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1 Introduction

This technical report complements our paper entitled “Scalable error isolation for distributed systems” [3].
In Section 2, we define the distributed system model and formalize the central property of this work:

error isolation. The property dictates that correct processes discard any corrupt input message. Error
isolation can be achieved with traditional techniques such as Byzantine-fault tolerant algorithms. In
this work, however, we are interested in techniques that provide error isolation locally, i.e., exchanging
no additional messages among processes. In Section 2.4.2, we define hardening as a transformation of a
program p into a program ph , such that if all processes of the system run such program ph , then error
isolation is guaranteed locally. If our system is only subject to hardware errors, but no malicious attacks,
hardening can guarantee error isolation with broad coverage.

Section 3 presents the fault model upon which hardening is constructed. Our fault model describes
the effect and extent of arbitrary faults at the process level and is based on the ASC fault model by
Correia et al. [9]. In contrast to their ASC fault model, however, the model presented in this work is
more general, being not tied to a specific hardening approach.

In Section 4, we describe the Scalable Error Isolation (SEI) technique in detail, including model
refinements, fault assumptions, and a correctness proof for single-thread programs. In Section 5, we
extend the definitions, algorithms, and proof to support hardening of multithreaded programs.

Finally, in Section 6, we present additional experimental results and details on the setup used in the
experiments of our companion paper [3].

2 Error isolation in distributed systems

We start by introducing the system model and defining several terms that are used throughout this work.
This section motivates and sets the basis for the formalism we present starting in Section 3.
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2.1 System model

A distributed system is a set of processes Π = {π1, . . . , πn}, with n > 1, that communicate via message-
passing over a network. The processes and the network are the components of the distributed system.
We use in our definitions the time of a wall clock not accessible by the system.

Each component of the system is modeled as a state machine, which consists of state variables and
state transitions. A state is an assignment of values to the state variables. The system state – also called
configuration in the literature [14, 15] – encompasses the state of all system components, i.e., processes
and network. An execution – also called behavior [21, 20] – is any infinite sequence of system states. A
system execution is an execution given by interleaved state transitions of the system components, starting
from some initial system state. Finally, a property is defined as a set of executions [31].

There are two types of components in a system. The network component is simply a set into which
and from which processes send and receive messages. The processes are precisely defined in Section 3.1.
In a nutshell, a process π executes the following state transitions in a loop. First, π receives a message
from the network, removing it from the network set and storing it in its input buffer. Next, π handles
the input message by performing some computation based on its state and the message, modifying its
internal state, and (possibly) generating one or more output messages, which are placed in π’s output
buffer. Finally, π sends any output message to the network, by removing the message from the output
buffer and writing it into the network set. Note that the details of message receive and send are not
relevant for our work; hence, we model them as single state transitions. The handling of a message is,
however, represented as a series of state transitions.

2.2 Faults, errors, and failures

Intuitively, faults are defects or adversarial conditions that when activated can cause errors. Errors may
propagate and become externally visible as failures.

In more detail, faults, also called fault transitions or fault steps, are special state transitions added
to the components of the system [11, 21]. When a fault transition is taken in an execution, an error
occurs. Errors are abnormal system states. A component commits a failure if an error becomes visible
to other components of the system or to an external user. In other words, a failure is a deviation from
the component’s expected external behavior.

A component failure can manifest in different ways. A commission [19] or value failure [28] is an
unexpected message or a message with unexpected content sent out by a component. An omission
failure is the absence of a message expected to be sent by a component. More precisely, based on the
current system state, an omniscient observer would expect a message being sent by the component, but
none is sent. In system models that assume some form of synchrony, failures can also manifest on the
time domain, being called timing failures [28] or performance failures [12]. Since we make no synchrony
assumptions, we do not consider timing/performance failures.

2.3 Fault models

To conclude this section, we introduce two fault models: the crash-stop fault model and the arbitrary-
fault model. They serve as baselines for our new fault model in Section 3.

2.3.1 Crash-stop fault model

In the crash-stop fault model [9], processes might crash and the network might lose, duplicate, reorder,
or misroute messages. The most prevalent of these failures is the process crash. A process π commits
a crash failure by performing a crash-fault transition into a halt state from which no further transition
of π is possible. From the halt state, process π can only commit omission failures, sending no further
message out. The remainder failures are due to the network component. Message omission, duplication,
and reordering are well-known problems in point-to-point communication, and are typically solved by
retrying and piggybacking sequence numbers to messages [4]. Misrouting can also be easily detected if
the sender appends the process identifier of the destination process to each message it sends; and the
receiver checks whether it is indeed the right destination process of every message it receives.

In general, algorithms designed to tolerate crash-stop failures are easier to reason about [7, 25] and
in many cases preferable to arbitrary-fault-tolerant algorithms [10, 28]. In this work, we assume all
distributed algorithms in consideration can tolerate crash-stop failures.
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2.3.2 Arbitrary-fault model

The arbitrary-fault model extends components with arbitrary faults, which are fault transitions to any
representable state of a component, e.g., corruption of messages in the network, corruption of a variable in
a process, substitution of the entire operating system image, etc. Besides failing with crash-stop modes,
a component might fail arbitrarily by committing a value failure, i.e., by sending corrupt messages out.
We define a corrupt message as follows.

A generation history for a message m is a sequence of messages that could be received by a correct
process in order to generate m.

Definition 1 (Message precedence) Let π be a process. Let mout and m ′
out two output messages.

Let m ′
in be the input message π handled in order to produce m ′

out . We say that mout precedes m ′
out if

and only if π sends mout before it receives m ′
in .

A process π receives the input message m when it starts executing the event handler that takes m
as input.

Definition 2 (Generation history of a message) Let π be a faulty process. Let h be a subsequence
of the sequence of correct messages received by π. Let m be a message sent by π. The subsequence h is a
generation history for m if there exists a run in which π is correct and π outputs m after receiving each
message in h.

Note that a message can have multiple generation histories, corresponding to multiple runs where the
message might have been produced.

A correct message m is one that has a correct generation history h, that is, a generation history
guaranteeing that previous history is not lost. The inductive definition is as follows.

Definition 3 (Correct generation history of a message) Let π be a faulty single-threaded process.
Let m be a message sent by π.

• If π has sent no message m ′ before m such that m ′ has a correct generation history, then all
generation histories of m are correct for m.

• Else, for each output message m ′ preceding m, let H be set of correct generation histories of m ′.
A generation history of m is correct if and only if it extends some generation history in H .

This definition refers to a single-threaded process where the precedence relationship among messages
is a total order. We will consider the multithreaded case in Section 5.

Definition 4 (Correct message) Let π be a faulty process. A message m currently sent by π is correct
if and only if it has a correct generation history.

Definition 5 (Corrupt message) A message m is corrupt if and only if it is not correct.

This definition of correct message forces every correct output message to take into consideration the
effect of all correct output messages that have been processed previously and became externally visible.
Messages received together can be processed in any order, but they must result in consistent histories.

Messages are always part of the state of some component. Hence, a corrupt message can be equiva-
lently defined by referring to the state representing the message inside the component. If that state is
corrupt, the message is corrupt; and vice versa. Such a definition of corrupt message, however, requires
a precise notion of state corruption, which we first introduce in Section 3.

Beyond corrupt messages, arbitrary faults can manifest as omission failures [19] as well, but we
attribute omission failures to the network.

Remarks on the Byzantine-fault model. From a failure perspective, the arbitrary-fault model
and the Byzantine-fault model [22] are equivalent. Nevertheless, Byzantine faults often only model the
specification deviation, i.e., the value or omission failure, ignoring the actual internal state corruption
– see, for example, the definition by Castro and Liskov [5]. That is not a problem, but a feature of the
Byzantine-fault model. One can abstract away the causes of a Byzantine failure and simply model the
Byzantine failures as fault transitions.

In this work, however, we are interested precisely in the arbitrary faults that become Byzantine
failures (i.e., arbitrary failures). We model an arbitrary-fault transition as an arbitrary change of the
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Classification Failure Fault

correct no –
crashed crash crash transition
faulty no arbitrary transition
contaminated no corrupt message received and processed
failed corrupt message from faulty or contaminated

Table 1: Process classification according to failure and fault

internal state of a system component. (Normal) state transitions might then propagate the caused error
to finally become a Byzantine failure. This level of modeling is particularly important to reason about
the correctness of SEI because, as we will define in the next section, the challenge in devising a hardening
technique such as SEI is in detecting internal state corruptions before they become arbitrary failures.

2.4 Problem definition

In an execution subject to arbitrary faults, an omniscient observer can classify a process π as correct,
crashed, faulty, contaminated, or failed. Table 1 relates this classification with the faults and failures
process π suffers and commits. In this work, it is sufficient to classify only the processes; we do not
classify the network component as faulty, crashed, etc.

Process π is correct if it neither commits a failure nor suffers a fault. Process π becomes crashed
if it fails by performing a crash transition. If process π fails by sending a corrupt message, then π is
classified as failed, independently of the fault that caused the failure. If process π suffers a fault other
than a crash transition, π does not have to immediately fail; in fact, it may never fail. While process π
is in an erroneous state, but not yet failed, p is classified as faulty or contaminated depending on which
type of fault π has suffered first. A process π becomes faulty if π performs an arbitrary fault transition.
A process π becomes contaminated if π receives, processes, and modifies its state according to a corrupt
message sent by some other component – the other component being the network or another process.

2.4.1 Error isolation

The central objective of this work is coping with failure propagation due to arbitrary faults in distributed
systems. We call failure propagation the contamination of a process as a result of an arbitrary failure of
another component. Different from faulty processes, contaminated processes are induced to transition
into an erroneous state by an external fault source. One cannot restrict by assumption how many
processes might get contaminated in this way because a contaminated process can again contaminate
other correct processes, disrupting the whole system at some point as in Amazon S3 case [13].

Processes of a fault-tolerant system do not propagate failures as long as the system guarantees error
isolation, which is defined as follows.

Property 1 (Error isolation) A correct process π discards a received message m without modifying
its state according to m if m is corrupt.

A corollary of Property 1 is that, if error isolation holds, no correct process is ever contaminated.
Error isolation could be easily achieved by crashing correct processes. To rule out such solutions, we

also need this additional property.

Property 2 (Accuracy) A correct process π is never induced to crash or discard a correct message.

2.4.2 Hardening

Under the crash-stop model, error isolation is trivially guaranteed. A process follows its specification
until it crashes, sending no corrupt messages. In the arbitrary-fault model, error isolation is challenging
to guarantee. Byzantine-fault tolerance is one way to achieve error isolation at the cost of additional
hardware components [5, 6, 23]. In this work, we exclusively focus on faults caused by transient hardware
errors as opposed to malicious adversaries or bugs. We argue that hardening can make the probability
of failure propagation negligible.

To define hardening precisely, we first introduce the concept of message validity. This definition of
message validity is based on the observation that often error-detection codes, e.g., cyclic redundancy
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check (CRC), are used to protect messages during transmission [32]. The error-detection codes define a
syntax of messages that can be accepted as correct.

Definition 6 (Message validity) Let M be the set of all possible messages sent in the system. Let
CV ⊂ M define the set of messages that pass the acceptance test of a given error-detection code. A
message m is valid iff m ∈ CV , otherwise m is invalid.

Note that invalid messages and corrupt messages are not the same. Valid and invalid messages
are statically defined for all executions with the set CV ⊂ M – any valid message m is contained in
CV, whereas any invalid message m is contained in M \CV . Whether a message is correct or corrupt,
however, depends on the sequence of messages received by a process (see Definition 5). If no fault occurs,
a correctly-implemented error-detection code never classifies correct messages to be invalid.

Any corrupt but valid message is a potential threat to the system if the system is not designed to
cope with arbitrary failures. The goal of hardening is to make corrupt but valid messages impossible
in any execution of the system. In a hardened system, a correct process can determine if a message is
correct by directly inspecting the error-detection code piggybacked in the message.

Hardware errors in the network. Using the concept of message validity, the following assumption
rules out the arbitrary behavior of the network component that is not caused by hardware errors.

Assumption 1 (No spurious messages) If a valid message m is received by a process πr at a time
tr , then another process πs sent m at time ts ≤ tr .

In other words, Assumption 1 asserts that the network never creates valid messages as if it were
a process, except for duplicated messages. If the network component does create a message, then the
message is invalid.

Assumption 1 has a low assumption coverage in systems subject to malicious adversaries. A hacker
could break the error-detection code and insert corrupt but valid messages in the compromised network
component. However, if the system is never subject to attacks, which is our focus in this work, arbitrary
faults have a negligible probability of producing a valid message. A message encompasses header fields,
checksum, payload, etc. Creating an corrupt but valid message spontaneously would require one or more
highly improbable fault transitions in the network component. Note that valid messages might still be
duplicated, but duplicates are tolerated since they are in the set of crash-stop failures.

Hardware errors in the processes. In the hardening problem, message validity should be more than
a checksum protecting the message against corruption of the network; it should represent an evidence of
good behavior of the process sending the message. Intuitively, hardening is any software-only, process-
local technique that translates “good” and “bad” behavior of a process into the validity of the messages.
By software-only we mean a technique that requires no additional hardware components or processes to
work – although it might use additional hardware to minimize its overhead. By process-local we mean a
technique that requires no additional communication between processes, i.e., the process alone decides
whether it is behaving correctly or not and translates this information as message validity.

In an environment with no spurious messages (Assumption 1), a hardening technique should es-
sentially achieve the following two properties in addition to accuracy (Property 2) to guarantee error
isolation.

Property 3 (Local error exposure) For any output message m of a faulty process π, if m is corrupt,
then m is invalid, i.e., m /∈ CV .

Property 4 (Local error filtering) For any message m received by a correct process π, if m /∈ CV ,
then π discards m without changing its state.

Together these properties define the hardening problem.

Definition 7 (Hardening) A hardening technique transforms a native program p into a hardened pro-
gram ph such that a process π executing program ph guarantees local error exposure (Property 3), local
error filtering (Property 4), and accuracy (Property 2).

6



A hardened process is a process executing a hardened program. Definition 7 asserts that a correct
hardened process never changes its state according to any invalid message received. More importantly,
a faulty hardened process never sends out any corrupt but valid message.

Note that Property 3 constrains the behavior of faulty processes. That is, however, impossible under
arbitrary faults. Independent of how the hardening is implemented, the information representing the
detection of an error has to be present in some state variable or a combination of state variables. One
or multiple arbitrary faults could always erase this information, leaving no traces back. Any hardening
technique, consequently, has to make further assumptions about the format and/or frequency of the arbi-
trary faults. In Section 4.1, we formulate these additional assumptions for our SEI-hardening technique;
in our paper [3] and in Section 6.1, we experimentally evaluate the coverage SEI’s assumptions. For the
sake of argument, we assume here such a hardening technique (cf. Definition 7) exists.

The following theorem directly results from Assumption 1 and Definition 7.

Theorem 1 Let p be the native program running in a process π ∈ Π of a given distributed system. If
every process π ∈ Π executes a hardened program ph , then error isolation (Property 1) holds.

Proof:
1. Every corrupt message is invalid.
1.1. Any corrupt message sent out by the network is invalid by Assumption 1.
1.2. Any corrupt message sent out by a hardened process π ∈ Π is invalid by Property 3.

2. Error isolation (Property 1) holds.
2.1. Correct processes discard any invalid messages by Property 4.
2.2. Correct processes discard any corrupt messages by Steps 1 and 2.1.

✷

3 Modeling process faults

In this section, we precisely model arbitrary process faults and build the framework upon which the
SEI-hardening technique is constructed and its fault assumptions can be stated. Since our main goal is
to prevent error propagation with techniques local to processes, we have to model the faults occurring
inside components, in particular, inside processes – arbitrary faults occurring in the network are ruled
out by Assumption 1.

We start by modeling the process execution, assuming processes work in a strict receive-handle-send
loop (Section 3.1). Next, we present our arbitrary state corruption (ASC) fault model (Section 3.2).
Since the fault model depends on the definition of the process model, we often refer to both models
together simply as the ASC model.

3.1 Process model

A process π is a deterministic state machine composed of state variables and a set of state transitions.

3.1.1 Process state

We model the state s of a process as an assignment of values from a domain D to the set of variables V ;
the variables V represent memory locations, registers and the program counter. Note that the domain
D is the same for all variables.

Definition 8 (State) Given a set of variables V used by a process π and a values domain D, a state
s of process π is a surjective function s : V → D.

We use the notation v to indicate a variable and s[v ] to indicate the value of the variable at state s –
we loosely follow the TLA+ language notation [20], in which functions are denoted with square brackets.
Unless noted otherwise, s[v ] represents the current value of variable v , whereas s ′[v ] represents the value
of v after the next state transition is performed. For simplicity, we occasionally indicate v as a value
when the state including v is clear from the context. In particular, we indicate pc as the value of the
program counter (i.e., s[pc]), and pc’ the next value of the program counter (i.e., s ′[pc]).
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Program variables: A program p running on a process π does not have to use all variables in V (see
Definition 12 for the definition of program p). We define the program variables Vp ⊂ V to be the set of
all variables potentially used by any execution of process π running a program p. We assume that Vp is
a strict subset of all variables V , i.e., there are always variables that are not used by p. This restriction
facilitates the design of hardening mechanisms because it allows us to reason about all variables of a
process, including the hardening-specific variables, before actually introducing the hardening technique.

Message buffer variables: Messages are represented with sets of variables in the state of processes.
The set of variables Vi ⊂ Vp represents the next input message to be handled, whereas the set of
variables Vo ⊂ Vp represents the next output messages to be sent. For convenience, we assume that
Vi ∩Vo = { }, i.e., a process possesses an input buffer and an output buffer.

3.1.2 Handler programs and handle steps

The execution of a process π is a loop divided into three phases: message receipt, message processing, and
message sending. These phases are three types of steps the process can take – note that a process may
also take stuttering steps. To model the message processing phase, we need the concepts of instructions,
operations and programs.

Definition 9 (Instruction) An instruction i is a tuple 〈operation, operands〉.

Definition 10 (Operation and operands) An operation is a machine operation as understood from
ordinary computers, e.g., an addition, a subtraction, a conditional jump. The operands of an operation
are specific variables or constant values used in the operation.

Although there is a difference between instruction and operation, i.e., an instruction is a concrete
assignment of operands to an operation, we often use these terms interchangeably.

Operations can be branching and non-branching. The non-branching operations, e.g., arithmetic
operations, always increment the pc by 1, letting the program counter point to the following instruction.
The branching operations set the pc according to their operands, e.g., an unconditional branch Jmp(v)
sets the pc to the address in variable v .

Definition 11 (Source and target operands) The operands of an instruction are divided in groups:
source operands and target operands. An operation might use the value of the source operands, perform
a computation and write the result in the target operands.

Although the program counter pc is modified by all operations, pc is not part of the target operands
of any instruction except when explicitly used as an operand. Therefore, branching instructions have no
target operand since they only modify the pc.

We now define what programs are and how they are executed.

Definition 12 (Handler program) A handler program p is an indexable sequence of instructions,
denoted as 〈i1, . . . , iN 〉; in other words, a function p : {1, . . . ,N } → I , mapping indices from 1 to N into
the set I of all instructions.

Definition 13 (Handle step) Given a handler program p for process π, a handle step Handle(s) ap-
plies the instruction p[pc] to the current state s resulting in a new state s ′.

We allow only well-formed handler programs. Any well-formed handler program eventually termi-
nates.

Definition 14 (Well-formed handler) A handler program p is well-formed iff, for any correct state
s with pc = 1, by successively applying handle steps, eventually an instruction of p sets pc = N + 1.

By setting pc to N + 1, we model the termination of the handler and the return of control to the
caller.

In our model, the instructions of a program p are not part of the variables V of the process. This
modeling decision does not cause major limitations to our model, but simplifies its presentation. We
discuss this point further in Section 3.2.
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Figure1:ExampleoftwotraversalsinsomeexecutionE|π.

3.1.3 Processcommunication

Sinceprocessπispartofadistributedsystem,wealsoneedtomodelcommunication.Inadditionto
handlesteps,aprocesscanbemodeledwithamessagereceiptandamessagesendingstep. Areceive
stepreadsamessagemfromthenetworkandwritesmintothepredefinedsetofvariablesVi.Ifthere
aremessagestobesentout,asendstepwritesintothenetworkthemessagesformedbythepredefined
setofvariablesVo.Otherwise,thesendstepdoesnothing.
Aprocessstatetransitioncanbeeitherthereceiptofamessageifpc=0,aprogramstepHandle(s)

if0<pc≤N,orthesendingofoutputmessagesifpc=N+1.Formally,thefollowingpredicateholds
foreverystatesofprocessπrunningaprogramp:

Next
∆
=

∨pc=0 =⇒ Receive∧pc′=pc+1
∨pc>0∧pc≤N =⇒ s′=Handle(s)
∨pc=N+1 =⇒ Send∧pc′=0

Suchamodeling,nevertheless,requiresaprecisedefinitionofthereceiveandsendsteps.Inturn,that
furtherrequiresustoconsiderthewholedistributedsystemtodeterminewhichmessagescanbesentin
everystep.Instead,weoptforasimpler,butequivalent,modelingusingtheconceptofatraversal.

3.1.4 Traversals

Atraversalisthepartofanexecutionofaprocessπfromthetimewhenaninputmessageisstoredinto
thevariablesVi–i.e.,thetraversal’sinitialstate–untilthetimetheoutputmessagesinvariablesVo
arereadytobesentintothenetwork–i.e.,thetraversal’sfinalstate.Stateddifferently,atraversalofa
processπrunningaprogrampisanexecutionofthehandlestepswhile1≤pc≤N.Theexecutionofa
processconsequentlyisasasequenceoftraversalsinterleavedwithreceiveandsendsteps(seeFigure1
foranexampleexecutionwithtwotraversals). Withthismodeling,wecanreasonaboutthecorrectness
oftraversals,insteadofcompleteprocessexecutions.
Aprocessstatetransitionisdefinedasfollows.

Definition15(Processstatetransition) Givenaprogrampforprocessπ,astatetransitionNext
iseitheraprogramstepHandle(s)if1≤pc≤Norstutteringstepsoncepc=N+1.Formally,the
followingpredicateholdsforeverystates:
Next

∆
=

∨pc≥1∧pc≤N =⇒ s′=Handle(s)
∨pc=N+1 =⇒ pc′=N+1

Thecommunicationismodeledbymanypossibletraversalinitialstates,eachofthemwitha(po-
tentiallydifferent)messagestoredinthevariablesVi.LetIbesuchasetoftraversalinitialstates. We
nowdefineatraversal.

Definition16(Traversal) Atraversalofprocessπrunningaprogrampisanexecutionstartingfrom
atraversalinitialstates∈IfollowedbystatessatisfyingtheprocessstatetransitionNextorastuttering
step.Formally,

Traversal
∆
=(s∈I)∧✷(Next∨s′=s)

The✷operatorindicatesthat,foreverypairofconsecutivestatess,s′ inanytraversal,theNext
formulaholdsortheprocessstutters. Thestutteringstepss′=sarestepsinwhichtheprocessdoes
nothing.
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The difficulty of modeling traversals is exactly on defining the set of possible initial states I . For
that, we use the set of all possible executions (of the complete system), and then select those states of π
immediately after a message has been received by π, i.e., immediately after a message has been written
into the variables Vi and pc = 1. Figure 1 shows an example of two traversals in some execution of π.
The traversal initial states are the first states within the traversals, i.e., {s1, si+3} ⊆ I .

Definition 17 (Traversal initial states I ) Let E be all possible executions of the system. Remember
that an execution e = 〈S1,S2, . . .〉 is a sequence of states Si = 〈sπ1

, . . . , sπN
, snetwork 〉 comprising the state

of processes in Π and network component. Let E |π be the set of executions E restricted to the states of
process π. Finally, let A be the set of all states in all executions of π, i.e., A = {s : ∀s ∈ e : ∀e ∈ E |π}.
The set of correct traversal initial states I is the subset of A such that s [pc] = 1 for every state s ∈ I .

3.2 Fault model

So far our process model does not contain faults. We now introduce the arbitrary state corruption
(ASC) fault model, which is essentially the arbitrary-fault model (Section 2.3) recasted for single-process
traversals. In the ASC fault model, faults are state transitions [10] that form a disjunction with the
process state transitions [21]. A traversal starts from some initial state and performs a sequence of
transitions. Each transition of the traversal is either a Next or a Fault . Formally, ✷(Next∨Fault∨s ′ = s)
holds for every pair of consecutive states 〈s, s ′〉 in any traversal of π.

Figure 2 shows an example of an execution E1|π forking into execution E2|π at state s2 with a Fault
step. The first traversal of execution E1|π is the sequence of states s1, s2, . . . , si+1, whereas the first
traversal of E2|π is the sequence of states s1, s2, s

2
3 , . . . , s

2
k+1.

1 In the ASC fault model, a Fault step can
be a crash transition or an arbitrary process fault, i.e., the corruption of one or more variables in V .

3.2.1 Crash faults

We now model the process faults in the crash-stop fault model, i.e., the crash of a process π running a
program p. We assume the existence of a program counter value “halt” different from 0, . . . ,N +1. The
process π performs no further state transitions if pc = “halt”.

Definition 18 (Crash fault) A crash fault is a crash transition that is only enabled if the process is
not halted yet. A crash transition sets the program counter to the “halt” value. Formally,

Crash
∆

= pc′ = “halt”

Halted
∆

= pc = “halt”

Fault
∆

= ¬Halted ∧ Crash

When pc = “halt”, the process state transition Next is never enabled – i.e., it is always false – because
every clause in the disjunction asserts that pc is some value in the set {0, . . . ,N +1} (see Definition 15).
Since Next and Fault are disabled if Halted is true, the only possible state transitions of process π after
a crash are stuttering steps s ′ = s.

Note that Definition 18 is concerned with process faults. Network faults in the crash-stop fault model –
i.e., omission, reordering, duplication, and misrouting – are all captured by the initial state I with faults,
as defined in Section 3.2.4. Also note that our notation does not comply with the full TLA+ language [20]
when defining state transitions such as Next or Fault . To simplify the presentation, we often only mention
the variables that are modified in the state transition. For example, in Fault of Definition 18, pc′ is set
to “halt”, while all other variables in V are kept unmodified. With this simplification, we avoid adding
a disjunction to Fault with ∀v ∈ V \ {pc} : s ′[v ] = s[v ] or some equivalent construction.

3.2.2 Arbitrary process faults

We now define the corruption faults of a process π running a program p. Corruption faults can potentially
modify the whole state of process π, and any arbitrary (Byzantine) failure of process π can be modeled
as a corruption fault.

1We use a superscript to indicate to which execution the state belongs to, e.g., s2
3
belongs to execution E2|π .
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s0 s1 s2 si si+1 si+2 si+3 si+4 sj sj+1 sj+2

s23 s24 s2k s2k+1 s2k+2 s2k+3 s2k+4

Receive Next ... Next Send Receive Next ... Next Send

Traversal1ofE1|π Traversal2ofE1|π

Fault

Next ... Next Send Receive Next ...

Continuingtraversal1ofE2|π Traversal2ofE2|π

Figure2:ExampleofafaultaffectingatraversalofexecutionE1|π.ThefaultforksE1|πintoanother
executionE2|π.

Definition19(Variablecorruption) Avariablecorruptionchangesthevalueofavariablev∈Vto
anarbitraryvaluex∈Dsuchthatthenewvaluexisdifferentfromthecurrentvalues[v].Formally,
theformulaCorruptiondefinesavariablecorruption:

Corruption(v)
∆
= ∃x∈D:s[v]=x∧s′[v]=x

Inthiswork,wedefineasingletypeofcorruptionfault:arbitrarystatecorruption(ASC).AnASC
faultcorruptsasetofvariablesW ⊆V(followingDefinition19),whileleavingallothervariableswith
theirpreviousvalues.

Definition20(Arbitrarystatecorruption) AnArbitraryStateCorruption(ASC)faultisthecor-
ruptionofanysubset W⊆Vofvariables.Formally,

ASCFault
∆
= ∃W ⊆V:∀w∈W :Corruption(w)

Onecouldimagineothertypesofcorruptionfaultssuchasthecorruptionofasinglevariable,orthe
corruptionofasinglebitinavariable.ASCfaultsresultinweaker(i.e.,moregeneral)properties,which
includemorerestrictiveformsofcorruptionfaults(e.g.,SingleEventUpset).
Notethatwearenotinterestedinthecausesofthecorruptionfaults,justontheireffect,i.e.,the

errorscausedbythem.Inourprocessmodel,allconditionsrequiredbyaprocesstoperformaNext
steparepresentinitsstate,soitisnaturalthatfaultsonlycorrupttheprocessstate. Forexample,
afaultdoesnothavetocomputeanadditionincorrectlybecausethatisequivalenttoperformingthe
additionandcorruptingtheresultingvalueinthestateafterwards.Inthisway,ASCfaultscapture
hardwareerrorsinaunifiedwayregardlessofwhetherahardwareerroraffectsmemoryelementsor
affectscombinationallogiccircuitsthateventuallywriteintomemoryelements. Alsonotethatany
variablev∈V canbecorrupt,notonlyprogramvariablesVp.Sincehardeningalgorithmsmayonly
havebookkeepingvariablesinV,thesevariablesarealsosubjecttocorruption.
Wenowdefineanarbitraryprocessfault.

Definition21(Arbitraryprocessfault) Anarbitraryprocessfaultiseitheracrashtransitionoran
ASCfault.Anarbitraryprocessfaultisonlyenablediftheprocessisnothalted.Formally,

Fault
∆
= ¬Halted∧(Crash∨ASCFault)

Transient,intermittent,andpermanentfaults. IntheASCfaultmodel,corruptionfaultsare
transient:theycorruptstatevariablesoncetheyoccur,butlaterwritesintothecorruptvariablescan
correcttheirvalues.Intermittentandpermanentfaultsare,nevertheless,possibleinourfaultmodel.
TheASCfaultmodelpersedoesnotrestrictthefrequencyinwhichASCfaultsmayoccur.Apermanent
orintermittentfaultcanbemodeledasseveraloccurrencesofthesametypeofASCfault. However,
Section4.1introducesanupperboundonthefrequencyofASCfaultstomakeshardeningmorepractical.
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Faults in the program instructions. In our model, the state of π might be corrupt, but not the
program p since p is not modeled as part of the process state. A transient corruption of the text segment
of a program, i.e., its instructions, typically result in a crash or in an ASC fault, for example, if the
corrupted instructions incorrectly modify variables. Evidence from both our experiments and related
work [9] suggests that text corruption is mostly harmless, since it quickly leads to the crash of the faulty
process.

3.2.3 Corrupt variables and reference state

To reason about the correctness of SEI, we have to precisely define what corrupt and correct variables are.
We introduce a specification-only reference state r (following Definition 8). The state r is not accessible
by the system and is only used to specify faults and reason about correctness of the algorithms. A
variable is said to be corrupt while its value in s is different from its value in r .

Definition 22 (Corrupt and correct variable) A variable v ∈ V is corrupt iff the value of v in s
is different from the value of v in r; otherwise v is correct. Formally,

Corrupt(v)
∆

= s[v ] 6= r [v ]
Correct(v)

∆

= ¬Corrupt(v)

Intuitively, the reference state r of process π takes the same process state transitions and the same
stuttering steps as state s. Nevertheless, if an arbitrary fault affects the state s, it does not affect the
reference state r . Consequently, a corruption fault might make the value of variables in s and r diverge;
the error might also be propagated to other variables via Next steps. Moreover, a corruption fault might
also “fix” a corrupt variable, i.e., the fault might make the value of some variable in s match again the
value in r . We now define reference state transitions, reference fault transitions and reference initial
states.

Definition 23 (Reference state transition) The reference state transition RNext is given by Defi-
nition 15 using state r instead of s.

Definition 24 (Reference fault transition) The reference fault state transition RFault is defined as
follows:

RFault
∆

=
∨ s ′[pc] = “halt” =⇒ r ′[pc] = “halt”

∨ s ′[pc] 6= “halt” =⇒ r ′ = r

RFault is a disjunction with two cases. In the first case, if the process halts/crashes, then the next
value of pc in state r is also set to “halt”. In the second case, if a fault different from a crash occurs in
s, RFault stutters state r .

Definition 25 (Reference initial states Ir) The same as Definition 17, but where E is the set of all
possible executions of the system under crash-stop failures.

The crash-stop failures in Definition 25 do not only refer to process crashes, but also to network
faults considered in the crash-stop model (see Section 2.3). Although the reference initial states have no
corrupt variables, they might contain misrouted or reordered messages in Vi due to these network faults
– remember that we assume the system can tolerate such failures.

3.2.4 Traversals with corruption faults

In general, we have to model and cope with two failure cases illustrated by the example in Figure 3.

Case 1 (direct corruption): A fault directly corrupts variables causing an arbitrary failure. For ex-
ample, before the Send step is taken after state si+1, a fault corrupts the variables in Vo and the
corrupt data is sent out at state s3i+2.

Case 2 (error propagation): A fault causes a failure indirectly. For example, a fault corrupts vari-
ables of the program at state s2 and the error propagates to variables in Vo via Next steps. The
process then sends corrupt data out at state s2k+1.
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Figure3:ExampleofafaultaffectingexecutionE1|πinsideandoutsideatraversal.ThefaultsforkE1|π
intootherexecution.

NotethatCase1canalsooccurduringatraversal,insteadofoccurringafteratraversal.Imaginea
variablev∈VoisonlymodifiedbyaNextstepfromstates1tos2.Inafault-freeexecution,viscorrect
whensentoutintheSendstepatstatesi+1.However,ifaFaultstepcorruptsvatstates2andnoNext
stepmodifiesvuntils2k+1,thenviscorruptwhensentoutintheSendstepfroms

2
k+1tos

2
k+2.

AlsonotethatCase2mightbecomeafailureonlyinsomefurthertraversal,forexample,attheend
oftraversal2ofexecutionE2|π.Consequently,thetraversalinitialstatesoftraversal2inexecutionE1|π
andinexecutionE2|πaredifferent.Therefore,tomodelallpossibletraversals,wenotonlyaddFault
stepstothesetofstatetransitionsoftheprocess,butwealsoaddfaultsinthetraversalinitialstates,
sothatatleastoneoftheinitialstatescontainsthevariablecorruptionoftraversal1inE1|π.
Wenowreformulatethedefinitionofatraversal(Definition 16)totakefaultsandthereference

stateintoaccount. Wejointheprocessstatetransitionswiththereferencestatetransitions,i.e.,(Next∧
RNext).Sincefaultsdonotcorruptthereferencebydefinition,wejointhefaulttransitionswithreference
faulttransitions,i.e.,(Fault∧RFault).Statetransitionsalwayssatisfythefollowingformula:

✷(Next∧RNext)∨(Fault∧RFault)∨(s′=s∧r′=r)

Sincethepreviousdefinitionoftraversalinitialstate(Definition17)doesnotconsidercorruption
faults,weredefinethetraversalinitialstateasfollows.

Definition26(TraversalinitialstatesIswithfaults) Atraversalinitialstatesisanystatethat
iseithercorrect,i.e.,equaltothereferenceinitialstater∈Irofthetraversal,orsomevariablevis
suchthats[v]=r[v].ThesetofinitialvaluesIsboilsdowntothesetD

|V|ofallpossiblestatesfora
setofvariablesV–rememberthatDisthedomainofvaluesofallvariables.

Withreferencestatetransitions RNext,thesetIrofreferenceinitialstates,andthesetIsoftraversal
initialstates,wecanredefinetraversalsbycouplingthetransitionsonrandons.

Definition27(Traversalwithfaultandreferencestate) Atraversalwithfaultsandreferencestate
ofprocessπrunningaprogrampisanexecutionstartingfromapotentiallycorruptinitialstatefollowed
bystatessatisfyingtheprocessstatetransitionsNextandthereferencestatetransitionsRNext,orthe
faultstatetransitionsFaultandthereferencefaulttransitionsRFault,orastutteringstep.Formally,

Traversal
∆
=

∧r∈Ir∧s∈Is
∧✷(Next∧RNext)∨(Fault∧RFault)∨(s′=s∧r′=r)

Insummary,theinitialreferencestaterisoneofthepossiblereferenceinitialstatesofDefinition25.
TheinitialstatesisoneofthepossiblestatesinIs–beingeitherequaltororcorrupt.Ifaprocess
statetransition(Nextstep)takesplace,thenareferencestatetransition(RNextstep)takesplaceas
well.Ifafaulttransition(Faultstep)takesplace,thenareferencefaulttransition(RFault)takesplace.
Finally,ifthestatesstutters,thereferencestaterstutters.
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Remark on fault assumptions. Note that without any further restrictions, corruption faults can
change the variables in any way and arbitrarily often, including the initial state of the traversal. Defini-
tion 27 allows for ASC faults to induce a process π to commit Byzantine failures, i.e., sending corrupt
but valid messages. To work correctly, SEI requires a small set of fault assumptions, which we introduce
in Section 4.1.

Remark on stuttering traversals. If an ASC fault causes the program counter to point N +1 before
any variable is modified, this traversal is said to stutter due to a fault. A traversal that stutters due to a
fault simply results in message omissions – i.e., an input message not being processed – and/or message
duplication – i.e., an output message being sent again. Such failures can be mapped as network faults
in the distributed system model. Hence, we do not consider traversals that stutter due to faults in our
process fault model.

3.2.5 Relation between corrupt variables and corrupt messages

We conclude this section by showing that if a process π sends a corrupt message (cf. Definition 5) then
there is at least one variable v ∈ Vo that is corrupt (cf. Definition 22). Lemma 1 allows us to reason
exclusively on corrupt variables in the design of SEI in the next sections.

Lemma 1 (Corrupt message implies corrupt Vo) Let E be an execution of the distributed system
and σ = 〈T1,T2, . . .〉 the sequence of traversals executed by process π in E that modified a variable in the
state, i.e., we ignore stuttering traversals. Let mk

o be an output message sent by process π in a traversal
Tk ∈ σ. If message mk

o is corrupt, then there exists v ∈ Vo such that Corrupt(v) holds at the end of Tk .

Proof:
1. Let se be the state at the end of traversal Tk such that se [pc] = N .
2. Let re be the reference state at the end of traversal Tk such that re [pc] = N .
3. By transposition, it is sufficient to show that if ∀v ∈ Vo : ¬Corrupt(v) at state se , then mk

o is a
correct message according to Definition 4, i.e., mk

o has a correct generation history.
4. Assume ∀v ∈ Vo : se [v ] = re [v ] according Step 3 and definition of Corrupt(v) (Definition 22).
5. Let r ji be the reference initial state of a traversal Tj .

6. Let m j
i be the input message represented by the values of Vi in state r ji .

7. hk = 〈m1
i ,m

2
i , . . . ,m

k
i 〉 is a correct generation history hk for message mk

o .
7.1. hk is a generation history for message mk

o , by Definitions 2 and 27 since we only consider non-
stuttering traversals.

7.2. The precedence relationship of Definition 1 is a total order, since π is single-threaded and deter-
ministic.

7.3. Case: k = 1
7.3.1. π sends no output message before m1

o , therefore hk is correct.
7.4. Case: k > 1
7.4.1. Let message m j

o be the correct message sent by π in a traversal Tj such that there is no mo

that precedes mk
o but does not precede m j

o .
7.4.2. By induction, hj = 〈m

1
i ,m

2
i , . . . ,m

j
i 〉 is a correct generation history for m j

o .

7.4.3. hk = 〈m1
i ,m

2
i , . . . ,m

j
i ,m

k
i 〉 extends hj , therefore it is correct. ✷

4 Single-threaded SEI-hardening

In this section, we present the SEI-hardening of single-threaded programs. The extension to multiple
threads is presented in Section 5. The single-threaded SEI-hardening achieves error isolation and can
leverage encoded replica state to save space. We first refine the process and fault models we have defined
in Section 3, follow it with a presentation of SEI-hardening, and prove its correctness.

4.1 Model refinements

SEI-hardening differentiates between global and local variables. Intuitively, global variables are variables
in the main memory that might be allocated throughout multiple traversals, whereas local variables are
registers holding values temporarily. We differentiate between local and global variables in this context
to represent the flow of values when performing a computation. When incrementing the value of a global
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variable v , for example, the value of v is copied to a register (some local variable vl), which is then
incremented.

A more precise definition of global and local variables is as follows:

Definition 28 (Global variables) The set Vg ⊂ V is the set of global variables of process π. Global
variables are long-lived variables, whose values are used in multiple traversals of process π. The global
variables are initialized with default values in the initial state of the first traversal of π, and their values
depend on the sequence of traversals.

Definition 29 (Local variables) The set Vl ⊂ V is the set of local variables of π, where Vl∩Vg = { }.
Local variables are short-lived variables, e.g., registers, whose values are discarded once a traversal has
finished. Local variables are initialized with default values before being used in each traversal.

Following a RISC-like architecture, we assume all computations are performed on local variables, and
global variables are only accessed via load and store operations.

Definition 30 (Load and store operations) Global variables can only be accessed via Ld and St
operations:

• Ld(vd , vs) loads the value of global variable v pointed by a local variable vs , i.e., v = s[vs ], into a
local variable vd .

• St(vd , vs) stores the value of a local variable vs into a global variable v pointed by a local variable
vd , i.e., v = s[vd ].

Moreover, only global variables can be accessed via Ld and St operations, i.e., a local variable v1 ∈ Vl

cannot point to another local variable v2 ∈ Vl .

The restriction of Ld and St operations being only used to access global variables helps us to precisely
define the transformations rules in the next section. In practice, however, memory locations can also
be used as local variables, e.g., the program stack. In fact, our compiler-based implementation of SEI
considers variables in the stack – which are stored in the main memory – as a set of local variables,
and differentiates at run time whether the Ld or St operation is accessing a global variable in the main
memory, or a local variable in the main memory.

In our algorithms, we make use of the Abort operation defined as follows.

Definition 31 (Abort operation) The Abort operation sets the pc with “halt” (see Page 10), forcing
the process to stop performing further Next steps.

4.1.1 Corruption coverage

The goal of SEI is to guarantee Properties 2, 3, and 4 in face of corruption faults. In particular,
guaranteeing Property 3 is the major challenge since it asserts what a faulty process is allowed to
do. Local error exposure (Property 3) asserts that if a faulty process sends a corrupt message out, this
message is invalid. Consider again the example in Figure 3. SEI should guarantee that this property holds
whenever a traversal terminates, e.g., at states si+1, s

2
k+1, s

3
i+6, etc. Without any further assumption,

however, corruption faults can change the variables in any way and arbitrarily often, inducing a process
π to commit Byzantine failures, i.e., sending corrupt but valid messages. Therefore, we have to restrict
Fault steps and faults in the initial state with fault assumptions, otherwise the traversal might lead to
or even already start at a state in which local error exposure can be violated.

The first fault assumptions SEI relies upon is corruption coverage2. Corruption coverage inhibits
the possibility of “direct corruptions” (Case 1 in Page 12) becoming arbitrary failures. The intuition
behind corruption coverage is that a hardening technique can employ some form of space redundancy to
protect a subset of variables of V . SEI protects all variables in Vg ⊂ V , i.e., the set of global variables,
and consider the sets Vi and Vo to be part of Vg . For each (protected) variable in Vg , SEI reserves a
replica variable, as we explain in Section 4.1.2. Corruption coverage then asserts that every variable in
Vg modified by a Fault step at state s is invalid at state s ′.

2Corruption coverage is called fault diversity in the terminology of Correia et al. [9].
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Assumption 2 (Corruption coverage) A Fault step at some state s satisfies corruption coverage if
and only if it is a crash transition or if every variable v ∈ Vg modified during the fault is invalid at
state s ′. Formally, the ASCFault (Definition 20) formula is composed via conjunction with the following
formula:

CorruptionCoverage
∆

= ∀v ∈ Vg : s ′[v ] 6= s[v ] =⇒ ¬Valid ′(v)

where the primed formula Valid ′(v) is the formula Valid(v) with state s ′.

The concept of message validity (Definition 6) states that messages are sent out with enough infor-
mation to be classified as valid or invalid by a correct receiver. Since messages are stored in the state
as variables in Vi and Vo , and Vi and Vo are part of Vg , it is natural to use the space redundancy
in the process state – i.e., the replica variables of Vg – to also protect messages in an end-to-end fash-
ion. Consequently, corruption coverage guarantees that, if a message is corrupted in the network, then
some variables representing the message are invalid upon receipt. Also, if a fault directly corrupts some
variable v ∈ Vo at some state s, then v is invalid at state s ′, implying that the message m /∈ CV . In
our example, a fault directly corrupting a variable v ∈ Vo at state si+1 results in an invalid variable v
at state s3i+2. If the message represented by Vo is sent out at state s3i+2, then a correct process receiv-
ing the message can discard it. Corruption coverage allows the hardening techniques to focus on error
propagation (see Page 12) since direct corruptions cannot result in corrupt messages by assumption.

Corruption coverage also has to hold at the traversal initial states, rendering a corrupt message in
Vi invalid. We redefine the set of traversal initial states as a function of the reference initial state r as
follows.

Definition 32 (Traversal initial states Is(r) with faults) A traversal initial state s is any state
that is either correct, i.e., equal to the reference initial state r ∈ Ir of the traversal, or for every variable
v such that s [v ] 6= r [v ], v is invalid in s. Let D |V | represent all possible states for a set of variables V .
The set of all possible traversal initial states Is(r) ⊆ D |V | is formally defined as follows.

Is(r)
∆

= Ir ∪ {s ∈ D |V | : ∀v ∈ Vg : s[v ] = r [v ] ∨ ¬Valid(v)}

4.1.2 Replica variables

SEI employs space redundancy to detect faults. We now define the set of replica variables Vr and related
sets of variables Vs and Vh . Next, we define Valid(v) for v ∈ Vg .

Definition 33 (Replica variables Vr) The set of variables Vr ⊂ V is such that Vr ∩ Vg = { },
Vr ∩Vl = { }, and |Vr | ≥ |Vg |.

Definition 34 (Replica mapping µr) There is an injective function µr : Vg → Vr that maps each
variable in Vg to a distinct variable in Vr . If a variable v ∈ Vg and a variable v̄ ∈ Vr are such that
µr [v ] = v̄ , then v and v̄ are called replica variables.

Figure 4 depicts the main sets of variables of a process π. By definition, global variables and only
global variables have replicas. The set of replica variables Vr is neither global nor local. In practice,
replica variables are most likely to be hosted in the main memory just as global variables. Nonetheless,
the replica of a variable does not need to be a complete copy: ECC in main memory and CRC for messages
are examples of redundant information, in hardware or software, that can be used to implement replicas
in reduced space.

Recall that the set of all variables of program p running on process π is Vp ⊂ V (see Section 3.1).
We define parts of Vg and, indirectly, of Vr to be exclusive for the program p or for bookkeeping of SEI.

Definition 35 (Program state) The set Vs = Vp ∩ Vg is the set of all global variables used in the
program p running on process π. The part of the state formed by the variables Vs is referred to as the
program (global) state.

Definition 36 (Hardening state) The set Vh ⊂ Vg is the set of all global variables used by SEI-
hardening. The set Vh is such that Vh ∩Vs = { }. The part of the state given by variables Vh is referred
to as the hardening state.
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Figure 4: Variables of process π. The set of all variables is V = Vl ∪Vg ∪Vr . The set of all variables of
program p running on process π is Vp . The set of all global variables of program p running on process
π is Vs = Vp ∩Vg .

We model the variables representing input and output messages (i.e., Vi and Vo , respectively) as
subsets of Vs since, in practice, messages are part of the program variables and are typically stored in
main memory. As discussed in Section 2.4.2, we assume that an error-detection code is transmitted along
with each message sent over the network. Since the sets Vi and Vo , being part of the global variables,
have counterpart replica variables in Vr , one could be inclined to directly use those replica variables
as error-detection code for the messages. In practice, however, if the replica variables are implemented
with ECC memory, then a SEI-hardening implementation cannot retrieve the values of these replica
variables when sending a message since the hardware does not allow direct access to the ECC memory.
Moreover, a SEI-hardening implementation cannot directly write the replica variables (i.e., the error-
detection code or CRC) received from network into the ECC memory. Therefore, we model a second set
of replica variables exclusive for variables in Vi ∪ Vo . This second set of variables can be a part of Vg

or Vl depending on the implementation.

Definition 37 (Replicas of Vi and Vo) The set of variables Vi ⊂ V represents the input message,
with Vi ⊂ Vs . The set of variables Vo ⊂ V represents the output messages, with Vo ⊂ Vs . Each variable
v in Vi ∪ Vo has two replica variables: v̄ ∈ Vr and v̈ ∈ V . The set V̄i and V̄o represent the first set
of replica variables of Vi and Vo, respectively. The set V̈i and V̈o represent the second set of replica
variables of Vi and Vo, respectively.

Notation of replica variables. We use a bar on top of a variable v to represent its replica in Vr :
the bar can be thought as the complement of v . We use a double dot on top of a variable v to represent
v ’s second replica (if v is an input or output message): the double dot can remind that v̈ is the second
replica of v . In Table 2, we list all variables sets used in our model.

One of the fault assumptions of SEI-hardening is corruption coverage (Assumption 2). Corruption
coverage asserts that if a global variable is corrupted by a fault, its replica does not have the same value
at some state s, i.e., ¬Valid(v) does not hold at s. Defining Valid(v) for variables in Vg\(Vi ∪ Vo) is
straightforward: Valid(v)

∆

= s[v ] = s[v̄ ]. If a fault corrupts a variable v ∈ Vg\(Vi ∪Vo) at state s, then
at state s ′ it holds that s ′[v ] 6= s ′[v̄ ] by corruption coverage. Remember that s ′ is the state immediately
following s in the process execution.

In contrast, defining Valid(v) for input and output variables requires more care since such variables
have two replicas. Corruption coverage guarantees that Valid(v) does not hold after a fault. One may
try to define Valid(v)

∆

= s[v ] = s[v̄ ] ∧ s[v ] = s[v̈ ]. Such a definition does not reflect the intuitive
notion of corruption coverage because after a fault corrupting some variable v ∈ Vo , it could hold that
s[v ] 6= s[v̄ ] and s[v ] = s[v̈ ]. Unfortunately, it violates local error exposure (Property 3) since a Send
step would send v and v̈ out. Even if the SEI-hardening checks whether s[v ] = s[v̄ ] before sending
out a message containing v , this check could be skipped by a control-flow fault (SEI-hardening allows
faults to affect the control-flow, as we will see below). Therefore, we define the validity of Vi and Vo

as Valid(v)
∆

= s[v ] = s[v̄ ] ∨ s[v ] = s[v̈ ] because the negation of Valid(v) gives the corruption coverage
property we intuitively search for.
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Definition 38 (Valid(v) predicate) Valid(v) is defined for each subset of Vg as follows.

Valid(v)
∆

= s[v ] = s[v̄ ] for all v ∈ Vg \Vi ∪Vo

Valid(v)
∆

= s[v ] = s[v̄ ] ∨ s[v ] = s[v̈ ] for all v ∈ Vi ∪Vo

Valid(v̄)
∆

= Valid(v) for all v̄ ∈ Vr

Valid(v̈)
∆

= Valid(v) for all v̈ ∈ V̈i ∪ V̈o

For every global variable v that does not belong to Vi or Vo , v is valid at a state s if and only if
Valid(v) holds, i.e., v equals v̄ . In case v is an input or output variable, Valid(v) also holds if v equals
the second replica v̈ . If a variable v ∈ Vi ∪Vo is equal to only one replica, e.g., v̄ , we say that v is valid
with respect to v̄ and invalid with respect to v̈ . We also define Valid(v) for replica variables (v̄ and v̈),
although we do not use the predicate directly in our proofs. This definition is important because an ASC
fault could corrupt only the replica variables of a variable v , without modifying v itself.

An ASC fault can never turn a variable to become valid again, i.e., ¬Valid(v) holds from immediately
after a fault corrupts a variable v until v is assigned to a new value by some instruction of program p or
by the Receive step.

4.1.3 Fault frequency

Besides assuming corruption coverage, SEI-hardening assumes an upper bound on the frequency of fault
occurrences within a traversal. An execution of the system – i.e., a sequence of traversals – can observe
an unbounded number of faults. In particular, we do not assume any bound on the number of faults
between traversals.

Assumption 3 (Fault frequency) A single fault might occur in a traversal A of a process π.

Fault frequency is a system-specific assumption because the execution time of handler programs and
even the execution time of single instructions changes from system to system. Nevertheless, we target
distributed systems which handle events in less than milliseconds, which is a reasonable fault frequency
bound considering the error rates published in the literature [9]. The fault model consequently assumes
that no two faults occur within such a short time window. The frequency of uncorrectable hardware-level
data corruption reported by studies “in the wild” indicate that this assumption holds with very high
probability [26, 29, 18].

A consequence of assuming fault frequency is that SEI cannot tolerate permanent hardware faults
(see discussion on Page 11 of Section 3.2). The fault frequency assumption also renders SEI vulnerable to
faults affecting the text segment, i.e., the program instructions, because such faults behave as permanent
faults. Evidence suggests, however, that faults corrupting the text segment quickly lead to a process
crash [16]. Moreover, such faults are innocuous if hardware error detection is employed (over the whole
memory hierarchy) because every loaded instruction is compared to its replica when the processor fetches
the instruction.

4.1.4 Pointer corruptions

In SEI-hardening, we assume that the use of corrupt pointers invariably leads to a process crash. If a
load or store operation is executed using a corrupt local variable as a pointer, i.e., the corrupt local
variable points to some arbitrary value in the memory picked at random by a fault, then the process
crashes.

Assumption 4 (Benign pointer corruption) If a corrupt local variable vl ∈ Vl is used in a Ld or
St operation, then π immediately crashes.

Assumption 4 asserts that pointer corruption faults result in crashes with such a high probability that
we can consider negligible the probability of π not crashing when using a corrupt pointer in a load or
store operation. This assumption is extremely important in SEI-hardening. If pointer corruptions were
allowed, we would have to reason about the effects of error propagation to any variable in the program.
Assumption 4 restricts the error propagation to those variables intended to be written or read in the
algorithms.
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Since pointers cannot be corrupt, we can define high-level read and write operations to simplify the
presentation of our algorithms. These operations refer directly to a global variable instead of referring to
a local variable that points to the global variable. In an implementation of SEI, however, there is such
a local variable pointing to the global variable.

Definition 39 (v → vl) The read operation v → vl loads the value of the global variable v ∈ Vg into
the local variable vl ∈ Vl .

Definition 40 (v ← vl) The write operation v ← vl stores the value of the local variable vl ∈ Vl into
the global variable v ∈ Vg .

Note that Correia et al. achieve a similar simplification in PASC with their access fault assumption [8].

4.1.5 Further assumptions

Finally, we introduce the last two assumptions of SEI-hardening, which are also used in PASC.

Assumption 5 (Immutable input messages) Input messages are only read and never modified. In
other words, no variable v ∈ Vi is ever modified within a traversal.

Assumption 6 (Initially correct state) The first state of the first traversal of an execution of a
process π is correct, i.e., s = r.

4.2 SEI-hardening specification

We now present the specification of SEI-hardening. SEI-hardening transforms the program p running on
a process π of a crash-stop tolerant distributed system into a hardened program ph . By hardening the
programs running on all processes of the system, the system can tolerate arbitrary faults in non-malicious
environments (see Section 2.4.2). The SEI-hardening transformation mainly duplicates the execution of
p and inserts several checks to guarantee error isolation.

SEI does not define how the transformation is to be implemented. In particular, our specification
does not dictate whether the implementation realizes replicas using software-based error-detection codes
or leveraging existing hardware error detection mechanisms.

4.2.1 Blocks and gates

In SEI, a program is divided in blocks and gates. Blocks are sequences of instructions implementing
either the original functionality in program p, or implementing part of the hardening. Gates are also
sequences of instructions, but they serve to check the control flow of the traversal only.

The first transformation rule of SEI defines the structure of a hardened program, independently of
the program p itself.

Rule 1 (Hardened program structure) A hardened program ph is a sequence of gates and blocks as
shown in Algorithm 1.

A traversal of a SEI-hardened program ph is an interleaved execution of blocks and gates starting
with the block Filter . Line 84 represents the end of the handler program, i.e., once the execution reaches
Line 84, messages might be sent out (see process model in Section 3.1). The gates guarantee that the
high-level control flow executes correctly, i.e., that the blocks Filter , Prepare1, Prepare2, Exec1, Reset ,
Exec2, and Validate execute in the order given by Algorithm 1. As we will describe below, FirstGate,
Gate(. . .) and LastGate are the procedures given by Algorithm 8. We first focus on the presentation of
the blocks assuming blocks execute in order, and ignoring the existence of the gates. We describe the
gate algorithms later in this section.

Algorithm 2 describes the three Initialization blocks. The Filter block checks whether the input
message is valid, discarding it in case it is invalid by jumping to the first instruction after the program
ph (Line 84). The Prepare1 block initializes the bookkeeping data structures used by SEI. The Prepare2
performs reinitializes all data structures. The repetition of the operations guarantees that if the Prepare1
block is skipped by a fault, the data structures are still correctly initialized. Note that if Filter is skipped
by a fault, a validity check in Validate aborts process π.

Once the input message is checked, and the data structures are initialized, the Exec1 block executes
program p for the first time (Algorithm 1). Subsequently, the Exec2 block executes program p for the
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program ph
1 Filter
3 FirstGate
9 Prepare1

13 Gate(cfp , cfg)
18 Prepare2
22 Gate(cf1, cfp)

*27 Exec1
28 Gate(cfr , cf1)
33 Reset
48 Gate(cf2, cfr )

*53 Exec2
54 Gate(cfc , cf2)
59 Validate
73 LastGate

84

Algorithm 1: Hardened program ph

block Filter
1 if ¬CheckMessage(Vi) then
2 goto 84

block Prepare1
9 foreach v ∈ Vs do

10 O̊(v) ←vv̄ false

11 N̊ (v) ←vv̄ false

12 U (v) ←vv̄ false

block Prepare2
18 foreach v ∈ Vs do

19 O̊(v) ←vv̄ false

20 N̊ (v) ←vv̄ false

21 U (v) ←vv̄ false

Algorithm 2: Initialization blocks: Filter ,
Prepare1, and Prepare2

function CheckMessage(Vc) do
+0 foreach v ∈ Vc do
+1 if v 6= v̄ or v 6= v̈ then
+2 return false

+3 return true

Algorithm 3: Validity check of input
variables (Vc = Vi) or output variables
(Vc = Vo)

function Check(Vc) do
+0 foreach v ∈ Vc do
+1 if v 6= v̄ then
+2 return false

+3 return true

Algorithm 4: Validity check of a set of
variables Vc ⊆ Vg

second time. Blocks Exec1 and Exec2 are transformed versions of the original program p using Rules 2-6.
Between Exec1 and Exec2 blocks, the Reset block rolls back all changes done in Exec1 to variables in Vs ,
so that Exec2 can repeat the same computation. Finally, the Validate block compares the computations
of Exec1 and Exec2 performing a series of checks.

We do not restrict how blocks and gates are implemented – as, for example, procedures, functions,
or macros. To ease the presentation, blocks and gates are all inlined to form a single line count over all
blocks (the numbers on the left margin of the algorithms). Some algorithms are used multiple times, not
having an absolute line number. In such algorithms, we prefix the line numbers with a “+” sign. Blocks
Exec1 and Exec2 count for a single line – marked with a “*” sign in Algorithm 1 – since their length
depends on the specific program p being used. Finally, lines of the algorithms may represent several
instructions, e.g., if-then structures. “The execution of a line” means that the process takes enough Next
steps so that all instructions of the line are executed. We do not consider all instructions of a line to be
executed atomically with respect to Fault steps.

4.2.2 Transferring trust from and to message replicas

As discussed in Section 4.1, with each message m sent over the network, a replica of m (possibly in the
form of an error-detection code such as CRC) is sent along to detect data corruption. Upon receiving
a message m, process π writes m into the variables of Vi and V̄i . Moreover, π writes the replica of
message m – i.e., the error-detection code – into the second replica variables V̈i . Intuitively, the double
check in Filter (Algorithm 2, Line 1) and Validate (Algorithm 5, Line 69) “transfers” the validity from
the replica variables V̈i to the replica variables V̄i . Lemma 2 formalizes this intuition.

Algorithm 3 represents the validity check for messages, whereas Algorithm 4 represents the validity
check for any other variable in Vg . The ability to check the validity of variables quickly is essential in
SEI-hardening because these checks are performed very often. To support different implementations, we
do not specify how exactly the validity check is implemented. If the system leverages existing hardware
error-detection codes, then the check v 6= v̄ is automatically performed by the hardware with any ordinary
load operation of v . Once the validity of the input message has been “transferred“, the variables in Vi
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can simply be checked against the variables in V̄i as normal variables; having the benefit of fast checks
if these are used in the implementation.

4.2.3 Data structures

SEI uses three data structures to bookkeep changes to variables in Vs :

• O is a set data structure representing the old values of variables in Vs modified during Exec1.

• N is a set data structure representing the new values of variables in Vs modified during Exec1.

• U is a map data structure marking the variables in Vs modified (updated) during Exec2.

O , N and U are instances of two simple data structure types: maps and sets. We model maps and
sets as follows.

Definition 41 (Map data structure) A map data structure D is a set of global variables VD ⊂
Vg\Vs and a bijective function µD : Vs → VD .

At each state s, a map data structure implements an in-memory function that maps each variable v
in Vs to some value (possibly different than s[v ]). For any v ∈ Vs , we use the shorthand notation “D(v)
at state s” meaning the value of µD [v ] at state s, i.e., s[µD [v ]].

Definition 42 (Set data structure) A set data structure D is composed of a map data structure D
and an auxiliary map data structure D̊. For all v ∈ Vs , the variable µD [v ] stores a value for variable v.
For all v ∈ Vs , if the value of the variable µD̊ [v ] is true, the set data structure is said to contain v,
otherwise v is not in the set data structure.

When s[µD̊ [v ]] = true, the set contains a value for variable v , i.e., the value s[µD [v ]]. When
s[µD̊ [v ]] = false, the set does not contain a value for variable v , and the value s[µD [v ]] is undefined.
For any v ∈ Vs , we use the shorthand notation:

• “v ∈ D at state s” meaning that D̊(v) at state s is true, i.e., s[µD̊ [v ]] = true; and

• “v /∈ D at state s” meaning that D̊(v) at state s is false, i.e., s[µD̊ [v ]] = false.

Data structures are initialized in blocks Prepare1 and Prepare2. They are initialized twice because
a partial initialization can compromise the correctness of the hardening. Clearly, these definitions of
data structures are rather space inefficient. In a real implementation, these data structures would not
contain a mapping for all variables in Vp , but instead they would dynamically adapt to the currently
used variables. The definitions above however simplify our formalization. They are general enough
to represent many real implementations of set and map data structures because they require multiple
instructions to introduce elements in the set or map. These instructions are not atomic with respect to
Fault steps.

4.2.4 High-level assignments

We now define two high-level assignment operations used in the algorithms of blocks and gates. These
operations write a value to or copy the value between variables in Vg . The operations writing any
variable v ∈ Vg also write in its replica variable v̄ ∈ Vr .

Definition 43 (v ←vv̄ vl) Given a global variable v ∈ Vg and a local variable vl ∈ Vl , the high-level
instruction v ←vv̄ vl writes the value of vl into the variable v and its replica v̄ .

+0 v ← vl
+1 v̄ ← vl

Since vl is a local variable, vl has no replica. A corruption of vl can cause v and its replica v̄ to be
corrupt and valid, i.e., equal. In our algorithms, we also use v ←vv̄ true or v ←vv̄ false, where true
and false are constants. In such cases, a fault cannot make both replicas have the same value since
constants are part of the instruction, and assume no faults occur in the text segment by definition (see
discussion in Section 3, Page 12).
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Definition 44 (v ←Cpy w) Given two global variables v ,w ∈ Vg , the high-level instruction v ←Cpy w
copies the value of w into v and its replica v̄ . We store the value of w temporarily in the local variable
vl ∈ Vl . The high-level assignment v ←Cpy w is the following sequence of instructions:

+0 w → vl
+1 v ←vv̄ vl

Note that, in a real computer equipped with ECC in its memory modules, copying the value of a
memory location w to another location v does not automatically copy w ’s error code into v ’s error code.
Our modeling of copying values between global variables captures this window of vulnerability by first
copying the value of w into a local variable vl . Since vl is a local variable, a corruption of vl can then
propagate to v and v̄ . SEI can detect such corruptions, as proved below.

4.2.5 Transformation of program p into blocks Exec1 and Exec2

Block Exec1 is the original program p with Rules 2, 3, and 5 applied, whereas block Exec2 is program
p with Rules 2, 4 and 6 applied. These rules substitute read (v → vl) and write instructions (v ← vl)
in program p with sequences of instructions that additionally check the validity and manipulate the
bookkeeping data structures.

Rule 2 (Reading variable v ∈ Vs in blocks Exec1 and Exec2) A read instruction v → vl , with global
variable v ∈ Vs and local variable vl ∈ Vl , is substituted by the following sequence of instructions.

replace v → vl with
+0 if ¬Check(v) then
+1 Abort

+2 v → vl

The validity check of variable v ∈ Vs ∪Vi is performed only the first time v is read in Exec1 and the
first time v is read in Exec2.

Before a variable is read, its validity is verified by comparing it with its replica. This verification is
cheap if we use hardware memory protection. If software-level memory protection is used instead, it is
sufficient to do the check only the first time a variable is read in the block. In fact, in this case the cost
of verifying if the variable has been already read can be lower than the cost of executing the comparison.

Rule 3 (Writing variable v ∈ Vs in blocks Exec1) A write instruction v ← vl , with global variable
v ∈ Vs and vl ∈ Vl , is substituted by the following sequence of instructions.

replace v ← vl with
+0 if v /∈ O then
+1 if ¬Check(v) then
+2 Abort

+3 O(v) ←Cpy v

+4 if ¬Check(O̊(v)) or v ∈ O then
+5 Abort

+6 O̊(v) ←vv̄ true

+7 if ¬Check(v) or v 6= O(v) then
+8 Abort

+9 v ←vv̄ vl

+10 if ¬(̌O̊(v)) or v /∈ O then
+11 Abort

The sequence of instructions from Line +3 to +6 add the value of v to the set O . In particular,
the value of v in the data structure O is up-to-date after Line +3, but v is only contained by O , i.e.,
v ∈ O , from the state after the execution of Line +6. The check at Line +5 guarantees no control-flow
error can force a second execution of Line +3. The check at Line +8 guarantees that the validity of v is
propagated to O(v).

Write assignments during the second execution are simpler than in the first execution:
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Rule 4 (Writing variable v ∈ Vs in blocks Exec2) A write instruction v ← vl , with global variable
v ∈ Vs and local variable vl ∈ Vl , is substituted by the following sequence of instructions.

replace v ← vl with
+0 U (v) ←vv̄ true

+1 v ←vv̄ vl
+2 if ¬Check(U (v)) or v /∈ U then
+3 Abort

First, v is added to U . Next, the original assignment to v is executed along with a write to v̄
(Line +1). Finally, the validity and containment in U is checked.

The variables belonging to output variables have to additionally update their second replicas. We
define two rules which are applied before Rules 3 and 4.

Rule 5 (Writing variable v ∈ Vo in blocks Exec1) The following instruction is inserted before a write
instruction v ← vl in block Exec1, with local variable vl ∈ Vl and output global variable v ∈ Vo.

before v ← vl insert
+1 v̈ ← ∼ vl

Rule 5 writes the 1-complement of vl ’s value into the replica variable v̈ , before a write operation
executes in Exec1 stores the value of vl into v . That guarantees that the message m represented by the
variables in Vo is invalid with respect to the variables in V̈o . In case a fault induces a jump out of the
traversal directly to Line 84, the message in Vo can be safely sent since it is invalid.

Rule 6 (Writing variable v ∈ Vo in blocks Exec2) The following instruction is inserted before the
last write instruction v ← vl in block Exec2, with local variable vl ∈ Vl and output global variable v ∈ Vo.

before v ← vl insert
+1 v̈ ← vl

Rule 6 writes again into v̈ , but this time it writes the value of vl . If a fault induces a jump out the
traversal at this point, the value of vl is correct by the fault-frequency assumption. Hence, if the message
in Vo is valid, then it is the correct message. Note that if v is written multiple times in the block, only
the last write to v is accompained by a write to v̈ .

4.2.6 Resetting and validation

The final two blocks introduced into ph are Reset and Validate (Algorithm 5). Closely resembling
Rule 3, the Reset block loops over all variables in O and restores their old values, while saving their new
values in N . Moreover, Reset checks the validity of O before finishing.

The Validate block first checks the validity of data structures U and N . Next, it checks that the final
value of each variable v ∈ Vs is the same as the value of N (v). Both foreach loops check that every
variable in U is also in N and vice versa. Finally, the Validate block checks the message validity of the
input and output messages. The check at Line 69 in conjunction with the message validity check in the
Filter block guarantee that the input variables Vi are valid not only with respect to V̄i but also with
respect to V̈i . The check at Line 71 guarantees that the output variables Vo are valid with respect to
V̈o if the output message is valid with respect to V̄o .

4.2.7 Control-flow gates

SEI-hardening is straightforward to be proved correct as long as faults do not affect the control flow of
the program. Control-flow faults entangle the reasoning because they can change in several different ways
the order in which the instructions are executed. To simplify the design of SEI, we introduce control-flow
gates, a mechanism that “confines” the control-flow faults within the blocks.

Intuitively, control-flow gates enforce that a fault cannot make the process leave the block where the
fault occurs without crashing the process. The scheme mainly provides two guarantees: First, a fault in

23



block Reset
33 foreach v ∈ O do
34 if v /∈ N then
35 if ¬Check(v) then
36 Abort

37 N (v) ←Cpy v

38 if ¬Check(N̊ (v)) or v ∈ N then
39 Abort

40 N̊ (v) ←vv̄ true

41 if ¬Check(v) or v 6= N (v) then
42 Abort

43 v ←Cpy O(v)

44 if ¬Check(N̊ (v)) or v /∈ N then
45 Abort

46 if ¬Check(O) then
47 Abort

block Validate
59 if ¬Check(U ) or ¬Check(N ) then
60 Abort

61 foreach v ∈ N do
62 if ¬Check(v) or v 6= N (v) then
63 Abort

64 if v /∈ U then
65 Abort

66 foreach v ∈ U do
67 if v /∈ N then
68 Abort

69 if ¬CheckMessage(Vi) then
70 Abort

71 if ¬CheckMessage(Vo) then
72 Abort

Algorithm 5: Reset and Validate blocks

e1 B1

e2 if cf = true then
e3 Abort

e4 cf ←vv̄ true

e5 B2

e6 if cf = false then
e7 Abort

Algorithm 6: Example: single
control-flow gate

e1 B1 (* Block 1 *)

e2 if cf1 = true then (* Gate 1 *)

e3 Abort

e4 cf1 ←vv̄ true

e5 B2 (* Block 2 *)

e6 if cf2 = true then (* Gate 2 *)

e7 Abort

e8 cf2 ←vv̄ true

e9 if cf1 = false then
e10 Abort

e11 B3 (* Block 3 *)

e12 if cf2 = false then (* Gate 3 *)

e13 Abort

Algorithm 7: Example: sequence of control-
flow gates

the current block cannot jump back into a previous block. Second, a fault in the current block cannot
jump into the next block.

To understand how gates achieve these guarantees, consider the example program shown in Algo-
rithm 6 containing two blocks, B1 and B2, and a variable cf initialized with the value false (cf stands
for control-flow flag). We assume that in fault-free traversals, no instruction in B1 jumps into B2, nor
any instruction in B2 jumps into B1. Blocks can be seen as strictly separate “phases” of a fault-free
traversal. In this example, we also assume that cf is not corrupted by a fault, only the control flow, i.e.,
the program counter.

Assume a control-flow fault occurs in B2. The fault cannot jump into B1 without crashing the process.
We show why: We know that Line e4 is executed correctly since the fault occurs in B2, which is after
Line e4. A jump from B2 into B1 would execute instructions in B1 and eventually execute Line e2.
Since we assume at most one fault per traversal, the second time Line e2 is executed, the process crashes
because cf is true. The process does not crash the first time Line e2 is executed because cf is initialized
with false (outside the pseudo-code).

Now assume a control-flow fault occurs in B1. The fault cannot jump into B2 without crashing the
process. A jump from B1 into B2 would execute instructions in B2 and eventually execute Line e6. We
know that Line e6 is executed correctly since the fault occurs in B1, which is before Line e6. The process
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procedure FirstGate
3 if ¬Check(cfg) or cfg = true then
4 Abort

5 cfp , cf1, cfr , cf2, cfc ←vv̄ false

6 if ¬Check(cfg) or cfg = true then
7 Abort

8 cfg ←vv̄ true

procedure Gate(cfnext, cfprev)
+0 if ¬Check(cfnext) or cfnext = true then
+1 Abort

+2 cfnext ←vv̄ true

+3 if ¬Check(cfprev) or cfprev = false then
+4 Abort

procedure LastGate
73 cfg ←vv̄ false

74 if ¬Check(cfp) or cfp = false then
75 Abort

76 if ¬Check(cf1) or cf1 = false then
77 Abort

78 if ¬Check(cfr ) or cfr = false then
79 Abort

80 if ¬Check(cf2) or cf2 = false then
81 Abort

82 if ¬Check(cfc) or cfc = false then
83 Abort

Algorithm 8: Control-flow gates

crashes because Line e4 is skipped by the fault and cf is initially false. In fault-free traversals, the
process does not crash since cf is set to true at Line e4.

So far, the scheme partially confines faults within blocks: a fault in B1 can either jump back inside
B1 or jump exactly at cf = true (Line e4); likewise, a fault in B2 can either jump back inside B2 or
jump exactly at cf = true. A fault in B1 or B2 can still leave the traversal completely jumping to some
line after Line e7, however. We deal with faults leaving the traversal in Section 4.4.

The scheme described above can be combined to confine faults in several blocks. Algorithm 7 shows
an example with 3 blocks. Gates 1 and 2 guarantee that no control-flow fault can jump from B1 into B2

and vice versa; whereas Gates 2 and 3 guarantee that no control-flow fault can jump from B2 into B3

and vice versa. Additionally, Gates 1, 2 and 3 together guarantee that no fault can jump from B1 into
B3 because the gates are chained: the check of the assignment to cf2 (Lines e6 and e8) takes place before
the last check of cf1 (Line e9). If a fault in B1 jumps into B3, then cf2 is false and the process crashes.
Recall that only one fault can occur per traversal by assumption, hence, no second fault occurs to jump
over Line e12. If a fault in B1 jumps exactly at Line e8, then cf2 is set to true, but the process crashes
at Line e9 anyhow because cf1 is false.

The generalization of this scheme is used in SEI-hardening (Algorithm 1) and is described in Algo-
rithm 8. The following control-flow flags are used: cfg is the control-flow flag of Prepare1, cfp of Prepare2,
cf1 of Exec1, cfr of Reset , cf2 of Exec2, and cfc of Validate.

The control-flow flag cfg additionally protects the whole traversal when a fault jumps out of the
traversal by forcing a subsequent traversal to crash the process. Moreover, the hardening of the blocks
guarantees that Vo is either invalid with respect to V̈ or it is correct if such a fault occurs.

Definition 45 (First initialization of the control-flow flags) In the first state of the first traversal,
all control-flow flags except cfg are initialized with true; cfg is initialized with false.

Remember that the initial state of the first traversal of an execution is correct by assumption (As-
sumption 6). In each Gate(. . .), the flags have to be initially false, otherwise the process crashes at
Line +0 of the gate. As shown in Algorithm 8, FirstGate initializes all flags with false if and only if
cfg is false.

If one fault jumps out of the current traversal A, cfg is not set to false since Line 73 is skipped. In a
subsequent traversal B , a fault might occur since we assume at most one fault per traversal. If no fault
occurs, process π crashes in the check of Line 3 since cfg is true. A fault could, nevertheless, occur and
jump over this line. The double check for cfg = true at Line 6 guarantees that no fault can skip both
checks and still reset the other control-flow flags to false. A fault in traversal B that skips both checks
ends up also skipping the reset of the control-flow flags. If process π does not skip the reset of the flags,
then it must execute one of the checks of cfg , which causes it to crash.

If some flag other than cfg is initially true in traversal B and not reset at Line 5, then π will crash
in the respective gate at Line +0. The only way to set the cfg to false is by executing the LastGate.
However, LastGate crashes the process if any of the other control-flow flags is false. As we will show in
the correctness proof of Section 4.4, the only possible scenario is a fault in the subsequent traversal B
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Set Description Relation

V all variables of π
Vg global variables of π Vg ⊂ V
Vl local variables of π Vl ⊂ V
Vr replica variables of π Vr ⊂ V
Vp variables used by program p Vp ⊂ V
Vs global variables used by program p Vs = Vp ∩Vg

Vh global variables used by hardening Vh ⊂ Vg and Vh ∩Vs = { }

Vi input message variables Vi ⊂ Vs

V̄i input message’s first replica V̄i ⊂ Vr

V̈i input message’s second replica V̈i ⊂ Vg or V̈i ⊂ Vl

Vo output message variables Vo ⊂ Vs

V̄o output message’s first replica V̄o ⊂ Vr

V̈i output message’s second replica V̈o ⊂ Vg or V̈o ⊂ Vl

O variables with old values of variables in Vs O ⊂ Vh

O̊ variables marking modified variables in Vs O̊ ⊂ Vh

N variables with new values of variables in Vs N ⊂ Vh

N̊ variables marking modified variables in Vs N̊ ⊂ Vh

U variables marking modified variables in Vs (Exec2) U ⊂ Vh

Flags control-flow variables of gates Flags ⊂ Vh

Table 2: Summary of all variable sets used in SEI-hardening

jumping over the FirstGate into the same block K where the previous traversal A was left by the first
fault. We show that such sequence of faults is equivalent to a single fault confined to block K .

4.3 Correctness with block-confined faults

Our proof is divided in two parts. In this section, we only consider the blocks of SEI-hardening (Algo-
rithm 1) and assume faults cannot escape them. In Section 4.4, we prove that the gates can guarantee
this assumption. We define block-confined faults as follows.

Assumption 7 (Block-confined faults) A fault corrupting the control flow – i.e., the program counter
– does not set the pc to an instruction other than from the block where the fault occurs.

Given Assumption 7, we show that if the following invariant holds at the beginning of a traversal,
then it holds at the end of the traversal. That is technically not an inductive invariant over the steps of
the system, but rather over the complete traversals, hence, we call this invariant a traversal invariant.
The traversal invariant asserts that if a variable v is corrupt at state s (i.e., different from there reference
value), then v is invalid at s. In this section, the traversal invariant is assumed to hold in the initial
state of the traversal sb . We prove that the traversal invariant holds in the final state of the traversal se .

Property 5 (Traversal invariant) Given a state s of a traversal,

(a) for all v ∈ Vg\(Vi ∪Vo), if s [v ] 6= r [v ], then s[v ] 6= s[v̄ ];

(b) for all v ∈ Vi , if s [v ] 6= r [v ], then s[v ] 6= s[v̄ ] or s[v ] 6= s[v̈ ]; and

(c) for all v ∈ Vo, if s [v ] 6= r [v ], then s[v ] 6= s[v̈ ].

Particularly important is the distinction between the cases of general global variables and input/out-
put variables. Global variables other than Vi and Vo are protected by their replica state between
traversals and by the SEI-hardening algorithms during traversals. If some fault occurs until the begin-
ning of the traversal and corrupts a variable v , then sb [v ] 6= sb [v̄ ] by corruption coverage. We will show
that if some variable v is corrupted during the traversal, then se [v ] 6= se [v̄ ].

In contrast, variables in Vi might arrive already corrupted from the network. If no fault occurs until
the beginning of the traversal, then it holds that sb [v ] = sb [v̄ ] for all v ∈ Vi and sb [v ] 6= sb [v̈ ] for some
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State Description Line

sb the state at the first line of program ph (Filter) 1
sg the state at the first line of Prepare

1
9

sp the state at the first line of Prepare
2

18
sx1 the state at the first line of Exec1 27
sr the state at the first line of Reset 33
sx2 the state at the first line of Exec2 53
sc the state at the first line of Validate 59
se the state immediately after the last line of program ph 84

rb the reference state at the first line of program ph 1
re the reference state immediately after the last line of program ph 84

Table 3: States used in the correctness proofs

v ∈ Vi . In other words, the input message is valid with respect to V̄i , but invalid with respect to V̈ .
Moreover, if some fault occurs until the beginning of the traversal corrupting a variable v ∈ Vi , then
sb [v ] 6= sb [v̄ ] by corruption coverage.

Finally, the output variables have a stronger requirement: if some variable v ∈ Vo is corrupted during
the traversal, then it should hold that se [v ] 6= se [v̈ ]. By definition, the values of variables v and v̈ are
sent over the network, but not of variable v̄ – remember that an implementation using hardware error-
detection codes cannot access the ECC memory to retrieve the value of v̄ . Since any check after the
traversal but before the sending could be skipped by a fault we cannot rely on v̄ for guaranteeing error
isolation – remember that we do not make any fault frequency assumption outside the traversals. The
traversal invariant has to make an assertion on the variables that are effectively sent over the network,
hence, it must hold that v and v̈ have the same value at se .

4.3.1 Conventions

Since we model here high-level operations of the algorithms, each line of the algorithms and Rules 1-6
are in fact a sequence of instructions, i.e., a sequence of Next steps. Remember that we do not consider
all instructions of a line to be executed atomically with respect to Fault steps. We use the following
convention to refer to a state:

The state s at Line X is the state s before the execution of the first instruction of the sequence of
instructions represented by Line X.

The state s immediately after Line X is the state s at Line X+1.

A fault occurs or takes place at state s: s is the state before the fault transition is taken and s ′ is
the state after the fault has taken place.

Since in this section a fault is always confined to the block where it occurs, the state at the first line
of every block exists. Moreover, the state after the last line (Line 84) exists. We use these states to guide
our proofs; they are listed in Table 3. Note that if a traversal never completes, it can be equated to a
crash so we do not need to consider it.

In a traversal, states are totally ordered starting from state sb until state is se . We use the ≺ relation
to indicate that a state precedes another.

Faults are one way to corrupt variables, the other way is via error propagation occurring in a Next
state transition, i.e., the execution of instructions over corrupt source operands might result in corrupt
target operands. We use the expressions modified by a fault or modified by an assignment to mean that
a variable was modified at a state s by either a Fault transition or by a Next transition, respectively.
Sometimes we have to differentiate these two cases referring to the last modification of a variable up to
the current state s. For that we define what it means for a variable to be determined by a fault and
determined by an assignment as follows.

Definition 46 (Determined by a fault at state s) A variable v ∈ V is determined by a fault at
state s if and only if the last fault before s occurs at a state sf ≺ s, takes place at state s ′f , and
sf [v ] 6= s ′f [v ] = s[v ].

27



Filter Prepare1 Prepare2

Exec1 Reset Exec2 Validate

sb sg sp sx1 sr sx2 sc se

States of traversal

F

T

M
ig
h
t
fa
il

Figure 5: Fault assumption for Lemmas 2 and 3

Definition 47 (Determined by an assignment at state s) A variable v ∈ V is determined by an
assignment i at state s if and only if v is not determined by a fault at s, i is the last assignment to v
performed at state sa ≺ s, i transforms state sa into s ′a , and s ′a [v ] = s[v ].

In our proofs, remember that we implement the containment of a variable v in a set data structure –
e.g., v ∈ O – with an auxiliary map data structure (see Definition 42). When a variable v is contained by a
set data structure D , then its value in the auxiliary map data structure D̊ is true – e.g., s[O̊(v)] = true.

4.3.2 Faults in the Initialization blocks

We start by showing that, if a fault occurs in one of the Initialization blocks and process π does not
crash, then at the beginning of Exec1, all the variables in Vi can be checked against V̄i . Moreover, all
data structures are either correctly initialized or invalid. See Figure 5 for our fault assumption in the
following lemmas.

Lemma 2 asserts that if the input message has arrived invalid from the network, then it is either
discarded or the trust from the V̈i is transferred to V̄i – even if a fault occurs in one of the Initialization
blocks. In other words, the variables of the input message are invalid with respect to V̄i before Exec1
starts if they are invalid with respect to V̈i when the traversal starts. Again, the trust transfer allows
Exec1 and the following blocks to treat variables in Vi as ordinary program-state variables – leveraging
cheap hardware checks if these are available. Moreover, the lemma asserts that the bookkeeping data
structures O , N and U are all correctly initialized even if a fault occurs in the Initialization blocks.

Lemma 2 Assume the traversal invariant holds at sb, a fault occurs in Filter , Prepare1, or Prepare2,
and π does not crash. For all v ∈ Vi , if sb [v ] 6= sb [v̈ ], then v is invalid at sx1 . Moreover, for all v ∈ Vs ,

• sx1 [O̊(v)] = false or O̊(v) is invalid at sx1 ,

• sx1 [N̊ (v)] = false or N̊ (v) is invalid at sx1 ,

• and sx1 [U (v)] = false or U (v) is invalid at sx1 .

Proof:
1. Case: A fault occurs in Filter
1.1. Prepare1, Prepare2, and Validate execute correctly since faults are block-confined by Assump-

tion 7.
1.2. No variable in Vi is modified by an instruction between sb and se by Assumption 5.
1.3. For all v ∈ Vi , sx1 [v ] = sx1 [v̈ ] and sx1 [v ] = sx1 [v̄ ], otherwise π crashes in Validate (Line 69) by

Steps 1.1 and 1.2.
1.4. For all v ∈ Vi , sx1 [v ] = sb [v ] and sx1 [v̈ ] = sb [v̈ ] by Steps 1.2 and 1.3 and by corruption coverage.
1.5. For all v ∈ Vi , sb [v ] = sb [v̈ ] by Step 1.4.
1.6. For all v ∈ Vs , sx1 [O̊(v)] = false, sx1 [N̊ (v)] = false, and sx1 [U (v)] = false since Prepare2

executes correctly by Step 1.1.
2. Case: A fault occurs in Prepare1
2.1. Filter , Prepare2, and Validate execute correctly since faults are block-confined by Assumption 7.
2.2. No variable in Vi is modified by an instruction between sb and se by Assumption 5.
2.3. For all v ∈ Vi , sx1 [v ] = sx1 [v̈ ] and sx1 [v ] = sx1 [v̄ ], otherwise sx1 does not exist since Filter

terminates the traversal at Line 2 or π crashes in Validate (Line 69) by Steps 2.1 and 2.2.
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Figure 6: Fault assumption for Lemmas 4 and 5

2.4. For all v ∈ Vi , sx1 [v ] = sb [v ] and sx1 [v̈ ] = sb [v̈ ] by Steps 2.2 and 2.3 and by corruption coverage.
2.5. For all v ∈ Vi , sb [v ] = sb [v̈ ] by Step 2.4.
2.6. For all v ∈ Vs , sx1 [O̊(v)] = false, sx1 [N̊ (v)] = false, and sx1 [U (v)] = false since Prepare2

executes correctly by Step 2.1.
3. Case: A fault occurs in Prepare2
3.1. Filter and Prepare1 execute correctly since faults are block-confined by Assumption 7.
3.2. No variable in Vi is modified by an instruction between sb and sp by Assumption 5.
3.3. For all v ∈ Vi , sp [v ] = sp [v̈ ] and sp [v ] = sp [v̄ ], otherwise sp does not exist since Filter terminates

the traversal at Line 2 by Steps 3.1 and 3.2.
3.4. For all v ∈ Vi , sp [v ] = sb [v ] and sp [v̈ ] = sb [v̈ ] by Steps 3.2 and 3.3 and by corruption coverage.
3.5. For all v ∈ Vi , sb [v ] = sb [v̈ ] by Step 3.4.
3.6. For all v ∈ Vs , sp [O̊(v)] = false, sp [N̊ (v)] = false, and sp [U (v)] = false by correct execution

of Prepare1.
3.7. For all v ∈ Vi , if sx1 [v ] 6= sp [v ], then v is invalid at sx1 by corruption coverage.

3.8. For all v ∈ Vs , if sx1 [O̊(v)] 6= false, then O̊(v) is invalid at sx1 by corruption coverage.
3.9. For all v ∈ Vs , if sx1 [N̊ (v)] 6= false, then N̊ (v) is invalid at sx1 by corruption coverage.
3.10. For all v ∈ Vs , if sx1 [U (v)] 6= false, then U (v) is invalid at sx1 by corruption coverage.

✷

We now show that if Exec1, Reset and Exec2 correctly execute on correct variables, then the result
of the traversal is correct (or invalid).

Lemma 3 Assume the traversal invariant holds at sb, no fault occurs in Exec1, Reset and Exec2, and
π does not crash. For every variable v ∈ Vs , if se [v ] 6= re [v ], then v is invalid at se .

Proof:
1. Filter , Prepare1 and Prepare2 do not write into any v ∈ Vs by definition (Algorithm 2).
2. For all v ∈ Vs , either sx1 [v ] = sb [v ] by Step 1, or v is invalid at sx1 by corruption coverage if a fault

modified v .
3. For all v ∈ Vs read in Exec1 for the first time at some state s, v is valid at s since π does not crash

in the check of Line +1, Rule 2.
4. For all v ∈ Vs read in Exec1 for the first time at some state s, s[v ] = sx1 [v ] = sb [v ] = rb [v ] by Steps 1,

2 and 3 and traversal invariant.
5. For all v ∈ Vs , v /∈ O , v /∈ N and v /∈ U at state sx1 by Lemma 2, and O̊(v), N̊ (v) and U (v) are

valid at sx1 since no fault occurs after Prepare2 and since π does not crash at the checks of Lines 46
and 59.

6. Exec1, Reset , and Exec2 execute correctly (by assumption) on correct variables by Steps 3, 4 and 5
and traversal invariant.

7. For every variable v ∈ Vs , if se [v ] 6= re [v ], then v is invalid at se by Step 6, corruption coverage and
traversal invariant. ✷

4.3.3 Faults in the Exec1 block

Following the sequence of blocks, we now assume a fault occurs in Exec1 (see Figure 6). We first show
that if some variable v is determined by an assignment in block Exec1, then all instructions in Rule 3
are executed. In other words, if v is modified by an assignment in Exec1, O(v) contains v ’s old value at
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state sr . Moreover, v is valid at the initial state sb . This ensures that Reset can correctly rollback state
updates performed in Exec1.

Lemma 4 Assume no faults occurs in Initialization blocks and Reset block, and π does not crash. For
any v ∈ Vs modified by an assignment in block Exec1, it holds that sr [O(v)] = sb [v ], sr [O̊(v)] = true,
O(v) and O̊(v) are valid at sr , and v is valid at sb.

Proof:
1. For all v ∈ Vs , v /∈ O , v /∈ N , and v /∈ U at state sx1 by assumption.
2. Let some v ∈ Vs be determined by assignment for the first time in Exec1 at state s1 immediately

after Line +9, Rule 3.
3. s1 ≺ sr by Assumption 7.
4. O(v) and O̊(v) are valid at sr , otherwise π would crash in Reset , Line 46.
5. s1[O̊(v)] = true, i.e., v ∈ O at s1.
5.1. If no fault occurs before s1, the value of v is added to O (Line +6, Rule 3) before the value v is

modified.
5.2. If no fault occurs after s1, the absence of an entry for v would result in a crash right after s1 due

to the check v ∈ O (Line +11, Rule 3); a contradiction.
6. There is a state s2 ≺ s1 immediately after Line +6, Rule 3, when O̊(v) is assigned for the first time

in Exec1.
6.1. Assume by contradiction that s1 ≺ s2.
6.2. v /∈ O at state s1 since Initialization blocks execute correctly by assumption.
6.3. A fault must have skipped Lines +3 to +6 before Line +9 is executed, otherwise s2 ≺ s1.
6.4. π crashes at Line +11 by Step 6.2 and since no faults occurs after s1 by Step 6.3; a contradiction.

7. s2[O(v)] = sb [v ] and v is valid at sb if no fault occurs before s2.
7.1. s2[O(v)] = sb [v ] since no faults occur before s2.
7.2. v is not assigned before s2 by definition of s1.
7.3. π does not crash in the check of Line +1, Rule 3, by assumption.
7.4. v is valid at sb by Steps 7.2 and 7.3.

8. s2[O(v)] = sb [v ] and v is valid at sb if no fault occurs after s2.
8.1. s2[O(v)] = s2[v ] and v is valid at s2, otherwise π crashes after s2 at Line +8, Rule 3.
8.2. v is not modified by a fault before s2 since v is valid at s2 by Step 8.1.
8.3. v is not modified by an assignment before s2 by definition of s1.
8.4. s2[v ] = sb [v ] by Steps 8.2 and 8.3.
8.5. s2[O(v)] = sb [v ] and v is valid at sb by Steps 8.1 and 8.4.

9. sr [O(v)] = s2[O(v)], sr [O̊(v)] = true, O(v) is valid at sr and O̊(v) is valid at sr .
9.1. No instruction writes false into O̊(v) after s2 by definition.
9.2. sr [O̊(v)] = true and O̊(v) is valid at sr by Steps 6, 9.1, 4 and 5.
9.3. O(v) is not modified by assignment after s1 if O̊(v) is not modified by a fault after s1.

9.3.1. Assume there is a state s3 at Line +3 of Rule 3 and s3 ≻ s1.
9.3.2. s3[O̊(v)] = true since O̊(v) is not modified by a fault by assumption, since s2 ≺ s1 ≺ s3 and

by Steps 9.1 and 5.
9.3.3. π crashes at Line +5 by Step 9.3.2; a contradiction.

9.4. O(v) is not modified by assignment after s1 if O̊(v) is modified by a fault after s1.
9.4.1. Assume there is a state s3 at Line +3 of Rule 3 and s3 ≻ s1.
9.4.2. O̊(v) is invalid by corruption coverage and since s2 ≺ s1 ≺ s3.
9.4.3. π crashes at Line +5 by Step 9.4.2; a contradiction.

9.5. sr [O(v)] = s2[O(v)] by Steps 9.3 and 9.4, and sr [O̊(v)] = true by Step 9.2.
10. sr [O(v)] = sb [v ], sr [O̊(v)] = true and v is valid at sb by Steps 4, 7, 8 and 9. ✷

Using Lemma 4, we show next that for all v ∈ Vs , v either has the expected result at se , or v is
invalid.

Lemma 5 Assume the traversal invariant holds at sb, a fault occurs in Exec1, and π does not crash.
For all v ∈ Vs , if se [v ] 6= re [v ], then v is invalid at se .

Proof:
1. If v is determined by a fault before se , we are done by corruption coverage.
2. Initialization, Reset , Exec2, and Validate execute correctly by Assumption 7.
3. For all v ∈ Vs , sx2 [v ] = rb [v ] or v is invalid at sx2 .
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Figure 7: Fault assumption for Lemmas 6, 7 and 8

3.1. For all v ∈ Vs assigned in Exec1, v is valid at sb by Lemma 4.
3.2. For all v ∈ Vs assigned in Exec1, sr [O(v)] = sb [v ] by Lemma 4.
3.3. For all v ∈ Vs assigned in Exec1, sb [v ] = rb [v ] by Step 3.1 and by traversal invariant.
3.4. For all v ∈ Vs assigned in Exec1, sx2 [v ] = sr [O(v)] = rb [v ] by Steps 3.2, 3.3 and 2.
3.5. For all v ∈ Vs , sx2 [v ] = rb [v ] or v is invalid at sx2 by Step 3.4, traversal invariant, corruption

coverage, and since no other block writes to v ∈ Vs before Reset except Exec1 by definition.
4. For all v ∈ Vs read in Exec2, v is valid at sx2 , otherwise π would crash at Line +1, Rule 2, by Step 2.
5. For all v ∈ Vs modified in Exec2, sc [v ] = re [v ], since Exec2 correctly executes on correct inputs by

Steps 2, 3, and 4.
6. For all v ∈ Vs modified in Exec2, se [v ] = sc [v ] = re [v ] by Step 2, 5 and since no other block writes

to v ∈ Vs after Exec2 by definition.
7. For all v ∈ Vs , se [v ] = re [v ] or v is invalid at se by Step 5, traversal invariant, corruption coverage

since no other block writes to v ∈ Vs after Exec2 by definition. ✷

4.3.4 Faults in the Reset block

Our next three lemmas assume that a fault occurs in the Reset block (see Figure 7). We start by showing
that the state at the beginning of Reset is the expected final state, and any variable modified in Exec1
has its old value correctly stored in O .

Lemma 6 Assume the traversal invariant holds at sb, no faults occurs in Initialization blocks and in
Exec1, and π does not crash. For all v ∈ Vs , it holds that sr [v ] = re [v ] or v is invalid at sr .

Proof:
1. For all v ∈ Vs read for the first time at some state s during the execution of Exec1, it holds that

s[v ] = rb [v ].
1.1. v is valid since π does not crash by assumption, every read is preceded by a validity check by

Rule 2, and no fault occurs between sb and sr .
1.2. s[v ] = rb [v ] by Step 1.1, traversal invariant and Lemma 2.

2. For all v ∈ Vs read or modified in Exec1, sr [v ] = re [v ] since no fault occurs between sb and sr by
assumption and π reads correct inputs by Step 1.

3. For all v ∈ Vs , sr [v ] = re [v ] or v is invalid at sr by Step 2 and traversal invariant. ✷

We now show that if some v ∈ N at the beginning of Exec2, then N (v) holds the reference final value
of v .

Lemma 7 Assume the traversal invariant holds at sb, a fault occurs in Reset, and π does not crash.
For all v ∈ Vs , if v ∈ N at sx2 , then sx2 [N (v)] = re [v ] and N (v) and N̊ (v) are valid at sx2 .

Proof:
1. Initialization, Exec1, Exec2, and Validate execute correctly by assumption.
2. N (v) and N̊ (v) are valid at sx2 , otherwise π crashes in Validate.
3. There is a state s2 at Line 37 when N̊ (v) is assigned true for the first time in Reset .

3.1. N̊ (v) is set to false in Initialization blocks, which execute correctly by assumption.
3.2. sx2 [N̊ (v)] = true, i.e., v ∈ N at sx2 , by assumption.
3.3. Only Reset block writes true to N̊ (v) by definition.

4. s2[N (v)] = sr [v ] and v is valid at sr if no fault occurs before s2.
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4.1. s2[N (v)] = sr [v ] since no faults occur before s2.
4.2. v is not modified by assignment after sr and before s2 by definition of s2.
4.3. π does not crash in the check of Line 35 by assumption.
4.4. v is valid at sr by Steps 4.2 and 4.3.

5. s2[N (v)] = sr [v ] and v is valid at sr if no fault occurs after s2.
5.1. s2[N (v)] = s2[v ] and v is valid at s2, otherwise π crashes at Line 41.
5.2. v is not determined by a fault before s2 since v is valid at s2 by Step 5.1.
5.3. v is not modified by an assignment after sr and before s2.
5.3.1. Assume there is a state s1 such that sr ≺ s1 ≺ s2 and s1 is the state after Line 43.
5.3.2. If no fault occurs before s1, then s1[N̊ (v)] = true by correct execution up to s1 and Step 1.
5.3.3. If no fault occurs before s1, there is a state s3 ≺ s1 at Line 40 by Step 5.3.2; a contradiction

with definition of s2 (first time v is assigned in Reset).
5.3.4. If no fault occurs after s1, π crashes in the check of Line 44.

5.4. s2[v ] = sr [v ] by Steps 5.2 and 5.3.
5.5. s2[N (v)] = sr [v ] and v is valid at sr by Steps 5.1 and 5.4.

6. sx2 [N (v)] = s2[N (v)] and sx2 [N̊ (v)] = true.
6.1. No instruction writes false into N̊ (v) after s2 by definition (Algorithm 1) and block assumption.
6.2. sx2 [N̊ (v)] = true by Steps 6.1, 1 and 2 and definition of s2.
6.3. N (v) is not modified by assignment after s2 if N̊ (v) is not modified by a fault after s2.
6.3.1. Assume there is a state s3 at Line 37 and s3 ≻ s2.
6.3.2. s3[N̊ (v)] = true since N̊ (v) is not modified by a fault by assumption, and since s2 ≺ s3 and

by Steps 6.1 and 2.
6.3.3. π crashes at Line 38 by Step 6.3.2; a contradiction.

6.4. N (v) is not modified by assignment after s2 if N̊ (v) is modified by a fault after s2.
6.4.1. Assume there is a state s3 at Line 37 and s3 ≻ s2.
6.4.2. N̊ (v) is invalid at s3 by corruption coverage and since s2 ≺ s3.
6.4.3. π crashes at Line 38 by Step 6.4.2; a contradiction.

6.5. sx2 [N (v)] = s2[N (v)] by Steps 6.3 and 6.4, and sx2 [N̊ (v)] = true by Step 6.2.
7. sx2 [N (v)] = sr [v ], sx2 [N̊ (v)] = true and v is valid at sr by Steps 4, 5 and 6.
8. sx2 [N (v)] = re [v ] by Lemma 6. ✷

Finally, we show that if a fault occurs in Reset , the state at the end of the traversal is the expected
state or invalid. There are mainly two cases can happen. First, if a variable v is modified in Exec2, then
it must contain the expected final value, otherwise π crashes when comparing U with N (Line 59) or the
current value of v with N (v) (Line 62). Second, if a variable v is not modified in Exec2, then it contains
either the initial value if it was not modified in Exec1, or it contains the expected final value if it was
modified in Exec1. A third case, where v is only modified in Reset , is not possible since π would crash
when comparing U with N (Line 59).

Lemma 8 Assume the traversal invariant holds at sb, a fault occurs in Reset, and π does not crash.
For all v ∈ Vs , if se [v ] 6= re [v ], then v is invalid at se .

Proof:
1. Initialization, Exec1, Exec2 and Validate execute correctly by assumption.
2. For all v ∈ Vs determined by a fault at state se , we are done by corruption coverage.
3. For all v ∈ Vs not modified by assignment in Exec1, Reset , or Exec2, we are done by traversal

invariant.
4. If suffices to show that for all v ∈ Vs determined by an assignment in Exec1, Reset , or Exec2, if

sc [v ] 6= re [v ], then v is invalid at sc .
4.1. No v ∈ Vs is assigned in Validate by definition.
4.2. For all v ∈ Vs determined by assignment in Exec1, Reset , or Exec2, se [v ] = sc [v ] or v is invalid

at se by Step 4.1 and since no fault occurs in Validate.
5. Let v ∈ Vs be determined by assignment in Exec1, Reset , or Exec2. We show that if se [v ] 6= re [v ],

then v is invalid at se .
6. Case: N̊ (v) is invalid at sx2 .
6.1. π crashes in the Validate block, Line 59.

7. Case: sc [N̊ (v)] = true and N̊ (v) is valid at sc .
7.1. v ∈ U at sc , otherwise π crashes in check of Line 64.
7.2. sc [v ] = sx2 [N (v)], otherwise π crashes in check of Line 62.
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Figure 8: Fault assumption for Lemmas 9 and 10

7.3. sc [v ] = sx2 [N (v)] = sr [v ] = re [v ] by Lemma 7 and Step 1.
7.4. v is valid at sc , otherwise π crashes in check of Line 62.

8. Case: sc [N̊ (v)] = false and N̊ (v) is valid at sc .
8.1. v /∈ U at sc , otherwise π crashes in check of Line 67.
8.2. v is not assigned in Exec2 by Steps 1 and 8.1.
8.3. v is not assigned in Reset , otherwise v ∈ N at sc by Lemma 7.
8.4. v is determined by assignment in Exec1 by Steps 5, 8.2 and 8.3.
8.5. sr [v ] = re [v ] and v is valid at sr by Step 8.4 and Lemma 6.
8.6. sc [v ] = sr [v ] and v is valid at sc by Steps 8.2 and 8.3.
8.7. sc [v ] = re [v ] and v is valid at sc by Steps 8.5 and 8.6.

9. For all v ∈ Vs , if se [v ] 6= re [v ], then v is invalid at se by Steps 2, 3, 4, 6, 7 and 8. ✷

4.3.5 Faults in the Exec2 and Validate blocks

We now assume a fault occurs either in the Exec2 or in the Validate block (see Figure 8). Since most
of the blocks execute correctly, proving the correctness of Exec2, as well as of Validate below, is much
simpler than the previous blocks.

Lemma 9 Assume the traversal invariant holds at sb, a fault occurs in Exec2, and π does not crash.
For all v ∈ Vs , if se [v ] 6= re [v ], then v is invalid at se .

Proof:
1. For all v ∈ Vs , if v is determined by a fault, we are done by corruption coverage.
2. Initialization, Exec1, Reset , and Validate execute correctly by assumption.
3. For all v ∈ Vs , sx2 [v ] = rb [v ] or v is invalid at sx2 by Step 2.
4. Let v ∈ Vs be such that se [v ] 6= re [v ] and v is valid at se . We show that if se [v ] 6= re [v ], then v is

invalid at se .
5. Case: v was assigned in Exec1.
5.1. v ∈ N at sc by Step 2.
5.2. N (v) and N̊ (v) are valid at sc , otherwise π crashes in the check of Line 59.
5.3. v ∈ U at sc , otherwise π crashes in the check of Line 64.
5.4. sc [v ] = sc [N (v)], otherwise π crashes in the check of Line 62.
5.5. sc [N (v)] = re [v ] by Steps 2 and 5.2.
5.6. se [v ] = sc [v ] = re [v ] by Steps 5.4, 5.5 and 2; a contradiction with Step 4.

6. Case: v was not assigned in Exec1 and not assigned in Exec2.
6.1. v /∈ O at sr by Step 2.
6.2. v is not assigned in Reset by Step 6.1.
6.3. se [v ] = re [v ] if v is not determined by a fault since rb [v ] = re [v ].
6.4. se [v ] = re [v ] or v is invalid at se by Step 6.3 and 1; a contradiction with Step 4.

7. Case: v was not assigned in Exec1, but was assigned in Exec2.
7.1. v /∈ O at sr by Step 2.
7.2. v is not assigned in Reset by Step 7.1.
7.3. sr [v ] = rb [v ] or invalid by Step 7.2 and traversal invariant.
7.4. Let s be the state immediately after v is assigned in Exec2 (Line +1, Rule 4).
7.5. If no fault occurs before s, then v ∈ U at sc by correct exectuion before s and U (v) is valid at

sc , otherwise π crashes in the check of Line 59.
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7.6. If no fault occurs after s, then v ∈ U at sc and U (v) is valid at sc , otherwise π crashes in the
check of Line +2, Rule 4.

7.7. π crashes at Line 67; a contradiction.
8. For all v ∈ Vs , if se [v ] 6= re [v ], then v is invalid at se by Steps 1, 5, 6 and 7. ✷

Finally, we assume that a fault occurs in the Validate block and show that the traversal invariant
holds after the traversal has finished.

Lemma 10 Assume the traversal invariant holds at sb, a fault occurs in Validate, and π does not crash.
For all v ∈ Vs , if se [v ] 6= re [v ], then v is invalid at se .

Proof:
1. For all v ∈ Vs , if v is determined by a fault, we are done by corruption coverage.
2. Validate does not modify any v ∈ Vs by definition.
3. Initialization, Exec1, Reset , and Exec2 execute correctly by assumption.
4. For all v ∈ Vs , if se [v ] 6= re [v ], then v is invalid at se by Steps 1, 2 and 3 and by traversal invariant.✷

4.3.6 Output message’s validity

We finally show that, if faults are block-confined and some variable v ∈ Vo is corrupt at se , then v is
invalid with respect to v̈ at se .

Lemma 11 Assume the traversal invariant holds at sb and π does not crash. If there exists a variable
v ∈ Vo such that se [v ] 6= re [v ], then se [v ] 6= se [v̈ ].

Proof:
1. If v is determined by a fault, then se [v ] 6= se [v̈ ] by corruption coverage.
2. v is determined by an assignment by Step 1.
3. Case: Fault occurs in Validate
3.1. Initialization, Exec1, Reset , and Exec2 blocks execute correctly by fault-frequency assumption.
3.2. Validate block does not assign any variable v ∈ Vo by definition.
3.3. For all variable v ∈ Vo , sc [v ] = re [v ] by Steps 3.1 and 3.2.
3.4. se [v ] = sc [v ] = re [v ] by Steps 3.3 and 2.

4. Case: Fault occurs before Validate
4.1. Validate block executes correctly by fault-frequency assumption.
4.2. Validate block does not assign any variable v ∈ Vo by definition.
4.3. For all v ∈ Vo , v is valid at sc , otherwise π crashes in the check of Line 71 by Step 4.1.
4.4. For all v ∈ Vo , se [v ] = sc [v ] by Steps 4.2.
4.5. For all v ∈ Vo , se [v ] = re [v ].
4.5.1. Assume there is a v ∈ Vo such that se [v ] 6= re [v ].
4.5.2. v is invalid at se by Step 4.5.1 and Lemmas 3, 5, 8 and 9.
4.5.3. A contradiction of Steps 4.5.2, 4.3 and 4.4.

5. For all v ∈ Vo , if se [v ] 6= re [v ], then se [v ] 6= se [v̈ ] by Steps 1, 3 and 4. ✷

Lemma 12 If the traversal invariant holds at state sb and π does not crash, then the traversal invariant
holds at state se .

Proof: By Lemmas 3, 5, 8, 9, 10 and 11. ✷

4.4 Correctness with gates

We now show that the complete SEI-hardening guarantees error isolation. In contrast to the previous
section, here we do not assume block-confined faults. In particular, in this section, faults either jump
from within a block into another block or leave the traversal altogether by jumping out of the traversal.

Definition 48 (A fault jumps to another block) A fault jumps to another block iff the fault occurs
at some state sf after execution of some instruction of a block B1 and it corrupts the program counter
pc to the value of some instruction in another block B2.

Definition 49 (A fault jumps out of the traversal) A fault jumps out of the traversal iff the fault
corrupts the program counter pc to the value of some instruction at or immediately after Line 84.
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Remember that Line 84 represents the exit point of the program, i.e., messages may be externalized
after this line.

The road map of our proof consists of the following steps:

1. We start by showing that if a fault occurs in a traversal A and the fault does not jump out of the
traversal, then the fault is block-confined; hence, the results from block-confined faults apply.

2. Next, we show that even if a fault jumps out of the traversal A, local error exposure is preserved
(although the traversal invariant might be violated).

3. Finally, we show that if a fault jumps out of traversal A, then any subsequent traversal B that
modifies the state and does not crash π leads to a state in which the traversal invariant holds again.

4.4.1 Step 1: complete traversals

Let Flags = {cfg , cfp , cf1, cfr , cf2, cfc} be the set of control-flow flags in SEI-hardening. To simplify the
presentation, we incorporate the instructions of the gates as part of the blocks of Algorithm 1 such that:

• All instructions up to and including Line 8 belong to block Filter ;

• Prepare1 starts at the state sg immediately after the execution of Line 8;

• Prepare2 starts at the state sp immediately after the execution of Line +2 of Gate(cfp , cfg);

• Exec1 starts at the state sx1 immediately after the execution of Line +2 of Gate(cf1, cfp);

• Reset starts at the state sr immediately after the execution of Line +2 of Gate(cfr , cf1);

• Exec2 starts at the state sx2 immediately after the execution of Line +2 of Gate(cf2, cfr );

• Validate starts at the state sc immediately after the execution of Line +2 of Gate(cfc , cf2).

When the system starts, the first state of the first traversal is correct by Assumption 6. Therefore,
we know that in the first traversal sb [cfg ] = false and for every other flag cf ∈ Flags, sb [cf ] = true

(Definition 45). We define the following predicate to express this condition at some state s.

Complete
∆

= ∧ s[cfg ] = false ∨ ¬Valid(cfg)

∧ ∀cf ∈ Flags\{cfg} : s[cf ] = true ∨ ¬Valid(cf )

Following directly from Algorithms 1 and 8, if Complete holds at sb , then Complete holds at se as
long as no fault occurs. As we show next, if Complete also holds at se when a fault occurs, then the
fault cannot jump out of the traversal. Moreover, if a fault does not jump out of the traversal, then it
can be equated as a block-confined fault.

Lemma 13 Assume Complete holds at sb, π does not crash, and a fault occurs before the first assignment
of Line 5 and the fault jumps to another block. For all v ∈ Vg , se [v ] = sb [v ] or v is invalid at se .

Proof:
1. Let sf be the state immediately after the fault.
2. For all cf ∈ Flags\{cfg}, sf [cf ] = true or cf is invalid since Complete holds at sb and by corruption

coverage.
3. Only one fault occurs by fault-frequency assumption.
4. No instruction sets any cf ∈ Flags\{cfg} to false by Step 3 and since the fault jumps to another

block by assumption and valid at sa by assumption.
5. The fault jumps to some instruction after Line +0, otherwise π crashes by Steps 2 and 4.
6. No variable is modified by an instruction between sb and se by Step 5.
7. For all v ∈ Vg , se [v ] = sb [v ] or v is invalid at se . ✷

By Lemma 13, we can disconsider faults occurring before the first assignment of Line 5 since the state
stutters.

We now show that if the traversal invariant and, consequently, the Complete predicate, hold at sb ,
and a fault does not jump out of the traversal, then the traversal invariant holds at se .
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Lemma 14 Assume Complete holds at sb and π does not crash. If a fault occurs after the first assign-
ment of Line 5 and the fault does not jump out of the traversal, then the first state of each block exists
(Table 3) and they appear in the traversal in the order of Algorithm 1.

Proof:
1. Let the sa be the state immediately after the first assignment of Line 5.
2. sa [cfc ] = false and valid at sa by assumption.
3. The fault occurs after or at sa by assumption.
4. Only one fault occurs by fault-frequency assumption.
5. State sc exists and sc ≺ se .

5.1. Line 82 is executed at state s since the fault does not jump out.
5.2. cfc is assigned to true in Gate(cfc , cf2), otherwise π crashes after s by Steps 2, 3 and 5.1.
5.3. Let sc be the state immediately after Line +2 in Gate(cfc , cf2).
5.4. sc ≺ se since se is the last state of the traversal by definition.

6. State sx2 exists and sx2 ≺ sc .
6.1. If no fault occurs before sc , then cf2 is assigned to true in Gate(cf2, cfr ) at some state s ≺ sc .
6.2. If no fault occurs after sc , then sc [cf2] = true and valid at sc , otherwise π crashes in the check

after sc (Line +3 in Gate(cfc , cf2)).
6.3. If no fault occurs after sc , cf2 is assigned to true in Gate(cf2, cfr ) at some state s ≺ sc by

Step 6.2.
6.4. There exists a state sx2 = s such that sx2 ≺ sc by Steps 6.1 and 6.3.

7. State sr exists and sr ≺ sx2 .
7.1. If no fault occurs before sx2 , then cfr is assigned to true in Gate(cfr , cf1), at some state s ≺ sx2 .
7.2. If no fault occurs after sx2 , then sx2 [cfr ] = true and valid at sx2 , otherwise π crashes in the check

after sx2 (Line +3 in Gate(cf2, cfr )).
7.3. If no fault occurs after sx2 , cfr is assigned to true in Gate(cfr , cf1) at some state s ≺ sx2 by

Step 7.2.
7.4. There exists a state sr = s such that sr ≺ sx2 by Steps 7.1 and 7.3.

8. State sx1 exists and sx1 ≺ sr .
8.1. If no fault occurs before sr , then cf1 is assigned to true in Gate(cf1, cfp) at some state s ≺ sr .
8.2. If no fault occurs after sr , then sr [cf1] = true and valid at sr , otherwise π crashes in the check

after sr (Line +3 in Gate(cf2, cfr )).
8.3. If no fault occurs after sr , cf1 is assigned to true in Gate(cf1, cfp) at some state s ≺ sr by

Step 8.2.
8.4. There exists a state sx1 = s such that sx1 ≺ sr by Steps 8.1 and 8.3.

9. State sp exists and sp ≺ sx1 .
9.1. If no fault occurs before sx1 , then cfp is assigned to true in FirstGate, at some state s ≺ sx1 .
9.2. If no fault occurs after sx1 , then sx1 [cfp ] = true and valid at sx1 , otherwise π crashes in the check

after sx1 (Line +3 in Gate(cf2, cfr )).
9.3. If no fault occurs after sx1 , cfp is assigned to true in FirstGate at some state s ≺ sx1 by Step 9.2.
9.4. There exists a state sp = s such that sp ≺ sx1 by Steps 9.1 and 9.3.

10. State sg exists and sg ≺ sp .
10.1. If no fault occurs before sp , then cfg is assigned to true in FirstGate, at some state s ≺ sp .
10.2. If no fault occurs after sp , then sp [cfg ] = true and valid at sp , otherwise π crashes in the check

after sp (Line +3 in Gate(cfp , cfg)).
10.3. If no fault occurs after sp , cfg is assigned to true in FirstGate at some state s ≺ sp by Step 10.2.
10.4. There exists a state sg = s such that sg ≺ sp by Steps 10.1 and 10.3.

11. State sb exists and sb ≺ sg by definition of sb (first state of a traversal).
12. sb , sg , sp , sx1 , sr , sx2 , sc , and se exist and sb ≺ sg ≺ sp ≺ sx1 ≺ sr ≺ sx2 ≺ sc ≺ se . ✷

Lemma 15 Assume Complete holds at sb , π does not crash, and a fault occurs after the first assignment
of Line 5 and the fault does not jump out of the traversal. Given the first state s of any block of
Algorithm 1, no instruction of a preceding block is executed after s.

Proof:
1. The first state of every block exists by Lemma 14.
2. No instruction preceding Gate(cfc , cf2) is executed after sc .

2.1. Assume some instruction preceding Gate(cfc , cf2) is executed at s after sc .
2.2. sc [cfc ] = true and cfc is valid at sc by Step 1.
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2.3. π crashes at Line +0 of Gate(cfc , cf2) after s either by Step 2.2 or by corruption coverage.
3. No instruction preceding Gate(cf2, cfr ) is executed after sx2 .
3.1. Assume some instruction preceding Gate(cf2, cfr ) is executed at s after sx2 .
3.2. sx2 [cf2] = true and cf2 is valid at sx2 by Step 1.
3.3. π crashes at Line +0 of Gate(cf2, cfr ) after s either by Step 3.2 or by corruption coverage.

4. No instruction preceding Gate(cfr , cf1) is executed after sr .
4.1. Assume some instruction preceding Gate(cfr , cf1) is executed at s after sr .
4.2. sr [cfr ] = true and cfr is valid at sr by Step 1.
4.3. π crashes at Line +0 of Gate(cfr , cf1) after s either by Step 4.2 or by corruption coverage.

5. No instruction preceding Gate(cf1, cfp) is executed after sx1 .
5.1. Assume some instruction preceding Gate(cf1, cfp) is executed at s after sx1 .
5.2. sx1 [cf1] = true and cf1 is valid at sx1 by Step 1.
5.3. π crashes at Line +0 of Gate(cf2, cfr ) after s either by Step 5.2 or by corruption coverage.

6. No instruction preceding Gate(cfp , cfg) is executed after sp .
6.1. Assume some instruction preceding Gate(cfp , cfg) is executed at s after sp .
6.2. sp [cfp ] = true and cfp is valid at sp by Step 1.
6.3. π crashes at Line +0 of Gate(cfp , cfg) after s either by Step 6.2 or by corruption coverage.

7. No instruction preceding FirstGate is executed after sg .
7.1. Assume some instruction preceding Line 8 (FirstGate) is executed at s after sg .
7.2. sg [cfg ] = true and cfg is valid at sg by Step 1.
7.3. π crashes at Line 6 after s either by Step 7.2 or by corruption coverage.

8. No instruction of a preceding block is executed after the first instruction of the following block by
Steps 2, 3, 4, 5, 6 and 7. ✷

Lemma 15 does not disallow blocks to be executed twice as long as the fault does not cross the border
of some gate. For example, Exec1 could be executed again after Gate(cf1, cfp) and before Gate(cfr , cf1).
In fact, if a fault does not jump out of a traversal, then the fault is block-confined (as in Assumption 7).
Therefore, the results of Section 4.3 hold here as well.

Lemma 16 If the traversal invariant holds at sb, a fault occurs and does not jump out of the traversal,
and π does not crash, then the traversal invariant holds at se .

Proof:
1. Complete holds at sb by the traversal invariant.
2. The first state of every block exists and are the order of Algorithm 1 by Step 1 and by Lemma 14.
3. Faults are block-confined by Step 1 and by Lemma 15.
4. The traversal invariant holds at se by Steps 2 and 3 and Lemma 12. ✷

4.4.2 Step 2: partial traversals

There are four cases to consider when a fault jumps out of a traversal:

Skipped traversal: A fault occurs at some state before the execution of Line 8, i.e., before sg : only
variables in Flags\{cfg} might be assigned before such fault occurs, and no variable is assigned
after the fault occurs. If cfg is valid at se , then se [cfg ] = false.

Initialized traversal: A fault occurs after sg and before the execution of Line +2 of Gate(cfp , cfg),
i.e., before sp : The bookkeeping data structures and the control-flow flags of SEI-hardening are
reset, but no variable of the actual program state are modified.

Partial traversal: A fault occurs after sp and before the execution of Line +2 of Gate(cfc , cf2), i.e.,
before sc : Some of the blocks modifying state (i.e., Exec1, Reset and Exec2) is executed partially.
The fault jumps out before entering into the Validate block.

Terminal traversal: A fault occurs after sc : All blocks are executed correctly except of Validate.

We now show that for each of these cases local error exposure (Property 3) is preserved.

Lemma 17 Assume the traversal invariant holds at sb, π does not crash, and a fault occurs before the
execution of Line 8. If the fault jumps out of the traversal, then for all v ∈ Vs , se [v ] = sb [v ] or v is
invalid at se .
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Proof:
1. Let s be the state immediately after the fault occurs.
2. The fault after or during the execution of Line 5.
2.1. Otherwise the traversal simply stutters by Lemma 13 and can be ignored.

3. For some cf ∈ Flags\{cfg} : s[cf ] = false or cf is invalid at s by corruption coverage and since some
instructions of Line 5 are executed by Step 2.

4. The fault jumps to the last line of ph , otherwise π crashes at Line 82 by Step 3.
5. No variable v ∈ Vs is modified by an instruction between sb and se by Step 4 and by definition of ph .
6. For all v ∈ Vs , se [v ] = sb [v ] or v is invalid at se by Step 5 and by corruption coverage. ✷

Note that by Lemma 17, no variable in Vs is modified, but some variable in Flags\{cfg} might be
reset. Since no variable in Vs local error exposure is not violated since it depends only on Vo and
Vo ⊂ Vs .

Lemma 18 Assume the traversal invariant holds at sb , π does not crash, and a fault occurs after sg
and before the execution of Line +2 of Gate(cfp , cfg). If the fault jumps out of the traversal, then for all
v ∈ Vs , se [v ] = rb [v ] or v is invalid at se .

Proof:
1. The fault occurs at state s before Line +2 in Gate(cfp , cfg) and after FirstGate, otherwise Initialized

does not hold at se .
2. Only Filter , FirstGate and Prepare1 are executed by Step 1.
3. For all v ∈ Vi , s[v ] = rb [v ], s[v ] = s[v̄ ], s[v ] = s[v̈ ] by Step 2, traversal invariant, and definition of

Filter .
4. For all v ∈ Vs , s[v ] = rb [v ] or v is invalid at s by Steps 2 and 3 and by traversal invariant.
5. For all v ∈ Vs , se [v ] = rb [v ] by Step 4 or v is invalid at se by corruption coverage. ✷

Lemma 19 Assume the traversal invariant holds at sb , π does not crash, and a fault occurs after sc. If
the fault jumps out of the traversal, then for all v ∈ Vs , se [v ] = re [v ] or v is invalid at se .

Proof:
1. The fault occurs at state s after Line +2 in Gate(cfc , cf2).
2. All blocks except of Validate execute correctly by Step 1.
3. For all variable v ∈ Vs , s[v ] = re [v ] by Step 2 and traversal invariant.
4. For all v ∈ Vs , se [v ] = re [v ] or v is invalid at se by Step 3 or by corruption coverage. ✷

Lemma 20 Assume the traversal invariant holds at sb, π does not crash, and a fault occurs after sp and
before the execution of Line +2 of Gate(cfc , cf2). If the fault jumps out of the traversal and ∃v ∈ Vo :
se [v ] 6= re [v ], then se [v ] 6= se [v̈ ].

Proof:
1. Assume by contradiction that some v ∈ Vo is such that se [v ] 6= re [v ] and se [v ] = se [v̈ ].
2. If the fault corrupts v , then se [v ] 6= se [v̈ ] by corruption coverage and since the fault jumps out of the

traversal.
3. v is assigned at some state s before the fault by Steps 1 and 2.
4. The fault does not modify v after s by Step 2.
5. No fault occurs before s ′ by fault-frequency assumption and by Step 3.
6. Case: Fault occurs in Exec1.
6.1. s[v̈ ] 6= s[v ] by definition of assignment to v ∈ Vo (Rule 5).
6.2. s = se since fault jumps out and by Step 4.
6.3. A contradiction by Steps 1, 6.1 and 6.2.

7. Case: Fault occurs in Reset .
7.1. Exec1 executes correctly by case assumption.
7.2. If v is not assigned in Reset , se [v̈ ] 6= se [v ] by definition of assignment to v ∈ Vo and by Step 7.1;

a contradiction.
7.3. v is assigned in Reset at state s by Steps 3, 7.1 and 7.2.
7.4. s ′[v ] = sb [v ] by definition of Reset and Step 7.3.
7.5. s ′[v̈ ] 6= sb [v ] by definition of assignment to v ∈ Vo .
7.6. s ′[v̈ ] 6= s ′[v ] by Steps 7.4 and 7.5.
7.7. s ′ = se since fault jumps out and by Step 4.
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7.8. A contradiction by Steps 7.1, 7.2, 7.6 and 7.7.
8. Case: Fault occurs in Exec2.
8.1. Exec1 and Reset execute correctly by case assumption.
8.2. If v is not assigned in Exec2, se [v̈ ] 6= se [v ] by definition of assignment to v ∈ Vo in Exec1 and by

Step 8.1; a contradiction.
8.3. v is assigned in Exec2 at state s by Steps 3, 8.1 and 8.2.
8.4. s ′[v ] = re [v ] by Steps 8.3.
8.5. s ′ = se since fault jumps out and by Step 4.
8.6. A contradiction by Steps 8.2, 8.4 and 8.5.

9. If ∃v ∈ Vo : se [v ] 6= re [v ], then se [v ] 6= se [v̈ ] by Steps 6, 7 and 8. ✷

Lemmas 17, 18, 19 and 20 show that if a fault jumps out of the traversal the variables in Vo do not
represent a valid output message, i.e., local error exposure (Property 3) holds at state se . Nevertheless,
the state se is potentially corrupt and the traversal invariant might not hold at se .

4.4.3 Step 3: the limited effect of multiple faults

We now turn to the cases in which a fault jumps out of a traversal A, and a subsequent traversal B
executes. We have seen that local error exposure holds at the final state of traversal A. Our next goal is
to show that if π does not crash during a subsequent traversal B , then the traversal invariant holds at
the final state of traversal B . We use the following notation to differentiate the state of both traversals:
Non-primed states (e.g., sb , rb , sg , sp , sx1) are states in traversal A; primed states (e.g., sb ’, rb ’, sg ’, sp ’,
sx1 ’) are states in traversal B .

The key insight of this section is that multiple corruption faults have a limited effect. By Assump-
tion 3, at most one fault occurs per traversal, but between traversals several faults might occur. We will
show that a sequence of faults formed by one fault that jumps out of traversal A followed by any number
of faults between traversals and, finally, followed by zero or one fault in traversal B behaves similarly to a
single block-confined fault. Nevertheless, such fault sequences are not equivalent to single block-confined
faults. They can render input messages to be omitted and output messages to be duplicated. Such
failures are, however, in the crash-stop fault model and assumed to be tolerated by any algorithm being
hardened (see Section 2.3).

We start with the case of a fault jumping out of traversal A before the execution of Line 8. The
control-flow flags might be partially initialized. In particular, cfg is still false at state se

3 since it is
only set to true at Line 8 and the fault jumps out of the traversal. If no fault occurs in traversal B ,
partially initialized flags are fully initialized and the traversal executes normally. Note that the input
message of traversal A is not processed. Therefore, the reference initial state rb ’ of the subsequent
traversal B is the same reference initial state rb of traversal A except that that the input message in Vi

is different since messages are received between traversals. The next lemma asserts that if a fault does
occur in traversal B , then the traversal invariant holds at se ’.

Lemma 21 Assume traversal invariant holds at state sb of traversal A, a fault occurs at some state sf
before the execution of Line 8 and jumps out of traversal A, and π does not crash. If a fault occurs in
traversal B, then for all v ∈ Vg , s

′
e [v ] = r ′e [v ] or v is invalid at s ′e .

Proof:
1. Let s ′f be the state immediately after a fault occurs in traversal B .
2. ∀v ∈ Vg : se [v ] = sf [v ] or v is invalid at se by definition of sf and by corruption coverage.
3. No instruction modifies any v ∈ Vg\Vi until s

′
f by definition.

4. ∀v ∈ Vg\Vi : s
′
f [v ] = sf [v ] or v is invalid at s ′f by Step 2 and 3 and by corruption coverage, irrespective

of how many faults occurred between traversals A and B .
5. Case: The fault occurs in traversal B before the execution of Line 8.
5.1. If s ′f is in Filter block up to Line 8, then the sequence of faults from traversal A to traversal B

are equivalent to a single block-confined fault by Step 4; the results follow from Lemma 12.
5.2. If s ′f is after Line 8, then the state s ′g of traversal B exists by Lemma 14; a contradiction with

the fact the state at which the fault occurs precedes Line 8 by case assumption and s ′f succeeds
Line 8 by step assumption.

6. Case: A fault occurs in traversal B after the execution of Line 8.
6.1. Filter and FirstGate execute correctly in traversal B by case assumption since Line 8 is the last

line of FirstGate.
3The state immediately after a fault that jumps out of a traversal is the final state of that traversal.
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sb
Traversal A

sg sp sx1 sr re

Fault jumps out
se sb ’

crash at FirstGate if no fault jumps in

Fault jumps into

sx1 ’ sr ’ sx2 ’ sc ’ se ’
Traversal B

Figure 9: Jump-out jump-in fault sequence: If a fault jumps out of traversal A, then in the subsequent
traversal B : (1) another fault has to occur; and (2) this fault has to jump into the same block in which
traversal A was left (see Lemma 22).

6.2. For all v ∈ Vg\Vi : s
′
g [v ] = sg [v ] or v is invalid by Step 4 and by case assumption.

6.3. Let rg be the reference state after the execution of Line 8 of traversal A.
6.4. For all v ∈ Vg\Vi : s

′
g [v ] = rg [v ] or v is invalid by Step 6.2.

6.5. sg ’ is the same state as sg , but with a potentially different input message in Vi by Step 6.4 and
since between two traversal a new message might be received.

6.6. For all v ∈ Vg , s
′
e [v ] = r ′e [v ] or v is invalid at s ′e by Step 6.5.

7. For all v ∈ Vg , s
′
e [v ] = r ′e [v ] or v is invalid at s ′e by Steps 5 and 6. ✷

We now show that also for the case of a fault jumping out of traversal A after Line 8, the traversal
invariant holds at se ’. The control-flow flag cfg is true at once the fault occurs in traversal A since it is
set at Line 8. It is easy to see that if no fault occurs in the subsequent traversal B , π crashes at the checks
of FirstGate because either s ′b [cfg ] = true or cfg is invalid at sb ’. In fact, if any instruction of blocks
Exec1, Reset or Exec2 are to be executed in traversal B , a fault has to occur before Line 3 completely
jumping over the checks of the FirstGate. For that we define a fault that “jumps in” a traversal as
follows.

Definition 50 (A fault jumps in) A fault jumps in the traversal iff a fault occurs at some line before
Line 3 corrupting the program counter pc to the value of some instruction after Line 6, but before Line 84.

The next lemma (Lemma 22) asserts that not only that fault has to occur in traversal B , but also that
the fault has to jump into exactly the same block at which traversal A was left. Figure 9 exemplifies a
fault occurring in Exec1 jumping out of traversal A. A fault has to occur jump into traversal B , otherwise
π crashes in the checks of FirstGate since s ′b [cfg ] = true or invalid at sb ’. Following the example of
the figure, if the fault jumps into B before Gate(cf1, cfp), i.e., before sx1 ’, then π crashes at Line +0 of
Gate(cf1, cfp) because s ′b [cf1] = true or invalid at sb ’ since the fault in traversal A jumped out after
Gate(cf1, cfp), i.e., sx1 . If the fault jumps into B after Gate(cfr , cf1), i.e., after sr ’, then π crashes at
Line +3 of Gate(cf2, cfr ) because s ′b [cfr ] = false or invalid at sb ’ since the fault in traversal A jumped
out before Gate(cfr , cf1), i.e., before sr . Hence, the only block into which the fault can jump is Exec1,
i.e., after sx1 ’ and before sr ’.

The consequence of Lemma 22 is important. The faults of two consecutive traversals behave similarly
to a single block-confined fault. Moreover, since multiple faults might occur between traversals, the
sequence of faults formed by a fault jumping out of traversal A followed by zero or more faults between
traversals A and B and, finally, followed by a fault jumping into traversal B behave as a single block-
confined fault.

Lemma 22 Assume traversal invariant holds at state sb of traversal A, a fault occurs at some state sf
after the execution of Line 8 and jumps out of traversal A, and π does not crash. If a fault jumps into
traversal B at state s ′f , then s ′f is in the same block as sf .

Proof:
1. s ′e [cfg ] = false or cfg is valid at se ’.
1.1. sf [cfg ] = true or cfg is valid at sf since the fault in traversal A occurs after Line 8.
1.2. se [cfg ] = true or cfg is invalid at se by Step 1.1 and since the fault jumps out of traversal A and

by corruption coverage.
1.3. s ′b [cfg ] = true or cfg is invalid at sb ’ by Step 1.2 and by corruption coverage, irrespective of how

many faults occurred between traversals A and B .
1.4. A fault has to occur in traversal B at some state s before the execution of Line 3 and jump into

traversal B after Line 6, otherwise π crashes by Step 1.3.
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1.5. s ′f [cfg ] = true or cfg is invalid at s ′f by Step 1.3 and 1.4 and by corruption coverage.
1.6. If s ′f is some state after Line 73, then no variable in Vg is modified in B ; we can ignore such cases

since B is a series of stuttering steps.
1.7. If s ′f is some state before Line 73, then s ′e [cfg ] = false and cfg is valid at se ’ by definition of

Line 73 and by fault-frequency assumption.
2. Case: sf in Validate before Line 73.

2.1. ∀cf ∈ Flags : sf [cf ] = true and cf is valid at sf since no fault occurs before sf in A by fault-
frequency assumption, and every cf ∈ Flags is assigned trueby an instruction before Line 73 by
Algorithm 8.

2.2. No instruction modifies any cf ∈ Flags from sf until s ′f by Definitions 49 and 50.
2.3. ∀cf ∈ Flags : s ′f [cf ] = true or cf is invalid at s ′f by Step 2.1 and 2.2 and by corruption coverage,

irrespective of how many faults occurred between traversals A and B .
2.4. s ′f must be after Line +0 of Gate(cfc , cf2), otherwise π crashes by Step 2.3.
2.5. s ′f must be before Line 73, otherwise s ′e [cfg ] = true or cfg is invalid at se ’ by Step 2.3; a

contradiction with Step 1.
2.6. s ′f is in Validate by Steps 2.4 and 2.5.

3. Case: sf in Exec2.
3.1. ∀cf ∈ Flags\{cfc} : sf [cf ] = true and cf is valid at sf since no fault occurs before sf in A by

fault-frequency assumption, and every cf ∈ Flags is assigned by an instruction before Exec2.
3.2. sf [cfc ] = false and cfc is valid at sf since no fault occurs before sf in A by fault frequency

assumption, and every cf ∈ Flags is assigned by an instruction before Exec2.
3.3. No instruction modifies any cf ∈ Flags from sf until s ′f by Definitions 49 and 50.
3.4. ∀cf ∈ Flags\{cfc} : s

′
f [cf ] = true or cf is invalid at s ′f by Step 3.1 and 3.3 and by corruption

coverage, irrespective of how many faults occurred between traversals A and B .
3.5. s ′f [cfc ] = false or cfc is invalid at s ′f by Step 3.2 and 3.3 and by corruption coverage, irrespective

of how many faults occurred between traversals A and B .
3.6. s ′f must be after Line +0 of Gate(cf2, cfr ), otherwise π crashes by Step 3.4.
3.7. s ′f must be before Line 73, otherwise s ′e [cfg ] = true or cfg is invalid at se ’ by Step 3.3; a

contradiction with Step 1.
3.8. s ′f must be before or at Line +2 ofGate(cfc , cf2), otherwise π crashes after Line 73 by Steps 3.5 and 3.7.
3.9. s ′f is in Exec2 by Step 3.8.

4. Case: sf in Reset .
4.1. ∀cf ∈ Flags\{cf2, cfc} : sf [cf ] = true and cf is valid at sf since no fault occurs before sf in A

by fault frequency assumption, and every cf ∈ Flags is assigned by an instruction before Reset .
4.2. ∀cf ∈ {cf2, cfc} : sf [cf ] = false and cf is valid at sf since no fault occurs before sf in A by fault

frequency assumption, and every cf ∈ Flags is assigned by an instruction before Reset .
4.3. No instruction modifies any cf ∈ Flags from sf until s ′f by Definitions 49 and 50.
4.4. ∀cf ∈ Flags\{cf2, cfc} : s

′
f [cf ] = true or cf is invalid at s ′f by Step 4.1 and 4.3 and by corruption

coverage, irrespective of how many faults occurred between traversals A and B .
4.5. ∀cf ∈ {cf2, cfc} : s ′f [cf ] = false or cf is invalid at s ′f by Step 4.2 and 4.3 and by corruption

coverage, irrespective of how many faults occurred between traversals A and B .
4.6. s ′f must be after Line +0 of Gate(cfr , cf1), otherwise π crashes by Step 4.4.
4.7. s ′f must be before Line 73, otherwise s ′e [cfg ] = true or cfg is invalid at se ’ by Step 4.3; a

contradiction with Step 1.
4.8. s ′f must be before or at Line +2 ofGate(cf2, cfr ), otherwise π crashes after Line 73 by Steps 4.5 and 4.7.
4.9. s ′f is in Reset by Step 4.8.

5. Case: sf in Exec1.
5.1. ∀cf ∈ Flags\{cfr , cf2, cfc} : sf [cf ] = true and cf is valid at sf since no fault occurs before sf in A

by fault frequency assumption, and every cf ∈ Flags is assigned by an instruction before Exec1.
5.2. ∀cf ∈ {cfr , cf2, cfc} : sf [cf ] = false and cf is valid at sf since no fault occurs before sf in A by

fault frequency assumption, and every cf ∈ Flags is assigned by an instruction before Exec1.
5.3. No instruction modifies any cf ∈ Flags from sf until s ′f by Definitions 49 and 50.
5.4. ∀cf ∈ Flags\{cfr , cf2, cfc} : s ′f [cf ] = true or cf is invalid at s ′f by Step 5.1 and 5.3 and by

corruption coverage, irrespective of how many faults occurred between traversals A and B .
5.5. ∀cf ∈ {cfr , cf2, cfc} : s

′
f [cf ] = false or cf is invalid at s ′f by Step 5.2 and 5.3 and by corruption

coverage, irrespective of how many faults occurred between traversals A and B .
5.6. s ′f must be after Line +0 of Gate(cf1, cfp), otherwise π crashes by Step 5.4.
5.7. s ′f must be before Line 73, otherwise s ′e [cfg ] = true or cfg is invalid at se ’ by Step 5.3; a
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contradiction with Step 1.
5.8. s ′f must be before or at Line +2 ofGate(cfr , cf1), otherwise π crashes after Line 73 by Steps 5.5 and 5.7.
5.9. s ′f is in Exec1 by Step 5.8.

6. Case: sf in Prepare2.
6.1. ∀cf ∈ Flags\{cf1, cfr , cf2, cfc} : sf [cf ] = true and cf is valid at sf since no fault occurs before

sf in A by fault frequency assumption, and every cf ∈ Flags is assigned by an instruction before
Prepare2.

6.2. ∀cf ∈ {cf1, cfr , cf2, cfc} : sf [cf ] = false and cf is valid at sf since no fault occurs before sf in A by
fault frequency assumption, and every cf ∈ Flags is assigned by an instruction before Prepare2.

6.3. No instruction modifies any cf ∈ Flags from sf until s ′f by Definitions 49 and 50.
6.4. ∀cf ∈ Flags\{cf1, cfr , cf2, cfc} : s

′
f [cf ] = true or cf is invalid at s ′f by Step 6.1 and 6.3 and by

corruption coverage, irrespective of how many faults occurred between traversals A and B .
6.5. ∀cf ∈ {cf1, cfr , cf2, cfc} : s

′
f [cf ] = false or cf is invalid at s ′f by Step 6.2 and 6.3 and by corruption

coverage, irrespective of how many faults occurred between traversals A and B .
6.6. s ′f must be after Line +0 of Gate(cfp , cfg), otherwise π crashes by Step 6.4.
6.7. s ′f must be before Line 73, otherwise s ′e [cfg ] = true or cfg is invalid at se ’ by Step 6.3; a

contradiction with Step 1.
6.8. s ′f must be before or at Line +2 ofGate(cf1, cfp), otherwise π crashes after Line 73 by Steps 6.5 and 6.7.
6.9. s ′f is in Prepare2 by Step 6.8.

7. Case: sf in Prepare1.
7.1. ∀cf ∈ Flags\{cfp , cf1, cfr , cf2, cfc} : sf [cf ] = true and cf is valid at sf since no fault occurs before

sf in A by fault frequency assumption, and every cf ∈ Flags is assigned by an instruction before
Prepare1.

7.2. ∀cf ∈ {cfp , cf1, cfr , cf2, cfc} : sf [cf ] = false and cf is valid at sf since no fault occurs before sf
in A by fault frequency assumption, and every cf ∈ Flags is assigned by an instruction before
Prepare1.

7.3. No instruction modifies any cf ∈ Flags from sf until s ′f by Definitions 49 and 50.
7.4. ∀cf ∈ Flags\{cfp , cf1, cfr , cf2, cfc} : s

′
f [cf ] = true or cf is invalid at s ′f by Step 7.1 and 7.3 and

by corruption coverage, irrespective of how many faults occurred between traversals A and B .
7.5. ∀cf ∈ {cfp , cf1, cfr , cf2, cfc} : s ′f [cf ] = false or cf is invalid at s ′f by Step 7.2 and 7.3 and by

corruption coverage, irrespective of how many faults occurred between traversals A and B .
7.6. s ′f must be after Line 6, otherwise π crashes by Step 7.4.
7.7. s ′f must be before Line 73, otherwise s ′e [cfg ] = true or cfg is invalid at se ’ by Step 7.3; a

contradiction with Step 1.
7.8. s ′f must be before or at Line +2 ofGate(cfp , cfg), otherwise π crashes after Line 73 by Steps 7.5 and 7.7.
7.9. s ′f is in Prepare1 by Step 7.8.

✷

Note that the case of fault in traversal A occurring after Line 73 can be ignored because in such case
all blocks execute correctly. Also note that if sf in Filter , then the fault occurs before Line 8, and the
results follow from Lemma 21.

Lemma 23 Assume the traversal invariant holds at state sb of traversal A, a fault occurs at some state
sf after Line 8 and jumps out of traversal A, and π does not crash. If a fault jumps into traversal B,
then the for all v ∈ Vg\Vi , s

′
f [v ] = sf [v ] or v is invalid at s ′f .

Proof:
1. No variable in Vg\Vi is modified by assignment between sf and se of traversal A by Definition 49.
2. No variable in Vg\Vi is modified by assignment between s ′b and s ′f of traversal B by Definition 50.
3. No variable in Vg\Vi is modified by assignment between se and sb ’ since variables in Vg\Vi are only

modified inside traversals.
4. For all v ∈ Vg\Vi , s

′
f [v ] = sf [v ] or v is invalid at s ′f by Steps 1, 2 and 3 and by corruption coverage.✷

Finally, we show that if the traversal invariant holds at state sb of a traversal A, a fault jumps out
of traversal A, and another fault jumps into traversal B , then the traversal invariant holds at se ’. In
particular, it holds that s ′e [v ] = re [v ] for all variable v ∈ Vg that is valid at se ’; or s ′e [v ] = r ′e [v ] for all
variable v ∈ Vg that is valid at se ’.

Lemma 24 Assume the traversal invariant holds at state sb of traversal A, a fault occurs at some state
sf after Line 8 and jumps out of traversal A. If a fault jumps into traversal B at state s ′f and π does
not crash, then ∀v ∈ Vg\Vi : s

′
e [v ] = re [v ] ∨ s ′e [v ] = r ′e [v ] or v is invalid at se ’.
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Proof:
1. No fault occurs in traversal A before sf by fault-frequency assumption.
2. No fault occurs in traversal B after s ′f by fault-frequency assumption.
3. For all v ∈ Vg\Vi , s

′
f [v ] = sf [v ] or v is invalid at s ′f by Lemma 23.

4. N , O and U are valid at s ′e since no fault occurs after s ′f and s ′f occurs before LastGate.
5. Case: sf in Validate before Line 73.
5.1. State s ′f is in block Validate by Lemma 22.
5.2. No assignment to Vg\Vi occurs after sc until s ′f by definition of Validate and by Step 3.
5.3. No assignment to Vg occurs after s ′f by definition of Validate.
5.4. ∀v ∈ Vg\Vi : se [v ] = sf [v ] = re [v ] by Step 1 and by case assumption.
5.5. ∀v ∈ Vg\Vi : s

′
e [v ] = re [v ] by Steps 5.2, 5.3 and 5.4.

6. Case: sf in Exec2.
6.1. State s ′f is in block Exec2 by Lemma 22.
6.2. Case: v ∈ N and v ∈ U at s ′f .
6.2.1. s ′e [v ] = s ′e [N (v)], otherwise π crashes in Validate.
6.2.2. s ′e [N (v)] = s ′f [N (v)] = sf [N (v)] by Step 3.
6.2.3. sf [N (v)] = re [v ] by Step 1 and 4.
6.2.4. s ′e [v ] = re [v ] by Steps 6.2.1, 6.2.2, and 6.2.3.

6.3. Case: v ∈ N and v /∈ U at s ′f ; or v /∈ N and v ∈ U at s ′f .
6.3.1. π crashes at Validate; a contradiction

6.4. Case: v /∈ N and v /∈ U at s ′f .
6.4.1. v is assigned in Exec2 at some state s ′, otherwise s ′e [v ] = se [v ] = sb [v ].
6.4.2. s ′f � s ′ by Definition 50 and fault-frequency assumption.
6.4.3. No fault occurs after s ′ by Step 6.4.2.
6.4.4. π crashes at the check of Line +2 of Rule 4; a contradiction.

7. Case: sf in Reset .
7.1. State s ′f is in block Reset by Lemma 22.
7.2. Reset does not read or write any v ∈ Vi by definition of Reset .
7.3. ∀v ∈ Vg : s ′e [v ] = re [v ] by Lemmas 22 and 8 and Steps 7.1 and 7.2.

8. Case: sf in Exec1.
8.1. State s ′f is in block Exec1 by Lemma 22.
8.2. ∀v ∈ Vg : s ′e [v ] = r ′e [v ] by Lemmas 22 and 5 and Steps 8.1 and 3.

9. Case: sf in Prepare2 or sf in Prepare1.
9.1. ∀v ∈ Vg : s ′e [v ] = r ′e [v ] by Lemmas 22 and 3 and Step 3.

✷

We now conclude our proof that SEI-hardening guarantees error isolation.

Theorem 2 SEI-hardening guarantees error isolation under the Assumptions 2, 3, 4, 5, and 6.

Proof:
1. Local error exposure (Property 3)
If a fault jumps out of the traversal the result holds by Lemmas 1, 17, 21 and 24. If a fault does not
jump out of the traversal, the result holds by Lemmas 1 and 16.

2. Local error filtering (Property 4)
If an invalid message is received a correct process discards the message in Filter before any variable
v ∈ Vg is modified by definition of Algorithms 1 and 2.

3. Accuracy (Property 2)
A message is only discarded by a correct process if it is invalid by definition of Algorithms 1 and 2.
Process π only aborts if an error is detected by Rules 1-6 and Algorithms 1, 2, 5 and 8.

4. Under Assumptions 2, 3, 4, 5, and 6, SEI-hardening guarantees error isolation by Steps 1, 2 and 3
and Theorem 1. ✷

5 Multithreaded SEI-hardening

In this section, we introduce multithreading support into SEI. Our approach uses two-phase locking [33]
to isolate the state used by a traversal from other concurrent traversals. In particular, locks are acquired
and held until both executions and the final checks of a traversal finish. Additionally, since threads can
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read corrupt values from faulty threads that skip lock acquisition, we add a barrier after the Validate
block, which enforces that a traversal only terminates after all other concurrently executed traversals
have finished their Validate blocks.

We start by discussing further model refinements necessary to support multithreading; next, we prove
the approach correct; and, finally, we discuss the limitations of our multithreading support and a possible
alternative solution.

5.1 Model refinements

Definition 51 (Multithreaded process) A process π consists of multiple treads {τ0, . . . , τt}. Each
thread τi executes the Next state transitions on the variable set Vi ⊂ V . Threads share a subset Vshr of
their variables. No input or output variable is shared among threads.

Assumption 8 (Mutual exclusion and lock hierarchies) Threads access variables in Vshr only in
critical sections. Mutual exclusion is obtained using locks and locks are acquired in a consistent order,
e.g., via lock hierarchies [17].

Given the way SEI handles locks, the behavior of multithreaded processes is equivalent to a single-
threaded process. Therefore, we can adopt the notion of correct message for single-threaded processes
(Definition 3). However, for completeness, we extend the definition of correct message to a multithreaded
process.

Definition 52 (Refinement of a generation history of a message) Let π be a multithreaded pro-

cess, m be a message sent by π, and h the generation history for m. A refinement ĥ of h is the sequence
of local steps π executes in a run where π is correct and receives each message in h until m is sent.

Definition 53 (Correct multithreaded generation history of a message) Let π be a faulty mul-
tithreaded process. Let m be a message sent by π.

• If π has sent no message m ′ before m such that m ′ has a correct generation history, then all
generation histories of m are correct for m.

• Else, for each output message m ′ preceding m, let H be set of correct generation histories of m ′.
A generation history of m is correct if and only if it extends some generation history in H .

In addition, given two output messages m1 and m2 having two sets of correct generations histories Hm1

and Hm2
respectively, it must hold that for each refinement ĥ1 of h1 ∈ Hm1

(resp. ĥ2 of h2 ∈ Hm2
) there

must exist a refinement ĥ2 of h2 ∈ Hm2
(resp. ĥ1 of h1 ∈ Sm1

), such that either ĥ1 extends ĥ2 or ĥ2
extends ĥ1.

The first two conditions are the same as Definition 3. The third is specific to multithreaded processes.
In presence of multiple threads, we can have multiple concurrent traversals, at most one per thread.

The fault frequency assumption with multiple traversals becomes the following.

Assumption 9 (Fault frequency with multiple threads) Given a set of concurrent traversals E =
{E1, . . . ,En} executed by different threads, at most one fault occurs between the earliest beginning and
the latest end of a traversal in E.

The state of a lock l indicates the thread t currently holding l . We consider three lock primitives
for a lock l : Acquire(l), Release(l), Holding(l). The first primitive acquires l if it is available. It returns
a boolean indicating success. Locks can be acquired multiple times. The second primitive releases the
lock. It returns false if it is invoked by a thread that is not currently holding l and true otherwise. The
last primitive returns a boolean indicating whether the invoking thread holds l .

A critical section C is a sequence of instructions that must be executed in mutual exclusion. In a
correct execution, C is only executed by threads holding a set of locks LC .
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add at the end of the Initialization blocks

+1 if ¬Check(i) ∨ ¬Check(c[i ]) then Abort

+2 c[i ]← c[i ] + 1

after executing Validate

+1 foreach l ∈ Q do

+2 Release(l)

+3 c[i ]← c[i ] + 1
+4 csnap ← c

+5 if ¬Check(csnap) then Abort

+6 foreach j 6= i such that csnap [j ] is even do

+7 wait until c[j ] > csnap [j ] ∨ ¬Check(c[j ])

Algorithm 9: Hardening rules for thread τi

before Acquire(l) in Exec1
+1 add l to set Q

around Acquire(l) in Exec2
+1 do nothing

around Release(l) during Exec1 or Exec2
+1 if ¬Check(l) ∨ ¬Holding(l) then Abort

Algorithm 10: Intercepted operations

5.2 Algorithm extensions for multiple threads

To support multiple threads, SEI employs an array c of counters, one per thread (Algorithm 9); this
array of counters is called the barrier. Before a thread starts executing the Exec1 block, it increments
its counter c[i ], and increments it again after completing the Validate block. Therefore, an odd counter
indicates that a thread is executing event handling. Immediately after completing its Validate block,
each thread reads c and makes sure that all other threads that executed traversals concurrently have
finished checking their modifications to state s.

As we show in Algorithm 10, SEI intercepts lock operations to make sure that a thread keeps its locks
throughout the first and second execution. Each thread adds its locks to a set Q and releases them only
at the end of the check procedure.

5.3 Correctness with multiple threads

We are now ready to show the correctness of the full SEI algorithm with multiple threads. This boils
down to showing that there is no error propagation among processes through shared variables. We now
show that Theorem 2 holds even in presence of multiple threads.

Lemma 25 If a set of threads τ1, . . . , τn of a process π, with n > 1, are in the same critical section C
while running traversal E1, . . . ,En respectively, then π crashes before all threads exit C .

Proof:
1. Let LC be the set of locks required to enter C .
2. Let s be the state when the last thread in τ1, . . . , τn executes its first operation of C .
3. No fault occurs during traversal E1, . . . ,En after state s.
3.1. Mutual exclusion is violated at state s.
3.2. A fault has occurred before s in some traversal E1, . . . ,En .
3.3. Step 3 follows by fault frequency.

4. Each thread in τ1, . . . , τn executes Release(l) for each l ∈ LC before exiting C by definition of LC

and Step 3.
5. If some l ∈ LC is invalid, some thread crashes the process before exiting C , upon releasing l and

checking that l is invalid by Steps 3 and 4.
6. Else, if all l ∈ LC are valid
6.1. At most one thread holds all locks in LC .
6.2. Some thread τi crashes the process before exiting C , upon releasing some l ∈ LC and checking

that τi does not hold l , by Steps 3 and 4. ✷

Lemma 26 Let two threads τi and τj execute a block Exec1 or Exec2 concurrently in traversals Ei

and Ej , respectively, after a fault occurs after the beginning of Ei or Ej . Assume block-confined faults
(Assumptions 7). If the process does not crash before the end of Ei or Ej , then neither thread terminates
its traversal before the other thread terminates executing the Exec1 or Exec2 block and checks all state
modifications in its traversal in the Validate block.

Proof:
1. No fault occurs during Ei or Ej in blocks different than Exec1 or Exec2 by fault frequency and

block-confinedeness.
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2. The entry of τi and τj in the counter vector c has been increased at state si and sj during a fault-free
period by Step 1.

3. c[τi ] or c[τj ] are valid at si and sj because else the process crashes before the end of Ei or Ej by
Step 2, contradiction.

4. c[τi ] or c[τj ] are set to an even value at si and sj by Steps 2 and 3.
5. The Validate block of τi (wlog) completes only in the following cases:

5.1. Case: csnap [j ] is odd or it is even and csnap [j ] < c[j ]
5.1.1. τj has increased csnap [j ] at some state s ≻ sj , by Step 4.
5.1.2. State s can only occur after τj terminates the executing the Exec1 or Exec2 block and checks

all state modifications in its traversal in the Validate block by Step 1.
5.2. Case: csnap [j ] is even and ¬Valid(c[j ])
5.2.1. Variable c[j ] is corrupted after the snapshot of c is taken, by Step 1 and since the validity of

the variables in c is checked in Line +3 of Algorithm 9.
5.2.2. The fault corrupting c[j ] must have occurred after Ei and Ej are terminated, by fault fre-

quency. ✷

Lemma 27 Theorem 2 holds in processes with multiple threads.

Proof:
1. Two types of error propagation in multithreaded applications are not covered by Theorem 2.
2. Case: Mutual exclusion is violated.

2.1. This is ruled out by Lemmas 25 and 26.
3. Case: A thread τi reads a corrupt variable v determined by an assignment from a different thread

τj .
3.1. Let τi be the first thread that reads a variable corrupted in this manner in a state s.
3.2. Let Ej be the traversal in which τj last writes v before s.
3.3. If τi has read v then τj has released the lock on v by Lemmas 25 and 26.
3.4. Locks are only released after the Validate block.
3.5. τj does not modify v after releasing the locks protecting v by definition of s.
3.6. The value read by τi is the final value of v in Ej .
3.7. Theorem 2 ensures that τi can detect the correctness of v . ✷

A corollary of Lemma 27 is the following.

Corollary 1 Error isolation holds in presence of multiple threads.

5.4 Discussion

We now discuss some limitations of our multithreading support in SEI and one possible alternative
solution.

5.4.1 Limitations

Fault coverage. Our barrier mechanism assumes block-confined faults (see Lemma 26), an assumption
that is not needed in the single-threaded case. The reason for that assumption can be illustrated with
an example. An ASC fault can bring a thread τi to jump from pc = 0 directly inside a critical section
CS. Assume τi is preempted after modifying some state variables inside CS. Next, another thread τj
gets into CS and reads the corrupt variables. Thread τj can successfully acquire the locks protecting CS
because τi skipped their acquisition due to the ASC fault. Moreover, τj does not block on the barrier
at the end of the traversal because τi skipped the Initialization blocks altogether. Therefore, if τi is not
scheduled before τj finishes its traversal, then τj may send corrupt messages and violate error isolation.

Block-confined faults rule out this scenario because a fault skipping the Initialization block cannot
jump into an execution block. This assumption might be, however, unnecessarily strong. It would be
sufficient to argue that a fault will not skip the Initialization block and jump inside an execution block
and inside a critical section inside that block. Despite the slightly strong assumption, our experiments
in the companion paper [3] do not reveal a major difference in the number of undetected errors between
single-threaded and multithreaded executions.
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Concurrency. Our algorithm implements a two-phase locking (2PL) scheme since locks are not re-
leased until the Validate block terminates. This locking protocol is known to limit the available paral-
lelism under contended workloads. Two further issues with SEI can aggravate this problem. First, our
algorithm increases critical section length by executing them twice. In our experiments with memcached,
however, we have not experienced significant reduction in the system’s throughput due to the locking
scheme when enough parallelism is available (i.e., when threads mostly access different keys). Second,
the barrier approach can make fast threads wait for slow threads. That can be mitigated by “preempt-
ing” the traversal and letting the thread execute other work meanwhile – see the companion paper [3]
for details.

Deadlocks. SEI targets applications where locks are acquired in a consistent order (see Assumption 8)
because our 2PL approach might cause deadlocks otherwise. An alternative solution that does not
require hierarchical locks is to rollback the state modifications (as Reset does) upon detecting a deadlock;
and, subsequently, waiting for a random period of time before retrying. Note that the deadlock detection
mechanism does not have to be harden because a misdetection only affects liveness but not safety.

5.4.2 The mini-traversals approach

Given the limitations of the 2PL scheme, one might consider the following alternative solution. We split
a traversal E into mini-traversals by considering every unlock event as an externalization event. Indeed,
once a thread τi releases a lock l , the data protected by l can be read by another thread τj , which in turn
can use the data to create and send a message; hence, unlocking can be seen as state externalization.

The mini-traversal approach can be realized by wrapping lock release functions. Whenever a release
function is called in a traversal E , before the lock is actually released, the traversal is reset, re-executed,
and checked (Reset , Exec2, and Validate blocks). After that, the traversal sends a local message, effec-
tively splitting the traversal E into two mini-traversals E1 and E2. The local message represents the
local state (including acquired locks) being transferred from mini-traversal E1, which has just finished,
to mini-traversal E2, which is about to start.

We have implemented this solution, but practical limitations made it very inefficient. In particular,
since traversals are split, a mini-traversal Ei might start at deep level in the call stack and end at a higher
level in the call stack. If that occurs, all stack frames between both stack levels have to be reset before
the traversal Ei can start its Exec2 block. The need to copy large portions of the stack after every lock
release render the mini-traversals approach hard to employ in practice; for example, in memcached more
than 10 lock releases might occur per traversal, each copying as much as 800 bytes of stack data.

6 Additional experimental results

We present here some additional evaluation material.

6.1 Software fault injection

6.1.1 Setup and methodology

In our fault injection experiments, we follow the approach of Basile et al. [2] and Correia et al. [9] injecting
single bit flips. For our fault injection experiments, we have implemented BFI4, a tool for Intel’s Pin
dynamic binary instrumentation framework [24] that can inject faults during run-time. BFI can inject
three groups of faults described in Table 4.

A control-flow (CF) fault flips a bit of the instruction pointer. A fault in the data-flow (DF) group
affects the computation: WREG and WVAL represent incorrectly computed values that are respectively
written into a register or a memory location, e.g., an addition that results in a wrong value and is stored
in a register; WADDR and RADDR represent computational errors while calculating an indexed address
for reading or writing from memory. Finally, a fault in the RD group directly corrupts a register (RREG)
before being used or a memory location (RVAL) before being read.

Field studies show that most memory faults are detected by ECC [18, 29]. Injected RVAL faults,
however, automatically overwrite both, the value and its ECC. Hence, RVAL faults represent worst-case
scenarios in which the ECC memory is not able to detect data corruption as assumed by corruption
coverage (see Section 4.1).

4 BFI stands for bit-flip injector.
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Group Fault Description

CF CF IP register changes (control-flow fault)

DF

WREG register value changes after it is written
WVAL memory value changes after it is written
WADDR calculated address changes before write
RADDR calculated address changes before read

RD
RREG register value changes before it is read
RVAL memory value changes before it is read

Table 4: Fault types supported by BFI.

To speed up our experiments and make the results reproducible, we have modified memcached to read
commands from an input-trace file and write responses into an output-trace file by wrapping functions
reading from and writing to sockets. To compare the output trace, we first create a golden run output-
trace file. We perform two sets of experiments. The first set studies the fault coverage of SEI and the
effects of leveraging hardware error detection codes in the implementation. We run, with a single thread,
the unhardened memcached (mc), the SEI-hardened variant (mc-sei) with hardware error detection codes,
and a further SEI-hardened variant (mc-sei-dup) with duplicated state assuming no error detection codes
in hardware. The second set of experiments investigates whether the computational scalability aspect
of our implementation affects the fault coverage. In this set, we run mc-sei and mc-seil with 4 threads;
mc-seil has the checking barrier disabled and assumes that locks are not skipped. We perform 8,000
executions for each fault type and each single-threaded variant, with a subtotal of 96,000 executions
for the DF group, 48,000 for the RD group, and a total of 168,000 executions (see Table 5). For the
multithreaded experiments, we perform a total of 80,000 executions (see our companion paper [3]).

Each fault injection execution consists of three phases. A warmup phase, where set commands are
issued to populate the cache, but no faults are injected; an injection phase, where set and get commands
are issued and one fault is injected at a randomly selected instruction; and finally, a propagation phase,
where all keys are retrieved multiple times with get commands, but again no faults are injected. Note
that some instructions are not susceptible to every fault, for example, an instruction that does not write
to memory cannot suffer a WADDR fault. In such cases, we inject the fault in the first susceptible
instruction after the selected one. Moreover, if multiple registers/addresses operands are susceptible to
the fault then the operand is selected randomly.

The output-trace of each execution is compared with the golden run. In each run, one fault is
injected at a randomly selected instruction inside or outside the event handler including shared libraries;
Pin cannot, however, instrument instructions inside syscalls. A fault that causes a trace deviation, e.g.,
an unexpected message or a shorter trace, produces a manifested error. The errors we report are all
manifested, consequently we refer to them as just errors henceforth.

6.1.2 Results with memcached

Table 5 summarizes the main results of our fault injection experiments broken down by fault type. The
right-most column shows, for each fault-variant combination, the total number of manifested errors out
of 8000 injections. Manifested errors are classified in detected and undetected, shown as percentage of
the total number of manifested errors. Undetected errors are corrupt output messages that cannot be
detected by the client. They correspond to error propagation scenarios where the error isolation property
is violated. Detected errors are further divided into det/SEI, i.e., errors detected and isolated by libsei,
for example, crashes initiated by the library or invalid messages detectable at the client; and det/other
errors, i.e., errors detected or isolated by other mechanisms, for example, crashes due to segmentation
fault or assertions, infinite loops, and also error messages or partial messages detectable at the client.

The most important result of our fault injection experiments is the drastic decrease of undetected
errors when hardening memcached. Aggregating all results, mc shows 33.43% undetected errors while
mc-sei only 0.25%. Undetected errors in the mc variant range from 9% up to 69% of the manifested
errors, depending on the fault type. In contrast, the mc-sei variant shows at most 0.83% undetected
errors. Table 5 also shows that libsei detects and isolates from 14% up to 82% of the manifested errors
(47.04% aggregated).
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Fault Variant
Errors

Undetected Det/SEI Det/other Total

CF
mc 9.66% - 90.34% 6690
mc-sei 0.06% 14.70% 85.23% 6515
mc-sei-dup 0.00% 9.87% 90.13% 6594

WREG
mc 34.50% - 65.50% 4194
mc-sei 0.13% 52.93% 46.93% 4481
mc-sei-dup 0.00% 40.41% 59.59% 4180

WVAL
mc 69.92% - 30.08% 3304
mc-sei 0.16% 82.26% 17.58% 5063
mc-sei-dup 0.00% 79.80% 20.20% 2510

WADDR
mc 45.51% - 54.49% 3564
mc-sei 0.11% 61.20% 38.69% 5412
mc-sei-dup 0.00% 46.88% 53.12% 4394

RADDR
mc 32.25% - 67.75% 4118
mc-sei 0.21% 34.35% 65.54% 5297
mc-sei-dup 0.00% 32.06% 67.94% 4907

RREG
mc 25.55% - 74.45% 5678
mc-sei 0.21% 39.49% 60.30% 5700
mc-sei-dup 0.00% 34.09% 65.90% 5453

RVAL
mc 41.65% - 58.35% 4936
mc-sei 0.83% 53.97% 45.20% 5803
mc-sei-dup 0.00% 62.83% 37.17% 5989

Aggregate
mc 33.43% - 66.57% 32484
mc-sei 0.25% 47.04% 52.71% 38271
mc-sei-dup 0.00% 43.35% 56.64% 30363

Table 5: Errors classified in undetected, SEI-detected, and detected with other mechanisms. Total errors
out of 8000 executions for each fault-variant combination.

Fault Variant
Errors

Undetected Det/SEI Det/other Total

CF
dw 8.71% - 91.29% 3251
dw-sei 0.12% 9.33% 90.55% 3334

WREG
dw 26.41% - 73.59% 1946
dw-sei 0.09% 36.45% 63.46% 2140

WVAL
dw 35.95% - 54.05% 1235
dw-sei 0.06% 56.54% 43.40% 1567

WADDR
dw 27.50% - 72.50% 1818
dw-sei 0.28% 39.31% 60.40% 2139

RADDR
dw 40.14% - 59.86% 2070
dw-sei 0.04% 41.42% 58.54% 2501

RREG
dw 23.01% - 76.99% 2686
dw-sei 0.07% 24.88% 75.05% 3014

RVAL
dw 44.37% - 55.63% 2565
dw-sei 0.53% 41.84% 57.63% 2818

Aggregate
dw 27.80% - 72.20% 15571
dw-sei 0.18% 33.02% 66.80% 17513

Table 6: Errors classified in undetected, SEI-detected, and detected with other mechanisms. Total errors
out of 4000 executions for each fault-variant combination.
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Figure 10: Response time versus throughput varying value size. At the 1ms
cut mc-sei achieves 70% of the throughput of mc with 8B values and 80%
with 1KiB values.
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tion varying message size for gets and sets with
10 k.req/s load

●● ● ● ●
+3%+4% +3% +3% +3%

●● ● ● ●
+5%+6% +4% +5% +4%

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

g
et

set

1001 20 50 80

key range (k.key)

re
sp

o
n
se

 t
im

e 
(m

s)

●a amc−sei mc

0

20

40

60

0

20

40

60

g
et

set

1001 20 50 80

key range (k.key)

C
P

U
 u

ti
li

za
ti

o
n
 (

%
)

mc−sei mc

Figure 13: Response time and CPU utilization
varying number of keys with 10 k.req/s load (value
size 1KiB)

6.1.3 Results with Deadwood

We performed fault injection experiments with Deadwood injecting 4000 faults of each fault type. As
with memcached, we modified Deadwood to read input messages from an input-trace file and store the
outgoing messages to an output file. We followed the same three-phase approach: the cache of the resolver
is populated with DNS records in the warmup phase without injecting faults; in the injection phase the
resolver is queried for the records and faults are injected; no faults are injected in the propagation phase
while reading from the cache.

Table 6 summarizes the results of our fault injection experiments with Deadwood broken down by
fault type. We observe high decrease in the number of undetected errors, from 27.80% in the native
version down to 0.18% in the hardened when aggregated over all fault types; and from 32.38% in the
native version down to 0.12% in the hardened when aggregated over DF faults only.

6.2 Single-thread performance of memcached

libsei is designed to amortize its performance overhead with a large number of threads. However, even
in a single threaded configuration, it has 1.6x higher throughput than our PASC adaptation, mc-clog,
and a viable overhead compared to mc. The value sizes range from extremely small messages (8 bytes)
to fairly large message (4 kilobytes).

Figure 10 shows the response time versus throughput for memcached using different messages sizes
and varying the load of get operations. Note that the vast majority of the operations in typical workloads
are gets [1, 27, 30]. For 1KiB and 4KiB large values, the response time elbow of mc raises at the limit of
the network indicating that mc is network bound. For smaller value sizes, mc is CPU bound. With 4KiB
large values, mc-sei also saturates the network, while being CPU bound with 1KiB or smaller values. In
contrast, mc-clog is CPU bound for all measured value sizes.

Figure 11 shows the CPU utilization for the experiments with 8B value size. As expected, all variants
have a response time elbow once the CPU utilization reaches 100%, i.e., at about 55, 80 and 105 k.req/s
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for mc-clog, mc-sei and mc, respectively. The throughput increases even though the CPU has reached
its limit due to batching at the socket level. Response times above 1ms are, however, not desired in
systems such as memcached mainly used for speeding up database queries. Hence, we define memcached’s
capacity at 1ms response time, where mc-sei has 70% of the mc’s throughput with 8B large values and
about 80% with 1KiB large values, representing 30% and 20% overhead, respectively. The overhead of
mc-clog is at least two times larger, i.e., about 58% with 8B values and 48% for 1KiB. Presenting a
substantially higher overhead than mc-sei, we do not evaluate mc-clog any further.

We now investigate the influence of the value size on the overhead of get and set operations. Figure 12
depicts the response time and CPU utilization of mc-sei and mc varying the value size from 8B to 8KiB
with a key range of 1000 keys and a load of 10 k.req/s. The value size increases the message size and,
consequently, the response time. The difference of response time varies from 2% to 7% (small labels on
the top of the response time measurements). Larger value sizes also affect the CPU utilization because
larger messages have to be copied from/to the socket. Furthermore, mc-sei’s CPU utilization overhead
increases with the value size irrespective of whether get or set operations are issued. For example, for
set requests, the difference of CPU utilization between mc-sei and mc increases from 7.8% up to 17%.
The reason can be tracked down to the CRC calculations: The dashed lines show the average CPU
utilization of mc-sei with CRC calculation disabled. The difference between the dashed line and mc is
roughly constant around 9%. Large requests, however, saturate the network before CPU (see 4KiB,
Figure 10), so the additional CRC computation does not cause any important performance penalty.
Also, many practical workloads are comprised of small requests. For such workloads, this additional
CRC computation is not an issue.

We now investigate the influence of the key range on mc-sei and mc varying the key range from 1000
to 100,000 keys with 1KiB large values and a load of 10 k.req/s. Note that the unit of the x-axis is 1000
keys. On the top of the response time measurements a small label indicates the overhead of mc-sei. No
trend can be identified in the response time or CPU utilization with the increasing number of keys. The
response time overhead varying between 3% and 6%. The CPU utilization difference is about 4% and
11% for get and set operations, respectively. The additional overhead for set operations is expected due
to the longer code path executed in set operations.

6.3 Single-thread performance of Deadwood

Deadwood is a single-threaded server and only evaluated in the “single-thread scenario” section.

6.3.1 Setup and methodology

Experiments with Deadwood follow a similar setup, but with up to 20 client machines running nsping -
a DNS querying tool available in BSD ports. Clients send requests to resolve a domain name randomly
selected from the list of 100 most visited websites (using data from http://www.alexa.com). In the
warm-up phase the resolver’s cache is empty, hence a first request for every domain name is forwarded
to an upstream server. Once the upstream server replies, the response is cached and sent to the client.
Further requests for the same domain name are served from the cache. CRC checksums for the outgoing
messages are calculated, but not sent out.

6.3.2 Results

Similar to memcached, we investigate the performance of hardened version of Deadwood compared to
native Deadwood. Due to rather small message sizes (average size of a request message is 28B, response
- 76B) both variants of Deadwood are CPU bound.

Figures 14 and 15 show response time versus throughput under varying load. dw-sei reaches CPU
bound faster due to double execution of event handlers, at approximately 33 k.reg/s, while dw achieves
53 k.req/s. This is consistent with CPU utilization measurements, presented in Figure 16. The overhead
of dw-sei is thus 38%.

Figure 14 shows the response time before reaching 100% CPU consumption: under moderate load
the overhead varies between 8% and 13%.
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7 Software artifacts

The following software artifacts are available as open source:

Artifact URL
libsei http://bitbucket.org/db7/libsei

Hardened memcached http://bitbucket.org/db7/libsei-memcached

Hardened Deadwood http://bitbucket.org/db7/libsei-deadwood

Bit-flip injector (BFI) http://bitbucket.org/db7/bfi
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