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Abstract

Metals with excitonic instabilities are multiband systems with significant electron-
electron interaction. The electronic transport in such systems is affected by collec-
tive fluctuations of the electrons, leading to anomalous features in the measured
transport coefficients. Many of these anomalies have not been well understood
because the transport mechanisms in these systems tend to be rather complex.
The complexity arises, on the one hand, from the multiband nature and, on the
other, from the anisotropic scattering of electrons accompanied by emitting or
absorbing collective fluctuations. Previous works considering scattering due to
collective fluctuations have mainly focused on single-band systems, for example
in the context of the normal-state transport in cuprates. The recent discovery of
high-temperature superconductivity in iron pnictides has renewed the interest in
multiband systems.

Exploring the transport mechanisms in multiband systems, I find some inter-
esting new aspects, which do not occur in single-band systems. In particular,
anisotropic scattering in a model with electronlike and holelike Fermi surfaces
can lead to a negative conductivity contribution of the minority carriers, i.e., in
an electric field, the minority carriers drift in the direction opposite of what one
would expect based on their charge. I show that this effect can explain a reduced
magnetoresistance in connection with an enhanced Hall coefficient, which has been
measured in pnictides.

Of particular interest are multiband models with hot spots on the Fermi sur-
face, in part because of their relevance for the iron pnictides. Hot spots are states
with enhanced scattering and therefore reduced excitation lifetimes. In single-
band systems, the hot spots are found to have a much lower contribution to the
total conductivity than other parts of the Fermi surface, which leads to the so-
called hot-spot structure. I show that in the multiband case, the conductivity
contributions are much more isotropic around the Fermi surface so that hot spots
contribute to transport with a similar strength as other parts of the Fermi sur-
face. I discuss this effect on the basis of an approximate analytical solution of
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the transport problem and numerically calculate the temperature dependence of
several transport coefficients.
It turns out that in the nematic phase of iron pnictides, the unexpectedly strong

conductivity contribution of hot spots can explain the puzzling behavior of the
resistive anisotropy. I show that the experimental observations can be explained
within a scenario in which the anisotropy is mainly due to the broken symmetry
of the spin-fluctuation spectrum in the nematic phase.
In the spin-density-wave state, strongly anisotropic scattering can arise due to

the propagating magnons. Using a two-band model relevant for iron pnictides, I
find that this scattering can lead to an unusual interruption of the orbital motion of
electrons in the magnetic field. As a consequence, the low-field magnetoresistance
is linear with an alternating sign of the slope as a function of the direction of
the current. In strong magnetic fields, the interrupted orbital motion makes the
system unstable, which is characterized by a drop of the resistivity to zero.
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1 Introduction and overview

1.1 Transport in condensed matter

Transport phenomena in condensed matter belong to the most fascinating mani-
festations of quantum mechanics. A highlight is the integer quantum Hall effect,
which is now used to measure the ratio of two fundamental constants of nature to
very high precision [1]. Even more intriguing and theoretically challenging effects,
such as the fractional quantum Hall effect, can arise due to significant electronic
correlations. One class of correlated systems are metals with excitonic instabi-
lities, which show interesting transport anomalies, many of which could not be
understood so far [2–7].
The principle underlying most of the theory of transport is linear response, in

which the response of the system, e.g., in the form of a finite macroscopic current,
is considered to be proportional to the external field that drives the system out of
equilibrium. There are two different approaches: The Kubo approach [8] considers
the correlation of two propagating particles in the equilibrium state, while the
non-equilibrium approach [9, 10] considers the propagation of one particle in the
non-equilibrium state. The general principle behind the fact that the transport
problem can be tackled from two different angles is the fluctuation-dissipation
theorem, which relates the correlation of two single-particle excitations to the
dissipation of one single-particle excitation.
The theoretical description of the electronic transport in metals involves the

consideration of different scattering processes through which the system can relax
into the equilibrium state. An electron can scatter off impurities, phonons, and
also off other electrons. The latter is the most complicated process since it involves
at least one other electron, which itself contributes to the transport. In fact,
scattering due to electron-electron interaction can be even more complex in case
of significant electronic correlations. The scattering of a single electron can then
be part of a long chain of correlated scattering processes. One can nevertheless
still maintain a picture of single-electron scattering by considering that indivi-
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1 Introduction and overview

dual electrons scatter off a collective fluctuation of the interacting electron gas.
Electrons can emit or absorb a collective fluctuation with, in general, anisotropic
distribution of scattering momenta: Certain scattering momenta can be preferred
due to the peaks in the spectrum of the fluctuations.
The development of a theoretical description, which accounts for such an an-

isotropic scattering due to collective fluctuations, is a central goal of this thesis.
In the simple case of isotropic scattering the relaxation of an electron is deter-
mined by its lifetime, i.e. the inverse imaginary part of its selfenergy. Anisotropic
scattering, on the other hand, complicates the relaxation process such that the
mean relaxation time of an electron no longer coincides with its lifetime. In fact,
the deviations of transport coefficients from the predictions based purely on life-
times can be very significant, as has been emphasized in connection with the
critical behavior at magnetic phase transitions [11, 12], as well as in connection
with spin-fluctuation scattering in cuprates [13] and heavy-fermion materials [14].
Most of the theoretical considerations which correctly account for the anisotropic
scattering are based on single-band models. In this thesis I will extend the trans-
port theory to the multiband case, for which, as it turns out, some transport
paradigms have to be reconsidered.
The multiband description is relevant for systems that are close to an excitonic

instability [15–19], which is characterized by the condensation of electrons and
holes from different Fermi surfaces (FSs) [20, 21]. This instability is favored if
the FSs are close to nesting, i.e., if there exist wavevectors Qi which approxi-
mately connect extensive parts of two FSs [22]. An example of FSs which are
close to nesting of real materials is shown in Fig. 1.1. Nesting typically leads
to enhanced charge and spin susceptibilities χ(q) for wavevectors q ≈ Qi. Below
the critical temperature, spin-density-wave (SDW) and charge-density-wave states
with wavevectors Qi can be realized [23–26]. A system in the SDW state with
non-vanishing FSs is often called an itinerant antiferromagnet, since the magnetic
moment is carried by delocalized electrons, in contrast to a magnetic order with
localized magnetic moments, typically found in more strongly correlated systems.

1.2 Iron pnictides

The discovery of high-temperature superconductivity in iron pnictides in 2008
[28, 29] has significantly raised the interest in excitonic models. Besides supercon-
ductivity with a critical temperature of up to 56 K [30, 31], many other intriguing

2



1.2 Iron pnictides

2. Prerequisites for addressing the Cooper pairing

2.1. Electronic structure and fermiology

2.1.1. Density-functional calculations
The two main families of the Fe-based superconductors are

1111 systems ROFeAs with rare earth ions R [1,2] and the 122 sys-
tems AFe2As2 with alkaline earth element A [3]. Both families have
been studied in much detail by first principles DFT calculations.
Here and below, unless specifically indicated, we use a 2D unit cell
with two Fe per cell, and the corresponding reciprocal lattice cell;
the x and y directions are along the next-nearest-neighbor Fe–Fe
bond. It appears that all materials share the same common motif:
two or more hole-like Fermi surfaces near the C point [k = (0,0)],
and two electron-like surfaces near the M point [k = (p,p)] (Figs.
1–5). This is true, however, in strictly nonmagnetic calculations
only, when the magnetic moment on each Fe is restricted to zero.
As discussed below, this is not necessarily a correct picture.

If, however, we neglect this potential caveat, and concentrate on
the two best studied systems, 1111 and 122, the following relevant
characteristics can be pointed out: First, the density of states (DOS)
for holes and electrons is comparable for undoped materials; with
doping, respectively one or the other becomes dominant. For in-
stance, for Ba0.6K0.4Fe2 As2 the calculated DOS (in the experimental
structure) for the three hole bands varies between 1.1 st/eV/f.u.
and 1.3 st/eV/f.u., the inner cylinder having, naturally, the smallest
DOS and the outer the largest. For the electron bands the total DOS
is 1.2 st/eV/f.u., that is, two to three times smaller than the total for
the hole bands [4]. We shall see later that this is important. An-
other interesting effect is that in the 122 family doping in either
direction strongly reduces the dimensionality compared to un-
doped compounds (in the 1111 family this effect exists, but is
much less pronounced), see Fig. 4. This suggests that the reason
that doping destroys the long-range magnetic order (it is believed
by many that such a destruction is prerequisite for superconduc-
tivity in ferropnictides) is not primarily due to the change in the
2D electronic structure, as it was initially anticipated [5], but rather
due to the destruction of magnetic coupling between the layers. In-
deed the most striking difference between the undoped 1111 and
undoped 122 electronic structure is quasi two-dimensionality of
the former and a more 3D character of the latter (the difference
is clear already in the paramagnetic calculations, but is particularly
drastic in the antiferromagnetic state), while at the same time the
observed magnetism in the 122 family is at least three times stron-

ger than in LaFeAsO (in the mean-field DFT calculation the differ-
ence is quite small).

The fact that the nesting is very imperfect is crucial from the
point of view of an SDW instability, making the material stable
against infinitesimally small magnetic perturbation. For supercon-
ductivity, however, it is less important, as discussed later in the
paper.

Fig. 1. The Fermi surface of the nonmagnetic LaAsFeO for 10% e-doping [4]. The
main difference between the calculations using the experimental atomic positions,
as here, and the calculated ones, as in Ref. [5], is presence of the third hole sheet
(x2!y2 band).

Fig. 2. The Fermi surface of the nonmagnetic BaFe2As2 for 10% e-doping (Co doping,
virtual crystal approximation) [4].

Fig. 3. The Fermi surface of the nonmagnetic BaFe2As2 for 10% h-doping (20% Cs
doping, virtual crystal approximation [4])

Fig. 4. The Fermi surface of BaFe2As2 for 20% h-doping (corresponding to
Ba1.6K0.4Fe2As2, calculated as 40% Cs doping in the virtual crystal approximation)
[4]. Note that, had we use the calculated As positions instead of the experimental
ones, the FS would have been much more 3D.
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Figure 1.1: Nearly nested FSs of (a) the paramagnetic 10% electron-doped and
(b) the 10% hole-doped BaFe2As2 calculated within the local-density
and virtual-crystal approximations. The Brillouin zone corresponds
to the two-iron unit cell. The three FSs in the center of the Brillouin
zone are holelike, whereas the two FSs in the corners are electronlike.
From Ref. [27].

phenomena are associated with iron pnictides and are currently the subject of
intense research [32–36]. A simplified phase diagram is sketched in Fig. 1.2(a) to
highlight some aspects that will be relevant in the following. The ground state of
the parent compounds is a metallic SDW state with an ordering temperature TN
between 100 and 200 K [34]. The SDW transition is accompanied by a structural
transition at the temperature Ts from a tetragonal lattice structure with equal in-
plane lattice constants aT = bT for T > Ts to an orthorhombic structure for T < Ts

with lattice constants aO 6= bO. In some cases the structural transition appears
slightly above TN , whereas in others it coincides with the magnetic transition. By
applying uniaxial strain, Ts can be shifted above TN also in the latter case. The
phase between Ts and TN is often called Ising nematic or just nematic [33, 37]
and will be discussed in more detail in chapter 5. The stripe antiferromagnetic
order below TN is commensurate with the lattice; the possible ordering vectors
QX = (0, π/aO) and QY = (π/bO, 0) are half of the reciprocal lattice vectors.

The 122 systems AFe2As2, where A stands for an alkaline-earth metal, are the
most interesting family for transport investigations because single crystals have
been grown that are large enough for transport measurements. Figure 1.1 shows
the FSs of two 122 systems obtained from local-density-approximation calcula-
tions. The FSs show a roughly cylindrical shape, hence two-dimensional models
are often employed. The two-dimensionality results from the layered crystal struc-
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Figure 1.2: (a) Schematic phase diagram of iron pnictides. The lattice structure is
tetragonal in the paramagnetic phase and orthorhombic in the nematic
and SDW phases with in-plane (xy-plane) lattice constants aT, bT and
aO, bO, respectively. The cartoon of the orthorhombic lattice structure
exaggerates the real distortion, which is only a few tenth of a per cent
[38]. The direction of the stripe antiferromagnetic ordering vector is
set as the x-direction throughout this work. (b) Form right to left: FSs
of the two-band model used in chapters 4–6 to study transport in the
paramagnetic, nematic, and SDW phase of iron pnictides, respectively.
In the paramagnetic phase, the FSs consist of a nearly circular hole
pocket (red) and two elliptical electron pockets (blue and green). The
nematic transition at Ts leads to the splitting of the iron dxz and dyz
orbitals. As a result, the FSs distort in comparison to the FSs of
the paramagnetic state (dotted lines). The SDW transition at TN
leads to the doubling of the unit cell and the corresponding folding
of the Brillouin zone. The SDW gap opens at the crossing points of
the hole pocket and the backfolded (blue) electron pocket, resulting
in four banana-shaped FSs. The red arrows indicate the scattering
of electrons due to spin fluctuations. In the nonmagnetic phases, the
scattering is enhanced for scattering vectors close to QX and QY . In
the nematic phase, the broken symmetry of the spin-fluctuation peaks
at QX and QY gives rise to stronger scattering in the direction QX .
Finally, In the SDW phase, scattering is enhanced between different
sides of the banana pockets.
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1.2 Iron pnictides

ture [35]. Some resistivity measurements for 122 compounds show a conductivity
ratio between out-of-plane and in-plane conductivities on the order of 100 [39],
which supports a very weak out-of-plane dispersion. Other measurements, how-
ever, find a much smaller ratio [40].

A peculiarity of the iron-pnictide bandstructure is the complicated mixing of
all five iron 3d orbitals at the Fermi energy [41], from which the dxy, dxz, and dyz
are the most dominant ones. The importance of the orbital origin of the bands
has been emphasized by several authors [42–47]. Nevertheless, there are many
theoretical considerations using effective band models that mimic the correct FS
topology [48] but neglect the orbital content [18, 19, 26, 27, 36, 37, 49–55]. Besides
the obvious advantage of being more tractable for calculations, simplified models
can provide a more transparent picture of the basic mechanisms and usually in-
volve a relatively small number of input parameters [36]. It is commonly, but not
universally, believed that the main mechanisms can be understood within band
models, which is supported by the success of these models in explaining several
phenomena including magnetism [24, 49, 50], nematicity [37, 52], unconventional
superconductivity [26, 27, 36], and transport [17–19, 53, 54].

Figure 1.2(b) schematically shows the evolution of the FSs of a common band
model through the different phases of iron pnictides. The Brillouin zone in this
model is “unfolded” and corresponds to the single-iron unit cell, which is a simpli-
fication of the real two-iron Brillouin zone shown in Fig. 1.1. The unfolding proce-
dure, which can be performed in two ways [56, 57], invokes a simplification of the
weak hybridization of iron and pnictogen orbitals. The effective two-dimensional
band-model mimics those parts of the three-dimensional FSs that are strongly in-
teracting and are thus more relevant for the excitonic instability than other parts
of the FSs [56]. As summarized in the supplemental material of Ref. [58], the
main features of the FS topology are reproduced by band models similar to the
one shown in Fig. 1.2(b). A natural property of such models is the ellipticity of
the electron pockets, which has been shown to be necessary to explain certain
effects, e.g., in the magnetic response [49, 50, 59] and in transport [19, 53].

The spin fluctuations in iron pnictides [60–62] are believed to form the pair-
ing glue for superconductivity [26, 36, 55] and perhaps to drive the structural
transition [2, 33, 37, 52]. The precise mechanisms are the subject of current
research, for which transport investigations can provide valuable insights. Fig-
ure 1.2(b) also indicates the scattering due to spin fluctuations in the different
phases. In the paramagnetic phase, electrons scatter predominantly with momen-
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1 Introduction and overview

tum changes close to QX and QY , due to the peaked spin-fluctuation spectrum at
this wavevectors. This leads to enhanced interpocket scattering. In the nematic
phase, the broken symmetry of the spin-fluctuation peaks at QX and QY gives
rise to strongly anisotropic transport behavior. Finally, in the SDW phase, spin
fluctuations, which in this phase include the damped magnon mode, give rise to
strong intrapocket scattering between different sides of the reconstructed pockets.

1.3 Outline

In chapter 2 I will introduce the general theoretical framework for the study of
the linear-response transport with scattering due to collective excitations. Some
simplifications and their physical meaning will be discussed, which make the com-
plex transport description applicable for investigations in the following chapters.
In the same chapter, I will also calculate the general connection between the con-
ductivity of a single crystal and the conductivity of a “twinned” crystal consisting
of domains rotated by 90◦ with respect to each other. This will be useful for
considering transport of twinned and detwinned 122 pnictides in chapter 6.
In chapter 3, I will consider a generic excitonic model with two concentric FSs

and anisotropic scattering [17], relevant for materials such as chromium and its
alloys [63, 64], transition-metal dichalcogenides [65], electron-hole bilayers [66],
and iron pnictides [26, 51, 67]. The simplicity of this model will allow for an exact
analytical solution of the transport problem, even in case of strongly anisotropic
scattering. We will see that anisotropic scattering can cause some fraction of
carriers to drift in the “wrong” direction, i.e., such as producing a negative con-
tribution to the total charge current—an effect which can explain the unusually
small magnetoresistance in combination of an enhanced Hall coefficient, measured
in iron pnictides.
Chapters 4–6 are devoted to study more advanced band model, which is relevant

for the paramagnetic, nematic, and SDW phases of iron pnictides, respectively.
An overview over the FS topology in the different phases is given in Fig. 1.2(b). An
exact analytical solution of the transport problem within this model is impossible.
In chapter 4 I will therefore discuss the transport problem both numerically and
analytically using some approximations. The analytical considerations will be
especially useful to understand some intriguing phenomena such as the nearly
equal conductivity contribution of all states on the FS, which is unusual since
some states have significantly reduced lifetimes. In chapter 5 I will show that this
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1.3 Outline

peculiarity can explain the characteristic behavior of the resistive anisotropy in
the nematic phase. Probably the most exotic transport effects will be discussed
in chapter 6. Here, we will find a thermodynamic instability of the magnetically
ordered system in an external magnetic field, which is due to the scattering of
electrons off damped magnons. I will conclude in chapter 7.
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2 Transport theory

In this chapter I will discuss some methods for theoretical investigations of trans-
port. First, I will briefly review the non-equilibrium Green’s function approach,
which will lead us to the kinetic equation. Afterwards I will consider scattering
due to collective excitations and I will derive the corresponding Boltzmann equa-
tion, also called Bethe-Salpeter equation in the Kubo formalism, which will be the
starting point for the calculations in subsequent chapters. I will then briefly sketch
the basics of the Kubo approach. The Kubo formalism will be useful to discuss
the importance of umklapp processes if we consider scattering due to collective
excitations. In the last part of this chapter I will derive a relation between the
conductivity of a single crystal with anisotropic conductivity and the correspon-
ding twinned crystal that consists of domains rotated by 90◦ with respect to each
other. The existence of an exact relation is specific for two-dimensional systems.
It will become very useful for the investigations of the resistivity in the SDW phase
of the iron pnictides.

2.1 Non-equilibrium Green’s function approach

The advantage of the non-equilibrium approach over the Kubo formalism in de-
termining the linear-response transport behavior is that within the former the
transport can be described with single-particle Green’s functions, e.g., simply as
the expectation value of the current operator. On the other hand, within the
Kubo formalism, transport is related to the correlation of two particles and is
thus determined by two-particle Green’s functions. For the purpose of considering
semiclassical transport effects in the presence of an external magnetic field, the
non-equilibrium approach [10] is more convenient than the Kubo formalism, as the
diagrammatic consideration of vertex corrections in the latter is very complicated
[68, 69].
In the following, I will present the basic idea of the non-equilibrium approach.

The Green’s functions are usually considered in the so-called Wigner or mixed
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2.1 Non-equilibrium Green’s function approach

representation, in which the time and spatial coordinates are split into relative
and center-of-mass coordinates. Fourier transforming the relative coordinates,
the arguments of the Green’s functions become (k, ω; r, t). In the following the
center-of-mass coordinates r, t will be suppressed for clarity.

Based on Fermi-liquid theory, one can assume that the spectral function of the
electrons has well-defined peaks around some quasi-particle energies εk. For the
investigations of the semiclassical transport effects, one can go even further and
assume that the spectral functions are narrow, i.e., A(k, ω) ≈ 2πδ(εk − ω). This
is referred to as the quasiparticle approximation [9, 10]. The “lesser” and “greater”
Green’s functions can be written as

G<(k, ω) = A(k, ω)fk and G>(k, ω) = A(k, ω)(1− fk), (2.1)

respectively. The lesser Green’s function determines the expectation value of the
total charge current

J = e
∑

k

vk fk, (2.2)

where the velocity is given by vk ≡ ~∇kεk. fk can be interpreted as the momen-
tum distribution function, which in equilibrium reduces to the Fermi distribution,

fk
equil.−→ nF (εk) =

1

eεk/kBT + 1
, (2.3)

where kB is the Boltzmann constant, T is the temperature, and the Fermi energy
is set to zero.

We consider electrons exposed to the spatially homogeneous external force

F = eE +
e

~
vk ×B− εk

T
∇T, (2.4)

which is due to the Lorentz force for electric and magnetic fields, E and B, re-
spectively, and a spatial temperature gradient ∇T . In the linear-response regime
the fields and the temperature gradient are assumed to be small. The equations
of motion for the lesser and greater Green’s functions can therefore be simplified
by means of the gradient expansion [70]. Applying also the quasiparticle approx-
imation, we arrive at the so-called kinetic equation [9, 10, 70]

F · ∇kfk = (1− fk)Σ<(k, εk)− fkΣ>(k, εk), (2.5)

where Σ< and Σ> are self-energies, which depend on the details of the interactions
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Figure 2.1: (a) Self-energy diagram with an electron propagator G and a bosonic
propagator S representing a collective excitation. (b) Diagrams to be
considered according to the Ward identity for the conductivity within
the Kubo approach if the bosonic propagator in (a) does not con-
tain electron propagators. The first term is called Drude term and
the following terms are Maki-Thompson (MT) type ladder diagrams.
(c) Schematic picture of a bosonic propagator which contains electron
propagators. (d) Conductivity diagrams for the bosonic propagator of
type (c). In addition to the MT diagrams Aslamazov-Larkin- (AL-)
type diagrams appear.

between the electrons. The solution of the kinetic equation determines the non-
equilibrium distribution function fk and consequently the transport behavior. The
kinetic equation is also called the quantum Boltzmann equation [8] because it has
the from of the semiclassical Boltzmann equation but is derived within quantum
mechanics. The left-hand side can be interpreted as the change of the distribution
due to the force and the right-hand side as the change due to scattering. The
self-energies Σ<(k, εk) and Σ>(k, εk) can be interpreted as the scattering rates for
scattering into and out of state k, respectively [70]. In general they depend on
the non-equilibrium distribution fk.

2.2 Scattering due to collective excitations

We want to consider scattering of electrons due to bosonic collective excitations
[71] and consider the self-energy diagram depicted in Fig. 2.1(a). The bosonic
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2.2 Scattering due to collective excitations

propagators can be written as

S<(k, ω) = B(k, ω)n(ω) and S>(k, ω) = B(k, ω) (1 + n(ω)), (2.6)

where B(k, ω) is the spectral function of the bosons and n(ω) is the Bose-Einstein
distribution function. Note that in Eq. (2.6) we assumed that in contrast to the
electrons, the bosons are in equilibrium. If we specifically assume the bosons
to describe collective excitations of the electrons themselves, which are not in
equilibrium, then this assumption requires justification—this will be discussed in
the next section. The self-energies entering Eq. (2.5) read

Σ>(<)(k, εk) = g2
∑

q

∫
dω

2π
G>(<)(k− q, εk + ω)S>(<)(q, ω), (2.7)

where g is the electron-boson coupling constant.

We now set B = 0 and consider the case B 6= 0 in a separate section 2.4. To
linearize Eq. (2.5) with respect to the (weak) force F, we make the most general
ansatz

fk = nF (εk)− n′F (εk) F ·Λk, (2.8)

where n′F (εk) = dnF (εk)/dεk. Λk is independent of F and in the semiclassical
picture can be seen as the mean free path (MFP) of the electron in state k,
according to the following explanation: Consider a classical particle in the weak
force field F. The energy of the particle traversing the path Λk changes by Λk ·F.
Hence, the occupation of the state k changes by −n′F (εk) F ·Λk in agreement with
Eq. (2.8).

We insert Eqs. (2.1), (2.7), and (2.8) into Eq. (2.5) and make use of the quasi-
particle approximation. Neglecting higher orders in F, we obtain for a state k at
the Fermi level, i.e., for εk = 0,

Λk = τk vk + τk
∑

q

W k+q
k Λk+q, (2.9)
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where

τk =

(∑

q

W k+q
k

)−1

, (2.10)

W k+q
k ≡ pT (εk+q)

g2B(q, εk+q)

εk+q

, (2.11)

pT (x) ≡ x
(

coth
x

2kBT
− tanh

x

2kBT

)
. (2.12)

In Eqs. (2.9) and (2.10), τk can be identified as the quasiparticle lifetime, deter-
mined by the retarded self-energy, τk ≡ (2 Im ΣR(k, εk))−1. Equation (2.10) can
be derived by explicitly calculating the retarded part of the self-energy in Fig.
2.1(a). W k+q

k can be interpreted as the scattering rate from state k to state k+q.

Assuming inversion symmetry so that εk = ε−k, vk = −vk, and B(q, ω) =

B(−q, ω) we find that Λk = −Λ−k, which ensures particle conservation,

∑

k

fk =
∑

k

nF (εk), (2.13)

as can be seen by summing both sides of Eq. (2.8).

Equation (2.9) will form the starting point for considering transport in specific
models in the next chapters. It will be referred to as the Boltzmann equation. In
the next section, we will see that it can be derived within the Kubo approach,
where it is called the Bethe-Salpeter equation [13]. The second term on the right-
hand side of Eq. (2.9) averages to zero if the scattering rate is isotropic, i.e.,
if it does not depend on q. In the case of anisotropic scattering, however, the
corrections due to the second term become important. These corrections are called
forward-scattering or backscattering corrections depending on whether small- or
large-angle scattering processes are dominant. To refer to these corrections in
general without specifying the explicit form of the scattering I will use the term
forward-scattering corrections in the following.

2.3 Collective excitations and umklapp scattering

In this section I will briefly review the Kubo approach. This will be useful to
discuss the justification for assuming the collective excitations to be in equilibrium,
mentioned in the previous section. Within the Kubo formalism, Eq. (2.9) can be
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2.3 Collective excitations and umklapp scattering

obtained starting from the self-energy

Σ(k, iνn) = kBT g
2
∑

q,iωn

G(k− q, iνn − iωn)S(q, iωn), (2.14)

where νn (ωn) represents a fermionic (bosonic) Matsubara frequency, and G and
S respectively denote the electron and boson propagators. The calculation of
the conductivity then requires the consideration of Feynman diagrams with two
fermionic propagators. Neglecting quantum corrections, one has to sum all ladder
diagrams, shown schematically in Fig. 2.1(b). Taking only the first term in the
sum, called the Drude term, one obtains Λk = τk vk instead of Eq. (2.9). This
will be referred to as the Drude approximation,

ΛD
k = τk vk (2.15)

(in the modern literature the term relaxation-time approximation is also used
frequently). The corrections to the Drude approximation in Eq. (2.9) are obtained
in the Kubo formalism by summing up the whole series of ladder diagrams in Fig.
2.1(b). These are the so-called vertex corrections, which are related to the forward-
scattering corrections in the Boltzmann approach. The vertex corrections in Fig.
2.1(b) are of Maki-Thompson (MT) type, and they give rise to the second term
on the right-hand side of Eq. (2.9).

Particle conservation requires that the vertex corrections satisfy a Ward identity
[13]. The Ward identity can be written as a functional derivative,

V (k,k′, iνn, iν
′
n) ∝ δΣ(k, iνn)

δG(k′, iν ′n)
, (2.16)

where V (k,k′, iνn, iν ′n) is the four-point vertex connecting the upper and lower
fermion lines in Fig. 2.1(b). Since the self-energy considered in Eq. (2.14) contains
only one electron propagator, there is only one vertex and the diagrams considered
in Fig. 2.1(b) are complete.

Let us now consider what happens if the bosonic propagator S in Eq. (2.14)
describes collective fluctuations of electrons and thus contains electron propagators
as shown schematically in Fig. 2.1(c). According to the Ward identity, Eq. (2.16),
the vertex function has additional terms due to the additional electron propagators
in the self-energy. The additional terms give rise to additional series of diagrams
for the conductivity, which are shown schematically in Fig. 2.1(d). These diagrams
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Figure 2.2: Scattering of an electron from k to k + q with q ≈ G/2. The solid
square is the Brillouin zone with a FS (circle) and the reciprocal lattice
vector G. The contribution of the final state k + q to the MFP is ac-
counted for by the MT vertex corrections. If the scattering is because
of electron-electron interaction, momentum conservation requires an-
other electron to scatter either from p to p − q or, since q ≈ G/2,
from p − q to p because of umklapp. The normal and the umklapp
AL terms representing the second electron nearly cancel.

are of Aslamazov-Larkin (AL) type and in general produce additional terms in the
Boltzmann equation (2.9).
Let us compare this to the non-equilibrium formalism from which we derived

Eq. (2.9) via the assumption that the collective excitations are in equilibrium and
thus do not contribute to transport. Evidently, within the Kubo formalism, the
contribution of the collective fluctuations is represented by AL diagrams. I will
now explain the physical meaning of neglecting them. It is useful to consider
the relaxation of a non-equilibrium system towards the equilibrium state. The
MFP Λk can be seen as the mean path an electron in state k traverses during
the relaxation. If the relaxation time is equal to the quasiparticle lifetime τk, the
MFP obviously reads τkvk, the first term in Eq. (2.9), since during the time τk
the electron does not scatter to any other state and its velocity is vk. However,
the relaxation time is in general larger than the quasiparticle lifetime, since if
scattering is anisotropic, more than one scattering event is necessary to lose the
memory of the initial velocity. In this case corrections to the MFP τkvk must be
taken into account because during the relaxation process the electron scatters to
different states with velocity distinct from vk.
As shown in Fig. 2.2 the MT vertex corrections correspond to the contribution

to the MFP from the states k + q, the states to which the considered electron
scatters. If the scattering of the electron is due to electron-electron interactions,
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2.4 Transport in the presence of a magnetic field

then the considered electron has a scattering partner—an electron in state p. Mo-
mentum conservation requires that the scattering partner scatters from p to p−q

if umklapp processes are neglected. The contribution to the MFP from the scat-
tering partner is represented by the AL diagrams. The electron-electron scattering
is the elementary process if the scattering of the initial electron proceeds via the
excitation of a collective mode. The scattering partner of the initial electron can
be considered as part of the collective excitation. Thus the AL terms represent
the contribution of the collective excitation to transport.

However, it turns out that neglecting AL diagrams and thus assuming collec-
tive excitations not to contribute to transport is a valid approximation in certain
cases. The AL terms have been considered by Kontani et al. [13, 72] for the case
of scattering due to spin fluctuations in a model for cuprates. They show that due
to enhanced scattering with momentum change q ≈ G/2, where G is a reciprocal
lattice vector, the AL terms are suppressed due to umklapp scattering such that
the AL terms become negligible in comparison to the MT terms. Figure 2.2 illus-
trates the physics behind this result. If the momentum exchange is approximately
q ≈ G/2, umklapp allows the scattering partner to scatter from p−q to p, which
is obtained form the usual process by time reversal. If the electron-electron inter-
action is short ranged then both the usual and the umklapp processes have the
same probability. On average their contributions to the MFP cancel out.

Based on the results of Kontani et al. [13, 72] we will neglect AL terms in the
following. This is mainly motivated by the fact that the physical reasons leading
to the suppression of AL terms can be applied to all real systems for which our
calculations are relevant.

2.4 Transport in the presence of a magnetic field

The magnetic field alone does not bring the system out of equilibrium: It can be
verified that the ansatz fk = nF (εk) is a solution of the kinetic equation (2.5)
in this case. The deviation from equilibrium is therefore controlled by the force
F|B=0. Hence, the standard ansatz for the non-equilibrium distribution in the
presence of a magnetic field reads [73]

fk = nF (εk)− n′F (εk) F|B=0 ·Λk, (2.17)
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cf. Eq. (2.8), with
Λk = Λ

(0)
k + Λ

(1)
k + . . . , (2.18)

where Λ
(n)
k is of order n in B. Inserting this ansatz into Eq. (2.5), proceeding in

analogy to the B = 0 case, and separating the different orders in B, we obtain
the set of equations

Λ
(0)
k = τk vk + τk

∑

q

W k+q
k Λ

(0)
k+q, (2.19)

Λ
(n+1)
k = τk

e

~
[
B ·
(
vk ×∇k

)]
Λ

(n)
k + τk

∑

q

W k+q
k Λ

(n+1)
k+q for n ≥ 0. (2.20)

For later use, we now consider a two-dimensional system in the xy-plane and the
magnetic field pointing in the z-direction, B = Bz. The FS now becomes a Fermi
line. Considering k on the Fermi line and parametrizing the Fermi line by some
parameter θ, the operator acting on Λ

(n)
k in Eq. (2.20) can be written as

e

~
[
B ·
(
vk ×∇k

)]
= ωθ ∂θ, (2.21)

with the cyclotron frequency

ωθ = η
eB

~
|vθ|
|dkθ/dθ|

, (2.22)

where η = sgn(vθ · kθ).
Within the Drude approximation Λ

(0)
θ ≈ Λ

D(0)
θ ≡ τθ vθ. Summing up all ΛD(n)

given in Eqs. (2.19) and (2.20) results in a differential equation for the Drude
MFP in a magnetic field,

ΛD
θ = τθ vθ + τθ ωθ ∂θΛ

D
θ . (2.23)

We can understand this equation if we consider electrons as classical particles. Let
the velocity of the electrons be v(t) = v(cosφ(t), sinφ(t)) and the Lorentz force
acting on them (eB/~) z× v(t). The classical equation of motion reads

d

dt
v(t) =

eB

~m
z× v(t) ≡ ω z× v(t) (2.24)

and describes the orbital motion of the electrons. If we now assume a finite
lifetime of the electrons so that the number of electrons decays with exp(−t/τ),
the average velocity of the electrons reads 〈v〉 =

∫
dt/τ exp(−t/τ) v(t). Applying
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2.5 Conductivity of single crystals and twinned crystals

∫
dt/τ exp(−t/τ)[. . . ] on both sides of Eq. (2.24) and noting that z× v = ∂φv we

find
〈v〉 = v(0) + τ ω ∂φ〈v〉. (2.25)

Equation (2.25) has the same form as Eq. (2.23) and one can thus interpret Eq.
(2.23) as describing the effect of the orbital motion of the electrons in the magnetic
field on the MFP. Note, however, that free electrons are rotated by a polar angle
φ, whereas the electrons on a lattice move along the Fermi line (parametrized
by θ). This is because on the lattice the velocity is perpendicular to the Fermi
line and the Lorentz force changes the momentum of the electrons according to
~ dk/dt = (eB/~) z× vk.

2.5 Conductivity of single crystals and twinned

crystals

The conductivity tensor σ relates the total charge current J defined in Eq. (2.2)
and the electric field E [74],

J = σE. (2.26)

Inserting the ansatz (2.17) into Eq. (2.7) we find

σij = e2
∑

k

[
− n′F (εk)

]
vik Λj

k. (2.27)

In the continuum limit, the sum over k goes over into an integral over the d-
dimensional k-space. Changing the integration variables we can write

∑

k

[. . . ]→
∫
dε

∫

ε

dS
1

|vk|

∣∣∣∣
dk

dS

∣∣∣∣ [. . . ] =

∫
dε 〈Nk[. . . ]〉ε , (2.28)

where 〈[. . . ]〉ε =
∫
ε
dS [. . . ]/

∫
ε
dS is the average over the constant-energy surface

and
Nk ≡

1

|vk|

∣∣∣∣
dk

dS

∣∣∣∣
∫

ε

dS (2.29)

is the momentum-resolved density of states. The derivative of the Fermi distribu-
tion has a peak at the Fermi level, εk = 0, with a width of order kBT . Assuming
that the velocity and the MFP are nearly constant in the range kBT around the
Fermi level, we can perform the energy integral on the right-hand side of Eq.
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(2.27), leading to
σij = e2

〈
Nk v

i
k Λj

k

〉
FS
, (2.30)

where 〈[. . . ]〉FS = 〈[. . . ]〉ε=0 denotes the average over the FS.

In the chapters 5 and 6 we will consider the conductivity of iron pnictides in the
nematic and the SDW phase. In these phases the crystal symmetry is orthorhom-
bic such that the orthogonal crystallographic in-plane (xy-plane) directions aO

and bO are not equivalent, in contrast to the equivalent directions aT and bT in
the tetragonal phase. The inequivalence of the directions aO and bO is reflected in
the anisotropic in-plane conductivity of single crystals. However, the transition
from the tetragonal to the orthorhombic phase leads to the formation of struc-
tural twin domains as shown in Fig. 2.3 [75]. The domains are rotated by 90◦ with
respect to each other in the xy-plane, and extend through the whole thickness of
the crystal in the z-direction. The twinned crystal as a whole restores the C4

symmetry in the xy-plane such that the in-plane conductivity of twinned crystals
is isotropic. To measure the in-plane anisotropy of transport the crystals have to
be detwinned, usually by applying uniaxial pressure [2].

In the following I will calculate the in-plane conductivity of the twinned crystal
in terms of the in-plane conductivity of the single crystal,

σ =

(
σxx σxy

σyx σyy

)
, (2.31)

with arbitrary σij. This is a non-trivial and, in general, analytically not even
feasible task [76]. For two-dimensional polycrystals, however, there exists an exact
relation between the conductivity of the polycrystals and the corresponding single
crystal [77], which goes back to the works of Dykhne [78, 79]. Dykhne realized
that in 2D there exists a symmetry transformation, which does not change the
macroscopic properties of the polycrystal if the directions of the crystallites are
equally distributed. Proceeding analogously as in Refs. [78, 79], I will show that
the relation also holds between the conductivity of twinned and detwinned iron
pnictides shown in Fig. 2.3. Considering the material to be quasi-two-dimensional
is a valid approximation due to relatively weak z-dispersion [34] and the extended
domains in z-direction [75].

We consider a twinned two-dimensional crystal in external electric and magnetic
fields. Let e(r) and j(r) be the local electric field and the local charge current,
respectively. The total electric field E =

∫
dV e(r) and the total current J =
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FIG. 2: (Color online) High resolution optical image of pure
BaFe2As2 above (left) and below (right) the temperature of
the coupled structural/magnetic transition, TSM=135 K. A
pattern of domain walls is formed below TSM due to formation
of twin boundaries (top row). Second row of panels shows
schematics of the displacements of atoms in the tetragonal
lattice (above TSM) during structural transition, leading to
orthorhombic distortion and formation of domain walls. In
the orthorhombic phase the unit cell of the lattice doubles in
size in the a−b plane, new unitary vectors aO and bO become
of different length (aO > bO), and rotate by approximately
45 degrees. The third row shows sketches of the expected
transformation of the X-ray diffraction pattern during domain
formation. The bottom raw shows actual X-ray data and
zooms of (200) and (220) reflections (insets).

quality of the crystals used. On the cleaved surfaces
of the Sr and Ba compounds, the domains have smaller
spacing than in the Ca compound.

The top panel of Fig. 2 shows optical images of the
BaFe2As2 single crystal above (140 K) and below (110 K)
TSM=137 K. Several defects at the surface and sample
edges can be used as markers. The domains occupy most
of the crystal surface, and run along two perpendicular
directions, see Fig. 3, spots A and C. In some areas the
two domain patterns intersect each other, spot B.

In the second row of panels in Fig. 2 we show the
schematics of the domain wall formation during or-
thorhombic lattice distortion. In the tetragonal lattice,
characterized by the unit cell vectors aT and bT = aT

within the plane, the atoms occupy positions at the nodes
(left panel). Orthorhombic distortion leads to atomic
displacement along the diagonal of the tetragonal lat-
tice, with aO > bO, so that the orthorhombic unit cell
rotates by approximately 45o and doubles in size (right
panel). The displacements of atoms along the unit vec-
tors of the orthorhombic unit cell can lead to four differ-
ent domain patterns (O1 to O4) (different colors online).
Similar patterns of domains were studied extensively in
the orthorhombic phase of YBCO. [12] Since domains O1
and O2 [O3 and O4] share a common plane correspond-
ing to the tetragonal (100) [(010)] plane, their formation
does not require lattice deformation and they easily form
pairs. A boundary between pairs O1-O2 and O3-O4 is
heavily distorted and the areas of mismatch are usually
characterized by atomic displacements from regular po-
sitions [12] and strong stress and strain.

The cause of domain formation is the simultaneous nu-
cleation of the low temperature phase below TSM in a
number of points in the sample. The orthorhombic dis-
tortion makes it energetically favorable to form domains,
since they release stress over the entire lattice in small ar-
eas of high deformation. As can be seen from Fig. 2, the
directions of the orthorhombic distortion and of the do-
main boundaries form an angle of about 45o, with domain
wall corresponding to (110) [or (11̄0)] crystallographic
planes.

The x-ray diffraction pattern for temperatures above
and below the transition reveals a splitting of the (220)
spot into four spots, while each (200) spot splits into
three, with the direction of splitting corresponding to
the direction of twin boundary in the reciprocal space.
The two bottom rows in Fig. 2 show the effect of do-
main formation on the x-ray patterns in reciprocal space
and the actual x-ray diffraction patterns for BaFe2As2
focusing on the (220) and (200) spots. This correspon-
dence is illustrated in further detail in Fig. 3. Three pan-
els show x-ray diffraction pattern obtained with 100*100
µm2 spatial resolution and corresponding orientation of
structural domains with respect to the ab plane in real
space. Of note, since high-energy x-ray diffraction probes
the whole sample thickness, observation of singular pairs
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Figure 2.3: (a) Optical image of the xy-plane of a BaFe2As2 single crystal in the
tetragonal phase. (b) Same as (a) but in the orthorhombic phase, in
which a pattern of domain walls is formed. The typical domain width
is about 10µm. In the z-direction the domains extend through the
whole thickness of the crystal. (c) Schematic lattice structure in the
tetragonal phase. (d) Four possible domain patterns (O1–O4) of the
lattice structure in the orthorhombic phase. The domains O1 and O2
(O3 and O4) easily form pairs since they share a common plane. This
results in the formation of lamellae visible in (b) as the thin vertical
and horizontal lines: The spot A corresponds to the domains O1 and
O2, C to the domains O3 and O4, and B to the crossed domains O1-O2
and O3-O4. From Ref. [75].
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2 Transport theory

∫
dV j(r) are obtained through integration over the crystal volume. E and J are

related by Ohm’s law
J = σ̄E, (2.32)

where the conductivity of the twinned crystal can be written as

σ̄ =

(
σ̄xx σ̄xy

−σ̄xy σ̄xx

)
(2.33)

since we assume the twinned crystal to be C4-symmetric. The local quantities
fulfill the Ohm’s law

j(r) = σ(r) e(r), (2.34)

where, depending on the domain, σ(r) is either σ or RσR−1, where R is the 90◦

rotation matrix. j and e also fulfill the Maxwell equations

∇ j = 0 and ∇× e = 0. (2.35)

We introduce a transformation of the local quantities,

j(r) = j′(r) + a det[σ(r)]R e′(r) and e(r) = aR j′(r), (2.36)

where a ≡ 1/[σyx(r) − σxy(r)]. Noting that a and det[σ(r)] are independent
of r, one can show that j′ and e′ fulfill Maxwell’s equations (2.35) as well as
Ohm’s law (2.34) with the same conductivity tensor σ(r). The total electric field
E′ =

∫
dV e′(r) and the total current J′ =

∫
dV j′(r) should thus obey

J′ = σ̄E′ (2.37)

with the same conductivity tensor as in Eq. (2.32). On the other hand, integrating
Eqs. (2.36) over the volume and using Eq. (2.32) leads to

J′ = −a det(σ) (I − a σ̄ R)−1R E′, (2.38)

where I is the 2D identity matrix. Comparison of the Eqs. (2.37) and (2.38)
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2.5 Conductivity of single crystals and twinned crystals

determines the conductivity of the twinned crystal. The real solutions read (i)

σ̄xx =

√
σxx σyy −

(
σyx + σxy

2

)2

, (2.39)

σ̄xy =
σxy − σyx

2
(2.40)

for σxx σyy > (σyx + σxy)2/4 and (ii)

σ̄xx = 0, (2.41)

σ̄xy =
σxy − σyx

2
+

√(
σyx + σxy

2

)2

− σxx σyy (2.42)

for σxx σyy < (σyx+σxy)2/4. In the case (ii), the conductivity of a single domain is
not positive semidefinite, since σxx σyy ≥ (σyx+σxy)2/4 is the criterion for positive
semidefiniteness of σ. The positive semidefiniteness of the conductivity tensor is
required for the thermodynamic stability of the system [80]. The conductivity
of the whole twinned crystal is positive semidefinite in both cases. In case (ii)
it is purely transversal, giving rise to dissipationless conductance, similar as in
a quantum Hall system. However, due to the instability of single domains it is
unclear whether the solution (ii) has physical significance; further investigations
are necessary.
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3 Negative transport times due
to anisotropic interband
scattering

In this chapter I will apply the formalism introduced in the previous chapter
to a specific two-band model with anisotropic scattering. We have seen that
anisotropic scattering requires the consideration of forward-scattering corrections
in Eq. (2.9), which in general makes it difficult to find an analytical solution. Here
I will discuss a model in which an exact analytical solution is possible even for very
strong scattering anisotropy. This allows the analytical study of some interesting
effects resulting from the scattering anisotropy. Parts of this chapter have been
published in Ref. [17].

3.1 Introduction

We consider a simple excitonic model with two FSs of circular (2D) or spherical
(3D) shapes separated by Q, which can be holelike or electronlike. The model
is illustrated in Fig. 3.1(a). We assume that the scattering rate W s′k′

sk entering
the Boltzmann equation (2.9) is due to elastic scattering and has an isotropic
intraband contributionWi and an anisotropic interband contributionWa(θ) which
is an even function of the scattering angle θ spanned by k and k′,

W s′,k′

s,k = δ(εk − εk′)
(
δs′s̄Wa(θ) + δs′sWi

)
, (3.1)

where s̄ = 2 (1) for s = 1 (2).
We will find that such anisotropic interband scattering can lead to negative

transport times: Minority carriers may drift in the direction opposite of what
one would expect based on their charge. Negative transport times of minority
carriers were predicted for systems with electron- and holelike FSs [81], based on
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3.1 Introduction

k0
(a)

(b)

Figure 3.1: (a) Sketch of the two isotropic FSs s and s̄, displaced by Q, and the
elastic interband scattering rate Wa(θ). (b) Illustration of the relation
between the anisotropy parameter a and the shape of the function
Wa(θ), for the case ofWa(θ) having a single peak at θ = 0. In this case
a ∈ [−1, 0] corresponds to the electron-hole case (e-h) and a ∈ [0, 1]
corresponds to the electron-electron or hole-hole case (e-e/h-h). After
Ref. [17].

strong electron-hole (two-particle) scattering. This carrier drag was first observed
in semiconductor quantum wells [82]. It has not been appreciated that nega-
tive transport times can also arise due to anisotropic single-particle scattering in
multiband systems.

Our model covers the special case of enhanced scattering for θ = 0, which can
be realized in materials close to an excitonic instability, e.g., electron-hole bilayers
[66], iron pnictides [26, 51, 67], chromium and its alloys [63, 64], and the transition-
metal dichalcogenides [65]. In these materials, nesting of electron and hole FSs
strongly enhances interband spin or charge fluctuations with wavevectors close to
the nesting vector. These fluctuations are expected to promote highly anisotropic
scattering between the nested FSs.

In the iron pnictides, the effect of such scattering seems to be especially pro-
nounced, as the normal-state transport coefficients show highly anomalous behav-
ior. In particular, the unexpectedly small magnetoresistance is hard to reconcile
with the strongly enhanced Hall coefficient if analyzed within a multiband model
with isotropic scattering [3]. It is believed that this is due to anisotropic scattering
due to spin fluctuations [45, 54, 83, 84], however, there are very few theoretical
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3 Negative transport times due to anisotropic interband scattering

investigations in this field. It has been shown that scattering off spin fluctua-
tions could indeed explain the enhancement of the Hall coefficient [54], but the
reduction of magnetoresistance remains puzzling.

In this chapter we will find that anisotropic scattering not only leads to an
enhancement of the Hall coefficient [54], but also to a maximum at a characteristic
anisotropy. At the same anisotropy the magnetoresistance shows a minimum with
zero magnetoresistance, in agreement with the puzzling experimental observations
[3]. We show that this anomaly can be explained by the occurrence of negative
transport times.

3.2 Solution of the Boltzmann equation

According to the scattering rate given in Eq. (3.1) and the assumed rotational
symmetry of the FSs, the model preserves rotational symmetry. Therefore, the
Boltzmann equation (2.9) simplifies as the lifetime τsk and the density of states
Nsk do not depend on k. From this one can also conclude that the MFP must be
parallel to the only vector in Eq. (2.9), the velocity vsk. The proportionality con-
stant is independent of k and is usually referred to as the transport or relaxation
time τ tr

s [74]. Inserting the ansatz Λsk = τ tr
s vsk and Eq. (3.1) into the Boltzmann

equation (2.9) we find

τ tr
s vsk = τs vsk + τs

∑

s′

τ tr
s′Ns′

〈
[δs′s̄Wa(θ) + δs′sWi]vs′k′

〉
θ
, (3.2)

where Ns is the density of states for FS s and the average over θ is denoted by
〈. . .〉θ = 1

π

∫
dθ . . . for 2D and 〈. . .〉θ = 1

2

∫
dθ sin θ . . . for 3D.

It is useful to rewrite the velocity in the integral in Eq. (3.2) as

vs′,k′ = vs′k̄ cos θ + vs′e⊥ sin θ, (3.3)

where vs ≡ |vs,k| is the Fermi velocity for FS s, e⊥ denotes the unit vector per-
pendicular to vs,k in the plane spanned by vs,k and vs′,k̄, and k̄ is the state on FS
s′ for which θ = 0. Since Wa(θ) is an even function of θ, the term proportional
to sin θ averages to zero in the integral in Eq. (3.2). The cosine term averages to
zero only in the term containing Wi. Altogether we arrive at

τ tr
s vsk = τs vsk + τ tr

s̄ vs̄k̄ τsNs̄

〈
Wa(θ) cos θ

〉
θ
. (3.4)
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3.3 Transport times

Defining the scattering-anisotropy parameter

as̄s ≡ η τsNs̄

〈
Wa(θ) cos θ

〉
θ

= η
Ns̄

〈
Wa(θ) cos θ

〉
θ

Ns̄

〈
Wa(θ)

〉
θ

+NsWi

, (3.5)

where η = sgn(vsk · vs̄k̄), we can solve Eq. (3.4) to obtain

Λsk ≡ τ tr
s vsk =

τs vsk + η as̄s τs̄ vs̄k̄
1− as̄sass̄

. (3.6)

Note that the anisotropy parameter defined in Eq. (3.5) is confined to the range
[−1, 1]. Many different realizations of Wa(θ) give the same anisotropy parameter,
but for clarity we focus on the most relevant situation whereWa(θ) has a maximum
at θ = 0. In this case, the range a ∈ [0, 1] corresponds to FSs of the same type
(i.e. both electronlike or both holelike), whereas a ∈ [−1, 0] corresponds to one
electron and one hole FS as illustrated in Fig. 3.1(b). For both scenarios, a = 0

is the isotropic limit, Wa(θ) = const, whereas a = ±1 are the strong-anisotropy
limits, which can be achieved if the interband scattering dominates and is nearly a
δ-function, i.e., Wa(θ) ≈ Wa δ(θ) and Wa � Wi. In the electron-hole case, a peak
at θ = 0 naturally occurs close to an excitonic instability, due to the scattering
by the enhanced spin or charge fluctuations, allowing a ∈ [−1, 0] to be tuned by
doping or temperature. Although there is no excitonic instability for the e-e/h-h
case, collective fluctuations can still be enhanced due to the proximity of nesting.

3.3 Transport times

The transport time can easily be expressed in terms of the anisotropy parameters
if we insert vs̄k̄ = ηvs̄vsk/vs into Eq. (3.6), leading to

τ tr
s = τs

1 + as̄sγs̄
1− as̄sass̄

, (3.7)

where γs = τsvs/(τs̄vs̄) is the ratio between the Drude MFPs. For equal densities
of states or if 〈Wa(θ)〉θ � Wi, γs is the ratio of the FS areas. Equation (3.7)
shows the relation between the lifetime and the transport time. τ tr

s /τs is plotted
in Fig. 3.2(a), in which for simplicity the density of states on both FSs is set equal
so that as̄s = ass̄ ≡ a. We first consider the electron-hole case, a ∈ [−1, 0]. The
carriers corresponding to the smaller FS area, which we will call minority carriers,
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Figure 3.2: (a) Transport time τ tr
s in units of the bare lifetime τs at FS s as a

function of the anisotropy parameter a and the ratio of the FS areas,
γs = kd−1

s /kd−1
s̄ . The corresponding plot of τ tr

s̄ /τs̄ would be the mirror
image with respect to γs = 1. (b) Resistivity in terms of its isotropic
limit, ρ0 ≡ ρ|a=0, as a function of a and γs. At a = a∗ (dashed), the
transport time of the minority carriers changes sign and the resistivity
has a maximum as a function of a. After Ref. [17].

have a negative transport time for

a < a∗ ≡ −min
s
γs. (3.8)

In the anisotropic limit, a → −1, the transport times of minority (majority)
carriers diverge to negative (positive) values, which can be understood as follows.
For a → −1, the scattering rate Wa(θ) becomes a δ-function and, therefore, an
electron in the state |sk〉 can only scatter to the state |s̄k̄〉. Thus the system
decouples into pairs of states, thereby becoming nonergodic. In general, the joint
occupation of these two states in non-equilibrium fsk + fs̄k̄ will differ from that
in equilibrium, 2nF (εk). Scattering between the two states cannot relax the joint
occupation and consequently the whole system cannot relax into equilibrium. This
leads to the diverging transport times. The described mechanism is not applicable
to the compensated case, γs = 1, for which fsk + fs̄k̄ = 2nF (εk). I will refer to
this case below.
For a ≈ −1, the scattering between |sk〉 and |s̄k̄〉 still dominates and scattering

to other states can be treated as a weak perturbation. This additional scattering
leads to weak relaxation of fsk + fs̄k̄ and thus stabilizes a steady state. Still,
the difference fsk − fs̄k̄ relaxes much more rapidly than fsk + fs̄k̄. Hence, in the
steady state the former is much smaller in absolute value than the latter so that
fsk ≈ fs̄k̄. The occupation numbers on the same side of the two FSs are both
either enhanced or reduced in comparison to the equilibrium state as illustrated
in Fig. 3.3. In the electron-hole case, the electrons at these points have opposite
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3.3 Transport times

Figure 3.3: Illustration of the relaxation process in the case that the interband
scattering is strongly enhanced for θ = 0. The occupation of the FS
states |sk〉 and |s̄k̄〉 is nearly equalized after a short time in comparison
to the duration of the relaxation process. In the electron-hole case this
leads to the drift of minority carriers in the “wrong” direction.

velocities so that the electrons on one of the FSs have to drift in the “wrong”
direction. As Fig. 3.2 shows, the direction of the drift and thus the signs of the
transport times are set by the majority carriers.

On the other hand, for nearly isotropic scattering, a ≈ 0, Fig. 3.2 shows that
τs/τ0,s decreases with decreasing a regardless of the FS sizes. Slightly increasing
anisotropy favors small-θ scattering. For the electron-hole case, this enhances
backscattering since the velocities vs,k and vs̄,k̄ are opposite and is therefore more
efficient in relaxing the current. For the compensated case, γs = 1, this mechanism
is effective at all anisotropy levels. In particular, for a → −1 the ratio goes to
τs/τ0,s → 1/2, which means that the system relaxes twice as fast if the scattering
is pure backscattering instead of completely isotropic.

In case of two electronlike or two holelike FSs, a ∈ [0, 1], the carriers from
both FSs always drift in the same direction, as expected. The transport times
increase monotonically with a and diverge in the extreme anisotropic limit a→ 1.
The increasing anisotropy favors small-θ scattering, which corresponds to forward
scattering, and is thus increasingly inefficient at relaxing the current. The com-
pensated case, γs = 1, is not special because fsk + fs̄k̄ 6= 2nF (εk) for any γs if the
FSs are of equal type.
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3 Negative transport times due to anisotropic interband scattering

3.4 Transport coefficients

In this section I will calculate measurable transport coefficients, to search for
signatures of the negative transport times.

3.4.1 Resistivity

The resistivity can be obtained from the transport times by standard methods
[74],

ρ =

(
e2
∑

s

Ns v
2
s τ

tr
s

)−1

. (3.9)

For simplicity we consider equal densities of states, Ns = Ns̄. In this case the
resistivity relative to its isotropic limit reads

ρ

ρ|a=0

=
1− a2

1 + a 2
γ1+γ2

. (3.10)

Fig. 3.2(b) shows that although minority carriers give a negative contribution to
the current for a < a∗, the total current is always positive as required by the
stability criterion [80].
In the uncompensated case (γs 6= 1) the competition between the two anisotropy

effects, the usual enhancement of the resistivity due to backscattering and the
reduction due to anisotropic scattering causes a maximum of ρ/ρ0 as a function
of a at a = a∗.
Consistent with previous investigations [54] we find that in compensated e-h

systems ρ/ρ0 exhibits an enhancement up to a factor of two due to the usual
backscattering. The enhancement by a factor two can be achieved for a → −1,
which corresponds to pure backscattering, as discussed in section 3.3. In un-
compensated e-h systems, however, anisotropy of the scattering causes a strong
reduction of the resistivity below a = a∗, which occurs already at weak anisotropy,
if the mismatch between the FS radii is large.

3.4.2 Magnetoresistance and Hall coefficient

As discussed in section 2.4, in the presence of a magnetic field it is useful to write
Λsk =

∑∞
n=0 Λ

(n)
sk , where Λ

(n)
sk is of order n in the magnetic field B. Standard

analysis [73] then shows that for Λ
(1)
sk one has to replace vsk in the solution for

Λ
(0)
sk , Eq. (3.6), by ωs z × Λ

(0)
sk , where ωs = sgn(vsk · k) (eB/~) vs/ks. Following
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3.4 Transport coefficients

this analysis and again assuming Ns = Ns̄ for simplicity, we obtain

Λ
(1)
sk =

τs
1− a2

(
ωs z×Λ

(0)
sk + η aωs̄ z×Λ

(0)

s̄k̄

)

=
( τs

1− a2

)2

z× vsk γs̄
[
(γs + a)ωs + a(1 + γsa)ωs̄

]
, (3.11)

where we have used that Λ
(0)

s̄k̄
= Λ

(0)
sk η (1 + γsa)/(γs + a) as shown by Eq. (3.6).

The solution for Λ
(2)
sk is obtained from Eq. (3.11) by increasing the superscript

indices by one, which leads to

Λ
(2)
sk = −

( τs
1− a2

)3

vsk γs̄
[
(γs + a)ω2

s + a(1 + γsa)ωsωs̄

+ a(1 + γsa)ω2
s̄ + a2(a+ γs)ωsωs̄

]
. (3.12)

The total MFP determines the conductivity tensor

σij = e2
∑

sk

Ns visk
∑

n

Λ
(n)j
sk , (3.13)

which in turn determines the resistivity and the Hall coefficient in the standard
way [74]. The expressions in terms of the anisotropy parameter a read

RH

RH |a=0

=
(1 + γ2

s )
2 [
γs (a+ γs)

2 + ηγαs (1 + aγs)
2]

(1 + 2aγs + γ2
s )

2 (γ3
s + ηγαs )

, (3.14)

∆ρ

∆ρ|a=0

=
(
1 + γ2

s

)2

×
[
−η (a+ γs)

2 + 2γαs (a+ γs) (1 + aγs)− ηγ2α
s (1 + aγs)

2]

(1− a2) (1 + 2aγs + γ2
s )

2 [2γ1+α
s − η (γ2

s + γ2α
s )]

, (3.15)

where the magnetoresistance is defined as ∆ρ ≡ [ρ(B) − ρ(0)]/ρ(0) and α ≡
1/(d− 1). Note that the results in Eqs. (3.14) and (3.15) differ from those in Ref.
[17] where some vertex corrections for Λ

(1)
sk and Λ

(2)
sk were neglected.

The results for the electron-hole case are shown in Fig. 3.4. Most interestingly,
in the presence of a magnetic field we encounter a second characteristic anisotropy

a∗∗ ≡ − γs + γαs
1 + γα+1

s

≤ a∗, (3.16)

at which the Hall coefficient and the magnetoresistance show a maximum and a
minimum as a function of a, respectively. To understand the significance of the
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3 Negative transport times due to anisotropic interband scattering
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Figure 3.4: Hall coefficient (a) and magnetoresistance (b) for d = 2 as a func-
tion of a and γs, in units of the isotropic limits, ∆ρ0 ≡ ∆ρ|a=0 and
RH,0 ≡ RH |a=0. At the characteristic anisotropy a∗∗ (black-white
dashed) the Hall coefficient has a maximum as a function of a. The
magnetoresistance has a minimum at a∗∗ with zero magnetoresistance.
Results for 3D are qualitatively similar.

anisotropy a∗∗, it is useful to consider the deflection angle φs, i.e., the angle by
which the electron on the FS s is deflected due to the magnetic field. This is easily
achieved by noting that without the magnetic field the MFP reads Λ

(0)
sk , while in

the presence of a magnetic field the MFP reads Λ
(0)
sk + Λ

(1)
sk to leading order in B,

where Λ
(0)
sk is parallel to k and, according to Eq. (3.11), Λ

(1)
sk is parallel to z× k.

This leads to

φs = arctan
(z× k) ·Λ(1)

sk

k ·Λ(0)
sk

. (3.17)

The significance of the anisotropy a∗∗ is that for a = a∗∗ the deflection angles on
both FSs are equal,

φs|a=a∗∗ = φs̄|a=a∗∗ , (3.18)

which can be easily verified using the results for Λ
(0)
sk and Λ

(1)
sk . Equal deflection

angles are possible because one of the transport times is negative. Otherwise, if
the transport times were both positive, the deflection angles would have different
signs.

In a conventional electron-hole system with positive transport times, deflection
angles with different signs lead to a reduced Hall coefficient compared to the Hall
coefficient of a single-carrier system with otherwise comparable parameters. On
the other hand, the magnetoresistance of a conventional electron-hole system is
finite, while it is zero for a single-carrier system [74] because the absolute value of
the total current does not change in the magnetic field.
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3.5 Conclusions

In an electron-hole system with anisotropic scattering and a ≈ a∗∗, the behavior
of the Hall coefficient and magnetoresistance is qualitatively the same as that of a
single-carrier system: The Hall coefficient is enhanced while the magnetoresistance
is reduced. We can understand this by noting that at a = a∗∗ the deflection angles
of both carriers are equal and the system thus behaves like a single-carrier system
in a magnetic field.
A surprisingly small magnetoresistance in comparison to the Hall coefficient

has been observed in iron pnictides [3], which might be a signature of negative
transport times. In contrast to Ref. [17], here we find the magnetoresistance to
be positive over the entire parameter range, in agreement with the experiments.

3.5 Conclusions

In conclusion, we have found that anisotropic single-particle scattering between
electron and hole FSs causes the transport times to deviate dramatically from the
lifetime. In particular, anisotropic scattering can lead to negative transport times
for the minority carriers. The degree of anisotropy required for this decreases
for increasing ratio between the size of the FSs. This effect does not depend on
a particular microscopic origin of the anisotropic scattering and is distinct from
carrier drag due to the two-particle electron-hole interaction [81, 82].
The most striking signatures of negative transport times are the enhanced Hall

coefficient and zero magnetoresistance. Close to perfect nesting, negative trans-
port times are restricted to the limit of strong scattering anisotropy and thus
should only become evident in the transport just above the excitonic instability,
e.g., close to the SDW transition in iron pnictides. It is encouraging that in the
pnictides the magnetoresistance is rather small [3], while the Hall coefficient is
strongly enhanced close to the SDW transition [4, 85], consistent with our predic-
tions.
For imperfect nesting the effects could also be visible at weaker scattering

anisotropy. One can speculate that the broad maximum [5, 86] in the Hall coeffi-
cient in LiFeAs and LiFeP as a function of temperature is related to the maximum
at a∗∗, as these materials have rather poor nesting and γs could differ significantly
from unity.
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4 Transport in multiband systems
with hot spots on the Fermi
surface

In the previous chapter we have explored the effect of anisotropic interband scat-
tering within a simple model of two concentric FSs with centers separated by Q.
Because of rotational symmetry of this model we could find an exact solution of
the Boltzmann equation. In this chapter we will make the model more realistic
with regard to iron pnictides by breaking the rotational symmetry of the FSs.
This will lead to the revision of the concept of hot spots. In particular, we will
find that this concept, developed for one-band systems, is not transferable to the
case of iron pnictides. Parts of this chapter have been published in Ref. [18].

4.1 Introduction

In real materials such as iron pnictides, the distortion of the FSs from a perfectly
circular shape can lead to the emergence of the so-called hot and cold regions on
the FS, which can be understood in the following way: Consider the model of the
previous chapter with two FSs of nearly equal radii and a scattering rate peaked
at momentum transfer Q. Now let us distort one of the 2D (3D) FSs such that its
shape becomes elliptical (ellipsoidal). In 2D (3D) four points (two lines) emerge
on each of the FSs such that each of these points (lines) can be connected to a
point (line) on the other FS by Q. These are the so-called hot spots (hot lines)
[14, 87]. In the hot regions around these states, scattering is particularly strong,
while in the cold regions not connected by Q the scattering rate is lower.
To understand the transport, one can think of different parts of the FS as

parallel connected resistors. In particular, for a FS with hot and cold regions, one
can assume two parallel resistors with high and low resistivity, respectively. Since
the total resistivity is set by the resistor with lower resistivity, one can conclude
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4.2 Model

that transport is dominated by the cold regions, while the hot regions are said to
be “short circuited” by the cold regions.
The successful concept of hot and cold regions has been developed in the context

of cuprates and heavy-fermion materials [14, 87]. This concept was implicitly
assumed to hold also for the iron pnictides [3, 53, 58, 88]. An analysis of the
lifetimes of excited electrons close to the FSs seems to support this picture [84].
The pnictides indeed show hot and cold regions with short and long lifetimes,
respectively. Hence, one is led to assume that the states with short lifetimes do
not significantly contribute to the transport [87].
In the previous chapters we have already seen, however, that the relaxation times

might significantly deviate from the lifetimes in multiband systems. Indeed, in this
chapter we will find that the concept of hot and cold regions fails for the case of
iron pnictides. In contrast to the lifetimes, which are highly anisotropic around
the Fermi pockets with deep minima at the hot spots, the effective relaxation
times are found to be much more isotropic and to show no special features at
the hot spots. Our approximate analytical solution of the Boltzmann equation
[18] provides insight into the mechanism behind this effect: The anisotropy of
the spin-fluctuation scattering increases the effective relaxation time. At the hot
spots, the reduction of the relaxation time due to the stronger scattering is thus
compensated by the increase due to the higher anisotropy.

4.2 Model

I use an effective two-dimensional two-band model for the FeAs layers of the iron
pnictides [24]. The dispersions are given by

εhk = εh − µ+ 2th (cos kxa+ cos kya), (4.1)

εek = εe − µ+ te,1 cos kxa cos kya− te,2 ξ (cos kxa+ cos kya), (4.2)

where a is the iron-iron separation. I use a single-iron unit cell [34]. As illustrated
in Fig. 4.1, the band h gives rise to a nearly circular holelike Fermi pocket at the
center of the Brillouin zone, while the band e forms two electronlike pockets eX
and eY , displaced by QX = (0, π) and QY = (π, 0), respectively. The parameter ξ
controls the ellipticity (eccentricity) of the electron pockets. The chemical poten-
tial µ will in the following be determined from the given filling n, i.e., the number
of electrons per unit cell. Following Ref. [24], I take εh = −3.5 th, εe = 3 th,
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4 Transport in multiband systems with hot spots on the Fermi surface

eY ✓0

eX

eY

eX

eX

eY

eY

Figure 4.1: Illustration of the Fermi pockets and the scattering rates. An electron
in state |h, θ〉 is scattered to |eY, θ′〉. The yellow dots indicate the
maxima of the scattering rates W eY θ′

h θ and W eX θ′
h θ as functions of the

polar angle θ′ on the target Fermi pocket. The maxima stem from the
enhanced spin susceptibility (color gradient) for the scattering wave
vectors QX and QY . The thin dotted lines show the FSs displaced by
the nesting vectors. After Ref. [18].

te,1 = 4 th, and te,2 = th.

I assume that the transport behavior is dominated by the scattering off spin
fluctuations. The spin-fluctuation spectrum determines the scattering rate as
described in section 2.2. Within the considered model [24], I have investigated
the spin-fluctuation spectrum numerically using the random-phase approxima-
tion. It is more convenient, however, to model the susceptibility phenomeno-
logically, which allows to circumvent the numerically costly calculation of the
spin-fluctuation spectrum and to focus on the transport behavior alone. We shall
see that the precise form of the susceptibility is less important for transport if
vertex corrections are included than for transport calculations based purely on
lifetimes [84]. We use the Millis-Monien-Pines model [89], which has been used
to fit neutron-scattering experiments [60, 61] on iron pnictides, thus providing
realistic values for the parameters of the spin-fluctuation spectrum.

Together with momentum-independent impurity scattering, the scattering rate
from a single-electron state |b,k〉 to a state |b′,k′〉, where b = e, h denotes the
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4.2 Model

band, can be written as

W b′k′
bk = (1− δbb′)Wsf

pT (εbk − εb′k′)
(εbk − εb′k′)2 + ω2

k,k′
+ δ(εbk − εb′k′)Wimp, (4.3)

where Wsf and Wimp represent the overall strengths of the scattering due to spin
fluctuations and impurities, respectively, pT (x) is defined in Eq. (2.12) and

ωk,k′ ≡ ΓT

(
1 + ξ2

T min
Q

[(k− k′ + Q)2]
)
, (4.4)

where the four possible values for Q are ±QX and ±QY . With the Curie-Weiß
temperature −θCW < 0, the frequency scale and the correlation length are given
by [54, 60] ΓT = Γ0 (T + θCW)/θCW and ξT = ξ0

√
θCW/(T + θCW) exp(−T/T0),

respectively. Following Ref. [54], I here introduce an additional exponential de-
cay of ξT to account for the high-temperature behavior and choose T0 = 200 K.
According to Ref. [60], I take ξ0 = 10 a, θCW = 30 K and Γ0 = 4.2 meV. The
resulting form of ωk,k′ and thus of W b′k′

bk is only valid as long as the system does
not order antiferromagnetically or becomes superconducting.

The transport is governed by states on the Fermi pockets, denoted by |s, θ〉,
where s = h, eX, eY is the pocket index and θ is the polar angle along the
pocket, see Fig. 4.1. From Eq. (4.3) we see that in the low-temperature regime,
kBT � εF , the scattering rate is sharply peaked at εbk = εb′k′ so that scattering
is nearly elastic. I exploit this fact by writing

W b′k′
bkF
≈ δ(εb′k′ − εF )W s′θ′

sθ , (4.5)

where
W s′θ′
sθ ≡ (1− δbb′)Wsf

∫
dε

p(ε)

ε2 + ω2
k,k′

+Wimp (4.6)

is the effective elastic scattering rate between states on the Fermi pockets s, s′

belonging to the bands b, b′. Since the spin susceptibility and thusW b′k′
bk is strongly

momentum dependent, the elastic scattering rate W s′θ′
sθ strongly depends on the

angles θ and θ′, in particular on the change in angle upon scattering, θ′ − θ.
More specifically, the anisotropy stems from the spin-susceptibility peaks at the

wave vectors ±QX and ±QY . For an initial state |h, θ〉 with wave vector k, the
scattering rate has maxima for the final states |eX, θ̄eX〉 and |eY, θ̄eY 〉, defined as
the states on the Fermi pockets eX, eY with wave vectors closest to k + QX and
k + QY , respectively, see Fig. 4.1. Similarly, for an initial state |eX, θ〉 (|eY, θ〉)
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4 Transport in multiband systems with hot spots on the Fermi surface

with wave vector k, the scattering rate has a maximum for the final state |h, θ̄h〉
with wave vector closest to k−QX (k−QY ), where θ̄h ≈ θ since the hole pocket
is nearly circular.

The scattering rate summed over all final states determines the lifetime of the
state |s, θ〉 (cf. section 2.2),

τsθ =

(
1

2π

∑

s′

∫
dθ′Ns′θ′W

s′θ′
sθ

)−1

, (4.7)

where Nsθ = |dksθ/dθ|/|π~vsθ| is the state-resolved density of states (including
spin-degeneracy) introduced in section 2.5.

4.3 Analytical considerations

With the new parametrization of the Fermi-pocket states, the Boltzmann equation
(2.9) reads

Λsθ = ΛD
sθ + τsθ

∑

s′

∫
dθ′

2π
Ns′θ′W

s′θ′
sθ Λs′θ′ , (4.8)

where ΛD
sθ ≡ τsθ vsθ is the Drude MFP, defined in section 2.3. In this section I will

construct an approximate analytical solution of Eq. (4.8) that will fully account
for the scattering anisotropy. The assumptions I will make are such that the result
becomes exact in the limits of both strong and weak scattering anisotropy. Later,
we will compare the approximation to numerical calculations.

As illustrated in Fig. 4.1, the scattering rate W s′θ′
sθ understood as a function of

θ′ has a maximum at θ′ = θ̄s′ , which of course depends on θ. The small difference
between θ and θ̄s′ stems from the ellipticity of the electron pockets. We now
make two simplifying assumptions: (i) The peak of the scattering rate W s′θ′

sθ as a
function of θ′ is assumed to be symmetric around θ′ = θ̄s′ and (ii) the peak width
is small on the scale on which the Fermi velocity |vsθ| and the density of states
Nsθ vary. Both assumptions become exact in the limit of very strongly peaked
spin susceptibility, i.e., as the magnetic instability is approached. In the opposite
limit of isotropic scattering, the forward-scattering corrections cancel out so that
we also obtain the exact results.

On the right-hand side of Eq. (4.8), we split Λs′θ′ into contributions parallel
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4.3 Analytical considerations

and perpendicular to Λs′θ̄s′
,

Λs′θ′ =
|Λs′θ′ |
|Λs′θ̄s′

|
[
Λs′θ̄s′

cos ∆(s′, θ′, θ̄s′) + z×Λs′θ̄s′
sin ∆(s′, θ′, θ̄s′)

]
, (4.9)

where ∆(s′, θ′, θ̄s′) is the angle included by Λs′θ′ and Λs′θ̄′ . By virtue of the
assumptions (i) and (ii), the sine term drops out and we obtain

Λsθ = ΛD
sθ +

(
1− 1

2
δs,h

)∑

s′

as
′
sθ Λs′θ̄s′

, (4.10)

where
as
′
sθ ≡ (1 + δs,h) τsθ

∫
dθ′

2π
Ns′θ′W

s′θ′
sθ cos ∆(s′, θ′, θ̄s′) (4.11)

parametrizes the scattering anisotropy and in the following will be referred to
as the anisotropy parameter similar to chapter 3. The Kronecker symbols δs,h
appearing in Eqs. (4.10) and (4.11) ensure that as′sθ ∈ [0, 1] and that as′sθ → 1

corresponds to the limit of strong scattering anisotropy, W s′θ′
sθ ∝ δ(θ′ − θ̄s′), while

as
′
sθ → 0 gives the case of isotropic scattering, where the Drude result is recovered.

Iterating Eq. (4.10), we obtain Λ in terms of ΛD as a power series in the
anisotropy parameter. I now discuss the states appearing in this series. The zero-
order contribution to Λsθ is of course ΛD

sθ, the Drude result for the same state
|s, θ〉. The first-order term involves ΛD

s′θ̄s′
for the state |s′, θ̄s′〉. This is the final

state on the Fermi pocket s′ 6= s to which the initial state |s, θ〉 has the largest
scattering rate. Due to the ellipticity of the electron pockets, the shift of the
angle, θ̄s′ − θ, is always directed towards the closest hot spot, i.e., the intersection
of the Fermi pocket s with pocket s′ shifted by the appropriate vector Q. The
state appearing in the second-order term is the one reached from |s′, θ̄s′〉 with
the largest scattering rate, again shifted towards the closest hot spot. The states
appearing in all higher-order terms are obtained in the same way. The whole
process can be interpreted as an effective hopping of the electron along a sequence
of states towards the closest hot spot, as illustrated by Fig. 4.2. The effective
angular shift of the electrons along the Fermi line is due to the ellipticity of the
electron pockets and vanishes for a purely circular pocket. I will now neglect the
shift and focus on its effect in the next subsection.

Accordingly setting θ̄s′ = θ in Eq. (4.10), the MFPs for different θ decouple,
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4 Transport in multiband systems with hot spots on the Fermi surface

and we obtain

Λhθ =
ΛD
hθ + 1

2

(
aeXhθ ΛD

eXθ + aeYhθ ΛD
eY θ

)

1− 1
2

(
aeXhθ a

h
eXθ + aeYhθ a

h
eY θ

) , (4.12)

ΛeXθ = ΛD
eXθ + aheXθ Λhθ, (4.13)

ΛeY θ = ΛD
eY θ + aheY θ Λhθ. (4.14)

Since the anisotropy parameters as′sθ are the only parameters in the solution, apart
from the Drude MFPs ΛD

sθ, we will refer to these expressions as the anisotropy
approximation (AA). Clearly, for as′sθ 6= 0 the MFPs involve the Drude solutions of
all three Fermi pockets. This coupling between the pockets becomes stronger for
larger anisotropy parameters. Additionally, the denominator in Eq. (4.12), which
appears in all results, provides a factor that is larger than unity. In the anisotropic
limit, as′sθ → 1, the MFPs Λsθ of all three pockets at a certain angle θ become
equal and diverge. Thus, for strong anisotropy the MFP either of the holes or of
the electrons must be inverted relative to the Drude result ΛD

sθ = τsθ vsθ, which
corresponds to negative transport times, discussed in the previous chapter. We
will see in section 4.4.2 that inverted MPFs occur on the hole pocket due to the
dominance of states on the electron pockets.
Semiclassically, we can interpret our results as follows. The solution to the

Boltzmann equation describes a non-equilibrium steady state in which the accel-
eration of the electrons due to external forces is balanced by scattering. The MFP
of state |s, θ〉 can be understood as the displacement that an electron suffers until
its velocity vsθ is randomized by scattering. The lifetime τsθ is the mean time
between two scattering events. If the scattering is isotropic the velocity is ran-
domized after a single scattering event and the MFP thus reads τsθvsθ ≡ ΛD

sθ. On
the other hand, anisotropic scattering only partially randomizes the velocity so
that the effective relaxation time exceeds the lifetime τsθ, giving rise to multiple
scattering during the relaxation, see Fig. 4.2. The enhancement by the denomina-
tor in Eq. (4.12) accounts for this fact. In the extreme limit of as′sθ → 1, the factor
diverges, indicating that the velocities cannot relax at all and the MFPs become
infinite.

4.3.1 Angular shift towards the hot spot

Let us now focus on the correction to the MFP due to the angular shift towards the
hot spot for small ellipticities. For an estimate of the upper limit of the correction,
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Figure 4.2: Scattering of an electron initially in state |s, θ〉 between different pock-
ets towards the closest hot spot (red dot). The sequence of states
(black dots) is given by the maximum of the scattering rate. Their
decreasing contribution to the MFP of the original state |s, θ〉 is indi-
cated by the decreasing size of the dots. The effective angular shift of
the electronic state is denoted φθ,γ. After Ref. [18].

it is sufficient to consider only a single electron pocket. For simplicity we assume
a circular hole pocket with the Fermi wave number k and an elliptical electron
pocket described by the semi-major and semi-minor axis ka = k(1 − ε2)−1/4 and
kb = k(1 − ε2)1/4, respectively, where ε is the eccentricity of the ellipse. To focus
on the shift effect we assume constant anisotropy, as′sθ = a. For two Fermi pockets
and constant anisotropy, Eq. (4.10) takes the form

Λsθ = ΛD
sθ + aΛs̄θ̄, (4.15)

where h̄ = e, ē = h. Using simple trigonometry, we find that for the given
geometry, the difference between θ̄ and θ to leading order in the eccentricity ε

reads (ε4/16) sin 4θ. Iterating Eq. (4.15), we obtain the solution for the electron
pocket as

Λeθ =
∞∑

n=0

a2n
(
ΛD
eθn + aΛD

hθn

)
, (4.16)

with
θn = θn−1 +

ε4

16
sin 4θn−1 and θ0 = θ. (4.17)

The solution for the hole pocket follows immediately from Eqs. (4.15) and (4.16).
Replacing the discrete index n by a continuous variable, we obtain

Λeθ = − 2 ln a

1− a2

∫ ∞

0

dn a2n
(
ΛD
eθn + aΛD

hθn

)
+ R, (4.18)
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4 Transport in multiband systems with hot spots on the Fermi surface

with a correction R. By splitting the integration range into intervals [m,m + 1]

with integer m, one can easily show that

|R| ≤
∑

n

a2n
∣∣(ΛD

eθn + aΛD
hθn

)
−
(
ΛD
eθn+1

+ aΛD
hθn+1

)∣∣ , (4.19)

which is obviously of higher order in ε2 because of Eq. (4.17). Substituting n =

4 ln(1 + z)/ε4 we obtain

Λeθ =
1

1− a2

∫ ∞

0

dz γ

(
1

1 + z

)γ+1(
ΛD
eθ(z) + aΛD

hθ(z)

)
, (4.20)

with
γ ≡ 8

ln(1/a)

ε4
(4.21)

and
θ(z) ≡ 1

2
arctan [(z + 1) tan 2θ] . (4.22)

In the integral in Eq. (4.20), the factor γ [1/(1 + z)]γ+1 acts as a distribution
function which is normalized to unity and becomes a δ-function in the limit of zero
ellipticity, i.e., for γ →∞. Hence, the largest shifts are achieved for small values
of γ, which, according to Eq. (4.21), correspond to large scattering anisotropy and
large ellipticity.

The shift also depends on the position on the pocket. There is no shift at the hot
spots, θ = (2n− 1) π/4, and at the cold spots, θ = nπ/2. The largest shift can be
expected to occur between the hot and cold spots, in the vicinity of (2n− 1) π/8.

We can make further analytical progress by expanding the vector
(
ΛD
eθ(z) +

aΛD
hθ(z)

)
to linear order in θ(z). This is best justified if the total angular shift is

small, i.e., if we start with θ close to a hot spot. However, the total shift can never
be larger than π/4 so that the approximation always gives at least qualitatively
correct results for not excessive eccentricities. Equation (4.20) can then be written
as

Λeθ =
1

1− a2

(
ΛD
e,θ+φθ,γ

+ aΛD
h,θ+φθ,γ

)
, (4.23)

with the effective angular shift

φθ,γ =

∫ ∞

0

dz γ
( 1

1 + z

)γ+1

θ(z)− θ

∼= sin 4θ

32

ε4

ln(1/a)
+

sin 8θ

512

[
ε4

ln(1/a)

]2

+O
([

ε4

ln(1/a)

]3)
. (4.24)
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Figure 4.3: Effective angular shift φθ,γ for the state θ = π/8 as a function of ε2 for
different uniform anisotropies a. ε represents the eccentricity of the
electron pocket. The shift is directed towards the hot spot at θ = π/4,
hence the maximal value of φθ,γ/π is 1/8. Below the graph, the shape
of the electron pocket (solid line) corresponding to various values of ε2
is indicated. From Ref. [18].

In Fig. 4.3 we plot the angular shift at θ = π/8 for different anisotropies as a
function of the eccentricity squared, ε2. Realistic scattering anisotropies hardly
exceed the value a = 0.95 (see below), for which the shift is small up to ε2 ≈ 0.5.
Stronger ellipticities might, however, lead to significant corrections.

4.4 Results

To obtain quantitative results without approximations beyond the choice of the
model and the semiclassical transport theory, we calculate the scattering rate
given in Eq. (4.6) by numerical integration. Furthermore, we discretize the polar
angle θ, choosing 160 sites on each Fermi pocket. Taking more points does not
significantly change the results. The lifetimes given in Eq. (4.7) and the anisotropy
parameters from Eq. (4.11) are obtained by summation over the discrete sites.
For the calculation of the anisotropy parameter, the angle ∆(s′, θ′, θ) has been
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Figure 4.4: (a) Scattering rate at different temperatures for an electron in state
|h, π〉 on the hole pocket scattered to the state |eX, θ〉 on the electron
pocket eX, as a function of the final-state angle θ. (b) Temperature
dependence of the anisotropy parameter averaged over all angles θ for
the scattering rate shown in panel (a). The parameters have been set
to ξ = 1, n = 2.08, and Wimp/Wsf = 10−3. After Ref. [18].

set approximately to θ′ − θ. Finally, Eq. (4.8) is solved numerically by matrix
inversion. The numerical results will be compared to the AA, which is given by
inserting the lifetimes and the anisotropy parameters into Eqs. (4.12)–(4.14).

4.4.1 Scattering rate

Figure 4.4(a) shows the temperature dependence of the scattering rate for ξ = 1

andWimp/Wsf = 10−3. While at high temperatures the scattering rate is isotropic,
at lower temperatures a peak due to spin fluctuations develops corresponding to
scattering vectors close to QX or QY . The peak becomes sharper as the tem-
perature is lowered so that the scattering anisotropy increases. At very low tem-
peratures spin fluctuations freeze out and only the isotropic impurity scattering
remains so that the anisotropy vanishes again. In Fig. 4.4(b) we plot the anisotropy
parameter corresponding to the scattering rate shown in Fig. 4.4(a), averaged over
the Fermi pocket. It clearly exhibits the increase for decreasing temperature and
the final sharp downturn at very low temperatures. Note that in real pnictides this
low-temperature behavior will in most cases be preempted by antiferromagnetic or
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superconducting order, which are not described by our model spin susceptibility.

4.4.2 Hot-spot picture

In this subsection we will explore one of the most interesting results of this chapter.
Choosing T = 1 K and Wimp/Wsf = 0, we focus on the regime of strong spin
fluctuations with strong scattering anisotropy, where the difference between the
Drude and the full result is the most striking.
We consider the state-resolved conductivity averaged over the directions of the

electric field,

σsθ ≡ e2Nsθ
vxsθΛ

x
sθ + vysθΛ

y
sθ

2
, (4.25)

defined such that the total conductivity is σ =
∑

s

∫
(dθ/2π)σsθ. Figure 4.5 shows
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4 Transport in multiband systems with hot spots on the Fermi surface

the contributions σsθ resulting from the Drude approximation as well as from
the full numerical calculation. The two are completely different. Most promi-
nently, the hot-spot picture [3, 53, 58, 88] is no longer valid if forward-scattering
corrections are taken into account. As discussed above, the scattering off spin
fluctuations is strongest in the hot regions since the spin susceptibility is peaked
at QX and QY , see Fig. 4.1. Thus the lifetimes are shorter and the Drude MFP,
ΛD
sθ = τsθ vsθ are smaller. This is indeed reflected by the suppressed conductivity

in the hot regions shown in Figs. 4.5(a) and 4.5(b). However, no signatures of
hot regions are seen in the full results in Figs. 4.5(c) and 4.5(d). This is due to
the anisotropy of the scattering rate. In the hot regions, the anisotropy as

′
sθ is

enhanced relative to the cold regions which according to Eqs. (4.12)–(4.14) leads
to an enhancement of the MFP, as was discussed in section 4.3. Thus the reduc-
tion of the lifetimes is compensated by the enhanced scattering anisotropy and
the conductivity of the hot regions is comparable to that of other parts of the
pockets, i.e., the short-circuiting of the hot spots does not occur.

Figure 4.5 also shows that the holes contribute negatively to the total conductiv-
ity in the full calculation. This corresponds to negative transport times discussed
in chapter 3. For the set of parameters chosen in Fig. 4.5, the scattering anisotropy
averaged over all Fermi states is close to unity, 〈a〉θ = 0.96. As discussed in sec-
tion 4.3, such a huge anisotropy leads to a relaxation time that is much longer
than the lifetime. In effect, during the relaxation, an electron initially on the hole
pocket scatters multiple times between states on the hole pocket and states on the
electron pockets at nearly the same polar angle θ. The velocities on the electron
and hole pocket are nearly opposite. Since there are more states on the electron
pockets and, as we see in Fig. 4.5(a) and (b), the lifetime on the electron pocket
is larger, the electron spends the larger part of the relaxation time on the electron
pockets. The electron thus on average drifts in the opposite direction to what one
would get if it stayed on the hole pocket.

4.4.3 Transport coefficients

The transport coefficients can be obtained from the MFP. The conductivity tensor
is given by

σij = e2
∑

s

∫
dθ

2π
Nsθ v

i
sθ Λj

sθ, (4.26)
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while the thermoelectric tensor reads [90]

αij = −π
2k2
BT

3e

∂σij

∂µ
. (4.27)

We will focus on the resistivity

ρ =
1

σxx
, (4.28)

the Hall coefficient
RH =

σxy

(σxx)2B
, (4.29)

the Seebeck coefficient (thermopower)

S = −α
xx

σxx
, (4.30)

and the Nernst coefficient

N =
σxyαxx − σxxαxy

(σxx)2B
. (4.31)

We give the resistivity in units of

ρ0 ≡
~
e2

~Wsf

V0

× 10−2 (eV)2, (4.32)

where V0 is the volume of the unit cell, and the Nernst coefficient in units of

N0 ≡
V0

eρ0

× 10−5 V/K. (4.33)

For the scattering-strength ratio we choose in the following Wimp/Wsf = 10−3.

Comparison of approximations

Figure 4.6 shows the temperature dependence of the transport coefficients, com-
paring the full numerical results with the Drude approximation and with the AA.
We see that the Drude approximation results tend to coincide with the full calcu-
lation only at very high and very low temperatures, where the scattering is nearly
isotropic, see Fig. 4.4. In the temperature range with strong anisotropy (20–150K)
the deviations from the Drude approximation are huge. On the other hand, the
AA shows qualitative agreement with the full results over all temperatures and
for both ellipticities. The agreement is even quantitative for the resistivity. It

45



4 Transport in multiband systems with hot spots on the Fermi surface

⇠ = 1 ⇠ = 2

2

⇠ = 1 Resistivity Hall coefficient Seebeck coefficient Nernst coefficient

0
2
4
6
8

10
12

0 100 200 300 400

⇢
/
⇢
0

T (K)

0.01

0.1

1

0 30 60

0
2
4
6
8

10
12

0 100 200 300 400

⇢
/
⇢
0

T (K)

0.01

0.1

1

0 30 60

-300

-250

-200

-150

-100

-50

0

0 100 200 300 400

R
H

(V
0
/
e)

T (K)

-300

-250

-200

-150

-100

-50

0

0 100 200 300 400
R

H
(V

0
/
e)

T (K)

exact
AA

RTA

exact
AA

RTA

exact
AA

RTA

exact
AA

RTA

-3
-2
-1
0
1
2
3

0 100 200 300 400

S
(1

0
�

6
V

/K
)

T (K)

-3
-2
-1
0
1
2
3

0 100 200 300 400

S
(1

0
�

6
V

/K
)

T (K)

-100

-50

0

50

100

150

200

0 50 100 150 200

N
/
N

0

T (K)

-400

-300

-200

-100

0

100

200

0 50 100 150 200

N
/
N

0

T (K)

exact
AA

RTA

exact
AA

RTA

exact
AA

RTA

exact
AA

RTA

⇠ = 2

2

⇠ = 1 Resistivity Hall coefficient Seebeck coefficient Nernst coefficient

0
2
4
6
8

10
12

0 100 200 300 400

⇢
/
⇢
0

T (K)

0.01

0.1

1

0 30 60

0
2
4
6
8

10
12

0 100 200 300 400

⇢
/
⇢
0

T (K)

0.01

0.1

1

0 30 60

-300

-250

-200

-150

-100

-50

0

0 100 200 300 400

R
H

(V
0
/
e)

T (K)

-300

-250

-200

-150

-100

-50

0

0 100 200 300 400

R
H

(V
0
/
e)

T (K)

exact
AA

RTA

exact
AA

RTA

exact
AA

RTA

exact
AA

RTA

-3
-2
-1
0
1
2
3

0 100 200 300 400
S

(1
0
�

6
V

/K
)

T (K)

-3
-2
-1
0
1
2
3

0 100 200 300 400

S
(1

0
�

6
V

/K
)

T (K)

-100

-50

0

50

100

150

200

0 50 100 150 200

N
/
N

0

T (K)

-400

-300

-200

-100

0

100

200

0 50 100 150 200

N
/
N

0

T (K)

exact
AA

RTA

exact
AA

RTA

exact
AA

RTA

exact
AA

RTA

⇠ = 2

2

⇠ = 1 Resistivity Hall coefficient Seebeck coefficient Nernst coefficient

0
2
4
6
8

10
12

0 100 200 300 400

⇢
/
⇢
0

T (K)

0.01

0.1

1

0 30 60

0
2
4
6
8

10
12

0 100 200 300 400

⇢
/
⇢
0

T (K)

0.01

0.1

1

0 30 60

-300

-250

-200

-150

-100

-50

0

0 100 200 300 400

R
H

(V
0
/
e)

T (K)

-300

-250

-200

-150

-100

-50

0

0 100 200 300 400
R

H
(V

0
/
e)

T (K)

exact
AA

RTA

exact
AA

RTA

exact
AA

RTA

exact
AA

RTA

-3
-2
-1
0
1
2
3

0 100 200 300 400

S
(1

0
�

6
V

/K
)

T (K)

-3
-2
-1
0
1
2
3

0 100 200 300 400

S
(1

0
�

6
V

/K
)

T (K)

-100

-50

0

50

100

150

200

0 50 100 150 200

N
/
N

0

T (K)

-400

-300

-200

-100

0

100

200

0 50 100 150 200

N
/
N

0

T (K)

exact
AA

RTA

exact
AA

RTA

exact
AA

RTA

exact
AA

RTA

⇠ = 2

2

⇠ = 1 Resistivity Hall coefficient Seebeck coefficient Nernst coefficient

0
2
4
6
8

10
12

0 100 200 300 400

⇢
/
⇢
0

T (K)

0.01

0.1

1

0 30 60

0
2
4
6
8

10
12

0 100 200 300 400

⇢
/
⇢
0

T (K)

0.01

0.1

1

0 30 60

-300

-250

-200

-150

-100

-50

0

0 100 200 300 400

R
H

(V
0
/
e)

T (K)

-300

-250

-200

-150

-100

-50

0

0 100 200 300 400

R
H

(V
0
/
e)

T (K)

exact
AA

RTA

exact
AA

RTA

exact
AA

RTA

exact
AA

RTA

-3
-2
-1
0
1
2
3

0 100 200 300 400

S
(1

0
�

6
V

/K
)

T (K)

-3
-2
-1
0
1
2
3

0 100 200 300 400

S
(1

0
�

6
V

/K
)

T (K)

-100

-50

0

50

100

150

200

0 50 100 150 200

N
/
N

0

T (K)

-400

-300

-200

-100

0

100

200

0 50 100 150 200

N
/
N

0

T (K)

exact
AA

RTA

exact
AA

RTA

exact
AA

RTA

exact
AA

RTA

⇠ = 2

Drude

Drude Drude

Drude

Resis- 
tivity

Hall 
coeff.

2

⇠ = 1 Resistivity Hall coefficient Seebeck coefficient Nernst coefficient

0
2
4
6
8

10
12

0 100 200 300 400

⇢
/
⇢
0

T (K)

0.01

0.1

1

0 30 60

0
2
4
6
8

10
12

0 100 200 300 400

⇢
/
⇢
0

T (K)

0.01

0.1

1

0 30 60

-300

-250

-200

-150

-100

-50

0

0 100 200 300 400

R
H

(V
0
/
e)

T (K)

-300

-250

-200

-150

-100

-50

0

0 100 200 300 400

R
H

(V
0
/
e)

T (K)

exact
AA

RTA

exact
AA

RTA

exact
AA

RTA

exact
AA

RTA

-3
-2
-1
0
1
2
3

0 100 200 300 400

S
(1

0
�

6
V

/K
)

T (K)

-3
-2
-1
0
1
2
3

0 100 200 300 400

S
(1

0
�

6
V

/K
)

T (K)

-100

-50

0

50

100

150

200

0 50 100 150 200

N
/
N

0

T (K)

-400

-300

-200

-100

0

100

200

0 50 100 150 200

N
/
N

0

T (K)

exact
AA

RTA

exact
AA

RTA

exact
AA

RTA

exact
AA

RTA

⇠ = 2

Drude

2

⇠ = 1 Resistivity Hall coefficient Seebeck coefficient Nernst coefficient

0
2
4
6
8

10
12

0 100 200 300 400

⇢
/
⇢
0

T (K)

0.01

0.1

1

0 30 60

0
2
4
6
8

10
12

0 100 200 300 400

⇢
/
⇢
0

T (K)

0.01

0.1

1

0 30 60

-300

-250

-200

-150

-100

-50

0

0 100 200 300 400

R
H

(V
0
/
e)

T (K)

-300

-250

-200

-150

-100

-50

0

0 100 200 300 400

R
H

(V
0
/
e)

T (K)

exact
AA

RTA

exact
AA

RTA

exact
AA

RTA

exact
AA

RTA

-3
-2
-1
0
1
2
3

0 100 200 300 400

S
(1

0
�

6
V

/K
)

T (K)

-3
-2
-1
0
1
2
3

0 100 200 300 400

S
(1

0
�

6
V

/K
)

T (K)

-100

-50

0

50

100

150

200

0 50 100 150 200

N
/
N

0

T (K)

-400

-300

-200

-100

0

100

200

0 50 100 150 200

N
/
N

0

T (K)

exact
AA

RTA

exact
AA

RTA

exact
AA

RTA

exact
AA

RTA

⇠ = 2

Drude2

⇠ = 1 Resistivity Hall coefficient Seebeck coefficient Nernst coefficient

0
2
4
6
8

10
12

0 100 200 300 400

⇢
/
⇢
0

T (K)

0.01

0.1

1

0 30 60

0
2
4
6
8

10
12

0 100 200 300 400

⇢
/
⇢
0

T (K)

0.01

0.1

1

0 30 60

-300

-250

-200

-150

-100

-50

0

0 100 200 300 400

R
H

(V
0
/
e)

T (K)

-300

-250

-200

-150

-100

-50

0

0 100 200 300 400

R
H

(V
0
/
e)

T (K)

exact
AA

RTA

exact
AA

RTA

exact
AA

RTA

exact
AA

RTA

-3
-2
-1
0
1
2
3

0 100 200 300 400

S
(1

0
�

6
V

/K
)

T (K)

-3
-2
-1
0
1
2
3

0 100 200 300 400

S
(1

0
�

6
V

/K
)

T (K)

-100

-50

0

50

100

150

200

0 50 100 150 200

N
/
N

0

T (K)

-400

-300

-200

-100

0

100

200

0 50 100 150 200

N
/
N

0

T (K)

exact
AA

RTA

exact
AA

RTA

exact
AA

RTA

exact
AA

RTA

⇠ = 2

Drude

2

⇠ = 1 Resistivity Hall coefficient Seebeck coefficient Nernst coefficient

0
2
4
6
8

10
12

0 100 200 300 400

⇢
/
⇢
0

T (K)

0.01

0.1

1

0 30 60

0
2
4
6
8

10
12

0 100 200 300 400

⇢
/
⇢
0

T (K)

0.01

0.1

1

0 30 60

-300

-250

-200

-150

-100

-50

0

0 100 200 300 400

R
H

(V
0
/
e)

T (K)

-300

-250

-200

-150

-100

-50

0

0 100 200 300 400

R
H

(V
0
/
e)

T (K)

exact
AA

RTA

exact
AA

RTA

exact
AA

RTA

exact
AA

RTA

-3
-2
-1
0
1
2
3

0 100 200 300 400

S
(1

0
�

6
V

/K
)

T (K)

-3
-2
-1
0
1
2
3

0 100 200 300 400

S
(1

0
�

6
V

/K
)

T (K)

-100

-50

0

50

100

150

200

0 50 100 150 200

N
/
N

0

T (K)

-400

-300

-200

-100

0

100

200

0 50 100 150 200

N
/
N

0

T (K)

exact
AA

RTA

exact
AA

RTA

exact
AA

RTA

exact
AA

RTA

⇠ = 2

Drude

Seebeck 
coeff.

Nernst 
coeff.

Figure 4.6: Temperature dependence of transport coefficients for filling n = 2.05
and ellipticity parameters ξ = 1 and ξ = 2, calculated with three
different methods: Numerically (“exact”), semianalytically within the
anisotropy approximation (“AA”) of Eqs. (4.12)–(4.14), and within the
Drude approximation, Eq. (2.15), which consists of neglecting vertex
corrections. After Ref. [18].
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is the worst for the Nernst coefficient N but even here the positive and negative
extrema in N are predicted by the AA close to the correct temperatures. For
ξ = 1 the AA is slightly better than for ξ = 2 since the former value leads to
less eccentric electron pockets. The close agreement between the AA and the full
numerical results shows that the transport behavior does not sensitively depend
on the precise details of the anisotropic scattering and thus justifies our use of the
approximate susceptibility in Eq. (4.3).

Both the Drude approximation and the full results show strong temperature
dependence. For the Drude approximation, this can be traced back to the non-
trivial geometry of the Fermi pockets leading to the emergent hot-spot structure
for temperatures around 100 K due to the high scattering anisotropies for this
temperatures (cf. Fig. 4.4). However, as discussed in subsection 4.4.2, forward-
scattering corrections invalidate the hot-spot picture for strong anisotropies. The
temperature dependence of the Drude approximation results thus stems from the
wrong origin. The true temperature dependence can be understood on the basis
of the AA, which gives qualitatively correct results. Here, it is due to the strong
temperature dependence of the anisotropy parameters as′sθ shown in Fig. 4.4(b),
i.e., it relies on the corrections to the Drude approximation in Eqs. (4.12)–(4.14).

The differences between the Drude approximation and the full results for the
resistivity and the Hall coefficient are consistent with our considerations in chapter
3 for two circular Fermi pockets. In the resistivity, we note that the expected
enhancement and reduction for high and low scattering anisotropies, respectively,
lead to a more pronounced change of slope compared to the Drude approximation.

The enhancement of the Hall coefficient discussed in chapter 3 is also present
[17, 54]. However, the extremum of the Hall coefficient in Fig. 4.6 is due to the
maximum in the scattering anisotropy (cf. Fig. 4.4) and is thus of different origin
than in chapter 3, where a maximum in the Hall coefficient was predicted for the
case that the anisotropy crosses a characteristic anisotropy level a∗∗. We do not
see any signatures of such a crossing in the present results.

For the thermoelectric effects, Fig. 4.6 shows that the Drude approximation
results are even qualitatively incorrect, with the Seebeck and Nernst coefficients
showing the wrong sign in the temperature range with strong scattering anisotropy.
According to Eqs. (4.27) and (4.30), the Seebeck coefficient S is proportional to
∂ lnσxx/∂µ = −∂ ln ρ/∂µ. In the Drude approximation, it stems from the shift
of the hot spots with the chemical potential, i.e., with doping. In the full results
and the AA, it is instead due to the change in the anisotropy parameters as′sθ
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4 Transport in multiband systems with hot spots on the Fermi surface

with the chemical potential. Figure 4.6 shows that for the chosen parameters,
the two effects contribute to S with opposite sign. The full results for the Nernst
coefficient N change sign between the ellipticities ξ = 1 and ξ = 2. This effect is
missed by the Drude approximation. We return to the Nernst coefficient below.
Qualitative differences between the Drude approximation and the full solution

of the Boltzmann equation have also been reported for single-band cuprate models
with strongly anisotropic scattering [13, 90]. The physics discussed here, including
the inverted MFP of minority carriers and the contribution of hot spots to the
transport, is qualitatively different though. These novel effects rely on the presence
of multiple bands and Fermi pockets.

Doping dependence

We now turn to the doping dependence of the transport coefficients. Figures
4.7(a)–(d) show the full numerical solutions at different fillings, while Fig. 4.7(e)
shows the conductivity of states on Fermi pockets (cf. Fig. 4.5) at the two temper-
atures T = 100 K and T = 400 K with strong and weak scattering anisotropy, re-
spectively. Note that the conductivity of the hole pocket is negative for T = 100 K

and n & 1.99, i.e., towards the electron-doped side. On the hole-doped side the
Drude MFPs of the holes is larger and, according to Eqs. (4.12)–(4.12), higher
scattering anisotropy is required to invert the full MFP. The anisotropy, however,
is low due to the large discrepancy in size between the electron and hole pockets.
At high temperatures, the transport coefficients all show a smooth doping de-

pendence resulting from the change in the FSs and velocities in the presence
of mostly isotropic scattering. In the intermediate temperature range, where
anisotropic scattering is strong, this is overlaid by nontrivial doping dependence
due to the forward-scattering corrections.
The resistivity around T ≈ 100 K is largest for intermediate fillings, for which

the Fermi pockets are well nested. This is because the narrow peaks in the spin
susceptibilities at QX and QY lead to efficient scattering only for nested Fermi
pockets. The inefficiency of anisotropic scattering for small and large n causes a
rapid decrease in the resistivity with doping, as shown in the inset in Fig. 4.7(a).
Note that the relative change in ρ with doping is much larger here than at high
temperatures. Since the Seebeck coefficient S is proportional to ∂ lnσxx/∂µ =

−∂ ln ρ/∂µ = −ρ−1∂ρ/∂µ, it is sensitive to this relative change in ρ with µ or n
and is, therefore, strongly enhanced in the intermediate temperature range with
strong scattering anisotropy, as Fig. 4.7(c) clearly shows.
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Figure 4.7: (a) Resistivity, (b) Hall coefficient, (c) Seebeck coefficient, and (d)
Nernst coefficient as functions of temperature for different fillings n.
(e) State-resolved conductivity (in arbitrary units) for T = 100 K and
T = 400 K for all fillings considered. Note the different color scales
used in different panels. From Ref. [18].
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4 Transport in multiband systems with hot spots on the Fermi surface

For the Hall coefficient RH , Fig. 4.7(b), one would naively expect the largest
and smallest values for the most strongly hole-doped and electron-doped cases,
respectively, since electrons and holes contribute with opposite signs. This is
indeed the case at T ≈ 400 K, where the scattering is nearly isotropic and no
negative conductivities occur. At T ≈ 100 K, however, Fig. 4.7(b) shows a strong
negative enhancement of RH for intermediate filling. According to Fig. 4.7(e), the
contribution of the holes to the total conductivity is negative in this range. In
the semiclassical picture this means that the holes drift in the same direction as
the electrons, reducing the charge current. Irrespective of that, the magnetic field
deflects the holes and the electrons in the same direction. Hence, the inverted
sign of the hole contribution reduces the conductivity without changing the Hall
voltage. This gives rise to an enhancement of the Hall coefficient defined as the
Hall voltage relative to the charge current.
The Nernst coefficientN plotted in Fig. 4.7(d) is highly sensitive to small doping

changes and also, as is evident from Fig. 4.6, to changes in the band parameters.
Equations (4.27)–(4.29) and (4.31) show that

N =
3e

π2k2
BT

∂

∂µ

RH

ρ
=

3e

π2k2
BT

∂n

∂µ

∂

∂n

RH

ρ
. (4.34)

The Nernst coefficient is thus sensitive to the nonmonotonic doping dependence
of both ρ and RH . For the cases we have considered, the contributions from
ρ and RH usually counteract each other. The complicated behavior of N , for
example the different sign of N for n = 2.05 compared to the other fillings, is thus
due to the quantitative competition of the doping dependences of ρ and RH and
not to any clear qualitative features in the FSs or the scattering. This suggests
that the other coefficients might be more advantageous as probes of the electronic
system. However, the detailed comparison of experimental transport coefficients
and calculations for realistic models remains work for the future.

4.5 Conclusions

In this chapter we have found that the significant contribution of hot spots to the
transport and the occurrence of negative conductivity contributions are the main
features that distinguish the transport properties of pnictides from the previously
considered one-band systems with similarly anisotropic scattering due to spin fluc-
tuations [13, 14, 87]. This is in accordance with the differences found in transport
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4.5 Conclusions

measurements. Some of the transport coefficients calculated in this chapter show
qualitative agreement with experiments [3, 58, 88, 91–95]. However, calculations
of transport coefficients for more realistic pnictide models are necessary to allow
quantitative predictions.
The most surprising result of this chapter is that the hot spots are not short

circuited by the cold regions of the Fermi pockets even for very strong scattering,
which is in stark contrast to the situation in cuprates and heavy fermions [14, 87].
The enhanced scattering rate in the hot regions indeed leads to short lifetimes
in the hot regions, but this effect is balanced by the enhanced MFP due to the
anisotropic scattering. This breakdown of the concept of hot and cold regions is
not found in a simple Drude approximation neglecting vertex corrections. In the
next chapter we will see that in the nematic phase the unusual contribution of hot
spots can explain the strong resistive anisotropy.
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5 Resistive anisotropy in the
nematic phase of iron pnictides

In this chapter we will consider the resistive anisotropy in the nematic phase
of iron pnictides. The obtained results will offer insights into the origin of the
nematic phase, which is currently one of the most intensively discussed topics in
the field of high-Tc superconductivity [33, 38]. We will find that scattering due to
spin fluctuations can explain the characteristic behavior of the anisotropy upon
doping and annealing of samples. The unusual contribution of hot spots, which
I have discussed in the previous chapter, turns out to be a crucial ingredient to
explain the resistive anisotropy. Parts of this chapter have been published in Ref.
[19].

5.1 Introduction

The nematic phase transition occurs at temperatures Ts above or coinciding with
the magnetic ordering temperature TN , at which the SDW state with ordering
vector QX = (π, 0) or QY = (0, π) is established (cf. the schematic phase diagram
in Fig. 1.2(a)). Let the corresponding order parameters be ∆X and ∆Y . The
nematic phase found for TN < T < Ts is characterized by a broken rotational
symmetry between the x- and y-directions but no magnetic order, i.e., 〈∆X,Y 〉 = 0.
It is generally believed that the nematic state arises from electronic correlations
[2]. A careful analysis within the Ginzburg-Landau theory of the terms in the free
energy which are biquadratic in the two magnetic order parameters shows that the
system might be unstable towards a state with broken symmetry of the magnetic
fluctuation spectrum [37]. The nematic order parameter is thus φ ∝ 〈∆2

X〉−〈∆2
Y 〉.

The broken symmetry of magnetic fluctuations in the nematic phase has recently
been observed experimentally [62]. However, it is still under debate whether the
primary driving force of the nematic instability are magnetic or orbital fluctuations
[37, 45, 96–98].
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5.1 Introduction

The principal experimental signature of the electronic nature of the nematic
phase is the pronounced difference between the resistivities along the x- and y-
directions, ∆ρ ≡ (ρy − ρx)/ρx [2, 58, 99–101]. Understanding the origin of the
resistive anisotropy should offer crucial insights into the origin of the nematicity.
Two scenarios are debated: (i) the scattering off anisotropic impurity states [99,
102–105] and (ii) the scattering off fluctuating collective excitations with spectrum
reflecting the underlying nematicity [19, 53, 58].

The existing descriptions of the resistive anisotropy due to spin fluctuations
[53], i.e., within scenario (ii), are restricted to the limit of weak spin-fluctuation
scattering compared to isotropic impurity scattering, although the former is likely
stronger than the latter, except at very low temperatures when the spin fluctua-
tions are frozen out [17, 18, 54, 85, 106]. Naturally, this limit is only compatible
with small values of ∆ρ, since the dominant impurity part leads to isotropic resis-
tivity. Though in disagreement with the huge positive anisotropy up to ∆ρ ≈ 0.5

observed in experiments on electron-doped samples [2, 99], the theory correctly
predicts negative ∆ρ for hole-doped samples [58].

Within scenario (i), the much larger ∆ρ in electron-doped Ba(Fe1−xCox)2As2 [2]
compared to hole-doped Ba1−xKxFe2As2 [58, 101] is explained as a consequence of
the stronger scattering off Co dopands placed within the iron plane [99, 102, 105].
The observed anisotropic impurity states are all elongated in the x-direction, hence
giving a larger scattering cross section in the y-direction [102]. The negative ∆ρ

measured for hole-doped samples then arises due to details of the band struc-
ture [105]. The dependence of ∆ρ on the degree of disorder is controversial: some
experiments show, in agreement with scenario (i), a reduction of ∆ρ upon sample
annealing, which is supposed to lower the degree of disorder [99], while others
report a much weaker disorder dependence [100].

In this chapter, we consider scenario (ii) with spin-fluctuation scattering of
arbitrary strength. For spin-fluctuation and isotropic impurity scattering of com-
parable strength, we will reproduce both the small negative ∆ρ for hole-doped
samples and the large positive ∆ρ in electron-doped samples. We also show that
the reduction of ∆ρ in electron-doped samples upon annealing is consistent with
the spin-fluctuation scenario. In a nutshell, our results follow from the role of
the spin-fluctuation scattering strength in controlling the size of the Fermi-surface
regions that contribute to the resistive anisotropy.
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5 Resistive anisotropy in the nematic phase of iron pnictides

Figure 5.1: Hole (h) and electron (eX and eY ) Fermi pockets of the two-band
model. In the nematic phase, scattering between h and eX is stronger
than between h and eY, as indicated by the arrows markedWsf , giving
rise to the resistive anisotropy. As discussed in the main text, the
electron pockets can be divided into regions that contribute positively
(red) or negatively (blue) to the anisotropy, depending on the direction
of the Fermi velocity. States on each FS are parametrized by the angle
θ to the x-axis with respect to the center of the pocket. From Ref.
[19].

5.2 Model

The band structure we will use is based on the effective two-dimensional model
introduced in chapter 4. However, the increased (decreased) iron-iron separation
along the x- (y-) axis in the nematic state with φ > 0 reduces (enlarges) the
onsite energy of the iron dxz (dyz) orbital [107, 108]. To model the resulting
changes in our band structure, we follow Ref. [33] and reduce the size of the eX
pocket, enlarge the size of the eY pocket, and elongate the hole pocket along the
x direction. This distortion is motivated by the orbital composition of the Fermi
pockets [109]. We implement the distortion by introducing a parameter δ > 0 in
the dispersion relations in Eqs. (4.1) and (4.2) for the two bands h and e:

εhk = εh − µ+ 2th
[
(1− δ) cos kx + (1 + δ) cos ky

]
, (5.1)

εek = εe − µ+ te,1 cos kx cos ky − te,2 ξ
[
(1 + δ) cos kx + (1− δ) cos ky

]
, (5.2)
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5.2 Model

where length is measured in units of the undistorted iron-iron separation. We
use the same dispersion parameters as in Ref. [24] and fix the ellipticity of the
electron pockets by choosing ξe = 2. The Fermi pockets are sketched in Fig. 5.1.
The validity of the minimal model for the case of 122 pnictides was discussed in
Ref. [58].

We assume transport to be dominated by scattering off spin fluctuations and
isotropic impurities. We use a phenomenological model for the susceptibility in the
nematic phase that has been employed for calculations in the impurity-dominated
regime [53, 60, 61]. Similar to chapter 4, we introduce a total elastic scattering
rate between states |s, θ〉 on the Fermi pockets, parametrized by the pocket index
s and the angle θ, cf. Fig. 4.1(b),

W s′θ′
sθ ≡ (1− δbb′)Wsf α

∫
dε′ ε′

coth ε′
2kBT

− tanh ε′
2kBT

ε′2 + ω2
q

+Wimp, (5.3)

where ωq = Γ
(
ξ−2 ∓ φ+ q2

x(1± η) + q2
y(1∓ η)

)
with q = k(s, θ, εF )− k(s′, θ′, ε′),

where the wave vectors are measured from the center of the corresponding Fermi
pocket. Further, b (b′) is the band giving rise to the Fermi pocket s (s′), ξ is the
correlation length in the isotropic phase, Γ is the Landau damping parameter,
and η is the in-plane anisotropy of the correlation length. The upper (lower) sign
corresponds to the scattering between the hole pocket and the electron pocket
eX (eY ). Wsf and Wimp represent the overall strengths of the scattering off spin
fluctuations and impurities, respectively, and the numerical factor α = 10 ensures
that at the highest considered temperature (see below) Wsf/Wimp is of the same
order as the inverse ratio of average lifetimes due to scattering off spin fluctuations
and impurities only, Wsf/Wimp ∼ τimp/τsf.

As in the paramagnetic phase discussed in chapter 4, the susceptibility entering
Eq. (5.3) is peaked at the nesting vectors QX and QY . In the nematic phase,
however, a finite order parameter φ > 0 enhances the peak at QX in the suscep-
tibility, leading to stronger scattering between the hole pocket h and the electron
pocket eX than between the pockets h and eY, as indicated in Fig. 5.1.

We focus on the dependence of the resistive anisotropy on doping (electron
filling n) and on the relative strengths of spin-fluctuation and impurity scattering,
controlled by Wsf/Wimp. The explicit temperature T in Eq. (5.3) controls the
energy available for spin excitations and thus additionally affects the strength
of spin-fluctuation scattering. In the relevant limit kBT � ωq, this leads to the
familiar T 2 dependence. Since the nematic phase appears in a narrow temperature
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5 Resistive anisotropy in the nematic phase of iron pnictides

interval above the Néel temperature TN(n) we choose the temperature T (n) =

TN(n) = T0 (1 − [(n − 2.09)/0.2]2) with T0 = max[TN(n)] = 137 K. This mimics
the situation in 122 pnictides, where the magnetic order is suppressed upon doping
the parent compound (see Fig. 1.2(a)), here taken to correspond to n = 2.09 [24].
Our results are qualitatively insensitive to the specific form of T (n). Since the
temperature tracks TN(n), it is reasonable to keep the parameters ξ, φ , and Γ

fixed; we have checked that the qualitative behavior does not depend on their
precise values.

5.3 Resistive anisotropy

To calculate the resistivity we solve the Boltzmann equation

Λsθ = τsθ vsθ + τsθ
∑

s′

∫
dθ′

2π
Ns′θ′W

s′θ′
sθ Λs′θ′ (5.4)

numerically, similar to chapter 4. The resistivity ρi in the direction i = x, y is
determined by the MFP,

ρi =
(
e2
∑

s

∫
dθ

2π
Nsθ v

i
sθΛ

i
sθ

)−1

≡
(∑

s

∫
dθ

2π
σisθ

)−1

, (5.5)

where σisθ is the contribution of the state |s, θ〉 to the total conductivity σi =∑
s

∫
dθ
2π
σisθ. It is useful to decompose the resistive anisotropy into band and

angular contributions,

∆ρ =

∫
dθ

2π

(
∆ρhθ + ∆ρeθ

)
, (5.6)

where the contributions from hole and electron pockets read, respectively,

∆ρhθ ≡
1

2σy
(
σxh,θ − σyh,θ + σxh,θ+π/2 − σyh,θ+π/2

)
, (5.7)

∆ρeθ ≡
1

σy
(
σxeY,θ − σyeY,θ + σxeX,θ+π/2 − σyeX,θ+π/2

)
. (5.8)

In Eq. (5.7), we consider the contributions from the hole-pocket states |h, θ〉 and
|h, θ + π/2〉 together, since only the joint contribution vanishes in the param-
agnetic, C4-symmetric phase and is thus a good measure of the state-resolved
contributions to the resistive anisotropy. For the same reason, the states |eY, θ〉
and |eX, θ + π/2〉 are considered together in Eq. (5.8). According to the defini-
tion of ∆ρeθ, the contributions from states close to the minor axis of the elliptical
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Figure 5.2: (a) Resistive anisotropy as a function of doping (parametrized by n)
and of the relative strengths of spin-fluctuation and impurity scatter-
ing. (b) Resistive anisotropy as a function of doping for Wsf/Wimp =
0.1, 1, and 10. (c) Angle-resolved contributions of the electron pock-
ets to the resistive anisotropy as defined in Eq. (5.8). While for
Wsf/Wimp = 0.1 only regions close to the hot spots (indicated by
arrows) contribute, for increasing Wsf/Wimp the contributing regions
grow. (d) Ratio of averaged resistivities at the temperatures T (n) con-
sidered in panels (a)–(c) and at T = 0 K. We choose the parameters
η = 0.5, Γ = 350 meV, ξ−2 = 0.027, and φ = 0.017. From Ref. [19].

electron pockets are found at θ ≈ 0, while the contributions from states close to
the major axis are found at θ ≈ π/2.

5.3.1 Vanishing orbital splitting

We now focus on the resistive anisotropy resulting from the anisotropic spin-
fluctuation spectrum alone and include the orbital splitting in the next subsec-
tion. Figure 5.2 summarizes the results for the resistive anisotropy for δ = 0. In
Fig. 5.2(a) the resistive anisotropy is plotted as a function of doping and the ratio
Wsf/Wimp, while in Fig. 5.2(b) the doping dependence is illustrated for three char-
acteristic values of Wsf/Wimp. The contributions ∆ρeθ from the electron pockets
are found to dominate the anisotropy, for which reason only these contributions
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5 Resistive anisotropy in the nematic phase of iron pnictides

are shown in Fig. 5.2(c). As evident from Fig. 5.2(c) and illustrated in Fig. 5.1, the
electron pockets can be divided into positively and negatively contributing parts,
with the crossover located roughly where the Fermi velocity points in the diagonal
direction; the parts close to the minor axis of the electron pockets contribute with
positive sign, while the parts close to the major axis contribute with negative sign.
The crossover is located where the Fermi velocity points in the diagonal direction.
This is because the conductivity of the electron pocket eY is larger than that of
eX due to the stronger scattering for the latter. Since the velocity of states close
to the major axes are pointing in the x-direction for the pocket eX and in the
y-direction for the pocket eY, the joint conductivity of these states is larger in the
y-direction. Analogously, the joint conductivity of states close to the minor axes
is larger in the x-direction.

The total resistive anisotropy in Figs. 5.2(a) and (b) shows a strong doping
dependence, which changes qualitatively withWsf/Wimp. The angle-resolved plots
in Fig. 5.2(c) show that for increasing Wsf/Wimp the contributing regions of the
electron pockets expand. This is schematically illustrated in Fig. 5.3. For small
Wsf/Wimp, the resistive anisotropy is dominated by regions close to the hot spots,
whereas the “cold” regions, where spin-fluctuation scattering is weaker, give small
contributions. Since the electron pockets have negatively and positively con-
tributing parts, the position of the hot spots determines the sign of the resistive
anisotropy. The negative (positive) extremum is found for the filling n ≈ 2.02

(n ≈ 2.17), for which the hot spots lie on the major (minor) axis of the elec-
tron pockets. The difference between the positive and negative extrema is due to
different velocities and densities of states at the major and minor axes.

In the impurity-dominated limit, Wsf/Wimp � 1, the anisotropy is very small
as impurity scattering is isotropic. With increasing Wsf/Wimp, the contributing
regions of the electron pockets expand and the extrema of ∆ρ grow, until the
active region starts to include parts contributing with the opposite sign. Upon
further expansion, the positive and negative contributions begin to partially com-
pensate each other. Since the negatively contributing regions are smaller, the
negative extremum of ∆ρ is suppressed at a smaller ratio Wsf/Wimp than the pos-
itive extremum. At Wsf/Wimp ≈ 1 this results in a strong doping asymmetry
with small negative values on the hole-doped side and large positive values on the
electron-doped side.

We emphasize that the result that the hot spots contribute to ∆ρ even for
dominant spin-fluctuation scattering, as evident from Fig. 5.2(c), is not obvious.
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5.3 Resistive anisotropy

Figure 5.3: Contributing regions (bright colors) of the electron pockets to the re-
sistive anisotropy for increasing strength of spin-fluctuation scatter-
ing. The blue-colored and red-colored regions of the electron pockets
contribute negatively and positively to the resistive anisotropy, re-
spectively. Two characteristic filling levels are considered, n ≈ 2.02
and n ≈ 2.17, with hot spots at the major and the minor axis of
the electron pockets, respectively. For dominant impurity scattering,
the main contributions come from hot spots. Increasing strength of
spin-fluctuation scattering leads to an expansion of the contributing
regions. Note that hot spots contribute even for strong spin-fluctuation
scattering [18]. From Ref. [19].

Since in this limit the scattering at the hot spots is much stronger than in the
cold regions, one would naively expect the hot spots to be short circuited by
the cold regions [87], i.e., to be irrelevant for the transport, in which case ∆ρ

would be significantly smaller [53, 58]. However, as we have seen in chapter 4
for the C4-symmetric state [18], the short-circuiting is compensated by enhanced
forward-scattering corrections.
To compare the results to measurements, we have to identify the relevant range

ofWsf/Wimp. In Fig. 5.2(d), we plot the calculated ratio of the averaged resistivity
ρ(T ) ≡ (ρx + ρy)/2 at T = T (n) and at T = 0 K, where the spin excitations are
frozen out and the resistivity is due to impurity scattering alone, which we assume
to be temperature independent. Ignoring for the moment that the system is anti-
ferromagnetic at T = 0 K, we observe that for Wsf/Wimp = 1 and Wsf/Wimp = 10

the resistivity ratios are comparable to those measured for as-grown and annealed
samples, respectively [99]. The reduction of the density of states in the antifer-
romagnetic phase should increase the T = 0 K resistivity, however, and so our
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Figure 5.4: (a) Sketch of the Fermi pocket distortion and the scattering strength
between the hole and the electron pockets. (b), (c) Resistive anisotropy
in the presence of orbital splitting (δ = 0.03) and a paramagnetic spin
susceptibility (φ = 0). (d), (e) (f) Same as (a), (b) (c) but for a
nematic spin susceptibility (φ = 0.017). After Ref. [19].

argument likely underestimates Wsf/Wimp.

ForWsf/Wimp = 1, Figs. 5.2(a) and (b) show a large positive peak with ∆ρ ≈ 0.4

in electron-doped samples and a small negative peak with ∆ρ ≈ −0.01 in hole-
doped samples. This is in good agreement with experimental observations [2, 58,
99]. The results also show that in electron-doped samples an increase ofWsf/Wimp

beyond about 1 leads to a reduction of the peak value of ∆ρ. A reduction of ∆ρ

upon annealing was indeed observed in electron-doped Ba(Fe1−xCox)2As2 [99],
where this effect has been taken as strong evidence that the resistive anisotropy
mainly stems from scattering at anisotropic impurity states. Our results show,
however, that such a reduction is also consistent with anisotropic spin-fluctuation
scattering. For the hole-doped samples, we predict an increase in ∆ρ with an-
nealing if Wsf/Wimp & 1, see Figs. 5.2(a) and (b), which to our knowledge has not
been measured so far.
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5.3.2 Finite orbital splitting

We now investigate the resistive anisotropy for a relatively large orthorhombic dis-
tortion of the band structure with δ = 0.03, for which the relative difference of the
electron-pocket areas is about 21%. For a nonzero orthorhombic distortion, the
model displays a resistive anisotropy ∆ρ even when the nematic parameter in the
susceptibility vanishes, φ = 0. Results for this case are found in Figs. 5.4(b) and
(c). The calculated ∆ρ is in rather poor agreement with experimental findings:
neither the minimum near optimal doping nor the significant extent of negative
values is observed. Note that while the magnitude of ∆ρ scales with δ, its quali-
tative behavior does not change significantly.
Figures 5.4(e) and (f) show the result for the combined effect of orbital splitting

(δ = 0.03) and the nematicity in the spin susceptibility (φ = 0.017). The effect
of the two sources of anisotropy appear to be additive and the characteristic
signatures of the nematic spin fluctuations are still conspicuous. In particular,
the large positive anisotropy in electron-doped samples and the much smaller
anisotropy in hole-doped samples for Wsf/Wimp . 1 is still present, as is the
reduction of the anisotropy in electron-doped samples for Wsf/Wimp & 2. On the
other hand, for Wsf/Wimp � 1, the weak contribution of the spin fluctuations in
the case of electron doping means that the resistive anisotropy is controlled by the
distortion of the band structure and becomes negative, as in Fig. 5.2.

5.4 Conclusions

We have shown that the twin puzzles of the doping asymmetry of ∆ρ and the
reduction of ∆ρ upon annealing can be explained by the recently observed [62]
anisotropic spin-fluctuation spectrum alone. The qualitative behavior is governed
by the contributing regions on the elliptical electron pockets, in particular their
growth with increasing spin-fluctuation strength. Importantly, the hot spots con-
tribute to ∆ρ even for strong spin-fluctuation scattering, contrary to what was
thought previously [53, 58]. Since spin fluctuations are particularly strong at the
hot spots, this naturally leads to large anisotropies.
In contrast, the effect of orbital splitting [107, 108] alone cannot account for

the observed resistive anisotropy. Better agreement might be achieved for a more
sophisticated model of the band structure, although this would be at the expense
of fine tuning. Including the nematicity in the spin-fluctuation spectrum gives
much better agreement with experimental results, is robust against the distortion
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5 Resistive anisotropy in the nematic phase of iron pnictides

of the band structure, and dominates over the contribution of the distorted band
structure to the resistive anisotropy over a large parameter range.
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6 Transport in the
spin-density-wave phase of iron
pnictides

In the preceding chapters we have seen that the multiband nature of iron pnictides
gives rise to new phenomena which do not occur in one-band systems such as the
extensively studied cuprates. An even larger difference between the two materials
classes concerns their magnetic phases. Unlike in cuprates, the magnetic phase in
iron pnictides is metallic and thus offers a new field to study the interplay between
transport and itinerant magnetism [110, 111]. In this chapter, I will calculate the
scattering rate resulting from the interaction of electrons with spin fluctuations,
which in the SDW phase include propagating magnons. Most interestingly, we
will find that this interaction leads to “interrupted” orbital motion of electrons in
the magnetic field with clear signatures in the magnetoresistance.

6.1 Introduction

There has been very few theoretical investigations of transport in the SDW phase
of iron pnictides. Specifically, the impact of spin fluctuations has not been con-
sidered so far. It has been proposed that some transport anomalies in the SDW
phase might be caused by Dirac fermions [47, 112, 113], as the reconstructed
bands below TN show topologically protected Dirac nodes [46, 114, 115]. It has
been discussed that the presence of Dirac fermions might explain the positive lin-
ear magnetoresistance, i.e., the linear increase of resistivity in the magnetic field
[111, 112, 116, 117], in contrast to the quadratic behavior found in conventional
metals [74]. An alternative scenario explains the linear magnetoresistance by the
large velocity change along the Fermi line of the reconstructed pockets for T ≈ TN

[118].
In this chapter, we will see that even more exotic effects than positive linear mag-
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6 Transport in the spin-density-wave phase of iron pnictides

netoresistance can occur if the coupling of electrons to spin fluctuations is taken
into account. It turns out that spin fluctuations cause strong scattering between
different sides of the small reconstructed pockets. In an applied magnetic field,
this scattering leads to an interruption of orbital motion—certain points emerge
on the Fermi line which can not be passed by electrons moving along the Fermi
line (cf. section 2.4 for orbital motion in the magnetic field). The consequences
are drastic: A critical magnetic field emerges above which the conductivity tensor
is no longer positive definite, indicating that the system becomes thermodynami-
cally unstable [80]. This critical field exists irrespective of the presence of other
FSs which contribute to the conductance.

Interruption of orbital motion is also possible if the relaxation time at the hot
spots (or hot lines in 3D) is suppressed, as has been discussed in Refs. [118, 119].
The corresponding mechanism is distinct from the one we discuss here. It also has
distinct signatures in transport, e.g., a linear magnetoresistance that is positive
and non-saturating. In chapter 4 we have seen that in pnictides the relaxation
time at hot spots is not suppressed however, which undermines the relevance of
this mechanism [118, 119].

To explore signatures of interrupted orbital motion, we will study the mag-
netoresistance of single-domain single crystals as well as of polycrystals and of
crystals with twin domains [75]. We will find that in twinned crystals as well
as in polycrystals interrupted orbital motion has no special signatures for weak
magnetic fields, whereas for strong magnetic fields the resistivity drops to zero.
In single crystals the Fermi pockets with interrupted orbital motion give rise to
linear magnetoresistance already for weak magnetic fields. Most exotically, the
linear magnetoresistance is negative for certain directions of the charge current,
which makes it a clear signature of the mechanism I propose.

6.2 Model

We study the SDW phase using the effective two-band model introduced in chap-
ters 4 and 5. Following Refs. [24, 55], we use the Hamiltonian

H =
∑

Akσ

εAk c
†
AkσcAkσ (6.1)

+
1

2V

∑

kk′q

∑

σσ′

∑

ABCD

U(AB),(CD)(σ, σ
′) c†Ak+qσc

†
Ck′−qσ′cDk′σ′cBkσ

64



6.2 Model

where σ = ±1 denotes the spin and capital letters denote the two bands e and h.
The onsite coupling constants read

U(hh),(hh)(σ, σ
′) = U(ee),(ee)(σ, σ

′) = g1 δσ′,−σ, (6.2)

U(he),(he)(σ, σ
′) = U(eh),(eh)(σ, σ

′) = g2a δσ′,−σ, (6.3)

U(he),(eh)(σ, σ
′) = U(eh),(he)(σ, σ

′) = g2b, (6.4)

U(ee),(hh)(σ, σ
′) = U(hh),(ee)(σ, σ

′) = gcf . (6.5)

The dispersion relations appearing in Eq. (6.1) were defined in Eqs. (4.1) and
(4.2),

εhk = εh − µ+ 2th (cos kxa+ cos kya), (6.6)

εek = εe − µ+ te,1 cos kxa cos kya− te,2 ξ (cos kxa+ cos kya). (6.7)

We set the ellipticity of the electron pockets to ξ = 1; other parameters are as
in chapter 4. It has been shown that this model exhibits a SDW phase around
the filling n = 2.085 [24]. This is the filling we will consider in the following.
Mean-field decoupling the Hamiltonian with the order parameter

∆ ≡ −gcf + g2a

2V

∑

k,σ

σ〈c†hkσcek+Qσ〉MF, (6.8)

which has to be determined self-consistently, leads to the mean-field Hamiltonian

HMF =
∑

k,σ

′
c†(kσ)




εhk 0 0 σ∆

0 εhk+Q σ∆ 0

0 σ∆ εek 0

σ∆ 0 0 εek+Q


 c(kσ), (6.9)

where the primed sum over k runs only over the reduced Brillouin zone according
to the SDW state with ordering vector Q, which is taken to be Q = (π, 0). In Eq.
(6.9) the pseudo-spinor notation,

c†(kσ) ≡ (c†hkσ, c
†
hk+Qσ, c

†
ekσ, c

†
ek+Qσ), (6.10)
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6 Transport in the spin-density-wave phase of iron pnictides

was introduced. The mean-field Hamiltonian is diagonalized by the unitary oper-
ator

U(kσ) ≡




−σu(k) 0 0 −v(k)

0 −σu(k + Q) −v(k + Q) 0

0 v(k + Q) −σu(k + Q) 0

v(k) 0 0 −σu(k)


 , (6.11)

where

u(k) =
ε−eh(k)−

√
ε−eh(k)2 + ∆2

√
∆2 +

(
ε−eh(k)−

√
ε−eh(k)2 + ∆2

)2
, (6.12)

v(k) =
∆√

∆2 +
(
ε−eh(k)−

√
ε−eh(k)2 + ∆2

)2
, (6.13)

and ε±AB(k) ≡ (εAk+Q ± εBk)/2. The energy eigenvalues read

E1(k) = ε+eh(k) +
√
ε−eh(k)2 + ∆2, (6.14)

E2(k) = ε+he(k) +
√
ε−he(k)2 + ∆2, (6.15)

E3(k) = ε+he(k)−
√
ε−he(k)2 + ∆2, (6.16)

E4(k) = ε+eh(k)−
√
ε−eh(k)2 + ∆2. (6.17)

The solution of the mean-field problem determines the ordering temperature TN
for a given set of coupling constants. The four reconstructed bands Eµ(k) in Eqs.
(6.14)–(6.17) (which will be denoted by Greek letters in the following) give rise to
Fermi pockets with changed topology in comparison to the paramagnetic state [55,
120]. For the considered filling n = 2.085 and elliptical electron pockets (ξ = 1),
the pocket reconstruction can be visualized as follows: In the magnetic Brillouin
zone, which is reduced according to the ordering vector Q = (π, 0) becoming a
reciprocal lattice vector, the electron pocket eX is backfolded on top of the hole
pocket h (see Fig. 1.2(a)). For temperatures below but close to TN , the opening
of the gap affects only the hot spots, i.e., points at which the electron pocket
eX crosses the hole pocket h, resulting in four “banana pockets” (so-called for
their crescent-like shape) as shown in Fig. 1.2(a). The electron pocket eY is only
weakly affected by the band reconstruction. Lowering the temperature results in
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6.3 Spin-fluctuation scattering

shrinking of the banana pockets, and, eventually, to their pairwise disappearance.
The effect on transport of these so-called Lifshitz transitions has been studied
recently within the same band model considered here [120].
It has been pointed out however that in more realistic, orbital models at least

two of the reconstructed pockets belong to an underlying Dirac spectrum with
topologically protected Dirac nodes [46, 114, 115]. The Dirac nodes, which prevent
the disappearance of pockets, are absent in the considered band model. Moreover,
the two-dimensional density of states of the Dirac bands depends linearly on the
Fermi energy, whereas it is constant for parabolic bands. In fact, the disappearance
of pockets within our model causes step-like changes of the total density of states,
while it is otherwise nearly constant as a function of temperature. These strong
qualitative differences between the simplified band model and the more realistic
orbital models lead to the conclusion that the band model is not suitable for a
study of the temperature dependence of transport in the SDW phase. We therefore
restrict ourselves to transport at a fixed temperature, which we choose as T =

0.93TN .

6.3 Spin-fluctuation scattering

We will now calculate the spin-fluctuation spectrum within the mean-field state.
For the low-energy transport we can neglect the contribution of the longitudinal
susceptibility, which is gapped in the SDW phase, and focus on the transverse spin
susceptibility, which includes the contribution of the Goldstone mode [50, 51]. The
transverse susceptibility is defined as

χ+−(q, iωn) =
∑

A,B,C,D

∑

n,m

∑

k,k′

∫ 1/kBT

0

dτ eiωnτ

×
〈
Tτ c

†
Ak+(q+nQ)↓(τ) cB k,↑(τ) c†C k′−(q+mQ)↑(0) cD k′,↓(0)

〉

≡
∑

A,B,C,D

∑

n,m

χ+−
(A,B,n),(C,D,m)(q, iωn), (6.18)

where the sum over n, m = 0, 1 is required to include the so-called umklapp
susceptibilities, which are possible in the SDW phase [50, 51].
Following Refs. [50, 51, 55], we calculate the susceptibility within the random-

phase approximation (RPA). It is useful to introduce a matrix notation, in which
M̂ is a tensor with components M(A,B,n),(C,D,m). The susceptibility tensor has
been defined in Eq. (6.18). The Dyson equation for the RPA susceptibility is dia-
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Figure 6.1: (a) Dyson equation for the RPA susceptibility represented by a striped
box. The black box depicts the interaction vertex U+−. (b) Spin-
fluctuation propagator (striped box) dressed with interaction vertices
(black boxes). The circles with dashed and solid legs represent the
transformation factors U between the eigenbasis for the paramagnetic
state and the eigenbasis for the mean-field SDW state.

grammatically represented in Fig. 6.1(a). In tensor notation, the Dyson equation
reads

[χ̂+−(q, iωn)]RPA = χ̂(0)+−(q, iωn) + [χ̂+−(q, iωn)]RPA Û
+− χ̂(0)+−(q, iωn), (6.19)

where
U+−

(A,B,n),(C,D,m) = U(AB),(CD)(σ,−σ) δnm. (6.20)

The bare susceptibility reads

χ
(0)+−
(A,B,n),(C,D,m)(q, iωn) = −kBT

V

∑

k,iνn

∑

i,j,ν,µ

G(0)
ν (k− q, iνn − iωn)G(0)

µ (k, iνn)

× U∗(A,i),(µ)(kσ)U(B,|i−n|),(ν)(k− q− σ)

× U∗(C,|j−m|),(ν)(k− q− σ)U(D,j),(µ)(kσ), (6.21)

where G(0)
µ (k, iνn) = (Eµ(k)−iνn)−1 is the electron Green’s function for the mean-

field state. To obtain Eq. (6.21), the unitary transformation defined in Eq. (6.11)
has been applied to the ladder operators in Eq. (6.18). The Dyson equation can
be readily solved by matrix inversion, giving the result

[χ̂+−(q, iωn)]RPA = χ̂(0)+−(q, iωn)
[
1̂− Û+− χ̂(0)+−(q, iωn)

]−1
. (6.22)

In contrast to the paramagnetic phase, in the SDW phase the coupling between
the electrons and the spin fluctuations is momentum dependent due to momentum-
dependent transformation factors given in Eq. (6.11). The bosonic spin-fluctuation
propagator dressed with transformed coupling constants is shown schematically
in Fig. 6.1(b). The momentum dependence of the coupling between electrons and
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6.3 Spin-fluctuation scattering

the spin-fluctuation propagator is crucial: Neglecting the momentum dependence
would cause diverging forward scattering of electrons, violating Adler’s theorem,
which states that the coupling of electrons to a Goldstone mode vanishes for zero
transferred momentum [121].
The dressed spin-fluctuation propagator, cf. Fig. 6.1(b), reads

S(νµ),(αβ)(k,k
′;σ,−σ; q, iωn) =

∑

j,k,n,m

∑

A,B,C,D

U∗A,j;ν(k + q,−σ)UB,|j−n|;µ(k, σ)

×
(
Û+− [χ̂+−(q, iωn)

]
RPA

Û+−)
(A,B,n),(C,D,m)

× U∗C,|k−m|;α(k′ − qσ)UD,k;β(k′,−σ). (6.23)

With that we can readily obtain the scattering rate from the spectral function of
the propagator as described in chapter 2 (note that, in contrast to the notation
in chapter 2, the propagator in Eq. (6.23) includes the coupling constants),

W νk+q−σ
µkσ =

pT (ω)

ω
ImSR(νµ),(µν)(k,k + q, σ,−σ; q, ω), (6.24)

with pT (x) as defined in Eq. (2.12).
Due to the presence of particle-hole excitations at zero energy, the magnon ex-

citations are broadened because of Landau damping. We assume that the spectral
function of the spin fluctuations divided by ω has a broader peak at ω = 0 than
the function pT (ω), which describes the available phase space for spin-fluctuation
excitations and has a width of order kBT . For sufficiently low temperatures we
can thus approximate

W νk+q
µk ≈ pT (ω) lim

ω→0

ImSR(νµ),(µν)(k,k + q, σ,−σ; q, ω)

ω
, (6.25)

where we have dropped the spin indices on the left-hand side since the spin-
fluctuation propagator becomes independent of σ in the static limit. If the band-
width is much smaller than kBT , the scattering rate can be integrated over ω,
giving a factor of (π kBT )2. Including also isotropic impurity scattering, the inte-
grated scattering rate thus reads

W s′θ′
sθ = (kBT )2 lim

ω→0

ImSR(νµ),(µν)(k(µθ),k(νθ′), σ,−σ; k(νθ′)− k(µθ), ω)

ω
+Wimp,

(6.26)
where we have parametrized the states on the Fermi surface by sθ, as shown in
the inset of Fig. 6.2: θ is the polar angle with respect to the kx-axis (shifted by
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Figure 6.2: Scattering rateW sθ
h 0 as a function of the final state sθ. The inset shows

a sketch of the Fermi pockets. The symbol × indicates the initial
state for the scattering rate plotted in the main figure. The coupling
constants are g1 = g2b = 0, gcf = 3.43 th, g2a = 0.06 th, which give a
SDW-ordering temperature of TN = 0.065 th/kB. The temperature is
set to T = 0.93TN , the filling is n = 2.085, and the ellipticity of the
electron pockets is ξ = 1. The remaining band parameters are as in
chapter 4.

(0, π) for the pocket eY ), s = eY refers to the electron pocket that is weakly
reconstructed, s = e denotes those parts of the banana pockets that stem from
the strongly reconstructed electron pocket, and s = h denotes the parts that stem
from the hole pocket.
The numerical calculation of the scattering rate consists of several steps and is

partially similar to the numerical calculations in Ref. [55], where additional details
can be found. We determine the mean-field state by a standard self-consistent
iteration procedure. The bare susceptibilities are calculated according to Eq.
(6.21), involving a summation over the Brillouin zone. The RPA susceptibility is
obtained by numerical matrix inversion. The calculation of the propagator in Eq.
(6.23) is similar to the calculation of the effective interaction vertex for Cooper
pairing considered in Ref. [55]. For the limit ω → 0 in Eq. (6.26), we took a finite
ω = 10−5 th.
The scattering rate for an initial state |s = h, θ = 0〉 is plotted in Fig. 6.2.
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Figure 6.3: MFPs Λ
(0)
sθ (arrows) for states on the Fermi pockets for three different

ratios ρ/ρimp ≈ 1, 2, 7. The insets show close-ups of the right-hand
banana pocket. The dashed line indicates the Brillouin zone boundary.
The lattice constants are set to unity, aO ≈ bO ≡ 1.

We see that the strongest scattering is found between states at different sides e
and h of the banana pockets at nearly the same polar angle θ. It stems from the
strong interpocket scattering between states initially separated by q ≈ Q in the
paramagnetic phase, which has been discussed in chapters 4 and 5. Due to band
reconstruction, the enhanced interpocket scattering at T > TN transforms into
intrapocket scattering within the reconstructed pockets at T < TN . In Fig. 6.2
we also see clearly that q ≈ 0 scattering is suppressed, in agreement with Adler’s
theorem [121].

With the scattering rate shown in Fig. 6.2 we can calculate the MFP in the
absence of a magnetic field, Λ

(0)
sθ , by solving the Boltzmann equation (4.8) nu-

merically, similar to chapter 4. Discretizing the states on the pockets, we use 100
points for each s = eY, e, h (see inset of Fig. 6.2) with a higher density of points
at the turning points of the banana pockets.

It is interesting to compare the results for the MFP for different strengths of
the spin-fluctuation scattering compared to the impurity scattering. We choose
the strength of impurity scattering in Eq. (6.26) in such a way that the ratio
ρ/ρimp is fixed, where ρ is the total resistivity and ρimp is the resistivity due to
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6 Transport in the spin-density-wave phase of iron pnictides

impurity scattering alone. Realistic values for this ratio can be roughly estimated
by comparison with the experimental resistivity ratios just below TN and at T = 0,
where spin fluctuations are “frozen out” and only impurity scattering contributes.
According to measurements in Refs. [2, 99], typical ratios are ρ/ρimp ≈ 2 and
ρ/ρimp ≈ 10 for as-grown and annealed 122 pnictides, respectively.
The results for the MFP for three characteristic ratios are shown in Fig. 6.3.

In the figure we clearly see that increasing the strength of scattering due to spin
fluctuations tends to equalize the MFPs on opposite sides of the banana pockets at
the same polar angle θ. In the realistic case of ρ/ρimp ≈ 7, we find approximately
Λ

(0)
hθ ≈ Λ

(0)
eθ . We can understand this by comparison to the situation in the

paramagnetic phase discussed in chapter 4. In section 4.3 we found analytical
expressions for the MFPs, see Eqs. (4.12)–(4.14), which revealed that the MFPs
of the three states |s′θ〉 with s′ = eX, eY, h at the same polar angle but on different
pockets become equal in the strong-anisotropy limit. The interpretation was that
due to enhanced scattering with momentum changes of q ≈ (π, 0) or q ≈ (0, π),
during the relaxation time electrons are hopping between the states |s′θ〉 at a
fixed polar angle θ. Consequently, no matter which state the electron starts in,
it tends to be scattered along a very similar path before being randomized. For
the SDW phase, Fig. 6.2 shows that scattering is much stronger between |eθ〉
and |hθ〉 than between |eY θ〉 and |hθ〉. In this case, Eqs. (4.12)–(4.14) can be
simplified as we can set aeYhθ = aheY θ ≈ 0. Otherwise, the situation is similar to
the paramagnetic phase. In particular, we see that the MFP is not suppressed at
the tips (also called turning points) of the banana pockets. Thus the mechanism
of interrupted orbital motion due to suppressed relaxation times, as mentioned
in Ref. [118], is not relevant here. We will see in the next section that orbital
motion is nevertheless interrupted, although the mechanism of the interruption is
different. The changed pocket topology in the SDW phase is crucial and leads to
effects which cannot be found in the paramagnetic phase.

6.4 Interrupted orbital motion

According to the numerical results for the MFP for the realistic case ρ/ρ0 ∼ 7, the
MFP on the two sides of the reconstructed pockets are nearly equal, Λ

(0)
hθ ≈ Λ

(0)
eθ .

To focus on the effect of the magnetic field, we assume for simplicity Λ
(0)
hθ = Λ

(0)
eθ ≡

Λ
(0)
θ and take

Λ
(0)x
θ + iΛ

(0)y
θ = leiθ. (6.27)
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We include the magnetic field using the formalism described in section 2.4: The
ansatz for the total MFP in the presence of the magnetic field B = B z is written
as Λsθ =

∑∞
n=0 Λ

(n)
sθ where Λ

(n)
sθ is of order n in B. For Λ

(1)
sθ one has to replace

vsθ in the solution for Λ
(0)
sθ by ωsθ ∂θΛ

(0)
θ , where ωsθ = ηseB/(π~2Nsθ) is the

cyclotron frequency of an electron in the state sθ, ηh = −1, ηe = 1, and Nsθ ≡
|dksθ/dθ|/|π~vsθ| is the state-resolved density of states. All higher-order terms
Λ

(n)
sθ are obtained by increasing the order index by one in the solution of the

previous order. Hence, an analytical solution for Λ
(0)
sθ determines Λsθ, the MFP

for B 6= 0.

An analytical solution for Λ
(0)
sθ has been provided in section 4.3. In the strong

anisotropy limit, a ≈ 1, the result can be written in the form

Λ
(0)
θ = τ (pe veθ + ph vhθ), (6.28)

with some positive and dimensionless coefficients pe,h with pe + ph = 1 and τ > 0,
which can be interpreted as an effective relaxation time. From Eq. (6.28) it follows
that the full MFP Λθ satisfies

Λθ = Λ
(0)
θ + Ωθ ∂θΛ

(0)
θ + Ωθ ∂θ

(
Ωθ ∂θΛ

(0)
θ

)
+ . . .

= Λ
(0)
θ + Ωθ ∂θΛθ, (6.29)

where
Ωθ = τ (pe ωeθ + ph ωhθ) ≡ βθ B. (6.30)

The factor
βθ = τ

( pe
π~Neθ

− ph
π~Nhθ

) e
~

(6.31)

will be called deflection factor in the following. The sign of Ωθ is given by
sgn[(pe/Neθ − ph/Nhθ)B]. For clarity we will assume Ωθ ≥ 0 in the following—the
other case can be obtained by symmetry considerations.

In section 2.4 we have demonstrated that the change of the MFP in the presence
of a magnetic field is due to the orbital motion of electrons along the Fermi line.
Let us now consider the orbital motion on one banana pocket, as described by
Eq. (6.29). We can divide the banana pocket into nearly circular regions for
−θ̄ ≤ θ ≤ θ̄ and small turning regions near the “banana tips” θ̄ ≤ θ ≤ (θ̄ + ε) and
−(θ̄+ε) ≤ θ ≤ −θ̄ as indicated in Fig. 6.4. For the circular regions, we can assume
constant densities of states Nsθ and therefore Ωθ ≡ Ω. For the turning regions, the
Fermi line changes from perpendicular to the radial vector at θ = ±θ̄ to parallel
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6 Transport in the spin-density-wave phase of iron pnictides
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Figure 6.4: Orbital motion on the banana pocket with strong scattering between
opposite sides of the pocket. Due to scattering, the effective motion
along the Fermi line (indicated by the green arrows) changes sign at
the turning point of the pocket. An electron at the turning point θ̄+ ε
thus effectively does not move any further.

at θ = ±(θ̄ + ε). The state-resolved density of states Nsθ ≡ |dksθ/dθ|/|π~vsθ| in
our parametrization thus becomes infinite at θ = ±(θ̄+ε) and with that Ω±(θ̄+ε) =

0. This alone does not necessarily signify an interruption of the orbital motion
since a diverging ∂θΛ

(0)
θ can lift the suppressed Ωθ at θ = ±(θ̄ + ε). This would

happen if the MFP were parallel to the velocity, as is the case within the Drude
approximation, Λ

(0)
θ = ΛD

θ ≡ τsθ vsθ. Crucially, in the considered case ∂θΛ
(0)
θ is

finite at θ = ±(θ̄ + ε) due to spin-fluctuation scattering equalizing the MFP on
both sides of the pocket. According to Eq. (6.29) together with Ω±(θ̄+ε) = 0 this
leads to

Λ±(θ̄+ε) = Λ
(0)

±(θ̄+ε)
, (6.32)

i.e., no orbital motion at θ = ±(θ̄ + ε). We can understand this semiclassically
in the following way: The Lorentz force changes the momentum of an electron
according to ~ dk/dt = (eB/~) z × vk. In case of the isotropic scattering, this
leads to a clockwise (counterclockwise) orbital motion on an electronlike (holelike)
FS. In the considered case, however, the electrons scatter much more strongly
between states on the opposite sides of the banana pocket than to other states.
We have already discussed in section 6.3 that due to this scattering the MFPs of
the electrons on the opposite sides become equal. As illustrated in Fig. 6.4, this
also leads to an equalized orbital motion on opposite sides such that the electrons
on one of the two sides are effectively deflected in the opposite direction compared
to the direction if the scattering were isotropic. Which side dominates with regard
to the orbital motion is determined by the sign of the deflection factor in Eq.
(6.31). Hence, we find that the motion along the Fermi line changes its direction
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6.5 Magnetoresistance

and is therefore zero at the turning point. In contrast, within the scenario of Refs.
[118, 119] interrupted orbital motion is due to suppressed relaxation times and
the motion along the Fermi line does not change its direction.

With the boundary condition, Eq. (6.32), the solution to the differential equa-
tion (6.29) reads

Λθ =

∫ θ̄+ε

θ

dθ′
Λ

(0)
θ′

Ωθ′
exp

(
−
∫ θ′

θ

dθ′′
1

Ωθ′′

)
+Λ

(0)

θ̄+ε
exp

(
−
∫ θ̄+ε

θ

dθ′′
1

Ωθ′′

)
. (6.33)

Assuming a small ε, we can take Λ
(0)
θ′ ≈ Λ

(0)

θ̄
for θ̄ ≤ θ′ ≤ θ̄+ ε. A straightforward

calculation then leads to

Λθ =

∫ θ̄

θ

dθ′
Λ

(0)
θ′

Ω
e−(θ′−θ)/Ω + e−(θ̄−θ)/Ω Λ

(0)

θ̄
. (6.34)

Using Eq. (6.27), we find

Λx
θ + iΛy

θ =
l

1 + Ω2

[
eiθ(1 + iΩ) + Ω e−(θ̄−θ)/Ω eiθ̄

(
Ω− i

)]
, (6.35)

which is the final result for the MFP in the presence of a magnetic field of arbitrary
strength. The second term in the brackets is an anomalous term coming from the
interruption of orbital motion at the turning point. We see that the anomalous
term gives rise to a finite MFP in the limit B →∞. In the next section we will see
that interrupted orbital motion on reconstructed pockets leads to characteristic
signatures in the magnetoresistance.

6.5 Magnetoresistance

To calculate the magnetoresistance I divide the total conductivity σ = σ◦ + σb

in a normal contribution σ◦ and a contribution from the banana pockets with
interrupted orbital motion, σb. To keep the discussion clear, I will assume only
one pair of banana pockets and model the normal contribution by a circular pocket.
This is sufficient to discuss the qualitative aspects of the signatures of interrupted
orbital motion. The generalization to four banana pockets with interrupted orbital
motion and non-circular pockets with normal motion is straightforward. The
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6 Transport in the spin-density-wave phase of iron pnictides

conductivity of the circular Fermi pocket reads

σxx◦ (B) = σyy◦ (B) = σ◦(0)
1

1 + Ω2
◦
, (6.36)

σxy◦ (B) = − σyx◦ (B) = σ◦(0)
Ω◦

1 + Ω2
◦
, (6.37)

where σ◦(0) ≡ σyy◦ (0) = σxx◦ (0) and Ω◦ = β◦B . For the banana pockets the
contributions from θ̄ ≤ θ ≤ θ̄ + ε are negligible. Assuming the velocity to be a
constant radial vector, we calculate from Eq. (6.35),

σxxb (B) + iσxyb (B) =
σb(0)

1 + Ω2

(
θ̄2 − sin2 θ̄ cos2 θ̄

)− 1
2

{
[θ̄ + sin θ̄ cos θ̄][1 + iΩ]

+
2Ω2

1 + Ω2
e−

θ̄
Ω

[
Ω sin θ̄ cosh

θ̄

Ω
+ cos θ̄ sinh

θ̄

Ω

]
eiθ̄
[
Ω− i

]}
,

(6.38)

σyyb (B) + iσyxb (B) =
σb(0)

1 + Ω2

(
θ̄2 − sin2 θ̄ cos2 θ̄

)− 1
2

{
[θ̄ − sin θ̄ cos θ̄][1− iΩ]

+
2Ω2

1 + Ω2
e−

θ̄
Ω

[
sin θ̄ cosh

θ̄

Ω
− Ω cos θ̄ sinh

θ̄

Ω

]
e−iθ̄

[
iΩ− 1

]}
,

(6.39)

where σb(0) ≡
√
σxxb (0)σyyb (0). The resistivity is determined by inverting the

conductivity tensor.

Due to broken C4 symmetry, the resistivity is anisotropic, i.e., the resistivity
parallel to the current depends on the direction φ of the current in the xy-plane.
It would thus be most useful to compare it to measurements on single crystals.
However, so far magnetoresistance measurements, to my knowledge, exist only
for twinned crystals [112, 116], in which the sample as a whole restores the C4

symmetry and resistivity is isotropic. I have shown in section 2.5 that there
exists an exact relation between the conductivity of the single crystal and the
corresponding conductivity σ̄ of the twinned crystal [75]. The relation reads

σ̄xx = σ̄yy =

√
σxxσyy −

(σxy + σyx

2

)2

, (6.40)

σ̄xy = −σ̄yx =
σxy − σyx

2
. (6.41)

and is the same as between the conductivities of single crystals and polycrystals
[77].
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Figure 6.5: Magnetoresistance of twinned crystals and polycrystals. (a) Magne-
toresistance for θ̄ = π/3, β◦/β = 10, and different ratios of zero-
field conductivities σ◦(0)/σb(0). (b) Critical magnetic field at which
ρ̄(B) = 0 as a function of θ̄ and σ◦(0)/σb(0) for β◦/β = 10. (c), (d)
same as (a), (b) but for β◦/β = 1. For B > Bc, the conductivity
tensor of a single domain is no longer positive definite, indicating a
thermodynamic instability of the considered state.
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6 Transport in the spin-density-wave phase of iron pnictides

We will first consider the magnetoresistance of twinned crystals (or, equivalently,
polycrystals), ρ̄(B) = σ̄xx/[(σ̄xx)2 + (σ̄xy)2]. Figure 6.5 shows the magnetoresis-
tance for different ratios σ◦(0)/σb(0). Since the deflection factor β is an average
of the deflection factors from different sides of the banana pocket, which have dif-
ferent signs, it is reasonable to assume that β◦ > β. In Fig. 6.5 we see that there
exists a critical magnetic field at which the resistivity drops to zero. According to
Eq. (6.41), at the critical field

σxxσyy
∣∣
B=Bc

=

(
σxy + σyx

2

)2∣∣∣∣
B=Bc

, (6.42)

which marks the crossover at which the conductivity tensor of single domains, σ,
loses the positive semidefiniteness. For B > Bc, the conductivity tensor is not pos-
itive semidefinite, which means that a charge current in certain crystallographic
directions reduces the entropy of the system. The state of a single domain thus
becomes unstable [80], probably towards a charge-modulated state. The inves-
tigation of the state for B > Bc goes beyond the scope of this work, but is an
intriguing direction for future study. Figures 6.5(b) and (d) indicate that the crit-
ical field exists for arbitrary sizes of the reconstructed pockets and for arbitrary
strengths of the zero-field conductivity. If the deflection factor on the banana
pocket is much smaller than that of other pockets, the critical magnetic field is
nearly independent of σ◦(0)/σb(0).

We now come to the magnetoresistance of detwinned single crystals. The results
are shown in Fig. 6.6. Most importantly, we find a signature of interrupted orbital
motion already in the low-field magnetoresistance. The pockets with interrupted
orbital motion give a contribution to the magnetoresistance that is linear in B,
in contrast to pockets without interruption, which give a contribution that is
quadratic in B. Thus at B = 0 the differential magnetoresistance d[ρ(B)/ρ(0)]/dB

is finite only due to the pockets with interrupted orbital motion. Most exotically,
the linear term is negative for φ ∈ [−π/2 , 0] and φ ∈ [π/2 , π] and is independent of
β◦/β. At B = Bc the resistivity is zero for the current direction φ that minimizes
the resistivity. The current flow in this direction is thus dissipationless. For
B > Bc the resistivity for this direction is formally negative. The instability of a
system with negative resistivity is obvious, since a charge flow can reinforce the
electric field which has produced the charge flow in the first place.

It is difficult to find a complete semiclassical explanation of the results but we
can partially understand the behavior of the magnetoresistance in the following
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Figure 6.6: Magnetoresistance of detwinned single crystals. (a) Magnetoresistance
for θ̄ = π/3, β◦/β = 10, and σ◦(0)/σb(0) = 10 for different directions
φ of the current. In the direction φ ≈ −π/6 the resistivity becomes
negative at β B ≈ 2.1. Negative resistivity indicates a thermodynamic
instability of the system. (b) Differential magnetoresistance at B = 0
as a function of φ for θ̄ = π/3 and different σ◦(0)/σb(0). The differen-
tial magnetoresistance does not dependent on β◦/β.

way: Consider the total resistance of a system composed of two parallel connected
resistors A and B, where A corresponds to the usual Fermi pockets and B to the
pockets with interrupted orbital motion. The resistivity of A will grow propor-
tional to B2 until it saturates for β◦B ∼ 1, which is the usual behavior of metals
[74]. On the other hand, the resistivity of B goes to zero when the interruption
affects the majority of states on the pocket. This happens as soon as the effec-
tive cyclotron frequency is on the order of the effective relaxation time. In our
formalism this corresponds to βB ∼ 1. Since the total resistance of two parallel
resistors is set by the smaller one, the total resistance becomes zero as soon as the
resistance of B goes to zero. Thus a critical magnetic field with βBc ∼ 1 exists
independently of the existence of other carriers in the system.

It remains to understand the drop of the resistivity of the resistor B. Here it is
useful to recall the semiclassical picture for the magnetoresistance of conventional
metals. It is intuitively clear that for βB ∼ 1 the orbital motion of electrons
leads, on the one hand, to a randomization of the effective velocity of electrons
and, on the other hand, to an increase of the Hall electric field. An increased Hall
electric field increases the total electric field such that the electrons are additionally
accelerated. The two effects compete since the randomization of velocity enlarges
the resistivity, while the accelerating effect of the Hall electric field reduces the
resistivity. For a conventional metal, the first effect dominates, leading to a po-
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6 Transport in the spin-density-wave phase of iron pnictides

sitive magnetoresistance. For FSs with interrupted orbital motion however, the
complete randomization of the velocity is impossible. Depending on the direction
of the applied current, this can lead to a decrease of the resistivity due to the
dominance of the accelerating effect of the Hall electric field.

6.6 Conclusions

To summarize, I have studied the scattering rate resulting from the interaction of
electrons with spin fluctuations in the SDW phase. The spin-fluctuation spectrum
includes the Goldstone mode and leads to strong scattering between different sides
of the reconstructed banana pockets. We have seen that for a realistic strength
of spin-fluctuation scattering, the MFPs on one side of each reconstructed pocket
are inverted, which leads to the interruption of the orbital motion of electrons
along the Fermi line in the presence of a magnetic field. The finite MFP of states
at which the orbital motion stops makes the mechanism distinct from the one
mentioned in Ref. [118] and leads to specific signatures in the magnetoresistance.
For twinned crystals and polycrystals the interrupted orbital motion implies a

critical magnetic field at which the resistivity drops to zero and the system becomes
thermodynamically unstable. The critical magnetic field strength depends on
details of the system, but should be such that the effective cyclotron frequency is
on the order of the inverse effective relaxation time. For detwinned crystals, on the
other hand, I have found signatures of interrupted orbital motion already for weak
magnetic fields. I predict a linear magnetoresistance which oscillates as a function
of the direction of the current, φ, between negative and positive values with nodes
at φ = n π/2, where n is an integer. Positive linear magnetoresistance could also
appear due to the Dirac spectrum [47, 112, 117] or due to a large velocity change
at the turning points of the banana-shaped pockets [118]. However, none of these
scenarios predicts a negative magnetoresistance. Direction-resolved measurements
of the magnetoresistance for detwinned samples would therefore be a decisive
test of the mechanism proposed in this chapter. However, to my knowledge,
measurements of magnetoresistance of detwinned single crystals do not exist so
far.
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7 Summary and outlook

In this work I have investigated transport in multiband metals close to an excitonic
instability. The main theoretical challenge has been the inclusion of collective
fluctuations, which give rise to anisotropic scattering of electrons. I found a simple
model in which the transport problem could be solved analytically even in case
of strong scattering anisotropy [17]. The results uncovered a mechanism which
may explain the suppressed magnetoresistance in connection with an enhanced
Hall coefficient, measured in paramagnetic iron pnictides [3]. The analysis has
shown that this effect is connected to the occurrence of negative transport times
of minority carriers.

In a more advanced model including several characteristics of the iron pnic-
tide FS, I studied the role of spin fluctuations in the transport behavior of these
materials [18]. An approximate analytic solution has been discussed, along with
full numerical calculations. The analytical results, which have shown a qualita-
tive agreement with those obtained numerically, have been helpful to understand
the unexpectedly large contribution of hot spots to the transport. The hot spots
were found to not be “short circuited” by the cold regions of the FS, in contrast
to the situation in cuprates and heavy-fermion materials. Further, we have seen
that scattering anisotropy and the elliptical shape of the electron pockets leads
to an effective Lorentz force [122], which shifts the electrons along the Fermi line
towards the closest hot spot. The effect increases with increasing ellipticity and
increasing scattering anisotropies.

Doping and temperature dependence of several transport coefficients has been
considered. The anomalous temperature behavior qualitatively reproduces some
aspects of the transport anomalies of iron pnictides. It could be ascribed to the
temperature dependence of the scattering anisotropy, which in turn is due to
the temperature-dependence of the available spin-fluctuation spectrum. In the
nematic phase the strong contribution of hot spots could explain the huge resis-
tive anisotropy measured in 122 pnictides [19]. The calculations have reproduced
the characteristic doping dependence and have explained the difference between
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7 Summary and outlook

annealed and as-frown samples without the assumption of anisotropic impurity
states.

The most striking effects have been predicted for the SDW phase. Here, back-
folding of the bands and the SDW gap lead to reconstructed pockets, which are
banana-shaped for temperatures close to TN . The presence of damped magnon
excitations leads to strong scattering of electrons between opposite sides of the
banana pockets. In principle, this scattering resembles the scattering between the
electron and hole pockets in the paramagnetic phase. However, in the SDW phase
the changed pocket topology leads to an unusual effect in the presence of an exter-
nal magnetic field: The orbital motion becomes interrupted at the turning points
of the banana pockets. In high magnetic fields the interrupted orbital motion
makes the system unstable, which is characterized by a drop of the resistivity to
zero. For low magnetic fields, my calculations predict a strong difference between
the magnetoresistance of detwinned single crystals and twinned crystals or poly-
crystals. While there is no clear signature of interrupted orbital motion in twinned
crystals or polycrystals, in detwinned single crystals the low-field magnetoresis-
tance is linear with alternating sign of the slope as a function of the direction of
the current. To my knowledge there are no other mechanisms which could explain
such an effect, the measurement of which would thus be a decisive test of the
theory.

Finally, some ideas for further investigations in this field should be given. There
has been very little research considering the role of AL (Aslamazov-Larkin) vertex
corrections for the conductivity in connection with scattering due to spin fluctua-
tions. I have discussed in chapter 2 that, based on the results for cuprates [72],
AL terms are suppressed in the specific case of short-ranged electron-electron in-
teraction and commensurate fluctuations. To my knowledge, explicit calculations
of AL vertex corrections in the multiband case have not been performed so far.

With regard to the physics of iron pnictides, it would be very interesting to
consider orbital models and compare the impact of spin and orbital fluctuations
on transport. A comparison with transport measurements could then be helpful
to determine the dominant fluctuations, which could shed light on the mechanism
of, e.g., the high-temperature superconductivity in these materials. As discussed
in chapter 6, orbital models are especially important to consider the temperature
dependence of transport coefficients in the SDW phase. This is because orbital
models correctly include the topologically protected Dirac nodes in the spectrum
[46, 114, 115]. So far, Dirac fermions in the SDW phase of iron pnictides [112]
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received only little attention, although it has been proposed that they might sig-
nificantly contribute to transport due to reduced relaxation rates [47]. The re-
duced relaxation rates are an effect of the Berry phase, which leads to suppressed
backscattering of Dirac fermions [113].
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