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Abstract 
Environmental awareness, production costs and operating expenses have provided a 

large incentive for the investigation of novel and more efficient fluid power technologies 

for decades. In the earth-moving sector, hydraulic hybrids have emerged as a highly 

efficient and affordable choice for the next generation hydraulic systems. Displacement-

controlled (DC) actuation has demonstrated that, when coupled with hydraulic hybrids, 

the engine power can be downsized by up to 50% leading to substantial savings. This 

concept has been realized by the authors‘ group on an excavator prototype where a 

secondary-controlled hydraulic hybrid drive was implemented on the swing. Actuator-

level controls have been formulated by the authors‘ group but the challenge remains to 

effectively manage the system on the supervisory-level. In this paper, a power 

management controller is proposed to minimize fuel consumption while taking into 

account performance. The algorithm, a feedforward and cost-function combination 

considers operator commands, the DC actuators‘ power consumption and the power 

available from the engine and hydraulic hybrid as metrics. The developed strategy brings 

the technology closer to the predicted savings while achieving superior operability. 
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1. Introduction 
Off-highway vehicles’ systems have been the subject of extensive engineering research 

over the past few decades. Novel architectures and control algorithms have been 

developed to maximize overall system performance and efficiency. The earthmoving 

equipment sector has demonstrated large improvements in both aspects and much 

attention has been paid to excavators due to their predominantly cyclical operation and 

large inertial forces. One approach to exploit these machines’ operation are hybrid 

systems. Electric hybrid excavators were first introduced in the market by Kobelco and 
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Komatsu. In their systems, an electric motor is installed as the swing drive actuator and 

an electric capacitor is installed for kinetic energy storage. These manufacturers have 

advertised up to 41% energy savings for specific working cycles /1/, /2/ and /3/. A large 

disadvantage electric hybrids is their high production cost. As an alternative, CAT has 

commercialized a hydraulic hybrid excavator /4/ in which swing braking energy is 

captured in a high pressure accumulator. Besides the commercially available hydraulic 

hybrid concepts, the authors’ group at Purdue has studied, implemented and tested the 

concept of a secondary controlled hybrid swing drive /5/. 

The concept of secondary control actuation was originally patented in /6/ as a more 

efficient alternative to valve controlled actuation. The concept employs a hydraulic unit 

to control the pressure at the working port of the units controlling the inertia loads, also 

known as secondary units, through a pressure-compensated mechanism. The 

secondary units’ displacement control mechanisms are employed to control the inertia 

load dynamics. Depending on the operation, secondary units may operate as pumps or 

motors. To prevent these units from over speeding they must be controlled in a closed-

loop fashion. In many instances a hydraulic accumulator is installed in the working line 

to add damping. However, the purpose of this component as originally proposed, is not 

to store energy. The hydraulic hybrid secondary-controlled drive proposed by the 

author’s group /5/ follows the abovementioned underlying working principles of 

secondary-control. Nonetheless, the hydraulic architecture has been modified to include 

a hydraulic accumulator for energy storage and the pressure compensation system has 

been replaced with a direct-operated electro-hydraulic system. In this form, both 

hydraulic units are allowed to operate as pumps or motors. Ultimately this allows for the 

recuperation, storage and/or transmission of the secondary unit braking energy to the 

common engine shaft. 

A constant pressure net is unreasonable for a secondary-controlled hydraulic hybrid 

drive /5/ /7/. With this in mind, the authors’ group has developed a minimum speed and 

a rule-based control strategy for the power management of a hydraulic hybrid excavator. 

Nonetheless, these strategies were not able to achieve the predicted engine downsizing 

in implementation /8/. In this paper, an effective and general power management 

supervisory-level controller is developed for displacement-controlled hydraulic hybrid 

machines. The control strategy proves that, through the proper management of the 

primary unit, the system is able to perform as a conventional machine while operating 

with a downsized engine. Simulation results with a downsized engine and measurement 

results in an excavator prototype with a stock-sized engine show that the control strategy 

maintains the engine at or below the prescribed engine power for a truck-loading cycle. 
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2. Excavator Prototype System and Simulation Model 
The machine under consideration is a Bobcat 435, 5-ton compact excavator. To 

accurately describe the machine dynamic behaviour a high-fidelity model is created in 

MATLAB SimMechanics. This model is combined with a hydraulic model where Simulink 

is used to calculate the forces and torques generated by the hydraulic system and 

SimMechanics feeds back the resulting dynamics. Additionally, a nonlinear model of the 

engine is created in the same interface. Overall, the models allow for the determination 

of the loads imposed on the engine through the hydraulic units and their effect on its 

rotational speed. 

2.1. Hydraulic System 
The working hydraulics of the studied excavator are shown in Figure 1. 

 

Figure 1: Hydraulic hybrid excavator prototype hydraulic circuit and instrumentation 

They consist of four-18 cc/rev variable displacement axial piston machines, six single-

rod linear actuators for the boom, arm, bucket, offset, and blade functions, two fixed 

displacement radial piston motors for the tracks and a variable displacement axial piston 

pump/motor for the secondary-controlled hybrid swing drive. For the simulation study, 

only the digging operation has been taken into account; therefore, valves 2, 3, 6, 7, 11, 

12, 17 and 18 are opened according to the actuators’ commanded motion while the rest 

remain closed. It follows that only the swing, boom, arm and bucket actuators are 
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modeled. These actuators’ load dynamics can be expressed according to Figure 2 as 
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where p1 and p2 are the actuator bore and rod side pressures, V1 and V2 are the contained 

fluid volumes given by V1 = Vdead + Aborex + VL and V2 = Vdead – Arod(xmax – x) + VL, where Vdead 

is the actuator dead volume, Abore and Arod are the bore and rod side areas respectively, 

x is the actuator position and its time derivative denotes its velocity, xmax is the actuator 

stroke, and VL is the line volume. Also, K is the oil effective bulk modulus, QLi is the 

actuator internal leakage flow and Qr1 and Qr2 are the relief valves’ flows, which are 

calculated using a linear flow coefficient based on catalogue data. The pump flows, Q1 

and Q2, as well as their volumetric losses, Qs, are obtained based on empirical loss 

models. The hydraulic units’ dynamics have been modeled based on their control valves 

dynamics, which are of second order /9/. Finally, Qck1 and Qck2 are the pilot-operated (PO) 

check valves’ flows, which may be expressed using the orifice equation and balancing 

the forces on the valve spool to find its position. 

 

Figure 2: Displacement-controlled linear actuator hydraulic circuit 

The hydraulic hybrid accumulator state of charge can be modeled as 

hp 1 1 1 s1 TOT 2 2 s2
H

1p nV Q i V Q
C 2TOT 2TOTTOT 2i Vi Vi Vi V1php
1   (1.2) 

where n1 is the primary unit speed, V1, V2, β1 and β2 are the primary and secondary units’ 

maximum volumetric displacements and normalized displacements respectively, φ is the 

excavator cabin angular position and its time derivative denotes its angular velocity and 

iTOT is the gear ratio between the secondary unit pinion and cabin ring gear. Finally, Qs1 

and Qs2 are the primary and secondary unit’s volumetric losses obtained based on 

empirical data and CH is the hydraulic capacitance expressed in terms of Vo, the 

accumulator gas volume, N, the assumed ideal gas polytrophic exponent, and po, the 

accumulator pre-charge, as CH = (Vo/N)·(po
N/php

(N+1)/N). 
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2.2. Mechanical System 
The excavator prototype mechanical system has been modelled in SimMechanics 

according to CAD data and the components’ inertia tensors. The, the swing dynamics on 

the other hand have been modelled as 

arm bucket M TOT M c,  ,  signboomJ x x x V dpi b T signcM TOT M cM TOT MM TOT M  (1.3) 

where J(xarm, xboom, xbucket) is the inertia of the excavator cabin, which is a function of the 

arm, boom and bucket actuator positions xarm, xboom, and xbucket, φ is the excavator cabin 

angular position with its first and second time derivatives denoting its velocity and 

acceleration, VM is the hydraulic motor maximum volumetric displacement, dp is the 

motor differential pressure, iTOT is the ratio between the hydraulic motor pinion and the 

cabin ring gear, βM is the hydraulic motor normalized displacement, b is the viscous 

friction coefficient and Tc is the Coulomb friction coefficient. 

2.3. Engine Model 
The engine under study is a naturally aspirated 36.5 kW Kubota stock diesel engine with 

a maximum rated speed of 2700 rpm. It’s dynamics, are given by 

e e eff L
e

1n M M
Je
1n Me
1 M   (1.4) 

where ne is the engine speed, Je is the engine inertia, Me eff is the effective engine torque 

which can be expressed as Me eff = Me th – Mf, where Me th is the engine theoretical torque 

output and Mf is the engine torque loss due to friction. Finally, ML is the engine load 

torque. The maximum theoretical engine torque, Me th, can be obtained from measured 

data of the engine wide-open-throttle (WOT), which includes friction. So, to get the 

maximum theoretical engine torque, the WOT measurements must be modified to 

remove the measured friction as Me th = uE(MWOT + Mf) where uE is the normalized engine 

control input at any operating engine speed and MWOT is the measured WOT curve 

torque. The engine friction on the other hand is modeled based on published empirical 

data /10/ of the effective mean pressure as pme = 75 + 0.048ne + 0.4Sp
2 and knowing that 

the effective mean pressure is given by pme = 2πMne/Veng where Veng is the engine 

displacement in liters and M is the resulting torque from the mean effective pressure, the 

torque loss due to friction can be expressed as 

eng 2
f e p75 0.048 0.4

2 2
V

M n S   (1.5) 
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where Sp is the pistons’ speed in m/s. This parameter can be expressed for a four-stroke 

engine and taking into account the engine piston stroke, l, as Sp = nE2l/60. 

3. Supervisory-Level Control Development 
The proposed supervisory controller comprises two parts, 1) an instantaneous 

optimization for the minimization of fuel consumption and maximization of actuator 

performance and 2) a feedforward controller for the hydraulic hybrid primary unit based 

on the system power flows. In conjunction, these two parts optimize the usage of engine 

power and allow the hybrid to provide complementary power to the common shaft. 

3.1. The Engine Power Management Control Strategy 
The engine power management control is similar to that in /11/ wherein the efficiency 

characteristics of the engine as well as the hydraulic units are taken into account to 

minimize fuel consumption and satisfy machine transient performance. With this 

algorithm the engine speed will change to suit efficiency and performance parameters, 

which differs from traditional mobile equipment operation where the operator sets a fixed 

reference engine speed. In doing so, the algorithm takes advantage of the fact that diesel 

engines are more efficient at large torque loads but low speeds and hydraulic units are 

more efficient at low speeds and large displacements. The controller formulation revolves 

around the minimization of and objective function at each moment in time. For DC 

hydraulic hybrid systems the proposed formulation can be expressed as 

n

e e Q DC err, 
1

bsfc , i
i

J n M k Q   (1.6) 

where bsfc(ne, Me) is the engine brake specific fuel consumption, kQ is a flow rate error 

gain for performance adjustment, and the flow rate error can be formulated based on the 

desired and current DC flows, QDC, des, and QDC, curr respectively, as 

DC, des p, curr
DC err

DC, des p, current DC, des p, curr

0 Q Q
Q

Q Q Q Q
  (1.7) 

Equation (1.6) yields a nonlinear, multivariable optimization subject to flow rate 

constraints (βref, ne, ref) = f(dp, QDC, curr), speed constraints ne, min ≤ ne ≤ ne, max and torque 

constraints Te ≤ Te, max(ne). To simplify the task of solving this optimization scheme, the 

flow rate constraint can be directly substituted into Eq. (1.6), the torque constraint can 

be implicitly enforced by adding a penalty, Jc, to Eq. (1.6) and the speed constraint is a 

bound on the optimized parameter. An option for the implementation of the proposed 

approach is to pre-calculate the optimal speed trajectories into a lookup table. 
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Nonetheless, due to the large number of states in the system, an online solution is 

preferred. The optimization problem is solved online at a sampling rate of 25 Hz using a 

golden section (Fibonacci) search.  It is evident that a trade-off between efficiency and 

performance will exist due to the much slower dynamics of the engine relative to the DC 

actuators. Nevertheless, different values for the parameter kQ may be prescribed to 

establish different machine operating modes such as energy saving (kQ is small) or 

performance (kQ is large). 

An additional requirement on the engine power management is an anti-stall function. The 

author’s group has developed an anti-stall control for DC systems which scales the units’ 

displacements based on the engine speed error and their contributing torque load. More 

details on this controller can be found in /12/. 

3.2. The Hydraulic Hybrid Power Management Control 
The formulation of the hydraulic hybrid supervisory controller is achieved by noting the 

energy flows in the system. In reference to Figure 3, it can be observed that the chosen 

convention takes into account power going into the common engine shaft as positive and 

power consumed as negative. It is then observed that energy stored in the hybrid 

accumulator, EA, must be transferred to the engine shaft through the primary unit as PP, 

when the engine power, Pe, is less than that demanded by the DC actuators, PDC. It is 

important to note that the secondary unit power, PS, depends mainly on the operator 

commands. Each of the depicted energies can be expressed as shown in                            

Eq. (1.8) to Eq. (1.12). 

 

DC 1

n
i e i i ii

P p n V  (1.8) 

S HP S S S SP p n V  (1.9) 

e e eP M n  (1.10) 

0

2
A HP

V

V
E p dV  (1.11) 

cp cp eP M n  (1.12) 

Figure 3: Hydraulic hybrid DC energy flows  
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It can be further noted that PP = EA/dt + PS and PDC = Pe + PP + Pcp. It follows that the power 

required from the engine can be expressed as Pe = PDC ˗ EA/dt ˗ PS ˗ Pcp. Substituting the 

expressions in Eq. (1.8) to Eq. (1.12) and noting the expression in Eq. (1.2) allow us to 

see that the quantities used to control the system energy flows are the engine speed and 

the primary unit displacement, which is no surprise. On the other hand the DC actuator 

displacements and the secondary unit speed are performance parameters. It is then 

concluded that the control task for the supervisory controller is to stay close to the desired 

DC and hybrid energy levels while minimizing fuel consumption. To achieve this it is 

proposed to formulate a displacement command for the hybrid primary unit that is directly 

related to the power relations derived above. Such relations are given by 

DCe max @ min bsfc
P A A DCe max @ min bsfc

e downsized max

1 for 0
P P

S p P P
P

 (1.13) 

DCe max @ min bsfc
P A A DCe max @ min bsfc

DC max e downsized max

for 0
P P

S p P P
P P

 (1.14) 

In reference to Eq. (1.13), it can be observed that the expression takes the normalized 

amount of the current engine power, Pe max @ min(bsfc), which is not utilized by the DC 

actuators, PDC, and commands the primary unit to charge the accumulator. This levels 

the engine at the highest allowable power when the accumulator must be charged. The 

relationship in Eq. (1.14) on the other hand takes the normalized difference between 

current engine power, Pe max @ min(bsfc), and the power demanded by the DC actuators, PDC,  

and normalizes such value with respect to the maximum power above the downsized 

engine rated power. This in turn commands the primary unit to discharge the accumulator 

thereby complementing the engine power. It is important to note the scaling factor SA is 

utilized to implicitly impose constraints on the amount of energy stored or taken from the 

hybrid accumulator by considering the accumulator pressure, pA. During the discharging 

scenario this scaling factor allows the swing drive to retain operability and on the 

charging scenario it de-strokes the primary unit once a specified maximum charge limit 

has been reached. This last point is crucial for the accumulator integrity but also from 

the energy perspective to prevent wasting energy over a relief valve when the machine 

is not in use. It is also important to recognize that, due to the nature of the proposed 

approach and the hybrid architecture, the secondary unit power is automatically taken 

from the hydraulic accumulator or recaptured. This flexibility allows the controller to focus 

the control effort on providing enough power for the DC actuators while relying on the 

hybrid actuator-level controls and the abovementioned implicitly enforced constraints to 

meet a certain performance criteria.  
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4. Simulation Results for a Truck-Loading Cycle with Downsized Engine 
To simulate the system behaviour, the derived control algorithms in section 3 were 

incorporated in the mathematical model described in section 2. The presented simulated 

results in Figure 4 to Figure 8 are the outcome of providing the simulation model with 

measured commanded actuator motions of an expert 90° truck-loading cycle. It can be 

observed that the main controller task has been achieved by completing the short digging 

cycle with 55% percent of the installed stock engine power. A detailed plot of the power 

throughout the system is shown in Figure 4. It can be observed that the power consumed 

by the DC circuit is above the maximum possible power provided by the downsized 

engine. To accomplish this, energy stored in the hybrid accumulator, also shown in 

Figure 4, is channelled to the common shaft by means of the primary unit working in 

motoring mode, as can be seen from its displacement in Figure 5. For near optimal 

engine power consumption, the engine speed, shown in Figure 8, varies over time 

according to the operator commands, thereby forcing the hydraulic units to operate at 

higher efficiencies. The engine characteristics and operation can be seen in Figure 6.  

 

 

Figure 4: System power  

 

Figure 5: Primary unit displacement Figure 6: Engine Operation 

 

Figure 7: Accumulator pressure Figure 8: Engine speed 
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In this particular case the performance demand results in high speed operation for a 

considerable part of the cycle; nonetheless, when possible, the engine speed is lowered. 

5. Control Validation through Measurements on the Prototype Excavator  
The aforementioned control algorithms were implemented in the excavator prototype 

described in section 2. The hardware and data acquisition was conducted using National 

Instruments devices at 300 Hz and the instantaneous optimization algorithm in section 

3.1 was executed at 25 Hz. In reference to the results presented in Figure 9 through 

Figure 13, the combination of power management controllers effectively allows a short 

digging cycle to be completed with 55% of the stock engine power. In Figure 9, it can be 

observed that the engine power never increases above the prescribed downsized 

maximum power of 20 kW. The DC actuators power demand on the other hand does 

increase above this threshold. This operation is possible through the addition of the 

complimentary hydraulic hybrid power into the common shaft, also shown in Figure 9.  

 

 

Figure 9: System power  

 

Figure 10: Primary unit displacement Figure 11: Engine Operation 

  

Figure 12: Accumulator pressure Figure 13: Engine speed 

It can also be observed that the power level obtained from the hybrid primary unit reaches 

the predicted values in the simulation study of section 4, which indicates that the engine 

Downsized WOT 
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management algorithm effectively controls the engine speed, as shown in Figure 13, and 

the hybrid controller effectively controls the accumulator state-of-charge. Also important 

to note is the primary unit displacement. It can be observed that as power demand from 

the DC actuators increases above the maximum prescribed value, the displacement 

rapidly moves over-center to force the machine into motoring mode. When no more 

power assistance is required, the unit returns to charge the accumulator, which is 

reflected in the accumulator state-of-charge shown in Figure 12. Finally and most 

important, from Figure 11, it can be seen that the engine operation is wide-spread over 

the range of allowable speeds and torques having two main concentrations, one at 

speeds between 2550 and 2750 rpm, which is a result of satisfying the DC actuators 

performance, and another one at speeds between 1800 and 2200 rpm, which is a result 

of operating the machine at the most efficient point given the load when the operator 

commands allow it.  

It must be noted that the developed control algorithm does not seek to achieve machine 

optimal operation. In order to achieve this, the operator commands must be known a 

priori or a learning or model-based algorithm must be implemented to focus on 

maintaining the mean accumulator pressure at the lowest possible while still maintaining 

operability. This then would allow the engine to operate at lower speeds and the primary 

and secondary units to operate at lower pressures thereby incurring in lower losses. 

Nonetheless, the derived algorithms demonstrate that the hydraulic hybrid architecture 

in combination with DC actuation allows engine downsizing by up to 55% for an 

excavator. 

6. Conclusions 
The presented results show the effectiveness of the developed control algorithms and 

demonstrate that the proposed algorithms results in the promised architecture engine 

downsizing. The derived controls are non-model based approaches which rely on 

measurements of the engine speed, the hybrid accumulator state-of-charge and the 

hydraulic units’ displacements to distribute the power in the system according to its 

operation. The power management algorithms formulation is generalized for DC multi-

actuator machines with secondary-controlled hydraulic hybrid architectures, which 

makes them implementable for similar mobile equipment with distinct architecture 

configurations and/or applications. Future work may include more advanced algorithms 

such as learning schemes that can exploit the architecture and result in the highest 

possible fuel savings. 
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