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Kurzfassung

Der Fokus dieser Arbeit liegt auf der Abhörsicherheit der Datenübertragung, die auf der
Übertragungsschicht, also durch geeignete Codierung und Ressourcenverteilung, erreicht
werden kann. Die Grundlagen der Sicherheit auf der Übertragungsschicht wurden bereits
in den 1970er Jahren von Wyner (1975), Csiszár und Körner (1978) formuliert. Jedoch
ermöglicht erst der heutige technische Fortschritt, dass diese Ideen in zukünftigen Kom-
munikationssystemen Einzug finden können. Dies hat in den letzten Jahren zu einem
gestiegenen Interesse an diesem Forschungsgebiet geführt.

In der Arbeit werden zwei Ansätze zur abhörsicheren Datenübertragung in Funksystemen
analysiert. Dies ist zum einen die direkte Übertragung der Information zum gewünschten
Empfänger, wobei der Sender gleichzeitig die Zuverlässigkeit und die Abhörsicherheit der
Übertragung sicherstellen muss. Zum anderen wird ein zweistufiger Ansatz betrachtet: Die
beiden Kommunikationspartner handeln zunächst einen gemeinsamen sicheren Schlüssel
aus, der anschließend zur Verschlüsselung der Datenübertragung verwendet wird. Bei die-
sem Ansatz werden die Abhörsicherheit und die Zuverlässigkeit der Infomation getrennt
voneinander realisiert.

Die Sicherheit der Nachrichten hängt maßgeblich davon ab, inwieweit zuverlässige In-
formationen oder verlässliche Annahmen über den Funkkanal zum Abhörer verfügbar
sind. Die Annahme perfekter Kanalkenntnis ist für einen passiven Abhörer jedoch kaum
zu rechtfertigen. Daher wird hier ein deterministisches Modell für die Unsicherheit über
den Kanal zum Abhörer eingeführt, was zu einer Menge möglicher Abhörkanäle führt.
Die Optimierung der sogenannten Worst-Case-Rate in einem Mehrantennensystem mit
Gaußschem Rauschen wird für beide Ansätze betrachtet. Es wird analysiert, mit welcher
Sendestrategie die maximale Rate erreicht werden kann, wenn gleichzeitig angenommen
wird, dass der Abhörer den zugehörigen Worst-Case-Kanal besitzt, welcher die Rate der
abhörsicheren Kommunikation jeweils auf ein Minimum reduziert.

Für beide Ansätze wird gezeigt, dass aus dem resultierenden Max-Min-Problem über die
Matrizen des Mehrantennensystems ein äquivalentes Problem über die Eigenwerte der
Matrizen abgeleitet werden kann. Die optimale Ressourcenverteilung für eine Summen-
leistungsbeschränkung über alle Sendeantennen wird charakterisiert. Für den jeweiligen
Worst-Case-Kanal zum Abhörer, dessen Kanalgewinne einer Summenbeschränkung unter-
liegen, werden Waterfilling-Lösungen hergeleitet. Es wird gezeigt, dass für hohen Signal-
Rausch-Abstand (engl. signal-to-noise ratio, SNR) alle Raten gegen endliche Grenzwerte
konvergieren, wenn die Antennenzahl des Abhörers nicht beschränkt ist. Die Grenzwerte
werden durch die Quotienten der Eigenwerte der Gram-Matrizen beider Kanäle bestimmt.
Für den Ratenanstieg der direkten Übertragung ist bei niedrigem SNR nur die Differenz
dieser Eigenwerte maßgeblich, wohingegen für den Verschlüsselungsansatz in dem Fall kei-
ne Abhängigkeit vom Kanal des Abhörers besteht. Ein Vergleich zeigt, dass das aktuelle
SNR und die Qualität des Abhörkanals den einen oder anderen Ansatz begünstigen. Die
direkte Übertragung ist bei niedrigem SNR und verhältnismäßig schlechten Abhörkanälen
überlegen, wohingegen der Verschlüsselungsansatz von hohem SNR und vergleichsweise
guten Abhörkanälen profitiert. Die Ergebnisse der Arbeit werden umfassend diskutiert
und illustriert.
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Abstract

The thesis focuses on the privacy of communication that can be ensured by means of
the physical layer, i.e., by appropriately chosen coding and resource allocation schemes.
The fundamentals of physical-layer security have been already formulated in the 1970s
by Wyner (1975), Csiszár and Körner (1978). But only nowadays we have the technical
progress such that these ideas can find their way in current and future communication
systems, which has driven the growing interest in this area of research in the last years.

We analyze two physical-layer approaches that can ensure the secret transmission of
private information in wireless systems in presence of an eavesdropper. One is the direct
transmission of the information to the intended receiver, where the transmitter has to
simultaneously ensure the reliability and the secrecy of the information. The other is a
two-phase approach, where two legitimated users first agree on a common and secret key,
which they use afterwards to encrypt the information before it is transmitted. In this
case, the secrecy and the reliability of the transmission are managed separately in the
two phases.

The secrecy of the transmitted messages mainly depends on reliable information or reason-
able and justifiable assumptions about the channel to the potential eavesdropper. Perfect
state information about the channel to a passive eavesdropper is not a rational assump-
tion. Thus, we introduce a deterministic model for the uncertainty about this channel,
which yields a set of possible eavesdropper channels. We consider the optimization of
worst-case rates in systems with multi-antenna Gaussian channels for both approaches.
We study which transmit strategy can yield a maximum rate if we assume that the
eavesdropper can always observe the corresponding worst-case channel that reduces the
achievable rate for the secret transmission to a minimum.

For both approaches, we show that the resulting max-min problem over the matrices
that describe the multi-antenna system can be reduced to an equivalent problem over the
eigenvalues of these matrices. We characterize the optimal resource allocation under a sum
power constraint over all antennas and derive waterfilling solutions for the corresponding
worst-case channel to the eavesdropper for a constraint on the sum of all channel gains.
We show that all rates converge to finite limits for high signal-to-noise ratios (SNR),
if we do not restrict the number of antennas for the eavesdropper. These limits are
characterized by the quotients of the eigenvalues resulting from the Gramian matrices
of both channels. For the low-SNR regime, we observe a rate increase that depends
only on the differences of these eigenvalues for the direct-transmission approach. For
the key generation approach, there exists no dependence from the eavesdropper channel
in this regime. The comparison of both approaches shows that the superiority of an
approach over the other mainly depends on the SNR and the quality of the eavesdropper
channel. The direct-transmission approach is advantageous for low SNR and comparably
bad eavesdropper channels, whereas the key generation approach benefits more from
high SNR and comparably good eavesdropper channels. All results are discussed in
combination with numerous illustrations.
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Notation and Abbreviations

Mathematical Notation

N set of natural numbers (without zero)
Z set of integer numbers
R set of real numbers
C set of complex numbers

UK set of unitary matrices of dimension K × K
PK set of permutation matrices of dimension K × K

a = (ak)K
k=1 row vector a of length K with elements ak,

i.e., a = (a1, a2, . . . , aK)
A = (aij)K

i,j=1 square matrix A of dimension K × K with elements aij

⌈a⌉ smallest integer not less than a

[a ]+ [a ]+ = max{a, 0} for a ∈ R, see Section A.1
[a ]+≤b [a ]+≤b = min{[a ]+, b} for a, b ∈ R

limx→a f(x) limit of a function f with variable x as x approaches a
lim infx→∞ f(x) limit inferior of a function f with variable x as x approaches ∞
ln(a) natural logarithm of the positive real number a
log2(a) binary logarithm of the positive real number a

IK identity matrix of dimension K × K
AT transpose of the complex matrix A
AH Hermitian transpose of the complex matrix A
A

1
2 prinicipal square root of the positive-semidefinite matrix A

A � 0 positive semidefiniteness of the Hermitian matrix A
det(A) determinant of the complex square matrix A
eig(A) eigenvalues of the complex square matrix A (written as row vector)
rank(A) rank of the complex matrix A
tr(A) trace of the complex square matrix A

|a| absolute value of the complex number a
‖a‖ Euclidean norm of the complex vector a
‖a‖1 L1 norm of the complex vector a
‖A‖F Frobenius norm of the complex matrix A

X ∼ N (µ, Q) normal distribution with mean vector µ and covariance matrix Q
for a random vector X in RK

X ∼ CN (0, σ2) circularly-symmetric complex normal distribution with zero mean
vector and covariance matrix σ2IK for a random vector X in CK

Pr(X ) probability of an event X
xi



pX probability mass / density function of a random vector X
pX|Y conditional probability mass / density function of a random vector X given

the random vector Y
E (X) expectation vector of the random vector X
H (X) entropy of the random vector X
H (X|Y ) conditional entropy of the random vector X given the random vector Y
I (X; Y ) mutual information between the random vectors X and Y

Tf (x; a) Taylor series of a complex-valued function f with variable x at the point a

Selected Symbols

A Gramian matrix of the channel matrix H
B Gramian matrix of the channel matrix G
CK secret-key capacity
CS secrecy capacity
G matrix of channel coefficients for the channel from Alice to Eve
H matrix of channel coefficients for the channel from Alice to Bob
K number of carriers
L number of Alice’s transmit antennas
M number of Bob’s receive antennas
N number of Eve’s receive antennas
P constraint value for the maximum available transmit power at Alice
Q Alice’s transmit covariance matrix
R transmission rate without secrecy constraints;

additional superscripts and decorations see RS

RK secret-key rate;
additional superscripts and decorations see RS

RS secrecy rate;
additional superscripts and decorations:

R̃S eigenvalue notation
R̄S eigenvalue notation for adapted problem in 〈3.40〉
R⋆

S Gramian notation
R+

S maximized (worst-case) secrecy rate
R+

T rate expression that combines key generation rate and subsequent
transmission rate for comparison of maximized secrecy and secret-key rates

RW worst-case secrecy or secret-key rate;
additional superscripts and decorations see RS

W random variable for Alice’s private message
X random variable (or vector) for Alice’s transmit signal (vector)
Y random variable (or vector) for Bob’s receive signal (vector)
Z random variable (or vector) for Eve’s receive signal (vector)

xii



a (vector of) channel gains for the channel from Alice to Bob
b (vector of) channel gains for the channel from Alice to Eve
g (vector of) channel coefficients for the channel from Alice to Eve
h (vector of) channel coefficients for the channel from Alice to Bob
n length of a codeword
q Alice’s power allocation (vector)

ζ random variable (or vector) for Eve’s noise
ξ random variable (or vector) for Bob’s noise
ρ inverse noise variance
σ2 noise variance
ϕ function for the definition of secrecy rate (terms);

additional superscripts and decorations see RS

χ constraint value for the channel from Alice to Eve

B constraint set for the worst-case channel to the eavesdropper;
vector case with eigenvalue notation

Q constraint set for the power allocation strategy at the transmitter;
scalar and vector case

W alphabet for Alice’s private message
X alphabet for Alice’s channel input
Y alphabet for Bob’s channel output
Z alphabet for Eve’s channel output

B constraint set for the worst-case channel to the eavesdropper;
matrix case with Gramian notation

G constraint set for the worst-case channel to the eavesdropper;
matrix case with channel matrix notation

Q constraint set for the power allocation strategy at the transmitter;
matrix case

Abbreviations

KKT Karush-Kuhn-Tucker
MIMO multiple-input multiple-output
MISO multiple-input single-output
SNR signal-to-noise ratio
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Introduction

In this chapter, we first want to clarify what the main focus of the thesis is. Afterwards,
previous and related publications are introduced and discussed before a detailed outline
of the thesis is given.

Motivation and Background

Based on the title of the thesis, which is Robust Optimization of Private Communication
in Multi-Antenna Systems, we introduce the terms that are important for this thesis and
discuss their meaning herein.

We consider communication in the sense of information or data transmission between two
users over a noisy communication channel. For convenience, we focus on the transmission
in one direction, i.e., from one user, which we usually identify as transmitter, to another,
which is mainly referred to as intended receiver. In the following, the transmitter and the
intended receiver are also called Alice and Bob, respectively. The premise of successful
communication is its reliability, i.e., Alice has to ensure that Bob can recover the infor-
mation from the symbols he receives. The performance measure of interest is the rate of
this communication, i.e., the transmitted information per channel use.

The focus of this thesis is on the privacy of the communication, i.e., Alice has information
that is intended for Bob and that she wants to transmit over the channel, while keeping
anyone else completely ignorant of this information. The authentication of the users is
not considered in the thesis. Instead, we assume that Alice has already ensured that she is
communicating with Bob and vice versa. In addition to the transmitter and the receiver,
we introduce a third user, the so-called eavesdropper, which is named Eve. Eve is a passive
eavesdropper, i.e., she is a curious user of the system that overhears the communication
between Alice and Bob and tries to extract the information if possible. This assumption
implies that Eve knows everything that is essential for the operation of the system. Eve
is not an active attacker, i.e., she does not try to influence the communication between
Alice and Bob, e.g., by jamming, the interception of sent messages, the induction of own
messages, or by trying to fake her identity.

We want to ensure the privacy of the communication by means of the physical layer, i.e., by
appropriately chosen coding and resource allocation schemes. We consider information-
theoretic security, which provides theoretically provable secrecy, in contrast to recent
encryption / decryption algorithms, which ensure the secrecy of the information under
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Introduction

practically reasonable assumptions like a restriction of the computational power of the
potential eavesdropper.

We study a wireless communication system, which in principle is susceptible to eaves-
dropping due to the inherent openness of the transmission medium. We consider a
multi-antenna scenario, where all users, i.e., the transmitter and the receiver as well
as the eavesdropper, are equipped with multiple antennas for transmitting or receiving
the information that is sent over the channel.

We analyze two different approaches that can ensure the secrecy of the private informa-
tion. One is the direct transmission of this information to the intended receiver, while
its reliability and secrecy have to be ensured simultaneously by an appropriately chosen
coding and resource allocation scheme. The other is a two-phase approach. In this case,
the two legitimated users have to first agree on a common key, which should be completely
unknown to the eavesdropper. This has to be realized by means of the physical layer and
without any secret that was previously shared between Alice and Bob and that could
be used as an advantage over the eavesdropper. Furthermore, we do this key agreement
without a trustworthy third party, which is possibly involved in other key exchange proto-
cols. Afterwards, the secrecy of the information can be ensured by encryption, while the
subsequent transmission has only to guarantee the reliability of the encrypted message.

The term optimization refers to the interest of the transmitter, which is to obtain a possi-
bly high rate with its limited resources, which could be for instance identified as transmit
power, available frequency spectrum, or transmit antennas. In order to achieve this, Alice
has to determine the best transmit strategy under some given constraints like a restriction
on the sum power that is used over all antennas. A transmit strategy describes a resource
allocation, which means a certain power allocation and a corresponding beamforming
scheme for all transmit antennas in a multi-antenna scenario.

If the robustness of an approach is discussed, the main question that has to be answered
is: What happens if important system parameters are not perfectly known to the trans-
mitter? Since we consider the communication in a wireless system where the reliability
and privacy of the information have to be guaranteed, the knowledge about the quality
of the channels is a very important factor for the transmitter. For the channel to Bob, we
could assume a certain channel estimation error, whose impact could be twofold. On the
one hand, we can have the situation that the real channel is worse than the estimation,
which would result in a transmission whose reliability is no longer ensured. On the other
hand, the real channel could be better than its estimate, which would yield a situation
where a certain rate is calculated and used for the transmission, although a higher rate
would be achievable. However, we assume that Alice has perfect knowledge about the
channel coefficients to the intended receiver throughout the thesis. We focus on the case
that the transmitter does not have perfect knowledge about the channel coefficients to
the eavesdropper. This information is important for the secrecy of the transmission. If it
is not perfectly available, it is at least necessary to have reliable and justifiable assump-
tions about this channel. The assumption that perfect information about the channel to

2



Eve is available to Alice, which would be the best case for a transmission with secrecy
constraints, can hardly be justified if a passive eavesdropper is considered. It is only
reasonable under the assumption that Eve is another regular user of the communication
system that also communicates with Alice, where we have to additionally assume that
the reciprocity of the channel is given. The assumption of perfect channel knowledge can
be relaxed by allowing an uncertainty about the eavesdropper channel. Such an uncer-
tainty can be modeled stochastically with a random variable whose statistics is known
to the transmitter, but this is not the focus of this thesis. Instead, we consider a de-
terministic model for the uncertainty, i.e., we formulate a reasonable restriction on the
eavesdropper channel, which is for instance a constraint on the sum of all channel gains,
which can correspond to a constraint on the overall receive power at the eavesdropper.
This approach yields a set of possible eavesdropper channels that have to be considered
by the transmitter. In this thesis, robust optimization consequently means that Alice
aims to determine the best transmit strategy, which can yield a maximum rate, under
the assumption that Eve can always observe the corresponding worst-case channel, which
reduces the achievable rate to a minimum for the chosen transmit strategy.

Previous and Related Work

Shannon (1949) formulated the objective of secret communication: The intended receiver
should be able to recover the private message without errors after the transmission over
a communication channel, while nobody else should get any information about this mes-
sage. For this purpose, Shannon analyzed the encryption of the message with a secret key
that has to be known to both the transmitter and the intended receiver. The eavesdropper
is completely ignorant of the key, but he can perfectly observe the transmitted codeword.
The secrecy of the communication was measured by the average uncertainty that the
eavesdropper has about this message. Ideally, this uncertainty, which is called equivo-
cation, equals the a-priori uncertainty one has about the message. In order to achieve
this, the uncertainty about the key must be at least as large as the uncertainty about the
message, i.e., there must be at least one secret key bit for every bit of information (Bloch
and Barros, 2011, Section 1.1).

About 25 years later, Wyner (1975) as well as Csiszár and Körner (1978) introduced
the basic concept of physical-layer security. Wyner (1975) studied the degraded wiretap
channel with finite input and output alphabets, where the transmitter encodes the private
message into a codeword that is transmitted over a noisy channel to the intended receiver
afterwards. The eavesdropper observes a degraded version of the receive signal over a
further noisy channel. Thus, the transmitter and the intended receiver always have an
advantage over the eavesdropper, which they can exploit to ensure the secrecy of the mes-
sage. This approach was generalized and extended by Csiszár and Körner (1978). They
analyzed a discrete wiretap scenario where the eavesdropper channel is not necessarily
degraded with respect to the main channel to the intended receiver. Furthermore, they
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introduced the concept of the broadcast channel with a confidential message. In this sce-
nario, the transmitter has a common message, which is intended for both receivers, and
a private message for one receiver, which should be kept perfectly secret from the other.
In the same year, the physical-layer secrecy approach was also applied to the Gaussian
wiretap channel by Leung-Yan-Cheong and Hellman (1978).

In the 1990s, first Maurer (1990, 1993) and then Ahlswede and Csiszár (1993) proposed
and studied the fundamentals of secret-key agreement on the physical layer by additionally
allowing public discussion between the two legitimated users. They showed that there
exist communication strategies that allow the distillation of a common and secret key
between two users on the physical layer in the presence of an eavesdropper. This key can
be used afterwards to ensure the secrecy of a private message during the transmission by
encryption.

For the last 10 years, the growing technical progress has motivated an increasing interest
in the area of physical-layer security. Communication systems have been developed that
offer for instance the computational power such that these ideas can find their way into
future communication systems. More and more research groups have contributed results
to the area of physical-layer security, which significantly broadened and diversified the
topics that are considered. Thus, it is not possible to give a complete and detailed
overview of all ongoing research in this area. Nevertheless, we will have a look at some
selected research topics in the following. We focus on areas that are related to our work
and the results of this thesis. Other research fields are only mentioned as supplements to
this overview.

One main focus of the research in the last years was the analysis of physical-layer security
first for fading channels and later also for multi-antenna (MIMO) systems. One challenge
was to prove the secrecy capacity of such systems. Here, we exemplarily mention Khisti
and Wornell (2007) as well as Oggier and Hassibi (2007), who derived the secrecy capacity
of the MIMO wiretap channel.

Bloch et al. (2008) studied the impact of fading on the secrecy capacity of a wireless
system with quasi-static fading channels by considering the average secrecy capacity and
the probability of outage for the secrecy capacity. The authors considered the case that
perfect channel state information about the eavesdropper channel is available, but also
the case that the transmitter and the receiver have only partial knowledge about the
eavesdropper channel. The interesting observation was that even if the average channel
quality between transmitter and eavesdropper is better than the average channel between
transmitter and intended receiver, the secrecy capacity can still be positive. A similar
behavior was described by Gopala et al. (2008) and Liang et al. (2008c).

Another challenge has been to derive optimal resource allocation schemes for secrecy
in multi-antenna systems under different constraints and assumptions. Li et al. (2007)
solved the secrecy rate maximization problem for the Gaussian MISO wiretap channel,
where multiple transmit antennas can be deployed by the transmitter, whereas only a

4



single receive antenna is used at both the intended receiver and the eavesdropper. The
authors presented an analytical solution for this case by applying an appropriately de-
fined coordinate transformation depending on the channel to the intended receiver and
the eavesdropper. For the same model and under different channel fading assumptions,
Shafiee and Ulukus (2007) showed that the optimal communication strategy in all cases
is beamforming. Li and Ma (2011) considered a scenario where the communication over a
MISO channel is overheard by multiple multi-antenna eavesdroppers. The authors stud-
ied the problem of transmit covariance optimization for the secrecy-rate maximization.
They showed that this problem can be solved in a convex and tractable fashion with
a semidefinite program and that beamforming is the optimal transmit strategy for the
considered scenario.

The corresponding transmit optimization for the secrecy rate maximization of the MIMO
wiretap channel is more difficult. The first method that solved the optimal power alloca-
tion problem for the Gaussian MIMO wiretap channel was proposed by Liu et al. (2009).
It is a numerical method based on global optimization and called branch-and-bound al-
gorithm with reformulation and linearization technique. Li et al. (2013) considered the
MIMO secrecy rate maximization problem in the Gaussian wiretap channel under sum
power and per-antenna power constraints. The authors reformulated this problem into
an equivalent matrix problem that can be solved by alternating optimization. They pre-
sented an alternating optimization algorithm and developed a fast algorithm for each
iteration. Recently, Cumanan et al. (2014) presented an approach based on Taylor series
expansion for both the power minimization and the secrecy rate maximization of the
MIMO wiretap channel. The authors proposed iterative algorithms to solve these prob-
lems under the assumption that the transmitter has perfect channel state information.
Moreover, they incorporated channel uncertainties for both channels and showed that the
resulting problems can be reformulated into semidefinite programs at low signal-to-noise
ratios (SNR).

For multi-user systems, the broadcast scenario is of great interest. Liang et al. (2008c)
investigated the fading broadcast channel with confidential messages, where the transmit-
ter has a common message for two receivers and additionally a confidential information
for one receiver that needs to be kept as secret as possible from the other. Under perfect
channel state information, the authors studied first the parallel broadcast channel with
independent subchannels. They established the secrecy capacity region for this model
and derived the optimal power allocations for the parallel Gaussian broadcast channel
that achieve the boundary of this secrecy capacity region. Moreover, they considered
the ergodic and outage performance of this system. The secrecy capacity region of the
MIMO broadcast channel is characterized by Liu et al. (2010). Bagherikaram et al. (2013)
showed that secret dirty paper coding is optimal to achieve the secrecy capacity region.

In systems with multiple transmit and receive antennas, the spatial degrees of freedom
further allow to support the privacy of the communication by transmitting artificial noise
in order to generate additional interference at the eavesdropper. This approach was
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first proposed by Negi and Goel (2005). The available transmit power is split into two
parts. One is used to transmit the private message, whereas the other is used for the
artificial noise, which is transmitted into the nullspace of the main channel in order
to avoid additional interference at the intended receiver. This approach was further
studied by the same authors in (Goel and Negi, 2008), where amplifying relays were used
to support a single-antenna transmitter in securing the communication by transmitting
artificial noise. Zhou and McKay (2009) considered again the wiretap scenario with a
multi-antenna transmitter, where non-cooperating and cooperating eavesdroppers try to
overhear the private communication. They analyzed the optimal power allocation between
the information bearing signal and the artificial noise.

The idea of supporting the private communication by artificial noise was further developed
by introducing additional helpers in the systems. The objective of these helpers, which
are also denoted as friendly or cooperative jammers, is to create additional interference for
the eavesdropper, which makes it more difficult for him to overhear the communication
between the transmitter and the intended receiver. Jorswieck (2010) considered simple
single-antenna helpers and showed that the channel parameters and the SNR determine
whether such a helper can increase the achievable secrecy rates. Moreover, the MISO
wiretap channel with perfectly informed multi-antenna helpers was studied. The opti-
mal beamforming vectors were characterized and an algorithm was proposed that jointly
optimized the beamforming vectors of the transmitter and the helper. Additionally, it
was shown in (Wolf and Jorswieck, 2010b), that the optimal helper strategy generally is
not zero-forcing beamforming with respect to the intended receiver, although this beam-
forming strategy is often chosen for the helper in the literature due to its simplicity. The
ideas that a transmitter protects its transmission by additional artificial noise and that a
helper can support the privacy of the communication was for instance combined in Dong
et al. (2009). The authors introduced a multi-antenna relay that forwards the private
message from a single-antenna transmitter to a single-antenna receiver, while it simul-
taneously protects this transmission with additional artificial noise. The idea of relay-
assisted multi-hop communication is discussed in a various number of publications under
many different assumptions. For instance, Ho et al. (2013) proposed a relay strategy that
utilized both spectral and spatial resources to enhance the secrecy in a multi-antenna,
multi-carrier interference channel. The growing number of users in the networks increases
the complexity of the studied problems and approaches. From a practical point of view,
there are not only cooperating users, but also scenarios with competing users, which
makes it interesting to study such problems also from a game-theoretical perspective as
in (Jorswieck and Mochaourab, 2009).

If the assumption of perfect channel state information about the eavesdropper channel
is relaxed, the partial knowledge at the transmitter is often modeled stochastically. This
yields a study of the ergodic secrecy rate or the secrecy outage probability. Moreover, it
is possible to enhance the performance of the system with additional artificial noise as in
(Gerbracht et al., 2010), where multiple antennas at the transmitter were exploited. Such
investigations can be further extended to relay networks, where the relay operation modes
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have to be considered in the discussion. For instance, Gabry et al. (2011) studied the
outage performance for a scenario, where the relay can use the amplify-and-forward and
the decode-and-forward strategy and the secret transmission is supported by cooperative
jamming.

In contrast to this stochastical approach, it is also possible to formulate deterministic
models for the channel uncertainties at the transmitter. Liang et al. (2007) studied the
compound wiretap channel, which is a wiretap channel where the main and the eavesdrop-
per channel can take a number of states. This model can equivalently be interpreted as a
multicast scenario with multiple eavesdroppers, where the transmitter wants to transfer
its information to all receivers and simultaneously keep it secret from all eavesdroppers.
We refer to 〈3.61〉 for a more detailed discussion of this approach. Li and Ma (2011) con-
sidered a Gaussian MISO wiretap channel with multiple multi-antenna eavesdroppers,
where the channel estimations at the transmitter are characterized by certain additive er-
rors. A max-min optimization problem is obtained if the secrecy rate should be robustly
maximized with respect to the possible channel errors. For this problem, the authors
developed a semidefinite programming solution and showed that their approach outper-
forms non-robustly designed solutions, especially for high SNR. Li and Petropulu (2012)
studied the Gaussian MISO wiretap channel with a single-antenna eavesdropper. The
authors assumed that the channel estimation errors for both channels are bounded and
can be described by a spherical uncertainty. They considered the maximization of the
worst-case secrecy rate subject to a given power constraint. For this problem, they derived
a related matrix whose eigenvalues yield the solution for the optimal transmit covariance
matrix. Also Shi and Ritcey (2010) as well as Huang and Swindlehurst (2012) considered
the robust beamforming problem for the Gaussian MISO wiretap channel. Shi and Ritcey
(2010) assumed that all possible states of the eavesdropper channel are in a given set,
which is known to the transmitter. Their objective was to find the optimized transmit
covariance matrix for the maximized worst-case secrecy rate such that the eavesdropper is
unable to decode under any channel realization in the set. They proposed to transfer this
max-min optimization problem into a convex optimization problem that can be solved
efficiently and obtained a generalized eigenvalue / eigenvector solution for their problem.
Huang and Swindlehurst (2012) studied not only the direct transmission approach, but
also a scenario where a multi-antenna helper supports the private communication for
a system with bounded channel estimation errors for the channels. They obtained ro-
bust transmit covariance matrices based on worst-case secrecy rate maximization under
both individual and global power constraints. For the individual power constraints, they
showed that the max-min problem can be transformed into a quasi-convex problem that
can be efficiently solved afterwards. For the global power constraint, they proposed a
joint optimization approach of the transmit covariance matrices and power allocations
for the transmitter and the helper.

All topics discussed above can also be considered in the context of secret-key generation
and agreement. Jorswieck et al. (2013) and Engelmann et al. (2014) considered the
secret-key generation problem in a source-type model, where the two legitimated partners
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use the state of the multi-antenna communication channel between them as source of
common randomness. In these publications, it was assumed that the eavesdropper has no
possibility to observe a correlated version of the channel state realizations. The impact of
the spatial channel correlation on the achievable secret-key rate was analyzed by Jorswieck
et al. (2013) for a MIMO scenario. Based on this, Engelmann et al. (2014) discussed the
optimal precoding scheme for the secret-key generation under spatial correlation for the
MISO scenario. Tomasin and Jorswieck (2014) studied the problem of key agreement for a
source-type model with wiretapper, which is obtained if a pilot-based channel estimation
procedure is used for secret-key agreement in a multi-antenna scenario with correlated
channels. The authors derived closed-form expressions of lower and upper bounds on the
achievable secret-key rates and analyzed the training sequence optimization, where the
known spatial channel correlation was taken into account.

Wong et al. (2009) studied the key generation approach for the channel-type model and
extended the results of Ahlswede and Csiszár (1993) to continuous channel alphabets.
They focused on a fast-fading Gaussian MIMO wiretap channel. We refer to 〈5.31〉 for a
more detailed discussion of this approach.

Systems with competing and interfering multi-antenna links also play a role for the secret-
key generation approach. For instance, Jorswieck (2013) considered a multi-antenna in-
terference channel with a public discussion channel, where confidential messages should
be transmitted. For this model, an achievable secret-key region was derived that can im-
prove the achievable secrecy rate region. The non-cooperative transmit strategy problem
was studied from a game-theoretical perspective, and it was shown that there exists a
unique Nash equilibrium for a specifically designed utility function.

Vía (2014) considered the robustness of the secret-key generation for the channel-type
model with a Gaussian MIMO wiretap channel. The transmitter’s uncertainty about the
eavesdropper channel was characterized by a bounded channel estimation error. The au-
thor studied the secret-key rate maximization problem with respect to the corresponding
worst-case eavesdropper channel. We refer again to 〈5.31〉 for a more detailed discussion
of this approach.

For the analysis of the efficiency of the secret-key sharing model, the possible attacker
scenarios play an important role. With regard to active attacks like jamming, the source-
type model with compound sources was studied in (Boche and Schaefer, 2013) and (Boche
and Wyrembelski, 2013).

A further objective of physical-layer security is to enable the authentication of users. Here,
we only exemplarily mention Xiao et al. (2007). The authors describe a physical-layer
algorithm that combines channel probing with a hypothesis test in order to determine
whether current and prior communication attempts are originated from the same user.

Another important topic for the realization of the physical-layer security ideas is the
development of practical wiretap codes, which is also considered by a certain number of
research groups.
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Contribution and Outline

One important question, which directly arises if results from information-theoretic secu-
rity shall be applied to wireless communication systems, is how to deal with the trans-
mitter’s uncertainty about the channel to a potential passive eavesdropper of the private
communication, which inherently exists in such a scenario. Perfect knowledge about this
channel, which was assumed in prior publications that provided a basis for today’s re-
search, is not a realistic assumption. This thesis contributes to the area of research that
aims to reduce this problem in order to increase the practical relevance of the results.
With the multi-antenna (MIMO) scenario, where all users of the system are allowed to
have multiple transmit and receive antennas, we consider a very general setting, which
yields results for special cases, i.e., the MISO and the multi-carrier scenario, as well.

We introduce an uncertainty model for the eavesdropper channel that is practically rel-
evant. We propose a model with an upper bound on the sum of all channel gains. In
combination with a sum power constraint at the transmitter, it corresponds to a con-
straint on the total receive power at the eavesdropper. The transmitter can parametrize
this model based on his knowledge about the spatial situation, which yields reasonable
and justifiable assumptions about the channel to the potential eavesdropper. In con-
trast to often used stochastic models, we use this deterministic model, since it allows a
worst-case analysis with a related rate maximization for the given scenario. The results
are maximum achievable rates and corresponding transmit strategies that simultaneously
guarantee the secrecy of the private communication.

In this thesis, we analyze two physical-layer approaches that ensure the secrecy of the
private information. If the direct-transmission approach is applied, the transmitter has
to simultaneously ensure the reliability and the secrecy of the transmitted information.
In contrast, the key generation approach consists of two phases, the key generation and
the transmission phase. This allows the transmitter to handle both objectives separately.
Although there are no explicit solutions for the maximization of the considered worst-
case problems, we provide upper and lower bounds on these problems that are very
close to each other. Hence, the remaining uncertainty about the maximum achievable
rates vanishes nearly completely, and the derived bounds supersede the solution of the
problems. Furthermore, the characterization of the lower bounds yields almost optimal
transmit strategies.

An important outcome of this thesis is the comparison of both approaches, which are
usually studied separately in the literature. Therefore, we suggest a performance measure
for the key generation approach that does not only focus on the maximum achievable rate
for the key generation, but also incorporates the effort that is necessary for the subsequent
data transmission, which is a requirement for a fair comparison of both approaches. Thus,
we obtain important propositions for the system design by showing which approach is to
be preferred depending on the given system parameters as the total available power and
the assumptions that can be made about the quality of the eavesdropper channel.
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This thesis is organized as follows:

• In Chapter 1, an overview of models and corresponding performance measures for
physical-layer security from the literature is provided. Thereby, we present two differ-
ent approaches. One is the direct transmission of the private message to the intended
receiver, while the reliability and the secrecy of the information have to be ensured
by an appropriately chosen coding scheme. The other approach is composed of two
phases. The legitimated communication partners first establish a common and secret
key, which they use afterwards for a communication whose privacy is guaranteed by
an encryption with this key. The first approach is considered in the Chapters 2 and
3, whereas the Chapters 4 and 5 focus on the second approach.

• In Chapter 2, results for the maximization of secrecy rates are presented and discussed
for various scenarios. We first introduce a basic scenario, which is extended to a
multi-carrier and a multi-antenna scenario afterwards. This chapter comprises not
only the single-user case, where the transmitter intends to send a private message to
the legitimated receiver in presence of an eavesdropper, but also the two-user case,
where the transmitter has private messages for both receivers, which should be kept
secret from the other. The results of this chapter provide a basis for the worst-case
analysis of the secrecy rate in the next chapter.

• In Chapter 3, we consider the multi-antenna scenario from the previous chapter and
relax the assumption that the transmitter has perfect knowledge about the eavesdrop-
per channel. Instead, we allow an uncertainty about this channel and introduce an
appropriate deterministic model, which results in a set of possible eavesdropper chan-
nels. The problem for the transmitter is now twofold. On the one hand, the worst-case
channel has to be determined, which yields the minimum secrecy rate, for each feasible
transmit strategy. On the other hand, the best transmit strategy has to be identified,
which is the resource allocation that provides the maximum secrecy rate under the
assumption that the eavesdropper observes the corresponding worst-case channel. In
this chapter, we derive a vector problem, which is equivalent to the original matrix
problem. Based on this vector problem, we consider the max-min optimization of the
secrecy rate for two different transmitter structures. For both problems, we present
the worst-case channel for each transmit strategy, characterize the optimal resource
allocation under a sum power constraint over all antennas, and provide lower and up-
per bounds on the maximized worst-case secrecy rate, which are tight for low or high
SNR. The results of this chapter are discussed together with numerous illustrations.

• In Chapter 4, results for the maximization of secret-key rates are presented and dis-
cussed. We focus on the scenarios that we have already introduced in Chapter 2 in
the context of the secrecy rate maximization. This allows us to directly compare
the results that were obtained for both approaches. Furthermore, the results of this
chapter provide a basis for the worst-case analysis of the secret-key rate in the next
chapter.
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• In Chapter 5, the worst-case approach of Chapter 3 is applied to the secret-key gen-
eration problem in the multi-antenna scenario, which was introduced in Chapter 4.
Again, we consider a deterministic model for the uncertainty about the eavesdropper
channel, which yields a max-min problem for the transmitter. The aim is to identify
an optimal transmit strategy, which maximizes the secret-key rate under the assump-
tion that the eavesdropper is always able to observe the worst-case channel, which
yields the minimum secret-key rate for the previously chosen transmit strategy. We
show that this matrix problem can be reformulated as an equivalent vector problem
over the eigenvalues of the involved matrices. We present the worst-case channel for
each transmit strategy and characterize the optimal resource allocation under a sum
power constraint over all antennas. Additionally, lower and upper bounds on the max-
imized worst-case secret-key rate are provided, which are tight for low or high SNR.
We compare the results on the worst-case maximization of the secret-key rate with
the results we obtained in Chapter 3 for the similar secrecy rate problem. Numerous
illustrations support the discussion of the results.

• Finally, we summarize the results of the thesis and formulate open problems for further
research.

• In Appendix A and B, additional material for the mathematical background and
detailed proofs for important propositions of the thesis are provided.
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Part I

Fundamentals of Physical-Layer Security





1 Information-Theoretic Security

In this chapter, we introduce the fundamentals of information-theoretic security, which
can be used to ensure the privacy of a communication by means of the physical layer.
We provide a short review of models and results from the literature. The description
of models and performance measures mainly follows the presentations in (Liang et al.,
2008a) and (Bloch and Barros, 2011). We refer to these publications for a more detailed
overview. The fundamentals of information theory are for instance explained in (Cover
and Thomas, 2006), (Yeung, 2008), and (Bloch and Barros, 2011).

1.1 Notation and Preliminaries

An overview and a short explanation of the mathematical notation in this thesis can be
found at page xi. A summary of the most important symbols is provided at page xii.

〈1.1〉 Notation (Upper-Case, Lower-Case and Various Calligraphic Symbols).
Throughout this thesis, we use lower-case letters for scalars and vectors, whereas matri-
ces are denoted by upper-case letters. We deviate from the convention above in an
information-theoretic context. We use the upper-case letters X, Y , and Z for random
variables and random vectors describing channel inputs and channel outputs. Moreover,
W is used to denote the random variable that is identified with the private message. The
corresponding lower-case letters are used for the realizations of these random variables
and vectors. This mainly occurs in this chapter and in the description of system models
in the following chapters. Moreover, the upper case-letters K, L, M , and N are used
for the number of carriers or antennas in various models that are introduced in the next
chapters. Rates and capacities are denoted by R and C, respectively. Usually, sub- and
superscripts are added to specify the rates and capacities more clearly.

Sets, which are used to define alphabets for random variables and constraint sets for
optimization problems, are denoted by calligraphic letters. For the specification of con-
straint sets, two different calligraphic fonts are used. We write a calligraphic symbol like
Q for constraint sets that are defined for scalars or vectors, whereas we use a calligraphic
symbol like Q for sets formulating constraints on matrices.

〈1.2〉 Binary Logarithm and Bit. Throughout this thesis, we will use the binary log-
arithm for the computation of rates and capacities. Thus, all those values are measured
in bit per channel use. For convenience, we omit the supplement per channel use and
write only bit if we evaluate rate expressions below.

15



1 Information-Theoretic Security

1.2 Wiretap Scenario

Alice
Bob

Eve

communication

system

Figure 1.1: Communication system with a transmitter (Alice), a legitimated receiver (Bob), and
an eavesdropper (Eve).

We are interested in the following scenario, which is illustrated in Figure 1.1. Alice
wants to send a private message to Bob, which should be kept perfectly secret from
Eve. In this communication system, Alice is the transmitter and Bob is the intended
or legitimated receiver. We assume that Alice and Bob have already authenticated each
other successfully. Eve is a passive eavesdropper, i.e., she listens to the communication
between Alice and Bob and tries to extract as much information as possible, but she does
not actively influence this communication process, e.g., by jamming.

In order to establish this private communication by means of the physical layer, Alice has
the choice between two different approaches.

a) She can directly transmit the private message to Bob, while she ensures the reliability
and secrecy of the information by appropriately chosen coding and resource allocation
schemes. This approach, which is introduced in Section 1.3, is characterized by a
performance measure that is called secrecy capacity.

b) Alternatively, Alice and Bob can first try to establish a common and secret key, which
they can use afterwards for a communication whose privacy is guaranteed by an en-
cryption with this key. For the key generation, Alice and Bob use the communication
channel between them. Additionally, a public message exchange is necessary for the
key agreement. This approach is introduced in Section 1.4. The process of key estab-
lishment is characterized by a performance measure that is called secret-key capacity.

The first approach has to simultaneously guarantee the reliability of the communication
to the intended receiver and the secrecy of the information against eavesdropping. The
advantage of the second approach is that the reliability and the secrecy of the information
can be considered separately. A major drawback is that two subsequent communication
processes are necessary, which both require resources like time and power, since Alice
and Bob first need to generate a common key before the private information can be
transmitted.

An important component of the models for both approaches is the so-called wiretap
channel. Figure 1.2 shows an abstract illustration of this channel. From a structural
perspective, the wiretap channel can be interpreted as a special case of a broadcast channel
with two receivers, but Alice’s intentions in these scenarios significantly differ from each
other. In a broadcast scenario, Alice is interested in simultaneously transmitting her
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message to all users, which clearly contrasts with her intention in the wiretap scenario.
In the literature, there exist models that combine the broadcast and wiretap scenario to
a broadcast channel with confidential messages, i.e., Alice has a common message and
additional private messages for both users. This model, which was introduced by Csiszár
and Körner (1978), is not within the focus of this thesis.

Alice pY,Z|X

wiretap channel

Bob

Eve

X
Y

Z

Figure 1.2: General model for a wiretap channel.

〈1.3〉 Wiretap Channel. The wiretap channel, which is illustrated in Figure 1.2, can
be described by a channel input alphabet X , which can be used by Alice, and two channel
output alphabets Y and Z for the values that are observed by Bob and Eve, respectively.
The relation between the channel input and the channel outputs is characterized by a
conditional probability distribution. The transmission of symbols is modeled as memory-
less and stationary. Thus, we can omit the time index and characterize the channel only
for a single time slot, i.e., we make use of a single-letter representation. Therefore, the
channel input and output can be described by random variables. We choose X for Alice’s
channel input. Bob’s and Eve’s channel outputs are identified by Y and Z, respectively.
If the alphabets of the wiretap channel are finite, the input-output relation of the channel
is described by a conditional probability mass function pY,Z|X , i.e., we have a probability
mass function pY,Z|X(·, ·|x) for each input value x ∈ X . If we consider real-valued alpha-
bets, we restrict ourselves to channels that are characterized by a conditional probability
density function pY,Z|X , i.e., we have a probability density function pY,Z|X(·, ·|x) for each
input value x ∈ X .

Alice pY |X

receiver channel

pZ|Y

eavesdropper channel

Eve

Bob
X

Z

Y

Figure 1.3: Model for the degraded wiretap channel.

〈1.4〉 Degraded Wiretap Channel. In order to analyze the secret communication in
the wiretap scenario, Wyner (1975) introduced the degraded wiretap channel as depicted
in Figure 1.3. Wyner’s model, which is a special case of the wiretap channel in 〈1.3〉, is a
discrete memoryless wiretap channel with finite channel alphabets. Alice communicates
with Bob over a discrete memoryless channel, which is described by the input alphabet
X , the output alphabet Y, and the conditional probability mass function pY |X . Eve ob-
serves a degraded version of Bob’s signal, which is transmitted over a discrete memoryless
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channel that is characterized by the input alphabet Y, the output alphabet Z, and the
conditional probability mass function pZ|Y . Thus, the conditional probability mass func-
tion of the wiretap channel can be written as pY,Z|X(y, z|x) = pY |X(y|x) pZ|Y (z|y) for all
(x, y, z) ∈ X × Y × Z. Equivalently, we can say that the random variables X, Y , and Z
form a Markov chain in the order X – Y – Z. Another equivalent formulation is that the
random variables X and Z are conditionally independent given the random variable Y .

Wyner’s model was generalized by Csiszár and Körner (1978) to a discrete wiretap channel
that is not necessarily degraded. This corresponds to the general wiretap model that is
depicted in Figure 1.2 under the assumption of finite channel alphabets. With this model,
Csiszár and Körner studied not only the wiretap scenario, but also the broadcast scenario
with additional confidential messages.

〈1.5〉 Gaussian Wiretap Channel. The Gaussian wiretap channel, which is another
special case of the wiretap channel in 〈1.3〉, was introduced by Leung-Yan-Cheong and
Hellman (1978). In this model, Bob’s and Eve’s outputs are corrupted by additive white
Gaussian noise. For each channel use, the Gaussian wiretap channel can be described by

Y = X + ξ and Z = X + ζ,

where ξ and ζ are Gaussian random variables with ξ ∼ N (0, σ2) and ζ ∼ N (0, ϑ2) that
are independent from each other and independent from the channel input X. Then,
the corresponding conditional probability density function pY,Z|X is a two-dimensional
Gaussian density pY,Z|X(·, ·|x) for each input value x ∈ X . Due to the independence
of the noise variables, it can be written as pY,Z|X(y, z|x) = pY |X(y|x) pZ|X(z|x) for all
(x, y, z) ∈ X × Y × Z, where pY |X(·|x) and pZ|X(·|x) are the Gaussian density functions
of ξ and ζ that are shifted by x.

This model can be extended to the complex Gaussian wiretap channel with known addi-
tional attenuation coefficients h and g with h, g ∈ C, which can be described by

Y = hX + ξ and Z = gX + ζ,

where the noise is circularly-symmetric complex Gaussian distributed, i.e., ξ ∼ CN (0, σ2)
and ζ ∼ CN (0, ϑ2).

1.3 Securing Communication by Resource Allocation and Coding

Now, we consider the following scenario. Alice uses the wiretap channel to transmit a
private message to Bob. She wants that Bob can reliably decode this message, while it
should be kept perfectly secret from Eve. Eve listens to the transmission from Alice to
Bob and tries to decode the message.
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〈1.6〉 Encoding, Decoding, and Secrecy Capacity. In order to ensure both reliabil-
ity and confidentiality of the message, an appropriate coding and decoding scheme is
necessary. We give an account of the corresponding results for the wiretap channel in
〈1.3〉 with finite alphabets, where we mainly follow the presentation in (Liang et al.,
2008a, Chapter 2), but also add contributions from (Bloch and Barros, 2011, Section
3.4). Alice’s private message for Bob is denoted by the random variable W , whereas
Bob’s estimation of this message, which is based on his observation of the channel out-
put, is identified by Ŵ . It is assumed that the message W is uniformly distributed over a
message set W. Alice has access to a source of local randomness, which can be described
by the random variable V with realizations from a set V. She uses an encoding function1

f
(n)
enc : W × V → X n that maps each message w ∈ W to a codeword x(n) ∈ X n of length n,

depending on the recent realization v ∈ V of the local source of randomness. Afterwards,
Alice transmits this codeword over the wiretap channel in n channel uses. Bob’s and
Eve’s output sequences are y(n) ∈ Yn and z(n) ∈ Zn, respectively. Bob uses a decoding
function f

(n)
dec : Yn → W that maps the received sequence y(n) ∈ Yn to an estimate ŵ ∈ W

of the message. A (2nR, n) code of length n and rate R is defined as a message set W
with |W| = ⌈2nR⌉ together with an encoding function f

(n)
enc and a decoding function f

(n)
dec .

The performance measures for the private communication from Alice to Bob are the
reliability and the secrecy of the transmission. The reliability is evaluated by the average
block error probability, which is defined for a given code of length n as

P (n)
e

··= Pr(Ŵ 6= W ) =
1

|W|

|W|∑

w=1

|W|∑

ŵ=1
ŵ 6=w

pŴ |W (ŵ|w).

The secrecy of the message W is measured by the equivocation rate, which is defined as

R(n)
e

··=
1

n
H (W |Z(n)) ,

where H (W |Z(n)) denotes the conditional entropy of the random variable W given Eve’s
receive sequence Z(n).

A rate-equivocation pair (R, Re) is said to be achievable if there exists a sequence of
(2nR, n) codes such that

lim
n→∞

P (n)
e = 0 and Re ≤ lim inf

n→∞
R(n)

e .

The term perfect secrecy is used for the case R = Re. The secrecy capacity CS is the
largest rate that is achievable with perfect secrecy. It is given by

CS = max
pU,X

(I (U ; Y ) − I (U ; Z)) ,

1In Bloch and Barros (2011, Definition 3.1), the encoding function is defined as a function of the
message and the realization of a local source of randomness. Alternatively, the encoder is introduced
as a stochastic encoder that maps each message to a codeword according to a certain conditional
probability function.
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1 Information-Theoretic Security

where I (U ; Y ) denotes the mutual information between the random variables U and Y ,
and the auxiliary variable U satisfies the Markov chain relationship U – X – (Y, Z). Note
that the secrecy capacity of the wiretap channel depends on the probabilities pY,Z|X only
through the marginal probabilities pY |X and pZ|X , see (Bloch and Barros, 2011, Lemma
3.4). For a detailed explanation of the achievability proof and the proof of the converse,
it is referred to (Liang et al., 2008a, Section 2.3 and 2.4).

〈1.7〉 Secrecy Capacity (Degraded Wiretap Channel). For the degraded wiretap
channel with finite alphabets in 〈1.4〉, the secrecy capacity is given by2

CS = max
pX

(I (X; Y ) − I (X; Z)) .

〈1.8〉 Secrecy Capacity (Gaussian Wiretap Channel). The secrecy capacity of the
Gaussian wiretap channel in 〈1.5〉 was derived by Leung-Yan-Cheong and Hellman (1978).
It is given by

CS = max
pX

[I (X; Y ) − I (X; Z) ]+ ,

where pX is a probability density function that satisfies E
(
X2

)
≤ P , which yields

CS =

[
1

2
log2

(
1 +

P

σ2

)
− 1

2
log2

(
1 +

P

ϑ2

)]+

.

Thus, the secrecy capacity of the Gaussian wiretap channel corresponds to the difference
between the capacity of the channel from Alice to Bob and the capacity of the channel
from Alice to Eve if this difference is not negative. This result can be extended to the
complex Gaussian wiretap channel with known additional attenuation coefficients h and
g with h, g ∈ C, where the noise is circularly-symmetric complex Gaussian distributed,
i.e., ξ ∼ CN (0, σ2) and ζ ∼ CN (0, ϑ2). In this case, the secrecy capacity is given by

CS =

[
log2

(
1 +

|h|2 P

σ2

)
− log2

(
1 +

|g|2 P

ϑ2

)]+

,

see (Bloch and Barros, 2011, Remark 5.1).

2For this channel, which is characterized by the Markov chain X – Y – Z, there also exists the formulation
that the channel between the transmitter and the eavesdropper is physically degraded with respect
to the main or receiver channel. In the literature, the condition above was relaxed by additionally
introducing wiretap channels, where the channel between the transmitter and the eavesdropper is
stochastically degraded with respect to the main channel or noisier or less capable than the main
channel. For all these models, it was shown that the corresponding secrecy capacity is represented by
the expression given above, see for instance (Bloch and Barros, 2011, Proposition 3.6 and Corollary
3.5).
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1.4 Key Generation with the Wiretap Channel

〈1.9〉 Secrecy Rate. For the complex Gaussian wiretap channel in 〈1.5〉 and its exten-
sions that we study in the next chapters, we introduce the secrecy rate RS as

RS ··=
[

max
pX

I (X; Y ) − max
pX

I (X; Z)

]+

≤ CS ,

where pX is the probability density function of the random variable (or the random
vector) X whose second order moment is fixed to a certain transmit strategy, i.e., simply
a transmit power in the basic scenario or a transmit covariance matrix in the multi-
antenna scenario. Thus, we obtain an achievable secrecy rate expression that can be
further optimized over the set of feasible transmit strategies.

1.4 Key Generation with the Wiretap Channel

In this section, we consider the problem of secret-key agreement, which was first intro-
duced by Maurer (1990). We focus on the scenario that is shown in Figure 1.5. Alice
and Bob use the wiretap channel together with an additional public channel in order to
establish a common key that should be kept perfectly secret from Eve. Afterwards, Alice
can ensure the secrecy of her private message for Bob by encryption with this previously
generated key. The encrypted message can be transmitted over the channel from Alice
to Bob, where Alice has only to guarantee the reliability of the transmission. Eve listens
to the communication over both the wiretap and the public channel and tries to extract
information about the key, which would allow her to get some information about the
private message.

Alice pX,Y,Z

source of
common randomness

Bob

Eve

X Y

Z

public
channel

Φ Ψ

Figure 1.4: Source-type model for key generation.

Basically, there exist two different models for analyzing the secret-key problem. One is the
so-called source-type model, the other is the so-called channel-type model. In this thesis,
we focus on the channel-type model, but we also have a short look at the source-type
model for the sake of completeness.
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1 Information-Theoretic Security

〈1.10〉 Source-Type Model. The source-type model, which is depicted in Figure 1.4,
was investigated by Maurer (1993), Ahlswede and Csiszár (1993). In this model, Alice
and Bob observe correlated sequences X(n) and Y (n), respectively, which are generated by
a discrete memoryless source. Additionally, they can exchange messages over a noiseless
public channel of unlimited capacity in order to agree on a common key that they want
to keep perfectly secret from Eve. We refer to Ahlswede and Csiszár (1993) for a detailed
description of the public communication strategy. Eve can perfectly overhear all messages
that are transmitted over the public channel. It depends on the further details of this
model in the literature, whether Eve is also able to observe a correlated sequence Z(n) of
the discrete memoryless source3. Consequently, the corresponding performance measure,
which is the secret-key capacity, is given by different expressions, see for instance (Liang
et al., 2008a, Section 9.1). This model was extended to the Gaussian source-type model
for secret-key agreement by Bloch and Barros (2011, Section 5.1.3), where Alice, Bob,
and Eve observe correlated sequences that are generated by a memoryless source whose
components are jointly Gaussian distributed.

Alice pY,Z|X

wiretap channel

Bob

Eve

X Y

Z

public
channel

Φ Ψ

Figure 1.5: Channel-type model for key generation.

〈1.11〉 Channel-Type Model. The channel-type model for secret-key agreement, which
is shown in Figure 1.5, was introduced by Ahlswede and Csiszár (1993). This model com-
prises a wiretap channel, which can be used for a transmission from Alice to Bob, and
an additional public channel, which can be used for the exchange of public messages be-
tween Alice and Bob and vice versa. As originally introduced, we describe this model for a
wiretap channel with finite alphabets. Altogether, the channels are used in k consecutive
time slots, where the wiretap channel is used for transmission in exactly n (not necessar-
ily consecutive) time instants and messages are exchanged over the public channel at the
remaining k − n time instants. Alice generates a sequence X(n), which she transmits in
n selected channel uses over the wiretap channel in 〈1.3〉. This channel is characterized
by its conditional probability mass function pY,Z|X . Bob and Eve observe the sequences

3Accordingly, Ahlswede and Csiszár (1993) as well as Liang et al. (2008a, Section 9.1) differentiate
between Model S, where the eavesdropper has no access to information from the discrete memoryless
source, and Model SW, where Eve can also observe a sequence from the source.
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1.4 Key Generation with the Wiretap Channel

Y (n) and Z(n), respectively4. For the initial randomization of the public communication,
there are two independent random variables VA and VB, which can be seen as individual
sources of local randomness and only be accessed by Alice and Bob, respectively. The
message that Alice transmits over the public channel at time i with i ∈ {1, 2, . . . , k} is
denoted by Φi. This public communication is called forward transmission. Bob’s mes-
sages over the public channel, which are denoted by Ψi with i ∈ {1, 2, . . . , k}, are referred
to as backward transmission. The messages for the wiretap as well as the public channel
are generated causally based on all information that is available to Alice and Bob so far,
i.e., Alice’s channel input Xi at time i is a function of VA and Ψ(i−1). Moreover, Alice
message Φj for the public channel at time j is determined from VA and Ψ(j−1), whereas
Bob calculates his public message Ψj from VB, Y (j−1), and Φ(j−1). Finally, both users
individually generate a key based on the received information, i.e., Alice generates a key
κA from VA and Ψ(k), whereas Bob calculates a key κB from VB, Y (n), and Φ(k). Both
keys take values from the same finite set M. We refer to Ahlswede and Csiszár (1993)
for a detailed description of the public communication strategy for this model.

〈1.12〉 Secret-Key Capacity. For the channel-type model in 〈1.11〉, an achievable secret-
key rate and the secret-key capacity are defined as in (Ahlswede and Csiszár, 1993) and
(Liang et al., 2008a, Section 9.2). A secret-key rate R is achievable if for every ǫ > 0 and
sufficiently large n there exists a public communication strategy such that the keys κA

and κB satisfy

Pr(κA 6= κB) < ǫ,

1

n
I
(

κA; Φ(k), Ψ(k), Z(n)
)

< ǫ,

1

n
H (κA) > R − ǫ, and

1

n
log2 |M| <

1

n
H (κA) + ǫ.

The conditions above can be interpreted as follows:

• Alice and Bob have generated a common key, i.e., both keys agree with high proba-
bility.

• The key is secret since the public communication has given away effectively no infor-
mation about it.

• The rate of the key is measured by R.
• The generated key is approximately uniformly distributed over the set M.

The largest achievable secret-key rate R is the secret-key capacity CK . The so-called
forward and backward secret-key capacities are the largest key rates possible if only a
single forward or backward transmission is permitted. For the secret-key capacities, the

4Note that Ahlswede and Csiszár (1993) as well as Liang et al. (2008a, Section 9.2) differentiate between
Model C, where the eavesdropper has no access to the communication channel between Alice and Bob,
and Model CW, where Eve can also observe a sequence from the output of the wiretap channel.
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following expressions exist in the literature, see for instance (Ahlswede and Csiszár, 1993,
Theorem 2 and following Corollary):

• For the channel-type model with the general wiretap channel in 〈1.3〉, the forward
secret-key capacity equals the secrecy capacity of the corresponding wiretap channel,
which is given in 〈1.6〉.

• For the channel-type model with a degraded wiretap channel as in 〈1.4〉, which is
characterized by the Markov chain X – Y – Z, both the forward secret-key capacity
and the secret-key capacity equal the secrecy capacity of this wiretap channel, which
is given in 〈1.7〉. It is achieved without using the public channel.

• If the wiretap channel satisfies pY,Z|X(y, z|x) = pY |X(y|x) pZ|X(z|x) for all (x, y, z) ∈
X ×Y ×Z, which corresponds to the Markov chain Y – X – Z, the backward secret-key
capacity and the secret-key capacity both equal

CK = max
pX

(I (X; Y ) − I (Y ; Z)) ,

which generally is larger than the forward secret-key capacity.

The last result was extended by Wong et al. (2009) for the channel-type model with a
Gaussian wiretap channel as in 〈1.5〉. The secret-key capacity, which equals the backward
secret-key capacity, is given by

CK = max
pX

(I (X; Y ) − I (Y ; Z)) ,

where pX is a probability density function that satisfies E
(
X2

)
≤ P .

〈1.13〉 Secret-Key Rate. Similar to the definition of the secrecy rate RS in 〈1.9〉, we
introduce the secret-key rate RK for the channel-type model with the complex Gaussian
wiretap channel in 〈1.5〉 and its extensions that we study in the next chapters as

RK ··= max
pX

(I (X; Y ) − I (Y ; Z)) ≤ CK ,

where pX is the probability density function of the random variable (or the random
vector) X whose second order moment is fixed to a certain transmit strategy, i.e., simply
a transmit power in the basic scenario or a transmit covariance matrix in the multi-
antenna scenario. Thus, we obtain an achievable secret-key rate expression that can be
further optimized over the set of feasible transmit strategies.

〈1.14〉 Comparison of Secrecy and Secret-Key Rates. If we intend to have a rea-
sonably fair comparison between both approaches we introduced in Section 1.2, we have
to take their different objectives into account. In the one case, Alice reliably transmits
the data to Bob with rate RS and simultaneously keeps it secret from Eve. In the other
case, Alice and Bob generate a common key with rate RK , which is kept secret from Eve,
but they have not transmitted any data so far. Thus, it is necessary to incorporate the
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. . . . . .

RK R

T1 T2

=̂ . . .

RT = ϑ RK

T1 + T2

Figure 1.6: Time-division approach for key generation and data transmission.

subsequent data transmission for this case in order to enable a fair comparison between
both approaches.

As soon as Alice and Bob agreed on a common and secret key of a certain length, they
can use this key to encrypt information of the same length. Afterwards, this secured
information can be transmitted over the channel with an achievable transmission rate
without considering any further secrecy constraints. This time-division approach is illus-
trated in Figure 1.6. The first period is the key generation phase, which comprises T1

channel uses. The second period is the data transmission phase, which lasts T2 channel
uses. In the first phase, we can generate key bits with rate RK . In the second phase,
the encrypted information can be transmitted with rate R, which can be larger than RK

since no secrecy constraints have to be regarded in this phase. The number of bits that
are generated in the first phase and transmitted in the second phase are T1RK and T2R,
respectively. Perfect secrecy can only be achieved if we have at least the same number
of key bits as data bits. Thus, we set T1RK = T2R. For the comparison with the se-
crecy rate RS , we propose to calculate an average rate over both phases, which altogether
comprise T1 + T2 time slots. Thus, we obtain

RT =
T1RK

T1 + T2
= ϑ RK ,

where the factor ϑ is determined by

ϑ =
T1

T1 + T2
=

R

R + RK

.

Note that this new rate expression indeed considers the power that is used by Alice for
the transmission in the key generation phase and in the subsequent data transmission
phase, but not the power that is additionally needed for the key agreement over the
public channel and the encryption and decryption of the information at the transmitter
and receiver, respectively.
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Resource Allocation for Physical-Layer Security





2 Secrecy Rate Optimization

In the previous chapter, we have already introduced the main idea of physical-layer se-
curity that we want to consider in the following: Two users want to communicate in the
presence of an eavesdropper who listens and tries to decode the message. The privacy of
the communication should be ensured only by means of the physical layer, i.e., by appro-
priate coding and resource allocation. In this chapter, we will present the results on the
achievable secrecy rates for various wireless systems. In the first section, we will introduce
our basic model: the wiretap channel with attenuated Gaussian channels. We present an
expression for the secrecy rate RS and study its properties from a mathematical point of
view. In the following sections of this chapter, we extend this model to multi-carrier and
multi-antenna scenarios. We present results for the achievable secrecy rates or the secrecy
capacities and provide power allocation strategies for the secrecy rate maximization. We
focus on single-user scenarios, but we also give some results for the multi-user case.

〈2.1〉 Publication Note. A state-of-the-art overview of the results on single- and two-
user secrecy rate maximization for multi-carrier and multi-antenna systems has already
been published in (Jorswieck et al., 2010).

2.1 Basic Scenario

In our basic scenario, which is illustrated in Figure 2.1, Alice is the transmitter, who
wants to ensure the privacy of a message that she sends to the legitimated receiver Bob,
while the eavesdropper Eve listens and tries to decode this message.

Alice

Eve

Bob

h ξ

g ζ

X

Z

Y

receiver channel

eavesdropper channel

Figure 2.1: Wiretap channel with attenuated Gaussian channels, a transmitter (Alice), a receiver
(Bob), and an eavesdropper (Eve).
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〈2.2〉 System Model. We consider the complex Gaussian wiretap channel with addi-
tional attenuations of the transmit signal. This channel is used n time slots for the
transmission of a codeword from Alice to Bob. For each channel use, the system model
is described by

Y = hX + ξ and

Z = gX + ζ.

We can skip the time index and use the generic variables X, Y , Z, ξ, and ζ since we have
defined the wiretap channel in 〈1.3〉 as memoryless and stationary. In this model, X is
a random variable representing Alice’s transmit signal, Y and Z are random variables
for Bob’s and Eve’s receive signal, respectively, h and g are complex-valued channel
coefficients that model the signal attenuation for the channels from Alice to Bob and
from Alice to Eve, respectively, and ξ and ζ are random variables representing the noise.
We make the following assumptions:

• The complex-valued channel coefficients h and g satisfy |h| 6= 0 and |g| 6= 0, i.e., both
channels allow a transmission from Alice to the corresponding receiver.

• The random variables X, ξ, and ζ are statistically independent.
• The noise variables ξ and ζ are circularly-symmetric complex Gaussian distributed

with zero mean and variance σ2, i.e., ξ, ζ ∼ CN (0, σ2) with σ2 > 0.
• There is a power constraint P with P > 0 at the transmitter, i.e., E

(
X2

)
≤ P .

• Bob and Eve perfectly know their individual channel coefficients. Furthermore, Eve
is allowed to additionally know Bob’s channel coefficient.

• Alice has full channel state information (CSI), i.e., she knows both channel coefficients
perfectly. This assumption, which is essential for our further discussion, seems to be
unrealistic in a wiretap setting where Eve only listens. But, it is justified if we think
for instance at a cellular environment with a base station (Alice) and two users (Bob
and Eve). Then Alice will know the channel coefficients if Bob and Eve use up- and
downlink transmission and if we assume channel reciprocity in a time-division duplex
system.

〈2.3〉 Notation. For both channels, we define the so-called channel gains a ··= |h|2 and
b ··= |g|2, which satisfy a > 0 and b > 0. Moreover, we introduce the inverse noise variance
ρ ··= 1

σ2 with ρ > 0 for high- and low-SNR discussions.

〈2.4〉 Secrecy Rate. For this model, the secrecy rate RS , which we interpret as a func-
tion of the channel gains a and b and the transmit power q with q ≥ 0, can be evaluated
according to 〈1.9〉, which yields

RS(a, b, q) = [ϕ(a, b, q) ]+ with

ϕ(a, b, q) ··= log2

(
1 +

aq

σ2

)
− log2

(
1 +

bq

σ2

)
= log2

(
σ2 + aq

σ2 + bq

)
,
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2.1 Basic Scenario

where the random variable X needs to be circularly-symmetric complex Gaussian dis-
tributed with zero mean and variance q, i.e., X ∼ CN (0, q), in order to achieve the
channel capacities in 〈1.9〉 for a given transmit power q.

〈2.5〉 Properties (Positivity). Obviously, the function ϕ and thus the secrecy rate RS

are positive if and only if a > b and q > 0, i.e., it depends on the relation between the
channel states whether the transmitter can achieve a positive secrecy rate or not.

In the following, we consequently focus on the case where the channel from Alice to Bob
has a higher gain than the channel from Alice to Eve. Then the evaluation of the first
and second derivatives of ϕ and RS provides the properties below.

〈2.6〉 Calculations. For the first derivatives, we have

∂

∂a
ϕ(a, b, q) =

1

ln 2

(
q

σ2 + aq

)
with

∂

∂a
ϕ(a, b, q) > 0 if q > 0,

∂

∂b
ϕ(a, b, q) = − 1

ln 2

(
q

σ2 + bq

)
with

∂

∂b
ϕ(a, b, q) < 0 if q > 0,

∂

∂q
ϕ(a, b, q) =

1

ln 2

(
σ2(a − b)

(σ2 + aq)(σ2 + bq)

)
with

∂

∂q
ϕ(a, b, q) > 0 if a > b.

For the second derivatives, we have

∂2

∂a2
ϕ(a, b, q) = − 1

ln 2

(
q2

(σ2 + aq)2

)
with

∂2

∂a2
ϕ(a, b, q) < 0 if q > 0,

∂2

∂b2
ϕ(a, b, q) =

1

ln 2

(
q2

(σ2 + bq)2

)
with

∂2

∂b2
ϕ(a, b, q) > 0 if q > 0,

∂2

∂q2
ϕ(a, b, q) = − 1

ln 2

(
σ2(a − b)

(
σ2(a + b) + 2abq

)

(σ2 + aq)2(σ2 + bq)2

)
with

∂2

∂q2
ϕ(a, b, q) < 0 if a > b.

〈2.7〉 Properties (Monotonicity). For a > b and q > 0, the function ϕ and the secrecy
rate RS in 〈2.4〉 are identical and

a) strictly monotonically increasing in a for fixed b and q,
b) strictly monotonically decreasing in b for fixed a and q, and
c) strictly monotonically increasing in q for fixed a and b.

〈2.8〉 Properties (Convexity). For a > b and q > 0, the function ϕ and the secrecy
rate RS in 〈2.4〉 are identical and

a) a strictly concave function of a for fixed b and q,
b) a strictly convex function of b for fixed a and q, and
c) a strictly concave function of q for fixed a and b.
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〈2.9〉 Remark. If we analyze the properties of RS without the restriction a > b, we
have to consider the influence of the outer [ · ]+ function, see 〈A.2〉. In this case, the
monotonicity properties in 〈2.7〉 and the convexity in b in 〈2.8〉 can be preserved if the
corresponding statements are relaxed to a formulation without “strictly”, whereas the
concavity in q and a is no longer given.

Now, we formulate the maximization problem for the secrecy rate in 〈2.4〉 and the system
model specified in 〈2.2〉.
〈2.10〉 Problem Formulation (Secrecy Rate Maximization). For given channel
gains a and b, the secrecy rate RS in 〈2.4〉 should be maximized under a transmit power
constraint q ≤ P , i.e.,

max
q∈Q

RS(a, b, q) = max
q∈Q

[ϕ(a, b, q) ]+ =

[
max
q∈Q

ϕ(a, b, q)

]+

,

where

Q ··= {q ∈ R | q ≥ 0 and q ≤ P}

is the set of all feasible transmit powers. For the formulation of the problem above, we
can exploit the interchangeability of the [ · ]+ function and the maximization over the set
Q, see 〈A.3〉.

〈2.11〉 Remark. With the optimization problem above, we want to simultaneously in-
troduce a standard formulation for optimization problems, which we will use throughout
this thesis. In order to specify the constraints on the problem, we always define a con-
straint set for each optimization variable, which can be a scalar, a vector or a matrix in
the next chapters. Thereby, we differentiate between constraints on single components,
e.g., non-negativity requirements, and constraints concerning all components of the opti-
mization variable as sum or trace constraints. Due to the simplicity of the problem in the
basic scenario, the resulting constraint set in 〈2.10〉 obviously specifies a simple interval
that is feasible for the transmit power q.

〈2.12〉 Properties (Convexity of the Problem). The constraint set, which is a closed
interval on R, is convex. The only interesting case is a > b, where RS is positive for any
q > 0. In that case (with fixed a and b), the objective function is a concave function of q
on the set Q, see 〈2.8〉. Hence, we have a convex problem.

〈2.13〉 Optimal Strategy (Power Allocation). If the channel between Alice and Bob
is better than the channel between Alice and Eve, i.e., a > b, the secrecy rate RS is
maximized by using full power at the transmitter, i.e., q = P . This directly follows from
the corresponding monotonicity property in 〈2.7〉. Otherwise, the secrecy rate RS is zero
independently of the chosen power allocation at the transmitter, see 〈2.5〉. Then the
transmitter consequently can choose the option not to transmit its message, i.e., q = 0.
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〈2.14〉 Secrecy Capacity. From 〈1.8〉, we know that the secrecy capacity of the basic
model in 〈2.2〉 is given by

CS =

[
log2

(
1 +

aP

σ2

)
− log2

(
1 +

bP

σ2

)]+

.

In order to study the behavior of the secrecy rate for high and low SNR, we now interpret
RS in 〈2.4〉 as a function of the noise variance σ2 (or its inverse ρ) for given channel gains
a and b and a fixed value of P and look at the corresponding limits (if they exist) and
some related performance measures.

〈2.15〉 High-SNR Performance. In the high-SNR regime, the secrecy rate RS ap-
proaches the following limit:

lim
σ2→0

RS(a, b, q) =
[

log2

(a

b

)]+

,

which only depends on the quotient of the two channel gains, i.e., if the system is op-
erating in the high-SNR regime, we can only have a vanishing gain in the secrecy rate
when increasing the transmit power. This is in contrast to the scenario without secrecy
constraints, where the achievable rate grows with the transmit power without converging
to a limit.

〈2.16〉 Low-SNR Performance. In the low-SNR regime, the secrecy rate RS clearly
approaches the following limit:

lim
ρ→0

RS(a, b, q) = 0.

We can gain a little bit more insight if we consider the linear Taylor series representation
of RS at the point ρ = 0, which is

TRS
(ρ; 0) =

1

ln 2
(a − b) q ρ.

If the system is operating in the low-SNR regime, the increase of the secrecy rate is
determined by the difference of the two channel gains. Without secrecy constraints, the
factor for the rate increase would be determined by a.

〈2.17〉 Illustration. In order to illustrate the results of this section, we choose a = 1 and
P = 1. For fixed P , a variation of the inverse noise variance ρ directly corresponds to a
variation of the SNR. Figure 2.2 shows the maximized secrecy rate of the basic scenario,
which is obtained using full power and denoted by R+

S , as a function of the SNR. It
increases with ρ since all other parameters are fixed. In (a), we see the maximized
secrecy rate R+

S for b = 0.5 together with its low-SNR approximation according to 〈2.16〉
and its high-SNR limit according to 〈2.15〉. As expected, the maximized secrecy rate
R+

S converges to 1 bit for high SNR, which corresponds to the calculated limit with
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Figure 2.2: The maximized secrecy rate R+

S for various eavesdropper channel gains and its low-
SNR approximation and high-SNR limit.

a = 1 and b = 0.5. In (b), the influence of the eavesdropper channel gain is illustrated.
The case b = 0 corresponds to a scenario without eavesdropper or equivalently to a
transmission without secrecy constraints. The resulting curve represents an upper bound
on all achievable secrecy rates. For the transmission without secrecy constraints, we
have no limit for high SNR. In all other cases, the maximized secrecy rates converge to
their high-SNR limits according to 〈2.15〉. We clearly observe that a better eavesdropper
channel reduces the achievable secrecy rate. This influence of the eavesdropper channel
gain can be noticed over the complete SNR range. However, it is more significant for
high SNR, where the differences between the curves converge to constant gaps, which are
characterized by the corresponding high-SNR limits.

〈2.18〉 Remark (Fading). In the model above, the channel coefficients h and g are
constants. Depending on the relation of the channel gains, Alice is able to transmit the
private message to Bob or not. Consequently, we have a constant secrecy rate that is
either positive or zero all the time. We can extend this static model and define a system
with quasi-static block flat fading. Then the channel coefficients h and g become random
variables, which we call channel states. The value of such a channel state remains constant
during the transmission of a complete codeword. Afterwards, the next channel state takes
on a different value for the transmission time of the next codeword. All channel states of a
channel are independent and identically distributed. Generally, the states of the channels
from Alice to Bob and from Alice to Eve can be modeled as statistically dependent. Now
we have a time-varying model, where the situation changes from block to block. For
each pair of channel states known by Alice, the secrecy rate can be calculated according
to 〈2.4〉. Then it is called instantaneous secrecy rate. Based on the statistics assumed
for the channel coefficients and depending on Alice’s knowledge about the eavesdropper
channel, average or outage secrecy rates can be calculated (Bloch et al., 2008).
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2.2 Multi-Carrier Scenario

〈2.19〉 Two-User Case. In the single-user case, which we discussed so far, Alice has a
private message for Bob, but no interest in a private communication with Eve. However,
when Eve has a better channel than Bob, Alice cannot transmit her message to Bob, and
the secrecy rate RS is zero. If Alice additionally has a private message for Eve, she can
decide depending on the channel conditions whether she communicates with Bob or with
Eve. Then, Bob and Eve can play two different roles depending on Alice’s decision: They
are either the legitimated receiver of their own message or the potential eavesdropper
of the other. Now Alice can always5 choose the user with the better channel gain and
transmit the corresponding private message with a positive secrecy rate, which yields a
more efficient use of the available resources. This approach makes sense if we interpret
the model as a quasi-static block flat fading system as described in 〈2.18〉, where the
relation of the channel gains and thus the instantaneous secrecy rate change from block
to block.

The system model in 〈2.2〉 can be extended to a multi-carrier or a multi-antenna system
model, where Alice has more options than before. She can distribute the available power
(under a sum power constraint) over a certain number of carriers or antennas to maxi-
mize the secrecy rate for the transmission to Bob. In the next sections, we will present
maximization problems for the secrecy rate in multi-carrier or multi-antenna scenarios
together with the optimal power allocation strategies.

2.2 Multi-Carrier Scenario

We extend our basic model from the previous section to a multi-carrier scenario, where
Alice wants to send her private message to Bob in a system with K parallel carriers.
Again, this message should be kept secret from the eavesdropper Eve. We study the op-
timal resource allocation for the secrecy rate maximization under a sum power constraint
over all carriers.

〈2.20〉 System Model (Extension to Multi-Carrier Scenario). In order to extend
the wiretap channel with attenuated Gaussian channels to a multi-carrier system with
K carriers, the system model in 〈2.2〉 is used K times in parallel. Then, all variables
that were scalars before become row vectors of length K. Consequently, we have a
transmit signal vector X = (Xk)K

k=1 at Alice and the receive signal vectors Y = (Yk)K
k=1

and Z = (Zk)K
k=1 at Bob and Eve, respectively. The attenuated Gaussian channels are

characterized by the channel coefficient vectors h = (hk)K
k=1 and g = (gk)K

k=1 together
with the noise vectors ξ = (ξk)K

k=1 and ζ = (ζk)K
k=1 as shown in Figure 2.3.

5The only exception is the case where both channel gains are equal, i.e., a = b. But if we model both
channel gains as outcomes of independent continous random variables as discussed in 〈2.18〉, this occurs
with probability zero.
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Figure 2.3: Wiretap channel for the multi-carrier scenario with K carriers.

Alice

Eve

Bob

hk ξk

gk ζk

Xk

Zk

Yk

receiver channel

eavesdropper channel

Figure 2.4: Wiretap channel with attenuated Gaussian channels.

For each carrier k ∈ {1, 2, . . . , K}, the system model, which is shown in Figure 2.4,
corresponds to the basic system model in 〈2.2〉. It can be described by

Yk = hkXk + ξk and

Zk = gkXk + ζk,

where the variables have the same meaning as before in 〈2.2〉. The additional index k
refers to the corresponding variable on the k-th carrier. We directly transfer all relations
and assumptions from the basic model in 〈2.2〉 to each carrier of the multi-carrier scenario.
Additionally, it is required that the vectors X, ξ, and ζ are independent from each other.
For each of these vectors, the components are independent and identically distributed.

The power constraint becomes a constraint over all K carriers, i.e., E
(∑K

k=1 X2
k

)
≤ P .

〈2.21〉 Notation. We follow the conventions from our basic scenario and define the chan-
nel gains ak ··= |hk|2 and bk ··= |gk|2 for all k ∈ {1, 2, . . . , K}. We introduce (row) vectors
of length K for the collection of these channel gains, i.e., we have a ··= (ak)K

k=1 and
b ··= (bk)K

k=1. In the same way, we define a power allocation vector q ··= (qk)K
k=1 for the

transmit powers Alice uses on the K carriers.

〈2.22〉 Secrecy Rate. For this model, the secrecy rate RS , which we understand as a
function of the transmit power vector q and the channel gain vectors a and b, is the sum
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2.2 Multi-Carrier Scenario

over all secrecy rates per carrier and given by

RS(a, b, q) =
K∑

k=1

[ϕ(ak, bk, qk) ]+ with

ϕ(ak, bk, qk) ··= log2

(
1 +

akqk

σ2

)
− log2

(
1 +

bkqk

σ2

)

where qk ≥ 0 is the power that Alice allocates to carrier k in order to transmit her message
to Bob. This directly follows from 〈2.4〉 if each carrier is studied independently.

〈2.23〉 Properties (Positivity). If we compare the channel gains on each carrier, we
can generally assume that on some carriers the gain of the channel between Alice and
Bob is greater than the gain of the channel between Alice and Eve, whereas on other
carriers the situation is the other way around. From 〈2.5〉, it follows that we can only
have a positive contribution to the secrecy rate RS on those carriers where Bob has a
better channel gain than Eve.

The properties below can be derived with the first and second derivatives we calculated
for the secrecy rate of the basic scenario.

〈2.24〉 Properties (Monotonicity). With 〈2.7〉, we can provide some statements on
the monotonicity of the function ϕ and the secrecy rate RS in the components of the
vectors a, b, and q under the assumption that all other variables are fixed. For all
k ∈ {1, 2, . . . , K} with ak > bk and qk > 0, the functions ϕ and RS in 〈2.22〉 are

a) strictly monotonically increasing in ak,
b) strictly monotonically decreasing in bk, and
c) strictly monotonically increasing in qk.

〈2.25〉 Properties (Convexity). The Hessian matrices of RS with respect to a, b, and
q are diagonal. For a and q, these matrices have only non-positive diagonal entries, see
〈2.8〉, i.e., they are negative semi-definite. Furthermore, we see that the Hessian matrix
with respect to b has only non-negative diagonal entries, i.e., it is positive semi-definite.
This allows us to formulate the convexity properties of RS with respect to the vectors
a, b, and q under the assumption that all other variables are fixed. The function RS in
〈2.22〉 is

a) a concave function of a,
b) a convex function of b, and
c) a concave function of q.
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2 Secrecy Rate Optimization

〈2.26〉 Problem Formulation (Secrecy Rate Maximization). For given channel
gain vectors a and b, the secrecy rate RS in 〈2.22〉 should be maximized under a sum
power constraint at the transmitter, i.e.,

max
q∈Q

RS(a, b, q) = max
q∈Q

K∑

k=1

[ϕ(ak, bk, qk) ]+ ,

where

Q ··=
{

q ∈ R1×K

∣∣∣∣∣ qk ≥ 0 and
K∑

k=1

qk ≤ P

}

is the set of all feasible power allocation vectors.

〈2.27〉 Properties (Convexity of the Problem). The constraints describe a vector
with individual lower bounds for the components and a sum constraint for all vector
elements. This is a convex set. On this set, the objective function RS is a concave
function of q for fixed channel gain vectors a and b, see 〈2.25〉. Thus, the problem in
〈2.26〉 is convex.

The observation in 〈2.23〉 allows us to select the carriers that are relevant for the optimal
transmit power allocation and thus to reduce the maximization problem.

〈2.28〉 Optimal Strategy (Carrier Selection). The optimal power allocation for the
secrecy rate maximization uses zero power on all carriers where the gain of the channel
from Alice to Bob is not greater than the gain of the channel from Alice to Eve, i.e.,

∀ k ∈ {1, 2, . . . , K | ak ≤ bk} : qk = 0.

The remaining optimization problem is the maximization of the secrecy rate RS by a
power allocation strategy q that fulfills the sum power constraint in 〈2.26〉 and does not
allocate power to carriers with ak ≤ bk for k ∈ {1, 2, . . . , K}. The convexity of the
optimization problem is clearly not influenced by this additional constraint. With the
necessary Karush-Kuhn-Tucker (KKT) optimality conditions, which are also sufficient
due to the convexity of the problem, we can derive the optimal power allocation for all
carriers that are not switched off. We obtain an implicit solution, which is a type of
waterfilling.

〈2.29〉 Optimal Strategy (Power Allocation). The optimal transmit strategy for the
secrecy rate maximization problem in 〈2.26〉 fulfills 〈2.28〉 and uses the waterfilling solu-
tion

qk(µ) =

[
−ck

2
+

√
d 2

k

4
+ µ dk

]+
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with ck ··= σ2 ak + bk

akbk

and dk ··= σ2 ak − bk

akbk

for the power allocation on all carriers with ak > bk and k ∈ {1, 2, . . . , K}. Due
to the monotonicity in all components of q, see 〈2.24〉, the waterfilling parameter µ
with µ ≥ 0 has to be chosen such that the power constraint is fulfilled with equality,
i.e.,

∑K
k=1 qk(µ) = P .

〈2.30〉 Secrecy Capacity. The secrecy capacity of the multi-carrier scenario in 〈2.20〉
with a sum power constraint over all carriers is obtained by the maximization of the sum
of the secrecy rates of the individual channels, i.e.,

CS = max
q∈Q

K∑

k=1

[
log2

(
1 +

akqk

σ2

)
− log2

(
1 +

bkqk

σ2

)]+

.

This was shown by Li et al. (2006), who also derived the corresponding optimal power
allocation, which equals6 the waterfilling solution in 〈2.29〉.

〈2.31〉 Notation. In order to simplify the notation of the next results, we introduce

KB ··= {k ∈ {1, 2, . . . , K} | ak > bk} and

K ··= {k ∈ {1, 2, . . . , K} | qk > 0} ⊆ KB,

which are both subsets of the set of carriers. KB is the set of all carriers that can be used
for a transmission to Bob with a positive secrecy rate, whereas K is the set of carriers
that are really used for the transmission to Bob.

In order to characterize the optimal power allocation for high and low SNR, we again
interpret RS in 〈2.22〉 as a function of the noise variance σ2 (or its inverse ρ) for a fixed
value of P .

〈2.32〉 High-SNR Performance. In the high-SNR regime, there exists a limit for the
secrecy rate RS , which is

lim
σ2→0

RS(a, b, q) =
∑

k∈K

log2

(
ak

bk

)
.

This limit is determined by the quotients of the channel gains of the carriers that are used.
Although it seems that the high-SNR limit is independent from the power allocation, it
is influenced by the carrier selection, i.e., for the value of the limit it is relevant which
subset of the carriers is used. Thus, the optimal power allocation that maximizes this
secrecy rate limit in the high-SNR regime uses all possible carriers, i.e., it assigns qk > 0
to all carriers k ∈ KB.

6We were not aware of this publication when we studied the secrecy rate maximization in the multi-
carrier scenario and independently obtained the solution in 〈2.29〉 for the optimal power allocation, see
also comments in 〈2.38〉 and 〈2.39〉.
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〈2.33〉 Low-SNR Performance. In the low-SNR regime, the limit of the secrecy rate
RS clearly is

lim
ρ→0

RS(a, b, q) = 0.

We calculate the linear Taylor series representation of RS at the point ρ = 0 and obtain

TRS
(ρ; 0) =

1

ln 2

∑

k∈K

(ak − bk) qk ρ.

The increase of the secrecy rate in the low-SNR regime is determined by the differences
of the channel gains of the carriers that are used. Thus, in the low-SNR regime, it is
optimal to allocate full power to the carrier with the largest difference, i.e., qℓ = P with
ℓ = arg maxk∈KB

(ak − bk).
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Figure 2.5: The maximized secrecy rate R+

S and the corresponding power allocation.

〈2.34〉 Illustration. With Figure 2.5, we illustrate the results we obtained so far for
the secrecy rate maximization in the multi-carrier scenario. We choose K = 10 carriers
and P = 1 for the sum power constraint over these carriers. The gains for the channels
from Alice to Bob and Eve are given in the table below the illustrations. We see that
we have five carriers, which are the carriers 2, 4, 6, 9, and 10, where Bob has a better
channel than Eve. According to 〈2.23〉, only these carriers will be used by Alice for the
transmission to Bob. In (a), we see the maximized secrecy rate R+

S as increasing function
of the SNR with its low-SNR approximation according to 〈2.33〉 and its high-SNR limit
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according to 〈2.32〉. In (b), the corresponding optimal power allocation is shown over
the SNR range. For low SNR, Alice allocates the complete power P to carrier 9, which
is the carrier with the largest difference between the channel gains. This corresponds to
the result of the low-SNR analysis in 〈2.33〉. With increasing SNR, Alice distributes the
available power P to more and more carriers. Thereby, she prefers to activate carriers
with a larger difference between the channel gains. For high SNR, she uses all possible
carriers for the transmission to Bob. In this regime, the power allocation to the carriers
depends on the quotient of the channel gains. Alice allocates more power to carriers with
a larger quotient. We have already identified this high-SNR behavior in 〈2.32〉.

〈2.35〉 Two-User Case. Now we consider the two-user case in the multi-carrier sce-
nario. Again, Alice wants to transmit private messages to Bob and to Eve, who are both
interested in receiving their own message and eavesdropping the other. In addition to
〈2.31〉, we define

KE ··= {k ∈ {1, 2, . . . , K} | bk > ak}

as the set of carriers that Alice can use to transmit Eve’s message with a positive secrecy
rate. Thus, we have two disjoint sets of carriers for the transmission to Bob and Eve. In
the two-user case, we can calculate the two secrecy rates

RS,B(a, b, q) ··=
∑

k∈KB

log2

(
1 +

akqk

σ2

)
− log2

(
1 +

bkqk

σ2

)
and

RS,E(a, b, q) ··=
∑

k∈KE

log2

(
1 +

bkqk

σ2

)
− log2

(
1 +

akqk

σ2

)
,

where RS,B is the secrecy rate in 〈2.22〉, which is achievable for the transmission to Bob,
and RS,E is the secrecy rate that Alice can achieve for her message to Eve. In (Jorswieck
and Wolf, 2008, Theorem 2), it was shown that the sum secrecy rate is maximized if a
frequency-division approach is used, i.e., the transmitter exclusively supports the user
with the maximum channel gain on each carrier. The sum secrecy rate that is achievable
for both messages is then given by

RΣ
S (a, b, q) ··= RS,B(a, b, q) + RS,E(a, b, q)

=
K∑

k=1

log2

(
1 +

max{ak, bk} qk

σ2

)
− log2

(
1 +

min{ak, bk} qk

σ2

)
.

The sum secrecy rate maximization problem under a transmit power constraint can be
formulated analogously to problem 〈2.26〉. Thus, the optimal power allocation strategy
can be derived from the waterfilling solution in 〈2.29〉 by inserting max{ak, bk} instead
of ak and min{ak, bk} instead of bk.
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A generalization of this problem is the weighted sum secrecy rate maximization problem,
which was presented by Jorswieck and Gerbracht (2009):

max
q∈Q

Rκ
S(a, b, q, κ)

with Q as defined in 〈2.26〉, the weighted sum secrecy rate

Rκ
S(a, b, q, κ) ··= κ RS,B(a, b, q) + (1 − κ) RS,E(a, b, q),

and κ ∈ [0, 1]. The factor κ describes not only how the transmitter weights the rates of
the two users, but it also allows us to calculate the secrecy rate region that is achievable
for two users. The solution of this problem can be obtained with the KKT conditions
as described above for the single-user case. This yields a waterfilling solution over all
carriers k ∈ KB ∪ KE that generalizes 〈2.29〉 to

qk(µ) =

[
−ck

2
+

√
d 2

k

4
+ µk dk

]+

with ck ··= σ2 ak + bk

akbk

, dk ··= σ2 |ak − bk|
akbk

, and

µk ··=
{

κ µ for k ∈ KB

(1 − κ) µ for k ∈ KE

.

Due to the monotonicity of the objective function, the waterfilling parameter µ has to
be chosen such that the power constraint is fulfilled with equality, i.e.,

∑K
k=1 qk(µ) = P .

Note that the formulation of the waterfilling solution above is more general than the
original solution presented by Jorswieck and Gerbracht (2009).

〈2.36〉 Illustration (Two-User Case). For the illustration of the two-user case in Fig-
ure 2.6, we continue the example we discussed in 〈2.34〉. In contrast to the single-user
case, Alice can now use all K = 10 carriers for data transmission. As before, she can
allocate power to the carriers 2, 4, 6, 9, and 10 for the transmission to Bob. Additionally,
she can use the remaining five carriers for a parallel transmission to Eve. The maximized
secrecy rates that are achievable for Bob and Eve in the two-user case are shown in (a).
Furthermore, the resulting sum secrecy rate is plotted. For comparison, we also added
the maximized secrecy rate for Bob from the single-user case. If we look at the achievable
secrecy rates from Alice’s perspective, we see that the sum secrecy rate for the transmis-
sion in the two-user case is considerably larger than the maximized secrecy rate from the
single-user scenario, although Alice has to respect the same sum power constraint in both
cases. Especially for high SNR, the gap between the rates becomes significant. We know
from 〈2.32〉 that all carriers are used in this regime. Thus, the resulting high-SNR limit,
which is calculated from the gain quotients of all ten carriers, is larger than before, where
only five carriers could be used. From Bob’s point of view, the additional transmission to
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Figure 2.6: The maximized secrecy rates and the corresponding user power allocation for the
two-user case.

Eve is disadvantageous. Since the available power at the transmitter is shared between
the two users, he can get only a fraction of the power he had before in the single-user case.
The resulting power allocation per user is shown in (b). Consequently, Bob’s secrecy rate
is reduced compared to that from the single-user scenario. For low SNR, we know that
Alice allocates only power to the carrier with the largest gain difference. This is carrier
8, which is reserved for the transmission to Eve. Thus, Bob’s secrecy rate is zero in this
regime. For high SNR, the influence of the power sharing diminishes and Bob’s secrecy
rate converges to the rate from the single-user case.

〈2.37〉 Illustration (Cost of Secrecy). In Figure 2.7, we compare the achievable rates
with and without secrecy constraints for the single- and two-user case. The maximized
secrecy rates are denoted by R+

S , whereas the transmission rates without secrecy con-
straints are identified by R+. The diagrams in (a) and (b) show the results that were
obtained for a system with K = 10 and K = 100 independent carriers, respectively. For
each carrier k ∈ {1, 2, . . . , K}, the channel coefficients ak and bk were generated accord-
ing to a circularly-symmetric complex Gaussian distribution with zero mean and variance
two. We know that the transmission rate R+ in a scenario without secrecy constraints
is always an upper bound on the achievable secrecy rates. For high SNR, it grows to
infinity, whereas all secrecy rates converge to a certain finite limit. The rate loss that
results from the additional secrecy constraint can obviously be reduced in two ways. One
possibility is to support also the second user, which then allows the transmitter to use
all carriers. Another possibility is to increase the number of carriers. The asymptotic
behavior of the rates cannot be changed in general, but the high-SNR behavior of the
maximized secrecy rates is shifted to the right.

〈2.38〉 Publication Note. The main results discussed in this section have already been
presented at the 1st International Workshop on Multiple Access Communications in 2008
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Figure 2.7: Comparison of achievable rates with and without secrecy constraints for the one- and
two-user case.

and published in (Jorswieck and Wolf, 2008). In this paper, we studied the optimal
resource allocation for the secrecy rate maximization in the multi-carrier scenario. We
presented the secrecy rate expression in 〈2.22〉 and derived results on the carrier selection
and the spectral power allocation for the single- and two-user case, which were a basis
for 〈2.28〉, 〈2.29〉, and 〈2.35〉, but also for the high- and low-SNR discussion in 〈2.32〉 and
〈2.33〉.

〈2.39〉 Related Work. Li et al. (2006) considered the secrecy capacity of a system with
multiple independent parallel channels. They showed that the secrecy capacity of the
systems is the sum of the secrecy capacities of the individual channels, regardless of the
models assumed for these channels. Then, the authors studied the special case with (real-
valued) Gaussian channels that are subject to a sum power constraint. They derived the
optimal power allocation for this problem, which corresponds to the waterfilling solution
in 〈2.29〉, and discussed the carrier selection depending on the system parameters. They
stated that the transmitter uses only channels where Bob has a higher gain than Eve
and that these channels are ranked according to the difference of the channel gains. Con-
sequently, Alice allocates the complete power to the channel with the largest difference
for very low SNR. More channels are supported with increasing SNR, where the order is
determined by the difference of the channel gains. These results correspond to the deriva-
tions and observations that we formulated in 〈2.28〉, 〈2.33〉, and 〈2.34〉. Unfortunately,
we were not aware of this publication when we derived the results that we presented in
this section of the thesis and in (Jorswieck and Wolf, 2008).

Liang et al. (2008c) considered the parallel broadcast channel with independent carriers,
which they denoted as subchannels. They focused on the scenario with one transmitter
and two receivers, where the transmitter wants to broadcast a common message to both
receivers. Additionally, there is a confidential message for one receiver that should be kept
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2.3 Multi-Antenna Scenario

perfectly secret from the other. The authors analyzed this scenario from a information-
theoretical perspective and characterized the secrecy capacity region of the broadcast
channel. This result includes the secrecy capacity of the parallel wiretap channel as a
special case, which is obtained if no common message should be transmitted. Moreover,
it was shown that it is optimal to have independent inputs for each subchannel. For the
Gaussian broadcast channel, which is a special case of the analyzed model, the secrecy
capacity region is given. It was observed that the common message is sent over all
subchannels, whereas the confidential message is only sent over those subchannels for
which the output at the eavesdropper is a degraded version of the output at the intended
receiver.

2.3 Multi-Antenna Scenario

In this section, we extend the basic model in 〈2.2〉 to a multi-antenna scenario, where
Alice wants to send her private message to Bob in a system where all users have multiple
transmit / receive antennas. As before, Eve is a passive eavesdropper who tries to decode
Alice’s message that was intended for Bob. We describe the general case where Alice,
Bob, and Eve have multiple antennas, which is denoted as multiple-input multiple-output
(MIMO) scenario. But we also have a glance on the special case where Bob and Eve have
only a single antenna each, which is called multiple-input single-output (MISO) scenario.
In contrast to the sections above, we restrict ourselves to the description of the system
model, the introduction of the secrecy rate expression for this model, and the discussion
of the properties of this function. This provides the basis for the worst-case analysis in the
next chapter. The optimization of the secrecy rate for the multi-antenna scenario is not
within the focus of this thesis. We refer the interested reader to the introduction of this
thesis for some comments and approaches on the corresponding maximization problems
under various constraints.

Alice H, ξ

G, ζ

receiver channel
(L × M antennas)

eavesdropper channel
(L × N antennas)

Eve

Bob
(Xℓ)L

ℓ=1
(Ym)M

m=1

(Zn)N

n=1

Figure 2.8: Wiretap channel for the multi-antenna scenario.

〈2.40〉 System Model (Extension to Multi-Antenna Scenario). We extend the
basic model in 〈2.2〉 to a multi-antenna scenario, see Figure 2.8, where Alice has L
transmit antennas, whereas Bob and Eve have M and N receive antennas, respectively.
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Thus, we have a transmit signal vector X with XT = (Xℓ)L
ℓ=1 at Alice and the re-

ceive signal vectors Y and Z with Y T = (Ym)M
m=1 and ZT = (Zn)N

n=1 at Bob and Eve,
respectively. The attenuated Gaussian channels are characterized by the channel coef-
ficient matrices H ∈ CM×L and G ∈ CN×L together with the noise vectors ξ and ζ
with ξT = (ξm)M

m=1 and ζT = (ζn)N
n=1. These noise vectors are modeled as Gaussian

vectors ξ, ζ ∼ CN (0, σ2), i.e., they have zero mean and diagonal covariance matrices
E
(
ξξH

)
= σ2IM and E

(
ζζH

)
= σ2IN .

Alice

Eve

Bob

H ξ

G ζ

X

Z

Y

receiver channel

eavesdropper channel

Figure 2.9: MIMO wiretap channel with attenuated Gaussian channels.

The system model, which is shown in Figure 2.9, can be described by

Y = HX + ξ and

Z = GX + ζ.

We directly transfer all relations and assumptions from the basic model in 〈2.2〉 to this
model for the multi-antenna scenario. The power constraint becomes a power constraint
over all transmit antennas, which can be expressed as E

(
XHX

)
≤ P , which is equivalent

to tr(Q) ≤ P , where Q ∈ CL×L � 0 is Alice’s transmit covariance matrix Q ··= E
(
XXH

)
.

〈2.41〉 Secrecy Rate. For this model, the secrecy rate RS , which we interpret as a
function of the channel matrices H and G and the transmit covariance matrix Q with
Q � 0, can be evaluated according to 〈1.9〉, which yields

RS(H, G, Q) = [ϕ(H, G, Q) ]+ with

ϕ(H, G, Q) ··= log2 det
(
IM + ρ HQHH

)
− log2 det

(
IN + ρ GQGH

)
.

〈2.42〉 Notation. We introduce the matrices A and B, which are the Gramian matrices
of the channel matrices H and G, respectively. Thus, they are given by A ··= HHH and
B ··= GHG with A, B ∈ CL×L. Due to this construction, we have A, B � 0, i.e., the
matrices A and B are positive-semidefinite.

With this Gramian matrix notation, we introduce some equivalent expressions for the
secrecy rate RS , which are useful for the formulation of optimization problems and the
derivation of their properties in the next chapters.
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2.3 Multi-Antenna Scenario

〈2.43〉 Secrecy Rate (Equivalent Notation). With Sylvester’s determinant theorem,
see 〈A.7〉, the secrecy rate RS can be written as a function of the Gramian matrices A
and B of the channel matrices H and G and the transmit covariance matrix Q. We write
R⋆

S instead of RS if we refer to the secrecy rate in Gramian notation:

R⋆
S(A, B, Q) = [ϕ⋆(A, B, Q) ]+ with

ϕ⋆(A, B, Q) ··= log2 det
(

IL + ρ Q
1
2 AQ

1
2

)
− log2 det

(
IL + ρ Q

1
2 BQ

1
2

)

= log2 det
(

IL + ρ A
1
2 QA

1
2

)
− log2 det

(
IL + ρ B

1
2 QB

1
2

)
,

where A
1
2 , B

1
2 , and Q

1
2 are the (principal) square roots of the (positive-semidefinite)

matrices A, B, and Q.

We formulate the convexity properties of the functions ϕ and ϕ⋆ in 〈2.41〉 and 〈2.43〉 with
respect to their variables in order to derive the convexity properties of RS and R⋆

S . For
this purpose, we can use some statements from the literature.

〈2.44〉 Properties (Convexity). It is known that the log2 det function is concave on
the set of positive-semidefinite matrices, see for instance (Cover and Thomas, 1988, Proof
of Theorem 1). Thus, we can conclude that the function ϕ⋆ in 〈2.43〉 is

a) a concave function of A and
b) a convex function of B

since the argument of the log2 det function is a positive-semidefinite matrix, which is a
linear function of the corresponding variable, in both cases. Additionally, the function ϕ
in 〈2.41〉 is

c) a concave function of Q if the relation between the channel matrices H and G can be
expressed7 as TH = G with T ∈ CN×M and IM − T HT � 0.

This is a result from Liang et al. (2009, Lemma C.1), who applied a previous result from
Diggavi and Cover (2001, Lemma II.3). Note that: (i) The matrix T can only be unique
if M ≤ L. (ii) The proof in (Liang et al., 2009) requires that (T HT )−1 exists. Hence, we
have to require that M ≤ N and that T has full column rank. In addition, this result
implies that the function ϕ⋆ in 〈2.43〉 is a concave function of Q if this holds for the
correspondig ϕ, since the change in the notation according to 〈2.42〉 does not affect the
properties of the function.

If we consider a convex set for the respective variable where ϕ or ϕ⋆ is positive, we can
infer that each property formulated above also holds for the corresponding secrecy rate.
Consequently, we can say that R⋆

S in 〈2.43〉 is concave in A and convex in B in this case.
Furthermore, we know that RS in 〈2.41〉 is concave in Q if the channel matrices H and
G fulfill the condition above and if we consider a convex set for Q where RS is positive.
The secrecy rate R⋆

S is concave in Q if this holds for the correspondig secrecy rate RS .

7Note that the same relation was formulated by Weingarten et al. (2007, Definition 1) for the degrad-
edness of the MIMO wiretap channel.
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〈2.45〉 Secrecy Capacity. The secrecy capacity of the multi-antenna wiretap channel
was derived by Khisti and Wornell (2007) as well as Oggier and Hassibi (2007) for a model
with real-valued random variables. The extension to complex-valued random variables
yields

CS = max
Q∈Q

[
log2 det

(
IM + ρ HQHH

)
− log2 det

(
IN + ρ GQGH

)]+
,

see for instance (Bloch and Barros, 2011, Theorem 5.2).

〈2.46〉 Special Case (Multiple-Input Single-Output Scenario). The special case
where Bob and Eve each have only a single antenna was studied by Li et al. (2007).
Then, we have M = N = 1, and the channel matrices in 〈2.40〉 become row vectors of
length L. Thus, we now write h and g instead of H and G. Li et al. (2007) studied
the secrecy rate maximization problem under a sum power constraint over all antennas
and applied a coordinate transformation with a unitary matrix in order to reduce this
problem to a two-dimensional problem. The first column of the transformation matrix
was defined as

wMRT ··=
hH

‖h‖ ,

which can be identified as the maximum-ratio beamforming vector for the channel from
Alice to Bob. The second column is chosen such that it is normalized and orthogonal to
the first column and lies in the space spanned by h and g. The remaining columns can
be arbitrarily chosen such that they are a orthonormal basis for the remaining space and
orthogonal to the first two columns. Li et al. (2007) showed that the optimal transmit
covariance matrix Q̃ in the transformed (and reduced) space is given by Q̃ = PwwH, where
w is the generalized eigenvector that corresponds to the largest generalized eigenvalue of
the matrices I2 + Ph̃Hh̃ and I2 + P g̃Hg̃, where h̃ and g̃ are obtained by transforming the
original channel vectors h and g and reducing them to the first two dimensions afterwards.
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3 Worst-Case Studies for Secrecy Rate Optimization

In the previous chapter, we studied the secrecy rate maximization for various wiretap
scenarios. For all these problems, we assumed that the transmitter Alice had perfect
information about the channel to the eavesdropper Eve. This was motivated by the
idea that Eve is not only a curious eavesdropper but also a regular user of the system,
whose channel state is known to the transmitter due to some further communication
processes. In this chapter, we want to relax the assumption on perfect information about
the eavesdropper channel. We introduce a kind of partial information for the transmitter.
The transmitter only knows that the eavesdropper’s channel coefficients are subject to
certain restrictions, i.e., all possible eavesdropper channels can be modeled by an infinite
set, which reflects this constraint. We focus on the multi-antenna wiretap scenario, which
is the most general case we presented in the last chapter. It can be used as a basis for the
derivation of special cases representing the other scenarios we discussed before. In the first
section of this chapter, we introduce the system model and the optimization problems.
Then, we discuss these problems for a multi-antenna transmitter with only one wiretap
encoder. We characterize the worst-case secrecy rate for each given transmit strategy and
derive upper and lower bounds for the maximization of this worst-case secrecy rate under
a sum power constraint over all antennas at the transmitter. Afterwards, we present
a multi-antenna transmitter whose structure is better adapted to the properties of the
given problem. We also study the worst-case secrecy rate and its maximization for this
transmitter structure and compare the results for both transmitters.

3.1 Problem Statement and Equivalent Formulations

In this section, we introduce the system model for the worst-case study. We formulate
the worst-case problem and the corresponding maximization problem for the worst-case
secrecy rate. For this problem, we derive an equivalent formulation over the eigenvalues
of the matrices that characterize the underlying system model.

〈3.1〉 System Model. We resume the system model of the MIMO scenario, which was
specified in 〈2.40〉, with only one change. So far, we assumed that Alice has perfect
knowledge about the channels to Bob and Eve. This is still true for the channel H to
Bob, but about the channel G to Eve she now only knows that it underlies the following
restriction:

‖G‖2
F = tr(GHG) ≤ χ with χ ≥ 0.
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G

Figure 3.1: Illustration of the system model for the worst-case analysis of the secrecy rate in a
MIMO scenario.

The constraint is formulated using the Frobenius norm ‖·‖F of the eavesdropper channel
G. It can be equivalently written as

‖G‖2
F =

N∑

n=1

L∑

ℓ=1

|gnℓ|2 ≤ χ,

where the elements of the matrix G are denoted by gnℓ. Thus, it corresponds to a
constraint on the quality of the eavesdropper channel in the sense that it is an upper bound
on the sum of all channel gains. Together with a sum power constraint at the transmitter,
it can be interpreted as a constraint on the sum receive power at the eavesdropper. If
Alice knows the minimum distance to Eve, she can correspondingly compute a suitable
value for χ. Figure 3.1 illustrates the idea of this model. We have a multi-antenna
transmitter, Alice, and two multi-antenna receivers, Bob and Eve. The matrix H for the
MIMO channel to Bob is known to Alice, but there is some uncertainty about the matrix
G of the MIMO channel to Eve.

For known channel matrices H and G, the secrecy rate RS and the corresponding function
ϕ were given in 〈2.41〉. With these functions, we formulate two (nested) optimization
problems for the system model in 〈3.1〉. The first (or inner) problem is the identification of
the worst-case secrecy rate for a given transmit covariance matrix. This is a minimization
that is carried out over all possible eavesdropper channel matrices. The second (or outer)
problem is the maximization of this worst-case secrecy rate over all transmit covariance
matrices that fulfill the transmit power constraint. For both problems, we introduce two
formulations. In each case, we start with a problem statement that directly uses the
variables from the system model. Afterwards, we derive an equivalent formulation that
is more suitable for the following analysis.
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〈3.2〉 Problem Formulation (Worst-Case Secrecy Rate). For each given channel
matrix H and each given transmit strategy, which is specified by the transmit covariance
matrix Q, the corresponding worst-case secrecy rate RW is the minimal secrecy rate that
can be achieved if the minimization is carried out over all possible matrices for the channel
from the transmitter to the eavesdropper, i.e.,

RW(H, Q) ··= min
G∈G

RS(H, G, Q) = min
G∈G

[ϕ(H, G, Q) ]+ =

[
min
G∈G

ϕ(H, G, Q)

]+

,

where

G ··=
{

G ∈ CN×L
∣∣ tr(GHG) ≤ χ

}

is the set of all possible matrices for the channel from the transmitter to the eavesdropper.

〈3.3〉 Problem Formulation (Equivalent Notation). With the Gramian matrix no-
tation defined in 〈2.42〉 and the secrecy rate expression in 〈2.43〉, we can equivalently
formulate the worst-case secrecy rate problem in 〈3.2〉 as

R⋆
W(A, Q) ··= min

B∈B

R⋆
S(A, B, Q) = min

B∈B

[ϕ⋆(A, B, Q) ]+ =

[
min
B∈B

ϕ⋆(A, B, Q)

]+

,

where R⋆
W is the worst-case secrecy rate adapted to the Gramian notation of the channel

matrices and

B ··=
{

B ∈ CL×L
∣∣B � 0 and tr(B) ≤ χ

}

is the set that corresponds to the set G in 〈3.2〉 such that

G ∈ G ⇒ B ··= GHG ∈ B ⇒ G ∈
{

Ḡ ∈ CN×L
∣∣ ḠHḠ = B

}
⊆ G .

In order to analyze the properties of the optimization problem in 〈3.3〉, we can come back
to the properties we listed for the MIMO secrecy rate and the corresponding maximization
problem in the previous chapter.

〈3.4〉 Properties (Convexity of the Problem). It can be shown that the constraint
set B is convex by applying the following properties: (i) The convex combination of two
(L×L)-dimensional positive-semidefinite matrices always produces a positive-semidefinite
matrix of the same dimension. (ii) The trace function is linear. From 〈2.44〉, we can
conclude that ϕ⋆ is a convex function of B on the set B. Thus, we have a convex
problem.

The transmitter aims to maximize this worst-case secrecy rate under a sum power con-
straint over all antennas. This results in a max-min optimization problem.
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〈3.5〉 Problem Formulation (Worst-Case Secrecy Rate Maximization). For a
given channel matrix H, the worst-case secrecy rate RW in 〈3.2〉, which was determined
over the known set G , should be maximized under a sum power constraint over all an-
tennas at the transmitter, i.e.,

max
Q∈Q

RW(H, Q) = max
Q∈Q

min
G∈G

RS(H, G, Q)

= max
Q∈Q

min
G∈G

[ϕ(H, G, Q) ]+ =

[
max
Q∈Q

min
G∈G

ϕ(H, G, Q)

]+

,

where

Q ··=
{

Q ∈ CL×L
∣∣Q � 0 and tr(Q) ≤ P

}

is the set of all feasible transmit covariance matrices. We observe that this constraint set
is convex. We have already obtained this result in 〈3.4〉 for the set B, which was specified
by comparable constraints.

In the formulation of the problem in 〈3.5〉, we assume that Alice knows the set G and
consequently the dimension of the channel matrix G for the channel to Eve, i.e., the
number N of antennas Eve is equipped with. In 〈3.6〉, we reformulate the problem and
its constraints. In the resulting problem, the constraints do not require that Alice knows
N . Later, we will assume that Eve can have an arbitrarily large number of antennas.
Then, we will have a real worst-case scenario. But we will see that it is not necessary
that Eve has more receive antennas than Alice uses to transmit the message if Eve has
found the worst-case channel matrix.

〈3.6〉 Problem Formulation (Equivalent Notation). We use again the Gramian ma-
trix notation defined in 〈2.42〉 and the secrecy rate expression in 〈2.43〉. Therewith, we
equivalently reformulate the optimization problem in 〈3.5〉 and obtain

max
Q∈Q

R⋆
W(A, Q) = max

Q∈Q

min
B∈B

R⋆
S(A, B, Q)

= max
Q∈Q

min
B∈B

[ϕ⋆(A, B, Q) ]+ =

[
max
Q∈Q

min
B∈B

ϕ⋆(A, B, Q)

]+

,

with Q and B given in 〈3.5〉 and 〈3.3〉, respectively.

〈3.7〉 Remark. We can equivalently formulate the maximized worst-case problems in
〈3.5〉 and 〈3.6〉 without the outer [ · ]+ function. Since the constraint set Q contains
the zero matrix, it is always guaranteed that the maximized worst-case secrecy rate is
non-negative. But note that the outer [ · ]+ function is necessary in the formulation of
the worst-case problems in 〈3.2〉 and 〈3.3〉 in order to ensure that the resulting rates are
non-negative.
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〈3.8〉 Remark. In the literature, a setting in 〈3.5〉 or 〈3.6〉 is occasionally called a game
against nature: The first player, who is the transmitter in our case, aims to maximize
the cost function, the secrecy rate RS (or R⋆

S), and chooses a certain strategy, which we
identify with the transmit covariance matrix Q. Then the second player, who corresponds
to the nature and wants to minimize the cost function, is consequently aware of the
first player’s strategy and can react accordingly. In our case, the matrix G (or the
corresponding Gramian matrix B) for the channel to the eavesdropper is chosen such
that the resulting secrecy rate is minimized.

In the following, we will refer to the minimization in 〈3.3〉 and 〈3.6〉 as inner problem and
to the maximization in 〈3.6〉 as outer problem.

〈3.9〉 Notation. We introduce the (row) vectors a = (aℓ)L
ℓ=1, b = (bℓ)L

ℓ=1, and q =
(qℓ)L

ℓ=1 of length L as

a ··= eig(A), b ··= eig(B), and q ··= eig(Q),

i.e., the vectors a, b, and q contain the eigenvalues of the matrices A, B, and Q, respec-
tively.

〈3.10〉 Properties. For the matrices A, B, and Q and their eigenvalues, it holds:

a) The components of a, b, and q are non-negative since the matrices A, B, and Q are
positive-semidefinite.

b) The rank of the matrices A and B is equal to the number of positive components in
the eigenvalue vectors a and b, respectively. Due to the construction of the matrices,
which was given in 〈2.42〉, we have rank(A) ≤ min{L, M} and rank(B) ≤ min{L, N}.

〈3.11〉 Further Assumptions. For convenience, we assume N ≥ L in the further dis-
cussion. This ensures that the matrix B ∈ CL×L can have full rank.

We can reduce the optimization problem in 〈3.6〉 to an equivalent optimization problem
over the eigenvalues of Q and B.

〈3.12〉 Problem Formulation (Equivalent Problem). For a given vector a, the worst-
case secrecy rate should be maximized under a sum power constraint over all antennas
at the transmitter, i.e.,

max
q∈Q

R̃W(a, q) = max
q∈Q

min
b∈B

R̃S(a, b, q)

= max
q∈Q

min
b∈B

[ ϕ̃(a, b, q) ]+ =

[
max
q∈Q

min
b∈B

ϕ̃(a, b, q)

]+

.
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3 Worst-Case Studies for Secrecy Rate Optimization

The vectors a and b contain the eigenvalues of the Gramian matrices A and B, which are
derived from the channel matrices H and G, respectively. The vector q is the eigenvalue
vector for the transmit covariance matrix Q. The function R̃S with

R̃S(a, b, q) ··= [ ϕ̃(a, b, q) ]+ with

ϕ̃(a, b, q) ··=
L∑

ℓ=1

(log2 (1 + ρ aℓqℓ) − log2 (1 + ρ bℓqℓ))

is a secrecy rate expression that only depends on the eigenvalues of the matrices A, B,
and Q. The function R̃W is the worst-case secrecy rate for this case, which is defined as

R̃W(a, q) ··= min
b∈B

R̃S(a, b, q) = min
b∈B

[ ϕ̃(a, b, q) ]+ =

[
min
b∈B

ϕ̃(a, b, q)

]+

.

The constraint sets for this problem are defined as

Q ··=
{

q = (qℓ)
L
ℓ=1 ∈ R1×L

∣∣∣∣∣ qℓ ≥ 0 and
L∑

ℓ=1

qℓ ≤ P

}
and

B ··=
{

b = (bℓ)
L
ℓ=1 ∈ R1×L

∣∣∣∣∣ bℓ ≥ 0 and
L∑

ℓ=1

bℓ ≤ χ

}
.

The equivalence of this optimization problem with the problem formulated in 〈3.6〉 is
proven by a detailed and commented reformulation process, which is provided in 〈B.1〉 in
the appendix.

〈3.13〉 Remark. The remark in 〈3.7〉 can analogously be applied to the reformulated
problem in 〈3.12〉, i.e., the outer [ · ]+ function is not relevant for the maximized secrecy
rate problem.

〈3.14〉 Notation (Overview). The following diagram provides an overview of the dif-
ferent secrecy rate notations we introduced so far for the worst-case maximization and
shows the connections between them. For the introduction of the eigenvalue notation,
we have already exploited the properties of the function together with the max-min op-
timization problem, while the transition from the original to the Gramian notation was
only a substitution of variables.

original notation Gramian notation eigenvalue notation

secrecy rate RS(H, G, Q) −−−−−−−→ R⋆
S(A, B, Q) −−−−−−−→ R̃S(a, b, q)y min

G∈G

A ··= HHH

B ··= GHG

y min
B∈B

a ··= eig(A)
b ··= eig(B)
q ··= eig(Q)

y min
b∈B

worst-case
secrecy rate

RW(H, Q) R⋆
W(A, Q) R̃W(a, q)
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3.2 Worst-Case Optimization for Transmitters with Joint Encoding

In this section, we analyze the properties of the eigenvalue problem in 〈3.12〉. We derive
an optimal strategy for the inner problem and characterize the optimal strategy for the
outer problem. We present lower and upper bounds on the maximized worst-case secrecy
rate and discuss its low- and high-SNR behavior.

〈3.15〉 Secrecy Rate. The secrecy rate expression R̃S of the eigenvalue problem in
〈3.12〉 looks very similar to the secrecy rate RS that was derived for the multi-carrier
scenario in 〈2.22〉. But there is one significant difference: the application of the [ · ]+
function. In the secrecy rate expression of the multi-carrier case, every summand was
ensured to be non-negative, whereas single summands in the secrecy rate expression in
〈3.12〉 are allowed to be negative as long as the complete secrecy rate is non-negative.
From a technical point of view, negative rate terms are not possible. Hence, it seems
necessary to point out that the secrecy rate expression R̃S in 〈3.12〉 does not reflect a
sum rate expression, where individual (non-negative) rates are added up. It is rather
one rate expression for an achievable secrecy rate in a multi-antenna scenario, where the
transmitter uses one wiretap encoder of a corresponding rate to assign codewords to each
message. From this point of view, it seems to be more plausible to write the secrecy rate
expression R̃S in 〈3.12〉 as

R̃S(a, b, q) =

[
L∑

ℓ=1

log2 (1 + ρ aℓqℓ) −
L∑

ℓ=1

log2 (1 + ρ bℓqℓ)

]+

.
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Figure 3.2: Structure of multi-antenna transmitter with one wiretap encoder.

Figure 3.2 illustrates the transmitter structure for this case. The transmitter has only
one wiretap encoder for joint encoding, which maps messages to codewords with a cer-
tain rate. The output of this encoder is converted into up to L parallel data streams,
which are individually processed afterwards. Note that the exact number of supported
data streams depends on the chosen transmit strategy q. The symbols of each data
stream are transformed into a vector output for the L transmit antennas with appropri-
ate weighting factors and corresponding beamforming strategies. These weighting factors
and beamforming strategies result from the solution of problem 〈3.12〉 and its derivation
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from problem 〈3.6〉. They can be obtained by calculating the eigenvalues q and the ei-
genvectors of the optimal transmit covariance matrix Q. The latter are derived from the
eigenvectors of the Gramian matrix A for the channel to the legitimated receiver, see
derivation of 〈3.12〉.
We apply the properties we specified for the secrecy rate of the basic scenario in Section 2.1
to derive the properties of the function ϕ̃ and the secrecy rate R̃S in 〈3.12〉.
〈3.16〉 Properties (Monotonicity). The derivatives in 〈2.6〉 provide the basis for some
statements on the monotonicity of the function ϕ̃ and the secrecy rate R̃S in the compo-
nents of the vectors a, b, and q under the assumption that all other variables are fixed.
For all ℓ ∈ {1, 2, . . . , L} with qℓ > 0, the function ϕ̃ in 〈3.12〉 is

a) strictly monotonically increasing in aℓ,
b) strictly monotonically decreasing in bℓ,
c) strictly monotonically increasing in qℓ if aℓ > bℓ, and
d) strictly monotonically decreasing in qℓ if aℓ < bℓ.

These properties directly hold for the secrecy rate R̃S if the function ϕ̃ is positive. Oth-
erwise, the formulations above have to be relaxed by omitting the word “strictly”.

〈3.17〉 Properties (Convexity). The Hessian matrices of ϕ̃ with respect to a, b, and q
are diagonal. The analysis of the derivatives in 〈2.6〉 delivers the following insights: For a
and b, these matrices have only non-positive and non-negative diagonal entries, i.e., they
are negative and positive semi-definite, respectively. Unfortunately, the sign of the ℓ-th
diagonal element of the Hessian matrix with respect to q depends on the relation of aℓ

and bℓ, i.e., this matrix generally is neither positive nor negative (semi-)definite. We can
formulate the convexity properties of ϕ̃ with respect to the vectors a, b, and q under the
assumption that all other variables are fixed. The function ϕ̃ in 〈3.12〉 is

a) a concave function of a and
b) a convex function of b, but
c) generally neither a concave nor a convex function of q.

The first two properties directly hold for the secrecy rate R̃S if the function ϕ̃ is positive
on the set that is considered for the respective variable.

〈3.18〉 Properties (Convexity of the Problem). The constraint sets Q and B, which
are given in 〈3.12〉, are convex. We noticed this before for the identically structured set
of all feasible transmit power allocation vectors in the multi-carrier scenario in 〈2.27〉.
The function ϕ̃ in 〈3.12〉 is a convex function of the vector b. Thus, the minimization of
ϕ̃ over b ∈ B is a convex problem. But we cannot say that the outer maximization over
q ∈ Q in 〈3.12〉 is a convex problem. Since the concavity of the function ϕ̃ with respect
to q is not given for all b ∈ B, we also cannot state that the max-min problem in 〈3.12〉
is a saddle-point problem in general8.

8Note that it would be sufficient to have quasiconcavity of the function ϕ̃ with respect to q in order to
have a saddle-point problem.
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In the following, we will refer to the minimization and the maximization in 〈3.12〉 as inner
problem and outer problem, respectively.

〈3.19〉 Further Assumptions. We assume that the channel to Bob is better than the
worst-case channel Eve is looking for, i.e.,

∑L
ℓ=1 aℓ > χ. Otherwise the worst-case secrecy

rate R̃W would be zero for each vector q ∈ Q, which could simply be achieved by choosing
bℓ = aℓ for all ℓ ∈ {1, 2, . . . , L}.

〈3.20〉 Optimal Strategy (Outer Problem). For the maximization of the worst-case
secrecy rate, the transmitter takes the number of receive antennas at the intended re-
ceiver into account. The vector a, which specifies the channel from Alice to Bob, clearly
determines which components of the optimal power allocation vector q can be non-zero.
For the transmitter, it only makes sense to allocate a positive value to those components
of q where the corresponding component of a is non-zero, since only terms with aℓ > 0
for ℓ ∈ {1, 2, . . . , L} contribute to a positive secrecy rate. This is especially relevant for
the case, where Bob has less antennas than Alice, i.e., M < L. In this case, we have
rank(A) ≤ M for the channel from Alice to Bob. Consequently, the vector a of length
L, which contains the eigenvalues of A, has at most M positive components. Hence, this
also holds for the optimal power allocation vector q.

Furthermore, we can also characterize the minimum number of non-zero components in
the optimal power allocation vector q. The transmitter has to ensure that the worst-
case secrecy rate is positive. Consequently, the components qℓ that are used by Alice
for the transmission to Bob have to be chosen such that the sum of the corresponding
aℓ is larger than χ. Otherwise, the worst-case channel would simply be bℓ = aℓ for all
positive elements qℓ of the power allocation vector q, which would in turn result in a zero
worst-case secrecy rate.

Note that we cannot state that the optimal power allocation vector q always uses full
power P , since the (worst-case) secrecy rate is not monotonic with respect to qℓ. Its
behavior depends on the relation between aℓ and bℓ as specified in 〈3.16〉.

〈3.21〉 Optimal Strategy (Solution of Inner Problem). The power allocation vec-
tor q, which is chosen by the transmitter, clearly determines which components of the
worst-case vector b can be non-zero. It only makes sense to allocate a positive value to
those components of b where the corresponding component of q is non-zero, since qℓ = 0
with ℓ ∈ {1, 2, . . . , L} nulls the ℓ-th summand of the secrecy rate R̃S independently of the
chosen bℓ. For the components of b that correspond to a non-zero component of q, the
optimal strategy for the inner problem is known as standard waterfilling, which was used
by Telatar (1995) in the derivation of the capacity of multi-antenna Gaussian channels,
and is given by

bℓ(ν) =

[
ν − 1

ρqℓ

]+
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for all ℓ ∈ {1, 2, . . . , L} with qℓ > 0 . Due to the monotonicity in all components of b, the
waterfilling parameter ν with ν ≥ 0 has to be chosen such that the sum constraint of the
set B is fulfilled with equality, i.e.,

∑L
ℓ=1 bℓ(ν) = χ.

The number of positive components in the worst-case vector b equals the rank of the cor-
responding worst-case matrix B. This in turn yields the number of rows in the worst-case
channel matrix G, which is the minimum number of antennas that Eve needs. Obvi-
ously, Eve needs exactly the same number of antennas for eavesdropping as Alice uses
to transmit the message if Eve has found such a worst-case channel matrix. Generally,
we can state that it is not necessary that Eve has more than L antennas in this worst-
case secrecy rate scenario, where the worst-case channel matrix G is chosen for a known
transmit covariance matrix Q. More precisely, we can say that it is sufficient if N equals
min{L, M}, since we know from 〈3.20〉 that Alice adapts her transmit strategy to the
number of antennas that Bob is equipped with.

Now, we want to investigate how the component ordering of the vector a determines the
component ordering of the optimal vectors q and b that solve 〈3.12〉.
〈3.22〉 Further Assumptions. Without loss of generality, we assume that the eigenval-
ues of the positive-semidefinite matrix A, which are collected in the vector a, are sorted
in descending order, i.e., a1 ≥ a2 ≥ . . . ≥ aL ≥ 0.

〈3.23〉 Optimal Strategy (Vector Ordering). The worst-case vector b has the same
(component) ordering as the power allocation vector q. This can be shown by using
a result from Fiedler (1971), which is part of 〈A.8〉 in the appendix. Note that the
solution for the inner problem in 〈3.21〉 reflects this ordering. With the same result, it
can be proven afterwards that the optimal power allocation vector q, which maximizes the
worst-case secrecy rate in 〈3.12〉, adopts the ordering of the vector a. Hence, we obtain
that the vectors q and b that are optimal for 〈3.12〉 are both ordered like the vector a.
The detailed and commented derivation for this can be found in 〈B.2〉 in the appendix.
With 〈3.22〉, we can write

a1 ≥ a2 ≥ . . . ≥ aL ≥ 0 ⇒ q1 ≥ q2 ≥ . . . ≥ qL ≥ 0 and

b1 ≥ b2 ≥ . . . ≥ bL ≥ 0.

〈3.24〉 Notation. We define J ··= min{L, M}, which is the maximum number of non-
zero components in the vector a.

〈3.25〉 Properties. From the characterization of the optimal strategies in 〈3.20〉 and
〈3.21〉, we know that J is the maximum number of non-zero components in the optimal
vectors q and b. Together with the vector ordering result above, it follows that only the
first J components can be positive and we get

∀ℓ ∈ {1, 2, . . . , J} : qℓ ∈
[
0,

P

ℓ

]
and
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b1 ∈
[χ

J
, χ

]
, ∀ℓ ∈ {2, 3, . . . , J} : bℓ ∈

[
0,

χ

ℓ

]

for the optimal vectors q and b. For the characterization of the first component of the
worst-case vector b, we assumed that the system parameters are given such that the
maximized worst-case secrecy rate is positive. In this case, the sum constraint for the
vector b is fulfilled with equality, i.e.,

∑L
ℓ=1 bℓ = χ, which follows from the monotonicity

properties in 〈3.16〉. Otherwise, a definitely secure transmission is not possible with this
approach, and the transmitter could consequently choose the zero vector for q, which
would in turn lead to a zero vector for b.

〈3.26〉 Properties (Saddle-Point Condition). In 〈3.18〉, we stated that the problem
in 〈3.12〉 is not a saddle-point problem in general, since the concavity of the function ϕ̃
with respect to the power allocation vector q is not guaranteed for all vectors b ∈ B. But
with the characterization of the worst-case vector b in 〈3.25〉, we can formulate a sufficient
condition for the existence of a saddle-point problem. We know that the worst-case vector
b fulfills bℓ ≤ χ

ℓ
for all ℓ ∈ {1, 2, . . . , J}. Consequently, we can add this further constraint

to the set B without affecting the solution of the problem in 〈3.12〉. Then, we can state
the following: If χ is sufficiently small, i.e.,

∀ℓ ∈ {1, 2, . . . , J} : χ ≤ ℓ aℓ,

the function ϕ̃ is concave with respect to the power allocation vector q for all vectors b in
this additionally constrained set, which in turn yields that the problem in 〈3.12〉 becomes
a saddle-point problem. Then, the max-min problem can equivalently be expressed as
min-max problem. In this case, we can additionally observe a secondary effect. This
sufficiently small χ simultaneously ensures that the function ϕ̃ is monotonically increasing
in each component qℓ of the power allocation vector q, which yields that the optimal vector
q uses full power P .

Now, we want to derive lower and upper bounds on the maximized worst-case secrecy
rate in 〈3.12〉.

〈3.27〉 Bounds on Outer Problem. If we have sets B− and B+ with B− ⊆ B ⊆ B+,
we can manipulate the inner minimization problem in 〈3.12〉 in order to obtain

max
q∈Q

min
b∈B+

R̃S(a, b, q) ≤ max
q∈Q

min
b∈B

R̃S(a, b, q) ≤ max
q∈Q

min
b∈B−

R̃S(a, b, q)

as bounds on the maximized worst-case secrecy rate. Using a set B− ⊂ B instead of
the set B is equivalent to adding further constraints to the inner minimization problem.
As a consequence, we obtain an upper bound on the solution of the max-min problem
in 〈3.12〉. In contrast, incorporating a set B+ ⊃ B into the inner minimization problem
corresponds to relaxing some constraints of the set B, which yields a lower bound on the
original problem.
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B+

max min

Q

max min

Q

max min

QB
B−

max
q∈Q
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R̃S(a, b, q) max
q∈Q

min
b∈B

R̃S(a, b, q) max
q∈Q

min
b∈B−

R̃S(a, b, q)≤ ≤

(a) bounds obtained by changing the constraint set of the inner minimization problem

Q+

max min

B

max min

B

max min

B
Q−

Q

max
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min
b∈B

R̃S(a, b, q) max
q∈Q

min
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b∈B

R̃S(a, b, q)≤ ≤

(b) bounds obtained by changing the constraint set of the outer maximization problem

Figure 3.3: Derivation of bounds on the maximized worst-case secrecy rate.

Similarly, we can use some sets Q− and Q+ with Q− ⊆ Q ⊆ Q+ to modify the outer
maximization problem. Thereby, we can derive the following bounds:

max
q∈Q−

min
b∈B

R̃S(a, b, q) ≤ max
q∈Q

min
b∈B

R̃S(a, b, q) ≤ max
q∈Q+

min
b∈B

R̃S(a, b, q).

This idea is illustrated in Figure 3.3.

〈3.28〉 Notation. We introduce the vectors β ··= (βℓ)L
ℓ=1 and ι ··= (ιℓ)L

ℓ=1 with βℓ, ιℓ ≥ 0
for all ℓ ∈ {1, 2, . . . , L} and the corresponding sets

Bβ ··=
{

b = (bℓ)
L
ℓ=1 ∈ R1×L

∣∣ 0 ≤ bℓ ≤ βℓ

}
and Q̇ι ··= {ι} .

With these sets, we will provide simple upper and lower bounds for the maximized worst-
case secrecy rate.

〈3.29〉 Upper Bounds. We want to derive upper bounds on the maximized worst-case
secrecy rate by modifying the inner minimization problem as shown in 〈3.27〉. We can
use every fixed vector β ∈ B for the derivation of such an upper bound. We simply set
B− ··= Bβ , which adds further per-component constraints to the vector b in compliance
with the original sum constraint since we choose β ∈ B. The advantage of using a set
Bβ instead of the set B in the max-min problem is that the worst-case vector b is then
independent from the chosen transmit strategy q. The set Bβ contains only individual

constraints for the vector components of b. In 〈3.16〉, we stated that the secrecy rate R̃S is
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monotonically decreasing in each component of the vector b. Thus, the worst-case secrecy
rate minb∈Bβ

R̃S(a, b, q) is given by R̃S(a, β, q) for all q ∈ Q. Due to this monotonicity,
the lowest bounds are obtained if β is chosen such that it fulfills the sum constraint of the
set B with equality. This characterization of the worst-case secrecy rate for the bounds
simplifies the outer maximization. We can apply the waterfilling solution in 〈2.29〉, which
was derived for the multi-carrier scenario, to calculate the optimal transmit strategy q for
the bounds. In this case, it is optimal to use full power P , since this waterfilling solution
allocates only non-zero values to those components of the vector q where the relation
between the channels ensures that the resulting rate monotonically increases in these qℓ.

An interesting special case is given by a uniform allocation over the first J ′ components
of β, which simultaneously are the only non-zero components of this vector, where J ′ is
chosen such that J ′ ∈ {1, 2, . . . , J}. Thus, we get vectors β = (βℓ)L

ℓ=1 with

∀ℓ ∈ {1, 2, . . . , J ′} : βℓ =
χ

J ′
and ∀ℓ ∈ {J ′ + 1, J ′ + 2, . . . , L} : βℓ = 0.

In the discussion of the low- and high-SNR performance, we will later see that such
an allocation can yield tight bounds on the maximized worst-case secrecy rate in these
regimes.

〈3.30〉 Lower Bounds. In order to apply the same approach for the derivation of lower
bounds, we have to use a set B+ ⊇ B that relaxes the constraints given by the set B. If
we want to use B+ ··= Bβ , we have to specify an appropriate vector β such that b ∈ Bβ is
guaranteed for all b ∈ B. Thus, one possible lower bound can be derived with β = (χ)L

ℓ=1.
But we cannot expect that this choice provides a good lower bound since this vector allows
much more “powerful” eavesdropper channels than the original set B. We can exploit the
structure of the optimal vector b according to 〈3.23〉 to improve this approach. Initially,
we need a set B′ ⊂ B that fulfills

min
b∈B′

R̃S(a, b, q) = min
b∈B

R̃S(a, b, q)

for all q ∈ Q. Then, it is sufficient to use a set B+ with B+ ⊇ B′ for the derivation of
a lower bound, even if we have B+ + B. Such a set is given by Bβ , where the vector
β = (βℓ)L

ℓ=1 is specified by

∀ℓ ∈ {1, 2, . . . , J} : βℓ =
χ

ℓ
and ∀ℓ ∈ {J + 1, J + 2, . . . , L} : βℓ = 0.

Nevertheless, this will not significantly improve the lower bounds that can be obtained
by modifying the inner minimization problem.

Thus, we now focus on the derivation of lower bounds by changing the constraint set
of the outer maximization problem as shown in 〈3.27〉. Using a set Q− ⊆ Q instead
of Q adds further constraints to the outer problem, which yields a lower bound on the
maximized worst-case secrecy rate. Simple lower bounds can be obtained with Q− ··= Q̇ι,
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where ι is an arbitrary vector with ι ∈ Q. Obviously, the optimal transmit strategy q is
now independent from b and maxq∈Q̇ι

minb∈B R̃S(a, b, q) equals minb∈B R̃S(a, b, ι), which
corresponds to the calculation of the worst-case secrecy rate for a fixed power allocation
vector ι ∈ Q. Thus, the lower bound can simply be obtained by applying the waterfilling
solution that was derived for the inner problem in 〈3.21〉. Note that a good lower bound
provides a power allocation strategy that results in a nearly optimum worst-case secrecy
rate. The transmitter can simply choose the power allocation ι that was used for the
derivation of this lower bound.

Again, an interesting special case are vectors ι whose only non-zero components are
determined by a uniform allocation over these components. Exploiting the ordering of
the optimal vector q according to 〈3.23〉, we would allocate these non-zero values to the
first L′ components of ι, where L′ is chosen such that L′ ∈ {1, 2, . . . , L}. In the discussion
of the low- and high-SNR performance, we will later see that such an allocation can yield
tight bounds on the maximized worst-case secrecy rate in these regimes.

In order to characterize the optimal strategies for high and low SNR, we take the same
approach as before and interpret R̃S in 〈3.12〉 as a function of the inverse noise variance
ρ for a fixed value of P .

〈3.31〉 High-SNR Performance. For the high-SNR regime, we calculate the limit for
the secrecy rate R̃S , which is

lim
ρ→∞

R̃S(a, b, q) =

[
lim

ρ→∞

L∑

ℓ=1

log2

(
1 + ρ aℓqℓ

1 + ρ bℓqℓ

)]+

=

[
∑

ℓ∈L

log2

(
aℓ

bℓ

)]+

,

where

L ··= {ℓ ∈ {1, 2, . . . , L} | qℓ > 0}

is the set of vector components that is used for the transmission to Bob. Obviously,
this limit exists if and only if bℓ > 0 holds for all ℓ ∈ L. If we consider the worst-case
maximization of this high-SNR limit, we see that the optimal vector b, which corresponds
to the worst-case channel to the eavesdropper, has positive components at exactly the
same positions as the transmit power allocation vector q, i.e., bℓ > 0 holds for all ℓ ∈ L,
whereas bℓ = 0 holds for all ℓ /∈ L. Furthermore, we see that the optimal strategy for b
converges to a uniform allocation over these vector components, i.e.,

∀ℓ ∈ L : bℓ =
χ

|L| .

The maximum of this worst-case high-SNR limit is not directly influenced by the values
chosen for the components of the power allocation vector q, but it is relevant which vector
components are used for the transmission. Since we assumed that the components of the
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vector a are decreasingly ordered, we can state with 〈3.23〉 that q1 ≥ q2 ≥ . . . ≥ qL′ > 0
and qL′+1 = qL′+2 = . . . = qL = 0 hold for the optimal vector q. Thus, the remaining
problem in the high-SNR regime is

max
L′




L′∑

ℓ=1

log2

(
aℓ

L′

χ

)


+

with L′ ∈ {1, 2, . . . , J}, which is to determine the optimal number L′ of positive com-
ponents in the vector q. If we treat this worst-case high-SNR limit as a function of L′,
we can state that its behavior significantly depends on the values of the vector a, which
characterizes the channel between Alice and Bob. Let us consider the above sum for a
certain L′ and L′ + 1: The worst-case high-SNR limit increases by adding the (L′ + 1)-th
term to the sum if and only if

log2

(
aL′+1

χ

)
> L′ log2 L′ − (L′ + 1) log2(L′ + 1)

is fulfilled. Hence, the worst-case high-SNR limit is not necessarily increasing or unimodal
in L′, and we have to search over the complete set specified for L′ to find the global
maximum.

〈3.32〉 Low-SNR Performance. As expected, the limit of the secrecy rate R̃S is

lim
ρ→0

R̃S(a, b, q) = 0

in the low-SNR regime. Thus, we consider the linear Taylor series representation of R̃S

at the point ρ = 0, which is

T
R̃S

(ρ; 0) =

[
1

ln 2

∑

ℓ∈L

(aℓ − bℓ) qℓ ρ

]+

with L as defined in 〈3.31〉. The worst-case maximization of this linear Taylor series
representation is a (nested) linear programming problem. The optimal vector b, which
corresponds to the worst-case channel to the eavesdropper, has only one positive compo-
nent. The value χ is assigned to the vector component that corresponds to the largest
component of the transmit power allocation vector q. With the vector ordering from
〈3.22〉 and 〈3.23〉, we can write b1 = χ and b2 = b3 = . . . = bL = 0 for the optimal b. The
optimal transmit power allocation vector q, which maximizes the worst-case linear Taylor
coefficient, uses a uniform allocation of the complete sum power P over the first L′ com-
ponents of the vector q, i.e., q1 = q2 = . . . = qL′ = P

L′
and qL′+1 = qL′+2 = . . . = qL = 0.

The corresponding derivation is provided in 〈B.3〉 in the appendix. The remaining prob-
lem in the low-SNR regime consequently is

max
L′


 1

ln 2






L′∑

ℓ=1

aℓ


 − χ


 P

L′
ρ




+
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with L′ ∈ {1, 2, . . . , J}, which is to determine the optimal number L′ of positive com-
ponents in the vector q. Now we want to interpret the above worst-case linear Taylor
coefficient as a function of L′. This coefficient is either increasing or decreasing or uni-
modal in L′. Hence, we can start the search for the global maximum with L′ = 1,
increment it if and only if

aL′+1 >
1

L′






L′∑

ℓ=1

aℓ


 − χ


 ,

which will lead to a higher rate than obtained before, and stop this process as soon as the
condition above is not satisfied any more being sure that we found the global maximum.

〈3.33〉 Illustration (Bounds). For the illustration of the results we obtained so far,
we consider a scenario, where Alice and Bob have four antennas each, i.e., we have
L = M = 4. We assume that Eve has at least the same number of antennas. We can set
N = 4 for our worst-case discussion since we know that this number will be sufficient if
Eve has found the worst-case MIMO channel G. The MIMO channel H between Alice
and Bob is characterized by the eigenvalues a of its Gramian matrix A = HHH. These
eigenvalues shall be given by a = (3.9, 1.5, 1.0, 0.6). Alice aims to maximize the worst-case
secrecy rate under a transmit power constraint, which is specified by P = 1. She looks for
the optimal eigenvalues q of her transmit covariance matrix Q under this constraint. The
norm constraint on the channel matrix G for the channel from Alice to Eve is specified
by χ = 2. According to 〈3.12〉, this corresponds to a sum constraint on the eigenvalues b
of the Gramian matrix B = GHG.
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Figure 3.4: Upper and lower bounds on the maximized worst-case secrecy rate R+

S and the re-
maining uncertainty regions between the bounds.

Figure 3.4 shows upper and lower bounds on the maximized worst-case secrecy rate of
this scenario as a function of the SNR, which was changed by a variation of the inverse
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noise variance ρ for fixed P . The area between the upper and lower bound is called
uncertainty region. The maximized worst-case secrecy rate, which is denoted by R+

S , is
also included in the diagrams. Strictly speaking, it is an approximation, which was found
by exhaustive search over all possible power allocation vectors q whose components are
ordered according to 〈3.23〉, where we used a step size of 0.050 for each component.

For (a), the upper and lower bound were derived by manipulating the inner minimization
according to 〈3.27〉, i.e., using a set Bβ instead of the set B. Due to the characterization of
the optimal vector b in 〈3.25〉, we used β =

(
χ
4 , χ

4 , χ
4 , χ

4

)
and β =

(
χ, χ

2 , χ
3 , χ

4

)
for the upper

and lower bound, respectively. We see that we choose a quite good parametrization for
the upper bound. Especially for high SNR, this bound comes very close to the maximized
worst-case secrecy rate R+

S . In contrast, the lower bound is indeed good for low SNR, but
the gap between this bound and the rate R+

S grows dramatically with increasing SNR,
which then results in a large uncertainty about the real value of R+

S . This behavior was
predictable since the components of the vector β add up to 25

12 χ, which is more than
twice of the constraint of the original problem. Thus, we assume for this bound that the
channel to the eavesdropper can be much better than it can be in reality. This difference
affects especially the high-SNR performance of the bound. We see that this approach is
not good enough for the derivation of bounds that leave only a small uncertainty about
the real value of the maximized worst-case secrecy rate R+

S .

For (b), we slightly changed our method. The upper bound was again computed by
using a set Bβ instead of the set B for the inner minimization. But the lower bound was
obtained by manipulating the outer maximization, i.e., using a set Q̇ι instead of the set
Q, which can provide bounds that are closer to the desired value R+

S . The remaining
question is then: What are appropriate choices for the vectors β and ι in order to obtain
tight bounds on the maximized worst-case secrecy rate? For the diagram in (b), a scaled
version of the eigenvalue vector a was used for both parameters β and ι, i.e., we had
β = χ a

‖a‖
1

and ι = P a
‖a‖

1

. We see that this choice leads to a much better lower bound

for our example, but there is a clear gap between the upper bound and the desired value
for high SNR.

In the following, we will derive further bounds and always use the following approach:
Upper bounds are obtained by additionally constraining the set B that is used for the
inner minimization by using a set Bβ with an appropriately chosen vector β. Lower
bounds are computed with further constraints on the set Q that is used for the outer
maximization, which corresponds to using a set Q̇ι with an appropriately chosen vector
ι. The uncertainty about the real value of the maximized worst-case secrecy rate R+

S can
be reduced by combining the contributions of multiple upper or lower bounds. For the
SNR range of interest, we always look for the minimum upper and the maximum lower
bound values.

Simple upper and lower bounds can be derived by assigning equal values to all non-zero
components of the vectors β and ι. Following the ordering result for the optimal vectors b
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Figure 3.5: Upper and lower bounds on the maximized worst-case secrecy rate R+

S and the re-
maining uncertainty regions between the bounds.

and q in 〈3.23〉, the non-zero values should optimally be allocated to the first components
of the vectors. In Figure 3.5, such bounds are shown for the example given above, where
the number of non-zero components in the vectors β and ι was increased from 1 to 4. The
vectors β and ι were chosen such that they fulfill the sum constraints of the sets B and
Q with equality. From the low-SNR discussion in 〈3.32〉, we know that the optimal b for
low SNR has only one non-zero component, which is b1 = χ. This vector was chosen for
the derivation of the upper bound in the diagram in (a). Consequently, we can see that
this bound is tight in the low-SNR regime. For high SNR, we have stated in 〈3.31〉 that
the optimal b uses a uniform allocation over all components that correspond to non-zero
components of the power allocation vector q. In the derivation of the upper bound, b
is first fixed and the corresponding optimal q is calculated afterwards. Thus, we cannot
guarantee that q uses exactly the same non-zero components as the previously chosen b,
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i.e., we not necessarily have a tight upper bound for high SNR with this approach. But
if it turns out that the non-zero components of both vectors are the same, we then know
that we have a tight upper bound for this SNR regime. If we rather consider the lower
bound, the calculation order of the two vectors is altered. We know that only the number
of non-zero components of the power allocation vector q is important for the high-SNR
behavior and that a uniform allocation over certain components of q results in a uniform
allocation over the same components of b, which is optimal here. Hence, we can conclude
that one of the upper bounds in Figure 3.5 must be tight for high SNR. Consequently,
we can say that the maximum lower bound that is obtained over all possible uniform
allocations for q is always tight in this regime.
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Figure 3.6: Minimum upper and maximum lower bounds on the maximized worst-case secrecy
rate R+

S and the remaining uncertainty regions between the bounds.

Figure 3.6 shows minimum upper and maximum lower bounds for the example above. In
(a), we combined only bounds that were derived with uniform allocations in the context
of Figure 3.5. The remaining uncertainty region is only a small corridor over the complete
SNR range, i.e., we can specify the value of the maximized worst-case secrecy rate R+

S

everywhere with only small possible deviations from the real value by calculating and
analyzing four simple upper and lower bounds each. Furthermore, the maximum lower
bound provides a power allocation strategy that results in a nearly optimum secrecy
rate. We can simply choose the power allocation ι that was used for the derivation of
the lower bound that is best for the SNR of interest. In (b), we additionally considered
the contributions from the bounds in Figure 3.4. These bounds further improve the
uncertainty region for medium SNR.

In Figure 3.7, the absolute and relative values of the remaining uncertainty are shown for
the minimum upper and maximum lower bounds in Figure 3.6 (b). In (a), we see that the
remaining uncertainty, which results from the difference of the upper and lower bounds,
tends to zero for low and high SNR. For these regimes, we have a characterization of the
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Figure 3.7: Absolute and relative values of the remaining uncertainty between the bounds in
Figure 3.6 (b).

optimal strategies, which enables us to choose appropriate parameters for tight bounds.
For medium SNR, the uncertainty takes its largest values due to the fact that we do not
have an accurate characterization of the optimal strategies for this range. However, the
remaining uncertainty is always below about 0.25 bit. Note that this uncertainty can be
further reduced if more bounds are evaluated. In addition, the diagram in (b) illustrates
the relative values of the remaining uncertainty with respect to the maximized worst-case
secrecy rate R+

S that we determined for this example. In principle, we observe the same
behavior over the SNR. Moreover, we see that the largest deviation from the real value
is about 10%.
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Figure 3.8: Upper and lower bounds on the maximized worst-case secrecy rate R+

S and the re-
maining uncertainty region between the minimum upper and maximum lower bound.
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Finally, we consider another example. We slightly modify the scenario studied so far
by introducing another eigenvalue vector a for the Gramian matrix A of the MIMO
matrix H for the channel from Alice to Bob. This eigenvalue vector is now given by
a = (10.1, 2.8, 1.9, 0.2). All other parameters introduced above remain unchanged. The
upper and lower bounds that can be calculated with uniform allocations that meet the
sum constraints of the corresponding sets with equality and the remaining uncertainty
region after evaluating the minimum of the upper and the maximum of the lower bound
are shown in Figure 3.8. From (b), we observe that there is a non-vanishing gap between
the upper and lower bound for high SNR, which is about 1 bit. This is in contrast to
the example above, where we could not observe such a gap. Thus, we have here a larger
remaining uncertainty than before. Nevertheless, we can get a good estimate of the
maximized worst-case secrecy rate R+

S even for high SNR. From the discussion above, we
know that the maximum lower bound is not only tight for high SNR, but it also provides
the appropriate power allocation strategy to come very close to the maximized worst-case
secrecy rate R+

S in this regime. Thus, we can conclude that the gap for high SNR is a
result of the fact that we do not always get a good upper bound with uniform allocations.
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Figure 3.9: The maximized worst-case secrecy rate R+

S with its low-SNR approximation and its
high-SNR limit.

〈3.34〉 Illustration (High- and Low-SNR Behavior). We continue the example that
was specified by the vector a = (3.9, 1.5, 1.0, 0.6) for the channel from Alice to Bob and
that we discussed in detail in 〈3.33〉. In Figure 3.9, the optimized low-SNR approxima-
tion from 〈3.32〉 and the maximized worst-case limit according to 〈3.31〉 are shown for
this scenario. We observe that the optimized low-SNR approximation is very close to the
maximized worst-case secrecy rate R+

S if the SNR is less than −10 dB. If the SNR goes
beyond this point, the approximation grows faster than the original function resulting
in an increasing gap between both functions. For the high-SNR regime, we see that the
maximized worst-case secrecy rate R+

S converges to the maximized worst-case limit we
calculated before. Beyond 20 dB, it is already close to this limit.
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(a) ρ = −20 dB
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(b) ρ = −10 dB
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(c) ρ = 0 dB
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(d) ρ = 10 dB
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(e) ρ = 20 dB
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(f) ρ = 30 dB

Figure 3.10: Optimal vectors corresponding to the maximized worst-case secrecy rate R+

S for
selected SNR values.
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〈3.35〉 Illustration (Optimal Strategies). We continue the main example from 〈3.33〉.
As already stated above, the maximized worst-case secrecy rate R+

S , which we wanted to
use for some comparisons, was found by an exhaustive search. Now, we want to have a
closer look on these results in detail. The channel from Alice to Bob was characterized
by a four-value vector, which was given by a = (3.9, 1.5, 1.0, 0.6). Alice aims to find the
optimal power allocation vector q that maximizes the worst-case secrecy rate under the
assumption that Eve can always find the corresponding worst-case channel, which is char-
acterized by the vector b. With these vectors, the resulting maximized worst-case secrecy
rate can be calculated. The values of each component index contribute to exactly one
term in the sum of the overall secrecy rate, which can be seen in 〈3.12〉. In Figure 3.10,
the values of the optimal vectors and the resulting secrecy rate summands are shown
for selected SNR values. Now, we can see the predicted low- and high-SNR behavior in
detail. From the analysis in 〈3.32〉, it follows that the optimal vector b, which corresponds
to the worst-case channel from Alice to Eve, always has only one non-zero component for
low SNR, i.e., b1 = χ. For our example, we can observe this behavior for ρ = −20 dB
and −10 dB in the diagrams in (a) and (b). The corresponding power allocation vector
q shows a different behavior for these cases. For ρ = −20 dB, the worst-case secrecy
rate is maximized by allocating full power P to the first component of q, whereas the
optimal q for ρ = −10 dB uses the first two components with nearly the same power.
With increasing SNR, the number of non-zero components in both vectors grows first
to 3 and later to 4, which can be seen in the diagrams in (c) and (d). For ρ = 20 dB
and 30 dB, we can observe in (e) and (f) the high-SNR behavior we predicted in 〈3.31〉.
The worst-case vector b has non-zero components at exactly the same positions as the
power allocation vector q. Furthermore, we see that the optimal strategy for b tends to
a uniform allocation over these components. Here, all components of both vectors are
used. Note that it is not necessarily optimal for an arbitrary set of parameters to set all
components of the vector q to non-zero values.

〈3.36〉 Illustration (Variation of Channel Constraint). We continue the example
above by analyzing the influence of the parameter χ, which constrains the quality of
the channel from Alice to Eve. In Figure 3.11, the maximized worst-case secrecy rate
R+

S is shown for various values of χ. As expected, an increase in χ, which allows the
eavesdropper channel to be more “powerful”, reduces the finally obtained secrecy rates.
For high SNR, the influence of the channel constraint parameter χ is more noticeable
than for low SNR. The case χ = 0 in (a) represents a scenario without eavesdropper
or without secrecy constraints. Then, the optimal power allocation strategy is given by
standard waterfilling, which was presented by Telatar (1995). Below ρ = 0 dB, the curves
for χ = 0, 1 and 2 do not differ much from each other. With growing SNR, the gaps
between the curves increase. In the high-SNR regime, the gap between the curves for
χ = 1 and 2 remains nearly constant. It represents the difference between the high-SNR
limits for these cases. In contrast, the curve for the case χ = 0 grows with increasing
SNR, which results in an increasing gap between the cases with and without secrecy
constraints.
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Figure 3.11: The maximized worst-case secrecy rate R+

S that was found for various values of the
constraint parameter χ for the channel from Alice to Eve.

For all curves in Figure 3.11, it is assumed that the transmitter uses full power P . In the
exhaustive search for the maximized worst-case secrecy rate, only the allocation of this
power to the components of q was changed. In (b), it can be observed for χ ≥ 4 that
the maximum worst-case secrecy rate that was found by this search does not continously
grow with increasing SNR. It is only an increasing function until a certain point, whose
position varies with the chosen parameters. If the SNR grows beyond this point, the
rate even decreases. This is not a very common behavior. Usually, it is expected that
a (secrecy) rate grows with the SNR. The reason for this behavior is the joint encoding
approach, where full power is not necessarily optimal to maximize the worst-case secrecy
rate. Depending on the parameters for the channel to Bob and the value that was chosen
for the constraint parameter χ for the channel to Eve, it can indeed be advantageous to
reduce the transmit power.

〈3.37〉 Illustration (Power Scaling). We continue our example and focus now on the
case where the constraint parameter for the quality of the channel from Alice to Eve is
given by χ = 5. Thus, the eavesdropper channel is significantly more “powerful” than
before, but still less “powerful” than the main channel from Alice to Bob, which makes
a secure communication from Alice to Bob possible. In Figure 3.11, we saw the maxi-
mized worst-case secrecy rate that can be found if full power is assumed to be used at the
transmitter. For this example, we observe the following behavior with growing SNR: The
rate increases until a certain point, which is approximately located at ρ = 12 dB, and
decreases if the SNR grows beyond this point. Now, we want to have a more detailed look
at the strategies chosen for high SNR. Figure 3.12 shows the best power allocation vector
q, the corresponding worst-case vector b, and the resulting secrecy rate summands for
ρ = 20 dB and 30 dB, which were found by an exhaustive search for the example with the
eavesdropper channel constraint set to χ = 5. For the diagrams in (a) and (b), we used
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(a) ρ = 20 dB, full transmit power
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(b) ρ = 30 dB, full transmit power
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(c) ρ = 20 dB, reduced transmit power
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(d) ρ = 30 dB, reduced transmit power

Figure 3.12: Optimal vectors corresponding to the maximized worst-case secrecy rate R+

S that
was found for selected SNR values.
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3 Worst-Case Studies for Secrecy Rate Optimization

full power at the transmitter. We know and observe for high SNR that the worst-case
strategy, which is given by the vector b, converges to a uniform allocation over all vector
components that correspond to non-zero components of the power allocation vector q. If
the value that is consequently assigned to bℓ is greater than the corresponding value aℓ

of the main channel, i.e., we have bℓ > aℓ for an arbitrary ℓ ∈ {1, 2, . . . , J}, the resulting
secrecy rate summand will be negative. This can occur if the parameters are given such
that aJ < χ

J
. Then, the transmitter has the choice (i) to use the first J components of the

vector q for the transmission knowing that the positive contribution from the components
with aℓ > bℓ will exceed the negative contribution resulting from the components with
aℓ < bℓ or (ii) to reduce the number of components of the vector q that are used for
the transmission, which simultaneously allows the eavesdropper to concentrate the values
allocated for its worst-case channel only on these components, which in turn results in
higher values there and consequently decreases the possible positive contributions from
these components. The drawbacks of these cases are the following: Firstly, it is not guar-
anteed that we can find a situation with aℓ > bℓ = χ

L′
for all components ℓ ∈ {1, 2, . . . , L′}

by reducing the number L′ ∈ {1, 2, . . . , L} of non-zero components of the vector q. Such
a situation is given in our example in Figure 3.12. Secondly, the characteristic of the
logarithm function works against the approach of compensating negative summands in
the secrecy rate expression by positive ones for high SNR. The logarithm function is
not only monotonically increasing but also concave in the SNR. Thus, a growing SNR
amplifies negative terms much more than positive terms. Hence, it is possible to have a
situation where it is not desirable to further increase the SNR.
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Figure 3.13: The maximized worst-case secrecy rate R+

S that was found with full and reduced
transmit power and the corresponding optimal SNR for the power reduction.

From the discussion above, we see that it is not necessarily optimal to use full transmit
power, especially for high SNR. If we allow Alice to reduce the transmit power if necessary,
she can avoid to operate in the high-SNR regime in such a case and obtain higher secrecy
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3.2 Worst-Case Optimization for Transmitters with Joint Encoding

rates with this reduced transmit power than she would obtain with full power. For the
illustrations in Figure 3.12 (c) and (d), we have taken the same setting as for (a) and (b),
but we additionally allowed the transmitter to reduce its transmit power, which can yield
a higher worst-case secrecy rate than before. We observe that Alice avoids to operate in
the high-SNR regime in this example. For ρ = 20 dB, she reduces her transmit power
to approximately one-sixth of the available power. For ρ = 30 dB, the transmit power is
further reduced to about one-fiftieth of the maximum value P . We see that the transmitter
tries to fix the SNR to roughly 12 dB, which yields the maximum worst-case secrecy rate
for this example. Comparing the two cases with full and reduced transmit power, we
further see that the optimal transmit strategy is chosen such that a uniform worst-case
assignment for the vector b is avoided. For components that correspond to a higher value
in the vector a for the main channel, more power is allocated than for components with
a corresponding smaller value in a. Due to the reduction of the overall transmit power,
we obtain less from the components with a positive contribution to the secrecy rate, but
we simultaneously avoid or significantly reduce the negative contribution from the other
components. Finally, the resulting worst-case secrecy rate, which is obtained by adding
all these summands, is greater than the secrecy rate that was obtained before with full
power. In Figure 3.13 (a), the worst-case secrecy rates for χ = 5 can be compared for
the cases with full and reduced transmit power. The corresponding optimal SNR, which
is adjusted by reducing the transmit power for growing ρ, is shown in (b). We see that
both secrecy rates are identical up to about ρ = 12 dB. Beyond this point, the rate for
full transmit power decreases as already observed before, while the worst-case secrecy
rate for reduced transmit power stays approximately constant. Note that the rate with
full transmit power converges to the calculated high-SNR limit, while the curve for the
secrecy rate with reduced transmit power remains above this limit by avoiding to be in
the high-SNR regime.

〈3.38〉 Illustration (High-SNR Limit). In 〈3.31〉, we discussed the high-SNR behav-
ior of the worst-case secrecy rate. We derived an expression for the worst-case high-SNR
limit of the secrecy rate, which depends on the number L′ of positive values in the cho-
sen power allocation vector q. Figure 3.14 shows this limit as a function of L′ with
L′ ∈ {1, 2, . . . , 10} for various parameter sets, which are given below the diagrams. These
sets were chosen to illustrate that the different behavior of this function significantly
depends on the given parameters.

In (a), we have positive values for the worst-case high-SNR limit over the complete range
specified for L′, but we see that we can obtain for instance an increasing as well as a
unimodal or decreasing function of L′, which corresponds to the parameter sets given
by (1), (2), and (3), respectively. In (b), we see that the worst-case high-SNR limit
is not necessarily positive over the complete range given for L′. Moreover, we observe
unimodal and bimodal behavior of the function, which results from the parameter sets
(4) and (5) / (6), respectively. For the latter cases, the global maximum of the function
is achieved for different values of L′. For the parameters in (5), the first local maximum
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(b) χ = 50

χ a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

(1) 20 28.6 21.7 16.3 12.8 8.1 5.5 3.2 1.6 0.9 0.8
(2) 20 28.6 21.7 16.3 12.8 8.1 5.5 3.2 1.6 0.5 0.1
(3) 20 80.0 4.5 2.8 1.9 1.5 1.2 1.0 0.9 0.8 0.7
(4) 50 28.6 21.7 16.3 12.8 8.1 5.5 3.2 1.6 0.5 0.1
(5) 50 28.6 21.7 16.3 12.8 5.5 2.9 2.8 2.6 0.5 0.1
(6) 50 28.6 21.7 16.3 7.8 4.0 3.3 3.2 2.2 0.5 0.1

Figure 3.14: The worst-case high-SNR limit as a function of the number L′ of positive components
in the power allocation vector q.

simultaneously is the global maximum, whereas the second local maximum provides the
largest worst-case high-SNR limit for the parameters in (6).

〈3.39〉 Illustration (Low-SNR Approximation). In 〈3.32〉, we discussed the low-SNR
behavior of the worst-case secrecy rate. We derived an expression for the linear Taylor
series coefficient of the worst-case secrecy rate in the low-SNR regime, which depends on
the number L′ of positive values in the chosen power allocation vector q. Figure 3.15
shows this coefficient as a function of L′ with L′ ∈ {1, 2, . . . , 10} for various parameter
sets, which are given below the diagrams. These sets were chosen to illustrate the different
behavior of this function depending on the given parameters.

We noticed that this coefficient is unimodal in L′ in general, which simplifies the search for
its global maximum as explained in 〈3.32〉. We observe this behavior for the parameter
sets (1) and (3). The parameter sets (2) and (4) illustrate the possible special cases,
which are a monotonically decreasing or increasing behavior over the complete range.
Additionally, we see in (b) that the calculated coefficients are not necessarily positive9

over the complete range given for L′.

9Originally negative coefficients, which would lead to a zero worst-case secrecy rate approximation, are
set to zero in this illustration.
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(b) χ = 50

χ a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

(1) 20 21.3 16.6 15.1 12.8 8.1 5.5 3.2 1.6 0.9 0.8
(2) 20 33.2 12.8 10.3 9.1 6.5 4.4 2.6 1.7 0.5 0.1
(3) 50 33.2 12.8 10.3 9.1 6.5 4.4 2.6 1.7 0.5 0.1
(4) 50 21.3 16.6 15.1 8.1 7.4 5.5 5.2 4.9 4.4 4.3

Figure 3.15: The linear Taylor series coefficient of the worst-case secrecy rate approximation in
the low-SNR regime as a function of the number L′ of positive components in the
power allocation vector q.

3.3 Worst-Case Optimization for Transmitters with Parallel Encoding

In this section, we analyze the properties of the eigenvalue problem in 〈3.12〉 with an
alternative secrecy rate expression, which results from a transmitter structure that is
better adapted to the characteristics of the optimization problem. For this adapted prob-
lem, we derive the optimal strategy for the inner problem and characterize the optimal
strategy for the outer problem. We present lower and upper bounds on the resulting max-
imized worst-case secrecy rate and discuss its low- and high-SNR behavior. All results
are compared to the corresponding results from the previous section.
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Figure 3.16: Structure of multi-antenna transmitter with parallel wiretap encoders.
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We consider a multi-antenna transmitter with L parallel wiretap encoders, which is il-
lustrated in Figure 3.16. The binary representation of the message can be split up in at
most L parallel streams. Each of these information streams is encoded with an individual
rate that results from the optimization problem that is analyzed in this section. After-
wards, certain weighting factors and beamforming vectors are applied to the encoded
data streams as described before in the context of Figure 3.2. The main difference be-
tween the transmitters in Figure 3.2 and Figure 3.16 is the order of the serial-to-parallel
conversion and the wiretap encoding. The transmitter in Figure 3.16 exploits the fact
that the optimal eigenvectors for the original matrix problem in 〈3.6〉 diagonalize this
problem, i.e., it can be equivalently expressed as a vector problem over the eigenvalues
of the involved matrices. This diagonalization process yields up to L independent paral-
lel channels between transmitter and receiver (or eavesdropper), which can be encoded
individually with an appropriately adapted rate.

〈3.40〉 Problem Formulation (Worst-Case Secrecy Rate Maximization).For the
system model in 〈3.1〉 and the adapted transmitter structure in Figure 3.16, the adapted
secrecy rate expression for the eigenvalue problem is given by

R̄S(a, b, q) ··=
L∑

ℓ=1

[ ϕ̄(aℓ, bℓ, qℓ) ]+ with

ϕ̄(aℓ, bℓ, qℓ) ··= log2 (1 + ρ aℓqℓ) − log2 (1 + ρ bℓqℓ) .

The worst-case secrecy rate for this case is defined as

R̄W(a, q) ··= min
b∈B

R̄S(a, b, q) = min
b∈B

L∑

ℓ=1

[ ϕ̄(aℓ, bℓ, qℓ) ]+ .

The complete problem can be formulated as follows: For a given vector a, the worst-case
secrecy rate R̄W should be maximized under a sum power constraint over all antennas at
the transmitter, i.e.,

max
q∈Q

R̄W(a, q) = max
q∈Q

min
b∈B

R̄S(a, b, q) = max
q∈Q

min
b∈B

L∑

ℓ=1

[ ϕ̄(aℓ, bℓ, qℓ) ]+ .

The constraint sets for these problems remain unchanged, i.e., they are given in 〈3.12〉.

In contrast to the secrecy rate expression R̃S , which was analyzed in the previous section,
the secrecy rate R̄S of the adapted problem corresponds to the secrecy rate of the multi-
carrier scenario that was presented in 2.2. Thus, we can directly apply its properties to
the problem above.

〈3.41〉 Properties (Positivity of Secrecy Rate Summands). From 〈2.23〉, we know
that a secrecy rate summand ϕ̄(aℓ, bℓ, qℓ) with ℓ ∈ {1, 2, . . . , L} is only positive if aℓ > bℓ
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3.3 Worst-Case Optimization for Transmitters with Parallel Encoding

holds. The application of the [ · ]+ function in the adapted secrecy rate expression R̄S

ensures that these secrecy rate summands cannot become negative. Consequently, we can
conclude that the optimal worst-case strategy always fulfills

∀ℓ ∈ {1, 2, . . . , L} : bℓ ∈ [0, aℓ] .

Exploiting the properties above, we can formulate an equivalent optimization problem.

〈3.42〉 Problem Formulation (Equivalent Problem). The problem in 〈3.40〉 can be
equivalently formulated as

max
q∈Q

R̄W(a, q) = max
q∈Q

min
b∈B̄

R̄S(a, b, q) = max
q∈Q

min
b∈B̄

L∑

ℓ=1

ϕ̄(aℓ, bℓ, qℓ),

where the constraint set B̄ with B̄ ⊂ B is defined as

B̄ ··=
{

b = (bℓ)
L
ℓ=1 ∈ R1×L

∣∣∣∣∣ 0 ≤ bℓ ≤ aℓ and
L∑

ℓ=1

bℓ ≤ χ

}
.

With this characterization, we can relate this problem to the original eigenvalue problem
in 〈3.12〉:

max
q∈Q

min
b∈B̄

R̄S(a, b, q) = max
q∈Q

min
b∈B̄

R̃S(a, b, q) ≥ max
q∈Q

min
b∈B

R̃S(a, b, q).

For this relation we exploited two facts: (i) The two objective functions R̄S and R̃S are
identical for all b ∈ B̄, and (ii) relaxing the constraints for the minimization by using the
set B instead of B̄ can only decrease the resulting value of the optimization problem.

〈3.43〉 Properties (Monotonicity and Convexity). We can directly adopt the prop-
erties of the secrecy rate from the multi-carrier scenario in 2.2. If we consider the proper-
ties with respect to the vector b ∈ B̄, we will not observe any difference to the properties
we derived for the secrecy rate expression in 〈3.16〉 and 〈3.17〉 in the previous section.
The secrecy rate R̄S is strictly monotonically decreasing in bℓ with ℓ ∈ {1, 2, . . . , L} if
we have aℓ > 0 and qℓ > 0. Furthermore, it is a convex function of b ∈ B̄. But we can
observe that the additional constraints in B̄ ensure monotonicity and convexity properties
of R̄S with respect to q ∈ Q, which were not given for R̃S in the previous section. The
secrecy rate R̄S is strictly monotonically increasing in qℓ with ℓ ∈ {1, 2, . . . , L} if we have
aℓ > bℓ. Moreover, it is a concave function of q ∈ Q since aℓ ≥ bℓ is guaranteed for all
ℓ ∈ {1, 2, . . . , L} if we have b ∈ B̄.

〈3.44〉 Properties (Saddle-Point Problem). In 〈3.18〉, we have already stated that
the sets Q and B are convex. Since the convexity of such a set is not influenced by
additional upper bounds for the vector components, we can conclude that the set B̄ is
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3 Worst-Case Studies for Secrecy Rate Optimization

convex, too. Thus, we obtain that the inner minimization problem in 〈3.42〉 is a convex
problem. This corresponds to the characterization of the inner problem in 〈3.18〉 in the
previous section. The difference is that it is now guaranteed that we have a saddle-point
problem, since R̄S is a concave function of q ∈ Q for all b ∈ B̄ and a convex function of
b ∈ B̄ for all q ∈ Q. Consequently, we can equivalently write

max
q∈Q

min
b∈B̄

R̄S(a, b, q) = min
b∈B̄

max
q∈Q

R̄S(a, b, q).

The interchangeability of the minimization and maximization for convex-concave func-
tions is for instance known as Sion’s minimax theorem, although Sion’s formulation com-
prises a significantly larger class of functions. With this theorem, Sion extended and
unified some already existing minimax theorems, see (Sion, 1958) and references therein.

〈3.45〉 Optimal Strategy (Outer Problem). The transmitter makes the power allo-
cation decision based on the vector a, which specifies the channel from Alice to Bob. It
is only interested in allocating positive values to those components of q where the corre-
sponding component of a is non-zero. Moreover, the components qℓ that are used for the
transmission have to be chosen such that the sum of the corresponding aℓ is larger than
χ. Hence, the characterization of the optimal power allocation vector q is very similar to
that of the previous section, which was given in 〈3.20〉. The only difference is that we
now know that the optimal power allocation vector q always uses full power P , since the
monotonicity in the components of q is guaranteed.

〈3.46〉 Optimal Strategy (Solution of Inner Problem). As before in 〈3.21〉, it only
makes sense that the worst-case vector b has positive components where the corresponding
component of the power allocation vector q is non-zero. The optimal strategy is adapted
to the new problem by incorporating the additional upper bounds for the components of
the vector b, and we now obtain the waterfilling solution

bℓ(ν) =

[
ν − 1

ρqℓ

]+

≤aℓ

for all ℓ ∈ {1, 2, . . . , L} with qℓ > 0. As before, the monotonicity with respect to all
components of b yields that the waterfilling parameter ν with ν ≥ 0 has to be chosen such
that the sum constraint of the set B̄ is fulfilled with equality, i.e.,

∑L
ℓ=1 bℓ(ν) = χ, which

is feasible if we assume that
∑L

ℓ=1 aℓ > χ is given. Note that this waterfilling solution
is similar to cap-limited waterfilling, which was presented by Papandreou and Anton-
akopoulos (2008) in the context of bit and power loading optimization for constrained
multi-carrier systems with total and peak-power constraints.

〈3.47〉 Optimal Strategy (Vector Ordering). For the problem in 〈3.12〉, we derived
some results on the component ordering of the optimal vectors q and b based on the
component ordering of the vector a. For the optimization problem in 〈3.42〉, we cannot
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apply the same approach as above. Thus, no comparable ordering results can be provided
for the current problem, which mainly influences the characterization of bounds on the
outer problem.

〈3.48〉 Bounds on Outer Problem. The general approach for deriving bounds on the
solution of the outer problem in 〈3.42〉 can be taken from 〈3.27〉. Upper bounds can be
calculated with the approach presented in 〈3.29〉. Instead of the constraint set B̄, a set
Bβ with β ∈ B̄ can be used for the inner minimization problem. Then, the waterfilling
solution in 〈2.29〉, which was derived for the multi-carrier scenario, can be applied to
calculate the optimal transmit strategy for the bound. A simple lower bound can be
obtained with the same approach by using a set Bβ with β = (χ)L

ℓ=1. As already presented
in 〈3.30〉, better lower bounds can be found by changing the constraint set of the outer
problem. We can analogously use a set Q̇ι, where ι is an arbitrary vector with ι ∈ Q,
instead of the set Q as constraint for the outer maximization problem. Then, we can
simply apply the adapted waterfilling solution for the inner problem, which was presented
in 〈3.46〉. Note that upper bounds on the solution of problem 〈3.42〉 are also upper
bounds on problem 〈3.12〉, whereas lower bounds that were derived for problem 〈3.12〉
can simultaneously be used for problem 〈3.42〉. This directly follows from the relation
between both problems, which was discussed in 〈3.42〉.

In order to characterize the optimal strategies for high and low SNR, the secrecy rate
expression R̄S in 〈3.40〉 is now interpreted as a function of the inverse noise variance ρ
for a fixed value of P .

〈3.49〉 High-SNR Performance. For the high-SNR regime, we calculate the limit for
the adapted secrecy rate expression R̄S , which is

lim
ρ→∞

R̄S(a, b, q) = lim
ρ→∞

L∑

ℓ=1

[
log2

(
1 + ρ aℓqℓ

1 + ρ bℓqℓ

)]+

=
∑

ℓ∈L

[
log2

(
aℓ

bℓ

)]+

,

where

L ··= {ℓ ∈ {1, 2, . . . , L} | qℓ > 0}

is the set of vector components that is used for the transmission to Bob. Similar to 〈3.31〉,
we can state that this limit exists if and only if bℓ > 0 holds for all ℓ ∈ L. The optimal
strategy for the worst-case vector b, which is given in 〈3.46〉, would again converge to a
uniform allocation over these vector components if there were no individual upper bounds
for the components of b. But for the problem in 〈3.42〉, we obtain bℓ(ν) = [ν ]+≤aℓ

with
∑L

ℓ=1 bℓ(ν) = χ if
∑L

ℓ=1 aℓ > χ holds. This corresponds to a kind of uniform allocation
over the active components of b, where the individual upper bounds possibly clip the
value of some components, which in turn increases the values of the other components.

Compared to the high-SNR behavior of problem 〈3.12〉, the optimal strategy for the
outer problem significantly changes due to the altered properties of the secrecy rate
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expression. We see that the positive components of the power allocation vector q activate
the summands of the high-SNR limit above, but the concrete values of the components
do not matter, i.e., the sum power constraint is not relevant in this case. Each of these
high-SNR summands yields a positive (or zero) contribution to the limit. Furthermore,
we know that the worst-case vector b, which results from a certain power allocation q, is
characterized by a (possibly clipped) uniform allocation over all components that are used
by the transmitter. We can conclude that using an additional component in q can only
decrease the values of the corresponding worst-case vector b, which in turn increases the
high-SNR limit, since none of the already existing summands is reduced and an additional
non-negative summand is added to the high-SNR limit. Consequently, it is always optimal
to use all components of q in order to obtain the maximum worst-case high-SNR limit.

〈3.50〉 Low-SNR Performance. As expected, the limit of the secrecy rate R̄S is

lim
ρ→0

R̄S(a, b, q) = 0

in the low-SNR regime. Again, the linear Taylor series representation of the secrecy rate
at the point ρ = 0 is calculated, which yields

TR̄S
(ρ; 0) =

1

ln 2

∑

ℓ∈L

[aℓ − bℓ ]+ qℓ ρ

with L as defined above for the high-SNR discussion. If we consider the optimization of
the linear Taylor series coefficient, we can benefit from the saddle-point property of the
low-SNR approximation, which allows us to equivalently interchange the maximization
over the set Q and the minimization over the set B̄. Let us first analyze the min-max
problem. For each given vector b ∈ B̄, the transmitter would obviously allocate full
power P to the component of q that corresponds to the largest factor [aℓ − bℓ ]+ in order
to maximize the linear Taylor series coefficient in the low-SNR regime. The worst-case
strategy consequently tries to reduce the largest value [aℓ − bℓ ]+ as much as possible.
Let us assume that the vector a is ordered decreasingly, i.e., a1 ≥ a2 ≥ . . . ≥ aL. Thus,
the optimal strategy for the worst-case vector b can be described as follows: We start
with b1 = b2 = . . . = bL = 0 and reduce the largest coefficient by allocating b1 = a1 − a2.
Then, the largest factors in the Taylor series representation are a1 − b1 and a2, which
are reduced afterwards by adding the difference a2 − a3 to the first two components of
the vector b. This procedure is continued until the components of b add up to χ. This
approach corresponds to a waterfilling solution for the worst-case vector b, which is given
by

bℓ(ν) = [aℓ − ν ]+

with ℓ ∈ {1, 2, . . . , L}, where the waterfilling parameter ν with ν ≥ 0 is chosen such
that the sum constraint of the set B̄ is fulfilled with equality, i.e.,

∑L
ℓ=1 bℓ(ν) = χ. A

consequence of this worst-case strategy is that the transmitter, who wants to maximize
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the linear Taylor series coefficient, generally observes multiple components in the vector
([aℓ − bℓ ]+)L

ℓ=1 that take the maximum value of this vector. Thus, the optimal power
allocation vector for the min-max problem is not unique. The transmitter can arbitrarily
distribute the power P over the components that correspond to the maximum value of
([aℓ − bℓ ]+)L

ℓ=1, whereas all other components of q are set to zero.

Let us now switch to the equivalent max-min problem. For each given vector q ∈ Q,
the worst-case vector b is mainly interested in reducing the component of the vector
([aℓ − bℓ ]+)L

ℓ=1 that corresponds to the largest component of the power allocation vector
q as much as possible. Since each component of the vector b is bounded by bℓ ≤ aℓ, the
worst-case vector can also reduce the factor for the second largest component if χ is large
enough. The procedure is continued until χ is completely distributed. The transmitter,
who can predict this worst-case reaction, consequently choses a uniform allocation of
the complete power P over the first components of q. The optimal number of positive
components in q can be predetermined by the transmitter depending on the values of the
vector a for the channel to the intended receiver and the constraint χ on the channel to the
eavesdropper. Based on a uniform power allocation over a certain number of components
in q, the resulting worst-case strategy for the low-SNR approximation is not unique.
The value χ can be arbitrarily distributed over the components of b that correspond
to the non-zero components of q, only the individual upper bounds on the components
of b have to be considered. Comparing the max-min and the min-max problem, we can
conclude that we clearly have an optimal strategy for the outer problems, but the induced
reactions for the inner problems are not unique. Thus, the optimization order affects
which strategy combinations are optimal, but the resulting value of the optimization
problems is not influenced. In comparison with 〈3.32〉, we have again the situation that
the altered properties of the secrecy rate expression change the optimal strategies for the
optimization problem.

〈3.51〉 Properties (Equivalence of Eigenvalue Problems). According to 〈3.42〉, the
original eigenvalue problem in 〈3.12〉 and the adapted problem in 〈3.42〉 only differ in the
constraint set for the inner minimization. Hence, they are equivalent if the worst-case
vector b ∈ B that is optimal for the original problem 〈3.12〉 also fulfills b ∈ B̄. In 〈3.26〉, a
sufficient condition was formulated that ensures that the original eigenvalue problem in
〈3.12〉 is a saddle-point problem. If this condition is fulfilled by the given parameters it
is guaranteed that b ∈ B̄ holds for the worst-case vector of both problems, i.e., they are
equivalent in this case.

〈3.52〉 Parameters for Comparison of Maximized Worst-Case Secrecy Rates.
In order to compare the results of the previous section with the outcome of the current
section, we take the parameters from the example that we introduced in 〈3.33〉. If we
consider the eigenvalue vector a = (3.9, 1.5, 1.0, 0.6), which characterizes the channel be-
tween Alice and Bob, together with the originally introduced constraint χ = 2 for the
channel to Eve, we observe that these parameters fulfill the saddle-point condition in
〈3.26〉, i.e., the original optimization problem in 〈3.12〉 and the adapted problem in 〈3.42〉
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3 Worst-Case Studies for Secrecy Rate Optimization

are equivalent. In this case, the transmitter cannot gain any advantage from the more
complex transmitter structure in Figure 3.16 compared to the transmitter structure in
Figure 3.2.

This situation significantly changes if we consider a = (3.9, 1.5, 1.0, 0.6) together with
χ = 5 as in 〈3.37〉. Now, we have a parameter combination where the saddle-point
condition in 〈3.26〉 is not fulfilled. Moreover, we observed in Figure 3.12 that the worst-
case vector b that corresponds to a full-power vector q causes negative summands in the
maximized worst-case secrecy rate, i.e., we have b /∈ B̄ for the worst-case vector b in
this case. Thus, we will use this parameter combination in the following to compare the
secrecy rates that are achievable for the problems in 〈3.12〉 and 〈3.42〉.

−20 −10 0 10 20 30
0

1

2

ρ in dB

se
c
re

c
y

ra
te

s
in

b
it

R̄
+

S

bounds

uncertainty

(a) β =
(

χ

4
,

χ

4
,

χ

4
,

χ

4

)
and β = (χ, χ, χ, χ)

−20 −10 0 10 20 30
0

1

2

ρ in dB

se
c
re

c
y

ra
te

s
in

b
it

R̄
+

S

bounds

uncertainty

(b) β = χ a
‖a‖1

and ι = P a
‖a‖1

−20 −10 0 10 20 30
0

1

2

ρ in dB

se
c
re

c
y

ra
te

s
in

b
it

R̄
+

S

bounds

uncertainty

(c) β =
(

χ

4
,

χ

4
,

χ

4
,

χ

4

)
and ι =

(
P
4

, P
4

, P
4

, P
4

)

−20 −10 0 10 20 30
0

1

2

ρ in dB

se
c
re

c
y

ra
te

s
in

b
it

bounds

uncertainty

(d) minimum upper and maximum lower bounds

Figure 3.17: Upper and lower bounds on the maximized worst-case secrecy rate R̄+

S and the
remaining uncertainty regions between the bounds.

〈3.53〉 Illustration (Bounds). Figure 3.17 shows upper and lower bounds on the max-
imized worst-case secrecy rate for the adapted problem in 〈3.42〉 as a function of the SNR.
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3.3 Worst-Case Optimization for Transmitters with Parallel Encoding

The area between the upper and lower bounds is the remaining uncertainty about the
exact value of the maximized worst-case secrecy rate, which is denoted by R̄+

S . Strictly
speaking, it is an approximation of the maximized worst-case secrecy rate, which was
determined by an exhaustive search over all possible power allocation vectors q. The
corresponding set was run through with a step size of 0.010 for each component.

For (a), the upper and lower bound were derived by manipulating the inner minimization
according to 〈3.27〉. For the derivation of the upper bound, we used β =

(
χ
4 , χ

4 , χ
4 , χ

4

)
.

This parameter choice yielded a relatively good upper bound on the original problem in
〈3.12〉, see Figure 3.4. But it is not a comparably good choice for an upper bound on
the adapted problem in 〈3.42〉. We have β3 > a3 and β4 > a4, which is not a reasonable
choice since we know that bℓ ≤ aℓ optimally holds for all ℓ ∈ {1, 2, . . . , L}. Allocating
higher values than optimal to the last two components of β unnecessarily reduces the
values that can be assigned to the first two components of this vector, which prevents us
from obtaining a tight upper bound. The lower bound was derived with β = (χ, χ, χ, χ).
We know from 〈3.33〉 that we cannot expect to get a good lower bound by manipulating
the constraint for the inner minimization, since we have to relax the sum constraint on
the vector b too much. The absence of an appropriate ordering result for the components
of the optimal vectors yields a parameter choice that is even more far away from optimal
than the comparable lower bound for the original problem in Figure 3.4. In our example,
we obtain zero for the lower bound since we have βℓ > aℓ for all ℓ ∈ {1, 2, . . . , L}.

In the following, we will again derive upper bounds by manipulating the inner minimiza-
tion, but we will change the constraint set for the outer maximization in order to derive
upper bounds. We can use the vectors that we have already introduced in 〈3.33〉 for
the bound derivation. In (b) and (c), we exemplarily see the bounds that we obtain by
scaled versions of the parameter vector a and by a uniform allocation over all four vector
components. We observe that the lower bounds are relatively good over the complete
SNR range and even tight for high SNR. We could expect the latter from the high-SNR
discussion in 〈3.49〉, where we concluded that it is optimal to use all components of the
power allocation vector q for the transmission to Bob independently of the chosen val-
ues. If we analyze the upper bound for (b), we see that it is relatively good for low and
medium SNR, but we can observe a large gap between this bound and the exact value
of R̄+

S for high SNR. Obviously, the chosen parameter vector β significantly differs from
the worst-case vector for high SNR. The diagram in (d) shows the minimum upper and
maximum lower bounds we found by evaluating a certain number of upper and lower
bounds over the complete SNR range. Therefore, we considered not only the bounds
above, but also bounds we derived from uniform allocations over a certain number of
non-zero vector components, where we decided to always use the first vector components
and varied their number, cf. Figure 3.5. Thus, we used exactly the same vectors as in
〈3.33〉 for the bound derivation. Unfortunately, the remaining uncertainty is comparably
large for high SNR due to the absence of a tight upper bound. Nevertheless, we know
that the maximum lower bound is tight for high SNR, which provides us nearly the exact
value of the maximized worst-case secrecy rate in this regime.
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Figure 3.18: Remaining uncertainty about the value of R̄+

S with improved upper bound for high
SNR.

If we want to further reduce the remaining uncertainty for high SNR, we have to look for
the worst-case vector in this regime. From the high-SNR discussion in 〈3.49〉, we know
that this is a kind of uniform allocation over all components of b, where the correspond-
ing values from a represent individual upper bounds on the components, which in turn
increases the values of the other components. Having this in mind, we can calculate a
new upper bound with β = (1.9, 1.5, 1.0, 0.6), which is the high-SNR worst-case vector
for our example. Figure 3.18 (a) is an improved version of the diagram in Figure 3.17 (d),
where the upper bound was updated by additionally considering this new upper bound.
Now, we have a relatively small uncertainty over the complete SNR range we considered.
In (b), the absolute values of the remaining uncertainty are shown, which are calculated
as the difference of the best upper and lower bound. We observe that this uncertainty
grows with ρ until about ρ = 5 dB. Afterwards, we see the effect of the improved upper
bound. Since both bounds are tight for high SNR, the remaining uncertainty tends to
zero with further increasing ρ.

〈3.54〉 Illustration (High- and Low-SNR Behavior). In Figure 3.19, the high- and
low-SNR behavior of the maximized worst-case secrecy rate R̄+

S of the adapted problem in
〈3.42〉 is illustrated. The low-SNR approximation in (a) is calculated according to 〈3.50〉.
The resulting low-SNR worst case vector for the min-max problem is b = (3.4, 1.0, 0.5, 0.1),
which for instance corresponds to a power allocation vector q with a uniform allocation
over all four components. Note that for low SNR, there is no difference between the
achievable rates for the problems 〈3.12〉 and 〈3.42〉. In (b), we see that the maximized
worst-case secrecy rate R̄+

S converges to the limit that was calculated with all vector
components from a and b according to 〈3.49〉. For comparison, we added the rates that
were achievable for the original problem in 〈3.12〉. With increasing SNR, we can observe
the growing gap between the rates of both problems that were obtained using full transmit
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Figure 3.19: The maximized worst-case secrecy rate R̄+

S with its low-SNR approximation and its
high-SNR limit.

power. The rate that was obtained in 〈3.37〉 for the original problem with significantly
reduced transmit power comes close to the maximized worst-case secrecy rate R̄+

S we
calculated for the adapted problem. This is very interesting since we can get nearly the
same rate with a simpler transmitter structure, see Figure 3.2, and a significantly lower
transmit power, see Figure 3.13.

〈3.55〉 Illustration (Optimal Strategies). Figure 3.20 shows the values of the opti-
mal vectors and the resulting secrecy rate summands for selected SNR values. Now, we
can see the predicted low- and high-SNR behavior in detail. In (a), we see that the trans-
mitter has chosen a uniform allocation of the available power P for ρ = −20 dB. From
the discussion in 〈3.50〉, it follows that this is the optimal power allocation vector for low
SNR if the optimization problem is formulated as max-min problem as in the simulation.
The resulting worst-case vector for the low-SNR approximation is not unique, but the
waterfilling solution in 〈3.46〉 yields a unique solution for the secrecy rate minimization,
which is the worst-case vector b given in this diagram. In (b), (c), and (d), we can see how
the optimal power allocation vector q and the corresponding worst-case vector b change
with the variation of the SNR from ρ = −10 dB to 10 dB. We see that Alice always
uses all components of the vector q for the transmission to Bob. This behavior can be
explained by the relatively high value that was chosen for the channel constraint χ on
the eavesdropper channel. Thus, the transmitter has to use at least a certain number of
components in order to ensure that the worst-case secrecy rate is positive, see 〈3.45〉. In
(e) and (f), which show the results for ρ = 20 dB and 30 dB, we see that the worst-case
vector b takes exactly the values that result from the high-SNR analysis in 〈3.49〉 and
that we have already used for calculating the minimum upper bound for high SNR in
〈3.53〉. Furthermore, we notice that this worst-case behavior is induced by a power allo-
cation vector that uses all components, although the main part of the available power is
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(b) ρ = −10 dB
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(c) ρ = 0 dB
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(d) ρ = 10 dB
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(e) ρ = 20 dB
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(f) ρ = 30 dB

Figure 3.20: Optimal vectors corresponding to the maximized worst-case secrecy rate R̄+

S for
selected SNR values.
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assigned to the first component, which corresponds to the largest value in a and therefore
promises the largest quotient between the components of a and b, which in turn yields
the largest contribution to the overall rate. In comparison with Figure 3.12, where we
analyzed the same example for the original problem in 〈3.12〉, we see that the values of the
worst-case vector b do not exceed the corresponding values of a anymore, which in turn
avoids negative summands in the secrecy rate expression and consequently increases the
maximized worst-case secrecy rate. This is clearly the effect of the adapted transmitter
structure in Figure 3.16.

3.4 Discussion

〈3.56〉 Special Case (Multiple-Input Single-Output Scenario). Now, we want to
discuss the MISO scenario, where the intended receiver Bob has only one antenna, i.e., we
set M = 1. All other assumptions we made in this chapter remain unchanged. As
before, we assume that the transmitter Alice is equipped with L antennas and that the
eavesdropper Eve is allowed to have N > L antennas. Due to the restriction that the
receiver Bob has only one antenna in this scenario, the transmitter uses only one data
stream and one wiretap encoder, i.e., the two eigenvalue problems we discussed in the
previous sections are always equivalent. The channel matrix H, which characterizes the
channel from Alice to Bob, reduces to a (row) vector of length L. Thus, we now write h
instead of H. The corresponding Gramian matrix A = hHh has rank one, i.e., the only
non-zero component in the eigenvalue vector a is a1 > 0 and the eigenvalue decomposition
of A can be written as A = hH

‖h‖ (a1) h
‖h‖ . Thus, only the first components of the optimal

power allocation vector q and the worst-case vector b are non-zero, and we obtain q1 = P
and b1 = χ for these vectors if we assume that a1 > χ. The corresponding transmit
covariance matrix, which maximizes the worst-case secrecy rate in the MISO scenario, is
Q = hH

‖h‖ (P ) h
‖h‖ , i.e., it can be identified as maximum-ratio transmission to the intended

receiver Bob using full power. For the worst-case channel matrix, we obtain the rank-one
matrix B = hH

‖h‖ (χ) h
‖h‖ in Gramian notation, which yields the vector g =

√
χ h

‖h‖ for the
worst-case channel from Alice to Eve, i.e., the worst-case channel to Eve equals a scaled
version of the channel h from Alice to Bob in the MISO scenario. With χ = α a1 and
α ∈ [0, 1], we obtain the following expression for the maximized worst-case secrecy rate

R(α) ··= log2 (1 + ρ a1P ) − log2 (1 + ρ α a1P ) = log2

(
1 + ρ a1P

1 + ρ α a1P

)
,

which corresponds to the secrecy rate of the basic scenario we discussed in Section 2.1.
The case α = 0 corresponds to a MISO scenario without eavesdropper or to a transmission
without secrecy constraints, whereas the case α = 1 leads to zero for the (maximized)
worst-case secrecy rate, i.e., a definitely secure transmission is not possible since the
eavesdropper channel is as “powerful” as the main channel. The high-SNR limit can
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be expressed as − log2(α). The low-SNR approximation that we obtain with the linear
Taylor series representation equals TR(ρ; 0) = 1

ln 2 (1 − α) a1Pρ.
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Figure 3.21: The maximized worst-case secrecy rate R+

S of the MISO scenario for several values
of the channel quality ratio α.

Figure 3.21 shows the maximized worst-case secrecy rate R+
S of the MISO scenario, where

the channel from Alice to Bob is characterized by a1 = 1. As before, we assumed that the
transmit power constraint was set to P = 1. In (a), this rate and its high- and low-SNR
approximations are given for α = 0.5, i.e., the eavesdropper channel has only one-half of
the gain of the main channel. For the illustration in (b), we varied the channel quality
ratio α. We see that the behavior of the curves is very similar to those of the MIMO
scenario we discussed before.

〈3.57〉 Application to Multi-Carrier Scenario. The results from Section 3.3 can be
transferred to a related multi-carrier scenario. We resume the system model of the multi-
carrier scenario in 〈2.20〉, where Alice can use up to K carriers for the transmission to
Bob, and analogously apply the modifications we made for our worst-case discussion in
〈3.1〉 and 〈3.12〉. Thus, we obtain a setting, where Alice knows her channel gains to
Bob perfectly, but has only very limited knowledge about her channel to Eve. It is only
known that the sum of her channel gains to Eve over all carriers is not larger than χ, which
corresponds to the definition of the set B in 〈3.12〉. She aims to maximize the worst-case
secrecy rate for her private communication to Bob under a sum power constraint over
all carriers and the assumption that Eve is able to find the worst-case channel gains for
eavesdropping this confidential message. The resulting problem formulation corresponds
to the max-min problem in 〈3.40〉 with L = M = N = K. Thus, all results that we
derived for this problem in the previous section can directly be applied to this multi-
carrier scenario. For a multi-carrier scenario, we can assume that ak > 0 holds for all
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k ∈ {1, 2, . . . , K}. Thus, there is no constraint on the maximum number of positive
components of the power allocation vector q.

Note that the worst-case secrecy rate maximization for the multi-carrier scenario cannot
directly be derived as a special case of the worst-case secrecy rate maximization for
the multi-antenna scenario. We have to use the adapted problem in 〈3.40〉 in order
to obtain the right secrecy rate expression. That is in contrast to the case without
secrecy constraints, where the multi-carrier scenario can be seen as a special case of the
MIMO scenario, and the corresponding system model and rate can be simply obtained
by inserting diagonal matrices for the MIMO channel matrices.

〈3.58〉 Extension to Multiple Eavesdroppers. The system model in 〈3.1〉 and the
results derived for it in this chapter considered only one eavesdropper, who is introduced
as Eve. Nevertheless, all results can be applied to a system with multiple non-cooperating
eavesdroppers as well. The study above focused on the worst-case eavesdropper, who is
characterized by the worst-case channel matrix, for a secure transmission from the trans-
mitter Alice to the legitimated receiver Bob. The resulting secrecy rate was maximized
under the assumption that this communication is always wiretapped by an eavesdropper
Eve with the corresponding worst-case channel matrix, which depends on the currently
chosen transmit strategy. Thus, all other eavesdroppers at positions where they observe
a channel matrix that does not correspond to the worst-case channel matrix have a dis-
advantage compared to Eve. Hence, each transmission between Alice and Bob that is
secure with respect to Eve simultaneously is a definitely secure transmission regarding all
these other eavesdroppers.

The results for the case of multiple cooperating eavesdroppers can also be derived from the
results above. Let us assume that we have T cooperating eavesdroppers whose channel
matrices are denoted by G1, G2, . . . , GT with T ∈ N. Each eavesdropper can have an
individual number of receive antennas, i.e., we have Gt ∈ CNt×L with Nt ∈ N for t ∈
{1, 2, . . . , T}. For each of these eavesdropper channel matrices Gt, the channel condition
in 〈3.1〉 is fulfilled, i.e., we have ‖Gt‖2

F ≤ χ. We can interpret these T cooperating

eavesdroppers as one eavesdropper with a channel matrix G ∈ CN×L with N =
∑T

t=1 Nt,
which is constructed by a vertical concatenation of the matrices G1, G2, . . . , GT . For
this new channel matrix G, we obtain a new channel condition, which can be calculated
using the definition of the Frobenius norm together with the channel conditions of the
individual eavesdropper channels:

‖G‖2
F =

T∑

t=1

‖Gt‖2
F ≤ Tχ.

Thus, we can reduce the problem of T cooperating eavesdroppers to the original problem
with a more “powerful” eavesdropper by adapting the channel condition as shown above.

〈3.59〉 Extension to other Constraint Sets. In the system model in 〈3.1〉, we consid-
ered a MIMO wiretap channel and introduced a constraint on the eavesdropper channel
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3 Worst-Case Studies for Secrecy Rate Optimization

using the Frobenius norm of this channel. Then, we formulated an optimization problem
for the secrecy rate maximization under the assumption that the eavesdropper Eve always
finds the worst-case channel for wiretapping the communication between the transmitter
Alice and the legitimated receiver Bob, see 〈3.5〉. This problem was reduced to a problem
over the eigenvalues of the transmit covariance matrix and the Gramian matrix of the
channel to the eavesdropper, see 〈3.12〉. In this reformulation process, the constraint on
the eavesdropper channel turned into a restriction on the sum of the eigenvalues of the
Gramian matrix of this channel matrix. In order to support this reformulation, it was
necessary and sufficient that the constraint on the eavesdropper channel was unitarily
invariant. Consequently, we can alternatively use any other constraint set for the eaves-
dropper channel that is unitarily invariant and we are able to do the same transformation
steps for reducing the original problem as shown above. In addition to the considered
Frobenius norm, we could also use other Schatten p-norms including the spectral and the
Ky Fan k-norm. However, there are other matrix norms that can be of interest for system
design, which are not unitarily invariant. We can for instance think of the maximum norm
or the row / column sum norm. Nevertheless, we can exploit the equivalence of all matrix
norms, which allows us to upper- and lower-bound an arbitrary matrix norm by another
matrix norm, which could be chosen such that it is unitarily invariant. Thus, we can for
instance use the (unitarily invariant) spectral norm for the derivation of bounds on the
maximized worst-case secrecy rate if a system with peak-power constraints is considered.

〈3.60〉 Publication Note. Some ideas and results discussed in this chapter have already
been presented at the 44th Asilomar Conference on Signals, Systems, and Computers in
2010 and published in (Wolf and Jorswieck, 2010a). In this paper, we introduced the
worst-case scenario with a deterministic model for the uncertainty about the eavesdropper
channel in the multi-antenna scenario. From the perspective of the transmitter, we studied
the secrecy rate maximization problem under the assumption that the eavesdropper can
observe the worst-case channel for each chosen transmit strategy. This publication mainly
contained the idea of reformulating the original matrix problem of the MIMO scenario
into a vector problem over the eigenvalues of the involved matrices. Thus, it provided the
basis for the formulation of the eigenvalue problem in 〈3.12〉 and the adapted problem
in 〈3.42〉. Additionally, it comprised the derivation of the solution of the inner (worst-
case) problem for the transmitter structure with parallel encoders as in 〈3.46〉. Moreover,
simple upper and lower bounds were introduced, and some aspects of the high- and low-
SNR behavior were discussed in this publication. Thus, it was also a basis for the results
in 〈3.27〉–〈3.30〉 as well as in 〈3.49〉 and 〈3.50〉. A short overview of the results of (Wolf
and Jorswieck, 2010a) was also included in (Jorswieck et al., 2015).

In 〈3.59〉, we discussed how the results of this chapter could be extended to the maximiza-
tion of worst-case secrecy rates in a multi-antenna scenario with other constraint sets.
Based on this, we formulated corresponding propositions, which were presented at the
7th IEEE International Workshop on Information Forensics and Security (WIFS) in 2015
and published in (Wolf et al., 2015), after the submission of this thesis. In this paper, we
studied the problem above under more generalized constraints, i.e., the max-min problem

92
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with input constraints on the transmit covariance matrix and state constraints on the
eavesdropper channel. We presented not only results for unitarily invariant constraints,
which allowed us to reduce the initial problem to a problem over the eigenvalues, but we
also showed how this approach could be applied to a more general class of optimization
problems with other constraints that are of interest for the system design. This was
illustrated by an example with peak power constraints for all transmit antennas.

〈3.61〉 Related Work. Liang et al. (2007) introduced the compound wiretap channel
as a generalization of Wyner’s wiretap model. It allows the main and the eavesdropper
channel to take a number of possible states. The transmitter has to ensure that the
receiver can always decode the transmitted message while it is kept perfectly secret from
the eavesdropper independently of the current states of both channels. This model can
equivalently be interpreted as a multicast channel with multiple eavesdroppers, where
each possible state of the main channel corresponds to a legitimated receiver while each
eavesdropper channel state is associated with an individual eavesdropper. From this point
of view, the transmitter wants to transmit its message to all receivers while keeping it
secret from all eavesdroppers. It is assumed that the channel states are known to the
corresponding receivers or eavesdroppers and that they remain constant during one trans-
mission. This study on the compound wiretap channel was continued and detailed by the
same authors in (Liang et al., 2008b) and (Liang et al., 2009). First, the authors analyzed
the discrete memoryless compound wiretap channel. An expression for the achievable se-
crecy rate was established as a worst-case result considering the worst receiver together
with the best eavesdropper. The input scheme needs to balance the rates for all receiver-
eavesdropper pairs, which generally yields non-optimal results for each pair. Afterwards,
the authors of these publications derived the secrecy capacity for the degraded and the
semideterministic compound wiretap channel. Later, the parallel Gaussian compound
wiretap channel was analyzed. The secrecy capacity and the secrecy degrees of freedom
were given for the degraded parallel Gaussian compound wiretap channel with one re-
ceiver and multiple eavesdroppers. Finally, the authors presented the secrecy capacity of
the degraded MIMO compound wiretap channel and expressions for an achievable secrecy
rate and an achievable secrecy degree of freedom for the general MIMO compound wire-
tap channel. From this perspective, the model we used in this chapter is a combination
of the semideterministic compound wiretap channel and the general MIMO compound
wiretap channel. We used a general MIMO scenario, but we relaxed only the assumption
of perfect channel knowledge for the eavesdropper channel. For the main channel to the
legitimated receiver we further assumed that the transmitter knows the channel perfectly.
In contrast to the model in (Liang et al., 2009), we considered an infinite number of pos-
sible eavesdropper states. These states were modeled as a set that was characterized by
a certain constraint. The focus of this chapter was the derivation of an equivalent vector
problem and the solution for the max-min problem for this special constraint set.

At the same time as Liang et al. (2007), Liu et al. (2008) studied parallel Gaussian
compound wiretap channels. The authors of this publication focused on the class of non-

93



3 Worst-Case Studies for Secrecy Rate Optimization

degraded channels with only one possible channel realization for the legitimated receiver
and derived the secrecy capacity for this model.

An example for another approach for a worst-case analysis of a secrecy rate problem
can be found in (Anand and Chandramouli, 2010). The authors considered a model
that clearly differs from those we discussed so far. They studied a system with multiple
transmitter-receiver pairs who want to communicate in presence of an eavesdropper under
the assumption that each user of the system has only one antenna. Thus, there are
multiple transmitters who choose their strategies and optimize their rates individually.
The eavesdropper is interested to wiretap the communication of each link. The authors
introduced the notion “logical location” for the vector representing the eavesdropper
channel gains for all links. They formulated the worst-case secrecy rate problem from
a game-theoretical perspective and aimed to determine the optimal logical location of
the eavesdropper, which results in minimum secrecy capacity for all transmitter-receiver
pairs.

〈3.62〉 Summary. In this chapter, we considered a MIMO wiretap channel where the as-
sumption of perfect channel knowledge was relaxed for the eavesdropper channel. Instead,
we formulated a constraint on this channel using its Frobenius norm in order to model
an infinite set of eavesdropper channels. For this model, we introduced the worst-case
secrecy rate problem, which is to find the worst-case channel for wiretapping the com-
munication between the transmitter and the legitimated receiver for each given transmit
strategy. Afterwards, we added the problem of maximizing this worst-case secrecy rate
under a transmit power constraint over all antennas. We discussed the properties of this
max-min problem and derived an equivalent vector problem over the eigenvalues of the
involved matrices.

For this problem, we characterized the optimal strategies considering the number of pos-
itive vector components, their ordering, and possible value ranges. Based on this, a
waterfilling solution for the worst-case problem was presented as well as relatively tight
lower and upper bounds on the solution of the outer maximization problem. For the high-
and low-SNR regime, we discussed the behavior of the worst-case secrecy rate together
with the corresponding optimal strategies. Especially for high SNR, the importance of
scaling the overall transmit power was shown.

Afterwards, we presented a slightly modified transmitter whose structure was adapted
to the characteristics of the max-min problem. This yielded another expression for the
secrecy rate, which ensured higher achievable rates than the approach before. We also
discussed optimal strategies as well as the high- and low-SNR behavior for this problem
and showed similarities and differences between both problems.

All results of this chapter were illustrated in detail. Moreover, it was shown how these
results can be applied to a related multi-carrier scenario. Finally, we discussed the appli-
cation to scenarios with multiple cooperating eavesdroppers and to scenarios with other
constraints on the eavesdropper channel.
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Part III

Key Exchange for Physical-Layer Security





4 Secret-Key Rate Optimization

The focus of this chapter is the secret-key agreement between two legitimated users on
the physical layer. They want to agree on a common key and keep it secret from an
eavesdropper who can observe some information of this key agreement process and tries
to extract the key from the available information. In this chapter, we present some results
on the achievable secret-key rates for various wireless systems and compare them to the
results we previously obtained for the achievable secrecy rates of the same systems. In the
first section, we introduce our basic model together with the corresponding expression for
the secret-key rate RK and its properties. In the next sections, we extend this model to
multi-carrier and multi-antenna scenarios and present results for the achievable secret-key
rates and provide power allocation strategies for the secret-key rate maximization.

4.1 Basic Scenario

In the basic scenario, which is illustrated in Figure 4.1, two users, Alice and Bob, want
to agree on a common and secret key in the presence of an eavesdropper Eve who tries
to listen to their communication and to extract the key from the information that is
available to her. For the integrated wiretap channel, we have the same setting as above
for the secrecy rate discussion, i.e., Alice is the transmitter, Bob the legitimated receiver,
and Eve the eavesdropper.

Alice

Eve

Bob

h ξ

g ζ

X

Z

Y

wiretap channel

public
channel

Φ Ψ

Figure 4.1: System model of the basic scenario for secret-key agreement with a transmitter (Al-
ice), a receiver (Bob), and an eavesdropper (Eve).

97



4 Secret-Key Rate Optimization

〈4.1〉 System Model. The system model is derived from the general channel-type model
for secret-key generation, which was presented in 〈1.11〉. This model consists of the
combination of a wiretap and a public channel. Our prior assumptions on the public
channel remain unchanged. For the wiretap channel, we now use the basic model from
〈2.2〉, which we originally introduced for the secrecy rate discussion. In order to overview
this model again, we refer to the most important variables of this model in the following.
The random variables X, Y , and Z describe Alice’s channel input and Bob’s and Eve’s
channel output, respectively. The main and the eavesdropper channel are attenuated
Gaussian channels, which are characterized by their channel coefficients h and g or the
corresponding channel gains a ··= |h|2 and b ··= |g|2 with a, b > 0. The random variables
for the noise of these channels are ξ and ζ. For both channels, the noise variance is
assumed to be σ2 with σ2 > 0. Its inverse is denoted by ρ. Alice’s transmit power is
denoted by q with q ≥ 0. It underlies a transmit power constraint, which is given by P .
A more detailed explanation of this wiretap model can be found in 〈2.2〉.

〈4.2〉 Secret-Key Rate. For this model, the secret-key rate RK , which we interpret as
a function of the channel gains a and b and the transmit power q with q ≥ 0, can be
evaluated according to 〈1.13〉, which yields

RK(a, b, q) = log2

(
1 +

(a + b)q

σ2

)
− log2

(
1 +

bq

σ2

)
= log2

(
σ2 + (a + b)q

σ2 + bq

)
,

where the random variable X needs to be circularly-symmetric complex Gaussian dis-
tributed with zero mean and variance q, i.e., X ∼ CN (0, q), in order to achieve the
maximum mutual information in 〈1.13〉 for a given transmit power q.

〈4.3〉 Properties (Positivity). Obviously, the secret-key rate RK is always positive for
q > 0 since the first term is greater than the second one independently of the relation of
channel gains a and b. This is a main difference to the secrecy rate RS of the corresponding
scenario, whose positivity was only given for a > b.

We evaluate the first and second derivatives of the secret-key rate RK for a, b > 0 and
q ≥ 0 to derive its monotonicity and convexity properties.

〈4.4〉 Calculations. For the first derivatives, we obtain

∂

∂a
RK(a, b, q) =

1

ln 2

(
q

σ2 + (a + b)q

)
≥ 0,

∂

∂b
RK(a, b, q) = − 1

ln 2

(
aq2

(σ2 + (a + b)q)(σ2 + bq)

)
≤ 0,

∂

∂q
RK(a, b, q) =

1

ln 2

(
aσ2

(σ2 + (a + b)q)(σ2 + bq)

)
> 0.
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For the second derivatives, we have

∂2

∂a2
RK(a, b, q) = − 1

ln 2

(
q2

(σ2 + (a + b)q)2

)
≤ 0,

∂2

∂b2
RK(a, b, q) =

1

ln 2

(
aq3(2σ2 + aq + 2bq)

(σ2 + (a + b)q)2(σ2 + bq)2

)
≥ 0,

∂2

∂q2
RK(a, b, q) = − 1

ln 2

(
aσ2

(
aσ2 + 2b(σ2 + (a + b)q)

)

(σ2 + (a + b)q)2(σ2 + bq)2

)
< 0.

〈4.5〉 Properties (Monotonicity). For a, b > 0 and q ≥ 0, the secret-key rate RK is

a) monotonically increasing in a for fixed b and q,
b) monotonically decreasing in b for fixed a and q, and
c) strictly monotonically increasing in q for fixed a and b.

〈4.6〉 Properties (Convexity). For a, b > 0 and q ≥ 0, the secret-key rate RK is

a) a concave function of a for fixed b and q,
b) a convex function of b for fixed a and q, and
c) a strictly concave function of q for fixed a and b.

〈4.7〉 Remark. For q > 0, the properties in 〈4.5〉 and 〈4.6〉 can be formulated more
precisely by adding “strictly” to each statement that had to be formulated without it
before.

〈4.8〉 Problem Formulation (Secret-Key Rate Maximization). For given channel
gains a and b, the secret-key rate RK in 〈4.2〉 should be maximized under a transmit power
constraint q ≤ P , i.e.,

max
q∈Q

RK(a, b, q)

where

Q ··= {q ∈ R | q ≥ 0 and q ≤ P}

is the set of all feasible transmit powers, which we have already defined in 〈2.10〉 in the
context of the maximization of the secrecy rate RS .

〈4.9〉 Properties (Convexity of the Problem). The constraint set Q is convex, and
the objective function is a concave function of q on this set. Consequently, we have a
convex problem.

99



4 Secret-Key Rate Optimization

〈4.10〉 Optimal Strategy (Power Allocation). From 〈4.3〉 and 〈4.5〉, we know that
we can always achieve a positive secret-key rate for q > 0 and that this rate is growing
with q. Thus, we see that it is optimal to use full power at the transmitter, i.e., q = P
for the problem in 〈4.8〉.

〈4.11〉 Relation to Secrecy Rate. The comparison between the secrecy rate RS in
〈2.4〉 and the secret-key rate RK in 〈4.2〉 shows that both functions only differ in the
first term. For all channel gains a and b and each transmit power q > 0, the first
term of RK is always greater than the corresponding term of RS . Thus, we obtain
RK(a, b, q) ≥ RS(a, b, q) for all possible parameter combinations, which directly yields

max
q∈Q

RK(a, b, q) ≥ max
q∈Q

RS(a, b, q).

〈4.12〉 Secret-Key Capacity. In this basic scenario, we have a channel-type model with
a wiretap channel that is characterized by infinite input and output alphabets and the
Markov chain property Y – X – Z. The corresponding secret-key capacity under a second
order moment constraint for X was derived by Wong et al. (2009). From 〈1.12〉, we know
that the secret-key capacity for our basic scenario is given by

CK = log2

(
1 +

(a + b)P

σ2

)
− log2

(
1 +

bP

σ2

)
.

In order to study the behavior of the secret-key rate for high and low SNR, we now
interpret RK in 〈4.2〉 as a function of the noise variance σ2 (or its inverse ρ) for given
channel gains a and b and a fixed value of P and look at the corresponding limits (if they
exist) and some related performance measures.

〈4.13〉 High-SNR Performance. In the high-SNR regime, the secret-key rate RK ap-
proaches the following limit:

lim
σ2→0

RK(a, b, q) = log2

(
1 +

a

b

)
.

We observe the same behavior as above for the secrecy rate RS of the corresponding
scenario. The high-SNR limit exists and is determined by the quotient of the two channel
gains, i.e., increasing the transmit power results only in a vanishing rate gain in the high-
SNR regime. Comparing the two limits, we see that the high-SNR limit of the secret-key
rate RK is always greater than the limit of the corresponding secrecy rate RS .

〈4.14〉 Low-SNR Performance. In the low-SNR regime, the secret-key rate RK clearly
approaches the following limit:

lim
ρ→0

RK(a, b, q) = 0.
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Thus, we consider the linear Taylor series representation of RK at the point ρ = 0, which
is

TRK
(ρ; 0) =

1

ln 2
a q ρ.

We observe that the increase of the secret-key rate RK in the low-SNR regime depends
on the gain of the main channel, but not on the gain of the eavesdropper channel. Con-
sequently, it is greater than the increase of the corresponding secrecy rate RS , which was
determined by the difference of the gains of both channels. Moreover, the increase of the
secret-key rate RK is identical to the increase of the rate in a scenario without secrecy
constraints.

〈4.15〉 Comparison of Secrecy and Secret-Key Rates. In order to ensure a rela-
tively fair comparison between the maximized secrecy rate and the maximized secret-key
rate, we pick up the idea from 〈1.14〉. We incorporate the subsequent data transmission
into the achievable rate for the key generation scenario. In the following, we use the rate

R+
T

··= ϑ R+
K with

ϑ ··=
R+

R+ + R+
K

for the comparison with the maximized secrecy rate R+
S , where ϑ is the rate comparison

factor, which is calculated with the maximized secret-key rate R+
K and the maximized

transmission rate R+, which is determined by

max
q∈Q

R(a, q) with

R(a, q) ··= log2

(
1 +

aq

σ2

)
.

Note that the optimal transmit strategies for R+, R+
S , and R+

K generally differ from each
other, although it is using full power P for all three rates in this basic scenario.

〈4.16〉 Illustration (High- and Low-SNR Behavior). We continue the example in
〈2.17〉 in order to be able to directly compare the achievable secrecy and secret-key rates,
i.e., we choose again a = 1 and P = 1. Figure 4.2 shows the maximized secret-key
rate of the basic scenario, which is obtained using full power and denoted by R+

K , as
a function of the SNR. For fixed parameters a, b, and q, it increases with ρ. In (a),
we see the maximized secrecy rate R+

K for b = 0.5 together with its low- and high-SNR
approximation according to 〈4.14〉 and 〈4.13〉, respectively. The maximized secret-key
rate R+

K converges to approximately 1.585 bit for high SNR, which corresponds to its
calculated limit with a = 1 and b = 0.5. As expected, this limit exceeds the limit of the
maximized secrecy rate of the same scenario.
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(a) low- and high-SNR behavior for b = 0.5
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Figure 4.2: The maximized secret-key rate R+

K for various eavesdropper channel gains and its
low-SNR approximation and high-SNR limit.

The influence of the eavesdropper channel gain is illustrated in (b). The rate for the
transmission without secrecy constraints, which is identical to a scenario without eaves-
dropper, is represented by b = 0. The resulting curve serves as an upper bound on
all achievable secret-key rates. In contrast to this rate, all maximized secret-key rates
converge to an individual finite limit for high SNR, which can be calculated according
to 〈4.13〉. Furthermore, we see that the low-SNR increase of the maximized secret-key
rates is independent from the eavesdropper channel gain. Thus, the low-SNR behavior of
the secrecy and secret-key rate differs, whereas the high-SNR behavior is in principle the
same for both cases. We clearly observe that a better eavesdropper channel reduces the
achievable secret-key rate. This influence of the eavesdropper channel gain, which can be
noticed over the complete SNR range, is more significant for high SNR, where the dif-
ferences between the curves converge to the constant high-SNR limit gaps. Additionally,
we see that positive secret-key rates can be obtained independently of the relation of the
channel gains. For b > a, we still get positive values for the secret-key rate, whereas we
would always obtain zero for the secrecy rate with the same parameters.

〈4.17〉 Illustration (Comparison of Secrecy and Secret-Key Rates). We proceed
with the example above, which uses the parameters a = 1 and P = 1. Figure 4.3 shows a
comparison of the maximized secrecy rate R+

S , the maximized secret-key rate R+
K , and the

combined rate expression R+
T , which is calculated according to 〈4.15〉 in order to allow a

relatively fair comparison of R+
S and R+

K by additionally considering the subsequent data
transmission with rate R+ in the key generation approach. The aforementioned rates are
illustrated for selected values of the eavesdropper channel gain.

For the illustration in (a), we choose b = 0.2, which corresponds to a comparably bad
eavesdropper channel. In this case, there is no large difference between the maximized
secrecy rate R+

S and the maximized secret-key rate R+
K over the complete SNR range.

102



4.1 Basic Scenario

−20 −10 0 10 20 30

0

1

2

3

ρ in dB

r
a
t
e
s

in
b

it

R
+

R
+

K

R
+

T

R
+

S

(a) b = 0.2

−20 −10 0 10 20 30

0

0.5

1

1.5

2

ρ in dB

r
a
t
e
s

in
b

it

R
+

R
+

K

R
+

T

R
+

S

(b) b = 0.4
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Figure 4.3: Comparison of the maximized secrecy rate R+

S , the maximized secret-key rate R+

K ,
and the combined rate expression R+

T .

Thus, the additional data transmission in the key generation approach is comparably cost-
intensive, which yields a combined rate expression R+

T that is less than the maximized
secrecy rate R+

S in the simulated SNR range from ρ = −20 dB to 30 dB. Consequently,
the transmitter cannot benefit from the key generation approach here, i.e., Alice should
prefer the direct transmission with the maximized secrecy rate R+

S instead. Note that
the comparison factor ϑ, which is defined in 〈4.15〉, always converges to 1 for high SNR,
which follows from the completely different high-SNR behavior of R+

K and R+. Hence,
the combined rate R+

T will always be superior to the maximized secrecy rate R+
S if the

SNR is high enough.

In (b), (c), and (d), we observe that the relation between the maximized secrecy rate
R+

S and the combined rate R+
T for the key generation approach changes with a better

eavesdropper channel. Although a higher gain for the eavesdropper channel yields a
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general decrease of the rates R+
S and R+

K , it also implies a growing gap between the
maximized secret-key rate R+

K and the maximized secrecy rate R+
S . Thus, the effort for

the additional data transmission in the key generation approach pays off more and more.
For b = 0.4, we see that Alice should prefer the direct transmission with the maximized
secrecy rate R+

S below approximately −13 dB, whereas the key generation approach is
superior for higher SNR. If the eavesdropper channel is characterized by b = 0.5, there is
no clear difference between both approaches below approximately 0 dB. For higher SNR,
the key generation approach should be preferred again. For an eavesdropper channel gain
of b = 0.8, the key generation approach clearly yields higher rates over the complete SNR
range. If the gain of the eavesdropper channel is further increased, we finally obtain a
situation where all secrecy rates are zero. Then, only the key generation approach is
suitable for a secret transmission to Bob.

4.2 Multi-Carrier Scenario

In this section, we extend the basic scenario we studied above to the multi-carrier sce-
nario. Alice and Bob want to agree on a common key using a system that contains a
wiretap channel with K parallel carriers. Again, this key should be kept secret from
the eavesdropper Eve. We study the optimal resource allocation for the secret-key rate
maximization under a sum power constraint over all carriers.

〈4.18〉 System Model (Extension to Multi-Carrier Scenario). For the key agree-
ment in a multi-carrier system, we use the channel-type model from 〈1.11〉 together with
the multi-carrier wiretap channel that was presented in 〈2.20〉. Consequently, we have K
parallel carriers, which Alice can use to transmit her information.

〈4.19〉 Secret-Key Rate. For this model, the secret-key rate RK , which we understand
as a function of the transmit power vector q and the channel gain vectors a and b, is the
sum over all secret-key rates per carrier and given by

RK(a, b, q) =
K∑

k=1

(
log2

(
1 +

(ak + bk)qk

σ2

)
− log2

(
1 +

bkqk

σ2

))
,

where qk ≥ 0 is the power that Alice allocates to carrier k for the transmission of the
information to Bob. This is a direct consequence of 〈4.2〉 if each carrier is studied inde-
pendently.

〈4.20〉 Properties (Positivity). We see that we have a positive contribution to the
secret-key rate from each carrier k ∈ {1, 2, . . . , K} with qk > 0 independently of the
relation of the corresponding channel gains ak and bk.

The monotonicity and convexity properties of the secret-key rate RK can be derived
applying the first and second derivatives that were calculated in 〈4.4〉 in the context of
the basic scenario.
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4.2 Multi-Carrier Scenario

〈4.21〉 Properties (Monotonicity). With 〈4.5〉, we can provide some statements on
the monotonicity of the secret-key rate RK in the components of the vectors a, b, and q
under the assumption that all other variables are fixed. We assume that ak, bk > 0 and
qk ≥ 0 holds for all k ∈ {1, 2, . . . , K}. Then, the secret-key rate RK in 〈4.19〉 is

a) monotonically increasing in ak,
b) monotonically decreasing in bk, and
c) strictly monotonically increasing in qk.

〈4.22〉 Remark. The first two statements on the monotonicity of RK can be formulated
more precisely by adding “strictly” to each statement if we assume that qk > 0 holds for
the corresponding carrier k ∈ {1, 2, . . . , K}.

〈4.23〉 Properties (Convexity). The Hessian matrices of RK with respect to a, b, and
q are diagonal. For a and q, these matrices have only non-positive diagonal entries (see
〈4.6〉), i.e., they are negative semi-definite. Furthermore, we see that the Hessian matrix
with respect to b has only non-negative diagonal entries, i.e., it is positive semi-definite.
This allows us to formulate the convexity properties of RK with respect to the vectors a,
b, and q under the assumption that all other variables are fixed. The secret-key rate RK

in 〈4.19〉 is

a) a concave function of a,
b) a convex function of b, and
c) a concave function of q.

〈4.24〉 Problem Formulation (Secret-Key Rate Maximization). For given chan-
nel gain vectors a and b, the secret-key rate RK in 〈4.19〉 should be maximized under a
sum power constraint at the transmitter, i.e.,

max
q∈Q

RK(a, b, q)

where

Q ··=
{

q ∈ R1×K

∣∣∣∣∣ qk ≥ 0 and
K∑

k=1

qk ≤ P

}

is the set of all feasible power allocation vectors, which we have already defined in 〈2.26〉
in the context of the maximization of the secrecy rate RS .

〈4.25〉 Properties (Convexity of the Problem). The convexity of the constraint set
Q was shown in 〈2.27〉. For fixed channel gain vectors a and b, the secret-key rate RK is
a concave function of q on this set. Thus, we have a convex problem.
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4 Secret-Key Rate Optimization

According to 〈4.20〉, we can basically use each carrier k ∈ {1, 2, . . . , K} in order to obtain
a positive secret-key rate. This is an essential difference to the secrecy rate maximization
of the multi-carrier scenario, where we only got a positive rate on carriers with ak > bk.
Nevertheless, the optimal power allocation strategy for the secret-key rate maximization
problem in 〈4.24〉 can directly be derived from the waterfilling solution in 〈2.29〉, which
was derived for the secrecy rate maximization problem of the multi-carrier scenario.

〈4.26〉 Optimal Strategy (Power Allocation). The optimal transmit strategy for the
secret-key rate maximization problem in 〈4.24〉 is the waterfilling solution

qk(µ) =

[
−ck

2
+

√
d 2

k

4
+ µ dk

]+

with ck ··= σ2 ak + 2bk

(ak + bk)bk

and dk ··= σ2 ak

(ak + bk)bk

for the power allocation on all carriers k ∈ {1, 2, . . . , K}. Due to the monotonicity in all
components of q, the waterfilling parameter µ with µ ≥ 0 has to be chosen such that the
power constraint is fulfilled with equality, i.e.,

∑K
k=1 qk(µ) = P .

〈4.27〉 Relation to Secrecy Rate. We compare the secrecy rate RS in 〈2.22〉 and the
secret-key rate RK in 〈4.19〉. For all channel gain vectors a and b and each given power
allocation vector q ∈ Q, we clearly have the relation RK(a, b, q) ≥ RS(a, b, q). If we
consider the maximization of these rates over all q ∈ Q, we have to take into account
that the optimal strategies for both problems differ from each other. We know that the
relation between the rates also holds for the power allocation vector that maximizes the
secrecy rate RS . But this vector is not necessarily optimal for the secret-key rate RK .
Consequently, we can write

max
q∈Q

RK(a, b, q) ≥ max
q∈Q

RS(a, b, q).

In order to characterize the optimal power allocation for high and low SNR, we again
interpret RK in 〈4.19〉 as a function of the noise variance σ2 (or its inverse ρ) for a fixed
value of P .

〈4.28〉 High-SNR Performance. In the high-SNR regime, there exists a limit for the
secret-key rate RK , which is

lim
σ2→0

RK(a, b, q) =
∑

k∈K

log2

(
1 +

ak

bk

)
,

where

K ··= {k ∈ {1, 2, . . . , K} | qk > 0}
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4.2 Multi-Carrier Scenario

is the set of carriers that Alice uses for the transmission to Bob. Note that we have
already defined this set in 〈2.31〉. We see that this limit is determined by the quotients
of the channel gains of the carriers that are used. From this, we can conclude that the
optimal strategy that maximizes the secret-key rate limit in the high-SNR regime is to
allocate non-zero power to all carriers k ∈ {1, 2, . . . , K}. The comparison with the high-
SNR limit of the secrecy rate RS shows that for both limits the quotients of the channel
gains are relevant. The main difference is the set of carriers that is optimally used in this
regime. For the secrecy rate problem, only a subset of carriers is used, which is selected
according to the relation of the channel gains of the carriers, while all carriers are used
otherwise. The difference in the carrier selection together with the slightly differing rate
expression always yields a greater high-SNR limit for the secret-key rate RK compared
to the secrecy rate RS of the same scenario.

〈4.29〉 Low-SNR Performance. In the low-SNR regime, the limit of the secret-key
rate RK clearly is

lim
ρ→0

RK(a, b, q) = 0.

We calculate the linear Taylor series representation of RK at the point ρ = 0 and obtain

TRK
(ρ; 0) =

1

ln 2

∑

k∈K

ak qk ρ.

The increase of the secret-key rate in the low-SNR regime is independent from the gains
of the eavesdropper channel. It is only determined by the gains of the main channel and
the carriers that are used for the transmission. Consequently, it is optimal to allocate full
power to the carrier with the largest gain for the channel to the legitimated receiver. The
resulting rate increase in the low-SNR regime is equal to that of a system without secrecy
constraints and superior to the increase of the secrecy rate RS in the same scenario.

〈4.30〉 Comparison of Secrecy and Secret-Key Rates. For the comparison of both
rates, we consider a combination of the secret-key rate and the subsequent data trans-
mission for the key generation approach. As in 〈4.15〉, we use the combined rate

R+
T

··= ϑ R+
K with

ϑ ··=
R+

R+ + R+
K

.

For the calculation of the rate comparison factor ϑ, we need the maximized secret-key
rate R+

K and the maximized transmission rate R+, which is determined by

max
q∈Q

R(a, q) with

R(a, q) ··=
K∑

k=1

log2

(
1 +

akqk

σ2

)
.
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4 Secret-Key Rate Optimization

The optimal transmit strategy for R+ is standard waterfilling, see (Telatar, 1995), which
clearly yields another power allocation vector than 〈4.26〉.
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Figure 4.4: The maximized secret-key rate and the corresponding power allocation.

〈4.31〉 Illustration (High- and Low-SNR behavior). Figure 4.4 illustrates the re-
sults we obtained for the secret-key rate maximization in the multi-carrier scenario. Con-
tinuing the example in 〈2.34〉, we choose again K = 10 carriers, P = 1 for the sum power
constraint over these carriers, and the channel gains given in the table below the illustra-
tion. In contrast to the secrecy rate maximization in 〈2.34〉, Alice can use all channels for
the transmission to Bob independently of the relation of the gains. In (a), the maximized
secret-key rate R+

K is shown as function of the SNR with its low-SNR approximation
according to 〈4.29〉 and its high-SNR limit according to 〈4.28〉. For comparison, the max-
imized secrecy rate R+

S , which has already been shown in Figure 2.5, is also added. In
(b), we choose a stacked plot to show the corresponding optimal power allocation over
the SNR range. For low SNR, Alice allocates the complete power P to carrier 4, which
is the carrier with the largest gain for the channel to Bob. The gain of the channel to
Eve is not relevant in this case. This corresponds to the result of the low-SNR analysis
in 〈4.29〉. With increasing SNR, Alice activates more and more carriers, where the order
only depends on the gains of the channel to Bob. For high SNR, she finally uses all
carriers. This high-SNR behavior has already been discussed in 〈4.28〉.

〈4.32〉 Illustration (Comparison of Secrecy and Secret-Key Rates). The exam-
ple in 〈2.37〉 is continued in the following. Figure 4.5 compares the maximized secrecy
and secret-key rates for different numbers of carriers with independently generated gains.

108



4.3 Multi-Antenna Scenario
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Figure 4.5: Comparison of the maximized secrecy rate R+

S , the maximized secret-key rate R+

K ,
and the combined rate R+

T .

For the case with K = 10 carriers, which is illustrated in (a), we observe a relatively
large gap between the maximized secret-key rate R+

K and the maximized secrecy rate
R+

S over nearly the complete SNR range. Thus, Alice can mostly benefit from choosing
the key generation approach, which yields the rate R+

T in average, instead of directly
transmitting the information with the maximized secrecy rate R+

S . With an increasing
number of carriers, the relative differences between the individual rates shrink, which
supports the approach of directly transmitting and ensuring the information at the same
time. For the illustration in (b), K = 100 carriers were used. For low SNR, the maximized
secrecy rate R+

S is greater than the combined rate R+
T for the key generation approach,

although the differences are relatively small. Only if the SNR exceeds approximately
ρ = 12 dB, we can observe that the key generation approach becomes more and more
superior to the direct transmission with rate R+

S . For high SNR, we know from the
discussion in 〈4.17〉 that the combined rate R+

T converges to the maximized secret-key
rate R+

K , which is always greater than the maximized secrecy rate R+
S , see 〈4.27〉.

4.3 Multi-Antenna Scenario

In this section, we extend the basic model from Section 4.1 to a multi-antenna scenario,
where the two legitimated users, Alice and Bob, can use multiple transmit / receive an-
tennas for their key agreement communication. Their common key should be kept secret
from the eavesdropper Eve, who is also equipped with multiple antennas. Similar to
Section 2.3, we restrict ourselves to the introduction of the system model and the corre-
sponding secret-key rate expression, and the discussion of the properties of this function,
which provides the basis for the worst-case analysis in the next chapter.
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4 Secret-Key Rate Optimization

〈4.33〉 System Model (Extension to Multi-Antenna Scenario). For the key agree-
ment in a multi-antenna scenario, we use the channel-type model from 〈1.11〉 together
with the multi-antenna wiretap channel that was presented in 〈2.40〉. Consequently, we
have a system, where Alice has L antennas to transmit her information. Bob and Eve
have M and N receive antennas, respectively.

〈4.34〉 Secret-Key Rate. For this model, the secret-key rate RK , which is interpreted
as a function of the channel matrices H and G and the transmit covariance matrix Q
with Q � 0, can be evaluated according to 〈1.13〉, which yields

RK(H, G, Q) = log2 det
(
IL + ρ (HHH + GHG) Q

)
− log2 det

(
IL + ρ GHG Q

)
.

A detailed derivation of a comparable secret-key rate expression was done by Wong et
al. (2009). The authors evaluated the mutual information and the resulting differential
entropy expressions in the context of fast-fading MIMO wiretap channels.

With the Gramian matrix notation in 〈2.42〉, we introduce an equivalent expression for
the secret-key rate RK , which is useful for the formulation of optimization problems and
the derivation of their properties.

〈4.35〉 Secret-Key Rate (Equivalent Notation). The secret-key rate RK can be writ-
ten as a function of the Gramian matrices A and B of the channel matrices H and G
and the transmit covariance matrix Q. We write R⋆

K instead of RK if we refer to the
secret-key rate in Gramian notation:

R⋆
K(A, B, Q) = log2 det (IL + ρ (A + B) Q) − log2 det (IL + ρ B Q)

= log2 det
(

IL + ρ Q
1
2 (A + B) Q

1
2

)
− log2 det

(
IL + ρ Q

1
2 B Q

1
2

)

= log2 det
(

IL + ρ (A + B)
1
2 Q (A + B)

1
2

)
− log2 det

(
IL + ρ B

1
2 Q B

1
2

)
.

In order to formulate the convexity properties of the secret-key rate in 〈4.35〉 with respect
to its variables, we can use the properties that were presented for the secrecy rate in 〈2.44〉
together with some additional statements from the literature.

〈4.36〉 Properties (Convexity). The secret-key rate R⋆
K in 〈4.35〉 is

a) a concave function of A and
b) a convex function of B.

Similar to the derivation in 〈2.44〉, we can argue that the first property holds since the
log2 det function is concave for positive-semidefinite matrices. Thus, R⋆

K is concave in
(IL +ρ Q

1
2 (A+B) Q

1
2 ) � 0, which in turn is a linear function of the matrix A. The second

property follows from (Diggavi and Cover, 2001, Lemma II.3). With (ρ Q
1
2 A Q

1
2 ) � 0, we

can conclude from this lemma that R⋆
K is convex in (IL + ρ Q

1
2 B Q

1
2 ) � 0, which in turn

is a linear function of the matrix B.
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4.3 Multi-Antenna Scenario

Moreover, the secret-key rate R⋆
K is

c) a concave function of Q if the relation between the matrices (A + B)
1
2 and B

1
2 can

be expressed as T (A + B)
1
2 = B

1
2 with T ∈ CL×L and IL − T HT � 0, where it is

required that (T HT )−1 exists in order to apply the proof from (Liang et al., 2009,
Lemma C.1). The conditions above are clearly fulfilled if the matrices A and B have
full rank10, which implies that Bob and Eve have at least as many antennas as Alice,
i.e., M, N ≥ L.

10If we consider the concavity of the function R⋆
K

with respect to Q in the context of a maximization
problem over all Q in a given set, we possibly can find other constraints, which are not as strict as
the conditions above, that ensure the concavity of the secret-key rate R⋆

K
with respect to all Q in this

certain set.
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5 Worst-Case Studies for Secret-Key Rate Optimization

For the secret-key rate discussion in the previous chapter, we assumed that the transmitter
Alice has perfect information about the channel to the eavesdropper Eve. In this chapter,
we drop this assumption and introduce again a kind of partial information about the
eavesdropper channel, which is available to the transmitter. It is only known that the
coefficients of the eavesdropper channel are subject to a restriction, which allows us to
model all possible eavesdropper channels by an infinite set reflecting this constraint. We
focus again on the multi-antenna scenario, which can be used as a basis for the derivation
of special cases representing the other scenarios we discussed before. First, we introduce
the system model and the corresponding optimization problems. We then characterize
the worst-case secret-key rate for each given transmit strategy. Afterwards, we derive and
discuss upper and lower bounds for the maximization of this worst-case secret-key rate
under a sum power constraint over all antennas at the transmitter.

〈5.1〉 System Model. We adopt the system model of the MIMO scenario, which was
specified in 〈4.33〉, which is a combination of the fundamental channel-type model for
key generation according to 〈1.11〉 and the multi-antenna wiretap channel from 〈2.40〉.
Similar to the changes we made in 〈3.1〉, we specify a constraint for the channel G to Eve
in order to model Alice’s uncertainty about the real channel state of the eavesdropper
channel. We formulate this constraint using the Frobenius norm of the channel G:

‖G‖2
F = tr(GHG) ≤ χ with χ ≥ 0.

As before, we still assume that Alice has perfect knowledge about the channel H to Bob.
For the following worst-case discussion, we allow Eve to have more antennas than Alice,
i.e., we assume N ≥ L.

For known channel matrices H and G, the secret-key rate RK was given in 〈4.34〉. With
this function, we formulate two optimization problems for the system model in 〈5.1〉. The
first problem is the identification of the worst-case secret-key rate for a given transmit
covariance matrix, which corresponds to a minimization over all possible eavesdropper
channel matrices. The second problem is the maximization of this worst-case secret-key
rate over all transmit covariance matrices that fulfill the transmit power constraint. We
formulate both problems with the variables from the system model and the corresponding
Gramian notation, which is more suitable for the following analysis.

〈5.2〉 Problem Formulation (Worst-Case Secret-Key Rate). For each given chan-
nel matrix H and each given transmit strategy, which is specified by the transmit covari-
ance matrix Q, the corresponding worst-case secret-key rate RW is the minimal secret-key
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5 Worst-Case Studies for Secret-Key Rate Optimization

rate that can be achieved if the minimization is carried out over all possible matrices for
the channel from the transmitter to the eavesdropper, i.e.,

RW(H, Q) ··= min
G∈G

RK(H, G, Q),

where

G ··=
{

G ∈ CN×L
∣∣ tr(GHG) ≤ χ

}

is the set of all possible matrices for the channel from the transmitter to the eavesdropper,
which we have already defined in 〈3.2〉. With the Gramian matrix notation defined in
〈2.42〉 and the corresponding secret-key rate expression in 〈4.35〉, we can equivalently
formulate the worst-case secret-key rate problem as

R⋆
W(A, Q) ··= min

B∈B

R⋆
K(A, B, Q),

where R⋆
W is the worst-case secret-key rate adapted to the Gramian notation of the

channel matrices and

B ··=
{

B ∈ CL×L
∣∣B � 0 and tr(B) ≤ χ

}

is the set that corresponds to the set G , see 〈3.3〉.

In order to characterize the properties of this optimization problem, we can use the
properties of the MIMO secret-key rate that we discussed in the previous chapter.

〈5.3〉 Properties (Convexity of the Problem). According to 〈3.4〉, the constraint set
B is convex. From 〈4.36〉, we know that R⋆

K is a convex function of B on the set B.
Thus, we have a convex problem.

The transmitter aims to maximize the worst-case secret-key rate under a sum power
constraint over all antennas, which results in a max-min optimization problem.

〈5.4〉 Problem Formulation (Worst-Case Secret-Key Rate Maximization). For
a given channel matrix H, the worst-case secret-key rate RW in 〈5.2〉, which was deter-
mined over the known set G , should be maximized under a sum power constraint over all
antennas at the transmitter, i.e.,

max
Q∈Q

RW(H, Q) = max
Q∈Q

min
G∈G

RK(H, G, Q),

where

Q ··=
{

Q ∈ CL×L
∣∣Q � 0 and tr(Q) ≤ P

}
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is the set of all feasible transmit covariance matrices, which we have already defined in
〈3.5〉 for the maximization of the worst-case secrecy rate of the multi-antenna scenario.
Again, we can use the Gramian matrix notation defined in 〈2.42〉 and the corresponding
secret-key rate expression in 〈4.35〉 to reformulate the optimization problem:

max
Q∈Q

R⋆
W(A, Q) = max

Q∈Q

min
B∈B

R⋆
K(A, B, Q).

We can reduce the optimization problem in 〈5.4〉 to an equivalent optimization problem
over the eigenvalues of Q and B.

〈5.5〉 Problem Formulation (Equivalent Problem). With the eigenvalue notation
we introduced in 〈3.9〉, we can formulate the following. For a given vector a, the worst-
case secret-key rate should be maximized under a sum power constraint over all antennas
at the transmitter, i.e.,

max
q∈Q

R̃W(a, q) = max
q∈Q

min
b∈B

R̃K(a, b, q).

The vectors a and b contain the eigenvalues of the Gramian matrices A and B, which are
derived from the channel matrices H and G, respectively. The vector q is the eigenvalue
vector for the transmit covariance matrix Q. The function R̃K with

R̃K(a, b, q) ··=
L∑

ℓ=1

(log2 (1 + ρ (aℓ + bℓ)qℓ) − log2 (1 + ρ bℓqℓ))

is a secret-key rate expression that only depends on the eigenvalues of the matrices A, B,
and Q. The function R̃W is the worst-case secrecy rate for this case, which is defined as

R̃W(a, q) ··= min
b∈B

R̃K(a, b, q).

As in 〈3.12〉, the constraint sets for this problem are defined as

Q ··=
{

q = (qℓ)
L
ℓ=1 ∈ R1×L

∣∣∣∣∣ qℓ ≥ 0 and
L∑

ℓ=1

qℓ ≤ P

}
and

B ··=
{

b = (bℓ)
L
ℓ=1 ∈ R1×L

∣∣∣∣∣ bℓ ≥ 0 and
L∑

ℓ=1

bℓ ≤ χ

}
.

The equivalence of this optimization problem with the problem formulated in 〈5.4〉 is
proven by a detailed and commented reformulation process, which is provided in 〈B.4〉 in
the appendix.

The secret-key rate R̃K of the eigenvalue problem corresponds to the secret-key rate of the
multi-carrier scenario that is given in 〈4.19〉. Thus, we can directly apply its properties
to the problem above.
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〈5.6〉 Properties (Monotonicity). According to 〈4.21〉 and for all ℓ ∈ {1, 2, . . . , L},
the secret-key rate R̃K in 〈5.5〉 is

a) monotonically increasing in aℓ,
b) monotonically decreasing in bℓ, and
c) monotonically increasing in qℓ.

〈5.7〉 Properties (Convexity). According to 〈4.23〉, the secret-key rate R̃K in 〈5.5〉 is

a) a concave function of a,
b) a convex function of b, and
c) a concave function of q.

〈5.8〉 Properties (Saddle-Point Problem). In 〈3.18〉, we have already stated that the
sets Q and B are convex. We know that the secret-key rate R̃K is a convex function of b
on the set B. Thus, we obtain that the inner minimization problem in 〈5.5〉 is a convex
problem. Additionally, the max-min problem in 〈5.5〉 is a saddle-point problem, since R̃K

is a concave function of q ∈ Q for all b ∈ B and a convex function of b ∈ B for all q ∈ Q.
Consequently, we can write according to (Sion, 1958):

max
q∈Q

min
b∈B

R̃K(a, b, q) = min
b∈B

max
q∈Q

R̃K(a, b, q).

〈5.9〉 Optimal Strategy (Outer Problem). For the maximization of the worst-case
secret-key rate, the vector a, which specifies the channel from Alice to Bob, determines
which components of the optimal power allocation vector q can be positive. The trans-
mitter is only interested to allocate positive value to those components of q where the
corresponding component of a is non-zero, since other terms do not contribute to a posi-
tive secret-key rate. This means that the transmitter has to take the number of receive
antennas at the intended receiver into account. So far, the characterization of the optimal
power allocation vector q does not differ from the characterization of the optimal strategy
for the maximization of the worst-case secrecy rate in 〈3.20〉 and 〈3.45〉. But in contrast
to the maximization of the worst-case secrecy rate, we do not have a minimum number of
non-zero components in the optimal power allocation vector q since it is not possible to
null the achievable secret-key rate with a certain vector b, see 〈4.20〉. Moreover, we know
from 〈5.6〉 that the optimal power allocation vector q always uses full power P . For the
worst-case secrecy rate, we have already obtained such a characterization for the adapted
eigenvalue problem in 〈3.40〉, but not for the original problem in 〈3.12〉.

〈5.10〉 Optimal Strategy (Solution of Inner Problem). For the worst-case prob-
lem, the chosen power allocation vector q determines which components of the worst-case
vector b can be positive. We can only have positive components in the worst-case vector
b at positions where q is positive, since each zero in the power allocation vector nulls
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the corresponding summand of the secret-key rate R̃K . For the components of b that
correspond to a non-zero component of q, the optimal strategy for the inner problem can
be obtained by evaluating the Karush-Kuhn-Tucker conditions, which are necessary and
sufficient for this problem. This yields

bℓ(ν) =

[
−

(
1

ρqℓ

+
aℓ

2

)
+

√
a2

ℓ

4
+ aℓν

]+

for all ℓ ∈ {1, 2, . . . , L} with qℓ > 0 . Due to the monotonicity in all components of b, the
waterfilling parameter ν with ν > 0 has to be chosen such that the sum constraint of the
set B is fulfilled with equality, i.e.,

∑L
ℓ=1 bℓ(ν) = χ. Thus, we obtain a characterization

of the worst-case vector b for the secret-key rate problem that is basically the same as for
the secrecy rate problem. The only but essential difference is the expression we calculated
for the waterfilling solution in both cases.

Regarding the number of Eve’s antennas, we can draw the same conclusion as in 〈3.21〉 for
the secrecy rate problem. If Eve has found the worst-case channel, she does not need more
antennas for eavesdropping than Alice uses to transmit the message to Bob. We know
from 〈5.9〉 that Alice adapts her transmit strategy to the number of antennas that Bob
is equipped with. Hence, we can conclude again that it is sufficient if N = min{L, M}
holds for the number of Eve’s antennas.

〈5.11〉 Optimal Strategy (Vector Ordering). For the secrecy rate problem, we de-
rived a result on the component ordering of the optimal vectors q and b in 〈3.23〉, which
was based on the component ordering of the given vector a. But it is not possible to give a
comparable characterization of the optimal vector component ordering for the secret-key
problem in 〈5.5〉. Let us consider the equivalent min-max problem in 〈5.8〉 and study the
behavior of the optimal vector q for fixed channels, which are specified by the vectors
a and b. We can apply the results that we obtained for the high- and low-SNR char-
acterization of the related multi-carrier scenario in 〈4.28〉 and 〈4.29〉. For low SNR, the
optimal power allocation vector q mainly supports those components that correspond to
large values of the vector a. For high SNR, the transmitter prefers components that are
related to a large quotient of the values from a and b. Obviously, the ordering of the
optimal vector q is not necessarily the same for the complete SNR range.

In addition to the sets defined in 〈3.28〉, we introduce a further constraint set, which
allows us to derive bounds on the outer problem in the following.

〈5.12〉 Notation. With the vector ι ··= (ιℓ)L
ℓ=1 and ιℓ ≥ 0 for all ℓ ∈ {1, 2, . . . , L}, we

define

Qι ··=
{

q = (qℓ)
L
ℓ=1 ∈ R1×L

∣∣ 0 ≤ qℓ ≤ ιℓ

}
.
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5 Worst-Case Studies for Secret-Key Rate Optimization

〈5.13〉 Bounds on Outer Problem. For the derivation of bounds on the maximized
worst-case secret-key rate in 〈5.5〉, we can use the approach that was presented in 〈3.27〉
for the maximized worst-case secrecy rate. We can adapt the constraint sets by adding
further constraints or relaxing the already given constraints in order to obtain upper and
lower bounds on the problem. Note that we are allowed to interchange the minimization
and the maximization, since we have a saddle-point problem.

〈5.14〉 Upper Bounds. Upper bounds can be calculated by adding further constraints
to the set B, which instead yields a set B− for the inner minimization, or by relaxing
the constraints of the set Q, which provides a set Q+ for the outer maximization. As in
〈3.29〉, we can use each set B− that is defined as B− ··= Bβ with a fixed vector β ∈ B for
the derivation of an upper bound on the problem in 〈5.5〉. Hence, the worst-case vector
b becomes independent from the chosen transmit strategy q. Due to the monotonicity
of R̃K in each component of the vector b, the worst-case secret-key rate is then given
by R̃K(a, β, q) for all q ∈ Q. For the outer maximization of the upper bound, we can
apply the waterfilling solution in 〈4.26〉, which was derived for the related multi-carrier
scenario, where we had fixed channel coefficients. A tight upper bound for the high-SNR
regime can be obtained if all components of β are chosen to be positive, where the values
are calculated according to the waterfilling solution in 〈5.10〉 with ρ → ∞. Alternatively,
an upper bound on the maximized worst-case secret-key rate can be obtained considering
the equivalent min-max problem in 〈5.8〉. The constraints for the maximization can be
relaxed by using a set Q+ that is defined as Q+ ··= Qι with ι = (P )L

ℓ=1. Then, the
optimal transmit strategy q is independent from the previously chosen vector b. Due
to the monotonicity of R̃K in each component of the vector q, we obtain a maximized
secret-key rate R̃K(a, b, ι) for all b ∈ B, which can be minimized afterwards by applying
the waterfilling solution in 〈5.10〉. But we cannot expect that this approach yields a tight
upper bound since the sum power constraint was dramatically relaxed.

〈5.15〉 Lower Bounds. Lower bounds can be calculated by adding further constraints
to the set Q, which yields a set Q− for the outer maximization, or by relaxing the
constraints of the set B, which provides a set B+ for the inner minimization. We can use
each set Q− that is defined as Q− ··= Qι with a fixed vector ι ∈ Q for the derivation of
a lower bound. As in 〈5.14〉, we consider the equivalent min-max problem in 〈5.8〉. With
the same argumentation as above, the maximized secret-key rate is R̃K(a, b, ι) for each
ι ∈ Q, which can be minimized afterwards by applying the corresponding waterfilling
solution in 〈5.10〉. Especially interesting are bounds that are tight for a certain SNR
regime since tight upper bounds deliver not only achievable rates, but they provide also
a power allocation strategy that is close to optimal. We will see in 〈5.17〉 that a uniform
allocation of the complete power over all components of ι that correspond to a non-zero
component of a yields a tight lower bound for high SNR. For low SNR, a tight lower bound
is obtained by allocating the complete power to that component of ι that corresponds
to the largest value in a, see 〈5.18〉. Alternatively, a lower bound on the maximized
worst-case secret-key rate can be calculated after relaxing the constraint set B for the
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inner minimization. Instead, we use B+ that is defined as B+ ··= Bβ with β = (χ)L
ℓ=1. As

in 〈5.14〉, the worst-case secret-key rate, which is then R̃K(a, β, q) for all q ∈ Q, can be
maximized by applying the waterfilling solution in 〈4.26〉. Generally, this approach will
not give a tight lower bound since the sum constraint of the set B was relaxed too much.

〈5.16〉 Relation to Secrecy Rates. If we want to compare the maximized worst-case
secrecy rates from 〈3.12〉 and 〈3.40〉 with the maximized worst-case secret-key rate from
〈5.5〉, we have to consider the corresponding rate expressions first. For a given vector a,
which characterizes the channel from Alice to Bob, each vector b ∈ B for the channel to
Eve, and each power allocation vector q ∈ Q, we have the relation

R̃K(a, b, q) ≥ R̄S(a, b, q) ≥ R̃S(a, b, q).

If we consider the minimization of these rates over all b ∈ B, we have to take into
account that the worst-case strategies for the problems differ from each other. The relation
between the rates also holds for each worst-case vector that results from any given power
allocation vector q ∈ Q. Although this worst-case vector minimizes the secret-key rate
R̃K for the given q ∈ Q, it is generally not the worst-case vector for minimizing the secrecy
rate R̄S , which in turn provides not necessarily the optimal strategy for minimizing the
secrecy rate R̃S . This yields that the relation above can also be applied if we consider
the worst-case rates for each given q ∈ Q, i.e.,

min
b∈B

R̃K(a, b, q) ≥ min
b∈B

R̄S(a, b, q) ≥ min
b∈B

R̃S(a, b, q).

With an analogous argumentation, we can compare the rates that result from the maxi-
mization of these worst-case rates over all q ∈ Q. Consequently, we can write

max
q∈Q

min
b∈B

R̃K(a, b, q) ≥ max
q∈Q

min
b∈B

R̄S(a, b, q) ≥ max
q∈Q

min
b∈B

R̃S(a, b, q)

for any given vector a.

In order to characterize the optimal strategies for high and low SNR, we take the same
approach as before and interpret R̃K in 〈5.5〉 as a function of the inverse noise variance
ρ for a fixed value of P .

〈5.17〉 High-SNR Performance. For the high-SNR regime, we calculate the limit for
the secret-key rate R̃K , which is

lim
ρ→∞

R̃K(a, b, q) = lim
ρ→∞

L∑

ℓ=1

log2

(
1 + ρ (aℓ + bℓ)qℓ

1 + ρ bℓqℓ

)
=

∑

ℓ∈L

log2

(
1 +

aℓ

bℓ

)
,

where

L ··= {ℓ ∈ {1, 2, . . . , L} | qℓ > 0}
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5 Worst-Case Studies for Secret-Key Rate Optimization

is the set of vector components that is used for the transmission to Bob, which we have
already defined in 〈3.31〉. Note that this limit corresponds to the high-SNR limit in 〈4.28〉,
which we obtained for the related multi-carrier problem. In principle, we can state the
same as for the high-SNR limit of the maximized worst-case secrecy rate in 〈3.31〉. In
order to ensure that this limit exists, the worst-case vector b has to be chosen such that
it has positive values at all positions that correspond to a positive value in the power
allocation vector q. Optimally, it has only positive values at the same positions as q,
i.e., bℓ > 0 holds for all ℓ ∈ L, whereas bℓ = 0 holds for all ℓ /∈ L. The difference between
both problems are the values that are optimally assigned to those non-zero components.
For the secret-key rate problem, the optimal strategy for the worst-case vector b in 〈5.10〉
converges to11

bℓ(ν) = −aℓ

2
+

√
a2

ℓ

4
+ aℓν =

aℓ

2

(√
1 +

4ν

aℓ

− 1

)

for all ℓ ∈ L, which is always positive for ν > 0. Thus, it is always possible to obtain
positive values for all components in b ∈ L independently of the given a. Consequently,
we know that the limit above always exists. We see that the maximum of this worst-case
high-SNR limit is not directly influenced by the values of the power allocation vector q. It
is only relevant which components are chosen for the transmission. Thus, the remaining
problem can be formulated as

max
L

∑

ℓ∈L

log2


1 +

2√
1 + 4ν

aℓ
− 1


 .

We observe that each rate summand above is positive if we assume ν > 0. From this,
we can conclude that the optimal strategy that maximizes the worst-case secret-key rate
limit in the high-SNR regime is to allocate non-zero power to all components of q that
correspond to positive values in a. For instance, this could be a uniform allocation of the
power P over these components. This is in contrast to the maximization of the worst-case
secrecy rate limit for high SNR in 〈3.32〉, where it was not necessarily optimal to use all
components of q. Note that we obtained a similar result in 〈3.49〉 for the maximization
of the high-SNR limit of the adapted worst-case secrecy rate problem.

〈5.18〉 Low-SNR Performance. From the results of the related multi-carrier scenario
in 〈4.29〉, we can see that the limit of the secret-key rate R̃K in the low-SNR regime is

lim
ρ→0

R̃K(a, b, q) = 0.

11For the formulation of the right-hand side, we have to assume that aℓ > 0 holds for all ℓ ∈ L, which
is guaranteed if we consider the optimal power allocation q according to 〈5.9〉, since the transmitter
is only interested in allocating power to components of q that can contribute to a positive secret-key
rate.
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The linear Taylor series representation of R̃K at the point ρ = 0 is

T
R̃K

(ρ; 0) =
1

ln 2

∑

ℓ∈L

aℓ qℓ ρ

with L as defined in 〈5.17〉. We observe that the increase of the secret-key rate in the
low-SNR regime is independent from the vector b, which characterizes the eavesdropper
channel. It is only influenced by the vector a, which characterizes the main channel to the
intended receiver, and the power allocation vector q, which is chosen by the transmitter.
Thus, the minimization of the linear Taylor series coefficient over all feasible channels
to the eavesdropper is not relevant. We only have to consider the maximization of this
expression over all power allocation vectors q ∈ Q. Consequently, we obtain the same
characterization of the optimal strategy as in 〈4.29〉 for the related multi-carrier scenario.
The transmitter assigns full power to that component of q that corresponds to the largest
value in the vector a. This strategy completely differs from the maximization of the
worst-case secrecy rate in the low-SNR regime, which was studied in 〈3.32〉 and 〈3.50〉,
where the transmitter generally intended to use more than one vector component.

〈5.19〉 Comparison of Secrecy and Secret-Key Rates. In order to establish a rel-
atively fair comparison between the approaches we discussed in the context of our worst-
case studies, we calculate again a rate R+

T , which does not only consider the achievable
secret-key rate, but also takes the subsequent data transmission into account, which is
necessary for this approach. As in 〈4.30〉, the combined rate is calculated as

R+
T

··= ϑ R+
K with

ϑ ··=
R+

R+ + R+
K

.

The rate comparison factor ϑ is determined by the maximized worst-case secret-key rate
R+

K and the maximized transmission rate R+. The latter is equivalent to the maximized
transmission rate R+ of the multi-carrier scenario, which was given in 〈4.30〉.

〈5.20〉 Illustration (Bounds). For the illustration of the results on the maximized
worst-case secret-key rate, we continue the example in 〈3.33〉, where we discussed the
results we obtained for the maximized worst-case secrecy rate. Hence, we consider a
scenario with L = M = N = 4 antennas for each user, where the channel between Alice
and Bob is characterized by a = (3.9, 1.5, 1.0, 0.6) and the transmit power constraint is
specified by P = 1. For the norm constraint on the channel from Alice to Eve, we assume
again χ = 2.

Figure 5.1 shows upper and lower bounds that were derived for the maximized worst-case
secret-key rate of this scenario. The area between the upper and lower bounds illustrates
the remaining uncertainty about the exact value of the maximized worst-case secret-key
rate, which is denoted by R+

K and included in the diagrams for comparison. Strictly

121



5 Worst-Case Studies for Secret-Key Rate Optimization

−20 −10 0 10 20 30
0

2

4

6

8

ρ in dB

se
c
re

t-
k
e
y

ra
te

s
in

b
it R

+

K

bounds

uncertainty

(a) β =
(

χ

4
,

χ

4
,

χ

4
,

χ

4

)
and β = (χ, χ, χ, χ)

−20 −10 0 10 20 30
0

2

4

6

8

ρ in dB

se
c
re

t-
k
e
y

ra
te

s
in

b
it R

+

K

bounds

uncertainty

(b) β = χ a
‖a‖1

and ι = P a
‖a‖1

−20 −10 0 10 20 30
0

5

10

ρ in dB

se
c
re

t-
k
e
y

ra
te

s
in

b
it R

+

K

bounds

uncertainty

(c) β = (χ, 0, 0, 0) and ι = (P, 0, 0, 0)
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Figure 5.1: Upper and lower bounds on the maximized worst-case secret-key rate R+

K and the
remaining uncertainty regions between the bounds.

speaking, it is an approximation, which was determined by an exhaustive search12 over
all possible power allocation vectors q using a step size of 0.010 for each component.

For (a), the upper and lower bound were derived by manipulating the inner minimization
according to 〈3.27〉. For the derivation of the upper bound, we can use each vector β ∈ B.
For the diagramm in (a), we choose β =

(
χ
4 , χ

4 , χ
4 , χ

4

)
, which yields a relatively good

upper bound for high SNR, although β is not the high-SNR worst-case vector according
to 〈5.17〉. The lower bound was parametrized by β = (χ, χ, χ, χ), which cannot provide a

12We have already used this approach for determining the maximized worst-case secrecy rates in Chap-
ter 3 and consequently applied it also to this problem. It is also possible to alternatively use a method
that was presented by Nedić and Ozdaglar (2009), which exploits the saddle-point property of the
problem. This method allows the computation of approximate saddle points with a finite number of
iterations and a constant step size.
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good lower bound in general since the sum constraint on the channel to Eve was relaxed
too much, see 〈5.18〉. But it is the strictest vector we can use if we try to derive a lower
bound by adapting the constraint for the inner minimization. Thus, we will further change
the constraint set for the outer maximization for the derivation of upper bounds, whereas
we maintain the approach of manipulating the inner minimization for the calculation of
lower bounds.

The illustration in (b) shows the bounds that result from scaled versions of the parameter
vector a. We observe that this results in an acceptable uncertainty over the complete SNR
range. Obviously, the chosen parameter vector β significantly differs from the worst-case
vector that was derived in 〈5.17〉. Consequently, the upper bound tends to a high-SNR
limit that is greater than the limit of the maximized worst-case secret-key rate, i.e., it
is not tight for high SNR. But we know from 〈5.17〉 that the given parameter vector
ι is a relatively good choice for the lower bound since a power allocation vector whose
components are all non-zero yields a tight lower bound for high SNR.

In (c), we exemplarily see the bounds that we obtain by concentrating the sum constraint
values P and χ on the first components of the corresponding vectors. Clearly, these
parameter vectors cannot be good for high SNR, but they provide tight bounds in the
low-SNR regime. According to 〈5.18〉, it is optimal there to allocate full power to that
component of q that corresponds to the largest value in a independently of the vector b.
The resulting worst-case vector is consequently given by assigning χ to the corresponding
component of b, see 〈5.10〉. Thus, we obtain the same parameter combination for the
upper and lower bound, resulting from the given vectors β = (χ, 0, 0, 0) and ι = (P, 0, 0, 0),
respectively.

The bounds that are derived by a uniform allocation over all four vector components
are shown in (d). Obviously, these parametrizations yield bounds that are very close
to optimal over the complete SNR range. Especially for high SNR, we know that it is
optimal for both strategy vectors to use non-zero values for all components.

The illustration in Figure 5.2 (a) shows the minimum upper and maximum lower bounds
we found by evaluating a certain number of upper and lower bounds for the example above
over the complete SNR range. In addition to the bounds from Figure 5.1, we also con-
sidered further bounds that were derived from uniform allocations over a varied number
of non-zero vector components as in Figure 3.5. We see that the remaining uncertainty
is relatively small, which provides us nearly the exact value of the maximized worst-case
secret-key rate over the complete SNR range. Furthermore, the power allocation vectors
that were used for the derivation of the lower bound provide a good approximation for
the optimal transmit strategy for the problem in 〈5.5〉. In Figure 5.2 (b), we illustrate
the minimum upper and maximum lower bounds for a slightly changed scenario, where
we used the same specification for the channel from Alice to Bob as before, but allowed
a significantly better eavesdropper channel by choosing χ = 5 for the channel constraint.
We observe the same behavior as before for χ = 2. By simply calculating some upper and
lower bounds, we obtain a relatively good approximation of the maximized worst-case
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Figure 5.2: Minimum upper and maximum lower bounds on the maximized worst-case secret-key
rate R+

K and the remaining uncertainty regions between the bounds.

secret-key rate over the complete SNR. Although there remains a small gap between
the bounds for high SNR, we obtain a good estimation of the optimized rate since we
know that a tight lower bound for this range was included in the calculation of these
final bounds. The absolute values of the remaining uncertainty between the bounds in
Figure 5.2 are shown in Figure 5.3. The peaks in the curves are located at positions where
we have intersections of the originally evaluated bounds. For high SNR, we see that the
remaining uncertainty tends to about 0.05 bit and 0.10 bit for the example with χ = 2
and χ = 5, respectively. In both cases, the largest values do not exceed 0.15 bit.

〈5.21〉 Illustration (High- and Low-SNR Behavior). Figure 5.4 illustrates the high-
and low-SNR behavior of the maximized worst-case secret-key rate R+

K of the problem in
〈5.5〉. The low-SNR approximation in (a) results from 〈5.18〉. Its value is only determined
by the largest component of the vector a, which characterizes the channel from Alice to
Bob, and the transmit power constraint P , but independent from the eavesdropper chan-
nel and its constraint. The optimal power allocation vector allocates full power to the
first vector component, which corresponds to the largest component of the vector a. The
worst-case vector that results from 〈5.10〉 for the secret-key rate is given by b = (χ, 0, 0, 0).
In (b), it can be observed that the maximized worst-case secret-key rate R+

K converges
to the limit that was calculated with a power allocation that uses all components of the
vector q. The corresponding worst-case vector for high SNR can be calculated according
to 〈5.17〉.

〈5.22〉 Illustration (Optimal Strategies). Figure 5.5 shows the values of the optimal
vectors and the resulting secret-key rate summands for selected SNR values, which allows
us to analyze the predicted low- and high-SNR behavior in detail. In (a) and (b), which
provide the optimal vectors for ρ = −20 dB and −10 dB, we see that the transmitter
concentrates the available power in the first component of q. From the discussion in
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Figure 5.3: Absolute values of the remaining uncertainty between the bounds in Figure 5.2.

〈5.18〉, it follows that this is the optimal power allocation vector for low SNR. The only
non-zero component of the resulting worst-case channel is the first vector component,
which takes the value χ. Note that this behavior does not change with a variation of
the constraint value χ for the eavesdropper channel, even if χ exceeds the largest value
in a. This is in contrast to both secrecy rate problems in Chapter 3, where the optimal
strategies for low SNR were influenced by this parameter.

With increasing SNR, Alice distributes the available power over more and more com-
ponents of the vector q. For high SNR, she finally uses all components of the power
allocation vector for the transmission to Bob. If we compare the results for ρ = 10 dB, 20
dB and 30 dB, which are shown in (d), (e), and (f), we see that the transmitter chooses
a uniform allocation of the available power over all four components of q. The resulting
worst-case vectors slightly differ from each other since the waterfilling result from 〈5.10〉
is not only influenced by the vectors a and q, but also from the inverse noise variance ρ.
We can observe that the worst-case vector b converges to the vector that is specified in
〈5.17〉 with growing SNR.

〈5.23〉 Illustration (Variation of Channel Constraint). We continue the example
above by analyzing the influence of the parameter χ, which constrains the quality of the
channel from Alice to Eve. Figure 5.6 shows that the maximized worst-case secret-key rate
R+

K is reduced by an increase of the parameter χ, which corresponds to a more “powerful”
eavesdropper channel. The diagram in (a) allows us to compare the maximized worst-case
secret-key rates with the achievable rate of a transmission without secrecy constraints,
which is represented by χ = 0. The illustration in (b) focuses on the comparison of the
maximized worst-case secret-key rates for various values of χ. In the low-SNR regime,
the differences between the curves are not significant since the low-SNR increase of all
rates is determined by the largest value of the vector a independently of the quality of
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Figure 5.4: The maximized worst-case secret-key rate R+

K with its low-SNR approximation and
its high-SNR limit.

the eavesdropper channel. This behavior is in contrast to the low-SNR performance we
observed for the maximized secrecy rate in Figure 3.11, where a growing channel con-
straint parameter clearly decreased the achievable rate also for low SNR. With increasing
SNR, the maximized worst-case secret-key rates converge to their individual high-SNR
limits according to 〈5.17〉, which are obviously influenced by the value of the parameter
χ. In (b), we can observe that we obtain positive values for the maximized worst-case
secret-key rates even if the eavesdropper channel is better than the main channel to the
intended receiver. We have already discussed this behavior for the basic scenario with
fixed channel gains in 〈4.16〉.

〈5.24〉 Illustration (Comparison of Secrecy and Secret-Key Rates). We proceed
with the example above in order to compare the key generation approach with the direct
secret transmission of the data as discussed in Chapter 3. Figure 5.7 shows a compari-
son of the maximized worst-case secrecy rate R̄+

S of the adapted problem in 〈3.40〉, the
maximized secret-key rate R+

K of the problem in 〈5.5〉, and the combined rate R+
T , which

is calculated according to 〈5.19〉 in order to allow a relatively fair comparison of R̄+
S and

R+
K by additionally considering the subsequent data transmission with rate R+ in the

key generation approach. These rates are illustrated in (a) and (b) for χ = 2 and χ = 5,
respectively. In principle, we can observe the same behavior of the rates as in 〈4.17〉,
where we discussed the rate comparison for the basic scenario with fixed channel gains.
If the eavesdropper channel is assumed to be comparably bad, the gap between the max-
imized worst-case secrecy rate R̄+

S and the maximized secret-key rate R+
K is comparably

small, although R+
K is always greater than R̄+

S , see 〈5.16〉. Thus, the additional effort
for transmitting the encrypted information after the key generation significantly affects
the combined rate that is achievable for the key generation approach. Consequently, we
observe in (a) for χ = 2 that the direct transmission of the data with rate R̄+

S is superior
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(b) ρ = −10 dB
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(c) ρ = 0 dB
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(d) ρ = 10 dB
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(e) ρ = 20 dB
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(f) ρ = 30 dB

Figure 5.5: Optimal vectors corresponding to the maximized worst-case secret-key rate R+

K for
selected SNR values.
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Figure 5.6: The maximized worst-case secret-key rate R+

K for various values of the constraint
parameter χ for the channel from Alice to Eve.

to the key generation approach for low and medium SNR. If ρ exceeds about 22 dB, the
advantage of the key generation approach becomes more and more evident. For high SNR,
the combined rate R+

T finally converges to the maximized secret-key rate R+
K . With a

better eavesdropper channel, which is associated with larger gaps between the maximized
worst-case rates R̄+

S and R+
K , Alice can more benefit from the key generation approach,

although the achievable rates are generally decreased. In (b), we observe for χ = 5 that
the key generation approach is completely superior to the direct transmission with rate
R̄+

S in the simulated SNR range from ρ = −20 dB to 30 dB. If the constraint on the
eavesdropper channel is further relaxed, such that Eve is allowed to have a better channel
than Bob, only the key generation approach is suitable for a secret transmission to Bob
since the maximized worst-case secrecy rates are zero in this case.

〈5.25〉 Special Case (Multiple-Input Single-Output Scenario). We continue the
MISO scenario in 〈3.56〉, where Bob has only one antenna, whereas we do not formu-
late any constraint on the numbers of antennas that Alice and Eve are equipped with.
As described in 〈3.56〉, the channel to Bob reduces to a (row) vector h, whose Gramian
matrix A = hHh consequently has rank one. The only non-zero eigenvalue of this matrix
is a1 > 0. Thus, only the first components of the optimal power allocation vector q and
the worst-case vector b are non-zero, and we clearly obtain q1 = P and b1 = χ. We
observe that the optimal strategies for the maximized worst-case secrecy and secret-key
rate are identical. Moreover, we see that the secret-key rate expression we obtain with
these strategies matches the secret-key rate of the basic scenario in Section 4.1, which
allows us to directly transfer all results from that section to this MISO scenario. For the
comparison between the maximized worst-case secrecy and secret-key rates, we can apply
the conclusions from Figure 4.3, i.e., the influence of the eavesdropper channel constraint
on the preferred communication strategy directly follows from the discussion in 〈4.17〉.
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Figure 5.7: Comparison of the maximized secrecy rate R̄+

S , the maximized secret-key rate R+

K ,
and the combined rate R+

T .

〈5.26〉 Application to Multi-Carrier Scenario. The results from this chapter can
easily be transferred to the related multi-carrier scenario, which was described in 〈3.57〉
in the context of maximizing the worst-case secrecy rate. The secret-key rate expressions
in 〈4.19〉 and 〈5.5〉 are identical, which allows us to apply all the results from this chapter
to the related multi-carrier scenario without further restrictions.

〈5.27〉 Extension to Multiple Eavesdroppers. Although all results in this chapter
were derived for a system model with only one eavesdropper, they can be applied to a
scenario with multiple non-cooperating eavesdroppers as well. A strategy that ensures
the secrecy of the transmitted data against the worst-case eavesdropper simultaneously
guarantees the secrecy of the information against all other eavesdroppers whose channels
can be characterized by the same constraint. If we want to additionally consider mul-
tiple cooperating eavesdroppers, we have to adapt the channel constraint according to
〈3.58〉. Then, all results of this chapter can also be applied to a scenario with cooperating
eavesdroppers.

〈5.28〉 Extension to other Constraint Sets. In the context of the maximized worst-
case secrecy rates, we have already discussed in 〈3.59〉 that the reformulation of the
original matrix problem to an equivalent problem over the eigenvalues of the involved
matrices is also feasible for other constraint sets that can be described by unitarily in-
variant norms. The comments in 〈3.59〉 can analogously be applied to the problems of
this chapter.

〈5.29〉 Trade-off between Secrecy and Maximum Rates. In the main parts of this
thesis, we have discussed the optimization of worst-case problems. An essential assump-
tion of this approach is that a potential and passive eavesdropper can observe the worst-
case channel for each chosen transmit strategy, i.e., the eavesdropper is able to adapt its

129



5 Worst-Case Studies for Secret-Key Rate Optimization

behavior to that of the transmitter and can always find the weakest point of the setting.
This point of view is very pessimistic, especially regarding the maximum achievable rates,
but the advantage of this approach is that it yields rates that guarantee the secrecy of
the private messages, not only against the considered eavesdropper with the worst-case
channel, but also against all other eavesdroppers whose channels are subject to the given
constraint. From a practical point of view, it has the disadvantage that the achievable
rates are possibly very low, especially in comparison with the maximum rates that are
achievable without secrecy constraints, see for instance Figure 5.7. This gap between
the rates with and without secrecy constraints can be decreased if it is acceptable for
the system designers and users to reduce the level of secrecy that was guaranteed so far.
Although higher rates can only be achieved by partly giving up our previously formulated
secrecy demands, it is difficult to quantify the resulting loss of secrecy.

We will illustrate this idea for the secret-key approach that we discussed in this chap-
ter. In 〈1.14〉, we introduced an average rate expression as performance measure for the
key generation approach, which allowed us a relatively fair comparison with the direct-
transmission approach that we presented in Chapter 3. We proposed to calculate an
average rate over both phases of the key generation approach, which are the key gen-
eration itself and the data transmission phase afterwards. A fair comparison requires
that we do not only focus on the maximum achievable rate for the key generation, but
also incorporate the effort that is necessary for the subsequent data transmission. In the
second phase, we can operate at the maximum rate that is achievable without secrecy
constraints since the secrecy of the private message is ensured by encryption with the
previously generated key. In 〈1.14〉, we stated that it is necessary that the number of key
bits is not less than the number of data bits in the private message, which is a condition
for perfect secrecy according to Shannon (1949). This condition was perfectly consistent
with the pessimistic view of our worst-case approach. However, we can relax this con-
straint if we intend to achieve higher rates than before by simultaneously reducing our
secrecy requirements. In this case, a multitude of modifications of the original approach is
possible. The probably simplest procedure is to use an already generated key repeatedly
for several transmissions or a certain amount of time. A little bit more sophisticated is
the idea to calculate a new key from a previously used key for a further transmission.
Although there are no restrictions for this further processing in principle, we suggest to
use methods that belong to the field of privacy amplification in order to not decrease the
previously obtained level of secrecy too much.

〈5.30〉 Publication Note. Some ideas and results discussed in this chapter have already
been presented at the Physical-Layer Security Workshop of the 54th IEEE Global Com-
munications Conference (GLOBECOM) in 2011 and published in (Wolf and Jorswieck,
2011). In this paper, we applied the worst-case scenario with a deterministic model for
the uncertainty about the eavesdropper channel and the approach of (Wolf and Jorswieck,
2010a) to the secret-key generation problem in the multi-antenna scenario. This publica-
tion mainly contained the idea of reformulating the original matrix problem of the MIMO
scenario into a vector problem over the eigenvalues of the involved matrices, which was
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the basis for 〈5.5〉, and the derivation of the solution of the inner (worst-case) problem as
in 〈5.10〉. Moreover, simple upper and lower bounds were introduced, and some aspects
of the high- and low-SNR behavior were discussed in this publication. Thus, it was also
a basis for 〈5.14〉 and 〈5.15〉 as well as 〈5.17〉 and 〈5.18〉.

〈5.31〉 Related Work. In this chapter, we considered the channel-type model for secret-
key generation with a multi-antenna wiretap channel. We assumed that the transmitter
does not have perfect information about the eavesdropper channel. Instead, we consid-
ered a channel uncertainty that was modeled deterministically. In contrast, many recent
publications study various approaches for the source-type model. This is for instance
obtained when the channel between the transmitter and the intended receiver is used as
a common source of randomness between the two users. The properties of this recipro-
cal communication channel, which are used for the key generation, can be determined
if each legitimated user sends pilot signals that allow the other to estimate the channel.
These channel observations can be processed afterwards in order to generate a common
key that is kept perfectly secret from the eavesdropper This approach exploits the fact
that an eavesdropper, which is located at a certain distance from both legitimated users,
observes different channel realizations. Below, we restrict ourselves to a discussion of
publications that focus on the secret-key generation with the channel-type model. For
an overview of selected publications that study the key generation with the source-type
model, we refer to the introduction of this thesis.

Wong et al. (2009) studied the key generation approach for the channel-type model, where
a fast-fading Gaussian MIMO wiretap channel was used. They extended the results of
Ahlswede and Csiszár (1993) to continuous channel alphabets and evaluated the key ca-
pacity of the fast-fading MIMO wiretap channel under the assumption that neither the
transmitter nor the intended receiver has any state information about the eavesdropper
channel. Furthermore, they investigated the high-SNR behavior of the secret-key capac-
ity depending on the number of antennas. They showed that the relation between the
numbers of antennas at the transmitter and the eavesdropper determines whether the
capacity converges to a finite limit or grows with the SNR.

The robustness of the secret-key generation is considered by Vía (2014). The author
studied a Gaussian MIMO wiretap channel, where it is assumed that the transmitter does
not have perfect knowledge about the eavesdropper channel. Instead, the channel was
modeled by a sum of its estimation and an error matrix that is assumed to be bounded by
a certain norm constraint with a fixed positive-semidefinite weighting matrix. This yields
a maximization problem for the worst-case secret-key rate. Under the assumption that the
eavesdropper channel is degraded with respect to the estimated worst-case channel, the
problem of designing the optimal transmit covariance matrix was reformulated as a convex
optimization problem. Moreover, a time-sharing approach was considered in which both
users can transmit a certain fraction of the time. The author characterized the optimal
transmit covariance matrix for the two special cases with a spherical uncertainty region
and very large uncertainty sets.
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〈5.32〉 Summary. In this chapter, we considered the physical-layer key generation with
a MIMO wiretap channel and relaxed the assumption of perfect knowledge about the
channel to the eavesdropper. The uncertainty about the eavesdropper channel was mod-
eled by a constraint that used the Frobenius norm of this channel. For this model, we
formulated two nested optimization problems. The first or inner problem was the worst-
case secret-key rate problem, whose objective was to determine the worst-case channel
for each chosen transmit strategy. This worst-case channel provides the eavesdropper
with the maximal amount of information about the key generation process between the
transmitter and the intended receiver. The second or outer problem was maximizing this
worst-case secret-key rate under a transmit power constraint over all antennas. For the
resulting problem, we derived an equivalent vector problem over the eigenvalues of the
involved matrices. We discussed the properties of this max-min problem and showed that
we have a saddle-point problem, which equivalently allows us to optimize the correspond-
ing min-max problem. For the vector problem over the eigenvalues, we characterized the
optimal strategies. We presented a waterfilling solution for the worst-case problem and
derived relatively tight lower and upper bounds on the solution of the outer maximization
problem. Moreover, we analyzed the behavior of the maximized worst-case secret-key rate
and the corresponding optimal strategies for low and high SNR. The results of this chap-
ter were illustrated in detail. We compared the results we obtained for the worst-case
secrecy and secret-key rate and discussed similarities and differences. Finally, two special
cases, the multiple-input single-output and the multi-carrier scenario, as well as possible
extensions to multiple cooperating eavesdroppers and to scenarios with other constraints
on the eavesdropper channel were discussed.

132



Part IV

Conclusion





Summary and Future Work

In this thesis, we studied how private communication between two users of a multi-antenna
system can be ensured by means of the physical layer if it is assumed that the transmitter
cannot have perfect information about the channel to a potential eavesdropper. The
uncertainty about the eavesdropper channel was described by a deterministic model,
i.e., a constraint on the quality of this channel was formulated, which corresponds to an
infinite set of possible eavesdropper channels. We used a constraint on the sum of all
channel gains of the multi-antenna channel between transmitter and eavesdropper, which
was formulated using the Frobenius norm of this channel. In combination with a sum
power constraint at the transmitter, it can be interpreted as a constraint on the overall
receive power at the eavesdropper.

We discussed the problem from the perspective of the transmitter who wants to maximize
the achievable rate of a reliable and secret transmission to an intended eavesdropper under
a sum power constraint over all antennas and the assumption that the eavesdropper can
observe the worst-case channel for each chosen transmit strategy. From this point of
view, we analyzed two different approaches. One was the direct transmission of the
private message to the receiver, while the reliability and secrecy of the information have
to be ensured simultaneously by an appropriately chosen coding and resource allocation
scheme. This yielded the study of the maximized worst-case secrecy rate. The other
was an approach with two phases. First, the two legitimated users had to agree on a
common key, which should be completely unknown to the eavesdropper. Afterwards, the
transmitter can ensure the secrecy of the information by encryption. Thus, the subsequent
transmission has only to guarantee the reliability of this encrypted information. This
approach was analyzed by determining and discussing the maximized worst-case secret-
key rate. We also established a fair comparison between both approaches by not only
evaluating the maximized worst-case secret-key rate for the key generation, but also
considering the additional effort, i.e., time and power, for the subsequent transmission of
the encrypted information.

For both approaches, it was shown that the matrix problem can be reduced to an equiv-
alent problem over the eigenvalues of the involved matrices. It was proven that the
eigenvectors of the optimal transmit covariance matrix and the optimal Gramian matrix
that characterizes the channel to the eavesdropper are determined by the eigenvectors of
the Gramian matrix that describes the channel to the intended receiver. For both prob-
lems, we derived the corresponding worst-case channels, which can be characterized by
waterfilling solutions, for each previously chosen transmit strategy. The optimal transmit
strategies were characterized in terms of the number of positive components in the power
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allocation vector, their ordering, and possible value ranges. We showed how relatively
tight upper and lower bounds on the maximized worst-case rates can be derived. The
lower bounds provided a accurate approximation of the optimal transmit power alloca-
tion, whereas the upper bounds, which often were close to the lower bounds, ensured that
the strategy that was derived from the lower bound was close to optimal.

For the maximization of the worst-case secrecy rate, we considered two different trans-
mitter structures. In addition to the original transmitter with only one joint encoder, we
proposed an adapted transmitter structure, where the characteristics of the reformulated
optimization problem were exploited by first parallelizing the data stream and encoding
it with a set of parallel encoders afterwards. We showed that this adapted transmitter
structure can yield higher rates for high SNR, especially if the eavesdropper is allowed to
have a relatively good channel. Moreover, it turned out for these cases that full transmit
power is not optimal if the original transmitter structure is used. For the maximization of
the worst-case secrecy rate with the adapted transmitter structure and the maximization
of the worst-case secret-key rate, we showed that the considered max-min problems are
saddle-point problems, which can be equivalently written as min-max problems.

We showed that all rates converge to finite limits for high SNR, which results from the fact
that we formulated no restriction on the maximum number of eavesdropping antennas,
which allowed the eavesdropper to have more antennas than the transmitter, in order to
have a real worst-case scenario. Consequently, the transmitter can always significantly
reduce the sum transmit power if the noise power is low enough, nearly without any
rate loss. Furthermore, we showed that the rate increase for low SNR is determined by
the parameters of both channels if the maximized worst-case secrecy rate is considered,
whereas only the channel to the intended receiver is relevant if the maximized worst-
case secret-key rate is studied, i.e., the latter has the same low-SNR rate increase as the
transmission rate in a system without secrecy constraints.

The comparison of both approaches showed that the key generation approach always
yields higher rates than the direct-transmission approach. However, if the subsequent
data transmission is considered in addition to the key generation, this approach loses its
general superiority. It was shown that relatively bad eavesdropper channels or low SNR
are advantageous for the direct transmission of the information, whereas comparably
good eavesdropper channels or high SNR support the key generation approach. If the
eavesdropper is allowed to have a better channel than the intended receiver, a direct
transmission of the information is no longer possible. Then, only the key generation
approach can yield positive rates.

Finally, we showed that our analysis can also be applied to related multi-carrier scenarios,
to scenarios with multiple eavesdroppers, even if they cooperate, and to problems that
are constrained by other unitarily invariant norms. For other norm constraints, it can
also be applied to derive lower and upper bounds on the corresponding problems.
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From the results we obtained, interesting topics for future work arise. It would be in-
teresting to extend our approach such that the estimation error for the channel to the
intended receiver is additionally included in the analysis. We could introduce the as-
sumption that the channel estimation error can be upper-bounded by a certain value.
Thus, the maximization of the worst-case would result in a max-min problem, where the
joint minimization is carried out over the constraint sets that were formulated for both
channels. This means that the transmitter tries to find the optimal transmit strategy
under the assumption that the corresponding worst-case error occurs for the channel es-
timation to the intended receiver, whereas the eavesdropper can simultaneously observe
the worst-case channel, which would provide him the maximum information about the
private message or the secret key.

Furthermore, we suggest to investigate how the approach of this thesis can be applied to
scenarios where the constraints are not formulated by unitarily invariant conditions. The
equivalence of all matrix norms enables to upper- and lower-bound an arbitrary matrix
norm by another matrix norm, which could be chosen such that it is unitarily invariant.
Thus, we could at least derive upper and lower bounds on the optimized rates in these
cases by using appropriate sub- and supersets of the given constraint sets, which can be
described by unitarily invariant norms. For some practically relevant constraints, it could
be evaluated how tight these upper and lower bounds are in order to conclude how good
this approximation can be.

Additionally, the resulting eigenvalue problems could be evaluated for other constraints
that can be formulated on the transmit power as well as the main and eavesdropper
channel. The corresponding worst-case strategies could be characterized, which in turn
would allow to derive optimal transmit strategies under the previously formulated worst-
case assumptions.

Moreover, there are still open questions for the scenarios that were analyzed within this
thesis and that are worth to be further studied. It would be interesting to completely
analyze and understand the performance of relatively simple transmit strategies for the
whole SNR range and not only for asymptotically low and high SNR. Such strategies could
be for instance the uniform distribution of the available power over all components of the
power allocation vector or the concentration of the complete power in only one component
of this vector. This analysis would comprise the evaluation of the rate loss that results
from these strategies compared to the optimal strategies that were characterized in this
thesis.

Another idea would be to fix the maximum number of eavesdropper antennas to a value
that is less than the number of antennas that the legitimated users have for transmission
and reception. Note that this approach would not result in a transmission in the null
space of the eavesdropper channel since the worst-case problem was considered as the
inner problem with the underlying assumption that the eavesdropper can “react” on the
previously chosen transmit strategy. In this context, it could be evaluated how the optimal
strategies for the outer and the inner problem differ from those that were derived within
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this thesis. As a consequence, we would observe that the rates will no longer converge
to finite limits for high SNR. In this case, a discussion of the secure degrees of freedom
would make sense.

Furthermore, the comparison between the two different approaches could be improved by
additionally considering the effort that is necessary for the public communication in the
key-agreement approach. Thus, an appropriate model has to be chosen for the analysis
of the public communication channel, which allows a combination with the performance
measures we discussed so far.

Another open point concerns the proof of the concavity of the secret-key rate with respect
to the transmit covariance matrix. We pointed out that the proof in (Liang et al., 2009,
Lemma C.1) cannot be generally applied to our secret-key rate expression without any
further assumptions or modifications. This proof requires the existence of the inverse of
a matrix that establishes a relation between the Gramian matrices that result from the
matrices of both multi-antenna channels. But this relation matrix does not necessarily
have full rank, since its rank is determined by the numbers of antennas that are chosen for
the transmitter, the intended receiver, and the eavesdropper. Thus, it would be helpful
to find a proof that works without the inverse or that can ensure that such an inverse
definitely exists.
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A Mathematical Background

A.1 The [ · ]+ Function

In this section, we present and discuss the properties of the [ · ]+ function.

〈A.1〉 Basic Properties. We introduce some basic properties of the function

[ · ]+ : R → R, x 7→ [x ]+ ··= max{x, 0} =

{
x for x > 0

0 for x ≤ 0
.

For all x, y ∈ R and a ≥ 0,

[a x ]+ = a [x ]+, (A.1)

[x + y ]+ ≤ [x ]+ + [y ]+, and (A.2)

x > y or x ≥ y ⇒ [x ]+ ≥ [y ]+. (A.3)

Note that a strict inequality on the left-hand side of the last line does not imply a strict
inequality on the right-hand side.

〈A.2〉 Monotonicity and Convexity. If the [ · ]+ function is applied to a real-valued
monotonic or convex function f with domain X ⊆ R, the following properties hold:

a) If the function f is (strictly) monotonically increasing on the set S ⊆ X , the function
[f ]+ is monotonically increasing on S, which follows directly from property (A.3).
This statement can be equivalently formulated for a (strictly) monotonically decreas-
ing function.

b) If the function f is (strictly) convex on the convex set S ⊆ X , the function [f ]+ is
convex on S. This can be shown according to the definition of a convex function. For
all x, y ∈ S and for all λ ∈ [0, 1],

[f(λ x + (1 − λ) y)︸ ︷︷ ︸
≤λ f(x)+(1−λ) f(y)

]+ ≤ [λ f(x) + (1 − λ) f(y) ]+ (A.4)

≤ [λ f(x) ]+ + [(1 − λ) f(y) ]+ (A.5)

= λ [f(x) ]+ + (1 − λ) [f(y) ]+ , (A.6)

where (A.4) follows from the convexity of f and (A.3), whereas (A.5) and (A.6) are
direct consequences of (A.2) and (A.1), respectively. Note that there is no equivalent
formulation for a (strictly) concave function f .
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〈A.3〉 Maximum, Minimum, and Limit. Let f be a real-valued function with do-
main X ⊆ Rn for n ∈ N. If we apply the [ · ]+ function to the function f and search for
the maximum of this concatenated function on a certain set S ⊆ X , we can equivalently
search for the maximum of the function f on S and apply the [ · ]+ function afterwards,
since we can write

max
x∈S

[f(x) ]+ = max
x∈S

{
f(x) for f(x) > 0

0 for f(x) ≤ 0
=





max
x∈S

f(x) for max
x∈S

f(x) > 0

0 for max
x∈S

f(x) ≤ 0
=

[
max
x∈S

f(x)

]+

.

This analogously holds for the minimization over a certain set and the calculation of the
limit of f as x approaches a certain value.

A.2 Equalities and Inequalities

This section provides some equalities and inequalities that are relevant for derivations in
this thesis.

〈A.4〉 Max-Min Inequality. We have

sup
z∈Z

inf
w∈W

f(w, z) ≤ inf
w∈W

sup
z∈Z

f(w, z)

for any f : Rn × Rm → R and any W ∈ Rn and Z ∈ Rm. For instance, this inequality
can be found in (Boyd and Vandenberghe, 2004, (5.46) in Section 5.4.1).

〈A.5〉 Rearrangement Inequality. For arbitrary real numbers a1 ≥ a2 ≥ . . . ≥ an and
b1 ≥ b2 ≥ . . . ≥ bn, we have

n∑

i=1

aibn+1−i ≤
n∑

i=1

ai (bΠ)i ≤
n∑

i=1

aibi,

where Π can be any permutation matrix from the set Pn, which is the set of all permu-
tation matrices of size n × n. This inequality and the corresponding proof were given by
Hardy et al. (1952, Section 10.2).

〈A.6〉 Hadamard’s Inequality. If A = (aij)n
i,j=1 ∈ Cn×n is positive-semidefinite, then

det(A) ≤
n∏

i=1

aii.

Furthermore, when A is positive definite, then the equality holds if and only if A is
diagonal. For instance, this inequality can be found in (Horn and Johnson, 1985, Theorem
7.8.1) or (Cover and Thomas, 1988, Theorem 3).
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〈A.7〉 Sylvester’s Determinant Theorem. If A and B are matrices of size m×n and
n × m respectively, then det(Im + AB) = det(In + BA), where In is the identity matrix
of order n. For instance, this relation can be found in (Harville, 1997, Corollary 18.1.2).

〈A.8〉 Determinant of the Sum of Positive-Semidefinite Matrices. Let A and B
be positive-semidefinite n × n matrices with eigenvalues a1 ≥ a2 ≥ . . . ≥ an ≥ 0 and
b1 ≥ b2 ≥ . . . ≥ bn ≥ 0, respectively. Then

n∏

i=1

(ai + bi) ≤ det(A + B) ≤
n∏

i=1

(ai + bn+1−i).

These bounds were derived by Fiedler (1971), who also derived similar bounds for the
more general case with arbitrary Hermitian matrices in the same publication. In the
corresponding proof, Fiedler used the following equalities

min
Π∈Pn

n∏

i=1

(ai + (bΠ)i) =
n∏

i=1

(ai + bi) and max
Π∈Pn

n∏

i=1

(ai + (bΠ)i) =
n∏

i=1

(ai + bn+1−i),

where Π is a permutation matrix of size n×n and Pn is the set of all permutation matrices
of size n × n. The (row) vector b is defined as b ··= (bi)n

i=1. As direct consequence of these
equalities, we obtain

max
Π∈Pn

n∏

i=1

(1 + ai (bΠ)i) =
n∏

i=1

(1 + ai bi) and min
Π∈Pn

n∏

i=1

(1 + ai (bΠ)i) =
n∏

i=1

(1 + ai bn+1−i).

These equations can be proven by mathematical induction. The proof follows the idea of
the proof of the rearrangement inequality, see (Hardy et al., 1952, Section 10.2).

Proof. In his proof of the main result, Fiedler (1971) formulated a hint how the equalities
above can be proven. For a better understanding, a more detailed version of this proof
is provided below. We exemplarily show the proof for the upper bound. The same steps
can be applied to prove the lower bound.

Notation: We define

Yk(bΠ) ··=
n∏

i=1

(1 + ai (bΠ)i) and Zk ··=
n∏

i=1

(1 + ai bi).

Base Clause: For a clear insight, we discuss the cases for k = 1, 2, 3.

For k = 1, there is only one possible permutation. We get

Y1(b1) = (1 + a1 b1) = Z1.

143



A Mathematical Background

For k = 2, there are only two permutations (b1, b2) and (b2, b1), which leads to

Y2(b2, b1) = (1 + a1 b2) (1 + a2 b1) ≤ (1 + a1 b1) (1 + a2 b2) = Y2(b1, b2) = Z2

due to

(1 + a1 b2) (1 + a2 b1) ≤ (1 + a1 b1) (1 + a2 b2)

⇔ a2 b1 + a1 b2 ≤ a2 b2 + a1 b1

⇔ (a1 − a2) (b2 − b1) ≤ 0,

which obviously is true, since we assumed a1 ≥ a2 and b1 ≥ b2.

For k = 3, we can use the result from the case k = 2 to compare all possible permuations
as follows. For each vector bΠ, we can compare the resulting product Y3 with all other
products calculated with a vector that differs from bΠ only by the interchange of two
components. This leads to a partial order, which we illustrate by the following Hasse
diagram.

=Z3︷ ︸︸ ︷
Y3(b1, b2, b3)

Y3(b2, b1, b3)

Y3(b2, b3, b1)

Y3(b1, b3, b2)

Y3(b3, b1, b2)

Y3(b3, b2, b1)

Induction Step: Let us assume that Yk(bΠ) ≤ Zk holds for all permutations Π ∈ Pk. Now,
we take an arbitrary vector bΠ̄ with Π̄ ∈ Pk+1 and assume (bΠ̄)k+1 = bℓ and (bΠ̄)j = bk+1

with j, ℓ ∈ {1, 2, . . . , k}, i.e., bk+1 can be found at the j-th position, whereas bℓ was
permuted to the last position of the vector. Due to the ordering of the vector b, we have
bℓ ≥ bk+1. We calculate

Yk+1(bΠ̄) = (1 + a1 (bΠ̄)1) . . . (1 + aj bk+1) . . . (1 + ak (bΠ̄)k) (1 + ak+1 bℓ)

≤ (1 + a1 (bΠ̄)1) . . . (1 + aj bℓ) . . . (1 + ak (bΠ̄)k) (1 + ak+1 bk+1)

= Yk((bΠ̄)1, . . . , (bΠ̄)j−1, bℓ, (bΠ̄)j+1, . . . , (bΠ̄)k) (1 + ak+1 bk+1)

≤ Zk (1 + ak+1 bk+1) = Zk+1.

The first inequality comes from the interchange of bℓ and bk+1, which does not decrease
the product as shown for the case k = 2. The second inequality directly follows from the
induction hypothesis.

Consequently, we have shown that Yk(bΠ) ≤ Zk and Yk(b) = Zk for all Π ∈ Pk and
k ∈ 1, 2, . . . , n with n ∈ N. �
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B.1 Proofs for Propositions in Chapter 3

〈B.1〉 Detailed Proof for 〈3.12〉. The proof comprises four parts. In each part, we
present a chain of equations and the corresponding explanations for the manipulations
afterwards. The main reformulation steps, which are contained in the second and third
part of the proof, are inspired by Telatar (1995), who used such an approach to derive
the expression for the capacity of multi-antenna Gaussian channels.

Notation: We write the eigenvalue decomposition of the matrices A, B, and Q as

A = U∆aUH, B = V ∆bV H, and Q = W∆qW H.

The matrices ∆a, ∆b, and ∆q are diagonal matrices whose main diagonal entries are the
eigenvalues of the matrices A, B, and Q, respectively. The matrices U , V , and W are
unitary matrices whose columns can be identified with the corresponding eigenvectors of
the matrices A, B, and Q, respectively.

First Part: Sylvester’s determinant theorem can provide various equivalent expressions
for the secrecy rate R⋆

S in 〈2.43〉. We start with the following notation:

R⋆
S(A, B, Q) =

[
log2 det

(
IL + ρ A

1
2 QA

1
2

)
− log2 det

(
IL + ρ Q

1
2 BQ

1
2

)]+

and reformulate the problem in 〈3.6〉 into

max
Q∈Q

min
B∈B

[
log2 det

(
IL + ρ A

1
2 QA

1
2

)
− log2 det

(
IL + ρ Q

1
2 BQ

1
2

)]+

(1)
=

[
max
Q∈Q

min
B∈B

(
log2 det

(
IL + ρ A

1
2 QA

1
2

)
− log2 det

(
IL + ρ Q

1
2 BQ

1
2

))]+

(2)
=

[
max
Q∈Q

(
log2 det

(
IL + ρ A

1
2 QA

1
2

)
− max

B∈B

log2 det
(

IL + ρ Q
1
2 BQ

1
2

))]+

.

Explanations:

(1) The properties of the [ · ]+ function allow us to interchange the maximization over Q

and the minimization over B with the [ · ]+ operation.
(2) The first term is not a function of B. Thus, the minimization of the difference of

both terms can be reduced to a maximization of the second term.
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Second Part: The maximization of the second term above can be equivalently reformu-
lated as follows:

max
B∈B

log2 det
(

IL + ρ Q
1
2 BQ

1
2

)

(1)
= max

B∈B

log2 det
(

IL + ρ W∆
1
2
q W HBW∆

1
2
q W H

)

(2)
= max

B∈B

log2 det
(

IL + ρ W HBW∆
1
2
q W HW∆

1
2
q

)

(3)
= max

B∈B

log2 det
(
IL + ρ W HBW∆q

)

(4)
= max

∆b∈B

∆b diagonal

max
V ∈UL

log2 det
(
IL + ρ W HV ∆bV HW∆q

)

(5)
= max

∆b∈B

∆b diagonal

log2

(
max
V ∈UL

det
(
IL + ρ W HV ∆bV HW∆q

))

(6)
= max

∆b∈B

∆b diagonal

log2 det (IL + ρ ∆b∆q) .

Explanations:

(1) We use the eigenvalue decomposition of the matrix Q according to 〈3.9〉, which is

Q = W∆qW H, and insert Q
1
2 = W∆

1
2
q W H.

(2) Sylvester’s determinant theorem allows us to interchange the position of the matrices

W∆
1
2
q and W HBW∆

1
2
q W H inside the determinant.

(3) The matrix W is a unitary matrix, i.e., we have W HW = IL. Hence, we obtain

∆
1
2
q W HW∆

1
2
q = ∆q.

(4) We apply the eigenvalue decomposition of the matrix B according to 〈3.9〉, which is
B = V ∆bV H. Accordingly, we write the maximization over B ∈ B as a (nested)
maximization over the eigenvalues and eigenvectors of B. The constraint sets have
to be adapted: The eigenvalue matrix ∆b has to be diagonal and has to fulfill the
constraints specified by the set B. The eigenvector matrix V has to be a unitary
matrix, which we write as V ∈ UL, where UL is the set of all unitary matrices of
dimension L × L.

(5) The monotonicity of the logarithm enables the interchange of the maximization and
the log2 function.

(6) From Hadamard’s inequality, we know that the determinant of a positive-semidefinite
matrix is upper-bounded by the product of its diagonal elements. For a positive
definite matrix, this upper bound can be achieved if and only if the matrix is diagonal.
Thus, the optimal solution for the maximization over the eigenvectors of B is to choose
V = W , which leads to W HV = V HW = IL and ensures that the positive definite
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matrix IL + ρ W HV ∆bV HW∆q is diagonal. For a diagonal matrix, the product over
its diagonal entries is equivalent to its determinant.

Third Part: We continue with the equivalent reformulation of the outer maximization
from the first part applying the result from the second part. We use the same approach
as above:

max
Q∈Q

(
log2 det

(
IL + ρ A

1
2 QA

1
2

)
− max

B∈B

log2 det
(

IL + ρ Q
1
2 BQ

1
2

))

(1)
= max

Q∈Q

Q=W ∆qW H

(
log2 det

(
IL + ρ A

1
2 QA

1
2

)
− max

∆b∈B

∆b diagonal

log2 det (IL + ρ ∆b∆q)

)

(2)
= max

Q∈Q

Q=W ∆qW H

(
log2 det

(
IL + ρ U∆

1
2
a UHQU ∆

1
2
a UH

)
− max

∆b∈B

∆b diagonal

log2 det (IL + ρ ∆b∆q)

)

(3)
= max

Q∈Q

Q=W ∆qW H

(
log2 det

(
IL + ρ ∆

1
2
a UHU∆

1
2
a UHQU

)
− max

∆b∈B

∆b diagonal

log2 det (IL + ρ ∆b∆q)

)

(4)
= max

Q∈Q

Q=W ∆qW H

(
log2 det

(
IL + ρ ∆aUHQU

)
− max

∆b∈B

∆b diagonal

log2 det (IL + ρ ∆b∆q)

)

(5)
= max

∆q∈Q

∆q diagonal

max
W ∈UL

(
log2 det

(
IL + ρ ∆aUHW∆qW HU

)
− max

∆b∈B

∆b diagonal

log2 det (IL + ρ ∆b∆q)

)

(6)
= max

∆q∈Q

∆q diagonal

(
log2

(
max

W ∈UL

det
(
IL + ρ ∆aUHW∆qW HU

))
− max

∆b∈B

∆b diagonal

log2 det (IL + ρ ∆b∆q)

)

(7)
= max

∆q∈Q

∆q diagonal

(
log2 det (IL + ρ ∆a∆q) − max

∆b∈B

∆b diagonal

log2 det (IL + ρ ∆b∆q)

)
.

Explanations:

(1) We replace the second term by the result of the second part and add the constraint
that the eigenvalue decomposition of Q is written as Q = W∆qW H in order to have
a formal connection between the notation in the first and second term.

(2) We use the eigenvalue decomposition of the matrix A according to 〈3.9〉, which is

A = U∆aUH, and insert A
1
2 = U∆

1
2
a UH.

(3) Sylvester’s determinant theorem allows us to interchange the position of the matrices

U∆
1
2
a UHQU and ∆

1
2
a UH inside the determinant of the first term.

(4) The matrix U is a unitary matrix, i.e., we have UHU = IL. Hence, we obtain

∆
1
2
a UHU∆

1
2
a = ∆a.

(5) We insert the eigenvalue decomposition of the matrix Q. Accordingly, we write
the maximization over Q ∈ Q as a (nested) maximization over the eigenvalues and
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eigenvectors of Q. The constraint sets have to be adapted: The eigenvalue matrix ∆q

has to be diagonal and fulfill the constraints specified by the set Q. The eigenvector
matrix W has to be a unitary matrix, which we write as W ∈ UL, where UL is the
set of all unitary matrices of dimension L × L as specified above.

(6) The second term is not a function of W . Thus, the maximization of the difference
of both terms can be reduced to a maximization of the first term. Furthermore, the
monotonicity of the logarithm enables the interchange of this maximization and the
log2 function in the first term.

(7) Again, Hadamard’s inequality is applied. It yields the optimal solution for the max-
imization over the eigenvectors of Q, which is to choose W = U leading to UHW =
W HU = IL and ensuring that the positive definite matrix IL + ρ ∆aUHW∆qW HU
is diagonal. Again, we write the product over the diagonal entries as determinant of
this diagonal matrix.

Fourth Part: With the result of the third part, we can reformulate the complete problem
from the first part and obtain:

[
max
Q∈Q

(
log2 det

(
IL + ρ A

1
2 QA

1
2

)
− max

B∈B

log2 det
(

IL + ρ Q
1
2 BQ

1
2

))]+

(1)
=


 max

∆q∈Q

∆q diagonal

(
log2 det (IL + ρ ∆a∆q) − max

∆b∈B

∆b diagonal

log2 det (IL + ρ ∆b∆q)

)



+

(2)
=

[
max
q∈Q

(
log2

L∏

ℓ=1

(1 + ρ aℓqℓ) − max
b∈B

log2

L∏

ℓ=1

(1 + ρ bℓqℓ)

)]+

(3)
=

[
max
q∈Q

(
L∑

ℓ=1

log2 (1 + ρ aℓqℓ) − max
b∈B

L∑

ℓ=1

log2 (1 + ρ bℓqℓ)

)]+

(4)
=

[
max
q∈Q

min
b∈B

(
L∑

ℓ=1

log2 (1 + ρ aℓqℓ) −
L∑

ℓ=1

log2 (1 + ρ bℓqℓ)

)]+

(5)
= max

q∈Q
min
b∈B

[
L∑

ℓ=1

(log2 (1 + ρ aℓqℓ) − log2 (1 + ρ bℓqℓ))

]+

.

Explanations:

(1) We combine the results of the first and third part.
(2) We calculate the determinants of the diagonal matrices, which are the products of

their diagonal entries. We use the vector notation for the eigenvalues of the matrices
A, B, and Q, which was introduced in 〈3.9〉 as a, b, and q, and adapt the constraint
sets to this vector notation, which leads to the sets Q and B defined in 〈3.12〉.

(3) The logarithm of a product is equivalent to the sum of the logarithmized terms.
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(4) Since the first term does not depend on b, we can equivalently write the maximization
of the second term as minimization of the difference.

(5) Finally, we combine both sums and interchange again the [ · ]+ operation with the
maximization over Q and the minimization over B exploiting the properties of the
[ · ]+ function.

〈B.2〉 Detailed Proof for 〈3.23〉. For the proof, we introduce the following notation:
We write a↓ with a ∈ R1×L, i.e., a is a row vector of length L, if the components of
this vector are sorted in descending order, i.e., a1 ≥ a2 ≥ . . . ≥ aL. Now, we consider
the optimization problem in 〈3.12〉. Each vector q ∈ Q can be equivalently written as
q = λΠq with λ ∈ Q, λ↓, and Πq ∈ PL, where λ is the (row) vector of length L that
contains the components of q in descending order, Πq is a permutation matrix of size
L × L, and PL is the set of all permutation matrices of size L × L. This also holds for
each vector b ∈ B: We can write b = βΠb with β ∈ B, β↓, and Πb ∈ PL. With 〈3.22〉, we
derive the permutation matrices Πq and Πb, which are optimal for problem 〈3.12〉. We
start with an equivalent expression of 〈3.12〉, which was derived in the fourth part of the
corresponding proof in 〈B.1〉:
[

max
q∈Q

(
L∑

ℓ=1

log2 (1 + ρ aℓqℓ) − max
b∈B

L∑

ℓ=1

log2 (1 + ρ bℓqℓ)

)]+

(1)
=


max

λ∈Q
λ↓

max
Πq∈PL

(
L∑

ℓ=1

log2 (1 + ρ aℓ(λΠq)ℓ) − max
β∈B
β↓

max
Πb∈PL

L∑

ℓ=1

log2 (1 + ρ (βΠb)ℓ(λΠq)ℓ)

)


+

(2)
=


max

λ∈Q
λ↓

max
Πq∈PL

(
L∑

ℓ=1

log2 (1 + ρ aℓ(λΠq)ℓ) − max
β∈B
β↓

L∑

ℓ=1

log2 (1 + ρ (βΠq)ℓ(λΠq)ℓ)

)


+

(3)
=


max

λ∈Q
λ↓

(
max

Πq∈PL

L∑

ℓ=1

log2 (1 + ρ aℓ(λΠq)ℓ) − max
β∈B
β↓

L∑

ℓ=1

log2 (1 + ρ (βΠq)ℓ(λΠq)ℓ)

)


+

(4)
=


max

λ∈Q
λ↓

(
L∑

ℓ=1

log2 (1 + ρ aℓλℓ) − max
β∈B
β↓

L∑

ℓ=1

log2 (1 + ρ βℓλℓ)

)


+

.

Explanations:

(1) We insert q = λΠq and b = βΠb and write each maximization as two (nested)
maximizations over the set of all ordered vectors and the set of all permutation
matrices.

(2) From 〈A.8〉, we obtain that the optimal vector b, which maximizes the sum in the
second term, adopts the ordering of the vector q, i.e., the maximization over all
Πb ∈ PL yields Πb = Πq.
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(3) The value of the second term is independent from the chosen permutation matrix Πq.
Consequently, we only have to consider the first term for the maximization over all
Πq ∈ PL.

(4) From 〈A.8〉, we know that the sum in the first term is maximized if we choose the
same ordering for a and q, i.e., the maximization over all Πq ∈ PL is achieved by
Πq = IL.

From this analysis, we can conclude that the vectors q and b that are optimal for 〈3.12〉
adopt the ordering of the vector a.

〈B.3〉 Derivation for 〈3.32〉. We study the optimization of the low-SNR approximation
of the secrecy rate R̃S in 〈3.32〉 under the assumption that the components of the vector
a are sorted in descending order as formulated in 〈3.22〉. For convenience, we reduce the
max-min problem to the relevant part of this approximation, i.e., we omit the outer [ · ]+
function, the factor ρ, and the positive constant 1

ln 2 below. The remaining problem can
be reformulated as follows:

max
q∈Q

min
b∈B

(
L∑

ℓ=1

(aℓ − bℓ) qℓ

)

= max
q∈Q

min
b∈B

(
L∑

ℓ=1

aℓ qℓ −
L∑

ℓ=1

bℓ qℓ

)

(1)
= max

q∈Q

(
L∑

ℓ=1

aℓ qℓ − max
b∈B

L∑

ℓ=1

bℓ qℓ

)

(2)
= max

q∈Q

(
L∑

ℓ=1

aℓ qℓ − χ max
ℓ=1,2,...,L

{qℓ}
)

(3)
= max

λ∈Q
λ↓

max
Πq∈PL

(
L∑

ℓ=1

aℓ (λΠq)ℓ − χλ1

)

(4)
= max

λ∈Q
λ↓

(
max

Πq∈PL

(
L∑

ℓ=1

aℓ (λΠq)ℓ

)
− χλ1

)

(5)
= max

λ∈Q
λ↓

((
L∑

ℓ=1

aℓ λℓ

)
− χλ1

)

(6)
= max

L′





max
λ∈Q
λ↓
λL′+1=λL′+2=...=λL=0

((
L∑

ℓ=1

aℓ λℓ

)
− χλ1

)




with L′ ∈ {1, 2, . . . , L}.
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Explanations:

(1) The first term is not a function of b. Thus, the minimization of the difference of both
terms can be reduced to a maximization of the second term.

(2) The maximum value of the second term is achieved by allocating χ to that compo-
nent of b that corresponds to the largest value in q. All other components of b are
consequently set to zero.

(3) We apply the notation for the ordering of vector components, which we have already
introduced in 〈B.2〉. We insert q = λΠq and write the maximization over q ∈ Q as
a (nested) maximization over the set of all ordered vectors λ ∈ Q and the set of all
permutation matrices. For the second term, we observe that the largest component
of the vector q is always represented by λ1 now.

(4) Since the ordering of the vector components is not relevant for the second term, we
can equivalently apply the maximization over all permutation matrices to the first
term only.

(5) From the rearrangement inequality follows that the maximum value of the first term
that results from the optimization over all permutation matrices is achieved by choos-
ing the same order for a and q, i.e., λ is optimal for this problem.

(6) We split the maximization over all sorted vectors λ ∈ Q into a nested maximization,
where the outer problems iterates over the number of positive components in the
vector λ, and the inner problem identifies the resulting maximum value for this certain
number of positive vector components.

For convenience, we define

R(λ) ··=
(

L∑

ℓ=1

aℓ λℓ

)
− χλ1 and

ML′ ··= {λ ∈ Q | λ↓ and λL′+1 = λL′+2 = . . . = λL = 0} .

We focus on the inner maximization problem, which can be written as maxλ∈ML′
R(λ)

now, for an increasing number L′ ∈ {1, 2, . . . , L}:

• For L′ = 1, we obtain

max
λ∈M1

R(λ) = (a1 − χ) P =·· R1

since it is clearly optimal to allocate full power to the only positive component of λ.
• We observe that maxλ∈M2

R(λ) > R1 holds if and only if a2 > (a1 − χ). Then, we
find

max
λ∈M2

R(λ) = (a1 + a2 − χ) P
2 =·· R2

since it is optimal to allocate the largest possible value to λ2 such that λ1 ≥ λ2 and
the power constraint is fulfilled with equality, i.e., we set λ1 = λ2 = P

2 . Otherwise,
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we know that R1 is the maximum value for all L′ ∈ {1, 2, . . . , L}, since we cannot
obtain a larger contribution by allocating power to any other component of the vector
λ, since the components of a are sorted in descending order.

• Similarly, we see that maxλ∈M3
R(λ) > R2 holds if and only if a3 > 1

2 (a1 + a2 − χ).
Then it is optimal to allocate the largest possible value to λ3 such that λ1 ≥ λ2 ≥ λ3

and the power constraint is fulfilled with equality, i.e., we set λ1 = λ2 = λ3 = P
3 .

Otherwise, we know that we cannot achieve a larger value than before by allocating
power to any other component of the vector λ, due to the ordering of a.

This can analogously be continued until L′ = L is achieved. The procedure described
above corresponds to the remaining optimization problem, which was formulated in
〈3.32〉.

B.2 Proofs for Propositions in Chapter 5

〈B.4〉 Detailed Proof for 〈5.5〉. We start by introducing some additional notation.
Then, we present the main idea of the proof. Finally, we show the reformulation process
in detail.

Notation: We use the eigenvalue decomposition of the matrices A, B, and Q that we have
already introduced in 〈B.1〉:

A = U∆aUH, B = V ∆bV H, and Q = W∆qW H

with the diagonal matrices ∆a, ∆b, and ∆q and the unitary matrices U , V , and W , which
contain the eigenvalues and eigenvectors of the matrices above.

With this notation, we can define the sets Q− and B− with Q− ⊂ Q and B− ⊂ B by

Q
− ··=

{
Q ∈ CL×L

∣∣Q = U∆qUH, Q � 0 and tr(Q) ≤ P
}

and

B
− ··=

{
B ∈ CL×L

∣∣B = W∆bW H, B � 0 and tr(B) ≤ χ
}

.

The sets Q− and B− are derived from the sets Q and B by adding a further constraint
on the eigenvectors of the matrices Q and B, respectively. In the definition of Q−, it
is additionally required that the matrix Q has the same eigenvectors as the matrix A,
whereas the matrix B is constrained to have the same eigenvectors as the matrix Q by
the definition of B−.

Furthermore, we introduce the set

T ··=
{

T = (tij)L
i,j=1 ∈ ZL×L

∣∣ tii ∈ {−1, 1} and tij = 0 for i 6= j
}

,

which describes matrices that are unitary and diagonal and whose main diagonal elements
are either −1 or 1.
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Main Idea: With the sets Q− and B−, we can derive a lower and an upper bound on
the max-min problem in 〈5.4〉. We obtain

max
Q∈Q−

min
B∈B

R⋆
K(A, B, Q) ≤ max

Q∈Q

min
B∈B

R⋆
K(A, B, Q) ≤ max

Q∈Q

min
B∈B−

R⋆
K(A, B, Q),

since we have Q− ⊂ Q and B− ⊂ B. Note that the set B− depends on the matrix Q
since the matrix B is restricted to have the same eigenvectors as the previously chosen
matrix Q. Nevertheless, we obtain an upper bound on the max-min problem in 〈5.4〉 by
evaluating the right-hand side of the inequality above instead of the original problem.
For each given matrix A and each Q ∈ Q, we know that the minimization over the
correponding set B− yields a value that is greater or equal than the result that is obtained
if the minimization is carried out over the set B, since we have B− ⊂ B. Clearly, this
relation is preserved if we add the outer maximization over the set Q to both problems.

In the rest of the proof, we show that both bounds equal the eigenvalue problem in 〈5.5〉,
i.e., the problem in 〈5.5〉 is equivalent to the original problem in 〈5.4〉.
Lower Bound: The reformulation of the lower bound comprises five parts. Each chain of
equations or inequations is followed by the corresponding explanations for the manipula-
tions afterwards.

First Part (Lower Bound): For each Q ∈ Q−, we can apply the eigenvalue decomposition
notation that we introduced above and write the secret-key rate R⋆

K in 〈4.35〉 as

R⋆
K(U∆aUH, B, U∆qUH)

(1)
= log2 det

(
IL + ρ (U∆aUH + B) U∆q UH

)
− log2 det

(
IL + ρ B U∆q UH

)

(2)
= log2 det

(
IL + ρ UH(U∆aUH + B) U∆q

)
− log2 det

(
IL + ρ UHB U∆q

)

(3)
= log2 det

(
IL + ρ (∆a + UHB U)∆q

)
− log2 det

(
IL + ρ UHB U∆q

)

(4)
= log2 det (IL + ρ (∆a + B′)∆q) − log2 det (IL + ρ B′∆q)

= R⋆
K(∆a, B′, ∆q).

Explanations:

(1) We insert the eigenvalue decomposition of the matrices A and Q into the secret-key
rate function R⋆

K .
(2) Sylvester’s determinant theorem allows us to interchange the position of the matrix

UH and the other part of the matrix product inside the determinants of both terms.
(3) In the first term, we expand the matrix product. We can apply UHU = IL, since the

matrix U is a unitary matrix.
(4) We define B′ ··= UHB U and finally obtain that the secret-key rate can be expressed

as R⋆
K(∆a, B′, ∆q) for all Q ∈ Q−.
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Second Part (Lower Bound): Now, we want to discuss the properties of the matrix B′

and some other matrices that can be derived from the matrix B. In order to belong to
the set B, a matrix of dimension L×L has to be positive-semidefinite and fulfill the trace
constraint. Both properties are only influenced by the eigenvalues of the matrix and not
by its eigenvectors. Thus, we can write

B ∈ B ⇔ B′ ··= UHB U ∈ B,

since the multiplication with the unitary matrix U as in B′ only changes the eigenvectors
of the matrix B. The same argumentation holds for the matrix TB′T with T ∈ T , i.e.,

B′ ∈ B ⇔ TB′T ∈ B,

since T ∈ T is diagonal and unitary, which yields T = T H and TT H = T HT = TT = IL.
Finally, we consider the matrix 1

2 B′ + 1
2 TB′T . From B ∈ B and the equivalence relations

above, we can conclude that this matrix also belongs to the set B, i.e.,

B ∈ B ⇒ 1
2 B′ + 1

2 TB′T ∈ B,

since the positive semidefiniteness and the trace constraint, which are required in the
definition of the set B, are not influenced by this linear combination of the two matrices.

Third Part (Lower Bound): Now, we want to evaluate the secret-key rate R⋆
K for the

matrices Q ∈ Q− and TB′T ∈ B with T ∈ T . We start with the secret-key rate
expression that we obtained at the end of the first part:

R⋆
K(∆a, TB′T, ∆q)

(1)
= log2 det (IL + ρ (∆a + TB′T )∆q) − log2 det (IL + ρ TB′T∆q)

(2)
= log2 det (T (IL + ρ (∆a + TB′T )∆q) T ) − log2 det (T (IL + ρ TB′T∆q) T )

(3)
= log2 det (IL + ρ (∆a + B′)∆q) − log2 det (IL + ρ B′∆q)

(4)
= R⋆

K(∆a, B′, ∆q).

Explanations:

(1) We simply insert the matrices into the secret-key rate expression.
(2) For both terms, we can multiply the matrix inside the determinant with T from both

sides without changing the value of the determinant, since T ∈ T is unitary and
diagonal, which yields T = T H.

(3) We expand the matrix products in both terms. We can interchange the position of
the diagonal matrices ∆a, ∆q, and T if necessary and apply TT = IL.

(4) We observe the following: For each matrix B′ ∈ B and each T ∈ T , we obtain the
same value for the secret-key rate R⋆

K if we use the matrix TB′T instead of the matrix
B′.
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Fourth Part (Lower Bound): Now, we want to consider the secret-key rate R⋆
K for the

matrices Q ∈ Q− and 1
2 B′ + 1

2 TB′T ∈ B with T ∈ T . We use again the secret-key rate
expression we obtained at the end of the first part:

R⋆
K(∆a, 1

2 B′ + 1
2 TB′T, ∆q)

(1)

≤ 1
2 R⋆

K(∆a, B′, ∆q) + 1
2 R⋆

K(∆a, TB′T, ∆q)

(2)
= R⋆

K(∆a, B′, ∆q).

Explanations:

(1) The inequality is a direct consequence of the convexity of R⋆
K in B ∈ B, see 〈4.36〉.

(2) From the analysis in the third part, we know that both secret-key rate expressions
have the same value. Consequently, they add up as given above.

Fifth Part (Lower Bound): In the second part, we have shown that we can transform each
matrix B′ ∈ B into a matrix 1

2 B′ + 1
2 TB′T ∈ B, where we can use each matrix T ∈ T .

From the fourth part, we know that this transformation can only decrease the value of the
corresponding secret-key rate R⋆

K . We are interested in minimizing the secret-key rate
R⋆

K for each Q ∈ Q−. With this aim, we can consequently always improve the resulting
value of R⋆

K by choosing a matrix 1
2 B′ + 1

2 TB′T instead of the matrix B′. Thus, we
propose the following transformation process, which will not increase the value of the
secret-key rate R⋆

K , for each B′
0 ∈ B with Q ∈ Q−:

B′
0

T17−−−→ B′
1

T27−−−→ B′
2

T37−−−→ . . .
TL−17−−−→ B′

L−1.

For all ℓ ∈ {1, 2, . . . , L − 1}, the matrix B′
ℓ ∈ B is given by

B′
ℓ

··= 1
2 B′

ℓ−1 + 1
2 TℓB

′
ℓ−1Tℓ,

where Tℓ ∈ T is characterized by tℓℓ = −1 and tii = 1 for all i ∈ {1, 2, . . . , L} with
i 6= ℓ. The ℓ-th step of this transformation process, which calculates the matrix B′

ℓ

from the matrix B′
ℓ−1, nulls all elements of the ℓ-th row and ℓ-th column of the matrix

B′
ℓ−1 except the corresponding main diagonal element, but it does not change any other

element of this matrix. Thus, we always obtain a diagonal matrix B′
L−1 at the end of the

proposed transformation process.

We draw the following conclusion: For each matrix B′
0 ∈ B, we can find a transformed

matrix B′
L−1 ∈ B, which yields a secret-key rate R⋆

K that is less or equal than the secret-
key rate that can be calculated for the matrix B′

0. Furthermore, all these transformed
matrices B′

L−1 ∈ B are diagonal. Consequently, we always obtain a corresponding secret-
key rate expression that only depends on the eigenvalues of the involved matrices. This
yields the secret-key rate in 〈5.5〉 if we use the vector notation for the eigenvalues instead
of the matrix notation above. The constraint sets Q− and B correspond to the sets Q
and B in 〈5.5〉 if we also apply this notational change. Thus, we observe that we can
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calculate the lower bound on the problem in 〈5.4〉 equivalently by evaluating the problem
in 〈5.5〉.
For the derivation of the lower bound, we formulated the additional constraint that the
matrices A and Q have the same eigenvectors, which were specified by the unitary matrix
U . In the first part of this derivation, we introduced B′ ··= UHB U . If we assume that B′

is diagonal, i.e., we have B′ = ∆b, we see that this can be achieved by a matrix B that
has the same eigenvectors as the matrices A and Q, i.e., we have B = U∆bUH.

Upper Bound: The approach for the reformulation of the upper bound comprises two
parts. In principle, the idea for the reformulation differs from the approach for the
derivation of the lower bound above, although the first step is very similar. Again, each
chain of equations or inequations is followed by the corresponding explanations for the
manipulations afterwards.

First Part (Upper Bound): For each B ∈ B−, we can write the secret-key rate R⋆
K in

〈4.35〉 with the eigenvalue decomposition notation that we introduced above as

R⋆
K(A, W∆bW H, W∆qW H)

(1)
= log2 det

(
IL + ρ W∆

1
2
q W H(A + W∆bW H) W∆

1
2
q W H

)

− log2 det
(

IL + ρ W∆
1
2
q W HW∆bW HW∆

1
2
q W H

)

(2)
= log2 det

(
IL + ρ W∆

1
2
q (W HA W + ∆b) ∆

1
2
q W H

)

− log2 det
(

IL + ρ W∆
1
2
q ∆b∆

1
2
q W H

)

(3)
= log2 det

(
IL + ρ ∆

1
2
q (W HA W + ∆b) ∆

1
2
q

)

− log2 det
(

IL + ρ ∆
1
2
q ∆b∆

1
2
q

)

(4)
= R⋆

K(W HA W, ∆b, ∆q).

Explanations:

(1) We insert the eigenvalue decomposition of the matrices B and Q into the secret-key
rate function R⋆

K .
(2) In the first term, we expand the matrix product. Additionally, we can apply W HW =

IL, since the matrix W is a unitary matrix.
(3) Sylvester’s determinant theorem allows us to interchange the position of the matrix

W and the other part of the matrix product inside the determinants of both terms.
Afterwards, we apply W HW = IL again.

(4) We finally obtain that the secret-key rate can be expressed as R⋆
K(W HA W, ∆b, ∆q)

for all B ∈ B−.
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Second Part (Upper Bound): Now, we consider the max-min problem that we introduced
for the upper bound above. We reformulate this problem as follows:

max
Q∈Q

min
B∈B−

R⋆
K(A, B, Q)

(1)
= max

∆q∈Q

∆q diagonal

max
W ∈UL

min
∆b∈B

∆b diagonal

R⋆
K(A, W∆bW H, W∆qW H)

(2)
= max

∆q∈Q

∆q diagonal

max
W ∈UL

min
∆b∈B

∆b diagonal

R⋆
K(W HA W, ∆b, ∆q)

(3)

≤ max
∆q∈Q

∆q, ∆b diagonal

min
∆b∈B

max
W ∈UL

R⋆
K(W HA W, ∆b, ∆q)

(4)
= max

∆q∈Q

∆q, ∆b diagonal

min
∆b∈B

(
max

W ∈UL

(
log2 det

(
IL + ρ ∆

1
2
q (W HA W + ∆b) ∆

1
2
q

))

− log2 det
(

IL + ρ ∆
1
2
q ∆b∆

1
2
q

))

(5)
= max

∆q∈Q

∆q, ∆b diagonal

min
∆b∈B

(
log2 det

(
IL + ρ ∆

1
2
q (∆a + ∆b) ∆

1
2
q

)

− log2 det
(

IL + ρ ∆
1
2
q ∆b∆

1
2
q

))
.

Explanations:

(1) We insert the eigenvalue decomposition of the matrices Q and B. Accordingly, we
write the maximization over Q ∈ Q as a (nested) maximization over the eigenvalues
and eigenvectors of Q. The constraint sets are derived from the original constraint set:
The eigenvalue matrix ∆q has to be diagonal and fulfill the constraints specified by
the set Q. The eigenvector matrix W has to be a unitary matrix of dimension L × L.
Consequently, we write W ∈ UL. In principle, we could also write the minimization
over B ∈ B− as a (nested) minimization over the eigenvalues and eigenvectors of B.
However, the eigenvectors of the matrix B have already been fixed by the definition of
the set B−. Thus, if is sufficient to substitute the minimization over B ∈ B− by the
minimization over the eigenvalues of the matrix B. For the corresponding constraint
set, we write ∆b ∈ B, since the eigenvalue matrix has to fulfill the constraints of the
original constraint set. Furthermore, it is required that ∆b is diagonal.

(2) We replace the secret-key rate expression by its equivalent that we obtained as final
result in the first part.

(3) The max-min inequality allows us to interchange the maximization over the eigenvec-
tor matrix W of the matrix Q and the minimization over the eigenvalue matrix ∆b of
the matrix B if the relation symbol is adapted accordingly. The outer maximization
over the eigenvalue matrix ∆q of the matrix Q does not influence the relation.

(4) We insert the expression for the secret-key rate that we obtained at the end of the
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first part. Furthermore, we can apply the maximization over the eigenvector matrix
W of the matrix Q to the first term only, since the second term is independent from
the matrix W .

(5) We consider the maximization of the first term over the eigenvector matrix W for fixed
matrices A, ∆b, and ∆q. From Hadamard’s inequality, we know that the maximum
value of the determinant of the positive-definite matrix IL + ρ ∆

1
2
q (W HA W + ∆b) ∆

1
2
q

is upper-bounded by the product of its diagonal elements. This value is achieved if
and only if this matrix is diagonal. We obtain such a diagonal matrix if the matrix
W HA W is diagonal, which in turn is achieved by setting W = U , i.e., the eigenvectors
of the matrices A and Q have to be the same, which yields W HA W = ∆a. For a
diagonal matrix, the product over its diagonal entries is equivalent to its determinant.

The remaining optimization problem is only an optimization problem over the eigenvalues
of the involved matrices. If we apply the vector notation for the eigenvalues instead of
the matrix notation above, we obtain the constraint sets Q and B and the secret-key
rate expression in 〈5.5〉. Thus, we observe that we can calculate the upper bound on the
problem in 〈5.4〉 equivalently by evaluating the problem in 〈5.5〉.
Conclusion: We have shown that the lower and the upper bound equal both the eigenvalue
problem in 〈5.5〉. Thus, we can conclude that the problem in 〈5.5〉 is equivalent to the
original problem in 〈5.4〉.
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