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Theses

The main achievements of this work are gathered in the following
eight points:

An artificial (in-silico) unconsolidated sediment generator was
implemented.
Numerical solutions of the Navier-Stokes Equations using DNS
method with OpenFOAM software were performed.
The validity of the numerical solutions was analysed for different
mesh generation methods and mesh resolutions.
A reduction of the computational efforts by removing the inlet and
outlet parts of a duct replacing them with appropriate boundary
conditions. The validity of the solutions was also analysed.
We analysed the pressure drop and velocity distributions in simple
cubic and face-centred cubic sphere packings.
A coupling scheme of OpenFOAM simulations to the OpenGeoSys
FEM code is described.
An analysis of the current version 5 of OpenGeoSys was analysed
for performance issues. An efficient implementation of the critical
FEM’s part—the local assembler—was written using a data
locality concept.
For the visualisation of the fluid flow results on pore-scale a two-
sided material visualization technique was applied in interactive
environment and still-image rendering.





Thesen

Die wesentlichen Resultate dieser Arbeit sind in folgenden acht
Punkten zusammengefasst:

Ein Programm zur Erstellung künstlicher (in-silico), nicht
konsolidierter Sedimente wurde implementiert.
Numerische Lösungen der Navier-Stokes Gleichungen mit der
OpenFOAM Programm wurden ausgeführt.
Die numerischen Lösungen wurden auf Validität für unter-
schiedliche Gittererstellungsmethoden und -auflösungen unter-
sucht.
Der Rechenaufwand wurde durch eine Verkleinerung des Rechenge-
bietes (Reduktion des Ein- und Auslasses) und Modifikation der
entsprechenden Randbedingungen reduziert. Diese Lösungen
wurden ebenso auf Validität untersucht.
Der Druckabfall und die Geschwindigkeitsverteilungen in einfachen
kubischen und dichtesten Kugelpackungen wurden untersucht.
Eine Kopplungsschema zwischen den OpenFOAM Lösungen und
dem OpenGeoSys FEM Programm wurde beschrieben.
Eine Performanzanalyse der aktuallen Version 5 des OpenGeoSys
Programms wurde durchgeführt und eine effiziente Implemen-
tierung der zeitkritischen FEM Programmteile, unter anderem
des lokalen Assemblers, wurde programmiert.
Für Visualisierungen in einer interaktiven Umgebung der Flu-
idflusse auf der Porenskala wurde eine Visualisierungstechnik
angewandt, bei welcher Materialien von beiden Seiten unter-
schiedlich dargestellt werden.





Zusammenfassung

Numerische Lösung der Navier-Stokes Gleichungen sind in letzten
Dekaden mit immer zugänglicheren und leistungsstärkeren Komput-
erresourcen populärer geworden. Simulationen in rekonstruierten
oder künstlich-erzeugten Porenraumgeometrien werden oft ausgeführt
um Einsichten in mikroskopische Fluidflußstrukturen oder um Eigen-
schaften homogenisierter Medien, wie hydraulische Leitfähigkeit, zu
erhalten. Eine physikalisch adequate Darstellung der Porenskalenflüsse
ist erst mit Analyse grösserer Gebiete möglich.

Wir lösen die inkomperssiblen Navier-Stokes Gleichungen in
künstlichen geordneten und zufälligen Porenraumstrukturen. Die
einfach kubischen und kubisch dichtesten Kugelpackungen in einem
rechteckigen Kanal werden analysiert. Für Fluidflusssimulatio-
nen in zufälligen porösen Medien werden Kugel-, Ikosahedra- und
Würfelpackungen, welche nicht konsolidierte Sediemente nachbilden,
mit Festkörper-Physik Simulationssoftware erzeugt. Die, sogenan-
nte Direct Numerical Simulation (DNS) Methode, imlementiert in
der quelloffenen (Computational Fluid Dynamics) CFD-Software
OpenFOAM, wird für die Lösung der Navier-Stokes Gleichungen
benutzt.

Der Zusammenhang zwischen der Anzahl der Kugel in den
geordenten Packungen, dem Gittertyp und der Gitterauflösung
wird für Strömungen bis zur Reynoldszahl 100 basierend auf den
Kugeldurchmessern untersucht. Die Gittergenerierungsmethode für
zufällige Medien basiert auf einer Oberflächennährungsmethode. Die
resultierenden tetrahedra Gitter werden anschliessend für stationäre
Strömungssimulationen verwendet; Eine Gitterverfeinerung basierend
auf einem a-posteriori Fehlerschätzer wird verwendet.

Die Resultate der Strömungssimulationen werden zweirlei weiter
benutzt: 1) Die daraus abgeleiteten hydro-mechanischen Eigen-
schaften der analysierten Medien für die grösseren meso und makro
Grundwasser Simulationen. Ein Konzept für einseitige Anbindung für
Simulationen auf der grossen Skala ist vorgestellt. 2) Visualisierung:
Eine Renderingtechnik wurde in einer interaktiven 3D-Umgebung
und auch zum Erstellen von Bildern angewandt. Mit diesem Ver-
fahren ist es möglich einen besseren Überblick über die lokalen
Strömungsstrukturen zu erhalten.

Der OpenGeoSys FEM Code für Lösung der Grundwasser-
simulationen auf der grossen Skala wurde auf deren Effizienz un-
tersucht. Die Resultate dieser Analyse bildeten eine Basis für die
Implementierung der neuen Version des Programms—ogs6. Die
Verbesserungen bestehen unter anderem in einem Vergleich der
Linearen Algebra numerischen Bibliotheken und einer Speicherzugriffs-
effizienten Implementierung des FEM lokalen Assembler Teils.





Abstract

Numerical solutions of the Navier-Stokes Equations became more
popular in recent decades with increasingly accessible and powerful
computational resources. Simulations in reconstructed or artificial
pore geometries are often performed to gain insight into microscopic
fluid flow structures or are used for upscaling quantities of interest,
like hydraulic conductivity. A physically adequate representation of
pore-scale flow fields requires analysis of large domains.

We solve the incompressible Navier-Stokes Equations in artificial
ordered and random pore-space structures. A simple cubic and
face-centred packings of spheres placed in a square duct are analysed.
For the fluid flow simulations of random media, packings of spheres,
icosahedra, and cubes forming unconsolidated sediments are generated
using a rigid body simulation software. The Direct Numerical
Simulation method is used for the solution of the Navier-Stokes
Equations implemented in the open-source computational fluid
dynamics software OpenFOAM.

The influence of the number of spheres in ordered packings,
the mesh type, and the mesh resolution is investigated for fluid
flow up to Reynolds numbers of 100 based on the spheres’ diameter.
The random media mesh generation method relies on approximate
surface reconstruction. The resulting tetrahedral meshes are then
used for steady-state simulations and refined based on an a-posteriori
error estimator.

The fluid flow simulation results can further be used twofold:
1) They provide homogenized hydro-mechanical properties of the anal-
ysed medium for the larger meso and macro groundwater flow
simulations. A concept of one-way binding for large-scale simulations
is presented. 2) Visualisation: A post-processing image rendering
technique was employed in interactive and still image visualisation
environments allowing better overview over local fluid flow structures.

The OpenGeoSys FEM code for the solution of large-scale
groundwater processes was inspected for computational efficiency.
The conclusions drawn from this analysis formed the basis for the im-
plementation of the new version of the code—ogs6. The improvements
include comparison of linear algebra software realisations and an im-
plementation of optimized memory access patterns in FEM-local
assembler part.





“If a cat were to disappear in Pasadena and at the same time appear in

Erice, that would be an example of global conservation of cats. This is not

the way cats are conserved. Cats or charge or baryons are conserved in a much

more continuous way.”—Feynman at summer school in Erice in Italy, 1964.

1. Introduction

1.1 Abstract

Numerical solutions of the Navier-Stokes Equations became more
popular in recent decades with increasingly accessible and powerful
computational resources. Simulations in reconstructed or artificial
pore geometries are often performed to gain insight into microscopic
fluid flow structures or are used for upscaling quantities of interest,
like hydraulic conductivity. A physically adequate representation of
pore-scale flow fields requires analysis of large domains.

We solve the incompressible Navier-Stokes Equations in artificial
ordered and random pore-space structures. A simple cubic and
face-centred packings of spheres placed in a square duct are analysed.
For the fluid flow simulations of random media, packings of spheres,
icosahedra, and cubes forming unconsolidated sediments are generated
using a rigid body simulation software. The Direct Numerical
Simulation method is used for the solution of the Navier-Stokes
Equations implemented in the open-source computational fluid
dynamics software OpenFOAM.

The influence of the number of spheres in ordered packings,
the mesh type, and the mesh resolution is investigated for fluid
flow up to Reynolds numbers of 100 based on the spheres’ diameter.
The random media mesh generation method relies on approximate
surface reconstruction. The resulting tetrahedral meshes are then
used for steady-state simulations and refined based on an a-posteriori
error estimator.

The fluid flow simulation results can further be used twofold:
1) They provide homogenized hydro-mechanical properties of the anal-
ysed medium for the larger meso and macro groundwater flow
simulations. A concept of one-way binding for large-scale simulations
is presented. 2) Visualisation: A post-processing image rendering
technique was employed in interactive and still image visualisation
environments allowing better overview over local fluid flow structures.

The OpenGeoSys FEM code for the solution of large-scale
groundwater processes was inspected for computational efficiency.
The conclusions drawn from this analysis formed the basis for the im-
plementation of the new version of the code—ogs6. The improvements
include comparison of linear algebra software realisations and an im-
plementation of optimized memory access patterns in FEM-local
assembler part.
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1.2 Thesis structure

Main objective of this work is to develop reliable framework for
analysis of hydraulical properties of porous media using computer
simulations on pore-scale. The main objective can be divided into
four independent parts, which reflect the structure of the thesis.

Generation of ordered and random porous media Generation
of artificial porous media in computer is discribed in the first part.
Ordered simple cubic and face-centred sphere packing are generated.
For random structures a simulator for generation of unconsolidated
sediments using rigid body dynamics is developed. The unconsolidated
porous media are then quantified in terms of their statistical properties.

Direct Numerical Simulations in porespace Numerical
solutions of the Navier-Stokes Equations in small domains are possible
without any further assumptions for a turbulence model. We run
Direct Numerical Simulations (DNS) using existing open-source
computational fluid dynamics (CFD) software and verify the results
for ordered sphere packings placed in a square duct. The simulations
are then extended to simple artificial porespace geometries representing
unconsolidated sediments consisting of spheres, or icosahedra, or
cubes. The mesh generation part is analysed with respect to different
mesh types and resolutions, as well as adaptive tetrahedral mesh
refinement based on an a-posteriori error estimator.

FEM method implementation and coupling The results of
the fluid flow simulations on pore-scale providing hydraulical properties
of the homogenized medium are used in large scale groundwater
simulations. The coupling scheme is described.

The software used for the solution of elliptic problem is based on
the OpenGeoSys5 code. This code was analysed for performance and
maintinance problems and an improved concept was implemented in
the next version of the software—ogs6. Analysis of memory-access
patterns together with data locality concept, and a comparison of
linear algebra implementations contributed to higher efficiency of
the FEM code.

Visualisation technique For the visualisation of fluid flows on
pore-scale an image rendering technique is presented; It is used for
both the interactive environment and still image rendering. A detailed
description of possible visualisations is discussed. The presented
two-sided material rendering technique allows for good overview of
the local fluid flow structures while maintaining spatial reference to
the surrounding sediment’s grains.

1.3 Results

The main achievements of this work are gathered in the following
eight points:

An artificial (in-silico) unconsolidated sediment generator was
implemented.
Numerical solutions of the Navier-Stokes Equations using DNS
method with OpenFOAM software were performed.
The validity of the numerical solutions was analysed for different
mesh generation methods and mesh resolutions.
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A reduction of the computational efforts by removing the inlet and
outlet parts of a duct replacing them with appropriate boundary
conditions. The validity of the solutions was also analysed.
We analysed the pressure drop and velocity distributions in simple
cubic and face-centred cubic sphere packings.
A coupling scheme of OpenFOAM simulations to the OpenGeoSys
FEM code is described.
An analysis of the current version 5 of OpenGeoSys was analysed
for performance issues. An efficient implementation of the critical
FEM’s part—the local assembler—was written using a data
locality concept.
For the visualisation of the fluid flow results on pore-scale a two-
sided material visualization technique was applied in interactive
environment and still-image rendering.
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Part one

Theory



2. Equations of uid ow in pore-space of
porous media

2.1 The Navier-Stokes Equations

Equations in this chapter are based on the book “A Mathematical
Introduction to Fluid Mechanics” by Alexandre J. Chorin and
Jerrold E. Marsden [CM00].

For a general introduction to fluid dynamics see for example
[Bat99, LLSR66].

The groundwater flow in porous media can be described by
the Navier-Stokes Equations for incompressible, Newtonian fluids.
The incompressibility condition is not restricting the applicability of
the simulations because the fluid velocities in groundwater flows are
low and there are any shocks or other density-variation dependent
effects. Density variations could be expected solely in the immediate
bore hole region or any place with very large pressure gradients, or
when dealing with less viscous fluids, for example gases.

The incompressible Navier-Stokes Equations The Navier-
Stokes Equations in their general form are given by the continuity
equation

∂ρ

∂t
+∇·(ρu) = 0,

and the momentum equation

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇·T + f,

where ρ is fluid’s density, u is fluid’s velocity, p—pressure, T is
the deviatoric stress tensor, and f are the body forces.

Assuming the fluid to be incompressible, the continuity equation
becomes

∇·u = 0,

which already greatly simplifies the general form for the numerical
analysis. We further assume the fluid being an isotropic, Newtonian
fluid. The total stress tensor σ := −Ip+ T simplifies to

σ = −Ip+ µ
1

2

(
∇u+ (∇u)t

)
,

where µ is (constant) dynamic viscosity. The momentum equation
becomes:

∂u

∂t
+ (u · ∇)u = ∇·σ = −∇p

ρ0

+
µ

ρ0

∆u+ f, (1)

where ρ0 is constant fluid’s density.

Non-dimensionalization and scaling Introducing characteristic
quantities: U—velocity, L—length-scale, and T—time, equal to L/U ,
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we get partially non-dimensionalized momentum equation from
Navier-Stokes Equations (1) with starred quantities and all differential
operators being dimensionless:

∂u?

∂t?
+ (u? · ∇)u? = −

( 1

U2ρ0

)
∇p+

( µ

Uρ0L

)
∆u? +

( L
U2

)
f.

In the context of groundwater flow application, the body forces f can
be set to the gravitational force g, and the term (L/U2)f becomes 1/Fr,
where Fr := U2/(gL) is the Froude number. The expression µ/(Uρ0L)
equals to 1/Re, Re being the Reynolds number. The remaining
quantity requiring non-dimensionalization is the pressure p.

In the following equations all variables are in the dimensionless
form, and we drop the ? symbol everywhere.

There are two possibilities for the pressure: one is applicable to
high velocity flows and introduces characteristic pressure P := ρ0U

2—
essentially the specific kinetic energy, or the dynamic pressure,
yielding

∂u

∂t
+ (u · ∇)u = −∇p+

( 1

Re

)
∆u+

( 1

Fr

)
f ;

But then the Reynolds number is also large, and we can drop
the 1/Re ∆u term, and also the gravitational forces for the same
reason. The resulting equation is the momentum equation in the Euler
equations for an inviscid flow.

For the fluid flow in porous media another characteristic pressure
(also known as the viscous pressure scale) is more suitable:

P := Uµ/L.

The fully dimensionless momentum equation reads then

∂u

∂t
+ (u · ∇)u =

( 1

Re

)
(−∇p+ ∆u) +

( 1

Fr

)
f.

In the absence of body forces (which we assume in the sequel
because the main interest lies in dynamic and not static quantities)
the Navier-Stokes Equations for an incompressible, Newtonian fluid
reads

∇·u = 0,

∂u

∂t
+ (u · ∇)u =

1

Re
(−∇p+ ∆u).

(2)

In the above we silently assumed the viscosity being a constant,
which holds only for isothermal processes. Given low Reynolds
numbers of the processes being studied, heat generation due to friction
can be safely ignored. No further equations are required but for
boundary conditions.

Boundary conditions Setting boundary conditions for the pressure
and the velocity is necessary. The simplest boundary condition is
called “no-slip” boundary condition and is applied to static surfaces
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e.g. duct’s walls or grain’s surfaces. It forces the velocity to be zero
at the surface, and the pressure gradient normal to that surface:

u = 0 and
∂p

∂n
= 0.

Other two boundary conditions widely used are the inlet and
the outlet boundary conditions. At the inlet a velocity vector is given,
and the pressure gradient normal to the inlet is again zero:

u = uinlet and
∂p

∂n
= 0.

At the outlet a pressure is set to a given value (usually zero, when
only relative pressure is of interest), and derivatives of the velocity
vector components normal to the outlet are forced to be zero.

p = poutlet and
∂ui
∂n

= 0 for i ∈ x, y, z.

Initial conditions Good choice of the initial conditions for velocity
(and pressurea) can greatly improve convergence of the numerical
system to a valid state. When nothing is known about them for
a particular geometry initialization of the velocity field from solution
of the potential flow provides a good starting point. Reusing solutions
on same geometry but for different Reynolds number is also a good
option. Another possibility is to reuse a solution computed on
a coarser mesh, provided there is such solution.

The Stokes equation

Applying scale analysis to the incompressible Navier-Stokes
Equations for isothermal, Newtonian fluid, equation (2), yields
the Stokes equation under the assumption of low Reynolds number. In
the momentum equation the transport term and the inertial forces can
be neglected leaving only the right-hand-side of the second equation
in (2):

∇·u = 0,

∇p = ∆u.
(3)

a Given a velocity field the pressure field can be recovered as in
PISO numerical method in Section PISO algorithm on page 14.
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3. Fluid ow equations in homogenized porous
media
The fluid flow in the pore space is described by the Navier-Stokes
Equations in its most general form. For low Reynolds numbers
the Navier-Stokes Equations are reduced to the Stokes Equations.
But for large scale simulations (deep geothermal reservoir [BZM+10],
CO2-storage [KKC+10], flow in Thuringian basin [RFSK13]) with
scales of interest ranging from meter to hundreds of kilometers,
simulations on pore scale resolution are not longer feasible.

For such large scale simulations a spatially averaged fluid flow
description was experimentally determined by Darcy [Dar56] and
derived later from the Navier-Stokes or the Stokes equations by
a homogenization process described for example in [Tar80], [Mas02],
and recent lecture notes by Ian Tice [Tic14] and citations therein.
An overview of different derivations of Darcy’s law are given in [Bea88,
pp.161–176] including capillary tube models (bundle of tubes or
network models), fissure models (a system of fractures of given
width), hydraulic radius models (Poisseuille’s equation, leading to
Kozeny-Carman equations [Car56]), resistance to flow models (Stokes’
equation for drag of spherical particle), statistical models (tracer
particle movement in disordered medium), and the averaging of
the Navier-Stokes Equations.

Darcy’s law
“In 1856, Henry Darcy investigated the flow of water in vertical

homogeneous sand filters in connection with the fountains of the city
of Dijon, France. From his experiments, Darcy concluded that the rate
of flow (volume per unit time) Q is (a) proportional to the constant
cross-sectional area A, (b) proportional to ∆H and (c) inversely to
the length L.”[Bea88, p.119f.] This observations are combined into
the well known Darcy’s law [Dar56]:

Q = KA∆H/L,

where K is the hydraulic conductivity coefficient measured in units
of speed, [K] = m/s. A schematics of an experiment are shown in
the following figure.

Q
p0

p1

∆p

L

Figure 3.1 Seepage through an inclined sand filter.
(Figure adopted from [Bea88, p.120].)
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The hydraulic conductivity coefficientK depends on both, the fluid
properties and the geometrical properties of the porous medium.
When deriving the Darcy’s law by averaging of the Navier-Stokes
Equations one can express the hydraulical conductivity coefficient as
K = kρg/µ, where k is the permeability (or intrinsic permeability),
ρ—fluid’s density, g—gravity acceleration and µ—the fluid’s dynamic
viscosity. The Darcy’s law takes then the following form [Bea88,
p.133]:

qi = −(kρg/µ)
∂(p/ρg + z)

∂xi
, i = 1, 2, 3, (4)

where q = Q/A, p is the hydrostatic pressure, and z is the direction of
the gravitational force. In this form, the permeability k is a coefficient
depending on porous media structure only and not on the fluid’s
properties.

Extensions to Darcy’s law Higher permeabilities (of uncon-
solidated sands for example) or higher velocities (near bore wells)
invalidate creeping flow regime assumption used in the derivation of
Darcy’s law from the Navier-Stokes Equations. Some of the fluid’s
energy is used to overcome resistance of eddies formed in the transition
to turbulent flow regime.

One of the extensions to Darcy’s law is the Forchheimer term
added to compensate for the non-linear behaviour when inertial terms
in the Navier-Stokes Equations become significant. For theoretical
development see for example [Whi96].

Another extension is the Brinkman term—a “Stokes-type” term—
added to the Darcy’s law equation. [Bri49] “The term is for matching
flow velocity boundary conditions at a free liquid:porous medium
boundary” [MBG94] used, for example, in simulation with multiple
porosities.
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Part two

Numerics



4. Finite Volume Method

4.1 Domain discretization

Discretization of a domain—the pore space—into finite set of control
volumes, which forms a computational domain, is done by subdi-
vision of the input domain. The control volumes must fulfil some
requirements on their shape. All of the control volumes are filling
the computational domain and do not overlap. The flat faces are
shared between two control volumes at most—these are the internal
faces; Those faces not shared by two control volumes are the boundary
faces.

Meshes for simple input geometries can be described by a struc-
tured, cartesian mesh. This type of meshes is simple to generate and
can be the first step in the construction of more complex, unstructured
meshes. The OpenFOAM’s utility blockMesh, for example, provides
such functionality.

Not simply connected geometries including holes need either
a tetrahedral mesh generator (e.g. TetGen [Si13]) or modification
of a coarse structured mesh (e.g. OpenFOAM’s approach with
snappyHexMesh tool [OFb]) generated before. A mixed element
meshes or meshes consisting of arbitrary polyhedra conforming to
the above restrictions can also be used.

4.2 Spatial discretization

Given a general conservation law in differential form

d

dt
q(x, t)−∇·f(q(x, t)) = 0, (5)

the integral over a cell Ci (a finite volume) is

d

dt

∫
Ci

q(x, t) dx−
∫
Ci

∇·f(q(x, t)) dx = 0.

This equation is required to be fulfilled by the FVM for all cells of
the domain.

The right-hand-side can be transformed into a sum of integrals
over its surface (the faces of the cell):∫

Ci

∇·f(q(x, t)) dx =

∮
∂Ci

f(q(x, t)) · dS

=
∑

f∈faces(Ci)

∫
Sf

f(q(x, t)) · dS,

The FVM is constructed in such way, that the numerical scheme
is conservative, i.e. the solution will change only when the boundary
conditions change. The total mass within the discretized domain is
preserved.

The above equation (5) may include a convection or diffusion
terms where ∇·f(q(x, t)) = ∇·(u(x, t)q(x, t)) with u being a velocity or
∇·f(q(x, t)) = ∇·(α(x, t)∇q(x, t)) with α being a diffusion coefficient.
Source terms can be directly incorporated onto the right-hand-side
and also need an integration over every cell.
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4.3 Time discretization

After the spatial discretization of the equations by FVM we have
an ODE in the following general form:

dQi(t)

dt
= F (Qi, xi, t,

∂Qi(t)

dx
, . . .),

where Qi(t) is the value in node i at position xi.

The simple time discretization methods include the forward Euler,
the backward Euler, and the Crank-Nicolson methods, where the first
two are of first order, and the latter of second order (for blending
coefficient 1/2). Of the three methods, the forward Euler discretization
is an explicit method; The next timestep is given in terms of current
time step only:

Qn+1
i = Qni + ∆t Fn(Qi, xi, t,

∂Qi(t)

dx
, . . .),

and Fn() denotes an approximation of F () for time t = tn.

The other two methods are implicit and involve solution of
possibly non-linear system of equations. The backward Euler method
is given by:

Qn+1
i −∆t Fn+1(Qi, xi, t,

∂Qi(t)

dx
, . . .) = Qni .

Both Euler methods are of first order, while the Crank-Nicolson
method (for blending coefficient β = 1/2) is of second order. It is given
by:

Qn+1
i −∆t

[
β Fn+1(Qi, xi, t, . . .)

]
=

= Qni + ∆t
[
(1− β)Fn(Qi, xi, t, . . .)

]
.

The time discretization choice depends not only on the accuracy of
the method, but also on spatial discretization (the mesh size, leading
to the Courant number, see p. 15) and the properties of the whole
discretized system (dealing with stability of the results).
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5. Numerical solution of the Navier-Stokes
Equations

For the numerical solution of the Navier-Stokes Equations we use
the OpenFOAM CFD software, detailed description of which is given
in the Section OpenFOAM on p. 16. The Navier-Stokes Equations
used in the discretization procedure are in the form:

∇·u = 0,

∂u

∂t
+ (u · ∇)u = −∇p+ ν∆u,

where the pressure p is the kinematic pressure,a and ν is the kinematic
viscosity. [Jas96, p.68f] The Reynolds number is given by Re = UL/ν,
where U and L are characteristic velocity and length scales.

5.1 PISO algorithm

Pressure Implicit with Splitting of Operators (PISO) method is
employed for the solution of time dependent Navier-Stokes Equations.
A derivation of this method developed originally by [Iss86] is given
for example in [FP02, Jas96]. We repeat the main steps here.

The coupling between the velocity components and the pressure
gradient is given in the momentum equation. The continuity equation
does not contain a pressure term to calculate the pressure, so
usually both equations are combined by taking the divergence of
the momentum equation, and simplify it by means of the continuity
equation:

∇·(∇p) = −∇·((u · ∇)u),

yielding the pressure equation. Because the numerical approxima-
tions of the divergence and the gradients must be the same as in
the discretization of the momentum equation, it is better to start
the derivation of the discretized pressure equation from the already
discretized momentum and continuity equations.

Discretized Navier-Stokes Equations Let auPuP be a discretiza-
tion of velocity at node P , and

∑
N a

u
NuN the contributions from

the neighbor nodes N . The superscript u indicates dependency of
the operators aui on the velocity field. We write the discretized
momentum equation keeping the pressure gradient in its original form
as:

auPuP +
∑
N

auNuN =
uold

∆t
+ q −∇p.

For simplicity we introduce an operator

H(u) = −
∑
N

auNuN +
uold

∆t
+ q,

a “Note that the absolute pressure is of no significance in
an incompressible flow; only the gradient of the pressure (pressure
difference) affects the flow.” [FP02, p.167]
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containing all source terms, the contributions from the neighbor nodes,
and the transport part, but not the pressure gradient:

auPuP = H(u)−∇p (6)

Formally we write the solution of the above equation as

uP =
H(u)

auP
− ∇p
auP

, (7)

noting that uP does not satisfy the continuity equation for now.
The next step is to correct the pressure field to fulfil the continuity
equation. Inserting the solution (7) into discretized continuity equation
yields

∇·
( 1

auP
∇p
)

= ∇·
(H(u)

auP

)
. (8)

The equations (6) and (8) form the discretized Navier-Stokes
Equations for incompressible fluid, now with all differential operators
in consistent, discretized form (denoted by the .̃ symbol):

auPuP = H(u)− ∇̃p —momentum predictor, (9)

∇̃·
( 1

auP
∇̃p
)

= ∇̃·
(H(u)

auP

)
—pressure equation. (10)

Pressure-velocity coupling The pressure-velocity coupling can be
done in two ways: A simultaneous solution of both equations, which
require additional memory space for the block-coupling matrices, or in
a sequence, which leads to the family of PISO algorithms. There are
several variations on the PISO algorithm proposed by [Iss86], which
include the SIMPLE algorithm proposed by [Pat80] for steady-state
equations.

The PISO algorithm can be outlined in three main steps:

Using some guess on the pressure field (preferentially from
the previous time step) solve the momentum equation (9). This
gives an approximation to the new velocity field.
Formulate the pressure equation (10) using the predicted velocity
field, and solve to obtain a corrected pressure field.
With the new pressure field correct the velocity field using
equation (7).

After the third step the pressure equation must be solved again.
This procedure is repeated “until a velocity field which satisfies both
the momentum and continuity equations is obtained.” [FP02, p.175]

Timestepping To achieve accuracy required for direct numerical
simulation the Courant-Friedrichs-Lewy (CFL) condition [CLF28]
must be satisfied: ∆x/∆t ≤ 1. And to reduce the numerical errors in
time stepping the CFL condition is set to 1/5.

We are using second order spatial central differencing scheme and
explicit Euler time-stepping schemes.

Although most of the performed simulations are steady-state,
a transient solution is computed. Solutions of the Navier-Stokes
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Equations in complex geometries can develop unsteady behaviour
although in another similar geometry with the same Reynolds number
the solution would converge to a steady-state. Transient behaviour can
be easily recognized when observing initial residuals of the momentum
predictor and pressure correction systems of linear equations.

In the PISO inner loop 7 correction steps were used; No non-
orthogonal correction is performed for the structured cartesian meshes
which are orthogonal—the mesh lines intersect at right angles. In
the case of non-orthogonal, tetrahedral meshes (generated with
TetGen [Si13]) there are, usually up to four non-orthogonal corrections
steps depending on the mesh quality.

5.2 OpenFOAM

“OpenFOAM (Field Operation And Manipulation) is a free, open
source CFD software package developed by OpenCFD Ltd at
ESI Group and distributed by the OpenFOAM Foundation” [OFb].

Currently used version is 2.1.0 and publicly available source code
allow changes to the solvers giving great flexibility over the solution
algorithm.

OpenFOAM cases Every simulation—an OpenFOAM case—
is organized in simple directory structure. For single threaded
simulations the structure is the following one:

case

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Time step with initial conditions or solutions.
U

p

{0.1, 0.2, . . . } . . . . . . . . . . . . . . . . . . . . . Further time steps.
U

p

constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Constant simulation properties like turbulence
model properties or the mesh.transportProperties

turbulenceProperties

RASProperties

dynamicMeshDict

polyMesh . . . . . . . . . . . . . . . . . . . . . . . . . .The mesh consists of the boundary descrip-
tion, the cells (and their connections), and
the points.

blockMeshDict

boundary

faces

neighbour

owner

points

system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Configuration of the simulation, time-stepping,
IO, linear solvers, discretization schemes.controlDict

fvSchemes

fvSolution

The subsequent simulation results are stored in directories correspond-
ing to the performed time step like 0.1, 0.2 etc. in the case’s root
directory.
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The mesh files are placed into the constant directory but solvers
which are modifying a mesh will write a copy into the current time-step
directory.b In this work we run simulations only on static meshes.

All configuration files are read into dictionaries—a possibly nested
key-value structures. Given such representation of a simulation
setup allows simple access of a special configuration setting within
the solver’s code.

Running simulation After a case has been prepared, starting
the simulation for example using icoFoam solver—a transient solver
for incompressible Newtonian fluid flow—is done by calling icoFoam

-case path-to-case, or when running in parallel mpirun -np

number-processors icoFoam -case path-to-case -parallel.
The simulation progress is written to the standard output

and contains information about current time step, and especially
the output of linear equation system solvers:

> icoFoam -case path-to-case

...

Time = 14.8504

Courant Number mean: 0.07833 max: 0.19738 deltaT = 0.00086

DILUPBiCG: Solving for Ux, Initial residual = 0.00155, Final residual = 9.96858e-07,

No Iterations 2

DILUPBiCG: Solving for Uy, Initial residual = 0.00049, Final residual = 2.12377e-07,

No Iterations 2

DILUPBiCG: Solving for Uz, Initial residual = 0.00165, Final residual = 9.47528e-07,

No Iterations 2

GAMG: Solving for p, Initial residual = 0.00267, Final residual = 1.91465e-06,

No Iterations 13

time step continuity errors : sum local = 2.47687e-10, global = 8.50541e-15,

cumulative = 1.78686e-09

GAMG: Solving for p, Initial residual = 0.00092, Final residual = 6.63471e-07,

No Iterations 16

time step continuity errors : sum local = 8.58776e-11, global = 2.82134e-14,

cumulative = 1.78689e-09

...

GAMG: Solving for p, Initial residual = 8.60021e-08, Final residual = 6.99740e-09,

No Iterations 6

time step continuity errors : sum local = 9.05251e-13, global = -1.65606e-15,

cumulative = 1.78686e-09

ExecutionTime = 86287.95 s ClockTime = 86379 s

b Solvers changing the mesh are used for fluid-structure interaction,
for example.
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Output of linear equation solvers for velocity components and seven
(four are not shown above) for pressure correction loop can be parsed
for monitoring of running simulation and graphical representation.

The foamLog utility provides parsing of such log-files such that
these can be processed numerically or graphically. An example in
the Figure 5.1 shows convergence of the initial residuals norms of
the linear solvers in momentum predictor and (first iteration) pressure
correction loop during a steady-state simulation. In the following
Figure 5.2 plots of a transient simulation clearly differ from the steady
state simulation.
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Figure 5.1 Linear solver initial residuals plot of a steady-state OpenFOAM
simulation. Residuals for the three velocity components and the first
iteration of pressure correction loop are shown.
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Figure 5.2 Linear solver initial residuals plot of a transient OpenFOAM
simulation. Residuals for the three velocity components and the first
iteration of pressure correction are shown. Visible is an initial stabilization
phase up to time step 20000, and statistically stable solution until the end.

Post-processing After successful simulation the results are stored
into time-step directories. There are many utilities provided by
OpenFOAM for analysis. For example to determine the average inlet
pressure there is a program patchAverage, which when called as
patchAverage -case case p inlet, prints the average of p over
the inlet patch for all time steps:

> patchAverage p inlet

Time = 0.4

Reading volScalarField p
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Average of volScalarField over patch inlet[0] = 0.8752209307916339

Time = 0.5

Reading volScalarField p

Average of volScalarField over patch inlet[0] = 0.9334450356082965

Another option is to export the data into another file format or
to import it directly into your favourite post-processing program;
The Visualization Toolkit (VTK) [SML03] is a software system
for 3D computer graphics, image processing and visualization.
It has become very popular in the last decade and is available
on many platforms. To export the data into the VTK format
one can use an OpenFOAM utility foamToVTK, which exports
the meshes and data as unstructured meshes, or resample the data
into a structured mesh or a 3D image. This tool is freely available on
github https://github.com/endJunction/foamToVTI repository.
We try to use as many as possible of OpenFOAM’s post-processing
utilities, but switch to VTK formats for special post-processing.

Some aspects of the further post-processing based on VTK are
discussed in the Section Visualization on p. 72.

6. Finite Element Method

The Finite Element Method is based on the variational formulation
of a boundary (and initial) value partial differential equation. Consider
a second order elliptic boundary value problem

Lu = f in Ω,

u = 0 on ∂Ω.
(11)

with homogeneous Dirichlet boundary conditions.
The pde (11) is multiplied with a test-function and integrated

over the domain. By integration by parts the boundary conditions
are included. The so-called weak formulation is then: Find u ∈ V
such that

a(u, v) = b(v) for all v ∈ V ,

where a(., .) is a symmetric positive definite, bilinear form and b(.) is
a linear functional given by:

a : V × V → R, a(u, v) =

∫
Ω

Lu v dΩ

b : V → R, b(u) =

∫
Ω

f v dΩ

The computational domain Ω is discretized onto finite number of
elements where a finite dimensional space Vh ⊂ V is defined.

The pde is transformed into a finite set of algebraic equations
(or ode’s in case of time-dependent problem), which are then solved.
The actual solution process may include solution of the ode (time
marching), Newton/Picard iterations for non-linear problem, and
finally solution of (sparse) linear system of equations.
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7. Porous media

7.1 General properties

Porous media are classified by their statistical properties like
porosity or grain size distribution, and depending on application their
hydraulical, mechanical or electrical properties like permeability, bulk
modulus or electric conductivity.

The statistical porous media properties can be quantified either
by visual inspection (e.g. statistical analysis of two dimensional slices
under microscope) or derived from measurement of hydraulical, me-
chanical or electrical properties assuming there is a valid relationship
between the quantified property like porosity and measured property
like electric conductivity.

Porosity of a porous medium strongly depends on how well
the medium is sorted and consolidated. In this work we analyse only
unconsolidated sediments.

For the unconsolidated sediments the porosity vary usually around
50% and strongly depends on how well the sediment’s particles are
sorted and compacted.

Statistical and hydraulical properties Let V0 ⊂ R3 be
the volume containing a porous medium and Vvoid ⊂ V0 be the pore
space volume. Define the microscopic porosity function Z(x) for x ∈ V0

as

Z(x) :=
{

1 if x ∈ Vvoid,
0 otherwise.

Definition of the function Z(x) allows mathematically rigorous
definition of statistical properties of a porous medium.

Representative Elementary Volume In analysis of porous media
we differentiate between two scales: micro-scale, which is of the same
order as the grain or pore sizes, and macro-scale, where properties of
porous medium are averaged over some volume, and it is assumed,
that the chosen volume is representative.

A representative volume has same properties as any larger volume.
The properties might be geometrical, hydraulic or mechanical or
any other nature. For a volume to be a representative volume in
other than geometrical properties, it must be at least geometrically
representative.

Consider the average of some quantity ξ over a volume Vp at
point p (e.g. a sphere centred at p). When Vp is very small, we expect

large variation of the averaged quantity ξ̄ = 1
|Vp|

∫
Vp
ξ dV and, as

the volume covers larger and larger parts of the porous medium,
the variations should become smaller.

Porosity A basic property of a porous medium is porosity φ.
The bulk porosity φbulk of a porous medium of volume V0 is defined
by the ratio between void volume or the pore space volume Vvoid

and V0:

φbulk =
Vvoid

V0

. (12)
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Figure 7.1 Possible definition of a REV based on
bulk porosity. Variation of a system parameter and
corresponding magnification levels. (Figure adopted
from [Bea88, p.30] by Norbert Böttcher with kind
permission. [Böt14])

Taking in account that possibly not all of the pores will be accessible
in a hydraulic experiment, effective porosity φeff is defined similarly to
the above by using the volume of pores which contributes to the fluid
flow instead of the total void volume Vvoid:

φeff =
Veff

V0

. (13)

This definition is not exact in general and depends on the porous
medium and the fluid being analysed [EP88].

By averaging the microscopic porosity Z(x), as described above,
we can also define the bulk (or volumetric) porosity as

φbulk =
1

|Vp|

∫
Vp

Z(x) dV.

The bulk porosity is a dimensionless quantity often given in per-cent.
(In the microscopic porosity function Vvoid can be replaced by Veff

yielding the effective porosity φeff .)
Following Bear[Bea88, p.19] “we choose to define the [representa-

tive elementary volume] REV through the concept of porosity, which
seems to be the basic porous matrix property.” In the following
Figure 7.1 the volumetric average of the microscopic porosity is shown
as function of the volume size.
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We are interested to choose the REV as small as possible in
order to reduce the use of computational resources in numerical
simulations. Of course the minimum REV is dependent on the grain
size of the underlying porous medium.

Autocorrelation Description of a porous medium using only its
porosity is not sufficient for further analysis. “Information about
the shape of the void region may be obtained by averaging the product
Z(r)Z(r + ρ) with respect to r keeping ρ fixed”[Pra61] (also cited
in [Bea88, p.43]). Although the two-point average “contains most
of the parameters commonly used to characterize a porous medium,
it does not of course constitute a complete description, even in
a statistical sense. A fuller, but still incomplete, description is given
by the three-point average” [Pra61]. Higher (than the third) order
averages are usually not used.

The two-point average function is know to provide further insights
in the structure of a porous medium. General introduction and
in-depth analysis is given for example in [Tor01] and [Vog02].

Autocorrelation of a random process X between times s and t—
the two-point average—is defined as

R(s, t) = 〈(Xs − µs)(Xt − µt)〉, (14)

where µs, µt are the expected values at times s and t, respectively.
Naturally for the autocorrelation function to be well defined the
expected values and standard deviations must be defined too.

For a process for which the expected value µ and standard
deviation σ are time-independent, i.e. a second order stationary
process, and if the autocorrelation depends only on time difference
between t and s, the autocorrelation can be written in terms of time
difference τ = s− t as:

R(τ) = 〈(Xt+τ − µ)(Xt − µ)〉.

Translating this to a three-dimensional signal Z(r), r = (r0, r1, r2)t,
and define ∆r = (∆r0,∆r1,∆r2)t the autocorrelation function
becomes

R(∆r) = 〈(Z(r + ∆r)− µ)(Z(r)− µ)〉.

for anisothropic porous medium. If the medium is isotropic, the auto-
correlation function depends on distance ρ ≥ 0 only:

R(ρ) = 〈(Z(r + (ρ, ρ, ρ)t)− µ)(Z(r)− µ)〉.

The autocorrelation function decreases from µ at ρ = 0 to µ2

for ρ → ∞. The negative value of the derivative of R(ρ) at ρ = 0
corresponds to 1/4 of the specific pore surface area; The integral∫∞

0
(R(ρ)− µ2) dρ is a characteristic length scale.
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7.2 Examples of artificial porous media

Spherical packing In spherical packing the void volume is
connected and the bulk porosity is equal to effective porosity; For this
section define φ := φbulk = φeff .

Simple cubic The most simple spherical packing is simple cubic
packing. The defining function Z(x) for spheres B3(r) with radius r
in volume [−r, r]3 is

Z(x) :=

{
1 x ∈ [−r, r]3 \B3(r),
0 x ∈ B3(r).

The porosity of this packing is given by

φ = 〈Z(x)〉 =
1

8r3

∫
[−r,r]3

Z(x) dx

=
1

8r3

∫
[−r,r]3\B3(r)

1 dx =
(8r3 − 4π

3 r
3)

8r3

= 1− π

6
≈ 0.476401,

and the standard deviation by

σ2 =
〈
(Z(x)− φ)2

〉
=

1

8r3

∫
[−r,r]3

(Z(x)− φ)2 dx

=
1

8r3

(∫
B3(r)

φ2 dx+

∫
[−r,r]3\B3(r)

(1− φ)2 dx

)
=
π

6
φ2 + (1− π

6
)(1− φ)2

=
1

108
(π − 9)(π − 6)π

≈ 0.487113.

Face-centred cubic More dense sherical packings are face-centred
cubic and body-centred cubic packings with equal porosities of

φ = 1− π

3
√

2
.

“In face-centred cubic packing, each layer has spheres placed
diagonally next to each other. The next layer of spheres is placed in
the crevices between spheres on the bottom layer. Every third layer
directly overlies each other.” [Gro00, GLR03]. For the generation of
the packing following vectors are used to determine spheres’ centres:

(1, 0, 0), (−1/2,
√

3/2, 0), (0,−1/
√

3,
√

2/3).

In [Gro00] a calculation of the volume occupied by the spheres is
given.

Artificial porous media For generation of artificial unconsolidated
sediments a software “settleDyn”—short for Settle Dynamics—is used,
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which is based on a simple ballistic method coupled with a rigid body
dynamics.

The “settleDyn” software was originally developed
by Guido Blöcher[BZ08] with simplified physical model under
the name “Settle3D”. It allowed translations and rotations of
a rigid body but did not take in account the velocity or linear
and angular momenta. To create physically more accurate
sedimentation process the new implementation is based on
the “Bullet Physics Engine” [Bul]. The simulation driver,
which is controlling the simulation process, is implemented
in “Haskell” [Has]. “Haskell” is a pure functional programming
language, which suites well for high-level abstraction of
a simulation driver. The command line interface—the front-
end—is described in the supplied documentation. All varieties
of artificial sediments used in this thesis are generated using
the “settleDyn” software.a

The purpose of the sedimentation simulation is to generate an uncon-
solidated sediment resembling a natural one with the same statistical
properties like grain-size distribution, porosity, autocorrelation.
A comparison can be made by analysing thin sections or the three
dimensional volume (using a CT-scanner for example).

We assume the grains to be rigid. Deformations can be neglected
because of the low weight and impact velocities, altogether resulting in
low moments of inertia. The dynamics of body motion is described by
Newton’s Second and Third Laws. Besides the gravity there are drag
forces acting on a falling grain—these are ignored in the simulation.b

There are further factors involved in real processes: A very difficult
one to estimate properly is the friction. Friction may influence
the compactness of the resulting sediment. In the simulation there is
friction between grains, but it is set to some arbitrary value.

The grain’s shape is another parameter in the simulation, which
can be controlled to a certain degree of approximation. The surface is
consisting of flat triangles and this is the only restriction; Convex or
concave shapes can be used.

The shapes used in this study are sphere, icosahedron, and
cube. This choice is made to restrict the space of possible sediments
while preserving the variation of grain-roundness. Other variations,
elongation or surface roughness, for example, are not considered, but
there is no limitation by the settleDyn software.

Grain size distribution is one of the most important parameters of
a sediment. The grain size distribution is obtained by sieving the sed-
iment and weighting the mass of each sieve residues. The distribution
is given in mass-per-cent for a specific mesh size.

In the simulation the grain’s size is defined as the second shortest
edge length of the grain’s axis-aligned bounding box. Another
possibilities include radius of the circumsphere or the second radius

a The “settleDyn”–source code is available under the GNU Public
License v.3 or later [Naub].
b In current setup a falling grain will always accelerate and never

reach terminal velocity, but we constrain the maximum height in
the simulation, such that no arbitrary big velocities occur.
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of the circumscribed ellipsoid, which are a little more difficult to
implement while giving no advantage over the current choice.

The discrete grain size distribution (e.g. from sieving) can be
approximated by the Weibull distribution [Wei51]. The advantage of
using this particular continuous distribution is that it is given by only
two parameters and describes a distribution of a sediment obtained
by a crushing process very well.c

The probability and cumulative density functions of the Weibull
distribution for a random variable x ≥ 0 are given by

pdf(x; k, λ) =
(k
λ

)(x
λ

)k−1

exp

(
−
(x
λ

)k)
and

cdf(x; k, λ) = 1− exp

(
−
(x
λ

)k)
, (15)

where k—the shape and λ—the scale parameters are both non-
negative. The mean (µ) and variance (σ2) of a Weibull-distributed
variable are:

µ = λΓ(1 + 1/k), σ2 = λ2Γ(1 + 2/k)− µ2. (16)

In the examples of artificial sediments we shall use three grain
size distributions: an univariate with grain size 1, a bivariate with
grain sizes 1/2 and 1, and Weibull-distributed. The last distributions
is generated using shifted Weibull distribution, where x is substituted
for x−m in order to avoid very small grains:

cdf(x; k, λ,m) = 1− exp

(
−
(x−m

λ

)k)
, (17)

with parameters k = 6, λ = 2/3 and m = 1/3. Their meand

and variance are µ ≈ 0.9518, σ2 ≈ 0.01436. The probability and
cumulative density functions are shown in the following figure:
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Figure 7.2 Weibull probability (left) and cumulative
density functions (right) used in examples of artificial
sediments.

c The Weibull distribution is also know as Rosin-Rammler
distribution [RR33] and is used in powder technologies for particle
size description. See also [BW95].
d The mean of a shifted Weibull-distributed variable is also shifted

by m.
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Weibull distributed numbers can be generated from the inverse
cumulative density function given a uniform distribution of random
numbers in [0, 1]:

y = cdf(x; k, λ,m)⇔ icdf(y; k, λ,m) = x.

icdf(y; k, λ,m) =

{
m for y ≤ 0

m+ λ
∣∣ ln y∣∣1/k else

.

Examples of artificial sediments

Spherical grains. In vast majority of scientific research on artificial
sediments the grains are spheres of different sizes. We study three
different grain size distributions mentioned above: univariate,
bivariate, and a Weibull distributed. We refer to this setups with
corresponding abbreviations: SG1, SG2, and SG3.

The spheres are approximated by triangulated surfaces
consisting of 320 triangles and 162 vertices. They are generated
by subdivision procedure starting from a icosahedron over two
iterations. Subdivision is applied to each triangle, which is split
into four triangles by adding new vertices at edge midpoints and
pushing out newly created vertices onto the sphere’s surface.
Icosahedral grains. We study three different grain size distribu-
tions, which are the same as for spherical grains and refer to this
setups with corresponding abbreviations: IG1, IG2, and IG3.
Cubical grains. Again, we study three different grain size
distributions, as before and refer to this setups with corresponding
abbreviations: CG1, CG2, and CG3.

7.3 Summary

In this section most important geometric properties of porous media
were mentioned; grain size and shape, porosity, two-point correlation
and the derived properties: the surface area and characteristic pore
length scale.

Spherical packings—the simple cubic and face-centred cubic—
were introduced. These form the most simple porous media studied
later and are well suited for benchmarking.

More complicate porous media were created with new “settleDyn”
code based on a physics game engine “Bullet”. Similar code was
used in previous work but lacked the more appropriate and realistic
sedimentation dynamics.

For the simulations on more complex porous media the resulting
unconsolidated sediments of the “settleDyn” code are used; these
include spherical, icosahedral, and cubic shapes. All three shapes are
used in generation sediments with univariate, bivariate, and Weibull
grain size distributions. This results in nine setups for fluid-flow
simulations.
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8. Flow-through simulation setup

8.1 Flow-through laboratory experiments

A sample of a porous medium like borehole sandstone is placed in
a duct with geometry fitted to the sample’s geometry and fixated
in there. Porous media consisting of loose particles are clamped
from both sides, inlet and outlet, either by permeable membranes or
by plugs with smaller inlet and outlet openings than the particles’
diameters. Porous media like sandstones do not require such fastening
elements. Confining pressure can be applied by using a soft shell
around the sample, which is then put under pressure in an oil bath, for
example. A more complicated setup is required to control the sample’s
temperature, for example, or for insertion of other measuring devices.
(See for example [MSKM08] for detailed experimental setup.)

At the inlet the fluid’s pressure is increased by means of a pump or
elevated reservoir connected by a pipe to induce fluid flow. A set flow
rate or pressure are maintained during an experiment. Temperature,
chemical composition and tracer additives can be controlled at
the inlet.

Measurements of the fluid are taken usually at the outlet because
of easy access; pressure, velocity distribution, temperature, chemical
composition and other physical quantities can be measured.

Geometry and computer simulation setup Computer simula-
tions, to be compared to laboratory experiments, mimic the above
experimental setup to some extent. Observation of all quantities is
simple in a computer experiment but not the configuration of the inlet
properties and copying of the boundary conditions; the latter are
model dependent. Before continuing with the setup description we
first choose a set of equations describing the fluid flow. Then we will
be able to set initial and boundary conditions according to the chosen
model.

We solve the Navier-Stokes Equations of an incompressible,
Newtonian fluid with constant viscosity. The choice of these constraints
is mainly due to computational complexities and physical properties
of the problem being studied. The Reynolds number Re is a ratio
of inertial forces to viscous forces and can be used to differentiate
between laminar and turbulent flow regimes. Usually it is defined
by a grain’s diameter D as the characteristic length scale, fluid’s
superficial velocity us, and kinematic viscosity of the fluid ν;a

Re := usDν
−1. (18)

a “Although, by analogy to the Reynolds number for pipes,
D should be a length dimension representing the elementary channels
of the porous medium, it is customary (probably because of the relative
ease of determining it) to employ some representative dimension of
the grains for D (in an unconsolidated porous medium).” [Bea88,
p.125]. We shall also add to this that the hydraulic diameter would
be a better length-scale. Different definitions of the Reynolds number
will lead to differences in conclusions based on it later on.
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The computationally intensive transient, possibly non-laminar flows
are excluded because of limited computational resources available.

The computational time is increasing with the number of mesh
elements N , which is proportional to the Reynolds number approx-
imately as Re9/4 ≈ N3. This estimation arises when looking onto
Kolmogorov microscales [Pop00, Chapter 6].

The Kolmogorov length scale η is (ν3/ε)1/4, where ε is the kinetic
energy dissipation rate. It is proportional to u3

s/D giving the following

estimate for η based on the Reynolds number: D/η ≈ Re3/4.
The number of the mesh elements resolving the Kolmogorov length
scale η in one dimension is N = D/h >∼ D/η = Re3/4. Hence the
above estimate in three dimensions.

Consider a cubic domain filled with n3 spheres (in simple cubic
packing, φ ≈ 50% porosity) of diameter D. A sphere discretized at
resolution h = D/128 = D/27 allows direct numerical simulations
for Reynolds numbers up to (D/h)4/3 = 29.3̄ ≈ 645. For the given
computational resources (largest computer’s memory of 256 GiB)
the mesh size can not exceed approximately Nmax = 50 · 106 elements;

thus there are at most 3
√

(Nmax/φ)/(27)3 ≈ 3.63 spheres in the domain.
For a densest packing (fcc) the porosity is around 25%, giving ≈ 4.53

spheres. Both setups are not suitable for spatial averaging process
because of their small size.

A reduction of the mesh resolution increases the number of
spheres in the domain, but reduces the maximum Reynolds number
at the same time; some examples: For D/h = 64 mesh resolution,
the maximum Re = 28 = 256, and n3 ≈ 7.33 or ≈ 9.13 for a densest
packing. For D/h = 32 mesh resolution, the maximum Re = 26.6̄ ≈
101, and n3 ≈ 14.53 or ≈ 18.33 for a densest packing. The latter
two resolutions are more suitable for spatial averaging. Another
possibility is to use a turbulence model instead of the cost intensive
Direct Numerical Simulation.b

The low Reynolds number leads to small velocity magnitudes
and, consequently, to low Mach number, where we can neglect any
compressibility effects. It also means that shock waves and other
similar singularities are excluded.cAt low Reynolds numbers the flow
regime is laminar, and for the most cases steady-state.d At the upper
range of the possible Reynolds numbers starting from 10 to 100 (based
on the above definition of the Reynolds number (18)), transient flow
patters can occur. We restrict our computer simulations to flows
with steady-state behaviour. As extension of this work the transient
flows should be studied by using the large eddy simulation turbulence
model (or with much larger computational resources).

Observing the fluids’ velocities from the experimental point of
view, low permeability samples require very high pressure gradients

b Some simulations using Large Eddy turbulence model were
performed showing promising results, but were not followed further.
c The Mach number Ma := us/a, where a is the speed of sound.

The speed of sound of a fluid is usually larger than 100m/s but for
very low temperatures, pressures, or densities, thus resulting in low
Mach numbers for the given superficial velocities and incompressible
fluid flow.
d This depends on the geometry too.
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to arrive at non-creeping flow, which are usually not observed far
from bore wells (in the context of deep geothermal power plants or
gas storage.e) The case of very low Reynolds number is covered
by Darcy’s Law which can be derived from the Stokes equation for
creeping flows and is very well studied.

We shall concentrate our simulation efforts in the transitional
range of flow regimes from laminar to turbulent. Such regime can
occur in loose sediments with gas flow through. [DWK+13] Another
possible application field is the upper layer (few centimetres) of a river
bed called hyporheic zone. [TSM+13]

e For semipervious and impervious soils with permeabilities
less than k = 10−8cm2, which corresponds to very fine sand, silt,
loess, loam or stratified clay [Bea88, p.136], the particle diameter
from D = 10−3mm for clay to 10−2mm for silt [Bea88, p.40], the fluid
properties ρ = 103kg/m3 and µ = 3 · 10−4 Pa · s the negative pressure
gradient is ∇p = Reµ2/(Dρk) ∈ [45, 450] · 106Re · Pa/m, and
for Re ≥ 1 it is ≥ 450 ·MPa/m. Such pressure gradients can arise for
example while hydraulic fracturing procedures.[LHZ05, WWF+13]

– 31 –



Consider a simple geometry copying an experimental setup;
a square duct with a porous media sample placed inside, as shown in
the below figure.

U=Uinlet

d

Lin

Lpm

p=poutlet

d

Lout

Figure 8.1 Square duct (size d × d) partially filled with porous media
sample with long inlet and very long outlet sections. Inlet velocity and
pressure outlet boundary conditions indicated. Inlet, porous media, and
outlet sections as indicated by their lengths Lin, Lpm, Lout.

The arrows are indicating the flow direction from the inlet, where
usually a velocity boundary condition is assigned, to the outlet, where
the pressure is set and the flow is perpendicular to the outlet’s surface.

Based on this initial configuration we shall analyse the following
topics: reduction of the computational domain’s size (removing inlet
and outlet), grid convergence of the Direct Numerical Simulation
using PISO method.

8.2 Summary

From a description of an experimental flow-through experiment we
described a general computer setup for fluid flow simulations. A short
analysis of the flow regimes combined with computational complexities
of the solution of compressible, non-isothermal fluid flows resulted
in the choice of incompressible Navier-Stokes Equations for the fluid
flow simulation.

Estimation based on the Kolmogorov length scales of the required
mesh resolutions for the Direct Numerical Simulation for a given
Reynolds number yield the size of the largest computational setup;
Maximum available computer memory constraints the number of
elements in a mesh resulting in computational domain for 3.63 to
4.53 spheres (depending on the packing) for the Reynolds number up
to 645. Lower Reynolds numbers would allow larger computational
domains (more suitable for spatial averaging) but the inertial effects
will also decrease. Large Eddy Simulations are also a viable option
but lack verification data.

At the given computational resources only steady-state simulations
are possible in acceptable time (around 48h per simulation on 480 CPU
cores for single simulation).

General simulation setup is shown and objectives to reduce
the computational efforts are stated.
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9. Row of spheres in square duct

The most simple setup to start validation of the numerical method
consists of a square duct filled with a row of spheres of same diameter
as the duct’s height/width.

9.1 Setup description

Consider a square duct with dimensions D ×D ×N ·D filled with
row of N spheres with diameter D = 1, such that their centres are
placed in the duct’s centre, as shown in the Figure 9.1.

On the left side an inlet boundary condition is imposed, where
the velocity field is mapped from inside the domain as shown in
the Figure 9.1. To limit possible numerical oscillations, the velocity
field is scaled, such that the volumetric flux is constant. On the right
side an outflow boundary condition, and on the duct’s walls and
spheres the no-slip boundary condition is specified.

The inlet and outlet are essentially not existent here as we want
to study the mesh refinement and mesh-type influence at different
Reynolds numbers. The inlet/outlet length influences are studied in
the Section 10.2 Influence of the outlet length.

Most simulations were run on 4 spheres to reduce computational
complexity. To estimate the influence of sphere number we have
tested a setup with 8 spheres in the row. Four spheres are sufficient
for the setups following.

Simulations with kinematic viscosities ν = 0.1 and 0.01 at mesh
resolutions h = D/32, D/64, D/128, and D/192 were solved with
icoFoam OpenFOAM solver for incompressible, Newtonian flows until
steady-state.

For finer meshes lower viscosities down to ν = 5 · 10−4 were
simulated.

For the evaluation the following variables were used:

pressure drop ∆p,
average velocities uavg and urms,

Additionally velocity profiles along of three selected lines were
compared.

In the following Figure 9.1 a diagonally cut domain with typical
velocity and pressure distributions is shown.

9.2 Meshing

All of these setup variations (resolution and kinematic viscosity) were
applied to four different meshes:

hexahedral—the domain was discretized with hexahedrons of same
size, and the spheres’ surfaces kept staggered.
hexahedral/refined—the domain was discretized with hexahedrons
as before, but the cells on spheres’ surface are subdivided twice,
such that the mesh size is quarter of the interiors mesh size.
A transition layer is present.
snappeda—the domain was discretized with hexahedrons of same
size (as in the first case). On the spheres’ surfaces “snapping”

a Or also called “body-fitted” mesh.
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Figure 9.1 Diagonal cut geometry of the sphere row in square duct
simulation. Flow from left to right. Typical velocity (upper part) and
pressure distribution (lower part) are shown. The solution shown corresponds
to the hexahedral mesh with mesh resolution h = D/64, and kinematic
viscosity ν = 0.01. The average inlet velocity is scaled to unity.

of the hexahedrons to the boundary was applied resulting in
much smoother surface representation on cost of the distorted
cell shapes.b

snapped/refined—the domain was discretized with hexahedrons
and refined on the spheres’ surface (as in the second case), and
the “snapping” procedure was applied. The already refined
boundary can cling to the spheres better, than in the coarse (not
refined) case because of more degrees of freedom.

b This increases the non-orthogonality of the mesh and will
require special non-orthogonality correction in the inner iterations of
the PISO algorithm [Jas96, pp.83–86].
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Cross-sections of the studied meshes (at the same initial resolution)
are shown in the Figures 9.2 and 9.3.

Notes

“Snapped” and refined meshes are present only in two resolutions:
h = D/32 and D/64 because of insufficient memory resources
available. There are for the hexahedral mesh: ca. 62k cells
at D/32 mesh resolution, 500k for D/64, 3992k for D/128,
13487k for D/192, and 62717k for D/256c; and for the refined
hexahedral meshes there are: 482k for D/32, and 3374k for D/64.
The “snapped” meshes have similar number of cells.
“Snapped” meshes are not available for resolutions higher
than h = D/128 because the OpenFOAM’s meshing code
snappyHexMesh did not converge in the mesh quality improve-
ment loop. The meshes were not usable for numerical simulations
because elements of insufficient quality were present.

c Simulations for this resolution exceeded the available computa-
tional resources and are not included in the results.
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Figure 9.2 Hexahedral meshes. Cross-cut of a row of spheres in a square
duct.

Figure 9.3 Almost hexahedral meshes with “snapped” boundaries. Cross-
cut of a row of spheres in a square duct.
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9.3 Evaluation

Pressure drop
Plots of the pressure drop between outlet and inlet versus

mesh resolution and kinematic viscosity are shown in the following
Figures 9.4 and 9.5.
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Figure 9.4 Pressure drop at two selected kinematic viscosities ν = 0.1
and 0.01 for different mesh resolutions.

With increasing mesh resolution convergence of the pressure drop
is observed. There is only a small difference between mesh types but
for the snapped, unrefined mesh. A reason for this is not clear, but
probably has to do with the mesh’s non-orthogonality and slower
numerical convergence.

For the highest resolution h = D/192 simulations with kinematic
viscosities down to 5 · 10−4 were performed. The pressure drop and
the difference to lower resolutions is shown in Figure 9.5:
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Figure 9.5 Pressure drop versus kinematic viscosity. The graph on the right
shows the difference to the pressure drop at mesh resolution h = D/192.

Linear regression of the pressure drop at mesh resolution h =
D/192 (with most data points and most expected accuracy of
the solution, as shown in the previous Figure 9.4) through three
points at highest kinematic viscosities ν = 1, 0.1, and 0.01 gives a line

∆p(ν) = 1.8185092 · 103ν + 1.10405251

with the total residual from least squares interpolation being ≈ 0.48.d

d The total residual is the squared Euclidean 2-norm of the
least squares approximation of the linear equation system for the
polynomial fit.
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Figure 9.6 Linear fit and the relative error of pressure drop for mesh
resolution h = D/192.

Using the full data set, the linear fit is:

∆p(ν) = 1.81827260 · 103ν + 1.26826977

with the total residual ≈ 0.73. The log-log plot and the relative error
plot are shown in the following Figure 9.6:

Both lines are almost undistinguishable graphically, by the linear
fit’s slope, and only slightly in the offset.e

e The current offset is very small and could be set to zero as ν → 0,
if the inertial terms were not present. The presence of inertial forces
might explain the slightly higher offset for the full data set.
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Velocity profiles We have sampled velocity profiles at three
selected lines at different mesh resolutions for a constant kinematic
viscosity ν = 0.01. The lines are defined by the following end-points
(for D = 1):

line A: (1.5, 0, 0)—(1.5,
√

3/2,
√

3/8),

line B: (1/2,
√

1/2, 1/2)—(7/2,
√

1/2, 1/2),

line C: (1/2,
√

1/2, 1.075)—(7/2,
√

1/2, 1.075).

The distance between sampling points is D/256. The results for ν =
0.01 are shown in the three following figures; Scales of the velocity
components are different in each plot!
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Figure 9.7 Velocity profiles along the first sampling line A for ν = 0.01.
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Figure 9.8 Velocity profiles along the second sampling line B for ν = 0.01.
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Figure 9.9 Velocity profiles along the third sampling line C for ν = 0.01.
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In all but the last plot clear convergence of the velocity profiles with
higher mesh resolution is observable. (In the last plot the z-velocity
component is numerically insignificant.) Aside the coarseness of
the velocity profiles at lower mesh resolutions, starting with h = D/64
towards finer meshes, the solutions are almost as good as at the highest
mesh resolution. This was also observed in the pressure drop evaluation
in Figure 9.5.

For the highest mesh resolution the velocity profiles w.r.t.
the kinematic viscosity have strong dependency. Especially on
the second and the third lines back-flow patterns are different.
The results are shown in the following three figures:
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Figure 9.10 Velocity profiles along the first sampling line A at mesh
resolution h = D/192.
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Figure 9.11 Velocity profiles along the second sampling line B at mesh
resolution h = D/192.
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Figure 9.12 Velocity profiles along the third sampling line C at mesh
resolution h = D/192.

Along the first sampling line a clear skewing of almost parabolic
velocity profile at high viscosity towards sphere’s surface is visible. Also
notice the change of direction for the x- and z-velocity components.

Along the second line a small back-flow pattern develops, visible
in the slight dip of the y-component to negative values. Together with
the back-flow the x- and z-components change at the same location
(around 1/2).

In the last figure strong back-flow is observable.

9.4 Summary

Simple setup for validation of the fluid flow solutions was introduced
in this section. Relation of the pressure drop and the fluid’s velocity
to four setup variables as been studied:

number of spheres (more than 4 spheres have no influence on
the pressure drop),
kinematic viscosity,
mesh resolution, and
mesh type (hexahedral/snapped, and single-size/boundary re-
fined),

Meshing difficulties of the smoothed/snapped meshes did not
allow us to study this type of meshes at all resolutions. The meshs’
strong non-orthogonality has bad impact on the convergence of
the numerical method (and computational time). This is on of the
main reasons why only hexahedral (or almost hexahedral) meshes are
studied in the following setups.

Convergence of the pressure drop and velocity profiles with
increasing resolution was observed. Lower viscosities lead to back-flow
pattern development.

It was expected that the back-flow pattern at lower viscosities will
cause stronger deviation of the pressure drop from a straight line. This
is barely visible (almost insignificant) in the linear fit for the pressure
drop above (Figure 9.6). One explanation for this behaviour could
be that the low back-flow velocities are almost indistinguishable from
the no-slip boundary condition at nearest walls when compared to
the magnitudes observed along the preferential flow path.
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10. Face-centred sphere packing

10.1 Setup of the face-centred sphere packing problem

In a square duct of length Lpm + Lout several rows of spheres with
diameter D = 1 are placed in face-centred arrangement. The spheres
occupy full duct’s volume from its entrance at x = 0 to x =
N , where N = 4 is the number of spheres in single dimension.
(Only spheres with their centres lying in the given x-range are
included.) The square duct’s width and height are (N − 1)D

√
3/2

and (N − 1)D
√

2/3, such that there are two full spheres in the ducts
centre and a half of a sphere adjacent to duct’s walls. Overall there are
4× 3× 3 = 36 full spheres—depending on counting method—included
in the simulation.

Figure 10.1 Geometry of a face-centred sphere
packing in a square duct simulation. Flow from left
to right. The outlet length is Lout = 1 indicated
by short line segment. Typical inlet velocity profile
(mapped from the domain’s interior, indicated by
black frame) and pressure drop along the duct is
shown.

We solve the incompressible Navier-Stokes Equations with
following boundary conditions: No-slip boundary condition (U = 0
and ∂p/∂n = 0) is set on the walls and on the sphere surfaces.
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The inlet velocity is mapped from domain’s interior and its average is
constrained to 1.

Such a mapping allows removing of the inlet portion of the square
duct (not filled with the spheres). The mapping from the last sphere’s
row (at x = Lpm) is also possible, but the boundary conditions
imposed there in case of outlet length Lout = 0 would probably
influence the velocity field.

The homogeneous Neumann boundary condition is applied to
the pressure at the inlet. At the outlet the homogeneous Neumann
boundary condition is applied to the velocity, and pressure is set to
zero.

The fluid’s kinematic viscosity ν is chosen to be 1/100. For this
value of ν the flow remains stationary while small eddies appear
in some regions. At lower viscosities ν < 1/200 the flow becomes
transient.

Several scenarios are simulated; Their outcomes are discussed and
compared below. Simulation cases for varying outlet length Lout at
fixed mesh resolution, and different mesh resolution at fixed outlet
length Lout = 0 are created. Refinement of the boundary layer and
its influence on the discretization errors is also done for Lout = 0.

All here presented simulation converged to expected steady-state
observed both, in the initial residuals and convergence of physical
properties.

10.2 Influence of the outlet length

The inlet must be far enough away from the sample such that its
boundary condition has no influence on the flow inside the sample.
Similarly, the outlet’s boundary conditions must not change the flow
too. The inlet’s length can be estimated from a lengthwise laminar
flow development theories. This, so called entrance length for laminar
flow in square ducts of width d is about Le/d = 0.072 Red to 0.090 Red,
as reported in [Joh98, pp.28-73].

The required length of the outlet is much greater. For transient
flows it can be up to 50 times the grain’s diameter and increasing
with the Reynolds number.a For steady-state flows in our case, my
experience says, that an outlet length approximately of 15 grain’s
diameter is sufficient for the flow to become normal to the outlet’s
surface.b

Main disadvantage of this is much larger domain, whereas only
the flow inside the sample being studied is of interest. Consider
a porous medium with porosity around 50% consisting of spherical
grains with diameter D placed in a square duct in simple cubic
packing. Let the size of the sample be 10 grains’ diameters. Then
the volume occupied by the inlet of length 2D plus the outlet of

a In [WS97] free boundary condition were studied for backward-
facing step internal flow problem for lengths up to 66 step heights,
where the flow has reached fully developed Hagen-Poiseuille profile.
b The grains’ diameter is not a good length scale in this case.

The size of largest eddies or the size of the pores would be more
appropriate but more difficult to estimate/measure.
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length 15D is 3.4 times larger than the effective volume of porous
medium: 17 · (10D)2 versus 0.5 · 10 · (10D)2. Using this setup large
parts of the computational domain are necessary for correct simulation,
but of no interest.

It is possible to remove the inlet part almost without causing any
disturbances to the flow by mapping velocity from inside of the domain,
but it requires symmetry. The idea of velocity mapping from domain’s
inside was used in Eugene de Villiers PhD thesis [dV06, p.136] to
simulate proper turbulent inlet (and although this is a different topic
it is ideas origin).

Given a domain with translational symmetry in flow direction at
some point downstream. The velocity values at the symmetry plane
(or in general a surface) can be mapped one-to-one to the inlet. In
order to avoid possible oscilations the velocity is scaled such that
the total mass flow corresponds to a given value.

In OpenFOAM this boundary condition is known as “mapped-
Patch” and requires geometrical data in boundary description file:

case/constant/polyMesh/boundary:

inlet

{

type mappedPatch;

nFaces 5020;

startFace 1268431;

sampleMode nearestCell;

sampleRegion region0;

samplePatch none;

offsetMode normal;

distance -3;

}

and specification for the values (in this case of the velocity field) in
the case/0/U file:

boundaryField

{

inlet

{

type mapped;

interpolationScheme cell;

setAverage true;

average (1 0 0);

value uniform (0 $inletArea 0);

}

...

}

We study the influence of the short (and finally removed) outlet
part on seven cases for outlet lengths Lout = 0, 1, 2, 4, 8, 16, and 32
at mesh resolution h = D/32. (Various other resolution were tested
(h = D/20 to D/192 and are presented in the Table 10.1.)

Difference of the Lout = 0 to the longest outlet with Lout = 32
is negligible for global variables pressure drop, and average and
root-mean-square velocities, as well as for local pressure and velocity.
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The results are summarized in the following table on page p. 46 and
visualized in the Figure 10.2
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Figure 10.2 Dependency of pressure drop and
average velocity from outlet length Lout and mesh
resolution h of the face-centred sphere packing in
square duct simulations. Lower part shows only one
resolution (h = D/32) for more details not visible in
the upper part of the figure.

This observation of the negligible outlet length influence on
the solution allow to use shortest possible outlet (Lout = 0) for all
other simulations.

10.3 Discretization error analysis

For the outlet length Lout = 0 convergence of the pressure
drop, and average velocities w.r.t. to the mesh resolution is stud-
ied. The incompressible Navier-Stokes Equations with kinematic
viscosity ν = 1/100 are solved using transient solver. All solutions are
converging to a steady-state, indicated by vanishing initial residuals
and converging physical properties.

The simulation results are summarized in the following Table 10.2,
and Figures 10.3 and 10.4. Unfortunately the expected convergence
with finer mesh resolutions is not achieved.

Using Richarson extrapolation the estimated observed order of
convergence is much lower than the order of the numerical algorithm.
The Richardson extrapolation, the observed order of convergence,
and the Roache’s grid convergence index are described in detail
in Chapter 8 “Discretization error” in [OR10, pp.286–342].

Taking last three mesh resolutions (h = 1/144, 1/160, and 1/192)
the observed order of convergence for the pressure drop ∆p is 0.6539
resulting in Richardson extrapolated value of 125.93. The grid conver-
gence index is 64.59 resulting in 43.8% uncertainity of the pressure
drop on the finest mesh. This means, that the pressure drop on
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Pressure
drop

Average
velocities

Surface
area porosity
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Table 10.1 Results of the face-centred sphere
packing in square duct simulations for different mesh
resolutions h and outlet lengths Lout.
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Surface
area porosity
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Table 10.2 Results of the face-centred sphere
packing in square duct simulations for different mesh
resolutions h for outlet lengths Lout = 0.

20 40 60 80 100120140160180200
Mesh resolution 1/h

145
150
155
160
165
170
175
180
185

pr
es

su
re

Pressure drop

20 40 60 80 100120140160180200
Mesh resolution 1/h

2.60

2.65

2.70

2.75

2.80

2.85

2.90

2.95

ve
lo

cit
y

RMS velocity

20 40 60 80 100120140160180200
Mesh resolution 1/h

1.62

1.64

1.66

1.68

1.70
ve

lo
cit

y
Average velocity

Figure 10.3

20 40 60 80 100120140160180200
Mesh resolution 1/h

116
118
120
122
124
126
128
130
132

ar
ea

Surface area

20 40 60 80 100120140160180200
Mesh resolution 1/h

0.2580

0.2585

0.2590

0.2595

0.2600

0.2605

0.2610

0.2615

po
ro

sit
y

Porosity

Figure 10.4

– 47 –



the finest mesh ∆p = 147.459 lies in the 95% uncertainity bandc,
which is as wide as 147.459± 64.59. This is, of course, unacceptable.
The numerical algorithm is second-order accurate, and the observed
order is expected to be not far away from this value: It can be as
low as 1 for highly non-orthogonal meshes or values measured on
the domain’s boundary, where the one-sided numerical derivatives are
of order 1, but not acceptable for such “integral” values as pressure
drop along the full length of the simulation domain.

For the rms velocity average urms the observed order of convergence
is 0.7697, the extrapolated value is 3.027, the grid convergence index
is 0.3285, and the uncertainity for the last value is 11.26%. Although
this is slightly better as for the pressure drop, but not sufficient.

The results for the average velocity uavg are similar to those
of urms.

The reasons for this behavoir is most probably the increasing sur-
face area (Figure 10.4), therefore breaking the necessary precondition
of systematic mesh refinement: the geometry of the computational
domain changes with mesh resolution.

Surface area

The surface area of a discretized sphere of radius r is not equal
to A = 4πr2. Due to hexahedral mesh the surface is staggered and
the surface area is larger than that of a smooth sphere.

Consider a one quater of a circle (in R2) with radius r. Because
of the discretization by quads (in R2) the so called taxicab metric is
applicable: For the two points (r, 0) and (0, r) the distance between
them is always 2r and is independent of the actual path as long as
there is no “going back”.

For a slab of thickness h of a cylinder of radius r its surface area
(without the caps) is Acyl

r,h = 8rh.

Through the discretization procedure the radius of each a slab i
is r̂i := j · h, i, j ∈ Z, such that (i · h)2 + (j · h)2 = 1/22.d Because

j is an integer, some rounding is required, e.g. j = b
√

1/(4h2)− i2c.
The rounding method used is not important; we use rounding down,
but rounding to the nearest integer or rounding up are also possible
and do not change the limit of the following sum for h towards zero.

For the slab i of the unit sphere, its surface area (without

the caps) is then Acyl
r̂i,h

= 8h2b
√

1/(4h2)− i2c, and summing over all
slabs from i = 0 to 1/2 · 1/h, the surface area of all slabs cut in one
direction is

2 · 8h2

1/(2h)∑
i=0

b
√

1/(4h2)− i2c.

This accounts not for the whole surface: The surfaces orthogonal to
the cutting direction are not included. Following the same procedure
for an orthogonal cutting direction, and not counting the surfaces
already included into the first sum, one half of them, the total surface

c The Roache’s grid convergence index is designed such that to
achieve 95% certainity.
d Sphere’s diameter is 1.
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area of the discretized unit sphere is:

Asphere
1,h = 3 · 8h2

1/(2h)∑
i=0

b
√

1/(4h2)− i2c.

This series is slow convergent albeit not to the true surface area, but
overestimating it by 3/2.

The surface areas for the mesh resolutions D/h = 32, 64, 128,
192, 256, and 288 are 4.7964, 4.7558, 4.7346, 4.7274, 4.7237, and
4.7224 respectively.

This fits the results in the Figure 10.4 very well assuming
the spheres’ surface is of 27 spheres: for the mesh resolutions D/h = 32,
64, 128, and 192 the simulation surface areas are 4.547478, 4.707289,
4.797033, and 4.830725 respectively. The small difference is accounted
for the duct’s wall surface (excluding the inlet and outlet).

10.4 Boundary layer thickness

Studying the outlet length influence, revealed strong solution depen-
dency on the mesh resolution. Two major effects are taking place
here: One is the changing mesh geometry resolving finer and finer
structures of the input geometry, and the other is the discretization
error changing with higher mesh resolution. To separate this two
issues the following series of simulations was prepared.

In order to quantify the discretization error, the domain’s
geometry should be fixed. Introducing a boundary layer of thickness γ
with finer or same resolution as in the domain’s interior, fixes
the domain’s geometry: the boundary of the geometry is independent
of choosen mesh resolution. With this setup the discretization error in
the domain’s interior can be studied in dependence of the boundary
layer thickness γ.

The lowest mesh resolution is chosen to be h0 = D/32. It allows
for two—mainly due to memory requirements for meshing—subsequent
refinement steps. Starting from h0, the mesh geometry is refined two
times in the boundary layer region, giving mesh resolution h = D/128
in that region. In the mesh’s interior the resolution is kept at
the initial value excluding a thin transition layer from larger to smaller
hexahedron elements.

The simulation results are collected in the Table 10.3.e

The first Figure 10.5 shows the convergence of pressure drop and
velocity averages towards the solution at highest mesh resolution h =
D/128 with increasing boundary layer thickness γ. From the graphics
one can conclude that the boundary layer of thickness γ = 1/10 is
almost as good as the solution at highest mesh resolution, while
saving slightly over 6% of the mesh elements compared to the highest
mesh resolution.

The second Figure 10.6 shows the behaviour of the pressure drop
and average velocities depending on the mesh resolution for different
boundary layer thicknesses. Keeping the boundary (and the boundary

e The number of elements for the boundary layer thickness γ = 0 is
larger than for γ = 1/100 because the default transition layer thickness
of the snappyHexMesh is larger than the explicitly specified one.
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Mesh
resolution

Number of
elements

Pressure
drop

Average
velocities

BL thick-
ness

h # ∆p urms uavg γ

  . . . 
  . . . 1/100

  . . . 2.5/100

  . . . 5/100

  . . . 10/100

  . . . 
  . . . 1/100

  . . . 2.5/100

  . . . 5/100

  . . . 10/100

  . . . ∞

Table 10.3 Results of the face-centred sphere packing
in square duct simulations for different boundary layer
thicknesses γ and three mesh resolutions D/h = 32,
64, and 128. The boundary is discretized at mesh
resolution D/h = 128, therefore the boundary layer
thickness at this mesh resolution is infinite.

0.00 0.02 0.04 0.06 0.08 0.10
Boundary layer thickness

153
154
155
156
157
158
159
160
161

pr
es

su
re

Pressure drop

0.00 0.02 0.04 0.06 0.08 0.10
Boundary layer thickness

2.72
2.74
2.76
2.78
2.80
2.82
2.84
2.86
2.88

ve
lo

cit
y

RMS velocity

0.00 0.02 0.04 0.06 0.08 0.10
Boundary layer thickness

1.682

1.684

1.686

1.688

1.690

1.692

1.694

ve
lo

cit
y

Average velocity

mesh resolution 1/h
32
64

Figure 10.5 Convergence of pressure drop and
velocity averages with increasing boundary layer
thickness. The horizontal black line represents
the solution at highest mesh resolution h = D/128.

elements not further away than the boundary layer thickness γ)
unchanged, is a more systematic way of mesh refinement as required for
the Richardson extrapolation discussed in the Section Discretization
error analysis (p. 45). For the boundary layer thicknesses larger
than γ = 2.5/100 can be observed in all inspected variables.
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Figure 10.6 Convergence of pressure drop and
velocity averages for different mesh resolutions and
different boundary layer thicknesses γ.

10.5 Summary

We have described and set up a face-centred sphere packing fluid flow
simulation. Special inlet boundary condition (recycling velocity from
domain’s inside), converting the problem into one with “periodic”
boundaries (in flow direction), was applied.

A major point in reduction of the computational domain’s size
involves the outlet part of the geometry, as mentioned in Section Sim-
ulation setup on p. 32. A reduction of at least 3.4 fold was achieved
by the reduction of the inlet and the outlet parts. The outlet length
influence was studied in detail. For the pressure drop it results in rela-
tive difference to the maximum outlet length of approximately 0.45%
for the lowest mesh resolution h = 1/20 and approximately 0.23%
for h = 1/32, and decreasing with higher resolution. For the average
velocities the picture is identical to the pressure drop dependency on
the outlet length.

In the second part two simulation setups were created for
discretization error estimation. For both the outlet length Lout = 0
was used. The näıve approach of mesh refinement applied to the whole
geometry led to unsystematic refinement required by the applied
Richardson extrapolation. This was also visible in the Figures 10.3
and 10.4.

More systematic mesh refinement was done defining a boundary
layer thickness. The same dependencies as before were analysed. This
time the discretization error vanish with higher mesh resolution for
a boundary layer of a minimum thickness γ = 2.5/100.
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11. Arti�cial sediments in a pipe.

11.1 Setup description

Consider a pipe with diameter 5 and length 10 filled with a random
sediment generated by the previously described “settleDyn” software
(Section Examples of artificial porous media on p. 25). To the filled
pipe segment an inlet and an outlet pipe segments of the same
diameter are attached.

On the left side inlet boundary condition is imposed with constant
parabolic velocity profile and volumetric flux equal to unity. On
the right side is outflow, and on the duct’s walls and grains the no-slip
boundary condition is specified.

In the Figure 11.1 a longitudinally cut domain with velocity
magnitude distribution for spherical grain setups SG1, SG2, and SG3
is shown on the next page; Same setups for icosahedral and cubical
grains are presented on the following pages (Figures 11.2, 11.3).

11.2 Mesh preparation

Mesh generation from the “settleDyn” output to the final tetrahedral
mesh requires several steps. The sedimentation software outputs a sin-
gle STL-file for every simulated grain, which contains the triangulated
surface description.a From this set of files those are selected, which
lie in a specified bounding box completely; The reduced set is used
for the mesh generation.

It was already observed (see [GVK97], cited in [MKDMS14,
Section 2.2.2]), that fluid flow through a column of packed particles is
different in the column’s centre than along the walls. This happens
because of looser packing along the walls. The bounding box defining
the volume of interest is chosen such that the boundary effects along
the vertical walls and layering on the bottom (from the sedimentation
simulation) remain outside of the volume of interest (VOI); The packed
bed for the fluid flow simulation is, so to say, stencilled out of the core
without destroying the packing on the new boundary. An example is
rendered in the Figure 11.4.

It is not expected, that this precaution will avoid all of the bound-
ary effects because the flow is restricted only to one half of the space
by the wall, but it should remove the effects associated with different
packing i.e. the geometrical influences.

Meshing software There are several open-source (or at least free
for academic use) mesh generation software packages available. We
have restricted this work to three options:

snappyHexMesh: The most straight forward approach is
the snappyHexMesh utility from the OpenFOAM meshing tools.

a One could also save a single STL-file for every variation of
the grain, and then for each simulated grain a reference to the original
and a 4 × 4 transformation matrix. This would save considerable
amount of space used but it is also more difficult to use for further
processing, which is the main disadvantage.
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Figure 11.1 Longitudinal cut through a pipe filled
with spherical grains. The three setups corresponds
to the SG1, SG2, and SG3 setups. Fluid flow
is from left to right. The velocity magnitude is
shown with same colour scale for all setups, whereas
the maximum velocity magnitudes are 10.9748,
18.0944, and 17.5923.
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Figure 11.2 Longitudinal cut through a pipe filled
with spherical grains. The three setups corresponds
to the IG1, IG2, and IG3 setups. Fluid flow is from
left to right. The velocity magnitude is shown with
same colour scale for all setups, whereas the max-
imum velocity magnitudes are 10.7398, 13.9347,
and 15.3164.
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Figure 11.3 Longitudinal cut through a pipe filled
with spherical grains. The three setups corresponds
to the CG1, CG2, and CG3 setups. Fluid flow
is from left to right. The velocity magnitude is
shown with same colour scale for all setups, whereas
the maximum velocity magnitudes are 11.8876,
11.7083, and 12.0186.
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Figure 11.4 Example of a settlyDyn generated sediment consisting of
icosahedrons, IG3 case, placed in a 5 × 5 box. There are 3576 grains at
the simulation’s end. For the fluid flow simulation a cylindrical stencil from
the box’s middle is taken.

TetGen: “TetGen is a program to generate tetrahedral meshes
of any 3D polyhedral domains.”[Si13]
CGAL “The Computational Geometry Algorithms Library,
offers data structures and algorithms like triangulations (2D con-
strained triangulations, and Delaunay triangulations and periodic
triangulations in 2D and 3D) . . . ”[CGA]

11.3 Tetrahedral mesh generation from polyhedrons

Due to numerical inaccuracies (and the penalty algorithm used in
the Bullet Physics Engine[Bul]) the sedimented grains are not only
touching each other in some points (or lines, or planes) but are
penetrating each other. While this is not significant for visualizations
(or in games, for which the Bullet Physics Engine was developed),
those penetrations lead to uncertainties in decisions whether a point
is inside or outside of a grain.

A 3D Delaunay triangulation algorithm, which is able to work
with multiple subdomains, with surface reconstruction implemented
in the 3D triangulation library of CGAL[CGA] was used therefore.
The detailed description of the algorithm is outside of the current scope,
but the required interface is easy to understand and to implement.

In the CGAL’s language an oracle, telling to which domain a given
point belongs, is required. We implemented such an oracle which is
assigning one of three possible subdomains to any point in space:

A point may belong to the outside subdomain if it is outside of
the domain boundary, which is a cylinder in the above simulations.
The point belongs to the grains subdomain if it is inside any of
the grains and not outside the domain boundary.
Otherwise this point belongs to the inside subdomain.

There are also three boundaries to be reconstructed from the point

– 56 –



information: outside-inside, inside-grain, and outside-grain.
The inside/outside test relies on number of triangle/random

segment intersections, where the segment starts in a point to be tested
and ends at a random point outside the objects’ bounding box.

The result of the triangulation is written in CGAL’s native format
and contains both types of the subdomains, the inside and the grains.
For the OpenFOAM simulation without fluid-structure interaction,
only the inside domain is needed. An appropriate conversion tool was
implemented.

11.4 An a-posteriori error driven mesh refinement

The tetrahedral mesh created with CGAL has relatively good mesh
quality criteria.b For the fluid flow we want to apply mesh refinement
in locations indicated by an a-posteriori error estimator to reduce
the discretization error.

An a-posteriori error estimator uses current solution to estimate
the discretization error. For the transient and steady-state fluid flows
Hrvoje Jasak has presented several a-posteriori error estimators in
the Chapter 4 of his PhD-thesis [Jas96, p.153] in the context of
OpenFOAM. We use the momentum error estimator for subsequent
mesh refinement of those elements showing large discretization errors.

OpenFOAM does not support mesh refinement for tetrahedra
natively. With help of the TetGen—a tetrahedral mesh gener-
ator [Si13]—it is possible to refine an existing tetrahedral mesh
(generated by CGAL in the first place) providing the desired element
size for every of the elements (in the coarse mesh). Such coupling was
implemented as sketched in the following algorithm:

1) generation of initial tetrahedral mesh with CGAL including all
important geometric featuresc

2) solution of the Navier-Stokes Equations and an a-posteriori error
estimation

3) mesh conversion from OpenFOAM into a suitable input for
TetGend

4) mesh refinement with TetGen using maximum volume constraints
provided by the error estimation

5) conversion of the refined mesh into OpenFOAM format (using
OpenFOAM’s tool tetgenToFoam)

6) mapping of the previous solution fields onto the new mesh
7) repeat from step 2) for steady-state simulations

b Due to highly irregular domain, especially in vicinity of
contact points, a good (high quality of elements) 3D Delaunay
triangulation is difficult to achieve, despite the surface smoothing
in the surface reconstruction algorithm. Additionally the following
mesh quality optimizers can be run: A Lloyd optimizer, an ODT
optimizer, an perturber, and an exuder (in this order). (See CGAL’s
documentation for more details on mesh quality optimizers [CGA].)
c Further refinements do not change the geometry.
d This tool—called in the spirit of OpenFOAM naming convention

foamToTetgen—is available as open-source code under the GNU
Public License v.3 or later at [Naua].
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11.5 Evaluation

Velocity magnitude
Maximum Mean Variance

CG1 . . .
CG2 . . .
CG3 . . .
IG1 . . .
IG2 . . .
IG3 . . .
SG1 . . .
SG2 . . .
SG3 . . .

Velocity magnitude
distribution The range
of the velocity mag-
nitudes (measured in
the pipe section filled
with porous media),
the mean of the ve-
locity magnitude, and
the variance are col-
lected in the table to
the right and the fol-
lowing Figure 11.5.

There, the dashed
lines and numbers indicates the maximum values. The horizontal
red lines represent the mean value, and the blue boxes are showing
the standard deviation range around the mean value.

CG1 CG2 CG3 IG1 IG2 IG3 SG1 SG2 SG3
0

5

10

15

20

ve
lo

cit
y 

m
ag

ni
tu

de

11.8876 11.7083 12.0186
10.7398

13.9347
15.3164

10.9748

18.0944 17.5923

Figure 11.5 Statistics of velocity magnitude distribution in different setups.
(See above text for description.)

Pressure
drop Porosity

CG1 . .
CG2 . .
CG3 . .
IG1 . .
IG2 . .
IG3 . .
SG1 . .
SG2 . .
SG3 . .

Pressure drop and poros-
ity The total pressure drop
from the inlet to the outlet was
measured. A small pressure
drop in the empty inlet and
outlet segments of the pipe is ig-
nored. Since the pressure drop
is proportional to the solid frac-
tion (from Darcy’s Law), both
are presented in the following
figure:
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Figure 11.6 Pressure drop for one realization of different sediments: cubic,
icosahedral, and spherical packing. 1—univariate grain size distribution
(size 1), 2—bivariate distribution (sizes 1 and 1/2), 3—Weibull distribution
as described in Equation (15).

11.6 Summary

The most complex part of this simulation series is the mesh generation.
From a given set of geometric objects (polyhedrons)—the unconsoli-
dated sediment’s grains—generated by settleDyn, an approximate
surface reconstruction algorithm was used to create a tetrahedral mesh.
The resulting mesh was then converted into the native OpenFOAM
format.

For different settleDyn sediments the generated meshes were of
different quality and most of them were numerically inadequate for
fluid flow simulations; here we used those producing stable numerical
results—not a good decision for statistical evaluation of sediments’
properties.

An a-posteriori driven mesh refinement using TetGen was used
showing good results and should be used in all further simulations.

Velocity magnitude and pressure drop statistics were presented.
These do not allow a generalization to Kozeny-Carman or Ergun like
equations because only one sample was analyzed.
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12. Structure and development of OGS6 FEM
code.

Development of the OpenGeoSys6 Finite Element Method code (ogs6)
started in early 2012 as a successor of the OpenGeoSys5 version.
Ogs5 has been successfully applied in various fields. An overview of
the ogs5 applications is given in [KBB+12, KGSW12].

12.1 Shortcomings of ogs5

The currently implemented algorithms allow ogs5 to solve manifold
numerical problems and these are mainly restricted by the available
computational resources.

In some cases, however, application of a well established numerical
algorithm requires some changes of the existing code. In case of
small changes, like simulation specific equation of state formulation,
the changes are localized and can be easily done. But when it comes
to larger changes, reordering of algorithm’s parts, implementation
of an additional problem specific variable, or changes to the way of
coupling between different subproblems, the required modifications to
the code are scattered around many places. Some of the above changes
might break the above mentioned benchmarks partially, and fulfilling
both: the correct solution of the current problem, and the existing
test cases is sometimes not possible.a [KGSW12]

The main problems with extension of the ogs5 source code are
caused by its insufficient modularity.b This could be avoided, at least
partially, by using existing algorithms from libraries like the Standard
Template Library (STL) [ISO11], and writing more specialized, but
reusable algorithms. The concerns of many about slower program
execution are usually unsupported (in my experience), and should be
checked with common profiling tools.

12.2 Localization of local assembler data

Another potential problem is the non-locality of data. Large data
structures are often allocated peace-by-peace on the heap, increasing
the memory fragmentation.

Optimization of data locality helps to improve CPU’s cache usage
(by reducing cache misses) [GSL+04], [Dre07]. Same observation about
performance improvement with high data locality was made by Arnd
Meyer in development of an adaptive FEM implementation [Mey14].
For the same reasons are arbitrary dimensional data arrays represented
by contiguous arrays in the Visualization Toolkit [SML03]c

a This leads to so called “branching” of the code base, where
different developer groups have slightly different sources and cannot
contribute to the main trunk.
b Lack of modularization leads to code replication with slight

changes to that code instead of an algorithm’s generalization. Quoting
Bjarne Stroustrup on this: “Prefer algorithms to unstructured
code” [Str12, p.40]
c See the “Visualization Handbook” [HJ11], section 30.2.7 Data

Representation, or the “Visualization Toolkit Handbook” [SML03].
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12.3 Comparison of elliptic pde global matrix assembly routines

A comparison between three implementations for solving a Laplace
equation on a 2D mesh consisting of 106 quad elements is performed.

Model The Laplace equation ∆u = 0 is solved on quadratic
domain Ω = [1000]2 ∈ R2. On left and right sides of the domain
Dirichlet boundary conditions u = −1, u ∈ ∂Ωleft, and u = 1,
u ∈ ∂Ωright are applied. On the remaining boundary, a homogeneous
Neumann boundary condition is given.

Comparison The measurement is split in following parts: ini-
tialization and reading of the mesh, global assembly, and solution
of the linear system of equations solverd Lis: a Library of Iterative
Solvers for Linear Systems [LIS].

The first implementation for the comparison is ogs5 (version 5.4,
SVN revision r12810). This version is modified to be comparable to
the current ogs6 implementation. The modifications include: Removal
of the gravity assembly part, the right-hand-side assembly for liquid
flow processes, velocity term calculation, and multi-component
flow-related computations.

The second and the third implementations are based on the current
ogs6 implementation. Their difference is only in memory allocation
located in the local assembler routine. One version is using dynamic
size local assembler matrices and vectors; the memory is allocated at
the run-time. The other is using fixed (or static) size matrices and
vectors, whose sizes can be inferred using template meta-programming
techniques [VJ03], thus resulting in memory allocation on the stack
instead of on the heap.

For the local matrices and vectors an implementation from
the Eigen3 library [GJ+10] is used. This is one of the libraries which
provides both types of memory allocation models with the same inter-
face. For other libraries, see the following Section 12.4 Benchmarking
matrix vector operations for FEM.

Results Using Google profiling tools [gpe], sampling data of each
of the three implementations was collected. The results are given in
the following Figure 12.1.

The largest difference between considered implementations is
the global assembler part: for non-linear or transient simulations this
routine is executed at every iteration/time step (besides of the solution
of the linear system of equations). Therefore, decreasing its execution
time was one of the main objectives for the code design.

An important difference to ogs5 is the creation of the degrees-of-
freedom (dof) table, associating variables on meshes at integration
points with global matrix positions. The positions in global matrix
are calculated during each time step in ogs5, although it is not always
necessary. For this reason, the dof-table is created only once in the new
version, resulting in a further decrease of the global assembly’s time.

The third result is the difference in runtime between ogs6 with
dynamic matrices (used in local assembly) vs. fixed size matrices.
Using dynamic size matrices results in memory allocation (malloc)

d Solution of the linear system of equations is done for sake of
completeness and is not relevant here because we do not compare
the performance of the particular solver.
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Figure 12.1 Absolute and relative number of samples split into comparable
parts: Program initialization and reading of the mesh, degrees-of-freedom
table construction (only in ogs6), global assembly routine, and solution of
the linear system of equations. The ogs6 d and ogs6 s abbreviations stand
for dynamic and fixed (static) matrices/vectors implementation in the ogs6.

calls every time the local assembler is called (i.e. for every element).
When using fixed size matrices, the memory space is already allocated
on stack, avoiding the extra memory allocation calls.

Notes It can be observed that the number of samples counted
by Google profiling tools within linear system of equation solver
call (Lis) is lower for ogs5 than for ogs6 d and ogs6 s. This is not
due to faster solver, but because of parallel execution of the solver
using two processor cores in ogs5 implementation and one in ogs6
implementation. Using the same configuration for Lis would result in
identical number of samples in all three test cases.

12.4 Benchmarking matrix vector operations for FEM

Solutions of systems of linear equations are ubiquitous in the Finite
Element Methods. Two different matrix types are distinguished—
dense, and sparse matrices, both of them require different solution
algorithms. The sparse matrices are characterized by allocation of
memory for non-zero elements only, contrary to dense matrices, where
memory space for all matrix entries is allocated. There are two
stages in the FEM where first dense matrices are used to compute
elementwise contributions to a global matrix, requiring matrix/matrix
and matrix/vector operations. And a second step, where the local
contributions are added to the global matrix, which is usually of
sparse type, and the right-hand-side, both forming a system of linear
equations to be solved.

In this section we shall look into performance of different im-
plementations (libraries) of linear algebra operations on vectors and
matrices, especially for small size dense matrices required in global
assembly of a linearized system.

Libraries One of the most widely spread class of libraries are known
as BLAS—Basic Linear Algebra Subprograms—providing routines for
basic matrix/vector operations (see [LHKK79] and references therein).
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We are going to analyse two BLAS implementations ATLAS—
Automatically Tuned Linear Algebra Software [hfd, WD98]—and Intel
MKL—Math Kernel Library [Int]. These libraries provide efficient
implementations of the matrix/vector operations divided into three
levels known as BLAS Level 1, Level 2, and Level 3 for dynamic
size matrices and vectors. Level 1 provides vector-vector operations,
level 2—matrix-vector and level 3—matrix-matrix operations.

While the above libraries provide C and Fortran language
interfaces, there are several libraries building on the aforementioned
BLAS interface for the C++ language. One of such libraries
is uBLAS [Ubl] included as part of the boost C++ libraries [Boo]. It
is using expression template technique [VJ03] to map mathematical
notation onto efficient implementations of matrix/vector operations,
while trying to remove temporary objects usually arising when
performing any chained operations. uBlas provides very stable
interface and is part of every boost library release since last decade,
but it also was not further developed since ca. year 2008 (see the FAQ
section [Ubl] for details).

One of the newer alternatives to the uBLAS implementation is the
blaze library [Bla]. It is using the uBLAS boost library and to achieve
maximum performance an arbitrary library implementing the BLAS
interface e.g. ATLAS. In the two papers [IHTR12b, IHTR12a]
the authors describe the success of expression template as well as
the limitations of the template metaprogramming.

Yet another library building on expression templates is Eigen,
current version of which being 3 [GJ+10]. It supports dense, and
sparse matrices with dynamic, and static size.

Performance measurement Here we select few types of operations
relevant in FEM and compare libraries’ performances with respect to
this operations.

For performance measurements we use the Bench Template
Library (BTL)e adopted in the Eigen3 framework [Eig11]. This
performance measurement framework is updated to the needs of
ogs6 development in two aspects. First we include new library
interfaces, for example uBLAS or blaze, and second include new
matrix/vector operations which corresponds better to the requirements
of standard implementation of a FEM, especially in ogs6.

Common matrix/vector operations in FEM By default
the BTL already includes benchmarking of the following operations
relevant in FEM context; Let A and B be dense matrices, and u and v
vectors.f Analyze following products:

AA, AAt, Av and Atv.

Local matrix assembly uses further matrix/vector products:

vtv, vtAv, AtA, AtBA, vtA, vtutA.

e originally developed by Laurent Plagne and distributed under the
GPLv2 license. A copy was obtained from https://bitbucket.org/

spiros/btl; accessed on 14 Jul. 2014
f Although there are sparse vector implementations, in this context

only dense vectors make sense.
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The above operations are written in a different way in the pro-
gramming languages because they lack proper mathematical notations.
The abbreviations used in the following figures are:

aat: A At – matrix with transposed matrix product.
atv: At v – transposed matrix with vector product.
axpby: A x+ b y – matrix-vector product plus scalar times vector.
axpy: A x+ y – matrix-vector product plus vector.
matrix matrix: A A – matrix-matrix product.
matrix vector: A v – matrix-vector product.

12.5 Summary

We have plotted the results for two different architectures are given
graphically on the pages 65–68 at the end of this section. All graphs
are showing performance measured in MFlops versus matrix/vector
size.

Main trend of all benchmarks is showing some peak performance
upon which the performance reaches a plateau or drops. All FEM
relevant benchmarks involving vector multiplication are showing
the latter behaviour. This is usually accounted on reaching the cache
size limit.

Detailed evaluation of FEM relevant operations for small size (≤
100) matrices and vectors, shown in the Figure 12.5, splits the
libraries into two main groups based on their overall performance.
First and more performant group consists of ATLAS, Intel MKL and
eigen3. Another is blaze and ublas, both of them building on boost
libraries and linked BLAS implementation. Non-optimal compilation
of boost and the linked BLAS library is probable cause for the worse
performance.

None of the libraries in the first group is performing better on all
architectures and for all benchmarks.

Benchmarks’ result visualization The four figures on the
following pages are visualizing benchmarking results.

In the Figure 12.2 and Figure 12.3 all performed benchmarks for
two different architectures are showing each library’s performances
in MFlops versus matrix/vector size.
Selected benchmarks in Figure 12.4
Small size benchmarks in Figure 12.5
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Figure 12.2 Performance of linear algebra libraries
on an AMD system (Quad-Core AMD Opteron
Processor 8384 @ 800 MHz).
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Figure 12.3 Performance of linear algebra libraries
on an Intel system (Intel Core i5-2430M CPU @ 2.40
GHz).
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Figure 12.4 Selected benchmarks comparison of
linear algebra libraries on an AMD and an Intel
systems (Quad-Core AMD Opteron Processor 8384 @
800 MHz and Intel Core i5-2430M CPU @ 2.40 GHz).
Logarithmic scale; Matrix/vector size up to 1000.
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Figure 12.5 Selected benchmarks comparison of
linear algebra libraries on an AMD and an Intel
systems (Quad-Core AMD Opteron Processor 8384
@ 800 MHz and Intel Core i5-2430M CPU @ 2.40
GHz). Linear scale; Matrix/vector size up to 100.
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13. Coupling to OpenFOAM

One of the motivating ideas for this work is embedding of pore-scale
simulation results into the homogenised porous media simulations on
the larger meso- and macroscales.

With advances in Computer Tomography availability of 3D scanned
porous media samples increased: Scanners with resolutions around 5 ·
10−6m are readily available for small samples. The scans of bore-hole
samples, for example, can be directly used for pore-scale simulations
with OpenFOAM. This simulation results can be transferred onto
the large scale problems solved with OpenGeoSys.

The coupling is one-way, from OpenFOAM to OpenGeoSys:

1) Calculation of porosity of the examined sample.
2) Calculation of (direction dependent) pressure drop ∆p with

patchAverage post-processing tool.a

3) Computation of hydraulic conductivity: the flow rate and
the fluid’s viscosity are known from the simulation input; the poros-
ity and the pressure drop are calculated.b

4) The calculated homogenised properties are written into text-based
OpenGeoSys input files.

5) If the properties are velocity/temperature dependent, the steps 2)
to 4) are repeated. Interpolation is used OpenGeoSys’s side.

The results of all OpenFOAM simulations are stored per-
material—a unique identifier in OpenGeoSys.

With this the way from scanned or in-silico created porous
media through determination of their hydro-mechanical properties to
large-scale simulations is complete

a See Section OpenFOAM, Post-processing on p. 18).
b Darcy’s law or its extensions can be used.

– 69 –





Part four

Visualization



14. Overview

Visualizations, especially interactive 3D visualizations of CFD results
can give further insights into the dynamic of fluid flow. This is in
particular interesting in the case of complex geometries like porous
media. There have been a lot of research of different visualization
techniques, which became more and more computationally expensive
recently.

Figure 14.1 Visualization of fluid flow through
simple cubic lattice of spheres using 3 different
visualization techniques: Surface colouring, slice
visualization and streamlines. The setup is described
in the simulation part (‘chap:sim’) and is named
clsSymm 32 6 nu 0.00001.
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15. Visualization techniques

Visualization of fluid flow belongs to the post-processing phase and is
usually carried out with specialized 3D visualization program. In this
work we use widely accepted Visualization Toolkit (VTK) [SML03]
and one of available frontends Paraview [Hen07].

With help of Paraview it is possible to create different kinds of
VTK filter pipelines easily, resulting in specific visualization of one or
another aspect of the fluid flow. Beside the interactive workflow of
Paraview, it provides a reader for OpenFOAM simulations.

An example screenshot of a Paraview window showing an exported
simulation visualization is shown in the following figure:

Figure 15.1 Paraview is a VTK frontend. Main
window with simulation snapshot shown: Visualiza-
tion of turbulent flow in cubical sphere packing. This
snapshot is a predcessor of the Figure 14.1.

Beside the Paraview program there is a Python VTK-interface
allowing to write scripts in Python for more complex numerically
intensive post-processing. There are time dependent and stationary
visualization techniques. The time dependent visualizations, or
animations, are showing field changes over time, or track some entities
depending on time-varying fields, e.g. particle tracking and its path
line visualization. The time independent techniques include for
example streamlines or glyph visualizations.
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Figure 15.2 Interactive visualization in virtual
reality environment.

– 74 –



16. 3D virtual reality laboratory

The Visualization Center at Helmholtz centre for environmental
research – UFZ located at Department of Environmental Informatics
is a virtual reality environment. It allows 3D and 4D visualizations
of complex data sets, which are ubiquitous in geosciences. [http:
//www.ufz.de/index.php?en=14171].

Technology The “back projection-based stereoscopic visualization
environment” is based on 13 SXGA+ projectors connected to
a computer cluster consisting of 13 nodes each of them containing
a high-end NVidia QuadroFX 5500 graphics adapter. An overview
schematic is shown in Figure ‘fig:vis:vislab_CMS’.

Figure 16.1 Visualization laboratory hardware
setup schematic [http://www.ufz.de/index.php?
en=14171] showing data flow from frontend computer
to the physical screen arrangement.
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17. Two-sided material rendering technique

This section reproduces the article “Rendering technique of multi-
layered domain boundaries and its application to fluid flow in porous
media visualizations” [NBK13].

17.1 Abstract

Current visualization techniques for computational fluid dynamics
applications are sophisticated and work well in simple geometries.
For complex geometries like pore spaces, multiple domain boundaries
obstruct the view and make the studying of fluid flow fields difficult.
To overcome these deficiencies, we use two-sided materials to render
the domain boundaries.

Using this technique it is possible to place the camera inside the
domain and have a non-obstructed view of the surrounding flow field
without losing spatial reference to the domain boundaries. As a result,
a larger part of fluid flow visualization is visible.

Two-sided material rendering was successfully applied to display
still images with Blender Cycles renderer, in a virtual reality environ-
ment, and several implementation techniques were explored for using
the Visualization Toolkit.

Keywords: 3D Graphics, Virtual reality, Image generation, VTK,
OpenGL, VISLab TESSIN.

17.2 Introduction

Visualization of environmental systems is an emerging field in
environmental science and technology. Understanding of those
complex natural systems for both, applied questions, and basic
research, through visualization is an important contribution to this
field [TC05], [Dyk05], [BvL06], [KH13]. A key issue for environmental
management purposes is data availability and integration from various
sources for model set up and validation [RKK12], [RFSK13], [RBK14],
as well as quantification and visualization of model uncertainties
[WWM+10], [ZWK10], [HBR+14], [WBD+14]. This work is focussing
on the latter—an application of a visualization technique for better
understanding of flow processes in porous media on pore-scale.

There are many fluid flow or particle cloud visualization techniques
giving impressive results when used in simple geometries, i.e. when
the domain boundaries are not occluding the view (see [MLP+10] and
references therein for a recent overview of visualization techniques). In
the context of fluid flow simulations in random heterogeneous materials
(like sandstones or packed beds), the fluid domain boundaries are
not simple and the view inside of such a structure is obstructed.
The obvious solution to make all of the boundaries transparent or
semi-transparent does not solve the issue because the spatial reference
to the domain’s surface and its influence on the local fluid flow field is
lost (in the transparent case) or difficult to imagine.

We apply a rendering technique to fluid flow visualizations in
pore space geometries to gain deeper insights into the microscopic
behaviour of fluid and particles in pore space. The technique is
not limited to pore space geometries and is applicable to other
visualizations with multi-layered domain boundaries.
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In the following, we apply a two-sided material shading technique
to fluid flow visualization in a packed bed domain. We also advocate
the use of high-quality rendering software for all images because of
improved depth perception through realistic shading and shadow
mapping algorithms.

Before describing the two-sided material shading application, we
briefly introduce the software used in this work to proceed from data
input to final visualization. Next, we explain the idea of two-sided
material shading followed by its realization using Blender [Ble13] and
as well as in the visualization facility TESSIN VISLab [Zeh12].

17.3 Software and data processing

OpenFOAM for fluid flow simulations We solve the Navier-
Stokes Equations for an incompressible Newtonian fluid in a pore
space geometry. We use the OpenFOAM computational fluid
dynamics solver icoFoam to compute a laminar, steady state solution.
(OpenFOAM is an Open Source Computational Fluid Dynamics
(CFD) Toolbox available at http://www.openfoam.com/. We used
the current version 2.1.x in this work.) The pore space geometry
has been derived from a CT-scan of an experimental setup described
in [BLK+12] and [BKL+13] which is a packed bed of spherical
pebbles. Their diameter is approximately 0.17 length units in the
non-dimensional setup. We set the inlet velocity and the dynamic
viscosity to unity.

Particle tracking We use an OpenFOAM solver called icoUncou-

pledKinematicParcelFoam. The particle cloud is injected at the inlet
with a constant rate of 106 particles per second. The particles are
modelled as spheres of a constant size (diameter 10−6 length units),
not interacting with each other but sticking to the fluid domain’s
boundaries.

File formats We use the Visualization Toolkit VTK [SML03] as
intermediate format for post-processing. OpenFOAM simulation
results are converted to native VTK files or imported by Paraview,
which is based on the VTK; [Hen07]. Files in the native VTK format
are easily manipulated either via a Python (version 2) interface to
VTK or by using Paraview. The processed data can then be exported
into another 3D data format or an image.

Rendering with Blender Cycles Blender is a computer graphics
software to create and postprocess 3D data and is usually used by
3D-artists. We use its powerful scene manipulation tools to set up
lights and cameras and its interface to several rendering engines
to create final images. The current Blender version is 2.70 with
Blender Cycles as a rendering engine (also known as renderer).
(Short description is available under http://www.blender.org/

development/release-logs/blender-261/ as “ Blender Release
Logs Version 2.61” published in December 2012.)

Visualization Toolkit VTK and Paraview Paraview is a GUI to
the VTK library allowing creation of fast and interactive visualizations.
Still more complex visualization scenarios can be implemented by
directly using the VTK library’s interface. The VTK’s feature using
OpenGL shaders greatly extends the range of possible visualizations.
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The currently used version of VTK is 5.10, and the version of Paraview
is 3.98.

Virtual reality environment To study complex models, we are
using an interactive visualization environment shown in the Figure 17.2
at the Visualization Centre at the Helmholtz Centre for Environmental
Research – UFZ. It combines two important features: the stereoscopic
view and the interaction with the model being studied. Together with
a user tracking system, it creates a feeling of being immersed in the
visualization [Zeh12].

The hardware set-up of the TESSIN VISLab uses a back projection-
based stereoscopic visualization environment with an approximately
6×3 meter large main screen. Alternating images for the left and
the right eye are generated, and users wear special glasses which
separate these images, resulting in stereoscopic view. An optical
tracking system compensates for observer’s movements so that correct
perspective is maintained. A pointer device allows for interaction
with the virtual environment. The rendering is performed on a cluster
with 13 workstations (one for each projector).

17.4 Two-sided material rendering

Visualization of fluid flow in complex geometries is especially
difficult if the fluid domain is hidden by boundaries. Simple boundaries
can be rendered semi-transparent or in wire-frame, for example,
without losing spatial reference to the domain boundaries. Domain
boundaries appearing in multiple layers one after the other, like in
heterogeneous porous media, however, occlude the view field and the
main fluid flow visualization. Multiple semi-transparent boundaries
are difficult to comprehend even in interactive 3D environments with
stereoscopic view.

Showing both the fluid flow visualization and all domain bound-
aries simultaneously without decreasing clarity of the scene is difficult,
but in the case of porous media, we are interested in local features of
the flow. The local features are usually shown similar to Figure 17.8,
where the camera is placed in the void space. In this case, the nearby
boundaries hide large parts of the fluid flow visualization (velocity
field shown as rendered cone glyphs in this case).

An improved view is shown in the Figure 17.9 in which the camera
has been placed near the sphere shown in the middle/bottom of the
previous image. Now, the velocity field around all of the nearby
spheres is visible. The almost transparent domain boundary has a
bluish tint when looking through it (visible on the right-hand side of
the image) while the other boundaries are rendered in opaque white.

To create such images, we use a two-sided material, which makes
domain boundaries transparent when looking from the inside of the
domain (the sphere in the above image) but opaque when looking
from the outside.

Realization in Blender and TESSIN VISLab In Blender,
two-sided materials are created using the face normal direction n
(together with the camera’s pointing vector c). Results of two simple
shaders—diffuse and transparent materials—are chosen depending on
the sign of the scalar-product between the vectors n and c (compare
with the Figure 17.1 below): A transparent shader when viewing
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Figure 17.1 Two-sided material based on camera’s
pointing vector C and surface’s normal vector n. A
camera on the left-hand side is shown as triangle with
field of view (diagonal dotted lines) and its clipping
plane (vertical dotted line). Surfaces (here as circles)
are rendered transparent when viewed from inside
(dashed line) and opaque when viewed from outside.

from the inside 〈n, c〉 ≥ 0 and a diffuse shader when viewed from the
outside 〈n, c〉 < 0.

In the TESSIN VISLab software, we use a feature known as
face culling to achieve this effect. In contrast to Blender, the faces
viewed from inside are not rendered at all using this software, which
can be irritating in an interactive environment. A photograph in
the Figure 17.2 shows the same pebble bed dataset. The viewer is
looking from inside one of the solid pebbles. Instead of the velocity
field, particles rendered as spherical glyphs sticking to the surface are
shown.

Figure 17.2 Interactive visualization in the Vi-
sualization Laboratory of domain boundaries and
particles sticking to the surface. Using two-sided
materials removes the first layer of the surface when
looking from inside and allows studing of local
properties.

Realization in VTK A very simple realization using the usual
VTK pipeline is equivalent to that used in the TESSIN VISLab
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software: enabling backface culling in the vtkActor’s properties
does not render the faces when viewing from the inner space. The
advantage of this is very fast rendering of the scene because only one
pass is required to display the geometry.

If we choose to indicate whether we are looking from inside or
outside, tinting the back faces is a viable option. Extending the
previous technique, we render, additionally to the opaque frontfaces,
the backfaces only enabling frontface culling. For any camera position
there is at most one semi-transparent surface (if the geometry’s surface
is an oriented 2-manifold); therefore there is no need for depth-sorted
geometry.

The depth-sorted geometry (in the camera’s view direction)
is required as soon as there are more than one semi-transparent
surfaces behind each other. One way to fulfil this is to depth-sort the
input geometry using VTK’s vtkDepthSortPolyData filter before
rendering. This is a very slow, but (GPU) hardware-independent
method. Another limitation is that the complete geometry must be
composed into a single vtkPolyData object. The corresponding VTK
pipeline for this scenario is:

vtkPolyData

→ vtkDepthSortPolyData

→ vtkPolyDataMapper

→ vtkActor

→ vtkRenderer

Realization in VTK using OpenGL Using of GPU hardware
shaders written in the OpenGL Shading Language [SA10] is possible
through VTK’s API. Given a shader description in an XML file format,
which links to the vertex and the fragment shaders, the vtkActor’s
properties loads and enables the shader via the LoadMaterial()

and ShadingOn() functions, creating a vtkXMLMaterial object. To
create a two-sided material, it is sufficient to write a vertex and a
fragment shaders. The relevant part of the fragment shader—after
computing light contributions to the surfaces and possibly other
things like shadows—is distinguishing between front and back faces
based on the value of gl FrontFacing build-in variable. This boolean
variable (available only in the fragment shader) “is set to TRUE if
the fragment is generated from a front-facing primitive, and FALSE

otherwise” [SA10, p.230].
Using the OpenGL Shading Language directly opens shading

possibilities which are not (yet) available in VTK [SML03]. A more
correct illumination model than Blinn-Phong shading model [Bli77]
used by default in OpenGL [Shr10, Chapter “The Mathematics of
Lighting”, pp. 240-245], for example, could be implemented. Further
rendering passes can be added, such as: shadow map pass, ambient
occlusion, Gaussian blur, etc., which can improve the scene perception.
The advantages of the more realistic scene rendering are same as for
Blender and are discussed in the conclusions.
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Figure 17.3 Rendering of fluid flow velocity field
visualization with the camera placed inside of a grain.
Large parts of the velocity field are hidden by the
surface of the grain on the left side.

17.5 Photorealistic rendering

The previously described rendering methods are intended for interac-
tive visualizations. Photorealistic rendering is currently only possible
for still images only, unless a powerful rendering station is available
for real-time processing.

Creation of photorealistic images is done using Blender’s rendering
engine, Blender Cycles. The precise control over a material’s
appearance opens many more possibilities for visualization.

In this section, we show the steps leading to the final image in
the Figure 17.9, and discuss their improvements.

The camera’s view when placed inside of a grain is obscured
by an opaque surface, as shown in the left part in the Figure 17.3.
Application of the two-sided material technique reveals large parts
of a visualization (vector field in our case) but also adds some
difficulties related to the “holes” created by the transparent surfaces
(Figure 17.4).

Adding a wireframe rendering adds noise above a visualization
(shown in the Figure 17.5). This happens when the surfaces consist
of a dense mesh. For not so highly detailed surfaces, a wireframe
(especially when rendered as tubes generating three-dimensional
structure) is a viable option to semi-transparent surfaces creating a
window-like view.

Limiting the field of view, when the backfaces of a surface are fully
transparent, avoids the “holes” effect. This is achieved by rendering
only the nearest surfaces using two-sided material, but those lying
further away in the usual opaque style. the Figure 17.6 shows a mix
between the opaque and two-sided material images.

For better distinction between the front-facing and back-facing
surfaces, those viewed from inside can be additionally coloured (or in
general, rendered) differently. This is shown in the Figure 17.7.

The result of the above changes, with additional green tint of the
nearest surface viewed from inside, is rendered in the Figure 17.9.
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Figure 17.4 Large parts of the velocity field are
visible through the transparent surface. Looking
through multiple surfaces hinder the 3D perception
of the scene.

Figure 17.5 Dense surface’s mesh rendered as a
wireframe mar the vector field visualization, but can
be a viable option for less-detailed surfaces.

17.6 Conclusions

In this work, we have presented a technique for visualizations in pore
space geometries. Using two-sided materials, it is possible to retain
a non-obscured view on common visualizations in complex domains
(like streamlines for fluid flow simulations or glyphs for particle
clouds). This technique is especially useful in interactive virtual
reality environments where a user controls the camera’s location and
the viewing direction. It was used in the virtual reality TESSIN
VISLab environment. Another application of this technique is to
create high-resolution still images using the Blender software.

Using a global illumination renderer with physically correct
shader and shadow mapping algorithms in Blender, we rendered
high-resolution images showing a fluid flow visualization from the
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Figure 17.6 Application of the two-sided material
is limited by the distance from the camera’s position
to a surface; Opaque material is used on the far
surfaces.

Figure 17.7 Additionally to the distance limited
application of the two-sided material, the visible
back-facing surfaces are coloured blue.

inside of an otherwise opaque domain boundary. Realistic shadowing
and rendering of material surfaces helps to retrieve depth information
and create volumetric scenes.

The rendering algorithms in Blender Cycles allow creation of
almost photorealistic images; correct shading and multiple lights
help to position scene elements easier in the 3D space. Near realistic
rendering algorithms greatly improve the perceivability of complex
scenes at the cost of increased demand for computational resources
with higher rendering accuracy.

In attempt to close the gap between photorealistic rendering and
real-time virtual environment, we explored several implementations
based on VTK using its OpenGL Shading Language availability.
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Figure 17.8 Rendering of fluid flow velocity field
visualization with the camera placed in the void
space. Large parts of the velocity field are hidden by
the spheres.

Figure 17.9 Rendering of the fluid flow velocity
field visualization with the camera placed inside
one of the spheres (middle/bottom one shown in
the Figure 17.8). Larger parts of the fluid flow
visualization are visible. The blue opaque surfaces
render the faraway surfaces visible from the inside,
where as the nearest surface is rendered transparent
with green tint.
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17.7 Future work

Implementation of OpenGL shaders opens visually improved real-
time scene rendering possibilities. We would like to explore more
of these techniques similar to those used in contemporary video
game graphics [LJ02], [dSdOF+08], [SBS08], [BSKKY09], [SBS09],
[LTDS+13].

Another aspect is the interaction of an actor with its virtual
environment; we shall explore constraints given by rigid body
simulation of the actor and the solid objects in the scene.
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18. Porous media generation

In the first part of this work we dealt with generation of porous media.
Besides the regular sphere packings, random in-silico artificial porous
media were generated. It would be useful in near feature to analyse
the packing densities of different grain size distributions of varying
shapes using two-point correlation (or in general any higher order)
statistics. Variing packing density in columns’ centre to column’s
boundaries were expected but not analysed. This change in porosity
along a cross section has direct influence on the fluid flow simulations
and should be quantified.

The shapes of grains in an unconsolidated sediment also (as
the grain grain size distribution) have strong influenco on the porosity.
It would be interesting to compare real sediments for specific grains’
shapes for verification of the generated porous media structures.

19. Sphere row in square duct

General simulation geometry was discussed in the Section Simulation
setup p. 29, where we roughly estimated the possible limits for
the Reynolds number and the computational domain size. A direct
extension of the Direct Numerical Simulation (DNS) method would
be an application of a Large-Eddies Simulation (LES) method for
simulaiton of larger domains. The validity of the fluid-flow simulations
using a turbulence model (like the LES) could be done by comparison
to the already performed DNS.

The study of a sphere row in a square duct can be easily extended
to a simple-cubic packing of spheres to study the influence of duct’s
walls, and the difference of the fluid flow in the centre of the filled
duct to its boundaries.

The simple and small setup should also be used for comparison of
tetrahedral and other meshing procedures.

It was expected that the development of back-flow pattern increase
the pressure drop in a non-linear way; This did not happen and
we have shown a linear dependence of the pressure drop versus
the Reynolds number as predicted by the Darcy’s law. This is indeed
an interesting question.
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20. Face-centred sphere packing

As the geometries become more complex, better mesh generation
algorithms would greatly improve also the numerical solution. One
could try to get tetrahedral meshes for example with TetGen or
CGAL ([Si13, CGA]) with additional mesh optimization algorithms
to reduce the non-orthogonality. Another available mesh generation
code was recently implemented in OpenFOAM version 2.3.0. It is a
“fully parallelised, meshing tool called foamyHexMesh. It is designed
to generate hex-dominant meshes” [OFa]. producing hex-dominated
meshes.

The effect of larger surface area has large influence on the numeri-
cal result of the simulation. Although the pressure drop for hexahedral
meshes lies in the same range as for the snapped meshes, the overall
effect was not studied; This is an important decision point for further
simulations whether using of hexahedral meshes provides sufficient
accuracy or the more numerically disadvantegeous “snapped” meshes
are necessary.

The analysis of setups including a boundary layer lead to
the question of adaptive mesh refinement; We have seen a significant
influence of boundary layer discretization on the solution. Mesh
refinement in other places may result in the more appropriate element
size distribution for accurate simulation.

For further investigation of the back-flow pattern influence until
significant deviation of the pressure drop vs. kinematic viscosity
(as for the sphere row in square duct; Figure 9.5), higher mesh
resolutions are required. (This is coupled with higher—proportionally

to Re9/4—computational resources.) Alternatively a turbulence model
can be used but it will need a verification benchmark.

21. Arti�cial sediments in a pipe

An analysis of the fluid flow in random media was impeded by
the mesh generation procedure. For statistical analysis of random
unconsolidated sediments a much more reliable meshing approach is
required. Usage of three different meshing codes: CGAL, TetGen, and
OpenFOAM converters are not feasible for automatic mesh generation.
It is important not only to create a mesh for a given geometry, but
a mesh suitable for numerical simulations: Most of the generated
meshes lead to numerical instabilities of the solution.
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22. OpenGeoSys and OpenFOAM coupling

The future workflow for analysis of hydro-thermo-mechanical properties
of porous media can be done in a computer simulation: Starting
from a CT-scan of a borehole sample, for example, resolving all of
the effective porespace, a fluid flow pore-scale simulation calculates
the (anisotropic) hydraulic conductivity of the sample. A couplet
HTM simulation can give insights into sample’s properties under
load or high temperatures. An additianal advantage over laboratory
experiments is the repeatability of the simulation, which is not always
possible in an experiment in case of sample contamination.

23. Visualization

See the paper’s conclusions section on page 82.

– 90 –



Part six

Appendix



References

[Bat99] George Keith Batchelor. An introduction to fluid dynamics. Cambridge
University Press, Cambridge, U.K.; New York, NY, 1999.

[Bea88] Jacob Bear. Dynamics of fluids in porous media. Dover publications, Inc., New
York, 1988.

[BKL+13] Thomas Barth, Johannes Kulenkampff, Mario Ludwig, S. Bras, Marion
Gründig, K. Franke, Johanna Lippmann-Pipke, and Uwe Hampel. Study of
particle deposition and resuspension in pebble beds using positron emission
tomography. In The 15th International Topical Meeting on Nuclear Reactor
Thermal Hydraulics (NURETH), 2013. Unpublished.

[Bla] blaze-lib: A high performance c++ math library. https://code.google.com/

p/blaze-lib. Accessed: 14 Jul. 2014.

[Ble13] Blender Online Community. Blender - a 3D modelling and rendering package.
Blender Foundation, Blender Institute, Amsterdam, 2013. Version 2.66.

[Bli77] James F. Blinn. Models of light reflection for computer synthesized pictures. In
Proc. 4th annual conference on computer graphics and interactive techniques,
pages 192–198, 1977.

[BLK+12] Thomas Barth, Mario Ludwig, Johannes Kulenkampff, Marion Gründig, Andr
Bieberle, Uwe Hampel, and Johanna Lippmann-Pipke. Pet measurements of
liquid aerosol particle deposition in pebble beds. In 6th International Topical
Meeting on High Temperature Reactor Technology HTR2012, 2012.

[Boo] Boost c++ libraries, version 1.55.0. http://www.boost.org. Accessed: 16 Jul.
2014.
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