
Fakultät Informatik

TECHNISCHE BERICHTE
TECHNICAL REPORTS
ISSN 1430-211XX

TUD-FI15-03-August 2015
Somayeh Malakuti
Software Technology group
An Overview of Language Support for Modular
Event-driven Programming

TechnischeUniversität Dresden
Nutzerberatung CD
01062 Dresden
Germany
http://tu-dresden.de/cd

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technische Universität Dresden: Qucosa

https://core.ac.uk/display/236372622?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

An Overview of Language Support for Modular

Event-driven Programming

Somayeh Malakuti

Software Technology group

Technical University of Dresden, Germany

somayeh.malakuti@tu-dresden.de

August 6, 2015

Abstract

Nowadays, event processing is becoming the backbone of many ap-

plications. Therefore, it is necessary to provide suitable abstractions to

properly modularize the concerns that appear in event-driven applica-

tions. We identify four categories of languages that support event-driven

programming, and identify their shortcomings in achieving modularity

in the implementation of applications. We propose gummy modules and

their implementation in the GummyJ language as a solution. Gummy

modules have well-defined event-based interfaces, and can have a primi-

tive or a composite structure. Composite gummy modules are means to

group a set of correlated event processing concerns and restrict the vis-

ibility of events among them. We provide an example usage of gummy

modules, and discuss their event processing semantics.

1 Introduction

An event is usually defined as something that happens, especially something
important, interesting or unusual. Event-driven programming is a paradigm in
which the flow of programs is determined by events. Nowadays, event-driven
programming is finding its way in many application domains such as runtime
verification techniques [30], self-adaptive software systems [12], IoT applications,
and various monitoring systems such as traffic monitoring.

As for any other application, it is necessary to properly separate and mod-
ularize the concerns that appear in event-driven applications. In this report,
we outline a set of requirements that a language must fulfill for modular imple-
mentation of event-driven applications. We identify four categories of languages
that support event-driven programming, and identify their shortcomings with
respect to the outlined requirements. The shortcomings can be summarized
as: (a) incomplete event-based interfaces for modules, (b) limited support for

1

content-based filtering of events, (c) tight couplings in the composition of mod-
ules, and (d) limited support for defining the visibility of events.

To overcome these shortcomings, we propose gummy modules as novel ab-
stractions to separate and modularize event processing concerns. Gummy mod-
ules, which have well-defined event-based interfaces, can have a primitive or a
composite structure. A composite gummy module is a means to group a set of
correlated event processing concerns. Thus it is a way to restrict the visibility
of events among the correlated event processing concerns. Gummy modules
are parts of the larger concept of event-based modularization [26], which is the
successor of current modularization mechanisms dedicated for event-driven ap-
plications.

In this report, we extend our previous work [25, 27, 26] in the following
ways. (a) We identify four categories of languages support for event-driven
programming. (b) We evaluate the shortcomings of a large set of languages
and techniques in modularizing event-driven applications, and outline a set of
requirements to overcome these shortcomings. (c) We explain the concept of
composite gummy modules and their use for restricting the visibility of events.
(d) We explain an implementation of composite gummy modules in GummyJ,
and explain its integration with Java applications.

The rest of this report is organized as follows: Section 2 provides background
information about event-driven applications, and explains our illustrative ex-
ample. Section 3 outlines a set of requirements for modular implementation
of event-driven applications. Section 4 evaluates the suitability of current lan-
guages and outlines a set of requirements for implementing and modularizing
such applications. Sections 5 and 6 explain gummy modules and their imple-
mentation in GummyJ, respectively. Section 7 discusses the event processing
semantics of the GummyJ language. Section 8 discusses the suitability of gummy
modules in improving the modularity of implementations. Section 9 discusses
the related work. Section 10 explains the evolution to current modularization
mechanisms to event-based modularization, and Section 11 outlines conclusion
and future work.

2 Background

An event is usually defined as something that happens, especially something
important, interesting or unusual. Event-driven programming is a paradigm
in which the flow of programs is determined by events. In an event-driven
application, various software and/or hardware entities can produce and consume
events. There are the so-called event processing concerns (EPC) (also known
as event processing agents [14]), which are software entities mediating between
event producers and event consumers to process and reason about the events.
Naturally, EPCs also produce and consume events.

The general belief is that event-driven programming helps to keep event pro-
ducers and consumers decoupled from each other. Three types of decoupling are
distinguished in the literature [17]: space, time and synchronization. The space

2

decoupling means that event producers and consumers do not keep a reference to
each other; hence, they are unaware of each other. The time decoupling means
that event producers and consumers do not have to be active at the same time;
hence, they may have different lifetime. The synchronization decoupling means
that event producers do not get blocked while publishing events, and consumers
can asynchronously get notified of new events.

Traditionally, event-driven programming is considered suitable for handling
the interactions of users with GUI and dealing with hardware interrupts. How-
ever, event processing is becoming the backbone of many today’s applications
such as runtime verification techniques [30], self-adaptive software systems [12],
IoT applications, and various monitoring systems such as traffic monitoring and
stock market monitoring systems.

We take a runtime verification application as our case study. Assume for
example that there is a remote file management application. The requests for
managing folders and files are issued as events from client applications. An
example set of events are shown in Figure 1, where a user logs in, opens a
folder, opens a file, etc.

Each user is assigned a unique identifier, and the users are categorized into
premium and silver users. Initially, the server-side objects receive events and
directly handle them, but the application must evolve with the following set of
EPCs, which are also shown in Figure 1.

login logoutopen read write closebrowse

folder
create

folder

open read

FilterUsers

CheckTimeout

CheckOrder

FilterEvents

Existing

server

application

Existing

client

application

Existing application

EPC

Event

Event processing network

Figure 1: The example application

Evolution (1): An EPC named as CheckTimeout must be defined to ensure
that a file is not left open for more than T seconds without any read or write
requests on it. Otherwise, an event indicating a timeout error must be published.

Evolution (2): The EPC CheckTimeout must only be applied to the pre-
mium users. An EPC named as FilterUsers must be defined to implement the
functionality for selecting the events that are published by premium users.

Evolution (3): The first four times that a user keeps a file open for an
excessive amount of time can be tolerated each day. The timeout event must
be published on the fifth occurrence in a day. A user for whom a timeout error
is issued can no longer access the file until next day.

3

Evolution (4): An EPC named as CheckOrder must be defined to check
whether the events for accessing a file are issued in a correct order. A correct
order is defined as one open event, followed by zero or more read and/or write
events, and finally one close event.

A set of correlated event processing concerns forms the so-called event pro-
cessing network [14]. For example as Figure 1 shows, we group the EPCs as one
event processing network named as PremiumUsersEPCs.

3 Requirements for Modular Event-driven Pro-

gramming

Event-driven applications may be complex and subject to frequent evolution
demands. Therefore, as for any other application, it is necessary to properly
separate and modularize the concerns that appear in such applications.

We observe that at least three different kinds of concerns appear in event-
driven applications. (a) The so-called base concerns, which implement the base
functionalities of the applications; for example, accessing files and folders. (b)
The concerns that crosscut [24] the base concerns; for example, authentication
and persistence crosscutting concerns. (c) The EPCs, which implement the
functionality to consume, process and produce events.

In the literature, procedural, object-oriented, and aspect-oriented [24] mech-
anisms are proposed to modularize base and crosscutting concerns in applica-
tions. To be able to cope with the complexity of event-driven applications,
we claim that a language must also facilitate modularizing individual EPCs,
and must offer means to compose the modularized EPCs into event processing
networks. The following requirements must be fulfilled in this regard:

• Event processing modules must have well-defined event-based interfaces.
Since not all events are of the interest for a module, the interfaces must
specify the criteria for filtering the events of interest. In addition, they
must specify the set of events that are produced by the modules. For
example in Figure 1, FilterUsers is only interested in file-related events,
where CheckOrder and CheckTimeout are only interested in the events
provided by FilterUsers. Specifying both produced and consumed events
paves the way to check various typing rules, for example, checking covari-
ant return types in inheritance hierarchies.

• Events are regarded as data in motion; they enter a module and may
leave it in their original or in a transformed form. Therefore, in addition
to their internal states, event processing modules must facilitate restricting
the visibility of their events. The visibility rules apply to events as data,
and their motion from specific producers to consumers.

• Event processing modules must be composed with each other at the in-
terface level. In the spirit of composite objects, a language must facilitate

4

composing a set of correlated event processing modules into an event pro-
cessing network. The space, time, and synchronization decoupling must
be preserved in compositions.

4 An Evaluation of Programming Languages

The current trend in language support for event-driven programming is to adopt
an existing language and extend it with some event processing features. We
classify these extensions into four categories: (a) languages with an event noti-
fication/delegation mechanism [31], (b) languages with an event quantification
mechanism [32, 19, 27, 30, 25], (c) languages with stream/complex event process-
ing [1, 35, 16], and (d) languages with a publish/subscribe mechanism [15, 9, 20].
Each category proposes a different style of event-driven programming, which ad-
dresses the requirements outlined in Section 3 differently.

Figure 2 summarizes the results of our evaluation. Here, the symbols +, ×
and - mean that a requirement is supported, partially supported or not sup-
ported, respectively.1

Category Language Modules with

event-based

interfaces

Event

visibility

Interface-level

Composition

Decoupling

Space Time Synchronization

Languages with an

event delegation

mechanism

C#-like

Languages
× + × - - ×

Languages with an

event quantification

mechanism

Ptolemy × - × × - -

EScala × + × × - -

EventReactor + - + × - -

JavaMoP × + × × - -

GummyJ 1.0 × - × + + +

GummyJ 2.0 + + + + + +

Languages with a

stream/complex

event processing

mechanism

Esper - - - × × +

StreamIT - + - + × +

EventJava × + × - - +

Languages with a

publish/subscribe

mechanism

JavaPS - - - + + +

ECO - - - + + +

CORBA - + - + + +

Figure 2: The summary of the evaluation

1We assume there is a time coupling if the absence of event consumers (producers) when
publishing (receiving) events results in errors. Hence, when there is a synchronization coupling
or explicit references among event producers and consumers, there will be a time coupling too.
We do not consider advanced cases such as event replication when one party is absent.

5

4.1 Languages with an Event Delegation Mechanism

Some mainstream languages such as C#, JavaScript and Python offer dedicated
constructs, which are a simple implementation of the Observer pattern, to define
EPCs. Listing 1 shows a code snippet for our illustrative example in C#.
EventArgs is a predefined type in C# to represent event types. Line 2 defines
the event type FileEvent as a subclass to represent file-related events. As line
3 shows, concrete operations on files are defined as subclasses of FileEvent.

1 //Defining event types
2 public class FileEvent:EventArgs {private string user; private string filename};
3 public class OpenEvent: FileEvent{...}
4 ...
5 //Defining event delegates
6 public delegate void FileEventHandler(object sender, FileEvent e);
7 ...
8 //Defining EPCs
9 class FilterUsers {

10 public event FileEventHandler file event;
11 public void filter(object sender, FileEvent e){
12 if ((e is OpenEvent || e is ReadEvent || e is WriteEvent || e is CloseEvent) &&
13 e.User == ’premium’){
14 if (file event != null) file event(this, e); }
15 }
16 }
17 class CheckTimeout{...}
18 class CheckOrder{...}
19 class FilterEvents {...}
20 class PremiumUsersEPCs{
21 public FilterUsers userselection;
22 private CheckTimeout timerchecker;
23 private CheckOrder orderchecker;
24 public FilterEvents timeouterror;
25 public PremiumUsersEPCs(){
26 userselection = new FilterUsers(this);
27 timerchecker = new CheckTimeout();
28 orderchecker = new CheckOrder();
29 timeouterror = new FilterEvents(this);
30 userselection.file event += new FileEventHandler(timerchecker.check);
31 ...
32 }
33 }

Listing 1: An example code in C#

In C#, the methods that process events are invoked through delegates. Line 6
defines an event delegate for the events of the type FileEvent. To maximize
reuse, we define each EPC of our example as a separate class. Lines 9–16
implement the functionality for the EPC FilterUsers of our example. Here, the

6

method filter is executed when an event of the type FileEvent is received.
There can be many subclasses of FileEvent in the application, and we are only
interested in the events of the types OpenEvent, ReadEvent, WriteEvent and
CloseEvent. The check in line 12 is to filter the events whose type is of interest.
The check in line 13 ensures that the event is published by a premium user. If
these conditions hold, the event is published further in line 14.

Other EPCs are defined likewise in separate classes in lines 17–19. In C#,
event producers and consumers must explicitly be bound to each other. The
class PremiumUsersEPCs in lines 20–33 defines an event processing network by
grouping the previously defined EPCs, instantiating them and bounding them
together. The expression in line 30, for example, indicates that CheckTimeout
must process the event file event that are published by FilterUsers.

This style of event-driven programming has the following shortcomings with
respect to the requirements outlined in Section 3.

Firstly, as line 11 in Listing 1 shows, the signature of methods only specifies
the events that are consumed by the methods. The events produced by the
methods must be specified at the level of objects; for example as shown in line
10. Consequently, method-level type checking such as checking for covariant
return types cannot be applied to the the events produced by the methods.

Secondly, interface-level composition is supported via a limited kind of type-
based event filtering. Consequently, the code for filtering events based on other
attributes must be defined within the body of methods. Such code tangles with
and possibly scatters across the core functionality of the methods. This is shown
for example in line 12 of Listing 1, where we would like to only match specific
subtypes of FileEvent. Alternatively, one may define individual methods for
matching individual event types. However, this causes the number of methods to
grow in proportion to the number of event types, and makes programs verbose.

Thirdly, as line 11 of Listing 1 shows, a reference to event producers is sent to
event consumers. As line 30 of Listing 1 shows, event producers and consumers
must explicitly be bound to each other to maintain the flow of events among
them. On one hand, such explicit bindings helps to limit the visibility of events
in C#. On the other hand they result in space and time couplings among
producers and consumers, and make applications error-prone. For example, if
the check in line 14 is mistakenly omitted, an exception will be raised when
there is no consumer registered for the produced event. Or, in an application
with varying number of event producers and consumers, we have to update the
bindings every time the number of event producers and consumers changes.

Fourthly, there can be a synchronization coupling among event producers
and consumers because events are published via method invocations, which are
by default synchronous. The synchronization decoupling can be programmed
via multi-threading in C#.

4.2 Languages with an Event Quantification Mechanism

In aspect-oriented (AO) languages [24], join points are means to represent a
state change of interest in the execution of programs. Pointcut designators

7

are means to select the joint points of interest. Events and join points can be
considered analogous [34]. Therefore, one may consider adopting AO languages
to benefit from pointcut designators to query the events of interest.

There are various languages that explicitly support the notion of events,
and offer an event quantification mechanism similar to pointcut designators [32,
19, 27, 23, 25, 30]. To evaluate these languages we adopt Ptolemy [32] as a
representative.

Listing 2 shows a code snippet for our illustrative example in Ptolemy. The
EPC FilterUsers of our illustrative example is implemented in lines 1–8. The
expression in line 7 specifies that when an event of the type FileEvent or any
of its subtypes is published to the Ptolemy runtime, the method filter must
process the event. Within the body of this method, it is checked whether the
event has one of our desired types. If it is the case and the publisher of the
event is a premium user, the event is forwarded to the next event consumer
in the chain, if any, via next.invoke(). Lines 9–12 define another EPC of
our example. Lines 16–19 show that the instances of the class FilterUsers

and CheckOrder can be registered in the Ptolemy runtime via the statement
register.

1 public class FilterUsers{
2 public void filter(FileEvent next) {
3 if (next instanceof OpenEvent || next instanceof ReadEvent
4 || next instanceof WriteEvent || next instanceof CloseEvent)
5 if (next.role() == ”premium”) next.invoke();
6 }
7 when FileEvent do filter;
8 }
9 public class CheckOrder{

10 public void check(FileEvent next) { ... next.invoke(); }
11 when FileEvent do check;
12 }
13 public class Main{
14 public void init(){
15 ...
16 FilterUsers userselection = new FilterUsers();
17 CheckOrder orderchecker = new CheckOrder();
18 register (userselection);
19 register (orderchecker);
20 ...
21 }
22 }

Listing 2: An example code in Ptolemy

With respect to the requirements in Section 3, we observe the following
problems in this style of event-driven programming.

Firstly, as for C#, the signature of methods only specifies the set of events
that are consumed by them. Secondly a limited kind of type-based event filtering

8

is supported. As shown in lines 3–4 of Listing 2, more complex filtering criteria
that are based on the content or type of events must be expressed in the body
of methods; such code tangles with the core functionality of the methods.

Thirdly, Ptolemy does not offer means to limit the visibility of events; events
are globally visible to all Ptolemy objects. As a workaround, one may provide
code for filtering out irrelevant events. Such code must be defined within the
body of the methods that process events, tangled with the core functionality of
the methods.

Fourthly, since events are published in a synchronous manner, there are time
and synchronization couplings among event producers and consumers. Never-
theless, since event consumers are instantiated and registered in the runtime
environment of Ptolemy, they react to the events obliviously of the actual event
producers. Therefore, there is no space coupling among the event producers
and consumers.

Fifthly, in the spirit of the around advice in AO languages, the flow of events
must explicitly be maintained among event consumers by invoking the next
consumer in the chain. For example in Listing 2, the instance of FilterUsers
processes file events first, and when it invokes the next object in the chain
via next.invoke(), the instance of CheckOrder will process the events. This
approach creates time, space and synchronization couplings among event con-
sumers. Consequently, applications become error-prone and hard to evolve be-
cause new event consumers cannot easily be added to the applications without
explicitly maintaining the flow of events among them.

Other languages in this category are EScala [19], EventReactor [27], Java-
MoP [30], and GummyJ [25]. EScala [19] extends the interface of objects with
declarative events, which represent specific state changes in the objects. In ad-
dition to supporting events in the same way as C#, EScala supports implicit
events, which correspond to the method-based join points in AO languages.
These events can be selected and composed by the available pointcut predi-
cates. The visibility of events can be controlled in a similar way as state vari-
ables. As for C#, there are time and synchronization couplings among event
producers and consumers. Since event producers can keep a reference to event
consumers, there is a space coupling in the producer side. EScala objects have
incomplete event-based interfaces because they only define the set of events that
they produce.

EventReactor [27] facilitates modular implementation of EPCs via offering
a dedicated module abstraction named as event modules. These modules have
event-based interfaces, but do not facilitate restrict the visibility of events. Be-
sides, there are synchronization and time couplings among event producers and
consumers because events are announced via synchronous method calls to the
language runtime. There can be a scope coupling at the consumer side, because
via event attributes event consumers can have a reference to event producers.

JavaMoP [30] is a domain-specific language based on AspectJ for runtime
verification of a set of correlated events. It considers join points as events, and
adopts pointcut expressions as means to specify the events of interest that are
consumed by aspects. However, it is not possible to specify the the set of events

9

that are published by aspects. The visibility of events is limited to a base object
and the aspects bound to it. There is space coupling in the aspects side, because
aspects they can refer to base objects; there are also time and synchronization
couplings.

We proposed the GummyJ 1.0 language [25], which facilitates modularizing
EPCs via dedicated module abstractions named as emergent gummy module.
These modules encapsulate their construction and destruction semantics, so they
are decoupled in time and space to event producers. Events are published in
an asynchronous manner, so there is also synchronization decoupling. Modules
specify their set of required events and the criteria to filter the events, but not
their provided events. Besides, there is no support for limiting the visibility of
events.

4.3 Languages with Complex Event Processing

A more advanced form of event quantification is provided by stream/complex
event processing languages [1, 35, 16]. These languages usually offer mechanisms
for detecting certain patterns in events, aggregating and transforming events,
modeling event hierarchies, detecting relationships (such as causality, member-
ship or timing) between events, etc. In this section we focus on Esper [1] as a
representative of these languages. Listing 3 is an example code snippet.

Lines 1–14 implement the functionality for the EPC FilterUsers of our ex-
ample. Esper offers the concept of named windows, which are data windows
that can be inserted into, deleted from, and queried by one or more statements.
To filter out the events that are published by premium users, the expression in
line 8 of Listing 3 creates a window named as PremiumUsers. The expression
in lines 10–11 select relevant events and inserts them into this window.

Lines 15–27 implement the functionality for the EPC CheckOrder of our
example for the premium users. It selects events from the previously-defined
named window PremiumUser. Esper facilitates defining the temporal order of
events using regular expression.

With respect to our requirements, firstly, the signature of methods do not
specify the set of events that are processed or produced by them. Consequently,
compositions cannot take place at the level of interfaces; instead they must be
done at the the level of SQL statements within the body of methods. For ex-
ample to compose FilterUsers with CheckOrder, we define the named window
PremiumUsers in line 10 of Listing 3, which is referred to in the SQL statement
in line 20.

Secondly, even if named windows are adopted, events are globally visible
by default. Workarounds may be provided by filtering out irrelevant events
via SQL statements, if possible at all. This increases the complexity of the
statements, and reduces the reusability of the implementations if they must be
reused in different scopes. For example, CheckOrder is hardcoded to work with
the named window PremiumUsers; this however does not mean that the events
in this window are only visible to CheckOrder.

10

Thirdly, event producers publish events the Esper runtime, which provides
them to event consumers. So, there is time, space and synchronization decou-
pling among event producers and consumers. However, since event consumers
are composed with each other via shared tables/data windows in their SQL
statements, there is a time coupling among them. If we regard those shared ta-
bles/data windows as implicit references, there is a space coupling among event
consumers too.

1 public class FilterUsers{
2 public FilterUsers(string user, final EPServiceProvider
3 epService, final AlertListener fileAlterListener)
4 {
5 if (user == ”Premium”){
6 EPStatement namedWindowStmt =
7 epService.getEPCdministrator().createEPL(
8 ”create window PremiumUsers.win:keepall() (userID String, type String)”);
9 EPStatement insertWindow = admin.createEPL(

10 ”insert into PremiumUsers select userID, type from
11 FileEvent where userID = ’”+user+”’”);
12 }
13 }
14 }
15 public class CheckOrder {
16 public void CheckOrder(final EPServiceProvider epService, final
17 AlertListener fileAlterListener){
18 EPStatement namedWindowStmt = epService.getEPCdministrator().
19 createEPL(
20 ”select ∗ from PremiumUsers
21 match recognize (measures o[0].userID as user
22 pattern ((open (read | write)∗ close)∗)
23 define open as open.type = ’open’, close as close.type = ’close’,
24 read as read.type = ’read’, write as write.type = ’write’)”
25);
26 }
27 }

Listing 3: An example code in Esper and Java

StreamIT [35] is a dataflow language targeting fine-grained highly paral-
lel stream applications and providing a highly optimizing native compiler. It
defines the concept of filters, which are special Java classes whose methods im-
plement event processing code. Filters can be composed with each other via
channels in a sequential, parallel or feedback-loop way. Channels are FIFO
queues, which also facilitate limiting the visibility of events between filters that
enqueue/dequeue events in/from the channels. Filters are decoupled and run
independently, however, they do not have event-based interfaces.

In EventJava [16] an application event type is implicitly defined by declaring
an event method, which is an asynchronous method. The signature of such

11

methods may define complex criteria to filter events based on their attributes
and/or correlations. With respect to our requirements, the method signatures
do not specify the set of published events, and there are time and space couplings
among event producers and consumers due to explicit invocations on consumers
to publish events. Publishing events via invocation is a means to limit the
visibility of events among specific event producers and consumers.

4.4 Languages with a Publish/Subscribe Mechanism

The publish/subscribe paradigm is widely accepted for developing applications
that require one-to-many and many-to-one style of communication. Various
commercial middleware and programming languages are proposed to support
this paradigm [15, 9, 20]. Listing 4 shows a code snippet for our CheckOrder
EPC in the JavaPS language [15]. Lines 1–10 define an event consumer (i.e. sub-
scription in JavaPS terminology), which selects events of the type FileEvent.
The Boolean expression in lines 4–5 specifies that only events of the the spec-
ified sub-types are of the interest. The code for checking the order of events
must be provided in Java in lines 6–8. Lines 11–16 implement an event pro-
ducer, which instantiates an event of the type OpenFile and publishes it to the
JavaPS runtime.

1 public class CheckOrder {
2 public void CheckOrder(){
3 Subscription fileSubscription = subscribe (FileEvent event){
4 return (event instanceof OpenEvent || event instanceof ReadEvent
5 || event instanceof WriteEvent || event instanceof CloseEvent)}
6 {
7 //check order functionality
8 };
9 }

10 }
11 public class Producer{
12 public void produce (){
13 OpenFile open event = new OpenFile(”F1.txt”, ”premium”);
14 publish open event;
15 }
16 }

Listing 4: An example code in JavaPS

ECO [20] offers an API in C++ for programming publish/subscribe systems,
which support asynchronous distribution of events from producers to all con-
sumers that are interested in those events. Commercial middleware such as
CORBA [9] also offer APIs for event-driven programming. Using these APIs,
one can define communication channels between event producers and consumers,
and plug event filtering code into the middleware.

The main focus in this style of event-driven programming is to increase the
decoupling of event producers and consumers, publishing and receiving events in

12

an asynchronous way. As for the languages in the previous section, supporting
modules with well-defined event-based interfaces, and composing modules at
the interface level are not the focus.

4.5 Summary of the Evaluation

In this section, we identified four flavors of supporting event-driven program-
ming in languages. Figure 3 depicts the degrees of modularity and decoupling
in current languages. As explained before, there are some attempts to support
modular implementation of EPCs in the first two categories of languages. How-
ever, they have various shortcomings in this regard. An interesting insight is
that although decoupling is one of the distinguishing characteristics of event-
driven applications, these languages put less emphasize on achieving it. This
decision can be justified that small-scale event-driven applications with a fixed
number of event producers and consumers (e.g. GUI applications) do not require
to have all three sorts of decoupling.

Languages with an event

delegation mechanism

Languages with an event

quantification mechanism

Languages with a

stream/complex event

processing mechanism

Languages with a

publish/subscribe

mechanism

Modularity Decoupling

Figure 3: The degrees of modularity and decoupling in current languages

As we move towards the fourth category, the languages become more suitable
for larger-scale applications that need to deal with numerous decoupled event
producers and consumers. The languages in the third and fourth categories
mainly focus on increasing the decoupling in applications and providing means
to process large number of events. We believe that increasing the reusability
and maintainability of application via proper separation and modularization of
concerns are also important factors that must be taken into account for large-
scale applications.

13

5 Gummy Modules

In this section we explain gummy modules2, which are means to modularly
define EPCs in programs. Figure 4 represents an BNF description of gummy
modules; note that this is not the syntax of a particular language in which this
concept is implemented.

At a high level of abstraction, we assume that Program consists of a set
of typed events, primitive and/or composite gummy modules, and ordinary
application classes. An EventType has a unique identifier, and defines a set
of attributes, which are means to represent necessary contextual information
about events.

Gummy modules may have a primitive structure. As the expression Primi-
tiveGummyModule shows, a primitive gummy module is recognized by its unique
identifier, and it may define a set of local variables, a set of ordinary methods
similarly to conventional objects. These are not accessible outside the mod-
ule. It may also define a set of event-based methods. Such methods have a
unique identifier, filter a set of events via their PrimitiveSelector, process them
via their internal PrimitiveReactor, and may produce new events of the Primi-
tivePublisher type.

Primitive selectors are predicates over event attributes to filter the events of
interest. Primitive reactors are pieces of programs in a language, which process
the events that are received from the selectors and may publish new events.
Primitive publishers specify the type of events that can be published outside
the gummy module.

Gummy modules may also have a composite structure. As the expression
CompositeGummyModule shows, such modules may refer to other gummy mod-
ules as their selector, reactor and/or publisher.

As for local variables, both primitive and composite gummy modules may
define a set of SharedVariables, which are means to share data among a com-
posite gummy modules and its constituent modules.

Figure 5 provides a schematic representation for two example gummy mod-
ules. At the top of the figure, a primitive gummy module is shown, which
has three event-based methods. At the bottom, a composite gummy module
is shown. Composite gummy modules are means to group a set of correlated
gummy modules, and facilitate defining and modularizing complex semantics
for selecting, processing and publishing events. In addition, composite gummy
modules facilitate limiting the visibility of events. Here, the events filtered by
the selectors of a composite gummy module are only visible within the module
by its reactors and publishers. The events published by the reactors are not
visible outside the module unless they are sent out by the publishers of the
composite gummy module.

As shown in the figure, the selector parts of composite selectors are re-
cursively exported as the selectors of the enclosing composite gummy module;

2The number of event producers from which gummy modules receive events may increase
or decrease at runtime. Therefore, the composition of gummy modules with event producers
has elastic nature. The term ’gummy’ emphasizes this elasticity.

14

• Program ::= (<EventType> | <PrimitiveGummyModule> | <CompositeGummyModule> | <Class>)*

• EventType ::= <Identifier> <Attribute>*

• Attribute ::= <Identifier><Type>

• PrimitiveGummyModule ::= <Identifier> (<Variable> | <Method> | <EventMethod> | <SharedVariable>)*

• CompositeGummyModule ::= <Identifier> (<Variable> | <Method> | <SharedVariable> |

<CompositeSelector> | <CompositeReactor> | <CompositePublisher>)*

• EventMethod ::= <Identifier><PrimitiveSelector><PrimitiveReactor><PrimitivePublisher>

• PrimitiveSelector ::= q ∈ Q			 where Q is a set of acceptable logical predicates over event attributes

• PrimitiveReactor ::= s ∈ S where S is the set of supported statements in the language

• PrimitivePublisher ::= <EventType>*

• CompositeSelector ::= <PrimitiveGummyModule> | <CompositeGummyModule>

• CompositeReactor ::= <PrimitiveGummyModule> | <CompositeGummyModule>

• CompositePublisher ::= <PrimitiveGummyModule> | <CompositeGummyModule>

• SharedVariable ::= <Identifier><Type>

• Variable ::= an acceptable variable definition in the language

• Method ::= an acceptable method definition in the language

• Class ::= an acceptable class definition in the language

• Identifier ::= an acceptable identifier in the language

• Type ::= t ∈ T where T is a set of acceptable types in the language

Figure 4: A description of gummy modules

their publishers are only visible within the enclosing composite gummy module.
Likewise, the publishers of composite publishers are recursively exported as the
publishers of the enclosing composite gummy module; their selectors are only
visible within the enclosing composite gummy module.

To implement event-driven applications via gummy modules, each EPCs can
modularly be represented via primitive gummy modules. A set of correlated
EPCs, which form an event processing network, can also be grouped together
as one composite gummy module.

6 The GummyJ Language

We propose the version 2.0 of the GummyJ language3, which is an extension to
Java supporting gummy modules with composite and primitive structure. The
details of GummyJ are explained by the example in Section 2.

6.1 Defining Events

The GummyJ language considers events as typed entities. An event type is a
data structure defining a set of attributes, where an event is an instance that
contains the values of attributes. There can be inheritance relation among event
types. Listing 5 shows an excerpt of the specified event types. EventType is
the predefined type, which is also super type of all event types. It defines
the attributes publisherID, targetID, and stacktrace. These attributes are
to keep the unique identifier of the publisher, the target of events, and the
information about the active stack frames at the time events are published,
respectively.

3https://github.com/malakuti/CompositeGummyModules

15

Streams of Events

Gummy Module

<<reactor>>

publisherreactorselector

publisherreactorselector

publisherreactorselector

Gummy Module

<<publisher>>

Gummy Module

reactorselector

Gummy Module

publisher

reactorselector

reactorselector publisher

publisher

reactorselector

Gummy Module

<<selector>>

publisher

reactorselector publisher

Figure 5: A schematic representation of gummy modules

New application-specific event types can be defined. For our example, we
define the event type FileEvent as the super type of file-related events. This
type defines the attributes fileID and userrole to keep information about
the file and the role of the user that accesses the file, respectively. The event
types OpenEvent, ReadEvent, WriteEvent and CloseEvent are specializations
of FileEvent. The event types TimeoutEvent and OutofOrderEvent are de-
fined to inform erroneous accesses to a file. Necessary information about the
file and user, as well as amount of the time a file is kept open are maintained
in the attributes of these event types. It is worth mentioning that in current
implementation of GummyJ, attributes can be of the types String, Long.

1 eventtype EventType{String publisherID; String targetID;
2 gummy.types.StackTrace stacktrace;}
3 eventtype FileEvent extends EventType{String fileID; String userrole;}
4 eventtype OpenEvent extends FileEvent{String mode;}
5 eventtype ReadEvent extends FileEvent{String content;}
6 eventtype WriteEvent extends FileEvent{String content;}
7 eventtype CloseEvent extends FileEvent{}
8 eventtype TimeoutEvent extends EventType{
9 String fileID; String userID;Long opentime;}

10 eventtype OutofOrderEvent extends EventType{String fileID; String userID;}

Listing 5: Specification of event types

16

6.2 Defining Gummy Modules

There are various ways to program and modularize EPCs using gummy modules.
We explain one possible case in the following, where we define each EPC as a
separate gummy module to maximize reuse, and group them via the composite
gummy module PremiumUsersEPCs.

Listing 6 define the primitive gummy module FilterUsers. Lines 3–4 define
the shared variables counter, userID and fileID. Line 6 is the specification
of a primitive publisher; i.e. the set of events published by the event method
defined as a comma-separated list of event types. In this example, the method
publishes events whose type polymorphically matches FileEvent.

1 gummymodule FilterUsers{
2 //the specification of shared variables
3 shared int counter;
4 shared String userID, fileID;
5
6 {FileEvent} //the specification of a primitive publisher
7 filter //the name of event method
8 { // the specification of a primitive selector
9 input in [OpenEvent, CloseEvent, ReadEvent, WriteEvent] &&

10 input.get(”role”) ==”premium” &&
11 input.get(”publisherID”) == userID &&
12 input.get(”fileID”) == fileID &&
13 CounterHelper.check(counter, userID,fileID) < 5
14 }
15 {
16 //the specification of a primitive reactor
17 GummyJ.publish(input);
18 }
19 }

Listing 6: Modularizing the FilterUsers EPC with gummy modules

Line 7 defines the method name, and lines 8–14 define a primitive selector;
i.e. the set of events filtered by the method. Here, we select events whose type
matches OpenEvent, CloseEvent, ReadEvent or WriteEvent, and are published
by the premium user userID to access the file fileID. The check in line 13 is
to prevent the requests from a user who has kept the file open for more than
five times in a day. The event selection expression refers to the Java helper
class CounterHelper, which implements the functionality to check and reset
the counter for the file-related events that are issued in a day. Lines 15–18
define a primitive reactor; i.e. a program in Java. Here, we only publish the
selected event, if any.

In GummyJ, the keyword input refers to the current event being processed
by the gummy module; naturally the event represented via input is a subtype of
EventType, which is the predefined super type for all event types. It is possible
to access event attributes via the method get(). If the specified attribute is not

17

defined in the event type, an exception will be thrown. The type of the events
published from within event methods must polymorphically match at least one
of the types specified in the signature of the method, otherwise an exception
will be raised.

Lines 1–29 of Listing 7 defines the primitive gummy module CheckTimeout.
Lines 3–5 define the local variables opened, timer, and processed, which rep-
resent whether the file is already opened, the amount of time that the file is
kept open, and the last file-related event that has been processed, respectively.

1 gummymodule CheckTimeout{
2 //the specification of local variables
3 Boolean opened;
4 Long timer;
5 Long T = new Long(10);
6
7 //the specification of local methods
8 Long init (){...}
9 Long update (){...}

10 Long reset (){...}
11
12 //the specification of event methods
13 {TimeoutEvent} checkOpenEvent {input in [OpenEvent]} {
14 if (! opened) {
15 opened = true;
16 timer = init();
17 while (is opened() && timer < T) timer = update();
18 if (timer >= T && is opened()) {
19 TimeoutEvent error = new TimeoutEvent();
20 output.fileID = input.get(”fileID”);
21 output.userID = input.get(”publisherID”);
22 output.opentime = timer;
23 GummyJ.publish(error);
24 }
25 }
26 }
27 {} checkReadWriteEvents {input in [ReadEvent, WriteEvent]} {timer = reset();}
28 {} checkCloseEvent {input in [CloseEvent]} {timer = reset(); opened = false;}
29 }
30 gummymodule CheckOrder{
31 {OutofOrderEvent} check {input in [FileEvent]}
32 {
33 // check order implementation
34 ...
35 OutofOrderEvent error = OutofOrderEvent();
36 GummyJ.publish(error);
37 }
38 }

Listing 7: Modularizing the CheckTimeout and CheckOrder EPCs with
gummy modules

18

Lines 8–10 define a set of local methods to manipulate the timer. Lines
13–26 define the event method checkOpenEvent, which selects events whose
type polymorphically matches OpenEvent, and publishes events of the type
TimeoutEvent. If a file is left open for an excessive amount of time, lines 19–23
create an instance of the event type TimeoutEvent, initialize its attributes, and
publish it to the runtime environment of the GummyJ language. Line 27 defines
the event method checkReadWriteEvents, which resets the timer when a read
or write request is received for the file. Likewise line 28 processes the events of
the type CloseEvent, resets the timer and the variable opened.

Lines 30–38 define the primitive gummy module CheckOrder to check the
order in which file events are issued.

Listing 8 defines the primitive gummy module FilterEvents, which selects
events of the type TimeoutEvent, increases the counter, and publishes the event
further if the counter exceeds the value 5.

1 gummymodule FilterEvents{
2 shared int counter;
3 {TimeoutEvent} filter {input in [TimeoutEvent]}{
4 counter ++;
5 if (CounterHelper.check(counter, input.get(”userID”), input.get(”fileID”))>=5)
6 GummyJ.publish(input);
7 }
8 }

Listing 8: Modularizing the FilterEvents EPC with gummy modules

Listing 9 defines the composite module PremiumUsersEPCs, whose construc-
tor receives a user ID and file ID as its parameters to distinguish the instances of
this gummy module for each user and file. The gummy module defines a shared
variable named as counter to maintain the number of times a user has kept
a file open for an excessive amount of time. In addition it defines two shared
variables userID and fileID.

Line 10 defines the selector part of this gummy module, which is an instance
of the gummy module FilterUsers represented via the variable userselection.
Line 11 defines the first reactor of the composite gummy module, which is an
instance of the gummy module CheckOrder. The second reactor is defined in
12, which is an instance of the gummy module CheckTimeout. This indicates
that first the order of events and then the timeout case are checked. Line 13
defines the first publisher of PremiumUsersEPCs, which is an event of the type
OutofOrderEvent. Line 14 defines the second publisher, which is an instance
of the gummy module FilterEvents.

Using this structure, the events that are published to the application are
visible to userselection, which filters the events of interest and forwards them
inside the composite gummy module. These events are visible to the reactors
and publishers of this module, but are only of interest for the reactors. The
events that are published by the reactors are processed by the publishers of the
composite gummy module.

19

1 gummymodule PremiumUsersEPCs{
2 //the specification of shared variables
3 shared int counter; shared String userID, fileID;
4
5 //the specification of constructor
6 public PremiumUsersEPCs (String UID, String FID){
7 userID = UID; fileID = FID;
8 }
9

10 selector FilterUsers userselection = new FilterUsers();
11 reactor CheckOrder orderchecker = new CheckOrder();
12 reactor CheckTimeOut timeoutchecker = new CheckTimeOut();
13 publisher OutofOrderEvent ordererror = new OutofOrderEvent();
14 publisher FilterEvents timeouterror = new FilterEvents();
15 }

Listing 9: Modularizing the event processing network with gummy modules

Gummy modules that are enclosed within a composite gummy module (e.g.
PremiumUsersEPCs) share the same runtime identifier as the composite gummy
module, and can access the shared variables defined within the composite gummy
module. For example, since PremiumUsersEPCs encloses FilterUsers and
FilterEvents, their shared variable counter refers to the same memory lo-
cation as the variable counter in PremiumUsersEPCs.

In most modern object-oriented languages, when the return type of a method
is not void, the compiler raises an error if an execution path in the method does
not return a value/exception to its caller. This is to comply with the request-
reply communication, where a request must be replied by providing a return
value to the caller. In the event-based communication, events are broadcast,
and if they are of the interest to any recipient, they will be processed. This
means that event producers do not expect a reply, and some events may not
be processed at all. Therefore, to reduce the amount of events that are of no
interest to any recipient, the GummyJ compiler does not force all the execution
paths inside event methods to publish an event. This is shown for example in
the checkOpenEvent event method in Listing 7, where only timeout events are
published when needed.

6.3 Integrating with Objects/Aspects

Gummy modules can explicitly be instantiated; when a composite gummy mod-
ule is instantiated, all of its enclosed gummy modules are instantiated too. As-
sume for example that we would like to apply the module PremiumUsersEPCs

to the users with the identifier U1–U4 who access the files with the identifier
F1.txt–F4.txt, respectively. GummyJ maintains a pool of gummy module in-
stances; each instance is designated via its unique index in this pool. To reduce
the amount of necessary bookkeeping code, in the spirit of Ptolemy and Esper,
GummyJ offers an API to instantiate gummy modules, and to register them in

20

the runtime environment of the language. An example usage of this API is in
lines 3–6 of Listing 10 shows. One can also destroy the instances if needed, e.g.
lines 8–9.

Event types are translated to Java classes whose instances are used to rep-
resent events. As shown in line 19 of Listing 10, GummyJ offers an API, which
can be used by pure objects, aspects and even gummy modules to publish events
in an asynchronous way.

As shown in lines 22–27 of Listing 10, legacy Java objects in applications
can also receive events from gummy modules. To this aim, they must define
methods that receive desired event types as their argument, and must register
in GummyJ to receive events from a specific module instance referenced by its
unique index.

1 public class Usage {
2 public void manage (){
3 PremiumUsersEPCs epn 1 =
4 GummyJ.instantiate(PremiumUsersEPCs,”U1”,”F1.txt”);
5 PremiumUsersEPCs epn 2 =
6 GummyJ.instantiate(PremiumUsersEPCs,”U2”,”F2.txt”);
7 ...
8 GummyJ.destroy(epn 1);
9 GummyJ.destroy(epn 2);

10 }
11 }
12 public class Producer {
13 public void produce (){
14 OpenEvent open = new OpenEvent();
15 open.fileID = ”...”;
16 open.userrole = ”premium”;
17 open.publisherID = ”U1”;
18 ...
19 GummyJ.publish(open);
20 }
21 }
22 public class Consumer {
23 public Consumer (){
24 GummyJ.register (this, ”consume”, epn 1);
25 }
26 public void consume (TimeoutEvent event){...}
27 }

Listing 10: An example usage of gummy modules

The runtime event processing semantics of gummy modules is explained in
the next section. As an example, assume that the module PremiumUsersEPCs

is instantiated, and the event open is published to the runtime environment
of GummyJ. The event is visible to all instantiated gummy modules, and is
evaluated against the selectors of the gummy modules. The event matches

21

the selector of epn 1, which forwards it inside epn 1. The event is visible to
the reactors and publisher of epn 1, but is only of interest for its reactors.
The reactors process the event concurrently. Since this event does not violate
the expected occurrence order of the events, the reactor timeout restarts the
timeout timer. If other file events are not issued within the expected period,
timeout produces an event of the type TimeoutEvent, which is received by the
publisher filterevents of epn 1.

7 Event Processing Semantics of GummyJ

An application developed in GummyJ consists of a set of gummy modules,
environmental objects and application objects that produce and/or consume
events. Due to the support for asynchronous event publishing, event producers
and gummy modules are executed concurrently.

Figure 6 provides an abstract view of the gummy modules at runtime. The
runtime manager of GummyJ has a global event queue, in which the events
published to the runtime manager are maintained, and are served in an FIFO
manner. The events in the global event queue are visible to the selectors of
gummy modules; the publishers of the modules may insert events in this queue.

Global Event Queue

Instance

Manager

Composite Gummy Module

…

Selector

Visibility

Manager

Event

Queue

Selector

Visibility

Manager

Event

Queue

…

Reactor

Visibility

Manager

Event

Queue

Reactor

Visibility

Manager

Event

Queue

Event

Receiver

Event

Dispatcher

…

Publisher

Visibility

Manager

Event

Queue

Publisher

Visibility

Manager

Event

Queue

Figure 6: The runtime representation of gummy modules

The Instance Manager object maintains the meta-data about gummy mod-
ules and their internal structure. It also handles the requests to construct and
destruct instances of gummy modules. The Event Dispatcher object dispatches
global events to gummy module instances. The Event Receiver object gets
events and inserts them into the global event queue.

22

The event methods in primitive gummy module, and the selectors, reac-
tors and publishers in composite gummy modules process events concurrently.
Therefore, each have their own local queue to maintain the events that are vis-
ible to them for processing. Each selector, reactor and publisher is associated
with a Visibility Manager object, which receives visible events and inserts them
into the relevant local event queue. For example, the Visibility Manager of se-
lectors receives the events that are visible to selectors (i.e. events in the global
event queue), and inserts them in the local event queue of the selectors.

Likewise, each reactor is associated with a Visibility Manager object, which
receives the events published by selectors, and inserts them in the corresponding
local event queue. The same applies to publishers except that their visible events
are the ones published by selectors and/or reactors. This means that the event
flow inside a gummy module forms a direct acyclic graph, from selectors to
reactors and publishers.

All these objects are executed concurrently via independent Java threads.
The concurrent accesses to event queues and shared variables in gummy modules
are synchronized via Java synchronization mechanisms.

As for other general-purpose abstractions, the ways that gummy modules
are defined, communicate with each other and with their environment depends
on application requirements. Nevertheless, to get an insight about the behavior
of applications developed in GummyJ, we adopt the UPPAAL toolbox [2] to
simulate possible behavior of gummy modules independently from any specific
application.

The choice of UPPAAL is justified by the fact that gummy modules are
executed concurrently to each other and to the event producers in their en-
vironment; besides, the internal elements of composite gummy modules are
executed concurrently to each other. UPPAAL facilitates modular modelling
of software behavior using separate automata, which are executed concurrently
and are composed together to represent the final behavior of the software.

In UPPAAL, each automata may have a set of local variables and functions,
and may be instantiated multiple times. Automata communicate via shared
variables and channel expressions such as c! and c?. The channel expression
c! in an automaton is comparable to an asynchronous method invocation; this
invocation is received by the expression c? in another automaton.

The abstract behavior of the Instance Manager entity is shown in Figure 7.
This automaton receives an instantiation request via instantiate?, and con-
structs an instance of the gummy module by invoking the function instanti-
ate gummymodule(). Afterwards, via the channel activate!, it broadcasts a re-
quest to activate the selectors, reactors and publishers of the module and their
Visibility Manager objects.

The request to destroy an instance of a gummy module is received via the
channel destroy?. Since the gummy module may be currently processing an
event, the destruction is delayed until the selectors, reactors and publishers
of the module finish processing their current event. To implement this, In-
stance Manager first marks the gummy module to be destroyed via invoking
the function mark to destroy(), and then waits in the location Destroying until

23

the selectors, reactors and publishers of the gummy module are ready to be de-
stroyed. Afterwards, it destroys the instance of the gummy module via invoking
the function destroy gummymodule().

Destroying

Activating

Activatedselector_ready &&
reactor_ready &&
publisher_ready

destroy_gummymodule()

destroy?

mark_to_destroy()

instantiate?

instantiate_gummymodule()

activate!

Figure 7: Abstract behavior of Instance Manager

Figure 8 shows the abstract behavior of Event Receiver, which receives input
events via channel event to global?, and inserts them in the global event queue.
The abstract behavior of Event Dispatcher is shown in Figure 9, which checks
whether there is any active gummy module. If not, it just discards the events
that are inserted in the global event queue via invoking dequeue(). Otherwise
and if there is an event in the global event queue, it notifies the Visibility Man-
ager of the selectors via the channel event from global!. It waits until Visibility
Manager informs it that the event is received by Visibility Manager. This noti-
fication is done via the channel ready?. As a result, Event Dispatcher removes
the event from the global event

It Afterwards, it waits until via the channel ready? it is informed by Visibil-
ity Manager that the event is received by Visibility Manager. Event Dispatcher
consequently removes the event from the global event queue via invoking de-
queue().

enqueue()

event_to_global?

Figure 8: Abstract behavior of Event Receiver

Waiting

Dispatchingexist_global_event()==false

exist_global_event()== true &&
exist_active_gummymodules()==false

dequeue()

exist_global_event()==true &&
exist_active_gummymodules()==true

event_from_global!

ready?

dequeue()

Figure 9: Abstract behavior of Event Dispatcher

Figures 10 shows the abstract behavior of the Visibility Manager objects
for selectors. When an instance of a gummy module is constructed by Instance

24

Manager, the automaton in Figure 10 synchronizes with Visibility Manager via
the channel activate?, and as a result the instance of Visibility Manager are
activated to receive events.

If there is a new event in the global event queue, Visibility Manager is
informed via the channel event from global?. As a result, it retrieves a copy of
the event via the function retrieve selector visible event(), inserts it in the local
queue of the selector, and via the channel ready! it informs Event Dispatcher
that it is ready to receive the next event from the global event queue, if any.
It then takes a transition to the location Activated. If the gummy module is
marked to be destroyed, Visibility Manager stops receiving events from the
global queue by taking a transition to the initial state.

RetrieveEvent

Activated

ready!

is_marked_destroy()==false

event_from_global?

is_marked_destroy()==true

insert_in_selector_queue(s_input)

s_input = retrieve_selector_visible_event()

activate?

Figure 10: Abstract behavior of Visibility Manager

Figure 11 shows the abstract behavior of selectors, which are executed con-
currently to Instance Manager and Visibility Manager. After a selector is acti-
vated, it starts processing the events that exist in its local queue. It retrieves
the event at the front of the queue via the function get next event(), and in the
location EventMatching it checks whether the event is of the interest for the
selector. If so, a transition is taken to the location EventProcessing.

EventPublishing

Activated

EventProcessing

EventMatching
Start

type_matches(s_output) == true

event_from_selector!

type_matches(s_output) == false

throw_exception()

s_output = produce_event()

is_marked_destroy()==true
selector_ready=true

is_marked_destroy()==false

input = get_next_event()activate?

event_matches(input) == false

event_matches(input)==true

Figure 11: Abstract behavior of selectors

Depending on the application logic, various operations can be performed in
this location. For example, the selector may do nothing; this is shown via a tran-
sition to the location Activated. It may also produce a new event via the function
produce event(), and try to publish it. In this case, the function type matches()
checks whether the event type polymorphically matches the publishers type for
the selector. If not, an exception is raised; otherwise, the reactors and publish-
ers of the composite gummy module are informed of the event via the channel
event from selector!. This will be handled by the Visibility Manager objects of

25

reactors and publishers, which will receive a copy of the produced event and
will insert it in the local event queues of the reactors and publishers. The event
processing semantics of reactors and publishers are similar to selectors, except
that access different event queues.

After the selector finishes processing the current event, a transition is taken
to the location Activated in Figure 11. Here, it is checked whether the composite
gummy module is marked to be destroyed. If so, a transition is taken to the
initial state and the remaining events in the local queue are discarded.

8 Discussions

As shown in Listing 5, new types of events can be defined, and can explic-
itly be published to GummyJ via its API. Alternatively, we could adopt the
same approach as most AO languages, where the set of supported events (join
points) is defined by the join point model of the language. The advantage of
these languages is that the occurrences of events (join points) are automatically
designated in programs by their compiler. However, it has been well-studied
that the join point model of AO languages is not rich enough to cover all de-
sired events and event attributes. Consequently, there are various proposals to
support extensible join point models, in which programmers have to explicitly
annotate desired code blocks in programs as join points [10, 34]. Therefore, we
believe that a language must support explicit event definition and announce-
ment; otherwise, its applicability for different application domains may reduce.

As shown Listings 8, 7, 6, for example via the gummy module CheckTimeout,
individual EPCs can be modularized via primitive gummy modules. The signa-
ture of event methods specify the set of events that are processed and published
by the methods.

as Listing 9 shows, a set of correlated EPCs can be reused to define an event
processing network. The interfaces of composite gummy modules (i.e. selectors
and publishers) are separated from its implementation (i.e. reactor). Such a
composite structure facilitates separating event selection, event processing and
event publishing logic from each other, and yet composing them together under
one module abstraction.

The visibility of events is controlled via composite gummy modules. This way
of defining scopes complies with the concept of modularization, which empha-
sizes on hiding certain aspects of modules from being accessible to its external
environment.

Gummy modules communicate with each other and with the event producers
and consumers in an asynchronous way. Therefore, there is no synchronization
coupling among them. There is no explicit reference among gummy modules
and event producers/consumers, implying that there is no space coupling among
them. Event producers publish events to the GummyJ runtime; if there is any
gummy module registered, the events are provided them for processing. Event
producers and gummy modules can have different lifetime. Therefore, there is
no time coupling among event producers and gummy modules.

26

9 Related Work

In Section 4, we evaluated a large set of languages that support event-driven
programming. We will now evaluate other categories of relevant research.

Various complex event processing middleware have been proposed in the
literature [7, 3], which provide means to process large amount of events in an
efficient way. Such middleware helps to separate event processing from the core
functionality of applications. However, such a separation may not be desirable
when event processing is a part of applications logic and must access application-
specific information. Nevertheless, such middlware are useful in the large-scale
applications that require fast processing of a massive amount of events in short
time. Therefore, we would like to provide means to integrate GummyJ with
such middlware, to benefit from them for initial processing of events, such as
filtering out irrelevant events or transforming the format of events.

Rule-based systems consist of a set of rules defined as conditional expres-
sions, a set of facts, and an engine that controls the activation and application of
the rules [22]. Active rules [11], which are also known as event-condition-action
(ECA) rules, are an example of rule-based database systems. When an event
occurs, conditions are evaluated, and if they are satisfied, an action is triggered.
In [6], the concept of event-based stratification has been introduced, which fa-
cilitates separating and classifying rules based on input events that trigger the
rules, and the output events that are produced by the rules. The authors fo-
cus on criteria for stratifying rules such that the stratified rules guarantee the
termination and confluence properties. Unlike this approach, our focus is on
applications, and we proposed a module abstraction and a language to facilitate
modularizing event-driven applications. Adopting the concept of gummy mod-
ules at the database level for modularizing rule sets is an interesting direction
of research for future.

The concept of scopes is proposed to limit the visibility of events between
producers and consumers [18]. A scope can have interfaces, which define the set
of events that can enter or leave the scope. Scopes can also have a composite
structure. An SQL-like language is provided to define scopes and to add/remove
components to the scopes. An implementation of scopes is also implemented in
the REBECA framework in Java, which offers dedicated APIs to attach compo-
nents to scopes. The first distinguishing characteristic of our approach is that
we proposed a new kind of module abstraction, its implementation in a program-
ming language, and its integration with other modules. In contrast to scopes
whose sole purpose is to limit the visibility of events, composite gummy mod-
ules are reusable units of computations enclosing smaller units of computations.
Unlike scopes, the selectors, reactors and publishers of a composite gummy mod-
ules are also defined in terms of gummy modules. This uniformity increases the
compositionality of applications, facilitates defining course-grained modules in
a flexible manner, and enables defining complex event filtering semantics.

There are several proposals for event-based coordination of concurrent pro-
cesses [8, 21]. There are also proposals in functional-reactive programming [33,
13], which provide dedicated abstractions to model time-changing values usually

27

termed as signals. Where signals and events are analogous, event processing
languages mainly focus on defining composite events from patterns of primi-
tive ones, involving content-based and temporal constraints on the patterns.
Therefore, event processing languages and reactive languages can be regarded
complementary [29].

The actor model [4] is a widely-adopted model for implementing concurrent
computation. This model is implemented in various object-oriented and func-
tional programming languages. The current implementations [5] of this model
support a limited form of message selection and publishing, with the same short-
comings as the languages evaluated in Section 4. Although concurrency is one
characteristic of gummy modules, we have a different focus than actors; our
main focus is on providing suitable abstractions for modularizing event-driven
applications. We believe that gummy modules provide a strong base to imple-
ment complex message passing semantics of actors in a modular way. We would
like to explore this in future.

In our previous work [25], we have proposed emergent gummy modules as
event-based modules that encapsulate their instantiation and destruction se-
mantics. Emergent gummy modules are useful in representing EPCs that have
transient nature, for example, the ones representing the appearance or disap-
pearance of a certain behavior in the environment. As explained in Section 4,
emergent gummy modules and their implementation in the first version of Gum-
myJ do not fulfill our requirements, because they do not have a composite
structure and do not specify the events that they publish. Our proposal in
this paper solves these shortcomings. In this report, we did not focus on the
emergent characteristics of modules; modules must be explicitly instantiated
or destroyed from within Java objects as shown in Listing 10. Therefore, the
proposed module abstraction can be used for programming EPCs that do not
have transient nature. Supporting composite emergent gummy modules is the
focus of our future work.

10 A Close Look at Event-based Modularization

As software applications are finding their way in different domains, new kinds
of concerns may appear in such applications. The so-called event processing
concerns are the key concerns in event-driven applications, which implement
the functionality to process events.

During past decades, modularization mechanisms have evolved to facilitate
modularizing different kinds of concerns that appear in applications. We briefly
summarize the evolution of four modularization mechanisms in Figure 12.

In procedural modularization, a program is divided into a set of procedures/-
functions, which invoke each other with zero or more call arguments. The callee
procedure/- function executes the call, and it may invoke on other procedures.
This paradigm eventually evolved to the object-oriented modularization to re-
duce the complexity and to enhance the flexibility and the evolvability of soft-
ware systems.

28

Modularization

Mechanism

Sub-

abstraction

First-class

Abstraction
Composition

Procedural

Modularization

Input/ Output

Parameter

Procedure/

Function

Procedure/

Functional Call

Object-oriented

Modularization
MethodObject/ Class

Polymorphic/

Event Call

Aspect-oriented

Modularization

Base Object/

Class
Aspect

Pointcut/ Join

point

Event-based

Modularization

Event

Producer/

Consumer

Event/

Event Module/

(Emergent)

Gummy Module

Required/

Provided

Event

evolution

evolution

evolution

Figure 12: An evolution of modularization mechanisms

Objects/classes are means to structure software systems; objects are consid-
ered a better match for the abstractions of the real world. An object groups a
set of attributes and procedures (methods) together. The methods can be ex-
plicitly invoked, or if the language offer an event-delegate mechanism, they can
be invoked implicitly via event announcement. Objects are useful in represent-
ing hierarchically-structured entities of the real world. However, they fall short
in representing crosscutting concerns, which do not fit into such hierarchical
structures. Consequently, the implementation of such concerns scatters across
and tangles with objects.

Aspect-oriented modularization has been introduced as a solution. Here, as-
pects are introduced as dedicated abstractions to modularize crosscutting con-
cerns. Objects are treated as the base to which aspects apply via pointcuts and
join points mechanisms.

The current trend in language support for event-driven programming is to
adopt an existing procedural, object-oriented or aspect-oriented language and
extend it with some event processing features. As we discussed in this report,
such extensions are rather ad-hoc, and lead to degradation of modularity and
decoupling in various ways.

We have been developing the concept of event-based modularization [26] as a
dedicated modularization mechanism for event-driven applications. We consider
the computation as one or more sequences of events, which may be produced
by various entities. A module is defined as a group of correlated events and the
reactions to them. We have introduced event modules [27], emergent gummy
modules [25] and gummy modules as three dedicated module abstractions. The
shortcomings of event modules and emergent gummy modules are explained in
Section 4. In this report, we focused on gummy modules, and their advantages
for modularizing event-driven applications.

29

As Figure 12 shows, event-based modularization can be regarded as the
successor of current modularization mechanisms for event-driven applications.
Events and gummy modules are first-class abstractions, and modules are com-
posed with each other via publishing and consuming events. Conventional ob-
jects and aspects may become event producer and/or consumer too.

Active (Rule-based)

Databases

Publish/Subscribe

Middleware

Objects Aspects

Complex Event

Processing Languages

Actor Model

Procedures

Design Patterns

Basic

Mechanisms

Modularization

Mechanisms

Models/

Patterns
�

Gummy

Modules

Figure 13: The position of gummy modules

Figure 13 depicts the position of gummy modules in the state of the art.
Gummy modules are orthogonal to other module abstractions, dedicated for
event-driven programming. They may benefit from the services that are pro-
vided by active database, publish/subscribe middleware and complex event pro-
cessing engines for initial processing of events. Gummy modules can be adopted
to implement various communication models such as the actor model as well as
design patterns.

In this report, we focused on adopting event-based modularization at the
programming language level. Nevertheless, this concept can also be applied to
other stages of software development process. In [28], we showed the use of event
modules at the architectural level to modularly compose multiple applications.

11 Conclusions and Future Work

We discussed that current module abstractions and their implementation in im-
perative languages have significant shortcomings to properly modularize event
processing concerns. We discussed gummy modules as novel module abstrac-
tions, which have well-defined event-based interfaces. Gummy modules can
have a composite structure, enabling complex event selection, processing and
publishing semantics be modularized and integrated together as one composite
gummy module. Composite gummy modules are also means to define visibility
scopes of events.

As Figure 2 shows, GummyJ 2.0 is in the category of languages supporting
event quantification. We envision to extend GummyJ such that it can also sup-
port stream/complex event processing, as well as publish/subscribe paradigm.
The former will be achieved by offering languages to reason about correlations
of events, and the latter will be achieved by supporting distribution in gummy
modules. Both of these language categories emphasize processing large amounts
of events in an efficient way. Therefore, we would also like to study means to im-
prove the performance of GummyJ in processing large amount of events. Last

30

but not least, we will also study advanced composition mechanisms such as
inheritance in gummy modules.

Acknowledgement

The author is supported by the German Research Foundation (DFG) in the
Collaborative Research Center 912 ”Highly Adaptive Energy-Efficient Comput-
ing”. The author would like to thank Mehmet Aksit and Uwe Assmann for their
feedback on early versions of this work.

References

[1] Esper. http://esper.codehaus.org/.

[2] UPPAAL. http://www.uppaal.org/.

[3] Asaf Adi. IBM Active Middleware Technology Overview. Technical report,
IBM Haifa Labs, 2006.

[4] Gul Agha. Actors: A Model of Concurrent Computation in Distributed
Systems. MIT Press, 1986.

[5] Joe Armstrong. Programming Erlang: Software for a Concurrent World.
Pragmatic Bookshelf, 2013.

[6] Elena Baralis, Stefano Ceri, and Stefano Paraboschi. Modularization Tech-
niques for Active Rules Design. ACM Trans. Database Syst., 21(1):1–29,
March 1996.

[7] Raphaël Barazzutti, Pascal Felber, Christof Fetzer, Emanuel Onica, Jean-
françois Pineau, Marcelo Pasin, Etienne Rivière, and Stefan Weigert.
StreamHub : A Massively Parallel Architecture for High-Performance
Content-Based Publish / Subscribe Categories and Subject Descriptors.
In Proceedings of DEBS. ACM, 2013.

[8] Nick Benton, Luca Cardelli, and Cédric Fournet. Modern Concurrency
Abstractions for C#. ACM Trans. Program. Lang. Syst., 26(5):769–804,
2004.

[9] Juergen Boldt. The Common Object Request Broker: Architecture and
Specification. Technical report, Object Management Group, July 1995.

[10] Walter Cazzola and Edoardo Vacchi. Fine-grained Annotations for Point-
cuts with a Finer Granularity. In SAC ’13. ACM, 2013.

[11] Umeshwar Dayal. Active Database Systems: Triggers and Rules for Ad-
vanced Database Processing. Morgan Kaufmann Publishers Inc., 1994.

31

[12] Arjan de Roo, Hasan Sozer, and Mehmet Aksit. Composing Domain-
specific Physical models with General-purpose Software Modules in Em-
bedded Control Software. Software Systems Modeling, 13(1):55–81, 2014.

[13] Conal M. Elliott. Push-pull Functional Reactive Programming. In Haskell
’09. ACM, 2009.

[14] Opher Etzion and Peter Niblett. Event Processing in Action. Manning,
2010.

[15] Patrick Eugster. Type-based Publish/Subscribe: Concepts and Experi-
ences. ACM Trans. Program. Lang. Syst., 29(1), 2007.

[16] Patrick Eugster and K. R. Jayaram. EventJava: An Extension of Java for
Event Correlation. In Proceedings of ECOOP ’09. Springer-Verlag, 2009.

[17] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie
Kermarrec. The Many Faces of Publish/Subscribe. ACM Comput. Surv.,
35(2):114–131, 2003.

[18] Ludger Fiege, Gero Mühl, and Felix C. Gärtner. Modular Event-based
Systems. Knowl. Eng. Rev., 17(4):359–388, 2002.

[19] Vaidas Gasiunas, Lucas Satabin, Mira Mezini, Angel Núñez, and Jacques
Noyé. EScala: Modular Event-driven Object Interactions in Scala. In
Proceedings of AOSD ’11. ACM, 2011.

[20] M. Haahr, R. Meier, P. Nixon, V. Cahill, and E. Jul. Filtering and Scal-
ability in the ECO Distributed Event Model. In Software Engineering for
Parallel and Distributed Systems, 2000. Proceedings. International Sympo-
sium on, pages 83–95. IEEE, 2000.

[21] Philipp Haller and Tom Van Cutsem. Implementing Joins Using Extensible
Pattern Matching. In COORDINATION ’08. Springer-Verlag, 2008.

[22] Frederick Hayes-Roth. Rule-based Systems. Commun. ACM, 28(9):921–
932, 1985.

[23] Tetsuo Kamina, Tomoyuki Aotani, and Hidehiko Masuhara. EventCJ:
a Context-oriented Programming Language with Declarative Event-based
Context Transition. In Proceedings of AOSD ’11. ACM, 2011.

[24] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-Oriented Program-
ming. In Proceedings of ECOOP’ 97. Springer-Verlag, 1997.

[25] Somayeh Malakuti and Mehmet Aksit. Emergent Gummy Modules: Mod-
ular Representation of Emergent Behavior. In Proceedings of GPCE ’14.
ACM, 2014.

32

[26] Somayeh Malakuti and Mehmet Aksit. Event-based Modularization: How
Emergent Behavioral Patterns Must Be Modularized? In Proceedings of
FOAL ’14. ACM, 2014.

[27] Somayeh Malakuti and Mehmet Aksit. Event Modules - Modularizing
Domain-Specific Crosscutting RV Concerns. T. Aspect-Oriented Software
Development, pages 27–69, 2014.

[28] Somayeh Malakuti and Mariam Zia. Adopting Architectural Event Mod-
ules for Modular Coordination of Multiple Applications. Technical report,
Technical University of Dresden, 2015.

[29] Alessandro Margara and Guido Salvaneschi. Ways to React : Comparing
Reactive Languages and Complex Event Processing. In Reactivity, Events
and Modularity workshop, 2013.

[30] Patrick O’Neil Meredith, Dongyun Jin, Dennis Griffith, Feng Chen, and
Grigore Roşu. An Overview of the MOP Runtime Verification Frame-
work. International Journal on Software Techniques for Technology Trans-
fer, pages 249–289, 2011.

[31] Microsoft Corporation. C# language specification.
http://msdn.microsoft.com/en-us/vcsharp/aa336809.aspx.

[32] Hridesh Rajan and Gary Leavens. Ptolemy: A Language with Quantified,
Typed Events. In Proceedings of ECOOP ’08, LNCS. 2008.

[33] Guido Salvaneschi, Gerold Hintz, and Mira Mezini. REScala: Bridging
Between Object-oriented and Functional Style in Reactive Applications. In
Proceedings of MODULARITY ’14. ACM, 2014.

[34] Friedrich Steimann, Thomas Pawlitzki, Sven Apel, and Christian Kästner.
Types and Modularity for Implicit Invocation with Implicit Announcement.
ACM Trans. Softw. Eng. Methodol., 20:1:1–1:43, 2010.

[35] William Thies, Michal Karczmarek, and Saman P. Amarasinghe. StreamIt:
A Language for Streaming Applications. In Proceedings of the 11th Inter-
national Conference on Compiler Construction, CC ’02, pages 179–196.
Springer-Verlag, 2002.

33

