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Abstract

The capability to probe the dispersion of elementary spin, charge, or-
bital, and lattice excitations has positioned resonant inelastic x-ray scat-
tering (RIXS) at the forefront of photon science. In this work, we will in-
vestigate how RIXS can contribute to a deeper understanding of the orbital
properties and of the pairing mechanism in unconventional high-temperature
superconductors. In particular, we will show how direct RIXS spectra of
magnetic excitations can reveal long-range orbital correlations in transition
metal compounds, by discriminating different kind of orbital order in mag-
netic and antiferromagnetic systems. Moreover, we will show how RIXS
spectra of quasiparticle excitations in superconductors can measure the su-
perconducting gap magnitude, and reveal the presence of nodal points and
phase differences of the superconducting order parameter on the Fermi sur-
face. This can reveal the properties of the underlying pairing mechanism in
unconventional superconductors, in particular cuprates and iron pnictides,
discriminating between different superconducting order parameter symme-
tries, such as s, d (singlet pairing) and p wave (triplet pairing).
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1
Introduction

Superconductivity, a state of matter characterized by zero electrical re-
sistance and by the expulsion of the magnetic field below a certain critical
temperature Tc, was discovered by Onnes [1] in 1911. After many decades, a
satisfactory theoretical understanding of the phenomenon was established in
the 50s, with the work of Ginzburg and Landau [2], and the one of Bardeen,
Cooper, and Schrieffer [3, 4]. In particular in the latter work, the authors
presented the first microscopic theory of superconductivity, known as BCS,
which was able to fully explain the phenomenon in conventional supercon-
ductors. The BCS theory describes the superconducting state as a conden-
sation of Cooper pairs, that is, bound states of two electrons, driven by a
weak attractive interaction. In particular, the electron condensate is de-
scribed via a mean field order parameter ∆, which is proportional to the
density of the Cooper pairs. In conventional superconductors (e.g., mer-
cury, niobium, lead), the attractive interaction between electrons is due to
the electron-phonon coupling, and the critical temperatures are in general
low (< 10 K). However, Bednorz and Müller [5] in 1986 found that a cer-
tain cuprate compound was superconducting below an unexpectedly high
critical temperature of 30 K. After this breakthrough, many other cuprate
compounds were discovered to be superconducting, with critical tempera-
tures as high as 138 K, well above the boiling point of liquid nitrogen. The
exceptional high Tc of these superconductors cannot be explained in terms of
the electron-phonon coupling. Cuprate superconductors were the first class
of unconventional and high Tc superconductors, and were considered for
many decades as exceptional. Nevertheless, a new class of unconventional
superconductors was recognized recently, with the discovery of supercon-
ductivity in an iron based pnictide at the critical temperature of 26 K by
Kamihara [6]. The pnictide superconductors are characterized by a moder-
ately high critical temperature (up to 56 K), which is believed to require
a mechanism beyond the electron-phonon coupling. As the microscopical

1



1. Introduction

mechanism of the electron pairing in unconventional superconductors is yet
to be fully understood, superconductivity remains at the frontier of con-
densed matter physics, even after hundred years since its discovery.

Despite a somewhat similar crystal structure, with superconducting pla-
nes stacked and interleaved by isolating planes, iron pnictide and cuprate
superconductors are very different systems. In fact, in the undoped non-
superconducting phase, cuprates are charge-transfer insulators with antifer-
romagnetic order, with strong Coulomb interaction and localized electron
states. In the normal state, pnictides are instead antiferromagnetic metals.
Therefore, whereas cuprates are a typical example of strongly correlated
systems, in pnictides correlations appear to play a less important role. Nev-
ertheless, these two classes of unconventional superconductors share some
similarities, in particular:

• The presence of the spin and of the orbital degrees of freedom of the 3d
electron states in the valence band. Since the seminal work of Kugel
and Khomskii [7] in the 1980s, it has been known that orbital degrees
of freedom can play a crucial role in strongly correlated transition
metal compounds. In fact, even if the orbital degree of freedom do not
seem to play a role in superconducting cuprates, many other cuprate
compounds show a non trivial interplay between orbital and magnetic
order [8]. On the other hand, pnictide superconductors are character-
ized by a variation of the orbital content along the Fermi surface, which
have been proposed to be of direct relevance to superconductivity in
these compounds [9–11].

• The presence of an unconventional superconducting order parameter
characterized by a strong momentum dependence along the Fermi sur-
face. Since the electron-phonon coupling is widely believed to be inad-
equate to explain the high critical temperature of unconventional su-
perconductors, it is natural to expect that electronic correlations play
a role in the pairing [12]. In this case, the superconducting order pa-
rameter, which describes the momentum-dependent coupling strength
between bounded electrons, shows a variation along the Fermi sur-
face [13–15] which reflects the presence of strong correlations being
present at rather short distances. Moreover, while the order param-
eter of conventional superconductors has the same phase throughout
the momentum space (s wave symmetry), that of unconventional su-
perconductors exhibits a sign reversal between momenta on the Fermi
surface connected by the characteristic wave vector QAF of spin fluc-
tuations [16]. As a consequence of that, in cuprates the superconduct-
ing order parameter vanishes at nodal points on the Fermi surface (d
wave). A sign reversal can also occur without the presence of nodal
points, as is the case of iron pnictides [17, 18] (s± wave), where the
Fermi surface consists of disconnected hole and electron pockets.

2



1.1. The orbital degree of freedom

In the light of this, the main focus of this thesis will be on how to probe
the orbital degree of freedom and the superconducting order parameter in
cuprates and iron pnictides by resonant inelastic x-ray scattering (RIXS).
RIXS is a photon-in photon-out core-hole spectroscopy which allow one to
measure the energy and the dispersion of low energy elementary excitations
in condensed matter systems. More precisely, the RIXS cross section, mea-
sured as a function of the energy loss and of the transferred momentum of
the scattered radiation, is a direct probe of the excitation spectra and, as
a consequence, of the symmetry properties of the electronic system under
study. The aim of this work is to investigate how RIXS can contribute to
a deeper understanding of the orbital properties and of the pairing mech-
anism in unconventional high Tc superconductors. In order to do this, we
will formulate some theoretical predictions on the general properties and on
the symmetry of RIXS spectra of magnetic excitations in orbital systems,
and of quasiparticle excitations in the superconducting phase. Although the
main focus will be on cuprate and iron pnictide superconductors, nonetheless
the theoretical description of the symmetry properties of RIXS spectra will
be grounded on general models which are relevant to other unconventional
superconductors and strongly correlated systems.

To introduce these concepts in more detail, in the next Sections of this
Introduction we will give a short overview on the orbital degrees of freedom
(Sections 1.1 and 1.2) and on the relationship between the pairing mecha-
nism and the superconducting order parameter (Section 1.3) in unconven-
tional superconductors. Finally, we will highlight the importance of RIXS in
the study of elementary excitations in solid state systems (Section 1.4), and
we will set the framework of this work in the last Section of this Introduction
(Section 1.5).

1.1 The orbital degree of freedom

The orbital degree of freedom is of paramount importance to understand
the properties of a number of transition metal compounds and superconduc-
tors. In a crystal, single ion states of localized electrons are determined by
the so-called crystal field, which is induced by the electrostatic interaction
with the surrounding ions. In particular, transition metal ions tend to form
coordination complexes, which consist of a periodic arrangement of metal
ions surrounded by a set of binding anions, generally known as ligands.
The transition metal 3d electrons strongly interact with the electron states
of the ligand ions, and the energy levels of the valence electrons strongly
depend on the number of ligands, known as coordination number, and on
the geometry of the coordination complex. Depending on the characteristic
symmetry of the coordination complex and on the crystal field strength, the
degeneracy of the electron levels within the same shell (same principal and
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1. Introduction

dx2−y2 , d3z2−r2

dzx, dyz, dxy dx2−y2 , d3z2−r2

dzx, dyz, dxy

dx2−y2

d3z2−r2

dxy

dzx, dyz

λdx2−y2 + µd3z2−r2

λdx2−y2 − µd3z2−r2

dxy

dzx

dyz

(b) Spherical symmetry (c) Oh (d) D4h (e) D2h(a) Td

Figure 1.1: Energy levels of 3d electrons of transition metal ions in different
crystal environments. From left to right: (a) crystal structure of a tetrahe-
dral transition metal complex (tetrahedral symmetry Td), i.e., the iron based
superconductor LiFeAs, with iron ions (blue) surrounded by six ligand ar-
senic ions (yellow) at the vertex of a tetrahedron, (b) isolated transition
metal ion (full spherical symmetry), (c) cubic perovskite structure of a oc-
tahedral transition metal complex (octahedral symmetry Oh), i.e., a cuprate
compound with copper ions (blue) surrounded by eight oxygen ions (red) at
the vertex of a perfect octahedron, (d) deformed perovskite with elongated
octahedra (square bipyramidal symmetry D4h), and (e) deformed perovskite
with tilted and deformed octahedra (bipyramidal symmetry D2h).

azimuthal quantum numbers) is partially or totally removed. The differ-
ent energy levels which correspond to different orbital angular momentum
states are known as orbitals. Different orbital states have different symmetry
properties and their energy are determined by the crystal field properties.
Therefore, localized electrons in a crystal can be described in terms of the
spin, of the principal and azimuthal quantum number, and of the crystal
field energy level, i.e., the orbital, they occupy.

In cuprates, copper ions form a coordination complex with eight sur-
rounding ligand oxygen ions at the vertices of an octahedron, generally em-
bedded in a perovskite structure. In cubic perovskites, the ligand oxygens
form a perfect octahedron, and hence the coordination complex has a full
octahedral symmetry (Oh), while in tetragonal and orthorhombic perovskite
the octahedron is deformed and the symmetry is lowered to square bipyra-
midal (D4h) and bipyramidal (D2h) respectively. The different perovskite
structures are shown in Fig. 1.1, along with the symmetry group of the co-
ordination complex and with the crystal field levels of valence 3d electrons.
As one can see, the lower the symmetry, the lower is the degeneracy of the
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1.2. Orbital order in correlated systems

energy levels. In fact, a full octahedral symmetry splits the energy levels
of d electrons into two degenerate levels, the t2g orbitals, which include any
combination of the orbitals dxy, dyz, and dzx, and the eg orbitals, which
include the orbitals dx2−y2 and d3z2−r2 . In this case, t2g orbitals correspond
to the lowest energy electron states. This follows from some simple physical
considerations, i.e., by considering the shape of t2g and eg orbitals and of the
charge distribution of the surrounding ions. In fact, the lobes of eg orbitals
are closer to the surrounding ions than the ones of the t2g orbitals, and as a
consequence the electrostatic repulsion and the energy of such orbitals are
higher in the eg case. If the symmetry is lowered, i.e., if the octahedron
formed by the ligand oxygen ions is deformed into a square bypiramid or to
a rectangular bypiramid, the eg and t2g orbital states splits in energy and
the degeneracy is further removed.

In iron pnictides instead, iron ions form a coordination complex with
six surrounding pnictogen ions (e.g, arsenic) at the vertex of a tetrahedron.
In the iron based superconductor LiFeAs, for example, the iron ion is sur-
rounded by six arsenic ions at the vertex of a perfect tetrahedron, and the
coordination complex have a full tetrahedral symmetry (Td). In Fig. 1.1 is
shown the crystal structure LiFeAs, along with the crystal field levels of the
valence 3d electrons. In this case, the single ion electron energies are splitted
into two degenerate levels, the lowest energy e orbitals (dx2−y2 and d3z2−r2)
and the t2 orbitals (dxy, dyz, and dzx).

1.2 Orbital order in correlated systems

In many correlated systems, the crystal field do not remove completely
the degeneracy of the lowest energy states, or the energy difference between
different orbital states is very small. As a consequence, a superexchange
mechanism between adjacent sites can emerge and induce an orbital ordered
ground state, which is a periodic repetition of orbital states in the crystal
lattice, and is the analogue of spin ordered states, such as ferromagnets
or antiferromagnets. These systems can show in principle a new form of
elementary excitation, called orbitons, which corresponds to the collective
modes of the local orbital degrees of freedom. The superexchange mechanism
between nearest neighbor transition metal ions is usually described in terms
of the Kugel-Khomskii spin-orbital model [7], i.e., by an effective spin-orbital
Hamiltonian, which represent the second order perturbation expansion of
the related multi-band Hubbard model with respect to the Hubbard on-
site Coulomb repulsion. An idealized high-symmetry version of the Kugel-
Khomskii Hamiltonian for transition metal 3d electrons reads [19]

Ĥ =
∑
〈i,j〉

J1 Ŝi · Ŝj + J2 T̂i · T̂j + 4J3 Ŝi · Ŝj T̂i · T̂j , (1.1)

5



1. Introduction

where Ŝi and T̂i are the spin and pseudospin operators acting on the nearest
neighbor sites 〈i, j〉, with the latter defined as

T̂+
i =

∑
σ

a†iσbiσ, T̂−i =
∑
σ

b†iσaiσ,

T̂z
i =

1

2

∑
σ

(
a†iσaiσ − b

†
iσbiσ

)
, (1.2)

where the operators a†iσ and b†iσ (aiσ and biσ) create (annihilate) an electron
state respectively in the orbital a and b at the lattice site i with spin σ.

The effective Hamiltonian in Eq. (1.1) can be viewed as a generalization
of the Heisenberg Hamiltonian where the exchange parameters are no longer
constants but are expressed in terms of pseudospin operators which repre-
sent the orbital character of valence electrons. This gives rise to a rather
complex, and interesting, interplay between orbital and spin degrees of free-
dom. In fact, the spin-orbital model in Eq. (1.1) allows both spin and orbital
ordering and, even more interestingly, can exhibit, besides the ordinary spin
waves, also new types of elementary excitations. These include orbital waves
(orbitons) and, in principle, spin-orbital excitations in which the spin and
orbital degrees of freedom are coupled. In this model, the orbital and spin
dynamics are a direct consequence of the superexchange mechanism and of
the orbital degeneracy. However, in the presence of large Jahn-Teller inter-
actions, the orbital interactions prevail, and therefore one can assume that
the system realizes an orbital ordered state which is largely independent
from spin fluctuations. In this case, the orbital degree of freedom can be
integrated out, e.g., using the mean field approximation T̂i · T̂j ≈ 〈T̂i · T̂j〉.
Hence, the ground state and the low energy excitations of the system can
be described by a mean field spin-only Hamiltonian

Ĥ =
∑
〈i,j〉

Jij Ŝi · Ŝj +Kij , (1.3)

where the effective spin exchange interaction constants are Jij = J1+4J3〈T̂i·
T̂j〉 and Kij = J2〈T̂i ·T̂j〉. Hence, the orbital interactions will determine not
only the nature of the orbital order but also the nature of the spin ground
state and excitations. Some examples of orbital ordered states include the
ferroorbital order (same orbital on each site) and the alternating orbital
order (alternating orbitals every other site).

A paradigmatic example of the coexistence of magnetic and orbital or-
der is the cuprate compound KCuF3 [20–22]. Below the Néel temperature
TN ≈ 38 K, the system exhibits a long-range magnetic order, the so called
A-AF state, with ferromagnetic planes xy and antiferromagnetic coupling
along the z direction [23, 24]. Moreover, the two different polytype struc-
tures realized below the critical temperature TS ≈ 800 K show two different

6



1.2. Orbital order in correlated systems

(a) C-AO/A-AF (b) G-AO/A-AF

Figure 1.2: The magnetic A-AF state with orbital C-AO and G-AO orders,
as realized respectively in the (d)-type and (a)-type KCuF3 polytypes below
the Néel temperature TN ≈ 38 K.

kind of long-range orbital order, respectively the C-AO order in the (d)-
type polytype, i.e., alternating orbitals within the xy planes with the same
orbitals stacked along the z direction, and the G-AO order in the (a)-type
polytype, i.e., isotropically alternating orbitals in the three dimensions [23].
The magnetic and orbital orders realized in the cuprate compound KCuF3

below the critical temperature TN ≈ 38 K are shown in Fig. 1.2.

More generally, the comprehension of orbital physics is of fundamental
importance, either in the strongly correlated cuprates, which show in many
cases a tendency towards orbital ordering, or in iron pnictides, where the
type of orbital ordering or its lack is heavily debated. Besides, orbital or-
dering and orbital correlations have been proposed to be of direct relevance
to spectacular phenomena such as colossal magnetoresistance in manganites
and, in general, the orbital degree of freedom is believed to play a key role in
other strongly correlated systems like, for instance, titanium and vanadium
oxides, where different theoretical scenarios have been proposed — a rather
exotic orbital liquid phase [25, 26] or a classical alternating orbital-ordered
state [27, 28]. Yet, the precise nature of correlated orbital states and their
existence is intensely debated, which to large extent is due to the fact that
orbital correlations turn out to be very difficult to access experimentally. For
instance, neutron scattering is almost not sensitive to the orbital symme-
tries of the ground state, in particular in orbital systems where the angular
momentum is quenched by the crystal field [29]. Traditional x-ray diffrac-
tion instead is dominated by the scattering from the atomic core electrons,
whereas resonant x-ray diffraction [30, 31], in particular in the soft x-ray
regime, suffers from a very limited scattering phase space, making Bragg
scattering only possible for special orbital superstructures that have large
spatial periodicities [32]. Therefore, a direct experimental access to orbital
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1. Introduction

order or orbital excitations would be of great help in unravelling the puzzling
properties of many orbital systems.

1.3 Unconventional superconductivity

In conventional superconductors, the superconducting pairing is medi-
ated by the electron-phonon coupling, which is largely independent from the
electron momenta. As a consequence, the superconducting order parameter
is uniform in momentum space and the energy gap is isotropic. This case is
referred to as s wave superconductivity. In unconventional superconductors,
the pairing mechanism goes beyond the electron-phonon coupling, and the
electron-electron attractive potential is in general dependent on the electron
momenta. For this reason, the superconducting order parameter ∆k is in
general not uniform in momentum space, and the energy gap is not isotropic,
with the possible presence of nodal points on the Fermi surface, i.e., points
where the order parameter is zero. This is the case, for example, in cuprate
superconductors, where the strong electron correlations seem to be respon-
sible of the pairing mechanism. In these systems, the Fermi surface shows a
magnetic instability corresponding to the nesting vector QAF = (π, π), i.e.,
the ordering vector of the antiferromagnetic order in the normal phase. In
the superconducting phase, the nesting vector connects momenta with an
opposite phase of the superconducting order parameter, which has nodes on
the Fermi surface. The characteristic order parameter dependence in the
momentum space, referred to as d wave, is shown in Fig. 1.3(a).

In pnictides, the Fermi surface shows two distinct branches, respectively
with an electron-like and a hole-like dispersion, connected by a nesting vec-
tor which correspond to a magnetic instability towards spin density wave
fluctuations. Also in this case, the superconducting order parameter show
a sign reversal between points of the Fermi surface connected by the anti-
ferromagnetic ordering vector QAF . However, the nesting vector connects
momenta on different branches of the Fermi surface, and there are no nodal
points. This case is referred to as s± wave superconductivity, and the typi-
cal dependence of the order parameter in the momentum space is shown in
Fig. 1.3(b). However, in pnictides the nesting of the Fermi surface seems
to be not a mandatory condition for the realization of the superconduct-
ing state. For instance, in the LiFeAs superconductor, angle-resolved pho-
toemission spectroscopy (ARPES) measurements have shown [33] how the
nesting of the electron and hole pockets is marginal, due to the different
relative sizes of the two branches of the Fermi surface. In this case, the
superconducting pairing mechanism is not clear, and even the momentum
dependence of the order parameter is debated. In fact, while there is a
general agreement about the realization of a spin-singlet s± wave supercon-
ductivity [17] in other iron based superconductors, where nesting dominates

8



1.3. Unconventional superconductivity

the low energy properties, the nature of the superconducting state in LiFeAs
is debated. Different scenarios have been proposed in place of the s± wave
pairing, e.g., an s++ wave superconductivity, driven by the critical d-orbital
fluctuations induced by moderate electron-phonon interactions [34], or even
a p wave spin-triplet pairing driven by ferromagnetic fluctuations [35]. The
experimental momentum dependence of the superconducting gap measured
by ARPES [33, 36] is consistent, in principle, with spin-singlet supercon-
ductivity, both with or without sign reversal (s± or s++ wave), as well as
with spin-triplet pairing. In particular, in Figs. 1.3(b) and 1.3(c) are shown
two different scenarios which seems to be consinstent with the measured
superconducting gap, namely the s± wave, shown in Fig. 1.3(b), with a sign
reversal of the order parameter between the electron and hole pockets, and
the s++ wave, shown in Fig. 1.3(c) which is not uniform along the Fermi
surface but nevertheless preserves the sign of the order parameter between
the two different branches of the Fermi surface. On the other hand, while
the singlet pairing is supported by some neutron scattering experiments [37],
the unusual shape of the Fermi surface and the momentum dependency of
the superconducting gap measured by ARPES [36] is in conflict with the
s± wave symmetry. Moreover, scanning tunnelling microscopy (STM) of
the quasiparticle interference [38] are consistent either with a p wave spin-
triplet state or with a singlet pairing mechanism with a more complex order
parameter (s+ ıd wave). Whereas ARPES has been proven to be powerful
in measuring the momentum dependence of the superconducting gap on the
Fermi surface, it should be noted here that ARPES, since not sensitive to the
order parameter phase, can neither distinguish between these two scenarios,
nor between singlet and triplet pairing, i.e., between even (∆k = ∆−k) and
odd (∆k = −∆−k) symmetry of the order parameter. This lack of experi-
mental and theoretical agreement on the pairing mechanism in the LiFeAs
superconductor shows the importance of probing the order parameter mo-
mentum dependence, and in particular to determine the presence of a sign
reversal of the order parameter phase.

Experimentally, the superconducting order parameter can be character-
ized by probing the quasiparticle spectra of the superconducting phase, i.e.,
the spectra of the elementary excitations of the electron condensate. In
fact, the quasiparticle spectra give a direct access to the order parameter
momentum dependence and, in particular, can reveal the presence of gap-
less excitations which are the fingerprints of the existence of nodes on the
Fermi surface. Moreover, in order to fully characterize the symmetry of the
order parameter and the nature of the pairing mechanism, it is desirable to
be able to probe not only the magnitude, but also the phase of the order
parameter along the Fermi surface. Josephson junctions experiments [39],
composite superconducting loops [40], and STM [41–45] are examples of
phase-sensitive experimental techniques which are able to distinguish be-
tween sign-preserving and sign-reversing excitations on the Fermi surface.
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Figure 1.3: (a) d wave superconducting order parameter in high Tc cuprate
superconductors, (b) s± wave order parameter in pnictides, and (c) s++

wave order parameter, a possible scenario for the LiFeAs superconductor.
ARPES measurements of the superconducting gap in LiFeAs (not shown)
are consistent with both s± and s++ superconductivity [36].

It should be noted however that the correct interpretation of the quasipar-
ticle spectra relies on a detailed knowledge of the low energy properties of
the system, such as the band structure, correlations, or the type of the scat-
tering impurities, the lack of which can prevent a direct characterization of
the superconducting state.

1.4 Resonant inelastic x-ray scattering

In this thesis we will explore from a theoretical standpoint an alternative
method to probe orbital correlations and quasiparticle excitations in uncon-
ventional superconductors, i.e., by means of RIXS spectroscopy. In fact, the
capability to probe the dispersion of elementary spin [46–51], charge [52,53],
orbital [54, 55], and lattice [56] excitations has recently positioned RIXS at
the forefront of photon science. Compared to the available spectroscopic
methods, such as scanning-tunnelling spectroscopy, photoemission spectro-
scopy, optical spectroscopy, or inelastic neutron scattering, RIXS uniquely
combines the advantages of bulk sensitivity, momentum and energy resolu-
tion, while at the same time requiring only small sample volumes. In fact,
RIXS seems to be a good candidate to detect orbital correlations, since the
RIXS scattering process directly couples the orbital degree of freedom of d
electrons with the photon polarization. Indeed, dd excitations, i.e., transi-
tions between different d orbitals, have been observed by RIXS in many sys-
tems, and in particular in transition metal oxides [57,58]. However, although
the RIXS scattering process is in principle sensitive to orbital correlations, a
direct and clear observation of orbital order or of orbital modes (orbitons) is
still missing. On the other hand, direct RIXS has been successfully employed
to probe magnetic excitations (magnons) in cuprates [46,48].

At a fundamental level, the sensitivity of direct RIXS to magnetic ex-
citations is due to the strong spin-orbit coupling deep in the core hole 2p
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shell. This suggests the possibility to probe orbital correlations indirectly.
More precisely, one can investigate whether RIXS spectral intensities of
magnetic excitations are sensitive to the underlying orbital order or, equiv-
alently, whether orbital correlations leave a discernible fingerprint in the
RIXS spectra of magnetic excitations. Moreover, the energy resolution of
RIXS has reached ≈ 30 meV in the hard x-ray regime [50], and is projected
to reach 11 meV at the Cu L2,3 edges at the NSLS-II (Brookhaven National
Laboratory) presently under construction [59]. This brings the RIXS energy
resolution well into the regime of the energy gap of cuprate superconduc-
tors, which stretches out to 119 meV for mercury based high Tc systems [60].
Consequently the fundamental question arises of how the superconducting
pairing leaves its fingerprints in RIXS spectra — in particular whether and
how RIXS is sensitive to the phase and the magnitude of the superconduct-
ing order parameter and to quasiparticle excitations.

1.5 Overview

In Chapter 2 we will give s short overview of the theory of RIXS and, in
particular, on direct RIXS at transition metal edges in correlated 3d elec-
tron systems. In particular in Section 2.2.4 we will show how direct RIXS
is able to probe the charge and spin dynamical structure factor (DSF) in 3d
electron systems. Consequently, in Chapter 3 we will apply the theoretical
methods developed in the previous Chapter to study the direct RIXS spectra
of magnetic excitations in strongly correlated systems with orbital degree
of freedom, and in particular in two and three dimensional cuprates. The
main result there will be the sensitivity of the magnetic RIXS spectra to the
orbital ground state underneath, which allow one to discriminate between
different orbital ground states, e.g., alternating orbital order against ferroor-
bital order or orbital liquid state. The method proposed is of direct relevance
to two dimensional systems, e.g., K2CuF4 or Cs2AgF4 with ferromagnetic
layers and predicted, but not verified, alternating orbital order [61–63], as
well as to three dimensional transition metal oxides with orbital degree of
freedom, such as LaMnO3, KCuF3, LaTiO3 or LaVO3 [22]. In Chapter 4
we will concentrate instead to the RIXS spectra of quasiparticle excitations
in superconductors, which allow one to directly probe the order parameter
and therefore to disclose the properties of the superconducting pairing. In
particular, the main finding will be the possibility to distinguish between
different order parameter symmetries (e.g., s wave or d wave) and in partic-
ular the sensitivity of RIXS not only to the magnitude but also to the phase
of the superconducting order parameter. In Chapter 5 we will extend the
theory of the previous Chapter to look at the symmetry properties of the
superconducting order parameter in pnictides. In this case, RIXS spectra
will be not only sensitive to the order parameter symmetry, but also to the
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orbital content of the electron states on the Fermi surface. Through the
evaluation of RIXS spectra we will show the possibility to shed a light on
the pairing mechanism of pnictides, and in particular to distinguish between
singlet and triplet pairing superconductivity. Compared with other experi-
mental techniques, such as STM, RIXS has the advantage of simplicity, since
the interpretations of RIXS spectra does not rely on the detail of the low
energy properties of the material. Finally, in Chapter 6, we will summarize
and conclude this work.
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2
Theory of direct resonant inelastic x-ray scattering

Part of this chapter has been published as “Unraveling Orbital Correlations with Mag-

netic Resonant Inelastic X-Ray Scattering”, Pasquale Marra, Krzysztof Wohlfeld, and

Jeroen van den Brink, Phys. Rev. Lett. 109, 117401 (2012), and as “Fingerprints of

Orbital Physics in Magnetic Resonant Inelastic X-ray Scattering”, Pasquale Marra,

AIP Conf. Proc. 1485, 297 (2012).

Resonant inelastic x-ray scattering (RIXS) [64–68] is a photon-in photon-
out x-ray spectroscopy, in which the incident photon resonantly excites a
core hole state, that consequently decays by the emission of a scattered
photon. The scattering as a whole is inelastic, which means that the energy
of the scattered photon is generally lower than the energy of the incident
one. The resulting energy loss is transferred to the system, which is left into
an excited state. Besides, since the incident and scattered x-ray momenta
do not in general coincide, this excited state has a definite momentum,
which is comparable with the crystal momentum of conduction electrons.
Therefore, RIXS can probe the energy, the dispersion and, more generally,
the symmetry properties of low energy elementary excitations in condensed
matter systems.

The study of the ground state and of the excitation spectra of a physical
system is the very aim of RIXS, as well as of any spectroscopy. This Chapter
will draw a quick overview of RIXS spectroscopy, in particular on its capabil-
ity to probe elementary excitations and to investigate the physical properties
of condensed matter systems, and on the theoretical framework which de-
scribes the RIXS scattering process in the light of which RIXS spectra can
be analyzed and understood. In particular, Section 2.1 will be concerned
with the general description of the RIXS scattering process, the general the-
oretical formulation of the RIXS cross section via the dipole approximation,
and the difference between direct and indirect RIXS. e Afterwards, Sec-
tion 2.2 will give some details on the fast collision approximation in the case
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2. Theory of direct resonant inelastic x-ray scattering

k, ~ωk, e k′, ~ωk′ , e′

q, ~ω

Figure 2.1: A simple cartoon of a typical RIXS experiment. The incident x-
ray radiation with energy ~ωk, momentum k, and polarization e is shone on
the sample, and the scattered radiation is collected under a fixed direction,
and resolved in energy. The RIXS cross section is therefore measured as
a function of the scattered radiation energy ~ωk′ , momentum k′, and, in
principle, polarization e′. In the process, a finite energy ~ω = ~ωk − ~ωk′

and momentum q = k− k′ may be transferred into the system.

of strong spin-orbit coupling in the core shell, which allow one to disclose the
relation between direct RIXS spectra and DSF of magnetic and charge ex-
citations (Section 2.2.4). Based on these considerations, in Section 2.2.5 we
will present a diagrammatic way to evaluate direct RIXS scattering ampli-
tudes in 3d systems, which will be employed, as an application, to calculate
RIXS intensities of dd excitations in cuprates.

2.1 Resonant inelastic x-ray scattering (RIXS)

2.1.1 The RIXS process

In a typical photon scattering experiment, an incident photon beam is
shone on the sample and the scattered radiation is collected. The scattering
process is described in Fig. 2.1. In RIXS spectroscopy, the incident radiation
is an x-ray photon beam either in the soft or in the hard x-ray range. The
incident x-ray energy is chosen to resonate with one of the absorption edges
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Figure 2.2: Absorption edges as a function of the atomic number [69, 70].
The K, L, and M edges correspond to the creation of a core hole in a core
shell with principal quantum number n = 1, 2, 3. The energy spans several
orders of magnitudes (the energy scale is logarithmic), from the extreme
ultraviolet (. 100 eV) to soft x-ray (0.1 − 5 keV) up to the hard x-ray
region (& 5 keV).

of the system, i.e., the energy required to scatter off a core electron to an
excited state above the Fermi level. This energy is largely determined by the
atomic shell where the core hole state is created, and therefore depends, for
a given atom, on the principal and azimuthal quantum number of the core
electron state which is scattered by the incident x-ray photon. The x-ray
absorption edges are shown in Fig. 2.2 as a function of the atomic number.
Therefore, as well as other core hole spectroscopies, RIXS can probe differ-
ent absorption edges in the same physical system. Specifically, the incident
photon energy can be tuned in principle to any of the absorption edges of
any of the different atoms of the system. By means of that, RIXS can probe
different degrees of freedom and therefore, in some cases, different proper-
ties or even different kind of elementary excitations of the system. However,
unless other core hole spectroscopies, the scattered radiation is resolved in
energy, and therefore one can disentangle the inelastic scattering processes
from the elastic response of the system. The different scattering channels
may or may not be elastic, i.e., the final state may or may not coincide to
the initial state of the system. In the case of inelastic scattering, energy
conservation implies that a finite energy ~ω is transferred into the system,
i.e., the system is left into an excited state. For this reason, RIXS allows
one to investigate the excitation spectra of the system, and in particular to
probe several kind of low energy elementary excitations. Moreover, RIXS
is momentum resolved, i.e., the cross section is measured as a function of
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both the incident and the scattered radiation momenta. In fact the incident
and scattered radiation momenta do not in general coincide, and therefore
a finite momentum q = k − k′ is transferred into the system, as shown in
Fig. 2.1. For typical x-ray energies employed in RIXS, the photon momen-
tum is comparable with the crystal momentum of solid state electrons, and
therefore the transferred momentum q can be mapped into the Brillouin
zone of the system. For this reason, RIXS can probe not only the energy
spectra of elementary excitations, but also the momentum dispersion of
these excitations, which is a unique feature among other photon scattering
spectroscopies. As a consequence, the experimental spectra, i.e., the RIXS
cross section measured as a function of the energy loss ~ω = ~ωk−~ωk′ and
of the transferred momentum q = k−k′, are directly related to the spectra
of elementary excitations and to the physical properties of the system.

On the other hand, RIXS intensities can be measured as a function of
the incident and scattered photon polarizations. A fully polarized x-ray
beam contains photons which have the same spin direction (circular polar-
ization) or, more generally, which are in a coherent superposition of the
two spin eigenstates (linear or elliptical polarization). The conservation of
angular momentum implies that any finite change in polarization between
the incident and the scattered photon must correspond to a finite angular
momentum transferred into the system. In particular, the spin-orbit cou-
pling in the core hole intermediate state can induce a magnetic or an orbital
excitation, i.e., the photon angular momentum can be transferred to the
spin or to the orbital angular momentum of the scattered electron. For this
reason, the polarization dependence of the RIXS cross section may allow
one to disentangle the symmetry properties of the elementary excitations
and of the ground state of the system. Some common choices for polar-
ization of the incident radiation are linear polarizations, e.g., perpendicular
or parallel to the scattering plane, or circular polarizations. Normally, the
polarization of the scattered radiation is not resolved and the energy spectra
contain contributions from all the polarizations which are perpendicular to
the scattered radiation momentum. Nevertheless, in some state of the art
experiments [71,72] has been proven that linear polarization analysis of the
scattered radiation is possible.

2.1.2 The Kramers-Heisenberg equation

Microscopically, the RIXS process can be described as an inelastic scat-
tering of x-ray photons with matter. The incident x-ray photon resonantly
excites a core level state into an unoccupied state in the valence band. This
intermediate state is highly energetic, with a core hole and an excited elec-
tron state respectively far below and above the Fermi level, and is therefore
unstable, with a lifetime of the orders of femtoseconds. The recombination
of the core hole and the excited electron, with the concurrent emission of a
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scattered photon, allows the system to relax into the initial state (elastic)
or into a low energy excited state (inelastic scattering). In particular, the
inelastic scattering processes allow one to probe the elementary excitations
of the system.

The interaction between electromagnetic radiation and matter is de-
scribed by the theory of quantum electrodynamics. In the low energy limit,
this interaction can be treated perturbatively, and the scattering of x-ray
photons with an electronic system can be described by the Fermi’s Golden
Rule, which gives the transition amplitudes of the allowed low energy scat-
tering processes. In the non-relativistic limit, the second order terms of the
perturbation expansion dominates in the case of resonant scattering, while
the first order terms contains the remnant low energy non-resonant pro-
cesses. Neglecting the magnetic coupling between the photon field and the
magnetic moment of the electron, and taking only the second order resonant
terms of the perturbation expansion, one obtains the Kramers-Heisenberg
equation [64, 66, 68, 73–75], which gives the cross section of x-ray photons
with matter at any resonant edge of the system. The double-differential
RIXS cross section is therefore given by the Kramers-Heisenberg equation,
which at zero temperature reads

d2σ

dωdΩ
∝
∑
f

∣∣∣∣∣∑
n

〈f | D̂′† |n〉 〈n| D̂ |g〉
Eg + ~ωk − En + ıΓ

∣∣∣∣∣
2

δ(Eg + ~ω − Ef ), (2.1)

where |g〉 is the ground state with energy Eg, |f〉 is any of the final states
of the system with energy Ef , |n〉 is any of the intermediate core hole states
with energy En, and ~ω = ~ωk−~ωk′ is the transferred photon energy. The
core hole broadening Γ is assumed to be independent of the intermediate
state energy, and ranges from 1 eV of transition metal edges to 8 eV of
actinides L edges, which correspond to a core hole lifetime ∆t = ~/2Γ from
2 fs down to 0.2 fs. The optical transition operator D̂ = p̂ · Â describes the
dominant term of the electron-photon interaction in the low energy pertur-
bative expansion of the quantum electrodynamics. Expanding the vector
potential Â in terms of plane waves around any lattice site i, the optical
transition operator D̂ (D̂′) can be written as a function of the momentum k
(k′) and polarization e (e′) of the incident (scattered) photon, as [68]

D̂ =
1√
N

N∑
i=1

eık·(r̂i+Ri)e · p̂i, (2.2)

where r̂i and p̂i are the position and momentum operators of the electron
respect to the lattice site Ri.

If one introduces the intermediate state propagator Ĝ, which describes
the propagation of the core hole in the intermediate state, defined by the
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Figure 2.3: Schematic representation of the RIXS scattering process. The
transition operator D̂ excites the system into a core hole state, which there-
fore propagates via the Green’s function Ĝ, and is eventually annihilated by
the operator D̂′†. In the intermediate state, virtual transitions have a finite
probability in an energy range comparable with the core hole broadening Γ.
The final state may or may not coincide with the initial state of the system.

Green’s function

Ĝ =
∑
n

|n〉 〈n|
Eg + ~ωk − En + ıΓ

=
1

Eg + ~ωk − Ĥ+ ıΓ
, (2.3)

where Ĥ is the Hamiltonian of the system describing the core hole eigenstates
|n〉, one can rewrite the RIXS cross section as

d2σ

dωdΩ
∝
∑
f

| 〈f | Ô |g〉 |2δ(Eg + ~ω − Ef ), (2.4)

where the RIXS scattering operator is defined by Ô = D̂′†ĜD̂. The action
of the RIXS scattering operator Ô, and the scattering process described
by Eq. (2.4) are illustrated in Fig. 2.3. The optical transition operator
D̂ represents the photoelectric scattering of the incident photon with the
electronic system. The action of this operator is to promote a core electron
into a valence state, i.e., to create a core hole and an additional valence
electron into the system. The Green’s function Ĝ describes the propagation
of this excited state, which is in general not an eigenstate of the system. At
this stage, there is a finite probability that the system will undergo virtual
transitions into nearby intermediate states, as long as the energy fluctuation
is small compared with the core hole broadening (∆E < Γ). Finally, the
optical transition operator D̂′† recombines the core hole with an electron
in the valence band. If the scattering is inelastic, the final state does not
coincide with the initial state of the system.

Equation (2.4) is still valid at finite temperature, provided that the ex-
citation spectrum of the system is gapped, and that the temperature is
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low enough for thermal fluctuations to be negligible, i.e., in the case where
|Ef − Eg| � kBT for any excited state |f〉 of the system. If this is not the
case, Eq. (2.4) has to be generalized considering the statistical combination
of all possible initial states of the system, as

d2σ

dωdΩ
∝
∑
if

1

Z
e−Ei/kBT | 〈f | Ô |i〉 |2δ(Ei − Ef + ~ω), (2.5)

where Z is the partition function and |i〉 is any of the states accessible to
the system at temperature T .

Closely related to RIXS is the x-ray absorption spectroscopy (XAS) [67].
In a XAS experiment, an incident x-ray beam is shone on the sample and the
absorption cross section is measured. If the incident photon energy is close
to an absorption edge, i.e., the energy required to scatter off an electron from
a core hole shell, the XAS spectra will provide information about the core
hole states and on the ground state of the system. Close to an absorption
edge, the absorption cross section of the XAS process can be derived from
the Fermi’s Golden Rule at the first order of the electron-photon interaction,
and reads

dσ

dω
∝
∑
n

| 〈g| D̂ |n〉 |2δ(Ei − En + ~ω). (2.6)

Loosely speaking, the XAS absorption process can be described as the first
half of a RIXS scattering process, since the final states |n〉 in the XAS
absorption cross section in Eq. (2.6) coincide with the intermediate states
in the RIXS cross section in Eq. (2.3). The main similarity between XAS
and RIXS is indeed the presence of a core hole state, and the fact that the
absorption edges probed by XAS spectra correspond in RIXS to the resonant
edges at which the incident photon energy is tuned. The measure of the
XAS spectra is therefore the necessary premise of any RIXS experiment,
since the choice of the resonant energy is of paramount importance in RIXS
spectroscopy. On the other hand, the understanding of the core hole state
and of XAS edges is the necessary premise of any theoretical description of
RIXS spectra.

2.1.3 Dipole approximation and local RIXS operator

The RIXS scattering operator depends on the scattering geometry, i.e.,
on the incident and scattered photon polarizations and momenta, and, at a
more fundamental level, on the ground state and on the excited states of the
system. Since the aim of the RIXS spectroscopy is to probe the excitations
spectra and the ground state of a physical system, it would be desirable to
disentangle the geometrical dependence of the RIXS cross section from the
fundamental response of the physical system. In order to do so, one can
introduce the dipole approximation, which drastically simplifies the form
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of the optical transition operator, and allows one to factorize out easily the
geometrical dependence of the RIXS cross section. In general, on can expand
the optical transition operator around the single ion site as

D̂ =
1√
N

N∑
i=1

eık·Rie · D̂i, with D̂i = eık·r̂ip̂i, (2.7)

and therefore, one can further expand the local optical transition operator
D̂i using the multipole expansion

D̂i =
∞∑
n=0

(ık · r̂i)n

n!
p̂i. (2.8)

The dipole approximation corresponds to the zero order approximation of
the multipole expansion, i.e., assuming eık·r̂i ≈ 1, and thereby the optical
transition operator reduces to the momentum operator at the single ion site

D̂i = eık·r̂ip̂i ≈ p̂i. (2.9)

Therefore, in the dipole approximation, the matrix element of the optical
transition operator are nonzero only for transitions between states with az-
imuthal quantum number l and l ± 1, and in particular one has〈

n′l′m′
∣∣ D̂i |nlm〉 6= 0⇔ ∆l = ±1 and ∆m = 0,±1, (2.10)

where ∆l = l′ − l and ∆m = m′ −m, as follows from the selection rules of
spherical vector operators (see also Eqs. (A.6) and (A.16)). Moreover, the
component D̂z allows nonzero matrix elements between eigenstates with the
same magnetic quantum number ∆m = 0, while the components D̂x and
D̂y allows nonzero matrix elements for ∆m = ±1. The next term of the
multipole expansion, i.e., the quadrupole operator (ık · r̂i) p̂i allows instead
transitions between states with angular momentum l and l ± 2. Since the
dipole term of the multipole expansion is, in general, the dominant term
of the RIXS cross section, hereafter the dipole approximation will be used
throughout, and the local optical transition operator will be referred as the
dipole operator.

Using the Wigner-Eckart theorem (see Chapter A), one can obtain an
explicit expression of the dipole operator D̂i = p̂i in the basis of orbital angu-
lar momentum eigenstates, as in Eq. (A.18). From Eqs. (A.16) and (A.18)
follows that the momentum and position operators, although not propor-
tional (they satisfy the canonical commutation relation [r̂λ, p̂λ] = ı~) have
the same matrix elements between angular momentum eigenstates, up to
constants and complex conjugacy. For this reason, it is common to substi-
tute the momentum operator with the position operator [68] in the multipole
expansion of the optical transition operator in Eq. (2.8), and thus having
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Figure 2.4: Schematic representations of the dipole-allowed scattering pro-
cesses. The absorption edges K, L, and M correspond a core hole in the
core shell with principal quantum number n = 1, 2, 3. For n > 1, the edge
structure is divided into sublevels (L1 and L2,3 for n = 2, and M1, M2,3 and
M4,5 for n = 3) which correspond to different azimuthal quantum numbers
l = 1, 2, 3 (s, p, d shells). Moreover, for l > 1 the spin-orbit coupling splits
further the edge structure in sublevels corresponding to the total angular
momentum j = l±1/2. The dipole operators allows transitions between the
core hole levels and valence electron states with ∆l = ±1, e.g., ns ↔ n′p,
np↔ n′d, and nd↔ n′f .

D̂i ≈ r̂i in the dipole approximation limit. Indeed, matrix elements of the
momentum and of the position operator are equivalent with respect to the
evaluation of RIXS scattering amplitudes.

The dipole approximation allows one to remove the trivial dependence
from the incident and scattered photon momenta. In fact, assuming that
the core hole is created and annihilated at the same lattice site [75], the
RIXS operator can be rewritten as

Ô =
1

N

N∑
i,j=1

eı(k·Ri−k′·Rj)
(
e′ · D̂j

)†
Ĝ
(
e · D̂i

)

≈ 1

N

N∑
i=1

eıq·Ri

(
e′∗ · D̂†i

)
Ĝ
(
e · D̂i

)
, (2.11)

where the local dipole operators do not depend on the photon momenta, and
where q = k− k′ is the transferred momentum. Therefore, the RIXS cross
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2. Theory of direct resonant inelastic x-ray scattering

section can be rewritten in terms of the sum of local transition amplitudes
as

d2σ

dωdΩ
∝
∑
f

∣∣∣∣∣ 1

N

N∑
i=1

eıq·Ri 〈f | Ôi |g〉

∣∣∣∣∣
2

δ(Eg − Ef + ~ω), (2.12)

where the local RIXS operator Ôi is defined by

Ôi =
(
e′∗ · D̂†i

)
Ĝ
(
e · D̂i

)
. (2.13)

Moreover, expanding the polarizations e and the dipole operator D̂i in their
components, one can factorize out the polarization dependence as

Ôi =
∑
λµ

e′∗µ

(
D̂†µĜD̂λ

)
eλ = e′† · JD̂†µĜD̂λK · e. (2.14)

where the lattice site index i is dropped out, for the sake of simplicity. In
the last term, e and the conjugate transposed e′† are considered respectively
as column and row vectors, while JD̂†µĜD̂λK is a 3× 3 matrix with elements

D̂†µĜD̂λ. The RIXS cross section therefore does not depend separately on
the incident and scattered photon momenta, but only on the transferred
momentum, which corresponds to the intrinsic momentum of the elementary
excitations of the system.

2.1.4 Direct and indirect RIXS

Inelastic scattering occurs when the energy of the final state does not
coincide with the initial energy of the system. In the RIXS process, the
transition to the final excited state can be either direct or indirect [76,
77]. The difference between direct and indirect scattering is illustrated in
Fig. 2.5. In a direct scattering, the incident photon excites a core electron
into an unoccupied state of a partially filled valence band slightly above the
Fermi level. Afterwards, an electron from an occupied valence state slightly
below the Fermi level decays and annihilates the core hole, and a photon is
emitted. In this case, the scattering is inelastic and the system is left into
an excited state, directly induced by the electron-photon interaction. In
an indirect scattering instead, the incident photon excites the core electron
into an unoccupied state far above the Fermi level. After that, this highly
energetic electron state decays to fill the core hole. If no other interactions
are present, the final state of the process coincide with the initial state of the
system, and therefore inelastic scattering precesses cannot occur. However,
in the highly excited and unstable intermediate state, the core hole and the
excited electron are strongly interacting with each other and with the valence
electron of the system. In particular, the core hole Coulomb interaction is
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E

D̂ D̂′†

(a) Direct RIXS

E

D̂
Ĝ
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Figure 2.5: (a) In a direct scattering process, the incident photon excites
a core electron into an unoccupied state of a partially filled valence band.
Afterwards, an electron from another occupied valence state decays and an-
nihilates the core hole, and a photon is emitted. The scattering is inelastic
and the system is left into an excited state. (b) In an indirect scattering
process, the incident photon excites the core electron into an unoccupied
state far above the Fermi level. After that, this highly energetic electron
state decays to fill the core hole. If no other interactions are present, only
elastic scattering is possible. However, in intermediate state, the strong in-
teraction between the core hole and valence electrons can induce excitations
in the final state of the system.

usually the strongest and dominates the intermediate state dynamics. This
strong interaction, usually described as a core hole potential Uc, can produce
an excitation in the valence band of the system. In this way, the system is
left into an excited state, which is not induced by the mere electron-photon
interaction, but it is indirectly produced by the core hole potential.

In light of the above, it is natural to decompose the Hamiltonian of the
system, which contains in principle all the relevant interactions, as Ĥ =
Ĥ0 + Ĥc, i.e., in an unperturbed Hamiltonian Ĥ0, containing the low energy
interactions governing the ground state and the excited states of the system,
and the core hole Hamiltonian Ĥc containing the interaction between the
core hole, the excited electron and the valence electrons of the system in the
intermediate state of the scattering process. Introducing the unperturbed
propagator

Ĝ0 =
1

Eg + ~ωk − Ĥ0 + ıΓ
, (2.15)

which satisfies the identity Ĝ−1 = Ĝ−1
0 −Hc, the intermediate state propa-

gator can be decomposed as Ĝ = Ĝ0 + Ĝ0ĤcĜ. As a consequence, the RIXS
scattering operator can be written as

Ô = D̂′†Ĝ0D̂ + D̂′†Ĝ0ĤcĜD̂, (2.16)
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2. Theory of direct resonant inelastic x-ray scattering

where the two terms describe respectively the direct and the indirect scatter-
ing processes. If the direct transition between the core hole and the valence
state is dipole allowed, the direct term does not vanish and is by far the
leading order contribution to the RIXS cross section. Although the indirect
scattering term still contributes to the total RIXS scattering, these higher
order processes are generally weaker and can be neglected to the leading
order. Therefore, in this case one talks about direct RIXS scattering, and
the RIXS scattering operator reduces to

Ô ≈ D̂′†Ĝ0D̂ (Direct). (2.17)

Conversely, if the transition between the core hole and the valence state is
forbidden by the dipole selection rules, the direct term contains higher order
multipole transitions, which are typically weak, so that the main contribu-
tions to the inelastic scattering are only given by indirect processes. This is
the case of the indirect RIXS scattering, where the RIXS scattering operator
becomes

Ô ≈ D̂′†Ĝ0ĤcĜD̂ (Indirect). (2.18)

Direct and indirect RIXS scattering are therefore qualitatively different,
since the main contributions to the RIXS cross section are provided by two
distinct scattering mechanisms. In both cases, the RIXS cross section de-
pends on the combined action of optical transitions and intermediate state
propagator. However, in the direct RIXS process, the elementary excita-
tions in the final state are directly produced by dipole transitions, whereas
in indirect RIXS, they are indirectly induced by the core hole propagator.
Therefore, in direct RIXS, the cross section depends crucially on the optical
transition amplitudes and selection rules, whereas in indirect RIXS the main
role is played by the core hole propagation. Without the core hole poten-
tial, in fact, the indirect RIXS cross section simply vanishes. Nevertheless,
the intermediate state dynamic does also play a role in the direct RIXS
scattering, being responsible, for example, of the non-vanishing scattering
amplitudes of magnetic excitations at the transition metal edges.

Direct RIXS scattering occurs at the oxygen K edge, where the dipole
allowed transitions 1s ↔ 2p directly excite the 2p valence electrons, and at
the transition metal L2,3 and M2,3 edges, where excitations in the 3d valence
shell are directly created by the dipole transitions 2p ↔ 3d and 3p ↔ 3d
respectively. Indirect RIXS scattering occurs instead at the transition metal
K, L1, and M1 edges, where the dipole allowed transitions are respectively
1s↔ 4p, 2s↔ 4p, and 3s↔ 4p, while direct quadrupole transitions ns↔ 3d
are largely negligible. In these cases, an highly energetic 4p electron state is
excited in the intermediate state altogether with a core hole in the 1s, 2s,
or 3s shell, which exerts a strong core hole potential that indirectly excites
the 3d valence states of the system.
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2.2. Direct RIXS cross section

2.2 Direct RIXS cross section

2.2.1 The spin-orbit coupling

The sensitivity of direct RIXS scattering at transition metal edges to
the orbital and to the magnetic degrees of freedom relies at a fundamental
level on the strong spin-orbit coupling deep in the 2p core hole shell. In
fact, since the direct interaction between the photon field and the electron
spin and orbital angular momentum is very weak (photons carry no mag-
netic moment), the dominant photoelectric transitions (dipole transitions)
do not allow a direct transfer of angular momentum to the electron system.
Nevertheless, at the transition metal ions L2,3 edges, neither the spin or
the orbital angular momentum are conserved in the intermediate state of
the RIXS process, due to the strong spin-orbit coupling in the core hole 2p
shell. This allows a spin flip and a consequent angular momentum transi-
tion of the core hole, which results in non-vanishing transition amplitudes
of magnetic and orbital transitions [48].

Within a given atomic shell, the angular momentum coupling between
the spin and the orbital angular momentum of the core hole is described by
the spin-orbit Hamiltonian in the form

Ĥso = −λsoL̂ · Ŝ = −λso
2

(Ĵ2 − L̂2 − Ŝ2) (2.19)

where Ŝ and L̂ and Ĵ = L̂+ Ŝ are the spin, the orbital, and the total angular
momentum of the core hole, λso is an effective parameter which describes
the strength of the interaction and depends on the atom and on the atomic
shell considered, and where the minus sign derives from the fact that the
core hole can be described as an effective particle with negative charge.
From the commutation relations between the angular momentum operators,
it follows that the eigenstates of the spin-orbit Hamiltonian are simultaneous
eigenstates of the operators Ĵ2, L̂2, Ŝ2, and of the component Ĵz of the total
angular momentum. Therefore, the eigenstates |n, j, jz, l, s〉 of the spin-orbit
Hamiltonian are described by the quantum numbers j, jz, l, and s = 1/2,
where one has |l − 1/2| ≤ j ≤ |l + 1/2| and |jz| ≤ j from the usual rules of
addition of angular momenta, and where n represents all the other quantum
numbers which define the state of the system. The eigenstates of the spin-
orbit Hamiltonian are not, however, eigenstates of the components L̂z and
Ŝz, i.e., the magnetic quantum number m and the spin projection sz are not
good quantum numbers anymore. As a consequence, neither the spin nor
the angular momentum, but only the total angular momentum is conserved
in the scattering process.

In the case of l = 0, i.e., if the core hole is in any of the ns atomic shells,
the spin-orbit interaction vanishes, and the core hole states reduce, if other
magnetic interactions are negligible, to the two degenerate eigenstates with
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Figure 2.6: Spin-orbit splitting as a function of the atomic number Z < 90,
in the 2p, 3p, and 3d shells, corresponding to the energy differences between
absorption edges [69, 70], respectively L3 and L2, M3 and M2, and M5

and M4. The energy spans several orders of magnitudes (the energy scale
is logarithmic) from 2.2 eV and 19.6 eV of the copper 3p and 2p shells
respectively, up to 1000 eV of the heavy atoms 2p shells.

sz = ±1/2. However, in the case l > 0, e.g., if the core hole is in any of the
np or nd atomic shells, the spin-orbit interaction does not vanish, and the
eigenstates |n, j, jz, l, s〉 have energy

Ej =


λso
2

~2 (l + 1) for j = l − 1
2 ,

−λso
2

~2 l for j = l + 1
2 ,

(2.20)

which does not depend on the direction Ĵz, but only on the modulus square
of the total angular momentum Ĵ2. The energy level splitting due to the
spin-orbit coupling within a given atomic shell is therefore

∆Eso =
λso
2

~2 (2l + 1) (2.21)

The spin-orbit coupling is therefore responsible of the energy splitting of the
absorption edges corresponding to the same atomic core shell, as one can
see in Fig. 2.4. Moreover, in Fig. 2.6 are shown the values of the spin-orbit
splitting ∆Eso for atoms with Z < 100, in the 2p, 3p, and 3d shells, which
correspond respectively to the energy differences between the L3 and L2,
the M3 and M2, and the M5 and M4 absorption edges.
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2.2. Direct RIXS cross section

2.2.2 Fast collision approximation

If one assumes that the energy scale of elementary excitations under
study is negligible respect to the core hole broadening, and that the spin-
orbit coupling is nonzero, the unperturbed intermediate state propagator in
Eq. (2.15) describing the direct RIXS scattering becomes

Ĝ0 =
1

Eg + ~ωk − (E0 + Ĥso) + ıΓ
(2.22)

where Ĥso the spin-orbit coupling as defined in Eq. (2.19), and E0 = Enl
the dominant energy term of the core hole state, which depends only on
the principal and azimuthal quantum numbers of the core hole shell. If
direct scattering is allowed by the dipole selection rules, indirect scattering
processes are negligible and therefore one can neglect the interaction term
Ĥc between the valence electrons and the core hole.

At this point, it is useful to introduce some further approximations in
the expression of the intermediate state propagator. In order to do so, one
should at first recognize what is the dominant interaction of the problem
and, consequently, approximate the other relevant interactions as a small
perturbation or, at the first order, neglect them. The relevant energy scales
in the intermediate core hole state are the spin-orbit coupling, the core
hole broadening, and the energy of the elementary excitations under study.
Typically, the core hole broadening is of the order of Γ ≈ 1 eV, which is
larger than the energy scale of most of the elementary excitations which
are accessible with RIXS. For instance, phonons, with typical energies up
to ≈ 100 eV, and magnetic excitations, up to ≈ 400 eV, have an energy
scale which is approximately one order of magnitude smaller than the core
hole broadening. On the other hand, dd excitations and charge transfer
excitations have an energy scale that is comparable, to some extent, with
the core hole broadening. Moreover, while in the case of K, L1, and M1, the
spin-orbit coupling vanishes, at any other edge the spin-orbit coupling easily
overcomes the core hole broadening, being one order of magnitude larger,
e.g., in the case of L2,3 transition metal edges, whereas in some other cases,
e.g., at the transition metal M2,3 edges, the spin-orbit splitting and the core
hole broadening are comparable.

In what follows, the energy scale of the elementary excitations under
study will be considered small compared with the core hole broadening. In
this case, the intermediate state propagator will reduce to a resonant factor
which can be factorized out. This approximation scheme is known as fast
collision approximation [78, 79]. In particular, the rest of this Section will
be concerned with the case of weak spin-orbit coupling, whereas the next
Section will generalize the approximation scheme to the case in which the
spin-orbit coupling overcomes, or is comparable to, the core hole broadening.
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2. Theory of direct resonant inelastic x-ray scattering

If the spin-orbit coupling is weak, or vanishing (e.g., at the K, L1, and
at the M1 edges), and if the energy scale of the elementary excitations under
study is small, the core hole broadening is the dominant energy scale, and
the core hole state degeneracy can be considered negligible. Therefore, at
the resonance one has |Eg +~ωk−En| � Γ for any of the core hole level En,
and the intermediate state propagator in Eq. (2.22) can be approximated
as [78,79]

Ĝ0 ≈
∑
n

|n〉 〈n|
ıΓ

=
1

ıΓ
, (2.23)

The intermediate state propagator is thus substituted by a resonance factor,
and as a consequence, all the possible intermediate states |n〉 contribute to
the scattering amplitudes, which are therefore determined only by the dipole
transitions. For this reason, for example, the fast collision approximation
yields a vanishing cross section in the case of indirect scattering processes.
Although the fast collision approximation can be a useful and simple de-
scription of direct RIXS scattering, it may be in some cases a very crude
approximation, as in the just mentioned case of indirect scattering processes.
Whereas the fast collision approximation is a zero order approximation of
the intermediate state propagator in terms of the core hole broadening, it
is natural to extend this expansion in order to include corrections to higher
orders. To this end, the ultrafast core-hole lifetime expansion [76,77,80] has
been developed, which provides a low-energy expansion of the intermediate
state propagator in terms of the core hole broadening. If one defines a reso-
nance factor as ∆(ωk) = ~ωk−~ωres+ ıΓ, where ~ωres ≈ En is the resonant
edge of the RIXS process, Eq. (2.22) can be written as

Ĝ0 =
1

∆(ωk)

[
1− Ĥ0 − Eg − ~ωres

∆(ωk)

]−1

. (2.24)

If one assumes that the core hole broadening is the relevant energy scale in
the intermediate state, one has |Ĥ0−Eg − ~ωres| � |∆(ωk)|, and hence one
can expand Eq. (2.24) as a Taylor series and obtain the ultrafast core-hole
lifetime expansion of the intermediate state propagator which reads [80]

Ĝ0 =
1

∆(ωk)

∞∑
i=0

[
Ĥ0 − Eg − ~ωres

∆(ωk)

]i
, (2.25)

where at the zero order one regains the fast collision approximation in
Eq. (2.23).

2.2.3 Strong spin-orbit coupling

If the spin-orbit coupling is the dominant energy scale (e.g., at the L2,3

and M2,3 transition metal edges), or at least comparable to the core hole
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broadening, and if the energy scale of the elementary excitations under study
is negligible, it is reasonable to expand at first the intermediate state propa-
gator in terms of the spin-orbit coupling. After that, one can apply the fast
collision approximation separately to the two core hole states in Eq. (2.20)
with total angular momentum j = l ± 1/2, and eventually factorize out
the corresponding resonant factors, neglecting any further substructure of
the core hole energy levels. In fact, neglecting the spin-orbit coupling leads
to vanishing scattering amplitudes of spin-flip excitations, and may fail to
reproduce the correct scattering amplitudes of orbital angular momentum
transitions, since the dipole transitions alone do not allow spin-flip and or-
bital momentum transitions in the core hole state. Therefore, if the core
hole broadening and the spin-orbit coupling energy scales dominate, and
the low energy elementary excitation energy is negligible, the intermediate
state propagator in Eq. (2.22) can be decomposed in terms of the total
angular momentum eigenstates of the spin-orbit Hamiltonian 2.19 as

Ĝ0 =
∑
j=l± 1

2

Πj

~(ωk − ωj) + ıΓ
, (2.26)

where ~ωj = Eg+E0+Ej is the resonant edge, Πj =
∑
|jz |<j |n, j, jz〉 〈n, j, jz|

the projector operator corresponding to the core hole states with total an-
gular momentum j = l ± 1/2, and l > 0 is the azimuthal quantum number
of the core hole state. The analytical expression of the projector Πj can
be obtained directly from its definition, summing over all the eigenstates
with total angular momentum j and −j < jz < j. However, the projector
operator is completely defined by its action on the total angular momentum
eigenstates Πj |n, j′, jz〉 = δjj′ |n, j′, jz〉, which immediately leads to1

Πj=l± 1
2

=± 1

2l + 1

[
Ĵ2 −

(
l ∓ 1

2

)(
l ∓ 1

2
+ 1

)]
=

2

2l + 1

[
2(j − l)L̂ · Ŝ +

1

2

(
j +

1

2

)]
. (2.27)

Hence, summing over the two total angular momentum states, the interme-
diate state propagator in Eq. (2.26) can be written as

Ĝ0 = α(ωk)L̂ · Ŝ + β(ωk), (2.28)

which represents the intermediate state propagator expansion in terms of
the spin-orbit coupling, and where the resonance functions α(ωk) and β(ωk)

1 Hereafter, the factor ~ in the definition of angular momentum and spin operators will
be dropped out, for the sake of simplicity.
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SO strength resonant edge Ĝ0 = α(ωk)L̂ · Ŝ + β(ωk)

∆Eso � Γ ωj=l±1/2 α(ωk) = ± 1

ıΓ
β(ωk) =

j + 1/2

2

1

ıΓ

∆Eso � Γ ωl−1/2 ' ωl+1/2 α(ωk) = 0 β(ωk) =
2l + 1

2

1

ıΓ

Table 2.1: Resonant functions α(ωk) and β(ωk) as defined in Eq. (2.29)
which appear in the intermediate state propagator in Eq. (2.28) in the limits
of strong (∆Eso � Γ) and weak ∆Eso � Γ spin-orbit coupling.

are defined up to constant prefactors as

α(ωk) =
1

∆l+ 1
2
(ωk)

− 1

∆l− 1
2
(ωk)

,

β(ωk) =
(l + 1)/2

∆l+ 1
2
(ωk)

+
l/2

∆l− 1
2
(ωk)

,

(2.29)

where ∆j(ωk) = ~(ωk − ωj) + ıΓ is the resonance factor corresponding to
the resonant edge ωj . As stated before, this expansion is valid only in the
case where the energy scale of the elementary excitations under study are
negligible respect to the spin-orbit coupling of the core hole state and to the
core hole broadening.

In the case where the spin-orbit coupling overcomes the core hole broad-
ening, i.e., if ∆Eso � Γ, and the incident photon energy is tuned to one of
the two absorption edges ωk = ωj with total angular momentum j = l ± 1

2 ,
the corresponding term in Eq. (2.28) dominates while the other become
negligible since |∆Eso + ıΓ| � |Γ|, and therefore one has

Ĝ0 ≈


1

ıΓ

(
−L̂ · Ŝ +

l

2

)
for ωk = ωl− 1

2
,

1

ıΓ

(
L̂ · Ŝ +

l + 1

2

)
for ωk = ωl+ 1

2
,

(2.30)

which corresponds to the resonant functions α(ωk) = ±1/ıΓ and β(ωk) =
(j+1/2)

/ 2ıΓ in Eq. (2.28). On the other hand, if the spin-orbit coupling is
negligible compared with the core hole broadening, i.e., if Γ � ∆Eso, both
terms in Eq. (2.28) contribute and since in this case one has |~(ωk − ωj) +
ıΓ| ≈ |Γ|, the intermediate propagator simply reduces to the form Ĝ0 ≈ 1/ıΓ

as in Eq. (2.23), which corresponds to α(ωk) = 0 and β(ωk) = (2l+1)
/ 2ıΓ

in Eq. (2.28). Eventually, if the core hole broadening and the spin-orbit
coupling are comparable, both terms in Eq. (2.28) have to be considered,
and no further approximation can be employed. In Fig. 2.7 the values of the
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Figure 2.7: In the short living intermediate state, virtual transitions with
∆E ≈ Γ have a finite probability. (a) In the case ∆Eso � Γ, the core hole
state has a definite energy, since the transition energy ∆Eso between states
with different total angular momentum j is much larger than the core hole
broadening Γ. (b) If ∆Eso ≈ Γ instead, transitions between states with
different total angular momentum are allowed, and both states contribute
to the scattering amplitude. (c) If ∆Eso � Γ, the two core hole states
contribute with the same weight.

resonant functions α(ωk) and β(ωk) are summarized in the case of strong
(∆Eso � Γ) and weak ∆Eso � Γ spin-orbit coupling.

The different physical scenarios which arise in the cases above can be
understood in terms of uncertainty relations and quantum interference of
the core hole states. In fact, the intermediate state is a short living non-
stationary state, and for this reason it cannot have a definite energy. Ac-
cording to the time-energy uncertainty relation (which is the analogous of
the Heisenberg principle for position and momentum), the uncertainty in
the core hole state energy ∆E is related to the core hole lifetime ∆t and, as
a consequence, to the core hole broadening Γ by

∆E∆t ≈ ~
2
⇒ ∆E ≈ Γ. (2.31)

In the case ∆Eso � Γ, the core hole state has a definite energy and total an-
gular momentum, since the uncertainty ∆E of the core hole energy is much
smaller than the transition energy ∆Eso between states with different total
angular momentum j, as shown in Fig. 2.7(a). In this case, the intermediate
state propagator in Eq. (2.30) do not allow transitions between the two core
hole states with different j = l ± 1

2 , whereas spin-flip and orbital angular
momentum transitions are allowed, since neither spin nor orbital angular
momentum are good quantum numbers of the core hole states. Conversely,
if ∆Eso ≈ Γ, the uncertainty principle allows transitions between core hole
states with different energy and total angular momentum, and these dif-
ferent states will contribute to the scattering amplitude and interfere with
each other, as shown in Fig. 2.7(b). In particular, if ∆Eso � Γ, the two
core hole states contribute with the same weight, as in Fig. 2.7(c). In this
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2. Theory of direct resonant inelastic x-ray scattering

case, contributions which correspond to a spin-flip or to an orbital angular
momentum transition will interfere destructively, resulting in a vanishing
resonant function α(ωk) = 0 in Eq. (2.29), and therefore the intermediate
state propagator reduces to a simple resonance factor as in Eq. (2.23).

2.2.4 The dynamical structure factor and RIXS

In the case of direct RIXS, the local operator in Eq. (2.13) for a given
incident and scattered photon polarizations can be expanded in the basis of
the local electron spin τ as

Ôi =
∑
ψψ′ττ ′

W ττ ′
ee′ (ψ,ψ

′)c†iψ′τ ′ciψτ , (2.32)

where the operators c†iψτ and ciψτ create and annihilate an electron state
at the lattice site i with spin τ , and where ψ denotes any other degree of
freedom, e.g., the orbital occupancy. The local transition amplitudes can
be calculated by using W ττ ′

ee′ (ψ,ψ
′) = 〈ψ′τ ′| Ôi |ψτ〉. By a Fourier transform

of the local electron operators ciψτ and c†iψτ and using the definition of the

RIXS operator Ô in Eq. (2.11), one obtains

Ô =
1

N

∑
ψψ′ττ ′

W ττ ′
ee′ (ψ,ψ

′)c†k+qψ′τ ′ckψτ . (2.33)

The expansion of the RIXS operators in Eqs. (2.32) and (2.33) relate the
RIXS scattering process to the local transition amplitudesW ττ ′

ee′ (ψ,ψ
′), which

depends only on the photon polarizations and on the local degrees of free-
dom of the system. In particular Eq. (2.33) relates the bulk response of the
scattering process to the local response. Moreover, using the RIXS operator
expansion of Eq. (2.33), the RIXS cross section in Eq. (2.4) can be rewritten
in terms of correlation functions of the valence electrons, which characterize
the excitation spectra of the system.

Let us specialize however, for the sake of simplicity, to the case of a sys-
tem with local spin s = 1/2, and consider only local spin transitions within
the same orbital state φ. In this case, as one can see from Eq. (2.28), the spin-
orbit coupling in the intermediate state of a direct RIXS process can flip the
spin of the core electron, and as a consequence, the final and the initial spin
of the valence electron state can differ by ∆τ = τ ′− τ = 0,±1/2. Therefore
Eq. (2.32) can be simplified by introducing the density and the spin oper-

ators respectively as ρ̂iψ =
∑

τ c
†
iψτ ciψτ and Ŝλiψ =

∑
ττ ′ σ

λ
ττ ′c

†
iψτ ciψτ ′ with

σλ = σx, σy, σz the Pauli matrices, in the form

Ôi = W 0
ee′ ρ̂iψ + Wee′ · Ŝiψ, (2.34)
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2.2. Direct RIXS cross section

where the new transition amplitudes W 0
ee′ and Wee′ are defined by

W λ
ee′ =

1

2

∑
ττ ′

σλττ ′W
ττ ′
ee′ (ψ,ψ), (2.35)

where λ = 0, x, y, z and σ0 is the identity matrix. Again, by a Fourier
transform of the local electron operators and using the definition of the
RIXS operator Ô in Eq. (2.11), or one obtains in this case

Ô =
1

N

(
W 0

ee′ ρ̂qψ + Wee′ · Ŝqψ

)
, (2.36)

where ρ̂qψ =
∑

kτ c
†
k+qψτ ckψτ and Ŝλqψ =

∑
kττ ′ σ

λ
ττ ′c

†
k+qψτ cqψτ ′ . Therefore,

the RIXS cross section in Eq. (2.4), using the expansion of the RIXS operator
in Eq. (2.36), can be rewritten in a compact form as

d2σ

dωdΩ
∝
∑
λµ

W λ
ee′W

µ∗
ee′χ

λµ, (2.37)

where the correlation functions χλµ are defined as

χλµ =
∑
f

〈g| ρ̂µqψ |f〉 〈f | ρ̂
λ
qψ |g〉 δ(Eg + ~ω − Ef )

= lim
η→0
〈g| ρ̂µqψ

∑
f

|f〉 〈f |
Eg + ~ω − Ef + ıη

 ρ̂λqψ |g〉 , (2.38)

with ρ̂0
qψ ≡ ρ̂qψ and ρ̂λqψ ≡ Ŝλqψ for λ = x, y, z. In particular, for λ = µ the

correlation functions in Eq. (2.38) coincide with the charge and spin DSF of
the valence electrons, respectively

χ0 ≡ χ00 =
∑
f

| 〈f | ρ̂qψ |g〉 |2δ(Eg + ~ω − Ef ),

χλ ≡ χλλ =
∑
f

| 〈f | Ŝλqψ |g〉 |2δ(Eg + ~ω − Ef ) λ = x, y, z, (2.39)

Therefore, direct RIXS is a probe of the correlation functions and of the
charge and spin DSF of the system under study.

2.2.5 Graphical representations of the RIXS operator

In this Section, we will specialize the expression for the local RIXS
scattering operator in Eq. (2.13) in the case of direct scattering, at tran-
sition metal L2,3 and M2,3 absorption edges. To do so, we will employ the
dipole approximation in Eq. (2.9), neglect indirect processes, and assume
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px py

pz

dxy

dyzdxz

dx2−y2

d3z2−r2

β β

β ıαŜxıαŜy
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Figure 2.8: Schematic representation of the direct RIXS operator Ôi on a
single site at L2,3 or M2,3 edges. To calculate the matrix elements of the
operator between the initial and final d electron states, one needs to sum over
all possible paths connecting them via a three step process, and multiplying
at each step by the factor indicated, which is respectively proportional to: (i)
a component of the incident photon polarization e, (ii) one of the resonant
functions β = β(ωk), or α = α(ωk) times a component of the spin operator
Ŝ, with a plus or minus sign respectively for steps along or opposite to the
direction of the arrows (iii) the complex conjugate of a component of the
scattered polarization e′. The three steps correspond respectively to the
dipole transition p→ d (annihilation of a core p electron and creation of a d
electron), the propagation of the core hole p→ p (creation and annihilation
of p electrons), and to the dipole transition d → p (annihilation of a d
electron and creation of a p electron).
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2.2. Direct RIXS cross section

a core hole propagator in the form of Eq. (2.22), i.e., considering the core
hole broadening and the spin-orbit coupling as the dominant energy scales.
Moreover, since electron states in condensed matter have in general a lower
symmetry than spherical, due to, e.g., the crystal field generated by the
surrounding charge distribution, we will express the relevant single particle
operators in terms of tesseral harmonics states, defined in Chapter A, which
correspond to the usual set of electronic orbitals employed to describe p, d,
and f electrons in condensed matter systems. This will lead to a simple
diagrammatic representation of the RIXS scattering operator.

In the case of direct RIXS at the L2,3 and M2,3 metal edges, the core
hole is in a np shell (l = 1), and the direct scattering occurs via the dipole
allowed np ↔ n′d transitions. The relevant energy scales are the spin-orbit
coupling and the core hole broadening and, therefore, using Eq. (2.28) the
local RIXS scattering operator in Eq. (2.13) becomes

Ôi =
∑
λµ

e′∗µ D̂†µ

[
α(ωk)L̂ · Ŝ + β(ωk)

]
D̂λeλ, (2.40)

where the resonance functions α(ωk) and β(ωk) are defined as in Eq. (2.29).

Using the explicit expression of the orbital angular momentum operator
in the corresponding core hole shell and of the dipole operator for the dipole
allowed ∆l = ±1 transitions in Table A.1 of Chapter A, one obtains the
general expression of the local RIXS operator in Eq. (2.40) for direct RIXS
at the L2,3 and M2,3 metal edges. The action of the local RIXS operator for
direct scattering np↔ n′d transitions (L2,3 and M2,3 edges) is shown in the
diagram in Fig. 2.8.

2.2.6 dd excitations in cuprates

To illustrate how to calculate the direct RIXS cross section via Eq. (2.12),
in particular using the local transition amplitudes in Eq. (2.32) and the di-
agrammatic representation of the local RIXS operator in Fig. 2.8, we will
evaluate in this Section the RIXS spectra at the L2,3 copper edges of dd
excitation in cuprates. The energy of the electron levels of a single ion in a
crystal are determined by the crystal field, which is induced by the charge
distribution of the surrounding ions. As a consequence, the degeneracy
of the electron levels within the same shell (same principal and azimuthal
quantum numbers) is partially or totally removed, depending on the charac-
teristic symmetry of the crystal and on the crystal field strength. Therefore,
valence electrons occupy different orbital states, with different energies and
symmetry properties. Crystal field excitations concern local transitions be-
tween non-degenerate electron levels of the same ion within the valence shell.
In particular, dd excitations are crystal field transitions between different d
orbitals, i.e., non-degenerate 3d electron levels of the same ion, with energies
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2. Theory of direct resonant inelastic x-ray scattering

which are of the order of electronvolts in transition metal oxydes. Due to
the strong spin-orbit coupling in the core hole state, the direct RIXS scat-
tering couples directly with the spin and orbital degrees of freedom of the
local ions. In fact, dd excitations have been observed in many systems, and
in particular in the paradigmatic charge transfer insulator NiO [81] and in
cuprates [52, 58]. Since crystal field excitations are well localized excited
states, they have little or no dispersion and can be well understood in a sin-
gle ion approximation, i.e., by considering the scattering amplitude as a sum
of contributions which do not depend on the ion site. In this case, for small
transferred momenta, and for an energy loss equal to the excitation energy
of the particular orbital state considered, the RIXS intensity in Eq. (2.12)
reduces to

I(q ' 0, ~ω = Eψ′) ∝
∑
ττ ′

∣∣∣W ττ ′
ee′ (ψ,ψ

′)
∣∣∣2 , (2.41)

where ψ and ψ′ are respectively the orbital ground state of the local ion and
the excited state with energy Eψ′ , and where one assumes that the different
spin states are nearly degenerate compared to the crystal field splitting.
Therefore, the RIXS cross section of dd excitation is completely determined
by the local transition amplitudes W ττ ′

ee′ (ψ,ψ
′).

In cuprates, the copper atoms are doubly ionized and form an orthog-
onal complex with the six surrounding ligand oxygen ions, embedded in a
perovskite crystal lattice. As a consequence, the electronic configuration 3d9

has one single hole in the valence shell, generally in one of the eg orbitals for
cubic and tetragonal perovskites (Oh or D4h symmetries in Fig. 1.1), or in a
linear combinations of the two orbitals dx2−y2 and d3z2−r2 in orthorhombic
perovskites (D2h symmetry in Fig. 1.1). Therefore, it is much simpler to
describe the RIXS scattering process in these systems in the hole picture.
Within the hole picture, the incident photon excites the hole in the 3d shell
to the core 2p shell, which consequently decays into a scattered photon and
a hole back to the 3d shell, possibly in a different orbital state in the case of
inelastic scattering. In the light of this, it is straightforward to calculate via
Fig. 2.8 the local transition amplitudes W ττ ′

ee′ (ψ,ψ
′) between any possible

initial and excited states |τψ〉 and |τ ′ψ′〉, which are given in Table 2.2.

The RIXS cross section of dd excitations in cuprates can be calculated
via Eq. (2.41) using the local transition amplitudes in Table 2.2, considering
an orbital ground state with a hole in the ds2−y2 or in the d3z2−r2 orbital,
and with the final state in any of the remnant orbital states. In Fig. 2.9 are
shown the direct RIXS spectra of dd excitations in cuprates at the copper
L2,3 edges, for the two orbital ground states considered, as a function of the
incident and scattered photon polarizations. The polarization directions are
chosen to have one component along the z axes another along the bisector
line of the x and y axes. As one can see, the polarization dependence of
the RIXS spectra of dd excitations is different for the two different orbital
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Figure 2.9: RIXS spectra of dd excitations in cuprates at the copper
L2,3 edges, calculated via Eq. (2.41), corresponding to orbital transitions
ψ → ψ′ for two orbital ground states ψ = dx2−y2 , d3z2−r2 and for differ-
ent excited states ψ′, as a function of the incident and scattered photon
polarization directions. Intensities are summed over the spin degrees of
freedom. The incident and scattered polarization angles θ and θ′ are con-
sidered between the polarization direction and the z lattice axis, such that
e = (cos θ/

√
2, cos θ/

√
2, sin θ) and e′ = (cos θ′/

√
2, cos θ′/

√
2, sin θ′).

ground state considered, in particular for dd excitations corresponding to a
transition to any of the t2g orbitals. This allow one in principle to discrim-
inate between different orbital ground states by looking at the excitation
spectra of the system.
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3
Unraveling orbital correlations via magnetic RIXS

Part of this chapter has been published as “Unraveling Orbital Correlations with Magnetic

Resonant Inelastic X-Ray Scattering”, Pasquale Marra, Krzysztof Wohlfeld, and Jeroen

van den Brink, Phys. Rev. Lett. 109, 117401 (2012).

Although orbital degrees of freedom are a factor of fundamental impor-
tance in strongly correlated transition metal compounds, orbital correlations
and dynamics remain very difficult to access, in particular by neutron scat-
tering. However, RIXS has been proven successful in measuring spin excita-
tions in various cuprates [47–49,82–84], nickelates [85], and even iron based
superconductors [86]. In this Chapter, we will show via a direct calculation
of scattering amplitudes in a general setting how the polarization-dependent
intensity of magnetic RIXS directly provides an insight into the orbital cor-
relations in the ground state of correlated materials. In particular, we will
present a general overview of the interplay between orbital and magnetic
degrees of freedom in correlated systems (Section 3.1), we will evaluate the
RIXS cross section of magnetic excitations in the presence of orbital order
(Section 3.2), and consequently we will specialize to the case of two and
three dimensional cuprates (Section 3.3), to show how magnetic RIXS can
discriminate the orbital ground state in these materials. In contrast to neu-
tron scattering, the intensity of the magnetic excitations in RIXS depends
very sensitively on the symmetry of the orbitals that spins occupy and on
photon polarizations. In particular, we will verify that RIXS discriminates
between different orbital states, e.g., the alternating orbital order against
the ferroorbital order or the orbital liquid state. This method is applicable
to any orbital-active material that has distinct dispersive spectral features
in its spin structure factor χz(q, ω), for instance, due to the presence of
magnetic modes arising from long-range magnetic ordering.
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3. Unraveling orbital correlations via magnetic RIXS

3.1 Magnetic systems with orbital degrees of free-
dom

3.1.1 Orbital order

In correlated transition metal systems, the interaction between spin and
orbital degrees of freedom, arising from the superexchange mechanism be-
tween nearest neighbor transition metal ions, is usually described in terms
of the Kugel-Khomskii spin-orbital model [7]. Assuming that the transition
metal electrons occupy a set of degenerate 3d orbitals, the superexchange
interaction can be described by the effective spin-orbital Hamiltonian 1.1
in Section 1.2, which represents the second order perturbation expansion of
the related multi-band Hubbard model with respect to the Hubbard on-site
Coulomb repulsion. In the presence of large Jahn-Teller interactions, orbital
interactions prevail over spin fluctuations, and in the mean field limit one
can assume a ground state characterized by a long-range orbital order with
an effective low energy Hamiltonian as in Eq. (1.3), which can be viewed as
a generalization of the Heisenberg Hamiltonian where the exchange parame-
ters depends on the orbital ground state. Some examples of orbital ordered
states include the ferroorbital order (same orbital on each site) and the al-
ternating orbital order (alternating orbitals every other site), respectively
with 〈T̂i · T̂j〉 = ±1/4, and defined by

T̂ zi |FO〉 =
1

2
|FO〉 , T̂ zi |AO〉 = ±1

2
|AO〉 , (3.1)

where the sign takes opposite values every other lattice site in the alternating
orbital ordered state. In these cases the exchange parameters do not depend
on the lattice site and become Jij = J = J1 ± J3 and Kij = K = ±J2/4,
and therefore, neglecting the constant term, Eq. (1.3) becomes

Ĥ = J
∑
〈i,j〉

Ŝi · Ŝj , (3.2)

which is nothing else than an effective Heisenberg Hamiltonian with near-
est neighbor interaction, where the exchange parameter J and, as a con-
sequence, the ferromagnetic or antiferromagnetic nature of the spin ground
state, is determined by the superexchange interactions between nearest neigh-
bor transition metal ions. Examples of magnetic and orbital orders which
are considered in this Chapter are shown in Figs. 3.2 and 3.5. Nevertheless,
one can consider a more general class of orbital orders defined by

T̂ zi
∣∣O(Q̄)

〉
=

1

2
eıQ̄·Ri

∣∣O(Q̄)
〉

(3.3)

40



3.1. Magnetic systems with orbital degrees of freedom

where Q̄ is the ordering vector of the orbital ordered ground state1 , which
coincides with Q̄ = 0 and Q̄ = (π, π, π) in the case, e.g., of three dimensional
ferroorbital and alternating orbital orders. However, Eq. (3.3) can describe
more complex types of orbital order, such as, for instance, a state with
Q̄ = (π, π, 0), having alternating orbitals on xy planes and same orbitals on
the the z direction.

Besides, one can consider also the case of an orbital liquid (OL) ground
state, where the orbital occupancies fluctuate in a similar way as spins in
a spin liquid state, and with vanishing expectation value of the pseudospin
operator

〈T̂ zi 〉OL = 0. (3.4)

In typical alternating orbital and ferroorbital states with large crystal
field Jahn-Teller interactions, it is reasonable [87] to assume a mean field
description of the orbital degrees of freedom, and describe the system with
an effective Heisenberg Hamiltonian as in Eq. (1.3) or Eq. (3.2). In the
orbital liquid state however, the mean field treatment of the orbital degrees
of freedom may be questionable, but the experimental results suggest that
this approach is valid as well [22]. However, if this is not the case, the nature
of the elementary excitations in such systems is not clear [88].

3.1.2 Magnon dispersion in a ferromagnet

The elementary excitations of the Heisenberg model of Eq. (1.3) for both
the ferromagnetic (Jij < 0) and antiferromagnetic (Jij > 0) cases are quan-
tized spin excitations which are known as magnons, or spin waves. This
magnon excitations correspond to Goldstone modes which arise as a conse-
quence of the spontaneous symmetry breaking of the rotational symmetry
of the ferromagnetic and antiferromagnetic ground states. In the rest of this
Section, we will derive the dispersion of the magnetic excitations in ferro-
magnets, antiferromagnets, and, in general, in magnetic systems with mixed
ferro and antiferromagnetic character.

To obtain the excitation spectra of a magnetic system one can at first
rewrite Eq. (3.2) in terms of spin ladder operators, as

Ĥ =
∑
〈i,j〉

Jij

[
1

2

(
Ŝ+
i Ŝ
−
j + Ŝ−i Ŝ

+
j

)
+ Ŝzi Ŝ

z
j

]
. (3.5)

The spin ladder operators commute at different sites, resembling the com-
mutation algebra of boson operators, whereas at the same site one has
[Ŝ+
i Ŝ
−
i ] = 2Ŝzi . For this reason, spin ladder operators can be approximated

as bosons, if there is no interaction nor superpositions of magnetic excita-
tions, i.e., if their density is small [89].

1 In order to guarantee the hermiticity of the pseudospin operators T̂ zi , the ordering
vector Q̄ is assumed to have components which are integer multiples of π.
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3. Unraveling orbital correlations via magnetic RIXS

In the ferromagnetic case Jij < 0, the ground states of the Heisenberg
Hamiltonian are defined as the states where all the spins are parallel to
a fixed direction. These ground states are degenerate and, although the
Heisenberg Hamiltonian is invariant respect to spin rotations, the realization
of a single ground state breaks the rotational symmetry. Therefore, one can
assume that the system is in the ground state |FM〉 with all the spin parallel
to a quantization axis2 z, and with Ŝzi |FM〉 = s |FM〉, where s is the spin
quantum number. The ordered ferromagnetic state is therefore described by
an ordering vector Q = 0 and by an order parameter which is defined as the
total spin of the system, i.e., as the magnetization M0 =

∑
i Si. To calculate

the magnon spectra, one can introduce the boson creation and annihilation
operators a†i and ai via the so called Holstein-Primakoff transformation

Ŝ+
i = (2s− α†iαi )

1
2αi ,

Ŝ−i = α†i (2s− α
†
iαi )

1
2 , (3.6)

Ŝzi = s− α†iαi ,

where one assumes that the boson operators satisfy the canonical commu-
tation rule [αi , α

†
j ] = δij . This transformation is canonical, in the sense

that the canonical commutation rules of the spin operators directly follows
from the canonical commutation rules of the boson operators. However, the
Fock space described by the new operators contains states with an unlimited
number of boson at any lattice site, in particular states with a number of
bosons ni > 2s which correspond to states with a component of the spin
on the quantization axis sz = s − ni < −s. These states are not physical
and, for this reason, one should restrict the Fock space only to states with
a number of bosons 0 ≤ ni ≤ 2s at any lattice site.

Considering only the linear and the quadratic terms of Eq. (3.6), i.e.,

taking Ŝ+
i ≈ αi and Ŝ−i ≈ α†i , and neglecting higher order terms, the spin

Hamiltonian 3.5 can be rewritten in terms of boson operators as

Ĥ =
∑
〈i,j〉

Jij

[
s
(
α†iαj + αiα

†
j − α

†
iαi − α

†
jαj

)
+ s2

]
, (3.7)

up to higher order terms. In this approximation, one considers only the
harmonic terms of the Hamiltonian, and therefore neglect any interaction
between boson, which arise from the neglected higher order terms. If one
assumes that the exchange constants Jij are translational invariant, i.e.,
depend only on the lattice displacement rij = Rj −Ri and not separately
on the lattice sites, a Fourier transform of the boson operators diagonalizes

2The spin quantization axis do not have, in general, to coincide to the quantization
axis of the orbital states, nor to any of the ion lattice axes.

42



3.1. Magnetic systems with orbital degrees of freedom

the Hamiltonian as

Ĥ =
∑
k

ωkα
†
kαk =

∑
k

s|J0| (1− Jk/J0)α†kαk, (3.8)

up to a constant term, and where Jk =
∑

j Jije
ık·rij and J0 =

∑
j Jij .

Therefore, the excited states of a ferromagnet have the form

α†k |FM〉 ≈ 1√
N

∑
i

eık·RiŜ−i |FM〉 , (3.9)

with dispersion ωk = s(Jk − J0). The magnon dispersion in a ferromagnet
is quadratic for small momenta k → 0. This is a consequence of the fact
that the order parameter operator of a ferromagnet, i.e., the magnetization
M̂0 =

∑
i Ŝi, does commute with the Heisenberg Hamiltonian. The ground

state |FM〉 coincides with the boson vacuum, since Eq. (3.9) implies that
αk |FM〉 = 0.

In particular, in the case of isotropic exchange constants Jij = J < 0
which are nonzero only for nearest neighbor sites, the magnon dispersion
becomes

ωk = zs|J |(1− γk), (3.10)

where γk = Jk/J0 =
∑z

j=1 e
ık·rij/z with the sum over the z nearest neigh-

bors lattice sites j. Figure 3.1 shows the magnon dispersion of a ferro-
magnet with s = 1/2 on a two dimensional square lattice, where γk =
1
2(cos kx + cos ky) and z = 4.

3.1.3 Magnon dispersion in an antiferromagnet

In the antiferromagnetic case instead, e.g., in the case where the nearest
neighbor exchange constants Jij > 0 dominate, the ground state and the
magnetic excitations of the Heisenberg Hamiltonian can be assumed, as a
first approximation, as perturbations to the Néel state, defined as an ordered
state where the spin are parallel and antiparallel every other site to a fixed
direction z, with Ŝzi |Néel〉 = ±s |Néel〉. This ordered state is described by an
ordering vector which is, e.g., Q = (π, π, π) in a three dimensional lattice,
and by an order parameter defined as the total staggered magnetization
M̂Q =

∑
i e
ıQ·RiŜi. However, it should be noted that the Néel state is

neither the ground state nor an eigenstate of the Heisenberg Hamiltonian in
Eq. (3.2), as become clear by considering the action of the Hamiltonian on
this state.

In the light of this, it is convenient to divide the spin lattice into two
sublattices A and B, corresponding to the spin up and down of the Néel
state, and rotate the spin operators in the second one by 2π around the x
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3. Unraveling orbital correlations via magnetic RIXS

axis, and therefore having Ŝ±i → Ŝ∓i and Ŝzi → −Ŝzi for spin operators on
the sublattice B. More precisely, one assume the transformation

Ŝ±i →
1

2

[(
1 + eıQ·Ri

)
Ŝ±i +

(
1− eıQ·Ri

)
Ŝ∓i

]
,

Ŝzi → eıQ·RiŜzi , (3.11)

where Q is the ordering vector of the antiferromagnetic Néel state. The
Hamiltonian 3.5 therefore becomes

Ĥ =
∑
〈i,j〉

Jij

[
1

2

(
Ŝ+
i Ŝ

+
j + Ŝ−i Ŝ

−
j

)
− Ŝzi Ŝzj

]
. (3.12)

At this point, one can introduce the boson operators α†i and αi via the
Holstein-Primakoff transformation as in Eq. (3.6), and therefore obtain the
bosonic Hamiltonian

Ĥ =
∑
〈i,j〉

Jij

[
s
(
αiαj + α†iα

†
j + α†iαi + α†jαj

)
− s2

]
, (3.13)

again neglecting higher order terms. In terms of Fourier transformed boson
operators the Hamiltonian becomes

Ĥ =
1

2
s
∑
k

[
Jk

(
α−kαk + α†kα

†
−k

)
+ J0

(
α†kαk + α−kα

†
−k

)]
, (3.14)

up to a constant term, and where again Jk =
∑

j Jije
ık·rij and J0 =

∑
j Jij .

The transformed Hamiltonian is not diagonal yet, but only mixes states
with momenta k and −k. To diagonalize the Hamiltonian, one can intro-
duce a new set of boson operators β†k and βk defined by the Bogoliubov
transformation

αk = ukβk − vkβ
†
−k, (3.15)

assuming the Bogoliubov factors uk = u−k and vk = v−k as real parame-
ters, and with the condition |uk|2 − |vk|2 = 1, which ensures that the new

operators satisfy the the canonical commutation relation [βk, β
†
k] = 1. The

Hamiltonian in Eq. (3.14) is diagonalized by the Bogoliubov transformation
in Eq. (3.15) in the case where the identity (u2

k + v2
k)Jk = 2ukvkJ0 is satis-

fied. Since the canonical condition u2
k−v2

k = 1 is analogous to the hyperbolic
functions identity cosh2 θ − sinh2 θ=1, one can parametrize the Bogoliubov
factors as uk = cosh θk and vk = sinh θk with θk = θ−k a real parameter.
Therefore, the Hamiltonian 3.14 is diagonalized by the Bogoliubov trans-
formation in Eq. (3.15) in the case where tanh 2θk = Jk/J0, which leads
to

uk =

√√√√ 1

2
√

1− γ2
k

+
1

2
, vk =

γk

|γk|

√√√√ 1

2
√

1− γ2
k

− 1

2
, (3.16)
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Figure 3.1: Magnon dispersion for a two dimensional magnet with s =
1/2 on a square lattice along a high symmetry path in the Brillouin zone,
respectively for ferromagnetic J < 0 and antiferromagnetic J > 0 coupling.

with γk = Jk/J0. The Hamiltonian is therefore diagonal in terms of the
Bogoliubov bosons, in the form

Ĥ =
∑
k

Ωk

(
β†kβk +

1

2

)
=
∑
k

sJ0

√
1− γ2

k

(
β†kβk +

1

2

)
. (3.17)

The ground state of the antiferromagnet is defined by the boson vacuum
βk |AF〉 = 0, which does not coincide with the Néel state, while the excited
states are defined as

β†k |AF〉 =
1√
N

∑
i

1

2

[
eık·Ri (uk + vk)

(
Ŝ−i + Ŝ+

i

)
+

eı(k+Q)·Ri (uk − vk)
(
Ŝ−i − Ŝ

+
i

) ]
|AF〉 , (3.18)

with dispersion Ωk = sJ0

√
1− γ2

k, which is linear for small momenta k→ 0.

The linearity of the magnon dispersion around the high symmetry point
k = 0 is a consequence of the fact that, in contrast to the ferromagnetic case,
the order parameter of an antiferromagnet, i.e., the staggered magnetization
M̂Q, does not commute in this case with the Heisenberg Hamiltonian.

In particular, in the case of isotropic exchange constants Jij = J > 0
which are nonzero only for nearest neighbor sites, the magnon dispersion in
Eq. (3.17) becomes

ωk = zsJ
√

1− γ2
k, (3.19)

where γk =
∑z

j=1 e
ık·tij/z with the sum over the z nearest neighbors lattice

sites j. Figure 3.1 shows the magnon dispersion for an antiferromagnet with
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3. Unraveling orbital correlations via magnetic RIXS

s = 1/2 on a two dimensional square lattice, where γk = 1
2(cos kx + cos ky)

and z = 4.

3.1.4 Anisotropic magnetic coupling

In this Section, we will assume that the exchange constants depend only
on the distance rij = Rj −Ri between the two lattice points involved, but
have a different sign on the plane xy and along the z direction. In this case,
the ground state of the system can be assumed to be a Néel-like ordered
state |Néel(Q)〉, characterized by an ordering vector Q, in such a way that

Ŝzi |Néel(Q)〉 = eıQ·Ris |Néel(Q)〉 , (3.20)

where the hermicity of the spin operator mandates that the exponential
factor takes only real values. For this reason, the local spin component
along the local quantization axis has to be either ±s and, as a consequence,
the components of the ordering vector Q have to be integer multiples of
π, e.g., Q = (0, π, 0) or Q = (π, π, 0). In this case, the spin operator
defined by the transformation in Eq. (3.11) are physical, and can be used to
describe the excitation of the system respect to the ordered state defined in
Eq. (3.20). As in the case of the Néel state of an antiferromagnet however,
this ordered state is not, in general, either a ground state or an eigenstate
of the Heisenberg Hamiltonian in Eq. (3.2). Nevertheless, this ordered state
describes a wide range of systems where up and down spins alternate on the
lattice, e.g., with an antiferromagnetic alignment on some directions, and
ferromagnetic in others. However, it does not describes systems where the
magnetic unit cell is larger than the one of a pure antiferromagnet, such
as in the case of, e.g., helimagnetic order, or more exotic incommensurate
orders.

Therefore, rotating the spin operator as in Eq. (3.11), using the fact that
e2Q·Ri = 1 for the ordering vectors considered, and applying the Holstein-
Primakoff transformation as in Eq. (3.6), the Hamiltonian 3.2 can be rewrit-
ten in terms of the boson operators as

Ĥ =
1

4
s
∑
〈i,j〉

Jij

[ (
1 + eıQ·rji

) (
αiα

†
j + α†iαj

)
+
(
1− eıQ·rji

) (
αiαj + α†iα

†
j

)
+

−2eıQ·rji
(
α†iαi + α†jαj

) ]
, (3.21)

neglecting constant and higher order terms. In terms of the Fourier trans-
formed boson operators, the Hamiltonian becomes

Ĥ =
1

4
s
∑
k

[
(Jk − Jk+Q)

(
α−kαk + α†kα

†
−k

)
+ (Jk + Jk+Q − 2JQ)

(
α†kαk + α−kα

†
−k

) ]
, (3.22)
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3.2. Magnetic RIXS cross section

which closely resembles Eq. (3.14) if one defines J̃k = 1
2 (Jk − Jk+Q) and

J̃0 = 1
2 (Jk + Jk+Q − 2JQ). Therefore the Hamiltonian 3.22 is diagonalized

by the Bogoliubov transformation in Eq. (3.15) with the Bogoliubov factors
defined as in Eq. (3.16) with the substitution γk → γ̃k = J̃k/J̃0, in the form

Ĥ =
∑
k

εk

(
β†kβk +

1

2

)
=
∑
k

sJ̃0

√
1− γ̃2

k

(
β†kβk +

1

2

)
. (3.23)

The ground state of the system is again defined as the boson vacuum
βk |S(Q)〉 = 0, while the excited states β†k |S(Q)〉 have dispersion εk =

sJ̃0

√
1− γ̃2

k. In particular, in the case of a pure ferromagnetic (Jij < 0)

or antiferromagnetic (Jij > 0) system, the magnon dispersion in Eq. (3.23)
reduces respectively to Eqs. (3.10) and (3.19).

As an example, one can consider a three dimensional cubic lattice with
s = 1/2, with different combinations of ferromagnetic and antiferromagnetic
exchange constants in the xy plane and on the perpendicular direction z.
For example, in the case of a system with ferromagnetic exchange constant
Jxy < 0 in the xy plane, and antiferromagnetic Jz > 0 along the z direction,
whose ground state can be approximated as an ordered state with ordering
vector Q = (0, 0, π), the magnon dispersion in Eq. (3.23) becomes

εk =

√
(Jz − 2Jxy + Jxy cos kx + Jxy cos ky)

2 − J2
z cos2 kz. (3.24)

Alternatively, in the case of a system with an antiferromagnetic exchange
constant Jxy > 0 in the xy plane, and ferromagnetic Jz < 0 along the
z direction, with ordering vector Q = (π, π, 0), the magnon dispersion in
Eq. (3.23) becomes

εk =

√
(2Jxy − Jz + Jz cos kz)

2 − (Jxy cos kx + Jxy cos ky)
2. (3.25)

In all these cases, the magnon dispersion is linear near the symmetry point
k = 0, as well as the pure antiferromagnetic case, since also in this case
the order parameter, i.e., the staggered magnetization M̂Q do not commute
with the Hamiltonian.

3.2 Magnetic RIXS cross section

3.2.1 Magnetic RIXS in orbital systems

RIXS is particularly apt to probe the properties of strongly correlated
electrons, for instance in transition metal oxides [68]. With an incident x-
ray beam of energy ~ωk and momentum k an electron is resonantly excited
from a core level into the valence shell. At the transition metal L2,3 edges
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3. Unraveling orbital correlations via magnetic RIXS

this involves a 2p↔ 3d dipole-allowed transition. In this intermediate state,
the spin of the 2p core hole is not conserved, as the very large spin-orbit
interactions strongly couple the spin and orbital momentum of the core hole.
A spin flip in the core allows the subsequent recombination of the core hole
with a 3d electron that has a spin opposite to the electron state that was
originally excited into the 3d shell. The energy ~ωk′ and momentum k′ of the
scattered x-ray photon resulting from this recombination are then related to
a spin excitation with energy ~ω = ~ωk′ − ~ωk and momentum q = k− k′.

In order to calculate the direct RIXS cross section of magnetic excita-
tions at the transition metal L2,3 edges, we will use the Eq. (2.4) and the
expansion of the RIXS operator Ô = 1√

N

∑
i e
ıq·RiÔi in terms of the local

RIXS operator Ôi as defined in Section 2.1.3. Moreover, since the focus here
is on the direct scattering processes at the transition metal L2,3 edges, we
will employ the fast collision approximation in the case of strong spin-orbit
coupling as in Eq. (2.30) and the expansion of the local RIXS operator in
the case of p↔ d transitions as in Section 2.2.5.

Magnetic excitations in a ferromagnetic or in an antiferromagnetic sys-
tems are excited states which are a linear combinations of local spin flip
states, as one can see from Eqs. (3.9) and (3.18). Moreover, in the limit
where the local degrees of freedom can integrated out, one restrict oneself
only to purely magnetic excitations, i.e., in which the local orbital momen-
tum is conserved. Therefore, the local transition amplitudes, i.e., the matrix
elements of the local RIXS operator Ôi, which are relevant for the calcu-
lation of the RIXS cross section of purely magnetic excitations are those
between states with the same orbital occupancy and opposite spin, that is

W+
ee′(d) = 〈d ↑| Ôi |d ↓〉 , W−ee′(d) = 〈d ↓| Ôi |d ↑〉 , (3.26)

with W+
ee′(d) = W−ee′(d)∗, and where |dσ〉 denotes the local electron state

with orbital d and spin σ. Hence, the local RIXS operator in Eq. (2.13) can
be rewritten in terms of this local transition amplitudes as

Ôi =
∑
σ=±

∑
d

n̂i(d)W σ
ee′(d)Ŝσi , (3.27)

where the number operator n̂i(d) =
∑

σ d
†
iσdiσ counts the occupancy of the

orbital state d for valence electrons in the 3d shell on the lattice site i. Note
that Eq. (3.27) follows directly from Eq. (2.34) in Section 2.2.4 when one
considers only spin flip transitions within the same orbital state. If one
consider only two active orbitals d = a, b, and introduces the pseudospin
operator as in Eq. (1.2), the RIXS operator Ô becomes

Ô =
1√
N

∑
i

eıq·Ri
∑
σ=±

[(
1

2
+ T zi

)
W σ

ee′(a) +

(
1

2
− T zi

)
W σ

ee′(b)

]
Ŝσi ,

(3.28)
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3.2. Magnetic RIXS cross section

where one has T zi |dσ〉 = ±1
2 |dσ〉 respectively for d = a, b. The local transi-

tion amplitudes W±ee′(d) in Eq. (3.26) strongly depend on the photon polar-
izations and on the orbital occupancy at the lattice site i. This is because
the local RIXS operator is defined in terms of the dipole operator as in
Eq. (2.13), which inherently depends on the orbital angular momentum of
the scattered valence electrons [75,90,91].

3.2.2 Orbital dependence of the RIXS operator

As stated above the orbital dependence of local transition amplitudes
W±ee′(d) is generic to any orbital system. Nevertheless, to be explicit, we
will show how this dependence arises in the simple case of direct RIXS
scattering at the L2,3 transition metal edges. In this case in fact, the direct
scattering processes dominate since the transitions 2p ↔ 3d between the
valence 3d electrons and the core hole state in the 2p shell are dipole allowed.
Therefore, using the fast collision approximation in the case of strong spin-
orbit coupling as in Eq. (2.28) and the definition of the local RIXS operator
in Eq. (2.13), the local transition amplitudes in Eq. (3.26) become

W+
ee′(d) = W−ee′(d)∗ = 〈d ↑|

(
e′∗ · D̂†i

)
L̂ · Ŝ

(
e · D̂i

)
|d ↓〉 , (3.29)

where D̂i ≈ p̂i in the dipole approximation, L̂ and Ŝ are the orbital angular
momentum and the spin of the core hole, and where the constant term in
the propagator as well as constant prefactors in Eq. (2.28) are neglected.
The compact expression of the core hole propagator and of the local RIXS
operator can be further expanded as in Eq. (2.40), and leads to the schematic
representation in Fig. 2.8. While the intermediate state propagator Ĝ0 ∝
L̂ · Ŝ brings the spin dependence due to the spin-orbit coupling in the 2p
core hole states, the dipole operator D̂i acts in a different way depending
on the orbital occupancy on the lattice site i. Therefore the local transition
amplitudes W±ee′(d) strongly depends on the orbital symmetry of the ground
state.

Having analyzed the inherent dependence of the local transition ampli-
tudes W±ee′(d) on the orbital occupancy of the single lattice site, one can now

investigate how the RIXS operator Ô in Eq. (3.28) acts on the orbital ground
state of the bulk. In general, since the pseudospin operator T zi |FO〉 = 1

2 |FO〉
at any lattice site in the ferroorbital state while T zi |AO〉 = ±1

2 |AO〉 every

other site in the alternating orbital state, the RIXS operator Ô acts differ-
ently on different orbital ground states. Hereafter, we will consider different
orbital ground states in magnetic systems on a two dimensional lattice: a
ferroorbital (FO) order with the same orbital occupied on each site, an alter-
nating orbital (AO) order with a (b) orbitals occupied on sublattice A (B),
both defined in Eq. (3.1), a more general example of orbital ordered state
O(Q̄) characterized by an orbital ordering vector Q̄, defined in Eq. (3.3),
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3. Unraveling orbital correlations via magnetic RIXS

and finally an orbital liquid (OL) ground state with the occupancies of a
and b orbitals fluctuating similarly to the up and down spins in the spin
liquid state, as in Eq. (3.4). Eventually, the RIXS cross section of magnetic
excitations can be calculated via Eq. (2.4) in terms of the transition am-
plitudes 〈g| Ô |f〉, i.e., the matrix elements of the RIXS operator between

the system ground state, and the magnetic excited final states α†q |FM〉 and

β†q |AF〉 defined in Eqs. (3.9) and (3.18) respectively for ferromagnetic and
antiferromagnetic systems. In this way, we will show how the orbital ground
state affects the RIXS spectra of magnetic excitations.

3.2.3 Ferromagnetic case

In the case of a ferromagnetic system, the only spin operators which
are relevant for the calculation of the RIXS transition amplitudes are the
operators Ŝ−i , since one has Ŝ+

i |FM〉 = 0. Moreover, using the definition
of ferroorbital order in Eq. (3.1), and the definition of magnetic excitations
in a ferromagnet in terms of Holstein-Primakoff bosons as in Eq. (3.9), the
action of the RIXS operator in Eq. (3.28) on a ferromagnet with ferroorbital
order is

Ô |FM⊗FO〉 = W−ee′(a)α†q |FM⊗FO〉 . (3.30)

On the other hand, considering the alternating orbital order as in Eq. (3.1),
the action of the RIXS operator in Eq. (3.28) on a system with ferromagnetic
and alternating orbital order becomes

Ô |FM⊗AO〉 =
1

2

{ [
W−ee′(a) +W−ee′(b)

]
α†q+[

W−ee′(a)−W−ee′(b)
]
α†q+Q

}
|FM⊗AO〉 , (3.31)

where Q = Q̄ is the ordering vector of the alternating orbital state as well
as the antiferromagnetic ordered state. Since the alternating orbital order
breaks the physical equivalence of the lattice sites, with the two sublattices
corresponding to different occupied orbitals a and b, the magnetic and the
orbital Brillouin zones do not longer coincide, and therefore a new branch
of the magnon dispersion appears, corresponding to excitations in the form
α†q+Q with energy ωq+Q, due to the backfolding in the orbital Brillouin
zone. The new branch of the magnon dispersion corresponds to an optical
mode, since ωq+Q = 4|J | for q = 0, and gains a finite scattering intensity
∝ |W−ee′(a)−W−ee′(b)|

2 as long as the spin flip amplitudes for orbitals a and
b differ.

In the case of an orbital liquid state instead, the two active orbitals
fluctuate and the expectation value of the pseudospin operator vanishes and
therefore, approximating the action of the operator with its mean value,
Eq. (3.28) becomes

Ô |FM⊗OL〉 =
1

2

[
W−ee′(a) +W−ee′(b)

]
α†q |FM⊗OL〉 . (3.32)

50



3.2. Magnetic RIXS cross section

FM⊗FO |W−
ee′ (a)|2δ (ω − ωq)

FM⊗AO |W−
ee′ (a) +W−

ee′ (b)|2δ (ω − ωq) + |W−
ee′ (a)−W−

ee′ (b)|2δ
(
ω − ωq+Q

)
FM⊗OL |W−

ee′ (a) +W−
ee′ (b)|2δ (ω − ωq)

AF⊗FO |W−
ee′ (a)|2 (uq − vq)2 δ (ω − Ωq)

AF⊗AO |
[
W−

ee′ (a) +W+
ee′ (b)

]
uq −

[
W+

ee′ (a) +W−
ee′ (b)

]
vq|2δ (ω − Ωq) +

|
[
W−

ee′ (a)−W+
ee′ (b)

]
uq+Q −

[
W+

ee′ (a)−W−
ee′ (b)

]
vq+Q|2δ

(
ω − Ωq+Q

)
AF⊗OL |W−

ee′ (a) +W−
ee′ (b)|2 (uq − vq)2 δ (ω − Ωq)

Table 3.1: Magnetic RIXS cross sections for alternating orbital (AO),
ferroorbital (FO), and orbital liquid (OL) states in ferromagnetic (FM) and
antiferromagnetic (AF) systems. Constant factors are omitted.

In this case there is no optical mode, since the orbital liquid state does not
break the translation symmetry of the lattice.

Finally, using Eq. (2.4), the RIXS cross section can be directly calcu-
lated in terms of the transition amplitudes 〈g| Ô |f〉. In Table 3.1 is shown
the explicit form of the RIXS cross section of magnetic excitations in a fer-
romagnet in the case of ferroorbital, alternating orbital order, and orbital
liquid state.

3.2.4 Antiferromagnetic case

In the case of an antiferromagnetic system, using the definition of fer-
roorbital order in Eq. (3.1), and consequently applying the rotation of the
spin operators in Eq. (3.11), the Holstein-Primakoff and the Bogoliuov trans-
formation defined in Eqs. (3.6) and (3.15), the action of the RIXS operator
in Eq. (3.28) on an antiferromagnet with ferroorbital order becomes

Ô |AF⊗FO〉 = W−ee′(a) (uq − vq)β†q |AF⊗FO〉 , (3.33)

with uq and vq defined as in Eq. (3.16). In this case, the RIXS operator
leads to vanishing intensities at q→ 0, in agreement with Ref. [92].

On the other hand, considering the alternating orbital order as in Eq. (3.1),
and again applying the spin rotation, the Holstein-Primakoff and the Bo-
goliuov transformation, the action of the RIXS operator in Eq. (3.28) on an
antiferromagnet with alternating orbital order becomes

Ô |AF⊗AO〉 =
1

2

{ [
W−ee′(a) +W+

ee′(b)
]
uqβ

†
q

−
[
W+

ee′(a) +W−ee′(b)
]
vqβ

†
q

+
[
W−ee′(a)−W+

ee′(b)
]
uq+Qβ

†
q+Q

−
[
W+

ee′(a)−W−ee′(b)
]
vq+Qβ

†
q+Q

}
|AF⊗AO〉 . (3.34)
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S(Q)⊗O(Q̄) <
[
W−

ee′ (a) +W−
ee′ (b)

]2
(uq − vq)2 δ (ω − εq) +

<
[
W−

ee′ (a)−W−
ee′ (b)

]2 (
uq+Q̄ − vq+Q̄

)2
δ
(
ω − εq+Q̄

)
+

−=
[
W−

ee′ (a) +W−
ee′ (b)

]2 (
uq+Q + vq+Q

)2
δ
(
ω − εq+Q

)
+

−=
[
W−

ee′ (a)−W−
ee′ (b)

]2 (
uq+Q+Q̄ + vq+Q+Q̄

)2
δ
(
ω − εq+Q+Q̄

)
S(Q)⊗OL <

[
W−

ee′ (a) +W−
ee′ (b)

]2
(uq − vq)2 δ (ω − εq) +

−=
[
W−

ee′ (a) +W−
ee′ (b)

]2 (
uq+Q + vq+Q

)2
δ
(
ω − εq+Q

)

Table 3.2: Magnetic RIXS cross sections for a system with magnetic order
(ordering vector Q), respectively with orbital order (ordering vector Q̄) and
orbital liquid state (OL). Constant factors are omitted.

In contrast with the ferroorbital case, in this case the RIXS operator leads
in general to a nonvanishing intensity at q→ 0 as a result of the alternating
orbital ordering. Moreover, in the usual case of an antiferromagnet described
by an Heisenberg Hamiltonian with only nearest neighbor interaction on a
cubic or on a square lattice, one has Ωq+Q = Ωq, and therefore the magnetic

excitations β†q and β†q+Q are degenerate. As a consequence, no additional
branch appears in the magnon dispersion, in contrast to the ferromagnetic
case (although any corrections to the Heisenberg model for which Ωq+Q 6=
Ωq will give rise to a new branch in the dispersion).

Eventually, in the case of an orbital liquid state, approximating again the
action of the pseudospin operator with its mean value, Eq. (3.28) becomes

Ô |AF⊗OL〉 =
1

2

[
W−ee′(a) +W−ee′(b)

] (
uqβ

†
q − vqβ

†
−q

)
|AF⊗OL〉 . (3.35)

As in the ferroorbital case, RIXS intensities vanish at q→ 0.

Again, using Eq. (2.4), the RIXS cross section can be directly calculated
in terms of the transition amplitudes 〈g| Ô |f〉. In Table 3.1 is shown the
explicit form of the RIXS cross section of magnetic excitations in a antifer-
romagnet in the case of ferroorbital, alternating orbital order, and orbital
liquid state.

3.2.5 General case

Finally, one can consider the case of a generic spin system with orbital
degrees of freedom described by the Heisenberg Hamiltonian 3.2, assuming
an orbital ordered state

∣∣O(Q̄)
〉

described by Eq. (3.3) with orbital ordering
vector Q̄ and the spin ground state of Eq. (3.23) with a spin ordering vector
Q. In this case, using the definition of orbital order and consequently apply-
ing the rotation of the spin operators in Eq. (3.11), the Holstein-Primakoff
and the Bogoliuov transformation defined in Eqs. (3.6) and (3.15), the action
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of the RIXS operator in Eq. (3.28) on a generic spin-orbital system becomes

Ô
∣∣S(Q)⊗O(Q̄)

〉
=

1

2

{
<
[
W−ee′(a) +W−ee′(b)

]
(uq − vq)β†q

+<
[
W−ee′(a)−W−ee′(b)

] (
uq+Q̄ − vq+Q̄

)
β†

q+Q̄

+ı=
[
W−ee′(a) +W−ee′(b)

]
(uq+Q + vq+Q)β†q+Q

+ı=
[
W−ee′(a)−W−ee′(b)

] (
uq+Q+Q̄ + vq+Q+Q̄

)
β†

q+Q+Q̄

}
×
∣∣S(Q)⊗O(Q̄)

〉
, (3.36)

where uq and vq are defined as in Eq. (3.16) with γq → γ̃q = J̃q/J̃0, and
using the fact that W+(d) = W−(d)∗.

In the case of an orbital liquid state instead, the mean value of the
pseudospin operator vanishes and therefore in the mean field approximation
the terms in Eq. (3.36) with Q̄ do not contribute, and the RIXS operator
becomes

Ô |S(Q)⊗OL〉 =
1

2

{
<
[
W−ee′(a) +W−ee′(b)

]
(uq − vq)β†q

+ı=
[
W−ee′(a) +W−ee′(b)

]
(uq+Q + vq+Q)β†q+Q

}
× |S(Q)⊗OL〉 , (3.37)

Table 3.2 shows the explicit form of the RIXS cross section for magnetic
excitations in a generic spin system with orbital order or with an orbital
liquid state calculated via Eq. (2.4) using Eqs. (3.36) and (3.37).

3.3 Magnetic RIXS spectra and orbital order

3.3.1 RIXS spectra of two dimensional CuO systems

The strong dependence of the RIXS cross section of magnetic excitations
in Table 3.1 and of the the local transition amplitudes in Eq. (3.26) on the
orbital ground state is generic to any transition metal L2,3 edge. This is
because this dependence is merely due to the properties of the dipole tran-
sitions and to the spin-orbit coupling, and not to the particular electronic
configuration of the transition metal ions. In this Section we will show how
this dependence arises in a cuprate-like system, i.e., in a two dimensional
layer of Cu2+ ions, with one hole in the Cu 3d orbital. We will assume
either a ferromagnetic or an antiferromagnetic order with the spin in the xy
plane. On top of this, we will consider three kinds of orbital ground state,
i.e., the ferroorbital order formed by the hole state in the dx2−y2 orbital at
each transition metal ion; the alternating orbital order formed by the set of
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3. Unraveling orbital correlations via magnetic RIXS

(a) FM-FO (b) AF-FO

(c) FM-AO (d) AF-AO

Figure 3.2: Examples of two dimensional systems with ferromagnetic and
ferroorbital orders (FM-FO), antiferromagnetic and ferroorbital orders (AF-
FO), ferromagnetic and alternating orbital orders (FM-AO), and antiferro-
magnetic and alternating orbital orders (AF-AO).

two alternating orbitals

{
dz2−x2 , dy2−z2

}
=

{√
3

2
d3z2−r2 −

1

2
dx2−y2 ,−

√
3

2
d3z2−r2 −

1

2
dx2−y2

}

at every other transition metal ion site; and the orbital liquid state where
these two orbitals fluctuate with the same expectation value. The ferromag-
netic and antiferromagnetic states with ferroorbital and alternating orbital
orders considered are shown in Figs. 3.2 and 3.5. The dispersion of mag-
netic excitations in such a two dimensional system are given by Eqs. (3.10)
and (3.19) respectively in the ferromagnetic and in the antiferromagnetic
case, while the RIXS cross section of these excitations in the case of fer-
roorbital, alternating orbital order, and orbital liquid state are given in Ta-
ble 3.1. The local transition amplitudes W±ee′(d) are evaluated via Eq. (3.26)
considering the relevant t2g orbitals and the spin in the xy plane.

Figure 3.3 shows the RIXS intensities as a function of transferred mo-
mentum and energy loss in a ferromagnet and an antiferromagnet, with
ferroorbital and alternating orbital orders, averaged over all possible inci-
dent and scattered polarizations. In the ferromagnetic case, the additional
optical branch of the magnetic excitation dispersion signals the onset of the
alternating orbital order. The optical branch intensities are proportional to
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q

Figure 3.3: Magnetic RIXS cross section Iee′(q, ω) for a ferromagnet (FM)
and an antiferromagnet (AF) with ferroorbital (FO) and alternating orbital
(AO) orders along a high symmetry path in the Brillouin zone, averaged
over the polarizations of the incident and scattered radiation. The ferroor-
bital order consist of dx2−y2 orbital at each transition metal ion, while the
alternating orbital order of dx2−z2 and dy2−z2 orbital every other site. In
the ferromagnetic case, an optical mode signals the onset of the alternat-
ing orbital order, while in the antiferromagnetic case, spectral intensities at
q = 0 vanish in the ferroorbital case, but diverge in the alternating orbital
case. Spectra in the case of an orbital liquid state (not shown) differ only
quantitatively from the ferroorbital case.

|W−ee′(dz2−x2)−W−ee′(dy2−z2)|2 and therefore are finite since the local tran-
sition amplitudes relative to a spin flip transition in Eq. (3.26) differ for the
two orbitals considered. The presence of the optical mode arises from break-
ing the translational symmetry into two physically inequivalent sublattices,
which have a different orbital occupancy. Spectra in the case of the orbital
liquid state differ only quantitatively from the ferroorbital order case. In
the antiferromagnetic case instead, no additional optical branch is present,
since the translational symmetry is not further broken by the onset of an
alternating orbital order. However, the magnetic RIXS spectra differ in the
case of a ferroorbital (or orbital liquid state) and alternating orbital orbital
orders. In the ferroorbital case, spectral intensities vanish at the Γ point
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|D
L
R
|

q

Figure 3.4: RIXS circular dichroism |DLR(q, ω)| at ω = Ωq as a function
of transferred momentum q of an antiferromagnet for ferroorbital (dashed
line) and alternating orbitals (solid line) orders.

(q = 0) while they diverge in the case of alternating orbital order for q→ 0.

Moreover, in the antiferromagnetic case, RIXS spectra are strongly sen-
sitive to the choice of the x-ray polarizations. In particular, one can define
the circular dichroism of RIXS spectra as the normalized difference between
RIXS intensities of orthogonal circular polarizations of the incident x-ray
photon

DLR(q, ω) =
IeL(q, ω)− IeR(q, ω)

IeL(q, ω) + IeR(q, ω)
, (3.38)

where IeL(q, ω) and IeR(q, ω) are the spectral intensities corresponding re-
spectively to the incident photon left and right circular polarizations eL and
eR. Figure 3.4 shows the RIXS circular dichroism for an antiferromagnet, as
a function of transferred momentum q and at energy ω = Ωq, in the case of
ferroorbital and alternating orbital orders. In the ferroorbital case, the cir-
cular dichroism vanishes, since left and circular polarizations are symmetric
respect to the time reversal symmetry, as well as the antiferromagnetic sys-
tem, up to lattice translations. In the alternating orbital case however, the
time reversal symmetry of the antiferromagnet is not recovered by lattice
translations. Therefore, the response of the system to left and right po-
larizations is no longer equivalent, and a finite circular dichroism appears.

3.3.2 A case study: KCuF3

In this Section we will consider the RIXS spectra of magnetic excita-
tions in the so-called A-AF state, i.e., ferromagnetic planes with antifer-
romagnetic coupling along the z direction perpendicular to the planes, as
realized in KCuF3 below T < TN ∼ 38 K [23, 24]. The magnetic ordered
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state A-AF is characterized by an ordering vector Q = (0, 0, π), and the
corresponding magnetic excitations have dispersion given by Eq. (3.24). Be-
sides the magnetic ordering, we will consider here three different orbital
ground states [23]: (i) C-AO state, i.e., alternating orbitals within the xy
planes with same orbitals stacked along the z direction, realized in the (d)-
type polytype of KCuF3 below T < TS ∼ 800 K [22], (ii) G-AO state, i.e.,
isotropic three dimensional alternating orbital state, realized in the (a)-type
polytype of KCuF3 below T < TS ∼ 800 K [22], and (iii) orbital liquid (OL)
state (not realized in KCuF3 but included for comparison). The C-AO and
the G-AO orders are described by the orbital ordering vector Q̄ = (π, π, 0)
and Q̄ = (π, π, π) respectively. Moreover, two different sets of alternat-
ing orbitals {a, b} are considered: (i) dx2−y2 and d3z2−r2 orbitals, in the
limit of vanishing orbital-lattice interactions (crystal field and Jahn-Teller
interaction), and (ii) dx2−z2 and dy2−z2 orbitals, which are favored by the
orbital-lattice interactions, which probably represent a realistic description
of the actual orbital ground states realized in KCuF3 polytypes [22]. The
magnetic A-AF state with orbital C-AO and G-AO orders, for the two sets
of alternating orbitals considered, are shown in Fig. 3.5.

The spin wave excitations in the A-AF magnetic state are described by
the Heisenberg Hamiltonian with nearest neighbor anisotropic interaction

H = Jxy
∑
〈i,j〉||x,y

Si · Sj + Jz
∑
〈i,j〉||z

Si · Sj , (3.39)

where the spin exchange constants Jxy < 0 and Jz > 0 refer to near-
est neighbors respectively within the planes xy and along the z direction.
The anisotropic structure of this spin-only Hamiltonian stems from the full
Kugel-Khomskii spin-orbital Hamiltonian [22], when orbital degrees of free-
dom, which are responsible for the onset the C-AO or the G-AO orbital or-
ders, are integrated out. As a consequence, the values of the spin exchange
constants Jxy and Jz depend on the orbital ground state. The magnon
dispersion in the A-AF magnetic state of KCuF3 corresponds to the case
of ferromagnetic coupling in the xy plane and antiferromagnetic coupling
along the perpendicular direction z in Eq. (3.24). The RIXS cross section
of these excitations in the case of C-AO and G-AO orders and orbital liq-
uid (OL) states are given in Table 3.2, considering the magnetic ordering
vector Q = (0, 0, π) of the A-AF magnetic state and the orbital ordering
vector Q̄ = (π, π, 0) and Q̄ = (π, π, π) respectively for the two orbital orders
considered. The local transition amplitudes W±ee′(d) for the two sets of t2g
orbitals are evaluated via Eq. (3.26).

In Fig. 3.6 are shown the RIXS cross sections for the two different orbital
orders and for the orbital liquid state, for two choices of the orbital occu-
pancies, assuming that |Jxy/Jz| = 0.06 as in Ref. [22, 24]. While no clear
signature in the RIXS spectra allows one to distinguish between the two
sets of orbital occupancies {dx2−y2 , d3z2−r2} and {dx2−z2 , dy2−z2} (a subtle
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(a) C-AO {dx2−y2 , d3z2−r2} (b) G-AO {dx2−y2 , d3z2−r2}

(c) C-AO {dx2−z2 , dy2−z2} (d) G-AO {dx2−z2 , dy2−z2}

Figure 3.5: The magnetic A-AF state with orbital C-AO and G-AO orders,
as realized respectively in the (d)-type and (a)-type KCuF3 polytypes, for
the two sets of alternating orbitals {dx2−y2 , d3z2−r2} and {dx2−z2 , dy2−z2}
considered.
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q

Figure 3.6: Magnetic RIXS cross section Iee′(q, ω) for KCuF3 along a high
symmetry path in Brillouin zone for three different orbital ground states
(from left to right, C-AO, G-AO and orbital liquid state), formed by al-
ternating dx2−y2 and d3z2−r2 orbitals (top row), and alternating dx2−z2 and
dy2−z2 orbitals (bottom row), and with the spin in the xy plane. The cross
section is averaged over incident and scattered photon polarizations and the
exchange parameter are chose such that |Jxy/Jz| = 0.06. The high symme-
try points in the Brillouin zone are defined as Γ = (0, 0, 0), X = (π, 0, 0),
M = (π, π, 0), and Z = (0, 0, π). The color scale is nonlinear, since intensities
diverge at Z in every case, and at M in the G-AO case.

intensity shift between the optical and the acoustic branch is hardly visible),
differences between the C-AO, G-AO orders and orbital liquid state show
off strikingly (see Fig. 3.6). In fact, in the case of an orbital liquid state,
only the acoustic branch of the magnon dispersion is present, whereas in the
case of alternating orbital orders (C-AO and G-AO) the additional optical
branch appears (compare with the differences between the ferroorbital and
alternating orbitals states in Fig. 3.3). Moreover, spectral intensities of the
optical branch at M = (π, π, 0) discriminate between the two different al-
ternating orbitals orders, vanishing in the C-AO, and diverging in the the
G-AO case.

Therefore, magnetic RIXS cross section allows one to distinguish be-
tween the various orbitally ordered phases which are predicted to be sta-
ble in KCuF3 [22]. Furthermore, the spectrum of the orbital liquid phase
(which is not stable in the magnetically ordered phase of KCuF3 [22]) is
strikingly different from the one of the ordered phases. This shows that the
magnetic RIXS cross section strongly depends on orbital correlations — as
already discussed in simplest case of two dimensional magnetic systems in
Section 3.3.1.

59



3. Unraveling orbital correlations via magnetic RIXS

3.3.3 Discriminating different orbital states

As shown in Fig. 3.2, RIXS spectra can discriminate the alternating
orbital against ferroorbital order or orbital liquid ground state. Whereas
in the ferromagnetic case the optical magnon branch signals the onset of
the alternating orbital order, in the antiferromagnetic case the intensity of
magnons with momenta q → 0 does not vanish in the alternating orbital
case, contrarily to the ferroorbital and orbital liquid case. This dependence
is not due to distinct magnon dispersions for different orbital or electronic
ground states [87, 93, 94], but to the orbital dependency of magnetic RIXS
amplitudes.

Furthermore, circular dichroism of magnetic RIXS intensities allows one
to distinguish between different orbital ground states, as shown in Fig. 3.4.
While in ferromagnets the presence of a finite circular dichroism depends
on the symmetry of the orbital occupied, in antiferromagnets it only de-
pends on the system translational symmetry. Specifically, in antiferromag-
nets with ferroorbital order (AF-FO) or with orbital liquid state (AF-OL)
circular dichroism vanishes, while in the case of alternating orbital order
(AF-AO) the circular dichroism is nonzero (provided that spin flip ampli-
tudes are finite for both orbitals forming the alternating orbital ground state,
cf. Ref. [92]).

In fact, if there is an alternating orbital order in a magnetic system,
translational symmetry is broken into two physically inequivalent sublat-
tices, as shown in Fig. 3.7. Consequently an optical branch in the magnon
dispersion in a ferromagnet with alternating orbital order (FM-AO). On the
other hand, while an antiferromagnet with ferroorbital order (AF-FO) or
with a orbital liquid state (AF-OL) is symmetric under the combination of
time reversal (which flips the spin directions) and a discrete translation [95],
in the case of an alternating orbital order (AF-AO) the latter is broken, as
shown in Fig. 3.7. Macroscopically [96], that means that the system is no
longer symmetric under the combination of time reversal and translation. As
a consequence, a finite circular dichroism appears, i.e., RIXS intensities cor-
responding to left and right circular polarizations of the incident radiation
are no longer equivalent.

Although the actual values of the local transition amplitudes W±ee′(d)
depend on the orbital symmetry at each ion site, differences in the RIXS
spectra between different orbital ground states show up (cf. Fig. 3.3 and
Fig. 3.4), as long as W±ee′(a) 6= W±ee′(b). For this reason, the discrimina-
tion between different orbital states does not rely on the particular orbital
occupancy on the single ion site, but on the breaking of the translational
symmetry caused by the onset of the alternating orbital order orbital order.

While other inelastic scattering methods have been theoretically pro-
posed to detect orbital ordering [97, 98], it should be stressed that, due
to the onset of characteristic dispersion, the magnetic peaks in RIXS can,
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(a) FM-FO: T̂ (b) FM-AO: T̂ 2

(c) AF-FO: Θ̂T̂ ,T̂ 2 (d) AF-AO: T̂ 2

Figure 3.7: (a) Translation vector T̂ which transform the ferromagnetic
system with ferroorbital order in itself. (b) In the case of an alternating or-
bital order, the ferromagnet is no longer invariant under a translation T̂ of
one lattice site, but it is still invariant under the translation T̂ 2 of two lattice
sites. The translation symmetry is lowered by the onset of the alternating or-
bital order. (c) An antiferromaget with ferroorbital order is invariant under
the combination of a lattice translation T̂ and time reversal Θ̂ (which flips
the spin directions), as well as the combination of two lattice translations
T̂ 2. (d) If an alternating orbital order is introduced, the antiferromagnet
is no longer invariant under the combination of lattice translation and time
reversal, although the translation symmetry T̂ 2 is not further broken.

unlike, e.g., orbitons, be easily identified. Besides, as magnons typically
interact weakly, quasiparticle peaks in RIXS spectra have sharp and well
defined line shapes that will not be obliterated by other low energy excita-
tions (cf. Ref. [68]) and therefore their dependence on the orbital ground
state is very pronounced.

3.4 Conclusions

In this Chapter, we have shown in detail how orbital correlations in the
ground state directly reflect themselves in magnetic RIXS intensities. It
follows that measuring the RIXS spectra at transition metal L2,3 edges in
correlated materials with orbital degrees of freedom and magnetic order al-
lows one to distinguish between different orbital ground states. Although it
seems not possible to distinguish between ferroorbital order and orbital liq-
uid state in magnetic RIXS, typically in orbital systems the main question
is whether the orbital ground state has an alternating orbital order or is in
a orbital liquid state [25–27, 99] — for which the proposed method is well
suited. This is possible because in magnetic RIXS the spin flip mechanism
involves a strong spin-orbit coupling deep in the electronic core so that, un-
like in inelastic neutron scattering, the magnetic scattering spectra strongly
depend on the symmetry of the orbitals where the spins are in.
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4
RIXS as a probe of the superconducting order

parameter

Part of this chapter has been published as “Resonant Inelastic X-Ray Scattering as a

Probe of the Phase and Excitations of the Order Parameter of Superconductors”,

Pasquale Marra, Steffen Sykora, Krzysztof Wohlfeld, and Jeroen van den Brink,

Phys. Rev. Lett. 110, 117005 (2013).

Probing the order parameter in unconventional superconductors is gen-
erally the first step for an investigation of the pairing mechanism and of
the character of the superconducting state. In this Chapter we will develop
the RIXS scattering theory of quasiparticle excitations in superconductors,
calculating its momentum-dependent scattering amplitudes at zero tempera-
ture. In Section 4.1 we will introduce the concept of quasiparticle excitations
in unconventional superconductors, and consequently in Section 4.2 we will
show how direct RIXS spectra are a direct probe of the charge and spin DSF.
Finally, considering superconductors with different pairing symmetries, we
will demostrate in Section 4.3 that the momentum dependence of RIXS
spectra in the low energy range is intrinsically determined by the pairing
symmetry, being sensitive not only to the magnitude of the superconduct-
ing gap and to the presence of nodes on the Fermi surface but also to the
phase of the order parameter. This phase sensitivity is due to the appearance
of coherence factors which, for instance, in STM determine to large extent
the quasiparticle interference in the presence of impurities [38,41–45,100].

4.1 Quasiparticle excitations in a superconductor

The emergence of a superconducting state in a wide class of different ma-
terials, from metals to strongly correlated unconventional superconductors,
is a consequence of the Cooper pairing mechanism [101], that is, an attrac-
tive interaction between electrons which induces an instability in the Fermi
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gas with respect to the formation of Cooper pairs, i.e., a bound state of
two electrons. In general, Cooper pairs can be formed by spin-singlet states
(singlet pairing) with total spin s = 0, or by spin-triplet states (triplet
pairing) with total spin s = 1, and can have a nonzero total momentum1.
However, in their simplest realization, Cooper pairs are spin-singlet states
with zero total momentum and spin, i.e., the pairing mechanism couples
electrons on the Fermi surface which have opposite momenta and spins. In
conventional superconductors, the superconducting state can be described
by the BCS theory [3, 4, 104], where the pairing mechanism is assumed to
be a phonon-mediated attractive interaction of the conduction electrons in
a metal. Although the origin of the electron pairing is still not clear in high
temperature superconductors (e.g., cuprates, and more recently, pnictides),
the superconducting state in this unconventional superconductors can be
still, in general, described by the BCS theory or by one of its generaliza-
tions [105, 106]. In fact, BCS and BCS-like theories do not require any
assumptions on the origin of the pairing mechanism and, moreover, can be
extended to cases where the attractive interaction depends in a non triv-
ial way on the spin and on the momentum of the interacting electrons. In
this Section we will concentrate on singlet pairing superconductors, making
no assumptions on the origin of the pairing mechanism. However, we will
assume that the normal state of the superconductor is a non-correlated elec-
tron system, i.e., either a non-interacting electron gas or a Fermi liquid with
renormalized quasiparticle interactions.

In a single band Fermi gas of non-interacting electrons, the singlet pairing
mechanism is described by an effective Hamiltonian in the form

Ĥ − εFN =
∑
kσ

εkc
†
kσckσ +

∑
kk′

Vkk′c
†
k′↑c

†
−k′↓c−k↓ck↑, (4.1)

where the first term describes the kinetic energy of tight-binding electrons
with bare electron dispersion εk, whereas the second contains the two elec-
tron attractive interaction, and where Vkk′ is the pairing potential which
depends on the momenta of the two interacting electrons. The common and
most straightforward approach to deal with two particle interactions is to
introduce a mean field approximation. Expanding the two particle operator
c−k↓ck↑ in terms of fluctuations around its mean value and consequently
neglecting higher order terms, one obtains the BCS mean field Hamiltonian
which reads, up to a constant term

Ĥ =
∑
kσ

εkc
†
kσckσ −

∑
k

(
∆∗kc−k↓ck↑ + ∆kc

†
k↑c
†
−k↓

)
, (4.2)

1 As realized in the speculative Fulde-Ferrell-Larkin-Ovchinnikov phase of a supercon-
ductor in a large magnetic field [102,103].
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4.1. Quasiparticle excitations in a superconductor

where the order parameter ∆k is related to the mean value of the two electron
operators via

∆k = −
∑
k′
Vkk′〈c−k′↓ck′↑〉, (4.3)

In order to find the ground state and the excitations of the BCS Hamil-
tonian 4.2, one can introduce a new set of fermionic quasiparticle operators
γ†kσ and γkσ defined by the Bogoliubov transformation

ck↑ = ukγk↑ + vkγ
†
−k↓

c†k↓ = ukγ
†
k↓ − vkγ−k↑, (4.4)

with the conditions ukv−k = u−kvk and |uq|2 + |vq|2 = 1, which en-
sure that the new operators satisfy the canonical commutation relations
{γkσ, γ

†
k′σ′} = δkk′δσσ′ . The Hamiltonian 4.2 is diagonal in terms of the

Bogoliubov fermions, in the form

Ĥ =
∑
kσ

Ekγ
†
kσγkσ =

∑
kσ

√
ε2
k + |∆k|2γ†kσγkσ. (4.5)

where Ek =
√
ε2
k + |∆k|2 is the quasiparticle dispersion and with the Bo-

golubov factors in Eq. (4.4) which satisfy the conditions

Ek

(
|uk|2 − |vk|2

)
= εk, ukvk =

∆k

2Ek
, (4.6)

which leads to

|uk|2 =
1

2

(
1 +

εk
Ek

)
, |vk|2 =

1

2

(
1− εk

Ek

)
, (4.7)

with the reciprocal phase determined by the previous equation. The BCS
ground state is defined by the quasiparticle vacuum γkσ |BCS〉 = 0, i.e, the
state which is annihilated by any quasiparticle operator γkσ, which is given
by

|BCS〉 ∝
∏
kσ

γkσ |0〉 , (4.8)

up to a normalization factor, where |0〉 is the bare electron vacuum. The
excited states of the BCS Hamiltonian in Eq. (4.5), known as quasiparticle
excitations, are a linear combination of electron and hole states in the form

γ†k↑ |BCS〉 =
(
ukc
†
k↑ − vkc−k↓

)
|BCS〉 ,

γ†k↓ |BCS〉 =
(
u∗kc
†
k↓ + v∗kc−k↑

)
|BCS〉 , (4.9)

and have dispersion Ek. In the normal state, where ∆k = 0, the BCS
Hamiltonian in Eq. (4.5) reduces to a tight-binding Hamiltonian and the
quasiparticle excitations in Eq. (4.9) reduce to single electron excitations
with bare dispersion |εk|.
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4. RIXS as a probe of the superconducting order parameter

4.2 RIXS as a probe of the DSF of a superconduc-
tor

4.2.1 Direct RIXS and DSF

In direct RIXS scattering at transition metal ion L2,3 edges, the incident
photon resonantly excites the core shell 2p electron into the 3d shell which
consequently decays into a scattered photon and a charge, spin, or orbital
excitation in the electronic system. In this case the RIXS cross section can
be decomposed into a sum of the charge DSF the spin DSF as in Eq. (2.33)
with prefactors W 0

ee′ and Wee′ which correspond to the local transition

amplitudes of the RIXS operator Ôi defined in Eq. (2.13). These local tran-
sition amplitudes depend on the specific transition metal ion, the spin and
the orbitals occupied, and on the polarizations of the incident and scattered
photon. In the case that the spin DSF has the same momentum and energy
dependence for all the three different components of the spin operator —
as is the case of unconventional superconductors [107] — the RIXS cross
section in Eq. (2.4) can be rewritten as in Eq. (2.37) in Section 2.2.4, in
terms of charge and spin DSF as

d2σ

dωdΩ
∝ |W 0

ee′ |2χ0(q, ω) + |W z
ee′ |2χz(q, ω), (4.10)

where one assumes that the local transition amplitudes can be tuned in such
a way that the terms in Eq. (2.37) which mix charge and spin excitations
can be neglected. The charge DSF and the z component of the spin DSF
are defined respectively as

χ0(q, ω) =
∑
f

|〈f |ρ̂q|i〉|2δ(~ω − Ef + Ei)

χz(q, ω) =
∑
f

|〈f |Ŝzq|i〉|2δ(~ω − Ef + Ei), (4.11)

where ρq =
∑

kτ c
†
k+qτ ckτ and Ŝzq =

∑
kττ ′ σ

z
ττ ′c

†
k+qτ ckτ ′ are the density

and the spin operators of conduction electrons, with σzττ ′ the third Pauli
matrix. Since the local transition amplitudes W 0

ee′ and W z
ee′ depends on the

polarizations of the incident and scattered photon, they can be tuned by
properly adjusting the scattering geometry of the RIXS experiment. This
implies that direct RIXS at L2,3 edges can measure either spin or charge
DSF depending on the chosen polarization, which is a unique feature of
RIXS spectroscopy.

In what follows we will derive an explicit expression of the charge and
spin DSF of a superconductor in the framework of the BCS theory, and we
will show how the DSF, and therefore RIXS spectra, can probe the quasi-
particle excitation spectra of a superconductor, and allow one to disentangle
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4.2. RIXS as a probe of the DSF of a superconductor

the nature of these excitations and of the underlaying pairing mechanism.
The Bogoliubov transformation allows one to evaluate the DSF of a su-
perconductor via the calculation of the transition amplitudes 〈f | ρq |g〉 and
〈f | Ŝzq |g〉 between the ground state |BCS〉 in Eq. (4.8) and any excited state
of the Hamiltonian. At zero temperature, the excited states which con-
tribute to DSF have the form γ†k+q,σγ

†
−k,−σ |BCS〉, i.e., corresponding to

two-quasiparticle excitations with dispersion Ek,q = Ek+q + Ek. Using the
Bogoliubov transformation in Eq. (4.4) one then finds that the DSF for a
superconductor reads

χ0,z(q, ω) =
∑
k

1±
<
(

∆k∆∗k+q

)
∓ εkεk+q

EkEk+q

 δ(~ω − Ek − Ek+q),

(4.12)

where ± sign corresponds to the charge and spin DSF respectively [108–110].
Note that the transition amplitudes appearing in the sum in Eq. (4.12) have
a similar structure as the coherence factors which are known to determine
the quasiparticle interference in the presence of impurities [104].

Thus, the DSF can be evaluated as a sum over all momenta within the
Brillouin zone, where the transition amplitudes are strongly influenced by
the character of the superconducting state. Although quasiparticle interac-
tions substantially affect the DSF, they do not alter its intrinsic sensitivity
to the character of the superconducting state (in particular to the symmetry
of its gap function), as can be seen, e.g., at the random-phase approxima-
tion level [111], or by considering a strongly correlated system with Hubbard
interactions, as shown in Section 4.3.2.

The dependence of the DSF of quasiparticle excitations upon the super-
conducting order parameter ∆k has to be sought in the low energy regime,
i.e., for excitation energies which are comparable to the superconducting
gap. For this reason, we will focus hereafter on low energy quasiparticle ex-
citations with momenta close to the Fermi surface, i.e., with εk ≈ εk+q ≈ 0.

4.2.2 DSF for small momenta

In this Section we will discuss the effect of the momentum dependence
of the DSF on the superconducting order parameter in the case where the
transferred momentum q is small compared with momenta kF on the Fermi
surface. For small transferred momentum and for low energy quasiparticle
excitations, the main contributions to the DSF in Eq. (4.12) come from two-
quasiparticle excitations corresponding to electron states with momenta k
and k+q on the Fermi surface. As a consequence, the spin DSF in Eq. (4.12)
is strongly suppressed, while the charge DSF reduces, in the case of a finite
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4. RIXS as a probe of the superconducting order parameter

(a) normal state (b) s wave (c) d wave

Figure 4.1: Charge DSF of an isotropic Fermi surface with parabolic disper-
sion as a function of transferred momentum q→ 0, calculated via Eq. (4.12)
for a metal (a), an s wave (b) and a d wave (c) superconductor. The en-
ergy dispersion is drawn (dotted lines) for gapless excitations (a) in a metal
and for gapped excitations (b) in the conventional superconducting state.
In the case of an unconventional superconductor (c) the energy dispersions
(dotted lines) is drawn for excitations with momenta on nodal (gapless) and
antinodal points (gapped) on the Fermi surface.

superconducting order parameter |∆k| � |εk|, to the spectra of the two-
quasiparticle excitations

χ0(q, ω) = 2
∑
k

δ(~ω − E), (4.13)

where the quasiparticle dispersion Ek,q = Ek+q + Ek in the case of small
transferred momenta q→ 0 is given by

Ek,q ≈ 2

√
|∆k|2 +

(
~vk · q

2

)2

, (4.14)

where the order parameter magnitude |∆k| and the electron group velocity
vk = dεk/~dk depend on the the momentum k on the Fermi surface. As one
can see, in this case the quasiparticle dispersion inherently depends both on
the order parameter magnitude and on the bare electron velocity. Therefore,
in this regime the DSF spectral intensities depend strongly on the supercon-
ducting gap magnitude and on the presence of nodes of the order parameter
on the Fermi surface, albeit they are rather insensitive with respect to the
order parameter phase. In what follows we will consider the DSF in the
normal state (vanishing order parameter ∆k = 0), in a conventional s wave
superconductor, i.e., with an isotropic order parameter ∆k = ∆0, and an un-
conventional superconductor with d wave order parameter, i.e., with nodes
on the Fermi surface, given by ∆k = 1

2∆0 (cos ky + cos ky).
In the normal state the quasiparticle spectra reduces to the particle-

hole continuum, with particle-hole excitations which disperse according to
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4.2. RIXS as a probe of the DSF of a superconductor

the bare electron dispersion. In this case the charge DSF in Eq. (4.12)
vanishes at q = 0, while for small, but finite, transferred momenta q �
kF instead, transition amplitudes are finite for two-quasiparticle excitations
corresponding to momenta k and k + q close to the Fermi surface, having a
gapless dispersion which is linear with respect to small transferred momenta
q→ 0, and which reads

E ≈ ~|vk · q|, (4.15)

with the momentum k on the Fermi surface. In the superconducting state of
a conventional s wave superconductor instead, the charge DSF in Eqs. (4.12)
and (4.13) at q = 0 does not vanish for excitation energies above the
gap energy 2|∆0|. Hence, the quasiparticle spectra are gapped and two-
quasiparticle excitations have dispersion which reads

E ≈ 2

√
|∆0|2 +

(
~vk · q

2

)2

, (4.16)

for small transferred momenta q → 0 and for momenta k on the Fermi
surface. As a consequence, the DSF shows a coherence peak at q = 0 at at
energy E = 2|∆0|, corresponding to gapped excitations with momentum on
the Fermi surface.

In the case of an unconventional superconductors with nodes on the
Fermi surface (e.g., a d wave superconductor) both gapless and gapped ex-
citations contribute to the low energy spectrum, corresponding to excitations
with different momenta k in Eq. (4.12). In this case, the quasiparticle dis-
persion is given by Eq. (4.14) where the order parameter magnitude |∆k|
depends on the the momentum k on the Fermi surface. If the momentum
k coincides or it is close to the nodal point kN of the Fermi surface (i.e.,
∆kN = 0), the quasiparticle dispersion reduces to the case described in
Eq. (4.15), i.e., gapless excitations with linear dispersion in the transferred
momentum q. If, otherwise, the momentum is away from any nodal points
(i.e. ∆k > 0), the quasiparticle excitations are gapped with an energy gap
given by 2|∆k| and depending on the quasiparticle momentum on the Fermi
surface. In particular, if the momentum coincide or it is close to an antinodal
point kA of the Fermi surface (i.e., where the order parameter magnitude
|∆kA | assumes the maximum value) the excitation gap assumes its largest
value 2|∆kA |. The coherence peak at q = 0 is now broadened with a low
energy tail down to gapless excitations with momentum close to a nodal
point.

Figure 4.1 shows the charge DSF for a normal metal (a), for a conven-
tional s wave (b) and for an unconventional d wave (c) superconductor,
calculated using Eq. (4.12) for an isotropic Fermi surface as a function of
the transferred momentum q � kF . In the normal state (a) the charge DSF
vanishes at q = 0 while for finite, but small, momenta, spectral intensities
are enhanced for gapless two-quasiparticle excitations with linear dispersion
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4. RIXS as a probe of the superconducting order parameter

as in Eq. (4.15) (dotted line). In the conventional case (b) spectral inten-
sities are enhanced for two-quasiparticle excitations with dispersion as in
Eq. (4.16) (dotted line), whereas they vanish for E < 2|∆0|. In particu-
lar, the quasiparticle spectra show a coherence peak at q = 0 at at energy
E = 2|∆0|, corresponding to gapped excitations with momentum on the
Fermi surface. In the unconventional case (c) instead the coherence peak at
q = 0 is broadened, and both gapless and gapped excitations contribute, in
particular those with momentum which coincides respectively with a nodal
or an antinodal points on the Fermi surface (dotted lines). Therefore, the
presence of a two-quasiparticle excitation with linear dispersion for q → 0
indicates the presence of nodes in the superconducting order parameter.
Hence quasiparticle excitations spectra are affected by the order parameter
symmetry and, in particular, gapless excitations allows one to unveil the
presence of nodes on the Fermi surface.

4.2.3 DSF for large momenta: phase sensitivity

In order to characterize the symmetry of the order parameter in the
superconducting state, we will focus hereafter on the DSF for finite trans-
ferred momenta (q ≈ kF ) and at energies close to the superconducting gap,
i.e, with both momenta k and k + q on the Fermi surface. Assuming an un-
conventional superconductor with a pairing governed by a phase dependent
order parameter ∆k = |∆k|eiφk the DSF in Eq. (4.12) for excitations near
the Fermi surface becomes

χ0,z(q, ω) ≈
∑

k,k+q∈FS
[1± cos(φk − φk+q)] δ(~ω − E), (4.17)

where the two-quasiparticle dispersion reduces to E ≈ |∆k+q| + |∆k|. As
a consequence, the charge and spin DSF strongly depend on the relative
phase ∆φ = φk − φk+q of the order parameter corresponding to points on
the Fermi surface connected by the transferred momentum q. In particular,
one can distinguish between sign-reversing and sign-preserving excitations,
i.e, between two-quasiparticle excitations where the transferred momentum
q connects points respectively with opposite phase (∆φ = π) or the same
phase (∆φ = 0) of the order parameter on the Fermi surface. As one can see
from Eq. (4.17), charge DSF vanishes for sign-reversing, while it is enhanced
for sign-preserving excitations. On the other hand, spin DSF vanishes for
sign-preserving, while it is enhanced for sign-reversing excitations. Thus,
the momentum-dependent intensity distribution of the low energy DSF rep-
resents the variation of the superconducting order parameter phase along
the Fermi surface.
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(a)anisotropic s wave (b)d wave (c)q vector

Figure 4.2: Order parameters of an anisotropic s wave (a) and d wave (b)
superconductor with a perfectly nested Fermi surface (solid line). The order
parameter vanishes (has maxima) at the nodal points kN (antinodal points
kA). (c) Particle-hole excitations with and without sign reversal in case of
d wave pairing.

4.3 Phase sensitivity in cuprates

4.3.1 DSF in cuprates

In this Section we will concentrate on determining the properties of DSF
for different types of singlet-pairing superconductors, and to be even more
specific we will consider the case of a high Tc cuprate superconductor. The
main aim in this context is to establish how a variation of the phase of
the superconducting order parameter is reflected in the spin and charge
DSF. Following the most direct theoretical inroad and avoiding model-
specific technical details, we will consider a singlet-pairing superconductor
described by the BCS Hamiltonian in Eq. (4.5) with a superconducting order
parameter varying along the Fermi surface. Even if electron correlations are
not fully taken into account, this approach is commonly used — and is very
successful to calculate quasiparticle interference in cuprates [43–45,112]. In
addition, in Section 4.3.2 we will show that it is actually possible to introduce
the effect of correlations into the calculations, and that doing so does not
affect the main results presented below.

To determine in detail how the RIXS spectra of unconventional super-
conductors reflect the phase of the order parameter, we model the bare
electron dispersion of the cuprate superconductor as

εk = −2t (cos kx + cos ky) , (4.18)

where t is the tight-binding parameter. This bare electron dispersion fol-
lows from a single-band tight-binding model of Cu ions in a two dimensional
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Figure 4.3: DSF of a superconductor with a nested Fermi surface with trans-
ferred momentum q = (π, π), for charge excitations (χ0) with anisotropic
s wave (solid line) and d wave (dashed line), or equivalently for spin exci-
tations (χz) with d wave (solid line) and anisotropic s wave (dashed line)
order parameter, as a function of the transferred energy ~ω.

lattice with tetragonal symmetry [113], i.e., the one which has direct rele-
vance to the high Tc superconductors, and give rise to a perfectly nested
Fermi surface, as in Fig. 4.2. Moreover, we consider two different pairing
symmetries which differ from each other only in the superconducting order
parameter phase, that is, a d wave pairing and an anisotropic s wave pairing
defined respectively as

∆k =
1

2
∆0 (cos kx − cos ky) d wave,

∆k =
1

2
∆0| cos kx − cos ky| anisotropic s wave. (4.19)

The gap functions considered here along with the nested Fermi surface are
shown in Fig. 4.2. In the anisotropic s wave case, two-quasiparticle excita-
tions are sign-preserving all over the Brillouin zone, and therefore the spin
DSF is strongly suppressed at any transferred momenta. In the d wave case
instead, the charge DSF is suppressed for sign-reversing excitations, i.e.,
with a transferred momentum which connects points on the Fermi surface
with opposite phases of the order parameter, as one can see from Eqs. (4.12)
and (4.17).

In unconventional superconductors, where the pairing is generally con-
sidered as mediated by antiferromagnetic spin fluctuations [114], the super-
conducting gap function is expected to exhibit a sign reversal between the
Fermi momenta connected by characteristic wave vector Q = (π, π) of the
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spin fluctuations [16]. As a consequence, the conduction electrons of such
superconductors show a tendency to Fermi surface nesting with a typical
nesting vector Q. The scattering intensities as a function of energy cal-
culated using Eq. (4.12) for the two pairing symmetries considered above
are shown in Fig. 4.3, for a perfectly nested cuprate-like Fermi surface (see
inset), for a fixed transferred momentum equal to the nesting vector. Note
that direct RIXS at the Cu L2,3 edge in two dimensional cuprates allows
momentum transfers q . 0.87π [115] and therefore one is able to access mo-
mentum transfers of the order of the nesting vector Q. For such excitations,
the sign of the order parameter in the s wave case is preserved whereas in the
d wave case is reversed. The solid line in Fig. 4.3 corresponds to the charge
DSF in the anisotropic s wave and to the spin DSF in the d wave case, and
shows a coherence peak at ~ω = 2|∆| which is strongly enhanced due to the
nesting effect. However, sign-reversing excitations occurring in the d wave
are strongly suppressed in the charge DSF, as well as sign-preserving excita-
tions in the anisotropic s wave case in the spin DSF, according to Eqs. (4.12)
and (4.17). On the other hand, the dashed line in Fig. 4.3 corresponds to the
charge DSF in the d wave and to the spin DSF in the anisotropic s wave case,
and is strongly suppressed due to the sign-reversing and the sign-preserving
excitations occurring respectively in the d wave and in the anisotropic s
case. The symmetry between the charge and the spin DSF with respect to
the two choices of the order parameter is due to the ± sign in Eq. (4.12).
Note that since the order parameter magnitude is equal in both cases, the
obtained effect is entirely due to phase changes of the superconducting order
parameter along the Fermi surface.

To highlight its strong dependence on the order parameter phase, the
DSF is shown in Fig. 4.4 at a fixed energy ~ω = 2|∆| as a function of
momentum q in the entire Brillouin zone, both for the anisotropic s wave
and the d wave pairing, for a perfectly nested Fermi surface. Because of the
nesting effect, coherence peaks are clearly visible in the charge (spin) DSF
in the anisotropic s wave (d wave) case if the transferred momenta coincide
with the nesting vector q = (π, π), while they are strongly suppressed in
the d wave (anisotropic s wave) case (Fig. 4.4). Clearly, the symmetry of
the order parameter is reflected by the symmetry of the charge and spin
DSF spectrum. Since the charge and spin DSF are complementary with
respect to the spectral suppression of the sign-reversing and sign-preserving
excitations, the phase sensitivity is enhanced when these two components are
fully disentangled. This can be done by tuning the polarization dependence
in the form factors W 0

ee′ and Wz
ee′ in Eq. (4.10).

4.3.2 DSF in the strongly correlated limit

In this Section we will show how the sensitivity of the DSF to the or-
der parameter phase is not obliterated in the presence of strong Coulomb
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Figure 4.4: Charge (χ0) and spin (χz) DSF at fixed energy ~ω = 2|∆|, as
a function of transferred momentum of an anisotropic s wave and a d wave
superconductor with a nested Fermi surface.

repulsion of the conduction electrons. To simplify the presentation of our
arguments, we will focus on the limit of infinitely strong correlations U →∞
where the double occupancy of a single transition metal ion site is strictly
forbidden [116,117]. As is well-known [118] using a Schrieffer-Wolf transfor-
mation the Hubbard model can then be replaced with a t-J model where
the superexchange J → 0. Such regime of very strong correlations may be
still regarded as rather realistic in describing many basic properties of the
strongly correlated transition metal oxides such as cuprates in the overdoped
limit [119–121]. In this case, the superconducting phase is well described by
the Hamiltonian

H =
∑
kσ

εkd
†
kσdkσ −

∑
k

∆kd
†
k↑d
†
−k↓ + h.c., (4.20)

where the operators d†iσ = c†iσ(1 − ni,−σ), and diσ = ciσ(1 − ni,−σ) are the
Hubbard creation and annihilation operators. These transformed operators
are introduced since double occupancy is strictly forbidden, due to the pres-
ence of strong electronic correlations. They obey unusual anticommutation
relations, e.g., [diσ, d

†
jσ]+ = δijDσ(i), with Dσ(i) = 1− ni,−σ.

For the sake of simplicity, let us consider the spin DSF χz(q, ω), which
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can be written in terms of the spin correlation function as

χz(q, ω) = ı

∫ ∞
0

dt 〈Sz−q(t)Szq〉H eı(ω+ıη)t. (4.21)

Here, the time dependence and the expectation are evaluated via the Hamil-
tonian 4.20. To calculate the expectation value and the dynamical behavior,
one can diagonalize the Hamiltonian using new approximate quasiparticle
operators γkσ and γ†kσ, which are related to the original correlated electron
operators via the Bogoliubov transformation

dk↑ = u∗kγk↑ − vkγ
†
−k↓,

dk↓ = u∗kγk↓ + vkγ
†
−k↑. (4.22)

In the case of a sufficiently large hole concentration the operator Dσ(i) can
approximately be replaced by its expectation value D and the Bogoliubov
quasiparticle operators fulfill the following relations [122]: [H, γ†kσ] = Ekγ

†
kσ,

where Ek =
√
ε2
k +D2∆2

k and D = 1−n/2. Replacing all the Hubbard op-

erators d
(†)
kσ with the quasiparticle operators γ

(†)
kσ via the Bogoliubov trans-

formation in Eq. (4.22), the time dependence in Eq. (4.21) can be easily
evaluated. Each of the remaining expectation values contain a product of
four quasiparticle operators. A final factorization leads to the following
expectation values of the two-quasiparticle operators

〈γ†kσγkσ〉 =
1

2

(
1 +

εk
Ek

)
nk +

1

2

(
1− εk

Ek

)
mk −

D3|∆k|2

2E2
k

,

〈γkσγ
†
kσ〉 = D − 〈γ†kσγkσ〉, (4.23)

where D = 〈Dσ(i)〉 = 1− n/2 and nk and mk are defined by nk = 〈d†kσdkσ〉
and mk = 〈dkσd

†
kσ〉. They are evaluated using the Gutzwiller approximation

(cf. Ref. [123]) as nk = (D − q) + q f(εk) and mk = D − nk, with q =
(1− n)/(1− n/2) and where f(εk) is the Fermi function at T = 0. Finally,
one obtains the spin and charge DSF in the strongly correlated case

χ0,z(q, ω) =
∑
k

[
A±(k,q)

Ek + Ek+q − (ω + ıη)
〈γk+q,↓γ

†
k+q,↓〉〈γk↑γ

†
k↑〉 +

A±(k,q)

−Ek − Ek+q − (ω + ıη)
〈γ†k+q,↑γk+q,↑〉〈γ†k↓γk↓〉 +

2A∓(k,q)

Ek − Ek+q − (ω + ıη)
〈γ†k+q,↑γk+q,↑〉〈γk↑γ

†
k↑〉
]
, (4.24)

where the transition amplitudes A±(k,q) are defined by

A±(k,q) = 1±
D2<(∆k∆∗k+q)∓ εkεk+q

EkEk+q
. (4.25)
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Charge DSF (χ0) Spin DSF (χz)

U → ∞

qy

U = 0

qx
anisotropic s wave d wave anisotropic s wave d wave

Figure 4.5: Charge (χ0) and spin (χz) DSF at the quasiparticle gap level,
as a function of transferred momentum for an anisotropic s wave (first and
third columns) and a d wave (second and fourth columns) superconduc-
tor, for a cuprate-like system with a nested Fermi surface, in the infinitely
strongly correlated (U →∞, first row) and the uncorrelated (U = 0, second
row) limits. In the infinite repulsion case, the Gutzwiller approximation is
used, assuming D = 〈Dσ(i)〉 = 0.8 (hole doped system), and the gap level is
renormalized as 2|∆| → 2D|∆|. In the d wave (anisotropic s wave) super-
conductor, the charge (spin) DSF peak at q = (π, π) is suppressed, for both
the infinitely strongly correlated and the uncorrelated limits.

To summarize, the main effect of correlations in the limit of infinitely
strong correlations U →∞ is to rescale the magnitude of the order param-
eter. In fact, up to a renormalized gap function ∆k → D∆k, the transition
amplitudes in Eq. (4.25) have the same form as in the uncorrelated case in
Eq. (4.12). Due to this renormalization, the quasiparticle excitations gap
is lowered in energy by a factor D. Moreover, the phase sensitivity of the
DSF is reduced by the presence of the third term of Eq. (4.24). However,
when the hole doping is rather large (D ≈ 1, n � 1), the order parame-
ter decrease is negligible, while the main contributions to the quasiparticle
spectrum are given by the first term in Eq. (4.24). As a consequence, the
phase sensitivity of the DSF is not affected. In Fig. 4.5 we compare the spin
and charge DSF of a strongly correlated hole doped system with those of
an uncorrelated one (cf. Fig. 4.4), for different order parameter symmetries
(d wave and anisotropic s wave). As one can see, the presence of electronic
correlations does not change RIXS spectra qualitatively. Hence the charge
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and spin DSF in a strongly correlated electron system are governed, as well
as in an uncorrelated one, by coherence factors which are responsible for the
sensitivity of RIXS spectra to the order parameter phase.

4.4 Conclusions

In principle, other two-particle spectroscopies (see, e.g., Ref. [68] for an
overview) can also be directly sensitive to the DSF of superconductors. Even
if none can match RIXS in measuring both spin and charge DSF of super-
conductors, already probing either of the two is in general challenging. For
example, electron energy loss spectroscopy cannot reliably measure spectra
with high momentum transfers, while inelastic neutron scattering does not
directly probe the charge DSF, and non-resonant inelastic x-ray scattering is
extremely photon hungry. Nevertheless, transition amplitudes of the same
type as in Eqs. (4.12) and (4.17) are also encountered when determining
the scattering rate of conduction electrons in the presence of impurities,
as observed in the surface-sensitive STM [38, 41–45, 100]. This is because
these transition amplitudes have a similar structure as the ones which are
known to govern the quasiparticle interference [in which case the transition
amplitudes, whose sum over the momentum k contribute to the DSF in
Eq. (4.12), are termed “coherence factors”] in the presence of impurities.
Since the quasiparticle interference patterns explored by STM have turned
out to be very successful to uncover the pairing symmetries of the uncon-
ventional superconductors [38, 41–45], this gauges the potential of RIXS to
observe and unravel symmetries of superconducting pairing and pairing me-
diators. Compared to STM however, RIXS has the advantage of simplicity.
Whereas the theoretical interpretation of STM in the framework of quasi-
particle interference relies crucially on the form of the underlying impurity
system showing various components of scattering [100], in the case of RIXS
the interpretation of spectroscopic features relies neither on the presence of
impurities in the superconductor nor on the modeling thereof.

In this Chapter, we have shown that RIXS, in contrast to other two-
particle spectroscopies, is directly sensitive to the spin and to the charge DSF
of a superconductor and, in particular, that the DSF of a superconductor
observed in RIXS is sensitive to the symmetry of the order parameter. This
is rooted in the quasiparticle spectra reflecting sign-reversing excitations at
large transferred momenta which arise for order parameters with a phase
that varies over the Fermi surface. This, together with the recent experi-
mental successes of RIXS, including, in particular, the major enhancements
in resolution and pioneering study of hole doped cuprates [49], establishes
the potential of RIXS as a versatile and practical spectroscopic technique to
probe the elementary excitations, disentangle the pairing symmetry, and to
investigate the fundamental properties of unconventional superconductors.
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5
RIXS on iron based superconductors

Part of this chapter has been published as “Theoretical approach to Resonant Inelastic

X-ray Scattering in iron-based superconductors at the energy scale of the superconducting

gap”, Pasquale Marra, Steffen Sykora, and Jeroen van den Brink, arXiv:1405.5556 (2014).

In this Chapter, we will develop a phenomenological theory to predict the
characteristic features of the momentum-dependent scattering amplitudes in
RIXS spectra of iron based superconductors. In particular in Section 5.1 we
will develop a theoretical approach to calculate the spectra of quasiparti-
cle excitations at zero temperature in unconventional superconductors with
more than one relevant orbitals close to the Fermi level. Afterwards, tak-
ing into account all relevant orbital states as well as their specific content
along the Fermi surface, we will evaluate in Sections 5.2.1 and 5.2.2 the
charge and spin DSF for the compounds LaOFeAs and LiFeAs, using simple
tight-binding models which are fully consistent with recent ARPES data.
While the orbital content strongly modifies the momentum dependence of
RIXS intensities, the intensity of sign-reversing excitations are considerably
enhanced in the spin structure factor. Moreover, the calculated RIXS spec-
tra for different types of superconducting pairing (s±, s++, p wave) show
a characteristic intensity redistribution between spin and charge transfer
excitations in the presence of a sign reversal in the superconducting order
parameter. Consequently, RIXS spectra can discriminate between s± and
s++ wave gap functions in the singlet pairing case. In addition, the par-
ity of the superconducting order parameter affects the intensities at small
transferred momenta and allows one to distinguish between triplet pairing
(chiral p wave) and singlet pairing (s± or s++ wave) superconductivity.
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5. RIXS on iron based superconductors

5.1 RIXS cross section in iron based superconduc-
tors

As in Section 2.2.4, using the fast collision approximation [68,75,92] the
RIXS cross section can be decomposed into a combination of the charge and
the spin DSF of 3d electrons as [75]

Ie(q, ω) =
∑
αβ

|W 0
αβ,e|2χ0

αβ(q, ω) + |W z
αβ,e|2χzαβ(q, ω), (5.1)

where the charge and spin DSF corresponding to the orbitals α, β are defined
as

χ0
αβ(q, ω) =

∑
f

|〈f |ραβ,q|i〉|2δ(~ω + Ei − Ef ), (5.2)

χzαβ(q, ω) =
∑
f

|〈f |Szαβ,q|i〉|2δ(~ω + Ei − Ef ), (5.3)

with |i〉 and |f〉 the initial and final states of the RIXS process with en-
ergy Ei and Ef , and where ~ω and q are the transferred photon energy and
momentum. Here, the spin DSF is assumed to have the same momentum
and energy dependence for all directions [107]. The density and the spin

of d electrons ραβ,q =
∑

kτ d
†
ατk+qdβτk and Szαβ,q =

∑
kττ ′ d

†
ατk+qσ

z
ττ ′dβτ ′k

are defined in terms of the orbital operators d†ατk and dατk, which respec-
tively creates and annihilates an electron in the orbital α with spin τ and
momentum k. The RIXS form factors W 0

αβe and W z
αβe in Eq. (5.1) depend

on the transition metal ion, the orbital symmetry of the system, the specific
geometry of the experiment, and on the polarization e of the incident and
scattered x-ray beams [75, 92]. Thus, these parameters can be adjusted in
the RIXS experiment, and therefore, under construction of a particular ex-
perimental setup, the cross section will be solely determined either by the
charge or by the spin DSF. As it has been shown in the previous Chapter,
this property can be used to reveal the character of the pairing mechanism
in unconventional superconductors.

In order to reproduce their characteristic disconnected Fermi surface, a
minimal model for iron based superconductors must include more than one
orbital 3d state on the Fermi surface. Therefore, a phenomenological descrip-
tion of the unconventional superconducting state in iron based pnictides can
be achieved considering a generalized multi-band mean-field Hamiltonian in
the form [104,124]

H =
∑
iτk

εik c
†
iτkciτk −

1

2

∑
iτk

ξτ

(
∆kc

†
iτkc

†
i−τ−k + ∆∗kci−τ−kciτk

)
, (5.4)

where the operators c†iτk and ciτk respectively create and annihilate an elec-
tron with spin τ in the energy band i, which is described by the bare
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5.1. RIXS cross section in iron based superconductors

electron dispersion εik, and with ∆k the momentum-dependent supercon-
ducting order parameter. The second term in Eq. (5.4) is responsible for
the superconducting state, with the pairing character determined by ξτ .
The case of ξτ = ±1 for up and down spin describes the spin-singlet pair-
ing, whereas the case ξτ = 1 for both spin directions leads to a special
type of spin-triplet state. In general, the triplet pairing term is given by
−1

2∆kττ ′c
†
iτkc

†
iτ ′−k + h.c., with a multi-component superconducting order

parameter of the form ∆kττ ′ = ı [d(k) · σ]σy (see, e.g., Ref. [124]). However,
in this Chapter only the simplest case dx(k) = dy(k) = 0 and dz(k) = ∆k

is considered, and therefore the gap function simplifies to ∆k↑↑ = ∆k↓↓ = 0
and ∆k↑↓ = ∆k↓↑ = ∆k.

To investigate the RIXS cross section given by Eq. (5.1) one can calculate
the DSF χ0,z

α (q, ω) on the basis of the model Hamiltonian (5.4) separately
for each of the relevant orbitals. Using the unitary transformation between
orbital and energy band representation

ciτk =
∑
α

λiαk dατk, (5.5)

one can rewrite the density and spin operators ραβ,q and Szαβ,q in Eqs. (5.2)

and (5.3) in terms of the operators ciτk and c†iτk in the band representation.
This step is necessary for the calculation of the matrix elements and excita-
tion energies in Eqs. (5.2) and (5.3). Note that, in general, the Hamiltonian
is not diagonal with respect to the orbital states because the different orbitals
can hybridize with each other. The transformation matrix elements λiαk,
which describe the orbital content of conduction bands, are obtained diag-
onalizing the low-energy tight-binding Hamiltonian of the system. For this
purpose, in Sections 5.2.1 and 5.2.2 the two iron superconductors LaOFeAs
and LiFeAs will be described respectively by the tight-binding model in
Ref. [125] and in Ref. [35].

Having expressed the density and spin operators in the DSF in terms
of the one-particle operators in the band representation, the next step is to
diagonalize the Hamiltonian (5.4) via a Bogoliubov transformation ci↑k =

u∗ikγi↑k−vikγ
†
i↓−k and ci↓k = u∗ikγi↓k+vikγ

†
i↑−k, with |uik|2 = 1

2 (1 + εik/Eik),

|vik|2 = 1
2 (1− εik/Eik), and u∗ikvik = 1

2∆k/Eik for each of the different
bands. This allows one to determine the ground state |BCS〉 and the ex-
citations of the system, in terms of the quasiparticle operators γiτk and of

the quasiparticle dispersion Eik =
√
ε2
ik + |∆k|2. In a centrosymmetric su-

perconductors at zero temperature, the excited states contributing to DSF
have the form γ†jτk+qγ

†
i−τ−k|BCS〉 with energy Eik + Ejk+q, and the DSF
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of quasiparticle excitations reads finally

χ0,z
αβ(q, ω) =

∑
ijk

δ (~ω − Eik − Ejk+q)×

|λiαkλjβk+q|2
[

1±
Re(∆k∆∗k+q)∓ εikεjk+q

EikEjk+q

]
, (5.6)

where the ± sign is for the charge (spin) DSF [108–110]. This result shows
that the momentum-dependent DSF of low energy quasiparticle excitations
is strongly affected by the orbital content of bare electrons and the structure
of the superconducting order parameter.

The character of the superconducting pairing, which is described by the
gap function ∆k, arises at energies close to the Fermi level ~ω ≈ εF . There,
the main contributions to the DSF correspond to excitations close to the
Fermi surface, i.e., those which fulfil the condition εikεjk+q � |∆k∆k+q|.
Assuming a phase dependent order parameter in the form ∆k = |∆k|eıφk ,
the DSF in Eq. (5.6) for low energy excitations becomes approximately

χ0,z
αβ(q, ω) ≈

∑
ijk

δ(εikεjk+q)δ(~ω − |∆k+q| − |∆k|)×

|λiαkλjβk+q|2 [1± cos(φk − φk+q)] . (5.7)

Hence, in addition to the orbital dependence, the DSF is influenced signifi-
cantly by the order parameter phase φk on the Fermi surface. In particular,
the charge DSF is suppressed for sign-reversing (φk − φk+q = π), whereas
the spin DSF is suppressed for sign-preserving excitations (φk − φk+q = 0).

Since the RIXS form factors W 0
αβ,e and W z

αβ,e in Eq. (5.1) can be tuned
by properly choosing the experimental setup, RIXS can probe both charge
and spin DSF, which is a unique feature among other spectroscopies. A
comparison of the charge and the spin DSF of quasiparticle excitations al-
lows one to disclose not only the orbital symmetry of the ground state, but
also the momentum dependence of the magnitude and of the phase of the
superconducting order parameter and, therefore, the underlying symmetry
of the pairing mechanism. In the next Sections we will show the predicted
RIXS spectra for the LaOFeAs and LiFeAs iron based superconductors.

5.2 Phase and orbital sensitivity in iron based su-
perconductors

5.2.1 General model

In this Section, in order to describe the LaOFeAs superconductor, we will
employ the effective two-band tight-binding model proposed in Ref. [125],
which is regarded as a minimal model for conduction electrons in iron based
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(a) (b) (c)

qy

qx

Figure 5.1: (a) RIXS intensities at a fixed energy loss ~ω = 1.5∆0 as a
function of the transferred momentum q, for the charge DSF in LaOFeAs,
assuming a s± wave order parameter, calculated via Eq. (5.6), neglecting
the orbital dependence of the RIXS form factors (W 0

αβ,e = W z
αβ,e = 1)

and assuming the bare electron dispersion of the tight-binding model in
Ref. [125]. (b) RIXS intensities for the same order parameter and energy loss,
calculated considering only intra-orbital contributions (W 0

αβ,e = W z
αβ,e =

δαβ). (c) Orbital content along the Fermi surface (green and red for dyz and
dzx orbitals) as in Ref. [125]. The coherence peak at (π, π) corresponds to a
nesting between the two hole pockets and between the two electron pockets,
which have a different orbital symmetry. For this reason, while clearly visible
in (a), the coherence peak is strongly suppressed in (b), where the orbital
content of the energy bands is fully taken into account.

superconductors. This model takes into account the effective hoppings be-
tween the two orbitals dxz and dyz of the iron ions, and correctly reproduces
the band structure of the compound LaOFeAs, which consists of discon-
nected hole-like Fermi surface branches around (0, 0) and (π, π) and separate
electron pockets of similar size around (0,±π) and (±π, 0) in the Brillouin
zone [compare Fig. 5.1 (c)]. We assume three different symmetries for the
superconducting gap, i.e., s± wave [17], s++ wave [34], and a spin-triplet
pz wave [35], where the momentum dependence is modeled respectively by
∆
s±
k = ∆0 cos kx cos ky, ∆

s++

k = |∆s±
k |, and ∆pz

k = ∆0 (sin kx − ı sin ky), with
∆0 = 0.1|t1|, where t1 is the magnitude of the dominant nearest neighbor
hopping (cf. Ref. [125]). For these choices of the order parameter, the gap
magnitude in the spin-singlet case varies around ≈ 0.75∆0 along the elec-
tron pockets and the inner hole pocket, and around ≈ 0.6∆0 along the outer
hole pocket, with opposite sign in the case of the s± wave symmetry. In the
spin-triplet case instead, the gap magnitude varies around ≈ 0.65∆0 along
the electron pockets and the inner hole pocket, and around ≈ 0.83∆0 along
the outer hole pocket.
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Figure 5.2: RIXS intensities at a fixed energy loss ~ω = 1.5∆0 as a function
of the transferred momentum q, for the charge and spin DSF of quasiparticle
excitations in LaOFeAs, with s±, s++, and pz wave order parameter (∆0 =
0.1|t1|, see main text), calculated using Eq. (5.6) and assuming the bare
electron dispersion and the orbital symmetry of the tight-binding model in
Ref. [125]. Only intra-orbital contributions are considered. As one can see,
the coherence peak at the Γ point is largely dominant in the charge DSF
spectra, while spectral intensities at QAF = (π, 0) and around the Γ point
(|q| ≈ π/2) are sensitive to the differences in the order parameter phase
along the Fermi surface. Spectral intensities at QAF are strongly suppressed
in the charge (spin) spectra in the s± (s++) wave state, while intensities for
|q| ≈ π/2 around the Γ point are suppressed in the charge (spin) DSF in
the pz (s± or s++) wave state.

At first, let us consider the effect of the orbital degree of freedom on the
RIXS spectra. Figure 5.1 shows the charge DSF, calculated via Eq. (5.2), at
a fixed energy loss ~ω = 1.5∆0 as a function of the transferred momentum q
for one particular pairing symmetry. The calculations are based on Eq. (5.6)
using the s± wave order parameter described above. In Fig. 5.1 (a) the or-
bital dependence of the RIXS form factors is neglected (W 0

αβ,e = W z
αβ,e = 1),

while in Fig. 5.1 (b) the RIXS form factors are chosen such that the inter-
orbital contributions are suppressed (W 0

αβ,e = W z
αβ,e = δαβ). A comparison

of these two panels clearly shows that the orbital dependence of the RIXS
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form factors modifies strongly the momentum dependence of RIXS spectra.
In particular, the intensity peak at q = (π, π) in Fig. 5.1 (b) is strongly sup-
pressed, and this result is not related to the particular choice of the pairing
symmetry, as confirmed by calculations based on different order parame-
ters (not shown). This is because such transferred momentum corresponds
to a nesting between branches of the Fermi surface which have a different
orbital symmetry [125], i.e., the two electron pockets around Γ and (π, π)
and the two hole pockets around (π, 0) and (0, π) respectively, as shown in
Fig. 5.1 (c). Thence, orbital degrees of freedom cannot be neglected when
considering quasiparticle spectra in iron based superconductors.

Furthermore, we can investigate the sensitivity of DSF spectra to the
order parameter phase. Figure 5.2 shows the charge and spin DSF at a
fixed energy loss ~ω = 1.5∆0 as a function of the transferred momentum
q, for the three choices of the order parameter defined above. As one can
see, low energy excitations which are sign-reversing, (opposite phase of the
order parameter), suppress the charge component of the DSF, whereas sign-
preserving excitations (same phase of the order parameter) suppress the spin
component in the low energy quasiparticle spectra. For this reason, spectral
intensities at QAF = (π, 0) in Fig. 5.2 are suppressed in the charge and in
the spin DSF respectively in s± wave and in the s++ wave superconduct-
ing states. Such transferred momentum, which corresponds to the ordering
vector of the antiferromagnetic phase, is a nesting vector between the hole
pockets and the electron pockets in the Brillouin zone, which have an oppo-
site sign or the same sign of the order parameter respectively in the s± wave
and in the s++ wave states. On the other hand, the signature of the p wave
odd symmetry has to be found instead in the spectral intensities of excita-
tions with transferred momentum |q| ≈ π/2 (see Fig. 5.2), corresponding
to a “self-nesting” of the hole pockets. This type of excitations, which lead
to characteristic intensity features also in LiFeAs (see next Section), refer
to intraband contributions located in a narrow momentum range similar to
the conventional nesting scenario between the electron and hole pockets. In
the s wave case these excitations preserve the sign of the order parameter
(∆k+q = ∆−k = ∆k), leading to a suppression of spectral intensities in the
spin DSF. In the p wave case instead, these excitations are sign-reversing
(∆k+q = ∆−k = −∆k), with a consequent suppression in the charge DSF.

5.2.2 LiFeAs

In contrast to other iron based superconductors, there is no general
agreement about the nature of the superconducting state in LiFeAs, and
in particular about the pairing mechanism. Along with the s± wave pairing
in fact, other scenarios have been proposed, e.g., an s++ wave state, driven
by the critical d-orbital fluctuations induced by moderate electron-phonon
interactions [34], or even a spin-triplet pairing driven by ferromagnetic fluc-
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tuations [35]. While singlet pairing is supported by some neutron scattering
experiments [37], the unusual shape of the Fermi surface and the momen-
tum dependency of the superconducting gap measured by ARPES [36] is in
conflict with the s± wave symmetry. Moreover, quasiparticle interference
probed by STM experiments [38] are consistent either with a p wave spin-
triplet state or with a singlet pairing mechanism with a more complex order
parameter (s + ıd wave). Whereas ARPES has been proven to be power-
ful in measuring the momentum dependence of the superconducting gap on
the Fermi surface [33, 36], it should be noted here that ARPES, since not
sensitive to the order parameter phase, cannot distinguish between singlet
and triplet pairing, i.e., between even (∆k = ∆−k) and odd (∆k = −∆−k)
symmetry of the order parameter. In fact, the experimental momentum de-
pendence of the superconducting gap measured by ARPES [36] is consistent,
in principle, with a spin-singlet as well as with a spin-triplet state.

An appropriate RIXS experiment may help to clarify this complicated
and controversial situation in LiFeAs. In particular, to highlight the char-
acteristic features of RIXS spectra which allow one to discriminate between
different pairing mechanisms, we will present some theoretical RIXS spectra
for different order parameter symmetries, corresponding to spin-singlet and
spin-triplet pairing. Moreover, the orbital degree of freedom of the system
will be taken into account by means of the effective three-band tight-binding
model proposed in Ref. [35], which includes the effective hoppings between
the t2g orbitals of the iron ions, within a single iron ion unit cell.

Besides the s±, s++, and pz wave defined above, one can consider also a
triplet pairing order parameter p̃z, defined as ∆p̃z

k = |∆s±
k |e

ıφk , i.e., hav-
ing the same magnitude of the s± (or s++) wave and the same phase
φk = arg ∆pz

k of the pz wave order parameter. This superconducting order
parameter is considered here for comparison, in order to have an example
of a spin-triplet pairing which reproduces the experimental gap magnitude
on the different branches of the Fermi surface in LiFeAs. In fact, being
the magnitude of the superconducting gap the same, it will be possible to
disentangle those features of the spectra which are solely accountable to the
phase variation of the order parameter. In order to be consistent with the
measured value of the superconducting gap in LiFeAs [36], the order param-
eter magnitude is taken as ∆0 = 6 meV. Therefore, in the case of s wave
states (s± and s++), and of the p̃z wave state, the gap magnitude varies
around ≈ 4.6 meV along the electron pockets, around ≈ 6 meV along the
inner hole pocket, and around ≈ 3 meV along the outer hole pocket, with
opposite sign in the case of the s± wave symmetry, and with the phase con-
tinuously varying on the Fermi surface in the case of the p̃z wave state. In the
pz wave case instead, the gap magnitude varies around ≈ 4 meV along the
electron pockets, around ≈ 0.6 meV along the inner hole pocket, and around
≈ 5.6 meV along the outer hole pocket. In any of the case considered, the
low energy quasiparticle excitations contribute to coherence peaks at the Γ
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Figure 5.3: RIXS spectra at a fixed energy loss ~ω = 2∆0 = 12 meV as
a function of the transferred momentum q for the charge and spin DSF of
quasiparticle excitations in LiFeAs, calculated using Eq. (5.6), with the s±,
s++, pz, and p̃z wave order parameter. Only intra-orbital contributions are
considered. Spectral intensities at QAF are suppressed in the charge (spin)
spectra in the s± (s++) wave state, while intensities for |q| ≈ π/2 around
the Γ point are suppressed in the charge (spin) DSF in the pz and p̃z (s±
and s++) state.

point with energy in the range 6 meV < E < 12 meV (∆0 < E < 2∆0).

In Fig. 5.3 are shown the RIXS intensities for the charge and spin DSF
at a fixed energy loss ~ω = 2∆0 = 12 meV as a function of the transferred
momentum q, for different choices of the superconducting order parameter
symmetry, calculated using Eq. (5.6). In LiFeAs, no nesting occurs between
the hole and the electron pockets [33], and therefore the peak at QAF in the
quasiparticle spectra, which corresponds to the scattering between hole and
electron pockets, is much weaker and broader than in the LaOFeAs case. The
intensive square-like intensity distribution around the center of the Brillouin
zone obtained for all the considered pairing symmetries is a typical feature
of the low energy spectrum in LiFeAs arising from interband scattering
processes between the two hole pockets of the Fermi surface [38,126]. Indeed,
as in the previous case, RIXS spectra in LiFeAs are strongly sensitive to the
symmetry of the superconducting order parameter and on its relative phase
differences along the Fermi surface. In fact, spectral intensities at QAF are
further suppressed in the charge and in the spin DSF respectively in the s±
wave and in the s++ wave states. This is because one has ∆k+QAF

= ±∆k,
with the ± sign corresponding to the s++ and s± wave, resulting in sign-
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Figure 5.4: RIXS spectra at QAF and at |q| = π/2 as a function of
the energy loss for the charge (solid line) and spin (dashed line) DSF of
quasiparticle excitations in LiFeAs, calculated using Eq. (5.6), with s±, s++,
pz, and p̃z wave order parameters (∆0 = 6 meV). Spectral intensities at
QAF are larger for the spin (charge) DSF spectra in the s± (s++) wave
state, while intensities at |q| = π/2 around the Γ point are larger in the spin
(charge) DSF in the pz and p̃z (s± and s++) state. RIXS intensities are in
arbitrary units.

preserving and sign-reversing excitations respectively for s++ and s± wave
pairing. In the p wave states no suppression occur, being ∆k+QAF

= ∆∗k, i.e.,
with a phase difference given by 2φk, resulting in charge and spin coherence
factors [see Eq. (5.7)] which continuously vary on the Fermi surface. Again,
the signature of the p wave odd symmetry is in the spectral intensities
of excitations with transferred momentum |q| ≈ π/2 around the Γ point,
corresponding to a self-nesting of the larger hole pocket (see Fig. 5.3). While
in the s wave case excitations at |q| = π/2 are sign-preserving, with a
consequent suppression of spectral intensities in the spin DSF, in the p wave
case they are sign-reversing, resulting instead in an enhancement in the spin
DSF.

To show in the most clear way how to distinguish between the differ-
ent pairing scenarios in LiFeAs, in Fig. 5.4 are shown the RIXS spectra as
a function of the energy loss for the charge and spin DSF of quasiparti-
cle excitations at QAF and at |q| = π/2, again for different choices of the
superconducting order parameter symmetry. As seen before, these particu-
lar momenta are those where the sensitivity to the order parameter phase
is more pronounced. In particular, spectral intensities corresponding to
the transferred momentum QAF are sensitive to sign changes of the order
parameter between hole and electron pockets. Indeed, as one can see in
Fig. 5.4, the charge (spin) DSF is suppressed in the s± (s++) wave state.
Therefore, a comparison between spin and charge DSF can be revealing of
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a sign reversal in the order parameter between disconnected branches of the
Fermi surface. On the other hand, the spectral contributions of the intra-
band scattering within the hole pockets, which correspond to a transferred
momentum |q| ≈ π/2, are strongly affected by the parity of the order param-
eter, and therefore can discriminate between spin-singlet (e.g., s wave) and
spin-triplet pairing (e.g., p wave). In fact, spectral intensities at |q| = π/2
in Fig. 5.4 are suppressed in the spin and charge DSF respectively in the
spin-singlet (s± and s++ wave) and in the spin-triplet (pz and p̃z wave)
cases. This result is general, and does not depend on the gap magnitude
dependence along the Fermi surface, but only on its phase variations, and
therefore is a mere consequence of the parity of the order parameter. This
aspect is clearly displayed by the two panels of Fig. 5.4 referring to the p
wave state at |q| = π/2. The suppression of the charge DSF occurs for
both pz and p̃z wave, which have a different gap magnitude dependence, but
nevertheless the same phase variations and the same parity.

5.3 Conclusions

In this Chapter we have shown how RIXS spectra of quasiparticle exci-
tations are sensitive to phase differences of the superconducting order pa-
rameter along the Fermi surface, and hence allow one to distinguish among
different superconducting states, in particular between spin-singlet and spin-
triplet pairing and between sign-preserving and sign-reversing s wave states
in iron based superconductors. In particular, RIXS spectral intensities cor-
responding to a self-nesting of the hole pockets can discriminate between
singlet and triplet pairing, while RIXS spectra corresponding to a scattering
between hole and electron pockets [QAF = (π, 0)] can discriminate between
a s± wave and a s++ wave order parameter.
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6
Conclusions

The interplay between superconductivity and orbital degree of freedom
seems to be of fundamental importance to understand electronic correla-
tions, the superconducting pairing mechanism, and in general the low energy
properties of unconventional superconductors. In this work we presented
some theoretical predictions on RIXS spectra of magnetic and quasiparticle
excitations, which may help to probe the spin and orbital correlations and
the superconducting order parameter in cuprate and pnictide superconduc-
tors.

In Chapter 3, we proposed a new method to reveal orbital ordered states
in transition metal compounds via the analysis of the RIXS spectra of mag-
netic excitations. In fact, the momentum and polarization dependence of
the RIXS cross section of magnetic excitations is strongly influenced by
the presence, or the lack, of a long-range orbital order, and therefore allow
one to distinguish between different orbital ground states in the material
under study. Moreover, in Chapter 4 we have shown how RIXS spectra of
quasiparticle excitations in superconductors not only can measure the super-
conducting gap magnitude and reveal the presence of nodal points but, more
importantly, is also sensitive to phase differences of the order parameter on
the Fermi surface. This can allow one to get an insight on the pairing mech-
anism in unconventional superconductors, discriminating between different
orbital parameter symmetries, such as s, d (singlet pairing) and p (triplet
pairing). Finally in Chapter 5 we have studied the interplay between the
orbital content on the Fermi surface and the order parameter in RIXS spec-
tra of pnictide superconductors, and proposed a way to distinguish between
singlet and triplet pairing. In fact, such a direct experimental probe of the
order parameter by RIXS spectroscopy may be helpful to shed a light on the
pairing mechanism in some pnictide compounds, in particular in LiFeAs, in
which the nature of the superconducting state is still debated.
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A
Wigner-Eckart theorem and dipole operator

Wigner-Eckart theorem

A spherical vector operator [74] V̂ is defined as a vector operator whose
components transforms under rotations in the same way as the components
of the orbital angular momentum L̂. For a spherical vector operator, the
following canonical commutation relations must hold

[L̂λ, V̂µ] = ı~ελµν V̂ν , (A.1)

where ελµν is the Levi-Civita symbol. It is useful to introduce the spherical
basis representation, defining the spherical components of the vector as

V̂0 = V̂z, V̂±1 = ∓ 1√
2

(V̂x ± ıV̂y), (A.2)

where the components V̂±1 are proportional to the ladder operators in the
case of angular momenta or spin. If one assumes that the vector operator is
hermitian, one has V̂ †0 = V̂0 and V̂ †±1 = −V̂∓1.

The Wigner-Eckart theorem [127, 128] states that matrix elements of a
spherical vector operator V̂ on the basis of the orbital angular momentum
eigenstates can be expressed as a combination of Clebsch-Gordan coefficients
and a set of reduced matrix elements, in the form

〈
n′l′m′

∣∣ V̂q |nlm〉 =
〈lm; 1q|l′m′〉√

2l′ + 1
〈n′l′‖V ‖nl〉 with q = 0,±1, (A.3)

where 〈lm; 1q|l′m′〉 are the Clebsch-Gordan coefficients, 〈n′l′‖V ‖nl〉 are the
reduced matrix elements of the spherical operator, which do not depend
on the magnetic quantum number m, and |nlm〉 are the eigenstates of the
angular momentum with l and m the azimuthal and magnetic quantum
numbers, where n represents all the other quantum numbers which define
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the state of the system. In the second quantization language, the Wigner-
Eckart representation of a spherical vector operator reads

V̂q =
∑

nlmn′l′m′

〈lm; 1q|l′m′〉√
2l′ + 1

〈n′l′‖V̂ ‖nl〉c†n′l′m′cnlm with q = 0,±1, (A.4)

where c†nlm and cnlm creates and annihilates respectively an electron state
with quantum numbers n, l, and m.

The Clebsch-Gordan coefficients 〈lm; 1q|l′m′〉 can be written in terms of
Wigner 3j symbols as

〈lm; 1q|l′m′〉 = (−1)l+m
′√

2l′ + 1

 l′ 1 l
−m′ q m

. (A.5)

The general definition, symmetry properties, and selection rules of the Wigner
3j symbols can be found in Ref. [129]. Since nonzero Clebsch-Gordan coef-
ficients and Wigner 3j symbols in Eq. (A.5) satisfy the triangular inequality
|l′ − l| ≤ 1 ≤ l′ + l and the condition m + q −m′ = 0, the matrix elements
of the spherical vector operator V̂ vanish for l′ = l = 0 while are nonzero if
the following selection rules are satisfied〈

n′l′m′
∣∣ V̂q |nlm〉 6= 0 ⇒ ∆l = 0,±1, and ∆m = q, (A.6)

where ∆l = l′ − l and ∆m = m′ − m. Therefore, the nonzero matrix
elements of a spherical vector operator connect eigenstates with azimuthal
quantum numbers l which differs at most by 1. In particular, the component
V̂z = V̂0 allows nonzero matrix elements between eigenstates with the same
magnetic quantum number m = m′, while the spherical components V̂±1

allows nonzero matrix elements for m′ = m ± 1. Expanding the Clebsch-
Gordan coefficients in Eq. (A.4) via Eq. (A.5), and writing down explicitly
the relevant Wigner 3j symbols, the components of the spherical vector V̂
become [130]

V̂0 =
∑
nn′lm

m√
l(l+1)(2l+1)

〈n′l‖V ‖nl〉c†n′lmcnlm+

+
√

l2−m2

l(2l−1)(2l+1)〈n
′l − 1‖V ‖nl〉c†n′l−1mcnlm+

−
√

l2−m2

l(2l−1)(2l+1)〈nl‖V ‖n
′l − 1〉c†nlmcn′l−1m,

V̂−1 = −V̂ †+1 =
∑
nn′lm

√
(l+m)(l−m+1)
2l(l+1)(2l+1) 〈n

′l‖V ‖nl〉c†n′lm−1cnlm+

−
√

(l+m)(l+m−1)
2l(2l−1)(2l+1) 〈n

′l − 1‖V ‖nl〉c†n′l−1m−1cnlm+

−
√

(l−m)(l−m+1)
2l(2l−1)(2l+1) 〈nl‖V ‖n

′l − 1〉c†nlm−1cn′l−1m. (A.7)
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Note that the reduced matrix element are not independent, since for the
hermiticity of the component V̂0 one has that

〈nl‖V ‖n′l〉 = 〈n′l‖V ‖nl〉∗,
〈nl‖V ‖n′l − 1〉 = −〈n′l − 1‖V ‖nl〉∗. (A.8)

Angular momentum

The Wigner-Eckart theorem prescribes the general structure of a spher-
ical vector operator, but does not define the actual representation of the
vector in the momentum operator basis. In particular, it says nothing about
the reduced matrix elements, which are in fact implicitly defined and have
to be calculated specifically for any given operator. This is usually done by
a comparison of the Wigner-Eckart representation with a direct calculation
of the matrix element of the vector operator.

As an example, one can consider the orbital angular momentum L̂, which
is a spherical vector by definition. Comparing Eq. (A.7) with the matrix
element of the orbital angular momentum on its eigenvectors basis, it follows
that its reduced matrix elements are

〈n′l′‖L‖nl〉 = δnn′δll′~
√
l(l + 1)(2l + 1) (A.9)

which leads to the representation of the orbital angular momentum in spher-
ical components as

L̂0 =
∑
nn′lm

~m c†n′lmcnlm

L̂−1 = −L̂†+1 =
1√
2

∑
nn′lm

~
√

(l +m)(l −m+ 1) c†n′lm−1cnlm, (A.10)

or, alternatively, in Cartesian coordinates as

L̂x =
1

2

∑
nn′lm

~
√

(l +m)(l −m+ 1)
(
c†n′lm−1cnlm + c†nlmcn′lm−1

)
L̂y =

ı

2

∑
nn′lm

~
√

(l +m)(l −m+ 1)
(
c†n′lm−1cnlm − c

†
nlmcn′lm−1

)
L̂z =

∑
nn′lm

~m c†n′lmcnlm. (A.11)

Note that the orbital angular momentum, being diagonal respect to the
azimuthal quantum number l, does not allow transitions with ∆l = ±1.
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Position and momentum operators

The position r̂ and linear momentum p̂ operators are spherical also
spherical operators, since they both satisfy Eq. (A.1). In order to calcu-
late the reduced matrix elements of the position and momentum operators,
one can directly calculate the matrix elements of one component in spherical
coordinates using the spherical harmonics representation of the orbital an-
gular momentum eigenstates |nlm〉 = |RnlY m

l 〉. In this way, the calculations
reduce to the evaluation of spherical harmonics integrals in the form

〈Y m1
l1
|Y m2
l2
|Y m3
l3
〉 =

∫
Y m1∗
l1

(θ, ϕ)Y m2
l2

(θ, ϕ)Y m3
l3

(θ, ϕ) sin θ dθ dϕ

= (−1)m1

√
(2l1+1)(2l2+1)(2l3+1)

4π

l1 l2 l3
0 0 0

 l1 l2 l3
−m1 m2 m3

. (A.12)

Since the reduced matrix elements do not depend on the magnetic quantum
number, one can restrict the calculation, for the sake of simplicity, to matrix
elements between eigenstates with m = m′.

The matrix elements of the component r̂0 = r̂z = r cos θ of the position
operator between orbital angular momentum eigenstates can be calculated
using the fact that Y 0

1 = 1
2

√
3/π cos θ, which leads to

〈
n′l′m

∣∣ r̂0 |nlm〉 = 〈Rn′l′Y m
l′ |r cos θ|RnlY m

l 〉

=
√

4π
3 〈Rn′l′ | r |Rnl〉 〈Y

m
l′ |Y 0

1 |Y m
l 〉 ,

where the spherical harmonics integral can be calculated via Eq. (A.12). The
three spherical harmonics integral vanishes for l′ = l, while it is nonzero for
∆l = ±1 and therefore, by a comparison with Eq. (A.7), one has

〈n′l‖r‖nl〉 = 0,

〈n′l − 1‖r‖nl〉 =
√
l 〈Rn′l−1| r |Rnl〉 . (A.13)

To evaluate the reduced matrix elements of the momentum operator,
one can calculate the matrix elements of the component p̂0 = p̂z, which in
spherical coordinates reads

p̂0 = p̂z = −ı~ ∂
∂z

= −ı~
(

cos θ
∂

∂r
+ sin θ

1

r

∂

∂θ

)
. (A.14)

Using the differentiation rules for spherical harmonics, and the fact that
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Y 0
1 = 1

2

√
3/π cos θ and Y −1

1 = 1
2

√
3/2π sin θe−ıφ, one has

〈
n′l′m

∣∣ p̂0 |nlm〉 = −ı~〈Rn′l′Y m
l′ |
(

cos θ
∂

∂r
+ sin θ

1

r

∂

∂θ

)
|RnlY m

l 〉

=− ı~〈Rn′l′ |
∂

∂r
|Rnl〉〈Y m

l′ | cos θ|Y m
l 〉 − ı~〈Rn′l′ |

1

r
|Rnl〉

×
(
m〈Y m

l′ | cos θ|Y m
l 〉+

√
(l −m)(l +m+ 1)〈Y m

l′ | sin θe−ıφ|Y m+1
l 〉

)
=− ı~

√
4π
3

(
〈Rn′l′ |

∂

∂r
|Rnl〉+m〈Rn′l′ |

1

r
|Rnl〉

)
〈Y m
l′ |Y 0

1 |Y m
l 〉

− ı~
√

4π
3 〈Rn′l′ |

1

r
|Rnl〉

√
2(l −m)(l +m+ 1)〈Y m

l′ |Y −1
1 |Y

m+1
l 〉,

where the integrals in the last line can be again calculated using Eq. (A.12).
The three spherical harmonics integrals vanish for l = l′ while they are
nonzero for ∆l = ±1, and therefore by a comparison with Eq. (A.7) one
obtains the reduced matrix elements of the momentum operator, which read

〈n′l‖p‖nl〉 = 0,

〈n′l − 1‖p‖nl〉 = −ı~
√
l 〈Rn′l−1|

∂

∂r
− (l + 1)

1

r
|Rnl〉 . (A.15)

Eventually, since the reduced matrix elements in Eqs. (A.13) and (A.15)
corresponding to transitions l′ = l are zero in both cases, the spherical
components of the position and of the momentum operators are given by

D̂0 =
∑
nn′lm

√
l2−m2

(2l−1)(2l+1)δnn′ll−1c
†
n′l−1mcnlm + h.c.,

D̂−1 = −D̂†+1 =
1√
2

∑
nn′lm

√
(l−m)(l−m+1)
(2l+1)(2l−1) δ

∗
nn′ll−1c

†
nlm−1cn′l−1m+

−
√

(l+m)(l+m−1)
(2l+1)(2l−1) δnn′ll−1c

†
n′l−1m−1cnlm, (A.16)

where D̂ is either the position r̂ or the momentum p̂ operator, and where
δnn′ll−1 represents respectively the radial integrals ρnn′ll−1 and πnn′ll−1 de-
fined by

ρnn′ll−1 = 〈Rn′l−1| r |Rnl〉 =

∫ ∞
0

R∗n′l−1(r)rRnl(r)r
2dr,

πnn′ll−1 = −ı~ 〈Rn′l−1|
∂

∂r
− (l + 1)

1

r
|Rnl〉

= −ı~
∫ ∞

0
R∗n′l−1(r)

(
∂

∂r
− (l + 1)

1

r

)
Rnl(r)r

2dr, (A.17)

which inherently depends on the eigenstates of the system. Since no hypoth-
esis have been done on the system eigenstates, the radial functions Rnl(r) do
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not necessary correspond to the eigenstates of the hydrogen-like ion. Using
the definition of spherical vector in Eq. (A.2), one can obtain the Cartesian
components of the position and momentum operators, which read

D̂x =
1

2

∑
nn′lm

√
(l−m)(l−m+1)
(2l+1)(2l−1) δnn′ll−1c

†
n′l−1mcnlm−1+

−
√

(l+m)(l+m−1)
(2l+1)(2l−1) δnn′ll−1c

†
n′l−1m−1cnlm + h.c.,

D̂y = − ı
2

∑
nn′lm

√
(l−m)(l−m+1)
(2l+1)(2l−1) δnn′ll−1c

†
n′l−1mcnlm−1+

+
√

(l+m)(l+m−1)
(2l+1)(2l−1) δnn′ll−1c

†
n′l−1m−1cnlm + h.c.,

D̂z =
∑
nn′lm

√
l2−m2

(2l−1)(2l+1)δnn′ll−1c
†
n′l−1mcnlm + h.c.. (A.18)

The position and the momentum operators allow nonzero matrix elements
with ∆l = ±1, while transitions with ∆l = 0 are forbidden. Moreover, the
components r̂z and p̂z preserve the magnetic quantum number m, while the
components r̂x, r̂y and p̂x, p̂y allow transitions to states which are super-
positions of eigenstates with m ± 1. The representation of the position r̂
and of the momentum operator p̂ in the basis of orbital angular momen-
tum eigenvalues are similar, and that they indeed differ only with respect
to the radial integrals ρnn′ll−1 and πnn′ll−1. Nevertheless, since they satisfy
the canonical commutation relation [r̂λ, p̂λ] = ı~, position and momentum
operators are not proportional to each another.

Tesseral harmonics representation

In the free ion case, the electron states corresponding to the azimuthal
quantum number l are in general described in terms of spherical harmonics,
i.e., as a linear combination of states |RnlY m

l 〉, with the radial and angular
parts of the wavefunction described respectively by a radial function Rnl(r)
and a spherical harmonic Y m

l (θ, φ). However, in the case of an ion in a
crystal with orthorhombic, tetragonal, or cubic symmetry, the point group
contains rotations about finite angles around three orthogonal axis, and
the energy levels of the crystal field Hamiltonian correspond in general to
electron states which are better described in terms of tesseral harmonics
Ylm, which can be defined as

Ylm(θ, φ) ≡


1√
2

[
(−1)mY m

l (θ, φ) + Y −ml (θ, φ)
]

if m > 0

Y 0
l (θ, φ) if m = 0
1
ı
√

2

[
(−1)mY −ml (θ, φ)− Y m

l (θ, φ)
]

if m < 0

. (A.19)

Tesseral harmonics represent a natural choice to describe electrons in a non-
spherical potential. Orbitals which correspond to tesseral harmonics are
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commonly referred as s, p, d, and f orbitals for l = 0, 1, 2, 3, with a subscript
which describes the functional dependence of the corresponding tesseral har-
monic in Cartesian coordinates.

The orbital angular momentum operator allows nonzero matrix elements
only if ∆l = 0, i.e., it is diagonal respect to the azimuthal quantum num-
ber. It is natural therefore to decompose the orbital angular momentum L̂
into a sum of operators which has nonzero matrix elements only between
eigenstates with fixed quantum number l. On the other hand, the position
and momentum operators allow nonzero matrix elements only if ∆l = ±1.
Hence, these operators can be decomposed in the form

L̂ =
∑
nn′l

L̂nn
′ll, D̂ =

∑
nn′l

D̂nn′ll−1, (A.20)

where the operator D̂ is either the position r̂ or the momentum p̂ operator,
and L̂nn

′ll acts only between eigenstates with quantum numbers n, l and
n′, l, while D̂nn′ll−1 acts only between eigenstates with quantum numbers
n, l and n′, l − 1. In Table A.1 are listed the explicit form of the operators
L̂nn

′ll and D̂nn′ll−1 in terms of the tesseral harmonics basis.
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Markus Grüninger, Luis Mäder, Marco Moretti-Sala, Hsiao-Yu Huang, Niko-
lay Bogdanov, Mario Cuoco, Angela Nigro, Berndt Büchner, and Canio Noce
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