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Abstract

In this work, the electronic phase diagrams of Ca1−xNaxFe2As2 and Fe1+yTe were inves-
tigated using muon spin relaxation and Mössbauer spectroscopy.
Single crystals of Ca1−xNaxFe2As2 with x = 0.00, 0.35, 0.50, and 0.67 were exam-

ined. The undoped 122 parent compound CaFe2As2 is a semi metal and shows antifer-
romagnetic commensurate spin density wave order below 167 K. By hole doping via Na
substitution, the magnetic order is suppressed and superconductivity emerges including a
Na-substitution level region, where both phases coexist. Upon Na substitution, a tilting
of the magnetic moments out of the ab-plane is found.
The interaction of the magnetic and superconducting order parameter in this coexistence

region was studied and a nanoscopic coexistence of both order parameters is found. This
is proven by a reduction of the magnetic order parameter of 7 % in x = 0.50 below the
superconducting transition temperature. This reduction was analysed using Landau theory
and a systematic correlation between the reduction of the magnetic order parameter and
the ratio of the transition temperatures, T c/TN, for the 122 family of the iron pnictides
is presented.
The magnetic phase transition is accompanied by a tetragonal-to-orthorhombic phase

transition. The lattice dynamics at temperatures above and below this magneto-structural
phase transition were studied and no change in the lattice dynamics were found. However,
the lattice for �nite x is softer than for the undoped compound.
For x = 0.67, diluted magnetic order is found. Therefore, the magnetism in

Ca1−xNaxFe2As2 is persistent even at optimal doping. The superconducting state is investi-
gated by measuring the temperature dependence of the magnetic penetration depth, where
two superconducting gaps with a weighting of nearly 50:50 are obtained. A temperature
independent anisotropy of the magnetic penetration depth γλ = 1.5(4) is obtained, which
is much smaller compared to other 122 compounds indicating a more three-dimensional
behaviour of Ca1−xNaxFe2As2.
Powder samples of Fe1+yTe with y = 0.06, 0.12, 0.13, and 0.15 were examined. Fluc-

tuating paramagnetic moments at room temperature were found, which are independent
of the excess iron level y. Below 100 K, a magnetic precursor phase is observed, which
is independent of y. Fe1.06Te shows a commensurate spin density wave phase below TN,
while for y ≥ 0.13 an incommensurate spin density wave phase below TN is found. How-
ever, a slowing down of the magnetic �uctuations with decreasing temperature and static
magnetic order at lowest temperature are observed.
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In dieser Arbeit wurden die elektronischen Phasendiagramme von Ca1−xNaxFe2As2 and
Fe1+yTe mit Hilfe der Myonspinrelaxations- und Mössbauerspektroskopie untersucht.
Einkristalle von Ca1−xNaxFe2As2 mit x = 0.00, 0.35, 0.50 und 0.67 wurden untersucht.

Das undorierte 122-System CaFe2As2 ist ein Halbmetal und zeigt eine antiferromagnetische
Spindichtewelle unterhalb von 167 K. Substituiert man Ca durch Na, werden Löcher in das
System eingebracht. Die magnetische Ordnung wird mit steigendem Na-Anteil unterdrückt
und Supraleitung tritt auf. Dabei existiert ein Na-Substitutionslevelbereich, in welchem
Magnetismus und Supraleitung koexistieren. Desweiteren wurde ein herausdrehen der
magnetischen Momente aus der ab-Ebene als Funktion von x beobachtet.
Die Wechselwirkung des magnetischen mit dem supraleitenden Ordnungsparameter in

der Koexistenzregion wurde untersucht und nanoskopische Koexistenz der beiden Ord-
nungsparameter wurde gefunden. Dies konnte durch eine Reduktion des magnetischen
Ordnungsparameteres um 7 % in x = 0.50 unterhalb der supraleitenden Ordnungstemper-
atur gezeigt werden. Diese Reduktion wurde mit Hilfe der Landautheorie untersucht und
es wurden systematische Korrelationen zwischen der Reduktion des magnetischen Ord-
nungsparamteres und dem Verhältnis der Übergangstemperaturen, T c/TN, in der 122-
Familie der Eisenpniktide gefunden.
Der magnetische Phasenübergang wird von einem strukturellen Phasenübergang be-

gleitet. Die Gitterdynamik wurde bei Temperaturen oberhalb und unterhalb dieses
magneto-elastischen Phasenübergangs untersucht. Es wurden keine Änderungen in der
Gitterdynamik festgestellt. Jedoch konnte festgestellt werden, dass das Gitter für endliche
x weicher ist als für das undotierte System.
Für x = 0.67 wurde festgestellt, dass der Magnetismus im Ca1−xNaxFe2As2-System

auch noch bei optimaler Dotierung zu �nden ist. In der supraleitenden Phase wurde
die Temperaturabghängigkeit der magnetischen Eindringtiefe untersucht und es wurden
zwei supraleitende Bandlücken gefunden. Die Anisotropie der magnetischen Eindringtiefe
ist temperaturunabhängig und mit γλ = 1.5(4) wesentlich kleiner als in anderen 122-
Verbindungen, was für eine erhöhte Dreidimensionalität in Ca1−xNaxFe2As2 spricht.
Pulverproben von Fe1+yTe mit y = 0.06, 0.12, 0.13 und 0.15 wurden untersucht. Es

wurden �uktuierende paramagnetische Momente bei Raumtemperatur gefunden, welche
unabhängig vom Überschusseisenlevel y sind. Unterhalb von 100 K wurde eine magnetische
Vorgängerphase gefunden, welche unabhängig von y ist. Mit fallender Temperatur wurde
eine Verlangsamung der magnetischen Fluktuationen festgestellt, welche in einer statischen
magnetischen Ordnung bei tiefen Temperaturen münden.
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Abbreviations and symbols

AFM antiferromagnetic, antiferromagnet, antiferromagnetism
ARPES angle resolved photo-emission spectroscopy

B⃗ = µ0H⃗ magnetic �eld
BCS Bardeen-Cooper-Schrie�er
Bhf magnetic hyper�ne �eld

CDW charge densitiy wave
δC chemical shift

DFT density functional theory
DOS density of states
EF Fermi energy

EFG electric �eld gradient
η asymmetry parameter of the electric quadrupole interaction

ER recoil energy
f i muon spin precession frequency on site i
f recoilless fraction

FeChn iron-chalcogen
FePn iron-pnictogen
FS Fermi surface
g gyromagnetic ratio

Γnat natural line width Γnat = 4.7 neV (for 57Fe)
γλ magnetic penetration depth anisotropy

GKT Gauss-Kubo-Toyabe
LKT Lorentz-Kubo-Toyabe
LPD London penetration depth
λL longitudinal muon spin relaxation rate
λL transversal muon spin relaxation rate

µSR muon spin relaxation
M e� e�ective vibrating mass
PM paramagnetic
T c superconducting transition temperature
θD Debye temperature
θ angle between the magnetic hyper�ne �eld and the principal axis of the EFG

TN Néel, magnetic transition temperature
T onset

N highest temperature with a �nite magnetic volume fraction
T 100%

N highest temperature with a magnetic volume fraction of 100 %
T χ
N magnetic transition temperature determined

by magnetic susceptibility measurements
SC superconductor, superconducting, superconductivity

SDW spin density wave
V mag magnetic volume fraction
Vzz z -component of the principal axis of the EFG
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c speed of light c = 299792458 m/s
e elementary charge e = 1.602176565 ·10−19 A·s
γµ gyromagnetic ratio of the muon γµ = 2π · 135.5342(5)MHz/T
~ Planck constant ~ = 6.62606957 ·10−34 J·s
kB Boltzman constant kB = 1.3806488(13) ·10−23 J/K
µB Bohr magneton µB = 9.27400968(20) ·10−24 J/T
µP magnetic moment of the proton µP = 1.410606743(33) ·10−26 J/T
me electron mass me = 510.998928(11) keV/c2

mp proton mass mp = 938.272046(21) MeV/c2

τµ mean lifetime of the muon τµ = 2.19703(4) µs
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1. Introduction

"It's a neural-net processor. It thinks and learns like we do. It's superconducting at room

temperature." - Tarissa Dyson about the central processing unit of a terminator [1].
Room-temperature superconductivity - what is the reality in James Cameron's Termi-

nator 2, is still a dream of the future in the real world.
But lets take a step back. Everything started with the discovery of a vanished resis-

tivity in metallic mercury below 4.2 K by Heike Kamerlingh Onnes in 1911, who was
rewarded with the Nobel Prize in physics in 1913. From this starting point, one major
goal of the basic research was and is to �nd a compound, which is superconducting at
room temperature. As time was passing by, the superconducting transition temperature
in conventional superconductors increased to T c = 39 K in MgB2, which was discovered
in 2001 [2]. The term conventional superconductivity is not well-de�ned in the literature,
but is usually associated with phonon-mediated superconductivity, which can be described
by the famous Bardeen-Cooper-Schrie�er (BCS) theory. The BCS-theory was published
in 1957 and describes the formation of a coherent ground state out of electron pairs with
opposite spin and momenta [3]. Bardeen, Cooper, and Schrie�er were awarded with the
Nobel Prize in physics in 1972 for their theory. With the discovery of the cuprate su-
perconductors in 1986 by Bednorz and Müller, who where rewarded with the Nobel Prize
in physics in 1987, T c raised up to 153 K [4], which is up to now the highest achieved
superconducting transition temperature. Superconductivity in cuprates is found in close
proximity to magnetic order: The antiferromagnetic order in the parent compounds are
at least as important as the high T c, as magnetic moments were seen as deleterious to
the superconductivity in earlier times. The cuprates are unconventional superconductors.
Unfortunately, a complete theory of unconventional superconductivity is still lacking up
to now.
With the discovery of the iron pnictides in 2008 [5], a new class of high-temperature su-

perconductors was identi�ed. This class takes the proximity of magnetic order and super-
conductivity to its extremes, as under certain conditions superconductivity and magnetic
order coexisting in the same phase competing for the same electronic states at the Fermi
surface. The understanding of this coexistence phase as well as of the high-temperature
superconductivity in general in these compounds is an important topic in contemporary
correlated-electron physics.
Therefore, studying this crossover from magnetic order to superconductivity with fo-

cus on the phase boundary between both orders is crucial for an understanding of the
high-temperature superconductivity in the iron-based superconductors and for unconven-
tional superconductivity in general. A combined study of macroscopic techniques and local
magnetic probes will give further insight in the electronic properties of these compounds.
In this work, I examined Ca1−xNaxFe2As2 and Fe1+yTe using muon spin relaxation and

Mössbauer spectroscopy to study the pure magnetic and superconducting phases as well
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1. Introduction

as the coexistence region. For a better understanding of the experiments, the principle of
both techniques is given. Muon spin relaxation spectroscopy is described in Sec. 2 with
focus on magnetic order and superconductivity. Mössbauer spectroscopy is described in
Sec. 3 with focus on magnetic order and lattice dynamics. In Sec. 4, a short introduction
to the physics of iron pnictides and chalcogenides is given. In Sec. 5 and 6, the relevant
properties of both investigated systems are presented followed by the results of the muon
spin relaxation and Mössbauer spectroscopy experiments. In Sec. 7, I summarize my work
and give an outlook.
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2. Muon spin relaxation

Muon spin relaxation, usually abbreviated as µSR, is an experimental technique, which is
used to study in particular magnetic and superconducting properties in condensed-matter
systems. The µSR technique uses a 100 % spin-polarized muon beam to investigate the
electronic properties of solid states. This chapter is organized in the following way: �rstly,
basic properties of the muon are described. Secondly, important experimental details are
discussed. Thirdly, the interaction of the muon with the sample is discussed with focus on
systems with magnetic order and/or superconductivity.

2.1. Muon properties

The muon belongs to the family of elementary fermions. A summary of its basic properties
is shown in Tab. 2.1. In contrast to stable particles like electrons or protons, the muon
radioactively decays with a mean lifetime of τµ ≈ 2.2 µs. In nature, two muons exist.
They can be distinguished by their charge: the positive muon has a charge of qµ+ = +e
and the negative muon has a charge of qµ− = -e with e being the elemental charge. Most
other physical properties are equal for both types of muons. For purposes of condensed-
matter physics, usually the positive muon is used. Therefore, all discussions in this thesis
are referred to the positive muon. It carries a spin of sµ = 1/2. With a mass of
mµ ≈ 105.7 MeV/c2, the muon is around 200 times heavier than an electron, which has a
mass of me ≈ 511 keV/c2. The proton has a 9 times higher mass with mp ≈ 938 MeV/c2

than the muon. For this reason, the positively charged muon is often called a light proton.

muon property value
spin 1/2
charge ±e
mass 206.76826(11) me

0.111609513(17) mp

105.658 3668(38) MeV/c2

magnetic moment 3.18334547(47) µp

4.84 · 10−3 µB
gyromagnetic ratio 2π · 135.5342(5) MHz/T

mean liftime 2.19703(4) µs
Table 2.1.: Basic properties of the muon in terms of electron and proton properties. mp

denotes the proton mass, me the electron mass, the elementary charge e, µp the
magnetic moment of the proton and µB the Bohr magneton.
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2. Muon spin relaxation

2.2. Muon production

Positive muons can be produced using a high-energy proton beam. In a synchrotron or
cyclotron, protons will be accelerated to energies of E > 500 MeV and then directed on
a target (usually carbon or beryllium). Via proton-proton (p-p) and proton-neutron (p-n)
interactions in the target, positively charged pions π+ are produced via the reactions

p+ p→ π+ + d,

p+ p→ π+ + p+ n, (2.1)

p+ n→ π+ + n+ n,

with deuterion d. The positive pion decays after a mean lifetime of τπ+ ≈ 26 ns via

π+ → µ+ + νµ (2.2)

into a positive muon, which has an energy of ∼ 4.1 MeV in the rest frame of the pion, and
a muon-neutrino. For a deeper understanding of the properties of this decay, the helicity
h is a useful quantity. A possible de�nition is

h = 2s⃗ · e⃗p⃗, (2.3)

where s⃗ describes the spin of the particle and e⃗p⃗ is the momentum unit vector describing
the direction of the momentum. The helicity operator has 2s+1 eigenstates ranging from
−s to +s. For massless particles or, in a good approximation, particles with v ≈ c, where
c denotes the speed of light in vacuum, only the eigenstates +s and −s are allowed. This
is an important property for the muon neutrino. Its mass is not exactly known up to
know, but to common knowledge, the muon neutrino travels with v ν ≈ c. Therefore,
the eigenvalue of the helicity operator of hνµ = −1 for the muon neutrino νµ (the muon
anti-neutrino νµ has an eigenvalue of +1 for h) is obtained, resulting in a spin orientation
antiparallel to the direction of the momentum.
The pion has a spin sπ+ = 0, while neutrino and muon are s = 1/2 - particles. Using the
conservation of angular momentum

s⃗π+ = 0 = s⃗νµ + s⃗µ+ =
1

2
e⃗s(νµ) +

1

2
e⃗s(µ+), (2.4)

where e⃗s denotes the direction of the spins, results in an antiparallel alignment, e⃗s(νµ)|| −
e⃗s(µ), of the neutrino and muon spins. In the rest frame of the pion (p⃗π+ = 0), both decay
products have the same, but opposite momenta due to conservation of momentum:

p⃗π+ = 0 = p⃗νµ + p⃗µ. (2.5)

Taking into account the negative helicity of the muon neutrino, the muon spin is aligned
antiparallel to its momentum. Due to this, a 100 % spin-polarized muon beam is produced.
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2.3. Muon implantation

2.3. Muon implantation

The muon enters the sample with a kinetic energy E kin of ∼ 4.1 MeV. E kin is reduced to 2-
3 keV within 10−10−10−9 s due to ionization e�ects and electron scattering. After another
10−13s, the kinetic energy is reduced to a few hundred eV due to inelastic collisions with the
atoms as well as through the creation of short-lived and unstable muonium states. As the
muon is positively charged, it is repulsed by the also positively charged nuclei. Therefore,
the muon tend to move to the minima of the electrostatic potential and come to rest
at these interstitial sites. The muon interacts with the electrostatic potential leading to
the so-called host-lattice relaxation, which changes the lattice constants by a few %. After
coming to rest, the muon still has its initial spin polarisation, as the thermalization process
is rapid and only electrostatic interactions occur.

2.4. Muon decay

The positive muon decays into a positron and two neutrinos with a mean lifetime of
τµ ≈ 2.2 ms via

µ+ → e+ + νe + νµ (2.6)

into a positron e+, an electron neutrino νe and a muon anti-neutrino νµ. The kinetic
energy of the positron varies up to a maximum energy of ≈ 52.83 MeV, depending on the
momenta of the neutrinos. Positrons with the highest energies emerge, if the momentum
of the positron is opposite to the momenta of the two neutrinos. As the helicity of both
neutrinos is di�erent (hνµ = +1 and hνe = −1), their spins are aligned antiparallel and
adding up to zero. Therefore, muon and positron spin are pointing in the same direction.
Due to the parity violation of the weak interaction, only chiral right-handed positrons
(he+= +1) are produced. Thus, the momentum of the muon is parallelly aligned to the
spin direction. This causes an anisotropic distribution of the positron emission, as the
positron is predominantly emitted along the muon spin direction. This distribution can
be described by calculating the probability dW of the emission of a positron with energy
dε in the solid angle dΩ using [6]

d2W (ε, φ)

dε dΩ
=

3− 2ε

2πτµ
ε2
[
1− 1− 2ε

3− 2ε
cos(φ)

]
, (2.7)

where ε=E kin/Emax is the normalized positron energy, τµ the mean life time of the
muon and φ the angle between the muon spin and the momentum of the emitted positron.
Integration over all energies leads to the anisotropic emission probability [6]

dW (φ)

dΩ
=

1

4πτµ

[
1 +

1

3
cos(φ)

]
. (2.8)

2.5. Experimental setup

There are, in principle, two types of setups for a µSR experiment: Continuous wave (CW)
and pulsed muon sources. The former technique is used at the Paul Scherrer Institute

13



2. Muon spin relaxation

(PSI) in Villigen, Switzerland, and at the Tri-University Meson Facility (TRIUMF) in
Vancouver, Canada. The latter technique is used at the ISIS in Oxford, United Kingdom,
and at KEK and JPARC in Japan. As all µSR experiments of this PhD thesis were
performed using the General Purpose Spectrometer (GPS) and DOLLY at PSI, only the
CW situation is described. For informations about the pulsed muon sources, the interested
reader is referred to the websites of the facilities.

(a) (b)

Figure 2.1.: Sketch of the experimental setup of a µSR experiment in (a) transversal and
(b) zero �eld geometry. The red arrow denotes the direction of the applied
external magnetic �eld H⃗ext. µ+ is the incident positive muon, e+ is the
emitted positron, νe the electron neutrino and νµ the muon anti-neutrino.
Taken from Ref. [7].

In a CW experiment, single muons are implanted in the sample. An electronic clock
measures the time between the implantation of the muon and the detection of the emitted
positron in one of the detectors. The experiment is equipped with a so-called "veto system"
to ensure, that only one single muon is measured at the same time.
After the implantation of the muon in the sample and its thermalisation within < 10−9 s,
the muon spin interacts with the electromagnetic environment. Afterwards, the muon
decays and the positron is predominantly emitted in the direction of the muon spin. The
decay positrons are detected as a function of time and solid angle, which is given by the
detector position. The positron detection rate dn(t)/dt is given by [6]

dn(t)

dt
=

dW (φ)

dΩ
N(t)dΩ, (2.9)

where dΩ is the solid angle covered by the positron detector, φ the angle between the
detector axis and the initial muon spin polarisation P⃗ (0), and N(t) = N0e

−t/τµ . Using

14



2.6. Interaction of the muon with the sample

Eq. (2.8) and Eq. (2.9), the detection rate is given by [6]

dn(t)

dt
=

1

4πτµ

{
1 +

1

3
P⃗ (t)e⃗µΩ

}
N(t)dΩ, (2.10)

where e⃗µΩ is the unit vector pointing from the muon to the detector and, therefore, P⃗ (t)e⃗µΩ
is the projection of the muon spin polarisation in this direction.
To extract the time-dependent asymmetry of the muon decay, the normalized di�erence

in the detection rate of di�erent detectors i,j is needed and is given by

A(t) =
d
dt
ni(t)− d

dt
nj(t)

d
dt
ni(t) +

d
dt
nj(t)

. (2.11)

3

4

2

1

1+ WEP

 
WEDL

sample
X

Figure 2.2.: Sketch of the GPS and DOLLY spectrometer. The detector pairs 3,4 and
2,1 as well as the implemented magnets WEP and WEDL are shown, where
the arrows denote the direction of the magnetic �eld. The chosen muon spin
direction, which is 45◦ rotated from the muon beam direction, is shown.

The detector arrangement at GPS is shown in Fig 2.2 with the detector pairs 3,4 and
2,1. By counting the number of positrons, which are measured in a time-interval [tn, tn+1]
after the muon implantation, a time histogram is recorded with tN = n∆t, n=1, 2, 3,
... and ∆t is the time resolution of the detector. The time dependence of the positron
detection rate is described by these time histograms.
The asymmetry for two opposite detectors can be calculated using Eq. (2.11) and is

given by
A(t) = A0P⃗ (t)e⃗µΩ, (2.12)

where A0 = A(0) is the maximum asymmetry. By analysing the asymmetry A(t), one
can study the time evolution of the muon spin polarisation, P⃗ (t), in the sample, which is
determined by the interaction of the muon spin with its electromagnetic environment.
In practice, there are experimental limitations. The maximum asymmetry is usually

smaller than the theoretically expected 1/3 due to, for example, a �nite solid angle.

2.6. Interaction of the muon with the sample

As the muon has a spin of 1/2, it does not couple to electric �eld gradients. Therefore,
the spin Hamiltonian of the muon is determined by dipole-dipole and Fermi-contact inter-
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2. Muon spin relaxation

actions. The Hamiltonian, which describes the magnetic interaction of the muon with its
electromagnetic environment, is given by

H = Hdipol +Hhf = −γµ~2
µ0

4π

∑
i

γJi

3
[
r⃗iS⃗µ

]
·
[
r⃗iJ⃗i

]
r5i

− S⃗µJ⃗i
r3i

+
∑
i

AiS⃗µJ⃗i, (2.13)

where the �rst term describes the dipole-dipole interaction of the muon spin with nuclear
and electronic magnetic moments γJi~J⃗i. The second term describes the Fermi-contact
interaction with conduction electrons, if the electrons have a non-zero magnetization at
the muon site. γµ denotes the gyromagnetic ratio of the positive muon and γJi of the spin
J⃗i. r⃗i is the position vector connecting the muon spin S⃗µ and J⃗i. Ai denotes the hyper�ne
coupling constant between the muon spin and the spin J⃗i.
Under the assumption, that the perturbation of the electronic system of the solid state

due to the muon is negligible small, the Hamiltonian can be written in a mean-�eld ap-
proximation:

H = −γµ~S⃗µ

~
µ0

4π

∑
i

γJi

 r⃗i
[
r⃗i ⟨J⃗i⟩

]
r5i

− ⟨J⃗i⟩
r3i

+
1

~γµ

∑
i

Ai ⟨J⃗i⟩


= −γµ~S⃗µ

[
B⃗dip + B⃗hf

]
(2.14)

= −γµ~S⃗µB⃗loc.

This approximation is valid for magnetic materials, where the magnetic exchange inter-
action of electronic magnetic moments is much larger than the dipole-dipole interaction of
the muon with an electronic moment. For an understanding of the mean-�eld Hamiltonian,
it is necessary to know the local magnetic �eld B⃗loc at the muon site.
In solids, the local magnetic �eld at the muon stopping site is a function of space and

time B⃗(r⃗, t). The space dependence is based on disorder and the dipole interaction of
the muon spin with randomly oriented nuclear moments. It causes a dephasing of the
muon spin precession. The time dependence is based on magnetic �uctuations and muon
di�usion and results in a relaxation of the muon spin polarisation to thermal equilibrium.
The muons randomly stop at interstitial sites. As a result, the measured asymmetry

and consequently P⃗ (t) is an ensemble average of the spatial variation of B⃗loc. Instead of
using the spatial variation of B⃗loc, P⃗ (t) can be calculated using a �nite distribution of the
magnetic �elds n(B⃗loc) [8]:

P⃗ (t) =

∫
P⃗ ′(B⃗loc, t)n(B⃗loc)dB⃗loc, (2.15)

where P⃗ ′(B⃗loc, t) denotes the local muon spin polarisation. In the following chapters, the
cases of static and dynamic magnetic �eld distributions as well as muon spin relaxation in
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2.6. Interaction of the muon with the sample

magnetically ordered systems are discussed.

2.6.1. Static relaxation

Static relaxation means, that the local magnetic �eld at the muon site does not change
over the observation time, which is usually a few lifetimes τµ of the muon. This condition
can be expressed as

Bloc(t)
d
dt
Bloc(t)

≫ τµ. (2.16)

For a static isotropic Gaussian �eld distribution, which is given by

n(B⃗loc) =

[
γµ√
2πσ

]3
exp

(
− [γµB

x
loc]

2

2σ2
− [γµB

y
loc]

2

2σ2
− [γµB

z
loc]

2

2σ2

)
, (2.17)

with the standard deviation σ = σx = σy = σz, and under the assumption of P⃗ (t=0) =
P0e⃗z, Eq. (2.15) reduces to [6]

Px(t) = Py(t) = 0, (2.18)

Pz(t) =

∫
dBlocdθdφ n(B⃗loc)

[
cos2(θ) + sin2(θ) cos(γµBloc)

]
B2
loc, (2.19)

where θ denotes the angle between the initial muon spin polarisation P⃗ (t=0) and the local
magnetic �eld direction. The integration of Eq. (2.17) results in the static Gauss-Kubo-
Toyabe function GGKT(t, σ) [9]

Pz(t) =
1

3
+

2

3

[
1− σ2t2

]
e−

1
2
σ2t2 = GGKT(t, σ). (2.20)

This function is used to describe the in�uence of randomly oriented dense (nuclear) mag-
netic moments on the time evolution of the muon spin polarisation, where the assumption
of isotropy is valid. For an isotropic Lorentz �eld distribution, which is given by

n(B⃗loc) =
γ3µ
π3

λ

γ2µ[B
x
loc]

2 + λ2
· λ

γ2µ[B
y
loc]

2 + λ2
· λ

γ2µ[B
z
loc]

2 + λ2
, (2.21)

with λ = λx = λy = λz, the time evolution of the muon spin polarisation can be
calculated under the assumption of P⃗ (t=0)=P0e⃗z by using Eq. (2.15) resulting in [6]

P (t) =
1

3
+

2

3
[1− λt]e−λt = GLKT(t, λ), (2.22)

the static Lorentz-Kubo-Toyabe function GLKT(t, λ). This function is used to describe the
time evolution of the muon spin polarisation under the interaction of the muon spin with
diluted (nuclear) magnetic moments. The time evolution of the muon spin polarisation for
the Gauss-Kubo-Toyabe and Lorentz-Kubo-Toyabe function is shown in Fig. 2.3.
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Figure 2.3.: Gauss-Kubo-Toyabe (black) and Lorentz-Kubo-Toyabe (red) function for re-
laxation rates of 0.1 MHz (dashed line) and 3 MHz (straight line).

2.6.2. Dynamic relaxation

Dynamic muon spin relaxation is caused by, e.g., muon di�usion or �uctuations of the
internal magnetic �eld. This non-static behaviour can be modelled by the strong-collision
approximation [9]. The muons experience a �uctuation of the magnetic �eld B after a
characteristic time τc, or the magnetic �eld �uctuates with a frequency of ν = 1/τc,
respectively. In the strong-collision model, the magnetic �eld values before and after the
�uctuation are treated as independent, which corresponds to a �rst-order Markov process
[9]. Before the �rst �uctuation, the muons experience a static �eld B0 and hence the
time evolution of the muon spin polarisation exhibits a static depolarisation PS(t). The
probability of observing no �uctuation after a time t is given by [9]

p0(t) = e−
t
τcPS(t). (2.23)

The probability of having one �uctuation at a time t∈(0,t ') is given by [9]

p1(t) =
1

τc

∫ ∞

0

dt′ e−
t−t′
τc

tPS(t− t′)e−
t′
τcPS(t) (2.24)

and of n �uctuations at a time t∈(0,t ') by [9]

pn(t) =
1

τc

∫ t

0

dt′ pn−1(t− t′)e−
t′
τcPS(t). (2.25)

Consequential, the time evolution of the muon spin polarisation including all possible
�uctuation channels is given by [9]

P (t) =
∞∑
n

pn(t). (2.26)

This expression can be evaluated for any internal �eld distribution resulting in the dy-
namic Kubo-Toyabe function. For an isotropic Gaussian �eld distribution with a standard
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2.6. Interaction of the muon with the sample

deviation σ, slow �uctuations, στc ≫ 1, lead to an exponentially damped 1/3 - tail with a
damping rate λ = 2/3τc. In the limit of fast �uctuations, στc ≪ 1, an overall exponential
depolarisation,

P (t) = e−λτc , λ = 2σ2τc (2.27)

is obtained.

2.6.3. Magnetic order

Assuming an ideal crystal lattice, long-range commensurate magnetic order of electronic
moments creates a well-de�ned �nite magnetic �eld at the muon site, which can be de-
scribed by n(B⃗loc) = δ(B⃗0 − B⃗loc) with the Dirac delta function δ(B). Applying this �eld
distribution n(B⃗loc) on Eq. (2.15) results in a general expression for the relaxation and,
therefore, the time evolution of the muon spin polarisation is given by [6]

P (t) = cos2(θ) + sin2(θ) cos(γµB0t). (2.28)

For an isotropic internal-�eld distribution, P(t) can be expressed by

P (t) =
1

3
+

2

3
cos(γµB0t), (2.29)

after averaging over all spatial directions θ. This is, for example, the case in a powder
sample.
In real systems a distribution of local �elds is often found. For an isotropic Lorentz

distribution

n(B⃗loc) =
γ3µ
π3

λ

γ2µ[B
x
loc]

2 + λ2
· λ

γ2µ[B
y
loc]

2 + λ2
· λ

γ2µ[B
z
loc]

2 + λ2
, (2.30)

with λ = λx = λy = λz, Eq. (2.15) gives [10]

P (t) =
1

3
+

2

3

{
cos(2πfµt)−

λ

2πfµ
sin(2πfµt)

}
e−λt, (2.31)

with 2π × fµ = γµ|B⃗0|. For λ/2πfµ ≪ 1, Eq. (2.31) reduces to

P (t) =
1

3
+

2

3
cos(2πfµt)e

−λt, (2.32)

which is a commonly used equation to analyse the time evolution of the muon spin polar-
isation in magnetically ordered systems.
For an ideal commensurate magnetic structure, one value of B loc is expected. In con-

trast, for an incommensurate magnetic structure, any number of magnetically inequivalent
muon sites is possible. Assuming a periodical �eld modulation, e.g. a spin-density wave,
results in B⃗ = B⃗max cos(q⃗r⃗), where Bmax is the maximum magnetic �eld, q⃗ the wave vector
and r⃗ the position vector. This �eld modulation results in the magnetic �eld distribution
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2. Muon spin relaxation

[11]

n(B) =
2

π

1√
B2
max −B2

, (2.33)

which is the so-called Overhauser form of the spin density wave. Applying this �eld distri-
bution to Eq. (2.15) gives the corresponding time evolution of the muon spin polarisation

P (t) =
1

3
+

2

3
J0(γµBmaxt), (2.34)

where J0 is the 0 th-order Bessel function. P(t) has the same structure as in the case of
static commensurate magnetic order. Only the form of the oscillation is di�erent, which
is illustrated in Fig. 2.4. The sinusoidal oscillation shows no damping, while the Bessel-
oscillation shows a strong damping.
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Figure 2.4.: time evolution of the muon spin polarisation P(t) with a sinusoidal (black)
or Bessel (red) oscillation for the undamped (a) and damped (b) case. The
exponential relaxation in (b) has a relaxation rate λ = 0.5 MHz.

In single crystals, the situation is di�erent, as the local �eld has a �xed, yet arbitrary
orientation. A useful approach is to introduce variable parameters a1 and a2 as well as a
phase ϕ leading to the expression [6]

P (t) = a1 + a2 cos(2πfµt+ ϕ)e−λt, (2.35)

where a1 and a2 are not connected in a simple way.
P(t) for the case of N magnetically inequivalent muon stopping sites can be expressed

by

P (t) =
N∑
i

pi
{
a1,i cos(2πfµ,it+ ϕ)e−λT,it + a2,ie−λL,it

}
, (2.36)

where pi denotes the occupation probability of the di�erent muons site with
∑N

i pi = 1.
The exponential damping of the tail a2 is modeled by the (longitudinal) exponential damp-
ing rate λL. This exponential damping is, however, a result of dynamic magnetic �eld
�uctuations.

20



2.7. µSR in type-II superconductors

It is possible with µSR to determine the magnetic volume fraction of a sample. In a
temperature region, where not 100 % of the sample is magnetically ordered, a certain
amount of the muons show a depolarisation of P(t) due to the interaction of the muon
spin with randomly oriented nuclear magnetic moments only. The rest of the muons
stops in sample volumes, which are magnetically ordered and, therefore, P(t) shows a
depolarisation following Eq. (2.36). To separate this signal fractions, the following equation
can be used:

P (t) =Vmag

N∑
i

pi
{
a1,i cos(2πfµ,it+ ϕ)e−λT,it + a2,ie

−λL,it
}

+ [1− Vmag]GGKT(t, σnm), (2.37)

where V mag denotes the magnetic volume fraction and dense nuclear moments are assumed.
Another possibility to measure the magnetic volume fraction is to apply a weak external

transverse �eld BTF. P(t) then is given by

P (t) = Vmag
{
a1 + a2 cos(2πfµ)e

−λt
}
+ [1− Vmag] cos(γµBTFt). (2.38)

Muons, which stop in a paramagnetic sample volume interact with the external magnetic
�eld and, therefore, perform a precession with a frequency 2π × fTF = γµBTF. Muons,
which stop in a magnetically ordered sample volume only experience the internal local �eld
B loc, if BTF ≪ B loc. Consequently, the magnetic volume fraction is given by the relative
amount of muons precessing with a frequency f TF.

2.7. µSR in type-II superconductors

As described in Sec. 2.6, µSR is a suitable tool to measure the shape of the magnetic �eld
distribution inside a sample. This can be used to investigate the Shubnikov phase of a
type-II superconductor.
By applying an external magnetic �eld B ext with B c1< B ext < B c2 at temperatures below
the superconducting transition temperature, T c, a vortex lattice is formed. B c1 is the
lower and B c2 the upper critical �eld of the superconductor. The Gibbs free energy Gs

for the case of an inhomogeneous superconductor, e.g. including spatial variation of the
superconducting order parameter, |ψ(r⃗)|2, in an applied magnetic �eld B⃗ext is given by

Gs[ψ, A⃗] = Gn+α|ψ(r⃗)|2+
β

2
|ψ(r⃗)|4+ 1

2µ0

∣∣∣B⃗ext − B⃗i

∣∣∣2+ 1

2ms

∣∣∣[−i~∇⃗ − qsA⃗
]
ψ
∣∣∣2 , (2.39)

where the Gibbs free energy is a functional of ψ and the vector potential A⃗. qs is the
charge and ms the mass of the superconducting charge carriers. Gn denotes the Gibbs

free energy of the normal state. The term 1
2µ0

∣∣∣B⃗ext − B⃗i

∣∣∣2 describes the energy, which is

needed to expel the magnetic �eld from the superconductor up to a residual �eld of B⃗i.
This energy is maximal in the case of the Meissner-phase (B⃗i = 0). Minimizing the Gibbs
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2. Muon spin relaxation

free energy functional with respect to ψ∗ results in the �rst Ginzburg-Landau equation

αψ(r⃗) + β|ψ(r⃗)|2ψ(r⃗) + 1

2ms

∣∣∣[−i~∇⃗ − qsA⃗
]
ψ
∣∣∣2 = 0. (2.40)

To obtain the superconducting order parameter |ψ(r⃗)|2 and the magnetic �eld B⃗(r⃗) = ∇⃗×
A⃗ near a vortex core, the �rst Ginzburg-Landau equation as well as Ampère's law,

µ0j⃗ = ∇⃗ × B⃗ = µ0
iqs~
2ms

{
ψ∗∇⃗ψ − ψ∇⃗ψ∗

}
− qs
ms

|ψ|2A⃗ (2.41)

has to be solved. This is quite complicated and results in no analytical expression due
to the β|ψ(r⃗)|2ψ(r⃗) term in Eq. (2.40). The result of a numerical integration for a single
vortex is shown in Fig. 2.5.

Figure 2.5.: Spatial dependence of |ψ(r⃗)| and the magnetic �eld B(r⃗) near a vortex core.
Picture taken from Ref. [12].

ψ(r⃗), and hence |ψ(r⃗)|2, are zero at the vortex core. ψ(r⃗) increases with increased
distance from the vortex core. The coherence length ξ determines the typical length
scale, on which the superconducting order parameter reaches his full value. The magnetic
�eld has a �nite value near the core with a maximum value at the core. With increased
distance from the vortex core, the magnetic �eld decreases on a length scale of the London
penetration depth λ.
By knowing, in principle, the spatial dependence of the magnetic �eld near a single

vortex, on can calculate the magnetic �eld at each point of a vortex lattice by summing
up all vortices. As this magnetic �eld in the superconductor has spatial variations, one
can calculate a internal magnetic �eld distribution n(B).
The vortices usually arrange in a triangular lattice with a hexagonal unit cell. The position
vector of a vortex in the hexagonal arrangement, under the assumption of B⃗ext = Bexte⃗z,
is given by

r⃗ =
d

2

{
[2m+ n]⃗ex +

√
3ne⃗y

}
, (2.42)

with m,n∈ Z and the unit vectors e⃗x and e⃗y along the x - and y-axis. Therefore, the vortex
lattice is located in a plane perpendicular to the applied external magnetic �eld. The
inter-vortex spacing d is given by

d =

√
2Φ0√
3 ⟨B⟩

, (2.43)
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2.7. µSR in type-II superconductors

where ⟨B⟩ denotes the average local magnetic �eld and Φ0 the magnetic �ux quantum.
The magnetic �eld can be calculated using the Fourier expansion:

Bz(r⃗) = ⟨B⟩
∑
G⃗

e−iG⃗r⃗BG⃗(λ, ξ), (2.44)

where G⃗ denotes the reciprocal lattice vector and is given by

G⃗ =
2π

d

{
me⃗x −

1√
3
[m+ 2n]⃗ey

}
, (2.45)

with m,n ∈ Z. Applying this calculations on a single crystal transforms the coordinate
system from Fourier to real space like (x,y,z )T 7−→ (a,b,c)T with the crystallographic a-, b-,
and c-axis. Then r⃗ denotes the position vector, as described in Eq. (2.42), in the ab-plane,
which is perpendicular to the applied external �eld B⃗ext = Bexte⃗z, which is applied along
the crystallographic c-axis. BG⃗(λ, ξ) are the corresponding Fourier coe�cients. For small
applied �elds, B c1 < B ext ≪ B c2, and λab ≫ ξab, BG⃗(λ, ξ) is given by [13]

BG⃗(λ, ξ) =
e−

1
2
ξ2abG

2

1 +G2λ2ab
, (2.46)

including a Gaussian cut-o�, which is introduced to suppress the divergence of B z(r⃗)
for r → 0. Taking the �eld-dependence of the order parameter into account, Eq. (2.46)
becomes [14, 15]

BG⃗(λ, ξ) =
e−

1
2

ξ2abG
2

1−b

1 +
G2λ2

ab

1−b

(2.47)

with the reduced �eld b = ⟨B⟩ /Bc2.

The probability distribution n(B) inside the Shubnikov phase for a perfect �ux-line
lattice can be calculated from the known spatial variation of the internal magnetic �eld
B0(r⃗) using

n0(B) =

∫
dr3 δ(B −B0(r⃗))∫

dr3
, (2.48)

where δ(x) is the Dirac delta function and is shown in Fig. 2.6.

The corresponding time evolution of the muon spin polarisation with B⃗ext = Bexte⃗z and
P⃗ (0) = e⃗x is given by

Px(t) =

∫ ∞

0

dB n(B) cos(γµBt). (2.49)

Vortex disorder

The ideally (unperturbed) �ux-line lattice results in a magnetic �eld distribution, which
is described by Eq. (2.48) with a periodic �eld B0(r⃗). In a non-perfect vortex lattice with
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2. Muon spin relaxation

Figure 2.6.: Spatial dependence of the magnetic �eld and magnetic �eld distribution P(B)
for an ideal hexagonal vortex lattice, calculated by using Eq. (2.47) and (2.48),
respectively. λ = 50 nm, ξ = 20 nm, ⟨B⟩ = 246.8 mT, b = 0.3, and d = 69.5 nm
are used. Picture taken from [16].

random perturbations of the �ux-lines, the magnetic �eld is given by

B(r⃗) = B0(r⃗) + δB(r⃗), (2.50)

with the �eld perturbation δB(r⃗), which results in a general expression for the magnetic
�eld distribution [17]

n(B) =

∫
dr3 p(B −B0(r⃗); r⃗)∫

dr3
=

∫
dr3 p(δB(r⃗); r⃗)∫

dr3
, (2.51)

where p(δB(r⃗); r⃗) is the probability to �nd the deviation δB at the position r⃗. As B0(r⃗) is a
periodic function of the �ux-line lattice, one may replace the dependence of p(B−B0(r⃗); r⃗)
from r⃗ by a dependence of the periodic �eld value, which leads to [17]

n(B) =

∫
dr3 p(B −B0(r⃗);B0(r⃗))∫

dr3
. (2.52)

For small perturbations, i.e., B ≈ B0, Eq. (2.52) becomes

n(B) =

∫
dr3 p(B −B0(r⃗);B(r⃗))∫

dr3
. (2.53)

This equation can be expressed in a more enlightening way [17]:

n(B) =

∫
dδB p(δB(r⃗);B(r⃗)) n0(B − δB). (2.54)
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2.7. µSR in type-II superconductors

Therefore, for small perturbations δB, the magnetic �eld distribution n(B) is given by a
convolution of the unperturbed magnetic �eld distribution n0(B) of the perfect �ux-line
lattice with a function, which describes the perturbation of the vortices. For the case of
randomly weak perturbed vortices, the function p(δB(r⃗);B(r⃗)) is approximated with a
Gaussian distribution [17],

p(δB,B) =
1√

2πσ(B)
exp

(
−1

2

δB2

σVD(B)2

)
, (2.55)

with a �eld-dependent standard deviation σVD(B) due to the vortex disorder. This leads
to the magnetic �eld distribution

n(B) =
1√

2πσVD(B)

∫
d(δB) n0(B − δB)exp

(
−1

2

δB2

σVD(B)2

)
(2.56)

which is a convolution of the unperturbed magnetic �eld distribution with a Gaussianly
distributed perturbation. The time evolution of the muon spin polarisation P(t) and the
magnetic �eld distribution n(B) are connected via a Fourier transformation. Using the
property of the Fourier transformation, that the Fourier transform of any convolution is
the product of the Fourier transformations of the original functions, under the assumption
of a �eld-independent σ(B), P(t) is given by

Px(t) = e−
1
2
σ2
VDt

2

∫ ∞

0

dB n0(B) cos(γµBt). (2.57)

with B⃗ext = Bexte⃗z and P⃗ (0) = e⃗x (as in Eq. (2.49)).

To investigate Px(t), it is often assumed, that n(B) is a sum of N Gaussian distributions
[16], which leads to

Px(t) =
N∑
i

{
pi · cos(γµBit+ φ) · e−

1
2
σ2
i t

2
}
· e−

1
2
σ2
VDt

2

e−
1
2
σ2
Nt

2

, (2.58)

where σVD is the relaxation rate due to the vortex disorder. σN is the relaxation rate due
to the dipole-dipole interaction of the muon spin with randomly oriented nuclear moments.
pi is the weighting of the N single Gaussian distributions with

∑N
i pi = 1 and φ the initial

phase of the muon beam. B i is the �rst moment and σi the relaxation rate of the ith
Gaussian component. The corresponding magnetic �eld distribution is given by

n(B) =
1√
2π

N∑
i

pi
σi
exp

(
−γ2µ

[⟨B⟩ − Bi]
2

2σ2
i

)
, (2.59)

with the �rst moment ⟨B⟩. By analysing the time evolution of the muon spin polarisation in
the superconducting state using Eq. (2.58), the total magnetic �eld distribution is obtained.
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2. Muon spin relaxation

The �rst moment of this distribution is given by

⟨B⟩ =
N∑
i

piBi (2.60)

and the second moment by [16]

⟨∆B2⟩t =
N∑
i

pi

{[
σi
γµ

]2
+ [Bi − ⟨B⟩]2

}
. (2.61)

This second moment is composed of the second moment of the magnetic �eld distribution
as well as contributions from the vortex disorder and the nuclear magnetic moments [16]:

⟨∆B2⟩t = ⟨∆B2⟩+
[
σVD
γµ

]2
+

[
σN
γµ

]2
. (2.62)

The contribution from the nuclear magnetic moments can be measured at temperatures
above the superconducting transition temperature. Unfortunately, it is not possible to
separate ⟨∆B2⟩ and σ2

VD/γ
2
µ in the course of a multi-Gaussian analysis of P(t). Taking

into account, that the second moment ⟨∆B2⟩ is related to the magnetic penetration depth
by [13]

1

λ2
=

√
⟨∆B2⟩
C

, (2.63)

λ can be calculated using the approximation σVD = β/λ2 [16]:

λ =

[
1

C

γ2µ + Cβ2

γ2µ ⟨∆B2⟩t − σ2
N

]0.25
. (2.64)

By setting β = 0, vortex disorder is neglected and, therefore, the calculated value for λ
is a lower boundary. For the calculation of C, a useful approximation is given by Brand
[13]:

C = 7.5 · 10−4[1− b]2
[
1 + 3.9[1− b2]

]
Φ0, (2.65)

where Φ0 is the magnetic �ux quantum and b = ⟨B⟩ /Bc2.

Temperature dependence of the London penetration depth λLPD

The London penetration depth λLPD is related to the super�uid density ns via

λLPD =

√
ms

µ0nsq2s
, (2.66)

where ms is the mass and qs the charge of the super�uid charge carriers. Eq. (2.66) de-
scribes λLPD for a perfect superconductor. Impurities and non-local e�ects can change
λLPD. To connect the London penetration depth λLPD with the measured magnetic pen-
etration depth, λ, λLPD has to be related to the quasiparticle mean-free path l and the
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2.7. µSR in type-II superconductors

coherence length ξ. In the clean local (or London) limit with λLPD ≫ l ≫ ξ, λLPD and
λ are of equal value. This limit is valid for high-temperature superconductors [18]. In
the dirty local limit, taking impurity scattering into account, with λLPD ≫ l ≈ ξ, the
measured λ is enhanced compared to λLPD and is given by [19]

λ = λLPD

√
1 +

ξ

l
, (2.67)

which is appropriate for alloy superconductors [18]. In the extreme dirty limit with l ≪ ξ,
the measured magnetic penetration depth is given by [19]

λ = λLPD

√
ξ

l
. (2.68)

Non-local e�ects occur for ξ ≫ λLPD. They are described within the phenomenological
Pipard model. The enhancement is given by [19]

λ ≈
[
λ2LPDξ

] 1
3 . (2.69)

Therefore, the real values of the magnetic penetration depth λmay di�er from λLPD. Apart
from that, informations about the size, the number and the symmetry of the supercon-
ducting gaps can be obtained by the temperature dependence of λ(T ). The temperature
dependence of the magnetic penetration depth λ can be calculated for a single isotropic
gap ∆(T ) by [19]

λ2(0)

λ2(T )
= 1− 2

∫ ∞

∆(t)

dE

[
−∂nF(E)

∂E

]
E√

E2 −∆2(T )
= 1 +D(∆, T ), (2.70)

where nF(E) is the Fermi-Dirac distribution and E√
E2−∆2(T )

is the density of states. In

general, no analytical expression for the temperature dependence of the superconducting
gap is speci�able. ∆(T ) can be calculated by self-consistently solving the gap equation

∫ ∞

0

dE

tanh
(

1
2kBT

√
E2 +∆2

)
√
E2 +∆2

− 1

E
tanh

(
E

2kBTc

) = 0, (2.71)

with Boltzmann's constant kB and the superconducting transition temperature T c. Al-
ternatively, an appropriate approximation can be used, which is, for example, given by
[20]

∆(T ) = 1.76∆(0) tanh

(
1.82

[
1.018

Tc − T

T

]0.51)
. (2.72)
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2. Muon spin relaxation

For numerical convenience, the integral in Eq. (2.70) may be approximated by [21]

D(∆, T ) = −2

∫ ∞

∆(T )

dE

[
−∂nF
∂E

]
E√

E2 −∆2(T )

≈
[
cosh

(
∆(T )

2kBT

)]−2
√
π∆(T )

8kBT
+

1

1 + π∆(T )
8kBT

. (2.73)

Eq. (2.70) describes the dependence of the magnetic penetration depth from one single
superconducting gap. Multiband superconductors such as MgB2 or the iron pnictides may
have more than one gap, and theses gaps may have di�erent sizes. In this case, the tem-
perature dependence of the di�erent gaps should be calculated using the Eliashberg theory
[20]. In the limit of non-interacting bands, however, one can treat the superconducting
gaps within a phenomenological α model [20�22]

λ2(0)

λ2(T )
= w[1−D(∆1, T )]− [1− w] · [1−D(∆2, T )], (2.74)

where w is a phenomenological weighting factor of the two gaps. D(∆i, T ) is given by
Eq. (2.73) and ∆(T ) by Eq. (2.72).
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3. Mössbauer spectroscopy

3.1. Introduction

The recoil energy-free nuclear resonance �uorescence spectroscopy, which is often called
Mössbauer spectroscopy, was discovered by Rudolph Mössbauer who received the physics
Nobel price in 1961 [23]. The Mössbauer spectroscopy technique uses the transition be-
tween an excited and the ground state of a nucleus to investigate the electromagnetic
properties of its environment. The most often used nucleus, also exclusively in this thesis,
is 57Fe. Therefore, the theoretical descriptions in this chapter are referred to 57Fe.
This chapter is organized in the following way: First, a semi-classical description of the
resonance absorption (Sec. 3.2) is given followed by a quantum mechanical treatment
(Sec. 3.3-3.5). Secondly, the hyper�ne interaction of the nucleus with its electromagnetic
environment is discussed in Sec. 3.6.

3.2. The Mössbauer e�ect

The energy of a free 57Fe nucleus in the �rst excited state, before the emission of a photon,
is given by

Ei = Ees +
p⃗2

2M
, (3.1)

where Ees denotes the energy of the excited spin 3
2

− state, p⃗ the momentum and M the
mass of the 57Fe nucleus. The energy of a 57Fe nucleus after the emission of a photon is
given by

Ef = Egs +

[
p⃗− ~k⃗γ

]2
2M

, (3.2)

where Egs denotes the energy of the spin 1
2

− ground state and k⃗γ the momentum of the
photon. Therefore, the energy Eγ of the emitted photon can be calculated by using the
Eq. (3.1) and (3.2):

Eγ = Ei − Ef := ~ω = ~ω0 + ~k⃗γ
p⃗

M
− ~2k⃗2

2M
, (3.3)

with Ees −Egs = ~ω0 = 14.4 keV. The absorption of a photon can be treated analogously,
leading to

Eγ = Ei − Ef := ~ω = ~ω0 + ~k⃗γ
p⃗

M
+

~2k⃗2

2M
. (3.4)
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3. Mössbauer spectroscopy

In the rest frame of the nucleus, the energy of the photon is given by

Eγ = ~ω0 ±
~2k⃗2γ
2M︸ ︷︷ ︸
ER

(3.5)

and is shifted by the recoil energy ER compared to the bare transition energy ~ω0. There-
fore, the nucleus, which absorbs the photon, will gain ER. This results in a separation of
the two transition lines (absorption and emission) by 2ER.
A nuclear state has an energy uncertainty Γnat, which is connected to its mean lifetime τ
over

Γnat · τ = ~. (3.6)

The ground state is stable and hence τ → 0, which results in Γnat → 0. Therefore,
the energy of the ground state is well-de�ned. The excited 3

2

−-state has mean life-time of
τ = 141 ns corresponding to Γnat= 4.7 neV. Hence, the energy is not well-de�ned, but
Lorentz distributed [24]:

P (E)dE =
Γ

2π

1

[E − Ees]2 +
Γ2

4

dE, with
∫
P (E)dE = 1, (3.7)

where Ees denotes the energy of the excited state.
The absorption of an emitted photon is possible, if there is a su�cient overlap of the
transition lines, which is the case, if 2ER ≤ Γ. The separation of the two energy bands is
2ER ≈ 3.9 meV , which is ≈ 1.2 · 106 Γnat [25]. As a consequence, resonance absorption
is not possible in free nuclei (as well as in gases and liquids).
In the case of a solid state, the recoil energy can be partitioned into

ER = Etranslation + Evibration. (3.8)

The translational part refers to the linear momentum, which is transferred to the whole
lattice system due to the strong bonding of the nucleus in the lattice. This chemical bonds
correspond to a binding energy of typically 10 eV and are much larger than the recoil
energy [25]. Therefore, the nucleus can not recoil alone. Instead, the whole lattice has to
recoil together. As the mass of the lattice system, M lattice, is much larger then the mass
of a free nucleus M, E translation << Γnat. Thus, E translation is negligible. The vibrational
part describes the excitation of phonons. For resonance absorption, no phonon excitation
should take place. The recoilless fraction f describes the probability of a zero-phonon
process (the phonon system remains unchanged). Therefore, in a solid state, resonance
emission and absorption of a photon can only take place, if f>0.

3.3. Recoilless fraction

The Mössbauer e�ect is based on the probability of a recoil-free absorption of a photon.
Therefore, it is necessary to know this probability, which is called recoilless fraction f.
The simplest model system to describe the oscillation excitations of the nucleus is the
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3.3. Recoilless fraction

harmonic oscillator. Without any loss of generality, the harmonic oscillator is chosen to
be one-dimensional. The corresponding Hamiltonian is

H =
p̂2

2m
+

1

2
mω2x̂2, (3.9)

where x̂ denotes the position operator and p̂ the momentum operator. The Hamiltonian
can be described in the second quantization formalism by introducing the annihilation
operator â and the creation operator â†:

â =

√
mω

2~

{
x̂+

i

mω
p̂

}
and â† =

√
mω

2~

{
x̂− i

mω
p̂

}
. (3.10)

Both operators are connected to x̂ and p̂ via

x̂ =

√
~

2mω

{
â† + â

}
and p̂ = i

√
~mω
2

{
â† − â

}
. (3.11)

The harmonic oscillator Hamiltonian in second quantization is given by

H = ~ω
{
â†â+

1

2

}
. (3.12)

The particle number operator n̂ is de�ned as

n̂ = â†â (3.13)

and has the eigenstates (Fock states) |n⟩, which are also eigenstates of the Hamiltonian:

H |n⟩ = En |n⟩ , n ∈ N. (3.14)

An arbitrary excited state |n⟩ can be created out of the ground state |0⟩ by applying the
creation operator n times:

|n⟩ = 1√
n!

[
â†
]n |0⟩ . (3.15)

These states form a complete orthonormal set. A coherent (or Glauber) state |α⟩ can be
constructed as a superposition of all Fock states |n⟩ and is de�ned as [26]

|α⟩ = e−
1
2
|α|2
∑
n

αn

√
n!

|n⟩, α ∈ C, (3.16)

and hence has an inde�nite number of phonons. The coherent state is fully described by the
complex number α and is the state, which shows the most resemblance with the classical
harmonic oscillator states. For further information the interested reader is referred to the
book "Coherent States in Quantum Physics" of Jean-Pierre Gazeau [27].
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3. Mössbauer spectroscopy

Recoilless fraction

A nucleus, which is in the ground state |0⟩ with a momentum ~k′, absorbs a photon, which
has a momentum ~k. The momentum of the nucleus after the absorption of the photon
is ~ [k + k′] due to momentum conservation. The ground state |0⟩ is no eigenstate to the
momentum operator p̂ (or k̂) and thus has to be expanded in an orthonormal basis set |k′⟩:

|0⟩ =
∑
k′

|k′⟩ ⟨k′|0⟩. (3.17)

The �nal state |F ⟩ of the nucleus after the absorption of the photon is given by

|F ⟩ =
∑
k′

|k′ + k⟩ ⟨k′|0⟩. (3.18)

The corresponding displacement operator to |k⟩ is eikx̂, which is proven in Appendix A.
Applying the displacement operator on an arbitrary state |k′⟩ gives

eikx̂ |k′⟩ = |k′ + k⟩ (3.19)

and, therefore, the �nal state is given by

|F ⟩ =
∑
k′

|k′ + k⟩ ⟨k′|0⟩ = eikx̂ |0⟩ , (3.20)

which is no eigenstate of the Hamiltonian. Expanding |F ⟩ in the complete set of eigenstates
|n⟩ gives

|F ⟩ =
∑
n

|n⟩ ⟨n|F ⟩ =
∑
n

|n⟩ ⟨n| eikx̂ |0⟩. (3.21)

The probability P(|n⟩), to �nd the nucleus in the state |n⟩ after the absorption of a photon,
is given by

P (|n⟩) =
∣∣⟨n| eikx̂ |0⟩∣∣2 . (3.22)

The recoilles fraction f of the Mössbauer e�ect is then the probability of the nucleus to
remain in the ground state |0⟩ after the absorption of the photon:

f = P (|0⟩) =
∣∣⟨0| eikx̂ |0⟩∣∣2 . (3.23)

As mentioned earlier, eikx̂ is a displacement operator. In general, a unitary displacement
operator D(α) is de�ned as

D(α) = eαâ
†−α∗â α ∈ C. (3.24)

Therefore, eikx̂ can be expressed in terms of â† and â, using Eq. (3.11), by

ikx̂ = αâ† − α∗â, α = ik

√
~

2Mω
, (3.25)
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whereM denotes the mass of the nucleus. As eikx̂ is a displacement operator, the generated
�nal state |F ⟩ is a coherent state:

eikx̂ |0⟩ = eαâ
†−α∗â |0⟩ = |α⟩ = e−

1
2
|α|2
∑
n

αn

√
n!

|n⟩. (3.26)

Applying Eq. (3.26) to Eq. (3.23), the recoilless fraction f is given by

f =

∣∣∣∣∣⟨0| e− 1
2
|α|2
∑
n

αn

√
n!

|n⟩

∣∣∣∣∣
2

⟨ni|nj⟩=δij−−−−−−→ f = e−|α|2 . (3.27)

α is determined in Eq. (3.25) and, therefore, f can be expressed by

f = e−|α|2 = exp

(
− ~k2

2Mω

)
. (3.28)

Using the property of the harmonic oscillator, that the average kinetic energy is one half
of the total energy, and that the oscillator stays in the ground state |n = 0⟩ during the
recoilless transition, the average squared displacement ⟨x2⟩ can be determined by

1

2
Mω ⟨x2⟩ = 1

2

{
1

2
~ω
}

→ ⟨x2⟩ = ~
2Mω

, (3.29)

which leads to the well-known expression for the recoilless fraction

f = e−k2⟨x2⟩. (3.30)

3.4. Temperature dependence of the recoilless fraction

and second-order Doppler e�ect

The lifetime of the excited state is τ ≈ 10−7 s, while the time of a lattice vibration
is of the order of tlattice ≈ 10−13 s. Therefore, the average velocity ⟨v⟩ and the average
displacement ⟨u⟩ of the oscillating nucleus is zero. However, ⟨u2⟩ and ⟨v2⟩ are non-zero
and given by [25]

⟨u2⟩ = ~
2M

∫
dω

1

ω
coth

(
1

2

~ω
kBT

)
g(ω) (3.31)

and

⟨v2⟩ = 3~
M

∫
dω ω coth

(
1

2

~ω
kBT

)
g(ω), (3.32)

where M denotes the mass of the nucleus and g(ω) the phonon densitiy of states (DOS).
To calculate ⟨u2⟩ and ⟨v2⟩, g(ω) has to be approximated. A useful model for the phonon
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3. Mössbauer spectroscopy

DOS is the Debye model, which leads to

⟨u2⟩ = 3~2

4MkBθD

{
1 + 4

[
T

θD

]2 ∫ θD/T

0

x

ex − 1
dx

}
(3.33)

⟨v2⟩ = 9kBθD
8M

{
1 + 8

[
T

θD

]4 ∫ θD/T

0

x3

ex − 1
dx

}
. (3.34)

Temperature dependence of the recoilless fraction

The temperature dependence of the recoilless fraction can be calculated by inserting
Eq. (3.33) in Eq. (3.30), which leads to

f(T ) = exp

(
− 3ER

2kBθD

{
1 + 4

[
T

θD

]2 ∫ θD/T

0

x

ex − 1
dx

})
, (3.35)

where ER denotes the recoil energy, kB Boltzmann's constant, and θD the Debye temper-
ature. However, f (T ) can be directly calculated by applying the coherent state formalism
of the harmonic oscillator to excited states, as it was shown by Bateman et al., resulting
in Eq. (3.35) [28]. Eq. (3.35) shows, that the recoilless fraction increases with decreasing
temperature, but is always f < 1, even in the theoretical case of zero temperature. This
is illustrated in Fig. 3.1 for typical values of θD.
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Figure 3.1.: Temperature dependence of the recoilless fraction f (T ) for Debye temperatures
θD = 100-300 K.

Second-order Doppler e�ect

The nucleus vibrates with a mean-squared velocity ⟨v2⟩, as described in Eq. (3.32), which
leads to a modulation of the frequency of the emitted or absorbed photon. By applying
Einstein's special theory of relativity, the frequency modulation in the laboratory reference
frame is given by

ω = ω0

√
1− v2

c2

1− cos(ϑ)v
c

, (3.36)
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3.5. Mössbauer e�ect in a solid

where v denotes the velocity of the nucleus, c the speed of light and ϑ the angle between
the photon direction and the velocity direction of the nucleus. Under the assumption of
v ≪ c, Eq. (3.36) can be expanded as

ω = ω0

{
1 +

v

c
cos(ϑ)− v2

2c2
+ . . .

}
. (3.37)

The term ω0

{
1 + v

c
cos(ϑ)

}
describes the �rst-order Doppler e�ect, which is used to modu-

late the frequency of the photon in a Mössbauer spectroscopy experiment. The term−ω0
v2

2c2

describes the frequency modulation due to the time dilatation and is called second-order
Doppler shift.
The average velocity ⟨v⟩ of the nucleus is zero, so the �rst-order Doppler e�ect vanishes.
Consequently, Eq. (3.37) becomes

⟨∆ω⟩ = ⟨ω − ω0⟩ = −ω0
⟨v2⟩
2c2

or δR = ⟨∆E⟩ = −E0
⟨v2⟩
2c2

. (3.38)

The temperature dependence of the second-order Doppler shift δR(T ) is determined by
the temperature dependence of the mean-squared velocity ⟨v2⟩, which is described by
Eq. (3.34), and leads to

δR(T ) = − 9

16

kBEγ

Me� c2

{
θD + 8T

[
T

θD

]3 ∫ θD/T

0

x3

ex − 1
dx

}

=̂− 9

16

kB
Me� c

{
θD + 8T

[
T

θD

]3 ∫ θD/T

0

x3

ex − 1
dx

}
(3.39)

where the �rst equation computes the result in terms of energies and the second equation
in terms of velocities. M e� denotes the e�ective vibrating mass and E γ the transition
energy between the excited and ground state (for 57Fe: 14.4 keV).

3.5. Mössbauer e�ect in a solid

As described on a classical level in Sec. 3.2, the energy transfer by the emission or absorp-
tion of a photon by a nucleus in a solid is negligible. A quantum mechanical derivation of
this property is given in this chapter. Let the lth nucleus be displaced from its equilibrium
position r⃗0 by a distance u⃗(l) due to the thermal motion of the nucleus, which leads to the
position r⃗l = r⃗0 + u⃗(l). The nucleus undergoes a transition from the initial state |i⟩ to
the �nal state |f⟩ by the emission of a photon with the momentum ~k⃗. As the nucleus is
bound in the lattice, the lattice may undergo a transition from the initial phonon state |ni⟩
to the �nal phonon state |nf⟩. The nuclear force, which causes the transition |i⟩ → |f⟩,
is extremely short-ranged. The bonding forces in a lattice are weak, but long-ranged,
compared to the nuclear force. Therefore, these two processes can be treated indepen-
dently. As the nuclear transition is independent from the displacement of the nucleus, it
will be neglected in the further treatment and focused on the phonon transition. Similar
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3. Mössbauer spectroscopy

to Eq. (3.22), the probability of a phonon transition of the lattice after the emission of a
photon by the nucleus is given by

p(nf , ni) =
∣∣∣⟨nf |eik⃗r⃗l|ni⟩

∣∣∣2 , with
∑
f

p(nf , ni) = 1. (3.40)

To calculate the transition energies, a sum rule is derived [29]. It is assumed for the further
treatment, that the interactions between the atoms are independent from their velocities
and depend on their positions only. Calculating the commutator of the lattice Hamiltonian
with eik⃗r⃗l gives [

H, eik⃗r⃗l
]
=

[
p̂

2m
, eik⃗r⃗l

]
= ek⃗r⃗l

{
~2k2

2m
+

~k⃗
m

ˆ⃗p

}
, (3.41)

as the kinetic energy operator is the only operator not commuting with ek⃗r⃗l . m is the mass
of the lth nucleus. The double commutator is then given by[[

H, eik⃗r⃗l
]
, e−ik⃗r⃗l

]
= −~2k2

m
= −2ER. (3.42)

Taking into account the properties of sum rules [30], Lipkin's sum rule is derived [25, 29]:∑
f

[Ef − Ei]p(nf , ni) = ER, (3.43)

where Ef and Ei are the energies of the states nf and ni and ER is the recoil energy of a
free nucleus. Eq. (3.43) describes the average energy of all transitions between the phonon
states nf and ni. There is a �nite probability p(nf=i, ni) for a transition, where no energy
is transferred from the nucleus to the lattice, and therefore Ef = Ei. This probability is
similar to the recoilless fraction f in Eq. (3.23). All other transitions cause a recoil. There
is a �nite probability of transitions with recoil, where the transferred energy is greater
than the recoil energy ER. Therefore, by allowing to excite higher frequency modes of the
phonon spectra, the probability p(nf=i, ni) of the zero-energy-transfer transition increases
to maintain the average recoil energy ER. To clarify this fact, an idealized example in
the form of a two-level system is given. Let the phonon system be in the state |n0⟩ that
can be excited in the state |n1⟩, where the corresponding energies are E0 and E1 with
E1 − E0 > ER. Applying this to Eq. (3.43) gives

ER =
∑
f

[Ef − Ei]p(nf , ni) =
1∑

f=0

[Ef − E0]p(nf , n0)

= [E0 − E0]p(n0, n0) + [E1 − E0]p(n1, n0)

= [E1 − E0]p(n1, n0) (3.44)
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and, therefore, the probability to excite the phonon to the state |n1⟩ is given by

p(n1, n0) =
ER

E1 − E0

< 1, E1 − E0 > ER . (3.45)

Using
∑

f p(nf , ni) = 1, the probability of a transition with zero energy transfer (|n0⟩ →
|n0⟩) is given by

p(n0, n0) = 1− ER

E1 − E0

. (3.46)

By increasing the energy of the excited phonon mode E1, the probability p(n0, n0) increases,
which leads to an increased Mössbauer e�ect.

In the Debye approximation, p(ni, ni) is given by [29]

p(ni, ni) = exp
(
−3

2

~2k2

2mkBθD

)
, (3.47)

where m is the mass of the nucleus emitting or absorbing the photon, ~k the momentum
of the photon, kB Boltzmann's constant and θD the Debye temperature.

3.6. Hyper�ne interaction

The nucleus interacts with its electromagnetic environment. The corresponding Hamilton
operator is given by

Hhf = Hel +HZ

=

∫
ρ(r⃗)Φ(r⃗) d3r − µ⃗B⃗, (3.48)

where the former term describes the energy of the nuclear charge distribution in the electric
potential of its surrounding. The latter term describes the interaction of the nuclear
magnetic moment with a magnetic �eld.

3.6.1. Electric interaction

To calculate Hel, it is useful to perform a Taylor expansion of the electric potential around
r⃗ = 0 resulting in

Φ(r⃗) = Φ(r⃗′) |r⃗′=0 +r⃗
[
∇⃗′Φ(r⃗′)

]
r⃗′=0

+
1

2

{
r⃗∇⃗′

[
r⃗∇⃗′Φ(r⃗′)

]
r⃗′=0

}
+ . . . . (3.49)
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3. Mössbauer spectroscopy

Therefore, Hel can be written as

Hel =

∫
ρ(r⃗)

{
Φ(r⃗′) |r⃗′=0 +r⃗

[
∇⃗′Φ(r⃗′)

]
r⃗′=0

+
1

2

{
r⃗∇⃗′

[
r⃗∇⃗′Φ(r⃗′)

]
r⃗′=0

}}
d3r (3.50)

=

∫
ρ(r⃗)Φ(0)d3r︸ ︷︷ ︸
=E0=ZeΦ(0)

+

∫
ρ(r⃗)r⃗

[
∇⃗′Φ(r⃗′)

]
r⃗′=0

d3r︸ ︷︷ ︸
=E1

+

∫
ρ(r⃗)

1

2

{
r⃗∇⃗′

[
r⃗∇⃗′Φ(r⃗′)

]
r⃗′=0

}
d3r︸ ︷︷ ︸

=E2

by neglecting terms of the order of O(∇⃗3) and higher.
E0 is the Coulomb energy of a point charge and hence constant. It contributes to the
potential energy of the lattice, but can be neglected for the further treatment of the
hyper�ne interactions.
E1 describes the dipole interaction of the electric dipole moment of the nuclear charge
distribution with an electric �eld E⃗ = −∇⃗Φ. The nuclear states have a de�ned parity,
i.e. |ψ(r⃗)|2 = |ψ(−r⃗)|2. Therefore, the static electric dipole moment of the nucleus has
to be zero and E1 vanishes.
E2 is the so-called quadrupole term. By adding a nutritious zero, E2 can be written as

E2 =
1

6

∑
i,j

{
Φij

∫
d3r ρ(r⃗)

[
3rirj − δij r⃗

2
]
+ δijΦij

∫
d3r r2ρ(r⃗)

}
, (3.51)

with

Φij =

(
∂2Φ

∂ri ∂rj

)
0

. (3.52)

This expression can be simpli�ed in the principal axis system of the electric potential:

E2 =
1

6

∫
d3r ρ(r⃗)r2

3∑
i

Φii +
1

6

3∑
i

Φii

∫
d3r ρ(r⃗)

[
3r2i − r2

]
. (3.53)

The z -axis is chosen in a way, that Φzz has the highest absolute value of the components
of Φii. With ∫

d3r ρ(r⃗)r2 = Ze ⟨r2⟩ (3.54)

and
3∑
i

Φii = ∆Φ(0) = −ρ(0)
ε0

(3.55)

as well as the de�nition of the nuclear quadrupole moment

eQii =

∫
d3r ρ(r⃗)

[
3r2i − r2

]
, (3.56)
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Eq. (3.53) can be written as

E2 = −Ze

6ε0
ρ(0) ⟨r2⟩︸ ︷︷ ︸

= monopole shift

+
e

6

3∑
i

ViiQii︸ ︷︷ ︸
= quadrupole interaction

. (3.57)

Center shift

The monopole shift is composed of two e�ects. One has nuclear origin and depends on the
average squared radius ⟨r2⟩. In the case of 57Fe, the excited spin 3

2

− state has a smaller ⟨r2⟩
value than the spin 1

2

− ground state [24]. This e�ect depends only on the main quantum
number. Therefore, it is independent of the other interactions and results in a constant
shift of the spectra. The second e�ect is based on the �nite probability density of the
s-electrons at the nucleus. The center shift δ is de�ned as the di�erence of the monopole
shift of source (S) and absorber (A) and can be calculated using

δ =
Ze2c

6ε0~ω0

{
|ψA(0)|2 − |ψS(0)|2

} [
⟨r2es⟩ − ⟨r2gs⟩

]︸ ︷︷ ︸
<0

, (3.58)

with the electronic charge density at the nucleus −e|ψ(0)|2, the average squared radius
⟨r2⟩ and the unperturbed transition energy ~ω0 between excited (es) and ground state
(gs). Therefore, the center shift depends on the used radioactive source. In this thesis, δ
is given against α-Fe.
The temperature dependence of the center shift is the sum of the temperature-

independent chemical shift δC and a temperature-dependent contribution δR(T ) (in Debye-
approximation) due to the second-order Doppler shift (see section 3.4 for more details)

δ(T ) = δC + δR(T ), (3.59)

δR(T ) = − 9

16

kB
Me� c

{
θD + 8T

[
T

θD

]3 ∫ θD/T

0

x3

ex − 1
dx

}
(3.60)

whereMe� denotes the e�ective mass of the 57Fe atom, c the speed of light, kB Boltzmann's
constant, and θD the Debye-temperature [24].

Quadrupole interaction

The quadrupole interaction describes the interaction of the nuclear quadrupole moment
eQii with an electric �eld gradient Vii = Φii − 1

3
∆Φ. As Vii is traceless, two parameter are

su�cient to describe the system: Vzz, which is chosen to be

Vzz ≥ Vyy ≥ Vxx, (3.61)
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3. Mössbauer spectroscopy

and the asmmetry parameter η, which is de�ned as

η =
Vxx − Vyy

Vzz
. (3.62)

The classical expression in Eq. (3.57) can be transformed, using the Wigner-Eckhart-
theorem, into the form

Hel =
eQzzVzz

4I [2I − 1]

{
3Î2z − Î2 +

η

2

[
Î2+ + Î2−

]}
, (3.63)

with nuclear spin operator Î and the displacement operators Î+ and Î−.
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3.6. Hyper�ne interaction

3.6.2. Magnetic hyper�ne interaction

The interaction of a magnetic �eld B⃗ with a magnetic moment µ⃗ can be described by the
Zeeman-Hamilton operator

HZ = −µ⃗B⃗ = −γI⃗B⃗, (3.64)

where γ = g µN
~ denotes the gyromagnetic ratio with µN being the nuclear magneton and g

the Landé factor. By choosing, without any loss of generality, B⃗ = Bz e⃗z, the eigenvalues
of the Hamilton operator HZ can be obtained by computing the expectation value

⟨HZ⟩ = EZ

= ⟨I,m| − µzBz|I,m⟩ (3.65)

= −γBz~m,

where m is the magnetic quantum number. Therefore, the magnetic �eld breaks the
degeneracy in m and leads to [2I+1] substates.

The magnetic moment of the excited state is µes = -0.153(4) µN and of the ground
state µgs = +0.0903(7) µN [31]. Therefore, as both magnetic moments are not equal, eight
transitions between the excited and ground state are possible. Taking into account the
dipole selection rules (∆m = ±1, 0), only six transitions are allowed.

The magnetic �eld at the nucleus is given by

B⃗ = B⃗loc + B⃗el, (3.66)

where B⃗loc denotes the so-called "local �eld" due to an applied external �eld. This con-
tribution is neglected in the further treatment of the magnetic �eld, as no external �elds
were applied in this work. The second term describes the electronic contribution and is
given by [24]

B⃗el = −gelµ0µB
∑
i

{
1

4π

l⃗i
r3i

+
1

4π

[
s⃗i
r3i

− 3r⃗i[s⃗ir⃗i]

r5i

]
+

2

3
δ(r⃗i)s⃗i)

}
, (3.67)

where µB denotes the Bohr magneton, gel the electronic Landé factor, l⃗i the angular
momentum, and s⃗i the spin of the ith electron at a position vector r⃗i. The �rst term
describes the so-called orbital �eld due to the orbital momentum of unpaired electrons.
The second term describes the dipole-dipole interaction of the magnetic moment of the
nucleus with the total spin magnetic moment of the valence electrons. The third term
is the Fermi contact term and describes the �nite spin density of the s-electrons at the
nucleus.
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Combined electric and magnetic hyper�ne interaction

The Hamiltonian for the combined electric and magnetic interaction is given by [24]

Hhf =
eQzzVzz

4I [2I − 1]

{
3Î2z − Î2 +

η

2

[
Î2+ + Î2−

]}
− g

µN
~
B

{
Î+e

−iΦ + Î−e
+iΦ

2
sin(θ) + Îz cos(θ)

}
, (3.68)

using Eq. (3.63) and Eq. (3.64). Φ denotes the polar angle and θ the azimuth angle between
the principal axis of the EFG and the magnetic hyper�ne �eld. Calculating the transition
matrix elements is more di�cult, compared to the bare electric or magnetic interaction,
due to the non-diagonal structure of the Hamiltonian. The corresponding eigenstates of
Hhf are mixed states of the bare m substates and can be calculated by diagonalizing Hhf.
This calculations were performed by using the MöSSFIT-software [32]. The hyper�ne
interactions are summarized in Fig. 3.2.

Figure 3.2.: In�uence of the hyper�ne interactions on the energy levels of the excited spin
3/2 state and the spin 1/2 ground state (top row) and the corresponding Möss-
bauer spectra (lower row). I denotes the nuclear spin and mI the magnetic
quantum number. (a) Bare transition without any hyper�ne interaction. (b)
Change of the energy levels of both states due to the isomer shift. (c) Splitting
of the excited state in two degenerated sub states due to the interaction of the
nuclear spin with an electric �eld gradient. (d) The interaction of the nuclear
spin with a magnetic �eld breaks the degeneracy in m and leads to [2I+1] sub
states. Due to the dipole selection rules, only six transitions are allowed. (e)
Combined magnetic and electric hyper�ne interaction.
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3.7. Experimental set up and measurement principle

The used experimental setup in transmission geometry is shown in Fig. 3.3. For Möss-
bauer spectroscopy in scattering geometry or conversion electron spectroscopy as well as
additional informations about the transmission geometry, the interested reader is referred
to the books "Nukleare Festkörperphysik: kernphysikalische Messmethoden und ihre An-

wendungen" by G. Schatz and A. Weidinger or "Grundlagen und Anwendungen der Möss-

bauerspektroskopie" by D. Barb.
In transmission geometry, the transmission signal of the emitted γ quanta is recorded.

The energy of the γ quanta can be changed via the Doppler e�ect by moving the radioactive
source. Therefore, the recorded spectra is the transmission of the γ quanta through the
sample as a function of the velocity, which is equal to an energy. If the energy of the
emitted γ quant is equal to the energy di�erence between an excited and ground state of
the 57Fe in the sample, the γ quant can be absorbed, which corresponds to a minima in
the transmission spectrum. Typical Mössbauer spectra are shown in Fig. 3.2.

Figure 3.3.: Schematic of the experimental setup in transmission geometry.
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4. Iron-based superconductors

Iron-based superconductors such as Th7Fe3, U6Fe, and Lu2Fe3Si5 with superconducting
transition temperatures of T c = 1.8 K, 3.9 K, and 6.1 K, respectively, are known for
over 50 years [33�35]. However, beginning with the discovery of superconductivity in
LaO1−xFxFeAs with a superconducting transition temperature of T c = 26 K in 2008 [5]
the expression iron-based superconductors refers mainly to this class of high-temperature
superconductors, namely the iron pnictides respectively iron chalcogenides.
The phase diagram of LaO1−xFxFeAs is shown in Fig. 4.1. The parent compound

Figure 4.1.: Phase diagram of LaO1−xFxFeAs. The spin density wave (SDW) magnetic
order as well as the tetragonal-to-orthorhombic phase transition is suppressed
as a function of F doping and superconductivity emerges. Taken from Ref. [36].

LaOFeAs shows a tetragonal-to-orthorhombic phase transition at T S = 156 K and a sub-
sequent long-range antiferromagnetic spin density wave (SDW) order below TN = 138 K
[36, 37]. This is one of the most important di�erences between the iron pnictides and the
long-known Fe-based superconductors such as U6Fe, where the iron is non-magnetic. The
magnetic order as well as the structural phase transition in LaO1−xFxFeAs are suppressed
as a function of the F doping [36]. Superconductivity emerges close to or after the sup-
pression of the magnetic order. This suggests a competition of the superconducting and
magnetically ordered ground states. Measurements of the phonon density of states using
inelastic neutron scattering methods as well as linear-response calculations showed, that a
phonon mediation of the superconductivity can be ruled out [38, 39]. This indicates an un-
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4. Iron-based superconductors

conventional pairing mechanism, e.g. via magnetic �uctuations due to the close proximity
of superconductivity and magnetism [40].
LaO1−xFxFeAs represents one example of several structural modi�cations of the iron

pnictides and chalcogenides. The �rst commonality among this Fe-based compounds is
the iron-pnictogen (FePn) respectively iron-chalcogen (FeChn) layer, which is shown for
di�erent families in Fig. 4.2. In the "1111" family, the FePn layer is separated by rare-earth-

Figure 4.2.: Crystal structure of iron-based superconductors. From left to right the di�er-
ent "families" including the highest superconducting transition temperature
T c: 1111, 122, 111 and 11. Taken from Ref. [41].

oxygen layers. In the "122" family, alternating FePn layers are separated by alkaline-earth
metal layers. In the "111" family, the alkaline metal is located in the FePn plane. In the
"11" family, no separation of the FeChn layers is present.
In this work, I studied Ca1−xNaxFe2As2 and Fe1+yTe. For this reason, I will give a

short overview about the 122 and 11 family. A more detailed description of the properties
of Ca1−xNaxFe2As2 and Fe1+yTe is given in the corresponding chapters (Sec. 5 and 6).
For information about the 1111 and 111 iron pnictides as well as additional informations
about the 122 iron pnictides and 11 iron chalcogenids, the interested reader is referred to
the reviews of Lumsden and Christianson [41], Johnston [42], Johrendt [43], Hirschfeld et

al. [44], and Stewart [45].
The so-called "122" compounds are one class of the recently discovered iron-based super-

conductors. In 1980, P�ster and Nargosen reported the successful growth of single crystals
of ternary transition-metal arsenides [48]. They prepared the ternary arsenides AET 2As2
(AE = Ca, Sr, Ba, and T = Cr, Fe, Co, Ni, Cu). These compounds form in the tetragonal
ThCr2Si2 structure with the space group I 4/mmm. They consist of edge-sharing TAs4
tetrahedra forming a TAs plane, which is separated by AE atoms.
The superconducting Fe-based 122 compounds can be summarized by the chemical for-

mula AE 1−xAx(Fe1−yT yAs1−zPz )2 with the alkaline-earth metals AE (= Ca, Sr, Ba), the
alkaline metals A (= Na, K, Rb, Cs), and the transition metals T (= Co, Ni, Rh, Ru,
Mn). The undoped AEFe2As2 compounds show antiferromagnetic (π, 0) spin density wave
order with TN = 140 K (Ba [49]), 205 K (Sr [50]), and 170 K (Ca [49, 51]). The magnetic
phase transition is accompanied by a tetragonal-to-orthorhombic phase transition. The or-
thorhombic phase has the space group Fmmm and is characterized by the structural order
parameter δ = (a-b)/(a+b), which is the orthorhombic splitting of the crystallographic
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(a) (b)

Figure 4.3.: (a) Phase diagram of Ca1−xNaxFe2As2, taken from Ref. [46]. Please note,
that the shown Na-substitution levels are of nominal character (except for
x = 0.66). (b) Phase diagram of Ca(Fe1−xCoxAs)2, taken from Ref. [47].

a- and b-axis. The magnetic and structural phase transition are �rst-order indicating a
strong magneto-structural coupling [50, 52, 53].
The fully substituted AFe2As2 compounds, i.e., hole-doped by one electron per formula

unit, are superconductors with T c = 3.8 K (K [54]), 2.6 K (Cs [54]), and 2.6 K (Rb [55]) and
remain in the tetragonal structure down to lowest temperatures. The substitution of an
alkaline-earth metal by an alkaline metal results in a suppression of the magnetic and struc-
tural order parameter as well as the magnetic and structural transition temperatures and
superconductivity emerges. This is shown for the case of Ca1−xNaxFe2As2 in Fig. 4.3(a).
Similar to the AE→A substitution, the Fe→T substitution results in a suppression of the
magnetic and structural order parameter as well as the magnetic and structural transi-
tion temperatures and superconductivity emerges. This is shown for Ca(Fe1−xCox)2As2
in Fig. 4.3(b). In both cases, a substitution level regime is found, where magnetic order
and superconductivity coexist. However, there is a di�erence between the Fe and the AE
substitution. The suppression of the magnetic order is much stronger for substitution in
the FeAs plane than for substitution of the interlayer AE atoms.
The iron chalcogenides, known as "11"-compounds, are by structural means the simplest

compounds of the iron-based superconductors as the FeChn layers are not separated by
alkaline (earth) metals or rare-earth-oxide layers such as in the 111, 122, or 1111 com-
pounds. The basic elemental formula of this class can be written as Fe1+yTe1−xSex and the
corresponding phase diagram is shown in Fig. 4.4. α-FeSe is a stoichiometric supercon-
ductor with T c = 8 K [57]. Sales et al. found traces of superconductivity with T c ∼ 14 K
in a wide substitution range of x ∈(0;1] [58]. However, only stoichiometries near x ∼ 0.5
and for small y values show bulk superconductivity [58]. For higher excess-iron values
y, superconductivity is completely suppressed [56]. The other end of the phase diagram,
Fe1+yTe, is known since 1974 [59]. The magnetic order in Fe1+yTe is di�erent than the
observed magnetic structures in the 122 and 1111 compounds resulting in an exceptional
position of Fe1+yTe in the class of the iron-based superconductors, as it shows (π/2, π/2)
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Figure 4.4.: Phase diagram of Fe1+yTe1−xSex. Taken from Ref. [56]

SDW order [60].

Figure 4.5.: Generic phase diagram of the iron pnictides. Taken from Ref. [61].

A generic phase diagram for the iron pnictides is shown in Fig. 4.5 [61]. Starting from
an antiferromagnetically ordered parent compound, such as LaOFeAs or BaFe2As2, the
magnetic order is suppressed and superconductivity emerges by hole or electron doping.
However, also isovalent doping such as Fe→Ru or As→P substitution, as well as applica-
tion of hydrostatic pressure can cause the suppression of magnetic order and appearance
of superconductivity. Remarkably, a region in the phase diagram appears, where both
magnetic order and superconductivity are present. One possibility is, that both phases are
separated as it is the case in LaO1−xFxFeAs or Ba1−xKxFe2As2 [62]. A second possibility
is a coexistence on a nanoscopic scale as in SmO1−xFxFeAs with superconducting domains
with a size of the superconducting coherence length [63, 64]. A third possibility is a ho-
mogeneous superconducting state coexisting with a homogeneous magnetic order as it was
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found in Ba1−xNaxFe2As2 [65]. This implies, that the same electrons at the Fermi surface
are both superconducting and magnetically ordered. Local probes such as muon spin re-
laxation or Mössbauer spectroscopy are necessary to decide, which type of coexistence is
present.

4.1. From SDW to SC

For a deeper understanding of the superconductivity in the iron-based superconductors
it is crucial to understand the development of the superconducting state out of the spin
density wave state of the parent compounds AEFe2As2. The subsequent description of this
development can easily applied to the other families of the iron-based superconductors.
The 122 parent compounds CaFe2As2 , SrFe2As2, and BaFe2As2 reveal electrical resistiv-

ity values of 0.1-1 mΩcm indicating semi-metallic behaviour [49, 66, 67]. For comparison,
metals exhibit electrical resistivities of 1 − 10 µΩcm, which are 2-3 orders of magnitude
smaller. These 122 compounds are multi-band materials with �ve Fe 3d bands crossing the
Fermi energy [43, 44]. In the non-magnetic state, two or more hole bands near (0,0) and
two electron pockets near (0,π) and (π,0) cross the Fermi level in the unfolded Brillouin
zone. Therefore, two electron and at least two hole Fermi surfaces (FS) are present. A
schematic FS is shown in Fig. 4.6. These multiple FSs with a high density of states (DOS)
at the FS, N (EF), and enable various possibilities of electronic ordering, such as SDW,
charge-density wave (CDW), or superconductivity [68�70].

Figure 4.6.: (a) Schematic FeAs lattice showing the 1-Fe unit cell (green a × a) and
the 2-Fe unit cell (blue

√
2a × a

√
2). (b) Fermi surface topology in

the unfolded BZ (1-Fe unit cell) with an antiferromagnetic ordering vector
Q⃗AFM = (π, 0) = Γ → X. The blue arrow denotes the folding vector (π, π).
(c) Fermi surface topology in the folded BZ (2-Fe unit cell) with an antifer-
romagnetic ordering vector Q⃗AFM = (π, π) = Γ → M̃ . Picture taken from
Ref. [44].

CaFe2As2 , SrFe2As2, and BaFe2As2 show magnetic order below with the respective
transition temperatures TN = 170 K [49, 51], 205 K [50], and 140 K [49]. The iron
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magnetic moments show commensurate antiferromagnetic order along the orthorhombic
a- and c-axis and ferromagnetic order along the orthorhombic b-axis. This is the so-called
"stripe order" due to the ferromagnetic stripes along the crystallographic b-axis. This
corresponds to a commensurate magnetic ordering vector Q⃗AFM = (1

2
, 1
2
, 1)T = (1,0,1)O in

reciprocal lattice units, where the subscripts denotes the tetragonal (T) and orthorhombic
(O) unit cell. As the magnetic unit cell is the same as the orthorhombic unit cell, it is
useful to use the orthorhombic description of Q⃗AFM. Due to the semi-metallic behaviour,
a spin density wave description of the magnetic order is commonly used.

SDW order requires the presence of FS nesting. In the case of perfect FS nesting, which
is the case, if the FSs are cylinders of equal radii in a compensated metal, the SDW state
fully gaps the FS. As a consequence, a formation of another state (e.g. SC or CDW) is
not possible. However, angle-resolved photoemission spectroscopy (ARPES) experiments
reveal a non-perfect FS nesting in the 122 parent compounds [71�73]. The electron pockets
show an elliptic and the hole pockets a circular cross section [71�74]. Despite the di�erent
shapes of the pockets, there radii are of similar values in the undoped compounds [75]. If
one shifts the hole pockets by (π,0), a su�cient overlap of the electron and hole pockets is
found and it is appropriate to speak of quasi-nesting. By entering the SDW state below TN,
a reconstruction of the FS occurs as well as an opening of an electronic excitation gap at
parts of the FS [76]. At the parts of the FS without a SDW gap, another state such as SC or
CDW may develop. Furthermore, the form of the hole pockets around the Γ point changes
from cylindrical and quasi two-dimensional above TN to a three-dimensional ellipsoid
below TN, while the electron pockets around X show a two-dimensional "propeller"-like
structure [73]. This reconstruction was observed in ARPES experiments by Kondo et al.

[76]. They observed long parallel segments of the FS along kz indicating intensive nesting
in the magnetically ordered state.

Upon doping, the FSs may change. It was shown, that the hole pocket expands and
the electron pocket shrinks upon hole doping [21, 77, 78]. The size of the hole-pockets
at Γ increases due to the increased amount of holes per Fe, while the propeller blades of
the electron pockets are reduced. This evolution reduces the quasi-nesting of the FSs and
consequently weakens the SDW state.

It was shown by Fernandes et al. [79], Vorontsov et al. [69], and Schmiedt et al. [80], that
a SDW can coexist with superconductivity. The simplest model to describe the electronic
structure considers one electron and one hole band [69]. In this case, the double degeneracy
of the electronic states at the center and corners of the BZ is neglected. However, the
double degeneracy does not seems to be essential for neither the superconductivity nor
magnetism [81�92]. The result of their calculations is, that a commensurate SDW can
coexist with a superconducting s± state in a certain parameter range, if the electron
pocket has a �nite ellipticity and a di�erence in the chemical potentials of the electron and
hole pockets is present. If only one condition is ful�lled, both states are separated by a
�rst-order transition. An incommensurate SDW may coexist with a superconducting s±

state, if the electron pocket has a �nite ellipticity. A di�erence in the chemical potentials
of the electron and hole pockets is not mandatory. For the superconductings++ state, the
situation is completely di�erent, as no coexistence phase for SDW and SC is found [69,
79]. Even in the presence of a FS in the SDW state, s++ SC does not emerge.
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In summary, there is an e�ective "attraction" between the SDW and the superconduct-
ing s± state resulting in a coexistence region for certain parameters, while an e�ective
"repulsion" is present for s++ SC resulting in no coexistence.
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5. Mössbauer and muon spin

relaxation spectroscopy of

Ca1−xNaxFe2As2

5.1. The system Ca1−xNaxFe2As2

For a deeper understanding of the magnetic properties of Ca1−xNaxFe2As2 observed by
Mössbauer spectroscopy and µSR, it is useful to discuss thermodynamic and structural
properties of the compounds.
Calcium has an electron con�guration of [Ar]4s2 and Sodium of [Ne]3s1. Therefore,

the substitution of Calcium by Sodium introduces holes in the system. The ionic ra-
dius of Na+ (1.18 Å) is larger compared to Ca2+ (1.12 Å) [93]. At room temperature,
Ca1−xNaxFe2As2 forms in the tetragonal ThCr2Si2 structure with space group I 4/mmm,
which is shown in Fig. 5.1(a). Ca and Fe occupy the 2a and 4d crystallographic sites,
which have �xed positions (0|0|0) and (0|0.5|0.25), respectively. As occupies the 4e crys-
tallographic site, which has a variable position (0|0|z ). Within the Na-substitution level
range x∈[0.00;0.67], z varies between 0.3658 and 0.3645 [46]. The a- and c-axis parameter
as a function of x are shown in Fig. 5.1(b) [46].
The increase of the c-axis parameter with increased Na-substitution level x is a direct

consequence of the larger ionic radius of Na+ than Ca2+. The shrinked a-axis parameter
with increased x is attributed to the hole-doping character of the substitution [95]. The
anion height above the Fe layer increases from 1.357 Å to 1.401 Å for x = 0.00 and 0.66,
respectively, due to the larger radius of Na than Ca [46]. Additionally, the Fe-As intralayer
distance remains nearly constant upon Na-substitution with dFe-As= 2.374(3) Å [46]. The
Fe-Fe intralayer distance slightly decreases from dFe-Fe= 2.751 Å to 2.716 Å for x = 0 and
0.66, respecitvely [46]. In summary, the Fe-As tetrahedron is slightly compressed upon Na
substitution compared to CaFe2As2, while the c-axis parameter is enhanced due to the
larger radius of the substituent.
CaFe2As2 shows a tetragonal-to-orthorhombic transition at 170-173 K [51, 96]. In the

orthorhombic Fmmm phase, Ca and Fe occupy the 2a and 8f sites, which have the po-
sitions (0|0|0) and (0.25|0.25|0.25), respectively. As occupies the 8i site, which has the
position (0,0,z ). However, the anion height z seems to be independent of the structure
and is of equal value for the tetragonal and orthorhombic phase [46, 51]. The orthorhom-
bic unit cell is rotated by 45◦ with respect to the tetragonal basal plane axes. The or-
thorhombic phase is characterized by the structural order parameter δs = (a-b)/(a+b),
which is the orthorhombic splitting of the crystallographic a- and b-axis. For CaFe2As2,
δs(10 K) = 0.005(1) is obtained [96], which is similar to SrFe2As2 and BaFe2As2, where
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Figure 5.1.: (a) Crystal structure of Ca1−xNaxFe2As2 in the tetragonal phase. Picture is
created using [94]. (b) Lattice parameters as a function of the Na-substitution
level x in the tetragonal phase. With increased x, c increases while a shrinks.
The c/a ratio increases as a function of x and the volume V increases with
increasing x. Data taken from Ref. [46].

δs(20 K) = 0.005 [97] and 0.004 [49] are observed, respectively. However, investigations
of the crystallographic structure at low temperatures and therefore in the magnetically
ordered state as well as in the superconducting state for �nite x are still lacking. Tak-
ing into account the Na-substitution level dependence of δs for Sr1−xNaxFe2As2 [98] and
Ba1−xNaxFe2As2 [99], where a suppression of the structural order parameter as well as
reduction of the structural phase transition temperature is observed, it is self-evident to
assume a similar behaviour in Ca1−xNaxFe2As2. Therefore, the crystallographic structure
in Ca1−xNaxFe2As2 with a �nite x in the magnetically ordered phase is assumed to be
orthorhombic Fmmm with a reduction of δs as a function of x.

5.2. Experimental details

Platelet single crystals of Ca1−xNaxFe2As2 were investigated using 57Fe-Mössbauer and
muon spin relaxation (µSR) spectroscopy. Samples with x = 0.00, 0.35, 0.50, and 0.67
were grown by Luminita Harnagea using the self-�ux technique as described in Ref. [47,
100] and characterized using energy-dispersive x-ray spectroscopy (EDX), x-ray di�raction
(XRD), susceptibility, magnetization, and speci�c-heat measurements. The stoichiometry
of the examined samples are x = 0.00, 0.35, 0.50, and 0.67 as determined by EDX. Char-
acterization of the magnetic properties were performed using SQUID magnetometry.
The µSR experiments were performed at the πM3 beamline of the Swiss Muon Source at
the Paul Scherrer Institut, Villigen, Switzerland, using the GPS and DOLLY spectrom-
eter. The muon spin relaxation was measured in temperatures ranging from 1.6 up to
300 K in zero (ZF) and transverse (TF) magnetic �elds up to 120 mT. The initial muon
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spin polarization was rotated by ≈ -45◦ with respect to the z -direction determined by
TF-µSR. I measured the x = 0.35 and 0.50 samples, Hemke Maeter measured the sample
with x = 0.67 and Hubertus Luetkens measured the sample with x = 0.00. The µSR data
was analysed using the MUSRFIT software [101].
I performed the Mössbauer spectroscopy (MBS) experiments together with Til Goltz and
Sirko Kamusella at the Institut für Festkörperphysik, TU Dresden, in transmission geom-
etry in a temperature range between 4.2 and 300 K using a CryoVac Konti IT cryostat.
As a γ-source, 57Co in Rhodium matrix was used. For the MBS experiments, the single
crystals were cleaved to ensure su�cient transmission of the γ-beam. This was necessary,
as the γ-radiation was nearly 100 % absorbed in the case of uncleaved crystals due to its
large thicknesses. The data were analysed using the MOESSFIT software [32].
In µSR and MBS experiments, the single crystals were aligned with the crystallographic
c-axis along the γ-/muon-beam direction.

5.3. Magnetic-susceptibility measurements
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Figure 5.2.: Temperature dependence of the magnetic susceptibility of Ca1−xNaxFe2As2
(with x = 0.00, 0.35, 0.50, and 0.67). The measurements were performed at
applied �elds of (a) 1 T and (b) 2 mT parallel to the ab-plane. T χ

N = 167 K,
143 K, and 119 K for x = 0.00, 0.35, and 0.50, respectively, are the magnetic
transition temperatures determined by the magnetic susceptibility measure-
ments. Zero (ZFC) and �eld-cooled (FC) measurements show superconductiv-
ity in parts of the sample (x = 0.35, T c = 17 K) and bulk superconductivity
(x = 0.50 and 0.67 with T c = 17 K and 34 K, respectively).

Magnetic-susceptibility measurements in an applied �eld of 1 T parallel to the ab-plane
are shown in Fig. 5.2(a). For x = 0.00, 0.35, and 0.50, a nearly linear decrease of the
magnetic susceptibility is observed in the paramagnetic region, which is found also for
many other iron-based supercondcutors [102�104]. The kinks at 167 K (x = 0.00), 143 K
(x = 0.35), and 119 K (x = 0.50) indicate the magnetic transition temperature T χ

N. For
x = 0.67, a nearly linear decrease of the magnetic susceptibility is also observed above the
superconducting transition temperature T c = 34 K. The slope of the decrease changes at
≈ 150 K. This change may be attributed to the onset of antiferromagnetic �uctuations.
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Magnetic-susceptibility measurements in an applied �eld of 2 mT parallel to the ab-plane
are shown in Fig. 5.2(b). For x = 0.35, below 17 K a broad superconducting transition
occurs. As the diamagnetic shielding is not fully developed, only parts of the sample show
superconductivity. For x = 0.50, a two-step superconducting transition occurs. Below
34 K, a slightly negative magnetic susceptibility is measured, which indicates a supercon-
ducting phase in a small volume of the sample. Below 17 K, a broad second transition
occurs, where bulk superconductivity is formed resulting in the full superconducting re-
sponse. For the further treatment of the x = 0.50 sample, 17 K will be considered as
the superconducting transition temperature. This two-step behaviour as well as the broad
transition indicates an inhomogeneous sample. The sample with x = 0.67 shows bulk
superconductivity below 34 K. The sharp transition indicates a homogeneous sample.

5.4. Results and discussion

5.4.1. Magnetic order in Ca1−xNaxFe2As2

ZF-µSR spectra for x = 0.00, 0.35, and 0.50 are shown in Fig. 5.3 for both detector pairs
3,4 and 2,1. To analyse the ZF time spectra, the function

P (t) =Vmag

2∑
i=1

pi
{
a1,i cos(2πfµ,it+ ϕ)e−λT,it + a2,ie

−λL,it
}

+ [1− Vmag]GGKT(t, σnm) (5.1)

with two magnetically inequivalent muon stopping sites was used. V mag denotes the mag-
netic volume fraction (MVF), λT the transverse and λL the longitudinal relaxation rate,
f µ the muon spin precession frequency, and GGKT(t, σnm) the static Gauss-Kubo-Toyabe
function.
In the paramagnetic temperature regime, a weak Gauss-Kubo-Toyabe damping of P(t) is

observed caused by the dipole-dipole interaction of the muon spin with randomly oriented
dense nuclear magnetic moments in absence of ordered electronic moments for all investi-
gated stoichiometries. The obtained relaxation rates are σnm = 0.067 MHz, 0.052 MHz,
and 0.074 MHz for x = 0.00, 0.35, and 0.50, respectively. TF-µSR experiments were
performed by applying a magnetic �eld of 5 mT perpendicular to the initial muon spin
polarization to study the temperature dependence of the magnetic volume fraction. To
describe the magnetic phase transition, two temperatures are de�ned. T onset

N is de�ned as
the highest temperature with a �nite V mag. T 100%

N is de�ned as as the highest temperature
with V mag = 100 % =̂ 1. The resulting temperature dependence of the magnetic volume
fraction is shown in Fig. 5.4.
T onset

N , T 100%
N , and∆T = T onset

N - T 100%
N , which are obtained by analysing the temperature

dependence of the magnetic volume fraction, are summarized in Tab. 5.1.
A reduction of the magnetic transition temperatures with increased Na-substitution level

is observed. Additionally, ∆T = T onset
N - T 100%

N increases with increased Na-substitution
level, which is caused by the higher degree of disorder in the Na-substituted systems
compared to CaFe2As2 in combination with an increased gradient of the TN(x ) curve
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Figure 5.3.: Time evolution of the muon spin polarization for representative temperatures
in the paramagnetic and magnetically ordered temperature regime for x = 0.00
(upper row), 0.35 (middle row), and 0.50 (lower row). The measurements were
performed using detector pair 3,4 (left column) and 2,1 (right column). See
Sec. 2.5 for more details of the experimental setup. Lines are best �ts to
Eq. (2.37). Please note the di�erent time scales.
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Figure 5.4.: Temperature and Na-substitution level dependence of the magnetic volume
fraction for x = 0.00, 0.35, and 0.50. A reduction of the onset of the magnetic
ordering temperature as well as a broadening of the phase transition is ob-
served with increased Na-substitution level. The onset of the magnetic order
is determined by i) the appearance of a well-de�ned muon spin precession in
the µSR experiments and ii) an abrupt increase of the paramagnetic linewidth
w, which is shown in the inset, in the Mössbauer spectroscopy.

with increasing x.

In the magnetically ordered temperature regime, the detector pairs 3,4 and 2,1 study
di�erent muon spin components. Analysing detector pair 3,4 studies the muon spin com-
ponent perpendicular to the crystallographic c-axis. In the magnetically ordered state, two
magnetically inequivalent muon (A, B) sites are obtained. This is consistent with calcu-
lations by Yuri Pashkevich [105], who found two magnetically inequivalent muon stopping
sites. The calculations were performed at SrFe2As2 in the Fmmm structure using a mod-
i�ed Thomas-Fermi approach, which results in the muon stopping sites (0.00|0.00|0.20)
and (0.19|0.19|0.40), where the former is the main muon site A. The two muon sites show
a temperature and Na-substitution level independent occupation ratio of PA:PB= 80:20
as it is found in BaFe2As2 [106]. In SrFe2As2, an occupation ration of PA:PB= 70:30 is
observed [50]. This indicates, that the muon stopping sites in SrFe2As2 may be slightly
di�erent from those in BaFe2As2 and CaFe2As2. However, it is self-evident due to the same
structure to assume, that the muon stopping sites in CaFe2As2 and BaFe2As2 are not com-
pletely di�erent from those in SrFe2As2 and only small corrections to the two calculated
positions occur. For x = 0.00, the signal fraction corresponding to muons stopping at site
A show a well-de�ned sinusoidal oscillation below 167 K. This indicates static long-range
commensurate magnetic order. The signal fraction corresponding to muons stopping at
site B show an exponential relaxation below 167 K and a well-de�ned sinusoidal oscillation
below 60 K. This indicates a broad �eld distribution at temperatures between 60 K and
167 K at the muon stopping site B suppressing a coherent oscillation of the muon spins,
which is contrary to the observations in BaFe2As2, where two well-de�ned sinusoidal os-
cillation frequencies are obtained at all temperatures below TN [106]. Below 60 K, the
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5.4. Results and discussion

x T 100%
N T onset

N ∆T = T onset
N - T 100%

N

0.00 163(2) K 167(2) K 4(4) K
0.35 140(3) K 161(2) K 21(5) K
0.50 80(3) K 125(3) K 45(6) K

Table 5.1.: Summary of the magnetic transition temperatures obtained by Mössbauer
(MBS), TF- and ZF-muon spin relaxation experiments, of the investigated
Ca1−xNaxFe2As2 compounds with x = 0.00, 0.35, and 0.50. T onset

N denotes
the temperature, where magnetic order starts to develop and a �nite magnetic
volume fraction is observed. T 100%

N denotes the temperature, where a mag-
netic volume fraction of 100 % is observed. The obtained magnetic transition
temperatures by both techniques for x = 0.35 and 0.50 are equal within error
bars.

two precession frequencies have a temperature independent ratio of f A/f B = 1.9. The
temperature dependence of f A is shown in Fig. 5.5(a) with f A(T→0) = 52.0 MHz.
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Figure 5.5.: Temperature dependence of the magnetic order parameter for (a) x = 0.00
and 0.35 and (b) x = 0.50 including best order parameter �ts according to
Eq. (5.2). For reasons of clarity, only frequency f A, which corresponds to
the 80 % occupation probability, is shown. The Mössbauer hyper�ne �eld in
5.5(b) is the average value of the Gaussian-distributed hyper�ne �eld with one
standard deviation as error bar. The inset in 5.5(b) shows the low-temperature
regime, where superconductivity occurs below T c = 17 K.

For x = 0.35 and 0.50, two well-de�ned sinusoidal precession frequencies with
temperature-independent ratios of f A/f B ≈ 4 and 8, respectively, are observed below
T onset
N . The temperature dependencies of the corresponding f A are shown in Figs. 5.5(a)

and 5.5(b). A reduction of the muon spin precession frequency and, therefore, of the mag-
netic order parameter with increased Na-substitution level is observed. Additionally, the
damping of the muon spin oscillation increases with increased Na-substitution level, which
can be seen in the ZF time spectra in Fig. 5.3. This indicates a broader �eld distribution
at the muon site, which is consistent with a higher degree of disorder due to the Na sub-
stitution. The magnetic-susceptibility measurements, which were introduced in Sec. 5.3,
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5. Mössbauer and muon spin relaxation spectroscopy of Ca1−xNaxFe2As2

prove a superconducting phase in parts of the sample volume (x = 0.35) or in the whole
sample volume (x = 0.50). To study the interaction of the magnetic and superconducting
order parameter, f A is analysed using a temperature-dependent phenomenological order
parameter (M ) �t of the form [107]

M(T ) =M(T = 0) ·
[
1−

(
T

TN

)α]β
(5.2)

above and below the superconducting transition temperature T c = 17 K for x = 0.35 and
0.50. For x = 0.35, a �t to Eq.(5.2) above T c for f A(T ) represents the data in the whole
temperature range with f A(T→0) = 39.3 MHz. Therefore, no interaction between the
magnetic and superconducting order parameter is detectable.
For x = 0.50, the muon spin precession frequency is reduced by approximately 7 %

below 17 K with f A(T→T c) = 27.5 MHz. As both order parameters compete for the same
electrons at the Fermi surface, this reduction of the magnetic order parameter proves the
microscopic coexistence of magnetic order and superconductivity. Both order parameters
are weakly coupled compared to Ba1−xNaxFe2As2, where a reduction of the muon spin
precession frequency and, therefore, of the magnetic order parameter of ≈ 65 % is observed
[65]. A theoretical study of the order parameter interaction is presented in Sec. 5.4.2.
Analysing detector pair 2,1 studies the muon spin component parallel to the crystal-

lographic c-axis. Down to lowest temperatures, most parts of the signal shows a Gauss-
Kubo-Toyabe depolarization. Only a small fraction of muons experiencing a fast exponen-
tial damping corresponding to a loss in the asymmetry respectively a fast depolarization.
This fast depolarization increases with increased Na-substitution level, which can be seen
in the ZF time spectra in Fig. 5.3. For x = 0.00, no di�erence in the ZF time spectra and,
therefore, no loss in the asymmetry is observed. In contrast, for x = 0.35 and 0.50 a fast
depolarization of 5 % and 35 % of the signal is observed, respectively. Taking into account
the well-de�ned muon spin precession seen in detector pair 3,4 and the mainly Gauss-
Kubo-Toyabe depolarization in detector pair 2,1, one can conclude, that the magnetic
�eld at the muon site points essentially in the direction of the crystallographic c-axis with
an increased magnetic �eld component in the ab-plane as a function of the Na-substitution
level. This is consistent with Fe moments located in the ab-plane and a tilting out of the
ab-plane as a function of the Na-substitution level. Additionally, no change in the time
spectra for x = 0.50 below 50 K is observed, and, hence, a spin reorientation below the
superconducting transition temperature can be ruled out as a possible origin of the 7 %
reduction of the muon spin precession frequency below T c.
The Na-substitution dependence of the muon spin precession-frequency ratio. f A/f B

changes from 1.9 to 4 and 8 for x = 0.00, 0.35, and 0.50, respectively. This change is
more drastic compared to other 122 compounds. In the following, �rst the undoped 122
compounds are discussed and afterwards the e�ect of Na and K doping. The ionic radii and
electronic con�guration of the alkaline (earth) metals used in 122 compounds are shown
in Fig. 5.6. The c-axis parameter increases nearly linear as a function of the ionic radius.
Ca is the smallest and Cs the largest ion [93]. As a consequence, the crystallographic c-

axis is shortest for CaFe2As2 [46] and longest for CsFe2As2 [54]. However, only CaFe2As2,
SrFe2As2, and BaFe2As2 show magnetic order, while NaFe2As2, KFe2As2, RbFe2As2, and
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Figure 5.6.: c-axis parameter of various AFe2As2 and AEFe2As2 compounds (A = Na, K,
Rb, Cs, AE = Ca, Sr, Ba) as a function of the ionic radii of the alkaline
(earth) metals. A nearly linear increase of c as a function of the ionic radius is
observed. Please note, that NaFe2As2 is only metastable [108]. Additionally,
the electronic con�guration of the alkaline (earth) metal is shown. The ionic
radii are taken from Ref. [93]. The c-axis parameter of the AFe2As2 and
AEFe2As2 compounds are taken from: Ca [51], Na [108], Sr [54, 109], Ba
[110], K [54, 110], Rb [55], Cs [54].

CsFe2As2 are superconducting. Therefore, only CaFe2As2, SrFe2As2, and BaFe2As2 are
discussed further.

In Fig. 5.7(a), f A and f A/f B are shown as a function of the c-axis parameter, which
is proportional to the ionic radii. The muon spin precession frequency f A (f B) is high-
est for CaFe2As2 with 52 MHz (27.4 MHz) and decreases to 44 MHz (12.9 MHz) and
29 MHz (7.1 MHz) for SrFe2As2 [50] and BaFe2As2 [111], respectively. f A/f B is lowest
for CaFe2As2with 1.9 and increases to 3.4 for SrFe2As2 [50] and 4.1 for BaFe2As2 [111].
The muon spin interacts with the ordered electronic moments via dipole-dipole and trans-
ferred Fermi-contact interaction. Both interactions are sensitive to the distance between
the muon spin and the iron ordered moments. Therefore, the nearly linear c dependence
of f A, f B, and f A/f B implies, that the change of the frequency in the undoped compounds
has a structural origin due to the increased distance between the FeAs layers.

The substitution of the alkaline-earth metals by alkaline metals, which introduces holes
in the system, reveals an interesting behaviour. As shown in Fig. 5.6, the ionic radii scale
like Ca < Na < Sr < Ba < K [93]. The in�uence of the alkaline metal substitution on the
structural parameter is shown in Fig. 5.7(b), where the c-axis parameter normalized to the
c-value of the corresponding undoped compound is shown. By substituting an alkaline-
earth metal by an alkaline metal with a smaller ionic radius (Ba→Na [112], Sr→Na [98]),
the change in the c-axis parameter is much smaller than by substituting with an alkaline
metal with a larger ionic radius (Ca→Na [46], Ba→K [110], Sr→K [113, 114]). The
increase of the c-axis parameter due to the substitution with a larger ion is intuitive as it
results in a negative chemically induced pressure on the lattice. By the substitution with
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Figure 5.7.: (a) Normalized frequency f A (red) and f B (black) and the frequency ratio
f A/f B (blue) as a function of the c-axis parameter and ionic radii of the
alkaline-earth metals for the undoped compounds. f A and f B are normalized
to the corresponding values of CaFe2As2 (52 MHz and 27.4 MHz). The linear
reduction of f A and f B as well as the linear increase of f A/f B as a function
of c, which is proportional to the ionic radius of the alkaline-earth metal,
indicates a structural origin. f B is reduced stronger than f A as a function of
c. Data taken from: SrFe2As2 [50] and BaFe2As2 [111]. (b) Substitution level x
dependence of the c-axis parameter normalized to the c-axis parameter value
of the corresponding undoped compound. Stars denote the substitution with
a larger ion, while rectangles denote the substitution with a smaller ion. The
substitution of an alkaline-earth metal by an alkaline metal with a smaller
ionic radius (Ba→Na [112], Sr→Na [98]) results in a smaller change of the
c-axis parameter compared to the substitution with an alkaline metal with a
larger ionic radius (Ca→Na [46], Ba→K [110], Sr→K [113, 114]).
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a smaller ion one would intuitively expect a reduction of the c-axis parameter due to the
chemically induced pressure. Adding the oxidation state to the chemical formula results
in AE 2+

1−xA
+
x (FeAs)

2−
2 . The bonding between the AE 2+

1−xA
+
x - and the FeAs layer is of ionic

character [115]. However, it is shown by Li and Ni, that the charge transfer from the AE
atom to the FeAs layer is nearly twice as much as from the A atom [115]. Therefore, by
substituting an alkaline-earth metal by an alkaline metal results in a weakening of the
bonding of the AE 2+

1−xA
+
x - and (FeAs)2−2 - layers [115]. This results in an increased c-axis

parameter. As shown in Fig. 5.7(b), the c-axis parameter of Ba1−xNaxFe2As2 �rst increases
up to x ≈ 0.4 and than decreases for higher x. Therefore, after a critical Na-substitution
level, the increase of the c-axis parameter due to the weakening of the bonds is exceeded by
the reduction of the c-axis parameter due to the smaller ionic radius of the Na compared
to Ba.
The frequency ratio f A/f B for di�erent Na- and K-substitution levels is shown

in Fig. 5.8(a). BaFe2As2 shows a ratio of 4.1 [111], which increases to 4.47 for
Ba0.77K0.23Fe2As2 [111] or 4.5 for Ba0.7Na0.3Fe2As2 [65]. SrFe2As2 shows a ratio of 3.4
[50], which changes to 3.6 for Sr0.5Na0.5Fe2As2 [116].
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Figure 5.8.: (a) Frequency ratio f A/f B as a function of the substitution level x. The change
in the frequency ratio in Ca1−xNaxFe2As2 is much larger compared to the
doped Ba- and Sr-122 compounds. Substituting an alkaline-earth metal by an
alkaline metal with a smaller ionic radius (Ba→Na [65], Sr→Na [116]), the
change of the precession frequency ratio f A/f B occurs at higher substitution
levels than by substituting with an alkaline metal with a larger ionic radius
(Ca→Na, Ba→K [116]). A stronger change of f A/f B is observed for the latter
case. (b) Substitution level x dependence of f A normalized to the value for
the corresponding undoped compound, f A,0. It is shown, that the reduction
of f A is stronger for the case of the substitution of the alkaline-earth metal
with a large ion than for the substitution with a smaller ion. In both �gures,
stars denote the substitution with a larger ion (Ca→Na, Ba→K [116]), while
rectangles denote the substitution with a smaller ion (Ba→Na [65], Sr→Na
[116]).

Therefore, by substituting an alkaline-earth metal by an alkaline metal with a smaller
ionic radius (Ba→Na [65], Sr→Na [116]), the change of the precession frequency ratio
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5. Mössbauer and muon spin relaxation spectroscopy of Ca1−xNaxFe2As2

f A/f B occurs at higher substitution levels than by substituting with an alkaline metal
with a larger ionic radius (Ca→Na, Ba→K [116]).
The reduction of the frequency f A (normalized to the frequency value of the corre-

sponding undoped compound) as a function of A substitution is shown in Fig. 5.8(b). The
reduction of f A for Ba→K and Ca→Na is of similar value, but stronger than for Ba→Na
and Sr→Na. In conclusion, the changes in the frequency f A and the frequency ratio
f A/f B as a function of the alkaline (earth) metal substitution indicate a structural origin.
However, an in�uence due to the hole-doping character of the alkaline metal substitution
cannot be ruled out.

Now we turn to the Mössbauer results. Mössbauer spectra for characteristic tempera-
tures in the paramagnetic and magnetically ordered states for x = 0.35 and 0.50 are shown
in Fig. 5.9.
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Figure 5.9.: Mössbauer spectra for representative temperatures in the paramagnetic and
magnetically ordered temperature regime for x = 0.35 and 0.50. Lines are best
�ts.

In the paramagnetic state, an asymmetric doublet structure is observed for both samples,
which is analysed using one doublet pattern. This shows, that all Fe nuclei experience the
same electromagnetic environment. The asymmetry of the doublet Adoublet is based on the
angle φ between the incident γ-ray direction and the principal axis of the electric �eld
gradient (EFG) and is described by [24]

Adoublet(φ) =
1 + cos2(φ)
2
3
+ sin2(φ)

. (5.3)

As the experiment was performed using a mosaic of single crystals, the obtained value of
φ is an e�ective value and can di�er from the real value. It was shown by Alzamora et

al. [117], that spectra, which are measured using a mosaic of single crystals, are more
asymmetric than spectra, which are measured using one single crystal. This e�ect of an
increased asymmetry is the case in the performed measurements, as the cleaving of the
crystals leads to a distribution of orientation.
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In the paramagnetic temperature regime, the space group is I 4/mmm. The Fe nuclei are
located at the 4d sites and have the point symmetry 4m2. This ensures axial symmetry
(asymmetry parameter η = 0) and a �nite EFG, whose principal axis is directed along
the crystallographic c-direction. For x = 0.00, Vzz = 12(1) V/Å2 is reported [117]. At
room temperature, a value of V zz = 11.2(5) V/Å2 for x = 0.35 and 0.50 is obtained.
With decreasing temperature, V zz increases slightly to 13.0(5) V/Å2 above the magnetic
transition as it is shown in Fig. 5.10(a).
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Figure 5.10.: (a) Temperature dependence of the main component of the EFG, Vzz. The
step below 161 K for x = 0.35 and the gradual increase below 125 K for
x = 0.50 corresponds to the magneto-structural phase transition. (b) Tem-
perature dependence of the angle θ between the principal axis of the EFG and
the magnetic hyper�ne �eld Bhf. The vertical red and blue dashed lines in
both pictures illustrate the highest temperatures, where 100 % of the sample
show magnetic order.

With the onset of magnetic order, V zz increases to 19(2) V/Å2 and 18(3) V/Å2 at
T 100%

N for x = 0.35 and 0.50,respectively, and remains constants within error bars down
to lowest measured temperatures. This increase can be assigned to a tetragonal-to-
orthorhombic phase transition as it was seen und described for other 122 compounds
including the parent compound CaFe2As2 [51, 52, 96, 118]. In the magnetically ordered
state, the space group is assumed to be Fmmm and, hence, has no axial symmetry, as all
three crystallographic axes are inequivalent (a ̸=b ̸=c). In the experiments, no �nite asym-
metry parameter η was obtained within the resolution of the Mössbauer spectroscopy.
Therefore, for the analysis of the spectra, η was set to zero. The temperature dependence
of the angle θ between the principal axis of the EFG and the magnetic hyper�ne �eld
Bhf is shown in Fig. 5.10(b). For x = 0.00, θ = 94(4)◦ is reported [117]. Hence, the
magnetic hyper�ne �eld is located in the ab-plane, as the principal axis of the EFG is
directed along the crystallographic c-axis [51, 117]. This supports the µSR result, that the
iron magnetic moments are located in the ab-plane. For x = 0.35 and 0.50, θ = 80(5)◦

and 71(5)◦, respectively, in the fully magnetically ordered state are obtained. Therefore,
by increasing the Na-substitution level, a tilting of the iron magnetic moments out of the
ab-plane occurs. This is consistent with the increase of the magnetic signal fraction in the
2,1-detector pair in the µSR experiments. Additionally, no change in θ is observed below
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the superconducting transition temperature for x = 0.50 excluding a spin reorientation.

The onset temperature of the magnetic ordering, T onset
N , is indicated by an abrupt in-

crease of the Mössbauer linewidth w due to the appearance of a magnetic hyper�ne �eld.
This increase is shown in the inset of Fig. 5.4 resulting in T onset

N = 161 K and T onset
N = 125 K

for x = 0.35 and 0.50, respectively. As described in Tab. 5.1, the temperature dependences
of the magnetic volume fraction obtained by Mössbauer spectroscopy and µSR result in
equal T 100%

N . In the magnetically ordered state, a well-resolved sextet is observed in the
Mössbauer spectra for x = 0.35, as it is shown in Fig. 5.9 at T = 4.5 K. This indicates
static commensurate magnetic order with a well-de�ned hyper�ne �eld. For x = 0.50, the
sextet is less clear resolved and the spectra is modelled using a Gaussianly distributed
magnetic hyper�ne �eld. This takes into account the higher degree of disorder than in the
sample with x = 0.35. Consistently, the µSR transverse relaxation rate λT is higher in
x = 0.50 as can be seen by a much faster suppression of the ZF oscillation in Fig. 5.3.

For CaFe2As2, a magnetic hyper�ne �eld of Bhf = 10.14 T at lowest temperatures is
reported [117]. The temperature dependence of the obtained magnetic hyper�ne �eld
Bhf of x = 0.35 is shown in Fig. 5.5(a) with Bhf(T→0) = 7.7 T. In Fig. 5.5(b), the
�rst moment of the Gaussian distribution of the magnetic hyper�ne �eld for x = 0.50 is
shown with Bhf(T→0) = 4.9 T. The temperature dependence of Bhf(T ) is analysed using
Eq. (5.2). For x = 0.35, a �t to Eq. (5.2) above T c for Bhf(T ) represents the data in
the whole temperature range, i.e., also below the superconducting transition. Therefore,
no interaction between the magnetic and superconducting order parameter is detectable.
For x = 0.50, the magnetic hyper�ne �eld shows no reduction and is well represented by
Eq. (5.2) in contrast to the muon spin precession frequency, which shows a reduction of
7 %. The fact, that Bhf shows no signatures below T c, may have several reasons: Either,
because the reduction of 7 % is within the hyper�ne �eld error bars or the muon precession
frequency is changed due to a spin reorientation below T c rather than a reduction of the
magnetic order parameter. As mentioned earlier, a spin reorientation can be ruled out due
to the fact, that the µSR time spectra, detected by detector pair 2,1, shows no changes
below 50 K. It is also excluded by the Mössbauer spectroscopy data, as no change in θ is
observed below the superconducting transition temperature

5.4.2. Landau theory of order-parameter coexistence

During the analysis of the magnetic order parameter in Ca1−xNaxFe2As2, the following
question arises: When and with which magnitude is the magnetic order parameter reduced
in 122 compounds in the case of a nanoscopic coexistence of long-range magnetic order
and superconductivity? The simplest model to describe the problem is a Landau theory
with coupled order parameters. The free energy functional in the absence of an external
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�eld is given by [70, 119�121]

F [ψ, M⃗ ] =

∫
d3r

{
α

2
|ψ(r⃗)|2 + β

4
|ψ(r⃗)|4 + γ

2
|∇⃗ψ(r⃗)|2 + d

2
|ψ(r⃗)|2|M⃗(r⃗)|2

+
a

2
|M⃗(r⃗)|2 + b

4
|M⃗(r⃗)|4 + g

2
|∇⃗M⃗(r⃗)|2

}
, (5.4)

where ψ(r⃗) is the superconducting and M⃗(r⃗) the magnetic order parameter. ψ(r⃗) is com-
plex and described by an amplitude and a phase, while M⃗(r⃗) is a real three component
tensor of �rst order. Following the common approaches, α and a are described as

a = a0[T − TN0] , a0 > 0; (5.5)

α = α0[T − Tc0] , α0 > 0, (5.6)

where TN0 denotes the bare magnetic and Tc0 the bare superconducting transition tem-
perature. The bare transition temperature describes the decoupled case. Tc0 < TN0 is
assumed for the further treatment being the case in all 122 compounds, which are known
at the time of writing of this thesis. This determines, that the bare magnetic transition
temperature is equal to the measured magnetic transition temperature, TN0 = TN. The
superconducting transition temperature, Tc, which is measured in an experiment, might
be reduced in the presence of magnetic order and, therefore, Tc ≤ Tc0. To ensure, that
the free energy has a de�nite minimum, β > 0, b > 0 and d > −

√
bβ are required. All

interactions between the magnetic and superconducting order parameter are put into the
term

d

2
|ψ(r⃗)|2|M⃗(r⃗)|2. (5.7)

A negative d corresponds to a strengthening of both order parameters due to their interac-
tion. This e�ect might be possible, but is beyond the scope of this discussion. Therefore,
to ensure an order parameter competition, d is set to be strictly positive. Assuming the
spatial homogeneity of both order parameters results in a vanishing of the gradient terms
in Eq. (5.4). Minimizing the free energy functional with respect to ψ∗ and M⃗ gives

0 = αψ + β|ψ|2ψ + d|M⃗ |2ψ, (5.8)

0 = aM⃗ + b|M⃗ |2ψ + d|ψ|2M⃗. (5.9)

This system of equations has the following solutions resulting in di�erent phases depending
on the values of the parameters. The paramagnetic and normal conducting phase corre-
spond to ψ = 0 and M⃗ = 0 with a, α > 0. The magnetic and normal conducting
phase is given by ψ = 0 and M⃗2 = −a/b with a < 0 and αb > ad. The paramagnetic
and superconducting phase corresponds to ψ = −α/β and M⃗ = 0 with α < 0 and
aβ > αd.
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The solution of coexistence of both order parameters is given by

|ψ|2 =− αb− ad

bβ − d2
, αb < ad; (5.10)

M⃗2 =− aβ − αd

bβ − d2
, aβ < αd, (5.11)

if the coupling is su�ciently small and ful�ls the equation bβ − d2 > 0. The conditions
αb < ad and aβ < αd are a result of |ψ|2 and M⃗2 being real. At Tc, where |ψ|2 = 0,
Eq. (5.10) reduces to

|ψ(Tc)|2 = 0 = α(Tc)b− a(Tc)d = α0b[Tc − Tc0]− a0d[Tc − TN], (5.12)

which results in an expression for the measured and bare superconducting transition tem-
perature as a function of each other,

Tc =
α0bTc0 − a0dTN
α0b− a0d

, (5.13)

Tc0 =
aod

α0b
TN +

[
1− a0d

α0b

]
Tc, (5.14)

and the magnetic transition temperature. The temperature dependence of the magnetic
order parameter in the coexistence region, using Eqs. (5.5), (5.6), (5.11) and (5.14) as well
as basic maths, is consequently given by

M⃗2
co(T ) =

1

bβ − d2

{
[α0d− a0β]T +

[
a0β − a0

b
d2
]
TN −

[
1− a0d

α0b

]
Tc

}
, (5.15)

for T ≤ Tc ≤ TN. As the magnetic order parameter decreases below T c with decreasing
temperature, the �rst derivative of Eq. (5.15) must obey

dM⃗2

dT
> 0, (5.16)

leading to the condition α0d > a0β. To investigate the reduction of the magnetic order
parameter in the coexistence region, the ratio of M⃗2

co and M⃗
2
0 at a given T ≤ Tc ≤ TN

is calculated:

M⃗2
co

M⃗2
0

(T ) =
1

bβ − d2

{
T

TN − T

[
α0

a0
bd− bβ

]
+

TN
TN − T

[
bβ − d2

]
− Tc
TN − T

[
α0

a0
bd− d2

]}
. (5.17)
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The reduction, which is described by Eq. (5.17), is maximal for T = 0, resulting in

mred =
M⃗2

co

M⃗2
0

(T = 0) = 1− d

a0

α0b− a0d

bβ − d2︸ ︷︷ ︸
∆m(d,a0,α0,b,β)

Tc
TN
. (5.18)

Several conclusions can be drawn from this equation. mred is reduced as a function of
T c/TN with the slope ∆m(d, a0, α0, b, β). In the limit of zero coupling (d → 0), mred → 1,
and ∆m→ 0 and, therefore, no reduction of M⃗co(0) occurs corresponding to the decoupled
case. The interpretation of ∆m is not straightforward, as ∆m is non-trivially connected
to the experimentally accessible parameters a0/b and α0/β.
Comparing the theoretical result with experimental data gives further insight. In

Fig. 5.11, mred, determined by neutron scattering and µSR experiments for various doped
122 compounds, is shown [65, 111, 122�131]. Additionally, the reduction of the structural
order parameter S = (a-b)/(a+b) is shown in Fig. 5.11. The reduction of the structural
and magnetic order parameter reveals the same behaviour as a function of T c/TN, as both
order parameters are strongly coupled in the 122 compounds [50�52, 132�135]. mred, exp re-
veals a linear decrease as a function of T c/TN for T c/TN < 0.7, which corresponds to a
constant slope ∆m ≈ 0.75 in Eq. (5.18). ∆m = constant is a possible realization of the
following parameter settings of d, a0/b and α0/β:

i) d, a0/b and α0/β are constant

ii) d and α0/β are constant

iii) d and a0/b are constant

iv) a0/b and α0/β are constant

v) a0/b is constant

vi) α0/β is constant

vii) d is constant

viii) no constant parameter.

The observed muon spin precession frequency in Ca1−xNaxFe2As2 is proportional to
the magnetic order parameter. Therefore, the ratio a0/b can be calculated in the purely
magnetic phase for T ≫ T c in the vicinity of the magnetic phase transition using
M2 = a0/b · [TN− T ]. a0/b ≈ 16.2 MHz2/K, 9.5 MHz2/K, and 6.3 MHz2/K for x = 0.00,
0.35, and 0.50, respectively, are obtained. Therefore, a0/b is not constant in the 122
compounds.
The superconducting order parameter can be calculated using Eq. (2.66) with |ψ|2 = 2ns

[19], which results in |ψ|2 = [Tc−T ]α0/β ∝ λ−2 and, therefore, α0/β ∝ λ−2T−1
c . However,

values of λ = 200 nm and T c = 34 K in Ca0.33Na0.67Fe2As2 as well as λ = 320 nm and
T c = 32 K in Ba1−xKxFe2As2 [136] indicate a non-constant parameter ratio α0/β. In
summary, it can be stated, that the cases i)-vi) are not realized in the 122 compounds.
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a0/b shows a linear decrease with increased doping level and hence can be approximated
by ax0/b

x = a00/b
0 [1 - ∆(a/b)], where a00 and b

0 denote the corresponding parameter for the
undoped magnetic compounds. For Ca1−xNaxFe2As2, ∆(a/b) = −20(2)×x, with the Na-
substitution level x∈[0.00;0.67]. The linearity of the doping dependence of α0/β ∝ λ−2T−1

c

cannot be proven for the Ca1−xNaxFe2As2-series, as only λ values for x = 0.50 and 0.67
are available in the literature. For the doped BaFe2As2 compounds, more data is avail-
able. It can be shown, using the data published by Prozorov and Kogan [137] that α0/β
shows a linear doping dependence similar to a0/b. Hence, it can be approximated using
α0/β = α0

0/β
0 × ∆(α0/β), where α0

0 and β0 denote the corresponding parameter for the
undoped superconducting compounds. ∆(α0/β) is a linear function of the doping level
x. However, due to the similar properties in the 122 compounds, it is assumed, that the
doping dependence of a0/b and α0/β is always of linear type for each doping series. This
linear doping dependence indicate a constant coupling d (case vii) in the 122 compounds.
In Fig. 5.11, it is visible, that no reduction of the magnetic order parameter occurs for
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Figure 5.11.: Magnetic (M ) and structural (S ) order parameter reduction as a function
of T c/TN. M co and S co denote the order parameter in the coexistence re-
gion, while M 0 and S 0 denote the bare order parameter. The solid line
corresponds to Eq. (5.18). Data taken from Refs. Ba1−xNaxFe2As2 [65],
Ba1−xKxFe2As2 [111, 122, 123], Ba(Fe1−xRux)2As2 [124], Ba(Fe1−xRhx)2As2
[125, 126], Ba(Fe1−xNix)2As2 [127], and Ba(Fe1−xCox)2As2 [125, 128�131].

0 < T c/TN ≈ 0.1. This has several reasons. For T c/TN ≈ 0, due to the experimental
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resolution, a reduction of the order parameter may not be resolved. Additionally, the
compounds may not show bulk superconductivity, but only in parts of the sample. This
is, e. g., the case for Ca0.65Na0.35Fe2As2, where only parts of the volume are supercon-
ducting and no reduction of the magnetic order parameter is observed. Also, it is di�cult
to determine M (T→0) in the presence of a superconducting phase due to the reduction
of the magnetic order parameter in the coexistence region. For the majority of the lit-
erature data, only M (T c) is available and used in Fig. 5.11. The resulting error can be
estimated by the described µSR experiment on Ca0.50Na0.50Fe2As2. M (T c) = 27.5 MHz
and M co(T → 0) = 26 MHz are obtained by the experiment, while M (T → 0) = 28 MHz is
calculated using Eq. (5.2). The reduction is than given by M co(T → 0)/M (T c) ≈ 5 % and
M co(T → 0)/M (T → 0)≈ 7 %. The corresponding reduction of the magnetic order param-
eter is than given by M 2

co(T → 0)/M 2(T c) ≈ 0.89 and M 2
co(T → 0)/M 2(T → 0) ≈ 0.86.

The di�erence between both reduction values is ≈ 3.5 %, which is of the order of the dot
size in Fig. 5.11. This approximation is appropriate, if M (T → 0) ≈ M (T c), which is the
case for T c/TN ≪ 1. For T c/TN → 1, M (T → 0) ≈ M (T c) is not secured. In this case,
M (T c) < M (T → 0) and, hence, mred is overestimated. Therefore, the limitations of
the data extraction cannot explain the systematic deviations of the data from Eq. (5.18)
in the range 0.7 . T c/TN < 1. This indicates a change of the slope in Eq. (5.18), which
can be consistently described with case vii: For T c/TN < 0.7, a similar coupling strength
d ≈ constant of the magnetic and superconducting order parameter results in ∆m = con-
stant. With increasing T c/TN, ∆m changes for T c/TN > 0.7 and hence the constant
value of d is changed. However, if T c ≈ TN, higher order terms in M⃗ and ψ may have to
be considered.
In summary, a qualitative description of the reduction of the magnetic order parameter

in the coexistence region as a function of T c/TN is given. For a quantitative treatment
of the problem with Landau theory, the parameters α and a have to be calculated using
a microscopic theory. This would also put the argumentation about the similar coupling
strength of the superconducting and magnetic order parameter in the 122 compounds on
a more robust basis.

5.4.3. Magneto-structural phase transition

When a nucleus absorbs a photon, the phonon system remains unchanged with a proba-
bility f, where f is the recoilless fraction. This probability depends on the phonon spectra.
Therefore, by analysing f, informations about the phonon spectra can be obtained. As
described in Sec. 3.4, the temperature dependence of f in Debye approximation is given
by

f = exp

(
− 3ER

2kBθD

{
1 + 4

[
T

θD

]2 ∫ θD/T

0

x

ex − 1
dx

})
, (5.19)

with the recoil energy ER, Boltzmann's constant kB and the Debye temperature θD. In
the Mössbauer experiments, the area of the total spectrum A and the baseline I0 are
extracted from the Mössbauer spectra. The quantity AN = A/I0 is proportional to
f [138]. Therefore, by analysing the temperature dependence of AN , the temperature
dependence of f can be obtained, but statements about absolute values of f cannot be
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made. f is then given by
f = CAN(T ), (5.20)

where C is a positive constant. The temperature dependence of AN(T ), normalized to the
value AN(T = 4.2 K), for x = 0.35, 0.50, and 0.67 is shown in Fig. 5.12(a). For x = 0.35
and 0.50, AN(T )/AN(4.2K) is well-described by Eq. (5.20) in the fully magnetically ordered
state as well as in the paramagnetic state. The step at 161 K for x = 0.35 and the gradual
increase between 60 K and 125 K is attributed to the splitting of former overlapping
transition lines due to the magnetic phase transition, which leads to an increase of the
e�ective absorption area [24, 139]. Debye temperatures of θPMD = 200(32) K and 203(12) K
as well as θAFMD = 208(16) K and 219(28) K for x = 0.35 and 0.50, respectively, are obtained.
For x = 0.67, Eq. (5.20) describes AN(T )/AN(4.2 K) for all investigated temperatures .
The obtained Debye temperatures θD are summarized in Tab. 5.2.

x θPMD /K θAFMD /K
0.00 272 271
0.35 200(32) 208(16)
0.50 203(12) 219(28)
0.67 213(6)

Table 5.2.: Debye temperatures θD obtained using Eq. (5.19) above (PM) and below (AFM)
the magnetic phase transition. Data for x = 0.00 are taken from Ref. [140]

The Debye temperatures θPMD and θAFMD do not change within error bars at the phase
transition. This shows, that the lattice dynamics does not change at the magneto-structural
phase transition. Additionally, θD is constant for all �nite x. Therefore, the lattice
dynamics is independent of the Na-substitution level in the investigated substitution range
0.35 ≤ x ≤ 0.67. In contrast to the undoped compound, CaFe2As2 with θD = 270 K,
the lattice is softer [140] . Therefore, the lattice dynamics change between the undoped
compound x = 0 and the investigated Na-substitution range 0.35 ≤ x ≤ 0.67.
To further study the properties of the magneto-structural phase transition, the temper-

ature dependence of the center shift δ is analysed. δ is a measure for the electron density
at the Fe nucleus. Comparing the room temperature values of δ, a Na-substitution level
independent value of δ = 0.40(1) mm/s for x = 0.35, 0.50, and 0.67 is observed. The
undoped compound shows an isomer shift of δ = 0.43 mm/s [117]. Therefore, the electron
density at the Fe nucleus is increased upon Na substitution. As described in Sec. 3.6.1, the
temperature dependence of the center shift, which is shown in Fig. 5.12(b), is the sum of
the temperature-independent chemical shift δC and a temperature-dependent contribution
δR(T ) due to the second-order Doppler shift,

δ(T ) = δC + δR(T ), (5.21)

δR(T ) = − 9

16

kB
Me� c

{
θD + 8T

[
T

θD

]3 ∫ θD/T

0

x3

ex − 1
dx

}
,

where Me� denotes the e�ective vibrating mass of the 57Fe atom. The chemical shift is
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Figure 5.12.: (a) Temperature dependence of the relative recoilless fraction
AN(T )/AN(4.2 K) including best �ts following Eq. (5.19). (b) Tem-
perature dependence of the center shift. The solid lines are a �t in the
paramagnetic temperature regime and the dashed lines are a �t in the
magnetically ordered temperature regime using Eq. (5.21) with θD = 200 K
and 203 K for x = 0.35 and 0.50, respectively. The deviation from δPM(T )
corresponds to the magneto-structural transition, which causes a change in
the electron density at the nucleus. For x = 0.67, δ is shifted by -0.05 mm/s
for illustration purposes.

calculated using δC = δ(0) − δR(0).
To study the in�uence of the magneto-structural phase transition on the center shift,

its temperature dependence is analysed. Analysing δ(T ) in the paramagnetic state with a
�xed θD, which is obtained by Eq. (5.20), gives δPM(T ) and M PM

e� and δPMC can be calcu-
lated. δPM(T ) reveals similar behaviour for both samples leading to δPMC = 0.61(3) mm/s
and δPMC = 0.60(1) mm/s for x = 0.35 and 0.50. The e�ective vibrating mass has, within
error bars, the same value M PM

e� = 60(1) u for both samples, which is slightly enhanced
compared to the 57 u of a free 57Fenucleus due to the bonding of the nucleus in the crystal
lattice. Applying the resultant temperature dependence δPM(T ) to the full temperature
range, one can see, that systematic deviations from the behaviour in the paramagnetic
state occur below the magneto-structural phase transition.
Analysing the magnetically ordered state (AFM) with the same θD as in the para-

magnetic state, δAFM(T ) is obtained and MAFM
e� and δAFMC can be calculated. MAFM

e�

has the same value as in the paramagnetic state. Therefore, M e�= MAFM
e� = M PM

e� is
de�ned. This constant M e� indicates no signi�cant change in the bonding of the nu-
cleus due to the magneto-structural phase transition. Values of δAFMC = 0.57(1) mm/s and
δAFMC = 0.56(1) mm/s are obtained for x = 0.35 and 0.50, respectively.
Both δPM(T ) and δAFM(T ) have the same temperature dependence due to the same

θD and M e� and only vary in the values of δC. The experimental data is described by
δPM(T ) at temperatures above 161 K and 125 K and by δAFM(T ) at temperatures below
100 K and 60 K for x = 0.35 and 0.50, respectively. Therefore, a change of δC occur
in this intermediate temperature regime. δPMC is reduced to δAFMC = 0.57(1) mm/s and
0.56(1) mm/s for x = 0.35 and 0.50, respectively. These reductions in the chemical shifts
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5. Mössbauer and muon spin relaxation spectroscopy of Ca1−xNaxFe2As2

correspond to an increase of the electron density at the nucleus [24]. The origin of the
change of the electron density at the nucleus can be the structural and/or the magnetic
phase transition. The change from a tetragonal to an orthorhombic structure changes the
lattice parameters and hence the volume of the unit cell, which may change the chemical
shift [24]. An increase of the volume and, hence, an increase of the Fe-As distance results
in a decrease of the electron density at the nucleus corresponding to an increased δC [140].
This behaviour is, for example, observed in non-magnetic FeSe, which shows an increase of
δC of 0.006(1) mm/s at the tetragonal-to-orthorhombic phase transition [141]. A magnetic
phase transition may change the chemical shift, as it was observed in metallic iron at
the Curie temperature, where no structural phase transition occurs [142]. The reduction
of δC in metallic iron due to the magnetic phase transition is ≈ 0.3 mm/s [142]. This
indicates, that the origin of the change of the chemical shifts is of both magnetic and
structural nature. However, Mössbauer measurements on the undoped compound show
either no change [117], an increase [140] or a decrease [143] of the chemical shift. The
measurements on samples with x > 0 indicate, that a reduction of the isomer shift at the
magneto-structural phase transition of CaFe2As2 is the most probable case. For x = 0.67,
the temperature dependence of δ(T ) can be properly described by Eq. (5.21) and a value
of δC= 0.56(1) mm/s was obtained. Therefore, no signs of a magnetic or structural phase
transition were obtained.

5.4.4. Optimally doped Ca0.33Na0.67Fe2As2
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Figure 5.13.: (a) Mössbauer spectra and (b) µSR time spectra in the paramagnetic and
superconducting phase.

For Ca0.33Na0.67Fe2As2, magnetic susceptibility measurements evidence bulk supercon-
ductivity below T c = 34 K, as shown in Fig. 5.2(b). Mössbauer experiments where
performed at temperatures below 60 K and above 151 K. The Mössbauer spectra, which
are shown in Fig. 5.13(a) exhibit an asymmetric doublet structure with V zz= 10.3(2) V/Å2

at 295 K. Vzz remains constant within error bars down to lowest temperatures excluding
a structural phase transition. This Vzzvalue is ≈ 8 % smaller than for x = 0.35 and 0.50.
Therefore, the deviation form the perfect FeAs4 tetrahedron is smaller for x = 0.67. How-
ever, the superconducting transition is sensitive to the distortion of this tetrahedron and
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Figure 5.14.: TF-µSR spectra for x = 0.67 with µ0Hext=11.8 mT∥ab (upper row) and
µ0Hext=11.8 mT∥c (lower row) for temperatures above and below the super-
conducting transition temperature, T c = 34 K. The small Gaussian damping
in spectrum (a) is attributed to the dipole-dipole interaction of the muon spin
with randomly oriented dense nuclear moments. The additional damping in
spectra (b)-(d) is caused by the formation of a vortex lattice in the supercon-
ducting state and the associated internal magnetic �eld distribution n(B). It
is clearly visible, that the damping of the muon precession is stronger in the
µ0Hext = 11.8 mT∥c case.
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Figure 5.15.: Temperature dependence of the magnetic penetration depths (a) λ−2
ab (T ) and

(b) λ−2
c (T ), which are proportional to the super�uid density, and the av-

erage magnetic �eld determined by TF-µSR. The reduction of the average
magnetic �eld is caused by the diamagnetic shielding of the superconducting
state. The solid line is the best �t with a phenomenological α model [20].
The dashed line illustrates the temperature dependence of λ−2 obtained by
speci�c-heat measurements with the parameter ∆1 = 2.35 meV, ∆2 = 7.5
meV, W(∆1) = 0.75 and λ(0) = 210 nm [100, 144].

T c is enhanced for less distorted tetrahedra [145].
The broadening of the Mössbauer spectra below 60 K cannot be explained by neither

an increase of Vzz nor an increase of the linewidth w. Therefore, this broadening indicates
the existence of small magnetic �elds, which were modelled using a Gaussian distribution
with the �rst moment ⟨B⟩ = 0. The standard deviation of this Gaussian distribution is
constant within error bars σ(B) = 2.2(1) T above Tc and decreases in the superconducting
phase to 1.7(1) T at 4.2 K. This indicates a competition between magnetism and super-
conductivity. Additionally, the spectra are nearly symmetric below 60 K and an angle
θ = 55(5)◦ between the principal axis of the EFG and the magnetic hyper�ne �eld, which
is close to the magic angle, is obtained. ZF µSR experiments, which were measured for
temperatures below 40 K and above 75 K, down to 5 K are shown in Fig. 5.3. The time
evolution of the muon spin polarization exhibit a Gauss-Kubo-Toyabe depolarization above
75 K excluding any electronic magnetic order. Below 40 K, a weak exponential relaxation
proves short-range magnetic order in small volume fractions with a MVF < 20 %. By
combining both local probes, the onset temperature of the magnetic order is estimated to
be 60 < T onset

N < 75 K. However, room-temperature Mössbauer measurements as well as
the sharp superconducting transition observed via magnetic-susceptibility measurements
indicate a homogeneous sample. This indicates, that the weak magnetism is diluted and
disordered and persistent even in the optimal doping regime, as it was seen in other iron
pnictides. [36, 63, 146]
For an investigation of the superconducting phase (T c = 34 K), TF-µSR measurements

were performed in external magnetic �elds of µ0Hext = 11.8 mT perpendicular and par-
allel to the crystallographic c-axis. The magnetic �eld was applied at T>T c and the
corresponding time evolution of the muon spin polarization is shown in Fig. 5.14(a). The
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damping above T c is caused by the dipole-dipole interaction of the muon spin with ran-
domly oriented dense nuclear moments. Subsequent cooling of the sample in the external
�eld with µ0Hc1 < µ0Hext < µ0Hc2 below the superconducting transition tempera-
ture causes the formation of a vortex lattice. The superconducting signal fraction is fully
damped after 2-3 µs and ≈ 18 % residual signal fraction is still oscillating with a preces-
sion frequency equal to the applied �eld at times t > 3 µs. Identifying this ≈18 % signal
fraction with the MVF obtained by ZF-µSR measurements, which is of equal value, show,
that the internal magnetic �elds are small compared to the 11.8 mT applied �eld.
The vortex lattice and the associated magnetic �eld distribution n⊥,∥c(B) causes an

additional Gaussian damping. The corresponding time evolution of the muon spin polar-
ization is shown in Fig. 5.14(b-d). Measuring the magnetic �eld distribution within the
vortex lattice, the magnetic penetration depth can be obtained via Eq. (2.63). The result-
ing temperature dependence of the inverse squared magnetic penetration depth, λ−2(T ),
is shown in Fig. 5.15(a) and Fig. 5.15(b) together with the �rst moment ⟨B⟩ of the in-
ternal magnetic �eld distribution n⊥,∥c(B). ⟨B⟩ shows a reduction due to the diamagnetic
shielding below the superconducting transition. For µ0Hext=11.8 mT∥c, ⟨B⟩ increases at
lowest temperatures, which is unexpected in the superconducting phase. The e�ect may
be caused by �eld induced magnetism [147�149], vortex disorder [147], or a decrease of the
spin susceptibility, which is concealed by the diamagnetic shielding [150, 151].
λ−2(T ) is modelled using the phenomenological α model including two independent

superconducting gaps with s-wave symmetry [20]. The results are shown in Tab. 5.3. The
obtained values for the larger superconducting energy gap are in reasonable agreement with
recent ARPES and speci�c-heat measurements on single crystals from the same batch
with the same composition [77, 100]. Using the measurements with µ0Hext∥c, the in-
plane penetration depth λab(0)= 194(17) nm can be directly calculated. For µ0Hext∥ab,
contributions from both λac and λbc are measured. Let λe� be the measured magnetic
penetration depth for the case µ0Hext∥ab, and is given by λe�=

√
λacλbc [152]. Assuming

λa ≈ λb and using λab =
√
λaλb, λac =

√
λaλc and λbc =

√
λbλc, a value for λc can

be estimated using λc = λ2eff/λab, where a value of λc(0)= 280(46) nm is obtained. As
disorder in the vortex lattice would arti�cially reduce the penetration depth due to the
broadening of n(B), λab and λc describe strictly lower limits only (and λ−2 an upper limit).

∆1(0)/meV ∆2(0)/meV w(∆1) λ(0)/nm
µ0Hext⊥c 0.57(8) 6.7(1.3) 0.49(4) 280(46)
µ0Hext∥c 0.8(3) 6(1) 0.46(8) 194(17)

ARPES [77] 2.3 7.8
spec. heat [100, 144] 2.35 7.5 0.75 [100] 210(10) [144]

Table 5.3.: Superconducting gap and penetration depth values obtained by a phenomeno-
logical α model analysis of λ−2 for an applied external �eld parallel and per-
pendicular to the crystallographic c-axis. ∆i(0) denotes the zero temperature
values of the gaps. w(∆1) and w(∆2)=1-w(∆1) are the corresponding weighting
factors. λ(0) denotes the zero temperature penetration depth.

Therefore, the obtained values for the magnetic penetration depths are reduced com-
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5. Mössbauer and muon spin relaxation spectroscopy of Ca1−xNaxFe2As2

pared to the values obtained by, e.g. speci�c-heat experiments. To illustrate this ef-
fect, the temperature dependence of λ−2

spec. heat(T ) with the corresponding parameters
(∆1 = 2.35 meV, ∆2 = 7.5 meV, w(∆1) = 0.75, and λ(0) = 210 nm) obtained by
speci�c-heat measurements [100, 144] is plotted in Fig. 5.15(a). It is clearly visible, that
λ−2
spec. heat(T ) < λ−2

µSR(T ) for T < T c. This underestimation of the magnetic penetra-
tion depth in the µSR experiments may result in a di�erent temperature dependence of
λ−2(T ) and, therefore, in di�erent gap sizes and weighting factors. Additionally, Johnston
et al. considered the interband coupling of the superconducting bands and found an in-
termediate coupling strength [100]. The α model here used considers two non-interacting
superconducting bands, which may also explain the di�erent parameter values. However,
taking into account the limitation of magnetic-penetration-depth measurements via µSR
experiments and the used α model, the obtained parameter for ∆1(0), ∆2(0), w(∆1) and
λ(0) are in reasonable agreement with the values obtained by ARPES and speci�c-heat
experiments.
The magnetic-penetration-depth anisotropy can be calculated under the assumption of

λa ≈ λb by [136]

γλ =
λc
λab

. (5.22)

The temperature-independent value of γλ = 1.5(4) is the smallest observed among the
122-pnictides [100], where values of 2 at Tc are obtained, which increase to 6 at 1 K
[153], indicating a more three-dimensional behaviour in Ca0.33Na0.67Fe2As2. This result is
consistent with the temperature-independent value of γ = 1.85(5) for the anisotropy of the
upper critical �elds [154].

5.5. Summary and conclusion

In conclusion, 57Fe-Mössbauer spectroscopy and muon spin relaxation experiments were
performed to study the electronic phase diagram of Ca1−xNaxFe2As2 resulting in an up-
dated phase diagram, which are shown in Figs. 5.16 and 5.17. The investigated samples
have the Na-substitution levels x = 0.00, 0.35, 0.50, and 0.67. Upon Na substitution, the
magnetic order is suppressed. For x = 0.00, a sharp magnetic transition is observed with a
4 K temperature di�erence between the onset of the magnetic order at 163 K and the fully
ordered state at 167 K. This temperature di�erence increases to 21 K and 45 K while the
onset temperatures are reduced to 161 K and 125 K for x = 0.35 and 0.50, respectively.
The magnetic hyper�ne �eld Bhf and the muon spin precession frequency, which are mea-
sures for the magnetic order parameter, are reduced as a function of x. This is shown in
Fig. 5.16 together with the x -dependence of the angle between Bhf and the principal-axis
of the EFG, θ. The decrease of θ as a function of x indicates a tilting of the the ordered
magnetic moments out of the ab-plane. For x = 0.35, no reduction of the magnetic order
parameter below the superconducting transition temperature is observed. In contrast, for
x = 0.50, a reduction of the muon spin precession frequency of 7 % below T c is observed.
This originates in the competition of the superconducting and magnetic order parameter,
as both states compete for the same electrons at the Fermi surface. In both x = 0.35
and 0.50, the coexistence of magnetic order and superconductivity is proven. For a deeper
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Figure 5.16.: Low-temperature saturation values of the magnetic hyper�ne �eld Bhf, the
muon spin precession frequency f A, and θ, the angle between Bhf and the
principal axis of the EFG, as a function of the Na-substitution level. Upon
Na substitution, a reduction of the magnetic hyper�ne �eld and the muon spin
precession frequency is observed proving a reduction of the magnetic order
parameter. The decrease of θ indicates a tilting of the magnetic moments out
of the ab-plane as a function of the Na-substitution level.

understanding of the magnetic order parameter reduction in the coexistence region, Lan-
dau theory is applied �nding a reduction of the magnetic order parameter as a function of
T c/TN. The comparison of the Landau theory result with experimental data for various
122 compounds reveals a similar coupling strength of the magnetic and superconducting
order parameter for T c/T c < 0.7. However, magnetic order is found in a much larger
substitution level range compared to other iron-based superconductors.
For x = 0.67, diluted magnetic order is found. Therefore, the magnetism in

Ca1−xNaxFe2As2 is persistent even at optimal doping. The superconducting state is inves-
tigated by measuring the temperature dependence of the London penetration depth, where
two superconducting gaps with a weighting of nearly 50:50 are obtained. A temperature
independent anisotropy of the magnetic penetration depth γλ = 1.5(4) is obtained, which
is much smaller compared to other 122 compounds indicating a more three dimensional
behaviour of Ca1−xNaxFe2As2.
Magneto-structural properties of Ca1−xNaxFe2As2 are investigated using Mössbauer

spectroscopy. In the paramagnetic state, a reduction of Vzz as a function of the Na-
substitution level is observed from 12 V/Å2 [117] to 9.1 V/Å2 for x = 0.00 and 0.67,
respectively. This is consistent with observations, that superconductivity emerges with
highest T c, when the FeAs4 tetrahedron is least distorted [145]. The temperature depen-
dence of Vzz shows an abrupt increase at T onset

N indicating a magneto-structural phase
transition. The analysis of the temperature dependence of the Debye-Waller factor reveals
no change of the lattice dynamics at the magneto-structural phase transition. However,
a reduction of the Debye temperature upon Na-substitution is observed indicating a soft-
ening of the lattice in the doped compounds compared to CaFe2As2. Furthermore, an
increase of the electron density at the nucleus at the magneto-structural phase transition
is observed.
The Ca1−xNaxFe2As2 substitution series is interesting and more stoichiometries are
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Figure 5.17.: Phase diagram of Ca1−xNaxFe2As2 obtained by µSR, Mössbauer spec-
troscopy, and magnetic susceptibility measurements. T onset

N is the highest
temperature with a �nite magnetic volume fraction. T 100%

N is the high-
est temperature, where 100 % of the sample volume shows magnetic order.
Mössbauer spectroscopy and µSR measurements result in equal values for
T onset

N and T 100%
N within error bars. T c is the superconducting transition

temperature. Above T onset
N , a paramagnetic (PM) phase is observed. Below

T 100%
N , a antiferromagnetic spin density wave (SDW, red) is found. Below

T c, superconductivity (SC, blue) is found. The blue-red striped area marks
the coexistence region of magnetic order and superconductivity with 100 %
magnetic volume fraction. At optimal doping, diluted magnetism is found
below T onset

N coexisting with superconductivity.
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needed to study the x -dependence of the frequency ratio f A/f B as well as the suppression
of the magnetic order for x > 0.00. This would also answer the question, at which x

the long-range magnetic order is changed to the diluted magnetism observed at optimal
doping. Additionally, the determination of the low-temperature crystallographic structure
of Ca1−xNaxFe2As2 for �nite x is necessary to prove the assumption of a Fmmm phase.
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6. Mössbauer and muon spin

relaxation spectroscopy of Fe1+yTe

6.1. Properties of Fe1+yTe

For a deeper understanding of the magnetic properties of Fe1+yTe observed by Mössbauer
spectroscopy and µSR, it is useful to discuss thermodynamic and structural properties of
the compounds.

b

c

a

Fe2a

Fe2c

Te

a
b

c

Figure 6.1.: Two unit cells of Fe1+yTe in the paramagnetic tetragonal structure, space
group P4/nmm, are shown. Fe2a denotes Fe occupying the crystallographic 2a
site with an occupancy of 1. Fe2c denotes Fe occupying the crystallographic
2c site with an occupancy proportional to the excess-iron level y. The picture
is created using [94].

In the paramagnetic temperature regime, Fe1+yTe exhibits a tetragonal structure, which
is shown in Fig. 6.1, with the space group P4/nmm in a crystal structure intermediate
between the PbO (B10) and Cu2Sb (C38) types [155]. The iron atoms are located at the
2a and 2c sites. The former has the position (0.75|0.25|0) and is fully occupied. The later
has a variable position (0.25|0.25|z ) with z ≈ 0.72 and is occupied with a probability of y,
where y is the amount of excess-iron in Fe1+yTe [156, 157]. For a better discriminability
of both iron sites, 2a and 2c are used as a subscript for the corresponding position. The
Te atoms are located at the 2c site, which has the variable position (0.25|0.25|z ') with
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Figure 6.2.: Temperature dependence of the speci�c heat, Cp(T ), of Fe1+yTe for various
excess-iron levels y. For y = 0.06, a sharp �rst-order phase transition is ob-
served at 70 K. By increasing y, the transition temperature decreases to 57 K
at y = 0.11. For y = 0.13, a λ-shaped peak at 57 K and a �rst-order peak at
46 K are observed. Fe1.15Te shows a λ-shaped peak at 63 K. Pictures taken
from Ref. [155].
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z ' ≈ 0.28 and is fully occupied [156, 157]. The lattice parameters a and c decrease with
increased amount of excess-iron y [157].
In the magnetically ordered phase for y ≤ 0.11, the crystallographic structure changes

from tetragonal to monoclinic. This low-temperature phase has the space group P21/m
[155, 156]. For y ≥ 0.12, the crystallographic structure in the magnetically ordered phase
is orthorhombic with the space group Pmmn [155, 156].
The temperature dependence of the speci�c heat Cp(T ) is shown in Fig. 6.2 for various

excess-iron levels y. Fe1.06Te shows a sharp �rst-order like peak at 70 K, which is identi�ed
with the magneto-structural phase transition [155]. By increasing the amount of the excess-
iron y, the transition temperature is suppressed to 57 K for Fe1.11Te [155]. The behaviour
changes for y ≥ 0.12, where two distinct phase transitions occur. For Fe1.13Te, a λ-shaped
peak at 57 K and a �rst-order peak at 46 K is observed. The peak at higher temperatures
can be identi�ed with the magnetic phase transition, while the peak at lower temperatures
corresponds to the tetragonal-to-orthorhombic phase transition [155], which is uncommon
among the iron pnictides and chalcogenides, where usually the structural phase transition
occurs at the same or higher temperatures than the magnetic phase transition. Fe1.15Te
shows a λ-shaped peak at 63 K, which is identi�ed with the magnetic phase transition
[155].
The temperature dependence upon cooling and heating of the magnetic-susceptibility,

χ, measured in an applied �eld of 100 mT in �eld-cooled condition, is shown in Fig. 6.3(a)
for various excess-iron levels [156]. By increasing y, the magnitude of χ increases due to
the magnetic moment of the excess-iron supporting results from DFT calculations [158].
The temperature dependence of χ for Fe1.11Te shows a small thermal hysteresis. This
indicates the �rst-order character of the phase transition. A broader thermal hysteresis
was observed for Fe1.12Te and Fe1.13Te. This indicates two consecutive phase transitions.
For y ≥ 0.14, no thermal hysteresis was observed, which is a sign for a continuous phase
transition.
The temperature dependence of the normalized resistance R/R300K for y = 0.11, 0.12,

0.13, 0.14, and 0.15 is shown in Fig. 6.3(a). For y = 0.11, 0.12, and 0.13, a metallic be-
haviour is observed below the phase transition. In contrast, the resistance of samples with
y = 0.14 and 0.15 increases below the phase transition. This behaviour can be also seen
in the temperature dependence of the resistivity, which is shown in Fig. 6.3(b). Resistivity
values of the order of mΩ cm indicate semi-metallic behaviour [156]. For y = 0.11, a
thermal hysteresis is observed. For y = 0.12 and 0.13, a broadened thermal hysteresis is
observed and for y = 0.14 and 0.15 no thermal hysteresis is observed. Therefore, resistivity
and magnetic-susceptibility measurements show similar behaviour in the excess-iron level
dependence of the thermal hysteresis [156].
The �rst studies of the magnetic low-temperature phase were of theoretical nature.

DFT calculations by Subedi et al. predict an electronic structure, which is similar to
those of the iron pnictides [60]. This includes strong (π,0) Fermi surface nesting resulting
in a large SDW gap. However, neutron-scattering experiments [157, 159] and ARPES
measurements [160] reveal a di�erent behaviour. The obtained magnetic and electronic
structure is shown in Figs. 6.4(a) and 6.4(b). In contrast to the 122 compounds, which show
a collinear antiferromagnetic order with a propagation vector (π, 0), neutron-scattering
experiments evidenced a (δπ,δπ) bicollinear antiferromagnetic ordering, which is rotated
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(a) (b)

Figure 6.3.: (a) Temperature dependence of the magnetic-susceptibility χ for y = 0.11,
0.12, 0.13, 0.14, and 0.15 in an applied �eld of 100 mT. Above the magnetic
transition temperature, paramagnetic behaviour is observed. For y = 0.11, a
thermal hysteresis is observed indicating a �rst-order transition. For y = 0.12
and 0.13, a broadened thermal hysteresis is observed, indicating two consecu-
tive phase transitions. For y = 0.14 and 0.15, no thermal hysteresis is observed
indicating a continuous phase transition. The temperature dependence of the
normalized resistance R/R300K for y = 0.11, 0.12, 0.13, 0.14, and 0.15 upon
heating is shown in the right column bottom graph. For y = 0.11, 0.12, and
0.13, a metallic behaviour is observed below the phase transition. In con-
trast, the resistance of samples with y = 0.14 and 0.15 increases below the
phase transition. (b) Temperature dependence of the resistivity for y = 0.11,
0.12, 0.13, and 0.14. For y ≤ 0.13, metallic behaviour is observed below the
magnetic phase transition, while for y = 0.14 a semiconducting behaviour is
observed. Pictures taken from Ref. [156].
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by 45◦ compared to the 122 compounds. δ changes from a commensurate 0.5 for y < 0.12
to an incommensurate 0.38 for y > 0.12 [157, 159]. For y < 0.12, the magnetic moments
point along the crystallographic b-axis. For y > 0.12, a spin component in direction of the
crystallographic c-axis develops creating a helix structure [157].
The Fermi surface consists of circular hole pockets centered at Γ and elliptical electron

pockets centered at M. Therefore, a nesting vector of (π,0) between an electron and a
hole pocket like in the 122 compounds is predicted by DFT calculations [60]. However,
the experimentally identi�ed antiferromagnetic propagation vector is (π/2, π/2), where no
nesting of an electron and an hole pocket is possible, since no electron pocket is found at
(π/2, π/2) by ARPES measurements [160]. Therefore, nesting as origin for the SDW order
is unlikely, which makes Fe1+yTe di�erent from the other iron-based superconductors. An-
other interesting feature is the Curie-Weiss-like behaviour of the magnetic-susceptibility,
which is uncommon in the iron-based superconductors, as they show an linear increas-
ing normal-state susceptibility [103]. This supports the existence of localized magnetic
moments rather than an itinerant behaviour of the system [160].

(a) (b)

Figure 6.4.: (a) Magnetic structure of SrFe2As2 and FeTe. SrFe2As2 shows collinear anti-
ferromagnetic ordering. The SDW has a propagation vector of (π, 0). FeTe
shows bicollinear antiferromagnetic ordering. The propagation vector is ro-
tated by 45◦ and points along the (π/2,π/2) direction. (b) Electronic struc-
ture of SrFe2As2 and FeTe. For SrFe2As2, electron and hole pockets can be
nested by a vector (π, 0), which is identical to the SDW propagation vector.
For FeTe, a nesting between electron and hole pockets separated by (π, 0) is
in principle possible. A nesting along the SDW propagation vector (π/2,π/2)
is not possible, as no electron pocket is existing at (π/2,π/2). Pictures taken
from [160].

A summarizing phase diagram of the magnetic and structural phases is shown in Fig. 6.5.
To further investigate this splitting of the phase transitions in Fe1.13Te as well as the mag-

netic ground state in all samples, muon spin relaxation and 57Fe-Mössbauer spectroscopy
experiments were performed.
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Figure 6.5.: Phase diagram of Fe1+yTe composed out of data from speci�c heat [155],
magnetic-susceptibility [156], and x-ray di�raction [156] measurements as well
as neutron-scattering experiments [157, 159]. The high-temperature phase
consists of a paramagnetic phase with tetragonal structure. For y < 0.11, the
low-temperature phase consists of a commensurate spin density wave (SDW)
phase and a monoclinic structure. For y > 0.12, two phase transitions occur.
The transition at higher temperatures is followed by a complicated magnetic
phase and a tetragonal structure. The low-temperature phase shows an in-
commensurate SDW state and an orthorhombic structure.
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6.2. Experimental details

Powder samples with the compositions Fe1.06Te, Fe1.12Te, Fe1.13Te, and Fe1.15Te were suc-
cessfully synthesised by Cevriye Koz at the Max-Planck-Institut für Chemische Physik
fester Sto�e in Dresden. For details of the synthesis see Ref. [161].
µSR experiments were performed on samples of Fe1.06Te, Fe1.12Te, and Fe1.13Te with

≈ 150 mg sample mass for each composition. The experiments were performed at the πM3
beamline of the Swiss Muon Source at the Paul Scherrer Institut, Villigen, Switzerland,
using the GPS spectrometer. The muon spin relaxation was measured in temperatures
ranging from 5 up to 300 K in zero (ZF), longitudinal (LF) and transverse (TF) �eld
geometry using external magnetic �elds up to 400 mT. The µSR data were analysed using
the MUSRFIT software [101].
I performed the Mössbauer spectroscopy (MBS) experiments for Fe1.06Te, Fe1.13Te, and

Fe1.15Te at the Institut für Festkörperphysik, TU Dresden, in transmission geometry in
a temperature range between 4.2 and 300 K using a CryoVac Konti IT cryostat. As a
γ-source, 57Co in rhodium matrix was used. The di�erent compositions were prepared
with ≈ 50 mg sample mass. To ensure a homogeneous distribution of the powder in the
sample holder, ethanol was used. The data were analysed using the MOESSFIT software
[32].

6.3. Results and discussion

6.3.1. Mössbauer spectroscopy results

Paramagnetic high-temperature phase

The room-temperature Mössbauer spectra for all compositions are shown in Fig 6.6(a).
They show a slightly asymmetric doublet structure, which indicates the absence of magnetic
order. The asymmetry of the doublet A is based on the angle φ between the incident γ-ray
direction and the principal axis of the electric �eld gradient (EFG) and is described by

A(φ) =
1 + cos2(φ)
2
3
+ sin2(φ)

. (6.1)

As the experiment was performed using powder samples, one would expect an asymmetry
of A = 1 due to the averaging over all angles φ. In the analysing process, there are two
possibilities to model an asymmetry of one: 1) Averaging over all angles φ or 2) setting
the angle φ to a value of arccos(1/

√
3) ≈ 54.7◦, which is called the magic angle. As it is

shown in Fig 6.6(a), a small asymmetry is observed at room temperature. These deviation
from A = 1 can be explained by a texture e�ect, which occurs, when the crystallites in
the powder are not spherical but consist of small platelets. This platelets arrange in a not
fully randomized orientation resulting in an e�ective angle φe� deviating from the magic
angle corresponding to A ̸= 1. The obtained angles are φe� =56(1)◦ and hence only di�er
by < 3 % from the magic angle supporting a small texture e�ect.
The Fe atoms are located at the 2a and 2c sites, which have the point symmetries
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4m2 and 4mm. This ensures axial symmetry (asymmetry parameter η = 0) and a �nite
EFG at each iron site. The principal axis of EFG2a and EFG2c are directed along the
crystallographic c-axis.
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Figure 6.6.: (a) Mössbauer spectra of Fe1.06Te, Fe1.13Te, and Fe1.15Te at room tempera-
ture. The transmission of Fe1.06Te and Fe1.13Te is shifted by 0.10 and 0.05,
respectively, for illustration purposes. (b) Distribution n(Vzz) extracted from
the room temperature Mössbauer spectra.

The Mössbauer spectra at room temperature are analysed using a doublet pattern an
isomer shift δ and the z -component of the EFG, Vzz. As there are two crystallographic
inequivalent iron sites, where only the 2a site is fully occupied and the 2c site is partially
occupied, at least two di�erent EFGs are expected. Therefore, a distribution of Vzz val-
ues is assumed. The probability distribution n(Vzz) was obtained by using a maximum-
entropy method, which is included in the MOESSFIT software [32]. The result is shown
in Fig. 6.6(b) and shows two features at Vzz = 20(1) V/Å2 and 42(1) V/Å2. The �rst
is a peak with the majority of the spectral weight of the probability distribution. The
second is a broad shoulder for y = 0.06 and 0.13, which turns into a well-de�ned peak for
y = 0.15. By increasing the amount of excess-iron, spectral weight is shifted from the peak
at 20 V/Å2 to the feature at 42 V/Å2. Analysing the spectral weight of the two features,
one can extract the relative intensity of the two features at 20 V/Å2(42 V/Å2), which are
0.91 (0.09), 0.85 (0.15), and 0.80 (0.20) for y = 0.06, 0.13, and 0.15 respectively. To relate
the two peaks to the two di�erent iron sites, one has to take into account the properties
of the 2a and 2c iron sites. The 2a site is fully occupied and the 2c site is occupied with a
probability given by the amount of excess-iron y. Therefore, the total amount of iron in the
system is 1+y with y

1+y
and 1

1+y
being the relative amount of iron on the 2a and 2c sites.

Applying this to the investigated samples, relative amounts of 0.94 (0.06), 0.88 (0.12), and
0.87 (0.13) for y = 0.06, 0.13, and 0.15, respectively, for the iron 2a (2c) site would be
expected. Comparing this relative amounts of iron with the relative intensities of the two
features in n(Vzz) gives reasonable agreements for y = 0.06 and 0.13. For y = 0.15, the
agreement is moderate, which can be explained by the higher degree of disorder due to the
large amount of excess-iron in the system. In addition, the 2a site is directly located on the
tetragonal lattice, while the 2c site is located between the FeTe tetrahedrons. Therefore,
one would expect a higher EFG for the 2c than for the 2a site. Due to this reasons, the
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peak at 20 V/Å2 is identi�ed with iron occupying the 2a site and the peak at 42 V/Å2

with the 2c site and hence the system contains two inequivalent iron sites.
For further analysis in the paramagnetic temperature regime, two doublet patterns are

used to investigate the measured Mössbauer spectra. A set of hyper�ne parameters δ and
Vzz is assigned to each doublet pattern corresponding to the two iron sites 2a and 2c with
the same relative intensities as obtained by the analysis of n(Vzz). At room-temperature,
the obtained values of Vzz,2a are 17.2(6) V/Å2, 18.4(1) V/Å2, and 17.2(6) V/Å2, while
the second pattern has values of Vzz,2c = 32(1) V/Å2, 38(1) V/Å2, and 36(2) V/Å2 for
y = 0.06, 0.13, and 0.15, respectively. This values are in good agreement with the more
general approach of the distribution n(Vzz). With decreasing temperature, Vzz,2a increases
slightly to values of 19.6(3) V/Å2, 21.0(3) V/Å2, and 20.5(5) V/Å2, while Vzz,2c increases
to 40(1) V/Å2, 39.3(9) V/Å2, and 40(1) V/Å2 for y = 0.06, 0.13, and 0.15 at T ≈ 80 K,
respectively. Vzz was �xed for temperatures below 80 K to reduce the number of free
parameters in the magnetically ordered phase.
The temperature dependence of the center shift δ is shown in Figs. 6.7(a), 6.7(b), and

6.7(c). Both center shifts δ2a and δ2c are of equal value within error bars in the paramag-
netic temperature regime. Values of 0.472(5) mm/s, 0.482(5) mm/s, and 0.479(5) mm/s are
obtained at room temperature for y = 0.06, 0.13, and 0.15, which increase to 0.60(2) mm/s,
0.614(5) mm/s, and 0.62(2) mm/s at ≈ 80 K, respectively. For y = 0.06, δ2a and δ2c are
of equal value in the magnetically ordered state. With decreasing temperature, the isomer
shift increases to a value of δ2a,2c = 0.63(1) mm/s at 4.2 K.
For y = 0.13 and 0.15 a splitting below 80 K is visible. With δ2a = 0.69(3) mm/s

and δ2a = 0.67(3) mm/s the a site center shifts are smaller than δ2c = 0.79(2) mm/s and
δ2c = 0.74(3) mm/s at 4.2 K, respectively. Therefore, the s-electron density at the nucleus
is higher for the 2a site than for the 2c site. However, the electron density of the 1s-,
2s-, and 3s-electrons is nearly constant [24]. In contrast, the 3d -electrons can screen the
4s-electrons. A more itinerant behaviour of the 3d -electrons results in a reduced screening
of the 4s-electrons and, therefore, an increased electron density at the nucleus. I.e., the 2a
site shows a more itinerant behaviour than the 2c site, which supports results from DFT
calculations [158].

Magnetic low-temperature phase

The onset temperature of the magnetic ordering, T onset
N , is de�ned as the temperature, at

which the Mössbauer linewidth, w, shows an abrupt increase due to the appearance of a
magnetic hyper�ne �eld. The Mössbauer spectra in the magnetically ordered temperature
regime are analysed using two subspectra. Each subspectrum contains a set of hyper�ne
parameters: δ, Vzz, w and the magnetic hyper�ne �eld Bhf. The centers shifts are δ2a and
δ2c and their temperature dependence is shown in Figs. 6.7(a), 6.7(b), and 6.7(c). Vzz was
�xed in the magnetically ordered state to its value at ≈ 80 K. First, the magnetic hyper�ne
�elds at the 2a and 2c sites are analysed using a maximum-entropy method. The result
of this �rst and most general analysis is, that the magnetic hyper�ne �eld at the 2c site
shows a Gaussian distribution. Taking into account the small relative intensity of the 2c
pattern and to reduce the amount of parameters, it is convenient to analyse Bhf at the 2c
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Figure 6.7.: Temperature dependence of the center shift δ(T ) of (a) Fe1.06Te, (b) Fe1.13Te,
and (c) Fe1.15Te. For Fe1.06Te, both δ2a and δ2c are of equal value over the
whole temperature range. For Fe1.13Te and Fe1.15Te, both δ2a and δ2c are of
equal value and denoted as FePM in the paramagnetic temperature regime. In
the magnetically ordered state, δ2a and δ2c have di�erent values.
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site with a magnetic hyper�ne �eld, which is Gauss-distributed:

n(Bhf) =
1√
2πσ

exp

(
−1

2

[B −B2c]
2

σ2

)
, (6.2)

with the �rst moment B2c and the standard deviation σ. The magnetic �eld distribu-
tion at site 2a was determined by maximum entropy at all temperatures. The resulting
distributions at 4.2 K are shown in Figs. 6.8(a), 6.8(b), and 6.8(c).
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Figure 6.8.: Magnetic �eld distribution n2a(B) of Fe1+yTe with y = 0.06, 0.13, and 0.15
at 4.2 K. The red line in (a) shows the Gaussian magnetic �eld distribution of
the excess-iron for y = 0.06 (scaled for comparison purposes).

Magnetic order in Fe1.06Te

The Mössbauer spectrum at 4.2 K is shown in Fig. 6.9, where a well-resolved sextet struc-
ture is visible, which is a sign for a well-de�ned Bhf-value. The temperature dependence of
the magnetic volume fraction is shown in Fig. 6.10(b) together with results from TF-µSR
measurements, which are discussed in Sec. 6.3.2. Below 72 K, static magnetic order is
observed by Mössbauer spectroscopy, while µSR detects magnetic order up to ≈ 100 K.
At 65 K, the magnetic volume fraction approaches 100 %. The 5 % non-magnetic sample
fraction measured by µSR is attributed to muons stopping outside the sample (e.g. the

93



6. Mössbauer and muon spin relaxation spectroscopy of Fe1+yTe

-6 -4 -2 0 2 4 6

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

1.02

 Fe1.06Te
 Fe1.13Te (x2)
 Fe1.15Te (x2)

tra
ns

m
is
si
on

v (mm/s)

Figure 6.9.: Mössbauer spectra at 4.2 K of Fe1+yTe with y = 0.06, 0.13, and 0.15 including
best �ts. The absorption for y = 0.13 and 0.15 is doubled for illustration
purposes.

cryostat). The magnetic hyper�ne �eld at both Fe sites are of equal value within error
bars within the investigated temperature range, as it is shown in Fig 6.10(a). The mag-
netic �eld distribution at the 2a site at 4.2 K shows a peak at ≈ 11 T. In Fig. 6.8(a), the
magnetic �eld distribution at the 2a site and the Gaussian �eld distribution at the 2c site
(scaled for comparison purposes) is plotted and both are virtually congruent. Therefore,
I conclude, that both Fe sites show the same magnetic properties within the resolution of
the Mössbauer spectroscopy. The Gaussian behaviour of both magnetic hyper�ne �elds in-
stead of a Lorentzian is attributed to the disorder introduced by the excess-iron compared
to a theoretical FeTe compound.
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Figure 6.10.: (a) Temperature dependence of the average magnetic hyper�ne �eld of the
magnetic �eld distribution at the 2a site as well as the temperature depen-
dence of the �rst moment of the Gaussian magnetic �eld distribution at the
2c site for Fe1.06Te. (b) Temperature dependence of the magnetic volume
fraction determined by Mössbauer spectroscopy and TF-µSR.
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Magnetic order in Fe1.13Te and Fe1.15Te

The Mössbauer spectra of Fe1.13Te and Fe1.15Te at 4.2 K are shown in Fig. 6.9. They show
a less-clear resolved sextet structure compared to Fe1.06Te. This can be explained by either
a magnetic �eld distribution or magnetically inequivalent Fe sites or both. The magnetic
�eld distributions of the 2a site at 4.2 K are shown in Figs. 6.8(b) and 6.8(c). They show a
rectangular shape consistent with the result in Ref. [162]. Blachowski et al. expanded the
magnetic �eld distribution in terms of Fourier coe�cients, which requires a periodic and
piecewise continuous distribution. This may be a too strong constriction of the possible
shape of the magnetic �eld distribution. Maximum entropy determines the most proba-
ble distribution without any restrictions of the shape of the distribution. Furthermore,
the rectangular shape is comparable with a broadened incommensurate spin-density wave
shape suggested by neutron-scattering experiments [157]. The temperature dependence of
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Figure 6.11.: (a) Temperature dependence of the average magnetic hyper�ne �eld of the
magnetic �eld distribution at the 2a site as well as the temperature depen-
dence of the �rst moment of the Gaussian magnetic �eld distribution at the
2c site of y = 0.13. (b) Temperature dependence of the magnetic volume frac-
tion determined by Mössbauer spectroscopy and TF-µSR for Fe1+yTe with
y = 0.12 and 0.13.

the average value of the magnetic �eld distribution at the 2a site as well as the �rst moment
of the Gauss-distributed magnetic hyper�ne �eld at the 2c site is shown in Figs. 6.11(a)
and 6.12(a). At temperatures slightly below the magnetic transition temperature, both
Bhf, 2a and Bhf, 2c are of equal value within error bars. For Fe1.13Te, a splitting occurs be-
low the structural phase transition at 46 K supporting the strong magneto-elastic coupling
scenario in this compounds [155, 156, 163]. For Fe1.15Te, a splitting is obtained down to
lowest temperatures, but the onset of the splitting cannot be determined due to the lack
of data points between 4.2 K and 50 K. It should be expected at 45 K, where Rössler et
al. report the structural transition temperature [155].
The temperature dependence of the magnetic volume fraction is shown in Fig. 6.11(b)

together with results from TF-µSR-measurements, which are discussed in Sec. 6.3.2. Möss-
bauer spectroscopy measurements show magnetic order below 70 K and 85 K and 100 %
magnetic volume fraction below 60 K for y = 0.13 and 0.15, respectively. TF-µSR-
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experiments on Fe1.12Te and Fe1.13Te show the onset of magnetic order below 100 K and
they are fully magnetically ordered below 55 K. The 5 % non-magnetic sample fraction
measured by µSR is attributed to muons stopping outside the sample (e.g. the cryostat).
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Figure 6.12.: a) Temperature dependence of the average magnetic hyper�ne �eld of the
magnetic �eld distribution at the 2a site as well as the temperature depen-
dence of the �rst moment of the Gaussian magnetic �eld distribution at the
2c site of y = 0.15. b) Temperature dependence of the magnetic volume
fraction determined by Mössbauer spectroscopy for y = 0.15.

6.3.2. Muon spin relaxation results

Muon stopping sites were calculated via the minimum of the sign-reversed electrostatic
potential, which was obtained from a self-consistent DFT calculation, by Lamura et al.

for the case of stoichiometric FeTe [164]. The obtained stopping sites are (0.25|0.25|0.27)
and (0.75|0.25|0.50). However, the former stopping site is stable, while the latter site is
unstable against the zero-point motion of the muon. Therefore, muons stopping at the
latter site will immigrate to either (0.25|0.25|0.27) or the Fe 2c site (0.25|0.25|z ), which is
only partially occupied [164].
ZF-µSR spectra for y = 0.06, 0.12, and 0.13 are shown in Figs. 6.13(a), 6.13(b), and

6.13(c), respectively, for representative temperatures in the paramagnetic and magnetically
ordered state. At 290 K, the time evolution of the muon spin polarization, P(t), shows
an exponential relaxation with a damping rate λ = 0.040(1) MHz and 0.068(1) MHz for
y = 0.06 and 0.12, respectively. This exponential damping is a sign of dynamic electronic
�uctuations. For Fe1.13Te, measurements in LF geometry, which are discussed in detail
below, indicate a dynamical origin of the exponential damping of P(t). DFT+DMFT
calculations indicate �uctuating paramagnetic moments in FeTe [165]. X-ray emission
spectroscopy measurements reveal a paramagnetic �uctuating moment, which is constant
within error bars for Fe1.03Te and Fe1.12Te [166]. The independence of the �uctuating
paramagnetic moment from the excess-iron level indicates, that the exponential relaxation
at room temperature in all investigated samples is caused by �uctuating �elds. This para-
magnetic contribution is given by the Fe2+ ions [167]. This valence state is in agreement
with the former presented results for the isomer shifts [24].
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Figure 6.13.: Time evolution of the muon spin polarization P(t) at temperatures above and
below the magnetic transition temperatures of 65 K for (a) Fe1.06Te, 55 K
for (b) Fe1.12Te, and (c) Fe1.13Te, respectively. Solid lines are best �ts using
Eq. (6.3).
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Magnetic order in Fe1+yTe

µSR measurements in TF geometry in an applied �eld of 5 mT were performed at tempera-
tures between 5 K and 300 K for Fe1.06Te, Fe1.12Te, and Fe1.13Te. The resulting temperature
dependence of the magnetic volume fraction is shown in Figs. 6.10(b) and 6.11(b). A non-
zero magnetic volume fraction is obtained for temperatures below 100-110 K. By reducing
the temperature, the magnetic volume fraction increases until it reaches nearly 100 % at
65 K for Fe1.06Te, at 55 K for Fe1.12Te and at 60 K for Fe1.13Te. The small amount of
non-magnetic volume fraction arises from muons stopping inside the sample holder.
ZF measurements in the magnetic phase below ≈ 100 K show two signal fractions cor-

responding to two magnetically inequivalent muon stopping sites. The time evolution of
the muon spin polarization is analysed using the function

P (t) = VmagAosc

[
2

3
Gosc(fµ, t)e

−λT,osct +
1

3
e−λL,osct

]
+ VmagAnonosc

[
2

3
e−λT,nonosct +

1

3
e−λL,nonosct

]
+ [1− Vmag] e

−λPMt, (6.3)

similar to Eq. (2.37) with the magnetic volume fraction Vmag, the transversal relaxation
rates λT and the longitudinal relaxation rates λL. Gosc(fµ, t) denotes an oscillation function
as a function of time t and the muon spin precession frequency fµ. The paramagnetic sig-
nal fraction is modelled using a simple exponential relaxation function with a temperature
independent relaxation rate λPM. The two magnetically inequivalent muon stopping sites
are occupied with probabilities of Aosc and Anonosc under the condition Aosc+ Anonosc = 1.
The occupation probability Aosc has temperature-independent values of 0.96, 0.80, and
0.76 for Fe1.06Te, Fe1.12Te, and Fe1.13Te, respectively. However, the 2/3-part (see Sec. 2.6.3
for more details about the origin of the 2/3 signal fraction) of both magnetic signals, Aosc

and Anonosc, are fully damped within the �rst 20 ns of P(t). This strong damping indicates
a higher degree of disorder in the system due to the excess-iron resulting in transversal
relaxation rates of the order of a few hundred MHz. This high damping caused experi-
mental di�culties, as the the time resolution of the spectrometer was of the order of 1 ns.
Therefore, high statistic measurements were needed resulting in long measurement times.
As the beamtime at the PSI was highly limited for Fe1.06Te and Fe1.12Te, only the most
important temperatures were investigated by means of ZF-µSR. For Fe1.13Te, more beam
time was available resulting in more ZF data points. To analyse the form of the relaxation
in this �rst 20 ns of P(t), di�erent relaxation functions with and without an oscillation
are used and the coe�cients of determination of the resultant �ts are compared. These
coe�cients are a measure for the quality of the analysis as a function of the sample size
and the number of parameters. The most probable result is the following. The oscillation
function Gosc(fµ, t) is a cosine for Fe1.06Te, which is identi�ed with long-range commensu-
rate magnetic order. The oscillation frequency at 5 K is obtained as fµ= 168(10) MHz,
which corresponds to a �eld of B = 197(12) mT at the muon stopping site. This is in good
agreement with measurements at Fe1.03Te and Fe1.087Te, where values of 210 mT [168] and
197(11) mT [164] are reported. For Fe1.12Te and Fe1.13Te, Gosc(fµ, t) is best described by
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a 0 th-order Bessel function, which is identi�ed with long-range incommensurate magnetic
order. The oscillation frequency at 5 K is obtained as fµ= 73(6) MHz, which corresponds
to a �eld of B = 86(7) mT at the muon stopping site. Muons, stopping at the site de-
scribed by Anonosc, show no coherent oscillation of the muon spins. This is consistent with
a very broad internal magnetic �eld distribution at this muon stopping site preventing a
coherent oscillation of the muon spins.
As a consequence of this strong static damping, after 20 ns only the 1/3-tail parts of

the signal are observed. The ZF spectra at 5 K, which are shown in Figs. 6.13(a), 6.13(b)
and 6.13(c), show an exponential relaxation of the 1/3-tail, which is caused by magnetic
�eld �uctuations. Above 70 K, where TF-µSR measurements show a magnetic volume
fraction below 15 %, both λLs are of the same order of magnitude as the relaxation rate of
the paramagnetic volume fraction, λPM. Both λL increase between 60 K and 70 K due to
enhanced low-frequency magnetic �uctuations above the magnetic transition temperature.
In the fully ordered state, both λLs decreases, which indicates a slowing down of the �eld
�uctuations and a more static internal �eld distribution.
Taking into account the two di�erent muon sites proposed by DFT calculations [164],

the two signal fractions can be interpreted in the following way: The Aosc-signal fraction
is identi�ed with muons stopping at a stable site (0.25|0.25|0.27) where they experience
long-range magnetic order. The Anonosc-signal fraction is identi�ed with muons stopping at
a metastable site (0.75|0.25|0.50), which successfully move to a stable site. This movement
results in a broad internal �eld distribution experienced by the muon, which prevents a
coherent oscillation of the muon spin. This results in an exponential relaxation of the muon
spin polarization. The reduction of the Aosc-signal fraction as a function of the excess-iron
level is attributed to the higher degree of disorder in the system, which results in a broader
�eld distribution.
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Figure 6.14.: Temperature dependence of the time evolution of the muon spin polarization
of Fe1.13Te in an applied longitudinal �eld (LF) of 30 mT. Solid lines are best
�ts to Eq. (6.4).

To further investigate the dynamics in Fe1.13Te, µSR experiments in LF geometry in
�elds up to 400 mT at various temperatures between 5 K and 300 K were performed.
The time evolution of the muon spin polarization in an applied LF of 30 mT is shown in
Figs. 6.14(a) and 6.14(b) for various temperatures in the paramagnetic and magnetically
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ordered state. P(t) was analysed using the function

P (t) = Vmag
{
AT cos(γµBloct) e

−λT + [1− AT] e
−λLF

}
+ [1− Vmag] e

−λPM , (6.4)

with the magnetic volume fraction Vmag, the transversal fraction AT, the longitudinal re-
laxation rate λLF, the transversal relaxation rate λT and the paramagnetic relaxation rate
λPM. Bloc describes the local internal magnetic �eld at the muon site. The transversal
relaxing AT component of the magnetic volume fraction is depolarized within the �rst
20 ns in the magnetically ordered state similar to the ZF measurements. λPM and λLF are
usually of the same order of magnitude and di�cult to distinguish. Practically, λPM is set
to be constant for the analysis process in the transition area region with Vmag ∈ (0;1).
The resultant temperature dependence of λLF is shown in Fig. 6.3.2. λLF remains constant
within error bars between 100 K and 300 K. The exponential relaxation in this temper-
ature regime can be caused by two e�ects. Either due to the dipole-dipole interaction of
the muon spin with diluted nuclear magnetic moments or due to �uctuating �elds at the
muon site. However, typical values of the relaxation rate due to the interaction of the
muon spin with nuclear magnetic moments are of the order of σnm ≤ 0.1 MHz correspond-
ing to a �eld σnm/γµ ≤ 2.8 mT. Therefore, an applied �eld of 30 mT would su�ciently
decouple the muon spin from the static internal magnetic �eld distribution resulting in an
undamped muon spin polarization. Therefore, the exponential relaxation in the paramag-
netic temperature regime above 100 K is caused by �uctuating moments. Below 100 K,
magnetic order develops resulting in a non-zero Vmag, whose temperature dependence is
equal to the temperature dependence obtained by TF-measurements, which is shown in
Fig. 6.11(b). Below 100 K, λLF increases up to a maximum at 60 K. Below 55-60 K, λLF
decreases down to lowest temperatures. This behaviour is identi�ed with an increase of
the magnetic �uctuations above the magnetic transition temperature of TN = 55 K and
a slowing down of the dynamics within the fully ordered state. This slowing down can be
seen in Fig. 6.14(b) by comparing P(t) for 5 K and 50 K. The exponential depolarization
of the 1/3-tail is higher for 50 K than for 5 K proving the slowing down of the magnetic
�uctuations to lowest temperatures.
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Figure 6.15.: Temperature dependence of the longitudinal relaxation rate λLF, which is
contained using Eq. (6.4).

Decoupling experiments were performed in longitudinal �elds up to 400 mT at 50 K,
70 K, and 100 K. The corresponding time evolution of the muon spin polarization is shown
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in Figs. 6.16(a), 6.16(b), and 6.16(c), respectively. The ZF-spectrum at 100 K shows a fast
depolarization from P(t = 0) = 1.00 to P(t = 20 ns) = 0.85 due to the static magnetic order
in parts of the sample volume. This fast depolarization is quenched by applying an external
longitudinal �eld of 100 mT. This indicates, that the internal �eld is small compared to
the applied external �eld. Empirical experience shows, that the internal �eld is around
1/10 of the applied external �eld, which decouples the muon spin from the internal-�eld
distribution. Therefore, the internal �eld at the muon site is ≈ 10 mT. The time evolution
of the muon spin polarization for applied longitudinal �elds of 100 mT and 400 mT is equal
and shows an exponential relaxation with a relaxation rate of λ100K,400mT = 0.08(1) MHz.
This provides evidence for �uctuating �elds at the muon site at 100 K. The ZF spectrum at
70 K shows a fast depolarization from P(t = 0) = 1.0 to P(t = 20 ns) = 0.8 due to the static
magnetic order in parts of the sample volume. The enlarged reduction of the polarization
by 20 %, compared to the 15 % at 100 K, indicates an increased volume fraction showing
static order. This fast depolarization is quenched by applying an external longitudinal
�eld of 100 mT similar to the LF measurements at 100 K indicating a similar internal
�eld at the muon stopping site for both temperatures. Additionally, no change in P(t)
at applied longitudinal �elds between 100 mT and 400 mT is observed. At both applied
�elds, an exponential relaxation with a relaxation rate of λ70K,400mT = 0.32(1) MHz is
observed, which is enhanced compared to λ100 K indicating an increase of the magnetic �eld
�uctuations. The ZF spectrum at 50 K shows a fast depolarization from P(t = 0) = 1.00
to P(t = 20 ns) = 0.33 due to the static magnetic order in 100 % of the sample volume.
By applying an external longitudinal �eld of 400 mT, the amplitude of the fast relaxation
is reduced resulting in P(t = 20 ns) = 0.6. This indicates, that the internal �eld at the
muon stopping site is of the order of the external �eld. This is in good agreement with
the internal magnetic �eld of 86(7) mT obtained by ZF measurement. The exponential
relaxation rate at 400 mT has a value of λ50K,400mT = 0.8(1) MHz. This indicates the
presence of magnetic �uctuations slightly below the magnetic transition temperature of
55 K.
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Figure 6.16.: Field dependence of the time evolution of the muon spin polarization at
50 K, 70 K, and 100 K in external longitudinal �elds up to 400 mT. The
exponential relaxation at 400 mT indicates �uctuating magnetic �elds at the
muon stopping site.
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6.4. Summary - The magnetic phase diagram of

Fe1+yTe

The phase diagram of Fe1+yTe was studied in detail by 57Fe-Mössbauer and muon spin
relaxation spectroscopy. The results of the investigations are summarized and illustrated in
Fig. 6.17, which is a modi�cation of the phase diagram (Fig. 6.5) presented at the beginning
of Sec. 6.1. At room temperature, an exponential relaxation of the muon spin polarization
is observed for y = 0.06, 0.12, and 0.13. µSR-measurements in longitudinal �eld geometry
for y = 0.13 prove, that this exponential relaxation is caused by �uctuating �elds at
the muon stopping site. This is in agreement with recent x-ray emission spectroscopy
measurements observing a paramagnetic �uctuating moment, which is constant within
error bars for Fe1.03Te and Fe1.12Te [166]. DFT+DMFT calculations provide evidence
for �uctuating paramagnetic moments in FeTe which are of the order of the observed
paramagnetic moments by x-ray emission spectroscopy in Fe1.03Te and Fe1.14Te [165, 166].
This indicate, that the �uctuating paramagnetic moments are independent of the excess-
iron level. This implies, that mostly the iron atoms occupying the 2a site contribute to
the �uctuating paramagnetic moment, as in FeTe the occupation of the 2c site is zero.
The magnetic transition temperatures, obtained by Mössbauer spectroscopy and muon

spin relaxation experiments, are summarized in Tab. 6.1

Fe1+yTe T 100%
N T onset

N

Fe1.06Te 65(2) 100(5) µSR
65(1) 72(2) MBS

Fe1.12Te 55(1) 110(5) µSR
Fe1.13Te 60(1) 100(5) µSR

60(1) 80(5) MBS
Fe1.15Te 60(5) 85(5) MBS

Table 6.1.: Summary of the magnetic transition temperatures, obtained by Mössbauer
(MBS) and muon spin relaxation (µSR) experiments, of the investigated com-
pounds with y = 0.06, 0.12, 0.13 and 0.15. T onset

N denotes the highest tempera-
ture with a �nite magnetic volume fraction, which corresponds to the tempera-
ture, where the Mössbauer linewidth shows an abrupt increase. T 100%

N denotes
the highest temperature, where a magnetic volume fraction of 100 % is observed.

These T 100%
N values are in good agreement with the magnetic transition temperatures

obtained by macroscopic measurements (magnetic-susceptibility, speci�c heat, resistivity)
and neutron-scattering experiments [156, 157, 159]. The discrepancy in T onset

N between
Mössbauer spectroscopy and µSR experiment originates in the di�erent resolutions of both
methods, as the µSR is able to detect smaller magnetic moments than the Mössbauer
spectroscopy.
A magnetic precursor state is found for temperatures below 100 K. The onset of this

precursor state is independent of the excess-iron level and characterized by an increase of
the magnetic volume fraction from 0 at 100 K to 100 % at T 100%

N . For temperatures below
T onset

N , a coherent sinusoidal oscillation of the muon spin as well as a well-resolved sextet
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Figure 6.17.: Phase diagram of Fe1+yTe composed out of data taken from Ref. [155�157,
159, 165, 166, 168] as well as 57Fe-Mössbauer spectroscopy and muon spin
relaxation experiments. The high-temperature phase consists of a param-
agnetic phase with tetragonal structure including �uctuating paramagnetic
moments, which are independent of the excess-iron level. The colour code is
red for static internal magnetic �elds and green for �uctuating �elds at the
muon site corresponding to static and �uctuating magnetic moments. The
transitions temperatures obtained by MBS and µSR experiments are illus-
trated as T onset

N and T 100%
N , where the former denotes the onset of magnetic

order and the latter the temperature, where the magnetic volume fraction
reaches 100 %. A magnetic precursor phase, which is independent of the
excess-iron level, is found for temperatures below 100 K. For y < 0.11, the
low-temperature phase consists of a commensurate spin density wave (SDW)
phase and a monoclinic structure. For y > 0.12, two phase transitions occur.
The transition at higher temperatures shows a complicated magnetic phase
and a tetragonal structure. The low-temperature phase shows an incommen-
surate SDW state and an orthorhombic structure. A slowing down of the
magnetic �uctuations is observed in the magnetically ordered state below
TN .
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in the fully magnetically ordered state is observed for y = 0.06. This proves long-range
commensurate magnetic order, which is consistent with the commensurate SDW found
by neutron-scattering experiments [157, 159]. µSR measurements on y = 0.12 and 0.13
observe a coherent oscillation of the muon spin, which is modelled with a 0 th-order Bessel
function indicating long-range incommensurate magnetic order. Mössbauer spectroscopy
measurements on y = 0.13 and 0.15 show a rectangular �eld distribution. These results for
y = 0.12, 0.13, and 0.15 are consistent with the magnetic structure obtained by neutron-
scattering experiments, where an incommensurate SDW is found [157, 159]. Furthermore,
a slowing down of the �eld �uctuations at the muon stopping sites in the fully magnetically
ordered state is observed. Therefore, the paramagnetic high-temperature phase is more
dynamic than the magnetically ordered low-temperature phase.
The magnetic structure in Fe1.13Te at temperatures below the magnetic and above the

structural phase transition is still unclear. To solve this problem with Mössbauer spec-
troscopy, high-quality single crystals instead of powder are necessary.
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7. Conclusion

In this work, the magnetic and superconducting properties of two speci�c series of iron
pnictides and chalcogenides were studied using muon spin relaxation and Mössbauer spec-
troscopy.
In Ca1−xNaxFe2As2, the focus of interest was set to the crossover from magnetic order

to superconductivity. Using local magnetic probes and samples with the Na-substitution
levels x = 0.00, 0.35, 0.50, and 0.67, an updated phase diagram is derived. It was found,
that the magnetic order is suppressed as a function of x and is persistent even at high-
est achievable Na-substitution levels, where a superconducting transition temperature of
T c = 34 K at x = 0.67 is observed. The suppression of the magnetic order is accompanied
by a tilting of the magnetic moments out of the ab-plane as a function of x. For x = 0.50,
a reduction of the magnetic order parameter below T c is observed proving, together with
a magnetic volume fraction of 100 % and a full diamagnetic signal, the coexistence of
magnetic order and superconductivity in the same sample volume. The magnitude of the
reduction of the magnetic order parameter is explained using Landau theory. Using the
Landau theory, a clear correlation between the reduction of the magnetic order parameter
in the superconducting state and the ratio of the ordering temperatures, T c/TN, could be
quantitatively described. Further investigations of the lattice dynamics reveal no change
of the phonon system at the magneto-structural phase transition. However, a softening of
the lattice for �nite x compared to the undoped compound is found.
In the optimally doped sample (x = 0.67) with T c = 34 K, diluted magnetism is found
coexisting with the superconducting phase. Analysing the temperature dependence of the
magnetic penetration depth results in two superconducting gaps showing the multi-band
character of the iron pnictides.
In Fe1+yTe, the focus of interest was set to examine the unusual behaviour, that the

magnetic phase transition temperature is higher than the structural transition temperature,
which is unique among the iron pnictides and chalcogenides. The type of the magnetic
order changes from a commensurate to an incommensurate spin density wave as a function
of the excess iron level y. In contrast, an y-independent magnetic precursor phase below
100 K is found. This is surprising, as T 100%

N , which is the highest temperature where 100 %
of the sample show magnetic order, changes as a function of y. Additionally, �uctuating
paramagnetic moments at room temperature are observed. Upon cooling, the �uctuation
rate decreases and a static magnetic phase is found at lowest temperatures.
This work shows, that the understanding of the interplay between magnetism and su-

perconductivity is crucial. Some speci�c questions were answered, but new question were
raised. The most important question is connected to the undoped and fully doped com-
pounds of the 122 iron pnictides. By increasing the c-axis parameter from CaFe2As2 to
CsFe2As2 and, therefore, increasing the FeAs interlayer distance, the magnetic order is
suppressed and superconductivity emerges. The �rst question is, if this change in the
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electronic ground state is just based on the structure due to the increased c-axis parame-
ter and, therefore, an increased FeAs interlayer distance or if the reduced electron count,
because of the hole doping character of the alkaline-earth metal to alkaline metal substi-
tution, is also important. The second question is, if this general trend of the change in the
ground state due to the increased c-axis parameter can also be applied to the doped 122
compounds. The consequential question is, if it is possible to control the suppression of
the magnetic order parameter down to a certain value, where the magnetic order is weak
enough to mediate the Cooper pairing, just by changing the c-axis parameter. To answer
this question, further experiments together with theoretical studies are necessary.
Room temperature superconductivity is still in the distant future, but a step in the right

direction is done to remove the �ction out of the science �ction.
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A. Momentum displacement

operator

Let |k⟩ be an eigenstate of the momentum operator k̂ with the eigenvalue k :

k̂ |k⟩ = k |k⟩ . (A.1)

The commutator of k̂ with an arbitary operator F(x⃗, k⃗) is given by[
F (x⃗, k⃗), k̂

]
= −i ∂

∂x̂
F (x⃗, k⃗), (A.2)

where x̂ denotes the position operator. Let the displacement operator D(η) be de�ned as

D(η) = eiηx̂. (A.3)

The commutator between D(η) and k̂ is given by[
D(η), k̂

]
= −ηD(η). (A.4)

Applying this commutator to the eigenstate |k⟩ gives[
D(η), k̂

]
|k⟩ = −ηD(η)

= D(η)k̂ |k⟩ − k̂D(η) |k⟩ , (A.5)

which leads to the following expression

k̂D(η) |k⟩ = {k + η}D(η) |k⟩ . (A.6)

Hence, D(η) |k⟩ is an eigenvector of k̂ with the eigenvalue {k + η}, and a new eigenvector
can be de�ned:

D(η) |k⟩ = eiφ︸︷︷︸
!
=1

|k + η⟩ = |k + η⟩ , (A.7)

where φ ∈ C is a complex phase and eiφ is chosen to be 1. Thus it was shown, that eiηx̂ is
a displacement vector and the relation

eiηx̂ |k⟩ = |k + η⟩ (A.8)

is valid.

109



A. Momentum displacement operator

110



List of Figures

2.1. Experimental setup for ZF and TF-�eld µSR . . . . . . . . . . . . . . . . . 14
2.2. Experimental setup of the GPS spectrometer, PSI . . . . . . . . . . . . . . 15
2.3. Time evolution of the muon spin polarisation with Gauss-Kubo-Toyabe and

Lorentz-Kubo-Toyabe damping . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4. time evolution of the muon spin polarisation with sinusoidal and Bessel

oscillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5. Spatial dependence of |ψ(r⃗)| and the magnetic �eld B(r⃗) near a vortex core 22
2.6. Spatial dependence of the magnetic �eld and magnetic �eld distribution for

an ideal hexagonal vortex lattice . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1. Temperature dependence of the recoilless fraction f (T ) for Debye tempera-
tures θD = 100-300 K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2. Combined magnetic and electrical hyper�ne interactions and the corre-
sponding Mössbauer spectra . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3. Schematic of the experimental setup in transmission geometry . . . . . . . 43

4.1. Phase diagram of LaO1−xFxFeAs . . . . . . . . . . . . . . . . . . . . . . . 45
4.2. Crystal structure of iron-based superconductors . . . . . . . . . . . . . . . 46
4.3. Phase diagram of Ca1−xNaxFe2As2 and Ca(Fe1−xCoxAs)2 . . . . . . . . . 47
4.4. Phase diagram of Fe1+yTe1−xSex . . . . . . . . . . . . . . . . . . . . . . . . 48
4.5. Generic phase diagram of the iron pnictides . . . . . . . . . . . . . . . . . 48
4.6. Schematic FeAs lattice and Fermi surface topology . . . . . . . . . . . . . 49

5.1. Crystal structure of Ca1−xNaxFe2As2 in the tetragonal phase and lattice
parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2. Temperature dependence of the magnetic susceptibility of Ca1−xNaxFe2As2 55
5.3. Time evolution of the muon spin polarization for representative tempera-

tures in the paramagnetic and magnetically ordered temperature regime for
x = 0.00 , 0.35 and 0.50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.4. Temperature and Na-substitution level dependence of the magnetic volume
fraction for x = 0.00, 0.35, and 0.50 . . . . . . . . . . . . . . . . . . . . . . 58

5.5. Temperature dependence of the magnetic order parameter for x = 0.00,
0.35, and 0.50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.6. c-axis parameter of various 122 compounds . . . . . . . . . . . . . . . . . . 61
5.7. Frequency and frequency ratio for the undoped 122 compounds and normal-

ized c-axis parameter as a function of doping . . . . . . . . . . . . . . . . . 62
5.8. Frequency ratio and reduction of the frequency as a function of doping . . 63

111



List of Figures

5.9. Mössbauer spectra for representative temperatures in the paramagnetic and
magnetically ordered temperature regime for x = 0.35 and 0.50 . . . . . . 64

5.10. Temperature dependence of Vzz and θ . . . . . . . . . . . . . . . . . . . . 65
5.11. Magnetic and structural order parameter reduction as a function of T c/TN 70
5.12. Temperature dependence of the relative recoilless fraction and the center shift 73
5.13. Mössbauer spectra and µSR time spectra in the paramagnetic and super-

conducting phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.14. TF-µSR spectra for x = 0.67 . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.15. Temperature dependence of the magnetic penetration depth . . . . . . . . 76
5.16. Na-substitution level dependence of the magnetic hyper�ne �eld, the muon

spin precession frequency as well as the the angle between the magnetic
hyper�ne �eld and the principal axis of the EFG . . . . . . . . . . . . . . . 79

5.17. Phase diagram of Ca1−xNaxFe2As2 obtained by µSR, Mössbauer spec-
troscopy, and magnetic-susceptibility measurements . . . . . . . . . . . . . 80

6.1. Crystallographic structure of Fe1+yTe . . . . . . . . . . . . . . . . . . . . . 83
6.2. Temperature dependence of the speci�c heat . . . . . . . . . . . . . . . . . 84
6.3. Temperature dependence of the magnetic-susceptibility, normalized resis-

tance and resistivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.4. Magnetic and electronic structure of SrFe2As2 and FeTe . . . . . . . . . . . 87
6.5. Phase diagram of Fe1+yTe . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.6. Mössbauer spectra of Fe1.06Te, Fe1.13Te, and Fe1.15Te at room temperature

and the corresponding distribution n(Vzz) . . . . . . . . . . . . . . . . . . 90
6.7. Temperature dependence of the center shift δ(T ) of Fe1.06Te, Fe1.13Te, and

Fe1.15Te . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.8. Magnetic �eld distribution n2a(B) of Fe1.06Te, Fe1.13Te, and Fe1.15Te . . . . 93
6.9. Mössbauer spectra at 4.2 K of Fe1.06Te, Fe1.13Te, and Fe1.15Te . . . . . . . 94
6.10. Temperature dependence of the magnetic hyper�ne �eld and magnetic vol-

ume fraction for Fe1.06Te . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.11. Temperature dependence of the magnetic hyper�ne �eld and magnetic vol-

ume fraction for Fe1.13Te and Fe1.15Te . . . . . . . . . . . . . . . . . . . . . 95
6.12. Temperature dependence of the magnetic hyper�ne �eld and magnetic vol-

ume fraction for Fe1.15Te . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.13. Time evolution of the muon spin polarization P(t) at temperatures above

and below the magnetic transition temperatures for Fe1.06Te, Fe1.12Te, and
Fe1.13Te . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.14. Temperature dependence of the time evolution of the muon spin polarization
of Fe1.13Te in an applied longitudinal �eld of 30 mT . . . . . . . . . . . . . 99

6.15. Temperature dependence of the longitudinal relaxation rate λLF . . . . . . 100
6.16. Field dependence of the time evolution of the muon spin polarization at

50 K, 70 K, and 100 K in external longitudinal �elds up to 400 mT . . . . 102
6.17. Updated magnetic phase diagram of Fe1+yTe containing the Mössbauer and

muon spin relaxation spectroscopy results . . . . . . . . . . . . . . . . . . . 104

112



List of Tables

2.1. Basic properties of the muon in terms of electron and proton properties . . 11

5.1. Summary of the magnetic transition temperatures for x = 0.00, 0.35, and
0.50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2. Debye temperatures θD for x = 0.00, 0.35, 0.50, and 0.67 . . . . . . . . . . 72
5.3. Superconducting gap and penetration depth values for x = 0.67 . . . . . . 77

6.1. Summary of the magnetic transition temperatures for Fe1+yTe . . . . . . . 103

113



List of Tables

114



Bibliography

[1] J. Cameron and W. Wisher, Terminator 2: Judgement Day, 1991.

[2] S. L. Bud'ko, G. Lapertot, C. Petrovic, C. E. Cunningham, N. Anderson, and P. C.
Can�eld, Phys. Rev. Lett. 86, 1877 (2001).

[3] J. Bardeen, L. N. Cooper, and J. R. Schrie�er, Phys. Rev. 108, 1175 (1957).

[4] C. W. Chu, L. Gao, F. Chen, Z. J. Huang, R. L. Meng, and Y. Y. Xue, Nature 365,
323 (1993).

[5] Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130,
3296 (2008).

[6] A. Schenck, Muon spin rotation spectroscopy (CRC Press, 1985).

[7] J. Sonier, TRIUMF Web Sites (2001).

[8] P. D. de Réotier and A Yaouanc, J. Phys. Condens. Matter 9, 9113 (1997).

[9] R. S. Hayano, Y. J. Uemura, J. Imazato, N. Nishida, T. Yamazaki, and R. Kubo,
Phys. Rev. B 20, 850 (1979).

[10] M. Larkin, Y. Fudamoto, I. Gat, A. Kinkhabwala, K. Kojima, G. Luke, J. Merrin,
B. Nachumi, Y. Uemura, M. Azuma, T. Saito, and M. Takano, Physica B 289-290,
153 (2000).

[11] A. Overhauser, J. Phys. Chem. Solids 13, 71 (1960).

[12] C. Timm, Lecture: theory of superconductivity.

[13] E. H. Brandt, Phys. Rev. B 37, 2349 (1988).

[14] J. E. Sonier, J. H. Brewer, and R. F. Kie�, Rev. Mod. Phys. 72, 769 (2000).

[15] T. M. Riseman, J. H. Brewer, K. H. Chow, W. N. Hardy, R. F. Kie�, S. R. Kre-
itzman, R. Liang, W. A. MacFarlane, P. Mendels, G. D. Morris, J. Rammer, J. W.
Schneider, C. Niedermayer, and S. L. Lee, Phys. Rev. B 52, 10569 (1995).

[16] A. Maisuradze, R. Khasanov, A. Shengelaya, and H. Keller, J. Phys. Condens. Mat-
ter 21, 075701 (2009).

[17] E. Brandt, J. Low Temp. Phys. 73, 355 (1988).

[18] D. Cardwell and D. Ginley, Handbook of superconducting materials, Bd. 1 (Institute
of Physics, 2003).

[19] M. Tinkham, Introduction to Superconductivity, Dover Books on Physics Series
(Dover Publications, Incorporated, 2012).

[20] A. Carrington and F. Manzano, Physica C 385, 205 (2003).

115



Bibliography

[21] D. V. Evtushinsky, D. S. Inosov, V. B. Zabolotnyy, M. S. Viazovska, R. Khasanov,
A. Amato, H.-H. Klauss, H. Luetkens, C. Niedermayer, G. L. Sun, V. Hinkov, C. T.
Lin, A. Varykhalov, A. Koitzsch, M. Knupfer, B. Büchner, A. A. Kordyuk, and S. V.
Borisenko, N. J. Phys. 11, 055069 (2009).

[22] A. A. Golubov, A. Brinkman, O. V. Dolgov, J. Kortus, and O. Jepsen, Phys. Rev.
B 66, 054524 (2002).

[23] R. L. Mössbauer, German, Z. Phys. 151, 124 (1958).

[24] D. Barb, Grundlagen und Anwendungen der Mössbauerspektroskopie (Berlin,
Akademie-Verlag, 1980).

[25] D.-P. Y. Yi-Long Chen, Mössbauer e�ect in lattice dynamics (WILEY-VCH, 2007).

[26] R. J. Glauber, Phys. Rev. 131, 2766 (1963).

[27] J. Gazeau, Coherent states in quantum physics (Wiley, 2009).

[28] D. S. Bateman, S. K. Bose, B. DuttaRoy, and M. Bhattacharyya, Am. J. Phys. 60,
829 (1992).

[29] H. J. Lipkin, Ann. Phys. 18, 182 (1962).

[30] S. Wang, Phys. Rev. A 60, 262 (1999).

[31] G. Schatz and A. Weidinger, Nukleare Festkörperphysik: kernphysikalische Mess-

methoden und ihre Anwendungen, Teubner-Studienbücher: Physik (Teubner, 1997).

[32] S. Kamusella, MoessFit: A Free Framework for 57Fe Mössbauer Data Analysis, (pri-
vate communication).

[33] B. Matthias, V. Compton, and E. Corenzwit, J. Phys. Chem. Solids 19, 130 (1961).

[34] B. Chandrasekhar and J. Hulm, J. Phys. Chem. Solids 7, 259 (1958).

[35] H. F. Braun, Phys. Lett. A 75, 386 (1980).

[36] H. Luetkens, H.-H. Klauss, M. Kraken, F. J. Litterst, T. Dellmann, R. Klingeler, C.
Hess, R. Khasanov, A. Amato, C. Baines, M. Kosmala, O. J. Schumann, M. Braden,
J. Hamann-Borrero, N. Leps, A. Kondrat, G. Behr, J. Werner, and B. Büchner, Nat.
Mater. 8, 305 (2009).

[37] H.-H. Klauss, H. Luetkens, R. Klingeler, C. Hess, F. J. Litterst, M. Kraken, M. M.
Korshunov, I. Eremin, S.-L. Drechsler, R. Khasanov, A. Amato, J. Hamann-Borrero,
N. Leps, A. Kondrat, G. Behr, J. Werner, and B. Büchner, Phys. Rev. Lett. 101,
077005 (2008).

[38] A. D. Christianson, M. D. Lumsden, O. Delaire, M. B. Stone, D. L. Abernathy, M.
A. McGuire, A. S. Sefat, R. Jin, B. C. Sales, D. Mandrus, E. D. Mun, P. C. Can�eld,
J. Y. Y. Lin, M. Lucas, M. Kresch, J. B. Keith, B. Fultz, E. A. Goremychkin, and
R. J. McQueeney, Phys. Rev. Lett. 101, 157004 (2008).

[39] L. Boeri, O. V. Dolgov, and A. A. Golubov, Phys. Rev. Lett. 101, 026403 (2008).

[40] I. Mazin and J. Schmalian, Physica C 469, 614 (2009).

116



Bibliography

[41] M. D. Lumsden and A. D. Christianson, J. Phys. Condens. Matter 22, 203203
(2010).

[42] D. C. Johnston, Adv. Phys. 59, 803 (2010).

[43] D. Johrendt, J. Mater. Chem. 21, 13726 (2011).

[44] P. J. Hirschfeld, M. M. Korshunov, and I. I. Mazin, Rep. Prog. Phys. 74, 124508
(2011).

[45] G. R. Stewart, Rev. Mod. Phys. 83, 1589 (2011).

[46] K. Zhao, Q. Q. Liu, X. C. Wang, Z. Deng, Y. X. Lv, J. L. Zhu, F. Y. Li, and C. Q.
Jin, Phys. Rev. B 84, 184534 (2011).

[47] L. Harnagea, S. Singh, G. Friemel, N. Leps, D. Bombor, M. Abdel-Ha�ez, A. U. B.
Wolter, C. Hess, R. Klingeler, G. Behr, S. Wurmehl, and B. Büchner, Phys. Rev. B
83, 094523 (2011).

[48] M. P�sterer and G. Nagorsen, Z. Naturforsch. B 35 (1980).

[49] M. Rotter, M. Tegel, D. Johrendt, I. Schellenberg, W. Hermes, and R. Pöttgen,
Phys. Rev. B 78, 020503 (2008).

[50] A. Jesche, N. Caroca-Canales, H. Rosner, H. Borrmann, A. Ormeci, D. Kasinathan,
H. H. Klauss, H. Luetkens, R. Khasanov, A. Amato, A. Hoser, K. Kaneko, C. Krell-
ner, and C. Geibel, Phys. Rev. B 78, 180504 (2008).

[51] A. I. Goldman, D. N. Argyriou, B. Ouladdiaf, T. Chatterji, A. Kreyssig, S. Nandi,
N. Ni, S. L. Bud'ko, P. C. Can�eld, and R. J. McQueeney, Phys. Rev. B 78, 100506
(2008).

[52] Q. Huang, Y. Qiu, W. Bao, M. A. Green, J. W. Lynn, Y. C. Gasparovic, T. Wu,
G. Wu, and X. H. Chen, Phys. Rev. Lett. 101, 257003 (2008).

[53] A. Cano, M. Civelli, I. Eremin, and I. Paul, Phys. Rev. B 82, 020408 (2010).

[54] K. Sasmal, B. Lv, B. Lorenz, A. M. Guloy, F. Chen, Y.-Y. Xue, and C.-W. Chu,
Phys. Rev. Lett. 101, 107007 (2008).

[55] Z. Bukowski, S. Weyeneth, R. Puzniak, J. Karpinski, and B. Batlogg, Physica C
470, Supplement 1, Proceedings of the 9th International Conference on Materials
and Mechanisms of Superconductivity, S328 (2010).

[56] M. Bendele, P. Babkevich, S. Katrych, S. N. Gvasaliya, E. Pomjakushina, K. Conder,
B. Roessli, A. T. Boothroyd, R. Khasanov, and H. Keller, Phys. Rev. B 82, 212504
(2010).

[57] F.-C. Hsu, J.-Y. Luo, K.-W. Yeh, T.-K. Chen, T.-W. Huang, P. M. Wu, Y.-C. Lee,
Y.-L. Huang, Y.-Y. Chu, D.-C. Yan, and M.-K. Wu, Proc. Natl. Acad. Sci. 105,
14262 (2008).

[58] B. C. Sales, A. S. Sefat, M. A. McGuire, R. Y. Jin, D. Mandrus, and Y.
Mozharivskyj, Phys. Rev. B 79, 094521 (2009).

[59] D. Fruchart, P. Convert, P. Wolfers, R. Madar, J. Senateur, and R. Fruchart, Mater.
Res. Bull. 10, 169 (1975).

117



Bibliography

[60] A. Subedi, L. Zhang, D. J. Singh, and M. H. Du, Phys. Rev. B 78, 134514 (2008).

[61] D. N. Basov and A. V. Chubukov, Nat. Phys. 7, 272 (2011).

[62] J. T. Park, D. S. Inosov, C. Niedermayer, G. L. Sun, D. Haug, N. B. Christensen,
R. Dinnebier, A. V. Boris, A. J. Drew, L. Schulz, T. Shapoval, U. Wol�, V. Neu, X.
Yang, C. T. Lin, B. Keimer, and V. Hinkov, Phys. Rev. Lett. 102, 117006 (2009).

[63] A. J. Drew, C. Niedermayer, P. J. Baker, F. L. Pratt, S. J. Blundell, T. Lancaster,
R. H. Liu, G. Wu, X. H. Chen, I. Watanabe, V. K. Malik, A. Dubroka, M. Rossle,
K. W. Kim, C. Baines, and C. Bernhard, Nat. Mater. 8, 310 (2009).

[64] S. Sanna, R. De Renzi, G. Lamura, C. Ferdeghini, A. Palenzona, M. Putti, M.
Tropeano, and T. Shiroka, Phys. Rev. B 80, 052503 (2009).

[65] H. Maeter, G. Pascua, H. Luetkens, J. Knolle, S. Aswartham, S. Wurmehl, G. Behr,
B. Büchner, Z. Shermadini, K. Sedlak, A. Amato, R. Moessner, I. Eremin, and H.-H.
Klauss, arXiv 1210.6881v1 (2012).

[66] G Wu, H Chen, T Wu, Y. L. Xie, Y. J. Yan, R. H. Liu, X. F. Wang, J. J. Ying, and
X. H. Chen, J. Phys. Condens. Matter 20, 422201 (2008).

[67] G. F. Chen, Z. Li, J. Dong, G. Li, W. Z. Hu, X. D. Zhang, X. H. Song, P. Zheng,
N. L. Wang, and J. L. Luo, Phys. Rev. B 78, 224512 (2008).

[68] D. Singh, Physica C 469, 418 (2009).

[69] A. B. Vorontsov, M. G. Vavilov, and A. V. Chubukov, Phys. Rev. B 81, 174538
(2010).

[70] M. G. Vavilov, A. V. Chubukov, and A. B. Vorontsov, Sup. Sci. Technol. 23, 054011
(2010).

[71] G. Liu, H. Liu, L. Zhao, W. Zhang, X. Jia, J. Meng, X. Dong, J. Zhang, G. F. Chen,
G. Wang, Y. Zhou, Y. Zhu, X. Wang, Z. Xu, C. Chen, and X. J. Zhou, Phys. Rev.
B 80, 134519 (2009).

[72] M. Neupane, P. Richard, Y.-M. Xu, K. Nakayama, T. Sato, T. Takahashi, A. V.
Federov, G. Xu, X. Dai, Z. Fang, Z. Wang, G.-F. Chen, N.-L. Wang, H.-H. Wen,
and H. Ding, Phys. Rev. B 83, 094522 (2011).

[73] C. Liu, T. Kondo, N. Ni, A. D. Palczewski, A. Bostwick, G. D. Samolyuk, R.
Khasanov, M. Shi, E. Rotenberg, S. L. Bud'ko, P. C. Can�eld, and A. Kaminski,
Phys. Rev. Lett. 102, 167004 (2009).

[74] R. Gonnelli, M. Tortello, D. Daghero, P. Pecchio, S. Galasso, V. Stepanov, Z.
Bukowski, N. Zhigadlo, J. Karpinski, K. Iida, and B. Holzapfel, English, J. Su-
percond. Nov. Magn. 26, 1331 (2013).

[75] S. Avci, O. Chmaissem, D. Y. Chung, S. Rosenkranz, E. A. Goremychkin, J. P.
Castellan, I. S. Todorov, J. A. Schlueter, H. Claus, A. Daoud-Aladine, D. D.
Khalyavin, M. G. Kanatzidis, and R. Osborn, Phys. Rev. B 85, 184507 (2012).

[76] T. Kondo, R. M. Fernandes, R. Khasanov, C. Liu, A. D. Palczewski, N. Ni, M.
Shi, A. Bostwick, E. Rotenberg, J. Schmalian, S. L. Bud'ko, P. C. Can�eld, and A.
Kaminski, Phys. Rev. B 81, 060507 (2010).

118



Bibliography

[77] D. V. Evtushinsky, V. B. Zabolotnyy, L. Harnagea, A. N. Yaresko, S. Thirupathaiah,
A. A. Kordyuk, J. Maletz, S. Aswartham, S. Wurmehl, E. Rienks, R. Follath, B.
Büchner, and S. V. Borisenko, Phys. Rev. B 87, 094501 (2013).

[78] C. Liu, G. D. Samolyuk, Y. Lee, N. Ni, T. Kondo, A. F. Santander-Syro, S. L.
Bud'ko, J. L. McChesney, E. Rotenberg, T. Valla, A. V. Fedorov, P. C. Can�eld,
B. N. Harmon, and A. Kaminski, Phys. Rev. Lett. 101, 177005 (2008).

[79] R. M. Fernandes, D. K. Pratt, W. Tian, J. Zarestky, A. Kreyssig, S. Nandi, M. G.
Kim, A. Thaler, N. Ni, P. C. Can�eld, R. J. McQueeney, J. Schmalian, and A. I.
Goldman, Phys. Rev. B 81, 140501 (2010).

[80] J. Schmiedt, P. M. R. Brydon, and C. Timm, Phys. Rev. B 89, 054515 (2014).

[81] T. A. Maier, S. Graser, D. J. Scalapino, and P. J. Hirschfeld, Phys. Rev. B 79,
224510 (2009).

[82] A. V. Chubukov, M. G. Vavilov, and A. B. Vorontsov, Phys. Rev. B 80, 140515
(2009).

[83] R. Thomale, C. Platt, J. Hu, C. Honerkamp, and B. A. Bernevig, Phys. Rev. B 80,
180505 (2009).

[84] V. Cvetkovic and Z. Tesanovic, Europhys. Lett. 85, 37002 (2009).

[85] F. Wang, H. Zhai, Y. Ran, A. Vishwanath, and D.-H. Lee, Phys. Rev. Lett. 102,
047005 (2009).

[86] C. Platt, C. Honerkamp, and W. Hanke, N. J. Phys. 11, 055058 (2009).

[87] S. Raghu, X.-L. Qi, C.-X. Liu, D. J. Scalapino, and S.-C. Zhang, Phys. Rev. B 77,
220503 (2008).

[88] J. Lorenzana, G. Seibold, C. Ortix, and M. Grilli, Phys. Rev. Lett. 101, 186402
(2008).

[89] P. M. R. Brydon and C. Timm, Phys. Rev. B 79, 180504 (2009).

[90] M. D. Johannes and I. I. Mazin, Phys. Rev. B 79, 220510 (2009).

[91] I. Eremin and A. V. Chubukov, Phys. Rev. B 81, 024511 (2010).

[92] I. I. Mazin and M. D. Johannes, Nat. Phys. 5, 141 (2009).

[93] R. D. Shannon, Acta Crystallogr. Sec. A 32, 751 (1976).

[94] K. Momman and F. Izumi, VESTA3 for three-dimensional visualization of crystal,

volumetric and morphology data, 2011.

[95] P. M. Shirage, K. Miyazawa, H. Kito, H. Eisaki, and A. Iyo, Appl. Phys. Express
1, 081702 (2008).

[96] N. Ni, S. Nandi, A. Kreyssig, A. I. Goldman, E. D. Mun, S. L. Bud'ko, and P. C.
Can�eld, Phys. Rev. B 78, 014523 (2008).

[97] J. Zhao, W. Ratcli�, J. W. Lynn, G. F. Chen, J. L. Luo, N. L. Wang, J. Hu, and
P. Dai, Phys. Rev. B 78, 140504 (2008).

[98] R. Cortes-Gil and S. J. Clarke, Chem. Mater. 23, 1009 (2011).

119



Bibliography

[99] R. Cortes-Gil, D. R. Parker, M. J. Pitcher, J. Hadermann, and S. J. Clarke, Chem.
Mater. 22, 4304 (2010).

[100] S. Johnston, M. Abdel-Ha�ez, L. Harnagea, V. Grinenko, D. Bombor, Y. Krupskaya,
C. Hess, S. Wurmehl, A. U. B. Wolter, B. Büchner, H. Rosner, and S.-L. Drechsler,
Phys. Rev. B 89, 134507 (2014).

[101] A. Suter and B. Wojek, Phys. Procedia 30, 69 (2012).

[102] S. Aswartham, M. Abdel-Ha�ez, D. Bombor, M. Kumar, A. U. B. Wolter, C. Hess,
D. V. Evtushinsky, V. B. Zabolotnyy, A. A. Kordyuk, T. K. Kim, S. V. Borisenko,
G. Behr, B. Büchner, and S. Wurmehl, Phys. Rev. B 85, 224520 (2012).

[103] R. Klingeler, N. Leps, I. Hellmann, A. Popa, U. Stockert, C. Hess, V. Kataev, H.-J.
Grafe, F. Hammerath, G. Lang, S. Wurmehl, G. Behr, L. Harnagea, S. Singh, and
B. Büchner, Phys. Rev. B 81, 024506 (2010).

[104] G. M. Zhang, Y. H. Su, Z. Y. Lu, Z. Y. Weng, D. H. Lee, and T. Xiang, Europhys.
Lett. 86, 37006 (2009).

[105] Y. G. Pashkevich, private communication.

[106] A. A. Aczel, E. Baggio-Saitovitch, S. L. Budko, P. C. Can�eld, J. P. Carlo, G. F.
Chen, P. Dai, T. Goko, W. Z. Hu, G. M. Luke, J. L. Luo, N. Ni, D. R. Sanchez-
Candela, F. F. Tafti, N. L. Wang, T. J. Williams, W. Yu, and Y. J. Uemura, Phys.
Rev. B 78, 214503 (2008).

[107] R. Scheuermann, E. Roduner, G. Engelhardt, H.-H. Klauss, and D. Herlach, Phys.
Rev. B 66, 144429 (2002).

[108] M. Gooch, B. Lv, K. Sasmal, J. Tapp, Z. Tang, A. Guloy, B. Lorenz, and C. Chu,
Physica C 470, Supplement 1, Proceedings of the 9th International Conference
on Materials and Mechanisms of Superconductivity, S276 (2010).

[109] M. Tegel, M. Rotter, V. Weiÿ, F. M. Schappacher, R. Pöttgen, and D. Johrendt, J.
Phys. Condens. Matter 20, 452201 (2008).

[110] M. Rotter, M. Pangerl, M. Tegel, and D. Johrendt, Angew. Chem. Int. Ed. 47, 7949
(2008).

[111] E. Wiesenmayer, H. Luetkens, G. Pascua, R. Khasanov, A. Amato, H. Potts, B.
Banusch, H.-H. Klauss, and D. Johrendt, Phys. Rev. Lett. 107, 237001 (2011).

[112] S. Avci, J. M. Allred, O. Chmaissem, D. Y. Chung, S. Rosenkranz, J. A. Schlueter, H.
Claus, A. Daoud-Aladine, D. D. Khalyavin, P. Manuel, A. Llobet, M. R. Suchomel,
M. G. Kanatzidis, and R. Osborn, Phys. Rev. B 88, 094510 (2013).

[113] G. Sun, D. Sun, M. Konuma, P. Popovich, A. Boris, J. Peng, K.-Y. Choi, P. Lem-
mens, and C. Lin, J. Supercond. Nov. Magn. 24, 1773 (2011).

[114] Y. Qi, X. Zhang, Z. Gao, Z. Zhang, L. Wang, D. Wang, and Y. Ma, Physica C 469,
717 (2009).

[115] Y. Li and J. Ni, Solid State Commun. 151, 446 (2011).

120



Bibliography

[116] T. Goko, A. A. Aczel, E. Baggio-Saitovitch, S. L. Bud'ko, P. C. Can�eld, J. P. Carlo,
G. F. Chen, P. Dai, A. C. Hamann, W. Z. Hu, H. Kageyama, G. M. Luke, J. L. Luo,
B. Nachumi, N. Ni, D. Reznik, D. R. Sanchez-Candela, A. T. Savici, K. J. Sikes,
N. L. Wang, C. R. Wiebe, T. J. Williams, T. Yamamoto, W. Yu, and Y. J. Uemura,
Phys. Rev. B 80, 024508 (2009).

[117] M. Alzamora, J. Munevar, E. Baggio-Saitovitch, S. L. Bud'ko, N. Ni, P. C. Can�eld,
and D. R. Sánchez, J. Phys. Condens. Matter 23, 145701 (2011).

[118] D. Kasinathan, A. Ormeci, K. Koch, U. Burkhardt, W. Schnelle, A. Leithe-Jasper,
and H. Rosner, N. J. Phys. 11, 025023 (2009).

[119] H. Suhl, J. L. Com. Metals 62, 225 (1978).

[120] T. K. Kopec and J. Klamut, Phys. Status Solidi B 137, 73 (1986).

[121] R. M. Fernandes and J. Schmalian, Phys. Rev. B 82, 014521 (2010).

[122] C. R. Rotundu, W. Tian, K. C. Rule, T. R. Forrest, J. Zhao, J. L. Zarestky, and
R. J. Birgeneau, Phys. Rev. B 85, 144506 (2012).

[123] S. Avci, O. Chmaissem, E. A. Goremychkin, S. Rosenkranz, J.-P. Castellan, D. Y.
Chung, I. S. Todorov, J. A. Schlueter, H. Claus, M. G. Kanatzidis, A. Daoud-
Aladine, D. Khalyavin, and R. Osborn, Phys. Rev. B 83, 172503 (2011).

[124] M. G. Kim, D. K. Pratt, G. E. Rustan, W. Tian, J. L. Zarestky, A. Thaler, S. L.
Bud'ko, P. C. Can�eld, R. J. McQueeney, A. Kreyssig, and A. I. Goldman, Phys.
Rev. B 83, 054514 (2011).

[125] A. Kreyssig, M. G. Kim, S. Nandi, D. K. Pratt, W. Tian, J. L. Zarestky, N. Ni, A.
Thaler, S. L. Bud'ko, P. C. Can�eld, R. J. McQueeney, and A. I. Goldman, Phys.
Rev. B 81, 134512 (2010).

[126] P. Wang, Z. M. Stadnik, J. Zukrowski, A. Thaler, S. L. Bud'ko, and P. C. Can�eld,
Phys. Rev. B 84, 024509 (2011).

[127] H. Luo, R. Zhang, M. Laver, Z. Yamani, M. Wang, X. Lu, M. Wang, Y. Chen, S. Li,
S. Chang, J. W. Lynn, and P. Dai, Phys. Rev. Lett. 108, 247002 (2012).

[128] S. Nandi, M. G. Kim, A. Kreyssig, R. M. Fernandes, D. K. Pratt, A. Thaler, N. Ni,
S. L. Bud'ko, P. C. Can�eld, J. Schmalian, R. J. McQueeney, and A. I. Goldman,
Phys. Rev. Lett. 104, 057006 (2010).

[129] P. Marsik, K. W. Kim, A. Dubroka, M. Rössle, V. K. Malik, L. Schulz, C. N. Wang,
C. Niedermayer, A. J. Drew, M. Willis, T. Wolf, and C. Bernhard, Phys. Rev. Lett.
105, 057001 (2010).

[130] A. D. Christianson, M. D. Lumsden, S. E. Nagler, G. J. MacDougall, M. A. McGuire,
A. S. Sefat, R. Jin, B. C. Sales, and D. Mandrus, Phys. Rev. Lett. 103, 087002
(2009).

[131] D. K. Pratt, M. G. Kim, A. Kreyssig, Y. B. Lee, G. S. Tucker, A. Thaler, W. Tian,
J. L. Zarestky, S. L. Bud'ko, P. C. Can�eld, B. N. Harmon, A. I. Goldman, and
R. J. McQueeney, Phys. Rev. Lett. 106, 257001 (2011).

121



Bibliography

[132] T. Yildirim, Physica C 469, Superconductivity in Iron-Pnictides, 425 (2009).

[133] S. E. Hahn, Y. Lee, N. Ni, P. C. Can�eld, A. I. Goldman, R. J. McQueeney, B. N.
Harmon, A. Alatas, B. M. Leu, E. E. Alp, D. Y. Chung, I. S. Todorov, and M. G.
Kanatzidis, Phys. Rev. B 79, 220511 (2009).

[134] R. Mittal, S. K. Mishra, S. L. Chaplot, S. V. Ovsyannikov, E. Greenberg, D. M.
Trots, L. Dubrovinsky, Y. Su, T. Brueckel, S. Matsuishi, H. Hosono, and G. Gar-
barino, Phys. Rev. B 83, 054503 (2011).

[135] L. Chauvière, Y. Gallais, M. Cazayous, A. Sacuto, M. A. Méasson, D. Colson, and
A. Forget, Phys. Rev. B 80, 094504 (2009).

[136] R. Khasanov, D. Evtushinsky, A. Amato, H.-H. Klauss, H. Luetkens, C. Nieder-
mayer, B. Büchner, G. Sun, C. Lin, J. Park, D. Inosov, and V. Hinkov, Phys. Rev.
Lett. 102, 187005 (2009).

[137] R. Prozorov and V. G. Kogan, Rep. Prog. Phys. 74, 124505 (2011).

[138] R. Housley, N. Erickson, and J. Dash, Nucl. Instrum. and Methods 27, 29 (1964).

[139] G. Lang, Nucl. Instrum. Methods 24, 425 (1963).

[140] Z. Li, X. Ma, H. Pang, and F. Li, J. Phys. Condens. Matter 23, 255701 (2011).

[141] A. Blachowski, K. Ruebenbauer, J. Zukrowski, J. Przewoznik, K. Wojciechowski,
and Z. Stadnik, J. All. Comp. 494, 1 (2010).

[142] R. S. Preston, Phys. Rev. Lett. 19, 75 (1967).

[143] A. Blachowski, K. Ruebenbauer, J. �ukrowski, K. Rogacki, Z. Bukowski, and J.
Karpinski, Phys. Rev. B 83, 134410 (2011).

[144] M. Abdel-Ha�ez, P. J. Pereira, S. A. Kuzmichev, T. E. Kuzmicheva, V. M. Pudalov,
L. Harnagea, A. A. Kordyuk, A. V. Silhanek, V. V. Moshchalkov, B. Shen, H.-H.
Wen, A. N. Vasiliev, and X.-J. Chen, Phys. Rev. B 90, 054524 (2014).

[145] S. A. J. Kimber, A. Kreyssig, Y.-Z. Zhang, H. O. Jeschke, R. Valenti, F. Yokaichiya,
E. Colombier, J. Yan, T. C. Hansen, T. Chatterji, R. J. McQueeney, P. C. Can�eld,
A. I. Goldman, and D. N. Argyriou, Nat. Mater. 8, 471 (2009).

[146] C. Bernhard, A. J. Drew, L. Schulz, V. K. Malik, M. Rössle, C. Niedermayer, T.
Wolf, G. D. Varma, G. Mu, H.-H. Wen, H. Liu, G. Wu, and X. H. Chen, N. J. Phys.
11, 055050 (2009).

[147] J. E. Sonier, W. Huang, C. V. Kaiser, C. Cochrane, V. Pacradouni, S. A. Sabok-
Sayr, M. D. Lumsden, B. C. Sales, M. A. McGuire, A. S. Sefat, and D. Mandrus,
Phys. Rev. Lett. 106, 127002 (2011).

[148] R. Khasanov, A. Maisuradze, H. Maeter, A. Kwadrin, H. Luetkens, A. Amato, W.
Schnelle, H. Rosner, A. Leithe-Jasper, and H.-H. Klauss, Phys. Rev. Lett. 103,
067010 (2009).

[149] T. J. Williams, A. A. Aczel, E. Baggio-Saitovitch, S. L. Bud'ko, P. C. Can�eld,
J. P. Carlo, T. Goko, H. Kageyama, A. Kitada, J. Munevar, N. Ni, S. R. Saha, K.
Kirschenbaum, J. Paglione, D. R. Sanchez-Candela, Y. J. Uemura, and G. M. Luke,
Phys. Rev. B 82, 094512 (2010).

122



Bibliography

[150] K. Yosida, Phys. Rev. 110, 769 (1958).

[151] T. Goltz, V. Zinth, D. Johrendt, H. Rosner, G. Pascua, H. Luetkens, P. Materne,
and H.-H. Klauss, Phys. Rev. B 89, 144511 (2014).

[152] S. L. Thiemann, Z. Radovi¢, and V. G. Kogan, Phys. Rev. B 39, 11406 (1989).

[153] R. Prozorov, M. Tanatar, R. Gordon, C. Martin, H. Kim, V. Kogan, N. Ni, M.
Tillman, S. Bud'ko, and P. Can�eld, Physica C 469, 582 (2009).

[154] N. Haberkorn, B. Maiorov, M. Jaime, I. Usov, M. Miura, G. F. Chen, W. Yu, and
L. Civale, Phys. Rev. B 84, 064533 (2011).

[155] S. Röÿler, D. Cherian, W. Lorenz, M. Doerr, C. Koz, C. Curfs, Y. Prots, U. K.
Röÿler, U. Schwarz, S. Elizabeth, and S. Wirth, Phys. Rev. B 84, 174506 (2011).

[156] C. Koz, S. Röÿler, A. A. Tsirlin, S. Wirth, and U. Schwarz, Phys. Rev. B 88, 094509
(2013).

[157] E. E. Rodriguez, C. Stock, P. Zajdel, K. L. Krycka, C. F. Majkrzak, P. Zavalij, and
M. A. Green, Phys. Rev. B 84, 064403 (2011).

[158] L. Zhang, D. J. Singh, and M. H. Du, Phys. Rev. B 79, 012506 (2009).

[159] W. Bao, Y. Qiu, Q. Huang, M. A. Green, P. Zajdel, M. R. Fitzsimmons, M. Zh-
ernenkov, S. Chang, M. Fang, B. Qian, E. K. Vehstedt, J. Yang, H. M. Pham, L.
Spinu, and Z. Q. Mao, Phys. Rev. Lett. 102, 247001 (2009).

[160] Y. Xia, D. Qian, L. Wray, D. Hsieh, G. F. Chen, J. L. Luo, N. L. Wang, and M. Z.
Hasan, Phys. Rev. Lett. 103, 037002 (2009).

[161] S. Röÿler, D. Cherian, S. Harikrishnan, H. L. Bhat, S. Elizabeth, J. A. Mydosh,
L. H. Tjeng, F. Steglich, and S. Wirth, Phys. Rev. B 82, 144523 (2010).

[162] A. Blachowski, K. Ruebenbauer, P. Zajdel, E. E. Rodriguez, and M. A. Green, J.
Phys. Condens. Matter 24, 386006 (2012).

[163] I. Paul, Phys. Rev. Lett. 107, 047004 (2011).

[164] G. Lamura, T. Shiroka, P. Bonfà, S. Sanna, F. Bernardini, R. De Renzi, R. Viennois,
E. Giannini, A. Piriou, N. Emery, M. R. Cimberle, and M. Putti, J. Phys. Condens.
Matter 25, 156004 (2013).

[165] Z. P. Yin, K. Haule, and G. Kotliar, Nat. Mater. 10, 932 (2011).

[166] H. Gretarsson, A. Lupascu, J. Kim, D. Casa, T. Gog, W. Wu, S. R. Julian, Z. J. Xu,
J. S. Wen, G. D. Gu, R. H. Yuan, Z. G. Chen, N.-L. Wang, S. Khim, K. H. Kim,
M. Ishikado, I. Jarrige, S. Shamoto, J.-H. Chu, I. R. Fisher, and Y.-J. Kim, Phys.
Rev. B 84, 100509 (2011).

[167] Y. Liu, R. K. Kremer, and C. T. Lin, Sup. Sci. Technol. 24, 035012 (2011).

[168] R. Khasanov, M. Bendele, A. Amato, P. Babkevich, A. T. Boothroyd, A. Cervellino,
K. Conder, S. N. Gvasaliya, H. Keller, H.-H. Klauss, H. Luetkens, V. Pomjakushin,
E. Pomjakushina, and B. Roessli, Phys. Rev. B 80, 140511 (2009).

123



Danksagung

Ich möchte allen danken, die mich während der Promotion begleitet und diese damit über-
haupt auch erst möglich gemacht haben.
Da wäre an aller erster Stelle der Doktorvater Prof. Hans-Henning Klauÿ zu nennen,

in dessen Arbeitsgruppe diese Arbeit durchgeführt wurde. Die Arbeit in und mit der
Arbeitsgruppe war im Allgemeinen ausgesprochen angenehm, was sich de�ntiv positiv
ausgewirkt hat, da ich mich immer gefreut habe, ans Institut zu kommen. Da wären zu
nennen: Hemke Maeter, Johannes Spehling, Til Goltz, Sirko Kamusella, Nicolas Yeche,
Mathias Dörr und Rajib Sarkar. Desweiteren danke ich Elke Wachsmuth für die Hilfe bei
all den nichtwissenschaftlichen Dingen, mit denen ich mich so rumplagen musste, sowie
den angenehmen Gesprächen. Das gleiche gilt für Marion Malkoc für die Hilfe beim GRK
1621. Und Hubertus Luetkens für die Hilfestellungen bei den µSR-Messreisen. Es hat
immer ausgesprochen viel Spaÿ gemacht, ihn am PSI zu besuchen.
Desweiteren danke ich Prof. Wosnitza für die vollkommen unkomplizierte Übernahme

der Tätigkeit als Zweitgutachter.
Und ich danke meiner Familie und meinen Freunden für die Unterstützung während

der Promotion. Auch wenn die Fragen "Wann bist du denn fertig?" und "Was machst
du nachher?," welche in regelmäÿigen Zweitagesabständen aufkamen, ab und zu auch mal
etwas nervig waren. Aber so hatte ich direkt einen zusätzlichen Grund, schneller fertig zu
werden.
Last but not least möchte ich der Bierstube danken, auch wenn sie das Ende meiner Pro-

motion nicht mehr erleben kann. Es gab einfach keinen besseren Ort, um nach Feierabend
etwas abzuspannen oder um physikalische Probleme in entspannter Athmosphäre bei ein,
zwei oder auch acht Bier zu diskutieren. Dazu gehören auch die üblichen Verdächtigen der
Montagsrunde.

124



Versicherung

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und
ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die aus fremden
Quellen direkt oder indirekt bernommenen Gedanken sind als solche kenntlich gemacht.
Die Arbeit wurde bisher weder im Inland noch im Ausland in gleicher oder hnlicher Form
einer anderen Prfungsbehrde vorgelegt. Die vorliegende Dissertation wurde am Institut
für Festköperphysik der Technischen Universität Dresden unter der wissenschaftlichen Be-
treuung von Herrn Professor Dr. Hans-Henning Klauÿ angefertigt. Ich erkenne hiermit die
Promotionsordnung der Fakultät Mathematik und Naturwissenschaften der Technischen
Universität Dresden vom 23.2.2011 an.

Dresden, den 27. April 2015

125


