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Measurement of proton and α–particle quenching in LAB based

scintillators and determination of spectral sensitivities to supernova

neutrinos in the SNO+ detector

Abstract

SNO+, the successor of the Sudbury Neutrino Observatory, is an upcoming low energy

neutrino experiment, located in the 2 km deep laboratory SNOLAB, Canada. The spheric

acrylic vessel in the detector center will contain 780 t of LAB. The main goal of SNO+

is the search for the neutrinoless double beta decay of 130Te, using a novel scintillator in

which natTe is bound with an initial loading of 0.3% via water and a surfactant. Within

this thesis, the first measurement of the α–particle and proton quenching parameters

of loaded and unloaded LAB is described. These parameters are crucial for an efficient

background suppression, necessary to reach a sensitivity above the current limit in 76Ge of

T 0ν
1/2 > 2.1 × 1025 y (90% C.L.). For 0.3% Te–loading, the quenching parameter obtained

is kB = (0.0070± 0.0004) cm/MeV for α–particles and kB = (0.0090± 0.0003) cm/MeV

for protons. Additionally, the spectral sensitivity of SNO+ to supernova ν̄e’s and
(−)

ν µ,τ ’s

is determined for the first time, using inverse beta decay and ν–p elastic scattering with

the measured quenching parameters. The obtained sensitivity to the mean energy of ν̄e’s

is 〈E〉 = 15.47+1.54
−2.43 MeV and of

(−)

ν µ,τ ’s is 〈E〉 = 17.81+3.49
−3.09 MeV.

Messung des Proton und α–Teilchen Quenchings in LAB basierten

Szintillatoren und Bestimmung der spektralen Sensitivität auf

Supernova Neutrinos im SNO+ Detektor

Kurzfassung

SNO+, der Nachfolger des Sudbury Neutrino Observatorys, ist ein bevorstehendes

Niederenergie–Neutrino–Experiment im 2 km tiefen Untergrundlabor SNOLAB in Kanada.

Die Acryl–Kugel im Zentrum des Detektors wird mit 780 t LAB gefüllt werden. Das

Hauptziel von SNO+ ist die Suche nach dem neutrinolosen Doppelbetazerfall von 130Te

mit einem neuartigen Szintillator, in dem natTe mit einer Anfangskonzentration von

0.3% über Wasser und ein Tensid gebunden wird. In dieser Arbeit wird erstmals die

Messung der α–Teilchen und Proton Quenching Parameter in diesem und in normalem

LAB beschrieben. Die Parameter sind unverzichtbar für eine effiziente Untergrund Un-

terdrückung, die notwendig ist um auf das bestehende Limit in 76Ge von T 0ν
1/2 > 2.1×1025 y

(90% C.L.) sensitiv zu sein. Der ermittelte Quenching Parameter bei 0.3% Te beträgt

kB = (0.0070± 0.0004) cm/MeV für α–Teilchen und kB = (0.0090± 0.0003) cm/MeV für

Protonen. Zusätzlich wird erstmals die spektrale Sensitivität von SNO+ auf Supernova

ν̄e’s und
(−)

ν µ,τ ’s bestimmt über den inversen Betazerfall und die elastische ν–p Streuung

zusammen mit den gemessenen Quenching Parametern. Die ermittelte Sensitivität auf die

mittlere Energie der ν̄e’s ist 〈E〉 = 15.47 +1.54
−2.43 MeV und der

(−)

ν µ,τ ist 〈E〉 = 17.81 +3.49
−3.09 MeV.
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Chapter 1

Introduction

Over the last decades, liquid scintillation detectors immensely gained in importance

within the field of neutrino and astroparticle physics due to their power to detect the

charged secondaries of neutrino interactions down to energies of O(keV) in realtime. The

scintillation light yield scales with the energy of the charged particle, providing valuable

kinematic information. The additional property of a signal pulse–shape dependence on the

particle’s stopping power furthermore enables particle identification. The underlying effect

is known as ionization quenching. With the evolution of both, detector technology and

understanding of the scintillator properties, respective experiments grew in the second half

of the last century from small–scale to multi–tonne detectors. Several large–scale liquid

scintillator detectors with up to 1 kt scintillator mass are currently operational worldwide

and multi–kilotonne detectors are being designed.

The SNO+1 detector is a spherical, unsegmented 780 t liquid scintillator detector in

the construction phase about to being commissioned. It is the successor experiment of

SNO and located in Canada’s SNOLAB, which is one of the world’s deepest operating

underground laboratories. SNO+ is a multi–purpose low–background detector with the

principal objective to search for the neutrinoless double beta (0νββ) decay of 130Te. For

this purpose, natTe will be loaded into linear alkylbenzene (LAB) based scintillator after

a measuring phase with unloaded LAB. Te–loading only became possible due to a novel

technique, using water and a photoreactive surfactant (PRS) to bind Te stably in the

solution. This state–of–the–art metal–loading technique is applied for the first time in the

SNO+ experiment.

One of the goals of the unloaded scintillator phase of SNO+ is the measurement of

the background spectrum without the contribution from the isotope itself. In order to

build a profound background model and to develop efficient tagging techniques for the

0νββ decay search, the energy dependent light yield functions of the charged particles

have to be very well known in both, unloaded and Te–loaded scintillator. Since ionization

1SNO+: Sudbury Neutrino Observatory.
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quenching affects the total light yield, the light yield function strongly varies between dif-

ferent particles and is reduced the stronger the higher the ionization energy loss of a particle.

Within this thesis, the light yield functions of protons and α–particles, the most

relevant ions in the context of SNO+ backgrounds, are measured with respect to the

nearly unquenched electron response for six different LAB based scintillators with different

fluor concentrations as well as with and without water plus PRS and with and without

Te, to systematically investigate the influence of the different components. Additionally,

two Nd–loaded LAB based scintillators are used, addressing the former goal of SNO+

to search for the 0νββ decay of 150Nd. All light responses determined in this thesis are

parameterized with one quenching parameter kB, or two parameters, kB and C, using

Birks’ law. These parameters are the basis of a correct light yield simulation in the SNO+

Monte Carlo (MC) and are indispensable for the analysis of future data. The quenching

parameters of, for instance, LAB with 2 g/l PPO and 15 mg/l bis–MSB determined within

this work in a one parametric fit are kB = (0.0096 ± 0.0003) cm/MeV for protons and

kB = (0.0076 ± 0.0003) cm2/MeV2 for α–particles. The results of this thesis yielded the

first publication of the proton quenching parameters for LAB based scintillators and the

first measurement of ionization quenching in the novel kind of scintillator including water

and PRS.

Despite the general, great progresses concerning the knowledge about liquid scintil-

lator properties, some fundamental questions are still unanswered, like the question of

whether the same quenching parameters do describe the light yield function of different

ions but in the same liquid scintillator or not. Within this thesis, proton and α–particle

quenching is measured simultaneously under exactly the same conditions and only with

internal particles, avoiding surface effects. This work thus offers an excellent opportunity

to answer this question. For all compounds tested in this work, a 4σ–5σ difference between

the Birks’ parameter kB for protons and for α–particles is observed in a one parameter

fit, strongly disfavoring the hypothesis of the same parameter value for different ions in

the same scintillator. This conclusion is also supported by the two parameter fit results.

It is furthermore an open question, how strongly the measurement conditions affect

the observed ionization quenching parameters and, consequently, how transferable the

results are from one experiment to another. Within the present work, the influence of the

detector sensitivity to the electron light Cherenkov component on the observed quenching

parameters is thoroughly discussed. It is this component, which can lead to significant

differences between measurement results from different experiments. It is furthermore

demonstrated that, under the same conditions concerning the Cherenkov light yield,

results are transferable. The α–particle quenching results from this work are for this

purpose compared to two further and independent measurement results using LAB based

scintillator, obtained with very different approaches. All results are in very good agreement.
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On the basis of the measured proton quenching parameters, the sensitivity of

large–scale LAB based scintillator detectors to the supernova νµ, ν̄µ, ντ and ν̄τ sum

energy spectrum is determined, using ν–p elastic scattering. Joined in parallel is the

determination of the spectral detector sensitivity to supernova ν̄e’s via the inverse beta

decay reaction. The results of the latter sensitivity study enter the analysis of the ν–p

elastic scattering events. This work presents the first comprehensive sensitivity study of a

combined measurement of these two reaction channels.

The thesis at hand is organized as follows: Sec. 2 gives an overview over the theory

of scintillation in organic liquids. In Sec. 3 the fundamentals of core collapse supernovae

are summarized and Sec. 4 gives an introduction to the basic neutrino properties in

the Standard Model. The SNO+ experiment is shortly described in Sec. 5. Section 6

provides the detailed description of the ionization quenching measurement set–up and

the data analysis, which is finalized with a thorough discussion of the results. In Sec. 7

the sensitivity of SNO+ and of a 20 kt LAB based detector to supernova neutrinos is

determined. The thesis is completed with a conclusion given in Sec. 8.

All calculations in this thesis use natural and SI units unless stated otherwise. Devia-

ting units are listed together with all natural constants relevant for this work in Appendix A,

Tab. A.1. All references to figures, tables and equations in the appendix are preceded with

a capital latter, referring to the respective chapter in the appendix.





Chapter 2

Theory of scintillation in organic

liquids

2.1 Introduction

Hand in hand with his discovery of X–rays in 1895, Wilhelm C. Röntgen observed the

luminescent behavior of barium platinocyanide crystals in the vicinity of his cathode

ray tube [1]. As the scintillation light was appearing and vanishing in coincidence with

the tube being switched on and off, Röntgen casually found a way to detect radiation

with the additional advantage of an instantaneous response. The door was opened to

scintillation detectors and the first inorganic scintillators, made of CaWO4 or ZnS, were

used in the following years. Until today, tens of different inorganic scintillators have

been developed [2]. Their advantage is a high light yield, their disadvantage are the

slow decay times down to O(µs) and, in some cases, a hygroscopic behavior. In 1947,

the first organic scintillators, crystalline naphtalene and anthracene, were introduced by

Hartmut Kallmann [3, 4]. Organic scintillators have decay times of O(ns) and are thus

faster than inorganic solutions though with a lower light yield. To date, anthracene is the

most efficient1 pure organic scintillator known and its light yield is the standard reference

value for comparisons. However, it cannot be grown in large crystals like naphtalene,

so John B. Birks started in the late 1940s studying mixed organic crystal scintillators

containing only small amounts of anthracene [5]. In parallel, two more convenient types of

organic scintillators, organic plastic and organic liquid scintillators (LSs), were developed

[6, 7, 8], not suffering from limitations in size and shape. A further important step in the

history of organic scintillators was the discovery of different light responses to different

particles of the same energy. During Lieselott Herforth’s investigations of the scintillating

properties of solid and liquid organic compounds [9], the doctoral student of Kallmann

observed the different time profile of the luminescent light pulse of organic scintillators

after irradiation with α and β particles, establishing the basis for α/β–discrimination in

today’s commercial LS counters [10]. The underlying effect is known under the expression

1Scintillator efficiency is understood as the light output per unit particle energy.
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of ionization quenching, described in detail in Subsection 2.6.3, forming one of the main

subject areas of the thesis at hand.

The scintillators being examined within this dissertation are based on LAB, thus

organic LSs. In the following, the main classes of organic scintillators are summarized,

before the focus is directed on organic LSs. The basic physics of the processes causing

light in organic liquids as well as processes reducing the light yield, relevant for this work,

are recapitulated. More information can be found in the references [11, 12], which are the

guideline for this chapter.

2.2 Classification of organic scintillators

Organic scintillators exist in the form of single– and multi–component systems. Depending

on the amount of components, they are classified as unitary, binary or ternary systems.

Systems with more than three components are in general possible, though they lack par-

ticular advantages and are barely applied. Examples for unitary systems are anthracene

(pure crystal), LAB (pure liquid) and polysterene (pure plastic), where only pure crys-

tals are of practical use since the efficiencies of the other two types are too low. Though

the emission spectra of liquid or plastic scintillators are red–shifted compared to their

absorption spectra (see Fig. 2.1), an effect known as Stokes shift, the emission spectra

of single–component scintillators generally still have a non negligible overlap with the

absorption spectra. This leads to an increased opacity due to multiple absorption and

reemission processes. To enhance the Stokes shift and thus reduce the losses by self–

absorption, a second, and eventually third, organic component is usually added, forming

binary and ternary systems. These one or two solutes, or fluors, are to efficiently absorb

the light emitted by the primary component, the solvent, and to reemit it at longer wave-

lengths, where the solvent is transparent. Thus, solutes are also called wavelength–shifters.

An illustrative presentation is given in Fig. 2.2 for LAB scintillators. Common primary

solutes are e.g. 2,5–diphenyloxazole (PPO) and p–terphenyl and appropriate secondary

solutes are e.g. p–bis–(o–methylstyryl)–benzene (bis–MSB) and 2,2’–p–phenylene–bis–(5–

phenyloxazole) (POPOP). To avoid self–absorption by the solutes, they are admixed in a

low concentration, which is typically at the percent level for primary solutes and at the

sub–percent level for secondary solutes. While a primary solute is necessary to increase

the quantum yield of the scintillator, a secondary solute is mainly to adapt the emitted

wavelengths to the experimental needs and boundary conditions as, for instance, the peak

sensitivity of the utilized photodetector, the transparency of detector parts and regions of

high absorption by the specimen of interest. Besides the binary and ternary liquid and

plastic solutions consisting of solvent, primary and possibly secondary solute, also binary

crystal solutions exist (e.g. naphtalene with anthracene). Although efficient scintillators,

they are, however, more difficult to produce and less convenient in application and thus

rarely used.
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absorption emission

Figure 2.1: Absorption and fluorescence light emission spectrum of anthracene (from [13],

modified). The numbers 0, 1, and 2 in the term scheme (bottom) denote vibrational levels,

where the first number refers to the ground state S0 and the second to the first excited singlet

state S1. The species intrinsic molar extinction coefficient ε defines the light absorption strength

per molar concentration.

2.3 Loaded organic scintillators

The main constituents of organic scintillators are hydrogen, carbon and partly oxygen.

However, these compounds can be additionally loaded with high–Z elements attractive for

different purposes. Standard hydrocarbon compounds show, for instance, no photopeak

due to the low–Z constituents and the respectively vanishing photoelectric cross section

for typical gamma–ray energies. Adding e.g. lead or tin to the scintillator provides a

certain fraction of photoelectric gamma ray conversion [15] turning organic scintillators

into comparatively cheap and fast gamma–ray scintillators. Another interest in loading

organic scintillators, especially in neutrino physics, arises from the interest in neutron

detection as for example in the pioneering neutrino experiment by Clyde L. Cowan and

Frederick Reines in 1956 [16] or in DayaBay2 [17], one of the currently operating neutrino

experiments. In these cases, elements like Cd or Gd are added to strongly increase the

neutron capture cross section and thus the detection efficiency. Furthermore, an interest

2Named after the nuclear reactor complex in Daya Bay, China.
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LAB + 1g/l bisMSB
LAB + 3g/l PPO + 20mg/l bisMSB
LAB + 3g/l PPO
LAB
excitation with 410nm
excitation with 450nm
excitation with 350nm
excitation with 330nm

Figure 2.2: Absorption (filled areas and right ordinate) and fluorescence (crosses and left

ordinate) spectra of LAB–based scintillators, taken from [14]. The spectra are for LAB as unitary

system, in a binary system with PPO or bis–MSB as primary fluor and in a ternary system with

PPO as primary and bis–MSB as secondary fluor. The same colors refer to the same compounds.

The excitation wavelengths used in the fluorescence measurements are given in the legend.

can lie in the investigation of the loaded element itself. Organic scintillators can be loaded,

for instance, with known double beta decaying isotopes to search for the 0νββ decay. In

the case of the SNO+, the elements of interest are Nd and Te. Details about the respective

loading are given in Chapter 5.

2.4 The electron structure of organic molecules

Photoluminescence is understood as the emission of visible or ultraviolet (UV) light with

a characteristic spectral shape after the absorption of radiation with normally higher

energy. Whether an organic compound is luminescent or not thus depends on the energy

levels of electrons in the molecules, i.e. the electron structure. In terms of molecular

orbital theory, the individual atomic orbitals overlap in the formation of molecules and

the electron probability density between the atoms increases, forming binding molecular

orbitals, or decreases, forming anti–binding molecular orbitals. The component of the

molecular orbital angular momentum in the direction of the internuclear axis is quantized

and reduced to the values λ~ (λ = 0, 1, 2, ...). Following the spectroscopic notation pattern

for atomic orbitals (s, p, d, ...), molecular orbitals are designated by σ, π, δ, ..., according

to the value of λ. An example is given in Fig. 2.3.

In the case of organic molecules, the structure is largely determined by the electron

structure of the C atom. Its ground state configuration is 1s22s22p2. The ”binding”

ground state configuration, however, is 1s22s2p3, where one of the 2s–electrons can be

considered to be excited into a 2p–state. In this configuration, carbon offers four valence

electron orbitals (one 2s and three 2p) of which a linear combination can contribute to
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Figure 2.4: sp3 hybridization [18].

One s– and three p–orbitals form four

sp3 hybrid orbitals in the same atom.

every molecule orbital. This phenomenon of hybridization occurs, if the atomic s– and

p–levels are very close such that the resulting binding energy is larger than in the case

of pure orbitals, like in C, and only if the atom forms a molecule with at least one other

atom. Hydrocarbons can exhibit different C hybrid orbital configurations. However, only if

the configuration contains a system of π–orbitals with delocalized electrons, the compound

is luminescent. Localized σ–electrons are more tightly bound to the parent C atom than

delocalized π–electrons and it thus requires more energy for their excitation. Only π–

electrons can be excited with radiation of wavelengths in the visible or UV range and as a

consequence emit light of similar wavelengths. In the sp3 hybridization as e.g. in methane

(CH4), one s–orbital and three p–orbitals form four equivalent sp3 hybrid orbitals in one

atom (see Fig. 2.4). The hybrid orbitals of the C atom form together with the 1s–orbitals of

the H atoms four binding σ–orbitals and no π–orbitals. Compounds with sp3 hybridization

are non–luminescent and thus no scintillators. A second possible configuration is given by

sp2 hybridization, where three equivalent sp2 hybrid orbitals are formed, leaving one of the

original p–orbitals unchanged. In the simplest example benzene (C6H6), inherent to e.g.

LAB, the overlap of the sp2 hybrid orbitals with each others and with the H atoms lead to σ–

bonds (see Fig. 2.5, left) and the pure p–orbitals of the C atoms form molecular π–orbitals

(see Fig. 2.5, center and right) with six delocalized π–electrons. It is the excited states

of these delocalized π–electrons, which are responsible for luminescence. Hydrocarbon

molecules with this configuration are called aromatic and are the compounds of liquid

organic scintillators. In the third possible configuration, resulting from sp hybridization
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Figure 2.5: Benzene molceule (C6H6) [18]. The overlap of the carbon sp2 hybrid orbitals with

each others and with the hydrogen s–orbitals form σ–orbitals (left). Each C atom has a pure

px–orbital occupied with one electron (center). The resulting binding molecular π–orbitals form

a continuous electron distribution around the molecule with six delocalized electrons (right).

as e.g. in acetylene (C2H2), the two unchanged atomic p–orbitals combine to molecular

π–orbitals. These molecules are also luminescent.

2.4.1 π–electron states

The π–electron states of an organic molecule can be represented schematically as in

Fig. 2.6. The energy of the levels depend on the spin orientation of the excited electron

relative to the unpaired electron in the ground state, separating the electronic states into

singlet (anti–parallel orientation) and triplet (parallel orientation) states. The ground

state S0 is a singlet state followed by a series of excited singlet S1,2,3,... and triplet states

T1,2,3,... up to the π–ionization energy Iπ. The triplet states are always lower in energy

than the respective singlet states according to the first Hund’s rule3. Each level has

vibrational sub–levels, typically denoted by a second suffix, e.g. S00,01,02,... in the case of

the ground state. The energy spacing between electronic levels is about 2 − 4.5 eV and

about 0.1 − 0.2 eV between vibrational levels. At energies above the energy difference

between S3 and S0 usually an additional sequence of σ–electron excited states exists.

The presence of the σ–excited states disables the observation of any higher π–excited

states in absorption spectrometry. The π–electronic absorption spectrum arises from fast

transitions, taking ∼ 10−15 s, from the lowest vibrational sub–level of the ground state

S00 to S10,11,12,...,20,21,.... The optical transition from S0 to T1, changing spin, is forbidden,

however the triplet states are populated indirectly either by intersystem crossing – the

radiationless transition between states of different multiplicities due to electron spin–flip –

from S1 to T1, or via ionization after which 75% of the ionized molecules recombine into

triplet states. In the recombination processes, the production ratio of molecules in excited

singlet and triplet states is about 1:3 corresponding to the spin multiplicities. In the case of

excitation by ionizing particles, involving collisions and Coulomb interactions, the selection

3The term with the maximum multiplicity lies lowest in energy.
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Figure 2.6: Energy levels of π–electrons in an organic molecule (Jablonski diagram) (from

[11], modified). S0 denotes the ground state, S1,2,3 excited singlet states and S00,01,02,...,10,11,...

the corresponding vibrational sub–levels. T1,2,3 are excited triplet states and Iπ is the ioniza-

tion energy of the π–orbital. Solid lines illustrate radiative transfer, dashed lines non–radiative

transfers.

rule that the spin does not change is potentially violated, leading to semi–forbidden

transition as a result of the failure of spin–orbit coupling and the S1 → T1 transition

strength increases.

Having absorbed radiation, the organic compound starts luminescing, where the lumi-

nescence appears in three types: fluorescence, phosphorescence and delayed fluorescence.

Each type is shortly described in the following text passages.

Fluorescence corresponds to a radiative transition from S1 to S0 with a lifetime of

∼ 10−8 to∼ 10−9 s. If states above S1 are excited, usually no radiative transitions into lower

excited states or the ground state are observed due to rapid (∼ 10−11 s) internal conversion –

the radiationless transition into a state of the same multiplicity at lower energy – between

neighboring excited states. Also the period of molecular vibrations is with a duration

of ∼ 10−13 s much shorter, such that the molecule normally reaches thermal equilibrium

through vibrational relaxation before emission and the transition into any of the ground

state sub–levels takes place from S10. The resulting characteristic vibrational structure of
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Figure 2.7: Time dependent scintillator light

output consisting of a fast and a slow compo-

nent from fluorescence and phosphorescence,

respectively [19].

the fluorescence spectrum is visible in Fig. 2.1. The intensity I of the fluorescence light

decays exponentially with time t as per

I(t) = I(0)f(t) e−t/τ (2.1)

where τ is the decay time. The function f(t) accounts for the finite rise time, for which

an exponential behavior f(t) = −I(0) exp(−t/τrise) is assumed in [20] and a Gaussian

distribution in [21]

Phosphorescence refers to light emission at longer wavelengths than fluorescence, also

decaying exponentially but with an orders of magnitude longer decay time of 10−4 s up

to seconds. Phosphorescence is explained with the existence of a metastable state at a

level below S1, here the first excited triplet state. T1 is long–lived since the transition

into the singlet ground state is forbidden and involves spin reversal, severely slowing down

the transition. The shape of the phosphorescence spectrum is similar to the fluorescence

spectrum, since also in this case the transition can occur into any of the S0 sub–levels as

sketched in Fig. 2.6. Fluorescence and phosphorescence are also known as fast and slow

scintillation component of the observed scintillation light pulse, as shown in Fig. 2.7. Their

relative intensities depend on the population frequentness of triplet states and therefore

primarily on the ionization strength of the exciting radiation.

Delayed fluorescence is possible at room temperature or hotter. At these temperatures,

molecules in T1, or another metastable state, potentially acquire sufficient thermal energy

during their excited lifetime to return to S1 instead of decaying into S0. This luminescence

process is called delayed fluorescence, because the subsequent S1 → S0 transition has the

same spectrum as fluorescence but with a strongly increased period of > 10−6 s and a

non–exponential decay behavior. This kind of delayed fluorescence is also called eosin–type

delayed fluorescence and is not observed in scintillator molecules because of a relatively

large energy gap. Delayed fluorescence that occurs in aromatic hydrocarbons, as notably

in pyrene, is called pyrene–type delayed fluorescence. Responsible for this late fluorescence
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light are triplet–triplet interactions in which two colliding molecules in excited triplet states

form excimers, excited unstable dimers [22]. Some of these dissociate thermally into excited

and ground state singlet monomer molecules and some fluoresce. The excimer fluorescence

spectrum lacks the vibrational structure and is at longer wavelengths than the monomer

fluorescent spectrum. p–type delayed fluorescence therewith shows additional features not

present in the fast scintillation component.

2.5 The processes of liquid scintillation

In this section, the main physical processes taking place in the liquid scintillation mecha-

nism of multi–component solutions are described. They are essential for the interpretation

of the measurement results presented in Chapter 6. To follow the notation in [11, 12],

solvent molecules are identified with X, primary solute molecules with Y and secondary

solute molecules with Z. A ternary system therewith reads XY Z. Molecules in the first

excited π–state are indexed with one asterisk, in a higher excited state with two asterisks

and ions with the respective sign. The spin multiplicity is indicated with a prefixed

superscript. Hence, a solvent molecule in the third excited singlet state S3, for instance,

reads 1X∗∗. Dimers are abbreviated with D, excimers thus with D∗.

The processes occurring, when energy is deposited in LS solutions, are subdivided into

primary and secondary processes, where the first are processes that transfer energy from

the traversing radiation into excitation or ionization energy of the solvent molecules X and

the second are processes that compete for the excitation energy. Direct excitation of the

usually low concentrated Y and Z is negligible. The processes are in detail:

primary processes

I) excitation of π–electrons, yielding

a) 1X∗(∗),

b) 3X∗(∗),

II) excitation of σ– or carbon 1s–electrons, yielding

a) σ∗(∗),

b) 1s∗(∗),

III) ionization, yielding

a) 2X+ + e−,

b) F+ + F− (i.e. free radicals),

secondary processes

IV) transfer between X’s, via

a) absorption and reemission,

b) collisional processes,
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V) transfer from X to Y , via

a) absorption and reemission,

b) collisional processes,

c) dipole–dipole coupling,

VI) transfer from X or Y to Z,

a) absorption and reemission,

b) collisional processes,

c) dipole–dipole coupling,

VII) fluorescence,

VIII) internal conversion,

IX) intersystem crossing,

X) excimer fluorescence,

XI) D∗(∗) dissociation into 3X∗(∗) and 1X,

XII) excimer dissociation into 2 1X,

XIII) phosphorescence.

Only a few percent of an ionizing particle’s energy is converted into fluorescence and

phosphorescence light. The remainder is mostly dissipated thermally or in terms of lattice

vibrations. The slow electrons from process IIIa produce secondary excitation and ion-

ization (I–III) or recombine with any 2X+ yielding 1X∗∗, 3X∗∗ or σ∗∗, with 1X yielding
2X− or with F+ yielding F . Note that the latter means a permanent damage reducing the

scintillation efficiency. Thus, the superfluous exposition to radiation like daylight is to be

avoided. The energy transfer processes IV and V are described in the next subsection, as

well as the interplay of the main processes for a ternary system, which are schematically

shown in Fig. 2.8.

2.5.1 Energy transfer

In an aromatic solvent, where the molar concentration is ∼ 103 mol/m3, excited 1X∗(∗)

and unexcited 1X molecules collide with high frequency forming excited unstable dimers
1D∗(∗). The mean time between 1X∗(∗) production and 1D∗(∗) dissociation is O(10−11 s),

two orders of magnitude larger than the fluorescence decay time. Besides emission and

reabsorption processes (IVa), rapid excimer formation and dissociation (IVb)

1X
∗(∗)
A + 1XB → 1D

∗(∗)
AB →

1XA + 1X
∗(∗)
B , etc. (2.2)

is thus responsible for the excitation energy migration from one solvent molecule XA to

another one XB. The efficiency is only reduced by possible dissociation ending in an excited

triplet state (XI) or occurring radiationless into 2 1X (XII) or by excimer fluorescence (XII).

In a binary system, Y is excited by radiative or non–radiative energy transfer from

X∗(∗). Radiative transfer is the absorption and reemission of solvent fluorescence light
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Figure 2.8: The main secondary processes in a ternary aromatic system XY Z, following solvent

excitation. Only singlet states S are shown without their vibrational sub–levels. Solid lines

represent fluorescence and dashed lines processes without light emission. The roman numbers

refer to the individual processes listed and described in the text.

by Y (Va). Non–radiative transfer occurs by collisional migration (Vb) or by weak

dipole–dipole coupling, also called Förster resonance energy transfer (Vc) [23, 24]. At

the typical, low concentrations of the solute, only a combination of both non–radiative

mechanisms is able to quantitatively explain the energy transfer from the excited solvent

to the solute [25]. Non–radiative transfers are desired since the quantum yield of the

solvent fluorescence is low. However, the transition rates of both, collisional processes

and resonance energy transfer depend on the distance to a Y molecule. A higher solute

concentration increases the transfer efficiency and thus the total light yield. An increase of

the concentration, on the other hand, also increases self–absorption by other Y molecules

and decreases the light yield. The optimum concentration therefore differs from binary

system to binary system and needs to be determined experimentally.

Also Z in a ternary system is excited by the just mentioned radiative and non–radiative

transitions (VIa-c). Direct solvent solute transfer 1X∗ → 1Z∗ is in principal possible,

however, since the Y concentration [Y ] is typically one to two orders of magnitude higher

than the concentration [Z], the transfer usually occurs fromX∗ to Y ∗ to Z∗. In the radiative

transfer 1Y ∗ → 1Z∗, 1Y ∗, fluorescence is absorbed by 1Z before it can escape from the

compound. Different from solvent fluorescence, primary solute fluorescence typically has
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a high quantum yield and radiative transition forms an efficient transfer, while collisional

and resonance transfer become less probable due to the large distances to Z molecules.

The radiative transfer efficiency, though, also depends on [Z], but in this case this can

be compensated by the size of the detector. The probability that 1Y ∗ fluorescence light

escapes through a thickness d (cm) before it is absorbed by the secondary solute Z is

I

I(0)
= 10−ε[Z]d, (2.3)

where ε is the molar extinction coefficient of 1Z (see also Fig. 2.1) averaged over the 1Y ∗

fluorescence spectrum. An example with typical values is the interplay of PPO and POPOP,

where ε ∼ 3 × 104, with [Z] = 1.33 × 10−4 mol/m3. In this example, only about 1% of

the PPO fluorescence escapes from 5 mm thickness, while the rest is absorbed by POPOP.

The scintillator thickness is commonly larger in applications of scintillation counting, as is

the case in the measurements presented in Chapter 6.

2.6 Quenching

Processes that reduce the quantum yield of a scintillator are called quenching. There are a

number of different quenching mechanisms competing with different secondary scintillation

processes or changing the ratios of primary processes described in the previous subsection.

Depending on the kind of quenching, either the total scintillation light yield is reduced,

keeping the time profile conserved or single components of the light pulse are affected,

changing both, the intensity and the time profile. The quenching mechanisms important

for this work are presented in more detail below.

2.6.1 Color and impurity quenching

Color quenching occurs, when the specimen itself or any impurity absorbs parts of the

emitted scintillation light. In the standard situation, the foreign molecules are not

luminescent and the absorbed spectral component is lost. The intensity decreases and the

spectrum lacks, or is strongly reduced in, the respective wavelengths. The overall decay

time does not change. If on the other hand the molecule does emit light in the visible or

UV region, the intensity decreases less, but the spectral shape may change as well as the

effective decay time.

Furthermore, any molecule M different from X, Y or Z introduced to the compound

also competes with the non–radiative energy transfer processes (IVb, Vb,c and VIbc) be-

tween the scintillator molecules, leading to impurity quenching. This also affects both,

total and time–resolved fluorescence intensity, as an additional way of depopulating the

excited state is created. Assuming, for the ease of explanation, a unitary system, the decay

time τ = τX in Eq. 2.1 is derived from the sum of the rates k0X of processes competing for

the 1X∗ excitation energy (IV,VII-XII) as per
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1

τX
= k0X . (2.4)

The introduction of a molar concentration of M increases the total rate by kM , the inter-

action rate with M molecules, and changes the decay time according to

1

τXM
= k0X + kM . (2.5)

In case of binary or ternary systems, the above sum is extended by the rate parameter kXY
of solvent–solute energy transfer or kXY and kY Z , the rate parameter for solute–solute

energy transfer. This type of impurity quenching is also referred to as dynamic to

distinguish it from static impurity quenching, where M molecules form ground–state

complexes with any of the fluorophores. These complexes can be excited but are normally

not luminescent so that they do not contribute to the total fluorescence light yield. In this

case, a molecule M effectively turns a molecule X non–luminescent and thus reduces the

total light yield, but leaves the pulse decay time unchanged. It should be noted at this

point that loaded elements (Section 2.3) are from this point of view impurities and lead to

impurity and possibly also to color quenching.

One prominent dynamic quenching agent in LS experiments is oxygen. Oxygen is

a special case of impurity quenching and commonly individually considered under the

expression of oxygen quenching.

2.6.2 Oxygen quenching

It was first observed in 1938 that an increase of dissolved oxygen molecules O2 in LS

solutions substantially reduces the light output [26]. The reduction is remarkably strong,

since dioxide does not only lead to impurity quenching, but possesses further possibilities

to quench. Being an electron acceptor, for instance, it tends to absorb slow electrons from

solvent ionization processes (IIIa), which are then not available anymore for secondary

excitations and ionizations. The overall light yield is reduced. Furthermore, O2 exhibits

the seldom case of a triplet ground state with an energy difference to the first excited

state that is with 0.98 eV smaller than the spacing of scintillator molecule states. Thus,

excitation energy of aromatic hydrocarbons in triplet states, especially in the long–lived T1

state, is transferred to nearby4 dioxide, returning the hydrocarbon into the ground state

and exciting the oxygen molecule

3X∗ + 3O2 → 1X + 1O∗2. (2.6)

The transition resulting in phosphorescence, or eventually fluorescence, is bypassed. Due to

the highly preferred triplet–triplet state transition, oxygen always quenches if close enough

to a triplet state excited scintillator molecule and strongly suppresses the slow scintillation

4Nearby in this context means that the molecular orbitals overlap.
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component. On top of that, excited O2 molecules are in a singlet state and thus chemically

reactive, which may lead to peroxidation and thus the destruction of the original scintillator

molecule.

Elimination of dissolved oxygen from solutions

There are several methods to eliminate the dissolved oxygen from LS solutions. Three

common ways of deoxygenation are ultrasonic degassing [27], vacuum distillation [28] and

bubbling with N [26, 29] or Ar. For all measurements conducted within this work, N or

Ar bubbling was used.

When non–saturated LS is exposed to air, more oxygen molecules diffuse into the solu-

tion than from it until thermodynamic equilibrium is reached. However, if the oxygenated

scintillator is flushed with N or Ar, both gases are available with high oxygen–purity, the

partial pressure of oxygen in the gas bubbles present in the solution can be considered to

be zero. Oxygen therefore diffuses into the gas bubbles and escapes with them. The escape

rate is thus roughly proportional to the total surface of the bubbles in the scintillator and

the partial pressure of oxygen, which in turn is proportional to the oxygen concentration.

Measurements have demonstrated that after about 20 min of nitrogen flushing with bubbles

of about 4 mm diameter, no further oxygen diminishment is achieved [30]. Besides oxygen

purity, it is important that the gas used for bubbling is not electron affine itself. Besides

noble gases like Ar, N is one of the few gases for which electron capture is an endothermic

process and therefore suitable for this method.

2.6.3 Ionization Quenching

While the aforementioned quenching processes are induced by changes within the com-

pound and are occurring independent of the source of excitation, ionization quenching

strongly depends on the ionization energy loss of the traversing radiation and thus

on the kind of particle. As stated earlier, ionized scintillator molecules 2X+ mainly

recombine into triplet states and the more X are ionized, the more the fast scintillator

component is suppressed and the slow component enhanced. As a consequence, the

signal drafted in Fig. 2.7 has a more distinct tail for highly ionizing particles, like α–

particles, than for sparsely ionizing particles, like β–particles, as clearly visible in Fig. 2.9.

Ionization quenching is a primary process and expected to be independent of any so-

lute. This expectation has been confirmed within this thesis [32], as will be shown in Sec. 6.

Since the quantum yield of fluorescence is higher compared to phosphorescence, also

the integrated light yield L is reduced. As long as interactions between the excited or

ionized molecules are negligible, the light response is proportional to the particle energy E

dissipated in the compound

L = SE, (2.7)
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Figure 2.9: Averaged

and peak normalized

scintillation time profiles

from α– and β–particle

excitation in PC with

1.5 mg/l PPO [31].

As α–particle source,
210Po was used and the

β–particles result from

Compton scattering of

γ’s from a 137Cs source.

or, in differential form,

dL

dx
= S

dE

dx
, (2.8)

where x is the path length in the scintillator and S the scintillation efficiency. The

differential light yield dL/dx is also referred to as specific fluorescence and dL/dE is the

differential scintillation efficiency. Equations 2.7 and 2.8 very well hold for fast electrons,

which have a low energy loss per path length dE/dx and the individual excited or ionized

molecules lay several molecular distances apart. For many of the standard organic liquid

and plastic scintillators, linearity of the scintillation light yield has been observed down to

about 100 keV [33, 34]. At lower energies, dE/dx is increased with respect to fast electrons

and L rises non–linearly with E. For heavy charged particles like protons, α–particles or

other ions, that have a relatively high dE/dx, the deviation from linearity is even stronger,

due to the high density of ionized and excited molecules along the particle’s path.

In order to describe the non–linear behavior, Birks proposed the semi–empirical rela-

tion

dL

dx
= S

dE/dx

1 + kB dE/dx
, (2.9)

on the basis of measurements with anthracene crystals [35]. The specific ionization density

is B dE/dx, where B is a constant. k is a quenching parameter accounting for the effect

of ionization quenching and the product kB became known as Birks’ parameter. For small

dE/dx, Eq. 2.9 approximates Eq. 2.8 and for very large dE/dx Eq. 2.9 becomes

dL

dx
≈ S

kB
(2.10)

and thus constant. Equation 2.9, commonly referred to as Birks’ law, only considers

unimolecular de–excitation. Bimolecular de–excitation and diffusion are neglected.
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Figure 2.10: Specific flu-

orescence dL/dx as function

of energy loss dE/dx for an-

thracene crystals [11]. Adapted

to the data points are Eq. 2.9

with kB = 0.0053 cm MeV−1

and S = 1040 MeV−1 (a) and an

equation taking bimolecular de–

excitation into account, not con-

sidered here (b). dL/dx of low

energy externally incident parti-

cles is lower than expected due

to surface effects.

Figure 2.10 shows Eq. 2.9 as a function of dE/dx for fixed S and kB together

with measurements of the differential light yield of slow and fast electrons, of protons

and of α–particles. The measurements were taken with anthracene crystals and confirm

the linear light response Eq. 2.8 of fast electrons, followed by the non–linear behavior

according to Eq. 2.9 of slow electrons, of protons and of α–particles and an approximately

constant differential light yield Eq. 2.10 for high dE/dx, mainly from slow α–particles.

Also the overall trend of an increasing deviation from linearity with increasing dE/dx

is clearly evident. However, it appears that the value of kB, properly describing the

α–particles, is too low for protons contradicting a common assumption that the response

of a particular organic compound to any ion is quantified by the same Birks parameter [36].

Regularily, instead of the derivatives dL/dx and dE/dx, the integrated light yield

L(E) = S ·
∫ E

0

dE

1 + kB
(
dE
dx

) (2.11)

is displayed as function of the particle energy, as shown in Fig 2.11. In this equation, the

denominator quantifies the effect of ionization quenching. In [37], the effect of ionization

quenching is described by a second order polynomial, instead of a first order polynomial

like in Eq. 2.11. Since a higher order polynomial can only improve the agreement between

an analytical description and data, Eq. 2.11 is sometimes encountered in its generalized

form

L(E) = S ·
∫ E

0

dE

1 + kB
(
dE
dx

)
+ C

(
dE
dx

)2 . (2.12)

The coefficients of the polynomial are not interpreted in [37] and C simply parameterizes

a quadratic correction term, added to Eq. 2.11.
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Figure 2.11: Calculated light output of NE102

plastic scintillators to electrons, protons, deuterons,

tritons and α–particles as function of kinetic particle

energy, taken from [11] and slightly modified.

Even though the scintillation behavior is more complex in liquids than in crystals,

Eq. 2.11 and 2.12 are generally successfully used to analytically describe LS data. However,

it should be kept in mind that Eq. 2.11 is an unimolecular equation which is kept very

simple for a description of a process as non–trivial as ionization quenching. In this process,

a multitude of factors affect the time profile of the quenched pulse as the duration of

ion recombination or the dissipation of vibrational energy to neighboring molecules. The

equation is semi–empirical.

Others than the aforementioned quenching processes, the strength of ionization

quenching is normally not quantified absolutely, but in relation to the light yield of a

reference particle, which is typically an electron. The light yield in ionization quenching

measurements thus is frequently represented in electron equivalent energy or as the ratio

of ion response Li to electron response Le [38, 36]

Qi(E) =
Li(E)

Le(E)
. (2.13)

This equation is also referred to as quenching function of the ion i, or, if given for a discrete

particle energy, as quenching factor.

Surface effects

If organic crystal, plastic or liquid scintillators are excited from external ionizing particles

with a short residual range r in the compound, excitation energy escapes and the observed

specific fluorescence is less than expected from Eq. 2.9 and varies non–linearly with r.

To account for this effect, Birks has introduced an energy dependent parameter ϕ [11],

which describes the ratio of experimentally determined and theoretical (Eq. 2.9) specific

fluorescence
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Figure 2.12: Light response as function of

kinetic electron energy in anthracene crystals

[11]. Eq. 2.15 is adapted to the data with

ϕ = 1 (solid line) for photoelectrons from γ–

ray irradiation (crosses) [39] and ϕ as function

of electron energy (dashed line) for external

electrons (circles) [40].

ϕ =
(dL/dx)exp
(dL/dx)theo

(2.14)

yielding
dL

dx
= ϕS

dE/dx

1 + kB dE/dx
. (2.15)

The change in the light yield behavior due to surface effects has been experimentally

determined for different scintillators and particles [11] and is exemplarily shown for

electrons in anthracene in Fig. 2.12.

Further causes, besides excitation energy escape, are surface contaminations, surface

aging and back–scattering of primary particles. Within this work, only internal charged

particles were used to measure the respective light responses eluding surface effects. These

effects have to be taken into consideration, though, when it comes to comparisons with

results from authors using external particles.



Chapter 3

Fundamentals of core collapse

supernovae

With the observation of solar and supernova (SN) neutrinos [41, 42, 43, 44] a new field of

astrophysics has been opened. Recently, also the first ultra–high energy neutrino events of

still unknown source have been observed well–above the atmospheric background [45]. In

this field of particle astrophysics, neutrinos from galactic and extra–galactic sources play a

key role, since they are an unparalleled probe of cosmological objects and their dynamics.

The solely weakly interacting neutrinos traverse high densities and the photon–filled

universe mainly unhindered and thus conserve valuable information like direction and

energy.

A remarkable source of cosmic neutrinos of all flavors and types are core collapse

supernovae (CCSNe), a subclass of SNe, as summarized in Sec. 3.1. Also CCSNe are

further subdivided by their initiating cause, which is shortly discussed in Sec. 3.2. The

aim within this work is the determination of liquid scintillator detector sensitivities

to pivotal features of SN neutrino energy spectra. This chapter therefore focuses on

the type of CCSNe that has comparatively well–predicted neutrino emission spectra,

the so–called Type II SNe. This type represents the vast majority of CCSNe and

is possible for O/Ne/Mg core as well as Fe core stars. The causes that can initiate

stellar core collapse are outlined in Sec. 3.2. The results presented in Sec. 7 assume

the collapse of an Fe core, giving more significance to these progenitors here. Details

about the course of Fe core collapses ending in a Type II SN are given in Sec. 3.3

and their frequentness in the Milky Way in Sec. 3.4. Neutrino fluxes resulting from

simulations and kindly provided by Hans–Thomas Janka and Lorenz Hüdepohl [46, 47],

are shortly described in Sec. 3.5 and the analytical description of the neutrino spectra

is discussed in Sec. 3.6. In the context of SN neutrinos, νµ, ντ , ν̄µ and ν̄τ are grouped

as νx, since they can only interact via the flavor and particle type independent neutral

current (NC) reactions. If none of the flavors and types is distinguishable, the neutrinos are

labelled as ν. All constants and non–SI units used within this chapter are listed in Tab. A.1.
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Figure 3.1: Supernova taxon-

omy using spectral features, light

curve profiles and their evolution

in time, taken from [50].

The drawback of supernovae as cosmological neutrino source is their rare occurrence, as

outlined in Sec. 3.4, which is furthermore not reliably predictable in time. The last nearby

CCSN, SN 1987A, occurred in February 1987 in the ∼ 50 kpc distant Large Magellanic

Cloud. Despite the enormous distance, 24 neutrino events were counted on Earth in total

with three1 detectors: Kamiokande II2, IMB3 and the Baksan Scintillator Telescope [42,

43, 44]. At that time, only ν̄e were observed, as the total cross section for the inverse

beta decay (IBD) reaction ν̄e + p → e+ + n is the largest. Present–day and near–future

low energy neutrino detectors are collectively sensitive to all neutrino flavors and types

and an observation of SN neutrinos, especially from a galactic progenitor, will provide

unprecedented information about still unknown mechanisms driving the explosion.

3.1 Classification

Historically, supernovae are classified according to the absorption lines in their emitted

photon spectra and the shape and magnitude of the light curve, i.e. the light intensity as a

function of time as seen by an observer on Earth without the influence of the atmosphere.

A schematic overview is given in Fig. 3.1, which is followed in this section.

The key differentiator is the absence or presence of H lines in the optical spectrum

dividing SNe into Type I and Type II, respectively. Both types are subdivided. If the near

maximum spectrum of a Type I SN shows strong absorption due to Si, it is of Type Ia,

if not, it is of Type Ib/c. Type Ib and c further distinguish SNe according to strong He

1Also LSD (Liquid Scintillator Detector) observed a five–neutrino excess above background [48]. How-

ever, the event happened about 5 hrs earlier and the source of the excess has never been clarified unambi-

guously [49].
2Kamioka Nucleon Decay Experiment.
3Irvine–Michigan–Brookhaven.
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absorption features in the first case and weak or no features in the latter. The subdivision

of Type II SNe is less simple and includes light curve profiles and their time evolution,

as indicated in the right–hand side of Fig. 3.1. The spectrum of a Type IIb SN evolves

from Type II–like to the spectrum of a Type Ib SN, turning Type IIb into an intermediate

class. Type IIP/L/n have a Type II spectrum throughout, with narrow lines (Type IIn)

or without (Type IIP/L) and a light curve that reaches a plateau (Type IIP) or displays

a linear decrease (Type IIL).

More details about spectral taxonomy are given in [50]. This classification, however, is

based on the observed emission spectra and not on their cause: the progenitors’ structure

and the processes in the final stages of their life. The cause is, on the other hand, what

defines whether an intense flux of neutrinos will be present or not. A more suitable clas-

sification in the sense of neutrino physics is therefore the distinction between SNe arising

from explosive thermonuclear burning, also called runaway fusion, ignited on degenerate

white dwarfs (. 9 M�) in a binary system (Type Ia) and SNe driven by the gravitational

collapse of massive (& 9 M�) single stars (Type II and Ib/c). Supernovae can be divided

accordingly into thermal runaway supernovae and core collapse supernovae. Thermal run-

away supernovae [51] will not be further discussed here as in this case most of the explosion

energy is transferred into heavy element synthesis and kinetic energy of the ejecta and not

into neutrinos. Whereas in a standard CCSN, > 99% of the binding energy are expected

to be released in the form of neutrinos and antineutrinos of all flavors [52].

3.2 Causes of core collapse

Core collapse can be initiated for different reasons: electron capture [54], excess of the

Chandrasekhar mass limit [55], pair–instability [56] and photodisintegration [57]. The cause

of a core collapse as well as the type of the resulting SN, if any, and the remnant left behind

are largely determined by the mass M∗ of the progenitor at birth and its metallicity4, as

extensively discussed in [53] and illustrated in Fig. 3.2. The mass and metallicity range of

primary interest within this thesis is the region in Fig. 3.2 associated with Type II SNe

after Fe core collapse, i.e. initial progenitor masses of about (10− 40) M� over nearly the

full range of metallicities. Closely related in the context of neutrino phenomenology is the

mass region of O/Ne/Mg core collapse from about (9 − 10) M�, completing the region of

Type II SNe. Type II SNe form with nearly 90% [53] the vast majority of all CCSNe and

their course is presently the best understood, which leads to the most profound predictions

concerning the emitted neutrino fluxes. Type II SNe resulting from Fe core collapse are

initiated by the excess of the Chandrasekhar limit, which is discussed in more detail in the

next subsection. The other initiating scenarios are only outlined here, following Fig. 3.2,

and the reader is pointed to the corresponding references for more details.

4The metallicity is the total mass fraction of elements heavier than helium in the star’s initial matter.
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Electron capture supernova

Progenitors with masses of about (9 − 10) M� have an O/Ne/Mg core that withstands

the gravitational pressure by electron degeneracy5 pressure. Mass, and thus the inward

pressure, grows through phases of He and H shell burning and the density in the core

increases. The consequently increasing electron Fermi energy together with low reaction

thresholds leads to electron captures on Ne and Mg, reducing the degeneracy pressure.

The core collapses and in doing so induces explosive oxygen fusion, leading to a Type IIp

SN that results in a neutron star[54, 58]. Electron–capture SNe are accompanied by the

emission of neutrinos [59, 60] and expected to represent up to ∼ 30% of all CCSNe [58, 61].

Iron core collapse supernova after excess of the Chandrasekhar mass limit

In case of the more massive Fe core stars with about (10 − 100) M�, the core becomes

gravitational unstable, when its mass exceeds the Chandrasekhar mass limit [55] of

MCh ≈ 1.457

(
2

µe

)2

M� (3.1)

and disintegration of the Fe–group isotopes in the core is promoted. In this equation,

µe = A/Z is the mean molecular weight per electron [55, 62] and A and Z are as usually

the atomic mass and number. The progenitor mass region extends to higher masses in

the case of moderate or high metallicity. The collapse results in a Type II, Type Ib/c

or jet–powered SN, leaving a neutron star or black hole behind. In the latter case, the

formation of the black hole causes a defined end to neutrino emission. Furthermore, at

masses & 40 M� (blue dashed lines in Fig. 3.2), the collapsing star is unable to launch a

shock wave and thus a SN without being driven by a jet. More details about jet–powered

SNe are found in [53, 63]. For the earlier mentioned reasons, only Type II SNe due to the

collapse of an Fe core progenitor are within the scope of this work. They represent with

nearly 60% the largest fraction of all CCSNe and are often assigned as standard or ordinary

CCSN. The details of the respective scenario are given in the subsequent section.

Pulsational pair–instability and pair–instability supernova

Supermassive progenitors of roughly (100 − 260) M� with vanishing metallicity encounter

electron–positron pair production from high–energy photons. This instant reduces the

thermal pressure necessary to sustain gravitational pressure and the core becomes instable

[56, 64]. If the initial mass is in the range of about (100− 140) M�, the primary contraction

of the core does not launch a full collapse yet. During contraction, the core gets dense

and hot enough to ignite oxygen fusion to heavier elements. This exothermic reaction

induces a thermonuclear runaway explosion that has just enough energy to eject the outer

5Fermions reach degeneracy when their Fermi energy begins to exceed the thermal energy kBT . In this

state, matter is so dense that further compaction would require electrons to occupy the same energy states,

which is forbidden by the Pauli exclusion principle.
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layers [53, 65]. After the explosion, the residual core contracts to regain a stable burning

state. When the temperature again reaches the pair–instability threshold, a second

thermonuclear explosion occurs, once more shedding several solar masses of material. It is

anticipated that a series of these mass loss pulses proceed until the remaining mass drops

below ∼ 100 M� [53, 65] or the explosion is energetic enough to unbind the star. If the

mass reduces to . 100 M�, the temperature is too low to support pair–creation and the

core undergoes normal core collapse. Since the mass of the formed Fe core is large and

the entropy high, the remnant is most probably a black hole [53]. The pulsational period,

that can last thousands of years, is also called pulsational pair–instability and is described

in more detail in [65]. If the progenitor mass is between 140 M� and 260 M�, already

the first thermonuclear runaway explosion is violent enough to disrupt the entire star. A

true pair–instability SN occurs, leaving no remnant behind [53, 66]. For slightly higher

metallicities, the mass limits shift to higher masses, as indicated by the brown diagonally

hatched and red cross hatched areas in Fig. 3.2.

In the case of black hole formation, an enormous amount of energy (∼ 1055 erg) is

expected to be released in the form of neutrinos [64, 67] with a sudden end of their emission.

However, the occurrence of pair–instability SNe is assumed to be < 1% of all CCSNe [53, 67]

and the nature of a star’s death due to pair–instability is neither fully understood nor in

detail agreed on and an ongoing topic of intense research.

Core collapse due to photodisintegration

At highest initial progenitor masses of & 260 M� and lowest metallicity, the hot stellar

core can generate gamma rays energetic enough to directly commence photodisintegration

in the center. This reaction is endothermic, no thermonuclear explosion occurs and the

collapse continues to a very massive black hole (& 100 M�) directly, without a SN [53, 57].
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Figure 3.2: Remnants and SN type of non–rotating single massive stars as function of initial mass and

metallicity (qualitatively). Below the thick green line, stars keep their hydrogen envelope, above they do

not, consequently separating the regimes of Type II and Type I SNe. At the lowest shown masses (white

strip at the very left), the cores do not collapse and white dwarfs are created. On the right of the two

vertical black solid lines, neutron stars are created in O/Ne/Mg or Fe core collapses, until black hole (BH)

formation by fallback of material onto the initial neutron star sets in (black dash–dotted line). Right of and

below the black dash–dotted line, the remnant is always a BH, except in the red cross hashed area. This is

the regime in which pair–instability SNe occur, which leave no remnant behind. The green vertically striped

area indicates the domain of Type IIp SNe, which are expected to be weak and observationally faint due to
56Ni fallback at higher masses and lower metallicity. The purple cross hatching indicates the occurrence of

Type IIL/b SNe that have a H envelope below 2M�. The turquoise dashed area is the domain of Type Ib/c

SNe, which are expected to be weak and faint at lowest included metallicity, again due to 56Ni fallback. In

the white areas right of the blue dashed lines, no outgoing shock wave is launched and thus no ”normal”

(non–jet powered) SNe occur. In the brown diagonally hatched regime, pulsational pair–instability SNe

occur that start their ejection before the core collapses. The picture and most of the caption is taken from

[53]. The picture was slightly modified to include further information from [53].



3.3. Classic scenario of iron core collapse supernovae 29

3.3 Classic scenario of iron core collapse supernovae

Over tens of millions to billions of years the stability of the pre–collapse star against its

own gravity is retained by central fusion of H to He. However, when H in the stellar

core gets depleted and nuclear fusion slows down, the star contracts which in turn raises

the temperature and density. As soon as both are high enough and as long as the

stellar interior is not stabilized entering the regime of strong electron degeneracy, the

next nuclear burning sequence is ignited in which three He nuclei fuse to C. The newly

ignited nuclear fusions compensate the energy drain in radiation and neutrinos until the

fuel gets again exhausted and contraction continues. Considering progenitor masses of

about 10 M� to 100 M�, this process is repeated in successive stages of nuclear burning,

producing increasingly heavier nuclei, until the last stage, Si burning, is reached. The

core finally consists of the heavy ashes consisting of Fe–group elements which do not

ignite. Figure 3.3 illustrates the resulting onion–like structure within a progenitor in its

last throes, including the pauses of contraction at each burning sequence exemplarily

assuming M∗ = 25 M�. The evolution speeds up considerably because each sequence

releases progressively less thermal energy. Furthermore, when central temperatures reach

Tc ∼ 109 K, which is after about the onset of C burning, e+e− pairs become abundant

and consequent energy losses via νν̄ pair production scale up dramatically. At this point,

neutrino losses are larger than radiation losses and the evolution of the core decouples from

the one of the envelope. The maximum neutrino luminosity is reached during Si fusion [69].

Figure 3.4 sketches the conditions necessary to ignite the individual burning stages

and the conditions that are reached by different progenitors. At lowest CCSN progenitor

masses, 8 M� .M∗ . 10 M�, the stars reach electron degeneracy before they reach the Ne

burning state. They thus do not synthesize heavier elements but develop O/Ne/Mg cores

before they collapse.

Silicon burning

The rapid nucleosynthesis over the different burning stages chiefly advances via alpha

processes, meaning by adding He nuclei to heavier nuclei. After a massive star has mainly

S and Si in its core and when it further contracts until the core reaches ∼ 3.3× 109 K [69],

Si burning sets in. At these temperatures, Si and other elements can be photodisintegrated

and outgoing alpha particles can be captured, creating yet heavier elements. Si burning

lasts about one day to a couple of days and 56Ni, made from 28Si plus 7α particles,

which is identical to 14α particles, is the final fusion product with a binding energy per

nucleon of (8642.71 ± 0.20) keV/A [70]. Alpha capturing to reach the next isotope, 60Zn

(15 alphas), with a binding energy of (8583.27 ± 0.18) keV/A per nucleon requires energy

instead of releasing any and thus does not take place in the stellar core. The β+ emitter
56Ni is the most tightly bound nuclei in the alpha process chain and decays with a half–life

of about 6.08 days into 56Co, which further decays under the emission of another positron

and with a half–life of about 77.27 days into the stable 56Fe. For this reason 56Fe is the
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Figure 3.3: Schematic shell struc-

ture of a Type II supernova progen-
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at the indicated boundaries between

the zones. The time periods are cal-

culated for a star of 25 M� [68]. Only

the most abundant elements are in-

dicated. The radial thickness of the

layers is not drawn to scale.

most abundant metal in the universe though it is not the isotope of highest binding energy.

This attribute is commonly falsely accredited to 56Fe, having (8790.32 ± 0.01) keV/A,

though it truly belongs to 62Ni with (8794.55± 0.01) keV/A, which is not part of the alpha

process chain. It is also not directly produced from 56Fe, as 6He or 3H would be necessary,

which are unstable and basically not existing in the core. 56Fe even only comes at third

place since also 58Fe has with (8792.22± 0.01) keV/A a higher binding energy. Simply the

fact that 56Fe represents the most common endpoint of nucleosynthesis in stars leads to

this wrong conclusion.

The following paragraphs describe the final seconds of a standard CCSN, accompanied

by a vast neutrino flux able to generate an event burst in low energy large scale neutrino

detectors. They are thus described along with the time distribution of the neutrino lumi-

nosities shown in Fig. 3.5.

Onset of the collapse and neutrino trapping

During the Si burning sequence, the generation of thermal energy by fusion, supporting

the core against collapse under its own gravity, declines while the Fe core grows. Simulta-

neously the neutrino losses continue relentlessly. The stellar interior further contracts and

degeneracy pressure of relativistic electrons takes over the support. The core finally be-

comes gravitational unstable when its mass exceeds the Chandrasekhar mass limit Eq. 3.1.

It then typically has a radius of RFe ∼ 3000 km [72]. At the temperatures and densities

reached at that point, two additional processes deprive the Fe core of its energy necessa-

ry to avoid collapse: photodisintegration and electron capture. At temperatures around

1010 K, the hard ambient radiation shifts the nuclear statistical equilibrium (NSE)6 towards

photodisintegration. The radiation starts to break up Fe nuclei in the process

6The NSE is the equilibrium between strong interactions, synthesizing heavier nuclei, and photodisinte-

gration, breaking the nuclei up, at T > 5× 109 K and ρ ≈ 109 g/cm3.
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Figure 3.4: Central temperature Tc
and central density ρc regimes of the

final stages of massive stars. Colored

areas are stellar death regions, la-

belled according to the initial cause

of core collapse. Red dashed lines

mark the necessary conditions for

the next nuclear burning stage. Yel-

low lines indicate the beginning

of degeneracy (short–dashed) and

strong degeneracy (long–dashed) of

the electron plasma. Blue lines

schematically track the stellar evo-

lution (ignoring wiggles and loops at

the burning stages) according to the

approximate progenitor’s birth mass

region. Stars not reaching a death

zone stabilize by electron degener-

acy, cool and form white dwarfs. The

picture is taken from [67].

γ + 56Fe→ 13α+ 4n, (3.2)

melting it down to He and free neutrons and thereby partially undoing millions of years of

stellar evolution in less than one second. To overcome the binding energy of heavy nuclei,

a great amount of thermal energy is consumed and the support against gravitational pull

diminishes. The core further contracts and though the sustaining degeneracy pressure

increases with growing density, so does the electron chemical potential. Thus, deep in the

star’s interior, electron capture reactions on heavy nuclei, predominantly on 56Fe,

e− + (A,Z)→ (A,Z − 1) + νe, (3.3)

and on free protons

e− + p→ n+ νe, (3.4)

considerably accelerate. The electron gas pressure is reduced and energy is again carried

away from the core in the form of neutrinos, where both effects are promoting the

implosion. Additionally, the number of leptons is decreased. Note that in this phase, as

long as the core density is below about (1011 − 1012) g/cm3, the herein released νe escape

freely and with increasing luminosity, as shown in the left panel of Fig. 3.5 before the

core bounce at the zero point of the time axis. The degree of deleptonization during

the collapse depends on the matter composition including the free proton fraction and

on the duration of the infall until the critical density is reached and neutrinos become

trapped. Within numerical models of CCSNe, both aspects are connected to the equation

of state (EOS) of nuclear matter used.
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Figure 3.5: Exemplary evolution of νe (solid line), ν̄e (dashed line) and νx (dotted line) lumi-

nosities L time t resulting from simulation of a 15 M� progenitor star [71]. The explosion was

obtained only after manipulation. The post–bounce phase (right) also shows the mean energies

〈E〉 of the emitted neutrinos. The picture is taken from [71]. The cooling phase not fully shown

lasts & 10 s with roughly exponentially decreasing luminosity.

After about 100 ms from the onset of instability, the inner part of the Fe core with a

radius of ∼ 100 km exceeds densities of ∼ 1011 g/cm3. The νe produced in Eq. 3.3 and 3.4

are trapped in the collapsing material, since their mean free path becomes smaller than

the inner core radius, leading to a sharp cut in the Lνe time evolution around t = 0 ms in

Fig. 3.5. Before the critical density is acquired, only about 1051 erg are released in the form

of νe’s with a degenerate spectrum of high energy. The dominant source of matter opacity

is coherent scattering of neutrinos. After neutrino trapping, the inner core collapses quasi

homologously, i.e. with subsonic velocity proportional to the radius. At the same time,

since the collapse of the inner core pulls off the support for the overlying material, the outer

core collapses with supersonic free–fall velocity.

Core bounce and shock formation

Within about 10 ms, the inner core shrinks into a sphere with R < 10 km of mostly neutrons,

overshooting the nuclear matter density ρ0 ≈ 2× 1014 g/cm3 by about a factor of two [72].

The collapse comes to a sudden halt due to the repulsive component of the strong force and

still infalling material rebounds, building up a shock front upon the clash with the outer

core material that continues to crash down. At its propagation through the outer core, the

emerging shock wave dissipates its energy by disintegrating the remaining layer of Fe–group

material into free nucleons. Since the Q–value of electron captures on free protons is much

larger than on neutron–rich nuclei, the electron capture rate escalates, generating a flood of

νe right behind the shock and increasing the number of neutrons. The newly born remnant,
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commonly called protoneutron star (PNS), settles into hydrostatic equilibrium, while the

further on supersonically infalling outer core material is abruptly decelerated within the

shock. Having traversed the shock, the material propagates much slower towards the PNS,

accreting it. The remnant is rapidly growing, developing an unshocked core and a shocked

mantle.

Deleptonization burst and shock stagnation

The outward moving shock wave is opaque to the electron capture νe’s, having them piling

up behind the shock front until it reaches a zone with ρ ≈ 1011 g/cm3 about 10 ms after

the bounce [72]. At this radius, a large fraction of the neutrinos decouple and move out

freely. This surface of last neutrino interaction is called neutrinosphere in analogy to the

photosphere of a normal light emitting surface. The sudden release of leptons, carrying

away energy of O(1051 erg) in a few milliseconds from the core, is called deleptonization

burst, or also neutronization burst, which leaves an unambiguous signature in the Lνe time

spectrum in Fig. 3.5. The duration of the burst, though, which is defined by the duration

of shock propagation, is too short to significantly reduce the electron lepton number and

only the low–density outer zones of the PNS are neutronized. This phase presumably does

not strongly depend on the progenitor, due to the universal character of the homologously

collapsing inner core [62, 73].

The energy losses due to photodisintegration and the deleptonization burst severely

weaken the shock. Once it was thought that the shock wave is vigorous enough to not

only stop the collapse but to also expel the outer shells of the star, generating a prompt

SN within a few hundreds of milliseconds. However, state–of–the art simulations of Fe

core collapse cannot confirm the prompt explosion scenario [72]. The shock instead stalls

∼ 100 ms after the bounce at a radius of about (200 − 300) km and matter continues to

track through it being disintegrated [72, 74].

Accretion phase

The PNS keeps on accumulating mass due to the infalling matter that successfully passes

through the shock front. If more matter is accreted than degeneracy pressure of the nucle-

ons can sustain, the PNS collapses into a black hole, presumably without a SN. Otherwise

the nascent remnant keeps on growing throughout this phase of quasi–stationary accretion,

until after ∼ 500 ms the shock wave is revived and the remaining outer peripheries ejected

in a delayed SN explosion.

Right after core bounce and from the beginning of the accretion phase on, neutrinos

of all flavors and types are thermally created, additionally to the νe from Eq. 3.4. The

material behind the shock front, mainly composed of free nucleons, electrons and photons,

is heated by the accretion. The electron degeneracy is partly lifted in the hot PNS mantle

and thus positrons are created, subsequently leading to the production of ν̄e by positron
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captures on neutrons

e+ + n→ p+ ν̄e. (3.5)

Neutrino – anti–neutrino pairs of all three flavors are produced [74] by nucleon–nucleon

bremsstrahlung

N +N → N ′ +N ′ + ν + ν̄, (3.6)

electron–nucleon bremsstrahlung

e± +N → e± ′ +N ′ + ν + ν̄, (3.7)

e+e− annihilation

e+ + e− → ν + ν̄, (3.8)

plasmon decay

γ → ν + ν̄ (3.9)

and photoannihilation

γ + e± → e± + ν + ν̄. (3.10)

νx are additionally created from the annihilation of electron neutrino – anti–neutrino pairs

νe + ν̄e → νµ,τ + ν̄µ,τ . (3.11)

Since νe and ν̄e are additionally created in the capture reactions Eq. 3.4 and Eq. 3.5, their

luminosities are larger than the νx luminosity in this phase and comparable to each other

(see Fig. 3.5).

The created neutrinos have energies around 40 MeV according to the surrounding

temperatures [74]. Hence νx can only react via NC interactions while electron flavor

neutrinos can additionally undergo charged current (CC) reactions, the inverse of Eq. 3.4

and Eq. 3.5, by which they are in fact dominated. The electron (anit–)neutrinos are

kept in thermal equilibrium by these processes until they decouple from matter at the

neutrinosphere, as illustrated in the upper panel of Fig. 3.6. Their spectrum is thus

thermal and represents the matter temperature around that radius. Because the neutron

density is higher than the proton density and thus the rate of electron captures Eq. 3.4

compared to positron captures Eq. 3.5, the νe neutrinosphere is further outside and at

lower temperatures than the ν̄e neutrinosphere. The neutrinosphere picture is not exact,

however, since the cross sections grow with E2 and various energy groups decouple at

different radii and thus temperatures. The neutrinospheres have a finite thickness and the

total neutrino spectra are averaged over several temperatures and thus only quasi–thermal.

The case with the νx lays slightly different. They are kept in thermal equilibrium

by creation and destruction through the NC reactions Eq. 3.6–3.10 and the inverse until

these reactions freeze out. The thermalized neutrinos, though, do not yet stream off freely

from this radial position. Following Fig. 3.6 and [75], this sphere is named energysphere,
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Figure 3.6: Schematic of neutrino

spectra formation in the atmosphere

of a supernova core [75].

after which the νx are still trapped by ν–N inelastic scattering. However, the energy

transfer between neutrinos and the heavy non–degenerate nucleons at temperatures around

10 MeV [75] is inefficient. The νx diffuse outwards, until their mean free path becomes

large enough to leave the core unhindered from the neutrinosphere, or transportsphere in

this depiction, before reaching thermal equilibrium with the colder matter at this sphere

surface. The thermal neutrino spectra from the energysphere are thus smeared out and

shifted to lower temperatures, until the neutrinos propagate freely. As a consequence,

the spectral shape does not follow the one of a true black–body spectrum anymore, but

was found to be pinched [75, 76], meaning reduced in the spectral width, and to have

slightly smaller mean energy 〈Eνx〉, as illustrated in Fig. 3.7. If the thermal spectrum

is described by a Fermi–Dirac distribution, a so–called pinching parameter is thus in-

troduced in order to account for this instance, as will be discussed in more detail in Sec. 3.6.

Since νx have less sources of opacity than
(−)

ν e, they decouple closer to the core from

matter. Following the hierarchy of the neutrinosphere radii Rν , the negative temperature

gradient towards the outside of the remnant and the shift of 〈Eνx〉, the mean energies of

the νe, ν̄e and νx distributions are ordered according to

〈Eνe〉 < 〈Eν̄e〉 . 〈Eνx〉 . (3.12)

In some early simulations, the smearing and downward adjustment of the νx spectra was

neglected for the sake of numerical simplicity and the neutrinos were assumed to have

the same energy at the transportsphere as at the energysphere. The energy hierarchy

was pronounced. With increasing interest in reliable neutrino spectra as observables, the

modification of the νx energies progressively entered simulations, mitigating the hierarchy.

The Rν are expected to be in this phase between 50 km and 100 km [72, 74], thus

smaller than the radius of shock stagnation. When the still propagating shock has passed

the individual neutrinospheres, the bulk of neutrinos produced right behind the shock front
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Figure 3.7: Comparison of pinched and

unpinched thermal distributions, where

τ̄ES characterizes the distance between

energy– and transportsphere. Tflux is

the spectral flux temperature, which is

the temperature of those neutrinos that

stream. The figure and more details are

found in [75].

streams out unhindered, leading to the luminosity hump in Fig. 3.5. Only the neutrinos

with high energies are blocked by the increased matter density at the shock position due

to a higher interaction rate. Neutrinos created deep inside the hot remnant take instead

hundreds of milliseconds to propagate to the respective neutrinosphere and thus continue

to stream out also after shock stagnation. The duration of the accretion phase as well as

the details of the neutrino spectra depend on progenitor properties like its compactness7 or

mass profile. Additionally, the opacity of the shock to the highest neutrino energies further

weakens the mean energy hierarchy Eq. 3.12.

Delayed explosion and cooling

After shock stagnation, a SN can only follow, if the shock is revived being fed with

about 1050 − 1051 erg of energy [77]. The scenario of shock revival is still, and partly

controversially, discussed [67] and a so far unknown combination of mechanisms including

for instance neutrino–heating, convection, rotation and magnetic fields. Highly elaborate

simulations world–wide show that commonly accepted assumptions are to date not able to

explode Fe core progenitors throughout all possible masses. Within this thesis, spherically

symmetric, i.e. one–dimensional, simulations performed at MPA Garching [47, 78] are used

that are ending with the accretion phase and thus before the explosion. The simulation

details are summarized in Sec. 3.5.1.

A mechanism assumed to strongly support the shock revival is the delayed neutrino–

heating [72, 74, 79], in which a fraction of the neutrinos emitted from the neutrinospheres

deposits its energy in the dense post–shock region. The largest energy deposition is due

to νe and ν̄e captures on the free nucleons behind the shock, since the respective CC

cross sections are larger than the NC cross sections. Neutrino–heating, though, is in tight

competition with neutrino cooling through neutrino losses via the reactions Eq. 3.4–3.11.

Close to the neutrinospheres, neutrino losses dominate, yielding in a cooling layer. As

7Compactness is defined as the ratio of a given mass to the radius enclosing this mass at the time of

bounce [73]. A higher compactness is equivalent to a higher rate of infalling mass.
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the cooling rate declines much faster with radius than the heating rate, heating starts to

dominate at a certain point, the so–called gain radius Rg. Between Rg and the radial stalled

shock position, neutrinos can deposit a substantial amount of energy and revive the shock

wave, eventually initiating the stellar explosion. Neutrino–heating is sufficiently strong, if

a critical neutrino luminosity Lν,c has been overcome [67, 80], which depends on the mass

accretion rate Ṁ and the neutron star mass MNS as per

Lν,c ∝ β−2/5 Ṁ2/5 M
4/5
NS , (3.13)

where β is the post–shock to pre–shock density ratio. The caveat of this mechanism is

that, in spherical symmetry, it only yields explosions for O/Ne/Mg core progenitors, not

for Fe core progenitors [77, 81]. Multi–dimensional models revealed that effects like a

convective overturn [82, 83] in the gain layer of neutrino–heating or a standing accretion

shock instability (SASI) [84] can support the neutrino–driven shock revival and lead to

successful explosions. In multi–dimensional models, effects like these reduce Lν,c compared

to 1D models [83, 85].

The delayed supernova scenario is widely accepted and considered as sort of a

standard model of CCSNe [74]. The revival mechanism, though, is not yet conclusive

and still under study. Neutrino–heating, aided by convective processes and hydrodynamic

instabilities in the post–shock layer has become the most favored explanation for the

majority of SN explosions. For further potential explosion mechanisms see [67].

Accretion and neutrino–heating stops after the take off of the shock wave and only

diffuse losses of neutrinos created in Eq. 3.4–3.11 continue, further cooling the PNS down

to its center. The luminosities decline roughly exponentially. After ten to tens of seconds,

the nascent neutron star (NS) becomes transparent to neutrinos and their luminosities

drop significantly [72]. Neutrino emission finally fades away, when no further neutrinos

are created in the cooled–down NS. Though at the beginning of the cooling phase, a mild

hierarchy of the mean energies as in Eq. 3.12 is observed, it dissolves seconds after the

burst [67] into

〈Eνe〉 ≈ 〈Eν̄e〉 ≈ 〈Eνx〉 . (3.14)

In the late cooling phase, the temperature profile within the PNS is flat and the

neutrinospheres are close together, due to the dominance of neutral currents under the

conditions in this stage [67], explaining the loss of hierarchy. The luminosities are of

similar magnitude during the entire cooling phase. The neutrino emission characteristics

in this phase are not expected to depend much on the progenitor mass [62].

Due to their only weakly interacting character, neutrinos are the most efficient in

carrying away energy from the collapsing star. For the above described scenario of CCSN,

neutrino emission is the cardinal energy drain. Only about 1% of the released gravitational
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energy is used up in the shock wave and further less, namely 0.01%, is converted into

electromagnetic radiation. The residual ∼ 99% are emitted as neutrinos totaling several

1053 erg. While the optical emission takes a few hours to diffuse to the stellar surface

and radiate away, intense neutrino emission starts already with the onset of the collapse

and gives a direct imprint of the thermonuclear processes involved in the individual CCSN

phases.

Summary

A standard CCSN passes in less than 1 s through its final evolution stages in which a

progenitor core with a radius of several thousand kilometers collapses into a hot, dense

neutronrich sphere, the PNS, of some tens of kilometers radius. The PNS either further

collapses into a black hole or forms within ∼ 10 s a NS about ∼ 10 km in radius. The

evolution stages comprise the onset of instability, core bounce and shock formation, shock

stagnation, quasi–stationary accretion, shock revival and explosion. The explosion is

finally followed by up to several tens of seconds of cooling. These stages of the delayed

explosion scenario, including cooling, are accompanied by a neutrino flux with basically

three distinct phases. First visible is an intense, less than 100 ms short, high energy νe
burst with a degenerate spectrum that is mostly independent of the progenitor mass. The

second part are approximately thermal νe, ν̄e and νx spectra throughout the ∼ 500 ms of

accretion phase with increased luminosities at the beginning, and typically a hierarchy

of Lνe ≈ Lν̄e > Lνx and 〈Eνe〉 < 〈Eν̄e〉 . 〈Eνx〉. In this case, the spectral shapes and

magnitudes depend on the progenitor. The third part are thermal νe, ν̄e and νx spectra

during the tens of seconds lasting cooling phase. These spectra have similar luminosities

Lνe ≈ Lν̄e ≈ Lνx that are roughly exponentially decreasing and show a vanishing hierarchy

〈Eνe〉 ≈ 〈Eν̄e〉 ≈ 〈Eνx〉 after the first seconds of cooling. The total count of escaped

neutrinos outnumber the original amount of leptons of the collapsed core by an order of

magnitude.

At this point, no mechanisms that can change the neutrino flavor and thus the shape

of the individual spectra are considered. They are discussed in Sec. 4.

3.4 Occurrence of galactic core collapse supernovae

The youngest known remnant from a CCSN in the Milky Way is Cassiopeia A in the

constellation Cassiopeia. It was discovered in 1947 by radio detection [87]. The SN was

of Type IIb and it is believed that its first light reached the Earth about 300 years ago.

However, to the present day only one historical record of a potential observation of the

faint SN has been found [88]. The collapse occurred at approximately 3.4 kpc distance,

the progenitor star is unknown.
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Figure 3.8: Differential (top) and cumu-

lative (bottom) probability distribution of

the distance of core collapse supernovae

(ccSNe) and Type Ia supernovae (SNeIa)

from Earth [86].

The last directly observed galactic SN appeared in 1604 [89], known as Kepler’s

Supernova, in the constellation Ophiuchus about 6.1 kpc away from Earth. It was

of Type Ia [90] and visible by naked eye. It is named after Johannes Kepler, whose

observations written down in [91] track the event over one year. Since then and thus since

the invention of the first observational instrument, the optical telescope, first recorded in

1608 in the Netherlands, no further galactic SN has been observed.

Motivated by the richness of information gained from a detection of CCSN signals

like gravitational waves, electromagnetic radiation and neutrinos, the authors of [86]

determined amongst others the probability distribution of the distance and the expected

galactic CCSN rate. The rate expectation is found to be 3.2+7.3
−2.6 per century. The distance

distribution, shown in Fig. 3.8, peaks around 9 kpc from Earth. The generic distance for

sensitivity studies is 10 kpc [92, 93, 94, 95], which is, given the above distribution, only

about 1% less probable than the peak value and thus a reasonable assumption. For the

ease of comparison, a distance d = 10 kpc is also considered throughout this work.

The most promising massive single star candidate for a Type II SN in our galaxy is

Betelgeuse, also known as αOrionis, found in the constellation of Orion at d = (197±45) pc

[96]. Betelgeuse is a ∼ 107 yr old red supergiant presumably in the C burning phase,

thus nearing its final evolution stages. Its initial mass is uncertain, but expected to be

(10− 20) M� [97]. Hence the star is likely to form an Fe core and ultimately explode in a

Type IIb SN leaving a NS behind.

3.5 Numercial modeling

The foundation stone for hydrodynamic stellar modeling was laid in a debate between

Stirling A. Colgate, co–developer of the hydrogen bomb8 at the Lawrence Livermore

8Amongst others, Colgate investigated together with M. Johnson the resultant gamma rays and the

fallout from H–bomb explosions and performed numerical calculations.
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Laboratory, and Soviet scientists during the nuclear test ban negotiations in 1959 in

Geneva [98]. Colgate stated, relating to the satellite surveillance of high altitude H–bomb

explosions, that the detectors might be falsely triggered by the radiation emissions from a

SN. This argument was slurred over by the Soviet Ambassador Semjon K. Zarapkin saying

’Who knows what a supernova would look like?’. Following this, and with the newborn

interest in astrophysics, Colgate decided to continue his research on SN, even after the test

of the Soviet > 50 Mt Tsar bomb in 1961 and the strong encouragement by Edward Teller

to follow up on its detonation. Based on the work by Burbridge et al. [99], Colgate and

Montgomery Johnson started to investigate the ultimate cause of a SN, supported by

Subrahmanyan Chandrasekhar. With the first applications of numerical hydrodynamic

codes to the problem of stellar collapse and explosion, they intended to determine whether

thermonuclear detonation, as suggested in [99], can drive the explosion. However, the

simulations, performed by Richard White, demonstrated that the explosion fails as the

accompanying shock wave is not strong enough. Colgate and White started developing

models of stars about to collapse and White generated a program combining software

used to design bombs with EOSs for a star. The ultimate end point of a collapse was soon

identified as a neutron star, a merely hypothetical object at that time, and the problems of

its stiffness and the EOS became the central point of numerical hydrodynamic calculations.

This research helped validate the parallel work of Chandrasekhar on mass limits of stable

white dwarfs and moreover it revealed that a deposition of pre–emitted neutrinos as heat

in the mantle aids the shock wave in blowing off the outer shells of the star. The idea of

the neutrino–heating mechanism was born. In 1966 the research of Colgate, Johnson and

White finally resulted in a seminal article [100], edited by Chandrasekhar.

James R. Wilson, originally working on numerical simulations for nuclear weapons,

pursued the approach of neutrino transport from the center to the outer regions of the star

[101]. He soon became a pioneer in computer–based numerical modeling of SN explosions

and demonstrated the importance of neutrinos in the synthesis of heavy elements in SNe.

The investigations of Colgate et al. and Wilson were further paralleled by the work of

W. David Arnett [102] in hydrodynamic simulation of gravitational stellar collapse. In the

course of his work he predicted in 1977 new types of SNe, namely type Ib/c [103].

During the approximately 40 years since the pioneering works, the accuracy of the

numerical treatment within models and the input physics have been improved tremen-

dously. The role of highly sophisticated models is to help understanding the genesis of

neutron stars, black holes and heavy elements in SN explosions and to predict observables

from these events such as gravitational waves, light curves, pulsar kicks or neutrino

spectra. These tasks are strongly correlated with the more fundamental and long–standing

question of how collapsing stars succeed to explode. As mentioned earlier, neutrinos

seem to play a key–role in this quest. Originally, the transport of neutrinos was included

in spherically symmetric simulations, but a constrain to spherical symmetry turned

out to be insufficient to drive a successful explosion of progenitors with M∗ > 10 M�
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without making assumptions [104] that proved to be invalid under closer analyses [105].

However, also in the era of axially symmetric, i.e. two–dimensional, simulations, the

first successful explosions in fully self–consistent models were only reported around

the year 2000 [106, 107, 108, 109]. Some of the findings from 2D simulations are the

basic confirmation of the neutrino–driven explosion mechanism and the reduction of the

critical neutrino luminosity for explosions compared to spherically symmetric models

due to effects like the SASI. Independent of the recent successes in 2D modeling, the

simulations appear to be limited for at least some of the progenitor models. Thorough

cross–checks and code comparisons are necessary and ongoing. Additionally, three–

dimensional models are needed to explore the explosion mechanism in a more realistic

environment and to test the reliability of the less computing power intense 2D calcu-

lations. First results of 3D models have been accomplished by the Garching group [77, 110].

In order to make reliable predictions of observables like neutrinos over the entire course

of the SN event, self–consistent numerical simulations are necessary that include a stable

solution of the explosion mechanism of Fe core collapse SNe. Though theory has made

great progress in that direction, it is not yet at that point. The way things stand at the

moment, factors like approximations in the neutrino transport, the degree of stiffness9 of

the nuclear EOS or the influence of multi–dimensional effects on the neutrino emission at

t & 100 ms [77] all influence the neutrino luminosities, mean energies and the shaping of

the energy spectra, the key figures parameterizing the observable SN neutrino flux. The

relation between these parameters and progenitor properties thus strongly depends on the

settings in the models and it is thus not intended within this work to interpret the observed

neutrino spectra. However, even though neutrino spectra from different calculations vary

quantitatively and their interpretation suffers from this degeneracy, fundamental features

of the neutrino fluxes are generic and overall trends comparable [77]. As long as the time

evolutions of luminosities, mean energies and energy shapes agree qualitatively, detector

sensitivities to the spectral parameters, determined based on a specific calculation, are

valid across the different models. Qualitative agreement between neutrino spectra achieved

in different 1D and 2D simulations has been tested and confirmed in various publications

[111, 112, 113]. The scintillator detector sensitivities determined in Sec. 7 are based on an

analytical description which is in agreement with simulations and introduced in Sec. 3.6.

Additionally, spherically symmetric calculations, developed by the Core Collapse Modeling

Group at the Max Planck Institute for Astrophysics in Garching [78], are used in Sec. 7 to

study the variation of the neutrino event yield in the considered detectors, depending on

for instance the progenitor mass or the EOS. A short overview over these simulations and

the yielded neutrino spectra follow in the next subsection.

9”Stiff” in this context means, the remnant contracts slower [77]. The antonym is ”soft”. A stiffer EOS

leads to a less compact remnant.
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3.5.1 Neutrino spectra calculated in spherical symmetry by the Garching

group

All SN models considered in in this work were simulated at MPA Garching with the

PROMETHEUS–VERTEX code [47, 112]. The simulations are spherically symmetric and

cover the onset of the collapse, the core bounce and the accretion phase. None of the runs

produced an explosion. The set of simulations from the Garching group is based on a

selection of progenitor models from Woosley, Heger and Weaver [56] with mass M∗ = 11.2,

12.0, 15.0, 17.6, 17.8, 20.0, 20.6, 25.0, 27.0 and 40.0 M� as well as one older model from

Woosley and Weaver [114] with M∗ = 15.0 M�. The calculations were performed with

the softer EOS of Lattimer and Swesty [115] with a nuclear incompressibility of 220 MeV,

denoted by ls220, and the stiffer EOS of Shen [116], denoted by shen. For the 40.0 M�
progenitor, only a model using shen exists. Of the publicly available EOSs, ls220 agrees

the best with constraints from nuclear theory and astrophysical observations [73].

The resulting neutrino flux tables [46] provide the time–dependent luminosity L
(Fig. 3.9–3.11), mean energy 〈E〉 (Fig. 3.12–3.14) and second and third energy moment

〈E2〉 (Fig. 3.15–3.17) and 〈E3〉 at more than 1000 timesteps between about −0.276 s and

0.497 s post–bounce time t for every SN model mentioned above and for να = (νe, ν̄e, νx).

In the following, α represents any of all six neutrino types. The values given in the tables

were extracted from (400−500) km in the simulation’s output and transformed to a resting

observer’s frame at infinity, including the small effect of gravitational redshift from that

radius.

Two important aspects in view of the figures are to be noted. First, none of the ob-

servables is constant or nearly constant over time, except 〈Eνx〉 and 〈E2
νx〉 for one or two of

the progenitors and preferably the shen EOS. Therefore, observables from instantaneous

neutrino signals and their time–integrated values must be distinguished carefully and inte-

gration over time implies the summation of a set of different quasi–thermal spectra. The

resulting sum spectra are not necessarily as well reproduced by a quasi–thermal analytical

description as a spectrum from a shorter time period with approximately constant spectral

properties. The significance of the deviation and consequences for the interpretation of

neutrino data depends on the one hand on the SN itself and on the other hand on the event

statistics in the detector. Second, a direct comparison of the neutrino signals derived from

models run with ls220 and run with shen show a quantitative difference in the spectra. As

mentioned in Sec. 3.3, the duration of the accretion phase and the neutrino emission during

this phase depends on progenitor properties like its compactness. A more compact NS is

hotter and thus leads to increased luminosities and higher mean energies. The compactness

on the other hand is affected by the stiffness of the EOS and lower the stiffer the equation.

Furthermore influenced by the EOS is the position of the neutrinospheres, which evolves

typically at larger radii, and thus in a colder environment, if shen is applied compared

to runs with ls220 [73]. The neutrinos thus thermalize at different temperatures. These
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Figure 3.9: Electron neutrino luminosity Lνe time t for different progenitors and EOSs, using the tables

from [46]. The legend denotes the model, implying the progenitor mass.
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Figure 3.10: Electron anti–neutrino luminosity Lν̄e time t for different progenitors and EOSs, using the

tables from [46]. The legend denotes the model, implying the progenitor mass.
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Figure 3.11: Muon/tau (anti–)neutrino luminosity Lνx time t for different progenitors and EOSs, using

the tables from [46]. The legend denotes the model, implying the progenitor mass.
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Figure 3.12: Electron neutrino mean energy 〈Eνe〉 time t for different progenitors and EOSs, using the

tables from [46]. The legend denotes the model, implying the progenitor mass.
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Figure 3.13: Electron anti–neutrino mean energy 〈Eν̄e〉 time t for different progenitors and EOSs, using

the tables from [46]. The legend denotes the model, implying the progenitor mass.
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Figure 3.14: Muon/tau (anti–)neutrino mean energy 〈Eνx〉 time t for different progenitors and EOSs,

using the tables from [46]. The legend denotes the model, implying the progenitor mass.
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Figure 3.15: Electron neutrino second energy moment 〈E2
νe〉 time t for different progenitors and EOSs,

using the tables from [46]. The legend denotes the model, implying the progenitor mass.
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Figure 3.16: Electron anti–neutrino second energy moment 〈E2
ν̄e〉 time t for different progenitors and

EOSs, using the tables from [46]. The legend denotes the model, implying the progenitor mass.
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Figure 3.17: Muon/tau (anti–)neutrino second energy moment 〈E2
νx〉 time t for different progenitors and

EOSs, using the tables from [46]. The legend denotes the model, implying the progenitor mass.
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and further aspects of the EOSs influence the signal parameters shown in Fig. 3.9–3.17

and underline the dependency of the observables on model assumptions, making a physics

interpretation at least difficult. An accurate measurement of the spectral parameters, on

the other hand, will enable to disfavor, or at best exclude, assumptions. The determination

of parameters from an observed SN neutrino flux naturally requires a common parameteri-

zation, which is presented in the next section.

3.6 Analytical supernova neutrino energy spectra

The double differential neutrino flux per time t and energy E streaming off the hot PNS is

given by
d2Φα

dEdt
= Nα(t)ϕα(E, t). (3.15)

The number of neutrinos Nα at time t is determined from the time–dependent neutrino

luminosity Lα and mean energy 〈Eα〉 according to

Nα(t) =
Lα(t)

〈Eα〉 (t)
. (3.16)

ϕα is the normalized time–dependent energy distribution fα

ϕα(E, t) =
fα(E, t)∫∞

0 fα(E, t)dE
. (3.17)

As the spectral distribution is expected to be approximately thermal after core bounce, it

is often parameterized by a Fermi–Dirac function,

fα(E, t) =
E2

eE/Tα(t)−ηα(t) + 1
, (3.18)

including a so–called degeneracy parameter ηα. This parameter accounts for the spectral

pinching mentioned at the end of Sec. 3.3. If the neutrinos were in thermal equilibrium the

moment they escape, the degeneracy parameter would be η = 0. The observed pinching,

though, is only reproducible with η 6= 0, where different ηα for νe, ν̄e and νx reflect the

different coupling to matter. Expanding 〈E〉/T up to the second order of η [117], the

neutrino temperature Tα is related to the mean energy as per

〈E〉
T
≈ 3.1514 + 0.1250η + 0.0429η2 (3.19)

and thus 〈E〉 ≈ 3.1514T in local thermodynamic equilibrium (LTE).

To characterize the amount and direction of spectral pinching, a pinching parameter

p is introduced in [75] with

pα(t) ≡ 1

a

〈
E2
α

〉
(t)

(〈Eα〉 (t))2
, (3.20)
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Figure 3.18: The left panel shows the ratio
〈
E2
〉
/ 〈E〉2 (red solid line and left label) and 〈E〉 /T (blue

dashed line and right label) for the Fermi–Dirac distribution Eq. 3.18 as a function of the degeneracy

parameter η. The black dotted line gives the value of
〈
E2
〉
/ 〈E〉2 at thermodynamic equilibrium, i.e. for

no pinching. The right panel shows the behavior of
〈
E2
〉
/ 〈E〉2 over the β parameter in the Garching

parameterization Eq. 3.22.

where the ratio of the second moment over the squared mean energy
〈
E2
〉
/ 〈E〉2 is closely

related to the width of the distribution. The parameter a is given by

a ≡
〈
E2
α

〉
(t)

(〈Eα〉 (t))2

∣∣∣∣
LTE

= const. (3.21)

in thermal equilibrium. Assuming a Fermi–Dirac distribution with η = 0 yields a ≈ 1.3029

[117]. The spectral shape is that of a black–body, if p = 1. If the high and low energy tails

are relatively suppressed, then p < 1 and the spectrum is pinched. In the opposite case, the

spectrum is anti–pinched and p > 1. The correlation between the ratio
〈
E2
α

〉
/ 〈Eα〉2 and η

is shown in Fig. 3.18 in the left panel. It is clear from this figure that the Fermi–Dirac dis-

tribution cannot unambiguously reproduce anti–pinched spectra from the mean energy and

second moment information, since
〈
E2
α

〉
/ 〈Eα〉2 is not associated with an explicit η at η < 0.

Since the physical motivation for a Fermi–Dirac distribution – the assumption of ther-

malized neutrinos – does not hold, an alternative parameterization of the spectral shape is

considered in [117], motivated by analytic simplicity:

fα(E, t) =

(
E

〈Eα〉 (t)

)βα(t)

exp

[
−(βα(t) + 1)

E

〈Eα〉 (t)

]
. (3.22)

In this case the distribution is not characterized by Tα and ηα, but by 〈Eα〉 and a shape

parameter βα which is related to the pinching parameter Eq. 3.20 through〈
E2
α

〉
(t)

(〈Eα〉 (t))2 =
2 + βα(t)

1 + βα(t)
. (3.23)
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The equation for βα directly follows, yielding

βα(t) =
2 (〈Eα〉 (t))2 −

〈
E2
α

〉
(t)

〈E2
α〉 (t)− (〈Eα〉 (t))2 . (3.24)

In LTE β ≈ 2.3 and both distributions, Eq. 3.18 and Eq. 3.22, agree. The advantage of the

latter description comes into play in the case of non–thermal SN neutrino spectra, where

it shows no asymptotic behavior of
〈
E2
α

〉
/ 〈Eα〉2, as shown in the right panel of Fig. 3.18.

Therefore it can reproduce also anti–pinched spectra, while a Fermi–Dirac distribution is

not well–defined in this regime, as mentioned above. For this reason, the parameterization

Eq. 3.22 is used throughout this work. Using the time distribution of 〈Eα〉 and
〈
E2
α

〉
from

the Garching tables, the time evolution of βα is calculated for each neutrino type and

shown in Fig. 3.19–3.21. Note that βα is not constant over time until about the end of the

accretion phase.

The normalized distribution ϕα (Eq. 3.17), derived from the parameterization Eq. 3.22,

reads

ϕα(E, t) =
(1 + βα(t))1+βα(t)

Γ (1 + βα(t))

Eβα(t)

(〈Eα〉 (t))βα(t)+1
exp

[
−(βα(t) + 1)

E

〈Eα〉 (t)

]
, (3.25)

where the integration of Eq. 3.22 follows Ref. [47]. Using Eq. 3.25 and 3.15, the time–

integrated neutrino flux dNα/dE becomes

dΦα

dE
=

∫ tb

ta

d2Φα

dEdt
dt =

εα
〈Eα〉

ϕα(E) (3.26)

= εα
(1 + βα)1+βα

Γ (1 + βα)

Eβα

〈Eα〉βα+2
exp

[
−(βα + 1)

E

〈Eα〉

]
,

where the total energy εα is the time–integrated luminosity εα =
∫ tb
ta
Lαdt. A simplified

variant of the normalized parameterization Eq. 3.25 is suggested in [92], reading

ϕα(E, t) =
128

3

E3

(〈Eα〉(t))4 e
−4E/〈Eα〉(t), (3.27)

where βα ≡ 3 = constant for all neutrino types and flavors. The total flux at a distance d

from the SN is then given by

d2Φ

dEdt
=

1

4πd2

∑
α

Nα(t)
128

3

E3

(〈Eα〉(t))4 e
−4E/〈Eα〉(t) (3.28)

and the time–integrated flux, or fluence, by

dΦ

dE
=

2.35× 1013

cm2 MeV

∑
α

εα
d2

E3

〈Eα〉5
e−4E/〈Eα〉. (3.29)
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Figure 3.19: Electron neutrino energy shape parameter βνe time t for different progenitors and EOSs,

using the tables from [46]. The legend denotes the model, implying the progenitor mass.
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Figure 3.20: Electron anti–neutrino energy shape parameter βν̄e time t for different progenitors and

EOSs, using the tables from [46]. The legend denotes the model, implying the progenitor mass.
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Figure 3.21: Muon/tau (anti–)neutrino energy shape parameter βνx time t for different progenitors and

EOSs, using the tables from [46]. The legend denotes the model, implying the progenitor mass.
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In this representation, the energies are given in MeV, d in 10 kpc and εα in 1052 erg [92].

Though this description of the neutrino fluence is only a rough approximation, since the

assumption of βα = 3 = constant does not hold, regarding Fig. 3.19–3.21, its simplicity

and universality makes it a useful tool to determine benchmarks and comparative values.

The deviation of this approximation from the time–integrated spectrum taking the

time–dependency of β into account depends on the neutrino flavor and to a smaller extend

on the progenitor and SN model (see Fig. 3.19–3.21).

Neutrinos are subject to various flavor changing mechanisms, which partly modify the

observed spectra on Earth. Both, the simulated spectra as well as predictions using the

analytical description of this section thus must be altered accordingly. The different flavor

changing effects, which are possible under the extreme and unique conditions during a SN,

are discussed in Sec. 4.



Chapter 4

Neutrino Properties

This chapter summarizes properties of and effects on neutrinos relevant for SN neutrino

observations. These are, for example, neutrino oscillations and additional flavor changing

mechanisms occurring under the extreme conditions in a collapsing stellar core. Thereby

the focus lays on effects possible during the early phases of core collapse up to the

approximate end of the accretion phase, the time interval on which the results in Sec. 7

are based. In this phase, the neutrino signal properties are largely independent of the still

unknown details of the explosion mechanism. Additionally outlined in this chapter is the

process of neutrinoless double beta (0νββ), the primary physics interest of SNO+ and

main motivation for the α–quenching measurements, presented in Sec. 6.

Throughout this work, three active neutrino flavors are considered, following the con-

straint to 2.92±0.05 light neutrino generations by the invisible Z0 decay width, as measured

in LEP1 experiments [118, 119] at CERN2. Light in this context means, the neutrinos have

a mass mν < mZ/2, where mZ is the Z0 mass. Active neutrinos are neutrinos that couple

to the gauge bosons of the weak interaction in contrast to sterile neutrinos, which do not

take part in any of the fundamental interactions of the Standard Model (SM) except gravity

and which are up to now solely hypothetical particles. Furthermore, neutrinos within this

thesis are considered as ultra–relativistic with mν � pν . This assumption is valid since

even low energy neutrino detectors like SNO+ have a threshold of at least ∼ 100 keV and

the total mass of active neutrinos is
∑

3mν < (0.23 − 0.66) eV at 95% C.L., according to

the constraints published by the Planck collaboration in 2014 [120]. For the conservative

limit, Planck data on the cosmic microwave background (CMB) temperature power spec-

trum is combined with CMB data from WMAP3 [121] and ACT4 [122]. The low limit

additionally includes Planck data on Baryon Acoustic Oscillations [120]. Similar neutrino

mass limits have been determined by a multitude of further experiments and are listed in

[118]. Additionally, first claims of an exclusion of
∑

3mν = 0 exist, as e.g. in [123].

1Large Electron Positron collider.
2Conseil Européen pour la Recherche Nucléaire.
3Wilkinson Microwave Anisotropy Probe.
4Atacama Cosmology Telescope.
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Figure 4.1: Energy spectra of super-

nova electron (anti–)neutrinos (e) and muon

and tau (anti–)neutrinos (x) before (dashed

lines) and after (solid lines) collective oscilla-

tions in the two–flavor sector [124]. The grey

regions represent the range in which spectral

swap occurs.

4.1 Flavor changing mechanisms in general

Supernova neutrinos observed on Earth are subject to a multitude of flavor changing

mechanisms: the Mikheyev–Smirnov–Wolfenstein (MSW) effect, also called matter effect,

the shock wave effect, the neutrino collective (self–interaction) effect, turbulence effects

[125, 126] and the Earth matter effect [127, 128]. The matter effect in Earth is considered

separately from the matter effect in the SN environment, since the occurrence of both is

fully decoupled and their impacts are different.

The MSW effect on neutrinos emanating from the neutrinosphere and passing through

the ordinary matter of the stellar envelope is a neutrino oscillation phenomenon and has

been widely discussed [129, 130, 131, 132]. It has been shown that the respective flavor

transitions occur at two different radii, which are both much larger than the neutrinosphere

radii. Since the shock wave gets stalled further inside, near the neutrinospheres, the MSW

effect occurs in a static density environment throughout the accretion phase and the flavor

transition calculation is straight forward, which is outlined in Sec. 4.2.2.

As the revived shock wave propagates through the outer regions, though, the density

dynamically varies with a steep gradient and the probabilities of flavor conversion are

strongly modified [133, 134, 135]. Consequent shock wave effects occur only after shock

revival and are most prominent at post bounce times t > 1 s [135]. They are thus not

relevant for this work.

Another flavor changing mechanism occurs further inside the core, where the neutrino

density is tremendous and neutrino–neutrino interactions lead to self–induced flavor

conversions, dominating the flavor changing mechanisms [47, 136, 137, 138]. This collective

effect typically occurs between the neutrinosphere and the MSW region. In this, rapid

conversions between all flavors can occur coherently over a large energy range, depending

on the original SN emission features [47, 139, 140, 141]. An example of how collective

effects potentially modify SN neutrino energy spectra is shown in Fig. 4.1. The named
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dependency is opposed to a general characterization of the SN neutrino signal from the

original neutrino fluxes. Furthermore the flavor dynamics of neutrino collective effects are

highly non–trivial and far from being fully understood at the moment. In the early SN

phases, however, relatively stable conditions are expected. Collective flavor transitions are

inevitably absent during the deleptonization burst of only νe and matter suppressed in the

subsequent accretion phase, according to works based on spherical symmetric SN models

[142, 143]. Studies over a wide range of SN models, including multi–dimensional models,

are still missing though, necessary to corroborate and generalize this conclusion. Given

the current status, collective effects are not considered in the thesis at hand.

The last flavor changing mechanism within the star to be mentioned here are turbu-

lence effects. These effects arise from turbulences in the mantle, which break the statics of

the matter profile and thus alter the conditions for the MSW effect. According to [126, 144],

large amplitude turbulences of about & 10% obscure the signal features induced by the

MSW, as well as by the shock wave and collective effect and bring in new spectral features.

Though large amplitudes are necessary for the shock revival, demanding multi–dimensional

SN models, they are not yet present in the early post bounce phases considered in this work.

To sum up, the herein investigated phases of the SN from collapse to the ap-

proximate end of matter accretion form a comparatively stable environment in terms

of the flavor composition of the signal. Only the well–understood neutrino matter

oscillations incorporating the MSW effect in a static density profile have to be con-

sidered, which is explained in the following section. This instance, though, cannot be

adopted for a flavor dependent neutrino observation over the entire time of the burst signal.

Finally, the neutrino signal is additionally affected if the neutrinos are seen through

a large fraction of the Earth. However, a recent study in [145], using state–of–the–art

simulations and the last missing mixing angle θ13, expects this effect not to be observable,

unless the detectors are of large scale and the SN is very close by. The target masses

considered are 400 kt water, 50 kt liquid scintillator and 100 kt liquid Ar and the distance, at

which a difference between Earth shadowed and un–shadowed neutrino fluxes is resolvable,

is 0.2 kpc. This distance is relatively unlikely (see Fig. 3.8) and the flux difference expected

is < 2%, a precision that is not yet accessible for the initial flux predictions. Thus also

Earth matter effects [127, 128] are not further discussed here.

4.2 Neutrino oscillations

The phenomenon of neutrino oscillations is a quantum mechanical effect, changing the

flavor, and thus lepton family number, of a neutrino as it propagates. The probability of

flavor conversion from flavor α to β is called oscillation probability Pνανβ and the one of

flavor preservation is called survival probability Pνανα = 1−
∑

β 6=α Pνανβ . The probabilities

differ, when neutrinos travel through vacuum and matter. Neutrino oscillations were
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originally proposed around 1960 by Bruno Pontecorvo in the form of ν − ν̄ oscillations in

analogy with K0−K̄0 oscillations [146], when the existence of three neutrino flavors was not

yet known. Oscillations between active neutrino flavors are generated by the interference

of neutrinos with different masses, which are generated and detected coherently due to

their extremely small mass splittings. A finite neutrino mass as well as the violation of

lepton family number is not foreseen in the SM, though also not forbidden by any of its

fundamental gauge symmetries.

For full consistency of the derivation, neutrino oscillations would have to be described

by a wave packet treatment [74]. A simpler approach is the plane wave approximation,

which leads to the same results for the probabilities and is used in the following abridged

derivation.

4.2.1 Oscillations in vacuum

Neutrinos couple to the weak gauge bosons in the form of orthonormal eigenstates |να〉
(α = e, µ, τ) to the lepton number operator Lα:

Lα |νβ〉 = δαβ |νβ〉 . (4.1)

In other words, they are created and detected as pure weak flavor eigenstates. These

eigenstates have no fixed mass and are thus not necessarily identical with the orthonormal

eigenstates |νi〉 (i = 1, 2, 3) to the mass operator M , the mass eigenstates:

M |νi〉 = miδij |νi〉 . (4.2)

The neutrino masses mi are the eigenvalues in this representation. The flavor and mass

basis are related by a unitary mixing matrix U as per

|να〉 =

3∑
i=1

U∗αi |νi〉 , |νi〉 =
∑

α=e,µ,τ

Uαi |να〉 , (4.3)

where U is also known as PMNS matrix, named after B. Pontecorvo, Z. Maki, M. Nakagawa

und S. Sakata. A flavor eigenstate is consequently a coherent superposition of mass eigen-

states and vice versa, where the components are weighted by the entries of U (∗). The

assignment of U and its complex conjugate U∗ in Eq. 4.3 is arbitrary. U is typically

parameterized by three angles and three complex phases according to

U =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12s23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

D(ε1, ε2), (4.4)

with sij = sin θij und cij = cos θij and i 6= j. The three θij are mixing angles, δ is a Dirac

CP5 violating phase and ε1 and ε2 are two Majorana CP violating phases. The diagonal

5CP stands for the combined charge conjugation (C) and parity (P) symmetry.
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matrix D(ε1, ε2) = diag(1, eiε1/2, eiε2/2) is not present, if neutrinos are Dirac particles.

The nature of neutrinos, Dirac or Majorana, has not been ascertained yet and is amongst

others the motivation for the search of neutrinoless double beta decays (see Sec. 4.3). In

the framework of neutrino oscillations, though, the submatrix D(ε1, ε2) in Eq. 4.4 cancels

out and the Majorana phases thus do not enter the calculations. For this reason, the

reduced form of Eq. 4.4, in which D(ε1, ε2) = 1, is used from here on. The CP phase

is 0 ≤ δ ≤ 2π and non–zero, when neutrino oscillations violate the CP invariance. The

mixing angles are 0 ≤ θ ≤ π
2 .

The time dependent Schrödinger equation

i
∂

∂τi
|νi(τi)〉 = H0 |νi(τi)〉 , (4.5)

with H0 being the Hamiltonian in the mass basis in vacuum and τi the neutrino proper

time, is solved by the mass eigenstates:

|νi(τi)〉 = e−imiτi |νi〉 , with |νi(0)〉 = |νi〉 . (4.6)

These states hence determine the neutrino evolution, which read in the lab frame

|νi(t, L)〉 = e−i(Eit−piL) |νi〉 . (4.7)

Thus a neutrino initially produced in the flavor state |νini〉 = |να〉 and having propagated

a time t and a distance L in vacuum relative to the laboratory system is in the state

|νfin(t, L)〉 =
∑

β=e,µ,τ

3∑
i=1

U∗αiUβie
−i(Eit−piL) |νβ〉, (4.8)

using Eq. 4.3. The probability amplitude ψαβ(t, L) = 〈νβ(t, L)|να〉 for this transition is

〈νfin(t, L)|νini〉 = 〈νβ|
∑

β=e,µ,τ

3∑
i=1

U∗αiUβie
−i(Eit−piL) |να〉

=

3∑
i=1

U∗αiUβie
−i(Eit−piL), (4.9)

making use of the orthonormality relation ψαβ(0) = 〈νβ|να〉 = δαβ. For ultra–relativistic

neutrinos with mi � pi, the following approximations are justified:

t ≈ L, p ≈ E (4.10)

and thus

Ei =
√
m2
i + p2

i ≈ pi +
m2
i

2pi
≈ E +

m2
i

2E
, (4.11)
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assuming that each eigenstate has the same energy Ei = E and E is real. With Eq. 4.10–

4.11 the amplitude Eq. 4.9 can be written as

ψαβ(L) =
3∑
i=1

U∗αiUβie
−im

2
i

2E
L. (4.12)

The transition probability from |να〉 to |νβ〉 is the square of the absolute amplitude and

thus

Pνανβ (L) =

∣∣∣∣∣
3∑
i=1

U∗αiUβie
−im

2
i

2E
L

∣∣∣∣∣
2

(4.13)

=
∑
i,j

U∗αiUβiUαjU
∗
βje
−i

∆m2
ij

2E
L

= δαβ − 4
∑
i>j

<(U∗αiUβiUαjU
∗
βj) sin2

(
∆m2

ijL

4E

)

± 2
∑
i>j

=(U∗αiUβiUαjU
∗
βj) sin

(
∆m2

ijL

2E

)
,

with ∆m2
ji ≡ m2

j −m2
i . The last step makes use of the unitarity relation UU † = 1 of the

mixing matrix and thus
∑

i UαiU
∗
βi = δαβ. Equation 4.13 defines the oscillation probability

if α 6= β and the survival probability if α = β. The minus sign in front of the imaginary

part refers to the oscillation probability of anti–neutrinos Pν̄αν̄β . This part is zero and thus

Pνανβ = Pν̄αν̄β , if the CP symmetry is conserved. It is evident from Eq. 4.13 that neutrino

oscillations only occur, if ∆m2
ji 6= 0, in other words if not all neutrinos have the same mass.

The observation of neutrino oscillations excludes that all neutrinos are massless. The mixing

angles and the Dirac phase enter the measurable oscillation or survival probability Eq. 4.13

via the mixing matrix U given in Eq. 4.4. Since the probability also depends on the neutrino

energy E and the distance L between neutrino source and detection, the experimental

settings comprising L, E and the neutrino species, determine the detector sensitivity to the

oscillation parameters ∆m2
ji, θij and δ with i, j = 1, 2, 3 considering three active neutrino

flavors. The neutrino sources are either of natural kind or artificially created, where the

first group is dominated by solar νe [147], atmospheric
(−)

ν µ,e [148] and supernova
(−)

ν τ,µ,e

[49, 149] and the second group by accelerator
(−)

ν µ [150] and reactor ν̄e [151]. Historically,

the first oscillation parameters measured, proving the existence of neutrino oscillations, are

named after the respective neutrino source solar and atmospheric. The results from these

experiments have shown that 0 < ∆m2
sol �

∣∣∆m2
atm

∣∣ [152]. Since the numbering of massive

neutrinos νi is arbitrary, the association of these squared mass differences with any ∆m2
ji

is it as well. Most commonly, the smaller squared mass splitting is referred to ∆m2
21, and

thus ∆m2
sol ≡ ∆m2

21 with m1 < m2. The three squared mass splittings are correlated via

∆m2
21+∆m2

32−∆m2
31 = 0, implying that ∆m2

31 ≈ ∆m2
32 and thus ∆m2

atm ≈ ∆m2
31 ≈ ∆m2

32.

Oscillation experiments are not yet sensitive to the sign of ∆m2
31(32), leaving three possible
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ordering schemes of the neutrino masses: normal hierarchy (NH), inverted hierarchy (IH)

and a quasi degenerate (QD) scenario in case the lightest neutrino mass is mlightest & 0.1 eV

[118]. In the latter scenario, the neutrino masses are much larger than the squared mass

splittings and thus in practice

mlightest ≈ m1 ≈ m2 ≈ m3 & 0.1 eV. (4.14)

In the numbering convention employed, NH refers to

mlightest = m1 < m2 � m3, (4.15)

m2 =
√
m2

1 + ∆m2
sol ≈ 0.0086 eV,

m3 =
√
m2

1 + ∆m2
sol +

∣∣∆m2
atm

∣∣ ≈ 0.048 eV,

and IH to

mlightest = m3 � m1 < m2, (4.16)

m1 =
√
m2

3 +
∣∣∆m2

atm

∣∣ ≈ 0.048 eV,

m2 =
√
m2

3 +
∣∣∆m2

atm

∣∣+ ∆m2
sol ≈ 0.048 eV.

In the same convention, the solar mixing angle is assigned to θ12 and the atmospheric

mixing angle to θ23. The numerical values in Eq. 4.15 and 4.16 are derived from existing

data from all types of oscillation experiments, which allows to determine ∆m2
21,
∣∣∣∆m2

31(32)

∣∣∣,
θ12, θ23 and θ13 in a global fit [153], as summarized in Tab. 4.1. Neither a measurement

of the CP violating phases in the mixing matrix Eq. 4.4 has been possible so far, nor the

confirmation or exclusion of any of the three mass ordering schemes. It should be noted,

however, that recent global analyses yield δ/π = 1.08+0.28
−0.31 [153] or δ/π = 1.67+0.37

−0.77 [154],

although the 1σ uncertainties are still large.

One explicit example for Eq. 4.13 is the νe survival probability

Pνeνe(L) = 1− 1

2
cos4 θ13 sin2 2θ12

(
1− cos

(
∆m2

21

2E
L

))
(4.17)

− 1

2
sin2 2θ13

(
1− cos

(
∆m2

31

2E
L

))
− 1

2
sin2 θ12 sin2 2θ13

(
cos

(
∆m2

31

2E
L

)
− cos

(
∆m2

21 + ∆m2
31

2E
L

))
,

particularly interesting for neutrinos from the Sun, as they are exclusively produced as νe.

All other explicit forms of Eq. 4.13 are found in [155], for instance. If the argument of the

cosine in Eq. 4.17 is

∆m2

2E
L� 1, (4.18)
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Table 4.1: 3–neutrino oscillation parameters from a global fit of current (2014) data [118]. If the value

in inverse hierarchy (IH) is different from the value in normal hierarchy (NH), it is added in brackets.

∆m2 is defined as ∆m2 = m2
3 − (m2

2 + m2
1)/2. Thus, ∆m2 = ∆m2

31 − ∆m2
21/2 > 0 in NH, and ∆m2 =

∆m2
32 + ∆m2

21/2 < 0 in IH [153].

Parameter Best fit ±1σ 3σ range

∆m2
21

[
10−5eV2

]
7.54+0.26

−0.22 6.99− 8.18∣∣∆m2
∣∣ [10−3eV2

]
2.43± 0.06 (2.38± 0.06) 2.23 (2.19)− 2.61 (2.56)

sin2 θ12 0.308± 0.017 0.259− 0.359

sin2 θ23 0.437+0.033
−0.023 (0.455+0.039

−0.031) 0.374 (0.380)− 0.628 (0.641)

sin2 θ13 0.0234+0.0020
−0.0019 (0.0240+0.0019

−0.0022) 0.0176 (0.0178)− 0.0295 (0.0298)

only the average of the cosine function is observable, which is zero. Thus for solar neutrinos,

where
∣∣∆m2

31

∣∣� 2E/L, the measurable average survival probability is given by

〈Pνeνe(L)〉 = cos4 θ13

(
1− sin2 2θ12 sin2

(
∆m2

21

4E
L

))
+ sin4 θ13. (4.19)

4.2.2 Oscillations in matter and the MSW effect

The presence of matter, as in the Sun, Earth or a SN, can significantly change the neutrino

oscillation probability. Interactions of neutrinos with the particles forming the matter give

rise to a potential V that is not present in vacuum. Intuitively, this changes the total

neutrino energy and hence the Hamiltonian in Eq. 4.5 and the consequent derivation of

the oscillation probability. In general, the Hamiltonian is the sum of a kinetic energy

component H0 and a potential energy, or interaction, component HI ,

H = H0 +HI , (4.20)

with

H0 |νi〉 = Ei |νi〉 and HI |να〉 = Vα |να〉 . (4.21)

Note that Ei is the kinetic energy of massive neutrinos and the vacuum Hamiltonian H0

in the mass eigenbasis, while Vα is the effective potential felt by flavor neutrinos due to

weak currents and HI thus in the flavor eigenbasis. The potential is the sum of CC and

NC contributions from coherent forward scattering reactions6. In ordinary matter7 only

electron flavor neutrinos are affected by the CC potential VCC, so that

Vα = δαeVCC + V n
NC + V p

NC + V e
NC = δαeVCC + V n

NC. (4.22)

6If the scattering is not forward, the neutrinos are off the source–detector axis and not observed.
7Ordinary matter is composed of nucleons and electrons only, in contrast to matter with significant non–

electron leptonic (muon, tau, neutrinos) or photon content. Furthermore it is electrically neutral, implying

an equal number of protons and electrons.
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The NC potential in the electrically neutral ordinary matter reduces to the potential in-

duced by neutrons V n
NC, since the potentials by protons V p

NC and electrons V e
NC cancel

out. Notice that radiative corrections introduce charged lepton mass–dependent contribu-

tions to the matter potentials that resolve the degeneracy of the NC potentials, strongly

complicating the formalism. The remaining potentials are given by

VCC(r) = ±
√

2GFNe(r) and V n
NC(r) = ∓GF√

2
Nn(r), (4.23)

where the upper sign refers to neutrinos and the lower sign to anti–neutrinos [74]. GF is

the Fermi constant in units of eV cm3 (see Tab. A.1) and Ne and Nn are the local electron

and neutron number densities in (1/cm3). The radial position r assumes radial symmetry

of the density profiles. Ne is related to the matter density ρ via the electron fraction Ye,

the number of electrons per baryon, as per

Ne(r) = ρ(r)
Ye(r)

mN
, (4.24)

where mN is the average nucleon mass in grams.

Similar to the situation in vacuum, the Schrödinger differential equation describes

the time evolution of neutrinos. An initial neutrino flavor state |να〉 obeys the evolution

equation

i
∂

∂t
|να(t)〉 = H |να(t)〉 . (4.25)

The time evolution of the amplitude of a transition |να〉 → |νβ〉 directly follows, using

Eq. 4.3 and 4.21:

i
∂

∂t
ψαβ(t) =

∑
η

(∑
i

UβiEiU
∗
ηi + δβηVβ

)
ψαη(t). (4.26)

Taking again advantage of the relativistic approximations Eq. 4.10–4.11, the evolution

equation in space becomes

i
∂

∂L
ψαβ(L) =

(
p+

m2
1

2E
+ V n

NC

)
ψαβ(L) (4.27)

+
∑
η

(∑
i

Uβi
∆m2

i1

2E
U∗ηi + δβeδηeVCC

)
ψαη(L).

The first term is separated out, since V n
NC is the same for all neutrinos and only generates

a phase, common to all flavors. This phase can be eliminated by a phase shift, which has

no influence on the oscillation probability [74], leaving only the second term. The reduced

equation in matrix form then reads

i
∂

∂L
Ψα =

1

2E

(
UM2U † +A

)
Ψα (4.28)
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with

Ψα =


ψαe

ψαµ

ψατ

 , M2 =


0 0 0

0 ∆m2
21 0

0 0 ∆m2
31

 , A =


ACC 0 0

0 0 0

0 0 0

 (4.29)

and

ACC(r) ≡ 2EVCC(r) = ±2
√

2EGFNe(r). (4.30)

The plus sign refers to νe and the minus sign to ν̄e (see also Eq. 4.23). The new effective

Hamiltonian

HF =
1

2E

(
UM2U † +A

)
, (4.31)

entering Eq. 4.28 in the flavor basis, can only be diagonalized in a new basis, the matter

mass basis.

For the diagonalization of HF and the derivation of the oscillation probability in

matter, two–neutrino mixing is considered with only νe, νµ and ν1, ν2 taking part and with

νe being the initial neutrino. The effect of matter on the probability is well–described in

this scheme, which is much simpler than the three–neutrino case. In this scenario, which is

discussed in detail in [74], U from Eq. 4.4 reduces to a two–dimensional rotational matrix

U =

 cos θ sin θ

− sin θ cos θ

 , (4.32)

where θ12 ≡ θ. With Eq. 4.36 and ∆m2 ≡ ∆m2
21, the effective Hamiltonian Eq. 4.31

becomes

HF =
1

4E

 −∆m2 cos θ +ACC ∆m2 sin θ

∆m2 sin θ ∆m2 cos θ −ACC

 , (4.33)

having neglected a common phase

exp

[
−i∆m

2L

4E
− i

2

∫ L

0
VCC(x)dx

]
. (4.34)

The matrix Eq. 4.33 is diagonalized by the orthogonal transformation

UTMHFUM = HM =
1

4E
diag

(
−∆m2

M ,∆m
2
M

)
, (4.35)

where HM is the effective Hamiltonian in the matter mass basis, UM the effective unitary

mixing matrix in matter

UM =

 cos θM sin θM

− sin θM cos θM

 (4.36)
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and ∆m2
M ≡ m2

M2 −m2
M1 the effective squared mass splitting, with

∆m2
M =

√
(∆m2 cos 2θ −ACC)2 + (∆m2 sin 2θ)2. (4.37)

The effective mixing angle in matter θM in Eq. 4.36 is given by

tan 2θM =
tan 2θ

1− ACC
∆m2 cos 2θ

. (4.38)

The MSW effect

It follows from Eq. 4.38 that tan 2θM → +∞, and thus θM → π/4, if

ACC = ∆m2 cos 2θ ≡ ARCC. (4.39)

In other words, the mixing can become maximal, enabling total flavor transition, even if

the mixing angle is small as will be demonstrated in this paragraph. This resonance effect

is called matter effect, or also MSW effect in honor of Stanislav Mikheyev, Alexei Smirnov

and Lincoln Wolfenstein and their pioneering work [129, 156, 157]. It follows from Eq. 4.30

that the resonance is reached at a resonance electron density

NR
e =

∆m2 cos 2θ

2E
√

2GF
. (4.40)

The squared matter mass splitting at ARCC becomes

∆m2
M

∣∣
R

= ∆m2 sin 2θ (4.41)

and thus minimal. The behavior of θM and ∆m2
M as they pass the resonance density is

shown in Fig. 4.2. If at the given mixing parameters Ne � NR
e , the effective mixing angle

θM is nearly 90◦, as visible in Fig. 4.2a, and a νe = cos θMν1 +sin θMν2 is produced as quasi

pure ν2. When the neutrino propagates towards lower densities, it crosses the resonance

where the energy gap ∆m2
M is minimal (see Fig. 4.2b). If transitions between the states

ν2 and ν1 are negligible, the evolution is said to be adiabatic and the neutrino remains in

the ν2 state on its way to decreasing densities. The necessary conditions for an adiabatic

evolution are typically summarized in the so–called adiabaticity parameter γ [156, 74],

which is defined at the resonance radius rR as

γ
∣∣
R

=
∆m2

2E

sin2 2θ

cos 2θ

∣∣∣∣ 1

Ne(r)

dNe(r)

dr

∣∣∣∣−1

r=rR
. (4.42)

If γ � 1, the resonance is crossed adiabatically, if γ ≈ 1 it is crossed nonadiabatically and

maximum violation of adiabaticity is reached at the minimum value of γ. Adiabaticity

thus depends on the oscillation parameters and the density profile and is generally fulfilled

in stars as the Sun [74] or in temporary static SN environments [131], using the measured

solar mixing parameters. In this case, the neutrino leaves the dense environment and

enters vacuum as ν2 = sin θνe+ cos θνµ, which is in the case of a small mixing angle almost
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(a) Effective mixing angle [74]

  

(b) Effective squared masses [74]

Figure 4.2: Evolution of the effective mixing angle θM and squared masses m2
M2 and m2

M1 in matter

as functions of the electron density Ne over Avogadro’s constant NA, for m1 = 0, ∆m2 = 7 × 10−6 eV2,

sin2 2θ = 10−3, E = 1 MeV and the resonance electron density NR
e from Eq. 4.40 [74]. Solid lines show the

eigenvalues in the effective matter basis for two active neutrinos.

a pure νµ state. Thus nearly complete flavor conversion νe → νµ can occur in spite of a

small mixing angle, the case when the MSW effect is most striking.

Sticking to the example of the electron survival probability, it reads in the case of

adiabatic evolution through matter

P adiabatic
νeνe (L) =

1

2
+

1

2
cos 2θini

M cos 2θfin
M (4.43)

+
1

2
sin 2θini

M sin 2θfin
M cos

(∫ L

0

∆m2
M (x)

2E
dx

)
,

where θini
M and θfin

M are the effective angles at the creation and detection point, respectively

[74]. If L is very large, such that
∫ L

0
∆m2

M (x)
2E dx � 1, as is the case for astrophysical

neutrino sources, the second term averages to zero, equivalent to the situation in Eq. 4.17–

4.19. Furthermore, if the neutrino does not travel a significant distance through the Earth

before detection, θfin
M coincides with the vacuum mixing angle θ. The observed average

survival probability then becomes

〈P adiabatic
νeνe (L)〉 =

1

2
+

1

2
cos 2θini

M cos 2θ. (4.44)

Only the MSW effect is able to explain the otherwise too large νe deficit of solar

neutrinos observed on Earth [158]. Since a resonance in normal matter, where ACC > 0

for electron neutrinos (see Eq. 4.30), is only possible if ∆m2 cos 2θ > 0 (see Eq. 4.39), the

measurement of the solar mixing angle of θ12 ≈ 33.6◦ (see Tab. 4.1) fixes the positive sign

of ∆m2
21. In case of a negative sign, the resonance would instead occur in the anti–neutrino

channel.
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  N N NN

(a) Normal hierarchy

  -N N N

(b) Inverted hierarchy

Figure 4.3: Level crossing schemes for the normal (a) and inverted (b) mass hierarchy and three active

neutrinos. Solid lines show the eigenvalues in the effective matter basis as function of the electron number

density Ne. Dashed lines correspond to energies of the flavor levels. The region with Ne > 0 refers to

neutrinos, the one with Ne < 0 to anti–neutrinos (see Eq. 4.30). The two crossings are the low–resonance (L)

and high–resonance (H), associated with the mixing parameters (θ12, ∆m2
21) and (θ13, ∆m2

31), respectively

[131, 159].

The matter densities reached in a SN exceed the maximum solar density of 162.2 g/cm3

[160] by several orders of magnitude with an initial matter density profile [135] of typically

ρ0(r) ≈ 1014 ·
( r

1km

)−2.4 g

cm3
. (4.45)

Such a profile provides a second density layer at which the MSW effect occurs, as illustrated

in Fig. 4.3. The two resonances are referred to as low–resonance (L) and high–resonance

(H), located at NR
e (θ12, ∆m2

21) in the first and NR
e (θ13, ∆m2

31) in the second case, following

Eq. 4.40. The corresponding radial positions are given by Eq. 4.24, using Eq. 4.40, Eq. 4.45

and the relevant mixing parameters. Depending on the mass hierarchy, the H–resonance is

crossed by neutrinos (Fig. 4.3a) or anti–neutrinos (Fig. 4.3b), while the L–resonance is in

both cases crossed by neutrinos. The neutrino passages through the L– and H–resonance

regions are adiabatic during the first second of the burst, before shock wave effects occur

[135] and given the measured oscillation parameters [131] listed in Tab. 4.1.

In the early SN phases considered in Sec. 7, phase effects on the survival probability are

negligible8 and it is thus sufficient to propagate the probabilities from the neutrinospheres

to the Earth instead of the probability amplitudes. For this intend it is convenient to make

8Besides the shock wave, the CP–violating Dirac phase can introduce phase effects. However, they

are negligible at tree level and as long as the
(−)

ν µ and
(−)

ν τ fluxes are identical at their emission from the

neutrinosphere [161]. The assumed equality is justified in Sec. 3 and becomes only invalid when the flavor

of the neutrinos are changed already before they decouple from matter.
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use of the equality of the νµ and ντ fluxes and perform a rotation of the neutrino states

(|νe〉 , |νµ〉 , |ντ 〉)→ (|νe〉 , |νx〉 , |νy〉):

|νx〉 = cos θ23 |νµ〉 − sin θ23 |ντ 〉 , (4.46)

|νy〉 = sin θ23 |νµ〉+ cos θ23 |ντ 〉 .

This rotation diagonalizes the (νµ, ντ ) submatrix of HF Eq. 4.31, comprising the elements

HF,ij with i, j = 2, 3. The other off–diagonal elements of the effective Hamiltonian are ap-

proximately zero at high matter densities [131, 94] and the Hamiltonian becomes diagonal.

This means the flavor eigenstates (|νe〉 , |νx〉 , |νy〉) at production coincide with the matter

eigenstates (|νM1〉 , |νM2〉 , |νM3〉) in the dense environment of neutrino creation during a

CCSN. The same considerations are valid for anti–neutrinos. Under these assumptions,

the neutrino fluxes F = (Fe, Fµ, Fτ )T observable on Earth are calculated from the initial

neutrino fluxes F 0 = (F 0
e , F

0
x , F

0
y )T at the neutrinospheres via

F =
1

4πd2
DPfF 0, (4.47)

where only flavor changes due to the MSW effect are taken into consideration [94, 131]. As

usual in this work, d is the distance of the SN from Earth. The matrix Pf is the MSW flip

probability matrix

Pf ≡


Pe1 Px1 Py1

Pe2 Px2 Py2

Pe3 Px3 Py3



=


PHPL 1− PL (1− PH)PL

PH(1− PL) PL (1− PH)(1− PL)

1− PH 0 PH


(4.48)

with PH and PL being the matter state flip probabilities at the H–resonance and L–

resonance. The second equality holds for neutrinos and NH. The derivation of the matrix

elements is found in [131]. Setting PH = 1 yields the respective matrix for neutrinos in

IH, where no H–resonance layer exists for neutrinos (see Fig. 4.3). Since for anti–neutrinos

and NH no resonance is encountered at all, the anti–neutrino matrix is consistent with the

identity matrix P̄NH
f = 1. If the masses are in IH, P̄f follows from Eq. 4.48 by replacing PL

with 1− P̄L and PH by P̄H . As discussed above, both resonances are crossed adiabatically

in typical SN density profiles at t . 1 s. The flip probabilities are thus approximately zero
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and the three affected matrices reduce to

PNH
f ≈


0 1 0

0 0 1

1 0 0

 , PIH
f ≈


0 1 0

1 0 0

0 0 1

 , P̄IH
f ≈


0 0 1

0 1 0

1 0 0

 . (4.49)

The (anti–)neutrinos leave the star’s surface as mass eigenstates and the corresponding

wave packets diverge over the typical distances from a SN to Earth [131]. The coherence

between the mass eigenstates is lost, no further oscillation effects occur and the fluxes arriv-

ing at the Earth are identical with the fluxes at the surface of the star up to a geometrical

factor included in Eq. 4.47. The neutrinos are observed as flavor eigenstates. This is taken

into account in Eq. 4.47 by the matrix

D =


|Ue1|2 |Ue2|2 |Ue3|2

|Uµ1|2 |Uµ2|2 |Uµ3|2

|Uτ1|2 |Uτ2|2 |Uτ3|2

 , (4.50)

which contains the probabilities of a flavor eigenstate |να〉 to be in the mass eigenstate |νi〉
with |〈να|νi〉|2 = |Uαi|2 and

∑
i |Uαi|

2 = 1. The matrix product DPf in Eq. 4.47 yields the

matrix of the final survival probabilities used in Sec. 7.

4.3 Neutrinoless Double Beta Decay

The neutrinoless double beta decay is the main physics topic of SNO+. However, it is

not directly subject to this thesis. For this reason, only the very basics of the physics

behind this process are given here to complete the presentation of SNO+ in Sec. 5 and

to motivate the quenching measurements presented in Sec. 6. For a deeper understanding

the reader is referred to [162, 163].

Double beta decay, the coincident occurrence of two β− decays in one nucleus, was

first proposed by Maria Goeppert–Mayer in 1935 [164]. Two years later, Ettore Majorana

demonstrated that the theoretical results remain unchanged if the neutrino is its own anti–

particle [165], i.e. a Majorana particle, which lead to the proposal by Wendell H. Furry in

1939 that in this case the reaction can proceed without the emission of any neutrino [166].

In this instance, however, the total lepton number is violated and an observation of the

process a prove of physics beyond the SM. Double beta decay in general is a second–order

process and hence its half life is much longer than that of typical single beta decays. It

is only experimentally observable, if the single beta decay is energetically forbidden while

double beta decay is allowed. This is the case for even–proton even–neutron number nuclei

that have a higher binding energy than their odd–odd neighbors due to proton–pair and
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neutron–pair spin–couplings. Only the nucleus two proton numbers higher has a larger

binding energy than the mother isotope, enabling double beta decay. In total, 35 natu-

rally occurring double beta decay isotopes, with forbidden or suppressed β decay, exist [74].

The search for the 0νββ addresses especially two long long–standing open questions

in particle physics: the Dirac or Majorana nature of the neutrinos and the magnitude of

their masses. As depicted in the above section, the squared mass differences ∆m2
ij are

known with increasing precision from neutrino oscillation experiments, demanding non–

zero neutrino masses. However, the absolute values of the mass basis eigenvalues in Eq. 4.2

are not resolvable in these experiments and thus neither the average neutrino masses

mα =

√∑
i

m2
i |Uαi|

2. (4.51)

As of now, only upper limits of these masses are accessible from cosmology, tritium decay, τ

decay and pion decay measurements [152], which are at best of O(eV), as mentioned at the

beginning of this chapter. It is furthermore mentioned in the previous section, that non–

zero neutrino masses are not forseen in the SM. Finite neutrino masses are not, or at least

not only, of SM Higgs origin. Amongst the proposed neutrino mass generation mechanisms,

the seesaw mechanism is most favored [167, 168], in which small neutrino masses are created

by physics beyond the SM in which the total lepton number conservation is violated at a

scale that is much larger than the electroweak scale. In this scenario, the neutrinos with

definite masses are of Majorana type, allowing the lepton number violating 0νββ decay of

even–even nuclei

N(A,Z)→ N(A,Z + 2) + e− + e−, (4.52)

shown in form of a Feynman diagram in Fig. 4.4. The knowledge of the nature of neutrinos,

Majorana or Dirac, is crucial for the understanding of the origin of neutrino masses at

the eV–scale, which is several orders of magnitude below the quark and charged lepton

mass scales. Thus large, ultra–low background experiments, like SNO+, set themselves to

search for this process.

The general expression of the observable total decay width is

Γ0ν =
1

T 0ν
1/2

= G0ν(Q,Z)
∣∣M0ν

∣∣2 |mββ |2

m2
e

, (4.53)

where G0ν is a known phase space integral with Q being the Q–value, both being listed for

several candidate 0νββ isotopes in Tab. 4.2. me is the electron mass and M0ν the nuclear

matrix element (NME) corresponding to the diagram in Fig. 4.4. The neutrino masses and

mixing in the standard parameterization Eq. 4.4 enter the matrix element in the form of

the effective Majorana mass
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Figure 4.4: Feynman diagram of the particle

transition inducing 0νββ decay.

|mββ | =

∣∣∣∣∣∑
i

miU
2
ei

∣∣∣∣∣ (4.54)

=
∣∣∣m1 cos2 θ12 cos2 θ13 +m2 sin2 θ12 cos2 θ13e

iε1 +m3 sin2 θ13e
i(ε2−2δ)

∣∣∣ ,
which is bracketed out from M0ν [162]. In contrast to neutrino oscillations, 0νββ decays

also depend on the CP–violating Majorana phases in agreement with the lepton number

violating nature of this process. The three neutrino masses m1,2,3 in Eq. 4.54 can be ex-

pressed in terms of the lightest neutrino mass mlightest and the two measured squared mass

splittings ∆m2
sol and ∆m2

atm, considering the three mass scale schemes in Eq. 4.14–4.16.

The respective allowed regions of the effective Majorana mass as function of the lightest

neutrino mass are shown in Fig. 4.5. Note that the underlying oscillation parameters and

uncertainties used in [162] marginally differ from those listed in Tab. 4.1. The oscillation

parameter uncertainties, leading together with the unknown CP–violating phases to the

1σ, 2σ and 3σ contours in Fig. 4.5, are propagated as uncorrelated in [162], but taking into

account the asymmetry of uncertainties. In case of IH, |mββ | is basically independent of

mlightest until the lightest neutrino mass nears the region of QD mass ordering, where |mββ |
rises linearly with mlightest. The allowed |mββ | range in case of NH is at least one order of

magnitude below the allowed region in case of IH. The difference in the ranges for normal,

inverted and quasi degenerate neutrino mass ordering opens up the possibility to gain

information about the ordering scheme from a measurement of the effective Majorana mass.

The Majorana mass, however, is not directly measurable, but is deduced from a

measurement of the 0νββ half life T 0ν
1/2, following Eq. 4.53. Since also the NME enters this

equation, it has to be calculated, which is a non–trivial many–body problem. Currently,

the main methods used for the calculation are the Quasi–particle Random Phase Approx-

imation (QRPA) [170, 171], the Energy Density Functional method (EDF) [172, 173],

the Projected Hartree–Fock–Bogoliubov approach (PHFB) [174], the Interacting Boson

Model–2 (IBM–2) [175] and the Large–Scale Shell Model (LSSM) [176, 177]. Current

results from the named approaches are summarized in Fig. 4.6 for different double beta
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Table 4.2: Phase space factorG0ν , ground state to ground state transitionQ–value, natural abundance and

experimentally determined half lives of the ordinary double beta decay T 2ν
1/2 of candidate 0νββ isotopes. The

half lives are the latest compilation of results as of December 2014, taken from [118]. The first uncertainties

are statistical, the second systematic, if two uncertainties are given. The rest of the table is adapted from

[162, 163, 169].

ββ decay G0ν Q nat. abund. T 2ν
1/2

[10−14 y−1] [MeV] [%] [1021 y]

48Ca→ 48Ti 6.4 4.27226(404) 0.187 0.044+0.005
−0.004 ± 0.004

76Ge→ 76Se 0.6 2.039061(7) 7.8 1.84+0.09 +0.11
−0.08−0.06

82Se→ 82Kr 2.7 2.99512(201) 9.2 0.096± 0.003± 0.010

96Zr→ 96Mo 5.6 3.35037(289) 2.8 0.0235± 0.0014± 0.0016

100Mo→ 100Ru 4.4 3.03440(17) 9.6 0.00711± 0.00002± 0.00054

116Cd→ 116Sn 4.6 2.81350(13) 7.6 0.029+0.004
−0.003

128Te→ 128Xe 0.1 0.86587(131) 31.7 7200± 400

130Te→ 130Xe 4.1 2.52697(23) 34.5 0.7± 0.09± 0.11

136Xe→ 136Ba 4.3 2.45783(37) 8.9 2.165± 0.016± 0.059

150Nd→ 150Sm 19.2 3.37138(20) 5.6 0.00911+0.00025
−0.00022 ± 0.00063

238U→ 238Pu 3.4 1.14498(125) 99.3 2.0± 0.6

isotopes. As obvious from this figure, a large discrepancy exists between the NME values

calculated with different methods, entering the determination of |mββ |.

Of the 35 double beta decaying isotopes, eleven have been experimentally observed

undergoing the ordinary two–neutrino double beta (2νββ) decay [152] (see Tab. 4.2). For

the 0νββ, only upper limits currently exist. The GERDA9 experiment, using 76Ge, reached

in 2013 a half life limit of 2.1 × 1025 y at 90% confidence level after 21.6 kg·y exposure

[178]. This is currently the most stringent 76Ge half life limit, strongly disfavoring

the controversial claim of the 0νββ decay observation by a subgroup of the HDM10

collaboration [179]. A combined analysis of the Ge results in [178], including the HDM

and IGEX11 results, yields a lower limit of 3.0 × 1025 y. This result refers to a range for

the upper limit on the Majorana mass of |mββ | < (200 − 400) meV [178], considering

various NME calculations. Additionally, limits at 90% confidence level on T 0ν
1/2 of 136Xe

9GERmanium Detector Array.
10Heidelberg–Moscow.
11International GErmanium eXperiment.
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|mββ | as function of the lightest neu-

trino mass mlightest in the normal

(NH) and inverted (IH) hierarchy

as well as in the quasi degenerate

(QD) ordering (see Eq. 4.14–4.16).

The value of θ13 measured by the

Daya Bay collaboration [17] is consid-

ered. The explicit underlaying oscilla-

tion parameters and uncertainties are

found in [162], from where the orig-

inal figure is taken. They are the

same within the uncertainties as in

Tab. 4.1.

  

Figure 4.6: Values of 0νββ decay

matrix elements M0ν , calculated with

different methods, named in the text.

The figure is taken from [162].

are reported by the KamLAND12–Zen13 and EXO–20014 collaborations of 1.9 × 1025 y

[180] and 1.1× 1025 y [181], respectively. The upper limit on the Majorana neutrino mass,

reported by EXO–200 [181], ranges from (190− 450) meV.

Since the 0νββ is an extremely rare process, detectors must not only have a large

isotopic mass, but also a minimal background level and a very–well understood background

model around the region of interest (ROI). Typically the majority of backgrounds stems

from detector intrinsic radioactivity, including α decays, as will be outlined in the context

of SNO+ in Sec. 5. Also proton recoils add up to the SNO+ 0νββ decay backgrounds,

though to a smaller extend. To determine the background model for SNO+, the responses

12Kamioka Liquid scintillator AntiNeutrino Detector.
13KamLAND Zero–neutrino double–beta decay.
14Enriched Xenon Observatory.
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of the scintillator to the individual charged particles have to be measured, since they differ

depending on the particle’s ionization strength, as explained in Sec. 2. The response to

protons and α particles relative to β particles has been measured within this work, as

described in detail in Sec. 6.



Chapter 5

The SNO+ experiment

SNO1 was the deepest multi-tonne underground detector of its time [182], located in

the Canadian SNOLAB. With the ability to not only detect electron neutrinos but also

muon and tau neutrinos, SNO solved the long–standing solar neutrino problem of a

strongly reduced electron neutrino flux from the Sun compared to theoretical expectations

[183]. SNO+ is the follow up experiment of SNO, replacing the 1 kt heavy–water

target with ∼0.78 kt of liquid scintillator and taking advantage of the already existing

SNO infrastructure. However, due to the conversion from a Cherenkov detector into a

scintillator detector, several upgrades and developments are needed to be able to handle

the scintillator and to achieve the physics goals of the experiment. Currently, SNO+ is

in the final phase of construction and has accomplished first test runs of data taking. A

first commissioning phase with the detector being filled with light–water is scheduled for

the beginning of the year 2015 before the water target is replaced by pure LS. The start

of the 0νββ phase with loaded LS is expected in 2016.

The target replacement, elaborate scintillator purification techniques and the use

of ultra–clean materials shift the former SNO detector threshold to lower energies and

provide ultra low backgrounds. For this reason, SNO+ is amongst others capable of

observing low energy solar neutrinos, geo neutrinos, reactor neutrinos and possibly

neutrinos from a SN. After a data taking phase with pure scintillator, a further phase is

scheduled in which the scintillator is loaded with natTe. In this phase, SNO+ will search

for the 0νββ decay of 130Te, the main physics goal of the experiment. Originally the

isotope of interest was 150Nd. However, after a novel loading technique was developed

at the Brookhaven National Laboratory (BNL) [184, 185], enabling also the loading of

LS with Te, and after thorough, collaboration–wide investigations on both elements, the

collaboration decided in 2013 to change to 130Te. The main motivation for the change

in isotopes is the higher expected half–life sensitivity of SNO+ using 130Te instead of 150Nd.

The underground laboratory is introduced in Sec. 5.1 and the detector in Sec. 5.2.

1Sudbury Neutrino Observatory.
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The liquid scintillators used in SNO+ are described in detail in Sec. 5.3. Te–loading and

Nd–loading are outlined, since scintillator with both loadings was used for the quenching

measurements presented in Sec. 6. The purification of the LS is described in Sec. 5.4.

Concluding, the 0νββ search and observation of SN neutrinos in SNO+ are sketched in

Sec. 5.5. Only these physics goals are described here, since they are the goals the thesis at

hand is mostly related to.

5.1 The SNOLAB underground laboratory

The SNOLAB facility is an underground laboratory situated 2 km deep in the Vale

Creighton Mine near Sudbury, Ontario, Canada. It is currently the second deepest operat-

ing physics laboratory world–wide [186]. In the past ten years, the original SNO detector

site [182] was enlarged to a 5 000 m2 facility forming today’s SNOLAB, supported by a

surface main building with preparatory laboratories, a workshop, a warehouse and offices.

The entire underground facility is a large single cleanroom of class 20002, enabling together

with the 6080 m.w.e. of rock shielding the observation of low energy neutrinos and the

searches for 0νββ decays and dark matter. At present several experiments following, or

planning to follow, these goals are housed by SNOLAB.

5.2 The SNO+ detector

The SNO+ detector, illustrated in Fig. 5.1, is installed in a barrel–shaped 34 m deep and

≤ 22 m wide cavity, which is sealed against the ingress of radon with an Urylon radon

liner. The center of the detector is formed by a 12 m diameter acrylic vessel (AV) of 5 cm

thickness which will contain about 0.78 kt of liquid scintillator. The AV is connected to the

deck area via a cylindrical neck and supported by a hanging rope system. It is surrounded

by a photomultiplier tube support structure (PSUP), a 17.8 m diameter geodesic stainless

steel frame holding more than 9000 8“–photomultiplier tubes (PMTs). Each PMT is

equipped with a reflective collar [182]. This configuration yields a solid angle coverage of

about 54%. The entire volume outside the AV is filled with ∼ 7 kt of ultra–pure water, of

which about 1.7 kt are between AV and PSUP and 5.3 kt are outside the PSUP, together

shielding against radioactivity from mainly the PMTs, the ropes and the rock. The outer

water volume is monitored by approximately 100 outward looking PMTs on the PSUP.

Changing the active medium within the AV from heavy–water to liquid scintillator

raised new demands to the detector. In contrast to heavy–water, the LS has a lower

density than the surrounding light–water shielding and will be subjected to buoyancy.

An additional rope–net system anchoring the vessel to the cavity floor is necessary (see

Fig. 5.1). The installation has been successfully completed at the beginning of the

2Cleanroom class 2000 means that ≤ 2000 particles with a diameter of ≥ 0.5µm are found per ft3 of air,

where 1 ft = 30.48 cm.
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Figure 5.1: Schematic view of the SNO+ detector

[187]. The acrylic vessel and neck are shown in blue.

The PMT support structure is shown in green, with

the PMTs omitted for visibility. The hold–down and

hanging ropes are shown in red and pink respectively.

The grey horizontal lines with the person on top mark

the deck. The enclosing black contour below the deck

sketches the cavity. The drawing is roughly to scale.

year 2012, using 40 mm diameter ropes made from high purity Tensylon. To match the

background target levels of SNO+, the ropes of the former hanging system were replaced

by Tensylon ropes as well, which have a diameter of 20 mm. Also the AV has to be as

free from radioactivity as possible. To remove dust contamination that deposited after the

heavy–water drain, the inner and outer surface has been thoroughly washed. To avoid new

infiltration of mine air, which is laden with radon, a cover gas system has been installed

sealing the neck. Electronics and data acquisition are upgraded including a re–designed

trigger system and an increased data rate capacity to meet the one to two orders of

magnitude higher light yield compared to heavy–water as well as the higher event rate.

Some boards and several dead PMTs have been repaired or replaced and dead electronic

channels have been re–mapped.

The solvent chosen for the liquid scintillator is LAB, as it satisfies the different re-

quirements of the experiment. This solvent is chemically compatible with acrylic, low in

toxicity and environmentally safe. It has a comparatively high flash point of 130◦C and a

high purity is achievable. Furthermore, LAB is readily available as it is a standard com-

ponent in the production of detergents. SNO+ LAB will be delivered from the Petresa

plant in Bécancour [188], Quebec, since Petresa performs purification steps that other pro-

ducers skip and provides in this way the purest and most transparent LAB of all tested

by SNO+. As primary solute PPO will be used in a concentration of 2 g/l. This value

was experimentally determined and found to be the optimal compromise between light

yield and self–absorption (see Sec. 2.5.1). The total light yield of this solution reaches

∼ 10 000 photons/MeV [189]. As secondary solute bis–MSB and perylene are being inves-

tigated and the concentration is likely to be around 15 mg/l.

5.3 The liquid scintillator of SNO+

The liquid scintillator in SNO+ will be a solution based on LAB. In the original scheme,

assuming 150Nd as the isotope for the double beta decay phase, LAB was supposed to
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be the solvent and 2 g/l of the solute PPO were to be added. No secondary solute was

planned, since Nd partly absorbs light of wavelengths typical for the emission spectrum of

secondary wavelength shifters. The planned concentration of natNd was 0.1% in the first

data taking phase, intended to be increased to 0.3% in a later phase. Aiming now for the

observation of the 0νββ decay of 130Te instead, the solution had to be modified. While

LAB can be loaded with Nd via organo–metallic loading [190], which leaves only LAB plus

Nd before mixing it with any solute, a new technique [184, 185] had to be developed to load

liquid scintillator with Te. The state–of–the–art compound for SNO+ is LAB scintillator

with telluric acid, water and an amine–based surfactant binding the water with the LAB

molecules. At the starting concentration of 0.3% natTe, the solution contains about (1.5–

1.7)% H2O and ∼ 5% PRS. Preliminary studies have shown that loadings up to a few

percent are possible, maintaining decent optical properties. The primary solute is also

in Te–loaded LS 2 g/l PPO. Since Te has no absorption lines in the relevant wavelength

region, a secondary solute will be added in order to shift the emission spectrum to higher

wavelengths, which match the PMT sensitivity better. The candidate solutes are bis–MSB

and perylene with a concentration around 15 mg/l. In this work, the ionization quenching

in normal LAB with and without Nd as well as in water–surfactant–LAB (wsLAB) with

and without Te were measured and hence all solutions and components described in this

section. All components are listed in Tab. 5.1 together with properties, relevant for this

work.

Table 5.1: Overview over the components present in loaded and unloaded SNO+ scintillators. All densities

assume 19◦C. At the given accuracy, the density of LAB is valid over a range of & 10◦C [191].

Compound Description Molecular weight Molecular formula Density

[g/mol] [g/cm3]

LAB solvent 235 C17.1H28.3 0.86

PPO 1st solute 221.25 C15H11NO 1.06

Bis–MSB 2nd solute 310.44 C24H22 1.10

Perylene 2nd solute 252.31 C20H12 1.30

PRS surfactant 375.767 C20.3H37.6NO3S 1.05

Water 18 H2O 1.00

Nd specimen 144.24 Nd 7.01

Te acid specimen 229.64 H6O6Te 3.07
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5.3.1 LAB with PPO

Linear alkylbenzene is a family of organic compounds. During the production of LAB,

the purified linear mono–olefines3 CnH2n, gained from paraffin, react with benzene in the

presence of a catalyst forming the LAB molecules. One benzene molecule, C6H6, consists

of six carbon atoms joined in a ring and 6 hydrogen atoms attached to each carbon atom.

The final molecular formula of LAB then reads (C6H5)CnH2n+1. This formula varies due

to a varying number n of C atoms, with typically n = 10 − 16. The composition of LAB

[188, 192], produced by Petresa Canada Inc. and used for SNO+, is given in Tab. 5.2 in

first order accuracy and with n = 10 − 13. This results in an average molecular formula

(C6H5)C11.1H23.3, or identically C17.1H28.3. The real composition may always differ slightly

due to catalyst aging.

Table 5.2: Approximate mass fraction of different LAB molecules in the SNO+ LAB solvent [28].

Molecular formula Mass fraction

[%]

C16H26 20.4

C17H28 43.2

C18H30 33.4

C19H32 1.8

C15H24 1.2

2,5–diphenyloxazole (PPO) is an oxazole4 derivative that forms well–crystalizing

salts. Stirring it in LS, PPO dissolves. The chemical formula of this fluor is C15H11NO.

Commercially available PPO generally has a high potassium contamination [193], but is

provided in different grades of radiopurity. A special high purity PPO is produced for low

background experiments.

Considering the natural isotopic abundances of H, C, N and O, the densities of the

main isotopes in the LS are calculated and listed in Tab. 5.3. Also given are the resulting

number fractions of the individual isotopes. The addition of 15 mg/l bis–MSB does not

change the results at the given accuracy.

3Olefines, also known as alkenes, are unsaturated chemical compounds that contain at least one carbon–

carbon double bond.
4Oxazole is a five–membered heterocyclic compound, a ring structure with five atoms of at least two

different elements. In this case the heteroatoms are N and O.
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Table 5.3: Isotope density and number fraction in LAB + 2 g/l PPO, considering an average composition

of H28.360C17.195N0.002O0.002 and an average LS density of 0.863 g/cm3 at 15 ◦C [188, 192]. Only isotopes

with densities ≥ 1×1018 /cm3 are used. The number fractions are relative to the sum of the listed isotopes.

Isotope Density Number fraction

[×1022 /cm3] [%]

1H 6.2751 62.241

2H 0.0007 0.007

12C 3.7633 37.327

13C 0.0419 0.415

14N 0.0005 0.005

16O 0.0005 0.005

5.3.2 Neodymium–loaded LAB

For the synthesis of Nd–LAB, a single–stage solvent–solvent extraction5 procedure was

developed at BNL to form a stable compound of the inorganic Nd and the organic liquid. In

this procedure, the metal reactant neodymium chloride hexahydrate (NdCl3 ·6H2O) and the

carboxylic acid reactant TMHA, 3,5,5–trimethyl–hexanoic acid (C9H18O2), are separately

dissolved in water having their pH–values controlled by HCl and NH4OH, respectively.

The two reactants are added together, forming an organo–Nd complex in aqueous medium,

which is extracted into the organic LAB. The resulting Nd–LAB was found to be stable

over several years at a Nd concentration of 1%. However, since Nd reduces the transparency

of the scintillator, an initial loading of 0.1% was planned for SNO+ and respective samples

have been investigated in the course of this work. Using elaborate purification techniques,

the metal–loaded scintillators are available at high radiopurity levels [190, 194].

5.3.3 Tellurium–loaded water–surfactant–LAB

In order to stably load LAB with Te, a different technique is needed with respect to the

organo–metallic loading technique used for Nd. Tellurium is hydrophilic and has to be

used in a water solution. Since LAB on the other hand is hydrophobic, a surfactant is

needed forming the link between the organic solvent and the water. As a result, the final

compound does not only contain the solvent and the metal, but also a non–negligible

fraction of water and surfactant, where the fractions grow with the Te concentration [195].

For SNO+, the scintillator will be initially loaded with 0.3% natTe, requiring about

(1.5–1.7)% H2O and ∼ 5% surfactant. Water–surfactant–LAB can be produced with and

5Solvent–solvent extraction is a technique in which an aqueous solution is brought into contact with an

immiscible organic solvent, in order to transfer one or more solutes from the aqueous phase into the organic

phase or vice versa.
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without Te, enabling amongst others the determination of the influence of the metal on

LS properties.

Tellurium is added in form of telluric acid, Te(OH)6. To obtain 0.3% Te in the

scintillator, about 0.54% of the telluric acid are needed. The alkyl chain of the aromatic

photoreactive surfactant (PRS) used is composed of benzene–1,3–diide (C6H4), sulfonic

acid (SO3H) and isopropylamines (C3H9N). Based on the alkyl chain composition, the

molecular weight and chemical formula amount to 375.767 g/mol and C20.3H37.6NSO3

[196]. Considering the natural isotopic abundances of H, C, N, O and S, the densities of

the main isotopes in the LS are calculated and listed together with the resulting number

fractions in Tab. 5.4. The addition of 15 mg/l bis–MSB or perylene does not change the

results at the given accuracy.

Table 5.4: Isotope density and number fraction in LAB + 2 g/l PPO + 5% PRS + 1.5% H2O, considering an

average composition of H28.424C17.092N0.052O0.167S0.050 and an average LS density of 0.875 g/cm3 (columns

2 and 3). Isotope density and number fraction in LAB + 2 g/l PPO + 5% PRS + 1.5% H2O + 0.54%Te(OH)6,

considering an average composition of H28.290C16.989N0.052O0.203S0.050Te0.006 and an average LS density of

0.887 g/cm3 (columns 4 and 5). Only isotopes with densities ≥ 1×1018 /cm3 are used. The number fractions

are relative to the sum of the listed isotopes. The LS densities are the average over all constituents.

Isotope Density Number fraction Density Number fraction

[×1022 /cm3] [%] [×1022 /cm3] [%]

1H 6.2846 62.075 6.3504 62.048

2H 0.0007 0.007 0.0007 0.007

12C 3.7381 36.921 3.7723 36.857

13C 0.0416 0.411 0.0420 0.410

14N 0.0115 0.114 0.0117 0.114

16O 0.0369 0.364 0.0455 0.445

32S 0.0105 0.104 0.0107 0.104

34S 0.0005 0.004 0.0005 0.005

126Te — — 0.0003 0.002

128Te — — 0.0004 0.004

130Te — — 0.0005 0.004

It should be noted that neither water nor the PRS used scintillate. As a net result,

wsLAB has a slightly lower light yield than LAB. On the other hand, Te–loaded wsLAB

has a higher light yield than Nd–loaded LAB at the same concentration [185], due to the

earlier mentioned absorption lines inherent to Nd, which is advantageous for the 0νββ

search of SNO+. In order to maintain the high light yield also at high Te concentrations,
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further techniques are being investigated at BNL.

In conclusion, metal–loading of organic liquid scintillators using water–surfactant bin-

ding is a novel technique that has been developed and successfully applied with various me-

tals at BNL [185, 195]. Investigations are still ongoing, though, to optimize the scintillator

properties at different stages of loading. All wsLAB samples used and explicitly presented

in Sec. 6 are state–of–the–art, but may differ from the final SNO+ compound.

5.3.4 Bis–MSB and perylene

Te–loaded LS will not only contain PPO as primary solute, but also a secondary solute. The

two currently investigated fluors are bis–MSB and perylene, aromatic hydrocarbons with

the molecular formulas C24H22 and C20H12, respectively. Both secondaries shift the light

emitted from PPO to wavelengths at which the quantum efficiency of the SNO+ PMTs is

increased. The efficiency is highest between about (350–500) nm with a maximum around

∼ 450 nm [197]. In comparison, the PPO emission spectrum peaks at about 360 nm, the

bis–MSB spectrum around 430 nm and the perylene spectrum around 480 nm. The final

admixture is not fixed yet.

5.4 Scintillator purification

In order to accomplish the physics goals of SNO+, a high radiopurity of all scintillator

components is necessary. The background target levels for pure LAB scintillator with PPO

are 1.6 × 10−17 g238U/gLS, corresponding to 13 cpd of 214Bi, and 6.8 × 10−18 g232Th/gLS,

corresponding to ∼ 2 cpd of 228Ac. To reach these levels, a purification plant, which joins

different purification steps in a single–stage system, is currently being installed in the

underground laboratory. First, a highly concentrated master solution with 120 g/l PPO is

prepared in batches and prepurified. The concentrated PPO solution and LAB are distilled

in parallel before blending the scintillator in order to remove heavy metals and to improve

the UV transparency. In a next step, volatile contaminants of the LAB–PPO scintillator

like Rn, Kr, Ar and O2 are removed by a N2/steam stripping process. Furthermore, water

extraction and metal scavenging will remove elements like Ra, K, Bi and Pb. To remove

dust, the scintillator will pass through micro–filtration. While the detector is operating, it

will be possible to re–purify the scintillator in a recirculation process. Details about the

purification system are found in [198].

During the phase with Te–loaded wsLAB, the additional scintillator components

introduce new contaminations, worsening the purity. The target levels for this phase are

2.5×10−15 g238U/gTeLS and 3.0×10−16 g232Th/gTeLS. The purification system for the telluric

acid and the PRS are under development. The telluric acid will be purified in a two–stage

procedure, where the first stage is conducted on surface and the second underground.

On surface, U and Th contaminations as well as cosmogenic isotopes in Te [199] will be
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strongly reduced using nitric acid re–crystallization and ethanol rinse. After the first stage

of purification, a few hours can elapse before the sample is send underground. In this

time, short living isotopes are produced in the telluric acid by cosmic neutron and proton

activation. To remove cosmogenic isotopes and further purify the sample underground, it

is dissolved in water at 80◦C and cooled to re–crystallize without rinsing in this second

purification step. This procedure keeps half of the Te, while the other half remains in solu-

tion, which is recycled in the surface plant. Additional cooling down underground further

reduces cosmogenic backgrounds. Having passed the two stages of purification and six

months of cooling down after one year of exposure to the cosmic flux at sea level, less than

one cosmogenic background event per year is expected in the ROI for the 0νββ search [200].

5.5 Physics goals

SNO+ is a multipurpose detector and has a large physics program, which is beyond the

scope of this thesis. Further information about physics goals besides those mentioned here

are found in [201, 202, 203], for instance.

5.5.1 Double beta decay search

The 0νββ decay described in Sec. 4.3 results in two electrons in the final state, each

carrying the full Q–value of the single decay, since no further particle is emitted. The signal

of the 0νββ decay thus is a mono–energetic line at the Q–value, opposed to the normal

β–decay spectral shape of the 2νββ decay, both broadened by the energy resolution of the

detector. The observable is the half life of the 0νββ decay T 0ν
1/2, which is related to the

effective Majorana mass |mββ |, following Eq. 4.53. SNO+ will undertake the 0νββ search

using 130Te and with an initial scintillator loading of 0.3% natTe by mass. With about

0.78 kt of LS and a natural 130Te abundance of 34.08% [204] this results in around 800 kg

of the double beta decaying isotope. With this, it is expected to reach after 5 y of data

taking a T 0ν
1/2 sensitivity of > 9×1025 y at 90% C.L. (see Fig. 5.2), corresponding to a |mββ |

sensitivity of < 70 meV. Recent developments suggest that loadings to the percentage level

are possible, pushing the sensitivity to the bottom of the inverted hierarchy (see Fig. 4.5).

The expected energy spectrum around the 130Te Q–value of ∼ 2.53 MeV (see Tab. 4.2)

is presented in Fig. 5.3. The ROI for the 0νββ search ranges from −0.5σ to +1.5σ,

which corresponds to an energy interval of about (2.47–2.69) MeV. The figure shows the

0νββ signal, assuming |mββ | = 200 meV, and the expected background spectra coming

from the 2νββ decay, 8B neutrinos from the Sun, (α, n) reactions and decays within the

natural uranium and thorium chains (see Fig. A.1) in the scintillator as well as external

backgrounds. The latter are backgrounds from sources outside of the scintillator volume.
238U, 232Th and their daughters are intrinsic to the scintillator, though strongly reduced

by the purification techniques outlined in Sec. 5.4. Assuming the target levels given in that
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Figure 5.2: 0νββ half life T 0ν
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Figure 5.3: Expected SNO+ energy spec-

trum for the 130Te 0νββ decay search after

background suppression (Courtesy of the

SNO+ collaboration, September 2014). A

20% fiducial volume cut, 0.3% natTe loa-

ding, a Gaussian energy resolution with

σ(E) =
√
E[MeV]/200, the 2νββ half life

T 2ν
1/2 = 7 × 1020 y and an effective Majo-

rana mass of 200 meV are assumed. The

nuclear matrix element used is M0ν = 4.03

(IBM–2). Information about the back-

grounds are found in the text.

subsection, Fig. 5.3 is obtained after the application of a > 99.99% and > 98% efficient

coincident tag for 214Bi–214Po (U chain) and 212Bi–212Po (Th chain) backgrounds. The

external backgrounds within a 3.5 m fiducial radius are suppressed by a factor of two due

to a likelihood ratio cut. Backgrounds from cosmogenic induced nuclides in Te are not

shown, since they are negligible after the purification of Te on surface and underground,

as discussed above.

214Bi–214Po and 212Bi–212Po events from the U and Th chain in the LS form the largest

background contribution in the ROI. If these events are not efficiently cut, SNO+ is not

sensitive to the current limit of |mββ | < (190−450) meV (90% C.L.) set by EXO–200 [181],

or even less able to lower it. For an efficient reduction of these backgrounds, the knowledge

of the α–particle quenching strength, which is measured within this work and presented in

Sec. 6, is inevitably necessary. While it is unlikely that α–particle events from 214Po and
212Po itself fall into the ROI, it is very likely that β–particle events from their mothers, 214Bi
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and 212Bi, do. The time coincidence between the mother and the short–living daughter is

used together with a visible energy cut on the β– and α–particle events to suppress the Bi–

Po background in the ROI. This suppression is only efficient, if the visible α–particle energy

is known, which strongly deviates from the kinetic energy due to ionization quenching (see

Sec. 2.6.3). Furthermore, since the half–live of 212Po is with 298 ns shorter than the SNO+

trigger window, lasting 400 ns, the majority of 212Po decays occurs within the same trigger

window as 212Bi. The visible sum energy of these Po+Bi events, which are likely to fall into

the ROI, is also defined by the α–particle quenching strength. The same argument is true

for 214Po and 214Bi, though to a smaller extend, since the half–live of 214Po is larger with

164.3µs. To conclude, a successful search by SNO+ for the 0νββ of 130Te builds upon the

measurements of the strongly quenched, visible α–particle energy as a function of kinetic

energy in the novel Te–loaded LS, which were performed within this works.

5.5.2 Supernova neutrinos

With the observation of in total 24 ν̄e candidates from the SN 1987A, the Kamiokande II

and IMB Cherenkov experiments as well as the Baksan Scintillator Telescope provided

important information about the mechanisms of a supernova burst [42, 43, 44], described

in Sec. 3.3. Although the Baksan telescope is also a scintillation detector, it was due to its

high detector threshold of 10 MeV most sensitive to ν̄e neutrinos undergoing inverse beta

decay, like the two Cherenkov detectors.

Liquid scintillation detectors with a low trigger threshold, like SNO+, are sensitive

to both, charged and neutral currents, and have in total a larger variety of reactions than

the three named detectors. The golden channel for SN neutrino detection of all flavors

is neutrino–proton elastic scattering, as this NC reaction is the only channel providing

spectral information about all neutrino flavors that also has a relatively high cross section.

The proton recoil energy, however, is strongly quenched and nearly all events have visible

energies below 2 MeV, assuming a standard CCSN. The spectral sensitivity of SNO+ to

the
(−)

ν µ’s,
(−)

ν τ ’s of a galactic SN that undergo ν–p elastic scattering is determined within

this work, based on the measured proton quenching parameters. The details are presented

in Sec. 7. Finally, it should be mentioned that SNO+ will participate in the Supernova

Early Warning System SNEWS [205].





Chapter 6

Ionization quenching in LAB based

scintillators

6.1 Motivation

The energy dependent light yield of liquid scintillator (LS) varies for different particles, as

described in detail in Sec. 2, and is lower the higher the mass of the charged particle is.

Thus, in an energy sum spectrum, as recorded in SNO+ – like detectors, also the expected

number of events in each light yield bin strongly depends on the particle type and energy.

Both, signal and background model, are reliant upon a precise knowledge of the light

response function to electrons, protons and α–particles, as well as even heavier ions, if

detectable. All discussions within this chapter refer only to the energy range of interest

for low energy LS detectors, i.e. a few keV up to about 100 MeV. While the electron light

yield raises approximately linear with the particle energy above a few hundred keV, the

proton and α–particle light output is expected to raise non–linearly over several MeV,

following Birks’ law Eq. 2.12. The response to protons and α–particles of scintillators

based on LAB has not been published before the presented work had been accomplished.

Moreover, whether the Birks parameter kB in Eq. 2.12 is the same for the same LS but

for different ions is still under discussion, as already pointed out in Sec. 2.6.3. Hence a

determination of both, proton and alpha quenching, within the same measurement, is the

ideal way to test this controversy. To determine the non–linear scintillator response due to

ionization quenching, the best approach is to use internal particles, as is done within this

work, in order to avoid surface effects. If organic scintillators were instead excited from

external ionizing particles with a residual range as short as < 8 mm air equivalent range

[5] in the compound, excitation energy could escape and the observed total light yield

would be less than expected and varies non–linearly with the range. A common method

to measure proton quenching is the use of recoiling protons from neutron–proton elastic

scattering in which the maximum proton energy equals the neutron energy. Also alpha

quenching in organic scintillators can be measured in a neutron field via the 12C(n,α)9Be

reaction, in which the maximum α–particle energy can be calculated, assuming the 12C
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atom is at rest. Thus, using neutrons, as done for the presented measurements, proton

and alpha quenching can be measured simultaneously with the same detector and data

acquisition (DAQ) system and consequently under the same measurement conditions.

The measurements were taken in four individual campaigns C1, C2, C3 and C4.

They are not only valuable for SNO+, but for an increasing number of experiments.

LAB is employed for novel liquid scintillators which are used or planned as the neutrino

target in recently commissioned, upcoming and potential future neutrino experiments like

Daya Bay, RENO1 [206], SNO+ and JUNO2 [207]. Also further potential experiments

like LENS3 [208] and HANOHANO4 [209] are considering LAB as possible solvent for

their scintillator. Additionally, water–surfactant–LAB (wsLAB) scintillators are being

developed [185] to enable loading of a broad range of isotopes. For these scintillators

this work delivers the first proton and alpha quenching measurements worldwide. This

chapter presents the measurements of the light response functions in different LAB

and wsLAB scintillators for protons and α–particles relative to the electron response

function, carried out at the PTB Ion Accelerator Facility (PIAF) of the Physikalisch–

Technische Bundesanstalt (PTB), Braunschweig. The presented method, utilizing gamma

sources to determine the electron response and a white neutron beam for the alpha

and proton response, was already used successfully at the PTB for the characterization

of NE2135, BC501A6 and BC501 scintillation detectors [210, 211, 212, 213]. Results

of the quenching measurements are partly published [32, 189] and passages of the

text in this chapter are identical to text in the publication, since their author is the

same. The data presented in [32] was evaluated in two independent analyses by two

of the authors. The resulting quenching parameters are the same within their uncertainties.

This chapter is organized as follows. In Sec. 6.2, the compositions of the ten different,

investigated LAB based scintillators are specified. The experimental set–up is described

in Sec. 6.3, including the relevant details about the neutron field. This section is followed

by the description of the gamma source calibrations and presentation of the resulting elec-

tron light responses in Sec. 6.4. The beam data analysis is discussed in detail in Sec. 6.5,

concluded with the determined proton and alpha light responses relative to the respective

electron light response. These measurement results are fit with Birks’ law Eq. 2.12, as de-

scribed in Sec. 6.6. The resulting Birks’ parameters kB and C for protons and α–particles

in the various LAB based scintillators are presented and discussed within this section. For

these results, a linear electron light response function is assumed, which is a typical ap-

proximation justified by the smallness of the non–linearity of the electron light response.

The variation of the fit results in the presence of a non–linearity is investigated in Sec. 6.7.

1Reactor Experiment for Neutrino Oscillation.
2Jiangmen Underground Neutrino Observatory.
3Low Energy Neutrino Spectroscopy.
4Hawaii Anti–Neutrino Observatory.
5Provided by Nuclear Enterprise Ltd. .
6Provided by Saint–Gobain Ceramics & Plastics, Inc. .
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Different extents of the non–linearity are considered. The strength of the alpha quench-

ing has been measured in two further, independent experiments. One experiment was

conducted using the SNO+ detector by members of the SNO+ collaboration and one was

performed at the Helmholtz–Zentrum Dresden Rossendorf (HZDR). The results from those

measurements are compared to the results of this thesis in Sec. 6.8. Finally, the proton

and alpha quenching parameters determined are directly compared in Sec. 6.9 per scintil-

lator, addressing the question of whether the same compound has equal or different Birks

parameters. The chapter is concluded in Sec. 6.10 by a short summary and outlook.

6.2 Liquid scintillator compositions

The composition of all LS samples used for the measurements at PTB is given in Tab. 6.1.

Six different LAB based samples are used, termed LAB1 through LAB6, four wsLAB

samples, termed wsLAB1 through wsLAB4, and one PC based sample, termed PC1. The

PC measurement is analyzed in [215] and only touched on here for comparison. The

first two categories, LAB and wsLAB, correspond to the initial intention of SNO+ to

search for the 0νββ of 150Nd using LAB and the directional change towards the search

for the 0νββ of 130Te, which requires wsLAB. These two categories contain metal–loaded

and unloaded samples. Moreover, different fractions of primary and secondary solute

are tested. As explained in Sec. 2.6.3, ionization quenching is mainly a primary process

and thus different primary solute concentrations as well as the addition of a secondary

solute are not expected to change the measured quenching parameters. To control this

expectation, measurements using LAB with different PPO concentrations as well as with

and without secondary solute are conducted (LAB1–4 in Tab. 6.1). In the case of the

Nd loaded samples, no bis–MSB is added, since Nd has intrinsic absorption lines leading

to more color quenching (see Sec. 2.6.1) in the range of bis–MSB emission than in PPO

emission. The corresponding absorption and emission spectra, measured within the work

at hand, are shown in Fig. 6.1.

Within the measurements using wsLAB scintillators, two different secondary wave-

length shifters are tested, bis–MSB and perylene (wsLAB2–3 in Tab. 6.1). These secondary

solutes are two candidates for the water–surfactant–compound of SNO+. Within these

measurements, water and PRS tremendously worsened the measurement conditions, as will

be shown and explained within this chapter, and data with a high bis–MSB concentration

of 45 mg/l is additionally taken to slightly improve the resolution.

The average density ρ̄ as well as the hydrogen to carbon ratio NH/NC , both influ-

encing the gamma and neutron scattering event rate, are calculated for each scintillator

sample from the individual density and number of H and C atoms of the constituents (see

Tab. 5.1) and their respective fraction (see Tab. 6.1). The resulting values are summarized

in Tab. 6.2. The LAB solvent in all LAB based samples is provided by Petresa Canada

Inc., Canada, Bécancour, and has a density of (0.858− 0.868) g/cm3 at 15◦C [188, 192].
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Table 6.1: Mass fractions in percent of the solvent (LAB or PC), primary solute (PPO), secondary solute

(bis–MSB or perylene), isotope (Nd or Te) and, if any, molecules necessary for element loading (PRS and

water) of each liquid scintillator sample used for measurement. In sample wsLAB1, 0.54% Te(OH)6 (telluric

acid) yield a natural Te loading of 0.3%. All wsLAB samples and isotope loaded samples are prepared by

M. Yeh and S. Hans at the Brookhaven National Laboratory.

Sample Fraction by weight

LAB PPO bis–MSB Nd

LAB1 99.766 0.232 0.002 –

(=̂2 g/l) (≈̂15 mg/l)

LAB2 99.768 0.232 – –

LAB3 99.650 0.348 0.002 –

(=̂3 g/l)

LAB4 99.652 0.348 – –

LAB5 99.668 0.232 – 0.100

LAB6 99.552 0.348 – 0.100

Sample Fraction by weight

LAB PPO bis–MSB perylene PRS water Te acid

wsLAB1 92.666 0.232 0.002 – 5.00 1.50 0.54

wsLAB2 93.266 0.232 0.002 – 5.00 1.50 –

wsLAB3 93.266 0.232 – 0.002 5.00 1.50 –

wsLAB4 93.263 0.232 0.005 – 5.00 1.50 –

(≈̂45 mg/l)

Sample Fraction by weight

PC PPO bis–MSB

PC1 99.828 0.170 0.002

(=̂1.5 g/l)
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Figure 6.1: Absorption and emission spectra of Nd–loaded LAB. The emission of

LAB + 0.1% Nd + 3 g/l PPO (+15 mg/l bis–MSB) is induced with an excitation wavelength of

λex = 320 nm (345 nm) in a Perkin Elmer Luminescence Spectrometer [214]. The light is col-

lected by the spectrometer over 80µs. The resulting intensity Iem is shown in arbitrary units

(a.u.). The absorption spectrum is given as relative difference between incident light inten-

sity Iin and transmitted light intensity Iout, in 1 cm of LAB + 0.1% Nd + 3 g/l PPO relative to

LAB + 3 g/l PPO.

Before measurement, each solution is purified from oxygen by bubbling with Ar for

30 min, to reduce the effect of oxygen quenching, as explained in Sec. 2.6.2. The bubbled

LS is filled into the detector cell without further contact to air. The measurements were

performed at about 19◦C, which is slightly above the temperature of 15◦C at which the LAB

density is known from the provider [188, 192]. This uncertainty enters the later calculation

of the material stopping power.

6.3 Experimental set–up

6.3.1 Neutron field

To obtain a proton light output function over an energy range as large as possible as well as

internal α–particles with several different energies in a single experiment, a neutron beam

with a continuous spectral distribution is used. The white neutron field is produced at

PIAF, partly sketched in Fig. 6.2, by bombarding a 3 mm thick stopping–length Be target

with a 19 MeV proton beam from the isochronous CV28 cyclotron [216, 217]. Neutrons

are predominantly produced by the 9Be(p,n)9B∗ reaction, where the kinematic limit of

the 9Be(p,n)9B ground state transition has a Q–value of ca. −1.850 MeV. The maximum
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Table 6.2: Calculated average density ρ̄ at 15◦C and hydrogen to carbon ratio NH/NC of all liquid

scintillator samples used for measurement and listed in Tab. 6.1. The LAB values are based on [188, 192].

The value for PC1 is taken from [193].

Sample ρ̄ NH/NC

[g/cm3]

LAB1 0.863 1.649

LAB2 0.863 1.649

LAB3 0.864 1.648

LAB4 0.864 1.648

LAB5 0.870 1.649

LAB6 0.870 1.648

wsLAB1 0.887 1.665

wsLAB2 0.875 1.663

wsLAB3 0.875 1.663

wsLAB4 0.875 1.663

PC1 0.880 1.332

energy of the neutrons is thus about 17.15 MeV at an emission angle of 0◦. The minimum

energy of neutrons escaping from the target along the beam axis is below 1 MeV.

To enable neutron time–of–flight (TOF) spectroscopy, a fast internal beam–pulsing

system is incorporated into the cyclotron providing isolated single beam pulses with

adjustable repetition frequency [216]. The cyclotron operated at a frequency fcyc of

approximately 23 MHz during all measurements. The repetition frequency of the isolated

pulses is defined by a pulse selector which deflects the unwanted pulses within the first

orbit. The accepted single pulses are further accelerated in the cyclotron. The frequency

of the selector fsel, respectively of the beam pulses, is fsel = fcyc/n, where n = 2, 3, 4, ..., 79

is scalable. In order to reduce the presence of incompletely deflected pulses before and

after the main beam pulse, so–called satellite pulses, and in order to shorten the main

pulse, an electric capacitor purges the head and the tail of the main pulse. The shortened

pulses have a full width at half maximum of ∼ 1.5 ns [216, 217]. Though satellites are

mitigated with the pulse shortener, they are not fully suppressed.

The compact cyclotron is placed on a movable, ∼ 5 m long swivel arm, as shown in

Fig. 6.2, with the target close to the pivot. A fixed heavy collimator system consisting of a

polyethylene pre–collimator, water tanks and concrete provides five different possible flight

paths to five neutron detector stations with low background from backscattered neutrons.
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x

Figure 6.2: Time–of–flight spectrom-

eter at PIAF with a cyclotron (CY),

quadrupole magnet (Q), target (T),

scattering probe and pivot of cyclotron

movement (S), monitor (M), polyethy-

lene shields (P), water tanks (W), con-

crete shield (CO) and five detector sta-

tions (D1...5). The polyethylene shields,

water tanks and concrete shield form

a massive neutron shield and collima-

tor system. For quenching measure-

ments, no scattering probe is placed at

the pivot and the CY is at position X.

The figure is taken from [216].

Table 6.3: Selector frequency fsel, proton beam current Ib and distance d between the center of the Be

target and of the scintillator volume for the different measurement campaigns. The distance between target

and detector cell is measured with an accuracy of ± 2 mm.

Campaign Samples fsel Ib d

[kHz] [nA] [m]

C1 LAB1-3, LAB6 481.3 50 12.1100

C2 LAB4 959.4 100 12.2109

C3 LAB5 957.4 180 12.2144

C4 wsLAB1-4, PC1 477.2 45 12.2409

The LAB scintillator detector was installed at position D3 in Fig. 6.2 at a distance of

approximately 12 m (see Tab. 6.3) in all measurements. The cyclotron was placed such

that the detector is on the proton beam axis to collect data within the largest possible

neutron energy interval. The approximate neutron energy distribution at the detector

position is shown in Fig. 6.3. During gamma calibration data taking, the beam is blocked.

To avoid an overlap of the slowest neutrons from one pulse with the fastest neutrons

from the succeeding pulse, also called time–frame–overlap, the selector frequency was re-

stricted to less than 1 MHz. The exact values are listed in Tab. 6.3. Given the distance

d between the Be target center and the scintillator volume center as well as the frequency

fsel, the critical neutron velocity vc, at which time–frame–overlap occurs, is

vc =
d

d
vmax

+ 1
fsel

, (6.1)
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Figure 6.3: Relative spectral neutron

fluence distribution of 9Be(p,n)9B re-

actions, from 19 MeV protons imping-

ing on a thick Be target, at a distance

of 27.39 m from the center of the tar-

get. The figure is taken from [211].

where

vmax =

√
1− 1

Emax
mnc2

· c (6.2)

is the neutron velocity at maximal kinetic neutron energy Emax = 17.15 MeV, mn is the

neutron mass and c the speed of light in vacuum. The resulting critical neutron energy

Ec = mnc
2

(√
1

1− v2
c
c2

− 1

)
(6.3)

is 0.493 MeV with the settings of campaign C3. Consequently, recoiling protons from

neutron–proton scattering in the scintillator reach maximally the same energy. The light

produced by protons in organic liquids at these low energies is typically reduced by more

than a factor of 5 compared to electrons, as will be confirmed for LAB in Sec. 6.5.5,

yielding < 100 keV electron–equivalent energy. The maximum possible kinetic energy of

heavier charged particles is even lower, while the light reduction is even stronger. With a

hardware threshold of 200 keV electron energy, corresponding to ∼ 1 MeV proton recoil

energy, time–frame overlap can thus be safely neglected in C3 as well as in the other

campaigns, which all have an even lower critical energy.

To avoid signal pile–up due to multiple neutron interactions in the detector within one

time period 1/fsel, the beam current Ib had to be limited to about 100 nA. The trigger rate

of the constant fraction discriminator (CFD) module is about 3 × 103 s−1 for a threshold

set close to the electronic noise. With the individual values for Ib listed in Tab. 6.3, the

rate of neutrons Rn incident on the detector front face spans from about 7× 103 s−1 in C4

to about 27 × 103 s−1 in C3. After a neutron interaction has triggered the detector, the

probability for a second neutron in the detector within the duration of one beam pulse is

Rn/fsel and thus about 2.8% in C3, the highest probability of the four cases. The average
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(a) Liquid scintillator cell. (b) Liquid scintillator detector.

Figure 6.4: Liquid scintillator (LS) cell (a) and assembled LS detector (b). The detector is installed at

one of the measuring units of the PTB time–of–flight spectrometer. A gamma calibration source is placed

a few centimeters in front of the cell.

neutron detection efficiency in a NE213 detector of the same dimensions and threshold as

the detector used here is determined to be below 25% [217]. Assuming a similarly good

efficiency in the case of the presented measurements, the probability for multiple neutron

interactions within one beam pulse is ≤ 0.7% in all campaigns. The amount of events with

falsely measured pulse–height (PH) at a certain TOF is thus not statistically significant

and, moreover, the value of the false PH is randomly distributed. Pile–up thus does not

cause an observable deterioration of the shape of the PH spectra.

6.3.2 Liquid scintillator detector

The scintillation detector consists of a cylindrical dural cell (see Fig. 6.4a) with one port

covered by a window made of ground and polished fused silica for higher UV transparency

and an XP2020Q PMT [218], also equipped with a fused silica window. Two identical

cells have been produced at the mechanical workshop of the TU Dresden. The diameter

and inner height of each cell is 50.8mm and the bottom wall has a thickness of 2.5mm.

At PTB, silica window and cell were joined by an indium gasket and coupled to the PMT

by a conical UV transparent poly(methyl methacrylate) (PMMA) light guide7. The inner

walls of the cell and the light guide are coated with BC–622A [219] reflective paint to

increase the light collection efficiency. Both, the PMT sensitivity as well as the paint

reflectivity, depend on the wavelength as shown in Fig. 6.5. The bialkali photocathode of

the PMT has a peak sensitivity at 420 nm [218] and the paint reflectivity is maximal above

about 430 nm. The PMT is surrounded by a mu–metal cylinder with the same potential

as the cathode to compensate the influence of the Earth magnetic field. PMT and base

are housed in an aluminum casing and the whole detector is tested to be light–tight. A

picture of the assembled detector at position D3 is shown in Fig. 6.4b.

7Provided by Evonik Röhm GmbH.
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(a) Spectral XP2020Q sensitivity [218]. (b) BC–622A reflectivity [219].

Figure 6.5: Wavelength dependence of the PMT sensitivity (a) and the paint reflectivity (b).

The detector is equipped with an LED gain stabilization system regulating the drift of

the PMT gain for temperature variations between 5◦C and 40◦C and countrate–dependent

drifts with time constants below 1 s [220]. The LED is operated in a triggered mode such

that light pulses with durations of a few nanoseconds are produced. These light pulses

are directed to the photocathode. The signals produced by the LED pulses are identified

electronically and the high voltage is regulated to keep the PH of the LED signals constant.

The maximum drift of the gain is kept below 1%. Additionally, capacitors are integrated

in the last dynodes to avoid a voltage drop in the case of high dynode currents and thus

a gain variation. An effect, which cannot be compensated by external means, however, is

the non–linearity of the amplification between dynodes due to space charge effects. In this

instance the field of secondary electrons from one dynode affects the fast following electrons

from the preceding dynode, partly shielding the dynode voltage. This non–linearity can

only be avoided by a decrease of the amplification or by signal extraction before the last

dynode. In the used set–up, the latter solution is applied and a slow signal from the ninth

PMT dynode out of twelve is read out via a coupling capacitor.

6.3.3 Read–out system

The detector is connected to a NIM–standard read–out system, which provides three

signal types: PH, pulse–shape (PS) and TOF. In the case of beam measurements, the

signals are delayed such that they are registered coincidentally by a multi–parameter DAQ

system [221]. This system contains a set of analog–to–digital converters (ADCs) and the

signals are stored event–by–event. During the acquisition of calibration data, only PH

information is available and the system is switched from coincidence–mode to independent

single–mode. The DAQ system allows for online data analysis and sequentially stores the
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ADC data, permitting an extensive offline analysis.

The PH is the peak amplitude of an analog pulse, extracted from the ninth dynode

of the PMT. The PH signal is then passed through a preamplifier and a delay line am-

plifier. The integrated charge signal, which is proportional to the number of scintillation

photons and thus the light yield, is tested against threshold in a time single channel

analyzer (TSCA). The threshold is set to about 200 keV electron energy. Using the delay

line amplifier, the PH is regulated such that in the first series of measurements with a

particular LS sample, the full dynamic range is registered. In a second series with the

same sample, the PH is amplified such that the region at low PHs, which is important for

the α–quenching measurement, is better resolved. In this series, only the full PH spectrum

of neutrons with up to about 5 MeV energy is registered. At higher neutron energies, the

high PH end of the spectrum is outside the measuring range. In the following, the first

amplification mode is referred to as low gain (LG) and the second one as high gain (HG)

mode. Each measurement is performed in both modes. The PH scale is calibrated by

means of standard gamma sources in order to translate PH, measured in ADC channels,

into light yield L in electron–equivalent energy, as will be described in detail in Sec. 6.4.

The proton and α–particle light response measurements are thus relative to the electron

light response.

The PS signal is independent from the pulse amplitude and thus extracted from

the anode of the PMT. It is determined for pulse–shape discrimination (PSD) between

gamma–induced background events and neutron–induced events. The respective module,

as described in detail in [222], uses the zero crossing method to derive a timing marker

from the trailing edge of the anode pulse. Therefore the anode pulse is first integrated with

an R–C circuit and then differentiated with an active pole–zero compensated differentiator

circuit. The time when the integral is maximal, and thus its derivative zero, depends on

the amount of light from the slow scintillation component. The more late light, the later

the derivative is zero. The time difference between zero crossing and a second marker, the

TOF timing marker derived from the fast leading edge of the anode pulse, is measured

with a time–to–amplitude converter (TAC). It is related to the decay time of the scintilla-

tion light and therefore to the ionization density of the charged particle producing the event.

The TOF signal is derived from the fast anode pulse. The TOF timing marker is

determined with a CFD and serves as the start signal. A delayed signal from a capacitive

beam pick–up unit (BPU) between the quadrupole magnet and the target (see Fig. 6.2)

provides the stop signal. Start and stop signal are passed through a TAC and the result-

ing TOF signal is forwarded to an ADC of the DAQ system. The TOF measurement is

calibrated with a time calibration module which produces a set of pulses with a period of

40 ns. The pulses are measured in TOF channels, as shown in Fig. 6.6. The calibration

factor ccal is the slope obtained in a linear fit of the pulse number over the pulse position

multiplied by 40 ns. The variations of the peak positions from the nominal values ∆p quan-
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Figure 6.6: Spectrum of the time cal-

ibration module in TOF channels (ch),

measured in campaign C1. The pulses

are produced every 40 ns.

tify the non–linearity of the TAC converter and are determined to be smaller than ±0.2

TOF channels in average. The results of each calibration are listed in Tab. 6.4. The time

calibration has a relative uncertainty of ±0.05%, which is determined by comparison with

a DCF77 10 MHz reference signal.

Table 6.4: Results of the time calibration translating TOF channels into units of time. The calibration

module produces a set of pulses with a period of 40 ns, measured in TOF channels. ctcal is the resulting

time calibration factor. ∆p is the difference between the nominal and the measured peak position of each

pulse. The maximum difference within the set of pulses is denoted as ∆pmax and the average difference of

all pulses as < ∆p >.

Campaign < ∆p > ∆pmax ctcal

[ch] [ch] [ns/ch]

C1 ±0.11 ±0.3 0.7765

C2 ±0.15 ±0.5 0.7749

C3 ±0.14 ±0.3 0.7765

C4 ±0.19 ±0.5 1.5625

6.4 Gamma calibration

6.4.1 Measurement

The energy calibration of the PH spectra and determination of the light response to

electrons is obtained with standard gamma calibration sources that create secondary elec-

trons in the organic liquid. Also the electrons are thus internal particles. The sources are

subsequently placed in front of the scintillator cell, as shown in Fig. 6.4b, and the electron

PH spectra induced by three gamma sources with a total of six γ–lines, namely 137Cs



6.4. Gamma calibration 95

Figure 6.7: Relevance of the three

main types of gamma interactions

depending on the atomic number Z

of the absorber and the gamma en-

ergy hν. The green solid lines rep-

resent the values of the co–ordinate

pairs at which the neighboring ef-

fects are equally strong [223]. The

red solid line indicates the average

atomic number Z̄ ≈ 2.9 of LAB.

(Eγ = 0.662 MeV), 22Na (Eγ = 0.511 MeV, Eγ = 1.275 MeV) and 207Bi (Eγ = 0.570 MeV,

Eγ = 1.064 MeV, Eγ = 1.770 MeV) are measured. After source data taking and while

the beam is still blocked, random background is measured. The background measure-

ment is normalized over time to every source and beam measurement individually and

subtracted from it. The amount of detected scintillation light strongly depends on the

specific composition of the scintillator and the experimental settings. Therefore the PH

calibration of the detector and background measurement are repeated for each filling

and amplification mode. In this subsection, measured PH spectra are shown exemplarily

for one compound with comparatively good and one with comparatively bad PH resolution.

Though gamma radiation creates secondary electrons in basically three interaction

mechanisms, Compton scattering, photoelectric absorption and pair production, the latter

two are negligible. There is virtually no photoelectric cross section for gammas of the given

energies due to the low mean atomic number Z̄ ≈ 2.9 of LAB based scintillators with an

average molecular formula of C17.1H28.3. Also pair production plays a subordinate role until

about 3 MeV gamma energy are reached [224], though in principal possible in the 22Na and
207Bi measurements. Compton scattering is the prevailing interaction over the full given

energy range from 0.511 MeV to 1.770 MeV in LAB, as illustrated in Fig. 6.7. As a result,

no full–energy or escape peaks are observed and the PH spectrum of a single γ–line takes

the form of a Compton continuum with a maximum electron energy of

E =
2E2

γ

mec2 + 2Eγ
(6.4)

at the Compton edge. In this equation, me is the electron rest mass, Eγ the gamma energy

and c the speed of light in vacuum. Multiple gamma scattering enhances the spectrum

above the sharp edge. Furthermore, the typical shape of the Compton (sum) PH spectrum

is slightly distorted due to wall effects, like the escape of electrons, before they fully de-

posited their energy or the entrance of external electrons from Compton scattering in the
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(c) 207Bi, tlive = 576.237 s.
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Figure 6.8: Pulse–height spectra in ADC channels (ch) of all used calibration sources (a-c) and of back-

ground only (d). The third γ–line of 207Bi is shown enlarged in the inset of (c). The background is

subtracted from the source measurements after normalization to the respective livetime tlive. The data is

taken with LAB + 2 g/l PPO + 15 mg/l bis–MSB (LAB1) in HG mode.

surrounding material, depositing their residual energy in the active medium. Also escaping

electrons may be scattered back into the scintillator volume. Wall effects mainly lead to

additional counts in the low PH region and their importance depends on the dimensions

of the detector and surrounding material and is consequently expected to be of the same

order for all measurements and mostly independent from the scintillator. The position of

each Compton edge in the PH spectra, instead, depends amongst others on the individ-

ual scintillator properties. Also the impact of the detector resolution on the shape of the

measured spectra differs for the different scintillator cocktails. A finite resolution veils the

exact channel position of the Compton edges, as observable in Fig. 6.8 and 6.9, and MC

calculations become necessary to determine each position and thus the ADC channel to

electron energy relation. The spectra in Fig. 6.8 are an example for measurements with

high PH resolution and detected light yield and those in Fig. 6.9 for measurements with

low resolution and detected light yield, both in relation to all calibration measurements

taken within this work. The remaining spectra are shown in the appendix B.1.
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(c) 207Bi, tlive = 631.365 s.
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Figure 6.9: Pulse–height spectra in ADC channels (ch) of all used calibration sources (a-c) and of back-

ground only (d). The third γ–line of 207Bi is shown enlarged in the inset of (c). The background is

subtracted from the source measurements after normalization to the respective livetime tlive. The data is

taken with LAB + 3 g/l PPO + 0.1% Nd (LAB6) in HG mode.

6.4.2 Simulation of the gamma response with GRESP7

The PH distribution produced by the gamma source is simulated with the three–

dimensional gamma transport code gresp7 [225] that was developed for calibration

purposes. It follows the course of gammas from an external source within the scintillator

volume, aluminum cell walls and light guide until the gamma escapes or its energy reaches

the cut–off energy of 2 keV after scattering. Thus multiple gamma scattering is accounted

for, which leads to the pile–up events above each Compton edge visible in the unfolded

simulated distribution in Fig. 6.8, for instance. The interaction mechanisms included are

photoelectric absorption and Compton scattering. Pair production is not considered since

only gamma sources with energies up to 2.75 MeV were investigated at the time of deve-

lopment, which is not in conflict with the presented experiments, as explained above. Also

Bremsstrahlung is not taken into account. It is assumed that the energy of the secondary

electrons is fully deposited within the LS volume, provided that the distance between the

interaction and the LS surface is greater than the mean range in the continuous–slowing–



98 Chapter 6. Ionization quenching in LAB based scintillators

down–approximation [224]. This simplified description of surface effects leads to less

counts at low PHs in the simulation compared to data, as can be seen in Fig. 6.8. However,

for the purpose of calibration, which only needs the position of the Compton edge, this

description is fully sufficient. The Compton edges are very well reproduced, as also visible

in Fig. 6.8. This is also the case for scintillators with a poor light yield as for instance

LAB + 3 g/l PPO + 0.1% Nd, for which the calibration spectra are shown in Fig. 6.9.

The marked difference between simulation and data right above zero is merely due to the

fact that gresp7 assumes zero threshold and thus does not model the low PH cut off due

to a detector threshold. The detector threshold is irrelevant for the Compton edge position.

Despite the listed approximations, gamma spectra simulated with gresp7 are in good

agreement with measured spectra from calibration sources with energies up to about 3 MeV

and a detector of appropriate geometry as also demonstrated in other experiments [225].

The specific dimensions are adjustable in an input file, as well as the density and H to

C ratio of the light guide and specific scintillator. The energy distribution of gammas is

simulated with infinite resolution and with a single gamma energy per calculation. The

response of sources with multiple γ–lines is obtained by summing the individual spectra

according to their percent gamma yield per decay. The particular detector PH resolution

is determined in an iterative process, as explained in the following subsection.

6.4.3 Data analysis

Having simulated the detector response to the calibration sources, each γ–line is evaluated

indepently in the first iteration. A fit interval is specified around the Compton shoulder in

the measured spectrum and the simulation is adapted to that region in the horizontal and

vertical scale after folding the distribution with a Gaussian resolution function. Within the

adaption process, the full width at half maximum (FWHM) ∆PH of the PH resolution is

stepwise increased until the best agreement between simulation and data is found within a

small interval around the Compton shoulder. The obtained scaling factors are applied to

the unfolded spectrum and the Compton edge is located within the PH spectrum. Knowing

the edge position, the relative resolution ∆PH/PH at the respective PH is obtained. This

procedure is repeated for each γ–line resulting in six data points ∆PH/PH(PH). The

global PH resolution is parameterized by

∆PH

PH
=

√
α2 +

β2

PH
+

γ2

PH2
, (6.5)

where α, β and γ are associated with the contributions from spatial dependence of the

light collection efficiency, Poisson fluctuations of the photoelectron yield and electronic

noise, respectively [225]. The intermediate values of α, β and γ are determined by a fit to

the data points.

For the second iteration, the calculated spectrum is folded with the best fitting func-

tion Eq. 6.5 and only the normalization as well as the calibration of the pulse–height are
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adjusted. Figures 6.8 and 6.9 demonstrate the good agreement between simulation and

data after adaption for the two example LAB samples, except at the aforementioned mis–

modeled low PHs. The unfolded and rescaled gresp7 distribution is as in the first iteration

used to determine the PH at the sharp Compton edge and thus of electrons with energy

E according to Eq. 6.4. This way, six data points PHi(Ei) are determined per scintillator

and gain setting, which are shown in Fig. 6.10 and 6.11, and a linear fit,

PH = m · E + a, (6.6)

is used for the analytic description of the relation between PH and electron energy.

The gain of the PMT was fixed by the LED stabilization module. Therefore, the

calibration factor m, for which the best fit values are listed in Tab. 6.5, is also a measure

of the light output, i.e. the detected light yield per unit deposited energy. Thus, in order

to compare the influence of the scintillator on the observed light output, the calibration

results are grouped together in one subfigure of Fig. 6.10 and 6.11, if the experimental

settings were identical. In campaign C1 (Fig. 6.10a and 6.10b), the highest light output

is observed for the scintillators with bis–MSB as second fluor additional to PPO. This

instance is explained with the good PMT sensitivity and reflectivity of the internal

detector cell coating (Fig. 6.5) around 430 nm, the peak emission wavelength of bis–MSB

(Fig. 2.2), and the reduced sensitivity and reflectivity around 360 nm, the peak emission

wavelength of PPO. The addition of Nd to LAB with PPO additionally suppresses the

high energy tail of the PPO emission spectrum (Fig. 6.1), the wavelength region which

matches the detector properties best, and thus further reduces the light output. LAB

with 3 g/l PPO as well as LAB with 2 g/l PPO and 0.1% Nd, shown in Fig. 6.10c to

6.10f, are measured independently, thus the light outputs are not comparable with any

other scintillator. The LAB based scintillators with water and PRS on the other hand

have all been measured in the same campaign (C4) and the calibration lines are displayed

together in Fig. 6.11a and 6.11b. The measurement with perylene (wsLAB4), instead of

bis–MSB, as second wavelength shifter reveals the lowest light output, which is explicable

with a mismatch between the emission spectrum of PPO and absorption spectrum of

perylene, leading to a residual emission around 360 nm, as shown in Fig. 6.12. Not all

PPO light is shifted to higher wavelengths at which the detector is more sensitive. The

samples with bis–MSB instead show a comparatively high light output, where the one

of LAB + 5% PRS + 1.5% water + 2 g/l PPO + 45 mg/l bis–MSB (wsLAB4) is higher

than the one with 15 mg/l bis–MSB (wsLAB2) due to the higher secondary concentration.

The scintillator with 0.3% Te + 5% PRS + 1.5% water + 2 g/l PPO + 15 mg/l bis–MSB

(wsLAB1), however, has a slightly higher light output than expected. Te does not absorb

light in the wavelength region of interest, thus a light output as in the case of wsLAB2 is

to be expected, since the only difference is the isotope loading. A possible explanation is

an uncertainty in the bis–MSB concentrations. A respective uncertainty has no influence

on the comparison between wsLAB2 and wsLAB4, since wsLAB4 is gained from wsLAB2

by adding ∼ 30 mg/l bis–MSB, while it does affect a direct comparison between the
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Figure 6.10: Pulse–height in ADC channels (ch) as function of electron energy E in LAB based scintillators.

Shown is the data (markers) from all LAB measurements. The respective fluors are listed in the plot legends.

The total uncertainties (the quadratic sum of the single contributions) are smaller than the markers, if not

visible. The LG PH is measured with a range factor of 1 mV/ch, the HG PH with 4 mV/ch. A straight line

is fitted to the data points (lines). The fit parameters are summarized in Tab. 6.5.
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Table 6.5: Calibration factor m and PH offset a of all conducted measurements, obtained from a fit of

Eq. 6.6 to the data points shown in Fig. 6.10 and 6.11. Given are the 1σ uncertainties from the fit to data.

The LG PH measurements are performed with a range factor of 1 mV/ch, while the HG PH and all PH

measurements in the neutron field are performed with 4 mV/ch. Therefore, all LG fit results are divided by

a factor of 4 before entering the table.

Scintillator Gain m a χ2/ndf

[ch/MeV] [ch]

LAB1 LG 81.2 ± 0.9 0.7 ± 0.5 0.3/4

HG 343.2 ± 3.7 -9.0 ± 2.0 0.1/4

LAB2 LG 74.6 ± 1.1 0.4 ± 0.6 1.0/4

HG 327.2 ± 4.4 -8.1 ± 2.1 6.1/4

LAB3 LG 81.9 ± 1.0 0.4 ± 0.5 0.9/4

HG 348.3 ± 3.8 -11.1 ± 2.1 1.1/4

LAB4 LG 73.7 ± 0.5 1.0 ± 1.0 3.3/4

HG 325.1 ± 2.5 -1.0 ± 3.0 0.5/4

LAB5 LG 71.1 ± 1.0 0.1 ± 0.5 4.0/4

HG 312.6 ± 4.4 -1.2 ± 2.5 4.6/4

LAB6 LG 63.4 ± 1.1 0.9 ± 0.7 2.0/4

HG 228.2 ± 4.1 -4.3 ± 2.5 2.2/4

wsLAB1 LG 77.6 ± 0.6 0.2 ± 0.4 2.1/4

HG 612.4 ± 1.1 -19.6 ± 1.0 0.7/4

wsLAB2 LG 70.4 ± 0.3 0.4 ± 0.3 0.6/4

HG 553.8 ± 1.5 -15.7 ± 1.9 0.5/4

wsLAB3 LG 57.7 ± 0.4 0.2 ± 0.3 1.5/4

HG 450.4 ± 2.9 -16.6 ± 2.0 2.4/4

wsLAB4 LG 75.8 ± 0.3 0.4 ± 0.4 1.0/4

HG 587.6 ± 1.5 -13.8 ± 1.9 0.9/4
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Figure 6.11: Pulse–height (PH) in ADC channels (ch) as function of electron energy E in wsLAB scin-

tillators with 5% PRS and 1.5% water. Shown is the data (markers) from all wsLAB measurements. The

respective fluors are listed in the plot legends. The total uncertainties (the quadratic sum of the single

contributions) are smaller than the markers, if not visible. The LG PH is measured with a range factor of

1 mV/ch, the HG PH with 4 mV/ch. A straight line is fitted to the data points (lines). The fit parameters

are summarized in Tab. 6.5.

Te–loaded wsLAB with the unloaded scintillators with bis–MSB.

The parameter a is included in the fit function Eq. 6.6 to account for the slightly

non–linear behavior at low electron energies [33, 212, 226], not covered by the sources used

in this calibration and leading to a small energy offset E0, as well as systematic effects,

such as a remaining electronic offset of the amplifiers PHoff , resulting in

a = PHoff + E0. (6.7)

A non–physical shift of the PH scale needs to be corrected during data analysis.

In the presented measurements, though, a respective shift cannot be separated from the

energy offset E0 due to the electron response non–linearity and external measurements of

E0 for wsLAB scintillators do not exist yet. Thus E0 is taken to be zero in the following

and the causes of a finite E0 and its influence on heavy particle (m � me) ionization

quenching measurements is discussed in Sec. 6.7.

For the analysis of beam data and its experiment independent comparability, the PH

is converted into light yield L in units of electron–equivalent energy. The linear region of

the electron light response Le is described by

Le(E) = S · (E − E0), (6.8)

where S is an arbitrary scaling factor. It is set to S = 1, to obtain the scale in electron–

equivalent energy, and Le is determined from measurement using Eq. 6.6. In the special

case of E0 = 0, Eq. 6.8 simplifies to Le(E) = E. The subscript in Le is added to emphasize
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0.3% Te + 2 g/l PPO and

different concentrations

of perylene, as specified
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(Courtesy of M. Yeh).

that Eq. 6.8 is only valid for electrons, it does not introduce a new variable. Expressing

the PH scale in light yield, Eq. 6.5 is given in its universal form

∆L

L
=

√
α2 +

β2

L
+
γ2

L2
, (6.9)

which allows a comparison of light output resolutions from different measurement cam-

paigns.

The final resolution parameters α, β and γ are determined by an adaption of Eq. 6.9

to ∆L/L. Figures 6.13 and 6.14 show the resulting data points and resolution functions

for all scintillator samples and amplification modes as a function of the light output and

the fit results are summarized in Tab. 6.6. The grouping in Fig. 6.13 and 6.14 follows

the grouping in Fig. 6.10 and 6.11, where results of the same measurement campaign

and amplification mode are shown in the same subfigure. However, while in the case of

calibration lines a comparison is only possible within one campaign and gain mode, a

general comparison is possible in this case, which reveals a similar behavior for scintillators

with the same secondary solutes. Scintillators with only PPO as fluor have a relative

light yield resolution from about 60% to 40%, the scintillator with perylene as second

fluor has a resolution from about 40% to 30% and the scintillators with bis–MSB have a

resolution from about 30% to 20%. This observation is consistent with the fact that the

PPO emission spectrum matches the wavelength dependent sensitivity of the detector the

least, an instance improved by the addition of perylene, which shifts a substantial part

of PPO light to higher wavelengths and thus detector sensitivity, and eradicated by an

addition of bis–MSB, which shifts all PPO light to higher wavelengths. A conclusion to be

drawn from Fig. 6.14 compared to Fig. 6.13 is that 5% PRS and 1.5% water content does

not significantly change the resolution in small scale detectors, where different scattering

lengths have less or even negligible impact. Also the total light yields of pure LAB and

LAB with 5% PRS and 1.5% water differ only by about one standard deviation [189], a

difference that is not resolved within the uncertainties of the resolution measurement. It
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(e) Campaign C3, low gain.
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(f) Campaign C3, high gain.

Figure 6.13: Relative light output resolution ∆L/L as a function of light output for gamma–induced

events in LAB based scintillators measured during campaigns C1–C3. The respective fluors to LAB are

listed in the plot legends. The shown total uncertainties are the quadratic sum of the single contributions.

The lines follow a fit of Eq. 6.9 to the data. The fit results are summarized in Tab. 6.6.
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Table 6.6: Light output resolution parameters α, β, γ from fitting Eq. 6.9 to data (see Fig. 6.13 and

6.14). γ is fixed to 0.5%, a value known to be between 0.2% and 0.5% from a wide range of measurements

at PIAF using scintillators with better resolution [212, 225, 227]. Fixing γ to 0.2% showed no difference in

the results.

Scintillator Gain α β γ χ2/ndf

[%] [%] [%]

LAB1 LG 11.1 ± 2.2 15.3 ± 1.2 0.5 2.0/4

HG 9.8 ± 2.1 17.7 ± 0.9 0.5 1.8/4

LAB2 LG 37.1 ± 3.2 15.5 ± 3.8 0.5 0.6/4

HG 37.4 ± 2.7 18.3 ± 2.8 0.5 0.9/4

LAB3 LG 9.5 ± 2.5 17.2 ± 1.2 0.5 2.4/4

HG 12.4 ± 2.5 17.9 ± 1.1 0.5 2.7/4

LAB4 LG 32.4 ± 3.5 24.3 ± 2.6 0.5 0.4/4

HG 37.5 ± 2.8 20.8 ± 2.7 0.5 0.8/4

LAB5 LG 39.8 ± 2.7 19.8 ± 3.1 0.5 1.2/4

HG 43.0 ± 3.6 16.9 ± 4.5 0.5 0.8/4

LAB6 LG 40.9 ± 3.1 19.9 ± 4.1 0.5 0.8/4

HG 39.3 ± 3.4 21.1 ± 3.4 0.5 0.9/4

wsLAB1 LG 17.8 ± 3.4 14.9 ± 2.1 0.5 0.9/4

HG 16.5 ± 3.5 17.1 ± 1.8 0.5 1.1/4

wsLAB2 LG 17.0 ± 3.3 15.6 ± 1.9 0.5 0.1/4

HG 15.4 ± 3.8 18.7 ± 1.7 0.5 0.8/4

wsLAB3 LG 18.8 ± 5.3 22.4 ± 2.5 0.5 0.1/4

HG 23.6 ± 4.5 21.5 ± 2.5 0.5 3.0/4

wsLAB4 LG 14.5 ± 4.9 14.9 ± 2.7 0.5 0.3/4

HG 14.9 ± 4.7 15.2 ± 2.4 0.5 0.8/4
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Figure 6.14: Relative light output resolution ∆L/L as a function of light output for gamma–induced

events in wsLAB scintillators with 5% PRS and 1.5% water measured during campaign C4. The respective

fluors to wsLAB are listed in the plot legends. The shown total uncertainties are the quadratic sum of the

single contributions. The lines follow a fit of Eq. 6.9 to the data. The fit results are summarized in Tab. 6.6.

is worthwhile mentioning that the electron light output resolution observed with LAB

based scintillators is much lower than the resolution observed with NE213 scintillator in

detectors of the same geometry and dimension, as presented for instance in [212, 225, 227].

6.5 Beam data analysis

The analysis of the beam data is subdivided into four main steps: data cleaning, determina-

tion of the relative light output resolution in case of neutron–induced events, determination

of the proton light output function and determination of the α–particle light output func-

tion. The latter step, however, is not possible for all scintillators listed in Tab. 6.1. The

resolution of LAB based scintillators without bis–MSB, i.e. LAB2, LAB4, LAB5 and LAB6,

is too low for the respective analysis and no alpha quenching parameters can be determined

with the collected data. Furthermore, the cyclotron performance during the measurement

of wsLAB3 and wsLAB4 in C4 was severely instable and the timing structure corrupted.

These two samples are only usable for comparisons of PSD capabilities. Except for these

two specimen, the proton quenching parameters are determined for all scintillators with

high accuracy and the alpha quenching parameters for two LAB based scintillators and two

wsLAB scintillators are determined. The behavior of the proton response within the differ-

ent samples and the subset in which also alpha quenching is measured allows to formulate

an expectation of the alpha responses also for those samples, for which an alpha quenching

analysis was not possible.
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6.5.1 Data cleaning

Data cleaning comprises the online discrimination of gamma–induced events and the offline

reduction of satellite pulse events and random background. The necessity of a so–called

time–walk correction due to the dependence of the TOF measurement on the PH has been

investigated.

Time–walk correction

The time–walk is a PH dependent shift of the measured neutron TOF values towards

neighbouring TOF channels, which shows up in particular at small pulse–heights. It is

caused by imperfections in the constant fraction timing technique employed in the CFD

module, as described in [211]. Time–walk leads to a distortion of the TOF–PH parameter

space and consequently in the extracted proton recoil spectra at low PHs. A correction of

the TOF–PH matrices of LAB + 2 g/l PPO + 15 mg/l bis–MSB revealed a deviation of only

about 0.7765 ns in the TOF spectrum, while the smallest TOF window width, selected for

the PH spectra extraction from the TOF–PH matrix, has a width of 3.8825 ns. This width

is chosen at high neutron energies, where the detector resolution allows the narrowest TOF

window. At low neutron energies, and thus low resolution, the window width is enlarged to

19.4125 ns. In the evaluation of LAB + 2 g/l PPO + 15 mg/l bis–MSB, a walk–correction

of 0.7765 ns showed no significant influence on the results. This scintillator has the highest

light output resolution of all the investigated LAB based samples and therefore the smallest

possible TOF window widths. Thus, the time–walk effect is also expected to be negligible

for the all other samples. Because of these findings and since a correction of the TOF–PH

matrices can bring in new artifacts due to the binned structure of the data, no time–walk

correction is performed within these analyses.

Pulse–shape discrimination

The PS is related to the decay time of the light pulse and thus to the incident particle

passing the scintillator. Electrons have a smaller intensity ratio of the slow and the

fast scintillation component than ions and the light pulse decays faster, resulting in a

smaller PS value. Due to this behavior, a separation in the PH–PS parameter space

occurs between gamma–induced events, i.e. electrons, and neutron–induced events,

which are mainly protons and α–particles, as clearly visible in the PH–PS matrix of

PC + 1.5 g/l PPO + 15 m/l bis–MSB shown in Fig. 6.15. A discrimination of events with a

PS signal below the indicated line reduces γ–induced background events in the PH signal

spectra of n–induced events. The strength of this separation and thus the capability

of PSD depends on the PH resolution and on the difference in the signal waveforms of

electron and ion light pulses.

Figure 6.16 shows PH versus PS for different LAB and wsLAB scintillators over the

full dynamic range and therefore in LG mode. The remaining figures in LG mode are

attached in Fig. B.19. The influence of the PH resolution is clearly recognizable. The best
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1.5 g/l PPO + 15 mg/l bis–MSB during

beam run in LG mode. The structures

labeled with ’n’ and ’γ’ are caused by

charged particles resulting from neu-

tron interactions with the scintillator

and by Compton electrons from pho-

ton interactions, respectively. The cut

used to separate n– and γ–induced

events is indicated by the black solid

line.

separation occurs in the LAB sample with bis–MSB (Fig. 6.16a), followed by the LAB

sample with only PPO as fluor (Fig. 6.16b) in which the separation is already strongly

blurred. In case of the sample without bis–MSB but with Nd (Fig. 6.16c), a separation

between n–induced and γ–induced events is only indicated faintly, n/γ–discrimination is

not feasible anymore. This observation is confirmed in the measurements using wsLAB

scintillators, in which the scintillator with the lowest resolution, the one with perylene as

second fluor, has the least PSD capability (Fig. 6.16f). The difference in the overall pattern

between LAB and wsLAB scintillators cannot be explained at this point. Obviously

the addition of water and PRS worsens the PSD. For a conclusive statement, however,

measurements of the individual waveforms from electrons, protons and α–particles would

be necessary and had to be compared quantitatively.

A comparison with Fig. 6.15 reveals that PC with PPO and bis–MSB shows a

more prominent separation than all LAB and wsLAB scintillators, which is amongst

others attributed to a higher light output, and thus PH resolution, of PC. Within all

measurement campaigns, the PC scintillator had the highest light yield, manifesting itself

in the lowest necessary delay line amplification. However, also in this case, the individual

waveforms would have to be compared for a quantitative statement.

To summarize, PSD is less efficient, and partly even not feasible, for all LAB based

scintillators compared to PC and a loss of signal or remaining background is unavoidable.

The γ–induced background originates from ambient background, which is measured

individually, from prompt gammas produced in inelastic scattering in the Be target, which

are discriminated via TOF and from inelastic scattering in the scintillator and detector

housing. Only the last class of gammas cannot be suppressed by other means and needs

to be considered in the evaluation of PH spectra.

These investigations also reveal that n/γ–PSD using the zero crossing technique is not
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(a) LAB + 2 g/l PPO + 15 mg/l bis–MSB. (b) LAB + 2 g/l PPO.

(c) LAB + 0.1% Nd + 2 g/l PPO. (d) wsLAB + 0.3% Te + 2 g/l PPO + 15 mg/l bis–MSB.

(e) wsLAB + 2 g/l PPO + 15 mg/l bis–MSB. (f) wsLAB + 2 g/l PPO + 15 mg/l perylene.

Figure 6.16: PH–PS parameter space of all events detected with LAB and wsLAB scintillators during

beam run in LG mode. The individual compositions are written in the subcaptions. The wsLAB contains

5% PRS and 1.5% water.
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promising for LAB based scintillators. For experiments in which n/γ–PSD is more crucial

than in the given one, the use of an alternative method is strongly recommended. A com-

pilation of methods is presented in [228], for instance. These findings are not contradictory

to the good α/β–PSD capability of LAB presented in [229]. n/γ–PSD involves not only

the separation between α– and β–particles, but between all n– and γ–induced events and

thus also protons. Protons are less ionizing than α–particles and therefore have a smaller

slow scintillation component than α–particles. The signal waveform is more similar to the

one of β–particles and while the difference in the shape of the waveform can still be strong

enough for α–particles, the same is not necessarily true anymore for protons.

Satellite pulse event reduction

The parameter space of interest for the determination of the proton and alpha responses is

the TOF–PH parameter space, displayed in Fig. 6.17. The slide–shaped main distribution

is caused by neutrons of different energies. The fastest neutrons reach the highest TOF

value (∼ 740 ch in the given figure) and lead to the maximum possible proton recoil

energy and thus PH. The slower the neutrons, the lower the observed maximum PH,

which is equivalent to the proton recoil edge to be determined. Thus a sharp border of

the distribution is desirable. α–particles instead cause low PH events, thus also the region

well below the edge is of importance.

Spurious events caused by satellite pulses can compromise the determination of the

position of the recoil proton edge and α–particle structures, depending on the satellite

event yield. Figures 6.17a and 6.17b demonstrate close to ideal measurements in this

regard, while Fig. 6.17c and 6.17d show additional faint distributions from satellites,

shifted in TOF relative to the main distribution. Since satellite pulses cannot be entirely

suppressed using the pulse shortener, an offline correction is performed, if the intensity

of satellites in the ROI is too high. The spectral distribution of satellite neutron fields

is assumed to be the same as of the main one. A reduction can thus be achieved by

normalizing the main distribution to the satellite distribution, shifting the result in the

horizontal direction to the position of the respective satellite distribution and subtracting

it from it. An exemplary TOF–PH matrix before and after this procedure is displayed in

Fig. 6.18. To obtain the normalization factor for a specific satellite pulse, the integral of

its distributions is calculated over a PH interval in which no further distribution is present.

The interval chosen for the correction presented in Fig. 6.18 ranges from 300 ch to 1024 ch

on the PH axis. Additionally, the integral of the main pulse distribution is calculated over

the same PH interval. The ratio of the two integrals yields the ratio of the satellite and

the main pulse intensities and thus the normalization factor.

This procedure has a clear deficit. The full main pulse distribution is normalized and

subtracted from the satellite pulses. However, not the full main distribution is isolated,

but overlapping with satellites at low PH. Also the satellite distributions are overlapping
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(a) LAB + 0.1% Nd + 3 g/l PPO, LG. (b) LAB + 0.1% Nd + 3 g/l PPO, HG.

(c) LAB + 0.1% Nd + 2 g/l PPO, LG. (d) LAB + 0.1% Nd + 2 g/l PPO, HG.

Figure 6.17: TOF–PH parameter space of all events detected with LAB4 (a, b) and LAB5 (c, d) during

beam run in LG and HG mode. In the measurements shown in (a) and (b), satellite proton bunches were

efficiently suppressed, while in (c) and (d) distributions caused by satellites are clearly recognizable.

(a) Without satellite correction. (b) With satellite correction.

Figure 6.18: TOF–PH parameter space of events detected with wsLAB + 0.3% Te + 2 g/l PPO +

15 mg/l bis–MSB in LG mode, before (a) and after (b) offline satellite correction.
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Figure 6.19: TOF distribution of events with PHs

above 300 ch in wsLAB + 0.3% Te + 2 g/l PPO +

15 mg/l bis–MSB before and after a slight offline

satellite correction.

with other satellite distributions, as clearly visible in Fig. 6.18a. Since the satellite events

within the main pulse distribution are necessarily normalized with the same factor as

main pulse events, their intensity is reduced too much compared to the satellite events

of one satellite pulse within the distribution of another satellite. The suppression is thus

incomplete in the overlap regions. Furthermore, to avoid new artifacts due to the binned

data structure, as mentioned for the case of time–walk correction, only a partial correction

is performed. This means, a higher normalization factor is used, than obtained from the

satellite to main pulse to intensity ratio.

The projection of the PH interval on the TOF axis before and after partial satellite

correction is shown in Fig. 6.19. It should be noted that in all measurements the intensity

of satellites is about two orders of magnitude lower than the main beam pulse intensity,

except in the measurements with LAB5 (Fig. 6.17c, 6.17d), in which the intensity is

between one and two orders of magnitude lower, and wsLAB3 and wsLAB4 with only about

one order of magnitude lower satellite intensity. This exceptionally large satellite intensity

was caused by technical problems with the pulse selection system. However, LAB5 is

only used for proton quenching evaluation due to the poor resolution of LAB without

bis–MSB, which makes an alpha quenching evaluation impossible. The determination

of the proton edge, instead, is feasible despite the low resolution and is less sensitive to

satellite background. Moreover, above TOF channel 400, the proton edge is free from

satellites for this LS, as clearly visible in Fig. 6.17c. 400 ch correspond to a neutron energy

of about 3.5 MeV in the respective measurement, while neutron energies from about

1.5 MeV to about 17 MeV are used for the quenching analysis. Thus most of the analysis

of LAB5 data remains unaffected by satellites.

Although in the case of wsLAB3 and wsLAB4, the resolution is high enough to

measure also the α–particle light response, intense satellites (see the HG measurements

Fig. 6.20), complicate the analysis, since the tail of the satellite ahead of the main

distribution overlaps with the PH region of α–particle events, which occur at low PHs. At

this point, the alpha quenching analysis for these two scintillators is already questionable.

Furthermore, the timing structure of the data from all runs was tested thoroughly, which
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(a) wsLAB + 2 g/l PPO + 15 mg/l perylene. (b) wsLAB + 2 g/l PPO + 45 mg/l bis–MSB.

Figure 6.20: TOF–PH parameter space of events detected with wsLAB3 (a) and wsLAB4 (b) in HG mode

with enhanced occurrence of satellites.

revealed that it is corrupted in the case of these two runs. The corresponding sets of

neutron beam data thus do not provide reliable neutron energy information and are not

considered for the following analyses anymore.

The prominent line ahead of the main neutron distribution, visible in all TOF–PH

matrices, is caused by prompt gammas that are produced simultaneously with the neutrons

in the Be target through inelastic scattering. They cause the earliest signal in time and

consequently entries well above the highest neutron TOF value. Depending on the cyclotron

performance, gammas that are produced elsewhere in the cyclotron due to a misalignment

may emerge and cause additional but less intense lines (see e.g. Fig. 6.17a, 6.17b). Only

in the measurement with wsLAB3 (Fig. 6.20a), also these gamma lines are very intense,

because of the technical problems mentioned above. Also satellite proton bunches generate

prompt gammas, which can cause additional gamma–induced background in the region

of the main neutron distribution, depending on the time difference between main pulse

and subsequent satellite(s). These events do not affect the location of the proton recoil

edge, but they can fall in the region of α–particle structures. PSD does not fully suppress

gamma–induced events. However, the location of prompt gammas in the TOF spectrum is

known from the TOF difference between the sharp TOF edge at maximum neutron energy

and gammas traveling at the speed of light, which is the same for satellites and the main

distribution. In the presence of intense satellites, this part of the TOF spectrum is not

included in the alpha response evaluation.

Random background reduction

Random background are registered signals that are neither produced by calibration source

gammas nor by particles produced in the target. They are mainly due to ambient gammas

from the walls. Random background is expected to be uniformly distributed over all TOF

channels and to be higher the lower the PH. Background only measurements are performed
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Figure 6.21: TOF distribution in

wsLAB + 0.3% Te + 2 g/l PPO +

15 mg/l bis–MSB, measured in LG

mode, after satellite and random back-

ground correction. The high energy

part of the neutron continuum is visi-

ble, ending in channel 741. The broad-

ened (see text) prompt gamma line is

at higher TOF with the centroid at

(855.7± 1.0) ch.

in the course of calibrations (see e.g. Fig. 6.8d), lasting about 10 min, and are scaled to

the individual source and beam measurements. In case of a negligible presence of satellites,

the random background collected over the entire beam measurement duration of & 1 h

is known from the signal free region between the fastest neutrons and prompt gammas.

This region refers in Fig. 6.17 to the TOF channel interval from about 750 ch to 900 ch.

These figures, however, demonstrate that satellite events superpose possible random back-

ground events. For this reason, random background is subtracted using the background

measurements, taking into account that PHs were recorded at 1 mV/ch during LG calibra-

tions and background measurements, while they were recorded at 4 mV/ch during all other

measurements.

6.5.2 Extraction of pulse–height spectra from quasi mono–energetic neu-

trons

Precondition of the analysis of proton and alpha PH spectra, and thus light responses, is

the knowledge of the particle energy and thus of the incoming neutron energy. Therefore,

small consecutive TOF windows, each around a value corresponding to a particular neutron

energy, are set in the TOF–PH parameter space. The projection of a single TOF interval

on the PH axis yields the desired spectrum of a quasi mono–energetic neutron. The TOF,

or energy, window width is always kept smaller than the energy window corresponding to

the light output resolution. Since the light output resolution for neutron induced events is

not known from the beginning, but estimated from existing measurements with other scin-

tillators, the entire analysis is an iterative process. The TOF channel containing neutrons

with the energy of interest is determined using the TOF difference between neutrons and

prompt gammas and the time calibration parameter ctcal quoted in Tab. 6.4:

pn = ppg −
(
d

vn
− d

c

)
· c−1

tcal, (6.10)
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Table 6.7: Prompt γ–peak centroid in LG and HG TOF measurements. The total uncertainty is dominated

by the uncertainty from the choice of the TOF interval included in the centroid calculation, as explained in

the text.

Sample ppg (LG) ppg (HG) Interval (LG) Interval (HG)

[ch] [ch] [ch] [ch]

LAB1 955.0± 0.9 954.7± 0.9 [936,962] [936,962]

LAB2 956.5± 0.9 956.1± 0.9 [938,964] [938,964]

LAB3 956.7± 0.8 956.7± 0.8 [938,964] [938,964]

LAB4 956.6± 0.6 956.4± 0.6 [935,964] [935,964]

LAB5 953.7± 0.6 953.4± 0.6 [940,960] [940,960]

LAB6 957.5± 0.9 958.1± 0.9 [938,964] [938,964]

wsLAB1 855.7± 0.8 855.7± 0.8 [840,862] [840,862]

wsLAB2 877.4± 0.7 876.4± 0.7 [865,882] [865,882]

where pn is the neutron position in the TOF spectrum and ppg the prompt gamma position.

The neutron velocity vn is calculated following Eq. 6.2, the target to cell distance d of each

campaign is recorded in Tab. 6.3. A finite time resolution of the accelerator leads to a

broadening of the prompt γ–line in the TOF spectrum, as exemplarily shown in Fig. 6.21,

and the centroid position

ppg =
∑
i

ci · yi
Y

(6.11)

of the resulting γ–peak is used. The TOF distributions of all samples are attached in

Fig. B.20. In this, yi is the number of counts recorded in the i–th TOF channel ci and Y

is the sum of all counts within the peak area

Y =
∑
i

yi. (6.12)

The uncertainty of the centroid peak position is determined from

σppg =
σci√
Y

(6.13)

with

σci =

√∑
i

yi(ci − ppg)2

Y
. (6.14)

The centroid peak positions of all samples are listed in Tab. 6.7 for both gain modes

together with the TOF interval used for the centroid calculation. The magnitude of

the uncertainties is owed to the dependence on the TOF interval boundaries set close

around the γ–peak and the influence of the tails of adjacent γ–peaks. This uncertainty
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quasi mono–energetic neutrons in

wsLAB + 0.3% Te + 2 g/l PPO +

15 mg/l bis–MSB measured in LG
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is determined by a stepwise enlargement of the interval, which is used for the centroid

calculation. The interval is only enlarged until it is obvious by eye that the adjacent

γ–peak is reaching into the interval. The centroid position is calculated for each choice of

interval boundaries and the maximum shift of the centroid position equals the uncertainty

on the position, ranging from ∼ (0.6− 2.0) ch. In comparison, the uncertainty in a selected

TOF interval calculated from Eq. 6.14 is smaller than 0.02 ch. LG and HG measurements

were always taken during the same cyclotron run, wherefore the position of the centroids

is expected to be the same. This is observed for all samples listed in Tab. 6.7, confirming

a stable cyclotron performance.

From all of the listed data sets, between 30 and 40 PH spectra are extracted per

scintillator sample, covering the full energy region from about 1 MeV to 17 MeV. HG data is

used for neutron energies below ∼ 5 MeV and LG data for energies above about 3 MeV. The

overlap region is evaluated to probe the consistency of the results. Figure 6.22 exemplarily

shows a subset of PH spectra measured with wsLAB1 in LG mode. Clearly visible is the

shift of the proton recoil shoulder to higher PHs with higher incoming neutron energy.

The exact position of the proton edge, as well as of characteristics α–particle structures,

is not discernible due to a finite light output resolution and is determined with the help of

simulations, as will be discussed in the next section.

6.5.3 Simulation of the neutron response with NRESP7

The nresp7 [230] MC code was provided by PTB, which has the advantage of a good

description of the (n,αx) reactions on C, which is necessary for the α quenching data

analysis. nresp7 is a code used for the calculation of detector response to fast neutrons in

the energy range from 0.05 MeV to 20 MeV. For neutron energies above 5 MeV, relativistic

kinematics are used. The neutron source is treated in nresp7 as a point source, where

the user defines the distance between the detector and the neutron source as well as

the angle between the beam–axis and the scintillator cylinder. The incident neutron



6.5. Beam data analysis 117

distribution can be set by the user to be mono–energetic, Gaussian with adaptable FWHM

or rectangular with adaptable width. The code is developed for organic liquid scintillators

in an aluminum housing covered by a light guide, equivalent to the design of the detector

cells used in the present work. The specific detector dimensions are adjustable by the

user, as well as the H to C ratio and density of the scintillator and light pipe. nresp7

models all interactions of neutrons in the scintillator volume and surrounding material,

including the production of secondary charged particles, and calculates the induced light

output. As in the gresp7 code (see Sec. 6.4.2), multiple scattering and wall effects are

taken into account for this calculation as well as a finite PH resolution following Eq. 6.5.

The resolution is quantified or omitted by the user. The non–linear light yield from

different charged particles is simulated by nresp7 using a set of predefined light output

functions, which are stored in an external file and iteratively adapted to the data. Any set

is selectable by the user as first approximation and the file is extendable with new data.

The proton light output function is given in table format in the energy range from

0 MeV to 8 MeV, with a step size of 10 keV from 0 MeV to 0.6 MeV and a step size of

20 keV from 0.6 MeV to 8 MeV. The proton light output Lp(E) above 8 MeV is described

analytically by

Lp(E) = d0 + d1E. (6.15)

The α–particle light output function is described in nresp7 by two analytic expres-

sions, namely

Lα(E) = c0E
c1 E < 6.76 MeV, (6.16)

Lα(E) = c2 + c3E E ≥ 6.76 MeV. (6.17)

The parameters c0 through c3 are stored together with the proton response information.

Also the response of Be, B and C ions is described analytically in nresp7. Their light

output, however, is quenched too strongly to be observed in the presented experiments. For

these particles, the initial light output functions are not adapted to LAB based scintillators.

Not taken into account within nresp7 are interactions of de–excitation photons, e.g.

from the first excited state in 12C at 4.439 MeV, resulting from inelastic neutron scatter-

ing. Instead, it is assumed that these events are suppressed by PSD, since the code was

originally written for NE213 scintillator fulfilling this requirement. As this background is

not entirely suppressed by PSD in LAB based scintillators, the simulated spectra lack the

signals from residual de–excitation photons in the data. The influence on the proton and

alpha quenching analysis, though, is marginal as will be discussed in the respective sections.

6.5.4 Light output resolution measured with neutron induced events

The light output resolution is already determined within the calibration data analysis

and the results are presented in Fig. 6.13, Fig. 6.14 and Tab. 6.6. However, only six data
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Figure 6.23: Measured and simulated PH spectrum in LAB + 5% PRS + 1.5% water +

2 g/l PPO + 15 mg/l bis–MSB + 0.3% Te and HG mode for neutrons with En = 3.5 MeV. Simu-

lated is the spectrum of mono–energetic 3.5 MeV neutrons without resolution and quasi mono–

energetic neutrons considering a finite TOF window around 3.5 MeV of the same width as used

for data extraction. The red solid line is the red dashed line folded with the detector resolution.

The sharp blue dashed edge refers to protons with E = En.

points are available and only electron energies between about 0.3 MeV and 1.6 MeV are

accessible with the used gamma calibration sources. To reduce the uncertainties on the

resolution parameters α and β, the light output resolution is also determined with beam

data, with which a large set of data points over a wide range of energies is accessible. The

determined light output resolution functions using calibration data and beam data are

expected to agree.

Using the calibration parameters listed in Tab. 6.5, the PH scale of measured PH

spectra, as shown in Fig. 6.22, is translated into light output L in electron–equivalent

energy using Eq. 6.6 and 6.8 and thus

L =
PH − a
m

. (6.18)

The simulation of each spectrum is performed twice. Once a rectangular neutron

distribution around the neutron energy of interest is assumed, with a width corresponding

to the TOF window used for data extraction, and once the neutrons are assumed to be

mono–energetic. In both cases, no resolution function is applied. An example of these two

spectra is presented in Fig. 6.23 (dashed lines). The further evaluation follows the same

procedure as in the case of gamma calibration data. A fit interval is defined around the

proton recoil edge and the best fit FWHM ∆L of a Gaussian distribution, with which the
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Table 6.8: Light output resolution parameters α, β, γ from fitting Eq. 6.9 to data from neutron induced

events (see Fig. 6.24). γ is fixed at 0.5% as in the case of gamma induced events (see Tab. 6.6).

Scintillator α β γ χ2/ndf

[%] [%] [%]

LAB1 16.6 ± 0.6 16.3 ± 1.2 0.5 9.2/15

LAB2 34.8 ± 0.5 21.4 ± 2.2 0.5 4.3/28

LAB3 18.1 ± 0.5 18.4 ± 1.8 0.5 10.8/28

LAB4 38.9 ± 0.6 19.9 ± 2.1 0.5 4.4/14

LAB5 38.3 ± 0.5 23.7 ± 2.8 0.5 15.4/27

LAB6 41.0 ± 0.8 29.4 ± 2.2 0.5 4.0/14

wsLAB1 19.5 ± 0.7 24.2 ± 0.9 0.5 16.6/32

wsLAB2 21.4 ± 0.5 25.5 ± 0.8 0.5 11.0/28

simulation is folded, is determined. Simultaneously, the vertical and the horizontal scale

of the spectrum is adapted to the data. In this step, two scaling factors, fh and fv, are

evaluated, with which the simulation is multiplied in the horizontal and in the vertical

direction, respectively, yielding the best agreement between simulation and data.

For the adaption, only the simulation of a rectangular neutron distribution is used.

The resulting scaling factors are subsequently applied to the MC spectrum of mono–

energetic neutrons and the position of the sharp edge in the L spectrum is identified.

Thus ∆L/L(L) is determined. Additionally the first approximation of the proton light

output L(E) at a proton energy E is obtained, knowing that E at the recoil edge equals

the incoming neutron energy. A set of data points is determined in this way for each

scintillator sample, using HG data for the first few MeV and LG data for the energies

above and up to about 17 MeV. The obtained data points are shown in Fig. 6.24, where

the uncertainties are determined by a reasonable alteration of the fit interval boundaries

around the recoil edge. Also shown in this figure is a fit of Eq. 6.9 to each set. The fit

results of the resolution parameters α, β and γ are summarized in Tab. 6.8. As in the case

of gamma calibration and for the same reason, the parameter γ, accounting for electronic

noise, is fixed at 0.5%.

The results from the beam data analysis, shown in Fig. 6.24, confirm the earlier findings

from the calibration data analysis, shown in Fig. 6.13 and 6.14: The scintillators with only

PPO as secondary have a relative light output resolution from about 50% to slightly less

than 40%, the scintillators with additional bis–MSB content have a resolution from about

30% to 20% and a content of 5% PRS and 1.5% water in wsLAB does not significantly affect

the resolution in this detector. The values of the resolution parameters listed in Tab. 6.8 are
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Figure 6.24: Relative light output resolution ∆L/L as a function of light output for neutron–induced

events in (a-c) LAB and (d) wsLAB scintillators. The respective fluors are listed in the plot legends.

wsLAB scintillators contain 5% PRS and 1.5% water. The shown uncertainties are explained in the text.

The lines follow a fit of Eq. 6.9 to the data (markers). The fit results are summarized in Tab. 6.8.

used for the further analysis of beam data. Figure 6.23 shows exemplarily the agreement

between simulation and measurement after folding the simulation with Eq. 6.9 using the

resolution parameters for wsLAB1. The agreement for all other sets is comparable.

6.5.5 Proton response

Besides the example proton recoil spectrum shown in Fig. 6.23, induced by 3.5 MeV

neutrons, four further spectra are shown in Fig. 6.25, using the same scintillator but LG

data. In each of them, the idealized proton PH spectrum from mono–energetic neutrons

shows the sharp edge at the maximum proton energy mentioned earlier, which equals the

incoming neutron energy. As soon as the position of the edge is located in the measured

PH spectrum, the correlation between proton energy E and PH is thus revealed at that

PH and consequently L(E), using Eq. 6.18.

In the measurements of 5 MeV and 6.5 MeV neutron PH spectra, shown in Fig. 6.25b
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(a) En = 4.0 MeV.
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(b) En = 5.0 MeV.
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(c) En = 6.5 MeV.
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Figure 6.25: Measured and simulated PH spectrum in LAB + 5% PRS + 1.5% water + 2 g/l PPO +

15 mg/l bis–MSB + 0.3% Te and LG mode for neutrons with different energies En. Simulated is the spectrum

of mono–energetic neutrons without resolution and quasi mono–energetic neutrons considering a finite TOF

window as used for data extraction. The red solid line is the red dashed line folded with the detector

resolution. The sharp blue dashed edge refers to protons with E = En.

and 6.25c, a disagreement between simulation and data is apparent at low PHs, which

is not present in the other two examples using 4.0 MeV and 16.5 MeV neutrons, shown

in Fig. 6.25a and 6.25d. The explanation was already approached earlier: nresp7 does

not consider de–excitation gammas and PSD does not fully suppress this background in

LAB based scintillators. Thus excitations and subsequent de–excitations of isotopes in

the scintillator, the cell walls and window, as well as the light guide potentially lead to an

excess in the data compared to the simulation. For this reason, the important isotopes in

the named detector parts are discussed in this paragraph and the most probable candidate,

responsible for the mismatch between simulation and data, is identified.

The main elements are, in the order of occurrence, H with ∼ 9 × 1024 atoms and C
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with ∼ 5×1024 atoms in the scintillator8 and PMMA9 light guide, Al with ∼ 1×1024 atoms

in the dural cell walls and O with ∼ 7 × 1023 atoms and Si with ∼ 3 × 1023 atoms in

the fused silica10 window. All numbers are derived from the volume of the individual

detector parts, the molecular formula of the material and the respective density at room

temperature. Only two decimal places of the densities in units of g per cm3 are used to

yield an approximation of the number of atoms over a wide range of temperatures. H is

not further discussed, since it does not emit gamma–rays and thus does not contribute

to gamma–induced background. O and Si amount to about an order of magnitude less

than C and the effective number is further reduced by more than 50%, assuming that the

same amount of gammas leaves the quartz glass window on either side and given that the

window diameter is larger than the scintillator volume diameter, while the total neutron

scattering cross sections around the individual excitation energies are of the same order of

magnitude and around (1–10) b [231]. Al atoms occur about five times less than C atoms

and the effective number is reduced as well by about a factor of two due to gammas not

entering the scintillator volume. The first excited state of 27Al, the only stable isotope

of aluminum, is at 843.76 keV, followed by a large amount of higher excited states, with

a spacing between about 1 keV and 1.2 MeV. No corresponding data excess is observed,

however, as exemplarily demonstrated in Fig. 6.25a, which shows data and simulation

resulting from 4.0 MeV neutrons. At 4 MeV neutron energy, C is not yet excited, turning
27Al into the major background source, whose total neutron–27Al scattering cross section

at the respective excitation levels is also around (1–10) b [231]. The isotope of highest

natural abundance of C is 12C (98.90%) and its first excited state is at 4.439 MeV,

which is de–excited by gamma emission. All higher excited states primarily decay via

charged particle emission. While the neutron energy is too low in Fig. 6.25a to excite
12C, it is already high enough in Fig. 6.25b, where a mismatch between data and MC is

observed first. 12C has the highest occurrence within the relevant detector parts and the

highest fraction of gammas traversing the active medium, since it is a constituent of the

scintillator itself, which makes it the main source of gamma–induced background events,

when En ≥ 4.439 MeV. Gammas from low energy neutron moderation n(p, d)γ in the cell

are negligible given the smallness of the cell.

A simulation of the PH spectrum induced by 4.439 MeV gammas in wsLAB + 0.3% Te

+ 2 g/l PPO + 15 mg/l bis–MSB is shown in Fig. 6.26. Within the LG MC spectrum in

Fig. 6.26a, corresponding to the PH spectra in Fig. 6.25, the event yield strongly increases

below about 150 ch. At the same time, the PSD efficiency increases with increasing PH,

as reported in section 6.5.1. The data excess in Fig. 6.25b and 6.25b is therefore only

notable below about 100 ch. In Fig. 6.25d, the background is well within the fast rising

8All given numbers are valid for LAB and wsLAB scintillators. The number of H atoms per volume unit

is almost identical in LAB, water and PRS as well as the number of C atoms in LAB and PRS. The total

additional number of O atoms in wsLAB is ∼ 6× 1022. N and S in PRS amount to < 1× 1022 atoms each.
9The molecular formula of PMMA is (C5O2H8)n.

10The molecular formula of silica is SiO2.



6.5. Beam data analysis 123

PH [ch]

0 100 200 300 400

C
o

u
n

ts
 [

a
.u

.]

0

200

400

600

800
MC, folded

MC, unfolded

(a) LG mode.

PH [ch]

0 200 400 600 800 1000

C
o

u
n

ts
 [

a
.u

.]

0

50

100

150

200
MC, folded

MC, unfolded

(b) HG mode.

Figure 6.26: PH spectrum of 12C 4.439 MeV gammas in LAB + 5% PRS + 1.5% water + 0.3% Te +

2 g/l PPO + 15 mg/l bis–MSB, simulated with gresp7. The spectrum is calculated considering a range factor

of 4 mV/ch for both, LG (a) and HG (b) amplification, corresponding to the settings in beam measurements.

Note that gresp7 does not calculate pair productions, which are possible at a gamma energy of 4.4 MeV.

Thus a small double escape peak is missing, expected at 265 ch in (a). The probability for a single escape

peak, located at 305 ch, is vanishingly low due to a mean free path of & 9 cm of 511 keV photons in LAB.

This peak is not expected to be visible in the spectrum due to the low PH resolution.

low energy part of the recoil spectrum and thus not visible in the given figure. For the

adaption of the simulation to data, a cut is set below the observed recoil shoulder, as soon

as the neutron energy exceeds the threshold for 12C excitation, and only the remaining

part of the recoil spectrum is used. With this cut, the proton recoil shoulder is very well

reproduced (see Fig. 6.25), despite the deficit of nresp7 and despite the poor PSD in the

investigated scintillators.

The localization of the proton recoil edge follows the same technique that is used to

determine the local PH or light output resolution, described earlier in Sec. 6.5.4. The

only difference is that the idealized simulation of quasi mono–energetic neutrons is folded

with Eq. 6.9 and the resolution parameters listed in Tab. 6.8, instead of using a Gaussian

resolution function with a fixed width valid only for a limited range of PH channels. Thus

the dependency on the choice of the fit interval is much lower and can be optimized with

respect to the gamma–induced background.

As mentioned above, in the process of adapting the simulation to data, two scaling

factors fh and fv are specified with which the horizontal and vertical scales of the simu-

lation are adapted to the scales of the data spectrum. Having determined these scaling

factors, the MC spectrum of mono–energetic neutrons is scaled accordingly, the recoil

edge position PH(E) is read out and its value converted into units of electron–equivalent

energy, yielding L(E). The described procedure is repeated for in total ∼ 30 PH spectra

from neutrons with different energies for each tested scintillator. This way a large set of

data points is created over an energy range from about 1 MeV to 17 MeV, demonstrated in
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Figure 6.27: Light output L in electron–equivalent energy, measured in LAB1 (a) and wsLAB2 (b) for

different electron and proton energies. Both, electrons and protons are internal, resulting from scatter-

ing reactions induced by gammas and neutrons respectively. In the shown total uncertainties, the single

contributions (see Tab. 6.9) are added quadratically.

Fig. 6.27 for LAB and wsLAB with 2 g/l PPO and 15 mg/l bis–MSB. The quenched light

response of protons compared to electrons is in evidence as well as its non–linearity.

The scaling factor fh can be interpreted as a measure of the deviation of the assumed

light output function, used in nresp7, from the true light output function of the LS

sample, where fh = 1 implies that the proton response is properly described. If the input

light output function is deviating by more than 2%, i.e. fh /∈ [0.98, 1.02] at any recoil

edge, a new nresp7 input table is generated by an extrapolation between data points

below 8 MeV particle energy and new parameters d0, d1 are determined for the analytic

description above 8 MeV by a fit of Eq. 6.15 to the data points of respective energies.

The nresp7 data base is conclusively updated. The scaling factor fv merely adapts the

number of counts and has no further physical meaning.

Since the proton light output function in nresp7 is partly analytical, assuming lin-

earity above 8 MeV proton energy, it is not used for the determination of the quenching

parameters kB and C in the extended Birks law Eq. 2.12. Instead, the final set of data

points, as shown in Fig. 6.27, is used. All final sets are presented in Sec. 6.6 in this context.

6.5.6 Alpha response

Together with the proton quenching data, alpha quenching data is taken, which has the

advantage that both quenching measurements are subject to the same conditions and a

difference in the quenching parameters for protons and α–particles, if any, cannot be at-

tributed to different measurement conditions. In this measurement, the α–particles of

interest are produced in the reaction

12C(n, α) 9Be. (6.19)
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Figure 6.28: Measured and simulated PH spectrum in LAB + 5% PRS + 1.5% water + 2 g/l PPO +

15 mg/l bis–MSB + 0.3% Te and HG mode for quasi mono–energetic neutrons with En = 11.2 MeV (a).

Shown is the simulated alpha response before and after adaption of the α–particle light yield, the sum of

non–α–particle events (mainly proton recoils) and the sum of all events before and after adaption of the

α–particle light yield. All simulated spectra are folded with the measured resolution function. (b) shows the

contributions of the different α–particle interactions to the α–particle sum spectrum. Additionally shown is

the 12C(n,α)9Be spectrum from mono–energetic neutrons and without considering the detector resolution.

The high energy edge at ∼ 320 ch in this spectrum refers to α–particles with Eα = 5.326 MeV.
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Thus the α–particles are internal, like the protons and electrons, and surface effects that

need to be considered for external sources, do not play a role here. Furthermore, the

extraction of measured PH spectra follows the same procedure as described in section

6.5.5 for the case of the proton response measurements, since the PH spectra are a sum

of all interactions of neutrons with a given TOF. The simulation of the sum PH spectra

is performed with nresp7 after insertion of the newly determined proton light output

function for the investigated scintillator. The initial α–particle light output function in

nresp7 remains unchanged for the first iteration. The PH resolution function, determined

within the proton quenching analysis, is also directly applied.

The threshold of the 12C(n,α)9Be reaction is 6.19 MeV and leads to a characteristic

structure in the PH spectra, as soon as the light yield is high enough to overcome the

detector threshold. This is the case after about 9.5 MeV neutron energy in the investigated

data sets. In the example shown in Fig. 6.28a, the characteristic structure is found between

200 ch and 400 ch. The shoulder of this structure refers to the maximum α–particle energy

Eα, as demonstrated in Fig. 6.28b, which is calculated from kinematics (see App. C),

knowing En and assuming 12C at rest. This assumption is correct within the measurement

uncertainties. With the knowledge of the α–particle energy, the relation between L and

E follows from the position of the sharp high energy edge in the PH spectrum, shown in

Fig. 6.28b, and the conversion of the PH into L in units of electron–equivalent energy,

using Eq. 6.18.

Two further reactions contribute to the α–particle event yield:

12C(n, α′) 9Be∗ → n+ 8Be→ 2α, (6.20)
12C(n, n′) 12C∗ → α+ 8Be→ 3α, (6.21)

where reaction Eq. 6.20 has a threshold of 8.81 MeV and reaction Eq. 6.21 has a threshold

of 8.29 MeV. These reactions have more than one α–particle in the final state and

no characteristic spectral feature that is assigned to a distinct α–particle energy (see

Fig. 6.28b). Above ∼11.5 MeV neutron energy, these two interactions dominate [230] and

no structure can be identified with α–particles of known energy. Only above ∼14 MeV, the

maximum α–particle energy from 12C(n,α)9Be is high enough to be well outside the other

two spectra and faintly visible in the total spectrum. As a consequence, only a limited set

of PH spectra can be evaluated to obtain the light output function L(E) for α–particles,

of which a subset is presented in Fig. 6.29.

In all these spectra, simulated α–particle and non–α–particle events are separated to

adapt the α–particle light response independently. As in the case of the proton response

analysis, the scaling factor fh is equivalent to a correction of the initial light output

function, while fv corresponds to a normalization factor. The normalization suffers

from the poor knowledge of the individual neutron cross sections on carbon [230] and
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the α–particle simulation is scaled in y–direction to best match only the region of the

(n,α) shoulder in the data spectrum. As a consequence, the α–particle event yield is

overestimated in the presence of background events. The location of the edge position,

though, is not affected, as long as the background is featureless.

Figures 6.29a–6.29c show PH spectra from neutrons with energies between about

9.5 MeV and 11.5 MeV and the good agreement between data and simulation right at

the visible structure. In Fig. 6.29d, a shoulder is barely recognizable, though it is still

significant, if background can be excluded as source of this structure. For this reason,

the previous discussion about backgrounds in Sec. 6.5.5 is extended at this point. The

requirement for a visible shoulder in the PH spectra is a high enough yield of secondary

charged particles with identical energy from neutron interactions. Prompt gammas are

outside the TOF neutron range, regions with satellite prompt gammas are excluded and

ambient background is measured individually and subtracted, as mentioned in section

6.4.1. Since the light yield of recoiling ions heavier than α–particles, like Be, B or C, is

below threshold, the only remaining background source are de–excitation gammas from

isotopes within the scintillator and the surrounding material. A Compton edge, full energy

or escape peak following gamma interactions have the potential to mimic the α–particle

shoulder. As discussed in Sec. 6.5.5, of all elements in the scintillator, the cell walls and

window, as well as the light guide, the only isotope of considerable amount that has

additionally only a small amount of energy levels in the neutron energy range is 12C. 27Al,

the second most abundant isotope in the relevant detector parts, has a large amount of

nearby levels and not the capability to create one discrete and observable shoulder. The
12C background is discussed using the example of the HG PH spectrum of wsLAB1 in

Fig. 6.28a. The first excited state of 12C is at 4.439 MeV and thus causes a maximum

Compton electron energy of 4.20 MeV. Using m for the wsLAB1 HG measurement from

Tab. 6.5, the edge is expected at PH > 2500 ch, far away from the observed structure

and above the last ADC channel 1024 (see also Fig. 6.26b). The double escape pulse from

pair production and subsequent annihilation has an energy of 2× 1.71 MeV resp. a PH of

> 2000 ch and is therefore still way beyond the shoulder region. The Compton spectrum

in Fig. 6.26b is rising in the ROI, but it is even and shows no structure able to mimic the

observed shoulder in Fig. 6.28a. As a consequence, 12C de–excitations can explain the

data excess in the vicinity of the observed structure in Fig. 6.28a, as well as Fig. 6.29, but

they cannot cause the structure itself. Two isotopes that have also a limited amount of

excitation levels within the neutron energy range, and with the first excited state at lower

energy than the one of 12C, are 14N and 32S, isotopes that are part of the PRS present in

wsLAB1 and wsLAB2. Their total neutron scattering cross sections around the excitation

energies are of the same order of magnitude as the one of 12C [231]. However, each of them

amounts to only about 0.2% of the 12C content and is thus too low in concentration and

none of them is part of standard LAB used in Fig. 6.29. Moreover, while the α–particle

shoulder shifts towards higher PHs with higher neutron energy, gammas from a particular

background source remain at the same PH. In summary, also de–excitation gammas are
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(a) En = 10.5 MeV, Eα = 4.673 MeV.
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(b) En = 10.7 MeV, Eα = 4.860 MeV.
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(c) En = 11.0 MeV, Eα = 5.140 MeV.
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(d) En = 14.5 MeV, Eα = 8.375 MeV

Figure 6.29: Measured and simulated PH spectrum in LAB + 2 g/l PPO + 15 mg/l bis–MSB and HG

mode for quasi mono–energetic neutrons with different energies En. Simulated is the spectrum excluding

α–particle events, the spectrum of α–particle events only and the sum spectrum of all events. The high

energy shoulder within the α–particle spectrum is formed by α–particles with maximum energy Eα from
12C(n,α)9Be reactions.

safely excluded as cause of the observed shoulder in the PH spectra.

The entire analysis is only possible, if the α–particle structures are resolved. As

discussed in Sec. 6.4.3 and 6.5.4, the PH resolution of LAB based scintillators is compara-

tively low. Only samples with bis–MSB content just reach high enough resolution, shown

in Fig. 6.24, leaving only four data sets that are suitable for the determination of the alpha

response function, the ones of LAB1, LAB3, wsLAB1 and wsLAB2. For each of these

four scintillators, up to ten PH spectra can be evaluated, yielding the respective number

of data points Li(Ei), as shown for LAB and wsLAB with 2 g/l PPO and 15 mg/l bis–MSB

in Fig. 6.30. The remaining results are presented in the following section. The α–particle

light responses in Fig. 6.30 are stronger quenched than the proton responses in Fig. 6.27,

as expected, and the functional behavior is also non–linear, especially since the origin of

ordinates has to be included. In order to complete the update in the nresp7 input file,

Eq. 6.16 and 6.17 are fit to the respective data points and the resulting parameters c0−3
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(a) LAB + 2 g/l PPO + 15 mg/l bis–MSB.
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(b) wsLAB + 2 g/l PPO + 15 mg/l bis–MSB.

Figure 6.30: Light output L in electron–equivalent energy, measured in LAB1 (a) and wsLAB2 (b) for

different electron and α–particle energies. Both, electrons and α–particles are internal, resulting from

scattering reactions induced by gammas and neutrons respectively. In the shown total uncertainties, the

single contributions (see Tab. 6.9) are added quadratically.

are updated in the set of light responses of the corresponding scintillator.

6.6 Adaption of Birks’ law to the measured light responses

The most popular analytical description for the energy dependency of the light output is

given by the semi–empirical Birks’ law Eq. 2.11, assuming ionization quenching to be the

reason for the reduced light output observed in Fig. 6.27 and 6.30. For the description

of the measured light output of protons and α–particles, the generalized form of Birks’

law Eq. 2.12, including the quadratic correction term parameterized by C [37] is used, as

well as the original law, in which C = 0. Electron, proton and α–particle light output

functions of a particular scintillator are measured within the present work under identical

conditions, so that the scaling factor S for proton and α–particle data is the same as the

one for electron data, i.e. S = 1 (see Sec. 6.4.3). Birks’ parameter kB and the parameter

C of all LAB based scintillators are obtained by means of a χ2 fit of the theoretically

expected light output Ltheo using Eq. 2.12 at each of the N experimentally determined

values Lexp presented, for instance, in Fig. 6.27 and 6.30. N is between 30 and 49 in

proton quenching evaluations and between 8 and 11 in alpha quenching evaluations. The

total stopping power dE/dx for protons and α–particles is calculated using the code srim

[232] and displayed in Fig. 6.31. Also shown in that figure is the relative difference of

Nd–loaded LAB to LAB as well as of Te–loaded and unloaded wsLAB to LAB which is

. 3%.

The χ2 calculation is carried out following the pull approach [233], where

χ2(kB,C, ξk) =

N∑
n=1

[
Lexp
n − Ltheo

n

(
1 +

∑K
k=1 ξkf

k
n

)]2

u2
n

+
K∑
k=1

ξ2
k. (6.22)
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(b) Relative stopping power difference.

Figure 6.31: (a) Total stopping power dE/dx as function of energy for protons and α–particles of various

LAB based scintillators and (b) their relative difference to the stopping power of LAB + 2 g/l PPO, denoted

as dE/dxref (b). The stopping powers are calculated with srim using the densities listed in Tab. 6.1. Bis–

MSB is not included in the calculations due to its negligible concentration. 0.54% Te(OH)6 correspond to

0.3% Te loading.
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Table 6.9: 1σ values of the experimental uncertainties within the relative light output measurements.

Time–walk of the CFD, satellite pulses, multiple neutron events and time–frame overlap have a minor

effect (see Sec. 6.3.1 and 6.5.1) and are neglected as source of uncertainty. The uncertainty of the distance

between target and detector is the quadratic sum of the distance measurement uncertainty, half target

thickness and half depth of the scintillator volume. The extracted edge positions carry two uncertainties,

a statistical and a systematic. The statistical one is the uncertainty on the scaling factors fx,y from the

fit of the simulated to the measured PH spectrum. An additional systematic uncertainty comes from the

choice of the fit interval, since different interval boundaries shift the edge position by more than 1σstat. This

uncertainty is determined at each data point individually. Only the highest uncertainty of all data points

is listed here, while the right number for each scintillator is used when fitting the light output function to

data. For α–particle light output measurements, only HG data sets are used.

Nr. Systematic uncertainty 1 σsys

1 Prompt γ–peak centroid position ≤ 0.9 ch (see Tab. 6.7)

2 TAC non–linearity < ∆p > < 0.2 ch (see Tab. 6.4)

3 Time calibration ±0.05%

4 Target – detector distance ±25.5 mm

5 Gain stabilization ±0.5%

6 HG calibration factor m (see Tab. 6.5)

7 LG calibration factor m (see Tab. 6.5)

8 HG pulse–height offset a (see Tab. 6.5)

9 LG pulse–height offset a (see Tab. 6.5)

10a Edge position (protons) ≤5 ch

10b Edge position (α–particles) ≤9 ch

Statistical uncertainty 1 σstat

Edge position <0.02%

Within this calculation K = 10 (K = 8) independent sources of systematic uncertainties

in the proton (α–particle) light output measurements, listed in Tab. 6.9, are included as

nuisance parameters. The α–particle measurement has two sources of uncertainty less

than the proton measurement, since only HG data is used in the first case, eliminating

the two uncertainties from the LG calibration Nr. 7 and Nr. 9 in Tab. 6.9. The factor fkn
in Eq. 6.22 describes the fractional change of the n–th value of Ltheo if the k–th source

of systematics is varied by 1σk and ξk is a standard normal deviate. The normalization

condition for the ξk’s is realized through quadratic penalties, summed over the K sources

of systematics. The statistical uncertainty, denoted by u, is also indicated in Tab. 6.9 and

is below 0.02%, hence the measurements are dominated by systematics.
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Figure 6.32: Fractional change fkn of the n–th value of the theoretical light output Ltheo under the

variation of the k–th source of systematics by an integer multiple of σk. Shown is fkn for the theoretical value

expected at the third data point (n = 3) of the proton response measurement with wsLAB + 2 g/l PPO +

15 mg/l bis–MSB, shown in Fig. 6.27b. The source of the altered systematic effect is given in the subcaption.

Since the nuisance parameters ξk are assumed to have Gaussian constraints centered

on zero, the requirement for the applicability of Eq. 6.22 is a linear variation of Ltheo with

the variation of the systematic uncertainties, that is the fkn ’s have to be linear. For this

reason, the effect on L caused by the first four sources of systematics, listed in Tab. 6.9,

is tested. The remaining uncertainties are directly multiplied with L in the calculation

of its variation, linearity is thus trivially given. Figure 6.32 shows the dependence of fkn
on the number of sigmas by which the k–th source of systematics is changed for one data

point of one response function and scintillator, showing excellent agreement with a linear

behavior. These figures are representative for all measurements, since a measurement of

campaign C4 was chosen, in which the time calibration factor is ctcal ≈ 1.6 ns/ch instead

of ctcal ≈ 0.8 ns/ch (see Tab. 6.4). Thus the uncertainty of the γ–peak position and the

TAC non–linearity have the largest effect on L in this campaign.

The minimum of the χ2 function with respect to kB, C, as well as all nuisance

parameters, is calculated with the MINUIT [234] implementation in the ROOT analysis
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framework [235]. C, introduced in [37], is a simple higher order correction term without

a physical interpretation (see Sec. 2.6.3). Thus C is also not limited and negative values

are possible, as observed for example in [236] for EJ–200 plastic scintillator. In most of

the cases, though, C is found to be positive (e.g. [237, 238, 239, 240, 241, 242]). Each χ2

minimization is therefore performed up to three times: Once C is allowed to float freely,

once C is constrained to positive values including zero and once C = 0 is fixed, yielding a

fit of the original Birks’ law Eq. 2.11 with one fit parameter. If C, fit as a free parameter,

is at least 1σ greater than zero, the constrained fit is not executed.

The number of degrees of freedom (ndf) is calculated as per

ndf = N − J +K ′ −M, (6.23)

where N is the number of data points considered in Eq. 6.22. J is the number of

model parameters and M is the number of effective constraints. The number K of

nuisance parameters has to be accounted for, since these parameters contribute to χ2

with their Gaussian constraints. However, some nuisance parameters have the same

effect on Ltheo and the minimization procedure adjusts the respective parameters in the

same way. They are fully correlated. These nuisance parameters do not contribute to

χ2 independently and have to be counted together as one parameter. This is twice the

case: The TAC non–linearity (Nr. 2 in Tab. 6.9) and the uncertainty on the prompt

γ–peak position (Nr. 1 in Tab. 6.9) affect the TOF measurement equivalently and the

edge position uncertainty (Nr. 10a, b in Tab. 6.9) and the PH offset uncertainty (Nr. 8, 9

in Tab. 6.9) affect the PH measurement equivalently. Thus only a reduced number

K ′ = K − 2 is considered as additional degrees of freedom. It should be noted that for

the proton quenching evaluation, in which HG and LG data sets are used, the PH offset

uncertainty in HG measurements (Nr. 8 in Tab. 6.9) and in LG measurements (Nr. 9

in Tab. 6.9) are not correlated, since they do not affect the same data points (see Sec. 6.5.5).

The model parameter uncertainties are extracted from the χ2 projections on kB and

C respectively. If the best fit value has a two–sided 1σ limit, the corresponding parameter

values at χ2 − χ2
min = 1 are read out. If only an upper limit can be achieved, the limit at

95% C.L. is determined, referring to χ2 − χ2
min = 1.645.

The value and uncertainty of the parameters kB and C in Birks’ law Eq. 2.12 are

additionally correlated with the material’s stopping power dE/dX and the theoretical un-

certainty within the stopping power calculation. With the srim code, a determination

of the stopping power for all elemental materials is possible with an accuracy of ”a few

percent” [232, 243], thus the described fitting procedure is repeated for dE/dx + σdE/dx
and dE/dx − σdE/dx, assuming a shift of 3%. Note that this uncertainty covers also the

uncertainty from the calculated densities of Tab. 6.2, introduced from an about 4◦C higher

ambient temperature than used for the table. This theoretical uncertainty is added quadrat-

ically to the experimental one. All fit results are presented and discussed in the following
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two sections.

6.6.1 Fit results using proton light responses

Figures 6.33 and 6.34 show the experimentally determined proton light output data points

using different LAB and wsLAB scintillators, respectively, together with the adapted Birks

law Eq. 2.12. In these figures the fit with unconstrained C is shown as well as the fit

with C = 0. Both curves agree, hence qualitatively C has no impact on the predicted

light response behavior. The numerical values resulting from these fits, as well as from

a fit of Birks’ law omitting negative values for C, are listed in Tab. 6.10. As mentioned

in Sec. 6.1, two independent analyses have been performed using a subset of the data

(LAB1–4). The results of the earlier analysis are published in [32] and do not differ from

the results presented here within one standard deviation. Regarding Tab. 6.10, again no

significant influence of C is observed. For each scintillator sample, Birks’ parameter kB

is the same within the uncertainties independent of the fit condition imposed on C and,

comparing the goodness of each fit, none of the three fit conditions is to be favored. With

C floating freely, the fit converges twice at a negative value of C, once for LAB + 2 g/l PPO

+ 15 mg/l bis–MSB (LAB1) and once for LAB + 2 g/l PPO (LAB2). Given the respective

1σ uncertainties, however, both values are consistent with zero. In total, only in the fit

using LAB + 2 g/l PPO + 0.1% Nd (LAB5), C deviates with (2.0± 1.6)× 10−6 cm2/MeV2

from zero by slightly more than 1σ.

6.6.2 Discussion of the measured proton Birks’ parameters

Concluding from the above observations, inserting an extra model parameter C is not

necessary and the proton light response functions are well–described by the original Birks

law Eq. 2.11. For the ease of comparison, the corresponding kB values are summarized

in Fig. 6.35, showing an agreement between the Birks parameters of all investigated LAB

based scintillators. In the following paragraphs, the influence of the individual additives to

the LAB solvent on the kB measurements is discussed, where the aspect of electron affinity

is discussed separately at the end.

Influence of solutes

According to current knowledge, ionization quenching processes are primary processes in

the scintillator, in other words processes that transfer ionization energy to excitation energy

of the solvent. As explained in Sec. 2.6.3, ionization quenching suppresses the excitation

of the solvent molecules into π–electron singlet states and enhances the population of their

π–electron triplet states. This circumstance changes the light yield as well as the waveform

of the scintillation pulse emitted by the solvent, independent of the solute content. Direct

excitations or ionizations of secondary molecules are negligible primary processes due to the

low molecule concentrations [12]. The transfer of the emitted light to the solutes is subject

to secondary processes. Consequently, for scintillators with the same solvent, the magni-

tude of ionization quenching is expected to be the same, independent of possible solutes
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(a) LAB + 2 g/l PPO + 15 mg/l bis–MSB.
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(b) LAB + 2 g/l PPO.

E [MeV]

0 5 10 15

L
 [
M

e
V

]

0

2

4

6

8

10

12

14
electron data

proton data

linear fit

two parameter fit (kB, C)

one parameter fit (kB)

(c) LAB + 3 g/l PPO + 15 mg/l bis–MSB.
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(d) LAB + 3 g/l PPO.
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(e) LAB + 2 g/l PPO + 0.1% Nd.
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(f) LAB + 3 g/l PPO + 0.1% Nd.

Figure 6.33: Light output L in electron–equivalent energy as function of kinetic energy E. L is shown for

electrons and protons in different LAB based scintillators, specified in the subcaptions (a-f). Electron data

is fitted with Eq. 6.8 and proton data with Eq. 2.12 including all systematic effects, listed in Tab. 6.9, as

nuisance parameters. Once both quenching parameters (kB, C) are allowed to float freely and once C = 0

is fixed. No difference in the resulting light responses is observed. In the shown total uncertainties, the

single contributions in Tab. 6.9 are added quadratically.
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Table 6.10: Proton quenching parameters kB and C and their total 1σ uncertainty resulting from a fit

of Eq. 2.12 to data (see Fig. 6.33 and 6.34) using different LAB and wsLAB scintillators. Upper limits

are given for a confidence level of 95%. The number of degrees of freedom ndf is calculated according to

Eq. 6.23. The detailed scintillator descriptions are given in Tab. 6.1.

sample kB C (×10−6) C, fit condition χ2/ndf

[cm/MeV] [cm2/MeV2]

LAB1 0.0099± 0.0005 -1.6± 2.2 free 4.52/36

0.0096± 0.0003 ≤ 2.7 constrained 5.03/35

0.0096± 0.0003 0.0 fixed 5.03/37

LAB2 0.0095± 0.0007 -1.0± 3.2 free 9.82/36

0.0093± 0.0003 ≤ 8.3 constrained 9.92/35

0.0093± 0.0004 0.0 fixed 9.92/37

LAB3 0.0095± 0.0004 1.3± 1.7 free 26.17/36

0.0095± 0.0004 ≤ 2.1 constrained 26.17/35

0.0097± 0.0003 0.0 fixed 26.82/37

LAB4 0.0090± 0.0004 0.5± 1.3 free 14.86/55

0.0090± 0.0003 ≤ 1.5 constrained 14.86/54

0.0091± 0.0003 0.0 fixed 15.01/56

LAB5 0.0087± 0.0004 2.0± 1.6 free 36.71/36

0.0092± 0.0003 0.0 fixed 38.33/37

LAB6 0.0090± 0.0005 0.2± 2.3 free 34.04/39

0.0090± 0.0007 ≤ 18.1 constrained 34.04/38

0.0090± 0.0004 0.0 fixed 34.04/40

wsLAB1 0.0086± 0.0006 1.6± 1.9 free 6.55/36

0.0086± 0.0006 ≤ 2.4 constrained 6.55/35

0.0090± 0.0003 0.0 fixed 7.29/37

wsLAB2 0.0089± 0.0005 1.6± 1.9 free 6.96/36

0.0089± 0.0006 ≤ 2.4 constrained 6.96/35

0.0093± 0.0003 0.0 fixed 7.74/37
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(a) wsLAB + 2 g/l PPO + 15 mg/l bis–MSB + 0.3% Te.
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(b) wsLAB + 2 g/l PPO + 15 mg/l bis–MSB.

Figure 6.34: Light output L in electron–equivalent energy as function of kinetic energy E. L is shown

for electrons and protons in wsLAB scintillator, with (a) and without (b) Te–loading. Electron data is

fitted with Eq. 6.8 and proton data with Eq. 2.12 including all systematic effects (see Tab. 6.9) as nuisance

parameters. Once both quenching parameters (kB, C) are free and once C = 0 is fixed. No difference in the

resulting light responses is observed. The PRS and water content in wsLAB are 5% and 1.5%, respectively.

In the shown total uncertainties, the single contributions in Tab. 6.9 are added quadratically.

Within the presented proton quenching measurements, no significant deviation from these

considerations is observed, comparing the kB values in Fig. 6.35 of the binary and ternary

LAB based scintillators LAB1 through LAB4, which only differ in the solute concentrations.

Influence of metals

The addition of the non–scintillating metals, Nd or Te, leads to impurity quenching and,

in the case of Nd, to color quenching, as described in Sec. 2.6.1 and Sec. 6.2. These types

of quenching affect electrons and ions in the same way, in contrast to ionization quenching.

The proton light response relative to the electron light response is not expected to change,

even with high loadings. Nonetheless, the measured Birks parameter will vary, when the

isotope concentrations become high enough to significantly change the total stopping

power, due to their correlation in Eq. 2.12, even if the relative proton light output does

not change. Thus great care has to be taken with the interpretation of Birks’ parameter

kB and the parameter C, i.e. the quenching parameters. More conclusive is a material

property independent parameterization of the quenching function – the ratio of the ion

light response function to the electron response function – as for instance presented in

[38]. In the tested samples, however, the Nd (Te) concentration of 0.1% (0.3%) changes

the stopping powers compared to unloaded LAB (wsLAB) by less than 2% (see Fig. 6.31),

well within the assumed uncertainty of the stopping power calculation using srim. As a

consequence, the measured Birks’ parameters are not expected to be affected within their

total uncertainties, which is confirmed by the agreement between the Birks parameters of

loaded (LAB5, LAB6, wsLAB1) and unloaded (LAB1–4, wsLAB2) LAB based scintillators

presented in Fig. 6.35.
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LAB1  0.0003±0.0096 

LAB2  0.0004±0.0093 

LAB3  0.0003±0.0097 

LAB4  0.0003±0.0091 

LAB5  0.0003±0.0092 

LAB6  0.0004±0.0090 

wsLAB1  0.0003±0.0090 

wsLAB2  0.0003±0.0093 

Figure 6.35: Measured Birks’ parameter kB, parameterizing proton quenching in different LAB (violet)

and wsLAB (blue) scintillators. The values are taken from Tab. 6.10 with C = 0 cm2/MeV2. The detailed

scintillator descriptions are given in Tab. 6.1.

SNO+ plans to increase the Te–loading from the initial loading of 0.3% to the percent

level. Depending on the loading level achieved, the presented fit has to be repeated with

the newly calculated stopping power of the scintillator. Since a higher loading is expected

to increase dE/dx, the quenching parameters are expected to decrease. Depending on the

increase of the water and PRS component, necessary for the higher Te–loading, a new

measurement is recommended for the reason given in the following paragraph.

Influence of water and PRS

Since bound water and PRS are only present together in the used samples, they also have

to be discussed together. Water is, like Nd or Te, non–scintillating and from this point of

view an impurity quencher. However, it produces Cherenkov light, if the charged particle

is fast enough. While the Cherenkov threshold for electrons in water is around 260 keV, it

is > 1 GeV for protons. The electron energy range observed in the presented measurements

is 393 keV–1547 keV and the maximum proton energy is about 17 MeV. Thus an additional

light component added up to the scintillation light of wsLAB scintillators, when the

electron light output was measured, which is not present, in the proton light output mea-

surements. Compared to standard LAB based scintillators, the proton light yield relative

to the electron light could thus be lower, resulting in a higher value of kB. However, the

water concentration of 1.5% in the investigated wsLAB scintillators is very small, in this

context, and the Cherenkov light yield of water for 1 MeV electrons is about 50 times lower

than the corresponding LAB scintillation light yield [189, 244]. This makes the additional

Cherenkov light yield smaller than the statistical fluctuations of the scintillation light

yield and no significant effect is expected on the measured ionization quenching parameters.
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These considerations motivate a systematic study of the variation of kB with

an increasing water concentration, beyond the statistical fluctuations of the scintilla-

tion light yield. This is in particular interesting for SNO+ in the view of higher Te–loadings.

Also the aromatic PRS used (see Sec. 5.3.3) does not scintillate, since it has no

system of delocalized π–electrons. The total light yield is reduced. The O contained in

PRS is bound in the molecule and thus not contributing to oxygen quenching induced by

free O2 (see Sec. 2.6.2). Thus, in summary, also PRS is not expected to affect ionization

quenching but only to reduce the total light output of all particles identically.

A direct comparison of the determined kB values for LAB + 2 g/l PPO +

15 mg/l bis–MSB (LAB1) and wsLAB + 2 g/l PPO + 15 mg/l bis–MSB (wsLAB2), given in

Fig. 6.35, does not reveal a difference in the results within the uncertainties. Additionally,

also the deviation in the respective stopping powers is ∼ 1% (see Fig. 6.31) and thus too

small to shift the quenching parameters beyond at least one standard deviation. Thus, the

same kB value leads to the conclusion that the proton ionization quenching behavior does

not change, when water at a concentration of 1.5% and PRS at a concentration of 5% is

added to LAB, in agreement with the expectations.

Electron affinities

In this discussion so far, it was assumed that none of the addends, Nd, Te(OH)6, PRS or

H2O, attracts electrons. Since trapped electrons, however, are not available anymore for

recombination processes and thus for secondary LS molecule excitations (see Sec. 2.4.1),

this aspect is shortly addressed here. To illustrate the effect of lost electrons on the observed

quenching factor Eq. 2.13, the following equations are used:

Qi =
Li
Le

=
1li,p + 1li,s + 3li,s
1le,p + 1le,s + 3le,s

, (6.24)

Q∗i =
1li,p + ( 1li,s − 1

4n) + ( 3li,s − 3
4n
′)

1le,p + ( 1le,s − 1
4m) + ( 3le,s − 3

4m
′)
, (6.25)

in which the ion light output Li and electron light output Le are split up into light com-

ponents l from singlet and triplet excited states after primary and secondary excitations.

The superscript denotes the multiplicity of the excited state, analog to Sec. 2.5, and the

additional subscript denotes whether it is a primary excitation or a secondary excitation

after ion electron recombination. In Eq. 6.24 it is assumed that none of the free electrons

in the LS are lost and thus available for recombination processes. In Eq. 6.25 it is assumed

that electrons are absorbed by non–scintillating electron acceptors, where n(′) and m(′)

quantify the consequent amount of lost light. The partitioning of the light losses corre-

sponds to the 25%:75% population probability of singlet compared to triplet exited states
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(a) LAB + 2 g/l PPO + 15 mg/l bis–MSB.
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(b) LAB + 3 g/l PPO + 15 mg/l bis–MSB.

Figure 6.36: Light output L in electron–equivalent energy as function of kinetic energy E. L is shown

for electrons and α–particles in LAB scintillator with 15 mg/l bis–MSB and 2 g/l (a) or 3 g/l (b) PPO.

Electron data is fitted with Eq. 6.8 and α–particle data with Eq. 2.12 including all systematic effects, listed

in Tab. 6.9, as nuisance parameters. Once both quenching parameters (kB, C) are free and once C = 0 is

fixed. In the shown total uncertainties, the single contributions in Tab. 6.9 are added quadratically.

after recombination (see Sec. 2.4.1). Since the quantum efficiencies of singlet and triplet

state de–excitation differ, the same amount of lost electrons leads to a different amount of

lost light, and thus n,m 6= n′,m′. Comparing Eq. 6.24 and 6.25 shows that Qi ≈ Q∗i is only

true, if the primary light output component is much larger than the sum of the secondary

light output components, i.e. 1lp � ( 1ls + 3ls), or if the light losses are much smaller

than the secondary light yields, i.e. n, n′,m,m′ � 1li,s,
3li,s,

1le,s,
3le,s. If instead the light

losses are statistically significant, then Qi 6= Q∗i , which means the ionization quenching

strength is modified by the addition of a strong electron acceptor. The agreement of all

kB values within the uncertainties, presented in Fig. 6.35, hence means that none of the

non–scintillating addends has a high enough electron affinity to significantly change the

observed light output given the detector light output resolution and uncertainties of the

results.

6.6.3 Fit results using α–particle light responses

The experimentally determined α–particle light output in various LAB and wsLAB scin-

tillators as well as the model Eq. 2.12, fitted once with unconstrained and once with fixed

C, are presented in Fig. 6.36 and Fig. 6.37. In contrast to the case of the proton responses,

the two model curves slightly deviate from each other, where the difference increases with

energy. This deviation is the strongest for wsLAB + 2 g/l PPO + 15 mg/l bis–MSB, which

is shown in Fig. 6.37b. In all four measurements, adding one more free parameter improves

the fit, as evident from the reduced χ2 values listed together with the best fit quenching

parameters in Tab. 6.11, especially for wsLAB + 2 g/l PPO + 15 mg/l bis–MSB (wsLAB2).

A fit with the condition C ≥ 0 is not performed, since the C values resulting from an

unconstrained fit are all well–above zero. Despite the improvement of the fit, when C is
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(a) wsLAB + 2 g/l PPO + 15 mg/l bis–MSB + 0.3% Te.
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(b) wsLAB + 2 g/l PPO + 15 mg/l bis–MSB.

Figure 6.37: Light output L in electron–equivalent energy as function of kinetic energy E for electrons and

α–particles in wsLAB scintillator with (a) and without (b) Te–loading. Electron data is fitted with Eq. 6.8

and α–particle data with Eq. 2.12 including all systematic effects (see Tab. 6.9) as nuisance parameters.

Once both parameters (kB, C) are free, once C = 0 is fixed. The PRS and water content are 5% and 1.5%,

respectively. In the shown total uncertainties, the single contributions in Tab. 6.9 are added quadratically.
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Figure 6.38: Light output L as function of energy

E (see Eq. 2.12) of α–particles traversing different

LAB based scintillators. The admixtures to LAB

are noted in the plot legend, referring to LAB1 (red

dashed line) and wsLAB2 (blue dotted line). Also

shown are the error bands resulting from the 1σ

fit uncertainties of the free parameters kB and C,

listed in Tab. 6.11.

included as a free parameter, the difference between the two resulting light output functions

becomes noticeable only at α–particle energies above ∼ 6 MeV. At 8.95 MeV, the highest

α–particle energy within the natural U and Th chains (212Po →208 Pb + α, see Fig. A.1),

the difference of L is ∼ 9% in wsLAB + 2 g/l PPO + 15 mg/l bis–MSB (see Fig. 6.37b) and

at least a factor of two smaller in the three other samples (see Fig. 6.36 and 6.37a).

6.6.4 Discussion of the measured Birks’ parameters of α–particles

Following the discussion about proton quenching in Sec. 6.6.2, it also for α–particles

expected that the relative light output functions behave the same throughout the different

samples, since the arguments given above are the same for both particle species. The

difference in this subsection is the fact that the extended Birks law, which includes the

quadratic correction term C, is preferred, comparing the values for χ2/ndf in Tab. 6.11.

Since, however, kB and C are strongly anti–correlated, a direct comparison between

the values of these parameters, resulting from measurements with different samples, is
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Table 6.11: α–particle quenching parameters kB and C and their total 1σ uncertainty, following Eq. 2.12,

determined for different LAB and wsLAB scintillators. Upper limits are given for a confidence level of 95%.

sample kB C (×10−6) C, fit condition χ2/ndf

[cm/MeV] [cm2/MeV2]

LAB1 0.0059± 0.0010 2.0± 1.1 free 5.69/12

0.0076± 0.0003 0.0 fixed 9.47/13

LAB3 0.0052± 0.0007 1.9± 0.9 free 2.68/12

0.0071± 0.0003 0.0 fixed 17.63/13

wsLAB1 0.0054± 0.0005 1.4± 0.4 free 2.76/15

0.0070± 0.0004 0.0 fixed 24.27/16

wsLAB2 0.0042± 0.0005 2.6± 0.4 free 9.27/14

0.0072± 0.0004 0.0 fixed 71.48/15

not conclusive. This is to say, a disagreement between the values of kB and/or C of

different samples within one standard deviation, as is the case for wsLAB2 compared to

the other three samples listed in Tab. 6.11, does not necessarily mean, the light output

functions disagree. This is demonstrated in Fig. 6.38, where the light output function of

wsLAB + 2 g/l PPO + 15 mg/l bis–MSB (wsLAB2) and the one of LAB + 2 g/l PPO +

15 mg/l bis–MSB (LAB1) are shown. Also shown are the error bands of the light output

functions considering the 1σ total uncertainty resulting from the uncertainties of kB and

C. Both light output functions agree within the total uncertainty. The curves from the

other two samples lie between the two presented ones and are thus also in agreement with

both of them and with each other.

Prominent in Fig. 6.38 is the large uncertainty of the α–particle light response of

LAB1, an instance that would be improved by a second high energy data point around

E ≈ 8 MeV. Using this scintillator sample, however, only one data point could be safely

extracted in this energy range.

Finally, comparing the fit results for kB listed in Tab. 6.11 from the one–parameter

fit, shows that no significant difference between the values is observed in this case. Since

the relative differences in the α–particle stopping powers (see Fig. 6.31b) are also for

α–particles smaller than the considered 3% uncertainty on dE/dx, an agreement between

the values of kB means an agreement between the different light output functions.

To conclude, the results from the α–quenching measurements reveal no significant

difference between the ionization quenching behavior in the two LAB and two wsLAB
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samples. This observation is in agreement with the results from the proton quenching

measurements.

6.7 Influence of the non–linearity of the electron light re-

sponse

As mentioned in Sec. 6.4, the slight non–linearity of the electron light yield in LS leads to

a small negative energy offset E0 (see Eq. 6.8), in case the electron light yield behavior is

assumed to be strictly linear. Any assumption with respect to the electron light yield has

a direct impact on the measured proton and α–particle ionization quenching parameters,

since the information of interest is the ion light yield compared to the electron light yield

in the same scintillator.

In contrast to the ion response, the electron response consists of two components,

scintillation light and additionally Cherenkov light. Equation 2.12 approximates L = S ·E
for small dE/dx, thus the non–linearity from the scintillation component alone is expected

to be very small. This is confirmed by [226], measuring the electron light yield below and

above the Cherenkov threshold, and by [34], measuring exclusively below the Cherenkov

threshold. Extrapolation of the displayed scintillation light functions yields E0 ≈ 5 keV in

[34]. In [226], the offset is too small to be resolved and close to 0 keV.

The onset of Cherenkov light causes a total offset of E0 ≈ 100 keV for LAB based

scintillators and E0 ≈ 80 keV for EJ301, in [226] and thus is presumably the main cause

of the observed electron non–linearity. The Cherenkov photon yield itself depends on the

refractive index of the scintillator. The fraction of observed Cherenkov light generally

depends on the detector, since the emitted Cherenkov photons are concentrated in the

near UV wavelength region, where typically the sensitivity of detectors strongly decreases.

The detected Cherenkov component is even strongly suppressed, if, for instance, the PMT

window and the light guide are not UV transparent. On the other hand, if the detector is

large compared to the absorption and re–emission length scale, a fraction of the Cherenkov

light can be absorbed and re–emitted at higher wavelengths, with the efficiency depending

on the absorption spectrum of the scintillator. In summary, the amount of observed

Cherenkov photons depends on the wavelength dependent sensitivity and possibly the size

of the detector, as well as on the primary wavelength shifter.

As a consequence, also the slope of the observed total electron response function above

the Cherenkov threshold, consisting of scintillation plus Cherenkov light, depends on the

detector as well as the scintillator secondaries and refractive index. These dependencies

are propagated into the ionization quenching measurements of heavy charged particles,

when the light response functions are given relative to the one of electrons, even though

for example the process of ionization quenching itself is competing with primary processes
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in the scintillator [11] and thus mostly independent of the secondaries.

Ideally, the deviation from linearity of the electron response, parameterized by E0, is

determined in the same detector. This is not always possible in which case assumptions on

E0 have to be made. References [32, 237, 238], for instance, consider strict linearity and

therewith E0 = 0 keV, whereas [213] assumes E0 = 5 keV, a figure known from dedicated

electron response measurements [245]. The value E0 = 5 keV was measured for NE213

small scale detectors of various volumes and shapes [212, 245], which all agreed. NE213,

however, consists like EJ301 of 93% xylene and 7% naphthalene doped with activators and

POPOP, thus E0 should be comparable to the one of EJ301, but is E0 ≈ 80 keV in the

measurements reported in [226]. This difference confirms that E0 is at best determined in

the detector used for the ion measurements as well.

In order to study the influence of E0 on the quenching parameters kB and C, fits

using LAB + 5% PRS + 1.5% water + 2 g/l PPO + 15 mg/l bis–MSB + 0.3% Te are

repeated for E0 = 0, 5, 50, 100 keV and the results are listed in Tab. 6.12. No nuisance

parameters are included in this study. A shift of the order of 5 keV does not significantly

change the resulting best fit values, only the reduced χ2 increases slightly, which is also

given in Tab. 6.12. A shift of 100 keV, though, leads to a shift by more than 4σkB
in the one–parameter fit for protons and more than 8σkB in the one–parameter fit for

α–particles and the proton and α–particle Birks constants are closer together. However, in

the corresponding fits, the reduced χ2 becomes ∼ 11 for protons and ∼ 46 for α–particles.

This means, the Birks model cannot properly describe the data anymore without the

quadratic correction term, and thus C, in which case the reduced χ2 becomes ∼ 2 and ∼ 4,

respectively. In conclusion, the treatment of the electron non–linearity during ionization

quenching measurements can significantly influence the resulting quenching parameters

kB and C.

6.8 Comparison of the alpha quenching results with inde-

pendent LAB measurements

NE213, and its equivalents BC501A and EJ301, are one of the most investigated

liquid scintillators and a multitude of ionization quenching measurements exist

[226, 238, 240, 241, 242, 246]. Comparing the quenching parameters for the same

particle reveals disagreements and it is an open discussion [36], how strongly the de-

termined quenching parameter(s) kB (and C) depend on the measurement conditions,

experimental set–up and analysis method, as partly addressed in the above section.

Within the following section, the presented neutron beam alpha quenching measurements

are compared with two further alpha quenching measurements using the same solvent,

LAB, but different detectors and experimental approaches.
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Table 6.12: Proton and alpha quenching parameters kB and C and their total uncertainties resulting

from a fit of Birks’ law Eq. 2.12 to the measured light output of LAB + 5% PRS + 1.5% water + 2 g/l

PPO + 15 mg/l bis–MSB + 0.3% Te after applying a shift of E0 to the light output scale.

particle E0 kB C (×10−6) χ2/ndf

[MeV] [cm/MeV] [cm2/MeV2]

proton 0.000 0.0090± 0.0003 0.5± 0.9 9.22/28

0.000 0.0091± 0.0002 – 9.47/29

0.005 0.0089± 0.0003 1.1± 1.0 9.98/28

0.005 0.0091± 0.0002 – 11.29/29

0.050 0.0084± 0.0003 7.5± 1.1 21.60/28

0.050 0.0096± 0.0002 – 78.34/29

0.100 0.0076± 0.0003 17.2± 1.2 53.27/28

0.100 0.0104± 0.0002 – 319.31/29

α–particle 0.000 0.0054± 0.0004 1.4± 0.3 2.78/9

0.000 0.0072± 0.0002 – 33.62/11

0.005 0.0053± 0.0004 1.6± 0.3 3.09/9

0.005 0.0073± 0.0002 – 41.47/11

0.050 0.0038± 0.0004 3.5± 0.3 9.41/9

0.050 0.0082± 0.0002 – 172.39/11

0.100 0.0014± 0.0004 6.7± 0.3 34.45/9

0.100 0.0097± 0.0002 – 507.02/11

One approach uses a 28 ml cuvette filled with natSm–loaded LAB scintillator, which

includes the α–particle emitting isotope 147Sm, observed by two PMTs. This experiment

is referred to in the following as Sm–experiment. Another approach uses a ∼ 1 l acrylic

flask, also called bucket source, deployed in the water–filled SNO(+)11 detector, using

radioactive backgrounds as α–particle sources. This experiment is from here on referred

to as bucket source experiment. Common to all three experiments, including the one

performed with in this thesis and referred to as neutron beam experiment, is the use

of small scintillator volumes and UV transparent materials as well as of PMTs with

similar wavelength sensitivity. Furthermore, the primary solute is in all cases PPO. The

Sm–experiment was conducted by L. Neumann [247] and T. Kögler in 2013 and the bucket

11The bucket source was deployed in 2008, in the transition period from SNO to SNO+.
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Figure 6.39: (a) Total stopping power dE/dx as function of energy for α–particles of unloaded and loaded

LAB based scintillators and (b) their relative difference to the stopping power of LAB + 2 g/l PPO, denoted

as dE/dxref . The stopping powers are calculated with srim using the densities listed in Tab. 6.1 for the

unloaded and Nd–loaded LAB scintillator and 0.997 g/cm3 for the Sm–loaded LAB scintillator.

source analysis was performed by H. S. Wan Chan Tseung and H. M. O’Keeffe in 2009

within the SNO+ collaboration. Both measurements are described in more detail in the

following.

For the ease of comparison, only kB is considered within this section, i.e. the original

Birks’ law. The samples from the neutron beam experiment used for comparison are LAB +

2 g/l PPO + 15 mg/l bis–MSB (LAB1) and LAB + 3 g/l PPO + 15 mg/l bis–MSB (LAB3)

and the respective fit results are summarized in Tab. 6.11. Though the two–parameter fit,

which includes C, is favored, the one–parameter fit still yields a very good description in

case of these two samples, with a reduced χ2 of 0.73 and 1.36, respectively.

6.8.1 Alpha quenching measurement with Sm–loaded LAB

Natural Sm contains 14.99(18)% 147Sm, which decays under the emission of a 2.233 MeV

α–particle. At BNL, LAB was loaded with natural Sm at a concentration of 2% using

TMHA, as in the procedure of Nd–loading (see Sec. 5.3.2). By loading the scintillator

with the α–particle source, the source is intrinsic and again surface effects are avoided.

The final scintillator contains 2 g/l PPO as fluor. The high concentration of Sm increases

the compound’s density to about 0.997 g/cm3 responsible for nearly a 15% difference in

the stopping power of loaded and unloaded LAB (see Fig. 6.39). The density is calculated

on the basis of LAB2 from table Tab. 6.2.

At HZDR, a detector was set–up to measure the PMT charge Q, integrated over

about 200 ns, which is induced by a charged particle traversing the scintillator volume. Q

is proportional to the total light yield and measured in arbitrary units. To reduce noise,

signals are identified by coincidence tagging using two PMTs (see Fig. 6.40). The measured
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Figure 6.41: Normalized charge Q

spectrum in arbitrary units (a.u.) of
natSm loaded LAB, measured within

[247]. The prominent peak is induced

by 2.233 MeV α–particles from 147Sm

decays.

charge spectrum of the deoxygenated Sm–loaded LAB is shown in Fig. 6.41 with an α–peak

mean value at Q = (3.2± 0.3) a.u.. The charge scale is calibrated analogous to Eq. 6.6 as

per

Q(E) = m · E + a. (6.26)

E is the maximum Compton electron energy observed in charge spectra from different

γ–sources (137Cs, 166mHo, 60Co), successively placed on the center of the cuvette. The

calibration factor m and intercept a, resulting from a fit of Eq. 6.26 to the calibration data,

are (0.0396±0.0021) a.u./keV and (−3.39±1.9) a.u., respectively. The resulting α–particle

energy in electron–equivalent energy is E = (166.7 ± 49.4) keV and is thus quenched by a

factor of 13.4± 4.0.

6.8.2 Alpha quenching measurement using SNO+ bucket source data

The bucket source, shown in Fig. 6.42, is manufactured to hold about 1 l of LS and was

deployed into the SNO(+) detector in 2008 to study various optical properties of different
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Figure 6.42: Acrylic vessel, or bucket source, with a hollow space

of ∼ 1 l for liquid scintillator. The vessel was build for deployment

in the water–filled SNO(+) detector to test optical properties of

LAB scintillator. The picture is taken from [248].

LAB samples with 2 g/l PPO. The samples used are raw LAB, Nd–loaded LAB and

distilled LAB, where raw LAB refers to Petresa LAB without further processing, while

distilled LAB is purified. Only the results from the measurements using raw LAB are

discussed here, since it is the same kind of LAB used for the alpha quenching measurements

in the presented work.

To determine the light yield of electrons, an Am–Be source was attached to the bucket,

producing neutrons and 4.4 MeV gammas. After thermalization, neutrons are mostly cap-

tured on 1H, producing a deuteron and a 2.2 MeV gamma. Compton scattering of the

two types of gammas again lead to two distinct Compton edges of known electron energy,

enabling the calibration of the light yield scale, using

Ncorr(E) = m · E + a. (6.27)

The electron light yield was measured at first instance in units of NHits, that is the

number of PMTs that fired in an event with a trigger window of 400 ns. This number

N is corrected, accounting for the number of working PMTs and the number of PMTs

that were hit more than once during one event, resulting in Ncorr. Originally, Ncorr

measured at the two Compton edges was additionally reduced by the number of NHits

attributed to the Cherenkov light contribution of the scintillator in order to determine

exclusively the scintillation light yield, resulting12 in m = (483 ± 3) NHits/MeV and

a = (−27 ± 8) NHits. However, neither in the neutron beam experiment nor in the

Sm–experiment this contribution is subtracted. Instead, the α–particle light yield is

compared to the total electron light yield. Since the quenching factor, and thus Birks’

parameter, is sensitive to this difference in the electron light scale, the calibration factor m

and the intercept a are re–evaluated here including the Cherenkov component, resulting

in m = (489 ± 3) NHits/MeV and a = (−28.6 ± 8.5) NHits. Without this re–evaluation,

a comparison between the three measurements would be subject to different assumptions

12Internal note by H. M. O’Keeffe, SNO+-doc-484, version 1.
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and potentially leading to a misinterpretation.

As α–particle source, intrinsic α–particle backgrounds are used, resulting from

dissolved 222Rn gas. 222Rn itself emits α–particles with 5.49 MeV, producing 218Po which

majorily also decays under the emission of an α–particle. The 218Po α–particle has an

energy of 6.00 MeV. The third kind of α–particles, identified within the bucket source data,

are α–particles with 7.69 MeV energy from decaying 214Po, a daughter nuclide further

down the natural decay chain (see the full 238U chain in Fig. A.1).

The mean α–particle light yield Ncorr are measured in NHits, yielding

(246.4 ± 2.2) NHits, (284.2 ± 2.1) NHits and (422.2 ± 2.6) NHits for 222Rn, 218Po

and 214Po, respectively. These values are in the original internal note13 translated into

electron–equivalent energy, dividing it by m = 483 Nhits/MeV. The resulting Birks’

parameter is kB = (0.0079 ± 0.0004) cm/MeV. To compare Birks’ parameter with

the other two experiments, however, the value including the Cherenkov component

m = (489 ± 3) NHits/MeV needs to be used, as aforementioned, and the intercept a

has to be taken into account to yield the same boundary conditions for the analysis as

in the other two experiments: In the neutron beam and Sm–experiment, no exclusive

measurement of the electron non–linearity was possible, which is needed to disentangle the

physical intercept from a systematic bias, and E0 = 0 keV was assumed. Not subtracting

a in case of the bucket source experiment would imply instead E0 = 58 keV, considering

the total electron light yield from scintillation and Cherenkov light.

Within the present work, the bucket source α–particle data was re–evaluated, inserting

m = (489±3) NHits/MeV and a = (−28.6±8.5) NHits in Eq. 6.27, as well as the measured

light yield Ncorr, resulting in the α–particle light yield in electron–equivalent energy. With

these values a new fit, using minuit and the stopping power of LAB with 2 g/l PPO calcu-

lated with srim (see Fig. 6.31a), is performed, resulting in kB = (0.0072±0.0003) cm/MeV.

The difference to the previously determined Birks’ parameter underlines the importance

of the knowledge about the assumptions made concerning the electron response, before

quenching parameters can be interpreted. Along with the kB value, it is necessary to

quote, whether the ion light yield is measured relative to the electron scintillation light

yield or to the total electron light yield as well as the value of E0 assumed or measured.

6.8.3 Comparison of the results from the three alpha quenching experi-

ments

The data points measured with the three presented experiments and scaled to the same

light yield scale are shown in Fig. 6.43. The results from both LAB samples, LAB1 and

LAB3, used for the neutron beam experiment are compared to the other two experiments

individually. Additionally shown are the light response functions, following Birks’ law

13Internal note by H. S. Wan Chan Tseung, SNO+-doc-905, version 1.
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(a) Neutron beam data, using LAB + 2 g/l PPO + 15 mg/l bis–MSB.
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(b) Neutron beam data, using LAB + 3 g/l PPO + 15 mg/l bis–MSB.

Figure 6.43: Light yield L of α–particles in electron–equivalent energy over kinetic energy E. Shown are

data points from two different neutron beam measurements in (a) and (b), as indicated in the subcaptions.

Furthermore shown are the data points, extracted from bucket source data, as well as one data point from

an intrinsic 147Sm source within the Sm–experiment. Also shown is Birks’ law Eq. 2.11, once fitted to beam

data and once to bucket data, as well as Birks’ law, using the Birks parameter kB from the fit to neutron

beam data, but together with the stopping power of Sm–loaded LAB (see text).
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Eq. 2.11 with kB as only quenching parameter. The fit of the light response function to

the neutron beam data includes all known systematic uncertainties as nuisance parameters

(see Sec. 6.6). The fit to the bucket source data is performed within this work with

kB as only free parameter. No fit is performed to the single 147Sm data point. In this

case it is instead verified, whether the Birks parameter kB = (0.0076 ± 0.0003) cm/MeV

(kB = (0.0071 ± 0.0003) cm/MeV), determined for LAB1 (LAB3), can properly model

the Sm–loaded LAB light yield, using the stopping power calculated for the Sm–loaded

scintillator (see Fig. 6.39).

In both figures, Fig. 6.43a and 6.43b, the α–particle light response function for

Sm–loaded LAB, calculated with the LAB1 or LAB3 kB value, is in good agreement with

the light yield at 2.233 MeV α–particle energy measured in the Sm–experiment. Also

noticeable is, that the response functions of Sm–loaded and the unloaded LAB1 (LAB3)

differ, although the same Birks parameter was applied. This results from the different

stopping powers of the two scintillators, as demonstrated in Fig. 6.39.

The neutron beam data using LAB + 3 g/l PPO + 15 mg/l bis–MSB is in excellent

agreement with the bucket source data, using raw LAB + 2 g/l PPO (see Fig. 6.43b) and also

the fitted light output functions agree remarkably well. Also the neutron beam data using

LAB + 2 g/l PPO + 15 mg/l bis–MSB agrees with the bucket source data within their 1σ

uncertainties (see Fig. 6.43a). The fitted light output functions are not overlapping in this

case. However, the corresponding kB values agree with kB = (0.0076 ± 0.0003) cm/MeV,

from the neutron beam experiment, and kB = (0.0072± 0.0003) cm/MeV, from the bucket

source experiment, within 1σ and thus the light output functions within their 1σ error band.

To conclude, all four measurements of the light yield caused by intrinsic α–particles in

LAB, taken with three different experiments, but evaluated under the same assumptions

concerning the electron energy scale, yield comparable Birks’ parameters or can be modeled

with the same Birks’ parameter, if an individual fit is not reasonable. This is the case in

the Sm–experiment, from which only one data point can be extracted.

6.9 Comparison between the proton and alpha quenching

parameter results

A further longstanding question is, whether Birks’ constant is the same for different ions

in the same scintillator or whether it varies. This issue is already addressed in the original

work by J. B. Birks [11], where the Birks’ parameter describing the alpha response in

anthracene crystals cannot properly reproduce the proton response in the same scintillator

(see also Sec. 2.6.3). Also measurements using organic liquids revealed different kB values

for different particles in the same scintillator, as for instance in [242].
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Figure 6.44: Measured Birks’ parameters kB, parameterizing proton (orange) and alpha (green) quenching

in the same LAB based scintillator. The values are taken from Tab. 6.10 and 6.11 with C = 0 cm2/MeV2.

The detailed scintillator descriptions are given in Tab. 6.1.

The presented work provides ideal conditions to test this hypothesis, since the

proton and alpha quenching data was taken simultaneously with the same detector, filling

and DAQ system and was analyzed using the same method and assumptions. Neither

temperature changes, nor a different amount of impurities like oxygen, nor different aging

are subject to the measurement of one sample. Furthermore, protons and α–particles are

both created inside the scintillator volume, avoiding surface effects.

For comparability with publications, the comparison of proton and alpha quenching

parameters is also here reduced to kB, determined in the one–parameter fit. All respective

values are presented in Fig. 6.44. While the presented results all agree for the same particle

type measured with different scintillators based on the same solvent, the kB values for

protons and α–particles in the same sample deviate by about 5σ. The two particle types

cannot be described by the same Birks parameter.

In [249], an example is given of two measurements of PC scintillator with 1.5 g/L

PPO, one for proton [250] and one for alpha [251] quenching, in which the resulting Birks

parameters kB in a one–parameter fit [249] excellently agree. However, in this case,

the α–particle measurement was taken in a small laboratory measurement of equivalent

size as the one presented here and the proton measurement was done with the Borexino

detector, a multi–tonne detector. Thus, the measurement conditions were very different.

Furthermore, information is missing about the details of the analysis, relevant to judge

the comparability of the two measurements (as discussed in Sec. 6.8.3). In [242] instead,

the same detector was used for both, alpha and proton quenching measurement using

NE213. The results are kBproton = 0.0091 g/cm2MeV and kBalpha = 0.0051 g/cm2MeV

in a one–parameter fit (the uncertainties are not provided in [242]). In this case, the
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quenching parameters do not agree for different charged particles in the same scintillator.

These contradictory results motivate further investigations, using a larger set of ions.

Therefore, an experiment with a very low detector threshold and high ion energies is

mandatory, which could be realized at an accelerator facility.

6.10 Summary and outlook

In this chapter, the measurements of proton and α–particle light responses in various

LAB and wsLAB scintillators are presented as well as the resulting ionization quench-

ing parameters kB and C, using the extended Birks’ law Eq. 2.12 for the analytical

description. The agreements between the quenching parameters for the same particle in

the different LAB based scintillators, all measured with the same detector and analyzed

identically, confirm that ionization quenching is a primary process and its strength

defined by the solvent, not the solutes. However, even if the solutes do not influence

the ionization quenching processes itself, the primary solute can have an impact on

the electron light scale, and thus the resulting quenching parameters, depending on the

solute’s re–absorption efficiency of Cherenkov light, as discussed in Sec. 6.7. Within

this work, all measurements are performed with the same detector and primary solute

and the direct comparison of the results is not affected. When it comes to comparisons

with other experiments, however, the electron scale used for the relative ion response

measurements has to be as similar as possible. The values of kB and C are naturally

sensitive to whether only scintillation light from electrons or scintillation plus Cherenkov

light are considered, since the electron light yield is used for calibration, as discussed

in Sec. 6.8.3. Consequently, also the amount of observed Cherenkov light has an im-

pact. This quantity is influenced by the detector’s wavelength sensitivity, as well as

potentially its size (see Sec. 6.7). The influence of the size of the scintillator volume

on the observed electron response function, and thus the quenching parameters, is not

known yet. This dependency can be well–investigated in a MC study in a first step.

Depending on the results, an experiment which enables the variation of the scintillator

volume without changing the DAQ system, place of the experiment and source of the

ionizing particles would be of high interest for large scale detectors like SNO+ in order

to reduce systematic uncertainties coming from externally measured quenching parameters.

Another aspect during calibration is the handling of the slight electron non–linearity

at low energies leading to a small energy offset E0. Neglecting the observed offset or

correcting the measurements for the entire offset yield two different assumptions. The

first attributes the entire offset to the electron non–linearity, not controlling a potential

non–physical systematic shift. The second assumes the electron response to be fully

linear. Until the non–linearity is quantified, the second approach is recommended, since

the assumption made yields a fixed physical parameter E0 = 0 MeV, while in the first
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approach the effective size of E0 is unknown and can vary. The influence of the Cherenkov

light on the observed quenching parameters could be measured in a future study, using

differently efficient UV filters, for instance. Also this experiment is very valuable for the

transfer of results from one experiment to another.

To conclude, the quenching parameter kB, and eventually C, determined for a specific

solvent is not universally valid for this solvent, but is related to the experimental set–up

and data analysis. Proper documentation, though, allows the adaption of the results to

the same boundary conditions necessary for a comparison or transfer of the results. The

successful transfer of the results from this work to the SNO+ detector was demonstrated

in this chapter for standard LAB. Ionization quenching in water–surfactant–LAB, with

and without Te content, has never been measured before this work and the presented

measurements form the basis of the radioactive background rejection techniques for the

0νββ decay search of 130Te in SNO+. They are mandatory for the achievement of a

successful measurement.

It is stated in [36] that the Birks’ parameter kB, often referred to as Birks’ constant,

should not be considered as a true constant of a specific material, since its value can vary

if the measurement conditions and analyses differ. All above observations support this

argument. The second assumption, addressed in [36], that the same quenching parameters

of a scintillator properly describe different ions in the otherwise identical detector, are

not confirmed within the presented work. The Birks’ parameter kB determined for

protons and α–particles under exactly the same measurement and analysis conditions and

using the identical scintillator deviate by about 5σ, as shown in Sec. 6.9. These results

are essential and strongly encourage the measurement of the quenching parameters of

heavier ions. It would be of great interest to determine, whether the dependency of Birks’

parameter on the ionizing particle could be, for instance, related to its mass. This way,

results from the easier to realize proton quenching measurements could be transferred to

e.g. the α–particle or deuterium light response.

Due to the form of Birks’ law Eq. 2.11 and 2.12, which correlates the parameters kB

and C with the stopping power dE/dx, identical quenching parameters do not necessarily

imply the same light response function L(E) and vice versa. This fact is demonstrated in

Fig. 6.43 in which the same Birks parameter is used for LAB and Sm–loaded LAB. The

resulting light response curves differ, since the respective stopping powers deviate due to

the high loading with Sm. It is thus not possible to compare the quenching strength of

two different scintillators by the mere comparison of the quenching parameters, unless

the stopping powers are known to be very similar. The quenching strength at a certain

particle energy is only conclusively described by the ratio of ion light yield to electron

light yield, also known as quenching factor.

A deep understanding of the scintillator light responses to different particles is crucial
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for the interpretation of signal and background in LS detectors. It is thus important, to

individually study the magnitude of different impacts, partly addressed above, to improve

ionization quenching experiments and to facilitate the transfer of the results. In the view

of the physics goals of SNO+, it is additionally recommended to test the variation of

the quenching parameters with high Te–loading, which is accompanied by a high water

and surfactant concentration. The samples used within this work were loaded with 0.3%

Te, the initial SNO+ concentration, which had no impact on the quenching parameters.

However, it is not excluded that high Te–water–surfactant loadings do have an impact. A

systematic study with increasing concentrations is thus strongly motivated.

A direct application from results of this chapter is presented in the next chapter, in

which the ν+p→ ν+p reaction is used to observe the spectral distribution of SN neutrinos.

Without the knowledge of the proton quenching parameter in the respective scintillator,

the reconstruction of the ν energy would not be possible.





Chapter 7

Sensitivity of LAB scintillator

detectors to supernova neutrinos

Core collapse supernovae (CCSNe) are an exceptional source of neutrinos, as described in

Sec. 3. Even from the ∼ 50 kpc distant SN 1987A, 24 events in total were observed, all

associated with inverse beta decay (IBD) events of ν̄e [42, 43, 44]. The observations are in

agreement with general model characteristics, like the total energy emitted in neutrinos

and the burst duration [252], and commenced the era of neutrino astronomy. The next

measurement of SN neutrinos is expected to shed light on the still not fully understood

explosion mechanism, depending on the event statistics and the sensitivity of the available

detection channels to the spectral shape of all incoming neutrino fluxes, where the
(−)

νµ’s

and
(−)

ντ ’s are typically summarized as νx. Massive underground high–purity liquid scintilla-

tor (LS) detectors, like SNO+, offer a rich sample of detection channels, low backgrounds

and a large amount of target particles and nuclei. They are thus promising detectors in

this quest. The aim of this chapter is the determination of the sensitivity of LAB based

scintillator detectors to the spectral shape of SN ν̄e and νx under the assumption that the

neutrino energy spectra are described by a quasi–thermal distribution. The LAB masses

considered are mLAB = 0.45 kt and mLAB = 16.80 kt in agreement with a realistic fiducial

volume (FV) of SNO+ and the proposed kilotonne–scale JUNO experiment, respectively.

The shape of the SN να (να = νe, ν̄e, νx) energy spectra is expected to approximate a

thermal spectrum (see Sec. 3.3) in the absence of neutrino flavor changing mechanisms. In

this case, the energy spectra are usually parameterized by the neutrino mean energy 〈Eα〉,
a shape parameter βα and the neutrino luminosity Lα or its time–integrated equivalent,

the neutrino total energy1 εα, following Eq. 3.15 and 3.22. At postbounce times t . 1 s,

the flavor changes are reduced to those induced by the well–known MSW effect in a

quasi–static environment (see Sec. 4.2.2). Though this is also a flavor changing mechanism,

it is well understood and moreover does not introduce pronounced spectral features in

1The total SN neutrino energy is typically given in units of foe, where foe stands for (ten to the power

of) fifty–one ergs and thus 1 foe = 1051 erg (see also Tab. A.1).
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this early time of the SN, as will be shown in Sec. 7.6, which cannot be reproduced by

the named parameterization. At later times a multitude of further effects interfere (see

Sec. 4.1), which are highly non–trivial and partly still lacking full understanding and

a consistent analytical treatment. Thus, sensitivity studies to the spectral parameters

aα = (〈Eα〉, βα, εα) are only meaningful at present for maximally the first second of

the burst. In this time span, half of all neutrinos are estimated to be emitted [253], an

information which is used in this work to approximate the normalization of the neutrino

fluence in the first second of a reference SN. Note that this approximation only affects the

statistics, not the shape of the spectrum. The reference SN will be introduced, amongst

others, in Sec. 7.1. The neutrino fluence, gained from the SN models of the Garching group

and introduced in Sec. 3.5.1, is only available for the first 500 ms after the core bounce.

However, figures 3.9–3.11 suggest a higher neutrino emission in the first 500 ms than in

the second, where the partitioning is not known quantitatively, an information also not

known for the reference SN. Thus, for the spectral sensitivity studies on the basis of the

reference SN, presented in Sec. 7.4 and 7.5, the full first second is used. Instead, the event

yield study in Sec 7.6, comparing amongst others the yields from different progenitors and

equations of state (EOSs) that were simulated by the Garching group, is based on the first

500 ms after the core bounce.

The intention of Sec. 7.1 is the determination of the event yields and of the visible

energy distributions of all detection channels in 1 kt of LAB based scintillator, using the

full reference SN neutrino fluence. Throughout the more generic discussion in Sec. 7.1 of

the available SN detection channels in LS, the entire reference SN fluence is applied for

the ease of comparison with publications like [92, 93]. Since both, the event yields and the

visible spectra, are modified if neutrino flavor changes occur, the results in this section

are only a benchmark, providing a general idea of the capabilities of kilotonne–scale LS

detectors. Of particular interest in the context of LS detectors is the shape of the νx
energy spectrum, which is as of today only accessible with this detector type and through

ν–p elastic scattering (ES) [92, 254]. A further promising channel is the IBD reaction,

which is exclusively sensitive to ν̄e’s, carries spectral information and can be tagged with

high efficiency. These two channels are used for the spectral sensitivity studies in this thesis.

A set of reaction channels, which is often not mentioned or if, only discussed rudimen-

tarily [93, 254], are inclusive 12C transitions after neutrino excitation with a free nucleon

in the final state. Since these knockout protons and neutrons are a potential background

to the detection of ν–p ES and IBD events, respectively, and since the expected visible

spectra of the individual inclusive reactions are not existent in publications, also these

channels are discussed in more detail within Sec. 7.1.

Backgrounds in general to the two detection channels of interest in this work, ν–p ES

and IBD, are described in Sec. 7.2. This section shows that backgrounds not induced

by the SN itself are negligible for the IBD channel, while they have to be well–measured
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for the ν–p ES channel and thoroughly subtracted in the event of a real SN. It will be

demonstrated that, despite the high neutrino flux during a SN, the backgrounds expected

for SNO+ partly exceed the ν–p ES signal. Since the main physics goal of large–scale

LS detectors like SNO+ is usually not the observation of SN neutrinos, also the energy

ROI of the main goal might be different from the one for SN ν–p ES and thus the focus

of background measurements. This section is aimed to highlight the energy region, which

is the most important in terms of ν–p ES backgrounds and which needs background

measurement with high precision. Besides non–SN backgrounds, backgrounds induced by

SN neutrinos are discussed in this section.

The reconstruction of the incoming SN neutrino spectra from visible ν–p ES and

IBD event spectra is described in Sec. 7.3. To these spectra, the parametric description

mentioned above is fitted in order to determine the spectral sensitivities. The concept of

the fit is optimized for each of the two detection channels individually and explained within

Sec. 7.4 for the IBD channel and within Sec. 7.5 for the ν–p ES channel. The fit results

yielding the spectral ν̄e and νx sensitivity of SNO+ and JUNO sized detectors are also

presented in Sec. 7.4 and 7.5, respectively. Section 7.5 additionally discusses the influence

of the uncertainty of the quenching parameter kB, as determined within this work, on

the νx sensitivity. All results are related to the reference SN and the corresponding event

yield.

Section 7.6 presents how the event yield varies with varying SN models, as simulated

by the Garching group, and neglecting or including the MSW effect. It also shows the

small influence of the MSW effect on the neutrino energy spectrum in this early phase of

the SN. The findings from this section are compared to the reference SN, which enables a

generalization of the results from the aν̄e and aνx sensitivity studies in Sec. 7.4 and 7.5.

This chapter works out the potentials and hurdles of a spectral SN neutrino IBD and

ν–p ES analysis, which are resumed in Sec. 7.7. These measurements are highly interesting

in order to test fundamental SN hypotheses like the equipartitioning of the progenitor’s

binding energy, emitted in neutrinos, amongst all neutrino flavors and types. Tests like

this are only possible, if all three SN flux components can be measured individually.

The present work shows the potentials of SNO+ and JUNO to constrain the aν̄e and

aνx parameter spaces. Sensitivity studies to aνe are beyond the scope of this work, but

motivated in Sec. 7.7, together with further outlooks.

Throughout the entire chapter, a resolution of the visible energy Evis of

σEvis = 6%/
√
Evis(MeV) is assumed. This resolution is slightly better than the one of

the KamLAND detector [255] and in agreement with expectations for SNO+. Furthermore

a trigger threshold of 200 keV is used for the sensitivity studies in Sec 7.4 and 7.5. This

threshold is motivated by a strongly increased background rate below this value, as will

be discussed in Sec. 7.2.2. This trigger threshold is above the energy where the trigger
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efficiency reaches about 100%. The Borexino2 experiment, which is similar to SNO+, re-

ports a trigger efficiency of effectively 100% above about 80 keV, while it significantly drops

at lower energies, reaching nearly 0% efficiency at about 30 keV [193]. SNO+ expects a

comparable turn on curve in the pure LS phase. Thus, within this thesis the lowest trigger

threshold considered is at 100 keV in Sec. 7.6 in the context of ν–p ES event yield studies.

7.1 Interaction channels in liquid scintillator

Supernova neutrinos can undergo a multitude of different interactions in LS detectors,

which are all listed in Tab. 7.1. The advantage of this diversity is the sensitivity to different

parts of the total neutrino flux using the same detector. The disadvantage is the fact that

some channels form a background to each other. To develop an idea of the relative event

yields in 1 kt of LAB, the yields are calculated within this section for the full course of

the reference SN and without flavor changes. The SN is assumed to occur at a distance

of 10 kpc, as motivated in Sec. 3.4. This distance is used for all calculations performed

throughout this chapter and is considered to be known from, for instance, the detection of

the electro–magnetic radiation released in the SN event. The binding energy released in

the form of neutrinos is assumed to amount to 300 foe, which is equipartitioned amongst

all six flavors and types. The time–integrated neutrino flux of the reference SN follows

the parameterization Eq. 3.29, which assumes the same constant shape parameter β = 3

for all flavors and is deduced from Eq. 3.26. The mean energies chosen are 12 MeV for

νe, 15 MeV for ν̄e and 18 MeV for νx, following [92]. These are generic mean SN neutrino

energies [144], consistent with the findings from SN 1987A [253]. These spectral parameter

values are summarized in Tab. 7.2 and the resulting νe, ν̄e and νx fluences are shown in

Fig. 7.1. The event yields derived from the entire reference SN per LS detection channel

are added to Tab. 7.1.

All neutrino interaction total cross sections used within this work are shown in Fig. 7.2.

Comparing Fig. 7.1 and Fig. 7.2 reveals the dominance of the IBD and ν–p ES cross sections

in the neutrino energy region of interest. The total and differential cross sections of the

individual detection channels are described within this section. They are used to determine

the visible energy distributions, exemplarily shown in the following for the reference SN

and each channel. The integral over each visible energy distribution yields the respective

total event yield listed in Tab. 7.1.

7.1.1 Neutrino–proton elastic scattering (ν–p ES)

Elastic scattering on protons, ν + p → ν + p, is possible for all (anti–)neutrinos and the

resulting proton recoil spectrum provides spectral information about the incoming neutrino

flux. This instance makes this NC channel unique. Moreover, though the total cross section

for elastic scattering on protons is about a factor of three smaller than the one for IBD (see

2Borexino is the Italian diminutive of BOREX, which stands for BORon solar neutrino EXperiment.
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Table 7.1: Supernova neutrino interaction channels in liquid scintillator. The target densities assume

LAB only as solvent. The event rates assume 1 kt of LAB and an incoming neutrino fluence as shown in

Fig. 7.1 from the reference SN at 10 kpc distance. No flavor changing mechanisms are considered. The total

cross section of each channel is shown in Fig. 7.2. The uncertainties on the event rates only comprises the

cross section uncertainties, which are given in the text. †This rate assumes a trigger threshold of 200 keV

visible energy. ∗The Standard Model cross section uncertainty is < 1%.

Nr. Current Process Target density Events

[1022/cm3] [1/kt]

1 NC ν + p→ ν ′ + p 6.275 550.1± 15.4

(152.4± 4.3)†

2 CC ν̄e + p→ n+ e+ 6.275 249.6± 1.3

3 CC ν̄e + 12C→ 12Bg.s. + e+ 3.763 9.0± 0.9

4 CC νe + 12C→ 12Ng.s. + e− 3.763 3.5± 0.4

5 NC ν + 12C→ 12C∗(15.11 MeV) + ν ′ 3.8 56.2± 11.2

6 CC νe + 12C→ 11C + p+ e− 3.763 0.2± 0.1

7 CC ν̄e + 12C→ 11B + n+ e+ 3.763 0.2± 0.1

8 NC ν + 12C→ 11B + p+ ν ′ 3.763 2.1± 0.6

9 NC ν + 12C→ 11C + n+ ν ′ 3.763 0.6± 0.2

10 NC/CC νe + e− → ν ′e + e− 29.08 8.2∗

11 NC ν̄e + e− → ν̄ ′e + e− 29.08 3.5∗

12 NC νx + e− → ν ′x + e− 29.08 2.7∗

13 NC ν̄x + e− → ν̄ ′x + e− 29.08 2.4∗

Total 888.3± 30.2

(490.6± 19.1)†
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Table 7.2: Spectral parameters of the reference SN neutrino fluence, where 〈E〉 mean energy, β the shape

parameter and ε the total neutrino energy, which is equivalent to the time–integrated luminosity. ε is once

given for the full duration of the SN and once for the first second, following the estimate of [253] that this

amounts to half the number of neutrinos. Equipartitioning amongst all flavors is supposed. These values

are following the assumptions of [92]. The value of ενx is the sum from all four contributing neutrino types.

Flavor 〈Eα〉 βα εα εα

[MeV] [foe] [foe]

first second full SN

νe 12.0 3.0 25.0 50.0

ν̄e 15.0 3.0 25.0 50.0

Σνx 18.0 3.0 100.0 200.0
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Figure 7.1: Reference SN neu-

trino fluence dN/dEν as func-

tion of neutrino energy Eν , fol-

lowing the analytical description

Eq. 3.29. A distance of 10 kpc

from the SN and a total neutrino

energy of 300 foe are assumed.

The individual spectral parame-

ters are given in Tab. 7.2.

Fig. 7.2) this channel reaches the highest total event yield, since all six neutrinos take part

and no kinematic threshold energy has to be overcome. The cross section is predicted by

the standard model and the full formula can be found in e.g. [256, 257]. At SN neutrino

energies, the calculations strongly simplify and the differential cross section as function of

the incoming neutrino energy Eν and proton recoil energy Ep reduces to

dσ

dEp
(Eν) =

G2
Fmp

2πE2
ν

[
(cV ± cA)2E2

ν + (cV ∓ cA)2(Eν − Ep)2 − (c2
V − c2

A)mpEp
]
, (7.1)

where the upper sign of cA refers to neutrinos, the lower to anti–neutrinos [254]. cA and cV
are the axial–vector and vector coupling constants between the exchanged Z0 boson and

the proton with

cV =
1− 4sin2θW

2
(7.2)
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Figure 7.2: Total cross sections σtot of neutrino interactions in liquid scintillator (see Tab. 7.1). Eν is the

neutrino energy. Shown are in (a) inverse beta decay (IBD), ν–e and ν–p elastic scattering and exclusive
12C transitions. In (b) the total cross sections for inclusive 12C transitions are shown, where the nucleon

added to the legend denotes the knocked out nucleon. The νe–induced p knockout (violet dotted line) is

dominated by Eq. 7.24, the ν̄e–induced n knockout (orange dashed line) by Eq. 7.25 and the ν–induced p

(blue dashed dotted line) and n (red dashed dotted dotted line) knockout by Eq. 7.26 and 7.27.
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and

cA =
gA(0) · (1 + η)

2
. (7.3)

θW is the effective weak mixing angle with sin2θW = 0.23155 and gA(0) = 1.267 is the axial

proton form–factor [152]. The axial current further depends on the proton strangeness

η, which is the strange–quark contribution to gA(0) [258]. η is related to the often used

strangeness contribution to the proton spin ∆s via η ≡ −∆s/gA(0). The currently best

available measurement yields η = 0.12 ± 0.07 [257], in agreement with the theoretical

prediction [259, 260, 261].

The total cross section, shown in Fig. 7.2, is obtained by integrating Eq. 7.1

σtot(Eν) =

∫ Emax
p

0

dσ

dEp
(Eν)dEp, (7.4)

where

Emax
p =

2E2
ν

mp + 2Eν
(7.5)

is the maximum proton recoil energy, reached when the neutrino is scattered backwards.

The uncertainty on the total cross section due to the uncertainty of η is ∼ 13%. If the

proton strangeness is neglected, i.e. η = 0, the total cross section is about 25% lower

than the one presented in Fig. 7.2 over the energy region shown in that figure [258]. The

event yield thus strongly depends on the assumptions made on η. The influence of η

on the ν–p ES event spectrum was investigated in preparation of the sensitivity studies

presented in Sec. 7.5, where only the scale was found to significantly vary with η, not the

shape: At the relevant kinetic particle energies, Eq. 7.1 approximates a linear function of

Ep because of (Eν − Ep)2 ≈ E2
ν . In this approximation, η enters the intercept and the

slope of the linear function, where the slope is ∝ E−2
ν and dominated by this quantity.

The intercept, instead, has no varying quantity and is sensitive to changes in η. A change

in the intercept, but not the slope, results only in an increase or decrease of the event

yield. The shape remains unchanged.

An important aspect to be considered for ν–p ES is that the visible energy Evis from

the recoiling protons is strongly quenched with respect to the kinetic proton energy Ep (see

Sec. 6). The visible spectrum is thus determined as per

dN

dEvis
(Eν) = Np

dEp
dEvis

∫ ∞
Emin
ν

dσ

dEp
(Eν)

dN

dEν
dEν , (7.6)

where the true proton recoil spectrum is multiplied with a quenching function dEp/dEvis.

In this work, the quenching function follows Birks’ parameterization Eq. 2.12 with

kB = (0.0096± 0.0003) cm/MeV and C ≡ 0 m2/MeV2 (see Tab. 6.10, LAB1). Np is the

number of target protons (see Tab. 5.3) and the minimum required energy Emin
ν to reach a

distinct Ep is

Emin
ν =

Ep +
√
Ep(Ep + 2mp)

2
. (7.7)
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(b) Observed proton recoil spectrum.

Figure 7.3: True (a) and observed (b) proton recoil spectrum in LAB. The SN neutrino fluence is assumed

to follow Fig. 7.1. The observed proton spectrum takes ionization quenching with kB = 0.0096 cm/MeV

and an energy resolution of 6%/
√
Evis(MeV) into account, where the latter detector effect has no visible

impact in this case.

The Ep and Evis distributions of the reference SN neutrino spectrum, shown in Fig. 7.3,

demonstrate that most of the scattering events are shifted below ∼ 500 keV electron–

equivalent energy. However, below about 200 keV the background rate tremendously

increases, as will be discussed in Sec. 7.2, and the detector threshold is typically set

around that energy in order to keep the trigger and/or data rate reasonably low. As

a consequence, the detected event spectrum is only a small fraction of the total event

spectrum, in numbers ∼30%, assuming a threshold energy of Ethr = 200 keV (see Tab. 7.1).

Though detectors like SNO+ will be capable of instantaneously lowering the detector

threshold down to about 100 keV with the occurrence of a SN for a short time, the

backgrounds between this lower trigger threshold and the default trigger threshold are not

measured with the same statistical precision as the backgrounds above the default trigger

threshold.

7.1.2 Inverse beta decay (IBD)

The inverse beta decay reaction,

ν̄e + p→ n+ e+, (7.8)

has a comparatively high and theoretically clean cross section, a threshold of

Ethr =
(mn +me)

2 −m2
p

2mp
≈ 1.806 MeV (7.9)

and the visible energy is directly related to the incoming neutrino energy Eν̄e . The total

cross section shown in Fig. 7.2 follows the simple, but at SN neutrino energies to the

per–mille level accurate, approximation [262]

σtot(Eν̄e) = 10−43cm2 pe+ E
tot
e+ E

−0.07056+0.02018 lnEν̄e−0.001953 ln3Eν̄e
ν̄e , (7.10)
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Figure 7.4: Visible inverse

beta decay spectrum in LAB.

The incoming SN neutrino flu-

ence is assumed to follow Fig. 7.1.

The prompt signal is the ki-

netic and annihilation energy of

the positron, the delayed sig-

nals are the de–excitation γ–

rays after neutron capture on 1H

or 12C. An energy resolution of

6%/
√
Evis(MeV) is assumed.

where pe+ is the momentum of the positron and

Etot
e+ ≈ Eν̄e − (mn −mp) (7.11)

its total energy. The average neutron recoil energy is of O(10 keV) [263] and is neglected

in the evaluation of Etot
e+ . All energies in Eq. 7.10 are given in MeV. The full calculation of

the cross section, to which Eq. 7.10 is the approximation, also has an uncertainty, which

is < 0.4% up to 50 MeV, according to a conservative estimate in [262], which is used to

calculate the event yield uncertainty given in Tab. 7.1.

The energy Epvis, promptly visible in the detector, is the sum of the kinetic positron

energy Ee+ and its annihilation energy

Epvis = Ee+ + 2me = Eν − (mn −mp)−me + 2me, (7.12)

making use of Eq. 7.11. The neutrino energy is thus given by Eν ≈ Epvis + 0.782 MeV.

The prompt positron signal is followed by the (200–260)µs [263, 264] delayed capture of

the thermalized neutron on hydrogen, producing a characteristic 2.223 MeV de–excitation

γ–ray. More than 99% of the neutrons capture on 1H, while less than 1% capture on 12C

[263]. In the latter case, the de–excitation γ has an energy of 4.945 MeV. The prompt and

delayed visible energy spectra are shown in Fig. 7.4 assuming the reference SN neutrino

fluence.

The neutron typically travels around 50 cm in the LS before it is captured. Time

and space coincidence permit, together with energy cuts, an efficient tagging of IBD

events. Therefore, the delayed candidate events are selected by a cut on the delayed visible

energy Edvis. The prompt event has to have occurred within a time ∆t before the delayed

candidate event and within a spherical volume ∆V around the vertex of the delayed event.

The radius of ∆V is defined by the reconstructed distance ∆r between the two events.
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The KamLAND collaboration reaches with the conditions 2.04 MeV< Edvis <2.82 MeV,

0.5µs< ∆t < 660µs and ∆r < 1.6 m a total detection efficiency of 0.940± 0.006 [265].

This high tagging efficiency of IBD events is reached, as long as the event rate RIBD is

RIBD ≤
1

∆tmax∆Vmaxρ
, (7.13)

where ∆tmax and ∆Vmax are the maximum values of the trigger conditions and ρ is

the scintillator density. This inequality means that after a prompt–like signal occurred,

maximally one neutron capture candidate event meets the trigger conditions. Using

the maximum values of the given KamLAND time and space intervals for Eq. 7.13

and ρ = 0.86 g/cm3 for LAB based scintillator (see Tab. 6.2), the IBD event rate

has to be RIBD . 1.03 × 105 kt−1s−1. This rate is enormous and while the condition

Eq. 7.13 is easily fulfilled in reactor and geo neutrino experiments, a near–by SN

potentially exceeds this limit. This is for instance the case, if the SN is at . 350 pc,

extrapolating the IBD event yield of 249.6 kt−1 from the 10 kpc distant reference SN (see

Tab. 7.1) and assuming that half of all neutrinos are emitted within the first second,

as noted in the introduction. The CCSN candidate Betelgeuse, mentioned in Sec. 3.4,

is (197±45) pc away from Earth [96] and thus not fulfilling the inequality Eq. 7.13 anymore.

7.1.3 Neutrino–nucleus reactions on 12C

Organic scintillators are rich in 12C (see Tab. 5.3) and a large fraction of SN neutrinos

reaches high enough energies to decompose 12C via neutrino–nucleus reactions. In these

reactions, light elements up to N are produced, partially accompanied by the knockout of

at least one nucleon. The respective total cross sections for the production of the individual

isotopes and the release of nucleons from 12C are calculated in [266] in the context of nuclear

network calculations. For consistency, all relevant production rate calculations due to ν–12C

scattering in this chapter are based on this one reference. The processes considered for the

presented work are those that notably contribute to the visible event spectrum. These are

the exclusive transitions to the A = 12 isospin triplet (i.e. 12Ng.s.,
12Bg.s.,

12C∗15.11 MeV) and

the inclusive transitions to excited continuum states 12N∗, 12B∗ and 12C∗.
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Exclusive transitions

Neutrino–12C interactions with a considerably high total cross section are the two super-

allowed charged currents

νe + 12C→ 12Ng.s. + e− (7.14)

↓ τ = 15.9 ms
12Cg.s. + e+ + νe,

ν̄e + 12C→ 12Bg.s. + e+ (7.15)

↓ τ = 29.1 ms
12Cg.s. + e− + ν̄e,

followed by the β decay of the final state isotope, and the superallowed neutral current

ν + 12C→ 12C∗ (15.11 MeV) + ν ′ (7.16)

↓
12Cg.s. + γ,

followed by the emission of a 15.11 MeV de–excitation γ. The NC reaction does not

contribute to stellar nucleosynthesis, hence the cross section is not part of the network

calculations in [266]. The cross section shown in Fig. 7.2a is taken from [267, 268] and

known to an accuracy of about 20% [93]. The mono–energetic character of the γ leads to

an observable spectral feature in the visible sum energy spectrum, despite the high reaction

threshold. This channel, however, carries no neutrino flavor or spectral information.

The theoretical cross section of the charged current Eq. 7.14 from [266], shown in

Fig. 7.2a, is in very good agreement with measurements by KARMEN3 and LSND4

[269, 270, 271, 272]. The measurement uncertainties of the neutrino flux averaged

cross sections are ∼10% [271, 270], which is considered for the event yield calculation

as uncertainty for both CC interactions. A theoretical uncertainty is not published in [266].

The reactions Eq. 7.14 and 7.15 have a threshold energy

Ethr =

(
m12N/B +me

)2 −m2
12C

2m12C
(7.17)

of 17.86 MeV and 13.89 MeV, respectively. They are thus only sensitive to the high energy

fraction of the νe and ν̄e spectra in Fig. 7.1. The advantage of these reactions are the

short–living final state nuclei, which provoke a delayed signal, enabling a time and spatial

coincidence tag together with the prompt e∓ signal, as successfully performed in [270].

3KArlsruhe Rutherford Medium Energy Neutrino experiment.
4Liquid Scintillator Neutrino Detector.
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Figure 7.5: Visible energy spec-

tra of exclusive neutral current

(NC) and charged current (CC)

transitions of 12C in LAB. The

incoming SN neutrino fluence is

assumed to follow Fig. 7.1. The

resulting prompt and delayed sig-

nals are explained in the text

(Eq. 7.18–7.21). The NC signal

is downscaled by a factor 100 for

display purposes. An energy res-

olution of 6%/
√
Evis(MeV) is as-

sumed.

The visible energy distributions of the prompt and delayed signal from both interactions

are shown in Fig. 7.5 together with the NC reaction Eq. 7.16.

The visible prompt energy is

Epvis = Ee− (νe − 12C), (7.18)

Epvis = Ee+ + 2me (ν̄e − 12C), (7.19)

including the immediate (τ < 1 ns) annihilation of the positron after the ν̄e–
12C charged

current reaction. The kinetic energy Ee of the prompt e∓ is directly related to the incoming

neutrino energy Eν as per Ee = Eν −Ethr, since the recoil energy of the final state nucleus

is negligible. The visible energy of the delayed signal is

Edvis = Eβ+ + 2me (12N decay), (7.20)

Edvis = Eβ− (12B decay), (7.21)

including the pair annihilation of the β+ in the case of 12N decay. Eβ is the kinetic energy

of the emitted β±. The distribution of the kinetic energy follows

N(Eβ) = (1 + aEtot
β + b(Etot

β )2) pβ E
tot
β (Q− Eβ)2F (Z,Eβ), (7.22)

where Etot
β = Eβ + me is the total energy and pβ =

√
(Etot

β )2 −m2
e the mo-

mentum of the β particle. The shape correction factor a is measured to be

a(12N) = (−0.38± 0.09)× 10−2 MeV−1 and a(12B) = (0.71± 0.11)× 10−2 MeV−1 at b = 0

[273]. The Q–value of the 12N and 12B decays to 12Cg.s. are ∼ 17.338 MeV and

∼ 13.369 MeV [274], respectively, and the Fermi function F (Z,Eβ) is approximated by

F (Z,Eβ) ≈ 2πζ

(e2πζ − 1)
, (7.23)



170 Chapter 7. Sensitivity of LAB scintillator detectors to supernova neutrinos

where ζ = ∓αZEtot
β /pβ (− for β+, + for β−). In the latter equality, α is the fine structure

constant and Z = 6 the charge of the final state isotope. The use of the non–relativistic

Primakoff–Rosen approximation Eq. 7.23 was found to have a negligible effect on the results.

Since the lifetimes of the 12N and 12B decays differ, it is recommended to investigate

the efficiency of νe and ν̄e event identification by coincidence tagging with multi–kilotonne

targets as proposed for JUNO and RENO–50. An efficient event classification would render

an exclusive spectral shape measurement of νe possible, an opportunity that no further

channel in Tab. 7.1 provides. With this, a single detector, using LS, would be sensitive to

spectral information from all flux components: ν̄e, νx and νe. A strong enhancement of

the flavor sensitivity is achievable if electrons can be discriminated against positrons, as

suggested in [195]. However, these investigations are beyond the scope of this thesis and

only mentioned here as outlook.

Inclusive transitions

In the context of SN neutrino measurements with LS, not only the superallowed reactions

Eq. 7.14–7.16 are relevant, but also forbidden ν–induced interactions on 12C with free

nucleons in the final state due to inclusive transitions. Knockout protons and recoil protons,

induced by knockout neutrons, form a background to ν–p ES events. The thermalized

knockout neutrons furthermore result in IBD background events, since their capture leads

to a similar prompt–delayed signal coincidence as used for IBD identification. All CC and

NC nucleon production cross sections over the relevant neutrino energy range are shown

in Fig. 7.2b. The cross sections for neutron release in νe–
12C charged currents and proton

release in ν̄e–
12C charged currents are very small and the reaction thresholds considerably

high with respect to the expected neutrino energy range Fig. 7.1. These channels do not

notably contribute to the observed SN neutrino spectrum and thus not discussed here.

The ν–12C reactions predominantly contributing to the remaining four nucleon knockout

channels are the charged currents

∼ 89% νe−
12C, p : νe + 12C→ 12N∗ + e− (7.24)

↓
11C + p,

∼ 93% ν̄e−
12C, n : ν̄e + 12C→ 12B∗ + e+ (7.25)

↓
11B + n,
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and the neutral currents

∼ 92% ν−12C, p : ν + 12C→ 12C∗ + ν ′ (7.26)

↓
11B + p,

∼ 85% ν−12C, n : ν + 12C→ 12C∗ + ν ′ (7.27)

↓
11C + n.

The description of the nucleon knockout reactions in a two–step process, incorporating

nuclear excitation above the continuum threshold, follows [275]. Since the excited states

are above the separation energy of a nucleon, the nucleus decays by particle emission into

a residual nucleus. It is assumed that the cross sections in Fig. 7.2b entirely apply to the

above reactions, a good approximation in view of the smallness of the event yields (see

Tab. 7.1) and the expected uncertainty of the cross sections. No theoretical uncertainties

are quoted in [266], but a comparison of the results for Eq. 7.26, for instance, with the

calculations in [276] reveal a difference of about 30% [93]. An uncertainty of at least this

order is thus likely and used to estimate the event yield uncertainties given in Tab. 7.1.

The differential cross sections, and hence the energy distribution of the outgoing nucleons

and leptons, are not available in [266]. For this reason, the approximated analytical shape

of the differential cross section

dσ

dEN
∝
√
EN

(√
s−mN −mI − EN

)2
, (7.28)

deduced from basic phase space considerations, is adopted from [93]. In this expression,

EN is the kinetic energy of the outgoing nucleon and
√
s is the center of mass energy with

s = m2
12C + 2m12CEν . The masses m12C, mN and mI are the masses of the initial state

12C nucleus and the final state nucleon N and isotope I, respectively. The accuracy of the

spectral shape is sufficient, again with respect to the smallness of the event statistics. The

outgoing nucleon energy spectrum follows with Eq. 7.28 from

dN

dEN
(Eν) = N12C

∫ ∞
Emin
ν

A
dσ

dEN
(Eν)

dN

dEν
dEν , (7.29)

where N12C is the number of target 12C nuclei (see Tab. 5.3). A is a normalization factor,

adapting the integral of Eq. 7.28 over the nucleon energy, taken from [93], to the total cross

section, calculated in [266] and shown in Fig. 7.2b. The minimal incoming neutrino energy

Emin
ν necessary to yield EN is

Emin
ν =

(√
m2
I + 2mNEN + E2

N +mL +mN + EN

)2

−m2
12C

2m12C
, (7.30)
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Figure 7.6: Time–integrated ki-

netic energy EN distribution of

knockout nucleons in LAB pro-

duced by SN neutrinos. The neu-

trino fluence is assumed to follow

Fig. 7.1. The individual reactions

are explicitly given in Eq. 7.24–

7.27.

which follows from kinematics with the outgoing lepton at rest. The resulting nucleon

energy distributions of all four reactions are shown in Fig. 7.6. Reaction Eq. 7.26 has

the highest event rate since it has with Ethr = 15.46 MeV the lowest energy threshold.

The threshold energies of reactions Eq. 7.24, 7.25 and 7.27 are 17.95 MeV, 17.26 MeV and

18.73 MeV, respectively. All thresholds are calculated as per

Ethr =
(mI +mN +mL)2 −m2

12C

2m12C
, (7.31)

where mL is the mass of the final state lepton L.

The kinetic lepton energy EL is given by EL = Eν − Ethr − EN , since the outgoing

nucleon and lepton share the initial neutrino energy that exceeds the threshold energy.

With the knowledge of EL and EN , the visible energy is determined for the individual

inclusive transitions, where a prompt signal follows all transitions and a delayed signal

follows only the neutron knockout reactions. The visible prompt energy Epvis is

Epvis = Ee− + Ep,vis (νe−
12C, p), (7.32)

Epvis = Ee+ + 2me + En,vis (ν̄e−
12C, n), (7.33)

Epvis = Ep,vis (ν−12C, p), (7.34)

Epvis = En,vis (ν−12C, n), (7.35)

including the positron annihilation energy in Eq. 7.33 after the ν̄e–
12C charged current

reaction. The visible proton energy Ep,vis = L(EN ) is the quenched nucleon energy EN ,

using Birks’ law Eq. 2.12 and the quenching parameters mentioned in Sec. 7.1.1, measured

within this work. In the case of inclusive 12C transitions, also the knockout neutrons

produce a prompt signal due to the high kinetic energies reached (see Fig. 7.6). At these

energies, neutrons mainly deposit their energy in the scintillator by n–p ES and inelastic

scattering on 12C, where n–p ES dominates. The visible neutron energy En,vis is thus
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Figure 7.7: Visible energy spec-

tra of inclusive transitions of 12C

in LAB induced by SN neutrinos.

The neutrino fluence is assumed

to follow Fig. 7.1. The resulting

prompt and delayed signals are

explained in Eq. 7.32–7.35 and in

the text. An energy resolution of

6%/
√
Evis(MeV) is assumed.

primarily composed of the sum of quenched proton recoil energies and, in the case of 12C

excitation, the respective de–excitation energy. Also contributions of α–particles from
12C(n, α)9Be reactions were considered in this step, but the reaction rate was found to

be too low and the highly quenched light yield too small to change the resulting visible

energy. Finally, the prompt signals of the neutron knockout reactions Eq. 7.25 and 7.27

are, as in the case of the IBD of free protons (see Sec. 7.1.2), followed by the delayed

capture of the thermalized neutron on 1H or 12C, releasing a 2.223 MeV or 4.945 MeV

de–excitation γ–ray, respectively. The prompt and delayed visible energy spectra of the

four transitions Eq. 7.24–7.27 are shown in Fig. 7.7 assuming the reference SN neutrino

fluence in Fig. 7.1.

The total SN neutrino event yields of all relevant inclusive 12C transitions together

with the complete illustration of the respective visible spectra have not been publicly

available so far, but are important to estimate the relevance of these transitions as ν–p ES

and IBD backgrounds. The final state nuclei, 11B and 11C, do not enable time coincidence

tagging, since 11B is stable and 11C has a lifetime of τ = 29.42 min. The inclusive 12C

reactions can thus not be reliably identified and rejected. Their contribution to the

background spectrum will be discussed in Sec. 7.2.

7.1.4 Neutrino–electron elastic scattering

Elastic scattering on electrons is possible for all neutrinos and neutrino energies and the

cross sections of the purely leptonic process are known to better than 1% within the SM.

The total cross sections shown in Fig. 7.2a follow

σtot(Eν) =
G2
F 2meEν
π

[
c1 ·

(
1

2
± sin2θW

)2

+ c2 · sin4θW

]
, (7.36)
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Figure 7.8: Visible energy spec-

tra of ν–e elastic scattering in

LAB induced by SN neutrinos.

The neutrino fluence is assumed

to follow Fig. 7.1 and an energy

resolution of 6%/
√
Evis(MeV) is

assumed. Since ν–e elastic scat-

tering events, induced by neutri-

nos of different flavors and types,

are indistinguishable, only the

sum spectrum is observed.

where the ”+” sign is for electron flavor and the ”−” sign for muon and tau flavor neutrinos.

The factors c1,2 depend on the neutrino type and are c
(ν)
1 = c

(ν̄)
2 = 1 and c

(ν̄)
1 = c

(ν)
2 = 1/3.

The total cross section is small compared to all other relevant cross sections (see Fig. 7.2).

The visible signal is induced by the scattered electron and the visible energy distribution,

shown in Fig. 7.8, determined by the differential cross section

dσ

dEe
(Eν , Ee) =

G2
F 2me

π

[
g2

1 + g2
2

(
1− Ee

Eν

)2

− g1g2
meEe
E2
ν

]
. (7.37)

The dependence on θW is expressed by the quantities g1 and g2, which are correlated with

the neutrino flavor and type: g
(νe)
1 = g

(ν̄e)
2 = 1/2 + sin2θW , g

(ν)
2 = g

(ν̄)
1 = sin2θW and

g
(νx)
1 = g

(ν̄x)
2 = −1/2 + sin2θW .

Neither for ν–e ES nor for ν–p ES coincidences exist to permit special tagging meth-

ods. Discrimination between these two channels is only possible through pulse–shape dis-

crimination (PSD), though the efficiency is low for LAB based scintillators, as discussed in

Sec. 6.5.1. Without PSD, this channel is an irreduciable background to ν–p ES.

7.1.5 Summary

A summary of all visible spectra from the individual SN neutrino interaction channels in

LAB based scintillator is shown in Fig. 7.9. As above, the reference SN Fig. 7.1 at 10 kpc

distance is used. Figure 7.9 demonstrates the dominance of ν–p ES at low visible energies

and of IBD at high visible energies. In case of the exclusive and inclusive 12C transitions

only the respective sum spectra are shown.
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The events are induced by SN neutrinos with a fluence following Fig. 7.1. LAB as scintillator

and an energy resolution of 6%/
√
Evis(MeV) are assumed. Details about the individual spectra

are shown in Fig. 7.3–7.8.

7.2 Backgrounds

A standard galactic CCSN leads for a short time to a relatively high neutrino event rate,

reaching O(100 kt−1s−1) in the case of the IBD and ν–p ES reactions (see Tab. 7.1).

Most of the usual background sources to the observation of typical low energy neutrinos,

like solar, atmospheric, reactor and geo neutrinos, have several orders of magnitudes

lower rates and are fully negligible. At SN event rates, the IBD detection channel is

virtually background free, also including the backgrounds induced by the SN itself, as

will be outlined in Sec. 7.2.1. Different from the case of IBD, not all non–SN back-

grounds are negligible for ν–p ES. Subsection 7.2.2 will underline the importance of

a well–measured background spectrum in the ROI for ν–p ES, which may be different

from the well–studied ROI of the main physics goal of a detector like SNO+, which

is not an exclusive SN detector. If the background is indeed measured with vanishing

statistical uncertainty in the long–term phases without a SN, background subtraction is ex-

pected to be highly efficient, which is supposed for the ν–p ES sensitivity studies in Sec 7.5.

7.2.1 Backgrounds to IBD events

Two types of events generally contribute to the background of IBD events: true and mim-

icked IBD events. Both types have contributions from non–SN and SN events. The highest

non–SN IBD rate in underground LS detectors is induced by reactor plus geo neutrinos,
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reaching O(10−5) kt−1s−1 [263, 264, 277]. This rate by itself is already seven orders of

magnitude lower than the SN IBD event rate and fully negligible. All backgrounds cor-

responding to reactor and geo neutrino measurements in underground LS detectors have

comparable or lower rates [263, 264, 277] and their sources are not further discussed here.

Only random coincidence events are shortly mentioned, since the energy range for the co-

incidence tag of SN ν̄e differs from the one for reactor and geo ν̄e. Besides this, the next

paragraphs hence only cover SN induced backgrounds to IBD.

True IBD events

The SN ν̄e–induced inclusive 12C transition Eq. 7.25 (Nr. 7 in Tab. 7.1) is an IBD reaction.

Since the final state neutron gains a finite kinetic energy after 12B∗ excitation in this case,

the incoming neutrino energy Eν is not unambiguously designated to a certain positron

energy Ee+ as in the case of the IBD of a free proton (see Eq. 7.12). Moreover, the fast

knockout neutron creates an additional prompt signal via scattering on protons and C

atoms, adding up to the visible positron signal. Due to an undetermined combination of

positron signal and quenched proton recoil signal, also no distinct promptly visible energy

Epvis can be assigned to Eν . The event signatures, on the other hand, are identical in the

neutron knockout reaction Eq. 7.25 and in the IBD Eq. 7.8. Reaction Eq. 7.25 thus is a

background source. Following Tab. 7.1, the event rate of this reaction from a standard

CCSN is R ≈ 0.1 kt−1s−1 in the first second of the burst.

Mimicked IBD events

Mimicked IBD events arise from scattering of SN ν on 12C and from random coincidences

of uncorrelated events. In the inclusive 12C transition Eq. 7.27 (Nr. 9 in Tab. 7.1) a fast

neutron is released, which produces a prompt signal via proton or 12C scattering and

the delayed neutron capture signal, when the neutron is thermalized. The expected rate

from a standard CCSN is R ≈ 0.3 kt−1s−1 in the first second of the burst, under the con-

ditions set for Tab. 7.1. This background is the largest background to SN ν̄e–induced IBDs.

The rate of uncorrelated events that coincidentally fulfill the IBD coincidence trigger

conditions, i.e. of random coincidence events, depends on the event rates and on the trigger

conditions itself. The observed coincidence rate from non–SN events is < 10−6 kt−1s−1 in

the large–scale LS detectors Borexino [277] and KamLAND [263]. The energy window

considered in this case is optimized for geo and reactor ν̄e tagging and is much smaller

than for SN ν̄e’s, since the maximal visible energy is below about 10 MeV [263, 277] in the

first case, while it reaches several tens of MeV (see Fig. 7.4) in the second case. However,

since above about 5 MeV the contribution from radioactive contaminations significantly

drops, the coincidence rate due to non–SN events is not expected to increase to an extend

relevant for SN neutrino observation.
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spectra of signal and background

events in LAB induced by SN

neutrinos and integrated over

the first second of the burst.

The signal is formed by inverse

beta decays (IBD) and the back-

ground by neutron knockout re-

actions (see text). The neu-

trino fluence is assumed to fol-

low Fig. 7.1 and an energy reso-

lution of 6%/
√
Evis(MeV) is con-

sidered.

The rate of random coincidences in the presence of SN events from all detection

channels listed in Tab. 7.1 depends mainly on the distance to the SN. For an estimate

of the random coincidence rate of SN events, the event yields in Tab. 7.1 are used,

which are calculated for the reference SN at 10 kpc. The event yield is doubled for those

detection channels, which have a prompt and a delayed signal (see Fig. 7.9). It is again

assumed that half of the total yield corresponds to the event rate per second in the first

second of the burst. Applying the trigger conditions ∆tmax = 660µs and ∆rmax = 1.6 m

from Sec. 7.1, the rate of non–IBD events in the time and space coincidence window

becomes Rrandom ≈ 2.4× 10−3 kt−1s−1. With an additional cut on the delayed energy,

with 1.7 MeV< Edvis <2.8 MeV for n capture on H and 4.3 MeV< Edvis <5.6 MeV for n

capture on C, this rate further reduces to Rrandom ≈ 6.4× 10−5 kt−1s−1. This estimate is

conservative, since no additional tagging techniques are considered to reject the non–IBD

events initiated by the SN. The estimated rate is nearly seven orders of magnitude lower

than the IBD signal rate and thus negligible.

To conclude, the highest background rates, relevant for SN–induced IBDs in LS de-

tectors, arise from the inclusive 12C transitions Nr. 7 and 9 in Tab. 7.1, leading to a still

small sum rate of R = (0.4± 0.1) kt−1s−1 in the first second of the burst. The uncertainty

solely considers the cross section uncertainty mentioned in Sec. 7.1.3. The prompt signals

from these two reactions, depicted as blue and red solid lines in Fig. 7.7, form the visible

sum background spectrum to SN ν̄e IBD events, as shown in Fig. 7.10. The majority of

this background is easily rejected by a low energy cut at Evis = 5 MeV. This corresponds to

an incoming neutrino energy of Eν ≈ 5.8 MeV (see Sec. 7.1.2). The remaining background

amounts to less than 1% in the energy region common to signal and background and is

neglected within the sensitivity studies in Sec. 7.4.
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7.2.2 Backgrounds to ν–p ES scattering events

Neutrino–proton elastic scattering does not offer specific tagging possibilities and PSD

against signals from electrons, positrons or gammas is challenging with LAB based

scintillator. PSD between protons and α–particles has not been explicitly tested for LAB

based scintillators yet. It is thus conservatively assumed that PSD is not possible in

general and all events that are not associated with a specific reaction, contribute to the

background spectrum.

The rates of the corresponding background spectra shown in this subsection are based

on expected or targeted SNO+ levels5. The non–SN background sum spectrum is shown

at the end of this subsection in comparison to the signal spectrum. Also the composition

of the SN–induced background sum spectrum is described here and shown at the end of

this passage. The details of the contributing SN neutrino reactions are given in Sec. 7.1.

There are basically three non–SN background categories: Detector intrinsic radioac-

tivity, solar plus atmospheric neutrinos and cosmic muons plus cosmogenics. Detector

intrinsic radioactivity is further classified as external, surface and internal background.

External backgrounds are all events that are generated by radioactive decays outside the

scintillator, for example in the PMTs, but not on the inner surface of the LS housing,

which is in case of SNO+ the AV. The only external background events possibly occurring

in the scintillator are induced by γ–rays. Those background events that are caused

by decays of contaminants on the inner surface of the LS housing are called surface

backgrounds. Internal backgrounds originate from radioactive contaminants within the

LS itself. The largest background contribution in the case of SNO+ comes from internal

backgrounds, which reaches and partly even excesses the signal spectrum. External and

surface backgrounds sum up on internal backgrounds and are thus also presented here.

Detector intrinsic radioactivity

The number of external backgrounds is strongly reduced by position reconstruction

and the definition of a FV. The size and shape of the FV depends on the analysis to

be performed and on the detector. The most generic FV for a quasi radial symmetric

detector like SNO+, or JUNO, is a sphere with a fiducial radius rFV. A small FV cut

is normally sufficiently suppressing the external backgrounds for the observation of SN

neutrinos. For SNO+, a radius of rFV = 5.0 m is chosen in this chapter, which results in

a distance between the AV surface and the FV of 1 m and a fiducial mass of 0.45 kt. The

same radius reduction by 1 m in case of a 20 kt spherical LAB volume, the mass proposed

for JUNO, results in a 16.80 kt FV. These are the two FVs considered throughout the

5All values used are determined by the SNO+ Background Working Group for the pure LAB phase and

internally available in SNO+-doc-507, version 24. The document was latest accessed for this work January

2015.
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(b) Event rates after radial cut with rFV = 5.0 m.

Figure 7.11: Expected event rates in LAB based scintillator from external γ ray backgrounds. The visible

energy (Evis) distributions are simulated with RAT by members of the SNO+ collaboration. Within this

thesis, the spectra are normalized according to SNO+ expectations within the full scintillator volume (a)

and within a spherical FV with rFV = 5.0 m (b). All spectra are convolved with an energy resolution of

6%/
√
Evis(MeV).

sensitivity studies in Sec. 7.4 and 7.5. The smaller FV is additionally used for the event

yield calculations in Sec. 7.6.

The external background rates per kilotonne and second expected in SNO+ due

to the water shielding, the rope system supporting the AV, dust and the AV itself are

shown in Fig. 7.11 before and after the FV cut. All individual rates within the FV are

< 10−2 kt−1s−1, summing up to a total external background rate of ∼ 0.02 kt−1s−1.

Also surface backgrounds are reduced by a FV cut, though to a smaller extend.

The level of surface backgrounds, backgrounds coming from the inner surface of the

scintillator housing, strongly depends on the history of the material. The original SNO

detector was build for neutrino energies above about 3.5 MeV and radioactive backgrounds

played a subordinate role. After SNO data taking, the empty detector, including the inner

AV, was exposed to mine air before it was insulated. Mine air is highly contaminated with
222Rn and also long–term insulation only eradicated the shorter living Rn daughters (see

the 238U decay chain in Fig. A.1). The longer living β emitter 210Pb remains, which tends

to adsorb on surfaces. As a consequence, the inner AV surface is notably contaminated

with its two radioactive daughters 210Bi and 210Po. These backgrounds slowly leach into

the liquid in contact with the surface, i.e. water in the initial water phase of SNO+

and LAB based scintillator in the subsequent LS phase. The surface background rate is

reduced by leaching, while the internal background rate is consequently increased.

While the surface background rate in dedicated low–background detectors, using

ultra–pure materials, is indeed fully negligible for SN ν observations (see e.g. [193]), the α–

and β–event rates from decays of 210Pb, 210Bi and 210Po expected in SNO+ are high. The
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Evis, spectra of surface back-

grounds expected in SNO+ in-
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are simulated with RAT by the

SNO+ collaboration. A ra-

dial cut with rFV = 5.0 m is ap-

plied and an energy resolution of

6%/
√
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respective surface background rate expectations depend on the rate of the isotope leaching

from the AV surface into the liquid inside the AV and the duration of the filled AV phases.

Based on leaching rate measurements, it is expected that after 9 months of ultra–pure

water in the AV and thorough cleaning of its surface after draining, the rate of 210Pb, 210Bi

and 210Po in the LAB phase is about 0.2 kt−1s−1, 6.6 kt−1s−1 and 1.8 kt−1s−1, respectively,

after the FV cut. The residual rate within the FV is determined via simulations with

the SNO+ MC code RAT and the corresponding simulated residual visible energy, Evis,

spectra are shown in Fig. 7.12. Though the α– and β–particles from these decays are

typically stopped before they reach the FV, their events are not fully suppressed by the cut

due to a reduced vertex reconstruction efficiency close to the AV. The efficiency further

decreases at visible energies as low as the ones of 210Pb, which maximally emits β’s with a

kinetic energy of 17 keV and 63 keV. All other surface background rates are already before

any cut < 10−2 kt−1s−1 and thus not individually mentioned here.

In the case of internal backgrounds, the only backgrounds worthwhile mentioning

in the given context are β–decays of 14C and again the α– and β–decays of 210Pb, 210Bi and
210Po in the presence of leaching from the AV into the LS. All other internal backgrounds,

arising from the natural 238U and 232Th chains (see Fig. A.1) and the potential ingress

of further contaminants during filling or calibration procedures, have a sum rate of

< 10−2 kt−1s−1. The respective backgrounds are added for completeness to the internal

background sum spectrum following in this section, but are not further discussed here.

The interested reader is referred to e.g. [193], which provides an extensive discussion of

typical internal backgrounds in low–background LS detectors.

The four named, relevant isotopes are given in Tab. 7.3 together with their expected

rates, considering leaching. The leached isotopes are assumed to be homogeneously

distributed in the LS volume and their rates are based on the same assumptions as made
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Table 7.3: Internal background isotopes with their branching ratio (BR) and lifetime τ , relevant for the

SN neutrino observation via ν–p ES in SNO+. E is in case of α decay, the particle energy and in case of

β decay the endpoint energy of the spectrum. RSNO+ is the rate derived from expected SNO+ background

levels, converted into units of kilotonnes and seconds. The 210Pb/Bi/Po values include contaminations

leaching from the inner AV surface into the LS. For these values, 9 months of ultra–pure water in the AV,

followed by additional surface cleaning, before the LS phase are assumed.

Isotope τ Decay E RSNO+

(BR [%]) [keV] [kt−1s−1]

14C 8.27× 103 y β (100) 156.5 391.46

210Pb 32.2 y β (81, 19) 17, 63 15.68

210Bi 7.23 d β (99) 1161 15.68

210Po 200 d α (99) 5.305 16.49

Total 439.31

in the context of surface backgrounds. The corresponding Evis spectra are calculated

analytically and shown in Fig. 7.13. The reduction of the trigger efficiency below about

80 keV is not considered, since the precise behavior of the turn on curve is not yet known

for the considered detectors, SNO+ and JUNO.

Also shown in this figure is the most relevant non–SN background: 14C. 14C is a

β emitter with a lifetime of 8.27 × 103 y, which is short from the geological point of

view. It is, however, constantly reproduced through cosmic and cosmogenic neutron

interactions and generally present even in geologically old organic materials. The

relative abundance depends on the history of the material and can differ by orders of
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magnitudes. 14C and 12C are chemically identical, omitting the removal of 14C from

the LS by purification. So far only the Borexino collaboration achieved a measurement

of the very low 14C content in high–purity LS using the Counting Test Facility (CTF)

[278], yielding ∝ 10−18 g-14C/g-12C. The 14C rate observed in the Borexino detector is

R14C = (400.46 ± 10.42) kt−1s−1 [193]. Assuming the same isotopic abundance of 14C

in LAB based scintillator as in PC scintillator, but accounting for the lower 12C mass

percent fraction of ∼ 87% in LAB + PPO compared to ∼ 89% in PC + PPO, results in

a rate of R14C = 391.46 kt−1s−1. Despite the low abundance, the comparatively short

lifetime typically turns 14C into by far the largest background in underground organic LS

detectors, as obvious from Tab. 7.3. This instance generally imposes a low energy analysis

threshold, or even trigger threshold, around 200 keV, depending in the latter case amongst

others on the data rate capacity of the detector. This is the motivation for the stated

200 keV trigger threshold used for the sensitivity studies presented in Sec. 7.4 and Sec. 7.5.

Backgrounds from solar and atmospheric neutrinos

Elastic scattering of solar neutrinos with electrons in the scintillator is irreducible. The

resulting spectra of the different neutrino species from the Sun are presented in Fig. 7.14,

including the sum spectrum. Though this background cannot be suppressed, the respective

rate is low compared to the neutrino rate arising from a SN. The total rate, and thus the

rate in the ROI, in LAB based scintillator on Earth is < 0.03 kt−1s−1. The total rate of

atmospheric neutrinos is . 10−5 kt−1s−1 [280] and thus neglected.
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Backgrounds from cosmic muons, cosmogenic isotopes and neutrons

The cosmic muon rate Rµ, and thus also the rate of cosmogenic backgrounds, de-

pends on the site of the experiment. The muon flux measured in SNOLAB is

Φµ = (3.31± 0.09)× 10−10 cm−2s−1 [279]. With the given rate, SNO+ expects

(3.74± 1.02)× 10−4 muons per second in the entire 780 t scintillator volume, corre-

sponding to (4.79± 1.31)× 10−4 kt−1s−1, which does not cause a problem in the time

span of a SN neutrino burst. The total muon induced radioactive isotope rate in LS is

lower than the muon rate itself [255] and thus, together with the cosmic muons, neglected

in the presented studies.

Also the expected rate of muon induced neutrons in the liquid is slightly lower than the

cosmic muon rate [255] and thus < 4.79× 10−4 kt−1s−1. Added to that, cosmogenic neu-

trons produced in the surrounding rock and reaching the scintillator are expected at a rate

of < 10−7 kt−1 s−1, derived from expectations of the former SNO experiment. And finally,

the expected sum rate6 of neutrons produced in the AV and scintillator due to spontaneous

fission of 238U, photodisintegration on deuterium and carbon isotopes and reactions of en-

ergetic alpha particles on 13C and 18O, i.e. (α, n) reactions, is ∼ 1×10−4 kt−1 s−1, of which

∼ 99% occur near the AV. The total neutron background thus amounts to < 10−3 kt−1s−1

and is consequently also neglected.

Backgrounds from other SN detection channels

The visible ν–p ES sum spectrum is shown in Fig. 7.9 together with all other SN

interaction channels in LS (see Tab. 7.1). Those channels, which have a prompt and

delayed signal, are expected to be efficiently rejected by coincidence tagging and to not

form a background to ν–p ES. The exclusive NC transition of 12C Eq. 7.16 produces a

6Internal note SNO+-doc-2497.
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Figure 7.16: Expected event rates in LAB based scintillator from all backgrounds (BG) that

are not induced by the SN itself. The summed SN induced BG spectrum is shown for comparison.

The BG levels of SNO+, after a decent spherical FV cut with rFV = 5.0 m, are assumed including

leaching of contaminants from the AV into the scintillator. All spectra are convolved with an

energy resolution of 6%/
√
Evis(MeV) and ionization quenching is taken into account.

15.11 MeV γ ray and thus a γ peak above the signal spectrum (see Fig. 7.9). This channel

does not contribute to the background neither. The remaining channels, which are the

ν–e ES reaction and the two inclusive 12C transitions with a free proton in the final state

Eq. 7.24 and 7.26, cannot be distinguished from the signal. Only PSD could suppress at

least the first kind of events. The summation of the visible energy spectra is shown in

Fig. 7.15 together with the individual ν–p ES spectra.

The main background contribution comes from ν–e ES interactions, followed by a

small contribution from the NC inclusive 12C transition Eq. 7.26. The contribution from

the CC inclusive transition Eq. 7.24 is too small to be resolved in Fig. 7.15. The sum of

these SN induced backgrounds are below the νx signal up to about Evis ≈ 2.6 MeV, as

visible in Fig. 7.9. Their individual background contribution to each signal energy bin is

known from the ratio of the respective differential signal and background reaction cross

sections and assumed to be subtracted from the measurement for the sensitivity studies

within this chapter.

Summary

Figure 7.16 summarizes the contributions from the different background classes to ν–p ES

events of SN neutrinos, described above. These are backgrounds from external, surface

and internal radioactivity, from solar neutrinos and from SN neutrinos themselves. The
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sum spectrum corresponding to the last named background source is shown independently

from the non–SN induced backgrounds. All other backgrounds are stepwise summed up,

where the expected SNO+ rates including leaching are used. The contribution from solar

neutrinos is too small to be resolved. The highest background rate is observed at energies

below about 200 keV due to internal 14C. At higher energies, internal backgrounds form

the major background up to about 1.2 MeV visible energy, partly exceeding the signal.

This figure demonstrates the importance of a precise background measurement over the

ν–p ES ROI and a thorough background subtraction from the signal in the event of real

data.

For this work, it is supposed that the sum spectrum of non–SN background events

above 200 keV visible energy has been measured precisely in the period without a SN and

is subtracted from the observed sum spectrum. The SN induced backgrounds are assumed

to be subtracted, using the respective cross section ratios.

7.3 Reconstruction of neutrino energy spectra from IBD and

ν–p ES

7.3.1 True neutrino and visible energy distributions

The neutrino fluence on Earth is assumed to be described by the reference SN neutrino

distribution, as before. For the aforementioned reasons, only the first second of the

neutrino flux is used in this and the following sections, which reduces the total number

of neutrinos by a factor of two, compared to the fluence of the entire burst, for all

calculations. Based on this flux, the energy (Etrue
ν ) distribution of the SN neutrinos that

have interacted in the detector is calculated. This distribution is the product of the

neutrino flux at the detector site, the total interaction cross section of the interaction of

interest and the corresponding number of targets. The targets are in the case of both

signal reactions, ν–p ES and IBD, protons.

The visible energy (Evis) distributions of ν–p ES and IBD using the reference SN

neutrino fluence and 1 kt of LAB are shown in Fig. 7.10 and 7.15 together with the

corresponding SN induced backgrounds. All spectra are scaled for the following sensitivity

studies to a fiducial SNO+ and JUNO mass of 0.45 kt and 16.80 kt, respectively. The

detector effects considered are, as before, an energy resolution of 6%/
√
Evis(MeV) and the

ionization quenching of the proton signal using Eq. 2.12 and the results of the constrained

fit for LAB1 from Tab. 6.10. The uncertainties of these quantities contribute to the

systematic uncertainties of the fit parameters.

All sources of systematic uncertainty, considered within the thesis at hand, as well

as their uncertainties are summarized in Tab. 7.4. The information whether the shape

or the scale of the visible energy spectrum is affected, is important for the propagation
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Table 7.4: Parameters and 1σ systematic uncertainties propagated for the determination of the systematic

uncertainties of the fitted spectral parameters. The last column denotes whether the scale or the shape of

the visible signal energy spectrum is affected. If only one of the two signals, ν–p ES or IBD, is affected,

the respective channel is given in brackets.

Quantity Variable Value 1σsys Affected

property

Fiducial mass mFV 0.45 kt / 16.80 kt 1.9% scale

Proton density ρp 6.266× 1022/cm3 0.2% scale

Energy resolution σEvis
6%√

Evis(MeV)

2%√
Evis(MeV)

shape

Birks’ parameter kB 0.0096 MeV/cm 0.0003 MeV/cm shape (νpES)

Proton strangeness η 0.12 0.07 scale (νpES)

IBD tagging efficiency εIBD 94.0% 0.6% scale (IBD)

IBD cross section σIBD – 0.4% scale (IBD)

of uncertainties in Sec. 7.4 and 7.5. The uncertainty of the energy resolution is chosen

conservatively large, to demonstrate the smallness of its influence on the detector sen-

sitivity in the presented studies. The uncertainty of the fiducial mass mFV includes a

relative uncertainty of 1.8% due to the position reconstruction uncertainty on rFV and

a relative uncertainty of 0.59% from the uncertainty on the LS density. The LS density

uncertainty itself is the quadratic sum of the uncertainty from the LAB density range

at 15 ◦C, amounting to 0.58% [188, 192], and an approximate uncertainty of 0.1% from

temperature and pressure variations [281, 282, 283]. The temperature and pressure

variation influence on the density, also added quadratically, as well as the influence of

the position reconstruction uncertainty are adopted from KamLAND [263, 281], since the

situation in SNO+ is expected to be similar in this context. The uncertainty of the proton

number density ρp considers only an estimated uncertainty from dissolved gases [281] and

from the molecular LAB composition itself, since the LS density uncertainties are already

accounted for within the mFV uncertainty.

The mFV and ρp uncertainties affect the number of protons Np, and thus the scale

of the spectrum, in the same way and are added quadratically yielding a total proton

number uncertainty of σNp = 2%. As discussed in Sec. 7.1.1 for ν–p ES, also the proton

strangeness η only affects the scale, where the scale varies by ±13%. The total scale

uncertainty in the case of ν–p ES reactions is the quadratic sum of this variation and

σNp and thus σscale = 13.2%. In the case of IBDs, σscale is the quadratic sum of σNp ,

the uncertainty on the assumed tagging efficiency εIBD and the uncertainty on the cross
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Figure 7.17: Reconstructed and true SN neutrino energy distribution of the IBD detection channel in

LAB based scintillator. The spectra assume the neutrino ν̄e flux in the first second of the reference SN, a

distance of 10 kpc and the two different LAB fiducial masses shown in (a) and (b). The uncertainties shown

in black are the statistical uncertainty. The total uncertainties, i.e. the quadratic sum of the statistical and

the systematic uncertainties, are drawn in blue. However, the contribution from systematics is too small to

be resolved.

section σIBD, yielding σscale = 2.1%.

7.3.2 Reconstructed neutrino energy distributions

The reconstruction of the incoming Etrue
ν spectrum from the Evis spectrum is straight

forward in the case of IBD, while ionization quenching and the differential cross section

turn the reconstruction in the case of ν–p ES more complex. The IBD reconstruction is

discussed here first. The reconstructed neutrino energy is denoted as Erec
ν .

The Eν reconstruction from IBD events is a mere shift of about 0.782 MeV in energy,

following Eq. 7.12. In order to account for the energy resolution, the visible spectrum in

principal has to be additionally unfolded. However, the influence of the energy resolution

on the visible IBD spectral shape was investigated within this thesis and found to be

negligible. No significant deviation from the results of a fit to the Erec
ν spectrum, folded

with the energy resolution, was observed after a fit to the Etrue
ν spectrum. The true and

reconstructed Eν distributions are shown for the IBD channel in Fig. 7.17.

In the case of ν–p ES, four major aspects have to be taken into account for the Eν
reconstruction. First, due to ionization quenching the visible energy of the proton is not

identical to its kinetic energy, but is strongly and non–linearly reduced (see Fig. 7.3), which

is analytically described by Birks’ law Eq. 2.12. Second, a particular Eν can result in differ-

ent Evis, depending on the differential cross section Eq. 7.1. As a consequence, considering

binned data, one Eν bin is reconstructed from the contents of several Evis bins and the

reconstructed bin contents are strongly correlated. This is aggravated by the fact that not
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the entire Evis spectrum can be measured, due to the non–zero trigger threshold, the third

aspect to be considered within the Eν reconstruction. The minimal neutrino energy Emin
ν ,

necessary to reach a certain Evis, is determined using Birks’ law and Eq. 7.7, resulting in

the notably non–linear functional behavior shown in Fig. 7.18. Following this calculation,

the minimal neutrino energy corresponding to the trigger threshold of Evis =200 keV is

Emin
ν = 21.88 MeV. This energy is thus the lower limit of the Erec

ν spectrum, which is for

the reference SN just above the peak of the distribution. The fourth, and last, major

aspect to be considered is the energy resolution, which is ∝ 1/
√
Evis(MeV). The variation

of the resolution over energy at energies near, and especially below, the 200 keV threshold

is thus very large. This leads amongst others to the migration of reconstructed events from

below the threshold to higher energies due to a mis–reconstruction of Etrue
ν . The bin to bin

migration increases with decreasing threshold. To sum up, the differential cross section,

the detector threshold, ionization quenching and the energy resolution have to be taken

into account within the Eν reconstruction from ν–p ES events. This reconstruction is

achieved with an unfolding matrix A, which is calculated on the basis of these four aspects.

Within this thesis, the TUnfold algorithm [284] is used in order to calculate A, where

A is an n×m matrix with n < m. This means, the number n of Erec
ν bins has to be smaller

than the number m of Evis bins. Besides this, the binning can be chosen freely. Upon

the calculation of A, the covariance matrix V bins
cov of the reconstructed bins is determined,

which results from the unfolding matrix. TUnfold is an implementation of standard

unfolding. Besides this standard approach, numerical methods exists to determine A,

which may form an advantage in special cases. A numerical approach for the unfolding of

SN ν–p ES event spectra is suggested in [92], which was tested within this work. However,

thorough investigations revealed that the unfolding matrix entries strongly depend on the

numerical integration method that is used (see Sec. D of the appendix). Since not only the

Erec
ν bin contents are calculated using the unfolding matrix, but also the covariance matrix
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Figure 7.19: Reconstructed and true SN neutrino energy distribution of the ν–p ES detection channel

in LAB based scintillator. The shown spectra are the sum of the νe, ν̄e and νx spectra, considering their

flux in the first second of the reference SN. The distance to the SN is assumed to be 10 kpc and the two

different LAB fiducial masses are considered, shown in (a) and (b), respectively. The uncertainties shown in

black are the statistical uncertainty. The uncertainties shown in blue are the total uncertainties including

the systematic uncertainty added in quadrature. In (a) the contribution from systematics is too small to

be resolved.

V bins
cov of the correlated, reconstructed energy bins, this dependence is further propagated

into the uncertainties of the reconstructed bin content and ultimately into the determined

detector sensitivity. For the determination of the LAB detector sensitivities to spectral SN

νx parameters, the TUnfold framework is thus preferred over the numerical approach in

[92] and used within this chapter. Note that in either case, the necessary wide binning of

the Evis spectrum on the one hand and the strong correlations between the reconstructed

bins on the other hand, limits the accuracy of the reconstruction. The Erec
ν binning in

case of mLAB = 0.45 kt is chosen such that each bin has at least 5 events.

The obtained Erec
ν spectrum is shown in Fig. 7.19 together with the Etrue

ν spectrum.

The number of events in the lowest bin is slightly overestimated, due to the bin–to–bin

migrations caused by the finite energy resolution. Also shown in the figures are the

statistical and total systematic uncertainties. In this case, the statistical uncertainty per

bin is not the square root of the bin content, since the observable is not the Erec
ν bin

content, but the Evis bin content. Different from the case of the IBD, these contents

are not identical, but one Evis bin populates usually more than one Erec
ν bin. As a

consequence, the statistical uncertainty of a Erec
ν bin can be larger than its content. The

uncertainties drawn in Fig. 7.19 are the square root of the diagonal elements of V bins
cov .
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7.4 Fit to reconstructed neutrino energy spectra from IBD

and sensitivities to spectral ν̄e parameters

The sensitivity of a SNO+ and JUNO–like detector to the set of parameters

a = (〈Eν̄e〉, βν̄e , εν̄e) is determined by fitting the analytical description of the SN

neutrino fluence dΦ(a)/dE, Eq. 3.26, multiplied with the total IBD cross section σtot,

Eq. 7.10, to the reconstructed ν̄e spectrum. In view of the small event statistics in 0.45 kt

of LAB, as visible in Fig. 7.17a, an unbinned fit is performed, making use of the unique

relation between Evis and Erec
ν , in order to reduce possible biases in the fit results.

The best fit values of a are obtained from the minimization of an unbinned negative

log–likelihood function −2 lnL(a). Since one of the parameters defines the normalization

of the distribution, namely εα, an extended log–likelihood function is used:

− 2 lnL(a) = −2 ·

 J∑
j=1

ln (g (Eν,j |a))−
∫ Emax

ν

0
g
(
E′ν |a

)
dEν

 . (7.38)

In this equation, g (Eν,j |a) is the probability density function (PDF) of the reconstructed

neutrino energies, normalized to the number of expected events K according to∫ Emax
ν

0
g
(
E′ν |a

)
dEν = K. (7.39)

The normalized PDF reads

g (Eν |a) dEν = εIBD ·
Np

4πd2
· dΦν̄e

dE
(a) · σtot (7.40)

= εIBD ·
Np

4πd2
· εν̄e

(1 + βν̄e)
1+βν̄e

Γ (1 + βν̄e)

Eβν̄e

〈Eν̄e〉
βν̄e+2

exp

[
−(βν̄e + 1)

E

〈Eν̄e〉

]
· σtot,

where Np is the number of protons in the scintillator volume and εIBD the IBD tagging

efficiency. The minimization is performed with MINUIT [234]. The Erec
ν region below

5.8 MeV is excluded from the fit, which rejects nearly the entire IBD background spectrum

discussed in Sec. 7.2.1.

Log–likelihood estimates are typically Gaussian distributed and unbiased for a large

number of events K and thus statistics. For small statistics, however, as in the case

of the 0.45 kt FV, a bias is likely, although reduced by the realization of an unbinned

log–likelihood fit instead of a binned fit. In order to correct for biases, the log–likelihood

function Eq. 7.38 is minimized with respect to the fit parameters in 5 000 toy MC

event spectra, yielding an equally large set of best estimators â. The distribution of

the 5 000 best estimates per parameter is used to determine the fit results as well as

the statistical parameter uncertainties, as will be demonstrated in the course of this section.
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Figure 7.20: Exemplary single spectrum out of 5 000 toy MC Erec
ν spectra from IBD. The reference SN

at 10 kpc distance is assumed and two different fiducial masses in figures (a) and (b).

In the toy MC, the Erec
ν spectrum per pseudo–experiment is simulated by randomly

distributing theK events of the calculated Erec
ν spectrum, complying with Poisson statistics.

One single example spectrum out of the 5 000 toy MC spectra is shown for each LAB based

scintillator mass in Fig. 7.20 together with the corresponding best fit Eν distribution. The

resulting correlation matrix of the fit parameters a for this one example shown in Fig. 7.20a

reads:

V a
corr =


v (〈E〉, 〈E〉) v (〈E〉, β) v (〈E〉, ε)

v (β, 〈E〉) v (β, β) v (β, ε)

v (ε, 〈E〉) v (ε, β) v (ε, ε)



=


1.000 0.889 −0.481

0.889 1.000 −0.351

−0.481 −0.351 1.000

 .

(7.41)

The matrix shows strong correlations between all three parameters. The strongest

correlation is between 〈E〉 and β and imposed by the analytical expression of β, Eq. 3.24,

into which 〈E〉 enters.

The normalized â distributions after 5 000 fits, assuming mLAB = 0.45 kt, are shown

in Fig. 7.21. Most striking in these figures is the distinct asymmetry of the 〈Eν̄e〉 and βν̄e
distributions in Fig. 7.21a and 7.21b, respectively. The asymmetry of the βν̄e distribution

is a result of two circumstances coming together: First, the log–likelihood function rises

very fast with negative β values, due to the factor Eβν̄e in the PDF Eq. 7.40. Thus, though

β < 0 is not forbidden, neither from the analytical nor the physical point of view, the fit

does not converge at negative values. Second, the low statistics lead to a wide spread of

the best estimators. Just from the width of the βν̄e distribution, negative values of βν̄e



192 Chapter 7. Sensitivity of LAB scintillator detectors to supernova neutrinos

> [MeV]
ν

<E

5 10 15 20 25

C
o

u
n

ts
 /

 b
in

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
5000 toy MC

best fit

(a) 〈Eν̄e 〉, best fit value.

β

0 5 10

C
o

u
n

ts
 /

 b
in

0.00

0.02

0.04

0.06

0.08

0.10 5000 toy MC

best fit

(b) βν̄e , best fit value.

 [foe]∈

10 20 30 40

C
o

u
n

ts
 /

 b
in

0.00

0.02

0.04

0.06

0.08

0.10

0.12
5000 toy MC

best fit

(c) εν̄e , best fit value.

Figure 7.21: Best fit (a) 〈Eν̄e〉, (b) βν̄e and (c) εν̄e distributions, resulting from fits to 5 000 IBD toy MC

Erec
ν spectra. A LAB mass of 0.45 kt is considered. The distributions are normalized. Details about the fit

are given in the text.

would be reached, if the fit would not strongly disfavor this region. The asymmetry of

the 〈Eν̄e〉 distribution is a consequence of the strong correlation between βν̄e and 〈Eν̄e〉.
Also the best fit value distribution of εν̄e , shown in Fig. 7.21c, is slightly affected by the

correlations, though to a smaller extend. The correlations between εν̄e and the other two

parameters are similarly strong (see Eq. 7.41), which widen the εν̄e distribution in opposite

directions as can be inferred from Fig. 7.21a and 7.21b.

Due to the asymmetry of the â distributions, using 0.45 kt of LAB, the mean and

the mode, i.e. the position of the maximum, of each distribution are not identical and

the results thus biased, if the final best fit parameters are deduced from the mean values.

Additionally, the width of each distribution and thus the statistical uncertainties on â

cannot be obtained from a standard Gaussian fit. Both instances are accounted for by

fitting a skew normal distribution

f(x) =
e−

(x−µ)2

2σ2 erfc
[
−α(x−µ)√

2σ

]
√

2πσ
(7.42)
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Table 7.5: Fit results using the reference SN Erec
ν distribution from IBDs in 0.45 kt of LAB. A neutrino

energy cut of Erec
ν ≥ 5.8 MeV is applied, corresponding to Evis & 5 MeV. The results are obtained by

minimizing Eq. 7.38 with respect to 5 000 toy MCs (see text).

Parameter Unit Expectation Best fit 1σstat 1σsys

0.45 kt of LAB

〈Eν̄e〉 MeV 15.0 15.47 +1.54
−2.43

+0.02
−0.04

βν̄e – 3.0 2.88 +1.90
−1.01

+0.03
−0.06

εν̄e foe 25.0 24.64 +4.96
−3.53

+0.45
−0.72

to each â distribution shown in Fig. 7.21. In the case of a symmetric distribution, α

becomes zero and the skew normal distribution recovers the Gaussian distribution. The

fit parameters µ, σ and α are the location, scale and shape parameter of the distribution,

from which the mean

ω = µ+ σ
α√

1 + α2

√
2

π
(7.43)

and the variance

v = σ

1−
2
(

α√
1+α2

)2

π

 , (7.44)

follow. The value of the mode is the parameter value, at which the first derivative of the

best fitting skew normal distribution becomes zero. The difference between mode and

mean is an estimate of the size of the bias.

If the distributions were Gaussian, the statistical uncertainties would be the square

root of the variance and symmetric. In the given case, however, the uncertainty towards

the broader side of the distribution, which is in e.g. Fig. 7.21a to the left of the mode,

is the square root of the variance plus the difference between mode and mean. The

uncertainty towards the narrower side is accordingly the square root of the variance minus

the difference between mode and mean.

The fit of Eq. 7.42 to the â distributions is shown in Fig. 7.21. The mode of each best

fit skew normal distribution is given in Tab. 7.5, representing the final best fit value of the

respective parameter. The size of the statistical uncertainties are also given in the table

and calculated as described above. In order to determine the systematic uncertainties

on the best fit parameters, the entire fitting procedure is repeated after varying the

source of each systematic independently by plus and minus 1σ. The resulting shift of

the mode of the skew normal distribution, after adaption to the new â distributions,

yields the corresponding one sigma systematic uncertainty. Since applying an energy
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Figure 7.22: Best fit (a) 〈Eν̄e〉, (b) βν̄e and (c) εν̄e distributions, resulting from fits to 5 000 IBD toy MC

Erec
ν spectra. A LAB mass of 16.80 kt is considered. The distributions are normalized.

resolution of 6%/
√
Evis(MeV), or not, to the IBD spectrum has no significant effect on

the best fit values of the spectral neutrino parameters, also a variation of the resolution

by ±2%/
√
Evis(MeV) does not affect the results. Only 1σscale amounting to 2.1% (see

Sec. 7.3.1) contributes to the total systematic uncertainty, given in Tab. 7.5. Since the

respective sources of systematic uncertainty affect only the scale, the resulting relative

systematic uncertainty is the largest for εν̄e , which is the normalization factor of the

neutrino fluence.

Increasing the statistics by using 16.80 kt of LAB, instead of 0.45 kt, results as

expected in much narrower â distributions, which are shown in Fig. 7.22. Fitting Eq. 7.42

to these distributions reveals that they are nearly symmetric, since α ∝ 10−1 − 10−3, and

thus the distributions approximately Gaussian. The final best fit values together with

their statistical and systematic uncertainties are listed in Tab. 7.6. Using 16.80 kt of LAB,

the expectation value of βν̄e is more than 13σstat away from zero and thus not skewed

anymore.
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Table 7.6: Fit results using the reference SN Erec
ν distribution from IBDs in 16.80 kt of LAB. A neutrino

energy cut of Erec
ν ≥ 5.8 MeV is applied, corresponding to Evis & 5 MeV. The results are obtained by

minimizing Eq. 7.38 with respect to 5 000 toy MCs (see text).

Parameter Unit Expectation Best fit 1σstat 1σsys

16.80 kt of LAB

〈Eν̄e〉 MeV 15.0 14.97 ±0.31 +0.01
−0.02

βν̄e – 3.0 2.98 ±0.22 +0.01
−0.02

εν̄e foe 25.0 25.05 +0.69
−0.64

+0.56
−0.51

In summary, the fit parameters a are strongly correlated. The sensitivity to these

parameters in a scintillation detector with mLAB = 0.45 kt is clearly dominated by the

statistical uncertainty. The statistical uncertainties of especially βν̄e and 〈Eν̄e〉 are further-

more considerably asymmetric. The sources of considered systematic uncertainties only

affect the scale of the neutrino energy distribution and thus result in the largest relative

systematic uncertainty for the total neutrino energy εν̄e , yielding of about (2–3)%. The

total relative 1σ uncertainty of 〈Eν̄e〉, βν̄e and εν̄e is < 16%, < 66% and < 21%, respectively.

Increasing the detector mass from 0.45 kt to 16.80 kt raises the statistics by about a

factor 37. Thus the statistical uncertainties are each reduced by about a factor of
√

37 ≈ 6,

comparing the results in Tab. 7.5 and 7.6. Note that the sensitivities are still limited

by the statistics, but the statistical uncertainties become approximately symmetric. The

total relative uncertainty of 〈Eν̄e〉, βν̄e and εν̄e at the 1σ level is ∼ 2%, ∼ 7% and ∼ 4%,

respectively. The IBD detection channel allows large–scale LS detectors to significantly

constrain the spectral parameter space of ν̄e’s from a galactic CCSN.

7.5 Fit to reconstructed neutrino energy spectra from ν–p

ES and sensitivities to spectral νx parameters

In case of the ν–p ES detection channel, the Erec
ν spectrum is binned. An unbinned fit is

hence not possible. The reconstructed bins are moreover strongly correlated (see Sec. 7.3.2)

and the covariance matrix has to be taken into account. Thus the covariance approach of

a standard, binned χ2 fit is followed, reading

χ2
cov =

I∑
i,j=1

(Oexp
i −Otheo

i )
[
σ2
i,j

]−1
(Oexp

j −Otheo
j ). (7.45)

Oexp
i,j and Otheo

i,j are the experimental and theoretically expected contents in bin i and j,

respectively, and
[
σ2
i,j

]−1
is the corresponding entry in the inverse of the covariance matrix
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V −1
cov . The I × I covariance matrix is determined within the TUnfold algorithm upon the

unfolding of the Evis spectrum, where I is the number of Erec
ν bins. Otheo

i is calculated as

per

Otheo
i (a) =

Np

4πd2
·
∫ E1

E0

∑
α

εα
(1 + βα)1+βα

Γ (1 + βα)

Eβα

〈Eα〉βα+2
exp

[
−(βα + 1)

E

〈Eα〉

]
·σtot dE. (7.46)

The integral is executed from the lower edge E0 of bin i to the corresponding upper edge

E1. σtot is the ν–p ES total cross section Eq. 7.4.

The Erec
ν spectrum providing Oexp

i , shown in Fig. 7.19, is the sum of the ν–p ES

spectra of νe, ν̄e and νx. This sum spectrum is highly degenerate with respect to the

nine spectral parameters aνe , aν̄e and aνx and a fit to the latter set of parameters is

only possible if assumptions are made for aνe and aν̄e . Within this work, it is assumed

that aν̄e is known from a spectral fit to the reconstructed IBD neutrino spectrum using

the same detector, as performed in Sec. 7.4. Concerning aνe it has to be assumed that

the respective parameters are obtained in a measurement by another detector, which is

particularly sensitive to the νe component of the flux, like HALO–27

Matters are complicated further by the fact that only the energy region above the

peak of the Eν spectrum is reconstructed due to the trigger threshold of 200 keV. The peak

itself lies below the minimal Erec
ν , using the reference SN. Note that the reference SN is

already optimistic in this context, since it assumes with 〈Eνx〉 = 18 MeV a notably higher

mean νx energy than the results from e.g. the Garching simulations presented in Sec. 3.5.1

suggest. A more detailed comparison with the simulated SN neutrino distributions follows

in Sec. 7.6. This loss of spectral information strongly enhances the correlations between

the three spectral fit parameters aνx . The parameter correlation matrix V a
corr (see Eq. 7.41)

was calculated in this work in a fit with three free parameters and all off–diagonal elements

were found to reach values above | ± 0.95|, even using 16.80 kt of LAB. This means all

parameters are almost fully (anti–)correlated in this case, rendering a three parameter fit

pointless. Also lowering the trigger threshold from 200 keV to 100 keV, does not resolve the

peak at the given statistics and the correlations are thus not reduced, while the resolution

deteriorates further, enhancing bin to bin migrations. Furthermore, the background rate

strongly increases due to 14C.

For the given reasons, only two parameters at a time are fit to the Erec
ν spectrum in

case of ν–p ES, where once ενx is fixed and once βνx . The minimization of Eq. 7.46 with

respect to the two free parameters 〈Eνx〉 and βνx , or 〈Eνx〉 and ενx , is performed with

MINUIT using a MINOS error analysis [234] to determine the uncertainties of the best

fit values.

7HALO–2 is a kilotonne–scale Pb based detector in the early design phase. It is based on the same

principals as the currently running HALO detector, where HALO stands for Helium And Lead Observatory.
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Within this analysis, no toy MCs were sampled, since for the n×m unfolding matrix

A, the inequality m > n has to be fulfilled. This means the Evis spectrum has to have

more bins than the Erec
ν spectrum. Since only non–empty bins are counted, the binning

has to be chosen accordingly for each toy MC. In the event of real data, the Evis binning

would have to be optimized on the basis of the observed spectrum. Within this section,

the model Evis spectrum is unfolded and the resulting Erec
ν spectrum, shown in Fig. 7.19,

is used for the fit.

7.5.1 Propagation of systematic uncertainties

The systematic uncertainties, listed in Tab. 7.4, are propagated in two different ways,

depending on whether they affect the shape of the Evis spectrum or its scale. The sources

of systematics affecting the scale are the proton strangeness η and the number of target

protons Np. The sources, that affect the shape are the ionization quenching parameter kB

and the energy resolution of the detector.

If only the scale is affected, the 1σ variation is added to the corresponding variable

within the calculation of the theoretical expectation Eq. 7.46, once using +1σ, once using

−1σ. The fit is repeated for each variation and the shift of the best fit values with respect

to the fit considering statistics only is, as usual, equivalent to the corresponding plus or

minus 1σsys value. The systematic uncertainty of each Erec
ν bin content is analogously

determined from the shift of the bin content compared to the value calculated, when

only the statistic uncertainty is considered. The square of these values correspond to the

diagonal elements of a covariance matrix with otherwise zero entries.

In order to propagate a systematic uncertainty, which affects the spectral shape,

the unfolding matrix A, and with it the covariance matrix V bins
cov , is recalculated, having

varied the respective variable by ±1σ. Thus, in total four additional matrices V bins
cov

are determined, two for kB and two for the resolution. The fit is repeatedly performed

using each of the matrices and extracting the 1σsys value from the shift of the best fit value.

A third class of source of systematic uncertainty are the parameters aνe and aν̄e .

Though β and 〈E〉 affect the shape of the observed spectrum, their uncertainties, as well

as the one of ε, are propagated by varying the corresponding parameters in Eq. 7.46 and

repeating the fit. These parameters are parameters of the theoretical model and thus only

enter the theoretical expectation calculation, not the reconstruction. The values of the

uncertainties are taken from Tab. 7.5 and 7.6 for the parameters ν̄e and the appropriate

LAB mass. The uncertainties of aνe are assumed to be close to the ones of SNO+ for ν̄e
and σ〈E〉 = ±2.5 MeV, σβ = ±2 and σε = ±5 foe.
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Figure 7.23: Reconstructed neutrino energy Eν spectrum and best fit spectrum from a two parameter fit

with ενx being fixed at its expectation value of 100 foe and with 〈Eνx〉 and βνx as free parameters. The

spectrum results from ν–p ES of all flavors in two different LAB masses (a) and (b). The neutrino fluence

is assumed to be the reference SN fluence. The trigger threshold is at 200 keV visible energy.

7.5.2 Fit results

Within this subsection, two scenarios are persued: once ενx is fixed and once βνx . The first

scenario assumes that the mass of the SN progenitor, and thus its total binding energy,

is known and that εν̄e and ενe are determined from other detection channels or by other

experiments. In this case ενx can be calculated and fixed in the fit, given the hypothesis

that ∼ 99% of the binding energy are emitted in the form of neutrinos (see Sec. 3.3). The

second scenario, in which βνx is fixed, assumes that β is the same for the different flavors

within the measurement uncertainties and βνx is thus known from a measurement of e.g.

βν̄e . This assumption is supported by simulations, which predict that β changes after the

neutronization burst by less than a factor of two with the neutrino flavor, as deducible

from Figures 3.19 to 3.21. Within both scenarios, the influence of σkB on the detector

sensitivity is investigated.

The best fit values of the free parameters are determined from a fit of Eq. 7.46 to

each bin of the Erec
ν spectrum shown in Fig. 7.19a, assuming mLAB = 0.45 kt, and to the

one shown in Fig. 7.19b, assuming 16.80 kt of LAB. The statistical uncertainties of the

fit parameters are determined from a fit with V bins
cov , calculated without having varied any

source of systematic uncertainty. Each systematic uncertainty is subsequently propagated

as described in Sec. 7.5.1. The best fit spectrum, resulting from a fit with ενx being fixed

at the reference value of 100 foe, is presented in Fig. 7.23. The reconstructed and the

best fit spectrum agree very well within the uncertainties. The best fit spectrum is not

additionally shown for the second fit scenario with βνx = 3 being fixed, since the resulting

spectra are qualitatively the same. The quantitative results of the fits for both scenarios

and both considered LAB masses are summarized in Tab. 7.7 and discussed in the following.
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Table 7.7: Results from a two–parametric fit to the neutrino spectrum from ν–p ES (see text). The

third parameter is fixed. Given are for each fitted parameter the model expectation, the best fit value,

the statistical uncertainty σstat, the systematic uncertainty σkBsys , resulting from the uncertainty on the

quenching parameter kB, and the total systematic uncertainty σtot
sys, which is the quadratic sum of all

propagated systematic uncertainties. LAB masses of 0.45 kt and 16.80 kt are considered.

Parameter Unit Expectation Best fit 1σstat 1σkBsys 1σtot
sys

0.45 kt of LAB

〈Eνx〉 MeV 18.0 18.10 +3.33
−4.82 < 10−3 +2.57

−2.55

βνx – 3.0 3.12 +4.22
−3.12 < 10−4 +1.39

−1.04

ενx foe 100.0 fixed – – –

〈Eνx〉 MeV 18.0 17.81 +3.48
−3.00 < 10−3 +0.22

−0.75

βνx – 3.0 fixed – – –

ενx foe 100.0 102.53 +82.26
−42.20 < 10−3 +16.24

−13.03

16.80 kt of LAB

〈Eνx〉 MeV 18.0 17.66 +0.66
−0.72 ±0.01 +2.42

−2.48

βνx – 3.0 2.77 +0.48
−0.45 < 10−3 +1.21

−0.95

ενx foe 100.0 fixed – – –

〈Eνx〉 MeV 18.0 18.15 +0.52
−0.50 ±0.01 +0.19

−0.50

βνx – 3.0 fixed – – –

ενx foe 100.0 96.05 +8.79
−7.96 ±0.01 +15.10

−11.98

Influence of the quenching parameter uncertainty on the spectral sensitivities

The best fit results in Tab. 7.7 show a good agreement with the expectation values,

despite the reconstruction bias in the lowest Erec
ν (see Fig. 7.19b). The value of σkBsys is

listed individually in this table and shortly discussed here, since the uncertainty being

propagated is the uncertainty achieved in the ionization quenching measurements with

LAB based scintillator within this work, as presented in Sec. 6. Table 7.7 shows that σkBsys

is very small compared to σstat and negligible in the case of the lower LAB mass of 0.45 kt,

where the statistical uncertainty dominates.

Besides the 1σ uncertainties given in Tab. 7.7, the allowed region at 95% C.L. of

the two parameter spaces is determined. In order to obtain the total covariance matrix,

all individual covariance matrices are added, which is only reasonable, if the additional
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Figure 7.24: Constraints at 95% C.L. on the parameter space after a two–parametric fit to the neutrino

spectrum from ν–p ES (see text). A LAB mass of 0.45 kt is assumed. The third parameter is fixed at

the value given in the subcaptions (a) and (b). Shown are the contours considering only the statistical

uncertainty σstat (black dashed line), considering the quadratic sum of σstatand the systematic uncertainty

σkBsys from the uncertainty on the quenching parameter kB (red solid line) and considering the quadratic

sum of σstatand the total systematic uncertainty σtot
sys. All three contours coincide, since the measurement

is completely dominated by statistics.

off-diagonal entries due to the remaining systematics are zero or negligibly small. This

is fulfilled here, since also in the case of the resolution uncertainty, for which V bins
cov was

calculated with TUnfold, the systematic contributions to the off–diagonal entries are very

small. They are at or below the permille level compared to the entries due to statistics.

However, the impact of the resolution uncertainty becomes more important, when the

trigger threshold is lowered. The lower the energy is, the worse the resolution. Thus, bin

to bin migrations increase, which enhances on the other hand the correlations between the

bins.

Having determined the covariance matrices, the two–dimensional contours at 95.0%

C.L. are calculated within the minimization of Eq. 7.46. The results are shown in Fig. 7.24

for mLAB = 0.45 kt and in Fig. 7.25 for mLAB = 16.80 kt and for both fit scenarios in

each case. The contour is determined three times: First, only the statistical uncertainty

is included. Second, the statistical uncertainty together with the uncertainty from

kB is considered. Third, the statistical uncertainty together with the total systematic

uncertainty is accounted for. These results confirm the conclusions drawn in the context

of Tab. 7.7. The uncertainty on kB obtained within this work does not influence the

sensitivity of a LAB based scintillator detector with 0.45 kt fiducial mass like SNO+ to

the spectral parameters 〈Eνx〉, βνx and ενx , as obvious from Fig. 7.24. Also the other

systematic uncertainties considered show no impact in these figures. The measurement is

in this case clearly dominated by statistics.

In the case of a JUNO–like detector with a 16.80 kt fiducial mass, shown in Fig. 7.25,
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Figure 7.25: Constraints at 95% C.L. on the parameter space after a two–parametric fit to the neutrino

spectrum from ν–p ES (see text). A LAB mass of 16.80 kt is assumed. The third parameter is fixed at

the value given in the subcaptions (a) and (b). Shown are the contours considering only the statistical

uncertainty σstat (black dashed line), considering the quadratic sum of σstatand the systematic uncertainty

σkBsys from the uncertainty on the quenching parameter kB (red solid line) and considering the quadratic

sum of σstatand the total systematic uncertainty σtot
sys. The measurement is dominated by systematics.

the contour including σkBsys is slightly widened with respect to the contour using only σstat.

The projection on the 〈E〉 axis, the β axis or the ε axis, however, is only slightly affected.

This observation is confirmed by the results given in Tab. 7.7 for 16.80 kt of LAB, where

1σkBsys is very small compared to 1σstat for all three fit parameters. However, the contour in

Fig. 7.25 including all systematic uncertainties is significantly wider than the contour from

statistics only. With the increased detector mass, the measurement becomes dominated

by systematics, where the largest contribution comes from the proton strangeness η, which

varies the total event yield by about ±13% (see Sec. 7.1.1). The next largest systematic

uncertainty comes from the uncertainty on the three parameters νe, whose uncertainties

were assumed to be close to the ones of ν̄e as measured by SNO+.

Spectral sensitivity at 68.3%, 95% and 99.73% confidence level

On the basis of the total covariance matrix including all considered systematic uncertainties

and analogue to the above determination of the respective contour at 95.0% C.L., the

contours at 68.3% and 99.73% C.L. are calculated. All three obtained allowed regions

are shown for mLAB = 0.45 kt in Fig. 7.26 and for both fit scenarios with once fixed

ενx = 100 foe (Fig. 7.26a) and once fixed βνx = 3.0 (Fig. 7.26b). The strong correlations

between the fit parameters are conspicuous. Furthermore, as was also observed in the case

of the IBD detection channel in Sec. 7.4, the shape parameter β is the parameter which

is affected the most by low statistics. The contours shown in Fig. 7.26 are obtained for

the reference SN at 10 kpc and a trigger threshold of 200 keV visible energy, resulting in

about 35 ν–p ES events above threshold in the first second of the SN. Of these, about 29
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Figure 7.26: Constraints at 68.3%, 95.0% and 99.73% C.L. on the parameter space after a two–parametric

fit to the neutrino spectrum from ν–p ES (see text). A LAB mass of 0.45 kt is assumed. The third parameter

is fixed at the value given in the subcaptions (a) and (b). The contours include the total uncertainty σtot,

which is the quadratic sum of the statistical uncertainty σstat and the total systematic uncertainty σtot
sys.

events are from
(−)

ν x. Given these poor statistics for a spectral fit, the strong correlations

between the parameters, the strong correlations between the Erec
ν bins and the fact that

not the entire Evis spectrum is available for the Eν reconstruction, the constraint on

all three parameters at the 68.3% and 95.0% C.L. is noteworthy. All three contours are

closed after the fit with fixed βνx , shown in Fig. 7.26b and even a fit with fixed ενx allows

a measurement of 〈Eνx〉 at 3σ, as visible in Fig. 7.26a. No further local minimum is

encountered in any of the two parameter spaces. The total relative uncertainties of the

parameters are high, though. They are for 〈Eνx〉, βνx and ενx at the 1σ level < 30%,

< 143% and < 82%, respectively, where the value for 〈Eνx〉 is the result from the first fit

scenario. The total relative uncertainty from the second fit scenario, in which βνx is fixed,

reaches ∼ 19% and is thus the preferred scenario. The improvement in the latter case is

explained by the slightly stronger correlation between 〈Eνx〉 and βνx , compared to 〈Eνx〉
and ενx .

Increasing the statistics, using 16.80 kt of LAB instead of 0.45 kt, further constrains

the allowed regions for both scenarios, as shown in Fig. 7.27. The total relative un-

certainties for 〈Eνx〉, βνx and ενx at the 1σ level become < 15% (< 4%), < 47% and

< 18%, respectively, where the value for 〈Eνx〉 is the result from the first (second) fit

scenario. The constraints of the parameter spaces are in this case dominated by systematic

uncertainties, where the main contribution comes from the uncertainty of the proton

strangeness η. A measurement of η with a higher precision would thus strongly improve

the fit parameter constraints. The only further relevant systematic uncertainty comes

from the uncertainties of the parameters νe, which are assumed to be close to the ones

of ν̄e, obtained with mLAB = 0.45 kt. Thus also a measurement of the parameters νe
with small uncertainties is of high interest for the determination of νx, which motivates
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Figure 7.27: Constraints at 68.3%, 95.0% and 99.73% C.L. on the parameter space after a two–parametric

fit to the neutrino spectrum from ν–p ES (see text). A LAB mass of 16.80 kt is assumed. The third

parameter is fixed at the value given in the subcaptions (a) and (b). The contours include the total

uncertainty σtot, which is the quadratic sum of the statistical uncertainty σstat and the total systematic

uncertainty σtot
sys.
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Figure 7.28: Constraints at 68.3%, 95.0% and 99.73% C.L. on the parameter space after a two–parametric

fit to the neutrino spectrum from ν–p ES (see text). A LAB mass of 16.80 kt is assumed. The third

parameter is fixed at the value given in the subcaptions (a) and (b). The contours include only the

statistical uncertainty σstat.

sensitivity studies on the νe spectral shape. The improvement possible, if these two

sources of systematics are strongly reduced, is demonstrated in Fig. 7.28, for which it

is assumed that the measurement is dominated by statistics. In this case, the relative

3σ uncertainty of βνx , obtained from the projection of the 99.73% contour on the β

axis, reaches 50% and the relative 1σ uncertainty reaches 16%. The relative 3σ and 1σ

uncertainty of ενx is below 30% and 10%, respectively. The parameter which is constrained

the strongest is 〈Eνx〉, whose relative 3σ uncertainty is pushed below 15%, fixing ενx ,

and below 10%, fixing βνx . The corresponding values at 1σ are < 4% and < 3%. The

relative uncertainties on all three parameters are remarkably small, underlining the inter-
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est in a precisely known ν–p ES cross section and well–determined spectral parameters aνe .

7.6 Influence of the trigger threshold, MSW effect, progeni-

tor and equation of state on the ν–p ES event yield

The previous sections have demonstrated that the sensitivities of a detector with a

0.45 kt LAB fiducial mass, like SNO+, to spectral SN ν̄e parameters and especially to νx
parameters is limited by statistics. Only the latter parameters are discussed here, since in

this case the ν–p ES detection channel is used, which is strongly affected by the trigger

threshold and thus its event yield more prone to varying assumptions.

For all results shown above, the reference SN is used, which is summarized in Tab. 7.2.

This model is very useful for sensitivity studies, as presented within this chapter, since it

is commonly used [92, 93, 94, 285]. However, it is an optimistic model in terms of the event

yields with respect to state–of–the–art simulations, as will be shown here. Furthermore,

the MSW effect influences the spectral shapes and thus amongst others the event yield

above threshold, which is also shortly discussed in this section. Further flavor changing

mechanisms are not relevant for the time span considered for the presented studies. Since

the MSW effect affects neutrinos and anti–neutrinos differently (see Fig. 4.3), it breaks the

degeneracy of the νµ,τ and ν̄µ,τ spectra. For this reason, the ν̄x’s are distinguished from

the νx’s throughout this section even if the MSW is not considered, for consistency.

Trigger threshold

The ν–p ES event yield above threshold is evidently influenced by the trigger threshold

itself. Experiments like SNO+ aim at a threshold below 200 keV visible energy, at least

on the short time basis for a SN. The increase of the ν–p ES event yields, lowering the

trigger threshold, is thus summarized in Tab. 7.8. Note that below about 100 keV, the

trigger efficiency is expected to drop, following the turn on curve of the detector. Thus

only thresholds of 100 keV, 150 keV and 200 keV compared to no threshold are considered.

At these three thresholds, the total yield amounts to about 45%, 35% and 28% of the total

yield above zero threshold and the
(−)

ν x yield amounts to about 50%, 40% and 33% of the
(−)

ν x yield above zero threshold, respectively. Thus also at the lowest considered trigger

threshold only half of the ν–p ES events are observed. Furthermore, the
(−)

ν x–p ES event

yield is increased by maximally a factor of ∼ 1.5, lowering the threshold from 200 keV to

100 keV, while the disadvantage of lowering the threshold remains: the correlations are

higher between the lowest Erec
ν bins. Furthermore, also at 100 keV the peak of the Etrue

ν

distribution cannot be resolved and thus the fit parameter correlations not significantly

reduced.
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Table 7.8: ν–p ES event yield above a trigger threshold at the indicated visible energy value. The yields

are determined for the analytical reference SN.

Flavor Event yield above

0 keV 100 keV 150 keV 200 keV

νx 44.6905 22.5375 17.8791 14.5799

ν̄x 44.6905 22.5375 17.8791 14.5799

all 123.6046 55.6007 43.0691 34.5109

Deduction of supernova neutrino spectra from Garching simulations

The simulations provide for each SN model used a set of flux tables, which contain the

time–binned mean energy 〈E〉, luminosity L and the second and third energy moment 〈E2〉
and 〈E3〉 (see Sec. 3.5.1). The time–integrated energy spectra are calculated by summing

up N weighted spectra
∑N

i=0wiSi, where each spectrum Si is described by Eq. 3.25, and

the parameters used to calculate the respective spectrum are taken from a parabolic

interpolation8 of L(ti), 〈E〉(ti) and β(ti). wi is given by the time step wi = ∆ti = ti− ti−1.

After summation, the spectra are normalized via S =
∑N

i=0wiSi/
∑N

i=0wi. The summation

is performed using an energy binning of 0.1 MeV and Si is numerically integrated inside

the bin edges. The time steps are adaptive, since they are varying in the tables and are

typically between 0.2 ms and 2 ms. The time binning also differs between the various SN

models. While the energy–binning is motivated by computational simplicity only, the

time–binning is intrinsically limited by the provided tables and the interpolation method.

The spectra obtained by the described method are shown in Fig. 7.29 for an example model

which uses a 15.0 M� progenitor and the ls220 EOS. The 15.0 M� progenitor is chosen, as

its time–dependent spectral parameters are neither particularly high nor low with respect

to all other available models (see Fig. 3.12 to 3.21). The spectra are integrated from 50 ms

to 500 ms, in order to exclude the deleptonization burst. The focus of this chapter lies

on the spectral parameters from the SN neutrino flux parameterization Eq. 3.26, which is

guided by an approximately thermal distribution. During the deleptonization burst, the

νe’s do not thermalize (see Sec. 3.3), rendering this parameterization unfavorable for this

phase. Since flavor changes due to the MSW effect propagate this behavior to the time

distributions of the other flavors, the same time cut is applied to all flavors. This time

cut reduces the total
(−)

ν x yield by . 1.5% and is applied to every simulated spectrum

throughout this section.

8The spline–interpolation for βα(ti) is performed by first calculating βα for all time steps given in the

respective table and interpolating the resulting βα values and not by interpolating 〈E〉(ti) and 〈E2〉(ti) and

calculating βα using these interpolated values.
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Figure 7.29: True SN neu-

trino energy, Etrue
ν , distributions

of the ν–p ES detection channel

in 0.45 kt of LAB based scintil-

lator, derived from the Garching

flux tables [46]. The progeni-

tor has a mass of 15 M� and the

ls220 EOS is used in the simu-

lation. The neutrino fluxes are

integrated from 50 ms to 500 ms

postbounce time. A SN distance

of 10 kpc is assumed. The νx and

ν̄x spectra are identical and thus

summed up.

For a direct comparison of the simulated neutrino fluence with the analytical reference

SN of this chapter, the values of the spectral parameters a = (〈Eα〉, βα, εα) are addition-

ally calculated here for this example simulation model. The total energies εα, emitted in

a particular time span, are calculated from the flux tables by summing up I luminosity

entries
∑I

i=0 ∆tiLα,i, weighted by the corresponding time step ∆ti. The time–averaged

mean energies and second energy momenta are obtained from (
∑I

i=0Nα,i〈E(2)
α,i 〉)/Nα,

where Nα,i is the number of emitted neutrinos during ∆ti, calculated using Eq. 3.16. Nα

is the total number of emitted neutrinos. The time–averaged βα is finally derived from

the time–averaged 〈Eα〉 and 〈E2
α〉 (see Eq. 3.24). The results for the example model are

summarized in Tab. 7.9. Also in this case, only times from 50 ms to 500 ms are included

in the calculations.

Table 7.9: Time–averaged mean energy 〈E〉 and shape parameter β as well as time–integrated luminosity ε

derived from the Garching supernova neutrino flux tables [46] (see also Sec. 3.5.1). The values are calculated

exemplarily for the progenitor with 15.0 M� and the ls220 equations of state. The value of ενx is the value

for one of the two contributing neutrino types. The same is true for εν̄x .

Flavor 〈Eα〉 βα εα εα/ενx

[MeV] [foe]

νe 13.4555 2.82813 22.1710 1.97

ν̄e 15.9436 3.05365 21.7909 1.93

νx 15.6242 2.15489 11.2810 1.00

ν̄x 15.6242 2.15489 11.2810 1.00
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Figure 7.30: True SN neutrino energy, Etrue
ν , distributions of the ν–p ES detection channel in 0.45 kt of

LAB based scintillator, derived from the Garching flux tables [46]. The progenitor has a mass of 15 M� and

the ls220 EOS is used in the simulation. The neutrino fluxes are integrated from 50 ms to 500 ms postbounce

time. A SN distance of 10 kpc is assumed. The distributions are once shown without considering the MSW

effect in the SN and once taking it into account, assuming normal hierarchy (NH). The νe and ν̄e distributions

are shown in (a) and the νx and ν̄x distributions as well as their sum in (b). The νx distribution is without

the MSW effect identical to the ν̄x distribution and they thus fully overlap.

The tabulated values neither confirm a 〈Eα〉 hierarchy, nor equipartitioning, nor the

same βα for all flavors, the assumptions made for the reference SN. These disagreements

with standard SN hypotheses are also discussed in e.g. [117]. Especially the νx mean

energy is with 〈Eνx〉 ≈ 15.6 MeV notably lower than the reference value of 18 MeV.

Furthermore, the results in Tab. 7.9 show that βα is not equal to 3.0 for all neutrino

flavors. The value is with ∼ 2.15 the smallest for
(−)

ν x, which yields a relative difference

of about 30% to the reference value of 3.0 used in this work and in e. g. [92, 93, 254].

Thus, if the systematic uncertainties can be reduced within a ν–p ES measurement in a

detector like JUNO, such a detector is expected to be sensitive to this difference at the

1σ level due to a relative statistical uncertainty of about 25%. This relative statistical

uncertainty takes into account that the simulated value ενx = 11.281 foe is about a factor

of 2.2 smaller than the reference value, which is 25 foe.

MSW effect

The neutrino fluences including the MSW effect in the early SN phase are calculated

using Eq. 4.47. The flip probability matrix Pf , used in this equation, is given for both

neutrino mass hierarchies and for neutrinos and anti–neutrinos in Eq. 4.49. Given these

flip probabilities, the only oscillation parameters entering the calculation are θ12 and θ13.

Figure 7.30 shows exemplarily the Etrue
ν distributions from ν–p ES for the above

mentioned 15.0 M� progenitor model and a LAB mass of 0.45 kt, again without flavor

changes, as in Fig. 7.29, and additionally considering the MSW effect assuming NH. This
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Table 7.10: ν–p ES event yield variation due to the MSW effect above a trigger threshold of 200 keV.

The yields are determined assuming three different progenitors and two different equations of state (EOS)

[46]. The decimal digit within the name of the simulation models gives the progenitor mass in units of M�.

The MSW effect is calculated with normal (NH) and inverted (IH) hierarchy using the parameters from

Tab. 4.1.

SN model Flavor no MSW no MSW MSW, NH MSW, IH

shen ls220

νx 1.4547 1.9145 1.5139 1.6285

s11.2 ν̄x 1.4547 1.9145 1.9579 2.0437

all 4.0580 5.4654 5.4654 5.4654

νx 4.0037 5.6967 6.2298 6.0774

s15.0 ν̄x 4.0037 5.6967 6.3830 7.7400

all 14.0192 19.7308 19.7308 19.7308

νx 6.1762 8.9232 9.5798 9.3920

s25.0 ν̄x 6.1762 8.9232 9.8403 11.6537

all 21.3944 30.2412 30.2412 30.2412

figure illustrates how the MSW effect breaks the degeneracy of the νµ,τ and ν̄µ,τ spectra.

It however also shows that the spectral splitting, visible in Fig. 7.30b, is too weak to

generate a characteristic feature in the shape of the
(−)

ν x sum spectrum that is not in

agreement with a quasi–thermal distribution. This is in contrast to later phases, where

prominent spikes or dents can appear due to, for instance, collective effects (see Fig. 4.1).

This observation confirms the motivation within this chapter to only use the first second

of the reference SN for the sensitivity studies, which are based on the quasi–thermal

analytical description Eq. 3.26. It should be noted, though, that also in this first second,

considering the MSW effect, the interpretation of a shape parameter βα in the context of

pinching, obtained from fitting Eq. 3.26 to the neutrino spectrum, is not straight forward

anymore. A deviation from the value in local thermodynamic equilibrium (LTE), βα ≈ 2.3

(see Sec. 3.6) is possible, even if the original neutrino spectra were in LTE.

In the context of expected
(−)

ν x–p ES event yields above the trigger threshold, the

most interesting observation in Fig. 7.30 is the fact that the total number of νx’s and

ν̄x’s increases. Assuming the standard trigger threshold of this chapter at 200 keV, the

event yield is calculated for the model progenitor as well as for two further progenitors:
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one with a mass of 11.2 M� and one with a mass of 25.0 M�. The first progenitor shows

the lowest spectral parameters over time in Fig. 3.12 to Fig. 3.21, while the second has

amongst the highest spectral parameters. Also in these two cases, the models calculated

with ls220 are chosen. The event yields above threshold are listed in Tab. 7.10, with

and without the MSW effect and once assuming normal and once inverted hierarchy. In

all cases the
(−)

ν x–p ES event yield increases, with one exception: The νx event yield of

the 11.2 M� progenitor slightly decreases. This is due to the fact, that the mean energy

of the νx distribution, which is before the MSW effect already only about 13.2 MeV,

is shifted towards the lower energies of the νe after the MSW effect. This shift occurs

also using the other progenitors, however in these cases the gain above threshold due

to the increased number of neutrinos is higher than the loss due to the shift of the

mean energy to lower energies. The highest increase are ∼ 2.7 additional events to ∼ 8.9

ν̄x–p ES events in case of the 25.0 M� progenitor and IH, which is an increase of about 31%.

Besides the event yield increase due to the MSW effect, the low event yields of the

smallest progenitor are striking. This progenitor produces only about 5 ν–p ES events

from all flavors above threshold. In this case, a spectral fit is impossible, even if the

full first second was twice the yield of the first 500 ms. The largest progenitor, instead,

approximates with ∼ 30 events the total yield that results from the analytical reference

SN, which is about 35 events in the first second. Since the total yield of the 25.0 M�
progenitor is ∼ 30 events in 450 ms, the yield after 1 s is most probably even higher than

the reference yield. Note, however, that the fraction of
(−)

ν x is lower in case of the simulated

SN, where it reaches maximally ∼ 70%, compared to the reference SN, where the fraction

is above 80%. This difference is due to the pronounced neutrino mean energy hierarchy in

case of the reference SN (see Tab. 7.2), which is not observed for the simulated SNe (see

Tab. 7.9). All progenitors and both EOSs provided at [46], totaling 21 models, have been

investigated within this work and for each of these models the mean energy ordering was

found to be 〈Eνe〉 < 〈Eν̄e〉 ≈ 〈Eνx〉. Furthermore, the highest mean energy was observed

for the 25.0 M� ls220 model, reaching only 〈Eνx〉 ≈ 16 MeV. Nonetheless, due to the high

yield and still high mean energy, a SN similar to this model is promising for a spectral

ν–p ES measurement and a parameter constraint comparable to the results presented in

Sec. 7.4 and 7.5 expectable.

Additionally given in Tab. 7.10 and conclusively dealt with are the ν–p ES event

yields, considering the shen EOS, neglecting the MSW effect. The use of this stiffer EOS,

compared to the soft ls220, reduces the event yield. In this case, the 25.0 M� progenitor,

for instance, leads to only about 21 ν–p ES events above threshold in total, compared to

the above mentioned ∼ 30 events. It is still not excluded that the yield in the full first

1 s reaches the yield of about 35 events from the reference SN. To conclude, the results

from the sensitivity studies of this chapter are for an optimistic, but not unrealistic scenario.

The difference between the event yields from different EOSs motivates to investigate
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the power of large–scale LS detectors to reject the EOS that was not used to simulate

the Eν spectrum, depending on the progenitor mass. In the view of the very small event

yields, resulting from some of the Garching SN models, it should also be investigated, which

information about the SN could be gained from a measurement without considering the

shape, but only the event yield and for instance the highest energy observed. So far, SN
(−)

ν x have never been observed and even a measurement of only a few
(−)

ν x’s is an important

source of information.

7.7 Summary and outlook

Within this chapter, the sensitivities of two LAB based scintillator detectors to the

spectral parameters aν̄e = (〈Eν̄e〉, βν̄e , εν̄e) and aνx = (〈Eνx〉, βνx , ενx) of CCSN neutrinos

were determined. The analytical description of the SN neutrino spectra, based on these

parameters, is expected to follow Eq. 3.26 in the first second after core bounce. The

two fiducial LAB masses considered are 0.45 kt, corresponding to SNO+, and 16.80 kt,

corresponding to JUNO. The detection channels in LS used for spectral analyses are the

IBD, which allows to constrain the parameters aν̄e , and ν–p ES, which allows to constrain

the parameters aνx . A trigger threshold of 200 keV is assumed.

The reconstruction of the incoming neutrino energy spectrum from the visible

signal spectrum is very complex for ν–p ES due to the differential cross section of the

process, the non–linear behavior of ionization quenching, the non–zero trigger threshold

and the increased impact of the energy resolution at the lowest observed energies. The

circumstance that no one–to–one relationship between the visible energy and the true

neutrino energy exists, demands spectral unfolding. The resulting reconstructed neutrino

energy spectrum shows strong bin–to–bin correlations and the peak of the neutrino energy

distribution is not resolved due to the trigger threshold. This is in contrast to the IBD

neutrino energy reconstruction, where the entire visible spectrum can be reconstructed

and where one distinct visible energy corresponds to one distinct neutrino energy.

The concept of the fit of Eq. 3.26 to the determined Erec
ν spectrum was optimized for

the two signal channels. In case of the NC ν–p ES channel, only the sum event spectrum

from all flavors is detected. The fit thus depends on measurements of the parameters aν̄e
and aνe . The first set of parameters is known from the IBD measurement with the same

detector. The uncertainties resulting from the respective IBD fit are thus propagated

within the ν–p ES fit. For the parameters aνe it is assumed that similar parameter

uncertainties as resulting from the SNO+ IBD fit are achieved by a measurement with

another detector, like HALO–2.

The total relative 1σ uncertainties on 〈Eν̄e〉, βν̄e and εν̄e , resulting from a three–

parametric fit to the Erec
ν spectrum using IBD, are for 0.45 kt of LAB: < 16%, < 66% and

< 21%, where the larger value of the asymmetric uncertainties is used. The corresponding
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values using 16.80 kt of LAB are: ∼ 2%, ∼ 7% and ∼ 4%.

The total relative 1σ uncertainties on 〈Eνx〉, βνx and ενx , resulting from a two–

parametric fit to the Erec
ν spectrum using ν–p ES, are for 0.45 kt of LAB: < 30% (< 19%),

< 143% and < 82%, where the value for 〈Eνx〉 refers to the fit with ενx (βνx) being fixed

at the expectation value. The larger value of the asymmetric uncertainties is used to

calculate the relative uncertainty. The corresponding values using 16.80 kt of LAB are:

∼ 15% (< 4%), ∼ 47% and ∼ 18%

The results from the sensitivity studies to the parameters aν̄e and aνx in case of

the smaller detector SNO+ reveal – partly strongly – asymmetric uncertainties. This is

a consequence of the small statistics on the one hand and high fit parameter correlations

on the other hand, which partly exceed | ± 0.9|. Moreover, it was demonstrated that

SNO+ is in both measurements limited by the statistical uncertainty. In order to enhance

the spectral sensitivity of this detector to the νx component of the SN neutrino flux, a

parameterization based on parameters with smaller correlations would be of great interest.

It should be furthermore tested, how basic progenitor properties like its mass can be

constrained only on the basis of ν–p ES event yields above the trigger threshold, including

possibly the information about the maximum visible energy observed. These studies could

be supported by the information gained from other detection channels, like the exclusive

NC transition of 12C Eq. 7.16, which yields a prominent peak in the SN sum spectrum.

The fit results of JUNO show that also in this case the statistical uncertainties

dominate, using the IBD channel, but the influence of the fit parameter correlations are

negligible and the resulting uncertainties symmetric, or nearly symmetric. Using ν–p ES,

however, the measurement is limited by the systematic uncertainties, which are dominated

by the uncertainty of the ν–p ES cross section, arising from the uncertainty of the proton

strangeness η, followed by the uncertainties on the parameters aνe . The systematic

uncertainty due to the quenching parameter kB, measured within this work, was proven to

be very small. If the systematic uncertainties due to η and aνe can be reduced, such that

the 16.80 kt measurement is dominated by statistics, the relative uncertainties of 〈Eνx〉, βνx
and ενx strongly improve, yielding < 4% (< 3%), ∼ 16% and < 10%, respectively, where

the value for 〈Eνx〉 refers to the fit with ενx (βνx) being fixed at the expectation value. To

reduce η, an external experiment is necessary. The corresponding measurement, though,

is highly non–trivial and not promising to be achieved in the near future. However, the

cross section information is only necessary after data extraction. Thus the data can be

re–analyzed, as soon as η is known with higher precision.

In the context of future studies, the precision achieved with 16.80 kt of LAB for

aν̄e via IBD and for aνx via ν–p ES, under the assumption, the systematics can be

reduced, motivates a time–binned analysis over the entire course of the SN to reveal strong

deviations from a quasi–thermal spectral distribution. In the event of a real SN, it could



212 Chapter 7. Sensitivity of LAB scintillator detectors to supernova neutrinos

be tested in combination with the IBD channel, whether non–thermal features appear

at the same times and/or energies in the different spectra, attributing non–thermality to

neutrino properties, not to SN properties. This investigation could be strongly supported

by the measurement of the νe spectrum. Thus, it is also in this context of high interest

to study the spectral sensitivities of different detectors to the νe component of the SN

neutrino flux. One opportunity is offered by LS detectors themselves, if they have a LS

mass of O(10 kt). In this case the event statistics of the two exclusive CC transitions of
12C (Eq. 7.14 and 7.15) could become high enough for a spectral analysis of the resulting

νe and ν̄e spectra, shown in Fig. 7.5. Both channels have a prompt and delayed signal,

allowing coincidence tagging. In case the two channels can only be poorly discrimi-

nated from each other, due to their similarity of the signals, the measured parameters

aν̄e could also in this case be used, in order to enhance the sensitivity to the parameters aνe .

The results from this chapter strongly encourage the expansion of the sensitivity stud-

ies, including further LS detection channels and further detectors using different technolo-

gies, like the Pb based HALO(–2) detector or liquid Ar detectors. Both detector types are

especially sensitive to νe due to inelastic neutrino–nucleus scattering [94, 285, 286].
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Conclusions

This thesis presents the measurement of the proton and α–particle light yield functions

in eight different LAB based scintillators relative to the electron light yield. These

measurements are indispensable for SNO+ for the search of the 0νββ decay of 130Te, its

main physics goal, and for the spectral analysis of supernova neutrinos of all flavors, one

of its secondary physics goals. The light yield functions vary due to ionization quenching,

an effect which reduces the light yield the stronger the higher the ionization energy loss

of a particle is. All measurement results were parameterized individually, using Birks’

law, with one parameter kB or two parameters kB and C. The set of many different

LAB based scintillators was used to thoroughly investigate the influence of various

contributions to the solvent itself. The results of this work, providing the first publication

of quenching parameters in LAB, are thus not only viable for SNO+, but for all current

and future liquid scintillator detectors, using or considering LAB as solvent, like Daya

Bay, RENO, RENO–50, JUNO, LENS and HANOHANO. The systematic uncertainties

introduced, when the parameters measured in this work are applied to another liquid

scintillator experiment, arising from for instance different operating temperatures or

detector sizes, can be reduced by a measurement of the temperature dependency of the

quenching parameters and a systematic study of the influence of the detector size. In

case of the latter it is of particular interest to investigate the influence of the scintillator

volume on the observed Cherenkov light component, which ultimately affects the electron

scale and thus the relative proton and α–particle light yield, as emphasized within this work.

The knowledge of the α quenching parameters, obtained in this work, enables SNO+

to develop reliable tagging techniques to efficiently reduce backgrounds from radioactive

isotopes. Especially without the strong reduction of background events in the signal region

from 214Bi–214Po and 212Bi–212Po β–α coincidence events, SNO+ would not be sensitive to

the current limit of |mββ | < (190− 450) meV (90% C.L.) [181]. The quenching parameters

in LAB, loaded with water, an amine based surfactant and 0.3% natTe, determined in this

thesis, are kB = (0.0054±0.0005) cm/MeV and C = (1.4±0.4)×10−6 cm2/MeV2 in a two

parameter fit or kB = (0.0070 ± 0.0004) cm/MeV in a one parameter fit. The fluors used
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in this compound are 2 g/l PPO and 15 mg/l bis–MSB. Ionization quenching in this newly

developped metal–loaded liquid scintillator, using water and a surfactant, was measured

for the first time within this thesis.

The proton quenching parameters are mandatory for the analysis of events from

ν–p elastic scattering, the only supernova neutrino interaction in liquid scintillator

with a high enough cross section that additionally provides spectral information

about νx’s (νx = νµ, ν̄µ, ντ , ν̄τ ). This information was not accessible during the

SN 1987A, but is vitally important to understand the mechanisms driving the ex-

plosion, which can not yet be conclusively explained. The proton quenching param-

eters obtained in this work for pure LAB with 2 g/l PPO and 15 mg/l bis–MSB are

kB = (0.0096 ± 0.0003) cm/MeV and C ≤ 2.7 × 10−6 cm2/MeV2 (95% C.L.) in a two

parameter fit or kB = (0.0096± 0.0003) cm/MeV in a one parameter fit.

Based on the quoted proton quenching parameters, the sensitivity of SNO+ and

a JUNO–sized detector to supernova νx using ν–p elastic scattering was investigated

within the present work. The results show that, under reasonable assumptions for the

supernova, a measurement with SNO+ will be statistically dominated, while a mea-

surement with JUNO will be limited by systematic uncertainties, where the dominating

source of systematic uncertainty is the reaction cross section. The sensitivity of SNO+

to the νx mean energy is 〈Eνx〉 = 17.81 +3.48 +0.22
−3.00 −0.75 and to the respective total neutrino

energy is ενx = 102.53 +82.26 +16.24
−42.20 −13.03, determined within this work in a two parameter fit

with βνx = 3.0 being fixed. The first uncertainty is the statistical and the second the

systematic 1σ uncertainty. The sensitivity studies to the inverse beta decay spectrum,

also performed within this work, yield 〈Eν̄e〉 = 15.47 +1.54 +0.02
−2.43 −0.04 for the mean ν̄e energy,

εν̄e = 24.64 +4.96 +0.45
−3.53 −0.72 for the corresponding total energy, and βν̄e = 2.88 +1.90 +0.03

−1.01 −0.06 for

the shape parameter in a three parameter fit. In case of a JUNO–sized detector, the

statistical uncertainties improve by about a factor of six and become nearly symmetric.

These studies represent the first sensitivity study of a combined ν–p elastic scattering and

inverse beta decay measurement.

Finally, this thesis provides a direct comparison of the proton and α–particle quenching

parameters, measured simultaneously and thus under exactly the same conditions. First,

while C is found to be consistent with zero in all proton quenching measurements and the

one parametric model is sufficient, the two parametric model is preferred in the case of

α quenching measurements with a non–zero C. Second, a comparison of the kB values

obtained in a one parameter fit in both cases reveals a ∼ (4 − 5)σ difference between the

proton and α–particle kB values for all compounds used. These results strongly disfavor

the hypothesis that different ions in the same liquid scintillator can be described by the

same quenching parameters.



Appendix A

Natural decay chains and

constants and non–SI units

(a) 238U. (b) 232Th.

Figure A.1: Natural uranium (a) and thorium (b) decay chains1.

1(a) ”Decay chain(4n+2, Uranium series)”, (b) ”Decay chain(4n, Thorium series)” by Tosaka is licensed

under CC–BY–3.0.
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Table A.1: Natural constants and non–SI units [152].

Quantity/Name Symbol/Equation Value

Neutron mass mn 939.565379(21) MeV/c2

Proton mass mp 938.272046(21) MeV/c2

Electron mass me 0.510998928(11) MeV/c2

Solar mass M� 1.9885(2)× 1030 kg

Ergon erg 0.1× 10−6 kg m2/s2

Fifty one erg foe 1× 1051 erg = 1 Bethe

Parsec pc 3.0856776× 1016 m ≈ 3.262 ly

Light year ly 0.946053...× 1016 m

(deprecated unit)

Fermi constant GF 8.9618756× 10−44 MeV cm3

Speed of light in vacuum c 299 792 458 m s−1

Conversion constant ~c 197.3269631× 10−13 MeV cm

Conversion constant GF /(~c)3 1.1663788× 10−11 MeV−2

Effective weak mixing angle sin2θW 0.23155(5)



Appendix B

Spectra taken within the ionization

quenching measurements

B.1 Gamma calibration spectra

This section shows the remaining gamma calibration spectra from all linear alkylbenzene

(LAB) and water–surfactant–LAB (wsLAB) samples that were not shown in Sec. 6.4.1.

For each sample, the calibration was performed in high gain (HG) and in low gain (LG)

mode.
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(c) 207Bi, tlive = 780.726 s.
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Figure B.1: Pulse–height spectra in ADC channels (ch) of all used calibration sources (a-c) and of back-

ground only (d). The third γ–line of 207Bi is shown enlarged in the inset of (c). The background is

subtracted from the source measurements after normalization to the respective livetime tlive. The data is

taken with LAB + 2 g/l PPO + 15 mg/l bis–MSB (LAB1) in LG mode.
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(a) 137Cs, tlive = 774.241 s.
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(b) 22Na, tlive = 606.288 s.
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(c) 207Bi, tlive = 794.625 s.

PH [ch]

0 200 400 600 800 1000

C
o

u
n

ts
 /

 c
h

0

20

40

60
data

(d) Random background, tlive = 609.127 s.

Figure B.2: Pulse–height spectra in ADC channels (ch) of all used calibration sources (a-c) and of back-

ground only (d). The third γ–line of 207Bi is shown enlarged in the inset of (c). The background is

subtracted from the source measurements after normalization to the respective livetime tlive. The data is

taken with LAB + 2 g/l PPO (LAB2) in HG mode.
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(a) 137Cs, tlive = 985.681 s.
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(b) 22Na, tlive = 609.790 s.
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(c) 207Bi, tlive = 3036.436 s.
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Figure B.3: Pulse–height spectra in ADC channels (ch) of all used calibration sources (a-c) and of back-

ground only (d). The third γ–line of 207Bi is shown enlarged in the inset of (c). The background is

subtracted from the source measurements after normalization to the respective livetime tlive. The data is

taken with LAB + 2 g/l PPO (LAB2) in LG mode.
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(a) 137Cs, tlive = 597.025 s.
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(b) 22Na, tlive = 594.141 s.
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(c) 207Bi, tlive = 583.864 s.
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Figure B.4: Pulse–height spectra in ADC channels (ch) of all used calibration sources (a-c) and of back-

ground only (d). The third γ–line of 207Bi is shown enlarged in the inset of (c). The background is

subtracted from the source measurements after normalization to the respective livetime tlive. The data is

taken with LAB + 3 g/l PPO + 15 mg/l bis–MSB (LAB3) in HG mode.
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(a) 137Cs, tlive = 632.118 s.
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(c) 207Bi, tlive = 610.155 s.
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Figure B.5: Pulse–height spectra in ADC channels (ch) of all used calibration sources (a-c) and of back-

ground only (d). The third γ–line of 207Bi is shown enlarged in the inset of (c). The background is

subtracted from the source measurements after normalization to the respective livetime tlive. The data is

taken with LAB + 3 g/l PPO + 15 mg/l bis–MSB (LAB3) in LG mode.
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(a) 137Cs, tlive = 253.568 s.
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(b) 22Na, tlive = 231.984 s.
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(c) 207Bi, tlive = 333.938 s.
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Figure B.6: Pulse–height spectra in ADC channels (ch) of all used calibration sources (a-c) and of back-

ground only (d). The third γ–line of 207Bi is shown enlarged in the inset of (c). The background is

subtracted from the source measurements after normalization to the respective livetime tlive. The data is

taken with LAB + 3 g/l PPO (LAB4) in HG mode.
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(c) 207Bi, tlive = 399.632 s.
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Figure B.7: Pulse–height spectra in ADC channels (ch) of all used calibration sources (a-c) and of back-

ground only (d). The third γ–line of 207Bi is shown enlarged in the inset of (c). The background is

subtracted from the source measurements after normalization to the respective livetime tlive. The data is

taken with LAB + 3 g/l PPO (LAB4) in LG mode.
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(a) 137Cs, tlive = 592.250 s.
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(c) 207Bi, tlive = 578.345 s.
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Figure B.8: Pulse–height spectra in ADC channels (ch) of all used calibration sources (a-c) and of back-

ground only (d). The third γ–line of 207Bi is shown enlarged in the inset of (c). The background is

subtracted from the source measurements after normalization to the respective livetime tlive. The data is

taken with LAB + 2 g/l PPO + 0.1% Nd (LAB5) in HG mode.
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(c) 207Bi, tlive = 575.719 s.
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Figure B.9: Pulse–height spectra in ADC channels (ch) of all used calibration sources (a-c) and of back-

ground only (d). The third γ–line of 207Bi is shown enlarged in the inset of (c). The background is

subtracted from the source measurements after normalization to the respective livetime tlive. The data is

taken with LAB + 2 g/l PPO + 0.1% Nd (LAB5) in LG mode.
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(c) 207Bi, tlive = 729.543 s.
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Figure B.10: Pulse–height spectra in ADC channels (ch) of all used calibration sources (a-c) and of

background only (d). The third γ–line of 207Bi is shown enlarged in the inset of (c). The background is

subtracted from the source measurements after normalization to the respective livetime tlive. The data is

taken with LAB + 3 g/l PPO + 0.1% Nd (LAB6) in LG mode.
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(b) 22Na, tlive = 859.330 s.
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(c) 207Bi, tlive = 484.813 s.
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Figure B.11: Pulse–height spectra in ADC channels (ch) of all used calibration sources (a-c) and of

background only (d). The third γ–line of 207Bi is shown enlarged in the inset of (c). The background is

subtracted from the source measurements after normalization to the respective livetime tlive. The data is

taken with LAB + 5% PRS + 1.5% water + 2 g/l PPO + 15 mg/l bis–MSB + 0.3% Te (wsLAB1) in HG

mode.



B.1. Gamma calibration spectra 229

PH [ch]

50 100 150 200 250

C
o

u
n

ts
 /

 c
h

0

1000

2000

3000

4000

data

MC, folded

MC, unfolded

(a) 137Cs, tlive = 536.848 s.
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(c) 207Bi, tlive = 854.908 s.
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Figure B.12: Pulse–height spectra in ADC channels (ch) of all used calibration sources (a-c) and of

background only (d). The third γ–line of 207Bi is shown enlarged in the inset of (c). The background is

subtracted from the source measurements after normalization to the respective livetime tlive. The data is

taken with LAB + 5% PRS + 1.5% water + 2 g/l PPO + 15 mg/l bis–MSB + 0.3% Te (wsLAB1) in LG

mode.
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(a) 137Cs, tlive = 531.774 s.
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(c) 207Bi, tlive = 737.482 s.
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Figure B.13: Pulse–height spectra in ADC channels (ch) of all used calibration sources (a-c) and of

background only (d). The third γ–line of 207Bi is shown enlarged in the inset of (c). The background is

subtracted from the source measurements after normalization to the respective livetime tlive. The data is

taken with LAB + 5% PRS + 1.5% water + 2 g/l PPO + 15 mg/l bis–MSB (wsLAB2) in HG mode.
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(b) 22Na, tlive = 533.162 s.
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(c) 207Bi, tlive = 749.035 s.
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Figure B.14: Pulse–height spectra in ADC channels (ch) of all used calibration sources (a-c) and of

background only (d). The third γ–line of 207Bi is shown enlarged in the inset of (c). The background is

subtracted from the source measurements after normalization to the respective livetime tlive. The data is

taken with LAB + 5% PRS + 1.5% water + 2 g/l PPO + 15 mg/l bis–MSB (wsLAB2) in LG mode.
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(c) 207Bi, tlive = 874.863 s.
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Figure B.15: Pulse–height spectra in ADC channels (ch) of all used calibration sources (a-c) and of

background only (d). The third γ–line of 207Bi is shown enlarged in the inset of (c). The background is

subtracted from the source measurements after normalization to the respective livetime tlive. The data is

taken with LAB + 5% PRS + 1.5% water + 2 g/l PPO + 15 mg/l perylene (wsLAB3) in HG mode.
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(a) 137Cs, tlive = 183.438 s.
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(b) 22Na, tlive = 313.504 s.
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(c) 207Bi, tlive = 254.811 s.
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Figure B.16: Pulse–height spectra in ADC channels (ch) of all used calibration sources (a-c) and of

background only (d). The third γ–line of 207Bi is shown enlarged in the inset of (c). The background is

subtracted from the source measurements after normalization to the respective livetime tlive. The data is

taken with LAB + 5% PRS + 1.5% water + 2 g/l PPO + 15 mg/l perylene (wsLAB3) in LG mode.



234 Appendix B. Spectra taken within the ionization quenching measurements

PH [ch]

50 100 150 200

C
o

u
n

ts
 /

 c
h

0

200

400

600

800 data

MC, folded

MC, unfolded

(a) 137Cs, tlive = 177.634 s.

PH [ch]

100 200 300

C
o

u
n

ts
 /

 c
h

0

200

400

600

800

1000 data

MC, folded

MC, unfolded

(b) 22Na, tlive = 208.812 s.
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(d) Random background, tlive = 193.477 s.

Figure B.17: Pulse–height spectra in ADC channels (ch) of all used calibration sources (a-c) and of

background only (d). The third γ–line of 207Bi is shown enlarged in the inset of (c). The background is

subtracted from the source measurements after normalization to the respective livetime tlive. The data is

taken with LAB + 5% PRS + 1.5% water + 2 g/l PPO + 45 mg/l bis–MSB (wsLAB4) in HG mode.
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(b) 22Na, tlive = 238.239 s.
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(c) 207Bi, tlive = 360.087 s.
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Figure B.18: Pulse–height spectra in ADC channels (ch) of all used calibration sources (a-c) and of

background only (d). The third γ–line of 207Bi is shown enlarged in the inset of (c). The background is

subtracted from the source measurements after normalization to the respective livetime tlive. The data is

taken with LAB + 5% PRS + 1.5% water + 2 g/l PPO + 45 mg/l bis–MSB (wsLAB4) in LG mode.
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B.2 Pulse–height over pulse–shape distributions

Within this section the remaining pulse–shape (PS) over pulse–height (PH) distributions

from all linear alkylbenzene (LAB) and water–surfactant–LAB (wsLAB) samples are pre-

sented that were not shown in Sec. 6.5.1. These distributions were measured in the white

neutron field described in Sec. 6.3.1 and are used for pulse–shape discrimination. Only

low gain (LG) mode data is shown. Qualitatively, the high gain (HG) distributions are an

enlargement of the LG distributions at low PHs.

(a) LAB + 3 g/l PPO + 15 mg/l bis–MSB. (b) LAB + 3 g/l PPO.

(c) LAB + 0.1% Nd + 3 g/l PPO. (d) wsLAB + 2 g/l PPO + 45 mg/l bis–MSB.

Figure B.19: PH – PS parameter space of all events detected with LAB and wsLAB scintillators during

beam run in LG mode. The individual compositions are written in the subcaptions. The wsLAB contains

5% PRS and 1.5% water.
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B.3 Time–of–flight distributions

All time–of–flight (TOF) distributions, measured in the white neutron field with linear

alkylbenzene (LAB) and water–surfactant–LAB (wsLAB), that were not shown in Sec. 6.5.1

are presented in this section. The distributions are shown before satellite correction to

underline the good performance of the cyclotron in most of the cases in contrast to the

rejected measurements using wsLAB3 and wsLAB4, shown in Fig. B.20q to B.20t. High

gain (HG) and low gain (LG) data is presented.
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(b) LAB + 2 g/l PPO + 15 mg/l bis–MSB, HG.
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(c) LAB + 2 g/l PPO, LG.
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(d) LAB + 2 g/l PPO, HG.
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(e) LAB + 3 g/l PPO + 15 mg/l bis–MSB, LG.

TOF [ch]

700 800 900 1000

C
o

u
n

ts
 /

 c
h

0

10

20

30

40
3

10×

(f) LAB + 3 g/l PPO + 15 mg/l bis–MSB, HG.
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(g) LAB + 3 g/l PPO, LG.
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(h) LAB + 3 g/l PPO, HG.
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(i) LAB + 2 g/l PPO + 0.1% Nd, LG.
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(j) LAB + 2 g/l PPO + 0.1% Nd, HG.
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(k) LAB + 3 g/l PPO + 0.1% Nd, LG.
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(l) LAB + 3 g/l PPO + 0.1% Nd, HG.
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(m) wsLAB + 2 g/l PPO + 15 mg/l bis–MSB + 0.3% Te,

LG.
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(n) wsLAB + 2 g/l PPO + 15 mg/l bis–MSB + 0.3% Te,

HG.
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(o) wsLAB + 2 g/l PPO + 15 mg/l bis–MSB, LG.
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(p) wsLAB + 2 g/l PPO + 15 mg/l bis–MSB, HG.
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(q) wsLAB + 2 g/l PPO + 15 mg/l perylene, LG.
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(r) wsLAB + 2 g/l PPO + 15 mg/l perylene, HG.
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(s) wsLAB + 2 g/l PPO + 45 mg/l bis–MSB, LG.
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(t) wsLAB + 2 g/l PPO + 45 mg/l bis–MSB, HG.

Figure B.20: TOF distribution in LAB and wsLAB scintillators measured during beam time before

satellite correction. The specific scintillator and amplification mode is given in the subcaptions. The PRS

and water content in wsLAB is 5% and 1.5%, respectively.



Appendix C

Relativistic kinematics of the

two–body 12C(n,α)9Be reaction

This chapter outlines the relativistic kinematics of the reaction 12C(n,α)9Be that are

necessary to determine the maximum kinetic energy of the emitted α–particle, i.e. of

the ejectile. The following calculation is based on Lorentz–invariant quantities, where s

denotes the squared invariant mass of the reaction. Quantities in the center–of–mass frame

are indexed with ’cm’. The numbering scheme of the four participating particles with

mass m follows m1(m2,m3)m4. The total particle energy is denoted with Ei and E′j , the

particle momentum with pi and p′j and the kinetic energy with Ti and T ′j , where i = (1, 2)

and j = (3, 4). In this scheme, the wanted maximum kinetic α–particle energy reads T ′3,max.

The target nucleus 12C is assumed to be at rest and the incident neutron, i.e. the

projectile, has a kinetic energy T2. Without loss of generality, the projectile direction is

chosen along the positive z–axis. The four–vectors in the laboratory frame hence are

p1 = (m1, 0, 0, 0) , (C.1)

p2 = (E2, 0, 0, p2) , (C.2)

p3 = (E3, 0, p3 sin θ3, p3 cos θ3) , (C.3)

p4 = (E4, 0, p4 sin θ4, p4 cos θ4) , (C.4)

where θ is the angle between the particle direction and the z–axis. The squared invariant

mass in the laboratory frame is in this case given by

s =

∑
i=1,2

Ei

2

−

∑
i=1,2

pi

2

(C.5)

= (m1 +m2)2 + 2m1T2,

and in the center–of–mass frame by
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s =

(√
m2

1 + p2
cm +

√
m2

2 + p2
cm

)2

, (C.6)

where the initial particle momenta p1 and p2 are equal and opposite and pcm ≡ |p1| = |p2|.
Further algebraic manipulation yields the total center–of–mass momentum

pcm =

√(
s−m2

1 −m2
2

)2 − 4m2
1m

2
2

4s
. (C.7)

It is analogously derived for the final state particles and is thus

p′cm =

√(
s−m2

3 −m2
4

)2 − 4m2
3m

2
4

4s
. (C.8)

A useful quantity to express the Lorentz transformation is the rapidity ϕ, which is

defined such that the Lorentz factor is γ = coshϕ and the relativistic beta is β = tanhϕ

and thus βγ = sinhϕ. Using these equalities, the particle energy and momentum read in

the center–of–mass frame

E(′)
cm =

√
m2 + p

(′)2
cm = m coshϕ, (C.9)

p(′)
cm = m sinhϕ. (C.10)

The back–transformation of the particle energy from the center–of–mass to the laboratory

frame in this notation is performed as per

E(′) = E(′)
cm coshϕ+ p(′)

cm,z sinhϕ, (C.11)

=

√
m2 + p

(′)2
cm coshϕ+ p(′)

cm cos θcm sinhϕ. (C.12)

Knowing the rapidity, the ejectile energy thus directly follows from Eq. C.8 and C.12. The

rapidity is derived from Eq. C.9, C.10 and the trigonometric equality eϕ = sinhϕ+ coshϕ

and yields

ϕcm = ln

(
pcm +

√
m2

1 + p2
cm

m1

)
. (C.13)

The quantity of interest within this chapter is the maximum kinetic energy of the

ejectile. The particle reaches the maximum total energy, when cos θcm = 1 in Eq. C.12, i.e.

when the scattering angle towards the z–axis is zero, which yields

Emax
3 =

√
m2

3 + p′2cm coshϕ+ p′cm sinhϕ. (C.14)

The maximum kinetic energy of the α–particle can now be calculated from the known

kinetic neutron energy T2, using the above equations and

T ′3,max = Emax
3 −m3. (C.15)



Appendix D

Numerical neutrino energy

reconstruction from the proton

recoil spectrum

This chapter describes a numerical approach for the reconstruction of the incoming neutrino

energy Eν from the visible energy Evis of ν–p elastic scattering events. The approach is

based on the scheme presented in [92]. The aim of the reconstruction is the inversion of

dN

dEvis
(Eν) =

∫ ∞
Emin
ν

Np
dEp
dEvis

dσ

dEp
(Eν)

dN

dEν
dEν , (D.1)

which describes the calculation of the visible energy spectrum dN/dEvis from the incoming

neutrino energy spectrum dN/dEν . Np is the number of target protons, dEp/dEvis is the

proton response function, commonly described by Birks’ law Eq. 2.12, and dσ/dEp is the

differential cross section of the process. Emin
ν is the minimal neutrino energy, which is

necessary to reach a kinetic proton energy Ep.

D.1 Numerical solution of first–kind Volterra integral

equations

Equation D.1 is a linear Volterra integral equation of the first kind:

g(t) =

∫ b

a=t
K(t, s)f(s)ds, (D.2)

where g(t) is known and f(s) is the unknown function to be solved for. The function of

both variables, K(t, s), is also called kernel with

K(t, s) = 0 for s < t. (D.3)

To solve integral equations numerically, any kind of quadrature rule
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∫ b

a
y(x)dx ≈

H∑
j=0

wjy(xj) (D.4)

is typically used, where wj are weights and xj the abscissas of the quadrature rule.

The simplest scheme is given by Newton–Cotes rules, which evaluate the integrand on

a grid with constant step size as per

xj = a+ jh, j = 0, 1, ...,H, h ≡ b− a
H

. (D.5)

In this equation, H is the number of steps with step size h. The points of the grid are

also known as quadrature points. Two well–known Newton–Cotes rules are the extended

trapezoidal rule

∫ b

a
y(x)dx ≈ h

y(x0)

2
+
H−1∑
j=1

y(xj) +
y(xH)

2

 (D.6)

and the extended midpoint rule ∫ b

a
y(x)dx ≈ h

H−1∑
j=0

y
(
x′j
)

(D.7)

with

x′j =
xj + xj+1

2
. (D.8)

A comparison of the two rules shows that the trapezoidal rule uses H + 1 abscissas,

which are identically equal to the quadrature points, while the midpoint rule uses H

points, which are shifted with respect to the quadrature points. The meaning of this

difference will become important in the next section.

Applying Eq. D.4 to Eq. D.2 yields

g(t) ≈
H∑
j=0

wjK(t, sj)f(sj). (D.9)

Evaluating this equation at the quadrature points

g(ti) ≈
H∑
j=0

wijK(ti, sj)f(sj)

=
H∑
j=0

K̃(ti, sj)f(sj) (D.10)
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with

K̃(ti, sj) = wijK(ti, sj), (D.11)

Eq. D.2 can be written in matrix notation:

K̃ · f ≈ g. (D.12)

When g is nonzero and K̃ is invertible, Eq. D.12 has a unique solution f = K̃−1 · g,

where K̃−1 is the matrix inverse. As a consequence of Eq. D.3, K, and thus also K̃, is

upper triangular with zero entries below the diagonal. Matrix equations of this kind are

trivially solvable by backward substitution

fi ≈
1

K̃ii

gi − H∑
j=i+1

K̃ijfj

 . (D.13)

In case the trapezoidal rule Eq. D.6 is used for numerical integration, the approxima-

tion of f(s) at the abscissas is given by

fi ≈
2

Kii

gi
h
−

H−1∑
j=i+1

Kijfj −
KiHfH

2

 . (D.14)

If, instead, the midpoint rule Eq. D.7 is applied, it is given by

fi ≈
1

hKii

gi − h H−1∑
j=i+1

Kijfj

 . (D.15)

Note that the values of the vector f(si) in Eq. D.14 and Eq. D.15 are evaluated at

different points and that the entries in the matrixK(ti, sj) are not identical as the abscissas

are shifted from sj to s′j (see Eq. D.8). Given the trapezoidal rule, f(si) and g(ti) are of

dimension n = H + 1 and K(ti, sj) is an n × n matrix, whereas in case of the midpoint

rule f(si) has the dimension m = H and K(ti, sj) is an n×m matrix.

D.1.1 Application to a supernova event spectrum

In this section, the integral Eq. D.1 is solved, using the above methods. The visible

spectrum dN/dEvis is based on the reference SN (see Sec. 7.1), occurring at a distance from

the Earth of 10 kpc and being observed by 1 kt of LAB based scintillator. Furthermore, a

trigger threshold of 200 keV visible energy is considered.

The variables s and t in the Volterra equation Eq. D.2 are given by the neutrino kinetic

energy Eν and the minimal neutrino kinetic energy Emin
ν necessary to obtain a proton with

a kinetic energy of Ep, respectively. When a neutrino with a true energy Eν scatters off a

proton, the proton kinetic energy ranges from 0 to Emax
p , where

Emax
p =

2E2
ν

mp + 2Eν
(D.16)
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and hence

Emin
ν =

Ep +
√

2mpEp + E2
p

2
, (D.17)

where mp is the proton mass. Using Eq. D.17 and Ep(Evis) from the inverse of Birks’

law Eq. 2.12, the variable Evis in Eq. D.1 is substituted by Emin
ν . The measured energy

spectrum of recoiled protons dN/dEvis(E
min
ν ) provides the function g(Emin

ν ), the kernel is

calculated as per

K(Emin
ν , Eν) = Np

dEp
dEvis

(Emin
ν )

dσ

dEp
(Emin

ν , Eν) (D.18)

and the supernova neutrino fluence dN/dEν(Eν) is the unknown function f(Eν).

Figure D.1a shows the known function g(Emin
ν ) = dN/dEvis(E

min
ν ) and Fig. D.1b and D.1c

show the integrand of Eq. D.2, K(Emin
ν , Eν)f(Eν), exemplary at Emin

ν = 34.34 MeV (or

Evis = 0.71 MeV). These two figures furthermore show the approximation of the integrand

using the trapezoidal (Eq. D.6) and the midpoint (Eq. D.7) quadrature rule.

The measuring interval ranges from the trigger threshold of Evis = 200 keV to

Evis = 5.00 MeV, where the observed proton recoil spectrum drops below 0.1 events/MeV

in the given example. This corresponds to a Emin
ν interval from 21.90 MeV to 71.66 MeV.

Using the trapezoidal rule to conduct the numerical integration, the lower limits Emin
ν,i to

yield the respective value g(Emin
ν,i ) run along the same grid as the abscissas used within

each integration. Hence K(Emin
ν,i , Eν,j) is a n × n matrix, as mentioned earlier, whereas

the abscissas are shifted in case the midpoint rule is applied and K(Emin
ν,i , Eν,j) reduces to

a n×m matrix (see Fig. D.1b and D.1c). K needs to be quadratic though, in order to be

invertible. Thus a further abscissa is appended without changing the integral as this step

is consistent with adding a zero.

Assuming in the next step that the values g(Emin
ν,i ) are known from measurement, the

unknown function f(Eν) can be approximated using Eq. D.14 and D.15. The numerical

approximation naturally improves with decreasing step size. The minimal step size

possible is given by the known values of g(Emin
ν,i ) and thus by the bin width of the data.

The minimal step size reasonable is given by the statistics in the individual data bins.

To enable the assumption of a Gaussian distribution of the bin content, bins with <5

events must be merged, bins with <10 entries should be merged. In the next step, the

horizontal axis of the data has to be rescaled, since the proton recoil spectrum dN/dEvis is

measured as a function of quenched proton energy Evis, not as a function of the respective

minimal neutrino energy Emin
ν . The bin centers finally provide the quadrature points

Emin
ν,i . However, even starting from uniformly binned data, the quadrature points are not

equidistant since the translation from Evis to Emin
ν is not linear. Consequently, Eq. D.14

and D.15 need to be generalized to allow for a variable step size:
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ν

ν

(a) Measured spectrum g(Emin
ν ) = dN/dEvis(E

min
ν ).

ν

ν

(b) Integrand, approximated by the trapezoidal rule.

ν

ν

(c) Integrand, approximated by the midpoint rule.

Figure D.1: Components of the Volterra integral Eq. D.2, assuming the explicit form Eq. D.1. (a) shows

the known function g(Emin
ν ) (blue solid line), i.e. the measurement dN/dEvis as function of Emin

ν , and

marks one distinct value Emin
ν,i (red point). (b-c) shows the integrand of Eq. D.2, where the kernel entries

Ki at Emin
ν,i over Eν are described by Eq. D.18 and where the function f(Eν) to be solved for is given

by the neutrino energy spectrum dN/dEν . The red dashed line marks the value of Emin
ν,i , i.e. the lower

limit of the integral to be solved. The cyan points mark the quadrature points used for the numerical

integration, the black crosses indicate the abscissas of the quadrature rule and the black solid line indicates

the corresponding approximation of the function between two quadrature points. (a) uses the trapezoidal

quadrature rule for the approximation and (b) the quadrature midpoint rule. The gray area corresponds to

the energy range above the trigger threshold.
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fi ≈
2

Kiihi

gi − H−1∑
j=i+1

(
hj−1 + hj

2

)
Kijfj −

hH
2
KiHfH

 , (D.19)

fi ≈
1

hiKii

gi − H−1∑
j=i+1

hjKijfj

 . (D.20)

D.1.2 Propagation of statistical uncertainties

The covariance matrix Vg of the vector g(Emin
ν ) of observables contains at this point only

statistical Poisson fluctuations, i.e. the diagonal elements are σ2
gi = Ni, the off–diagonal

are σgiσgj = 0. The uncertainties within the reconstructed vector f(Eν) are correlated and

the covariance matrix Vf is calculated from Vg according to

Vf = K̃−1 · Vg · K̃−1 T . (D.21)

In the above section, two different quadrature rules are presented in order to calculate

the entries of the weighted kernel K̃, given here in matrix representation. The weights

wij in this calculation are very different for both rules, while the unweighted kernels K

agree within the percent level. As a consequence, the derived covariance matrices strongly

deviate from each others. This instance, and its impact, will be explained in detail in the

following subsection.

Simplified example

Starting from a simplified example with three quadrature points and equidistant steps h

along s within the numerical integration of f(s) results in a 3 × 3 kernel K. K̃ is then

given by

K̃ =


w11K11 w12K12 w13K13

0 w22K22 w23K23

0 0 w33K33

 (D.22)

using Eq. D.11. Comparing Eq. D.13 with Eq. D.14 and D.15 shows that in the case

of the midpoint rule all weights are identical, with wij = h, while the weights using the

trapezoidal rule are different on the diagonal and in the last column with wii = wiH = h/2.

The inverse matrix for the latter case is given by
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K̃−1 =



2 · 1
hK11

−4 · K12
hK11K22

4 · K12K23
hK11K22K33

− 2 · K13
hK11K33

0 2 · 1
hK22

−2 · K23
hK22K33

0 0 2 · 1
hK33



=



2 · κ11 −4 · κ12 4 · κ13, a − 2 · κ13, b

0 2 · κ22 −2 · κ23

0 0 2 · κ33


,

(D.23)

where the pre–factors (highlighted in red) are all equal to one in the case of the midpoint

rule.

Since only statistical uncertainties σgi = σgi, stat are considered here, the covariance

matrix Vg of the observables is given by

Vg =


σ2
g1

0 0

0 σ2
g2

0

0 0 σ2
g3

 . (D.24)

The difference in K̃−1 and its transposed further propagates into the covariance matrix

Vf applying Eq. D.21:
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The values of the pre–factors, which additionally enter the covariance matrix Vf in

case of the trapezoidal rule, become larger with an increasing number of quadrature points,

or in other words, with a finer binning of the data set. In the same time, the entries of the

unweighted kernels K become more and more similar using either of the two rules. Thus

the covariance matrices Vf , deduced from the two rules, increasingly deviate from each

others. As a consequence, not only the correlations between the bins are considered to be

differently strong, but also the statistical uncertainty per reconstructed Eν bin derived

from the diagonal of Vf varies significantly, even though the event statistics is the same.

These findings show that in case of the presented numerical approach, the covariance

matrix depends on the numerical integration method. This dependency is further prop-

agated into any sensitivity study to spectral parameters of SN neutrinos, using ν–p ES.

Thus this approach is not further followed in the context of this thesis, since no conclusive

statement about detector sensitivities is possible in this case.
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of the PTB and the mechanical workshop of the TU Dresden. Thanks also to my former

diploma student, Laura Neumann, who made valuable contributions to the achievement of

the results at hand. I am also most grateful for the tireless supply with every kind of metal–

loaded scintillators by Dr. Minfang Yeh and Dr. Sunej Hans. All these people helped to

make the measurements presented within this work possible. Thank you! In the context of

supernova neutrinos, I would like to express my special appreciation to Dr. Torben Ferber

for his priceless support, co–work and advice. Thanks also to Dr. Cristina Volpe for helpful

discussions and to Dr. Hans–Thomas Janka and Dr. Lorenz Hüdepohl for granting me
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