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Abstract 
The aviation environment holds challenging application constraints for efficient 

hydraulic system noise reduction devices. Besides strong limits on component weight 

and size, high safety and reliability standards demand simple solutions. Hence, basic 

silencers like inline expansion chambers and Helmholtz-Resonators are state-of-the-art 

aboard commercial aircrafts. Unfortunately, they do not meet today’s noise attenuation 

aims regarding passenger comfort and equipment durability. Significant attenuation 

performance is expected from active concepts that generate anti-phase noise. 

However, such concepts remain a long term approach unless related costs, e.g. due to 

additional power allocation and real-time control equipment can be avoided. In this 

paper an active fluid borne noise attenuation concept is discussed that accounts for the 

mentioned constraints. An aircraft hydraulic pump is considered as main noise source. 

The active attenuator is an in-house rotary valve design. The basic feature is a known 

direct shaft coupling principle of pump and rotary valve, so no speed/ frequency control 

of the valve and no separate power supply are required. The common-shaft principle is 

further simplified here and proposed as integral feature of future “smart pumps”. 

KEYWORDS: Aircraft Hydraulic System, Hydraulic System Noise, Fluid Borne 

Noise, Pump Flow Ripple, Pump Impedance, Active Attenuation, 

Direct Drain Principle, Rotary Valve, Common Shaft Principle 
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1. Introduction 
The potential & feasibility to reduce flow/pressure ripple – fluid borne noise (FBN) – of 

hydraulic pumps by a rotary valve in common shaft application was presented by 

Goenechea, see e.g. /1/. Taking the common shaft principle as starting point, further 

modifications are discussed in the concept-section, chapter 2, in order to satisfy the 

aviation constraints. Related design parameters and a simulation model are presented 

in chapter 3 and 4. The model is built using the time domain FBN analysis capabilities 

of the software DSHplus v3.9. In chapter 5, a laboratory demonstrator for experimental 

validation is shown. It uses the pump test circuit of a dedicated FBN test rig at TUHH. 

Relevant issues are listed below. Due to paper space only 1 to 3 are further discussed: 

1. The attenuation performance in terms of pump flow ripple (source flow ripple) 

reduction in the pump discharge line for anechoic (reflection-free) conditions.  

2. The attenuator impact on the pumps suction line, because todays passive 

reference silencers at pump discharge port tend to induce suction flow ripple. 

3. The attenuator impact on the pump power balance in terms of a decreased 

stationary pressure/ flow or increased power consumption of the electric motor.  

4. The attenuator impact on the apparent pump impedance (source impedance), 

which is a critical characteristic for interaction with (reflected) system ripples.  

2. Concept 
Active attenuators tend to be an attractive alternative to passive silencers regarding 

piston pump FBN reduction, especially for the fundamental and first harmonic pumping 

frequency. These carry most of the ripple power and passive solutions usually require 

large capacitance or inductance for lower frequencies, increasing silencer size/ weight.  

In /1/ & /2/ some active attenuator concepts were compared, e.g. a Direct Principle 

draining dynamic flow to a lower pressure level, and an Active Resistance Principle, 

storing/releasing dynamic flow in/out a capacitance. Their use in aviation hydraulic 

systems was considered by Kohlberg et al. in /3/. One of the considered attenuator 

concepts was built and tested using a piezo-driven membrane actuator and is 

discussed in more detail in /4/. A high attenuation performance was achieved but came 

with many efforts.  A realization by a rotary valve with pump shaft coupling enables to 

spare many efforts like a separate power supply and a speed/ frequency control.  

A rotary valve (RV) can be designed compact and robust. However, a realistic aviation 

application would also demand to spare/ minimize any other onboard hardware and 

software for RV amplitude and phase control. Hence, a knowledge-based (pre-) design 
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of the pump-attenuator-assembly is required that only allows for simple adaptation 

functionalities, e.g. during maintenance on ground. Starting from typical state-of-the-art 

silencer solutions on aircrafts – in Figure 1 shown with the proposed alternative 

concept – two technical realizations of the concept are given in Figure 2. 

 

Figure 1: Fluid borne noise (FBN) reduction for aviation hydraulic pumps 

The two technical realizations – Figure 2 – of the proposed active attenuator concept 

represent promising baseline candidates for an aviation specific application. That 

means a safety critical application where also failure cases of the RV are taken into 

account, like a stationary pressure drop due to RV sealing wear-out or burst. In that 

case, one or multiple switching valves (see SW or SW1/2) would have to disconnect 

the RV from the pump discharge line. The remaining components of the assembly 

would have to provide a minimum FBN attenuation performance until the next aircraft 

maintenance. E.g. for the shown Direct (Drain) Principle, the connection line length (L1) 

has to be designed such, that the connection line itself acts like a passive side branch 

resonator (SW is closed) for the desired pumping frequencies during RV failure.  
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Figure 2: Considered technical realizations of the Silent Pump Concept and primary 
effect of dedicated tuning parameters on FBN (bold arrows) 

3. Design 
It is assumed that the RV ripple amplitude and phase are adjustable parameters acc. to 

Figure 2 during aircraft ground service. So the RV connection line length (L1/2 or LA/B) 

to Point “A” – and also the pump line length to Point “A” – become key preliminary 

design parameters of the assembly. This is not only for above mentioned RV failure 

cases. During normal operation, these lengths have great influence on the ripple phase 

of the respective ripple sources at Point “A”. This fact will remain for any active 

attenuator assembly acc. to Figure 2, where the RV is assumed as an add-on feature 
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for existing pumps and not yet as an integrated feature inside the housing of future 

“smart pumps” (negligible lengths). The relevant relations can be taken from a general 

solution of the Helmholtz equations /5/:   

 (1) 

 =   (2) 

In eq. (1),  denotes a flow wave along a line,  a pressure wave in positive 

x-direction (progressive) and  in negative x-direction (regressive), all travel with 

speed of sound  in the fluid.  &  represent phase shifts increasing with 

distance and hence wave motion along the line.  &  are complex numbers for the 

line end boundary conditions, e.g. for pump & rotary valve.  is the characteristic pipe 

impedance. In eq. (2), the progressive part of eq. (1) is shown in detail. It is an 

important design equation for the proposed concepts: If of pump & RV have 

the same amplitudes but are in anti-phase at intersection point A, than no progressive 

wave remains in a common discharge line and also no regressive (reflected) wave.  

4. Simulation Model 
The simulation models were built using the software DSHplus v3.9, see e.g. Figure 3.  

 

Figure 3: Model for Direct Drain Principle in DSHplus acc. to test rig setup (Figure 6/7) 
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Simulation and test results are limited here to the Direct Drain Principle, Figure 2, due 

to limited paper space. Besides, it was considered to be the most simple & compact 

technical realization, and hence to be most attractive one for an aviation application.  

The Distributed Parameter Hydraulic Toolbox was applied which allows for ripple/wave 

investigation in time domain. The element discretization (discharge line pipe elements), 

Fig.3, is chosen acc. to a test rig to account for its sensor spacing, pipe diameters etc. 

The noise sources can be represented in multiple ways. The pump can be given by 

Function Generators to build sinusoidal signals. They form the flow ripple input of an 

open-ended pipe model ( ). Such flow ripple sources were also 

built from Pump Characteristic Models (look up tables, e.g. test data). Figure 4 gives 

simulation results for the connection line length of pump ( ) & rotary valve ( ). The 

three markers in Figure 4 (O, L1, L2) are related to the experimental setup below. 

 

Figure 4: Simulation results for 0(/1). order ripple frequency in the discharge test line 

Starting from a reference amplitude of approx. 3 bar (pump acting alone), attenuation is 

achieved in the blue marked areas as function of the connection line lengths. Of 

course, suitable lengths depend on the desired tuning frequency (see qualitatively the 

impact of the 1. order instead of the 0. order, Fig 2). Note the studied aviation pump is 

a constant speed pump, which helps to find suitable connection pipe lengths via simple 

optimization algorithms (e.g. MATLAB pattern search). Fluid parameters have a minor 

impact on the lengths, because the mean pressure is constant & temperature variation 

is small. Here, the fluid Skydrol 500B4 is applied with .  
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5. Experimental Setup 
The utilized noise test rig at TUHH follows dedicated ISO- standards, ISO 15086-1/2/3 

& ISO 10767-1/2/3. Procedures in /7/, /8/ & /9/ are also included. The key equipment 

features (1.) test pipes with multiple dynamic pressure transducers for progressive/ 

regressive wave detection & (2.) test ripple sources, here rotary valves (RV), Figure 5.  

 

Figure 5: In-house rotary valve design at TUHH, more details available in /6/ 

The RV shaft speed controls the RV ripple fundamental frequency. The sleeve angle 

adjusts the ripple phase. The ripple shape is adjusted by the sleeve axial position (e). 

The amplitude is set by a needle valve that sets the lower pressure level for the RV. In 

the presented study, the RV is part of the component under test (EMP+RV), Figure 6 

and Figure 7. The needle valve is located in Load Block 2. As mentioned before, 

simulation and test results are limited here to the Direct Drain Principle, Figure 2, due 

to limited paper space. Besides, this principle is the most simple & compact technical 

realization, and hence assumed to be more attractive for an aviation application.  

6. Study Cases 

6.1. Flow Ripple in Discharge Line 
In Figure 4, marker O shows an optimal line combination. The test rig geometry did not 

allow this. If the pump line is minimal, , than   is the 

shortest RV length, marker L1. It provides fair attenuation for 0. & 1. order, Fig. 4, while 

 increases ripple. These expectations match test results for L1 & 

L2, Figure 8. Here, flow ripple are shown and the influence of RV angles is given. 

Noticeable attenuation is achieved even with none-optimal connection line lengths. The 

pump alone would have amplitudes of 1.5 L/min for 0. Order and 1.0 L/min for 1. Order. 
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Figure 6: Hydraulic Diagram of the experimental setup for Direct Drain Principle 

 

 

Figure 7: Picture of the experimental setup; pump test circuit of noise test rig at TUHH  
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Figure 8: Experimental source flow ripple results for different RV connection line 
lengths (L1/ L2) and RV phase angels – Results for pump discharge line 

Under the assumption of zero phase difference between pump and RV, the influence of 

phase changes due to the line lengths is shown in Figure 9 for 1. Order acc. to eq. (2). 

It can be seen that L1 would be an almost optimal RV line length, if . Because 

this is not the case, the optimal lengths for RV are O1/2/3 to cancel the pump ripple. 

 

Figure 9: Analytical discussion of the source flow ripple results for a given/fixed pump 
pipe length (LP) and a variable rotary valve connection pipe length (LRV)  
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6.2. Flow Ripple in Suction Line 
From typical passive silencers in the pump discharge line it is known that their blocked/ 

reflected ripples travel partially back to the pump and into the pumps suction line. 

Hence, passive silencers increase the pumps vibration load and cavitation risk at its 

suction port. Both reduce life time & reliability. So, an investigation of suction line ripple 

is introduced as indicator for pump (+ RV) suffering from its own fluid borne noise. 

Corresponding to Figure 8, suction line test results are given in Figure 10. Similar to 

passive silencers, the main impact is at lowest frequency order(s), for both, connection 

line lengths & RV phase. The RV phase has the greater impact but with opposing trend 

to the results in Figure 8. So “L1, RVphase=270deg” tends to be the best in the 

discharge line, but the worst in the suction line. In case of L2 it is quite similar. This has 

multiple reasons related to the pump impedance and the lower pressure level of 3 bars 

in the suction line (different fluid properties). This should always be taken into account. 

 

Figure 10: Experimental source flow ripple results for different RV connection line 
lengths (L1/ L2) and RV phase angels – Results for pump suction line 

6.3. Overall Power Balance 
For the Direct Drain Principle the RV ripple power is taken from the fluid. A separate 

power supply is spared, but means a small decrease of hydraulic power regarding 

pump mean pressure/flow characteristic. The mechanical power to drive the RV shaft & 

the change of electrical input power are negligible. In cruise condition – mean pressure 

~200 bar & consumer flow ~5 L/min – the RV drain flow is ~3 L/min to achieve required 

amplitudes. This is ~10% of the pump nominal flow, ~30 L/min, and is tolerable up to a 

consumer flow of 25 L/min. Beyond, the mean pressure will drop below required limits.  
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7. Discussion 
The connection line lengths of pump and RV to an intersection point A were highlighted 

as key (pre-) design parameters for the proposed active noise attenuation. The line 

lengths have strong impact on the noise phase at point A & hence on the attenuation 

performance. Although other parameters impact the phase, e.g. shaft speed & fluid 

properties, their impact is minor: A constant pressure hydraulic system – with means of 

temperature control – keeps the fluid properties in small limits. Besides, a constant 

speed electric motor pump was studied. If a variable speed pump/motor is intended, 

e.g. an engine driven pump, length-tuning to a major operating point, is recommended. 

Safety valves (SW) can reduce the RV impact outside this operating point, so passive 

side branch attenuation would remain of the connection line, Fig. 2, L1. Phase issues 

due to connection line lengths will vanish if active attenuation is integrated in future 

smart pumps. The concept here can serve as add-on for existing pumps, Figure 11. 

 

Figure 11: CAD assembly of a more compact laboratory prototype, moving the 
proposed attenuation concept towards an add-on feature for existing pumps  

8. Conclusion 
Active attenuation is known for high fluid borne noise reduction performance. It is 

considered for the fundamental & first harmonic frequency of pumps. These carry most 

of the noise power, and passive silencers require large capacitance/ inductance in the 

lower frequency range, increasing silencer size/ weight. This is an impact on aircraft 

production/ operation costs. Constraints related to flight performance & safety demand 

compact, robust & low-cost equipment. Hence, the paper focused challenges to get 

active attenuation drastically simple, but competitive in performance to passive 

silencers. Realistic concepts were discussed by simulation & test. The feasibility was 

shown. Control equipment is minimized by knowledge-based pre-design. It is referred 

to e.g. /10/ if RT-control (with FIR-filters, LMS-analysis, etc.) is required & e.g. to /11/ if 

time domain FBN modelling of pumps is desired including the pump impedance. 
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