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Preface

According to Wikipedia, logic can be considered as “the use and study of valid

reasoning”. In mathematics and computer sciences one is usually interested in formal

logic, i.e. “the study of inference with purely formal content. An inference possesses

a purely formal content if it can be expressed as a particular application of a wholly

abstract rule, that is, a rule that is not about any particular thing or property.”

The formality of the content under logical consideration allows one for examining

the reasoning without references to any particular entities. Hence, formal logic offers

a uniform approach to reasoning in all possible domains.

An attempt to formalize a domain and bring it to logical discourse leads to an idea

of logical theories, i.e. a set of axioms describing the domain. We can classify the

logical theories with respect to the expressive power of the logical language used

to construct the theory. Although very expressive languages are being successfully

investigated, and modern computer system are able to arguably efficiently reason

using very expressive languages, the composition of queries to the theories and the

interpretation of the results of reasoning are left to humans. Thereby, the most

intuitive and easy to understand axioms are of a great value. However, the most

simple theory is the empty theory. Hence, a good trade-off between expressiveness

and complexity of a language should be kept. Arguably the most useful theories

should mimic the way people organize knowledge in their minds. With this in mind

we focus on logical theories containing only implications, i.e. logical connectives

corresponding to the rule of causality “if . . . then . . . ”. We call these theories

implicative theories. Such theories not only correspond to our requirements, but

also have certain theoretical advantages (e.g. polynomial complexity of standard

reasoning tasks).

Another advantage of implicative theories is that they can be constructed from data

– a collection of facts about particular entities from a domain. However, if the data

is not complete, the obtained theory may contain invalid implication. Namely, some

implications may be violated by further facts. Entities violating the implications are

called counter-examples. This suggests an idea of constructing implicative theories
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through refinement of existing theories via adding new data.

Moreover, any implicative theory may be compactly represented through its (im-

plication) basis. All the valid implications of the implicative theory are logical

consequences of the basis. In [GD86] an implication basis minimal in cardinality

was introduced. Therefore, it is possible to use this basis representation and look

for counter-examples to the implications from the basis. The iterative procedure of

computing an implication basis from examples, looking for a counter-example, and

refining the data with a newly found counter-example is called Attribute Exploration

(AE) [GW99b].

The mathematical domains are probably the most suitable domains for performing

AE, because the mathematical statements, if decidable, are either true or false.

Moreover, we may try to generate the desired counter-examples algorithmically.

Examples of using AE or similar ideas include applications in toxicology [BDF+03],

chemistry [KS05], internet marketing [IK08], constructing the hierarchy of classes

in software [ST98, GV05], software debugging [CDFR08, Rev13a], and optimization

of the procedure of software testing [Str15].

Structure of Current Study

In the current study we use the framework of Formal Concept Analysis [GW99b].

We represent the data in form of a triple (G,M, I) called a formal context ; the set

G is called the set of objects ; M – the set of attributes ; I – (binary) relation between

objects and attributes.

The study contains a theoretical introduction (Chapter 1) and descriptions of two

investigations about automation of the explorations of knowledge in two domains:

parametric expressibility of logical functions and interrelations between algebraic

identities. The study is presented in a form that allows to consider the two investi-

gations independently. If the reader is only interested in one of the investigations, the

reader may completely ignore the other investigation (respective chapter) without

losing any information essential for the understanding of the interesting investiga-

tion. Hence, only common concepts and notations essential for understanding both

investigations are introduced in Chapter 1.

The domains of application of AE are chosen such that the respective implicative

theory is of interest to experts from the respective domain. The goal of both in-

vestigations is to explore the implicative theory of the domain, i.e. find all valid

implications (in basis form) over selected attributes (in Chapter 2 the number of
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attributes is not fixed).

Below we briefly describe the material of the chapters. For a more thorough de-

scription we refer the reader to the summaries at the beginning of each chapter.

In Chapter 2 we are interested in “minimal” (with respect to parametric express-

ibility) logical functions. Namely, we are busy with the question “which and how

many functions do we need to be able to describe all possible functional p-clones –

classes of functions closed under parametric expressibility?” In this case objects and

attributes are the same functions and the role of I is played by the commutation

relation between functions. The standard AE is not suitable for such investiga-

tion, therefore an extension is introduced and investigated. Moreover, two different

competing approaches to finding counter-examples are introduced and implemented.

The elaborated methods and tools allow for successful completion of the exploration.

In Chapter 3 the exploration of algebraic identities is described. The classes of

structures defined by algebraic identities – equational classes – are under investiga-

tion for several centuries. We only consider identities of size up to 5. It turns out

that it is not possible to complete the construction of the implicative theory without

considering infinite structures. The structure of possible infinite counter-examples

is investigated and, based on this investigation, a method for finding these counter-

examples is introduced and implemented. The exploration is successfully finished.

A similar investigation was started independently a few years earlier by Dr Peter

Kestler [Kes13]. However, the current investigation has different objectives, namely,

the automation of the exploration. The methods and tools of this investigation are

sufficiently different. Further remarks may be found in Section 3.7. The investiga-

tion and some preliminary results were announced in [Рe13], however, the essential

part is first presented in the current study.

The present study is in a large part based on two articles [Rev14, Rev15]. Further

concepts and ideas have been published in [KR15, RK12, Rev13b]. The main results

of the articles are embedded into this study, which represents them coherently in

a more wholistic way. The results of the current study were communicated at

international conferences (ICFCA 2014, submitted to CLA 2015), at international

workshops (AAA 89, EPCL Workshop 2013), and at research seminars (Institut für

Algebra TU Dresden, Knowledge Systems group TU Dresden, Theory and Logic

group TU Wien, School of Data Analysis and Artificial Intelligence HSE Moscow).

The program code written for the execution of the current investigations is stored

at https://github.com/artreven in three repositories:

auto ae: Automatic execution of AE.
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commuting functions: Automatic exploration of p-indecomposable function (see

Chapter 2).

bunny Automatic exploration of equational classes (see Chapter 3).
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Chapter Summary

Formal Concept Analysis (FCA) is extensively used in the current investigation as

the main toolbox for derivation, analysis, and representation of knowledge. More-

over, methods developed within the current study methods add to the methodology

of FCA.

In the current chapter the methodology of FCA as well as the basics of logic are

presented in a concise manner. All terms and concepts necessary for understanding

the main matter are introduced here. The foundations of theories are only presented

up to the extent that is necessary to make the current work self-contained. This pre-

sentation may not be sufficient for a deeper understanding of the respective theories,

therefore we provide references at the beginning of the corresponding sections.

As historically FCA stems from the idea of reshaping the lattice theory towards

applications [Wil05] the current chapter starts with presenting the basics of lattice

theory. Next follow the basics of FCA itself, followed by the introduction to attribute

logic and an active learning technique called “Attribute Exploration”, which will be

the main technique for exploring implicative theories.



Chapter 1 Preliminaries

1.1 Lattice Theory

For further reading we refer the reader to [Bir67, Grä03, DP02].

Let S and N be sets.

Definition 1.1.1. A binary relation R between S and N is a set of pairs (s, n),

where s ∈ S and n ∈ N . In other words R ⊆ S ×N , where S ×N is the cartesian

product of S and N . We use the notation sRn to indicate that (s, n) ∈ R.

For R ⊆ S × S we say that R is a binary relation on S.

Definition 1.1.2. A binary relation R on S is called a (partial) order if for all

x, y, z ∈ S the following conditions are satisfied:

1. xRx (reflexivity);

2. xRy and x 6= y ⇒ not yRx (antisymmetry);

3. xRy and yRz ⇒ xRz (transitivity).

A set S with a (partial) order ≤ defined on S is called a (partially) ordered set or

poset, denoted (S,≤).

Definition 1.1.3. The greatest element of a poset (S,≤) is an element x ∈ S such

that for all s ∈ S : s ≤ x. The greatest element may not exist. The least element is

defined dually.

Definition 1.1.4. Let (S,≤) be a poset and A ⊆ S. The greatest lower bound (or

infimum) of A is the greatest element s ∈ S such that for all a ∈ A : s ≤ a (denoted

s =
∧
A), if it exists. The least upper bound (supremum) is defined dually (denoted∨

A).

If A = {x, y} then we use the infix notation x ∧ y and x ∨ y to denote the infimum

and the supremum of A, respectively.

Definition 1.1.5. A poset L = (L,≤) is called a lattice if for all x, y ∈ L x∨ y and

x ∧ y exist.

Remark. In this work all lattices are assumed to be finite and nonempty. If x ∨ y
and x ∧ y exist for all x, y of a finite nonempty lattice L then

∧
A and

∨
A exist

for all A ⊆ L. Therefore, any finite nonempty lattice is a complete lattice.
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Chapter 1 Preliminaries

Definition 1.1.6. Let x ≤ y for x, y ∈ L. The element x is called the lower neighbor

of y if there does not exist an element z ∈ L such that z 6= y, z 6= x, x ≤ z ≤ y; we

also say that y covers x. Let O and 1 be the least and the greatest elements of L,

respectively. An element x ∈ L is called an atom if it has the only lower neighbor

O; coatom is defined dually.

Definition 1.1.7. A subset F of L is called a filter if

• F 6= ∅;

• x ∧ y ∈ F for all x, y ∈ F ;

• y ∈ F if x ≤ y for some x ∈ F .

The least filter containing the element x is called the principal filter generated by

x. The principal filter of x is denoted by ↑ x

Definition 1.1.8. A subset I of L is called an ideal if

• I 6= ∅;

• x ∨ y ∈ F for all x, y ∈ F ;

• y ∈ F if y ≤ x for some x ∈ F .

The least ideal containing the element x is called the principal ideal generated by

x. The principal ideal of x is denoted by ↓ x.

Definition 1.1.9. For an element v ∈ L we define:

v∗ =
∨
{x ∈ L | x < v}; (1.1a)

and

v∗ =
∧
{x ∈ L | v < x}. (1.1b)

The element v is called supremum-irreducible if v 6= v∗, i.e. v is not representable

as the supremum of strictly smaller elements. Likewise, the element v is called

infimum-irreducible if v 6= v∗.

Definition 1.1.10. A set P ⊆ S is called supremum-dense in S if for all s ∈ S

there exists P∗ ⊆ P such that s =
∨
P∗, i.e. every element s of S is a supremum of

some elements of P . The infimum-dense subsets are defined dually.

For a finite lattice L the set of all supremum-irreducible elements is supremum-dense

in L.
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Chapter 1 Preliminaries

1.2 Formal Concept Analysis

For further reading we refer the reader to [GW99b].

Let G and M be sets and let I ⊆ G×M be a binary relation between G and M .

Definition 1.2.1. The triple K := (G,M, I) is called a (formal) context. The set

G is called the set of objects. The set M is called the set of attributes. A context

(G∗,M∗, I∗) such that G∗ ⊆ G, M∗ ⊆M , and I∗ = I∩G∗×M∗ is called a subcontext

of K, denoted (G∗,M∗, I∗) ≤ K.

Consider mappings ϕ:P(G)→ P(M) and ψ:P(M)→ P(G):

ϕ(X) := {m ∈M | gIm for all g ∈ X},

ψ(A) := {g ∈ G | gIm for all m ∈ A}.

Mappings ϕ and ψ define a Galois connection between (P(G),⊆) and (P(M),⊆),

i.e. ϕ(X) ⊆ A ⇔ ψ(A) ⊆ X. Usually, instead of ϕ and ψ a single notation (·)′ is

used. For X, Y ⊆ G we have (X ∪ Y )′ = {m ∈ M | gIm for all g ∈ X ∪ Y } =

{m ∈ M | gIm for all g ∈ X} ∩ {m ∈ M | gIm for all x ∈ Y } = X ′ ∩ Y ′, hence,

(X ∪ Y )′ = X ′ ∩ Y ′. Similarly, for A,B ⊆M we have (A ∪B)′ = A′ ∩B′.

For any X, Y ⊆ G, A,B ⊆M one has

1. X ⊆ Y ⇒ Y ′ ⊆ X ′;

2. A ⊆ B ⇒ B′ ⊆ A′.

The operator (·)′′ is a closure operator, i.e. for any Z,Z1, Z2 ⊆ M or Z,Z1, Z2 ⊆ G

the following holds:

1. Z ⊆ Z ′′;

2. Z ′′ = Z ′′′′ (actually Z ′ = Z ′′′);

3. Z1 ⊆ Z2 ⇒ Z ′′1 ⊆ Z ′′2 .

The set Z ′′ is called the closure of Z in K. If Z ′′ = Z then we call Z closed.

Definition 1.2.2. A formal concept C of a formal context (G,M, I) is a pair

(X,A), X ⊆ G,A ⊆ M such that X ′ = A and A′ = X. The set X is called

the extent of C and is denoted by ext(C), and the set A is called the intent of C

and is denoted by int(C).

We also speak about the intent (extent) of a single object g (attribute m) and instead

of {g}′ ({m}′) we write g′ (m′).

5
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Definition 1.2.3. For a context (G,M, I), a concept C1 = (X,A) is a subconcept

of a concept C2 = (Y,B) (denoted C1 ≤ C2) if X ⊆ Y or, equivalently, B ⊆ A.

This defines an order on formal concepts.

The set of all formal concepts B(G,M, I) = {(X,A) ∈ P(G)×P(M) | A′ = X,X ′ =

A} together with the order ≤ is called the concept lattice, denoted B(G,M, I). It

can be shown that the set of all intents, denoted Int(G,M, I), is exactly the set of

all closed subsets of M . Dually, all extents, denoted Ext(G,M, I), are all closed

subsets of G. therefore, the set of all intents (extents) of a context forms a closure

system, i.e. if I1, I2 are intents of K then I1 ∩ I2 is also an intent of K. The set of

all extents of (G,M, I) order by set inclusion is dually isomorphic to the set of all

intents of (G,M, I) ordered by set inclusion.

The main theorem of FCA consists in the following.

Theorem 1.2.4. Let (G,M, I) be a context. A concept lattice B(G,M, I) is a

lattice. Let J be an index set. For any

{(Xj , Aj) | j ∈ J} ⊆B(G,M, I)

suprema and infima are given by∧
j∈J

(Xj , Aj) = (
⋂
j∈J

Xj , (
⋃
j∈J

Aj)
′′);∨

j∈J

(Xj , Aj) = ((
⋃
j∈J

Xj)
′′,
⋂
j∈J

Aj).

Moreover, an arbitrary complete lattice L = (L,≤) is isomorphic to B(G,M, I) iff

there exist mappings γ : G→ L and µ : M → L such that

1. γ(G) is supremum-dense in L, ν(M) is infimum-dense in L;

2. γ(g) ≤ ν(m) iff gIm.

For g ∈ G we suppose γ(g) = (g′′, g′); (g′′, g′) is called the object concept of g.

Likewise, for m ∈ M we suppose ν(m) = (m′,m′′); (m′,m′′) is called the attribute

concept of m.

Definition 1.2.5. A context (G,M, I) is called clarified, if for any objects g, h ∈ G
from g′ = h′ it always follows that g = h and, correspondingly, m′ = n′ implies

m = n for all m,n ∈M .

6
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Definition 1.2.6. An object g is called reducible in a clarified context K := (G,M, I

) iff there exists X ⊆ G \ g such that g′ = X ′. Reducible attributes are defined

dually.

A clarified context without reducible objects is called reduced, the procedure of

eliminating reducible objects is called reduction.

In what follows we introduce other types of reducibility, therefore, we refer to this

type of reducibility as plain reducibility. If an object is not reducible we call it

irreducible. The concept lattice B(G,M, I) is isomorphic to the concept lattice of

the same context after reducing. Note that a new object g with intent g′ is going to

be reducible in the context (G,M, I) if g′ ∈ Int(G,M, I).

Reducible objects neither contribute to any implication basis (see Definition 1.3.14)

nor to the concept lattice, therefore, if one is only interested in the implicative theory

or in the concept lattice of the context reducible objects can be neglected.

1.2.1 Lattice Diagrams

As stated in Theorem 1.2.4, any concept lattice is a lattice. Posets and lattices

in particular can be represented by diagrams, a simple and widely used type of

diagrams is ordered diagrams [BFR72].

An ordered diagram represents a finite poset in the form of a drawing of its transitive

reduction. For a poset (S,≤) one represents each element of S as a vertex in the

plane and draws a line segment or curve that goes upward from x to y whenever y

covers x. These curves may cross each other but must not touch any vertices other

than their endpoints. Such a diagram, with labeled vertices, uniquely determines its

order. Although ordered diagrams were originally devised as a technique for making

drawings of posets by hand, they have more recently been created automatically

using graph drawing techniques [Zsc07, Fre04].

Regarding the labeling of the diagrams we may formulate the following rules. Ev-

ery object and attribute concept is labeled by the respective object or attribute.

Consider a formal concept (X,A) corresponding to node C of a labeled diagram of

concept lattice B(G,M, I). An object g belongs to X iff the node with label g lies

in the principal ideal ↓ C, m belongs to A iff node with label m lies in the principal

filter ↑ C. One can verify correctness of the above labeling.

Lattice diagrams are useful for explicit knowledge representation only as long as

they are “readable”. As the number of formal concepts grow the readability of the

7
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has right angle some sides equal

all sides equal

all angles equal

Figure 1.1: Concept lattice of the context from Figure 1.6

lattice decreases. The number of concepts of a formal context may be exponentially

large in the size of the context [AdL13]. In the examples in the following chapters

lattices are sometimes presented in order to give an optical overview of the data.

However, the context obtained in Chapter 2 has 2986 formal concepts, and it is

practically inconvenient to work with the diagram of the whole concept lattice of

this context.

An example of an ordered diagram is presented in Figure 1.1, only attributes are

labeled.

1.3 Logic

1.3.1 First-order Logic

For a thorough study of first-order logic we refer the reader to the following works:

[Bar82, Chu96, AS07].

We will only use fragments of first-order logic in this work: the propositional frag-

ment and the universally quantified fragment with equality, but without relations

(equational logic). In this subsection we introduce some general notions and no-

tations of first-order logic. More specific definitions will be given in subsequent

chapters.

Definition 1.3.1. The alphabet λ of a formal language L of first-order logic consists

8



Chapter 1 Preliminaries

of the following symbols.

1. Function symbols (possibly indexed): f, g, . . . ;

2. variables (possibly indexed): w, x, y, z, . . . ;

3. relation symbols (possibly indexed): ρ, . . . ;

4. logical connectives: ¬, ∧;

5. equality symbol ≡;

6. quantifier: ∀;

7. punctuation: “(”, “)”, “,”, “:”, and “.”.

Each relation symbol ρ and each function symbol f is associated with a natural

number called its arity, denoted by ar(ρ) and ar(f), respectively. Relation and

function symbols with arity 1 (2, 3) are called unary (binary, ternary, respectively).

We sometimes use superscripts to indicate the arity of a symbol: f (2), f t, where “t”

stands for “ternary”. Function symbols with arity 0 are called nullary or constants.

For constants we use notation a, b, . . . .

A first-order language L is characterized by its alphabet λ and the mapping ar. We

use the notation L = (λ, ar).

Definition 1.3.2. Let L = (λ, ar) be a formal language. A finite string t of symbols

from λ is an L-term if either

1. t is a variable x, or

2. t is f(t1, t2, . . . tar(f)) for L-terms t1, t2, . . . tar(f).

Note that constants are L-terms.

If the language is clear from the context, we will say “term” instead of “L-term”.

Definition 1.3.3. A finite string φ of symbols from λ is an L-formula if either

1. ψ is t1 ≡ t2 for L-terms t1, t2,

2. ψ is ρ(t1, t2, . . . tar(ρ)) for L-terms t1, t2, . . . tar(ρ),

3. ψ is ¬α for an L-formula α,

4. ψ is α ∧ β for L-formulae α, β,

5. ψ is ∀x : α for an L-formula α and a variable x.

Formulae corresponding to the first two clauses are called atomic.

9
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The derived connectives are:

• ψ ∨ ϕ for ¬(¬ψ ∧ ¬ϕ),

• ψ ⇒ ϕ for ¬ψ ∨ ϕ,

• ψ ⇔ ϕ for (ψ ⇒ ϕ) ∧ (ϕ⇒ ψ),

• ∃x : ψ for ¬(∀x : (¬ψ)).

We will use TM(L) to denote the set of all L-terms, Fml(L) to denote the set of all

L-formulae, and Vbl(L) or X to denote the set of all variables.

Definition 1.3.4. Let L = (λ, ar) be a formal language. An L-structure A consists

of a set A, called the universe (or carrier, or domain) of A, an ar(ρ)-ary relation

ρA on A for each relation symbol ρ, and an ar(f)-ary function fA on A for each

function symbol f .

We call an L-structure A finite iff A is finite. Otherwise, we call it infinite. ρA and

fA are called the interpretations of ρ and f , respectively.

Definition 1.3.5. A function h : V bl(L) → A is called a variable assignment

function into A.

The function h̄ : TM(L)→ A, called the term assignment function generated by h,

is the extension of h to terms TM(L).

Definition 1.3.6. We say A satisfies ψ under the assignment h, denoted A |= ψ[h],

iff

1. ψ is t1 ≡ t2 for L-terms t1, t2 and h̄(t1) = h̄(t2);

2. ψ is ρ(t1, . . . tar(ρ)) for L-terms t1, . . . tar(ρ) and (h̄(t1), . . . h̄(tar(ρ))) ∈ ρA;

3. ψ is ¬α for an L-formula α and A 6|= α[h], i.e. not A |= α[h];

4. ψ is α ∧ β for L-formulae α and β and both A |= α[h] and A |= β[h];

5. ψ is ∀x : α for an L-formula α and a variable x and A |= α[h] no matter what

is h(x) ∈ A.

Definition 1.3.7. A formula ψ is said to be valid in A or A satisfies ψ, denoted

A |= ψ, if A |= ψ[h] holds for all variable assignments h. If ψ is valid in every

L-structure then ψ is called valid.

Let Σ be a set of formulae. We say that A satisfies Σ if it satisfies every formula in

Σ.

10
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Definition 1.3.8. If for all L-structures A we have that if A |= Σ then A |= ψ then

we say that Σ logically implies ψ, denoted Σ  ψ.

An inference rule for a formal language L is a certain pair of a set of logical formulae

Γ and a formula ψ, denoted Γ
ψ , such that Γ  ψ.

Definition 1.3.9. For the alphabet of propositional logic, containing proposition

symbols P0, P1, . . . , connectives ¬,∧, and parentheses, we define a propositional

interpretation s as function that assigns to every proposition symbol P one of the

values from a two-valued domain A2. We use either the domain {0, 1} or the domain

{True, False}.

The formulae of propositional logic are defined by using the appropriate subset of

clauses from Definition 1.3.3. Every propositional interpretation s can be extended

to the interpretation s̄ over the set of all formulae of propositional logic:

1. s̄(P ) = s(P ) for every proposition symbol P ;

2. s̄(¬ψ) = True iff s̄(ψ) = False;

3. s̄(ψ1 ∧ ψ2) = True iff s̄(ψ1) = True and s̄(ψ2) = True.

If s̄(ψ) = True we will also write s |= ψ.

1.3.2 Attribute Logic

For a deeper study of attribute contextual logic we suggest the work [GW99a].

Definition 1.3.10. An (attribute) implication of K = (G,M, I) is defined as a pair

(A,B), where A,B ⊆ M , written A → B. A is called the premise, B is called the

conclusion of the implication A→ B.

Definition 1.3.11. The implication A→ B is respected by a set of attributes N if

A * N or B ⊆ N . We say that the implication is respected by an object g if it is

respected by g′.

We consider objects g ∈ G as propositional interpretations of attribute implication.

In order to do so we associate a proposition Pm with every attribute m and a

propositional interpretation sg with every object g. Propositions are interpreted as

follows: sg(Pm) = True iff m ∈ g′. Usually we use m instead of Pm.

To every set of attributes A = {m1,m2, . . .m|A|} corresponds a conjunction of its

attributes
∧
A = m1 ∧m2 ∧ . . . ∧m|A|. Therefore, s̄g(

∧
A) = True iff A ⊆ g′. We

11
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write g(A) and g(m) instead of s̄g(
∧
A) and sg(m), respectively. We also define

a interpretation for negation, namely, g(¬m) = True iff m 6∈ g′. Now we can use

other derived connectives as defined in the previous section. One can easily verify

that g(
∧
A ⇒

∧
B) = True iff A → B is respected by g. If an object g does not

satisfy an implication (A → B) then we say that g violates (A → B) or g is a

counter-example to (A→ B). We call objects satisfying an implication the models

of the implication.

Definition 1.3.12. The implication A → B holds (is valid) in K if it is respected

by all g, g ∈ G, i.e. every object that has all the attributes from A also has all the

attributes from B (B′ ⊆ A′).

New valid implications can be obtained using the Armstrong inference rules:1

A→ A
,

A→ B

A ∪ C → B
,

A→ B,B ∪ C → D

A ∪ C → D

Definition 1.3.13. A unit implication is an implication with only one attribute

in its conclusion, i.e. it is of the form A → {b}, where A ⊆ M, b ∈ M . Every

implication A → B can be regarded as a conjunction of unit implications
∧
{A →

b | {b} ∈ B} (g |= (A→ B) iff g |=
∧
{A→ {b} | b ∈ B}). For the purposes of the

current study it suffices to consider solely unit implications2. We omit brackets in

the conclusions of unit implications.

We call a set of implications closed under the application of the Armstrong rules

an implicative theory. To every implicative theory corresponds a unique up to re-

ducibility formal context and vice versa. Therefore, implicative theories and formal

contexts are dual up to reducibility of objects in formal contexts.

Definition 1.3.14. An implication basis of a context K is a set of implications LK,

from which any valid in K implication can be deduced by the Armstrong rules and

none of the proper subsets of LK has this property.

A basis minimal in the number of implications was defined in [GD86] and is known

as the canonical implication basis. We use the canonical implication basis, however,

our investigations can also be performed using another implication basis.

Figure 1.2 depicts three different ways to represent data.

1Originally the list of rules contained more rules [Arm74]. All the rules that are not
presented here can be derived from the presented ones.

2As long as one is not concerned with the number of implications one can consider only
unit implications without loss of generality.
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Formal Context

Implication Basis

Concept Lattice

Figure 1.2: Dualities between contexts, implication bases, and concept lattices3

Attribute Exploration (AE) consists in iterations of the following steps until sta-

bilization: computing the implication basis of a context, finding counter-examples

to implications, updating the context with counter-examples as new objects, and

recomputing the basis (Figure 1.3). AE has been successfully used for investigations

in many mostly analytical areas of research. For example, in [KPR06] AE is used

for studying Boolean algebras, in [Dau00] lattice properties are studied, in [RK12]

function properties are studied.

To start AE it is necessary to have:

1. an initial context;

2. a procedure for finding counter-examples.

Additionally it is possible to make use of a prover for proving implications. In

parallel to finding counter-examples it is possible to make an attempt to find a

proof.

We illustrate AE with an example about convex quadrangles.

Example 1.3.15. Our formal contexts consist of a subset of the following set of

convex quadrangles:

3Note that we can not reconstruct the names of the objects and the reducible objects
from concept lattices and implication bases.
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Context

Implication

Basis

Counter-

example

found

Add new

counter-

example

End

Yes

No

Figure 1.3: Scheme of Attribute Exploration
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� – a square;

– a rectangle;

– a quadrangle;

♦ – a diamond;

– a parallelogram;

– a quadrangle with a right angle;

– a trapezium with a right angle and two equal sides (left and top);

the following attributes: “all sides equal”, “some sides equal”, “has right angle”, “all

angles equal”, and the relation indicating if a quadrangle has respective attribute.

The attribute “some sides equal” requires at least two equal sides in a quadrangle.

In this example we start with only four objects, see the context K(0)
� in Figure 1.4.

The canonical basis of the context K(0)
� is in the right side of Figure 1.4.
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� × × × ×
× × ×

♦ × ×
×

1. all sides equal → some sides equal;

2. all angles equal → some sides equal, has right

angle;

3. has right angle → some sides equal, all angles

equal.

Figure 1.4: Initial context of convex quadrangles K(0)
� and its implication basis.

Implication 3 from Figure 1.4 is violated by a quadrangle with a right angle. On this

step this object is added to the context. The new context K(1)
� and its implication

basis is presented in Figure 1.5.

Implication 3 from Figure 1.5 is violated by a trapezium with a right angle and two

equal sides. The new context K(2)
� and its implication basis is presented in Figure

1.6.
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1. all sides equal → some sides equal;

2. all angles equal → some sides equal, has right

angle;

3. has right angle, some sides equal → all angles

equal.

Figure 1.5: Context of convex quadrangles K(1)
� with a quadrangle with a right angle

and its implication basis
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1. all sides equal → some sides equal;

2. all angles equal → some sides equal, has right

angle;

3. has right angle, all sides equal→ all angles equal.

Figure 1.6: Final context of convex quadrangles K(2)
� and its implication basis
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All implications from the basis in Figure 1.6 are valid statements in geometry, there-

fore, no counter-examples exists. AE is finished, the final implication basis represents

the implicative theory of the given attributes.

1.4 Practical Implementation

Remarks

Algorithms for Computing Canonical Bases

An overview of the algorithms for the construction of the canonical implication bases

lies outside of the scope of the current work. For a thorough survey we refer the

reader to [KO02]. Here, we classify the algorithms with respect to one criterion

only, namely whether an algorithm is able to output implications from the basis

during the construction of the basis. Some algorithms, like NextClosure [Gan10],

output implications from the final implication basis while still computing the basis

(other implications), whereas other algorithms, like IncrementalAlgorithm [OD03],

can only output the whole basis. In the investigation we use the two mentioned

algorithms. NextClosure usually takes longer to compute the whole basis, however,

it is able to output a significant part of the basis before IncrementalAlgorithm has

computed the whole basis.

If every counter-example is able to significantly change the canonical basis then it

makes sense to use NextClosure and output implications until the first counter-

example is found. Afterwards, this counter-example is added to the context and the

computation of the basis is restarted. Otherwise, if we are interested in finding all

counter-examples for the current basis, we use IncrementalAlgorithm.

Finding Counter-examples

The methods for finding counter-examples are the essential part of constructing the

implicative theory. However, these methods may be slow or even semi-decisive (i.e.

do not terminate if no counter-example exists). Therefore, in order to be more

flexible we use a time constraint for these methods. If needed, we may first use a

small constraint and afterwards, if no counter-examples are found, we increase the

time constraint.
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Description of Algorithms

All the algorithms in the current work are presented using the same notations. Some

structures (assignments) are global meaning that the changes to the values of these

structures inside function calls are not discarded. Every such structure is explicitly

mentioned in the description of the algorithms. We use mixed notation, borrowing

from natural language (written in italics, for example, not empty), mathematical

notations (written in usual way), and programming notations. For data instances,

like tuples, lists, dictionaries, etc., we use sans serif; for functions – typewriter

symbols; for built-in symbols – bold symbols. We use True and False to denote

the propositional values. In order to access attributes or methods of some instance

we use dot notations, for example, for a set s the notation s.add(a) denotes the

method of adding a new element a to the set s.

The symbol “==” denotes the equality check. The symbol “←” is used for assign-

ments. The square brackets “[”, “]” are used:

1. to denote list,

2. as list or tuple indices to access the corresponding element (if used after the

name of a list),

3. as dict keys to access the corresponding values (if used after the name of a

dict).

Big O Notation and Complexity

For every algorithm we want to “measure” its response to the change of the “size”

of the input. Therefore, we analyze the complexity of the algorithm. We estimate

the behavior of the algorithm through the complexity in the worst case. In order

to do this we use the “Big O” notation. This notation characterizes functions

according to their growth rates. A description of a function in terms of big O

notation only provides an upper bound on the growth rate of the function. For a

thorough description see, e.g., [Knu97].

Decision Variables

In describing the computational models for solving problems and developing algo-

rithms we use the notion of decision variable. One should understand a decision

variable as something that we have control of, and we use this control in order to
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find a solution to the problem. Decision variables, in contrast to input and out-

put, are not fixed by the problem statement. On the contrary, the choice of the

decision variables is a part of finding a solution to the problem. The output of

the algorithm should be uniquely reconstructible from the given assignments to the

decision variables. For example, in the task of solving Sudoku a natural choice of

decision variables would be the values in respective squares. The solution is uniquely

reconstructible through these values.
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Chapter Summary

The expressibility of functions is a major topic in mathematics and has a long history

of investigation. The interest is explainable: when one aims at investigating any kind

of functional properties, which classes of functions should one consider? If a function

f is expressible through a function h then it often means that f inherits properties of

h and should not be treated separately. Moreover, if h in turn is expressible through

f then both have similar or even the same properties. Therefore, partition with

respect to expressibility is meaningful and can be the first step in the investigation

of functions.

With the development of electronics and logical circuits a new question arises: if one

wants to be able to express all possible functions, which minimal set of functions

should one have at hands? One of the first investigations in this direction was carried

out in [Pos42]. There all the Boolean classes of functions closed under expressibility

are found and described. Afterwards many important works were dedicated to

related problems such as the investigation of the structure of the lattice of functional

classes, see for example [Yab60, Ros70]. However, it is known that the lattice of

classes of functions closed under expressibility is in general uncountably infinite. In

[Kuz79] a more general type of functional expressibility was introduced – parametric

expressibility. A significant advantage of this type of expressibility is that for any

finite domain Ak the lattice of all classes closed under parametric expressibility

classes of functions (p-clones) is finite [BW87]. However, finding this lattice is an

extremely complex task. For k = 2 the lattice of p-clones was known. For k = 3

in a thorough and tedious investigation [Dan77] it was proved that a system of 197

functions suffices to construct the lattice of all p-clones. This investigation carried

out without the use of computers lead to a PhD degree.

In this chapter we introduce, develop, and investigate the methods and tools for au-

tomating the exploration of the lattice of p-clones. Therefore, this chapter “applied”

to A3 can be seen as complementing the work [Dan77] where a proof of the results

obtained with the tools described in this chapter can be found. Namely, in this

chapter we answer the question how to find all the p-clones, whereas in [Dan77]

it is proved that certain functions allow us to construct the desired lattice. The

presented methods and tools are extensible to larger domains as well.

In Section 2.1 we give a deeper and more formal introduction to the topic. In Section

2.2 we describe the context of commuting functions and give some general notes.
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In the current chapter we face the necessity of finding finite counter-examples to

implications over functions. Therefore we face the task of violating implicative

constraints. We introduce two methods for solving the task and investigate and

compare the resulting algorithms in Section 2.3. If the reader is not interested in

the practical aspects of the investigation and in the algorithms we suggest to skip

this section.

In Section 2.4 the necessary extension of AE is discussed. At the end of the chapter

the results are discussed. Some remarks and an appendix can be found after the

discussion of results.

Contributions

• New original approach to exploring the lattice of p-clones introduced;

• Two approaches to finding finite counter-examples are introduced;

• The corresponding algorithms are described, compared, implemented;

• An extension of the standard exploration procedure is introduced and investi-

gated;

• The whole procedure is implemented and executed; the obtained results con-

firm the previously known results;

• It is proved that for certain starting conditions the desired lattice will neces-

sarily be eventually discovered.
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2.1 Expressibility of Functions

2.1.1 Compositional Expressibility

Consider a finite set Ak with k elements. Consider functions f : A
ar(f)
k → Ak,

the set of all possible functions over Ak is denoted Uk (when k is clear from the

context or not important, we may omit the subscript). The particular functions

pkn(x1, . . . xn) = xk are called the projections. The set of all projections is denoted

by Pr. We also use (x) instead of (x1, . . . xn).

Let H ⊆ Uk. We say that f is compositionally expressible through H (denoted

f ≤ H) if the following condition holds:

f(x) ≡ h(j1(x), . . . , jar(h)(x)), (2.1)

for some h, j1, . . . jar(h) ∈ H ∪ Pr. Note that the functions ji need not essentially

depend on all variables (x).

We say that an n-ary function f is compatible with (or preserves) an m-ary relation

ρ (denoted f C ρ) if for any tuples (x11, x12, . . . x1m), . . . (xn1, xn2, . . . xnm) ∈ ρ we

have (f(x11, . . . xn1), . . . f(x1m, . . . xnm)) ∈ ρ (see Figure 2.1). We say that a set of

functions H is compatible with a set of relations R if for every f ∈ H and for every

ρ ∈ R : f C ρ.

f f . . .

x11 x12 . . . ∈ ρ
x21 x22 . . . ∈ ρ
. . . . . . . . . ∈ ρ

f(x11, x21, . . . ) f(x12, x22, . . . ) . . . ∈ ρ

Figure 2.1: Function compatible with relation f C ρ

The set of all relations compatible with all the functions from H is denoted by

Inv(H); for a finite set of relations R the set of all functions preserving all relations

from R is denoted by Pol(R). It is known that if f ≤ H then f is compatible with

all relations from Inv(H) ([BKKR69]). Therefore, in order to separate f from H,

i.e. show that f is not expressible through H, one has to find a relation ρ such that

H C ρ, but f 6C ρ.
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A functional clone is a set of functions containing all projections and closed under

compositions. The set of all functional clones over a domain of size k = 2 forms a

countably infinite lattice [Pos42]. However, if k > 2 then the set of all functional

classes is uncountable [YM59].

2.1.2 Parametric Expressibility

Let H ⊆ Uk and for any i ∈ [1,m] : ti, si ∈ H ∪ Pr. We say that f ∈ Uk is

parametrically expressible through H (denoted f ≤p H) if the following condition

holds:

f(x) = y ⇐⇒ ∃w
m∧
i=1

ti(x,w, y) = si(x,w, y). (2.2)

The notation J ≤p H means that every function from J is parametrically expressible

through H. A parametric clone (or p-clone) is a set of functions closed under para-

metric expressibility and containing all projections. We consider a special relation

f• of arity ar(f) + 1 on Ak called the graph of function f . f• consists of the tuples

of the form (x, f(x)). We say that the functions f and h commute, denoted f ⊥ h,

if the identity

f(h(x11, . . . , x1m), . . . h(xn1, . . . , xnm)) ≡ h(f(x11, . . . , xn1), . . . f(x1m, . . . , xnm)),

holds, where ar(f) = n and ar(h) = m. It is easy to see that f ⊥ h holds iff

h is compatible with f• iff f is compatible with h•. For a set of functions H we

write f ⊥ H to denote that for all h ∈ H : f ⊥ h. The commutation property is

commutative, i.e. f ⊥ h iff h ⊥ f . See also an example in Figure 2.2. We investigate

the commutation property in more details in Section 2.3. Now we only note that

checking if two functions f and h commute takes O(kar(f)∗ar(h)) operations in the

worst case.

The centralizer of H is defined by H⊥ = {g ∈ Uk | g ⊥ H}. Note that H⊥ =

Pol(H•). In [Kuz79] it is shown that if f ≤p H then f ⊥ H⊥.

A function f is called p-indecomposable if each system H parametrically equivalent

to {f} (i.e. f ≤p H and H ≤p f) contains a function parametrically equivalent to f .

Hence, for each p-indecomposable function there exists a class of p-indecomposable

functions that are parametrically equivalent to it. From each such class we take only

one representative (only one p-indecomposable function) and collect them in a set

of p-indecomposable functions denoted by F pk . A p-clone H cannot be represented
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x1 x2 f(x1, x2)

0 0 1
0 1 0

1 0 0
1 1 1

f f f

h 0 1 1
h 0 0 1

h 1 0 6=

h(x1, x2) x1 x2

1 0 0

1 0 1

0 1 0

1 1 1

Figure 2.2: Functions f and h do not commute

as an intersection of p-clones strictly containing H if and only if there exists a p-

indecomposable function f such that H = f⊥⊥. Hence, in order to construct the

lattice of all p-clones it suffices to find all p-indecomposable functions. The lattice

of all p-clones for any finite k is finite [BW87], hence, F pk is finite.

In [BW87] it is proved that it suffices to consider p-indecomposable functions of

arity at most kk, however, the authors conjecture that the actual arity should be

equal to k for k ≥ 3. The conjecture is still open. Nevertheless, thanks to results

reported in [Dan77], we know that the conjecture holds for k = 3.

2.2 Context of Commuting Functions

The knowledge about the commutation properties of a finite set of functions F ⊆ Uk
can be represented as a formal context KF = (F, F,⊥F ), where a pair (f1, f2) ∈ F 2

belongs to the relation ⊥F iff f1 ⊥ f2. Note that the relation ⊥F is symmetric,

hence, the objects and the attributes of the context are the same elements and we

call them entities.

The goal of this chapter is to develop methods and algorithms for constructing the

lattice of all p-clones on A3. As already noted, for the purpose of constructing

the lattice of p-clones it suffices to find all p-indecomposable functions F pk . The

set of supremum-irreducible elements of the lattice of p-clones is exactly the set

{f⊥⊥ | f ∈ F pk }.

For any domain of size k there exist kk
k

functions of arity k. Therefore, to compute

the context of all commuting functions KUk
one has to perform O(kk

k ∗ kkk ∗ kk2)
operations (taking into consideration only functions of arity k and the cost of com-

mutation check in the worst case). For k = 3 we count about 1030 operations.
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Therefore, already for k = 3 a brute-force solution is infeasible.1 In what follows

we introduce a solution inspired by FCA and based on AE. We intend to apply AE

to commuting functions. For this purpose we investigate the possibilities of finding

counter-examples to implications over functions from Uk. However, as the number

of attributes is not fixed, the success of applying AE is not guaranteed, i.e. it is not

guaranteed that the complete lattice of p-clones will eventually be discovered using

AE.

2.3 Finding Counter-examples

In this section we look for a method that takes an implication over functions and

outputs a function that is a counter-example to the implication.

Before developing a computational method to solve the problem we introduce new

notations to be able to present statements in a compact and convenient form.

We introduce a numbering on functions. To a binary function f we assign a number

numf = f(k, k)f(k, k − 1) . . . f(1, 1) in base k. For the general case of n-ary f the

number numf in decimal representation is equal to

numf =
∑

a1,...an∈An
k

f(a1, . . . an) ∗ ka1∗k
n−1+···+an∗k0 .

We use superscripts ·u for unary, ·b for binary, and ·t for ternary functions.

Example 2.3.1. For the binary function f such that f(0, 0) = 0, f(0, 1) =

0, f(1, 0) = 0, f(1, 1) = 1 (see Table 2.8) the number is numf = 0 ∗ 20 + 0 ∗ 21 + 0 ∗
22 + 1 ∗ 23 = 8, therefore, we denote the function as f b8 .

Let (H → j) be an implication, where H ⊆ Uk is a finite set of functions and j ∈ Uk
is a function. We look for a function f such that f ⊥ H, f 6⊥ j. We suppose that the

arity of the desired function f is fixed. The decision variables in the problem are the

outputs of f , therefore, there are kn decision variables. In order to distinguish the

decision variables from the outputs of the constructed function (although they define

one another, they are not the same) we introduce a slightly different notation. We

call the set of decision variables Vf . We understand this set as an array of variables

1Of course one can use dualities, but it does not give a feasible solution as well as there
exist only k! dualities.
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and we use indices to access entries of the array and write these indices in square

brackets, for example, f(0, 1) is the same as Vf [0, 1]. In what follows the symbols f

and Vf are used interchangeably.

Table 2.1: Decision variables for a function f of arity 1 over a domain {0,1}

x f(x)

0 f(0) = Vf [0]

1 f(1) = Vf [1]

Given two functions f and h over a domain Ak checking if they commute requires

traversing over all possible matrices

M =

 m1,1 . . . m1,ar(f)

. . . . . . . . .

mar(h),1 . . . mar(h),ar(f)

 , mij ∈ Ak.

There exist kar(h)∗ar(f) such matrices.

For i ∈ [1, ar(f)] we denote m•,i = (m1,i,m2,i, . . .mar(h),i) and for j ∈ [1, ar(h)] we

denote mj,• = (mj,1,mj,2, . . .mj,ar(f)). In these notations for every matrix M it is

necessary to check the condition (see Figure 2.3)

f(h(m•,1), . . . h(m•,ar(f))) = h(f(m1,•), . . . f(mar(h),•)) (2.3)

We denote the left hand side of (2.3) f(Mh) or Vf [Mh], i.e.

f(Mh) := f(h(m•,1), . . . h(m•,ar(f))),

the right hand side by (fM)h, i.e.

(fM)h := h(f(m1,•), . . . f(mar(h),•)).

The functions f and h evaluate the condition (2.3) to True or False. We introduce

a new propositional symbol fMh := (f(Mh) = (fM)h). We understand (Mh) as

a tuple of outputs of h when applied “vertically” (see Figure 2.3) on matrix M .

Therefore,

(Mh) := (h(m•,1), . . . h(m•,ar(f))).
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Similarly, we understand (fM) as a tuple of outputs of f applied “horizontally”

(note that the position of • changes)

(fM) := (f(m1,•, . . .mar(h),•)).

When function has a tuple as its argument then the postfix notation is the same as

the prefix notation, i.e. (fM)h := h(fM). To confirm that two functions commute

one has to check the validity of one condition like (2.3) per matrix.

h . . . h h

f m1,1 . . . m1,ar(f) Vf [m1,•]

. . . . . . . . . . . . . . .

f mar(h),1 . . . mar(h),ar(f) Vf [mar(h),•]

f h(m•,1) . . . h(m•,ar(f)) =

Vf [h(m•,1), . . . h(m•,ar(f))] = h(Vf [m1,•], . . . Vf [mar(h),•])

Figure 2.3: Constraints on decision variables of f from commutation with h

Example 2.3.2. In order to commute with f b8 (see Table 2.8) the values of a unary

function f (see Table 2.1) have to satisfy the following constraints:

1. Vf [0] = f b8(Vf [0], Vf [0]);

2. Vf [0] = f b8(Vf [0], Vf [1]);

3. Vf [0] = f b8(Vf [1], Vf [0]);

4. Vf [1] = f b8(Vf [1], Vf [1]).

We rewrite the condition (2.3) as a constraint on decision variables (see Figure 2.3)

(2.4)∀m1,1, . . .mar(f),ar(h) ∈ Ak :

Vf [h(m•,1), . . . h(m•,ar(h))] = h(Vf [m1,•], . . . Vf [mar(f),•]).

In what follows we write ∀M ∈ A
ar(f)∗ar(h)
k instead of ∀m1,1, . . .mar(h),ar(f) ∈

Ak. Therefore, f ⊥ h holds iff the functions f and h evaluate the condition∧
M∈Aar(f)∗ar(h)

k

fMh to True.
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We can expand the commutation constraints in the implication and formalize the

task. We look for an assignment to the decision variables Vf such that they satisfy:

(∀h ∈ H. ∀M ∈ A
ar(f)∗ar(h)
k : VfMh) ∧ (∃M ∈ A

ar(f)∗ar(j)
k : ¬VfMj). (2.5)

We introduce two strategies to attack the problem of finding counter-examples.

2.3.1 Strategy: Satisfy Premise

The first strategy is to start from the premise of the implication (H → j), find

functions satisfying the premise H, and afterwards find those of them that do not

satisfy the conclusion j. In order to satisfy H a function f has to commute with all

functions from H.

As before, let (x) = (x1, . . . xar(f)).

Proposition 2.3.3. Let f, h ∈ Uk and f ⊥ h. Fix f(x) = a, a ∈ Ak. Then

f(h(x1, . . . x1), . . . h(xar(f), . . . xar(f))) = h(a, . . . a).

Proof. By direct check of (2.3)

h . . . h h

Vf x1 . . . xar(f) a

. . . . . . . . . . . . . . .

Vf x1 . . . xar(f) a

Vf [h(x1, . . . x1) . . . h(xar(f), . . . xar(f))] = h(a, . . . a)

Figure 2.4: New assignment to decision variable

As follows from Proposition 2.3.3 after an assignment to a decision variable the

constraints on other decision variables may become explicit, i.e. an equality with a

single variable, see Figure 2.4. In general, we have two possibilities:

1. (h(x1, . . . x1), . . . h(xar(f), . . . xar(f))) = x. Then f may commute with h only

if h(a, . . . a) = a.

2. (h(x1, . . . x1), . . . h(xar(f), . . . xar(f))) 6= x. In this case we obtain

f(h(x1, . . . x1), . . . h(xar(f), . . . xar(f))) = h(a, . . . a).

29



Chapter 2 Lattice of P-Clones

We proceed until all decision variables are assigned and the constraints arising from

the premise are satisfied. After that we check if the found total function f commutes

with j. If f ⊥ j then we return to the previously assigned decision variable and try

a new assignment satisfying the premise, if any. We continue until we find such f

that f 6⊥ j.

The algorithm in Algorithm 2.1 implements the described ideas. We give a precise

and compact description of the algorithm.

The function satisfy premise systematically explores the search space in a depth

first manner. The arity of f can be seen as a parameter of the algorithm. Due to an

observation described in Proposition 2.3.3 some branches may be discarded. When

checking the violation of conclusion, i.e. f 6⊥ j, no pruning is performed due to the

fact that a matrix M such that ¬fMj has to exist. Therefore, we cannot discard

the possibility that f does not commute with j until f is defined for all inputs, i.e. f

is a total function. The approach starting from violating the conclusion is presented

in Subsection 2.3.2.

For all the algorithms in this section we use two global structures:

1. The constructed function f is global. f is extended only in extend f in

Algorithm 2.3 and reduced only in backtrack f in Algorithm 2.4.

2. The stack assignments is global. assignments stores tuples of the form (input,

possible outputs), where for each input f is defined and possible outputs have

not yet been tried for f(input). assignments is modified in extend f in Algo-

rithm 2.3 and in backtrack f in Algorithm 2.4.

At the start f is initialized with the totally undefined function (Line 1). In Lines

2 - 3 the function f is defined for a new input. The function backtrack f returns

None if the search space is exhausted, hence, in Line 4 we check that the possible

assignments are not yet exhausted.

The function f commutes with makes calls to extend f , hence, in Line 5 the func-

tion f may be modified. However, only “forced” assignments are made, i.e. assign-

ments necessary to guarantee that f commutes with H. After entering the if clause

in Line 6 the algorithm either returns or continues the execution from Line 4, hence,

if the possible assignments are exhausted after the call to backtrack f in Line 9

then the while loop ends and None is returned. If f is not total after checking the

commutation with H then we pick some other input for which f is not yet defined

and continue (Lines 12 - 13). At last, if f is not able to commute with H with any

further assignments, we call backtrack f in Line 15.
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Input: H → j (H ⊆ Uk, j ∈ Uk), ar(f)

Output: Function f such that ∀h ∈ H.∀M ∈ Aar(f)∗ar(h) : fMh and

∃M ∈ Aar(f)∗ar(j) : ¬fMj.

1 f ← everywhere undefined function of arity ar(f)

2 input ← x ∈ Aar(f) such that f(x) is not defined

3 extend f(input, A)

4 while input 6= None: // only if assignments are not yet exhausted

5 if f commutes with(H, input):

6 if f is total :

7 if f 6⊥ j:

8 return f

9 else:

10 input ← backtrack f()

11 else:

12 input ← x ∈ Aar(f) such that f(x) is not defined

13 extend f(input, A)

14 else:

15 input ← backtrack f()

16 return None

Algorithm 2.1: satisfy premise

Input: H ⊆ Uk, input ∈ Aar(f)

Output: a Boolean value: for all M containing input, ∀h ∈ H : fMh?

1 for h in H:

2 Ms ← {M ∈M(ar(h))
f,input } // input in M

3 for M in Ms:

4 new input ← Mh

5 output ← (fM)h

6 if f(new input) is not defined :

7 extend f(new input, {output})
8 if not f commutes with(H, new input):

9 return False

10 elif f(new input) 6= output:

11 return False

12 return True

Algorithm 2.2: f commutes with
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The function f commutes with presented in Algorithm 2.2 checks if it is possible to

find an assignment to the decision variables such that f commutes with all functions

from H. M(s)
f,x denotes (m•,1, . . .m•,s), s ∈ N such that there exists at least one

i ∈ [1, s] : m•,1 == x. For each function h ∈ H a set of matrices Ms is constructed;

this set contains only such matrices M that f is defined on each row of M and at

least one row of M is equal to the tuple input. For each matrix M we have three

possibilities:

1. f(Mh) is not defined (Lines 6 - 9). In this case we set f(Mh) := (fM)h and

recursively call f commutes with on the newly defined input.

2. f(Mh) 6= (fM)h (Lines 10 - 11). In this case we cannot make new assignments

such that f commutes with h, hence, we return False.

3. f(Mh) = (fM)h. No action is needed, we continue.

Input: input ∈ Aar(f), outputs ⊆ A

1 choose output from outputs

2 f(input) ← output

3 assignments.push(input, (outputs \ {output}))
Algorithm 2.3: extend f

The function extend f presented in Algorithm 2.3 makes a new assignment to f

and modifies the stack assignments.

Output: latest input ∈ Aar(f)

1 if assignments is not empty:

2 latest input, outputs ← assignments.pop()

3 if outputs is not empty:

4 extend f(latest input, outputs)

5 return latest input

6 else:

7 delete f(latest input)

8 return backtrack f(f , assignments)

9 return None

Algorithm 2.4: backtrack f

The function backtrack is presented in Algorithm 2.4. The purpose of the function

is to backtrack the assignments, i.e. reassign decision variables. In Line 2 the latest
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entry of the assignments is taken. The entry consists of the latest input for which f

has been defined and the possibly valid outputs that were not tried yet. Note that

the stack assignments is modified, because the latest entry is popped.

If the possible outputs are not empty then we reassign the output of f and push the

tuple of input and outputs back to stack inside extend f in Line 4. If no outputs

are left to try we delete the previously assigned output of f in Line 7 and make a

recursive call in Line 8.

Algorithm is sound In satisfy premise it is checked that f ⊥ H and f 6⊥ j

before returning f . Therefore, if f is output then it satisfies the desired condition.

Algorithm is complete The ordering in assignments guarantees that the search

branch is only exhausted if a matrix M was found such that for some h ∈ H : ¬fMh.

The only case when not all assignments for a certain decision variable are tried is

when the decision variable is fixed in f commutes with in Line 7. But in this case

it is guaranteed that no valid assignment is missed. Therefore, the algorithm is

complete.

Algorithm terminates As we always proceed in the search space never returning to

the already tried assignments and the search space is obviously finite, the algorithm

eventually terminates.

The computational complexity of backtrack f in the worst case is dependent on

the size of assignments. The number of keys in assignments is equal to the number

of decision variables, hence equal to kar(f). In the worst case we have to iterate ones

over each key, hence the complexity is bounded by O(kar(f)).

Let m = max({ar(h) | h ∈ H}). In the inner loop of f commutes with there are

at most kar(f)∗m possible matrices M . In the outer loop the functions iterates over

all possible functions from H, i.e. at most |H| repetitions. Computing fMh takes

O(|M |) operations, hence O(ar(f) ∗m) in the worst case. As the values never get

backtracked in this function there are at most kar(f) possible recursive calls (one

for each decision variable). Therefore, the overall complexity of f commutes with

is O(|H|∗kar(f)∗m ∗ ar(f) ∗m ∗ kar(f)︸ ︷︷ ︸
recursive calls

).

In function satisfy premise in the worst case it is necessary to iterate over

all possible functions of the given arity and to check if each function com-

mutes with the conclusion (consider the implication ∅ → fu2 ). Therefore, the
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worst case complexity is bounded by O(kk
ar(f) ∗ (complexity of f commutes with) ∗

(complexity of backtrack f) ∗ kar(f)∗ar(j)︸ ︷︷ ︸
f⊥j?

), which is equal to

O(kk
ar(f)+ar(f)∗(m+1+ar(j))+1 ∗m ∗ |H|). (2.6)

Note that the only dependence of the complexity on j arises from the final commu-

tation check.

2.3.2 Strategy: Violate Conclusion

The second strategy is to start from the conclusion of the implication (H → j), find

functions violating the conclusion j, and afterwards find those of them that satisfy

the premise H. In order to violate the conclusion, i.e. f 6⊥ j, there has to exists M

such that ¬fMj.

Proposition 2.3.4. Let f(a1, . . . aar(f)) = b. If there exists a matrix M ∈
A
ar(f)∗ar(j)
k such that (Mj) = (a1, . . . aar(f)) and (fM)j 6= b then f 6⊥ j.

Proof. As f(Mj) 6= (fM)j then f 6⊥ j.

Remark. The converse does not hold.

j . . . j j

Vf m1,1 . . . m1,ar(f) Vf [m1,•] in
p
u
tj

︷︸︸︷. . . . . . . . . . . . . . .

Vf mar(j),1 . . . mar(j),ar(f) Vf [mar(j),•]

Vf [a1 . . . aar(f)] outputf 6= j(Vf [m1,•], . . . Vf [mar(j),•])︸ ︷︷ ︸
inputf

Figure 2.5: Illustration to Algorithm 2.5

The algorithm violate conclusion in Algorithm 2.5 exploits the idea behind

Proposition 2.3.4. The algorithm insures that f does not commute with j from

the beginning. This is done through proper assignments to a1, . . . aar(f), (fM),

and f(Mj) for some M ∈ Aar(f)∗ar(j), see Figure 2.5. A simple modification of

satisfy premise is used to finish the construction. The modification is denoted by
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satisfy premise*; it takes a partial function f and the premise H and outputs a

function commuting with H. The only difference is that satisfy premise* makes

assignments to only those decision variables that were not assigned at the time of

the call.

Input: H → j (H ⊆ Uk, j ∈ Uk), ar(f)

Output: Function f such that ∀h ∈ H.∀M ∈ Aar(h)∗ar(f) : fMh and

∃M ∈ Aar(j)∗ar(f) : ¬fMj.

1 for inputf , Ms such that (for all M ∈ Ms : Mj = inputf):

2 for outputf in A:

3 extend f(inputf , {outputf})
4 if f commutes with(H, inputf):

5 fcopy ← copy(f)

6 for M in Ms:

7 inputsj ← {inputj ∈ Aar(j) | j(inputj) 6= f(inputf) and

it is possible to assign fM := inputj}
8 for inputj in inputsj:

9 for row in M and i in inputj:

10 extend f(row, {i})
11 f ← satisfy premise*(f , H)

12 if f == None:

13 f ← fcopy
14 else:

15 return f

16 else:

17 backtrack f() // f becomes totally undefined

18 return None

Algorithm 2.5: violate conclusion

The algorithm starts from the values a1, . . . aar(f) in Figure 2.5 denoted in the pseu-

docode by inputf , Line 1. This is later used as input to f . To each inputf correspond

a set of matrices Ms ⊆Mar(f)
f such that for every M ∈ Ms : (Mj) = inputf .

In the second for cycle in Line 2 the algorithm tries different assignments to

Vf [inputf ], outputf in the pseudocode, see also Figure 2.5. In Line 4 it is checked

that f could commute with H with the already performed assignment. For this

purpose we use the function f commutes with already described in Algorithm 2.2.

If it is not possible to commute with H we backtrack f in Line 17 and try the next

35



Chapter 2 Lattice of P-Clones

assignment to Vf [inputf ].

In Line 5 we save a copy of f that we may need later. After that for each M from

Ms we construct a set of possible inputsj such that (fM)j 6= f(Mj), i.e. f does not

commute with j. The name inputsj stems from the fact that each tuple is used as

arguments of j afterwards, see also Figure 2.5. There are two things to take care

about:

1. For some inputs f is already defined. Hence, for n-th row of M and for n-

th element i of inputj we have that f(row) 6= i then such inputj should be

discarded.

2. If n-th row of M is equal to k-th row of M than n-th element of inputj should

be equal to k-th element of inputj.

In Lines 9 - 10 the new values inputj are assigned to outputs of f . As the numbers

of rows in M is equal to the arity of j, i.e. to the size of inputj, we can iterate over

them in one cycle. Then the algorithm attempts to satisfy the premise via finishing

the construction of partially defined f in Line 11. If successful then f is returned in

Line 15. Otherwise we return to the previous function fcopy in Line 13.

Algorithm is sound In violate conclusion before checking the satisfaction of

premise it is guaranteed that f 6⊥ j via making one of the appropriate assignments.

Afterwards, f is made total in such a way that f ⊥ H. Therefore, if f is output

then it satisfies the premise and violates the conclusion.

Algorithm is complete The iteration over all possible pairs (inputf , Ms), outputs

of f , and inputsj guarantees that no possible assignment violating the conclusion

is missed. The completeness of satisfy premise and f commutes with is already

discussed above. Therefore, the algorithm is complete.

Algorithm terminates As we always proceed in the search space never returning to

the already tried assignments and the search space is obviously finite, the algorithm

eventually terminates.

The complexity of violate conclusion is determined by the complexity of prepara-

tory steps, i.e. preparing appropriate inputf and Ms in Line 1, and the complexity

of the four for cycles multiplied by the complexity of satisfy premise* and inter-

mediary functions. The complexity of preparatory steps is O(kar(j)∗ar(f) ∗ kar(f))

and is smaller than the complexity of respective cycles, therefore, it does not add
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up to the overall complexity.

The number of pairs (inputf , Ms) is bounded by O(kar(f)); the number of possible

outputf ’s is k. The complexity of f commutes with is, as before, O(|H|∗kar(f)∗m ∗
ar(f) ∗m ∗ kar(f)); let ccom denote this value. There are up to O(kar(j)∗ar(f)) many

matrices in Ms; the size of inputsj is bounded by O(kar(j)). In the cycle of extending

f we make at most ar(j) assignments. The complexity of satisfy premise* is com-

puted in the same manner as of satisfy premise, except for the factor kar(f)∗ar(j),

which is absent due to the fact that there is no need to check if f and j com-

mute; moreover, some outputs of f are already defined at the time of the call. Let

csp∗ denote the complexity of satisfy premise*. Therefore, the overall worst case

complexity is bounded by

O(k1+ar(f)+ar(j)+ar(j)∗ar(f) ∗ ccom ∗ (ar(j) + csp∗)). (2.7)

2.3.3 Comparison

In this subsection we compare the strategies and the performance of the corre-

sponding algorithms. We start with presenting two examples demonstrating the

execution of both algorithms on the same implication {fu2 , fu3 } → f b8 . We use the

domain {0, 1}.

Example 2.3.5. Construction of a counter-example to implication {fu2 , fu3 } → f b8
using satisfy premise is described in Table 2.2. In usual notations fu2 (x) =

x, fu3 (x) = 1, f b8(x, y) = x ∧ y. The found counter-example is f b14(x, y) = x ∨ y.

Example 2.3.6. Construction of a counter-example to implication {fu2 , fu3 } → f b8
using violate conclusion is represented in Table 2.3. As previously, fu2 (x) =

x, fu3 (x) = 1, f b8(x, y) = x ∧ y. The found counter-example is f b13(x, y) = (y → x).

Table 2.3: Finding binary counter-example to {fu2 , fu3 } → f b8 with

violate conclusion

# inputf outputf f after f commutes with M
correct

assignments

1.1.1 (0, 1) 1
f(0, 1) = 1

f(1, 1) = 1

(
0, 1

1, 1

)
∅

1.1.2

(
1, 1

0, 1

)
∅

Continued on next page
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Table 2.3 – continued from previous page

# inputf outputf f after f commutes with M
correct

assignments

1.1.3

(
0, 1

0, 1

)
∅

1.2.1 0
f(0, 1) = 0

f(1, 1) = 1

(
0, 1

1, 1

)
∅

1.2.2

(
1, 1

0, 1

)
∅

1.2.3

(
0, 1

0, 1

)
∅

2.1.1 (1, 0) 1
f(1, 0) = 1

f(1, 1) = 1

(
1, 0

1, 1

)
∅

2.1.2

(
1, 1

1, 0

)
∅

2.1.3

(
1, 0

1, 0

)
∅

2.2.1 0
f(1, 0) = 0

f(1, 1) = 1

(
1, 0

1, 1

)
∅

2.2.2

(
1, 1

1, 0

)
∅

2.2.3

(
1, 0

1, 0

)
∅

3.1.1 (0, 0) 1
f(0, 0) = 1

f(1, 1) = 1

(
0, 0

1, 1

)
∅

3.1.3

(
0, 1

1, 0

)  (0, 1),

(1, 0),

(0, 0)


Continued on next page
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Table 2.3 – continued from previous page

# inputf outputf f after f commutes with M
correct

assignments

Output: f b13 :=


f(0, 0) = 1

f(0, 1) = 0

f(1, 0) = 1

f(1, 1) = 1



As follows from examples, the algorithms explore search space in different manners

and, therefore, may arrive at different solutions. Note that the case of valid im-

plication (no counter-examples exist) is more challenging for the algorithms as it

is necessary to iterate over all functions that possibly fit (i.e. either all functions

satisfying premise or all functions violating the conclusion).

For a set of functions H we use the notation H⊥ to denote the set {f ∈ Uk | f ⊥ H}.
Consider an implication (H → j). The function satisfy premise in Algorithm 2.1

iterates over all functions that satisfy the premise of an implication. Therefore, it is

more efficient in the case the set of functions satisfying the premise is smaller than

the set of functions violating the conclusion. In Figure 2.6 the case of small set of

functions satisfying the premise H⊥ is represented. It is possible that the function

violate conclusion finds a counter-example faster only because the first violating

assignment contains a counter-example. However, if there does not exist a counter-

example (see Figure 2.7) then satisfy premise outperforms violate conclusion

on nearly all examples.

The function violate conclusion in Algorithm 2.5 is more efficient in the case the

set of functions satisfying the premise is larger than the set of functions violating the

conclusion. Figure 2.8 represents the case when a counter-example exists, Figure 2.9

represents the case when there exist no counter-examples. It is worth noting that on

simple implications satisfy premise may outperform violate conclusion even

in the case no counter-examples exist, see in Figure 2.9, due to the preparatory

steps in violate conclusion. However, as implications become more complex (the

size of domain and the number of functions in the premise increase) the function

violate conclusion clearly outperforms satisfy premise.

The size of Ms for each inputf (see Algorithm 2.5 Line 1) is dependent on the number

of matrices M such that (Mj) = inputj. In the worst case the number is A
ar(j)
k .
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Table 2.2: Finding binary counter-example to {fu2 , fu3 } → f b8 with satisfy premise

# new input f assignments

1 (0,0) f(0, 0) = 0 (0,0): [1]

In f commutes with: from commutation with fu3 over (0 ,0) we obtain an

assignment f(1, 1) = 1.

2 (0,1)

f(0, 0) = 0

f(1, 1) = 1

f(0, 1) = 0

(0, 0) : [1]

(1, 1) : []

(0, 1) : [1]

In f commutes with: commutes with both function on defined inputs.

3 (1,0)

f(0, 0) = 0

f(1, 1) = 1

f(0, 1) = 0

f(1, 0) = 0

(0, 0) : [1]

(1, 1) : []

(0, 1) : [1]

(1, 0) : [1]

In f commutes with: commutes with both function on defined inputs.

Commutes with f b8 ⇒ backtrack f .

In backtrack f : f(1, 0) = 1.

4 (1,0)

f(0, 0) = 0

f(1, 1) = 1

f(0, 1) = 0

f(1, 0) = 1

(0, 0) : [1]

(1, 1) : []

(0, 1) : [1]

(1, 0) : []

In f commutes with: commutes with both function on defined inputs.

Commutes with f b8 ⇒ backtrack f .

In backtrack f : f(0, 1) = 1, f(1, 0) undefined.

5 (1,0)

f(0, 0) = 0

f(1, 1) = 1

f(0, 1) = 1

f(1, 0) = 0

(0, 0) : [1]

(1, 1) : []

(0, 1) : []

(1, 0) : [1]

In f commutes with: commutes with both function on defined inputs.

Commutes with f b8 ⇒ backtrack f .

In backtrack f : f(1, 0) = 1.

Output: f b14 :=


f(0, 0) = 0

f(1, 1) = 1

f(0, 1) = 1

f(1, 0) = 1
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H⊥

⋂
j⊥

j⊥

=
j⊥

H⊥

j⊥

H⊥ ∩ j⊥

Figure 2.6: Counter-examples to H → j, |H⊥|≤ |j⊥|
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H⊥
⋂

j⊥

j⊥

=

j⊥

H⊥

j⊥

H⊥ ∩ j⊥ = ∅

Figure 2.7: Counter-examples to H → j, |H⊥|≥ |j⊥|
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H⊥

⋂

j⊥

j⊥

=

j⊥

H⊥

j⊥

H⊥ ∩ j⊥

Figure 2.8: Counter-examples to H → j, |H⊥|≥ |j⊥|
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H⊥
⋂

j⊥

j⊥

=

j⊥

H⊥

j⊥

H⊥ ∩ j⊥ = ∅

Figure 2.9: Counter-examples to H → j, |H⊥|≥ |j⊥|
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Therefore, in the worst case the number of possible correct assignments depends

on ar(j) exponentially. Hence, the efficiency of violate conclusion significantly

depends on the arity of the conclusion.

Next we present several examples of the executions of algorithms for finding counter-

examples for k = 2. All the involved functions are presented in the appendix to the

current chapter. The given time is the average for 5 runs.

Example 2.3.7. Implication fu2 , f
u
3 → f b8 .

satisfy premise: f b14, 0.0022s.

violate conclusion: f b13, 0.0016s.

The process of constructing counter-examples to this implication with both algo-

rithms is presented in Example 2.3.5 and in Example 2.3.6. Neither unary functions

in the premise nor binary function in the conclusion constrain the sets H⊥ and j⊥

significantly. Therefore, the comparable execution times of both algorithms is to be

expected.

Example 2.3.8. Implication fu1 , f
u
2 , f

u
3 → f b8 .

satisfy premise: f t232, 0.0044s.

violate conclusion: f t212, 0.0037s.

The difference to the previous example is that the only counter-examples are of arity

3.

Example 2.3.9. Implication fu1 , f
u
2 , f

b
8 → fu0 .

satisfy premise: no counter-examples, 0.0046s.

violate conclusion: no counter-examples, 0.00036s.

No counter-examples exist. The input arity was 3.

The conclusion consists of a unary function, therefore, it is to be expected that j⊥

is small. Hence, violate conclusion gives better performance.

Example 2.3.10. Implication fu1 , f
u
2 , f

b
8 → f b14.

satisfy premise: no counter-examples, 0.0056s.
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violate conclusion: no counter-examples, 0.016s.

No counter-examples exist. The input arity was 3.

In this case the conclusion is not restrictive, however, it is easy to satisfy the premise,

hence satisfy premise performs better. It is worth noting that this result is specific

for k = 2, because the set of all ternary functions on a domain of size 2 is small,

therefore it is easy to iterate over them.

Example 2.3.11. Implication fu2 , f
b
14, f

t
150 → f b8 .

satisfy premise: no counter-examples, 0.012s.

violate conclusion: no counter-examples, 0.013s.

No counter-examples exist. The input arity was 3.

The conclusion is not restrictive. However, there is a ternary function in the premise

that is difficult to satisfy. Hence, the performance of algorithms is comparable. This

result is also specific for k = 2, because closing under commutation may take more

time than simple iteration over all possible functions.

Example 2.3.12. Implication fu2 , f
b
8 , f

t
150 → f t232.

satisfy premise: no counter-examples, 0.026s.

violate conclusion: no counter-examples, 0.21s.

No counter-examples exist. The input arity was 3.

A ternary function in the conclusion prevents violate conclusion from executing

fast.

Next follow examples of functions on A3, these functions have an additional sub-

script “3, ”. These examples only serve the purpose of illustrating the difference in

performance between satisfy premise and violate conclusion on A3.

Example 2.3.13. Implication f b3,15951, f
b
3,15663 → f t3,7625403765063.

satisfy premise: no counter-examples, 4.7s.

violate conclusion: no counter-examples, 19.6s.

No counter-examples exist. The input arity was 3.
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A ternary function in the conclusion prevents violate conclusion from executing

fast.

Example 2.3.14. Implication fu3,8 → fu3,18.

satisfy premise: no counter-examples, more than 4037s.

violate conclusion: no counter-examples, 0.0072s.

No counter-examples exist. The input arity was 3.

The conclusion consists of a unary function, therefore it is expectable that j⊥ is

small. Hence, violate conclusion gives better performance.

2.4 Exploration of the Lattice of

P-clones

In order to start the attribute exploration we generate some initial context. In

an extreme case the initial context may contain all functions from Uk; then no

further exploration is necessary. However, practically it does not make sense as it is

infeasible to produce such a context straight-forwardly. Therefore, we require that

the initial context should be easy to generate. A good approach in this sense is to

take all unary functions on a given domain Ak. There exist only kk unary functions

on Ak, therefore the context containing all unary functions is of modest size for a

small k.

Example 2.4.1 (Attribute Exploration of Boolean P-clones). As the initial set of

functions we take all unary Boolean functions, there exist exactly four.

Initial Step The initial context KF1
of all unary function and its implication basis.

fu0 fu1 fu2 fu3
fu0 × ×
fu1 × ×
fu2 × × × ×
fu3 × ×

1. ∅ → fu2 ;

2. fu2 , f
u
3 , f

u
1 → fu0 ;

3. fu2 , f
u
3 , f

u
0 → fu1 .
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We proceed with examining implications until we find a counter-example2.

∅ → fu2 : no counter-examples;

fu2 , f
u
3 , f

u
1 → fu0 : no counter-examples;

fu2 , f
u
3 , f

u
0 → fu1 : a counter-example found – f b8 .

Second Step We add f b8 to the context and obtain the context KF2
containing

fu0 , f
u
1 , f

u
2 , f

u
3 , f

b
8 .

fu0 fu1 fu2 fu3 f b8
fu0 × × ×
fu1 × ×
fu2 × × × × ×
fu3 × × ×
f b8 × × × ×

Implications of the context KF2
:

∅ → fu2 : no counter-examples;

fu2 , f
u
3 → f b8 : a counter-example found – f b14.

Third Step We add f b14 to the context and obtain the context KF3
containing

fu0 , f
u
1 , f

u
2 , f

u
3 , f

b
8 , f

b
14.

fu0 fu1 fu2 fu3 f b8 f b14

fu0 × × × ×
fu1 × ×
fu2 × × × × × ×
fu3 × × × ×
f b8 × × × ×
f b14 × × × ×

Implications of the context KF3
:

2We use NextClosure to compute the basis and output implications one by one until we
find the first counter-examples, see Section 1.4. Therefore, only a part of the basis is
examined and presented in the lists below.

48



Chapter 2 Lattice of P-Clones

fu0 fu1 fu2 fu3 f b8 f b14 f t212

fu0 × × × × ×
fu1 × × ×
fu2 × × × × × × ×
fu3 × × × × ×
f b8 × × × ×
f b14 × × × ×
f t212 × × × ×

Figure 2.10: Context KF4
containing fu0 , f

u
1 , f

u
2 , f

u
3 , f

b
8 , f

b
14, f

t
212

∅ → fu2 : no counter-examples;

fu2 , f
b
14, f

u
1 → fu3 : no counter-examples;

fu2 , f
b
14, f

u
1 → f b8 : no counter-examples;

fu2 , f
b
14, f

u
1 → fu0 : no counter-examples;

fu2 , f
b
8 , f

u
2 → fu3 : no counter-examples;

fu2 , f
b
8 , f

u
1 → fu0 : no counter-examples;

fu2 , f
b
8 , f

u
1 → f b14: no counter-examples;

fu2 , f
u
3 , f

u
1 → f b8 : a counter-example found – f t212.

Fourth Step We add f t212 to the context and obtain the context KF4
containing

fu0 , f
u
1 , f

u
2 , f

u
3 , f

b
8 , f

b
14, f

t
212.

Implications of the context KF4
:

∅ → fu2 : no counter-examples;

fu2 , f
b
14, f

t
212 → f b8 : no counter-examples;

fu2 , f
b
8 , f

t
212 → f b14: no counter-examples;

fu2 , f
b
8 , f

b
14 → f t212: no counter-examples;

fu2 , f
u
3 , f

t
212 → f b8 : no counter-examples;

fu2 , f
u
3 , f

t
212 → f b14: no counter-examples;

fu2 , f
b
14, f

u
1 → fu3 : no counter-examples;
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fu2 , f
b
14, f

u
1 → f b8 : no counter-examples;

fu2 , f
b
14, f

u
1 → fu0 : no counter-examples;

fu2 , f
b
14, f

u
1 → f t212: no counter-examples;

fu2 , f
b
8 , f

u
1 → fu3 : no counter-examples;

fu2 , f
b
8 , f

u
1 → fu0 : no counter-examples;

fu2 , f
b
8 , f

u
1 → f t212: no counter-examples;

fu2 , f
b
8 , f

u
1 → f b14: no counter-examples;

fu2 , f
u
3 , f

u
1 → fu0 : no counter-examples;

fu2 , f
u
0 , f

t
212 → f b8 : no counter-examples;

fu2 , f
u
0 , f

t
212 → f b14: no counter-examples;

fu2 , f
u
3 , f

u
0 , f

t
212, f

b
14, f

b
8 → fu1 : no counter-examples;

fu2 , f
u
0 , f

u
1 → fu3 : no counter-examples.

At this point no counter-examples exist and the attribute exploration terminates.

Not all classes of p-indecomposable functions were found, therefore, exploration is

not successful.

The difference between the considered example and the usual settings for AE is the

varying number of attributes. Indeed, if the set of attributes is fixed and all the

irreducible objects are found, the implicative theory of data is guaranteed to be

discovered. The maximal number of irreducible objects in the context is limited to

2|M |, where |M | is the size of the set of attributes.

In order to find all the classes of p-indecomposable functions we need to take into

account that the set of objects and the set of attributes grow simultaneously. We

extend the procedure with an intermediate step of finding those functions that are

not counter-examples to a valid implication of the current context, but alter the

current lattice when added to the context. The simplest extension would allow to

find such new functions that alter the current lattice on their own (that is we look

for only one new function at a time). Note that in order for the new function not

to be a counter-example to some valid implication its intent restricted to functions

from the context should be equal to an existing intent from B(F, F,⊥). Hence, the

extension of AE finds a single new function altering the concept lattice when no

counter-examples exist. We call this new procedure object-attribute exploration.
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2.4.1 Object-Attribute Exploration

We now describe which commuting properties a new function g 6∈ F should possess

in order to alter the concept lattice of the original context K = (F, F,⊥) despite the

fact that the intent of g is equal to an intent from B(F, F,⊥F ).

To distinguish between binary relations on different sets of functions we use sub-

scripts. The commutation relation on F is denoted by ⊥F , i.e. ⊥F= {(h, j) ∈
F 2 | h ⊥ j}. The context with the new function (F ∪ g, F ∪ g,⊥F∪g) is denoted by

KF∪g. The derivation operator for the context KF∪g is denoted by (·)⊥F∪g .

Proposition 2.4.2. Let C ∈ B(F, F,⊥) such that ext(C) * int(C). Let g /∈ F be

a function such that g⊥F∪g ∩ F = int(C).

g is irreducible in KF∪g ⇔ g ⊥ g.

Proof. As ext(C) * int(C) and for all f ∈ F \ int(C) : g 6⊥ f it follows that

g 6⊥ ext(C). We prove the contrapositive statement: g is reducible in KF∪g ⇔
g 6⊥ g.

⇐ As g 6⊥ g we have g⊥F∪g = int(C) = ext(C)⊥F∪g . Therefore, g is reducible.

⇒ As g is reducible we obtain g⊥F∪g = H⊥F∪g for some H ⊆ F . Fix this H.

As H⊥F∪g = int(C) we have H⊥F∪g⊥F∪g = ext(C). Suppose H ⊆ int(C),

then H⊥F∪g⊥F∪g ⊆ int(C)⊥F∪g⊥F∪g = int(C). As H⊥F∪g⊥F∪g = ext(C) and

ext(C) * int(C) we arrive at a contradiction. Therefore, H * int(C). Hence,

g 6⊥ H, therefore, g 6∈ H⊥F∪g , hence, g 6∈ g⊥F∪g .

Corollary 2.4.3. If g is irreducible in KF∪g and g 6⊥ g then ext(C) → g holds in

KF∪g.

Proof. As g⊥F∪g = int(C) ∪ {g} and ext(C)⊥F∪g = int(C) we have ext(C)⊥F∪g ⊂
g⊥F∪g , therefore, ext(C)→ g.

Example 2.4.4. The lattice of the context after the fourth step is presented in

Figure 2.11. All the concepts are labeled. The labels starting from C are just

names. The labels containing a function f denote the object concept generated by

f if the label is below the concept and the attribute concept if the label is above

the concept. The concept ((fu0 )⊥F4 , (fu0 )⊥F4⊥F4 ) is additionally labeled by C∗.

The function f b6 commutes only with the functions fu2 , f
u
0 from the context

KF4
in Figure 2.10. Therefore, (f b6)⊥F4 = int(C∗). Moreover, ext(C∗) =
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fu
2

f b
8 fu

3
C∗ = fu

0

f b
14 f t

212
fu
1

C1 C2 C3

C4

C5

C6

f b
8

fu
3 fu

0 f b
14

f t
212 fu

1

fu
2

Figure 2.11: Concept lattice of the context KF4
from Figure 2.10

{fu2 , fu0 , f b8 , f b14, f
t
212} * {fu2 , fu0 } = int(C∗) and f b6 ⊥ f b6 , see Figure 2.11. As follows

from Proposition 2.4.2, f b6 is irreducible in KF4∪fb
6
.

For the lattice of the context after adding f b6 see Item 3 in Section 2.7.

The statement dual to Proposition 2.4.2 holds as well.

Proposition 2.4.5. Let C ∈ B(F, F,⊥F ) such that ext(C) ⊆ int(C). Let g ∈
Uk, g /∈ F be a function such that g⊥F∪g ∩ F = int(C).

g is irreducible in KF∪g ⇔ g 6⊥ g.

Proof. As ext(C) ⊆ int(C) and g ⊥ int(C) then g ⊥ ext(C). We prove the contra-

positive statement: g is reducible in KF∪g ⇔ g ⊥ g.

⇐ As g ⊥ g and g ⊥ ext(C) we have ext(C)⊥F∪g = int(C)∪{g} = g⊥F∪g . Hence,

g is reducible.

⇒ As g is reducible we obtain g⊥F∪g = H⊥F∪g for some H ⊆ F . Fix this H. As

g ⊥ int(C) we have H ⊥ int(C), hence, H ⊆ ext(C). As g ⊥ ext(C) we have

g ⊥ H, hence, g ∈ H⊥F∪g , therefore, g ∈ g⊥F∪g and g ⊥ g.
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fu3,0 fu3,1 f b3,12015

fu3,0 × ×
fu3,1 × ×
f b3,12015 × ×

Figure 2.12: Context K(3)
0 of function on domain A3 containing fu3,0, f

u
3,1, f

b
3,12015

Corollary 2.4.6. If g is irreducible in KF∪g and g ⊥ g then g → ext(C) holds in

KF∪g.

Proof. As g⊥F∪g = int(C) and ext(C)⊥F∪g = int(C) ∪ {g} we have g⊥F∪g ⊂
ext(C)⊥F∪g , therefore, g → ext(C).

In order to distinguish reducibility in the old context KF and in the new context

KF∪g we introduce a new notion.

Definition 2.4.7. A function g is first-order irreducible for KF if it is reducible in

KF , but irreducible in KF∪g. A function g is first-order reducible for KF if it is

reducible for KF and reducible in KF∪g.

Remember that we call g plainly irreducible if it is irreducible in

(F ∪ g, F,⊥F ∪{(g, f) | f ∈ F, f ⊥ g}). Hence, if function is first-order re-

ducible for KF then it is also plainly reducible in KF . Note that g is plainly

irreducible in KF iff g is a counter-example to some implication valid in KF .

Next we present an example with functions from U3. As before, we add 3 in the

subscript of every function.

Example 2.4.8. The context under consideration K(3)
0 is presented in Figure 2.12,

the lattice of the context K(3)
0 is presented in Figure 2.13. The implication basis of

K(3)
0 is empty, therefore, there exist no plainly irreducible functions. The function

f b3,756 has the following commuting properties: f b3,756 ⊥ {fu3,0, f b3,12015} and f b3,756 6⊥
fu3,1. Moreover, f b3,756 6⊥ f b3,756 and for the corresponding concept C holds ext(C) =

{fu3,0} ⊂ {fu3,0, f b3,12015} = int(C). As follows from Proposition 2.4.5, the function

f b3,756 is first-order irreducible for K(3)
0 .

Corollary 2.4.9. Let C ∈B(F, F,⊥F ), g ∈ Uk, g /∈ F , and g be first-order reducible

for KF .
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f b
3,12015fu

3,0 fu
3,1

Figure 2.13: Concept lattice of the context K(3)
0 from Figure 2.12

ext(C) ⊥ g ⇔ g ⊥ g.

Proof. Follows from Propositions 2.4.2 and 2.4.5 and the fact that ext(C) ⊥ g ⇔
ext(C) ⊆ int(C).

There remains a possibility that a union of sets of reducible functions is irreducible.

We proceed with the simplest case when there are only two sets each containing

a single first-order reducible function for the current context. We prove several

propositions about such pairs of first-order reducible functions. The consequences

of these propositions and several examples are investigated more deeply in Section

2.4.2.

We consider a context KF and new functions g1, g2 ∈ Uk, g1, g2 6∈ F . We denote

{g1, g2} by G. As in the case with one function, for i ∈ {1, 2} : gi is not a counter-

examples to a valid implication iff g⊥F∪G
i ∩ F ∈ Int(F, F,⊥F ). We denote the

corresponding intents by int(C1) and int(C2), meaning that g⊥F∪G
i = int(Ci) for

i ∈ {1, 2}.

Proposition 2.4.10. Let C1, C2 ∈ B(F, F,⊥F ) and g1, g2 /∈ F be first-order re-

ducible for KF . Suppose g1 ⊥ g2.

Both g1, g2 are irreducible in KF∪G ⇔ ext(C1) * int(C2).

Proof. As g1 is irreducible it holds that g⊥F∪G
1 6= ext(C1)⊥F∪G . From Corollary 2.4.9

follows that g1 ∈ ext(C1)⊥F∪G iff g1 ∈ g⊥F∪G
1 . Therefore, ext(C1)⊥F∪G = g⊥F∪G

1 \
{g2}. Hence, ext(C1) 6⊥ g2, hence, ext(C1) * int(C2). Similarly for g2, ext(C2) *
int(C1).
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g1 g2

g1 ×
g2 ×

g1 g2

g1 × ×
g2 ×

g1 g2

g1 × ×
g2 × ×

Figure 2.14: Possible commutations of g1 and g2 from Proposition 2.4.10

g1 g2

g1

g2

g1 g2

g1 ×
g2

g1 g2

g1 ×
g2 ×

Figure 2.15: Possible commutations of g1 and g2 from Proposition 2.4.11

The possible commutation properties of g1 and g2 corresponding to Proposition

2.4.10 are presented in Figure 2.14.

Proposition 2.4.11. Let C1, C2 ∈ B(F, F,⊥F ) and g1, g2 /∈ F be first-order re-

ducible for KF . Suppose g1 6⊥ g2.

Both g1, g2 are irreducible in KF∪G ⇔ ext(C1) ⊆ int(C2).

Proof. As g1 is irreducible it holds that g⊥F∪G
1 6= ext(C1)⊥F∪G . From Corollary 2.4.9

follows that g1 ∈ ext(C1)⊥F∪G iff g1 ∈ g⊥F∪G
1 . Therefore, ext(C1)⊥F∪G = g⊥F∪G

1 ∪
{g2}. Hence, ext(C1) ⊥ g2, hence, ext(C1) ⊆ int(C2). By the properties of derivation

operators, ext(C2) ⊆ int(C1).

The possible commutation properties of g1 and g2 corresponding to Proposition

2.4.11 are presented in Figure 2.15.

The functions mentioned in Propositions 2.4.11 and 2.4.10 can be called second-

order irreducible for KF . In the next proposition we show that it is not necessary

to look for three functions at once in order to find all p-indecomposable functions.

Therefore, we do not need to define third-order irreducibility.

Here we use the notation: for I ⊆ {1, 2, 3} : LI = {gi | i ∈ I}. We omit the curly

brackets in I, i.e. L{1,2} = L12 = {g1, g2}.

Proposition 2.4.12. Let G = {g1, g2, g3} be a set of functions such that G∩F = ∅
and for i ∈ {1, 2, 3} : g⊥F∪G

i ∩F = int(Ci). If not all functions from G are reducible
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in KF∪G then there exists L ⊂ G such that not all functions from L are reducible

in KF∪L.

Proof. Let g1 be reducible in KF∪L12
and in KF∪L13

. Then there exists H ⊆ F ∪
{g2} : H⊥F∪L12 = g

⊥F∪L12

1 and J ⊆ F ∪ {g3} : J⊥F∪L13 = g
⊥F∪L13

1 . Fix these

H and J . If either g2 is irreducible in KF∪L2
or g3 is irreducible in KF∪L3

then

the proposition is proved. Therefore, we can assume that they are reducible in

corresponding context. Hence, without loss of generality, we can assume that H, J ⊆
F (i.e. H ∩G = J ∩G = ∅). Note that

g⊥F∪G
1 = g

⊥F∪L13

1 ∪ g⊥F∪L12

1 = J⊥F∪L13 ∪H⊥F∪L12 . (2.8)

Let g3 ∈ H⊥F∪G . Then g3 ⊥ H. As g⊥F∪G
3 ∩ F = int(C3) we obtain H ⊆ int(C3).

Moreover, as int(C3) is an intent in KF we have H⊥F⊥F ⊆ int(C3). As g⊥F∪G
1 ∩F =

H⊥F = J⊥F = int(C1) we have J⊥F⊥F ⊆ int(C3) and, by properties of closure

operators, J ⊆ int(C3). Therefore, g3 ⊥ J and g3 ∈ J⊥F∪G . Similarly, if g2 ∈ J⊥F∪G

then g2 ∈ H⊥F∪G . Hence,

H⊥F∪L12 ∪ J⊥F∪L13 = H⊥F∪G ∪ J⊥F∪G . (2.9)

Combining (2.8) and (2.9) we obtain g⊥F∪G
1 = H⊥F∪G ∪ J⊥F∪G . Therefore, g⊥F∪G

1 =

(H ∩ J)⊥F∪G . Hence, g1 is reducible in KF∪G and we arrive at a contradiction with

initial assumption.

Therefore, if g1, g2 are in KF∪L12
then at least g1 is irreducible in KF∪L13

. If g3

is reducible in KF∪L13
then g1 is reducible in KF∪L1

. Otherwise, both g1, g3 are

irreducible in KF∪L13
.

Suppose that a context KF contains all p-indecomposable functions, however, the

task is to prove this fact, i.e. that no further p-indecomposable functions exist.

Suppose it has been checked that no counter-examples exist and every single function

g is first-order reducible for KF . According to the above propositions it is necessary

to look for exactly two functions at once in order to prove the desired statement.

Therefore, in order to complete the proof for every C1, C2 ∈B(KF ) one has to find

all the functions g1, g2 such that g
⊥F∪g1
1 ∩F = int(C1) and g

⊥F∪g2
1 ∩F = int(C2) and

then check if g1 commutes with g2. Therefore one has to check the commutation

property between all functions (if the context indeed contains all p-indecomposable

functions). As already discussed, this task is infeasible. This result is discouraging.

However, having the knowledge about the final result in some cases we can guarantee

that all p-indecomposable functions will be found even without looking for two

functions at once.
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2.4.2 Implicatively Closed Subcontexts

As Example 2.4.1 suggests, during the exploration of p-clones one can discover

such a subcontext of functions that no further function is a counter-example to

existing implications. We shall say that such a subcontext is implicatively closed,

meaning that all implications valid in this subcontext are valid in the final context

as well. Analysis of similar constructions can be found in [Gan07], however, the

authors are interested in partitions where both parts are implicatively closed and in

relations between these parts. Here the complementary subcontext is not necessarily

implicatively closed.

In order to guarantee the discovery of all p-indecomposable functions (success of

exploration) it suffices to find a subcontext such that it is neither implicatively

closed nor contained in any other implicatively closed subcontext. Suppose the

context KF = (F, F,⊥F ), F ⊆ Uk is discovered. As earlier, we denote the context

of all p-indecomposable functions on Uk by KF p
k
. Let S = F pk \ F . It would be

desirable to be able to guarantee the discovery of functions S by considering only

the discovered part of relation ⊥F and the part ⊥FS (=⊥−1
SF ), see Figure 2.16.

Unfortunately, as the next example shows, in general it is not possible.

F S

F ⊥F ⊥FS

S ⊥SF ⊥S

Figure 2.16: Partitioning of the context KF p
k

of all p-indecomposable functions

Remark. The function fu2 is the identity function. The presence of this function in

the context does not modify the concept lattice, therefore we may not include it in

the context. In what follows this function is not included in the context anymore in

order to make the figures more compact.
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Example 2.4.13. Consider the context in Figure 2.17. The context contains all p-

indecomposable functions from U2 and three additional objects g1, g2, g3. Functions

having commutation properties as g1, g2, g3 do not exist. However, if functions with

these commutation properties existed then the functions g1, g2 would not be counter-

examples to any implication valid in KF p
2 ∪g3 . Note that g3 is a counter-example to

an implication valid in KF p
2
. Therefore, the subcontext containing functions F p2 ∪g3

would be implicatively closed. Moreover, it is even closed with respect to finding

first-order irreducible functions as g1 is reducible in KF p
2 ∪{g1,g3} and g2 is reducible

in KF p
2 ∪{g2,g3}.

fu0 fu1 f b14 f b8 f t212 f t150 fu3 g3 g1 g2

fu0 × × × × × × ×
fu1 × × ×
f b14 × × × ×
f b8 × × × ×
f t212 × × × ×
f t150 × × × ×
fu3 × × × × × × × ×
g3 × × × ×
g1 × × ×
g2 × × × ×

Figure 2.17: Context KF p
2 ∪{g1,g2,g3} from Example 2.4.13

However, if instead of g3 we consider the function g4, which differs from g3 only

in that g4 commutes with both g1 and g2 (see Figure 2.18), then the subcontext

containing F p2 ∪ g4 is neither implicatively closed nor contained in any implicatively

closed subcontext of the context KF p
2 ∪{g1,g2,g4}. The difference between g3 and g4 is

contained in ⊥S in Figure 2.16. Therefore, in general it is not possible to guarantee

the discovery of functions S without considering ⊥S .

Even if all functions from S are counter-examples to implications valid in KF p
k

one

cannot guarantee that all functions S will eventually be discovered by means of

object-attribute exploration. We presented a corresponding example.

Example 2.4.14. In the context K{fu
0 ,f

u
1 ,f

t
212,f

u
3 ,g1,g2,g3} in Figure 2.19 the ob-

jects g1, g2, g3 are counter-examples to the implication {fu0 , fu1 } → fu3 valid in
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fu0 fu1 f b14 f b8 f t212 f t150 fu3 g4 g1 g2

fu0 × × × × × × ×
fu1 × × ×
f b14 × × × ×
f b8 × × × ×
f t212 × × × ×
f t150 × × × ×
fu3 × × × × × × × ×
g4 × × × × ××× ×××
g1 × × ××× ×
g2 × × ××× × ×

Figure 2.18: Context KF p
2 ∪{g1,g2,g4} from Example 2.4.13

K{fu
0 ,f

u
1 ,f

t
212,f

u
3 }. However, the subcontext K{fu

0 ,f
u
1 ,f

t
212,f

u
3 ,g3} is implicatively closed

and g1, g2 are first-order reducible for it.

fu0 fu1 f t212 fu3 g3 g1 g2

fu0 × × × × ×
fu1 × × × × ×
f t212 × × ×
fu3 × ×
g3 × × ×
g1 × × ×
g2 × × ×

Figure 2.19: Context K{fu
0 ,f

u
1 ,f

t
212,f

u
3 ,g1,g2,g3} from Example 2.4.14

Definition 2.4.15. Let KH be a context, KF ⊆ KH , S = H \ F . An object s ∈ S
is called an essential counter-example for KF if there exists an implication Imp valid

in KF such that

1. s is a counter-example to Imp;

2. there does not exist an object p ∈ S \ {s} such that p is a counter-example to

Imp.
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It is clear that all the essential counter-examples will necessarily be added to the

context during the exploration. The next proposition suggests how one can check if

a counter-example is essential or not.

Proposition 2.4.16. A function s is an essential counter-example for KF iff there

exists h ∈ (s⊥Uk ∩ F )⊥F⊥F \ (s⊥Uk ∩ F ) such that for all p ∈ S \ {s} such that

(s⊥Uk ∩ F ) ⊆ (p⊥Uk ∩ F ) we have h ∈ (p⊥Uk ∩ F ).

Proof. We start from the latter part. As h ∈ (s⊥Uk ∩ F )⊥F⊥F \ (s⊥Uk ∩ F ) the

implication (s⊥Uk ∩ F ) → h is valid in KF . Moreover, for any p ∈ S \ {s} if

(s⊥Uk ∩ F ) ⊆ (p⊥Uk ∩ F ) then g ∈ (p⊥S ∩ F ), hence, p is not a counter-example to

the implication. Therefore, s is an essential counter-example.

On the other hand, if s is an essential counter-example then there exists such an

implication A → h that A ⊆ (s⊥Uk ∩ F ) and h 6∈ s⊥Uk ∩ F . However, as the

implication is valid in KF we have h ∈ (s⊥Uk ∩ F )⊥F⊥F \ (s⊥Uk ∩ F ). Moreover, as

s is essential we have for any p ∈ S \ {s} such that (s⊥Uk ∩ F ) ⊆ (p⊥Uk ∩ F ) : h ∈
(p⊥Uk ∩F ), because otherwise p would be a counter-example to the implication.

Therefore one can guarantee that the essential counter-examples will be discovered

while considering only ⊥FS from Figure 2.16.

In the context KF p
3

there are several pairs of functions (f1, f2) such that they com-

mute with the same functions except that one commutes with itself and the other

does not commute with itself. These functions cannot be essential counter-examples,

because they are counter-examples to the same implications, if any. However, if they

are the only counter-examples to some valid implication then these functions will

eventually be discovered by object-attribute exploration.

Proposition 2.4.17. Let s1, s2 ∈ S such that s2 6⊥ s2 and s
⊥Uk

1 = s
⊥Uk

2 ∪ {s2}.
If there exists a valid in KF implication Imp such that the counter-examples are

exactly s1, s2 ∈ S then s1 is first-order irreducible for KF∪s2 and s2 is first-order

irreducible for KF∪s1.

Proof. s1 in KF∪s2. As Imp is valid in KF the set s
⊥F∪s1
2 is closed in KF . Therefore,

as follows from Proposition 2.4.2 for the object concept of s2 (ext(Cs2) *
int(Cs2)), the function s1 (s1 ⊥ s1) is first-order irreducible.

s2 in KF∪s1. As Imp is valid in KF the set s
⊥F∪s2
1 is closed in KF . Therefore,

as follows from Proposition 2.4.5 for the object concept of s1 (ext(Cs1) ⊆
int(Cs1)), the function s2 (s2 6⊥ s2) is first-order irreducible.
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The next proposition states that the discovery of p-decomposable (reducible in final

context) functions does not have an impact on the overall success of the procedure.

Proposition 2.4.18. Consider KF . Let R denote all the functions that are not

p-indecomposable. Let H = F pk \ F . If h ∈ H is first-order irreducible for KF then

h is first-order irreducible for KF∪R.

Proof. Note that for all r ∈ R : r⊥Uk =
⋂
{f⊥Uk | f ∈ J} = J⊥Uk for some J ⊆ F pk .

The function h is first-order irreducible in KF , hence, h⊥Uk = int(CF ) for some

CF ∈ B(F, F,⊥F ) and from Corollary 2.4.9 we have ext(CF ) ⊥ h ⇔ h ⊥ h.

In KF∪R we decompose the intent of the corresponding concept C in two parts:

int(C) = int(CF ) ∪ int(CR).

1. Suppose ext(CF ) 6⊥ h. Hence, ext(C) 6⊥ h. Moreover, as h is first-order

irreducible for KF we have h ⊥ h. Therefore, h is first-order irreducible for

KF∪R as well.

2. Suppose ext(CF ) ⊥ h. Hence, either there exists a counter example to some

valid in KF∪R implication or ext(C) ⊥ h. If no counter-example exists then

ext(CR) ⊥ h. Moreover, as h is first-order irreducible for KF we have h 6⊥ h.

Therefore, h is first-order irreducible for KF∪R as well.

Finding all implicatively closed partitions of a context is a complex task. The

following proposition allows for speeding up the process.

Proposition 2.4.19. Let KH be a context, KF ⊆ KH . Let Imp be a valid in KF

implication such that J ⊆ H \ F is the set of all counterexamples to Imp. Each

context KL such that KF ⊆ KL ⊆ KH and L ∩ J = ∅ is not implicatively closed.

Proof. The implication Imp is valid in KL. However, J contains counter-examples

to this implication, therefore, KL is not implicatively closed.

We have investigated different types of reducibilities and we have shown that there

is no need to define third-order irreducible functions. However, the task of finding

second-order irreducible functions is infeasible. Fortunately, it is not only feasible

to find plainly irreducible functions, but also first-order irreducible functions. More-

over, if it would be possible to prove that the functions undiscovered so far are
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f t150 f b14 f b8 fu0 fu1 f t212 fu3
f t150 × × × ×
f b14 × × ×
f b8 × × ×
fu0 × × × × ×
fu1 × × ×
f t212 × × ×
fu3 × × × × ×

Figure 2.20: Functions fu0 , fu1 , f t212, fu3 are first-order reducible for K{f t
150,f

b
14,f

b
8}.

not second-order irreducible then we can guarantee that all the p-indecomposable

functions will eventually be discovered.

Example 2.4.20 (Partition of the context of Boolean p-indecomposable functions.).

After an investigation of Boolean p-indecomposable functions we are able to find

an implicatively closed subcontext K{f t
150,f

b
14,f

b
8} such that all the undiscovered p-

indecomposable functions are second-order irreducible, Figure 2.20.

However, if we start the exploration of Boolean functions from all Boolean unary

functions then we will eventually discover all Boolean p-indecomposable functions.

We use the same idea for discovering all p-indecomposable functions on A3. Namely,

we take all unary functions as the starting point. Thanks to earlier investigation in

[Dan77] we know the final context. When we investigate all possible implicatively

closed partitions such that the implicatively closed subcontext contains all unary

functions we find the following:

• We start with 27 unary functions, 26 of them are p-indecomposable;

• After adding all essential counter-examples we obtain 147 functions, Proposi-

tion 2.4.16 is used;

• After using Proposition 2.4.17 we obtain 155 functions;

• There remain 42 functions to be discovered. By direct check we find that there

does not exist an implicatively closed subcontext containing the 155 functions

mentioned above such that all the undiscovered functions are second-order

irreducible.

Hence, if we start from all unary functions on A3 all the functions F p3 will eventually
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be discovered.

2.5 Results

In the previous sections the exploration process is described and investigated. As

the result of this investigation we obtain that for the execution of exploration of

p-indecomposable functions it is necessary to be able to

1. Find counter-examples to the implications of the form H → j, F ⊆ Uk, j ∈ Uk;

2. For a context KF find a new function h ∈ Uk such that h⊥Uk∩F = int(C), C ∈
B(F, F,⊥F ) and either if ext(C) ⊆ int(C) then h 6⊥ h or if ext(C) * int(C)

then h ⊥ h.

Note that it is possible to rewrite the second task in an implicative manner. Let

KF = (F, F,⊥F ), C ∈ B(F, F,⊥F ). We use Boolean disjunction ∨. We extended

the class of considered implications by allowing disjunctions in conclusion. For a

context K = (G,M, I) for A,B ⊆ M we say that an implication A →
∨
B is not

respected/violated by an object x ∈ G iff the implication evaluates to false, i.e. g

has all the attributes A and none of the attributes B. We also say that such x

is a counter-example to the implication A →
∨
B. Hence, x is a counter-example

iff A ⊆ x′ and B ∩ x′ = ∅. Otherwise, x respects the implication A →
∨
B.

If we want an object x to be reducible in K and have the same attributes as in

the intent of a concept C then we look for a counter-example to the implication

int(C)→
∨

(M \ int(C)). Indeed, x is a counter-example if it has attributes int(C)

and does not have all other attributes. Therefore, we rewrite the task of finding first-

order irreducible functions in implicative manner with a disjunction in conclusion.

A simple modification of the algorithm satisfy premise creates an iterator over

all counter-examples to int(C)→
∨

(M \ int(C)). Afterwards we check if there is a

function in iterator that commutes/not commutes with itself.

Using all the methods and algorithms presented in this chapter it was possible to

find all p-indecomposable functions on A3. Here we note that the two algorithms

satisfy premise and violate conclusion were launched for every single implica-

tion in parallel and the process waited for the first algorithm to finish. As already

mentioned after finding the first counter-example the further implications from the

basis were not analyzed; the found counter-example was added to the context and

the basis was recomputed.
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The experiment was conducted three times starting from different initial contexts,

all three times the exploration was successful. The exploration presented in the

attachment to the current chapter took 207 steps (understanding a step as the

process of finding the implication basis and trying to find counter-example to each

implication from the basis).

2.6 Conclusion

In this chapter methods and tools for exploration of the lattice of p-clones are devel-

oped and investigated. Two algorithms for finding counter-examples to implications

over functions on Ak are introduced, investigated, and compared. It is shown that

none of the algorithms uniformly outperforms the other. Therefore, the best results

are obtained when using both algorithms simultaneously. Afterwards a modification

of the attribute exploration process is introduced. The modification is particularly

suitable for discovering p-indecomposable functions. The resulting procedure is fur-

ther investigated. It is shown that despite several discouraging result about the new

exploration process it is possible to guarantee the success on A3 if all the unary

functions are discovered at some point.
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2.7 Remarks

1. Time taken by the whole procedure for k = 3 is around two weeks. It is diffi-

cult to estimate the dependence between the time of the whole exploration and

k as the time depends essentially on the number of p-indecomposable func-

tions. Moreover, it also depends on the particular order of finding functions.

When the context KF is small (|F | is small) then there normally exist a lot of

counter-examples. If the algorithm is “lucky”, i.e. it finds a p-indecomposable

function out of all possible counter-examples, then it will definitely need less

time than an “unlucky” algorithm. Finding such “lucky” algorithms would be

an interesting topic for further investigation.

We have to take into account that the commutativity check takes O(kar1∗ar2).

Hence, if ar1 = ar2 = k = 4 then the commutativity check takes 44∗4

33∗3 ≈
218200 times more operations. We assume that in average the luckiness of the

algorithm and the number of p-indecomposable function depend on the total

number of function Uk

• linearly. Then the new exploration time would be (several weeks) mul-

tiplied by
|U4|
|U3| . Therefore, the new exploration time would be about

1031 weeks. This is totally infeasible. However, the assumption of linear

growth is very pessimistic.

• logarithmically. Therefore, the new exploration time would be about 107

weeks. With further optimizations this time may be reduced and become

feasible.

2. Complexity of satisfy premise may be further investigated to find a better

bound. If it is necessary to iterate over all possible functions of given arity then

the closure under commutation is trivial. On the other hand, if closing under

commutation requires many operations then many functions are skipped. The

investigation of the interplay of these two factors may give a better bound on

the complexity. However, this investigation is in connection with the problem

of finding p-indecomposable functions in general. Indeed, if we knew which

assignments arise from commutation with functions F then we would have a

deeper insight into the p-expressible through F functions.

3. The lattice of context KF4∪fb
6

is presented in Figure 2.21. The only new concept

is (f b6
⊥

F4∪fb6 , f b6
⊥

F4∪fb6 ), a lower neighbor of C∗. The intent of the new concept

consists exactly of the intent of C∗ and f b6 . For a more thorough description
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see Subsection 2.4.1.
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4. In general if f is a new first-order irreducible function and for some concept C

we have that int(C) = f⊥F then the new concept (f⊥F∪f , f⊥F∪f ) is either the

upper neighbor (if f 6⊥ f) or the lower neighbor (if f ⊥ f) of the concept C.
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Appendix to Chapter 2

Table 2.4: Function fu0

fu0 =

x f(x)

0 0

1 0

Table 2.5: Function fu1

fu1 =

x f(x)

0 1

1 0

Table 2.6: Function fu2

fu2 =

x f(x)

0 0

1 1
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Table 2.7: Function fu3

fu3 =

x f(x)

0 1

1 1

Table 2.8: Function f b8

f b8 =

x1 x2 f(x1, x2)

0 0 0

0 1 0

1 0 0

1 1 1

Table 2.9: Function f b13

f b13 =

x1 x2 f(x1, x2)

0 0 1

0 1 0

1 0 1

1 1 1

Table 2.10: Function f b14

f b14 =

x1 x2 f(x1, x2)

0 0 0

0 1 1

1 0 1

1 1 1
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Table 2.11: Function f t150

f t150 =

x1 x2 x3 f(x1, x2, x3)

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

Table 2.12: Function f t212

f t212 =

x1 x2 x3 f(x1, x2, x3)

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1
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Table 2.13: Function f t232

f t232 =

x1 x2 x3 f(x1, x2, x3)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Table 2.14: Function fu3,0

fu3,0 =

x f(x)

0 0

1 0

2 0

Table 2.15: Function fu3,1

fu3,1 =

x f(x)

0 1

1 0

2 0
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Table 2.16: Function f b3,12015

f b3,12015 =

x1 x2 f(x1, x2)

0 0 0

0 1 0

0 2 0

1 0 1

1 1 1

1 2 1

2 0 1

2 1 2

2 2 1

Table 2.17: Function f b3,756

f b3,756 =

x1 x2 f(x1, x2)

0 0 0

0 1 0

0 2 0

1 0 1

1 1 0

1 2 0

2 0 1

2 1 0

2 2 0
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Chapter Summary

Algebraic identities describe different classes of algebraic structures (equational

classes) and therefore play one of the central roles in algebra. The field of research

that studies common patterns of algebraic structures is called universal algebra

[Bir35]. As noted in [Tay79]: “The role of algebraic equations was pronounced from

the start”. The study of equational classes is essential for mathematics.

A central question about equational classes is the following: if a class satisfies a given

set of identities which other identities are necessarily satisfied by all the members

of the class? The strength and importance of equational deduction can be well ap-

preciated from the words from [CT51]: “it has even been shown that every problem

concerning the derivability of a mathematical statement from a given set of axioms

can be reduced to the problem of whether an equation is identically satisfied in every

relation algebra. One could thus say that, in principle, the whole of mathematical

research can be carried out by studying identities in the arithmetic of relation al-

gebras.” It is well known that in general it is not possible to decide if an identity

is deducible from a given set of identities, see e.g. [Tar41]. Even for a finite set of

identities this question can be undecidable [Per67, p. 179], [Tay79, p. 28]. However,

there are special classes of identities for which the question is decidable, for example,

groups [Deh11]. The modern field of science called automated theorem proving has

made a big progress in equational deduction (as a part of deduction in first order

logic). However, equational deduction is semidecidable in general, meaning that it

is not always possible to say if the answer is negative, i.e. when an identity does not

hold. As a counterpart of automatic theorem provers, automatic model finders are

also actively developed. However, modern tools focus on finite models.

Deductibility is not at all the only question of interest about equational classes.

As pointed out in [BS81, Recent Developments and Open Problems] finding (finite)

bases for equational theories and classification of equational classes are current re-

search activities as well. For the purpose of solving these two questions in a given

set of identities one could find all possible interrelations between identities inside

this set (implicative theory of identities). Up to now no automated knowledge pro-

cessing algorithm was offered to automatize the research of the implicative theory

of a given set of identities.

Automating AE for the exploration of identities and making it efficient raises a

number of unique challenges. For example, though only 70 identities of size up to 5
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are under investigation in the current chapter, it turns out that it is not possible to

finish the investigation considering only finite counter-examples.

An investigation similar to the current one was successfully carried out in [Kes13],

however, the automation of the procedure (finding infinite counter-examples, check-

ing satisfaction of identities in infinite algebras, finding proofs for identities) as well

as an extension of the used methods for a more general case were not intended.

In Section 3.1 we present some general definitions and standard results from the

field of universal algebra. None of these is new. For more information we refer the

reader to [BS81, HM88], and [Bar82, Chapters A.1, A.2].

In Section 3.2 we consider the context of algebras and identities. In particular, we

describe an algorithm for checking the satisfaction of identities in finite algebras and

an algorithm for finding non-equivalent identities of a given size.

The most significant results of the current chapter are concentrated in Section 3.3.

Namely, in Subsection 3.3.1 we introduce and prove the criteria for the necessity of

infinite counter-examples. In Subsection 3.3.2 we investigate the structure of infinite

counter-examples and introduce an algorithm for finding them. At the end of the

chapter results are presented and discussed, conclusion is given.

Contributions

• An algorithm for finding non-equivalent identities is introduced and imple-

mented;

• The conditions for the necessity of infinite counter-examples are introduced

and proved;

• The structure of infinite counter-examples is investigated;

• A computational model and an algorithm for generating infinite algebras sat-

isfying a set of identities but not satisfying a given identity is developed and

implemented;

• The results of a successful exploration are discussed.
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3.1 Algebras and Algebraic Identities

Consider a first-order formal language L consisting of variables X and a set of

function symbols Φ with arities ar(Φ). When we refer to L-terms instead of TM(L)

we write TΦ(X) to explicitly mention the function symbols and variables. For a

term p ∈ TΦ(X) the size or length l[p] is the number of all occurrences of function

symbols and variables in p.

An identity of Φ over X is an expression of the form

p ≡ q,

where p, q ∈ TΦ(X).

The size or length l[p ≡ q] of an identity p ≡ q is the sum of the sizes of both terms,

i.e. l[p ≡ q] := l[p] + l[q].

The set of identities is a subset of the set of first-order L-formulae.

A (Φ-)algebra is an L-structure for the formal language L = (X,Φ, ar(Φ)). An

algebra A is finite if its universe A is finite, otherwise A is infinite. We call the

interpretation pA of a term p ∈ TΦ(X) a term operation. For f ∈ Φ a term operation

fA is called a fundamental operation of A.

Satisfaction of identities in algebras plays a crucial role for the investigation. Terms

p, q ∈ TΦ(X) are called pairwise equivalent if the identity p ≡ q is satisfied in every

(Φ-)algebra. We call two identities p1 ≡ q1 and p2 ≡ q2 pairwise equivalent if they

are satisfied in the same algebras, i.e. if p1 ≡ q1  p2 ≡ q2 and p2 ≡ q2  p1 ≡ q1.

Equational Classes, Free Algebras, Locally Finite Algebras

Definition 3.1.1 (Subalgebra). Let A and B be two Φ-algebra. B is a subalgebra of

A if B ⊆ A and every fundamental operation fB is a restriction of the corresponding

operation fA on B.

For S ⊆ A we say that B is a subalgebra of A generated by S if B is equal to the

smallest set containing S and closed under all fundamental operations of A.

Definition 3.1.2 (Homomorphism). Let A and B be two Φ-algebra. A mapping

ϕ : A → B is called a homomorphism from A to B if

ϕfA(a1, . . . , an) = fB(ϕa1, . . . , ϕan).
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Definition 3.1.3 (Equational class). For a set of identities Σ the class of all algebras

Mod(Σ) such that in every algebra from Mod(Σ) every identity from Σ is satisfied

is called an equational class. The set of identities that hold in each algebra from an

equational class E is denoted by Eq(E). The equational class E(A) is the equational

class Mod(Eq({A})).

Definition 3.1.4 (Free algebra in equational class). Let E be an equational class.

An algebra FE(X) is called the free algebra in E, freely generated by X if every

mapping of X into any algebra from E extends to a homomorphism of FE(X) into

that algebra.

Definition 3.1.5 (Locally finite algebra). An algebra A is called locally finite iff

every subalgebra of A generated by finitely many elements is finite.

Theorem 3.1.6. Let A be an algebra. A is locally finite iff FE(A)(X) is finite for

any X such that |X|< |N|.

3.2 Context of Algebras and

Identities

In the current investigation we are interested in Φ = (∗, ., a) with arities ar(∗) =

2, ar(.) = 1, ar(a) = 0. Alternatively we refer to these function symbols via

f (2), f (1), f (0) with corresponding arities in superscripts. For the chosen Φ the Φ-

algebras are called bunnies (from Binary, Unary, Nullary).

Several important classes of algebras can be defined using all or several function

symbols from the chosen signature. Such classes include finite and infinite algebras.

Example 3.2.1. A groupoid is an algebra (A, ∗). A groupoid satisfying associativity

(x ∗ y) ∗ z ≡ x ∗ (y ∗ z) is called a semigroup. If in a semigroup exists an identity

element a, i.e. a ∗ x ≡ x ∗ a ≡ x, the semigroup is called a monoid. A group is a

monoid with inverse elements x ∗ (.x) ≡ (.x) ∗ x ≡ a.

We will use a set of identitiesMid as attributes of a formal context KB = (GB,Mid, I)

and algebras as objects. An algebra A is in relation I with an identity id ∈ Mid iff

A |= id.

In order to obtain a finite set of identities we constrain the size of identities to be

not larger than five. Because of this constraint it suffices to use only three variables
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X = {x, y, z}. Our goal is to find all equational classes that can be defined by these

identities, i.e. we aim at building the lattice of all classes that are closed under

deduction. In order to do this we need to determine if an implication over identities

holds. Therefore we either prove that the identities in the conclusion follow from

the identities in the premise (in the sense of equational logic or first-order logic)

or present a counter-example. For the purpose of deduction we use the automated

theorem prover Prover9, for finding finite models we use Prover9’s counterpart

Mace4 [McC10]. However, in general the equational theory involving identities from

above (and some others) is undecidable, because of, for example, having the identity

x ∗ x ≡ x [BHSS89, pp. 34–36].

3.2.1 Identities as Attributes

An algorithm for checking the satisfaction of identities in finite algebras arises from

the definitions. Note that the algorithm is not appropriate for checking the satisfac-

tion of an identity in an infinite algebra if this infinite algebra satisfies this identity

as the algorithm would require an infinite number of operations.

Input: A = (A,Φ), p, q ∈ TΦ(X).

Output: Is an identity p ≡ q satisfied in the algebra A?

1 for map in AX :

2 a1, . . . , an ← map(x1), . . . , map(xn)

3 if not pA(a1, . . . , an) == qA(a1, . . . , an):

4 return False

5 return True

Algorithm 3.1: check identity

Generating pairwise non-equivalent identities

In order to generate identities we start from generating terms of limited length and

afterwards pair them and gather the pairs in a set of identities. Having this set we

filter out pairwise equivalent identities. What is left is the desired set of pairwise

nonequivalent identities of given length.

The algorithm for generating terms exploits the idea that a term of fixed signature

is uniquely determined by three tuples:

1. Variables vars;
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2. Orders of application of function symbols fs order;

3. Types of function symbols fs types.

The variables are ordered in the tuple vars. The nullary functions require special

handling in this representation. For the nullary function we always use a “place-

holder”. The nullary functions are always performed first. A function with a minimal

corresponding order is applied next. If two functions have the same order the result

should be independent from the order of their applications.

The idea of processing these tuple into a term is best illustrated with an example.

Example 3.2.2. The input consists of three tuples:

vars := (x, x);

fs order := (0, 2, 1);

fs types := (f (0), f (2), f (1)).

We process the input “in place”, i.e. we use the input tuples to produce the out-

put. The final result is constructed in the tuple vars. First the functions with

corresponding order 0 is applied, i.e. the nullary function. The intermediate result

is:

vars := (f (0), x);

fs order := (2, 1);

fs types := (f (2), f (1)).

Next the functions with corresponding order 1 is applied – the unary function on

second argument. The intermediate result is:

vars := (f (0), f (1)(x));

fs order := (2);

fs types := (f (2)).

In the last step the binary function is applied. The result is f (2)(f (0), f (1)(x)) or

a ∗ (.x).

The algorithm for generating terms of a given length s and over given set of variables

X is presented in Algorithm 3.2. The desired output of the algorithm is the set of

terms T (s)(X) ⊆ T (X) such that for all p ∈ T (s)(X) : l[p] = s.

The function # returns the length of its argument, for example, #((x, x)) = 2. The

function Nfs types returns the number of occurrences of its argument in the tuple
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fs types. In Line 3 the algorithm produces all possible tuples fs types – cartesian

power of function symbols {f (2), f (1), f (0)}.

In Line 4 the algorithm sorts out those tuples fs types that will not produce a term

of desired length s. For example, the tuple (f (2), f (2), f (0)) cannot produce a term

of length 4 as we already have 3 functions and we will not manage to produce a

valid term with only 1 additional variable. We obtain a condition on the length of

variables and the number of occurrences of different functions in the constructed

term. The number #(vars) represents the number of occurrences of variables in

the constructed term. This number is fixed first, before the actual tuple vars is

constructed. On the one hand, from the constraint on the size of the term we obtain

that #(vars) is equal to s−Nfs types(f
(2))−Nfs types(f

(1)). On the other hand, from

the definition of terms as valid applications of functions (Definition 1.3.2) we obtain

that #(vars) is equal to Nfs types(f
(2)) + 1. Therefore, we obtain the condition:

2×Nfs types(f
(2)) +Nfs types(f

(1)) + 1 = s.

In Line 5 we fix #(vars). In Lines 6 - 9 for each possible order of application of

functions fs types we do the following. If the arity of function is zero then the

corresponding order of application is changed to 0 in Line 9 so that this function

is performed first. The function Term.tuples2term in Line 11 produces a string of

applications of functions as shown in Example 3.2.2. Before adding the tuples to the

result, in Line 12 we check that the tuples are not equivalent to some term that is

already added to result. This is performed through comparing respective functional

strings. The set result may already contain an equivalent term due to the fact that

orders of nullary functions were changed and any variable could be a placeholder for

the nullary function.

Algorithm is sound, complete, and terminates. The algorithm terminates as

there are only finite cycles. The algorithm produces only the desired terms and

finds all of them.

As follows from the description the algorithm does some overwork due to producing

possible tuples that are later filtered out in Lines 4 and 12. Nevertheless, it works

efficiently enough to be able to produce (in minutes on a standard modern computer)

terms of much larger sizes than we would need in this chapter (at least up to 8).

In the practical usage in Line 2 we may change [1, s] to [k, s] such that k = ds+1
2 e,

because for size fs in [1, k] we will not find any fs types that would produce a term

of given length.
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Input: s ∈ N, X.

Output: T (s)(X) such that ∀p ∈ T (s)(X) : l[p] = s.

1 result ← ∅
2 for size fs in [1, s]:

3 for fs types in {f (2), f (1), f (0)}size fs:

4 if 2×Nfs types(f
(2)) +Nfs types(f

(1)) + 1 == s:

5 #(vars) ← Nfs types(f
(2)) + 1

6 for fs order in permutations([1, size fs]):

7 for i in [0, size fs]:

8 if fs types[i] == f (0):

9 fs order[i] ← 0

10 for vars in X#(vars):

11 term ← Term.tuples2term(vars, fs order, fs types)

12 if not term in result:

13 result.add(term)

14 return result

Algorithm 3.2: generate terms

In order to generate identities of size s it is necessary to combine terms p and q

such that l[p] + l[q] = s. However, it remains to filter out the pairwise equivalent

identities. The following propositions explore some classes of pairwise equivalent

identities.

Proposition 3.2.3. If p is of the form x, x ∈ X and q does not contain any occur-

rences of x then p ≡ q is equivalent to x ≡ a.

Proof. Let two assignment functions h̄0, h̄1 differ only in that h̄0(x) 6= h̄1(x). As

q does not contain x we have h̄0(q) = h̄1(q), hence h̄0(x) = h̄1(x), contradiction.

Hence, the identity p ≡ q may only be satisfied if there does not exists h̄0, h̄1 such

that h̄0(x) 6= h̄1(x). Hence, for any assignment function h̄ the value h̄(x) is equal to

the only element of the domain aA.

Hence, it suffices to consider only one identity from the class described in Proposition

3.2.3, we take the identity x ≡ y.

Proposition 3.2.4. If p is of the form .x, x ∈ X and q is of the form .t, t ∈ T (X)

such that t does not contain any occurrences of x then p ≡ q is equivalent to .x ≡ .a.
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Proof. Let two assignment functions h̄0, h̄1 differ only in that h̄0(x) 6= h̄1(x). As

t does not contain x we have h̄0(t) = h̄1(t). Therefore, .A(h̄0(x)) = .A(h̄1(x)) =

.A(h̄0(t)). As we can take further assignment functions h̄2, . . . that only differ in

the assignment for x, we obtain the condition that for all b, c ∈ A : .A(b) = .A(c).

Hence, the output of .A is constant and equal to .A(aA).

Out of the identities described in Proposition 3.2.4 we take the identity .x ≡ .a.

Of course if the only difference between two identities is in the names of variables

(e.g. “x ≡ x ∗ y” and “y ≡ y ∗ z”) then they are pairwise equivalent, hence, filtered

out.

The functions implementing the stated ideas are contained in the software libraries

written in order to perform the current investigation. The algorithm takes the size of

identities and the number of variables as input arguments and produces the desired

set of identities. The algorithm is able to produce identities of arbitrary size, these

identities may be used for further investigations.

The produced set of pairwise non-equivalent identities of size up to five consists of

70 identities, this set Mid is listed in Table 3.7. In [Kes13] it was shown on examples

that these identities are indeed pairwise non-equivalent.

3.3 Finding Counter-examples

The task of finding counter-examples to an implication P → c, where P is a set of

identities and c is an identity, consists in finding a bunny A satisfying P and not

satisfying c, i.e. A |= P, A 6|= c.

In practice it is usually easier to work with finite algebras. For example, it is

possible to directly check the satisfaction of an identity by iterating over all possible

assignment functions. Moreover, in the current investigation the automatic model

finder Mace4 [McC10] was used. However, as was shown already in [Kes13], it is

not possible to reach our goal considering only finite algebras. Modern automatic

model finders like Mace4 [McC10], E-Darwin [BFdNT07] and Paradox [CS] are only

designed for finding finite models.
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3.3.1 Necessity of Infinite Algebras

Next we prove the necessity of infinite counter-examples, however, we use other

methods than in [Kes13]. These methods allow us to introduce criteria and investi-

gate the structure of infinite counter-examples.

Proposition 3.3.1. If in algebra A and for some n ∈ N there exists an infinite set

of term operations {pi(x1, . . . , xn)}i∈I then FE(A)(X) is infinite.

This proposition follows instantly from the definition of FE(A)(X). From this propo-

sition and Theorem 3.1.6 we obtain

Corollary 3.3.2. If {pi(x1, . . . , xn)}i∈I is infinite then A is not locally finite.

Next follows a criterion for the necessity of infinite counter-examples.

Lemma 3.3.3. Let Y be a tuple of variables. If there exist unary terms p, q and

terms r, r∗ such that

A |= x ≡ pq(x), pr(Y ) ≡ pr∗(Y ),

A |= r(Y ) 6≡ r∗(Y )

then A is not locally finite.

Proof. Consider Qn := {qi(x)}i≤n, Q := {qi(x)}i∈N. Proof by induction.

1. Assume q(x) ≡ x. Hence, p(x) ≡ x. Hence, r(Y ) ≡ r∗(Y ), contradiction.

Therefore, q(x) 6≡ x.

2. Assume all terms in Qn−1 are pairwise non-equivalent and there exists k < n :

qn(x) ≡ qk(x).

a) Assume qn(x) ≡ x. Hence, x ≡ pn(x). Hence, r(Y ) ≡ pn−1p(r(Y )) ≡
pn−1p(r∗(Y )) ≡ r∗(Y ). Therefore, r(Y ) ≡ r∗(Y ), we come to a contra-

diction. Hence, qn(x) 6≡ x.

b) Assume qn(x) ≡ qk(x). We have pkqk(x) ≡ x and pkqn(x) ≡ ql(x), l =

n − k. Hence, x ≡ ql(x) and we come to a contradiction to the initial

assumption about Qn−1. Hence, qn(x) 6≡ qk(x).

Hence, qn(x) 6≡ qk(x).

Therefore, the set of terms Q is infinite, hence, A is not locally finite.
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Table 3.1: A counter-example A to {x ≡ a ∗ (.x)} → x ≡ .(a ∗ x)

m ∗A n :=

{
0 ∗A n = n− 1, if n ≥ 1;

m ∗A n = 0, else;

.An := n+ 1;

aA := 0.

Corollary 3.3.4. If there exist two unary terms p, q such that A |= x ≡ pq(x) and

A |= x 6≡ qp(x) then A is not locally finite.

Proof. Consider r(x) := x, r∗(x) := qp(x). Hence, pr(x) = p(x), pr∗(x) = pqp(x) ≡
p(x), therefore, pr(x) ≡ pr∗(x). Now we can use Lemma 3.3.3.

Proposition 3.3.5. Let A be a bunny. If A is a counter-example to the implication

{x ≡ a ∗ (.x)} → x ≡ .(a ∗ x) (3.1)

then A is not locally finite.

Proof. Consider p(x) = a ∗ x, q(x) = .x, and Corollary 3.3.4.

Therefore, all finite algebras satisfy Implication (3.1).

Example 3.3.6. A counter-example to Implication (3.1) is the infinite algebra A
presented in Table 3.1.

Although A |= x ≡ a ∗ (.x), the function . is surjective, but not bijective. This is

only possible if the universe is infinite.

Several other implications over our identities have only infinite counter-examples.

Proposition 3.3.7. Let A be a bunny. If A is a counter-example to the implication

{x ≡ .(a ∗ x)} → x ≡ a ∗ (.x) (3.2)

then A is not locally finite.
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Proof. Consider p(x) = .x, q(x) = a ∗ x, and Corollary 3.3.4.

Proposition 3.3.8. Let A be a bunny. If A is a counter-example to the implication

{a ≡ .a, a ≡ .(x ∗ a), x ≡ .(x ∗ x)} → a ≡ x ∗ a (3.3)

then A is not locally finite.

Proof. Consider p(x) = .x, q(x) = x∗x, r = a, r∗(x) = x∗a and Lemma 3.3.3.

Proposition 3.3.9. Let A be a bunny. If A is a counter-example to the implication

{.a ≡ .(.a), x ≡ .(x ∗ x)} → a ≡ .a (3.4)

then A is not locally finite.

Proof. Consider p(x) = .x, q(x) = x ∗ x, r = .a, r∗ = a and Lemma 3.3.3.

Proposition 3.3.10. Let A be a bunny. If A is a counter-example to the implication

{a ≡ .(x ∗ a), x ≡ .(x ∗ x), .x ≡ a ∗ x} → .a ≡ x ∗ a (3.5)

then A is not locally finite.

Proof. Consider p(x) = .x, q(x) = x ∗ x, r = .a, r∗(x) = x ∗ a. We have pr∗(x) =

.(x ∗ a) = a, pr = .(.a) = .(a ∗ a) = a. Now we can use Lemma 3.3.3.

Proposition 3.3.11. Let A be a bunny. If A is a counter-example to the implication

{a ≡ .(.a), x ≡ .(x ∗ x)} → .a ≡ a ∗ a (3.6)

then A is not locally finite.

Proof. Consider p(x) = .x, q(x) = x ∗ x, r = p(a) = .a, r∗ = q(a) = a ∗ a. We

have pr = .(.a) = a, pr∗ = .(a ∗ a) = a. Now we can use Lemma 3.3.3.

As the experiment proves, Propositions 3.3.5, 3.3.7, 3.3.8, 3.3.9, 3.3.10, 3.3.11 de-

scribe all possible classes of implications over Mid that have only infinite counter-

examples. Each class of implications contains the respective implication, e.g. Im-

plication (3.6), and implications obtained by adding identities to the premise of

implications, e.g. the implication

{a ≡ .(.a), x ≡ .(x ∗ x), .x ≡ a ∗ x} → .a ≡ a ∗ a (3.7)

is in the class of Implication (3.6). However, after adding certain identities to the

premise an implication may become valid. Such implications, of course, do not have

any counter-examples and do not belong to the described classes. All other invalid

implications over Mid may be violated by finite algebras.
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3.3.2 Finding Infinite Counter-examples

Now, after we have identified that infinite counter-examples are necessary and de-

scribed classes of implications that have only infinite counter-examples, we investi-

gate possibilities of finding these infinite counter-examples. This investigation starts

from the analysis of their structure.

Structure of Infinite Counter-examples

As follows from the Downward Löwenheim-Skolem Theorem [Löw15], [Bar82, Chap-

ter A.1], it suffices to consider only models over a countable universe A.

Let

Tfin = Σ ∪ {pr ≡ pr∗},
T ∗fin = Tfin ∪ {r 6≡ r∗},

where Σ is a set of identities. The terms p and q are, as before, some unary terms,

p, q, r, r∗ ∈ T (X).

Let ar(r) = ar(r∗) = n. For an algebra A we fix the tuple Cv ∈ An such that

rA(Cv) 6= r∗A(Cv), if it exists. Denote c := rA(Cv), c
∗ := r∗A(Cv), then c 6= c∗. For

b ∈ A, B ⊆ A we introduce the following notations:

q−∞(b) = {x | ∃n ∈ N : (qA)n(x) = b},
q−∞(B) = ∪{q−∞(b) | b ∈ B},
q∞(b) = {(qA)n(b) | n ∈ N},
q∞(B) = ∪{q∞(b) | b ∈ B}.

Lemma 3.3.12. If A |= T ∗fin ∪ {x ≡ pq(x)} then there do not exist b, b∗ ∈ A :

qA(b) = c, qA(b∗) = c∗.

Proof. Assume the opposite. Then b = pAqA(b) = pA(c) and b∗ = pAqA(b∗) =

pA(c∗). As pr(Y ) ≡ pr∗(Y ), we have pA(c) = pA(c∗). Therefore b = pA(c) =

pA(c∗) = b∗. But then c = qA(b) = qA(b∗) = c∗ yields a contradiction to the

assumption c 6= c∗.

Therefore, in A at least one of the elements c, c∗ does not have a preimage under qA.

Without loss of generality let c have no preimage under qA, i.e. there is no a ∈ A
such that qA(a) = c. Consider the set q∞(c).
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Proposition 3.3.13. Under the conditions of Lemma 3.3.12, the set q∞(c) is infi-

nite.

Proof. 1. (qA)n(c) 6= c. Otherwise qA(ĉ) = c, ĉ = (qA)n−1(c), hence, ĉ is a

preimage of c under qA, contradiction.

2. (qA)n(c) 6= (qA)k(c). Otherwise (qA)n−k(c) = c, and we arrive at the first

case.

Therefore, q∞(c) is an infinite subset of the universe.

Note that as A |= x ≡ pq(x) then for all n ∈ N : A |= pqn(x) ≡ qn−1(x).

Let C = {d ∈ {c, c∗} | @b ∈ A : qA(b) = d}.
Remark. One can observe that in order to satisfy x ≡ pq(x) in algebra A the term

operation qA has to be injective and the term operation pA has to be surjective

[Kes13, pp. 83-85].

The next lemma states that a subuniverse B ⊆ A can only be finite if C∩q−∞(B) =

∅.

Lemma 3.3.14. If Tfin∪{x ≡ pq(x)} has a finite nontrivial model and T ∗fin∪{x ≡
pq(x)} is satisfiable then there exists an algebra A such that A |= T ∗fin∪{x ≡ pq(x)}
and

∀B ⊆ A : (q∞(B) is finite ⇒ ∀d ∈ C : d 6∈ q−∞(B)).

Proof. Take B ⊆ A such that q∞(B) is finite. Now suppose there exists d ∈ C :

d ∈ q−∞(B). Therefore, there exists n > 0 such that (qA)n(d) = b, b ∈ B. From

Proposition 3.3.13 we know that q∞(C) is infinite, therefore, q∞(b) is infinite as

well, contradiction.

Corollary 3.3.15. For all b ∈ A \ C there exist a unique preimage under qA in A.

For all b ∈ A \ {pA(d) | d ∈ C} there exist a unique preimage under pA in A and

for each d ∈ C there exists E ⊆ A such that for all e ∈ E : pA(e) = pA(d).

Generating Infinite Algebras

Denote by Afin the biggest finite subalgebra of A (if it exists) and the corresponding

subuniverse by Afin. Consider an implication P → c, P ⊆ Mid, c ∈ Mid. We look

for an infinite counter-example to this implication, i.e. an infinite algebraA such that

A |= P,A 6|= c. As the experiment proves for the chosen identities, if an implication
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has only infinite counter-examples we can always find a counter-example A such

that for B ⊆ A if C ∩ q−∞(B) = ∅ then q∞(B) is finite. See also Remark 2. It is

natural to suggest that the decision variables of the problem describe the outputs of

the fundamental operations ∗A = (f (2))A, .A = (f (1))A, aA = (f (0))A. We make a

natural requirement that the number of decision variables should be finite. As the

universe A is infinite we can not assign a decision variable to each respective output

as we would need an infinite number of decision variables. In order to overcome

this obstacle we use different domains for different decision variables. The decision

variables that describe the outputs of fundamental operations over the infinite set

q∞(C) may not only take values from A, but also expressions of special type.

We enumerate the infinite universeA and work with the indices of the elements. Next

follows the description of the enumeration we use. The size of the set C is at most 2,

we enumerate elements of this and consider an ordered set (C,<) such that the order

< corresponds to the natural order on indices of the elements. As Afin and q∞(C)

have an empty intersection and for k, n ∈ N, k 6= n and c ∈ C : (qA)n(c) 6= (qA)k(c)

then each element of the set q∞(c) is uniquely represented by (qA)n(c), n ∈ N.

We denote the size of Afin by S. We use the enumeration induced by c ∈ C and

n ∈ N. Namely, for least element c1 of the set C and some n ∈ N the value (qA)n(c1)

corresponds to the element b2n+S ∈ A. For the second element c2 (if it exists) of the

set C and some n ∈ N the value (qA)n(c2) corresponds to the element b2n+S+1 ∈ A.

Example 3.3.16. Let q = x ∗ a, p = .x. Let c1 ∈ C and Afin = ∅. We use the

respective number 1 instead of c1. Then we may assign b1∗AaA := b3, b3∗AaA := b5,

and so on, i.e. bn ∗A aA := bn+2. The values of pA(n) for n ≥ 3 would be defined by

.Abn := bn−2.

In what follows we use simply n instead of bn.

We use an arbitrary enumeration of the set Afin. Note that as the size of identities is

limited to 5 there are at most three nested functions in the terms in Table 3.7. Hence,

Afin of an infinite algebra A satisfying the identities a ≡ .(.(.a)) and a 6≡ .a has

at least three elements. It was experimentally proved that for the chosen identities

it suffices to consider the finite subuniverse Afin of the size not larger than 3.

We associate the universe A with the set of natural numbers N. We fix aA = 0.

This choice does not reduce the generality of the approach as it is always possible to

choose a different ordering of the values of the universe. In these settings we arrive

at 16 decision variables for the problem of finding an infinite counter-example, see

Table 3.2.
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Table 3.2: Decision variables in finding infinite algebra A
x .A

0 .A0

1 .A1

2 .A2

n .An

∗A 0 1 2 n

0 0 ∗A 0 0 ∗A 1 0 ∗A 2 0 ∗A n
1 1 ∗A 0 1 ∗A 1 1 ∗A 2 1 ∗A n
2 2 ∗A 0 2 ∗A 1 2 ∗A 2 2 ∗A n
n n ∗A 0 n ∗A 1 n ∗A 2 n ∗A n

The pseudocode of the algorithm for finding infinite counter-examples is pre-

sented in Algorithm 3.3. The function discover constraints takes identities

from the premise P as the input and outputs constraints and a list of decision

variables required vars. The constraints represent equality constraints on the out-

puts of fundamental operations of A. The required vars are the decision variables

that are needed in order to check the satisfaction of identities P . The function

discover constraints is presented in Algorithm 3.5.

After identifying the constraints, the global list assignments of possible assignments

to the required decision variables is prepared in Line 2. The function product

produces the cartesian product of the arguments; the function domain returns the

set of possible assignments to its argument. The function domain returns different

possible domains of values for different outputs. Namely, if a considered output

arises from an assignment of a variable x over Afin then possible outputs range

only over Afin. Otherwise, if a variable x is assigned a value from q∞(C) then

the corresponding output may get a value either from Afin or from q∞(C). As

already noted, in practice we use indices to represent values from q∞(C), hence, the

respective domain for an output would include values n, n+ 1, n+ 2, n− 1, n− 2.

Further on the function find algebra proceeds with making next assignment to

decision variables (outputs of fundamental operations of A) satisfying the discovered

constraints, Line 3. This is performed with the help of the function exists next A
presented in Algorithm 3.4. If such an assignment exists then in Line 4 the function

find algebra checks if the conclusion is violated and, if so, returns the found algebra

A. If the desired assignment does not exist then the search space is exhausted

without finding counter-examples, hence None is returned.

The function exists next A finds the next assignments that comply with con-

straints. First in Line 1 the function checks if there are any assignments left to

try. If so, the required decision variables get the next assignment in Line 2. The

global list assignments is changed. Next if the resulting algebra A satisfies the con-
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Input: P → c (P ⊆Mid, c ∈Mid).

Output: A such that A |= P , A 6|= c.

1 (required vars, constraints) ← discover constraints(P)

2 assignments ← product([domain(var) | var in required vars])

3 while exists next A(required vars, constraints):

4 if A 6|= c:

5 return A
6 return None

Algorithm 3.3: find algebra

straints then the functions returns True. Otherwise it continues to the next possible

assignment. If all possible assignments are exhausted, the function returns False.

Input: required vars, constraints.

Output: a Boolean value: does A satisfying constraints exist?

1 while assignments is not empty:

2 required vars ← assignments.pop()

3 if A satisfies constraints:

4 return True

5 return False

Algorithm 3.4: exists next A

The function discover constraints takes the identities from the premise and con-

structs the sets required variables and constraints. Assignments of variables X to

values of A ∪ {n} are taken. With the help of these assignments terms of each

identity are evaluated in A. The terms are set equal, hence, certain constraints over

outputs of fundamental operations of A are discovered. See Example 3.3.17.

Example 3.3.17. Consider the identity x ≡ .(a ∗ x). From the considered identity

we obtain the following constraints on fundamental operations of A and different

variable assignment functions h. constraints contain the following bindings:

h0(x) = 0: 0 = .A(0 ∗A 0);

h1(x) = 1: 1 = .A(0 ∗A 1);

h2(x) = 2: 2 = .A(0 ∗A 2);

h3(x) = n: n = .A(0 ∗A n).
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The list required vars consists of the decision variables 0 ∗A 0, 0 ∗A 1, 0 ∗A 2, 0 ∗A n,

.A(0∗A 0), .A(0∗A 1), .A(0∗A 2), .A(0∗An). Note that the last 4 decision variables

are defined through the first 4.

In Line 4 the number of different variables occurring in p ≡ q is counted and assigned

to k. This is used in Line 5 to define an appropriate tuple a of values. In Lines 6

- 7 we take all subterms s from the identity p ≡ q and check if the corresponding

evaluation sA(a) is already added to required variables. As we take all subterms

it may happen that another required variable is nested in the subterm. However,

when the nested subterms get assigned the term operation sA(a) will be “resolved”

to an application of a fundamental operation to some values from A, hence, the term

operation will be “resolved” to a decision variable. In Line 9 a new constraint for

each a is added.

Input: P .

Output: required vars, constraints.

1 required vars ← ∅
2 constraints ← ∅
3 for p ≡ q in P :

4 k ← the number of different variables in p ≡ q

5 for a in (Afin ∪ {n})k:
6 for s in p, q:

7 if not sA(a) in required vars:

8 required vars.add(sA(a))

9 constraints.add(pA(a) = qA(a))

10 return (required vars, constraints)

Algorithm 3.5: discover constraints

Algorithm is sound The satisfaction of premise is guaranteed via discovering the

constraints that arise from the respective identities. As follows from the investigation

of the universe A these constraints guarantee the satisfaction of identities from

premise. The violation of the conclusion is explicitly checked.

Algorithm is complete The completeness of the algorithm follows from the fact

that it suffices to consider algebras with the given structure of A. In the function

exists next A the algorithm iterates over all possible algebras of this type.
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Algorithm terminates The function exists next A always proceeds in the finite

search space.

The complexity of the whole algorithm depends on the complexity of

exists next A, the complexity of discover constraints, and the complexity of

checking the violation of conclusion.

The complexity of discover constraints is determined by the complexity of three

for cycles. Let kmax denote the maximal number of different variables used in

identities (as before, kmax ≤ 3). Let m denote the maximum level of nesting in

terms of identities (as before, m ≤ 3). The number of possible tuples a is bounded

by O(|Afin|kmax), hence, the overall complexity is bounded by O(|P |∗|Afin|kmax∗m).

The number of outputs of the fundamental operations of A is O(|Afin|2). The

number of possible assignments to each output is O(|Afin|). Hence, there exist

O(|Afin||Afin|2) possible assignments. Assigning to the required variables can be

done in the number of operations proportional to the size of the list of required

variables, hence, O(|Afin|2). To check each constraint from constraints we need at

most O(|Afin|) operations, the same for checking the violation of the conclusion.

Hence, the overall complexity of the algorithm is

O(|Afin||Afin|2+3+|P |+|P |∗|Afin|kmax∗m).

Now we proceed with an example of running the function find algebra.

Example 3.3.18. Consider the implication {x ≡ .(x∗x), .a ≡ .(.a)} → a ≡ .a.

The function discover constraints returns the following results:

1. 0 = .A(0 ∗A 0);

2. 1 = .A(1 ∗A 1);

3. 2 = .A(2 ∗A 2);

4. n = .A(n ∗A n);

5. n = .A(n ∗A n);

6. .A0 = .A(.A0).

The first assignment to decision variables in function exists next A leads to the

algebra A1 presented in Table 3.3. However, A1 |= a ≡ .a. Hence, next appropriate

assignment is taken, see Table 3.4. The algebra A2 from Table 3.4 does not satisfy

the identity a ≡ .a (.A20 = 2), hence, this algebra is the desired counter-example.
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Table 3.3: Algebra A1 from Example 3.3.18

m ∗A1 n :=



0 ∗A1 0 = 1;

1 ∗A1 1 = 2;

2 ∗A1 2 = 3;

n ∗A1 n = n+ 1, if n ≥ 3;

m ∗A n = 0, else.

.A1n :=


.A10 = 0;

.A11 = 0;

.A12 = 1;

.A1n = n− 1, if n ≥ 3.

aA1 := 0.

Table 3.4: Algebra A2 from Example 3.3.18

m ∗A2 n :=



0 ∗A2 0 = 1;

1 ∗A2 1 = 3;

2 ∗A2 2 = 4;

n ∗A2 n = n+ 2, if n ≥ 3;

m ∗A n = 0, else.

.A2n :=


.A20 = 2;

.A21 = 0;

.A22 = 21;

.A2n = n− 2, if n ≥ 3.

aA2 := 0.
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Table 3.5: A counter-example from Example 3.3.19

m ∗A n :=



0 ∗A 0 = 2;

1 ∗A 0 = 1;

2 ∗A 0 = 2;

m ∗A 0 = 1, if m ≥ 3;

m ∗A 1 = 0;

m ∗A n = n+ 1, if n ≥ 2;

m ∗A n = 0, else.

.An :=


.A0 = 1;

.A1 = 0;

.A2 = 0;

.An = n− 1, if n ≥ 3.

aA := 0.

Examples of Infinite Counter-examples Below several infinite counter-examples

that were found during the investigation are presented.

Example 3.3.19. Implication: {a ≡ .(.a), a ≡ .(a ∗ a), a ≡ .(x ∗ a), x ≡
.(a ∗ x), x ≡ x ∗ (.x), x ≡ .(y ∗ x), x ≡ x, a ≡ x ∗ (.a), x ≡ .(x ∗ x), a ≡
a ∗ (.a)} → {.a ≡ a ∗ a}.

Compare with Implication (3.6).

A counter-example is the infinite algebra A presented in Table 3.5.

Example 3.3.20. Implication: {a ≡ .(a ∗ a), a ≡ .(.(.a)), a ≡ .(x ∗ a), x ≡
.(a ∗ x), x ≡ x, x ≡ x ∗ (.a), a ≡ a ∗ (.a)} → {x ≡ a ∗ (.x)}. Compare with

Implication (3.2).

A counter-example is the infinite algebra A presented in Table 3.6.
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Table 3.6: A counter-example from Example 3.3.20

m ∗A n :=


0 ∗A n = n+ 1, if n ≥ 2;

m ∗A 0 = 2;

m ∗A 1 = m;

m ∗A n = 0, else.

.An :=


.A0 = 1;

.A1 = 2;

.A2 = 0;

.An = n− 1, if n ≥ 3.

aA := 0.

3.4 Exploration of Algebraic

Identities

In AE of algebraic identities two methods for finding counter-examples were used: fi-

nite counter-examples were found using Mace4, infinite counter-examples were found

Algorithm 3.3. Moreover, before finding counter-examples the program Prover9

made an attempt to prove implications. If a proof for an implication was found

the attribute exploration proceeds with the next implication. The initial context

contained all irreducible algebras over a universe of size 2.

3.5 Results

Attribute Exploration of the algebraic identities from Table 3.7 was run on a com-

puter with Intel Core i5 1.6GHz×4 processor and 6 Gb of RAM running Linux

Ubuntu 12.10 x64. In order to speed up the procedure the time limits for finding

each separate counter-example were changed in the process of exploration, this infor-

mation is contained in the attachment to the current chapter in file “progress.txt”.
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Attribute Exploration took 30 steps (understanding a step as the process of finding

the implication basis and trying to find counter-example to each implication from

the basis). 1771 finite and 3179 infinite counter-examples were found during the

exploration. After reduction 626 finite algebras and 1529 infinite algebras were left

in the context. All 4398 unit implications from the canonical basis were proved by

Prover9. Results of investigation [Kes13] were repeated using only software tools.

The exploration took around two weeks.

Note that the procedure was not optimized to perform the exploration in the shortest

possible time as this was not the objective of current investigation. For example,

choosing more appropriate time limits for finding counter-examples can speed up

the process significantly. In another experiment the final context was explored in

around 78 hours.

3.6 Conclusion

The aim of the current chapter was to elaborate methods and tools in order to

automatically discover and prove the implicative theory of algebraic identities of

size up to 5. It turns out that it is necessary to be able to find infinite counter-

examples. The structure of such infinite algebras is investigated and, based on this

investigation, a computational model is introduced. The computational model is

capable of finding all the needed infinite counter-examples. The developed software

satisfies all the introduced requirement and is able to produce results within several

days on a modern computer.
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3.7 Remarks

1. Our approach is different from that of Dr. Kestler in [Kes13] insofar as Dr.

Kestler considered only injectivity and surjectivity to prove the absense of

finite counter-examples.1 For special term operations he stated they are nec-

essarily injective but not surjective, and vice versa. But our characterization

is more precise. Indeed, consider Implication (3.6). Suppose aA = 0 and

0 ∗A 0 = 0, n ∗A n = n + 1 (qA(x) = x ∗A x). x ≡ .(x ∗ x) yields .A0 = 0.

The term operation x ∗A x is injective, but not surjective. However, there

exists no term operation .Ax such that .A0 6= 0 ∗A 0. Therefore, not just

any injective and not surjective term operation qA(x) = x ∗A x can lead to a

counter-example.

Another example: consider Implication (3.5) and aA = 0, qA(0) = 0 ∗A 0 =

1, qA(1) = 1∗A1 = 0, qA(n) = n+1. Such qA(x) is injective and not surjective,

but no matter how you define the other operations, there is no counter-example

with such qA.

2. Whether the statement converse to Lemma 3.3.14 holds is an open question.

Namely, it is not clear if it always suffices to consider only the algebras with

the described structure of universe. However, as was proven by experiment,

for the chosen identities these algebras are sufficient.

1Besides the automation of the whole investigation.
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Appendix to Chapter 3

Table 3.7: Pairwise non-equivalent identities of size at most 5.

Size 2:

x ≡ x;

x ≡ y;

Size 3:

a ≡ .a;

a ≡ .x;

x ≡ .x;

Size 4:

a ≡ .(.a);

a ≡ .(.x);

a ≡ a ∗ a;

a ≡ a ∗ x;

a ≡ x ∗ a;

a ≡ x ∗ x;

a ≡ x ∗ y;

. a ≡ .x;

x ≡ .(.x);

x ≡ a ∗ x;

x ≡ x ∗ a;

x ≡ x ∗ x;

x ≡ x ∗ y;

x ≡ y ∗ x;

Size 5:

a ≡ .(.(.a));

a ≡ .(.(.x));

a ≡ a ∗ (.a);

a ≡ a ∗ (.x);

a ≡ (.a) ∗ a;

a ≡ (.a) ∗ x;

a ≡ x ∗ (.a);

a ≡ x ∗ (.x);

a ≡ x ∗ (.y);

a ≡ (.x) ∗ a;

a ≡ (.x) ∗ x;

a ≡ (.x) ∗ y;

a ≡ .(a ∗ a);

a ≡ .(a ∗ x);

a ≡ .(x ∗ a);

a ≡ .(x ∗ x);

a ≡ .(x ∗ y);

. a ≡ .(.a);

. a ≡ .(.x);

. a ≡ a ∗ a;

. a ≡ a ∗ x;

. a ≡ x ∗ a;

. a ≡ x ∗ x;

. a ≡ x ∗ y;

x ≡ .(.(.x));

x ≡ a ∗ (.x);

x ≡ x ∗ (.a);

x ≡ x ∗ (.x);

x ≡ x ∗ (.y);

x ≡ y ∗ (.x);

x ≡ (.a) ∗ x;

x ≡ (.x) ∗ a;

x ≡ (.x) ∗ x;

x ≡ (.x) ∗ y;

x ≡ (.y) ∗ x;

x ≡ .(a ∗ x);

x ≡ .(x ∗ a);

x ≡ .(x ∗ x);

x ≡ .(x ∗ y);

x ≡ .(y ∗ x);

. x ≡ .(.x);

. x ≡ a ∗ a;

. x ≡ a ∗ x;

. x ≡ a ∗ y;

. x ≡ x ∗ a;

. x ≡ x ∗ x;

. x ≡ x ∗ y;

. x ≡ y ∗ a;

. x ≡ y ∗ x;

. x ≡ y ∗ y;

. x ≡ y ∗ z.
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Conclusion

In the frames of the current project general approaches to automatic constructions

of implicative theories for mathematical domains are investigated on two applica-

tions. The methodology of investigation is based on discovering knowledge from

(counter-)examples – the procedure of Attribute Exploration. The relevant software

tools for performing Attribute Exploration automatically are implemented and ana-

lyzed. The implementation is independent of the domain of application, hence, may

be used for further explorations.

In both applications we succeeded in automatizing the process of exploration of the

implicative theories. This goal is achieved thanks to both the pragmatical approach

of Attribute Exploration and discoveries in the respective domains of application.

The structure of the attributes in the investigated domain is the key to developing

efficient methods of finding counter-examples – the core of Attribute Exploration.

In the current study the methods and algorithms for finding both finite and infinite

counter-examples are investigated and developed. In the case of infinite counter-

examples the preliminary knowledge about the structure of the desired solution is

essential for finding the counter-examples. In the case of finite counter-examples

it was necessary to develop competitive algorithms implementing different compu-

tational strategies. The parallel run of the algorithms allows for finding counter-

examples in limited time.

In the case of p-indecomposable functions it is necessary to extend the procedure of

Attribute Exploration and to investigate the extended version. It turned out that

in case of a growing number of attributes it is difficult to state any assumptions

about the overall success of the exploration. However, we succeed in the exploration

of p-indecomposable functions on the three-valued domain, and the developed tools

and methods may be used for an exploration on even larger domains.

The two diverse application domains favourably illustrate different possible usage

patterns of Attribute Exploration – in one case the number of attributes is fixed,

however, counter-examples are infinite, in the other case the number of attributes

98



Conclusion

grow, but the counter-examples are finite. The elaborated approaches may be fur-

ther developed and used not only for constructing the complete implicative theories,

but also for a more widespread problem of finding counter-examples to certain im-

plications.

The choice of mathematical domains as domains of application is justified by the fact

that the mathematical statements considered in the project are either true or false.

Moreover, it is possible to generate the desired counter-examples algorithmically.

Real life is usually more complex, the truth of many statements is argued and in

order to find a counter-example it is necessary to involve experts from the respective

domain. The current investigation (together with methods for finding mistakes in

object intents [KR15, Rev13b]) may be seen as the first step to elaborating a system

for organizing the knowledge and assisting experts from a domain in working with

this knowledge.
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Description of Attachments

The current study is accompanied by attachments presenting the result of the con-

ducted experiments.

Attachment to Chapter 2

Attachment to Chapter 2 is contained in the folder “Ch PClones”. The folder con-

tains the following files:

final cxt.txt File contains the final context in .txt format.

final cxt.cxt File contains the final context in .cxt format.

progress.txt File contains the report about the progress of the experiment. Infor-

mation about the number of the step, number of objects and attributes in the

current context, number of processed implication and information about time

is presented. Moreover, new function and reason for finding it (either an im-

plication violated by the new function or respective concept from the current

lattice) are presented. The format of representation of functions is compat-

ible with arguments to Python scripts, i.e. if respective package is imported

by the Python interpreter than the representation will be understand by the

interpreter and the desired object will be returned. In implications the symbol

“=>” separates premise from conclusion.

step(number)[ces/new objs].txt File contains information about the respective

step of the exploration. Files with names ending with “ces.txt” stand for

the steps of finding counter-examples, files ending with “new objs.txt” stand

for the steps of finding new first-order irreducible objects. Time spent on each

implication or concept is also presented. Each file contains the current con-

text and information about processing implications or concepts of the current

lattice. Time spent on each implication or concept is given.
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Attachment to Chapter 3

Attachment to Chapter 3 is contained in the folder “Ch Identities”. The structure of

the folder is very similar to the structure of “Ch PClones”, except for an additional

folder “proofs”. The folder “Ch Identities” contains:

final cxt.txt File contains the final context in .txt format.

final cxt.cxt File contains the final context in .cxt format.

progress.txt File contains the report about the progress of the experiment. Infor-

mation about the number of the step, number of objects and attributes in the

current context, number of processed implication and information about time

is presented. Moreover, new function and reason for finding it (either an im-

plication violated by the new function or respective concept from the current

lattice) are presented. The format of representation of functions is compat-

ible with arguments to Python scripts, i.e. if respective package is imported

by the Python interpreter than the representation will be understand by the

interpreter and the desired object will be returned. In implications the symbol

“=>” separates premise from conclusion.

step(number)ces.txt File contains information about the respective step of the ex-

ploration. Each file contains the current context and information about pro-

cessing implications from the current implication basis. Time spent on each

implication is given.

The folder “Ch Identities/proofs” contains:

imp(number).in File contains an implication represented as an input to Prover9.

imp(number).proover9.out File contains the output of Prover9 with a proof of the

respective implication.

basis.txt File contains the canonical implication basis of the final context.
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Symbols and Conventions

The following conventions are used:

• As usual, s ∈ S indicates that s belongs to S, P ⊆ S indicates that P is

contained in or equal to S.

• The statement P ⊂ S is equivalent to P ⊆ S and P 6= S.

• We usually represent sets in curly brackets and separate elements via commas,

e.g. S = {s1, s2, . . . }. If a set consists of a single elements we will usually

omit the curly brackets, e.g. {s1} is the same as s1. If ambiguity is excluded

we sometimes omit the curly brackets even if a set contains more than one

element.

• The symbol N denotes the set of natural numbers (including 0).

• For k, n ∈ N, k ≤ n the set {k, k + 1, . . . , n} is written as [k, n].

• |S| denotes the cardinality of set S.

• We use the notation Ak, k ∈ N to indicate that Ak has exactly k elements;

instead of the elements of Ak we will usually use their indices, i.e. Ak =

{0, 1, . . . k − 1} and |Ak|= k.

• Cartesian product of sets A and B, denoted A × B, is the set of all pairs

{(a, b) | a ∈ A, b ∈ B}.

• For a set A and a number n ∈ N we use the notation An to denote the n-th

cartesian power of A, i.e. An = A× A× . . .× A︸ ︷︷ ︸
n

.

• Notation f : A→ B denotes a mapping f from A to B.

• For two sets A,X the notation AX denotes the set of all possible mappings

from X to A, i.e. AX = {f : X → A}.

• A function f of arity ar(f) ∈ N on A is a mapping f : Aar(f) → A.

• If S is a set, P(S) denotes the set of all subsets of S, i.e. the powerset.
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• A relation R of arity ar(R) ∈ N on A is a subset of Aar(R).

• We denote n consecutive applications of a unary term p by pn. For unary

terms p, q we denote p(q(x)) by pq(x).

• A restriction of a function f : Aar(f) → A to a set B ⊆ A is a function

f |B : Bar(f) → B such that for all b ∈ B : f |B (b) = f(b).

• Let f : A→ B and b = f(a). The element b is called the image of a under f .

The element a is called the preimage of b under f .

• The notation A ⇒ B is used to substitute the (natural language) expression

“from A follows B”.

• The expression “iff” is used as a shorthand for “if and only if”.

• In mathematical expressions “:” is to be interpreted as “such that”.

• The notation A ⇔ B is used to substitute the (natural language) expression

“A is equivalent to B”.

• A ∩ B denotes the intersection of sets A and B, i.e. the set of all elements

contained in both A and B; A∪B denotes the union of sets A and B, i.e. the

set of all elements contained in A or B; A \B denotes the difference of A and

B, i.e. the set of all elements which are in A but not in B.
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algebra, see also logic, L-structure

free, 76

locally finite, 76

arity, 9

assignment function

term, 10

variable, 10

atom, 4

Attribute Exploration, 13

attributes, 5

binary relation, 3

bunny, 76

clone

functional, 24

p-, parametric, 24

closure, 5

operator, 5

system, 6

commutation, 24

compatible, 23

complexity of algorithm, 18

concept

attribute, 6

lattice, 6

object, 6

consequence, see logic, logically imply

constants, 9

counter-example, i, 12

essential, 58

decision variable, 18

dense

infimum-, 4

supremum-, 4

element

greatest, 3

least, 3

equational class, 73, 76

expressible

compositionally-, 23

parametrically-, 24

formal concept, 5

extent, 5

intent, 5

order, 6

formal context, ii, 5

reduced, 7

fundamental operation, 75

Galois connection, 5

graph of function, 24

homomorphism, 75

identity, see also logic, L-formula

pairwise equivalent, 75

satisfaction, see logic, L-formula,

satisfaction
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size, 75

implication, i, 10

attribute, 11

basis, 12

canonical, 13

conclusion, 11

premise, 11

respected, 11

satisfaction, 12

unit, 12

validity, 12

violation, 12

implicative theory, i, 12

infimum, 3

irreducible, 7

first-order, 53

infimum-, 4

plainly, 7

second-order, 55

supremum-, 4

lattice, 3

concept-, 6

filter, 4

ideal, 4

logic

alphabet, 8

attribute, 11

first order language, 9

inference rule, 11

L-formula, 9

atomic, 10

satisfaction, 10

validity, 10

logically imply, 11

L-structure, 10

finite, 10

infinite, 10

interpretation, 10

universe, 10

L-term, 9

size, 75

propositional, 11

formula, 11

interpretation, 11

values, 11

theory, i

neighbor

lower, 4

upper, 4

Object-Attribute Exploration, 50

objects, 5

reducible, 7

order, 3

ordered diagram, 7

p-indecomposable function, 24

parametrically equivalent, 24

preserve, 23

projections, 23

subalgebra, 75

subcontext, 5

implicatively closed, 57

success of exploration, ii, 26

supremum, 3

symbols

function, 9

relation, 9

variable, 9

term, see logic, L-term

operation, 75

pairwise equivalent, 75

universe, see logic, L-structure, uni-

verse
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