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Kurzfassung  

 

Die Errichtung von geologischen Tiefenlagern stellt eine weltweit verfolgte Strategie zur 

Verwahrung hochradioaktiver Abfälle dar. Auf Grund der Toxizität in diesen Abfällen 

enthaltenen langlebigen Radionuklide ist eine Sicherheitsanalyse über einen Zeitraum von 

mehreren Hunderttausend Jahren notwendig. Im Falle des Radionuklids 
237

Np mit einer 

Halbwertszeit von 2.14∙10
6
 Jahren sind daher grundlegende Kenntnisse über dessen 

Migrationspotential insbesondere unter aquatischen Umweltbedingungen nötig. Im Nah-Feld 

eines Endlagers, wo überwiegend reduzierende Bedingungen angenommen werden müssen, ist 

dabei das Migrationsverhalten von vierwertigen Np von besonderem Interesse. Auf Grund der 

geringen Löslichkeiten (~10
−8

 M) von Np(IV) Verbindungen wurde bislang die Mobilität dieses 

Ions in wässrigen Systemen überwiegend als sehr gering eingeschätzt. In Feldstudien konnte 

jedoch für  Actinid(IV)-Verbindungen eine erhöhte, meist durch kolloidalen Transport induzierte 

Mobilität nachgewiesen werden, was weitergehende Untersuchungen zu Bildungsmechanismen 

von kolloidalen Actinid-Systemen und deren Verhalten unter umweltrelevanten Bedingungen 

erfordert. 

Die vorliegende Studie befasst sich daher mit der Bildung von Np(IV) Nanopartikeln in 

schwach-alkalischem Milieu unter Karbonat-haltigen Bedingungen wie sie im Nah-Feld eines 

zukünftigen Endlagers auftreten können. Des weiteren wird der Einfluss von ubiquitär 

auftretendem Silikat auf das Präzipitationsverhalten von Np(IV), sowie die Bildung von Np(IV)-

Silikat-Kolloiden untersucht. 

Die Bildung von nanokristallinem NpO2 wird durch die Dissoziation des Komplexes 

[Np(IV)(CO3)5]
6−

 in wässriger Phase durch einfaches Verdünnen induziert. Mittels 

hochauflösender Transmissionselektronenmikroskopie (HR-TEM) konnte eine Fluoritstruktur 

(Raumgruppe mFm3 ) und eine durchschnittliche Partikelgröße von 4 nm der erhaltenen 

Nanokristalle nachgewiesen werden, welche in situ zu Aggregaten mit einem Durchmesser im 

Mikrometerbereich agglomerieren können. In Lösung wurde zudem die Existenz vereinzelter 

Aggregate kleinerer Dimensionen (~12 nm) bestätigt, die sich aus bis zu fünf Nanokristall-

Einheiten zusammensetzen. Das intensive Agglomerationsverhalten wird durch einen Mangel an 

effektiver Oberflächenladung (Zetapotential ~0 mV) bei einem Isoelektrischen Punkt (pHIEP) 

von pHIEP 8 begünstigt. Zudem konnten Hinweise auf polynukleare Np(IV)-Verbindungen als 

Vorstufe der NpO2-Nanokristall-Bildung beobachtet werden, deren Struktur bisher unbekannt ist. 

In Gegenwart von Silikat wird die Bildung von nanokristallinem NpO2 durch die Bildung 

von Np(IV)-Silikat-Partikel unterbunden. Dafür formieren sich hierbei – in Abhängigkeit des 

molaren Si/Np-Verhältnis – Np(IV)-Silikat-Partikel unterschiedlicher Morphologie und 





 

kolloidaler Stabilität. Bei einem initialen Si/Np-Verhältnis von ~2, präzipitiert Np(IV) 

gemeinsam mit Silikat als Partikel von der Größe >1 µm, welche aus unregelmäßig 

quervernetzten Np(IV)-Silikat-Kompartimenten mit Porengrößen von ~2-15 nm bestehen. 

Aufgrund gering ausgeprägter effektiver Oberflächenladung und einem pHIEP ~6, sind diese 

Partikel nicht als Kolloid-Dispersion stabilisiert und sedimentieren innerhalb von 1 Monat. Bei 

einem deutlich höheren Si/Np-Verhältnis von ~9, entstehen dagegen Np(IV)-Silikat-Kolloide mit 

einer durchschnittlichen Partikelgröße von ~45 nm, welche auch über einen längeren Zeitraum 

(>1 Jahr) nicht sedimentieren. Diese Kolloide mit amorpher Partikelstruktur sind durch eine 

geschlossene Oberfläche charakterisiert, an der möglicherweise Silikate adsorbiert werden 

können. Mittels Röntgenabsorptionsspektroskopie (EXAFS) wurde der Einbau von Si in diese 

Kolloide mit einem NpSi Abstand zu ~3.1 Å in der Partikelstruktur bestimmt. 

Neben der nanoskaligen Größe und Form spielt für die kolloidale Stabilisierung dieses 

Np(IV)-Silikat-Systems die effektive hydrodynamische Oberflächenladung eine entscheidende 

Rolle: aufgrund von Silikat-Anreicherung sind diese Partikel – vergleichbar zu kolloidalem SiO2 

– zwischen pH 5 und pH 9 mit signifikant negativer Oberflächenladung ( = (-) 15 bis (-) 24 mV) 

und einem pHIEP von 2.6 elektrostatisch in Dispersion stabilisiert. Damit können diese Partikel 

unter umweltrelevanten Grundwasserbedingungen potentiell langzeit-stabile Kolloid-Dispersion 

erzeugen. In Alterungsversuchen wurde die partielle Bildung von kristallinen 

Np-Oxidverbindungen innerhalb der amorphen Np(IV)-Silikat-Matrix beobachtet, was auf ein 

dynamisches System hindeutet. 

Die vorliegende Arbeit demonstriert, dass in Gegenwart von Silikat das Hydrolyseverhalten von 

Np(IV) signifikant beeinflusst wird: beim Überschreiten der Löslichkeitsgrenze von Np(IV) 

(<10
-8

 M in ultrapurem Wasser) um den Faktor 10.000 kann Silikat vierwertiges Np im 

wassergetragenen Zustand mit Konzentration zu [Np] = 1∙10
−3

 M in Form von Np(IV)-Silikat-

Kolloiden stabilisieren. Das Generieren von Np(IV)-Nanopartikel, das durch Verdünnung von 

Np(IV)-Karbonat-Lösung induziert werden kann, skizziert somit einen potentiellen Grenzfall der 

Freisetzung von Np aus einem nuklearen Endlager unter den vorherrschenden 

Umweltbedingungen: den aquatischen Transport von der zementhaltigen geotechnischen Barriere 

mit ihren alkalischen Bedingungen im Nah-Feld hin zu eher pH neutralen, niederkonzentrierten 

Bedingungen im Fern-Feld. Damit wird ein potentielles Migrationsverhalten von Np(IV) in 

geologischen Tiefenlagern beschrieben. Zudem liefern die hier erbrachten Nachweise der 

intrinsischen Bildung von sowohl nanokristallinen NpO2 im Np(IV)-Karbonat-System als auch 

von Np(IV)-Silikat-Kolloiden im ternären Np(IV)-Silikat-Karbonat-System wichtige Hinweise 

für kolloid-induzierte Transportmechanismen von Actiniden unter Umweltbedingungen, die es in 

einem noch zu erbringenden Langzeitsicherheitsnachweis für ein Endlager zu berücksichtigen 

gilt.
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1 Introduction and Objectives 

1.1 Introduction  

Conventional nuclear energy is inevitably accompanied by a long-lasting radioactivity inventory 

of spent fuel from nuclear power plants. After the decay of short-lived fission products, i.e., 
90

Sr 

and 
137

Cs, the major radioactivity is attributed to transuranic elements, i.e., actinide isotopes 

237
Np, 

239,240
Pu, and 

241,243
Am.[1] Herein, the -emitter 

237
Np is identified as a key long-term dose 

contributor to the total radiation in certain nuclear waste repository scenarios due to the long half-

life of T1/2 = 2.14∙10
6
 a.[2, 3] 

The majority of the global inventory of  
237

Np is pre-dominantly formed by neutron irradiation of 

nuclear fuel, UO2, in pressurized water reactors - as a result of successive neutron capture 

reactions on 
235

U and 
238

U [4] and as a daughter nuclide of 
241

Am (T1/2 = 432 a). 

Due to the fact that no practical and commercial applications of nearly all inevitably accumulated 

Np exists [5], it is intended to be incorporated into high-level radioactive waste (HLW) and stored 

in deep geological disposal sites. 

 

 

Figure 1. Worldwide cumulative minor actinide discharges 

tHM = metric tons of heavy metal (figure taken from [6]; estimation based on model in [7]). 

 

Of particular concern, due to long-term radiotoxicity and proliferation risk, is the 

approximately 1 wt% of spent fuel, composed of plutonium and the minor actinide (MA) 

isotopes (i.e. Np, Am and Cm). An estimate of the current inventory reveals a future of 

growth of MA inventory (Figure 1), especially of Np.[6, 7] In the year 2006, it was 

approximated that about 110 tons of minor actinides were being contained in spent fuel 
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storage worldwide, and additional 40 tons were contained in HLW products from 

reprocessing. In the absence of partitioning and transmutation, the amount will double by 

the year 2020.[6] 

Despite the relatively small amount of about ~0.1 wt% in burned fuel, 
237

Np will contribute to 

the radiotoxicity in HLW over long time spans as a consequence of its half-life and play the 

major role in MA content.[2, 6, 8] The fractional dose attributed to 237
Np will reach 67% 

within 75,000 a.[4] In addition to the potential radiological hazard, Np is expected to migrate 

if released into geosphere. Field-testing in the environment of nuclear tests facilities and 

nuclear reprocessing plants have revealed that 237
Np is mobile in surface water and in 

groundwater.[5, 9-12] Therefore, 237
Np is the most relevant Np isotope with regards to 

environmental contamination and long-term safety management.[2, 3, 8] 

Concepts of safe HLW storage and economical design of deep geological HLW repository sites 

are still controversial debated topics. Nevertheless, all countries that developed nuclear fuel cycles 

focus on a general retention concept of utilizing a multiple barrier system that will be applied for 

shielding of the nuclear waste. Independent from the host rock formation in which a HLW 

repository will be implemented the model of the multiple barrier system consists of engineered, 

geo-engineered, and the geological sub-barriers. The engineered or technical barrier is represented 

by the conditioned, solidified, and preferably water insoluble waste. It contains highly 

concentrated actinide waste incorporated in molded silica glass coquilles, placed and filled with 

concrete in containments of steel or copper. Crushed host-rock material or backfill material, such 

as bentonite and borehole plugs, will define the geo-engineered barriers and swelling in the case 

of contact with groundwater, thus, offering an extra seal to minimize radionuclide leakage. The 

host-rock itself will serve as geological barrier. Possible host rocks for nuclear waste repositories 

are salt domes (Germany, USA), clay rock (Germany, France, Switzerland, Belgium), and granite 

(Germany, Sweden, Finland, Canada). 

The variety of environmental parameters influencing the redox state and chemical behavior of 

actinide inventory is extremely complex and dependent on the storage and localization of HLW in 

the disposal site. The zone surrounding the HLW confined in engineered barriers in geological 

depths, the so-called near-field (A in Figure 2), is predominantly characterized by reducing anoxic 

and alkaline conditions. Depending on the site-specific conditions underground water chemistry is 

subject to variations in bicarbonate concentrations and pH[13-15] e.g. highly concentrated 

carbonate leakage water (alkaline pH in deep near-field) released from concrete-filling material 

(i.e., bentonite) which is converted to bicarbonate (near-neutral or slightly alkaline pH in far-field) 

from the dilution in groundwater flow. Continuous groundwater flows between the saturated 

(near-field) and unsaturated/vadose zone (far-field) influence the transport potential of actinides 

into the far-field environment, in soluble form and colloidal forms.[16, 17]  
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Figure 2. Schematic illustration of model nuclear waste repository with example of 

environmental groundwater composition 

(A) anoxic deep zone (near-field) in blue and (B) oxic zone (far-field) in yellow; 

Ground water composition taken from [14]. 

The mobility of Np depends on the redox conditions of its environment[18]: Np can exist in 

several valence states in nature (e.g., III, IV, V, VI, VII) that exhibit remarkable differences in 

solubility behavior, which can have a dramatic effect on their migration potential.[19] Under 

oxidizing conditions of natural waters in the far-field (unsaturated zone), the predominant redox 

state Np(V) is highly mobile in oxygenated surface waters[9-12] due to its high solubility and 

weak affinity to mineral surfaces.[20] In contrast, under the anoxic and reducing conditions in the 

unsaturated zone of a near-field, the prevailing redox state of Np is the tetravalent, Np(IV). In 

general, tetravalent actinides (An(IV)) are considered immobile due to low solubility of An(IV) 

species and expected to remain as amorphous precipitated An(IV) oxyhydroxides or in the 

thermodynamically stabilized form of AnO2 .[15, 21-27] 

Nevertheless, field studies of nuclear test sites or nuclear industry sites revealed enhanced actinide 

transport attributed to colloidal groundwater migration mechanisms[28-30], contradicting 

underestimated prediction models.[30, 31] Enhanced migration is attributed to the contribution of 

nanosized An(IV) species or AnO2 colloids.[30-35] 

1.2 Solution and solid-state structure of An(IV) hydrates and An(IV) colloids 

As a consequence of a highly oxophilic nature, the free single Np(IV) ions undergo hydrolysis 

with hydroxide ions, or are stabilized via oxygen-bridged complexation, e.g., stable carbonate 

complexation.[20] Under slightly alkaline conditions, both carbonate and hydroxide strongly 

interact with actinide ions and could affect the mobility of actinides in natural groundwater 

systems via ternary complexation.[36] Solution chemistry of the An(IV) system, especially for the 
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Np carbonate system, is extremely complex[37, 38] and corresponding thermodynamic data 

widely scattered[14, 36] by i.a. neglecting the formation of polynuclear An(IV) species, as well as 

colloid formation. New polynuclear An(IV) structures were identified in aqueous solution (Figure 

3-(A)): i.e. dihydroxo-bridged (µ2-OH) Th-dimer[39, 40], hexanuclear Np(IV) cluster ((µ3-O)/ 

(µ3-OH)-bridged Np6 octahedron)[41] and exclusively oxobridged Pu38O64
+x

 cluster[39, 42]. 

 

 

Figure 3. An(IV) cluster structures (A) and An(IV) colloids (B) in the nanoscale. 

(A) structures of Th(IV) dimer (1), Np(IV) hexanuclear cluster (2) and Pu38O64
+x

 cluster (3) from 

[39];(B) TEM data of intrinsic fcc PuO2 nanocolloids and goethite (1) from [33] and schematic 

illustration of Pu(IV) pseudo-colloid stabilization with smectite clay colloids (2) from [43]. 

 

In the case of Np(IV), the fundamental understanding of its molecular solubility mechanisms and 

reactivity under slightly alkaline pH is incomplete, and data about the actual neptunium migration 

fate is scarce.[44, 45] In colloidal field tests, Np was determined to be mobile due to interactions 

with bentonite colloids as pseudo-colloids.[46] The carrier- or pseudo-colloids consist of mineral 

fragments of crystalline or amorphous solids that the particular element may be attached.[47] It 

was found by TEM that highly ordered fcc PuO2 nanoparticles (2-5 nm in size) were located on 

goethite mineral surfaces (Figure 3-(B1).[33] The effective particle surface charge impacts Pu(IV) 

stablility in suspension,  negatively charged smectite colloids from Nevada test site coexists with 

weak positively charged intrinsic Pu(IV) particles. This emphasizes the expected An(IV) pseudo-

colloid transport mechanism as illustrated in Figure 3-(B2).[43] 

Regarding interactions with environmental compounds, an An(IV) release from HLW engineered 

barriers toward near-field aquifer conditions would be accompanied with the ubiquitous 

occurrence of silicate concentration up to 2∙10
-3

 M[48] and a pH change towards near-neutral 
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conditions in solution (Figure 2). In consideration of silicate in solution, the formation of a new 

type of An(IV) colloids was observed: the An(IV) silica colloids.[49, 50] Metastable Th(IV) or 

U(IV) silica colloids are formed with silica in aqueous solution at pH >7. Extended X-ray 

absorption fine structure (EXAFS) confirmed that An-O-Si bonds replace An-O-U bonds in 

internal particle structure with increasing silicate concentrations in solution. The rising silica 

content of the particles changes  their effective surface charge in solution whereby the particles 

remain colloidal stabilized in dispersion over years due to electrostatic repulsion.[49] 

 

 

Figure 4. Schematic illustration of dispersed nanoparticles with selected chemical and 

physical parameters 

 

In order to determine the possible impact of colloid facilitated transport as a contribution to the 

safety assessment of An(IV), knowledge of the key parameters inducing colloid formation and 

colloid stability is essential. The colloidal appearance of actinide bearing nanoparticles can be 

regarded as a sensitive counterbalanced ratio of surface net charge, particles size, colloid 

composition, solution properties and solution viscosity (demonstrated in schematic illustration in 

Figure 3). These parameters and the actual flow velocity in environmental aquifers control the 

stability and sorption behavior of colloids and the possible impact of colloid induced 

transport.[51-54] Therefore, these physicochemical characteristics, the key solution and in the 

solid state parameters of An(IV) particle stability as colloids at near-neutral pH, are of particular 

interest. Here within, the present study addresses fundamental factors that govern the stabilization 

of Np(IV) nanoparticles under ambient conditions in a colloidal borne state. 

1.3 Research aspects and objectives 

For actinides in the tetravalent state, the most significant transport would occur by colloidal 

particles. With a growing worldwide MA discharge and the current need for geological disposal 

facilities, this work is timely and focuses on the transport scenario of Np(IV), moving from 

alkaline cement conditions (near-field) to more neutral environmental conditions (far-field) that 
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are related to colloid formation. The mechanisms of nanoparticle formation and stabilization in 

two different environmental systems in solution are of particular interest: (i) in a carbonate 

environment and (ii) as the silica carbonate system. Thus, a novel isolation route of Np 

nanoparticles of environmentally of high relevance was investigated. Neutralization was induced 

by dilution for modeling environmental conditions as the concentration of radionuclides would 

decrease as they defuse away from the site of a leak. By investigating the solubility behavior of 

Np(IV) after dilution in a simple Np(IV) and carbonate system, the intrinsic formation of 

nanocrystalline NpO2 at near-neutral pH was investigated for the first time.   

The admixture of silicate into the Np carbonate system simulates the influence of an additional 

ubiquitously occurring component in groundwater on the Np particle precipitation behavior. It 

also tests if Np(IV) might be stabilized in the ternary Np, silica and carbonate system as the 

waterborne form of the recently discovered new type of actinide colloids, the An(IV) silica 

colloids. Hence, evidence of the formation of Np(IV) silica colloids is the ultimate goal. 

In order to understand the key parameters in stabilization of waterborne actinide bearing particles, 

the chemical and physical properties of Np-nanomaterials and the state of particles in colloidal 

solutions are of particular interest. The dispersed Np(IV) particles allow for characterization using 

in situ techniques such as photon correlation spectroscopy (PCS) for size calculation with 

cumulant expansion, and laser Doppler velocimetry (LDV) for characterization of the effective 

hydrodynamic surface charge at the particle-solution interface. 

Transmission electron microscopy (TEM) in combination with energy dispersive X-ray 

spectroscopy (EDX) were applied to characterize the elemental composition and morphology 

characteristics in size, shape, and state of the crystallinity of isolated particles. Furthermore, the 

Np local structure was characterized in terms of the average coordination spheres of Np and its 

valency by X-ray absorption spectroscopy (XAS), and its electronic structure by determination of 

Np´s core electron binding energies by X-ray photoelectron spectroscopy (XPS). Hints for 

different electronic structures of Np are derived by UV-vis spectroscopy (UV-vis). 

 

The new insights into the formation of Np(IV) nanoparticles under ambient conditions herein 

were published in peer-reviewed journals in inorganic chemistry (Chemical Communications; 

2015, 51(7): p. 1301-1304., IF2014 6.7) and environmental chemistry (Environmental Science and 

Technology, 2014, 49(1): p. 665-671., IF2014 5.4) and presented at actinide conferences and 

workshops e.g. speech on Migration Conference (2013, Brighton, U.K.), presentation on 

Plutonium Futures (2014, Las Vegas, U.S.A.), and presentations on Advanced Techniques in 

Actinide Spectroscopy  (2012 and 2014, Dresden, Germany), rewarded with Best Poster Award 

by selection of the workshop participants. 
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2 Stabilization of Np(IV) in aqueous solution at near-neutral pH 

As a first step, the environmental conditions, under which Np(IV) colloid formation is obtained, 

were evaluated. For this purpose, the influence of silica was simulated in model experiments close 

to near- and far-field scenarios in order to generate Np(IV) colloid formation in solutions of 

different composition at slightly alkaline pH. 

In relevance to the near-field area of nuclear waste disposal sites characterized by an actinide and 

carbonate-enriched environment, one principle method for colloidal nanoparticle generation was 

utilized: precipitation by exceeding the solubility limit of the compound concerned. Two related 

strategies were considered: exceeding the solubility of (i) Np(IV) in dependence on carbonate 

concentration or of (ii) silica in dependence on its concentration around the mononuclear wall of 

silicic acid (MWSA) in solution. The MWSA represents the concentration limit above which 

silicic acid solutions are expected to contain polymers ([Si] ~ 2.5∙10
-3

 M). These polymers are 

decisive because of their interaction with actinides and the formation of polynuclear species. 

Typically, metal ions show higher affinities to polysilicic acid than to monosilicic acid.[55, 56]  

Due to the fact that carbonate and bicarbonate ions are efficient complexing agents, tetravalent An 

can exist in the waterborne form in carbonate solutions in the near-field environment.[26, 57-59] 

The solubility of Np(IV) in carbonate environments is limited due to two prevailing aqueous 

species: in low-enriched carbonate solutions, the ternary complex Np(OH)2(CO3)2
2-

 and in 

carbonate enriched solutions, the dominating binary complex Np(CO3)5
6-

(Figure 5). The latter 

species was present in the precursor solution used in the model experiments, and the 

corresponding sample conditions are highlighted by the green dot in Figure 5. 

The hydrolysis of the Np(IV) carbonate complex in the precursor solution due to mixing with 

water was initiated by dilution in the absence or presence of silicate. The formation of a solid 

phase (Np(IV) nanoparticles) was induced by decreasing the carbonate concentration upon mixing 

the solutions (conditions of samples revealing colloid formation are highlighted as blue dots in 

Figure 5).  An overview of conditions tested for the absence or presence of Np(IV) colloids in 

solutions of different composition, based on scattered light intensity (SLI) measurements 

(nephelometry), is given in Table 1. No silicic acid was added to the solution in the case of 

Sample 1 that served as a reference sample. 
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Figure 5. Solubility of neptunium(IV) in dependence on carbonate/bicarbonate 

concentration 

Figure is in accordance to the thermodynamic model of NpO2 (am) solubility by Rai et al. [26]. 

The green dot indicates the conditions of the precursor solution before dilution and the blue dots 

depict conditions of colloidal samples after dilution. 
 

 

Table 1. Colloid characterization by nephelometry, ultracentrifugation (5 h, 100 000 × g) and 

ultrafiltration (5-kDa). 
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Concentration [10-3 M]  Scattered light intensity [kcps]1 

After preparation 
After 24 h 

settling 
After UF/UC 

pH 

A
ft

er
 

p
re

p
ar

at
io

n
 

A
ft

er
 

ac
id

if
ic

at
io

n
 

A
ft

er
 2

4
 h

 

se
tt

li
n

g
 

A
ft

er
 U
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Np Si HCO3
- Np Np Si 

1 1.4 - 0.1 0.3 0.3UF 
n.m. > 8.5 52 - 12 - 

2 1.4 3.0 0.1 1.4 0.3UF 
n.m. > 8.5 200 - 200 - 

3 1.4 3.0 1 1.4 1.3UF n.m. > 8.5 12 - 12 - 

4 0.3 1.5 0.1 n.m. <0.12,UF 
1.32,UF 

8.0 - 8.5 50 3900 3900 1562,UF 

5 0.3 1.5 0.1 n.m. <0.22,UC 
1.42,UC 

7.0 - 8.0 50 2800 2800 1292,UC 

1
 The reference value is the count rate of pure water under the conditions applied (~10 kcps).                

2
 These values refer to the acidified sample (see text). n.m. = not monitored, UF = Ultrafiltration, UC = 

Ultracentrifugation. 
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Here, the dissociation of the Np(IV) carbonate complexes due to mixing with water (dilution) 

resulted in the generation of hydrolized Np(IV) species forming nanoparticles, which was 

indicated by parallel detection of increased SLI. Parallel, in situ monitoring of the dilution process 

by UV-vis spectroscopy revealed significant changes in the characteristic spectrum of the original 

aqueous Np carbonate stock-solution. The characteristic absorption bands of the Np(IV) carbonate 

complex precursor completely disappeared for the diluted sample (Figure 6-(a) sample 1). A 

decrease in its characteristic absorption maxima at 584, 704, and 800 nm among other 

characteristic peaks (shown in Figure 6 and Figure 44) indicated the absence of Np(IV) carbonate 

species in the diluted sample. The spectrum revealed an absorption maximum at 742 nm (Figure 

6-(a) sample 1) indicating the formation of colloidal Np(IV) species[60], which becomes also 

apparent with a parallel increase in SLI. This slight increase in the SLI was only observed directly 

after dilution; the nanoparticles settled from the solution and the SLI decreased to the value of 

pure water within 24 h while the corresponding UV-vis absorbance disappeared (Figure 

6-(b) sample 1). Hence, no stable colloidal system was formed. Ultrafiltration, too, removed these 

Np(IV) particles, which correlates with the disappearance of the corresponding UV-vis 

absorbance at 742 nm. About 80 wt% of the Np was in a removable form as indicated by liquid 

scintillation counting (LSC) concentration measurements. The chemical nature of the remaining 

Np which was not removed after 5-kDa ultrafiltration is unknown. 

Samples 2 and 3 refer to the region above the MWSA and they contained 3∙10
-3

 M silicic acid. 

The increased SLI and the immediate absorbance at 742 nm of Sample 2 (Figure 6-(a) Sample 2) 

indicate the formation of colloidal particles. However, these particles did not settle within 24 h, 

and they could be removed by ultrafiltration through a 5-kDa membrane (also in this case there is 

an irremovable component of approximately up to 20 wt%, of which the nature is unknown). 

These results indicate that a relatively stable colloidal solution was formed in Sample 2. On the 

other hand, in Sample 3 no colloids were formed ;– the SLI was not increased and no Np could be 

removed by ultrafiltration. This is attributable to the high carbonate concentration of Sample 3 

that allows for soluble Np(IV) carbonate complexes, as verified by the characteristic peaks in 

UV-vis absorbance mentioned above, to remain in solution. 

In the samples with Si concentrations below the MWSA (Samples 4 and 5), colloids did not 

readily form before reducing the pH to less than 8.5. After reducing the pH, however, the SLI rose 

steeply and the colloids generated did not settle within 24 h. Significant fractions of these colloids 

were removable by ultrafiltration (Sample 4) or ultracentrifugation (Sample 5). In Sample 4 and 

Sample 5 at least 80 and 40 wt% of Np could be removed respectively. The similar reduction of 

the silica concentrations by ultrafiltration and ultracentrifugation indicates that the colloids 

contain silica, i.e. that these Np(IV) colloids are consistent with previously reported actinide(IV) 

silica colloids of uranium(IV) and thorium(IV).[49, 50] 
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Figure 6. UV-vis absorbance spectra of 1.4∙10
-3

 M Np(IV) solutions as a factor of time and 

carbonate and silicate concentrations 

(a) spectra directly recorded after preparation and (b) spectra recorded after equilibration time of 

24 h. Np(IV) samples defined by initial composition: (1) diluted in absence of silicate 

(0.1 M NaHCO3), (2) diluted in presence of silicate ([Si] = 3.0∙10
-3

 M, 0.1 M NaHCO3) and (3) 

carbonate-rich solution in presence of silicate ([Si] = 3.0∙10
-3

 M, 1.0 M NaHCO3). 

 

Although Sample 2 contained about 5 times more Np(IV) than Samples 4 or 5, the SLI showed 

much lower values. This is due to the higher concentration of silicic acid in Sample 2. A higher 

supply of silicic acid during nanoparticle formation results in smaller particle sizes, which reduces 

the SLI.[49, 50]  

Assuming that the density of the silica-containing Np(IV) colloids are similar to those of other 

actinide silicates, namely coffinite, i.e. of 5.1 g cm
-3

, it can be concluded that the diameters of the 

particles of the “stable” colloids (Samples 2, 4, and 5 of Table 1) do not exceed 250 nm, 

otherwise they would have settled due to gravitation. Conversely, the ultracentrifugation 

experiment on Sample 5 of Table 1 shows that 40 wt% of the colloidal particles must have been 

larger than about 5 nm because they were removed by a 5 h centrifugation step at 100 000 × g (cf. 

Table 2 in Dreissig et al.).[49] Hence, about 40 wt% of the Np must have occurred as particles of 

5 to 250 nm in the solution. The Np fraction that was not removed by the ultracentrifugation step 

might contain Np monomers (carbonate complexes), Np oligomers and/or lower Np polymers. 

The ultrafiltration experiments on the stable colloids of Samples 2 and 4 (cf. Table 1) using 5-kDa 

membranes indicated that about 80 wt% of the Np in these samples were in a colloid-borne form 

showing particle sizes between about 2 nm (see ultrafilter pore sizes given in Table 1 of Dreissig 

et al. [49]) and 250 nm which prevented particles from settling. Thus, the estimates based on both 

ultracentrifugation and ultrafiltration are in accordance with the particle size results of PCS. 
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Figure 7. PCS autocorrelation functions and CONTIN deconvolutions (light-intensity 

weighted PSD) of Np(IV)-silica colloids 

In the region (a) above the MWSA of silicic acid ([Np] = 1∙10
-3 

M,[Si] = 3∙10
-3

 M, 0.1 M 

NaHCO3, pH 8 – 9) and (b) below the MWSA of silicic acid ([Np] = 3.8∙10
-4 

M, 

[Si] = 1.76∙10
-3 

M, 0.1 M NaHCO3, pH 7 – 8).  

 

Time-resolved analyses of the SLI by PCS can provide information on the size of the 

particles.[61-63] Figure 7 displays the autocorrelation functions and their deconvolutions 

according to the CONTIN routine [64] for two typical samples containing Np(IV)-silica colloids. 

The samples are similar to Samples 2, 4, and 5, and represent the region (a) above the MWSA 

(like Sample 2) and (b) below the MWSA (like Samples 4 and 5). The deconvolution 

accomplished by the respective Malvern software shows either a monomodal light-intensity 

weighted particle diameter distribution with a median of about 10 nm and a spurious peak or a 

bimodal particle size distribution (PSD) in the presence of few additional particles (several 

microns in size) after 24 h (Figure 7-(a)). Both would be in accordance with the study on U(IV)-

silica colloids [49]). In addition, a monomodal particle diameter distribution with a median of 

about 140 nm was found (Figure 7-(b)) . Above the MWSA, Np(IV) silica colloids of smaller size 

are immediately formed, while below the MWSA colloids of larger size are formed after 

initialization by gradually decreasing the pH. 

In conclusion, the test experiments confirmed that an excess of carbonate ([carbonate] = 1.0 M) 

stabilizes Np(IV) as truly soluble Np(IV) carbonate complexes in solution under ambient 

conditions. Irrespective of the presence of silicate Sample 3) the prevailing species were identified 

by UV-vis as Np(IV) carbonate complexes in the ternary system. Dilution of the Np(IV) in 

absence of silicate leads to destabilization of water-borne Np and precipitation. In contrast, in the 
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ternary system the presence of silicate stabilizes Np in the water-borne form due to the formation 

of Np(IV) silica colloids. In both diluted systems the contribution of Np(IV) carbonate complexes 

was negligible. Next to this there is evidence by light scattering and UV-vis that the hydrolyzed 

Np(IV) species and the Np(IV) silica colloids reveal characteristic spectral features in the UV-vis 

spectra that are different from Np(IV) carbonate complexes, but similar to Np(IV) colloids found 

in presence of humic acids.[60] 

 

The precipitation behavior of the binary Np-carbonate system and the ternary 

Np-carbonate-silicate system were separately investigated in more detail in the following 

chapters. 
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3 The Np(IV)-carbonate system 

 

The precipitation behavior of Np(IV) as a function of carbonate concentration was further 

investigated for a comprehensive understanding of hydrolysis, precipitation, and stabilization of 

Np(IV) under several conditions of interest in this study. The binary system of Np(IV)-carbonate 

serves as a reference system for the ternary system Np(IV)-silica-carbonate presented in the 

following chapter 4 of this work. Therefore, the investigation of the structural and physico-

chemical characteristics concerning the stability in valency, the structure of the first and second 

coordination spheres of Np, the electronic structure of Np in the precipitate, and its morphology, 

were of particular interest. In coherence with this, the in situ monitoring of the precipitate 

formation and of the growth processes in the binary system was of concern to determine the 

impact of silica during particle formation in the ternary system and its possible implication in an 

environmental scenario. 

 

For these purposes, the following binary system was investigated as a reference system in further 

detail in chapter 3: a Np(IV) carbonate stock solution ([Np] = 9.8∙10
-3

 M  in NaHCO3 1.0 M, 

pH = 9.0) was diluted tenfold with ultrapure water resulting in a colorless solution of 

[Np] = 1.0∙10
-3

 M  in 0.1 M NaHCO3 with pH = 8.6. This solution is similar in composition to 

Sample 1 of Table 1 of the model experiment that highlights the Np(IV) behavior in carbonate in 

the absence of silica. 

 

The time-dependent UV-vis spectra of the diluted sample are shown in Figure 8. A tenfold 

dilution of the Np(IV) carbonate precursor solution with ultrapure water resulted in an immediate 

spectral change with the emergence of a new absorption maximum at 742 nm, indicating the 

formation of colloidal Np(IV) species.[60, 65] The diluted Np solution appeared clear for the first 

few hours after which the formation of slight brownish precipitate occurred (Inset (a) in Figure 8). 

The re-dispersion of this precipitate in ultrapure water (pH = 7.0) yielded a transparent solution 

(Inset (b) in Figure 8) although the UV-vis spectrum still showed the characteristic absorption 

maximum at 742 nm, but with a significant increase in background (solution 3). The observed 

increase in background can be attributed to the light scattering from small particles, [66] 

suggesting the formation of Np colloidal particles in solution 3, as confirmed by PCS for 

Sample 1 in Table 1 with similar composition and behavior. This precipitation-redispersion 

process was reversible. 
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Figure 8. UV-vis absorption spectra of Np(IV) in diluted carbonate environment and sample 

appearance in dependence on time 

(1) Tenfold dilution of Np(IV) stock solution: Initial hydrolyzed Np(IV) – Sample 1,  

     [Np] = 1.0∙10
-3

 M  in NaHCO3 0.1M at pH = 8.6; Spectrum was recorded immediately after  

     dilution 

(2) Supernatant of sample 1 after 24 h and precipitate settling (inset a) 

(3) re-dispersion of the precipitate (inset b) obtained from solution (2) in ultrapure water 

 

 

3.1 Local structure of Np(IV) in carbonate solution 

XAS, including both X-ray absorption near-edge structure (XANES) and extended X-ray 

absorption fine structure (EXAFS), was applied to characterise Np species both in solution and in 

the solid-state as a factor of varying carbonate concentration. The dilution of the initial Np(IV) 

solution and the subsequent formation of Np particles resulted in no significant shift in the Np 

LIII-edge XANES edge position (Figure 9 and Table 2), suggesting that the tetravalent valence 

state was preserved and not oxidized to Np(V), even after precipitate formation. The preparation 

of corresponding samples is given in Table 12 in the experimental section. 

Figure 10 shows the k
3
 weighted Np LIII-edge EXAFS spectra (left) and the corresponding Fourier 

transforms (FTs, right) of the Np stock solution (green), the wet precipitated sample (black) and a 

NpO2 reference powder. The corresponding EXAFS structural parameters obtained from curve 

fitting are given in Table 3. 
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Figure 9. Normalized Np LIII-edge XANES spectra for Np(IV) samples 

Aqueous Np(IV) in 1 M NaHCO3 (green) and wet precipitate obtained by tenfold dilution of the 

Np(IV) stock solution (black), and their corresponding second derivatives (inset). 
 

Table 2. XANES edge positions at the Np LIII-edge for the spectra given in Figure 9 and a Np(V) 

reference (Figure 49). The edge position is defined at the first inflection point. 

Sample Edge position / keV 

Np(IV) (aq) in 1 M NaHCO3  17.6134 

Wet precipitate 17.6126 

Np(V) (aq) in 1 M HNO3 17.6119 

 

In general, the EXAFS oscillation became intricate particularly in the higher k range when 

[Np(IV)(CO3)5]
6-

 was transformed into a precipitate by dilution (Figure 10, left). The main 

oscillation feature of this precipitate resembles that of the one observed for NpO2, although the 

variation of their oscillation amplitude was different (Figure 10). The EXAFS structural 

parameters obtained for the initial Np(IV) solution in 1 M NaHCO3 are consistent with a 

pentacarbonate Np(IV) structure, [Np(IV)(CO3)5]
6-

 (Table 3), the coordination geometry of which 

is comparable to those reported for [U(IV)(CO3)5]
6-

[67] and [Pu(IV)(CO3)5]
6-

.[68] The CO3
2-

 

ligands in the stock-solution are coordinated in bidentate-chelating mode [26, 69, 70] and exhibit 

a Np-O distance of 2.44 Å.  
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Figure 10. EXAFS of Np(IV) precursor solution, wet Np(IV) precipitate and NpO2 powder 

(left) k
3
-weighted Np LIII-edge EXAFS spectra for Np(IV) in 1 M NaHCO3 at pH = 8.6 (green), a 

wet precipitate obtained by the dilution of the Np(IV) NaHCO3 solution with ultrapure water 

(black) and reference NpO2 powder (grey), and (right) their corresponding Fourier transforms 

(FTs). Solid lines, experimental data; dotted lines, theoretical fit; phase shifts (Δ) are not corrected 

on FTs, MS*; multiple scattering paths. The magnitude of the data for NpO2 is reduced by one 

forth relative to the y axes for clear comparison of the spectra. 

 

The linear arrangement of Np, the carbon atom of CO3
2-

, and its distal oxygen (Odist) atom, 

resulted in a multiple-scattering peak labeled as MS in Figure 10-right. Dilution of the Np(IV) 

carbonate resulted in a shortening of the Np-O distance in the first shell. Furthermore, a loss of 

the previously visible Odist FT peak and intensification of the FT peak at R+= 3.83 Å were 

observed. The characteristic strong FT peak at 3.83 Å arising from metal-metal arrangement 

increases due to intensified Np-Np backscattering. It indicates the growth of Np-Np coordination 

in exclusively polymeric species and hence the immediate formation of well-ordered NpO2–

related species. The approximation of the Np-O-bonding in the first shell is reasonably described 

by splitting into shorter (2.26 Å) and longer (2.39 Å) distanced oxygen bonds. One single Np 

atom is coordinated with five to six oxygen atoms (respectively two short distanced and up to four 

longer distanced) and four Np atoms. EXAFS structural analysis reveals that the nearest Np­O 

and Np-Np interatomic distances obtained for the Np(IV) precipitate are well comparable to those 

for NpO2, whilst the coordination numbers (CNs) for the precipitate are calculated to be much 

lower with larger Debye-Waller factors (σ
2
) in comparison with those for NpO2 (Table 3). 
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Table 3. EXAFS structural parameters obtained from theoretical curve fitting. 

Sample Scattering path R / Å
a
 CN

b
 σ

2
 / Å

2
 ΔEk=0 / eV F 

Np(IV) (aq) in 1 M 

NaHCO3 

Np-O(CO3) 2.44 10.2 0.0110 1.4 0.22 

Np-C(CO3) 2.86 5.1 0.0069 

Np-Odist(CO3) 4.18 4.8 0.0091 

MS
c
(CO3) 4.18 4.8 0.0091 

Wet precipitate 

 of diluted sample 

(+hydrolyzed Np(IV)) 

Np-O1 2.26 2.4 0.0071 -7.9 0.25 

Np-O2 2.39 3.6 0.0071 

Np-Np 3.83 3.6 0.0052 

NpO2 reference 

material 

Np-O 2.31 8.3 0.0043 0.4 0.76 

Np-Np 3.84 11.8 0.0013 

Np-Odist 4.47 25.3 0.0022 

a
 Interatomic distance (R), errors ≦ ± 0.02 Å, 

b
 Coordination number CN, errors ≦ ± 15%, 

c
 MS; 

multiple scattering paths assuming the linear Np-C-Odist arrangement. 

 

Similar trends were also observed for UO2
 

NCs[71] and a colloidal form of An(IV) 

oxide/hydroxide species,[72-74] indicating that the formed Np(IV) precipitate could be identified 

as (i) either small particles of crystalline NpO2 or (ii) structurally disordered Np(IV) 

oxide/hydroxide. In case of (i), slightly different or mixed coordination spheres can occur due to a 

higher ratio of Np atoms located at the surface, relative to the number of Np atoms in the core 

matrix. The case (ii) would be also acceptable, given that the precipitation of aqueous An(IV) 

species under circumneutral conditions could also involve the formation of amorphous 

oxides/hydroxides.[75, 76] These amorphous phases often show a similar EXAFS pattern to those 

observed for the pure dioxides, but their CNs for the neighbouring coordination shells (i.e. nearest 

An-O and An-An) are calculated to be much smaller than those for the dioxide with larger σ
2
 

values stemming from their amorphism.[72-74]  

The CNs and σ
2
 values obtained for the Np(IV) wet precipitate follow this trend (Table 3).  

The Np(IV)
 
precipitate formed in solution could be identified as a mixture of amorphous Np(IV) 

oxides/hydroxides and nanocrystalline NpO2. Only the latter could be further characterised by 

TEM investigation (cf. section 3.2.). The redispersion of the original precipitate into water 

removes soluble species/phases from the precipitate, also helping to purify NpO2 NCs from the 

amorphous phases. Image acquisitioning of the redispersed precipitate (Figure 12) was not 
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affected by the presence of amorphous phases. Another explanation for the lower CNs would be 

the additional presence of oligomeric Np(IV) species. Note that the wet precipitate sample was 

measured directly after the precipitation, that was triggered by the dilution of the mother solution 

without any treatment, such as a washing procedure, drying or purification by filtration. 

Therefore, the slight contribution of oligomeric Np(IV) species should be considered. Their 

contribution could also result in lower CNs for the neighbouring coordination shells (nearest 

An-O and An-An).  The possible contribution of small oligomeric Np(IV) species in this study 

will be demonstrated by HR-TEM in the later section (cf. section 3.4.2.). 

Takao and co-workers determined uncharged Np(IV) clusters in a polyhedron configuration: six 

neighbouring Np atoms connected by two differently distanced O-bridges defining oligomeric 

Np-O molecules. The reported splitting into short and long distanced O-bonding and increased 

Np-Np backscattering coincide with the presented findings.[41, 77] Therefore, the consideration 

of nano- and subnanometer sized clusters is required in the present work. Small polymeric 

species, e.g. dimeric and trimeric Np(IV) species as indicated by HR-TEM (cf. section 3.2.) are 

still not identified. The decrease in CNs of the An-An coordination shell in PuO2 colloids with the 

fluorite structure was also observed in aging experiments. The decrease of CNs from 3.9 to 1.7 of 

Pu-Pu of the PuO2 colloids with ultra-small size was attributed to the formation of small 

oligomeric plutonium oxide species containing 5 to 6 Pu atoms per polynuclear species.[78] 

 

In summary the calculation of lower CNs for the neighbouring coordination shells (nearest An-O 

and An-An) of the NpO2-like core structure could be influenced by contributions of surface 

located hydroxyl groups and by the presence of co-precipitated Np(IV) oligomers. 

EXAFS results confirmed the dramatic change from the initial Np(IV) carbonate complex to 

ordered NpO2-like structure, which is in accordance with the results from UV-vis absorption 

spectroscopy (Figure 6; Figure 8; Figure 44). 
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3.2. Morphology of Np(IV) precipitate at near-neutral pH 

The Np(IV) precipitate was further characterised by high-resolution TEM (HR-TEM). Figure 11 

shows a brightfield TEM micrograph of the precipitate obtained from the Solution 3 in Figure 8, 

implicating the settled Np(IV) precipitate formed after dilution and redispersion in water. The 

precipitate appears as fragmented particles in the micrometer-size range (length of particle ~1.2 

µm). 

 

 

Figure 11. Bright field TEM micrograph of Np(IV) precipitate  

 

The high resolution TEM micrograph shown in Figure 12-(A) clearly demonstrates the 

agglomeration of uniformly sized particles with 2-5 nm in diameter. The small particles also form 

agglomerates in the nanometer-size with diameters ~15 to 20 nm (in the left-top in Figure 12-(a) 

and in Figure 12-(b)). The relevant EDX spectrum (Figure 12-(c)) reveals the dominant presence 

of Np and O in the nanoparticles. When zooming in on some specific particles, clear lattice 

images could be acquired (Figure 12-(b) and 12-(d)). The corresponding selected area electron 

diffraction (SAED) patterns are consistent with the fluorite-type NpO2 structure ( mFm3 )[79] 

without the presence of secondary phases (Figure 12-(e)).  
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Figure 12. TEM data of re-dispersed Np(IV) precipitate – NpO2 NCs 

(A) Bright field TEM micrograph of agglomerated NpO2 nanoparticles and (B) HR-TEM image 

of NpO2 NC agglomerated as a cluster and (C) energy dispersive X-ray spectrum of NpO2 NCs . 

Bottom: (D) HR-TEM micrograph of agglomerated NpO2 NCs and (E) experimental SAED ring 

pattern superimposed with a modelled SAED pattern based on face-centered cubic NpO2 (ICSD 

card 647176) 

 

Note that the gentle drying process to prepare TEM samples at 298 K would not cause the 

formation of NpO2 crystals, as the synthesis of crystalline NpO2 generally involves calcination 

with high temperature.[80] Hence, it is highly likely that the observed NpO2 NCs were already 

present in the solution phase. Other TEM micrographs and corresponding SAED in Figure 13 for 

the precipitate obtained directly from the solution 1 in Figure 8 (i.e. “non re-dispersed” 
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Figure 13. TEM data of Np(IV) precipitate isolated from dispersion– NpO2 NCs 

(A) Bright field TEM micrograph of agglomerated NpO2 nanoparticles 

(B) HR-TEM image of agglomerated NpO2 NCs 

(C) experimental SAED ring pattern 

Note: NCs were isolated from dispersion before any sedimentation process occurred. 

 

precipitate) still showed clear lattice fringes compatible with the NpO2 structure, confirming the 

formation of NpO2 NCs even in the original precipitate before the washing process. 

These results suggest that the dissociation of the initial soluble Np(IV) complex (i.e. 

[Np(IV)(CO3)5]
6-

) induces the intrinsic formation of nanocrystalline NpO2 in the solution phase. 
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3.3 Electronic structure of Np(IV) precipitate obtained at near-neutral pH 

The electronic structure of the Np precipitate state was further investigated by XPS. The survey 

spectrum of the binding energies (BEs) of the Np(IV) precipitate is shown in Figure 14. The 

sample was deposited after washing with ultrapure water and drying at RT on a highly ordered 

pyrolytic graphite (HOPG) sample holder.  The spectrum indicates various peaks originating from 

Np and oxygen electrons and the background material including O KLL and C KLL Auger peaks. 

The dominant C 1s peak at 285 eV (referenced for BE calibration) and the C KKL Auger 

electrons (~1013 and ~994 eV) were originated from the matrix of the sample. The Auger peaks 

for oxygen were also observed around 770 eV next to the O 1s electron state around 530 eV. Np 

was indicated by a typical split of the Np 4 f core level resulting in a doublet around 404 eV and 

415 eV.  
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Figure 14. Survey XPS of NpO2 NCs 

 

The electron BEs of Np and oxygen core electrons were further investigated in more detail for the 

Np 4 f and O 1s core levels. Corresponding XPS spectra and electron BEs of the Np 4 f core 

electrons are displayed in Figure 15 and Table 4, and for the O 1s core electrons in Figure 16.  

The Np 4 f XPS (Figure 15, see also Figure 51 in Appendix) consists of the spin-orbit split 

doublet (Np 4 f 7/2/Np 4 f 5/2). 
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Figure 15. Np 4 f core level XPS of Np(IV) precipitate. 

 

The levels Np 4 f 7/2 and Np 4 f 5/2 were determined at 404.4  0.2 eV BE and 416.0  0.2 eV BE 

with a spin-orbit split of Esl (Np 4 f) = 11.6 eV. Satellite peaks were determined at higher BE 

with Esat = 6.4 eV than the main peaks (see also Figure 51 in Appendix). These characteristic 

satellites at ~7 eV higher BE, related to the spin-orbit split doublet peaks, are exclusively 

observed for actinides dioxides with cubic structure, ThO2, UO2, PuO2 and AmO2. [81-85] The 

Esl (Np 4 f) = ~11.7 eV and the appearance of satellites with Esat = 6.8 can be regarded as a 

robust intrinsic signature of the fluorite structure [83, 84] and, hence an indication of the well-

ordered NpO2-like structure of the Np(IV) solid precipitated at near-neutral pH. Comparing the 

determined Np 4 f level with referenced BEs of various Np-oxides reveals a significant shift to 

higher BE (Table 5). One possible interpretation of the peak shift in BEs of Np core level are 

redox processes (oxidation/reduction), potentially indicating the formation of Np(V) 

species/Np2O5 or a mixed valency in a mixture of NpO2/Np2O3 (Table 5). Nevertheless, oxidation 

processes in this study should be inevitably related with the quantitative disappearance of the high 

BE satellites [83, 86] next to a shift of O 1s BE to lower energy values (~528/9 eV) due to the loss 

of the cubic structure in Np2O5.[83] This shift to ~529 eV was not observed in O 1s XPS spectrum 

(Figure 16). In conclusion, the formation of Np2O5 can be ruled out [83] in particular when 

considering the corresponding XAS results (cf. section 3.1.). 
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Table 4. Electron BE of core level in Np-precipitate at near-neutral pH at 1253.6 eV. 

Core level Electron BE [eV] FWHM [eV] E [eV] 

Np 4 f 5/2 416.0  0.2 2.3 

Esl =11.6 
Np 4 f 7/2 404.4  0.2 2.2 

Satellite Np 4 f 5/2 422.4  0.2 - Esat = 6.4* 

Satellite Np 4 f 7/2 410.8  0.2 - Esat = 6.4*

O 1s 533-531 - - 

* = related to corresponding Np 4 f  core level 

The shift of the 4 f core level to higher BEs can be induced by the work function of 

photoelectrons in nano–sized material: measured energies of the emitted photons in general can 

be shifted due to the value of the work-function in non-conductive/isolating material.[87, 88]  

Additionally, the work function significantly increases with decreasing size of the investigated 

material.[89] Therefore, the physical properties of NpO2 NCs (prevailing nano-crystalline solid 

state that is presumably a non-conducting material) and slight charging effects of the background 

material (originating from mother solution or the Np-material itself) might induce this significant 

shift to higher BEs. 

 

Table 5. Electron BEs of Np 4 f 7/2 core level for a series of Np-oxides with different valencies. 

Np-oxide Np2O3
[83] 

NpO2
[83] 

NpO2/Np2O3
[83] 

Np2O5
[86] 

This study 

Valency (III) (IV) (IV/III) (V) (IV) 

Electron BE of         

Np 4 f 7/2 [eV] 
401.6 402.9  0.2 403.8 403.1  0.3 404.4  0.2 

 

The Np(IV) precipitate sample, which is identified as NpO2-like structure due to the presence of 

satellite peaks, shows a dominant O 1s peak broadening from 533.2-530.8 eV (Figure 16). Similar 

spectra were observed in dissolution experiments of Th(IV) oxyhydroxide and for uranium 

compounds interacting with mineral interfaces.[90, 91] These spectra reveal different types of 

oxygen bonds, namely from oxide (O
2-

) at 530  0.5 eV, hydroxide (OH
-
) at 532  0.5 eV, and 

chemically sorbed or bound H2O at 533  0.5 eV. The O 1s BEs of O
2-

, OH
-
, and H2O are similar 

to those of Th(IV) oxyhydroxide colloids.[50] The Np(IV) precipitate was identified as 

precipitated agglomerate of NpO2 NCs by HR-TEM (cf. section 3.2.). 
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Figure 16. XPS O 1s core level of NpO2 NCs. 

 

Therefore, the BEs of oxide oxygen O
2-

 core electrons at 530.8 eV correspond to the oxygen 

bonds in the fluorite structure of the NpO2 nanoparticles. Due to the high surface of nanoparticles 

a significant number of oxygen atoms are located on the surface or at the water-solid interface 

compared to atoms incorporated in the core-matrix. Consequently, the BEs of 533.2 and 531.8 eV 

are attributed to chemically sorbed H2O and hydroxyl groups on the nanoparticle surface in the 

precipitate. The O 1s core levels of defined fcc AnO2 NCs synthesized by thermal decomposition 

strategy showed similar broad peaks originating from various types of oxygen bonding.[92, 93] 

Note that the ratio of the surface water content in nanoparticles is easily influenced by sample 

preparation and atmosphere interactions. The Np(IV) precipitate was prepared under nitrogen 

atmosphere. During the installation of the sample into the XPS chamber, the thin layer of NpO2 

NCs could be inevitably exposed to atmosphere for several hours. Thus, the possible 

contamination, such as water adsorption at the NCs surface, was considered knowing that if it 

occurred it would ultimately change the sample composition. This possible chemical change 

could influence the interpretation of the XPS-results, especially the O 1s core BEs. In order to 

prevent exposition of the precipitate to the atmosphere, XPS investigation should be performed 

with an appropriate analytic chamber in Ar atmosphere and/or cooled nitrogen.[50] 
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3.4 Insights into the formation of NpO2 nanocrystals 

3.4.1 In situ monitoring of the Np(IV) hydrolysis and agglomeration of NpO2 nanocrystals 

The hydrolysis of Np(IV) and the subsequent precipitation of NpO2 NCs were monitored in situ 

by PCS in order to determine the particle size distribution in solution in dependence on time and 

correlate this with their resulting UV-vis absorption spectra. The particle size distributions in the 

supernatant of hydrolyzed Np(IV) in dependence on time are displayed in Figure 17. The particle 

morphology in the course of aging in solution is shown in Figure 18. 
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Figure 17. PSD of NpO2 NCs agglomerates in dependence on time 

Frequency of PSD determined from untreated supernatant. t1 = 1/60 h, t2 = 2 h, t3 = 3 h, t4 = 24 h, 

t5 = 144 h; t4
*
 and t5

*
: corresponding PSD in homogenous samples determined in supernatant after 

re-dispersion of sedimented agglomerates. 

 

Immediately after dilution, the formation of small nanoparticles was measured with an average 

diameter of 12 nm was determined (t1 in Figure 17). The measured PSD in the range of 10-15 nm 

indicates that the single NpO2 nanocrystals, which range up to 5 nm per crystal unit in size were 

not appear in a mono-dispersed state in solution. This observation indicates the intrinsic tendency 

of NpO2 NCs to agglomerate. The average particle size of this agglomerates of ~12 nm (PSD: 10-
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20 nm) was in agreement with the findings by HR-TEM results (Figure 12-(A) and 12-(B)). Here 

small agglomerates with diameters of sizes around 10-15 nm were observed. These were 

composed of two to a maximum of four/five NCs. It should be considered that TEM images are 

not necessarily representative of the whole particles present in the waterborne state, as deposition 

and drying process can change chemical environment around the particles that may cause 

aggregation. 

After an equilibration time of two hours small agglomerates were not determined but particle 

fractions with bigger hydrodynamic diameter of ~55 nm were detected. This indicates the growth 

of particles or an enhanced agglomeration of the smaller sized `sub`-agglomerates (characterized 

by diameter <20 nm as observed by HR-TEM). HR-TEM revealed that the NpO2 NCs were not 

grown in their actual crystal size (~5 nm), which led to the assumption that only the agglomerates 

in solution grew in size (Figure 18-(B)). Additionally, the UV-vis absorption spectrum of the 

bigger agglomerates in solution showed an increase in the absorbance at 742 nm (Figure 19-(a), 

insets Figure 19 and Table 6) as well as the baseline (especially at 500 nm). The increase in 

baseline can be attributed to the light scattering of small particles [66], or in the present case, it 

could be a result of the growing agglomerates with bigger diameter. After three hours, the PSD of 

the agglomerates split at around ~200-500 and ~1000 nm (Figure 17-(t3)). Additionally, the 

precipitate formation becomes visible (Figure 52 in appendix) with the disappearance of the 

characteristic absorbance at 742 nm and a significant decrease in baseline (Figure 19-(a) and 

Table 6). As a consequence of the settlement of bigger sized agglomerates with diameter >1 µm 

(Figure 17), the scattered light intensity was no longer detected. After 24 h the Np(IV) seemed to 

be quantitatively precipitated, although a contribution from the weak scattering light of the 

remaining particles or agglomerates in solution with an average diameter of ~500 nm was still 

observed (Figure 17-(t4)). Based on their diluted concentration in solution the remaining 

agglomerates (t4) after 24 h were not indicated by the colloidal Np(IV) absorbance at 742 nm, but 

they showed a weak contribution in baseline absorbance (especially at 500 nm (Figure 19-(a)) 

caused by their scattered light contribution, which is much more pronounced than the absorbance 

of Np(IV) at 742 nm which could depend linearly on Np(IV) absorbance/concentration  following 

the Lambert-Beer-Law. The occurrence of the absorbance around 742 nm is speculative: it could 

result from absorption of Np(IV) atoms in the particles or from surface plasmon resonance due to 

the electronic structure of the particles dependent on their size and shape. It is possible that the 

majority of the NpO2 NCs settled to the ground due to their incorporation into big micron-sized 

agglomerates as indicated by TEM (Figure 11). Redispersion of the settled agglomerates resulted 

in the distribution of small agglomerates (Figure 17-(t4
*
)) with a PSD of <20 nm (average 

diameter ~15 nm) together with the simultaneous appearance of UV-vis absorbance at 742 nm 

and an increasing baseline (Figure 19-(b)). 
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Figure 18. HR-TEM micrographs of NpO2 NCs in dependence on aging time 

Equilibration time (A) <2 h (t1-t2), (B) 24 h (t4), (C) 144h (t5) and (D) 5 months 

              in magnification 300 kx (1) and 620 kx (2)
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Figure 19. UV-visible absorption spectra of hydrolyzed Np(IV) and NpO2 NCs  in solution in 

dependence on time 

(a) Supernatant of untreated samples: t1 = 1/60 h, t2 = 2 h, t3 = 3 h, t4 = 24 h, t5 = 144 h and 

(b) t(1-5)
*
: samples obtained by re-dispersion of sedimented agglomerates.  

 

Aging the precipitate for a week led to the formation of a settled precipitate with a loss of the 

UV-vis absorbance, although with a scattered light intensity resulting from a small amount of 

agglomerates of NpO2 NCs in solution with a PSD of ~500 nm (t5). Redispersion of the 

precipitate obtained after one week (t5
*
) resulted in larger sized agglomerates of1 µmin solution 

and not the smaller agglomerates of ~15 nm observed after 24, therefore indicating an enhanced 

agglomeration/crosslinking process of NpO2 NC cores. 

Additionally, the time-dependent UV-vis measurements revealed a continuous increase in 

background (Figure 19-(b) and Inset; Table 6-(b)) due to increased scattering light intensity, 

which could indicate the formation of NCs agglomerates with a larger size. As confirmed by PCS 

results in Figure 17, the agglomerates tend to grow bigger with time. 

To resolve the actual absorbance of Np(IV) in the particles/agglomerates from the scattering 

contribution in the UV-vis spectra (e.g., increasing baseline), a baseline correction was required. 

A raw approximation was accomplished by calculating -I, representing the difference of the 

absorbance values at  = 742 nm to those at 645 nm which represent the absorption of Np(IV) and 

contributions of the scattered light from agglomerated particles, respectively (Table 6). Note that 

further research is essential to proof the characteristics of absorbance and the scattering 

contributions that in summation contribute to the total observed UV-vis spectrum of NpO2 NCs in 

solution. Nevertheless, with this raw approximation, a decrease in the ratio was determined by 

each aging step, possibly indicating the decrease in the Np(IV) absorbance in the 

particles/agglomerates, and a degradation of the signal-noise ratio with time.
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Table 6. Coherences in PSD, UV-vis absorbance of Np(IV) solutions and sediment occurrence 
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These observations are in accordance with changes in UV-vis absorption spectra of aged Pu(IV) 

colloids.[43] Their origin is still unknown and speculative. Nevertheless, this might be related to 

the change of the NpO2 agglomerate size. Therefore, one possible explanation might be the 

transformation of Np hydroxide species of the surface into NpO2 cores due to enhanced 

agglomeration.  

Figure 20 displays the SAED pattern of Np(IV) precipitate in dependence on aging time. 

Precipitate (A) was isolated directly from the dispersion of a freshly diluted sample before any 

obvious sedimentation process occurred, and characterized by the diffraction patterns consistent 

with NpO2. The precipitates after aging for 3 h to 24 h gave SAED patterns with more distinct 

diffraction rings (B) than the initial precipitate (A) indicating the presence of higher ordered 

structures in the solid state than in the previous precipitate state. This could be explained by the 

removal of amorphous phases like hydroxide and coexisting oligomeric species by washing with 

ultrapure water. 

 

 

Figure 20. SAED patterns of Np(IV) precipitates in dependence on aging time 

(A) (t1-t2): hydrolyzed Np(IV) nanoparticles after < 2 h; isolated directly from colloidal dispersion
 

(B) (t3): NpO2 NCs isolated after 3 h, superimposed with a modelled SAED pattern based on face-

centered cubic NpO2 (ICSD card 647176); precipitate washed in H2O 

(C) (t5): NpO2 NCs after 144 h aging; isolated from re-dispersed suspension 

(D) (t6): NpO2 NCs isolated after 5 months aging; precipitate purged in H2O 
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Aged precipitate obtained from the initial diluted sample after 144 h (C) shows less distinct 

diffraction patterns than the purged sample. The precipitate after 5 months aging (D) was 

characterized by more pronounced diffraction patterns corresponding to the NpO2 cubic structure 

after washing.  

The diffraction pattern of the NCs rapidly formed in the initial diluted sample is presumably 

masked by the contributions of amorphous phases and oligomeric species. 

 

Monitoring the precipitation behavior of Np(IV) revealed a dynamic Np(IV) hydrolysis process 

and the subsequent intrinsic formation of NpO2 NCs. The NCs are rapidly formed and stabilized 

at a specific size of around ~5 nm. Additional treatments, such as redispersion of precipitate into 

water, did not influence the specific size of the nanocrystals, but did affect the size of their 

subsequent agglomerates. Changes in UV-vis spectra, such as the increase in baseline due to 

increased scattering light intensity originating from the growth of agglomerates, the decrease of 

the Np(IV) absorbance at 742 nm and the degradation of the signal-noise ratio could be some 

hints to understanding the equilibration state of agglomerated NpO2 NCs. 
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3.4.2 Oligomeric Np(IV) species in the sub-nanometer scale as intermediate structures of 

NpO2 cluster formation 

In the previous chapters the results obtained by EXAFS or electron diffraction investigations 

indicated the possible presence of oligomeric Np(IV) species. The synthesis of highly ordered 

NCs by diluting aqueous monomeric Np(IV) precursors require a certain reaction mechanism 

including hydrolysis (illustrated in Figure 21) and the consideration of intermediate species which 

might be formed via nucleation. This simplified reaction scheme suggests that such intermediately 

formed Np(IV) species could be isolated in dependence on the reaction progress. 

 

 

Figure 21. Intrinsic formation of the nanocrystalline NpO2 starting from aqueous monomeric 

precursor species via hydrolysis 

 

In order to isolate such intermediate species a sample of freshly hydrolyzed Np(IV) dispersion 

was segregated before any precipitation occurred and was investigated by HR-TEM. The TEM 

micrograph of the isolated fraction is shown in Figure 22, which reveals the presence of already 

formed NpO2 NCs with ~3 nm in diameter. 

Additionally, several randomly structured oligomeric Np(IV) species sized between 1-2 nm and in 

the sub-nanometer range were observed. These small species in the sub-nanometer scale could be 

phenomenologically characterized as dimeric or trimeric Np(IV) species (highlighted by white 

arrows; by approximation of their size and appearance by HR-TEM contrast) without knowing 

details of their molecular structure. The micrograph in Figure 22 could show the self-assembling 

of different sub-nanometer-sized Np(IV) species via randomly structured oligomeric clusters to 

highly coordinated NpO2 nanocrystals in the fcc-lattice.  
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Figure 22. HR-TEM micrograph of NpO2 NC and sub-nanometer-sized Np(IV)-species 

 

 

Such small oligomeric Np(IV) species have rarely been identified in aqueous solution. First hints 

for the existence and contribution of small Np(IV) clusters were found by applying UV-vis 

absorption spectroscopy and EXAFS.[41, 77] 

In addition to stabilizing complexing agents hexanuclear Np(IV) cluster structures forming 

octahedron molecules could be isolated and identified by EXAFS.[41] The first approximation of 

a Np(IV) cluster structure was fitted as an arrangement of hexanuclear complexes.[41] Herein, 

Takao and co-workers determined Np(IV) clusters in the polyhedron configuration with six Np 

atoms connected by two different O-bridges. The reported splitting into short and long distanced 

O-bonding and increased Np-Np backscattering are in coincidence to EXAFS findings in recent 

work (cf. section 3.1.).[41, 77] Therefore, the consideration of nano- and subnanometer sized 

clusters is mandatory. Molecular structures of e.g. dimeric and trimeric Np(IV) species as 

indicated by HR-TEM have not been identified in literature yet. 

Under certain conditions small sub-nanometer sized oligomeric species were reported for other 

An(IV) analogues. Ekberg et al. estimated by EXAFS that plutonium oxide clusters in solution 

consisted of 4-5 atoms in a single species.[78] In case of Th(IV), oligomeric and especially 

dinuclear species could be synthesized and identified both in the solid state. These dinuclear 

species were either bridged via hydroxyl- [94-96] or oxo-groups[97, 98]. Structural investigations 

on aqueous systems revealed that dimeric dihydroxo-bridged Th chlorides were present in 

solution.[96] Hexanuclear complexes of Th(IV) and U(IV) were observed both in the solid state 
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and in solution in the presence of carboxylic ligands.[99] Hexanuclear compounds remain stable 

even in solution due to the bridging carboxylic groups stabilizing the hexanuclear structure. The 

presence of carboxylic ligands prevents the formation of larger polynuclear species at least up to 

pH = 3.2. Recently, a hexanuclear Pu(IV) cluster structure with [Pu6(OH)4O4]
12+

 core was 

identified after defined hydrolysis and condensation reactions.[100] 

Avoiding the stabilizing effect of functionalized bridging compounds, the polynuclear species 

[Th6(OH)6O6]
16+

 was indicated in solution as a precursor of ThO2 crystallites by studying a clear 

thoria sol under ambient conditions and a heat-treated thoria sol, an opaque solution, by low- and 

high-angle X-ray scattering. The opaque solution contained ThO2 crystallites of ~4 nm size, that 

joined with other crystallites formed after heating, whereas the clear solution contained the 

polynuclear species [Th6(OH)6O6]
16+

 which was not a fragment of the fluorite structure.[101, 102] 

In an ambient environment under near-neutral pH such structures of polynuclear species are still 

unknown, especially in case of Np(IV) and are reported for the first time in this work (Figure 22). 

 

The rapid organization of nanocrystals with the fcc-based oxide structure and the absence of 

hydroxylgroups in their crystalline core indicates that the reaction mechanism is mainly 

dominated by the oxolation reaction as also predicted for Pu(IV). In long-term aging experiments 

of Pu(IV) hydroxide precipitates, the conversion of amorphous particles into PuO2 with 

crystalline cubic cores (2 nm in diameter) was also observed.[103] 

A plausible mechanism of PuO2 colloid formation involves the condensation of poorly crystalline 

or amorphous Pu(IV) hydroxides and oxyhydroxides, which further evolves into the fcc-based 

PuO2.[42, 104] The results from UV-vis, EXAFS and laser induced breakdown detection (LIBD) 

experiments herein give hints for a reasonable formation mechanism: two monomeric 

Pu(OH)2(H2O)2
2+

 units via hydrolysis and condensation define an edge sharing, charge-neutral 

binuclear species (illustrated in Figure 10. in [104]). This binuclear species reacts further stepwise 

via trinuclear species with monomeric Pu(OH)2(H2O)2
2+

 units resulting in polynuclear species. 

Subsequent growth presumably leads to PuO2(cr) colloids.[105] The consideration of bi- and 

trinuclear species crosslinking each other via oxolation to crystalline AnO2-structures could fit to 

the phenomenological observations in the present Np(IV)-system.  

The intrinsic and rapid formation of NpO2 NCs observed by HR-TEM in the present study suggest 

there exists similarities with An(IV) chemistry in terms of hydrolysis. Ikeda-Ohno and co-workers 

also confirmed the evolution of CeO2 NCs through simple hydrolysis of aqueous Ce(IV) species, 

a chemical analogue of An(IV)[106]. The initial precursor Ce(IV) species were identified as 

primarily various oxo-bridging dinuclear complexes (next to a trinuclear complex), not 

mononuclear ones.[106, 107] Even to date there are no other studies reporting the structure of 

similar oligomeric Np(IV) species in solution.[39] 
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3.4 Implication of the intrinsic formation of NpO2 NCs under ambient 

conditions 

Soluble An(IV) species formed in alkaline conditions, such as [Np(IV)(CO3)5]
6-

 in the present 

case, have been considered stable. However, the present results demonstrate, that the hydrolysis 

of An(IV) is strong enough to dissociate these stable species by simple dilution and the 

subsequent marginal change in pH, ultimately yielding crystalline AnO2 nanoparticles. The 

present results also simulate the plausible transport scenario of An(IV) from waste repositories 

(near field with alkaline conditions) to the surrounding environment (far field with neutral 

conditions) involving diffusion processes (dilution). The observed drastic change in chemical 

form from soluble species to stable nanocrystalline oxides would have a significant impact on 

understanding the behaviour of An in natural aquatic environments. This is of particular 

importance in terms of long-term prediction of radionuclide transport in geological environments, 

as AnO2 NCs are expected to be stable for a long periods of time and the co-existing amorphous 

phases could even transform into AnO2 NCs over time.[108]  

This study also highlights the importance of further investigation into the formation of An(IV) 

NCs under alkaline conditions as well as their properties as colloidal particles, both of which are 

still unexplored. With a general knowledge of chemistry, one would expect the same hydrolysis 

product regardless of whether the initial solution is neutralized from acidic or from basic. The 

precedent works on An(IV) hydrolysis have focused primarily on the former neutralization route 

from the acidic condition, which would reflect the fact that the leakage of An contaminants (e.g. 

Pu) at shallow ground waste disposal sites was often found under acidic – circumneutral 

conditions (e.g. pH > 1.9 at the Maxey Flats disposal site, Kentucky, USA;[109] pH = 3.9-6.8 at 

the Savannah River Site, South Carolina, USA;[110] and pH = 5 at the Little Forest Legacy Site, 

New South Wales, Australia[111]). However, as demonstrated by EXAFS, the present alkaline-

originated Np(IV) precipitate is obviously different from that of the precipitate obtained from an 

acidic solution.[112] That implies that the alkaline-originated precipitate would be more 

amorphous than the acid-originated one, or that the contribution of oligomeric Np(IV) would be 

different. Although further study is required to fully characterize these Np(IV) precipitates, this 

difference in chemical form would finally cause a significant impact on their chemical behaviour 

in actual environmental and engineered systems. 

The NpO2 NCs stabilized in specific size between 2-5 nm could also form agglomerates of 

different sizes. For instance, the agglomeration of 3-5 NCs could form the smaller particles with a 

diameter of up to ~15 nm, while the majority of NpO2 NCs precipitated as micron-sized 

agglomerates. The formation of agglomerates in micron-size might be interpreted as 

immobilisation of NpO2 NCs. In general, particles or agglomerates of heavy metal oxides in this 
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size range are immobilised by retention caused by adsorption effects or cut-off and filtration 

effects in the host rock material.[47] Therefore, the formation of bigger size agglomerates might 

retard the migration behaviour of Np(IV) under certain ambient conditions. However, there is a 

lack of knowledge of behaviour of AnO2 NCs agglomerates under more complex but realistic 

environmental conditions, such as temporal variations by time in groundwater compositions, 

temperature, redox potential etc.. It is also unknown if the AnO2 NCs would remain as 

immobilized agglomerates in micron-size. Aging experiments over several months did not show 

significant change either in the degree of crystallinity or in the averaged particle size of the NCs. 

These NpO2 NCs could persist for a long period of time due to their thermodynamically stable 

and privileged fcc structure. They could be released from the waste disposal sites through 

mechanical, chemical or thermodynamical changes, which could occur, in the worst case, in the 

actual environment and show enhanced migration. 

The occurrence and impact of oligomeric Np(IV) species is still unknown and should be 

considered in future investigations.  

 

In addition to the environmental implication discussed above, the current work also demonstrates 

a new synthetic concept for producing metal dioxide (MO2) NCs via simple dilution of alkaline 

M(IV) solutions. The existing routes to MO2 NCs, such as TiO2[113], ZrO2,[114] or CeO2[106] 

are generally based on the hydrolysis of aquo M(IV) species. However, the alkaline-originated 

synthesis demonstrated in this study is potentially applicable to the production of MO2 NCs for 

these transition metals.[115] 

 

Nanoparticles of An(IV) with poorly and highly crystalline structures have been synthesized in 

the expectation to be significantly defined by the application of favoured synthesis strategies to 

obtain a desired degree of crystallinity[92, 103, 116-118], all these syntheses required additional 

processes e.g. heating, sintering or calcination, organic solvents, sol-gel processing and gamma-

radiation. Heat-influx seems to be essential to intensifying the degree of the crystallinity.[21, 119] 

First syntheses of defined UO2 and NpO2 NCs were achieved by non-aqueous thermal 

decomposition.[92, 93, 116] Hereby the accessibility was limited due to actinide precursor ions of 

higher valency (An(V) and An(VI)) and application in an exclusively organic solvent with heat-

influx. In aqueous solution, first nanopowders of UO2+X were generated by electrochemical 

reduction of U(VI) species.[120] Preventing the competing chemistry of highly charged 

precursors and influx of additional synthesis procedures the current work confirms the self-

assembled formation of NpO2 NCs due to the simple dilution of tetravalent aqueous precursor 

under ambient aqueous conditions. The resulted shape of each self-organized NpO2 NC unit is 

described as inhomogeneous and, therefore, similar to findings of Hudry and co-workers who 
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provided defined NpO2 NCs by thermal decomposition strategy (irregular shaped NpO2 NCs with 

a similar average crystal size of 2 - 4.5 nm in diameter) achieved from the initial Np(V) 

precursor.[116] In conclusion, the Np(IV)/NpO2 system seems to possess an intrinsic nature to 

stabilize within a specific domain size independent of the type of solution (aqueous or non-

aqueous) or additional treatment such as heat-influx. 

 

The principles and mechanisms of the formation and growth of MO2 crystals, especially of AnO2, 

and the enforcement or manipulation of the resulting degree of their crystallinity are not fully 

clarified yet and are still of particular interest. The first evidence for the intrinsic formation of 

crystalline AnO2 structures was observed by aging of amorphous An(IV) precipitates in long-term 

solubility studies. The transformation from ill-defined hydrous oxide solids to well-defined oxide 

structures was obtained.[119, 121] In these studies, crystalline NpO2 precipitates, sized within the 

micrometer-scale, were obtained by aging amorphous Np(IV) hydrous oxide over more than four 

weeks or by heating Np(V) solution over several weeks.[119, 121] The as-prepared precipitates 

exhibited strong X-ray diffraction peaks after several weeks that correspond to crystalline NpO2. 

In these studies, competitive processes associated with the presence of both Np(IV) and Np(V) 

complicate the interpretation of the reaction mechanisms. In order to avoid such competitive 

processes, (e.g. the different redox and solubility chemistry of the parallel occurring actinides of 

higher valence (Np(V)), the present work confirms the precipitation of NpO2(cr) from pure 

aqueous Np(IV) precursor. Instead of the initial formation of poorly-defined Np(IV) hydroxides 

via hydrolysis, the dynamic evolution of highly structured NpO2 was observed. The rapid 

organization of oxo-bridged nanoparticles composed in fcc indicates a reaction mechanism 

probably affected by oxolation reaction as predicted for Pu(IV).[42, 104] Based on the chemical 

characteristics of Np(IV) observed in the present study, it could be concluded that the aqueous 

chemistry of Np(IV) at slightly alkaline pH resembles that of Pu(IV) and Ce(IV), rather than of 

Th(IV). Nevertheless, under acidic conditions the redox stable Th(IV)(aq) system reveal similar 

An(IV) precipitation behavior after intensively increasing the pH by an excess of 1M KOH 

(enforced hydrolysis) and a subsequent drying process.  TEM identified agglomerates of ThO2 

characterized by fluorite structure and irregular in shape and size (0.8-15 µm) which are 

composed of various crystalline domains (~5 nm in size).[122] 

 

The current finding of self-organization of NpO2 in the fcc-structure under ambient conditions and 

stabilization in a specific nano-size range could be utilized for new energy-efficient nuclear power 

systems based on minor-actinide mixed oxides (MA-MOX) fuels. MA-MOX fuels are of 

particular interest to reduce or eliminate Np from HLW (before enclosed in repository systems) 

by transmutation in fast reactors. The efficiency and costs of the Np reduction partially depends 
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on the chemical and physical composition of MA-MOX pellets. State of the art in MA-MOX 

production is raw processing of NpO2 precursor powders consisting of spheroids and complicated 

crystals with 5-10 µm in size.[123] The poor flowability of these micron-sized spheroids in the 

MA-MOX pellet production influences the homogeneity of the resulting pellets and subsequently 

their physical properties during the burn-up process in reactor.[123-125] Herein, the application 

of nano-sized materials, which are easily generated in thermodynamically stabilized form from 

aqueous solution, to the precursor material for MA-MOX production would influence not only the 

efficiency in pellet production but also the overall efficiency in the nuclear cycle processing of 

minor actinides. This could also contribute to the safer control of the physical characteristics of 

fuel pellets during burn-up[126] and the reduction of the Np (or minor actinide) inventory in 

HLW repositories, an advantage for the safety assessment of extremely long time spans of over 

one million years.  
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4 The Np(IV)-silicate system in bicarbonate solution 

This section discusses the precipitation of Np(IV) in presence of silicate, an important 

representative of ubiquitous occurring groundwater components, in the diluted carbonate 

environment as expected in the far-field of a nuclear repository. Parameters like the Si/Np ratios 

in solution are considered and the systems are checked for evidence of potentially long-term 

stabilized Np(IV) silica colloid. Experiments of various Si/Np ratios - below and above the 

MWSA - are performed to figure out the coherences of particle sizes, morphology, and dispersion 

stability of resulting particles. First hints for the driving forces and reaction mechanisms of 

Np(IV) silica particle formation by  testing competitive polymerization behavior of both, Np and 

silica in diluted and saturated systems, are also presented.  

 

4.1 Precipitation of Np(IV) silica particles versus silicate polymerization 

As shown in the previous chapters, the dilution of Np(IV) at near-neutral pH led to the self-

organization of NpO2 NCs or the formation of small colloidal Np(IV) silica particles when silicic 

acid was admixed. This precipitation behavior raises the question concerning the driving force of 

Np(IV) silica particle formation. On the one hand, it seems obvious that the dilution of Np(IV) by 

exceeding its solubility limit at near-neutral pH as a factor of the carbonate concentration can be 

regarded as the driving force, but on the other hand, the question remains if the polymerization of 

silicate also influences the Np(IV) silica particle formation. At pH 7-9 the monomeric silicic acid 

is unstable and polymerization is increased in dependence on ionic strength and temperature due 

to the catalyzing effect of hydroxyl ions.[127] Therefore, an experiment was performed to resolve 

the intensity of hydrolysis and/or polymerization by determining the SLI of particles formed after 

moderate dilution with silicate solutions of concentrations above and below the threshold of 

silicate polymerization in the presence of neptunium (Figure 23-(a)) and absence (b). It has to be 

noted that silicate starts to polymerize at concentrations above ~2.5∙10
-3

 M in solutions (see 

chapter 2).[55] Neptunium diluted in a silica-poor environment below the MWSA (red trace in 

Figure 23-(a)) exhibited a strongly increased SLI, indicating the formation of larger sized particles 

which were not colloidal stabilized and settled noticeably with the decrease of SLI over time. This 

is in analogy to NpO2 NC agglomeration behavior but retarded in time. In contrast, the neptunium 

containing silica above the MWSA (blue trace in (Figure 23-(a)) permanently showed a slightly 

enhanced SLI and the dispersion was stabilized without noticeable sedimentation processes due to 

the formation of colloidal stabilized particles of smaller size (see also similar trend observed in 

Figure 7).  
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Figure 23. Time dependence of the SLI in different silicate samples  

(a) samples containing neptunium and silicate concentrations above (blue trace) and below (red 

trace) the MWSA of silica. [Np] = 5∙10
-4

 M in each sample; [Si] = 0.5∙10
-3

 M (red), [Si] = 4.5∙10
-3

 

M (blue); initial 0.1 M NaHCO3. 

(b) silicate blank samples in absence of neptunium above (blue trace) and below (red trace) the 

MWSA of silica. [Si] = 0.5∙10
-3

 M (red), [Si] = 4.5∙10
-3

 M (blue); initial 0.1 M NaHCO3. 
 

Again, this observation underlines the trend that a silicate enriched environment induces the 

formation of small and colloidal stabilized An(IV) silica particles.[49, 50] Therefore, silicate 

enriched solutions prevent the intrinsic formation of NpO2 NCs and their subsequent 

agglomeration as observed in chapter 2. These observations suggest that silicic acid might rule the 

Np(IV) silica particle formation. Nevertheless, in the absence of neptunium above the MWSA 

(blue trace in Figure 23-(b) an increased SLI was monitored in the first seven days indicating the 

formation of silicate polymers. In presence of neptunium the polymerization of pure silicate 

polymers was not observed (confirmed by the observation of lower SLI of the blue trace in Figure 

23-(a), and determination of the chemical composition in the following chapter) suggesting that 

the presence of neptunium prevents silica polymerization above the MWSA. This observation 

again highlights the strong tendency of An(IV) hydrolysis, which may govern the An(IV) silica 

particle formation as a factor of the molar Si/Np ratio in solution. The SLI of the silica polymers 

dispersion decreased to a lower value of truly dissolved silicate solutions over time, which may be 

caused by dissolution of the silicate polymers or by sedimentation of destabilized silicate 

polymers of larger size. Note that no obvious sediment formation was observable at any time. In 

conclusion, neptunium and silicate significantly influence each other in their hydrolysis and 

polymerization behavior, silicate or silicic acid prevents the intrinsic self-assembly of NpO2 NCs 

in the fcc-structure, whereas Np(IV) prevents the polymerization of silicic acid or silicate, in 

analogy to other metal ions[127, 128]. 
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4.2 Influence of the initial silica concentration in solution on resulting Np(IV) 

silica colloid characteristics 

4.2.1 Chemical composition of Np(IV) silica particles 

The silica uptake of the Np(IV) particles is dependent on the supply of silicic acid during particle 

formation. Table 7 demonstrates this for samples of both the region above and the region below 

the MWSA. The table represents the concentration ratios of Np and Si found in solution - with 

initial concentrations shown in the first two columns and after two days of equilibration - before 

and after ultrafiltration (5 kDa). It shows that the Si/Np ratio of the colloid particles does not 

simply depend on the initial Si concentration of the solution or simply on the initial Si/Np ratio of 

the solution. The composition of Np(IV) silica particles in dependence on the reaction coordinate 

might be influenced by the equilibration state. Note that the molar Si/Np ratio of the colloids 

given in Table 7 is an average over the particle radius. Studies on Th(IV) silica colloids showed 

that there may be significant variation of the Si/An(IV) ratio from the surface to the center of the 

particles. The correlation between the silicic acid concentration in the solution and the molar 

Si/Np ratio of the particles is obviously determined by the structural inclusion of silica into the 

particle inside (see section 4.3 - internal structure by EXAFS) as well as by silica polymerization 

processes both in the water and on the particle/water interface. Note also that the colloids of many 

of the samples contain more silica than Np(IV), which makes these particles increasingly similar 

to silica particles with elevated silicic acid concentration. 

 

Table 7. Molar Si/Np ratio of the Np(IV) silica colloids in dependence on the initial Si and Np solution 

concentrations [Si] and [Np] 

[Si] [10
-3

 M] [Np] [10
-3

 M] Si/Np in solution [n/n] Si/Np in colloids [n/n] 

8.6 1.04 8.6 3.6 

7.3 1.05 7.3 3.5 

5.4 1.05 5.4 2.6 

(>MWSA) 3.2  1.05 3.2 1.7 

(<MWSA) 1.3  1.04 1.3 0.8 

0.7 1.02 0.7 0.4 

1.5  0.25 6 1.3 
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Using UV-vis absorption spectroscopy it was observed that the colloidal Np(IV) peak (which 

appears very reproducibly at 740 to 742 nm for Np(IV) oxyhydroxide colloids) was shifted 

toward 746 nm if the nanoparticles contained sufficient amounts of silica. The shift started at 

initial concentrations of >5.4∙10
-3

 M silicic acid in the solutions (Figure 24) and suggests a change 

of the electronic structure of Np in the particles in dependence on the silica environment. Here, 

Np(IV) silicate structures could be observed in the silica enriched environment different than in 

silica-poor solutions. 
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Figure 24. Visible absorption spectra of Np(IV) in dependence on initial silica concentration 

[Np] = 1∙10
-3

 M, initial silicate: [Si] = 0.7∙10
-3

 to 8.6∙10
-3

 M; initial 0.1 M NaHCO3; pH = 8-9. 
 

 

4.2.2 Particle growth behavior and long-term stability 

In order to figure out how the Si/Np ratios influence the resulting particles size, the time 

dependence of the SLI and hydrodynamic radius of colloids was determined in different system of  

[Np] = 5.0∙10
-4

 M and [Np] = 1.0∙10
-3

 M. 

The reproducibility of simple SLI determinations can reliably serve as indication of particle 

growth, and the correlation between SLI and hydrodynamic diameter of particles in solution was 

verified for the Np(IV) silica system. In Figure 25 the correlation of the SLI with the average  
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Figure 25. Dependence of SLI and particle size (PCS) of the Np(IV) silica particles on the 

initial concentration of silicic acid 

[Np] = 1.0∙10
-3

 M in each sample; initial [Si] given in graph; initial 0.1 M NaHCO3; 

SLI recorded after an equilibration time of <24 h. 

 

hydrodynamic diameter of colloids in solutions with [Np] = 10
-3

 M in dependence on the initial 

silica concentration is shown. Note, that the SLI and the corresponding hydrodynamic diameters 

were determined after a short equilibration time of <24 h. Silica-poor systems with a Si/Np ratio 

below 2 were characterized by SLI of ~150-1300 kcps and hydrodynamic diameters of 

~10-95 nm, while silica-enriched systems with a Si/Np ratio above 2 showed a SLI of 

~20-30 kcps by approximated hydrodynamic diameters of ~2-3 nm.  

Silica-enriched systems above the MWSA exhibited lower SLI than silica-poor systems caused by 

the less intensive scattering contribution of small-sized colloids. Therefore, Figure 25 

demonstrates that the SLI can be a quite useful semiquantitative measure of the size of the 

particles in the Np(IV) silica systems.  

The time dependence of the SLI of colloidal systems that were generated from different silicic 

acid concentrations with [Np] = 10
-3

 M is shown in Figure 26. Three cases can be discerned in this 

figure. A silicic acid concentration of 1.3∙10
-3

 M is not able to stabilize the nanoparticles resulting 

from [Np] = 10
-3

 M; fast sedimentation is observed in this case, which is in close analogy to the 

sedimentation behavior of NpO2 NCs, but retarded in time in comparison to rapid NpO2 NCs 

agglomeration in less than 24 h. A silica concentration of 3.2∙10
-3

 M, also results in slow 

sedimentation of the particles. Stabilization was found at [Si] = 8.6∙10
-3

 M. 
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Figure 26. Time dependence of the SLI for three systems of Np(IV) silica colloids in 

dependence on silica content  

([Np] = 1∙10
-3

 M, initial silicate: [Si] = 1.3∙10
-3

 M (white boxes) pH 8.8, [Si] = 3.2∙10
-3

 M (red 

triangles down) pH 8.7, [Si] = 8.6∙10
-3

 M (blue triangles up) pH 8.6; initial 0.1 M NaHCO3). 

 

However, as can be seen in Figure 26, the colloids did not immediately reach their final particle 

size, but showed a growth phase of several days. This is another analogy between the behavior of 

Np(IV) silica colloids and that of other An(IV) silica colloids.[49, 50] Figure 26 shows that 

stabilization for at least 30 days is observed if enough silica in the [Np] = 1.0∙10
-3

 M system is 

supplied. In another sample, also representative of the region above the MWSA, colloid stability 

over a period of at least 370 days was found ([Np] = 1∙10
-3

 M with initial silicate: [Si] = 9.0∙10
-3

 

M; Si/Np = 9/1). 

Above the MWSA, the excess of silicate was essential to stabilize 1∙10
-3

 M Np(IV) as a new type 

of An(IV) colloids, the An(IV) silica colloids. Here, the stabilization of Np(IV) in the waterborne 

state exceeded the limits of solubility of Np(IV) species - ranging from 10
-8

 to 10
-5

 M - by factors 

of 100 to 10.000.[20, 21, 129] 

In precipitation experiments at near-neutral pH, various samples with settled precipitate revealed 

that dissolved Np(IV) was found in the supernatant with concentrations of ~0.5∙10
-4

 M. Herein, 

the Np(IV) speciation was unknown and could not be sufficiently characterized with the applied 

UV-vis detection setup because of enhanced dilution of the analyte.  
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Figure 27. Hydrodynamic diameter of Np(IV) silica colloids in dependence on time and the  

initial silicate concentration (PCS) 

[Np] = 5∙10
-4

 M in each sample; [Si] = 1.5∙10
-3

 M (green), pH 9.1, [Si] = 2.5∙10
-3

 M (magenta)  

pH 9.0, [Si] = 4.5∙10
-3

 M (blue) pH 8.9; initial 0.1 M NaHCO3. Hydrodynamic diameter 

determined from untreated supernatant. Error bars are given at the 95% confidence level. 

 

The dissolved Np(IV) with concentrations  ~0.5∙10
-4

 M  could be provoked by the appearance of 

small oligomeric Np(IV) species. 

The assumption that an increased Si/Np ratio is essential to stabilize An(IV) silica colloids at 

actinide concentrations of ~10
-3

 M [49, 50] was not proved in a diluted system of 0.5∙10
-3

 M 

Np(IV), which is a contradiction to the non-stable system at [Np] 1∙10
-3

 M. Figure 27 

demonstrates the influence of the Si/Np ratio on the prevailing particles size in a 0.5∙10
-3

 M 

Np(IV) silica system as a function of time. Again, in the sample with silica excess above the 

MWSA, specified as Si/Np = 9, the formation and stabilization of Np(IV) silica colloids occurred, 

with diameters of 10 nm in size, which grew up to ~25-30 nm during equilibration of 30 days. 

The systems below the MWSA containing less initial silica revealed the formation of smaller 

Np(IV) silica particles which did not significantly tend to grow in size. A Si/Np ratio of 3 and 5 

resulted in the formation of particles of ~5 nm and ~9 nm in size. These results suggest that the 

formation of small Np(IV) silica colloids also depends on the Np concentration. 

 

More detailed PSD (light-intensity weighted) of these samples in dependence on the Si/Np ratio 

and time are displayed in Figure 28 where an additional sample specified with Si/Np = 1/1 
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([Np] = 5∙10
-4

 M and [Si] = 0.5∙10
-3

 M) is involved. Here, all particle fractions measured in 

dispersion were included, the prevailing fractions of small particles and the minor fractions of 

micrometer-sized particles as well. Due to the strong dependence of the SLI on the particle size, 

the SLI is proportional to the sixth power of the particle diameter. Generally, a minor fraction of 

large particles would dominate the SLI by parallel appearance of a fraction of small-sized 

particles in the same sample. Thus, under certain PSD conditions the scattering contribution of 

particles of smaller size are masked by extremely intensive scattering of large particles[62], but in 

the case of a dominating particle concentration of small-sized colloids beside an only minor and 

negligible fraction of larger particles, the smaller fraction can be reliably determined by light 

intensity weighted PSD as observed in Figure 28. All samples contained a fraction of larger sized 

particles in an early stage of equilibration, but in samples from a 3/1 ratio and so forth, this minor 

fraction decreased in frequency over time. Interestingly, in sample 9/1 the disappearance of the 

minor fraction of ~600 nm sized particles was observed after 8 days of equilibration. 

 

 

Figure 28. Size distribution of Np(IV) silica colloids in dependence on initial silicate 

concentration and time 

(a) after <24 h, (b) after 8 d and (c) after 15 d; [Np] = 5∙10
-4

 M in each sample; initial [Si]: 

[Si] = 0.5∙10
-3

 M (Si/Np = 1/1), [Si] = 1.5∙10
-3

 M (Si/Np = 3/1), [Si] = 2.5∙10
-3

 M (Si/Np = 5/1), 

[Si] = 4.5∙10
-3

 M (Si/Np = 9/1); initial 0.1 M NaHCO3. 

 

Note also that the mathematical instability during deconvolution can play a role in multimodal 

particle size distributions. Thus, it cannot be ruled out that the disappearance of a very small 

fraction of larger particles by sedimentation also influences the calculation result for the small 

particles (for mathematical reasons - when performing the inverse Laplace transform). For 

instance, one could, imagine that the disappearance of a trace of larger particles by sedimentation 
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causes a shift of the result for the small particles toward slightly higher values, simulating growth 

of the particles. Also, regard that a resolution of more than two or three size fractions in very 

polydisperse samples is not possible by DLS.[130] Trimodal particle size distributions should 

only be considered as qualitative hints for polydispserse particle systems and not used to 

determine the actual particle sizes within a significant confidence level.[131] They are sufficient 

only for raw approximation and indication of variation in particle sizes of polydisperse systems, 

however, spurious peaks might be caused by artefacts, ill-posed problems and inverse Laplace 

transforms.[62, 63, 130, 131] 

However, the trimodal PSD in Figure 28-(a) of the Si/Np systems 9 and 3 are shown for 

comparison to emphasize the dynamic process in alteration in particle sizes over time.  

 

In the samples of Si/Np = 3, 5 and 9 a significant increase in frequency of the smaller sized 

fractions between 5-30 nm was determined. In samples containing silicate at concentrations 

higher than that of Np by a factor of three, the Np concentration was always constant at 5∙10
-4

 M 

in solution, while in sample Si/Np = 1/1 the Np concentration significantly decreased to 10
-5

 M, 

resulting in the appearance of a settled precipitate. The Np remaining in the supernatant was 

characterized by a PSD with the main peak at ~200-1000 nm. Here, the major fraction was found 

at sizes of ~1 µm which was analogous to the threshold of NpO2 NC agglomeration and 

precipitate settlement (~1 µm size) determined for the Np(IV)-carbonate system. Again, a 

destabilizing effect on Np(IV) silica colloids was observed if not a sufficient amount of silica was 

accessible in the Np(IV) solution.  

 

Nevertheless, the formation and growth of Np(IV) silica particles is a dynamic process.  

In long-term experiments monitoring the SLI of U(IV) silica colloids for a period of more than 

850 days, fluctuations in SLI were observed and not fully understood. After the decrease of the 

SLI in two years, the average particle size was determined and found to be ~180 nm and the SLI 

was found to show no more variations. The state of this sample was interpreted as a metastable 

equilibration state.[49] Further long-term monitoring of the SLI and the PSD would be necessary 

to elucidate if Np(IV) colloids also show this behavior.  
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4.2.3 Colloidal stability of Np(IV) particles in dependence on silica incorporation into the 

solid phase 

The influence of the silica content on the resulting surface charge of the intrinsic formed Np(IV) 

silica particles was investigated by the determination of the zeta potential ( in dependence on 

pH and molar ratio of Si to Np in the initial solution. For this purpose, the Np concentration was 

kept constant ([Np] = 5∙10
-4

 M), whereas the concentration of silica was increased up to nine 

times that of neptunium ([Si] = 3-9∙10
-4

 M). This was performed to simulate different conditions 

beneath, close to and over the threshold of silica polymerization and to utilize the stabilizing 

effect of silica uptake into the solid state particle structure. The zeta potentials of Np(IV) silica 

colloids were determined by LDV and compared to the surface charge of silica-free NpO2 NCs 

precipitated under similar conditions in absence of silica and of SiO2 reference material. Note that 

the term “particle surface charge” used in the present thesis actually describes the effective 

hydrodynamic surface characterized by the zeta potential. In Figure 29, the dependence of the -

potential of Np(IV) silica colloids, re-suspended Np(IV) silica flocs, and NpO2 NCs on pH and 

the initial molar Si/Np ratio are depicted. 
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Figure 29. Zeta-potential of Np(IV) nanoparticles in dependence on pH and silicate content 

([Np] = 5∙10
-4

 M; [Si] = 0 - 45∙10
-4

 M; initial 0.1 M NaHCO3). Error bars are given at the 95% 

confidence level; data of SiO2 from [49]. 

 

In general, Np(IV) silica particles precipitated from silicate solutions around the MWSA 

([Si/Np] = 3/1 and 5/1)  appeared positively charged at acidic conditions pH = 4-5 with 

 = (+) 3 to 25 mV and negatively charged at alkaline conditions pH = 7-10 with 
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 = (-) 3 to (-) 25 mV with an average isoelectric point (IEP) of ~ 5. At IEP, which is defined by 

the pH range where the electrophoretic mobility is zero, the particles are characterized without 

effective electrical net charge.[132, 133] For instance, under ambient conditions the NpO2 NCs 

can be characterized as an uncharged system in absence of silica: the NpO2 NCs particle surface 

was characterized without an effective net charge ( = 0 mVin bicarbonate background at pHIEP 

8.0. The lack of an effective surface charge prevents the effective repulsive forces between the 

NCs. This allows closer approach of the particles, due to an increased degree of Van-der-Waals 

attraction and promotes agglomeration. Repulsive forces stabilize colloidal systems, and the 

absence of repulsive forces, caused by surface charge of the NpO2 particles, initiates the tendency 

of particle-particle interaction during Brownian motion resulting in precipitation within a few 

hours after re-dispersion. This precipitation-dispersion process of NpO2 NCs was repeatable (cf. 

section 3.4.) and the rapid agglomeration of NCs in ambient conditions is explained by absence of 

repulsive electric double-layer forces caused by their high IEP at pH = 8.0. A similar pHIEP = 8.1 

was determined for Th(IV) oxyhydroxide particles in previous studies.[50] 

 

Table 8. Isoelectric points of actinide oxide particles, An(IV) silica colloids and silica particles. 

Material Description Background pHIEP Reference 

NpO2 NCs Agglomerates of NCs 0.05 M NaHCO3  This work 

Th(IV) particles Th(IV) oxyhydroxide 0.05 M NaHCO3   

Pu(IV) colloids Pu(IV) oxyhydroxide -  

Np(IV) silica 

colloids 

Molar ratio [Si/Np] =  9/1 0.05 M NaHCO3  This work

Th(IV) silica 

colloids 

Molar ratio [Si/Th] =  10/1 0.05 M NaHCO3  

U(IV) silica 

colloids 

Molar ratio [Si/Th] =  3/1 0.1 M NaHCO3  [49] 

SiO2 - -  

SiO2 Ludox, nanosized particles 

(~12 nm in diameter), Aldrich 

0.05 M NaHCO3  

SiO2 Merck 0.01M NaCl  

SiO2 Davisil, Aldrich 0.001 M KCl 3.5 [136] 

 



4 The Np(IV)-silicate system in bicarbonate solution 

 

51 

In contrast, the silica enriched Np silica nanoparticles generated above the MWSA ([Si/Np] = 9/1) 

carried exclusively negative surface charge in nearly the whole pH range from pH = 3-10 with 

 = (-) 5 to (-) 30 mV. 

Due to the influence of silicate, the zeta potentials of all silica samples were shifted to more 

negative values below pH 7. A silica uptake in excess, related to Np into particle structure, shifted 

the IEP of the particles from pHIEP 8.0 to pHIEP 2.6. This resulted in a negative charge of silica 

rich particles at ambient conditions and supported the electrostatic stabilization.  

These Np silica systems can be described as colloidal stabilized dispersions, in which the double 

layer barrier prevents colloids to flocculate. The silica enriched Np particles, precipitated in  

nearly tenfold silica excess, were positively charged at pH < 2.7. The silica enriched Np particles 

surface charge correlates with the pH-dependent surface charge of the SiO2 reference system. The 

determined IEPs of various An(IV) particles in dependence on silica content are listed in Table 8 

and compared to the IEP of reference material. 

The surface charge of the untreated An(IV) oxide or oxyhydroxide particles at slight alkaline pH 

is weak and the corresponding IEP are pH ~ 8, i.e. to neutral pH. In contrast, all An(IV)  particles 

formed in presence of silica show a shift in IEP to lower values of around 3 to 4, close to the IEP 

of pure silica. It must be considered that the sample background might influence the magnitude of 

the IEP.[137-141] The ionic strength and the type of ions can significantly shift the IEP value as 

observed in different investigations of the IEP of SiO2 (Table 8). A slight variation of determined 

IEP might be caused by slight variations in sample composition. However, it is obvious that 

An(IV) silica colloids possess similar surface charge characteristics and IEPs in comparison to the 

surface characteristics of environmentally relevant colloids with a silica-rich composition. Such 

colloidal systems are bentonite and smectite colloids originating from the erosion of silica 

dominated mineral structures.[43, 142] For instance, such smectite colloids are negatively charged 

over a widespread pH range (pH 1.2 to pH 9.0).[43] 

 

A theory to explain their colloidal stability, the Derjaguin-Landau-Verwey-Overbeek-Theory 

(DLVO-theory) describes the force between charged surfaces that interact through a liquid 

medium. The DLVO-theory takes both the van-der-Waals attraction and the electrostatic 

repulsion into consideration. At high ionic strength the colloids tend to aggregate when the 

colloidal charge exceeds the charge of the double layer. Accordingly, at low ionic strengths the 

colloids remain in dispersion, since the double layer barrier prevents colloids from 

flocculation.[133, 143-145] The investigation of the colloidal stability of bentonite colloids and 

smectite colloids in solution under similar environmental conditions as a function of pH and ionic 

strength revealed that natural colloids were stable at lower ionic strengths of 0.01 and 0.001 M but 

unstable at a higher ionic strength of 0.1 M.[43, 142] Interestingly, the colloidal stability of 
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Np(IV) silica colloids generated under conditions exceeding the previously mentioned stability 

level at lower ionic strength (0.05 M) might be in contradiction to the DLVO-behavior of e.g. 

bentonite colloids. The stability of these Np(IV) silica colloids can also be explained by taking the 

so-called, non-DLVO-behavior into consideration. 

In general, Np(IV) silica colloids might prove to be relatively stable, because both (i) a 

considerable repelling electrostatic force (i.e., a DLVO force) accompanied by a shift of the IEP 

to lower pH values and (ii) significant non-DLVO forces due to the increased influence of silica 

stabilize them.[146] 

In absence of silica in An(IV) systems at pH > 5, e.g. Pu(IV) colloids are unstable at all ionic 

strength values tested.[43] This instability could be due to strong colloid-colloid attractive 

van-der-Waals interactions that outweigh the repulsive electric double layer interactions in 

dependence on the bicarbonate solution. Therefore, under the pH range of most groundwater 

aquifers (typically between 5 and 9), e.g. Pu(IV) colloids exists as aggregates of several primary 

particles rather than single particles [43, 147], and the observed behavior of NpO2 NCs in this 

study is consistent. 

 

A structural explanation for the colloidal stabilization of silica enriched Np(IV) particles could be 

the enrichment of silanol-groups at the particle surface, which is supported by results of the 

average elemental composition (Table 7; Figure 36). This induces a pronounced negative surface 

charge at near neutral pH, which guarantees the presence of repulsive forces between the colloidal 

particles. This prevents agglomeration caused by particle-particle interactions and attraction. 

 

4.3 Internal structure of Np(IV) silica nanoparticles 

Generally, in environmental related samples of complex composed matrices, competitive redox 

processes of various actinide redox couples[148, 149] were observed, for instance the 

Np(V)/Np(IV) redox couple in presence of humic acids.[149] In this section, the dilution of the 

initial Np(IV) solution in presence of silicic acid and the subsequent formation of Np silica 

particles was investigated by XANES spectroscopy. No significant shift of the Np LIII-edge 

XANES edge position (Figure 30 and Table 9) was observed. The formation of pentavalent Np 

can be ruled out by comparison of the XAS data with reference material of aqueous Np(V) 

(Figure 49 in Appendix, Table 9). The presence of pentavalent Np would generate a significant 

shift of the XANES edge to lower energy[150], coincident with the characteristic oscillation 

feature at higher energy (highlighted by arrow in Figure 49) originating from the transdioxo- 

cation (i.e. actinyl ion AnO2
+
) structure in solution.[104, 151-153] The tetravalent state was 

preserved even after the precipitate formation.  
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Figure 30. Normalized Np LIII-edge XANES spectrum for Np(IV) silica nanoparticles. 

[(Np,Si)On(OH)4-nxH2O]
4-2n-(4-n) 

 precipitated in 0.1 M NaHCO3 and corresponding second 

derivative (inset). 

 
Table 9. XANES edge position at Np LIII-edge. 

Sample Edge position / keV 

Np(IV) silica particles 17.6137 

Np(IV) in 1 M NaHCO3  17.6134 

Np(V) in 1 M HNO3 17.6119 

Np(V)edge from spectrum given in Figure 30. The edge position is defined at the first inflection point. Np(V) XANES edge shown in 

Appendix Figure 49. 

 

Note that the absorption edge intensity can also slightly vary with the degree of condensation of 

the sample phase.[104, 150, 154] Actinide appearance in the colloidal state might provoke minor 

broadening of the white line.  

These intensity differences can lead to errors in individual concentration determinations of 

Np(IV) and Np(V) in mixtures through linear combination of XANES spectra from reference 

compounds, if the degree of condensation of the unknown differ highly from reference 

compounds.[150] Figure 31 shows the k
3
 weighted Np L-edge EXAFS spectrum (left) and the 

corresponding Fourier transforms (FT, right) of the Np(IV) silica colloids. The corresponding 

EXAFS fit parameters are given in Table 10. The spectrum of the colloidal Np(IV) silica particles 

exhibits a strong dampening of the EXAFS oscillation, related to a peak broadening in the Fourier 

transform and a large Debye-Waller factor 2
 (Figure 31, Table 10). These spectral features 

indicate a large structural disorder in the colloid structure. 
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Figure 31. EXAFS of Np(IV) silica colloids. 

(left side) k
3
-weighted Np LIII-edge EXAFS spectrum for Np(IV) silica nanoparticles 

[(Np,Si)On(OH)4-nxH2O]
4-2n-(4-n) 

 precipitated in 0.1 M NaHCO3 and (right side) corresponding 

Fourier transform (FT). Solid lines, experimental data; dotted lines, theoretical fit; phase shift (Δ) 

is not corrected on FT. 

 

Table 10. Structural parameters of Np(IV) silica particles [(Np,Si)On(OH)4-nxH2O]
4-2n-(4-n) 

 obtained 

from theoretical curve fitting. 

Scattering path R / Å
a
 CN

b
 σ

2
 / Å

2
 ΔEk=0 / eV F 

NpO 2.28 (1) 7.1 (2) 0.017 (4)   

NpSi 3.11 (1) 1.3 (1) 0.0091 (2) -9.3 0.07 

NpNp 3.75 (1) 1.1 (1) 0.0098 (1)   

a
 Interatomic distance (R), errors ≦ ± 0.02 Å, 

b
 Coordination number CN, errors ≦ ± 15%. 

Standard deviations are given in parentheses. 

The oxygen coordination sphere was calculated to an Np-O distance of R +  = 2.28 Å. If 

pentavalent Np should contribute to the internal structure, the Np-O distance should be shorter 

than R +  = 2.28 Å. It is well-known that pentavalent actinides generally form actinyl cation 

(AnO2
+
) structures described with transdioxo structure (Oax). 

In general, this transdioxo structure generates an intense single scattering peak around short 

distance R +  = 1.5 Å in EXAFS-FT spectra.[70, 151-153, 155, 156] It was not necessary to 

consider such short Np-O bonds during fitting procedure, thus, a significant contribution of Np(V) 

due to possible redox processes is not indicated and the presence of pentavalent Np can be ruled 

out in the formation of Np(IV) silica nanoparticles. 

A small peak occurs in the Fourier transform which indicates silicon atoms in the environment of 

neptunium with a Np-Si distance of 3.11 Å. This short Np-Si distance is characteristic of silica in 

bidentate coordination, while monodentate coordination would result in a significantly longer Np-

Si distance 



4 The Np(IV)-silicate system in bicarbonate solution 

 

55 

A small but less specific peak at a larger distance may indicate Np-Np interactions. It follows that, 

as for uranium(IV)-silica colloids and thorium(IV)-silica colloids,[49, 50] also in the case of 

neptunium(IV)-silica colloids, the actinide-oxygen-actinide bonds are increasingly replaced by 

actinide-oxygen-silicon bonds, i.e. silica was included into the structure of the solid if the solution 

contains silicic acid. 

 

4.4 Electronic structure of long-term stabilized Np(IV) silica colloids 

The electronic structure of long term stabilized Np silica colloids was further investigated by 

XPS. The survey spectrum of the BEs is shown in Figure 32. The sample was deposited directly 

from dispersion in NaHCO3 by drying at RT on a HOPG sample holder. The spectrum revealed 

various clear peaks deriving from Na, Np, O, and Si electrons and from the sodium bicarbonate 

background including O KLL and CKLL Auger electrons. The dominant C 1s peak at 285 eV 

(referenced again for BE calibration) and the C KKL Auger peaks (~1013 and ~994 eV) originate 

from the carbon of the sample holder and bicarbonate background and appear more intensive than 

in XPS of cleaned NpO2 NCs (cf. section 3.3.). Even Auger peaks for oxygen were observed 

around 770 eV next to the O 1s electron state around 530 eV. Np was indicated again by a typical 

split of the Np 4 f core level resulting in a doublet around 405 eV and 416 eV. 
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Figure 32. Survey XPS of potentially long term stabilized Np(IV) silica colloids. 
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The levels Np 4 f 7/2 and Np 4 f 5/2 (shown in Figure 33 and Figure 50-Appendix) were determined 

at 404.9  0.2 eV BE and 416.5  0.2 eV BE with the same spin-orbit split Esl (Np 4 f) = 11.6 eV 

of NpO2 NCs. A satellite peak was determined at higher BE with Esat = 4.9 corresponding to 

Np 4 f 7/2 BE (see also Figure 51 in Appendix). In comparison to the 4 f core level of NpO2 NCs 

the BE in presence of silicate were slightly shifted (~0.5 eV) to lower BEs, presumably due to 

slight charging effects of the bicarbonate background in the dried state during measurement. 
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Figure 33. Np 4 f core level XPS of long term stabilized Np(IV) silica colloids 

 

Table 11. Electron BE of long-term stabilized Np(IV) silica colloids at 1253.6 eV 

Core level Electron BE [eV] FWHM [eV] E [eV] 

Np 4 f 5/2 416.5  0.2 2.3 

Esl =11.6 
Np 4 f 7/2 404.9  0.2 2.2 

Satellite Np 4 f 7/2 409.6  0.2 - Esat = 4.7*

O 1s 533.4 - - 

* = related to corresponding Np 4 f 7/2 core level 
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The characteristic satellite peaks with Esat (Np 4 f) ~ 6.9 eV indicative of the fluorite structure 

were not observed. Nevertheless, one satellite corresponding to Np 4 f 7/2 level was indicated at 

409.6  0.2 BE with Esat = 4.7 eV. Its origin is unknown and can be speculated to be an 

indication of a different internal structure in Np(IV) silica colloids compared to the fcc structure 

of NpO2. 

The long term stabilized Np(IV) silica colloids revealed a significant O 1s peak at 533.4 eV 

(Figure 34). The O 1s energy in pure -SiO2 and other similar silicates show a BE of 532.9 eV, 

which is ~3 eV higher than the O 1s BE of oxygen in e.g. An(IV) oxides.[50, 157, 158]  
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Figure 34. XPS O 1s core level of aged Np(IV) silica colloids. 
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4.5 Morphology of Np(IV) silica colloids 

4.5.1 Effect of initial silica concentration on the morphology of Np(IV) silica colloids 

Particles precipitated from different Np(IV) silica systems were further characterized by TEM. In 

Figure 35 some silica-containing particles isolated from a stabilized dispersion of the Np(IV) 

silica system (Si/Np = 9/1) are shown at different magnifications. Various particles with an 

average diameter of ~45 nm (Figure 35-(A)) are shown consolidated with each other and 

displayed diffuse scattering characteristics without defined reflections (Figure 35-(B)). Single 

isolated nanoparticles with a diameter of ~40 nm (Figure 35-(C)) and ~20 nm (Figure 35-(D)) 

were also observed and further investigated on their elemental composition (Figure 36).  

 

Figure 35. TEM data of silica-enriched Np(IV) silica colloids 

(A) Bright field TEM micrograph of agglomerated Np(IV) silica colloids, 

(B) experimental SAED ring pattern, 

(C) and (D) HR-TEM image of isolated Np(IV) silica nanocolloids of different size; 

[Np] = 1∙10
-3

 M, initial silicate: [Si] = 8.6∙10
-3

 M (Si/Np = 9/1); initial 0.1 M NaHCO3. 
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The particle morphology can be described as irregular. No distinguishable lattice structures like in 

NpO2 NCs were observed. The irregularly structured particles appeared in an amorphous solid 

state. Incoherent imaging with HAADF-STEM, by which the intensity correlates with the atomic 

number, located compartments of different dense phases in the interior of an isolated nanoparticle 

(Figure 36-(A)). Two exemplary areas of different contrast were selected and further investigated 

on their elemental composition. Area 1, with a less intensive contrast, revealed ~two-times the 

magnitude of silicon than Np, whereas area 2, with an intensified contrast, revealed ~three-times 

the magnitude of silicon than Np, whilst the Np concentration was the same in both areas. 

This implicates that the compartments with intensified contrast were provoked by silicate-

enrichment at the same Np concentration although silicon, with a much lower atomic number 

compared to Np, would normally appear as less dense matter in STEM. The colloid structure 

between bulk and surface was not homogenous. 

 

 

Figure 36. HAADF-STEM micrograph and EDX of silica-enriched Np(IV) silica colloid 

(A) HAADF-STEM micrograph of Np(IV) silica nanoparticle corresponding to Figure 35-D, 

(B) EDX spectrum of selected area 1 in A, 

(C) EDX spectrum of selected area 2 in A; 

[Np] = 1∙10
-3

 M, initial silicate: [Si] = 8.6∙10
-3

 M (Si/Np = 9/1); initial 0.1 M NaHCO3. 
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Nonhomogenous distribution of Si in single An(IV) silica particles was also reported for Th(IV) 

silica colloids. In this case, the silicate was much more concentrated at the particle surface than in 

the particle interior.[50] It must be mentioned that layers or phases with similar elemental 

composition and a certain height and contrast would also provoke such differences in contrast if 

the organization of different multi-layers or differences in particle-height are given. 

 

 

Figure 37. TEM data of silica-poor Np(IV) silica particle 

(A) Bright field TEM micrograph of a compartment of micron-sized Np(IV) silica particle, 

(B) experimental SAED ring pattern, 

(C) HAADF-STEM micrograph of Np(IV) silica particle compartment, 

(D) HR-TEM image of Np(IV) silica particle compartment; 

[Np] = 1∙10
-3

 M, initial silicate: [Si] = 1.8∙10
-3

 M (Si/Np = 1.8/1); initial 0.1 M NaHCO3. 
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By combining the results of HR-TEM and incoherent imaging with elemental analysis from  

Figure 35 and Figure 36, silica-enriched Np(IV)-particles can be interpreted as irregularly 

structured particles of spherical shape with amorphous phases of partially different Si 

concentrations in composition.  

In contrast, TEM of silica-poor systems revealed particles in the micron-range that consisted of 

irregularly cross-linked hydrolyzed Np(IV) silica compartments (Figure 37). These cross-linked 

compartments appeared as amorphous phases, too. No clearly defined reflections were determined 

(Figure 37-(B)). Neither HR-TEM nor high-angle annular dark-field scanning transmission 

electron microscopy  (HAADF-STEM) showed single nanoparticles of small size. Exclusively 

porous micron-sized particles with pores <15 nm were observed. Some cross-links of the 

irregularly arranged compartments of hydrolyzed Np(IV) silica material revealed sparsely 

distributed ultra-small compartments that possess well-ordered lattice structure (Figure 37-(D), 

areas 1 and 2). These well-structured compartments may originate from partially localized Np(IV) 

oversaturation in solution during particle growth under the condition of silica deficiency. 

Therefore, the lack of silicate would provoke the formation of local NpO2-like structures, whereas 

even the presence of low concentrations of silicate still results in the formation of disordered 

Np(IV) structures. Therefore, in silica-poor systems the formation of single isolated nanoparticles 

was prevented. In contrast, silica-enriched systems could be characterized by isolated small 

particles with an average particle size of 45 nm (Figure 38-(A)).  

 

 

Figure 38. Morphology of silica-enriched Np(IV) silica colloid structure versus structure 

silica-poor Np(IV) silica particle 

(A) Bright field TEM micrograph of silica-enriched Np(IV) silica colloids, 

 [Np] = 1∙10
-3

 M, initial silicate: [Si] = 8.6∙10
-3

 M (Si/Np = 8.6/1); initial 0.1 M NaHCO3; 

(B) Brightfield TEM micrograph of silica-poor Np(IV) silica particle compartment, 
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 [Np] = 1∙10
-3

 M, initial silicate: [Si] = 1.8∙10
-3

 M (Si/Np = 1.8/1); initial carbonate 1∙10
-2

 M. 

 

These particles appear as consolidated/compact amorphous solids with a densely closed surface 

and exhibit no internal fractures like silica-poor particles in the micron-range (Figure 38-(B)). 

Differences in the resulting particle morphology were also observed in the arrangement of fractal 

SiO2 clusters in dependence on silica concentration. Herein, the differences could be monitored by 

UV-vis-NIR absorption spectroscopy due to different Rayleigh scattering characteristics.[159] 

The morphology of silica-enriched Np(IV) silica particles with densely closed surface and 

spherical shape might facilitate the migration behavior of Np(IV) in a stabilized colloidal form 

under environmental conditions. In combination with the silica enriched surface which was 

indicated by the present TEM-EDX results in Figure 36 and the significant effective surface 

charge of silica-enriched particles shown in Figure 29, this type of An(IV) silica colloids might be 

stabilized as a colloidal dispersion under ambient conditions in the near- or far-field of a HLW 

repository. Larger sized particles lacking in silica and a less effective surface charge might be 

unable to form stable colloids, i.e., this type of particles would rather be retarded in solution due 

to filtration effects or would be immobilized by precipitation. 

Spherically shaped nanoparticles with a densely closed surface and a high effective surface charge 

were also observed in more diluted samples under conditions close to environmental parameters 

(Figure 39) highlighting the importance of Np(IV) silica particles under ambient conditions. 

 

 

Figure 39. TEM data of silica-enriched Np(IV) silica colloids 

(A) Brightfield TEM micrograph agglomerated Np(IV) silica colloids, 

(B) HR-TEM image of Np(IV) silica particle; 

[Np] = 2.5∙10
-4

 M, initial silicate: [Si] = 2.5∙10
-3

 M (Si/Np = 6/1); initial 0.1 M NaHCO3. 
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4.5.2 Morphology of long-term stabilized Np(IV) silica colloids  

In order, to evaluate changes in morphology of Np(IV) silica colloids over time, a 370 days aged 

sample ([Np] = 1∙10
-3

 M with initial silicate [Si] = 9.0∙10
-3

 M; Si/Np = 9/1) was investigated by 

TEM. Silica-enriched Np(IV) particles were directly isolated from the long-term stabilized 

colloidal dispersion without further purification steps. Note that no apparent precipitation process 

was observed in the mother dispersion during aging, emphasizing the stability of the colloids at 

near-neutral pH. The silica-enriched dispersion was colloidal stabilized until the desired 

measurement. At the time of particle isolation for TEM sample preparation the redox potential 

was Eh = (-) 76 mV in solution at RT. A significant SLI was measured at 150 kcps and the PSD 

(light intensity weighted) was determined in a particle mixture with diameters of ~40-50 nm and a 

minor fraction of ~900 nm.  

 

Figure 40. HAADF-STEM micrographs of aged Np(IV) silica colloids in different 

magnifications: (A) 160kx and (B) 1300kx. 

[Np] = 1∙10
-3

 M, initial silicate: [Si] = 9.0∙10
-3

 M (Si/Np = 9/1); initial carbonate 1∙10
-2

 M. 

 

 

In Figure 40 amorphous Np(IV) silica structures were observed by HAADF-STEM. These 

structures contained inclusions or attachments of material with higher density in/on the 

amorphous silica containing matter of low density. The spots/dots of higher electron density were 

distributed consistently over the agglomerated Np(IV) silica particle material. Corresponding HR-

TEM and electron diffraction results (shown in Figure 41) demonstrate that in addition to the 

amorphous phase with corresponding diffuse diffraction properties, some clear rings of diffraction 

characteristics originating from the fcc structure were indicated.  
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Similar HAADF-STEM images of actinide bearing material with different density or phase 

mixtures were observed in other studies of fine atmospheric particulates from Detroit urban area 

emitted from coal-burning power plants. Herein, crystalline uraninite particles of less than 10 nm 

in size were encapsulated in a cage structure of fulleroid in atmospheric particulates.[160] 

 

Figure 41. TEM-Micrograph of potentially long-term stabilized Np(IV) silica colloids 

(A) HR-TEM micrograph of agglomerated Np(IV) silica colloids  

(B) SAED corresponding to (A). 

 

More morphology details of the mixed phase particle material were observed by HR-TEM shown 

in Figure 42. It clearly revealed that the prevailing amorphous and irregular Np(IV) silica particle 

structure (exemplary shown in box 1 in (A), higher resolution in (D)) contained well-ordered and 

crystalline compartments (detail 2 – 5 in (A); detail 2 highlighted in (E)). The corresponding FFT 

of the mixed phases in (A) is displayed in box (B) and shows diffuse diffraction properties (like in 

Figure 41-(B)) caused by amorphous particle material next to clear reflections located on rings 

originating from highly ordered compartments with fcc structure. In box (C) the FFTs of some 

exemplary selected crystalline structures (corresponding details from (A)) revealed definite 

reflections of isolated crystalline compartments in dependence of crystal zone axis. It is 

speculative to whether the nanocrystalline phases were incorporated in the less dense amorphous 

phase or attached on the Np(IV) silica particle surface. The clearly resolved crystal lattice in 

Figure 42 detail 2 might be interpreted as thick crystal attached to the surface, while in detail 4 

and 5 the crystalline phases could be interpreted as ultra-thin layer crystals or as weak contrast 

from incorporated crystalline phases in the interior of the prevailing less-dense amorphous 

structure of the Np(IV) silica colloid. Two-dimensional bright-field TEM analysis is inadequate 

for determining such complex morphologies in the third dimension (height) and occasionally 
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misleading for tomographic information. Modified electron tomography techniques are a better 

approach to determine the location of crystalline phases within the Np(IV) silica phase. For 

example energy-filtered (EF) TEM would determine the depth location, so the application of 

EFTEM is strongly recommended.[161] Ultra-small metal nanostructures (~1 nm) within a 

mesoporous silica were localized by applying this technique providing evidence that the 

nanostructures were anchored on the wall of mesopores.[162] By using a tilt series of EFTEM 

elemental maps, it would be possible to reconstruct a three-dimensional elemental distribution 

map.[163, 164] 

 

 

Figure 42. HR-TEM of potentially long-term stabilized Np(IV) silica colloids 

(A) HR-TEM micrograph showing nanocrystalline structures in amorphous Np(IV) silica 

colloids, (B) FFT corresponding to micrograph (A), (C) FFTs corresponding to selected areas in 

micrograph A, (D) Detail of micrograph in A, area 1 (E) Detail of micrograph in A area 2 reveals 

well-organized fcc structure. 

 

Concerning the structural aspects of the crystalline phase itself, the determined SAED rings and 

reflections were always in accordance to the fcc structure. The fcc structure does not only 

exclusively characterize the fluorite structure of AnO2 but also the fcc structure of actinide oxides 

of lower valency like trivalent An sesquioxides (An2O3).  
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The diffraction rings in Figure 41-(B) could indicate cell parameters in the crystal phases slightly 

smaller than normally observed for NpO2. This led to the additional consideration that the 

sesquioxide structure, which is characterized by slightly smaller cell parameters than those of the 

AnO2 counterpart, might also play a role. Note that further investigation with crystallographic 

methods is required herein to determine the actual cell parameters.  

Sesquioxides are known for neptunium, plutonium and the heavier actinides. Regarding 

plutonium, the sesquioxide is characterized by a thermodynamically stable oxide structure. 

Hitherto, Np2O3 was regarded as an instable actinide oxide species which only appears as a 

metastable intermediate.[20] In contrast to Pu2O3, Np2O3 was evaluated to be stabilized only in 

trace concentration or ultra-thin layers under strongly reducing and well-defined conditions on the 

Np metal surface, but not in the bulk of Np oxide structures.[20, 165] As recently observed in 

water sorption/desorption processes on NpO2, it was shown under definite conditions that water 

reduced the surface of NpO2 to Np2O3.[165] This phenomenon was observed by applying 

ultraviolet photoemission spectroscopy (UPS), which is much more sensitive in determining the 

electron structure in the valence band instead of the core level states of Np from which the 

sesquioxide structure is hardly verifiable. This new study confirmed that Np2O3 can be present as 

a stable species (by determination of the 5 f state applying UPS) and points to the stability of the 

trivalent oxide, which might play a role under certain environmental scenarios also given in the 

recent study. Due to the similar fcc structure and the possibility of a bonding nature with slightly 

smaller cell parameters in the crystal phases, further investigation by UPS is recommended. The 

absence of the satellites at ~(+) 7 eV BE, typical indicators of NpO2 fcc structure, in the 4 f core 

level of aged Np(IV) silica colloids (XPS in Figure 33) could serve as an additional hint for the 

presence of Np2O3. The proof of the actual state of “fcc-masked” Np oxide structure in the 

crystalline phases on long-term stabilized Np(IV) silica colloids by UPS would determine if the 

presence of Np2O3 phases should be considered or not. The exclusion of sesquioxide phases 

would confirm the absence of additional redox processes and further highlight the intrinsic 

property of Np(IV) to hydrolyze in the fcc structure even when incorporated with silica in the 

solid state over longer timespans of equilibration. To date, the bonding nature of long-term 

stabilized Np(IV) silica colloids is still not completely understood. 
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4.6 The stabilization of Np(IV) silica colloids - Implication for potential 

migration behavior of An(IV) 

It has been proved that not only the “analogues” U(IV) and Th(IV), but also the highly radioactive 

Np(IV) itself is able to form silica-containing colloids. The assessment of Np behavior in the 

environment under reducing conditions should evaluate the role of such colloids, because the 

formation of silica-containing An colloids in the surroundings of a nuclear waste repository 

cannot be ruled out.[166] Np(IV) silica colloids might prove to be relatively stable because both, 

(i) a considerable repelling electrostatic force (i.e., a DLVO force) accompanied by a shift of the 

isoelectric point to lower pH values and (ii) significant non-DLVO forces due to the increased 

influence of silica in the colloids stabilize them.[50, 146] Special attention needs to be paid to a 

decrease of the ionic strength due to intrusions of electrolyte deficient water (e.g., glacial melt 

waters after a possible future ice age[167]), because decreasing ionic strength increases colloid 

stability. Furthermore, transport of Np(IV) silica colloids through the engineered barrier system 

(compacted bentonite) and through the fractures of crystalline host rock also cannot be ruled out. 

Macromolecules of about 5 nm (lignosulfate, 30 kDa) were observed to diffuse through the pores 

of bentonite independently of the bentonite density.[168] Humic substances and very small gold 

particles (2 nm), too, proved to be able to diffuse through compacted bentonite.[169, 170] 

However, slightly larger gold nanoparticles did not pass through compacted bentonite.[169, 171] 

The question whether or not Np(IV) silica colloids are able to pass through bentonite or fractured 

host rock needs clarification. If Np(IV) silica colloids can interact with other actinide colloids and 

stabilize them as pseudo-colloid carrier is unknown. Further research is needed to elucidate the 

potential role of Np(IV) silica colloids in environmental scenarios. 
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5 Summary 

Considering the worldwide growing discharge of minor actinides and the current need for 

geological disposal facilities for radioactive waste, this work provides a contribution to the safety 

case concerning Np transport if it would be released from deep repository sites and moving from 

alkaline cement conditions (near-field) to more neutral environmental conditions (far-field). The 

reducing conditions in a nuclear waste repository render neptunium tetravalent, which is assumed 

to be immobile in aqueous environment due to the low solubility solution of Np(IV). For 

tetravalent actinide nuclides, the most significant transport should occur via colloidal particles. 

This work demonstrates the formation of intrinsic neptunium dioxide nanocrystals and amorphous 

Np(IV) silica colloids under environmentally relevant conditions. 

 

The dissociation of the initial soluble Np(IV) complex (i.e. [Np(IV)(CO3)5]
6-

) induces the intrinsic 

formation of nanocrystalline NpO2 in the solution phase. The resulting irregularly shaped 

nanocrystals with an average size of 4 nm exhibit a face-centered cubic (fcc), fluorite-type 

structure (space group mFm3 ). The NCs tend to agglomerate under ambient conditions due to the 

weakly charged hydrodynamic surface at neutral pH (zetapotential ~0 mV). The formation of 

micron-sized agglomerates, composed of nanocrystals of 2-5 nm in size, and the subsequent 

precipitation cause immobilization of the major amount of Np(IV) in the Np-carbonate system. 

Agglomeration of NpO2 nanocrystals in dependence on time was indicated by PCS and UV-vis 

absorption spectroscopy with the changes of baseline characteristics and absorption maximum at 

742 nm. 

Hitherto, unknown polynuclear species as intermediate species of NpO2 nanocrystal formation 

were isolated from solution and observed by HR-TEM. These polynuclear Np species appear as 

dimers, trimers and hexanuclear compounds in analogy with those reported for other actinides. 

 

Intrinsic formation of NpO2 (fcc) nanocrystals under ambient environmental conditions is 

prevented by admixing silicic acid: amorphous Np(IV) silica colloids are formed when silicate is 

present in carbonate solution. 

Herein, the initial molar ratio of Si to Np in solution lead to the formation of Np(IV) silica 

particles of different composition and size where Si content determines the structure and stability 

of resulting colloids. Implications for different electronic structures of Np(IV) in dependence on 

Si content in the solid phase are given by the shift of the absorption maximum at 742 nm 

characteristic for Np(IV) colloids, silica excess of 5 times the magnitude of Si to Np reveal a 

redshift up to 6 nm in the colloidal UV-vis spectrum. Precipitation of Np(IV) particles in the 
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ternary system results in a different coordination sphere of Np(IV) compared to the binary system, 

and the incorporation of Si into internal structure of Np(IV) silica colloids in coffinite-like 

structure is confirmed by EXAFS. TEM confirms different kinds of particle morphologies in 

dependence on the silica content. Silica-poor systems reveal porous particles in the micron-range 

which consist of irregular cross-linked hydrolyzed Np(IV) silica compartments with pores  

<15 nm.  In contrast, long-term stabilized and silica-enriched systems are characterized by 

isolated particles with an average particle size of 45 nm. Agglomerates of such isolated Np(IV) 

silica particles appear as consolidated amorphous solids with a densely closed surface and exhibit 

no internal fractures. The latter mentioned morphology of Np(IV) silica particles might facilitate 

the migration behavior of Np(IV) in a stabilized colloidal form under environmental conditions. 

The silica-enriched particles with densely closed surface are long-term stabilized as colloidal 

dispersion (>1 year) due to repulsion effects caused by significant surface charge. Particles 

synthesized from Si/Np = 9/1 carry exclusively negative surface charge in nearly the whole pH 

range from pH 3 to pH 10 with  = (-) 5 to (-) 30 mV. The zeta potentials of all particle systems 

containing silica are significantly shifted to more negative values below pH 7 where the 

isoelectrical point shifts from pH = 8.0 to 2.6 effecting negative charge under ambient conditions 

which supports electrostatic stabilization of Np(IV) particles. Particle surface charge at the 

slipping plane, particle size and shape necessarily depend on the initial magnitude of Si content in 

solution during particle formation. Particular changes of the morphology and internal structure of 

different Np(IV) silica colloids by aging are indicated by TEM and XPS. The composition and the 

crystallinity state of the initially formed amorphous phases partially changed into well-ordered 

nanocrystalline units characterized with fcc structure. 

The presence of silicate under conditions expected in a nuclear waste repository significantly 

influences the solubility of Np(IV) and provoke the stabilization of waterborne Np(IV) up to 

concentrations of 10
-3

 M,  exceeding Np´s solubility limit by a factor of up 10.000. 

 

Neptunium and silicate significantly interact with each other, and thereby changing their 

individual hydrolysis and polymerization behavior. Silicate prevents the intrinsic formation of 

NpO2 NCs in fcc-structure, and at the same time, Np(IV) prevents the polymerization of silicate. 

Both processes result in the formation of Np(IV) silica colloids which possibly influence the 

migration behavior and fate of Np in the waste repositories and surrounding environments. For 

tetravalent actinides in general, the most significant transport in the environment would occur by 

colloidal particles. Therefore, Np(IV) silica colloids could have a significant implication in the 

migration of Np, the important minor actinide in the waste repositories, via colloidal transport. 
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6 Experimental details 

Caution! 
237

Np is a radioactive isotope and an -emitter. It should be handled in dedicated 

facilities with appropriate equipment for radioactive materials to avoid health risks caused by 

radiation exposure .Experiments were almost always performed in inert glove box.   

6.1 Solutions 

6.1.1 Neptunium stock solutions 

As Np stock an acidic solution of Np(V) 5.6∙10
-2

 M in nitric acid 1M (Merck, p.a.) was provided 

by HZDR. Purified tetravalent Np was synthesized by potentiostatic electrolysis in nitric acid (c.f. 

section 6.2.1). Np(V) dissolved in nitric acid was electrochemically reduced on a platinum 

working electrode to Np(III) and afterward quantitatively oxidized to Np(IV) using methods 

previously reported.[65, 172, 173] UV-vis absorbance spectroscopy was applied to monitor the 

Np oxidation states during electrolysis. The purity of the tetravalent state of the Np ion was 

verified by the absorbance at 591 nm and the absence of shoulders at 551 nm of Np(III) and 

617 nm of Np(V) (Figure 43). 

450 500 550 600 650

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

  

 

 

659 551
 (III)

 (IV)

 (V)

  (IV)

  591

 (V)

617

626

A
b

so
rb

a
n

ce

Wavelength / nm

(III)

602

 

Figure 43. Visible absorption spectra of Np in dependence on valency in acidic solution 

Visible absorption spectra of trivalent (red-brown), tetravalent (olive green) and pentavalent 

(emeraldgreen) Np in acidic solution ([Np] = 5.6∙10
-2

 M in HNO3 1M). The spectra color reflects 

the actual color of the respective redox state of Np in solution; corresponding sample appearances 

are displayed in Appendix in Figure 53. 
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The acidic Np(IV) stock solution ([Np] = 5.6∙10
-2

 M  in HNO3 1.0 M) was diluted [174, 175]  by 

adding it to a 1.0 M sodium bicarbonate solution (Merck, p.a.). The resulting solutions of Np(IV) 

carbonate complexes [26, 57-59, 176, 177] were filtered through  5-kDa (cut-off 1.5 nm) 

ultrafiltration devices (Vivaspin, Sartorius) to yield a particle/colloid-free solution of dissolved 

Np(IV) carbonate ([Np] = 9.8∙10
-3

 M  in NaHCO3 1.0 M). This alkaline Np solution was further 

used as the precursor solution for dilution experiments as a function of carbonate concentration 

and for Np(IV) nanoparticle synthesis. The purity of this alkaline precursor solution was verified 

by visible absorbance spectroscopy and EXAFS. The spectra of Np oxidation states III, IV and V 

in acidic solution were in excellent accordance with corresponding spectra published by other 

researchers.[156, 174, 178-182] From the spectra of the acidic Np(IV) solutions it can be deduced 

that a high purity of Np(IV) was reached by the two-step electrolysis (degree of purity min. 95%).  
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Figure 44. Visible-NIR absorption spectra of tetravalent Np in slightly alkaline solution 

The spectrum was recorded from a particle-free solution after filtration through a 5-kDa 

membrane ([Np] = 9.8∙10
-3

 M in NaHCO3 1M, pH = 9.0). 

 

The characteristic spectrum of tetravalent Np carbonate complexes is shown in Figure 44. 

Corresponding absorbance properties are in very good accordance to reference data of Np(IV) 

carbonate complexes.[181, 182] The internal structure was investigated in more detail by EXAFS 

(cf. section 3.1). The missing of a peak of axial O atoms (Oax) at the Np ions at around 

R+ = 1.4 Å in the EXAFS results (Figure 10) provides further evidence that the pentavalent 

neptunium was absent and the Np was tetravalent.[26, 119, 153, 156] The complex structure of 
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the alkaline Np precursor was identified as Np(IV) pentacarbonate complex Np(CO3)5
6-

 in 

bidentate coordination mode.  

6.1.2 Silicate stock solution 

Silicic acid solutions were freshly prepared by the hydrolysis of tetramethyl orthosilicate 

(TMOS), Si(OCH3)4 (Aldrich, 98% purity) by dilution in sodium bicarbonate (Merck, p.a.) 

solution. [49] 

6.1.3 Np(IV) silicate samples 

Evolution of Np(IV)-silica particles was initiated by the dilution of the Np(IV) stock solution (see 

section 6.1.1) in freshly hydrolysed solutions of silicic acid. Appropriate aliquots of the Np(IV) 

stock solution were mixed with dissolved silicic acid resulting in dispersions possessing 

concentrations of [Np] = 3.1∙10
-4

 M or 1.0∙10
-3

 M and [Si] = 0.7-8.6∙10
-3

 M with a background of  

0.1 M or 1 M bicarbonate (NaHCO3).  

6.1.3.1 Np(IV) silica colloids above the MWSA 

Neptunium (IV) carbonate solutions were mixed with silicic acid and respective amounts of 

NaHCO3 (0.1 or 1 M) to reach Np concentrations of around 10
-3

 M and Si concentrations of 

> 2∙10
-3

 M. The latter concentration is also called the `mononuclear wall´ of silicic acid, i.e., it is 

the limit above which silicic acid solutions are expected to contain polymers. This is of relevance 

to the reaction with actinides because the affinity of metal ions to polysilicic acid is much higher 

than the affinity to monosilicic acid.[55, 56] The formation of a solid phase (Np(IV) 

nanoparticles) is induced by decreasing the complexant (the carbonate)  concentration when 

mixing the solutions. In contrast to similar experiments with U(IV)[49] and Th(IV)[50], for 

Np(IV) at 10
-3

 M, it was observed that colloids formed immediately after mixing the solutions at 

slightly alkaline pH (pH > 8.5). 

6.1.3.2 Np(IV) silica colloids below the MWSA 

A silicic acid concentration above the MWSA is, though not impossible in nature, relatively far 

from typical environmental conditions. Therefore, experiments were conducted at silicic acid 

concentrations below the MWSA. In such solutions only traces of polysilicic acid can be 

present.[183] The Np(IV) concentration, too, was reduced in this case (3.1∙10
-4

 M). In these 

experiments, the Np(IV) silica colloids did not form immediately after mixing the reactants. The 

colloids formed after reducing the pH to < 8.5 using 0.1 M HNO3. 
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6.2 Chemical and physical characterization of solutions, colloidal solutions 

and isolated nanoparticles 

6.2.1 Electrolysis setup - electrochemical preparation of Np solutions  

A homemade electrolysis cell setup for purification of desired Np redox states in solution was 

designed and installed to perform electrochemical experiments under inert gas atmosphere. The 

principles of the homemade electrolysis cell setup are shown in Figure 45. The counter electrode 

(CE) and the counter electrolyte solution compartment define together the base of the 

electrochemical cell in comparison to standardized electrochemical setups. Containing the 

analytical solution (Np solution), the working electrode (WE) and the reference electrode (RE) the 

working side compartment is directly positioned in the voluminous counter electrolyte solution. 

The solutions are separated and communicate through a G5 diaphragm membrane. Platinum 

electrodes are positioned in each cell compartment. During electrolysis the actinide solution was 

stirred by nitrogen gas bubbling via an installed gas line. The Np(IV) stock solutions were 

synthesized by controlled potentiostatic two step electrolysis (potentiostat PS 6 (Meinsberg), with 

a counter and a Ag/AgCl reference electrode (ALS)) in nitric acid (Merck, p.a.) and dilution in 

sodium bicarbonate (Merck, p.a.) solution. A Np(V) stock solution in nitric acid was reduced to 

Np(III) (potential = – 275 mV, duration: 20 min) and further quantitatively oxidized to Np(IV) 

(potential = + 100 mV, duration: 30 min). UV-vis absorbance spectroscopy was applied to 

monitor the Np oxidation states during electrolysis and to verify the purity as well as the valence 

of Np in solutions. The as-prepared acidic Np(IV) stock solution ([Np] = 5.6∙10
-2

 M in HNO3 

1 M) was further used to prepare Np(IV) bicarbonate solutions (cf. section 6.1.1.). 

 

Figure 45. Principle scheme of electrolysis cell setup 

Reference electrode (RE), working electrode (WE), and counter electrode (CE) in defined 

positions. 
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6.2.2 UV-vis spectroscopy 

Spectra of Np stock solutions and of supernatant of dispersed or settled Np(IV) particle solutions 

were recorded in cuvettes with path length of 10 mm (Brandt) by a TIDAS 100 (J&M Analytik) 

connected with optical fiber in an anoxic glove box (nitrogen atmosphere, O2 < 10 ppm). 

 

6.2.3 Photon correlation spectroscopy – particle size distribution in solution 

Light scattering and Dynamic light scattering (or photon correlation spectroscopy) were 

performed at 25°C with standard setups, such as BI-90 (Brookhaven Instruments, U.S.A.) or 

Zetasizer Nano ZS (Malvern Instruments, U.K.) with disposable polystyrene cuvettes. An ALV 

CGS Goniometer was applied for long-term monitoring the SLI and PSD of Np silica colloids in 

round cuvettes in a toluene bath in dependence on angle of detection (30°, 90°, 150°, 173°).   

A comprehensive description of the principles of PCS can be found in literature.[61, 63] 

Recorded scattered light intensity fluctuations are calculated by autocorelation function C(). The 

faster the C() decays to baseline, the faster (due to Brownian particle movement) and the smaller 

are the particles. For deriving the PSD from the obtained C(), the cumulant expansion and the 

CONTIN deconvolution were used. The latter calculates a PSD in dependence on the effective 

particles hydrodynamic sphere shape in solution (Stokes diameter). 

 

6.2.4 Laser Doppler velocimetry – determination of particle surface charge at the shear 

plane 

To characterize the colloidal stability of Np(IV) particle systems the surface charge of the 

particles is of particular interest. The charge of the actual surface of the particles is not directly 

accessible by in-situ methods due to irreversible adsorption of counter ions on the negatively 

charged surface of the dispersed particles in solution. The attraction of opposite charged ions on 

the surface of the particles and repulsion of similar charged ions leads to the formation of the 

diffused electrical double layer that consist of the charged surface, neutralizing counter ions and 

co-ions distributed in a diffuse manner.[132] An appropriate way to describe the magnitude of 

surface charge is to determine the potential of the electrical net charge at the shear plane / slipping 

plane in dependence on bulk fluid around the particles interface, which is defined as zeta potential 

(potential  as shown in Figure 46.[132, 133] The -potential is the electrostatic potential at 

some distance away from the charged surface roughly equal to the thickness and potential of the 

Stern Layer.[132] The term particle surface charge used in the present thesis refers the effective 

hydrodynamic surface described by the zeta potential. 

 



6 Experimental details 

 

75 

 

Figure 46. The structure of colloid interface 

Distribution of electrical potential in the double-layer region surrounding a charged particle in 

solution (or a polar medium); ionic concentration and potential difference as a function of 

distance from the charged surface. 

 

The zeta potential was determined using laser Doppler velocimetry by measuring the 

electrophoretic mobility.[19, 184] The electrophoretic mobility was converted to ζ-potential using 

an algorithm based on the Smoluchowski theory. [133, 143-145] Measurements of Np(IV) 

nanoparticle dispersions were performed using a Zetasizer Nano ZS (Malvern Instruments, 

Malvern, U.K.) with disposable capillary cells. Four Np(IV) dispersions were prepared, as 

described in section 6.1.3, with different silica content and molar Si/Np composition. The pH of 

sample aliquots was adjusted with HNO3 and NaOH in the range of 2.5-10.5 to determine the pH 

dependence of the zeta potential. Agglomerated and sedimented particles/colloids were re-

suspended by weak ultrasonic treatment before measurement (treatment with 45 watt and 30 kHz 

in ca. 3 seconds, device UP50H, Hilscher, Germany) assuming that the colloid composition is 

homogeneous and re-dispersion does not change the original surface characteristics. The 

measurements were repeated tenfold at every pH value. The temperature was maintained at 

25.0  0.1 °C. 

The velocity is dependent on the strength of the electric field, dielectric constant of the fluid, 

viscosity of the fluid and the zeta potential. The electrophoretic mobility is described by the 

Henry equation (Equation ), where z is the zeta potential, UE is the electrophoretic mobility,  is 

the dielectric constant,  is the viscosity and f(ka) is the Henry´s function. 

 

Equation 1 
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6.2.5 Transmission electron microscopy 

Samples for TEM measurements were prepared by dropping defined volumes (1-3 µl) of 

dispersions containing Np(IV) particles onto a 400 mesh carbon-coated cupper grid (400 mesh, S 

160, Plano GmbH) and drying it under an inert atmosphere. The samples were kept anoxic until 

mounting them in a double tilt analytical sample holder and insertion into the column of the 

microscope (< 1 min exposure to air). TEM micrographs and electronic properties were collected 

on an image-corrected Titan 80-300 microscope (FEI) operated at an accelerating voltage of 

300 kV. Besides bright-field TEM imaging at medium magnification and high-resolution TEM at 

enhanced magnification (HR-TEM), selected area electron diffraction (SAED) was performed 

with the smallest available SAED aperture having a diameter of 10 µm to study the microstructure 

of the nanoparticles formed. Employing a Li-drifted silicon detector (EDAX) in scanning TEM 

mode, energy-dispersive X-ray spectroscopy (EDXS) measurements were performed for 

qualitative chemical analysis. 

6.2.6 X-ray absorption spectroscopy - neptunium valency and internal structure 

During XAS, the intensity of the absorption coefficient μ is measured as a function of energy of 

the X-ray photon Ex. Thereby, the focus is on energies just above absorption edges. Absorption 

edges appear in the spectrum when the X-ray energy is equal to the binding energy of the 

electron. The energies of the absorption edges are element specific tabulated values (e.g., 

neptunium LIII-edge at 17.1610 keV corresponding to an electron from the 2p (
2
P3/2) orbital). The 

measurement of the X-ray fluorescence is favored in case of thick samples and low concentrations 

of the absorbing atom. It is detected in a right angle set-up to the incident beam. 

The resulting X-ray absorption spectrum is divided in two parts: X-ray absorption near-edge 

structure (XANES) and extended X-ray absorption fine-structure (EXAFS) (Figure 47). XANES 

is strongly sensitive to formal oxidation state and coordination chemistry of the absorbing atom 

and is investigated typically within 30 eV of the main absorption edge and EXAFS. EXAFS 

spectroscopy was used to determine the distances, coordination number, and species of the 

neighbor atoms of the absorbing atom.[185]  

Without prior separation procedures, in-situ metal valence determination using XANES 

spectroscopy is a powerful analytical tool in heterogeneous systems. In general, the ionization 

energy increases with increase of the valence state of the absorbing atom. Actinides ionization 

energies in the tetravalent and the pentavalent state are special cases. This is related to the 

different structures of the free Np(IV) ion with high charge density and the actinyl oxo structures 

of Np(V/VI) cations exhibiting different electronic configurations. So the sequence of ionization 

energies follows Np(V) < Np(IV) < Np(VI) from lower to higher energy. 
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Figure 47. X-ray absorption spectrum of Np(V) 

The neptunium absorption edge, the XANES and EXAFS regions, the edge-step Δμ0(E0), 

and the smooth background function μ0(E) are denoted ([Np] = 2.0∙10
-2

 M in HNO3 1 M). 

 

The EXAFS fine-structure function χ(E) is defined in Equation  as 

 

Equation 2 

where μ0(E) represents a smooth background function describing the absorption of an isolated 

atom without any interference with neighbor atoms and Δμ0 is the jump of the absorption  

coefficient at the absorption edge with the threshold energy E0 (cf. Figure 47). 

Due to the wave behavior of the emitted photo-electrons, the X-ray energy E is commonly 

expressed by the wave number of the photo-electron, k, as follows in Equation , 

 

Equation 3 

where m means the electron mass and ħ is the reduced Planck constant. The resulting oscillations 

as a function of wave number χ(k) are very small, thus they are often k-weighted (multiplied with 

k2 or k
3
) to intensify them. The frequencies of the oscillations in χ(k) can be attributed to the 

various coordination shells of the neighboring atoms and are expressed by the EXAFS equation 

(Equation 4): 

 

Equation 4 
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thereby S0
2
 represents the amplitude reduction factor, f(k) is the backscattering amplitude, and 

δ(k) describes the total phase-shift. f(k) and δ(k) have to be known to determine the number of 

neighbor atoms, N, the distance to the neighboring atom, R, and the disorder in the neighbor 

distance, σ
2
, also known as Debye-Waller factor. Furthermore, EXAFS gives information about 

the atomic species of the neighboring atom, since f(k) and δ(k) are a function of its atomic 

number. By Fourier transformation of the χ(k) function into R-space the different coordination 

shells around the absorbing atom can be visualized. 

XAS measurements were carried out at the Rossendorf Beamline of the European Synchrotron 

Radiation Facility.[186] The beamline is equipped with a water-cooled Si(111) double-crystal 

monochromator. Beam collimation and suppression of higher-order harmonics is achieved with 

two Pt-coated mirrors. The spectra were collected in fluorescence mode. The incoming intensity 

(I0) was registered with an ionization chamber filled with 20% argon and 80% nitrogen.  

The aqueous dispersed Np(IV) silica colloid sample, the aqueous Np(IV) bicarbonate stock 

solution and the aqueous Np(V) reference solution in nitric acid were measured under ambient 

conditions, the wet precipitate of NpO2 NCs sample and the NpO2 reference powder were 

measured in a closed-cycle He cryostat at 15 K. Energy calibration of the EXAFS spectra was 

performed by measurement of the K-edge of a Y metal foil (first inflection point is defined at 

17038 eV). Multi electron excitation effects [187, 188] were considered during data extraction. 

The EXAFS oscillations were extracted from the raw absorption spectra by standard methods 

including a µ0 spline approximation for the atomic background using WinXAS software.[189]
 
 

The EXAFS data was fitted with EXAFSPAK [190] using theoretical phase and amplitude 

functions calculated with the FEFF 8.20 code.[191] Phase and amplitude functions were 

calculated by using the crystal structure data of NpO2 [79] and USiO4 [192]
 
 where U was replaced 

by Np. A reference compound of NpO2 powder was provided from CEA Cadarache. The lattice 

parameter obtained for this NpO2 ( mFm3 , 5.434(1) Å) in agreement with the reported value for 

NpO2.[193] The amplitude reduction factor, S0
2
, was defined as 0.9 in the data fits. The Np 

threshold energy, Ek=0, was defined at 17625 eV and varied as a global fit parameter resulting in 

the energy shift Ek=0. The overall goodness of the fits, F, is given by 2
 weighted by the 

magnitude of data. For EXAFS sample preparation also see Table 12. 
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Table 12. XAS samples. Details of sample preparation for the XAS experiments 

 

For a comprehensive introduction into XAS (XANES and EXAFS) in more detail the reader is 

referred to several book sections[185, 194-196]. 

 

6.2.7 X-ray photoelectron spectroscopy – binding energies of Np and oxygen core levels 

XPS was measured in the 0-1200 eV binding energy range from NpO2 NCs and longterm 

stabilized Np(IV) silica colloids. A dispersion of cleaned NCs were deposited drop-wise on 

HOGP (highly ordered pyrolytic graphite) coated sample holder and dried under nitrogen 

atmosphere. The spectra were recorded with a Microlab 310 F (FISONS/ThermoFischer) using 

monochromatized Mg K radiation (h = 1253.6 eV) under 10
-7

 Pa at room temperature. The 

binding energies were indicated relative to the binding energy of C 1s electrons (285.0 eV) 

originated from the HOPG sample holders surface and specified with NIST-Database[197] after 

performing baseline correction in accordance to Shirley et al..[198] 

Sample Type of sample Preparation 

Np(IV) (aq) 

in 1 M 

NaHCO3 

Aqueous Np(IV) solution stabilized as 

pentacarbonate complexes 

Stock solution of 5.6∙10
-2 

M Np(IV) 

in 1 M HNO3 was diluted with 

1 M NaHCO3 to 10.0∙10
-3

 M Np 

Wet 

precipitate 

 of diluted 

sample 

Wet paste of NpO2 NCs precipitated from 

alkaline region by dilution 

Stock solution of 9.8∙10
-2 

M Np(IV) 

in 1 M NaHCO3 was diluted with 

pure water to 1.0∙10
-3 

M Np, a 

precipitate forms at origin pH ~ 7.5 

NpO2 

reference 

material 

Reference powder of NpO2 Already prepared sample filled with 

reference NpO2 powder, sealed and 

provided by CEA, Cadarache 

Np(IV) 

silica 

colloids 

Dispersion of stable Np(IV)-silica colloids 

(molar Si/Np ratio 1.3) 

Stock solution of 5.6∙10
-2 

M Np(IV) 

in 1 M HNO3 was diluted with 

1 M NaHCO3 to 10.0∙10
-3

 M Np, 

Np(IV)-silica colloids form after 

dilution to 1.0∙10
-3 

M Np with 

3.0∙10
-3 

M  Si (pH 8.5 – 9.0) 

Np(V) (aq) 

in 1 M 

HNO3 

Aqueous Np(V) in acidic solution Stock solution of 5.6∙10
-2 

M Np(IV) 

in 1 M HNO3 was diluted with 

1 M HNO3 to 2.0∙10
-2

 M Np 
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6.2.8 Element analysis 

The Np and Si concentrations in solution and in the solid-state were determined by 

inductively coupled plasma-mass spectroscopy. Np concentrations were additionally assayed by 

liquid scintillation counting. For LSC measurements a TriCarb 3100 TR from Perkin Elmer was 

applied. A liquid scintillation cocktail was used (Ultima Gold™), containing 

diisopropylnaphthalene as solute, 2,5-diphenyloxazole as primary scintillator, and 1,4-bis(5-

phenyl-2-oxazolyl)benzene as secondary scintillator. For each measurement, a small aliquot of the 

respective liquid sample solution was added to the scintillation cocktail and a homogeneous 

mixture was prepared. The composition of Np solutions and dispersions was determined by 

ICP-MS (mod. ELAN 9000, Perkin Elmer, Boston, U.S.A., error 10 %) in combination with 

ultrafiltration (UF) and ultracentrifugation (UC) techniques. Particle compositions concerning 

[Np] and [Si] were derived from the solution concentrations before and after applying UF or UC.  

In accordance to reference [49], UF was performed with disposable filtration units (Microsep, Pall 

Corp.) with a molecular cut-off of 5-kDa. The filtrations were carried out by centrifugation at 

3500g in a glove box under inert gas. For separation with UC, aliquots of samples were 

centrifuged at an acceleration of 100,000g for 5 h in an Optima XL 100K type centrifuge 

(Beckman Coulter, U.S.A.). Well-defined volumes of the centrifugate (the upper 50% of the 

supernatant volume) were carefully removed from the centrifugal tubes via a pipette under inert 

gas in a glove box and those supernatants were further investigated and characterized. 

6.2.9 Determination pH and Eh 

The pH values were measured using a laboratory pH meter (mod. Inolab pH 720, WTW, 

Weilheim, Germany) with Blue line electrodes (Schott, Mainz, Germany), calibrated using 

standard buffers (WTW) at pH 4, 7, and 9, equilibrated at 25 °C. If necessary, the pH values were 

adjusted using HNO3 and NaOH solutions (Merck, p.a.). The potential (in millivolts) of the 

samples was recorded relative to the standard half-cell potential of reference electrodes Blue 

electrode (Orion
TM

 96-78 combination electrode or ALV Ag/AgCl electrode in 3 M KCl; 

Meinsberg potentiostat) and corrected relative to the standard hydrogen electrode according to 

Langmuir. [199] There, the emf or Emeasured is the electromotive force or potential (in millivolts) of 

the water measured at the sample temperature and Eref is the reference electrode potential. 

 

Equation 5 
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Figure 48. Visible absorption spectra of a Np(IV) silica sample before and after 

ultrafiltration 

([Np] = 3.1∙10
-4 

M, [Si] = 1.53∙10
-3 

M and 1∙10
-4 

M HCO3
-
; Sample 4 of Table 1) before (red 

spectrum) and after (black spectrum) ultrafiltration through a 5-kDa membrane. 
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Figure 49. Normalized Np LIII-edge XANES spectra of Np(IV) silica nanoparticle solution 

and Np(V) reference 

[(Np,Si)On(OH)4-nxH2O]
4-2n-(4-n) 

 precipitated in 0.1 M NaHCO3 (black) and  reference Np(V) 

solution with [Np] = 2.0∙10
-2

 M in 1 M HNO3 (red) and their corresponding second derivatives 

(inset). 
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Figure 50. XPS Np 4 f core level spectra of NpO2 NCs and stabilized Np(IV) silica colloids 

Corresponding shake-up satellites are highlighted by a shift of energies corresponding to 4f core 

level split (resolution BE = 0.2 eV).  
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Figure 51. XPS Np 4f core level spectra of NpO2 NCs and stabilized Np(IV) silica colloids 

Displayed spectra are details of survey XPS records (Figure 14 and Figure 32; resolution 

BE = 1 eV).  

Note, that survey XPS spectra are recorded with a resolution in BE = 1 eV. The Np 4 f 5/2 and 

Np 4 f 7/2 level satellites are observed in the survey spectrum at higher BE, too (approximately 

with Esat ~ 6 eV for  Np 4 f 5/2 satellite and with Esat ~7 eV for Np 4 f 7/2 satellite). Both 

distances fit well (within an error  1 eV in BE) in indicating shake-up satellites as turning points 

and therefore internal fluorite structure. 
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Figure 52. Appearance of Np(IV) sample in dependence on time after initial hydrolysis 

[Np] = 1∙10
-3 

M in 0.1 M HCO3; t4
* 
/
 
t5

*
: sample appearance after re-dispersion. 

Colors correlate with the PSD of NpO2 NC agglomerates in Figure 17. 

 

 

Figure 53. UV-vis spectra of Np redox states and corresponding sample appearance in 

dependence on sample composition and pH. 



 

 

84 

References 

1. Kim, J.I., Significance of actinide chemistry for the long-term safety of waste disposal. 

Nuclear Engineering and Technology, 2006. 38(6): p. 459-482. 

2. DOE, Yucca Mountain Science and Engineering Report DOE/RW-0539-1. 2002, U.S. 

Department of Energy: North Las Vegas, Nevada, U.S.A. 

3. Dozol, M. and R. Hagemann, Radionuclide migration in groundwaters: review of the 

behaviour of actinides. Pure and Applied Chemistry, 1993. 65(5): p. 1081-1102. 

4. Thakur, P. and G.P. Mulholland, Determination of Np-237 in environmental and nuclear 

samples: A review of the analytical method. Applied Radiation and Isotopes, 2012. 70(8): 

p. 1747-1778. 

5. Zhao, P., et al., Analysis of trace neptunium in the vicinity of underground nuclear tests at 

the Nevada National Security Site. Journal of Environmental Radioactivity, 2014. 137: p. 

163-172. 

6. IAEA, Status of Minor Actinide Fuel Development. IAEA Nuclear Energy Series NF-T-

4.6. 2009, Vienna, Austria: International Atomic Energy Agency - IAEA. 

7. IAEA, Nuclear Fuel Cycle Simulation System (VISTA). Vol. IAEA-TECDOC-1535. 

2007, Vienna, Austria: International Atomic Energy Agency - IAEA. 95. 

8. OECD/NEA, Physics and safety of transmution systems - A status report. 2006, NEA: 

Paris. 

9. Assinder, D.J., A review of the occurrence and behaviour of neptunium in the Irish Sea. 

Journal of Environmental Radioactivity, 1999. 44(2-3): p. 335-347. 

10. Lindahl, P., et al., Studies of Np and Pu in the marine environment of Swedish-Danish 

waters and the North Atlantic Ocean. Journal of Environmental Radioactivity, 2005. 

82(3): p. 285-301. 

11. Novikov, A.P., et al., Evolution of actinide partitioning with colloidal matter collected at 

PA "Mayak" site as studied by sequential extraction. Journal of Radioanalytical and 

Nuclear Chemistry, 2009. 280(3): p. 629-634. 

12. Novikov, A.P., et al., Concentration of neptunium from the ground waters of the 

Karachai Lake contamination area. Journal of Radioanalytical and Nuclear Chemistry, 

2011. 289(2): p. 431-436. 

13. Fitts, C.R., Groundwater Science, in Groundwater Science (Second Edition), C.R. Fitts, 

Editor. 2013, Academic Press: Boston. p. 1-677. 

14. Kim, B.Y., et al., Effect of carbonate on the solubility of neptunium in natural granitic 

groundwater. Nuclear Engineering and Technology, 2010. 42(5): p. 552-561. 

15. Kim, S.S., M.H. Baik, and K.C. Kang, Solubility of neptunium oxide in the KURT (KAERI 

underground research tunnel) groundwater. Journal of Radioanalytical and Nuclear 

Chemistry, 2009. 280(3): p. 577-583. 

16. DeNovio, N.M., J.E. Saiers, and J.N. Ryan, Colloid movement in unsaturated porous 

media: Recent advances and future directions. Vadose Zone Journal, 2004. 3(2): p. 338-

351. 

17. Robinson, B.A., C.H. Li, and C.K. Ho, Performance assessment model development and 

analysis of radionuclide transport in the unsaturated zone, Yucca Mountain, Nevada. 

Journal of Contaminant Hydrology, 2003. 62-3: p. 249-268. 

18. Choppin, G.R., Actinide speciation in the environment. Journal of Radioanalytical and 

Nuclear Chemistry, 2007. 273(3): p. 695-703. 

19. Maher, K., J.R. Bargar, and G.E. Brown, Environmental Speciation of Actinides. 

Inorganic Chemistry, 2013. 52(7): p. 3510-3532. 

20. Guillaumont, R., et al., Update on the chemical thermodynamics of uranium, neptunium, 

plutonium, americium and technetium. . Chemical Thermodynamics Vol. 5. Vol. 5. 2003, 

Elsevier: OECD Nuclear Energy Agency. 960. 



References 

 

85 

21. Neck, V. and J.I. Kim, Solubility and hydrolysis of tetravalent actinides. Radiochimica 

Acta, 2001. 89(1): p. 1-16. 

22. Neck, V., et al., Solubility of amorphous Th(IV) hydroxide - application of LIBD to 

determine the solubility product and EXAFS for aqueous speciation. Radiochimica Acta, 

2002. 90(9-11): p. 485-494. 

23. Rai, D., J.L. Swanson, and J.L. Ryan, Solibility of NpO2.CHI-H2O(am) in the presence of 

Cu(I)/Cu(II) redox buffer. Radiochimica Acta, 1987. 42(1): p. 35-41. 

24. Ryan, J.L. and D. Rai, The solubility of uranium(IV) hydrous oxide in sodium-hydroxide 

solutions under reducing conditions. Polyhedron, 1983. 2(9): p. 947-952. 

25. Opel, K., et al., Study of the solubility of amorphous and crystalline uranium dioxide by 

combined spectroscopic methods. Radiochimica Acta, 2007. 95(3): p. 143-149. 

26. Rai, D., et al., A thermodynamic model for the solubility of NpO2(am) in the aqueous K+-

HCO3--CO32--OH--H2O system. Radiochimica Acta, 1999. 84(3): p. 159-169. 

27. Rai, D., A.R. Felmy, and J.L. Ryan, Uranium hydrolysis constants and solubility product 

of UO2.XH2O(am). Inorganic Chemistry, 1990. 29(2): p. 260-264. 

28. Buddemeier, R.W. and J.R. Hunt, Transport of colloidal contaminants in groundwater: 

Radionuclide migration at the Nevada test site. Applied Geochemistry, 1988. 3(5): p. 

535-548. 

29. Kersting, A.B., et al., Migration of plutonium in ground water at the Nevada Test Site. 

Nature, 1999. 397(6714): p. 56-59. 

30. Novikov, A.P., et al., Colloid transport of plutonium in the far-field of the Mayak 

Production Association, Russia. Science, 2006. 314(5799): p. 638-641. 

31. Kersting, A.B., Plutonium Transport in the Environment. Inorganic Chemistry, 2013. 

52(7): p. 3533-3546. 

32. Kim, J.I., Actinide colloids in natural aquifer systems. MRS Bulletin, 1994. 19(12): p. 47-

53. 

33. Powell, B.A., et al., Stabilization of Plutonium Nano-Colloids by Epitaxial Distortion on 

Mineral Surfaces. Environmental Science & Technology, 2011. 45(7): p. 2698-2703. 

34. Ryan, J.N. and M. Elimelech, Colloid mobilization and transport in groundwater. 

Colloids and Surfaces a-Physicochemical and Engineering Aspects, 1996. 107: p. 1-56. 

35. Walther, C. and M.A. Denecke, Actinide Colloids and Particles of Environmental 

Concern. Chemical Reviews, 2013. 113(2): p. 995-1015. 

36. Clark, D.L., D.E. Hobart, and M.P. Neu, Actinide carbonate complexes and their 

importance in actinide environmental chemistry. Chemical Reviews, 1995. 95(1): p. 25-

48. 

37. Altmaier, M., X. Gaona, and T. Fanghanel, Recent Advances in Aqueous Actinide 

Chemistry and Thermodynamics. Chemical Reviews, 2013. 113(2): p. 901-943. 

38. Kaszuba, J.P. and W.H. Runde, The aqueous geochemistry of neptunium: Dynamic 

control of soluble concentrations with applications to nuclear waste disposal. 

Environmental Science & Technology, 1999. 33(24): p. 4427-4433. 

39. Knope, K.E. and L. Soderholm, Solution and Solid-State Structural Chemistry of Actinide 

Hydrates and Their Hydrolysis and Condensation Products. Chemical Reviews, 2013. 

113(2): p. 944-994. 

40. Wilson, R.E., et al., Structures of dimeric hydrolysis products of thorium. Inorganic 

Chemistry, 2007. 46(7): p. 2368-2372. 

41. Takao, K., et al., Formation of Soluble Hexanuclear Neptunium(IV) Nanoclusters in 

Aqueous Solution: Growth Termination of Actinide(IV) Hydrous Oxides by Carboxylates. 

Inorganic Chemistry, 2012. 51(3): p. 1336-1344. 

42. Soderholm, L., et al., The structure of the plutonium oxide nanocluster [Pu38O 

56Cl54(H2O)8]14. Angewandte Chemie - International Edition, 2008. 47(2): p. 298-302. 

43. Abdel-Fattah, A.I., et al., Dispersion Stability and Electrokinetic Properties of Intrinsic 

Plutonium Colloids: Implications for Subsurface Transport. Environmental Science & 

Technology, 2013. 47(11): p. 5626-5634. 



References 

 

86 

44. Artinger, R., et al., Humic colloid-borne Np migration: Influence of the oxidation state. 

Radiochimica Acta, 2000. 88(9-11): p. 609-612. 

45. Friese, J.I., et al., Report  PNNL 14307. 2003, Pacific Northwest Laboratory: Richland, 

Washington, U.S.A. 

46. Mori, A., et al., The colloid and radionuclide retardation experiment at the Grimsel Test 

Site: influence of bentonite colloids on radionuclide migration in a fractured rock. 

Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2003. 217(1-3): p. 

33-47. 

47. Kalmykov, S.N. and M.A. Denecke, Actinide Nanoparticle Research. Heidelberg 

Dordrecht London New York: Springer. 

48. Siever, R., Silicon-abundance in natural waters, in Handbook of Chemistry, K.H. 

Wedepohl, Editor., Springer. 

49. Dreissig, I., et al., Formation of uranium(IV)-silica colloids at near-neutral pH. 

Geochimica Et Cosmochimica Acta, 2011. 75(2): p. 352-367. 

50. Hennig, C., et al., Solid-state properties and colloidal stability of thorium(IV)-silica 

nanoparticles. Geochimica Et Cosmochimica Acta, 2013. 103: p. 197-212. 

51. Degueldre, C., et al., Colloid properties in granitic groundwater systems. II: Stability and 

transport study. Applied Geochemistry, 1996. 11(5): p. 697-710. 

52. Degueldre, C., et al., Groundwater colloid properties: A global approach. Applied 

Geochemistry, 2000. 15(7): p. 1043-1051. 

53. Elimelech, M. and C.R. Omelia, Kinetics of deposition of colloidal particles in porous 

media. Environmental Science & Technology, 1990. 24(10): p. 1528-1536. 

54. McDowell-Boyer, L.M., Chemical mobilization of micron-sized particles in saturated 

porous media under steady flow conditions. Environmental Science and Technology, 

1992. 26(3): p. 586-593. 

55. Iler, R.K., The Chemistry of Silica. 1979, New York: John Wiley & Sons. 

56. Taylor, P.D., R. Jugdaohsingh, and J.J. Powell, Soluble silica with high affinity for 

aluminum under physiological and natural conditions. Journal of the American Chemical 

Society, 1997. 119(38): p. 8852-8856. 

57. Kitamura, A. and Y. Kohara, Solubility of Neptunium(IV) in Carbonate Media. Journal of 

Nuclear Science and Technology, 2002. 39(sup3): p. 294-297. 

58. Kitamura, A. and Y. Kohara, Carbonate complexation of neptunium(IV) in highly basic 

solutions. Radiochimica Acta, 2004. 92(9-11): p. 583-588. 

59. Moriyama, H., M.I. Pratopo, and K. Higashi, The solubility and colloidal behvior of 

neptunium(IV). Science of the Total Environment, 1989. 83(3): p. 227-237. 

60. Zeh, P., et al., The reduction of Np(V) in groundwater rich in humic substances. 

Radiochimica Acta, 1999. 87(1-2): p. 23-28. 

61. Ford, N.C., Light Scattering Apparatus. Dynamic Light Scattering: Application of PCS, 

ed. R. Pecora. 1985, New York, U.S.A.: Plenum Press. 

62. Schurtenberger, P. and M.E. Newman, Characterization of Biological and Environmental 

Particles using Static and Dynamic Light Scattering, in Environmental Particles, J. 

Buffle and H.P. van Leeuwen, Editors. 1993, CRC Press: Boca Raton. p. 37-115. 

63. Tscharnuter, W., Photon Correlation Spectroscopy in Particle Sizing, in Encyclopedia of 

Analytical Chemistry, R.A. Meyers, Editor. 2000, John Wiley & Sons: Chichester,. p. 

5469-5485. 

64. Provencher, S.W., CONTIN - A general purpose constrained regularization program for 

inverting noisy algebraic and integral-equations. Computer Physics Communications, 

1982(27): p. 229-242. 

65. Neck, V., et al., A spectroscopic study of the hydrolysis, colloid formation and solubility 

of Np(IV). Radiochimica Acta, 2001. 89(7): p. 439-446. 

66. Bohren, C.F. and D.R. Huffman, Absorption and scattering of light by small particles. 

1998, Weinheim, Germany: Wiley-VCH Verlag GmBH  Co KG. 

67. Hennig, C., et al., Comparative investigation of the solution species [U(CO3)5]
6-

 and the 

crystal structure of Na6[U(CO3)5]•12H2O. Dalton Trans., 2010. 39(15): p. 3744-3750. 



References 

 

87 

68. Clark, D.L., et al., Identification of the limiting speies in the plutonium(IV) carbonate 

system. Solid state and solution molecular structure of the [Pu(CO3)5]6- ion. Inorg. 

Chem., 1998. 37(12): p. 2893-2899. 

69. Hennig, C., et al., Comparative investigation of the solution species U(CO3)(5) (6-) and 

the crystal structure of Na-6 U(CO3)(5) center dot 12H(2)O. Dalton Transactions, 2010. 

39(15): p. 3744-3750. 

70. Rai, D., et al., A thermodynamic model for the solubility of PuO2(am) in the aqueous K+-

HCO3--CO32--OH--H2O system. Radiochimica Acta, 1999. 86(3-4): p. 89-99. 

71. Schofield, E.J., et al., Structure of biogenic uraninite produced by Shewanella oneidensis 

strain MR-1. Environ. Sci. Technol., 2008. 42(21): p. 7898-7904. 

72. Rothe, J., et al., XAFS investigation of the structure of aqueous thorium(IV) species, 

colloids, and solid thorium(IV) oxide/hydroxide. Inorg. Chem., 2002. 41(2): p. 249-258. 

73. Rothe, J., et al., XAFS and LIBD investigation of the formation and structure of colloidal 

Pu(IV) hydrolysis products. Inorg. Chem., 2004. 43(15): p. 4708-4718. 

74. Ikeda-Ohno, A., et al., Speciation and structural study of U(IV) and -(VI) in perchloric 

and nitric acid solutions. Inorg. Chem., 2009. 48(15): p. 7201-7210. 

75. Guillaumont, R., et al., Update on the chemical thermodynamics of uranium, neptunium, 

plutonium, americium and technetium. Chemical Thermodynamics, ed. F.J. Mompean, et 

al. Vol. 5. 2003, Amesterdam, The Netherland: Elsevier B.V. 

76. Rand, M., et al., Chemical Thermodynamics of Thorium. Chemical Thermodynamics, ed. 

F.J. Mompean, J. Perrone, and M. Illemassène. Vol. 11. 2007, OECD-NEA: OECD-NEA. 

77. Dahou, S., et al., Short note on the hydrolysis and complexation of neptunium(IV) in 

HEPES solution. Radiochimica Acta, 2013. 101(6): p. 367-372. 

78. Ekberg, C., et al., The structure of plutonium(IV) oxide as hydrolysed clusters in aqueous 

suspensions. Dalton Transactions, 2013. 42(6): p. 2035-2040. 

79. Taylor, D., Binary oxides with the fluorite and rutile structures and the antifluorite 

structures. Transactions and Journal of the British Ceramic Society, 1984. 83(2): p. 32-

37. 

80. Porter, J.A., Production of neptunium dioxide. Ind. Eng. Chem. Process Des. Dev., 1964. 

3(4): p. 289-292. 

81. Naegele, J.R., Photoemission spectroscopy of actinide intermetallics. Physica B & C, 

1985. 130(1-3): p. 52-55. 

82. Naegele, J.R., L.E. Cox, and J.W. Ward, Photoelectron spectroscopy (UPS/XPS) study of 

Np2O3 formation on the surface of neptunium metal. Inorganica Chimica Acta, 1987. 

139(1-2): p. 327-329. 

83. Seibert, A., T. Gouder, and F. Huber, Reaction of neptunium with molecular and atomic 

oxygen: Formation and stability of surface oxides. Journal of Nuclear Materials, 2009. 

389(3): p. 470-478. 

84. Teterin, Y., et al., X-ray photoelectron spectra structure and chemical bond nature in 

NpO 2. Physical Review B - Condensed Matter and Materials Physics, 2014. 89(3). 

85. Veal, B.W., et al., X-ray photoelectron-spectroscopy study of oxides of the transuranium 

elements Np, Pu, Am, Cm, Bk, and Cf. Physical Review B, 1977. 15(6): p. 2929-2942. 

86. Pan, P. and A.B. Campbell, The Characterization of Np2O5(c) and Its Dissolution in 

CO2-Free Aqueous Solutions at pH 6 to 13 and 25 °C. Radiochimica Acta, 1998. 81(2): 

p. 73-82. 

87. Briggs, D. and M.P. Seah, Auger and X-Ray Photoelectron Spectroscopy. 2. ed. Practical 

Surface Analysis. Vol. 1. 1990, Chichester: John Wiley & Sons. 

88. Briggs, D.G., John T., Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy. 

2003: IM Publications LLP. 

89. Wong, K., S. Vongehr, and V.V. Kresin, Work functions, ionization potentials, and in 

between: Scaling relations based on the image-charge model. Physical Review B, 2003. 

67(3). 

90. Schindler, M., et al., XPS spectra of uranyl minerals and synthetic uranyl compounds. II: 

The O 1s spectrum. Geochimica Et Cosmochimica Acta, 2009. 73(9): p. 2488-2509. 



References 

 

88 

91. Vandenborre, J., B. Grambow, and A. Abdelouas, Discrepancies in Thorium Oxide 

Solubility Values: Study of Attachment/Detachment Processes at the Solid/Solution 

Interface. Inorganic Chemistry, 2010. 49(19): p. 8736-8748. 

92. Hudry, D., et al., Non-aqueous Synthesis of Isotropic and Anisotropic Actinide Oxide 

Nanocrystals. Chemistry-a European Journal, 2012. 18(27): p. 8283-8287. 

93. Hudry, D., et al., Controlled Synthesis of Thorium and Uranium Oxide Nanocrystals. 

Chemistry-a European Journal, 2013. 19(17): p. 5297-5305. 

94. Albrecht, A.J., et al., The crystal chemistry of four thorium sulfates. Journal of Solid State 

Chemistry, 2011. 184(7): p. 1591-1597. 

95. Knope, K.E., et al., Synthesis and characterization of thorium(IV) sulfates. Inorganic 

Chemistry, 2011. 50(17): p. 8621-8629. 

96. Wilson, R.E., et al., Structure of the homoleptic thorium(IV) aqua ion [Th(H2O) 10]Br4. 

Angewandte Chemie - International Edition, 2007. 46(42): p. 8043-8045. 

97. Aghabozorg, H., R.C. Palenik, and G.J. Palenik, A ten-coordinate oxo-bridged thorium 

complex with an unusual coordination polyhedron. Inorganica Chimica Acta, 1983. 

76(C): p. L259-L260. 

98. Efremova, O.A., et al., Crystal Structure of (H3O)4[(C2H5)4N]6 

[Th2Cl4(H2O)12O]3[Re4Se4(CN)12]4. Journal of Structural Chemistry, 2010. 51(4): p. 

782-784. 

99. Takao, S., et al., First Hexanuclear U-IV and Th-IV Formate Complexes - Structure and 

Stability Range in Aqueous Solution. European Journal of Inorganic Chemistry, 2009(32): 

p. 4771-4775. 

100. Knope, K.E. and L. Soderholm, Plutonium(IV) Cluster with a Hexanuclear Pu-

6(OH)(4)O-4 (12+) Core. Inorganic Chemistry, 2013. 52(12): p. 6770-6772. 

101. Magini, M., A. Cabrini, and G. Scibona, Structure of colloidal thorium solutions. Acta 

Crystallographica Section A, 1975. 31: p. S164-S164. 

102. Magini, M., et al., Structure of highly hydrolyzed thorium salt-solutions. Acta Chemica 

Scandinavica Series a-Physical and Inorganic Chemistry, 1976. 30(6): p. 437-447. 

103. Haire, R.G., et al., Aging of hydrous plutonium dioxide. Journal of Electron Microscopy, 

1971. 20(1): p. 8. 

104. Rothe, J., et al., XAFS and LIBD investigation of the formation and structure of colloidal 

Pu(IV) hydrolysis products. Inorganic Chemistry, 2004. 43(15): p. 4708-4718. 

105. Fujiwara, K., et al., Solubility product of plutonium hydrous oxide and its ionic strength 

dependence. Radiochimica Acta, 2002. 90(12): p. 857-861. 

106. Ikeda-Ohno, A., et al., Hydrolysis of Tetravalent Cerium for a Simple Route to 

Nanocrystalline Cerium Dioxide: An In Situ Spectroscopic Study of Nanocrystal 

Evolution. Chemistry-a European Journal, 2013. 19(23): p. 7348-7360. 

107. Ikeda-Ohno, A., et al., Dinuclear complexes of tetravalent cerium in an aqueous 

perchloric acid solution. Dalton Transactions, 2012. 41(24): p. 7190-7192. 

108. Strickert, R.G., D. Rai, and R.W. Fulton, Effect of aging on the solubility and crystallinity 

of Np(IV) hydrous oxide. ACS Symp. Ser., 1984. 246: p. 136-145. 

109. Cleveland, J.M. and T.F. Rees, Characterization of plutonium in Maxey Flats radioactive 

trench leachates. Science, 1981. 212(4502): p. 1506-1509. 

110. Dai, M., J.M. Kelley, and K.O. Buesseler, Sources and migration of plutonium in 

groundwater at the Savannah River Site. Environ. Sci. Technol., 2002. 36(17): p. 3690-

3699. 

111. Ikeda-Ohno, A., et al., Solution speciation of plutonium and Americium at an Australian 

legacy radioactive waste disposal site. Environ. Sci. Technol., 2014. 48(17): p. 10045-

10053. 

112. Husar, R., et al., Formation of Neptunium(IV)–Silica Colloids at Near-Neutral and 

Slightly Alkaline pH. Environmental Science & Technology, 2014. 49(1): p. 665-671. 

113. Charbonneau, C., R. Gauvin, and G.P. Demopoulos, Nucleation and growth of self-

assembled nanofibre-structured rutile (TiO2) particles via controlled forced hydrolysis of 

titanium tetrachloride solution. J. Cryst. Growth, 2009. 312(1): p. 86-94. 



References 

 

89 

114. Cölfen, H., et al., Particle growth kinetics in zirconium sulfate aqueous solutions followed 

by dinamic light scattering and analytical ultracentrifugation: Implications for thin film 

deposition. Langmuir, 2002. 18(9): p. 3500-3509. 

115. Afanasiev, P., Zr(IV) basic carbonate complexes as precursors for new materials: 

synthesis of the sirconium-surfactant mesophase. Mater. Res. Bull., 2002. 37(12): p. 

1933-1940. 

116. Hudry, D., et al., Synthesis of transuranium-based nanocrystals via the thermal 

decomposition of actinyl nitrates. Rsc Advances, 2013. 3(40): p. 18271-18274. 

117. Lloyd, M.H. and R.G. Haire, A sol-gel process for preparing dense forms of PuO2. 

Nuclear Applications, 1968. 5(3): p. 114-&. 

118. Nenoff, T.M., et al., Synthesis and Low Temperature In Situ Sintering of Uranium Oxide 

Nanoparticles. Chemistry of Materials, 2011. 23(23): p. 5185-5190. 

119. Roberts, K.E., et al., Precipitation of crystalline neptunium dioxide from near-neutral 

aqueous solution. Radiochimica Acta, 2003. 91(2): p. 87-92. 

120. Rousseau, G., et al., Synthesis and characterization of nanometric powders of UO2+x, 

(Th,U)O2+x and (La,U)O2+x. Journal of Solid State Chemistry, 2009. 182(10): p. 2591-

2597. 

121. Strickert, R.G., D. Rai, and R.W. Fulton, Effect of aging on the solubility and crystallinity 

of Np(IV) oxide. Acs Symposium Series, 1984. 246: p. 135-145. 

122. Dzimitrowicz, D.J., P.J. Wiseman, and D. Cherns, An electron-microscope study of 

hydrous thorium-dioxide ThO2nH2O. Journal of Colloid and Interface Science, 1985. 

103(1): p. 170-177. 

123. Nothwang, T.A., et al. Particle size and morphology of MA-MOX precursor powders. in 

Proceedings of the 2008 Global Symposium on Recycling, Waste Treatment and Clean 

Technology, REWAS 2008. 2008. 

124. Keiser Jr, D.D., et al., The development of metallic nuclear fuels for transmutation 

applications: Materials challenges. JOM, 2008. 60(1): p. 29-32. 

125. Lebreton, F., et al., Fabrication and characterization of americium, neptunium and 

curium bearing MOX fuels obtained by powder metallurgy process. Journal of Nuclear 

Materials, 2012. 420(1-3): p. 213-217. 

126. Jovani-Abril, R., Synthesis and characterization of nanocrystalline UO2 ceramics. 2014, 

Universidad de Santioago de Compostela (USC) and Institute for Transuranium Elements 

(ITU): Santiago de Compostela, Spain. p. 204. 

127. Choppin, G.R., P. Pathak, and P. Thakur, Polymerization and Complexation Behavior of 

Silicic Acid: A Review. Main Group Metal Chemistry, 2008. 31(1-2): p. 53-71. 

128. Stumm, W., H. Huper, and R.L. Champlin, Formulation of polysilicates as determined by 

coagulation effects. Environmental Science & Technology, 1967. 1(3): p. 221-227. 

129. Efurd, D.W., et al., Neptunium and plutonium solubilities in a Yucca Mountain 

groundwater. Environmental Science & Technology, 1998. 32(24): p. 3893-3900. 

130. Buffle, J. and G.G. Leppard, Characterization of aquatic colloids and macromolecules - 

2. Key role of physical structures on analytical results. Environmental Science & 

Technology, 1995. 29(9): p. 2176-2184. 

131. Weiner, B.B. and W.W. Tscharnuter, Uses and abuses of photon-correlation 

spectroscopy in particle sizing. ACS Symposium Series, 1987. 332: p. 48-61. 

132. Birdi, K.S., Handbook of Surface and Colloid Chemistry. third edition ed. 2009: CRC 

Press. 756. 

133. Hunter, R.J., R.H. Ottewill, and R.L. Rowell, Zeta Potential in Colloid Science. 1981, 

Academic Press Limited: London. 

134. Silva, R.J. and H. Nitsche, Actinide environmental chemistry. Radiochimica Acta, 1995. 

70-1: p. 377-396. 

135. Jada, A., et al., Adsorption and surface properties of silica with transformer insulating 

oils. Fuel, 2002. 81(9): p. 1227-1232. 



References 

 

90 

136. Pettersson, A. and J.B. Rosenholm, Adsorption of alkyldimethylamine and 

alkyldimethylphosphine oxides at curved aqueous solution/silica interfaces, studied using 

microcalorimetry. Langmuir, 2002. 18(22): p. 8436-8446. 

137. Kim, J. and D.F. Lawler, Characteristics of zeta potential distribution in silica particles. 

Bulletin of the Korean Chemical Society, 2005. 26(7): p. 1083-1089. 

138. Cho, G., et al., Characterization of surface charge and zeta potential of colloidal silica 

prepared by various methods. Korean Journal of Chemical Engineering, 2014. 31(11): p. 

2088-2093. 

139. Bergna, H.E. and W.O. Roberts, Colloidal Silica: Fundamentals and Applications. 

Surfactant Science Series. Vol. 131. 2005: CRC Press. 944. 

140. Chorom, M. and P. Rengasamy, Dispersion and zeta potential of pure clays as related to 

net particle charge under varying pH, electrolyte concentration and cation type. 

European Journal of Soil Science, 1995. 46(4): p. 657-665. 

141. Franks, G.V., Zeta potentials and yield stresses of silica suspensions in concentrated 

monovalent electrolytes: Isoelectric point shift and additional attraction. Journal of 

Colloid and Interface Science, 2002. 249(1): p. 44-51. 

142. Baik, M.H. and S.Y. Lee, Colloidal stability of bentonite clay considering surface charge 

properties as a function of pH and ionic strength. Journal of Industrial and Engineering 

Chemistry, 2010. 16(5): p. 837-841. 

143. Elimelech, M., et al., Particle Deposition and Aggregation: Measurement, Modelling and 

Simulation 1998, Oxford: Elsevier. 464. 

144. Hiemenz, P.C. and R. Rajagopalan, Principles of Colloid and Surface Chemistry. Third 

Edition ed. 1997, Boca Raton: CRC Press. 

145. Israelachvili, J., Intermolecular and Surface Forces. Third Edition ed. 2011, London: 

Academic Press. 

146. Zänker, H., S. Weiß, and C. Hennig, On the stability of thorium(IV)-silica colloids, in 

Annual Report 2012 of the Institute of Resource Ecology. 2013: Dresden-Rossendorf. p. 

40. 

147. Grebenshchikova, V.I. and Y.P. Davydov, State of Pu(IV) in region of pH = 1.0 − 12.0 at 

a Plutonium concentration of 2 × 10−5 M. Radiokhimiya, 1965. 7: p. 191-195. 

148. Vitorge, P. and C. Poinssot, Comparing the chemical behaviours of Neptunium and 

Plutonium in natural ground-waters. Actualite Chimique, 2005: p. 54-59. 

149. Schmeide, K. and G. Bernhard, Redox stability of neptunium(V) and neptunium(IV) in the 

presence of humic substances of varying functionality. Radiochimica Acta, 2009. 97(11): 

p. 603-611. 

150. Denecke, M.A., K. Dardenne, and C.M. Marquardt, Np(IV)/Np(V) valence determinations 

from Np L3 edge XANES/EXAFS. Talanta, 2005. 65(4): p. 1008-1014. 

151. Clark, D.L., et al., A multi-method approach to actinide speciation applied to pentavalent 

neptunium carbonate complexation. New Journal of Chemistry, 1996. 20(2): p. 211-220. 

152. Clark, D.L., et al., EXAFS studies of pentavalent neptunium carbonato complexes. 

Structural elucidation of the principal constituents of neptunium in groundwater 

environments. Journal of the American Chemical Society, 1996. 118(8): p. 2089-2090. 

153. Ikeda-Ohno, A., et al., Neptunium Carbonato Complexes in Aqueous Solution: An 

Electrochemical, Spectroscopic, and Quantum Chemical Study. Inorganic Chemistry, 

2009. 48(24): p. 11779-11787. 

154. Rothe, J., et al., XAFS Investigation of the Structure of Aqueous Thorium(IV) Species, 

Colloids, and Solid Thorium(IV) Oxide/Hydroxide. Inorganic Chemistry, 2002. 41(2): p. 

249-258. 

155. Antonio, M.R., et al., Neptunium redox speciation. Radiochimica Acta, 2001. 89(1): p. 

17-25. 

156. Ikeda-Ohno, A., et al., Electrochemical and complexation behavior of neptunium in 

aqueous perchlorate and nitrate solutions. Inorganic Chemistry, 2008. 47(18): p. 8294-

8305. 



References 

 

91 

157. Lam, D.J., A.P. Paulikas, and B.W. Veal, X-ray photoemission spectroscopy studies of 

soda aluminosilicate glasses. Journal of Non-Crystalline Solids, 1980. 42(1-3): p. 41-47. 

158. Lam, D.J., B.W. Veal, and A.P. Paulikas, X-ray photoemission spectroscopy (XPS) study 

of uranium, neptunium, and plutonium oxides in silicate-based glasses. Acs Symposium 

Series, 1983. 216: p. 145-154. 

159. Knoblich, B. and T. Gerber, The arrangement of fractal clusters dependent on the pH 

value in silica gels from sodium silicate solutions. Journal of Non-Crystalline Solids, 

2001. 296(1-2): p. 81-87. 

160. Utsunomiya, S., et al., Uraninite and fullerene in atmospheric particulates. 

Environmental Science & Technology, 2002. 36(23): p. 4943-4947. 

161. Weyland, M. and P.A. Midgley, Electron tomography. Materials Today, 2004. 7(12): p. 

32-40. 

162. Midgley, P.A., et al., High-Resolution Scanning Transmission Electron Tomography and 

Elemental Analysis of Zeptogram Quantities of Heterogeneous Catalyst. Journal of 

Physical Chemistry B, 2004. 108(15): p. 4590-4592. 

163. Mobus, G. and B.J. Inkson, Three-dimensional reconstruction of buried nanoparticles by 

element-sensitive tomography based on inelastically scattered electrons. Applied Physics 

Letters, 2001. 79(9): p. 1369-1371. 

164. Weyland, M. and P.A. Midgley, Extending Energy-Filtered Transmission Electron 

Microscopy (EFTEM) into Three Dimensions Using Electron Tomography. Microscopy 

and Microanalysis, 2003. 9(6): p. 542-555. 

165. Cakir, P., et al., Surface reduction of neptunium dioxide and uranium mixed oxides with 

plutonium and thorium by photocatalytic reaction with ice. Journal of Physical Chemistry 

C, 2015. 119(3): p. 1330-1337. 

166. Kunze, P., et al., The influence of colloid formation in a granite groundwater bentonite 

porewater mixing zone on radionuclide speciation. Journal of Contaminant Hydrology, 

2008. 102(3-4): p. 263-272. 

167. Schaefer, T., et al., Nanoparticles and their influence on radionuclide mobility in deep 

geological formations. Applied Geochemistry, 2012. 27(2): p. 390-403. 

168. Wold, S. and T.E. Eriksen, Diffusion of lignosulfonate colloids in compacted bentonite. 

Applied Clay Science, 2003. 23(1-4): p. 43-50. 

169. Holmboe, M., S. Wold, and M. Jonsson, Colloid diffusion in compacted bentonite: 

microstructural constraints. Clays and Clay Minerals, 2010. 58(4): p. 532-541. 

170. Wold, S. and T. Eriksen, Diffusion of humic colloids in compacted bentonite. Physics and 

Chemistry of the Earth, 2007. 32(1-7): p. 477-484. 

171. Kurosawa, S., et al., The effect of montmorillonite partial density on the role of colloid 

filtration by a bentonite buffer. Journal of Nuclear Science and Technology, 2006. 43(5): 

p. 605-609. 

172. Kitatsuji, Y., T. Kimura, and S. Kihara, Reduction behavior of neptunium(V) at a gold or 

platinum electrode during controlled potential electrolysis and procedures for 

electrochemical preparations of neptunium(IV) and (III). Journal of Electroanalytical 

Chemistry, 2010. 641(1-2): p. 83-89. 

173. Schmeide, K., et al., Neptunium(IV) complexation by humic substances studied by X-ray 

absorption fine structure spectroscopy. Radiochimica Acta, 2005. 93(4): p. 187-196. 

174. Li, Y.D., Y. Kato, and Z. Yoshida, Electrolytic preparation of neptunium species in 

concentrated carbonate media. Radiochimica Acta, 1993. 60(2-3): p. 115-119. 

175. Ueno, K. and A. Saito, Solubility and absorption-spectra of carbonate complex of 

pentavalent neptunium. Radiochemical and Radioanalytical Letters, 1975. 22(2): p. 127-

133. 

176. Eriksen, T.E., et al., Solubility of redox-sensitive radionuclides Tc99 and Np-237 under 

reducing conditions in neutral to alkaline solutions. 1993, Swedish Nuclear Fuel and 

Waste Management Co.: Stockholm. 



References 

 

92 

177. Pratopo, M.I., H. Moriyama, and K. Higashi, Carbonate complexation of neptunium(IV) 

and analogous complexation of groundwater uranium. Radiochimica Acta, 1990. 51(1): 

p. 27-31. 

178. Hagan, P.G. and Clevelan.Jm, Absorption spectra of neptunium ions in perchloric acid 

solution. Journal of Inorganic & Nuclear Chemistry, 1966. 28(12): p. 2905-&. 

179. Kim, J.I., et al., Untersuchung der Übertragbarkeit von Labordaten (Löslichkeiten und 

Sorptionskoeffizienten) auf natürliche Verhältnisse am Beispiel von Gorleben Aquifer-

Systemen. 1999, Forschungszentrum Karlsruhe: Karlsruhe. 

180. Sjoblom, R. and J.C. Hindman, Spectrophotometry of neptunium in perchloric acid 

solutions. Journal of the American Chemical Society, 1951. 73(4): p. 1744-1751. 

181. Varlashkin, P.G., et al., Electrochemical and spectroscopic studies of neptunium in 

concentrated aqueous carbonate and carbonate-hydroxide solutions. Radiochimica Acta, 

1984. 35(2): p. 91-96. 

182. Wester, D.W. and J.C. Sullivan, Electrochemical and spectroscopic studies of 

neptunium(VI),-(V) and -(IV) in carbonate-bicarbonate buffers. Journal of Inorganic & 

Nuclear Chemistry, 1981. 43(11): p. 2919-2923. 

183. Panak, P.J., et al., Complexation of Cm(III) with aqueous silicic acid. Radiochimica Acta, 

2005. 93(3): p. 133-139. 

184. O'Brien, R.W. and L.R. White, Electrophoretic mobility of a spherical colloidal particle. 

Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical 

Physics, 1978. 74(0): p. 1607-1626. 

185. Newville, M., Fundamentals of XAFS. 2004, Consortium for Advanced Radiation 

Sources, University of Chicago, Chicago, IL, U.S.A. 

186. Matz, W., et al., ROBL - a CRG beamline for radiochemistry and materials research at 

the ESRF. Journal of Synchrotron Radiation, 1999. 6: p. 1076-1085. 

187. Hennig, C., Evidence for double-electron excitations in the L-3-edge x-ray absorption 

spectra of actinides. Physical Review B, 2007. 75(3). 

188. Hennig, C., S. Skanthakumar, and L. Soderholm, Double photoexcitation of 2p and 4f 

electrons in curium. Journal of Electron Spectroscopy and Related Phenomena, 2010. 

180(1-3): p. 17-20. 

189. Ressler, T., WinXAS: a program for X-ray absorption spectroscopy data analysis under 

MS-Windows. Journal of Synchrotron Radiation, 1998. 5: p. 118-122. 

190. George, G.N.P., I. J., EXAFSPAK, a suite of computer programs for analysis of X-ray 

absorption spectra. 2000: Stanford. 

191. Ankudinov, A.L., et al., Real-space multiple-scattering calculation and interpretation of 

x-ray-absorption near-edge structure. Physical Review B, 1998. 58(12): p. 7565-7576. 

192. Fuchs, L.H. and E. Gebert, X-ray studies of synthetic coffinite, thorite and uranothorites. 

American Mineralogist, 1958. 43(3-4): p. 243-248. 

193. Lander, G.H. and M.H. Mueller, Magnetically induced lattice distortions in actinide 

compounds. Physical Review B, 1974. 10(5): p. 1994-2003. 

194. Kelly, S.D., D. Hesterberg, and B. Ravel, Analysis of Soils and Minerals - Using X-ray 

Absorption Spectroscopy, in Methods of Soil Analysis. 2008, Soil Science Society of 

America: Madison, U.S.A. p. 387-468. 

195. Koningsberger, D.C., et al., XAFS spectroscopy; fundamental principles and data 

analysis. Topics in Catalysis, 2000. 10(3-4): p. 143-155. 

196. Koningsberger, D.C. and R. Prins, Xray Absorption: Principles, Applications, Techniques 

of EXAFS, SEXAFS, and XANES. Chemical Analysis: A Series of Monographs on 

Analytical Chemistry and Its Applications (ed. D.C. Koningsberger and R. Prins. Vol. 92. 

1987: John Wiley & Sons. 688. 

197. NIST X-ray Photoelectron Spectroscopy Database, N.I.o.S.a. Technology, Editor. 2003, 

Standard Reference Data Group: Gaithersburg, U.S.A. 

198. Shirley, D.A., High-resolution x-ray photoemission spectrum of valence bands of gold. 

Physical Review B, 1972. 5(12): p. 4709-&. 



References 

 

93 

199. Langmuir, D., Eh-pH determination, in Procedures in Sedimentary Petrology, R.E. 

Carver, Editor. 1971, Wiley: New York. p. 597-634. 



 

 

94 

List of Figures 

Figure 1. Worldwide cumulative minor actinide discharges ........................................................... 1 

Figure 2. Schematic illustration of model nuclear waste repository with example of environmental 

groundwater composition ................................................................................................ 3 

Figure 3. An(IV) cluster structures (A) and An(IV) colloids (B) in the nanoscale. ......................... 4 

Figure 4. Schematic illustration of dispersed nanoparticles with selected chemical and physical 

parameters........................................................................................................................ 5 

Figure 5. Solubility of neptunium(IV) in dependence on carbonate/bicarbonate concentration ..... 8 

Figure 6. UV-vis absorbance spectra of 1.4∙10
-3

 M Np(IV) solutions as a factor of time and 

carbonate and silicate concentrations ............................................................................ 10 

Figure 7. PCS autocorrelation functions and CONTIN deconvolutions (light-intensity weighted 

PSD) of Np(IV)-silica colloids ...................................................................................... 11 

Figure 8. UV-vis absorption spectra of Np(IV) in diluted carbonate environment and sample 

appearance in dependence on time ................................................................................ 14 

Figure 9. Normalized Np LIII-edge XANES spectra for Np(IV) samples ...................................... 15 

Figure 10. EXAFS of Np(IV) precursor solution, wet Np(IV) precipitate and NpO2 powder....... 16 

Figure 12. TEM data of re-dispersed Np(IV) precipitate – NpO2 NCs .......................................... 20 

Figure 13. TEM data of Np(IV) precipitate isolated from dispersion– NpO2 NCs ........................ 21 

Figure 14. Survey XPS of NpO2 NCs ............................................................................................ 22 

Figure 15. Np 4 f core level XPS of Np(IV) precipitate. ............................................................... 23 

Figure 16. XPS O 1s core level of NpO2 NCs. .............................................................................. 25 

Figure 17. PSD of NpO2 NCs agglomerates in dependence on time ............................................. 26 

Figure 18. HR-TEM micrographs of NpO2 NCs in dependence on aging time ............................. 28 

Figure 19. UV-visible absorption spectra of hydrolyzed Np(IV) and NpO2 NCs  in solution in 

dependence on time ....................................................................................................... 29 

Figure 20. SAED patterns of Np(IV) precipitates in dependence on aging time ........................... 31 

Figure 22. HR-TEM micrograph of NpO2 NC and sub-nanometer-sized Np(IV)-species ............ 34 

Figure 23. Time dependence of the SLI in different silicate samples ............................................ 41 

Figure 24. Visible absorption spectra of Np(IV) in dependence on initial silica concentration .... 43 



List of Figures 

 

95 

Figure 25. Dependence of SLI and particle size (PCS) of the Np(IV) silica particles on the initial 

concentration of silicic acid ........................................................................................... 44 

Figure 26. Time dependence of the SLI for three systems of Np(IV) silica colloids in dependence 

on silica content ............................................................................................................. 45 

Figure 27. Hydrodynamic diameter of Np(IV) silica colloids in dependence on time and the  

initial silicate concentration (PCS) ................................................................................ 46 

Figure 28. Size distribution of Np(IV) silica colloids in dependence on initial silicate 

concentration and time ................................................................................................... 47 

Figure 29. Zeta-potential of Np(IV) nanoparticles in dependence on pH and silicate content ...... 49 

Figure 30. Normalized Np LIII-edge XANES spectrum for Np(IV) silica nanoparticles. .............. 53 

Figure 31. EXAFS of Np(IV) silica colloids. ................................................................................. 54 

Figure 32. Survey XPS of potentially long term stabilized Np(IV) silica colloids. ....................... 55 

Figure 33. Np 4 f core level XPS of long term stabilized Np(IV) silica colloids ........................... 56 

Figure 34. XPS O 1s core level of aged Np(IV) silica colloids. ..................................................... 57 

Figure 35. TEM data of silica-enriched Np(IV) silica colloids ...................................................... 58 

Figure 36. HAADF-STEM micrograph and EDX of silica-enriched Np(IV) silica colloid ........... 59 

Figure 37. TEM data of silica-poor Np(IV) silica particle ............................................................. 60 

Figure 38. Morphology of silica-enriched Np(IV) silica colloid structure versus structure silica-

poor Np(IV) silica particle ............................................................................................. 61 

Figure 39. TEM data of silica-enriched Np(IV) silica colloids ...................................................... 62 

Figure 40. HAADF-STEM micrographs of aged Np(IV) silica colloids in different 

magnifications: (A) 160kx and (B) 1300kx. .................................................................. 63 

Figure 41. TEM-Micrograph of potentially long-term stabilized Np(IV) silica colloids ............... 64 

Figure 42. HR-TEM of potentially long-term stabilized Np(IV) silica colloids ............................ 65 

Figure 43. Visible absorption spectra of Np in dependence on valency in acidic solution ............ 70 

Figure 44. Visible-NIR absorption spectra of tetravalent Np in slightly alkaline solution ............ 71 

Figure 45. Principle scheme of electrolysis cell setup .................................................................... 73 

Figure 46. The structure of colloid interface .................................................................................. 75 

Figure 47. X-ray absorption spectrum of Np(V) ............................................................................ 77 

Figure 48. Visible absorption spectra of a Np(IV) silica sample before and after ultrafiltration ... 81 



List of Figures 

 

96 

Figure 49. Normalized Np LIII-edge XANES spectra of Np(IV) silica nanoparticle solution and 

Np(V) reference ............................................................................................................. 81 

Figure 50. XPS Np 4 f core level spectra of NpO2 NCs and stabilized Np(IV) silica colloids ...... 82 

Figure 51. XPS Np 4f core level spectra of NpO2 NCs and stabilized Np(IV) silica colloids ....... 82 

Figure 52. Appearance of Np(IV) sample in dependence on time after initial hydrolysis............. 83 

Figure 53. UV-vis spectra of Np redox states and corresponding sample appearance in 

dependence on sample composition and pH. ................................................................. 83 

 



 

 

97 

List of tables 

Table 1. Colloid characterization by nephelometry, ultracentrifugation (5 h, 100 000 × g) and 

ultrafiltration (5-kDa). ...................................................................................................... 8 

Table 2. XANES edge positions at the Np LIII-edge for the spectra given in Figure 9 and a Np(V) 

reference (Figure 49). The edge position is defined at the first inflection point. ........... 15 

Table 3. EXAFS structural parameters obtained from theoretical curve fitting. ............................ 17 

Table 4. Electron BE of core level in Np-precipitate at near-neutral pH at 1253.6 eV. ................. 24 

Table 5. Electron BEs of Np 4 f 7/2 core level for a series of Np-oxides with different valencies. . 24 

Table 6. Coherences in PSD, UV-vis absorbance of Np(IV) solutions and sediment occurrence . 30 

Table 7. Molar Si/Np ratio of the Np(IV) silica colloids in dependence on the initial Si and Np 

solution concentrations [Si] and [Np] ............................................................................ 42 

Table 8. Isoelectric points of actinide oxide particles, An(IV) silica colloids and silica particles. 50 

Table 9. XANES edge position at Np LIII-edge. ............................................................................. 53 

Table 10. Structural parameters of Np(IV) silica particles [(Np,Si)On(OH)4-nxH2O]
4-2n-(4-n) 

 

obtained from theoretical curve fitting. .......................................................................... 54 

Table 11. Electron BE of long-term stabilized Np(IV) silica colloids at 1253.6 eV ...................... 56 

Table 12. XAS samples. Details of sample preparation for the XAS experiments ........................ 79 



 

 

98 

Publications 

 

Selected work shown herein was presented to the scientific community on several conferences 

and workshops and published in peer-reviewed journals. 

 

Journal articles 

 

Intrinsic formation of nanocrystalline neptunium dioxide in the neutral aqueous 

condition relevant to deep geological repositories 

in Chemical Communications, 2015. 51(7): p. 1301-1304., IF2014 6.7 

DOI: 10.1039/C4CC08103J 

 

            Formation of neptunium(IV)-silica colloids at near-neutral and slightly alkaline pH 

 

            in Environmental Science and Technology, 2014. 49(1): p. 665-671., IF2014 5.4 

            DOI: 10.1021/es503877b 

 

Presentations 

 

 Investigation into the formation of Np(IV) silica colloids 

Oral presentation on Migration Conference 2013, Brighton, U.K. 

 

Intrinsic formation of Np(IV) nanoparticles: from Np(IV)-silica colloids and NpO2  

nanocrystals. 

 Poster presentation on Plutonium Futures 2014, ANS, Las Vegas, U.S.A.  

 

A kinetic insight into the formation of NpO2 nanocrystals 

Poster presentation on Advanced Techniques in Actinide Spectroscopy (ATAS), 2014, 

Dresden, Germany 

 

Investigation into the formation of Np(IV) silica colloids 

Poster presentation on Advanced Techniques in Actinide Spectroscopy (ATAS), 2012, 

Dresden, Germany  

Rewarded with Best Poster Award by selection of workshop participants 

 

http://dx.doi.org/10.1039/C4CC08103J


 

 

99 

Acknowledgements 

Each successfully finished scientific work always started with a great sparking initiative idea:  

I want to thank emeritus professor Dr. Gert Bernhard, former director of the Institute of 

Radiochemistry, and retired Dr. Harald Zänker, former supervisor in the division of surface 

processes, for providing me with the actinide silica topic. I gratefully thank them for the scientific 

freedom to start my ambitious investigation into neptunium chemistry, which was successfully 

completed under the supervision of Prof. Dr. Thorsten Stumpf, director of Institute of Resource 

Ecology and the heads of the divisions of Surface Chemistry, Dr. Vinzenz Brendler and 

Chemistry of the f-elements, Dr. Atsushi Ikeda-Ohno. 

 

I want to thank the referees of the dissertation Prof. Dr. Thorsten Stumpf and Prof. Dr. Alexander 

Eychmüller, Physical Chemistry, Department Chemistry and Food Chemistry, TU Dresden. 

 

In the following I want to gratefully thank, 

- Dr. Vinzenz Brendler for steady scientific encouragement and support at any time 

- Dr. Atsushi Ikeda-Ohno for his enthusiastic engagement and support during my last year 

in PhD as a member of the recently founded division chemistry of the f-elements and for 

sharing the same passion of neptunium chemistry 

- Dr. René Hübner for his expertise, encouragement and the outstanding support with TEM 

measurements, which were crucial to the discovery of intrinsic formed NpO2 NCs  

- Dr. Christoph Hennig and Stephan Weiss for their great competence and pragmatic 

support in EXAFS and colloid experiments 

- Dr. Harald Zänker for ambitious discussions about controversial An(IV) chemistry and 

for his great expertise in PCS 

- Dr. Stefan Facsko and Benjamin Schreiber, Institute of Ion Beam Physics, HZDR for 

fruitful discussions about bonding natures and electronic structures of nanomaterial and 

especially Stefan for the XPS measurements 

- Martin Ihrig for assistance in investigating the zetapotential and PSD of Np(IV) particles 

and everybody else who contributed important puzzle pieces that were essential to the 

comprehensive understanding of this work. 

 

A successful thesis in actinide chemistry is not possible without nuclear safety, bureaucracy and 

motivation: therefore, I gratefully thank the team safety group of Mrs. Heim and technician staff 

for pragmatic support in radiochemistry laboratories, especially Anette Rumpel, Christa Müller, 



Acknowledgements 

 

100 

Sylvia Gürtler, Steffen Henke, Dirk Falkenberg and retired Bernd Hiller who all supported me in 

laboratory and constantly filled the interior of HZDR´s glove boxes with inert gas but ensured that 

the exterior was constantly saturated with great humoristic atmosphere. 

 

Bureaucracy and other difficulties were counterbalanced by the outstanding support of Jana 

Gorzitze, Ronny Berndt and other colleagues who shared the ups and downs during coffee breaks, 

Friday-Fridays, wine/beer seminars, especially Dr. Tobias Günther, Dr. Robin Steudtner, Jérôme 

Kretzschmar, Björn Drobot, Dr. Katharina Müller, Dr. Harald Förstendorf, Dr. Carola Franzen, 

Dr. Satoru Tsushima, Dr. Erik Johnstone, Dr. Moritz Schmidt and all people whom I did not 

mention. 

 

I could always count on my dear family and girlfriend Josephine for motivation, relentless support 

in any situation and the sometimes necessary diversion from work so new sparks could be ignited.   

Thank you all for that! 



 

 

101 

Versicherung 

 

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und ohne 

Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die aus fremden Quellen 

direkt oder indirekt übernommenen Gedanken sind als solche kenntlich gemacht. Die Arbeit 

wurde bisher weder im Inland noch im Ausland in gleicher oder ähnlicher Form einer anderen 

Prüfungsbehörde vorgelegt. 

  

Die vorliegende Arbeit wurde am Helmholtz-Zentrum Dresden-Rossendorf, Institut für 

Resourcenökologie in der Zeit von Juni 2011 bis Dezember 2014 unter der wissenschaftlichen 

Betreuung von Herrn Prof. Dr. Thomas Stumpf, Herrn Dr. Vinzenz Brendler und Herrn Dr. 

Atsushi Ikeda-Ohno angefertigt. 

 

Ich erkenne die Promotionsordnung der Technischen Universität Dresden Fakultät Mathematik 

und Naturwissenschaften vom 23.02.2011 in geänderter Fassung vom 15.06.2011 und 18.06.2014 

an. 

 

 

 

 

Dresden, den 07.07.2015     Richard Husar 

 


