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Abstract 

The ferroelectric field effect transistors (FeFETs) are considered as promising 

candidates for future non-volatile memory applications due to their attractive features, such as 

non-volatile data storage, program/erase times in the range of nanoseconds, low operation 

voltages, almost unlimited endurance, non-destructive read-out and a compact one-transistor 

cell structure without any additional access device needed. Despite the efforts of many 

research groups an industrial implementation of the FeFET concept is still missing. The main 

obstacles originate from the conventional perovskite ferroelectric materials (lead zirconium 

titanate (PZT) and strontium bismuth tantalate (SBT)), in particular their integration and 

scaling issues. The recently discovered ferroelectric behaviour of HfO2-based dielectrics 

yields the potential to overcome these limitations. The decisive advantages of these materials 

are their full compatibility with the standard CMOS process and improved scaling potential. 

Utilisation of the Si:HfO2 ferroelectric thin films allows to fabricate FeFETs in a state-of-the-

art CMOS technology node of 28 nm. The ferroelectricity in HfO2 has been discovered only 

several years ago. Therefore, there are still a lot of uncertainties about the origin of the 

ferroelectric behaviour as well as the impact of different fabrication conditions on its 

emergence. Moreover, the electrical behaviour of both the HfO2-based ferroelectric films and 

memory devices based on these films requires more detailed studies. The emphasis of this 

work lays on the ferroelectric properties of HfO2 thin films doped with silicon (Si:HfO2). The 

potential and possible limitations of this material with the respect to the application in non-

volatile FeFET-type memories were extensively examined.  

The material aspects of the Si-doped HfO2 thin films were studied at first in order to 

gain better insight into the occurrence of ferroelectricity in this system and to acquire 

guidelines for FeFET fabrication. The influence of the different process parameters such as 

the Si doping concentration, post-metallisation annealing conditions and film thickness on the 

stabilisation of the ferroelectric properties in Si:HfO2 films has been examined. Electrical 

characterisation combined with structural analyses enabled the correlation of the changes in 

the macroscopic electrical properties to alterations in the film crystalline structure. The film 

composition was shown to have a strong impact on the electrical properties of Si:HfO2 films. 

By varying the silicon doping level, paraelectric, ferroelectric or antiferroelectric-like 

behaviour was induced. Moreover, the temperature of the post-metallisation annealing as well 

as the film thickness can be used to tune the ferroelectric properties of the Si:HfO2 films by 

changing their phase composition.  
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Furthermore, the electrical behaviour of the ferroelectric Si:HfO2 films was analysed in 

detail. The effect of field cycling, polarisation switching kinetics and ferroelectric specific 

degradation (fatigue) were investigated. The improvement of the ferroelectric properties upon 

field cycling (“wake up” effect) that is often observed in perovskite ferroelectrics was also 

detected for Si:HfO2 ferroelectric films. The polarisation switching times in the nanosecond 

range were ascertained. Fatigue properties of Si:HfO2 films were shown to depend on the 

frequency and voltage amplitude. In contrast to perovskite ferroelectrics a dielectric 

breakdown was identified as one of the factors that limited the cycling capability of the 

Si:HfO2 ferroelectrics. Due to operation at MHz frequencies and electric fields below 

3 MV/cm the cycling capability was extended to 10
9
 cycles and a fatigue-free behaviour was 

demonstrated up to 10
6
 cycles.  

The performance of the Si:HfO2-based MFIS-FET devices, which were fabricated using 

the state-of-the-art 28 nm high-k metal gate CMOS technology, was investigated including 

the key memory characteristics, such as the program and erase behaviour, retention and 

endurance. The studied FeFETs demonstrated program and erase times in the nanosecond 

regime (10 – 100 ns) with operation voltages of 4 – 6 V. The operation capability of the 

Si:HfO2-based ferroelectric transistors was proven in the temperature range between 25 and 

210 °C. The retention behaviour of the studied devices deteriorated with increasing 

temperature and improved at higher operation voltages. Furthermore the impact of scaling on 

the memory performance of Si:HfO2-based MFIS-FETs down to the gate length of 28 nm was 

investigated. The scaled devices demonstrated memory characteristics comparable to that of 

the long channel structures. The transistor short channel effect rather than deteriorated 

ferroelectric properties explained the observed difference in the behaviour of the scaled 

devices in comparison to the long channel devices.  

The endurance (limited to 10
4
 – 10

5
 program/erase cycles) and charge trapping that is 

superimposed with the ferroelectric switching were identified as the main issues of the 

Si:HfO2-based FeFET devices. A detailed study of both these issues was performed in this 

work. The limited endurance was found to be linked to the reliability of the transistor gate 

stack. A predominant degradation of the interfacial layer, which is embedded between the 

silicon substrate and the ferroelectric film, was detected. This was similar to the behaviour of 

the standard high-k metal gate stacks. Indications that this process can be held responsible for 

the endurance behaviour of the Si:HfO2-based MFIS-FET devices were discussed. The 

electron trapping enhanced by the ferroelectric polarisation charge was shown to superimpose 

with the ferroelectric switching at typical erase operation conditions. This electron trapping 

impaired a fast erase. It is also suggested as the main cause of the interfacial layer degradation 

upon endurance cycling. A modified approach for the erase operation was proposed in this 

work in order to mitigate the impact of trapping and increase the effective erase speed.  
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Kurzzusammenfassung 

Die ferroelektrischen Feldeffekttransistoren (FeFETs) zählen mit zu den 

vielversprechenden Kandidaten für zukünftige nichtflüchtige Speicheranwendungen. Der 

Grund dafür sind ihre attraktiven elektrischen Eigenschaften: die nichtflüchtige 

Datenspeicherung, Programmier- und Löschzeiten im Bereich von wenigen Nanosekunden, 

niedrige Betriebsspannungen, nahezu unbegrenzte Zyklenfestigkeit, nichtzerstörender 

Lesevorgang und eine kompakte Bauform der Speicherzelle, welche nur aus einem Transistor 

besteht und keine zusätzliche Zugriffsbauelemente benötigt. Trotz der Bemühungen von 

vielen Forschungsgruppen, konnte eine industrielle Umsetzung des FeFET-Konzeptes bisher 

nicht erreicht werden. Die Integrationsschwierigkeiten und Skalierungslimitierungen, die mit 

den klassischen Perowskit-Ferroelektrika (Blei-Zirkonium-Titanat (PZT) und Strontium-

Wismut-Tantalat (SBT)) verbunden sind, sind dafür verantwortlich. Die vor kurzem 

nachgewiesene Ferroelektrizität von HfO2-basierten Dielektrika bietet das Potenzial diese 

Einschränkungen zu überwinden. Der entscheidende Vorteil dieser neuen ferroelektrischen 

Materialien ist ihre Kompatibilität mit dem CMOS-Prozess in Kombination mit einem 

besseren Skalierungspotenzial. Die Anwendung von ferroelektrischen Si:HfO2 Dünnschichten 

ermöglichte die Herstellung von FeFET Bauelementen auf einem aktuellen CMOS 

Technologieknoten von 28 nm. Die Entdeckung der ferroelektrischen Eigenschaften in HfO2 

Dünnschichten erfolgte erst vor wenigen Jahren. Infolgedessen gibt es immer noch sehr viele 

Unklarheiten über den genauen Ursprung dieser Eigenschaften und den Einfluss der 

verschiedenen Herstellungsprozessfaktoren auf ihrer Entstehung. Darüber hinaus muss ein 

besseres Verständnis vom elektrischen Verhalten, sowohl der HfO2 ferroelektrischen 

Dünnschichten, als auch der auf ihnen basierenden Speicherelemente erworben werden. Das 

elektrische Verhalten von HfO2 Dünnschichten, deren ferroelektrischen Eigenschaften mit 

Siliziumdotierung induziert wurden, stellte den Schwerpunkt der vorliegenden Arbeit dar. Das 

Potenzial und die möglichen Einschränkungen dieses Materialsystems, mit Bezug auf die 

Anwendung in nichtflüchtigen FeFET Speicherelementen, wurden ausführlich untersucht.  

Als Erstes wurden die Materialaspekte der mit Si dotierten HfO2 Dünnschichten mit 

dem Ziel analysiert, ein besseres Verständnis für das Auftreten von Ferroelektrizität in diesem 

System zu gewinnen. Die erworbenen Erkenntnisse dienten später als Leitpfaden für die 

Herstellung von FeFET Bauelementen. Der Einfluss von verschiedenen 

Herstellprozessparametern auf die Stabilisierung der ferroelektrischen Eigenschaften in 

Si:HfO2 wurde untersucht. Unter anderem wurde die Konzentration von der 
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Siliziumdotierung, die Bedingungen für die Postmetallisierungstemperung und die 

Schichtdicke betrachtet. Die Kombination der elektrischen Charakterisierung mit den 

Strukturanalysen, ermöglichte die Änderungen in den makroskopischen elektrischen 

Eigenschaften mit den Änderungen in der Kristallstruktur zu korrelieren. Eine starke 

Abhängigkeit der elektrischen Schichteigenschaften von deren Zusammensetzung wurde 

beobachtet. Paraelektrisches, ferroelektrisches und antiferroelektrishes Verhalten konnte 

durch die Variierung der Siliziumdotierung induziert werden. Darüber hinaus wurden die 

Temperatur der Postmetallisierungstemperung und die Schichtdicke als zusätzliche Faktoren, 

die die Phasenzusammensetzung der Si:HfO2 Dünnschichten und als Folge ihre 

ferroelektrischen Eigenschaften beeinflussen können, identifiziert.  

Im nächsten Schritt wurde eine detaillierte Untersuchung der elektrischen Eigenschaften 

von den ferroelektrischen Si:HfO2 Dünnschichten durchgeführt. Der Effekt des Feldzyklens, 

die Kinetik des Polarisationsschaltvorgangs und die Degradation, verursacht durch ein 

kontinuierliches Polarisationsschalten (Fatigue), wurden dabei analysiert. Ein elektrisches 

Wechselfeld verursachte eine Verbesserung der ferroelektrischen Eigenschaften von Si:HfO2 

ferroelektrischen Schichten. Dieser sogenannte "wake up"-Effekt ist auch charakteristisch für 

die klassischen Ferroelektrika. Polarisationsschaltzeiten im Nanosekundenbereich konnten für 

die untersuchten Si:HfO2 Schichten nachgewiesen werden. Ihre Fatigue-Eigenschaften waren 

sehr stark von der Testfrequenz und der Amplitude des Stresssignals abhängig. Im 

Unterschied zu den klassischen Perowskit-Ferroelektrika, deren Zyklenfestigkeit 

hauptsächlich durch die Abnahme der schaltbaren Polarisation beeinträchtigt wird, hat sich 

für die Si:HfO2 ferroelektrischen Schichten der dielektrische Durchbruch als 

Hauptlimitierungsfaktor erwiesen. Durch die Anwendung von Frequenzen im MHz-Bereich 

und elektrischen Feldern unter 3 MV/cm konnte die Zyklenfestigkeit von Si:HfO2 verbessert 

werden, so dass 10
9
 Schaltzyklen realisiert werden konnten. Eine nur geringfügige 

Degradation bei bis zu 10
6
 Zyklen wurde festgestellt. 

Die auf Si:HfO2 Dünnschichten basierenden FeFET Speicherelemente wurden auf der 

Basis eines High-k-Metall-Gate-CMOS Prozesses im 28 nm Technologieknoten hergestellt. 

Ihre wichtigsten Betriebseigenschaften einschließlich der Datenhaltung, der Zyklenfestigkeit, 

des Programmier- und Löschverhaltens wurden untersucht. Die Programmier- und 

Löschzeiten im Nanosekunden-Zeitregime (10 – 100 ns) mit Betriebsspannungen von 4 – 6 V 

konnten nachgewiesen werden. Darüber hinaus wurde die Funktionsfähigkeit dieser 

Speicherelemente in einem Temperaturbereich von 25 bis 210 °C getestet. Mit zunehmender 

Temperatur wurde eine Verschlechterung der Datenhaltungseigenschaften festgestellt. Die 

höheren Betriebsspannungen hatten einen entgegengesetzten Effekt und bewirkten eine 

Verbesserung der Datenhaltung. Zusätzlich wurde der Einfluss der Skalierung auf die 

Funktionalität der auf Si:HfO2-basierenden FeFETs analysiert. Zu diesem Zweck wurden die 



 

vii 

Speicherelemente mit Gatelängen bis zu 28 nm hergestellt. Die hochskalierten 

ferroelektrischen Transistoren zeigten vergleichbare Charakteristiken zu den 

Langkanaltransistoren. Die Unterschiede in dem Verhalten zwischen Speicherelementen mit 

kurzen und langen Kanälen konnten größtenteils durch Transistorkurzkanaleffekte erklärt 

werden. Im Gegensatz dazu waren die ferroelektrischen Eigenschaften von der Skalierung nur 

geringfügig beeinflusst.  

Die Hauptproblemen von auf Si:HfO2 basierenden FeFET Speicherelementen sind zum 

heutigen Zeitpunkt die Zyklenfestigkeit (begrenzt auf 10
4
 – 10

5
 Programmier- und 

Löschzyklen) und der Ladungseinfang, der sich mit dem ferroelektrischen Schalten 

überlagert. In der vorliegenden Arbeit wurde eine ausführliche Analyse beider Aspekte 

durchgeführt. Es wurde festgestellt, dass Eigenschaften des Transistorgatestapels 

hauptsächlich für die limitierte Zyklenfestigkeit verantwortlich sind. Eine Ähnlichkeit 

zwischen den Degradationsvorgängen im ferroelektrischen und dem hoch- Gatestapel wurde 

festgestellt. Die Degradation während des kontinuierlichen Programmierens und Löschens 

beschränkte sich auf die Grenzschicht zwischen Substrat und hoch- Dielektrikum. Die 

Verschlechterung der Speichereigenschaften in den HfO2-basierten FeFETs beim 

Programmieren und Löschen lässt sich durch die Gatestapeldegradation erklären. Ein weiterer 

Einflussfaktor ist der Elektroneneinfang während des Löschens, der durch die ferroelektrische 

Polarisation des Gatestapels zusätzlich verstärkt wird. Das hat zur Folge, dass sich die 

Elektroneninjektion vom Halbleitersubstrat bei typischen Löschbedingungen mit dem 

ferroelektrischen Schalten überlagert. Das gleichzeitige Einfangen von Elektronen beim 

Schalten, wirkt sich nachteilig auf die Löschgeschwindigkeit aus, die sich dramatisch 

reduziert. Das Einfangen von Elektronen wurde auch für die Degradation des 

Transistorstapels während des Zyklens und somit für die begrenzte Zyklenfestigkeit der 

ferroelektrischen Transistoren verantwortlich gemacht. Ein modifizierter Ansatz für die 

Löschoperation mit dem Ziel den schädlichen Effekt des Elektroneinfangs zu reduzieren und 

die effektive Löschgeschwindigkeit zu verbessern wurde in dieser Arbeit vorgeschlagen.  
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1 Introduction 

Advancement in the field of microelectronics in the last several decades has 

revolutionised your daily life, where numerous electronic devices have become its 

inextricable part. The recent trend is a rapid popularisation of portable electronic devices 

(smart phones, digital audio players and digital cameras) and portable storage media (memory 

cards, USB flash drives, solid-state drives). A key enabling technology for this trend is non-

volatile semiconductor memories (NVSMs) due to their capability of non-volatile data 

storage, speed, compactness, mechanical robustness and low power consumption [1]. A 

continuous demand for the higher memory capacity, better performance and more 

functionality at lower costs drives a continuously ongoing increase in the storage density, 

which is achieved by scaling of elementary memory devices. The current concept used in 

NVSMs is the floating-gate (FG) technology, in which the data is stored in form of electric 

charges within a conductive layer (floating-gate) embedded into a gate stack of a field effect 

transistor. Up to now the FG devices were able to scale like all silicon technology in 

accordance with Moore’s law [2], which predicts a doubling of transistor density in an 

integrated circuit approximately every two-three years. The contemporary technological node 

for NAND architecture reached the 16 nm benchmark [3], resulting in several billions of 

transistors on one semiconductor chip. Further scaling will, however, be rather challenging, 

since the FG approach is already reaching its physical scaling limits [4], [5]. The inability to 

downsize the thickness of the insulating layers below 6 nm, the resulting high programming 

voltages, few-electron storage and cross-talk between neighbouring memory cells are the 

main obstacles for FG downsizing into 1x-nm and below [1], [6], [7]. In addition the FG cell 

exhibit several other drawbacks such as program/erase times in the range of microseconds to 

milliseconds, which makes it suitable only as a storage-type memory, as well as significantly 

higher operation voltages above 15 V in comparison to CMOS logic devices (below 1 V). 

Therefore, there is a strong demand on new memory concepts, which will be able to overcome 

the above mentioned limitations of the contemporary technology. The desired features are 

scaling potential below 16 nm, operation times of several nanoseconds comparable to volatile 

memories (SRAM and DRAM) in combination with non-volatile data storage possibility as 

well as low power operation. A wide variety of alternative memory approaches are being 

recently studied. Charge-trapping memories [8], [9], magnetic RAM [10], phase change RAM 

[11], resistive RAM [12] and ferroelectric RAM [13] are considered by the International 

Technology Roadmap for Semiconductors (ITRS) as the most promising candidates for future 

non-volatile memory applications and referred to as emerging memories [4].
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In the ferroelectric memories the spontaneous polarisation of the ferroelectric materials 

is utilised for data storage. This type of memories provides the potential for fast operation due 

to polarisation switching capability in the nanosecond time range, fast unlimited endurance 

properties and non-volatile data storage. Moreover, since the ferroelectricity is an intrinsic 

material property with a single polarisation dipole stored within a unit crystal cell, the scaling 

can theoretically proceed down to the crystal unit-cell size [14]. The concept of a one-

transistor ferroelectric cell (FeFET) is especially promising due to a cell design similar to the 

floating-gate memory but with a different gate stack structure. It provides the possibility for a 

non-destructive readout and a potential for a high integration density. The concept of a non-

volatile ferroelectric transistor was proposed in the late 1950’s [15]. Its industrial 

implementation is, however, still missing. The main obstacles originate from the conventional 

perovskite-type ferroelectric materials (lead zirconium titanate (PZT) and strontium bismuth 

tantalate (SBT)), in particular their integration [16], [17] and scaling issues [13]. The recently 

discovered ferroelectric properties of HfO2-based thin films [18] – [20] renewed the interest in 

FeFET [21]. The decisive advantages of the HfO2-based ferroelectrics are their full 

compatibility with the standard CMOS process and stable ferroelectric properties at film 

thicknesses in the nanometre range (5 – 30 nm) [22], [23]. The latter allow for a drastic 

reduction of the gate stack height, providing gate stack aspect ratios more suitable for scaling. 

The better scaling potential of HfO2-based ferroelectrics is also assisted by a significantly 

lower dielectric constant of ~25 (for PZT or SBT ~200–300) and higher coercive field 

strength EC of ~1 MV/cm (for PZT or SBT ~50 kV/cm). At reduced ferroelectric thickness 

these material properties enable to avoid high depolarization fields and compensate the 

memory window loss. Utilizing ferroelectric Si:HfO2, FeFETs were fabricated at a state-of-

the-art 28 nm technology node, which finally closed the scaling gap between the ferroelectric 

and CMOS logic transistors [24]. The effect of the ferroelectricity in HfO2 has been 

recognised only several years ago. Therefore, there are still a lot of uncertainties about the 

origin of this ferroelectric behaviour as well as the impact of different fabrication conditions 

on its emergence. Moreover, the electrical behaviour of both, the HfO2-based ferroelectric 

films and memory devices based on these films, requires more detailed studies.  

The emphasis of this work lay on the properties of HfO2 thin films, in which the 

ferroelectricity is induced by the silicon doping (Si:HfO2). The potential and possible 

limitations of this material system with the respect to the application in non-volatile FeFET-

type memories were extensively examined. Material aspects of Si:HfO2 thin films were 

studied first using planar capacitor structures in order to get better insight into the ferroelectric 

properties and guidelines for transistor fabrication. The impact of the silicon doping 

concentration, post-metallisation annealing and film thickness on the emergence of 

ferroelectricity was investigated. By performing extensive electrical characterisation and 
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structural analyses the correlation between the film crystalline structure and their electrical 

properties was found. The piezoelectric measurements were additionally carried out in order 

to confirm the structural ferroelectricity of the Si:HfO2 films. Furthermore, their electrical 

properties that are relevant for memory applications, including the effect of the field cycling, 

polarisation switching kinetics and fatigue behaviour were investigated in detail. The 

performance of the Si:HfO2-based FeFET memory devices, which were fabricated using the 

state-of-the-art 28 nm high-k metal gate CMOS technology, was investigated. The key 

memory characteristics, such as the program and erase behaviour, retention and endurance, 

were analysed. The impact of scaling of the Si:HfO2-based FeFETs down to the gate length of 

28 nm on their memory performance was investigated. The limited endurance and parasitic 

charge trapping were identified as the main issues of the studied devices. A detailed study of 

both these issues was performed in this work. 
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2 Fundamentals 

2.1 Non-volatile semiconductor memories 

Non-volatile memories (NVMs) are a type of memory that enables information storage 

in the absence of an external power supply, in contrast to volatile memories, that lose the 

stored data when the power is turned off. NVMs include magnetic memories (e. g. magnetic 

tapes, hard drives), optical memories (optical discs) and non-volatile semiconductor memories 

(NVSMs) (e. g. NAND and NOR Flash, solid state drives). The main advantage of the 

NVSMs is that they are electrically addressable, which enables fast access times (1 ns – 

50 s). The absence of any mechanical parts makes them more robust and transportable than, 

for example, magnetic hard discs. Moreover, random access of each individual cell can be 

realised with NVSMs using the NOR memory architecture, a property that is not available for 

other memory types, in which the physical location of each individual data unit must be 

addressed mechanically. The price which NVSMs pay for this electrical control is a higher 

technological cost per bit and significantly lower storage densities in comparison to magnetic 

and optical memories. There are several types of NVSMs which are distinguished by their 

ability to be randomly accessed and rewritten [25]: mask-programmed read only memories 

(mask ROM), programmable read only memories (PROM), electrically programmable read 

only memories (EPROM), electrically erasable and programmable read only memories 

(EEPROM) and Flash EEPROM. For example, EEPROM type cells can be electrically erased 

and programmed byte-wise. The Flash EEPROM type cells can be also electrically erased and 

programmed; the erase is, however, performed on large blocks, whereas programming 

remains a byte wise operation. The Flash EEPROM, which enables the highest data storage 

density, is currently the leader in the NVSM market. The basic structure of all modern 

electrically programmable NVSMs is a field effect transistor with a floating gate.  
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2.1.1 Metal-insulator-semiconductor field-effect transistor 

  

Figure 2.1 (a) Schematic diagram of an n-channel MISFET and (b) its transfer characteristic with  

drain current (ID) or logarithm of ID plotted versus gate voltage (VG).  

The metal-insulator-semiconductor field effect transistor (MISFET) forms the basic 

structure of non-volatile semiconductor memories. Figure 2.1 (a) shows a schematic drawing 

of an n-channel MISFET device. It consists of a p-type semiconductor substrate with two 

highly doped n-regions, the source and drain. The conductivity of the channel between source 

and drain regions can be capacitively controlled by applying a voltage to the gate electrode, 

which is separated from the semiconductor surface by an insulator. If a negative voltage is 

applied to the gate electrode, the majority charge carriers, holes, are drawn from the bulk of 

the semiconductor substrate and accumulate on the surface, resulting in a low electron 

conductivity of the channel. A positive gate voltage, on the other hand, repels the holes and 

attracts the electrons. If the applied positive gate voltage is high enough, it leads to the 

inversion of the conductance type at the semiconductor surface. An n-conductive channel is 

formed, which enables electrons to flow between the source and drain regions. The gate 

voltage required to build up an electron conductive channel is called the threshold voltage 

(VTH). For an n-channel MISFET the threshold voltage can be calculated as [25]:  
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where q is the unit electronic charge, 0 – the permittivity in vacuum, S – the relative 

semiconductor permittivity (for Si S = 11.9), NA – the acceptor concentration of the p-type 

semiconductor substrate, B – the Fermi potential, which is the Fermi level energy with 

respect to the middle of the semiconductor band gap, and Ci – the capacitance of the gate 

insulator or gate insulator stack in case of multilayer structures. The threshold voltage 

comprises three terms: (1) the flatband voltage (VFB) required to achieve flatband conditions 
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at the semiconductor surface with zero surface potential S = 0, (2) a voltage of 2B required 

to set the semiconductor surface into a strong inversion (where S = 2B) and (3) the voltage 

required to compensate the charge of the depletion region of the semiconductor substrate (last 

term in (2.1)). The value of the flatband voltage is determined by the work function difference 

between the metal of the gate electrode and the semiconductor (MS) as well as by the voltage 

drop, caused by the charges within the insulating layer. The insulator charges are 

characterised by an effective net surface charge density (Qeff), calculated under the assumption 

that all charges are located at the semiconductor-insulator interface. From the definition of the 

threshold voltage in (2.1) it can be seen that VTH value is affected by the properties of the 

semiconductor substrate, e.g. its doping concentration, as well as properties of the gate stack 

such as the insulator capacitance and the electrode work function. Special attention should be 

drawn to the fact that an introduction of charges into the insulator layer of the gate stack 

provides an additional possibility to adjust the threshold voltage. This property is decisive for 

the NVS memories, as will be discussed in the next chapter 2.1.2.  

If a voltage is applied to the drain electrode (VD) while setting the source and bulk 

contacts to the ground potential, a drain current (ID) flows through the transistor channel. The 

magnitude of ID can be controlled by the applied gate voltage (VG). The transistor can be 

operated in different modes (linear, non-linear and saturation) depending on the relationship 

between the gate and drain voltages [25]. In the linear mode, with VD << (VG – VTH), where 

the conductive channel can be treated as a uniform resistive layer, the drain current yields 

[25]: 

where W  and L  denote the width and length of the transistor channel, respectively, and n  

stands for electron mobility in the channel. The dependence of the drain current on the gate 

voltage at constant drain bias is referred as the transistor transfer characteristic (ID-VG)  

(Figure 2.1 (b)). Above the threshold voltage a conductive channel is formed and the drain 

current exhibits a linear dependence on the gate voltage. The VTH value can be experimentally 

obtained by extrapolating the linear region of the ID-VG curve to the zero drain current value 

or by using a constant drain current criterion [26]. The region below VTH is called the 

subthreshold region. Here the semiconductor surface is in weak inversion or depletion and the 

drain current is dominated by electron diffusion along the channel due to the electron-density 

gradient and not by the drift in the lateral electric field. In the subthreshold region the drain 

current exhibits an exponential dependence on the gate voltage.  

,
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2.1.2 Floating-gate memory technology  

In the present age of digital electronics, information is stored in form of digital states. 

The main principle of a data storage device (memory cell) is the possibility to realise of at 

least two stable states, which represent logical “0” and “1”. In this way 1-bit digital 

information can be stored by a single memory cell. These two states should be retained 

independent of an external power supply to enable non-volatile operation.  

The modern NVSMs are charge-based devices, where the data is stored in the form of 

an electric charge within a field effect transistor with a floating-gate. The structure of a 

floating-gate (FG) cell is schematically illustrated in Figure 2.2 (a). It consists of a field effect 

transistor as a basic structure with an additional conductive layer, commonly lightly doped 

polysilicon, embedded into the insulator layer of the gate stack. This conductive layer is 

called the floating-gate, since it is completely surrounded by an insulator and its potential is 

floating. The second electrode, control gate (CG), is used for the external control of the 

channel conductivity. The memory operation is realised by storing the charges on the floating-

gate, which is electrically isolated and, thus, retains its charge even if the power is switched 

off. The conductance of the transistor channel is directly affected by the presence of charges 

on the floating-gate. For example, the stored electrons will lower the channel conductivity, 

resulting in a decreased drain current for the same voltage on the control gate (as shown in 

Figure 2.2 (a) by the thickness of the ID arrow). The VTH-value of the transistor increases 

according to (2.1), leading to a positive shift of the ID-VG characteristic. Thus, at least two 

memory states can be distinguished for FG cell: “ON”-state, corresponding to high channel 

conductivity and low VTH-value, and “OFF”-state, corresponding to low channel conductivity 

and high VTH-value ((Figure 2.2 (b)). The read operation can be performed non-destructively 

by sensing the drain current. 

  

Figure 2.2 Floating gate cell and its data storage principle. (a) Two memory states of a FG cell with 

and without electrons stored on the FG electrode, representing the “ON”- and “OFF” states, 

respectively. (b) ID-VG characteristics in two memory states. 
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Figure 2.3 Program and erase operations of a FG cell. (a) Program by Fowler-Nordheim tunneling, 

(b) program by channel hot-electron injection, (c) erase by Fowler-Nordheim tunneling.  

The state of the FG cells can be rewritten by changing the amount of charge stored on 

the floating-gate. The injection of electrons onto the floating-gate is commonly referred to as 

the program operation which sets the cell into the “OFF” state. During the inverse erase 

operation the electrons are removed from the floating-gate and the cell is returned into the 

initial “ON” state. Both program and erase can be performed electrically due to the presence 

of the control-gate electrode. Two mechanisms for electron injection can be exploited to 

program the FG cell [27], [1]: Fowler-Nordheim (FN) tunneling and channel hot-electron 

injection (CHEI). The voltages applied to the transistor terminals and the accompanying 

electron flow are shown in Figure 2.3 for each approach. For programming with Fowler-

Nordheim tunneling (Figure 2.3 (a)) a positive voltage is applied to the control gate and all 

other terminals are kept at 0 V. Electric fields of 8 – 10 MV/cm are required across the bottom 

insulator to induce charge injection from the substrate into the floating-gate. Both insulating 

layers of the gate stack should be at least 6 nm thick in order to ensure good retention of the 

electrons stored on the floating-gate. Therefore, high operation voltages of about 15 – 20 V 

have to be used to achieve the required injection fields. In the case of Fowler-Nordheim 

tunneling the electrons are injected onto the floating-gate uniformly along the channel. The 

efficiency of this program operation depends on the gate coupling ratio (GCR), which is 

defined as the ratio of the CG-to-FG capacitance to the total FG capacitance and determines 

the voltage distribution within the gate stack [27]. The GCR must be more than 0.6 in order to 

ensure a predominant voltage drop across the bottom insulating layer. The mechanism of FN 

tunneling is rather slow, resulting in operation times in the range of milliseconds. On the other 

hand, using channel hot-electron injection (Figure 2.3 (b)), the programming can be 

accomplished in several microseconds. In this case relatively high drain voltages are applied 

(4 – 6 V) to accelerate the electrons in the lateral electric field to the energies sufficient to 

overcome the potential barriers between the channel and the floating-gate. The injection takes 

place predominantly near the drain region, where the electrons exhibit the maximum energy. 

Two types of electrons contribute to the injection current: electrons accelerated in the channel, 
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scattered by the lattice and redirected towards gate as well as electrons generated by impact 

ionisation that gained the required energy. In order to make the programming more efficient, a 

positive voltage (8 – 11 V) is applied to the control-gate. This approach is rather power 

consuming, since high currents flow in the channel. The erase operation is performed via 

Fowler-Nordheim tunneling by applying a negative voltage (about – 15 – 20 V) to the 

control-gate or positive voltage to the source/drain, which induces back-tunneling of the 

stored electrons from the floating-gate into the channel (Figure 2.3 (c)).  

Tremendous success in the development of the FG memory technology has been 

achieved in the last several decades. The compact design of the memory cell consisting of a 

single transistor enabled its continuous rapid scaling and, thus, facilitated a continuous 

increase of the data storage density. The NVSM market is dominated currently by the NAND-

type flash memories with which the highest storage density with commercially available 

products up to 128 Gb is achieved. Further increases of the storage density will, however, be 

rather challenging, since the FG approach is already reaching its scaling limits. The 

contemporary technology node is 16 nm [3], whereas already below 15 nm node new memory 

concepts will be required according to the International Technology Roadmap for 

Semiconductors [4]. The main obstacles for FG scaling are the inability to downsize the 

thickness of the insulating layers below 6 nm and the resulting high programming voltages, 

the need to maintain a high gate coupling ratio, retention issues due to few-electron storage 

and cross-talk between neighbouring memory cells [1], [6], [7]. Other drawbacks of the FG 

cell concept are the relative slow programming times in the range of microseconds to 

milliseconds as well as endurance restricted to a maximum of 10
4
 – 10

6
 program/erase cycles 

due to the intrinsic charging and degradation of the bottom insulating layer exposed to 

repeated charge injection.  

2.2 Emerging memory concepts  

Several new alternative concepts, referred to as emerging memories, were proposed as 

possible replacement for the conventional FG approach. The most promising candidates for 

future memory application are charge-trapping memories, magnetic memories, phase change 

memories, resistive memories and ferroelectric memories. A short overview of the first four 

concepts, including their operation principle, advantages and drawbacks, will be given in this 

chapter. The ferroelectric based memories will be discussed in detail in chapter 2.3.  

Charge-trapping (CT) memories that store the charge on localised trap states within a 

dielectric layer instead of a conductive floating-gate are regarded as the most probable 

successor to the FG approach for the technology nodes below 15 nm [4]. Silicon nitride 

commonly serves as the charge storage layer. The charge-trapping memories are also called 
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Figure 2.4 Emerging memory concepts: (a) SONOS-type charge-trapping memory, (b) magnetic  

RAM [28], (c) phase change RAM [11] and (d) resistive RAM [29]. 

SONOS-type memories because of the layer sequence used to form the transistor gate stack: 

polysilicon gate, block oxide, silicon nitride and tunnel oxide on a silicon substrate  

(Figure 2.4 (a)). The charge is stored in the localised trap sites so this memory type is more 

tolerant to tunnel oxide imperfections in comparison to the FG approach. Therefore, thinner 

oxide films (3 – 4 nm) can be utilised, resulting in a reduction of the operation voltages. 

Moreover, charge-trapping cells do not suffer from the gate coupling ratio issue, since the 

channel is directly controlled by the control gate, and the cross talk between the neighbouring 

cells is significantly reduced. The main weak point of SONOS cells is their limited erase 

capability, which can be improved only at the expense of the retention properties. Proposed 

solutions to this problem include band engineering of the tunnel oxide (BE-engineering) [30] 

and implementation of high-k dielectrics for the block oxide in combination with high 

workfunction metals (MANOS cells) [31]. Moreover, since the change-trapping memories 

exploit the program/erase concepts similar to the FG, they experience the same scaling 

obstacles: word-line to word-line breakdown due to the high operation voltages and retention 

degradation as a result of few electron storage. Therefore, planar scaling below 15 nm will 

also be challenging for the charge-trapping memories. On the other hand, alternative solutions 

for increasing the storage density become feasible, such as multi-bit storage in the NROM 

cells [8], [32] and 3D architectures [9], [33], which enable higher storage densities without the 

need to decrease the cell size. Ultra-high storage density can be achieved using the latter 

approach. Complication of the fabrication process is, however, a consequence. 

Magnetic random access memories (MRAMs) exploit the tunnel magneto-resistive 

effect [34] for data storage and belong to the class of non-charge-based non-volatile 

memories. The elementary cell consists of a magnetic tunnel junction, two ferromagnetic thin 

films separated by an insulating tunnel barrier, and an access transistor connected in series 

(Figure 2.4 (b)). The memory states differ in the resistivity of the junction, which is 

determined by the relative orientation of the magnetisation in the ferromagnetic layers. A low 
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resistivity state corresponds to the parallel magnetisation orientation, whereas antiparallel 

orientation induces a high resistivity state. The magnetic junctions always include one pinned 

ferromagnetic layer with fixed orientation of magnetisation and the second free ferromagnetic 

layer with a changeable orientation of magnetisation. Utilisation of the spin-transfer torque 

[10], [35] for magnetisation switching enables realisation of highly scaled structures and 

significantly lowers the power consumption during write operation. Magnetic RAM has 

already been demonstrated many universal memory features: fast read and write in range of 

several nanoseconds comparable to DRAM or even better and just slightly worse than SRAM, 

low operation voltages of around 2 V and an almost unlimited endurance of 10
12

 write/read 

cycles [4]. The main obstacle is scaling below 30 nm. The reduction in the cell size degrades 

the thermal stability, resulting in poor retention. The solution can be found in introduction of 

new materials [28], which are still at the development stage. Moreover, the complicated 

structure of the magnetic tunnel junction, including 10 – 12 different layers with thickness of 

0.8 – 2 nm, makes the fabrication process challenging from the viewpoint of deposition and 

etching.  

Phase change random access memories (PCRAMs) are resistive-type memories similar 

to the MRAMs, where the memory states differ in their resistance. The basic memory cell is 

also similar to the MRAM cell (Figure 2.4 (b)). It consists of a resistor with an adjustable 

resistance and an access device, typically a field effect or bipolar transistor. The variation in 

resistance in PCRAM is based on the reversible transition between a high resistive amorphous 

phase and the low resistive crystalline phase of the functional material. The chalcogenide 

alloys (most commonly germanium-antimony-tellurium Ge-Sb-Te alloys) are used as the 

storage medium. These materials have already found wide application in the optical-type 

memories (CD and DVD disks), which make use of the difference in optical properties for the 

amorphous and crystalline phases. The PCRAMs utilise, on the contrary, the dependence of 

the electrical resistance of these materials on their crystalline structure. The resistor of a 

PCRAM cell consists of top and bottom electrodes with the phase change layer and the heater 

resistor material embedded in between (Figure 2.4 (c)). The phase change occurs in the local 

volume of the chalcogenide film above the heater and is accomplished by applying a current 

pulse, which causes local heating of a material. The amplitude and the width of the current 

pulse determine the resulting memory state (crystalline structure). A short pulse of high 

amplitude establishes the high-resistive amorphous state, whereas a longer pulse of lower 

amplitude is required to obtain the low-resistive crystalline state [11]. The main advantages of 

this memory type are fast switching times (10 -100 ns), low operation voltages (1 – 2 V), high 

endurance with 10
9
 cycles [4], the capability of multi-level data storage [11] and relatively 

uncomplicated integration in to the CMOS process flow. The main obstacles arise from the 

requirement of high current density during the writing of a memory state. It limits the scaling 
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of the access device and, thus, the entire memory cell [36]. Moreover, high current densities 

can cause a deterioration of the endurance characteristics [36]. Other matters of concern are 

the thermal cross-talk between the cells at high storage densities, the read disturb and the 

retention degradation caused by the structural relaxation [1]. 

Resistive random access memories (ReRAMs) are another memory type that exploits a 

reversible change in the resistance of a metal-insulator-metal structure as the data storage 

principle. The resistive switching is based on electrically induced ionic motion combined with 

reduction/oxidation (redox) electrochemical reactions. Therefore, this memory type is also 

often referred as Redox RAM. The memory cell consists of a resistor, which is typically a 

metal-insulator-metal capacitor that exhibits resistive switching behaviour, and an access 

device such as a field effect transistor or a diode. There is a wide variety of materials that 

demonstrate resistive switching [12]: binary transition metal oxides (TiO2, Nb2O5), 

perovskite-type complex transition metal oxides materials ((Ba, Sr)TiO3, Pb(ZrxTi1-x)O3), 

large band gap high-k dielectrics (Al2O3), chalcogenides and organic compounds. Further, the 

ReRAM cells differ in their operation principle. A classification [12], [37] is possible in terms 

of the electrical switching behaviour (unipolar and bipolar), the conductance mechanism 

(filament-type and interface-type conductance (Figure 2.4 (d))) or the physical mechanisms 

responsible for switching (thermo- chemical mechanism, valence change mechanism and 

electrochemical metallisation). The ReRAMs are able to provide fast read and write operation 

speeds in the nanosecond time range (<10 ns) at low operation voltages (< 1 V). They are 

considered to be promising candidates for high-density integration due to the potential 

scalability of the cell below 10 nm [38], multi-bit storage and the functionality of crossbar-

array architectures that use passive access devices (diodes) instead of transistors. Although 

high endurance (> 10
10

 write cycles) and good retention properties have been demonstrated 

for some material systems [39], [40], little data on the statistical analyses is available. 

Reliability issues such as endurance and retention cannot be excluded, since none of the cell 

resistance states can be considered as thermodynamically stable [12]. An understanding of the 

driving force for the resistive switching remains unclear, which is the main obstacle for 

ReRAM commercialisation that requires a well-understood, predictable and stable 

technology.  
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2.3 Ferroelectric memories 

2.3.1 The ferroelectric effect  

Ferroelectricity is a particular property of some dielectric materials in which they 

exhibit a spontaneous electric polarisation that can be reversed by an external electrical field. 

The materials that reveal these properties are called ferroelectrics. Typical examples of widely 

used ferroelectric materials are barium titanate (BTO) [41] lead zirconate titanate (PZT) [42], 

[43], [44] and strontium bismuth tantalate (SBT) [14], [45]. Ferroelectric properties have also 

been found in several organic materials [46], [47].  

The ability of a crystal to show ferroelectric behaviour is directly determined by its 

crystallographic symmetry. Only non-centrosymmetric crystals, which have no inversion 

centre, can possess ferroelectric properties. In this case the unit cell is allowed to have unique 

crystallographic directions not mirrored by any symmetry element. This crystallographic 

direction can act as a polarisation axis. Figure 2.5 (a) illustrates two stable configurations of  

 

 

 

 

 

 

   

Figure 2.5 (a) Unit cell of a PZT crystal in two possible stable states with the central Ti or Zr ion 

displaced toward either the upper or lower oxygen ion along the tetragonal symmetry axis giving rise 

to a net electric polarisation directed up (state “0”) or down (state “1”) [49]. (b) Free energy as a 

function of polarisation for ferroelectric materials without or with an applied external electric field 

EEXT. (c) Typical ferroelectric hysteresis loop showing polarisation (P) as a function of external 

electric field (E). The three important loop parameters are: spontaneous polarisation (PS), remanent 

polarisation (PR) and coercive electric field (EC).  
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the unit cell of PZT crystal in the tetragonal ferroelectric phase.The central ion (Ti
4+

 or Zr
4+

) 

is displaced from the central position toward either the upper or lower oxygen ion O
2–

so that 

the centres of the net negative and positive charges are shifted relative to each other. The net 

electric polarisation is directed either up or down, which can represent the two logical states 

“0” and “1”. These two thermodynamically stable atom configurations can be described by 

means of a double-well potential with two equilibrium positions corresponding to the same 

minimum value of the free energy and separated by a potential barrier [48] (Figure 2.5(b)). At 

any given time the central ion of a unit cell (Ti
4+

 or Zr
4+

) is located at one of the two possible 

positions corresponding to one of the energy minima. In the presence of an external electric 

field the potential barrier is lowered so that the ion can change its position and jump into the 

other potential minimum. Thus, the polarisation direction is reversed. In ferroelectric 

materials the relationship between polarisation and electric field is represented by the 

hysteresis loop (Figure 2.5(c)). It can be used to extract the characteristic material parameters: 

the spontaneous polarisation (PS), the remanent polarisation (PR) and the coercive electric 

field (EC). PS is obtained from extrapolation of the saturating linear part of the hysteresis to 

zero field value, whereas PR is the actual polarisation remaining in the crystal after the electric 

field has been removed. EC corresponds to the value of the external electric field with a 

polarity opposite to the remanent polarisation that is required to reduce the latter to zero. PR 

and EC are the decisive characteristics of ferroelectric materials for memory application and 

determine the operation voltage and memory window. Table 2.1 summaries these 

characteristics for the most important ferroelectric thin films.  

The local crystal regions with the same orientation of spontaneous polarisation are 

referred to as ferroelectric domains. The transition regions between domains with different 

polarisation directions are called domain walls and are 1 – 10 nm thick comprising only 2 – 3 

unit cells [54], [55]. In ferroelectric materials a multi-domain structure is commonly formed 

in order to minimise the total crystal energy [56], [49]. This process is determined by the 

electrostatic energy associated with the depolarisation field that arises from non-compensated  

 

Table 2.1 Key characteristics of typical ferroelectric thin films [49] – [52].  

Materials PR (C/cm
2
) EC (kV/cm) 

Pb(Zr,Ti)O3 (PZT) 25-35 50-70 300-1300 

SrBi2Ta2O9 (SBT) 10-25 30-50 120-250 

BaTiO3 (BTO) 3-15 30-50 300-1000 

(Bi,La)4Ti3O12 (BLT) 15-20 80-100 150-300 

Polymer ferroelectrics 2-10 50-5000 10 
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Figure 2.6 Mechanisms of polarisation switching in ferroelectric films after [53]. 

polarisation charges, as well as the elastic energy associated with the mechanical constraints. 

The impact of mechanical stress on the formation of the domain structure is especially 

important in polycrystalline materials and thin films [56], [49].  

Domains with different polarisations are statistically distributed in unpoled ferroelectric 

materials resulting in a zero net polarisation. In the presence of an external electric field, the 

domains reverse so that the polarisation direction of most domains coincides with that of the 

external field. Three regimes for the switching of the polarisation in ferroelectric films are 

generally distinguished [53]: nucleation of the domains with polarisations similar to the 

external field, forward growth of needle-like domains in the direction of the external field and 

sideways domain expansion (Figure 2.6). The two latter processes occur by means of domain 

wall motion. Nucleation commonly takes place at the electrode interface or at grain 

boundaries, where the formation energy is the lowest. The time needed for a nucleus to reach 

the critical size required for further growth is called the nucleation time, which is about 1 ns 

for oxide ferroelectrics [53]. The time for forward growth ( FGt d v ) is determined by the 

film thickness (d) and the speed of sound (v). For films thinner than 1 m FGt  lies in the 

picosecond time range and can be neglected. The time for sideways domain growth depends 

on the strength of the applied electric field (E) according to 3 2

SGt C E  , where C is a 

constant. The rate-limiting mechanism depends on the material properties, film thickness [57], 

crystalline structure (monocrystalline or polycrystalline) [16], temperature [58] and lateral cell 

size [53]. There are two main models that describe the polarisation switching process [16]:  

(1) the Kolmogorov-Avrami-Ishibashi model developed by Ishibashi and Tagaki [59], [60], 

which treats the polarisation reversal in terms of domain wall motion, and (2) the nucleation-

limited switching model proposed by Tagantsev [61], which considers the nucleation of 

reversed domains as the limiting switching mechanism. The first model is applicable for 

single crystals [62] and epitaxial films [63], whereas the second model describes the 

switching behaviour in polycrystalline films [61], [64]. Switching typically proceeds in the 

nanosecond time range (2 – 200 ns) for ferroelectric thin films [65] – [67].  
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Figure 2.7 Characteristic form of the polarisation-electric field P(E) and capacitance-electric field 

C(E) curves for three material classes: (a), (b) ideal linear dielectrics, (c), (d) ferroelectrics and  

(e), (f) anti-ferroelectrics.  

A hysteretic dependence between polarisation and electric field is a necessary but not 

a sufficient condition of true ferroelectricity in a material [68], [69]. Several other artefacts, 

such as surface polarisation, trapping-detrapping phenomena at Schottky-like electrodes [70] 

or leakage currents [71], can be also responsible for an experimentally detected hysteresis 

loop. Additional information about the true material properties can be gained by analysing the 

voltage dependence of the small signal capacitance. The polarisation-field and small signal 

capacitance-field curves characteristic for three classes of materials: linear dielectrics, 

ferroelectrics and antiferroelectrics, are shown in Figure 2.7. In case of linear dielectrics the 

electric polarisation exhibits a linear dependence from the electric field and field-independent 

capacitance value (Figure 2.7 (a), (b)). Polarisation hysteresis loops and butterfly-shaped 

capacitance-field curves are characteristic for ferroelectric materials [72], [73] (Figure 2.7 (c), 

(d)). The response measured during the capacitance-voltage test is associated with ionic and 

electronic displacements as well as with reversible domain wall motions around the local 

energy minima [72]. Since the domain wall concentration is highest at the coercive fields, the 

value of capacitance should peak at these points [72]. Antiferroelectric materials are similar to 

ferroelectrics in that they possess spontaneous dipoles originating from their crystal structure. 

The main difference is, however, that the neighbouring dipoles are aligned antiparallel to each 

other, resulting in a zero net polarisation. Antiferroelectrics can be field-forced to undergo a 

phase transition into the ferroelectric phase by applying an external electric field, when a 

critical field value (ECR) is achieved [74], [75]. This ferroelectric phase is, however, unstable 

and transforms back into the antiferroelectric phase when the external field is removed. 

Therefore, antiferroelectric materials do not exhibit any remanent polarisation. This 

possibility of field-induced phase transition in antiferroelectric materials leads to a double- 
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loop polarisation hysteresis and double-butterfly-shaped capacitance-field curve  

(Figure 2.7 (e), (f)).  

True ferroelectric materials should also reveal piezoelectric and pyroelectric properties 

in addition to a polarisation hysteresis. This follows from the classification of dielectric 

materials (Figure 2.8). Ferroelectrics are a special subclass of dielectric materials that belong 

to pyroelectrics. These are, in turn, a special subclass of piezoelectric materials. The effect of 

pyroelectricity is based on the temperature dependence of the spontaneous polarisation of the 

crystal. In a pyroelectric crystal the change in the net polarisation is proportional to the 

temperature change, which can be measured in a closed circuit as a current flow or in an open 

circuit as a voltage change across the crystal. Piezoelectricity is the property of a material to 

acquire an electric polarisation in response to the applied mechanical stress. This is referred as 

direct piezoelectric effect. The converse piezoelectric effect consists in inducing the 

deformation of a sample by applying an external electric field. Expansion/constriction is 

detected when the external electric field is parallel/antiparallel to the direction of the existing 

spontaneous polarisation in the sample. In ferroelectric materials the displacement versus 

electric field dependence has the so-called butterfly shape [77], [56], which is caused by 

polarisation reversal. Figure 2.9 (a) shows the correlation between the idealised polarisation 

and displacement loops of a ferroelectric, in which the polarisation reverses by 180° [56], 

[76]. In real ferroelectric materials the shape of the displacement loop is smoother  

(Figure 2.9 (b)) due to the distribution in the domain coercive fields and existence of non-

180° domains [56]. The converse piezoelectric effect is utilised in piezoresponse force 

microscopy (see chapter 3.2.4) for the visualization of ferroelectric domains.  

 

 

 

 

Figure 2.8 Classification of dielectric 
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 Figure 2.9 Converse piezoelectric effect [76]. (a) Correlation 

between the idealised polarisation P(E) and displacement d(E) 
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reverses by 180°. (b) d(E) loop shape of real ferroelectric 

materials. 
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Figure 2.10 Schematic illustration of the main ferroelectric degradation mechanisms after [49]:  

(a) fatigue, (b) retention loss and (c) imprint. 

The reliability properties of ferroelectric materials are essential for their application in 

memory devices. Three main degradation mechanisms are commonly discussed: fatigue, 

retention loss and imprint. Each of them is accompanied by a specific change in the 

polarisation loop (Figure 2.10). The fatigue effect is a result of repetitive polarisation reversal, 

which causes flattening of the polarisation loop and lowering of the switchable polarisation 

(Figure 2.10 (a)). Several theoretical models explaining fatigue phenomenon have been 

developed for perovskite-type ferroelectrics [53], [78] – [82]. The degradation of the 

switchable polarisation is attributed to modification of the switching process during cycling, 

where either the domain walls get pinned by mobile charged defects [82] – [84] or the growth 

of domain nuclei with opposite polarity becomes inhibited [78] – [80]. Two main microscopic 

origins of fatigue have been proposed – oxygen vacancies [79], [85], [86], redistributing 

within the ferroelectric layer under electrical stress, or free charges injected from the 

electrodes [78], [82], [87] – [89]. Retention loss is characterised by a decrease of the 

polarisation with time in cells with a primary established polarisation state (Figure 2.10 (b)). 

The retention properties are decisive for non-volatile type memories, where the capability of 

information storage for at least 10 years is required [1]. The depolarisation field, internal 

built-in bias and charge injection are considered to be the main driving forces for polarisation 

loss [90] – [92]. The depolarisation field arises from incomplete compensation of the 

ferroelectric polarisation at the electrode interfaces. This is the case for electrodes with low 

free charge carrier density [91], where a depletion layer appears, or for an insulating layer 

with low dielectric constant, which is embedded between the electrode and the ferroelectric 

layer [93]. The depolarisation field is an essential issue for metal-ferroelectric-insulator-

semiconductor (MFIS) stacks that can lead to retention loss. If one of the polarisation states is 

retained for a long time, a build-up of the internal bias can take place due to the redistribution 

of mobile charges within the ferroelectric layer or charge injection through the interfacial 

layer [16], [81]. This effect is called imprint. It is characterised by a shift of the polarisation 

hysteresis loop along the E-axis (Figure 2.10 (c)). The imprint effect leads to polarity 

dependent retention behaviour. The internal bias stabilises one of the polarisation states while 

impairing the stability of the opposite state.  
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2.3.2 Types of ferroelectric memories  

Ferroelectric materials can be used as an information storage media due to their ability 

to switch between two stable polarisation states. Progress in the fabrication of thin 

ferroelectric films has led to the development of two basic types of ferroelectric memories: 

Ferroelectric Random Access Memory (FeRAM) [42] and Ferroelectric Field Effect 

Transistor (FeFET) [14], [94]. These two concepts differ in the structure of the elementary 

memory cell and the readout approach. In the FeRAM the ferroelectric layer is integrated into 

the capacitor of a DRAM-like cell, resulting in a one transistor-one capacitor (1T-1C) 

memory cell. The FeFET-type cell consists of a single transistor (1T) with a ferroelectric layer 

built directly into the transistor gate-stack. The main advantages of ferroelectric memories are 

non-volatility, fast read/write times (under 50 ns), low operation voltages, very high 

endurance (greater than 10 
15

 write/read cycles) and low power operation [16], [1], making 

ferroelectric memory especially attractive for mobile applications.  

The FeRAM concept is a more developed one with commercial products already 

available including embedded (e.g., RFID and microcontrollers) and stand-alone applications 

(e.g., smart cards). The ferroelectric materials most widely utilized in modern FeRAM cells 

are PZT [42], [95] and SBT [45], [96] films. One of the main drawbacks of this memory type 

is a destructive readout scheme, where the polarisation of the cell is switched in order to sense 

the stored memory state. A voltage pulse is applied to the capacitor during reading and a 

transient current response is simultaneously sensed. Depending on the initial polarisation state 

the ferroelectric polarisation either is reversed or remains unchanged, resulting in different 

value of the transient current response. Since the cell state is changed during the readout 

operation, it must be rewritten each time after reading. This imposes the requirement of a high 

endurance resistivity on the ferroelectric material used. Another important issue is the 

incompatibility of conventional ferroelectric compounds with standard CMOS technology. 

The main FeRAM integration challenges include [97], [98], [17]:  

 interdiffusion of ferroelectric oxides’ constituents and silicon, resulting in a 

performance degradation of both the ferroelectric capacitor and the transistor, 

 high processing temperatures of ferroelectric films, promoting interdiffusion and 

impacting the doping profile of the transistors,  

 oxidation of the interconnect metal layers due to the high pressure oxygen atmosphere 

used during the fabrication of the ferroelectric films, 

 incorporation of hydrogen into the ferroelectric films during the forming gas annealing 

step, impairing their ferroelectric properties, 

 etching during structuring of ferroelectric capacitors. 
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In addition FeRAM, with its large cell size, can hardly compete with the conventional FG 

technology in the field of storage density and cost per bit. Since a FeRAM cell includes at 

least one transistor and one capacitor, it is difficult to scale it along with the CMOS 

technology roadmap. FeRAM has already faced its scaling limit at a contemporary node of 

130 nm [99]. The challenge of further cell miniaturisation originates from the minimum signal 

level (total capacitor charge) required for sensing [100], which is directly proportional to the 

capacitor area. 

The concept of the FeFET-type memory, where the insulating layer in the gate stack of 

a standard field effect transistor is replaced by a ferroelectric film, was proposed in the late 

1950’s [15]. Figure 2.11 schematically illustrates the structure of a FeFET memory cell and 

its basic operation principle using the example of an n-channel device. The conductivity of the 

transistor channel is modulated by the polarisation charge of the ferroelectric layer, which can 

be controlled by a voltage applied to the gate electrode. It should be noted that the effect of 

the gate voltage on the channel conductivity in FeFETs is opposite to that of charge-trapping 

memories (chapter 2.1.2). A positive gate voltage results in a positive polarisation charge at 

the ferroelectric-semiconductor interface, attracting electrons and increasing the channel 

conductivity. In this case the FeFET transistor is in the “ON” state with the ID-VG 

characteristic shifted to lower gate voltage. An “OFF” state is induced by applying a negative 

gate voltage which is sufficient to reverse the ferroelectric polarisation. The conductivity of 

the channel decreases due to the negative polarisation charge at the ferroelectric-

semiconductor interface and the ID-VG curve shifts to higher gate voltage. The readout of this 

cell can be performed non-destructively by sensing the drain current without changing the 

polarisation of the ferroelectric layer. This relaxes the requirement for unlimited endurance 

stability and lowers the power consumption. Furthermore, the compactness of a one transistor 

(1T) cell provides better scaling potential. Since the surface charge density and not the total  

 

 

Figure 2.11 Basic structure and operation principle of a FeFET-type memory cell.  
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Figure 2.12 Three possible implementation designs of a FeFET-type memory cell.  

charge, as for FeRAM, is decisive during sensing the conductivity of the transistor channel, 

the FeFET-type cell has a potential to be scaled along with the CMOS technology.  

Despite the simplicity of the 1T cell idea, its physical realisation has turned out to be 

challenging, which has prevented its industrial implementation up until now. The main 

obstacles originate from the integration [16], [17] and scaling issues [13] of conventional 

perovskite-type ferroelectric materials such as PZT and SBT. In a FeFET-type cell the 

ferroelectric material is in direct proximity to the silicon interface, in contrast to the FeRAM 

cell, in which the capacitor and transistor are two physically independent devices. Therefore, 

for the 1T ferroelectric cell the incompatibility issues of the typical ferroelectric materials 

with conventional CMOS transistor technology becomes even more crucial. Interdiffusion of 

silicon and components of the ferroelectric oxides’ impairs the ferroelectric properties [97], 

[17]. Simultaneously, the silicon interface degrades, resulting in increased interface trap 

density. Moreover, due to the direct contact between ferroelectric material and semiconductor 

channel, charge injection from the channel becomes inevitable, compensating the polarisation 

charge and leading to poor retention properties. In fact, the charging trapping was so severe in 

the first FeFET devices [101], [102] that it dominated the VTH shift after write operation and 

masked the ferroelectric polarisation. The introduction of a high-k interface buffer layer 

between the ferroelectric and semiconductor was required to solve the interdiffusion and 

charge-trapping issues [103] – [105], resulting in a metal-ferroelectric-insulator-

semiconductor (MFIS) cell type (Figure 2.12 centre). Further, HfO2-based buffer layers have 

enabled the poor retention to be overcome [105], [106], which was a serious matter of concern 

for a long time. A significant drawback of the perovskite-based ferroelectric transistors is 

their scaling limitation is another, which is caused by the necessity to grow thick ferroelectric 

films (200 – 500 nm) [13]. This is required to ensure an adequate voltage drop across the 

ferroelectric layer, to enable long data retention times and to provide a sufficient memory 

window (MW) between the two memory states. The MW can be estimated, to a good 
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approximation, as twice the product of the coercive field (EC) and thickness of the 

ferroelectric layer (dFE) [107], [108]:  

The requirement for a sufficiently large MW imposes a limitation on the scaling of the 

ferroelectric film thickness. The lowest tolerable dFE depends on the EC-value, which is a 

characteristic material parameter. In FeFETs utilising conventional ferroelectrics (PZT and 

SBT) with relative low coercive fields of about 50 kV/cm (Table 2.1), at least 100 nm thick 

films are needed to obtain a memory window of 1 V. The reduced voltage drop across the 

ferroelectric layer and increased depolarisation field, which impair the retention properties, 

are both shortcomings of the MFIS-FET structure. A capacitor consisting of a ferroelectric 

and a linear dielectric film represents a voltage divider. If an external voltage (VG) is applied, 

the voltage across the ferroelectric layer (VFE) is given by: 

where FE and IL are the relative dielectric constants of the ferroelectric and linear dielectric 

layer, respectively, and dFE, dIL are corresponding layer thicknesses. Equation (2.4) shows 

clearly that introduction of a buffer layer reduces the voltage drop across the ferroelectric 

film. A depolarisation field (EDEP) appears as a result of incomplete compensation of the 

ferroelectric polarisation (P) at the electrode side. Insulating layers embedded between the 

electrode and the ferroelectric enhance this depolarisation field [93], [109]. Since EDEP is 

directed opposite to the ferroelectric polarisation of the ferroelectric film, it leads to a 

polarisation reduction and deteriorates retention. In the simplified case of a ferroelectric 

capacitor with an insulating layer present at one of the electrodes EDEP can be calculated as 

following [110]: 

The voltage losses in the buffer layer as well the depolarisation field can be diminished by 

using buffer materials with very high dielectric constants or by increasing the thickness of the 

ferroelectric layer. For ferroelectrics like PZT and SBT that exhibiting -values about 200 – 

300, it is, however, difficult to find buffer materials with sufficiently high dielectric constants. 
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Therefore, a combination of both approaches with high-k HfO2-based buffer layers (IL 20) 

and thick ferroelectric films (200 – 500 nm) is currently adopted [111]. The physical height of 

the contemporary FeFET gate stack imposes constraint on its lateral down-scaling with a limit 

at the 50 nm node [13]. The most aggressively scaled FeFET devices based on the perovskite 

ferroelectrics reported in the literature has achieved a gate length of 260 nm up to now [112]. 

Thus, despite the promising scaling potential of the 1T ferroelectric memories, their scaling is 

limited in practice by the conventional ferroelectric materials.  

Another possible design of a 1T ferroelectric cell is the metal-ferroelectric-metal-

insulator (MFMIS) transistor [113], [114] (Figure 2.12 right). Its gate stack is more complex 

in comparison to the MFIS cell with an additional metal layer embedded between the 

ferroelectric and buffer film. This additional metal layer serves as a floating electrode. The 

MFMIS stack structure enables the processing of the MFM and MIS capacitors to be 

decoupled. As a result, an improved resistivity against detrimental interdiffusion and a higher 

quality semiconductor interface can be obtained. The voltage drop across the buffer layer and 

the depolarisation field can be reduced by adjusting the ratio between the areas of the MIS 

and MFM capacitors (AI/AF), producing lower operation voltages and better retention 

characteristics [115]. However, taking into account the difference between the dielectric 

constants of the typical ferroelectric materials and known buffer layers, the AI/AF ratio must 

be at least 5 – 10 [115]. This complicates the fabrication process and also limits the scaling 

possibilities. Moreover, a single leakage path in the buffer layer short-circuits the floating 

electrode with the semiconductor surface leading to an immediate degradation of the memory 

function. On the contrary, in the MFIS cells, the weak spots in the buffer layer induce only 

local compensation of the polarisation charge and are less critical.  

The existing FeFET prototypes demonstrate characteristics superior to the modern FG 

technology: high endurance resistivity up to 10
12

 program/erase cycles, 3 – 4 times lower 

operation voltages of 4 – 6 V and significantly shorter writing times in the range of 

nanoseconds [105], [111], [112]. Nevertheless, ferroelectric transistors have been left out of 

consideration as candidates for future memory applications due to the scaling issues and the 

incompatibility with CMOS processing associated with conventional ferroelectric materials. 

Therefore, there is a demand for new ferroelectric materials with characteristics that can 

enable the current limitations to be overcome. The required properties include a low dielectric 

constant, low remanent polarisation, high coercive field and compatibility with CMOS 

technology [116]. A promising candidate is the recently discovered HfO2-based ferroelectrics, 

which will be discussed in detail in the next section. 
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2.3.3 Ferroelectricity in HfO2 

The polymorphs of HfO2 most commonly reported in the literature are the monoclinic 

(P21/c), tetragonal (P42/nmc) and cubic (Fm3m) phases [117]. The monoclinic phase is the 

most thermodynamically stable in the bulk under ambient conditions. Elevated temperatures 

are required to induce a phase transition to the tetragonal and cubic phases at atmospheric 

pressure (1720 
o
C for the monoclinic-to-tetragonal and 2600 

o
C for the tetragonal-to-cubic 

transitions) [117]. Under high-pressure conditions two additional polymorphs of HfO2, both 

having orthorhombic symmetries (Pbca and Pmnb), were observed [118]. All crystal phases 

known for bulk HfO2 are centrosymmetric and, thus, cannot possess ferroelectric behaviour.  

The properties of thin polycrystalline HfO2 films can, however, differ significantly from 

their bulk counterparts. The contribution from the surface energy becomes comparable to the 

volume energy, especially in very thin layers with nanometre-size crystallites (1 – 5 nm), 

which, affects their physical properties [120], [121]. For instance, in thin films, the high-

temperature polymorphs can be stabilised at ambient conditions by the incorporation of cation 

dopants [122], [123] – [126], the growth of ultra-thin films [127] or crystallization in the 

presence of capping layers [128]. The ionic radius of the impurities determines whether the 

tetragonal or the cubic phase becomes stable [122]. For example, doping of HfO2 with silicon 

was reported to facilitate the formation of the tetragonal phase [123], [120], [129]. 

Furthermore, the stability of the amorphous phase in thin films is extended to higher 

temperatures in comparison to bulk HfO2. The onset of the crystallization can be tuned by 

both the film thickness and the doping concentration [127], [120]. Thin HfO2 films can 

exhibit electric properties that are different from those of bulk material, ferroelectric or 

antiferroelectric-like, instead of paraelectric. The effect of ferroelectricity in thin HfO2 films 

was first discovered with Si-doping [18] and subsequently also demonstrated for several other 

tetravalent and trivalent dopants such as Zr [19], Y [20], Al [130] and Gd [131]. The origin of 

the ferroelectric behaviour in HfO2 films is not yet completely understood. The ferroelectric 

properties emerge at a certain film composition that corresponds to the phase boundary 

between monoclinic and high-temperature phase (cubic or tetragonal), when film 

crystallisation occurs in the presence of mechanical confinement in the form of a capping 

layer (e.g. TiN electrode) [18], [119]. The amount of doping required depends on the dopant 

used and varies from several cation percent for Si, Al, Y, Gd (3 – 9 cat%) [18], [20], [130], 

[131] up to a fraction equal to Hf content as in case of Zr (30 – 50 cat%) [132]. The 

ferroelectric films can be obtained using atomic layer deposition (ALD) [18], [20] as well as 

physical vapour deposition (PVD) [133] techniques. The ferroelectric behaviour is proposed  

to originate from the non-centrosymmetric orthorhombic phase of the space group Pbc21 [18], 

[22], which emerges from the metastable tetragonal phase P42/nmc 
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Figure 2.13 Relationship between the HfO2 polymorphs according to [119].  

exposed to the mechanical stress provided by the capping layer. This orthorhombic phase has 

already been reported to form during martensitic transformation from the metastable 

tetragonal phase in magnesia-partially-stabilized zirconia ceramics [134], [135]. The latter 

should normally transform into the monoclinic phase. However, as argued by Kisi et al. in 

[136], this phase transition is inhibited in the presence of internal lattice strains. The main 

reason is, that the tetragonal-to-monoclinic phase transition is accompanied by a volume 

expansion of about 3.5% [117] and requires shearing and twinning of the unit cell. This 

becomes unfavourable in the presence of internal lattice strain. As a result, a tetragonal-to-

orthorhombic transition with less volume expansion and shearless unit cell transformation 

takes place instead. Due to the similarity of the crystalline structures of ZrO2 and HfO2, the 

occurrence of the orthorhombic Pbc21 phase can be also expected in HfO2. Since this phase 

belongs to the non-centrosymmetric space group, it can potentially exhibit ferroelectric 

properties. Figure 2.13 shows the relationship between the monoclinic, tetragonal and 

ferroelectric orthorhombic HfO2 phases. 

The ferroelectric properties of thin HfO2 films are of a particular interest for 

ferroelectric memories, since implementation of this material has the potential to overcome 

the limitations associated with conventional ferroelectrics. One of the main advantages of 

HfO2 is its full compatibility with the conventional CMOS process. Since 2007, HfO2-based 

materials have been introduced into CMOS technology as a high-k replacement to SiO2 

dielectrics in order to enable device downscaling below the 45 nm node [137] and are already 

established as reliable gate dielectrics in high-k metal gate technology [138], [139]. Moreover, 

HfO2-based ferroelectrics provide a better scaling potential in comparison to the conventional 

ferroelectrics. Stable ferroelectric properties at film thicknesses in the nanometre range (5 – 

30 nm) [22], [23] allow for a drastic reduction of the gate stack height, providing gate stack 

aspect ratios more suitable for scaling. The better scaling potential of HfO2-based 
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ferroelectrics is also assisted by a significantly lower dielectric constant of ~25 (PZT or SBT 

~200 – 300) and a substantially higher coercive field strength EC of ~1 MV/cm (PZT or SBT 

~50 mV/cm). At reduced ferroelectric thickness the former enables high depolarization fields 

to be avoided whereas the latter compensates for the memory window loss. The possibility to 

use ALD technique for film fabrication ensures high-quality films with excellent conformity 

as well as precise thickness control in the nanometre range. FeFETs were fabricated at a state-

of-the-art 28 nm technology node utilizing ferroelectric Si:HfO2 [24], which finally closed the 

scaling gap between the ferroelectric and CMOS transistors. Furthermore, ferroelectric HfO2 

is suitable for integration into 3D structures [140]. This 3D integration provides potential for 

continuing the FeFET scaling and fabricating it in non-planar configurations, such as the 

FinFET and 3D array architectures that are projected for the technology nodes below 20 nm 

[4]. Thus, the HfO2-based ferroelectrics can be expected to establish FeFET devices as a 

competitive concept for future memory applications and to enable their industrial 

implementation.  

2.3.4 Traps in HfO2  

The implementation of HfO2-based materials in CMOS technology has revealed their 

main deficiency, namely high intrinsic defect densities (10
12

 – 10
14

 cm
-2

) [141], [142]. The 

reasons for the high defect concentration in HfO2 in comparison to SiO2 is the ionic type of 

bonding that includes electrons from the d-shells [143], [144] in combination with a high 

coordination number. This complicates the relaxation and re-bonding of the oxide network as 

it is the case for SiO2, where covalent bonding and low coordination number enable the self-

curing of defects [144]. These intrinsic defects can serve as electron [144], [141] and/or hole 

traps [145], [146]. As a result transistors including HfO2-based dielectrics suffer from 

mobility degradation [147], [148], VTH instability [141], [149] and reliability issues [150] – 

[152] such as negative and positive bias temperature instability as well as enhanced stress-

induced leakage current. Fast electron trapping [141], [149], [153] and detrapping processes 

[154] in the sub-microsecond time ranges were detected using single-pulse measurement 

technique (chapter 3.3.2), providing evidence for the existence of shallow electron traps. 

Tunneling was identified as the main mechanism for fast trap charging and discharging [142], 

[154]. Attempts have been made to use trapping potential of HfO2-based dielectrics by 

implementing them as storage layer into charge-trapping memories [155], [156]. These 

devices demonstrated faster programming speed in comparison to the standard SONOS cells 

owing to shallower traps at the expense, however, of the retention properties [157], [158]. 

Oxygen vacancies [144], [159] – [161] and oxygen interstitial atoms [144], [161], [162] 

are considered to be the main origin of traps in HfO2-based materials. On the other hand 

defects including Hf ions, are expected to be energetically unfavourable [144]. It has been 
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suggested that oxygen vacancies introduce shallow (ET = 0.3 – 1.0 eV) as well as deep 

electron trap states (ET >1.5 eV) into the HfO2 band gap depending on their charging state 

[142], [152], [159], [161], [163]. The assignment of the trap energy levels to the individual 

charged states in the literature is rather contradictory at present. Moreover, negative U 

properties were predicted for oxygen vacancies due to the strong electron-lattice interaction 

[145], [159], [164]. As a result, trapping of two electrons/holes must be more favourable than 

trapping of single electron/hole, which would enhance trapping of electrons as well as holes.  
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3 Characterisation methods 

This chapter gives an overview of characterisation methods utilised in this work. These 

include electrical measurements identifying the memory cell performance as well as physical 

characterisation methods aiming for material aspects of the memory cells. Electrical 

characterisation tests common for all memory types (read, program/erase, retention, 

endurance) as well as ferroelectric memory specific tests (PUND, polarisation-voltage 

measurements) are described. The basic principles of applied microstructural analyses 

(grazing incidence x-ray diffraction (GI-XRD), x-ray photoelectron spectroscopy (XPS), 

transmission electron microscopy (TEM) and piezoresponse force microscopy (PFM)) are 

elucidated. Furthermore, details of techniques used for characterisation of trapping behaviour 

in dielectric films, such as charge-pumping and single-pulse methods, are introduced.  

3.1 Memory characterisation tests  

3.1.1 Read/Sensing  

Read or sensing operation is aimed to identify one of the possible states of a memory 

cell. In the simplest case there will be only two possible states – “ON” and “OFF” state. “ON” 

state is assigned to a high conductivity of the transistor channel (i.e. low VTH value), while 

“OFF” state – to a low conductivity of the transistor channel (i.e. high VTH value) (Figure 3.1). 

Both existing read approaches exploit shift in the ID-VG characteristic of a memory transistor 

depending on its state. In the first approach the VTH value is monitored to determine the 

memory state (Figure 3.1 (a)), whereas in the second one drain current is measured at a 

constant gate voltage (VG SENSE) for the same purpose (Figure 3.1 (b)). The first concept was 

used for read operation in this work. The ID-VG characteristics were recorded at a constant 

drain voltage of 100 mV with the source and bulk kept at 0 V. The VTH value was extracted 

from the resulting ID-VG curves using a constant drain current criterion [26], [165]. VTH value 

is defined as a gate voltage corresponding to a specified value of drain current (ITH). This ITH 

depends on the device geometry and can be calculated according to [165] as:  

 A
L

W
ITH 








 710 , (3.1) 

 



 

3 Characterisation methods 

 

 

30 

 

Figure 3.1 Read operation approaches for a transistor memory cell: (a) constant current method and 

 (b) constant voltage method.  

with W – transistor gate width and L – gate length. This current criterion was found to lie in 

the transition region between the exponential and linear ID dependence on VG, i.e. between the 

subthreshold and linear transistor operation regimes. Therefore, VTH defined as VG(ITH) 

corresponded well to its physical meaning as a voltage required to build a transistor channel 

(see chapter 2.1.1). In order to minimise disturb during sensing operation, ID-VG 

measurements were restricted mainly to the subthreshold region and interrupted as soon as 

monitored ID value exceeded defined ITH criterion. All current-voltage measurements shown 

in this work were performed with Keithley’s SCS-4200 analyser.  

3.1.2 Program/Erase characteristics 

During write operation (program or erase) one of the possible memory states is written 

into the memory cell. In order to determine writing speed and required voltage amplitudes 

program/erase characteristics are recorded by applying voltage pulses with varying lengths 

and amplitudes to the gate, while other device terminals are biased at 0 V. The induced VTH 

shift is subsequently measured. During program operation “OFF” state with high VTH value is 

 

 

Figure 3.2 Measurement sequence during (a) write operation (program or erase), (b) retention and  

(c) endurance tests. 
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set, while during erase operation – “ON” state with low VTH value is restored. Thus, in case of 

ferroelectric memories the program operation is performed with negative gate voltages, while 

during erase operation positive gate voltages are required. For charge trapping memories it is 

vice-versa. Figure 3.2 (a) schematically shows as an example a test sequence used for 

obtaining erase characteristic of a ferroelectric transistor. Write pulses with constant 

amplitude and logarithmically increasing length are applied to the gate and the memory state 

is read out in between as described in section 3.1.1. Prior to each writing pulse (program or 

erase) the identical memory state (completely erased or programmed) is re-established by 

applying an initialization pulse of the opposite polarity in respect to the writing pulse. By 

performing the same procedure for write pulses with different amplitudes, the most efficient 

operation conditions, enabling high write speed at sufficiently low voltages, can be identified. 

3.1.3 Retention test 

Retention is one of the main characteristics of the non-volatile memories, 

characterising their ability to retain the stored information over a long period of time without 

power supply. Typical requirement is 10 years data retention before the first erroneous 

readout [1]. This property is verified during the retention test (Figure 3.2 (b)). Initial gate 

pulse is applied to write “ON” or “OFF” memory state; the read out is subsequently 

performed with logarithmically increasing time delays. All device contacts are left idle during 

the waiting time. This technique emulates the case of unpowered storage and is more close to 

the real memory application conditions. The potential of 10 years storage can be verified 

either by extrapolating the experimental data or by performing temperature or bias 

acceleration tests [1].  

3.1.4 Endurance test 

Endurance test characterises the ability of the device to withstand electrical stress 

during continuous program and erase operations [1]. Figure 3.2 (c) depicts the standard 

measurement sequence. Pulses of alternating polarity, emulating program and erase 

operations, are applied to the device gate with other electrodes grounded. After certain 

number of stress pulses the capability to switch the memory cell into the “ON” and “OFF” 

state is tested by reading out the cell’s VTH values after one erase and one program pulse. 

Endurance characteristic provides the maximal number of program-erase cycles, to which the 

device can be exposed with individual memory states remaining distinguishable. So, for 

example, the current endurance specification of Flash memories is 10
4
 – 10

5
 cycles [1].  
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3.2 Ferroelectric memory specific characterisation tests 

The specific tests for ferroelectric materials include polarisation-voltage and PUND 

measurements, which can be performed using capacitor structures as well as transistor 

structures, where source, bulk and drain terminals are set at the same potential. Small-signal 

capacitance-voltage measurements are used to verify the ferroelectric/antiferroelectric film 

properties in addition to the polarisation test. The microscopic study of the domain structure 

and their switching kinetics is performed using PFM (piezoresponse force microscopy) 

technique.  

3.2.1 Polarisation-voltage measurement 

Polarisation measurements are used to determine the characteristic parameters of 

ferroelectric materials – the remanent polarisation (PR) and the coercive field strength (EC). 

Here, the total charge of the ferroelectric capacitors is monitored as a function of applied 

voltage. The standard approach to obtain polarisation curves is to use the Sawyer-Tower 

circuit [166]. A ferroelectric capacitor (CF) and a reference capacitor (CR) are connected in 

series to a triangular AC voltage source (Figure 3.3 (a)). The voltage drop at the reference 

capacitor (VR), proportional to the polarisation charge on each capacitor, is measured and 

plotted over the total applied voltage giving a hysteresis curve. The polarisation charge is 

calculated as R R FP C V A  , with AF being the area of the ferroelectric capacitor. Parasitic 

cabling capacitance and parasitic voltage drop across the reference capacitor are the 

shortcomings of the Sawyer-Tower circuit, which impair the measurement results. Moreover, 

hysteresis loops obtained with this approach cannot serve as unambiguous proof of the 

material’s ferroelectric properties [68], [69]. Hysteresis behaviour can also arise from several 

experimental artefacts, e.g. surface polarisation, trapping-detrapping phenomena at Schottky-

like electrodes [70] or leakage currents [71]. In order to ascertain the true behaviour of the 

studied sample the current response should be monitored as a function of applied AC voltage. 

In case of a ferroelectric sample two characteristic current peaks, corresponding to the domain 

switching at the coercive voltages (not at maximum voltage), should appear, as it is seen in 

Figure 3.3 (c). Integration of the transient current over measurement time provides 

polarisation values. These give the desired polarisation characteristic (Figure 3.3 (d)), if 

plotted versus excitation voltage. The values of the remanent polarisation (PR) and the 

coercive voltage (VC) can be extracted from cross-sections with polarisation- and voltage-axis, 

respectively. If the current maxima coincide with the maxima of the excitation signal, the 

leakage currents underlie the experimentally observed hysteretic behaviour. The virtual 

ground circuit (Figure 3.3 (b)) is a current-based approach utilised for polarization 

measurements. Here, the current response of a ferroelectric capacitor exposed to alternating 
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voltage is monitored using a feedback resistor across an operational amplifier [167]. The non-

inverting input is connected to ground. The signal from the ferroelectric capacitor is fed at the 

inverting input, which is simultaneously connected to the output via the feedback resistance 

(R). The output voltage adjusts automatically to achieve the equilibrium state with equal 

voltages at both inputs. The inverting input must be pulled to the ground level, so that the 

output voltage yields V I R   . In the virtual ground circuit the parasitic effects of cabling 

capacitance and voltage losses on the reference capacitor, known for the Sawyer-Tower set-

up, are eliminated.  

In this work the polarisation-voltage measurements were performed using the aixACCT 

TF Analyser 3000 with implemented virtual ground measurement approach. All polarisation 

measurements were performed at 1 kHz frequency unless mentioned otherwise. Test sequence 

(Figure 3.3 (e)) includes 4 triangular pulses, which are applied consecutively with a time 

delay of 1 s [168]. This test sequence enables to extract not only values of dynamic remanent 

polarisation (PR) at zero gate voltage but also values of relaxed remanent polarisation (PR_rel) 
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Figure 3.3 Polarisation-voltage measurements. Equivalent test circuits: (a) Sawyer-Tower circuit and 

(b) Virtual Ground circuit; (c) Transient current response of a ferroelectric capacitor under triangular 

excitation gate voltage during polarisation measurements and (d) resulting polarisation-voltage curve;  

(e) Test sequence for polarisation-voltage measurements utilised in this work. 
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remaining after 1 s delay for both polarisation states. The difference 
_R R R relP P P    denotes 

the loss of remanent polarisation within 1 s and, thus, short-term retention properties of 

ferroelectric materials. 

3.2.2 PUND measurement  

PUND technique utilises a pulsed measurement approach to obtain polarisation 

characteristics. Here, a sequence of short square pulses instead of a continuous excitation 

signal is applied to the device. This pulsed characteristics are more relevant for the memory 

application, since they emulate the actual operation conditions of the semiconductor memory 

devices exposed commonly to high frequency pulses [169]. By means of the PUND 

measurements ferroelectric switching properties – switching time constants at different 

operation voltages – can be identified. The switching behaviour in the pulsed mode is 

different from that under the continuous excitation signal due to the frequency dependence of 

the coercive field [53]. As a result, the switching voltages required during pulsed operation 

are commonly higher than coercive voltages obtained from polarisation hysteresis loops 

(Figure 3.3 (d)). The typical PUND excitation signal consists of five consecutive pulses (inset 

of Figure 3.4 (a)): negative write pulse setting the defined initial polarisation state followed by 

two positive and two negative pulses (Positive switching, Up non-switching, Negative 

switching, Down non-switching pulses). During the applied pulse train the current response is 

recorded. The area under the current transient corresponds to the polarisation charge.  

Figure 3.4 (b) depicts the case of switching with positive pulses. During the first positive 

pulse the measured current includes both switching and non-switching components;  

 

 

Figure 3.4 PUND measurement methodology [49]. (a) The pulsed polarisation hysteresis of a 

ferroelectric capacitor. Inset depicts typical PUND pulse sequence. (b) Wave train applied on the gate 

for measuring positive branch of the hysteresis loop, corresponding transient current response and 

polarisation states. 
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while during the second positive pulse only non-switching response is present. The 

subtraction of these current responses from each other gives the pure ferroelectric switching 

component, whereas additional contributions from dielectric polarisation, leakage currents 

and trapping are excluded. Integration of the current difference from the switching and non-

switching pulses yields the twofold value of the pulsed remanent polarisation. PUND testing 

methodology, setup and measurement limitations are discussed in more detail in [169], [170]. 

In this work PUND measurements were carried out using aixACCT TF Analyser 3000.  

3.2.3 Capacitance-voltage measurements  

The small-signal capacitance-voltage characteristics were used to confirm the material 

properties derived from the polarisation measurements. As discussed in chapter 2.3.1  

(see discussion to Figure 2.7) the form of a capacitance-voltage curve depends on the material 

class. During the capacitance-voltage measurements a small-signal differential capacitance is 

determined as a function of a gate bias. This differential capacitance is proportional to the 

displacement current induced by an AC signal of low amplitude (in this work 35 mV) applied 

to the gate superimposed with a bias voltage. Real capacitor structures include commonly 

parasitic components. The simplified equivalent circuit for a real capacitor can be represented 

by a capacitance (C) and a resistance (R) connected either in parallel or in series. In the 

commercial test systems the amplitude of the resulting displacement current and its phase 

shift to the excitation AC signal are measured. These can be converted into the R and C values 

with the help of translation equations, if the equivalent circuit is known. Serial equivalent 

circuit (Cs-Rs) is more appropriate in case of high serial resistance (contact issues, high 

substrate resistance), while in case of high leakage current, parallel equivalent circuit (Cp-Rp) 

should be chosen. Commonly the examined structure is more complicated than a two-element 

circuit. Thus, the decision on the proper measurement mode can be difficult. The dissipation 

factor – ratio between the real and the imaginary part of experimental impedance  

( 2D R X f RC   ) – can be used to validate the accuracy of the measurement. For  

D < 0.01 the phase shift between the displacement current and the excitation voltage signal 

converges to 90°, as in case of an ideal capacitor, and the capacitance measurement can be 

considered as reliable. The D-value and, thus, the contribution of parasitic resistances can be 

affected by changing the test frequency (f). High frequencies should be used in case of leaky 

capacitors to eliminate the impact of parasitic parallel resistance. The impact of high series 

resistance, on the contrary, is minimised at low test frequencies. The capacitance-voltage 

measurements presented in this work were performed with Agilent 4285A precision LCR 

Meter or multi-frequency impedance measurement card of a Keithley’s SCS-4200 analyser. 
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3.2.4 Piezoresponse force microscopy  

Piezoresponse force microscopy (PFM) provides a possibility for local imaging of 

ferroelectric domains at nanometre scale as well as for investigation of switching dynamics of 

single domains [171]. PFM was developed from the atomic force microscopy (AFM) 

technique [172] and makes use of its measurement set-up, which is schematically illustrated 

in Figure 3.5 (a). The surface of the sample is scanned with conductive probe, consisting of a 

flexible cantilever and a pyramidal shape tip. The lateral resolution of the system is 

determined by the radius of curvature of the tip apex, which is usually 10 – 20 nm. The 

measurements are performed in contact mode, where the probe tip is in direct contact with the 

investigated surface. The deflections of the probe cantilever are sensed by means of optical 

technique. A laser light from a solid state diode reflected off the cantilever back is collected 

by a photodiode detector. A displacement of cantilever results in one photodiode collecting 

more light than others, producing an output signal, which is fed into a differential amplifier. A 

quadrupole detector, containing four closely placed photodiodes, enables to distinguish 

between out-of-plane (vertical cantilever movement) and in-plane (torsional cantilever 

movement) surface deflections. The probe is mounted on a piezo scanner – a tube of 

piezoelectric ceramic. It regulates the probe vertical position by comparing signal from the 

photodetector with the specified set point value and adjusting the cantilever height and torsion 

until both signals match. This method allows keeping the contact force with the sample 

constant during the entire scanning process. 

 

     

Figure 3.5 PFM operating principle [76]. (a) Schematic representation of a measurement set-up.  

(b) Piezoelectric response depending on the polarisation orientation of domains. If polarisation 

direction is aligned with applied electric field, in-phase piezoelectric response is observed. Anti-

parallel orientation of domain polarisation and applied electric field results in 180° phase shift of 

piezoresponse to driving voltage.  
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The domain imaging principle is based on the converse piezoelectric effect, which 

consists in inducing sample deformation by external electric field. In order to detect low level 

piezoelectric response, which is typically close to the resolution limit of high precision AFM 

tools, AC excitation signal is used in combination with lock-in technique. The AC bias 

applied on the probe tip induces surface oscillatory deformation. The latter is transmitted to 

the cantilever, whose resulting movement is detected by a photodiode detector and converted 

into an oscillating voltage output signal. Lock-in amplifier compares this output signal with 

the reference signal having the frequency of the excitation signal and singles out the 

component at the reference frequency, while removing all signal components with other 

frequencies. In this way very small alternating signals with amplitudes thousand times lower 

than noise can be measured. The amplitude and the phase of the separated signal are then 

retrieved by the lock-in amplifier as a piezoresponse amplitude (PRampl) and piezoresponse 

phase (PRphase). The amplitude of the piezoresponse can be used to quantify the local 

piezoelectric constant. The phase of the piezoresponse gives, on the other hand, information 

on the orientation of domains’ polarization relative to the external field E (Figure 3.5 (b)). If 

domain polarisation coincides with the direction of the external field, they will oscillate in-

phase with the excitation AC signal. In this case the positive bias induces expansion of the 

domains, while negative bias – domain contraction. On the contrary, domains with 

polarization reversed to the external field will oscillate with 180° phase shift to the excitation 

AC signal. Here positive bias results in contraction of domains and negative bias in their 

expansion. In this way, by using PFM technique, domains with different polarization 

directions can be distinguished. 

Besides visualization of the existing domain structure, PFM also enables manipulation 

of the domain polarization [173]. PFM scans can be executed either in reading or writing 

mode. During reading the amplitude of the applied bias is below coercive voltage, so that only 

piezoelectric response of domains is sensed without affecting their polarization direction. In a 

writing mode the sample is exposed to the voltages higher than characteristic coercive 

voltages, so that the area underneath the probe tip gets polarized during scanning process. 

Using probe as a mobile electrode domains of arbitrary shapes as well as domain arrays can 

be written [174], [175]. Furthermore, the microscopic domain switching mechanisms can be 

studied [176].  

Piezoresponse hysteresis measurements, showing dependence of the piezoelectric 

response on the constant bias field, are used to analyse the local switching behaviour of 

ferroelectric materials [177]. By sweeping DC voltage from negative to positive values and 
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back, the characteristic results in butterfly-shaped characteristics of piezoelectric constant 

(PRampl) [77], [56] and hysteretic curves of PRphase similar to the polarization hysteresis 

loops [173]. In-field hysteresis loops are obtained by recording the piezoresponse in the 

presence of constant electric field. Here, the AC piezoresponse measurement signal is 

superimposed with DC bias. The off-field piezoresponse loops arise from the measurements 

after individual DC bias is turned off, reflecting material local retention properties. The band 

excitation method, discussed in detail in [178] and [179], enables to eliminate the cross-talk 

between the film topography and the piezoelectric response.  

PFM measurements on Si:HfO2, studied in this work, were performed by Dominik 

Martin. AFM system in combination with a dual-phase SR830 DSP Lock-in Amplifier was 

used for this purpose. Piezoresponse images were acquired in ambient air. Domain poling 

experiments were carried out on free Si:HfO2 surface. Hysteresis measurements were 

performed on the bonded pads with the purpose to minimise electrostatic effects: the DC 

voltage signal (applied to the pad) was decoupled from AC measurement signal (applied to 

the probe tip).  

3.3 Trapping characterisation methods 

3.3.1 Charge pumping  

Charge pumping (CP) is a standard method used to perform in-depth analyses of the 

interface quality in the MOSFET devices. By means of CP technique the interface traps, 

located directly at the Si / gate dielectric interface, as well as the near-interface bulk traps, 

located within an insulator layer at depths of several nanometres from interface, can be 

characterised. Trap densities as low as 10
9
 traps/eV/cm

2
 can be determined reliably owing to a 

very high sensitivity of this method [180]. As the measurements are carried out directly on the 

MOSFET structures, direct correlation between processing conditions and interface quality 

can be obtained [180].  

The basic measurement setup to perform charge pumping measurements, as 

introduced by Brugler and Jespers in [181], is shown in Figure 3.6 (a). The gate is connected 

to the pulse generator. The source and drain are tied together and connected to the ground or 

reversed biased with respect to the substrate. Applying periodical pulses with sufficiently high 

amplitude to the gate, DC current (referred as charge-pumping current) will be measured at 

the substrate and source/drain contacts. This charge-pumping current originates from the 

recombination process between minority and majority carries, which occurs via interface traps 

[180], [182]. If the pulsed signal with the maximum level above the threshold voltage (VTH) 

and minimum value below the flatband voltage (VFB) is applied to the gate, the semiconductor  
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Figure 3.6 (a) Basic experimental setup for charge-pumping measurements. (b) Trapezoidal gate pulse, 

most commonly used, with the main parameters defined. 

surface is continuously switched between inversion and accumulation, thus enriched 

alternately with minority and majority carriers. These are captured by the interface traps, 

where recombination process takes place. Thereby, minority charge carriers are pumped from 

source/drain junctions into the semiconductor substrate, giving rise to the CP current. The 

pulses most commonly used during CP measurements exhibit a trapezoidal form  

(Figure 3.6 (b)). It is defined by the following parameters: the highest signal level VGH, the 

lowest signal level VGL, pulse amplitude (VG = VGH – VGL), rise time (tr), fall time (tf), time 

in accumulation (taccum) and inversion (tinv), pulse period (1/f), which is reciprocal to the signal 

frequency (f). Additional current components besides recombination current may arise from 

the leakage currents through the gate dielectric or geometric current [180]. Since these current 

components contain no information about interface traps, they must be eliminated during 

experiment. The geometric current originates from recombination of mobile inversion 

electrons, which do not have enough time to flow back to the source/drain regions, while 

substrate is switched from inversion into accumulation [181]. By using test structures with 

channel length (L) << channel widths (W) [183] and applying pulses with rise/fall times 

longer than 100 ns [182], the impact of geometric current can be almost completely 

eliminated. Contribution from leakage current reduces at high test frequencies. 

Since the interface traps serve as recombination centres, the charge pumping signal is 

directly linked to the trap parameters, such as density of trap states, capture cross sections, 

energetic distribution within the band gap as well as spatial distribution along the channel. A 

quantitative model of the charge pumping current was developed by Groeseneken et al. [182]. 

The expression for the net charge pumping current (ICP) is given by [182]: 
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Figure 3.7 Schematic illustration of the two main CP measurement approaches after [180]: (a) variable 

base level test and (b) variable amplitude test. 

 

2 ln
TH FB

CP it eff th i n p r f

G

V V
I qkTfD A v n t t

V
 

 
  

 
, (3.2) 

where itD  is the mean energetic density of surface states [traps/eV·cm
2
], Aeff – the effective 

area of the channel under the gate electrode, vth – the thermal velocity of the carriers, ni – the 

intrinsic carrier concentration, σn/σp – capture cross sections for electrons/holes. As can be 

seen from (3.2) ICP is directly proportional to the interface trap density, signal frequency and 

device area.  

Two main approaches for performing the charge pumping measurements are:  

(1) variable base level test (Figure 3.7 (a)), originally proposed by Elliot [184], and  

(2) variable amplitude test (Figure 3.7 (b)), introduced by Brugler and Jespers [181]. In the 

variable base level test the amplitude of gate pulses (VG) is kept constant, while the lowest 

level (base level) VGL is varied from inversion to accumulation. The ICP versus VGL 

characteristic reveals 5 regions (Figure 3.7 (b)). The rising edge of ICP(VGL) is located at VGL 

approximately equal to (VTH – VG), whereas it’s falling edge corresponds to VGL = VFB. The 

saturation value of the charge pumping current in the region 3 gives the average surface 

density of interface states CPN  [traps/cm
2
], according to [184]:  

_CP MAX eff CPI fA qN , (3.3) 

averaged over the entire scanned energy range. During the variable amplitude test  

(Figure 3.7 (a)) the pulses of increasing amplitude are applied to the gate, while the lowest 

pulse level VGL is kept constant and sets the semiconductor surface into strong accumulation 

(i.e. VGL<VFB). ICP curve is plotted versus the highest signal level VGH. When VGH reaches the 
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value of VFB a strong increase in the ICP signal is observed. It normally saturates after VGH 

exceeds the VTH value. This saturation level ICP_MAX can again be used to estimate  

CPN  [traps/cm
2
] according to (3.3). The non-saturated characteristics were suggested to 

originate from interaction of carriers with dielectric bulk traps located close to the interface 

and filled via tunnelling mechanism [185]. This phenomenon is especially pronounced for 

high-k dielectrics due to a high intrinsic concentration of bulk traps [186], [187], [188]. For 

the stacked gate dielectrics it is still under discussion, which traps are able to contribute to the 

charge pumping signal. Some authors argue, that only traps located within the interface layer 

and originate from the interaction with high-k material, can be sensed during the charge 

pumping experiment [189], [190], [191]. Others [192] claim, that bulk traps of the high-k 

materials can also contribute to the measured current. The contribution from bulk traps 

increases at low test frequencies, when charge carries have sufficient time to tunnel to the 

traps and back during inversion and accumulation time periods, respectively. It results in an 

increased charge pumping current as observed in [193], [194].  

The mean energetic density of surface states itD  [traps/eV·cm
2
] and geometric mean 

value of the capture cross section 
geom n p    can be determined from frequency 

dependent measurements under the assumption, that only interface traps contribute to the CP 

current, whereas the contribution from bulk traps is neglected. For trapezoidal pulses with rise 

and fall time changing with frequency as /r ft t f   (  – fraction of the pulse period), the 

pulse charge pumping current (3.2) becomes linearly dependent on the logarithm of 

frequency:  
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According to (3.4) one obtains itD  from the slope of the   lnCPI f  curve, while the 

intercept with the x-axis at  0ln f  gives the geom  value: 
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3.3.2 Single-pulse ID-VG 

Single-pulse ID-VG measurements are widely used to study the trapping and detrapping 

behaviour of high-k gate dielectrics [195], [196], [141]. The main advantage of this technique 

is its ability to capture the fast transient nature of the trapping and detrapping processes. Time 

resolution in nanosecond time range can be provided [197]. The testing is performed on 

transistor structures. This enables a direct correlation between fabrication conditions and 

trapping characteristics of the entire gate stack. The stress pulse of certain amplitude and 

width is applied to the gate, while the drain current is simultaneously monitored  

(Figure 3.8 (a)). The latter can be translated into ID-VG characteristics for both rising and 

falling pulse edges (Figure 3.8 (b)). From the value and the sign of the VTH shift between these 

ID-VG curves conclusions about trapping/detrapping behaviour of the gate stack can be made. 

The main advantage of the single-pulse technique is that the time delay between stressing and 

sensing is practically eliminated. Therefore, the complete amount of trapped/detrapped 

charges can be captured. Figure 3.8 shows an example of the single-pulse measurement 

performed on a transistor with a gate dielectric stack consisting of 1.2 nm SiON interfacial 

layer and 10 nm Si:HfO2. A positive shift between ID-VG curves, recorded at the rising and 

falling gate pulse edges (Figure 3.8 (b)), as well as the drain current degradation at the pulse 

plateau (Figure 3.8 (a)) indicate strong electron trapping into the high-k dielectric.  
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Figure 3.8 (a) Single-pulse characteristics measured on a transistor with a gate dielectric consisting of 

1.2 nm SiON and 10 nm Si:HfO2. The electron trapping can be identified either from (a) the shift 

between ID-VG curves measured at the up and down traces or (b) ID degradation over pulse time. 
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Figure 3.9 Gate pulse sequence for studying of (a) trapping and (b) detrapping kinetics.  

For qualitative characterisation of trapping the value of the VTH shift is usually used. The VTH 

shift can be extracted either from the hysteresis plot of the ID-VG curves or calculated from the 

time dependent drain current drop ID at the pulse plateau [198]. According to [198] VTH 

values obtained with the first approach are more accurate, whereas the second approach gives 

underestimated VTH values. In the hysteresis approach VTH has to be determined in the 

range of drain currents, where ID-VG characteristics experience parallel shifting and are not 

affected by trapping or mobility degradation. The kinetics of trapping and detrapping 

processes can be studied by applying to the gate pulse sequences illustrated in Figure 3.9 (a) 

and (b), respectively. The trapping behaviour is examined by using pulses with positive 

amplitudes and varying widths. The pulses typically start at negative voltages to ensure initial 

complete discharging of traps. During the detrapping studies, on the contrary, pulses with 

negative amplitudes starting at positive voltages are applied. The start at positive voltages 

provides initial charging of traps. Figure 3.10 (a) shows the schematic diagram of the setup 

commonly used for single-pulse ID-VG measurements. Here a transistor is connected as in case 

of an inverter circuit with a load resistance RLOAD. For each measurement a single pulse is 

applied to the gate of the transistor using a pulse generator, while its drain is simultaneously 

biased at a certain voltage. The source and bulk are grounded. The voltages at the gate and 

drain are simultaneously measured using an oscilloscope and then converted into current-

voltage (ID-VG) characteristics. In this work a different setup, illustrated in Figure 3.10 (b), 

was implemented. Instead of external pulse generator for pulsing and oscilloscope for sensing, 

a program measurement unit (4225 PMU) of the Keithley´s SCS-4200 analyser together with 

two remote pulse amplifier/switch units (4225-RPM) were used. The PMU with two channels 

provides the capability of simultaneous high-speed voltage sourcing (time resolution 20 ns) 

and voltage and current measuring at rates of up to 200 Megasamples/s for each channel. The 

RPM units extend the accessible current range down to 100 nA with resolution less than 

200 pA. By placing the RPM units in the immediate vicinity of the test device the parasitic 

cabling effects can be minimised. Thus, this equipment allows direct measuring of the drain 

current transients in a wide time range (pulse width from 20 ns up to 1 s) with high 

sensitivity. Moreover, the need of the drain current normalisation is eliminated  
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Figure 3.10 Schematic diagram of the setup for single-pulse ID-VG measurements: (a) commonly used 

setup, (b) experimental setup used in this work, (c) connections of the DUT with PRB-C adapter 

cables.  

due to the constant drain voltage in contrast to the typical measurement approach  

(Figure 3.10 (a)) [141]. The RPMs are connected to the transistor test structure in the way 

shown in Figure 3.10 (c). With this measurement setup the pulse transition times could be set 

to 500 ns, whereas pulse widths were varied between 0.1 and 100 s. 

3.4 Microstructural analyses 

3.4.1 Grazing incidence x-ray diffraction 

X-ray diffraction (XRD) is a non-destructive method used to study atomic structure of a 

crystalline matter. Crystal symmetry, lattice parameters, lattice strain, qualitative and 

quantitative phase composition as well as preferred orientation (texture) of grains in 

polycrystalline materials can be obtained by means of XRD analyses [199], [200], [201]. This 

technique makes use of an x-ray wave interference on the periodic arrays of atoms in a 

crystal, which serve as a diffraction grating. This interaction becomes possible due to x-rays 

wavelength being of the same order of magnitude (1-100 Å) as the interatomic and interplanar 

distances in crystals. A constructive interference occurs only at certain diffraction angles 

determined by a specific crystal structure of a material, its crystal symmetry and lattice 

 

N+N+

P-substrate

Source Drain
Gate

Pulse Generator

Oscilloscope

DC Bias 
R LOAD

P
u

ls
e 

G
en

er
a

to
r

4
2

2
5

 P
M

U

4225 

RPM #2

4225 

RPM #1
Ch 1

Ch 2

RPM cable

DUTD

S

G

Coaxial cable

4200-PRB-C

4200-PRB-C

Needle holders with

SSMC connectors

G D

S B

4225 RPM #1 4225 RPM #2

(a) 

(b) 

(c) 



 

3.4 Microstructural analyses 

 

 

45 

parameters. The condition of a constructive interference is described by the Bragg’s law 

[200]:  

2 sinh k l h k ld   , (3.7) 

where dhkl is the spacing between the series of parallel lattice planes with Miller indices  

(h, k, l) responsible for a particular diffraction peak; θhkl is the diffraction angle – the angle, 

which the incident and the reflected beams make with the (h k l) planes; and λ –  

the wavelength of the incident x-ray beam. The Miller indices define the crystallographic 

orientation of planes as well as spacing d between them in combination with the lattice 

parameters. Different crystallographic planes are characterised by a different interplanar 

spacing, which alter the θ angle of the corresponding diffraction peak. A diffraction pattern – 

a set of allowed diffraction angles and corresponding relative peak intensities, is unique for 

each crystalline matter. A large diffraction data base is available from the international centre 

for diffraction data (ICDD). It contains experimentally collected as well as theoretically 

calculated powder diffraction patterns for different materials and their polymorphs. These can 

be used as reference patterns for identification of the phase composition of the studied sample. 

Figure 3.11 (a) shows an experimental diffraction scan obtained on a 10 nm Si:HfO2 film 

embedded between two TiN layers together with reference patterns of a tetragonal HfO2 phase 

with a space group P42/nmc [202] and a cubic TiN (Fm3m) [203]. 
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Figure 3.11 (a) Experimental diffraction data for a 10 nm thick polycrystalline Si:HfO2 film embedded 

between TiN layers (top) and reference powder diffraction patterns for the tetragonal HfO2 phase of a 

space group P42/nmc (bottom) [202] and the cubic TiN (Fm3m) [203]; (b) Schematics of a GI-XRD 

measurement approach [201]. 
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Grazing incidence x-ray diffraction (GI-XRD) is an advanced XRD measurement 

technique, utilised for investigation of thin films with thicknesses in the range of a few 

nanometres [200]. The penetration depth of an x-ray beam in a standard symmetric geometry 

achieves 10 – 100 m depending on the absorption properties of the material. In this case the 

diffraction signal comes primarily from the substrate, whereas the contribution from the 

nanometre thick films is negligibly small. In the GI-XRD method (Figure 3.11 (b)) the 

incoming beam enters the sample under a very small angle of incidence (ω) of a few degrees 

or even less. This enables to increase the path travelled by the incoming beam within a studied 

thin film, so that the diffraction signal is magnified, while the signal coming from substrate is 

significantly reduced or even completely eliminated. The GI-XRD spectra are recorded with a 

constant incidence angle. The position of the x-ray source remains the same in respect to the 

sample, whereas the detector moving around the sample and collects the diffraction data from 

different diffraction angles.  

GI-XRD was exploited in this work for studying the crystal structure and identification 

of phase composition in thin ferroelectric Si:HfO2 films. The GI-XRD experimental 

diffraction data were collected using a Bruker D8 Advance diffractometer with Cu-Kα 

radiation (λ = 1.5418 Å) with an incidence angle of 0.5º.  

3.4.2 X-ray photoelectron spectroscopy 

X-ray photoelectron spectroscopy (XPS) is a non-destructive analytical method, which 

provides qualitative and quantitative information about chemical composition of solid 

materials within the topmost few nanometres (1 – 10 nm) of the surface [204]. This method is 

based on the photoemission of electrons from the surface of a sample exposed to 

monochromatic x-ray radiation. The kinetic energies and number of photoemitted electrons 

corresponding to different energy levels are being measured. The kinetic energy can be 

transformed into the electron binding energy using a law of energy conservation [204]. The 

set of binding energies is characteristic for each chemical element, whereas the number of 

emitted electrons (XPS peak intensities) is directly related to the amount of the element 

present within the studied sample.  

By means of XPS technique the Si-content within the Si:HfO2 thin films was analysed. 

XPS measurements were performed at Fraunhofer Center Nanoelectronic Technologies 

Dresden with a REVERA VeraFlex production metrology system using Al-Kα excitation and 

141.2 eV pass-energy. The intensities of characteristic peaks for hafnium (Hf-4f) and silicon 

(Si-2p) were determined. The Si-content was subsequently obtained as cation fraction (cat%) 

by applying the tool specific calibration factors and weighting the areas of the respective XPS 

peaks. 
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3.4.3 Transmission electron microscopy 

Transmission electron microscopy (TEM) is a microscopy technique enabling to study 

the sample’s microstructure with sub-nanometre resolution. Utilisation of electrons with 

significantly smaller de Broglie wavelength (λ < 0.05 Å) instead of the visible light (λ in the 

range 3900 – 7000 Å) provides a considerably higher resolution capability of TEM in 

comparison with the light microscopy. By using TEM, both images and diffraction patterns of 

the specific specimen area can be obtained. These are formed by electrons transiting through a 

thin specimen. Due to interaction of transmitted electrons with the matter of the specimen, 

they contain information about its microstructure. Three main principles of the contrast 

formation in TEM images are distinguished [205]: mass-thickness contrast, diffraction 

contrast and phase contrast. The latter is utilised by a high-resolution TEM to image material 

structure on the atomic scale. More information about principle of image formation and 

imaging system of the high-resolution TEM can be found in [205], [206]. The samples studied 

with TEM should be thin enough (less than 100 nm) in order to obtain sufficient intensity of 

the transmitted electron beam. Therefore, specific specimen preparation from the bulk 

samples prior to actual TEM analyses is required. Mechanical thinning, electrochemical 

thinning or ion milling can be exploit for this purpose [204].  

High-resolution TEM was used to study the microstructure of the polycrystalline 

Si:HfO2 films. Thin specimens of different film regions were prepared for TEM analysis by 

means of focused ion beam (FIB) technique, a special type of ion milling, which utilises 

highly energetic gallium ions. High-resolution TEM measurements were performed by  

Dr. Thomas Gemming at Leibniz Institute of Solid State and Material Research Dresden. 
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4 Sample description 

4.1 Metal-insulator-metal capacitors  

The metal-insulator-metal (MIM) capacitors featured Pt/TiN/Si:HfO2/TiN film stacks 

deposited on 300 mm silicon wafers. The process flow is schematically depicted in Figure 

4.1. The fabrication of the capacitor stacks was performed at Fraunhofer Center 

Nanoelectronic Technologies Dresden (Fraunhofer CNT) by Johannes Müller, whereas 

subsequent annealing and structuring was carried out at NaMLab gGmbH by Andrew 

Graham. The hafnium oxide films were grown by means of water-based atomic layer 

deposition process at 300 °C using hafnium tetrachloride (HfCl4) and silicon tetrachloride 

(SiCl4) as metal precursors and N2 as purge gas. The process was run in an ASM Pulsar® 

3000 ALD tool, including a hot-wall reactor with a cross-flow design. In average, the film 

growth rate was 0.58 Å/cycle. The silicon content was tuned by the ratio of the SiCl4 to HfCl4 

pulses. By varying the SiCl4/(SiCl4 + HfCl4) ratio from0 to 14 %, films with silicon content 

ranging between 0 and 8.5 cat% were obtained. The film composition corresponding to 

different deposition conditions was determined by means of XPS technique (for more details 
 

 

Figure 4.1 Process flow utilised for the fabrication of Pt/TiN/Si:HfO2/TiN/Si capacitors. 
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see chapter 3.4.2). The same silicon doping series were run for three different film thicknesses 

of 9, 27 and 50 nm in order to study the impact of thickness on the properties of the Si:HfO2 

layers. The film thickness was controlled by changing the number of deposition cycles and 

later confirmed by spectral ellipsometry. The 10 nm thick TiN layers served as top and 

bottom electrodes. These were grown in a batch furnace using a pulsed chemical vapour 

deposition (CVD) process at 450
°
C with TiCl4 and NH3 as precursors and N2 as a purge gas. 

Additional NH3 flushing was used in order to reduce chlorine contamination. For TiN films 

an average growth rate of 0.4 nm/cycle was detected. Following the formation of the 

TiN/Si:HfO2/TiN/Si stack, the 300 mm wafers were cut into 40 mm × 40 mm chips. These 

were subsequently exposed to three different annealing conditions: 650
°
C for 20 s, 800

°
C for 

20 s or 1000
°
C for 1 s. In all cases the annealing was performed in a nitrogen atmosphere in 

an AST rapid thermal processing (RTP) oven. The anneal at 1000°C for 1 s was aimed to 

emulate the dopant activation anneal step, standard for manufacturing of CMOS devices. In 

the next step, the microstructure of the Si:HfO2 film was studied using GI-XRD  

(chapter 3.4.1) and transmission electron microscopy (TEM) (chapter 3.4.3). As a final step 

single capacitor structures were fabricated for electrical characterisation. For this purpose  

the 40 × 40 mm chips were coated with 50 nm Pt by electron beam evaporation using a 

shadow mask to define dot arrays. Afterwards, these Pt dots were used as a mask to wet-etch 

the 10 nm TiN layer into individual electrode areas with an ammonia (0.5%) and hydrogen 

peroxide (1.2%) solution at 50°C for 5 minutes.  

4.2 Ferroelectric field effect transistors 

Si:HfO2-based metal-ferroelectric-insulator-semiconductor field effect transistors 

(MFIS-FETs) with a poly-Si/TiN/Si:HfO2/interface oxide/Si gate stack were fabricated using 

state-of-the-art 28 nm high-k metal-gate technology [139] on 300 mm industrial 

manufacturing equipment at GLOBALFOUNDRIES Dresden Module One LLC & Co. KG. 

Only minor adjustments to the overall integration were needed, since HfO2 is already used a 

standard high-k gate dielectric in the contemporary CMOS technology. Devices with varying 

gate length scaled down to 28 nm were manufactured and tested. Figure 4.2 shows a TEM 

image of 32 nm device together with an enlarged image of the ferroelectric gate stack. The 

interfacial layer embedded between the silicon substrate and the ferroelectric layer was SiON 

(silicon oxynitride) obtained by decoupled plasma nitridation of the chemical oxide. It 

exhibited a thickness of about 1.2 nm. After the formation of the interfacial layer, the ALD 

process for the 9 nm thick Si:HfO2 film followed. The process parameters similar to those 

described for the MIM capacitors in chapter 4.1 were used to deposit Si:HfO2 layers with 

three different compositions (3.7, 4.4 and 5.7 cat% of Si). Physical vapour deposition (PVD)  
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Figure 4.2 (a) TEM images of 32 nm Si:HfO2-based MFIS-FET device and (b) an enlarged image of 

the ferroelectric gate stack. 

at room temperature was used for growing 8 nm thick TiN layer aiming to avoid the 

shortcoming of the CVD process. Undesired partial crystallisation of the HfO2 films was 

detected for the MIM structures during formation of the CVD-TiN top electrode as will be 

shown in chapter 5.2. In order to structure the Si:HfO2 layers with physical thickness larger 

than that of a standard high-k gate dielectric (2 nm), a reactive ion etching process (RIE) at 

elevated temperatures was developed at Fraunhofer CNT and implemented during 

manufacturing of HfO2-based MFIS-FETs. Sufficiently steep sidewalls with angles of about 

85° could be obtained. The thermal budget for the complete gate stack reached a maximum 

temperature of 1050 °C at spike activation anneal, which resulted in a fully crystalline 

Si:HfO2 ferroelectric.  
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5 Stabilisation of the ferroelectric properties 

in Si:HfO2 thin films 

The ferroelectric properties in HfO2 were found to be induced by doping with various 

tetravalent and trivalent elements such as Si [18], Zr [19], Y [20], Al [130], and Gd [131]. The 

emphasis of this work lies on the properties of the Si-doped HfO2 and its potential to be 

implemented into non-volatile one transistor memory cells. Si-doped HfO2 ALD films grown 

from metal halide (here, chloride-based) precursors and H2O were studied in contrast to the 

previous works [22], [207], where metal-organic precursors/O3 process was utilised for film 

fabrication. Different precursor chemistry, oxidant and carbon contamination level as well as 

additional chlorine contamination can have an impact on the occurrence of ferroelectricity in 

the Si:HfO2 system as well as on the electrical film properties. Therefore, material aspects of 

Si:HfO2 thin films were studied first using planar capacitor structures (chapter 5) in order to 

get better insight into the ferroelectric properties and guidelines for subsequent transistor 

fabrication. The impacts of the silicon doping level (chapter 5.1), post-metallisation annealing 

(chapter 5.2) and film thickness (chapter 5.3) on the emergence of ferroelectricity will be 

discussed. Electrical characterisation combined with structural analyses enabled to find 

correlations between crystalline structure of films and their electrical properties. In addition, 

the true ferroelectric behaviour of Si:HfO2 films were confirmed by means of piezoresponce 

force microscopy. All results shown in this chapter were carried out on MIM capacitor 

structures. 
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5.1 Impact of the silicon doping  

5.1.1 Electrical characterisation 

MIM capacitors containing Si:HfO2 films with varying silicon concentration ranging 

from 0 (pure HfO2) to 8.5 cat% were electrically characterised using polarisation-voltage  

(P-V) (chapter 3.2.1) and capacitance-voltage (C-V) measurements (chapter 3.2.3). Figure 5.1 

shows the results for the 9 nm thick Si:HfO2 films annealed at 1000 °C for 1 s. These 

annealing parameters are of particular significance, since they are similar to those used for 

dopant activation during transistor fabrication and, thus, emulate the thermal treatment of 

Si:HfO2 layers within the FeFET stack. The film composition appeared to have a strong 

impact on the electrical properties. Transitions from paraelectric to ferroelectric and from 

ferroelectric to antiferroelectric-like behaviour were visible for increasing silicon content 

(Figure 5.1 (a)). The polarisation hysteresis loops alone cannot, however, serve as 

unambiguous proof of the ferroelectric or antiferroelectric properties [68], [69]. Therefore, the 

particular materials behaviour was additionally ascertained by the examination of the transient 

current response (Figure 5.1 (b)) and C-V characteristics (Figure 5.1 (c)). Examples of these 

characteristics and their correlation with material properties can be found in chapter 2.3.1. 

Pure HfO2 exhibited paraelectric properties with a close to linear polarization response 

(Figure 5.1 (a)) and displacement current behaviour similar to a linear capacitor (Figure 5.1 

(b)). Its C-V characteristics showed almost no dependence on the voltage and sweep direction. 

Doping of HfO2 films with Si induced a quite different behaviour. Polarization hysteresis 

loops appeared for films with the lowest Si content of 4.4 cat%, indicating the presence of a 

ferroelectric phase. The remanent polarisation of 24 C/cm
2
 and the coercive field strength of 

about 0.9 MV/cm were extracted. Butterfly-shaped C-V curve characteristic for ferroelectric 

materials [72], [73] confirmed the assumption of truly ferroelectric behaviour. Moreover, the 

displacement current response exhibited two current peaks, associated with domain switching 

at the coercive voltages. A further increase in the Si content (5.6 – 8.5 cat% Si) induced a 

pinched hysteresis loops and double hysteresis loops similar to those of antiferroelectric 

materials. Furthermore, double-butterfly-shaped C-V curves and displacement current 

response with four switching peaks were detected for these film compositions. A similar 

dependence of the electrical behaviour on silicon concentration was also detected for other 

annealing conditions and film thicknesses (27 and 49 nm). Although the double hysteresis 

loops in combination with double-butterfly-shaped C-V curves are commonly attributed to the 

antiferroelectric materials, they are not necessarily an evidence of an antiferroelectric phase. 

Under certain conditions ferroelectric materials were reported to show a similar behaviour 

[69], [56]. The observed transition from the ferroelectric to antiferroelectric-like 

characteristics with increasing silicon doping can be explained in the context of several 
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theories: defect dipoles or field-induced phase transition. Pinched and double hysteresis loops 

appear in conventional ferroelectric materials (e.g. PZT) as a result of doping with acceptor 

dopants. This effect is attributed to the increased concentration of defect dipoles, which  
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Figure 5.1 (a) Polarization hysteresis loops, (b) displacement current versus time and (c) small-signal 

capacitance-voltage characteristics obtained for TiN/Si:HfO2/TiN capacitors with varying silicon 

content (0 cat% – 8.5 cat%). All samples were annealed at 1000 °C for 1 s. Transitions from 

paraelectric to ferroelectric and from ferroelectric to antiferroelectric-like behaviour are visible for 

increasing silicon content. 
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commonly include charged oxygen vacancies. In the presence of these defect dipoles, the 

existing multi-domain structure becomes stabilised, whereas the domain wall movements are 

impeded [56], [208], [209]. In this case the crystalline structure of the material remains the 

same for all film compositions. It is the domain switching capability, which undergoes 

altering. On the contrary, in the ferroelectrics with the 1
st
 order phase transition double 

hysteresis loops observed slightly above their Curie point were attributed to a field-induced 

transition of a paraelectric into a ferroelectric phase [210], [77]. Therefore, antiferroelectric-

like features can be observed close to a phase transition, where equilibrium between two 

phases can be affected by electric field. In order to get better insight into the origin of the 

ferroelectric and antiferroelectric-like behaviour of Si:HfO2 system, microstructure of films 

with different silicon content was examined by means of grazing incidence XRD and high-

resolution TEM. The results of the microstructural analyses and their correlation to electrical 

film properties will be discussed in the next section 5.1.2. 

5.1.2 Structural characterisation 

The high-resolution TEM analysis (chapter 3.4.3) was used to obtain information about 

the microstructure of crystalline Si:HfO2 films. Samples containing 27 nm thick Si:HfO2 

layers with 4.4 cat% Si content annealed at 800 °C were chosen as a representative of 

structures with ferroelectric behaviour. Figure 5.2 shows the resulting TEM images from 

different sample areas. It can be seen, that the studied Si:HfO2 films exhibited a 

polycrystalline nature with an average grain size of 20 – 30 nm and predominantly columnar 

grain morphology. The height of the grains was approximately equal to the film thickness. 

The films under the Pt dots embedded between TiN layers (Figure 5.2 (b)) and near the Pt 

dots, with wet-etched TiN top electrodes – bare Si:HfO2 surface (Figure 5.2 (c)) showed 

similar microstructure. 

The impact of silicon content on the phase composition of Si:HfO2 films was 

investigated by GI-XRD (chapter 3.4.1). Figure 5.3 (b) shows the GI-XRD scans for samples 

with varying Si doping levels after anneal at 650 ºC for 20 s. The films with the silicon 

content above 5.6 cat% remained amorphous, while pure HfO2 films were almost completely 

crystalline. Therefore, it can be deduced, that the incorporation of silicon resulted in an 

increase of the HfO2 crystallisation temperature. A similar effect of increasing crystallisation 

temperature by doping with Si, Al and La was reported for HfO2 ceramics [120] as well as 

thin films [129], [211] – [214]. 

Furthermore, Si-doping induced a change in the crystalline structure, which became 

more evident for samples annealed at higher temperatures. Figure 5.4 shows the GI-XRD 

diffractograms for 9 nm Si:HfO2 films with Si content of 0, 4.4 and 8.5 cat% after anneal 
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Figure 5.2 (a) High-resolution TEM image showing 

Pt/TiN/Si:HfO2/TiN/Si capacitor stack. Enlarged 

images of the stack (b) under a Pt dot and (c) next 

to Pt dot, with wet-etched TiN top layer. Samples 

under test contain 27 nm Si:HfO2 with 4.4 cat% Si 

annealed at 800 °C for 20 s. 

Figure 5.3 Experimental GI-XRD 

diffractograms for 9 nm Si:HfO2 films with 

varying silicon content after anneal at 650 ºC 

for 20 s. An increase in the silicon content 

induced a rise of the crystallisation temperature 

and change in the crystalline structure. 

Reference powder diffraction pattern of the 

cubic TiN (Fm3m) is taken from [203]. 

at 1000 ºC for 1 s. The reference powder diffraction patterns for tetragonal (P42/nmc) [202], 

orthorhombic
1
 (Pbc21) [215] and monoclinic (P21/c) [216] phases are also introduced for 

comparison. The difference in the peak positions between experimental scans and reference 

patterns in corresponding phases can arise from internal lattice strains in the studied films 

or/and slightly different lattice parameters in respect to the reference powder samples. A 

visible change in the XRD patterns occurred with increasing Si concentration. Pure HfO2 

films crystallised predominantly into the monoclinic phase with characteristic (-111) and 

(111) peaks at 2 = 28.5º and 31.8º and a small fraction of the tetragonal crystallites
2
 (peak at 

2 = 30.8º). The stability of the tetragonal phase increased for samples with higher Si 

concentration. The (101) peak at 2 = 30.8º stood out more, while the monoclinic peaks 

decreased in intensity until they completely vanished for Si content above 5.6 cat%.  
 

                                                 
1
 No reference pattern of the orthorhombic (Pbc21) phase for HfO2 was available. The XRD data bases 

include patterns, acquired from bulk materials and powders, where this phase was never observed. It was only 

recently discovered in thin films [18]. Therefore, a diffraction patterns for the orthorhombic (Pbc21) phase in 

ZrO2, which exhibits a crystalline structure almost identical to HfO2 [117], was used here as a reference.  
2
 This peak should not appear in the monoclinic symmetry and evidences a presence of a different phase. 

The exact identification of this phase, however, is difficult due to its small volume fraction.  
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Figure 5.4 (a) GI-XRD diffraction scans for 9 nm Si:HfO2 films after annealing at 1000 ºC for 1 s, 

containing 0 cat% (pure HfO2), 4.4 cat% and 8.5 cat % silicon. Reference powder diffraction patterns 

for the tetragonal (P42/nmc) [202], orthorhombic (Pbc21) [215], and monoclinic (P21/c) [216] HfO2 

phases as well as the cubic TiN (Fm3m) [203] are shown for comparison. (b) Enlarged GI-XRD 

patterns (factor 10) for the 2 range between 80º and 90º.  

In bulk HfO2 materials the tetragonal phase is known to be stable only for temperatures above 

1700 ºC [117]. In thin HfO2 films, on the contrary, this high-temperature tetragonal phase can 

be observed at significantly lower temperatures. This effect was attributed to the increased 

impact of surface energy term, which becomes comparable to the volume energy term, and 

starts to impact the material properties [120]. Doping of HfO2 with Si [211], [123], [217] and 

several other elements [125], [126], [218] was reported to facilitate crystallisation into the 

tetragonal phase, which is consistent with our results. At Si content of 4.4 cat% the phase 

transition between monoclinic and tetragonal phases took place. The peak at 30.8º associated 

with the tetragonal phase was observed together with the peak at 17.6º, indicating the 

presence of a low-symmetry phase. The orthorhombic phase (Pbc21) is expected to appear at 

this phase boundary between the tetragonal and the monoclinic phases [18], [135] as a result 

of a martensitic phase transformation from the metastable tetragonal phase. As argued by Kisi 

in [136] a tetragonal-to-monoclinic phase transition becomes unfavourable in the presence of 

internal lattice strains, because of the required volume expansion of about 3.5% [117] in 

combination with shearing and twinning of a unit cell. As a result, a tetragonal-to-
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orthorhombic transition with less volume expansion and shear less unit cell transformation 

was argued to proceed instead. The internal film stains in our case were induced by the TiN 

top and bottom electrodes, present during the film crystallisation. The appearance of the 

orthorhombic phase (Pbc21) for HfO2 films containing 4.4 cat% Si provides a good 

explanation of the ferroelectric properties detected for this film composition (Figure 5.1). This 

phase is the only non-centrosymmetric crystalline phase known for HfO2 and, therefore, the 

only phase, which meets the requirements of ferroelectricity. The identification of the 

orthorhombic phase is, however, a difficult task, since its XRD-patterns is very similar to that 

of a monoclinic/tetragonal phase mixture. The major XRD reflexes from these phases appear 

at similar diffraction angles (Table 5.1). In addition, the textured structure
3
 of the studied 

samples made the phase assignment even more difficult. Nevertheless, by using Rietveld 

refinement [199], the high-pressure orthorhombic (Pbcm) phase highly textured in (100) 

direction in combination with (001) textured tetragonal (P42/nmc) phase was identified for 

samples with 4.4 cat% Si. The Pbcm orthorhombic phase is centrosymmetric and cannot 

explain the observed ferroelectric behaviour. However, unit cell structures in Pbcm and 

expected Pbc21 phases are related and cannot be distinguished by means of XRD [220].  

 

Table 5.1 Diffraction peak positions determined from experimental GI-XRD patterns for HfO2 films 

with 4.4 cat% silicon and the theoretical diffraction reflexes for the monoclinic (P21/c), tetragonal 

(P42/nmc) and orthorhombic (Pbc21) HfO2 phases that can be assigned to the experimental peak 

positions. 

Peak position 

(2

Monoclinic 

(P21/c) 

Tetragonal 

(P42/nmc) 

Orthorhombic 

(Pbc21) 

17.6
°
 (100) – (100) 

24.6
 °
 (011)/(110) – (110) 

28.5
 °
 (-111) – – 

30.8
°
 – (101) (111) 

31.8
°
 (111) – – 

35.6
°
 (200) (110) (200) 

 

                                                 
3
 Texture with {100} orientation was also observed up to different extent for HfO2 films grown from 

metal-organic precursors [18], [130]. Therefore, the observed texture is not a specific feature of the chlorine-

based ALD process, but was rather determined by the substrate structure [219], in our case – by the structure of 

the bottom TiN layer. 
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Figure 5.5 Correlation between the Si content dependence of (a) the remanent polarisation (PR) and  

(b) the integral intensities of dominant XRD peaks extracted from GI-XRD for 9 nm Si:HfO2 annealed 

at 1000 ºC for 1 s (Figure 5.4 (a)). The highest PR values was detected for films with 4.4 cat% Si, 

which corresponded to the monoclinic-to-tetragonal phase.  

Therefore, the assumption of the presence of the non-centrosymmetric Pbc21 phase for this 

film composition is fully justified. An additional proof of the presence of a new crystalline 

phase for Si:HfO2 with 4.4 cat% Si besides monoclinic and tetragonal provided the GI-XRD 

scans measured in the 2 range between 80º and 90º (Figure 5.4 (b)). The XRD pattern for 

4.4 cat% Si cannot be reproduced by a superposition of the upper and lower graphs, which 

would correspond to a simple phase mixture of the monoclinic and the tetragonal phases. 

From the comparison of the GI-XRD scans (Figure 5.4) with the results of the electrical 

measurements (Figure 5.1) a clear correlation between the crystalline structure of Si:HfO2 

films and their electrical properties can be derived. The observed change in the electrical 

behaviour was a result of the phase transition induced by silicon doping. The ferroelectric 

behaviour was detected at the phase transition between the monoclinic (P21/c) and the 

tetragonal (P42/nmc) phases, where the non-centrosymmetric orthorhombic Pbc21 phase 

emerged. An appearance of antiferroelectric-like characteristics was directly related to the 

stabilisation of the tetragonal phase. Figure 5.5 shows the Si-content dependencies of the 

remanent polarisation (PR), obtained from the P-V measurements (Figure 5.1 (a)), and the 

integral intensity of several major XRD reflexes extracted from the GI-XRD scans  

(Figure 5.4 (a)). The PR maximum was detected for films with 4.4 cat% Si, which 

corresponded to the monoclinic-to-tetragonal phase transition. An increase in the silicon 

content above 4.4 cat% Si was accompanied by a significant decrease of PR. Another point 

worth mentioning is the alteration of the integral intensity of the diffraction peak at  

2 = 30.8º, which showed similar dependence to PR and dropped for Si content above 



 

5.1 Impact of the silicon doping 

 

 

61 

4.4 cat%. This peak is characteristic for both the tetragonal (P42/nmc) and the orthorhombic 

(Pbc21) phases. The decrease of its intensity, therefore, indicated the reduction in the fraction 

of one of the phases – in our case the orthorhombic, since the tetragonal should become more 

stable. The residuals of the orthorhombic phase could be the cause of the observed double 

hysteresis loops for films with Si content > 4.4 cat% (Figure 5.1 (a)). A field-induced phase 

transition between from the nonpolar tetragonal (P42/nmc) and polar orthorhombic (Pbc21) 

phases can be another possible explanation of the antiferroelectric characteristics. The 

possibility of such phase transitions was recently shown on the basis of first principle 

calculations for HfO2 [221] as well as ZrO2 [222], which is chemically and structurally similar 

to HfO2. 

5.1.3 Piezoresponse force microscopy analysis 

Piezoelectricity is a mandatory property of ferroelectric materials (see discussion to  

Figure 2.8). Therefore, in order to confirm a true ferroelectric nature of polarisation hysteresis 

observed for Si:HfO2 films, their piezoelectric properties were studied by piezoresponse force 

microscopy (PFM) (chapter 3.2.4). All measurements were performed on crystalline 9 nm 

thick Si:HfO2 films (after a 1000 °C anneal), exhibiting distinct polarisation hysteresis loops.  

 

 

Figure 5.6 PFM results for 9 nm thick ferroelectric Si:HfO2: (a) Topography map; (b) piezoresponse 

amplitude map; (c) PRampl profile along AA1 section; (d) piezoresponse phase map; (d) histogram of 

the PRphase.  
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The local piezoelectric response from domains with opposite polarisation on a free 

Si:HfO2 surface was investigated at first. Domain square polarisation patterns were written by 

applying constant poling voltages of – 4.2 V and + 4 V to the probe tip, while scanning the 

film surface with decreasing area (2.5 × 2.5 m
2
 and 1 × 1 .m

2
, respectively). The 

piezoresponse images were subsequently acquired using AC voltage with amplitude of 1 V. 

The resulting maps of the out-of-plane piezoresponse amplitude (PRampl) and phase 

(PRphase) together with a topography map are depicted in Figure 5.6. The polarised square 

areas were clearly observed in the PRampl (Figure 5.6 (b)) and the PRphase (Figure 5.6 (d)) 

images, whereas the surface topography did not exhibit a comparable pattern (Figure 5.6 (a)). 

The boundaries to the outer unpolarised area as well as between the oppositely polarised 

square areas corresponded to regions with zero PRampl (black lines), which is an indicator of 

domain boundaries. The PRampl profile (Figure 5.6 (c)) along the section AA1 showed four 

minima (p1-p4), i.e. four domain boundaries. The PRphase jumps were found at the same 

positions (Figure 5.6 (d)). The dark and bright areas with an average PRphase difference of 

140° represented regions with opposite orientations of polarisation (up and down polarised 

domains, respectively). The presence of piezoresponse and the demonstrated ability to reverse 

the film polarisation by applying an external electric field serve as a strong evidence of 

intrinsic ferroelectric behaviour in Si:HfO2 films [223]. From the sharp domain boundaries 

observed with PFM and a predominantly columnar film structure detected by TEM  

(Figure 5.2) it can be concluded, that the ferroelectric domains extended through the entire 

film as stated in [173]. Moreover, the areas polarised during PFM analysis (several 

micrometres) must have consisted of multiple grains, since they were significantly larger than 

an average grain size (20 – 30 nm) estimated by TEM (Figure 5.2).  

Furthermore, the local switching behaviour was studied by measuring piezoelectric 

response as a function of bias voltage at different sample locations in both operation modes: 

in-field, with DC bias simultaneously applied, (Figure 5.7) and off-field, at 0 V after a 

specific bias was turned off, (Figure 5.8). These measurements were performed on Si:HfO2 

capacitors with top electrodes, which were previously bonded. This enabled to decouple the 

DC bias (applied to the top electrode) from the AC sensing signal at the probe tip in order to 

minimise electrostatic effects and generate a homogeneous electric field in the films [223]. 

The hysteresis data were collected within the 3 × 3 m
2
 area. Figure 5.7 and Figure 5.8 show 

in-field and off-field characteristics for a specific position on the sample. Similar curves with 

slight variations in the values of the piezoresponse were obtained for other positions. For both 

measurement modes the PRphase as well as piezoresponse characteristics showed a  

hysteretic behaviour, indicating a polarisation switching during bias sweeps. 
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The off-field measurements indicated the retaining of the induced polarisation states even in 

the absence of external fields. Therefore, they served as an evidence of good local retention 

properties of the ferroelectric Si:HfO2. The butterfly-shaped curves were acquired for the 

PRampl, which is a typical feature of ferroelectric materials [56], [77]. The electrostrictive 

effect during the in-field measurements resulted in additional voltage dependence of the 

PRampl, not present in the off-field characteristics. Here, constant PRampl values during the 

back sweeps (from +/ – 3 V to 0 V) emphasised again good polarisation retention properties. 

The minima of these characteristics corresponded to the polarisation reversal and, thus, 

provided the values of the local coercive fields. An average value of the local EC, extracted 

from PFM test, was about 1 MV/cm, which is in good agreement with macroscopic value 

obtained from P-V measurements (chapter 5.1.1).  
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Figure 5.7 In-field piezoresponse-voltage 

measurement: (a) PR amplitude, (b) PR phase and 

(c) piezoresponse.  

Figure 5.8 Off-field piezoresponse-voltage 

measurement: (a) PR amplitude, (b) PR phase 

and (c) piezoresponse.   
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Figure 5.9 Impact of annealing temperature on (a) the polarization- and (b) capacitance-voltage 

characteristics of ferroelectric capacitors containing 9 nm Si:HfO2 films with silicon contents of 

4.4 cat%. Ferroelectric behaviour remained for all annealing conditions.  

The impact of post-metallisation anneal on the ferroelectric properties of Si:HfO2 layers 

was investigated. Electrical properties and crystalline structure were analysed for 9 nm films 

exposed to different post-metallisation annealing conditions: 650 ºC for 20 s, 800 ºC for 20 s 

and 1000 ºC for 1 s as well as the as-deposited case without additional thermal treatment 

besides the thermal budget of 450 ºC for 6 – 8 hours during the deposition of TiN top 

electrodes.  

The electrical characterisation was performed using the polarisation- and capacitance-

voltage measurements. Figure 5.9 shows the resulting characteristics for the films with 

4.4 cat% silicon, which were previously found to exhibit ferroelectric behaviour  

(section 5.1.1). Polarisation hysteresis loops in combination with butterfly-shaped C-V curves 

were detected for all annealing conditions including the as-deposited case. The similarity of 

electric properties for annealed and as-deposited sample indicated partial crystallisation of 

Si:HfO2 films during the deposition of TiN top electrode, where the films were exposed to 
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450 °C for 6 – 8 hours. This assumption was also confirmed by the results of the GI-XRD 

measurements (Figure 5.10 (a)). Here, diffraction peaks related to crystalline HfO2 at  

2 = 30.8º and 35.6 º were detected. Exposure of samples to additional post-metallisation 

anneal resulted in more apparent ferroelectric behaviour with larger hysteresis loops and 

higher PR-values (Figure 5.9). The number and positions of the diffraction peaks remained 

unchanged with increasing annealing temperature (Figure 5.10 (a)). All observed peaks could 

be assigned to the orthorhombic (Pbc21) phase. The primary effect of the higher annealing 

temperatures consisted in an increase in the integral intensities of all HfO2 peaks  

(Figure 5.10 (b)), which indicated a growth in the degree of film crystallinity. Moreover, a 

slight decrease in the FWHM (full width at half maximum) values was detected for higher 

annealing temperatures, which evidenced an increase in the grain size. The intensity of the 

TiN peak at 2°
, on the contrary, remained constant for all annealing conditions, since 

the TiN was already crystalline after deposition and its crystallinity did not change with 

further annealing. Thus, the TiN peaks were used as a reference to evidence the change in the 

crystallinity of HfO2 films. The remanent polarisation showed a monotonic increase with the 

annealing temperature (Figure 5.10 (c)), similar to the integral intensity of the HfO2 

diffraction peaks (Figure 5.10 (b)). The coercive field strength, on the other hand, was almost 

independent on the annealing conditions. Therefore, an altered degree of film crystallinity, 

which is directly related to the fraction of the ferroelectric phase, can be held responsible for 

the enhancement of the ferroelectric properties at higher annealing temperatures. Special 

attention should be given to the fact, that annealing at 1000 ºC for 1 s was enough to 

crystallise the Si:HfO2 films and to induce their ferroelectric properties with PR = 24 C/cm
2
. 
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Figure 5.10 (a) GI-XRD scans of 9 nm thick ferroelectric Si:HfO2 films (4.4 cat% Si) after different 

annealing treatments. Reference powder XRD patterns for the cubic TiN (Fm3m) were taken from 

[203]; Integral intensities of major XRD peaks (b), the remanent polarisation PR and the coercive field 

EC (c) versus annealing temperature. 
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This finding is of significance for later integration of Si:HfO2 films into FeFET memory 

devices. A spike anneal with similar parameters is used for CMOS transistors for dopant 

activation. For Si:HfO2-based FeFETs it can be simultaneously used to crystallise Si:HfO2 

films into a ferroelectric phase. Therefore, Si:HfO2-based ferroelectric transistors can be 

fabricated with the state-of-the-art CMOS process without any additional annealing steps 

needed.  

As was shown in chapter 5.1, ferroelectric properties of Si:HfO2 emerged on the 

tetragonal-to-monoclinic phase boundary, which is induced by Si doping. Impact of the 

thermal treatment on the film composition exhibiting ferroelectric behaviour was examined. 

For this purpose P-V characteristics were recorded for samples with varying silicon content 

and different annealing conditions. The extracted PR-values are shown as a function of silicon 

content in Figure 5.11. Independent of annealing conditions ferroelectric behaviour appeared 

for the film composition with 4.4 cat% Si, where the maximum PR was detected (Figure 5.11). 

At all annealing temperatures this film composition also corresponded to the monoclinic-to-

tetragonal phase transition similar to Figure 5.3. Therefore, it can be deduced, that the film 

crystalline phase formed during crystallisation was predominantly determined by the film 

composition, whereas the annealing conditions affected a degree of the film crystallinity. The 

emergence of ferroelectric properties will, thus, depend on the ability to control the film 

composition. In Si:HfO2 films the ferroelectric properties were detected in a rather narrow 

range of low silicon content (2.6 – 4.9 cat% [18]), where a precise tuning of film composition 

and, hence, film properties is rather difficult. Of great interest are, therefore, dopants, which 

provide ferroelectric properties in HfO2 within a broader doping range (e.g. Zr (30-70 cat%) 

[132] and Sr [224]). 

Leakage current behaviour is one of the reliability concerns in the thin films, which is 

also relevant for ferroelectric memory applications. High leakage currents cause a 

malfunction in both types of ferroelectric memory cells, degrading reliability for FeRAM [49] 

and retention for FeFET [110] devices. Influence of annealing conditions on the leakage 

current characteristics was examined for 9 nm thick ferroelectric Si:HfO2 films with 4.4 cat% 

Si (Figure 5.12). An increase in the leakage current with annealing temperature was detected 

for both voltage polarities. Crystallisation was previously identified as the main source of the 

leakage current degradation in HfO2 films [214], [217], which also coincides well with 

observations made for studied Si:HfO2 films. Grain boundaries were shown to serve as high 

leakage paths in crystalline films [225]. 
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Figure 5.11 PR versus Si content dependence for 

9 nm thick Si:HfO2 films exposed to different 

annealing conditions [23]. 

Figure 5.12 Impact of annealing temperature on the 

leakage current characteristics of 9 nm thick 

ferroelectric Si:HfO2 films (4.4 cat% Si). 

5.3 Impact of the film thickness 

Properties of thin dielectric films can be essentially affected by their thickness [217], 

[127]. In thin films the contribution from the surface energy becomes comparable to the 

volume energy due to a high surface-to-volume ratio of each individual grain [120] and starts 

to affect their physical properties. The grain size and, thus, the surface-to-volume ratio 

correlate directly with the film thickness. Therefore, the film properties can be shifted in the 

direction of either bulk-dominated or surface-dominated by adjusting their thickness. In this 

chapter the influence of thickness on the electrical properties and crystallisation behaviour of 

Si:HfO2 films will be discussed. MIM capacitors including 9, 27 and 50 nm thick Si:HfO2 

layers were studied. It will be shown, that the crystallisation behaviour of the Si:HfO2 films 

was altered with increase in the film thickness, which in turn influenced the ferroelectric 

characteristics.  

The impact of silicon content and annealing temperature on the crystalline structure of 

Si:HfO2 films with varying thickness (9, 27 and 50 nm) was investigated by means of  

GI-XRD. The crystal structure of the layers was identified by comparing the experimental 

scans with theoretical powder XRD patterns of the monoclinic (P21/c) [216], tetragonal 

(P42/nmc) [202] and orthorhombic (Pbc21) [215] phases of HfO2. Figure 5.13 (a) and (b) 

summarizes the results of the structural analysis for 9 and 27 nm thick Si:HfO2 films, 

respectively. (The phase diagrams of 27 and 50 nm films were identical.) For all film 

thicknesses the incorporation of silicon had the same effect and resulted in increase  
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Figure 5.13 Effect of silicon content and annealing temperature on the phase composition of (a) 9 nm 

and (b) 27 nm thick Si:HfO2 films (similar to 50 nm films) [23]. For both film thicknesses an increase 

in the silicon content induced rise in the crystallisation temperature in combination with stabilisation 

of the tetragonal phase. With increasing film thickness the monoclinic-to-tetragonal transition shifted 

to slightly higher Si content.  

of the crystallisation temperature and stabilisation of the tetragonal phase. With growing film 

thickness, however, the crystallisation temperature decreased in comparison to 9 nm films 

with the same silicon content (e.g. 4.4 and 5.6 cat% silicon). The GI-XRD diffractograms of 

the films with 4.4 cat% Si and varying film thickness measured directly after the deposition of 

the TiN top electrodes at 450
°
C are shown in Figure 5.14 (a). The 9 nm films remained 

predominantly amorphous. On the contrary, for 27 and 50 nm films a crystalline structure was 

detected, indicating at least partial crystallisation. Similar impact of the film thickness on the 

crystallisation temperature was previously observed for pure HfO2 films [226], [227] as well 

as for HfSiON films [127]. Increase in the film thickness, moreover, enhanced the stability of 

the monoclinic phase. The characteristic monoclinic peaks (-111) and (111) at 2° 
and 

31.8
°
, respectively, were clearly observed for the 27 nm and 50 nm films, whereas no 

evidence of these peaks was found for 9 nm films (Figure 5.14 (a)). An increased film 

thickness resulted in a shift of the monoclinic-to-tetragonal phase transition to slightly higher 

silicon content: from 4.4 cat % Si for 9 nm films to some concentration between 4.4 and 

5.6 cat% Si for thicker films. In the GI-XRD scans obtained for 27 nm Si:HfO2 film with 

varying composition (Figure 5.14 (b)), the residuals of the monoclinic phase was detected up 

to 5.6 cat% Si. Both effects – decrease of the crystallisation temperature and increased 

stability of the monoclinic phase with increasing film thickness – can be explained by the 

surface energy effect [120], [121]. In the thin films with high surface-to-volume ratio the 

properties are affected by the volume as well as surface energy. The impact of the surface 

energy diminishes as the films become thicker. As a result the properties of thick films 

approach those of the bulk material. Therefore, in the case of thick films higher silicon doping 
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was needed to induce the monoclinic-to-tetragonal phase transition as well as to prevent film 

crystallisation.  

The electrical properties of Si:HfO2 films were expected to vary with the film thickness, 

since it was found to affect their crystalline structure. P-V and C-V measurements were 

performed on films with different thickness. The results of electrical characterisation for 9 nm 

films were discussed in sections 5.1 and 5.2. The ferroelectric behaviour was shown to appear 

for Si content of 4.4 cat%, corresponding to the monoclinic-to-tetragonal phase boundary. For 

thicker films the phase transition was shifted to slightly higher Si content (see Figure 5.13 (b) 

and Figure 5.14 (b)): between 4.4 and 5.6 cat% Si. Hysteretic P-V curves were obtained for 

both these compositions (Figure 5.15 after TiN deposition and 650 °C anneal), confirming 

again, that the ferroelectric properties in Si:HfO2 films emerge at the phase boundary. The 

temperature dependence of the P-V characteristics varied, however, with the silicon doping 

level and showed a completely different trend in comparison to the 9 nm films (chapter 5.2). 

P-V characteristics of 27 nm films with 4.4 cat% Si remained unaffected by the thermal 
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Figure 5.14 (a) GI-XRD scans for Si:HfO2 films containing 4.4 cat% with varying film thickness after 

deposition of the TiN top electrodes; (b) GI-XRD scans for 27 nm Si:HfO2 films with different 

composition after annealing at 800
°
C for 20 s [23]. Growth of the film thickness resulted in an 

increased stability of the monoclinic phase. Reference powder XRD patterns: the orthorhombic 

(Pbc21) [215], tetragonal (P42/nmc) [202] and monoclinic (P21/c) [216] phases of HfO2 and the cubic 

TiN (Fm3m) [203]. 
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treatment. For the 5.6 cat% Si slight hysteresis pinching appeared for 650 °C anneal and 

transformed into antiferroelectric-like double hysteresis loops with further increase in the 

annealing temperature.  

The altered impact of thermal treatment on the ferroelectric characteristics of the thick 

Si:HfO2 films was studied in more details. In order to get better insight into its origin, the 

correlation between the P-V measurements and crystalline structure was analysed for 27 nm 

thick Si:HfO2 films with 4.4 cat% Si. For these samples the post-metallisation treatment had a 

negligible effect of on the polarisation hysteresis loops (Figure 5.15(a)). Comparable  

PR-values were extracted for all annealing conditions (Figure 5.16 (a)). A contrary 

observation was made for 9 nm films, where an apparent increase in the PR with the annealing 

temperature was detected (Figure 5.10). This was found to be related to the growing degree of 

the film crystallinity. The analyses of the film crystallinity for 27 nm films were performed 

using GI-XRD measurements. Figure 5.16 (b) depicts the integral intensities of dominant 

XRD peaks as a function of annealing temperature. Again a good correlation between the 

annealing temperature dependence of PR and the integral intensities of HfO2 peaks could be 

observed. Only minor change in the peak intensities for all HfO2 peaks occurred for varying 

annealing temperatures. This indicates, that 27 nm films crystallised already during the 

deposition of the TiN top electrode at 450 °C, which is consistent with the detected lowering 

of their crystallisation temperature. The subsequent annealing step changed neither the degree 

of crystallinity nor the phase composition. Therefore, the PR-value remained independent 

from the annealing temperature. 
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Figure 5.15 Alteration of P-V characteristics with temperature for 27 nm thick Si:HfO2 films with 

compositions at the monoclinic-to-tetragonal phase boundary (a) 4.4 cat% and (b) 5.6 cat% silicon.  
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Figure 5.16 Correlation between the temperature 

dependence of (a) the remanent polarization and 

(b) integral intensities of XRD for 27 nm thick 

Si:HfO2 films with 4.4 cat% Si. 

Figure 5.17 The impact of film thickness on the 

remanent polarisation (PR) and the coercive field 

strength (EC) of Si:HfO2 with 4.4 cat% Si 

annealed at 800 ºC for 20 s. 

Furthermore, an increase in the film thickness resulted in a significantly decreased 

remanent polarisation (Figure 5.16): from 18 C/cm
2
 for 9 nm films down to 1 C/cm

2
 for 

50 nm films. The EC-values, on the contrary, were comparable for 9 and 27 nm layers, 

decreased, however, for 50 nm layers. This suppressed ferroelectric behaviour in thick films 

was probably a result of the increased stability of the monoclinic phase (Figure 5.14 (b)), 

which inhibited the formation of the ferroelectric orthorhombic phase. Two possible reasons 

could cause the observed stabilisation of the monoclinic phase with increasing thickness: 

decreased impact of the surface energy contribution, causing a transition to the volume 

dominated properties [120], and also insufficient mechanical stress during crystallisation. The 

27 and 50 nm films crystallised already during the deposition of the TiN electrodes. Films 

with 9 nm thickness, on the contrary, remained predominantly amorphous during 

metallisation and were crystallised in a subsequent annealing step in the presence of both TiN 

electrodes, thus, under mechanical confinement. The role of mechanical confinement is not 

completely understood yet. It was reported to be of secondary importance for the formation of 

the ferroelectric phase in Al-doped HfO2 system [130]. For the pure HfO2 [128] and Si:HfO2 

[18], however, the presence of a TiN capping layer was found to facilitate the stabilisation of 

the tetragonal/orthorhombic phase. Therefore, ferroelectric properties in 27 – 50 nm thick 

Si:HfO2 films can be enhanced, if they crystallise in the presence of mechanical confinement. 

This assumption was recently confirmed in [228].  
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5.4 Summary 

The material aspects of Si-doped HfO2 thin films have been studied in order to gain 

better insight into the occurrence of ferroelectricity in this system and to acquire guidelines 

for transistor fabrication. The influence of the different process parameters such as the Si 

doping concentration (chapter 5.1), post-metallisation annealing conditions (chapter 5.2) and 

film thickness (chapter 5.3) on the stabilisation of the ferroelectric properties in Si:HfO2 films 

has been examined. Electrical characterisation combined with structural analyses enabled the 

changes in the macroscopic electrical properties to be correlated to alterations in the film 

crystalline structure.  

The film composition appears to have a strong impact on the electrical properties of the 

Si:HfO2 films (Figure 5.1). By varying the Si doping level the electrical properties could be 

tuned between paraelectric (pure HfO2), ferroelectric (4.4 cat% Si) and antiferroelectric-like 

(≥ 5.6 cat% Si) behaviour. In this case, the Si doping has two effects; it increases the film 

crystallisation temperature (Figure 5.3) and simultaneously induces a phase transition from 

the monoclinic (P21/c) to the tetragonal (P42/nmc) phase (Figure 5.4). A combination of both 

these effects resulted in the observed ferroelectric as well as antiferroelectric-like behaviour. 

As a result of the increase of crystallisation temperature with doping, Si:HfO2 could be 

encapsulated in an amorphous phase and crystallised in the presence of both TiN electrode 

layers that serve as a mechanical confinement. This confinement facilitated the formation of a 

ferroelectric phase at the monoclinic-to-tetragonal phase boundary (Figure 5.4 and  

Figure 5.5). The effect of the Si-doping was similar to other dopants, for which ferroelectric 

behaviour has also been observed at the monoclinic-to-tetragonal phase boundary [19], [20], 

[130], [131]. It has been argued that crystallisation in the presence of mechanical confinement 

is a prerequisite for the formation of the ferroelectric phase in the Si:HfO2 material system 

[18]. This statement could be partially confirmed in this work (chapter 5.3). For other doping 

elements (e.g. Al [130]) this condition was, however, shown to be less important. A non-

centrosymmetric orthorhombic phase Pbc21, which can be stabilised at the monoclinic-to-

tetragonal phase boundary as claimed in [18], was also held responsible for the ferroelectric 

properties of films studied in this work. An unambiguous identification of the orthorhombic 

Pbc21 phase was unfortunately impossible. The presence of a new crystalline HfO2 phase with 

a symmetry different from the monoclinic (P21/c) and tetragonal (P42/nmc) phases was, 

however, ascertained at the monoclinic-to-tetragonal phase boundary by means of GI-XRD 

analyses. In addition to the P-V hysteresis loops and butterfly-shaped C-V curves, a strong 

evidence for the structural ferroelectricity in Si:HfO2 films (i.e. existence of a non-

centrosymmetric ferroelectric phase) was provided by PFM measurements (chapter 5.1.3). A 

distinct piezoelectric response, which is a necessary requirement of structural ferroelectricity 
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[69], was demonstrated for the Si:HfO2 films in combination with the ability to locally reverse 

the film polarisation in an external electric field. Nevertheless, other origins of the observed 

ferroelectric behaviour in Si:HfO2 films (e.g. oxygen vacancy driven ferroelectricity) cannot 

be completely ruled out. In order to clarify the nature of the ferroelectricity in HfO2-based 

materials, ab initio structural simulations and further experimental studies are required.  

The electrical characteristics of ferroelectric Si:HfO2 thin films is of greater relevance 

than a complete understanding of the root cause of their ferroelectricity for application in 

ferroelectric memories. The studied Si:HfO2 layers exhibited PR-values (18 – 24 C/cm
2
) 

comparable to those of perovskite-type ferroelectric materials (e.g. PZT and SBT (see  

Table 2.1)) and about a factor of ten higher EC of  1 MV/cm. The latter is advantageous for 

FeFET cell-types, where the gate stack height can be reduced to a few nanometres and still 

exhibit a sufficiently high memory window, in contrast to devices with PZT and SBT films 

[140]. Therefore, Si:HfO2 ferroelectrics provide better scaling potential for FeFET cells. 

Utilisation of chloride-based precursors and H2O for the fabrication of Si:HfO2 films allowed 

higher PR-values to be achieved in comparison to films grown with metal-organic precursors 

and O3 that exhibited PR-values from 5 to 12 C/cm
2
 [22], [207], [229]. The values of the 

coercive fields (0.7 – 1 MV/cm) and the Si doping range with the most prominent 

ferroelectric properties (2.5 – 4 cat% Si) were, on the other hand, comparable for both 

deposition processes. Chloride-based precursors are typically associated with an increased 

level of chlorine contamination in the grown films as well as a reduced carbon contamination 

level [230], [231], which may have affected the electrical properties of the films.  

The appearance of antiferroelectric-like characteristics in Si:HfO2 films was directly 

related to the stabilisation of the tetragonal phase with increasing Si content (Figure 5.5). The 

origin of the antiferroelectric behaviour is yet not completely understood. The most plausible 

explanations are the residuals of the orthorhombic phase presented in films with Si content 

greater than 4.4 cat% as well as a field-induced phase transition between the tetragonal 

(P42/nmc) and the orthorhombic (Pbc21) phases. The possibility for the latter explanation was 

recently confirmed on the basis of first principle calculations for both HfO2 [221] and  

ZrO2 [222]. 

The post-metallisation anneal affected primarily the degree of the film crystallinity and 

had no impact on the position of the monoclinic-to-tetragonal phase boundary. Annealing at 

higher temperatures resulted in increased PR-values (Figure 5.10), due to an increased degree 

of film crystallinity, which was directly related to the fraction of the ferroelectric phase. A 

side-effect of the increased film crystallinity with annealing temperature was a higher leakage 

current (Figure 5.12). Annealing at 1000 °C for 1 s, equivalent to dopant activation anneal 
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used during CMOS process, was shown to be sufficient for crystallisation of Si:HfO2 films 

and to obtain a PR of 24 C/cm
2
. Therefore, Si:HfO2-based ferroelectric transistors can be 

fabricated using state-of-the-art CMOS process without a requirement for additional 

annealing steps. This is a real advantage in comparison to the PZT and SBT films that require 

special integration schemes due to the high processing temperatures (600 – 800 °C), high 

pressure oxygen atmosphere during deposition and the sensitivity of the ferroelectric 

properties to the hydrogen used during forming gas anneals [97], [98], [17]. 

The ferroelectric behaviour of Si:HfO2 also depends on the film thickness. The 

increased stability of the monoclinic phase for thicker films (Figure 5.14) impeded the 

formation of a ferroelectric orthorhombic phase, leading to reduction in the remanent 

polarisation (Figure 5.17). The observed stabilisation of the monoclinic phase for thicker 

films resulted from the combined effect of the decreased surface energy [120], [121] and 

insufficient mechanical stress during crystallisation. Thicker films (27 and 50 nm) crystallised 

already during the deposition of the top TiN electrode due to a reduced crystallisation 

temperature, while the thinner films (9 nm) were crystallised after they were embedded 

between top and bottom TiN layers.  
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6 Electrical properties of the ferroelectric Si:HfO2 thin 

films 

The application of Si:HfO2 films in ferroelectric memories requires a good knowledge 

of their electrical behaviour. Therefore, this chapter focuses on the electrical properties of 

ferroelectric Si:HfO2 films, which are relevant for memory applications: effect of the field 

cycling (section 6.1), polarisation switching speed (section 6.2) and fatigue characteristics 

(section 6.3). The results shown in this chapter were acquired on MIM capacitors including 

9 nm Si:HfO2 films.  

6.1 Field cycling effect 

The field cycling effect also known as “wake up” behaviour is associated with a 

recovery of initially pinched antiferroelectric-like hysteresis loops under alternating electrical 

stress in ferroelectric materials [56], [209], [232], [233]. Several origins of this phenomenon 

were proposed [56], [209], [234]: (1) space charge accumulation at the grain boundaries, 

(2) pinning of domain walls by defects due to electric or/and elastic interactions and  

(3) alignment of defect dipoles along the existing polarisation directions. Therefore, in 

pristine non-cycled or aged samples certain domain orientations are more favourable, whereas 

domain wall movements can be simultaneously impeded. A pinching of a polarisation 

hysteresis appears, if multiple domains with antiparallel polarisation directions are stabilised 

[71]. Cycling with an alternating electrical field rearranges defects and charges within the 

material, releasing the domain walls and facilitating polarisation switching of domains in the 

external field. The electrically cycled cells exhibit commonly higher and more stable 

remanent polarisation in comparison to pristine non-cycled ones. 

The impact of electrical cycling on the ferroelectric properties of 9 nm Si:HfO2 layers 

was studied for two different film compositions, the first with initial ferroelectric behaviour  

(4.4 cat% Si) and the second with initial antiferroelectric-like behaviour (5.6 cat% Si). P-V 

and C-V characteristics were measured after varying number of stress cycles. The stressing 

was performed using triangular pulses of alternating polarity with amplitude of 3.5 V and 

frequency of 1 kHz (inset Figure 6.1 (a)). Figure 6.1 shows the evolution of P-V 

characteristics and corresponding transient current response with increasing number of cycles 

for ferroelectric films (4.4 cat% Si). The initially slightly pinched hysteresis loops recovered 
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after exposure to the alternating electrical stress. With increasing number of cycles an opening 

of the hysteresis loop (Figure 6.1 (a)) was observed simultaneously to the alteration of the 

displacement current characteristics (Figure 6.1 (b)). Fresh non-cycled cells revealed three 

switching peaks, indicating distribution in the coercive field value for different domains, 

which also explains a flat slope of the initial hysteresis loop. As argued in [235] the presence 

of several distinct switching peaks originates from the difference in the local defect 

concentration. With progressive cycling the slope of the polarisation hysteresis became 

steeper, which means that the majority of the ferroelectric domains switched almost 

simultaneously. It was also confirmed by merging of initial three switching peaks into one 

during cycling. A similar behaviour of displacement current under electrical stress was also 

reported in [209] and was attributed to the decrease in the internal bias as a consequence of 

defect dipoles rearrangement. Furthermore, the behaviour of the remanent polarisation (PR) 

and polarisation loss (PR) within 1 s delay during cycling was analysed for samples exposed 

to different annealing conditions (Figure 6.2). An increase in PR and more importantly a 

simultaneous decrease in PR were detected with increasing number of stress cycles  

(in particular for anneals at 800 and 1000 ºC). The electrical stress, thus, not only increased 

the number of switchable ferroelectric domains but also their stability, preventing back 

switching after removal of external bias. Therefore, not only higher polarisation values can be 

achieved upon electrical cycling, but also the retention properties of the material can be 

significantly improved. For 1000 °C anneal, for example, the pristine non-cycled samples 

exhibited PR of 22 C/cm
2
. In a long term, however, less than 50 % of this polarisation can be 

used, taking in account PR of 11 C/cm
2
 within 1 s. After 1000 cycles PR rose by 10 %, 

whereas PR simultaneously reduced to 3 C/cm
2
, which amounted to 14 % of the PR-value. 

“Wake up” behaviour was also reflected in the C-V characteristics, which altered with cycling 

(Figure 6.3). Initial C-V curves exhibited double butterfly characteristics with one main and 

one secondary peak for each sweep direction. Butterfly-shaped characteristics, typical for 

ferroelectric materials [72], evolved after 1000 times cycling. Moreover, an increase in 

capacitance value was detected, evidencing release of the domain walls during cycling. 

Reversible motion of released domain walls in response to an AC signal provided additional 

contribution to the measured capacitance.  

In the case of Si:HfO2 sample with antiferroelectric-like behaviour (5.6 cat% Si) the 

electrical stress had a negligible impact on the polarisation hysteresis as well as on the 

transient current response (Figure 6.4). A slight increase in the remanent polarisation with 

increasing cycling number was detected. The polarisation loss, however, also grew. As a 

result, the polarisation after 1 s (PR_rel) remained negligibly small. Thus, samples with 

strongly pinched hysteresis loops (with evident antiferroelectric-like behaviour) cannot be 

recovered by applying electrical stress. Possible root causes of a cycling behaviour different 
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to the films with 4.4 cat% Si are: (1) material properties different from ferroelectric, where 

pinched hysteresis arose primarily due to the field induced transition into a ferroelectric phase 

and not due to domain clamping by defects or (2) a significantly higher concentration of  
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Figure 6.1 Field cycling effect for 9 nm thick ferroelectric Si:HfO2 films with 4.4 cat% Si annealed at 

800 °C for 20 s. Evolution of (a) P-V characteristics and (b) transient current response with increasing 

number of cycles. Cycling and measurements were performed using triangular pulses with amplitude 

of 3.5 V at 1 kHz frequency (inset). 
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Figure 6.2 Field cycling effect for 9 nm Si:HfO2 

films with 4.4 cat% Si depending on the annealing 

conditions. (a) Dynamic PR and (b) PR loss (PR) 

after 1 s delay versus number of cycles.  

Figure 6.3 Evolution of C-V characteristic with 

increasing number of cycles for 9 nm Si:HfO2 

films with 4.4 cat% Si annealed at 800 °C.  
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Figure 6.4 Field cycling effect for 9 nm Si:HfO2 films with 5.6 cat% Si annealed at 1000 
o
C. Evolution 

of (a) P-V characteristics and (b) transient current response with increasing number of cycles.  

(c) Impact of cycling on PR, relaxed PR_rel and PR loss after 1 s. using triangular pulses with 

amplitude of 3.5 V at 1 kHz frequency (inset Figure 6.1 (a)). 

defect dipoles induced with additional Si doping, which stiffened the existing domain 

structure and made it insensitive to the field cycling. The first explanation was supported by 

the stabilisation of the non-ferroelectric tetragonal phase observed for Si contents higher than 

4.4 cat% (Figure 5.13 (a)). The second mechanism, however, cannot be completely excluded.  

6.2 Switching kinetics 

The switching behaviour of 9 nm thick ferroelectric Si:HfO2 films (4.4 cat% Si) 

annealed at 1000 °C was studied using PUND technique (chapter 3.2.2). The pulsed 

characteristics obtained with this method (Figure 6.5 (a)) are more relevant for the memory 

applications [169]. Taking into account the field cycling effect (section 6.1), the test 

capacitors were cycled 1000 times with triangular pulses of 3.5 V at 1 kHz before performing 

PUND measurements. Pulse sequence used during the PUND testing is shown in Figure 6.5 

(b). Polarisation switched during the writing pulse (2PR) was monitored depending on the 

pulse width (tWRITE) and amplitude (VWRITE). Before each writing pulse a cell was set into an 

opposite polarisation state by applying an initialisation pulse of 3.5 V for 250 s. The read out 

was performed with two consecutive pulses (3.5 V / 250 s each) and read delay of 1 s. The 

switching times detected for the studied Si:HfO2 samples lay in the nanosecond range and 

were comparable to those reported for perovskite-type ferroelectric thin films [65], [66], [67].   
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Figure 6.5 Polarisation switching behaviour of 9 nm ferroelectric Si:HfO2 films: (a) Switched 

polarisation (2PR) as a function of the writing pulse width for varying pulse amplitudes. (b) PUND 

experimental pulse sequence. (c) Switching time, time required for complete polarisation switching, 

versus reversed electric field applied. 

For writing voltages higher or equal to – 2 V polarisation reversal was observed already after 

30 ns pulses, the shortest pulses available with the used set-up. A saturation of the 2PR-value 

was detected at around 40 C/cm
2
, which is in good agreement with the PR = C/cm

2
 

extracted from P-V measurements (Figure 5.5 (a)). The shortest time for complete polarisation 

reversal was 400 ns achieved for – 4 V. Lower amplitudes of the writing pulse resulted in 

longer switching times. Moreover, change in the writing voltage caused a change in the slope 

of the switching curves. In the classical Kolmogorov-Avrami-Ishibashi switching theory [59], 

[60], however, the switching curves are expected to shift along the time axis for varying 

switching voltages without any change in their slope [62], [58]. Therefore, the polarisation 

reversal in Si:HfO2 films proceeded more likely in accordance with the nucleation-limited-

switching (NLS) model [61], rather than the classical Kolmogorov-Avrami-Ishibashi 

switching theory [59], [60]. An essential requirement of the NLS model is the presence of 

regions with independent switching dynamics [61], which was fully justified for studied 

Si:HfO2 films due to their polycrystalline structure (Figure 5.2). The grain boundaries in 

polycrystalline films served as hindrance for domain wall propagation and, thus, infinite 

domain expansion, resulting in independently switching regions. Nucleation-limited switching 

kinetics was also confirmed for polycrystalline thin PZT films in [64]. From the experimental 

switching characteristics of Si:HfO2 films (Figure 6.5 (a)) the switching time, the time of a 

complete polarisation reversal, was extracted dependent on the writing pulse amplitude. If 

plotted versus a reversed value of the corresponding applied electric field, the switching time 

showed an exponential dependence (Figure 6.5 (c)). This corresponded surprisingly well with 
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an empirical law obtained by Scott et al. for submicron PZT films in [60] based on the 

Kolmogorov-Avrami-Ishibashi model:  

where t0 is a constant, E  – the switching activation field and  C CT T T    – the reduced 

temperature with TC standing for the Curie temperature. By fitting the experimental curve for 

Si:HfO2 films and assuming the TC-value
4
 of 200 °C, E  around 100 MV/cm was obtained. 

This unreasonably high E -value indicated again, that the classical switching theory is not 

applicable for studied films. 

6.3 Fatigue behaviour 

This chapter focuses on the fatigue behaviour of Si:HfO2 ferroelectrics, a potential to 

withstand continuous polarisation reversal. Fatigue characterisation of 9 nm ferroelectric 

Si:HfO2 films (4.4 cat % Si) annealed at 1000 °C for 1 s was performed. Symmetrical 

rectangular pulses of alternating polarity were applied to emulate the polarisation switching 

(inset Figure 6.6 (a)). The remaining switchable polarisation was sensed in between by 

interrupting fatigue signal and carrying out P-V measurements. Here, a constant frequency of 

1 kHz and amplitude similar to the stress signal were used. The amplitude and frequency of 

the stress signal were varied in order to study the influence of these parameters on the fatigue 

properties.  

The stress frequency turned out to affect strongly the number of switching pulses, 

which devices could withstand before hard breakdown (Figure 6.6 (a)). At the lowest 

frequency of 10 kHz the switching ability was restricted to 10
4
 switching cycles. At the 

highest frequency of 1 MHz, on the other hand, no breakdown was observed even after 10
9
 

switching cycles. A similar enhancement of the time to breakdown with increasing frequency 

was previously observed for high-k dielectrics [236] and high-k dielectric stacks [237] and 

was attributed to the trapping effects within the high-k material. In addition, breakdown 

behaviour can be driven by ferroelectric switching as proposed in [238]. Here, heating up of 

the atoms, moving during polarisation switching, and the resulting bond breakage were held 

responsible for the breakdown in ferroelectrics. In our case, the amount of switched 

polarisation differed depending on stress frequency, since the latter determines the width  

 

                                                 
4
 The exact value of the Curie temperature for Si:HfO2 films is still not know. The ferroelectric properties 

remain at least up to 200 °C as shown by Schröder et al. in [131]. The data for higher temperatures are, however, 

missing. Therefore, the TC-value of 200 °C was used for a rough estimation of Eα.  

 0 expSWITCHt t E E , (6.1) 
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Figure 6.6 Fatigue characteristics of 9 nm ferroelectric Si:HfO2 films: (a) Impact of stress frequency at 

a constant stress voltage of 3 V. Inset shows experimental pulse sequence. Impact of stress voltage on 

the alteration in (b) the remanent polarisation and (c) coercive voltages with cycling at 1 MHz stress 

frequency.  

of the polarising pulse (50 s – for the lowest frequency of 10 kHz and 500 ns – for the 

highest frequency of 1 MHz). Higher polarisation values were achieved for longer switching 

pulses/lower frequencies as can be seen from Figure 6.5 (a). Therefore, faster breakdown at 

lower frequencies according to this theory can be explained by a higher number of atoms 

moving during cycling and, thus, increased probability of bond breakage. Faster breakdown 

for higher switched polarisation can, however, also be explained in context of the classical 

breakdown theory of dielectrics. Here, electric field is known to accelerate the degradation 

rate [239]. Increase in polarisation enhances electric field within the film during polarisation 

back switching, which results in earlier breakdown.  

Furthermore, the impact of stress voltage on the fatigue characteristics was studied  

(Figure 6.6 (b) and (c)). The measurements were performed at 1 MHz frequency, since it was 

comparable to the operation conditions of the Si:HfO2-based FeFET memory cells, which, as 

will be shown in chapter 7.2, operated in MHz frequency regime with program / erase pulses 

of 10 – 100 ns (Figure 7.4). For two lowest stress voltages 2.75 and 3 V decrease in the 

remanent polarisation started after 10
6
 cycles (Figure 6.6 (b)), whereas the coercive voltage 

was almost unaffected by cycling up to 10
9
 cycles (Figure 6.6 (c)). This is similar to the 

fatigue behaviour of PZT films, where cycling predominantly affects PR-values [78]. At the 

highest stress voltage of 3.25 V, PR as well as VC remained almost constant up to hard 

breakdown at 10
6
 cycles. Therefore, the fatigue properties of Si:HfO2 films were comparable 

to those of PZT ferroelectrics combined with Pt electrodes, where onset of the polarisation 

degradation was reported between 10
4
 – 10

7
 switching cycles [78]. PZT films with oxide 

electrodes exhibit commonly superior fatigue properties (10
9
-10

12
 cycles) [50], [240], whereas 

SBT films are virtually fatigue free with endurance better than 10
12

 cycles [45], [241]. For the 
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FeFET-type memories the behaviour of the coercive field with cycling is of greater 

importance than of the remanent polarisation, since the memory window of the FeFET cell is 

it predominantly determined by the coercive field and is only weakly affected by the remanent 

polarisation [107] (equation (2.3)). Hence, in respect to FeFET memory applications Si:HfO2 

ferroelectrics demonstrated promising cycling properties (10
9
 switching cycles), if operated at 

moderate voltages and MHz frequencies.  

In order to gain better insight into the decrease of the remanent polarisation observed 

after 10
6
 switching cycles, polarisation hysteresis (Figure 6.7 (a)) and transient current 

characteristics (Figure 6.7 (b)) were analysed at different stress levels (initial unstressed cells, 

after 10
7
 and 10

9
 cycles). A tilt of the polarisation hysteresis upon cycling (Figure 6.7 (a)), 

typical for fatigue phenomenon, was accompanied by change in the intensity and position of 

the switching peaks (Figure 6.7 (b)). This evidenced an alteration in the distribution  
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Figure 6.7 Alteration of (a) P-V characteristics and (b) transient current response with increasing 

number of stress cycles during fatigue test at stress voltage of 3 V and frequency of 1 MHz. 

10
-2
10

-1
10

0
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

8
10

9

 Number of stress cycles

 

@ + 2.5 VStress voltage:

 2.75 V  3.0 V 

 3.25 V  3.5 V

 

j G
 (

A
/c

m
2
) 10m

1m

100 (a)

10
-2
10

-1
10

0
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

8
10

9

 Number of stress cycles

 

@ - 2.5 VStress voltage:

 2.75 V  3.0 V 

 3.25 V  3.5 V

 

(b)100

1m

10m

 

Figure 6.8 Alteration of gate leakage at (a) + 2.5 V and (b) – 2.5 V with increasing number of stress 

cycles during fatigue test at stress voltage of 3 V and frequency of 1 MHz. 



 

6.3 Fatigue behaviour 

 

 

83 

of the switching fields of the ferroelectric domains. With progressive cycling the amount of 

domains requiring high switching fields increased at the expense of domains, which initially 

switched at low electric fields. Therefore, the fatigue behaviour of Si:HfO2 ferroelectrics can 

be explained similar to the conventional ferroelectric materials by modification of 

ferroelectric domains switching capability during cycling [53], [78] – [82]. This was 

attributed to either domain walls pinning by mobile charged defects [82] – [84] or inhibition 

of growth of domain nuclei with opposite polarity [78] – [80]. Increase in the leakage current 

for both polarities after 10
6
 switching cycles (Figure 6.8) indicated generation of new defect 

in Si:HfO2 films during cycling. These generated defects could be responsible for the 

impairment of the ferroelectric domain switching and, as a result, decrease in the remanent 

polarisation (Figure 6.6 (b)). For perovskite-type ferroelectrics two main microscopic origins 

of fatigue were proposed – oxygen vacancies [79], [85], [86], [89], generated and 

redistributed within the ferroelectric layer under electrical stress, or free charges injected from 

electrodes [78], [82], [87], [88]. Both mechanisms are possible in Si:HfO2-based ferroelectrics 

and can potentially influence their fatigue behaviour. Oxygen vacancies are a well-known 

defect type in HfO2 [144], [161], [160]. A distribution of oxygen vacancies within the film 

and their concentration at the electrode interface can be affected by an external voltage. This 

effect is utilised in HfO2-based resistive memories [242]. The charge trapping phenomena in 

HfO2 are also frequently discussed in the literature [150], [149]. HfO2-based dielectrics were 

even employed as a storage layer of charge-trapping memories owing to their trapping ability 

[155], [156]. The study of the exact microscopic origin of the fatigue properties of Si:HfO2 

films will remain, however, out of the scope of the present work.  

6.4 Summary 

The potential of ferroelectric Si:HfO2 films for ferroelectric memory applications has 

been studied. The effect of field cycling (chapter 6.1), polarisation switching kinetics  

(chapter 6.2) and fatigue properties (chapter 6.3) has been analysed in detail. 

The switching capability of Si:HfO2 ferroelectric films was found to be comparable to 

the perovskite-type ferroelectric thin films [65], [66], [67]. Switching times in the nanosecond 

range at voltages as low as 2 V to 4 V (Figure 6.5) could be demonstrated using a pulsed 

measurement technique. Therefore, Si:HfO2-based memories can be operated in the MHz 

frequency regime. The switching kinetics in Si:HfO2 films were better described by the 

nucleation-limited-switching model [61], rather than the classical Kolmogorov-Avrami-

Ishibashi switching theory [59], [60]. This behaviour is typical for polycrystalline thin films, 

as argued in [61], [64], which was also the case for the Si:HfO2 samples investigated in  
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this work. In comparison to the state-of-the-art floating-gate technology, which requires 

voltages of 15 V – 18 V and write times of 1 s – 1 s [4], Si:HfO2-based memories can 

provide a significant advantage in terms of operation voltage and programming speed. 

Fatigue properties of Si:HfO2 films has been studied depending on frequency and 

voltage amplitude (chapter 6.3). A MHz frequencies and moderate voltages, Si:HfO2 films 

demonstrated fatigue characteristics comparable to PZT ferroelectrics combined with Pt 

electrodes, where onset of the fatigue was reported at between 10
4
 and 10

7
 switching cycles 

[78], [50]. In the Si:HfO2 films a decrease in the remnant polarization was detected after 10
6
 

switching cycles (Figure 6.6 (b)), whereas the coercive voltage was almost unaffected at up to 

10
9
 cycles (Figure 6.6 (c)). In contrast to the perovskite-type ferroelectrics, dielectric 

breakdown was found to be an additional factor limiting the cycling capability of Si:HfO2 

films. This is a consequence of the high coercive fields of the Si:HfO2 ferroelectrics 

(1 MV/cm), bringing the device operation close to material breakdown conditions. The 

breakdown issue was shown to become more severe at low frequencies and high switching 

voltages (Figure 6.6). However, at MHz frequencies, corresponding to the operation regime of 

the FeFET memory cells (chapter 7.2), and moderate voltages, cycling capability of  

10
9
 cycles could be achieved. Moreover, the reduction of the remanent polarisation in Si:HfO2 

with cycling could be attributed to an increase in the number of domains inhibited in 

switching (Figure 6.7 (b)). The suppression of the switching process during cycling goes hand 

in hand with generation of new defects, which was confirmed by leakage current 

measurements (Figure 6.8). An improvement of the fatigue stability of Si:HfO2 may be 

obtained by introduction of a new electrode materials, as in case of PZT ferroelectrics [50], 

[240]. Oxygen vacancies thought to be responsible for the fatigue degradation in PZT 

ferroelectrics [79], [85], [89]. They are also a well-known defect type in HfO2-based 

dielectrics [144], [161], [160] and can be a possible cause of fatigue in HfO2-based 

ferroelectrics. Therefore, conductive oxides such as RuO2 and IrO2 are the electrode materials 

of choice due to their ability to reduce the concentration of oxygen vacancies in the 

ferroelectric films. The implementation of oxide electrodes for PZT ferroelectrics led to an 

increased cycling capability of 10
9
 – 10

12
 cycles [240], [243], [244]. For FeFET applications 

the evolution of VC with cycling is of greater importance, since it essentially affects the 

memory window of the FeFET cell in contrast to PR, which only has a limited impact on the 

MW. Here, promising characteristics were obtained for Si:HfO2, exhibiting stable VC values 

up to 10
9
 switching cycles (Figure 6.6 (c)).  

The intrinsic defects of Si:HfO2 material were found to impact the operation of 

Si:HfO2-based ferroelectric devices. The influence of the intrinsic defects became apparent 

during field cycling experiments (chapter 6.1). Pristine unstressed devices exhibited pinched 



 

6.4 Summary 

 

 

85 

hysteresis loops (Figure 6.1 (a)) and a wide distribution in the switching fields of the 

ferroelectric domains (Figure 6.1 (b)). Initially pinched hysteresis loops are not a unique 

property of Si:HfO2 ferroelectrics. They are also common for conventional ferroelectric 

materials [232], [233], which is attributed to the interaction of ferroelectric domains with 

intrinsic defects or defect dipoles [56], [209]. By applying an alternating electrical stress it 

was possible to open the initially pinched hysteresis loops in ferroelectric Si:HfO2 films 

(Figure 6.1 (a)) as well as to improve retention properties of the remanent polarisation at the 

same time (Figure 6.2). A positive effect of the field cycling, also referred to as the “wake up” 

effect, has also been observed in other ferroelectric materials [209], [232]. Facilitation of 

switching upon field cycling is explained by a redistribution of the existing defects, resulting 

in release of stuck domains/pinned domain walls. However, the reverse process of aging is 

very likely to progress with time [234], where either the defect dipoles reorientate, stabilising 

the existing domain polarisation, or the defects diffuse to domain walls, pinning them due to 

electric and/or elastic interactions. Hence, the intrinsic defects of Si:HfO2 should be also 

expected to affect its retention properties. Moreover, the impact of intrinsic defects on the 

fatigue behaviour of Si:HfO2 ferroelectrics cannot be ruled out. Although a correlation 

between fatigue and generation of new traps (chapter 6.3) was found, the contribution of pre-

existing defects to the degradation is not yet completely clear.  
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7 Ferroelectric field effect transistors 

based on Si:HfO2 films 

Si:HfO2-based ferroelectrics exhibit several advantages for application in ferroelectric 

field effect transistors (FeFETs) in comparison to perovskite-type ferroelectric materials: full 

CMOS compatibility and a better scaling potential of the gate stack. The latter is assisted by 

stable ferroelectric properties at film thicknesses in the nanometre range (5 – 30 nm), an order 

of magnitude higher coercive field (EC  1 MV/cm) (Figure 5.10(c)) in combination with an 

order of magnitude lower dielectric constant of 25. The feasibility of the FeFET devices on 

the basis of Si:HfO2 ferroelectric films as well as their basic operation characteristics were 

previously demonstrated in [22], [229], [245]. The emphasis of this work lies on a more 

detailed study of the performance of Si:HfO2-based FeFETs in order to get better 

understanding of the physical mechanisms affecting their main properties (program and erase 

characteristics (chapter 7.2), retention (chapter 7.3) and endurance behaviour (chapter 7.4)). 

Devices with gate lengths of 260 nm were chosen for analyses in order to assure 

comparability to the state-of-the-art FeFET cells with perovskite-type ferroelectrics [112]. 

Moreover, a scaling potential of Si:HfO2-based FeFETs down to a contemporary CMOS 

technology node of 28 nm was investigated in this work for the first time. The impact of 

scaling on the device memory characteristics will be discussed in chapter 7.5. The influence 

of Si:HfO2 film composition on the operation of the FeFET cells will be shown in chapter 7.1. 
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7.1 Effect of the silicon doping  

The electrical behaviour of Si:HfO2 films was shown previously to depend strongly on 

the Si doping level (chapter 5.1.1). MFIS-FETs containing 9 nm thick Si:HfO2 layers with 

different silicon contents (3.7, 4.4 and 5.7 cat% Si) were fabricated so that the influence of Si 

doping could be also studied for transistor structures. N-channel MFIS-FETs devices with a 

gate length (LG) of 260 nm and a gate width (WG) of 2 m were analysed in this and following 

sections unless mentioned otherwise. ID-VG characteristics were measured on unstressed 

devices (initial) as well as after applying a positive gate pulse of + 6 V for 100 ns and a 

negative gate pulse of – 6 V for 100 ns (Figure 7.1). The response of the ID-VG curves to the 

applied pulses differed depending on the Si content. Devices with Si:HfO2 layers containing 

3.7 and 4.4 cat % Si showed curve shifts opposite to the polarity of the applied gate pulses 

(negative for a positive gate pulse and positive for a negative gate pulse), which is 

characteristic for a ferroelectric switching (Figure 2.11). For devices with 5.7 cat% Si, on the 

other hand, a prevailing charge trapping behaviour was identified. Here, an inverse behaviour 

was observed: the ID-VG characteristics shifted in the direction similar to the polarity of the 

applied gate pulse. This trend corresponded well with the electrical properties of the MFM 

capacitors discussed in chapter 5.1.1, where distinct ferroelectric behaviour was detected for 

samples with 4.4 cat% Si, whereas antiferroelectric-like characteristics appeared for Si 

contents ≥ 5.6 cat% (Figure 5.1).  

A die-to-die distribution of the memory window on 300 mm wafers depending on the Si 

content was examined (Figure 7.2). A homogeneous MW distribution within the wafers was 

detected. The largest MW of about 1.2 V was obtained for 4.4 cat% silicon doping. These 

samples with the most pronounced ferroelectric properties were used in further studies.  
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Figure 7.1 ID-VG characteristics measured on unstressed devices, after + 6 V/ 100 ns and – 6 V/ 100 ns 

pulses for MFIS-FETs (LG = 260 nm, WG = 2 m), including Si:HfO2 films with varying Si content. 

Devices with layers containing 3.7 and 4.4 cat% Si exhibited a predominant ferroelectric behaviour 

distinguished by a shift of the ID-VG curves opposite to the polarity of the applied gate pulses.  

An inverse behaviour for layers with 5.7 cat% indicated a prevalence of charge trapping.  

 

Figure 7.2 Die-to-die memory window distribution of MFIS-FETs (LG = 260 nm, WG = 2 m) on 

300 mm wafers with different Si contents of the Si:HfO2 layer. Program and erase were performed 

using pulses of – 5 V/ 100 ns and + 5 V/ 100ns, respectively.  
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7.2 Program and erase operation 

Writing speed and voltages required for reversal of a memory state during program and 

erase operation were analysed for MFIS-FETs (LG = 260 nm and WG = 2 m) containing 

ferroelectric Si:HfO2 films with 4.4 cat% Si. By applying a positive erase (+ 4 V/ 100 ns) and 

a negative program (– 6 V/ 100 ns) pulse a shift of the ID-VG curves in the direction opposite 

to the polarity of the applied pulses was induced (Figure 7.3 (a)), which confirmed a 

ferroelectric switching. Furthermore, program and erase characteristics (Figure 7.3 (b, c)) 

were measured using pulses with varying width (10 ns – 100 s) and amplitude (2 – 6.5 V). 

Each point of the shown characteristics corresponds to a memory window after applying a 

program/erase pulse of given width and amplitude. Prior to each writing pulse (program or 

erase) a studied FeFET cell was set into a completely erased or programmed state by applying 

an initialisation pulse of + 4 V/ 100 ns or – 6 V/ 100 ns, respectively. The inset of the  

Figure 7.3 (c) shows an example of the pulse sequence used for obtaining erase 

characteristics. A non-zero MW, indicating the polarisation switching, was detected already 

after 10 ns pulses for erase voltages ≥ + 4 V and program voltages above – 5 V. Reduction of 

the memory window with increasing pulse width was probably caused by charge trapping  
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Figure 7.3 Program/erase characteristics of MFIS-FETs containing a Si:HfO2 film with 4.4 cat% Si  

(LG = 260 nm, WG = 2 m): (a) ID -VG characteristics after an erase (+4 V/ 100 ns) and a program pulse  

(– 6 V/ 100 ns), resulting in a memory window of 1.2 V. Memory window as a function of  

(b) program and (c) erase pulse width for varying pulse amplitudes. 
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Figure 7.4 Pulse width required to obtain a maximum memory window depending on the pulse 

amplitude for (a) program and (b) erase operation. 

from the transistor channel: electron trapping for positive gate pulses and hole trapping for 

negative gate pulses. A VTH shift opposite to that induced by ferroelectric switching is 

characteristic for charge trapping. After some pulse width the switched ferroelectric 

polarisation must have saturated, whereas the amount of trapped charge continued to increase 

with increasing pulse width, resulting in degradation of the memory window. Moreover, from 

the program/erase characteristics the most optimal conditions for read operation can be 

determined. Disturb-free readout can be presumed in the voltage range between – 2 V and 

+2 V, where no polarisation reversal (a zero MW) was detected up to 100 s. Furthermore, a 

voltage dependence of the pulse width required to obtain a maximum memory window was 

extracted (Figure 7.4). Similar to the capacitor switching behaviour (Figure 6.5), higher 

voltage amplitude resulted in shorter switching times for both program and erase operations. 

A trade-off between fast switching speed and low power operation could be achieved at + 4 V 

erase and – 5.5 V program voltage, where the maximum memory window of 1.2 V was 

obtained with pulses of 30 ns. The operation voltages for Si:HfO2-based MFIS-FET structures 

were slightly higher in comparison to MFM capacitors (chapter 6.2). The main reason was an 

additional interfacial 1.2 nm SiON layer integrated into the transistor gate stack, which 

reduced the effective voltage drop over the ferroelectric layer. Comparable operation voltages 

were reported (4 – 7 V) for the FeFET cells with perovskite-type ferroelectric SBT films at 

the same 260 nm node [112]. Their switching speed was, however, inferior to that 

demonstrated for Si:HfO2-based devices. Pulses of 100 ms resulted in only half of the MW of 

the devices studied here. 
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7.3 Retention behaviour 

The non-volatility of a memory cell is defined as its capability to store the data without 

power supply for at least 10 years [1]. This specification has been a challenge for FeFET type 

memories with perovskite-type ferroelectric materials until an introduction of high-k buffer 

layers at the Si interface [106], [105], [246]. Promising retention results were reported for 

Si:HfO2-based ferroelectrics so far. A stable ferroelectric polarisation in MFM capacitors with 

Si:HfO2 ferroelectric films was demonstrated for 20 hours at 125 °C [247]. Furthermore, 

Si:HfO2-based FeFET devices were predicted to exhibit a residual memory window after 

10 years at room temperature [229], [245]. In this work the impact of temperature as well as 

programming conditions on the retention characteristics of Si:HfO2-based FeFETs was 

examined.  

The temperature dependence of the retention behaviour was studied on FeFET devices 

with LG = 260 nm and WG = 2 m at 25, 150 and 210 ºC. The retention measurements were 

performed using the procedure described in chapter 3.1.3. Figure 7.5 (a) shows the resulting 

retention characteristics for both “ON” and “OFF” memory states. These were initially set by 

applying gate pulses with a width of 100 ns and voltages of + 4.5 V and – 6.5 V, respectively. 

The operation capability of the studied memory cells, in which two distinguishable memory 

states could be established, was proven up to 210 °C. A linear behaviour on the logarithmic 

time scale was observed for both memory states at all temperatures. By extrapolating the 

experimental trends to 10 years a residual memory window was estimated depending on 

temperature (Figure 7.5 (b)). An increased in temperature caused the acceleration of the time 

dependent VTH decay for both “ON” and “OFF” states, which resulted in a decrease of the 

residual MW. Nevertheless, the obtained characteristics predicted a residual MW of 0.2 V after 

10 years even at the highest temperature of 210 °C.  

The impact of the program and erase pulse amplitude on the retention behaviour of 

Si:HfO2-based FeFETs was investigated at 30 °C (Figure 7.6). All pulses exhibited a width of 

100 ns. The VTH shift after 10 days for program and erase pulses of varying amplitudes is 

shown in Figure 7.6 (a). Higher pulse amplitudes were accompanied by a decrease of the VTH 

shift (VTH) and, hence, improved retention properties. For example, the VTH shift was 

lowered by almost 90 % by performing the programming at – 7 V instead of – 6 V. The same 

trend was observed for erase operation. The erase pulse of + 5 V instead of + 4 V not only 

reduced the VTH shift but also induced a change in the shift direction. In this case the memory 

window increased slightly with time. Moreover, the VTH value directly after the program/erase 

pulse also showed a dependence on the amplitudes of the program (Figure 7.6 (b)) and  
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Figure 7.5 (a) Retention characteristics for “OFF” (after – 6.5 V/ 100 ns) and “ON” (after + 4.5 V/ 

100 ns) memory states at varying temperatures. (b) Residual memory window after 10 years as a 

function of temperature. Measurements were performed on MFIS-FET devices with LG = 260 nm and 

WG = 2 m. 
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Figure 7.6 (a) Impact of program/erase pulse amplitude on the VTH shift (VTH) after 10 days at 30 ºC.  

VTH value directly after a writing pulse as a function of pulse amplitude for (b) program and (c) erase.  

erase pulses (Figure 7.6 (c)). An increase in program and erase voltages degraded the VTH in 

the corresponding memory state. VTH in the “OFF” state (Figure 7.6 (b)) shifted to more 

negative voltages, whereas VTH in the “ON” state shifted to more positive voltages. Both 

effects lead to a reduction of the initial MW. This reduced MW and at the same time improved 

retention, which were observed for higher program/erase voltages, can be explained in terms 

of the charge trapping effect. The fact that charge trapping accompanied the ferroelectric 

switching in Si:HfO2 FeFETs has been detected during the study of their program and erase 

behaviour (chapter 7.2). These trapped charges caused a partial compensation of the 

ferroelectric polarisation, which resulted in lowering of the memory window  

(Figure 7.3 (b, c)). This partial compensation of the polarisation charge has, however, a 
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positive effect, namely reduction of the depolarisation field. The depolarisation field is 

considered as one of the main driving forces for retention loss in MFIS transistors [110], 

[248]. Therefore, its reduction due to increased amount of trapped charges at higher 

program/erase pulse amplitudes caused the observed improvement of the retention behaviour. 

7.4 Endurance properties  

This chapter deals with the endurance properties of Si:HfO2-based FeFET devices, an 

ability of a memory cell to withstand a continuous program/erase operation (chapter 3.1.4). A 

cycling capability of Si:HfO2 films implemented into MFM capacitors was discussed in 

chapter 6.3. At low frequencies (10 – 100 kHz) and high switching fields (>3 MV/cm) the 

maximum number of switching cycles was limited to 10
4
 – 10

6
 by a dielectric breakdown 

rather than a classical fatigue mechanism. Operation at MHz frequencies and moderate 

electric fields (2.5 – 3 MV/cm) enabled to extend the cycling capability to 10
9
 cycles. A 

fatigue-free behaviour up to 10
6
 cycles and, most importantly for FeFET operation, a 

negligible change in the coercive fields up to 10
9
 cycles was demonstrated.  

Endurance testing of Si:HfO2-based MFIS-FETs was performed using a pulse sequence 

schematically illustrated in Figure 7.7 (a). Alternating pulses of – 6 V / 100 ns and + 4 V / 

100 ns were used to emulate continuous program and erase operation. After a certain number 

of stress pulses a switching capability of the memory cell was verified by setting it into an 

“ON”- and “OFF” state and reading out the corresponding VTH values by performing an ID-VG 

sweep. Figure 7.7 (b, c) shows typical endurance characteristics – VTH values for the “ON” 

and “OFF” memory states as well as the resulting memory window versus number of 

program/erase cycles. An initial increase in the MW observed up to 10
3
 cycles correlated with 

the improvement of the ferroelectric behaviour observed for the MFM capacitors upon field 

cycling (chapter 6.3). This was attributed to redistribution of defects within the ferroelectric 

film, leading to unpinning of domain walls and/or frozen ferroelectric domains, which in turn 

facilitated switching and improved polarisation stability. A rapid MW degradation after 

10
3
 cycles was quite surprising taking into account promising results of the Si:HfO2-based 

capacitors (Figure 6.6 (c)). FeFET operation at a MHz frequency, at which capacitor 

structures exhibited the best cycling capability, was assured by program/erase pulses of 

100 ns. A hard breakdown, a cause of early failures in capacitors, can be excluded for 

transistor structures due to a gradual nature of degradation. Therefore, degradation in 

Si:HfO2-based MFIS-FETs proceeded apparently in a different way than in MFM structures. 

The reduction of the MW with progressive cycling was mainly determined by a positive shift 

of VTH in the “ON” state, whereas the “OFF” state VTH remained almost unaffected 

(Figure 7.7 (b, c)). Similar asymmetric VTH shift is characteristic for floating-gate type cells, 
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Figure 7.7 Endurance characteristics of Si:HfO2-based MFIS-FETs (LG = 260 nm and WG = 2 m):  

(a) Experimental pulse sequence for endurance testing; (b) VTH in the “ON” and “OFF” memory states 

and (c) a corresponding memory window versus number of applied program/erase cycles.  
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Figure 7.8 Evolution of gate leakage current under continuous program/erase stress: (a) gate current 

density (jG) versus gate voltage (VG) characteristics at different stages of stress testing; Dependence of  

(b) jG at 2.5 V and (c) memory window on the number of program/erase cycles. 

which is explained in terms of negative oxide charges generated under cycling stress [249]. 

The endurance capability of studied FeFET devices, demonstrating a residual MW of 0.9 V 

after 10
4
 cycles (Figure 7.7 (b, c)) was comparable to that of FG cells [4]. 

The possibility of the gate stack degradation in Si:HfO2-based FeFET structures during 

program/erase cycling was examined by simultaneously monitoring the gate leakage current 

(Figure 7.8). An increase in the gate current correlated well with the onset of the MW 

degradation (Figure 7.8 (b)). Furthermore, gate leakage induced during endurance stress was 
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verified on devices with varying gate areas (Figure 7.9). In both cases for unstressed devices 

(Figure 7.9 (a)) as well as after 10
5
 program/erase cycles (Figure 7.9 (b)) the gate current 

densities overlay for all devices
5
. Thus, the gate leakage scaled with gate area, which 

indicated a homogeneous rather than localised degradation of the gate stack area upon cycling 

stress. 

Trap densities within the gate stack were additionally characterised at different stages of 

the endurance testing in order to identify the main degradation path. A charge pumping (CP) 

technique (chapter 3.3.1) was used to sense the interface traps as well as traps within the 

interfacial SiON layer. The bulk traps within the Si:HfO2 layer, on the other hand, were 

probed by means of the single-pulse methodology (chapter 3.3.2). Figure 7.10 shows the 

results of the CP analyses. An increase in the charge pumping current (ICP) (Figure 7.10 (a)) 

indicated a generation of addition interface traps induced by the cycling stress. From the 

maximum values of the charge-pumping current the interface trap densities (NCP) was 

calculated for corresponding number of program/erase cycles (Figure 7.10 (c)) by using the 

equation (3.3). A strong increase in the interfacial trap density after 10
3
 cycles goes along 

with an increase in the gate leakage current (Figure 7.9). The main contribution to ICP at 

1 MHz frequency (Figure 7.10 (a, c)) comes from the traps located directly at Si-SiON 

interface. The interaction of the substrate charge carriers with deeper traps located within the 

SiON layer becomes possible at lower frequencies, at which the charge carries have sufficient 

time to tunnel to the traps and back during the substrate inversion and accumulation periods 

[193], [194]. The frequency dependence of the trap density was measured at VGL of – 1 V for 

different program/erase stress (Figure 7.10 (b)). An additional contribution from deep traps 

was seen at low frequencies. It enlarged with continuous program/erase stress, providing 

evidence that new traps were generated also within the interfacial SiON layer. A quantitative 

estimation of the trap density in SiON was made at 50 kHz by subtracting the trap density at 

2 MHz that corresponded to interface traps (Figure 7.10 (d)). Similarly to interface traps  

(Figure 7.10 (c)), an apparent increase of the SiON trap density was detected after 

10
3
 program/erase cycles.  

                                                 
5
 The gate current density for the smallest devices was slightly higher in comparison to other devices. 

This is believed to be a measurement artefact due to very low absolute current values (0.1 pA) close to the 

resolution limit of the measurement system. 
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Figure 7.9 Gate area dependence of the gate current density characteristics for (a) unstressed devices 

and (b) after 10
5
 program/erase cycles. 
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Figure 7.10 Charge pumping characteristics under progressive program/erase cycling: (a) Variable 

base level charge pumping characteristics – charge pumping current (ICP) versus low level of the gate 

excitation pulse (VGL) and (b) frequency dependence of the charge-pumping trap density;  

(c, d) Interface trap density, extracted from the measurements at 1 MHz and 50 kHz, respectively, 

 as a function of program/erase cycles.  
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Figure 7.11 Single-pulse trapping characteristics under progressive program/erase cycling [250]:  

(a) Experimental gate pulse sequence; (b) VTH measured on the rising (VTH1) and falling (VTH2) pulse 

edges for varying trapping pulse width (tTP) depending on the number of program/erase cycles; 

Evolution of (c) the trapping window VTH = (VTH2-VTH1) for 1 s, 10 s, 100 s trapping pulses and 

(d) the slope of VTH (tPULSE) characteristic with increasing number of endurance cycles.  

A single-pulse charge-trapping technique (chapter 3.3.2), which allows capturing fast 

transient trapping, was applied to monitor the evolution of trap density within the Si:HfO2 

layer. HfO2-based materials are known to exhibit a high density of intrinsic defects (10
12

 – 

10
14

 cm
-2

) [141], [142], which can serve either as electron and/or hole traps [141], [145]. The 

single-pulse measurements were performed on the studied MFIS-FET devices and revealed a 

high density of electron traps in the Si:HfO2 layer (see chapter 8.1). During the standard DC 

measurements, which were shown in chapter 7.2, positive gate pulses were seen to induce a 

negative VTH shift due to the polarisation switching. A contrary behaviour was observed by 

the single-pulse tests. The ID-VG characteristics in this approach were recorded directly at the 

rising and falling edges of the excitation pulses, so that the time delay between stressing and 

sensing was practically eliminated. A positive instead of a negative VTH shift was detected 

immediately after a positive gate pulse even for unstressed devices (Figure 7.11 (b)). This 

indicated a strong electron trapping within the gate dielectric, which prevailed over the 

positive ferroelectric polarisation charge. The latter became dominating only after several 

microseconds, when detrapping processes have set in (Figure 8.4) and a negative VTH shift 

was measured. This scenario corresponded to the standard DC measurements. Trapping 

behaviour onto the Si:HfO2 traps was examined after different number of program/erase 

cycles by means of single-pulse technique (Figure 7.11). A pulse sequence, which is 

1 s
//0 V 

+ 4 V
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schematically shown in Figure 7.11 (a), was used. The VTH shift between the rising and the 

falling edges of the trapping pulse was measured as a function of pulse width (tTP) for 

trapping voltage of 3.5 V. Before each trapping pulse an identical initial state was re-

established with a combination of a negative (– 6 V/ 200 ns) and a positive (+ 4 V/ 200 ns) 

pulse that was followed by a delay of 1 s. The resulting trapping characteristics are depicted in 

Figure 7.11 (b). The trapping window (VTH) defined as a difference between VTH2 and VTH1 

was determined for 1, 10 and 100 s trapping pulses and plotted versus the number of 

program/erase cycles (Figure 7.11 (c)). A negligible change of VTH was visible up to 

10
4
 cycles. For higher cycling numbers the trapping window even started to decrease. This 

was predominantly determined by the shift of VTH1 to higher positive voltages, reflecting the 

degradation of the “ON” memory state (Figure 7.7 (b)). On the other hand, VTH2 remained 

almost unaffected by cycling. A decrease of the trapping window with cycling indicated a 

build-up of permanent negative charge within the dielectric stack. This resulted in a modified 

field distribution within the gate stack and a reduction of the injection current during trapping 

pulses. Possible origins of this permanent negative charge are fixed charges generated during 

cycling or accumulation of electrons stuck on the deep traps. Moreover, the slope of VTH(tTP) 

characteristic, which is proportional to the trap density in material [251], remained 

independent on the number of program/erase operations (Figure 7.11 (d)). Therefore, it can be 

deduced that only negligible generation of new bulk traps within the Si:HfO2 layer occurred 

during endurance stress. Thus, the degradation of the interfacial SiON layer rather than the 

Si:HfO2 film was mainly responsible for the observed increase of the gate leakage current 

(Figure 7.8) [250]. A prevailing degradation of the interfacial layer was also ascertained for 

standard high-k transistor gate stacks exposed to positive or negative bias stress [150], [190], 

[252]. Alternating stress was reported to accelerate this degradation [253], [254], which was 

assigned to the wear-out of the interfacial layer due to continuous back and forth tunneling of 

charges [255]. 

Furthermore, the impacts of bipolar switching pulses and unipolar stress pulses, referred 

to as dynamic imprint, on the endurance characteristics were compared (Figure 7.12). The 

switching capability was verified by setting the device into the “ON” and “OFF” state and 

reading out the corresponding VTH values, as shown in Figure 7.12 (a), after certain number of 

unipolar/bipolar stress pulses. The experiment was performed for two sets of program/erase 

pulses: + 4 V/ – 6 V and + 5 V/ – 7 V. The width of all pulses was equal and amounted to 

100 ns. The same trend was observed for both stress conditions (Figure 7.12 (b, c)). The 

unipolar stress pulses caused only slight VTH shifts of both memory states. Since the induced 

VTH shifts exhibited signs similar to the polarity of the applied gate pulses, electron/hole 

injection from the substrate must have predominantly determined the effect of 

positive/negative unipolar pulses. An inverse behaviour is expected in case of a dynamic 
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imprint associated with stabilisation of stored polarisation states [256]. The bipolar pulses, on 

the other hand, resulted in a pronounced MW degradation. From that it can be deduced, that 

the polarisation switching itself, similar to classical fatigue behaviour, or mechanisms coupled 

with alternating pulses aggravate the endurance degradation in transistor structures. The 

reliability issues of the transistor gate stack rather than the ferroelectric layer were held 

responsible for the endurance properties of Si:HfO2-based FeFET devices in [250]. This 

conclusion was based on the correlation, which was found between the degradation of the 

interfacial layer and reduction of the memory window. Additional confirmation for this 

correlation was obtained in this work. The gate leakage current and trap density of the 

interfacial SiON layer were tested for unipolar and bipolar stress conditions (Figure 7.13). 

Both these parameters showed an increase only in case of the bipolar pulses, which was 

similar to the behaviour of the memory window (Figure 7.12). Therefore, there is a strong link 

between the damage of the interfacial layer, caused by cycling, and deterioration of the 

FeFET memory operation. The gate stack structure of the studied ferroelectric transistors was 

similar to an ordinary high-k metal gate stack. A thicker and crystalline high-k layer exhibited, 

however, additionally ferroelectric properties. Hence, similar degradation mechanisms under 

electrical stress can be expected in both stacks. The interfacial layer has been already 

identified in the main reliability concern in conventional high-k metal gate stacks [150], [190], 

[252]. Here, a continuous charge transport through the interfacial layer results in generates of 

new traps under alternating bias stress [253], [254], which impairs the insulating properties of 

the interfacial layer and, thus, the entire gate stack. Figure 7.14 shows energy band diagrams 

for a p-Si/SiO2/HfO2/TiN gate stack, with a structure similar to that of transistors studied in 

this works, under a positive (+ 4 V) and negative (– 6 V) gate voltage for two cases:  

(1) paraelectric HfO2 layer (PR = 0 C/cm
2
) and (2) ferroelectric HfO2 layer 

 (PR = 10 C/cm
2
). The energy band diagrams were calculated by means of the multi-

dielectric-energy-band-diagram-program [257], [258] using stack parameters, which are listed 

in Table 7.1. 

Table 7.1 Parameter used for the calculation of the energy band diagram of a Si/SiO2/HfO2/TiN stack 

[258]. 

Parameter Si SiO2 HfO2 TiN 

NA, cm
-3

 10
16

    

d, nm  1.2 10 10 

 11.7 3.9 25  

Eg, eV 1.21 8.9 5.7  

e
eV 4.05 0.95 2.65  

M, eV    4.45 
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Figure 7.12 Effect of unipolar and bipolar stress pulses on the endurance behaviour of a Si:HfO2-based 

FeFETs: (a) Experimental gate pulse sequence for three different stress conditions; Endurance 

characteristics depending on the applied stress type for two sets of program/erase conditions  

(a) – 6 V / + 4 V and (b) – 7 V / + 5 V. All pulses used for stress as well as sense operations had  

a width of 100 ns. 
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Figure 7.13 Effect of unipolar and bipolar stress pulses on (a) the gate leakage current density and  

(b) the interface trap density. Program/erase stress conditions were – 6 V / + 4 V with 100 ns pulse 

width.  

In comparison to the high-k gate stack, which includes a non-ferroelectric HfO2 layer, 

the charge injection into the ferroelectric transistor is further enhanced. The ferroelectric 

polarisation charge induces internal fields, which facilitate charge injection from the channel. 

The positive polarisation established by positive gate voltages assists the electron injection. 

These electrons (e
–
) injected into the HfO2 layer are trapped in to the trap states (ET).  
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Figure 7.14 Energy band diagrams of the p-Si/SiO2/HfO2/TiN stack under positive (+ 4 V) and 

negative (– 6 V) gate voltage, representing erase and program operation of the Si:HfO2-based FeFET 

memory cell: (a, b) Case of a paraelectric HfO2 (PR = 0 C/cm
2
) and (c, d) ferroelectric HfO2  

(PR = 10 C/cm
2
). The directions of the electron (e

–
) and hole (h

+
) flows are shown with arrows, which 

thickness represents the tunnelling probability.  

The negative polarisation induced by negative gate voltages facilitates hole injection (h
+
) into 

the HfO2 and back tunneling of electrons from the trap states at the same time. Therefore, 

steady transfer of charges through the interfacial layer is inevitable in the ferroelectric stack 

under alternating program/erase pulses. The resulting degradation of the insulating properties 

of the interfacial layer may aggravate the memory operation of the FeFET [250]. Free charges 

can be easily injected from the channel into the ferroelectric layer, compensating its 

polarisation that eventually degrades the ferroelectric memory window. Charge injection was 

one of the issues identified in the first perovskite-based FeFET devices [101], [102], for 

which the ferroelectric layer was fabricated directly on the semiconductor substrate. Other 

causes of the memory window degradation with cycling cannot, however, be completely 

excluded. One of such causes is a build-in of negative charge within the gate stack due to 

generation of negatively charged defects within the interfacial layer or charging of the pre-

existing traps of the interfacial SiON or Si:HfO2 layers. It has been demonstrated using an 
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energy band diagram (Figure 7.14) that electron injection at positive gate voltages is enhanced 

in the ferroelectric stack. If these trapped electrons cannot be completely detrapped during 

negative voltage pulses, they accumulate in the gate stack with increasing number of 

endurance cycles. This alters the distribution of the electric field in the stack during program 

and erase pulses and leads to an asymmetric degradation of memory states similar to the 

behaviour of floating-gate type cells [249]. A build-in of the negative charge can also explain 

a decrease in the trapping window under endurance stress (Figure 7.11 (c)). In order to 

separate the effects of the degrading interfacial layer and accumulation of the negative charge 

on the memory operation of the studied FeFETs, further studies are required.  

7.5 Impact of scaling on the device performance 

An essential requirement for a successful industrial implementation of a new memory 

concept is the scaling capability of a single memory cell. This requirement is determined by a 

continuous demand for the higher data storage densities at lower costs. FeFET devices based 

on the perovskite ferroelectrics are unlikely to scale below 50 nm due to a physical gate stack 

height of several hundred nanometres (200 – 500 nm) [13]. The most aggressively scaled 

devices reported in the literature so far achieved a gate length of 260 nm [112]. HfO2-based 

ferroelectrics, on the other hand, exhibit a potential to overcome the limitations of 

conventional ferroelectric materials due to significantly higher coercive field strength EC of 

~1 MV/cm (for PZT or SBT ~ 50 kV/cm) in combination with a lower dielectric constant of 

~25 (for PZT or SBT ~ 200 – 300). At reduced ferroelectric thickness these material 

properties enable to avoid high depolarization fields and compensate the memory window 

loss. The gate stack height can be lowered to several nanometres, which provides gate stack 

aspect ratios more suitable for scaling. It has been recently demonstrated, that FeFETs based 

on Si:HfO2 ferroelectric thin films can be fabricated at a state-of-the-art 28 nm technology 

node [24]. This finally has closed the scaling gap between the ferroelectric and CMOS logic 

transistors. In this chapter the memory properties of the Si:HfO2-based MFIS-FeFET devices 

scaled down to 28 nm gate length are studied. The impact of device scaling on the key 

memory characteristics such as program/erase operation, endurance behaviour and retention 

properties is discussed.  

The operation capability of the Si:HfO2 MFIS-FETs was proven down to the smallest 

device size with gate width of 40 nm and gate length of 28 nm. Figure 7.15 shows an example 

of ID-VG characteristics for these devices in the programmed (after – 5 V/100 ns pulse) and 

erased (after + 5 V/100 ns pulse) states with a resulting memory window (MW) of 0.8 V. The 

ferroelectric switching effect is confirmed by the shift of the ID-VG curves opposite to the 

polarity of the applied voltage. 
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Figure 7.15. Memory operation of the Si:HfO2-based MFIS-FET device with LG = 28 nm and  

WG = 40 nm. ID-VG characteristics after a program (after – 5 V 100 ns) and an erase (after + 5 V 

100 ns) pulse. Shifts opposite to the polarity of the applied gate pulse confirm a ferroelectric switching 

behaviour.  
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Figure 7.16 Impact of gate scaling on the program/erase operation of Si:HfO2-based MFIS-FeFETs. 

The memory window (MW) as a function of pulse width and amplitude for negative (program) and 

positive (erase) voltages measured for two device types: (a) device 2 (LG = 260 nm, WG = 2 m) and 

(b) device 4 (LG = 32 nm, WG = 1 m). 



 

7.5 Impact of scaling on the device performance 

 

 

105 

The impact of gate length scaling on the writing speed and operation voltages, which 

are required for program/erase, was examined. Program and erase characteristics were 

measured using pulses with varying width (10 ns – 100 s) and amplitude (3 – 6 V) for 

devices with different gate lengths and comparable gate width (devices 1 – 4 in Table 2). No 

consistent correlation between the maximum achievable MW (0.8 V – 1.4 V) and transistor 

gate length was found. Figure 7.16 shows two examples of the resulting switching matrixes 

for devices with gate lengths of 260 nm (device 2) and 32 nm (device 4). Each point of the 

program/erase matrix corresponds to the MW after applying a pulse of given width and 

amplitude. Prior to each writing pulse (program or erase) the identical cell state (completely 

erased or programmed) was restored by applying an initialization pulse of the opposite 

polarity in respect to the writing pulse (Figure 3.2 (a)). The amplitude and width of the 

initialization pulses were chosen from the previous studies. Pulses of + 4 V/100 ns and  

– 6 V/100 ns were used for setting completely erased and programmed state, respectively. For 

both device types a non-zero MW, which indicated ferroelectric switching, was demonstrated 

for program and pulses as short as 10 ns (Figure 7.16). With decreasing gate length, however, 

the voltages required to program cells at the same speed increased. A clear shift in the onset 

of switching to higher program voltages is seen for the 32 nm devices. The same 

measurement procedure was carried out for other devices (Table 2). The pulse width (tWRITE), 

required to achieve the maximum MW, was determined dependent on the program/erase pulse 

amplitude (Figure 7.17 (a, b)). A decrease in the gate length resulted in a shift of the program 

characteristics to higher voltages (Figure 7.17 (a)). The erase characteristics shifted 

simultaneously to lower voltages (Figure 7.17 (b)) with the exception of the curve for the 

32 nm device. In order to elucidate the observed behaviour, the ID-VG curves were measured  

 

Table 2 Gate parameters of the analyzed Si:HfO2-based MFIS-FeFET devices 

 Gate length (LG) Gate width (WG) 

Device 1 500 nm 2 m 

Device 2 260 nm 2 m 

Device 3 100 nm 2 m 

Device 4 32 nm 1 m 

Device 5 32 nm 80 nm 
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Figure 7.17 Impact of gate length scaling on the switching speed. Pulse width required to achieve the 

full memory window (tWRITE) dependent on the pulse amplitude for (a) program and  

(b) erase operation. (c) An average VTH value as a function of the gate length (LG) for a constant gate 

width (WG) of 1 m.  

for the unstressed single transistors with gate lengths varying from 2 m down to 30 nm and a 

constant gate width of 1 m. The reduction in the gate length induced a drop in the VTH value 

by 0.5 V (Figure 7.17 (c)), which indicated the threshold voltage roll-off effect [259]. With 

decreasing gate length the effect of source and drain depletion regions on the channel charge 

increases, which results in lower VTH-value. The VTH roll off is commonly minimised by 

adjustment of the channel implant profiles, which enables the formation of shallow 

source/drain junction extensions [260], [261]. This step was left out during fabrication of the 

studied devices, which led to a strong source/ drain extension diffusion and the observed VTH 

roll-off. This effect explains the detected shift in the operation voltages with decreasing gate 

length (Figure 7.17). The switching speed of the ferroelectric polarization is determined by 

the electric field in the ferroelectric layer. A shift of the intrinsic VTH to more negative 

voltages causes a field reduction in the gate stack at negative voltages (program operation) 

and field enhancement at positive voltages (erase operation). Therefore, shorter channel 

devices could be erased at lower voltages, but required higher program voltages. The VTH  

roll-off and, thus, the difference in the switching characteristics between long and short 

channel devices can be eliminated by carefully adjusting of the channel implants profiles 

[260], [261]. For the 32 nm FeFETs the erase characteristic did not shift to the lower voltages 

as expected. Scaling below 100 nm gate length seems to have some additional effects on the 

device performance, which is not clearly understood so far. Nevertheless, even for the 32 nm 

devices the erase speed in the nanosecond range can be achieved using 4 – 5 V.  
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The endurance properties of the large (device 2: LG = 260 nm, WG = 2m) and small  

(device 5: LG = 32 nm, WG = 80 nm) devices were compared (Figure 7.18). The measurements 

were performed using the program/erase with width of 100 ns and amplitudes of – 6 V and 

+ 4 V, respectively. Both devices demonstrated a comparable overall endurance of 10
4
 cycles 

with residual MW values of 0.9 V for the 260 nm devices and 0.5 V for the 32 nm devices. In 

both cases the same trend in the evolution of VTH values with cycling was observed. A 

reduction of the MW with cycling was mainly determined by the positive VTH shift in the 

“ON” state, the VTH of the “OFF” state, on the other hand, remained almost unaffected. 

The data retention behaviour was evaluated at room temperature for the same devices 

(device 2 and 5). The experimental data were collected up to 10 days. The erased (“ON”) and 

programmed (“OFF”) states were set using +4 V/ 100 ns and – 6 V/100 ns pulses, 

respectively. Figure 7.19 gives the comparison between the retention behaviour of large 

(260 nm) and small (32 nm) FeFETs for both memory states as well as the time dependence 

of their MW. The evolution of the cell’s VTH in the “ON”/ “OFF” memory states with time 

changed with cell size scaling. For the 260 nm devices (device 2) more rapid VTH shift was 

observed in the “OFF” state, while the “ON” state remained rather stable. A reverse behaviour 

was characteristic for the 32 nm devices (device 5) with the more stable “OFF” state and 

degrading “ON” state. The depolarisation field (EDEP), appearing due to insufficient screening 

of the polarisation charge at the substrate site, is one of the major causes of the retention 

decay in ferroelectric transistors [110], [248]. The EDEP value and, thus, retention properties 

depend on the intrinsic VTH of the transistor [262], which is determined by the substrate 

doping and the work function difference. In the 32 nm devices studied in this work both 

memory states were shifted to more negative voltages in comparison to the 260 nm devices 

due to the VTH roll-off effect. This shift leads to a decrease/increase of EDEP in the “ON”/ 

“OFF” state and, hence, must have resulted in the improved/deteriorated retention for the 

corresponding memory states [262]. Behaviour contrary to this assumption was, however, 

observed (Figure 7.19). Therefore, an additional mechanism besides EDEP may have 

determined the retention of the studied Si:HfO2-based FeFETs. Charge trapping from the 

transistor channel is another mechanism impairing retention [110], [92], which can become 

crucial in the studied devices due to an interfacial layer of only 1.2 nm and high intrinsic trap 

density of HfO2. Electron injection is to be expected during “ON” state retention.  

The p-substrate surface was in inversion during waiting time at zero volts due to a negative 

VTH in the “ON” state. Electrons trapped within the HfO2 compensated the positive 

polarisation charge, which resulted in a positive VTH shift during retention. Lower “ON” state 

VTH corresponded to higher electron density at the surface at zero volts, which enhanced 

trapping and degraded retention. This explains the worsening of the “ON” state retention for 

32 nm devices. During the “OFF” state retention hole trapping becomes more critical. In this 
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case, the p-substrate surface is in accumulation at zero volts. Increase in the positive VTH 

enhances hole trapping and impairs “OFF” state retention. This behaviour was observed for 

260 nm devices. The VTH value of a transistor can be tuned by adjusting the channel implant 

profiles. In this way a trade-off between the stability of the two memory states can be found 

and eliminate the difference in the retention behaviour of both device types. Despite this 

difference for both devices a non-volatility of data up to 10 years can be projected based on 

the extrapolation of the experimental data. Comparable values of the residual MW of about 

0.8 V after 10 years potential data storage were extracted for 260 nm and 32 nm devices. 
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Figure 7.18 Impact of scaling on the endurance properties of Si:HfO2-based MFIS-FETs. Endurance 

characteristics for two device types: device 2 (LG = 260 nm, WG = 2 m) and device 5 (LG = 32 nm, 

WG = 80 nm). Similar program (– 6 V/ 100 ns) and erase (+ 4 V/ 100 ns) conditions were used for both 

device types. 
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Figure 7.19 Impact of scaling on the retention behaviour of Si:HfO2-based MFIS-FETs. (a) Retention 

behaviour of the “ON” and “OFF” memory states and (b) time dependence of the memory window for 

two device types: device 2 (LG = 260 nm, WG = 2 m) and device 5 (LG = 32 nm, WG = 80 nm). 
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It should be noted that main emphasis of the present work was to examine the principle 

functionality of the scaled devices. Therefore, all electrical measurements, shown in this 

chapter, were performed on structures containing multiple ferroelectric transistors connected 

in parallel. In this way an averaged response from the multiple memory cells was obtained. 

Another important aspect of scaling, which is not considered here, is its impact on the 

uniformity of properties of single devices. This is especially crucial in devices including 

polycrystalline materials [263], which was the case for the studied Si:HfO2 ferroelectric films 

(Figure 5.2 (a)).  

7.6 Summary 

The electrical behaviour of Si:HfO2-based MFIS-FET devices, which were fabricated 

using the state-of-the-art 28 nm high-k metal gate CMOS technology, was studied in detail. 

The key memory characteristics such as the program and erase behaviour, retention and 

endurance were analysed.  

The Si:HfO2 film composition was shown to essentially affect the device performance 

(chapter 7.1). The observed trend correlated well with the results obtained on Si:HfO2-based, 

MFM capacitors (chapter 5.1.1). Therefore, the formation of the ferroelectric phase in 

Si:HfO2 films, which were embedded into the studied capacitors and transistors, proceeded in 

the same way in spite of difference in their stack structure. A dominating ferroelectric 

switching was detected in FeFET devices with Si:HfO2 layers containing 3.7 and 4.4 cat % Si. 

Devices that included HfO2 films with higher Si contents showed, on the other hand,  

a prevailing charge trapping characteristics. 

The FeFETs including Si:HfO2 ferroelectric films demonstrated a program and erase 

capability in the nanosecond time regime (10 – 100 ns) with operation voltages of 4 – 6 V 

(Figure 7.4). These characteristics were superior to those of the state-of-the-art FeFET cells 

based on perovskite-type ferroelectric SBT films [112]. These operated at comparable 

voltages (4 – 7 V), required, however, significantly longer program/erase times over several 

hundred milliseconds to achieve a memory window demonstrated for the devices studied in 

this work.  

The operation capability of the Si:HfO2-based memory cells in the temperature range 

between 25 and 210 °C was proven (chapter 7.3). Two distinguishable memory states and a 

residual memory window obtained by extrapolation to 10 years could be demonstrated at all 

operation temperatures (Figure 7.5). An increase of temperature deteriorated the retention 

properties, causing an acceleration of the VTH shift with time and, as a result, a decrease in the 

residual MW predicted for 10 years storage. Higher operation voltages, on the other hand, 
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improved the retention behaviour (Figure 7.6), which was, however, at the expense of the 

memory window size. 

Endurance capability of the studied devices was worse than it could be expected from 

the results of the MFM capacitors testing (chapter 6.3) and was limited to 10
4
 – 10

5
 

program/erase cycles. A correlation between the reduction of the memory window and 

increase of the gate leakage current was found with increasing number of endurance cycles 

(Figure 7.8). A degradation of the dielectric stack in MFIS-FET devices differed, however, 

from that of the MFM structures. No evidence of the increased trap density in Si:HfO2 films 

was found (Figure 7.11) in contrast to capacitor structures (chapter 6.3). The interfacial SiON 

layer, on the other hand, degraded upon cycling and was likely mainly responsible for the 

deterioration of the gate leakage current. A strong increase in the trap density of the interfacial 

layer was confirmed by the charge pumping measurements (Figure 7.10). This predominant 

degradation of the interfacial layer of the gate stack, which was observed for the studied 

ferroelectric cells, was similar to the behaviour reported for the standard high-k metal gate 

stacks [150], [190], [252], [253], [254]. Based on the similarity of the gate stack structure of 

these devices a similarity also in their degradation mechanism can be assumed. In a standard 

high-k metal gate stack the wear-out of the interfacial layer is argued to be driven by a 

continuous charge transport [253], [254]. This charge transport was shown to be further 

enhanced in a gate stack that includes a ferroelectric high-k layer due to the presence of the 

ferroelectric polarisation charge (Figure 7.14). A deterioration of the insulating properties of 

the interfacial SiON layer may be responsible for the endurance degradation of the Si:HfO2-

based MFIS-FET devices as proposed in [250]. A build-in of negative charges was suggested 

in this work as another possible cause of the observed endurance behaviour. It can be a result 

of the generation of negatively charged defects within the interfacial layer or accumulation of 

electron trapped on the pre-existing traps of the interfacial SiON or Si:HfO2 layers. Although 

the endurance characteristics of the studied Si:HfO2-based FeFETs were inferior to those of 

devices with perovskite ferroelectric materials , which can withstand up to 10
12

 cycles [105], 

they still are able to meet the modern requirements of the Flash memories (10
4
 – 10

5
 

program/erase cycles [4]). 

The impact of scaling of Si:HfO2-based MFIS-FETs down to the gate length of 28 nm 

on their memory performance investigated. The scaled devices demonstrated characteristics 

comparable to the long channel structures: program and erase times in the range of several 

nanoseconds (down to 10 ns) with voltages of 4 – 6 V, endurance capability up to 10
4
 cycles 

and a comparable residual MW of 0.8 V projected after 10 years at room temperature. The 

detected differences in the behaviour between the long and short channel devices, such as 

shift of operation voltages and altered retention behaviour, could be, for the most part, 
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attributed to transistor short channel effects (here VTH roll-off). Therefore, a careful 

adjustment of the channel implant profiles in scaled cells is expected to provide behaviour 

similar to long-channel devices.  

In addition, it was shown that charge trapping had a strong influence on the 

performance of the studied FeFETs. Charge trapping was detected to superimpose with 

ferroelectric switching during program and erase operations, which resulted in degradation of 

the ferroelectric memory window (chapter 7.2). Time dependent VTH shift observed during 

retention tests for both long and short channel devices could be explained in terms of the 

charge trapping (chapter 7.5). Moreover, charge trapping may be the main cause of the 

endurance degradation in Si:HfO2-based MFIS-FET structures (chapter 7.4). Since trapping 

was shown to affect all the key characteristics of the Si:HfO2-based memory cells, the traps in 

the MFIS gate stack and associated trapping phenomenon were studied in more details. The 

results of these analyses are presented in the next section. 
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8 Trapping effects in Si:HfO2-based FeFETs 

HfO2-based materials are known to exhibit a high intrinsic defect densities (10
12

 –  

10
14

 cm
-2

) [141], [142], which act as electron and/or hole traps  [141], [144], [145], [146]. A 

review of HfO2 traps and their characteristics was given in chapter 2.3.4. For the same 

polarity of the gate voltage the charge trapping induces a VTH shift, which is reverse to that of 

caused by the ferroelectric switching. Therefore, the charge trapping in a FeFET memory cell 

has a negative effect on its performance. Charge trapping was one of the issues in the first 

perovskite-based FeFET devices [101], [102], in which the ferroelectric layer was fabricated 

directly on the semiconductor substrate. The VTH shift observed in these devices was 

dominated by the charge trapping that masked the ferroelectric polarisation. Thick interfacial 

layers of 5 – 10 nm are used in the contemporary FeFETs with perovskite ferroelectrics [111], 

[112], which reduce the trapping, however, at the expense of the gate scaling capability.  

The traps in the gate stack of the Si:HfO2-based MFIS-FET cells and their impact on the 

memory performance of these devices were analysed in this work. The trapping (chapter 8.1) 

and detrapping (chapter 8.2) characteristics were investigated by means of a single-pulse  

ID-VG technique (chapter 3.3.2). The impact of trapping on the performance of the studied 

Si:HfO2-based FeFET cells is discussed in chapter 8.3. A modified approach for erase 

operation, which should mitigate the impact of trapping is proposed in chapter 8.4.  
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8.1 Trapping kinetics of the bulk Si:HfO2 traps 

The trapping behaviour of Si:HfO2-based MFIS-FET structures was investigated by 

means of the single-pulse measurement technique (chapter 3.3.2). The stress pulse of + 4 V, 

which corresponded to a typical erase voltage required to set the “ON” memory state (chapter 

7.2), was applied to the gate. The drain current was simultaneously monitored and translated 

into the ID-VG characteristics (Figure 8.1 (a)). The pulse width was varied was varied between 

0 and 50 s, whereas the rise and fall times were constant and amounted to 500 ns. All pulses 

started at – 4 V to ensure a complete discharge of traps. The drain voltage was set to 300 mV. 

This enabled to maximise the signal-to-noise ratio due to increased drain current. A positive 

shift between the ID-VG curves measured at the rising and falling edges was observed (Figure 

8.1 (a)). This shift as well as a decrease of the drain current during the pulse maximum 

(Figure 8.1 (b)) indicated a strong electron trapping. A flattening of the ID-VG characteristic 

was observed at the rising pulse edge for gate voltages higher than 2 V (Figure 8.1 (a)), which 

can also be attributed to the fast electron trapping. The shift between the ID-VG curves of the 

rising and falling edge (VTH) is proportional to the amount of trapped electrons. VTH and, 

thus, an amount of trapped electrons increased for longer stress pulses (inset Figure 8.1 (b)). 

A logarithmic time dependence of VTH indicated that the tunneling processes was the 

dominating injection mechanism [142], [264]. A positive VTH shift, which induced by positive  
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Figure 8.1 Single-pulse characteristics of the Si:HfO2-based MFIS-FET structures:  

(a) ID-VG characteristics measured on the rising and falling edges of the excitation gate pulse for 

varying pulse width. The experimental excitation gate pulse is shown in the inset. (b) Evolution of ID 

during the excitation gate pulse for varying pulse width. Inset: VTH shift as a function of the gate pulse 

width.  
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gate pulses, observed using the single-pulse technique (Figure 8.1 (a)) was in contradiction to 

the results of the chapter 7.2. A negative VTH shift was shown for positive erase pulses, 

whereas a positive VTH shift was induced by negative gate pulses (Figure 7.3 (a)). This 

contradiction can be explained by taking into account the difference between the 

measurement procedures, which were used during both tests. In the single-pulse measurement 

the ID-VG characteristics were recorded directly at the rising and falling edges of the stress 

pulse. In this way the time delay between stressing and sensing was practically eliminated and 

fast trapping effects could be observed. During testing of the erase operation of the FeFET 

cells (chapter 7.2), on the other hand, the ID-VG characteristics were measured with a time 

delay of several seconds after the positive erase pulse, when the detrapping processes have set 

in so that a negative VTH shift was observed.  

In order to identify the operation conditions (pulse width and amplitude), which enable 

to eliminate the electron trapping for positive pulses, single-pulse measurements were 

performed using the gate pulse sequence illustrated in Figure 8.2 (b). Two identical positive 

single-pulses were applied consecutively to the gate with a time delay of 1 min. This time 

delay was required for the detrapping processes to set in. A negative polarisation state was re-

established each time before single-pulses by applying an initialisation pulse of – 6 V for 

100 ns. The results of the measurement for the single-pulses with varying width and 

amplitude are depicted in Figure 8.2 (b). Here, the VTH shifts at the falling edge of the first 

single-pulse (VTH12) and at the rising edge of the second single-pulse (VTH13) are plotted 

versus the pulse width for different pulse voltages. For all tested erase pulse conditions the 

VTH12 was positive. Thus, the ferroelectric switching was accompanied by the electron 

trapping for all erase conditions. This trapped electron charge exceeded the ferroelectric 

polarisation charge directly after the pulse. The ferroelectric switching was detected for pulse 

voltages above 3 V, for which negative VTH13 after a delay of 1 min was observed. 

Therefore no erase operation conditions could be found, for which ferroelectric switching 

occurred without simultaneous electron trapping. Another interesting fact was detected by 

comparing the VTH12(tTP) and VTH13(tTP) characteristics for 3 V. The start of a strong 

electron trapping (VTH12 became positive) corresponded with the completion of the 

ferroelectric switching (VTH13 saturated). In order to clarify this phenomenon the energy 

band diagram of the studied gate stack was calculated for 4 V gate voltage in case of a 

negatively (PR = – 2 C/cm
2
) and positively (PR = + 2 C/cm

2
) polarised Si:HfO2 layer 

(Figure 8.2 (c)). The multi-dielectric energy band diagram program [257], [258] was used for 

this purpose. It can be seen that the polarisation charge of the Si:HfO2 layer gives rise to the 

internal electric fields and affects the band bending at the SiON-Si:HfO2 interface. This alters 

the effective thickness of the tunneling barrier and, thus, the injection probability. 
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Figure 8.2 Superposition of ferroelectric switching and trapping for positive gate pulses studied using 

the single-pulse technique: (a) VTH shift directly after the pulse (VTH12) and after 1 min delay 

(VTH13) as a function of the pulse width for different pulse voltages; (b) Experimental gate pulse 

sequence; (c) Energy band diagram of a Si/SiON/Si:HfO2/TiN stack in case of a positive  

(PR = + 2 C/cm
2
) and a negative (PR = – 2 C/cm

2
) ferroelectric polarisation charge. The ferroelectric 

polarisation charge affects the effective thickness of the tunneling barrier and, thus, the trapping 

probability.  
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Figure 8.3 Trapping characteristics of the Si:HfO2 MFIS-FET structures in appositively polarised state 

used to estimate the trapping onset time: (a)VTH between rising and falling pulse edges as a function 

of the pulse width for varying gate voltages: experimental data (symbols) and fit (lines);  

(b) Experimental gate pulse sequence; (c) The onset time (tTP 0) as a function of the gate pulse voltage.  
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In case of a positive polarisation charge the bands are lowered, which decreases the effective 

thickness of the tunneling barrier. This enhances the injection probability, which, in turn, 

results in the increased amount of the trapped charge. A negative polarisation charge has a 

reverse effect on the injection probability. The bands are shifted upwards, so that the effective 

thickness of the tunnelling barrier increases and the injection is impeded. This explains the 

experimental results, showing a strong electron trapping as soon as the Si:HfO2 was switched 

into a positive polarisation state (Figure 8.2 (b)). This also means that a positive polarisation 

charge established during the positive erase pulses enhances the deleterious electron trapping. 

In order to estimate the pulse width, which corresponds to the onset of the trapping 

process, the trapping behaviour of the MFIS-FET structure with a positively polarised 

Si:HfO2 layer was analysed. The single-pulse measurements were performed using the pulse 

sequence shown in Figure 8.3 (b). Before each trapping pulse a positive polarisation state was 

re-established with a combination of a negative (– 6 V for 200 ns) and a positive (+ 4 V for 

200 ns) pulses. A time delay of 1 min between the initialisation pulse sequence and a trapping 

pulse should enable the detrapping processes to set in. The resulting trapping characteristics, 

VTH difference between the rising and falling pulse edges, are shown as a function of the 

trapping pulse width for varying pulse voltages (Figure 8.3 (a)). The experimental data 

(symbols) were extrapolated (lines) to the zero VTH12. The intersection with the time axis 

gives the pulse width corresponding to the onset of trapping (tTP 0). This tTP 0 is equivalent to 

the critical trapping time introduced in [149]. An increase in the gate voltage causes the 

trapping start at shorter pulse widths (Figure 8.3 (c)). In case of gate voltages between + 3.5 V 

and + 4 V, which were identified as optimal erase conditions for the studied FeFET memory 

cells (chapter 7.2), pulses shorter than several picoseconds will be required to eliminate any 

trapping.  

8.2 Detrapping kinetics of the bulk Si:HfO2 traps 

It has been shown in the previous chapter that the separation of the ferroelectric 

switching and trapping during erase operation is impossible to realise. Therefore, the 

detrapping of electrons, which were trapped during a positive erase pulse, was studied in 

order to estimate how fast the detrapping processes set in and the ferroelectric memory 

window can be sensed. The characteristics detrapping times for gate stacks comparable to the 

FeFET devices, which are studied in this work, were shown to be in the microsecond time 

range [264], [265], [266], [267], [196]. Therefore, a single-pulse technique was chosen again 

as the most suitable method for the characterisation of detrapping in Si:HfO2-based  

MFIS-FET devices after positive erase pulses. The pulse sequence used for the discharging 

analyses is illustrated in Figure 8.4 (b). Two identical positive single-pulses with a voltage  
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Figure 8.4 Detrapping characteristics for Si:HfO2-based MFIS-FET devices after a positive erase pulse 

of +3.5 V for 300 ns: (a) VTH3 after a detrapping delay as a function of the detrapping time (tDTP) for 

varying detrapping voltages (VDTP); (b) Experimental gate pulse sequence; (c) Voltage dependence of 

the detrapping time, which is required to achieve a complete detrapping (tDTP 100%). 

of + 3.5 V and width of 300 ns were applied consecutively to the gate. A time delay between 

these pulses (tDTP) as well as a voltage applied during this delay (VDTP) was varied and the 

induced VTH shift was characterised. Initialisation pulse of – 6 V was applied for 100 ns each 

time before the single-pulses. It ensured the detrapping of residual trapped electrons on the 

one hand and, on the other, set an identical initial cell state with a negative polarisation 

(VTH1). The voltage and width of the single-pulses was chosen so that they were close to 

parameters of the erase pulses used for Si:HfO2-based FeFET memory cells (chapter 7.2). The 

results of the detrapping measurements are presented in Figure 8.4 (a). The value of VTH3, 

which was obtained at the rising edge of the second single-pulse, is plotted as a function of 

the detrapping time (tDTP) for different detrapping voltages (VDTP). The threshold voltage of 

the studied devices in the negatively polarised state (VTH_PR–) was defined as VTH1 at the 

rising edge of the first single-pulse. The threshold voltage in the positively polarised state 

(VTH_PR+) was determined from previous measurements (Figure 8.2 (a)). VTH2, which was 

measured directly after the first single-pulse at its falling edge, was shifted to more positive 

voltages in respect to the VTH1. This positive shift indicated electron trapping into the gate 

stack superimposed with the ferroelectric switching. After the detrapping period a change in 

the direct of the VTH shift was observed. A continuous decrease of VTH3 with increasing time 

delay between the first and the second single-pulse can be attributed to the detrapping of 

previously trapped electrons. The back tunneling of electrons from the Si:HfO2 traps into the 

Si conduction band is the most probable discharging mechanism as suggested for comparable  
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gate stacks in [264]. The observed logarithmic time dependence of VTH3 (for VDTP of 0 and  

– 1 V) can be explained by the spatial distribution of traps within the Si:HfO2 layer. Traps 

located closer to the SiON-Si:HfO2 interface exhibit shorter characteristics detrapping times 

than traps located deeper in the high-k layer. With progressive detrapping VTH3 approached 

the value corresponding to the positive polarisation state (VTH_PR+). The time of the complete 

detrapping (tDTP 100%) was assigned to the time, when VTH3 becomes equal to VTH_PR+. A clear 

enhancement of the detrapping rate was detected for more negative VDTP (Figure 8.4 (c)). At a 

voltage of 0 V a complete detrapping can be achieved only after a few milliseconds. By 

applying voltages above – 2.5 V and – 3 V this time can be reduced to a few hundreds of 

nanoseconds. These voltages can be, however, critical if they applied for a longer time. An 

increase of VTH3 was detected for these voltages after some time, which indicated a reversal of 

the ferroelectric polarisation from the positive into negative. 

8.3 Impact of trapping on the FeFET performance 

Strong trapping under typical operation conditions was demonstrated for Si:HfO2-based 

MFIS-FET devices in the chapter 8.1. This chapter will be devoted to a detailed discussion 

about the impact of trapping on the performance of Si:HfO2-based FeFET memory cells, in 

particular erase operation and endurance characteristics. 

8.3.1 Erase operation 

One of the advantages of the ferroelectric memories over the state-of-the-art FG 

memories is a significantly faster writing capability. The polarisation state of a ferroelectric 

device can be switched within a few nanoseconds, while charge the trapping and especially 

detrapping in the FG cells requires from tens of microseconds to several milliseconds [4]. The 

polarisation switching in the nanosecond time range was also demonstrated for Si:HfO2-based 

FeFETs (Figure 7.4 (b)). Therefore, these devices can be theoretically operated in a GHz 

frequency range. Additional electron trapping during the erase pulses, which was shown to be 

inevitable for all operation conditions (chapter 8.1), reduces, however, considerably the 

effective erase speed. The cell readout cannot be performed while traps are discharged. 

Otherwise an erroneous data interpretation will be a result, since the trapped electrons alter 

the VTH value of a memory cell. Thus, the effective erase time (tERASE_eff) should include 

besides the time required for the polarisation switching (tSWITCH) also the time of electron 

detrapping (tDTP). At zero volts a complete detrapping could be achieved only after several 

milliseconds (Figure 8.4 (c)). Therefore, the tERASE_eff  will also lie in the millisecond range. 
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Figure 8.5 Impact of the erase pulse width on the subsequent electron discharging. (a) Time dependent 

VTH shift at VDTP of 0 V, caused by electron detrapping, after an erase pulse of +3.5 V with varying 

width; (b) Effective erase time (tERASE_eff) as a function of the erase pulse width. 

The amount of trapped electrons can be reduced by using shorter erase pulses. The 

impact of erase pulse width on the subsequent detrapping behaviour and on the effective erase 

time was analysed (Figure 8.5). Time dependent VTH shift, caused by electron detrapping, was 

monitored at VDTP of 0 V after an erase pulse of +3.5 V with width varying from 100 ns to 

5 s (Figure 8.5 (a)). The erase pulse width was varied between 100 ns and 5 s. Shorter erase 

pulses could not be tested due to the limitation of the experimental measurement setup. The 

longer erase pulses resulted in higher VTH values due to more trapped electrons. In the region 

1 with detrapping times below 10 s the detrapping rate showed a clear dependence on the 

erase pulse width. The detrapping was faster for longer preceding erase pulses. This can be 

explained by higher built-in electric fields, which arose from higher amount of trapped 

charges. This higher build-in electric field caused enhance detrapping. In the region 2, for 

detrapping times above 10 s, however, the detrapping characteristics for all erase pulses 

merged together and revealed a similar detrapping behaviour. As a result, the time required 

for detrapping and, thus, the effective erase time turned out to be independent of the erase 

pulse width (Figure 8.5 (c)). Therefore, the trapping can be tolerated only to the amount that 

still enables to distinguish the erased (“ON”) from the programmed (“OFF”) cell state. In this 

case the detrapping step will be unnecessary, so that the effective erase time will include only 

the time of the ferroelectric switching (tERASE_eff = tSWITCH). If the amount of trapped electrons, 

however, exceeds the above mentioned condition and two “ON” and “OFF” state cannot be 

distinguishable, the effective erase times of several milliseconds should be expected 

 



 

8.4 Modified approach for erase operation 

 

 

121 

independent on the absolute amount of trapped charges. The erase pulse width (tTP 0), required 

to eliminate the trapping in the studied Si:HfO2 FeFET devices, were estimated in chapter 8.1. 

For typical erase voltages between + 3.5 V and + 5 V, pulses shorter than several picoseconds 

will be required to eliminate any trapping ((Figure 8.3 (c))). A possible solution to this 

trapping issue will be discussed in the chapter 8.4, where a modified erase pulse is proposed. 

It consists of a pulse responsible for the reversal of the ferroelectric polarisation in 

combination with a pulse, which accelerates the detrapping process.  

8.3.2 Endurance behaviour 

Endurance characteristics of Si:HfO2-based FeFET devices were discussed previously 

in chapter 7.4. Both scenarios suggested as explanation for the endurance degradation in the 

studied devices were based on the assumption of electron trapping, which accompanies the 

ferroelectric switching. An experimental evidence of a strong electron trapping at typical 

erase operation conditions was demonstrated in chapter 8.1. This justifies the proposed 

endurance models. Fast trapping rates at positive gate voltages (Figure 8.3) as well as 

detrapping rates at negative gate voltages (Figure 8.4) comparable with the rates of the 

ferroelectric switching were ascertained. This confirm an assumption of a continuous charge 

transport through the interfacial SiON layer during program/erase cycling, which explains the 

observed wear-out of the interfacial layer and degradation of the gate leakage.  

8.4 Modified approach for erase operation 

A fast erase operation of the Si:HfO2-based FeFET memories is impeded by the 

electron trapping and their slow detrapping at zero volts as discussed in the chapter 8.3.1. Fast 

trapping rates competing with the rates of the ferroelectric switching make the complete 

elimination of trapping for investigated devices impossible. In order to enable a fast erase 

operation, one can try to accelerate the detrapping of captured electrons. This can be done by 

applying a negative gate voltage (Figure 8.4). Taking this into account a modified erase pulse 

is proposed (Figure 8.6). 

 

Figure 8.6 Conventional (a) and modified (b) form of an erase pulse for FeFET memory cells. 
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Figure 8.7 Impact of the detrapping pulse voltage (VDTP) on the effective erase time (tERASE_eff) for 

different target values of MW directly after the erase pulse: 1 V corresponding to the maximum 

achievable MW value and 0.5 V corresponding to a half of the maximum achievable MW value. Inset 

shows the erase pulse used. 

In contrast to a conventional erase operation a modified erase pulse includes a positive 

pulse, which sets a positive polarisation state in the ferroelectric, and a negative pulse, which 

accelerates the detrapping of captured electrons. This modified erase pulse enables to sense 

the true VTH state of a FeFET cell directly after the erase operation without any time delays 

required. In this case the effective erase time (tERASE_eff) is the sum of switching (tERASE) and 

detrapping (tDTP) pulse width. Figure 8.7 illustrates the impact of the detrapping pulse voltage 

(VDTP) on the effective erase time. The first switching pulse exhibited a constant voltage of 

3.5 V and width of 100 ns. The width of the second detrapping pulse was adjusted for each 

detrapping voltage so that either the maximum MW of 1 V or a half of the maximum MW 

(0.5 V) was achieved directly after the erase operation. The results of the detrapping studies 

presented in chapter 8.2 were used for this purpose. The effective erase time decreased for 

higher voltages of the detrapping pulse (Figure 8.7). With detrapping voltages between  

– 2.5 and – 3 V tERASE_eff  can be reduced to several hundred nanoseconds. If a half-value of 

the maximal MW (0.5 V) instead of the maximum MW of 1 V is targeted after the erase pulse 

the same tERASE_eff  can be provided at lower detrapping voltages. Thus, the erase operation of 

the studied FeFET devices in the nanoseconds time can be enabled by using the modified 

erase pulses. The shortest tERASE_eff demonstrated in this work was 200 ns. This is due to the 

limitations of the experimental measurement setup, which limits the width of the pulses to 

100 ns. Even better results with shorter tERASE_eff are expected for the measurement setup 

allowing application of shorter pulse width.  
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In addition, the impact of the modified erase pulse form on the endurance behaviour of 

the Si:HfO2-based FeFETs was investigated (Figure 8.8 and Figure 8.9) in order to gain better 

insight into the correlation between the electron trapping and endurance degradation. In the 

first step the impact of discharging at 0 V on the endurance behaviour was analysed  

(Figure 8.8). All endurance measurements were performed using alternating erase and 

program pulses of +3.5 V and – 6 V, respectively, applied for 300 ns. The detrapping step at 

0 V of a varying duration (tDTP) from 100 ns to 1 s was included directly after the positive 

erase pulse (Figure 8.8 (a)). All devices were pre-cycled with the same conditions before the 

endurance test in order to obtain comparable values of the memory window. The resulting 

endurance characteristics are shown in Figure 8.8 (b). The degradation of the VTH in the “ON” 

state slowed down for stress conditions with longer detrapping steps, which corresponded to 

higher degree of detrapping. The measurements with the longest tDTP of 1 s even showed an 

increase of the MW up to 10
3
 program/erase cycles. With further cycling, however, even more 

rapid degradation than for the other cases was observed. Furthermore, the endurance 

behaviour with the erase pulses in a modified form (Figure 8.6 (b)) was characterised. A 

negative detrapping pulse was included after the positive erase pulse (Figure 8.9 (a)).  
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Figure 8.8 Impact of the detrapping delay at 0 V included after the erase pulse on the endurance 

characteristics of the Si:HfO2-based  FeFET devices. (a) Experimental gate pulse sequence used for the 

endurance testing including a detrapping step at 0 V. Evolution of (b) the VTH in the “ON” and “OFF” 

memory states and (c) a resulting memory window with increasing number of stress cycles for test 

pulses with varying detrapping times.  
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Figure 8.9 Impact of the detrapping step at negative voltages included after the erase pulse on the 

endurance characteristics of the Si:HfO2-based  FeFET devices. (a) Experimental gate pulse sequence 

used for the endurance testing including a negative detrapping pulse. Evolution of (b) the VTH in the 

“ON” and “OFF” memory states and (c) a resulting memory window with increasing number of stress 

cycles for test pulses with different detrapping pulses.  

Detrapping pulses with different voltages were tested. The width of the detrapping pulse was 

chosen dependent on its voltage so that it was equal to the corresponding tDTP 100% value 

(Figure 8.4 (c)). Although for all test conditions a complete detrapping of electrons captured 

during the positive pulse was provided by the detrapping pulse, a difference in the endurance 

behaviour for different stress conditions was observed. Higher negative detrapping voltages 

aggravated the endurance degradation of the studied devices. Thus, it can be deduced, that the 

degradation mechanism of endurance in the Si:HfO2-based FeFET devices must be more 

complicated than just an accumulation of trapped electrons within the Si:HfO2 film. 

8.5 Summary 

Application of a single-pulse measurement technique has enabled to obtain an 

experimental evidence of a strong electron trapping in Si:HfO2-based MFIS-FET devices 

during the erase operation (chapter 8). At typical erase operation conditions (i.e., pulses of 3.5 

– 5 V with a width of 100 ns to 10 s) the electron trapping was shown to accompany the 

ferroelectric switching (Figure 8.2 (a)). Moreover, directly after the erase pulse  
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the ferroelectric memory window was masked by the charge of the trapped electrons, which 

exceeded the ferroelectric polarisation charge. The reason for such this severe trapping is a 

thin interfacial SiON layer of the studied gate stack (1.2 nm) but also the polarisation charge 

of the Si:HfO2 layer. The latter induces internal electric fields, which enhance the electron 

injection (Figure 8.2 (c)). A correlation between the start of the electron trapping and 

ferroelectric switching was found. The estimated characteristic trapping times lay in the range 

of sub-nanosecond (Figure 8.3 (c)). Therefore, a complete elimination of trapping during 

erase operation is impossible for the studied gate stacks.  

Detrapping characteristics of electrons captured in Si:HfO2 layer during the erase pulse 

have been investigated (chapter 8.2). At zero volts the detrapping times of several 

milliseconds are required to sense the ferroelectric memory window (Figure 8.4 (c)). This 

slow detrapping of the captured electrons impedes a fast erase of the Si:HfO2-based FeFET 

memories (chapter 8.3.1). Besides the time required for the polarisation switching the time 

required for the detrapping processes to set in determines the effective erase time. The width 

of the erase pulse was shown to have a negligible influence on the overall detrapping time 

(Figure 8.5). Therefore, the trapping can be tolerated only to the amount that still enables to 

distinguish the erased (“ON”) cell state from the programmed (“OFF”) cell state. Otherwise 

the effective erase times will achieve several milliseconds independent on the absolute 

amount of the trapped charge.  

In order to enable a fast erase operation, a modified erase pulse form has been proposed 

(chapter 8.4). It makes use of the fact that the electron detrapping rate can be accelerated by 

applying negative gate voltages (Figure 8.4). The proposed erase pulse consists of two 

consecutive pulses – a positive pulse, which induces a positive ferroelectric polarisation, and a 

negative pulse, which accelerates the detrapping of captured electrons (Figure 8.6). This 

modified erase operation enabled to reduce the effective erase time to nanosecond range 

(Figure 8.7). The impact of the electron detrapping on the endurance characteristics of the 

Si:HfO2-based MFIS-FET devices has been analysed in order to gain more insight into the 

correlation between the trapping and the endurance degradation (chapter 8.4). A slowing 

down of the endurance degradation was observed when electrons captured during the erase 

pulse had sufficient time to be detrapped before the subsequent program pulse (Figure 8.8). 

More important than the detrapping capability is, however, the conditions under which this 

process occurs (Figure 8.9). A slow detrapping at low negative voltages was found to be more 

advantageous than a fast detrapping at high negative voltages. Therefore, the endurance 

degradation of the Si:HfO2-based FeFET devices is not only limited by the accumulation of 

trapped electrons within the Si:HfO2 film. The deterioration of the interfacial SiON layer, as 
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proposed in chapter 7.4, must also have an important effect on the endurance behaviour of the 

studied devices. 

 

 



 

127 

 

9 Summary and Outlook 

The ferroelectric field effect transistors (FeFETs) are considered as a promising 

candidate for future non-volatile memory applications [21], [14], [94] due to their attractive 

features, such as the non-volatile data storage, program/erase times in the range of 

nanoseconds, low operation voltages, almost unlimited endurance (above 10
12

 cycles [105]), 

non-destructive read-out and a compact one-transistor cell structure without any additional 

access device needed. Despite the efforts of many research groups an industrial 

implementation of the FeFET concept is still missing. The main obstacles originate from the 

conventional perovskite-type ferroelectric materials (lead zirconium titanate (PZT) and 

strontium bismuth tantalate (SBT)), in particular their integration [16], [17] and scaling issues 

[13]. The recently discovered ferroelectric behaviour of HfO2-based dielectrics [18], [19], 

[20] yields the potential to overcome these limitations. The decisive advantages of these 

materials are their full compatibility with the standard CMOS process and better scaling 

potential. Due to a significantly higher coercive field strength and lower dielectric constant in 

comparison to perovskite ferroelectrics the gate stack height of HfO2-based FeFET devices 

can be lowered to several nanometres. This provides gate stack aspect ratios more suitable for 

scaling. By utilizing Si:HfO2 ferroelectric thin films, FeFETs were fabricated at a state-of-the-

art CMOS technology node of 28 nm, which finally closed the scaling gap between the 

ferroelectric and logic transistors [24].  

The ferroelectric properties of HfO2 thin films are known only since 2010 [22]. 

Therefore, there are still a lot of uncertainties about the origin of this ferroelectric behaviour 

as well as the impact of different fabrication conditions on its emergence. Moreover, the 

electrical behaviour of both the HfO2-based ferroelectric films and memory devices based on 

these films requires more detailed studies. The emphasis of this work lay on the ferroelectric 

properties of HfO2 thin films doped with silicon (Si:HfO2). The potential and possible 

limitations of this material system with the respect to the application in non-volatile FeFET-

type memories were extensively examined. 

The material aspects of the Si-doped HfO2 thin films were studied at first in order to 

gain better insight into the occurrence of ferroelectricity in this system and to acquire 

guidelines for FeFET fabrication. The influence of the different process parameters such as  
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Si doping concentration, post-metallisation annealing conditions and film thickness on the 

stabilisation of the ferroelectric properties in Si:HfO2 films has been examined. Electrical 

characterisation combined with structural analyses enabled the changes in the macroscopic 

electrical properties to be correlated to alterations in the film crystalline structure. This 

indicates that the origin of the ferroelectric effect in HfO2 lies in its crystalline structure. The 

ferroelectric characteristics of the Si:HfO2 films were shown to appear at the phase boundary 

between the monoclinic (P21/c) and tetragonal (P42/nmc) phase. The transition between these 

two phases was induced by the silicon doping. This behaviour is similar to that of HfO2 films 

with other dopants, e.g., Zr [19], Y [20], Al [130], and Gd [131]. A non-centrosymmetric 

orthorhombic phase Pbc21, which can be stabilised at the monoclinic-to-tetragonal phase 

boundary as claimed in [18], was also held responsible for the ferroelectric properties of the 

films studied in this work. In addition to the P-V hysteresis loops and butterfly-shaped C-V 

curves, a strong evidence for the structural ferroelectricity in Si:HfO2 films was provided by 

PFM measurements. A distinct piezoelectric response, which is a necessary requirement for a 

non-centrosymmetric ferroelectric phase [69], was demonstrated in combination with the 

ability to locally reverse the film polarisation in an external electric field. The temperature of 

the post-metallisation annealing as well as the film thickness significantly affected the 

ferroelectric properties of Si:HfO2. In both cases it correlated with a change in the fraction of 

the ferroelectric phase. The post-metallisation anneal affected primarily the degree of the film 

crystallinity. An enhancement of the PR-value from 5 to 24 C/cm
2
 was obtained by 

increasing the annealing temperature from 650 to 1000 °C. The film thickness had a reverse 

effect on the ferroelectric properties of Si:HfO2. An impairment of the ferroelectric behaviour 

was a result of the film thickness increased from 9 to 50 nm. This effect could be attributed to 

the increased stability of the monoclinic phase, which impeded the formation of a ferroelectric 

orthorhombic phase, leading to a reduction of the remanent polarisation. The observed 

stabilisation of the monoclinic phase for thicker films resulted from the combined effect of the 

decreased surface energy [120], [121] and insufficient mechanical stress during 

crystallisation. Thicker films (27 and 50 nm) crystallised already during the deposition of the 

top TiN electrode due to a reduced crystallisation temperature, while the thinner films (9 nm) 

were crystallised after they were embedded between the top and bottom TiN layers. One of 

the important findings of this work is that the anneal at 1000 °C for 1 s, equivalent to dopant 

activation anneal used during CMOS process, was sufficient for crystallisation of the Si:HfO2 

films and induced a ferroelectric behaviour with PR of 24 C/cm
2
. Therefore, Si:HfO2-based 

ferroelectric transistors can be fabricated using state-of-the-art CMOS process without the 

requirement for additional annealing steps. This is a real advantage in comparison to the PZT 

and SBT films that require special integration schemes due to the high processing 

temperatures (600 – 800 °C), high pressure oxygen atmosphere during deposition and the 

sensitivity of the ferroelectric properties to the hydrogen used during forming gas anneals 
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[97], [98], [17]. Utilisation of chloride-based precursors and H2O for the fabrication of 

Si:HfO2 films in this work allowed higher PR-values (18 – 24 C/cm
2
) to be achieved in 

comparison to films grown with metal-organic precursors and O3 (PR from 5 to 12 C/cm
2
), 

which were analysed in previous works [22], [207], [229] . The values of the coercive fields 

(0.7 – 1 MV/cm) and the Si doping range with the most prominent ferroelectric properties 

(2.5 – 4 cat% Si) were, on the other hand, similar for both deposition processes. The studied 

Si:HfO2 films exhibited PR-values comparable to perovskite ferroelectric materials (e.g., PZT 

and SBT), however, a factor of ten higher coercive field strength (EC for PZT and SBT 

50 kV/cm). This high EC-value enabled a sufficiently high memory window to be achieved 

in the subsequently fabricated Si:HfO2-based FeFET devices, in which the ferroelectric film 

thickness was reduced to 9 nm in contrast to devices with PZT and SBT films (200 – 400 nm 

[112], [111]).  

The potential of ferroelectric Si:HfO2 films for ferroelectric memory applications was 

studied in a further step. The effect of field cycling, polarisation switching kinetics and 

fatigue properties has been analysed in detail. “Wake up” effect that is often observed in 

perovskite ferroelectric [232], [233] was also detected for Si:HfO2 ferroelectric films, 

indicating a high density of defects responsible for the pinning of the domain walls [56], 

[209]. By applying an alternating electrical stress it was possible to open the initially pinched 

hysteresis loops as well as to improve retention properties of the remanent polarisation. The 

switching capability of Si:HfO2 ferroelectric films was found to be comparable to the 

perovskite-type ferroelectric thin films [65], [66], [67]. Switching times in the nanosecond 

range at voltages as low as 2 V to 4 V could be demonstrated by means of the pulsed 

measurement technique. Therefore, the Si:HfO2-based memories can provide a significant 

advantage in terms of operation voltage and programming speed in comparison to the state-of-

the-art floating-gate technology. The switching kinetics in Si:HfO2 films were better 

described by the nucleation-limited-switching model [61], rather than the classical 

Kolmogorov-Avrami-Ishibashi switching theory [59], [60]. The polycrystalline structure of 

the investigated samples may be the reason for the detected switching behaviour [61], [64]. 

Fatigue properties of Si:HfO2 films have been studied depending on frequency and voltage 

amplitude. At low frequencies (10 – 100 kHz) and high switching fields (above 3 MV/cm) the 

maximum number of switching cycles was limited to 10
4
 – 10

6
 by a dielectric breakdown 

rather than a fatigue-induced reduction of the remanent polarisation. Operation at MHz 

frequencies and moderate electric fields (2.5 – 3 MV/cm) enabled to extend the cycling 

capability to 10
9
 cycles. A fatigue-free behaviour up to 10

6
 cycles was demonstrated. The PR 

reduction with cycling could be attributed to the defect generation. The observed fatigue 

properties of the Si:HfO2 films were comparable to those of PZT ferroelectrics combined with 

Pt electrodes, in which the onset of the polarisation degradation was also reported between 
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10
4
 – 10

7
 switching cycles [78]. PZT films with oxide electrodes and SBT films exhibit 

commonly superior fatigue properties (10
9
 – 10

12
 cycles) [50], [240], [45], [241]. For FeFET 

applications the evolution of EC with cycling is, however, of greater importance, since this is 

the factor, which predominantly determines the memory window [107]. Promising cycling 

properties with a negligible change in the coercive fields up to 10
9
 cycles were obtained at 

moderate voltages and MHz frequencies.  

The Si:HfO2-based MFIS-FET devices were fabricated using the state-of-the-art 28 nm 

high-k metal gate CMOS technology. The key memory characteristics such as the program 

and erase behaviour, retention and endurance were analysed. A correlation between the 

performance of the FeFET structures and the capability to stabilise a ferroelectric phase in the 

Si:HfO2 films was shown. The studied FeFETs demonstrated a program and erase times in the 

nanosecond time regime (10 – 100 ns) with operation voltages of 4 – 6 V. These 

characteristics were superior to those of the state-of-the-art FeFET cells based on ferroelectric 

SBT films [112]. Moreover, the operation capability of the Si:HfO2-based devices was proven 

in the temperature range between 25 and 210 °C. Two distinguishable memory states and a 

residual memory window obtained by extrapolation to 10 years could be demonstrated at all 

operation temperatures. An increase of temperature deteriorated the retention properties, 

causing an acceleration of the VTH shift with time and, as a result, a decrease of the residual 

MW predicted for 10 years storage. Higher operation voltages, on the other hand, improved 

the retention behaviour, which was, however, at the expense of the memory window size. 

Furthermore, the Si:HfO2-based FeFETs showed a deterioration of the endurance properties in 

comparison to the MFM structures. The memory window closed after about 10
4
 – 10

5
 

program/erase cycles. The discrepancy in the cycling behaviour for the transistor and 

capacitor structures was attributed to a difference in the degradation of their gate stacks. No 

evidence of the increased trap density in the Si:HfO2 films of the FeFET devices was found in 

contrast to capacitor structures. A predominant degradation of the interfacial SiON layer in 

the transistor gate stacks upon cycling was ascertained by the charge pumping measurements. 

This behaviour was similar to that reported for the standard high-k metal gate stacks [150], 

[190], [252] – [254]. A similar degradation mechanism was also assumed based on the 

similarity of the studied ferroelectric gate stack to the standard high-k metal gate stacks. A 

trapping of the substrate charge into the Si:HfO2 layer and its back tunneling during erase and 

program pulses, respectively, resulted in a continuous charge transport through the interfacial 

SiON layer during cycling. This led to its wear-out. Moreover, it could be shown that this 

charge transport is further enhanced in case of a ferroelectric gate stack. The resulting 

degradation of the interfacial SiON layer was suggested as the main cause of the endurance 

deterioration in the Si:HfO2-based MFIS-FET devices. The endurance measurements 

performed with additional detrapping pulses confirmed that a simple detrapping of electrons 
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trapped during the positive erase pulses cannot improve the endurance properties. Although 

the endurance characteristics of the studied Si:HfO2-based FeFETs were inferior to those of 

devices with perovskite ferroelectric materials, which can withstand up to 10
12

 cycles [105], 

they still were able to meet the modern requirements of the Flash memories (10
4
 – 10

5
 

program/erase cycles [4]).  

A detailed study of the charge trapping in the Si:HfO2-based MFIS-FeFET devices and 

its impact on the memory operation was performed in this work. Besides aggravating the 

endurance properties, as discussed above, the charge trapping was shown to impair a fast 

erase of the memory cells. An experimental evidence of a strong electron trapping at typical 

erase voltages of 3.5 – 5 V was obtained by implementing a single-pulse technique. The 

estimated characteristic trapping times lay in the range of sub-nanosecond. This makes a 

complete elimination of trapping during the erase operation impossible for the studied gate 

stacks. Directly after the erase pulse the ferroelectric memory window was masked by the 

charge of the trapped electrons. Since the VTH value in the erased state was altered by the 

trapped electrons, its readout could be performed only after the detrapping processes have set 

in. At zero volts this process was shown to require several milliseconds. Therefore, the 

effective erase time is also reduced to milliseconds. A modified approach for the erase 

operation was proposed in this work in order to mitigate the impact of trapping and increase 

the effective erase speed. The modified erase pulse consisted of two consecutive pulses –  

a positive pulse, which induced a positive ferroelectric polarisation, and a negative pulse, 

which accelerated the detrapping of captured electrons. This modified erase operation enabled 

to reduce the effective erase time to nanosecond range.  

The impact of scaling of Si:HfO2-based MFIS-FETs down to the gate length of 28 nm 

on their memory performance was investigated. The scaled devices demonstrated 

characteristics comparable to that of the long channel structures: program and erase times in 

the range of several nanoseconds (down to 10 ns) with voltages of 4 – 6 V, endurance 

capability up to 10
4
 cycles and a comparable residual MW of 0.8 V projected after 10 years at 

room temperature. The detected differences in the behaviour between the long and short 

channel devices, such as shift of operation voltages and altered retention behaviour, could be, 

for the most part, attributed to transistor short channel effects (here VTH roll-off). Therefore, a 

careful adjustment of the channel implant profiles in scaled cells is expected to provide 

behaviour similar to the long-channel devices.  

In summary, the key memory characteristics of the Si:HfO2-based FeFET devices, 

studied in this work, are shown in Table 9.1 in comparison to the state-of-the-art ferroelectric 

transistors with perovskite ferroelectric materials and current NVM technology, the floating-

gate. Si:HfO2-based memory cells demonstrated superior properties in respect to operation 
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speed and voltages and comparable retention behaviour. Moreover, they outperform the 

scaling potential of the devices with SBT ferroelectric films. The capability of the HfO2-based 

ferroelectrics to be integrated into the 3D structures, shown in [140], provides the potential to 

fabricate HfO2-based FeFETs in non-planar configurations, such as FinFET and 3D array 

architectures [33], [9], and, thus, to continue the FeFET scaling along with the CMOS 

technology. The main drawbacks of the current Si:HfO2-based FeFET devices, as identified in 

this work, are the endurance and charge trapping that is superimposed with the ferroelectric 

switching. Further studies should be performed in order to minimise the parasitic trapping. 

This is also expected to improve the endurance characteristics. For this purpose the gate stack 

should be optimized in a way that enables to moderate the electric field across the interface 

layer, so that the charge injection probability will decrease. Implementation of high-k 

interfacial layers or HfO2 films with reduced PR values may be a possible solution. An 

important aspect of scaling, which was not considered in this work, is its impact on the 

uniformity of the properties of single devices. This is especially in case of the polycrystalline 

ferroelectric films [263]. As the lateral dimensions of the device decreases to an extent 

presented here, the active area of the ferroelectric gate is only represented by a few grains/ 

ferroelectric domains. Therefore, the switching properties of each individual grain start to 

gain impact on the overall device behaviour. Statistical analyses on the single device 

structures should be performed in order to address this issue.  

Table 9.1 Key memory characteristics of the Si:HfO2-based FeFETs, studied in this work, in 

comparison to the state-of-the-art ferroelectric transistors with SBT ferroelectric films and floating-

gate memory cell. 

Properties Floating-gate cells 

[4] 

SBT-based 

FeFET [112] 

Si:HfO2-based 

FeFET (this work) 

PR (C/cm
2
) – 10 – 24 [49] 18 – 24 

EC (kV/cm) – 40 – 60 [49] 800 – 900 

 – 300 [49] 20 – 25 

Operation voltage 15 – 17 V 4 – 7 V  4 – 6 V 

Write times s – ms  s – ms 30 – 100 ns 

Endurance (cycles) 10
4
 – 10

5
 10

9
 10

4
 – 10

5
 

Retention 10 years 10 years 10 years 

Current scaling node  16 nm [3] 260 nm 28 nm 

Compatibility  

with CMOS process 
+ – + 
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-1
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 Charge per area 

q  C Unit electric charge  
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 Effective surface charge density per area 
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T °C Temperature 

t s Time 

taccum s Time in accumulation 

TC K Curie temperature 

tDTP s Detrapping pulse width 
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tf  s Fall time 

tFG   Time of forward domain growth  

tinv s Time in inversion 

tr s Rise time  
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tSWITCH s Time of ferroelectric switching 

tTP s Trapping pulse width 

tTP 0 s Trapping onset time 

tWRITE s Width of a writing pulse (program or erase) 

V V Voltage 

v m s
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 Speed of sound 

VC V Coercive voltage 
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VC + V Positive coercive voltage 

VD V Drain voltage 

VDTP V Voltage of a detrapping pulse  

VERASE V Erase voltage 

VFB V Flatband voltage 

VG V Gate voltage 

VGH V High gate voltage level 

VGL V Low gate voltage level 

VR V Voltage drop over a reference capacitor 

VTH V Threshold voltage 

vth, m s
-1

 Thermal velocity of the carriers 

VTH_PR– V Threshold voltage of a ferroelectric transistor in a 

negatively polarised state 

VTH_PR+  V Threshold voltage of a ferroelectric transistor in a 

positively polarised state 

VTP V Voltage of a trapping pulse  

VWRITE V Writing (program or erase) voltage  

W m Transistor channel width 

WG m Transistor gate width 

X Ω Reactance 

θ degree,° Diffraction angle 

λ nm Wavelength 

μn cm
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 V

-1
s

-1
 Electron mobility  

geom  cm
-2

 Geometric mean value of the capture cross section  

σn cm
-2

 Capture cross sections for electrons 

σp cm
-2

 Capture cross sections for holes 

τ – Reduced temperature (TC-T)/TC 

ω degree,° Incidence angle 

PR C cm
-2

 Loss of the remanent polarisation within 1 s 
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VG V Gate pulse amplitude  

VTH V Threshold voltage shift  

M eV Metal work function  

MS eV Metal-semiconductor work function difference 

e
 eV Electron affinity 

0 F cm
-1

 Permittivity of vacuum 

FE – Relative permittivity of a ferroelectric 

IL – Relative permittivity of an insulator 

S – Relative semiconductor permittivity 

B V Fermi potential  

S V Semiconductor surface potential 

   

Abbreviation Description 

AC Alternating Current 

AFE Antiferroelectric 

Al Aluminium 

CMOS Complementary Metal-Oxide-Silicon 

CP Charge Pumping 

CT Charge-Trapping 

CVD Chemical Vapour Deposition 

DC Direct Current 

DRAM Dynamic Random Access Memory 

EEPROM Electrically Erasable and Programmable Read Only Memory 

EPROM Electrically Programmable Read Only Memory 

FE Ferroelectric 

FeFET Ferroelectric Field Effect Transistor 

FeRAM Ferroelectric Random Access Memory 

FG Floating Gate 

FN Fowler-Nordheim 

FWHM Full Width at Half Maximum 

GCR Gate Coupling Factor 

Gd Gadolinium 

GI-XRD Grazing Incidence X-Ray Diffraction 

H2O Water 

HfCl2 Hafnium Tetrachloride 
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HfO2 Hafnium oxide 

HfSiON Hafnium Silicon Oxynitride 

ICDD International Centre for Diffraction Data 

IrO2 Iridium Oxide 

ITRS International Technology Roadmap of Semiconductors 

La Lanthanum 

m Monoclinic Phase 

MFIS Metal-Ferroelectric-Insulator-Semiconductor 

MFIS-FET Metal-Ferroelectric-Insulator-Semiconductor Field Effect Transistor 

MFM Metal-Ferroelectric-Metal 

MFMIS Metal-Ferroelectric-Metal-Insulator  

MIM Metal-Insulator-Metal 

MIS Metal-Insulator-Semiconductor 

MISFET Metal-Insulator-Semiconductor Field Effect Transistor 
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MRAM Magnetic Random Access Memory 

N2 Nitrogen Gas 

NH3 Ammonia Gas 
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NVM Non-Volatile Memory 

NVSM Non-Volatile Semiconductor Memory 

o Orthorhombic Phase 
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PCRAM Phase Change Random Access Memory 

PFM Piezoresponse Force Microscopy 

PMU Pulse Measurement Unit 

Poly-Si Polycrystalline Silicon 
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PUND Positive Up Negative Down 
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TEM Transmission Electron Spectroscopy 

TiCl4 Titanium Tetracloride 

TiN Titanium Nitride 
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ZrO2 Zirconium Oxide 
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