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1 Introduction

This work enhances an existing framework to support concurrent users on a virtualized resource.
In the beginning of this chapter Field Programmable Gate Arrays (FPGAs) are motivated with
a quick insight into some use cases. After that, the current state of cloud computing is discussed
and the final section shows the integration of FPGAs into the cloud.

1.1 Field Programmable Gate Array

The first FPGA was introduced by Xilinx in 1984, but the term itself was popularized by Actel
around 1988 [Tri15]. At that time Application-Specific Integrated Circuits (ASICs) were widely
used to build custom logic circuits but had the disadvantage of a long turnaround time and with
the increasing mask cost it got more and more expensive to develop the chip. Today they are
only used in high numbers or if constraints like power consumption or speed are very important.
FPGAs on the other hand have a much quicker turnaround time and were and are cheaper for low
to medium numbers of units. This makes them perfect for prototyping or low cost yet fast and
efficient solutions. This is possible thanks to the chip’s flexible design which is mainly based on
Static RAM (SRAM) to configure Look Up Tables (LUTs) and Programmable Interconnection
Points (PIPs) connecting those LUTs. Their flexibility and special features like on-chip memory,
Digital Signal Processing Units (DSPs) or PCI Express (PCIe) transceiver let them perform very
well in high bandwidth streaming applications. [Müh+10] proposed a FPGA based honeypot
to collect malicious code samples and simulate thousands of potential targets at once. Even
in the field of image processing they outperform Graphics Processing Units (GPUs) in many
scenarios ([Che+08]) as well as in the processing of large datasets ([Hus+11]) and are more
power efficient at the same time ([Pap+09]). Their versatility is further proven by applications
in finance ([MTL09]), biology ([KPS11]), space flight ([Jac+12]) and many more.

1.2 Cloud Computing

The term Cloud Computing was first mentioned in a business plan by Compaq in 1996 [Cor96]
and took a big step forward in 2006 with the Amazon Elastic Compute Cloud a service offering
costumers scalable on-demand compute resources. It has evolved since then into a major buzz
word but it took the National Institute of Standards and Technology (NIST) until October 2011
to release their final definition of the term.
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1 Introduction

Definition 1. Cloud computing is a model for enabling ubiquitous, convenient, on-demand net-
work access to a shared pool of configurable computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and released with minimal management
effort or service provider interaction. [MG11]

Using services and applications on a remote, more suitable architectures became even more
important with the rise of the smart phone and its limited battery life. The driving force in
cloud computing is the philosophy that "using 1000 servers for one hour costs no more than
using one server for 1000 hours" [Arm+09] which lead to a simple increase of processors with
a traditional architecture. But the servers high power consumption limits the growth of data
centers and hence providers are exploring how to improve the performance through alternative
architectures like GPUs or FPGAs.

1.3 The Power of FPGAs in the Cloud

Deploying such versatile devices like FPGAs into an on-demand and easy to use cloud envi-
ronment provides three levels of advantages. First, the setup process changes from physically
augmenting a computer with a FPGA board and the need to install appropriate drivers to sim-
ply connecting to the cloud and to start developing. This lowers the entry level significantly, a
board does not even have to be purchased and new users can start testing immediately. Senior
engineers profit from advanced build in features like an out of the box framework for fast data
connections and host-device communication. Additionally it decreases the time spent on gener-
ating the programmable configuration due to the reuse of predefined components. Secondly it
abstracts the FPGA into a resource like a processor or another accelerator. This virtualization
allows an easy exchange of the physical device but more importantly it makes it scalable and one
user might utilize multiple devices or a few user share one chip. Because of their power efficiency
compared to GPUs or Central Processing Units (CPUs) they allow bigger compute capabilities
to be deploy into one data center. In the last step the FPGA might become transparent and
with the help of High Level Synthesis (HLS) systems accelerate the user’s calculations on the
fly. Custom or pre-build configurations would have to be swapped dynamically which requires a
fast and effective technique.

Currently FPGAs find use in the network infrastructure ([Sys99], [WMC06]) or in the field of
security ([EV12]) of cloud computing, however they are not accessible by the customers. Their
use as a computation resource remains the area of research as the amount of papers indicates.
This work has enhanced the Reconfigurable Cloud Computing Framework (RC2F) framework
with a fast embedded controller to reconfigure predefined regions of the chip without interrupting
the other parts and it also has explored ways to decrease the configuration time. To support
multiple users on a single FPGA an advanced tool flow has been developed effectively virtualizing
the resource.
The following chapter 2 explains partial reconfiguration and shows the state of the art. Important
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1.3 The Power of FPGAs in the Cloud

design decisions are discussed in chapter 3 succeeded by the description of the implementation
in chapter 4. Chapter 5 evaluates the design and the last chapter 6 concludes the work and
presents future work.
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2 Partial Reconfiguration

The configuration of a FPGA can be generalized in three steps: halt the device, configure it and
start it again. This flow is not a problem in a single user environment, however it is not feasible
for a virtualized device, resetting it would also disrupt other users who not even know that they
are sharing the resource. Thus, a different flow has to be used, allowing the on-line exchange
of partitions within the whole design. Dynamic Partial Reconfiguration (DPR) is therefore the
foundation of this work and future development directed to FPGAs as an embedded custom
accelerator. The following section explains the basic methodology and the section afterwards
surveys use cases in research.

2.1 Background

In order to work with DPR the design has to be split into a static and one or more dynamic
partitions. They contain the users logic and can be swapped later on. The interface between them
and the static can not be changed after the initial configuration, however, different partitions
may have different ports. The static contains special resources like PCIe, clock generators and
also the controller to drive the Internal Configuration Access Port (ICAP). This is one of various
methods to reconfigure the device [Xil12b] but the only embedded solution, other interfaces
need an external on-board controller or are too slow, for example Joint Test Action Group’s
Boundardy Scan Port Standard (JTAG). Furthermore is the ICAP, and its external counterpart
SelectMap, the only way to reach the maximum reconfiguration speed of 400MB/s. From the
users perspective the tool flow itself does not change significantly, only an extra file describing
the states of the partitions has to be added. At the end bitfiles for each partition have been
generated and can be used to alter the corresponding region, which is inevitable smaller than the
whole device, hence the reconfiguration is faster. Nonetheless the configuration time is still a big
concern in application with frequent swapping and various approaches were explored. In [DF07]
caching techniques were introduced, [Hau98] researched prefetching algorithms and bitstream
decompression to reduce the required bandwidth was investigated by [LH99] and [Hue+04].

The Reconfigurable Common Cloud Computing Environment (RC3E), described in details in
[KS15], is a hypervisor controlling several nodes hosting one or multiple FPGAs. It offers the
user three service models, Reconfigurable Silicon as a Service (RSaaS) to control the full device,
Reconfigurable Accelerators as a Service (RAaaS) to allocate a partition, which can be configured
with an individual design, and standard services are provided through Background Acceleration
as a Service (BAaaS). The later two virtualize the FPGA into smaller partitions, thus, they
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Figure 2.1: RC2F Framework with Partial Reconfigurable Areas
Integrated into a Host System. (from [KS15])

require a static to manage them. Therefore the RC2F is designed to host up to four users or
services on a single FPGA and to provide them with high throughput communication using PCIe.

2.2 Related Work

In the early days of FPGAs their resources were limited, thus DPR was suggested to improve
their capabilities. Since then it is an area of research to exploit this technology to accelerate dif-
ferent computations, save energy and utilize less resources through time multiplexing. Changing
the instruction set available to a processor was on of the first use cases presented in [WH95] with
the goal to decrease the execution time.
Implementing a network-on-chip in a FPGA causes difficulty for the throughput and latency.
The performance penalty of a general purpose communication layer on top of the FPGAs al-
ready existing one would not be acceptable in a hardware design. Thus, [She+10] exploited the
ICAP as a high bandwidth on chip communication bus. In their proof of concept implementa-
tion they use Block RAMs to store data and then read the content with the help of the ICAP.
Afterwards they reconfigure the receivers Block RAM with the read values.
A System-on-Chip is described by [Oet+10] utilizing partial reconfiguration to swap different
filter and processing algorithms used in a smart camera system. In their example implementa-
tion they show skin color detection, a pixel marker module, a motion tracker and more. The
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2.2 Related Work

CPU, which remains in the static partition together with a Dual Data Rate RAM (DDR RAM)
memory controller and the ICAP, uses a processor local bus to communicate with the modules.
Processing large database queries is still a big challenge which is being explored by several re-
search groups. [Bec+14] uses DPR for performance comparable to an in-memory database on
a x86 machine, however the design consumes as little as 5% power in contrast to the server,
proving again the power efficiency of FPGAs. Another approach [DZT13] focuses on exchanging
the execution modules to achieve a speed up and to provide a framework to cover the avail-
able Structured Query Language (SQL) instructions. [Koc+12] pipelines reconfigurable modules
which communicate via a special I/O bars.

Various methods of controlling the ICAP and exchanging data width it have been investigated.
Xilinx officially supports a component attached to their bus protocol Processor Local Bus (PLB)
or on newer devices Advanced eXtensible Interface Bus (AXI). This allows it to communicate
with a wide variate of data suppliers like DDR RAM, Flash or PCIe, however, due to the
overhead it is a slow solution. [Cla+08] used an enhanced version of the PLB bus, but the DDR2
memory controller provided by Xilinx does not support bursts slowing their solution down.
To compensate such delays [Liu+09] built a Block RAM cache in front of Xilinx’s controller
HWICAP, however this limits the size of the bitfile significantly and uses a lot of valuable
resources. [BML03] presented a self reconfiguring system using a MicroBlaze embedded processor
to read a portion into a Block RAM, alter it and write it back. But to achieve maximum speed,
own controllers and Finite-State Machines (FSMs) have to be used, like [VPP14] or [HKT11] did.
There they even gone further and overclock the ICAP and reach higher throughputs therefore
minimizing the reconfiguration time. A feature comparison of different approaches is presented
in table 2.1, section 5.4 compares the performance aspect.

Table 2.1: Feature Comparison of ICAP Controllers.

Implementation Bit Width Frequency Data Supplier Controller Readback

Xilinx (PLB) [Xil10] 32, 64, 1281 100 PLB Bus MicroBlaze
Xilinx (AXI) [Xil11] 321 100 AXI Lite Bus MicroBlaze
[BML03] 82 502 OPB3Bus MicroBlaze
[Cla+08] 32 100 DDR2 FSM
[Liu+09] 32 100 Block RAM HWICAP
[VPP14] 32 125 PCIe Host CPU& DMA4

Proposed 32 100 PCIe FSM
1 bus width of the controlling component
2 maximum on Virtex II
3 on-chip peripheral bus
4 direct memory access
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3 Design

Important design aspects are discussed in this chapter to draw conclusion for the implementation.
First, possible ways of extending the RC2F framework and its flow are explored. In section 3.2
a decision between JTAG and ICAP is made followed by an investigation of parameters and
surrounding components.

3.1 Extending the RC2F Framework

Every framework is being developed with a typical use case in mind. The RC2F design is no
different and could in theory host a multitude of users, how to connect them to the static partition
is discussed first. After that the extension of the current design flow is explored.

3.1.1 User Interface

The connections between a static partition and a reconfigurable area in a DPR design can not be
altered after the initial configuration. Thus, the interface has to be as flexible as possible yet as
simple as possible. The RC2F framework connects the host with the device over PCIe and the
Xillybus Intellectual Property Core (IP core), which only provides a few control and data signals
for each stream. In order to receive or send data the user has to wait until the core is ready for a
transfer, which probably stalls the rest of the design and unnecessarily decrease the performance.
However, if the core is ready it accepts data at 250MHz (7 Series), a speed neither achievable
nor required by every design. A simple solution is a First In First Out Buffer (FIFO), a very
common element throughout the framework and many other systems. It provides a data buffer
but it also supports two different clock domains so the user’s design might run with a lower, the
same or even a higher speed. This makes them almost inevitable, hence many users will need
them so they could be placed inside the unchangeable static region. The FIFOs are designed to
stream data and not to hold small values or a configuration. This is done using an addressable
memory, but again the user would have to implement a controller, so it could be moved into
the static as well. On the other hand some advanced users might not need such a controller
and would like to invest the resources into other parts of their module. The same applies to the
FIFOs, a random number generator does not need a steady input or some operator might reduce
a stream into a single result kept in the memory.
Therefore both possibilities were combined into a two level approach to satisfy all user groups.
The static region simply provides the low level PCIe ports to the users so they have more resources
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3 Design

available and a direct access. The second higher level is included within the user’s region and
can be removed if need be. The standard template contains FIFOs and a memory controller to
lower the initial effort. Somebody prototyping or a less experienced user is able to start directly
without the burden to implement basic components first. This approach also scales better if the
number of users is increased later on.

3.1.2 Enhancing and Optimizing the Existing Flow

The current design flow for the RC2F framework is does not differ from a standard single user
flow. Every user design has to be available when the synthesis starts, a small change after
that and it has to start over again delaying the results for everyone. Furthermore some sort
of communication between the designers has to happen when to start the flow making them
dependent on others who might not be available all the time. Hence, a new flow has to make
the user independent of others and of their designs. It can also decreases the flow time if only
the user’s part has to be implemented not the whole system again. Giving away the source
code to another, maybe unknown, user might even be a security concern the big to ignore for a
designer. It has to be the goal to isolate the users so they do not have to trust each other. But
the most important feature of an enhanced flow is the ability to dynamically reconfigure parts
of the design without disrupting other users. All in all, a new design flow has to abstract those
issues and be more secure, faster and easier to use.

3.2 Designing a Reconfiguration Interface

The ability to dynamically reconfigure parts the design is essential in a virtualized environment.
Several ways exists to implement this feature as an on-board, external or internal solution.
This section discusses two of them, the serial interface JTAG and the embedded ICAP and
complements it with an investigation of parameters and controllers.

3.2.1 Available Technologies

A FPGA can be configured in multiple ways and the two approaches considered in this work are
quiet different. A very common one is JTAG, an interface originally developed for debugging
and testing purpose. Many boards offer this port and via a special programmer it is connected
to a computer host. An alternative is the ICAP introduced in section 2.1 which can be wired
to different sources like onboard DDR3 memory or the PCIe bus. JTAG has the advantage
of being very simple to use and it can configure the FPGA regardless of its current state. A
component to control the ICAP is not implemented by default, therefore it can not be used for
initial configuring or to apply changes to itself. However, in a productive environment this would
not be a big problem, after the chip was configured and installed, its core configuration including
the ICAP will not change. As an external interface JTAG relies on a cable connection and a
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3.2 Designing a Reconfiguration Interface

programmer supported by the host, at point of writing only available for the x86 architecture
rendering Acorn RISC Machine (ARM) powered servers not usable. The ICAP on the other hand
can be included into the existing host-to-device data transfer structure making it independent of
the actual host implementation. Furthermore doubles the PCIe bus the maximum ICAP write
rate of 400MB/s. It offers a superior speed of up to 800MB/s [Xil14] compared to JTAG’s
theoretical maximum of 4MB/s at 24MHz [Xil15b]. The extra resources needed for the ICAP
controller are insignificant in comparison to the speedup of 200.

3.2.2 MicroBlaze Compared to a State Machine

Xilinx offers an extension to the MircoBlaze microprocessor to control the ICAP with only a few
lines of software code. This makes it easy to deploy and use with any PLB/AXI bus compatible
memory like DDR3. But neither the current RC2F framework nor the Xillybus core provides
a PLB connection. An adapter would have to be developed to interface with the rest of the
design. Furthermore the XPS HWICAP module [Xil10] supports Virtex-6 and older devices and
connects via the PLB bus, the AXI HWICAP [Xil15c] on the other hand can only be used with
7 Series devices and the AXI bus. The additional adapter between the buses alone would lead
to a 20% resource increase [Xil12a] compared to a homogeneous implementation.
While the device utilization has be considered, the achievable bandwidth is the most important
feature. The ICAP is theoretically capable of processing 400MB/s but the IP cores provided
by Xilinx are significantly slower as shown by [VF12]. In that work an ICAP controller is being
proposed, which can achieve the full bandwidth and at the same time has a smaller footprint.
In another work the clock frequency driving the ICAP was increased up to 550MHz yielding up
to 2200MB/s [HKT11]. Although such high speeds can not be guaranteed it shows the huge
potential of a specifically tailored solution.

Because the Xilinx macros do not offer any significant advantages over other simpler solutions
and only achieve 2.28% of the theoretical bandwidth, a new controller has to be implemented.
It should be easy to connect to the existing RC2F structure, which is used on a Virtex 6 and
7-Series devices at the same time. A small footprint and of course full speed reconfiguration are
important, too.

3.2.3 The Interface Between Host and ICAP

The Xillybus core connects a simple file in the host system with a FIFO in the FPGA design for
every single stream. To save resources the user’s FIFO could be reused to receive the bitstream
and feed it into the ICAP. It would only require a few multiplexers to switch between the
different users or in a two user design every partition could use its own ICAP. Through the
RC3E framework the access would be serialized to prevent an illegal parallel usage. Also a
hijack might be prevented using non user writeable memory to switch into configuration mode.
However, other problems arise if the user design space starts directly with the PCIe interface, a
freedom an advanced user might esteem, or in later iterations a reconfigurable partition might
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3 Design

not even have a host connection.
Therefore a neat and future proof solution has to have its own streams. It not only simplifies
the design around the user, but also decouples itself from the number of users or reconfigurable
areas. A single private connection is easier to manage within the controller and also on the host,
no concurrent request or dynamically switching the files to write to. An extra stream is with an
additional cost of 14 to 28 slices on a Virtex-6 [Xil] more than affordable, the FIFO could be
small to save resources.

The later solution, to separate the controller entirely from the users, is mostly independent of
further development and offers a cleaner interface to both, the user and the service provider. The
slightly higher utilization is negligible in comparison to the overall resource usage of the rest of
the static design.

3.2.4 ICAP Data Bus Width

The ICAP offers 8, 16 or 32 bit wide input and output ports. The clock frequency is independent
from the width so the throughput scales accordingly. Therefore the smallest version performs
worst while the 32-bit option is required for the maximum speed. This alone is reason enough
to choose the widest interface, it comes in handy that the PCIe bus has the same word size. On
the other hand no data alignment is needed in case of the simpler 8-bit interface and different
endianness are not a problem. But these minor difficulties can be easily solved in software and
hardware, respectively.

3.2.5 Compensating a Non-Continuous Data Stream

The PCIe bus is controlled by the host system, which is a standard Linux without real time con-
straints or a dedicated PCIe resources. Thus, it can not be guaranteed to get new configuration
data every clock cycle, the controller has to handle those periods and there are several solution
possible. The easiest one is a big buffer using the first in first out principle, a FIFO. Such a
component is needed anyway to decouple the clock domains of the PCIe interface and the ICAP
controller. This cross clock FIFO can vary in buffer size from a single entry to a few thousands.
But an uncompressed bitfile for a Virtex-7 is about 20MB, too big for even the largest 7 Series
device with 8.46MB of Block RAM [Xil15a]. With a smaller buffer it can not be assured to
successfully load the new configuration.
The ICAP also offers two solutions on its own, a controlled clock or a free running clock with
an enable signal. The first requires clock gating, a technique only enabling the clock if new data
is present. The main reason for that feature is the SelectMap [Xil15d] interface, which uses the
same internal logic as the ICAP, but is controlled by an external driver who also controls the
clock. However, clock gating at the logic level leads to a difficult timing analysis and is therefore
generally avoided. The more feasible and simpler solution for an internal controller is a contin-
uous clock with a separate enable signal, where the ICAP is simply disabled if no new data is
available.
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4 Implementation

In order to build an easy to use dynamically partial reconfigurable system, several hardware and
software components have to work together. The core of the hardware implementation is the
ICAP controller which is described first of all including its state machine. The second section
presents a save way to swap a user design, finally its interface, the RC2F User Frame, is explained.

4.1 The ICAP Controller

The ICAP is a very complex component even though it provides only a small and basic interface.
To simplify it even further and to connect it to the PCIe interface the ICAP controller shown in
figure 4.1 was developed. It handles the communication between the host and the ICAP while
providing a reset signal to the user design being replaced. For a better understanding of the
state machine, the core of the controller, several concepts have to be explained first.
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Figure 4.1: Architecture of the ICAP Controller.
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4.1.1 Bitstream Structure

A bitstream holds all the information needed to configure a region or even a whole FPGA.
Thus, it is possible to conclude which area of the chip will be reconfigured and cross check
this with the allocated region by the user to prevent interferences with other users in case of a
malicious manipulation. Those checks are neither trivial nor needed for a normally generated
and trustworthy bitfile and therefore not within the scope of this work.
However to successfully use the ICAP and build a robust system, it is important to understand
the structure of a bitstream specified in [Xil15d] and shown in figure 4.2. Especially when
using the full 32-bit data width, the alignment of the key words becomes crucial. The first
pair, which must be correctly aligned, is the automatic bus width detection. It starts width
the trigger 000000BB16 followed by the detection pattern 1122004416. The ICAP observes which
code follows the BB16 directly on the lowest 8-bit of the input port. In other words, 1116 succeeds
if the bus is 8 bit wide, 16 bit in case of 2216 and 4416 signalises 32 bit. After some dummy
data the ICAP is being synchronized by AA99556616 and a few clock cycles later the status word
changes accordingly. Now the configuration data follows and a cycle redundancy check is done
in the background and the checksum will be compared to the one provided at the end of the
stream. The last keyword 0000000D16 desynchronises the ICAP.

000000BB16Trigger
{

1122004416Pattern
{ }

Bus Width Detection

FFFFFFFF16

}
Dummy Pad Words

AA99556616
}

Sync Word

XXXXXXXX16
hhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhh

XXXXXXXX16

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
Configuration Data

1234567816
}

CRC value

0000000D16

}
Desync Word

Figure 4.2: Important Aspects of a Bitstream.

4.1.2 ICAP Status Word

The ICAP constantly drives an 8-bit word on the data output reporting its current status. There
are four different bits to describe four states as shown in figure 4.3. The initial and common
status word is 9F16 meaning no error, not aligned, no readback and no abort. With receiving
the sync word it changes to DF16 and in case of an error free reconfiguration it falls back to

28
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034567

CFGERR DALIGN RIP ABORT RESERVED

CFGERR 0 - Configuration Error 1 - No Configuration Error RIP 0 - No Readback 1 - Readback in Progress
DALIGN 0 - No Sync Word 1 - Sync Word Received ABORT 0 - Abort in Progress 1 - No Abort in Progress

Figure 4.3: ICAP Status Word.

9F16 after the de-sync word has been processed. A configuration error can occur if the checksum
provided by the bitstream does not match the one calculated by the ICAP.

4.1.3 State Machine

The state machine presented in figure 4.4 manages the ICAP and can request data from the
controller. During the initial state start the ICAP is disabled and waiting for data. If there is
a sufficient amount provided by the host the buffer asserts the almost full signal and the state
machine transits to ready. From this point on the pr reset signal is asserted to decouple the user
form the PCIe interface. Now data is being pulled from the FIFO and every clock cycle a valid
word is being presented, the state machine switches into the write state enabling the ICAP to
process it. After the data has been written it remains in the ready state.
The status word is constantly being monitored and an error as well as an abort in progress signal
are derived. In case of an error the state machine transits into the abort0 state to enable the
ICAP and pulling the read/write signal rw high in the following clock cycle using state abort1
to trigger an abort. After four clock cycles the process is completed, abort is low and the state
machines returns to the start state releasing a potentially set pr reset signal. An abort is also
triggered if the host closes the file to begin every new reconfiguration with a consistent ICAP
state.

4.2 Decoupling of a User Design

During the reconfiguration of a region the state of the boundary crossing signals is undetermined.
To prevent false or even malicious signals to the PCIe interface it is important to assign well
defined values. Furthermore there is no feasible way to assure the user’s design complies with
an asserted reset, ceases its operations and does not stress the PCIe bandwidth. Therefore the
instantiation of the user frame is surrounded with additional logic shown in figure 4.5.

The user design can be decoupled in two different ways. First it is always detached in case of
a global reset, which can only be driven from the common global memory inaccessible by the
user, from within the design and from the controlling host environment. In the second case the
region will be reconfigured. To target a specific frame its ID is written into the global memory.
Regardless of that the ICAP controller drives the pr reset signal to all frames. The logic within
a frame compares its local ID with the one from the global memory and in case of a match it
forwards the pr reset as the user reset signal which also decouples the PCIe interface. After that
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Figure 4.4: Synchronous State Machine Controlling the ICAP.

it is save of reconfigure the user frame.

If the user needs a self controllable way to reset the design he can utilize the memory associated
with his region. A closer look to the internals of a frame is given in section 4.3.

4.3 RC2F User Frame

One goal of virtualization is the abstraction of everything impeding the user from focusing on
the main task. In this framework the RC2F User Frame and RC2F User Container provide
two different levels of abstraction. The later one is the most simplest and does only provide
a basic interface with a clock, reset and write and read signals. Also the name of the design
can be specified there. The lower level RC2F User Frame offers far more flexibility and exposes
the whole PCIe interface, a simple memory and a stream in each direction. In support for an
easy start, the standard design, completely replaceable by the user, includes a small memory
controller and the PCIe loop, which can cut of the user’s output and instead loop the hosts input
back. It provides cross clock FIFOs used by the rest of the module, including the RC2F User
Container, to safely pass data from and to the PCIe bus. The memory is writeable and readable
from host side and also from the module.
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4.4 Extended RC2F Flow

The existing RC2F flow was only focusing on a single user and the common tool flow was suffi-
cient. With the abstraction of a FPGA and the transparent multi user approach any significant
interruption, like a hard reset of a user’s design, to serve another one has to be prevented. To
achieve this pseudo single user behaviour partial dynamic reconfiguration is essential and requires
a more sophisticated approach. Figure 4.7 shows those additional steps to a partial bitfile with
almost all of them automated and therefore decreasing the effort for the user.

User Project

IP Cores RC2F Wrapper

User Code

User Core as .ngc

Cores for Every Slot TCL Script Generator

TCL Script

Prepared Static

Xilinx Tool Flow

Partial Bitfiles

Configuration via ICAP

Synthesis with ISE/xst

Preparing Core
User Startes RC3E

Figure 4.7: Existing and Extended RC2F Flow.

A RC3E command generates a directory structure including an ISE project and the RC2F wrap-
pers. The user then includes own source code and IP cores if needed and starts the synthesis
his preferred way. This way errors are directly reported and if using an Integrated Development
Environment (IDE) it does not require further command line interactions. The path to the re-
sulting .ngc is the only parameter another RC3E command takes to start the rest of the flow in
the background.
In the first step the framework determines where to allocate a slot and renames the core accord-
ingly. This is necessary because two modules in a DPR design can not have the same name.
With n users the static design obviously has n times the same wrapper module. Furthermore
the user’s IP cores are bundled with the renamed one into a single .ngc file.
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The second step utilizes a Tool Command Language (TCL) script controlling the Xilinx tool
flow to implement the static partition together with a placeholder design or other user cores.
To reduce the overhead of implementing other users’ designs again it is possible to import them
from a previous run and save time especially in the mapping phase as shown in table 5.5.
In the last step, after the Xilinx tools have finished and the partial bitfiles have been generated,
the user’s one is streamed over the PCIe interface to the ICAP. But before the pipe is opened,
the RC3E tool buffers the bitfile and counts the bytes until it reads the sync word. This word
has to be aligned within a single 32-bit read cycle by the ICAP and the bitstream needs to be
patted accordingly. Section 4.1.1 describes the internal structure of a bitstream more detailed.
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5 Results

This chapter evaluates the performance of the new flow as well as the speed up due to the new
controller. The benefits of bitfile compression are presented first, than the overhead of JTAG
is compared to PCIe. Section 5.3 shows the throughput with and without stress on the PCIe
bus followed by a comparison of this work against examples form the literature. The final two
sections investigate the overhead of the new flow. All the tests were done with a ML605 board
featuring the Virtex-6 XC6VLX240T-1FFG1156 hosted on an x64 Ubuntu with Kernel 3.13.0
and connected through four PCIe 2.0 lanes.

5.1 Compression of Bitfiles

In comparison to the long map and par phases bitgen is a rather quick process and the resulting
files are always the same size even if the utilization is low. As shown in table 5.2 the PCIe
connection has a small overhead, thus, the time it takes to (re)configure a device correlates almost
linear with size of the configuration file. Hence, decreasing this size also decreases the time spent
waiting for the process to be done. That becomes even more important if a quick switch between
designs is crucial, for example with the FPGA as an accelerator for special software instructions
like in the BAaaS service model. The tool flow offers the option to compress the stream at the
cost of a longer generation step.

Table 5.1: Compression Rates of Three Single and Two Partial Bitstreams in
Comparison to the Increased Runtime of the Complete Flow.

Utilization Low Medium High Very Low High

Bitfile Size 8.8MiB 4.15MiB 3.43MiB
Compressed 5.07MiB 6.16MiB 6.24MiB 0.48MiB 2.59MiB
Savings in Size 42.47% 30.09% 29.16% 88.52% 24.57%
Increase in Time 9.67% 1.89% 1.13% 8.21% −0.09%

Table 5.1 confirms the expectations that a small configuration can be better compressed than one
utilizing a huge part of the chip. This enables more flexible partitioning without the risk of an
overhead when scheduling a small design in a big area. The compression option is a good tradeoff
between often longer flow time and a faster configuration, the time that matters in a productive
system or for the engineer eager to test the new iteration. In a few designs the runtime of bitgen
decreases, which might be correlated to the import feature described in section 5.5 extending
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also to this last phase. However, it could not be verified and therefore might be subject to future
work.

5.2 Overhead of JTAG and PCIe

Every connection has some overhead to manage the transfer, so do JTAG and also the PCIe
connection. This section investigates the impact of the metadata on the throughput. To prevent
any uncontrollable events influencing the results all measurements were done three times. The
ML605 was configured by Impact in batch mode using the Platform Cable USB running at
12MHz, the highest frequency possible. The time was measured by the Linux command line tool
time displaying the results in milliseconds, which is an order of magnitude below the average
values. The direct control over the ICAP allows the counters embedded into the design to be
as precise as a single clock cycle. However, to compare both methods such a precision is not
necessary and therefore the results are saved as microseconds. The system columns includes the
hosts and PCIe or JTAG communication overhead while the user bandwidth reports the actual
ICAP throughput.

Table 5.2: Throughput of JTAG and ICAP.

JTAG ICAP Speedup
Bitfile Size System System User System User

0.45MB 0.16MB/s 386.80MB/s 399.99MB/s 2461.97 2545.87
1.79MB 0.32MB/s 396.53MB/s 400.00MB/s 1256.34 1267.34
5.85MB 0.52MB/s 398.46MB/s 400.00MB/s 769.45 772.42

As table 5.2 shows, correlates the net bandwidth with the size of the bitstream but levels after the
payload reaches a certain size. Data provided in table A.1 indicates this size to be at about 4MB

for the JTAG interface and 400 kB for the PCIe connection. Hence, 0.53MB/s and 398.46MB/s

represent the maximum speed achievable using JTAG and the ICAP, respectively. But the serial
connection falls short of a theoretical maximum of 1.5MB/s due to the big overhead during the
transfer, the time it takes to establish the connection and the use of Impact. PCIe on the other
hand does not have such an extensive protocol therefore reaching over 99% of the theoretical
possible.

5.3 Influence of the FIFO on the Data Throughput

Running with stock hardware and a standard Linux the PCIe communication might be inter-
rupted at any point. Thus, a buffer between the ICAP controller and the host is in place to
minimize the effect of such non-continuous transfers but also to reduce the reconfiguration time
from the user’s perspective. This section measures the ICAP throughput while the PCIe bus is
free and while it is utilized to capacity. The test was conducted with a two user design where one
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Figure 5.1: ICAP Throughput with Different FIFO Sizes and Without Additional PCIe Bus
Loads.

partition has to be reconfigured. In the second test the user stressing the PCIe bus is simulated
with the other partition triggered to loop back all incoming data. After a continuous 400MB/s

stream of random data was established, dummy bitfiles of various sizes were passed to the ICAP.
All the tests were repeated seven times and the results were averaged. As a variation the size of
the ICAP’s FIFO was changed from 1,024 over 4,096 and 16,384 to 32,768 byte.

Different conclusions have to be drawn from figure 5.1 showing the throughput without additional
utilization of the data connection. First, the size of the FIFO does not noticeably affect the
performance from the system’s perspective, although the bigger FIFOs yield slightly better results
for bitfiles larger than 40 kB. In those cases the PCIe bus can fill up the bigger buffer and finish
the operation earlier. Secondly it is quiet different from the user perspective, but it depends on
the size of the bitfile, too. The reconfiguration lasts from the FIFO being filled to 75% until it is
empty and the connection was closed from the host, or, if the buffer did not reach the filling level
because of a small bitfile, from the close of the connection until the FIFO is empty. In the later
case the about 40 μs overhead of the communication does not affect the user, therefore a high
performance is achieved. However, if the reconfiguration has started before the transmission has
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Figure 5.2: ICAP Throughput with Different FIFO Sizes and a Shared PCIe Bus.

finished, the user has to wait until the host is done which takes a relative long time compared
to the actual data transfer. This effect is negligible for all buffer sizes with bitfiles larger than
40 kB.

Figure 5.2 presents a similar behaviour as above from the system perspective, but with the de-
creased bandwidth due to a second user the bigger FIFOs can better show off their superior
performance for the user. Each time the bitfile gets larger than the buffer, the user’s throughput
drops off significantly, although the 16,384 byte and 32,768 byte FIFO are big enough to com-
pensate the initial communication penalty and can sustain the full 400MB/s with payloads up
to 37 kB and 81 kB, respectively. Streaming bitfiles larger than 450 kB is almost independent of
the buffer size, 95% or more of the possible 200MB/s can be achieved.

In addition it can be concluded that an implementation should not assume predictable reconfig-
uration times to control time critical systems, even though the measurements were done seven
times a few outliers exist.
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5.4 Performance Comparison of ICAP Controllers

The slow speed of JTAG made the use of the ICAP inevitable, hence a controller had to be
developed. Literature analysis showed a number of very different approaches some of which use
a PCIe interface to supply data to the ICAP (e.g. [VPP14]). The new implementation had to
deliver maximum performance combined with a small footprint to be considered state of the art.
The proposed controller listed in table 5.3 uses a 1 kB FIFO, it reaches 99.2% of the theoretical
maximum and does not show unusually high resource utilization.

Table 5.3: Performance Comparison of ICAP Controllers.

Throughput Rel. Effectiveness Data Registers LUTs BRAMs
Implementation MB/s % Bus

Xilinx (PLB) 8.48 2.12 NA 746 799 1
Xilinx (AXI) 9.10 2.28 NA 477 502 1
[Cla+08] 295.40 73.85 DDR2 NA NA NA
[Liu+09]1 371.40 92.85 BRAM 963 469 32
[VF12] 399.80 99.95 DDR3 74 38 8
[VPP14]2 488.00 97.60 PCIe NA NA NA

Proposed 398.46 99.61 PCIe 251 177 2

1 Virtex-4 FX20
2 overclocked to 125MHz

LUTs

BRAM

Registers

Rel. Effectiveness

Throughput

Xilinx (PLB)

Xilinx (AXI)

[Cla+08]

[Liu+09]

[VF12]

[VPP14]

Proposed

Figure 5.3: Performance Comparison of ICAP Controllers
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5.5 Influence of DPR on the Tool Flow

To determine how the usage of partial reconfiguration affects the time it takes to generate a
bitfile from a netlist compared to a standard flow, several test were done. In every test the same
area constraints are in place and available optimization options were enabled. This includes
the multithreading support of map and par which only decreases the runtime slightly. It is not
known why the tools do not support this in the partial flow even though it looks embarrassingly
parallel. However, the reuse of a previous implementation of a partition is require, especially the
static must be imported.

Table 5.4: Time to Bitfile for a Single User Design.

Design v6_u1_BS2 v6_u1_BS10
Flow Standard DPR Increase Standard DPR Increase

overall 796 s 1513 s 0.9 1960 s 5691 s 1.9

ngdbuild 39 s 46 s 0.18 102 s 119 s 0.17
map 581 s 908 s 0.56 1528 s 3200 s 1.09
par 102 s 253 s 1.48 203 s 1910 s 8.41
bitgen 74 s 306 s 3.14 127 s 462 s 2.64

But as table 5.4 shows does this not compensate for the overall longer runtime. The two design
only host a single user and the overall utilizations is low and medium with 19% and 47%,
respectively. The runtime of bitgen increases with the complexity of the design but not as much
as map or par do. In most of the standard flows it takes less than 10% of the overall time. This
changes especially in a partial flow featuring more than one user. Next to the complete bitfile a
partial one is created for every partition present in the design, which starts a new run of bitgen
every time.

Table 5.5: Time to Bitfile for a Dual User Design.

Design v6_u2_L8BT v6_u2_BTBS10 v6_u2_BS9BS10
Flow Usual DPR Increase Usual DPR Increase Usual DPR Increase

overall 215 s 1084 s 4.04 2044 s 2888 s 0.41 3749 s 8602 s 2.29

ngdbuild 12 s 20 s 0.67 107 s 122 s 0.14 286 s 280 s 0.98
map 94 s 352 s 2.74 1563 s 980 s −0.37 2811 s 5027 s 1.79
par 58 s 267 s 3.60 228 s 962 s 3.22 407 s 2132 s 5.24
bitgen 51 s 445 s 7.73 150 s 824 s 4.49 245 s 1163 s 4.75

In table 5.5 the three listed examples utilize 7%, 42% and 70% of the Virtex-6 slices, the later
two also 38% and 73% of the DSP. The positive effect of the import of a previously implemented
module is demonstrated by the design v6_u2_BTBS10 where a big portion can be reused hence
the map phase is faster than in the standard flow.
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5.6 Resource Usage of Standard and DPR Designs

A more detailed analysis of the results presented in table 5.6 reviled that in some designs like
v6_u1_BS2 the standard flow uses more LUTs as a route through resource but in others like
v6_u2_BS9BS10 the DPR flow does. The reconfigurable version of the design v6_u2_L8BT
allocates more resources in the static partition increasing the utilization from 64% to 84%. It
is possible that the tools just made use of the remaining space to ease the timing afterwards.
Further tests with very high utilizations of a partition should answer the question about any
overhead due to DPR. However, based on these numbers it can be said that using DPR does not
require noticeable more resources than the standard flow without that capability.

Table 5.6: Utilization of a Standard Flow Compared to the New Flow.

Registers LUTs Block RAMs (BRAMs)
Design Standard DPR Standard DPR Standard DPR

v6_u1_BS2 23 708 23 711 18 744 19 357 16 16
v6_u1_BS10 54 375 54 378 43 180 44 066 16 16
v6_u2_L8BT 5092 5225 5175 5710 28 36
v6_u2_BTBS10 54 857 55 069 44 112 44 380 16 24
v6_u2_BS9BS10 102 765 102 771 81 402 81 044 28 28
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6 Conclusions and Future Work

Today’s data centers are limited by their power consumption making adding more general purpose
processors to achieve higher performance not a feasible solution any longer. The transition to
add more power efficient accelerators is easier with GPUs due to their simple tool set and
a programming model similar to CPUs. FPGAs on the other hand offer great performance
combined with a low power consumption and are therefore a powerful computation resource.
However, their integration into a flexible and scalable cloud environment remains an area of
research.

6.1 Conclusions

The RC2F framework and the RC3E hypervisor combine multiple FPGAs on different nodes to
provide a single interface for the user. This work extends the framework by abstracting a single
physical FPGA into multiple virtual FPGAs. In order for them to be independent of each other
but still be on the same chip, dynamic partial reconfiguration has to be used. An advanced flow
was developed to support this method and at the same time hide it from the user to deliver
a straightforward experience. It was investigated how that affects the time-to-bitfile and the
resource usage on the FPGA. The flow time increase was in a single case as high as 4 times
but averages at 1.66, however, the utilization does not change compared to a non reconfigurable
design. Another major step is the inclusion of the ICAP through a new controller, which performs
well against other implementations and accelerates a reconfiguration by a factor of more than
2500 compared to JTAG. With that speed and the ability to reconfigure at runtime, this work
is the base of further virtualization of FPGAs making them viable in a cloud environment.

6.2 Future Work

As shown by [HKT11] the ICAP can be overclocked to achieve an even shorter configuration
time. However, on Virtex-6 devices the PCIe bus is the bottleneck with 400MB/s, thus, alter-
natives data connections like on-board DDR3 have to be explored. This high speed interface
makes background acceleration viable, only a small command would be required to start the fast
streaming of the new configuration into the ICAP.

The chip could be further virtualized by transferring the design to another partition or even a
different device. The user design will be frozen and the state will be read through the ICAP,
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which only requires a small enhancement of the controller. At the same time the state machine
could be improved to process the synchronization word in the bitstream to lower the configuration
time from the user perspective further.

[Bac+14] proposed an automated approach to identify suitable regions for a given design. This
becomes increasingly important if the number of users per device should be increased or the
designers are able to allocation specific resources, hence manually predefined areas might not
suite the user’s demands.
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A Measurments

A.1 JTAG

Table A.1: Throughput of JTAG With Different Bitfiles.

Bitfile Size Time Throughput
( kB) (s) (MB/s)

454.06 2.89 0.16
499.92 2.96 0.17
592.39 3.02 0.20
1786.42 5.66 0.32
3260.03 7.21 0.45
3597.07 7.55 0.48
4353.63 8.90 0.49
4619.38 9.64 0.48
4408.34 9.65 0.46
5761.18 11.18 0.52
5311.77 11.25 0.47
5846.55 11.29 0.52
6454.45 13.01 0.50
6540.72 13.16 0.50
9232.56 17.50 0.53
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