

Master thesis

SIMD-Swift: Improving Performance of
Swift Fault Detection

Oleksii Oleksenko

15. November 2015

Technische Universität Dresden
Department of Computer Science

Systems Engineering Group

Supervisor: Prof. Christof Fetzer
Adviser: MSc. Dmitrii Kuvaiskii

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technische Universität Dresden: Qucosa

https://core.ac.uk/display/236372915?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Declaration

Herewith I declare that this submission is my own work and that, to the best of my
knowledge, it contains no material previously published or written by another person
nor material which to a substantial extent has been accepted for the award of any other
degree or diploma of the university or other institute of higher education, except where
due acknowledgment has been made in the text.

Dresden, 9. November 2015

Oleksii Oleksenko

Abstract

The general tendency in modern hardware is an increase in fault rates, which is
caused by the decreased operation voltages and feature sizes. Previously, the issue
of hardware faults was mainly approached only in high-availability enterprise servers
and in safety-critical applications, such as transport or aerospace domains. These
fields generally have very tight requirements, but also higher budgets. However, as
fault rates are increasing, fault tolerance solutions are starting to be also required in
applications that have much smaller profit margins. This brings to the front the idea of
software-implemented hardware fault tolerance, that is, the ability to detect and tolerate
hardware faults using software-based techniques in commodity CPUs, which allows to
get resilience almost for free. Current solutions, however, are lacking in performance,
even though they show quite good fault tolerance results.

This thesis explores the idea of using the Single Instruction Multiple Data (SIMD)
technology for executing all program’s operations on two copies of the same data. This
idea is based on the observation that SIMD is ubiquitous in modern CPUs and is
usually an underutilized resource. It allows us to detect bit-flips in hardware by a simple
comparison of two copies under the assumption that only one copy is affected by a fault.

We implemented this idea as a source-to-source compiler which performs hardening of
a program on the source code level. The evaluation of our several implementations shows
that it is beneficial to use it for applications that are dominated by arithmetic or logical
operations, but those that have more control-flow or memory operations are actually
performing better with the regular instruction replication. For example, we managed to
get only 15% performance overhead on Fast Fourier Transformation benchmark, which is
dominated by arithmetic instructions, but memory-access-dominated Dijkstra algorithm
has shown a high overhead of 200%.

7

Contents

List of Figures IX

List of Tables XI

1 Introduction 1

2 Background and Related Work 3
2.1 Related Work . 3
2.2 Background . 8

3 Design 15

3.1 Assumptions . 15
3.2 System and Fault Models . 16

4 Implementation 23

4.1 Used technologies . 23
4.2 Transformations . 23
4.3 Performance bottlenecks . 28
4.4 Alternative implementation . 29

5 Evaluation 31

5.1 Performance testing . 31
5.2 Fault injection . 33
5.3 Discussion . 33

6 Conclusion And Future Work 37

Bibliography 39

9

List of Figures

2.1 Scalar and SIMD processing compared 9
2.2 GPR and SSE registers compared . 12
2.3 Intel Core 2 execution unit . 12
2.4 Horizontal addition . 13
2.5 Shuffle operation . 14

3.1 Compiler structure . 16
3.2 Example of Abstract Syntax Tree . 17
3.3 SIMD-Swift compiler structure . 17
3.4 Variable conversion . 18

4.1 Memory access. 25
4.2 Implementation of checks. . 27
4.3 Results of pointer fault injection. . 30

5.1 Performance testing results. 32
5.2 Fault injection results. . 34
5.3 Window of vulnerability. . 35

11

List of Tables

2.1 Comparison of main software-based redundancy approaches. 8

4.1 Type mapping. . 24
4.2 Arithmetic operations. . 24
4.3 Truth table for logical AND. 26
4.4 Logical OR replaced by bitwise OR. 26
4.5 Bitwise operations. . 26
4.6 Implementation of comparisons. 27

1

1 Introduction

Before 2000s, research efforts in the field of dependability (also called “reliability”,
“resiliency” and “fault tolerance”) primarily considered applications that can afford
extra expenses. Most common of those were systems in which human life or well-being
depends on correct operation — so-called “safety critical” systems. One such example
is a spacecraft, which usually has incredibly complicated safety requirements and high
budgets. For example, Space Shuttle Endeavor has cost approximately $1.7 billion in
total [NAS00] and contained five identical general-purpose computers to achieve fault
tolerance [Skl76].

Another research direction were enterprise servers. Although they may not be critical
for human lives, unavailability of such a server may lead to high expenses. HP NonStop
series [McE81] is a vivid example of this domain.

Nowadays, however, things have changed. In the first place, the probability of hardware
errors is becoming non-negligible in general. Hardware manufacturers are constantly
decreasing feature sizes and lowering operation voltages in order to get higher performance
and smaller energy consumption. Such changes allow to get better functional parameters,
but they also make hardware much more vulnerable to faults. Microsoft has performed
failure analysis on a large testing set [NDO11] and it concluded that machines with at
least 30 days of accumulated CPU time have 1 in 190 chance of a crash. After the first
failure the probability of a subsequent failure gets up to two orders of magnitude higher.
The second observation is that high-end servers are not dominating the market anymore.
Instead, components of the shelf (COTS) are becoming a de-facto standard for large-scale
systems, such as data centers, because they are much more cost-effective. COTS usually
do not have much error protection, except for the basic error correcting codes (ECC) for
DRAM. Google has conducted a study of DRAM failures in production clusters [SPW09]
and it shows that about a third of machines and over 8% of DIMMs experienced at least
one uncorrectable error per year.

The third note is that mission critical systems can be found in commodity products
nowadays, such as car control applications and software for autonomous cars. In those
fields, budgets are usually much smaller than, for instance, in aerospace, but human lives
also depend on execution correctness. For example, if an Electronic Braking System
[BM91] fails, a car may crash into an obstacle at full speed.

Historically, the initial approach for dealing with errors was hardware redundancy. The
most costly option is to use double or triple modular redundancy (DMR and TMR) with
majority voting, but it is also the most reliable one. Therefore it is used, for example, in
Boeing 777 [Yeh96]. Cheaper hardware solutions include watchdogs [BS04], redundant
hardware threads [Gom+03] or additional logic within a processor [McE81; Sle+99].
Hardware-based solutions are very efficient in terms of performance and normally their
overhead is between 5% and 10%. They, however, tend to be too expensive for markets

2

with small profit margins and usually not energy-efficient. In order to overcome these
drawbacks, one can avoid using hardware redundancy by applying so-called Software-
Implemented Hardware Fault Tolerance (SIHFT), that is, fault tolerance achieved by
software-based methods [Gol+06]. Another benefit of this approach is that it can be
applied selectively. For example, in modern cars most of the computational power has
to be situated under the driver’s seat, which is proven to be the safest place in the car
[Int14]. It means that a single system executes all computations, both safety-critical,
like breaks control, and non-critical, like multimedia. By using SIHFT we can avoid
redundancy for non-critical applications and apply it only to critical ones.

Having these benefits, most of SIHFT solutions are based on the idea of duplicated
execution, which means that all critical parts of a program are executed twice. It leads
to one major disadvantage — even the most optimized state-of-the-art solutions have at
least 100% performance overhead caused by duplication. This may be a big issue for
some domains. For example, autonomous cars need to process approximately 1 GB of
data each second, which leads to very high requirements for computational effectiveness
[Int14]. Our goal is to overcome this drawback and to develop a software-based solution
with less than 80% overhead.

In this thesis, we introduce SIMD-Swift, a software-based single-threaded approach to
achieving data- and partial control-flow fault tolerance. It is based on Error Detection by
Duplicated Instructions (EDDI) [OSM02] and its successor Software-Implemented fault
tolerance (SWIFT) [Rei+05], which duplicate all instructions and insert periodic checks.
Our hypothesis is that employing Single Instruction Multiple Data (SIMD) technology for
fault tolerance will improve performance of SIHFT by reducing the number of executed
instructions and used registers (decreased register pressure). The main idea behind
our approach is to trade time redundancy (duplicated execution) for space redundancy
(bigger SIMD registers are used instead of regular registers). SIMD can be considered a
commodity hardware since virtually all modern CPUs have it: x86 (Intel, AMD) has
SSE and AVX, PowerPC (IBM) has AltiVec, and ARM has Neon.

We implemented SIMD-Swift as a source-to-source compiler and our evaluation shows
promising results with benchmarks that are dominated by arithmetic or logic operations.
For these types of benchmarks we achieved a performance overhead of at most 75%, and
for those that purely consist of arithmetic operations, we managed to get it as low as 15%.
Applications that contain mostly control-flow operations or memory interactions show,
however, much higher overheads and in general perform worse than SWIFT-hardened.

The thesis is structured as follows. In Chapter 2, we start with a discussion of the
existing approaches for handling hardware faults and come to the conclusion that SIMD
may be a promising way to improve over the existing solutions. Then we continue with
a detailed review of SIMD (in particular, SSE) and ways to use it. In Chapter 3 we
describe a general architecture of our approach and explain our assumptions. Chapter 4
goes into details of the implementation and highlights its performance bottlenecks. We
also propose an alternative implementation of SIMD-Swift, which offers a trade-off
between performance and fault detection capabilities. In Chapter 5, we evaluate the
implementation and discuss the drawbacks of SIMD-Swift from both performance and
resilience points of view. Chapter 6 considers applicability of the approach and discusses
directions of the future work.

3

2 Background and Related Work

2.1 Related Work

Two broad types of fault tolerance techniques exist: hardware-based and software-based
(SIHFT). All of them implement some kind of redundancy, but they do it on different levels:
hardware-based approaches employ redundant hardware blocks and most software-based
ones use redundant execution.

2.1.1 Hardware-based solutions

Hardware redundancy is a very old technique and it was used in mechanical devices even
before first computers. The most basic approach for hardware redundancy is n Modular
Redundancy (nMR), including Dual Modular Redundancy (DMR) and Triple Modular
Redundancy (TMR). nMR means that all parts of a system have redundant replicas that
can be used in case the main one would fail. Although it is expensive, this approach
provides a very high level of reliability, which is why it is widely used in aerospace
industry. One of the most popular Boeing airplanes, Boeing 777, applies TMR for all
main parts of its control system: Primary Flight Computer, communication paths and
even electrical power supply [Yeh96].

This approach is also applicable for high-availability servers. HP NonStop Advanced
Architecture [Ber+05] consists of two or three SMP Itanium2 server processors working
in loose synchronization. Error detection is performed by comparing execution results of
the processors. A more conservative way is to add redundancy only to critical blocks
in hardware. This approach is widely used among highly-available servers. As one
example, IBM S/390 G5 [Sle+99] fully duplicates only the main blocks of the processor —
units that handle instruction fetching, decoding, and execution. Unfortunately, all these
approaches increase the buying and maintenance cost up to 5 times over commodity
hardware.

Instead of replication some approaches use a small and simple coprocessor (watchdog
processor) which monitors the main CPU and performs concurrent error detection
[MM88]. A similar direction takes the Dynamic Implementation Verification Architecture
(DIVA) technique [Aus99] by adding a simple checker module. It verifies the correctness
of computation on the core processor and permits only correct results to be written to a
storage. Inherent Time Redundancy (ITR) [RR07] also uses a checker, but only for
decode and fetch units. Such checker exploits small traces of identical instructions and
observes re-occurrence of events that depend purely on instructions. Argus [MBS07]
performs dynamic verification of core invariants by a series of hardware checkers. These
checker coprocessors are still an active research field, but they did not yet make it to
industry.

4

Parity and Error Correcting Codes (ECC) protection is also a very popular way of
achieving reliability, even though it provides only partial protection from faults [SPW09;
NDO11]. Parity protection was widely used for register files in platforms such as Intel
Itanium [Fet+06] and SunUltraSPARC [KAO05]. ECC modules are used in many
high-end RAM chips to check incoming and outgoing data from memory. Parity and
ECC, however, only protect storage and not computation which we target in this thesis.

2.1.2 Redundant Multithreading solutions

In between hardware and software solutions lay redundant multicore and multithreaded
systems, which make use of readily available multiple execution blocks in modern
processors. One of the early efforts in this direction was made in AR-SMT [Rot99],
which presents somehow similar approach to DMR, but instead of physical hardware
duplication it uses OS-level resources. Main computation is replicated into two threads —
one leading and one trailing. The trailing thread repeats the computation and compares
produced result with the leading thread.

The following studies tried to improve this approach. Mukherjee et al. [MKR02]
reduced the performance overhead of AR-SMT by implementing it in a dual-processor
device. Smolens et al. [Smo+04] proposed a set of changes to a conventional superscalar
microarchitecture in order to make communication in concurrent error detection more
efficient. Wells et al. [WCS09] worked on a problem of mixed-mode computation, that is,
a mode in which some applications have high reliability using multithreaded duplication,
while other applications run normally without any performance penalty. This technology
allows to make a performance-reliability trade-off not on the hardware, but on the
application level.

Recent work of Zhang et al. called RAFT [Zha+12] proposes a low-overhead solution
based on running a program binary twice and monitoring both instances’ behavior at
the system call level. Internally, before executing a system call, a first instance compares
its arguments with the arguments of a second one. If the arguments match, the system
call is executed, otherwise RAFT reports an error and stops program execution. Such
approach shows only 2.8% average overhead, which is one of the best performances
among multithreaded solutions.

The same idea was implemented at the level of processes as Process Level Redundancy
(PLR) [Shy+09]. It works as a software application and does not require any changes
neither to hardware nor to OS or target application itself. PLR also provides an additional
protection for the memory since memory is duplicated on process replicas.

2.1.3 Software-based solutions

Even though hardware-based approaches are very efficient in terms of performance and
expose only 5–10% overhead, they all require specialized or additional hardware, which
adds up to the total cost of the system. A more attractive way is to use software-based
solutions which essentially come free of cost.

Software-based approaches modify the original program into a functionally similar
resilient version with some kind of redundancy that allows to detect errors. It should be

5

noted however, that they all consider only hardware fault tolerance: they assume correct
code without bugs such that the faulty behavior can be caused only by hardware faults.
The main idea behind most of the recent single-threaded software-based solutions
is duplicated execution (instruction duplication), that is, all instructions are executed
twice and their results are compared. Holm and Banerjee [HB92] were the first ones
to investigate this direction, although they kept it mainly theoretical. Their idea was
implemented and further developed in EDDI [OSM02]. It benefits from Instruction
Level Parallelism (ILP)1 of modern processors and duplicates not only instructions
but also memory state. SWIFT [Rei+05] added control flow checks and removed
redundant memory duplication due to the assumption that memory is protected via
ECC. ESoftCheck [YGS09] implemented a set of optimizations for SWIFT in order to
improve performance. These three works constitute a basis for our thesis, that is why we
will take a closer look at them. We will also discuss a bit different Shoestring [Fen+10]
approach, which combines instruction duplication with symptom-based error detection.

2.1.3.1 Error Detection by Duplicated Instructions

The main idea behind Error Detection by Duplicated Instructions (EDDI) [OSM02]
is to exploit unused ILP resources available in VLIW2 architectures to run duplicated
instructions concurrently. These instructions do not change functionality of the program,
but an error in one duplicate most probably will lead to a different result of computation,
which can be detected by comparing two results. EDDI also protects data by using
different registers and memory addresses for new instructions.

Checking (comparing results of two duplicates) every instruction is an overkill in most
cases. First, it will lead to an extremely high performance overhead and second, most of
variables are dependent on each other, that is, an error in one variable will propagate to
others. For that reason, EDDI performs checks only at points of the program that may
influence its output. Those points are:

• program input and output

• memory accesses

• deciding a direction of branch or jump

Consider a simple program performing addition and multiplication, and then printing
the result (see Listing 2.1). Listing 2.2 shows a hardened version of the same code. In the
first place, all input variables have to be duplicated (lines 2–4). Then, all instructions are
executed twice on different replicas (lines 6–9) and result is checked for equality before
the output (lines 11–12). In case results are different the program is crashed, since it
indicates an error.

1 Instruction Level Parallelism — an ability to perform multiple operations simultaneously on a single
core.

2 Very Long Instruction Word — a family of processor architectures allowing programs to explicitly
specify which instructions will be executed in parallel.

6

1 // b, c and d are input arguments

2

3

4

5

6 a = b + c;

7

8 r = d * a;

9

10

11

12

13

14 printf("Result: %d", r);

Listing 2.1: Example of EDDI —
original code

1 // b, c and d are input arguments

2 b1 = b; b2 = b;

3 c1 = c; c2 = c;

4 d1 = d; d2 = d;

5

6 a1 = b1 + c1;

7 a2 = b2 + c2;

8 r1 = d1 * a1;

9 r2 = d2 * a2;

10

11 if (r1 != r2)

12 crash();

13

14 printf("Result: %d", r1);

Listing 2.2: Example of EDDI —
hardened code

EDDI works with bit-flip faults, that is, it can detect all faults that can be modeled as

bit-flips. This includes state changes in memory cells and registers, data corruption in
data and address buses, transient errors in functional units and control logic, etc. It also
detects control-flow errors caused by branch instruction faults.

EDDI assumes VLIW architecture that allows a compiler to explicitly control parallel
execution of instructions. It usually means that a lot of parallelization resources are
left unused and can be adopted for executing duplicates. That is the reason why EDDI
shows only 80% overhead instead of more than 100% that can be expected from at least
twice as much instructions.

Duplication is performed on the assembly source code level, but it is not the only option.
Rebaudengo et al. [Reb+01] took another direction and implemented a source-to-source
compiler which adds redundancy at a higher level of abstraction — C source code. This
adds portability to the solution, but both overhead and fault coverage got worse. Also,
this approach works only with all compiler optimizations turned off.

2.1.3.2 Software Implemented Fault Tolerance
The next step in the development of duplicated execution was Software Implemented
Fault Tolerance (SWIFT) [Rei+05]. Its main contribution consists of two parts.

First, it adds control-flow protection to EDDI. All code is split into blocks with only
one entry point and one exit point — basic blocks. Each of them gets a signature, which
is used to detect control-flow faults. One of the general purpose registers keeps a current
signature and is used for checking. Every time a program enters another basic block,
this register is XOR’ed with a statically determined constant and it gets a value of the
current block’s signature. This signature is also statically assigned to the block and by
comparing with it we can detect control transfer errors. Such protection also makes
EDDI’s branch validation unnecessary, which improves its performance.

Second, SWIFT assumes ECC-protected memory and caches. It allows to eliminate
memory duplication and significantly reduces memory requirements. Moreover, it reduces

7

cache pressure hence increasing performance. All registers, however, are kept duplicated
and all values still have to be loaded twice.

This set of optimizations reduced overhead on average to 40% on tests performed by
the authors. Such promising results in both SWIFT and EDDI, however, were achieved
because of the availability of free ILP resources, which appear if VLIW architecture is
used. This architecture was considered promising at that time with Intel introducing its
VLIW-based Itanium CPU and many thought it would become standard. Yet, VLIW
did not become popular and paper’s assumptions do not hold on a much more common
nowadays x86 architecture. It means that results from the original papers can not be
applied to modern commodity CPUs and we need a better estimation. One of the
works that tried to do it belongs to Yu et al. [YGS09] and it shows an average 116%
performance overhead for the original SWIFT.

2.1.3.3 ESoftCheck

EDDI and SWIFT insert a check before every load, store and branching operation, such
that checks account for approximately 40% of the overhead. ESoftCheck [YGS09] applies
a set of optimizations in order to remove this redundancy:

• Recurrent checks. If a check of one value is always followed by another check

of the same value and this value is never changed between them, first one can be
considered redundant. It can be removed since an error will always (or at least
with very high probability) be detected by the second check.

• Dependent variables. Two variables can be called dependent if a value of a

second variable is a function of the first one. That means there is no point in
checking both dependent variables, since an error from the first variable will
propagate to the second and this first check can be removed.

• Loop checks. Induction variables and loop invariants can be considered dependent

on themselves and any error will propagate to the end of the loop. Thus checking
this variables is redundant if we add covering checks at the loop exit.

• Protected registers. On some platforms registers are either already hardware-

protected or can be protected at low cost. Such protection can detect errors in
registers themselves, but not in values that are stored to them as a result of faulty
computation. That means, we can remove redundant register checks, but we have
to keep checks before stores to prevent faults from propagating to memory.

After these optimizations only checks that are required to detect an error are left.

ESoftCheck guarantees that an optimized code will have the same level of reliability as
the original code, thus reducing performance overheads at basically no cost.

If we consider x86 architecture without register protection, performance overhead
of this approach is on average 102%, which is still not a big improvement. Moreover,
ESoftCheck can be partially applied to our SIMD-Swift in order to reduce overhead even
further.

8

2.1.3.4 Shoestring

Shoestring [Fen+10] stays a bit aside from duplicated execution approaches, but it is
still worth mentioning since it shows comparably low performance overhead of 16% with
a reasonable failure rate of 1.6%. Such results are achieved by combining instruction
duplication with a symptom-based error detection. The symptoms can include memory
access exceptions, mispredicted branches and cache misses.

This solution is based on the idea that most of transient faults either will not produce
an error or will lead to a user-visible failure that can be covered with low-overhead
symptom-based detection. For example, a fault in memory will most probably lead to a
segmentation fault which is already detected by OS. All the other faults can be covered
with instruction duplication using compiler analysis to identify vulnerable parts of code.

The use case of this approach is shifted from high-availability and mission-critical
domains towards modern commodity electronics, which starts to experience significant
amounts of faults, but does not have high reliability requirements. That is why it provides
only opportunistic fault coverage and cannot be used in high-reliability applications.

Table 2.1 gives a comparison of the presented software-based approaches. Columns
“Replication Coverage” represent an extent to which a given aspect is covered by an
approach. In “Overhead” columns low means that performance overhead is less than

50%, moderate indicates a range between 50% and 100 % and high — more than 100%

Name Replication Coverage Overhead
Instruction Register Memory

access
Memory

state
Control
transfer

VLIW x86

EDDI
SWIFT
ESoftCheck
Shoestring

full
full
full

partial

full
full

none
partial

full
full
full

partial

full
none
none

partial

none
partial
partial
none

moderate
low
low

no data

high
high
high
low

Table 2.1: Comparison of main software-based redundancy approaches.

2.2 Background

Our solution relies heavily on the Single Instruction Multiple Data (SIMD) technology.
The main idea behind it is to perform the same operation on multiple pieces of data
simultaneously (data level parallelism). Figure 2.1 illustrates the difference between
traditional and SIMD processing. In general, SIMD adds new, wider registers that are
capable of storing several items and the corresponding new instructions that operate on
these resisters, computing in parallel on all items.

The first modern implementation of SIMD in processors, called Visual Instruction Set
(VIS) [Koh+95], was presented by Sun Microsystems in 1995 as an extension for the
SPARC architecture. It was initially marketed as a substitution for discrete video cards
and, although it never became one, it has found its niche as an efficient way to optimize

9

Figure 2.1: Scalar and SIMD processing compared

data processing. Next year, a multimedia extension was also presented for the MIPS
architecture [Gwe96].

Yet, it was not before the Intel MMX [PW96] extension for the x86 architecture that
SIMD became widely available and used in commodity processors. MMX introduced
three packed data types and a set of instructions to operate on them. Data types include
packed byte (8 bytes in one 64-bit quantity), packed word (4 words in one 64-bit quantity)
and packed doubleword (2 doublewords in one 64-bit quantity). They all use 64-bit
registers shared with regular floating-point instructions. Although MMX instructions
work with MMX registers, General Purpose Registers (GPR) must be used to specify a
memory address operand.

Nowadays, the successor of MMX called Streaming SIMD Extension (SSE) is the
most common implementation of SIMD. According to the Steam statistics [Ste15], it
is available in 99% of user machines (this number, however, should be treated with
care, while gamers tend to have more powerful hardware than average users). Initially
SSE was targeted on multimedia applications, in particular on visual and graphical
computing. Nevertheless, nowadays it is widely used in all applications that require
similar operations on big amounts of data, including digital audio processing, computer
vision and even Bitcoin mining.

SSE originally appeared in the Pentium III processor [RPK00]. It gained a lot of
popularity by providing compelling performance improvement at a very low cost, since
it is much easier and cheaper for processor manufacturers to add another execution
block and an extra set of registers than to implement a full-scale core. Still, it is hardly
comparable with multicore parallelism — performance boost can be achieved only for
certain types of applications and sometimes even only for certain regions of code. That
means, SIMD is hardly used in all other applications and can be considered a free
resource [Ram12].

10

From the usage point of view, SSE added a completely separate logical register set to
the one available in MMX, which allows to use these technologies concurrently (although,
MMX is irrelevant in the scope of this thesis). This set consists of eight 128-bit registers,
each able to hold 4 single-precision floating point numbers.

The second generation, SSE2, was intended to fully replace MMX. In order to do that,
it introduced 5 new data types: packed double-precision floating point and packed 8-,
16-, 32- and 64-bit integers. SSE2 also contained a set of corresponding instructions to
operate on this data.

Afterwards, SSE was evolving more gradually. The third generation introduced a
notion of horizontal operations (e.g., horizontal addition), which operate on pairs of values
in one SSE register. SSSE3 added a couple of new arithmetic and shuffle instructions.
The latest version SSE4, among other new instructions, presented the PTEST — an
instruction that sets the Z flag in status registers (EFLAGS) by performing an AND
between its operands, thus allowing to do jumps using packed values directly.

SSE is available only in Intel and AMD processors, but similar technologies can be
found in the majority of modern architectures, including the embedded domain. It is
implemented in PowerPC as AltiVec [Gwe98] extension, in ARM as Neon [ARM10], and
even Atmel microcontrollers have it inside of a Digital Signal Processing (DSP) modules.
Since our solution uses a basic idea of SIMD, it can be ported to any of the mentioned
architectures with minimal changes. In this thesis, however, we will concentrate on SSE,
as the most common technology in general-purpose processors. Specifically, we will use
its latest version, SSE 4.2, as it gives the widest functionality and allows us to get the
most effective solutions.

Before we go deeper into the details, consider a small example of a common SSE

application. Listing 2.3 shows a simple loop written in C without any extensions. This
loop performs a single-precision floating-point triad operation on the arrays of size SIZE.

1 float a[SIZE], b[SIZE], c[SIZE];

2 float q;

3

4 void triad() {

5 for (int i = 0; i < SIZE; i++) {

6 a[i] = b[i] + q * c[i];

7 }

8 }

Listing 2.3: Original loop

This program can be rewritten using SSE (see Listing 2.4). It will allow to perform 4
triad operations simultaneously in one loop iteration, thus significantly improving the
performance. The first change here is the 16-byte alignment of all arrays on the line 3.
Such alignment is required because otherwise CPU would have to do extra operations
while accessing the data, which would harm the performance. Inside the function on
the lines 7–8 we use a new data type, m128 — 4 single-precision floating-point values
stored in one variable. On the line 8 we use an intrinsic (see Chapter 2.2.2) for the first
time, _mm_set_ps — replicate the argument (in the given case it is variable q) 4 times

11

to make a m128. Next, as we are working on 4 pieces of data simultaneously, the loop
counter is incremented by 4 instead of 1. Before we perform the triad operation itself,
we get array elements from the memory on the lines 12–13. The multiplication and the
addition operations are replaced by their SSE versions — _mm_mul_ps and _mm_add_ps
correspondingly (lines 16–17). On the line 20 result is stored back to the array a.

1 #define VECTOR_SIZE 4

2

3 __declspec(align(16)) float a[SIZE], b[SIZE], c[SIZE];

4 float q;

5

6 void triad() {

7 __m128 product , sum , current_c , current_b;

8 __m128 q_packed =

9

_mm_set_ps(q);

10 for (int i = 0; i < SIZE; i += VECTOR_SIZE) {

11 // get current elements of arrays b and c

12 current_b = *((__m128 *) &b[i]);

13 current_c = *((__m128 *) &c[i]);

14

15 // calculate triad operation

16 product = _mm_mul_ps(current_c , q_packed);

17 sum = _mm_add_ps(current_b , product);

18

19 // store result

20 *(__m128 *) & a[i] = sum;

21 }

22 }

Listing 2.4: Vectorized loop

In order to better understand the design choices made in this thesis, we will take a
more detailed look at the internals of the SSE hardware implementation and at the
available instructions.

2.2.1 Hardware implementation

The x86–64 architecture provides 16 128-bit wide registers that are available for the SSE
instructions. Figure 2.2 compares them with normal GPRs. It should be noted however,
that even though only 16 registers are visible at the assembly level, much more registers
(e.g. 168 SSE-AVX registers in Intel Haswell) are implemented physically and can be
used for renaming. Specifically, starting from the Intel NetBurst microarchitecture, SSE
values are stored in a separate register file that is shared between SSE and floating-point
operations.

In the Intel’s implementation, SSE instructions are executed by the Floating Point
Units (FPU). In the initial implementations (e.g. in the Intel Pentium III) the instruction
decoder transformed all 128-bit instructions into pairs of 64-bit microinstructions, which
were executed in parallel using ILP available in the super-scalar processors. In the
modern implementations (e.g. in the Intel Core 2) SSE has 128-bit dedicated FPUs. In
addition to that, processors usually have separate modules for the most frequent or the

12

Figure 2.2: GPR and SSE registers compared

most costly operations, such as multiplication, shuffle or memory access. It provides
a higher level of parallelism and allows to avoid some common bottlenecks. As one
example, an execution unit of the Intel Core 2 microarchitecture (presented in 2006) is
shown in Figure 2.3 with SSE parts highlighted.

Figure 2.3: Intel Core 2 execution unit

Here: ALU — scalar arithmetic logic unit, FMUL/FDIV — SSE floating point
multiplication and division unit, SSE MUL — SSE integer multiplication,

and SSE ALU — SSE integer ALU.

2.2.2 SSE instruction set and intrinsics

In general, SSE has two modes of operation — it can operate in parallel on all data
operands (packed mode) or on the least significant pairs of operands (scalar mode). In

13

other words, in the scalar mode SSE registers operate as normal GPRs. In this thesis,
we use the packed mode because it allows to operate on two replicas simultaneously.
SSE also provides two modes of floating point arithmetic — IEEE-compliant, which
has higher precision and is more portable, and flush-to-zero mode, which has higher
performance. In our work, we always assume a default IEEE-compliant mode.

The SSE instruction set can be boiled down to the following instruction types: arith-
metic, logic and comparisons, data movement and reorganization, type conversion, state
save and restore, memory streaming and caching, media and other special purpose
instructions. In this thesis, we use only some instruction types, which we describe in
more details in the following.

Arithmetic and Logic. SSE covers most of the arithmetic operations, except the
modulo operation. Moreover, multiplication and addition have horizontal versions, that
is, they can operate on pairs of numbers inside one register, as shown in Figure 2.4.
Logical operations are only implemented in bitwise versions.

Figure 2.4: Horizontal addition

Comparison. Comparisons act a bit different than their counterparts in the general
instruction set. In the first place, they do not set flags in the EFLAGS register (used
to drive control-flow in x86), which makes an implementation of jumps much more
complicated. The only exception is PTEST, which sets the Z flag in the status register
by performing an AND between its operands, thus allowing to do jumps using packed
values directly. The second issue is the return value. Instead of returning a boolean, as
normal comparisons do, they return either all “1” (if result is “True”) or all “0” (in case
of “False”). It makes sense in terms of implementation since the comparison is performed
on multiple pieces of data and a single boolean value won’t be enough to represent a
result (like in the case when x1 < y1 but x2 > y2). But from the other side, there are no
control flow instructions that could operate on these sequences of “1” and “0”, which
leads to extra efforts for extracting data and consequently to lower performance.

Data movement. SSE can efficiently access a 128-bit wide data in the memory, but
the memory address has to be specified using a GPR. It may lead in some cases to
additional type conversions and in particular, to an extraction from an XMM register.
This is an expensive operation, with a latency of 6 cycles in Intel Haswell.

14

Data shuffle. Shuffle is a peculiar SIMD operation that performs data rearrangement
inside registers. One example of the shuffle is shown in Figure 2.5. In combination
with other operations (in particular with horizontal ones), it allows to get much of the
functionality that is not implemented in hardware. For example, we can get a horizontal
test for equality using a combination of the shuffle, horizontal subtraction and PTEST
(see Chapter 4 for more details).

Figure 2.5: Shuffle operation

Type casting and conversion. There are two ways to change a type of a variable
in SSE — convert and cast. Convert allows to change bit representation of a data, e.g.
from integer “123” to floating point “1.23 × 102”. Cast does not change the bits in
data but merely tells a compiler to treat a given value differently. A type conversion
is implemented in hardware and quite expensive from the performance point of view,
especially for scalar types. Casts, on the other hand, do not take any time at all, since
they do not generate any assembly instructions.

Our approach works as a source-to-source compiler and needs an interface to operate

with assembly instructions. One option is inlined assembly available, for example, in
GCC as a special asm keyword. It requires, however, a significant amount of work to
reimplement all the functionality available at the assembly level in C code. A much
better and easier solution is to use SSE intrinsics, which provide a C-level, macro-like
interface to abstract the SSE instructions via built-in functions implemented directly
by the compiler. Such approach allows to get all the power of SSE without a need to
worry about register allocation or code scheduling because the compiler makes all these
optimizations by itself.

15

3 Design

In the previous chapter, we discussed cheap software-based fault tolerance approaches.
They provide two advantages: the ability to run on commodity hardware and moderate
performance overheads. For example, SWIFT [Rei+05] showed an impressive result
of only 40% overhead on VLIW architecture. However, when deployed on a regular
x86 machine, its overhead is much worse — 120% as reported by ESoftCheck [YGS09].
The goal of our thesis is to lower this performance overhead and make a single-treaded
software-based solution with less than 80% performance overhead on the x86 architecture.

Our approach is to employ SIMD technology (see Chapter 2.2.2) for executing op-
erations on duplicated data, instead of having all instructions executed twice. Such
trade-off is valid while SIMD is not used in most applications, excluding media and
scientific ones. It also satisfies the availability requirement since SIMD can be considered a
commodity hardware — virtually all modern CPUs have it: PowerPC (IBM) has
AltiVec, ARM has Neon, and the most common x86 architecture has SSE and AVX. We
will, however, concentrate on SSE as the most prevalent one. We do not consider AVX
because it consumes more power (although, it is difficult to find official numbers) while
not providing any noticeable benefits neither to fault tolerance nor to performance.

In the following we discuss in more details the assumptions of our design (including
system and fault models), the overall architecture and its limitations.

3.1 Assumptions

We assume a general-purpose microprocessor with support of SSE4.2. This assumption
holds on all Intel processors starting from Nehalem microarchitecture and AMD starting
from Barcelona or, put simply, on most commodity processors produced after 2007. We
also assume no memory or register protection. Even though ECC protection for memory
is quite common nowadays, studies show that it does not cover all the faults [SPW09;
NDO11]. Therefore, our system model makes no assumptions on memory reliability and
admits errors in DRAM and CPU caches.

Our solution requires source code of the program, not an executable binary. It is
caused by the fact that it works as a source-to-source compiler (more about it in the
next section). Moreover, we rely on the correctness of the code itself and do not protect
from software bugs.

We use the Single Event Upset (SEU) fault model, which basically means that only
one bit-flip is expected during the whole execution of a program. By a bit-flip, we
mean an unexpected change in the state of a memory cell or a CPU register. This
also includes errors in memory bus, registers, functional units, etc. The SEU is not
permanently damaging the hardware but is transient and lasts only until the next write
to the cell/register.

16

Even though we assume SEU, our approach can work with more than one bit-flip,
as long as they do not change both duplicates in the same way. Indeed, by design
SIMD-Swift detects all faults except those that alter both copies of the same data. One
vivid example of a fault that cannot be detected by our approach (false negative) can be a
noise with a high energy level that sets all bits of the register to the same value (all
“1” or all “0”). The other potential source of false negatives could be a common mode
failure since both duplicates are held in a single register or memory location. Our fault
model also does not cover control flow errors, except those caused by a fault in control
flow instruction arguments. For example, in statement if(a), faults will be caught in
variable a, but not in if itself.

Our sphere of replication (SoR) covers the CPU and the memory used by the protected
program and we do not include the operating system, disk and network subsystems in it.
Our solution considers only fault detection, not fault recovery, although any recovery
mechanism can be applied upon fault detection. However, recovery mechanisms are
usually very costly and are applied only in the infrequent cases of errors, while fault
detection should be continuous and thus efficient. As such, we adopt a crash-stop model
when a program is forced to crash upon a detected fault.

3.2 System and Fault Models

As mentioned above, our approach works as a source-to-source compiler, that is, a
program that takes a source code as an input, makes changes in its structure and returns
a modified source code. Specifically in our case, the functionality is not changed but
the fault detection capabilities are added to the application — it continuously checks its
own integrity.

Another way for implementing our approach could be a compiler extension (such
as an LLVM pass), which changes code at compile-time. This would give a benefit of
working with a code that has already been optimized by a compiler and thus, it might
improve performance of our solution. It, however, would require much more time for
development and we consider it as our future work. That is why the source-to-source
compiler approach was chosen for a prove-of-concept implementation.

Before we dive deeper into the architecture, consider a general structure of a normal
compiler, shown in Figure 3.1 [Aik14].

Figure 3.1: Compiler structure

In the stage of the Lexical Analysis, program source is divided into so-called “tokens”
(words) of the program. After that, the Parser tries to define a structure of the program
by grouping together tokens into higher level constructs. The result of the parsing stage
is the Abstract Syntax Tree (AST), which captures the nesting structure of the program,
but abstracts from the concrete syntax. For example, an expression “5 + (2 + 3)” will be

17

transformed into the AST shown in Figure 3.2. The next stage is the Semantic Analysis
in which the compiler tries to make variable bindings and find inconsistencies like type
mismatches, scope violations, etc. The Optimization step makes a set of changes to the
program structure in order to make it run faster or use less memory, or even consume less
power. The Code Generator translates the resulting AST into a programing language,
usually into the target machine assembly.

Figure 3.2: Example of Abstract Syntax Tree

Our source-to-source compiler has a slightly different structure. In the first place, it
has a weaker semantic analysis and no optimizations, because the C compiler (e.g., GCC)
will perform these operations on the resulting code anyway. The second major difference
is a new Transformation stage, which actually applies SIMD-Swift to the target program.
Figure 3.3 shows a resulting structure of our framework.

Figure 3.3: SIMD-Swift compiler structure

Consider a small example shown in Listing 3.1.

1 // b, c and d are input arguments

2 a = b + c;

3 r = d * a;

4 printf("Result: %d", r);

Listing 3.1: Original target code

The transformer makes the following set of changes to the program:
Variable conversion. In order to use a hardened code in a non-hardened environment

we need an entry point. We use a computation function for this purpose, which duplicates
input arguments, makes a call to the hardened part of the program using duplicated
arguments and then extracts the result from the return value. Figure 3.4 shows a

18

process of duplication and extraction. Here XMM — SSE registers, GPR — general-purpose
registers.

All variables inside of the hardened part of the program are replaced by duplicated
versions.

Figure 3.4: Variable conversion
(a) Extraction, (b) Duplication

After this set of transformations our target code will be changed to Listing 3.2.

1 // b, c and d are input arguments

2 b_dup = duplicate(b);

3 c_dup = duplicate(c);

4 d_dup = duplicate(d);

5

6 // computation over hardened variables

7 a_dup = b_dup + c_dup;

8 r_dup = d_dup * a_dup;

9

10 // get result

11 r = extract(r_dup);

12 printf("Result: %d", r);

Listing 3.2: Target code with variables converted

Checks. Before the program returns the output variables, they need to be checked
for integrity. It should also be done in all points that may influence the output of the
program, but we use accumulators there instead (see below).

In our case, the check is a comparison of two duplicates for equality. Indeed, such
comparison definitely detects a fault, since the fault can change the output value in
only one copy of the result (by assumption in Section 3.1). This can be challenging,
since we have to compare two parts of the same register and, as we show in Chapter 4,
modern SIMD implementations do not provide a single dedicated instruction for that. To
guarantee that all program results were indeed correctly computed, all output variables
of the program are checked.

19

In our example, a check should be added before the printf statement, which acts as
an output event (see Listing 3.3, line 11).

Accumulators. The check operation is usually expensive (see Chapter 4) and would
harm performance if used everywhere in the program. In order to avoid this, we applied
checks only to the outputs of the program, and in all points that may influence an output
(memory access and control flow operations) we used accumulation. Such replacement is
valid since the accumulator is a variable that is dependent on all critical variables in
the program, which means that an error in any of these variables will lead to an error
in the accumulator. Check of the accumulator in the end of the program shows if any
error appeared during its execution. Any operation that satisfies this requirement can
be used as an accumulation — for instance, addition. As an example, if a and b are the
critical variables, and a fault affected b, than accum = a + b' will be also affected, and
the check on accum will signal an error.

Moreover, there is no need to check or accumulate the results of all instructions because
most of the variables are dependent on each other, that is, an error in one of them will
propagate to the others. For example, an error on line 2 of Listing 3.1 will lead to a
wrong result of the multiplication on line 3 and will propagate further to the printf
statement. It means that it is enough to accumulate only the resulting value printed on
line 3.

Accumulation is required on the following critical operations of the program:

• Memory accesses (loads and stores). If a memory address contains an error, it will
lead to a load of a wrong value. This category includes pointer dereference, array
and structure element access.

• Control flow operations. An error in variables that are used for branching may

lead to a change in the control flow direction. For example, an error in branch
condition can lead to taking a False branch when it had to be a True branch. It
includes if and switch statements, and conditions in loops.

Basic and composite operations. By basic operations we understand operations

that cannot be further subdivided into components. Such operations are replaced by
ad-hoc wrappers. For example, the addition a = b + c will be replaced by the function
call a = add_enc(b, c) (see Listing 3.3). Composite operations that consist of basic
ones are replaced by subsequent calls to wrappers, with casts and conversions added if
required. For example, d = a + b - c transforms into d = sub(add(a, b), c).

20

1 // b, c and d are input arguments

2 b_dup = duplicate(b);

3 c_dup = duplicate(c);

4 d_dup = duplicate(d);

5

6 // basic operations replaced with hardened versions

7 a_dup = add_enc(b_dup , c_dup);

8 r_dup = mul_enc(d_dup , a_dup);

9

10 // get result

11 check(r_dup);

12 r = extract(r_dup);

13 printf("Result: %d", r);

Listing 3.3: Target code with basic operations replaced by wrappers

Comparisons. Comparisons in SSE implement a different interface than normal ones.
Usually, comparisons toggle the status register (EFLAGS in x86) to affect the control
flow of a program. In SSE, however, all comparisons return an integer value with either
all “1” in case of True, or all “0” in case of False. Any other value will indicate an error,
because it is impossible (in error-free case) that two copies of the same data produce
different comparison results. For example, if we have duplicated variables a and b, it is
impossible for one copy of a to be greater than b and another — to be smaller. If it is
actually the case, this indicates a fault.

To actually influence the control flow of the program, the resulting value is converted
into a boolean just before usage in control flow statement. For example, a simple branch
in Listing 3.4 will be transformed into Listing 3.5.

1

2

3 if (a < b) {

4 // do something

5 }

Listing 3.4: Original branch

1 int128 c = less_than(a, b);

2 int c_bool = to_boolean(c);

3 if (c_bool)

4 // do something

5 }

Listing 3.5: Hardened branch

Library calls. Function calls to external libraries cannot be hardened since we do
not have access to their source code. That is why we accumulate the arguments of the
call to ensure correct input, execute the non-protected call and then duplicate the result.

Consider a small example of the source code transformation performed by the SIMD-

Swift source-to-source compiler. Listings 3.6 and 3.7 show the comparison of the original
code with its hardened version. The code is the simple function that calculates a given
element of the Fibonacci sequence.

21

1

2

3 int computation(int n) {

4 int i, next;

5 int first , second;

6 first = 0;

7 second = 1;

8 i = 2;

9 for(; i < n; i++) {

10

11

12

13

14

15

16

17 next = first + second;

18 first = second;

19 second = next;

20

21 }

22

23 return next;

24 }

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41 int main() {

42 int n = 20;

43 int next = computation(n);

44 printf("Result: %d", next);

45 return 0;

46 }

Listing 3.6: Original code

1 int128 accum = 0;

2

3 int128 computation_enc(int128 n) {

4 int128 i, next;

5 int128 first , second;

6 first = to_int128(0);

7 second = to_int128(1);

8 i = to_int128(2);

9 for(;;) {

10 accum += i;

11 accum += n;

12 // note inverse condition

13 if(extract(geq(i, n))) {

14 break;

15 }

16

17 next = add_enc(first , second);

18 first = second;

19 second = next;

20 i = add_enc(i, to_int128(1));

21 }

22

23 return next;

24 }

25

26 // wrapper for old computation

27 int computation(int n) {

28 int result;

29 int128 n_dup , result_dup;

30

31 n_dup = to_int128(n);

32 result_dup = computation_enc(n_dup);

33 if !check(result_dup) || !check(accum)

34 crash();

35 result = extract(result_dup);

36

37 return result;

38 }

39

40 // left as-is

41 int main() {

42 int n = 20;

43 int next = computation(n);

44 printf("Result: %d\n", next);

45 return 0;

46 }

Listing 3.7: Hardened code

The main function represents an entry point to the hardened part of the program —
computation function, which is transformed using SIMD-Swift.

After the transformation, the computation function does not perform its main func-
tionality anymore and becomes a point of data conversion. On lines 28–29, we initialize
variables and on line 29 we use a pseudo-type int128 which represents a duplicated

22

integer. On line 31 we convert an input argument to this type and pass it to the hardened
computation_enc function on line 32. After that, the result and the accumulator are
checked for errors on line 33 and decoded back to integer on line 35.

All the original functionality is moved to the computation_enc function on lines 3–24.
The main change here is the loop (see Listings 3.8 and 3.9). It is broken into three pieces:
the loop itself is replaced by generic infinite for on line 1, the loop invariant is pulled
out into the separate if statement on lines 3–4 and the loop counter incrementation is
also pulled in the separate operation in the end of the loop, line 5. This reformatting
does not affect the semantics of the loop, but simplifies the analysis and transformation
of source code.

1 for(; i < n; i++) {

2

3

4

5

6 }

Listing 3.8: Original loop

1 for(;;) {

2 // note inverse condition

3 if (i >= n)

4 break;

5 i++;

6 }

Listing 3.9: Refactored loop

Going back to our example in Listing 3.7, a check on loop invariant is replaced by
the wrapper function geq on line 13, result of which is immediately decoded to boolean
using extract. Before that, variables i and n are accumulated, because an error in
each of them may influence control flow of the program. Counter incrementation is also
replaced by a wrapper function call and put on line 20. The variables’ initialization in
the hardened version is done using duplicated constants on lines 6–8.

23

4 Implementation

In the previous chapter we discussed a general architecture of SIMD-Swift. Now let us
consider its implementation details. We will start with technologies used in each step of
the source-to-source compilation and then will go into more details of the transformation
stage. We will also examine the drawbacks of our implementation.

4.1 Used technologies

As mentioned in Chapter 3, our implementation includes five steps: Lexical Analysis,
Parsing, Semantic Analysis, Transformation and Code Generation.

The first step of Lexical Analysis uses Python Lex-Yacc (PLY) library [Bea01], which
provides an extensible Python implementation of common tools lex and yacc, and
allows to build lexers and parsers upon it. Even though it is quite slow due to its Python
implementation, it can be used for languages with complex grammar rules and allows
fast and clear prototyping.

Parsing and Code Generation are implemented using PyCParser [Ben10]. PyCParser
is a C language parser, written in pure Python and based upon PLY.

Semantic analysis and Transformation stages are based on our inhouse encoding
framework that provides a generic implementation of a source-to-source compiler with
extensible hooks for writing concrete encoders. In this thesis we have developed such an
extension for SIMD-Swift and in the following, we will consider its essential elements.

4.2 Transformations

The Transformation stage performs three fundamental changes to the program: it changes
data types, replaces operations and adds checks and accumulations.

4.2.1 Data types replacement
On the intrinsics level (see Chapter 2.2.2), SSE has only three data types available:

• m128 — 4 packed single-precision floating-point variables;

• m128d — 2 packed double-precision floating-point variables;

• m128i — packed integer variables (e.g. 2 64-bit integers);

All basic types are replaced as shown in Table 4.1. We use only two types m128d
and m128i containing 2 64-bit integers, since we do not need more than two copies
for fault detection (under the assumptions discussed in Chapter 3.1) and it simplifies

24

the implementation. This may lead, however, to changes in a program behavior if, for
instance, it relies on 32-bit integer overflow. But we do not address the issue and leave
it for future work, assuming that our current benchmarks do not have this behavior.

Original type Replacement type

Integer types (including int8, uint8, int16, etc.)
Pointer types (including arrays and structures)

float, double
_Bool

 m128i
 m128i
 m128d
 m128i

Table 4.1: Type mapping.

User-defined types and structures are tracked down to basic ones and replaced accord-
ingly. For example, a structure {int x, int y} is replaced by its duplicated version
{ m128i x, m128i y}. Enumerations are considered a special case and are
treated as integer constants.

By replacing the data types, we ensure that the original code is hardened, i.e., all
variables become duplicated and all operations are performed on two copies.

4.2.2 Basic operations

By basic operations, we understand operations that cannot be further divided into
sub-operations and, in most cases, have a one-to-one mapping to assembly instructions
(e.g. add, mul, xor, etc). Since we use two data types — m128i and m128d, all such
operations must have two corresponding implementations, one for 64-bit integers and
one for double-precision floating-points (doubles).

Arithmetic operations.
Most arithmetic operations have an implementation in SSE for both integer and

floating-point types, since SSE was initially targeted for data processing. Issues appear
only with integer division and modulo operations which are used quite rarely and hence
have no SSE equivalents. Since they cannot be replaced with any other operations (at
least not in a general case), we had to use an EDDI-like approach [OSM02] and execute
them twice. Table 4.2 shows instructions used for arithmetic operations.

Operation Assembly

(int)
Assembly
(float)

Intrinsic (int) Intrinsic (float)

Addition
Subtraction
Multiplication
Division
Modulo

PADDQ
PSUBQ
PMULQ
IDIV x2
IDIV x2

ADDPD

SUBPD
MULPD
DIVPD

-

_mm_add_epi64
_mm_sub_epi64

_mm_mul_epi64

Duplicated
Duplicated

_mm_add_pd
_mm_sub_pd

_mm_mul_pd

_mm_div_pd

-

Table 4.2: Arithmetic operations.

Division and modulo could also be implemented in the following way: we could convert
integer values to floating-point, perform floating-point division/modulo and then convert

25

back. It would have, however, even higher overhead since SSE conversions are expensive
(e.g., conversion from m128i to m128d takes 4 cycles on Intel Haswell) and cannot
be executed in parallel due to data dependency.

Operations with pointers.
Pointers duplicated in m128i cannot be used directly because modern processors

require a memory address operand to be a 64-bit integer. That means before each
memory access, we need to extract a pointer and accumulate its duplicated value, since
we use only one copy and an error in this copy may silently lead to a load of a wrong
value or a store to a wrong address (see Figure 4.1).

Figure 4.1: Memory access.

Pointer arithmetic (i.e., adding an integer to a pointer or subtraction of two pointers),
however, may be performed without these additional operations. We can execute all
operations directly on duplicated values and extract lazily — right before the memory
access.

Boolean logical operations.
Boolean logic has no implementation in SSE, but it can easily be replaced by other

operations. Boolean AND (&& in C) can be replaced by integer multiplication since
they have the equivalent behavior with boolean numbers (False — zero value, True —
non-zero). Table 4.3 shows the truth table of both multiplication and logical AND.

Logical OR (|| in C) can be replaced by a bitwise version. In bitwise OR, if at least one
of two variables is not equal to zero (contains bits with value “1”), then result will also

26

Operation Resulting value
True && True
True && False

False && False

!= 0
0

0

Table 4.3: Truth table for logical AND.

be non-zero — which is a behavior of logical OR. Table 4.4 illustrates this on two cases:
both variables are zero (False) and at least one variable is non-zero (True).

True OR True False OR False

0100
0010

0000
0000

0110 0000

Table 4.4: Logical OR replaced by bitwise OR.

Bitwise logical operations and shifts.
Most of the bitwise logical operations are available for 128-bit variables in SSE as

shown in Table 4.5. The only exception is NOT (logical complement), but it can be
replaced with XOR with a register containing all bits set to “1”.

Operation Intrinsic Assembly

AND

OR
XOR

Left shift

Right shift

_mm_and_si128

_mm_or_si128

_mm_xor_si128

_mm_sll_epi64

_mm_srl_epi64

PAND

POR
PXOR

PSLLQ
PSRLQ

Table 4.5: Bitwise operations.

Comparisons.
SSE includes all floating point comparisons, but only Equal (PCMPEQQ) and Greater

Than (PCMPGTQ) are implemented for integers. All other operations, however, can be
replaced with those two as presented in Table 4.6.

4.2.3 Composite operations

A general approach to encoding any composite node in Abstract Syntax Tree (AST)
is to encode the node name (in order to avoid conflicts with non-hardened variables),
replace types and recursively encode child nodes until we reach basic operations. This
way there is no need in implementing composite operations since we already have a way
to encode basic ones and all their combinations.

27

Operation Replacement
a != b

a < b
a <= b
a >= b

(double) a != (double) b
b > a

!(a > b)

!(b > a)

Table 4.6: Implementation of comparisons.

4.2.4 Integrity checks

In the critical points of execution duplicated variables have to be compared for equality
in order to avoid error propagation (see Chapter 3.2). Such operation is not available in
SSE, but it can be replaced with horizontal subtraction, that is, a subtraction of scalar
variables inside of a packed variable. If two duplicates are equal, the result will be zero.
If there was an error and the duplicates are different, the result of their subtraction will
be non-zero. Afterwards, we can check this result with PTEST that performs a test for
all zeros and returns a boolean value. This value, in turn, can be used for branching and
executing a recovery mechanism in case of error. Since we operate on 64-bit integers and
horizontal subtraction is available only for 32-bit integer and smaller, a shuffle has to be
performed before subtraction to reorder 32-bit parts of a register. Figure 4.2 illustrates
this idea. Unfortunately, this sequence of instructions has a total latency of 6 cycles (on
Intel Haswell) and therefore is quite expensive.

Figure 4.2: Implementation of checks.

28

Accumulations.
Accumulation is much simpler and thus faster. It is implemented with the addition

(PADD) of a variable-to-check to an accumulator. In order to avoid redundant interactions
with main memory, one of the XMM registers is dedicated to accumulation (e.g., by using
register keyword in gcc), which leads to a latency of only 1 cycle (on Intel Haswell).

4.3 Performance bottlenecks

Our approach has two major performance bottlenecks: comparisons and memory accesses.
Both of them are caused by the non-availability of corresponding SSE instructions and
thus, an increased number of instructions is required to perform the operation.

4.3.1 Comparisons

The main issue of comparisons in SSE is that they do not set the EFLAGS register and
therefore, cannot be used for control flow operations (branching) directly. In order to
use them, we need an additional instruction that converts the resulting m128i value
to a boolean and sets the corresponding flags. Moreover, we require accumulation before
jumps since their arguments influence a control flow of a program. Listing 4.2 shows an
example of additional instructions that appear after hardening.

1

2 ; implicitly set flags in EFLAGS

3 CMP %eax , %ebx

4

5

6

7

8

9

10

11 ; take a branch based on set flags

12 JGT .L0

Listing 4.1: Original comparison
(2 instructions — 2 cycles)

1 ; put 0's or 1's in XMM1

2 ; for later check

3 PCMPGTQ %xmm0 , %xmm1

4

5 ; accumulate in register xmm15

6 PADDQ %xmm1 , %xmm15

7

8 ; AND with all 1's register xmm14

9 ; and set ZF flag if result

10 ; is zero

11 PTEST %xmm14 , %xmm1

12 JE .L0

Listing 4.2: Hardened comparison
(4 instructions — 6 cycles)

4.3.2 Memory accesses

This bottleneck is similar to comparisons. A memory access requires an address operand
to be a 64-bit integer, but pointers in a hardened program have type m128i. That
means we need an additional extraction, and also accumulation since an error in the
address will either lead to a load of wrong value or a store to the wrong address (lost
update). Listing 4.4 shows such transformation.

29

1 ; load from address

2 ; specified in %rax

3 ; a value into %ebx

4 MOV (%rax), %ebx

5

6

7

8

9

10

Listing 4.3: Original memory access
(1 instruction — 1 cycle)

1 ; xmm0 contains address operand.

2 ; Accumulate it in register xmm15

3 ; for later check

4 PADDQ %xmm0 , %xmm15

5

6 ; extract address

7 MOVQ %xmm0 , %rax

8

9 ; use address to load value

10 MOVAPS (%rax), %xmm1

Listing 4.4: Hardened memory access
(3 instructions — 6 cycles)

Situation is even sadder than with comparisons, since SSE moves often have a high

latency (e.g., AMD Piledriver requires 5 cycles for each movement between XMM
registers). It gets even worse when we access an array element, because we also need to
extract and accumulate the element’s index.

4.4 Alternative implementation

We can avoid the memory access bottleneck by not duplicating pointers at all. This way
we trade fault tolerance for performance by having less computational overhead but at
the same time making our approach vulnerable to errors in pointers. Let us consider
consequences of applying such a trade-off.

An error in pointer that is used for loading may lead to the following consequences:

1. The address becomes unreachable. In this case, a segmentation fault will be thrown
and the program will crash (benign failure).

2. The address points to allocated but unused memory. The error will lead to Silent

Data Corruption (SDC) because allocated memory is initialized with zeros and
two equal zero-filled duplicates will be loaded.

3. The address points to unallocated or to allocated and used memory. The error

will be detected if a first loaded duplicate is not equal to the second one. This
situation is most probable since this memory address will contain random values
and two subsequent 64-bit chunks of memory are likely to be different.

If a pointer is used for storing, it will lead to a benign crash in case (1) and to a lost

update in all the other cases.
Our hypothesis is that most errors in pointers will lead to a segmentation fault and

those that will not, will be caught with high probability by SIMD-Swift as shown in case
(3). In order to verify it we designed two tests.

In the first test, we load a known integer value from memory and then check if it is
correct (original version). In the second test, we do the same, but the value is duplicated
and the duplicates are checked for equality after the load (hardened version). The original
version can catch errors of case (1), while the hardened version also catches errors of

30

case (3). In both tests our goal is to define what is a probability of SDC. In order to do
this, we inject a single-bit flip fault in the load address and check the resulting value. In
the beginning of each test we allocate a chunk of memory, which allows us to see the
impact of allocated-memory size on the SDC rate. Figure 4.3 shows the results of these
tests. Here, “hardened” means a version where pointer is not duplicated but memory
value is. We increase the size of allocated memory only up to 800 MiB because it is the
highest size we could allocate on a Linux machine with 2GB of RAM.

Figure 4.3: Results of pointer fault injection.

As we can see, only in 35–39% of cases an error in a pointer will lead to SDC even
for non-hardened program, and it gets lower with SIMD-Swift because some errors are
caught as in case 3. These results give us hope that such an alternative implementation
may not cause a significant decrease in fault detection capabilities while giving us an
improvement in performance.

Also, we can notice a slight correlation between the SCD rate and the size of allocated
memory, but it is insignificant.

An evaluation of performance overhead and fault tolerance for both full and alternative

implementations will be presented in Chapter 5.

31

5 Evaluation

In this chapter, we will consider fault detection capabilities and performance overhead
of SIMD-Swift for both the full implementation (referred to as “full”) and the imple-
mentation without pointer duplication (referred to as “pointerless”). The set of tested
benchmarks consists of:

• basic integer algorithms: Bubble sort, Fibonacci sequence and Sieve of Eratosthenes
(SoE);

• floating-point algorithms: numerical implementation of sine and Fast Fourier
Transform (FFT);

• benchmarks from MiBench [Gut+01]: Dijkstra’s algorithm and Cyclic Redundancy
Check (CRC);

Bubblesort and Dijkstra represent memory-access-dominated algorithms. FFT and

Sine consist primarily of arithmetic instructions. SoE, CRC and Fibbonacci contain a
significant amount of control-flow operations.

We will start with the performance testing, continue with the fault injection and then
discuss the results.

5.1 Performance testing

For the performance overhead evaluation we used a computer with the following charac-
teristics:

• RAM: 8GB

• CPU: Intel Core i5-5200U (Broadwell microarchitecture)

• Caches:
– L1: 128 KB
– L2: 512 KB
– L3: 3072 KB

The benchmarks were compiled using the GCC version 5.1.1 with SSE4.2 enabled
(-msse4.2), AVX disabled (-mno-avx), x86-64 instruction set (-m64) and all optimiza-
tions (-O3). For the performance testing we used PyCPerf tool [Ole15] which uses the
Time Stamp Counter and RDTSC instruction for measuring how many CPU cycles it
takes to execute a given region of code. All benchmarks were running for at least one

32

second with the fixed input. Each benchmark was tested in two variants: “full” — all
variables are duplicated, and “pointerless” — pointers are not protected by duplication.
Figure 5.1 shows the performance overheads of all benchmarks compared to the native
execution.

Figure 5.1: Performance testing results.

As we can see, the results are varying for different types of benchmarks. The bench-
marks are grouped by performance results: for FFT, CRC, Sine and Bubblesort (point-
erless implementation) we managed to get less than 80% overhead, and others perform
worse than SWIFT (more than 100% overhead). It is caused by the fact that some
benchmarks are influenced by the bottlenecks (see Chapter 4.3), and some are not. We
discuss this variance in detail in Section 5.3.

It should be noted that the results may be different not only for other processor
manufacturers and models (e.g., AMD) but even for other generations of Intel processors,
since every next generation makes a bit different performance trade-offs than the previous
one. For example, PMULUDQ (multiply the low unsigned 32-bit integers from each packed
64-bit element in two m128i variables) has a latency of 3 cycles in Ivy Bridge, whereas
the same instruction’s latency in Haswell is 5 cycles. But the general tendency will stay
the same.

33

5.2 Fault injection
For the fault injection campaign, we used Intel Pin [Int04] and BFI [Beh15] tools.

Pin is a binary instrumentation tool, that is, the tool that enables the runtime
instrumentation on the compiled binary files. BFI uses this functionality to perform
the runtime fault injection. In our case, BFI injects single-bit faults in CPU registers,
memory cells and the address bus, once per run (see also our fault model in Section 3.1).
The faults are random and uniformly distributed in a region of code under consideration.
A fault may result in one of the five broad types of consequences:

• Silent Data Corruption (SDC) — the fault changed the result, but stayed unde-

tected.

• Crash — the fault led to an externally-visible program crash. In most cases, it is a
segmentation fault.

• Masked — the fault did not affect the result.

• Detected — SIMD-Swift detected an error.

• Hanged — the fault caused a hang of the program.

The main goal of SIMD-Swift is to reduce the number of SDC, but if the rate of
crashes is increased by our solution, we also consider it as an acceptable result, since they
are externally-visible. Many injected faults do not lead to changes in outputs (masked)
because they affect unused registers and thus do not propagate further. Hangs can
happen due to a fault changing a loop variable and usually are infrequent.

We used three representative benchmarks for testing: FFT is dominated by arithmetic
floating-point instructions, Bubblesort is pointer-dominated (memory-heavy) and SoE
consists in a large part of control-flow operations (branching). Each benchmark was
tested in the original version, with full duplication and without pointer duplication. The
fault injection results are shown on Figure 5.2.

5.3 Discussion

The performance testing results clearly show us the influence of the two main bottlenecks,
discussed in Chapter 4.3.

We achieved the lowest overhead with the FFT benchmark, which consists primarily
of arithmetic floating point operations and a small amount of memory accesses, used
for reading input and storing results. Such structure caused only 15% overhead in
the full version and almost no overhead when we disabled pointer duplication. The
similar situation is with the Sine benchmark, but it contains fewer pointer operations —
which explains the small difference between the full and pointerless versions, and more
control-flow operations, leading to higher overhead in general.

Bublesort and Dijkstra benchmarks represent memory-access-dominated applications.
Bubblesort has all array references substituted by direct pointer dereferencing, while

34

Figure 5.2: Fault injection results.

Dijkstra is written with array references only. As we can see from results, it caused a
significant performance improvement for Bubblesort because it extracts address only
from the pointer itself, while Dijkstra has to extract both array address and index. Also,
we can see that this type of application benefits most from pointerless version, since a
significant part of the code becomes non-duplicated.

Fibonacci and SoE, on the other hand, had almost no benefit from the pointerless
version, since they are dominated by control-flow instructions and memory accesses
constitute only a small portion of their overhead.

CRC stays a bit aside from other benchmarks because its low overhead is caused
by numerous calls to the standard library, which are not hardened and thus do not
experience any overhead. This highlights an interesting property of SIMD-Swift that it
can be applied to only parts of code (for example, some logging and statistics can be left
unhardened).

The fault injection campaign shows that a substantial part of faults stays undetected.
We examined the sources of SDCs and defined that the vast majority of them are faults in
either read or write address. It indicates the main window of vulnerability for SIMD-Swift
— a load and store from the memory. Consider a case of reading from the memory
(Figure 5.3). In the full version, addresses are kept duplicated all the time, except just
before the usage. If a fault occurs in the extracted address, it will be used to load a
value from the wrong address, and if the low 64 bits of this value are equal to the high

64 bits, the error will stay undetected and may lead to SDC (see the detailed discussion
in Chapter 4.4). The fault injections in SoE benchmark prove this observation, since it
contains only a small amount of memory interactions and hence, is less exposed to this
window of vulnerability (the SDC rate is roughly 2%).

This vulnerability can be removed by executing all load and store operations twice,
that is, by separately working with the first and second duplicates of the pointer. We
manually refactored Bubblesort benchmark to use such redundant memory interactions
and received only 1.4% SDC rate, which is a significant improvement in comparison to

35

Figure 5.3: Window of vulnerability.

our previous result — 15.3%. But at the same time performance overhead has grown
from 108% to 175% and since other benchmarks are expected to have the similar increase,
we decided not to implement this version as an unpromising one.

37

6 Conclusion And Future Work

Modern hardware shows a trend to an increase in fault rates caused by shrinking
feature sizes and decreasing voltages. The cheapest way to deal with this issue is to use
software-level redundancy, that is, to duplicate some part of a code or some variables.
Nowadays, a wide range of such solutions exists, but most of them are lacking one core
quality — performance. Therefore, our thesis was targeted to develop a software-based
fault tolerance approach which could improve performance results of the current solutions.
In order to do that, we used the Single Instruction Multiple Data (SIMD) technology to
duplicate all program’s variables. Such duplication allows to detect faults by a simple
comparison of two copies under the assumption that only one copy is affected by a fault.
This idea is based on the observation that SIMD is usually underutilized in modern
CPUs. We implemented it as a source-to-source compiler which performs hardening of a
program on the source code level.

As we have seen in Chapter 5, we did not achieve a desired result for all benchmarks
due to two inherent bottlenecks — memory accesses and comparisons. Although it is
still reasonable to use SIMD-Swift for the applications that are dominated by arithmetic
or logic operations (e.g., FFT and Sine benchmarks), such applications are not very
common. We believe our approach is most well-suited for those floating-point benchmarks
that do not benefit from SIMD vectorization. Therefore, in many cases the performance
overhead is expected to be higher than with alternative hardening approaches, such as
SWIFT.

This effect is slightly reduced in the implementation without pointer duplication.
As we can see from the results of the fault injection, it only slightly decreases the
fault detection capabilities of the approach, which is caused by the memory address
vulnerability discussed above. At the same time, it significantly improves performance
of memory-access-dominated applications by removing one of the main bottlenecks.

All our implementations perform only fault detection, not fault recovery. That means
recovery mechanisms have to be applied upon fault detection. The implementation
without pointer duplication, however, relies on the assumption that crashes (especially,
segmentation faults) can be tolerated and used for detection and this, in turn, decreases
the range of fault recovery mechanisms which can be used with it. For example, if we use
the Triple Modular Redundancy approach for recovery by having three copies instead of
two, we will be able to recover only from detected faults and a crash will just stop the
execution.

Our main bottlenecks are caused by the fact that memory and control flow operations
do not have direct SSE implementation in hardware (see Section 4.3). For current
processors this issue is unsolvable, but the next generation of the Intel Xeon processors
(Intel Xeon E5-26xx) is expected to have a field-programmable gate array (FPGA)
[SPW09], which can be used for implementing such functionality. When the new Xeon

38

processors will go to the market, we may get a significant improvement in performance
for the SIMD-Swift approach by adding our own, SIMD-Swift-based instructions.
Another issue discovered by the fault injection tests is the window of vulnerability
during a memory access, caused by a usage of non-duplicated addresses. It could
potentially be resolved by having duplicated load and store operations, but in current
hardware it worsens performance even further. We tried this approach on the Bubblesort
benchmark and got an increase in overhead from 108% to 170%, which is much higher
even than SWIFT. Having FPGA, however, may help in this case too, since it would allow
us to implement the duplicated memory access in the hardware. As such, FPGA-assisted
approach is a promising avenue for future work.

Our implementation is also lacking a full data type support. In the current version,
we cast all data types to two basic ones — packed integer (m128i) and packed
double (m128d). In most cases it does not cause any problems, but it may change a
program’s behavior if it relies on integer overflows. We have made such decision to get a
proof-of-concept implementation and evaluate the approach in general. We consider full
data type support as our future work.

The source-to-source compiler implementation significantly restricts the complexity
of used benchmarks since full support of C requires immense development efforts. That
is why we evaluated the approach on this restricted implementation, and in future we
are going to reproduce it as an LLVM pass. That will allow us to test SIMD-Swift on
real-life applications.

In the end, SIMD-Swift proves its potential for some specific types of applications,
achieving as low as 15% overhead while still providing high level of fault coverage. We
believe that FPGA-assisted implementation or a smart mix with regular duplicated
instructions can provide significant benefits in terms of performance and reliability.

39

Bibliography

[Aik14] A. Aiken. Compilers. 2014. url: https : / / class . coursera . org /
compilers-004 (visited on Sept. 10, 2015).

[ARM10] ARM. Neon. 2010. url: http://www.arm.com/products/processors/
technologies/neon.php (visited on Nov. 2, 2015).

[Aus99] T.M. Austin. “DIVA: a reliable substrate for deep submicron microarchi-
tecture design.” In: International Symposium on Microarchitecture. 1999,
pp. 196–207.

[Bea01] D. M. Beazley. Python Lex-Yacc. 2001. url: https://github.com/dabeaz/
ply (visited on Nov. 1, 2015).

[Beh15] D. Behrens. BFI. 2015. url: https : / / bitbucket . org / db7 / bfi / src
(visited on Nov. 1, 2015).

[Ben10] E. Bendersky. PyCParser. 2010. url: https : / / github . com / eliben /
pycparser (visited on Nov. 1, 2015).

[Ber+05] D. Bernick et al. “NonStop reg; advanced architecture.” In: International Con-
ference on Dependable Systems and Networks. June 2005, pp. 12–21.

[BM91] M. Brearley and R.B. Moseley. Electronic braking system. US Patent
5,004,299. Apr. 1991. url: https://www.google.com/patents/US5004299.

[BS04] W. Bartlett and L. Spainhower. “Commercial Fault Tolerance: A Tale of
Two Systems.” In: IEEE Transactions on Dependable and Secure Computing.
Vol. 1. Jan. 2004, pp. 87–96.

[Fen+10] Shuguang Feng et al. “Shoestring: Probabilistic Soft Error Reliability on
the Cheap.” In: Symposium on Programming Language Issues In Software
Systems. Vol. 45. Mar. 2010, pp. 385–396.

[Fet+06] E.S. Fetzer et al. “The Parity protected, multithreaded register files on the
90-nm itanium microprocessor.” In: IEEE journal of Solid-State Circuits.
Vol. 41. Jan. 2006, pp. 246–255.

[Gol+06] O. Goloubeva et al. Software-implemented hardware fault tolerance. Springer
Science & Business Media, 2006.

[Gom+03] M. Gomaa et al. “Transient-fault recovery for chip multiprocessors.” In:
International Symposium on Computer Architecture. June 2003, pp. 98–109.

[Gut+01] M. R. Guthaus et al. “MiBench: A Free, Commercially Representative
Embedded Benchmark Suite.” In: IEEE International Workshop of the
Workload Characterization. 2001, pp. 3–14.

https://class.coursera.org/compilers-004
https://class.coursera.org/compilers-004
http://www.arm.com/products/processors/technologies/neon.php
http://www.arm.com/products/processors/technologies/neon.php
https://github.com/dabeaz/ply
https://github.com/dabeaz/ply
https://bitbucket.org/db7/bfi/src
https://github.com/eliben/pycparser
https://github.com/eliben/pycparser
https://www.google.com/patents/US5004299

40

[Gwe96] L. Gwennap. “Digital, MIPS Add Multimedia Extensions.” In: Microproces-
sor Forum. Vol. 10. 1996, pp. 24–28.

[Gwe98] L. Gwennap. “Altivec vectorizes powerPC.” In: Microprocessor Forum.
Vol. 12. 1998, pp. 1–6.

[HB92] J.G. Holm and P. Banerjee. “Low Cost Concurrent Error Detection in a
VLIW Architecture Using Replicated Instructions.” In: International Con-
ference on Paral lel Processing. 1992, pp. 192–195.

[Int04] Intel. Pin home page. 2004. url: https://software.intel.com/en-
us/INPROCEEDINGSs/pintool (visited on Oct. 29, 2015).

[Int14] Intel. Technology and Computing Requirements for Self-Driving Cars. 2014.
url: http://www.intel.de/content/www/de/de/automotive/driving-
safety - advanced - driver - assistance - systems - self - driving -
technology-paper.html (visited on Aug. 20, 2015).

[KAO05] P. Kongetira, K. Aingaran, and K. Olukotun. “Niagara: a 32-way multi-
threaded Sparc processor.” In: IEEE Micro. Vol. 25. Mar. 2005, pp. 21–
29.

[Koh+95] L. Kohn et al. “The visual instruction set (VIS) in UltraSPARC.” In: Comp-
con ’95. Technologies for the Information Superhighway. Mar. 1995, pp. 462–
469.

[MBS07] A. Meixner, M.E. Bauer, and D.J. Sorin. “Argus: Low-Cost, Comprehensive
Error Detection in Simple Cores.” In: IEEE/ACM International Symposium
on Microarchitecture. Dec. 2007, pp. 210–222.

[McE81] D. McEvoy. “The Architecture of Tandem’s NonStop System.” In: Proceedings
of the ACM ’81 conference. 1981, pp. 245–247.

[MKR02] S.S. Mukherjee, M. Kontz, and S.K. Reinhardt. “Detailed design and evalua-
tion of redundant multi-threading alternatives.” In: International Symposium
on Computer Architecture. 2002, pp. 99–110.

[MM88] A. Mahmood and E.J. McCluskey. “Concurrent error detection using watch-
dog processors-a survey.” In: IEEE Transactions on Computers. Vol. 37. Feb.
1988, pp. 160–174.

[NAS00] NASA. John F. Kennedy Space Center — Frequently Asked Questions. 2000.
url: http://science.ksc.nasa.gov/pao/faq/faqanswers.htm (visited
on Sept. 2, 2015).

[NDO11] E.B. Nightingale, J.R. Douceur, and V. Orgovan. “Cycles, Cells and Platters:
An Empirical Analysis of Hardware Failures on a Million Consumer PCs.”
In: EuroSys. ACM, Apr. 2011.

[Ole15] O. Oleksenko. PyCPerf. 2015. url: https : / / github . com /
OleksiiOleksenko/PyCPerf (visited on Nov. 1, 2015).

[OSM02] N. Oh, P.P. Shirvani, and E.J. McCluskey. “Error detection by duplicated
instructions in super-scalar processors.” In: IEEE Transactions on Reliability.
Vol. 51. Mar. 2002, pp. 63–75.

https://software.intel.com/en-us/INPROCEEDINGSs/pintool
https://software.intel.com/en-us/INPROCEEDINGSs/pintool
https://software.intel.com/en-us/INPROCEEDINGSs/pintool
http://www.intel.de/content/www/de/de/automotive/driving-safety-advanced-driver-assistance-systems-self-driving-technology-paper.html
http://www.intel.de/content/www/de/de/automotive/driving-safety-advanced-driver-assistance-systems-self-driving-technology-paper.html
http://www.intel.de/content/www/de/de/automotive/driving-safety-advanced-driver-assistance-systems-self-driving-technology-paper.html
http://www.intel.de/content/www/de/de/automotive/driving-safety-advanced-driver-assistance-systems-self-driving-technology-paper.html
http://www.intel.de/content/www/de/de/automotive/driving-safety-advanced-driver-assistance-systems-self-driving-technology-paper.html
http://science.ksc.nasa.gov/pao/faq/faqanswers.htm
https://github.com/OleksiiOleksenko/PyCPerf
https://github.com/OleksiiOleksenko/PyCPerf
https://github.com/OleksiiOleksenko/PyCPerf

41

[PW96] A. Peleg and U. Weiser. “MMX technology extension to the Intel architec-

ture.” In: IEEE Micro. Vol. 16. Aug. 1996, pp. 42–50.
[Ram12] R.N. Ramamurthi. “Dynamic trace-based analysis of vectorization potential

of programs.” MA thesis. The Ohio State University, 2012.
[Reb+01] M. Rebaudengo et al. “A source-to-source compiler for generating depend-

able software.” In: IEEE International Workshop on Source Code Analysis
and Manipulation. 2001, pp. 33–42.

[Rei+05] G.A. Reis et al. “SWIFT: software implemented fault tolerance.” In: In-
ternational Symposium on Code Generation and Optimization. Mar. 2005,
pp. 243–254.

[Rot99] E. Rotenberg. “AR-SMT: a microarchitectural approach to fault tolerance in
microprocessors.” In: International Symposium on Fault-Tolerant Computing.
June 1999, pp. 84–91.

[RPK00] S.K. Raman, V. Pentkovski, and J. Keshava. “Implementing streaming
SIMD extensions on the Pentium III processor.” In: IEEE micro. 4. 2000,
pp. 47–57.

[RR07] V. Reddy and E. Rotenberg. “Inherent Time Redundancy (ITR): Using
Program Repetition for Low-Overhead Fault Tolerance.” In: IEEE/IFIP
International Conference on Dependable Systems and Networks. June 2007,
pp. 307–316.

[Shy+09] A. Shye et al. “PLR: A Software Approach to Transient Fault Tolerance for
Multicore Architectures.” In: IEEE Transactions on Dependable and Secure
Computing. Vol. 6. Apr. 2009, pp. 135–148.

[Skl76] J.R. Sklaroff. “Redundancy Management Technique for Space Shuttle Com-
puters.” In: IBM journal of Research and Development. Feb. 1976, pp. 20–
28.

[Sle+99] T.J. Slegel et al. “IBM’s S/390 G5 microprocessor design.” In: IEEE Micro.
Vol. 19. Mar. 1999, pp. 12–23.

[Smo+04] J.C. Smolens et al. “Efficient Resource Sharing in Concurrent Error De-
tecting Superscalar Microarchitectures.” In: International Symposium on
Microarchitecture. Dec. 2004, pp. 257–268.

[SPW09] B. Schroeder, E. Pinheiro, and W. Weber. “DRAM Errors in the Wild: A
Large-Scale Field Study.” In: ACM SIGMETRICS. 2009.

[Ste15] Steam. Steam Hardware and Software Survey. 2015. url: http://store.
steampowered.com/hwsurvey (visited on Aug. 29, 2015).

[WCS09] P. M. Wells, C. Chakraborty, and G. S. Sohi. “Mixed-mode Multicore
Reliability.” In: ACM Symposium on Programming Language Issues In
Software Systems. Vol. 44. Mar. 2009, pp. 169–180.

[Yeh96] Y.C. Yeh. “Triple-triple redundant 777 primary flight computer.” In:
Aerospace Applications Conference. Vol. 1. Feb. 1996, pp. 293–307.

http://store.steampowered.com/hwsurvey
http://store.steampowered.com/hwsurvey
http://store.steampowered.com/hwsurvey

42

[YGS09] J. Yu, M.J. Garzaran, and M. Snir. “ESoftCheck: Removal of Non-vital
Checks for Fault Tolerance.” In: International Symposium on Code Genera-
tion and Optimization. Mar. 2009, pp. 35–46.

[Zha+12] Y. Zhang et al. “Runtime Asynchronous Fault Tolerance via Speculation.”
In: International Symposium on Code Generation and Optimization. 2012,
pp. 145–154.

