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Abstract

Rotational hydraulic actuators, e.g. motors, provide infinite stroke as there is no concep-

tual limit to how far they can turn. By contrast linear hydraulic actuators like cylinders

provide only limited stroke by concept. In the world of electrical drives, linear motors

provide infinite stroke also for linear motion. In hydraulics, the presented Hydraulic Infin-

ite Linear Actuator is a novelty. This paper presents the novel Hydraulic Infinite Linear

Actuator (HILA). The contribution is an assessment of properties relevant for control like

high hydraulic stiffness and is based on analysis, simulation and measurements.
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1 Introduction

Rotational hydraulic actuators, e.g. motors, provide infinite stroke as there is no concep-

tual limit to how far they can turn. By contrast linear hydraulic actuators like cylinders

provide only limited stroke by concept. In the world of electrical drives, linear motors

provide infinite stroke also for linear motion. In hydraulics, the presented Hydraulic Infin-

ite Linear Actuator (HILA) /1/ is a novelty.

cylinder 1 cylinder 2

rodclamping mechanism

Figure 1: Concept of HILA
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Hydraulic Linear Actuators, also known as cylinders, are common and mature compon-

ents of hydraulic systems. Ongoing research focuses on secondary control with multi-

chamber cylinders, e.g. /2/, and various concepts of digital hydraulics, e.g. /3/. Compet-

ing concepts for hydraulic cylinders are for example motors, with gear pinion and gear

rack or with leading screw. A concept similar to the one presented is the so-called inch-

worm motor which is usually based on piezoelectric actuators or shape memory alloy.

Conventional hydraulic cylinders and for example solenoids for directional valves /4/ pro-

vide limited stroke. For these actuators, the stroke is defined and limited by the concept.

Other actuators like hydraulic or electric motors, have no conceptual limit in stroke length

even though the stroke may be limited by the application.

The word ’infinite’ is used in contrast to ’limited’ and may not relate to common concepts of

infinity. For this contribution, the authors characterize infinite stroke actuators as follows.

• The actuator may be applicable in applications which require long or unlimited stroke.

• The behaviour of the actuator is in good approximation independent of the stroke length.

• The behaviour of the actuator is in good approximation independent of the actuator position.

• The actuator can be designed, produced and sold without knowing the actual stroke length.

The last three properties may make HILA a component for Agile-Systems or an Agile-

component, /5/. In that contribution, the word ’agile’ refers to ’operational adaptability and

the sustainment of that adaptability in an uncertain and evolving environment’. As the

stroke length of an HILA can be adapted after production and properties perceived by the

surrounding system do not change with stroke length. This makes HILA a candidate for

a module of agile architecture.

The development of the HILA is at an early stage. Investigations and experiments have

been performed, /1/, and a proof of concept has been built and successfully tested.

Buckling is one of the limiting factors for long stroke length in conventional cylinders.

Also the presented concept, HILA does not come around the buckling problem. In this

contribution, buckling is ignored. The authors assume that buckling can be prevented for

medium stroke length applications by dimensioning the rod, and for long stroke length

applications by limiting to pulling loads or by pre-tensioning the rod. Other effects like

oscillations of the rod are also ignored. Variants of the HILA concept featuring external

clamping mechanisms have been discovered which indeed come around the buckling

problem. These variants need further investigation and are not part of this contribution.

This contribution focus on the assessment of properties relevant for the design of con-

trol systems for the Hydraulic Infinite Linear Actuator. Other concerns like wear, energy

efficiency, safety, reliability, and applications are not within the scope of this paper.
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(a) Structural breakdown as Block Definition Diagram (b) Sequence of motion

Figure 2: HILA in SysML diagrams, see /6/ and /7/

2 The Actuator

2.1 Basic Working Principle

The basic working principle is similar to the concept of piezo-actuators called inchworm

motor. HILA consists of two cylinders which are detachable connected to a common rod

via clamping mechanisms as shown in Figure 1. The movement of the rod is carried

out by alternately engaging at least one of the cylinders and driving the rod in a kind of

cyclic rope climbing motion, see /1/. As shown in Figure 2(b), see also the lower half of

Figure 5, the cycle starts by cylinder 1 engaging while cylinder 2 disengages. Cylinder 1

then drives the rod while the other retracts. After this, the cylinders switch roles and

cylinder 2 engages and drives the rod while cylinder 1 disengages and retracts.

For this basic concept and its variants, many possible implementation can be found.

Figure 2(a) shows the basic components of a HILA as structural breakdown in the form

of a SysML Block Definition Diagram. This diagram shows that an HILA consists of a rod

and at least one cylinder which consists of piston and cylinder body. Further on, there is

a hydraulic system, a control system and optionally a retraction system.

In this contribution, HILA refers to the whole actuator and cylinder to the part of HILA, see

Figure 2(a). A conventional cylinder is an entire actuator and thus the counterpart to the

whole HILA actuator in comparisons.
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Figure 3: Alternative connections for the clamp-

ing element

Figure 4: Hydraulic hub-shaft con-

nection, see /8/

2.2 Clamping Mechanism

For this contribution, the hydraulic hub-shaft connection ETP-OCTOPUS O from ETP

Transmission AB, see Figure 4, /8/ and /1/, has been chosen as clamping mechanism.

This off-the-shelf product is used within HILA in a new application. As Figures 3 shows,

one or more of these clamping elements are built into the piston. The pressurization of

the clamping element (CP) and thus engaging can be implemented in the following ways:

CP1: by a separate port C through the piston,

CP2: by a separate port C at the cylinder body and a groove in the piston long enough

to cover the whole stroke and connected to the clamping element,

CP3: by a connection to one dominant cylinder chamber (A) or

CP4: via a shuttle valve built into the piston.

Variant CP1 is the simplest but requires a flexible connection moving at piston velocity.

Variant CP2 is less compact than the other variants as it requires a piston which is longer

than the stroke length. Additionally, it has worse efficiency as the piston sealings are

pressurized when engaged. CP3 and CP4 use the chamber pressures to pressurize the

clamping mechanism and two functions, driving and engaging, are therefore coupled, /9/.

This leads to wanted or unwanted emerging functionality. CP3 is simpler but can only

be applied for a limited set of applications. CP4 uses a shuttle valve and thus adds an

additional component. Later discussed properties are valid for all variants, CP1 - CP4,

unless stated otherwise.
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rod

Figure 5: Hydraulic schema with on/off valves for disengaging

2.3 Hydraulic Circuit

There are also many variants of hydraulic schemas imaginable to realize the functionality.

They vary depending on the variant for pressurization, see Section 2.2. The variants CP1

and CP2 with separate ports for clamping can be implemented like a usual cylinder but

with additional fast 3/2 valves for clamping. CP3 and CP4 use the pressure in the cylinder

chambers and thus the pressure levels in the chambers have to be controlled. One way

is to connect one valve on each port to control the pressure. Another way is shown in

Figure 5, where on/off valves are used to depressurize the cylinder chambers.

3 Properties and Effects

In this section, properties of HILA are analysed. This contribution does not focus on one

single application but analyses the HILA to build the basis for design control strategies

and to decide whether and where the concepts can provide benefits.

3.1 Hydraulic Stiffness and Natural Frequency

In applications with low-damped systems, like mobile cranes, the elasticity of the hydraulic

system in combination with high inertial load is a limiting factor. A spring is formed by a

cylinder due to compressibility of fluid. Spring and inertia form an oscillatably system

where the natural frequency is given by following equations, see /10/ [pages 211-223].

ωn =

√
kh

m
(1)

kh =
A2

A β
VA

+
A2

B β
VB

≈ AA β
LA

+
AB β
LB

where LA +LB = L (2)

The dotted u-shaped curve in Figure 6(b) shows the natural frequency, ωn, of an ex-

emplary, long conventional cylinder. The considered dead volume limits the natural fre-

quency near the end stops. An HILA cylinder has substantially smaller volumes and thus

higher natural frequencies, as shown by the lower, solid curve in Figure 6(a). Further,
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(a) HILA, one and two cylinders engaged (b) Conventional cylinder and HILA

Figure 6: Natural frequencies of a conventional cylinder and HILA

the natural frequency does not change with the stroke length of the actuator. All HILAs

featuring equal cylinders have the same stiffness and thus the same natural frequency

independent of their stroke length. Conventional cylinders change their stiffness for a

certain position according to Equation 2.

kh ∝
AP β

L
(3)

In the considered HILA, two cylinders are alternatingly connected to the rod. During the

transition between the two cylinders or as distinct mode, see Section 3.3, both cylinders

can be connected to the rod. In that case, the spring rates of the two cylinders are added

together and the natural frequency is further increased.

As long as a retraction system does not couple the positions of the two cylinders, all com-

binations of the positions of the cylinders may occur. The upper gray area in Figure 6(a)

shows the natural frequencies of various combinations of piston positions. The dashed

curve shows the natural frequencies for the case where both cylinders are coupled in the

same position and thus a full stroke is possible. The white dashed curve shows the case

when positions of the cylinders have an offset of -0.8 to each other and thus less stroke

is possible as the other piston reaches the end stop earlier. Without knowing the current

state of the cylinders, only a range of possible natural frequencies can defined for an

actuator position as shown in Figure 6(b). When one cylinder is engaged, the lower dark

gray range applies and when two cylinders are engaged, the upper gray range applies.
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3.1.1 Higher pressure levels

When designing hydraulic systems, choosing higher pressure levels may lead to more

compact components as less flow is required for conveying the same power. One limiting

factor when increasing pressure levels is that this will lead to lower natural frequencies

in the system. It can be shown that the lowest natural frequency, ωn, for a cylinder in a

given system follows

ωn ∝

√
β

L pdesign
(4)

where pdesign is the design pressure, e.g. the supply pressure. An HILA is subject to

the same rule but L is much shorter and thus the natural frequencies are higher than for

conventional cylinders.

3.1.2 Infinite stationary hydraulic stiffness

The considered concept, HILA, allows moving the piston of the disengaged cylinder

without moving the rod. Thus, when the desired position is reached the piston of the

disengaged cylinder can be moved to one of its end stops. After engaging the cylinder

and pressurizing the one cylinder chamber to push the piston against the end stop, the

elasticity of the mechanical contact is dominating the cylinder stiffness, see Figure 7(a).

The hydraulic stiffness thus becomes infinite. In this consideration, the elasticity of all

mechanical components like structure and rod are ignored.

To increase the conveyable force, the piston of the second cylinder may also be pushed

against the end stop pointing in the same direction, see Figure 7(b). Alternatively, there

exists the option to place both pistons on their opposed end stops, see Figure 7(c). In

this case, the pistons and rod are purely mechanically locked and pressurizing of the

cylinders is not required for CP1 and CP2. The drawback of this approach is that backlash

may occur and thus the stiffness of the actuator for small movements is indefinite. This

property may replace an additional clamping mechanism or active position control in for

example a lift or crane application during loading and unloading.

3.1.3 Controlled passive damping

The concept in Section 3.1.2 can be used to introduce hydraulically controllable friction

forces, and thus damping, in the system. When, in the first approach in Section 3.1.2,

shown in Figure 7(a), the second cylinder is partially engaged, the piston slips on the rod,

providing a damping effect by friction. The degree of engagement, i.e. the friction force,

can be controlled by the clamping pressure, pclamp.
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(a) One cylinder at the end stop

(b) Two cylinders at equal side end stops

possible backlash

(c) Two cylinders at opposed side end stops, with indefinite stiffness

Figure 7: Infinite hydraulic stiffness with HILA

Figure 8: Free oscillation and controlled friction

Figure 8 shows the results of a simulation of a low-damped actuator mass system with

closed valves and an applied force step. The dashed curve shows the case without

additional friction. The solid curve shows the case where the engagement which equals

the clamping pressure, thin dashed line, and thus the frictions gradually increases and

reduces oscillations.

3.2 Hydraulic Capacitance

As shown in Figure 6(b), the natural frequency of a cylinder mass system depends on

the cylinder position. Based on the same cause, varying chamber volumes, the hydraulic

capacitance of the cylinder chambers, /10, page 225-226/, also depends on the cylinder

position, as shown in Figure 9.

Ch =
V
β

=
V0 +Ax

β
(5)
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(a) HILA actuator (b) Conventional cylinder and HILA actuator

Figure 9: Capacitance of cylinder chambers of a conventional cylinder and an HILA

Figure 9(a) shows the capacitance of chambers of cylinders of a HILA. The circle and

square curves in Figure 9(b) show the same for a conventional cylinder. Both cases

start at the same value as the HILA cylinders and the conventional cylinder have the

same dead volume but the capacitance of the conventional cylinder increases more. As

described in Section 3.1, the capacitance of the chambers of a HILA also varies in a range

for a given actuator position as the cylinder position varies, see the gray bar in Figure 9(b).

The dependency of the capacitance on the cylinder position leads to non-linear behaviour

of the system. Because of HILA’s smaller chamber volumes, big dead volumes relative

to the chamber volumes can be accepted. This leads to smaller variations and thus less

apparent non-linearity due to the dependency of the capacitance on the cylinder position.

The HILA has much smaller chamber volumes and thus lower capacitance, which may

be an advantage in various applications.

3.3 Secondary Control

As discussed in Section 3.1 and shown in Figure 6, HILA features three modes – whereby

none, one or both cylinders are engaged. In common operation for long strokes, the ac-

tuator switches between modes where the cylinders engage alternatingly with an inter-

mediate period where both are engaged.

For stroke lengths up to the cylinder stroke length a mode where both cylinders are con-

tinuously engaged is practical. In this mode, the effects of both cylinders are added

together and thus twice the force is available. Consequently HILA can be dimensioned

for the lower force required on the long stroke and a short work stroke with higher force.

Further, a mode exploiting the inertia of the load and disengaging temporarily both cylin-

ders, the so-called ballistic or free-wheeling mode, seems to be a promising alternative.
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3.4 Friction

A conventional cylinder can apply the full hydraulic force on the rod. With HILA, the force

applied on the rod is limited by the clamping force and thus the clamping pressure, pclamp.

Depending on the application it may be desirable to limit the rod force but in most cases

it can be expected that the full hydraulic force shall be applied on the rod.

Concepts CP1 and CP2, shown in Section 2.2, allow independent control of the clamping

pressure and thus the clamping force. In concepts CP3 and CP4, the clamping pres-

sure depends on the chamber pressures and thus on the load. This leads to wanted or

unwanted emerging functionality, see Section 3.4.3.

For HILA, the friction forces can be spit into two parts according to the two motions,

between piston–cylinder-body and between piston–rod.

3.4.1 Friction between piston and cylinder body

The HILA cylinders have three sealing packages and potentially bigger sealing diameters

than conventional cylinders. Higher friction losses can therefore be expected. A concept

to reduce friction in HILA for some applications was presented in /1/. A detailed friction

model for hydraulic cylinders is not part of this contribution. Nevertheless, low cylinder

friction is crucial for concepts CP3 and CP4, see Section 3.4.3.

3.4.2 Clamping – friction between rod and piston

Simplified, the clamping force can be modelled as coulomb friction as follows.

Fclamp =

⎧⎪⎨
⎪⎩

Fclamp0 when: pclamp < pclamp0

Fclamp0 +μ Aclamp

(
pclamp − pclamp0

)
else

(6)

More advanced friction models that include effects like sliding, oil squeezing and oil stic-

tion are not considered in this contribution. According to the manufacturer, /8/, of the

clamping element the design friction coefficient is μ = 0.1 but in usual applications friction

coefficients up to μ = 0.2 are common, see also /1/. HILA uses the clamping element in

a new application and thus there is no broader data basis available yet. Figure 10 shows

the range of the clamping force whereby the friction coefficient, the pclamp0 and Fclamp0

vary within an interval. Additionally, the dashed curve shows for concepts CP3 and CP4

the clamping pressure resulting from a load according Equation 11 and the assumptions

discussed in Section 3.5. The shown case illustrates a HILA designed to carry the full

hydraulic force at a friction coefficient of μ = 0.1. With a lower friction coefficient, e.g.

μ = 0.05, the clamping element will slide already at partial load.
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Figure 10: Clamping force at various friction coefficients: μ = (0.05),0.1,0.2

Ignoring Fclamp0 leads to the following design rule for safe clamping.

Fclamp >
∣∣Fcyl

∣∣ for all levels of pA and pB

μ Aclamp

(
pclamp − pclamp0

)
> AP (pA − pB)

μ Aclamp

AP
>

psupply

psupply − pclamp0

Aclamp >
AP

μ
psupply

psupply − pclamp0
(7)

3.4.3 Self-Clamping

An HILA of concept CP3 or CP4 designed according to Equation 7 can create safe clamp-

ing pressure from the load force. This means in the case of a stop when the hydraulic

connections to the cylinder are closed while the cylinder is engaged, that the cylinder can

maintain the necessary pressure for clamping by itself. No external pressure supply is

therefore needed in this case.

For concepts CP3 and CP4, unintended engaging may occur when the piston is to be

retracted. The equation of motion for retraction is

mP ẍP = (pA − pB) AP −Ff piston-body (pA, pB, ẋP, t)−Fclamp (pA, pB, ẋP − ẋR) (8)

If pA or pB reaches pclamp0, additional pressure will increase the clamping force, see

Equation 6. If the HILA is designed according to Equation 7, the increase in the clamping

force will be at least as big as the increase in the piston force. Higher pressure will thus

not lead to higher acceleration but engaging. Therefore, for CP3 one and for CP4 both

chamber pressures, pA or pB, must be kept below pclamp0 while retracting. HILA thus re-

quires cylinders with low friction, a hydraulic circuit featuring this low pressure level and a

controller with low pressure overshoots. pclamp0 is a property of the clamping mechanism

which may be altered. Additionally, this limits acceleration of the cylinders and thus the

velocity of HILA.
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(a) Fluctuating pressure levels (b) Model of a spool valve and cylinder

Figure 11: Pressure levels in servo valves

3.5 Pressure Levels in Servo Valves

In a conventional symmetric cylinder, the system behaviour depends mainly on the load

pressure, pload.

pload = pA − pB (9)

By contrast, the functionality of HILA in variants CP3 and CP4, see Section 2.2, also de-

pends on the pressure levels, pA and pB, as they are responsible for clamping. The usual

assumption, see /10, pages 124 and 130/, for symmetric cylinders and spool valves is

pA + pB

2
=

psupply

2
(10)

Regarding the variant with the shuttle valve, reliable clamping depends on the following

assumption, as discussed in Section 3.4.2.

pclamp > pclamp, lower limit = f (pload)

pclamp = max(pA, pB) =
psupply

2
+
∣∣∣ pload

2

∣∣∣ (11)

Experiments show that the assumption in Equations 11 and 10 does not always hold

true and thus safe clamping may be compromised, see Figure 11(a). This segment of

a recording of an experiment shows the pressure levels of the cylinder chambers when

moving the cylinder at low velocity and then stopping at t = 1s. The oscillations originate

from weaknesses in the support structure and are not of relevance. In this experiment,

the assumption is violated for more than 10 bar or 12.5%. Other experiments with the

same valve show violations up to 20 bar or 25%.

This phenomenon can be explained as follows. According to /10, page 130/, a servo valve

can be modelled as shown in Figure 11(b). Near the centre position of the valve, all these

orifices are nearly closed. The openings are small compared to the design situation and
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thus substantial relative errors for the opening areas may occur. The error may change

for example with temperature and the location of the spool (angel and position). Small

imperfections in the valve may result in any pressure in the cylinder chamber from ptank

to psupply when both upper orifices are bigger than the lower or vice versa.

The effect on the load / cylinder / controller is pload = pA − pB and not the actual pressure

levels. pA+pB
2 can thus also change over a wide range and there is no guarantee that it

may stay somewhere around
psupply

2 . As this has little effect in the normal operation of a

servo valve, this is not a main quality criterion for the valve. As HILA is dependent on

the pressure levels for clamping, this may be problematic as there is no lower limit for

min(max(pA, pB)). This investigation points out that this phenomenon exists but can not

quantify it. It is based on measurements on only one valve. A workaround is to add

orifices between the supply pressure and the cylinder chambers which provide flow in the

magnitude of the leakage of the valve and thus pull the pressure levels up.

4 Conclusions

HILA is a novel hydraulic linear actuator. It translates the inchworm concept to hydraulics

and its magnitude of force and speed. HILA consists of two short cylinders whose pistons

are detachable connected to a common rod. During motion, alternatingly one cylinder is

engaged and drives the rod while the other retracts.

The development of the HILA is at an early stage. Investigations and experiments have

been performed, /1/, and a proof of concept has been built and successfully tested.

The HILA concept introduces more complexity than conventional cylinder but features

interesting properties. This contribution deals with advantages and limitations of the HILA

concept. It does not focus on one single application but analyses HILA to build a basis

for design control strategies and to decide whether and where the concepts can provide

benefit. Superior properties are the low hydraulic capacitance and thus high hydraulic

stiffness and high natural frequency which are independent of the stroke length and close

to independent of the position. Also discussed are capabilities like infinite stationary

hydraulic stiffness and secondary control for linear actuators. Depending on the chosen

variant of the concept, there may emerge wanted or unwanted functionalities which are

related to the pressure levels in the cylinder chambers and friction.

Ongoing work will focus on improving the understanding of the HILA components like the

friction models for the cylinder and the clamping element. Control strategies aiming for

performance and energy efficiency will be developed.
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6 Nomenclature

β bulk modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pa

ωn natural frequency of the system . . . . . . . . . . . . . . . . . . . . . . . . . . . rad
s

AC area relevant for clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2

AP piston area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2

Ch hydraulic capacitance of a cylinder chamber . . . . . . . . . . . . . . . m3/Pa

Fclamp force which the clamping mechanism can convey . . . . . . . . . . N

Ff friction force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N

kh hydraulic spring rate of an actuator . . . . . . . . . . . . . . . . . . . . . . . . N
m

L stroke length of an actuator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

m mass / inertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg

pclamp pressure on the clamping element responsible for clamping Pa

pclamp0 negative pre-tension of the clamping element . . . . . . . . . . . . . . Pa

xP cylinder position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

xR rod position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
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