority phases is stronger. The prob-
able reason is a larger sample inhomogeneity. However, the order is still
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long-ranged and long-lived on the length- and time-scales of the studied ex-
citations, which are strongly damped (see below). This is also supported by
the comparison of dispersion measurements at 0.1 K and 0.4 K, which are
nearly identical. Nevertheless, the discussion of the magnons in the following
will be based on the data at 0.4 K, to minimise any possible influence of the
minority phases. Such, the new CeCu2(Si0.98Ge0.02)2 crystal can serve as a
reference to S-type CeCu2Si2 in the same way as an A-type crystal without
Ge doping could.

Now the dispersion of the magnetic excitations will be discussed, i.e. the
magnons (T < TN) or paramagnons (T > TN). For this purpose, scans
were taken along (h h 1.48) or along (0.215 0.215 l) at fixed energy transfers
between 0.125 meV and 1.1 meV. Measurement temperatures were T =
0.4 K, where the antiferromagnetic ordering is strongest, and T = 1 K, just
above the Néel temperature.

The measured dispersion along [110] is shown in figure 3.5 and the mea-
sured dispersion along [001] is shown in figure 3.6. Only the data at 0.4 K
are displayed, since the scans at 1 K look very similar. Scans at 0.9 meV and
1.1 meV were not performed along [001] because the peaks are very broad
already at 0.7 meV. Also shown in each figure are fits with two Lorentzian
curves (red lines) of identical width. They were convoluted with a Gaussian
function for the resolution, which was taken to be the elastic width at QAF.
At 0.125 meV, the signal was fitted with the restriction that the two branches
of the dispersion should have the same intensity, which avoids unphysical so-
lutions for the dispersion at this low energy transfer. The asymmetric line
shape at 0.125 meV is most likely due to the mosaicity of the sample. At all
other energy transfers, Lorentzian fits without fitting restrictions provide a
very good description of the data. An alternative fitting procedure, which
yields the blue lines in figures 3.5 and 3.6, will be discussed below. Figure
3.5 also includes a constant-Q scan at the magnetic zone boundary, Q =
(0.5 0.5 1.48).

Within the (h h l) plane, a conical dispersion is expected at low energy
transfers. A cut along a certain direction, which corresponds to the experi-
mental set-up, then yields two lines, which will be referred to as branches in
the following. The cone does not need to be symmetric with respect to the
high-symmetry directions [110] and [001], but could be tilted or distorted,
leading to different mode velocities along different directions.

The two branches of the dispersion along [110] are asymmetric in inten-
sity, which is particularly visible at 0.5 meV and 0.7 meV. This has already
been observed for S-type CeCu2Si2 [SAF+11, ASS+11]. Such an intensity
difference may be caused by a different intersection angle of the two dis-
persion branches with the resolution ellipsoid of the spectrometer. Indeed,
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Figure 3.5: Dispersion of A-type CeCu2(Si0.98Ge0.02)2 along [110] at 0.4 K.
Images (a)-(g) display constant-E scans at different energy transfers. Mea-
sured data points are shown in black, Lorentzian fit curves in red and fits
according to equation S11 of [SAF+11] in blue. The fits consider an appro-
priate background for each energy transfer. (h) shows a constant-Q scan at
the magnetic zone boundary; the pink line is a Gaussian fit.
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Figure 3.6: Dispersion of A-type CeCu2(Si0.98Ge0.02)2 along [001] at 0.4 K.
Images (a)-(e) display constant-E scans at different energy transfers. Mea-
sured data points are shown in black, Lorentzian fit curves in red and fits
according to equation S11 of [SAF+11] in blue. The fits consider an appro-
priate background for each energy transfer.
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Figure 3.7: Inelastic peak positions as extracted from Lorentzian fits to the
constant-E scans shown in figures 3.5 and 3.6, measured along [110] (a) and
[001] (b). Additionally the fit results for scans at 1 K are shown, as well
as the position of the Bragg peak at 0.4 K. The solid/dashed lines show
linear fits for both dispersion branches at 0.4 K and 1 K, respectively. For
comparison, the dispersion of the S-type crystal is added in dotted green
lines (T = 60 mK, B > Bc2, new fits to data from reference [ASS+11]).

simulations of the resolution using the programme Restrax [res, Sar96] show
that the resolution of the lower branch is around a factor of 2 larger than
that of the upper branch. However, the inelastic peaks are generally much
broader than the resolution due to damping, so that resolution effects, even
of a factor of 2, should not have a major impact on the data. Furthermore, it
is not observed that the weaker branch is broader. Therefore, the asymmetry
in the intensity along [110] does not seem to be merely an effect of the in-
strumentation. Along [001], the intensity is symmetric for the two dispersion
branches.

The fitted peak positions for all Q-scans are shown in figure 3.7. Looking
first at the upper branch, the dispersion is linear up to the highest measured
energy transfer, with a spin-wave velocity of 5.3±0.3 meV Å along [110] and
6.2±0.8 meV Å along [001] at 0.4 K. Thus, within error bars the spin-wave
velocity is the same along [110] and [001]. The dispersion of the lower branch
is more difficult to determine due to the suppression of intensity in the scans
along [110]; at 0.9 meV and 1.1 meV, the peak positions of the weaker branch
cannot be fitted reliably, so that they were not included in the dispersion fit.
The fits up to 0.7 meV indicate that the spin-wave velocity is increased by a
factor of 2 in the [001] direction and roughly a factor of 3 in the [110] direction.
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A possible explanation for the asymmetry of the two branches could be that
the order is incommensurate and therefore the distance to the magnetic zone
boundary is different when h or l are increased or decreased. However, the
effect seems rather large considering that 0.215 and particularly 1.48 are
not very far from the zone centres 0.25 and 1.5, respectively. Therefore, it
has to be concluded that the origin of the asymmetry is not understood at
present. It is somewhat reminiscent of the spin-wave dispersion of chromium
[Faw88], but whether the underlying physics is the same is not clear. It is also
interesting to note that CeCu2Ge2, which is isostructural and isoelectronic to
CeCu2Si2 and has a similar ordering wave vector, does not show the strong
asymmetry of the two dispersion branches [Sto].

The data give no indication of an anisotropy gap in the ordered state of
A-type CeCu2Si2, as it was observed in the dispersion of the heavy-fermion
compounds CePd2Si2 [vDFC+97], CeIn3 [KRF+03], CeRhIn5 [DLG+14] and
CeCu2Ge2 [GFR+]. This probably relates to the very close proximity of A-
type CeCu2Si2 to the quantum critical point, which is also reflected in the
small ordered moment of 0.1 µB/Ce [SFZ

+04]: It is expected that excitations
become soft close to the quantum critical point. It is still possible that an
anisotropy gap exists which is smaller than the resolution of the experiment
(65 µeV).

Figure 3.8 shows the fitted susceptibility and Q-width (FWHM) of the
constant-E-scans for both the [110] and the [001] direction. Here the recipro-
cal lattice units (rlu) have been transformed into momentum transfer (Å−1)
for an easier comparison. The susceptibility is obtained by dividing the inte-
grated intensity of the Lorentzian fits by the Bose factor; it gradually falls off
with energy transfer. The width at all energy transfers is much larger than
the elastic Q-width: The inelastic correlation length at low energy transfers
is around 25 Å at 0.4 K, an order of magnitude smaller than the elastic cor-
relation length. This hints at strong damping of the spin fluctuations by the
conduction electrons. The damping increases towards higher energy trans-
fers, where the inelastic correlation length drops to values corresponding to
about twice the nearest-neighbour distance. The origin of this effect might
be enhanced Kondo scattering, since the energy scale ≈ 1 meV is similar to
the local spin-fluctuation temperature of CeCu2Si2, which was observed in
powder neutron spectroscopy [HHML+81]. Due to the strong broadening of
the signal, it is difficult to follow the dispersion further towards the magnetic
zone boundary. In the constant-Q scan at (0.5 0.5 1.48) (cf. figure 3.5), a
weak maximum can be seen at 1.5 meV, which might be related to the bend-
ing of the dispersion. However, the peak seems rather sharp considering the
damping observed in the constant-E scans, so that its interpretation remains
doubtful.
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Figure 3.8: Susceptibility χ and width (FWHM) of Lorentzian fits to the
dispersion of A-type CeCu2(Si0.98Ge0.02)2 along [110] and [001]. The sus-
ceptibility is the sum of the integrated intensity of both branches of the
dispersion, divided by the Bose factor. To be able to compare the results
from scans along [110] and [001], the x-axis was transformed from reciprocal
lattice units (comp. figures 3.5, 3.6 and 3.7) to Å−1. Fit results for the
S-type crystal (T = 60 mK, B > Bc2) are also shown (new fits to data from
reference [ASS+11]).
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The comparison of susceptibility and Q-width for the [110] and the [001]
direction reveals that they are identical within the error bars. The apparent
difference in the width of the original data, see figures 3.5 and 3.6, stems from
the different conversion factor from rlu to Å−1 (2.17 Å−1/rlu along [110] and
0.63 Å−1/rlu along [001]), in combination with a slightly poorer resolution
along [001]. The striking similarities of the excitations measured along [110]
and [001], in terms of mode velocity, intensity and Q-width, speak for truly
3-dimensional interactions in CeCu2Si2. Similar behaviour has been reported
for the cubic compound CeIn3 [KRF+03], but is not generally expected for a
compound with tetragonal crystal structure such as CeCu2Si2.

In figures 3.7 and 3.8, also the fit results for T = 1 K are included. The
dispersion is nearly unchanged, the only difference being a shift of QAF, the
centre of the dispersion; the spin-wave velocity is unchanged within error bars
for both the [110] and the [001] direction. Figure 3.8 shows that also the Q-
width and the susceptibility are similar at 0.4 K and 1 K. The excitations
in the ordered phase are slightly more intense and sharp, but that does not
reflect the (near) divergence of susceptibility and correlation length which is
observed in the elastic channel. Thus, the response of the antiferromagnetic
and the paramagnetic state seem to differ only at very low energy transfers
∆E . 0.15 meV.

So far, the magnetic response has been fitted independently for each en-
ergy transfer. It would be useful to have a fit function that describes the
whole dispersion. In the appendix of reference [SAF+11], it was suggested
that the inelastic response in the presence of (para-)magnons takes the form

χ′′ =
χ0

E/Γ

4 · ξ4(Q−Qexc)2(Qexc −QAF)2 + E2/Γ2
(3.2)

for a fixed energy transfer E and in the vicinity of QAF. Here Γ is the energy
width which can be extracted from the spectra2, ξ is the correlation length
and Qexc is the position of the peak at energy transfer E. Based on equation
3.2, a common fit function for all energy transfers can be constructed, with
two peaks at QAF+∆Q and QAF−∆Q for each constant-E scan. χ0, Γ and ξ
are common variables for all energy transfers, and a linear dispersion relation
is implied, with the same spin-wave velocity for both branches. Different
intensities of the two branches are allowed by the fit function, and it includes
the Bose factor and the instrument resolution.

Figure 3.8 already shows that the assumption that χ0 and ξ are indepen-
dent of the energy transfer is not verified in experiment. To get reasonable fit

2The slightly modified form of equation 3.2 compared to S11 in reference [SAF+11]
originates from different definitions of Γ; Γ in equation S11 should be replaced by Γ · ξ2 to
get to equation 3.2.
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results, the function was modified such that it allows for a different value of
χ0 for each energy transfer. On the other hand, ξ can be assumed to be con-
stant if the data at 0.9 meV and 1.1 meV are omitted, which are significantly
broader. The data at 0.125 meV were also omitted, due to their irregular
peak shape. Thus, the data at 0.2 meV, 0.3 meV, 0.5 meV and 0.7 meV
were fitted with the same correlation length, dispersion relation and energy
width Γ, the latter taken from the fits to the spectra. The resulting fit curves
are shown in blue in figures 3.5 and 3.6. Their agreement with the data is
satisfactory.

These fits result in spin wave velocities of 7.6±0.3 meV Å along the [110]
direction and 8.6±0.4 meV Å along the [001] direction at 0.4 K. At 1 K,
they change to 9.0±0.6 meV Å and 8.7±0.5 meV Å, respectively. All values
are in between the fit results for the upper and the lower branch from the
Lorentzian fits, but much closer to the values for the upper branch. As in the
Lorentzian fits, the dispersion is the same along [110] and [001] and nearly
unaffected by the transition from the antiferromagnetic to the paramagnetic
state. The correlation lengths extracted from these fits are 23 Å at 0.4 K
and 13 Å at 1 K (for both directions), similar to the results from Lorentzians
fits.

In summary, the model underlying equation 3.2 does not fully describe the
physics of A-type CeCu2Si2. It clearly fails to describe the data at 0.9 meV
and 1.1 meV, where an additional damping mechanism is probably active.
At lower energy transfers, a reasonable description of the data is possible,
however only when χ0 is made energy-dependent, which is actually a strong
modification of the original model. Equation 3.2 also does not capture the
asymmetry of the two dispersion branches, so that fitted mode velocities are
a compromise between the upper and the lower branch.

The inelastic response of the A-type crystal can now be compared to that
of S-type CeCu2Si2 [ASS+11, SAF+11]. For this purpose, data of the S-type
crystal in the normal state (B > Bc2) are included in figures 3.4, 3.7 and
3.8. The fits of the spectra in figure 3.4 were taken directly from reference
[ASS+11], while the fits to the dispersion, shown in figures 3.7 and 3.8, origi-
nated from new, Lorentzian fits to the data presented in reference [ASS+11].
This was done to ensure comparability by an analogous fitting procedure
(Arndt et al. have fitted Gaussian peaks, and assumed the same mode ve-
locity for both branches). To be able to compare the susceptibilities of both
crystals, all intensities have been normalised to the incoherent elastic line;
it mainly originates from the copper nuclei in CeCu2Si2 and thus provides a
reference which is independent from the ground state of the sample. Explicit
comparisons will only be made to the normal state data of S-type CeCu2Si2.
However, intensity, width and peak positions of the constant-E scans are
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similar for the superconducting and the normal state, as long as data are not
too close to the spin gap of 0.2 meV [ASS+11, SAF+11]. Thus, much of the
following discussion would also apply to the superconducting state.

A pronounced difference is observed for the susceptibility of the A- and
the S-type sample: Even above TN, it is about a factor of 2.5 larger in the
A-type CeCu2Si2, which can be seen by comparing the spectra (figure 3.4)
and the constant-E scans at small energy transfers (figure 3.8). The origin of
this difference lies in the enhancement of the Kondo effect in S-type CeCu2Si2
compared to A-type CeCu2Si2.

However, the dispersion relation of S-type CeCu2Si2 in the normal state
behaves very similarly to that of A-type CeCu2Si2: Figure 3.7 shows that the
fitted dispersion relations nearly fall on top of each other. The fits shown
for the S-type crystal correspond to mode velocities of 6.1 ± 0.5 meV Å
and 7.9 ± 0.6 meV Å for the upper and the lower branch of the disper-
sion. Arndt et al. reported 7.1 ± 1.9 meV Å assuming identical mode veloc-
ities [ASS+11]. Using a new data set, measured on the same crystal under
similar conditions, 7.0±0.9 meV Å was obtained for the upper branch and
10.8±2.9 meV Å for the lower branch (see section 3.4). All these numbers
suggest that the asymmetry between the two branches is somewhat weaker
for the S-type crystal, but otherwise the dispersion relation in the measured
energy range is nearly identical to the A-type sample.

The damping for A-type and S-type samples is also very similar, which
is evident from the Q-width (figure 3.8). As long as both samples are in the
paramagnetic state, the lifetime 1/Γ is also very similar (figure 3.4). This can
be explained by the fact that both samples are metallic and feature strong
local Kondo interactions of the conduction electrons with the 4f moments.

It is interesting to compare these results to recent measurements of the
magnetic excitations in cuprate and pnictide superconductors by Resonant
Inelastic X-ray Scattering (RIXS): Le Tacon et al. [LTGC+11] compared un-
doped antiferromagnetic Nd1.2Ba1.8Cu3O6 to several doped members of the
same family and found that the paramagnons observed in the latter show a
very similar dispersion relation to the magnons. Furthermore, the spectral
weight of the spin excitations is not strongly affected by doping. The excita-
tions are, however, much broader in the doped samples, due to the damping
induced by the charge carriers. For the pnictides, Zhou et al. [ZHM+13] com-
pared undoped BaFe2As2 with optimally hole-doped Ba0.6K0.4Fe2As2. They
also found that the magnetic excitations persist in the superconducting phase
with almost identical intensity. Here, the dispersion relation is more strongly
influenced by doping than in the cuprate study: Significant softening is ob-
served for the doped sample. On the other hand, damping is not affected by
doping, as the parent compound is already metallic.
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Thus, there is evidence for these three classes of unconventional super-
conductors that the inelastic magnetic response is similar for the antiferro-
magnetic and the superconducting state. This is remarkable, considering
the drastic changes in the elastic magnetic response and the ground-state
properties. It is particularly interesting that these compound classes be-
have somewhat similar even though the mechanisms for the suppression of
magnetic order are different. In the heavy fermions, the mechanism is the
enhancement of the Kondo effect, evident from the data by the loss in in-
elastic magnetic intensity in the S-type sample. In the cuprates, the order
is suppressed by doping, which strongly increases the damping rates in the
inelastic response, as seen by their larger width [LTGC+11]. The origin of
the softening observed for the pnictide superconductor is not explained by
the authors in reference [ZHM+13]. Further measurements on other pnictide
compounds might clarify the matter.

LeTacon et al. [LTGC+11] also discuss important differences in the mag-
netic response between antiferromagnetic and superconducting cuprate sam-
ples, using earlier data from inelastic neutron scattering [HBP+07]. Strong
deviations appear at energy transfers . 75 meV, which is around one quarter
of the full energy span of the dispersion. This is roughly comparable to the
energy scales in CeCu2Si2, where the response is modified close to the gap size
of 0.2 meV, while the full energy span is estimated to be around 1.5 meV.
For the pnictides, the low-energy difference between the antiferromagentic
and the superconducting state has not been shown [ZHM+13], but must be
smaller than ≈ 80 meV, for a full energy span of 200 meV. Interestingly,
the authors report that the inelastic response in the measured range is not
sensitive to raising the temperature above Tc, similar to the observations for
S-type CeCu2Si2 for energies larger than the gap size [SAF+11].

The data presented here, particularly in analogy with cuprates and pnic-
tides, show that the magnetic excitations are stable through large areas of
the phase diagram around the quantum critical point. Above a certain low-
energy scale, they are neither sensitive to the ground state of the compound,
nor to crossing the critical temperatures TN and Tc. This supports the idea
that magnetic fluctuations, well outside the antiferromagnetic phase, can be
the driving force of superconductivity.

3.4 Critical magnetic scattering in S-type CeCu2Si2

The dispersion of S-type CeCu2Si2 has already been discussed in some detail
in the previous section based on data measured by Julia Arndt and Oliver
Stockert [ASS+11, SAF+11]. In this section, the focus is on a different aspect
of the inelastic response, the scaling behaviour on approaching the quantum
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critical point. S-type CeCu2Si2 is located close to the critical value rc of the
tuning parameter, and quantum critical behaviour as a function of tempera-
ture can be studied if superconductivity is suppressed.

The scaling of the lifetime of the magnetic fluctuations has been anal-
ysed in reference [ASS+11]: A T−3/2 power law was observed, which is in
agreement with the predictions of the Hertz-Millis-Moriya scenario for a 3D-
antiferromagnetic quantum critical point [Mil93]. The same theory predicts
ν, the critical exponent of the correlation length, to take the value 3/4, since
the dynamical critical exponent z is expected to be 2 [Her76] (see equation
2.16). The aim of the experiment presented in the following was therefore to
measure the Q-dependence of the fluctuations as a function of temperature
to verify the values of ν and z.

Details of the experiments

The measurements on S-type CeCu2Si2 were performed on the cold neutron
spectrometer IN14 at ILL, Grenoble. Since they were a continuation of prior
measurements by Julia Arndt and Oliver Stockert, the experimental set-up
was very similar: A vertically focussing monochromator followed by 60’ col-
limation, a Be filter to prevent higher order contamination, a monitor for
normalisation in front of the sample, and a doubly focussing analyser. The
final neutron wave vector kf was fixed during the measurement to 1.15 Å−1.
The same 2.03 g sample (a = 4.09 Å, c = 9.88 Å) and the same copper sam-
ple holder were used as in the previous experiment, and also the same vertical
magnet (Bmax = 2.5 T). The sample was glued such that the field was par-
allel to the [11̄0] direction. Cooling to a base temperature of 60 mK was
achieved by a dilution cryostat.

Results

This section is concerned with the quantum critical scaling and not the su-
perconducting properties of S-type CeCu2Si2. Therefore, all data discussed
in the following were measured at 1.7 T in the normal phase. Thus, the
quantum critical cone of the phase diagram is probed, as can be seen by a
comparison of figures 2.1 and 3.1.

S-type CeCu2Si2 does not show any long-range magnetic order. However,
at low temperatures fractions of the sample exhibit short-range magnetic
correlations, which show up in neutron scattering as elastic reflections with
substantial broadening in Q (ξ ≈ 60 Å) [SAS+08]. In combination with
a poor signal-to-background ratio, this hinders measurements of the order
parameter fluctuations in the elastic channel. Instead, the fluctuations can
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be measured in Q-scans at a small finite energy transfer. Spectra at QAF

show that the maximum of the fluctuations is between 0.1 and 0.3 meV in
the relevant temperature range [ASS+11], so that it would be sensible to
study the Q-dependence of the fluctuations at ≈ 0.2 meV.

However, the matter is further complicated by the appearance of spin
waves in the paramagnetic state [SAF+11, ASS+11]. They show a linear
dispersion, so that the response at any non-zero energy transfer should be
fitted with two peaks, as explained in section 3.3. Therefore, Q-scans were
performed not only at 0.2 meV, but also at 0.3 meV, 0.5 meV, 0.7 meV and
0.9 meV to obtain a thorough understanding of the inelastic response of S-
type CeCu2Si2.

Constant-E scans around QAF ≈ (0.22 0.22 1.46) were measured along
[110] at fixed l = 1.458; they were fitted in two different ways, just as for the
A-type crystal: Fits for each energy transfer were done with two Lorentzian
curves, under the constraint that they have the same Q-width. A common fit
for all energy transfers measured at one temperature was done with equation
3.2. Both fitting procedures include a convolution with a Gaussian for the
Q-resolution of the spectrometer, which was assumed to be constant in the
considered range of momentum and energy transfers.

In figure 3.9, the magnetic intensity in the Q-E-plane around the nesting
wave vector QAF is shown for different temperatures. The figure displays
not the original data, but the fit curves from the two-Lorentzian fit, which
provide a very good description of the data. An interpolation has been per-
formed for intermediate energy transfers. At T = 60 mK, the two branches
of the dispersion are clearly visible, the lower one being much weaker and
less dispersive than the upper. This is very similar to the data of the A-type
crystal (see section 3.3). At higher temperatures, only the upper branch of
the dispersion can be unambiguously identified.

Fitting the dispersion is more difficult for the S-type crystal than for
the A-type crystal, not only due to the smaller signal-to-background ratio,
but also because the centre of the dispersion is not known a priori. At
60 mK, the dispersion is fitted to be 7.0±0.9 meV Å for the upper branch
and 10.8±2.9 meV Å for the lower branch, if the centre of the dispersion
is set to 0.228 rlu. This value of the centre is a compromise for the two
branches, since fitting each branch independently does not yield the same
centre. The fitted dispersion is similar to the one of the A-type crystal (see
section 3.3) and in good agreement with prior results of Arndt et al. for the
S-type crystal, who found 7.1±1.9 meV Å assuming symmetric spin wave
velocities for both branches [ASS+11].

At higher temperatures, fitting the dispersion becomes increasingly dif-
ficult. However, the splitting of the peaks at 0.5 meV and 0.7 meV can be
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fitted up to 2 K and stays roughly constant throughout the whole temper-
ature range, suggesting that the mode velocity is not strongly temperature
dependent. At 0.2 meV, 0.3 meV and 0.9 meV the splitting cannot be re-
solved since it is too small compared to the width of the peaks. Data at
0.9 meV are significantly broadened at all temperatures, which has also been
observed in the A-type crystal and is probably related to enhanced Kondo
scattering. At 3.5 K and 5 K, the splitting cannot be fitted reliably at any
energy transfer, but the intensity distribution shown in figure 3.9 suggests
that the mode stays dispersive.

The centre of the dispersive mode shifts considerably with temperature.
At the highest measured temperatures, the centre is around h = 0.26. This
means that the spectra taken at (0.22 0.22 1.46) in reference [ASS+11] were
not measured at the position of maximum intensity. However, since the signal
is rather broad in Q, the decrease in intensity from the maximum to h = 0.22
amounts to only about 25%, which should not strongly affect the reliability
of the analysis.

Following the analysis of the dispersion, the correlation length of the
magnetic fluctuations ξ = 2/κ can now be discussed, κ being the full Q-width
of the fluctuations. As explained above, it will be defined as the average of the
width at 0.2 meV and 0.3 meV, where the intensity as a function of energy
is strongest. For this purpose, the fits presented in figure 3.9 have been
slightly modified: The data at 0.2 meV and 0.3 meV were re-fitted with a
fixed splitting which is determined from the splitting at 0.5 meV and 0.7 meV
assuming a linear dispersion. This is done to minimise the error arising from
the competition between Q-width and Q-splitting which is present in the
two-Lorentzian fits. As said above, the dispersion cannot be fitted at 3.5 K
and 5 K; however, the Q-width is much larger at these temperatures than
the approximate dispersive splitting at 0.2 meV and 0.3 meV, so that the
fitted value of κ is rather insensitive to the exact value of the splitting. The
resulting values for the Q-width are plotted as a function of temperature in
figure 3.10(a).

Another possibility for analysing the correlation length is using fit func-
tion 3.2, S11 from reference [SAF+11]. As for the A-type crystal (section
3.3), the data at 0.9 meV need to be excluded since the peaks are too broad.
Also, it is again apparent that fitting the data with a constant χ0 for all
energy transfers is not possible. Therefore, χ0 is fitted independently for
each scan. The fit functions, using common values for κ and the spin-wave
velocity, provide a satisfactory description of the data. The fitted spin-wave
velocity at the lowest temperature is 9.0±0.6 meV Å, in reasonable agree-
ment with the Lorentzian fits, considering that a symmetric velocity for both
branches is assumed. The spin-wave velocity shows only minor changes with
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Figure 3.10: (a) Fitted Q-width κ (FWHM) of the magnetic fluctuations
in S-type CeCu2Si2 as a function of temperature (B = 1.7 T). The black
circles are extracted from Lorentzian fits to the constant-E scans, while the
blue triangles are from fits according to equation 3.2. The lines show power-
law fits, assuming a constant value for κ below 0.5 K. (b) Energy width Γ
(FWHM, from [ASS+11]) plotted over Q-width κ (FWHM, Lorentzian fits)
in a log-log plot. Two power-law fits are shown, one with free exponent (red
line) and one where the exponent is fixed to z = 2 (purple dotted line).

temperature, with a slight increase towards higher temperatures; the centre
of the dispersion shifts towards higher h values. Thus, the results from fits
following equation 3.2 give the same trends as the Lorentzian fits. In figure
3.10(a), the fitted width κ for both fit procedures is compared. The absolute
values differ, since Γ in equation 3.2 influences the fit of κ; here values for Γ
are taken from the measurements of Arndt et al. [ASS+11].

Both fitting procedures show that the correlation length ξ = 2/κ increases
towards low temperatures, but does not diverge. At the lowest temperature
the correlation length was fitted to be 20 Å (Lorentzian fits) or 16 Å (equa-
tion 3.2), slightly below the value in the antiferromagnetic state. The finite
value of κ at low temperatures is in line with the finite value of the energy
width Γ reported in reference [ASS+11]. There it was explained by the fact
that the sample is not located exactly at the quantum critical point in the
phase diagram, but slightly further on the paramagnetic side, so that the
Fermi-liquid regime is entered at low temperatures.

This might also imply that there is a certain low-temperature interval
where the values of κ and Γ are constant, as is suggested by both datasets
(compare figure 3.10(a) and reference [ASS+11]). Then, a power-law fit ac-
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cording to

κ = κ0 + a · (T − T0)
b or Γ = Γ0 + a · (T − T0)

b (3.3)

does not necessarily yield T0 = 0. Indeed, the temperature dependence of κ
cannot be described well by a power-law fit with T0 = 0. Instead, a good
description of the data, for both sets of κ values, can be obtained by setting
T0 = 0.5 K. Then the power-law exponent is fitted to be 0.90±0.27 (κ from
Lorentzian fits) or 0.88±0.26 (κ from fits with equation 3.2). It is thus
compatible with the exponent of 0.75 expected in the Hertz-Millis-Moriya
scenario [Her76, Mil93, MT95]. However, this exponent cannot be compared
directly to the exponent for Γ, 1.38±0.16, given in reference [ASS+11], since
the authors assumed T0 = 0. Re-fitting the dataset for Γ with finite T0
strongly modifies the exponent and thereby also the value of z.

A more reliable procedure to obtain z is a direct comparison of κ and
Γ, as shown in figure 3.10(b). This does not depend on any model for the
temperature dependence of κ and Γ and thus avoids introducing further
parameters. If Γ scales with κ (compare equation 2.11), a linear dependence
is expected in a log-log plot. This is roughly confirmed by the data. A
fit according to Γ = a · κz yields z = 1.59±0.22, slightly smaller than the
value of 2 given by Hertz [Her76]. The fit is shown by the red line in figure
3.10(b). For comparison, also a fit with z = 2 is shown in purple, which is
still compatible with the data. The same analysis has also been done for the
other set of κ values, with no remarkable differences.

The results discussed here, in combination with the analysis in reference
[ASS+11], present a direct measurement of the dynamical critical exponent
in a quantum phase transition. Unfortunately, the measurements suffer from
multiple difficulties that limit the certainty of the analysis: The temperature
range for the exponent fit is confined from above by the Kondo scale (compare
reference [ASS+11]) and from below by the onset of Fermi-liquid behaviour,
leaving a rather narrow temperature window for the fit. In this window, the
change in κ is only about a factor of 2 (the relative change observed in Γ is
much larger). Such a small effect is difficult to measure with high precision,
given the small signal-to-background ratio of inelastic scattering for S-type
CeCu2Si2. Despite these limitations, the analysis suggests that dynamical
scaling exists in S-type CeCu2Si2, and the power-law exponent is roughly
as expected in the Hertz-Millis-Moriya scenario. It is possible that a larger
value of z, closer to z = 2, would be observed for a sample with r = rc, while
this sample is located slightly too far on the Fermi-liquid side of the phase
diagram.
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3.5 Inelastic magnetic response in A/S-type CeCu2(Si0.98Ge0.02)2

So far, the inelastic response in the antiferromagnetic phase and the su-
perconducting phase have been discussed for samples that display (mainly)
one of the two groundstates. In A/S-type CeCu2Si2, both phases can be
found in the same sample: A magnetic phase is entered at TN ≈ 0.8 K, fol-
lowed by a superconducting phase at lower temperatures. In neutron diffrac-
tion experiments, both on CeCu2Si2 and on CeCu2(Si0.98Ge0.02)2 samples
[SNT+07, FSS+07, ASB+09, Arn10], it was found that superconductivity
and magnetism compete with each other on a microscopic level, since the
Bragg peak intensity is suppressed below Tc. Inelastic neutron scattering has
so far not been performed.

The aim of the experiments presented in this section was to get a first im-
pression of the spectral response of an A/S-type crystal, and to compare the
spectra in both phases to those of the A-type and the S-type samples. For
the superconducting gap in A/S-type CeCu2Si2, one difference is expected in
comparison to S-type CeCu2Si2: While the transition from the paramagnetic
to the superconducting state is second order, the transition from the antifer-
romagnetic to the superconducting state is assumed to be first order if Tc is
not much smaller than TN [KM88]. This was confirmed in thermodynamic
measurements in reference [Arn10].

Details of the experiments

The first neutron measurement of the A/S-type crystal 83105 01 was done
at IN12, Grenoble, with the same set-up as the experiment with the A-
type crystal (section 3.3). For the measurement of the spectra the final
neutron wave vector was reduced from kf = 1.15 Å−1 (λf = 5.45 Å, Ef =
2.74 meV) to kf = 1.07 Å−1 (λf = 5.87 Å, Ef = 2.37 meV) to resolve the
superconducting gap: This improved the energy resolution at E = 0 from
65 µeV to 50 µeV. The sample had a mass of 4.05 g and a composition
CeCu2(Si0.98Ge0.02)2; the lattice constants were determined to be a = 4.09 Å
and c = 10.00 Å.

A second measurement on the same crystal was performed at the triple-
axis spectrometer V2 (FLEXX) at the BER II reactor at the Helmholtz-
Zentrum Berlin. A dilution refrigerator with a base temperature of 60 mK
was used, as in the IN12 experiment. The set-up at V2 also allowed a mag-
netic field of up to 5 T vertical to the (h h l) scattering plane to be ap-
plied. Furthermore, the bulk AC susceptibility of the sample was measured
simultaneously to the neutron scattering data. The V2 set-up uses a doubly
focussing graphite (002) monochromator, a horizontally focussing graphite
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(002) analyser and a 3He detector. Higher order contamination is avoided by
a velocity selector in front of the monochromator, and a collimator is installed
in front of the analyser mainly for reducing the background. The data were
normalised to a monitor in front of the sample. Two different wavelengths
were set during the experiment, with fixed final neutron wave vector kf in
both cases: kf = 1.5 Å−1 (λk = 4.19 Å, Ef = 4.66 meV) was used for elas-
tic scans across the magnetic Bragg peak and kf = 1.12 Å−1 (λf = 5.61 Å,
Ef = 2.60 meV) was used for inelastic measurements. At kf = 1.12 Å−1, the
energy resolution at the elastic line was 65 µeV.

The heat capacity was, as for the A-type crystal, first measured in a
PPMS on a fraction of the sample and then in a SHE dilution cryostat for
the whole crystal. A magnetic field was applied along the [110] direction. To
improve cooling, the sample was linked to the thermal bath by three gold
wires, which resulted in sample base temperatures below 60 mK.

Results

In the A/S-type crystal 83105 01, antiferromagnetic order was observed with
the ordering vector τ = (0.215 0.215 0.52), which is temperature-dependent
above 400 mK, in agreement with other A- and A/S-type crystals (references
[SNT+07, FSS+07, ASB+09, Arn10] and section 3.3). Again, the measure-
ments could best be performed in the second Brillouin zone. Figure 3.11
shows the integrated intensity of the magnetic Bragg peak in comparison
with the heat capacity and AC susceptibility data measured on the entire
crystal. The heat capacity shows two transitions in zero field, the antifer-
romagnetic transition at TN ≈ 720 mK and the superconducting transition
at Tc ≈ 600 mK; the latter is also clearly seen in the susceptibility. The su-
perconducting transition is suppressed in a field of 2 T (B ‖ [110]), while TN
is only slightly shifted. For the neutron data, figure 3.11 includes both the
measurement at IN12 (only zero field) and the measurement at V2 (B = 0
and B = 2 T). The integrated intensity is gained from Lorentzian fits to
ω-scans, which also account for the instrument resolution by a convolution
with a Gaussian function of appropriate width. The two datasets have been
scaled to match at the lowest measured temperatures for B = 0; a normalisa-
tion to the incoherent elastic line is not possible since the data at V2 contain
a rather large background contribution.

The intensity of the magnetic Bragg peak is strongly reduced in the su-
perconducting phase, indicating that in this crystal, as in the other crystals
studied by neutron scattering, magnetism and superconductivity do not co-
exist on a microscopic level [SNT+07, FSS+07, ASB+09, Arn10]. For the
crystal under investigation here, the intensity of the magnetic Bragg peak
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Figure 3.11: Phase transitions of A/S-type CeCu2(Si0.98Ge0.02)2: (a) AC
susceptibility data, which were measured simultaneously with the neutron
data at V2. The graph includes data points collected over a whole week,
which scatter due to limited long-term stability of the set-up. (b) Heat
capacity, plotted as C/T , of the entire crystal (filled stars, SHE data) and
of a 0.1% fraction of the sample (open stars, PPMS data). (c) Normalised,
integrated intensity of the magnetic Bragg peak at QAF = (0.215 0.215 1.48),
measured at IN12 (filled squares) and V2 (open triangles). Data measured
at zero field are plotted in black, those measured at B = 2 T are plotted in
red. Blue vertical lines mark the transition temperatures in zero field.
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at low temperatures is not completely suppressed, but reduced to 25% of its
maximum value. This indicates that part of the sample stays magnetically
ordered well below Tc. In a magnetic field of 2 T, the intensity rises to a
saturation value at low temperature which is around 40% larger than the
maximum value in zero field. Assuming that the saturation value in 2 T is
not strongly suppressed compared to a putative zero-field, low-temperature
AF state, the magnetic volume fraction of the crystal for T → 0 is around
15%. This fraction is larger than what was observed in references [SNT+07]
and [ASB+09], where all or nearly all the intensity of the magnetic Bragg
peak had vanished at the lowest temperature. This hints towards a stronger
inhomogeneity in the new sample, which causes different parts of the crystal
to have slightly different stoichiometry and thus potentially different ground
states. This is more likely to happen in larger samples, such as the crystal
used in this work.

Disorder also appears to be relevant for the transition from the antiferro-
magnetic to the superconducting phase. For the crystals previously studied,
both heat capacity measurements [ASB+09, Arn10] and muon spin rotation
[SAA+06] give good evidence that the transition is first order. However, the
heat capacity data of this crystal show a much broader transition at Tc, which
is also not symmetric, as expected for a first-order transition. Furthermore,
the magnetic Bragg peak continues to gain intensity below Tc ≈ 600 mK. The
reduction in intensity only starts below 550 mK and then proceeds gradually,
reaching the low-temperature value at 250 mK. In contrast, in the earlier
studies [SNT+07, ASB+09], the maximum of the magnetic intensity at zero
external field coincides with Tc, and a sharp drop-off is observed below. Two
possible explanations exist for the deviating behaviour of this sample: The
transition is second order, possibly disorder-induced; or the transition is first
order, with a very large distribution of ordering temperatures. The PPMS-
measurement of a small fraction of the crystal (4 mg or 0.1% of the crystal)
indicates that the second scenario is realised. Here, a sharp, symmetric tran-
sition into superconductivity is observed, which is as low as 420 mK. Still,
the maximum in the heat capacity data and the rather sharp transition ob-
served in the AC susceptibility imply that a significant part of the sample
becomes superconducting at ≈ 600 mK.

The width of the antiferromagnetic Bragg peak can give insight into the
size of magnetic domains in the dominantly superconducting state. Surpris-
ingly, the width is constant below 500 mK, where it seems to be resolution-
limited. Antiferromagnetic domains, even at lowest temperatures, therefore
have a size & 200 Å, similar to the A-type crystals.

At V2, the magnetic order was studied also as a function of field. In
figure 3.12, the integrated intensity of the magnetic Bragg peak is shown
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Figure 3.12: Normalised intensity of the magnetic Bragg peak of A/S-type
CeCu2(Si0.98Ge0.02)2, measured at V2, compared with the AC susceptibility χ
which was measured simultaneously. The blue vertical line marks the critical
field Bc2, deduced from the jump in the AC susceptibility.

together with the AC susceptibility. A critical field Bc2 of around 1.2 T can
be deduced from the jump in the AC susceptibility data, in good agreement
with other A/S-type samples [Arn10]. In larger fields & 3 T, a suppression
of the antiferromagnetic order parameter is visible in the neutron data.

Now the inelastic response of the A/S-type crystal shall be discussed. At
IN12, spectra at zero field have been measured with kf = 1.15 Å−1 and kf =
1.07 Å−1. The following discussion will be based on the latter dataset, since
the analysis of the superconducting gap can be done more thoroughly with
the high-resolution data. In figure 3.13, the inelastic response at 100 mK,
350 mK, 650 mK and 850 mK is shown, i.e. in the superconducting state well
below Tc, in the superconducting state closer to Tc, in the antiferromagnetic
state above Tc and in the paramagnetic state. The figure includes fits with
different functions for the different states, which will be explained in the
following.

Above Tc, the response is quasi-elastic and can thus be fitted with a Bose-
weighted Lorentzian function (equation 3.1). As in section 3.3, the total fit
function consists of the quasi-elastic Lorentzian, convoluted with a Gaus-
sian for the resolution, an elastic magnetic signal and an incoherent signal.
The latter is mainly elastic, but also includes small background features at
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Figure 3.13: Spectra of A/S-type CeCu2(Si0.98Ge0.02)2 at the magnetic order-
ing vector, measured at IN12. The response in the superconducting phase (at
100 mK and 350 mK) is gapped, with a gap that is smeared out as described
in the theory of Abrikosov and Gorkov (AG). The response is quasi-elastic
(QE) in the antiferromagnetic (650 mK) and the paramagnetic (850 mK)
state. Shown in blue is the total fit function, in red the inelastic magnetic re-
sponse, and in green the elastic contribution, which consists of an incoherent
background plus an elastic magnetic component.
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finite energy transfers, which have been fitted to a spectrum taken at the
position (0.1 0.1 1.6). Such a fit function gives a good description of the
data at 850 mK and 650 mK (see figure 3.13), with a fitted width and in-
tensity that are very similar to those of the A-type crystal (Γ(850mK) =
0.265±0.016 meV, Γ(650mK) = 0.202±0.013 meV).

Below Tc, the response is gapped, as in S-type CeCu2Si2 [SAF
+11]. Stock-

ert et al. have accounted for the modified density of states in the super-
conducting phase by multiplying the Lorentzian part of the fit function by
E/

√
E2 − E2

gap for E ≥ Egap and with zero otherwise (see [SAF+11] sup-
plementary material). However, a fit function of this type does not give a
satisfactory description of the spectra of the A/S-type sample, since the mea-
sured intensity in the gap is too high and the intensity at E ≥ Egap is too low.
A first idea to account for this deviation is to assume that the inelastic signal
is a superposition of a gapped response (from the superconducting major-
ity phase) and a quasi-elastic response (from the antiferromagnetic minority
phase). In such a fit, it is sensible to fix the intensity of the quasi-elastic
signal relative to the integrated intensity of the magnetic Bragg peak. In
the A-type sample, the inelastic magnetic intensity at lowest temperatures
is around twice as large as the elastic magnetic intensity, and it is assumed
that this ratio holds for the A/S-type sample as well. Thus, the estimated
inelastic signal from the antiferromagnetic grains can be added as a further
background signal and a fit attempted of the remaining inelastic intensity
with a gapped function. However, this procedure also does not lead to good
fits to the data.

Instead, it is necessary to assume that the gap in the density of states is
smeared out. For this purpose, the theory of Abrikosov and Gorkov (AG)
can be used. They developed an expression for the density of states of a
superconductor in the presence of magnetic impurities [AG61]. An analytic
expression was later given in reference [ST08]; here the density of states is
calculated as Re(u/

√
u2 − 1) with

u =
r

2
+

√
3

6
·
√
A+B/C + C

−
√
3

6
·
√

2A− B/C − C − 6
√
3(1 + α2)r√

A+B/C + C
, (3.4)

where r is the energy given in units of the gap size Egap and α is the
Abrikosov-Gorkov parameter. A,B and C are lengthy analytic expressions
of α and r, which can be found in reference [ST08]. The AG equation for
the density of states can be multiplied with the quasi-elastic Lorentzian 3.1
to fit the magnetic response in the superconducting state. The function then
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includes the fit parameters Egap and α. α is zero in case of a BCS-type gap in
the density of states, and takes values of the order of 0.1 to 1 in the presence
of magnetic impurities. The theory was developed for randomly distributed
paramagnetic impurities, while the sample actually includes domains of an-
tiferromagnetic order. Nevertheless, an Abrikosov-Gorkov-type fit gives a
good description of the data in the superconducting state. In figure 3.13,
fit functions of this type are shown for the data at 100 mK and 350 mK.
Again, it would be possible to include a fixed contribution from the antifer-
romagnetic impurity phase. However, this does not significantly alter the fit
quality or the fitted parameters, so that this contribution will be neglected
in the following.

At 100 mK, a gap Egap = 0.15±0.03 meV is fitted, with an AG parameter
α = 0.25±0.08 and a Lorentzian width Γ = 0.21±0.06 meV. The values for α
and Γ seem reasonable, which supports the use of this particular fit function.
This fit is shown in red in figure 3.13. The gap in A/S-type CeCu2Si2 is
thus slightly smaller than the gap of 0.2 meV observed in S-type CeCu2Si2
[SAF+11].

At 350 mK, a free fit with the AG equation yields Egap = 0.11±0.03 meV,
α = 0.32±0.22 and Γ = 0.24±0.05 meV. A larger value for α, corresponding
to an increased number of magnetic impurities, is expected due to the increase
of intensity of the magnetic Bragg peak. However, an increased value for Γ,
compared to both the superconducting and the antiferromagnetic state, does
not appear reasonable. Therefore, it is more constructive to perform a fit
with fixed Γ = 0.21 meV, as there is a strong interdependence between Γ,
α and Egap (in figure 3.13, the free fit is shown, but the form of the total
fit function looks very similar for both fits). Then α takes the value α =
0.43±0.16 and the gap is fitted to be Egap = 0.13±0.02 meV. This relatively
small reduction in the gap size compared to 100 mK would be in line with a
first-order transition.

At V2, the inelastic response of the A/S-type crystal was also measured in
field. Due to a lower flux, and thus longer count rates, spectra were measured
only for E ≤ 0.3 meV. For these smaller energy windows and due to increased
scattering of the data, the fits obtained are less reliable, so that the V2 data
will only be discussed qualitatively. Figure 3.14 shows the spectra measured
at zero field, 1 T and 2 T. To serve as a guide to the eye, fit functions are
included which take the width Γ from the IN12 fits. In the zero field data,
the dip around 0.14 meV clearly shows the presence of a superconducting
gap. This is not seen in the data at 1 T and 2 T, where the count rates
are higher for E < Egap. At 2 T, the sample is in the antiferromagnetic
state, so that a quasi-elastic response is expected. However, at 1 T, the
measurement of the susceptibility and the magnetic Bragg peak (figure 3.12)
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Figure 3.14: Spectra of A/S-type CeCu2(Si0.98Ge0.02)2 at the magnetic or-
dering vector, measured at V2 (T = 100 mK). Zero field data are compared
to the data at (a) 1 T and (b) 2 T. Fit functions according to the AG theory
(B = 0) or quasi-elastic functions (B = 1 T and 2 T) are shown as a guide
to the eye; these are not free fits, but fix the width Γ to the value fitted in
zero field to the IN12 data.

suggest that the sample is still in the superconducting state. The seemingly
quasi-elastic response therefore indicates that either the gap size is strongly
reduced, or that there is a large concentration of in-gap states. The second
explanation appears more conclusive, as a gradual closing of the gap should
not be observed for a first-order transition, but a large number of in-gap
states is expected for a type-II superconductor close to Bc2.

For the A/S-type sample, the inelastic response is very similar to the
A-type sample for T > Tc, and somewhat similar to the S-type sample for
T < Tc. The smearing out of the gap might not be an intrinsic effect of A/S-
type CeCu2Si2, but due to the disorder in this particular crystal. Similarly,
it is difficult to judge whether the transition into the superconducting state
is first order because of the observed distribution of transition temperatures.
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Chapter 4

The interplay of geometric
frustration and Kondo physics
in CePdAl

4.1 The compound CePdAl

The general route to quantum criticality in heavy-fermion systems is the
suppression of magnetic order via tuning of the Kondo effect, which counter-
acts the magnetic exchange interaction. However, it is also possible that an
ordered magnetic phase is suppressed by the competition of magnetic inter-
actions, i.e. magnetic frustration. Theoretically, this new route to quantum
criticality has been discussed in the framework of a new axis to the Doniach
phase diagram, which measures frustration [Si06, Voj08, CN10].

From an experimental point of view, the question of suitable model sys-
tems remains to be settled. General concepts for frustration are based on
localised spins in insulators, i.e. they require the presence of direct exchange,
super- or double-exchange. In 4f-based intermetallics, however, magnetic or-
der is mediated by the RKKY interaction, which has a long spacial extension
(equation 2.22). Furthermore, the applicability of the frustration parameter,
the ratio of the Weiss temperature to the Néel temperature, is questionable.
The frustration parameter implies that magnetic frustration is the only way
to suppress the ordering temperature compared to the magnetic exchange in-
teractions, but metals with Kondo interaction frequently have reduced Néel
temperatures even in the absence of frustration.

CePdAl might be a good model system for frustrated heavy fermions,
as there is microscopic evidence for the presence of (partial) frustration: In
powder neutron diffraction experiments it was shown that only two thirds
of the cerium moments participate in the long-range magnetic order below
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TN = 2.7 K [DEM+96, KDKvdB02]. This is despite the fact that all cerium
atoms sit in crystallographically equivalent sites, and their high-temperature
magnetic behaviour is identical [OMN+08]. The frustration is presumably
caused by a combination of the hexagonal crystal structure [XSH94], with
a Kagomé-like arrangement of the cerium atoms, and competing interac-
tions between the Ce moments in the ab-plane. In a 2-dimensional model,
neglecting the c-direction, it was suggested that the nearest-neighbour in-
teraction Ce-Ce is ferromagnetic and the next-nearest neighbour interaction
antiferromagnetic [NnRLC97]. This leads to ferromagnetic chains that are
antiferromagnetically coupled, but separated by frustrated moments. Figure
4.1 shows models of the magnetic structure, which can be described by the or-
dering wave vector (0.5 0 τl) with τl ≈ 0.35. Since τl is incommensurate, it is
more difficult to establish a model that includes the out-of-plane component
of the magnetic order. In figure 4.1 (c) a sinusoidal modulation along the
c-axis is shown, as proposed by Dönni et al. [DEM+96]. However, since τl is
not exactly 1/3, this model requires a different size of the magnetic moments
for each ab-plane. Alternatively, from a more localised point of view one can
assume stacking defaults along c which cause τl to be incommensurate.

The Kondo properties of CePdAl are well established from a maximum
in the resistivity and an enhanced specific heat coefficient of around γ0 =
270 mJ/(mol·K2) [KMMS94, SJL+94, GHU+02, FHB+13]. In the paramag-
netic phase, Curie-Weiss behaviour is observed, with an effective moment
of 2.53 µB corresponding to the Ce3+ ion [DEM+96], or slightly reduced at
intermediate temperatures of order 100 K due to the crystal electric field
[FHB+13]. At all temperatures, the crystal field causes a strong magnetic
anisotropy with the c-axis as the easy axis [OKH+96, DEM+96].

The Néel temperature of CePdAl can be suppressed to zero by appli-
cation of either pressure [TMKM96, GHU+02, PMA+07], magnetic field
[GHU+02, PMA+06] or Ni substitution on the Pd site [FBG+14]. In magnetic
fields close to the critical field, metamagnetic first-order transitions occur,
making the observation of a field-induced quantum critical point problem-
atic. In the pressure and substitution studies, however, there is good evidence
that a quantum critical point is reached at around 0.9 GPa or 14% Ni substi-
tution, respectively. Fritsch et al. [FBG+14] observed a logarithmic increase
of C/T at low temperatures in CePd0.86Ni0.14Al samples, as predicted for
a 2-dimensional QCP within the Hertz-Millis-Moriya scenario [Mil93]. The
proposed explanation for the appearance of 2-dimensional magnetic fluctu-
ations in a 3-dimensional magnetic structure are the planes shown in figure
4.1, which are separated by frustrated cerium moments. Thus, the frustration
would enter the quantum critical behaviour of the system by changing the
effective dimensionality. However, it is also possible that the Hertz-Millis-
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Moriya scenario is not applicable in the presence of strong frustration, and
new theories are required to explain the observations.

For CePdAl under pressure, it was found that the magnetic ordering vec-
tor is stable for all pressures p < pc [PMA+07]. For CePdAl under chemical
pressure, i.e. Ni substitution, no studies have been published so far. The
investigation of the influence of Ni on the magnetic order will form part of
the following chapter. All neutron experiments were performed on single
crystals so that anisotropy effects can be studied. First a detailed analysis
of the magnetic order in the parent compound CePdAl is given.

4.2 Magnetic order in CePdAl

Details of the diffraction experiments

The data discussed in this section originated from three different single crys-
tal neutron diffraction experiments, two at the diffractometer D10 (ILL,
Grenoble) and one at the diffractometer RESI (FRM2, Munich). The first of
the D10 measurements was performed by Sarah Woitschach. For all exper-
iments, the same 1.8 g single crystal was used. It was cut out of the batch
VF541, which was synthesised by Veronika Fritsch by Czochralski growth at
Karlsruhe University. The sample was glued to a copper sample holder on
a polished surface perpendicular to the [110] direction. Thus, the scattering
plane was the (h 0 l) plane, which includes the magnetic ordering vector
(0.5 0 τl), τl ≈ 0.35.

The experiments at D10 were performed with an incident neutron wave-
length of λ = 2.36 Å. In the first experiment, a 4He flow cryostat was used
which allowed cooling to a base temperature of 1.8 K and yielded a large flex-
ibility for measuring different magnetic reflections (h±0.5 k±0.5 l±τl), also
outside of the scattering plane. The second D10 experiment was performed
using a conventional 4He bath cryostat with a base temperature of 1.6 K.
While the cryostat could not be tilted, the detector could be rotated out of
plane by up to 15◦, which allowed scans along k across the (h±0.5 0 l±τl)
reflections to be measured. The detector was a 8x8 cm2 area detector, which
was used like a single counter by integration over the central section.

The experiment at RESI was performed with a smaller wavelength (λ =
1.03 Å) and at lower temperatures using a 3He cryostat (base temperature
0.43 K). The RESI set-up yields a very high momentum resolution. The
detector was a single counter. The measurement of reflections outside of the
scattering plane was not possible.

Fits of the D10 data yielded a width of around 0.3◦ for the nuclear Bragg
peaks. The measurement at RESI showed that all peaks, both nuclear and
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magnetic, were split into (at least) three different reflections, each of which
is around 0.24◦ wide. They can be attributed to grains in the crystal that
are missaligned by a fraction of a degree. This splitting can be accounted for
by peak functions that consist of a sum of three peaks, whose splitting and
intensity ratio is fixed and whose width is identical. All fit results presented
for this crystal refer to the averaged fitted position and the summed fitted
intensity of the three contributions.

The measured data were normalised to a monitor that was placed in the
beam in front of the sample. Comparison between experiments performed at
different instruments was done by normalisation to the integrated intensity
of nuclear reflections. Thus, it was ensured that the datasets from D10 and
RESI are consistent. Nevertheless, the datasets will mainly be looked at
separately in the following. The analysis of phenomena around the Néel
temperature will be based on the D10 datasets, since they have a better
signal-to-background ratio. The discussion of the ordered phase can be done
more accurately based on the data measured at RESI, due to the improved
Q-resolution and the lower base temperature.

Results

The first step of the single crystal experiments on CePdAl was to com-
pare the results to those that were reported from neutron powder diffraction
[DEM+96, KDKvdB02]. Therefore, a variety of magnetic Bragg peaks were
recorded by performing ω scans at the expected positions at T = 1.8 K (well
below TN = 2.7 K). The measured positions are in good agreement with
the ordering vector (0.5 0 τl) found in the powder measurement (or, equiva-
lently, (0 0.5 τl) or (0.5 0.5 τl)). The comparison of the intensity of different
magnetic Bragg peaks showed that reflections with a large l-component are
strongly suppressed, which confirms that the spins are oriented along the
c-axis. Along the h- or k-direction the intensity decrease with increasing
momentum transfer is moderate, following the magnetic form factor.

Dönni et al. also reported that reflections at the positions (h/2 −h l±τl)
are forbidden in CePdAl [DEM+96], which is related to the absence of an
ordered magnetic moment on one out of three cerium ions. However, in the
single crystal data these reflections do appear, even though they are about an
order of magnitude weaker than other magnetic reflections. One example is
shown in figure 4.2. This suggests that those cerium ions which are supposed
to be paramagnetic in the ordered phase actually do have a finite ordered
moment, at least on the time scale of the neutron experiment (≈ 10−12 s).
Considering that the intensity is proportional to the square of the ordered
moment, the ordered moment on the third cerium ion is significant. However,
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Figure 4.2: A magnetic Bragg peak of CePdAl (a), compared to a forbidden
reflection (b). The Q vectors differ only in the k component, which is 2h for
the allowed reflection and −2h for the forbidden reflection. The background
has been subtracted for both scans. They are plotted on the same intensity
scale, but the data of the forbidden reflection have been multiplied by a factor
of ten. The peak splitting is caused by the mosaicity of the sample.

the order is apparently short-ranged, since the reflections are broadened.
As a next step, the temperature dependence of the magnetic Bragg peaks

was studied. The single crystal measurement made it possible to look at the
anisotropy of the reflections by taking scans along the three principal recip-
rocal space directions. Such scans were performed at temperatures between
0.43 K and 10 K (for the lowest temperatures, scans along k are missing,
since the experiment at RESI did not allow out-of-plane measurements). Be-
cause the incommensurate component τl of the ordering vector is temperature
dependent, scans along l were measured first so that the scans along h and k
could be done at the value of l that corresponds to the maximum intensity.
All scans were fitted with Voigt functions, where the Gaussian component
describes the resolution of the diffractometer and the Lorentzian component
the correlation length of the magnetic correlations. The resolution width is
not known exactly, since it depends on 2θ and is thus not identical to the
width of the nuclear reflections. This uncertainty necessarily affects the ab-
solute values of the Lorentzian width (and thus correlation length), especially
when Lorentzian and Gaussian widths are comparable in magnitude.

The position along l as well as the magnetic moment per cerium atom,
extracted from the Voigt fits to the magnetic Bragg peak (0.5 0 τl), are shown
in figure 4.3. Since the data do not yield absolute units, the square root of
the integrated intensity is plotted and normalised it to the value at lowest
temperature. Both the incommensurate component, including the position
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Figure 4.3: Fitted incommensurate component τl and normalised magnetic
moment per cerium of CePdAl, derived from l-scans over the (0.5 0 τl) re-
flection. Circles depict data from RESI while squares show data from D10.
The data shown here refer to the long-range magnetic order.

of the lock-in value, and the ordered moment are in very good agreement
with the powder data from reference [KDKvdB02]. The respective fit results
for the fits along h and k are not shown, since the position is temperature
independent and the intensity follows the same trend as the l-scans.

The shape of the magnetic signal has an interesting temperature depen-
dence, which has not been observed by powder neutron diffraction. This can
be seen in figure 4.4, which shows exemplary scans along l around the position
(0.5 0 τl), τl ≈ 0.35, at different temperatures. In the following paragraphs
the temperature dependence of the magnetic signal is discussed, starting from
temperatures above the Néel temperature and then gradually lowering the
temperature.

Short-ranged magnetic correlations at (0.5 0 τl) could be traced up to a
temperature of 5 K, which is almost a factor two larger than the ordering
temperature. As an example, a scan at 3.1 K is shown in figure 4.4. Strong
magnetic correlations above the Néel temperature are expected for systems
with magnetic frustration, and were already observed for CePdAl in NMR
measurements [OMN+08]: The correlation length at 3 K was estimated to
be 2.3·a = 16.5 Å, which was measured in powder so that the reference to
the a-axis is only an assumption. The single crystal neutron measurement
yields 15.8 Å along h, 12.6 Å along k and 21.4 Å along l at 3 K, in very good
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Figure 4.4: Scans along l around (0.5 0 τl), τl ≈ 0.35, measured at RESI
(images (a) and (b)) and D10 (images (c) and (d)). The data measured at
RESI have been multiplied with a constant factor to bring them to the same
intensity scale as the D10 data. A background has been subtracted from all
scans. The inset in panel (c) shows the same data as the main image on
the axis scale of panel (a) and (b). Plotted in red are fit functions for the
long-range order, in green fit functions for short-range order, and their sum
for the scan at 2.5 K is plotted in blue (see main text for details).
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Figure 4.5: (a) Fitted integrated intensity and (b) correlation length ξ of the
short-range order in CePdAl, for scans measured along h (red), k (blue) and
l (black) at D10. The integrated intensity along k is increased mainly due to
the poorer resolution outside of the scattering plane.

overall agreement with the NMR data.

On lowering the temperature below TN = 2.7 K, a sharp signal, corre-
sponding to long-range order, appears; the temperature dependence of its
intensity has been discussed above (figure 4.3). For a certain temperature
range, short-range correlations coexist with the long-range signal, so that the
measured data need to be described by two Voigt functions. In figure 4.4,
this is shown for a scan at 2.5 K. The origin of the broad signal are critical
fluctuations associated with the phase transition. The fitted intensity and
correlation length are shown in figure 4.5, for scans from below and above TN.
The fit accuracy is problematic below TN due to the large interdependence
of the width of both peaks, as well as a competition between the short-range
order signal and the background level1. The intensity of the broad signal
reaches a maximum at TN, as expected for critical fluctuations. The correla-
tion length does not diverge at TN, but instead becomes increasingly longer
as the temperature is lowered. This might be an effect of limited fit accuracy.
Interestingly, the correlation length of the short-range order is not strongly
anisotropic: Fitted values are nearly identical for the h and k direction and
are only around 50% larger for the l-scans. Below 2.4 K the two signals can
no longer be reasonably separated.

At T ≈ 2-2.2 K, the magnetic Bragg peak of CePdAl can be described
with a single sharp peak, whose intrinsic width is smaller (along l) or of

1The background was fixed for scans at all temperatures, but its absolute value is not
exactly known, since fluctuations persist to high temperatures.
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Figure 4.6: Fitted correlation length ξ of the long-range order signal in CeP-
dAl, for scans measured along h (red) and l (black) at RESI. The lines
show the correlation length which corresponds to an equality of the fitted
Lorentzian width with the Gaussian resolution width.

the same order (along h) as the resolution width. However, an interesting
and unusual observation is made as the temperature is lowered further: The
width of the magnetic signal clearly becomes larger. In figure 4.4, this can
be seen when comparing the scan at 2.1 K with the scan at 0.4 K. As it
is apparent from figure 4.3, this is not accompanied by a loss in magnetic
intensity. The temperature development of the correlation length ξ, which
is extracted from fits to l- and h-scans, is shown in figure 4.6. The RESI
dataset is used here, since it has a very good Q resolution. ξ gradually
becomes smaller on lowering the temperature, both in the l-direction and in
the h-direction. At the lowest measured temperature, the fitted correlation
length is around 200 Å, i.e. the ordered magnetic regions are still rather
large. The shrinking of the correlation length is contrary to what is expected
for a conventional antiferromagnet, so that a relationship to the magnetic
frustration seems likely. A possible explanation are correlations that involve
the one third of the spins which (supposedly) do not participate in the long-
range order, which interfere with the order of the other two thirds of the
spins.

Summing up the results on the pure CePdAl sample, magnetic Bragg
peaks are observed which indicate a partially ordered state, in agreement with
earlier powder data [DEM+96, KDKvdB02]. Strong short-range correlations
are observed above the Néel temperature, which is a sign of frustration.
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They persist for a limited temperature range below TN in co-existence with
the long-range order. The long-range order itself has a finite correlation
length or domain size at the lowest temperatures. This might be a sign
that correlations occur between the frustrated moments, and would be in
agreement with the observation of a broad, weak signal at the position of
nominally forbidden reflections.

4.3 Magnetic order in CePd0.9Ni0.1Al

Details of the diffraction experiment

The experiment was performed at the diffractometer E4 (BER II, Helmholtz-
Zentrum Berlin) with an incident neutron wavelength of λ = 2.45 Å. The
sample was a 7.0 g single crystal of composition CePd0.9Ni0.1Al which was
synthesised by Veronika Fritsch by Czochralski growth (batch number VF563).
Nuclear Bragg peaks are rather broad (1.2◦) due to disorder induced by the
Ni substitution.

The sample was glued to a copper sample holder on a polished surface
perpendicular to the [110] direction to yield (h 0 l) as horizontal scattering
plane, in analogy to the experiments performed on CePdAl. Cooling was
achieved with a 3He cryostat (base temperature 0.25 K). The detector was
a 20x20 cm2 area detector; intensities were obtained by integrating over the
central section of the detector. Tilting of the sample or the detector out of
the scattering plane was not possible. All measurements were normalised to
a monitor that was placed in the beam in front of the sample.

Results

The experiment was performed analogous to the measurements on CePdAl.
Scans were measured at temperatures between 0.25 K and 5 K along l and
h (scans along k are not allowed by the geometry of the set-up). A first
important observation is that the magnetic ordering vector in CePd0.9Ni0.1Al
is the same as for the pure compound, τ = (0.5 0 τl), τl ≈ 0.35. An exemplary
scan at (1.5 0 τl) is shown in figure 4.7. The incommensurate component τl
appears again to be temperature dependent, with the magnitude decreasing
with decreasing temperature. However, the error bars of the fitted position
are of a similar size as the absolute change in position, so that a more detailed
discussion, e.g. of the lock-in temperature, is not possible. This is not due
to a smaller variation of τl compared to pure CePdAl, but due to a strong
increase of the size of the error bars, caused by the increased width of the
magnetic Bragg peaks.
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Figure 4.7: Magnetic Bragg peak of CePd0.9Ni0.1Al, measured at E4. (a)
l-scan at (1.5 0 τl) with Lorentzian fit. (b) Fitted correlation length (black)
and integrated intensity (blue) of l-scans at different temperatures. The
black line shows the correlation length which corresponds to an equality of
the fitted Lorentzian width with the Gaussian resolution width.

The h- and l-scans were again fitted with Voigt functions, where the
Gaussian component describes the resolution. It should be noted that its
width is mainly given by the mosaicity of the sample, rather than the in-
strument resolution, due to the inhomogeneity of the single crystal. Still,
the magnetic Bragg peaks are broader than the nuclear Bragg peaks at all
measured temperatures. The fitted intensity and correlation length ξ of the
magnetic signal are shown in figure 4.7 for scans along l. Results for scans
along h are nor shown, since they show a similar trend. Both correlation
length and intensity become gradually larger as the temperature is lowered,
but they display no sharp signature at the ordering temperature TN = 0.8 K
[Luc14], and do not seem to reach a saturation value at the lowest measured
temperature of 0.25 K. The absolute correlation length is rather short (below
100 Å). This broadening cannot be associated with the same mechanisms as
discussed for CePdAl: Neither does it correspond to the short-range order
observed around the ordering temperature—the signal of CePd0.9Ni0.1Al is
too broad to observe that—nor is it reminiscent of the signal broadening
of CePdAl at low temperatures. It is therefore likely that the broadening
observed in CePd0.9Ni0.1Al is caused by disorder. This is supported by the
comparison of the data shown here with neutron scattering data of a CePdAl
crystal under a pressure of 0.65 GPa, published in reference [PMA+07]: This
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has a comparable ordering temperature, but a very sharp transition into the
ordered state.

4.4 Ordered magnetic moment in the series CePd1-xNixAl

Details of the diffraction experiment

The aim of this experiment was the comparison of the ordered magnetic mo-
ment of CePdAl, CePd0.95Ni0.05Al and CePd0.9Ni0.1Al. For this purpose, all
samples were measured at the same instrument (E4, Berlin) under identical
settings and with the same sample environment (3He cryostat). The CePdAl
and the CePd0.9Ni0.1Al crystal were the same as in the experiments described
in section 4.2 and 4.3, respectively. The CePd0.95Ni0.05Al sample was a 3 g
single crystal synthesised by Veronika Fritsch (sample number VF573). The
diffraction experiment revealed that the 5% Ni substituted sample contains
two major grains of similar size, which are missaligned by around 13◦. All
results presented here thus refer only to one of the two grains, which was
chosen for the sample orientation. Even within this grain, nuclear reflections
are rather broad (≈ 1.8◦), showing that the crystalline quality of this sample
is poorer than that of both other crystals.

The settings at the diffractometer E4 were very similar to the experiment
of the last section. However, the data analysis was done in a modified way
by making explicit use of the area detector: Intensity maps in the (h 0 l)
plane were constructed, from which cuts along h or l could be derived. This
analysis was done by Stefan Lucas, who mainly conducted the experiment.

Results

The analysis of the magnetic Bragg peaks of CePdAl and CePd0.9Ni0.1Al
are in line with the results presented in the last two sections. Only a few
temperatures were measured in the current experiment, but the trends for
intensity, peak position τl and correlation length ξ are the same as already
reported. For CePd0.95Ni0.05Al, measurements were performed at 20 different
temperatures. Magnetic Bragg peaks appear at the same positions as for the
other two samples. The temperature development of the magnetic intensity
shows the expected behaviour, similar to pure CePdAl, and confirms the Néel
temperature TN = 1.8 K found in thermodynamic measurements [Luc14].
Since the resolution of the experiment is rather poor, due to the crystalline
quality, no statements can be made about the lock-in transition or about
possible short-range order effects.

For the three samples, fits were done to the magnetic reflections (0.5 0 0.35),
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Figure 4.8: Ordered magnetic moment for CePdAl, CePd0.95Ni0.05Al and
CePd0.9Ni0.1Al, normalised to the moment of CePdAl. Plotted in black are
data points measured at 0.25 K, while the red star shows the extrapolated
value at T = 0 for the sample with 10% Ni content. The linear trend is
demonstrated by the blue dashed line.

(0.5 0 0.65), (1.5 0 0.35) and (1.5 0 0.65) at 0.25 K, and their integrated in-
tensity was averaged for each sample. This magnetic intensity was then
normalised to the averaged integrated intensity of the nuclear reflections
(1 0 0), (1 0 1) and (0 0 1). In figure 4.8, the ordered moment is shown,
which is proportional to the square root of the neutron intensity. Here the
ordered moment of the pure sample is set to 1 because the data do not
yield absolute units. In powder neutron diffraction, the ordered moment of
CePdAl was found to be 1.58 µB (reference [DEM+96]) or 1.77 µB (reference
[KDKvdB02]). It should be noted again that this moment refers to two out of
three cerium positions, and the ordered moment on the third cerium position
is supposed to be zero.

While CePdAl and CePd0.95Ni0.05Al have reached their saturation mo-
ment at 0.25 K, it can be assumed that the intensity of the magnetic Bragg
peaks of CePd0.9Ni0.1Al would rise further for T → 0 (compare figure 4.7).
The estimated additional increase is 15%. The resulting ordered moment is
shown as a red star in figure 4.8. Then it can be concluded that the suppres-
sion of the ordered moment with Ni substitution is linear. This is demon-
strated by the blue line, which ends at the critical concentration x = 0.14.
Since also the Néel temperature is linearly reduced with Ni content, this im-
plies a proportionality of the ordered moment and the ordering temperature.

In summary, the magnetic ordering vector in CePd1-xNixAl samples is the
same for all Ni concentrations, and the ordered moment is linearly suppressed
with Ni content and Néel temperature. No conclusions can be drawn to the
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development of possible frustration effects in the substituted samples, as
observed for the pure compound; the crystalline quality of samples with Ni
substitutions results in large peak widths, which make it difficult to study
the intrinsic width of the magnetic reflections in detail.
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Chapter 5

Magnetic excitations and
fluctuations of YbNi4P2

5.1 The compound YbNi4P2

The study of magnetic quantum critical points in intermetallic systems has
mostly been based on antiferromagnetic compounds. This is not only because
ferromagnetic order is rarer in intermetallics, but also because it has proven
to be difficult to suppress a second order transition into ferromagnetism to
very low temperature. Instead, it was often observed that the transition turns
first order when it is suppressed to low enough temperatures, or that the for-
mation of other ordered phases prevents the observation of a ferromagnetic
(FM) quantum critical point. This behaviour has been explained from a theo-
retical point of view by a coupling of the fluctuations of the FM order param-
eter to fermionic particle-hole excitations [KB03, GSS08, YS10, BBGK15].
Therefore, it has been an exciting discovery that YbNi4P2 has a second order
transition into ferromagnetism as low as 170 mK, which can be suppressed
to zero by arsenic doping on the phosphorus site [KLS+11]. The compound
contains magnetic Yb3+ ions, while Ni is non-magnetic, and shows Kondo
characteristics with TK ≈ 8 K. It is the first 4f-based intermetallic compound
that allows ferromagnetic quantum criticality to be studied.

YbNi4P2 crystallises in the tetragonal ZrFe4Si2 structure which has sev-
eral remarkable features [KCB00]: The lattice parameter c = 3.59 Å is only
about half as large as the lattice parameter a = 7.06 Å, so that quasi-1D
chains of Yb ions are formed along the c-axis (see figure 5.1). Neighbouring
chains are shifted by c/2, and the Yb ions in one chain experience a crystal
electric field (CEF) that is rotated by 90◦ with respect to the next chain.
This structure leads to a strong anisotropy of the magnetic properties, as
studies on YbNi4P2 single crystals have shown [KG12, SKL+13]. At high
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Figure 5.1: Crystal structure of YbNi4P2, looking along the c-axis (panel
a) and with the c-axis upright (panel b); pictures by Cornelius Krellner,
taken from reference [KG12]. Note that the site symmetry of the Yb sites is
orthogonal, while the crystal structure is tetragonal.

temperatures, the CEF causes the c-axis to be the easy axis of the magneti-
sation, but below TC, the ordered moment is oriented perpendicular to the
c-axis. A suggested explanation of this unusual behaviour is the enhanced
role of transverse spin fluctuations close to a QCP: The driving force for the
hard-axis order is the maximisation of phase space for the transverse fluctua-
tions, which was nicknamed the “quantum Indian rope trick” by the authors
[KPG14].

At the time of the experiments, no large single crystals were available
to study this interesting magnetic anisotropy on a microscopic level by neu-
tron scattering. Still, neutron experiments can make important contribu-
tions to understanding the properties of YbNi4P2. In the first part of this
chapter, an analysis of the crystal-electric-field excitations in YbNi4P2 is pre-
sented. This analysis combines data from powder neutron spectroscopy and
heat capacity with susceptibility measurements: The former reveal the level
scheme, while the latter contain information about the anisotropy. To handle
the complexity that results from the orthorhombic site symmetry of Yb in
YbNi4P2, the programme package McPhase was used to fit the experimental
data [RLK+13].

In the second part, high-resolution neutron spectra of YbNi4P2 are pre-
sented, which show the quasi-elastic magnetic fluctuations. Again, the data
cannot reveal any directional dependence since they were measured on pow-
der. Nevertheless, the ferromagnetic nature of the fluctuations can be demon-
strated by comparing the local response (at all momentum transfers) to the
Q = 0 response.
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5.2 Crystal electric field scheme

The Yb3+ ion has the electron configuration [Xe]4f13 and a total angular
momentum of J = 7/2 in the ground state according to Hund’s rules. For
J to be a good quantum number, the spin-orbit coupling needs to be much
stronger than the effect of the CEF, which is generally true for 4f-compounds
[Blu01, JM91]. The measured effective moment at high temperatures sug-
gests that this is also the case for YbNi4P2: It is found to be 4.52 µB in a
linear fit to 1/χ between 50 K and 400 K [KLS+11], very close to the theoret-
ical value of 4.53 µB for an Yb3+ ion [Blu01]. The eight-fold multiplet of the
J = 7/2 state is expected to split into four Kramer’s doublets due to the or-
thorhombic crystalline environment around the ytterbium ions. All Yb ions
are located on equivalent crystallographic positions, even if the main in-plane
axis is rotated by 90◦ between the corner and the body-centred sites. There-
fore, one expects the same CEF scheme for all Yb ions. The inelastic neutron
scattering data shown in this section have been published in [HSK+13].

5.2.1 Inelastic neutron scattering

Experimental details

For the neutron measurements of the CEF excitations, several polycrystalline
samples have been united to yield a total mass of 5.39 g. These included parts
of the batches 63522, 63523, 63524 and 63529, which were all synthesised by
Cornelius Krellner. Due to the self-flux growth, polycrystalline YbNi4P2

samples contain grains of Ni, Ni3P and other Ni-P binary compounds. The
contamination can be reduced by scanning a permanent magnet over the
carefully ground samples, which will attract the ferromagnetic nickel grains.
Since the samples are prepared in glassy-carbon crucibles, graphite appears
as a further contaminant. This is evident from the neutron diffractogram
which shows graphite Bragg peaks.

To quantify the amount of contamination, atom absorption spectroscopy
has been performed on a fraction of the neutron sample. This analysis has
not been performed on this particular sample, but for a later sample used
for the measurement of the quasi-elastic scattering (see section 5.3). This
later sample included the 5.4 g used in the CEF measurements and around
10 g of additional polycrystalline material. Its composition was found to
be Yb1Ni4.47P2.20C0.57. The content of elemental nickel was separately de-
termined by magnetisation measurements to be about 3 mol%. Apparently,
the sample contains a rather large amount of Ni-P binary compounds. Also
the carbon content is surprisingly high; however, from the intensity of the
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graphite (002) Bragg peak, it can be deduced that the carbon content in the
5.4 g sample was around 2.5 times smaller than that of the analysed sample.

Despite these contaminants, the low-temperature, low-energy magnetic
neutron scattering can be considered to originate only from YbNi4P2. Since
Ni3P is a Pauli paramagnet [ZJ93], Ni is a ferromagnet that orders well above
room temperature and graphite is diamagnetic, none of these compounds are
expected to show a temperature-dependent magnetic signal in the relevant
temperature range well below room temperature.

The measurement of the CEF excitations was performed at the thermal-
neutron time-of-flight spectrometer IN4 at ILL, Grenoble. The incident neu-
tron energy was Ei = 36 meV (λi = 1.5 Å), which led to a measurable range
of wavevector transfer of about Q = 1.0− 7.3 Å−1 at the elastic line. A few
measurements were also taken with Ei = 68 meV (λi = 1.1 Å). A 3x4 cm
rectangular sample holder made from aluminium was used; it was also mea-
sured separately without sample so that its signal could be subtracted from
all data. The self-absorption of the sample was accounted for with a Paalman-
Pings correction [PP62], and the efficiency of each 3He detector was deter-
mined by measuring a vanadium reference. All scans were normalised to
a monitor that was placed in the beam in front of the sample. An orange
cryostat allowed a base temperature of 1.6 K to be achieved.

For the subtraction of the phonon contribution, the non-magnetic refer-
ence LuCo4Ge2 was also measured, which has the same crystal structure as
YbNi4P2

1. Polycrystals from batches 42541 and 42542 (also produced by
Cornelius Krellner) were ground to yield a total powder mass of 7.61 g. The
same sample holder and measuring conditions were used.

Results

Figure 5.2 shows the measured scattering intensity of YbNi4P2 as a func-
tion of energy and wavevector transfer at 1.6 K. Two main features can be
distinguished in the inelastic regime: Intensity maxima due to magnetic ex-
citations can be found at E ≈ 5− 15 meV, while intensity maxima due to
phonon excitations are at E ≈ 12− 22 meV. The distinction can be made
on the basis of the Q dependence: The intensity of the magnetic excitations
follows the magnetic form factor and therefore decreases with increasing mo-
mentum transfer, while the phonons show a I ∝ Q2 relationship.

For a quantitative analysis of the magnetic signal a subtraction of the
phonon contribution was done according to the procedure of Murani [Mur83]
with the non-magnetic reference compound LuCo4Ge2. In Murani’s method,

1At the time of the experiment, the reference compound LuNi4P2 was not yet available.
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Figure 5.2: Colour plot of the measured neutron scattering intensity of
YbNi4P2 at 1.6 K as function of energy and wavevector transfer. Blue indi-
cates low intensity and red high intensity; the intensity in the elastic line is
above the cut-off limit. Published in reference [HSK+13].

spectra at high momentum transfer (where only phonons have significant
intensity) are subtracted from the low momentum transfer spectra (where
magnetic excitations are dominant). The high-Q-spectra need to be scaled
with the phonon intensity ratio Int(low-Q)/Int(high-Q) which is determined
through the non-magnetic reference. This procedure should be reliable de-
spite the large differences in the atomic masses between YbNi4P2 and LuCo4Ge2
since their spectra are not directly subtracted. Murani’s method also requires
that there is no pronounced Q dependence of the phonons, other than the
proportionality to Q2; this is the case for incoherent phonons or for sufficient
averaging over the Brillouin zone. This condition is reasonably met for the
YbNi4P2 powder spectra.

For the evaluation of the CEF levels, all spectra with Q = 2.5± 0.5 Å−1

are summed up. This choice allows both a good ratio of magnetic to phonon
intensity and a large range of energy transfers. Subtraction of phonon inten-
sity, as outlined above, then yields the magnetic intensity. The subtraction
is not meaningful at small energy transfers below about 4 meV due to the
varying intensity along the elastic line. Figure 5.3 shows the data at the
lowest measured temperature. It is now apparent that the broad feature at
E ≈ 5− 15 meV is composed of at least two overlapping peaks. These can
be identified as two or three CEF transitions. Other magnetic excitations,
such as magnons, are not expected in this energy and temperature range,
since the ordering temperature is only 170 mK. A two-peak fit yields tran-
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Figure 5.3: Magnetic intensity of YbNi4P2 at Q = 2.5± 0.5 Å−1 and
T = 1.6 K. A two-peak fit is also shown. In the inset, the same data are
plotted together with spectra taken at higher temperatures. Published in
reference [HSK+13].

sition energies of 8.5± 0.5 meV and 12.5± 0.5 meV and an energy width
(FWHM) of 5.0 meV at 1.6 K. The width exceeds the energy resolution of
the spectrometer by far, which might be a result of Kondo broadening. Al-
ternatively, or rather additionally, the peak broadening could be caused by
a dispersion of the CEF levels along certain crystallographic directions since
only the polycrystalline average is measured.

In the inset of figure 5.3, the temperature development of the CEF feature
is shown. The overall intensity decreases with temperature, as expected for
transitions from the ground state due to its thermal depopulation. Further-
more, there seems to be a slight shift to lower energies when the temperature
is increased from 1.6 K to 20 K. Since the CEF level scheme should be tem-
perature independent, such an apparent shift might indicate a further tran-
sition at slightly lower energies, which does not originate from the ground
state and becomes measurable when higher CEF levels start to be thermally
populated.

It was also confirmed in a measurement with an incident neutron wave-
length of λ = 1.1 Å that no further transitions can be observed up to 60 meV.
Krellner and Geibel [KG12] suggest that the highest CEF level is below
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40 meV. Therefore, it seems unlikely that a transition occurs at E > 60 meV.
Later measurements on YbNi4P2 with better energy resolution (see sec-
tion 5.3) also showed that there is no transition from the ground state at
E < 3 meV. Thus, there must either be three excited levels in the range
from 7 to 13 meV, or one transition has a vanishing transition matrix ele-
ment for neutron scattering.

Comparison to heat capacity measurements

Transitions to excited CEF levels give a Schottky-contribution to the heat
capacity. For a 4-level scheme with equal degeneracy of all levels, the contri-
bution is given by:

CSchottky =
R

(kBT )2
[∆2

1e
−
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2e
−

∆2
kBT +∆2

3e
−

∆3
kBT

+ (∆2 −∆1)
2e

−
∆1+∆2
kBT + (∆3 −∆1)

2e
−

∆1+∆3
kBT + (∆3 −∆2)

2e
−

∆2+∆3
kBT ]

[(1 + e
−

∆1
kBT + e

−
∆2
kBT + e

−
∆3
kBT

)2
]−1

(5.1)

To account for the low-temperature heat capacity properly, the Kondo effect
needs to be included in the model. The contribution to the heat capacity of
the ground-state doublet has been calculated and tabulated by Desgranges
and Schotte [DS82], as a function of T/TK. This contribution can simply
be added to the Schottky term 5.1. However, this only considers the Kondo
broadening of the ground state, while Kondo broadening of all levels is ex-
pected to occur. Romero et al. have given an empirical approach which im-
proves the description by including the broadening of the first excited level
as well [RASN14]. For the heat capacity of two doublets with half width Γ0

and Γ1 their approach gives:

C2d = − R

2(πkBT )2
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[
4ψ′
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(
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+
R

kB
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πT

(5.2)

Here ψ′ is the derivative of the digamma function. The Kondo temperature
implicitly enters in this expression, since it is proportional to Γ0. The sec-
ond and third excited level are included by adding the Schottky expression
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Figure 5.4: Magnetic heat capacity of YbNi4P2. The measured data (black
squares) are gained from a subtraction of the heat capacity of LuNi4P2 from
the total heat capacity of YbNi4P2 (original data shown in the inset, mea-
sured by Kristin Kliemt). (a) Lines show the calculated heat capacity ac-
cording to the Schottky model (plus Kondo contribution from [DS82]), with
transition energies 8.5 meV, 12.5 meV and a third level as indicated in the
plot. (b) The same plot is shown, but this time the heat capacity is calculated
according to the formula of Romero et al. [RASN14].

5.1. The total heat capacity for CEF transitions in the presence of Kondo
broadening is thus given by

CCEF = C2d + CSchottky −
R

(kBT )2


 ∆2

1e
−

∆1
kBT

(1 + e
−

∆1
kBT )2


 , (5.3)

where the last term avoids double counting of the transition between the
ground state and the first excited level.

To compare experimental data to either of these models, it is necessary
to extract the magnetic contribution to the heat capacity from the total heat
capacity. For this purpose, the non-magnetic reference compound LuNi4P2

was recently synthesised by Kristin Kliemt (Goethe University Frankfurt
am Main). It has the same crystal structure as YbNi4P2 and there is only a
minor difference in the atomic masses, so that the phonon contribution to the
specific heat is expected to be very similar for both compounds. Therefore,
the difference of the measured heat capacity of YbNi4P2 to that of LuNi4P2

yields to a good approximation the magnetic heat capacity of YbNi4P2.
The data, measured by Kristin Kliemt, are shown in figure 5.4, together

with several calculated curves: On the left side, the heat capacity has been
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calculated from equation 5.1 (plus Kondo contribution, taken from [DS82]),
while on the right side equation 5.3 was used. All calculations include energy
levels at 8.5 meV and 12.5 meV, while the third is set to different values. The
values for Γ0 and Γ1 in equation 5.3 are taken from the neutron scattering
data (Γ0, the width of the quasi-elastic signal, is discussed in section 5.3;
2Γ1, the width of the CEF excitations, is 5 meV, as stated above). None
of the two approaches fit the experimental data very well; the approach of
Romero et al. yields a slightly better agreement with the experiment, as the
maximum value of Cmag is too large in the Schottky model. Both models
suggest that the third level is at higher energy than the two observed with
neutron scattering. Unfortunately, an exact determination of this level is not
possible, since the heat capacity data are not very accurate at temperatures
higher than 100 K. In this temperature range, the magnitude of the phonon
contribution is at least a factor 10 larger than that of the magnetic signal.

The combination of neutron and heat capacity data suggests a level
scheme E1 = 8.5 meV, E2 = 12.5 meV and E3 ≈ 25 meV, where the tran-
sition from the ground state to the latter has a small or vanishing neutron
scattering cross section.

5.2.2 Simulations

Model Hamiltonian and fitting procedure

To gain better insights into the crystal electric field of YbNi4P2, susceptibility
data measured on single crystals were fitted in combination with the results
for the energy scheme presented above. For this purpose, the programme
“so1ion” of the McPhase package (version 5.1) was used. It is based on
the assumption that the CEF is weak compared to spin-orbit coupling and
thus acts as a perturbation to the J = 7/2 state, as it is generally the case
for 4f-compounds [Blu01, JM91]. The CEF is parametrised by the Stevens
operator formalism [Hut64, JM91, RLK+13], so that the Hamiltonian of the
Yb3+ ion can be written as

Hsingle ion =
∑

lm

Bm
l O

m
l (J)− gJµBJB (5.4)

with the crystal field parameters Bm
l and the Stevens operators Om

l (J); the
last term accounts for the Zeeman effect in a magnetic field B. Equation
5.4 ignores exchange interaction and hyperfine coupling, which is justified at
sufficiently high temperatures if their energy scales are small compared to the
CEF. Both the ordering temperature of 170 mK and characteristic tempera-
tures for hyperfine interactions are around three orders of magnitude smaller
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Table 5.1: Stevens operators relevant for the CEF acting on the Yb3+ ion in
YbNi4P2; X = J(J − 1) [Hut64].

than the CEF, so that this assumption should hold for all temperatures con-
sidered in the fits (the lowest temperature was chosen to be 14 K).

The Stevens operators can be expressed in terms of components of the
total angular momentum J and Jαwith α = x,y,z (commonly, Jx and Jy are
replaced by the raising and lowering operators J+ and J−). Generally, only
even terms appear due to the orthogonality of the spherical harmonics, and
for f-electrons, terms with l > 6 vanish. m can generally take values from −l
to +l, but the appropriate choice of axis will ensure that only parameters with
either the positive or the negative values of m appear. In case of YbNi4P2,
setting z parallel to the c-axis, but x and y at an angle of 45◦ with respect
to the a-axis ensures Bm

l = 0 for m < 0. No further symmetry restrictions
apply in the case of orthorhombic site symmetry. Thus, for the Yb ion in
YbNi4P2, nine Stevens operators need to be considered: O0

2, O
2
2, O

0
4, O

2
4, O

4
4,

O0
6, O

2
6, O

4
6 and O6

6. Their expressions are given in table 5.2.2.

This set of 9 parameters defines the CEF Hamiltonian 5.4 of the Yb3+

ion in YbNi4P2. McPhase will determine its eigenfunctions as linear combi-
nations of the mJ states (with mJ=±7/2,±5/2,±3/2,±1/2) as well as the energy
eigenvalues by diagonalisation of the Hamiltonian. Observable quantities
such as the susceptibility or the neutron scattering cross section can be cal-
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culated in the next step and compared to experimental data. To perform
a fit, the difference between calculated and experimental values needs to be
quantified by a standard deviation s [RLK+13]:

s2 = 1/N
∑

i

δi/erri (5.5)

δi is the difference between an experimental data point and the respective
calculated quantity, erri is the error of the data point and N the total number
of points considered. In the CEF analysis, the following quantities have been
used for δi:

• The deviation of the calculated to the measured inverse susceptibil-
ity for 20 linearly spaced data points between 40 K and 400 K. This
was done both for the c-direction and for the ab-plane, while the lat-
ter requires to average the calculated susceptibilities in the [110] and
the [11̄0] direction. This is necessary because McPhase calculates all
quantities based on a single Yb ion, which has orthorhombic site sym-
metry, while the crystal has tetragonal symmetry and any macroscopic
measurement averages over the two Yb ions in the unit cell which are
rotated by 90◦ with respect to each other.

• The deviation of the calculated to the measured susceptibility for 20 lin-
early spaced data points between 14 K and 180 K. For the c-direction,
the same data set was used as for the fit of the inverse susceptibility,
but for the a- and b-axis data from NMR measurements of Rajib Sakar
et al. were used [SBKG]. Unlike macroscopic measurements, the local
probe NMR allows the orthorhombic symmetry of the Yb site to be
observed. However, the assignment of the two signals to the a- or the
b-axis, or any other direction within the ab-plane, is arbitrary. The
Knight shift has been converted to susceptibility units by comparing
the average of the two in-plane signals to the AC-susceptibility data.

• The deviation of the energy eigenvalues of the first and second excited
state to the values 8.5 meV and 12.5 meV, the excitations measured
by neutron scattering. This implies that the third excited state is at
higher energy than 12.5 meV, which is justified from the heat capacity
measurements.

• The deviation of the neutron scattering cross section for the transition
to the third excited state from zero.

The relative importance of the different contributions to the standard devi-
ation can be influenced by using artificial errors erri in 5.5.
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The Hamiltonian 5.4 does not include the conduction electrons, so it can-
not describe the Kondo effect. However, the Kondo effect influences the sus-
ceptibility of YbNi4P2 even at high temperatures, so that the measured data
needed to be corrected before they could be compared to the single ion sim-
ulations. It has been shown that the Kondo effect leads to a deviation from
Curie’s law, which can be parametrised with an effective θ = 4.5 TK, describ-
ing the intersection of a high-temperature linear fit to the 1/χ-data with the
T -axis [GZ74]. This is very similar to the molecular-field approach taken for
antiferromagnets and ferromagnets. (Due to the low ordering temperature,
the ferromagnetic molecular field in YbNi4P2 is expected to be very small.)
Fitting the 1/χ-data of YbNi4P2 leads to a θ of 26 K in polycrystalline aver-
age (for a linear fit in the temperature range 200 to 400 K), corresponding to
a Kondo temperature of around 6 K, in good agreement with data from heat
capacity measurements [KLS+11] and neutron scattering (see section 5.3).
Therefore, the measured 1/χ-data were shifted by -10 mol/cm3, so that a fit
to the shifted data gives a θ of zero. This has been done prior to fitting with
McPhase for all susceptibility data, including the NMR data, assuming an
isotropic Kondo effect.

Results

The values of the symmetry-allowed Bm
l parameters have been fitted to sus-

ceptibility and neutron data of YbNi4P2 using a grid search, which is nec-
essary since the nine parameters are inter-dependent. Within McPhase, the
search is performed using the command “searchspace”, which proceeds step-
wise by making the grid progressively finer. Regions of parameter space that
have a very poor agreement to experimental values can be excluded in later
levels, thus allowing a fine grid in interesting parameter regions while keeping
the simulation time at a feasible level.

The size of the parameter space needs to be defined by giving maximum
and minimum values for all parameters. An idea of their order of magnitude,
and possibly also their sign, can be obtained from microscopic models. The
simplest of those is the point charge model, which calculates the CEF scheme
assuming point charges at the nuclear positions determined from x-ray pow-
der diffraction. For the values of the charges, Mulliken charges from DFT
calculations by Helge Rosner were used [KLS+11]2: -0.135 e (Ni), +0.015 e
(P) and +0.51 e (Yb). The electric field of these charges on a central Yb
ion was calculated for a large sphere of radius 16 Å which includes 1350
ions. A more sophisticated model of the CEF scheme, also based on DFT

2The publication includes the DFT calculations, but not the Mulliken charges them-
selves, which were obtained through private communication with Helge Rosner.
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calculations, was performed by Pavel Novák and Jan Kuneš [NK]. Their
method was originally developed for oxides [NKK13, NKM+13]. The crystal
field parameters for both models are given in the first two rows of table 5.2.
The point charge model predicts the B0

2 parameter to be dominant, while it
is very small in the DFT-based parameter set, which is instead dominated
by a large B2

2 parameter. Neither of the two parameter sets can reproduce
the experimental data: The point charge model strongly overestimates the
anisotropy between the c-axis and the ab-plane, while the DFT-based param-
eter set leads to an easy plane system rather than an easy c-axis, the latter
of which is observed by experiment. The neutron spectra can also not be
reproduced. Nevertheless, both models result in transitions energies that are
in rough agreement with experiment, so that it can be assumed that they
predict the right order of magnitude for the Bm

l parameters.

The Bm
l parameters which were fitted to experiments with McPhase are

given in the right column of table 5.2, along with calculated transition ener-
gies and neutron intensities. The fitted inverse susceptibility and susceptibil-
ity corresponding to thisBm

l parameter set is shown in figure 5.5. Satisfactory
agreement can be achieved for reproducing the anisotropy of 1/χ between c-
axis and ab-plane and the in-plane anisotropy in the NMR data. The latter
shows that for T > 40 K, the local susceptibility of one of the in-plane com-
ponents is as large as that of the c-axis. Some notable deviations of the fitted
curves occur for the in-plane average of 1/χ at high temperatures and for the
in-plane splitting of χ at low temperatures.

The corresponding level scheme is 8.1 meV - 12.1 meV - 29.5 meV, very
close to the scheme deduced from neutron scattering and heat capacity. For
the first two levels, this is necessarily the case, since the fit aimed to approach
the values 8.5 meV and 12.5 meV, using an artificial error of 0.25 meV which
is relatively similar to a realistic experimental error. The third level was free
in the fit, apart from the restriction that it should be larger than the sec-
ond. It is encouraging that its value is fitted rather close to what has been
suggested by the heat capacity data. More information can be obtained by
a comparison of simulated and measured transition intensities. This com-
parison is confined to intensity ratios, since the determination of absolute
neutron intensities is problematic in case of strong absorption effects. To
also include the quasi-elastic (QE) signal, data at λ =1.5 Å need to be con-
sidered (see section 5.3). They yield a measured intensity ratio 1:0.89:0.62
(QE:∆E1:∆E2) which is in reasonable agreement with the simulated inten-
sity ratio 0.76:1:0.53. The fit also satisfies the condition that no intensity
can be detected for the third transition.

The wave functions and energy eigenvalues corresponding to the global
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[meV] PCM Novák/Kuneš fit (confidence interval)

B0
2 -9.2e-1 -6.0e-3 -3.0e-1 (-3.4e-1 . . . -2.6e-1)

B2
2 8.3e-2 -1.4 -0.99 (-1.08 . . . -0.89)

B0
4 7.3e-4 2.3e-3 1.06e-2 (0.98e-2 . . . 1.13e-2)

B2
4 -2.1e-3 3.1e-3 7.1e-3 (0.2e-2 . . . 1.3e-2)

B4
4 2.8e-3 1.1e-2 1.9e-2 (1.1e-2 . . . 2.9e-2)

B0
6 -1.0e-6 1.2e-6 1.5e-4 (0.9e-4 . . . 2.1e-4)

B2
6 -1.3e-5 2.9e-4 -1.8e-5 (-5.2e-4 . . . 5.5e-4)

B4
6 -1.5e-5 -3.4e-4 1.2e-3 (0 . . . 2.3e-3)

B6
6 -2.0e-6 1.7e-4 1.1e-3 (0 . . . 2.1e-3)

(QE 9.7 b) (QE 9.4 b) (QE 4.0 b)

∆E1 15.6 (2.8 b) 8.9 (3.0 b) 8.1 (5.3 b)

∆E2 27.0 (0 b) 17.4 (0.1 b) 12.1 (2.8 b)

∆E3 33.3 (0 b) 28.5 (0 b) 29.5 (0.2 b)

Table 5.2: Crystal field parameters and transition energies for YbNi4P2, in
meV; calculated neutron intensities in barn (b) are added to the transition
energies (QE = quasi-elastic). PCM = point charge model, based on DFT
calculations of Helge Rosner [KLS+11]; results by Pavel Novák and Jan Kuneš
are also based on DFT calculations [NK], but use a more elaborate method to
deduce the CEF [NKK13, NKM+13]; fits to experimental data were obtained
in a grid search using McPhase (details see text). In parenthesis, the interval
is given where the goodness of fit changes by less than 10%.
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Figure 5.5: Measured and fitted (a) inverse susceptibility and (b) susceptibil-
ity of YbNi4P2. Measured data, both from AC and from NMRmeasurements,
are shifted to account for the Kondo effect (see text). In the McPhase fit,
the axes were chosen such that z ‖ c, but x and y were rotated by 45◦ with
respect to a and b. The AC-measured χab in the right graph is shown for
completeness, but was not fitted. Otherwise, the large squares correspond
exactly to those points where the fit is based.
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minimum of the fit are:

φ0 = ±0.93 |∓5/2〉 ± 0.33 |∓1/2〉 ∓ 0.15 |±7/2〉 ± 0.08 |±3/2〉
φ1 = ±0.69 |∓3/2〉 ± 0.67 |∓7/2〉 ± 0.27 |±1/2〉 ∓ 0.05 |±5/2〉
φ2 = ∓0.70 |∓7/2〉 ± 0.50 |∓3/2〉 ± 0.42 |±1/2〉 ∓ 0.30 |±5/2〉
φ3 = ±0.80 |∓1/2〉 ∓ 0.52 |±3/2〉 ∓ 0.21 |∓5/2〉 ± 0.20 |±7/2〉

The ground state is strongly dominated by the mJ = ±5/2 state, which is
a direct consequence of the requirement that one of the neutron transition
matrix elements should vanish, since the transition from the 5/2 to the 1/2
state does not fulfill ∆mJ = ±1. The calculated saturation moment of this
ground state is 2.5 µB/Yb for B ‖ c. So far, no magnetisation measurement
exist where saturation has been reached. However, a measurement by Kristin
Kliemt at 2 K yields only µc = 1.24 µB/Yb at 9 T. This implies that a
rather large field of around 25 T would be needed to reach saturation, if the
calculated saturation moment was correct.

Table 5.2 includes a confidence interval for each parameter where the
standard deviation of the fit is within 10% of the optimum standard devia-
tion; these values were calculated for all other parameters at their optimum
value. If all parameters are varied simultaneously, this range is slightly larger
due to the inter-dependence of the parameters. It can be seen that the fit
is very insensitive to some of the parameters, particularly the values of Bm

6 .
Also the fitted values of Bm

4 have a rather large error bar, and only the values
of Bm

2 can be fitted reliably. This is caused by the large parameter space,
in combination with the relatively small amount of experimental data. It
should be noted that the coefficients of the CEF wave functions are much
more sensitive to a variation of the Bm

l parameters than the fit quality, so
that equations 5.6 only give a rough idea of the true wave functions.

Thus, the fit results give a range of possible solutions rather than a full
determination of the CEF scheme: The true parameter set should lie within
the range presented here, since other parameter sets are in contradiction to
neutron and susceptibility measurements, but more experimental data would
be needed to determine the crystal field parameters reliably. Unfortunately,
the comparison of experimental data and calculated results necessarily suffers
from two problems: Firstly, the presence of the Kondo effect, which can only
be accounted for in a mean-field approximation; secondly, the co-occurrence
of orthogonal site symmetry and tetragonal crystal structure. While the
exact CEF scheme is difficult to determine, the result that the ground state
is dominated by the mJ = 5/2 wave function seems a rather robust feature
of the fits.
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5.3 Magnetic fluctuations

The low-energy magnetic fluctuations in YbNi4P2 were studied by powder
neutron spectroscopy. Measurements with thermal neutrons allowed the local
response to be studied in a wide range of temperatures, while spectrometers
using cold neutrons were used to measure to ferromagnetic fluctuations at
low temperatures. The data presented in this section have been published in
[HKE+15].

Experimental details

The data presented in this section originated from three different neutron
scattering experiments:

• The measurement at IN4 which has already been described in some
detail in section 5.2. However, for the measurement of the quasi-
elastic fluctuations the incident neutron energy has been reduced to
Ei = 9 meV (λi = 3 Å) to improve the energy resolution to 0.4 meV
(FWHM). In this setting, the wavevector transfer at the elastic line
ranged from 0.5 Å−1 to 3.5 Å−1.

• A measurement at the cold-neutron time-of-flight spectrometer FOCUS
(PSI). To increase the measured intensity, the IN4 powder sample was
enlarged by further polycrystalline material from the same batches as
before (63522/23/24/29) as well as the batches 63519/28/31; the total
sample mass, including the prior neutron sample, was 15.56 g. The
incident neutron energy was Ei = 3.3 meV (λi = 5 Å). This yielded
a momentum transfer range at the elastic line of 0.4 Å−1 to 2.2 Å−1

and an energy resolution of 0.09 meV. The sample was cooled with a
dilution refrigerator with a nominal base temperature of 35 mK. To
support a uniform temperature distribution in the powder sample, 4He
at elevated pressure (10 bar at room temperature) was filled into the
cylindrical copper sample holder.

• Ameasurement at the cold-neutron time-of-flight spectrometer ToFToF
(FRM2). The experimental conditions were very similar to the mea-
surement at FOCUS: The same sample, the same incident neutron
energy and similar sample holders were used and cooling was achieved
by a dilution fridge (nominal base temperature 60 mK) and 4He at el-
evated pressure in the sample holder. ToFToF has more detectors at
low angles so that wave vector transfers could be measured down to
0.2 Å−1.
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In all experiments, a measurement of the empty sample holder was performed
so that it could be subtracted from the data. Due to the relatively large ab-
sorption cross section of ytterbium (34.8 barn), the data also needed to be
corrected for self-absorption effects. In case of the IN4 data, where a flat sam-
ple holder was used, the angular correction is particularly important, since
the neutron path length depends strongly on the scattering angle. For the
cylindrical sample holders, the effect on the angle is much less pronounced
[Wut12] and has therefore been neglected. For both set-ups, the absorption
varies considerably between different energy transfers, since neutron absorp-
tion is proportional to 1/v (v being the velocity) in absence of resonances
[Pri06]. The neutron transmission Tn of every spectrum is calculated as

Tn(v) = exp(−σ0 · v0
v

· r · Z
V

· ρideal
ρpowder

), (5.6)

where σ0 = 53.1 barn is the tabulated absorption cross section of one formula
unit YbNi4P2 at v0 = 2200 m/s, r the radius of the sample holder (or the
thickness in case of flat sample holders), V the unit cell volume, Z the number
of formula units in V , and ρideal/ρpowder accounts for the density ratio of an ideal
single crystal to powder, which is roughly 2. Using the radius rather than the
diameter assumes that scattering events most likely take place at the centre of
the cylinder; the absorption contribution of the neutrons prior to scattering
is neglected since it is constant. In case of strong absorption (Tn ≈ 0.5 at
the elastic line) it would be correct to apply the absorption correction before
subtracting the empty can data, which corresponds to subtracting only a
fraction of the empty can signal. However, there are also large background
signals that do not involve a neutron passing the sample, such as cryostat
scattering or direct beam contamination at low angles. To account for these
effects, the full empty can signal needs to be subtracted. Since the latter
features have a pronounced dependence on Q and E, while the signal of the
empty can is rather featureless, it is more beneficial for the data analysis
to subtract the full empty can signal and subsequently do the absorption
correction.

All measurements were normalised to a monitor that was placed in the
beam in front of the sample. Comparison between experiments performed at
different instruments was done by normalisation to the integrated intensity
of the incoherent elastic scattering.

At IN4, the non-magnetic reference LuCo4Ge2 was also measured. Thus
it was ensured that the low-energy signal is indeed of magnetic nature; no
phonons are observed in the relevant range of energy and momentum transfer.
Foreign phases in the sample can also be excluded as the origin of a low-
temperature magnetic signal, as has been discussed in section 5.2.
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Since the magnetic signal in YbNi4P2 is very weak, an excellent signal-
to-background ratio at low energy transfers is needed for a proper data eval-
uation. At IN4, the background signal was relatively small compared to
the magnetic signal and could be fitted very well from the reference spec-
tra. However, the data measured at FOCUS, see figure 5.6, suffered from
much stronger background effects due to double scattering from the vacuum
can of the dilution cryostat. Additionally, λ/2 scattering resulted in a peak
at E ≈ 1.1 meV. In total, the background signal at positive energy trans-
fers was stronger than the magnetic signal. One can attempt to subtract
a constant background fitted to the vanadium spectrum, but the accuracy
of the fits to the magnetic signal is very poor. These difficulties motivated
the experiment at ToFToF, where a boron nitride shield was placed into the
vacuum can of the cryostat. The shield was a cylindrical segment of 160◦

which covered the can opposite to the detector bank. This successfully sup-
pressed double scattering. Furthermore, the instrument ToFToF has a larger
incident neutron flux than FOCUS and a set of 7 choppers instead of a sin-
gle crystal monochromator, which prevents λ/2 contaminations. In total,
the signal-to-background ratio could be improved drastically, which allowed
reliable fitting of the magnetic signal.

Despite the use of 4He at elevated pressure in the experiments at FOCUS
and ToFToF, cooling to dilution fridge temperatures seems to have failed,
since all data taken at very low temperatures fall on top of each other.
Based on the intensity at small negative energy transfers (-1 meV < ∆E <
-0.1 meV), which is very sensitive to the Bose factor, the lowest real sample
temperature is estimated to be 1 K. All data discussed in this section are
thus taken in the paramagnetic phase of YbNi4P2.

Local quasi-elastic response

A quasi-elastic signal is observed if the lifetime of an excitation is so short
that the energy width becomes larger than the excitation energy, so that it
effectively appears at zero energy transfer. As before, an exponential decay of
the lifetime is assumed, which leads to a Lorentzian-type scattering function

S(Q,E) =
1

1− exp(− E
kBT

)
· 2Eχ(Q)

πΓ
(
1 + 2E

Γ

)2 . (5.7)

The first term represents the Bose factor and Γ is the full width of the
peak. In case of local fluctuations, which appear in paramagnetic samples
at all temperatures, χ(Q) is constant except for the magnetic form factor.
Therefore, the local magnetic response in YbNi4P2 was analysed by averaging
all spectra between 0.6 Å−1 and 1.8 Å−1. To describe the measured intensity,
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Figure 5.6: Quasi-elastic magnetic signal of YbNi4P2 at Q = 1.2±0.6 Å−1.
(a) Data measured at IN4 (Ei = 9 meV) at 1.6 K (blue) and 50 K (red).
The background, fitted to the non-magnetic reference LuCo4Ge2, is shown
in black, the fitted magnetic signal in dashed blue/red lines and the total fit
function in solid blue/red lines. (b) Comparison of data measured at IN4,
FOCUS and ToFToF, the latter two at Ei = 3.3 meV. All data were mea-
sured at ≈ 1.5 K and normalised to the integrated intensity of the elastic line.
The arrows mark the pronounced spurious peaks in the FOCUS data, caused
by double scattering (left arrow) and λ/2 contaminations (right arrow).
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Figure 5.7: (a) Fitted susceptibility and (b) width (FWHM) of the quasi-
elastic magnetic signal of YbNi4P2 at Q = 1.2±0.6 Å−1, based on data mea-
sured at IN4, FOCUS and ToFToF. For the comparison of the susceptibility,
data were normalised to the integrated intensity of the elastic line. The
dashed line shows the bulk susceptibility, based on the AC measurement
published in [SKL+13].

it is necessary to convolute S(Q,E) with the spectrometer resolution and to
add the elastic line as well as a background signal. In theQ-range till 1.8 Å−1,
only weak Bragg peaks appear, so that the elastic signal is mostly incoherent.
There are no crystal electric field excitations in the considered spectral range,
see also section 5.2.

The local magnetic response of YbNi4P2 was measured at IN4 at tem-
peratures between 1.6 K and 200 K and at FOCUS and ToFToF at tem-
peratures between 1 K and 10 K. Some exemplary data and fits according
to equation 5.7 are shown in figure 5.6. The fitted susceptibility χ and full
width Γ of the local magnetic response are shown in figure 5.7. It should
be noted that the fits at 10 K are less reliable for the FOCUS and ToFToF
data since the width of the signal exceeds the energy transfer range acces-
sible at Ei = 3.3 meV. The FOCUS data are generally more difficult to fit
due to the strong double scattering, which most likely causes the discrepancy
of the fitted susceptibility between the FOCUS data and the IN4/ToFToF
data. The fitted local susceptibility in the temperature range 1 - 200 K be-
haves roughly as the bulk susceptibility [SKL+13]. The fitted half width of
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the local response seems to saturate at low temperatures, with a saturation
width Γ/2 ≈ 0.8 meV (=̂ 9 K). In Kondo systems, the width of the local
quasi-elastic neutron scattering is expected to take approximately the value
of the Kondo temperature TK for T < TK [CBW86]. The agreement with
the Kondo temperature estimated from thermodynamic measurements, TK =
8 K, is very good [KLS+11].

Ferromagnetic fluctuations

Additionally to the local response, a magnetic sample may show a response
at certain wave vectors, which depends on the magnetic interactions of the
compound. For a ferromagnetic material one expects a magnetic response
at Q = 0 at temperatures approaching the ordering temperature, which is
170 mK in YbNi4P2. Therefore, the quasi-elastic response was analysed as a
function of momentum transfer for the data measured at ToFToF (temper-
ature range 1 - 10 K). The susceptibility, again fitted according to equation
5.7, is shown in panel (a) of figure 5.8. For T ≈ 1 K, the quasi-elastic re-
sponse becomes much more pronounced towards Q = 0, indicating ferromag-
netic fluctuations. Despite the fact that the measurement temperature is still
almost an order of magnitude higher than the ordering temperature, the re-
sponse at the lowest measured Q values is considerably enhanced by a factor
of two compared to Q > 0.6 Å−1. The correlation length of the fluctuations
can be estimated from the Q width and amounts to a few Å, which roughly
corresponds to the nearest-neighbour distance of 3.6 Å along the ytterbium
chains [KCB00].

The same fit results are presented in a different way in panels (b) and (c)
of figure 5.8: Spectra averaged between 0.6 Å−1 and 1.8 Å−1 (as above) are
compared to spectra averaged between 0.32 Å−1 and 0.52 Å−1. 5.8(b) shows
how the intensity of the low-Q response becomes gradually larger than the
local response as the temperature is lowered from 10 K to 1 K. 5.8(c) shows
the fitted width, which is much sharper at small momentum transfers than
the Kondo-limited width of the local response. However, also the width
at 10 K is smaller in the low-Q range, indicating that already at this high
temperature the lifetime of ferromagnetic fluctuations is enhanced compared
to the local response. Between 10 K and 1 K, the width of the low-Q signal is
reduced by more than a factor of 3, which denotes considerable slowing down.
On further lowering the temperature, critical slowing down is expected for Q
approaching zero.

The results show that the Q = 0 response is clearly different from the
local response, giving evidence for the ferromagnetic interactions in YbNi4P2.
Considering that the sample temperature was well above TC, the observed



5.3. Magnetic fluctuations 111

Figure 5.8: Ferromagnetic response of YbNi4P2, measured at ToFToF. (a)
Fitted susceptibility as a function of wave vector transfer Q. (b) Fitted
susceptibility and (c) width (FWHM) as a function of temperature, for either
small wave vector transfers or general wave vector transfers, describing the
ferromagnetic and the local response, respectively. Published in reference
[HKE+15].
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effects are rather large. Particularly surprising is the enhancement of the
lifetime at temperatures as high as 10 K. These results might be a sign for
frustration in YbNi4P2, or fluctuations induced by the low dimensionality.



Chapter 6

Concluding discussion

In this thesis, three heavy-fermion systems have been studied by neutron
scattering. CeCu2Si2 is a prototypical heavy-fermion compound, which con-
tinues to attract attention due to its unconventional superconductivity. Here
single crystal neutron spectroscopy was used to gain insights into the inter-
play of magnetism and superconductivity. CePdAl also shows Kondo char-
acteristics, but is unusual among Kondo systems because the magnetic order
is partially frustrated. Detailed single-crystal diffraction studies were per-
formed to obtain a better understanding of the partially frustrated state.
The third compound, YbNi4P2, is exceptional among heavy-fermion systems
for its ferromagnetic order at very low temperatures. Its low-temperature
magnetic fluctuations were investigated by powder neutron spectroscopy.

CeCu2Si2 is a heavy-fermion compound which is naturally located very
close to a quantum critical point, i.e. without application of magnetic field,
pressure or element substitution. Slight variations in the stoichiometry can
tune samples from the sub-critical, antiferromagnetic regime to the critical or
over-critical regime, where the ground state is superconducting. Some sam-
ples, which are just sub-critical, show both phases with Tc < TN. The proxim-
ity of pure CeCu2Si2 to quantum criticality strongly facilitates experiments,
particularly neutron scattering experiments, since no pressure cells or mag-
nets are needed. However, it also implies challenges for the sample growth:
The growth conditions give only limited control over the ground state of the
synthesised crystal. Moreover, concentration gradients in large samples result
not only in a distribution of critical temperatures, but also in different ground
states within one single crystal. This was actually observed for all samples
synthesised and studied in this thesis: The A-type CeCu2(Si0.98Ge0.02)2 crys-
tal showed filamentary superconductivity below 0.4 K, the S-type CeCu2Si2
crystal had short-ranged antiferromagnetic order [SAF+11], and the A/S-
type CeCu2(Si0.98Ge0.02)2 crystal showed a large distribution of Tc as well
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as residual antiferromagnetic order at the lowest measured temperatures.
Therefore, it should be kept in mind that the nominal ground state of a
sample only refers to the majority phase.

There has earlier been a discussion about the co-existence or competi-
tion of magnetic order and superconductivity in CeCu2(Si1-xGex)2 [FAG

+97,
KIO+02, FSS+07]. The work of Julia Arndt [ASB+09, Arn10] suggested
that competition is found for pure CeCu2Si2 or low Ge substitution, but
co-existence is observed for larger Ge substitution. This is in line with the-
oretical predictions and seems to relate to the relative magnitude of Tc and
TN [KM88]. The data for the A-type and the A/S-type crystal which are
presented in this thesis are in agreement with Arndt’s findings. Therefore,
the discussion of the results is based on the assumption that CeCu2Si2 and
CeCu2(Si0.98Ge0.02)2 behave in principal identically.

A central question of this study was how the inelastic response of different
CeCu2Si2 samples reflects the drastically different thermodynamic properties
which are observed in this small region of the phase diagram around the
QCP. In an extension to prior results [SFS+06, SAF+11, ASS+11], it can be
summarised that the response is gapped in the superconducting state, for
both S-type and A/S-type samples, but gapless in the paramagnetic and the
antiferromagnetic state, for A-type samples at all temperatures and A/S-
type and S-type samples for T > Tc or B > Bc2. The size of the gap is of
the order of 0.15-0.2 meV. The lifetime of the fluctuations is enhanced in
the magnetically ordered state, but otherwise similar for the different types
of samples at any given temperature. The susceptibility increases towards
smaller values of the tuning parameter r, i.e. χ(A−type) > χ(A/S−type) ≫
χ(S−type), as expected from the Doniach diagram [Don77].

For the A-type and the S-type sample, the dispersion of the inelastic
response was studied (see also references [SAF+11, ASS+11]). A linear dis-
persion relation is observed up to around 1 meV, where it becomes difficult to
follow the dispersion further due to strong damping. The data for the A-type
crystal are nearly identical below and above TN for ∆E & 0.15 meV. The
comparison of the A- with the S-type sample showed that their dispersion is
very similar when superconductivity is suppressed (T > Tc or B > Bc2), and
still rather similar within the superconducting phase for energies larger than
the gap size. Thus, it can be concluded that the changes in the ground state
between antiferromagnetic, paramagnetic and superconducting state are only
reflected in the inelastic response for ∆E . 0.2 meV.

For unconventional superconductors, paramagnons are supposed to pro-
vide the pairing glue for the Cooper pairs, in a similar way that phonons do
for conventional superconductors. The dynamical spin susceptibility χ(Q, ω)
then enters into the effective interaction between quasiparticles, which can



115

be attractive for certain values of Q and ω [MPL07] and possibly lead to
Cooper-pair formation. An enhanced susceptibility is expected at the border
of a magnetic state, making magnetic quantum critical points a likely place
to find superconducting phases. This might explain the similarity between
the phase diagrams of heavy-fermion, cuprate and pnictide superconductors
[Sca12]. Neutron scattering can directly measure χ(Q, ω) and therefore con-
stitutes the ideal tool to provide microscopic proof of any spin interaction
theory. For CeCu2Si2, strong evidence for magnetically mediated supercon-
ductivity came from the observation of spin fluctuations at QAF, the same
wave vector where magnetic order is found in the antiferromagnetic state
[SAF+11]. The gap opening in the superconducting state results in an ex-
change energy saving which is much larger than the superconducting con-
densation energy. In this thesis, these results were extended by comparing
χ(Q, ω) of the antiferromagnetic and the superconducting samples in a wider
inelastic interval. Thus, it could be shown that the excitations are not only
centred around the same wave vector, but are nearly identical over a large
range of energy transfers. Thereby a microscopic justification was given for
the statement that magnetic fluctuations associated with the nearby ordered
state drive superconductivity.

For the A-type crystal, the anisotropy of the dispersion between the ab-
plane and the c-axis was also measured. Both directions behave identically
within the error bars of the experiment. This has important implications for
any model that aims to describe the relation of magnetic interactions with
superconductivity in CeCu2Si2. Often unconventional superconductivity is
discussed in terms of 2-dimensional models, particularly for the cuprates, but
also for some pnictides and heavy-fermion compounds [Sca12]. The results
demonstrate that 3-dimensional models are clearly needed for CeCu2Si2, as
has also been suggested for the isostructural ’122’ iron-pnictide compounds
[Sca12].

CeCu2Si2 is also often discussed as a model system for the Hertz-Millis-
Moriya scenario. A central element of the theory is the dynamical critical
exponent z, which is assumed to be 2 for an antiferromagnet. Furthermore,
the theory predicts ξ−2 ∝ T 1+1/z, which implies ξτ ∝ T−3/2 if z = 2. The
most suitable sample to study the quantum-critical behaviour of CeCu2Si2
is the S-type crystal, which is located rather close to the magnetic instabil-
ity. Superconductivity needs to be suppressed in a field B > Bc2. In earlier
neutron scattering measurements, Arndt et al. [ASS+11] have confirmed the
T−3/2 dependence for the lifetime. In the experiment presented in this thesis,
the aim was to measure the exponent for the correlation length. The appear-
ance of propagating paramagnons in the S-type sample makes this experiment
difficult. The data suggest a sub-linear dependence of the correlation length
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on the temperature, and are thus in agreement with ξ−2 ∝ T 1+1/z for z = 2.
Furthermore, z was estimated from a direct comparison of the energy width
Γ and the Q-width κ measured at the same temperatures. Here, z = 1.6±0.2
was found, slightly smaller than the expected value of 2. This offset is not
necessarily in contradiction to the Hertz-Millis-Moriya scenario. It could ei-
ther be related to the experimental challenges, or be caused by the the fact
that the measured sample is not directly located at r = rc.

The next part of this thesis was focussed on the partially frustrated mag-
netic state of CePdAl, where one third of the cerium moments does not
participate in the long-range magnetic order. The ground state of these mo-
ments remains to be clarified. From the powder neutron diffraction data
[KDKvdB02], it was deduced that they are disordered down to lowest tem-
perature. A powder NMR study [OMN+08] came to the conclusion that
the disordered third of the moments enters into a Fermi-liquid state at low
temperatures, with a vanishing local moment, and that this relieves the frus-
tration of the compound while keeping the partial order intact. However,
recent heat capacity measurements suggest the appearance of a gap in the
low-temperature state of CePdAl, which might hint to a spin liquid state of
the frustrated moments [FHL+].

The single crystal neutron diffraction data presented here allow further
insights into the peculiar magnetic order of CePdAl. Firstly, it was found
that the intensity of the forbidden reflections is finite below TN, while it
should be zero if the remaining third of the cerium ions was truly disordered.
The increased Q-width of these reflections shows that they order only at
short range. It can be speculated that the ordered moment on that cerium
site also fluctuates in time, although the diffraction data give no information
about that. This fluctuating order of the nominally disordered spins can be
expected to interfere with the long-range order of the other two thirds of the
magnetic moments. Interestingly, the data show that the correlation length
(or domain size) of the long-range order is limited at low temperatures, be-
coming gradually shorter with decreasing temperature. The link between
these two observations, the appearance of the forbidden reflections and the
shortening of the correlation length of the long-range order, cannot be estab-
lished with certainty on the basis of the present data; temperature-dependent
measurements of intensity and width of the forbidden reflections are neces-
sary to see if a correlation exists. Such measurements will be conducted in
the near future. It should be noted that the observed temperature depen-
dence of the correlation length is not in line with a disorder-induced limit of
the magnetic interactions, since this should be temperature independent.

These data seem to contradict the conclusions of Keller et al. [KDKvdB02]
and Oyamada et al. [OMN+08]: The frustrated moments are apparently not
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truly disordered, and a heavy-fermion state with a quenched moment could
not explain the shortening of the correlation length. Rather, if the moment
on the frustrated spins vanished, this should stabilise the order of the remain-
ing two thirds. Whether the ground state of the disordered moments might
be a spin liquid cannot be decided on the basis of the neutron diffraction
data. Future plans involve studying the development of both allowed and
forbidden reflections under conditions that alter the magnetic frustration,
such as uniaxial pressure or magnetic field in the basal plane. These exper-
iments might make it possible to disentangle influences from the frustration
and the Kondo effect, since the latter should stay constant in small fields or
pressures.

Single-crystal data also allow the anisotropy of magnetic interactions to
be studied. Surprisingly, it was found that the anisotropy of the correlation
length between the basal plane and the c-axis is rather small, both for the
correlations above TN, and for the long-range order below TN. This shows
that a two-dimensional model for the magnetic interactions, as given by
[NnRLC97], is clearly insufficient to understand the ordering of CePdAl, as
the in-plane and out-of-plane interactions are of comparable magnitude. This
is already suggested by the inter-atomic distances: The nearest and next-
nearest neighbour coupling within the basal plane, which are considered in
the model of Nún̂ez-Regueiro et al. [NnRLC97], correspond to distances of
3.73 Å and 5.25 Å; the out-of-plane distance of 4.24 Å is just in between
these two. Therefore, a model of all interactions, including the out-of-plane
component, is highly desirable.

The magnetic order in CePdAl can be suppressed by Ni substitution on
the Pd site [FBG+14]. A quantum critical point is reached for a Ni content
of around 14%. It is interesting to see if the frustration has any influence on
the criticality. As a first step, it must be confirmed that the magnetic order
stays the same under Ni substitution: This has been done in single crystal
diffraction experiments on CePd0.95Ni0.05Al and CePd0.9Ni0.1Al, where the
same ordering vector was found as in the pure compound. Short-ranged cor-
relations at the same Q-vector were also observed for CePd0.86Ni0.14Al [SL],
so that it is rather certain that the same type of order exists in the relevant
range of the phase diagram. As a next step, it would be interesting to know
what happens to the frustration on increasing Ni substitution. Unfortu-
nately, the experimental set-up prevented the measurement of the forbidden
reflections, and broadening induced by disorder made it impossible to see
if the correlation length shows any temperature development. However, the
data show that the ordered moment is linearly suppressed with Ni substitu-
tion and Néel temperature, with a vanishing ordered moment at the critical
concentration. If frustration increased with Ni substitution, it would be ex-
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pected that the ordering temperature is suppressed faster than the ordered
moment. The observed proportionality suggests that the suppression of the
order through Ni substitution is driven by the Kondo effect, while frustra-
tion stays roughly constant. How the frustration of one third of the moments
influences the quantum critical behaviour of the remaining two thirds is an
exciting topic for further investigations, both by neutron scattering and by
thermodynamic measurements.

The third compound studied in this thesis, YbNi4P2, has only recently
attracted interest with respect to its quantum critical behaviour [KLS+11].
Thus, many basic questions need to be settled, such as the crystal electric
field scheme. This question concerned the first part of the chapter about
YbNi4P2. The transition energies were measured by powder neutron spec-
troscopy: Two transitions from the ground state were found at 8.5 meV and
12.5 meV. Because of the orthorhombic site symmetry of Yb, it is expected
that the J = 7/2 state splits into four doublets. This suggests that one tran-
sition cannot be observed by neutron scattering due to a vanishing transition
matrix element. From a comparison with heat capacity measurements, the
additional level is estimated to be at 25 meV.

A more detailed analysis was done using the programme package McPhase.
Here the crystal electric field scheme was evaluated by simultaneously fitting
data from neutron scattering, heat capacity, AC susceptibility and NMRmea-
surements; the latter two also contained information about the anisotropy
of the magnetism. This analysis yielded the level scheme ∆E1 = 8.1 meV,
∆E2 = 12.1 meV and ∆E3 = 29.5 meV. The ground state wave function was
found to be dominated by the mJ = 5/2 state. This is in poor agreement
with currently available magnetisation measurements, since the analysis does
not capture the influence of the Kondo effect properly, while YbNi4P2 clearly
behaves like a Kondo system in small fields. Large fields of the order of 30 T
are needed to reveal the full saturation moment without the Kondo effect,
which can then be compared with the calculated ground state. Such high-
field magnetisation measurements are under way to clarify the matter.

Furthermore, the magnetic fluctuations of YbNi4P2 were studied. Local,
quasi-elastic fluctuations were observed at all temperatures. Their width
becomes smaller as the temperature is lowered, but saturates at low temper-
atures. The saturation width Γ/2 ≈ 0.8 meV corresponds well to the Kondo
temperature of 8 K found in thermodynamic measurements [KLS+11]. Since
YbNi4P2 is ferromagnetic below TC = 170 mK, enhanced magnetic fluctua-
tions are expected at low temperatures for Q = 0. Unfortunately, the low-
est temperature reached in the neutron experiment was around 1 K, since
the powder thermally decoupled from the dilution refrigerator. Nevertheless,
magnetic fluctuations with enhanced susceptibility and lifetime were observed
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for Q → 0, providing a microscopic verification of the ferromagnetic nature
of the interactions in YbNi4P2.

Very recently, large single crystals of YbNi4P2, suitable for inelastic neu-
tron scattering, have become available. These will allow the ferromagnetic
fluctuations to be studied down to much lower temperatures T ≈ TC, so that
the critical behaviour can be analysed. Moreover, it will be possible to inves-
tigate the directional dependence of these fluctuations. This is particularly
interesting for YbNi4P2, since theoretical calculations suggested a special role
of transverse fluctuations, which result in ferromagnetic order along the hard
axis [KPG14].



120 Chapter 6. Concluding discussion



Bibliography

[ABMC84] F. Aliev, N. Brandt, V. Moshchalkov, and S. Chudinov. Elec-
tric and magnetic properties of the Kondo-lattice compound
CeCu2Si2. Journal of Low Temperature Physics, 57(1-2):61–
93, 1984.

[AG61] A. Abrokosov and L. Gorkov. Contribution to the theory of su-
perconducting alloys with paramagnetic impurities. SOVIET
PHYSICS JETP-USSR, 12(6):1243–1253, 1961.

[Arn10] J. Arndt. Wechselspiel von Magnetismus und Supraleitung im
Schwere-Fermionen-System CeCu2Si2. PhD thesis, Technical
University Dresden, 2010.

[ASB+09] J. Arndt, O. Stockert, R. Borth, E. Faulhaber, K. Schmalzl,
A. Schneidewind, H. S. Jeevan, C. Geibel, M. Loewenhaupt,
and F. Steglich. Do antiferromagnetism and superconductiv-
ity coexist in 2% and 10% Ge doped CeCu2Si2? Journal of
Physics: Conference Series, 150(4):042008, 2009.

[ASF+10] J. Arndt, O. Stockert, E. Faulhaber, P. Fouquet, H. S. Jeevan,
C. Geibel, M. Loewenhaupt, and F. Steglich. Characteristics
of the magnetic order in CeCu2Si2 revealed by neutron spin-
echo measurements. Journal of Physics: Conference Series,
200(1):012009, 2010.

[ASS+11] J. Arndt, O. Stockert, K. Schmalzl, E. Faulhaber, H. S. Jee-
van, C. Geibel, W. Schmidt, M. Loewenhaupt, and F. Steglich.
Spin fluctuations in normal state CeCu2Si2 on approaching the
quantum critical point. Phys. Rev. Lett., 106:246401, 2011.

[BBGK15] M. Brando, D. Belitz, F. Grosche, and T. Kirkpatrick. Metallic
quantum ferromagnets. arXiv:1502.02898, 2015.

121



122 Bibliography

[Blu01] S. Blundell. Magnetism in Condensed Matter. Oxford Univ.
Press, 2001.

[BPV11] A. Benlagra, T. Pruschke, and M. Vojta. Finite-temperature
spectra and quasiparticle interference in Kondo lattices: From
light electrons to coherent heavy quasiparticles. Phys. Rev. B,
84:195141, 2011.

[CBW86] D. Cox, N. Bickers, and J. Wilkins. Calculated properties
of valence fluctuators. Journal of Magnetism and Magnetic
Materials, 54–57, Part 1(0):333–337, 1986.

[CN10] P. Coleman and A. H. Nevidomskyy. Frustration and the
Kondo effect in heavy fermion materials. Journal of Low Tem-
perature Physics, 161(1-2):182–202, 2010.

[Col89] M. F. Collins. Magnetic Critical Scattering. Oxford Univ.
Press, 1989.

[DEM+96] A. Dönni, G. Ehlers, H. Maletta, P. Fischer, H. Kitazawa,
and M. Zolliker. Geometrically frustrated magnetic structures
of the heavy-fermion compound CePdAl studied by powder
neutron diffraction. Journal of Physics: Condensed Matter,
8(50):11213, 1996.

[DLG+14] P. Das, S.-Z. Lin, N. J. Ghimire, K. Huang, F. Ronning,
E. D. Bauer, J. D. Thompson, C. D. Batista, G. Ehlers, and
M. Janoschek. Magnitude of the magnetic exchange interaction
in the heavy-fermion antiferromagnet CeRhIn5. Phys. Rev.
Lett., 113:246403, 2014.

[Don77] S. Doniach. The Kondo lattice and weak antiferromagnetism.
Physica B+C, 91:231–234, 1977.

[DS82] H.-U. Desgranges and K. Schotte. Specific heat of the Kondo
model. Physics Letters A, 91(5):240–242, 1982.

[EH00] C. Enns and S. Hunklinger. Tieftemperaturphysik. Springer,
2000.

[Ehr33] P. Ehrenfest. Phasenumwandlungen im ueblichen und er-
weiterten Sinn, classifiziert nach den entsprechenden Singu-
laritaeten des thermodynamischen Potentiales. Proceedings
Koninklijke Akademie van Wetenschappen, 36:153–157, 1933.



Bibliography 123

[FAG+97] R. Feyerherm, A. Amato, C. Geibel, F. N. Gygax, P. Hell-
mann, R. H. Heffner, D. E. MacLaughlin, R. Müller-Reisener,
G. J. Nieuwenhuys, A. Schenck, and F. Steglich. Competition
between magnetism and superconductivity in CeCu2Si2. Phys.
Rev. B, 56:699–710, 1997.

[Faw88] E. Fawcett. Spin-density-wave antiferromagnetism in
chromium. Rev. Mod. Phys., 60:209–283, 1988.

[FBG+14] V. Fritsch, N. Bagrets, G. Goll, W. Kittler, M. J. Wolf,
K. Grube, C.-L. Huang, and H. v. Löhneysen. Approach-
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[LRVW07] H. v. Löhneysen, A. Rosch, M. Vojta, and P. Wölfle. Fermi-
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Jeevan, M. Deppe, R. Borth, R. Küchler, M. Loewenhaupt,
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Grüneisen parameter and the magnetocaloric effect close to
quantum critical points. Phys. Rev. Lett., 91:066404, 2003.

[ZHM+13] K.-J. Zhou, Y.-B. Huang, C. Monney, X. Dai, V. N. Stro-
cov, N.-L. Wang, Z.-G. Chen, C. Zhang, P. Dai, L. Patthey,
J. van den Brink, H. Ding, and T. Schmitt. Persistent high-
energy spin excitations in iron-pnictide superconductors. Nat
Commun, 4:1470, 2013.



[ZJ93] K. Zeppenfeld and W. Jeitschko. Magnetic behaviour of Ni3P,
Ni2P, NiP3 and the series Ln2Ni12P7 (Ln = Pr, Nd, Sm, Gd–
Lu). Journal of Physics and Chemistry of Solids, 54(11):1527–
1531, 1993.

132



Acknowledgment

The success of any PhD thesis depends hugely on the willingness and ability
of more experienced scientists to pass on their knowledge. In that regard, I
consider myself very lucky, since I conducted my PhD in a work environment
where both are abundant. First and foremost, I would like to thank my su-
pervisor Oliver Stockert: During the last four years, he supported me a lot
whenever I reached the limits of my capabilities, but gave me plenty of trust
and freedom when I was within - this matches very closely my idea of what
good supervision is. Furthermore, there were many people in the institute
who were not formally my supervisors, but still taught be a lot over the time,
the most important being Christoph Geibel, Burkhard Schmidt and Manuel
Brando. Also among the PhD students, there were plenty of helpful discus-
sions, most importantly, but not exclusively in our theory-circle; here I would
like to mention Sarah Wunderlich, Sandra Hamann, Katharina Weber, Heike
Pfau, Stefan Lucas and Alexander Steppke. I have also profited much from
the weekly meetings with other members of the neutron scattering group,
Ariane Hannaske, Sarah Wunderlich, Stefan Lucas and Oliver Stockert.

I am thankful to all my colleagues at the MPI for Chemical Physics of
Solids for the friendly work atmosphere, especially the department Physics
of Quantum Materials. Many visits to the Mensa, many conversations in the
coffee corner and quite a few after-work activities have certainly had a big
impact on making my stay in Dresden a very enjoyable time for me. The
heads of the department, Frank Steglich and Andy Mackenzie, I thank for
providing me the opportunity to work in their group. I would also like to
acknowledge the excellent support I have received from the administrative
and technical staff in the institute, who have done a lot to make work easier
for me.

The major part of my thesis was funded by the DFG-Forschergruppe
960 ”Quantum Phase Transitions”. Apart from financial support, I would
like to acknowledge the fruitful discussions at several workshops and the
productive cooperation on the CePdAl project with KIT (Karlsruhe Institute
of Technology) and the University of Augsburg. Here I would like to mention

133



particularly Veronika Fritsch, Hilbert von Löhneysen, Christian Taubenheim
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Prüfungsbehörde vorgelegt.

Die Dissertation wurde in der Zeit vom Oktober 2011 bis zum Oktober
2015 am Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden
angefertigt, under der Betreuung von PD Oliver Stockert.

Ich erkenne die Promotionsordnung der Technischen Universität Dresden,
Fakultät Mathematik und Naturwissenschaften, vom 23.02.2011 an.


