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Abstract 
As intelligent hydraulic systems with embedded sensors become more ubiquitous, the 

real or perceived reliability challenge associated with sensors must be addressed to 

encourage their adoption.  In this paper, a fault-tolerant control strategy for an 

intelligent independent metering valve that allows continued operation if a sensor fails 

is described.  The twin-spool valve example utilizes position sensors to stabilize the 

spool positions and eliminate hysteresis, and pressure sensors to provide digital 

pressure compensation, electronic load sensing, and other features. An independent 

metering valve has redundancy provided by  four sensors working together to control 

the flow into and out of a single actuator.  Although two sensors are needed to control 

the flow through a spool, the controller can be reconfigured to ensure the flow is always 

controlled on the spool with both sensors working.  To accomplish this, the concept of 

cross-port pressure control is introduced that uses the faulty side of the valve to 

maintain constant pressure on the non-faulty side.  By maintaining a constant pressure, 

the flow in and out of the actuator are balanced.  Experimental results on the boom of a 

backhoe demonstrate the operation of the fault tolerant control strategy.   
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1. Introduction 
As the demand for intelligent hydraulic systems increases, there is an increasing 

demand for hydraulic components with integrated sensing capability.  The addition of 

sensors can enable improved performance and increased functionality, particularly 

when combined with intelligent controllers.  However, the reputation of electronics and 

sensors as less reliable than purely mechanical devices can be a significant barrier to 

the adoption of intelligent machines.  This can be particularly true if feedback from 

sensors is relied upon for baseline or safe operation, and a faulty sensor could render a 

machine inoperable.  The development of fail-operational controllers, which offer some 

level of functionality in the presence of a sensor failure, can reduce the real and 

perceived risk of downtime due to a failed sensor. 
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The Eaton CMA™ valve, shown in Figure 1, is an example of an intelligent hydraulic 

valve that relies on sensor feedback for operation.  It is a two-stage independent 

metering valve with a position sensor and a pressure sensor for each control spool.  

The closed-loop control of the spool position enables fast performance and zero 

hysteresis, but it also creates a reliance on the position sensor for operation.  Pressure 

sensor feedback is used to enable features such as digital pressure compensation, 

load direction detection, back pressure control, and electronic loadsense, among 

others.  In typical operation, all four sensors are used to make the valve function.  

However, there is a redundancy that exists when the two spools are being used to 

control two sides of the same actuator.  Since there is a relationship between valve 

position, pressure drop, and flow, and there is a known relationship between the flow in 

and the flow out of an actuator, only three of the four sensors are needed to have 

complete information about the state of the valve.  Thus, while purely redundant 

sensors are often cost prohibitive, the redundancy provided by knowledge of an 

actuator area ratio can be utilized to develop fail operational controllers.  

  

Figure 1: Cross Section of an Eaton CMA Independent Metering Valve 

Detecting and diagnosing a faulty sensor is a critical component of creating fault 

tolerant systems.  There are many methods for detecting faults in a system, some of 

which, such as sensor out-of-range detection, can immediately identify a faulty sensor.  

In other methods, such as poor demand tracking or a mismatch between the estimated 

466 10th International Fluid Power Conference | Dresden 2016



flow in and out of an actuator, they can detect a fault somewhere in this system, but 

cannot determine the root cause without additional tests.  For the purposes of this 

paper, it is assumed that a sensor fault has been detected and correctly identified.  

Once a fault has been identified, reconfigured control modes can allow the valve to 

operate with any one of the four sensors failed.  In the next section, the structure and 

operation of the controller for a fault in any of the four sensors is described. 

2. Fail Operational Modes 
The basic principle of the fault tolerant control algorithms is described as cross-port 

pressure control, which essentially uses the faulty side of the valve to control the 

pressure on the non-faulty side of the valve.  With a valve that has independent control 

of the meter-in and meter-out spools, there are numerous methods for controlling the 

two work ports.  In most cases, an actuator is given a flow command, which is typically 

realized by controlling the flow across the spool that is holding the load.   

In a valve with digital pressure compensation, the measured pressure across the valve 

and the flow demand are used to determine the desired position of the metering spool: 

 (1) 

The position of the main stage spool is controlled by the pilot stage spool and sensed 

by an LVDT.  In this configuration, the pilot spool is a flow control spool, which means 

that there is a relationship between the input current and the velocity of the main stage 

spool.  In order to stabilize the main stage at a fixed position, feedback from the LVDT 

is required.  Thus, to accurately control the flow across a spool, feedback from both the 

LVDT and the pressure sensor are required. 

In a faulty condition, one of the sensors is not available, meaning that the spool on the 

faulty side cannot be used to control the flow.  If that side of the spool is holding the 

load, the conventional controller structure must be changed so that the actuator speed 

can still be controlled by the operator.  In the following sections, the structure of the 

controller for each of the four possible sensor faults is described. 

2.1. Failed Meter-Out Pressure Sensor 
The function of the meter-out valve varies, depending on whether the load is passive or 

overrunning.  For a passive load, the meter-out valve is often commanded to be fully 

open or control some low back pressure to minimize the pressure needed to move the 

load.  When the load is overrunning, the meter-out valve is typically used to control the 

flow out of the actuator, with the pressure in the service determined by the load.  
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Unfortunately, the typical method for determining the direction of the load is to compare 

the pressure on both sides of the actuator, but with a faulty sensor, this determination 

is not possible.  Thus the control algorithm must function for either a passive or 

overrunning load.  While the flow across the faulty meter-out side cannot be controlled, 

the flow into the meter-in side can.  Using the pressure state equation on the non-faulty 

side and the fact that the flow into and out of an actuator are proportional, the concept 

of cross-port pressure control can be explained: 

 (2) 

From this equation it is clear that if the pressure is held to be a constant (i.e. the 

derivative set to 0), then the output flow will be the same as the input flow, modified by 

the area ratio.  Thus, if the meter-out valve can be manipulated to control the meter-in 

pressure to be a constant, and the flow in to the actuator is controlled to the desired 

output flow times the area ratio, then the flow out of the actuator will be controlled to 

the desired value. 

In order to control the meter-in pressure to a constant using the meter-out valve, the 

following equations can be used: 

 (3) 

 (4) 

Where (3) uses the typical flow control function shown in (1), but instead of using the 

measured pressure, an estimated outlet pressure is used.  The estimated meter-out 

pressure is determined by some control function that is driven by an error term 

between the measured pressure on the meter-in side and some constant set point.  An 

example of a PID controller is given in (4).  The integrator in (4) will adapt to the error 

between the estimated outlet pressure and the true value, which is unknown.  Thus, the 

controller “learns” the true value of the missing sensor input.  The state of the integrator 

in (4) can be initialized in a number of ways, but the most conservative approach for a 

case of a variable load pressure is to assume that the load is at its maximum possible 

value to avoid dropping a heavy load, then adapt the estimate to achieve the desired 

flow rate.  With this approach, the beginning of the movement will typically be slower 

than desired, but the controller will adjust at a rate governed by the controller gains. 

This controller will work for both a passive and an overrunning load.  For an 

overrunning load, the cross-port pressure control will work as described, the meter-out 

valve will start by assuming a heavy load and then adapt until the meter-in pressure is 
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held to be a constant.  With a passive load, the meter-in pressure will be determined by 

the load pressure, which will likely be higher than the desired pressure set point.  In this 

condition, the meter-out valve will not be able to control the meter-in pressure down to 

the desired value, but it will try to do so anyway.  The consequence of a meter-in 

pressure that is too high is that the meter-out valve will try to open more to lower the 

pressure.  Thus, the meter-out valve will open until it is completely out of the way, 

which is typically the desired condition for a passive load. 

2.2. Failed Meter-In Pressure Sensor 
The fail-operational controller for a failed pressure sensor on the meter-in side is similar 

to the one for the failed meter-out pressure sensor, although the fact that the meter-in 

pressure sensor is used to send an electronic load sense demand to the pump adds a 

small change.  The control structure is similar to the previous case, with the meter-out 

valve commanded to give the desired meter-in flow times a ratio of the actuator areas.  

The meter-in valve is then used to maintain a low constant pressure on the meter-out 

side. 

 (5) 

 (6) 

As in (3) and (4), the desired spool position is determined using the normal flow control 

function for a meter-in spool, , but an estimate of the missing pressure is used 

in place of the measured value.  The pressure can be estimated using many different 

adaption functions, such as the PID example used here, which are driven by the error 

between the measured meter-out pressure and a constant set point.  In some cases, a 

simple integrator could provide the required adaptation.  The pressure estimate derived 

in (6) can also be sent as a load sense pressure demand to the pump, allowing the 

valve to maintain its electronic load sense functionality.  Alternatively, the pump could 

be set to be continuously at max pressure to ensure that there is always be enough 

pressure to move the load, but this would waste a significant amount of energy. 

The initial value for the meter-in pressure can be set in a number of ways, but, if the 

estimate is being used to set the pump pressure, using an initial estimate of the 

maximum possible load pressure would prevent any back flow from a heavy load to the 

supply line.  

This control approach can work for both passive and overrunning loads.  If the load is 

passive, the meter-in pressure estimate will adjust until the pressure on the meter-out 
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side is at its desired value and the proper meter-in flow is achieved.  For an 

overrunning load, which should be higher than the low, constant set point, the meter-in 

valve will try (unsuccessfully) to lower the pressure by lowering the pump load sense 

demand and closing to the pump.  In this case, if an anti-cavitation valve is available, it 

will open to supply the unloaded side of the actuator from the tank line.  The controller 

can also detect when the estimate is driven to a low value, and either set a minimum 

value on the meter-in pressure estimate to hold the valve partially open, or command 

the valve to open to tank. 

2.3. Failed Meter-Out Position Sensor 
For a failed position sensor, the challenges of not being able to detect a 

passive/overrunning load and not knowing how to set the pump pressure are alleviated 

because the pressure sensors are still functioning.  However, the fact that there is no 

steady-state relationship between the input current and the spool position presents a 

significant challenge.  For the valve shown in Figure 1, the current into the pilot stage 

is related to the flow out of the pilot stage.  This gives a relationship between the input 

current and the mainstage velocity, meaning that the control input (current) is one 

integrator removed from the desired output (spool position).  This forces the controller 

to be less aggressive and much more damped than the position controller on a non-

faulty valve. 

The cross-port pressure control can again be used for a failed position controller, but 

rather than the error term being used to determine the desired position, the difference 

between the meter-out pressure and a desired set point is used to determine the 

current sent to the meter-in pilot spool: 

 (7) 

In this example, the function  is a mapping from the input current to the spool velocity 

which removes some of the nonlinearity in the system.  For a CMA valve, a training 

routine is used to learn the relationship between the current and velocity to remove 

nonlinearity and part-to-part variation from the controller, but this could also be 

generated from a known model of the system.  In addition to the PID terms, a 

feedforward term is added based on the desired spool velocity which improves the 

response when starting or adjusting a command.   A damping function, g, based on the 

two pressures is also added to help damp out oscillations.  
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As in the failed pressure case, the control tries to drive the meter-in pressure to a 

constant value.  As seen in (2), if the pressure is a constant, then the flow in and flow 

out of the actuator are matched.  Thus, if the meter-in flow is controlled and the meter-

in pressure is constant, then the meter-in flow is also controlled to the correct value.   

Controlling the flow out of an actuator with an overrunning load without position 

feedback is the most challenging condition, since any error or instability in the spool 

movement can result in a falling load.  For a passive load, the same controller can be 

used; the meter-in pressure will likely be higher than the constant set point, which will 

drive the meter-out spool fully open and out of the way.  This is the desired behavior in 

a passive condition.  In this case, the integrator in (7) must be disabled to avoid 

integrator wind-up. 

2.4. Failed Meter-In Position Sensor 
In the case of a failed position sensor on the meter-in side, the controller structure can 

be a bit different.  In many cases, the meter-in spool is not needed to control the speed 

of the load, so the spool can be fully opened to supply pressure (passive loads) or tank 

(over-running loads).  The speed of the actuator is then controlled by the meter-out 

spool.  This makes the control of the spool simple, but it does create a challenge when 

setting the load sense demand. 

Typically, the load sense demand from a service is set to be some margin above the 

measured meter-in pressure.  The pressure difference between supply and the 

actuator then occurs across the meter-in spool.  However, if the meter-in spool is fully 

open, there will be only minimal pressure drop, meaning that the load sense demand 

will increase up to its maximum value as it tries to maintain the desired pressure 

margin.  However, as the supply pressure increases, the pressure on the meter-out 

side, which is controlling the flow out of the actuator, will increase.  In a passive case, 

the back pressure is typically desired to be low, so a rise in the meter-out pressure can 

be used to reduce the load sense demand: 

 (8) 

In (8), the load sense demand will increase until it is limited by the meter-out pressure 

increasing above the specified meter-out pressure limit.  This equation is used for a 

passive load.  For an overrunning load, the meter-in spool can be connected to tank, so 

the pump pressure setting is irrelevant. 
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In an alternative method for the passive case, an error term can be generated that is 

used to control the meter-in spool to a partially open position.  This is useful for 

shielding the service from high pump pressures that are requested by another service 

operating simultaneously.  As in the failed meter-out position sensor case, this requires 

a controller that sets a desired current to the pilot stage.  Using this approach the load 

sense demand can be set as normal. 

 (9) 

Notice that the damping term is not as critical for this case since the meter-in case is 

less sensitive to dropping a heavy load.  This control is only necessary for a passive 

load.  For an overrunning load, the meter-in spool can be fully opened to tank and the 

actuator speed controlled with the meter-out valve, as in the conventional case. 

3. Experimental Results 
The fail operational controller was implemented on the actuators of a backhoe loader.  

While the boom, arm, and bucket were all successfully tested, the boom provided the 

heaviest load, with the most potential to fall if there were any controller errors.  Thus, 

the boom was used for demonstration.  Note that the sensors did not actually fail, so 

their readings are included in the plots.  Internally to the valve controller, the feedback 

from the faulty sensors were disconnected. 

Figure 2: Traces of a boom lowering with a failed meter-out pressure sensor 
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Figure 2  shows an example of a system working with a failed meter-in pressure 

sensor (pressure sensor 2).  In this example, the load is overrunning, which means the 

meter-out valve is holding the load.  The set point for the meter-in pressure was 15 bar, 

and, after an initial transient, the pressure settles to that value.  In the initial transient, 

the pressure climbs higher than 15 bar, which means there is more flow coming in the 

meter-in side than is leaving the faulty meter-out side.  This is due to the fact that, at 

the start of motion, the estimate of the load pressure is initialized to the maximum 

possible load pressure of 200 bar instead of the actual value of around 70 bar.  Thus, 

the meter-out valve does not open far enough.  However, in response to the meter-in 

pressure being higher than 15 bar, the controller in (4) adjusts the estimate to open the 

valve further.  The duration of the initial transient can be manipulated by the design of 

the cross-port pressure controller (4).  As the magnitude of the flow demand is 

increased, both spools open further in response, maintaining the meter-in pressure 

near its set point. 

Figure 3: Traces of a boom raising with a failed meter-in pressure sensor 
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with an initial guess of the meter-in pressure of 50 bar, which was close to the actual 

value.  As a result, the start of motion did not have a large transient.  The estimated 

meter-in pressure is shown.  Note that the pressure estimate is below the true value, 

which makes the pressure margin lower than the typical 10 bar.  However, the 

controller in (6) will adjust itself to ensure that there is sufficient margin to achieve the 

desired flow, and thus maintain the meter-out pressure at 15 bar.  The faulty spool 

(spool 2) is responsive to changes in the  magnitude of the flow demand as it is 

increased and then decreased. 

Figure 4: Traces of a boom lowering with a failed meter-out position sensor 
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However, the spool quickly adapts, and the meter-in pressure converges to its set 

point.  With step changes in the flow demand, the faulty spool opens and closes 

accordingly in order to maintain the proper cross-port pressure. 

Figure 5: Traces of a boom raising with a failed meter-in position sensor 
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compensation, the controller can always be re-structured so that the flow is controlled 

on the spool with two working sensors, with the other spool attempting to regulate the 

pressure on the non-faulty side of the work port to a constant value.  Maintaining a 

constant pressure ensures a balance between the flow in and out of the actuator.  

Experimental results demonstrate that this approach can be tailored to a failure in any 

one of the four sensors on the valve.  This creates a valve that is tolerant to sensor 

faults, which improves the reliability and uptime for the system. 

5. Nomenclature 

  Pressure difference: Psupply – Pin or Pout – Ptank on in or out side 

 ,  Pressure, Pressure on input side, Pressure on output side 

, ,  Desired spool position, position on input side, position on output side 

 Desired flow rate – note any variable with a _des is a desired value 

 Function describing relationship between pressure, flow, and position 

 Bulk modulus of the fluid 

 Volume of the fluid 

,  Actuator Area on the input side, actuator Area on the output side 

,  Estimated pressure on the inlet side, estimated pressure on outlet side 

, , ,  Proportional, Integral, Defivative, and Feedforward controller gains 

,  Current sent to the pilot spool actuator in the input and output side 

  Inverse of a function that relates the input current to the spool velocity 

  Damping function that uses actuator pressures to smooth the control 

  Current needed to move the pilot spool to the edge of its deadband 

  Desired load sense pressure (desired supply pressure minus margin) 

  Pressure margin between Pls and supply pressure 
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