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Abstract
This paper focuses on thermal analysis of a direct driven hydraulic setup (DDH). 

DDH combines the benefits of electric with hydraulic technology in compact 

package with high power density, high performance and good controllability. DDH 

enables for reduction of parasitic losses for better fuel efficiency and lower 

operating costs. This one-piece housing design delivers system simplicity and 

lowers both installation and maintenance costs. Advantages of the presented

architecture are the reduced hydraulic tubing and the amount of potential leakage 

points. The prediction of the thermal behavior and its management represents an

open challenge for the system as temperature is a determinant parameter in 

terms of performance, lifespan and safety. Therefore, the electro-hydraulic model 

of a DDH involving a variable motor speed, fixed-displacement internal gear 

pump/motors was developed at system level for thermal analysis. In addition, a

generic model was proposed for the electric machine, energy losses dependent 

on velocity, torque and temperature was validated by measurements under 

various operative conditions. Results of model investigation predict ricing of 

temperature during lifting cycle, and flattened during lowering in pimp/motor.

Conclusions are drawn concerning the DDH thermal behavior.

KEYWORDS: thermal modelling, direct driven hydraulics, non-road mobile 

machinery, electro-hydraulic actuator
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1. Introduction
The next exhaust limits for engine manufacturers will be implemented in 2019/2020 /1/.

This Tier V limit imposes a sharp tightening of exhaust limits, especially in terms of 

particles. This coming four-year window should be exploided for preparing engines for 

the upcoming regulations by developing innovative solutions. In order to reach the target 

environmental requirements, electric and hybrid topologies have seen as suitable 

solutions. Whereas, a huge potential application area is the Non-road Mobile Machinery 

(NRMM) industry, which are used in mining, goods manufacturing, forest harvesting, and 

construction works. 

In recent years, an industrial trend can be observed in increased use of compact electro-

hydraulic actuators. These actuators are able to deliver powerful, linear movement with 

valve-controlled or pump-controlled systems. The concept of electrohydraulic actuators 

have been introduced as zonal hydraulics in NRMM and aircraft applications. For 

instance in /2/, an electrohydraulic actuator was applied to the power steering of heavy 

vehicles. In /3, 4/, the new design of electro-hydraulic actuators was developed for 

aircraft applications, where reliability requirements are very high. Most of the research 

studies related to electrohydraulic actuators have been conducted to adjust the state of 

the servo valve /5, 6/, where the set of valves is utilized to balance the flow and to ensure 

the direction of the electrohydraulic actuator motion. In /7, 8/, the Direct Driven Hydraulics 

(DDH) unit without conventional directional valves was introduced as an electro-

hydraulic actuator. The DDH drive combines the best properties of electric and hydraulic 

drive technologies in one:Direct control of flow, velocity and position of the actuator;

Disconnection of pump units from the internal combustion engine; Possibility of power 

on demand.

In this research, Direct Driven Hydraulics (DDH) is seen as a tool to convert existing 

NRMMs to hybrids and/or increase degree of hybridization. In terms of continuous 

operation, research all around the world is facing the challenge of establishing and 

maintaining industrial activities in extreme environments. Normally, the heat generated 

from the equipment operation keeps the fluid warm and enables it to circulate properly. 

The problems occur at start-up, when everything has cooled down to low temperatures.

Equipment failure is unacceptable in remote locations in extreme environments such as 

the Arctic areas. At the moment, research on the extreme operation of NRMM is limited 

mostly to the cold-start characteristics of engines /9/ and to the development of new 

components and hydraulic oils specifically for arctic conditions /10-13/. Heat generation 

and transfer in oil-hydraulic systems is discussed and researched from an overheating

236 10th International Fluid Power Conference | Dresden 2016



point of view only /14/ or predicting accurate temperature /15-17/. For instance in /18,

19/, the thermo-dynamical behavior of electro-hydraulic systems were studied in typical 

working temperatures (above 0 ° C). In /19-22/, a compact drive and its components 

were investigated from the thermal point of view. New configurations in NRMM with a

DDH conversion as hybrid tool are possible without the traditional source of heat and 

constantly operating engine. Would the DDH unit be self-sufficient from thermal point?

Therefore to find answer to this question, this paper investigates directly driven hydraulic 

setup (DDH) for non-road mobile machinery (NRMM) application from thermal point of 

view.

The remainder of this paper is organized as follows. The DDH test setup is introduced in 

Section 2, while Section 3 presents a detail description of the thermal model. The 

measurement results and their analysis are described in Section 4, thereafter; Section 5

contains discussion and concluding remarks.

2. Test setup
The experimental test setup is illustrated in Figure 1. The control of the DDH system is 

implemented directly with a servo motor drive without conventional hydraulic control 

valves. Therefore, velocity of the double-acting cylinder is determined by in-coming oil 

flow from the pump, out-coming flow to the hydraulic motor and angular speed of the 

electric motor. The electromechanical drive (frequency converter controlled electric 

motor) is adopted to control the fluid flow, the position of the payload and the direction of

the motion. A program for the electric drive is set up to control both the electrical and 

hydraulic sides of the system, thus allowing good controlled lifting-lowering movement at 

different speeds and payloads. Test setup consists of two XV-2M internal gear 

pump/motor by Vivoil with displacement of 14.4 and 22.8 cm3/rev P2, and P1, respectively 

/23/.  The size of the pumps (and thus manufacturer) where chosen to match to the 

unsymmetrical cylinder chambers (MIRO C-10-60/30x400). Unidrive SP1406 drive 

converts the AC power supply from the line and allows to set the speed of the permanent 

magnet brushless servo motor Unimotor 115U2C manufactured by Emerson Control 

Techniques, taking advantage of the information obtained by the feedback device fitted, 

to ensure the rotor speed is exactly as demanded /24/. Speed and torque of the motor 

shaft is monitored by Unidrive SP1406 drive software/25/. Figure 1a illustrates simplified 

schematics of test setup with the locations of pressure and height sensors. The 

pressures of the lines, pump inlet and outlet, are measured by means of Gems 

3100R0400S pressure transducers /26/. The actual velocity and height of the cylinder’s 
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piston rod were measured by means of a wire-actuated encoder SIKO SGI (IV58M-0039)

/27/.
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Figure 1: a) schematic of DDH setup, b) thermal image of setup in 10 °C ambient 

temperature, c) overview of DDH setup

Thermal images across the pump and electrical machine demonstrate of the components 

different heat loss distribution. Change in fluid temperature (delta T) across the pump 

indicates of hydro-mechanical losses within the pump and demonstrates its behavior. 

Thermal images with larger temperature differential show reduced system efficiency as 

heat generation results in energy consumption and heat load within the system.

3. Modelling
Modelling of the DDH system is divided to two parts. Thermal modelling of hydraulics is 

demonstrated in Section 3.1. A thermal generic model is proposed for the electric 

machine in Section 3.2, where energy losses dependent on velocity, torque and 

temperature. Thus, simulation results are shown in Section 4. Proposed model was

validated by measurements in Section 5.

3.1. Thermal-hydraulic model
Mainly the heat generation of the DDH system  appear due to power losses in hydraulic 
components. Hydraulic oil transfer the heat among hydraulic components. Whereas, 
exchange between external environment is also happening via convention. According to 
/28/, direction or circulation of oil is important  for the heat transferred among hydraulic 
components. The thermal model hydraulics. Figure 2a depicts the thermal-hydraulic 
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model, which was built from hydraulic components in SimulationX - commercial multi 
domain simulation tool.

a) b)

Figure 2: a) Thermal - hydraulic model, b) Lumped parameter model

The DDH system was described as fluidic and solid control volumes, which represents 

housing of hydraulic components and its solid construction elements. All hydraulic main 

components are considered in the model. It is assumed that DDH setup has an unlimited 

heat capacity and remains at ambient temperature equals to 23 ° C.

3.2. Electric machine thermal model
The electrical drive system consisting of the power electronics linked with electrical 

machine is designed to achieve a full control of the delivered torque. The 

characterization of the performances results critical to assess the efficiency of the 

system. The behavior of the machine is modelled according to analytical equations /29/-

/30/ to determine the torque-current characteristic of the device. The different speed-

current conditions in which the drive will be operated are expected having an impact in 

the thermal behavior of the electrical machine, therefore on the overall drive itself. The 

load capabilities are expected to be fully exploited during the operation of the DDH which 

reflects in different set point for current injected in the electrical machine at different 

operative rotor speed. The parameters that characterize the electromagnetic behavior

have an impact in the losses that take place in the electrical machine. The current that 

is injected in the electrical machine will become a source of Joule losses. The rotor speed 

at which the machine is operated will have a minimum impact on the windage losses 

(usually considered as <1% of the total losses /31/), but will have an impact on the iron 

losses in the stator core due to the time variable magnetic flux provided by the rotor 

structure. The eddy current losses in the rotor core and permanent magnets are 
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neglected. The thermal model proposed is designed to evaluate the temperature 

distribution within the electrical machine structure according to the heat sources that are 

here considered and dependent on the operative condition of the DDH. The temperature 

prediction in electrical machine has been a topic highly investigated by many industrial 

and academic research centers and different techniques has been proposed. Finite 

Element Methods results as the most accurate technique with the drawbacks of high 

computational time and time consuming for setting it up; first-second-third order 

equivalent circuit methods are considered when fast computation is required and are still 

capable of high accuracy prediction /32/-/33/. Hybrid-mid-complex techniques have been 

developed to compromise the computational effort and the accuracy of the prediction

/34/. The equivalent resistance network /33/ has been selected as the modelling tool 

which better fit the needs of the thermal estimation for the DDH. The proposed model is 

based on the assumption of symmetrical supply for the electrical machine and the 

exploitation of the geometrical symmetries of the structure allows reducing the model to 

a single stator slot. The Fourier equation has been considered discretized for each 

macro-part in which the computational domain is divided and equivalent thermal 

resistance and capacitance are defined according to the material thermal properties. The 

overall result is a linear thermal network which can be solved by means numerical 

techniques to evaluate the temperature distribution in the nodes. The inputs of the model 

are the heat losses as previously described: joule losses in the copper winding, heat 

losses correspondent to the stator iron losses. Boundary conditions have been defined

according to the external condition. The cooling media considered in air and natural 

convection is considered between the stator housing and the environment. The 

convection coefficient has been defined according to /31/-/32/ and the ambient 

temperature has been changed to replicate the test condition in the controlled thermal 

chamber.  Figure 2b illustrates lumped parameter model. The permanent magnet 

brushless servo-motor 115U2C is characterized by = 1.6 and =

9.8 10  , with a rated torque of = 8.1 with an operative maximum speed 

of = 3000 . The control system is designed to fulfill the dynamics requirements 

of the DDH. The current injected is controlled up to = 23.5 . Steady state and 

transitory operative conditions are considered to validate the thermal model of the 

machine. The rated current considered defines the value of the heat source in the part 

of the lumped parameters that models the copper region. The variation of the resistivity 

with respect the temperature is taken into account according to (1)

( ) = (1 +  [T 20]),     [ ]                                                                            (1)
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where is the resistivity of the copper at = , is the thermal coefficient of 

the copper and is the operative temperature of the material. The joule losses are 

defined by means (2) 

=    
( )

 ,    [ ]                                                                                 (2)

where is the end region correction factor, _ is the number of phases, is 

the number of turn/phase, is the axial length of the machine, the cross section of the 

conductors. The iron losses are estimated according to the Steinmetz equation (3)

=   +   (  ) ,      [ ]                                                                            (3)

where is the frequency of the magnetic flux density, is the peak of the magnetic flux

density and , , and are constant coefficient listed in Table 1. The thermal 

resistances are defined as (4) and connect the macro-sections in which the 

computational domain is divided. 

Table 1: Iron Losses coefficients 

=
 

,                                                                                                                                 (4)

=   ,                                                                                                                           (5)

where is the conduction coefficient of the material, is the convection coefficient, is 

the surface of heat exchange and is the axial length /35/. The thermal convective 

equivalent resistance between the electrical machine and the environment is defined as 

(5) where the definition of the thermal convection coefficient can be found in /31/. The 

number of nodes has been chose as a compromise between the accuracy of the 

prediction and the computational effort required. The thermal capacity of the iron and 

copper region has been modelled to account for the thermal transitory behavior of the 

machine.

4. Simulations Results
The thermal model has been tested in ambient operative conditions. The operative 

behavior of the DDH is considered to be oscillatory. The rotational speed of the electrical 

machine is controlled in order to achieve a periodic change in pressure required as an 

output. The amplitude of the current supplied to the machine is defined by means the 

Parameter Value
0.039

0
1

 1.6886

Group 4 - Thermal Behaviour | Paper 4-4 241



speed loop, featuring peaks when change in directions occurs while only small quantities 

are required when the speed in kept constant.  The torque generated results directly 

proportional with respect the q-axis current which is approximated with its first harmonic 

with respect the period of the hydraulic oscillation considered and expressed in (6). The 

joule losses are generated by means the square of the current resulting in 

( ) = cos(  + )   ( ) = cos (  + ) =
2

 ,                           (6)

where I is the maximum rms value achieved by the current, is the angular speed of 

the hydraulic oscillation and its phase angle. The constant equivalent rms current is 

supplied and the thermal model predicts transitory 1 °C/cycle of increase in the housing 

and 4 °C/cycle in the hot spot of the winding structure. Results of electric machine 

thermal modeling is shown in Figure 3. The transitory rise of the temperature in the 

surface where the heat is exchanged, the housing of the electrical machine, is presented 

in Figure 3. In Figure 3b, the temperature in the winding structure, the hot spot of the 

electrical machine is reported and the maximum temperature achieved in the motor 

housing is highlighted with the dashed line. The model developed is capable of 

accounting also for the transitory heat transmission between the region where the heat 

sources are located and the surface dedicated to the heat exchange.

a) b)

Figure 3: Result of electric machine thermal model: a)Motor housing temperature, b) 

Motor winding temperature.

Figure 4 shows simulated oil temperature at different locations: pump/motors and tank. 

As input signal measured data from Figure 5 was used. Simulation results predict ricing 

of temperature during lifting cycle, and flattened during lowering in pimp/motor.
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Figure 4: Results of thermal-hydraulic model: position, pump/motors and tank oil

temperatures

5. Experimental investigation
The proposed models of DDH is validated by measurements in this Section. The 

experimental tests are performed in a temperature controlled environment. Essential 

parameters like pressure, torque, speed, cylinder position and velocity, electric motor 

voltage, current and ambient temperature are either directly obtained from the setup with 

sensors or calculated. For experiments a DDH setup was installed according to Figure 
1a. Figure 1a shows the experimental setup with the locations of pressure, height, 

temperature, current and voltage sensors.

The DDH experimental setup was tested with a payloads of 140 kg at different speeds. 

The tare weight of the moving boom system is 9.5 kg. Figure 5 depicts the measurement 

results for the chosen maximum payload. The payload was lifted to a height of 0.4 m at 

an average velocity of 0.2 m/s and then lowered to the ground with the same speed. The 

rotation speed of the PMSM, which corresponds to the pump/motor speed, was 500 rpm. 

According to Figure 5, the torque needed for lifting the payload is equal to 16 Nm, acting 

pressure reach up to 100 bar. Pressure peak during lifting phase in the system 

corresponds to unequal pump displacement to cylinder area.
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Figure 5: Results of experimental investigation: pressure, height, speed, flowrate and 

estimated torque.

Figure 6 illustrates temperature changes during lifting lowering cycle.

Figure 6: Temperature results of experimental investigation during lifting-lowering cycle.
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The comparison of the simulation results with measurements for lifting/lowering cycle 

with a payload 149.5 kg showed that surface temperature is higher than simulated oil 

temperature. Influence of pressure peaks in DDH system can be observed in rising 

temperature in simulation results. Finally, according to simulation during lifting-lowering 

cycle, the electric motor is the warmest component.

6. Conclusion
There is a rising trend for compact electro-hydraulic actuators in industry. In this study 

the direct driven hydraulic test setup without control valves was described and 

investigated from thermal point of view. The comparison between the simulation results 

and the experimental test data validate the modelling developed for both the electrical 

machine and the hydraulic system. The experimental tests confirmed ricing of 

temperature during lifting cycle, and flattened during lowering. 
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9. Nomenclature
peak of the magnetic flux density 

conduction coefficient of the material

 frequency of the magnetic flux density
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  maximum current A

torque constant Nm/A

 voltage constant V/rpm

 end region correction factor

 axial length of the electric machine m

 number of turn/phase

_  number of phases

 convection coefficient

 joule losses 

  iron losses

 rated torque Nm

 cross section of the conductors

 thermal coefficient of the copper 

 resistivity of the copper at =

 phase angle

 angular speed Rad/sec

 maximum speed rpm
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