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Abstract

This thesis focuses on solutions of reactive transport problems in porous media. The princi-

ple mechanisms of flow and reactive mass transport in porous media are investigated. Global

implicit approach (GIA), where transport and reaction are fully coupled, and sequential non-

iterative approach (SNIA) are implemented into the software OpenGeoSys (OGS6) to couple

chemical reaction and mass transport. The reduction scheme proposed by Kräutle is used in

GIA to reduce the number of coupled nonlinear differential equations. The reduction scheme

takes linear combinations within mobile species and immobile species and effectively separates

the reaction-independent linear differential equations from coupled nonlinear ones (i.e. reduc-

ing the number of primary variables in the nonlinear system). A chemical solver is implemented

using semi-smooth Newton iteration which employs complementarity condition to solve for

equilibrium mineral reactions. The results of three benchmarks are used for code verification.

Based on the solutions of these benchmarks, it is shown that GIA with the reduction scheme

is faster (ca. 6.7 times) than SNIA in simulating homogeneous equilibrium reactions and (ca.

24 times) in simulating kinetic reaction. In simulating heterogeneous equilibrium mineral reac-

tions, SNIA outperforms GIA with the reduction scheme by 4.7 times.

Zusammenfassung

Diese Arbeit konzentriert sich auf die numerische Berechnung reaktiver Transportprobleme in

porösen Medien. Es werden prinzipielle Mechanismen von Fluidstrmung und reaktive Stoff-

transport in porösen Medien untersucht. Um chemische Reaktionen und Stofftransport zu kop-

peln, wurden die Ansätze Global Implicit Approach (GIA) sowie Sequential Non-Iterative Ap-

proach (SNIA) in die Software OpenGeoSys (OGS6) implementiert. Das von Kräutle vorgeschla-

gene Reduzierungsschema wird in GIA verwendet, um die Anzahl der gekoppelten nichtlin-

earen Differentialgleichungen zu reduzieren. Das Reduzierungsschema verwendet Linearkom-

binationen von mobilen und immobile Spezies und trennt die reaktionsunabhngigen linearen

Differentialgleichungen von den gekoppelten nichtlinearen Gleichungen (dh Verringerung der

Anzahl der Primärvariablen des nicht-linearen Gleichungssystems). Um die Gleichgewicht-

sreaktionen der Mineralien zu berechnen, wurde ein chemischer Gleichungslser auf Basis von

”semi-smooth Newton-Iterations” implementiert. Ergebnisse von drei Benchmarks wurden zur

Code-Verifikation verwendet. Diese Ergebnisse zeigen, dass die Simulation homogener Equi-

libriumreaktionen mit GIA 6,7 mal schneller und bei kinetischen Reaktionen 24 mal schneller

als SNIA sind. Bei Simulationen heterogener Equilibriumreaktionen ist SNIA 4,7 mal schneller

als der GIA Ansatz.
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Chapter 1

Introduction

Numerical modeling plays an essential role in many science and engineering fields since exper-

iments are usually too slow, too expensive, dangerous or even impossible to perform under dif-

ficult controlled experimental conditions. Computer simulations are used to quantitatively and

qualitatively understand and predict natural phenomena such as transport processes in aquifer

and reservoirs by taking into account heat and mass transfer as well as the associated chemical

reactions.

Of particular interest to earth and environment scientists and engineers is the ability to evaluate

and predict spatial and temporal distribution of conserved properties such as mass (chemical

compounds), energy and heat in porous structures such as soil and concrete. Application exam-

ples include: in safety assessment of nuclear disposal sites, CO2 storage sites, and remediation

of contaminated groundwater.

These conserved properties can be mathematically expressed through differential equations.

These equations are then discretized to be solved through computer simulations. The simulation

results are later used for numerical analysis.

1.1 State of the Art

There are two general ways to handle mass balance equations of reactive transport processes.

One is known as the global implicit approach (GIA) where mass transport and chemical reac-

tions are solved together (fully coupled approach) in one system of equations [SL94]. The other

method is the so-called operator splitting (OS) approach where mass transport and chemical

reactions (decoupled approach) are solved separately one after the other [SCA01]. In operator

splitting sequential non-iterative approach (SNIA), solution of linear transport step is followed

1



Chapter 1. Introduction 2

by solution of nonlinear chemistry on each node at each time step. On the other hand, in op-

erator splitting sequential iterative approach (SIA), iteration between solutions of transport and

chemistry is performed until an error tolerance is met [CMB04].

The advantages of OS methods are its easy implementation and less demands of computational

resources in terms of memory and CPU time. However, decoupling of mass transport and chem-

ical reaction processes introduces splitting error [CMB04, SL06, SL07]. This error has two

components, an error associated with the boundary and an error within the domain [SL07]. The

OS error in kinetic reaction systems tends to smooth concentration fronts if transport is solved

before reaction or steepen concentration fronts if the reaction is solved first [SL06, SL08]. This

OS error, which is independent of grid discretization error, is controlled by reaction rate and

time step size [KM95, MK95, VM92, XSA+99]. The OS error can be removed if alternating

OS schemes, where the sequence of solving transport and reaction is changing, is used in ki-

netically controlled reaction systems [SL06, SL07, SL08]. When handling equilibrium reaction

systems, the OS error is the largest in simulating heterogeneous equilibrium reactions and can

be decreased by taking smaller time step sizes or using SIA [HK89].

SIA is an attractive way to remove the splitting error if sufficiently small time step sizes are

taken [HK89, YT89]. Xu et al. [XSA+99] compared SIA with SNIA in solving a number of

different chemical equilibrium reaction systems. Their results showed the computation time of

SNIA is half of SIA depending on desired accuracy, nature of the reactions, temporal and spatial

discretization.

Over 25 years ago, Yeh and Tripathi [YT89] compared GIA with SIA based on their CPU

time, memory consumption and implementation effort. Their theoretical analysis favored SIA

over GIA due to excessive computation time and memory requirement of GIA in realistic multi-

dimensional applications and ease of implementation and modification of SIA in handling mixed

equilibrium and kinetic reaction systems. However, using Picard method, SIA needs more it-

erations per time step to converge. SIA, contrary to GIA, is stiffer in chemically complex sys-

tems (highly nonlinear or very retarded) which requires very small time step sizes to converge

[RK88, SM96]. Saaltink et al. [SCA00, SCA01] compared SIA and GIA for a number of prob-

lems with a varying degree of complexity. Based on their results they concluded that GIA is

faster and more accurate then SIA for chemically complex system while with simple chemistry

and large number of grids, SIA outperforms GIA.

GIA is mass conservative and is less restricted by time step size. However, the major drawback

of GIA is the high cost of computational resources when solving a large system of equations in

each iteration. A common practice to mitigate this problem is to isolate nonlinear chemical reac-

tion terms to as few equations as possible through linear combination of mass balance equations

[FR92]. This reformulation usually reduces the number of coupled nonlinear PDEs by decou-

pling of linear component equations and elimination of unknown equilibrium reaction rates.
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Component equations are best derived as the column vectors of the orthogonal complement of

the stoichiometric subspace of the concentration space [AM63, FR92].

Such a reduction algorithm for complex mixed equilibrium and kinetic reaction systems in open

systems (i.e. groundwater) was published in the work of Friedly [Fri91] and Friedly and Ru-

bin [FR92] for the first time. Their reduction scheme, however, suffers from appearance of

nonlinearity and coupling terms under transport operator, which destroys the sparsity of Jaco-

bian matrix leading to an increase in cost of computational resources, or restrictive assumption

on the equilibrium reaction types, such that their reduction scheme fails in a reaction systems

containing reactions within the aquous phase and between the aquous and solid phases [KK05].

These problems were solved in the new reduction scheme of Kräutle and Knabner [KK05,

KK07], and Kräutle [Krä08] who proposed a separate reformulation and introduction of new

variables within the block of mass balance equations for mobile and immobile components

and species. To further reduce the size of the coupled nonlinear partial differential equations

(PDEs), they used a local chemical solver to solve for some local variables consisting of al-

gebraic equations (AEs) and ordinary differential equations (ODEs) and then substituted them

in the time derivative and kinetic rate terms of the remaining global coupled nonlinear PDEs

[Hof10, HKK10, KK07]. The total number of coupled nonlinear PDEs in the new reduction

scheme equals the sum of linearly independent heterogeneous equilibrium and kinetic reactions

and it is independent of the number of homogeneous equilibrium reactions [Hof10, KK07].

The MoMaS benchmark competition revealed that the GIA with the new reduction scheme re-

quires less CPU time compared to other standard GIA, SIA and SNIA based codes in simulating

strongly nonlinear and heterogeneous reactive transport problems [CHK+10, HKK10, HKK12].

For efficient numerical simulation of chemical system containing equilibrium mineral reactions,

mineral equilibrium conditions are considered as complementarity conditions (CCs) where CCs

are transformed into equivalent algebraic equation and then the whole nonlinear system of equa-

tions is solved by semi-smooth Newton method [BKKK11, Hof10, HKK10, KK07, Krä08].

1.2 Thesis Objectives

The objective of this work is to implement the GIA with reduction scheme presented in [Hof10]

into the OGS6 software and compare it to the conventional SNIA in simulating different reactive

transport scenarios.
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1.3 Thesis Outline

• Chapter 1 highlights the importance of computer simulations and state of the art in simu-

lating reactive transport problems.

• Chapter 2 contains mass balance equations for mass and chemistry.

• Chapter 3 briefly introduces mass transport and chemistry coupling and reduction schemes,

space and time discretization, the assembly of the Jacobian matrix, and the implementa-

tion strategy.

• Chapter 5 presents 3 benchmarks.



Chapter 2

Mathematical Models

2.1 Introduction

Continuum mechanics is based on conservation laws of extensive state quantities such as mass,

momentum and energy. These conservation laws are, however, transfered into measured inten-

sive quantities (e.g. concentration, temperature, density, pressure, viscosity, etc). Equation of

state relates extensive and intensive state quantities. The basic mathematical equations used to

solve for fluid flow under isothermal, constant density, single phase and fully saturated condition

at subsurface environment is briefly presented in this chapter. Isothermal and isobaric conditions

are considered for chemical reactions.

2.2 Mass Balance Equations

The general conservation law from Eulerian perspective states that the rate of change of an

extensive quantity in a fixed control volume equals net fluxes across the control volume plus the

source and sink term. Mathematically it can be expressed as [Kol02]:

∂

∂t

∫

Ω
ρdΩ +

∮

∂Ω
n · fdΩ =

∫

Ω
sdΩ (2.1)

where ρ is volumetric density, n normal unit vector, f flux density, and volume-specific source/sink

term s. Applying the Gaussian divergence theorem the surface integral is transformed to volume

integral.

∫

Ω

∂

∂t
ρdΩ +

∫

Ω
∇ · fdΩ =

∫

Ω
sdΩ (2.2)

5



Chapter 2. Mathematical Models 6

Choosing an infinitesimally small control volume (i.e. point) the general mass balance formula-

tion can be written in its differential form:

∂

∂t
ρ+∇ · f = s (2.3)

2.2.1 Groundwater Flow

Subsurface environment (i.e. earth) is consist of solid and void space and water only flows

within the pore space (ne). Considering fully saturated condition (ne = θw) where all the pores

are filled with water (i.e. no gas), Darcy’s law holds [Bea72]

q = −K∇h (2.4)

with K hydraulic conductivity and ∇h hydraulic gradient and the balance equation after equa-

tion 2.3 for water mass ( = θwρw) can be written as:

∂

∂t
(θwρw) +∇ · (ρwq) = ρwq0 (2.5)

with specific discharge q and injection or extraction rate q0. Extending the above equation and

dividing by water density ρw one gets:

∂

∂t
θw +

θw

ρw
∂

∂t
ρw +

1

ρw
∇ρw · q +∇ · q = q0 (2.6)

Considering slightly compressible fluid and neglecting spatial density gradient (∇ρw), the chain

rule can be applied to the temporal derivatives to include hydraulic head (primary variable):

(
∂

∂h
θw +

θw

ρw
∂

∂h
ρw)

∂

∂t
h+∇ · q = q0 (2.7)

Substituting equation 2.4 into 2.7 yields the three-dimensional groundwater flow equation:

S0
∂

∂t
h−∇ · (K∇h) = q0 (2.8)

where S0 (S0 = ∂
∂hθ

w + θw

ρw
∂
∂hρ

w) is the specific storage coefficient.
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2.2.2 Mass Transport

The extensive quantity considered is mass of solute (= nec) which is concentration of solute

times effective porosity or volumetric water content (θw) in a fully saturated condition. Concen-

tration of mobile species (c) and immobile species (c̄) are expressed in mole per volume water

(Molarity) to avoid any extra conversion step. Following the mass conservation equation 2.3 the

mass balance for mobile species (I) is expressed by partial differential equation (PDE) [Yeh00]:

∂

∂t
(θwci) +∇ · (qci − θwDi∇ci) = si, i = 1, .., I (2.9)

where q is specific discharge or Darcy velocity, si is source and sink including chemical re-

actions (si = cini qin − ciqout +
∑J

j=1 θ
wSijrj , with inflow concentration cini and chemical

reactions J), and Di is the Scheidegger diffusion/dispersion tenser expressed as [Bea72]:

Di = ( θwDd
e︸ ︷︷ ︸

dif. coef.

+αt|q|)I + (αl − αt)
q⊗ q

|q|︸ ︷︷ ︸
dispersion coefficient

(2.10)

where Dd
e is the effective molecular diffusion coefficient (considering tortuosity), αl and αt

are longitudinal and transverse dispersivities, respectively. The mass flux density consists of

advective (qci) and diffusive/dispersive terms (−neDi∇ci). Advection is the transport of solute

by Darcy flow. Diffusion is the random Brownian motion of solute particles in fluids (i.e. the

natural tendency toward equilibrium and homogeneity). Dispersion is the spreading and mixing

of solute caused by velocity fluctuations during advection. The effect of dispersion on spreading

and mixing solute is much larger than the effect of diffusion (dispersion coefficient� diffusion

coefficient).

Mass balance for the immobile species (Ī) is expressed with ordinary differential equations

(ODE) as:

∂

∂t
(θw c̄i) =

J∑

j=1

θwSijrj , i = I + 1, .., I + Ī (2.11)

where Sij is the stoichiometric coefficient (a constant numbers indicating quantitative contri-

butions of each species in chemical reactions) and rj is the jth chemical reaction. Mobile and

immobile species are coupled through chemical reactions (right hand site source and sink terms

si of equation 2.11).
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2.2.3 Chemical Reaction

The nonlinearities in the solute transport equations 2.9 and 2.11 come from the chemical re-

actions (source/sink term) which cause the transformation of reactive species in the system.

Chemical reactions can be categorized into kinetic reactions and equilibrium reactions based on

their rates. If the characteristic time of reaction is slower than time scale of transport, the reac-

tion is said to be kinetically controlled and if characteristic time of reaction is much faster than

characteristic time of transport, the reaction is at local equilibrium. Dimensionless Damköhler

numbers (e.g. comparsion of reaction rate to advection rate results in λLa
v , with first order rate

coefficient λ, length La, and velocity v) are used to relate characteristic time scale of advection,

dispersion and reaction with each others [Las98]. Based on the number of phases a reaction

involves, chemical reaction can also be divided to homogeneous (aqueous phase) and hetero-

geneous reactions (aqueous-solid phases). A general classification of reactions can be found

in [Rub83].

2.2.3.1 Equilibrium Reaction

Assuming local equilibrium reactions, the thermodynamic concentrations (activities) of educts

and products are in a fixed ratio at every point of the simulation domain. Law of mass action

(LMA) relates the products activities of a reaction to activities of educts as:

ln(Kj) =
I+Ī∑

i=1

Sijln(ai) (2.12)

where K is equilibrium constant and ai is activity or thermodynamic concentration. The influ-

ence of temperature and pressure on equilibrium constant can be found in standard text books

(e.g. [SM12]). Since equilibrium reaction rates (req) are unknowns, we substitute the follow-

ing equations with the solute mass balance equations (2.9) and (2.11) that contains equilibrium

reaction rates req:

φj(c, c̄) = −ln(Kj) +
I+Ī∑

i=1

Sijln(ai) = 0 (2.13)

Activity Correction
activity ai is the fraction of total concentration ci which participates in a reaction. Activity

coefficient γi relates activity to concentration as:

ai = γici (2.14)
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Assuming ideal solution the activity of solid minerals and pure water phase are considered unity.

Activity coefficient is a function of ionic strength Is which corresponds to mineralization degree

of a solution and can be calculated as:

Is = 0.5
I∑

i

ciz
2
i (2.15)

where ci in an non-ideal solution is molar concentrations and zi is the charge of ionic species i.

Debye-Hückel (for Is < 0.1) and Davies equations (for Is < 0.5) are used to calculate activity

coefficients. Debye-Hückel equation reads [Bet07]

logγi = −Az2
i

√
Is

1 +Bbi
√
Is

(2.16)

where A, B are temperature-dependent constants, and bi is ion-size parameter. Davies equation

reads

logγi = −Az2
i

( √
Is

1 +
√
Is
− 0.3Is

)
(2.17)

Equilibrium Mineral Reactions
The LMA also applies if minerals are involved in equilibrium reactions. Stoichiometric coeffi-

cients of minerals are set to positive one (minerals are put on the right hand side of reactions and

their equilibrium constant signs are flipped) and their activities are considered unity (ideal solid

solution). Furthermore, it is assumed that only one mineral is involved in any reaction. LMA

reads

ψj(c) = −ln(Kj) +
I∑

i=1

Sijln(ai) = 0 (2.18)

In this case the equilibrium condition, consisting of equation and inequality, reads

(ψj(c) = 0, c̄min,j ≥ 0)︸ ︷︷ ︸
saturated

∨ (ψj(c) > 0, c̄min,j = 0)︸ ︷︷ ︸
undersaturated

(2.19)

where cmin,j is the concentration of mineral in j-th equilibrium reaction. Assume a solution

to be undersaturated with respect to a mineral (ψj(c) > 0), The LMA pushes the solution to

dissolve the mineral in order to reach saturated or equilibrium condition (ψj(c) = 0) or total

dissolution of the mineral (cmin,j = 0).

In order to solve the system of equations and inequalities 2.19 Kräutle [Krä08] proposed to use

complementarity condition. Accordingly 2.19 can be rewritten as:

∀j = 1, ..., Jmin : ψj(c) ≥ 0 ∧ c̄min,j ≥ 0 ∧ ψj(c) c̄min,j = 0 (2.20)
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where Jmin is the number of mineral reactions. Minimum function was used to transform com-

plementarity condition to algebraic equation (AE) [Krä11]:

φj(c, c̄) = min(ψj(c), cmin,j) = 0 (2.21)

which states equilibrium condition is achieved, if φj(c, c̄) = 0. Equation 2.21 is replaced for

the solute mass balance equations containing equilibrium mineral reaction rates.

2.2.3.2 Kinetic Reaction

In case of kinetic bio-reaction, double Monod expression is considered. Considering a simple

reaction 1
Ys
Cs + 1

Ya
Ca

X−→ Cp where biomass X in the presence of substrate (Cs) and electron

acceptor (Ca) (i.e. oxygen, nitrate, etc) produces some product (Cp) and constant biomass decay,

the mass balance equations for Monod type expression reads [CV07]

kgr = µmax

(
Cs

Ks + Cs

)(
Ca

Ka + Ca

)
(2.22a)

∂

∂t
Cs = −kgr

Ys
X (2.22b)

∂

∂t
Ca = −kgr

Ya
X (2.22c)

∂

∂t
X = kgrX − kdecX (2.22d)

where µmax[T−1] is the maximum growth rate,Ks andKa are Monod coefficients, kgr and kdec
are the specific growth and decay rates of biomass.

2.3 Reactive Mass Transport

Considering chemical reactions as the sole source and sink terms of solute mass balance equa-

tions 2.9 and 2.11 and a mixed equilibrium and kinetic reaction system, the source and sink

terms read

si =

Jeq∑

j=1

θwSeq,ijrj +

Jkin∑

j=1

θwSkin,ijrj(c, c̄) (2.23)

Where equilibrium reactions are considered first followed by kinetic reactions. Furthermore

considering mobile species I (index 1 in (2.24)) before immobile species Ī (index 2 in (2.24)),

the stoichiometric coefficients in matrix notation can be written as:
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S =
(
Seq Skin

)
=

(
S1

S2

)
=

(
S1,eq S1,kin

S2,eq S2,kin

)
(2.24)

where S is the stoichiometric coefficient matrix with its rows corresponding to species (I + Ī)

and its columns to chemical reactions (J = Jeq + Jkin). The source and sink terms read

s = θw

(
S1,eq S1,kin

S2,eq S2,kin

)(
req

rkin

)
(2.25)

with r (J × 1) the vector of reaction rates. Representing the linear transport operator with

Lici := ∇ · (qci − Di∇ci), the reactive solute mass balance equations 2.9 and 2.11 can be

written as

∂

∂t
(θwc) + Lc = θwS1,eqreq + θwS1,kinrkin(c, c̄) (2.26)

∂

∂t
(θwc̄) = θwS2,eqreq + θwS2,kinrkin(c, c̄) (2.27)

φ(c, c̄) = 0 (2.28)

where equation 2.26 is a set of nonlinear partial differential equations (PDE), equation 2.27 is a

set of nonlinear ordinary differential equations, and equation 2.28 is a set of nonlinear algebraic

equations (AE).

2.4 Initial and Boundary Conditions

In order to solve differential equations, boundary (PDE) and initial (PDE in transient case and

ODE) conditions need to be specified. Dirichlet and Neumann boundary conditions are consid-

ered for solute transport and flow as

c(x) = cfix(x) at ΓD (2.29)

h(x) = hfix(x) at ΓD (2.30)

D∇c · n = 0 at ΓN (2.31)

−K∇h · n = qfix at ΓN , (2.32)

where n is the normal unit vector pointing outwards.



Chapter 3

Numerical Solutions

3.1 Introduction

Numerical solutions are usually used in practice due to the limiting assumptions of analytical

solutions such as homogeneous and geometrically simple media. Mass transport and reaction

coupling techniques and numerical schemes for space and time discretizations are briefly pre-

sented in this chapter.

3.2 Coupling Schemes

Coupling of fluid flow and reactive transport is performed sequentially, using Picard lineariza-

tion, as

Kpp = fp

Kuu = fu

where reactive transport is solved following the solution of groundwater flow.

The conservative mass transport and reaction are solved using fully coupled method (i.e. GIA)

or in a decoupled manner (i.e. SNIA). The sequential coupling is performed non-iteratively

where the solution of a conservative mass transport is followed by the solution of chemistry at

each time step. The global coupling or so-called global implicit approach (GIA) solves mass

transport and chemistry in one step which requires Newton type of linearizion techniques and

construction of Jacobian matrix.

12
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3.2.1 Operator Splitting

In operator splitting method the linear mass transport and nonlinear chemical reactions (2.9) are

solved separately one after the other as

cn∗i − cni
4t = Li(c

n
i ) (3.1)

cn+1
i − cn∗i
4t = si(c

n∗
i ) (3.2)

The changes due to scaler transport operator and nonlinear local chemical reactions are applied

to the stored mass sequentially and non-iteratively hence the method is called sequential non-

iterative approach (SNIA). Due to the decoupling of transport and chemistry, SNIA requires

less computational resources in terms of memory and time compared to standard GIA. In reality

transport of compounds and chemical reactions are occurring at the same time and a decoupled

approach such as SNIA introduces splitting error. Furthermore, since an explicit time integra-

tion method is used, SNIA is constrained with Courant-Friedrichs-Lewy condition or in short

Courant (Cr) number (= v4t
4x ≤ 1) [SM96]. Cr number condition states that the concentration

front from one cell must move to the neighboring cell in downstream direction at each time step

to avoid numerical dispersion.

In order to avoid splitting error and Cr constraint, sequential iterative approach (SIA) can be

applied where an iteration between transport (3.1) and chemistry (3.2) is performed until a con-

vergence criterion is met. The drawback of SIA is the large number of iterations or stability and

efficiency issues [SCA00, SCA01, CMB04].

3.2.2 Global Implicit

To avoid the potential disadvantages of SNIA and SIA, GIA is used which is considered to

be more robust. In GIA, mass transport and chemistry are solved together using implicit time

integration scheme as

cn+1
i − cni
4t = Li(c

n+1
i ) + si(c

n+1
i ) (3.3)

GIA is mass conservative and using implicit backward Euler time integration scheme, it is less

constrained by time step size or Cr number. The drawbacks of GIA stems from the nonlinearity

nature of chemistry which requires linearizion techniques (e.g. Newton scheme) in order to solve

(3.3). Newton scheme is known to be quadratically converging compared to Picard scheme if the

initial guess is close to the final solution. It, however, consists of solving a large linear system

of equations (Ax = b) (with a degree of freedom (DOF) equals number of nodes × number
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of species) at each iteration which is computationally expensive in terms of time and memory

resources.

In reality hundreds of species can be present in a mixed kinetic and equilibrium reactive system

with unknown equilibrium reaction rates. Hence, in order to reduce the computational burden,

a common method is to eliminate equilibrium reaction rates and separate the linear equations

(non-reactive ones) and nonlinear equations (reactive ones) through component matrix, which

will be explained in the next section. The procedure is called reduction scheme due to the

reduction of the number of nonlinear PDEs. A common assumption of all reduction schemes

(due to the combination of equations) is that the diffusion coefficient is the same for all species.

This assumption is made because in Scheidegger diffusion-dispersion tensor (2.10), diffusion

coefficient is orders of magnitude smaller than dispersion coefficient.

3.2.2.1 Standard Reduction Schemes

The core idea behind reduction schemes are to take linear combinations of mass balance equa-

tions such that conservative component equations occur and nonlinear reaction terms are elim-

inated from some of the equations [Fri91, FR92, SAC98, FYB03, MCAS04, KK05]. In matrix

notation, it can be expressed as to find a matrix S⊥ whose columns are orthogonal to all columns

of stoichiometric matrix S, i.e.,

S⊥
T
S = 0 (3.4)

Matrix S⊥ is called component matrix (mobile and immobile species in S are not sorted as in

(2.25)). The inverse of matrices S⊥ and S are multiplied with the mass balance equations (2.9)

and (2.11) in order to decouple some linear PDEs from the rest of the nonlinear PDEs. Due

to the mixing of mobile and immobile species either decoupling is not possible [MCAS04] or

coupling and nonlinearity is happening under the transport operator [Fri91, FR92, KK05].

3.2.2.2 Kräutle’s Reduction Scheme

In order to solve the restrictions and inefficiencies mentioned in previous subsection, Kräutle

and Knabner [KK05] proposed to separate mobile and immobile species in the stoichiometric

matrix and calculate the orthogonal complement matrix S⊥ within the mobile and immobile

block of stoichiometric matrix. Their strategy was to reduce the combination of mobile and

immobile species as much as possible during the decoupling phase. A complete avoidance of

taking combination of mobile and immobile species is, however, not possible due to implicit na-

ture of equilibrium reaction rate. Furthermore, no combination of mobile and immobile species

is appearing under transport operator in their reduction scheme which makes their scheme com-

putationally more efficient and robust [KK05, KK07, Krä08].
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The following assumptions are made for the reduction scheme

• diffusion coefficient is the same for all species.

• linear independence is assumed for homogeneous equilibrium and heterogteneous equi-

librium mineral reactions.

• equilibrium mineral and sorbed species do not participate in a kinetic reaction. So the sto-

ichiometric coefficients related to minerals and sorbed species are zero in stoichiometric

matrix of kinetic reactions.

• Only one mineral is participating in a mineral reaction and mineral is considered as prod-

ucts i.e. positive signs are given in stoichiometric matrix (leads to identity matrix in (3.6))

and hence the sign of equilibrium reaction constant has to be adjusted accordingly.

Concentrations of mobile species come first in the concentration vector followed by the concen-

trations of immobile species pertaining to sorption, kinetic and mineral reactions as

(
c

c̄

)
, c̄ =




c̄sorp

c̄kin

c̄min


 (3.5)

Equilibrium reactions are sorted in the following way. First homogeneous equilibrium reactions

are listed followed by heterogeneous equilibrium sorption and mineral reactions

S1,eq =
(
S1,mob S1,sorp S1,min

)
, S2,eq =

(
0 S2,sorp 0

0 0 IJmin

)
(3.6)

where IJmin is an identity matrix of the size Jmin (due to the last assumption).

It is assumed that S1,sorp =
(
S1,sorp,li S1,minAld

)
with a coefficient matrix Ald such that the

columns of
(
S1,mob S1,sorp,li S1,min

)
are linear independent.

Then the stoichiometric coefficient matrix (2.24) is

S1 =
(
S1,eq S1,kin

)
=
(
S1,mob S1,sorp,li S1,minAld S1,min S1,kin

)

S2 =
(
S2,eq S2,kin

)
=




0 S2,sorp 0 0

0 0 0 S2,kin

0 0 IJmin 0




(3.7)

Now the matrices S∗1 and S∗2 are defined such that each contains a maximal system of linear

independent columns of S1 and S2, respectively. Due to linear independence assumptions of

equilibrium reactions, the matrices S∗1 and S∗2 can be written as
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S∗1 =
(
S1,mob S1,sorp,li S1,min S∗1,kin

)

S∗2 =




S2,sorp 0 0

0 0 S∗2,kin

0 IJmin 0




(3.8)

There are always matrices A1 and A2 such that

Si = S∗iAi i = 1, 2 (3.9)

where Ai can be calculated as

Ai =
(
S∗

T

i S∗i

)−1
S∗

T

i Si i = 1, 2 (3.10)

and has block structure

A1 =




IJmob
0 0 0 A1,mob

0 IJsorp,li 0 0 A1,sorp

0 0 Ald IJmin A1,min

0 0 0 0 A1,kin




A2 =




0 IJsorp 0 A2,sorp

0 0 IJmin 0

0 0 0 A2,kin




(3.11)

After rearranging the coefficient matrices, the matrices S⊥1 and S⊥2 are calculated. The matrices

S⊥1 and S⊥2 consist of a maximal system of linear independent vectors that are orthogonal to all

columns of S∗1 and S∗2, respectively, such that

S⊥
T

i S∗i = 0 i = 1, 2 (3.12)

Substituting 3.9 into the mass balance equations

∂

∂t
(θwc) + Lc = θwS∗1A1r

∂

∂t
(θwc̄) = θwS∗2A2r

(3.13)

and multiplication of the inverse of orthogonal complement matrices S⊥i (component matrices)

with the system of mass balance equations eliminates the nonlinear reaction terms from right
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hand side of the differential equations

(
S⊥

T

1 S⊥1

)−1
S⊥

T

1 (
∂

∂t
(θwc) + Lc) = θw

(
S⊥

T

1 S⊥1

)−1
S⊥

T

1 S∗1
︸ ︷︷ ︸

=0

A1r

(
S⊥

T

2 S⊥2

)−1
S⊥

T

2

∂

∂t
(θwc̄) = θw

(
S⊥

T

2 S⊥2

)−1
S⊥

T

2 S∗2
︸ ︷︷ ︸

=0

A2r

(3.14)

and multiplying the inversed of S∗i with the mass balance equations yields

(
S∗

T

1 S∗1

)−1
S∗

T

1 (
∂

∂t
(θwc) + Lc) = θw

(
S∗

T

1 S∗1

)−1
S∗

T

1 S∗1
︸ ︷︷ ︸

=I

A1r

(
S∗

T

2 S∗2

)−1
S∗

T

2

∂

∂t
(θwc̄) = θw

(
S∗

T

2 S∗2

)−1
S∗

T

2 S∗2
︸ ︷︷ ︸

=I

A2r

(3.15)

where I is identity matrix. These manipulations correspond to the taking linear combinations

of mass balance equations 3.13 within the blocks of equations related to mobile and immobile

species.

The S∗i and S⊥i matrices and the differential operators in system 3.14 and 3.15 commute because

mobile and immobile species are not mixed and are constant in space and time. Hence new

variables are defined as

η :=
(
S⊥

T

1 S⊥1

)−1
S⊥

T

1 c, ξ :=
(
S∗

T

1 S∗1

)−1
S∗

T

1 c

η̄ :=
(
S⊥

T

2 S⊥2

)−1
S⊥

T

2 c̄, ξ̄ :=
(
S∗

T

2 S∗2

)−1
S∗

T

2 c̄

(3.16)

where η and η̄ are mobile and immobile reaction invariants (i.e. components), respectively, and

ξ and ξ̄ are reaction extends withing mobile and immobile phases, respectively.

with retransformation we get

c = S∗1ξ + S⊥1 η, c̄ = S∗2ξ̄ + S⊥2 η̄, (3.17)

The number of columns of S⊥1 and S⊥2 matrices equals the number of entries of η and η̄ vectors,

respectively. S⊥1 has I − Jmob− Jsorp,li− Jmin− J∗1,kin and S⊥2 has Ī − Jsorp− Jmin− J∗2,kin
columns. The number of columns of S∗1 and S∗2 matrices equals the number of entries of ξ and

ξ̄ vectors, respectively. S∗1 has Jmob +Jsorp,li +Jmin +J∗1,kin and S∗2 has Jsorp +Jmin +J∗2,kin

columns. The vectors

(
ξ

η

)
and

(
ξ̄

η̄

)
are representations of the vectors c and c̄ regarding to

another basis of the RI and RĪ , respectively.
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So the system of equations 3.14 and 3.15 can be written as

∂

∂t
(θwη) + Lη = 0 (3.18)

∂

∂t
(θwη̄) = 0 (3.19)

∂

∂t
(θwξ) + Lξ = θwA1r (3.20)

∂

∂t
(θwξ̄) = θwA2r (3.21)

where the linear component equations (reaction invariants) 3.18 and 3.19 are decoupled from

the nonlinear differential equations (reaction extends) 3.20 and 3.21. Eq. 3.18 is a set of linear

PDEs, 3.19 linear ODEs, 3.20 coupled nonlinear PDEs, and 3.21 nonlinear ODEs.

Linear component equations was decoupled so far. A further reduction of unknown equilibrium

reaction rates req from r in equations 3.20 and 3.21 (see also 2.26 and 2.27) is possible by

partitioning ξ and ξ̄ analogously to S∗i , and req analogously to S1,eq as

ξ =




ξmob

ξsorp

ξmin

ξkin



, ξ̄ =




ξ̄sorp

ξ̄min

ξ̄kin


 , req =




rmob

rsorp

rmin


 (3.22)

Furthermore, analogously to S1,sorp, vectors ξ̄sorp =

(
ξ̄sorp,li

ξ̄sorp,ld

)
and rsorp =

(
rsorp,li

rsorp,ld

)
are

partitioned. Accordingly A2,sorp is splitted in two submatrix of A2,sorp,li contianing the first

Jsorp,li rows and A2,sorp,ld containing the last (Jsorp − Jsorp,li) rows of A2,sorp.

Using the mentioned partitioned vectors and the block structure of Ai (3.11) one get

∂

∂t
(θwη) + Lη = 0

∂

∂t
(θwη̄) = 0

∂

∂t



θw




ξmob

ξsorp

ξmin

ξkin







+ L




ξmob

ξsorp

ξmin

ξkin




= θw




IJmob
0 0 0 A1,mob

0 IJsorp,li 0 0 A1,sorp

0 0 Ald IJmin A1,min

0 0 0 0 A1,kin







rmob

rsorp,li

rsorp,ld

rmin

rkin(c, c̄)




∂

∂t


θ

w




ξ̄sorp

ξ̄min

ξ̄kin





 = θw




0 IJsorp 0 A2,sorp

0 0 IJmin 0

0 0 0 A2,kin







rmob

rsorp

rmin

rkin(c, c̄)
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Expanding the above system of equations leads to

∂

∂t
(θwη) + Lη = 0 (3.23)

∂

∂t
(θwη̄) = 0 (3.24)

∂

∂t
(θwξmob) + Lξmob = θw(rmob + A1,mobrkin(c, c̄)) (3.25)

∂

∂t
(θwξsorp) + Lξsorp = θw(rsorp,li + A1,sorprkin(c, c̄)) (3.26)

∂

∂t
(θwξmin) + Lξmin = θw(rmin + Aldrsorp,ld + A1,minrkin(c, c̄)) (3.27)

∂

∂t
(θwξkin) + Lξkin = θwA1,kinrkin(c, c̄) (3.28)

∂

∂t
(θwξ̄sorp,li) = θw(rsorp,li + A2,sorp,lirkin(c, c̄)) (3.29)

∂

∂t
(θwξ̄sorp,ld) = θw(rsorp,ld + A2,sorp,ldrkin(c, c̄)) (3.30)

∂

∂t
(θwξ̄min) = θwrmin (3.31)

∂

∂t
(θwξ̄kin) = θwA2,kinrkin (3.32)

Now one should take linear combinations of mobile and immobile differential equations such

that only one equilibrium reaction rate of a kind happens in the whole set of equations. By

subtracting block (3.29) from block (3.26), block (3.30) from block (3.27), and block (3.31)

from block (3.27) only one of each equilibrium reaction rates will appear in the whole system.

One rmob in (3.25), rsorp,li in (3.29), rsorp,ld in (3.30), and rmin in (3.31).

Considering that rsorp,li and rsorp,ld are subvectors of rsorp, and substituting the differential

equations containing equilibrium reaction rates with their corresponding AEs, we get
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∂

∂t
(θwη) + Lη = 0 (3.33)

∂

∂t
(θwη̄) = 0 (3.34)

∂

∂t
(θwξsorp) + Lξsorp =

∂

∂t
(θwξ̄sorp,li) + θw(A1,sorp −A2,sorp,li)rkin(c, c̄) (3.35)

∂

∂t
(θwξmin) + Lξmin =

∂

∂t
(θwξ̄min) + Ald

∂

∂t
(θwξ̄sorp,ld) (3.36)

+ θw(A1,min −AldA2,sorp,ld)rkin(c, c̄)

∂

∂t
(θwξkin) + Lξkin = θwA1,kinrkin(c, c̄) (3.37)

∂

∂t
(θwξ̄kin) = θwA2,kinrkin (3.38)

φmob(c) = 0 (3.39)

φsorp(c, c̄nmin) = 0 (3.40)

φmin(c, c̄min) = 0. (3.41)

The blocks (3.33) and (3.34) are solved at the begining of each time step independently from the

rest of the equations. If porosity is constant, the block (3.34) remains constant during the course

of the simulation. The blocks (3.38)-(3.41) are solved before the blocks (3.35)-(3.37). Since the

blocks (3.38)-(3.41) do not contain any space derivative, they are called local equations and are

solved locally (point-based) and their solutions are substituted in the block (3.35)-(3.37).

The blocks (3.35) and (3.36) contain more than one time derivative, hence the additional vari-

ables are introduced

∂

∂t
(θwξ̃sorp) =

∂

∂t
(θwξsorp)−

∂

∂t
(θwξ̄sorp,li)

∂

∂t
(θwξ̃min) =

∂

∂t
(θwξmin)− ∂

∂t
(θwξ̄min)−Ald

∂

∂t
(θwξ̄sorp,ld)

(3.42)

where ξ̃sorp and ξ̃min are reaction invariants with respect to equilibrium reactions. The defining

equations 3.42 are evaluated node-wise and added to the system of equations (3.33)-(3.41).

So the retransformation 3.17 can be written as

c = S1,mobξmob + S1,sorp,liξ̃sorp + S1,sorpξ̄sorp

+ S1,min(ξ̃min + ξ̄min) + S∗1,kinξkin + S⊥1 η,

c̄ =

(
S2,sorpξ̄sorp + S∗2,kinξ̄kin

ξ̄min

)
+ S⊥2 η̄.

(3.43)
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The reaction extends are divided to global (primary variables) and local (secondary variables)

unknowns as

ξglob :=




ξ̃sorp

ξ̃min

ξsorp

ξmin

ξkin




ξloc :=




ξmob

ξ̄sorp

ξ̄min

ξ̄kin



. (3.44)

Assuming the solution of η equations (3.33) and (3.34) are known and using local chemical

solver for the solution of equations (3.38)-(3.41), the system of equations (3.33)-(3.41) can be

reduced to

ξ̃sorp = ξsorp − ξ̄sorp,li(ξ̃sorp, ξ̃min, ξkin) (3.45)

ξ̃min = ξmin − ξ̄min(ξ̃sorp, ξ̃min, ξkin) (3.46)

−Aldξ̄sorp,ld(ξ̃sorp, ξ̃min, ξkin)

∂

∂t
(θwξ̃sorp) + Lξsorp = θw(A1,sorp −A2,sorp,li)rkin(ξ̃sorp, ξ̃min, ξkin) (3.47)

∂

∂t
(θwξ̃min) + Lξmin = θw(A1,min −AldA2,sorp,ld)rkin(ξ̃sorp, ξ̃min, ξkin) (3.48)

∂

∂t
(θwξkin) + Lξkin = θwA1,kinrkin(ξ̃sorp, ξ̃min, ξkin) (3.49)

which is used for numerical computations.

3.2.2.3 Local Chemical Solver

The defining nonlinear AEs and ODEs (3.38)-(3.41) of ξloc

φmob(c) = 0

φsorp(c, c̄nmin) = 0

φmin(c, c̄min) = 0

θwξ̄kin − (θwξ̄kin)old
4t = θwA2,kinrkin(c, c̄)

are solved in the local chemical solver using a Newton iteration with line search. In order

to improve the condition number of Jacobian matrix and avoid negative concentrations, nat-

ural log of concentrations of nonminerals are used. Mineral concentration should be able to

reach zero because minimum function is used for evaluation of the complementarity condi-

tion. Therefore the concentration of mineral is not used in logarithm form. Since concentra-

tions are used as unknowns (I + Ī) in the local chemical solver, the defining equations of ξglob
(I + Ī − Jmob − Jsorp − Jmin) are added to equal the number of equations with the number



Chapter 3. Numerical Solution 22

of unknowns. Furthermore, the current time step values of ξglob, η and η̄ act as constraints in

evaluation of residual of the local chemical solver.

φmob(l) = 0 (3.50)

−η +

((
S⊥

T

1 S⊥1

)−1
S⊥

T

1 exp(l)

)
= 0 (3.51)

−ξ̃sorp +

((
S∗

T

1 S∗1

)−1
S∗

T

1 exp(l)

)

i=Jmob+1,...,Jmob+Jsorp,li

−
((

S∗
T

2 S∗2

)−1
S∗

T

2

(
exp(̄lnmin)

c̄min

))

i=1,..,Jsorp,li

= 0 (3.52)

−ξ̃min +

((
S∗

T

1 S∗1

)−1
S∗

T

1 exp(l)

)

i=Jmob+Jsorp,li+1,..,Jeq,li

−c̄min −Ald

((
S∗

T

2 S∗2

)−1
S∗

T

2

(
exp(̄lnmin)

c̄min

))

i=Jsorp,li+1,...,Jsorp

= 0 (3.53)

−ξkin +

((
S∗

T

1 S∗1

)−1
S∗

T

1 exp(l)

)

i=Jeq,li+1,...,Jeq,li+J
∗
1,kin

= 0 (3.54)

φsorp(l, l̄nmin) = 0 (3.55)

φmin(l, c̄min) = 0 (3.56)

−η̄ +

((
S⊥

T

2 S⊥2

)−1
S⊥

T

2

(
exp(̄lnmin)

c̄min

))
= 0 (3.57)

−ξ̄kin +

((
S∗

T

2 S∗2

)−1
S∗

T

2

(
exp(̄lnmin)

c̄min

))

i=Jsorp+Jmin+1,...,Jsorp+Jmin+J∗
2,kin

= 0 (3.58)

θwξ̄kin − (θwξ̄kin)old
4t − θwA2,kinrkin(exp(l), exp(̄lnmin), c̄min) = 0 (3.59)

with Jeq,li = Jmob + Jsorp,li + Jmin. After solving the local problem the local variables ξmob
and ξ̄sorp are calculated using equation (3.17) as

ξmob =

((
S∗

T

1 S∗1

)−1
S∗

T

1 c

)

i=1,...,Jmob

, ξ̄sorp =

((
S∗

T

2 S∗2

)−1
S∗

T

2 c̄

)

i=1,...,Jsorp

and ξ̄min equals c̄min. If a mineral is not present (total dissolution), the corresponding AE

equation (3.59) is eliminated. The status of each mineral is stored in AI vector. If solid mineral

is present (AIj = 1), the minimum is attained in the first argument of min{ψj(c), c̄min,j} and

the reaction is called inactive and otherwise called active (AIj = 0).
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c̄min,j = −ξ̃min,j +

((
S∗T

1 S∗
1

)−1

S∗T

1 exp(l)

)

Jmob+Jsorp,li+j

For each mineral reaction j

AIj

1 0

−
(

Ald

((
S∗T

2 S∗
2

)−1

S∗T

2 c̄

)

i=Jsorp,li+1,...,Jsorp

)

j

∅

ψj(l)> c̄min,j

True False

AIj = 0

c̄min,j = 0

∅

AIj
0 1

AIj = 1

c̄min,j = −ξ̃min,j +

((
S∗T

1 S∗
1

)−1

S∗T

1 exp(l)

)

Jmob+Jsorp,li+j

−
(

Ald

((
S∗T

2 S∗
2

)−1

S∗T

2 c̄

)

i=Jsorp,li+1,...,Jsorp

)

j

∅

Assemble local residual r (3.53) - (3.62) without (3.59)

AIj
01

rJmob+Nη+Jsorp,li+Jmin+Jkin+Jsorp+j=ψj(l) ∅

FIGURE 3.1: Algorithm applied for calculating the local residual.

3.3 Space and Time Discretization

The system of linear (3.33) and nonlinear partial differential equations (3.47)-(3.49) are solved

numerically using finite element method (FEM) in space. Implicit Euler method is used for time

discretization of (3.47)-(3.49). These numerical methods are briefly introduced in the following

subsections.

3.3.1 Finite Element Method

A generic reactive mass transport equation reads

∂

∂t
(θwc) +∇ · (qc− θwD∇c) = θwr(c) (3.60)

where the state variables are the concentrations c and reaction rates r(c). In order to solve this

equation numerically, the computational domain is discretized into finite number of elements in
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l= Maximum number of line search steps

Convergence criteria are not fulfilled

Assemble Jacobian Matrix J

Solve linear system J4x= r

Update x− = 4x

j = 0

Calculate residual vector r

d = ‖r‖

Calculate residual vector r

j < l

d1 = ‖r‖
d1 < dTrue False

Break ∅
4x∗ =0.5, x+ = 4x

Calculate residual vector r

j = j + 1

d = d1

FIGURE 3.2: Algorithm used for modified Newton’s method with line search.

FEM (Ω =
ne⋃
e=1

Ωe) and interpolation (shape or basis) functions are used to compute the state

variables within the elements (ĉ =
∑nn

j=1 cjNj , r̂ =
∑nn

j=1 rjNj).

Integrating the equation (3.60) over the entire domain and multiplying by a weighting function

(Method of Weighted Residual) yields

∫

Ω

(
∂

∂t
(θw ĉ) +∇ · (qĉ− θwD∇ĉ)

)
ωidΩ =

∫

Ω
(θwr̂)ωidΩ i = 1, ..., nn. (3.61)

Using Galerkin finite element, where the weighting function equals basis function (Nj = ωi),

the equation (3.61) reads

nn∑

j=1

∂

∂t
cj

∫

Ω
Niθ

wNjdΩ +
nn∑

j=1

cj

∫

Ω
Niq · ∇NjdΩ−

nn∑

j=1

cj

∫

Ω
Ni∇ · (θwD∇Nj)dΩ

=

nn∑

j=1

rj

∫

Ω
Njθ

wNidΩ i = 1, ..., nn.

(3.62)

Applying the Green’s theorem (partial integration across the element boundaries) to the diffusive

flux yields the semi-discrete week form

nn∑

j=1

∂

∂t
cj

∫

Ω
Niθ

wNjdΩ +
nn∑

j=1

cj

∫

Ω
Niq · ∇NjdΩ +

nn∑

j=1

cj

∫

Ω
θw∇Ni ·D∇NjdΩ

=

nn∑

j=1

rj

∫

Ω
Njθ

wNidΩ +

nn∑

j=1

cj

∫

Γ
Niθ

wD∇Nj · ndΓ i = 1, ..., nn,

(3.63)
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where n is the outer normal vector. Dirichlet (ΓD) and Neumann (ΓN ) boundary conditions are

considered

ci = cD,i on ΓD

D∇ci · n = 0 on ΓN

such that Γ = ΓD∪̇ΓN . Boundary conditions are required for η, ξsorp, ξmin and ξkinvariables.

3.3.2 Time Discretization

Implicit Euler method is used for time integration. The linear interpolation between old (told)

and new (t) time steps is applied to concentrations, mass fluxes and source/sink terms. Hence,

the time derivative is approximated as

∂

∂t
c ≈ 4c4t =

c− cold
t− told . (3.64)

The fully discrete form reads

nn∑

j=1

cj − coldj
t− told

∫

Ω
Niθ

wNjdΩ +
nn∑

j=1

cj

∫

Ω
Niq · ∇NjdΩ +

nn∑

j=1

cj

∫

Ω
θw∇Ni ·D∇NjdΩ

=

nn∑

j=1

rj

∫

Ω
Njθ

wNidΩ +

nn∑

j=1

cj

∫

Γ
Niθ

wD∇Nj · ndΓ i = 1, ..., nn,

(3.65)

Mass lumping

In order to improve the stability of the method, mass lumping is applied to diagonalize the

mass matrix (mass is concentrated on the discretization nodes)

Mi,i =

nn∑

k=1

mi,k.

The corresponding entries of mass matrix, conductance matrix and source/sink terms are divided

by each diagonal entry of mass matrix (Mi,i) to convert the mass matrix to identity matrix which

is equivalent to division by porosity.
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3.3.3 Jacobian Matrix

It is assumed that f(ξglob, ξloc) correspond to global problem and equations g(ξglob, ξloc) cor-

respond to local problem after space and time discretizations. Since ξloc is a function of ξglob
(due to application of local chemical solver), the system of discretized equations can be written

as

f(ξglob, ξloc(ξglob)) = 0 (3.66)

g(ξglob, ξloc(ξglob)) = 0. (3.67)

The evaluation of Jacobian matrix and ξloc(ξglob) are required for the solution of equations

(3.66) with Newton iteration. The evaluation of the local problems g(ξglob, ξloc) for fixed ξglob
is performed in local chemical solver as explained in subsection 3.2.2.3. The Jacobian matrix is

J =
∂f

∂ξglob
+

∂f

∂ξloc

∂ξloc
∂ξglob

(3.68)

where ∂ξloc
∂ξglob

is evaluated by taking the derivative of (3.67) with respect to ξglob as

∂g

∂ξloc

∂ξloc
∂ξglob

= − ∂g

∂ξglob
. (3.69)

In order to solve ∂ξloc
∂ξglob

, mineral reactions are split into inactive (index I) and active (index A)

reactions as explained in 3.2.2.3

S1,min = (S1,min,I ,S1,min,A).

The change of ξ̄kin is much smaller compared to ξmob, ξ̄sorp, and ξ̄min, accordingly, the ap-

proximation Dξglob ξ̄kin ≈ 0 is made. Furthermore, since ξsorp and ξmin do not appear in the

retransformation (3.43), they are neglected in ξglob vector. The derivative of local equation with

respect to local variables are needed

∂g

∂ξloc
=

(
BT Λ̃B ∗

0 IA

)

where BT Λ̃B includes
∂φmin,I

∂ξ̄min,I
, with

B =

(
S1,mob S1,sorp S1,min,I

0 S2,sorp 0

)
, Λ̃ =

(
Λ 0

0 Λ̄nmin

)



Chapter 3. Numerical Solution 27

and the diagonal matrices

Λ =




1/c1 0
. . .

0 1/cI


 , Λ̄nmin =




1/c̄I+1 0
. . .

0 1/c̄I+Īnmin


 .

Analogously − ∂g
∂ξglob

is calculated

− ∂g

∂ξglob
=

(
BT Λ̃C

0

)

with

C =

(
−S1,sorp,li −S1,min −S∗1,kin

0 0 0

)

Due to the structure of ∂g
∂ξloc

and ∂g
∂ξglob

, the matrix containing the derivative of local variables

w.r.t global variables has a structure as ∂ξloc
∂ξglob

=

(
X

0

)
, where the upper block X consists of

Dξglob ξ̄min,I the lower block consists of Dξglob ξ̄min,A. The Matrix X is the solution of the

linear systems

BT Λ̃BX = BT Λ̃C. (3.70)

The global Jacobian matrix (3.68) is constructed as

∂f

∂ξglob
=




I 0 −I 0 0

0 I 0 −I 0

θwI 0 4tLh 0 0

0 θwI 0 4tLh 0

0 0 0 0 θwI +4tLh




−4tθw




0 0 0 0 0

0 0 0 0 0

AsorpDξ̃sorp
rkin AsorpDξ̃min

rkin 0 0 AsorpDξkinrkin

AminDξ̃sorp
rkin AminDξ̃min

rkin 0 0 AminDξkinrkin

A1,kinDξ̃sorp
rkin A1,kinDξ̃min

rkin 0 0 A1,kinDξkinrkin
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with Asorp := A1,sorp −A2,sorp,li, Amin := A1,min −AldA2,sorp,ld and Lh the discretization

of the transport operator L.

∂f

∂ξloc
=




0 I 0 0

0 0 Ald 0
−4tθwAsorpD(ξmob,ξ̄sorp,li,ξ̄sorp,ld,ξ̄min)rkin
−4tθwAminD(ξmob,ξ̄sorp,li,ξ̄sorp,ld,ξ̄min)rkin
−4tθwA1,kinD(ξmob,ξ̄sorp,li,ξ̄sorp,ld,ξ̄min)rkin




multiplication with ∂ξloc
∂ξglob

gives

∂f

∂ξloc

∂ξloc
∂ξglob

=




D
ξ̃sorp

ξ̄sorp,li D
ξ̃min

ξ̄sorp,li 0 0 Dξkin
ξ̄sorp,li

D
ξ̃sorp

ξ̄min + AldDξ̃sorp
ξ̄sorp,ld Dξ̄min

ξ̄min + AldDξ̃min
ξ̄sorp,ld 0 0 Dξkin

ξ̄min + AldDξ̃kin
ξ̄sorp,ld

RsorpDξ̃sorp
(ξmob, ξ̄sorp, ξ̄min) RsorpDξ̃min

(ξmob, ξ̄sorp, ξ̄min) 0 0 RsorpDξkin
(ξmob, ξ̄sorp, ξ̄min)

RminDξ̃sorp
(ξmob, ξ̄sorp, ξ̄min) RminDξ̃min

(ξmob, ξ̄sorp, ξ̄min) 0 0 RminDξkin
(ξmob, ξ̄sorp, ξ̄min)

RkinDξ̃sorp
(ξmob, ξ̄sorp, ξ̄min) RkinDξ̃min

(ξmob, ξ̄sorp, ξ̄min) 0 0 RkinDξkin
(ξmob, ξ̄sorp, ξ̄min)




with

Rsorp := −4tθwAsorpD(ξmob,ξ̄sorp,li,ξ̄sorp,ld,ξ̄min)rkin

Rmin := −4tθwAminD(ξmob,ξ̄sorp,li,ξ̄sorp,ld,ξ̄min)rkin

Rkin := −4tθwA1,kinD(ξmob,ξ̄sorp,li,ξ̄sorp,ld,ξ̄min)rkin.

Solve η problem

Solve local problem ξloc

Calculate residual r of the global problem

Convergence criteria of global problem not fulfilled

Assemble Jacobian Matrix J of the global problem

Solve linear system J4ξglob = r

Update ξglob− = 4ξglob
Solve local problem ξloc

Calculate residual r of the global problem

FIGURE 3.3: One time step of the reduction scheme.



Chapter 3. Numerical Solution 29

TABLE 3.1: Solvers and preconditioners used to solve the system of linear equations in each
benchmark.

Benchmark Solver Preconditioner

Cation exchange direct solver -
Calcite dissolution-precipitation GMRES ILU
Mixing controlled biodegradation BICGSTAB ILU

3.4 Code Implementation

The GIA or one step method with the reduction technique is implemented into the new version

of OpenGeoSys (OGS6) software. Semi-smooth Newton method is used to solve the nonlinear

equation systems. For the local nonlinear AEs and ODEs, Newton iteration with line search is

applied. Conformal Finite Elements are used for space discretization. Mass lumping is applied

in mass matrix. Reaction rate terms, mass and conductance matrices are normalized by mass

matrix.

Implicit Euler method is used for time discretization. An adaptive time stepping scheme is

applied where the time step size is determined by the number of Newton steps in the previous

time step. If Newton method fails to converge, the current time step will be repeated with a

smaller step size. If convergence is achieved within a few Newton iterations (typically < 3), the

4t will be increased in the next time step.

The global linear system can be solved by either iterative (e.g. SpBiCGSTAB, SpQMRCGSTAB)

or direct(e.g. SpGAUSS) solvers with preconditioner(e.g. Jacobi, ILU and SOR) in OGS6. Ta-

ble 3.1 shows a list of solvers and preconditioners used to solve the system of linear equations

in each benchmark.

The differential equations associated with equilibrium reactions are replaced by algebraic equa-

tions based on law of mass action (LMA) and kinetic rate terms are expressed by double Monod

expression. Debye-Hückel and its extension Davies equations are implemented to calculate the

activity coefficients used in LMA. Equivalent algebraic equation of CCs is solved replacing the

equations containing equilibrium mineral reaction rates. Jacobian of local Newton method with

line search is evaluated numerically and natural logarithms of non-mineral concentrations are

used in local chemical solvers.
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Benchmarks

4.1 Introduction

A series of benchmark tests for verification of the implemented code is presented in this chapter.

In order to measure the efficiency of the GIA with reduction scheme, results are compared with

the results obtained with SNIA.

4.2 Cation Exchange

The cation exchange benchmark was proposed as example 11 in the PHREEQC manual [PA+99],

and also previously applied to verify the coupling of OGS5-PHREEQC [KGSW12]. In this

benchmark, a 1D column of length 0.08m is considered. Initially the column contains a Na-K-

NO−3 solution in equilibrium with the cation exchanger X. CaCl2 is continuously injected into

the column for a period of one day (3 pore volumes). Ca2+, K+, and Na+ react in equilibrium

with the exchanger during the simulation, whereas Cl− is only transported along the column as a

tracer. Table 4.1 shows the flow and transport parameters used in this benchmark. The chemical

reaction system is presented in Table 4.2 where NaX, KX and CaX are secondary sorbed species.

A total exchange capacity of 1.1 mmol/l is considered for the exchanger X. Capon convention

[Spo08] is used to calculate activity of the sorbed species in OGS6. Debye-Hückel equation

is employed to calculate the activity coefficients of aqueous species. A space discretization of

1mm and time discretization of 120s are used for both simulations to reduce numerical disper-

sion and improve the convergence of the Newton’s approach. The convergence tolerance is set

to 1×10−9 for the Newton iteration and 1×10−14 for linear solver.

Figure 4.1 shows the breakthrough curves of the simulated concentrations at the end of the

column. They were simulated by OGS6 and OGS5-PHREEQC after 3 pore volumes. Both

30
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TABLE 4.1: Model setup parameters used in cation exchange benchmark.

Parameter Value Unit

Column length 0.08 m
Effective porosity 0.5 -
Bulk density 2000 kg/m3

Longitudinal dispersion length 0.002 m
Darcy velocity 2.78 × 10−6 m/s

TABLE 4.2: Chemical reaction system used in cation exchange benchmark

Chemical reactions Log10 K values

K+ + NaX=KX + Na+ 0.7
1
2Ca2+ + NaX=CaX + Na+ 0.4

codes produced nearly identical results. Cl− as conservative tracer breaks through after about

one pore volume. Na+ is initially present in the domain and is replaced by incoming Ca2+. K+

is replaced by Ca2+ after the desorption of Na+. After all K+ is released, the concentration of

Ca2+ reaches steady-state value.
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K+ OGS5_PHREEQC

Na- OGS5_PHREEQC

FIGURE 4.1: Simulated breakthrough curves of concentrations in the cation exchange bench-
mark. Results produced by OGS6 using GIA and OGS5-PHREEQC for 3 pore volumes.
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TABLE 4.3: Model parameters used in mineral dissolution and precipitation benchmark.

Parameter Value Unit

Column length 0.5 m
Effective porosity 0.32 -
Bulk density 1800 kg/m3

Longitudinal dispersion length 0.0067 m
Pore velocity 9.375 × 10−6 m/s

TABLE 4.4: Chemical reaction system for mineral dissolution and precipitation benchmark

Chemical reactions Log10 K values

H+ + CO2−
3 =HCO−3 10.3289

Ca2+ + CO2−
3 =CaCO3 3.2241

Ca2+ + H+ + CO2−
3 =CaHCO+

3 11.4346
Mg2+ + CO2−

3 =MgCO3 2.9797
Mg2+ + H+ + CO2−

3 =MgHCO+
3 11.3971

CO2−
3 + Ca2+=CaCO3(s) 8.4799

2CO2−
3 + Ca2+ + Mg2+=CaMg(CO3)2(s) 16.5398

4.3 Dissolution and Precipitation

A hypothetical scenario of 1D mass transport and calcite dissolution and dolomite precipitation

is considered. Engesgaard and Kipp [EK92] proposed this benchmark for the model verification

of MST1D, and Prommer [Pro02] later used it for the model verification of PHT3D code. A one

dimensional column with initially 2.17 × 10−5 mol/kg calcite mineral is considered. The col-

umn is flushed with MgCl2 solution at an aqueous concentration of 1.0× 10−3 mol/l, leading to

development of multiple precipitation/dissolution fronts. As the solution front proceeds into the

column, calcite mineral dissolves and dolomite mineral precipitates temporally. Reaction feed-

back on permeability and porosity is ignored due to the low amount of precipitation/dissolution

of minerals. Table 4.3 and 4.4 show the model setup parameters and chemical reactions consid-

ered, respectively. A mesh size of 5mm is considered for all simulations. Time discretization of

100s (Cr = 0.06 [-]) is chosen for SNIA to control the numerical dispersion during simulations.

The simulation time in all variant configurations are set to 21000 seconds. The convergence

tolerance is set to 1×10−7 for Newton iteration and 1×10−14 for linear solver.

Figures 4.2 and 4.3 shows the aqueous concentration and mineral abundance profiles, respec-

tively. Cl− is considered to be a tracer and not taking part in the reactions. As the same ground-

water velocity is applied, three different codes yield same Cl−. During the first 48 minutes of

simulation, SNIA of OGS6 could not capture the behavior of dolomite mineral properly (results

are not shown). This could be due to the small concentration of dolomite at early stage of sim-

ulation and splitting error in SNIA. All results are comparable after the first hour of simulation.
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GIA simulated slightly sharper fronts and tails for aqueous and mineral concentration profiles

compared to SNIA (SNIA module of OGS6 and OGS5-PHREEQC). The major difference is

most observable on the dissolution tail of dolomite between OGS6 and OGS5-PHREEQC codes.

In order to assess the efficiency of GIA with reduction scheme in simulating homogeneous equi-

librium reactions, calcite and dolomite minerals are removed from the chemical system, and the

simulations are run with the same parameters.

The CPU time for the GIA and SNIA of OGS6 are compared in figure 4.4. The x axis shows the

number of mesh nodes in kilo and y axis the CPU time in kilo seconds.

SNIA of OGS6 is approximately 4.7 times faster than GIA with reduction scheme in simulating

mineral dissolution-precipitation (heterogeneous equilibrium reactions). GIA with reduction

scheme, however, is approximately 6.7 times faster than SNIA in simulating aqueous equilib-

rium reactions (homogeneous equilibrium reactions). Homogeneous equilibrium reactions are

treated as local problems and are solved node wise in the local chemical solver. Hence, in homo-

geneous equilibrium chemical reaction systems, no global Newton iteration is performed which

is the reason of 6.7 times efficiency of GIA with reduction scheme compared to SNIA.
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FIGURE 4.2: Simulated aqueous concentration profiles after 21000s for GIA and SNIA of
OGS6 and OGS5-PHREEQC.

4.4 Mixing Controlled Biodegradation

Biodegradation of contaminants is limited by the availability of the electron donor and acceptor

substrates. Assuming a steady-state flow field, the mixing of the reactants is controlled by
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FIGURE 4.4: CPU time measured versus number of nodes in simulating mineral dissolution
and precipitation benchmark for GIA and SNIA of OGS6. All simulations are run on Intel(R)

Core(TM) i5-2520M CPU running at 2.50GHz.

transverse dispersion. Cirpka and Valocchi [CV07] presented an analytical solution to calculate

the steady-state dissolved compounds and biomass distribution due to transverse dispersion in

porous media. Their analytical solution was later revised and improved [SCDB+09, CV09].
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The new analytical solution was then used by Centler et al. [CSDB+10] for model verification

of GeoSysBRNS code.

Figure 4.5 shows the model domain with 5m length and 0.2m width. A steady-state groundwater

flow is considered where the water flows along the x axis with the velocity of 1 m/d. The porosity

is 0.5 and transverse and longitudinal dispersion coefficient of 2.5 and 250 cm2/d are considered,

respectively. Biodegradation reaction of the form A+B → C is considered. Electron acceptor

B (e.g. oxygen) is continuously injected to the domain at a concentration of 2.5 × 10−4 mol/l

along the left boundary (x=0) except a 0.05m section in the center of the inflow boundary,

where the carbon source A is entering the domain at a concentration of 3.3 × 10−4 mol/l. The

kinetic reaction depends on the availability of the electron donor (compound A) and electron

acceptor (compound B) in the presence of the biomass. The kinetic rate is expressed by double-

Monod kinetics with biomass (R = cA
KA+cA

cB
KB+cB

µmax

Y cbio). Biomass decays with constant

first order rate parameter Kdec ( ∂∂tcbio = cA
KA+cA

cB
KB+cB

µmaxcbio −Kdeccbio). Table 4.5 shows

the parameters used to simulate this benchmark.

Different modules of OGS6, namely GIA with local chemical solver using first order backward

Euler method for ODEs, GIA with ODE solver, and SNIA, is used to simulate this benchmark.

Bulirsch-Stör algorithm is used to solve the ODE systems. Model run time of 100 days is

chosen to approach steady state condition. The domain is discretized in 2.5 cm in x-direction

and 5 mm in y-direction. In the SNIA case, temporal discretization of 120 s is chosen to control

the splitting error. In the GIA case, adaptive time stepping scheme is applied. A minimum step

size of 120 s and maximum time step size of 8640 s is used for GIA with reduction scheme.

The convergence tolerance is set to 1×10−9 for global Newton, 1×10−12 for local Newton, and

1×10−14 for linear solvers.

Figure 4.6 shows the transverse distribution of substrates A, B, and product C and Figure 4.7

shows the transverse distribution of biomass at 1 m distance down gradient of the inflow bound-

ary. All three modules of OGS6 produced comparable results. Simulation run times, however,

are different for different modules. Figure 4.8 shows the time required for GIA and SNIA to sim-

ulate mixing controlled biodegradation benchmark. GIA with reduction scheme using backward

Euler method, ODE solvers are on average 23 and 58.1 times faster than SNIA.
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TABLE 4.5: Model parameters for the mixing controlled biodegradation benchmark.

Symbole Parameter Value Unit

KA Monod constant substrate A 8.33 × 10−5 m/L
KB Monod constant substrate B 3.13 × 10−5 m/L
µmax Maximum growth rate 1.0 1/d
Kdec Biomass death rate 0.1 1/d
Y Yield coefficient 1.0 g/mol
va Transport velocity 1.0 m/d
αl Longitudinal dispersion length 2.5 cm
αt Transverse dispersion length 2.5 × 10−2 cm

5m

0.2m

1m

Flow direction

A

B

B

0.
07

5
m

0.
07

5
m

0.
05

m

FIGURE 4.5: Simulation domain for mixing controlled biodegradation benchmark. Break-
through curves are plotted along the cross section at 1m distance from the inlet.
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Chapter 5

Conclusions and Outlooks

5.1 Conclusions

GIA with reduction scheme proposed by Kräutle [KK05, Hof10] was implemented into the

OpenGeoSys (OGS6) software and some test cases were run for accuracy and efficiency com-

parison between GIA with the reduction scheme and SNIA.

Cation exchange benchmark as a heterogeneous equilibrium reaction was simulated by GIA

with reduction scheme of OGS6 and OGS5-PHREEQC codes. The result of both codes were

identical, implying the correct implementation of GIA with reduction scheme in OGS6 software

for simulating such equilibrium heterogeneous reactions.

Mineral precipitation/dissolution benchmark was run for different domains with increasing num-

ber of mesh nodes. Since there is no analytical solutions for such a complex chemical system,

the results of OGS6 were compared to the ones obtained with OGS5-PHREEQC code. The

simulation results of all three codes are comparable. There are some differences in the disso-

lution tails of dolomite mineral profiles obtained with three different methods which might be

due to the different implementation methods and numerical and splitting errors. It was observed

that even for small number of nodes SNIA outperforms GIA with reduction scheme in solv-

ing heterogeneous equilibrium mineral reactions in the absence of kinetic reactions. SNIA was

on average ca. 4.7 faster than GIA in simulating mineral precipitation/dissolution benchmark.

GIA with reduction scheme produced the sharpest fronts in aqueous and solid phases whereas

concentration fronts are smoother in SNIA.

It should be noted that the efficiency results are measured for either equilibrium or kinetic re-

action systems. These results might differ in a mixed equilibrium and kinetic reaction system

depending on simulation run time.

38
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GIA with reduction scheme is on average ca. 6.7 times faster than SNIA in simulating homoge-

neous equilibrium reactions. This efficiency is due to the lack of global nonlinear PDEs which

requires the largest computation resources and simpler chemistry system in the local chemical

solver.

Time step size restriction due to avoidance of numerical and OS errors has negative impact on

computational time efficiency of SNIA in long simulation runs of kinetic reaction systems. This

point was shown in mixing controlled biodegradation benchmark with simulation run time of

100 days. GIA with reduction scheme using chemical solvers took almost 1.2 hours whereas

SNIA required up to 29.7 hours with similar results.

The findings can be summarized in the following points:

• For simulating heterogeneous reactions SNIA, despite time step size limitation, tends to

be on average 4.7 times faster than GIA (section 4.3, Figure 4.4). The inefficiency of GIA

with reduction scheme is due to computation burden of Jacobian matrix and transport

operator in each Newton iteration.

• GIA with reduction scheme is on average 6.7 times faster than SNIA in simulating ho-

mogeneous equilibrium reactions (section 4.3, Figure 4.4). The efficiency of GIA in such

systems comes from the lack of Newton iteration for global nonlinear PDEs and simpler

chemistry system in the local chemical solvers.

• GIA with reduction scheme is 24 times faster then SNIA in long term simulation of kinetic

reactions in mixing controlled biodegradation benchmark (section 4.4, Figure 4.8). GIA

is more efficient than SNIA due to taking larger time step sizes in simulations with long

run times.

5.2 Outlooks

For future works the following points can be considered

• Field scale mixed equilibrium and kinetic reaction scenario for a better comparison be-

tween GIA with the reduction scheme and SNIA.

• Implement kinetic mineral reactions in the complimentariy condition instead of law of

mass action.

• Extend the code to consider gas phase.

• Consider the effects of density and temprature on flow system and chemical reactions.
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[KK07] Serge Kräutle and Peter Knabner. A reduction scheme for coupled multicom-

ponent transport-reaction problems in porous media: Generalization to problems

with heterogeneous equilibrium reactions. Water resources research, 43(3), 2007.

[KM95] Jagath J Kaluarachchi and Jahangir Morshed. Critical assessment of the operator-

splitting technique in solving the advection-dispersion-reaction equation: 1. first-

order reaction. Advances in Water Resources, 18(2):89–100, 1995.

[Kol02] Olaf Kolditz. Computational methods in environmental fluid mechanics. Springer,

2002.
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[MCAS04] Sergi Molins, Jesús Carrera, Carlos Ayora, and Maarten W Saaltink. A formula-

tion for decoupling components in reactive transport problems. Water Resources

Research, 40(10), 2004.

[MK95] Jahangir Morshed and Jagath J Kaluarachchi. Critical assessment of the operator-

splitting technique in solving the advection-dispersion-reaction equation: 2.

monod kinetics and coupled transport. Advances in Water Resources, 18(2):101–

110, 1995.

[PA+99] David L Parkhurst, CAJ Appelo, et al. User’s guide to phreeqc (version 2): A

computer program for speciation, batch-reaction, one-dimensional transport, and

inverse geochemical calculations. 1999.

[Pro02] H. Prommer. A reactive multicomponent transport model for saturated porous

media, user’s manual version 1.0. 2002.

[RK88] Howard Reeves and David J Kirkner. Multicomponent mass transport with ho-

mogeneous and heterogeneous chemical reactions: effect of the chemistry on the

choice of numerical algorithm: 2. numerical results. Water Resources Research,

24(10):1730–1739, 1988.

[Rub83] Jacob Rubin. Transport of reacting solutes in porous media: Relation between

mathematical nature of problem formulation and chemical nature of reactions. Wa-

ter Resources Research, 19(5):1231–1252, 1983.



Bibliography 43

[SAC98] Maarten W Saaltink, Carlos Ayora, and Jesús Carrera. A mathematical formula-
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