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Abstract

Software components provide essential means to structure and organize software effectively.
However, frequently, required component abstractions are not available in a programming lan-
guage or system, or are not adequately combinable with each other. Invasive software composition
(ISC) is a general approach to software composition that unifies component-like abstractions such
as templates, aspects and macros. ISC is based on fragment composition, and composes programs
and other software artifacts at the level of syntax trees. Therefore, a unifying fragment component
model is related to the context-free grammar of a language to identify extension and variation
points in syntax trees as well as valid component types. By doing so, fragment components can
be composed by transformations at respective extension and variation points so that always valid
composition results regarding the underlying context-free grammar are yielded.

However, given a language’s context-free grammar, the composition result may still be incorrect.
Context-sensitive constraints such as type constraints may be violated so that the program
cannot be compiled and/or interpreted correctly. While a compiler can detect such errors after
composition, it is difficult to relate them back to the original transformation step in the composition
system, especially in the case of complex compositions with several hundreds of such steps. To
tackle this problem, this thesis proposes well-formed ISC—an extension to ISC that uses reference
attribute grammars (RAGs) to specify fragment component models and fragment contracts to
guard compositions with context-sensitive constraints. Additionally, well-formed ISC provides
composition strategies as a means to configure composition algorithms and handle interferences
between composition steps.

Developing ISC systems for complex languages such as programming languages is a complex
undertaking. Composition-system developers need to supply or develop adequate language
and parser specifications that can be processed by an ISC composition engine. Moreover, the
specifications may need to be extended with rules for the intended composition abstractions.
Current approaches to ISC require complete grammars to be able to compose fragments in the
respective languages. Hence, the specifications need to be developed exhaustively before any
component model can be supplied. To tackle this problem, this thesis introduces scalable ISC—a
variant of ISC that uses island component models as a means to define component models for
partially specified languages while still the whole language is supported. Additionally, a scalable
workflow for agile composition-system development is proposed which supports a development
of ISC systems in small increments using modular extensions.

All theoretical concepts introduced in this thesis are implemented in the Skeletons and Ap-
plication Templates framework SkAT. It supports “classic”, well-formed and scalable ISC by
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leveraging RAGs as its main specification and implementation language. Moreover, several
composition systems based on SkAT are discussed, e.g., a well-formed composition system for
Java and a C preprocessor-like macro language. In turn, those composition systems are used as
composers in several example applications such as a library of parallel algorithmic skeletons.
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1
Introduction

Divide and conquer is one of the most essential principles in the engineering of complex software
systems. It directly correlates with the separation of concerns (SoC) as the most basic strategy
for problem solving in computer science, which Dijkstra felicitously characterized as “yet the
only available technique for effective ordering of one’s thoughts” [Dijkstra 1982, p. 61]. In
software engineering, components are essential to structure systems, hide implementation detail,
to “conquer” complex problems and separate concerns. Components occur on all levels of a
software system. They can be binary, distributed and commercial [Szyperski 2002], they can
be reusable libraries of standard algorithms for different platforms [Mcilroy 1969] or even any
piece of program code or model [Nierstrasz and Tsichritzis 1995; Aßmann 2003]. Besides
structuring, software components are a key enabling technology for variability and reuse in
software systems. Therefore, software components provide interfaces making their signatures
and data types, interaction protocols and contracts [Meyer 1992], as well as variation and
extension points explicit. Depending on the component kind and composition technology,
interfaces may be realized differently. For example, in commercial software, interfaces are
often used to keep implementation detail as trade secrets and to decouple software systems.
However, in the engineering process of software it is necessary to (de-)compose software at
the level of source code so that a plain black-box view on components often is not adequate
as it does not help to organize program sources efficiently. Consequently, other methodologies
to software composition such as invasive software composition (ISC) [Aßmann 2003] allow
for composition at the level of program elements. ISC transforms structural representations
of programs by applying composition operators at extension and variation points according to
a gray-box component model which supports interfaces but does not hide the implementation.
This thesis proposes two extensions to ISC. Well-formed ISC primarily addresses the problem
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Chapter 1. Introduction

that programs may not be well-formed after composition with the ISC method (i.e., may not be
executable). Complementarily, scalable ISC is concerned with reducing the development efforts
that are required to implement composition systems based on ISC.

Composition in software engineering. In software engineering, two incarnations of di-
vide and conquer are typically used to arrange software components: hierarchical decomposition
(HiDec) and the separation of cross-cutting concerns (SoCC). HiDec is about structuring compo-
nents using relations that describe hierarchies such as part of. The reason for the application of
HiDec is simple: in the physical world, people usually expect one object that occurs as a part of
another object to be no part of a third unrelated object at the same time—a keyboard is always
part of only one piano. In the virtual world of software, this is also expected as software reflects
the real world. Thus, programs are typically organized in similar ways. For example, artifacts
in object-oriented languages such as Java and C# are organized along hierarchical namespaces
that must even be reflected in the folder structure in some cases (e.g., in Java). Moreover, classes
are hierarchically organized type declarations that contain methods, fields and other classes. To
foster reuse in hierarchically structured programs, composition mechanisms such as class-based
inheritance, delegation between objects as well as file inclusion and namespace imports are
common approaches.

Since every part of a program requires an address to be locatable, architecting a software
system without HiDec seems difficult. However, with HiDec only one decomposition is possible
at a time, which is typically far from being an optimal solution for all concerns of a software.
Besides the functional core, there are also concerns that are cross-cutting in nature with respect
to HiDec decomposition of a program [Tarr et al. 1999] that has been chosen by a programmer.
During the last two decades, novel approaches for separating concerns orthogonal to the technical
decomposition have been researched. The most prominent approach that supports the SoCC is
aspect-oriented programming (AOP) [Kiczales et al. 1997]. A system’s property is an aspect “if it
can not be cleanly encapsulated in a generalized procedure” [Kiczales et al. 1997, p. 226], where
“generalized procedure” denotes a class, method or similar kind of abstraction. A very typical
example of a cross-cutting concern is debugging via printing log statements to console or a file.
For fine-grained logging, programmers bloat their code with log statements that are, on the one
hand, tangled with functional code which makes it worse to be read and understood. On the other
hand, the very similar pieces of code are scattered over the program and must be maintained
with the evolving program. Typical AOP realizations [Kiczales et al. 2001; Bergmans and Aksit
2001; Mezini and Ostermann 2003] allow developers to encapsulate cross-cutting concerns in
separate components without the need to change the code of the core program. Moreover, the
multi-dimensional separation of concerns (MDSoC) approach [Tarr et al. 1999; Ossher and Tarr
2001] unifies HiDec and SoCC by providing a methodology for separating all concerns of a
program (i.e., functional and cross-cutting ones) along equally ranked dimensions in a unified
way so that the concepts of the programming language are not dominating the physical structure
of a program’s components.
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Component technology by metaprogramming. The research documented by this thesis
deals with a special kind of component technology based on metaprogramming. Metaprograms
are programs that modify, generate or transform other programs at compile time (i.e., static
metaprogramming) or runtime (i.e., dynamic metaprogramming). Component abstractions for
HiDec or SoCC can be realized as metaprograms (cf. [Aßmann 2003]). Besides that, it is a
key enabling technology for some accompanying software-composition approaches. Template
metaprogramming (TMP) is a way to express variability and to increase reuse of software compo-
nents [Czarnecki and Eisenecker 2000]. Templates allow developers to realize blueprint compo-
nents. Blueprint components are generic pieces of program code that have to be parametrized
with usage-specific bindings and thus can be used in various different contexts. For example,
the standard library of C++ provides several predefined class and function templates that can be
parametrized with specific types (e.g., lists, matrices) or adjusted to a specific platform. Macros
are a special class of static metaprograms that are integrated transparently into programs of a host
language [Weise and Crew 1993; Brabrand and Schwartzbach 2002] while very different possibil-
ities to design and implement macro languages exist. Syntactic macros as in Scheme [Kelsey et al.
1998] or LISP [Steele Jr. 1990] are extensions of the corresponding programming language. Thus,
syntactic macro languages work on the syntax-tree representation of a program so that macros
are not allowed to perform transformations that violate the language grammar and always yield
syntactically correct programs. Other macro languages such as the C preprocessor (CPP) only
work on the lexical level, i.e., on the token-stream representation of a program and do not depend
on the actual language grammar. Hence, lexical macro languages are out-of-the-box portable to
other languages without being explicitly designed for them or even without being designed for
any specific language.

Frameworks for component technology. Using standard metaprogramming for develop-
ing component abstractions is an elaborate task as it does not provide a systematic framework
for component-based systems in software engineering. Therefore, general approaches for mod-
eling and implementing software-composition abstractions emerged (e.g., [Batory et al. 2004;
Erwig and Walkingshaw 2011]). This thesis is centered around ISC [Aßmann 2003] as a general
metaprogramming-based approach to software composition regarding it as both—implementation
technique and conceptual framework. ISC is suitable for the implementation of arbitrary HiDec,
SoCC and TMP systems and guarantees composition correctness at the level of context-free
syntax. ISC has its focus on the practical engineering of software-composition systems. The first
ISC system was COMPOST—a Java framework [Aßmann 2003; Heuzeroth et al. 2006]. It has
an extensible component model, and compositions are described as Java programs. COMPOST
provides a default implementation of a composition system for Java which supports templates
and AOP. The work of [Henriksson 2009] implemented ISC as a generative approach based on
context-free grammars called universal invasive software composition (U-ISC), which has been
used to realize several composition systems for domain-specific languages (DSLs). Afterwards,
the work of [Johannes 2011] introduced the approach of universal invasive software composition
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for typed graphs (U-ISC/Graph), which is suitable for realizing composition systems in the
model-driven engineering (MDE) [Kent 2002] domain. U-ISC/Graph is based on the observation
that graphical models are usually graph-structured and metamodels provide means to specify
such languages.1

Similar to most of the other composition approaches above—the standard approaches to
template metaprogramming and syntax macros—ISC works at the syntactic level. Consequently,
invasive composition always yields syntactically correct results. However, a consideration of
syntax alone is often not sufficient. For example, C++ templates are well-known for causing
cryptic error messages in the C++ compiler that are hard to debug. This is caused by the separation
of the template expansion from the actual compilation, which makes them unaware of most parts of
the static language semantics encoded in the C++ compiler. In contrast, the AOP implementation
AspectJ [Kiczales et al. 2001] and the corresponding editors of the AspectJ Development Tools
(AJDT) [Eclipse Foundation 2013a] show how an integration with large parts of Java’s static
semantics can be employed beneficially to improve on error reporting and usability.

1.1. Thesis Topic

Today’s frameworks for metaprogramming-based composition systems lack systematic ap-
proaches to tie language semantics with composition abstractions. Thus, the main objective of
this thesis is to develop an approach that enables a systematic integration of composition abstrac-
tions with static language semantics. The proposed solution—well-formed ISC—uses reference
attribute grammars (RAGs) [Hedin 2000] as a basic model for specifying and implementing
ISC concepts. RAGs are a special kind of attribute grammar (AG) [Knuth 1968; Knuth 1971],
and a well-know specification formalism and implementation tool for the semantics of formal
languages. Using RAGs, the thesis directly improves on the ISC approaches of [Aßmann 2003]
and [Henriksson 2009].

Another equally important problem when developing metaprogramming-based composition
systems are interferences [Kniesel and Bardey 2006] between single steps of a composition. ISC
frameworks should provide means to make composition transparent to their users in such a way
that they can understand how a composition result is achieved and how it can be reproduced
deterministically. Therefore, this thesis extends ISC with strategies (cf. strategic program
transformations, [Visser 2004]) to parametrize compositions and to better handle interference
related problems.

While the unifying model of ISC and well-formed ISC is an advanced general approach to
fragment composition, it also requires advanced knowledge of developers to apply the technology
to develop new composition abstractions for their fragment languages. One potential way to
reduce complexity is to provide DSLs to specify those abstractions, as shown by the works

1Of course, with the U-ISC and U-ISC/Graph approaches, the term metaprogramming has to be put into a broader
context, since a DSL or a model-based language is not necessarily a program, but still something that has an
execution semantics or translational semantics.
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of [Henriksson 2009] and [Johannes 2011]. However, DSLs also imply a trade-off between
simplicity and expressibility. For example, the approach of [Henriksson 2009] provides a set
of simple DSLs to specify composition systems but it is also restrictive, as it will be discussed
in a later chapter. This thesis aims at providing a more flexible way of composition-system
specification and will use a set of reusable RAG patterns to specify composition systems that can
be realized by common RAG tools.

Another source of complexity depends on the language a composition system should be
developed for. Syntax and semantics of programming languages often tend to be complex and
ambiguous so that it becomes difficult (or even impossible) to use a complex approach like ISC
or well-formed ISC. For example, it is well-known that Java’s syntax and semantics is simple
enough to be covered by generic (generative) approaches such as AGs and parser generators.
Contrastingly, C++ is more complex because of its enormous number of language features and
potentially ambiguous concepts. Hence, to also be able to support languages like C++ with
invasive composition systems, this thesis proposes minimal ISC, which basically works on the
lexical level and can handle incomplete language specifications. The approach is also suitable for
an agile style of composition system development as it can be extended with constructs up to full
ISC support. The combination of minimal, classic and well-formed ISC with an agile style of
composition-system development is called scalable ISC in this thesis.

The results of this thesis are implemented as a proof of validity as part of the Skeletons and
Application Templates (SkAT) framework on the basis of the JastAdd RAG tool [Hedin 2011].
SkAT for Java (SkAT4J) is a well-formed composition system for Java which imitates the original
look and feel of the COMPOST ISC implementation, but adds semantics awareness based on
RAGs and composition strategies. SkAT4J is used to implement a code-generation use case for
a domain-specific code-generation framework. Furthermore, it is employed to realize a library
of parallel patterns (cf. algorithmic skeletons [Cole 1989]) as compositional abstractions for
writing parallel applications in Java. The scalable ISC approach is supported by three smaller
SkAT-based systems. Most notably, the Universal Extensible Preprocessor (UPP) is a CPP-like
language-independent macro processor, which can be extended with additional composition
abstractions and partial target-language support.

1.2. Thesis Outline

Including this introduction, the thesis is divided into nine chapters, which are summarized below.
Chapter 2 introduces an example of an ISC-based code generator for a domain-specific

language. The purpose of this example is three-fold. First, readers become more familiar with
the very basic terminology of ISC. Second, based on the scenario, a detailed problem analysis
is conducted, discussing benefits and drawbacks of classic ISC systems w.r.t. soundness and
implementation effort. From the problem analysis, the thesis objectives are derived. Third, in
the course of this thesis the example is used as a composition scenario for the developed SkAT
framework as well as in a comparative study of existing ISC systems.
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Chapter 3 on background and terminology prepares the ground for understanding the ap-
proaches discussed and developed in this thesis. It introduces formal languages, grammars, trees
and graphs. Moreover, tree-based language-processing schemes are discussed as well as the
kinds of trees used in the core of fragment components. Most importantly, the chapter introduces
Simple Attribute Grammar Specification Language (SimpAG)—the RAG specification language
later used in the chapters on well-formed and scalable ISC.

Chapter 4 discusses the state of the art in ISC and introduces a formal model of fragment
component models and the basic ISC composition operators. Existing implementations of ISC
are discussed and compared. Moreover, they are evaluated w.r.t. the formal model by discussing
their specification languages and composition realizations.

Chapter 5 introduces well-formed ISC. Using SimpAG, a RAG-based specification approach
for fragment component models is developed by providing specific attribution patterns and generic
equations performing typical component-model tasks. Moreover, composition operators are
modeled as an extension to the fragment component model and three configurable composition
algorithms are developed and provided as composition strategies. Additionally, the chapter
introduces fragment contracts as means to specify pre- and postconditions for single composition
steps and invariants for verification. Fragment contracts are integrated with the RAG-based
component model and incorporate context-sensitive constraints of the component language.

Chapter 6 presents the SkAT framework. SkAT transfers the approach of well-formed ISC into
a JastAdd-based framework consisting of multiple reusable RAG modules. In comparison to the
classic ISC systems, SkAT adds fragment contracts and composition strategies while providing
a conventional Java-based composition API. In the Chapter’s second part, SkAT4J is discussed
as a well-formed fragment composition system for Java (version 1.5). The system is then used
to implement the domain-specific code generator of Chapter 2, which is also compared to the
respective implementations based on the existing ISC systems discussed in Chapter 4. Moreover,
SkAT4J is used to implement a small fragment library of parallel algorithmic skeletons.

Chapter 7 discusses minimal and scalable ISC. Again, SimpAG is used as a specification
framework for the developed approaches. To support component languages partially, island
fragment component models are introduced and used in three example composition systems.
Moreover, a workflow for scalable composition system development is proposed. The approach
is based on island grammars [Moonen 2001].

Chapter 8 discusses and analyzes related work that has not been investigated in one of the
other chapters.

Chapter 9 is draws conclusions w.r.t. the achieved research results, and discusses open issues
and potential future work.
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2
A Motivating Example

ISC is a fragment-composition approach based on context-free grammars (CFGs). The notion of
fragment stems from the BETA programming language, where fragments are syntax-based mod-
ules for program modularization [Madsen et al. 1993]. A fragment module1 is “associated with a
name and a syntactic category . . . [and] a string of terminal and nonterminal symbols” [Madsen
et al. 1993, p. 259] derived from the respective syntactic category, i.e., a correctly typed code
snippet with placeholders. Nonterminal symbols in a fragment are called slots and define a range
where other fragments may be added to the program [Madsen et al. 1993, p. 258]. In ISC, the
notions of declared hooks and slots are used interchangeably [Aßmann 2003]. Additionally, ISC
provides the concept of implicit hooks, which denotes parts of a fragment that are not explicitly
declared for variation, but are implicitly derived from the fragment structure.

In the following, a short example on an invasive composition system is discussed. Afterwards,
immanent problems of the ISC approach, and especially its incarnations in the COMPOST
systems and the universal approaches by [Henriksson 2009] and [Johannes 2011], are discussed.

2.1. A Code Generation Use Case

To emphasize how the ISC approach basically works, an academic example that illustrates the
implementation of a generative business application framework (BAF) is developed subsequently.
The example is implemented in Java and provides a textual DSL to ease the specification of
business domain models and to generate Java code.

1Fragment modules are also called fragment forms in BETA.
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Figure 2.1.: An ISC-based code generator for domain objects of a business application.

Figure 2.1 shows the basic code generation process in the BAF. It starts from some model of the
business domain provided by the application developer. While it does not matter how the model
was created (e.g., using some graphical or textual modeling editor), the model representation
needs to be compatible with the generator, which must be able to read the input. The task of the
code generator is to transform the input model into source code of an executable program that
runs within the business application framework. In the case under consideration, the emitted code
is Java, but could also be any other programming language. Since the generator is based on ISC,
it has several Java fragments with slots and hooks as basic building blocks. The fragments are
parametrized and extended by inspecting the input business model and executing a composition
(meta)program. Languages used to implement fragments (Java in the BAF case) are called
fragment languages or component languages, respectively.

The code emitted by the BAF generator reuses some basic classes of the framework’s appli-
cation programming interface (API). Listing 2.1 shows an excerpt of this API which provides
an abstract Java class BusinessObject as a super class of all business objects that should be
plugged into the framework. It has a unique id for storing the object in a database and an abstract
method asString for generating a String representation of a business object, e.g., for logging
purposes. The second class Person provides an API for roles (e.g., customer) that may occur in
business applications with typical properties such as firstName, lastName and age.

To generate a business application, the framework has to be instantiated by specifying a
business model. Since a full-fledged business model would go beyond the scope of a simple
example application, only the role-model part is considered. Listing 2.2 contains a textual role-
model specification in this DSL. It simply defines three basic stakeholders (cf. [Czarnecki 1999]).
An Employee has a date that specifies when he was employed by the company and has a certain
weekly workload. A Customer has a certain default discount on the regular price while a
Shareholder of the company has a certain percentage of ownership. Finally, a combined role
EmployeeCustomer is defined that represents an employee who also acts as a customer with
a default discount of 20 percent.

The textual DSL specification is parsed by a parser and transformed into an object graph as
shown in Figure 2.2. Typically, such textual DSLs are implemented using textual modeling
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1 public abstract class BusinessObject {
2 private String id;
3
4 public String getID(){return id;}
5 public void setID(String id){this.setID(id);}
6
7 public abstract String asString();
8 }
9

10 public abstract class Person extends BusinessObject {
11 private String firstName;
12 private String lastName;
13 private int age;
14
15 public String getFirstName() {return firstName;}
16 public void setFirstName(String firstName)
17 {this.firstName = firstName;}
18
19 public String getLastName() {return lastName;}
20 public void setLastName(String lastName)
21 {this.lastName = lastName;}
22
23 public String getName() {return lastName + ", " + firstName;}
24
25 public int getAge() {return age;}
26 public void setAge(int age) {this.age = age;}
27 }

Listing 2.1: Basic business objects in the business application framework.

1 roles{
2 object Employee:
3 employed : Date
4 workload : Hours
5 object Customer:
6 discount : Percentage
7 object Shareholder:
8 shares : Percentage
9 object EmployeeCustomer is_a Employee,Customer:

10 discount : Percentage[20]
11 }

Listing 2.2: Excerpt of a business domain model specified using a textual DSL.
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bm : BusinessModel defs : RoleDefinitions

properties = [(Shares,Percentage)]
name = Shareholder

role3 : Role

properties = [(Discount,Percentage)]
name = Customer

role2 : Role

properties = [(Discount,Percentage=20)]
name = EmployeeCustomer

role4 : RoleUnion

properties = [(Employed,Date),(Workload,Hours)]
name = Employee

role1 : Role

Figure 2.2.: Object-graph representation of the textual specification in Listing 2.2.

frameworks like EMFText [Heidenreich et al. 2009a], which is used in the BAF. The object
graph is the input of the code generator. Since the generator relies on ISC, it maintains a set of
Java fragments as basic building blocks for the framework-specific code that shall be emitted.
Figure 2.3 gives an overview of the composition steps and fragments involved. Initially, the
object graph is evaluated by the generator and, for each role definition in the specification, a set
of template parameters is derived. The parameter values are bound to slots in the fragments.

Figure 2.3.: The basic fragment-composition process as a data-flow graph.

In the following, a detailed example is discussed, which shows how and with what values
the Person fragment is parametrized to generate a basic class body for Employee objects.
Afterwards, the instantiation of the Setter, Getter and Field fragments and how they
extend the initial class body is explained. Listing 2.3 shows the template fragment which is used
to generate Java implementations from the role definitions in the business-model specification.
It eventually inherits from Person declared in Listing 2.1 and has a basic implementation for
asString. For parametrization, the template provides three slots marked up using [[...]]
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1 //fragment person.frgmt
2 public class [[Type]] extends Person {
3 public String asString(){
4 String v = [[TypeName]];
5 v+= "[[Pfx]] id:" + getID();
6 v+= "[[Pfx]] name:" + getName();
7 return v;
8 }
9 }

Listing 2.3: The basic template for person
business objects.

//fragment person_employee.frgmt
public class Employee extends Person {

public String asString(){
String v = "Employee";
v+= "\n id:" + getID();
v+= "\n name:" + getName();
return v;

}
}

Listing 2.4: Instance of person.frgmt for the
employee role definition.

parentheses. The parenthesis separate slots from the rest of the language and are also called
syntactic hedges in literature [Vinju 2005; Arnoldus 2011]. The slots occurring in Listing 2.3 are
explained below.

• Type is the placeholder of a type signature (i.e., the role name).

• TypeName is a placeholder of a type name as a String literal or expression.

• Pfx is a placeholder of a default prefix in each line which is produced in the asString
method.

In a first intermediate step, the code generator uses the template in Listing 2.3 to internally
create an initial class body for each role in the business model. For this, the template is parsed
and represented as a syntax tree. Consequently, it has to be syntactically well-formed, which is a
clear advantage over standard string-based template engines (e.g., StringTemplate [Parr 2006]).
For example, if a defect like missing double quotes in Line 6 is assumed (e.g., v+= [[Pfx]]
id:" + getID();), the ISC-based template engine would recognize this as defect code and
issue a message to the user, whereas a string-based engine would continue processing, finally
emitting defect code.

Listing 2.4 shows the initialized class body generated for the Employee role. Type has been
replaced by a qualified identifier using the invasive bind composition operator. Observe that in
order to replace Type correctly, bind expects a qualified identifier subtree. For the TypeName
slot, an expression node is expected which is bound to a string expression node (“Employee”)
by the code generator. Finally, occurrences of Pfx were replaced by the newline character so
that asString’s output is nicely formatted.
After the initial class bodies were created, they have to be extended with fields and access methods
that represent the properties of the modeled business objects in appropriate ways. Listing 2.5
provided the code of the most basic member templates. As the template before, it provides some
slots for parametrization:

• Type is again used for type signatures,

• Field marks placeholders for attribute identifiers,
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1 //fragment getter.frgmt
2 public [[Type]] [[GetSfx]]() {
3 return [[Field]];
4 }
5
6 //fragment setter.frgmt
7 public void [[SetSfx]]([[Type]] [[Field]]){
8 this.[[Field]] = [[Field]];
9 }

10
11 //fragment field.frgmt
12 private [[Type]] [[Field]];

Listing 2.5: Basic class member templates for
role fields.

//fragment getter_workload.frgmt
public int getWorkload() {

return workload;
}

//fragment setter_workload.frgmt
public void setWorkload(int workload){

this.workload = workload;
}

//fragment field_workload.frgmt
private int workload;

Listing 2.6: Instances of class member
templates.

• GetSfx and SetSfx are slots for different accessor methods (i.e., get and set methods)
of field declarations.

Listing 2.6 shows an instantiation of the member templates for the workload property of
Employee. All occurrences of Type have been bound to the primitive Java type int, which is
used by the BAF to represent properties declared as Hours in the model. This can be done in
similar ways for other kinds of properties. Furthermore, Field slots are simply bound to the
property name in all places and the names for get and set methods are generated accordingly.

Since the instantiated member fragments are still standalone, they have to be added to the
according class fragment. In the above mentioned case, this would be the just generated Em-
ployee class. To achieve this, the extension mechanism of ISC can be used, which allows
users to safely extend fragments at certain hooks. Hooks are derived from the structure of a
fragment and need not to be declared explicitly using hedge symbols. The class-members hook
is a typical hook of Java compilation units (cf. [Aßmann 2003, p. 127]). In this example, the code
generator uses the extend composition operator to add the fragments of Listing 2.6 to the basic
Employee class.2 Note that this way of adding code fragments is conceptually very similar to
inter-type declarations in AOP. For interested readers, the Employee class emitted by the code
generator can be inspected in Listing A.1 of Appendix A.1.

While the code for the Customer and Shareholder roles is generated in the same way
as for Employee, several options for composing the EmployeeCustomer class become
emergent since EmployeeCustomer requires some form of multiple inheritance which is not
supported by Java directly. A solution for this is the application of mixin composition [Bracha
and Cook 1990], since mixins can be realized using ISC. [Bracha and Cook 1990] consider
mixins as abstract subclasses and use mixin composition as a mechanism to model arbitrary
kinds of inheritance. Today, the term mixin is generally used to describe class-merge opera-
tions, which do not rely on the standard inheritance mechanisms of the host language. For

2If a COMPOST like approach to ISC was assumed, the composition operator could be invoked by a method call,
e.g., extend(person_employee, field_workload).
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instance, inter-type declarations used in AspectJ [Kiczales et al. 2001], traits like in the Scala
programming language [Odersky et al. 2008] and mixin templates such as in C++ are mixin-like
composition abstractions.

As a first step, a basic class body for the EmployeeCustomer role(s) is instantiated from
the general class template. The following convention can be applied: instead of inheriting from
Person it directly inherits from Employee as this is the first concept in the role composition
declaration of EmployeeCustomer’s definition (cf. Listing 2.2, Line 9). To support this, the
generator can use a variant of the template in Listing 2.3 that provides an implicit or declared
super-class slot (e.g., [[Super]] instead of Person in Line 2). Afterwards, the generator
reuses the member fragments for the Customer discount property which were originally
instantiated from the member templates in Listing 2.5, and mixes them into the EmployeeCus-
tomer class body via the extend composition operator. To achieve the default discount of 20
percent (cf. Listing 2.2, Line 10), a new constructor that sets the values accordingly can simply be
added to the generated class. Alternatively, a variant of field.frgmt could be initialized to the
default value by adding a slot to the fragment. Finally, to make the type hierarchy more consistent,
the classes generated for each role definition could be divided into a Java interface class and an
implementation class. Since Java supports multiple inheritance of interfaces, EmployeeCus-
tomer would have an interface inheriting from both—the Employee and the Customer
interfaces. Interested readers may look up potentially emitted code for EmployeeCustomer
in Listing A.2 of Appendix A.1.

Several limitations of the ISC approach that have not been tackled appropriately yet will be
discussed and analyzed in the next section.

2.2. Problem Analysis and Thesis Objectives

By definition, the compositional approach of ISC strictly adheres to the CFG of the component
language and, thus, ensures syntactic correctness of the output. Further static checks such
as name resolution, type checks, control-flow analysis etc. are outsourced to the compilation
(interpretation) phase by the component-language compiler (interpreter) [Aßmann 2003, p. 152].
However, one can easily imagine multiple scenarios in which such a delayed check is not a
sufficient or adequate solution for checking fragment compatibility. Considering use cases with
hundreds or more fragments that are composed via a complex composition program, even a
single error—e.g., caused by a contradiction with the type system—makes it difficult to find the
problem’s origin. Furthermore, as integrated development environments (IDEs) such as the Java
Development Tools (JDT) of Eclipse [Eclipse Foundation 2013c] are getting better and better
in providing comfort for users and developers by improving live feedback and error reporting
facilities, post-compilation approaches seem to be behind the times (of course, usage of IDEs
also depends on personal preferences). Standard compilers are not designed to support the
implementation of such responsive and interactive IDEs. Instead, a complex IDE normally has
its own compiler frontend (i.e., mostly the parsing and static analysis part of a compiler), with
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more adequate incremental analysis algorithms and an API that makes this information available
to the actual editor and other clients. Thanks to the API provided by the JDT, it was possible for
the developers of the AspectJ AOP tool [Kiczales et al. 2001] to implement the AJDT [Eclipse
Foundation 2013a] as an extension of the JDT and reuse its syntactic and semantic analysis
algorithms. The development of tools such as the AspectJ compiler and especially the AJDT
is a complex undertaking and requires lots of software engineering and compiler-construction
knowledge. Unfortunately, to the best of this author’s knowledge, no generic approach on how to
integrate static analysis algorithms with fragment composition systems has been developed yet.
Consequently, one of the central research questions of this thesis is:

How to integrate static analysis algorithms with fragment composition systems to validate
compositions in advance? [Q1]

As an example on what can be checked with such a semantics-aware composition system consider
again the examples in Section 2.1, especially the TypeName slot in Listing 2.3. The bind
composition operator was used to replace the slot with a simple string providing the type name
of the composed class. Although this replacement looks straight-forward at a first glance, this
composition step is only valid, because it fulfills two necessary conditions. First, the bound
fragment has the right “syntactic type” w.r.t. the language grammar, namely Expression. If
the fragment type would be different, e.g., Statement, the invasive composition system would
refuse this composition step. Second, the bound expression also has the right type w.r.t. the type
system of Java, since it always yields values of type String, which is the expected type of
the assignment. If the bound expression would yield a different type like int (e.g., 3 + 4), the
composition system would execute this composition step, but the type checker in the compiler
would report a static typing error. In contrast, a type-system-aware composition system can
perform such checks during composition and provide cause-related error messages.

Another general problem in fragment composition systems is the interactions and interference
between single composition steps. In AOP, incarnations of this problem are called aspect
interactions [Douence et al. 2002; Durr et al. 2007] in general or weaving interactions [Kniesel
and Bardey 2006]. In ISC, similar interactions between composition steps occur. For example,
consider a logging statement that should be inserted via the extend composition operator in all
methods with write access in the Employee class developed in Section 2.1. Depending on the
order of execution and the point of time the logging extension is applied, some slots or hooks
of the accessor methods inserted later may be missed accidentally by the composition, which
is called an interference. This is due to the fact that compositional points change their contexts
when the fragment is composed with another fragment. Since composition interactions occur
in almost every composition scenario, simple solutions such as automatically avoiding or even
forbidding them seems not reasonable. Instead, users should be supported with possibilities to
influence the composition process so that only user-intended interactions occur. Hence, a second
important research question of this thesis is as follows:

How to make fragment composition transparent in such a way that composition interactions can
be discovered, understood and managed? [Q2]
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A third important problem of ISC lies in the effort of implementing language-specific composi-
tion systems. While string-based template approaches are applicable to generate code for arbitrary
fragment languages, ISC-based composition systems have to be implemented for each of these
languages. Hence, given a number of composition languages x (e.g., slots, macros or aspects) and
a number of object languages y, x ∗ y composition systems have to be developed to support all x
composition languages and all y object languages in comparison to x string-based composition
systems. Moreover, during the past decade it turned out that also the effort of realizing practical
composition systems is generally high. Implementing such a system involves knowledge from
language engineering and language composition because the component language is enriched
with compositional constructs. For many real-world programming languages this results in
conflicts with their specification which must be treated by the composition-system developer.
However, having multiple languages supported is essential for any application that intends to
use ISC to generate code for more than one target platform or architecture. For instance, the
BAF code generator may have alternative fragment components to generate code for C# and
C++. Hence, it would require two additional composition systems to support these languages in
a code-generation backend whereas it is not sure if it is even possible to realize an ISC system
that fully supports the additional languages (e.g., if the language specification is not covered by a
corresponding CFG). Hence, the third important research question of this thesis is as follows:

How to reduce the effort of implementing heterogeneous fragment composition systems and how
to make the approach more scalable with respect to complex languages? [Q3]

Three of the thesis’ objectives immediately derive from the three research questions above by
reformulating them:

[O1] Integrate static semantics analysis algorithms with fragment composition systems for
validation ([Q1]).

[O2] Develop an approach that makes fragment composition more transparent and helps
users to better understand and manage their compositions ([Q2]).

[O3] Lower the effort of implementing fragment composition systems for multiple compo-
nent languages or very complex languages ([Q3]).

The three objectives above are considered as the thesis’ main objectives. Besides that, it has
two secondary objectives that support and validate the research on the main objectives.

[O4] Provide implementations and applications demonstrating that the approaches sug-
gested by this work are practically feasible.

[O5] Evaluate existing approaches to fragment composition and compare them with the
approaches of this thesis to demarcate the progress achieved by this work from the
previous state of the art.
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Although called secondary, the two additional objectives are not less important. Since this is a
thesis with a focus on software engineering, an implementation proves that the concept is valid
and can directly be used by people different from the author. Moreover, an in-depth analysis of
previous work validates previous research results by confirming or refuting them and helps to
understand differences and improvements.

Addressing the objectives above, this thesis makes several major research contributions. The
next section discusses those contributions and explains how they relate to the objectives.

2.3. Contributions in Detail

This thesis has four main contribution blocks (or “work packages”), each diverging into multiple
compartments. While some of them have already been mentioned in Chapter 1, the enumeration
below provides a completed overview and explains how they relate to the research questions
imposed above.

[C1] Well-formed invasive software composition. This contribution includes several exten-
sions to the classic model of ISC and has three major compartments.

a) Fragment component models based on reference attribute grammars are the main
entrance point for well-formed ISC and a “door opener” to support context-sensitive
properties ([O1]) and extensible component models ([O3]).

b) Advanced composition technique based on strategies and rewrites. The thesis suggests
several strategies of composition-program interpretation. These strategies use the
component model’s information on composition operators, compositional points and
attribute dependencies to perform the actual composition. This makes the composition
process more transparent and configurable ([O2]).

c) Fragment Contracts are a conceptual framework that integrates context-sensitive
constraints with the composition and the fragment language. It gives access to the
component language’s type system and other semantic properties, and checks if
specific compositions obey these rules ([O1]).

[C2] Scalable invasive software composition. This contribution breaks the strict separation
between classic ISC, well-formed ISC and string-based composition approaches. Scalable
ISC has the following compartments:

a) Minimal invasive software composition lifts string-based composition to ISC and
introduces the notion of a minimal fragment component model, which is applicable
to compose fragments of any language at the downside of losing any syntactic or
semantic validation ([O3]).

b) Island fragment component models allow to specify component models with partial
syntactic validation of component and composition-language constructs ([O3]). In
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contrast to a sublanguage-based component model, this approach can process the
whole language.

c) Agile composition-system development leverages the extensible specification approach
of [C1] combining minimal, well-formed and classic ISC. It allows developers to
adjust language awareness as needed and to develop ISC systems flexibly in small
iterations ([O3]).

[C3] The Skeletons and Application Templates (SkAT) framework. This is the reference im-
plementation of the developed ISC approaches. Based on the JastAdd RAG system [Ekman
and Hedin 2007a], SkAT has the following compartments and byproducts (all [O4]):

a) A generic implementation of Contributions [C1a]–[C1c] that can be instantiated for
arbitrary fragment languages.

b) A well-formed composition system supporting Java as a real-world component lan-
guage. It provides an API for writing composition programs and fragment contracts
to perform semantic checks.

c) A library of parallel algorithmic skeletons [Cole 1989] realized as Java fragments
based on the Java composition system. Currently, three skeletons are supported.

d) A generic implementation of Contributions [C2a] and [C2b] that supports island
fragment component models and scalable ISC.

e) Examples of three extensible island composition systems, including a minimal slot
language, a language for variant markup in arbitrary component languages and
an extensible macro language mimicking the well-known preprocessor of the C
programming language.

[C4] A consolidating review of the state of the art in invasive software composition. The
review has the following compartments:

a) A formalized tree-based model of classic ISC is given which precisely defines the
ingredients of ISC-based fragment composition systems. The concepts of this model
are used in the comparison of the respective systems ([O5]).

b) The BAF example as a cross-cutting case study is implemented in four different ISC
frameworks (including SkAT) to explain and compare their specification languages
w.r.t. expressiveness and support of the defined ISC features ([O4,O5]).

c) A detailed analysis of existing ISC frameworks and a comparison with the SkAT tool,
which has been developed in context of this thesis ([O5]).

Having described the thesis’ main contributions, the next chapter discusses background and
terminology.
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3
Background and Notation

In this chapter, the conceptual framework and terminology of this thesis are defined. Section 3.1
gives an overview of the very basics of formal languages like grammars and trees. The purpose
of the section is to provide an entry point to the very broad field of formal language theory
and familiarize with the basic notions and notations used in the thesis. Section 3.2 contains
an abstract discussion on different parsing techniques used in practice. A basic understanding
on how practical parsers and parser generators work is essential to successfully design and
implement fragment composition systems for textual languages. Moreover, the section discusses
how fragment artifacts like programs, documents and models are typically represented as data
structures in programs and relates this to the theoretical concepts introduced in Section 3.1.
Finally, in Section 3.3, a definition of attribute grammars (AGs) is given and reference attribute
grammars (RAGs) are discussed, as well as the state of the art of RAG systems. Moreover,
a notational framework for RAGs is introduced which is used in later chapters to describe
RAG-based ISC.

3.1. Basic Definitions

This section introduces concepts that are frequently used in this thesis and that are well-known in
literature on language theory and compiler construction [Leeuwen 1994; Berstel and Boasson
1990; Schöning 2001; Aho et al. 1986; Goos 1997]. Readers who are familiar with context-free
grammars, syntax trees and parsing may skip this section and continue with Section 3.2 or
Section 3.3, using this section for looking up specific notations.
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3.1.1. Formal Languages and Context-Free Grammars

In computer science, formal languages and grammars are used as a common concept for specifying
the syntax of programming languages or DSLs. A formal language L is a set of words over a finite
set of symbols—the alphabet Σ. Symbols are atomic units, e.g., letters, numbers, objects or even
events. Grammars are rule bases for such languages. A formal grammar consists of terminals
(i.e., elements in the alphabet), nonterminals and productions (the grammar rules). In general, a
production specifies a replacement step in a derivation chain and consists of an arbitrary sequence
(length > 1) of terminals and nonterminals on the left-hand side, and an arbitrary sequence of
terminals and nonterminals on the right-hand side. A special subclass are CFGs with a single
nonterminal on the left-hand side of a production. Formally, they are defined as follows:

Definition 3.1 (context-free grammar):
A context-free grammar (CFG) is a 4-tupel (N ,Σ,P ,S) with

• N a finite set of nonterminals,

• Σ a finite set of terminals and Σ ∩N = ∅,

• P a finite set of productions and P ⊆ N × (Σ ∪N)∗ and ∀n ∈ N ∃γ ∈ (Σ ∪N)∗ :
n→ γ ∈ P ,

• S a start symbol S ∈ N .

The derivation relation ⇒G ⊆ (Σ ∪N)∗ × (Σ ∪N)∗ of G is ⇒G = {(αnβ, αγβ) |α, β ∈
(Σ ∪N)∗ ∧ n→ γ ∈ P}. The reflexive transitive closure of⇒G is denoted by⇒∗G. If S⇒∗Gα,
then α is called a sentential form of G. A derivation step αnβ⇒G αγβ is called left-most (right-
most) derivation step if α ∈ Σ∗ (β ∈ Σ∗). A derivation d : α⇒G . . .⇒G γ is called left-most
(right-most) derivation if all derivation steps in d are left-most (right-most) derivation steps. G is
called unambiguous, if for any two left-most (or right-most) derivations d1 : S⇒G . . .⇒G α and
d2 : S⇒G . . .⇒G α it holds that d1 = d2. Otherwise, G is called ambiguous. �

A CFG specifies a context-free language that is generated by⇒G:

Definition 3.2 (context-free language):
Let G = (N,Σ, P, S) be a context-free grammar and n ∈ N . Then L(G) = {λ ∈ Σ∗ |S⇒∗Gλ}
is the context-free language defined by G. Further, L|n(G) = {λ ∈ Σ∗ |n⇒∗Gλ} is called the
n-language projection of L(G) and G|n = (N|n ⊆ N,Σ|n ⊆ Σ, P|n ⊆ P, n) with L(G|n) =
L|n(G) is the n-projection of G. Note that L|S(G) = L(G|S) = L(G). �

Sometimes, it is useful to require some kind of normal form for a given CFG. Reduced CFGs
have a separated start symbol, each nonterminal is reachable from the start symbol and the
language projection of each nonterminal is nonempty:

Definition 3.3 (reduced context-free grammar (cf. [Berstel and Boasson 1990])):
A CFG G = (N,Σ, P, S) is called reduced if

20



3.1. Basic Definitions

• ∀α, β ∈ (Σ ∪N)∗ : n→ αSβ /∈ P ,

• ∀n ∈ N ∃α, β ∈ (Σ ∪N)∗ : S⇒∗Gαnβ,

• ∀n ∈ N : L|n(G) 6= ∅. �

The following example contains a simple (reduced) CFG that specifies a simple Boolean
expression language:

Example 3.1 (context-free grammar/language).
Let G = ({E,O,A, T}, {&, |, f, t}, P, E) be a CFG, where

P = {E → O, (p0)

O → O |O, (p1)

O → A, (p2)

A→ A&A, (p3)

A→ T, (p4)

T → t, (p5)

T → f}. (p6)

The word t | f & t can be generated by⇒G as follows: E⇒
p0

GO⇒
p1

GO |O⇒
p2

GA |O⇒
p4

G T |O
⇒
p5

G t |O⇒
p3

G t |A&A⇒
p4

G t |T &A⇒
p6

G t | f &A⇒
p4

G t | f &T ⇒
p5

G t | f & t. Hence,
E⇒∗G t | f & t. The language generated by G is L(G) = {t, f, t | f, f | t, t | t, f | f, t& f, f & t,
t& t, f & f, t | f & t, . . .}. The A-language projection is L|A(G) = {t, f, t& f, f & t, t& t,
f & f, t& f & f, . . .}. �

3.1.2. Extended Backus Naur Form

The standard notation for CFGs turned out as impractical for the specification of huge grammars
such as for programming languages. Hence, in many cases it is practical to use comprehensible
notations like the Extended Backus Naur Form (EBNF). In this thesis, the following EBNF
notation is used:

Definition 3.4 (EBNF grammar notation):
Let G = (N,T, P, S) be an EBNF grammar with N , T , P the finite sets of nonterminals,
terminals, productions and S the start symbol. Further, let Lident = {a . . . z,A . . .Z, _, 0 . . . 9}+
the language of acceptable EBNF identifiers and Ltext = Σ+

ASCII the language of arbitrary strings
over the ASCII alphabet. Then

• N ⊂ Lident,

• T ⊂ Lkeywords ∪ Ltokens with
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– Lkeywords = {"λ" |λ ∈ Ltext} the set of keywords (name and value of a keyword
are always λ),

– Ltokens = {<λ> |λ ∈ Lident} the set of token symbols (the name of a token is λ, its
value is usually different from λ),

• P ⊂ N × Lexp,

• Lexp is a regular-expression language over T ∪N . Lexp is recursively defined as follows:

– ε ∈ Lexp (empty sequence),

– if α ∈ T ∪N , then also α ∈ Lexp (atom),

– if α ∈ Lexp, then also (α) ∈ Lexp (grouping),

– if α ∈ T ∪N or α =(β) where β ∈ Lexp, then also α? ∈ Lexp (optional),

– if α ∈ T ∪N or α =(β) where β ∈ Lexp, then also α* ∈ Lexp (repeat ≥ 0 times),

– if α ∈ T ∪N or α =(β) where β ∈ Lexp, then also α+ ∈ Lexp (repeat ≥ 1 times),

– if α, β ∈ Lexp, then also α β ∈ Lexp (sequence),

– if α, β ∈ Lexp, then also α|β ∈ Lexp (alternative).

Observe that ::= is used instead of→ in productions. An EBNF grammar is called flat if no
grouping expressions occur in any production (i.e., Lexp would be defined without the grouping
recursion in this case).

Tokens are special types of terminal symbols. While keywords symbolize themselves, tokens
are symbolic abstractions for the most basic signatures of a language like variable names and type
signatures. As such, they are typically specified themselves as languages over a some alphabet
using regular expressions.

EBNF grammars are typically specified as lists of productions. By default, the nonterminal on
the left-hand side of the first production is considered as the start symbol. The sets of terminals
and nonterminals can be derived from the symbols used in the productions at hand. �

The example below contains an EBNF grammar for simple Boolean expressions which gener-
ates the same language as the plain CFG in Example 3.1:

Example 3.2 (EBNF grammar).
Let GE be the EBNF grammar with the following productions:

Expression ::= Or
Or ::= Or "|" Or | And
And ::= And "&" And | Term
Term ::= "t" | "f"

Since the alternative operator | is a shorthand for multiple productions with the same nonterminal
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on the left-hand side, a mapping of GE to G in Example 3.1 is straight-forward and can be
achieved by eliminating |, which results in G′E , and by mapping terminals and nonterminals in
G′E to their correspondences in G. �

The right-hand sides of EBNF productions are essentially regular expressions [Schöning 2001]
over terminal and nonterminal symbols that specify a regular language. Since a regular expression
can be mapped to an equivalent CFG, any EBNF grammar can be transformed into an equivalent
CFG if each right-hand side nonterminal has a corresponding EBNF production. Since infinitely
many mappings are possible, the subsequently described informal transformation rules are applied
“implicitly” when definitions or descriptions that may hold for both—plain CFGs and EBNF
grammars—are discussed in this thesis.

Let GE = (NE , TE , PE , SE) be an EBNF grammar and G = (N,Σ, P, S) the CFG derived
from GE . If PE only contains productions n::= γ where γ is ε or is a sequence over TE ∪NE , G
immediately derives with N = NE , Σ = {λ |"λ" ∈ T ∨ <λ> ∈ T}, P = {n→ δ |n::= γ ∈
PE and δ is isomorphic to γ by the mappings of N to NE and T to Σ}. Otherwise, if GE con-
tains alternatives, groupings, optionals or repetitions, these have to be desugared:

• If a grouping grp = (α) occurs on a right-hand side of a production, a fresh nonter-
minal nfresh and a production nfresh ::=α are added to GE while grp is replaced with
nfresh .

Example 3.3 (desugaring groupings).
A ::= ("b"|<c>)* "a"? => A ::= BOrC* "a"?

BOrC ::= "b"|<c>
�

• If no groupings are contained in productions of GE , repetitions can be eliminated by
transforming them into directly recursive nonterminals. If α* or α+ occur on a right-hand
side of any production, a fresh nonterminal αList is added to NE and the productions
αList::=ααList (recursive rule) and αList::=α (terminating rule) are added to
PE . All occurrences of α+ (α*) are replaced by αList (αList?).

Example 3.4 (desugaring repetitions).
A ::= BOrC* "a"?
BOrC ::= "b"|<c>

=> A ::= BOrCList "a"?
BOrC ::= "b"|<c>
BOrCList ::= BOrC
BOrCList ::= BOrC BOrCList �

• If no groupings and repetitions are contained in productions of GE , optionals can be
eliminated by adding a fresh nonterminal and production. If α? occurs on a right-hand
side of any production, a fresh nonterminal αOpt is added to NE and two productions
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αOpt::= ε andαOpt::=α are appended toPE . All occurrences of α? in all productions
p are replaced with αOpt.

Example 3.5 (desugaring optionals).
A ::= BOrCList "a"?
BOrC ::= "b"|<c>
BOrCList ::= BOrC
BOrCList ::= BOrC BOrCList

=>

A ::= BOrCList aOpt
BOrC ::= "b"|<c>
BOrCList ::= BOrC
BOrCList ::= BOrC BOrCList
aOpt ::= "a"
aOpt ::= ε

�

• If no groupings, repetitions and optionals are contained in the productions of GE , alter-
natives can be eliminated by removing each production containing k > 1 alternatives
n::= γ1| . . .|γk and adding a fresh production n::= γi for each alternative.

Example 3.6 (desugaring alternatives).
A ::= BOrCList aOpt
BOrC ::= "b"|<c>
BOrCList ::= BOrC
BOrCList ::= BOrC BOrCList
aOpt ::= "a"
aOpt ::= ε

=>

A ::= BOrCList aOpt
BOrCList ::= BOrC
BOrCList ::= BOrC BOrCList
aOpt ::= "a"
aOpt ::= ε
BOrC ::= "b"
BOrC ::= <c> �

As a convention, it is further assumed that the transformation described above retains the order
of the productions so that they can be addressed uniquely using subscripts, e.g., BOrCList1,
BOrCList2, aOpt1, aOpt2, BOrC1 and BOrC2 in Example 3.6.

3.1.3. Graphs

Graphs are one of the most important data structures in computer science which occur in mostly
every program. Data structures linked with pointers, software models, object nets, database
schemes and others are essentially graphs. Basically, a graph is a collection of objects (called
nodes or vertices) which are connected via linking objects (called edges). Typically, nodes and
edges are associated with names (called labels). The following definition gives a general notion
of labeled graphs and directed labeled graphs:

Definition 3.5 ((directed) labeled graph):
A labeled graph H is a 4-tuple (V,E,Lab,LΣ) with

• V a finite set of vertices (nodes) with |V | ≥ 0,
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Figure 3.1.: A labeled graph. Figure 3.2.: A directed labeled graph.

• E the set of edges, where

– E may be any set of 2-elementary sets on V : E ⊆ {{u, v} |u, v ∈ V } (then H is
called an undirected labeled graph or just “graph”),

– E may be a relation E ⊆ V × V (then H is called a directed labeled graph),

• LΣ the set of labels (or label alphabet),

• Lab : V ∪ E → LΣ the labeling function, which assigns a label to each node in V and
edge in E.

If v ∈ V can be reached from u ∈ V by traversing at least one edge of H , then the corresponding
sequence of 2-tuples seq = (v1, e1), . . . , (vi, ei), . . . , (vn, en) with v1 = u and en = {vn, v} (or
(vn, v) for directed graphs) is called a path between u and v, where 1 ≤ i ≤ n, n ∈ N is the
number of path segments, vi ∈ V , ei ∈ E, and for any two (vk, ek), (vl, el) in seq: ek 6= el (i.e.,
an edge is only traversed once). For directed graphs, a path between u and v exists if (u, v) is
in the transitive closure E+ of E. H is called connected, if there exists a path between all two
different nodes u, v ∈ V . H is called cyclic, if for any node v ∈ V there exists a path from v to
itself. Otherwise, H is called acyclic. If H is a directed graph, then H is cyclic if (v, v) ∈ E+.
If H is a directed graph, then OutH : V → 2E and InH : V → 2E collect a node’s outgoing and
incoming edges: ∀u, v ∈ V : (u, v) ∈ OutH(u)∧ (u, v) ∈ InH(v) ⇐⇒ (u, v) ∈ E. Moreover,
for any two nodes u, v ∈ V with (u, v) ∈ OutH(u), v is called a successor of u while u is a
called predecessor of v. �

Graphs are typically represented by graphical figures using lines, arrows and ovals. Exam-
ple 3.7 discusses two exemplary directed and undirected graphs as well as their corresponding
representations as figures.

Example 3.7 ((directed) labeled graph).
Let H = (V,E,Lab,LΣ) be the graph with the following components:

• V = {v0, . . . , v4},

• E = {e0 = {v0, v1}, e1 = {v1, v3}, e2 = {v1, v2}, e3 = {v3, v2}, e4 = {v4, v3},
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e5 = {v4, v0}, e6 = {v0, v0}},

• LΣ = {A,B ,C ,D ,AA,AB ,AC ,AD ,BA,BB ,BC ,BD ,CA,CB ,CC ,CD ,DA,
DB ,DC ,DD},

• Lab = {(v0,C ), (v1,B), (v2,C ), (v3,D), (v4,A), (e0,CB), (e1,DB), (e2,BC ),
(e3,DC ), (e4,AD), (e5,AC ), (e6,CC )}.

Figure 3.1 contains a visual representation of H . Nodes are denoted as oval shapes and edges are
represented by lines linked the corresponding edges. Figure 3.2 represents H as a directed graph
H ′, where E = {e0 = (v0, v1), e1 = (v1, v3), e2 = (v1, v2), e3 = (v3, v2), e4 = (v4, v3), e5 =
(v4, v0), e6 = (v0, v0)}. The orientation of directed edges is represented by arrows instead of
lines. H is a connected and cyclic graph. In contrast, H ′ is not connected (e.g., there is no path
to v4 from any other node in H ′) and, if e6 was removed, H ′ would also be acyclic. �

The graphs considered in this thesis are typically directed graphs, i.e., the set of edges E of
a graph H is a relation. Moreover, Definition 3.5 allows exactly one edge from a node u to
another node v of H so that the maximum number of edges is |V |2 for undirected graphs and
2 ∗ |V |2 − |V | for directed graphs. Realistic graph-based data structures in programs usually
do not obey such restrictions, since it is typical to have more than one edge (in one direction)
between two nodes. To support practical use cases, the set of edges E in Definition 3.5 has to
be defined as a multiset, which makes the defined graph a multigraph. A multiset M contains
2-tuples as entries with one element the unique value val and a natural number as a counter
denoting the number of occurrences of val in M . For instance, if there were two directed edges
between v0 and v1 in H ′ of Example 3.7, this would be denoted as ((v0, v1), 2). The labeling
function Lab of a multigraph also has a slightly different signature considering the occurrence of
an edge: Lab : V ∪ E × N→ LΣ.

The following definition specifies the subgraph relation between two graphs:

Definition 3.6 (subgraph):
Let H = (V,E,Lab,LΣ) and H ′ = (V ′, E′,Lab′,L′Σ) be graphs. Then H ′ is called a subgraph
of H (H ′ ⊆ H) and H a host graph of H ′, if V ′ ⊆ V , E′ ⊆ E, Lab′ ⊆ Lab : V ′ ∪ E′ → L′Σ
and L′Σ ⊆ LΣ. �

Hence, a subgraph contains some nodes and edges of its host graph, where the edges may only
link nodes of the subgraph. Moreover, the labeling function and the label alphabet must be
defined accordingly in such a way that labels are assigned to all nodes and edges of the subgraph.

3.1.4. Trees and Syntax Trees

Syntax trees are essential data structures for processing and visualizing information captured
in context-free languages. Basically, a directed tree is a directed graph consisting of nodes that
are connected via an injective parent-child relation such that each node has a certain number of
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child nodes. Conversely, each node—except the root node—has a unique parent. Nodes without
children are called leaf nodes. Nodes and edges of a tree can be assigned with labels—strings
over some label alphabet. In this work, the following definition for labeled trees is used:

Definition 3.7 (directed labeled tree):
Let T = (V,E,Lab,LΣ) be a directed, labeled graph. T is a directed labeled tree, if

• T is acyclic,

• E is left-unique (i.e., ∀v ∈ V : | InT (v)| ≤ 1),

• all nodes must be reachable from a distinct root: ∃r ∈ V ∀v ∈ V \ {r} : | InT (r)| =
0 ∧ (r, v) ∈ E+.

Let (u, v) ∈ E, then u is called the parent of v and v is called a child of u. The function
ChilT : V → 2V collects a node’s children: ∀u, v ∈ V : v ∈ ChilT(u) ⇐⇒ (u, v) ∈ OutT (u).
The function ParT : V  V provides a node’s parent and ⊥ for the root of T .

If E is a partially ordered set w.r.t. <E =
⋃
v∈V

<v, where <v is a total order on the outgoing

edges OutT (v) of v, then T is an ordered tree. A total order <V on the nodes of T then
derives from <E with <V = E+ ∪ {(u, v) | e1 : (p, u), e2 : (p, v) ∈ E ∧ e1<Ee2 ∧ u 6= v} ∪
{(u, v) | (pu, u), (pv, v) ∈ E+ ∧ e1 : (p, pu), e2 : (p, pv) ∈ E ∧ e1<Ee2 ∧ pu 6= pv}. �

Trees in this thesis are typically assumed to be ordered. If not, it will be stated explicitly.
Labels of edges do not have to be unique by Definition 3.5. However, considering the

typical dot notation ([node].[label]) for child access via edge labels, these must be unique
w.r.t. the context of a node and its children. Let T = (V,E,Lab,LΣ) be a labeled tree, and
Labv ⊆ OutT (v)× LΣ a subrelation of Lab which assigns labels to outgoing edges of v. If
Labv is injective, an edge e ∈ OutT (v) can be denoted correctly via its label yielding a partial
function dot : V × LΣ  V with dot(v, lab) = x ⇐⇒ (v, x) ∈ OutT ∧ Lab((v, x)) = lab
and ⊥ otherwise. In infix notation v.lab = x. If Labv is not injective, the notation cannot
be used for path navigation in general. However, in the case of ordered trees, indexes can be
used to distinguish multiple occurrences of a label in context of a node. Hence, a modified
dott : V × LΣ × N V can be derived: dott(v, lab, n) = x ⇐⇒ (v, x) ∈ OutT ∧
Lab((v, x)) = lab ∧ idx(v, x, lab) = n, which is v.labn = x in infix notation. Consider
OutT (v, lab) ⊆ OutT (v) = {(v, y) | (v, y) ∈ OutT (v) ∧ Labv((v, y)) = lab} and <′v the total
order w.r.t. OutT (v, lab) derived from <V . Then idx : V × V × LΣ → N can be derived as
follows: idx(v, y, lab) = |{e | e ∈ OutT (v, lab) ∧ e<′v(v, y)}|+ 1 (i.e., the index is the number
of “smaller” edges + 1).

Like graphs, it is easy to visualize trees as figures. In typical graphical notations, nodes and
edges are represented as graphical objects like ellipses, lines or arrows between them. Labels
can be represented by text which is rendered close to the objects. The following example shows
a labeled tree as defined above. It also gives a graphical representation of the tree based on the
visualization metaphors used in this thesis.
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Figure 3.3.: A labeled tree.

Example 3.8 (labeled tree).
Let T = (V,E,Lab,LΣ) be a tree with the following components:

• V = {v0, . . . , v12},

• E = {e0 = (v0, v1), e1 = (v1, v2), e2 = (v2, v3), e3 = (v0, v4), e4 = (v0, v5), e5 =
(v5, v6), e6 = (v6, v7), e7 = (v7, v8), e8 = (v5, v9), e9 = (v5, v10), e10 = (v10, v11),
e11 = (v11, v12)},

• LΣ = {Or ,And ,Term, |,&, t, f, left , right , arg , sym},

• Lab = {(v0,Or), (v1,And), (v2,Term), (v3, t), (v4, |), (v5,And), (v6,And),
(v7,Term), (v8, f), (v9,&), (v10,And), (v11,Term), (v12, t), (e0, left), (e1, arg),
(e2, arg), (e3, sym), (e4, right), (e5, left), (e6, arg), (e7, arg), (e8, sym), (e9, right),
(e10, arg), (e11, arg)},

• v0 is the root of T .

T has five leaf nodes: v3, v4, v8, v9, v12. The visual representation of T is shown in Figure 3.3.
Although T is a directed graph, plain lines instead of arrows (cf. Example 3.7) were used to
represent edges as their direction can be derived from the vertical and horizontal arrangement of
the nodes in Figure 3.3. �

Observe that Figure 3.3 contains annotations for both—labels and object identities (i.e., vi, ei). If
not stated otherwise, in the remainder of this work the object identities (i.e. vi, ej) can be omitted
from graphical tree representations in favor of a better readability.

Based on the ⊆ relation on sets and the subgraph relation, the subtree relation on trees emerges
as follows:
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Definition 3.8 (subtree):
Let T = (V,E,Lab,LΣ) and T ′ = (V ′, E′,Lab′,L′Σ) be trees. Then T ′ is a subtree of T , if,
and only if, T ′ is a subgraph of T . T ′ is called complete, if all leaf nodes of T ′ are also leaf nodes
of T . Otherwise, T ′ is called an incomplete subtree. �

If graph-based data structures are processed in a program, developers often take the advantage
of a spanning tree which links all of a graph’s nodes and makes them accessible from a distinct
root node as an entry point for algorithms that need to traverse the data structure in a certain order.
Formally, a spanning tree is defined as follows:

Definition 3.9 (spanning tree):
Let H = (V,E,Lab,LΣ) and H ′ = (V ′, E′,Lab′,L′Σ) be directed graphs. H ′ is called a
spanning tree of H if, and only if, it is a subgraph of H and a directed tree with V ′ = V . �

In practice, a graph with a spanning tree frequently also is a multigraph with an explicit
distinction between a specific predetermined spanning tree and the remaining compartments of
the graph. These parts also form a subgraph which is called an overlay graph of the spanning
tree:

Definition 3.10 (overlay graph):
Let H = (V,E,Lab,LΣ) be a directed graph and T = (V,E′,Lab′,L′Σ) a spanning tree of H .
Further, let O = (V,E′′,Lab′′,LΣ) be a subgraph of H . If E′′ ∩E′ = ∅ and E = E′′ ∪E′, then
O is called the overlay graph of T in H . �

Besides the graphical representation as shown in Example 3.8, trees can be represented using a
more compact term notation:

Definition 3.11 (term representation of a labeled tree):
Let LΣ be some finite label alphabet. Then

• for all l ∈ LΣ: l[ ] is a tree term,

• for any k+1 labels l, l1, . . . , lk ∈ LΣ and k ∈ N tree terms t1, . . . , tk, t = l[l1 : t1, . . . , lk :
tk] is a tree term and t1, . . . , tk are the subterms of t.

T (LΣ) is called the set of all tree terms over LΣ.
Given a term t ∈ T (LΣ), an equivalent graph representation T = (V,E,Lab,LΣ) for this

term can be derived by the following construction (the compartments of T are assumed initially
empty and c := t):

(1) let c = l[l1 : t1, . . . , lk : tk] be the “current” tree term with k ∈ N0 subterms,

(2) if k > 0, then for each subterm ti of c, where i ∈ N and 1 ≤ i ≤ k, construct a graph-based
representation Ti = (Vi, Ei,Labi,LΣ) via (1) with c := ti, afterwards, continue with (3),

(3) create a fresh node v0 and compose the compartments of the Ti obtained from (2):
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• V = {v0} ∪
k⋃

i=1
Vi,

• E =
k⋃

i=1
Ei ∪ {ei} and <E=

k⋃
i=1

<Ei ∪
k⋃

i=2
{(ei−1, ei)}, where ei = (v0, ri) and ri

the root of Ti,

• Lab = {(v0, l)} ∪
k⋃

i=1
Labi∪{(ei, li)}, where ei = (v0, ri) and ri the root of Ti. �

Since terms and graphs are equivalent representations of trees, they will be used interchangeably
depending on what is more appropriate in a certain situation.

Each sentence or sentential form σ generated by a CFG can be represented by a tree which
is called a syntax tree (or derivation tree) with respect to σ. Syntax trees are constructed by

Figure 3.4.: Graphical tree representation of A→ AbC.

successively composing them from the local trees induced by the productions of the corresponding
CFG. For example, a production p0 = A→ AbC yields a tree t0 = A[A : A[ ], b : b[ ], C : C[ ]].
As a short-hand notation, empty brackets may be left and, if edge and node labels are the
same, the edge label may be left and assumed implicitly, so that A[A : A[ ], b : b[ ], C : C[ ]] ≡
A[A[ ], b[ ], C[ ]] ≡ A[A, b, C]. Figure 3.4 shows the graphical representation of t0 according to
Definition 3.11.

The following definition introduces syntax trees.

Definition 3.12 (syntax tree):
Let G = (N,Σ, P, S) be a reduced CFG. A tree-derivation relationVG ⊆ T (LΣ)× T (LΣ)
with LΣ = Σ ∪N can be derived from⇒G to generate tree terms:

VG ={(n[ ], n[α1[ ], . . . , αnp [ ]]) |n→ α1 . . . αnp ∈ P} ∪
{(l[. . . n[ ] . . .], l[. . . n[α1[ ], . . . , αnp [ ]] . . .]) |n→ α1 . . . αnp ∈ P}

where l, αi ∈ LΣ, 1 ≤ i ≤ np and i,np ∈ N and n ∈ N . V∗G denotes the reflexive transitive
closure of VG. Let σ = σ1 . . . σm be a sentential form with m ∈ N ordered symbols and
t ∈ T (LΣ) where T = (V,E,Lab,LΣ) is the graph-based representation of t according to
Definition 3.11 with LΣ = Σ ∪ N and Lab(r) = S where r ∈ V is the root of T . Consider
a concrete leftmost derivation S⇒p1 G γ1⇒

p2

G . . . ⇒
pk-1

G γk−1⇒
pk

G σ and a leftmost tree derivation
SV

p1

G t1V
p2

G . . . V
pk-1

G tk−1V
pk

G t where j, k ∈ N, 1 ≤ j ≤ k and pj ∈ P are the productions
applied in each derivation step. t is called a syntax tree (derivation tree) of σ where σ1 . . . σm are
labels of the m empty subterms σ1[ ] . . . σm[ ] in t and the corresponding leaf nodes of T . �
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The following example demonstrates how a syntax tree can be generated by a CFG.

Example 3.9 (syntax tree).
Let G = ({E,O,A, T}, {&, |, f, t}, P, E) be the CFG used in Example 3.1 and E⇒∗G t | f & t.

The corresponding syntax tree for t | f & t can be generated byVG as follows:

E[ ] VG E[O] (by p0)
VG E[O[O, |, O]] (by p1)
VG E[O[O[A], |, O]] (by p2)
VG E[O[O[A[T ]], |, O]] (by p4)
VG E[O[O[A[T [t]]], |, O]] (by p5)
VG E[O[O[A[T [t]]], |, O[A,&, A]]] (by p3)
VG E[O[O[A[T [t]]], |, O[A[T ],&, A]]] (by p4)
VG E[O[O[A[T [t]]], |, O[A[T [f ]],&, A]]] (by p6)
VG E[O[O[A[T [t]]], |, O[A[T [f ]],&, A[T ]]]] (by p4)
VG E[O[O[A[T [t]]], |, O[A[T [f ]],&, A[T [t]]]]] (by p5)

�

Definition 3.13 introduces syntax graphs which decorate syntax trees with additional edges:

Definition 3.13 (syntax graph):
Let H = (V,E,Lab,LΣ) be a directed graph and T = (V ′, E′,Lab′,L′Σ) be a syntax tree with
respect to a CFG G = (N,Σ, P, S) and sentential form σ with SV∗Gσ. H is called a syntax
graph of σ if T is a spanning tree of H . �

The tree derivation relation of desugared EBNF is equivalent toVG of Definition 3.12 so that
VG is also used for EBNF derivations. As an example, reconsider the EBNF grammar GE of
Example 3.2. Except edge labels, the labeled syntax tree T in Figure 3.3 can be derived from Or ,
i.e., OrV*

GE
T .

For navigation purposes, it is common to support edge-label declarations in EBNF grammars.
An extension of the EBNF and the tree-derivation relation is sketched below:

Definition 3.14 (EBNF with labels):
A label-aware variant of EBNF can be obtained from Definition 3.4 by adopting Lexp in Defini-
tion 3.4 in such a way that a label declaration is allowed in front of any atom, grouping optional
or repetition, i.e.,

• if α ∈ N ∪ T , α = (β), α = (β)?, α = (β)* or α = (β)+, and β ∈ Lexp and
l ∈ Lident, then also l :α ∈ Lexp.

Given a desugared EBNF grammar GE with labels and G the corresponding CFG, a modified
derivation relationVGE constructs T similar toVG, but uses the label names associated with
terminals and nonterminals in productions of GE . �
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Figure 3.5.: A binary list. Figure 3.6.: A compact list.

3.1.5. Lists

A list is a primitive tree which contains a collection of similar nodes in a sequence. For ISC, lists
are important to support fragment extensions. For example, consider the member declarations
of a class declaration. To add new members to the class by composition, the composition
system must be aware of the structure of the tree and were to insert a new node. In CFGs, lists
like the members list are usually modeled using directly recursive nonterminals. For example,
AList → AList bC is a direct left recursion, AList → C AList B is a direct central recursion
and AList → C bAList is a direct right recursion over AList . The last recursion step is given
by a nonrecursive production such as AList → A where A is the terminating entry of the list.

Definition 3.15 (list):
Let G = (N,Σ, P, S) be a reduced CFG and T = (V,E,Lab,LΣ) with root r a syntax tree w.r.t.
G. T is a list, if h = Lab(r) is a directly recursive nonterminal with at least one nonrecursive
production h→ γ where γ ∈ (Σ ∪N − {h})∗ and all recursive h-productions have exactly one
recursive occurrence of h, i.e., ∀(h→ αhβ) ∈ P : α, β ∈ (Σ ∪N − {h})∗. More specifically,
T is also called a h-list. A node v ∈ V is called a list node, if the complete subtree T ′ =
(V ′, E′,Lab′,L′Σ) of T with root v is a list. �

As a simplifying convention in this thesis and without loss of generality, it is assumed that
lists induced by plain CFGs are generated by directly right recursive nonterminals with one or
more recursive productions where each production represents an “entry type”, and one or more
terminating productions. This convention is also suitable for repetitions in EBNF grammars
and the desugarings presented in Section 3.1.2 which also yield right-recursive productions:
an EBNF repetition yields a list and list nodes in a syntax tree. Moreover, if the two right-
recursive productions of a CFG are of the form n → αn and n → α, where n is the recursive
nonterminal and α the “entry” terminal or nonterminal, then trees induced by n may be written
in a compact notation. Hence, any n− list n[α[. . .], n[α[. . .], n[. . .]]] translates into a flattened
form n[α[. . .], α[. . .], α[. . .], . . .].
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Example 3.10 (list).
Let G be the EBNF grammar with the following productions:

Bin ::= Term+
Term ::= "t" | "f"

BinV∗G T generates the syntax tree T w.r.t. Bin⇒∗G tftftf in Figure 3.5 where TermList
is the recursive nonterminal. The corresponding term s is

s =Bin[TermList [Term[t],TermList [Term[f ],TermList [Term[t],

TermList [Term[f ],TermList [Term[t],TermList [Term[f ]]]]]]]].

Alternatively, in compact notation this is equivalent to

s = Bin[TermList [Term[t],Term[f ],Term[t],Term[f ],Term[t],Term[f ]]].

A complementary graphical representation of s is shown in Figure 3.6. �

To distinguish between the visible representation of an artifact and the abstract structure of
the corresponding data, the notions of concrete syntax and abstract syntax as well as concrete
syntax tree (CST) and abstract syntax tree (AST) are common. In comparison to CSTs, ASTs
typically have a different grammar describing the data structure rather than textual language.
Moreover, ASTs are typically transformed and enriched in further language-processing steps
yielding graph-structured representations called abstract syntax graphs (ASGs).

The following section describes the relation of concrete and abstract syntax in more detail. It
gives a short overview on common parsing technologies. Furthermore, the notions of abstract
syntax and metamodels are discussed to provide a basic understanding on the technical basis of
the ISC approach developed in this thesis and in which domains it may be applied since ISC is
not limited to textual languages only.

3.2. On Parsing, Unparsing and Abstract Syntax

Up to this point, it was discussed how a CFG generates a language and syntax trees. An equally
relevant problem is the word problem, i.e., the decision on if a given sequence of terminal symbols
is in the language. For any context-free language L, a push-down automaton (PDA) A can be
specified in such a way that A accepts all words in L and declines all others, i.e., L(A) = L.
Informally, a PDA is a state machine that reads symbols in Σ from an input stream, and pushes
and pops symbols (which can, but do not have to be in Σ) onto a stack. State transitions depend
on the uppermost stack symbol and the next symbol to be read from an input stream (i.e., the
word). Given a CFG G with L(G) = L, a corresponding PDA A can be generated automatically,
so that L(G) = L(A) = L (cf. [Schöning 2001]). A A is called deterministic if for each state
of A there is at most one possible successor state for any given stack entry and input symbol.
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Otherwise, A is called nondeterministic. A context-free language L is called deterministic if
there exists a deterministic PDA that accepts L (cf. [Schöning 2001]).

A parser is a program (or function) that uses or simulates a PDA derived from a given CFG to (1)
automatically solve the word problem for a given input string and (2) to construct a corresponding
syntax tree to enable further processing of the given input. Therefore, the parser consumes
the symbols on the input stream in a strict order (usually from left to right) and constructs a
left-most or right-most derivation, if possible. The most common approaches for implementing
or generating parsers from a given CFG are LL(k) and LR(k) where the first L stands for the
left-to-right input stream consumption while the second L (R) stands for left-most (right-most)
derivation and k is the number of symbols the parser may look-ahead in the input stream to make
a decision. k is usually larger than 0 and, depending on the concrete implementation approach,
it is fixed or variable. LL parsers are frequently constructed as top-down algorithms using the
recursive descent approach which simulates the PDA stack via recursive method calls. In contrast,
LR parsers are constructed as bottom-up parsers using a so-called item automaton—a PDA with
a special construction. The class of languages that can be accepted by LR(k) parsers corresponds
to the class of deterministic context-free languages (cf. [Schöning 2001]). For further details
on how parsers can be generated from CFGs it is kindly referred to the common literature on
compiler construction (e.g., [Aho et al. 1986; Wilhelm and Maurer 1997]).

3.2.1. Parsing Schemes

From a theoretical point of view, LR(k) parsers are superior over LL(k) as the class of languages
that can be described with grammars an LR(k) parser can be generated from is larger than the
class of LL(k) languages. However, in practice no clear preference of one or the other is visible.
Prominent representatives from the class of LR(k) generators are YACC (Yet Another Compiler
Compiler) [Johnson 1975] and its various reincarnations which are based on the LALR(1)
optimization of LR(1). A well-known example of a recursive descent LL parser generator is
ANTLR (ANother Tool for Language Recognition) [Parr and Quong 1995].

Figure 3.7.: The typical parsing scheme in four phases.

Figure 3.7 shows a logical view on the parsing process which is typically employed in parser
software. Phase (1) is called tokenization (or also lexical analysis or scanning). The input stream
of bytes is read and converted into a stream of tokens such as keywords or identifiers. Phase (2)
filters certain kinds of tokens from the token stream, usually this is white space consiting of blanks
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and line breaks. Phase (3) is the typical parsing phase (or also syntactic analysis): the parser
reads the filtered stream of tokens and derives the corresponding concrete syntax tree (CST).
Finally, during phase (4), a more compact equivalent abstract syntax tree (AST) representation is
derived from the CST, e.g., by removing redundant information from the tree and converting it
into an appropriate data structure for further processing.

Frequently, the mentioned phases are not cleanly separated. In general, the CST is not
constructed explicitly, instead an AST is constructed directly via semantic actions that are
annotated to each production. Also, white-space tokens are discarded immediately during lexical
analysis instead of performing an extra filter step. In the classical parser generator approaches as
discussed above, tokenization is based on regular expressions and deterministic finite automatons
(DFAs)—a subset of PDAs that do not use a stack. DFA-based tokenization makes parsing more
efficient by decreasing PDA sizes and provides preparsing disambiguation techniques such as the
principle of the longest match (cf. [Wilhelm and Maurer 1997]). However, a strict separation of
tokenization and parsing often turns out to be problematic when languages are to be composed or if
disambiguation depends on parser state [Karol and Zschaler 2010]. To enable more sophisticated

Figure 3.8.: A typical SGLR parsing scheme.

means for disambiguation, several more recent parsing algorithms have emerged. Generalized
LR parsing (GLR) [Tomita 1991] maintains a set of ambiguous LR states during parsing and,
thus, may emit multiple CSTs as a parse forest for the same input. The scannerless generalized
LR parsing (SGLR) [Brand et al. 2002] approach uses the capabilities of GLR to also handle
lexical disambiguation depending on a parser’s state and often is considered as the most powerful
parsing technology in the literature when it comes to language modularization and expressiveness.
However, SGLR not always is a perfect solution for ambiguous languages. This becomes obvious
if the SGLR parsing scheme in Figure 3.8 is investigated. The problems are twofold: SGLR
parsers always build up an internal CST data structure to represent the parse forest. From the
forest, one valid representation has to be selected and it still needs to be determined which one is
the “right” one—sometimes a non-trivial problem. Finally, after selecting the concrete CST, it
has to be converted into an adequate AST.

On the other end of the scale, parsing expression grammars (PEGs) and packrat parsing [Ford
2004] have proven to be an expressive approach for scannerless parsing and disambiguation.
Packrat parsing is a typical recursive descent algorithm—similar to LL, but with sophisticated
backtracking and caching mechanisms. A prackrat parser usually has no preceding lexical
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Figure 3.9.: A typical PEG/packrat parsing scheme.

analysis phase and directly produces an AST (cf. Figure 3.9). Although related, PEGs are more
expressive than normal EBNF grammars or CFGs in general. If a textual language is specified as
a PEG, exactly one derivation of a string is selected during parse, yielding a unique parse tree.
Like deterministic parsers, parsing is still achieved in linear time by using memoization [Ford
2004]—a caching mechanism which recalls any successfully parsed substring in relation with
its original position in the input string. Although PEGs and EBNF look similar, the former is
more a “parser programming language” while EBNF is declarative and lacks any notion of order
or precedence in derivation steps. Hence, the derivation relation of PEGs is different from the
derivation relation of CFGs.

Syntactically, the main differences between EBNF and PEGs are as follows (see [Ford 2004]
for a complete specification):

• Choices in PEGs are sequentially ordered, which is reflected by using the choice operator
“/” instead of “|”.

• Left and right side of a production are separated with “<-” instead of “::=”.

• Syntactic predicates for matching the next characters in the input without actually consum-
ing the input. PEGs support “&” (and) as well as “!” (not) as predicate operators.

• PEG-based parsing of the repetition operators (* and +) and the optional operator (?) is
greedy, i.e., consumption is preferred over reduction.

In this thesis, PEGs are used as a basic technology for realizing the Minimal-ISC approach
presented in Chapter 7. In other implementation parts of the thesis with focus on textual languages,
classical LL and LR approaches are used for parsing.

3.2.2. Representations of Abstract Syntax

Abstract syntax is the program-internal representation of an artifact for further processing. As
already anticipated in the previous sections, abstract syntax can be represented as ASTs but
also as a general, graph-based data structure such as an ASG. There is no definitive rule on the
abstraction level of abstract syntax. Thus, it is possible that the CST of a program is equivalent to
its AST or they could also be completely different. Although the above terminology originally
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stems from the communities of compiler construction and software language engineering, it has
much broader implications. Grammars—as a specification vehicle with various incarnations—and
the above-mentioned data structures are in broad use in software applications. Grammar-related
software is also frequently called grammarware in literature [Klint et al. 2005b].

ASTs and ASGs are typed according to an abstract-syntax specification formalism. In the
following, the eXtensible Markup Language (XML) [World Wide Web Consortium (W3C)
1998–2009] and the Essential Meta Object Facility (EMOF) [Object Management Group (OMG)
2011c] are discussed as commonly and practically used approaches to specify abstract syntax.
Afterwards, it is introduced how abstract syntax is specified in this thesis and how it relates to the
XML and EMOF standards.

XML Trees as Abstract Syntax Representation

In the sense of [Klint et al. 2005b], XML-based applications as they are widely-used in industry
can be considered grammarware applications. Boiled down to grammarware terminology, XML
is a standardized format for the efficient serialization, de-serialization and processing of ASTs.
While XML represents arbitrary labeled trees, schema languages such as the XML Schema
Definition Language (XSD) [World Wide Web Consortium (W3C) 2012] define namespaces by
restricting the set of possible labels in an XML file to a certain alphabet and by defining how
nodes may be nested (i.e., the edge relation). XML schemata are strongly related to regular
tree grammars [Murata et al. 2005]. Regular tree grammars can be considered as a special
kind of CFGs, related to EBNF. Productions in regular tree grammars are restricted to the form
n→ t r where n ∈ N , t ∈ T the label of the local root and r is a regular expression over N . In
contrast to CFGs, regular tree grammars are typically used to validate ASTs that already have
been instantiated from some source or program. For more detailed discussions on the relation
of XML, XSD and CFGs, see [Berstel and Boasson 2002] and [Brüggemann-Klein and Wood
2004]. Figure 3.10 roughly shows a general processing scheme of applications that use XML

Figure 3.10.: A typical processing scheme of an XML-based application that uses an XSD–
programming language binding.

trees and XML schemata to load data from their repositories. The generic XML tree on the left is
an AST which represents a tree that adheres to the Domain Object Model (DOM) [World Wide
Web Consortium (W3C) 1998–2012]—a general, standardized model to represent tree structures

37



Chapter 3. Background and Notation

in memory at application runtime. The generic XML tree is typically generated by some standard
XML parser which itself obeys to the general parsing scheme in Figure 3.7. Note that the
separation of phases in XML parsers is not necessarily as strict as presented since Figure 3.7
contains a conceptual view on parse processes. In a first process step, the XML schema comes
into play. Typically, an XSD validation engine traverses the DOM tree and compares it to the
grammar specified in the XSD. XSD has features that go beyond the expressiveness of regular tree
grammars. Key-value references are a context-sensitive feature to specify distinct reference edges
to connect distant nodes in the DOM tree. Furthermore, the validated DOM tree contains typed
attribute values (i.e., token values in terms of CFGs). In the second process step of Figure 3.10, the
DOM tree is converted into a specific AST data structure supported by the target environment. In
statically typed object-oriented languages like Java, such data structures are represented as object
trees that are typed by a set of classes and a convenient programming interface. XML bindings
that convert DOM trees into specific ASTs can—of course—be implemented by deriving classes
from the XML schema by hand, or easily be generated from an XSD specification by a XML
library providing a binding generator, e.g., the Java Architecture for XML Binding (JAXB) [Sun
Microsystems, Inc. 2009]. The binding generator uses the regular tree grammar in the schema
and the type information to derive an adequate static class hierarchy that can be serialized and
deserialized automatically.

Models as Abstract Syntax

While XML is a platform-independent format for tree-shaped documents and a vehicle for data
exchange, it does not define a general metadata API required for the interoperability of tools.
The need for a standardized metadata API was addressed by the Object Management Group
(OMG) in the Model-Driven Architecture (MDA) proposal [Object Management Group (OMG)
2003] and especially the Meta Object Facility (MOF) [Object Management Group (OMG) 2011c].
Relying on the MOF, the OMG defined a bunch of other standards and generic languages for
transformation, querying and modeling (cf. [Object Management Group (OMG) 2003–2013]),
implemented by various tool vendors on different platforms. Most notably, the MOF is used as
a definition language for the Unified Modeling Language (UML) [Object Management Group
(OMG) 2011d].

In the MOF standard, two compatibility layers are defined—the EMOF and the Complete Meta
Object Facility (CMOF). Both are constrained subsets of the UML, while EMOF is considered
a subset of CMOF. The distinction between EMOF and MOF was made for the following
reasons [Object Management Group (OMG) 2011c, p. 31]:

• EMOF provides features that “closely correspond[s] to the facilities found in OOPLs
[(object oriented programming languages)] and XML”.

• EMOF allows users to define “simple metamodels [. . . ] using simple concepts while
supporting extensions [. . . ] for more sophisticated metamodeling using CMOF”.
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• EMOF is specified in the standard as a complete merged model. This way, the EMOF
metamodel “can be used to bootstrap metamodel tools rooted in EMOF without requiring
an implementation of CMOF and package merge semantics.”

Hence, EMOF enables tool interoperability by providing a compact metamodeling standard
which is easy to implement and self-contained since no other concepts from the MOF or UML
standards are required. Figure 3.11 shows the EMOF metamodel as an UML class diagram.
The basic ingredients one also finds in object oriented programming languages. EMOF has
Types, Classes and Generalization for specifying static type hierarchies. Similar to
object-oriented languages, Classes can be abstract or concrete and Generalization corres-
ponds to multiple inheritance modulo dynamic dispatch. Furthermore, EMOF supports Primi-
tiveType definitions, Enumerations and Packages which are not included in Figure 3.11
but are also in the standard. Classes may have Properties as StructuralFeatures
and Operations as BehavioralFeatures. Properties may be related with an As-
sociation which represents a binary relation. Observe that the number objects a Property
can be associated with is determined by providing it a lowerBound and an upperBound. The
kind of a Property in EMOF can only be composite or none. A composite Property
makes the objects owned by a corresponding instance dependent of the existence of the container
(i.e., the owning object). Observe that even if a unique object may have an arbitrary number
of composite Properties, each object can have at most one container. Consequently, if the
container is deleted from the model, all transitively owned objects are also deleted. In contrast,
such restrictions do not apply for non-containment properties (i.e., none kind Properties).
Properties that are not part of Association ends are simple values typed by primitive
types. Primitive types are not classes in the metamodel, but typically basic types such as strings
and Integers. In EMOF, the specification of those is lent from the XSD definition [Object
Management Group (OMG) 2011c] so that EMOF values are compatible with XML terminals.

Although the standard specification of EMOF does not strictly define how to structure meta-
models, containment associations are typically used to model tree structures since the relation
between container and contained object obviously resembles the parent–child relation of labeled
trees as in Definition 3.7. Hence, containments can be used to construct tree-based models if the
following requirements on EMOF metamodels and models are imposed:

• Each Class in the metamodel must participate as contained type in at least one con-
tainment Association, except Classes that are supposed to be root node types.

• Each object (i.e., instance of a Class in the metamodel)—except the root of the tree-based
model—must be contained in a container such that each object is reachable from the root
object.

Note that the first requirement is not strict: for metamodels not fulfilling it, a tree-completion
operator could be used which simply adds a Class R to the metamodel and by adding an
unbounded containment Association between R and each of the not contained non-root
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Figure 3.11.: Concepts and relations in EMOF [Object Management Group (OMG) 2011c].
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Classes. Based on containment Associations and the above requirements, it can be
concluded that tree-based models are ASTs if no non-containment Associations are
specified in the corresponding metamodel and no non-containment links are in the model. If
this restriction is left out, such links may occur in the tree-based model yielding an ASG structure
with a unique spanning tree (cf. Definition 3.9).

Models in MDE are often rendered and edited via a graphical user interface, e.g., the class
diagram in Figure 3.11 is a graphical representation of the underlying class model. For serial-
ization and model exchange purposes, tools commonly store models as XML files. Therefore,
OMG provided the XML Metadata Interchange (XMI) standard to provide a generic XML-based
format for meta descriptions and the exchange of models [Object Management Group (OMG)
2011b]. While the meta part of XMI is well-defined by the corresponding XSD schema, it does

Figure 3.12.: The typical processing scheme of a model-based application that uses the EMOF
XMI schema binding.

not cover a generic schema for the model data. Consequently, a mapping between MOF and
XMI is provided in the mapping standard (cf. [Object Management Group (OMG) 2011b]) which
can be used to derive XML schemata from models and allows tool vendors to realize language
bindings like with JAXB. Figure 3.12 emphasizes the processes step that converts a generic XML
DOM tree of an instance of a metamodel L into an object tree of L in a bound language using the
mapping specified in the XMI standard.

Similar to XML, tree-based metamodels are related to EBNF and therefore CFGs. In [Ala-
nen and Porres 2003], an automatic mapping form EBNF to MOF and its inverse is discussed.
Naturally, while all EBNF grammars have at least one representation as a tree-based metamodel,
general metamodels cannot be represented by a CFG. If tree-shaped metamodels without in-
heritance are considered, an EBNF grammar can be derived directly (cf. [Alanen and Porres
2003]). Furthermore, the author of [Kunert 2008] discusses a semi-automatic mapping from
EBNF to MOF which allows users to tailor the metamodel which is derived from a grammar
(e.g., by introducing inheritance or extra classes). The dominant tree structure in EMOF models
enables the usage of models as a representation of abstract syntax for textual languages with the
benefits of tool integration with model-based software, e.g., UML modeling platforms and the
reuse of existing model-based tools. EMFText [Heidenreich et al. 2009a] is a tool which uses the
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Figure 3.13.: Processing scheme of EMFText.

relation between EMOF and grammarware to generate advanced model-based textual editors for
the Eclipse Modeling Framework (EMF) [Eclipse Foundation 2013b; Steinberg et al. 2009]. The
parsing process of a hypothetical language L using EMFText and EMF is shown in Figure 3.13
on the basis of the general parsing scheme in Figure 3.7. Syntax specifications in EMFText are
based on regular expressions (for tokens) and EBNF (for the context-free parts of the language)
and are tightly coupled with the metamodel. From the syntax specification and the according
metamodel, EMFText generates a lexer and a parser component. The lexer component covers the
phases (1) and (2) of the process. The parser directly generates the AST from the token stream
input (phases (3) and (4)). Similar to the XML case, during phase (5) references are resolved,
which has to be implemented by hand in most cases.

3.2.3. Abstract Syntax in this Thesis

In this thesis, EBNF is used as a specification formalism of abstract and concrete syntax. This
has the advantage of having a grammar language for ISC fragments which is directly suitable
for using it with RAGs and still is semantically close to the domains of web languages (XML)
and modeling languages (EMOF). However, to be more close to an object-oriented notion of
abstract syntax and to support extensible AST grammars, it is beneficial to include the notation
of abstract nonterminals and nonterminal inheritance in the AST specification formalism:

Definition 3.16 (EBNF with nonterminal inheritance):
A flat EBNF grammar with nonterminal inheritance is a 5-tuple G = (N,T, P, S,A) where N
and T are equivalent to Definition 3.4, A ⊂ N is a set of abstract nonterminals, S ∈ N \A and
P is P ⊂ Lnt × Lexp, where Lexp is given by Definition 3.4 and Definition 3.14 (with labels),
and Lnt is defined as follows:

• if n ∈ N \A, then n ∈ Lnt ,
• if n ∈ A, then @n ∈ Lnt (abstract declaration),

• if n ∈ N and m ∈ A then n .m ∈ Lnt (inheritance declaration).

42



3.2. On Parsing, Unparsing and Abstract Syntax

If not stated otherwise, the following constraints are defined with respect to G and n,m, q ∈ N :

• for each n ∈ A there is one abstract declaration @n ::= . . . ∈ P or @n .m ::= . . . ∈ P ,

• for any two productions n .m ::= . . . ∈ P and n . q ::= . . . ∈ P it holds that q = m,

• for any two productions n .m ::= . . . ∈ P and q ::= . . . ∈ P it holds that q 6= n,

• the inheritance relation . is acyclic, i.e., a nonterminal may not inherit from itself. �

The semantics of EBNF grammars with nonterminal inheritance is as before given by desugaring
transformations translating the inheritance relations into normal EBNF according to Definition 3.4
which itself is defined by a mapping to plain CFGs. If no abstract nonterminals are in the gram-
mar, the EBNF-to-CFG transformations described in Section 3.1.2 can be applied immediately.
Otherwise, let G = (N,T, P, S,A) be an EBNF grammar with abstract nonterminals.

• Let n ∈ A be an abstract nonterminal and k ∈ N0 nonterminals m with at least one
inheritance declaration m .n ::= . . . ∈ P . If k > 0 and n occurs on a right-hand side of a
production p = q ::=α1| . . . |αi| . . . |αl ∈ P with l ∈ N alternatives and αi = δ n γ, then
a fresh production p′ = q ::=α1| . . . |αi−1|β1| . . . |βk|αi+1| . . . |αl replaces p in P where
βj = δ mγ are k new alternatives for each m that inherits from n.

Example 3.11 (desugaring of abstract productions).
S ::= (A)* A
@A ::= "a"
B .A ::= <b>
C .A ::= <c>

=>
S ::= (B)* B | (B)* C | (C)* B | (C)* C
@A ::= "a"
B .A ::= <b>
C .A ::= <c> �

• If no abstract nonterminals are contained on the right-hand sides of productions in P ,
for each inheriting production p = α.n ::=δ ∈ P and @n ::= γ ∈ P where n ∈ A,
α = @m (if m ∈ A) or α = m (if m ∈ N \A), a fresh production p′ replaces
p in P . Assume that δ = δ1| . . . |δk has k ≥ 1 top-level alternatives. If γ has one
alternative, then p′ = α ::= γ δ1| . . . |γ δk. If γ has more than one alternative, then
p′ = α ::= (γ) δ1| . . . |(γ) δk. Finally, all abstract productions in P and the correspon-
ding nonterminals in A are eliminated from the grammar.

Example 3.12 (desugaring of inheriting productions).
S ::= (B)* B | ...
@A ::= "a"
B .A ::= <b>
C .A ::= <c>

=>
S ::= (B)* B | ...
B ::= "a" <b>
C ::= "a" <c>

�

Nonterminal inheritance brings EBNF close to the technical realization of abstract syntax in
object-oriented languages. Abstract nonterminals can directly be realized by mapping normal
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Figure 3.14.: Representation of the initial EBNF grammar of Example 3.11 in a UML class-
diagram-like notation.

nonterminals to classes using abstract classes for binding abstract nonterminals and class-based
inheritance for mapping nonterminal inheritance. This way, members (induced by the node labels)
of the abstract nonterminal can be accessed from inheriting nonterminals via the built-in poly-
morphic dispatch of object-oriented languages. Other grammar-based abstract-syntax languages
such as XML and EMOF are bound to object-oriented implementation languages in similar
ways. For example, abstract EClasses in the EMF realization of EMOF (cf. Section 3.2.2)
are technically backed by abstract Java classes, interfaces and Java inheritance. Language bind-
ings of XSD specifications for XML such as JAXB (cf. Section 3.2.2) typically map abstract
complex XML types and inheritance between complex types to classes and inheritance concepts
in object-oriented languages. Consequently, a UML class-diagram-like notation can be used
to visualize EBNF grammars with nonterminal inheritance and labels. This is exemplified in
Figure 3.14. Nonterminals are represented as classes, abstract nonterminals are abstract classes.
Containment references symbolize nonterminals on the right-hand side while class properties
represent keywords and tokens. However, the ordering of nonterminals is not reflected in the
diagram, but can still be obtained from the original grammar.

Furthermore, nonterminal inheritance is also supported by state-of-the-art RAG implemen-
tations like JastAdd which is used in Chapters 6 and 7 of this thesis. Hence, the theoretical
results of this thesis can be transferred easily to an implementation framework. Finally, nontermi-
nal inheritance is actually a component model for EBNF which allows for modular grammars
where abstract nonterminals play the roles of slots where nonterminals of other modules can be
bound and integrated into the language via inheriting productions. This is essential for building
extensible fragment component models based on RAGs.

3.2.4. Unparsing Schemes

Unparsing (frequently also called pretty printing) is an issue for any metaprogramming approach
that transforms textual languages using their ASTs or models: when a transformation (e.g.,
fragment composition) is completed, the structure needs to be printed back to a file from as a
stream of tokens. Figure 3.15 sketches the logical structure of the unparsing process in more detail.
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Figure 3.15.: A typical unparsing scheme in three phases.

First, the AST (or model) needs to be converted into a CST in such a way that the abstracted
information is “concretized”. For example, this may include information on the formatting of
expressions in case brackets of nested expressions were removed before, converting terminal-
values typed by the type system of the AST’s host language, or putting nodes in an appropriate
order if the AST is not ordered. In a second step, an output token stream must be projected
from the CST. This typically involves adding layout information such as white-space characters
formatting the output with blanks, line-break characters and indentation. Finally, the token stream
is printed sequentially as characters to a file (or another serialization target).

In practice, the three stages above are often virtually reduced into a single stage. During this
stage, the AST is traversed once printing characters directly to a corresponding output stream
of a file handle. Figure 3.16 sketches this compact scheme. Commonly, the traversal algorithm

Figure 3.16.: Pretty printing with programs and/or templates.

and the character-emitting code is implemented in the AST’s host programming language using
print statements and the language’s operations on strings (e.g., concatenation). However, it is
also common to use a string-emitting template engine (i.e., TMP abstractions) with the advantage
of having the object code readable in a parametrizable template. Other approaches provide
semi-formal languages for text-layout computation [Jonge 2000], e.g., box layout which is similar
to layout descriptions of user interfaces or websites. The previously discussed EMFText tool also
has a simple layout language built into its syntax specification language.

Often, it is an advantage to preserve the layout information from the input and reuse it for
pretty-printing, e.g., for source-code refactoring tools [Jonge and Visser 2012]. But also fragment
composition systems such as those discussed in this thesis profit from layout preservation since
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users normally expect that indentation and white spaces of fragment components are replicated in
composed fragments.

As a final remark, please observe that pretty printing is only a minor topic in this thesis and
will not receive a detailed attention in the respective chapters.

Having discussed all required concepts related to context-free languages, the following section
discusses RAGs and introduces the corresponding notation used in this thesis.

3.3. Reference Attribute Grammars (RAGs)

Attribute grammars (AGs) are a well-known formalism that can be used construction to specify
parts and algorithms of compiler frontends. As introduced by Knuth [Knuth 1968; Knuth 1971],
AGs are an extension of CFGs enabling the specification of computations and the distribution of
data between distant nodes in syntax trees of the underlying context-free grammar. Therefore,
each node of a syntax tree carries a set of attributes. These attributes can be either inherited
(passing information from top to bottom) or synthesized (passing information from bottom to
top). To compute the actual attribute values, an evaluator traverses the attributed syntax tree and
evaluates attributes according to a semantic rule specified in the AG which may only directly
depend on attributes in the local context of the node the attribute is associated with.

3.3.1. Basic Attribute Grammars

Following [Kühnemann and Vogler 1997] and [Wilhelm and Maurer 1997], Definition 3.17
introduces AGs as a formal concept.

Definition 3.17 (attribute grammar):
An attribute grammar (AG) is an 8-tuple G=(G0,Syn ,Inh ,Synx,Inhx,K,Ω,Φ) with the following
constituents:

• G0 = (N,Σ, P, S), a reduced CFG,

• Syn and Inh , the finite, disjoint sets of synthesized and inherited attributes,

• Synx : N → 2Syn , a function that assigns a set of synthesized attributes to each nonterminal
in G0,

• Inhx : N → 2Inh , a function that assigns a set of inherited attributes to each nonterminal
in G0,

• K, a set of attribute types,

• Ω : Inh ∪ Syn → K, a function assigning each attribute a a κ ∈ K,

• Φ, a set of semantic functions ϕ(p,i,a) related to attribute occurrences or local attributes
(p, i, a), where p = p0 → p1 . . . pnp ∈ P , i ∈ {0, . . . ,np} and a ∈ Synx(pi) ∪ Inhx(pi).

Let p = p0 → p1 . . . pnp ∈ P be a production of G and i ∈ {0..np}. The following sets and
functions are provided:
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• Att = Syn ∪ Inh , the set of all attributes in G,

• Attx(y) = Synx(y) ∪ Inhx(y) if y ∈ N and Attx(y) = ∅ if y ∈ Σ , a function that
provides the set of all attributes associated with y,

• Att(p) = {(p, i, a) | a ∈ Synx(pi) ∪ Inhx(pi)}, a function that provides the set of attribute
occurrences of p,

• Attin(p) = {(p, 0, a) | a ∈ Inhx(p0)} ∪ {(p, i, a) | a ∈ Synx(pi) ∧ i ≥ 1}, a function that
provides the set of incoming attribute occurrences of p,

• Attout(p) = Att(p) \ Attin(p), a function that provides the set of outgoing attribute
occurrences of p.

For each occurrence (p, i, a) ∈ Attout(p) of an attribute a, a semantic function ϕ(p,i,a) ∈ Φ
must be defined in such a way that ϕ(p,i,a) only depends on the local attributes Att(p) of p.
Let D(ϕ(p,i,a)) = {(q1, i1, a1), . . . , (qm, im, am)} ⊆ Att(p) with m ∈ N be the set of local
attributes that ϕ(p,i,a) depends on. The signature of ϕ(p,i,a) is Ω(a1)× . . .× Ω(am)→ Ω(a). �

Figure 3.17 shows a tree representation of a production p = p0 → p1 . . . pnp with the respective
sets of attribute occurrences. The tree’s root is labeled with the left-hand side nonterminal p0

of p while its leaf nodes correspond to the right-hand side of p. If not stated otherwise, in
Figure 3.17 and in the remainder of this work, the following convention is used: inherited
attributes are drawn on the left of a node while synthesized attributes can be found on the right
of it. Hence, Attin(p) = {(p, 0, a0

0), (p, 1, a2
1), . . . , (p, i, a0

i ), . . . , (p,np, a1
np), (p,np, a2

np)} and
Attout(p) = {(p, 0, a1

0), (p, 1, a0
1), (p, 1, a1

1), . . . , (p,np, a0
np)}.

Figure 3.17.: Attributed tree representation of some production p.

Production trees Tp of a production p as shown in Figure 3.17 can be considered as basic
building blocks of attributed syntax trees. Copies thereof may occur multiple times in different
contexts. For example, reconsider the syntax tree in Figure 3.3 which corresponds to a sentence
generated by the EBNF grammar in Example 3.2. The tree of the second alternative of the
production Or ::= ...| And occurs in three different contexts in the syntax tree (nodes
v1, v6, v10). Let T = (V,E,Lab,LΣ) be a syntax tree generated byVG from an attributed CFG
G. Each occurrence of Tp = p0[p1, . . . , pnp] in T is called an instance of p in T . Each instance
is associated with the set Att(p) and the corresponding semantic functions. Moreover, each node
v ∈ V of T holds a set of attribute instances AttIx(v) = {(v, a) | a ∈ Attx(Lab(v))}. An AG
defines the values of these instances.
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The semantic functions ϕ(p,i,a) ∈ Φ induce attribute dependencies. For each production p, a
corresponding directed local dependency graph Dp can be derived whose nodes are the attribute
occurrences in Att(p) and whose edges represent the attribute dependencies induced by the
semantic functions associated with the outgoing occurrences Attout(p) of p. A full example of an
AG will be discussed in Section 3.3.5.

Based on an AG’s local dependencies, a circularity test for attributes that transitively depend on
themselves can be conducted by composing the local dependency graphs of the underlying CFG
with each other (cf. [Knuth 1968; Knuth 1971]). In classic AG systems, cyclic dependencies are
typically considered harmful since circular attributes do not have a general semantics. However,
modern AG systems usually support circularity to gain expressiveness (cf. Section 3.3.3).

3.3.2. Evaluation of Attributed Syntax Trees

Attribute instances are evaluated by attribute evaluators—tools that can be generated from or
interpret a given AG specification. Traversing a syntax tree, attribute evaluators compute the
values of attributes using the semantic functions ϕ(p,i,a) ∈ Φ and the attribute dependencies
induced by these functions. Out of two different perspectives on these dependencies, two classes
of attribute grammar systems have emerged. Static evaluators use precomputed evaluation
orders to provide space and time-efficient computation boundaries. Their implementation is
usually based on generic AST walkers that can be parametrized with an evaluation order. Like
the circularity test, the order-computation algorithms use the local dependency graphs Dp of
productions p. Absolutely non-circular attribute grammars (ANCAGs) [Kennedy and Warren
1976] rely on the computation of partial orders over attribute occurrences for a subclass of
acyclic AGs. At evaluation time, the partial order is mapped to attribute instances and composed
with additional dependency information which is only available from contexts in a syntax tree.
Using the precomputed information, the number of visits of nodes and redundant reevaluation of
attribute instances is reduced drastically in comparison with an uninformed evaluation. Ordered
attribute grammars (OAGs) [Kastens 1980] rely on the computation of total orders over attribute
occurrences, which results in a total order of attribute-instance visits at evaluation time and an
optimal evaluation of attributes. Although this goes on expressiveness (OAGs are a subclass of
ANCAGs), OAGs have been considered a sufficient class to implement semantic analysis of most
common programming languages for a long time.

In contrast, demand-driven (or dynamic) attribute-evaluation strategies have been considered
to be too inefficient at the same time as they are inherently nondeterministic w.r.t. evaluation
orders which remains implicitly encoded in the semantic functions. However, they still have some
advantages. While standard static evaluators always evaluate complete trees, demand-driven
evaluation is invoked when an attribute value is actually requested somewhere in the tree and
only computes the values of the attribute instances which the requested attribute instance depends
on. As it does not depend on a statically precomputed evaluation order, dynamic evaluation is a
suitable strategy for evaluating arbitrary acyclic AGs. Furthermore, performance optimizations
are possible using caching mechanisms (also called lazy evaluation). With caching, a value
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is only computed once and afterwards stored at the attribute instance, and returned each time
the attribute is requested again. Of course, caching increases the memory footprint of the AG.
However, on a modern machine this is typically acceptable.

3.3.3. Attribute Grammar Extensions

AGs have been applied to create implementations of static semantics for various kinds of lan-
guages [Paakki 1995]. This includes standard programming languages such as Java [Ekman and
Hedin 2007b] as well as modeling languages [Heidenreich et al. 2013]. Because of this broad
range of use cases during the last decades, several extensions to the basic AG formalism by Knuth
have emerged—most of them with practical intentions.

Higher-order attribute grammars (HOAGs) [Vogt et al. 1989] permit attributes that have syntax
trees as values. Hence, instead of computing primitive values according to the host of the AG
system only—as originally suggested by [Knuth 1968]—special attributes that are marked as
nonterminal attributes can compute new trees according to the underlying CFG. This is useful
to make implicit information in the syntax tree (e.g., computed by attributes or in terminals)
explicit as a subtree to ease further computations. Object-oriented AG systems allow for more
flexible and intuitive AST declarations [Hedin 1989; Grosch 1990; Sloane et al. 2010] by using
typical features of object-oriented programming languages. Although object orientation does not
influence the basic formalism, object-oriented AGs have a huge impact on the implementation
and attribute specification style. Using classes for typing ASTs gives a better integration with
the host language of the AG system and proved more flexible than plain AG systems. For
instance, the system can use abstract classes and object-oriented dispatching for attribute look-up.
Circular AGs [Farrow 1986] enable the evaluation of cyclic attribute grammars based on fixpoint
computation [Tarski 1955]. Circularity allows using AG tools for also implementing recursive
static analysis algorithms such as control-flow analysis [Nilsson-Nyman et al. 2009].

Two other important extensions are concerned with attribute access at distant nodes. Remote
AGs [Boyland 2005] enable access to attribute instances at distant nodes from a local context.
RAGs [Hedin 2000] allow to pass references to AST nodes through attribute instances and to
access attributes of that node in different contexts. Using reference attributes and object-oriented
ASTs, several analysis algorithms (e.g., name analysis) can be specified more elegantly in
comparison to classic AGs. Collection attributes [Magnusson 2007] are a declarative notation for
specifying attributes that aggregate values on a syntax tree. For example, they can be used for
collecting a set of nodes with certain properties.

However, the extensions above are not covered by the original AG algorithms and thus cannot
(or only with strong restrictions) be implemented using static dependency graphs and precomputed
attribute evaluation orders of the static algorithms. Consequently, many of the current AG systems
that support features like reference and collection attributes rely on demand-driven strategies
which is currently the most established implementation strategy for RAGs. Prominent examples
are Silver [Wyk et al. 2008], JastAdd [Ekman and Hedin 2007a] and Kiama [Sloane 2011]. One
of the most important properties of these systems is their support for modular specifications,
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which enables language developers to separate concerns like name or type analysis and to create
extensible language processors [Dueck and Cormack 1990; Ekman 2006; Wyk et al. 2007].

Moreover, the RAG concepts can be mapped to standardized metamodeling languages such
as EMOF [Bürger and Karol 2010; Bürger et al. 2011] to compute references and to perform
static-semantics computations on model instances. This is possible because EMOF models
typically provide a unique spanning tree, which is specified by EMOF’s containment relation,
which is similar to flat EBNF grammars for abstract syntax (cf. Section 3.2.2). The JastEMF
tool [Software Technology Group 2013] implements JastAdd’s RAGs for the EMF and Java-based
EMOF metamodels. Hence, technically, the RAG-based approach to ISC developed in this thesis
can also be applied to modeling languages.

3.3.4. Attribute Grammars and Tree Manipulations

Besides the classic field of application of AGs—compiler construction—there are also works
applying them in more interactive scenarios like editor implementation for IDEs. In an IDE where
a file is edited interactively, syntactic and semantic analysis algorithms running in the background
need to be highly responsive. Hence, parsers used in such editors are usually incremental and thus
avoid a complete parse and AST reconstruction. Since edit operations are mostly local changes in
a file, changes to the underlying AST are often minimal. Consequently, not all attribute values of
the AST have to be recomputed, but only those in newly added parts and those which depended
on values that have been deleted or moved.

Incremental AG evaluators [Reps et al. 1983; Maddox III 1997] support such scenarios by
employing dependency graphs to reduce the recomputation effort. [Söderberg 2012] uses dynamic
dependency tracking to approximate the set of attribute caches of an RAG that have to be flushed
when the AST is edited.

Besides editing, ASTs can also be manipulated operationally using rewrites. Rewritable
reference attribute grammars (ReRAGs) [Ekman and Hedin 2004]—as supported by JastAdd—
rewrite the AST interlaced with attribute evaluation. Like edits, rewrites can interfere with
cached attribute values and may cause inconsistent states (i.e., attributions) of the AST. A
dependency graph available at runtime helps to discover such inconsistencies. The reference
attribute grammar controlled rewriting (RACR) approach [Bürger 2012] provides sophisticated
dependency-graph management with a nearly optimal approximation of which cached attribute
values have to be flushed and recomputed.

This thesis combines RAGs with ISC-based composition operators. Composition operators are
considered as special kinds of AST rewrites which are restricted according to a given component
model (cf. Section 4.1.2).

3.3.5. SimpAG: A Simple RAG Language

In Chapters 5 and 7, a simple attribute grammar specification language will be used to specify
RAGs-based component models. The language is called Simple Attribute Grammar Specification
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Language (SimpAG) and is introduced subsequently. A SimpAG specification always consists of
a flat EBNF grammar without grouping constructs, a list of attribute declarations and equations
with semantic functions computing the attribute values.

EBNF Interpretation and Restrictions

The grammar language of SimpAG corresponds to the EBNF dialect given by Definitions 3.4
and 3.14. Additionally, nonterminal inheritance and abstract nonterminals are supported in
correspondence with Definition 3.16 of Section 3.2.3. To exemplify the usage of SimpAG, the
Logic “Programming” Language (LogProg) is developed as an example in this section. Its EBNF
grammar is shown in Example 3.13 below, comparing its compact and desugared forms.

Example 3.13 (LogProg EBNF grammar and its desugared version).
Consider the simple LogProg program in Listing 3.1 which allows its users to write lists of
propositional logic formulas.

1 main {
2 a = t;
3 b = a | f;
4 result = b;
5 }

Listing 3.1: A simple LogProg program.

The syntax of LogProg is defined by the following EBNF grammar GLog:

Program ::= "main" "{" Stmt+ "}"
Stmt ::= Name "=" Expr ";"?
Expr ::= Or
Or ::= left:Or "|" right:And | And
And ::= left:And "&" right:Term | Term
Term ::= "t" | "f" | Name | "!" Name
Name ::= id:<ident>

Observe that ident tokens are strings of {a . . . z,A . . .Z, _, ., 0 . . . 9}+. By applying the EBNF
desugaring transformations described in Section 3.1.2, the following grammar G′Log is obtained:

Program ::= "main" "{" StmtList "}"
StmtList1 ::= Stmt
StmtList2 ::= Stmt StmtList
Stmt ::= Name "=" Expr SemOpt
SemOpt1 ::= ε
SemOpt2 ::= ";"
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Expr ::= Or
Or1 ::= left:Or "|" right:And
Or2 ::= And
And1 ::= left:And "&" right:Term
And2 ::= Term
Term1 ::= "t"
Term2 ::= "f"
Term3 ::= Name
Term4 ::= "!" Name
Name ::= ident:<ident>

The subscript indexes are used in SimpAG to address the alternatives as different contexts that
can be implied by a nonterminal. Since no special EBNF constructs remain in G′Log (except
keywords and labels), an attribution for LogProg can be specified. �

Declarations and Equations

Inspired by JastAdd, SimpAG provides a simple syntax for attribute declarations while pseudo
code mixed with mathematical expressions is used in the equations. Hence, SimpAG is indepen-
dent of a specific implementation language so that SimpAG RAGs are specified as a blueprint to
be ported to arbitrary real-world AG tools that support SimpAG’s features.

For basic attribute declarations, SimpAG has the following syntax:

syn [type] [nt].[attribute] (3.1)

inh [type] [nt].[attribute] (3.2)

Attribute declarations either start with the keyword syn for synthesized attributes (cf. Declara-
tion 3.1) or with inh for inherited attributes (cf. Declaration 3.2). attribute stands for the
declared attribute’s name as an arbitrary identifier string. type represents the type of the value
computed by the attribute. The types supported by SimpAG are discussed later in this section.
Finally, nt denotes a nonterminal of the AG’s underlying context-free grammar.

As a short-hand notation to declare the same attribute w.r.t. multiple nonterminals at once, set
notation can be used as shown in Declarations 3.3 and 3.4 below:

syn [type] {[nt],. . . ,[nt]}.[attribute] (3.3)

inh [type] {[nt],. . . ,[nt]}.[attribute] (3.4)

Semantic functions are generally specified using the keyword fun, a left-hand side to associate
the equation with an attribute occurrence and context, and a right-hand side where pseudo code
provides an “implementation”. Equation 3.5 below shows the syntax of synthesized equations in
SimpAG:

fun [nt][idx].[attribute] = [pseudo code] (3.5)

52



3.3. Reference Attribute Grammars (RAGs)

Synthesized equations are associated with a nonterminal nt and an attribute the equation is
provided for. Optionally, the nonterminal can be associated with an index idx if a particular pro-
duction/alternative of nt is addressed. The right-hand side is separated by an equation symbol and
is typically provided by using common mathematical expressions mixed with pseudo code.
It must be “compatible” with the attribute’s type given by its declaration. For example, if the type
in the declaration is X, the implementation has to generate a value of type X. In case nt is defined
by only one alternative (i.e., a single production in the desugared grammar), attribute declaration
and equation may converge to a single declaration with a right-hand side equation.

Equations of inherited attributes have a similar but more complex syntax. Since inherited
attributes must be defined w.r.t. to an AST node’s parental context, SimpAG supports two
equation variants of specifying them as shown in Equation 3.6 and Equation 3.7 below:

fun [nt][idx].child[idx].[attribute] = [pseudo code] (3.6)

fun [nt][idx].[label][idx].[attribute] = [pseudo code] (3.7)

Using child[idx], an equation for attribute in context of the nonterminal at index idx of
nt’s right-hand side nonterminals is defined. If an attribute is declared at all of nt’s children,
childall defines the equation for all of these contexts. Alternatively, the child nonterminal
can be described via its label and, if the label is used more than once, with an index idx in
such a way that these uses can be distinguished in order of their occurrence in the respective nt
production.

Standard inherited equations hold for a single parent-child context. However, inherited at-
tributes are often just passed down the tree to a specific node without transforming the value in
between. Hence, inherited equations would need to be chained, which bloats the AG specification
with no-op equations. To avoid this, SimpAG supports broadcasting equations as shown in
Equations 3.8 and 3.9 below:

fun ↓ [nt][idx].child[idx].[attribute] = [pseudo code] (3.8)

fun ↓ [nt][idx].[label].[attribute] = [pseudo code] (3.9)

The semantics of broadcasting is as follows: if a broadcasting equation is given for a specific
context c1, its value is passed down to any instance of the same attribute reachable in the context’s
subtree which is not provided with its own context-dependent equation. If an instance of the
same attribute in c1’s subtree has its own inherited equation, this value is used for the local
context c2 while the value of c1 is sill broadcasted down in c2’s subtree. In contrast, if c2 also is a
broadcasting equation then c2’s value is broadcasted down its subtree.

Types and Values

SimpAG supports a set of types which can be further distinguished in three subsets. Value types
are primitive types like Integer, Boolean and String. Structure types are lists and maps. Complex
types are nodes typed by the nonterminals of the AST grammar. The following enumeration
explains SimpAG’s types in more detail:
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• SimpAG supports a set of primitive types:

– bool⊥ is a 3-valued type representing logical values. true represents the Boolean
value “true”, false represents the Boolean value “false” and ⊥ is the undefined value,

– int⊥ denotes integers {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} and ⊥,

– string⊥ is the set of strings Σ∗ over the set of SimpAG characters (or alphabet)
Σ. As a simplification, set of characters supported by the Unicode Standard [The
Unicode Consortium 2014] is assumed. ⊥ is again the undefined value.

For primitive types, value semantics is assumed by default.

• Moreover, the following structures are supported:

– key–value pairs in SimpAG are surrounded by angle brackets and are declared as
follows: <[key type],[value type]>. <key ,value> denotes a pair instance
with a key and a value .

– Lists are typed and marked up with “*”: [entry type]*. Within semantic
functions, lists are declared using square brackets: [value1, . . . , valuen].

– Maps: by combing list and pair types, maps can be easily declared as lists of pairs.
Hence, <[key type],[value type]>* declares a map type. Consequently, in
semantic functions, maps are written as lists:
[<key1,value1>, . . . ,<keyn,valuen>]. Each key in a map is unique so that there
are never two pairs with the same key. Moreover, if a new pair is added to a map and
a pair with the same key is already in the map, the old pair is removed and the new
pair is added to the map.

• Complex types: AST nodes are the only complex types in SimpAG, where type names
and structure definition are specified by the set of nonterminals N and productions of the
underlying CFG. Hence, if X is the type signature used in an attribute declaration and X is
not a primitive type or structure then X ∈ N . Typically, a node computed by an equation is
a reference to an already existing node in the AST. Hence, by default complex types have
a reference semantics where the AST is the corresponding “heap”. However, in rare cases
it is necessary to construct a fresh node and subtree in an equation. Then, value semantics
is used locally in such a way that the current attribute instance becomes the “address” of
the fresh node (i.e., the root of a new subtree). Observe that complex-type attributes are
called reference attributes if they have a reference semantics and nonterminal attributes if
they have a value semantics.

An Example Attribution of Logic Programs

Example 3.14 shows how SimpAG can be used to specify an attribute semantics evaluator to
compute values of programs or, broader, ASTs. Therefore, the LogProg language developed in
Example 3.13 is reused and improved.
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Example 3.14 (SimpAG attribution).
In the following, a SimpAG attribute grammar AGLog is developed that specifies how LogProg
expressions are to be evaluated (i.e., how values of primitive logic terms in LogProg are com-
puted). AGLog declares four attributes: val holds the computed values of LogProg compart-
ments like Terms and Programs, env helps to look up declared variables and en and ident
provide the basic values at leaf nodes. As AGs inherently provide a natural way of modularizing
semantic concerns [Dueck and Cormack 1990], these attributes allocate two concerns—namely
evaluation including the val attribute and name analysis including env, en, and ident. In
the following, AGLog is specified along these two concerns.
Evaluation: Below, val is declared as an attribute of type bool⊥:

syn bool⊥ {Program,StmtList,Stmt,Expr,Or,And,Term}.val

With an exception of SemOpt and Name, val is declared for all nonterminals of GLog using
SimpAG’s set-based short-hand notation.

Next, the four Term contexts are specified:

fun Term1.val = true

fun Term2.val = false

fun Term3.val =

{
envVal if <child1.id,envVal> ∈ env,
⊥ else.

fun Term4.val =

{
¬envVal if <child1.id,envVal> ∈ env,
⊥ else.

While Term1 and Term2 just represent the atomic Boolean values, the val specification of
the Term3 alternative retrieves the value from the first child child1.ident and performs a
look-up by using the env attribute provided by the name analysis parts of GLog. In the case the
look-up fails, the attribute evaluates to ⊥ (i.e., invalid). Term4 is similar to the evaluation of
Term3, but negates the value obtained from the environment.

The following equations define the evaluation rules of LogProg expressions:

fun And1.val =


⊥ if left.val = ⊥,
⊥ if right.val = ⊥,
child1.val ∧ child3.val else.

fun And2.val = child1.val

fun Or1.val =


⊥ if left.val = ⊥,
⊥ if right.val = ⊥,
child1.val ∨ child3.val else.

fun Or2.val = child1.val

fun Expression.val = child1.val
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fun Stmt.val = child3.val

fun StmtList1.val = child1.val

fun StmtList2.val = child2.val

fun Program.val = child3.val

The And and Or contexts are simply realized by the corresponding logical operators with a
certain distinction. Since Term3 may evaluate ⊥, this has to be handled by the evaluator as
error cases. Therefore, ∨ and ∧ evaluate to ⊥ in case one of their arguments is ⊥. The value of
a Stmt is determined by the value of its Expr child. The value of the whole LogProg program
is given by the value of the last Stmt in the program which is just passed trough the AST to the
Program root.
Name analysis: Below, en and id are declared and specified:

syn <string⊥,bool⊥> Stmt.en = <child1.id,child3.val>

syn string⊥ Name.id = ident

The en and id attributes given above initialize the atomic values at the leaf nodes in LogProg
ASTs. The value of id in the Name context is derived from the actual identifier terminal ident.
Based on that, the en attribute generates a pair at each Stmt node with the identifier string of
its left-hand side as a key and evaluated expression of the right-hand side as a value.

Next, env is declared as an inherited attribute which is associated with all nonterminals of
GLog (G′Log) except Program, SemOpt and Name:

inh <string⊥,bool⊥>* {StmtList,Stmt,Expr,Or,And,Term}.env

As specified below, the env attribute distributes a map as a look-up table through LogProg trees:

fun ↓ Program.child3.env = []

fun ↓ StmtList2.child2.env = [child1.en] t env
fun StmtList1.child1.env = env

fun StmtList2.child1.env = env

fun Stmt.child3.env = env

fun Expr.child1.env = env

fun Or1.child1.env = env

fun Or1.child3.env = env

fun Or2.child1.env = env

fun And1.child1.env = env

fun And1.child3.env = env
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fun And2.child1.env = env

As an inherited attribute, env is initialized within the Program top level context and then
passed through the list of Stmts provided by the chained StmtList list nodes. In context of
StmtList2’s second child, the value of the left Stmt is added to the environment using the t
append operator and the synthesized en attribute already described above. This realizes a simple
declare-before-use semantics to variables in LogProg, i.e., a logic variable has to be declared
before it is used in another expression. The remaining equations of env occurrences are only
for passing down the environment through the AST to provide the name look-up functionality
where it is needed—in Term contexts. These semantic functions can also be omitted from the
specification since they can be derived automatically by AG systems as the first two equations
are broadcasting equations.

Listing 3.1 of Example 3.13 shows a small LogProg program with three statements. A
corresponding attributed syntax tree is shown in Figure 3.18, including data-flow edges. The
statement list of the program contains three statements, which is reflected by three Stmt
equivalent subtrees in Figure 3.18. Starting with an empty environment, the Expr statement
in Line 2 corresponds to the leftmost Stmt subtree and evaluates true. A suitable entry for
the environment is created at this node. Line 3 contains an Or expression corresponding to the
central Stmt subtree. The AG evaluator looks up variable a in the environment using the env
attribute. Since a evaluated to true above, b also evaluates to the same value and its entry is
added to the environment. The last statement in Line 4 assigns result the value of b, i.e.,
true . According to the AG specification, the value of result is propagated to the root node of
the attributed AST and can be emitted to a client as the actual result of the program. �

Observe that the above example is a “classic” AG in Knuth’ sense: it does not contain any
reference or nonterminal attributes and has an obvious static-computable evaluation order since
the attribute dependencies are acyclic. If reference attributes are used as they are provided by
the JastAdd system which is used in the later chapters, name analysis could also be realized via
passing references to Stmt nodes as “declaration objects” through the AST and performing a
demand-driven evaluation of LogProg programs.

3.4. Summary and Conclusions

This chapter provided the background terminology, concepts as well as notation required to
understand the approaches reevaluated and developed by this thesis. Trees and grammars are
the basis of fragment composition and ISC since any fragment component essentially has a
tree typed by some context-free grammar in its core. Besides parsers, many other tools use
context-free grammars or related tree-definition approaches to define tree-based data structures
including important industrial standards such as XML, XML schema and EMOF. Hence, besides
plain text-based languages such as programming languages, XML files, models with graphical
representation and other tree-based languages are potential application areas of ISC.
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Figure 3.18.: Attributed syntax tree of the logic program in Listing 3.1.
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However, as the main invention of this thesis is well-formed ISC, trees and CFGs are necessary
but insufficient concepts w.r.t. context-sensitive computations on trees. RAGs support such
computations via attributes, equations and reference attributes that induce a directed graph on
trees. Consequently, RAGs have been chosen as the main specification language of well-formed
ISC. Moreover, it has been discussed that RAGs are extensible and naturally modularized
along semantic concerns. Thus, RAGs are also the basics of the second invention of this thesis:
scalable ISC.

Before well-formed and scalable ISC are introduced, Chapter 4 recapitulates the classical
model of ISC and discusses two implementation approaches—COMPOST and Reusewair—
and compares them. Moreover, a modified model of ISC for graphs and its implementation—
Reuseware—is discussed and evaluated.
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4
Approaches to Invasive Software

Composition

“We must do more than create new techniques. We must understand the old ones”
[Potts 1993].

In the first part of this chapter, the basic constituents of composition systems in general and
invasive composition systems in particular are discussed. While the basic terminology stems
from [Aßmann 2003], a formal fragment component model definition is developed that serves
as a comparative framework throughout the chapter. Afterwards, three approaches to ISC are
presented and analyzed by applying them to implement the business application framework (BAF)
example of Chapter 2.

4.1. Invasive Fragment Composition Systems

In this section, a generic model of ISC is developed. To classify ISC among general approaches
to component-based software engineering, it at first follows a general classification scheme for
composition systems. Afterwards, the concepts of ISC w.r.t. this scheme are presented. Finally, a
formal definition of fragment component models based on grammars and syntax trees is given.

4.1.1. Ingredients of Composition Systems

Component abstractions for the separation of cross-cutting concerns (SoCC), hierarchical decom-
position (HiDec) and template metaprogramming (TMP) have to be supported by composition
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Figure 4.1.: The house of software composition and the precious garden of software.

systems. Although composition systems can be quite different in purpose, a general terminol-
ogy can be used to describe their compartments: Figure 4.1 symbolizes a general architectural
schema on the ingredients of composition systems—the house of software composition. The
basic notions stem from [Nierstrasz and Meijler 1995; Aßmann 2003]. In the following, the basic
ingredients—compartments of the house—are described.

Component model (CM). A CM specifies look and shape of components. It determines how
components can be accessed, how they are represented (e.g., as source code or compiled, in
binary form) and provides abstractions for reuse. Typically, it can be distinguished between
black-box, white-box and gray-box CMs. The former hides a component’s implementation
details behind a well-defined, usually typed and well-documented interface. This is also
called the principle of information hiding [Szyperski 2002]. White-box models are at the
other end of the scale: white-box composition requires deep knowledge of a component’s
internals and protocols. Gray-box models share properties of both—providing a well-
defined interface and revealing implementation details [Aßmann 2003].

Composition technique (CT). The CT determines how components are composed, e.g., by
providing a composition formalism, patterns or a standardized protocol. It also determines
how components communicate. The CT provides basic composition operators that can be
used for composition.

Composition language (CsL). Components can be put together by writing recipes in an
adequate CsL. This can be, for example, a standard programming language, a programming-
language extension or a standalone CsL. Expressiveness of such languages is an important
issue. It should be powerful enough to express all the composition scenarios supported by
the CM. A well-designed CsL enables efficient specifications and is easy to learn.

62



4.1. Invasive Fragment Composition Systems

Component language (CnL). This is the actual language used to develop component imple-
mentations. Depending on the CM, the CnL might be completely invisible to the developer
who uses the composition system. For example, if it is a black-box system, the CnL might
be hidden behind a language-independent interface. In contrast, white-box approaches
require detailed knowledge about the CnL and its semantics. Hence, in the latter case, the
CM is strongly coupled with the CnL while in the former case the coupling can be loose.

Glue. The glue integrates the constituents of composition systems. It relates CM and CT
with CnL and CsL. In white-box approaches, it is common to glue concepts together by
language-model integration. That is, the CM is materialized as a formal or semi-formal
specification, e.g., using a grammar or metamodel, and meta-composed with the CnL and
CsL. This is different in black-box systems. Since components are communicating through
well-defined interfaces and protocols, the glue materializes as connectors.

Example 4.1 explains the differences between white and black-box composition. Afterwards,
in the next section, the terminology given above is used to introduce the basic model of invasive
software composition.

Example 4.1 (black-box vs. white-box composition systems).
The Common Object Request Broker Architecture (CORBA) is a well-known composition
system with binary black-box components [Object Management Group (OMG) 2012b]. The
component model of CORBA is specified semi-formally in [Object Management Group (OMG)
2012a] and has a number of implementations in common programming languages such as Java
and C++. Component interfaces in CORBA have to be specified in a language-independent
way using the also standardized Interface Description Language (IDL). Hence, a component in
CORBA is a “specific, named collection of features that can be described by an IDL component
definition or a corresponding structure in an Interface Repository” [Object Management Group
(OMG) 2012a, p. 5]. The component implementation can be realized in any programming
language (i.e., CnL) that provides a CORBA library implementation. The glue between IDL
and CnL is provided by programming-language-specific component-model implementations
which—amongst other responsibilities—can generate CnL specific code from IDL specifications.
Since CORBA components are language- and location-independent, they are wired together
transparently by connectors. A connector converts data types and handles component invocations
using adequate lower-level standards, e.g., remote method invocation (RMI).

In contrast to CORBA, the already-mentioned aspect-oriented programming (AOP) is a white-
box composition approach. AOP is asymmetric, that is, a set of self-defined core components is
composed with incomplete aspects [Kiczales et al. 1997] augmenting the core with additional
program code. This is specified by advice functions [Teitelman 1966]. In contrast to systems like
CORBA, AOP implementations are typically tightly integrated with a concrete programming
language (cf. [Kiczales et al. 2001; Aracic et al. 2006]). The glue between CnL and CM is
realized via language extension. The process of composing aspects and core is called weaving.�
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Figure 4.2.: The house of invasive software composition.

4.1.2. Ingredients of Invasive Software Composition

“Invasive Software Composition (ISC) composes software components by program
transformation. Standard composition treats components as immutable black boxes
and plugs them together as they are. Invasive software composition goes one step
further and transforms components when they are embedded in a reuse context. In
this way, components can be adapted more appropriately to reuse requirements. The
components need not to be adapted by hand, instead invasive composition operators
do all the work” [Aßmann 2003, p. 108].

ISC is a general approach for composing fragment components. The quotation above and the
notion of fragment forms in the BETA programming language [Kristensen et al. 2007] indicate
that fragment components are potentially underspecified pieces of program code, derived from
a nonterminal of the programming language that may contain placeholders for variation, and
implicit points of extension. The term “program” not only covers full-fledged programming
languages, but also DSLs and modeling languages that have a tree-based abstract syntax (cf. Sec-
tion 3.2.2). Hence, fragment components can be fragments of some DSL “program” [Henriksson
2009], an underspecified XML document [Pop et al. 2005], or a model [Heidenreich et al. 2009d;
Johannes 2011].

Figure 4.2 contains the house of invasive software composition whose compartments are the
basic ingredients of ISC described below.

Fragment CnL. The CnL is the very fundament of any ISC system. It defines the upper bounds
of what the fragment CM allows for composition. The CnL specification determines the
set of potential fragment types by its nonterminals and potential positions of variation and
extension points by its structure.
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Fragment CM. Typically, only certain concepts of the CnL are adequate fragment component
types. Therefore, the fragment component model (FCM) defines a subset of the CnL
nonterminals as valid fragment types (cf. [Henriksson 2009]). Furthermore, not all parts
of a fragment should be freely replaceable or extensible. Therefore, the FCM provides a
composition interface that consists of sets of compositional points called hooks. [Aßmann
2003] distinguishes between declared and implicit hooks of a fragment. The essential
difference between them is that the former must be declared explicitly by some placeholder
while the latter are derived “implicitly” from the fragment structure. There is a difference
between list hooks and non-list hooks. List hooks indicate compositional points with lists
of similar objects (e.g., statements) while non-list hooks indicate compositional points with
just one single object. Since hooks declared by placeholders are typically non-list hooks,
they are called slots while list-hooks are called just hooks in this thesis (cf. [Madsen et al.
1993; Henriksson 2009]).

Invasive CT. The ISC model includes a set of basic composition operators which can be
parametrized with a compositional point and a fragment to perform a program transfor-
mation. Bind transforms a host fragment at a given slot by replacing (i.e., binding) it with
the copy of a given argument fragment. Hence, after composition, the slot is no longer
available in the host fragment. The extend operator transforms a host fragment at a hook
by extending it with the copy of a given argument fragment. After composition, the hook
is still available in the host fragment and can be extended further. A composer applies one
or more composition operators at one or more points of a fragment. Often, ISC systems
provide a collection of basic or primitive composers that realize a single composition step,
e.g., a bind composer provides a corresponding composition operation.1 Users can instan-
tiate the basic composers to implement complex composers and composition programs.
Alternatively, composition programs are called composition recipes.

Fragment CsL. The fragment CsL is provided by ISC systems to support users in writing
complex composers and composition programs. The fragment CsL can be any kind of
language as long as it may serve the purpose of composition specification and execution.
The CsL model is freely chosen by the composition-system developer who should choose
composition abstractions that are adequate w.r.t. their specific domain. Composition
abstractions supported by the CsL are typically realized as complex composers built
into the composition system—i.e., a composition abstraction’s semantics manifests as a
sequence of composition operator calls at runtime. This way, the CsL can be a simple
imperative language, aspect-oriented, a macro language, textual or graphical and is backed
by a formal FCM. Moreover, an integration with the CnL is also possible.

1Observe that the terms “composition operator” and “composer” are often used interchangeably. This results from
the fact that a “composition operator” is an abstract transformational concept to express compositions while a
“composer” is its reusable implementation in a specific composition system.
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Meta glue. Of course, fragment CsL and the fragment CT need to be integrated with the CnL
and the FCM. This is indicated in Figure 4.2 by the two meta glue pillars. Depending on
the actual constitution of the composition system, composer signatures are related with
concrete fragment types in the CnL. Abstractions and concepts of the CsL have to be
realized as complex composers by the CT, including mappings to the responsive parts in
the CnL so that the CsL is aware of the syntactic types (nonterminals) of the CnL.

4.1.3. ISCcore: The Core of Invasive Software Composition

In the following, a formal definition for FCMs which uses context-free grammars (CFGs) and
syntax trees is provided. It contributes to the thesis in multiple ways. It provides a clear
distinction of all parts of a fragment CM and allows to use these clearly named parts to identify
their realizations in the existing ISC approaches discussed afterwards. Even more important, the
definition can be used to compare the ISC approaches developed in this thesis—well-formed ISC
and minimal ISC—with the existing ones.

Definition 4.1 (fragment component model):
A fragment component model FCM is a 6-tuple (G,S,H,F ,∫ ,L∫ ) with

• G = (N,Σ, P, S) a CFG (or a flat EBNF grammar) of the CnL,

• S ⊆ N the finite set of slot candidates,

• H ⊆ N the finite set of hook candidates,

• F ⊆ N the finite set of fragment-component candidates,

• ∫ = ∫S ∪ ∫H ∪ ∫F is a set of partial point-identification functions assigning identifiers to
nodes that represent slots (∫S), hooks (∫H) and fragments (∫F ) in syntax trees,

• L∫ a set of point identifiers (e.g., defined by some signature-language grammar).

If n ∈ H, then n has to be a list nonterminal (cf. Definition 3.15 and Section 3.1.5).
Subsequently, let T = (V,E,Lab, R,LΣ) ∈ T (LΣ) be a syntax tree w.r.t.

G|n = (N|n,Σ|n, P|n, n), so that nV∗G T , and name ∈ L∫ an identifier. The compounds of ∫
are defined as follows:

• ∫S(T, v) : T (LΣ)× V  L∫ so that

∫S(T, v) =

{
name if Lab(v) ∈ S and v ∈ V is a slot in T
⊥ otherwise

,

• ∫H(T, v) : T (LΣ)× V  L∫ so that

∫H(T, v) =

{
name if Lab(v) ∈ H and v ∈ V is a hook in T
⊥ otherwise

,
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• ∫F (T ) : T (LΣ) L∫ so that

∫F (T ) =

{
name if Lab(R) ∈ F and T is an FCM fragment component
⊥ otherwise

. �

Although the above definition uses CFGs as the basic language-specification formalism, this
is not meant as a strong restriction. As shown in Chapter 3.1, without loss of generality, the
definition also applies for EBNF-like grammars and other CFG-based concepts for concrete and
abstract syntax such as XML and EMOF. Moreover, any tree specification language that can be
mapped to a CFG is covered by the definition.

The following example shows how Definition 4.1 is applied to a concrete language.

Example 4.2 (fragment component model).
Reconsider the grammarGLog of the LogProg language defined in Example 3.13. In this example,
an FCM for LogProg was defined. As requirements, the FCM should support the extensibility
of statement lists via an according hook and it should support genericity of logic expressions.
Let FCMLog = (GLog,S,H,F , ∫ ,L∫ ) be the LogProg fragment component model. To model
the according component types in FCMLog, the corresponding nonterminals have to be added to
the F candidate set:

F = {Stmt ,Program,Expr}

To model genericity of expressions, the corresponding nonterminal has to be added to the S
candidate set:

S = {Expr}

To model the extensibility of LogProg programs with statements, the corresponding list nonter-
minal has to be added to theH candidate set:

H = {StmtList}

The above sets define those nonterminals which can deliver appropriate fragment components,
hooks and slots. To identify which instances of them are components, hooks or slots, the point
identification function ∫ needs to be defined. The language of point identifiers L∫ shall be
equivalent to the codomain of LogProg’s ident tokens:

L∫ = {a . . . z,A . . .Z, _, ., 0 . . . 9}+

For the naming of fragment components, ∫F shall derive the name of a component given as a
syntax tree T from the name of the tree’s source file. Therefore, it is assumed that LogProg trees
are obtained from files in some directory and the file name can be accessed via a system function
fname(T ) : T (LΣ) → L∫ . Hence, if T is a fragment tree according to F and Definition 4.1
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(i.e., it is an instance of GLog|Stmt , GLog|Expr or GLog) then:

∫F (T ) = fname(T )

∫S shall recognize Expr slots by the suffix “Slot” and by extracting the portion of the identifier
in front of the suffix. Since Expr nodes do not carry naming information themselves, this
information has to be extracted from the tree. Moreover, only Expr trees of a specific shape shall
be recognized as slots, which only have one leaf node labeled with an ident token. According to
the nonterminals of GLog, those trees have the shape Expr [Or [And [Term[Name[ident ]]]]]. If
T and its node v ∈ V fulfill the conditions given in Definition 4.1 (i.e., v is an Expr node) and
if the subtree rooted by v has the above shape, then:

∫S(T, v) = if(Lab(v) = Expr)then (pfx(v.Or.And.Term.Name.ident))else (⊥),

where pfx simply extracts the prefix value of the ident token if it recognizes the slot suffix,
otherwise it evaluates ⊥.
∫H shall recognize StmtList hooks. Hence, if the conditions related to ∫H given by Defini-

tion 4.1 hold, then

∫H(T, v) = if(¬(Lab(ParT(v)) = StmtList) ∧ Lab(v) = StmtList)

then (StmtList)else (⊥)

The following LogProg program is a fragment component with respect to the above defined
component model.

1 main {
2 a = initSlot;
3 b = c;
4 result = a & !b | !a & b;
5 }

Listing 4.1: simple.fgmt: a LogProg fragment component.

The syntax tree obtained from the fragment is identified by ∫F as a fragment component with
the name simple.fgmt. ∫S identifies an Expr slot named init on the right side of the
statement in Line 2. The list of statements ranges from Line 2 to Line 4 and is identified as a
StmtList hook by ∫H. �

As in the cases of CFGs and AGs, it is also convenient for FCMs to have an according specifi-
cation language. Such languages may provide different degrees of freedom to specify the FCM
constituents. For example, it can be imagined that a small and simple DSL for such CMs could
only provide features to determine the sets of point and fragment candidates (i.e., S ,H, F ) while
keeping the corresponding parts of ∫ inaccessible using some predefined determination pattern
like “a node is always a slot (hook, fragment) if its label is contained in S (H, F )”. Alternatively,
either S orH could be left empty, which leads to a clear distinction between SoCC abstractions
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like aspects (i.e., S = ∅) and TMP abstractions as in the standard library of C++ (i.e.,H = ∅), or
fragment composition in BETA.

Given an FCM, the bind composition operator of ISC transforms fragment components at
their slots by replacing them with another fragment. Thereby, the operator ensures the syntactic
integrity of the resulting components according to what is specified in the FCM. Definition 4.2
gives a precise specification of bind:

Definition 4.2 (bind composition operator):
Let FCM = (G,S,H,F , ∫ ,L∫ ) be a fragment component model, where G = (N,Σ, P, S) is a
CFG. The bind composition operator π·FCM (T1, T2,m) : T (LΣ)× T (LΣ)× (T (LΣ)→ 2V ) 
T (LΣ) is a partial function composing any two FCM components T1 = (V1, E1,Lab1,LΣ) and
T2 = (V2, E2,Lab2,LΣ) with T1, T2 ∈ T (LΣ) at points m(T1) ⊂ V1 by replacing the subtrees
induced by nodes in m(T1) with copies of T2. The result of an application of π·FCM is a valid
syntax tree w.r.t. G or undefined (⊥), if the transformation cannot yield a valid tree.

More formally, let f1 = Lab1(R1), f2 = Lab2(R2) and Q = m(T1) where f1V∗G T1,
f2V∗G T2 and R1, R2 the root nodes of T1 and T2. π·FCM is given as follows:

π·FCM (T1, T2,m) =



T1[Q/T2] = T ′1 if Q 6= ∅
and f1, f2 ∈ F
and ∫F (T1) 6= ⊥ ∧ ∫F (T2) 6= ⊥
and ∀v ∈ Q : ∫S(T1, v) 6= ⊥ ∧ v 6= R1

and f1V∗G T
′
1,

T1 if Q = ∅,
⊥ otherwise.

T1[Q/T2] = f1[. . . t′1 . . . t
′
i . . . t

′
k . . .] is the replacement of all k = |Q| subtrees (slots) ti =

li[. . .] in T1 = f1[. . . t1 . . . ti . . . tk . . .] by t′i = T2 where Ri ∈ Q is the root of ti and
1 ≤ i ≤ k. �

The following example demonstrates the bind composition operator applied to LogProg fragment
components.

Example 4.3 (bind composition operator).
Reconsider FCMLog defined in Example 4.2 and the LogProg fragment component sim-
ple.fgmt in Listing 4.1. Let Tcore be the syntax tree that corresponds to simple.fgmt:

Tcore = Program[main, ‘{’,StmtList [Stmt [Name[ident ],=,

Expr [Or [And [Term[ident ]]]], ; ], . . .], ‘}’]

As a fragment to be bound, let ex.fgmt be the fragment containing the LogProg expression
t and Tex with w(Tex ) = t the corresponding syntax tree Tex = Expr [Or [And [Term[t ]]]].
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Moreover, the matching function m shall be defined as:

m(Tcore) = {Program.StmtList .Stmt1.Expr} = {v}

Given Tcore , Tex and m, the bind operator π·FCMLog can be applied to compose the two trees:

π·FCMLog(Tcore , Tex ,m) = Tcore [{v}/Tex ] = Program[main, ‘{’,StmtList [

Stmt [Name[ident ],=,Expr [Or [And [Term[t ]]]], ; ], . . .], ‘}’]

Finally, the composed tree needs to be serialized to its LogProg string representation which is
the fragment in Listing 4.1 with slotIdent replaced by t. �

The extend composition operator can be defined in a way similar to the bind operator. However,
unlike bind, extend does not replace complete subtrees, but inserts them at a certain position.
Definition 4.3 gives a precise specification of extend.

Definition 4.3 (extend composition operator):
Let FCM = (G,S,H,F , ∫ ,L∫ ) be a fragment component model, where G = (N,Σ, P, S) is
a CFG. The extend operator π··FCM (T1, T2,m, x) : T (LΣ) × T (LΣ) × (T (LΣ)→ 2V ) × N  
T (LΣ) is a partial function composing any two FCM fragment components T1 = (V1, E1,Lab1,
LΣ) and T2 = (V2, E2,Lab2,LΣ) with T1, T2 ∈ T (LΣ) at points m(T1) ⊂ V1 by inserting
copies of T2 at the position x to list nodes in m(T1). The result of applications of π··FCM is a valid
syntax tree w.r.t. G or undefined if the transformation would not yield a valid syntax tree.

In the following, let f1 = Lab1(R1), f2 = Lab2(R2) where f1V∗G T1, f2V∗G T2, Q =
m(T1), and R1, R2 the root nodes of T1 and T2. π··FCM is defined as follows:

π··FCM (T1, T2,m, x) =



T1[Q/T2, x] = T ′1 if Q 6= ∅
and f1, f2 ∈ F
and ∫F (T1) 6= ⊥ ∧ ∫F (T2) 6= ⊥
and ∀v ∈ Q : ∫H(T1, v) 6= ⊥ ∧ v 6= R1

and f1V∗G T
′
1,

T1 if Q = ∅,
⊥ otherwise.

T1[Q/T2, x] = f1[. . . t′1 . . . t
′
i . . . t

′
k . . .] denotes the replacement of all k = |Q| sublists (hooks)

ti = li[s1, . . . , sj , . . . , sn] of T1 = f1[. . . t1 . . . ti . . . tk . . .] by an extended list t′i where
Ri ∈ Q is the root of ti, 1 ≤ i ≤ k, j, n ∈ N, 1 ≤ j ≤ n and n is the number of list
entries sj in ti. The t′i are constructed as follows: if 1 ≤ x ≤ n, then j = x and t′i =
li[s1, . . . , sj−1, s

′
j , s
′
j+1, . . . , s

′
n+1] where s′j = T2 and s′j+1 = sj , . . . , s′n+1 = sn. Otherwise,

t′i = li[s1, . . . , sj , . . . , sn, s
′
n+1] where s′n+1 = T2. �

The following example shows how the extend operator can be applied to a LogProg fragment
component.
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Example 4.4 (extend composition operator).
Given FCMLog defined in Example 4.2, the LogProg fragment component simple.fgmt in
Listing 4.1 after binding the slot in Example 4.3 and Tcore the syntax tree corresponding to
simple.fgmt. This example is focused on the StmtList hook, i.e:

Tcore = Program[main, ‘{’,StmtList [Stmt [. . .],Stmt [. . .],Stmt [. . .]], ‘}’]

For the extension of Tcore , consider the fragment component st.fgmt with the contents c =
f; and the corresponding syntax tree Tst :

Tst = Stmt [Name[ident ], ‘=’,Expr [Or [And [Term[Name[ident ]]]]], ; ]

A matching function m matches the StmtList hook:

m(Tcore) = {Program.StmtList} = {v}

Given Tcore , Tst and m, the extend composition operator can be applied to extend Tcore with Tst .
In contrast to bind, a list position needs to be provided to determine where Tst is inserted into
the StmtList . Since st.fgmt contains a declaration of c, it seems reasonable to insert it at a
position preceding the second statement which uses c to compute b (cf. Listing 4.1). Therefore,
the fragment is added at the first position which is also called prepending in ISC terminology:

π··FCMLog(Tcore , Tst ,m, 1) = Tcore [{v}/Tst , 1] = Program[main, ‘{’,StmtList [

Stmt [Name[ident ], ‘=’,Expr [Or [And [Term[Name[ident ]]]]], ; ],

Stmt [. . .],Stmt [. . .],Stmt [. . .]], ‘}’]

After binding initSlot in Example 4.3 and extending StmtList in this example, the compo-
sition result can be found in Listing 4.2 below.

1 main {
2 c = f;
3 a = t;
4 b = c;
5 result = a & !b | !a & b;
6 }

Listing 4.2: The simple.fgmt fragment component after
composition.

Since a is true and b is false because of c, the result of the program is true. �

In the following, Definition 4.1 is complemented with a notion for well-definedness. This
avoids inconsistent models such as FCMs that allow slots but do not support corresponding
fragment components.
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Definition 4.4 (well-defined fragment component model):
Let FCM = (G,S,H,F , ∫ ,L∫ ) be a fragment component model. FCM is called well-defined
under the following conditions:

• G is a reduced grammar (cf. Definition 3.3). That is, fragments cannot be empty, each
fragment type must be reachable from the start symbol S in G and a fragment must not
derive S in any derivation.

• For any FCM fragment component T = (V,E,Lab,LΣ) and v ∈ V , it holds that
∫S(T, v) 6= ⊥ → ∫H(T, v) = ⊥. That is, a node should not be a slot and a hook at the
same time (exclusiveness of point categories).

• For each slot candidate c ∈ S, there exist fragment candidates f, g ∈ F and fragment
components T1 = f [. . . t . . .], T2 = g[. . .], where t = (V ′, E′,Lab′,LΣ) = c[. . .] is
a subtree of T1 with root R′ which is a slot with ∫S(T1, R) 6= ⊥ so that a fragment
component T ′1 can be obtained by binding t in T1 with T2, i.e., π·FCM (T1, T2, {(T1, R

′)}) =
T ′1 (composability of slots).

• For each hook candidate c ∈ H, there exist fragment candidates f, g ∈ F and fragment
components T1 = f [. . . t . . .], T2 = g[. . .] where t = (V ′, E′,Lab′,LΣ) = c[e1, . . . , ek]
is a list in T1 with root R′ which is recognized as a hook (i.e., ∫H(T1, R

′) 6= ⊥) so that a
fragment component T ′1 can be obtained by extending the list in the subtree induced by R′

in T1 with T2, i.e., π··FCM (T1, T2, {(T1, R
′)}, 1) = T ′1 (composability of hooks). �

In the following example, the component model of Example 4.2 is identified as a well-defined
component model.

Example 4.5 (well-defined fragment component model).
Reconsider FCMLog of Example 4.2. FCMLog is a well-defined component model because (1)
GLog is a reduced CFG, (2)F∩H = ∅ so that for all fragment components T = (V,E,Lab,LΣ)
and v ∈ V , v never is a hook and a slot, (3) slots are composable by Example 4.3 and (4) hooks
are composable by Example 4.4. �

For the sake of completeness, the following two sketched definitions introduce the notions of
composition program and composition system.

Definition 4.5 (composition program):
A composition program consists of a set of composer signatures which can be applied for
composition, a stack of already executed compositions and a decision function which selects the
next applicable operation from the set of composer signatures and the stack of already executed
compositions. �

Definition 4.6 finally defines fragment composition systems and their compartments (cf. [Aß-
mann 2003, p. 119]):
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Figure 4.3.: Excerpt from the Boxology of COMPOST (cf. [Aßmann 2003, p. 296]).

Definition 4.6 (fragment composition system):
A fragment composition system (or invasive composition system) is a triple consisting of a
fragment component model, a set of primitive composition operators and complex composers,
and a composition language. �

In the remainder of this chapter, existing approaches on the implementation of invasive
composition systems are evaluated and compared.

4.2. The COMPOST Approach

COMPOST has been the first demonstrator implementation of ISC [Aßmann 2003] and provides
an invasive composition system for Java 1.4 implemented in Java. It is built around the RECODER
tool suite [Ludwig 2002; Heuzeroth et al. 2013]—a parsing, refactoring and transformation engine
for Java.

4.2.1. Component Model and Composition Process

As RECODER provides the model and the according classes of Java’s abstract syntax, the
COMPOST Java FCM is realized as an extra abstraction layer on top of these classes and the
RECODER tooling. This layer is called a Boxology and includes the basic implementation of a
fragment component API—the fragment boxes—and the basic composers, and it determines the
occurrences of slots and hooks in Java programs. Furthermore, it already provides some built-in
complex SoC abstractions like complex composers for mixin-based inheritance (i.e., HiDec),
aspects and views (i.e., SoCC), and also generics (i.e., TMP).

Figure 4.3 gives an overview of the available standard fragment boxes for Java in COMPOST as
a UML class diagram. Essentially, COMPOST supports CompilationUnitBoxes, Class-
Boxes, MethodBoxes and StatemenBoxes as basic fragment components encapsulating
compilation units, classes, methods and statements. Fragment boxes provide a basic API to write
composition programs in Java. They provide convenience methods for finding and composing
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slots and hooks, which ease the implementation process for composition-system users (i.e., the
developers of composition programs). The advantage of using Java as a composition language
is twofold. First, the composition system inherits the expressive power of a full imperative
programming language. Thus, arbitrary composition programs can be written, only restricted
by the supported FCM and the composition API. Second, component language and composition
language are equivalent. Hence, the system allows developers to write staged composition
programs (i.e., composition programs that generate composition programs), which also may reuse
already developed composition abstractions (e.g., complex aspect or template composers).

The composition process introduced by COMPOST is crucial to understand the way ISC-
based systems generally work and which tasks have to be generally conducted by a fragment
composition system. Below, the process is described in general as well as COMPOST-specifically.
The process passes through the following phases (cf. [Aßmann 2003, Chapter 4]):

Initialization. The composition system has to be instantiated and initialized. In COMPOST,
this has to be done in the composition program by a corresponding Java statement which
instantiates a new FragmentCompositionSystem object as shown below:

FragmentCompositionSystem cSys = new FragmentCompositionSystem("...");

Fragment loading. The composition-system instance can be used to load fragment compo-
nents from the file system as well as strings and other representations. Depending on
the fragment-identification function ∫F implemented by the system, a fragment may be
recognized as a component and can be loaded. In COMPOST, Java boxes can be loaded
via the API provided by the FragmentCompositionSystem:

FragmentBox box = cSys.createBox("...<resourceName>...");

Point identification. Slots and hooks (and potentially other compositional points as shown
later) of a box have to be identified using the implementation of the point-identification
functions—∫S and ∫H—of the system. COMPOST uses hook-identification tables to look
up AST nodes which have been identified as compositional points. The table can be
accessed through the FragmentBox API:

Hook hook = box.findHook("...<hookName>...");

For hook declarations, COMPOST provides a specific naming scheme, which originates
from the Hungarian Notation conventions by [Simonyi 1976] and is recognized by the
point-identification functions. Declared hooks in COMPOST are prefixed with generic,
followed by the actual name of the point and a suffix which denotes the fragment type of
the point. The following example illustrates this scheme. It is a ClassDeclaration
whose name can be parametrized by binding the slot T, which is an Identifier.2

public class genericTIdentifier {}

2The underline notation is adopted from the ISC book [Aßmann 2003] to improve the readability of fragment-box
listings. It is not an integral part of the markup.
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Transformation. In this phase, the actual composition is executed by binding and extending
slots and hooks. Depending on the composition-system implementation, this may happen
at a designated composition time, immediately or in a mixed composition style. Transfor-
mations in COMPOST are realized using the transactional transformation engine provided
by RECODER. A composition step can be triggered via the Hook API:

hook.extend(...<fragment>...) // for list-like hooks
hook.bind(...<fragment>...) // for slot-like hooks

COMPOST distinguishes declared hooks and implicit hooks, but has no explicit slot
concept. Typically, declared hooks correspond to the slots in Definition 4.1 (as they are
node-based) while implicit hooks correspond to the hooks in the same definition (as they
are list-based).

Emitting. Finally, fragments have to be emitted. Depending on the purpose of the composition
system, fragments are simply printed as text to the file system (pretty printing). However,
they can also be emitted as an AST or model, e.g., for further processing in a transformation
chain. In COMPOST, fragment boxes are printed back to the file system. This can be
triggered via the CompositionSystem API:

cSys.getJavaCompositionSystem().printAll();

Instantiations of the composition process can be simple non-recursive programs with distinct
initialization step, several composition steps and a distinct serialization phase. However, compo-
sition processes can also form composite transformation chains with complex interdependencies.
For example, a circular composition program may reuse composed fragments from a previous
composition program and may itself produce new input fragments for those composition programs
it depends on.

In the following, COMPOST is used to implement the BAF code generator as a simple
composition program.

4.2.2. The Business Application Generator in COMPOST

To implement the BAF generator with COMPOST, the basic fragment components of Chapter 2
have to be slightly rewritten, since COMPOST relies Hungarian Notation to mark up slots
instead of the syntactic hedges originally proposed in Chapter 2. Listing 4.3 shows a variant of
the BAF template for Person business objects. The class name can be parametrized via the
genericTypeIdentifier slot which has the name Type and can be replaced by a valid Java
identifier. The super class can be parametrized by binding the genericSuperSuperclass
slot which has the name Super, with a reference identifier denoting a concrete super class.
The remaining slots genericTypeNameConstant and genericPfxConstant represent
string constants that should contribute the class name (TypeName) and a line prefix (Pfx) to
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1 public class genericTypeIdentifier extends genericSuperSuperclass {
2 public String asString(){
3 String v = genericTypeNameConstant;
4 v+= genericPfxConstant + " id:" + getID();
5 v+= genericPfxConstant + " name:" + getName();
6 return v;
7 }
8 }

Listing 4.3: Person.jbx—the COMPOST equivalent of the business-object base template
Person.frgmt in Listing 2.3.

1 /* Field.jbx */
2 private genericTType genericFieldNameIdentifier;
3
4 /* Getter.jbx */
5 public genericTType genericGetSfxIdentifier() {
6 return genericFieldNameIdentifier;
7 }
8
9 /* Setter.jbx */

10 public void genericSetSfxIdentifier(genericTType genericFieldNameIdentifier){
11 this.genericFieldNameIdentifier = genericFieldNameIdentifier;
12 }

Listing 4.4: Field.jbx, Setter.jbx and Getter.jbx—the COMPOST equivalent of
the property accessory templates in Listing 2.5.

the output of the asString() method.3 In contrast to the original Person.fgmt, the lines
that produce the output for the ID and name properties–Lines 4 and 5—use additive expressions
on strings as slots within constants are not considered by COMPOST.

The code of the field fragment (Field.jbx) and the corresponding accessor methods
(Getter.jbx and Setter.jbx) is shown in Listing 4.4. It has also been rewritten ac-
cording to the COMPOST naming schemes. The identifier slots are one-to-one mappings to
the slots in the scenario description. genericFieldNameIdentifier denotes the place-
holder for the actual name of the field. Moreover, genericGetSfxIdentifier as well as
genericSetSfxIdentifier are the slots for the accessor-method names. The actual Java
type of the field can be parametrized using the genericTType slot which can be replaced by
an AST node representing a reference to a type declaration. The name T is used instead of Type
to avoid confusion with the Type suffix.

The composition program using COMPOST’s Java API to express the composition can be
investigated in Listing 4.5. The composition system is initialized in Line 4 while the model (cf.
Listing 2.2) is loaded in Line 4. After loading, for each RoleDefinition in the model, an
adequate Java implementation is composed from the above fragments (cf. Lines 10–28). First, the

3Originally, the COMPOST version 0.78e, which was used for the implementation, did not support Constant slots.
Thus, it was extended with an according hook class.
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1 public void compositionProgram() throws IOException {
2
3 /* initialize/get the current composition system instance */
4 FragmentCompositionSystem compositionSystem = getCompositionSystem("baf/in/");
5
6 /* load the business model with EMFText */
7 BusinessModel bm = loadBusinessModel("baf/in/model.bm");
8
9 /* for each role definition generate a Java class */

10 for(RoleDefinition role: preOrder(bm.getRoleDefinitions())){
11
12 /* copy and rename Person.jbx */
13 CompilationUnitBox box = getPersonBoxForRole(role.getName());
14
15 /* find and bind declared hooks (slots) in box */
16 box.findHook("genericTypeIdentifier").bind(role.getName());
17 box.findHook("genericNameConstant").bind("\"" + role.getName() + "\"");
18 box.findHook("genericPfxConstant").bind("\"\\n\"");
19
20 /* compose the super class */
21 composeSuperClass(box,role);
22
23 /* compose fields and accessory methods for properties */
24 composeFieldsAndAccessors(box,role);
25
26 /* extend asString according to properties of super roles */
27 composeAsString(box, role);
28 }
29 /* print all fragments to the output directory */
30 compositionSystem.getCompositionSystemManager().setOutputPath("baf/out/");
31 compositionSystem.getJavaCompositionSystem().printAll();
32 }

Listing 4.5: The BAF code generator as COMPOST composition program.

contents of Person.jbx are copied, a CompilationUnitBox is created and its box name
is set to the name of the RoleDefinition. Second, the Type, Name and Pfx slots are bound
to the role name and the line-prefix string (cf. Lines 16–18). In the third step, a subcomposer
composeSuperClass which composes a super class and weaves constructors is invoked (cf.
Line 21). It will be explained in more detail in the next paragraph. During the iteration’s fourth
step, the subcomposer composeFieldsAndAccessors composing and weaving fields and
accessor methods for the RoleDefinitions properties is invoked (cf. Line 24). It will
be explained in more detail after the next paragraph. Afterwards, composeAsString is
called to extend the methodExit hook of the asString operation with string-building code
according to the PropertyDefinitions of the super roles (cf. Line 27). Finally, after all
RoleDefinitions were processed by the composition program, the preferred output location
is set and all fragments are printed to files in that location.

The composition program composeSuperClass which computes the actual super class
of the generated Java class and extends it with a constructor, is shown in Listing 4.6. Basically,
it makes a decision on the actual super class depending on the number of super RoleDefi-
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1 private void composeSuperClass(CompilationUnitBox box, RoleDefinition role) {
2
3 /* request number of super roles declared for the current role */
4 int roleNum = role.getSuperRoles().size();
5
6 /* if no super roles defined --> bind Person to Super slot */
7 if(roleNum == 0) {
8 box.findHook("genericSuperSuperclass").bind("Person");
9 }

10 /* if at least one super role defined --> bind the first to Super slot */
11 else if(roleNum > 0) {
12 box.findHook("genericSuperSuperclass")
13 .bind(role.getSuperRoles().get(0).getName());
14
15 /* if two or more super roles defined --> mix in the others */
16 for(int i = 1; i < roleNum; i++) {
17 box.extend(getPersonBoxForRole(role.getSuperRoles().get(i).getName()));
18 removeDuplicateMethods(box);
19 }
20 }
21 }

Listing 4.6: Complex super-class composer of the COMPOST-based BAF generator.

nitions that have been declared for the given RoleDefinition in the current BAF model.
If no super role is declared, Person will be bound as the super class (cf. Lines 7–9). The
second case occurs if one or more super RoleDefinitions have been declared in the model
(cf. Lines 11–20). The super class is bound to the name of the RoleDefinition declared
first in the super role list. Accordingly, the emitted Java class inherits from the implementation
class generated for the super role. Hence, no extra code has to be woven for this RoleDefi-
nition. However, since Java only supports single inheritance, the approach for the remaining
RoleDefinitions is different by using COMPOST’s built-in class-based extend operator
(cf. Line 17). The extend operator “mixes” the members of the argument class into the Class-
Box(es) of the target CompilationUnitBox. Hence, the code which is generated for the
super RoleDefinition is added also to the class body of the extending RoleDefinition.
After the extend operator has been executed, duplicate methods are deleted, e.g., asString.
This has to be done manually because COMPOST does not check context-sensitive constraints.

The contents of composeFieldsAndAccessors can be investigated in Listing 4.7. For
each PropertyDefinition owned by a role, the composition program generates the cor-
responding output using the accessor templates of Listing 4.4 and extending the intermediate
CompilationUnitBox. First, variables that carry the names of the property’s field accessor
methods and the default value are initialized (cf. Lines 8–10). In a second conditional composition
step in Lines 13–26, the box is extended with the default-setting code if this is specified in the
model. In this example, a complex constructor-based variant to realize this has been chosen: if a
default value is present, the members list of the generated class is extended with a parameterless
default constructor. The constructor itself is then extended at its methodExit hook with a call
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1 private void composeFieldsAndAccessors(
2 CompilationUnitBox box, RoleDefinition role) throws IOException {
3
4 /* iterate over the given role’s properties */
5 for(PropertyDefinition prop:role.getProperties()){
6
7 /* prepare set and get method names, request property default value */
8 String setSfx = "set" + toFirstUpper(prop.getName());
9 String getSfx = "get" + toFirstUpper(prop.getName());

10 String defValue = prop.getType().getDefault();
11
12 /* if a default value is declared, add a setSfx call to the constructor */
13 if(defValue != null){
14
15 /* extend the implicit box members hook with an empty constructor */
16 if(box.findHook("constructors") == null){
17 box.findHook("members")
18 .extend("public " + role.getName() + "()" +
19 " { \nsuper();\nSystem.out.println(\"setting defaults ...\");}");
20 }
21
22 /* extend the implicit methodExit hook of the constructor */
23 box.findHook("genericTypeIdentifier." + role.getName() + ".methodExit")
24 .extend("set" + toFirstUpper(prop.getName()) +
25 "(" + prop.getType().getDefault() + ");");
26 }
27
28 /* if a property is not declared in a super role --> extend the box */
29 if(!isShadowed(prop)){
30
31 /* extend asString operation with property-specific code */
32 box.findHook("genericTypeIdentifier.asString.methodExit")
33 .extend("v+= \"\\n\" + \" " + prop.getName() + ":\" + "+getSfx+"();");
34
35 /* extend box members with field and method boxes */
36 box.findHook("members").extend(createFieldBox());
37 box.findHook("members").extend(createSetterBox());
38 box.findHook("members").extend(createGetterBox());
39
40 /* bind the slots of the new members */
41 box.findHook("genericTType").bind(prop.getType().getTargetType());
42 box.findHook("genericNameIdentifier").bind(prop.getName());
43 box.findHook("genericSetSfxIdentifier").bind(setSfx);
44 box.findHook("genericGetSfxIdentifier").bind(getSfx);
45 }
46
47 /* commit the changes to RECODER to be safe in the next iteration*/
48 box.commit();
49 } }

Listing 4.7: Complex members composer of the COMPOST-based BAF generator.
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to the set method of the corresponding field. Next, the field and accessor fragments are appended
to the members list of the class (cf. Lines 29–45). A testing predicate—isShadowed—makes
sure that if the property is already declared in a super role, it is not added to the currently
processed role. The asString operation is extended with an expression statement appending
property-specific information to the emitted object-representation string (cf. Lines 32 and 33).
After extending the members hook of the FragmentBox, the fragment’s slots are bound with
the prepared type and identifier names. As a final step in each iteration, the changes are committed
to the underlying RECODER engine (cf. Line 48). This operation ensures that fragments with
the same hooks can be parametrized with values of the next property during the next iteration.

The resulting code emitted by the composition program is nearly equivalent to the code as it
should have been expected from the description in Chapter 2. The exact code can be inspected in
Appendix A.2.

4.2.3. Evaluation

In this section, it has been shown that COMPOST is suited to implement the BAF code generation
backend. The emitted code is nearly equivalent to what was sketched in Chapter 2. COMPOST
supports hook extension, slot binding and mixin-based composition. Compositional points can
be addressed with path-like expressions and, since Java is used as a composition language,
conditional composition (if), fragment iteration (for) and recursive composition programs are
supported. Thus, COMPOST is powerful enough to express arbitrary compositions which are
allowed w.r.t. its Boxology.

COMPOST has some downsides. Technically, it is out of maintenance and only supports the
version 1.4 of Java. Hence, it would not be able to process fragment components containing
foreach loops and generics introduced in Java 1.5. Moreover, the component model for Java is
rather fixed and difficult to extend because it directly relies on the API and internals of RECODER.
Consequently, to change COMPOST’s ∫ or the set of point identifiers L∫ (cf. Definition 4.1),
the composition-system developer has to deal with these internals. This also comprises an
understanding on how and when RECODER internally performs AST rewrites (compositions).

Besides the specific RECODER and Java binding, the Boxology is a universal API for ISC-
based fragment composition and does not depend on a specific FCM. In principle, it can be
used to develop adapters for arbitrary languages. Thus, creating a language-specific binding
of COMPOST is creating subclasses of the Boxology classes and adapt the Boxology API to a
fragment-language implementation. In [Pop et al. 2005], such a binding has been described for
an XML-based DSL. The approach developed in this thesis picks up on the Boxology concept by
providing reusable object-oriented RAG modules as a Boxology-like API with attributes.

Naturally, creating language-specific adapters for COMPOST is a cumbersome and implemen-
tation-saddled task. A more declarative and transparent approach could help to ease the im-
plementation of ISC-based systems. The approaches of the next two sections are focused on
providing declarative specification languages for fragment composition systems based on CFGs
and metamodels.
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4.3. Universal Invasive Software Composition

Universal invasive software composition (U-ISC) and its implementation Reusewair have been
introduced by [Henriksson 2009]. U-ISC is a grammarware [Klint et al. 2005b] approach to ISC
and eases the creation of fragment composition systems by providing declarative specification
languages for component models and for syntactic language extensions with the purpose to
introduce reuse-enabling concepts. Starting point for developing composition systems with U-ISC
is the CFG G that specifies the abstract syntax of the fragment language. G is extended with
slot and reuse nonterminals so that a reuse grammar G′ is obtained. From G′, the U-ISC
implementation Reusewair for Java generates a basic infrastructure for composer implementation
in plain Java. The U-ISC approach has been successfully applied to implement composition-
system prototypes in several domains, e.g., semantic web or language processing [Aßmann
et al. 2007]. In comparison to the COMPOST approach, U-ISC introduced the following novel
concepts to ISC:

Declarative component-model specification. In contrast to the ISC approach by [Aß-
mann 2003], the U-ISC approach comprises the component-model specification language
(CmSL) to specify fragment component models. The CmSL provides concepts to slotify
certain nonterminals in the underlying grammar of the fragment language which is also
called a base grammar in U-ISC. Slotification is a grammar transformation which, for
a given nonterminal, introduces an alternative nonterminal and productions representing
slots. Second, nonterminals of the base grammar can be declared as fragment types.

Visitor stubs and composition algebra. Basic composition operators such as bind and
extend are realized as a composition algebra and implemented as a Java class in the
Reusewair tool. This algebra is a basic API of composition operators that has to be
used in complex composers for achieving complex compositional behavior. Complex
composers are also implemented completely in Java. To support this, Reusewair generates
an implementation stub, according to the well-known visitor design pattern (cf. [Gamma
et al. 1995]). Choosing Java as a host language for composition seems to be a viable choice
as it makes a full programming language available for writing composition programs.

CFG-based reuse-language extensions. As an extension to plain U-ISC component mod-
els, [Henriksson 2009] proposes embedded U-ISC to add composer declarations to the base
language. Therefore, CmSL supports direct manipulation of the base grammar by construct
injection and marking nonterminals as composer signatures via construct annotation. Using
injection and annotation, composer signatures can be embedded in a fragment language
in such a way that complex composers can be “called” in the reuse language. For more
detailed description of construct injection and construct annotation with CmSL, it is kindly
referred to [Henriksson 2009, p.115]. The semantics of composer declarations has to be
implemented using the basic visitor stubs and the API of the composition algebra.
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Figure 4.4.: Component-model code generation in Reusewair.

Figure 4.4 summarizes Reusewair’s generative approach. In a broad sense, the component-model
specification consists of a CmSL specification, an AST grammar of the CnL and a corresponding
grammar for concrete syntax. Similar to the BAF model, the AST grammar is realized as an EMF-
based metamodel while the concrete syntax is based on EMFText [Heidenreich et al. 2009a].4

Based on the CmSL specification, Reusewair modifies the original AST grammar by injection and
derives an extended grammar with reuse concepts. If slots or other concepts have been introduced
into the extended AST grammar, a concrete-syntax grammar for these concepts has to be provided
additionally. Reusewair’s target language for generated artifacts is Java. For generating AST
and parser implementations, it uses the EMF code generator for Java and the EMFText parser
generator. From the CmSL, it generates a Java implementation of a basic composition algebra
and a set of Java fragment interfaces as types of that algebra. Similar to fragment boxes in
COMPOST, the fragment interfaces hide implementation detail, provide an API for loading and
storing, as well as an API for accessing typical ISC composition operators. Finally, a rudimental
visitor implementation is generated. The main purpose is to provide a simple infrastructure to
traverse the ASTs of fragments and to invoke in-place compositions.

In the following subsections, parts of the BAF generator will be implemented using Reusewair.5

4.3.1. A Component Model for Java–

To realize the BAF code generator in Reusewair, the Java– model used in [Henriksson 2009]
has been extended with concepts required to realize the example (e.g., additive expressions and

4Historically, a rudimentary version of EMFText was an integral part of Reusewair and all of its predecessors.
5Since Reusewair has been discontinued in 2009, an intermediate version (0.6.0) from the repository [Software
Technology Group and DevBoost GmbH 2013b] was used which the author of this thesis modified and improved to
work with the BAF example and EMFText 1.4.1.
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1 extends file:java.cs @ java as file:rjava.cs .
2
3 % declare which nonterminals should have slot alternatives
4 slotify java.QualifiedName.
5 slotify java.Identifier.
6 slotify java.StringValue.
7 slotify java.IntegerValue.
8
9 % declare which nonterminals are fragment types

10 fragtypes {
11 java.CompilationUnit, java.MethodDeclaration,
12 java.Statement, java.VariableDeclaration, java.Modifier,
13 java.StringValue, java.Identifier, java.QualifiedName,
14 java.ClassDeclaration, java.IntegerValue, java.AttributeDeclaration
15 }

Listing 4.8: CmSL specification declaring a fragment component model for Java–.

assignments). The improved Java– is a small subset of Java 1.4, including classes, methods,
variable declarations, statements, assignments and additive expressions over strings and numeric
values. Similar to all formal language implementations based on EMFText, Java– comes with
parsing and printing support. Consequently, the generated implementation can load and store
Java– fragments out of the box.

Listing 4.8 shows the CmSL component model for the BAF example. In Line 1, the grammar
of Java– is imported and the location of the target reuse grammar—rjava—is declared. The
set of syntactic fragment-component types is declared between Lines 10 and 15. For each
entry, Reusewair generates a fragment interface for composition. Slots are declared using the
keyword slotify. Lines 4–7 contain the slotify declarations of the BAF example. For
instance, QualifiedName and Identifier slots are used as placeholders for class names
and variable names. Slotification is a transformation that takes an AST grammar Gbase and
produces a modified base grammar G′base and a reuse grammar Greuse. The transformation works
as follows: consider a nonterminal B ∈ Gbase, a slotification statement slotify B in some
CmSL specification, and the following two productions in Gbase:6

B ::= γ
A ::= α child:B β

The algorithm introduces an abstract nonterminal BAbstract which replaces B in all of its
contexts (i.e., right-hand sides of a production) and has B as an alternative. Consequently, in the
modified base grammar G′base the original productions are replaced by the following ones:

A ::= α child:BAbstract β
B .BAbstract ::= γ
@BAbstract ::= ε

6The notation for abstract syntax used in this thesis is defined in Section 3.2.3. α, β, γ are arbitrary sentential forms.
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1 SYNTAXDEF rjava
2 FOR <...location of abstract grammar/metamodel Greuse...>
3
4 // declare which Java nonterminals can be parsed
5 START java.CompilationUnit, java.StringValue, java.AttributeDeclaration,
6 java.MethodDeclaration, java.QualifiedName, java.Statement
7
8 // importing the base grammars (abstract and concrete syntax)
9 IMPORTS {

10 java:<...location of abstract grammar/metamodel G′
base...>

11 WITH SYNTAX javamm <java.cs>
12 }
13
14 // declare the slot syntax with syntactic hedges
15 RULES {
16 IdentifierSLOT ::= "[[" name "]]";
17 QualifiedNameSLOT ::= "[["name "]]";
18 IntegerValueSLOT ::= "[i:" name ":i]";
19 StringValueSLOT ::= "[s:" name ":s]";
20
21 VariationPointName ::= name[IDENT];
22 }

Listing 4.9: Definition of an EMFText concrete syntax grammar for slots in Java–.

The transformation is applied for every slotify statement in the CmSL specification, and
for each context at hand the concrete nonterminal is replaced with the abstract one. The reuse
grammar Greuse is an extension to G′base and introduces a slot alternative BSlot which “inherits”
from BAbstract and Slot from the internal Reusewair component metamodel:

BSlot .BAbstract,Slot ::= ε
Slot ::= <name> <type>?

Considering the BAF example, the above transformation is applied to the according nonter-
minals in Listing 4.8. Four abstract nonterminals are added to the abstract syntax of Java– and
four slot nonterminals are introduced into the reuse grammar of Java–: QualifiedNameSLOT,
IdentifierSLOT, StringValueSLOT and IntegerValueSLOT. Based on these types,
all slots of the BAF example can be specified, except slots within strings (cf. Pfx in Listing 2.3)
as these kinds of slots are not supported by Reusewair.

Using Reusewair’s slotify operator, the abstract syntax is ready to be used for composition.
However, still the textual representation of slots needs to be specified as an EMFText grammar,
which is shown in Listing 4.9. Lines 5–6 specify that the parser accepts the given nonterminals as
starts symbols. The actual syntax of slots is specified in the RULES section, between Lines 15–22.

Mainly, the same hedge symbols (“[[...]]”) are used to mark up slots in Java– programs.
However, to distinguish IntegerValueSlots and StringValueSlots from the others
deterministically, “[i:...:i]” and “[s:...:s]” are used as alternative markup. This
is required by the underlying parsing approach of EMFText which does not support resolving
ambiguities in its specification language.
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Based on the specifications presented so far, an implementation stub of a composition system
can be generated.

4.3.2. The Business Application Generator in Reusewair

From the component model and the extended grammars, Reusewair generates the basic stubs and
API in Java. Subsequently, these are used to realize the BAF code generator.

Listing 4.10 contains the basic composition program. It loads the business model from
the specification file and then subsequently processes RoleDefinitions in the model (cf.
Lines 7–40). During each iteration, a new parametrizable copy of the basic person.rjava
is loaded and instantiated as an ICompilationUnit fragment. The basic version of this
fragment is shown in Listing 2.3. It is slightly modified to be used with Reusewair and Java–.
Like in the COMPOST case, the Pfx slot is moved to its own subexpression ([s:Pfx:s]).
A parametrization of basic slots occurs between Lines 17–29. If super roles are defined in the
processed model, the first one is chosen as a super class, which is similar to the COMPOST case.
Otherwise, Person becomes the super class. After parametrization, fields and the corresponding
field accessors are added to the fragment (cf. Lines 33–36). In the last line, the parametrized and
extended result is printed back to a source file.

In the following, the extension of the ICompilationUnit fragment with addFields is
described since it is the most complex extension. The others are implemented in comparable
ways and are therefore omitted. Listing 4.11 provides the composition program for adding a
RoleDefinition’s properties to the generated implementation class. Considering hooks,
Reusewair has no support to address hooks in their context (e.g., using a regular path language or
pattern matching). Especially, the CmSL has no means for specifying hooks. Instead, any occur-
rence of a nonterminal in a list can be used as an implicit hook. For finding and extending such
points, Reusewair provides its generated visitor API. The API has a visit stub implementation
for each fragment type declared in the FCM. In the addFields composer, the corresponding
visitor is provided as an inline class declaration between Lines 7–37. It traverses a given Java–

fragment until a method declaration is reached and iterates over all PropertyDefintions
of the given role. During each iteration, it converts a property to a corresponding field fragment
which is finally added to the class before its first MethodDeclaration.

Depending on a given property default value, the algorithm uses different variants of the field
declaration—with or without a Value slot (cf. Lines 18– 27). The variant with Value slot is
provided as an alternative to the optional default constructor because Java– does not consider
constructor declarations in its grammar.

Finally, the prepend composer is called in Line 34 so that the field is inserted at the position
before the visited IMethodDeclaration.
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1 public void compositionProgram() {
2
3 /* load the business model with EMFText */
4 BusinessModel bm = loadBusinessModel(new File("baf/in/model.bm"));
5
6 /* for each role definition, generate a Java class */
7 for(RoleDefinition role: bm.getRoleDefinitions()){
8
9 /* load the person fragment with EMFText and set up basic parameters */

10 ICompilationUnit fgmt = ICompilationUnitImpl.load("file:baf/in/person.rjava");
11 String currentName = role.getName();
12 IIdentifier ident = createIdentifier(currentName);
13 IStringValue sIdent = IStringValueImpl.load("\"" + currentName + "\"");
14 IStringValue sPfx = IStringValueImpl.load("\"\\n\"");
15
16 /* bind type-signature related slots and the Pfx slot */
17 fgmt.bind("Type",ident);
18 fgmt.bind("TypeName", sIdent);
19 fgmt.bind("Pfx",sPfx);
20
21 /* bind the super type slot according to super roles declaration */
22 if(role.getSuperRoles().isEmpty()){
23 IQualifiedName sprIdent = createQualifiedName("Person");
24 fgmt.bind("Super",sprIdent);}
25 else {
26 String sprRoleName = role.getSuperRoles().get(0).getName();
27 IQualifiedName sprIdent = createQualifiedName(sprRoleName);
28 fgmt.bind("Super",sprIdent);
29 }
30
31 /* extend the parametrized person fragment with fields, field accessors
32 and print statements*/
33 addGetters(fgmt,role);
34 addSetters(fgmt,role);
35 addFields(fgmt,role);
36 addPrintStmts(fgmt,role)
37
38 /* print the results back with EMFText */
39 fgmt.print("baf/out/" + currentName + ".rjava");
40 }
41 }

Listing 4.10: The BAF code generator for business roles as Reusewair composition program.
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1 private void addFields(ICompilationUnit fgmt, RoleDefinition role){
2
3 /* for each property definition, we add a field to the given class */
4 for(final PropertyDefinition prop: role.getProperties()){
5
6 /* creating a new inline JavaVisitor implementation */
7 JavaVisitor extender = new JavaVisitor() {
8
9 /* visiting a member method of the given class */

10 public boolean visit(IMethodDeclaration decl){
11
12 /* initializing fragments to be bound */
13 IIdentifier propIdent = createIdentifier(prop.getName());
14 IQualifiedName propType = createQualifiedName(prop.getType());
15 IAttributeDeclaration toBeInserted = null;
16
17 /* no default value in the model: load fragment without value slot */
18 if(prop.getType().getDefault() == null)
19 toBeInserted = IAttributeDeclarationImpl
20 .load("private [[Type]] [[FieldName]];");
21 /* default value in the model: load fragment with Value slot */
22 else {
23 toBeInserted = IAttributeDeclarationImpl
24 .load("private [[Type]] [[FieldName]] = [i:Value:i];");
25 IIntegerValue iValue = createIntegerValue(prop.getType().getDefault());
26 toBeInserted.bind("Value",iValue);
27 }
28
29 /* bind type and field names */
30 toBeInserted.bind("Type", propType);
31 toBeInserted.bind("FieldName",propIdent);
32
33 /* insert the new field before visited member method and stop visiting */
34 decl.prepend(toBeInserted);
35 return false;
36 }
37 };
38
39 /* trigger the composition by passing the visitor object to the fragment */
40 fgmt.accept(extender);
41 }
42 }

Listing 4.11: Adding fields for each property of a given RoleDefinition.
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4.3.3. Evaluation

In this section it has been shown, how Reusewair can be used to implement the BAF backend.
The generator implemented with Reusewair nearly corresponds to what was sketched in Chapter 2.
The emitted code is nearly equivalent to the expected code—except support for slots within strings
and mixin-based inheritance. While the former is due to the lacking support of value slots in
Reusewair, the latter is due to the lacking support of interface declarations in Java–. Although
the Reusewair implementation was improved by this author towards a support of the current
version of EMFText for parsing and printing, and the implementation still has some flaws, U-ISC
could be a viable approach for implementing the code generator in reasonable time and with
reasonable effort. The CmSL is a small language with a few language concepts that have to be
learned. Also, the concept of slotification of AST grammars is understandable by developers. It
should also be mentioned that [Henriksson 2009] also introduced embedded invasive software
composition (E-ISC) as an extension to U-ISC with support for adding complex composers (e.g.,
import module) as language concepts to the base grammar. This enables ISC macros with a
visitor-based implementation.

On the downside, the approach has some weaknesses. Most obviously, it lacks opportunities to
specify hook candidates in the fragment component model (cf. Definition 4.1 in Section 4.1.2).
While the sets of slot nonterminals S and fragment nonterminals F are well-defined by the
slotify and fragtypes operators in the CmSL, the set of hook nonterminals H always
contains all list nonterminals in Gbase, since CmSL lacks means to specify it.

Furthermore, the compartments of the point identification function ∫ are not accessible—
especially ∫S and ∫H. This has several implications. Slotification is the only way to identify slots
in U-ISC. However, this requires the grammar to be transformed (cf. Section 4.3.1) and can
easily break existing tooling that relies on the Gbase metamodel and consequently does not work
with instances of G′base and Greuse. In the BAF example, this is not of importance. Because no
existing tool implementation is used, everything can be generated from the specifications at hand.
But consider the user may have wanted to use some code analysis algorithm during composition
which originally was written for the base grammar and is broken for Greuse. Conflicts between
productions in the reuse grammar are a second problem due to the missing ∫S and slotification.
For example, in the concrete syntax grammar in Listing 4.9 different hedge symbols have been
specified to distinguish slots for integers and strings, where it would be good to have the same
syntax for all slot declarations.7

Due to the lack of means to specify the hook identification function ∫H, hooks cannot be
identified easily via the generated component model API. The identification has to be implemented
manually by the developer of the composition visitors. The realization of context-dependent
hooks via ∫H is also an issue that has to be handled manually in the visitors. Since Reusewair only
supports a depth-first traversal style and the access to context information and to the AST under
composition is somewhat limited by the generated API, it seems very likely that the API does not

7A solution to this is replacing both with a single value slot nonterminal in the CmSL. However, this indirectly
introduces slots for any kind of value instead of string and integer values only.
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help to realize more complex composition systems with complex FCMs such as COMPOST. The
approach presented in this thesis overcomes these problems by using RAGs to model complex
context and by composition strategies driven by attribute dependencies.

4.4. Universal Invasive Software Composition for Graph
Fragments

In recent research [Johannes 2011], the CFG-based approach of U-ISC was extended to also
support the creation of composition systems for visual and textual modeling languages. The
approach is called U-ISC/Graph and supports fragment languages based on the EMF [Eclipse
Foundation 2013b] and the EMF standard metamodeling language Ecore, which is frequently used
as an abstract-syntax specification language in the modeling domain. In the thesis [Johannes 2011],
it is claimed that U-ISC/Graph enables component-based model-driven software development
(MDSD) by introducing three novel concepts to ISC:

Fragment collaborations. The first contribution are fragment collaborations (FraCols). Fra-
Cols define component models on an abstract, language-independent level. The main
concepts are fragment roles which declare abstract component interfaces based on the
notion of port types, and fragment collaborations which declare directed collaborations
between port types in the abstract fragment role definitions (cf. [Johannes 2011, p. 39]).

Graph fragments. The second important concept of U-ISC/Graph is the support of graph frag-
ments. Although the naming suggests that general graphs can be handled by U-ISC/Graph,
only a subset of the class of directed graphs with special properties is considered. Most im-
portantly, graph fragments need to have a designated spanning tree making all of its nodes
reachable from the fragment root. As the approach is restricted to component languages
based on EMF/Ecore, the designated spanning-tree property is ensured by an adequate use
of the Ecore’s containment reference type. Other edges in graph fragments that do not
belong to the spanning tree are called non-containment references and may connect nodes
in arbitrary ways restricted by the component-language metamodel. For the specification of
graph-fragment-based component models over such data structures, the Reuse EXtension
language for Component Model Configuration (REXCM) is provided. The basic concepts
of REXCM will be explained briefly in Section 4.4.1.

Universal composition language. Finally, U-ISC/Graph provides the Universal Composi-
tion Language (UCL) for the composition of EMF-based fragments. UCL is a declarative
language with a graphical diagrammatic notation (cf. [Johannes 2011, p. 104]). Frag-
ments are denoted as named boxes with ports represented by circles with different line
and fill styles depending on the port type. Composition steps are declared by drawing
composition links between contributing and receiving ports or between configuring ports.
In contrast to the other ISC approaches discussed so far, the composition operators are
selected automatically by the type of link and the kind of points grouped by the port.
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The following section explains the ISC refinements by U-ISC/Graph to support graph frag-
ments. Afterwards, the Reuseware composition framework is applied to implement the composi-
tion system of the BAF example. Reuseware is the standard implementation of U-ISC/Graph.

4.4.1. Compositional Points

To provide a better integration with graph fragments, U-ISC/Graph refines the model of ISC by
modifying the concepts of slots and hooks, and introducing additional kinds of compositional
points. It can be distinguished between tree-compositional and graph-compositional points. It
follows a short description of the tree-compositional points available in REXCM.

Hook. The concept of hooks in U-ISC/Graph is equivalent to the concept of hooks in COMPOST:
hooks can be explicit/declared in a fragment or they can be implicit for list-like concepts.

Prototype. A prototype is a designated node within a fragment whose contained subtree is
meant to be copied—perhaps multiple times—and to be inserted into list hooks or to
replace declared hooks during composition.

Value hook. While general hooks are nodes or lists, value hooks are string properties of nodes
that can be manipulated by string replacement or transformation.

Value prototype. These special kinds of prototypes are values of node properties that can be
used for composing them with value hooks.

The following use case exemplifies the basic principle of the hook<–prototype composition
relation in U-ISC/Graph.

Example 4.6 (hook<–prototype composition of finite-state machines.).
Consider the list of states and edges in a finite-state machine SMA (cf. Figure 4.5(a)) as implicit
hooks and consider the states and edges of a finite-state machine SMB (cf. Figure 4.5(b)) as
prototypes.

a0start a1 a2
e1 e2

(a) SMA with edge and state-list hooks.

b0start b1
e3

e4

(b) SMB with b0 and e3 prototypes.

Figure 4.5.: The state machine fragments SMA and SMB before composition
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a0start a1 a2

b′0 . . .

e1

e′3

e2

Figure 4.6.: SMA after insertion of b′0 (a copy of prototype b0) and e′3 (a copy of e3).

A composition program can replicate arbitrary states of SMB in SMA by creating copies of
these states and edges, and bind/extend the hooks of SMA with these copies. Figure 4.6 shows
the result of composition steps which replicated the state b0 of SMB and its outgoing edge e3 in
SMA (it is assumed that the composition system also replicates the relation of e′3 as an outgoing
edge of b′0 ). Observe that the above figures are graphical representations of Ecore-based models.
Thus, in the implementation states and edges are objects that are child nodes of a state-machine
object which is the distinct root node of the model. �

In the following, the graph-compositional points that go beyond the original concepts of ISC
are described.

Slot. The meaning of slots in U-ISC/Graph is different from the notion of slots in U-ISC or in
BETA. A slot is the endpoint of non-containment (reference) edge, which can be changed
during composition so that the edge points to a different target object after composition.

Anchor. An anchor is a designated node within a fragment that is allowed to become an
endpoint of a reference edge during composition, i.e., binding an anchor node to a slot
node is equivalent to switching the endpoint of a reference which points from some node
to a slot node to an anchor node.

Example 4.7 extends the above U-ISC/Graph composition example on finite-state machines
with graph-compositional elements.

Example 4.7 (slot<–anchor composition of finite-state machines.).
As an example for the slot<–anchor composition relation (also called configuration) reconsider
the state-machine composition system of Example 4.6. After the extensions of the state and edge
hooks of SMA , b′0 and e′1 are still not connected with any other state in SMA . Thus, b′0 is not
reachable from any other state in SMA and e′1 is a dangling edge.

To change this, a U-ISC/Graph composition system can provide slots for outgoing edges of
each state of a finite-state machine. Hence, since e1 is an edge between a0 and a1, and e2 is
an edge between a1 and a2 in SMA as depicted in Figure 4.5(a), the endpoints of e1 and e2 are
recognized as slots and could be bound to the anchor b′0. Figure 4.7 below shows the result of
the binding of anchor b′0 to the endpoint slot of e1.
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a0start a1 a2

b′0 . . .

e1

e′3

e2

Figure 4.7.: SMA after binding the endpoint slot of e1 to anchor b′0.

Now transition e1 points to b′0. However, this is still problematic since a1 and a2 are no longer
reachable. To correct this, in a next composition step the endpoint slot of e′3 can be bound to the
anchor state a1. The result of this composition is shown in Figure 4.8.

a0start a1 a2

b′0

e1 e
′
3

e2

Figure 4.8.: SMA after binding the endpoint slot of e′3 to anchor a′1.

After the last composition step, SMA is a correct state machine without dangling edges and
all states reachable. Observe that since well-formedness is not considered during composition,
also incorrect state machines could be constructed by Reuseware. �

Subsequently, a U-ISC/Graph system for the BAF example is developed using Reuseware.

4.4.2. The Business Application Generator in Reuseware

To implement the BAF composition scenario in Reuseware, three substeps need to be conducted.
First, a specification for the required fragment collaborations has to be developed. Second,
the actual FCMs for the business DSL and Java have to be developed. Third, the composition
program has to be implemented. Subsequently, the steps are explained in detail.

Fragment Collaborations

Initially, to implement the code generator with Reuseware [Software Technology Group and
DevBoost GmbH 2013b], a fragment-collaboration specification has to be provided using the
fracol language. It can be regarded as a manifestation of abstract component roles and their
interplay, and thus declares the most basic collaboration relations occurring in a composition
system. In Reuseware, fragment collaborations can be specified by the developer himself
or, alternatively, an existing fracol specification can be reused. In Listing 4.12, a simple
fracol specification supporting the BAF example is shown. It declares three fragment roles:
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1 fracol Simple.Fragment.Collaboration {
2 fragment role Receiver {
3 dynamic port type Reception;
4 }
5 fragment role Contributor {
6 dynamic port type Contribution;
7 }
8 fragment role Configurable {
9 dynamic port type Config;

10 }
11 contributing association Contribution {
12 Contributor.Contribution --> Receiver.Reception
13 }
14 configuration association Config {
15 Configurable.Config --> Configurable.Config
16 }
17 }

Listing 4.12: fracol specification declaring three fragment roles.

Receiver, Contributor and Configurable. Each of them provides a named port type8

which denotes an abstract aggregation of compositional points (e.g., hooks and anchors) of a
fragment. Reuseware supports two kinds of port types. Dynamic ports may be instantiated
arbitrarily often while static ports exactly occur once in a fragment. In the lower part of
the specification (Lines 11–16) association links are introduced. Contributing associations
specify in which direction fragments can be composed. Above, Line 16 declares a link from
the Contribution port of the Contributor fragment role to the Reception port of the
Receiver fragment role. In a concrete composition scenario, this restricts possible compositions
as follows: Receiver fragments can only be extended with content from Contributor
fragments via the respective ports. Still, a fragment can be Contributor and Receiver
both at the same time. Finally, configuration links define the direction of configuration actions
during composition.

Component Model

Since fragment collaborations are abstract models of the composition interface, concrete FCMs in
Reuseware have to be specified as realizations of these interfaces. For this purpose, the REXCM
is provided. A REXCM specification declares compositional points of the component language
and provides a mapping between points and fracol ports. The BAF has two component
languages—the business DSL and Java. Hence, two REXCM specifications have to be developed
for the composition system. Listing 4.13 shows the component model of the Business DSL.
Lines 1–4 declare the name of the component model specified, the fracol model that is realized

8Although the keyword type is used, port-type declarations do not have a fragment- or value type. A port-type
declaration only specifies that fragment components “playing” the respective fragment role may or must provide a
port or a group of ports mapped to the declaration’s name.

93



Chapter 4. Approaches to Invasive Software Composition

1 componentmodel BusinessWeaving.BusinessComponentModel
2 implements BusinessWeaving.collaborations.Simple
3 epackages <http://www.emftext.org/language/businessmodel>
4 rootclass businessmodel::BusinessModel {
5
6 fragment role Receiver {
7 port type Reception {
8 businessmodel::BusinessModel.roleDefinitions is hook {
9 port = $’roles’$

10 }}}
11
12 fragment role Contributor {
13 port type Contribution {
14 businessmodel::RoleDefinition is value prototype {
15 port = $name$
16 point = $’name’$
17 value = $name$
18 }
19 businessmodel::PropertyDefinition is value prototype {
20 port = $eContainer().oclAsType(businessmodel::RoleDefinition).name+’->’+name$
21 point = $’Getter’$
22 value = $’get’ +
23 name.toUpperCase().substring(1,1) + name.substring(2,name.length())$
24 }
25 businessmodel::PropertyDefinition is value prototype {
26 port = $eContainer().oclAsType(businessmodel::RoleDefinition).name+’->’+name$
27 point = $’Setter’$
28 value = $’set’ +
29 name.toUpperCase().substring(1,1) + name.substring(2,name.length())$
30 }
31 businessmodel::PropertyDefinition is value prototype {
32 port = $eContainer().oclAsType(businessmodel::RoleDefinition).name+’->’+name$
33 point = $’Field’$
34 value = $name$
35 }
36 businessmodel::PropertyDefinition is value prototype {
37 port = $eContainer().oclAsType(businessmodel::RoleDefinition).name+’->’+name$
38 point = $’Type’$
39 value = $type.getTargetType()$
40 }
41 }}}

Listing 4.13: REXCM specification declaring compositional points in the Business DSL and
connecting them to the fragment roles of the fracol given in Listing 4.12.

(implements keyword), the namespace of the component language and a class in the language
metamodel9 that is used as rootclass in the context of the specification. Since the fracol
from Listing 4.12 is implemented, the Contributor and Receiver fragment roles are reused.
In Lines 6–10, a Receiver.Reception port is specified. As defined by an expression base
on the Object Constraint Language (OCL) [Object Management Group (OMG) 2006], the port
is named roles and provides a hook on the roleDefinitions list which enables the

9The interested reader may inspect the metamodel of the Business DSL in Appendix A.1.2.
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composition-system users to extend the business model with new RoleDefinitions. In
terms of the generic FCM introduced by Definition 4.1 in Section 4.1.2, the OCL is used as
a specification language for the hook-identification function ∫H. Generally, in REXCM, OCL
expressions can be used to determine the name of points and to determine the point-candidate sets
S andH. Since the OCL expressions are evaluated w.r.t. the underlying Ecore metamodel, ∫ can
be context sensitive and point names can be derived from the context. The remaining point types
supported by the U-ISC/Graph model are basically declared in similar ways. The declaration of
value prototypes is explained below.

Lines 12–41 specify multiple prototype ports as members of the port type Contributor.-
Contribution. In Reuseware, prototypes are the only way to provide the components or
values that are used to vary or extend other fragments at their hooks. Hence, in the BAF example
they are required to access the content of the business model and make it available to the
composition program (i.e., the BAF code generator). The first prototype definition in Lines 14–18
defines RoleDefinitions (e.g., “Employee”) as value prototypes. The representative name
of the port is declared via the port keyword and the respective OCL expression at the right-hand
side. In the case of RoleDefinition prototypes, the RoleDefinition.name property is
used to compute the name. The same property is also used to compute actual value of the value
prototype. The point name used for matching the points of the source port with the points of the
target port of the target fragment is specified using the point keyword and the OCL expression
on the right-hand side. In the case of the RoleDefinition prototype, the name is “name”.

The four remaining definitions declare PropertyDefinitions as value prototypes (ac-
cording to the BAF metamodel, each RoleDefinition contains an arbitrary number of
PropertyDefinitions). These are required to access and transform property values of
PropertyDefinitions which are themselves needed to parametrize the Java templates used
by the BAF code generator. The value of PropertyDefinition.name is provided twice
as a value prototype (cf. Lines 19–24 and 25–30 ). The declared point names “Getter” and
“Setter” anticipate their later use in the composition program to parametrize the names of the
corresponding Java accessor methods. Hence, the prototype values are derived by converting the
value of PropertyDefinition.name to start with an upper-case letter prepending “get” or
“set” respectively. Additionally, PropertyDefinition.name is mapped to the point name
”Field” (cf. Lines 31–35). It provides the value of PropertyDefinition.name directly
as it is declared in the BAF model and will be bound to the field declarations and accesses
by the composition program. The value of PropertyDefinition.type is provided as a
value prototype with the according point name “Type” (cf. Lines 36–40). The value of the
“Type” point is directly obtained from the BAF model without transformation. All the four
PropertyDefinition prototypes are grouped by a port named by using the scheme

[RoleDefinition.name]->[PropertyDefinition.name],

as declared by the port OCL expressions.
Reuseware is an interpretative approach to fragment composition. Hence, the REXCM specifica-

tion in Listing 4.13 is interpreted by the composition engine each time a business-model fragment
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Figure 4.9.: Graph-fragment box for the business model in Listing 2.2 based on the UCL notation
of Reuseware.

is used in a composition program to find points and ports of the fragment. Since Reuseware
provides a graphical composition language—the UCL—fragments are visualized using graphical
metaphors, which is reminiscent of the classical box-port notation of UML component diagrams
(cf. [Object Management Group (OMG) 2011d]).

Figure 4.9 shows the UCL representation of the textual business model model.bm from
Listing 2.2 which contains the four RoleDefinitions Employee, Customer, Share-
holder and EmployeeCustomer. The diagram can be read as follows. The business model
is represented by the round-cornered box. Dotted circles attached to the box denote ports with
value prototypes (e.g., the Contributor.Employee value prototype) or mixed kinds of
ports while continuously drawn circles denote receiving ports with normal hooks (e.g., the
Receiver.roles hook).

Since the code target of the generator is Java, in the next step, a REXCM-based component
model for this language has to be provided. Therefore, as component-language implementation,
the Java Model Parser and Printer (JaMoPP) [Software Technology Group and DevBoost GmbH
2013a] is used—an EMFText-based Java metamodel for the EMF. It can be imported by a REXCM
specification from the according JaMoPP Eclipse plug-in. The FCM for JaMoPP can be inspected
in Listing 4.14. The above-defined fracol specification is reused as a collaboration model,
while the root concept the component model is associated with is JavaCompilationUnit—a
container for Java classes and interfaces.

The first definition of a Receiver-role binding in Lines 6–28 declares two ports. The
first Reception port provides a hook for the “members” list in class fragments and therefore
enables the extension of the class body with new method and field declarations. The second
Reception port provides two value hooks. First, the NamedElement.name property is
declared conditionally as a value hook if the property ends with “_Slot”. If, for example, a class
declaration class A_Slot {...} is encountered by Reuseware, its name is interpreted as a
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1 componentmodel BusinessWeaving.JavaComponentModel
2 implements BusinessWeaving.collaborations.Simple
3 epackages <http://www.emftext.org/java>
4 rootclass java::containers::CompilationUnit{
5 // Common Receiver ports & points supported by all Java CompilationUnits
6 fragment role Receiver {
7 port type Reception {
8 java::classifiers::Class.members is hook {
9 port = $’members’$

10 }
11 }
12 port type Reception {
13 java::commons::NamedElement.name is value hook
14 if $name.endsWith(’_Slot’)$ {
15 port = $’parameters’$
16 point = $name.substring(1,name.indexOf(’_Slot’))$
17 begin idx = $0$
18 end idx = $name.length()-1$
19 }
20 java::references::StringReference._value is value hook
21 if $value.contains(’[[’)${
22 port = $’parameters’$
23 point = $value.substring(value.indexOf(’[[’)+3,value.indexOf(’]]’))$
24 begin idx = $value.indexOf(’[[’)$
25 end idx = $value.indexOf(’]]’)+1$
26 }
27 }
28 }
29 // Contribution ports & points for CompilationUnits containing a Mixin-Class
30 // providing prototypes for the BAF getters, setters and fields
31 fragment role Contributor
32 if $classifiers->asSequence()->first().name.startsWith(’Mixin’)${
33 port type Contribution {
34 java::members::Method is prototype {
35 port = $ufi.trimExtension()$
36 }
37 java::members::Field is prototype {
38 port = $ufi.trimExtension()$
39 }
40 java::expressions::Expression is prototype {
41 port = $ufi.trimExtension()$
42 }
43 java::statements::Statement is prototype
44 if $not oclIsKindOf(java::classifiers::ConcreteClassifier)${
45 port = $ufi.trimExtension()$ }
46 }
47 }
48 }

Listing 4.14: REXCM specification declaring compositional points in Java and connecting them
to the fragment roles of the fracol given in Listing 4.12.
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value hook.10 The actual point name is derived by removing the “_Slot” suffix from the value.
Hence, the name “A_Slot” of a NamedElement provides a value hook “A”. A replacement
rule can be specified using the begin idx and end idx rules, which states that the hook
can be bound to a value by replacing the characters between these indexes. Consequently, “A_-
Slot” will be replaced entirely. The second point declaration of the Reception port begins
in Line 20. It provides conditional value hooks that may occur in Java strings and is declared
on the StringReference.value property. According to the point declaration, a string
hook sticks to the format “...[[A]]...”, where A denotes its name. During composition,
according to the begin idx and end idx values, the hook declaration is replaced.

In Lines 31–47 the contributing parts—the prototypes—of Java fragments in the BAF example
are declared. The binding to the Contributor fragment role is conditional and depends on if
the CompilationUnit’s first classifier name starts with “Mixin” (cf. Line 32). It declares
Fields, Methods, Expressions and Statements (excepted ConcreteClassifier
statements) as prototypes grouped by a port named like the fragment file of the enclosing
CompilationUnit. In this Reuseware-based implementation of the BAF example, mixins
are templates of Java fields and methods grouped by a class which are meant to be parametrized
with field and method names provided by the value prototypes of RoleDefinitions and
PropertyDefinitions, and that should extend the basic Person fragment.

Developing the Composition Program

After having specified the required component models for the BAF and JaMoPP metamodels,
the composition system is ready to be used. As a first step, the parametrization of the mixin
fragment shall be investigated, since the REXCM component model differs from the one that was
assumed in the original BAF composition scenario in Chapter 2. The mixin template is shown in
Listing 4.15. It contains a generic declaration of a private field and according generic set and get
operations for that field.11

Figure 4.10 shows a simple UCL composition program which binds the value prototypes of
the discount PropertyDefinition to the corresponding value hooks in the Java fragment
in Listing 4.15. A binding of the Contributor.EmployeeCustomer->discount port
(source) to the Receiver.parameters port (target) in Mixin_frgmt.java is specified
by simply connecting the respective ports by drawing an arrow in the UCL editor. The Reuseware

10In the original BAF example introduced in Section 2 syntactic hedges were used to mark up slots. However, in the
Reuseware-based implementation suffix recognition was chosen instead for technical reasons.

11The code shown in Listing 4.15 was modified by the author and would not work with the developed scenario. Due
to the realization of the type analysis in JaMoPP, it was technically not possible to declare Type_Slot as a value
hook, because JaMoPP resolves the type names of methods and fields as non-containment references. However, in
the business model, Java types are not resolved, but represented by qualified names. Consequently, the slot<–anchor
composer was not used and not considered in the component model (cf. Listing 4.14). A workaround with a nested
class declaration with a type name value hook (private class Type_Slot {}) was employed instead to
perform the example. However, this produces incorrect code because the composition system prints fully qualified
type signatures, which, for example, results in the type name Mixin.int instead of int in Listing 4.16.
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1 class Mixin {
2 private Type_Slot Field_Slot;
3
4 public Type_Slot Getter_Slot() {
5 return Field_Slot;
6 }
7 public void Setter_Slot
8 (Type_Slot Field_Slot) {
9 this.Field_Slot = Field_Slot;

10 }
11 }

Listing 4.15: Template Mixin_frgmt.java
prepared for composition with
Reuseware.

1 class Mixin {
2 private int discount;
3
4 public int getDiscount() {
5 return discount;
6 }
7 public void
8 setDiscount( int discount) {
9 this.discount = discount;

10 }
11 }

Listing 4.16: Mixin_frgmt.java
parametrized with the
discount port.

1 public class name_Slot extends Person {
2
3 public String asString(){
4 String v = "[[name]]";
5 v+= "[[Pfx]]id:" + getID();
6 v+= "[[Pfx]]name:" + getName();
7 return v;
8 }
9 }

Listing 4.17: JaMoPP-based Person_frgmt.java with value hooks.

composition engine then automatically binds the points grouped by the source port to the points
of the target port by matching their names and evaluating the respective value OCL expressions
(cf. the REXCM specification in Listing 4.13). The result of the single composition step of
Figure 4.10 is shown in Listing 4.16 where the field and method name hooks have been bound to
the corresponding property name (“discount”).

While the UCL diagram in Figure 4.10 shows how the parametrization of accessory methods
and fields basically works in Reuseware, it only stands as a single step of the integrated code
generation picture. In Figure 4.11, the full UCL composition program is shown (the contents
of gray boxes are printed after composition). Mixin_frgmt.java is replicated and instan-
tiated five times—one for each individual PropertyDefinition. Furthermore, for each
RoleDefinition, a copy of the fragment Person_frgmt.java (cf. Listing 4.17) has
been added manually to the composition program. The Person_frgmt.java copies are the
targets that should be printed to the file system after the composition has been finished. They are
parametrized with the value prototypes provided by the name prototype of the RoleDefini-
tions which will be mapped to the class name, and extended with the parametrized member
declarations of the Mixin_frgmt.java copies.
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Figure 4.10.: A UCL composition program instantiating the template of Listing 4.15.

Operationally, the composition diagram in Figure 4.11 can be read as follows:

1. For each PropertyDefinition in the BAF model, parametrize a different Mixin_-
frgmt copy with the value prototypes for field and method names.

2. For each RoleDefinition in the BAF model, parametrize a Person_core copy with
the name value prototype from the BAF model and also set the Pfx slot to the according
string-prefix value.

3. Extend the respective members hooks in the parametrized Person_core fragments of
Step 2 with the resulting prototypes of Step 1.

4. Finally, print the resulting Person_core Java files with the according file names, e.g.,
EmployeeCustomer.java.

The interested reader can find the final result of the composition described in this section in
Listing A.6 in Appendix A.2.

4.4.3. Evaluation

In this section, it has been shown how U-ISC/Graph and Reuseware can be used to implement a
template-based code generator. Because of the complexity of the approach, the final evaluation
discussion has been split into four subparagraphs on the technical evaluation, the support of ISC
features, the application on the case study and a general analysis of the involved specification
DSLs and their interplay.
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Figure 4.11.: The full composition program in UCL.

Technical Evaluation

The Reuseware tooling makes a technically mature impression, the provided editors—textual or
graphical—are quite stable and usable. Due to its strong bundling with the EMF, with Reuseware
it is easy to reuse metamodels of graphical and textual languages from EMF-based applications,
and to provide reuse-extensions for them. In comparison with the COMPOST and Reusewair
approaches discussed in Section 4.2 and 4.3, Reusware by far provides the most comprehensive
set of composition tooling and complex specification languages. Hence, from this perspective,
Reuseware could have been the best choice to build upon.

However, depending on the application scenario, some of these strengths are also weaknesses.
Its tight integration with the EMF has the downside of inheriting sometimes undesirable technical
properties. For example, in a packaged application that should be delivered to a customer, the
whole EMF core infrastructure and its dependencies have to be delivered too, which can be
problematic if the composition tooling should run in headless mode or in heterogeneous and
automatized tool chains—a typical use case for template and macro processors. Furthermore, di-
rectly reusing metamodels from deployed language plug-ins can introduce direct dependencies to
the applications that are built around the imported metamodel and transitive dependencies to other
plug-ins causing unforeseen interactions between the dependent plug-ins and the composition
system, which carries the potential to make the whole system fragile.
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Support of Composition Features

Also conceptually there are points in favor and against the concepts of the specification and
composition languages provided by Reuseware. In comparison to the CmSL of U-ISC/Reusewair,
the REXCM language provides composition-system developers with the full freedom to define
slot-, hook- and fragment-identification functions—∫S , ∫H, ∫F—using the OCL. Moreover, it
introduces concepts that are not in the standard model of ISC. The prototype concept balances
the relation between source and target points (i.e., hooks) by supporting subtree extraction from a
fragment, where Reusewair does not provide such a concept. However, COMPOST provides
composite fragment boxes [Heuzeroth et al. 2006], a concept for hierarchically grouping and
organizing fragment components. Composite boxes are similar but not equivalent to prototypes,
since the composites can be arbitrarily nested. In contrast, the concepts of fragment roles
and reference-anchor points do not have a counterpart in any of the two other approaches.
Especially anchors help to embed an inserted fragment in its new context, which is essential if
graphical models are composed in interactive usage scenarios and thus resemble manual edit
operations like drawing an edge from one node to another. In typical composition scenarios with
textual languages, such context-sensitive computations are usually realized by the compiler. The
compiler employs reasonably complex code-analysis algorithms (e.g., name, type and control-
flow analyses), which also cannot be reused unless a reusable technology like RAGs is used
and available via an interface through the composition system. In general, it seems difficult to
consider complex semantic rules which go beyond a key–value (i.e., slot<–anchor) relation, for
example if scoping rules have to be considered.

Application on the BAF Use Case

For the implementation of general template languages and the corresponding template engines, it
becomes obvious from the case study in this section that Reusware and U-ISC/Graph are not a
suitable option for the following main reasons:

• In Reuseware, a matching of compositional points (e.g., hooks and prototypes) is done
implicitly by name while in template engines this is done explicitly in the templates.

• A template engine should be only aware of its target language, but not of the model
language. However, in U-ISC/Graph a REXCM component model for all participating
languages has to be provided making it problem specific on the language level.

• The UCL composition language lacks any kind of recursion, which makes the U-ISC/Graph
approach even problem-specific on the instance level (i.e., every single component and
composition step has to be enumerated explicitly).
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Adequateness of the Provided Specification Languages

Creating the Reuseware-based BAF code generator was not an easy task. It turned out that the
approach seems to have an inherently complex learning curve—it took more than a whole month to
create the system. As discussed above, technically there are no problems that hinder an effective
implementation process. However, the approach has some general problematic issues w.r.t.
adequateness of language abstractions and a mixture of concerns among the different specification
languages. These issues raise the question if the provided abstractions of U-ISC/Graph have been
chosen right to ease and improve the complex and highly specialized task of creating fragment
composition systems, which is one of the main objectives when engineering a domain-specific
approach and tool. Of course, this question cannot be solved generally in this section, since only
one case study has been conducted by the author of this thesis is not as comprehensive as an
empirical study or qualitative study of several Reuseware applications.

Evaluation of the REXCM. The main issues of the U-ISC/Graph approach as it is realized
in Reuseware can be distinguished into two groups. The first group is related to the restricted
expressiveness of the provided specification and composition languages. While providing 47
keywords12 for specifying FCMs etc., the REXCM turned out to be very restrictive w.r.t. potential
ways of organizing a component model. The port concept for grouping compositional points is
poor in the sense that it destroys the composite structure of points which, however, is inherent to
the inner fragment AST and also relevant for the organization of composition programs. The port
concept flattens the nested structure into a list structure, losing the context. As a result, one has to
define redundant ports that somehow resemble that context. For example, reconsider the ports
which are derived for the Employee RoleDefinition and its PropertyDefinitions
in Figure 4.11. Naturally, there should be only one port for the RoleDefinition and two
subports for the properties replicating their physical grouping within the fragment. With flat ports
however, the context of the PropertyDefinition prototypes is lost, which is unpleasant
but nonproblematic as long as the composition program is a finite enumeration of single ports
and composition steps. However, if fragment trees have an arbitrary depth (e.g., blocks in a
programming language or composite states in a finite-state machine), the context information
is essential to compute composition results—as is general recursion which is complementary
also not supported by the UCL. There are further minor issues with the REXCM which are
related to the binding of value hooks and point-name computation. The binding of value hooks
is specified via the keywords begin idx and end idx, which is fine as long one wants to
do string a replacement at one position. However, what if the value should be transformed
before the composition or be combined with context-dependent information before composition?
Furthermore, the OCL-based point-name computation should provide some support for libraries
or at least reuse of OCL expressions as its standard-repertoire of string operations is rather small.

12Leaving the embedded OCL uncounted.
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Evaluation of the UCL. For fragment composition in general, the composition language UCL
also seems not to be an adequate approach since it only describes directed data flow between ports.
It does not provide typical features one would expect from a universal composition language,
like means for recursion or conditional branches. Moreover, UCL graphs have to be acyclic,
otherwise the system may not terminate, since the language does not provide means to specify
termination conditions. Also, it does not provide a fixpoint check which could automatically
terminate the system if the lattice over sets of prototypes added to a hook is finite (i.e., the systems
runs as long as fresh content is added to any fragment and terminates otherwise). Additionally, it
should be possible to create “portable” composition programs with fragments not enumerated
explicitly (i.e., complex composers). As it seems, the user of the UCL has to enumerate fragments
participating in the composition by manually dragging them to the graphical editor. Typically,
the number of fragments and their individual size is unknown in advance. For instance, in the
BAF example, it would be nice to have means to specify that for each BAF model instance
(n) and each RoleDefinition in there (m), n ∗ m Java classes should be emitted by the
composition program. Instead, the author could only realize an explicit enumeration of fragments
and composition steps, which works for the specifically provided inputs. A potential way to
solve this problem in Reuseware is to specify a dedicated composition language which generates
UCL programs depending on a set of input fragments. This approach is supported by the Reuse
EXtension language for Composition Language Integration (REXCL) in Reuseware. REXCL
allows composition-system developers to declare a language-mapping from the dedicated, user-
defined composition DSL to the UCL. However, this has not been further investigated in context
of the BAF study.

Evaluation of fragment collaborations. Another secondary issue comes from the concept
of fragment collaborations. Devil’s advocate could ask if there could ever be different fragment
roles than those which are subject to extension or variation and those providing contents for
that extension, or fragments playing these roles at the same time? Because of the data-flow
semantics of the composition language UCL, it seems likely that composition systems based
on an acyclic data-flow architecture consist of data sources (i.e., fragments only contributing
their content), data sinks (i.e., fragment only receiving content and that are printed after the
composition) and intermediate fragments which consume and produce new content. Of course,
fragment collaborations could make sense to specify a top-level coarse-grained architecture of
the compositional transformation process, e.g., for decoupling complex composers and connect
them via well-defined fragment-interfaces. Reuseware’s fracols are not expressive enough
to achieve this objective because they cannot be typed explicitly with fragment- or value types,
and because fragment roles cannot be annotated with binding constraints. Nevertheless, such
concepts could be a valuable extension to the fracols language.

Evaluation of the language interplay. The second kind of U-ISC/Graph/Reuseware draw-
backs comes from the interplay of composition and specification languages. The balancing
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of some compositional concepts—especially between REXCM and UCL—seems to be out of
position. Due to the lacking expressiveness of the UCL, a composition diagram cannot be “pro-
grammed” without also having the corresponding component-model specification(s) available.
When specifying an FCM, component-model developers have to have very concrete composition
scenarios at hand. Contrary, composition-system users and developers creating composition
programs are only allowed to draw arrows between ports without any means to specify explicit
mappings between ports or complex connectors. This leads to the observation that REXCM
component models are rather a “strangulating corset” than a user-guiding boundary for safe
composition: it appears that the FCM typically has to be developed together with one or more
concrete composition programs leading to a small class of composition problems being tackled
by the developed system. Thus, if changes in a composition scenario or composition program
are required, it is even very likely that the FCM has to be adapted too, e.g., simply because a
fragment has to be provided as a prototype or a port name has to be changed just to define a
different mapping. Value extraction, transformation and insertion have to be developed in the
REXCM language—there is no other option. Language concepts which are actually concerned
with the orchestration of composition are intertwined with concerns dealing with the specification
of FCMs. Hence, the roles of component-model developer, composition-system developer and
composition-system user are not clearly distinguishable in all probability.

4.5. Summary and Conclusions

In this chapter, the concepts of ISC and a general algebraic model for FCM have been introduced.
The model precisely defines the compartments of an FCM and thus implies requirements for
approaches to model or generate ISC systems. Accordingly, three concrete approaches to ISC
have been investigated by applying them as implementation frameworks for the BAF generator.

First, COMPOST was investigated. As it already provides a built-in FCM for Java 1.4, it was
applicable to the example with only small additional technical effort including small changes
in the component model. Compared to what should have been expected from a code-generator
implementation for the BAF, in comparison with the other two approaches, the solution based
on COMPOST is closest to the expected outcome. Also, the “entrance barrier” of using it
productively was the lowest among the compared systems. This was to be expected because the
other systems do not provide built-in FCMs for Java. The architecture of COMPOST turned out
to be difficult to extend and provide it with new FCMs, because it does not provide a declarative
and structured approach for specifying such models. Still, in general, it could be used to adopt
new FCMs—this requires some knowledge in compiler construction and language engineering,
but would not be efficient.

Reusewair is the second approach to ISC that has been investigated in this chapter. The BAF
generator implementation is based on a small subset of Java 1.4 (Java–) and consequently is
not really practical because any change to the source components could require an extension or
change of the Java– implementation. However, the implemented code generator and the FCM still
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demonstrate well the concepts and realization of the U-ISC approach which underpins Reusewair.
The code emitted by the code generator is close to the expected outcome, but does not support
the extension of the class body with constructors as constructors are not supported by Java–.
In comparison to COMPOST, Reusewair provides a simple FCM specification language and a
component-model generator. As only slots are supported by the corresponding DSL and hooks
have to be realized by implementing the generated visitor stubs, the approach is semi-automatic,
leaving huge parts of the composition system incomplete (e.g., the look-up of hooks, the hook
naming and the fragment traversal). Consequently, the resulting composition programs are
significantly larger than COMPOST programs.

The last implementation based on Reuseware and U-ISC/Graph showed the best support for
declarative FCM specifications so far. Unfortunately, it turned out that the approach is not as
suitable as its predecessors to implement the BAF code generator. This is mainly due to the
mixture of FCM specification and composition languages, which is not adequate for specifying
fragment composition systems generally. The languages are difficult to use, because their concepts
and features overlap such that FCM specifications are hardly developed in separation of concrete
composition programs at hand. Since the composition language is data-flow-based and has no
complex control-flow operators, it cannot express arbitrary compositions over a given FCM. Due
to these restrictions, the approach of Reuseware is not suitable to implement code generators.

To summarize, none of the discussed approaches can be recommended as a general solution
to ISC. The COMPOST system is the most flexible. Because of its Boxology approach, it can
adapt any existing language implementation in Java if it has an adequate API. Reusewair is a very
light-weight and grammar-aware approach, but is not very flexible if the slotify operator is not
suitable if implicit hooks should be considered in the component model or if general language
implementations beyond EMF/EMFText should be targeted. Moreover, none of the approaches
has a support for context-sensitive properties of the language. For example, if a class fragment
should be extended with a method, non of the approaches checks if there already is a method
with the same signature contained in the fragment. In the COMPOST implementation of the BAF
example, a redundant method is removed manually after it has been mixed-in by the composition
system.13 A semantics-aware composition system could avoid this by automatically checking
such constraints.

The approach for ISC developed in this thesis is based on RAGs as implementation and
specification framework. It overcomes many of the drawbacks of the approaches discussed above.
The following list summarizes the advantages of an RAG-based approach to ISC:

A.1 RAGs enable a uniform and modular way of specifying FCMs. Thus, if RAGs are understood
by the composition-system developer the specification of FCMs becomes easy without
restricting the expressivity of the compartments of the FCM.

A.2 The core approach is not restricted to a certain host programming language or modeling
framework, and can be implemented in any modern RAG tool.

13Compare Listing 4.6, removeDuplicateMethods.
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A.3 Fragment language implementations which already exist as a RAG can be reused and
augmented with fragment composition features. If a reusable RAG-based implementation
does not exist, RAGs are a natural framework to create one.

A.4 Since RAGs are a declarative approach to name analysis, they are also a natural approach to
specify and perform the look-up of compositional points.

A.5 With RAGs it is easy to develop stand-alone and embedded DSLs. Consequently, dedicated
composition languages can be developed with RAG-based ISC.

A.6 RAGs can be combined with AST rewrites [Ekman and Hedin 2004], consider attribute
dependencies and efficient caching mechanisms [Bürger 2012].

A.7 Also, FCMs for model-based DSLs can be specified since RAGs are well-suited for spe-
cifying the static semantics of metamodels (cf. [Bürger et al. 2011]). Thus, a RAG-based
approach to ISC can support the application areas of U-ISC and U-ISC/Graph.

A.8 Attribute dependencies can be used to track dependencies between composition steps en-
abling a composition-dependency analysis.

A.9 Static language semantics can be considered during composition by reusing the respective
attributes in predicate attributes—fragment contracts—which guard composition steps. This
leads to the notion of well-formed ISC.

The basics of RAG-based ISC and well-formed ISC will be introduced in the next chapter.
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5
Well-Formed Invasive Software

Composition Based on RAGs

This chapter is an extended and improved version of the paper by Sven Karol,
Christoff Bürger, and Uwe Aßmann [2012]. “Towards Well-Formed Fragment
Composition with Reference Attribute Grammars.” In: Proceedings of the 15th
ACM SIGSOFT Symposium on Component Based Software Engineering (CBSE
’12). New York, NY, USA: ACM, pp. 109–114. ISBN: 978-1-4503-1345-2. DOI:
10.1145/2304736.2304755.

Finding an adequate approach for developing ISC systems for arbitrary fragment languages
has turned out to be an ambitious undertaking. It seems difficult to hit the sweet spot between a
predefined closed set of domain abstractions provided as a DSL (Reuseware) and an implemen-
tation with a loosely coupled set of domain abstractions provided as a framework in a general
purpose language (COMPOST). A closed approach is fine if the use case fits to the class of
problems that can be handled by the system, but is inflexible when it comes to unintended usage
scenarios. An open and flexible framework can typically support use cases not anticipated by
the framework developer, but because of its nature provides less built-in support for tooling like
heterogeneous code generation, interpretation and IDE integration. The approach for ISC-system
development discussed in this chapter lies between both edges. It suggests RAGs as a declarative
formalism for FCM specifications and introduces a collection of attributes and default equations
(semantic functions) to realize the ISC abstractions. The attributions developed in this chapter
are language independent patterns that can be implemented by arbitrary RAG systems. The
corresponding RAG modules can be added as a composition concern to existing RAG-based
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language specifications or can be used to develop a composition system from scratch. Based
on the FCM attributes, the chapter also discusses the implementation and interpretation of the
ISC composition operators using attributes and rewrites based on ReRAGs. Additionally, it
discusses several approaches for composition-program evaluation and augments the FCM RAG
with composer declarations and composition strategies. Moreover, the usage of RAGs gives
access to a well-established reasoning formalism on context-sensitive language properties, which
are essential for accessing the type system of the CnL and for coordinating complex compositions.
Based on context-sensitive information, complex constraints for the presence and naming of
hooks can be developed. Information on fragments can be made explicit by reusing attributes
of the underlying RAG and supplying them as fragment assertions to the composition system.
Based on these assertions, the composition can be guarded by fragment contracts.

5.1. RAG-Based Fragment Component Models

In this section, RAGs are used as a specification formalism for FCMs. To be able to combine ISC
and RAGs so that static semantics can be reused beneficially for fragment composition, it first
needs to be investigated if RAGs are actually an adequate formalism for specifying FCMs.
Therefore, the concept of a composition environment is introduced. The composition environment
defines the set of fragment candidates and provides an integrated tree structure of the CnL and the
augmenting composition concern. Second, attributes and equations for slot and hook identification
in the composition environment are discussed. Finally, additional attributes for context-dependent
point names and a concept for deletable points are introduced as extensions to the original FCM
definition. As a notational framework, the SimpAG language introduced in Section 3.3.5 and
EBNF are used.

5.1.1. Composition Environments

As explained in Section 3.3, RAGs are essentially CFGs (and practically EBNF grammars)
enriched with semantic functions. Hence, to be able to use attributes for specifying FCMs, a
fragment language which shall be augmented with composition abstractions needs to be integrated
with the nonterminals required by the composition system to make fragments and compositional
points accessible through attributes. Instances (i.e., trees) of that integrated grammar then provide
a distinct spanning tree used by the RAG to evaluate attributes specified with respect to that
grammar, and to access and reuse parts of the fragment language.

A composition environment fulfills the above requirements by integrating the CnL specification
with the grammar that defines compositional abstractions. It provides a unifying root of the
integrated AST structure which can be attributed and evaluated by the FCM RAG. Additionally,
it adds access functionality to the composition system to look up fragments in environment and to
find slots and hooks in fragments. Consequently, the composition environment provides a similar
functionality as the Boxology of COMPOST (cf. Section 4.2).
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CompositionEnvironment

name : string

Box

* fragments

F1Box FiBox FkBox

F1

fragment1

Fi

fragment1

Fk

fragment1

...

... ...

...

... ... ...

Figure 5.1.: Representation of the EBNF grammar of the composition environment as a UML
class diagram.

Assume that the CnL is given as a reduced EBNF grammar with a set of nonterminals N . The
set of fragment candidates F ⊆ N consists of k ≥ 1 fragment candidates F1, . . . , Fk ∈ F . A
composition environment of the CnL is an EBNF grammar which defines the Compositio-
nEnvironment, the abstract nonterminal Box and one inheriting Box nonterminal per each of
the k fragment candidates:

external F1,...,Fi,...,Fk
CompositionEnvironment ::= fragments:Box*
@Box ::= name:<string>
F1Box .Box ::= fragment:F1
... (productions of F2 to Fi-1) ...
FiBox .Box ::= fragment:Fi
... (productions of Fi+1 to Fk-1) ...
FkBox .Box ::= fragment:Fk

The class-diagrammatic representation of the grammar is shown in Figure 5.1. The Compo-
sitionEnvironment holds all fragments of a composition system via the Box list (for the
interpretation of EBNF lists see Section 3.1.5). The Box nonterminal provides a string ter-
minal to represent the names of fragment components. Based on the integrated grammar and
the productions of the fragment language, a generative RAG tool like JastAdd can generate
an AST class hierarchy whose runtime instances are composition-environment trees. An example
composition-environment tree T is shown in Figure 5.2. T ’s root node is accordingly labeled
CompositionEnvironment and has a list node labeled BoxList as a child. The BoxList
has an indicated unbound number of FiBox children each holding a fragment subtree of the
component language rooted with an Fi node.
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Figure 5.2.: An exemplary composition-environment tree.

Relating the above model to the FCMs notion given by Definition 4.1, the set of Box-inheriting
productions defines the set of fragment candidates F . The fragment-identification function ∫F is
given by the fragment child of a Box and its name is given by the value of the name terminal
of the box.

The next subsection shows how compositional points can be defined with attributes.

5.1.2. Compositional Points

To specify a complete FCM, the AST grammar alone is not sufficient since it does not provide
enough information to derive the sets of slot and hook candidates (S andH) and identification
functions (∫S and ∫H) according to Definition 4.1. As described in the previous chapter, there are
several potential approaches to achieve this. The first is to invasively extend the abstract syntax
of the fragment language by mixing nonterminals (i.e., node types) for slots and hooks into the
grammars as proposed in [Henriksson et al. 2008] (cf. Section 4.3). This can cause problems
with existing language tooling such as parsers or editors since it changes the grammar as model
of the language. A second non-invasive approach leaves the grammar intact and captures existing
nonterminals as slots and hooks by specifying predicates over ASTs, e.g., as Boolean functions
as initially proposed by [Johannes 2011] (cf. Section 4.4) who uses OCL constraints to define
points. Generally, the approaches complement each other because it depends on the use case if a
predicate is sufficient or if an extension of the grammar is needed. In RAGs, it is natural to use
attributes and equations for declaring slot and hook candidates, and grammar extensions using
EBNF productions.

Point Identification with Attributes

To adopt RAGs for FCM specification, attributes for the CnL nonterminals need to be defined.
The attributes decide if a nonterminal can be a compositional point and compute the point’s
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names. The definitions in this section suggest what such attributes can look like by using the
SimpAG notation.

Consider any nonterminal n ∈ N of the component language. Two predicate attributes
(isSlot and isHook) and two string attributes (hookName and slotName) constitute the
slot- and hook-identification functions and are declared in the FCM’s RAG as follows:

syn bool⊥ {n |n ∈ N}.isSlot (5.1)

syn string⊥ {n |n ∈ N}.slotName (5.2)

inh bool⊥ {n |n ∈ N}.isHook (5.3)

inh string⊥ {n |n ∈ N}.hookName (5.4)

The rationale behind declaring isSlot as a synthesized (Declaration 5.1) and isHook as an
inherited attribute (Declaration 5.3) follows from their different purposes in fragment composition
systems. Typically, slots are declared explicitly in a fragment component, e.g., the [[Type]]
and [[Name]] slots in the BAF example’s Java fragment components (cf. Chapter 2). Conse-
quently, if a parser instantiates a node v labeled with a nonterminal n in the set of slot candidates
S, the decision if the node actually is recognized as a slot and the slot name mostly depend
on the children of v. In the BAF case, a slot node simply has some terminal child v.name
with a token value surrounded by double square brackets. Hence, in the normal case, slots are
context-independent. Therefore, a synthesized attribute equation can be used to decide whether a
nonterminal n represents a slot or not. Equations 5.5 and 5.6 reflect that all nonterminals of the
integrated grammar which are no slot candidates w.r.t. the CnL are never slots in a composition
environment:

fun {n |n ∈ N \ S}.isSlot = false (5.5)

fun {n |n ∈ N \ S}.slotName = ⊥ (5.6)

For each occurrence ni of a slot candidate n ∈ S on the left-hand side of a production of the
component-language grammar, a distinct equation decides if a slot-candidate node actually is a
slot node according to a recognition pattern which may only use attributes and children local
to that node. Equation 5.7 below implements the matching pattern while Equation 5.8 computes
the name of the slot from attributes in the local context:

fun ni.isSlot =

{
true if node matches pattern,
false else.

(5.7)

fun ni.slotName =

{
name from ni-context if node is a slot,
⊥ else.

(5.8)

In contrast to slots, the existence and naming of hooks is context-dependent so that inherited
attributes are the natural choice for their specification. According to Definition 4.1, hooks have to
be recursive list nonterminals. As an example, consider an arbitrary list nonterminal List and
two other nonterminals M and N of the CnL as well as the following productions:
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N ::= ... List ...
M ::= ... List ...

Each production defines a distinct context for List-labeled nodes whose parent could be an M- or
N-labeled node and which would also provide different siblings of List potentially influencing
the decision about the hook status of List nodes. These contexts can be easily distinguished
using inherited attributes and broadcasting. Equation 5.9 below specifies the value false for the
isHook attribute while Equation 5.10 specifies ⊥ as the value of the hookName attribute for
all children of CompositionEnvironment nodes:

fun ↓ CompositionEnvironment.childall.isHook = false (5.9)

fun ↓ CompositionEnvironment.childall.hookName = ⊥ (5.10)

Due to broadcasting, the values of both equations are passed downwards the tree, unless a node is
labeled with a nonterminal which redefines the attributes in its own context. Then, the equation
of the redefinition is used to compute the attribute value and, if the equation is a broadcast
equation, it is distributed down the tree replacing the original value. Consequently, the hook-
identification function can be implemented by “overriding” the broadcasting equation of the
CompositionEnvironment. Hence, for each production p=ni ::=α where ni is the i-th
production of n in the desugared CnL grammar, and each lj in α = β lj γ, where l ∈ H and
lj is the j-th occurrence of l in α, an attribute equation is provided to decide if the j-th l node
in a context ni of a concrete AST is a hook. Equations 5.11 and 5.12 below show how this is
achieved:

fun ni.lj.isHook =

{
true if l-node matches pattern,
false else.

(5.11)

fun ni.lj.hookName =

{
name from context if node is hook,
⊥ else.

(5.12)

The matching pattern in Equation 5.11 must be given in the context of n provided by p in
such a way that the corresponding expressions may use synthesized attributes of the right-hand
side symbols in α and inherited attributes of n itself. Similarly, the name of the hook must be
computed w.r.t. the current context ni. In contrast to the naming of slots, which is typically
derived directly from the slot declarations in fragments, hook names normally depend on the
parental context. As an example, reconsider the two above productions of the nonterminals M
and N having a list nonterminal List on their right-hand sides. Both contexts need to compute
different values of the hookName attribute to make the hooks distinguishable.

Furthermore, M and N may themselves appear in recursive contexts. Such contexts need to
provide point names reflecting that recursion by introducing scoped prefixes for hook names.
Inherited attributes with broadcasting are predestined to provide path-based prefixes as a point-
Prefix attribute. The equations below exemplify its declaration and evaluation functions:

inh string⊥ {n |n ∈ N}.pointPrefix (5.13)
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fun ↓ CompositionEnvironment.childall.pointPrefix = "" (5.14)

fun ↓ Box.childall.pointPrefix = name (5.15)

Declaration 5.13 defines pointPrefix as an inherited attribute. Equation 5.14 provides an
empty prefix, which is broadcasted through the environment by default. Equation 5.15 shadows
the default hook prefix and broadcasts the value of the name terminal of Box nodes to its subtree.
Nodes within the subtree can add new scope names to a given prefix by appending a local name
to the inherited pointPrefix. This can be realized by providing an additional equation for
pointPrefix. Let ni be the i-th context of a nonterminal n, Equation 5.16 shows how a new
hook prefix can be constructed:

fun ↓ ni.childall.pointPrefix = pointPrefix + "." + scope name (5.16)

The pointPrefix attribute can then be used in equations of the hookName attribute (Equa-
tion 5.12) to provide context-dependent names, e.g., pointPrefix + "." + local name.

Earlier work on ISC showed that a single hook may have multiple names: its default name and
an arbitrary number of aliases. For example, in COMPOST a method of a Java class provides a
statements hook but also a method-entry as well as one or more method-exit hooks. The statements
hook is the top-level block of the method and can be extended by composition. The method-entry
hook refers to the same top-level block and consequently is an alias of the statements hook.
Also, at least one method-exit hook is an alias of the statements hook. To support aliases, an
attribute declaration and corresponding equations can be added to the component model RAG.
Declaration 5.17 below adds the hookAliases attribute to the FCM’s RAG:

inh string⊥* {n |n ∈ N}.hookAliases (5.17)

By default, the alias list of a hook is empty as shown in the broadcasting Equation 5.18 below and
has no relevance to the component model. As in the hookName case, if a hook shall have aliases
to be considered by the composition system, a corresponding equation needs to be provided, as
shown in Equation 5.19:

fun ↓ CompositionEnvironment.childall.hookAliases = [] (5.18)

fun ni.lj.hookAliases =

{
the aliases if child is hook,
[] else.

(5.19)

Besides a support of multiple names of a hook, a second advantage of aliases is that each
alias can provide a different default position for fragment insertion. Moreover, the position may
depend on the contents of the list node itself as well as accessible attributes in the hook’s context.
To support name-dependent default positions, it is suggested to use a synthesized attribute with a
parameter such as hookPosition in Declaration 5.20:

syn int⊥ {n |n ∈ N}.hookPosition(name) (5.20)
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The reason for choosing a synthesized attribute are experiments which showed that, while hook
identification and names mostly depend on their context, the default position usually depends on
the provided names and the hook’s contents. Similar to the attributes before, hookPosition
has a general default equation for non-hook nodes evaluating ⊥, as shown in Equation 5.21. For
each hook candidate n and occurrence i, an equation has to be provided which evaluates the
hookPosition’s value depending on its name parameter, as exemplified in Equation 5.22:

fun {n |n ∈ N \ H}.hookPosition = ⊥ (5.21)

fun ni.hookPosition(name) =

{
index for name if isHook = true,
⊥ else.

(5.22)

Coming back to the above Java example, the presented attribution patterns allow composition-
system developers to predefine distinct default positions. The statements hook could be associated
with the last position in the list, method entry would provide the first position and method exit
could provide last position of the hook or the position before, depending on whether the last
statement is a return or not.

Collecting Points

Up to this point, only FCM specification attributes have been discussed. There still remains the
task of collecting and looking up slot and hook nodes in the composition environment, which are
scattered arbitrarily over the fragments in the environment AST. Without a support for these tasks
in the environment, the trees would have to be traversed manually in composition programs to find
matching points for composers. Fortunately, tasks such as look-up and collection of nodes in ASTs
are standard applications of RAGs. Reference attributes supporting these tasks are easy to specify
while the traversal of the tree necessary to compute them is handled by the attribute evaluator, and
the attribute evaluation and caching strategies it supports. The attribute declarations below declare
the reference attributes slots and hooks, where N again denotes the set of nonterminals in
the CnL including the Box nonterminals and the CompositionEnvironment:

syn Node* {n |n ∈ N}.slots (5.23)

syn Node* {n |n ∈ N}.hooks (5.24)

A simple and mostly sufficient implementation of the attributes in Declarations 5.23 and 5.24
is shown by the Equations 5.25 and 5.26. It relies on the bottom-up evaluation of synthesized
attributes and collects lists of references to compositional-point nodes in a depth-first style from
their occurrences to the upper nodes in the environment tree.

fun {n |n ∈ N}.slots =

{ {node} if isSlot = true,⋃
c∈childall

c.slots else. (5.25)
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fun {n |n ∈ N}.hooks =


⋃

c∈childall
c.hooks ∪ {node} if isHook = true,⋃

c∈childall
c.hooks else.

(5.26)

Figure 5.3 shows the initial composition-environment tree of Figure 5.2 augmented with
attribute instances and a runtime snapshot of the RAG-induced data-flow graph connecting them.
The displayed instances cover a small subset of all attributes in the environment—sufficient to
explain the general interplay of the component-model attributes when they are evaluated. The
three fragment trees shown in the figure contain a specific number of compositional points, of
which four are actually displayed. “Fragment1” in the F1Box contains two of them—v1,1
(the 1st point of F1Box) with the label N1,1, and v1,q (the q-th point of F1Box) with the label
N1,q. The value of isHook depends on attribute instances in the enclosing fragment tree and
values inherited from the composition environment. The latter is indicated by the symbolic
inherited-attribute boxes with dotted lines whose information carried flows into the fragment tree.
In contrast, the evaluation of isSlot only depends on the nodes themselves. Depending on
the values of the isPoint and isHook predicates, the slots and hooks attributes collect
references to v1,1 and v1,q, first locally at the nodes themselves and then upwards to the Box
nodes so that each fragment box holds two lists of references to its own slots and hooks. The
F1Box has v1,q in its slot list and v1,1 in its hook list, the FiBox has vi,1 in its hook list, and
the FkBox contains a reference to vk,r in the local slot list. Finally, the fragment-specific lists
are integrated at the BoxList node and transferred to the CompositionEnvironment root,
where it can be accessed by external clients. The final state of the attributed environment AST is
shown in Figure 5.4. The reference edges induced by the slots and hooks attributes constitute
a reference overlay graph on the AST which creates an environment ASG where the AST is a
spanning tree.

The attribution patterns presented in this subsection can be easily extended with new attributes
and RAG modules defining new kinds of compositional points. Based on this observation, the
next subsection introduces rudiments as points that can be extracted from a fragment component.

5.1.3. Subtractive Composition with Rudiments

The standard model of ISC—ISCcore (cf. Section 4.1.3)—is additive in nature. That is, the
compositions possible in that model always enrich the content of fragment components by adding
new subtrees. In the general case, this kind of transformation is sufficient to model arbitrary
decompositions using fragment components. However, a strict predetermined decomposition
is not always desirable or even viable: consider a set of fragment components and composition
programs which have been designed and implemented for a specific purpose. Moreover, assume
that the program has already been compiled and delivered. A new use case is hard to incorporate
into the system, if the delivered decomposition is not compatible with the new use case. That
means the original decomposition is not suitable for the new problem and needs to be changed so
that the original composition programs also would need to be rewritten. A subtractive composition
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Figure 5.3.: The environment tree of Figure 5.2 with component-model attributes and data flow
between these attributes.

Figure 5.4.: The environment tree of Figure 5.2 with evaluated component-model attributes and
reference overlay graph.
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operator can support unintended use cases by introducing decompositions that are specific to a
composition program. For example, the aspect-weaving model of AspectJ [Kiczales et al. 2001]
supports this by the around advice which can be used to remove, replace or wrap joinpoints
(hooks) of a fragment. Consequently, ISC systems should support such subtractive compositions.

To include subtractive compositions, a new category of points besides slots and hooks is
established below. The new category is called rudiments and provides the original FCM definition
with a notion for fragment extraction. Creating an extension of the original Definition 4.1 is
straightforward and therefore omitted here in favor of a RAG-only specification. However,
for interested readers, Appendix A.3 provides Definition A.1—a corresponding extension of
Definition 4.1. To declare the point-identification and naming attributes for rudiments, the
corresponding attribute declarations for hooks (Equation 5.3 and 5.4) can be replicated:

inh bool⊥ {n |n ∈ N}.isRudiment (5.27)

inh string⊥ {n |n ∈ N}.rudimentName (5.28)

Declaration 5.27 declares the isRudiment predicate for arbitrary nodes of the CnL grammar
and the environment nodes as an inherited attribute. The choice of an inheriting declaration is due
to the fact that a node can only be deleted from the AST if this is supported by its context, i.e., like
the composition of slots and hooks, also deletion must preserve the integrity of the AST w.r.t. the
CnL grammar. Hence, a rudiment can only be deleted if this is allowed by the context of the node,
i.e., if the context is still valid after the rudiment has been deleted. In general, this is the case
if the context of the node is a list or an optional nonterminal. The equations below specify the
defaults of the rudiment declarations above as broadcasting attributes like in the corresponding
hook definitions (cf. Equations 5.9 and 5.10):

fun ↓ CompositionEnvironment.childall.isRudiment = false (5.29)

fun ↓ CompositionEnvironment.childall.rudimentName = ⊥ (5.30)

Consequently, by default, the FCM does not provide any rudiment points, so that for the specific
optional and list contexts redefining equations can be specified. For any list node l ∈ N of the
CnL, a non-broadcast equation can be provided to define if a child of l shall be a rudiment and
which point name is derived from the context:

fun l.childall.isRudiment =

{
true if child matches pattern,
false else.

(5.31)

fun l.childall.rudimentName =

{
name if child.isRudiment= true,
⊥ else.

(5.32)

Equations 5.31 and 5.32 specify the equation for all entries of a list node via childall, which
is—for lists—equivalent to having an equation in the context of each recursion of a right-recursive
nonterminal in the desugared CnL grammar. For each member of the list, a matching pattern
decides if it is allowed to be extracted from the list and, depending on the result of that decision,
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Figure 5.5.: The environment tree of Figure 5.2 with attribute instances related to rudiments and
sketched data flow between them. Observe that rud. is used as a shorthand for
rudiment in the Figure.

provides a name for the rudiment which may be derived from information in the upper tree, e.g.,
reusing the pointPrefix attribute.

For optional nonterminals the equations look similar. Consider any optional nonterminal
o ∈ N of the CnL with two alternatives o1 ::=n and o2 ::= ε in the desugared CnL grammar.
For the first child carrying alternative o1, a rudiment can be defined by providing equations in the
form of Equation 5.33 and Equation 5.34:

fun o1.child1.isRudiment =

{
true if entry matches pattern,
false else.

(5.33)

fun o1.child1.rudimentName =

{
name if child.isRudiment= true,
⊥ else.

(5.34)

As in the list case, a matching pattern decides the isRudiment equation and a name is
provided if the node is a rudiment.

To make the collection of rudiments available to the composition environment, a rudiments
attribute is provided. The declaration and equation of that attribute correspond to the definition of
the hooks attribute in 5.24 and 5.26 and are therefore omitted here.

Figure 5.5 shows a view on the attributed exemplary environment tree in Figure 5.2 with a
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focus on the rudiment-defining attributes and data-flow dependencies between their instances
in the composition environment. The figure shows the identification of two rudiments in the
subtree of the central FiBox, while the contents of the F1Box and FkBox are not represented in
the figure. In the context of the NList node, the list’s entry vi,x is a rudiment. The evaluation
depends on the parental context of the NList node as well as the contents of the node itself.
Similarly, the rudimentName is computed from the direct and indirect parental context of
vi,x by prepending a prefix to the assumed name terminal child of the node (e.g., using an
attribute like pointPrefix or something else). Considering the second entry of the NList,
isRudiment evaluates false and, thus, the rudimentName is ⊥. Moreover, in the context
of the MOpt node, the M-labeled node vi,x is recognized as a rudiment. Like in the NList case,
the corresponding decisions depend on the MOpt node and its parental context. Similar to the
hooks and slots attributes, the rudiments attribute makes the rudiment nodes available at
the root nodes of the Box subtrees and the CompositionEnvironment top-level root node.

5.1.4. LogProg Example

In the following example, the RAG-based method to specify FCMs will be used to provide the
LogProg FCM developed in Example 4.2.

Example 5.1 (SimpAG-based fragment component model).
Reconsider the formal fragment component model developed in Example 4.2 and the EBNF
grammar GLog of the LogProg language defined in Example 3.13. The following composition-
environment grammar GLogFCM declares the fragment candidates Program, Stmt and Expr.

external Program,Stmt,Expr
CompositionEnvironment ::= fragments:Box*
@Box ::= name:<string>
ProgramBox .Box ::= fragment:Program
StmtBox .Box ::= fragment:Stmt
ExprBox .Box ::= fragment:Expr

The above grammar is a short form and only valid in combination with GLog by composing the
two EBNF grammars, where the productions of GLog are simply prepended to GLogFCM.

To make the GLogFCM a RAG-based FCM AGLogFCM, the SimpAG attribute declarations and
equations introduced previously in this section need to be imported, and the patterns of the
equations of the point-identification attributes have to be instantiated. For slots, this includes
the isSlot, slotName and slots attributes. The default equations 5.5 and 5.6 for non-slot
nodes are instantiated w.r.t. the of set nonterminals N of GLog and the set of slot candidates
S = {Expr} of the formal LogProg FCM in Example 4.2. Since Expr is a slot candidate, two
equations for isSlot and slotName according to the attribution patterns of Equation 5.7 and
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Equation 5.8 have to be provided as shown below:

fun Expr.isSlot =


true if termCount = 1

and ident 6= ⊥
and matches(ident,“.+Slot”),

false else.

fun Expr.slotName =

{
pfx(ident) if isSlot = true,
⊥ else.

In the first equation, termCount shall be a synthesized attribute counting the number of
occurrences of Term nodes in the Expr subtree. The ident attribute shall provide the value
of the ident terminal within the subtree if such exists. The function matches checks if the
given ident value in the first parameter matches the regular expression on the right-hand side,
i.e, it checks if the ident value has a “Slot” suffix. In the second equation, the slot’s name
is derived by extracting a value from the ident string which stands in front of the suffix.

To define hooks, equations for isHook and hookName have to be provided.a The default
realizations with broadcasting definitions in the Equations 5.9 and 5.10 can simply be reused,
only requiring that specific equations must be provided for hook candidates. In the formal FCM
of Example 4.2, H = {StmtList} defines StmtList as a candidate nonterminal for hooks.
The two equations below define StmtList as a hook in the context of program:

fun Program.StmtList.isHook = true

fun Program.StmtList.hookName = pointPrefix + “Stmts”

The first equation specifies that StmtList always is a hook if it is a child of a Program node.
Hence, since StmtList in GLog only occurs in that context, any StmtList in LogProg is a
hook. The second equation derives the name of the hook by using the value of the inherited
pointPrefix attribute and concatenates “Stmts”. For pointPrefix, the equation below
provides a value based on the name of the enclosing fragment box and appends “#” as a
separating character:b

fun ↓ Box.Fragment.pointPrefix = name + “#”

Consequently, the name of the StmtList hook of a ProgramBox with an assumed name
“simple.fgmt” is “simple.fgmt#Stmts”.

Besides slots and hooks, the RAG-based FCM for LogProg shall also support Stmt nodes
as rudiments so that statements can be extracted from a LogProg program. Therefore, the
broadcasting Equations 5.29 and 5.30 are reused as defaults for the values of the isRudiment
and rudimentName attributes. For Stmt nodes which are child of a StmtList node,
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specific equations are provided:

fun StmtList.childall.isRudiment = true

fun StmtList.childall.rudimentName = pointPrefix + “Stmt” + listPos

The first equation specifies that any child of a StmtList is a rudiment. Hence, all Stmt
nodes of a list can potentially be extracted. The second equation provides the names of a Stmt
rudiment by constructing the specific name using the pointPrefix attribute as defined before
and by using the node’s position (listPos) in a StmtList.

Figure 5.6 shows a runtime instance of the above defined RAG-based FCM with the most
important attribute instances contributing to the respective point sets. Instances of other attributes
have been omitted to simplify the figure. The environment tree contains three fragment compo-
nents. The leftmost component is an expression box containing an Expr tree with a primitive
Boolean value “t” (cf. Tex in Example 4.3). According to the above-defined FCM, it does not
provide any compositional point. The rightmost component is a statement box containing an
Stmt tree representing the LogProg statement c = t; (cf. Tst in Example 4.4). It also does
not provide any compositional points. The central fragment component is a complete LogProg
program with a Program tree. The textual representation of that fragment corresponds to
Listing 4.1 in Example 4.2. The StmtList in the fragment is recognized as a hook by the
RAG and its name is computed to “simple.fgmt#Stmts”. Furthermore, the Expr node of
the second statement of the list is recognized as a slot with the name “init” which is derived
from the value of the ident token at the leaf of the corresponding subtree. Finally, the LogProg
program contains three rudiments—the Stmt nodes of the StmtList. The rudiment names
stmt.fgmt#Stmt1, stmt.fgmt#Stmt2 and stmt.fgmt#Stmt3 are derived from the
pointPrefix and the list position of the respective node. �

aBecause the LogProg FCM is simple, aliases and predefined positions are not required and the corresponding
attributes, hookAliases and hookPosition, are not considered in this example.

bIn practice, it is usually better to use a dedicated data structure to represent names or naming patterns.

In combination with the slot- and hook-identification attributes, the RAG-based approach
on component-model specification can model arbitrary FCMs with support for additive and
subtractive composition. However, the integration of the compositional attribute grammar parts
with the original specifications of the CnL is not always a trivial task, especially if the original
attribution shall be reused during composition. For example, to make the composition more
reliable by incorporating parts of the language semantics as described later in this chapter, or
simply to reuse CnL attributes to compute point names. The next subsection investigates some
issues that may occur.
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Figure 5.6.: Excerpt of a LogProg composition environment at runtime with reference edges
computed by an attribute evaluator.

5.1.5. Organizational Aspects

Logically, the attributes involved in the specification of FCMs using RAGs can be distinguished
into three groups of RAG and grammar modules—the fragment RAG, the component-model RAG
and the glue RAG. The modules of the fragment RAG contain the grammar and semantics of
the CnL. Typically, the fragment RAG provides an integral part or complete frontend of a CnL
compiler, including CFGs, semantics analyses and optimizations.

The modules of the component-model RAG which are described in this section suggest attribute
declarations and some attribute equations to specify a component model. In contrast to the CnL’s
RAG modules, the component model RAG presented in this chapter does not have a stand-alone
meaning as it is a collection of attribution patterns which can be reused by composition-system
developers or even be generated by a tool like Reusewair/Reuseware. The component-model
RAG could be used as an extensible intermediate representation from a high-level DSL-based
component-model specification. Hence, the component-model RAG can be further distinguished
in a reusable “core” part providing the basic infrastructure and CnL-specific parts which define
concrete slot and hook concepts in the CnL. Moreover, it may be necessary, to extend or
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adopt the CnL grammar with additional nonterminals and productions. The support of custom
language extensions for composition is essential and practically relevant for the acceptance of
FCMs and invasive composition systems in general—fortunately, specifying language extensions
modularly is a typical use case for RAGs. For example, custom language extensions to the CnL
are required to introduce specific markup for compositional points (e.g., the slotification operator
of Reusewair), or to support specific composition syntax embedded in the CnL as it will be
demonstrated later in the thesis.

Finally, the parts of the CnL that have been extended or have been declared as fragment
candidates using Box nonterminals may require additional glue RAG specifications. These may
become necessary, because the CnL nonterminals are embedded into potentially unforeseen
contexts. The new contexts become problematic, if the CnL specifies attributes in the fragment
tree which depend on information provided directly or indirectly by inherited attributes. In this
thesis, the problem is referred to as the open-context problem of language composition.

To solve the open-context problem, three strategies become emergent. The first is to syntac-
tically close the contexts by adding attribute equations to the glue RAG, which provide some
context, but may cause the semantics-analysis algorithms of the CnL to compute unintended
or erroneous results. As an example, consider a method-declaration box of some program-
ming language CnL. The standard name-analysis implementation of the CnL may expect some
preinitialized environment containing type information and system-dependent values. A plain
syntactical provision of such an environment would not include this information making the
dependent attributes less reliable.

The second strategy to solve the open-context problem produces more reliable results by
essentially also semantically restore the expected context information as far as possible. In
the above example, it could provide the expected environment values “simulating” the original
context. However, while the semantics restoration leads to better results, it typically requires a
much deeper involvement with the CnL: the composition-system developer needs to investigate
and understand the semantics specification of the CnL—a time consuming and complex task if
the CnL is developed independently from the FCM.

A third variant only applies if the composition system should not be semantics-aware. In that
case, the attributes of the CnL may be excluded from the FCM. However, this also should be done
with care: RAG systems like JastAdd frequently support AST rewrites based on higher-order
attributes to normalize and disambiguate the AST after the initial parse. The composition-system
developer should be aware of this and define the FCM w.r.t. the most adequate transformation
stage of the AST.

In general, if a CnL should not only be used as a fragment specification but also be extended
with dedicated compositional constructs itself, composition-system developers have to make sure
that these do not “disturb” the original attribution. For example, this may happen with dedicated
slot declarations, embedded composition operators or macro calls. The problem is referred to as
the incomplete embedding problem of language composition in this thesis and is mostly caused by
synthesized attributes expected by the context of new compositional constructs embedded into the
CnL. Consider the slotification of arithmetic expressions in some general-purpose language for
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Figure 5.7.: A composition environment with gluing attributes as well as CnL and FCM attributes
emphasized.

instance. Typically, type- and name-analysis-related attributes compute the type of an expression.
Now, if the expression is slotified in such a way that a slot may occur instead of or within the
expression subtree, the type analysis attribution needs to be completed with gluing attributes and
equations, so that the whole analysis provides a reasonable or at least any useful result.

Figure 5.7 visualizes the interplay between attributes of the FCM RAG, the CnL RAG and
glue RAG in an exemplary fragment environment. It is assumed that the FCM uses attributes
of the CnL, e.g., to identify hooks or using CnL-semantics in other ways. Each fragment has a
set of instances of inherited context attributes which need to be provided by the Box contexts.
Some provided attribute values are then used in the contained trees while others are used at
compositional points. For example, slot s1 (transitively) depends on one of these attributes. Its
value is then used to provide an adequate embedding of s1 into its containing tree, e.g., it may
provide a name or a type signature.

Depending on the degree of integration of CnL, FCM and CsL, the specification of gluing
attributes can be cumbersome and error-prone. Unfortunately, the author of this thesis is not
aware of a general solution to the open-context and incomplete-embedding problems. How-
ever, Chapter 7 proposes scalable ISC—an agile and incremental style of composition-system
implementation to cope with different degrees of complexity in their development.
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5.2. Composition Operators

An FCM is sufficient to model fragment components and compositional points. A primitive
composition system can already use instances of a specific fragment environment to manage
fragments and to find points in the components. However, the composition system would still have
to implement the point look-up and the composition operations in separation of the environment.
Fortunately, RAGs can also support the composition system in these tasks. The look-up of
composition operators only requires a few additional attributes as name analysis is a standard use
case of RAGs. Moreover, the works on HOAGs [Vogt et al. 1989], ReRAGs [Ekman and Hedin
2004] and, recently, RAG-controlled rewriting [Bürger 2012] have shown that RAGs can be
beneficially combined with transformations on the AST. Based on these techniques, this section
discusses the extension of the previously introduced RAG-based fragment environment with a
support for composition operators. The discussion first focuses on the primitive composers—bind,
extend and extract—and their conceptual integration into the fragment environment. Based
on this integration, potential strategies of rewrite-based composer execution are presented and
evaluated with respect to their basic properties.

5.2.1. Composer Declarations

Adding a support for composition operators is straight-forward by simply introducing com-
poser declarations as nonterminals and productions to the EBNF grammar of the composition
environment, and using attributes to resolve the respective point and fragment names. The fol-
lowing EBNF grammar “module” specifies the extension of the basic ISC model with composer
declarations:

external Box
CompositionEnvironment ::=

fragments:Box* composers:Composer*
@Composer ::= pointName:<string> fragmentName:<string>
Bind .Composer ::= ε
Extend .Composer ::= position:<int>
Extract .Composer ::= ε

Box and its depending definitions correspond to those introduced in the basic environment
grammar in Section 5.1.1. CompositionEnvironment has been redefined to support a list
of Composers denoting the composition program besides the different fragment types supported
by the system. A Composer declaration is represented as an abstract nonterminal predefining
pointName and fragmentName terminals. Its inheriting nonterminals—Bind, Extend
and Extract—represent the respective composition operations. The declaration of Extend
has an additional terminal child position to address a specific position in a hook. Figure 5.8
shows an example CompositionEnvironment tree with a ComposerList subtree. The
list contains three exemplary Composer nodes, one for each of the respective composer types.
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Figure 5.8.: An example composition environment with composers.

Associated with the nonterminals, attributes can be used to compute references to compositional
points from the pointName terminal and to the argument fragment from the fragmentName.
As a basic interface for this, two synthesized attributes can be declared:

syn Node {Bind,Extend}.srcFragment (5.35)

syn Node* Composer.points (5.36)

The argument fragment of a composer declaration is constructed or resolved by the srcFrag-
ment attribute declared in Declaration 5.35 while the target points of the composition are to
be resolved by the points attribute introduced in Declaration 5.36. Being decompositional
in nature, the Extract composer is not required to be provided with a source fragment. In
general, both attributes can be regarded as interfaces to provide arbitrary RAG-based match-
ing functions for compositional points and fragments. However, for now and for the basic
model of ISC, it is sufficient to realize the look-up of the respective fragment and compositional
points using the attributes at hand and a Pattern to abstractly represent different matching
schemes. Patterns are abstract representations of a name and thus constructed from the re-
spective point or fragment name associated with a Composer node. Using the binary operator
' : Node × Pattern → bool⊥, where v ∈ Node is an AST node according to the CnL
grammar, the RAG can determine if the pattern applies to a given node. In practice, common
types of patterns in fragment composition systems are string-based names, regular paths (e.g.,
common to XML-based applications) and pointcut expressions (e.g., common to AOP).

Four inherited parametrized look-up attributes—lookUpF for fragments and lookUpS,
lookUpH, lookUpR for the respective point categories—are provided to find the nodes in the
environmental context:

inh Node {Composer,ComposerList}.lookUpF(Pattern) (5.37)
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inh Node* {Composer,ComposerList}.lookUpS(Pattern) (5.38a)

inh Node* {Composer,ComposerList}.lookUpH(Pattern) (5.38b)

inh Node* {Composer,ComposerList}.lookUpR(Pattern) (5.38c)

A Pattern-based fragment look-up is easily realized using a broadcasting equation as shown
in Equation 5.39 below.

fun ↓ CompositionEnvironment.composers.lookUpF(name)

=

{
f.fragment if f ∈ fragments and f ' name
⊥ else.

(5.39)

The attribute inspects the fragment boxes in the BoxList and provides a reference to that
fragment matching the Pattern passed to the evaluation function via the parameter name. In
the systems presented this thesis, fragments in the composition environment are typically looked
up via string-based names, i.e., the semantics of f ' name boils down to f.name = name.

Looking up compositional points is also specified straightforwardly using the point-collecting
attributes introduced in the previous section. Since the basic implementation of Declarations
5.38a–5.38c is similar, Equation 5.40 below specifies the slot look-up function as a representative:

fun ↓ CompositionEnvironment.composers.lookUpS(name)
= {v | v ∈ slots and v ' name} (5.40)

The equation constructs a set of references to slot nodes whose value of the slotName attributes
matches the pattern passed via the parameter name. In the most simple case, the matching can
just be string equivalence so that v ' name in fact is v.slotName = name. Contrary, point
names which have been constructed using the pointPrefix attribute and are qualified by
a prefix of arbitrary length benefit from a regular-expression-based matching with wildcards.
In that case, the parametrized pattern is a DFA A constructed from a path-based name so
that v ' name holds if A.accept(v.name) = true where accept checks if a given string is
accepted by the automaton. For hooks, potential aliases provided by the hookAliases attribute
have to be checked. Hence, if v is a hook, then v ' name holds if there exists a name ∈
v.hookAliases∪{v.hookName} so that A.accept(name) = true .

Finally, the look-up attributes can be used in equations of the srcFragment and points
attributes of Declarations 5.35 and 5.36. Depending on the requirements of a composition system,
different matching patterns may be used in general. In this section, it is assumed that fragments
and slots are matched by name (Equations 5.41 and 5.42a), while hooks and rudiments are
matched using prefixes and wildcards in the matching names (Equations 5.42b and 5.42c):

fun {Bind,Extend}.srcFragment = lookUpF(pointName) (5.41)

fun Bind.points = lookUpS(pointName) (5.42a)

fun Extend.points = lookUpH(DFA(pointName))(5.42b)
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Figure 5.9.: An example composition-environment tree with three composers and evaluated
reference attributes.

fun Extract.points = lookUpR(DFA(pointName))(5.42c)

For hooks it is additionally suggested specifying an attribute to compute the hook’s insertion
position depending on its default or the position declared by users via the position terminal
of Extend. The attribute tgtPosition defined in Declaration 5.43 and Equation 5.44
below provides the value of position terminal if it is declared, or otherwise the default
hookPosition associated with the matched names of the matched hooks.

syn int⊥ Extend.tgtPosition (5.43)

fun Extend.tgtPosition =


position if position 6= ⊥,
hookPosition for else.
matched name

(5.44)

Figure 5.9 augments the example composition-environment tree of Figure 5.8 with instances
of the srcFragment and points attributes as well as three nodes representing points of the
supported categories. The figure selectively shows the values of instances of point-identification
attributes, and references from composers to points and fragments. Also, an instance of the
tgtPosition attribute according to the above definition is shown.

It is important to notice that the equations of the look-up attributes support the classical box
metaphor introduced by COMPOST (cf. Section 4.2) where fragments and composers are separate
concepts. However, virtually srcFragment and points can implement arbitrary matching
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functions providing fragments from anywhere in the composition environment. This generalized
view is discussed in the next section.

5.2.2. Generalized Composer Declaration

The approach of modeling primitive composers as explicit nonterminals in the Compositio-
nEnvironment grammar can be generalized towards arbitrary composers embedded in a
fragment component. The approach can be seen as a variant of embedded invasive software
composition (E-ISC) [Henriksson 2009]. As for compositional points, it is straight-forward to
use predicate attributes to determine composer signatures instead of using statically predefined
declaration nonterminals like Bind, Extend or Extract as they were introduced in the Com-
positionEnvironment in the previous Section 5.2.1. Given the set N of nonterminals of
the integrated composition-environment grammar, Declarations 5.45–5.47 declare a predicate
attribute per each type of basic composition operator: isBind, isExtend and isExtract.

syn bool⊥ {n |n ∈ N}.isBind (5.45)

syn bool⊥ {n |n ∈ N}.isExtend (5.46)

syn bool⊥ {n |n ∈ N}.isExtract (5.47)

For each nonterminal in N a corresponding equation has to be provided. By default and
for non-composer nodes, the composer-identification attributes shall evaluate false, or true for
composer nodes. The corresponding definitions are exemplified in Equations 5.48–5.53:

fun {n |n ∈ N \ B}.isBind = false (5.48)

fun {n |n ∈ B}.isBind = true (5.49)

fun {n |n ∈ N \ E}.isExtend = false (5.50)

fun {n |n ∈ E}.isExtend = true (5.51)

fun {n |n ∈ N \ D}.isExtract = false (5.52)

fun {n |n ∈ D}.isExtract = true (5.53)

Observe that B denotes a set of bind-composer nonterminals, E is a set of extend-composer
nonterminals and D denotes a set of extract-composer nonterminals. Reconsidering the Com-
positionEnvironment grammar in Section 5.2.1, B = {Bind}, E = {Extend} and
D = {Extract}.

Additionally, the other composer-related attributes need a generalization. In Declarations 5.54
to 5.56, the points, srcFragment and tgtPosition are redeclared in such a way that
arbitrary nonterminals of the CnL can be provided with appropriate equations:

syn Node* {n |n ∈ N}.points (5.54)

syn Node {n |n ∈ N}.srcFragment (5.55)
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syn int⊥ {n |n ∈ N}.tgtPosition (5.56)

As before, for non-composer nodes default equations need to be provided yielding the bottom
value (⊥). For composers, specific equations are provided. In the case of the CompositionEn-
vrironment grammar and its dedicated composer nonterminals, Equations 5.41–5.42c apply
for points and srcFragment, and Equation 5.44 applies for tgtPosition.

Based on the point-identification and composer-identification attributes, categories of embedded
composers emerge. The categories classify composers according to their definition of point- and
composer-identification attributes, and how they are integrated with the CnL, the CsL and the
composition environment.

Primitive composers are part of the composition environment but not of the included CnL
grammar. Thus, a primitive composer nonterminal cop never is a point so that cop ∈
E ∪ B ∪ D =⇒ cop /∈ H ∪ S ∪R. Moreover, srcFragment is a reference attribute
depending on the fragment environment, i.e., the cop does not own or “produce” its
argument fragment.

Primitive in-place composers are part of the composition environment and are part of
the CnL grammar. Moreover, besides composer signatures they are also points. The
srcFragment is provided by the composer itself and does not necessarily depend on
fragment boxes in the environment. A typical primitive in-place composer is include, which
binds itself to a loaded fragment.

Local in-place composers have the same properties as primitive composers, except that
they perform multiple “local” composition operations such as binding slots in a loaded
or copied fragment according to their own properties. Hence, local composers do not
have further compositional side effects due to non-local compositions, except those on the
CnL-semantics level, e.g., an imported declaration shadowing another one. A macro call is
a typical local in-place composer which obtains and parametrizes a fragment from a macro
declaration and replaces itself.

Non-local in-place composers have the same properties as local in-place composers, but
their composition semantics has side effects, i.e., changes the fragment environment non-
locally. For example, a mixin composer can extend a class with new methods and fields,
finally extracting itself.

External composers are signatures of complex composers in an external, dedicated CsL with
its own control flow. Hence, like primitive composers, they are never points in the CnL.
However, they may reuse parts of the CnL to declare embedded fragments of the CnL and,
internally, the composition environment’s API to realize the compositional ingredients
of the dedicated CsL. For example, aspects are an external CsL that uses a composition
environment in its implementation.
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Observe that composer signatures which are built into the CnL often are syntactic sugar which
is transformed—i.e., desugared—by primitive or complex composers to lower level language
constructs. Examples of in-place composers will be discussed in the case studies of minimal ISC
in Chapter 7. In the remainder of this chapter, the model of Section 5.2.1 is further investigated.
The next section discusses the semantics of composer declarations.

5.2.3. Composer Semantics

The semantics of Composer declarations is provided by the respective definitions of the primitive
composition operators π· , π·· and π- given previously (Definitions 4.2 and 4.3), or in the appendix
(Definition A.2). Thus, before considering the composers in a larger context of a composition
program, it will shortly be discussed how the declarations of the composers are actually interpreted
by mapping them to the defined composition operators. Therefore, an interpretation function
‖T ‖ : T  dom(π·) ∪ dom(π··) ∪ dom(π-) is proposed which defines the reduction of Bind,
Extend and Extract nodes to an application of the corresponding operator functions. Rather
than giving a complete definition of ‖T ‖, the next few paragraphs only sketch out its basic
working principles. The equations 5.57a–5.57f below describe how an Extend declaration is
transformed step by step with ‖T ‖ yielding an application of π··:

‖Extend[. . .]‖
= π··‖env‖(‖tgtFragment‖, ‖srcFragment‖, ‖points‖, ‖tgtPosition‖) (5.57a)

= π··FCM (‖tgtFragment‖, ‖srcFragment‖, ‖points‖, ‖tgtPosition‖) (5.57b)

= π··FCM (T1, ‖srcFragment‖, ‖points‖, ‖tgtPosition‖) (5.57c)

= π··FCM (T1, T2, ‖points‖, ‖tgtPosition‖) (5.57d)

= π··FCM (T1, T2, ‖points‖, x) (5.57e)

= π··FCM (T1, T2, {(T1, {v | v ∈ V1 ∧ v = ‖p‖ ∧ p ∈ points})}, x) (5.57f)

Observe that T1 = (V1, E1,Lab1,LΣ) and T2 = (V2, E2,Lab2,LΣ), T1, T2 ∈ T (LΣ), and
x ∈ N0.

First, an FCM is derived from the current environment env . Since the compartments of an
FCM in the CompositionEnvironment have been specified in Section 5.1.1, here details
are omitted. Next, tgtFragment is transformed into the parameter T1. The tgtFragment
attribute is a helper attribute, which provides a reference to the fragment component containing
all the hooks matched by points. In conformance with Definition 4.3, π·· requires the fragment
tree containing all compositional points as an argument. Therefore, it is assumed that all points in
points are contained in the same fragment box and that tgtFragment provides a reference
to the corresponding fragment. The fragment tree itself is then just interpreted as T1. Similarly,
srcFragment provides the second argument T2, which shall extend the hooks of T1. The
respective target position in the list node is given by the tgtPosition attribute. The value
x of the attribute is then used as a third parameter to π··. The slots provided by points are
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then interpreted as a set of nodes v in T1 and a corresponding mapping form T1 to the set of
mapped points.

As the single steps of interpreting Bind composer declarations are nearly equivalent to the
interpretation of Extend, Equation 5.58a and 5.58b below only show the first and the last part
of the transformation.

‖Bind[. . .]‖ = π·‖env‖(‖tgtFragment‖, ‖srcFragment‖, ‖points‖) (5.58a)
...

= π·FCM (T1, T2, {(T1, {v | v ∈ V1 ∧ v = ‖p‖ ∧ p ∈ points})}) (5.58b)

Also, the interpretation of Extract is similar to that of Bind and Extend, except that sr-
cFragment and T2 are not considered as they are not required by the operation. Equation 5.59a
and 5.59b show begin and end of the respective interpretation with ‖T ‖, where T ∈ T (LΣ) and
T = (V,E,Lab,LΣ):

‖Extract[. . .]‖ = π-‖env‖(‖tgtFragment‖, ‖points‖) (5.59a)
...

= π-FCM (T, {(T, {v | v ∈ V ∧ v = ‖p‖ ∧ p ∈ points})}) (5.59b)

The next section puts the semantics of single composition steps into the context of composition
programs and potential interpretation strategies.

5.3. Interpretation of Composition Programs

A set of Composer declarations has a complex rewrite semantics. In particular, semantics is
determined by the primitive operators, the fragment component model provided by a Composi-
tionEnvironment and an algorithm which decides when to apply a composer depending on
a given situation.

There are several opportunities for writing composition programs. An external composition
program keeps the composition semantically in separation of the composition environment using
control-flow and recursion features of the composition language (CsL). To support external CsLs,
the composition environment should support a command mode which allows clients to instruct
compositions directly. For example, COMPOST uses Java as an external composition language
and provides an API to instruct composition operations. Moreover, early versions of Reusewair
provided dedicated languages for composition with a restricted API and typical imperative
constructs like if-statements and loops (cf. [Karol 2008]). The advantage of an external—and
sufficiently expressive—composition language is that arbitrary compositions can be expressed
and, if a general-purpose language like Java is instrumented, the features and libraries of the host
language are available. On the downside, the responsibility for the composition and all related
tasks is up to the composition-program writer.
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Composition approaches which are integrated with the composition environment help to reduce
the number of tasks and problems the programmer has to deal with by providing declarative
abstractions and strategies. Typically, composition steps are not independent of each other, i.e.,
each of them is part of a larger context in which one composition step may induce or prohibit
others. In AOP, the general situation where one aspect influences another is called aspect interac-
tion [Douence et al. 2002]. In [Kniesel and Bardey 2006; Kniesel 2009], aspect interactions are
further distinguished into semantic interactions and weaving interactions. Semantic interactions
occur if extensions added by an aspect A influence extensions woven by some aspect B “indi-
rectly” at runtime, i.e., when the composed fragments are executed or interpreted according to
the CnL semantics. Hence, A writes to the program state read by B. Complementary, weaving
interactions are related to the semantics of weaving itself, i.e., to the semantics of the composition
program. Weaving interactions between an aspect A and an aspect B occur if A changes one of
the pointcuts of B or vice versa. For example, the weaving operations of A may provide new
compositional points to a pointcut of B or remove points from it. [Kniesel and Bardey 2006]
coin the terms triggering and inhibition to describe both situations: “A triggers or enables B if it
adds, removes or modifies elements in such a way that B’s predicate becomes true” while “A
inhibits or disables B if it adds, removes or modifies elements in such a way that B’s predicate
becomes false.”

This definition can be transferred to ISC terminology. Let F be an arbitrary fragment compo-
nent of a FCM, and X and Y be composers matching the sets p and q of compositional points in
F . Moreover, let Fx be the fragment tree resulting from an application of X to F and Fy be the
fragment tree resulting from the application of Y to F . If qx is the set of compositional points
matched by Y in Fx and if there exists a compositional point v so that v /∈ q and v ∈ qx, then
X triggers Y at v. On the other hand, if v ∈ q and v /∈ qx, then X inhibits Y at v. Interactions
between composition steps are normality in ISC. For example, fragments regularly need to
be parametrized before or after composition, or a hook needs an additional extension after its
enclosing fragment itself has been used for extending another one.

While composition interactions are generally harmless, users and developers of a composition
system still need to be aware of them and how the system evaluates composition programs—
especially if the composition program is managed by the composition environment. Otherwise,
unintended interactions between parts of a composition program may occur. Such unintended
interactions are also called composition interferences in this thesis.

In general, an evaluator of composition programs has the following general problem to solve:

As long as compositional points, composers and matching points are available in the
environment, and as long as no error occurs, choose a point, a corresponding composer

and apply it.

For the concrete implementation of a composition-program evaluator solving the above problem,
several approaches are viable. The first is operator-determined composition where the set of
composer declarations in the environment is interpreted as a collection of ISC-specific rewrite
rules which are evaluated by a fixpoint algorithm. The second approach is point-determined
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composition, where the composition depends on the occurrence of compositional points. This
is related to aspect-weaving where aspects are woven at a joinpoint according to the advices
matching that joinpoint. The third approach is attribute-determined composition where the
composition is interleaved lazily with the attribute evaluation. The subsequent paragraphs discuss
the three approaches.

5.3.1. Operator-Determined Composition

In this approach to composer evaluation, composer declarations in a composition environment
are interpreted as a set of rules matching nodes in the composition environment and applying
local AST rewrite operations to them. In contrast to rewrite systems in general [Ehrig et al.
2010; Baader and Nipkow 1999], the types of rewrites are given by the primitive composers
of ISC—bind, extend and (optionally) extract—and by the FCM defined by the composition
environment. Given a set of fragment components and a set of composer declarations, the basic
idea is to apply the corresponding composition operators as long as compositional points can be
matched by any declaration and, thus, fragments can be changed by composer application.

Algorithm 1 describes operator-determined composition in detail. As an input it takes a
composition-environment tree env which is transformed and becomes the output of the algorithm.
There are four global sets maintained by the outer while loop. Op is first initialized with the
composer declarations of env—the “rules” to be applied. App is initially empty and contains
composers that have been applied successfully at some compositional point. Complementary to
App, Dy is used to maintain composer declarations which have been chosen for application but
did not match any compositional point where it could have been applied to. Ex is a global set
necessary to avoid unintended reapplications of composers. This occurs if a composer has an
extension semantics such that the compositional point still exists after the composer has been
applied to it. Therefore, Ex has a map-like structure containing pairs of AST nodes (v1, v2)
where v1 is a compositional point and v2 is a composer node.

An iteration of the outer loop works as follows. After a composer cop has been chosen for
application by the customizable function nextComposer, the set of applicable points Pts is
computed from the points referenced by the cop’s points attribute modulo the exhausted points
associated with cop. The inner loop then traverses over the elements in Pts and applies cop at
each point. After a successful evaluation of the inner loop, cop is removed from the operator set
Op, which avoids the accidental reapplication of composers and ensures termination if Op does
not grow. Afterwards, it is checked if the composer has been applied to any point by checking if
it is an element of App. If not, cop is added to the set of delayed composers Dy . Finally, if Op
is empty, a condition checks if any composer has been applied during the last pass (a complete
traversal of Op) and decides which of the applied, exhausted or delayed composers could be
reapplied in the next pass. The decision about this is made by the reapply function.

The inner loop traverses the elements of Pts and triggers the composition rewrite according to
cop’s type. First, a pt is chosen from the set by the nextPoint function. Next, it is checked
if cop is one of the additive composer declarations Bind or Extend, or if it is a subtractive
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Algorithm 1: The basic composer evaluation algorithm of ISC in pseudo code.

input : a composition environment env
output : the composed environment
Op ← env .composers – the set of composer declarations
App ← ∅ – the set of applied composers
Dy ← ∅ – the set of delayed composers
Ex ← ∅ – the set of exhausted (point , composer) pairs
while Op 6= ∅ do /* begin outer loop */

cop ← nextComposer(Op,App,Dy ,Ex) /* choose composer */
Pts ← {v | v ∈ cop.points ∧ (v, cop) /∈ Ex} /* eval point set */
res ← ⊥
while Pts 6= ∅ do /* begin inner loop */

pt ← nextPoint(Pts) /* choose point */
if isBind(cop) then

src ← pull(cop.srcFragment,|Pts|) /* pull fragment */
res ← doBind(env , src, pt)
if res = OK then /* mark as exhausted */

Ex ← Ex ∪ {(p, cop) | (q , cop) ∈ Ex ∧ isCopy(p, q)}
else if isExtend(cop) then

src ← pull(cop.srcFragment,|Pts|) /* pull fragment */
pos ← cop.tgtPosition
res ← doExtend(env , src, pos, pt)
if res = OK then /* mark as exhausted */

Ex ← Ex ∪ {(pt , cop)} ∪ {(p, cop) | (q , cop)∈Ex ∧ isCopy(p, q)}
else // isExtract(cop)

res ← doExtract(env , pt)

if res = OK then /* composition successful */
App ← App ∪ {cop}
Pts ← Pts \ {pt}
if isExtract(cop) then

Pts ← {v | v ∈ Pts ∧ v ∈ env} /* repair point set */

else reportProblem(res)and stop /* composition failed */

Op ← Op \ {cop}
if cop /∈ App then Dy ← Dy ∪ {cop}
if Op = ∅ ∧App 6= ∅ then /* initialize next pass */

Op ← reapply(Dy ,App,Ex) /* what should be reapplied? */
App,Dy ← ∅
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Extract. In the case cop is additive and at least one slot or hook is in Pts , a fresh fragment
tree is provided in src by the pull operation. In the case of an extend operation, the target list
position pos is requested from the tgtPosition attribute of cop. A composition is executed by
the do[Composer] operations which perform the rewrites of the fragments in env according to
the declarations’ semantics as discussed in the previous section. As a result, the operations return
a status object which can be OK, if the composition was successful (i.e., syntactic integrity is
ensured), or otherwise a problem-specific descriptor. To ensure that hooks are not extended more
than once by the same composition operator, the exhausted set Ex is updated after each successful
additive composition. Thereby, the isCp function evaluates true if its first argument node is a
copy of the second argument, otherwise it is false. Finally, the inner loop checks the status object
in res . If the status is OK, it performs an update of Pts and App. In the case the subtree rooted
by the current pt was extracted from its enclosing fragment component, Pts is “repaired” in such
a way that compositional points in that subtree are skipped by the loop. Otherwise, in the case of
a problem occurring during composer application, the algorithm reports the status object via the
reportProblem operation and stops.

The basic algorithm can be tailored towards different evaluation strategies determined by
the concrete realizations of the functions and operations left open in the explanations above.
Variations of the algorithm can be easily realized in object-oriented languages using the strategy
design pattern [Gamma et al. 1995] or higher-order functions in functional programming. Of
course, variations of the algorithm only have any importance if there are at least two interacting
composer declarations in the composition environment, i.e., a composer which triggers or inhibits
another one.

The outer loop can be varied in the implementations of nextComposer, pull and reap-
ply. An implementation of nextComposer provides a precedence order of composition
operations depending on the Op, App, Dy and Ex sets—the state of the outer loop’s current pass.
The following global composer-selection strategies are immediately applicable:

• Non-deterministic: the decision is random and independent of any property of any com-
poser (e.g., its type) or the loop state.

• Op-ordered: the decision depends on the precedence order implied by the composer list
in the composition environment. Hence, this strategy is determined by the composition
system user.

• Type-determined: composer selection depends on the type of the composer and a prece-
dence relation over the three composer types yielding six possible orderings. Which
ordering is finally adequate depends on the kind of pattern used for matching points (cf.
Section 5.2.1) and of course the specific requirements of the composition system user. For
example, in case points are named using simple path expressions as suggested previously,
it is reasonable to use the order Extract > Bind > Extend. Hence, inhibitions
caused by extractions are preferred over any bindings are preferred over extensions, so that
redundant matches of additive composers in later deleted subtrees are avoided (cf. [Karol
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et al. 2011]). On the other hand, it can be reasonable to postpone extractions if complex
patterns are used for matching [Aßmann 2000].

• Type-op-combined: the strategies above are combinable. A preselection may choose an
Op subset depending on the composer type, the selection from this subset then may depend
on the user-provided precedences.

• Analysis-based: the system can analyze the composer declarations at hand. For example,
it can analyze the matching patterns of compositional points and derive a data-flow-based
ordering of the composition operators so that composer declarations using source fragments
without compositional dependencies (i.e., the fragments not manipulated by a composer
themselves). This kind of analysis may also detect cyclic composition chains or conflicts
(cf. [Karol et al. 2011]).

After a pass has been finished successfully by the outer loop (i.e., Op is empty) and at least
one composer has been applied, reapply decides which composers should be available in the
next pass. In principle, three options of varying reapply become emergent:

• Single-pass: the algorithm may terminate after the first pass by leaving Op empty. This is
suitable if no composition interactions occur or, for example, if the composer declarations
are preordered in such a way that triggering effects are guaranteed to be applied before the
triggered compositions.

• Multi-pass-delayed: only delayed composers may be applied during the next pass, i.e.,
Op = Dy .

• Multi-pass-all: all composers may be applied in the next pass, i.e., Op = Dy ∪App. This
is the most general reapplication strategy since all composers are checked for matching
new points.

Also the inner loop has some complementing variation opportunities: the implementations of the
nextPoint function as well as the doExtract and pull operation have variable realizations.
While for additive composers the order of the single point-wise applications is not important, for
extractions it may prefer upper-level rudiments over lower-level rudiments to avoid redundant
deletions. Moreover, by default, the extraction operation only performs the deletion of complete
subtrees rooted by the referenced rudiment. A variant of doExtract can construct a fresh
fragment box from the deleted subtree using the fragmentName terminal child of Extract
inherited from Composer (cf. Section 5.2.1). Using this advanced semantics, the Extract
composer becomes an inverse of Bind and Extend—cutting of rudiment subtrees and providing
them as fragment boxes for additive compositions. If |Pts| > 1, the advanced Extract creates
more than one fragment by using fragmentName as the first part of the new fragment box
and a unique index number as a suffix, e.g., |Pts|. Of course in that case, nextPoint needs to
select rudiments in a deterministic order.

139



Chapter 5. Well-Formed Invasive Software Composition Based on RAGs

Considering the pull function, two basic realization options exist. First, pull can provide
a fresh copy of the source fragment of cop at the cost of traversing the fragment’s subtree and
cloning it. The second option has a move semantics: the source fragment is cut off the fragment
list avoiding the costs of creating an extra copy. Of course, this is only applicable if only one
point remains to be composed and if there are no other composer declarations requiring that
source fragment.

5.3.2. Point-Determined Composition

In contrast to the previous composer-determined approach to ISC composer interpretation, the
approach discussed in the subsequent paragraph is based on a point-wise traversal algorithm.
This view on fragment composition is closer to the notion of aspect weaving where aspects are
woven at specific joinpoints in the execution of a program. Given a set of fragments and a set
of composer declarations, the algorithm visits the compositional points of each fragment by
traversing the underlying AST, looking up composers associated with each point and applying
them in a specific order.

Algorithm 2 describes point-determined composition in more detail. It takes a Compositio-
nEnvironment env as an input parameter and emits it after the composition is finished. To
maintain the traversal steps, the algorithm uses a stack , which is initially empty (the bottom of
the stack is #). The outer foreach loop inspects each fragment box registered in the environment
pushing the root node of the encapsulated fragment AST to the stack so that it becomes the
top-level element on the stack. In each iteration, the inner while loop then pops the top-level
element from the stack . For the obtained node pt it is then checked if the node is a point (i.e.,
if one of pt .isSlot, pt .isHook or pt .isRudiment evaluates true) and if it has matching
Composer declarations, which are obtained via the composers attribute. It computes the
inverse of the Composer’s points attribute and has therefore a simple specification which
is omitted here. If pt is not a compositional point or has no associated Composer, its child
nodes are pushed to stack before continuing with the next iteration. Otherwise, if composers are
associated with pt , it is first checked if a Bind declaration is in the set. That is, bind operations
are preferred over extractions and extensions. Consequently, if pt is a rudiment and a slot at the
same time, a bind is executed first. In the main loop’s next iteration, the composers attribute is
reevaluated with respect to the new subtree src potentially revising the original rudiment status
of the node at this position in the current fragment. In case more than one Bind declaration is
associated with pt , chooseBind selects the one to be applied, e.g., based on the declarations
order in the composers list of the environment. After a successful composition, the new
subtree’s root is pushed on the stack and the set of exhausted composers is updated in such a
way that copies of exhausted nodes in the inserted subtree are also marked as exhausted to avoid
unintended and redundant composer applications.

If pt is a rudiment with at least one associated Extract declaration and if it is not a slot
with associated Bind, the extract composer is executed and the subtree with the root node pt is
removed from the fragment. That is, in this variant of point-determined composition, deletions
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Algorithm 2: The point-wise composition algorithm of ISC in pseudo code.

input : a composition environment env
output : the composed environment
Ex ← ∅ – the set of exhausted (point, composer) pairs
stack ← [#] – the stack of points to be processed, initially empty
foreach box ∈ env .fragments do /* outer box loop (optional) */

root ← box .fragment
stack .push(root) /* push fragment root on stack */
while stack .peek 6= # do /* main loop */

pt ← stack .pop /* get top node from stack */
if pt .isPoint & pt .composers 6= ∅ then

Op ← pt .composers /* request associated composers */
res ← OK
if pt .isSlot & ∃v ∈ Op : isBind(v) then /* bind */

cop ← chooseBind(Op) /* choose composer */
src ← pull(cop.srcFragment) /* pull fragment */
res ← doBind(env , src, pt)
if res = OK then /* mark as exhausted */

Ex ← Ex ∪ {(p, cop) | (q , cop) ∈ Ex ∧ isCopy(p, q)}
stack .push(src) /* push subtree root on stack */

else if pt .isRud. & ∃v ∈ Op : isExtract(v) then /* extract */
res ← doExtract(env , pt)

else if pt .isHook & ∃v ∈ Op : isExtend(v) then /* extend */
while res = OK & ∃v ∈ Op : isExtend(v) ∧ (v, cop) /∈ Ex do

cop ← chooseExtend(Op,Ex ) /* choose composer */
src ← pull(cop.srcFragment) /* pull fragment */
pos ← cop.tgtPosition
res ← doExtend(env , src, pos, pt)
if res = OK then /* mark as exhausted */

Ex ← Ex ∪ {(pt , cop)} ∪ {(p, cop)|(q , cop)∈Ex∧isCopy(p, q)}

if res = OK then /* push children on stack */
foreach chi ∈ pt .childall do stack .push(chi)

else res = NO_COMPOSER
if res 6= OK then /* composition failed */

reportProblem(res)and stop

else /* push children on stack */
foreach chi ∈ pt .childall do stack .push(chi)
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are preferred over extensions. Assuming that only simple path-based names are used for matching
points and that extensions at pt or general compositions in its subtree do not revise pt’s rudiment
status, the additional compositions are redundant and should be avoided.

If neither bind nor extract have been applied, the algorithm interprets and applies all non-
exhausted Extend declarations. As hooks are list nodes, the insertion order matters. Thus,
chooseExtend selects the next composer to be applied from Op under consideration of
exhausted entries in Ex . As already suggested before, a natural choice is a user-provided ordering
in the composers list of env . After each successful extend composition step, Ex is updated.
Finally, all child nodes of pt—including the freshly added ones—are pushed to the stack .

Figure 5.10 shows a snapshot view on a composition environment with at least four fragment
components which is interpreted by the point-determined composition algorithm. Part 1 of the
figure represents a visit situation of a node v with label N which is a slot and a rudiment at the
same time. Via composers, v is associated with Bind and Extract declarations. According
to Algorithm 2, the Bind composer is preferred over Extract so that the slot "Point1"
is bound to the contents of the left-most F1Box named "Fragment1". The result of the
composition is shown in Part 2 of the figure. Due to the bind application, isRudiment and
isSlot values change to false so that the new F1 node is not recognized as a slot or rudiment
by the composition system. However, in the new context, it is recognized as a hook with the
name "PointJ". As there is not yet an entry in the exhausted set Ex it is matched by the two
Extend declarations. The algorithm applies both of them according to their occurrence. First
(step 2a), the contents of the FkBox are appended at the end of the hook list which is denoted by
the value n of the tgtPosition attribute. In the second step (2b), the contents of the FlBox
are inserted at position 1 of the hook. The final result of the composition excerpt is shown in the
bottom part of Figure 5.10. None of the displayed composers can be applied at the position of the
original node v: Bind and Extract do not match while the Extend declarations are marked
as exhausted in the internal state of the algorithm. Hence, the algorithm continues to interpret the
left-most child of the new F1 node.

5.3.3. Complexity of the Basic Algorithms

In this section, the efficiency of RAG-based composition is discussed, essentially with respect to
Algorithm 1 and Algorithm 2. The time it takes to execute a composition program depends on
the following parameters:

• n—the cumulative number of nodes in fragment components,

• p—the cumulative number of points in fragment components, in worst case p = n, and

• c—the number of composer declarations in the environment.

Three specific cases of algorithmic behaviour can be distinguished.
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Figure 5.10.: An example point-wise composition in three steps.
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Case 1: Composition in one pass, no triggerings occur. Cost for search and compar-
ison without matching costs:

cost = n ∗ c (5.60)

Considering complex matching conditions:

cost = c ∗ (matchCost(n) + matchCost(fgmt) + copyCost(fgmt)) (5.61)

–or–

cost = n ∗ (matchCost(c) + matchCost(fgmt) + copyCost(fgmt)) (5.62)

where matchCost(n) = k ∗ n if all nodes were iterated and matched in constant time, in the
arbitrary case matchCost(n) >> k ∗ n, in the informed case (e.g., if paths and DFAs are used)
matchCost(n) = k ∗ log(n). Considering fragment matching, matchCost(fgmt) = f where
f is typically the number of fragments in the list of fragment boxes. In general, it can have
an arbitrary complexity. Considering the costs of copying a fragment, copyCost(fgmt) = n
is typically the number of nodes in the fragment (a partition of n). If a fragment is used only
once, the cost of moving it is n = 1. Hence, in the case of operator-determined composition with
DFA-based look-up (Algorithm 1):

cost = c ∗ (k1 ∗ log(n) + f + k2 ∗ n) (5.63)

Case 2: Compositions are triggered, however the number of points monotonically
decreases in each pass. In the case of composition scenarios which require multiple passes,
termination can be guaranteed if the number of points associated with composers that can be
found in the composition environment steadily decreases. Hence, in each pass at least one point is
removed from the set, so that in the worst case another factor of n contributes to the cost function:

cost ′ = n ∗ cost (5.64)

Consequently, the problem has at least a quadratic complexity if c is considered as a constant.
However, in the generalized composer case, any node in the fragment environment can be a
composer so that with c = n it results in an at least cubic complexity.

Case 3: The number of composition steps is unbound. In this case, the computation
time is also unbound and the composition program may not terminate.

5.3.4. Attribute-Determined Composition

A third variant of composition-program evaluation is the integration of composition rewrites
with the attribute evaluator. Hence, the traversal algorithms presented above are replaced by the
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attribute-evaluation algorithm and the composer interpretation is embedded into it. Demand-
driven evaluators solve attribute equations on demand, i.e., given a set of “request” attribute
instances, the evaluation function recursively visits the nodes in the AST solving the equations of
the attribute instances the requested instances depend on. For non-circular AGs and RAGs, the
ordering of evaluation steps results from a topological sort of attribute instances according to the
attribute-dependency graph or data-flow graph of the current AST. The evaluator starts with the
minimum elements—the attribute instances without dependencies—computing their values based
on the equations specified in the AG (cf. [Wilhelm and Maurer 1997]). Solutions of the minimum
elements provide values for the evaluation of depending instances. In the next iteration, the
evaluator computes values of attribute instances depending only on instances already computed
previously. This is successively repeated until all dependencies of the maximum elements are
resolved and their values were computed. Finally, the evaluator returns the computed values of
the requested instances.

Classical AG evaluators typically compute the complete attribution of the whole syntax tree
based on a statically precomputed visiting order (cf. [Wilhelm and Maurer 1997]) while most
modern RAG systems are demand-driven and use dynamic visitation strategies that depend on
the given AST and the requested attribute instances.

For demand-driven RAG evaluators, [Ekman and Hedin 2004] proposed an algorithm and
notation for conditional rewrite rules. A RAG with conditional rewrite rules is called a rewritable
reference attribute grammar (ReRAG). In contrast to classical higher-order attributes, which are
unconditional, conditional rewrites can easily be adopted for the operators of ISC leading to a
demand-driven, attribute-integrated interpretation of composition programs. Conditional rewrites
are transparently integrated into the dynamic evaluation algorithm. “Transparently” means that,
before an AST node or one of its attributes is accessed1, the attribute evaluator checks if rewrite
rules are available for that node, checks their Boolean conditions and successively applies those
rewrites with a positively evaluated (true) precondition. Following [Ekman and Hedin 2004], a
conditional rewrite rule can be specified using the format in Equation 5.65:

rewrite nt1 when condition to nt2 with expression (5.65)

A rewrite rule r is specified with respect to a node v labeled with a nonterminal nt1 ∈ N , where
N again is the set of nonterminals of the attributed grammar. Hence, if the attribute evaluator
visits a node v with label nt1, it checks if this rule is applicable—in other words, an nt1-labeled
node is a rewrite candidate and r is a candidate rule. The system rewrites any candidate at the
very beginning of its visitation and before the actual attribute evaluation if there is at least one
applicable candidate rule. The decision about a rule’s application is depends on condition,
which is a Boolean expression over AST nodes, terminal values and attribute instances, type
information as well as any other information provided by the RAG system.2 Moreover, as a

1For instance, an attribute of that node shall be computed, child nodes or other properties of the node are requested.
2A “closed” system may only allow access to RAG-specific information via a well-defined API while an “open”
system does not have such restrictions.
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convention condition is scoped w.r.t. the current node, which can be accessed via SimpAG
pseudo code node.

The nonterminal nt2 ∈ N is the label of subtree’s root node which is constructed to replace the
currently visited node and its subtree. According to [Ekman and Hedin 2004], the nt2 subtree is
only allowed to replace the nt1 subtree if their types are “compatible” w.r.t. the type hierarchy in
the AST grammar. This can be generalized to term-tree replacement. Let T1 = s[. . . ni[. . .] . . .]
be a syntax tree w.r.t. G = (N,Σ, P, s) where sV∗G T1, ni[. . .] is the subtree with root vi to
be rewritten and T2 = m[. . .] is the replacement tree where the ni correspond to nt1 and nt2
corresponds to m. For a valid rewrite, the following conditions must hold (cf. Section 4.1.3):

• if T ′1 = T1[{vi}/T2] = s[. . .m[. . .] . . .] is the rewritten tree, then sV∗G T
′
1,

• the set of inherited attributes Inhx(m) must be equivalent to Inhx(ni),

• the set of synthesized attributes Synx(m) must be a super set of the used attributes of
Synx(ni) which are actually required by equations in vi’s context pi,

• the equations in the new context p′i must be equivalent to the equations applicable in pi.

The replacement subtree itself is created by a construction expression which yields an
AST fragment with a root node labeled nt2. Similar to condition, the expression can be
created using arbitrary attributes, terminals and nonterminals available at the current node. For
example, the replacement can be constructed by copying referenced subtrees or a programmed
construction.

Since attributes are accessible in condition and expression, other rewrites may be
triggered on demand by the attribute evaluator at distant candidate nodes somewhere in the AST.
Consequently, before the current rewrite can be finished, dependent rewrites are conducted. That
means, the rewrite order is declaratively induced by attribute dependencies: given a set of attribute
instances Is ⊆ AttIx(vs) of a node vs (cf. Section 3.3.1), the ReRAG evaluator starts to visit the
nodes and attribute instances of the AST according to its visitation scheme, typically beginning
at vs trying to compute attribute values there and successively traversing the tree to compute
pending attribute values to finally solve the maximum equations. At each visited node vr, it
applies the rewrites with a positive precondition and, as the precondition and the construction
expression can use attributes, it recursively triggers the evaluator, which then has the attribute
instances Ir ⊆ AttIx(vr) of vr used the current rewrite as maximum elements to be solved.

The procedures eval and applyRewrites sketch the ReRAG algorithm using pseudo
code. Assuming the evaluation of only one attribute instance att at a time, eval maintains a
set of local direct dependencies D of att at v and a set of solutions S of the equations of these
direct dependencies. In a first step, eval checks, if v has associated rewrite rules and if it is
not yet rewritten. If this is the case, it calls applyRewrites on v. Afterwards, it uses the
local dependencies to other attribute instances to compute a value for each of them by calling
eval with the dependencies as a parameter, which may also cause further rewrites. After all
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Procedure eval(Node,Attribute) : a simplified demand-driven attribute-evaluation function
with rewrites.

input : an AST node v
input : an attribute att of v
output : the value of att at v

D ← ∅ – the set of dependencies (node, attribute) of att at v
S ← ∅ – the set of solutions (node, attribute, value) to the dependencies in D

/* check if rewrites can be applied: */
if inRewrite(v)= false & rulesOf(v) 6= ∅ then

v ← applyRewrites(v) /* call rewrite procedure on v */

D ← depOf(v, att) /* request direct dependencies */
foreach (c, att) ∈ D do

res ← eval(c, att) /* recursive call to evaluator */
S ← S ∪ (c, att , res)

return evalEq(v, att , S) /* finally call equation interpreter */

dependencies have been resolved, evaluator interprets the equation of att in the current context
and returns the computed result.

The procedure applyRewrites starts with an unconditional outer loop. It first looks up v’s
rewrite rules and sets its status flag to false. The inner loop then successively tries to apply the
rewrite in the rule set as long as rules are available and none has been applied. In each iteration,
nextRule chooses a rule from the set (e.g., according to a prioritizing order) and updates the
rewrite status of v. Then, it checks if condition evaluates true and constructs the replacement
tree by evaluating expression. Observe that calling an attribute att on a node v is equivalent
to invoking eval(v,att). Infinite direct and indirect recursions of v rewrites are avoided by
the status check so that the values are computed w.r.t. the not-rewritten node (cf. [Ekman and
Hedin 2004]). After the replacement of v’s subtree has been executed via doReplace and the
status flag is set to true so that the inner loop terminates, the root of the new subtree becomes the
node-under-rewrite in the next iteration of the outer loop.

To combine a ReRAG rewrite engine such as the one above with an ISC fragment environment,
ISC-specific rewrite rules need to be specified in such a way that the engine can evaluate them.
The following declarations specify ReRAG rules for each composition operator of ISC based on
the notation introduced by Declaration 5.65. Declaration 5.66 below specifies a rule for the bind
composition operator for arbitrary nonterminals n of the CnL.

rewrite n when isSlot = true ∧ (∃cop ∈ composers :cop.isBind)

to n′ with pull(chooseBind(composers).srcFragment) (5.66)

Like the previous composition algorithms, by its application condition, it is checked if a visited
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Procedure applyRewrites(Node) : attribute-driven rewrites.

input : an AST node v
output : the rewritten node if rewrites apply or v if not

repeat /* start outer loop */
R ← rulesOf(v)
applied ← false /* update status flag */
while R 6= ∅ & applied = false do /* start inner loop */

rule ← nextRule(R) /* choose next rule */
R← R \ {rule}
setInRewrite(v, true) /* mark v as being rewritten */
if eval(v, rule.condition)= true then

t← eval(v, rule.expression) /* evaluate expression */
setInRewrite(v, false)
v ← doReplace(v, t) /* replace subtree */
applied ← true /* update status flag */

else
setInRewrite(v, false) /* unmark v */

until applied = false
return v

node labeled with n is a slot according to the FCM and has a matching Bind composer declaration
in the composition program. If this is the case, the rewrite is executed by choosing an applicable
Bind declaration (e.g., the first one in the composer list) and pulls the fragment referenced by
the srcFragment attribute of Bind. The rewrite engine then replaces the current node and
its subtree with the new fragment. Observe that the root of the fragment must be labeled with a
nonterminal n′ and must retain the AST’s integrity w.r.t the CnL grammar.

Declaration 5.67 specifies an extend rewrite (node refers to the current node):

rewrite n when

isHook ∧ (∃cop ∈ composers :cop.isExtend ∧ (node, cop) /∈ Ex )

to n with {

cop ← chooseExtend(composers,Ex) (5.67)

doExtend(pull(cop.srcFragment),cop.tgtPosition,node)

Ex ← Ex ∪ {(node, cop)}
return node}

In its application condition, it checks if the current node is a hook and if a non-exhausted Extend
declaration exists in its composers list. If the condition is true, the rewrite is executed by
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choosing an applicable Extend declaration and applying it to the current hook via doExtend.
Like in the algorithms presented before, after the composition step is executed, Ex is updated to
avoid accidental reapplications. Finally, the rewrite rule emits the extended hook.

Declaration 5.68 specifies a fragment-extraction rewrite:

rewrite n when ∃c ∈ childall ∃cop ∈ c.composers:

c.isRudiment ∧ cop.isExtract

to n with { (5.68)

foreach c ∈ {m |m ∈ childall
∧m.isRudiment∧ (∃cop ∈ m.composers :cop.isExtract)}

doExtract(c)

return node}

The rewrite precondition checks if the currently visited node has children which are rudiments
that have a matching Extract declaration. If this is the case, the rewrite extracts each rudiment
child from the current node and emits the rewritten node as a result.

In comparison to the previous algorithm, the ReRAG implementation of ISC has some ad-
vantages. In contrast to Algorithm 1 and Algorithm 2, demand-driven composition is lazy—
composing only fragments which are required by the evaluated attributes. Moreover, composition
semantics and FCM declarations are seamlessly embedded into one formalism. However, there
are some drawbacks in the approach which hinder a general superiority over the other algorithms.
The composition rewrites may interfere with other rewrites of the CnL ReRAG which are not
backed by the FCM. Such rewrites can destroy composition results or interfere with the matching
of compositional points. Hence, besides the composition operators, composition-system devel-
opers have to take care of CnL-specific rewrites. This seems not to be a problem as long as the
roles of the CnL developer, the FCM designer and the composition programmer are played by
the same person or team. Otherwise, composition-program development becomes complicated
as it is typically not transparent to the programmer which internal rewrite occurs when and how
it would interfere with the composition. While [Ekman and Hedin 2004] assume confluency of
rewrites as the normal case for ReRAGs, this is not the case for composition programs, where
the interaction (i.e., triggering and inhibition) of composition steps is common. Even worse,
interferences between CnL rewrites and composition rewrites can easily cause non-terminating
behavior. For example, a CnL rewrite may add a new child node to a fragment assuming that
the absence of that node is the rewrite condition. Now assume that an Extract composer
subsequently removes that node making the rewrite condition true again causing an endless loop.
Of course, this may also happen the other way around, if a CnL rewrite deletes a specific kind
of node from a hook which is then readded via an Extend operation. Generally, composition
rewrites should not be contradicting to the rewrites of the CnL because these belong to the static
CnL semantics and, thus, contribute to its computation. FCMs should be designed in such a way
that accidental interferences are avoided and composition is forbidden in these cases.
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Figure 5.11.: Attribute-determined composition can yield different results depending on where
the ReRAG evaluation starts.
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But also if composition operations are isolated from CnL-specific rewrites, it is not easy for
the composition-system user to predict the result of a composition program in the presence of
attributes and demand-driven evaluation: depending on where in the composition environment the
attribute evaluation starts (i.e., which attribute instances are requested for evaluation), the result
can be different. This is due to cyclic rewrite (composer) dependencies. A simple composition
scenario in Figure 5.11 exemplifies potential effects of circular composer dependencies. It shows
composition phases of an example composition environment with two fragment components
and two Extend composer declarations. On the figure’s left-hand side, the ReRAG evaluator
started its visit at the F1Box. Situation 1a describes the following: after reaching the N-labeled
node v1 with hookName “Point1”, the evaluator activated v1’s rewrite status (symbolized
by annotating r to the respective node) and looked up the matching Extend declaration for
“Point1” and the argument started to look up the srcFragment in the F2Box. This look-up
caused a visit of the M-labeled node v2 which also is a hook and has F1Box as an argument. The
second visit of v1 now returns the contents of F1Box because v1 is already marked with the
rewrite flag (cf. Procedure applyRewrites). Thus, the hook “Point2” is extended with v1

and its subtree—as shown in Situation 1b. Afterwards, the rewrite status is removed from v2 and
the hook “Point1” is extended with the contents of F2Box—the extended v2 and its subtree.
The composition’s final result is shown in Situation 1c, where “Point1” was extended with
an M [. . .N [. . .]. . .] tree and “Point2” with an N [. . .] tree. In the right part of Figure 5.11,
the same composition scenario is shown with an evaluation starting at F2Box. Hence, this
time, the M-labeled node v2 is visited first so that the rewrite order is mirrored (Situation 2a).
Consequently, v1 is extended first (Situation 2b) and v2 is second (Situation 2c) yielding a
different composition result: “Point1” is extended with an M [. . .] tree while “Point2” is
extended with an N [. . .M [. . .]. . .] tree.

The drawbacks of ReRAG-based composition can be tempered by avoiding cyclic rewrite
dependencies such as those described above and by supporting distinct rewrite and evaluation
phases. Also, a deterministically enforced starting point or a global evaluation strategy of the
evaluator can make the ReRAG-based approach more reliable.

5.3.5. Static Attribute Dependencies

An alternative idea for AG-based ISC was investigated in a master thesis [Thiele 2011] supervised
by the author of this thesis. The developed approach is based on classic static evaluation-order
generation for ANCAGs—a proper subclass of non-circular attribute grammars [Kennedy and
Warren 1976] without reference attributes. In contrast to the approach presented in this chapter,
composition operators are built into the AG tool and specification language as first class language
constructs and special kinds of inherited attributes for the bind and extend composition operators.
Hence, in addition to Synx and Inhx (cf. Section 3.3), Bindx ⊆ Inhx and Extendx ⊆ Inhx

assign bind and extend attributes to each nonterminal of the underlying CFG. Associated to each
production of the CFG, bind and extend equations have to be provided. As the ReRAG rewrites,
the composition equations have an application condition that decides whether a composition
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should be applied, e.g., using FCM-specification attributes like isSlot and isHook. To
statically determine the evaluation and composition order, the local dependencies induced by
the composition attributes are included in the nonterminal-specific IS-graphs3. Based on these
composition-aware IS-graphs, an ANCAG evaluation order is generated that detects potential
cyclic dependencies between attributes and/or composition operators.

While having a statically predetermined composition order is clearly beneficial, as it provides
some checks of the evaluation orders and avoids redundant attribute computations, the ANCAG-
based composition approach has some disadvantages. The main issue is that modern AG tools
typically support reference attributes which are not considered by ANCAG algorithms. Thus,
from a practical point of view, ANCAGs are not as expressive as modern AGs tending to bloat the
specifications of real world compiler frontends. Moreover, ANCAG use an over-approximation
of the actual dependency relations that may occur during attribute evaluation at runtime. The
over-approximation is due to the nonterminal-wise computation of the local dependency graphs
and to the fact that all possible dependencies of an equation are considered—also those which
may never occur at runtime, e.g., because there is an if-statement in the equation whose branches
may induce different subsets of the approximated local dependency relation, but never all of
them. Composition operators introduce additional dependencies which have to be approximated
by the ANCAG algorithm in such a way that the accidental detection of cyclic dependencies
becomes more likely so that an evaluator cannot be generated. Furthermore, the ISC approach
developed in [Thiele 2011] requires that all potential compositions are fixed at generation time of
the evaluation order because the composition operators are integrated into the AG tool. Hence, a
composition environment and a composition API is not supported.

5.4. Fragment Contracts

The RAG-based FCM specification method so far discussed in this chapter is basically an
implementation of the ISCcore model given in Section 4.1.3. The resulting approach already
is superior to the FCM-specification approaches of COMPOST, Reusewair and Reuseware
because it is declarative, expressive and implementation-independent so that it can be ported
to any platform with RAG support. However, RAGs can naturally provide more information
about a fragment component than just the syntactic types of nonterminals and productions of
the underlying CFG: using the semantic-analyses capabilities of RAG frameworks can further
increase the quality of code generators, weavers and the generated code. The argumentation in
favor of semantic checking is analogous to the argumentation in favor of syntactic checking over
no checks: while a good compiler (or model well-formedness check) will detect all problems
that may hinder an interpretation of the model or compilation of the program, the corresponding
error messages are related to points where the analysis failed and provide associated information.

3The IS-graph on nodes Attx(N) of a nonterminalN contains the transitive closure of all possible dependencies/data-
flow edges from attributes in Inhx(N) to attributes in Synx(N) induced by any possible subtree with an N -labeled
root.
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Hence, errors introduced by a composition program will not be associated to their real cause—
e.g., a composer—but to the analysis problem that caused the error message. For example, if
a fragment composition system was not aware of the CnL and generates code that cannot be
parsed by the CnL parser, the error message will report the internal parser state and the currently
processed position in the input stream. Hence, if a bracket is missing in the output, a good
parser will report a missing bracket, but perhaps not in the right place and also not in the original
fragment box. Context-sensitive problems detected in the semantic analysis phase can be much
more subtle and confusing than parsing errors. For example, a wrongly declared type of a method
in a generated class can make the compiler complain about an overriding method of a subclass,
which may not even be generated itself and may be completely unrelated to the cause.

This section describes how RAG-based fragment contracts can make composition and code
generation more reliable by reusing CnL semantics (attributes) during the execution of composers
and composition programs. This contract-based extension to ISC is called well-formed ISC.

5.4.1. Local Characteristic Attributes

To make the CnL semantics available for guarding composition, CnL attributes need to be
accessed from the FCM’s RAG. Hence, each nonterminal n ∈ N , which is a slot candidate
n ∈ S , a hook candidate n ∈ H, rudiment candidate n ∈ R or a fragment candidate n ∈ F has a
set of characteristic attributes Assx(n) ⊆ Attx(n) in the integrated RAG. In some cases, it is
sufficient to just divert original CnL attributes as characteristic attributes (e.g., a look-up attribute
to find methods depending on their signature). However, usually CnL attributes contributing to
larger computations are not prepared for such usages. Therefore, the equations of characteristic
attributes of the integrated FCM may access the CnL’s original attributes to adapt and prepare
point- or fragment-type-specific information—gluing CnL and FCM RAGs. Hence, for each
attribute prop ∈ Assx(n) of n ∈ S ∪H ∪R ∪ F of the composition environment, an attribute
declaration and equation are included in the attribute grammar. Thereby, it is distinguished
between point and fragment characteristics. Typically, point-characteristic attributes specify what
is provided at a point—i.e., what can be expected by a fragment to be valid at a point (e.g., the
set of readable fields). In contrast, fragment-characteristic attributes typically specify what is
required by a fragment to be valid (e.g., a specific variable definition which is needed to compute
an expression’s value).

The declaration scheme of characteristic attributes prop is shown in Declaration 5.69 below,
where n is a point candidate and κ is an arbitrary type supported by SimpAG:

syn κ {n | prop ∈ Assx(n)}.prop (5.69)

For each of a point candidate’s occurrences ni on a CnL production’s left-hand side, a charac-
teristic attribute instance depends on the actual point-identification attributes:

fun ni.prop =


⊥ if isSlot = isHook = false

and isRudiment = false,
κ-expression else.

(5.70)
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If isSlot, isHook or isRudiment evaluate false, prop does not need to provide a value
since the current n-labeled node is not a point. Otherwise, an expression of type κ over
locally available attribute occurrences and other properties provides the characteristic value.

Complementary, for each fragment candidate f and each characteristic attribute of f , a corres-
ponding declaration must be provided as shown in Declaration 5.71:

syn κ {f | prop ∈ Assx(f)}.prop (5.71)

Equation 5.72 shows the specification pattern of prop for fragment boxes:

fun f.prop = κ-expression (5.72)

Characteristic attributes can now be used to formulate predicate attributes as fragment assertions.
This is explained in the next subsection.

5.4.2. Attributes as Assertions

Given characteristic attributes on top of an RAG-based FCM, well-formedness preconditions
can be established and integrated with the invasive composition system. In connection with the
design-by-contract principle [Meyer 1992] such conditions are called static fragment assertions,
since they are designed to make fragment composition more reliable by reusing static seman-
tics properties. Using RAGs, static fragment assertions can be realized as predicate attributes
associated with compositional points that use characteristic attributes of points and fragments.
Declarations 5.73a and 5.73b define a check attribute for slot, hook and rudiment candidates:

syn bool⊥ {n |n ∈ S ∪H}.check(Node) (5.73a)

syn bool⊥ {n |n ∈ R}.check (5.73b)

The check attribute for slots and hooks is parametrized with a fragment parameter while for
rudiments it is not, since in that case no fragment is passed to the composer.

Equations 5.74 and 5.75 show the specification scheme of rudiment candidates, and slot and
hook candidates respectively.

fun ni.check =


⊥ if isRudiment = false,
true if Assx(n) = ∅,
bool-expr if Assx(n) 6= ∅.
on Assx(n)

(5.74)

If n is a rudiment candidate (Equation 5.74), check evaluates the instance of isRudiment
at the current ni node. If this evaluates false, the assertion is undefined. Otherwise, a Boolean
expression over available point characteristics provides the assertion’s value. Similarly, if n is
a slot or hook candidate and the current node is not a slot or hook, the assertion is undefined.
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Otherwise, a Boolean expression over the available point and fragment characteristics provides
the value of the assertion attribute.

fun ni.check(fr)

=


⊥ if isSlot = isHook = false,
true if Assx(n) ∪Assx(Lab(fr)) = ∅,
bool-expr on if Assx(n) ∪Assx(Lab(fr)) 6= ∅.
Assx(n) ∪Assx(Lab(fr))

(5.75)

The following paragraph describes the usage of the contract-checking attributes during compo-
sition execution.

5.4.3. Contract Specification

To use the assertion specified by a check attribute, it must be integrated with the composition
engine and/or the composition-evaluation algorithms described in Section 5.3. One option is
to integrate contract checking with the composer implementations doBind, doExtend and
doExtract used in Algorithms 1 and 2, so that before each composition the check attribute is
consulted. Equation 5.76 exemplifies the reimplementation doBind’ of doBind as a contract
method in the Eiffel notation proposed by [Meyer 1992] (the realization of the other operators is
similar and therefore omitted here):

doBind’(env , src, pt) is

require

pt .isSlot = true & pt .check(src) = true

do

ctx ← pt.parent (5.76)

doBind(env , src, pt)

ensure

pt .parent = ⊥ & src.parent = ctx

end

The contract has three sections. The part between the keywords require and do denotes the
precondition of a composition asserting that pt is a slot and that src is a compatible fragment
according to the local instance of the check attribute. In the do part, the actual bind implementa-
tion is provided. It requests the parent node of the current point and executes the bind. Below the
do part, delimited by ensure and end, the postcondition of the composition is checked. In this
case, it double-checks if pt has successfully been replaced by src. The modified implementations
replace the original calls in the respective algorithms. By this modification, the CnL attributes are
incorporated into the basic interpretation of composition programs without the risk of triggering
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unintended rewrites induced by attribute dependencies. For attribute-determined composition, it
is straight-forward to add the contract check as an extra expression part to the rewrite application
condition (cf. Equations 5.65 and 5.66). However, as discussed in Section 5.3.4, additional
attribute evaluations induced by direct and indirect dependencies of the check attribute during
rewrite execution will have an impact on the order of composer execution.

Besides pre- and postconditions, contracts regularly have invariants, i.e., assertions that hold
before and after the contracted operation is executed. For fragment contracts, obvious candidates
for invariants are the semantic conditions which define the validity of an ASTs based on specific
attributes. Some authors (e.g., [Alblas 1991]) define semantic conditions as a finite set Cond(p)
of Boolean attributes and semantic evaluation functions associated with the productions p ∈ P
of an AG. The evaluation of semantic conditions on a given AST determines its validity w.r.t.
the current attribution and thus defines a subset of valid trees generated by the underlying CFG.
The invariant specification of a contract can simply use semantic conditions to maintain a global
consistency state of the attributed AST during composition. Let T = (V,E,Lab,LΣ) be the AST
of a given composition environment andG = (N,Σ, P, S) the corresponding CFG. Equation 5.77
extends the above contract specification with a global composition invariant:

invariant

∀v ∈ V ∀att ∈ Attx(Lab(v)) ∩ Cond(ProcOf(v)) : v.att = true (5.77)

end

ProcOf(v) provides the production associated with Lab(v) if Lab(v) ∈ N and otherwise the
empty set. Hence, the invariant’s condition is checked for each attribute instance at each node v in
T which is labeled with a nonterminal and has a corresponding attribute occurrence in semantic
conditions Cond(ProcOf(v)). By default, the invariant is checked before the composition starts
and then regularly after any composition step is executed. If true is obtained at all nodes, the
invariant holds and the composition is valid. Otherwise, the composition is invalid w.r.t. the
previous composition step.

Using pre- and postconditions of fragment contracts as well as invariants, the composition
system can rely on its internal state and values of attribute instances to report cause-related error
messages to the user, via log files or direct feedback in an IDE. In comparison to classic ISC, this
is a clear advantage, since error detection is not delayed to a compiler which is not aware of any
preceding composition, and thus cannot generate cause-related error messages.

5.4.4. LogProg Example

In this section, Examples 3.14 and 5.1 are extended with fragment contracts to define a well-
formed FCM for LogProg using SimpAG. The main purpose of this example is to demonstrate
the integration of contract-related attributes with the plain FCM and CnL attributes. More practi-
cal examples will be given in Chapter 6 in context of a composition system for Java fragments.
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Example 5.2 (Well-formed fragment component model).
The first step in the development of a well-formed FCM for LogProg is combining the attributes
and equations of AGLogFCM developed in Example 3.14 and AGLog developed in Example 5.1,
which results in AGLogWCM. Hence, the underlying CFG of AGLogWCM contains the original
productions of GLog and FCM productions of AGLogFCM. Due to the open-context problem,
the Box declarations of the FCM introduce new contexts for inherited attributes. Consequently,
AGLogWCM provides two additional equations for the env attribute in the contexts of StmtBox
and ExprBox as shown in the equations below:

fun StmtBox.fragment.env = [ ]

fun ExprBox.fragment.env = [ ]

Observe that the equations initialize env with an empty table, which seems the most obvious
solution to this incarnation of the open-context problem.

To specify a fragment contract, characteristic attributes need to be declared. For Expr, which
is a slot candidate, Assx(Expr) shall contain the provides attribute with the purpose of
providing a list of visible declaration names at expression slots. To declare the attribute in
SimpAG, Declaration 5.69 is instantiated:

syn string⊥* Expr.provides

To implement provides, the pattern of Equation 5.70 is instantiated, reusing the inherited
env attribute, converting it into a plain list of declaration names:

fun Expr.provides =


|env|⊔
i=1

[keyi of env] if isSlot = true,

⊥ else.

Furthermore, a complementary characteristic attribute requires ∈ Assx(Expr) computes
a list of declaration names which are used in the expression and, thus, must be provided by the
slot’s context. According to Declaration 5.71, requires is associated also with Expr:

syn string⊥* Expr.requires

Implementing this attribute, the pattern of Equation 5.72 is instantiated:

fun Expr.requires = child1.usages
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The equation simply delegates to the usages attribute at its owned Or fragment which is an
extension of the original attribution and performs the actual collection of variable usages in
Expr trees:

syn string⊥* {And,Or,Term}.usages

fun Or1.usages = child1.usages t child3.usages
fun Or2.usages = child1.usages

fun And1.usages = child1.usages t child3.usages
fun And2.usages = child1.usages

fun Term1.usages = [ ]

fun Term2.usages = [ ]

fun Term3.usages = [child1.ident]

fun Term4.usages = [child2.ident]

Using the characteristic attributes, a fragment assertion can be specified corresponding to the
patterns of Declaration 5.73a and Equation 5.75:

syn bool⊥ Expr.check(Node)

fun Expr.check(f) =

{
provided ⊆ f.required if isSlot = true,
⊥ if isSlot = false.

Given the check attribute, the composition system can now validate a precondition before bind-
ing any Expr slot in a LogProg environment. Moreover, given a negative result of the contract
checking, it can prompt cause-related and precise error messages about the specific problem.
For instance, assume requires = {"a","b","c"} and provides = {"b","c"}. Since
a is required, the system fails and can issue a message: “Cannot bind fragment ‘A’ to slot ‘B’ in
line ‘x’, because ‘A’ uses variable ‘a’ which is not provided at ‘B’.” �

5.4.5. When to Check Contracts

If a well-formed invasive composition system is developed, contracts should be defined with
certain care. Too complex characteristic attributes and preconditions can drastically slow down
the composition process. In the worst case, the RAG evaluator would have to reevaluate the
whole AST before each execution of a composer. Hence, especially invariant checking should
not be conducted continuously as it probably depends on most if not all attributes of the CnL.
Another issue are logical dependencies among a group of composers so that there is no total
ordering of composition steps that fulfills all their contracts when they are applied. Instead,
before and after the group’s composers are applied, the invariant is valid, which indicates a well-
formed composition result. To support such scoped cases, the composition system must provide
a concept for organizing composers and contracts in groups. The composer declarations of a
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CompositionEnvironment developed in Section 5.2.1 can be extended easily to support an
arbitrary nesting of Composers by replacing ComposerList by a CompositeComposer
list nonterminal which allows an arbitrary nesting of primitive and composite Composers.

Regarding composites, the interpretation algorithms can be modified to support them. Given
operator-determined composition, a composite-supporting variant of Algorithm 1 maintains a
stack of CompositeComposers where the stack’s top element denotes the currently active
composer group. The currently active group is interpreted as long as its composers have associated
points they can transform or until another CompositeComposer is selected by nextCom-
poser, pushed onto the stack and becomes the active group. After a group is finished, i.e.,
no more compositional points can be transformed, it is popped from the stack and the new top
level group becomes active until the stack is empty. In presence of CompositeComposers,
contracts are specified w.r.t. groups and contracts are checked at the first activation of a group (pre-
conditions and invariants) and when it is popped from the stack (postconditions and invariants).

A composite-supporting variant of point-wise composition (Algorithm 2) works slightly differ-
ent. A new outer loop wraps the outer box loop, maintaining the currently active group using
a variable. As before, the currently active group determines the set of primitive Composers
available in the inner loops for composition. After all available points and composers of the group
have been processed in compliance with the current strategy, the next group is selected by the
outer loop. The selection can be determined by a user-defined strategy or may simply respect the
order of occurrence in the CompositionEnvironment. As before, the checking of contracts
occurs at activation time of a group and after a group is finished. Regarding termination criteria,
each group can be interpreted once, leaving some compositions unsolved, or until a fixpoint is
reached, i.e., none of the compositional points has an applicable composer in any group.

The next section summarizes this chapter’s contributions and draws a conclusion.

5.5. Summary and Conclusions

In this chapter, the RAG-based specification method for FCM has been presented. It has been
shown how composition environments are defined by integrating the CnL grammar and the FCM
grammar. It turned out that attributes are a convenient way of specifying and finding compositional
points in fragments. Extending the plain FCM RAG, support for composer declarations was
added to the grammar, using reference attributes to perform the look-up of fragment components
and compositional points. At evaluation time, the instances of these reference attributes form an
overlay graph that describes the relations between components.

Based on the composer extension, two algorithms for evaluating composition programs were
introduced. The operator-determined algorithm interprets the list of composers as a set of rewrite
rules whose actual application mode is highly configurable depending on a collection of variable
functions. Complementary, the point-determined algorithm implements a weaving metaphor:
traversing the fragment components of a composition environment, it finds compositional points,
uses attributes to find associated composers and applies the corresponding composition operators.
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Additionally, two attribute-dependent approaches to composition-program interpretation were
discussed. It was observed that ReRAGs in general are not suitable to implement composition
operators because compositional rewrites easily interfere with CnL rewrites and attributes, and
because the application order is not transparent to the user. Second, the ANCAG approach
developed in [Thiele 2011] was reviewed observing that ANCAG only support a small class of
AGs without reference attributes. Additionally, the idea of a statically precomputed evaluation
and composition order is inconsistent with composition environments employed by users in
arbitrary, unanticipated scenarios.

Finally, the novel notion of well-formed ISC was introduced by extending the classic model
of ISC with characteristic attributes and fragment assertions. These can be used in pre- and
postconditions of fragment contracts to detect context-sensitive composition problems and issue
cause-related error messages which can be logged or displayed by interactive editors.

While this chapter introduced RAG-based ISC on a conceptual level, Chapter 6 discusses its
implementation in the JastAdd RAG system and presents a fragment composition system for
Java 1.5.
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6
The SkAT Framework and a RAG-Based

Composition System for Java

To verify the concepts developed in this thesis, a RAG-based framework for ISC has been
implemented. The Skeletons and Application Templates (SkAT) framework uses JastAdd RAGs
to provide a reusable and modularized implementation of the basic attribution patterns developed
in Chapter 5. The original purpose of SkAT is to provide an expressive and reliable technology to
model and implement composition systems supporting patterns of parallel programming, which
are frequently called skeletons in literature (cf. [Cole 2004; Goswami et al. 2002]), by abstractions
for template metaprogramming (TMP) and the separation of cross-cutting concerns (SoCC) (cf.
Chapter 1) in arbitrary programming languages. Since skeletons are only a specific and complex
use case of fragment composition, SkAT naturally supports FCMs for application-specific code
generation (“application templates”). Figure 6.1 gives an overview of the main compartments of
SkAT. As the JastAdd metacompiler is used as an implementation framework, it is represented
in the basement layer. Second is the core-specification and component language (CnL) layer.
Each box on that level represents a set of associated JastAdd RAG specifications. JastAddJ
and Language X denote CnL specifications that are bundled with SkAT and can be reused,
where Language X symbolizes an extension point for adding further built-in language support.
JastAddJ is the JastAdd extensible Java compiler originally developed by [Ekman 2006; Ekman
and Hedin 2007a]. It implements an extensible, full-fledged RAG-based compilation frontend
of Java, including name and type analysis, and forms the heart of SkAT for Java (SkAT4J)—the
composition system discussed in this chapter. The remaining items on the same layer are SkAT’s
implementation modules. SkAT core implementation (SkAT/Core) contains the basic composition
API and reusable FCM attributes such as the point-identification attributes. Extending SkAT/Core,
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Figure 6.1.: An overview of SkAT for full ISC.

SkAT for full-fledged ISC (SkAT/Full) adds composition algorithms and composer declarations,
while SkAT for minimal ISC (SkAT/Minimal) (grayed out) contains a minimal component model
which is the basis of the other grayed out parts in the upper layer. These parts of SkAT constitute
the foundations of minimal and scalable ISC, and are described in Chapter 7.

The third layer accommodates functional ISC systems with a typical COMPOST-like API,
without complex dedicated CsL constructs such as in-place composers. Hence, SkAT4J is a
classical ISC system. Reusing the basic APIs, systems with complex dedicated CsL constructs
reside on the fourth layer. Since this chapter is focused on classical systems, it is not further
investigated here. However, Chapter 7 discusses some examples of the fourth layer.

The remainder of this chapter is structured as follows. Section 6.1 shortly introduces JastAdd
and JastAddJ. Section 6.2 discusses the SkAT/Core and SkAT/Full modules of SkAT which are
relevant for this chapter. Afterwards, Section 6.3 presents SkAT4J as an application of SkAT/Full
and JastAddJ. In Section 6.4, the resulting system is used to implement the BAF code generator
of the use-case scenario given in Chapter 2. Moreover, the section introduces a library of reusable
parallel skeletons for Java as a complex use case of ISC. Finally, Section 6.5 summarizes and
concludes this chapter.

6.1. JastAdd and the JastAddJ Java Compiler

This section first introduces the main specification and implementation features of JastAdd.
Afterwards, the components and structure of JastAddJ are described.

6.1.1. A Short Introduction to JastAdd

JastAdd is an object-oriented compiler-generator framework based on circular RAGs [Hedin
2000]. It supports rewrites that are integrated with attribute grammars [Ekman and Hedin 2004].
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Due to its RAG features and the practical availability of extensible compiler frontends of practical
languages such as Java, JastAdd is a suitable implementation framework for well-formed ISC. As
JastAdd’s specification language is very similar to that of SimpAG, only its relevant constituents
are briefly described below.

Abstract syntax. As a language for AST grammars, JastAdd uses a form of flat EBNF with
a maximum of one production per nonterminal and without choices. Similar to SimpAG, the
language supports abstract nonterminals and nonterminal inheritance. In detail, a production has
the following syntax:

[abstract] name[:super] ::= regexp ;

The optional keyword abstract denotes an abstract nonterminal. name is an identifier string
and super is the optional name of a super nonterminal. On the right-hand side, regexp is a
sequence of labeled terminals and nonterminals (normal, list or optional), where the types of
terminals can be arbitrary Java types.

Attribute declarations. Inherited and synthesized attributes are declared by the keywords
syn and inh using the following syntax:

[syn|inh] ret_type nt_type.name([params]) ;

Here, nt_type is a declared nonterminal of the AST grammar, Opt, if it is any optional non-
terminal, List, if it is any list nonterminal or ASTNode, if the attribute shall be declared for
all nonterminals in the AST grammar. name is a standard Java identifier string that denotes
the attribute’s name, which may have zero or more parameters (params) in Java syntax. The
attribute’s co-domain is determined by the return type—ret_type. It is not explicitly distin-
guished between reference attributes and normal attributes. However, if ret_type is an AST
nonterminal, it is assumed that the attribute will compute an AST node which may be a fresh or
referenced node. Otherwise, arbitrary types of Java can be used.

Semantic functions. Attribute implementations are specified using the keyword eq and the
following syntax:

eq nt_type[.acc].name([params]) [= java_expr|java_block] ;

Here, nt_type, name and params are defined equivalently to JastAdd’s attribute declarations.
If name is an inherited attribute, a child access acc has to be specified in the context of nt_-
type, evaluating one or more nodes associated with an instance of the name attribute. There
are two ways for defining a nonterminal child’s access. First, a child can be accessed directly
via get[label], where label denotes its label given by the AST grammar and get is a
prefix. Alternatively, child nodes are generically retrievable via getChild by passing the
corresponding list position. If name is declared as synthesized, acc is simply left out from
the corresponding attribute equations. Since JastAdd’s target language is Java, it is also used as
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Figure 6.2.: JastAdd’s evaluator-generation process.

equation language. Basically, an equation can be implemented by a Java expression or a Java
block with according return statements. In both variants, an adequately typed value must be
computed and returned.

Advanced features. Besides the regular RAG syntax, JastAdd supports inter-type declara-
tions, i.e., it allows users to declare additional Java methods and fields which can be used in
attribute equations or provide convenience API support. Moreover, attributes can be cached
(lazy attributes) and be declared as circular, enabling a fixpoint-based computation of recursive
attributes. The supported syntax of rewrite specifications was already anticipated in Section 5.3.4
(Equation 5.65), except that condition and expression are Java code in JastAdd’s case.

Evaluator generation. Given a set of input files containing the above-described constructs,
JastAdd checks the complete specification and generates an attribute evaluator. Figure 6.2 shows
the code-generation process as a data-flow diagram. By convention, JastAdd uses the file endings
.ast to denote the parts of the AST grammar, .jrag files contain semantic aspects, where
each aspect contains a collection of attribute declarations, equations and rewrite specifications.
While technically there are no differences to .jrags, .jadd files typically contain aspects with
inter-type declarations. After parsing and validating the specifications, JastAdd generates the
evaluator as a bunch of Java classes: one per nonterminal of the integrated AST grammar with
woven Java methods and fields that implement attributes, rewrites and inter-type declarations. All
generated nonterminal classes inherit standard functionality and shared attributes from a common
super class—ASTNode. List nonterminals and optional nonterminals are represented jointly by
a List class and an Opt class. As the generated evaluator is demand-driven, an evaluation is
started by invoking attribute methods on any object in the AST. Since nonterminals and attributes
are mapped to Java classes, fields and methods, the resulting implementation makes heavy use of
polymorphic dispatch to find and evaluate attributes associated with a specific node. For clients of
JastAdd-based attribute evaluators starting the evaluation of attribute instance of an AST node is
invoking a method of the respective Java object. Thus, evaluators can be transparently integrated
into arbitrary Java applications, without any difference to other parts of an application.
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Figure 6.3.: An overview of JastAddJ’s specifications (cf. [Ekman and Hedin 2007b]).

6.1.2. Ingredients of JastAddJ

JastAddJ is a Java 1.4 and 1.5 compiler with an extensible RAG-based frontend [Ekman and
Hedin 2007b].1 An overview of its specifications is given in Figure 6.3. Most specifications
belong to the 1.4 version, while the extensions that make up the novel features introduces with
Java 1.5 are symmetrically modelled as extending JastAdd RAG aspects.

In more detail, the Java 1.4 specifications include AST grammar modules (.ast), a parser
grammar and the actual .jrag and .jadd files. The semantics specifications comprise a bunch
of modules, whereas only a selection is shown in the figure. For pretty-printing, PrettyPrint
defines an aspect which basically manages the unparsing of nodes to text. Thus, if a fragment
composition system is developed as an extension of JastAddJ, the original pretty printer can simply
be reused and extended if required. AccessControl encodes the visibility rules of types,
methods and fields as given by the Java language specification, for example, it checks if a method
may be called in a subclass depending on its visibility modifier. The ExceptionHandling
aspect checks and validates the types of exceptions that may occur and, for example, computes
which catch block applies for a given exception object. Modules prefixed with LookUp contain
attributes contributing to the name analysis of JastAddJ, while TypeAnalysis attributes
compute types of Java expressions and referenced variables.

The specification modules concerned with the semantics of Java 1.5 build on Java 1.4 by
including, referencing and extending the corresponding grammars and attributions. Hence, the
AST and parser grammars of Java 1.5 reuse most productions and nonterminals of Java 1.4,
performing some redefinitions where necessary. Syntactic extensions include generic types,
methods and the foreach loop. The respective .jrag modules provide extensions of the original
analysis algorithms and add new aspects to name and type analysis. As a parser generator,

1Recently, JastAddJ was extended to support Java 7 and Java 8 (1.7 and 1.8 in the old nomenclature) [Hogeman
2014; Öqvist and Hedin 2013]. Unfortunately, this was too late to be considered by this work.
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Figure 6.4.: Grouped specification modules of SkAT/Core.

JastAddJ uses Beaver [Demenchuk 2012], which implements the LALR bottom-up approach to
parsing. The parser grammar is split into .parser modules which are composed to a Beaver
specification during JastAddJ’s code generation process. Thus, syntactic extensions to JastAddJ
can easily add their own parser modules or replace existing ones.

6.2. Components of SkAT

This section discusses the basic components and specifications of SkAT/Core and SkAT/Full as
well as their interplay. Because SkAT has been growing into a large system over time, only small
excerpts from the code will be shown and discussed in detail. Other less important parts will be
discussed briefly, some of them with more code excerpts in Appendix A.4.

6.2.1. Specifications of SkAT/Core

As sketched in Figure 6.1, SkAT has a set of generic reusable core specifications which define
the basic ISC functionality and can be added as an add-on to any language implemented using
JastAdd RAGs. Figure 6.4 gives an overview of the RAG modules provided by SkAT/Core.
Organized along concerns, they can be distinguished into four groups of modules.

AST module group. The AST grammar defines the basic notion of a fragment Box and the
CompositionEnvironment (cf. Listing 6.1). Boxes have a name to represent them in the
composition environment, and an output name which becomes their file name after composition.
TerminalSlots represent any points at the terminal level and thus cannot be modeled directly
by the classic node-level composition operations. If the FCM shall support a parametrization of
string values or other types of terminal values, TerminalSlots can be associated with these
and a type-specific transformation can be provided. A corresponding example will be discussed in
Section 6.3 in context of the Java FCM. Finally, the Pattern nonterminal introduces an abstract
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1 CompositionEnvironment ::= Fragment:Box*;
2 abstract Box ::= <Name:String> <OutName:String> ;
3
4 abstract TerminalSlot ::=;
5
6 abstract Pattern ::=;
7 QRef:Pattern ::= <Name:String>;

Listing 6.1: JastAdd AST grammar of SkAT/Core.

1 aspect Environment{
2 // Passing down a reference to the environment root.
3 inh lazy CompositionEnvironment ASTNode.env();
4 eq CompositionEnvironment.getChild().env() = this;
5
6 // Provide the initial root context.
7 syn CompositionEnvironment CompositionEnvironment.env() = this;
8 }

Listing 6.2: Environment.jrag specification of SkAT/Core.

concept for realizing matching patterns of points and fragments. Inheriting from Pattern,
QRef represents simple path-based names for DFA-based point-identification.

Fragments module group. The fragments group provides the basic fragment infras-
tructure. FragmentSystem.jadd contains the client API for loading and storing fragments,
basically encapsulating the composition-environment tree and realizing the internal resource
management. Composition systems derived from the core typically extend this API with system-
specific functionality. Interested readers may look up the API in Listing A.7 of Appendix 6.1.

The actual fragment infrastructure is contained in Environment.jrag (Listing 6.2) and
Fragments.jrag (Listing 6.3). The former specifies the env attribute passing down a refe-
rence to the environment root node. Observe that in JastAdd the initial value of inherited attributes
is typically provided using a synthesized attribute at the root nonterminal (cf. Line 7). The sec-
ond RAG module defines attributes concerned mainly with persistence (shouldPersist and
resourceName), and look-up of fragments (findFragment). The look-up of fragment
works by using a parametrized inherited attribute where the parameter is the name to search
for. Moreover, owningBox passes down a reference to the top-level box to any node within a
fragment box.

Points module group. The points group contains the point-identifying attributes and the
point-collection infrastructure. The Points.jrag module provides convenience attributes
for naming and point identification in the composition environment as shown in Listing 6.4.
Lines 3–8 contain the most basic attributes. isPoint and pointName derive their values from
the concrete identification attributes defined in the point-specific modules in the module group.
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1 aspect Fragments{
2 // Retrieve owned fragment of a Box (glue).
3 syn ASTNode Box.fragment() = null;
4
5 // By default, a Box is not persisted.
6 syn boolean Box.shouldPersist() = false;
7 syn String Box.resourceName() = getOutName() != null?getOutName():getName();
8
9 // Fragment look-up from anywhere in the environment.

10 inh Box ASTNode.findFragment(String fragmentName);
11 syn Box CompositionEnvironment.findFragment(String fragmentName){
12 ... // Iterate through box list and return box with fragmentName.
13 }
14 eq CompositionEnvironment.getChild(int index).findFragment(String fragmentName) =
15 findFragment(fragmentName);
16 eq Box.getChild(int index).findFragment(String fragmentName) =
17 getName().equals(fragmentName)?this:findFragment(fragmentName);
18
19 // From somwhere in a fragment, return the owning Box node/object.
20 inh Box ASTNode.owningBox();
21 eq CompositionEnvironment.getChild(int index).owningBox() = null;
22 eq Box.getChild(int index).owningBox() = this;
23 }

Listing 6.3: Fragments.jrag specification of SkAT/Core.

1 aspect Points{
2 // Identification and naming attributes.
3 syn boolean ASTNode.isPoint()= isSlot() || isHook() || isRudiment();
4 syn String ASTNode.pointName()= isSlot()?slotName():(
5 isHook()?((List)this).defaultHookName():(
6 isRudiment()?rudimentName():""));
7 inh String ASTNode.pointPrefix();
8 eq CompositionEnvironment.getChild().pointPrefix() = "";
9

10 // Checks if a given pattern matches at this node.
11 syn boolean ASTNode.hasQName(Pattern qName) = qName.isMatching(this);
12
13 // AST type-checks using Java’s type system.
14 syn Class[] ASTNode.compatibleFragmentTypes();
15 syn boolean ASTNode.isCompatibleInstance(Object fragment){
16 ... // Check if ’fragment’ is a compatible AST type.
17 }
18
19 // Check point-specific preconditions before executing a composition step.
20 syn Object ASTNode.checkContractPre(Object fragment) = true;
21
22 // Check point-specific postconditions after executing a composition step.
23 syn Object ASTNode.checkContractPost(Object fragment) = true;
24 }...

Listing 6.4: Excerpt from the Points.jrag specification of SkAT/Core.
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Moreover, the pointPrefix attribute provides context-dependent prefixes for point names. At
the CompositionEnvironment root the prefix is empty (cf. Line 8). The matching of points
is sketched in Line 11. Currently, the QRef pattern is the only point-matching implementation
included in SkAT/Core. It is specified in the PointRefs.jrag module, implementing a
DFA-based matcher to match point names with paths constructed from pointPrefix values.
The matcher is invoked via Pattern.isMatching(ASTNode). Moreover, the module
contains attributes concerned with the checking of node types during composition (cf. Lines 14–
17). The attribute compatibleFragmentTypes computes a list of Java Class objects
that represent the allowed syntactic types at a compositional point. Observe that reusing Java’s
runtime type system is possible because JastAdd generates a representative Class for each
nonterminal and uses class-based inheritance as an implementation of nonterminal inheritance.
Hence, isCompatibleInstance relies on Java’s instance-of check.

As the last part of Points.jrag, Lines 20 and 23 declare the basic attributes for point-
specific fragment contracts. checkContractPre is evaluated directly before a composition
operation is executed. At that stage, the point is still a guaranteed member of the environment
AST, while the fragment is not. Hence, context-dependent attribute instances at a slot or rudiment
node can be evaluated while the fragment’s attributes must not depend on the parent or any other
predecessor in the AST. Complementary, checkContractPost is evaluated immediately
after a composition step has been applied. At that stage, the point is no longer a member
of the AST so that its attributes should not be evaluated, whereas the fragment is a member
of the AST so that its attributes can safely be used because its context is available. Pre- and
postconditions evaluate true if all assertions are fulfilled. Otherwise, any kind of object may be
returned which can be used by SkAT to produce an error message. In case of a negative result of
checkContractPost, the system roles back the composition and restores its original state.
The semantic-error handling of SkAT supports two modes. In normal mode, the composition
system stops immediately after an assertion’s failure and reports the according message. In
recover mode, the system skips the current composition step and continues processing.

The remaining specifications of the points group provide the specific point-identification
attributes of the FCM. Listing 6.5 shows the slot-related attributes of Slot.jrag. Lines 3–5
comprise the basic FCM declarations of isSlot and slotName (cf. Section 5.1.1). Moreover,
an extra isTerminalSlot declaration is given to mark up slots in terminal symbols (e.g., in
string values). Complementary, Lines 8–10 contain default equations which define that List and
Opt nodes are never recognized as slots, and that TerminalSlot nodes are always recognized
as such. Moreover, Lines 13–15 contain the definition of isInSlot, which is a helper attribute
to distinguish nodes within a slot’s subtree from the others in the environment. By default, SkAT
just ignores such nodes as a slot is basically an atomic replaceable unit. Lines 18 and 19 define a
default type for slot bindings which is the type of the slot itself. If different fragment types shall
be considered, this has to be defined as an extension. Finally, Lines 22–28 contain a small excerpt
from the SlotCollection aspect. The implementations use a SkAT-specific collection API
that performs a depth-first traversal of the environment tree, and collects all slots (collSlots),
the first slot found according to a given Pattern or all slots matching the given pattern.
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1 aspect Slots{
2 // Determining slots in the RAG-based FCM.
3 syn boolean ASTNode.isSlot() = false;
4 syn boolean ASTNode.isTerminalSlot() = false;
5 syn String ASTNode.slotName() = "";
6
7 // Lists and Opts are never slots, a TerminalSlot always is a terminal slot.
8 eq List.isSlot() = false;
9 eq Opt.isSlot() = false;

10 eq TerminalSlot.isTerminalSlot() = true;
11
12 // Distributes, if a node is located within a slot.
13 inh boolean ASTNode.isInSlot();
14 eq CompositionEnvironment.getChild(int i).isInSlot() = false;
15 eq ASTNode.getChild(int i).isInSlot() = isSlot();
16
17 // Default replaceable AST type of a slot.
18 eq ASTNode.compatibleFragmentTypes() =
19 new Class[]{isSlot()?this.getClass():BottomFragmentType.class};
20 }
21
22 aspect SlotCollection{
23 // Slot collecting attributes.
24 syn java.util.List<ASTNode> ASTNode.collSlots();
25 syn ASTNode ASTNode.findSlot(Pattern qName);
26 syn java.util.List<ASTNode> ASTNode.findSlots(Pattern qName);
27 ...
28 }

Listing 6.5: Excerpt from the Slots.jrag specification of SkAT/Core.

Since the contents of Rudiments.jrag and Hooks.jrag are very similar to what has
been discussed above, they are not discussed in detail here. However, the interested reader may
inspect them in Listing A.8 and Listing A.9 in Appendix A.4.

Composers module group. In the composers group has three different specifications.
The contents of ComposerAPI.jrag are shown in Listing 6.6. It realizes SkAT’s implemen-
tation of the generalized composer approach discussed in Section 5.2.2. Lines 3–10 comprise
composer identification and related attributes. Additionally to isBind, isBindRetain de-
scribes a Bind composer declaration which retains the slot in the AST after binding it, which is
only possible if the slot is a list entry. Moreover, isComposerInplace helps the system rec-
ognizing embedded in-place composer signatures. In Lines 13–16, attributes relating composers,
fragments and compositional points are declared. Line 19 derives the actual syntactic type from
source fragment, which is used to enforce syntactic correctness of compositions. Finally, has-
ComposerFurtherSideEffects helps the composition system to recognize composers
which cause further side effects such as printing messages or requiring extra composition steps
not covered by the composition program or the composition logic. Composers that produce such
side effects are expected to provide a composeSideEffects() operation.
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1 aspect ComposerAPI {
2 // Generalized composer-identification attributes.
3 syn boolean ASTNode.isBind() = false;
4 syn boolean ASTNode.isBindRetain() = false;
5 syn boolean ASTNode.isExtract() = false;
6 syn boolean ASTNode.isExtend() = false;
7 syn int ASTNode.extendTgtPosition() = -1;
8 syn boolean ASTNode.isComposer() = isBind() || isExtend() || isExtract();
9 syn boolean ASTNode.isComposerInplace() =

10 isPoint() && isComposer() && composer() == this;
11
12 // Reference edges between composers, fragments and points.
13 syn ASTNode ASTNode.srcFragment(); // Composer --> Fragment
14 syn ASTNode ASTNode.targetPoint(); // Composer --> Point
15 syn ASTNode ASTNode.composer(); // Point --> Composer
16 syn boolean ASTNode.hasAssociatedComposer() = isPoint()?composer() != null:false;
17
18 // Actual type of a source fragment.
19 syn Class ASTNode.fragmentType() = srcFragment().getClass();
20
21 // Check if a composer has further side effects (none by default).
22 syn boolean ASTNode.hasComposerFurtherSideEffects() = false;
23 }

Listing 6.6: Excerpt from the ComposerAPI.jrag specification of SkAT/Core.

The remaining specifications contain the operational implementations of the composition oper-
ators in Java as well as some additional convenience methods, e.g., a stack to report composition
problems. Listing 6.7 shows an excerpt from CompositionRewrites.jadd including the
Java signatures of the operator implementations. As the operator semantics has already been
discussed in the previous chapters, their JastAdd-dependent implementation details are excluded
from the listing. The implementation of doBind is sketched between Lines 3–6, doExtend
can be found between Lines 12 and 15 while doExtract is located in Lines 18–21. The rewrite
implementations uses JastAdd’s inter-type declarations in such a way that the operations are
woven into the emitted ASTNode class and can be directly invoked by clients or the built-in
composition algorithms. The operations are always executed with respect to the owning object.
Hence, after extract or bind execution in non-retaining mode, this node is no longer a valid part
of the AST and the composition environment. After execution, the operations return a status
object representing more detailed information on the composition result, which is used by the
composition engine to provide precise log messages. While the standard AST-level composi-
tion operations are predefined, terminal slots can be transformed arbitrarily. Clients that define
their own terminal slots need to provide specific strategies on transforming the corresponding
values. Consequently, Line 9 provides an abstract signature of doBind which is expected to be
overwritten in subtypes of TerminalSlot.

Since composition algorithms and composer interpretation have been discussed exhaustively
in the previous chapters, the ComposerManagement.jadd module is only described briefly.
ASTNode.doCompose(model) uses the SkAT/Core attributes to compute the composer
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1 aspect CompositionRewrites {
2 // Implementation of bind.
3 public StepResult ASTNode.doBind(ASTNode fragment, boolean retain){
4 if(isSlot()){
5 // Check syntactic types, contracts and execute bind operation.
6 } else return StepResult.POINT_CHECK_FAILED; }
7
8 // Variation point for specific bind operations for terminal slots.
9 public abstract StepResult TerminalSlot.doBind(ASTNode value, boolean retain);

10
11 // Implementation of extend.
12 public StepResult List.doExtend(ASTNode fragment, int index){
13 if(isHook()){
14 // Check syntactic types, contracts and execute extend operation.
15 } else return StepResult.POINT_CHECK_FAILED; }
16
17 // Implementation of extract
18 public StepResult ASTNode.doExtract(){
19 if(canExtract()){
20 // Execute extract by removing self from parental context.
21 } return StepResult.COMBINED_FAILURE; }
22
23 ... // Further convenience and helper operations.
24 }

Listing 6.7: Excerpt from the CompositionRewrites.jadd of SkAT/Core.

arguments and checks if the arguments have been resolved accordingly. If the checks were
successful, it dispatches to the composition rewrites, otherwise it provides according messages. In
case several different composers are applicable at the current point, it prefers bind over extract and
extract over extend. The model parameter is an optional argument which allows to parametrize
the composition with a model object. It can be used to provide external system-dependent
arguments to embedded composition operators and languages. For example, the Universal
Extensible Preprocessor (UPP), which will be discussed later in Section 7.4, uses this feature.
Finally, ComposerManagement.jadd implements a composition-problem stack to maintain
errors that occur during composition. The objects on this stack can be used to log error messages
or to report them via error markers in interactive editors.

6.2.2. Specifications of SkAT/Full

SkAT/Full extends the core with modules for composer declaration, composition strategies and
a full composition API. Figure 6.5 sketches the JastAdd specifications of SkAT/Full and their
relations with SkAT/Core.

Basically, SkAT/Full comprises six additional JastAdd specifications. The AST module isc-
composers.ast adds composer-declaration nonterminals and is shown in Listing 6.8. Cor-
responding to the SimpAG grammar of Section 5.2.1, it defines Composer as an abstract
nonterminal which the concrete composer declarations inherit from. The composer declarations
are integrated with SkAT/Core using the attributes in ComposerIntegration.jrag as
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Figure 6.5.: Specifications of SkAT/Full.

1 CompositionProgram ::= Composer:Composer*;
2
3 abstract Composer ::= PointName:QRef <FragmentName:String>;
4 Bind:Composer ::=;
5 Extend:Composer ::= <Position:int>;
6 Extract:Composer ::=;

Listing 6.8: JastAdd AST grammar of SkAT/Full.

shown in Listing 6.9. Lines 3–5 announce the distinct composer nodes to the composition system.
Lines 8–12 implement the targetPoint, the inverse composer and the srcFragment
attributes by delegation to the SkAT/Full-specific look-up attributes. The respective declarations
of the look-up attributes can be found between Lines 19 and 23. Some of the corresponding
equations can be inspected in Lines 26–35.

The remaining specifications are only discussed briefly. ComposerManagement.jadd
extends the core’s composer management with an imperative API for marking composer–point
pairs as exhausted (cf. Section 5.3). This exhausted relation is then used to prefilter points during
the hook look-up (cf. lookUpH in Listing 6.9) to avoid redundant hook extensions.

In correspondence to the attribute-dependent composition rewrites discussed in Section 5.3.4,
ComposerRewriteIntegration.jrag integrates the basic composition operations with
JastAdd’s rewrite API and its attribute evaluation algorithm. Hence, for each kind of a composer
declaration, the module contains a rewrite specification which checks the syntactic integrity of
compositional point and associated composer, and calls the respective operator implementation in
SkAT/Core. If a problem occurs during composition, the environment’s status is also updated.
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1 aspect ComposerIntegration {
2 // Announce composer declarations.
3 eq Bind.isBind() = true;
4 eq Extend.isExtend() = true;
5 eq Extract.isExtract() = true;
6
7 // Map to the specific look-up attributes of SkAT/Full.
8 eq Bind.targetPoint() = lookUpS(getPointName());
9 eq Extend.targetPoint() = lookUpH(getPointName());

10 eq Extract.targetPoint() = lookUpR(getPointName());
11 eq Composer.srcFragment() = lookUpF(getFragmentName()).fragment();
12 eq ASTNode.composer() = LookUpComposer(this);
13
14 // Compute a position from the declaration and the FCM’s pre-defined index.
15 eq Extend.extendTgtPosition() = getPosition()<0?((List)targetPoint())
16 .hookIndex(simpleName()):super.extendTgtPosition();
17
18 // Declarations of look-up attributes.
19 inh Box Composer.lookUpF(String fragmentName);
20 inh ASTNode Composer.lookUpS(QRef pointName);
21 inh List Composer.lookUpH(QRef pointName);
22 inh ASTNode Composer.lookUpR(QRef pointName);
23 inh Composer ASTNode.LookUpComposer(ASTNode point);
24
25 // Implementations of look-up attributes.
26 eq CompositionProgram.getComposer(int index).lookUpF(String fragmentName)
27 = findFragment(fragmentName);
28 eq CompositionProgram.getComposer(int index).lookUpH(QRef pointName){
29 for(ASTNode hook:env().findHooks(pointName)){
30 if(!getComposer(index).isExhausted(hook))
31 return hook;
32 }
33 return null;
34 }
35 ... // The remaining look-up equations are implemented likewise.
36 }

Listing 6.9: Excerpt from the ComposerIntegration.jrag specification as a part of
SkAT/Full.

SkAT/Full systems support several global composition strategies based on the composition
algorithms discussed in Chapter 5. Thus, CompositionStrategies.jadd provides a Java
interface which has to be implemented by any concrete strategy included in SkAT/Full and by
any custom strategy. The included strategies are described below.

AGDepthFirstStrategy. This strategy combines the integrated demand-driven composition
rewrites (cf. Section 5.3.4) with a recursive depth-first traversal of the composition envi-
ronment. The traversal starts at the root of the leftmost fragment box in the environment. If
a compositional point is visited, JastAdd’s demand-driven evaluator invokes automatically
and triggers composition rewrites defined by the associated composers.

AGBreadthFirstStrategy. This strategy combines the demand-driven composition rewrites
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with an iterative breadth-first traversal of the composition environment. If a compositional
point is visited during the traversal, JastAdd’s demand-driven evaluator invokes composition
rewrites automatically.

OpOrderedStrategy (single pass). This strategy is an implementation of Algorithm 1 dis-
cussed in Chapter 5. It traverses the list of composer declarations once in order of ap-
pearance and applies the corresponding composition operators to each point matched by
the qualified reference of a composer declaration. Assuming that none of the composers
directly triggers itself, this strategy always terminates.

OpOrderedStrategy (multi pass). The multi-pass mode of OpOrderedStrategy tries to re-
evaluate composer declarations in n passes. During pass 1 to n−1 at least one composition
is executed while in the last pass no composition occurs. The number of passes n is
typically unknown in advance.

OpOrderedStrategy (strict). The strict mode of OpOrderedStrategy enforces a decreasing
number of matched compositional points after each pass. Hence, if there are n points in
the composition environment at the start of the evaluation algorithm, there are n+ 1 passes
at maximum. In other words, if there is a strict solution to the composition problem, the
system finds it, otherwise it will terminate and report that the composition is not strict.

PointOrderedStrategy. This strategy is a Java implementation of Algorithm 2 discussed in
Chapter 5. It performs a depth-first traversal of the composition environment, applying
composition operations before descending to its children. Moreover, it gives precedence to
points of source fragments so that before a fragment component is copied its points are
visited and evaluated first.

Extending the minimalistic fragment system of SkAT/Core, CompositionSystem.jadd
provides a Java composition facade [Gamma et al. 1995] which eases composer creation for
clients by providing factory methods for composers, the above-mentioned default strategies, and
the basic API for loading and persisting fragment components. Moreover, SkAT/Full systems
support a strategy-independent imperative composition mode. Hence, if a composition scenario
cannot be solved reasonably using the strategy interface, Java can be used as an imperative
composition language by enforcing an immediate composer execution.

6.2.3. Generating Composition Systems

To finally generate composition systems, SkAT/Core and SkAT/Full provide a compact build
infrastructure based on the Ant build tool [The Apache Software Foundation 2014] for Java,
reusing the JastAdd code generator. The infrastructure comprises the following tasks: it collects
core, full and client-specific FCM specifications from the respective folders, it generates Java
code from the set of collected RAG specifications and, optionally, it generates code for parsers
and printers. After everything has been generated, code and manually implemented Java artifacts
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Figure 6.6.: A typical SkAT setup in Eclipse.

are compiled and packaged into a self-contained Java archive. The archive file can be distributed
as a normal Java library usable in arbitrary Java projects if added to the build path. Moreover, the
build infrastructure can be easily configured to generate an executable application—assuming
that an executable composition language is also available.

Finally, Figure 6.6 shows a typical setup of SkAT in Eclipse using the example of SkAT4J
described in the next section. The workspace has three visible projects, two of them correspond to
SkAT/Core and SkAT/Full. The third project contains the specifications of the Java composition
system. It is configured in the displayed Ant build file that imports and reuses the core build
infrastructure. The binary jar file (i.e., skat4j.jar in this example) is generated by invoking
the tpl.build.jar target from command line or via the user interface of Eclipse.
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Figure 6.7.: Generating SkAT4J.

6.3. SkAT4J: A Composition System for Full Java

SkAT4J is a full-fledged invasive composition system for Java, based on SkAT/Full and JastAddJ.
Its core consists of a set of JastAdd RAG modules which instantiate and extend the attributes and
equations of SkAT/Full providing concrete point and fragment-identification attributes. Thereby,
the RAG modules of JastAddJ are reused as CnL specifications to which the FCM attributes
are related. Furthermore, JastAddJ’s parser grammar based on the Beaver parser specification
language [Demenchuk 2012] is reused and extended. Using the JastAdd evaluator generator and
the Beaver parser generator, the SkAT/Full generator collects all specifications of the FCM and
JastAddJ and generates the Java composition system. Figure 6.7 gives a more detailed view on this
process and the participating specifications. On the left-hand side, the compartments of the Java
FCM are shown. The Syntax module group extends JastAddJ’s parsing and printing facilities
with custom slot notations and new start symbols that provide an interface for parsing fragment
boxes directly. While the module’s contents are not discussed here in detail, interested readers
may find the parser grammar in Appendix A.4.2, Listing A.13. Boxes, slots and the other parts of
the FCM are contained in the Java FCM group. The API and composition facade to be used by
clients is provided as plain Java classes in the Composition API module group. SkAT/Full,
and the reused specifications of JastAddJ are sketched in the figure’s center. Together with the
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1 abstract JavaFragmentBox:Box ::= ;
2
3 // Top-level boxes.
4 CompilationUnitBox:JavaFragmentBox ::= Fragment:CompilationUnit;
5 ClassBox:JavaFragmentBox ::= Fragment:ClassDecl;
6 InterfaceBox:JavaFragmentBox ::= Fragment:InterfaceDecl;
7
8 ImportBox:JavaFragmentBox ::= Fragment:ImportDecl;
9

10 // Member-level boxes.
11 MethodBox:JavaFragmentBox ::= Fragment:MethodDecl;
12 ConstructorBox:JavaFragmentBox ::= Fragment:ConstructorDecl;
13 FieldBox:JavaFragmentBox ::= Fragment:FieldDeclaration;
14 MemberBox:JavaFragmentBox ::= Fragment:MemberDecl;
15
16 // Block-level boxes.
17 StatementBox:JavaFragmentBox ::= Fragment:Stmt;
18 ExpressionBox:JavaFragmentBox ::= Fragment:Expr;
19 BlockBox:JavaFragmentBox ::= Fragment:Block;
20
21 abstract JavaNameBox:JavaFragmentBox ::= ;
22 DotBox:JavaNameBox ::= Fragment:Dot;
23 TypeAccessBox:JavaNameBox ::= Fragment:TypeAccess;
24 ParTypeAccessBox:JavaNameBox ::= Fragment:ParTypeAccess;
25 AccessBox:JavaNameBox ::= Fragment:Access;
26
27 abstract JavaTerminalBox:Box ::= ;
28 StringBox:JavaTerminalBox ::= Fragment:StringValue;
29 StringValue ::= <Value:String>;

Listing 6.10: Fragment component candidates of SkAT4J.

Java FCM specifications, these specifications become the input to the SkAT/Full generator, which
generates the actual Java composition system. The final ingredients of the invasive composition
system are sketched on the figure’s right side. As to be expected, it comprises the generated AST
classes (approx. 350 Java classes), including the attribute evaluator of JastAddJ, the additional
attribute implementations of SkAT4J, SkAT/Core and SkAT/Full, and the facade classes provided
by the composition API. After compilation and packaging, the composition system can be
delivered to clients as a Java archive file (cf. Figure 6.6).

6.3.1. A Java “Boxology”

SkAT4J supports a subset of Java nonterminals as fragment candidates. The set of fragment
candidates F is determined by java-fragments.ast—a JastAdd AST grammar adopting
CnL nonterminals by using fragment-box nonterminals. The contents of that grammar are shown
in Listing 6.10 while a corresponding graphical representation can be found in Figure A.2 of
Appendix A.4. The fragment candidates are organized in layers. JavaFragmentBox acts
as an abstract common ancestor of all nonterminal fragments in the FCM. Top-level boxes
(cf. Lines 4–6) are typically conceived as root elements of a program by programmers. As
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such, TopLevelBoxes are often the main “sinks” of Java composition programs because their
ASTs will be printed in the end to obtain an executable program. TopLevelBoxes of SkAT4J
are CompilationUnitBoxes representing a potentially compilable Java source file, Class-
Boxes containing the AST of a Java class declaration (ClassDecl) and InterfaceBoxes
containing the AST of a Java interface declaration (InterfaceDecl). To be able to compose
import statements into CompilationUnits for importing new types and packages, SkAT4J
also supports ImportDecls as fragment components, as shown in Line 8. Member-level boxes
(cf. Lines 11–14) denote fragment components which are first-class members of class or inter-
face declarations. More specifically, a MemberBox contains an arbitrary Java MemberDecl,
FieldBox provides a Java FieldDeclaration as a fragment component, MethodBoxes
provide MethodDecls as fragment components and ConstructorBoxes provide constructor
declarations (ConstructorDecls). Block-level boxes (cf. Lines 17–19) are components that
are typically used at the level of blocks, e.g., in method bodies, or deeper in the AST. SkAT4J
supports StatementBoxes encapsulating Stmt trees as fragment components, BlockBoxes
may contain entire Blocks (basically lists of statements in Java) and ExpressionBoxes may
contain arbitrary Expr trees, e.g., arithmetic expressions, logical expressions or simple values
such as Integer numbers or strings. To also support names and identifiers in the different contexts
they can appear, SkAT4J provides JavaNameBoxes (cf. Lines 21–25). In JastAddJ, names of
types, variables, references to variables, type variables and others are represented as Access
nonterminals. DotBoxes may contain Dot ASTs, which is basically a qualified name with one
or more segments. A TypeAccessBox contains a simple name that represents an access of a
type declaration. Similarly, ParTypeAccessBox encapsulates an access object to a generic
type. If the name’s final context is not known beforehand or if it is used in several contexts, a
generic AccessBox can contain arbitrary not finally classified names. Since JastAddJ’s auto-
matic context-dependent classification of parsed identifiers is an issue for FCM specifications,
it is discussed in more detail in a later section. As an addition to nonterminal-based fragment
components, SkAT4J also supports JavaTerminalBoxes (cf. Lines 27–29). Fragments of
terminal boxes can be composed with terminal slots by a custom terminal-specific bind operation.
Currently, SkAT4J only supports StringBoxes encapsulating plain Java strings to bind slots in
terminal strings by substring replacement.

To make SkAT’s fragment system aware of the newly introduced fragment candidates, they
must be glued using the respective attributes fragment and shouldPersist, which were
declared for all Box-inheriting nonterminals (cf. Listing 6.3). The corresponding RAG mod-
ule fragments.jrag of SkAT4J is shown in Listing 6.11. For JavaFragmentBoxes,
StringBoxes and all inheriting nonterminals, the fragment attribute simply maps to the
getFragment() child accessor. The default equations of the core suggest that none of the
fragments should be persisted. This behavior is kept, except that CompilationUnitBoxes
as main compilable units of Java are marked do be persisted automatically (cf. Line 8). The
resource names for persisting to the file system are computed in Lines 11–14. If the composition
system user provided an output name explicitly, this one is used, otherwise it is derived from the
fragment’s name in the composition environment.
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1 aspect Fragments{
2 // Mapping to the fragment system.
3 eq JavaFragmentBox.fragment() = getFragment();
4 eq StringBox.fragment() = getFragment();
5 eq AccessBox.fragment() = getFragmentNoTransform();
6
7 // By default, only compilation units should persist after composition.
8 eq CompilationUnitBox.shouldPersist() = true;
9

10 // Determining the box’es final resource names for persistence.
11 eq JavaFragmentBox.resourceName()
12 = hasOutName()?getOutName():getName() + ".jbx";
13 eq CompilationUnitBox.resourceName()
14 = hasOutName()?getOutName(): packageName() + getName() + ".java";
15 ...}

Listing 6.11: Fragments.jrag specification of SkAT4J.

1 eq MethodDecl.isSlot() = name().endsWith("Slot");
2 eq MethodDecl.slotName() = isSlot()?name().substring(0,name().length()-4):"";
3 eq MethodDecl.getChild(int i).isInSlot() = isSlot();

Listing 6.12: Equations from the Slots.jrag specification of SkAT4J.

6.3.2. Slot Identification

SkAT4J uses three different patterns to define its slot-candidate set S and the slot-identification
function ∫S (cf. Section 4.1.3). First, a COMPOST-like naming approach is used, which
recognizes slot naming conventions in the signature of a node’s name without modifying or
extending the CnL syntax. Second, explicit slot nonterminals are introduced as a monotonic
extension to the CnL’s AST grammar providing their own specific syntax for slot signatures
in the CnL. Third, explicit terminal slots are introduced, also with their own signature syntax,
extending the original AST grammar. The three groups will be discussed subsequently.

Pattern-Based Slots

SkAT4J’s FCM supports one slot candidate, whose identification is based on the recognition of a
specific naming pattern. The specification of MethodDecl slots is shown in Listing 6.12. Given
these equations, the generated composition system recognizes method declarations of a class
whose names have the suffix Slot as slot nodes:

void methodSlot(){};

The name of such slots is given by the substring preceding the Slot suffix. Hence, the above
slot’s name is method.
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1 eq StmtSlot.isSlot() = true;
2 eq StmtSlot.slotName() = isSlot()?extract(getSlotName(),"[[","]]"):"";
3 eq StmtSlot.compatibleFragmentTypes() = new Class[]{Stmt.class};

Listing 6.13: Equations from Slots.jrag related to StmtSlot.

Dedicated Slot Nonterminals

Dedicated slot nonterminals are introduced as extensions to the nonterminals of the AST grammar
of JastAddJ. These extensions should not modify the original language specifications of JastAddJ
and, in the best case, should not cause interferences with its static semantics. To achieve this, the
following basic AST extension scheme is employed:

XSlot:X-Or-Super ::= <SlotName:String> ;

X is the actual nonterminal of JastAddJ a slot candidate shall be provided for. XSlot inherits
from X-Or-Super which can be X itself or a “more adequate” ancestor. An adequate ancestor
is a nonterminal which can safely occur in the places of X, but has less or no problems with the
consistent embedding into the CnL RAG (cf. the incomplete embedding problem, Section 5.1.5).
As an example, consider the slot nonterminal StmtSlot. It is defined as follows in java-
slots.ast:
StmtSlot:Stmt ::= <SlotName:String> ;

Still, the composition system has to be notified about StmtSlot as a slot candidate and needs
to be supplied with a slot-identification function based on the corresponding FCM attributes.
Listing 6.13 shows the according equations. Verbally, a StmtSlot node always is a slot and
can be bound to any nonterminal inheriting from Stmt, e.g, assignments, variable declarations,
blocks, expression statements or loops. As a conventional naming scheme, SkAT4J uses double
square brackets as slot markup for dedicated terminal and nonterminal slots. This ensures that the
JastAddJ parser grammar can be extended safely without causing ambiguities.

Table 6.1 summarizes the slot candidates which have been introduced in SkAT4J by the
two approaches discussed above. Their full specification can be found in Listing A.10 of
Appendix A.4.2.

Dedicated Terminal Slots

The core model of ISC is based on nonterminals as slot candidates and subtree replacement as
bind composition operation. However, in some practically relevant situations, this model is not
immediately applicable. As an example, consider the identifier of a class declaration. In an ideal
case, it would be modeled as a separate nonterminal with a terminal child in the AST grammar
so that defining a class-name slot would be trivial. However, typically the identifier of a class
declaration is simply added as a terminal to the AST grammar. In theory, this would not be a
problem since terminals can be lifted as nonterminals. Unfortunately, JastAdd does not support
lifting neither on the specification level nor in the generated Java evaluator, where terminals are
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Slot nonterminal Example in context Explanation

MethodDecl
public class A {

void MethodSlot(){};
}

A slot for method decls.

MemberDeclSlot
public class A {

[[MemberSlot]];
}

A class-members slot,
e.g., fields, methods.

StmtSlot
public void m(){

[[StmtSlot]];
}

A slot for statements,
e.g., declarations, blocks.

ExprSlot Object[] o =
new Object[[[ExprSlot]]];

A slot for expressions,
e.g., initializations.

VarAccessSlot int a = this.[[VarName]];
A slot for accessing
fields of an object.

TypeAccessSlot [[TypeSlot]] t =
new [[TypeSlot]]();

A slot for “real”
generic types.

ArrayTypeAccessSlot [[TypeSlot]][] t =
new [[TypeSlot]][i];

A slot for
generic arrays.

GenericTypeAccessSlot public void
m(A<[[ParSlot]]> arg){}

Convenience slot
for type parameters.

TypeVariableSlot public class
A <[[ParSlot]]>{}

Convenience slot for
type parameter decls.

Table 6.1.: Nonterminal slots of SkAT4J.

realized as normal fields. Moreover, changing JastAddJ’s specifications manually is also not
an option since this is a considerable effort and would have to be repeated with each follow-up
version of JastAddJ. To circumvent this issue, the already mentioned concept of terminal slots
was introduced in SkAT/Full and is used by SkAT4J.

Concrete terminal slots inherit from the TerminalSlot nonterminal and are allowed to
access their parent node modifying any of its terminal values. A corresponding concrete situation
is shown in Figure 6.8. Each terminal slot is provided with an inherited attribute slotOwner
pointing to the node which shall be modified with a terminal-specific composition operation.
From the composition system’s perspective, terminal slots are transparently integrated into the
environment tree: look-up and slot-identification attributes have the same signatures. To integrate
terminal slots into SkAT4J’s FCM, the following AST extension scheme is employed:

SlotableX:X ::= [YSlot] ...further terminal slots... ;
YSlot:TerminalSlot ::= ;

Here, X is the CnL nonterminal which should be provided with one or more terminal slots,
whereas Y is derived from the corresponding terminal symbol’s name. Consequently, for each
terminal slot of X, a slot nonterminal YSlot is introduced that inherits from TerminalSlot.
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Figure 6.8.: A typical subtree with a terminal slot.

1 inh TypeDecl TypeDeclNameSlot.slotOwner();
2 eq SlotableClassDecl.getTypeDeclNameSlot().slotOwner() = this;
3 eq SlotableInterfaceDecl.TypeDeclNameSlot().slotOwner() = this;
4
5 eq TypeDeclNameSlot.isSlot() = isHedged(slotOwner().getID(),"[[","]]");
6 eq TypeDeclNameSlot.slotName()= isTerminalSlot()?
7 extract(slotOwner().getID(),"[[","]]"):"";
8 eq TypeDeclNameSlot.compatibleFragmentTypes() = new Class[]{StringValue.class};

Listing 6.14: Equations from Slots.jrag related to TypeDeclNameSlot.

To glue them to the AST grammar and a nonterminal SlotableX is added which inherits
from X and has for each terminal slot of X has the corresponding optional YSlot nonterminal
on the right-hand side. As an example, consider the terminal slot TypeDeclNameSlot of a
ClassDecl:
SlotableClassDecl:ClassDecl ::= [TypeDeclNameSlot];
TypeDeclNameSlot:TerminalSlot ::= ;

Listing 6.14 shows the associated slot-identification attributes. The equations are nearly
equivalent to normal slots, except that isSlot and slotName by convention depend on the
terminal value of the slotOwner. Moreover, Listing 6.15 shows the specific implementation of
doBind. It takes a compatible StringValue as an argument and simply sets the ID value of
the slotOwner.

Similar to dedicated slots, the slot markup syntax with double square brackets helps to dis-
tinguish between X nonterminals and SlotableX nonterminals in the parser grammar. Hence,
the parser simply constructs a SlotableX node with TerminalSlot children instead of an

1 public StepResult TypeDeclNameSlot.doBind(ASTNode value, boolean retain){
2 if(!isCompatibleInstance(value))
3 return StepResult.TYPE_CHECK_FAILED;
4 slotOwner().setID(((StringValue)value).getValue());
5 return StepResult.OK;
6 }

Listing 6.15: Basic implementation of TypeDeclNameSlot.doBind().
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Slot nonterminal Example in context Explanation

TypeDeclNameSlot public interface
[[NameSlot]] {}

A slot for interface and
class-declaration names.

MethodDeclNameSlot public void
[[NameSlot]](){}

A slot supporting generic
method names.

VarDeclNameSlot,
VariableDeclaration-
NameSlot,
FieldDeclNameSlot

private String [[Name]];

Slots supporting generic
field and variable
names.

MethodAccessNameSlot String a =
[[NameSlot]]();

A slot for generic
method calls.

ConstructorDeclNameSlot public [[NameSlot]](){}
A slot supporting generic
constructor names.

StringValueSlot String s =
"SkAT: [[Msg]] [[Msg]]."

A slot in string literals.

ParameterDeclNameSlot public void
m(String [[Name]]){}

A slot for method-
parameter names.

Table 6.2.: Terminal slots of SkAT4J.

X node in the AST if it recognizes one or more slot signatures. Another option to introduce
SlotableX nodes into the AST is using JastAdd’s rewrites. A rewrite condition of X nodes can
check the presence or absence of slot signatures and create a fresh SlotableX node with the
original X child nodes additionally adding fresh TerminalSlot children. Depending on what
is more adequate in the specific case, SkAT4J employs both options.

Table 6.2 summarizes the supported terminal slots in SkAT4J which have been defined using
the above discussed approach.

6.3.3. Hook Identification

Besides the slots presented in the previous subsection, the FCM of SkAT4J also supports extensi-
bility via some implicit hooks. The attribute equations specifyingH and ∫H (cf. Section 4.1.3) are
provided by a corresponding Hook.jrag module. As a representative from that specification,
Listing 6.16 shows the five hook-identification attributes of the statements hook, which
exists in context of any block, except of those which are also in context of a slot (cf. Line 2).
Observe that instead of inherited attributes as proposed in the theoretical RAG approach, SkAT
apparently uses synthesized attributes for hook-identification instead. This results from the fact
that JastAdd does not support list nonterminals in ideal ways. Essentially, inherited attributes for
lists are not supported. Therefore, SkAT “simulates” inherited attributes in these cases by using
synthesized attributes at the list nonterminal which delegate to a corresponding parametrized
attribute instance at the parent node (Block nodes in case of statement hooks). Hence, above
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1 // Equivalent to inh ’eq Block.getStmtList().isHook() = ...;’.
2 eq Block.isHook(List hook) = hook == getStmtList() && !isInSlot();
3
4 // Equivalent to inh ’eq Block.getStatementList().hookName() = ...;’.
5 eq Block.hookName(List hook) = "statements";
6
7 // Equivalent to inh ’eq Block.getStmtList().hookAliases() = ...;’.
8 eq Block.hookAliases(List hook) {
9 if(isMethodRootBlock()){

10 return new String[] {"methodEntry","methodExit","statementsEnd"};
11 }
12 else if(!isMethodRootBlock() && endsWithReturn()){
13 return new String[] {"methodExit" + numReturns(),"statementsEnd"};
14 }
15 else /* All other situations, e.g., constructors, static blocks. */
16 return new String[] {"statementsEnd"};
17 }
18
19 // Equivalent to ’eq Block.getStmtList().hookIndex(String hookName) = ...;’.
20 eq Block.hookIndex(List hook, String hookName) {
21 if("methodEntry".equals(hookName) || "statements".equals(hookName)){
22 return 0;
23 }
24 else if (hookName.startsWith("methodExit") && endsWithReturn()){
25 return hook.numChildren()-1;
26 }
27 else /* All other situations: length of the list. */
28 return hook.numChildren();
29 }
30
31 // Equivalent to ’eq Block.getStmtList().compatibleFragmentTypes() = ...;’.
32 eq Block.compatibleFragmentTypes(List hook) = new Class[]{Stmt.class};

Listing 6.16: Equations from Hooks.jrag, determining statement list hooks.

of each “simulating” equation in Listing 6.16 an equivalent inherited signature is annotated as a
comment. The hook’s name is defined in Line 5, i.e., “statements”. Its aliases are specified
in Lines 8–17. Aliases have two different purposes. If a hook appears in multiple contexts, its
aliases may assign a more adequate name for a specific context. For example, the statements
hook alternatively has the name methodEntry if it is the root block of a method declaration.
This helps clients of the composition system to address the statements hooks of all method
root blocks of a class. Hence, in terms of aspect-oriented programming (AOP), hook names and
matching patterns constitute a pointcut language. Moreover, observe that each statements
hook which also has a return statement at the end can be addresses via methodExitX, where
X is the number of appearance of the return in the control flow of its enclosing method. The
hook’s default index position is determined by the equation of the hookIndex attribute in
Lines 20–29. In the case the hook is addressed as methodEntry or statements, its default
is 0, if it is a methodExit, the insertion is before the return statement and for all other names,
it is the position after the last element.

The other hooks of SkAT4J are specified in similar ways and are therefore omitted. However,
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Hook list Hook name and aliases Explanation

Block.stmts
<scope>.statements

.statementsEnd

.methodEntry

.methodExit

Hooks to extend the
statement list of any block.

CompilationUnit
.importDecls

<scope>.imports
A hook to extend the
list of import declarations.

TypeDecl.bodyDecls
<scope>.members

.membersEntry

.membersExit

Hooks to extend the members
list of a class or
interface declaration.

ClassDecl.implements <scope>.implements
A hook to add new interfaces
to a class.

MethodDecl.parameters <scope>.parameters
A hook to add new
parameters to a method.

Table 6.3.: Hooks supported by SkAT4J.

Table 6.3 gives an overview of all hooks currently supported by the component model of SkAT4J.
Moreover, interested readers may inspect the full specification in Listing A.11 of Appendix A.4.2.

6.3.4. Language Glue

As SkAT4J basically extends JastAddJ and parts of its AST definitions and attributes, the exten-
sions need to be glued with the JastAddJ RAG. In Section 5.1.5 of Chapter 5, the open context
problem and the incomplete embedding problems of language composition were discussed. The
majority of gluing attributes and equations of SkAT4J are contained in the Glue.jrag specifi-
cation module. In the following, parts of this specification are presented and explained.

Listing 6.17 shows an excerpt of the TreeCompleteness aspect of Glue.jrag. This
aspect provides some of the context required by the inherited attributes compilationUnit
and hostPackage, which are relevant for name and type analyses in JastAddJ. The compi-
lationUnit attribute passes a reference to the root CompilationUnit through the AST
which is used by dependent attributes. Since all fragment-component candidates are typically
descendants of CompilationUnit, they must be provided with a compensatory context. The
corresponding equation is shown in Lines 5–6 of Listing 6.17. It provides a mockup Compila-
tionUnit as a context object. Of course, this completion is syntactic in nature so that semantic
analyses depending on that attribute may not return a practical result. However, other parts of the
RAG remain intact and can be used in contract attributes. The inherited attribute hostPackage
provides the current Java package—the default namespace to resolve names within a Compi-
lationUnit. As fragment boxes (except CompilationUnitBox) do not belong to any
package, the default package is provided as context (cf. Line 12 for the corresponding equation
for StatementBox). Similarly, the hostType attribute needs to be provided with an equation
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1 aspect TreeCompleteness {
2 // Original JastAddJ attribute:
3 // inh CompilationUnit TypeDecl.compilationUnit();
4 // eq CompilationUnit.getChild().compilationUnit() = this;
5 eq StatementBox.getFragment().compilationUnit() =
6 env().unknownType().compilationUnit();
7 ... // Similar equations for non compilation-unit boxes where required.
8
9 // Original JastAddJ attribute:

10 // inh String Expr.hostPackage();
11 // eq CompilationUnit.getChild().hostPackage() = packageName();
12 eq StatementBox.getFragment().hostPackage() = "";
13 ... // Similar equations for non compilation-unit boxes where required.
14
15 // Original JastAddJ attribute:
16 // inh TypeDecl Stmt.hostType();
17 // syn TypeDecl TypeDecl.hostType() = this;
18 eq StatementBox.getFragment().hostType() = env().unknownType();
19 ... // Similar equations for lover-level boxes where required.
20
21 // Original JastAddJ attribute:
22 // syn lazy TypeDecl Expr.type();
23 eq ExprSlot.type() = unknownType();
24 ... // Similar equations where required.
25 }

Listing 6.17: Slice from the TreeCompleteness aspect of Glue.jrag.

for any fragment contributing to type analysis. The reference value of hostType is used for
looking up names and types accessed from expressions and declarations within a box. Again, a
reference to a mockup TypeDecl provides context (cf. in Line 18, the corresponding equation
of StatementBox). Finally, the synthesized type attribute is provided for slots which may
occur in place of expressions or names involved in type analysis. Since a slot’s semantic type
is unknown, a reference to the mockup type is used again to complete the RAG (cf. Line 23, a
corresponding equation of ExprSlot).

Another more subtle issue is the classification of parsed names in JastAddJ. As already men-
tioned before, reference names such as variable or type names are parsed and stored unclassified
as ParseName nodes in the AST. The final classification is then implemented by AST rewrites
using a context-dependent reclassification operation. If an unclassified name is visited due to
an ongoing attribute evaluation, a composition or creating a copy, the node is classified by the
reclassification object provided by the context attribute nameType. Since FCM, composition
and contract attributes can trigger reclassification rewrites, fragment boxes must mimic the
context correctly, otherwise the composed AST may contain wrongly classified names. For
example, ParseName could be classified as TypeAccess by an AccessBox representing
a reference to a type declaration. However, if used in context of a variable assignment or ex-
pression, it may correctly be a reference to a variable declaration, which is represented by the
nonterminal VariableAccess in JastAddJ. Listing 6.18 shows the SyntacticClassifi-
cation aspect providing default name classification for most Java fragment boxes mimicking
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1 aspect SyntacticClassifiation{
2 // Original JastAddJ attributes:
3 // inh NameType Expr.nameType();
4 // inh NameType BodyDecl.nameType();
5 // Mimics context of CompilationUnit.
6 eq ImportBox.getFragment().nameType() = NameType.PACKAGE_NAME;
7
8 // Mimics context of TypeDecl.
9 eq FieldBox.getFragment().nameType() = NameType.EXPRESSION_NAME;

10 eq MemberBox.getFragment().nameType() = NameType.EXPRESSION_NAME;
11 eq ConstructorBox.getFragment().nameType() = NameType.EXPRESSION_NAME;
12 eq MethodBox.getFragment().nameType() = NameType.EXPRESSION_NAME;
13
14 // Mimics context of Block.
15 eq StatementBox.getFragment().nameType() = NameType.EXPRESSION_NAME;
16 eq ExpressionBox.getFragment().nameType() = NameType.EXPRESSION_NAME;
17
18 // TypeAccess boxes contain type names.
19 eq ParTypeAccessBox.getFragment().nameType() = NameType.TYPE_NAME;
20 eq TypeAccessBox.getFragment().nameType() = NameType.TYPE_NAME;
21
22 // Special case: AccessBoxes are classified as ambiguous names.
23 eq AccessBox.getFragment().nameType() = NameType.AMBIGUOUS_NAME;
24 }

Listing 6.18: The SyntacticClassification aspect of Glue.jrag.

the original equations of JastAddJ. Names in ImportBoxes are classified as package names
(cf. Line 6) by default. Names within fragments which are children of TypeDecl nodes in
a normal JastAddJ AST are classified accordingly as variable names (EXPRESSION_NAME,
cf. Lines 9–12). StatementBox and ExpressionBox use the same schemes. Boxes defi-
nitely containing type references provide an according classification object for type names (cf.
Lines 19–20), while general AccessBoxes classify their contained names as ambiguous names
(AMBIGUOUS_NAME) delaying the final decision since they can only be classified correctly in
their composed context (cf. Line 23). Observe that the remaining fragment boxes not considered
in the attributions of Listing 6.18 do not require gluing equations because they already provide an
adequate context inherently.

The glue module also provides an adaptation of JastAddJ’s inherited lookupType attri-
bute. In the standard case, this attribute searches through all source CompilationUnits in
the input path and already compiled classes on the classpath, and compares to a given type
signature consisting of package and name of the type. The results of calls to lookupType
are cached. To make lookupType available as a characteristic attribute that can be used to
specify fragment assertions, the original distinct start symbol Program of JastAddJ and the
root nonterminal CompositionEnvironment are glued via nonterminal inheritance where
CompositionEnvironment extends Program. This way, lookupType can be refined
transparently to other attributes and also consider the contents of fragment boxes for finding type
declarations. This is important if CompilationUnits are composed and shall be recognized
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Assertions and Characteristics Explanation
syn TypeDecl.assertNotDeclared(MethodDecl)
// Characteristic Attributes:
syn MethodDecl.signature()
syn TypeDecl.localMethodsSignatureMap()

Checks if the signature of a given
method is already contained in a
type and reports a redeclaration.

syn TypeDecl.assertNotDeclared(FieldDeclaration)
// Characteristic Attributes:
syn TypeDecl.localFieldsMap()

Checks if a field with the same
name is already a member of a
type and reports a redeclaration.

syn TypeDecl.assertVariablesProvided(ASTNode)
// Characteristic Attributes:

*syn ASTNode.danglingVars()
syn TypeDecl.memberFields(String)
inh TypeDecl.lookupVariable(String)

Checks if all variables used in
the given fragment are declared and
visible in scope of the current type
declaration, so that no dangling
references remain after composition.

syn TypeDecl.assertMethodsProvided(ASTNode)
// Characteristic Attributes:

*syn MethodDecl.danglingCalls()
syn TypeDecl.memberMethods(String)
inh TypeDecl.lookupMethod(String)

Asserts that all method calls in
the given fragment have an
according method declaration
visible in the scope of the current
type declaration.

syn ExprSlot.assertCompatibleType(Expr expr)
// Characteristic Attributes:
syn Expr.type()
syn TypeDecl.wideningConversionTo(TypeDecl)

Asserts that expressions evaluate
a compatible type w.r.t. an
enclosing assignment, i.e., left-hand
side and right-hand sides are
compared.

Table 6.4.: Fragment assertions supported by SkAT4J.

by name and type analysis during composition. Hence, the modified version first uses the original
implementation to search for types in the configured paths, if the type with the requested name
is not found the new implementation searches and compares all CompilationUnitBoxex in
the fragment list of the CompositionEnvironment.

Thanks to the integration with the JastAddJ RAG and the language glue described in this
section, SkAT4J can support fragment assertions and contracts—the concepts constituting well-
formed ISC. The next subsection discusses the contracts currently supported by SkAT4J.

6.3.5. Fragment Assertions and Contracts

Based on the concepts developed in Section 5.4, SkAT4J has some built-in fragment assertions
and contracts, which are presented in this section. Fragment assertions and the custom character-
istic attributes are specified in Assertions.jrag. Its contents are summarized in Table 6.4
while the full specification can be inspected in Listing A.12 of Appendix A.4.2. Currently,
five assertion attributes are supported by SkAT4J, which can be used in fragment contracts
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1 // The contract of ExprSlot has no preconditions, but a post condition.
2 eq ExprSlot.checkContractPre(Object fragment) = true;
3 eq ExprSlot.checkContractPost(Object fragment) {
4 if(fragment instanceof Expr){
5 Object result = assertCompatibleType((Expr)fragment);
6 if(result!=Boolean.TRUE)
7 return result;
8 }
9 return true;

10 }

Listing 6.19: ExprSlot contract equations from the Slots.jrag specification of SkAT4J.

to ensure well-formed composition results. An attribute assertNotDeclared is specified
for MethodDecl and FieldDeclaration parameters. It checks if the given parameter is
already a member of the TypeDecl owning the attribute instance. For methods, the attribute
returns true if no conflict with the signature of an already contained method is detected, oth-
erwise the assertion fails. Similarly, for FieldDeclarations it is checked if a field with
the given field’s name is already a member of the host TypeDecl. The assertion attributes
assertMethodsProvided and assertFieldsProvided compute the “dangling” us-
ages of methods and variables in the given fragment and compare it to what is provided by the
TypeDecl node owning the attribute instance. Observe that while all other characteristic at-
tributes used in this section’s assertions are existing attributes of JastAddJ, danglingVars and
danglingCalls were added as custom attributes to Assertions.jrag. Both traverse the
fragment AST and collect the dangling variable and method identifiers. The names found in the
fragment are then checked against the members and scope of the TypeDecl owning the instance
of the assertion attribute. Finally, assertCompatibleType compares the semantic types of
the left-hand and right-hand sides of a variable assignment delivered by the JastAddJ type system.
Therefore, it uses the type system’s attribute type, which is defined on any expression, and
wideningConversionTo to check compatibility of the types on both sides of an assignment.

Based on the assertion attributes, fragment contracts can finally be specified. Listing 6.19
shows the specification of a contract associated with SkAT4J’s slot candidate for Java expressions
(ExprSlot). Always evaluating true, the contract has no precondition (cf. Line 2). Hence, as
long as fragment is a compatible subtree, a bind composition operation would be executed.
However, after composition, a postcondition is evaluable (cf. Lines 3–10). It uses assertCom-
patibleType to verify if the fragment bound to the ExprSlot node is correctly typed w.r.t.
the context. In case it is, the system recognizes the contract as fulfilled, otherwise it inverts the
composition operation and emits a detailed problem-cause related status message about the failed
contract check. As an example, consider the following members of an arbitrary class declaration:
int bar = 1;
public void foo() { bar = [[FooSlot]];}

Now assume FooSlot shall be bound to an expression fragment x*42/33. Depending on
the type of x, the type system derives the type of the expression according to the Java language
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1 // The contract the members hook has a preconditions, but no postcondition.
2 eq TypeDecl.checkContractPre(List hook, Object fragment){
3 Object contractValue = Boolean.TRUE;
4 if(isMembersHook(hook)){
5 if(fragment instanceof MethodDecl)
6 contractValue = assertNotDeclared((MethodDecl)fragment);
7 if(contractValue == Boolean.TRUE && fragment instanceof FieldDeclaration)
8 contractValue = assertNotDeclared((FieldDeclaration)fragment);
9 if(contractValue == Boolean.TRUE)

10 contractValue = assertVariablesProvided((ASTNode)fragment);
11 }
12 return contractValue;
13 }
14 eq TypeDecl.checkContractPost(List hook, Object fragment) = true;

Listing 6.20: Members hook contract equations from the Hooks.jrag spec. of SkAT4J.

specification. If x was an integer variable, the expressions type would be int. Hence, after
composition, the assignment’s left-hand side and the right-hand side both would be typed as int
so that the contract is fulfilled. However, if x would be a double, the type system computes
double as the expression’s type. Since a double value is not allowed to be assigned to int
variables, the composition system would report an error message containing information about
fragment, slot and failed assertion.

Complementary, Listing 6.20 shows the fragment contract of the members hook. In this
case, the contract’s precondition relies on two assertions (cf. Lines 2–13) while its postcondition
constantly evaluates true (cf. Line 14) so that the composition persists if the precondition is
fulfilled. The precondition first evaluates assertNotDeclared in case the hook is extended
with a MethodDecl or FieldDeclaration fragment. Hence, if a method with the same
signature or a field with the same name is already declared within the TypeDecl owning the
hook, the contract fails and a composition specific message is produced. Finally, the contract
checks, if all dangling variables required by the fragment are provided in the hook’s context. As
an example, consider the following declaration of a Java class:
public class Foo { private int bar = 1; }

Now assume a FieldDeclaration fragment private String bar;. The members
hook cannot be extended with the fragment because it already has a declaration with the same
name. This is recognized by the contract, avoiding the composition step’s execution. Furthermore,
assume the following MethodDecl fragment:
public int getBar(){ return bar; }

In this case, the hook can be extended since the method uses a variable bar which is declared
in the hook’s context. However, if the method would use other variables, the contract check
would detect this and reject execution.

In complex composition scenarios, a fragment contract might fail at an early stage of the
composition, but hold in a later stage. For example, a statement may use an undeclared variable
which is meant to be added by the composition system. If the statement composition is applied
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first, the system would recognize the missing declaration and stop by default. However, if the
composition system is in recover mode, it can delay the statement’s insertion until the required
declarations are composed. In combination with the OpOrderedStrategy in multi-pass or strict
mode, contracts and composition specification denote a “composition problem” which is “solved”
when a stable state is reached.

The usage of SkAT4J and several composition case studies are presented in the next section.

6.4. Example Applications

This section presents several fragment composition case studies of using SkAT4J . The first
example in Section 6.4.2 demonstrates a simple composition program which realizes mixin-based
inheritance [Bracha and Cook 1990] for Java classes. Afterwards, Section 6.4.3 shows how the
code generator of the business application framework (BAF) is implemented in SkAT4J. The
basic ideas and requirements of the BAF code generator were already discussed in Chapter 2.
Finally, the prototype of a fragment and composition library for parallel programming is presented.
It comprises fragment-based realizations of the well-known parallelization patterns map, reduce
and map-reduce [Dean and Ghemawat 2008].

The next subsection documents the basic usage and client API of SkAT4J.

6.4.1. Using SkAT4J

The SkAT4J library provides a low-level API to create and execute composition programs
mimicking the actual composition environment. In the following, the composition process of
SkAT4J and its phases are described, and the usage of the API to realize them is explained.

Initialization and Configuration

Before SkAT4J can be used for compositions, it has to be initialized. This is typically done by
creating a fresh JavaCompositionSystem object with a base uri as well as input and
output directories:
JavaCompositionSystem cSys = new JavaCompositionSystem("<uri>","<in>","<out>");

During the object initialization, the system scans the directory for supported fragment files
with endings .java or .jbx and adds them to the environment.

Optionally, a custom composition strategy can be configured as shown below. The available
strategies have been introduced in section 6.2.2.
cSys.setCompositionStrategy(CompositionSystem.<strategy>);

Accordingly, SkAT’s recovery mode can be enabled or disabled. By default, it is disabled so
that the system stops when a fragment type check or contract fails.
cSys.setRecoverMode(true|false);
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Fragment Management

Although fragments from the file system are already loaded during the initialization of the
composition system, SkAT4J still has some possibilities of adding additional components to
system. The following statement parses a given fragment string and creates and adds a new
fragment box to the environment:
Box box = cSys.addFragment("<name>","<content>");

Alternatively, fragment boxes can be added directly:
Box box = cSys.addFragment(<box>);

Moreover, boxes can be copied. The following statement internally copies and registers a
fragment with the given name, and returns the freshly created box:
Box newBox = box.copyBox("<name>","<newName>");

Composer Management

To create a composition program, composer nodes have to be added to the composition environ-
ment. Observe that adding a composer declaration to the environment does not automatically
execute the corresponding operation. The statements below create and add Extend declarations,
where hookName is the qualified name of the point or a name with wildcards. fragmentName
denotes the name of a fragment in the environment, while content is a fragment string which
is parsed and added to the environment.
cSys.addExtend("<hookName>","<fragmentName>");
cSys.addExtendContent("<hookName>","<content>");

Similarly, the statements below add Bind declarations, where slotName is the point’s name,
fragmentName is the name of a fragment in the environment and content is a string that
represents a fragment.
cSys.addBind("<slotName>","<fragmentName>");
cSys.addBindContent("<slotName>","<content>");

The following statement adds an Extract declaration to the environment, where rudi-
mentName is the point’s qualified name:
cSys.addExtract("<rudimentName>");

Some compositional problems require staged solutions. To support staging, SkAT4J allows
clearing the complete composition program and reset the state of the composition system with
the statement below. Staging allows composition-program developers to decompose larger
compositions in subprograms avoiding unintended interferences among compositional concerns.
cSys.clearCompositionProgram();
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Transformation

The transformation phase covers the actual application of composition operators. In SkAT/Full,
the composition engine is invoked via triggerComposition. This activates the interpreter,
which evaluates the composition program with the chosen strategy.
cSys.triggerComposition();

In cases where the provided composition strategies and a linearly ordered composition program
are inconvenient to efficiently solve the problem at hand, SkAT supports an imperative mode of
composer execution with direct invocation. The statements below show how composers can be
applied immediately:
cSys.doExtend("<hookName>","<fragmentName>");
cSys.doBind("<slotName>","<fragmentName>");
cSys.doExtract("<rudimentName>");

Error Inspection

During composition, SkAT internally maintains its health status. Hence, if problems occur, the
status is updated. The statement below checks the status of the environment, i.e., in the case a
severe problem occurred it is marked as unhealthy, which means that the composition program
interpretation was not successful because a syntactic type check or a contract failed.
boolean health = cSys.isEnvHealthy();

Detailed errors and other status messages can be reported via the following statement, which
emits the composition environment status:
cSys.printStatus();

Fragment Printing

After a successful execution of the composition engine, fragments can be pretty-printed to the file
system via the statement below. By default, only CompilationUnitBoxes are emitted since
these can be compiled by the Java compiler. To print other fragments, a regular pattern can be
passed as a parameter, matching custom box names.
cSys.persistFragments(<optional pattern>);

Having discussed SkAT4J’s API and basic usage patterns, the following subsection exemplifies
the implementation of a class-mixin composer.

6.4.2. A Class-Mixin Composer

In object-oriented programming, a mixin is a class which adds additional functionality to another
class by composition [Bracha and Cook 1990; Aßmann 2003]. It is typically not meant to be
instantiated itself and can be incomplete, i.e., the mixin may require the target class to provide
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Figure 6.9.: Invasive composition of mixins.

certain methods, which it uses in its own implementation. Therefore, mixins are sometimes called
abstract subclasses [Bracha and Cook 1990].

In ISC, mixin composition is basically “putting all members of the mixin class into corres-
ponding boxes and writing a composition program which uses the extend composition operator
to extend the members hook of a subject class with the contents of these boxes”. Figure 6.9
illustrates such a specific mixin composition for Java using ISC, where the figure’s left-hand
side shows the environment before composition while the right-hand side shows the result of
an application of mixin. On the left-hand side, Mixin provides a field foobar, a method
barfoos and its own name as well as an arbitrary number of other fields and methods. The
Subject class, which is the target of the composition, has at least one field foo and a method
bar. Besides the Subject’s extension, an interface declaration with method signatures and the
name of Mixin is derived. The interface is then referenced as an implemented interface of the
Subject class by extending it at the implements hook with the corresponding name. Hence,
if multiple classes are sequentially mixed into Subject, their derived interfaces are appended to
the hook, which provides a simple form of multiple inheritance based on fragment composition.
The result of a single mixin application is shown on the figure’s right-hand side. The member
declarations of Mixin have been appended to the members hook of Subject, which now
also implements the derived interface. Observe that the reference edge from the interface name
in Subject to the Mixin interface declaration is computed automatically in SkAT4J. Classic
ISC systems such as COMPOST and Reusewair this is not considered at all, in Reuseware this
would need to be specified as a part of the FCM.

A SkAT4J composition program that realizes the discussed operation is shown in Listing 6.21,
where it is assumed that the SkAT4J library has been added to the classpath and the composition
system has been initialized in cSys. The composition program is defined in scope of a Java
method which takes the names of the subject and mixin boxes as an input (parameters mixin
and subject). In a first step, the mixin’s CompilationUnixBox is requested from the
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1 public void mixin(String subject, String mixin) throws IOException{
2
3 CompilationUnitBox box = (CompilationUnitBox) cSys.findFragment(mixin);
4 if(box==null)
5 return;
6
7 // First an interface is derived from the mixin class.
8 ClassBox mixinBox = box.extractClassBox();
9 String mixinName = mixinBox.getFragment().getID();

10 String interfaceName = "I"+ mixinName;
11 if(cSys.findFragment(interfaceName)==null)
12 cSys.addFragment(interfaceName, "public interface " + interfaceName + " {}");
13
14 // The ’implements’ hook of the subject is extended with the new name.
15 cSys.addExtendContent(subject + "#*.implements", interfaceName);
16
17 // Generate extend declarations:
18 for(BodyDecl decl : mixinBox.getFragment().getBodyDeclsNoTransform()){
19
20 // Extend subject class and interface ’members’ hook with mixin methods.
21 if(decl instanceof MethodDecl){
22 MethodDecl m = (MethodDecl)decl;
23 MethodDecl m_interface = new MethodDecl(m,new Opt());
24 String id = cSys.genID();
25 String i_id = cSys.genID();
26 cSys.addFragment(new MethodBox(id,id,m));
27 cSys.addFragment(new MethodBox(i_id,i_id,m_interface));
28 cSys.addExtend(subject+"#*.members",id);
29 cSys.addExtend(interfaceName+"#*.members", i_id);
30 }
31 // Extend subject class with field declarations of the mixin.
32 else if(decl instanceof FieldDecl || decl instanceof FieldDeclaration){
33 MemberDecl f = (MemberDecl)decl;
34 String id = cSys.genID();
35 cSys.addFragment(new MemberBox(id,id,f));
36 cSys.addExtend(subject+"#*.members",id);
37 }
38 }
39
40 // Configuration & Transformation phase:
41 cSys.setRecoverMode(true);
42 cSys.setCompositionStrategy(CompositionSystem.OP_ORDERED_COMPOSITION_FP);
43 cSys.triggerComposition();
44 if(cSys.isEnvHealthy())
45 cSys.clearCompositionProgram();
46 else
47 cSys.printStatus();
48 }

Listing 6.21: Implementation of a mixin composition operator in SkAT4J.
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environment. Next, the mixinBox is requested from the compilation unit and an empty interface
declaration is added to the environment of cSys (cf. Lines 8–12). Observe that, for convenience,
the interface fragment is instantiated directly with the derived name instead of using an explicit
interface template as suggested by Figure 6.9. Since both ways yield equivalent results, it is the
programmers choice which one to use. The statement in Line 15 adds the extension of the subject’s
implements hook to the composition program. The loop between Lines 18–38 adds extensions
of the members hook of the subject by traversing all BodyDecls in mixinBox, adding
MethodDecls including their bodies and FieldDecls to the subject, and MethodDecls
without implementation to the derived interface. Finally, the actual composition execution is
configured and invoked in Lines 41–47. Before triggerComposition is called, recovery is
enabled and the OpOrderedStrategy in multi-pass mode (OP_ORDERED_COMPOSITION_FP)
activated. Hence, even if a contract failed, the system uses fragment contracts for validation and
continues processing. The contracts and assertions currently available in SkAT4J were discussed
in Section 6.3.5. Establishing a conflict-resolution strategy, contracts ensure that in case of
equivalently named field or method declarations in subject and mixin, the subject’s declarations
are preferred while the others are discarded. After composition, the environment’s status is
checked, in the healthy case the composition program is cleared. Otherwise, the status is printed
to console using a human-readable format.

In the next section, the mixin composer is employed in the larger context of a SkAT4J-based
implementation of the BAF code generator.

6.4.3. The Business Application Generator in SkAT4J

The BAF example has been introduced in Chapter 2. Like in the COMPOST implementation
developed in Section 4.2 and the Reusewair implementation presented in Section 4.3, the
composition program is provided as a Java method. Since SkAT4J already supports the same
markup for slots as used in Chapter 2, the fragment components of Listing 2.3 and Listing 2.5
can be used.

The code generator itself is implemented in the method compositionProgram of Lis-
ting 6.22. Recall that the BAF uses a textual DSL based on EMFText as a specification language
for business models. Hence, first a model instance is loaded using the provided file handle
in Line 5. Next, the system is configured with a multi-pass OpOrderedStrategy and recovery
mode enabled. Thus, contracts are enabled for intermediate validation. The generator’s main
loop ranges from Line 12 to Line 54 and iterates through the RoleDefinitions of the BAF
model. Thereby, it is assumed that the RoleDefinitions are partially ordered according to
role inheritance where definitions without a super role are the smallest elements. Within the loop,
in the first block of statements (Lines 14–22), the Person.jbx box is cloned and parametrized
with the basic values of the current RoleDefinition. Besides the naming of the new type,
the super type is set to Person by binding the ImplicitSuperClass slot. Moreover, a
default constructor is added via extending the membersEntry hook and the literal slot Pfx is
bound to the newline character. Afterwards, composition is triggered to create the role-specific
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1 private JavaCompositionSystem cSys = new JavaCompositionSystem("baf/","in","out");
2
3 public void compositionProgram(File modelFile) throws IOException {
4 // Load the BusinessModel object with EMFText.
5 BusinessModel bm = loadBusinessModel(modelFile);
6
7 // Configure the composition system.
8 cSys.setCompositionStrategy(CompositionSystem.OP_ORDERED_COMPOSITION_FP);
9 cSys.setRecoverMode(true);

10
11 // For each role definition, generate a Java class.
12 for(RoleDefinition role: preOrder(bm.getRoleDefinitions())){
13 // Instantiate template Person.jbx for each role.
14 String cuName = role.getName() + ".java";
15 cSys.copyBox("Person.jbx",cuName);
16 cSys.addBindContent(cuName+"#Type",role.getName());
17 cSys.addBindContent(cuName+"#TypeName","\"" + role.getName() + "\"");
18 cSys.addBindContent(cuName+"#ImplicitSuperClass","Person");
19 cSys.addExtendContent(cuName+"#*.membersEntry","public [[Type]](){super();}");
20 cSys.addBindTerminal(cuName+"#Pfx","\n");
21 cSys.triggerComposition();
22 cSys.clearCompositionProgram();
23
24 // Mix in code of super roles.
25 for(RoleDefinition superRole:role.getSuperRoles()){
26 mixin(role.getName() + ".java",superRole.getName() + ".java");
27 }
28
29 // Generate code for PropertyDefinitions of the current role.
30 for(PropertyDefinition def:concat(role.getProperties(),getSuperProps(role))){
31 // If there’s not already a mixed-in implementation, add members.
32 if(def.eContainer()==role && !isShadowed(def)){
33 cSys.addExtend(cuName+"#*.members","Setter.jbx");
34 cSys.addExtend(cuName+"#*.members","Getter.jbx");
35 cSys.addExtend(cuName+"#*.members","Field.jbx");
36 cSys.addBindContent(cuName+"#Type",def.getType().getTargetType());
37 cSys.addBindContent(cuName+"#SetSfx","set" + toFirstUpper(def.getName()));
38 }
39 // Extend asString().
40 if(def.eContainer()==role && !isShadowed(def) || def.eContainer()!=role){
41 String stmt = "v += \"\\n [[Field]]:\" + [[GetSfx]]();";
42 cSys.addExtendContent(cuName+"#*.asString.methodExit",stmt);
43 cSys.addBindContent(cuName+"#GetSfx","get" + toFirstUpper(def.getName()));
44 cSys.addBindContent(cuName+"#Field",def.getName());
45 }
46 // Extend constructor with defaults.
47 if(def.eContainer()==role && def.getType().getDefault()!=null){
48 String stmt = def.getName() + "=" + def.getType().getDefault() + ";";
49 cSys.addExtendContent(cuName+"#*." + role.getName() + ".statements",stmt);
50 }
51 cSys.triggerComposition();
52 cSys.clearCompositionProgram();
53 }
54 }
55 cSys.persistFragments();}

Listing 6.22: SkAT4J-based implementation of the BAF code generator.
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box. Next, between Lines 25 and 27, a mixin loop iterates through all super RoleDefini-
tions of the current role and calls the mixin composer which has been discussed previously.
Consequently, the members of all super RoleDefinitions are added to the role-specific
box, and corresponding Java interfaces are generated and added to the environment. Accessor
methods and fields are added by the loop between Lines 30 and 53. It traverses the collection
of PropertyDefinitions of the current role and its super RoleDefinitions. If the
current property (def) is declared by the current role and has not already been declared by a super
definition (and thus have been added via the mixin operation), the members hook is extended
with the fragments Setter.jbx, Getter.jbx and Field.jbx. The Type slot in these
fragments is bound to the targetType given by the current PropertyDefinition and
the name of the set method is constructed from the declared name. The set method name
and the field name are parametrized in the second block of the property loop (cf. Lines 40–45).
Moreover, the asString method of the Person.jbx box is extended with a property-specific
statement (cf. stmt in Line 41), which is constructed from a string and parametrized “on-the-
fly”. The extension of asString via its methodExit hook happens in case def is a child
of the current RoleDefinition or if it is a child of any super RoleDefinition, since
the original asString of Person.jbx is retained because of active fragment contracts. In
the loop’s last conditional block of statements in Lines 47-50, a statement to set the properties
default value during object construction is added to the previously inserted default constructor
via its statements hook if a default is declared in the currently processed PropertyDef-
inition. Finally, the specified composition is again executed via triggerComposition.
Before exiting compositionProgram, the generated Java classes are printed to the output
directory of the composition system.

Listing 6.23 contains an original result of the composition, generated from the BAF model
in Listing 2.2 of Chapter 2. As a fully valid and usable implementation, the emitted code
has all desired properties discussed in Chapter 2. Members have been added as intended, the
string of asString considers prefixes and all members, and the constructor sets the default
of discount automatically. Inheritance of RoleDefinitions is realized via mixin-based
inheritance and direct inheritance from Person (cf. Listing 2.1). An alternative generator as also
suggested in Chapter 2 could refer the Employee as a super type, only mixing in Customer
or vice versa, which can be easily achieved by modifying two lines of the code generator: in
Line 18 the ImplicitSuperClass slot has to be bound to the name of the first direct super
RoleDefinition and the mixin loop should skip this definition in Line 25.

Similar to the mixin composer, contracts are checked during the execution of the BAF code ge-
nerator. For example, before inserting parametrized copies of setter.jbx and getter.jbx,
the system checks if the corresponding field has already been added to the respective class
declaration. Thus, in Listing 6.23, setDiscount and getDiscount are only inserted if
the discount field declaration has been inserted correctly before (cf. the Members hook
contract in Listing 6.20). Further checks are possible. For example, the system could check if the
expression statements in asString can yield string values as required by the method.
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1 public class EmployeeCustomer extends Person implements IEmployee, ICustomer {
2 public EmployeeCustomer() {
3 super();
4 discount = 20;
5 }
6 public String asString() {
7 String v = "EmployeeCustomer";
8 v += "\n id:" + getID();
9 v += "\n name:" + getName();

10 v += "\n employed:" + getEmployed();
11 v += "\n workload:" + getWorkload();
12 v += "\n discount:" + getDiscount();
13 return v;
14 }
15 private java.util.Date employed;
16 private int workload;
17 public void setEmployed(java.util.Date employed) {
18 this.employed = employed;
19 }
20 public java.util.Date getEmployed() {
21 return employed;
22 }
23 public void setWorkload(int workload) {
24 this.workload = workload;
25 }
26 public int getWorkload() {
27 return workload;
28 }
29 private int discount;
30 public void setDiscount(int discount) {
31 this.discount = discount;
32 }
33 public int getDiscount() {
34 return discount;
35 }
36 }

Listing 6.23: EmployeeCustomer.java emitted by the SkAT4J-based BAF generator.

6.4.4. Taming Parallel Algorithms with ISC-Based Skeletons

Parallel algorithmic skeletons (short: skeletons) are basic units of abstraction capturing typical
parallel programming patterns as reusable building blocks in standard programming languages.
Ideally, these building blocks completely hide the code dealing with managing parallelism and
distribution. After they have been conceptualized by [Cole 1989], there have been various
approaches in academia to make skeletons available for scientific programmers as well as for
standard application developers. Due to the focus on single-core performance in the chip industry
during the 1990s and early 2000s, most of the early skeleton approaches have been discontinued.2

However, thanks to the end of the GHz race in the mid 2000s, the shift to multi-core processors

2For a comprehensive and continuously maintained overview of skeleton libraries and implementations see [Wikipedia
contributors 2014a].
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in desktop and mobile computing and the current trends in heterogeneous computing and green
computing, skeleton research regained momentum since programming such systems efficiently is
considered a big challenge [Benkner et al. 2011].

A common approach to implement libraries of reusable skeleton patterns is using TMP ab-
stractions (e.g., Muesli—a skeleton library using C++ templates [Ciechanowicz et al. 2009]).
However, it is still questionable if plain template metaprogramming is sufficient to express any
parallel programming pattern or skeleton and cross-cutting dependencies, as it, for example,
does not provide a Turing-complete composition language and also is not available in all impor-
tant languages for parallel programming [Chalabine and Kessler 2006]. Therefore, the authors
of [Chalabine and Kessler 2006] suggest ISC as a more practical implementation technique for
parallel patterns and concerns. More recently, [Kessler and Löwe 2012] discuss performance-
aware gray-box components. They use an ISC tool to produce and test sequential and parallel
implementation variants of typical parallelizable algorithms. Thereby, ISC is employed to weave
performance-aware scheduling code into parallel applications by static metaprogramming. Con-
sidering the applications proposed in [Chalabine and Kessler 2006] and [Kessler and Löwe 2012],
SkAT would be a good choice of an implementation framework as it has several advantages over
standard ISC approaches—namely well-formed composition, scalability w.r.t. language support
(cf. Chapter 7), extensible FCMs and a solid formal basis on RAGs.

To support this argument, in the third case-study of this chapter SkAT4J is used to create an
ISC-based implementation of a MapReduce application. MapReduce is a platform-independent
programming model in distributed computing that has been applied for efficiently solving a
variety of large-scale parallel programming tasks [Dean and Ghemawat 2008]. In the heart of
MapReduce are map and reduce skeletons with a well-determined interface implemented for
various target platforms, e.g., shared or distributed memory architectures.

A Simple MapReduce Application

In this example, the following conventions for map and reduce skeletons are used. A map skeleton
expects a collection of input data chunks and applies a user-specified task to each of the input
elements. The output of map is a collection of processed data which typically is larger than
the input set, i.e., the result has the same or a larger number of elements. Like map, a reduce
skeleton gets a collection of input data chunks and applies a user-specified task to it. The output
of reduce is a collection of processed data, which is typically smaller than the input set, i.e., the
result has fewer elements or at least one or zero elements. MapReduce composes map and reduce
operations sequentially to realize complex distributed computations. Thereby, the skeletons’
infrastructure encapsulates and hides program code which is responsible for allocating resources,
distribution of data and safe parallel execution of map and reduce tasks. Map and reduce tasks are
executed by workers. A worker is basically a lightweight process (shared address space, thread)
or heavyweight process (own address space, distinct memory) which waits for computation tasks
assigned by a designated master process. The number of worker processes is typically limited,
depending on the resources available.
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Figure 6.10.: MapReduce on a large set of documents.

An example of a MapReduce application used by [Dean and Ghemawat 2008] is counting
occurrences of single words in large collections of documents in the web, which plays a role in
estimating the relevance of a document w.r.t. a search query. Figure 6.10 contains the data-flow
view on a narrowed variant of this kind of MapReduce application counting the occurrences
of words in documents requested by a client from a document server. The document-search
request sent by the Client triggers the Master to allocate k Map and Reduce workers
which may be processes or threads running on the Master’s machine itself or on remote
machines. Observe that 1 ≤ k ≤ n, where n is the number of required map operations
(document chunks). The documents requested from the Document server are split into n
nearly equivalently sized chunks of “document data”, where each chunk is delivered to a Map
worker. Since at maximum k tasks are processed in parallel, the Master constantly assigns new
Map work to the workers. In each Map execution, chunks are tokenized into their single words
counting the occurrences of each word. Locally, each process maintains a list of hash tables with
recognized words as keys and number of occurrences as values and finally provides these tables
in its output port. This example’s Reduce tasks reduces hash tables of Map and Reduce tasks
into a single hash table which is also provided as an output value. Reduce task m computes the
combined hash table of all requested documents, which is finally delivered to the Client.
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A Fragment Library with Map and Reduce Skeletons

The implementation of applications as in Figure 6.10 can be eased by a ISC-based skeleton
library where map and reduce skeletons are deposited as fragment components to be parametrized
with corresponding application-specific tasks. The small fragment library developed in this case
study comprises four Java map and reduce skeletons (to avoid a too disruptive text fragmentation,
interested readers may look up the skeleton code in Appendix A.4.3):

• simple_map.jbx is a map skeleton that runs in a single master thread and may be used
if only a single process can be allocated or the input-data size does not justify an allocation
of more than one thread. It has the following slots (cf. Table 6.1):

– IN_TYPE: a TypeAccessSlot determining the input type of the map task,

– OUT_TYPE: a TypeAccessSlot determining the output type of map,

– MAP_OP: a MethodAccessSlot determining the name of the map operation with
IN_TYPE → OUT_TYPE as a signature,

– IN_PORT_INIT: an ExprSlot to be filled with a first request of data chunk
(expression according to IN_TYPE),

– IN_PORT_CONT: an ExprSlot to be filled with a repeated request of data (may
be the same as the expression assigned to IN_PORT_INIT),

– OUT_PORT: a VarAccessSlot determining the output sink where the skeleton’s
computed results are written to.

• simple_reduce.jbx is a reduce skeleton that runs in a single thread if only a single
process can be allocated or the input-data size is small. Except MAP_OP, it has the same
slots as simple_map.jbx plus:

– OUT_INIT: an ExprSlot which can be bound to an expression yielding a default
reduction value in case no reduction is performed,

– REDUCE_OP: a MethodAccessSlot determining the name of a reduce operation
with two parameters of type IN_TYPE and OUT_TYPE where the reduced results
are integrated.

• concurrent_map.jbx contains a shared memory variant of a map skeleton based on
the java.util.concurrent package. A master thread maintains a thread pool and
allocates workers with map tasks on demand. It has the same slots as simple_map.jbx,
but additionally:

– WORKERS: an ExprSlot to determine the maximum number of worker threads
managed by the skeleton.

• concurrent_mapreduce.jbx is a combined map and reduce skeleton that uses
the same thread pool for map and reduce operations. It corresponds to the MapReduce
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application in Figure 6.10: a master thread assigns map tasks to workers of the thread pool,
the outputs of map and reduce workers are input to reduce workers, each taking two input
data sets. The set of slots supported by this skeleton derives from a unification of the slots
supported by the three other skeletons.

Above fragment components are Java blocks. Since blocks are statements, they can be bound
to any StmtSlot or statements hook in SkAT4J. As blocks have a local scope, the input
and output to the tasks must be glued with the surrounding program code via the IN_PORT* and
OUT_PORT slots.

Using the Fragment Library

Figure 6.11 exemplifies a composition scenario where different variants of a MapReduce com-
putation are generated. The variants are used by an application with a simple dispatcher which
delegates calls of the application to specific variants depending on a dispatch condition, e.g.,
according to the current system resources and processed data. VariantTemplate.jbx in
the upper-right corner of Figure 6.11 contains a template of a variant. After parametrization and
extension, it becomes a single MapReduce application that can be instantiated as an object and
executed via a call to compute. The template provides a MAP_SKEL and a REDUCE_SKEL
slot which can be parametrized with map and reduce blocks. With the four skeletons discussed
above and assuming the same set of slot parameters, a composition program can derive three ob-
vious MapReduce variants. It can combine simple_map.jbx with simple_reduce.jbx
producing a single-threaded variant, it can combine concurrent_map.jbx with simple_-
reduce.jbx to obtain a variant with a parallel map and a single reduce (e.g., in cases map
emits rather small data sets), or it binds concurrent_mapreduce.jbx to MAP_SKEL using
some port_glue that is inserted in REDUCE_SKEL chaining the output port of map with the
reduce operation’s result.3 The actual task implementations are sketched as map_op.jbx and
reduce_op.jbx in the center of Figure 6.11. Each contains a set of Java member declarations
to be woven into each concrete variant by extending its members hook. The entry point of the
map task is map while the reduce task is invoked by calling reduce. Hence, these names are
bound to the respective slots of the skeletons (MAP_OP and REDUCE_OP). As in the examples
before, fragment contracts check the validity of the composition: a method name not accessible
from within the generated variant will not be inserted into the skeleton ignoring the corresponding
composer declaration and reporting a problem. Something similar holds for the method foo of
both task implementations: the conflict will be recognized by a contract check and solved by
preferring the first inserted one.

Besides n implementation classes, the scenario also aims at generating an App class (fragment
box App.jbx) which is executable from command line and evaluates parameters from a sim-
plified model of the current system to choose one of the generated variants for execution. The

3Instances of map and reduce skeletons can be combined in arbitrary ways by chaining their IN_PORTs and
OUT_PORTs, yielding arbitrary parallel applications.
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Figure 6.11.: Invasive composition of MapReduce skeletons.
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1 public class [[VAR_NAME]] {
2 public Map<String,Integer> compute(Collection<String> in) throws Exception{
3 // 1. Query Data.
4 Iterator<String> it = in.iterator(); // the IN_PORT source
5
6 // 2. Split and initialise Map.
7 Collection<Map<String,Integer>> mapResult = null; // the map OUT_PORT sink
8 [[MAP_SKEL]]; // the slot for map operations
9

10 // 3. Do reduce of mapped Data.
11 Iterator<Map<String,Integer>> mIt = mapResult.iterator();
12 Map<String,Integer> reduceResult = null; // the reduce OUT_PORT sink
13 [[REDUCE_SKEL]]; // the slot for reduce operations
14
15 // 4. Return the result.
16 return reduceResult;
17 }
18 }

Listing 6.24: Detailed variant template of the document crawler.

application’s data is obtained via a request statement expression to be bound to REQUEST_STMT.
One dispatch statement (fragment box dispatch.jbx) per variant is added via the method-
Exit hook to the main method (the application’s entry point). Each of the n required dispatch
statements needs to be parametrized with a Boolean dispatch condition via the CONDITION slot
and the name of the specific variant via VAR_NAME. Finally, after composition execution, the
composition system emits the n variant Java classes Var1–VarN as shown in the lower part
of Figure 6.11. The generated App class holds references to each variant in its dispatch blocks
within the main method. After compilation with a Java compiler, the application can be deployed
on a target machine and executed by a Java 1.5 or better runtime.

Consecutively, the composition scheme is realized as a SkAT4J composition program to
compose a self-tuning document-crawling application.

Composing a MapReduce-Based Document Crawler

The MapReduce generator described in this section is an instance of the composition scenario
of Figure 6.11. Therefore, the application-specific fragments participating the MapReduce
composition are discussed before any composition-program part is be presented.

Listing 6.24 contains the basic variant template providing the according slots for naming
a variant (VAR_NAME) and parametrizing it with map (MAP_SKEL) and reduce (REDUCE_-
SKEL) implementations. As an input parameter it expects a Collection of strings where each
string represents a document in Wikipedia’s Wiki syntax (not discussed here, see [Wikipedia
contributors 2014b]). This is expected to be a lazy Collection requesting and caching data
from the document server on demand via an Iterator object. Later bound to the IN_-
PORT of the map skeleton, the Iterator is requested from the method input in Line 4. The
Collection of key-value Maps declared in mapResult in Line 7 is later used in the OUT_-
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1 public static void reduce(Map<String,Integer> in1, Map<String,Integer> inout2){
2 for(String string:in1.keySet()){
3 if(inout2.containsKey(string)){
4 inout2.put(string,inout2.get(string) + in1.get(string));
5 }
6 else{
7 inout2.put(string,in1.get(string));
8 }
9 }

10 }

Listing 6.25: Reduce implementation of reduce_op.jbx.

PORT of map and provides the input to the reduce skeleton by accessing its Iterator (cf.
Line 11). While map provides a set of key-value Maps, reduce computes a single Map whose
output variable reduceResult is declared in Line 12 and later accessed by the skeleton.

An implementation of the reduce task is provided as the Java method reduce shown in
Listing 6.25. It takes two maps in1 and inout2 as an input, where inout2 is also used as an
output variable. The reduce algorithm is simple: iterating over the word-count pairs of in1,
it checks for each pair if its word is already contained in inout2. If yes, then the values are
totaled otherwise the pair is copied to inout2.

The implementation of the reduce task is provided by the Java method map and isWS shown
in Listing 6.26. The algorithm is rather simple: it takes a document string (text) as an input
and iterates through its characters. Hereby, a single word is recognized as a continuous sequence
of one or more non white-space characters which is determined by isWS recognizing wiki
markup and other characters such as blanks as white space. To store values, map uses a standard
HashMap (cf. Line 2). If a word is not contained in this map, it will be added with value 1,
otherwise the counter is simply increased by 1 (cf. Line 13). Hence, on a per document basis, the
result is already reduced while the global reduction is performed by reduce.

The application’s main template is shown in Listing 6.27. Besides its slot to request documents
(REQUEST_STMT) and the methodExit hook of main, it declares the result variable
which is later used as an output sink of the final reduction step.

Listing 6.28 shows the employed dispatch template. It provides the CONDITION slot to set a
dispatch condition and VAR_NAME to determine the dispatched variant. In case of a positively
evaluated dispatch condition, the variant is instantiated and its compute method is invoked on
the documents stored in in.

Having presented all relevant fragment components, the MapReduce generator can now be
discussed. The main composition program is shown in Listing 6.29 and is again implemented as
a Java method. For demonstration purposes of this example, it specifies the generation of two
variants: a completely single threaded implementation (“1”) and a variant supporting two threads
(“2”). The program has four logical concerns (“slices”). Like in the previous examples, there is
code configuring and managing the composition, e.g., initialization of the composition system in
the beginning and execution at the end of the program. In between, the composition arrows of
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1 public static Map<String,Integer> map(String text){
2 Map<String,Integer> storage = new HashMap<String,Integer>();
3 int textSize = text.length();
4 for(int i = 0; i < textSize;){
5 while(i < textSize && isWS(text.charAt(i)))
6 i++;
7 int start = i;
8 while(i < textSize && !isWS(text.charAt(i)))
9 i++;

10 if(start < i){
11 String word = text.substring(start,i);
12 if(storage.containsKey(word))
13 storage.put(word,storage.get(word) + 1);
14 else
15 storage.put(word,1);
16 }
17 }
18 return storage;
19 }
20
21 public static boolean isWS(char c) {
22 if(c < ’!’ || c == ’]’ || c == ’|’ ... )
23 return true;
24 return false;
25 }

Listing 6.26: Map implementation of map_op.jbx.

1 public class App {
2 public static void main(String[] args) throws Exception {
3 // Request documents from source.
4 Collection<String> in = [[REQUEST_STMT]];
5 Map<String,Integer> result = null;
6 }
7 }

Listing 6.27: Application class template App.java.

Figure 6.11 are set up as composer declarations in the composition environment. In Lines 4–5, a
call to composeVariant adds the two variant implementations, which will be described in
detail in the paragraph after this paragraph. The next block between Lines 8 and 15 instantiates
the application class App.jbx as a full Java class App.java. Moreover, it binds REQUEST_-
STMT to the external method Query.getWikiDocuments(string,int). This method
takes two parameters to be provided by the user as a command-line parameter to App. The first
parameter is the prefix of the requested documents, e.g., “A” queries documents whose names
start with “A”. The second parameter is the number of documents requested. From these two
parameters, multiple http requests to the Wikipedia web service API [Wikimedia Foundation,
Inc 2014] are constructed and posted. The queries’ results are provided in form of a collection of
document strings, as already mentioned above. The next statements of the composition program
provide extensions to the methodExit hook of App’s main method. These extensions are
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1 if([[CONDITION]]){
2 // Initialize variant.
3 [[VAR_NAME]] impl = new [[VAR_NAME]]();
4
5 // Perform operation.
6 result = impl.compute(in);
7 }

Listing 6.28: Dispatch template dispatch.jbx.

declarations of the two variables used in the variant-dispatch conditions: cores denotes the
number of available physical processors supported by the Java Runtime while threshold is
a command-line parameter denoting the corner-case document number for switching between
single-threaded and multi-threaded variants. Observe that some in-line fragments are prefixed by
STMT::=, which gives a hint to SkAT4J’s fragment parser to parse a statement component. The
actual dispatch code is woven in Lines 17–18 via weaveDispatch, which will be explained in
more detail in a later paragraph. Completing the composition environment, the next composi-
tional statements in Lines 20–24 extend App’s main with network code initializing a Socket
connection based on a client’s network address provided by the third command-line parameter of
main. The result computed by one of the two variants is then delivered to the client. Finally,
the composition engine executes the specification and persists all .java fragments.

Listing 6.30 contains composeVariant, which is the composition subprogram called by
compositionProgram discussed above. It takes two parameters: variantName is the
variant’s class name and workers is the number of worker threads the variant should handle.
The program can be read as follows. First, VariantTemplate.jbx is copied and renamed
according to variantName (cf. Line 3). Then, the newly created fragment box is prepared
for parametrization and extension by adding required import declarations (cf. weaveImports,
Line 7). The map skeletons are woven between Lines 10 and 26. If more than one worker is to
be supported by the variant, the multi-threaded variant of concurrent_mapreduce.jbx
is bound to MAP_SKEL and its WORKERS slot is constantly set to workers (cf. Line 11
and 12). In contrast, in the case only one thread is requested, MAP_SKEL is bound to the single-
threaded variant of the map skeleton—simple_map.jbx (see Line 14). In the next block of
composition statements, the previously inserted skeleton is parametrized (cf. the corresponding
parts of Figure 6.11). The implementation of the map task (as provided by map_op.jbx)
is added via the variant’s members hook in Line 19 and Line 20, the call to map is bound
to MAP_OP in Line 21. The IN_PORT* slots are filled with a call to the variant’s document
iterator on the collection of strings the variant is invoked on while the output sink OUT_PORT
is bound to mapResult. Complementary, IN_TYPE is set to String (as documents are
strings) and OUT_TYPE is Map<String,Integer> (as map computes a list of such Maps).
The reduce skeletons are woven from Line 29 to Line 44. Again, it is distinguished between a
multi-threaded and a single-threaded variant. Since in the concurrent case a combined map and
reduce skeleton is used, a glue statement is composed in Line 31 which simply transfers the first
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1 private JavaCompositionSystem cSys = new JavaCompositionSystem("skel/","in","out");
2 public void compositionProgram() throws IOException{
3 // Parametrize and extend variant templates.
4 composeVariant("WikiCrawler1", 1);
5 composeVariant("WikiCrawler2", 2);
6
7 // Compose main application class and dispatch code.
8 cSys.copyBox("App.jbx","App.java");
9 cSys.addBindContent("App.java#REQUEST_STMT",

10 "Query.getWikiPages(args[0],Integer.parseInt(args[1])).values()");
11 String mainHook = "App.java#App.main.methodExit";
12 cSys.addExtendContent(mainHook,
13 "STMT::= int cores = Runtime.getRuntime().availableProcessors();");
14 cSys.addExtendContent(mainHook,
15 "STMT::= int threshold = args.length >= 4?Integer.parseInt(args[3]):10000;");
16
17 weaveDispatch("WikiCrawler1", 1);
18 weaveDispatch("WikiCrawler2", 2);
19
20 cSys.addExtendContent(mainHook,
21 "STMT::= java.net.Socket sock = new java.net.Socket(args[2], 12345);");
22 cSys.addExtendContent(mainHook,
23 "(new java.io.ObjectOutputStream(sock.getOutputStream())).writeObject(result);");
24 cSys.addExtendContent(mainHook, "sock.close();");
25
26 // Execute composition and write to output directory.
27 cSys.triggerComposition();
28 cSys.persistFragments(".*\\.java");
29 }

Listing 6.29: MapReduce composition program.

and only entry of map’s output to reduceResult. In the single-threaded case, the contents
of simple_reduce.jbx are bound to REDUCE_SKEL in Line 33. The next compositional
statements extend and parametrize the reduce-related parts of the variant. The reduce operation
is added by extending members in Line 37 while a corresponding method call is bound to
REDUCE_OP in Line 38. In the remainder of composeVariant, all reduce-related slots are
treated. IN_TYPE and OUT_TYPE are set to map’s entry type Map<String,Integer>,
since the reduce operation in this example takes a set of these values reducing it to a single value
of the same type. The corresponding IN_PORT* slots are set to iterator calls on map’s output
mIt. Finally, OUT_PORT is bound to reduceResult whose default value is an empty Map.

As the last part of the composition program, the dispatcher generator is discussed in this
paragraph. The corresponding method weaveDispatch, which is called by composition-
Program, is shown in Listing 6.31. First, a variant-specific copy of the dispatch template
in dispatch.jbx is created in Line 4. This copy’s CONDITION slot is parametrized in
Lines 7–14. The constructed Boolean expression uses the variables core and threshold pre-
viously provided as an extension to App’s main method. The composed conditions are simple: if
more than one core is available and the input size is larger than the threshold value, use the multi-
threaded variant, otherwise the single-threaded one. Finally, the dispatch copy’s VAR_NAME slot

210



6.4. Example Applications

1 private void composeVariant(String variantName, int workers) throws IOException {
2 // Create copy of variant template.
3 cSys.copyBox("VariantTemplate.jbx", variantName + ".java");
4 cSys.addBindContent(variantName + ".java#VAR_NAME", variantName);
5
6 // Weave import statements.
7 weaveImportComposers(variantName + ".java");
8
9 // Parametrize map slot depending on worker count.

10 if(workers > 1){
11 cSys.addBind(variantName + ".java#MAP_SKEL", "concurrent_mapreduce.jbx");
12 cSys.addBindContent(variantName + ".java#WORKERS", "(" + workers + ")");
13 }
14 else cSys.addBind(variantName + ".java#MAP_SKEL", "simple_map.jbx");
15
16 // Bind and extend variant with map-dependent stuff.
17 String mapPort = "it.hasNext()?it.next():null";
18 String mapType = "Map<String, Integer>";
19 cSys.addExtend(variantName + ".members", "map_op.jbx_0");
20 cSys.addExtend(variantName + ".members", "map_op.jbx_1");
21 cSys.addBindTerminal(variantName + ".java#MAP_OP", "map");
22 cSys.addBindContent(variantName + ".java#IN_PORT_INIT", mapPort);
23 cSys.addBindContent(variantName + ".java#IN_PORT_CONT", mapPort);
24 cSys.addBindContent(variantName + ".java#IN_TYPE", "String");
25 cSys.addBindContent(variantName + ".java#OUT_TYPE", mapType);
26 cSys.addBindContent(variantName + ".java#OUT_PORT", "mapResult");
27
28 // Parametrize reduce slot depending on worker count.
29 if(workers > 1)
30 cSys.addBindContent(variantName + ".java#REDUCE_SKEL",
31 "reduceResult = mIt.next();");
32 else
33 cSys.addBind(variantName + ".java#REDUCE_SKEL", "simple_reduce.jbx");
34
35 // Bind and extend variant with reduce-dependent stuff.
36 String reducePort = "mIt.hasNext()?mIt.next():null";
37 cSys.addExtend(variantName + ".members", "reduce_op.jbx");
38 cSys.addBindTerminal(variantName + ".java#REDUCE_OP", "reduce");
39 cSys.addBindContent(variantName + ".java#IN_TYPE", mapType);
40 cSys.addBindContent(variantName + ".java#OUT_TYPE", mapType);
41 cSys.addBindContent(variantName + ".java#IN_PORT_INIT", reducePort);
42 cSys.addBindContent(variantName + ".java#IN_PORT_CONT", reducePort);
43 cSys.addBindContent(variantName + ".java#OUT_PORT", "reduceResult");
44 cSys.addBindContent(variantName + ".java#OUT_INIT", "new Hash" + mapType + "()");
45 }

Listing 6.30: MapReduce composition program: variant composition.

is set to the name of the current variant and App.main is extended with the statement.
The composition system described above generates three output files. The App.java file

emitted by SkAT4J is shown in Listing 6.32. It contains all the woven statements, the socket
communication with the client and the dispatch code to the variants. Because of their lengths,
interested readers may look up both components in Appendix A.4.3, Listing A.18 and Listing A.19.
Regarding fragment contracts, the composition system steadily validates the conditions and
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1 private void weaveDispatch(String variantName, int workers) throws Exception {
2 // Create dispatcher copy.
3 String ifName = "dispatch" + workers + ".jbx";
4 cSys.copyBox("dispatch.jbx", ifName);
5
6 // Bind dispatcher condition depending on worker count.
7 if(workers>1){
8 cSys.addBindContent(ifName+"#CONDITION",
9 "cores >= " + workers + "&& threshold < in.size()");

10 }
11 else {
12 cSys.addBindContent(ifName+"#CONDITION",
13 "cores == 1 || threshold >= in.size()");
14 }
15
16 // Bind dispatch target and extend App.main.
17 cSys.addBindContent(ifName+"#VAR_NAME",variantName);
18 cSys.addExtend("App.java#App.main.methodExit", ifName);
19 }

Listing 6.31: MapReduce composition program: dispatch weaver.

assertions described previously in Section 6.4. Hence, the system only composes user-defined
map and reduce operations if those rely on variables and methods visible in the target scope.
Moreover, it checks the type correctness of IN_PORT and OUT_PORT slots in context of
assignment expressions. Of course, not all potential context-sensitive problems can be detected
with the current contracts in SkAT4J. For instance, in the above example, types and variable uses
of fragment bound to the CONDITION slot could be validated additionally while in more difficult
cases, complex invariants could be applicable (cf. Section 5.4). Finally, assuming successful
contract and invariant checks, the three source files can be compiled by the Java compiler and
packaged as an executable .jar file.

This section only gave a small excerpt from what is possible with SkAT considering skeletal
code generation. The Java skeleton library discussed above can easily be extended with additional
variants, e.g., supporting distributed computations via Java’s remote method invocation API, web
service invocations for cloud-based applications or even computations on graphics processing
units (GPUs). The latter has already been investigated in a student’s thesis [Henadeera 2014],
supervised by the author of this thesis, using the “Rootbeer” Java-to-GPU compiler [Pratt-Szeliga
et al. 2012]. Although the approach looks promising, it is still in its very early stage and is not
discussed here and therefore remains as future work.

6.5. Summary and Conclusions

In this chapter, the SkAT fragment-composition framework was introduced. Based on the
JastAdd RAG system, it implements the RAG-based fragment-composition approach introduced
in Chapter 5. SkAT/Core provides the basic fragment environment and the basic composition API.
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1 public class App {
2 public static void main(String[] args) throws Exception {
3 Collection<String> in
4 = Query.getWikiPages(args[0], Integer.parseInt(args[1])).values();
5 Map<String, Integer> result = null;
6 int cores = Runtime.getRuntime().availableProcessors();
7 int threshold = args.length >= 4 ? Integer.parseInt(args[3]) : 10000;
8 if(cores == 1 || threshold >= in.size()) {
9 WikiCrawler1 impl = new WikiCrawler1();

10 result = impl.compute(in);
11 }
12 if(cores >= 2 && threshold < in.size()) {
13 WikiCrawler2 impl = new WikiCrawler2();
14 result = impl.compute(in);
15 }
16 java.net.Socket sock = new java.net.Socket(args[2], 12345);
17 (new java.io.ObjectOutputStream(sock.getOutputStream())).writeObject(result);
18 sock.close();
19 }
20 }

Listing 6.32: The generated MapReduce application App.java.

It defines the point-identification attributes for slots, hooks and rudiments and an implementation
of the corresponding composition operators bind, extend and extract. Moreover, the look-up
attributes for points and composer declarations are specified as a part of SkAT/Core, so that
points and composers in fragment components of a specific fragment environment can easily be
found by using these attributes via SkAT/Core’s Java-based API. Using attribute grammars as an
implementation technique for static languages semantics, SkAT/Core defines a basic infrastructure
for semantic fragment contracts supporting pre- and postconditions as well as invariant checks to
make fragment composition more reliable. Thanks to these attributes,

SkAT is the first ISC framework which supports well-formed ISC.

As a layer on top of SkAT/Core, SkAT/Full adds composer declarations, composition strategies
and a rewrite integration with JastAdd’s demand-driven ReRAG algorithm. Hence, composition
systems based on SkAT/Full support different execution modes. In imperative mode, composition
is executed at declaration time while strategies are always evaluated on a set of composer
declarations which were declared beforehand. In comparison with existing ISC systems,

SkAT is the first ISC system supporting different composition strategies
with well-defined semantics.

Using JastAdd RAGs as FCM specification language adds other advantages over previous ISC
specification and implementation approaches: RAG-based component models are extensible and
can be composed with other RAG-based languages. Additionally, these FCMs can be organized
along custom composition-related concerns in such a way that composition-system developers
can organize their specifications freely according to their “mental model”. Moreover, in direct
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comparison to DSL-based FCM specification approaches like Reuseware, JastAdd RAGs are
as well declarative but in contrast to the plain DSLs they are also expressive enough to specify
arbitrary FCMs.

As an example SkAT/Full composition system, SkAT4J has been specified and presented.
SkAT4J is an extension of JastAddJ—a JastAdd implementation of a full Java compiler. To sup-
port the implementation of this system, the FCM of COMPOST was taken as a reference. Hence,
hook names, fragment model and composition API are similar, but internally the implementation,
specification and composition features are superior, since it has a declarative and extensible
specification, fragment contracts, and composition strategies.

In the last section of this chapter, three example applications of SkAT4J were presented.
The mixin example demonstrated the basic working principles of the composition system and
showed how strategies and fragment contracts can drive composition and resolve conflicts.
Afterwards, the mixin composer is used in the realization of a SkAT4J-based code generator
for the introductory BAF example. Using SkAT4J, it was possible to cover all requirements of
the BAF code generator without any compromises or modifications, which is fairly better than
the other approaches that were discussed in Chapter 4. Please observe that the BAF example
has been defined independently of any of the composition systems which were compared in its
implementation and that the experiments were conducted as objective and fair as possible. A
considerable amount of time has been invested to create the other tools’ implementations, to fix
bugs or implement workarounds in the other systems to achieve the best possible results. Hence,
in comparison, to the best knowledge and experience of this thesis’ author

SkAT4J is the most stable, reliable and advanced ISC system for Java
that has been developed so far.

The last of the three case studies shows ISC as a practical and advanced implementation
approach for algorithmic skeletons and static generation of variants of parallel implementations.
However, in the future this claim should be approved in a larger scenario and a larger fragment
library, which are not covered by this thesis.

To finalize the discussions of this chapter, Table 6.5 provides a direct comparison of the ISC
framework presented in Chapter 4 and SkAT w.r.t. 15 important concerns of ISC. For details on
the respective features it is kindly referred to the corresponding parts of this thesis. Obviously,
SkAT has support for the most of these features, except the fragment role concept introduced
by Reuseware and layout-preserving graphical composition. Considering FCM extensibility, in
Reuseware additional FCM specifications can be added interpreted by the system. However, as
composition and FCM are strongly coupled, this is not a “real” extension mechanism of the FCM,
but of the “composition-model-program” as a whole (cf. the discussion in Section 4.4.2). Another
interesting issue in the table is the support of graphical modeling languages like in Reuseware.
In principle SkAT can also be applied to graphical modeling languages. This can be achieved
by using the JastEMF Ecore backend for JastAdd, which makes SkAT compatible with such
languages. However, composition of graphical artifacts involves additional information such as
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COMPOST Reusewair Reuseware SkAT
Tree model AST (Recoder) EMOF (Ecore) EMOF (Ecore) AST (JastAdd)

Graph model – – overlay graph,
EMOF (Ecore)

overlay graph,
RAG (JastAdd)

Tree FCM slot, hook slot hook, prototype slot, hook, rudi-
ment

Tree operators bind, extend, ex-
tract

bind, extend hook ← proto-
type

bind, extend, ex-
tract

Graph FCM – – slot, anchor attribute declara-
tions

Graph opera-
tors

– – slot← anchor attribute equa-
tions

Composition
language

Turing complete
(Java)

Turing complete
(Java)

acyclic data-
flow graph
(DSL)

Turing complete
(Java)

Composition
strategies

– – – fixpoint, point-
wise, ordered,
attributes

FCM specifica-
tion

class hierarchy
(Java) and inher-
itance

DSL DSLs attributes and
equations
(JastAdd RAG)

FCM extensi-
bility

class-based in-
heritance

– –* RAG modules

Fragment roles – – untyped –

FCM manifes-
tation

direct imple-
mentation

generative interpreted generative

Graphical lan-
guage support

– – graphical
EMOF lan-
guages

via JastEMF
(not investi-
gated)

Well-
formedness

– – – fragment asser-
tions and con-
tract attributes

Partial lan-
guages

– – – island FCMs
(next chapter)

Table 6.5.: A comparison of ISC frameworks.
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layout information or positioning. Hence, a full support of graphical languages remains as future
work for SkAT.

Having discussed the heavy-weight approach of well-formed ISC in this chapter, the next
chapter on scalable ISC presents a complementary light-weight approach to ISC with minimal
FCMs and partial language support.
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Scaling Invasive Software Composition

ISC and well-formed ISC demand great skill from composition-system developers. Implementing
fragment composition systems for programming languages requires knowledge about grammar-
based language engineering and compiler construction. Although DSLs for component models
such as Reuseware (cf. Section 4.4) can ease the development and lower the entrance barriers,
complexity cannot be avoided in all cases. Abstract and concrete syntax of the component
language (CnL) have to be provided as specifications or models that can be processed in the
technological space of the composition tooling. For example, SkAT is based on JastAdd’s RAG
language and Java while Reuseware uses metamodels based on the Eclipse Modeling Framework
(EMF). Moreover, a corresponding machine-processable specification of concrete syntax has to
be provided. In the case of textual languages, this would be a parser grammar which is coupled
with the language model and one or more target environments, e.g., Java. Consequently, if the
CnL is not already available in the required form, the composition-system developer takes tasks
of a compiler developer. Depending on the complexity of the CnL, this can be a time consuming
and error-prone task which actually shifts the focus from composition-system development to
compiler-frontend construction.

This chapter therefore suggests to complement the complex ISC approaches with a simpler one.
Minimal ISC removes complexity from composition by initially excluding many of the features
that make ISC reliable but also have high development costs. For fragment composition based on
minimal ISC, no abstract syntax or language specifics are required since it supports composition
at the lexical level, similar to language-independent preprocessors such as the C preprocessor
(CPP). In contrast to the latter, minimal ISC provides an explicit fragment component model
and can be extended easily. Due to RAGs, the extensibility of minimal ISC enables a more
agile and flexible style of composition-system development which allows fragment composition
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Figure 7.1.: A comparison of the complexity of different ISC approaches.

systems to grow with the needs of an evolving software project. The basic idea of the resulting
scalable ISC approach is sketched in Figure 7.1. Starting with a minimal FCM and composition
operations on the string/token level, a full ISC system is developed step by step—adding features
while requirements evolve and the system is kept operational. The full ISC model can then
be enriched successively with well-formedness constraints of arbitrary complexity. Figure 7.1
also includes U-ISC/Graph as implemented in Reuseware. Since in comparison with the other
approaches, operations on graphs are considered in the FCM and the composition, the effort of
implementing such a system can be considered naturally between U-ISC and well-formed ISC.
However, U-ISC/Graph is not supported directly by scalable ISC because model and terminology
of U-ISC/Graph are fairly different from the other approaches (cf. Section 4.4).

The remainder of this chapter is structured as follows. Section 7.1 introduces the formal
basics of minimal ISC and island component models. In Section 7.2, a SkAT-based realization
of minimal ISC is presented. Section 7.3 discusses two composition systems implemented
with SkAT-based minimal ISC and shows how they can be used to improve the code quality of
an existing string-based code generator. Section 7.4 presents a CPP-like macro system based
on minimal ISC and SkAT. Thanks to the declarative SkAT approach, the preprocessor is
equipped with support for extensible syntax and semantics. Finally, Section 7.5 discusses the
need of extensible fragment component models and composition systems and suggests an agile
composition-system development process that supports scalable ISC.
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7.1. Minimal Invasive Software Composition

Minimal ISC provides a language independent FCM with untyped slots. Specifically for textual
languages, it builds upon island grammars—a special kind of context-free grammar (CFG),
originally invented to robustly parse mixed languages with relevant (islands) and secondary
(water) parts [Moonen 2001; Synytskyy et al. 2003]. Before diving into the details of FCMs
based on island grammars and their specification using RAGs in Sections 7.1.3 and 7.1.4, the
following Sections 7.1.1 and 7.1.2 recapitulate the island-grammar definition from the literature
and discuss related grammar patterns.

7.1.1. Island Grammars

Definition 7.1 defines island grammars in relation to CFGs and formal languages. The definition
corresponds to the one given in [Moonen 2001].

Definition 7.1 (Island Grammar):
Let G = (N,Σ, P, S) be a context-free grammar and L(G) = Lcore the language generated by
G. Further, let I ⊂ Σ∗ be a non-empty set of constructs of interest so that ∀γ ∈ I ∃α, β ∈ Σ∗ :
αγβ ∈ Lcore. A context-free grammar GI = (NI ,ΣI , PI , SI) with L(GI) = Lisland is called an
island grammar with respect to I and G under the following conditions:

• Lcore ⊂ L(GI). GI generates an extension of Lcore, i.e., Lisland has more sentences than
Lcore and all sentences of Lcore are also in Lisland.

• ∀i ∈ I ∃n ∈ NI ∃α, β ∈ Σ∗ : n⇒∗GI
i ∧ αiβ /∈ Lcore ∧ αiβ ∈ L(GI). Each construct of

interest occurs in at least one context in Lisland which is not in Lcore.

• G is more “complex” than GI . Complexity here means descriptive complexity which can
be measured in multiple ways, e.g., graph complexity, number and length of productions
etc. (cf. [Gruska 1976]). �

The constructs of interest in I of the above definitions represent the relevant island parts of the
mixed language while the other parts can be considered as water. Figure 7.2 visualizes the set
relations between the constructs of interest, Lcore and Lisland as an Euler diagram. Thereby, IΣ

denotes the subset of Σ∗ containing all sentences αγβ with γ ∈ I and α, β ∈ Σ∗, Icore denotes
the subset of IΣ which is also a subset of Lcore and Lisland, and Iisland denotes the subset of Σ∗

which is also a subset of Lisland but not of Lcore. Gently spoken, island-containing sentences of
the core language have to be island-containing sentences of the language induced by the island
grammar, but not vice versa. Hence, a corresponding island parser generated from an island
grammar accepts all programs written in the core language and some which are not written in the
core language, but may contain constructs of interest.

Example 7.1 illustrates the usage of Definition 7.1 by defining a simple island grammar of
logical And-expressions.
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Figure 7.2.: Euler diagram of the relations between core language Lcore, constructs of interest I
and the language Lisland.

Example 7.1 (island grammar (EBNF)).
Let G be the EBNF grammar from Example 3.2 with the following productions:

Expression ::= Or
Or ::= Or "|" Or | And
And ::= And "&" And | Term
Term ::= "t" | "f"

Thus, the language generated byG isL(G) = {"t","f", "t|f", "f|t", "t|t", "f|f",
"t&f", "f&t", "t&t", "f&f", "t|f|t", "t|f&t", . . .}.

Now assume Lcore = L(G) and the following scenario: a legacy text format Llegacy, whose
complete grammar is unknown, “mixes” some sentences from Lcore—islands—with other sen-
tences—water—in Llegacy. For example, "t" ∈ Lcore may reoccur in the sentence
"...a=t..." ∈ Llegacy where t is considered an island, and ...a= and ... are considered
water. Moreover, all &-expressions over t should be recognized as islands in Llegacy sentences,
i.e., I = {"t", "t&t", "t&t&t", "t&t&t&t", . . .}.

The following EBNF grammar GI is an island grammar w.r.t. G and I with the following
productions (<legacy_token> shall be a token that represents arbitrary characters in the
Llegacy alphabet):

Expression ::= ( And | Text )+
And ::= And "&" Term | Term
Term ::= "t"
Text ::= <legacy_token>+

GI is an island grammar w.r.t. G and I because L(GI) contains all alternating sequences
of &-expressions over t and arbitrary Llegacy text. This fulfills the second bullet of the island
grammar definition—constructs of interest in I are not only recognized in context of logical
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expressions in Lcore but arbitrary text of Llegacy. Furthermore, L(GI) is an extension of Lcore
and thus fulfills the first bullet of Definition 7.1. As GI also contains fewer productions than G,
the complexity criterion of the third bullet is also fulfilled. Thus, considering Figure 7.2, L(G)
is Lcore, L(GI) is Lisland, and "...a=t..." is an exemplary element of Iisland and "t|f&t"
is an exemplary element of Icore. �

Island grammars were originally developed with a focus on robust parsing to practically detect
certain constructs of a certain language in unforeseen contexts. Hence, the constructs of interest
of an island grammar are actually sentences that should be found in an unknown file format while
the island grammar itself is a context-free search pattern.

In the standard application of ISC, robustness is not an issue since in an ideal case Lcore and its
compositional extensions would be recognized exactly. However, to recognize Lcore exactly, it
has to specified by its grammar, which is what actually should be avoided because of the assumed
complexity of the language. Using an island grammar as CnL specification (plus compositional
constructs like slots and fragment-component declarations) leads to small and simple grammars,
and simple FCMs.

7.1.2. Parsing Patterns for Island Grammars

From a technical perspective, not all parsing approaches (cf. Section 3.2) are suitable for generat-
ing a parser from an island grammar. The widely-used classical parsing approach with sequential,
uncoupled tokenization and syntactical analysis phases is not adequate—the unstructured textual
water parts may overlap with tokens that belong to the concepts of interest, which may cause
violations of island-grammar constraints or unresolvable ambiguities. Reconsider GI of Exam-
ple 7.1 for instance. <legacy_token> intersects with "t" and "&" so that more than one
syntax tree can be derived for certain inputs. Consequently, one of the more advanced general-
ized or scannerless parsing approaches should be used. For example, [Moonen 2001] employs
GLR parsing and the Syntax Definition Formalism (SDF) [Visser 1997] for specifying robust
island grammars for certain COBOL constructs. In this chapter, PEGs and packrat parsing [Ford
2004; Grimm 2006] are used as implementation techniques for island grammars in the example
composition systems.

Although Definition 7.1 does not require an island grammar to have a certain structural format
or pattern, it is a good starting point to have one. The following incomplete EBNF grammarGisland
suggests a basic structure for concrete syntax, where a fragment simply consists of Island and
Water productions:

external I1,...,In
Fragment ::= ( Island | Water )*
Island ::= I1 | ... | In
Water ::= <any_text>

The nonterminals Ii represent the constructs of interest (e.g., a method declaration and its
dependent productions) which stem from the language definition of the core language Lcore.
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Water elements are just denoted to consist of an arbitrary piece of text. In practice, the text
would just consist of a sequence of characters that can occur in the fragment files to be parsed.

However, while the above grammar fulfills Definition 7.1, it is difficult to be handled by
parser generators because every string generated by Island can also be generated by Water,
which makes the language ambiguous causing problems for classic LR and LL generators.
Hence, a formalism to disambiguate grammars—like PEGs (cf. Section 3.2.1)—is required.
Using predicate operators and ordered choices, Gisland can be converted into a more precise PEG
specification G′island (“.” denotes any supported character):

external I1,...,In
Fragment <- ( Island / Water )*
Island <- I1 / ... / In
Water <- ( !( Island ) . )+

This definition of an island grammar always prefers Islands over Water and defines Water
as any string which is not an Island by using the not predicate. The following example
demonstrates how the G′island pattern is employed to define island PEGs.

Example 7.2 (Island Grammar (PEG)).
The EBNF-based island grammar of Example 7.1 can be reformulated as an island PEG:

external And
Fragment <- ( Island / Water )*
Island <- And
Water <- ( !( Island ) . )+

where And is specified as an extra PEG module (if supported by the PEG tool employed) or
simply appended to the specification, e.g.:

And <- And ’&’ Term / Term
Term <- ’t’

However, there still are issues with the improved G′island: the constructs of interest Ii may
have a very complex structure in the original language Lcore. Thus, one may want to keep
them underspecified, containing water themselves. Furthermore, in the case of Lcore it is not
only a fragment language, but also a composition language, an embedded composition operator
(or macro) may refer to water parts. To this problem, no general predefined solution using
PEGs can be given. This becomes obvious, if, for example, an underspecified concept Ii with
Ii <- α Water β is considered: Water will consume the content specified in β as long as
β is not an island itself. Hence, each underspecified concept of interest requires its own water
specifications, e.g., Ii <- α ( !( Island / β ) . )+ β . In the special case the
concept of interest is a part of the composition language taking water fragments as embedded
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arguments, syntactic hedges can be employed. In the following, Ci are compositional concepts of
interest of the form Ci <- α Water β with β = Dβ1, and D a delimiter. Based on these
assumptions, a refined “composition-aware” island PEG G′′island can be derived from G′island:

external I1,...,In,C1,...,Cm,D
Fragment <- ( Island / Water )*
Island <- I1 / ... / In / C1 / ... / Cm
Water <- ( !( D / Island ) . )+

The following example develops an island PEG based on the G′′island pattern.

Example 7.3 (island grammar (PEG) with slots and delimiters).
The island PEG of Example 7.2 can be reformulated as an island PEG with slots and slot
delimiters according to the extended island grammar pattern:

external And, Slot, Delimiter
Fragment <- ( Island / Water )*
Island <- And / Slot
Water <- ( !( Delimiter / Island ) . )+

where Slot and Delimiter are defined in a separate PEG module or simply appended to the
grammar, e.g., slots surrounded by hash marks:

Slot <- Delimiter <slot_ident> Delimiter
Delimiter <- ’#’

In the following sections, the notions of island FCMs and minimal FCMs are developed.

7.1.3. Island Fragment Component Models

As discussed above, an island grammar generates a mixed language with water and island text
and subsumes the original core language (cf. the Euler diagram in Figure 7.2). However, for
language processing tools such as fragment composition systems, the string-based view is not
adequate because these tools work on syntax trees, and core and island grammars induce different
trees. Accordingly, Figure 7.2 can be reinterpreted (where G is a grammar of Lcore and GI is a
grammar of Lisland): for each sentence w in Lcore there is at least one syntax tree T generated by
G and—since Lcore ⊂ Lisland—there also is at least one corresponding syntax tree TI generated
by GI . If w does not contain an island (w /∈ Icore), it generally holds that T is different from
TI (i.e., there is no isomorphism between T and TI ), basically because TI represents water as
a “list-like tree” while T is a “complex tree”. However, if w contains an island, T and TI are
generally complex trees which may be identical (isomorphic) or may have common subtrees
(subtree-isomorphic).
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For island-grammar-based FCMs (island FCMs), compositional constructs such as slots, hooks,
and composers are defined as island constructs or are defined with respect to island constructs
in Icore and Iisland. Hence, an island FCM is defined w.r.t. to a specific CnL, but using an island
grammar instead of a full grammar (or model) of the CnL:

Definition 7.2 (island fragment component model):
Let FCM = (G′,S,H,F , ∫ ,L∫ ) be a fragment component model and G a grammar of the
subjected component language L(G). FCM is called an island fragment component model w.r.t.
G under the following conditions:

• G′ is an island grammar with respect to G,

• ∃f ′ ∈ F so that f ′ generates islands and water (i.e., the projected grammarG′|f ′ is an island
grammar with respect to a projected grammar G|f with f—a nonterminal of G). �

Hence, an island FCM is not aware of all fragment types and constructs of the fragment language
but it is aware of some of them. Example 7.4 develops an island FCM for logical and-expressions.

Example 7.4 (island fragment component model).
Let GI be the island grammar developed in Example 7.3 with slots and and-expressions as
constructs of interest.

FCMI = (GI ,S,H,F , ∫ ,L∫ ) is a corresponding FCM with S = {Slot}, H = ∅, F =
{Fragment}, and ∫ with ∫S assigning a slot name w ∈ L∫ to any Slot node of an GI -tree,
∫H assigning ⊥ to any node of an GI -tree and ∫F assigning a name to any Fragment-rooted
GI |Fragment-tree. According to Definition 7.2, FCMI is an island FCM since GI is an island
grammar w.r.t. the EBNF grammar G from Example 3.2 and GI |Fragment = GI is an island
grammar. �

Fragment composition systems based on island FCMs can be developed with less implementa-
tion effort. This can be useful if no suitable grammar is available for the targeted technology space
or the composition framework. As an example, consider a textual DSL LD of a certain domain D
that has been specified as a standard by an industrial consortium including a documentary CFG
with some hundred productions for its concrete syntax. To realize a fragment composition system
for LD with a generative tool like SkAT or Reuseware (cf. Section 4.4), the CFG documented by
the standard has to be translated into adequate grammar formalisms for these tools, i.e., a parser
grammar, JastAdd AST grammars in the case of SkAT, or EMF models in the case of Reuseware.
Also, the other compartments of the FCM have to be specified w.r.t. these grammars and become
more complex. With an island FCM, this effort can be reduced because less language concepts of
LD have to be considered.

The usage of island FCMs comes with the downside of losing the full syntactic composition
guarantees of ISC. However, since the language induced by the full grammar is a subset of the
language given by the island grammar (cf. Definition 7.1), fragment components of the full
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Figure 7.3.: Euler diagram of the relations between different core languagesLcore* with a common
slot-signature, common constructs of interest I and the island language Lisland.

language can still be managed by the composition system retaining at least “some” compositional
guarantees based on the island constructs. The support of these guarantees depends on the
complexity of the island grammar as well as on the actual component model specification.
Concerning well-formed ISC, semantic fragment contracts may also be specified w.r.t. island
FCMs. This gives a notion of scaling ISC across the dimensions of specification complexity and
quality of composition systems, which will be discussed in more detail in Section 7.5.

Island FCMs can support an arbitrary number of constructs of interest from the core language
as long as the FCM fulfills Definition 7.2. However, at the low end of the scale, what would be
an adequate notion of a minimal (non-empty) island FCM and what kinds of implications would
it have? If FCMs are considered generally, a reasonably “small” component model with respect
to the respective CnL could be an FCM that only supports a small set of slot or hook candidates.
It could be called “minimal”, if it even only considers a single slot or hook type, and only one
type of fragment. However, because FCMs are defined w.r.t. the CnL and there is no reasonable
criterion to compare two FCMs of a CnL, there exists no minimal FCM for arbitrary CnLs, unless
one is an extension of the other.

If island FCMs are considered, the situation is different. Reconsidering the relations between
island language Lisland and the core language Lcore (cf. Figure 7.2), the set Icore should be
“minimized” while LIsland is maximized in such a way that a common minimal slot language
and grammar are obtained. Hence, LIsland = Σ∗ while Iisland ∪ Icore consists of all sentences
in Σ∗ containing at least one slot. Figure 7.3 visualizes these relations as an alternative Euler
diagram. It contains multiple core languages that share a common slot signature. The signature is
supported by the corresponding island grammar GI generating LIsland. Example 7.5 provides a
minimal slot island grammar.

Example 7.5 (minimal island grammar (PEG) with slots and delimiters).
The island grammar of example 7.3 can be minimized to a slot island grammar by excluding any
core-language specific productions.
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Fragment <- ( Island / Water )*
Island <- Slot
Water <- ( !( Delimiter / Island ) . )+
Slot <- Delimiter <slot_ident> Delimiter
Delimiter <- ’#’

Since this grammar describes a regular language of alternating slots and arbitrary strings (i.e.,
(#<slot_ident>#|.)*), the language is called a regular slot language. �

Using a regular slot language as a basis of an FCM leads to a composition system which does
not support any guarantees on the syntax of composed fragments. Also, the system misses a
support for hooks—as there are no specific core language constructs considered in a minimal slot
island grammar, hooks cannot be specified. The following definition introduces the notion of a
minimal FCM based on the notion of minimal slot island grammars:

Definition 7.3 (minimal fragment component model):
Let FCM = (GI ,S,H,F , ∫ ,L∫ ) be a fragment component model and GI = (N,Σ, P, S) an
island grammar w.r.t. some CnL with slot candidates. FCM is called minimal if

• GI is a minimal slot island grammar with Slot ∈ N , the slot nonterminal,

• S = {Slot},H = ∅ and F = {S},

• ∫ assigns a name w ∈ L∫ to each Slot-node and S-node of an arbitrary GI -trees and ⊥ to
any other node. �

Example 7.6 defines a minimal FCM.

Example 7.6 (minimal fragment component model).
Reconsider the minimal slot island grammar of Example 7.5 as GI . The corresponding minimal
FCM is FCM = (GI ,S,H,F , ∫ ,L∫ ) with S = {Slot}, F = {Fragment} and the other
compartments initialized according to Definition 7.3. �

While the slot language is regular, in a minimal FCM it is lifted to syntax trees with characters
and compartments of slots as leaf nodes. For a corresponding ISC system, it suffices to support
one AST grammar (model) to represent the minimal FCM, since all concrete slot grammars are
equivalent except their delimiter symbols. Thus, in a composition system they can be represented
by the same AST grammar (model).

Section 7.1.4 sketches out how the RAG-based approach of specifying invasive composition
systems developed in Chapter 5 can be used to holistically specify a minimal FCM using an
island AST-grammar in its core.
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CompositionEnvironment
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TextBlob

+content : string
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Box

+name : string
GenericFragment

Figure 7.4.: Static structure of the minimal FCM model as a UML class diagram.

7.1.4. Minimal Fragment Component Model Specification

There are several reasonable ways of implementing a minimal ISC system. For instance, it is
straight-forward to realize it using a standard regular expression engine or string operation library
and wrapping a user friendly API around it. The result would be a fast template engine which is
difficult to extend. However, in this thesis a holistic and extensible approach is favored to keep
the number of involved technologies small and component models comparable. Extensibility
is important to later be able to specialize and add language-specific constructs of interest to the
FCM. As it has been discussed before in Section 3.3, current RAGs systems enable exactly this
by providing concern-based extension mechanisms for attributes. Although island grammars are
less complex than grammars of full-fledged languages, still RAGs can be used as a basic FCM
specification formalism. Hence, first, the static structure of the minimal FCM is specified as an
abstract EBNF grammar GMinCM, which will later be decorated with attributes:

CompositionEnvironment ::= fragments:Box*
@Box ::= name:<string>
GenericFragment .Box ::= elements:Element*
@Element ::= ε
@WaterElement .Element ::= ε
TextBlob .WaterElement ::= content:<string>
@IslandElement .Element ::= ε
@Compositional .IslandElement ::= name:<string>
Slot .Compositional ::= ε

Figure 7.4 contains a diagrammatic representation of GMinCM as a UML class diagram. Based
on the generic fragment FCM presented in Chapter 5, the CompositionEnvironment con-
tains a list of GenericFragments consisting of a list of Elements. There are two main
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classifiers for Elements, WaterElements, corresponding to water parts, and IslandEle-
ments, corresponding to constructs of interest in the language. WaterElements are typically
TextBlobs which may contain unstructured text.1

Since minimal ISC shall be applicable to arbitrary fragment languages out of the box, GMinCM
does not include any Island construct of a core language. However, since RAGs are used,
it can be extended with such. Denoted by Compositional, the component model supports
island constructs which represent compositional elements such as slots or embedded composers.
In the basic minimal ISC case, these are only Slots that can be used as placeholders for arbitrary
unstructured pieces of WaterElements, i.e., text.

Finally, to make GMinCM a minimal FCM, its compartments H and F are specified using
attributes. Therefore, most parts of the generic component model RAG presented in Chapter 5
can be reused and must only be instantiated for the minimal FCM. To define ∫S , the isSlot
and slotName attributes have to be specified in such a way that any Slot-labeled node in any
GMinCM-tree are recognized as a slot while all other nodes are not. Hence, ∫S of the minimal
FCM in SimpAG notation looks as follows:

fun Slot.isSlot = true (7.1)

fun Slot.slotName = name (7.2)

fun {n |n ∈ N \ S}.isSlot = false (7.3)

fun {n |n ∈ N \ S}.slotName = ⊥ (7.4)

To define ∫H using attributes, the inherited isHook always yields false independently of any
context. In SimpAG notation, isHook and the corresponding hookName attribute derive as
follows:

fun {n ∈ N}.childall.isHook = false (7.5)

fun {n ∈ N}.childall.hookName = ⊥ (7.6)

Given the RAG-based specification of the minimal FCM and the composition-operator definitions
developed in Chapter 5, attribute-grammar systems like JastAdd can derive an implementation
of the minimal composition system. Figure 7.5 shows an example instance tree with overlay
references of the fragment environment as it may occur in real composition scenarios. A corres-
ponding tree with a superimposed data-flow graph can be found in Figure A.3 of Appendix A.5.
Supporting the example, it is assumed that the FCM tree has been initialized by some parser
component which accepts “[[MySlotName]]” as concrete syntax for slots. The figure contains
three fragments with different alternating sequences of text and slots. Fragment Tpl1 is the
sequence “A [[S1]] [[S2]]” which is represented by a TextBlob and two Slot nodes in the
composition environment. Fragment Tpl2 is the sequence “B [[S3]] CD” which is represented by
two TextBlob and one Slot nodes. Used as an argument to slot bindings, the third fragment

1It is possible that blobs may contain arbitrary kinds of data, not only characters. However, this is not investigated in
this thesis.
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Figure 7.5.: Example instance of the minimal FCM with three fragments Tpl1, Tpl2 and Arg
including a simple composition program.

Arg only contains a TextBlob “X”. The composition program in the rightmost part of the figure
contains three Bind nodes. The first declares a binding of S3 in Tpl2 with a copy of Tpl1.
The remaining Bind nodes declare bindings of S1 and S2 in Tpl1 with the Arg fragment. For
composition execution, if a fragment-depth-first and parametrize-before-copy strategy is preferred,
S1 and S2 of Tpl1 are first bound with copies of Arg yielding the sequence “A X X”. Finally,
S3 in Tpl2 is bound with the parametrized Tpl1, which yields the sequence “B A X X C D”.

7.2. Minimal Invasive Software Composition in SkAT

This section discusses the SkAT-based realization of a minimal invasive composition system
and some composition abstractions that have been developed as an extension to this realization.
SkAT/Minimal provides the infrastructure for minimal ISC applications including a JastAdd-
based implementation of the minimal FCM presented in the previous section. Figure 7.6 provides
a coarse-grained view on SkAT’s systems architecture with the parts emphasized relevant for this
chapter, while the faded-out parts actually belong to the SkAT-based realization of standard ISC
and well-formed ISC already described in Chapters 5 and 6. On the base-level, the JastAdd tool
is still used as a basic framework and RAG realization. Similar to SkAT/Full, which provides
the basic attributes and functionality for well-formed ISC, SkAT/Minimal relies on the basic
kernel—SkAT/Core. Thus, SkAT/Full and SkAT/Minimal share the basic attribute definitions for
compositional points as well as the regular path language to address them.

By default, SkAT/Minimal only supports untyped slots and, thus, does not give any guarantees
on composed fragments. Figure 7.7 shows the specifications involved as well as the SkAT
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Figure 7.6.: Overview of the SkAT architecture with the minimal ISC parts emphasized.
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Figure 7.7.: Data-flow diagram of the SkAT/Minimal generation chain.

configuration for minimal ISC. The minimal FCM consists of two specifications. Minimal.ast
contains the JastAdd AST grammar that corresponds to the SimpAG model presented above in
Section 7.1.4. However, interested readers may find a complete specification in Listing A.20 in
Appendix A.5. Slots.jrag is presented in Listing 7.7 and contains the JastAdd-based slot-
identification attributes. Note that hooks need not to be considered explicitly since the defaults
specified in the core RAG still hold and minimal ISC does not introduce any hooks by default.
The specification also provides an equation for the compatibleFragmentTypes attribute
stating arbitrary Element nodes as valid slot replacement. Printing.jadd provides the
minimal FCM with a basic printing API to emit fragments as text at any point during composition.
Composers.jadd and CompositionSystem.jadd contain a text-optimized API of the
basic invasive composition operators.

Besides the JastAdd RAG tool, the SkAT configuration for minimal ISC uses the packrat-parser
generator Rats! [Grimm 2006] to realize textual concrete syntax of island grammars. Using this
tool has several advantages supporting minimal ISC:
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1 aspect MinimalSlots {
2 eq Slot.isSlot() = true;
3 eq Slot.slotName() = getName();
4 eq Compositional.compatibleFragmentTypes() = new Class[]{Element.class};
5 }

Listing 7.1: JastAdd Slots.jrag specification of the minimal FCM.

• Modular and extensible Grammars. Given a set of base grammars (syntax modules), new
grammars can be derived via extension mechanisms. Existing productions in the base
modules can be extended, refined or replaced as required. This can be seen complementary
to the extensibility of JastAdd RAGs.

• Unlimited lookahead at linear time. Packrat parsers are not restricted with a maximum
lookahead to make parsing decisions. This is achieved by combining a backtracking
algorithm with an intelligent caching of intermediate results [Ford 2002].

• State dependent token recognition. Parsing without the need to independently create tokens
streams in advance is essential to avoid overlaps and thus conflicts between terminals in
island parts and text in water parts.

• Repository independent creation of unique ASTs. The AST can be constructed directly
without the need of producing intermediate results with a parser-specific repository. The
only requirement is to use Java, which is also the case for JastAdd RAGs.

• Preemptive disambiguation. By enforcing a strict ordering of grammar productions com-
bined with the greedy packrat-parsing algorithm, and the possibility to specify syntactic
predicates as custom lookahead checks, ambiguous grammars can be made deterministic
in such a way that changes and extensions to fragment languages can be handled better
than with standard parsing technologies.

Complementing the basic minimal FCM, SkAT/Minimal provides a generic Rats!-based island-
grammar module which can be imported and reused in client applications (cf. Listing 7.2).
While the grammar of the module generally corresponds to the abstract island PEG presented in
Section 7.1.1, it already has a prepared production for slot declarations as island elements which
can be parametrized with specific delimiters by clients reusing that module.

In the following two sections, three typical applications of SkAT/Minimal are presented. The
examples have been chosen carefully to demonstrate different levels of implementation complexity
of SkAT/Minimal applications. Furthermore, the interplay of grammarware technologies to
implement extensible fragment composition systems is illustrated. Section 7.3 presents Slot
Template Language (STpL) and Variant Template Language (VTpL), which have been used to
reengineer parts of an existing code generator. The generator internally uses standard string-
concatenation operations to produce the output code tangled with computations on the input
model. To improve the quality of the code generator some parts have been refactored by making
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1 // Defines the qualified module name (parser.MinISCBase) and required parameter
2 // module for delimiter syntax.
3 module parser.MinISCBase(Delimiters);
4
5 // Basic lexical syntax.
6 String Identifier = [a-zA-Z] [a-zA-Z0-9_]*;
7 void EndOfFile = !_;
8
9 // The start of minimal generic fragments.

10 public GenericFragment GenericFragmentDecl = elements:TplElements? EndOfFile {};
11 public List<Element> TplElements = content:(yyValue:Island / yyValue:Water)+ {};
12
13 // Syntax of water elements.
14 WaterElement Water = yyValue:TextElement {};
15 TextBlob TextElement = value:WaterContent {};
16 String WaterContent = ( (EscapeDelimiter Delimiters) / !( Delimiters / Island) _ )+ ;
17
18 // Hook of island elements syntax, provides a basic syntax pattern for slots.
19 IslandElement Island = yyValue:SlotDecl{};
20 Slot SlotDecl = SlotDelimiter name:Identifier SlotDelimiter { };

Listing 7.2: The SkAT/Minimal island-grammar module, except tree-construction actions.

patterns in the code explicit as an ISC system, which helps to reduce the tangling problem.
Thereby, STpL just extends the SkAT/Minimal model with a concrete notation for slots. The
VTpL further extends STpL and adds compositional constructs that model fragment variants
and fragment prototypes. Section 7.4 introduces the Universal Extensible Preprocessor (UPP), a
string-based template engine which uses many concepts of the CPP and provides extensions to its
basic concepts.

7.3. Improving Code Generators with SkAT/Minimal
Applications

Complex code-generation applications such as JastAdd’s internal generator, which translates
the attribute grammar into Java code, or textual modeling frameworks such as EMFText which
generate a bunch of IDE plug-ins (cf. [Heidenreich et al. 2013]) emit vast amounts of lines of
source code from—in relation—small input specifications. Regardless of the complexity of
such tools, their developers frequently use string-concatenation operations in favor of template
engines (e.g., [Parr 2006; Efftinge et al. 2008]), which would provide a holistic view on the input
sources in contrast to fragmented and scattered string-concatenation operations. Concluding from
the author’s considerable experience in the development of generative applications (cf. [Bürger
and Karol 2007; Heidenreich et al. 2009a; Heidenreich et al. 2009b; Niederhausen et al. 2009;
Karol et al. 2010; Bürger and Karol 2010; Aßmann et al. 2012; Heidenreich et al. 2013]), an
important reason why programmers of highly generative applications often avoid using template
engines as the predominant tools is a discrepancy between the constrained local control flow
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of the template language and the global control flow imposed by the architectural design of the
code-generating application as a whole. A template’s constructs for sequential iteration and
branching decide about how to visit the input model and emit fragment content sequentially on a
per file basis. However, generative applications often employ architectures that do not produce
their output in such straight-forward ways. Instead, the output is computed with a focus on
problem decomposition, which cannot necessarily be superposed well to templates. For example,
a program generator may concurrently produce several parts of the output depending on the source
model and may not generate the parts in the same order as they finally occur in the emitted files.
Even worse, it may generate in-memory intermediate representations in a multi-staged process as
objects of further parametrization, extension or optimization before emitting it. Hence, developers
in such cases often prefer string-concatenation-based construction of the output sources, or use
programmed AST or model transformations if applicable. However, both approaches lack the
holistic viewpoint of templates on the produced output.

ISC systems sustain the holistic template-based view on fragments while keeping the control
flow in the code generator—as it already has been demonstrated with the BAF example introduced
in Chapter 2 of this thesis. Unfortunately, if no ISC system for the involved fragment languages
is available for immediate use in the application’s implementation platform and if there are no
capacities left to develop and test the required composition systems, full-featured ISC simply
would not be an option. Fortunately, minimal ISC and the STpL can be used instead.

7.3.1. STpL: A Minimal Slot Mark-Up Template Language

The STpL is a minimal slot markup language that can be considered an incarnation of a frequently
occurring string-replacement pattern in complex generative applications. In this pattern, a string
object is constructed by iterating over elements of an input model recurrently appending new
string parts which constitute element representations in some output fragment. Some of these
parts contain placeholders (i.e., slots surrounded by syntactic hedges) that postpone decisions
about their actual content to some later point in time when they are replaced with concrete strings.

In the following, a concrete example from JastAdd’s code generator is discussed which,
amongst others, has been investigated by the author with the objective of finding a concept to
improve the tool architecture and code quality. The driving force behind this were efforts of
creating an alternative backend for JastAdd that supports the infrastructure of the Eclipse Modeling
Framework (EMF) to combine RAGs with state-of-the-art modeling tools (cf. [Bürger and Karol
2010; Bürger et al. 2011; Heidenreich et al. 2013]). However, the current implementation of the
backend is a complex transformational approach that leaves the RAG and EMF code generators
intact and instead transforms and merges the generated Java-based AST class hierarchies. While
this demonstrated the practical feasibility of model-based RAGs, it turned out that the integration-
based code-generation process is approximately 60× slower than the unmodified process so that
an assumed generation time of 1–2 seconds increases to 1–2 minutes. Since it is expected that a
further improvement of the approach would lead to huge additional implementation efforts, it
was decided to investigate the possibility of reengineering the original backend step by step.
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Figure 7.8.: A high-level view on the JastAdd2 code-generation process (version R20110506) and
a suggested improvement using text-based templates. Tool-internal specifications
and templates are marked with an extra asterisk (*).

As shown in Figure 7.8 on the left, the JastAdd generator works in multiple phases. It can
be logically distinguished between three subprocesses. In the “Generate AST” phase, it reads,
adds the built-in AST classes and validates the set of input specifications. If successful, the
AST grammar is traversed, and an intermediate representation is generated, which is based on
static aspects with inter-type declarations. Afterwards, in the “Generate RAG” phase the attribute
declarations and specifications are validated, and also translated into inter-type declarations.
Finally, the static aspect weaver is invoked to weave the intermediate aspects into Java compilation
units, which are the actual implementation of the RAG evaluator. While the high-level logical
view on the code-generation process seems reasonable, the implementation behind seems not.
With the tool lifespan of over a decade now, several additions to the original RAG feature set
have been made (e.g., [Magnusson 2007; Söderberg 2012]) and many user requests have been
considered in the implementation. In particular, inconsistent coding styles and the massive
tangling of string-building code with the code-generation logic make it hard to read, understand
and maintain the implementation, especially if larger changes—like an integration with the
EMF—shall be realized. Therefore, after an in-depth study of the backend, it was suggested to
improve the code generator by refactoring and untangling the code using a template engine. A
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1 ...
2 public String ASTDecl.buildingConstructor() {
3 ... // (initialization)
4 s.append(" // Declared in " + getFileName() + " line " + getStartLine() + "\n");
5 s.append(" public #ID#.#ID#(");
6 ... // (append constructor parameters)
7 s.append(") {\n");
8 ... // (append constructor body)
9 if( ... /* condition */) { ...

10 s.append(" is$Final(true);\n");
11 }
12 s.append(" }\n\n");
13 return s.toString().replaceAll("#ID#", name());
14 }
15 ...
16 public void ASTDecl.jjtGenConstructor(...) {
17 ... // (initialization)
18 finalInit = " is$Final(true);\n";
19 ...
20 s = " public #ID#.#ID#() {\n" +
21 " super();\n" +
22 "#NTA#";
23 ... // (append parts of constructor body)
24 s = s.replaceAll("#ID#", name());
25 s = s.replaceAll("#NTA#", t);
26 ... // (append parts of constructor body)
27 stream.println(finalInit);
28 stream.println(" }\n");
29 ...
30 }
31 ...

Listing 7.3: Constructor-building code slice from the JastAdd2 code generator (from production
code of release R20110506; distributed under New BSD License).

logical view on the improved process is shown on the right side of Figure 7.8. In this process,
large parts of the code emitted by the generator via string-concatenation operations are moved to
generator-internal templates which are loaded and parametrized using an invasive composition
system. These templates provide a holistic view on the implementation semantics of the generated
RAG systems and allow JastAdd developers to read, and better understand, extend and maintain
the code. The examples in this section are a small excerpt from the changes that have been
prototyped to experiment with the untangling of the backend and the possibility of making it
better exchangeable.2

Listing 7.3 shows a small excerpt from the JastAdd code generator emitting intermediate code
for the default constructors of AST nodes. While both methods in the listing are contained in the
same source file and both of them emit constructor code which is placed next to each other in the
final Java files, there are approximately 700 lines between them. Markup for slots can be found

2The results of the experiments have been presented to the JastAdd team during an internal workshop in January
2013. Some ideas converged into the current 2.1.x releases of the tool.
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1 // Defining the qualified module name.
2 module org.skat.isc.minimal.StplParser();
3
4 // Declare the import of the base grammar and parametrization with this grammar.
5 modify parser.MinISCBase(org.skat.isc.minimal.StplParser);
6
7 // Defining the JastAdd specific delimiters.
8 String SlotDelimiter = "#";
9 String Delimiters = SlotDelimiter;

10 String EscapeDelimiter = ’\\’;

Listing 7.4: The STpL island grammar module that extends the SkAT/Minimal base grammar of
Listing 7.2.

in Lines 5, 20 (#ID#) and 22 (#NTA#). The bindings occur at the end of the methods via calls to
the standard replacement API of Java strings (cf. Lines 13, 24 and 25). Besides these, there are
other more implicit slots and bindings that do not follow the above pattern. In Line 4 and Line 27
slots are “bound” by direct string insertion. Obviously, it would be easy to also use slot markup in
these places, e.g., #FILENAME#, #LINE#, #FINIT#. A full ISC system such as SkAT4J can
help to improve the readability of the code before it is emitted. Simultaneously, it can increase the
quality of the code generator by finding and avoiding syntax errors in relation with their causing
composition steps instead of relying on compiler messages. The string-based composition of
fragments in Listing 7.3 could hence be replaced by a fragment composition system to improve
the quality of the generator. Code which is adjacent in the output would then also be adjacent in
the input fragments, while the control flow in the code generators stays similar by converting the
string-emitting code into composition programs.

However, as already sketched in the introduction of this section, a dependency of full ISC comes
at the downside of a costly language and technology-dependent implementation. Considering the
example of Listing 7.3, SkAT4J cannot be used directly because the generated intermediate code
is specific to the language of the aspect weaver.3 Instead, the STpL uses SkAT/Minimal to mimic
the code generator as an unsafe fragment composition system and provides a string-based com-
position API. Listing 7.4 shows the STpL-specific parametrization of the SkAT/Minimal island
grammar which declares the hash mark as slot delimiter and the backslash as escape symbol.

Besides that, STpL reuses SkAT/Minimal in an internal programming library for ISC-based
string composition. Listing 7.5 shows a part of the STpL-based generic JastAdd aspect containing
the constructor template with arguments. Listing 7.6 contains an exemplary composition result
for the Person concept of BAF example. The corresponding STpL composition program can be
inspected in Listing 7.7. In Line 5, the template API is initialized with the contents of Listing 7.5.
In Lines 6–10, the island slots are bound via calls to the API. Internally, the SkAT/Minimal

3Of course, it would be possible to extend SkAT4J to support the aspect syntax. Moreover, since the aspect weaver
of JastAdd actually is a fragment composition system, it would also be possible to use SkAT4J for implementing
the weavings. However, these ideas have been postponed because the implementation and restructuring efforts have
been considered too high for an initial investigation.
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1 aspect #ID#Constructors {
2 ...
3 // Declared in #FILENAME# line #LINE#
4 /**
5 * Constructor for #ID#-ASTNodes.
6 */
7 public #ID#.#ID#( ... /* params */) {
8 ... // (constructor body )
9 #FINIT#

10 }
11 }

Listing 7.5: Excerpt from the STpL template
for JastAdd constructors.

1 aspect PersonConstructors {
2 ...
3 // Declared in BAF.ast line 42
4 /**
5 * Constructor for Person-ASTNodes.
6 */
7 public Person.Person( ... ) {
8 ... // (constructor body )
9 is$Final(true);

10 }
11 }

Listing 7.6: Parametrized intermediate aspect
derived from Listing 7.5.

1 ...
2 public String ASTDecl.buildingConstructor() {
3 ... // (initialization)
4 // Initializing STpL API with content string:
5 STPLTemplate tpl = new STPLTemplate("http://unique.ident",content);
6 tpl.bind("ID", name());
7 tpl.bind("FILENAME",getFileName());
8 tpl.bind("LINE",String.valueOf(getStartLine()));
9 if( ... /* assume condition = true */ )

10 tpl.bind("FINIT","is$Final(true);");
11 ... // (handle constructor body)
12 // Emitting the generated code:
13 return tpl.getGenCode();
14 }
15 ...
16 public void ASTDecl.jjtGenConstructor(...) { ... /* further parametrizations */ }
17 ...

Listing 7.7: STpL-based composition program which replaces the plain string concatenation-
based fragment composition of buildingConstructor in Listing 7.3. If the
STpL template of Listing 7.5 is the input fragment, Listing 7.6 appears as the
corresponding output.

attributes are used to perform the slot look-up and to invoke the composers with the according
parameters.

While the STpL provides sufficient support to parametrize text fragments, it lacks some support
for modeling code variants which are embedded in the input fragments. The next subsection
discusses an extension of the STpL which provides declarations of code variants and a variant
selection mechanism via an extended composition API.

7.3.2. VTpL: A Text-Based Variability Template Language

Similar to normal programming languages, template engines typically provide constructs for
branching and iteration for conditional (depending on some Boolean expression) and iterative
(over a collection of similar parameter objects) fragment-code expansion. In passive template
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1 public String ASTDecl.buildingConstructor() {
2 ... // appending constructor parameters:
3 for(Iterator iter = getComponents(); iter.hasNext(); ) {
4 Components c = (Components)iter.next();
5 if(!c.isNTA()) { //if not a nonterminal attribute (NTA)
6 if(i != 0) s.append(", ");
7 s.append(c.constrParmType() + " p" + i);
8 i++;
9 }

10 }
11 ... // appending constructor body:
12 for(Iterator iter = getComponents(); iter.hasNext(); ) {
13 Components c = (Components)iter.next();
14 if(!c.isNTA()) {
15 if(c instanceof TokenComponent) {
16 TokenComponent t = (TokenComponent)c;
17 s.append(" set" + t.getTokenId().getID() + "(p" + i + ");\n");
18 }
19 else {
20 s.append(" setChild(p" + String.valueOf(i) + ", " + j + ");\n");
21 j++;
22 }
23 i++;
24 }
25 ... //NTA variants of initialization (3 more)
26 }
27 }

Listing 7.8: Another code slice from the JastAdd2 code generator (from production code of
release R20110506; distributed under New BSD License).

languages without such “active” concepts, branching and iteration have to be expressed with
the means of the host language (e.g., if-then-else or for-loop statements). However, as the STpL
only has support for slots, the variants would still have to be constructed via string operations or
loaded from file, and then bound to slots. The VTpL as an extension to the STpL provides two
additional constructs. Variant markup allows users to declare named in-line variants of source
fragments that can be selected by clients. Complementarily, the prototype concept is introduced
to mark up subfragments in the template that may be parametrized and instantiated arbitrarily.

As before, an example from the JastAdd code generator is used to document how prototypes
and variants are realized using string-concatenation operations and control-flow concepts of
the programming language. Focusing on the different strategies on handling slots in the code
generator, Listing 7.8 contains constructor-generating code that first was excluded from the
original Listing 7.3. The skipped parts emit the parameters and the actual body of the constructor.
In Listing 7.8 they can be found in Lines 3–10 and Lines 12–26. For parameters, the generator
iterates over the components of a node declaration (i.e., the right-hand side of a production in the
AST grammar) and appends a parameter declaration to the parameter list in the case it is not a
higher-order nonterminal attribute (NTA). During this process, a fragment representing parameter
declarations (cf. Line 7) is instantiated and parametrized repeatedly and thus can be considered a

238



7.3. Improving Code Generators with SkAT/Minimal Applications

prototype in the above terminology. Using STpL, the fragment can be rewritten to "#ARGTYPE#
p#IDX#". For the constructor’s body, the generator also iterates the components. For different
types of components, different variants of a fragment for setting the parameter values are emitted.
Concrete non-NTA variants can be found in Lines 17 and 20. Using STpL, they can be rewritten
to "set#ARG#(p#IDX#);" and "setChild(p#IDX#,#IDX#);". Since each variant
can be instantiated multiple times, they can also be considered as prototypes.

To support VariantLists and Prototypes in the composition system, the GMinCM is
extended by adding the corresponding nonterminals as Compositionals to the component
model (an interested reader may find the full grammar in Appendix A.5.1):

import GMinCM

VariantList .Compositional ::=
variants:Element* activeName:<string>?

Variant .Compositional ::= content:Element*
Prototype .Compositional ::= content:Element*

Thus, a VariantList has a list of Variant nodes as children, which themselves are named
composites of island and water Elements. Similarly, Prototypes are named composites of
water and island Elements. The implementation of those compositional concepts is realized as
a direct extension to SkAT/Minimal and the STpL. Figure 7.9 gives a general overview of the

Template.ast

Composers.jrag SkAT/Minimal

VTpL Extension

Points.jrag

VTpL Composition
System

VTpL APIJ

VTpLParser.peg

VTpLParserJ

Figure 7.9.: Specification-setup and generation of the VTpL composition system.

involved SkAT specifications and the composition-system generation based on SkAT/Minimal.
Basically, it adds four specification modules. The corresponding prototype and variant-AST
definitions are contained in the Template.ast grammar (can be inspected in Appendix A.5,
Listing A.21). Like in the STpL case, the textual representation is specified as a PEG that imports
and extends the minimal island PEG of SkAT/Minimal. Points.jrag and Composer.jadd
specify the semantics of prototypes and variants as compositional points and composers. Fur-
thermore, some VTpL-specific extensions are added to the composition API. To generate the
composition system, the SkAT/Minimal generator weaves the VTpL specifications and its own
specifications (cf. also Figure 7.7), emits and compiles the Java-based composition-system
implementation. In the following, relevant parts of the involved specifications are investigated.
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1 module org.skat.binding.vtpl.VtplParser();
2 modify parser.MinISCBase(org.skat.binding.vtpl.VtplParser);
3
4 // Delimiters for the complex variants, prototype constructs and StPL slots.
5 String LeftDelimiter = "[[";
6 String RightDelimiter = "]]";
7 String InfixDelimiter = "::";
8 String SlotDelimiter = "#";
9 String EscapeDelimiter = "\\" ;

10 String Delimiters = SlotDelimiter/LeftDelimiter/RightDelimiter;
11
12 // Overriding the imported island production to support the new constructs.
13 IslandElement Island :=
14 yyValue:VariantListDecl / yyValue:PrototypeDecl / yyValue:SlotDecl { };
15
16 // Syntax of VariantLists and single Variant objects.
17 String Variants_Open =
18 LeftDelimiter "VARIANTS" InfixDelimiter yyValue:Identifier RightDelimiter;
19 String Variants_Close = LeftDelimiter "VARIANTS" RightDelimiter;
20 VariantList VariantListDecl = name:Variants_Open
21 content:(yyValue:VariantDecl / yyValue:TextElement)* Variants_Close {};
22 String Var_Open =
23 LeftDelimiter "VAR" InfixDelimiter yyValue:Identifier RightDelimiter;
24 Variant VariantDecl = name:Var_Open content:TplElements {};
25
26 // Syntax of Prototypes.
27 String Prototype_Open =
28 LeftDelimiter "PROTOTYPE" InfixDelimiter yyValue:Identifier RightDelimiter;
29 String Prototype_Close = LeftDelimiter "PROTOTYPE" RightDelimiter;
30 Prototype PrototypeDecl =
31 name:Prototype_Open content:TplElements Prototype_Close {};

Listing 7.9: The VTpL island grammar, except AST construction.

7.3.3. In-Place Composers in VTpL

VTpL’s PEG extension can be inspected in Listing 7.9. The slot delimiters are equivalent to
those of the STpL.4 For the new constructs, different delimiters have been chosen since using
the same delimiter would make it harder to disambiguate the grammar, and to make them clearly
distinguishable for users when looking at the code. Hence, double square brackets—[[ and
]]—are used as markup of variants and prototypes, and within the markup double colons—
::—are employed to separate different parts of declarations. According to their definition in
Lines 17–24, variant lists are surrounded by [[VARIANTS::listName]] as opening tag and
[[VARIANTS]] as closing tag. Single variants are tagged by [[VAR::varName]]. Simi-
larly, according to Lines 27–31 prototypes are delimited with [[PROTOTYPE::protName]]
as opening tag and [[PROTOTYPE]] as closing tag. VTpL permits an arbitrary nesting of
variant lists and prototypes. Hence, a prototype may contain a list of variants and a variant may
contain a prototype. At each nesting level, slots may be defined and addressed.

4It is also possible to reuse and modify the STpL’s PEG module.
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1 aspect VTPLPoints{
2 eq Prototype.isSlot() = true;
3 eq Prototype.slotName() = getName();
4 eq VariantList.isSlot() = true;
5 eq VariantList.slotName() = getName();
6 }

Listing 7.10: Slot.jrag specification of the VTpL.

Conceptually, variant lists and prototypes are slots with primitive in-place composer semantics
(cf. Section 5.2.2). In fact, extracting a variant from a variant list or instantiating a prototype
“means” binding the respective points with a fragment contained in the subtree of themselves.
Therefore, RAG modules for these points and composers are required to specify their properties
accordingly. Listing 7.10 shows the JastAdd RAG module which declares VariantList and
Prototype as slots so that they can be bound to island grammar Elements—similar to the
basic STpL Slots.

The complementing composer RAG module can be inspected in Listing 7.11. Lines 3–6 for the
Prototype nonterminal and Lines 18–20 for the VariantList nonterminal determine the
composer properties. The isBind() equation identifies instances of both nonterminals as a bind
composer. Furthermore, the instances of the targetPoint() attribute—linking composers to
points—and the composer() attribute—referring from points to composers—point to the same
VariantList or Prototype node if they are in the same context. Hence, the compositional
point where the composer should be applied is the composer definition itself (in-place composer
semantics). Derived from these declarations, at composition time, the SkAT composition engine
automatically determines the correct composition modes and executes variant extraction and
prototype instantiation as in-place bind composers. The replacing fragment is retrieved via the
srcFragment() attribute (cf. Line 9 and 23 in Listing 7.11). In the case of VariantList,
srcFragment() computes a reference to the Element nodes constituting the active variant,
which realizes an xor semantics for variant extraction. An active variant is determined by a
composer argument that can be passed to the VariantList node from a composition program
via the VTpL composition API (cf. Line 24). For Prototypes, srcFragment() produces
a fresh copy of its contained Element nodes which is optionally parametrized by the slot
bindings given as optional argument model (cf. Line 11). In contrast to the extraction of variants,
prototype instantiation copies and retains the Prototype fragment so that it can be instantiated
arbitrarily often until it is finally removed from its parent list node by an according statement in
the composition program.

Additionally, attributes for the look-up of variants and prototypes, which simply use the SkAT
point look-up collection attributes, are specified in additional RAG modules. The VTpL tooling
also comprises a composition facade as an extension to the basic SkAT/Minimal API that provides
additional convenience methods for the newly introduced constructs. The API is used in the
VTpL-based code generator presented in the next section.
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1 aspect VTPLComposers{
2 // Declaring Prototype objects as bind composers.
3 eq Prototype.isBind() = true;
4 eq Prototype.isBindRetain() = true;
5 eq Prototype.targetPoint() = this;
6 eq Prototype.composer() = this;
7
8 // Prototype source fragment derivation.
9 eq Prototype.srcFragment() {

10 List<Element> content = getContentList().fullCopy();
11 Object model = getOptComposerArg();
12 if(model!=null){
13 content.bindEach((Map<String,String>)model);
14 }
15 return content;}
16
17 // Declaring VariantList objects as bind composers.
18 eq VariantList.isBind() = true;
19 eq VariantList.targetPoint() = this;
20 eq VariantList.composer() = this;
21
22 // Selecting inner variant as source fragment.
23 eq VariantList.srcFragment() {
24 Variant activeVariant = findVariantLocal(getOptComposerArg().toString());
25 if(activeVariant!=null)
26 return activeVariant.getContentList();
27 return null;}
28 }

Listing 7.11: Composers.jrag specification of the VTpL.

1 aspect PersonConstructors{
2 ...
3 public Person.Person([[PROTOTYPE::ARGLIST]]#ARGTYPE# p#IDX#[[PROTOTYPE]]){
4 [[PROTOTYPE::SETCHILDVARIANTS]]
5 [[VARIANTS::SETCHILD]]
6 [[VAR::TERMINAL]] set#ARG#(p#IDX#);
7 [[VAR::NONTERMINAL]] setChild(p#IDX#,#IDX#);
8 [[VAR::NTA1]] setChild(new #CONS#(), #IDX#);
9 [[VAR::NTA2]] setChild(null, #IDX#);

10 [[VARIANTS]]
11 [[PROTOTYPE]]
12 is$Final(true);
13 }
14 }

Listing 7.12: Excerpt from the VTpL template for JastAdd constructors complementing the plain
STpL template in Listing 7.5.

242



7.3. Improving Code Generators with SkAT/Minimal Applications

1 aspect PersonConstructors{
2 ...
3 public Person.Person(Name p0, int p1){
4 setChild(p0,0);
5 setage(p1);
6 is$Final(true);
7 }
8 }

Listing 7.13: Instantiated intermediate JastAdd aspect derived from Listing 7.12 (formatted).

7.3.4. Applying VTpL and STpL to JastAdd

As in the STpL example of the previous section, the VTpL composition system can be applied
to the JastAdd code-generation scenario. The above Listing 7.12 shows another intermediate
snapshot of a fragment in the modified JastAdd code generator, after having bound the basic slots
for the Person concept from the BAF example (cf. Listing 7.6). The example contains two
prototypes. ARGLIST in Line 3 provides a fragment for constructor parameters. The fragment
can be parametrized using two slots—#ARGTYPE# for the type, and #IDX# for parameter’s
index. The SETCHILDVARIANTS prototype spans Lines 4–11 and provides a variant list—
SETCHILD. After an instantiation of the prototype, SETCHILD provides several variants to set
the initial values of the node’s children. Variant TERMINAL sets terminal values according to their
specific setter-operation’s name, which can be bound via the #ARG# slot, and the parameter index
#IDX# to replicate its name in the constructor arguments. The second variant (NONTERMINAL)
provides a fragment for setting nonterminal child nodes via the index-based setChild method
of JastAdd. The remaining variants provide fragments to initialize NTA attributes with default
values. Since NTAs are computed by later attribute evaluation, the defaults are typically null
or an empty list container which has a specific constructor name to be parametrized via the
#CONS# slot.

An exemplary instantiation is shown in Listing 7.13 whereas the corresponding VTpL-based
part of the modified JastAdd code generator is shown in Listing 7.14. After initializing the API
of the VTpL composition system in Line 4 and binding the global slots according to the STpL
example (e.g., #ID#), the composition program traverses the child components of the current
node declaration and uses the composition system to generate the component-specific arguments
and body code of the constructor. Line 9 creates an instance of the SETCHILDVARIANTS
prototype. It should be noted that instantiatePrototype() internally performs a look-up
of PROTOTYPE node with the provided prototype name using the look-up attributes provided by
the composition environment, and then uses the standard composer rewrites, which themselves use
the attributes specified in Listing 7.11 to retrieve the argument fragments and points. Afterwards,
the #IDX# slot of the instantiated SETCHILD variant list is bound to the current index value
(cf. Line 11). The constructor arguments are instantiated in Line 14. However, in this case,
the values to be bound to the internal slots are passed directly to the composer, which then
handles the binding internally. According to the embedded Java syntax, single arguments must be
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1 ...
2 public String ASTDecl.buildingConstructor() {
3 ... // (initialization)
4 VTPLTemplate tpl = new VTPLTemplate("http://my.location",content);
5 ... // (slot bindings)
6 for(Iterator it = getComponents(); it.hasNext();){
7 Components component = (Components) it.next();
8 // Instantiate SETCHILD variant list:
9 tpl.instantiatePrototype("SETCHILDVARIANTS");

10 // Bind the IDX slots in SETCHILD:
11 tpl.bind("SETCHILD.*.IDX",index)
12 // For normal children instantiate and parametrize argument:
13 if(!component.isNTA()){
14 tpl.instantiatePrototype("ARGLIST",
15 "ARGLIST.ARGTYPE",sep+component.constrParmType(),
16 "ARGLIST.IDX",String.valueOf(index));
17 sep = ", ";
18 }
19 // Extract the corresponding SETCHILD variants
20 if(component instanceof TokenComponent){
21 tpl.extractVariant("SETCHILD", "TERMINAL");
22 tpl.bind("ARG",component.name());
23 } else if(component instanceof AggregateComponents){
24 tpl.extractVariant("SETCHILD", "NONTERMINAL");
25 }
26 ...// (further NTA cases)
27 }
28 ... // Removing prototypes and emitting the generated code:
29 return tpl.getGenCode();
30 } ...

Listing 7.14: VTpL-based composition program that replaces the string-based building-
Constructor in Listing 7.8. If the VTpL template of Listing 7.12 is the input
fragment, Listing 7.13 appears as a corresponding output.
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separated by comma. Since minimal ISC does not incorporate language-specific constructs, this
information has to be encoded in the code generator, e.g., using an extra variable sep. Finally,
the composition program selects and extracts from the SETCHILD variant list an adequate
variant of the initialization fragment variants, depending on the kind of child component (cf.
Lines 21 and 24). Similar to prototype instantiation, extractVariant performs a look-up
of the referred VariantList and executes the composition by delegation to the encapsulated
composition environment. Afterwards, the composition result from the VTpL template is further
processed by the integrated JastAdd aspect weaver.

To conclude the discussions on VTpL and STpL as examples for template languages with-
out control flow, potentials and restrictions of the approach which were identified during the
development of the case studies are discussed subsequently.

• In general, it can be discovered that the usage of the VTpL does not necessarily reduce the
code size when comparing number of code lines in the respective Listings before and after
VTpL is employed. However, subjectively the code looks cleaner and better structured due
to the compositional abstractions, which make it more readable for developers who are not
yet familiar with the code.

• Furthermore, it does not always seem ideal to put every fragment into a variant list or
prototype. For instance, in the previous example, the varying setter calls of the constructor
body could also be managed as separate fragment components from within the composition
program and binding them (in retain mode) to a constructor-body slot, or extending a
body hook if a full-fledged component model was available. Hence, for the success of
VTpL—and fragment composition systems with embedded composers in general—the
right reuse mechanisms and abstractions have to be found.

• As the VTpL composer markup is explicitly available as an AST structure, it would also
be an option to use other approaches to specify compositions or configurations such as
feature diagrams [Kang et al. 1990]—a formalism to specify valid variants and products
of a software product line [Apel et al. 2008]. An instance of a feature tree would then
specify which variants and prototypes need to be instantiated. However, since syntactic
and semantic correctness of the composed programs is also a major issue in software
product line research, it would be valuable to investigate lifting VTpL to language-specific
implementations using well-formed ISC, and use fragment contracts and RAGs in general
to determine configuration-correctness beforehand. Section 7.5 will discuss possibilities of
extending and improving minimal ISC systems with better support for the actual language
syntax and semantics.

• Depending on the actual fragment language, using language-unaware delimiters such as
square brackets disturbs services of the language tooling, e.g., textual editors with language
analysis functionality that are not aware of the component extension. Assuming a robust
service implementation, if delimiters are chosen carefully so that the services are less
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disturbed, the existing language tooling can still be used to some extent. A common
approach to achieve this is to mimic language extensions as comments. For example, con-
sider the Open specifications for Multi Processing (OpenMP) API [OpenMP Architecture
Review Board 2013] for the Fortran [ISO/IEC 1991] programming language. Fortran uses
“!” as delimiter for comments. OpenMP embeds its commands into comments using a
specialized prefix “!$omp ...”. In Appendix A.5.2 of this thesis, a similar approach
for the VTpL’s syntax is sketched.

To complete the series of case studies for minimal ISC, the following section discusses the
example of an active preprocessor language with its own control flow.

7.4. A Universal Extensible Preprocessor

The CPP is one of the most used macro languages as it is an integral part of the C language
specification [ISO/IEC 1999; Harbison III and Steele 2002]. It is typically bundled with the
compiler, but actually a self-contained tool that transforms the input source in a preprocessing
phase before the actual compilation. During that phase, the CPP line by line, starting with
the first line, scans the source file for preprocesser directives prefixed by the # delimiter. If a
directive is found, it is immediately interpreted by the preprocessor. For example, #include
is replaced by the content of the included file, #define defines a macro which can be called
at all subsequent positions, and #ifdef can check if a macro is defined before it is used and
therefore enables conditional compilation. In contrast to the compiler, which works on the syntax
tree, the CPP operates at the token level, recognizing standard C tokens (e.g., literals) and special
CPP tokens [Harbison III and Steele 2002]. Hence, the CPP is usable as a template engine for
arbitrary target languages with C-like tokens.

In this section, it will be shown that the approach of minimal ISC can be used as an imple-
mentation technique to create a CPP-like macro engine—the Universal Extensible Preprocessor
(UPP). On the one hand, this demonstrates that the approach is capable of modeling real-world
template and macro languages. On the other hand, the UPP also provides some advantages over
the CPP. Due to the minimal ISC approach, it has an extensible component model so that new
island elements can be added by providing an according RAG specification. Furthermore, the
syntax of preprocessor directives can be adopted to the look and feel of the target language.

7.4.1. Preprocessor Directives as Points and Composers

From the perspective of a composition-system developer, most of the directives in a preprocessor
template have a dual semantics as points and composers. All are compositional points where
fragments should be bound to a slot or rudiments should be extracted. Example 7.7 illustrates
this for the #include directive.
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Example 7.7 (#include as an STpL composition program).
Consider the C program below which contains a main implementation with a call to foo().
The implementation of foo() shall be provided by including it from an external file.

1 #include "fooimpl.bar"
2 int main(void)
3 {
4 foo();
5 }

Listing 7.15: A simple C program with include directive.

If the file with the implementation above is processed by the preprocessor, the #include
directive in the first line is just replaced by the contents of fooimpl.bar. With standard ISC
concepts, this can be reformulated as an STpL program:

1 public void fooInclude() {
2 STPLTemplate tpl = new STPLTemplate(...);
3 tpl.bind("fooimpl", load("fooimpl.bar"));
4 }

Listing 7.16: Simple STpL include code.

Note that the original #include must be replaced as #fooimpl# slot to make the STpL
program work. �

In the following overview, the most important directives supported by UPP are described in
short. To characterize the directives in ISC terminology, a 3-tuple CHAR = (P,C, S) will be
given with P ∈ {slot , hook , rudiment ,⊥}, C ∈ {bind , extend , extract ,⊥} and S a side effect
with S ∈ {fragment ,¬fragment , other ,⊥} where fragment means “a fragment is declared”.

#include inserts text from an external file that may also contain preprocessor directives. ISC
characteristic: (slot , bind ,⊥).

#define declares a macro with a name and optional macro parameters. From the ISC perspective,
a macro directive declares a fragment in the composition environment that may contain
slots and may be instantiated arbitrarily often by macro calls directives. ISC characteristic:
(rudiment ,⊥, fragment).

#undef invalidates a previously declared macro so that it cannot be instantiated subsequently.
ISC characteristic: (rudiment ,⊥, fragment).

#ifdef–#endif Depending on a certain macro being defined (visible) at that point, the directive
is replaced by its inner content. in case the macro is not defined. ISC characteristic, if the
macro is declared: (slot , bind ,⊥). Otherwise: (rudiment , extract ,⊥).
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#ifndef–#endif tests for the absence of a macro definition. ISC characteristic, if the macro is
not declared (visible): (slot , bind ,⊥). Otherwise: (rudiment , extract ,⊥).

#if–#else–#endif tests a given logical expression and, depending on the result, replaces the
directive by the fragment contained in the #if part or the #else part. If an else is present
or the expression is evaluated to true, ISC characteristic: (slot , bind ,⊥). Otherwise:
(rudiment , extract ,⊥).

#error prints a message to standard I/O. ISC characteristic: (rudiment , extract , other)

macro-call is expanded by creating a copy of the referenced fragment declaration and instanti-
ating it by providing parameters as required by the macro. The syntactical representation
of macro calls overlaps with that of C identifiers (object-like macros without parameters)
and method calls (function-like macros with parameters). If no macro declaration with
the same identifier or method signature is visible, the preprocessor ignores the call. ISC
characteristic if a suitable declaration is visible: (slot , bind ,⊥). Otherwise: (⊥,⊥,⊥).

For a complete and detailed overview of the directives supported by the CPP and exemplary
macros it is kindly referred to standard literature on C programming (e.g., [Harbison III and
Steele 2002]) or the C standardization document [ISO/IEC 1999].

Considering the generalized composers in Section 5.2.2, #ifdef, #ifndef, #if as well
as #include are primitive in-place composers as they replace themselves with their owned
fragment without any additional composition step. #error also is a primitive in-place composer
as it removes itself from a fragment. Finally, macro calls are local in-place composers since they
replace themselves with the fragment of a referenced macro definition and bind slots internally.

7.4.2. The Universal Preprocessor’s Component Model

Similar to the VTpL, the UPP RAG specifications extend the SkAT/Minimal core. This is
sketched in Figure 7.10. The UPP model covers seven specifications. The AST specifications
Template.ast and Expression.ast provide the island nonterminals that are added to
the minimal FCM for modeling the above described preprocessor directives and the expressions
that can be used in #if directives. Concrete syntax is again specified as a PEG extension
to the basic STpL slot-markup grammar. The ISC characteristics of the directives are speci-
fied in the Points.jrag and Composer.jrag attribute-grammar modules. An evalua-
tor and type checker for the supported expressions is provided by the Expression.jrag
module. Finally, a scope-based name analysis for associating macro-calls with macro decla-
rations is contained in the MacroLookUp.jrag module. After generating the implementa-
tion with SkAT/Minimal, the UPP composition system consists of the basic JastAdd-generated
AST classes and the composition-environment API and the UPP parser. The generated imple-
mentation classes are complemented by a UPPProcessor component that encapsulates the
composition system and provides an entry point for clients to access and use the UPP macro-
processing system. In the following, relevant parts of the UPP specifications will be discussed
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Figure 7.10.: Specification-setup and generation of the UPP composition system.

in more detail. This includes Template.ast, Composer.jrag and Points.jrag. The
UPP PEG (UPPParser.peg), the macro name analysis (MacroLookUp.jrag) and the Ex-
pression.ast are included in the Appendix A.5.3, while the expression-related attributes are
omitted as they are not relevant for understanding this chapter.

The UPP AST specification is shown in Listing 7.17. As to be expected from the preprocessor-
directives overview of the previous section, each directive must be represented by a corresponding
nonterminal. For convenience, the directive nonterminals are declared as subtypes of Composi-
tional so that they are recognized as compositional island concepts by the SkAT system. The
CPP does not have such an explicit AST structure because it is tightly coupled with the parser
and directly works on the token stream when it is read. Hence, using ISC at least doubles the
processing time (the AST has to be created and traversed by the UPP processor) and involves a
larger memory footprint.

Concerning supported features, there are subtle differences to the CPP. The UPP supports
macro declarations spanning multiple lines of source code (cf. MacroDeclSL and MacroDe-
clML in Lines 6 and 7) whereas the CPP only supports single-line macros. Multi-lines can only
be mimicked by using the backslashes that escape the line-break symbol(s) from the token stream.
Macro references from MacroCalls and UnDefines to MacroDecl nodes are represented
by the MacroRef nonterminal. Interested readers can inspect the JastAdd module specifying
the name analysis in Appendix A.5.3, Listing A.22. MacroCalls can have an arbitrary number
of comma-separated arguments which are meant to be bound to the parameters of the referenced
MacroDecl. UPP has three node types for call arguments (cf. Lines 13–15). PlainArgs hold
a single string-valued token that has been parsed by the UPP parser. MultiArgs can contain a
collection of island and water elements being an UPP template themselves. In contrast to typical
CPP implementations, ExpArgs provide the value of their Expression child as an argument.
Hence, in UPP templates, users are enabled to write logical and arithmetic expressions over
constants, macro declarations and system values. How this works will be exemplified later in this
section. The same expressions used for MacroCalls are also used to specify the conditions of
#if directives (cf. IfCondition, Line 26).
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1 // #include
2 Include:Compositional;
3
4 // #define
5 abstract MacroDecl:Compositional ::= Parameters:MacroParam* Content:Element*;
6 MacroDeclSL:MacroDecl;
7 MacroDeclML:MacroDecl;
8 MacroParam ::= <Name:String>;
9

10 // macro-call with optional arguments
11 MacroCall:Compositional ::= Reference:MacroRef Args:MacroCallArg*;
12 abstract MacroCallArg;
13 PlainArg:MacroCallArg ::= <Value:String>;
14 MultiArg:MacroCallArg ::= Values:Element*;
15 ExpArg:MacroCallArg ::= Expression:Expression;
16
17 // macro references
18 MacroRef ::= <Name:String>;
19
20 // #undef
21 UnDefine:Compositional ::= Reference:MacroRef;
22
23 // #IfDef, #Ifndef, #if
24 IfDef:Compositional ::= Reference:MacroRef Content:Element*;
25 IfNotDef:IfDef;
26 IfCondition:Compositional ::= Condition:Expression Then:Element* Else:Element*;
27
28 // #error
29 Error:Compositional ::= <Message:String>;

Listing 7.17: UPP’s JastAdd AST grammar Template.ast.

For generating the API, SkAT/Minimal weaves Template.ast with Expression.ast
and the minimal FCM AST grammar—Minimal.ast, and uses JastAdd to generate the basic
API classes of the composition system. The woven API class hierarchy is shown in Figure 7.11
as an UML class diagram using different colors to highlight parts of classes originating from
the involved AST specifications. Derived from the woven AST grammar, all associations—
except macro—are containment relations that characterize the spanning tree of instance-object
graphs. The macro association is computed by the RAG via the name analysis attributes in
the MacroLookUp.jrag specification. Similar to the previous case studies, the attributes
that define the sets of point candidates are contained in the Points.jrag module, which is
shown in Listing 7.18. According to the ISC characteristics of preprocessor directives developed
in Section 7.4.1, the set of slot candidates is determined by the isSlot attribute in Lines 3–7.
Hence, it contains the #include, #ifdef, #ifndef and #if directives, and macro calls.
Furthermore, slots are supported by reusing the minimal FCM and the STpL base island-grammar.
The set of rudiments (i.e., removable points) is specified between Lines 10 and 12. It contains
the #error, #define and #undef directives. Additionally, it contains all slot candidates
as these are—by default—rudiments which may be removed if they where not bound and the
fragment would be valid after removal. Finally, the point names are specified in Line 15.
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stem from the minimal FCM (from Minimal.ast), gray marks compositionals of
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class (from Expression.ast; expression nonterminals have been excluded).

7.4.3. Composers and Composition System

With the specifications discussed in the previous sections, it is possible to generate a SkAT-based
composition API. Similar to the STpL and VTpL examples, programmers of client applications
would be able to write composition recipes as Java programs against that API. However, in
contrast to these examples, each UPP fragment is also a composition program itself—with its
inherent semantics and control flow. The composition-program semantics of UPP is realized using
the composer attributes of SkAT (cf. Section 5.2.1) and by implementing a simple interpreter on
top of these attributes and the composition API. In the original implementation, the attributes have
been put into the Composers.jrag specification. For convenience reasons, the specification
has been split into several chunks that are documented in the remainder of this section.
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1 aspect UPPPoints {
2 // identifying slots
3 eq Include.isSlot() = true;
4 eq IfDef.isSlot() = true;
5 eq IfNotDef.isSlot() = true;
6 eq IfCondition.isSlot() = true;
7 eq MacroCall.isSlot() = true;
8
9 // identifying rudiments

10 eq Error.isRudiment() = true;
11 eq MacroDecl.isRudiment() = true;
12 eq UnDefine.isRudiment() = true;
13
14 // determining point names
15 eq Compositional.pointName() = getName();
16 }

Listing 7.18: The RAG specification Points.jrag determining the compositional points of
the UPP.

1 aspect IncludeComposer {
2 syn GenericFragment Include.associatedFragment();
3
4 eq Include.isBind() = true;
5 eq Include.targetPoint() = this;
6 eq Include.composer() = this;
7 eq Include.associatedFragment() = (GenericFragment)findFragment(getName());
8 eq Include.srcFragment() {
9 GenericFragment fragment = associatedFragment();

10 if(fragment!=null){
11 return fragment.getElementsList().fullCopy();
12 }
13 return null;
14 }
15 }

Listing 7.19: Specification of the include composer.

The specification of the #include directive is shown in Listing 7.19. As known from the
previous sections, the default values of the composer predicates isHook, isBind and isEx-
tract are false. To determine Include as a primitive in-place composer (cf. Section 5.2.2)
with binding semantics in any context, isBind always has to evaluate true. This is specified
in Line 4 of Listing 7.19. An Include-composer’s target point is the composer node itself
(cf. Line 5) which is also a slot as specified in the previous section in the Points.jrag
specification. Complementary, the composer attribute also refers to the Include node, which
is specified in Line 6. The fragment component to be bound in place of the node is computed via
the srcFragment attribute between Lines 8–14, which is also a default attribute of composer
nonterminals. The attribute delegates the look-up of the fragment component in the composition
environment to the custom associatedFragment attribute. Hence, if UPP encounters a
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1 aspect ErrorComposer {
2 eq Error.isExtract() = true;
3 eq Error.targetPoint() = this;
4 eq Error.composer() = this;
5
6 eq Error.hasComposerFurtherSideEffects() = true;
7 public boolean Error.composeSideEffects() {
8 println("upp> " + this.owningBox().getName() + ": " + this.getMessage());
9 return true;

10 }
11 }

Listing 7.20: The error message composer.

directive like #include "name" in a preprocessed source file, the name token is used to
search for the fragment in the environment. After a successful look-up, the fragment is cloned
and inserted at the Include-node’s position by the composition engine.

The properties of the #error directive are defined via the attributes presented in Listing 7.20.
The basic composer-identification attributes can be found between Lines 2–4. In contrast to the
Include composer, Error has an extract characteristic only, which means that the isEx-
tract attribute always evaluates true whereas the other composer-identification attributes
evaluate false. Hence, if the UPP composition engine encounters a directive such as #error
"msg", it is removed from the composition environment. After removing, the composer is
requested to produce a side effect by emitting its message to the system’s I/O (cf. Line 8). The
specification of the side-effect behavior can be found in Lines 6–10, where the presence of side
effects causing behavior is indicated by the hasComposerFurtherSideEffects attribute
and the operation that produces the side effect—composeSideEffects().

All variability-related directives of UPP are specified in the VariabilityComposers
RAG module shown in Listing 7.21. The composer-identification attributes of #ifdef and its
negated counterpart #ifndef are to be found in Lines 3–7 and Lines 10–14, respectively. For
both, the type of composer—bind or extract—depends on the presence or absence of a macro
definition within the current scope, i.e., the already preprocessed parts of the fragment previous
to the directive. The actual look-up of the macro declaration is delegated to the macro attribute
of the owned Reference node that also holds the symbolic name of the referenced macro
declaration. Depending on if a macro object can be resolved or not, the IfDef (IfNotDef)
node under evaluation is treated as bind (extract) or extract (bind) composer. Similar to the
directives described before, this behavior is specified by the corresponding attributes isBind
and isExtract. In the case UPP recognizes the directive as a bind composer, its contents are
retrieved via the srcFragment attribute and used for replacement.

Attributes related to the composer definition of #if are contained in Lines 17–27. Like
#ifdef and #ifndef, the #if directive can be interpreted as a bind or extract composer,
depending on a complex condition which is provided as a logical expression by the user according
to the expression model of the UPP. Depending on the expression’s value, the Then (true) or
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1 aspect VariabilityComposers {
2 // #ifdef related attributes
3 eq IfDef.isBind() = getReference().macro()!=null;
4 eq IfDef.isExtract() = getReference().macro()==null;
5 eq IfDef.targetPoint() = this;
6 eq IfDef.composer() = this;
7 eq IfDef.srcFragment() = getContentList();
8
9 // #ifndef related attributes

10 eq IfNotDef.isBind() = getReference().macro()==null;
11 eq IfNotDef.isExtract() = getReference().macro()!=null;
12 eq IfNotDef.targetPoint() = this;
13 eq IfNotDef.composer() = this;
14 eq IfNotDef.srcFragment() = getContentList();
15
16 // #if-#else related attributes
17 syn boolean IfCondition.isValid();
18 syn boolean IfCondition.hasElse();
19 eq IfCondition.isBind() = getCondition().value()==Boolean.TRUE||hasElse();
20 eq IfCondition.isExtract() = !isBind();
21 eq IfCondition.targetPoint() = this;
22 eq IfCondition.composer() = this;
23 eq IfCondition.srcFragment() =
24 getCondition().value()==Boolean.TRUE?getThenList():getElseList();
25 eq IfCondition.isValid() =
26 getCondition().type()==Type.BOOL && getThenList().getNumChild()>0;
27 eq IfCondition.hasElse() = getElseList().getNumChild()>0;
28 }

Listing 7.21: The specification of UPP composers with variability semantics.

Else (false) parts of the directive are used for replacing it and the isBind attribute evaluates
accordingly. In the case of the directive having no Else part specified and the provided expression
turns out to be false, isBind turns false while isExtract evaluates to true. For checking
purposes, IfCondition has a validating attribute. isValid uses the expression type checker
if the condition evaluates to a Boolean value and if the Then part actually has child elements that
could be used for binding.

Finally, it remains to specify the handling of the #define directive and the macro expansion
via macro calls. The corresponding RAG implementation is presented in Listing 7.22. Lines 1–15
contain attributes that are related to #define and its parameters. The inherited owningDecl
attribute provides MacroParams with a reference to their parent MacroDecl node. In the
associatedSlots attribute, the parameter’s parent is then used to collect all Slots in the
MacroDecl’s body which have the name of the parameter (cf. Lines 7–15). Observe that
MacroDecls never are composers. Semantics of macro expansion is associated with the
MacroCall composer (cf. Lines 17–39). In C, macro-call syntax overlaps with the syntax of
variable access and method calls. Macros without arguments are called object-like macros while
macros with parameters are called function-like macros [Harbison III and Steele 2002]. Because
of this overlap, the grammar is inherently ambiguous, since the type of nonterminal depends on
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1 aspect MacroComposers {
2 // #define and parameter-related attribute declarations and equations.
3 inh MacroDecl MacroParam.owningDecl();
4 syn lazy java.util.List<ASTNode> MacroParam.associatedSlots();
5
6 eq MacroDecl.getParameters(int index).owningDecl() = this;
7 eq MacroParam.associatedSlots() {
8 final QRef ref = new QRef(getName());
9 java.util.List<ASTNode> slots = owningDecl().collPoints(new Collector(){

10 public boolean doEval(ASTNode node){
11 return node.isSlot() && node.hasQName(ref);}
12 public boolean cont(ASTNode node){return true;}
13 });
14 return slots;
15 }
16
17 // macroCall(...) related attribute equations.
18 eq MacroCall.isBind() = getReference().macro()!=null &&
19 getReference().macro().getParametersList().getNumChild() ==
20 getArgsList().getNumChild();
21 eq MacroCall.targetPoint() = this;
22 eq MacroCall.composer() = this;
23 eq MacroCall.srcFragment() {
24 MacroDecl macroCopy = (MacroDecl)getReference().macro().fullCopy();
25 List<MacroParam> params = macroCopy.getParametersList();
26 List<MacroCallArg> args = getArgsList();
27 for(int i = 0;i < params.getNumChild();i++){
28 MacroParam param = params.getChild(i);
29 for(ASTNode slot:param.associatedSlots()){
30 StepResult result =
31 ((Slot)slot).doBind((List<Element>)args.getChild(i).srcFragment());
32 if(result!=StepResult.OK){
33 env().status.add(StatusDescriptor.
34 ERROR("Binding failed during MacroCall. Reason: " + result));
35 }
36 }
37 }
38 return macroCopy.getContentList();
39 }
40
41 // argument-related attribute declarations and equations.
42 syn ASTNode MacroCallArg.srcFragment();
43 syn boolean MacroCallArg.isValid() = true;
44
45 eq PlainArg.srcFragment() = List.newASTList(new TextBlob(getValue()));
46 eq MultiArg.srcFragment() = getValuesList();
47 eq ExpArg.srcFragment() =
48 List.newASTList(new TextBlob(Type.asString(getExpression().value())));
49 eq ExpArg.isValid() = getExpression().type()!=Type.BOT;
50 }

Listing 7.22: Specification of macro declarations and the macro-call composer.
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if a corresponding macro declaration has been declared or not. In the UPP component model,
this is reflected by the implementation of the isBind attribute. According to its specification,
a MacroCall node is recognized as a bind composer if and only if a MacroDecl node with
the same name is found in the left context of the call and the number of parameters is also the
same (i.e., MacroDecl and MacroCall have an equivalent signature). Otherwise, the call is
treated as a text node. The actual macro expansion works as follows. When the UPP processor
encounters a MacroCall node and the node is successfully identified as a bind composer via
the isBind attribute, the srcFragment attribute (cf. Lines 23–39) is evaluated to obtain the
fragment that the call should be replaced with. The expansion of the fragment is done by (1)
looking up and creating a copy of the referenced MacroDecl and (2) for each macro parameter
the corresponding slots are looked up via the associatedSlots attribute and bound to the
corresponding argument provided by the call. The evaluation of arguments is specified by the
attributes and equations between Lines 41–49. Like for composers, srcFragment provides
the actual value of the argument and is evaluated differently for the different argument types.
For PlainArg this is simply a single TextBlob fragment. For MultiArg a list of arbitrary
UPP nodes is provided for instantiation. Furthermore, arguments are allowed to be constant UPP
expressions that can be evaluated at composition-time. Besides basic arithmetics and logics,
calls to external arguments in the system environment are possible. Since SkAT emits Java code,
system calls are checked and evaluated via Java’s reflection API.

With the previous RAG modules, the semantics of each type of UPP composers has been
defined. The UPP uses the API generated by SkAT and adds an interpreter and control flow.
Algorithm 3 is an abstract representation of the simple algorithm used in the UPP implementation.
It takes a runtime instance of the UPP composition environment as an input parameter env and
produces a list of preprocessed fragments fl which—depending on the actual use case—can
be serialized or compiled further by a language-specific compiler backend. In the order of
occurrence, the algorithm iterates over all fragments in env and each child elem. Each elem is
then checked to be a composer via the isComposer attribute, which is called via the generated
JastAdd RAG API. If it is a composer, the composition is triggered via the composition API with
potential problems being reported to the user.

7.4.4. Using the Preprocessor

Similar to the previous minimal composition systems STpL and VTpL, the UPP can be easily
applied to a use-case scenario. Consider an application that has two variants rendering two-
dimensional or three-dimensional geometric figures. Listing 7.23 contains the Java class PointX
with UPP directives modeling 2D or 3D points. Depending on the presence or absence of
the THREED parameter, UPP generates the respective versions. An example configuration is
provided by the Point.conf file presented in Listing 7.24. It declares two macros. The
THREED parameter is given as a single-line object-like macro (cf. Line 1) which would expand
to an empty string if called by a macro call. Hence, it declares the presence of the parameter
and has no further purpose. Additionally, Point.conf provides a second macro—log(msg),
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Algorithm 3: The UPP evaluation algorithm represented as pseudo code.

input :env – the composition environment
output :fl – the preprocessed fragments

fl← initialize list
foreach fragment fgmt ∈ env do

n← count of direct child elements of fgmt
i← 1
while i ≤ n do

elem ← reference to ith child of fgmt
if isComposer(elem) then

if elem is an IfCondition and not isValid(elem) then
report problem (and stop processing)

∆n← compose(elem)
if ∆n < −1 then

report problems (and stop processing)
else

n← n+ ∆n

else
i← i+ 1

fl ← fl + print(fgmt)

which is a multi-line function-like macro (cf. Lines 2–4). Macros that cover more than one line
of code in UPP differ from those in the CPP as they require an extra #end directive instead
of a backslash operator at the end of each line (except the last one) which concatenates them
into one. The definition of log(msg) causes the UPPProcessor to replace occurrences of
log statements with a direct call statement to Java’s System interface. In the following, it is
explained step by step how the UPPProcessor uses the UPP composition system to process
the two fragments PointX.jupp and Point.conf. Correspondingly, the composition result
Point3D.java can be inspected in Listing 7.25.

• Initially, the composition environment is set up with the two fragments: PointX.jupp
and Point.conf.

• The system interprets Point.conf. As it only contains macro declarations and a slot
(#msg#), which are passive constructs, nothing is changed.

• The system starts interpreting PointX.jupp. The single composition steps are described
by the subsequent bullet points.
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1 #include "Point.conf"
2 #if defined (THREED)
3 public class Point3D {
4 #else
5 public class Point2D {
6 #endif
7 private float x;
8 private float y;
9 #ifdef THREED

10 private float z;
11 #endif
12
13 public float getX() {
14 return x;
15 }
16 public void setX(float x) {
17 log("SettingX");
18 this.x = x;
19 }
20 public float getY() {
21 return y;
22 }
23 public void setY(float y) {
24 log("SettingY");
25 this.y = y;
26 }
27 #ifdef THREED
28 public float getZ() {
29 return z;
30 }
31 public void setZ(float z) {
32 log("SettingZ");
33 this.z = z;
34 }
35 #endif
36 }

Listing 7.23: PointX.jupp repre-
sents points in 2D or
3D space.

1 #define THREED
2 #define log(msg)
3 { System.out.println(#msg#); }
4 #end

Listing 7.24: Point.conf declares two macros
that can be included.

1 public class Point3D {
2 private float x;
3 private float y;
4 private float z;
5
6 public float getX() {
7 return x;
8 }
9 public void setX(float x) {

10 { System.out.println("SettingX"); };
11 this.x = x;
12 }
13 public float getY() {
14 return y;
15 }
16 public void setY(float y) {
17 { System.out.println("SettingY"); };
18 this.y = y;
19 }
20 public float getZ() {
21 return z;
22 }
23 public void setZ(float z) {
24 { System.out.println("SettingZ"); };
25 this.z = z;
26 }
27 }

Listing 7.25: The resulting class Point3D.java,
which is emitted by UPP for the inputs
PointX.jupp and Point.conf.

• Line 1: the #include directive for Point.conf is encountered. The template pro-
cessor recognizes the Include composer and triggers the composer evaluation in the
composition system. The system looks up the Point.conf fragment and binds its con-
tents to the Include slot (i.e., the directive is replaced with the contents of the fragment).

• Line 2 (Line 5 after composition): an #if directive is encountered and recognized as a
composer by the template processor. The composition system evaluates the conditional
expression, which checks if the THREED macro is defined. Thanks to the preceding
#include, the look up of THREED is successful so that the expression yields true.
Consequently, the whole #if directive up to Line 6 is replaced by the first branch.
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• Line 9 (Line 8): an #ifdef directive is encountered. It is evaluated similarly to the above
#if and thus replaced until Line 11 with enclosed field declaration for the third coordinate.

• Line 17 (Line 14) and Line 24 (Line 21): UPP consecutively recognizes two calls to the
log(msg) macro. Triggered by the template processor, in both cases, the composition
system again looks up the corresponding macro declaration, creates a copy of the declara-
tion’s contents and binds the #msg# slot with the provided call arguments, “SettingX”
and “SettingY” respectively. Finally, the instantiated macro contents are bound to the
macro calls.

• Line 27 (Line 24): a second #ifdef directive is encountered that also checks the presence
of the THREED parameter and adds accessors for the z coordinate to the 3D point class.

• Line 32 (Line 28): after expanding the second #ifdef, a third macro call to log(msg)
is encountered and bound to the corresponding contents by the composition system.

• After reaching the end of the fragment, the template processor optionally removes the re-
maining macro declarations previously included via rudiment extraction in the composition
system. The final result after emitting can be inspected in Listing 7.25.

To summarize, the previous sections showed that RAG-based ISC is a suitable approach to
realize composition systems or template languages with relatively low implementation efforts
gaining a formal component model which enables access to clients through its meta API. However,
this comes at a cost of no or little compositional guarantees, and potential runtime overheads in
comparison to well-tuned optimized manual implementations. For example, it is obvious that a
preprocessor implementation that builds upon internal AST data structure like the UPP introduces
a runtime overhead for creating this data structure and also a memory overhead in comparison
to hand-optimized preprocessors in industrial or established open-source compilers. On the
other hand, generative approaches such as SkAT that are based on an expressive formalism like
RAGs have a qualitative effect on the implementation. Specifications typically tend to be much
more compact and explicit and are not tangled with technical or performance related aspects,
which improves readability and maintainability of source code. These intangible properties are
a cornerstone for component models that are extensible and can be enriched with additional
concepts for composition. Moreover, depending on the expressiveness of the formalism, the
strength of the coupling between component model, fragment and composition language can
be scaled in such a way that a trade-off between the features supported by the composition and
development effort becomes possible for developers.

Based on these observations, the following section proposes an agile development methodology
for scalable fragment composition systems.
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7.5. Agile Composition-System Development

Agile software development methods [Beck et al. 2001] like Extreme Programming [Beck and
Andres 2004] are a flexible and customer-oriented way to develop software. Most notably,
they foster a continuously developed and maintained software product that should be working
from the beginning. Typically, the software is developed in multiple iterations, each adding
new functionality or adjusting existing features of the software. Each iteration should be short,
covering a small set of new functionality or changes conducted. In the heart of these small
iterations stands the interaction between developers of the software and customers who ordered
the software. The advantage of such a close collaboration is that changes requested by the
customer and/or her users can be considered early and a continuous evaluation and steady
improvement of the product is ensured. The values of agile software development are recorded in
the Manifesto for Agile Software Development [Beck et al. 2001]:

• “Individuals and interactions over processes and tools”,

• “Working software over comprehensive documentation”,

• “Customer collaboration over contract negotiation” and

• “Responding to change over following a plan”.

In the development of fragment composition systems as complex software systems, agility
can also help to improve quality and process. For example, often it is difficult to identify the
requirements of a composition system from the beginning, if domain knowledge needs to be
integrated into the system to develop the right composition operators and composition language
abstractions. Hence, it is required to develop the composition system in close collaboration with
its future users (i.e., the domain experts). Monolithic software development processes such as the
V-Model [Binder et al. 2006] do not encourage a steady communication, feedback and change so
that important domain knowledge may not be considered accordingly in the final product causing
a failure of the project. The scalable ISC approach presented in this section enables an agile
development style for fragment composition systems. It covers a range of composition-system
features starting from minimal component models with string-based slots, over island component
models with partially syntax-safe slot composition, syntax-safe composition with slots and hooks
and well-formed component models with context-sensitive composition contracts and domain-
specific composition operators. These features have different demands in terms of development
time and learning curves due to their inherent implementation complexities.

Section 7.5.1 discusses the implementation complexity of composition-system features of ISC
systems and compares how they are supported by the existing ISC approaches such as the SkAT
tool and the approaches evaluated in Chapter 4. Afterwards, in Section 7.5.2, scalable ISC is
presented as a workflow diagram and it is discussed how SkAT supports this workflow.
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7.5.1. Implementation Complexity of Fragment Composition Systems

The implementation complexity of composition-system features is a relative measure to estimate
the effort needed to realize a composition system with a certain set of features. The following
four basic feature sets are considered. (1) The system supports slots only (+ slots): fragment
components may only contain declared variation points. (2) Slots and hooks, or hooks only are
supported (+ hooks): fragments may contain variation points and may have implicit extension
points supporting unforeseen extensions. (3) The system supports 2 and provides a composition
language (+ composition language): composition recipes can be written in a language which
is dedicated or embedded into the component language. (4) The system supports 3 and has
advanced tooling (+ composition tooling): users are supported by typical IDE features such as
editor services or fragment repositories.

Complementary, these compositional features can be supported at different levels of fragment-
language support. The following four categories of fragment-language support are to be con-
sidered. (I ) The system is completely language unaware (string-based): fragment components
are not checked with their specification and the composition does not give any guarantees about
the result of the composition. (II ) The system is aware of the tokens that may appear in frag-
ment components of the target language (token-aware): the system only accepts and composes
fragments which consist of tokens that are terminals of the target language in order that at least
some guarantees at the lexical level are possible. (III ) The composition system is aware of the
language’s grammar or metamodel, which is the typical case for ISC systems (syntax aware):
fragment components are typed w.r.t. the nonterminals of the grammar so that the composition
result is guaranteed to be valid with respect to the context-free fragment language. (IV ) The
system is aware of parts of the language semantics and context-sensitive constraints (semantics-
aware): the composition results are guaranteed to be correct w.r.t. the supported properties (e.g.,
fragment contracts in well-formed ISC).

Figure 7.12 shows the above features as fields of a 16-field “portfolio matrix”, whose columns
denote different degrees of language awareness while its rows represent supported composition-
system features. To estimate the implementation complexity of a fragment composition system
using this diagram, it is suggested to employ a simple block metric. If a global distance of 1
is assumed, the complexity measures range from 0 (field I1) up to 9 (field IV 4). Observe that
these numbers are only directly comparable if they are assumed for the same component and
composition language. As an example, consider fragment components of a small DSL such as the
person language of the BAF example and a general purpose language like C. A IV 4-composition
system for the person DSL is possibly much simpler to be implemented than a III 1-composition
system for C because of the huge number of language concepts and grammar constraints in C
in comparison to the DSL. As string- and token-based composition systems are not aware of
a fragment’s tree structure, they cannot support context-dependent hooks, which require list
nonterminals and nesting in the AST. Therefore, I2 and II 2 are not counted in the proposed
complexity measure.
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Figure 7.12.: Increasing specification and implementation complexity of fragment composition
systems in dependency of the supported features.

In the following, the composition systems developed in this thesis and others are classified
w.r.t. the matrix. The STpL is a I1-composition system as it only supports slots and is completely
unaware of the target language. Its complexity measure is 0. Its extensions VTpL and UPP are
considered to be I3 systems while UPP has a completely dedicated composition language and
VTpL is a mixed approach with fragment markup and composition API. Also, simple template
languages such as StringTemplate [Parr 2006] or xPand [Efftinge et al. 2008] operate on that level.
The CPP is token-aware and thus can be considered as a II 3 composition system with a complexity
measure of 2. The COMPOST system for Java uses Java as a host composition language and
thus is a III 2 composition system. C++ templates and their instantiation are integrated with the
programming language while type checks are the compiler’s task. Consequently, C++ templates
are a III 3 composition system for generic functions and classes. If its fragment contracts are also
considered, the SkAT4J composition system for Java belongs to the IV 2 category. Without the
fragment-contract support, the system is in the same category as COMPOST. As a command-line
version, AspectJ [Kiczales et al. 2001] is a IV 3 composition system. It is tightly integrated
with a Java compiler frontend. If the AJDT are also considered, IDE-like composition tooling is
provided so that AJDT has an implementation complexity of 9.

To support an agile development style for invasive composition systems, the employed tools
should not foil it or, even better, provide functionality supporting agility. Figure 7.13 shows
how the ISC frameworks presented in Chapter 4 scale over composition features in comparison
with the SkAT-based approaches developed in this thesis. Of course, the classic ISC systems
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Figure 7.13.: A simple classification of the known ISC tools according to the complexity classes
of Figure 7.12.

COMPOST and Reusewair support syntax awareness and thus can only scale in sectors of
column III . Reusewair supports the embedding of composition operators and provides very
basic tool support (e.g., textual editors based on EMFText). While the Reuseware approach has
an extended ISC model, it still can be compared to the other approaches. The composition tooling
provided by Reuseware (including a graphical composition language, a fragment repository and
the instant update of composition) is very complex and well-integrated into the Eclipse IDE.
Thus, it supports III 4-composition systems.

For agile software development, a restriction to syntax-aware composition is counterproductive:
for creating a working product that fully supports a fragment language, a full AST grammar or
metamodel has to be provided and compositional points have to be specified w.r.t. that grammar.
While this works well in software development processes where requirements have been analyzed
exhaustively and the component and language models have been designed in the respective
process phases, it is not well-suited for agile processes, where requirements and designs are
evolved in collaboration with customers and domain experts over the whole project lifespan.
Hence, it would be worthwhile to be able to create “small”, productive composition systems
from the beginning. These versions can practically be evaluated by their users reporting feedback
for improvements. Based on this feedback, systems can be refined, and new features can be
integrated or others be improved.

As demonstrated in the previous sections of this chapter, small productive fragment composition
systems are supported by SkAT/Minimal, which supports string-based and token-aware FCMs
(cf. Figure 7.13). For example, the VTpL (cf. Section 7.3.2) is such a “small” productive
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composition system. It has been employed to investigate possibilities in restructuring the JastAdd
code generator, making some of its implementation patterns explicit as composition language
constructs or composers, respectively. In an agile development style, VTpL would be handed to
developers who can check practicability of the solution and suggest further changes by applying
it to recreate other parts of the JastAdd generator. After the conceptual evaluation using the
productive minimal systems, and depending on the discovered customer (user) requirements, a
syntax or even semantics-aware composition system can be designed. As shown in Figure 7.13,
SkAT/Full supports these levels of language awareness. Hence, the concepts investigated with
the early products are to be converted into syntax-aware concepts—combining compositional
constructs with the actual fragment-language model.

De facto, it still remains a huge complexity gap between the simple composition systems of
the two leftmost quadrants and the ones located in the two rightmost quadrants. If it is required
to also bridge this gap in an agile development style, it is suggested to use island grammars and
island component models to allow developers to step by step refine the composition system with
additional syntax and semantics support for parts of the fragment language. In Figure 7.13, this is
implied by horizontal bar connecting SkAT/Minimal and SkAT/Full. Besides supporting diverse
degrees of language awareness, SkAT directly inherits the aspect-oriented modularity features
provided by the underlying RAG system. This also has positive effects on agility. Extensions to
FCMs can be modeled as extra JastAdd RAG modules that are woven into the system while other
aspects remain untouched.

The following section deepens the discussion on scalable ISC and proposes a general workflow
for agile development of ISC systems.

7.5.2. Agile Composition-System Development

The refining activities involved in agile composition-system development, and their inter-depend-
encies can be captured as a workflow diagram. Workflow diagrams help to document process
knowledge in descriptive or even executable ways. The Business Process Model and Notation
(BPMN) [Object Management Group (OMG) 2011a] is a common standardized modeling lan-
guage for workflows providing “a notation that is readily understandable by all business users,
from the business analysts that create the initial drafts of the processes, to the technical developers
responsible for implementing the technology that will perform those processes, and finally, to
the business people who will manage and monitor those processes” [Object Management Group
(OMG) 2011a, p. 1]. One of the ancestors of BPMN are UML Activity Diagrams [Object
Management Group (OMG) 2011d], which makes it a suitable notation for software engineers
(especially composition-system developers) as well as software architects and other stakeholders
in software development projects.

A scalable ISC workflow definition should support the creation of any kind of fragment
composition system, i.e., string-based and token-aware systems, syntax-aware systems and se-
mantics-aware systems. Also, it should consider different starting points and requirements,
since compatible grammars or metamodels—including a semantics specification—might be
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Figure 7.14.: The top-level workflow of scalable ISC.

present or absent. Figure 7.14 shows a top-level BPMN workflow which corresponds to these
requirements. It consists of eight activity nodes and the control flow (also called sequence flow
in BPMN) between them, as well as several gateway nodes that typically are decision points.
Activities associated with artifacts produce fresh specifications (e.g., language metamodels or
AST grammars, or semantic specifications) or extend existing specifications with new content
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which is not part of a refactoring activity (this will be explained later in this section). Furthermore,
the diagram distinguishes normal and complex activities. In BPMN, complex activities are
typically used to fold complex sub-processes into one node in such a way that the diagram can be
decomposed to improve readability. In the process of Figure 7.14, complex activities emphasize
activities that are to be expected to cause high modeling efforts, but are not necessarily backed
by a sub-process diagram in this thesis. Only the essential “Refine component model” task will
be discussed in detail later in this section. In the following, the activities and outcomes of the
top-level process are described.5

Top-Level Activities

(1) Add language model to FCM. If a compatible model of the fragment language is avail-
able, it can be added to the set of specifications that contribute to the FCM. For SkAT, this
would be a JastAdd AST grammar. In metamodel-based approaches such as Reuseware a
language metamodel would be added to the FCM.

(2) Create complete language model. If no compatible model is available or if an island
model has been developed during preceding iterations of the current process, a complete
AST specification or metamodel can be developed and added to the FCM (if an island
model existed before it is replaced). The creation of the language model is considered a
complex activity and thus may involve a long-running subprocess itself.

(3) Create language model based on minimal FCM. In case the composition-system de-
velopers have decided to create a string-based or token-aware composition system, the
minimal FCM introduced in Section 7.1.4 is used as a basic language model. In SkAT, this
corresponds to the inclusion of the SkAT/Minimal models.

(4) Add constructs of interest (islands). As a direct successor of activity (3), this activity
adds new island constructs or concrete syntax like slot markup to the FCM. The STpL,
developed in Section 7.3.1, is a typical initial island FCM while VTpL and UPP, developed
in Section 7.3.2 and Section 7.4, are typical island FCMs after several refinement iterations.

(5) Add semantic model to FCM. If a well-formed composition system should be developed
and a compatible semantics specification is available, it can be added to the FCM. In SkAT,
the semantic model can be provided as a set of JastAdd .jrag modules.

(6) Create complete semantic model. If a well-formed composition system should be de-
veloped and no compatible semantics specification is available, is has to be developed
and added to the FCM. Depending on concept coverage, implementing static language
semantics is typically a very complex and error-prone task. Therefore, it is modeled as a
complex activity.

5It is silently assumed that an extension of the language grammar (or metamodel) includes concrete syntax.
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(7) Create partial semantic model. Developers can also decide to not support the full lan-
guage semantic in the composition system. It seems reasonable to implement only those
aspects which are indeed required to realize the envisaged fragment contracts, e.g., name-
analysis-dependent contracts. The task is modeled as a complex activity, because depending
on the complexity of the fragment language model, implementing partial semantics can be
complex and error-prone.

(8) Refine component model. This complex activity deals with the actual development of
the component model and the composer model, if the latter should be considered. Its
internals will subsequently be unfolded and explained by a separate BPMN diagram.

The outgoing sequence flows of the refinement activity should be described in context of the
top-level diagram. Depending on the refinement steps and evolving goals emerging from the agile
development style, it might be required to extend or modify the underlying fragment-language
model. This is modeled by the flow-edge labeled “Extend incomplete language model” that leads
to an exclusive gateway that—depending on the situation—decides which activity of the top-level
workflow can be executed next. Three different situations are distinguished. First, a token-aware,
string-based or island FCM can be extended to support additional island constructs. This is
modeled by a flow edge connecting to activity (4). Second, an island FCM can be transformed
into a syntax-aware FCM. This is realized as a flow edge leading to the gateway which models
the decision on using an existing language model or creating a fresh one. Third, a syntax-aware
FCM shall be extended with a semantics model or a partial semantics model should be extended.
This is modeled by the flow edge leading to the decision about adding an existing full semantics
specification or creating a fresh or additional partial model. The refinement workflow is shown in
Figure 7.15 while its activities are described subsequently.

Refinement Activities

(1) Specify extension grammar/metamodel. In this activity, grammar or metamodel ex-
tensions that represent composers or points can be added to the language model. In SkAT,
this can be an extra AST specification whereas in Reuseware this would normally be added
to the language metamodel.

(2a) Specify slot model. If developers decide to add variation points to the FCM, a slot
model has to be added to the composition system. Conceptually, this model represents the
slot-identification function introduced in the common FCM Definition 4.1. In SkAT, this is
realized by adding or modifying an according JastAdd RAG aspect. In Reuseware, this is
realized by the Reuse EXtension language for Component Model Configuration (REXCM).

(2b) Specify hook model. This activity models the introduction of new extension points to
the FCM. A hook model will be created and added to the composition system. Conceptually,
this model represents the hook-identification function according to Definition 4.1. Like for
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Figure 7.15.: Component-model refinement workflow in BPMN.

slots, in SkAT this can be realized by adding or modifying a corresponding JastAdd aspect
while in Reuseware it is specified in the REXCM specification.

(2c) Specify rudiment model. In this step, nonterminals or concepts whose instances can be
removed via the extract composer can be defined as rudiments in this activity. Similar to
slots and hooks, rudiments are supported via attributes in SkAT.

(2d) Specify composer model. In this activity, specific composition operators like embed-
ded import and weaving constructs can be specified. Again, SkAT supports composers via
special attributes dedicated to that purpose that can be added to a fresh or existing module.

(3) Specify glue model. After compositional constructs or fragment-box types have been
added to the FCM, it might be necessary to define a glue model that closes the gap between
context-dependent semantic functions. For example, name and type analysis typically
depend on a scoped context. In RAGs, context-dependent attributes are typically inherited
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Figure 7.16.: A potential execution sequence of agile iterations.

attributes or attributes which indirectly depend on an inherited attribute. Hence, contexts
of inherited attributes not considered in the integrated FCM have to be closed in form
of additional equations for these contexts. Moreover, due to broadcasting of inherited
attributes, which silently passes inherited values down via implicit replicating attributes,
unexpected contexts causing erroneous computations may occur. For more information on
related issues, it is kindly referred back to Section 5.1.5.

(4) Adapt existing FCM specifications. Adding new points or composers to the FCM may
cause inconsistencies with the established concepts in the FCM, e.g., making them invalid
or contradicting. In this activity, such inconsistencies shall be resolved by unifying,
removing or adapting the contradicting formerly established parts of the FCM.

(5) Specify fragment contracts. During this activity, fragment contracts supporting well-
formed composition can be specified using portions of the specified fragment language
semantics to check if the fragment remains well-formed after composition. In SkAT,
this is supported by special contract attributes which are automatically checked during
composition (cf. Section 5.4 and Section 6.3.5).

(6) Conduct global refactoring. After one or more complex refinements and additions to
the FCM, it may be advisable to conduct a refactoring of the specifications and models
involved to reorganize, group or integrate new modules. This improves the quality of the
specification models and ensures extensibility of the FCM in later iterations.

The sequence flows between the root workflow diagram in Figure 7.14 and the refinement
diagram in Figure 7.15 enable the proposed agile development style. Figure 7.16 exemplifies
a potential of iterations based on the composed workflow. The development starts with a
simple minimal composition system based on the minimal FCM, e.g., supporting slots and some
variability concepts. In a second iteration, some constructs of interest are added as islands to the
FCM to provide a small degree of syntax awareness, e.g., adhering the language’s block structure.
Several iterations (until composition system n) add more constructs of the fragment language as
island to the FCM, e.g., expressions. During iterations n+ 1 to m, some semantics support is
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added, e.g., the look-up of method names or other context-sensitive properties. Finally, the last
iterations replace the island FCM with a full grammar or metamodel of the fragment language.

7.6. Summary and Conclusions

This chapter introduced scalable ISC as a novel agile approach to composition-system creation.
With the approach it becomes possible to develop fragment composition systems in small iterations
considering new requirements or changes. The main advantage over the classic ISC approaches
and well-formed ISC is that composition abstractions can be tested and evaluated earlier, and the
effort of developing a full-fledged ISC system can be avoided initially.

Scalable ISC is supported by three other inventions of this thesis. The RAG-based specification
method of fragment component models, developed in Chapter 5 and implemented in Chapter 6,
enables a decomposition of FCM specifications along user-specific concerns. This property is es-
sential for extensions to the FCM in iterations of the scalable ISC workflow and for decomposing
the model as it is adequate for the process. Moreover, island FCMs were introduced. Based on
island grammars, island FCMs allow specifying fragment component models w.r.t. an incomplete
language specification consisting of islands (the specified parts) and water (the unspecified parts).
Hence, with island FCMs it is not required to provide a complete grammar of a CnL, instead a
partial one with CnL-specific islands suffices. As a corner case, a minimal fragment component
model has been introduced. The minimal FCM is an island FCM which only has slots as islands
while everything else is water. Consequently, the minimal FCM is an island FCM w.r.t. any
CnL with slots (modulo CnL-specific hedge delimiters) and thus an adequate starting point in
composition system development according to suggested workflow of scalable ISC.

Supporting the argumentation in this chapter, three case studies of island-based composition sys-
tems were conducted. To implement these systems, SkAT provides SkAT/Minimal as an extension
of SkAT/Core and an implementation of the minimal FCM, which can be included and extended
by specific systems. The Slot Template Language (STpL) is an instance of SkAT/Minimal that
adds a concrete slot-delimiter syntax and provides a SkAT-based composition API. Extending
STpL, the Variant Template Language (VTpL) adds compositional constructs to declare variants
in fragment components that can be instantiated and parametrized via an API. As a side effect,
this case study also demonstrates how SkAT supports embedded composer signatures and how
string-based code generators can use such a language to untangle control flow from fragment
representation. The Universal Extensible Preprocessor (UPP) is an extension to the STpL that
adds an extensible macro language and an ISC-based macro expander. In comparison with the
VTpL, UPP demonstrates how SkAT supports embedded composers with an active expansion
semantics. In comparison with “classic” preprocessors like the CPP, UPP provides extensibility
in two dimensions: new directives can be added as composers and language awareness is scalable
towards an improved support of CnL-specific constructs, e.g., brackets, declarations, statements.

Since the discussions of the main contributions of this thesis have now been completed, it
remains to comment on additional related work in the next chapter.

270



8
Related Work

This chapter discusses work related to the research presented in this thesis that has not yet been
discussed sufficiently in any of the other chapters. As the thesis topic has relations with a number
of research areas in theoretical and applied computer science, only a small selection of related
work can be covered here. This selection has been chosen carefully and to the best of the author’s
knowledge, but still may miss important results from other sources as the body of acquired
knowledge steadily grows exponentially.

8.1. Safe Template Languages

Template languages are important tools for generating source code from a generic specification
which is parametrized with data from application-specific models. While many template tools
operate on character or token-stream level (e.g., StringTemplate [Parr 2006]), only a few consider
the grammars of object languages (i.e., the fragment language or CnL in ISC terminology) and
even fewer consider their semantics. This section focuses on template languages and tools of the
latter two categories.

Repleo

[Arnoldus 2011] presents a declarative approach for the specification of syntax-safe template
engines for arbitrary context-free object languages. Therefore, a reusable metalanguage and
template-evaluation engine is defined and implemented as a Java-based prototype called Repleo.
Following the spirit of StringTemplate [Parr 2006], the metalanguage is designed toward being
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“strong enough to express the unparser” and minimal w.r.t. “the possibilities for expressing calcu-
lations in the template” [Arnoldus 2011, p. 61]. Thus, the metalanguage is kept small, supporting
concepts such as placeholder replacement (i.e., slot binding), control flow and iterations over
input-model elements. Under the hood, the approach is based on the SDF grammar language and
its corresponding SGLR implementation [Visser 1997; Brand et al. 2002]. The advantage of SDF
over conventional parser generators is that it provides a module system and can handle ambiguous
grammars. Thus, the metalanguage of Repleo is provided as SDF modules and can be combined
with an object-language grammar by specifying a combination module. The combination module
defines where placeholders may occur by relating them with the nonterminals of the object
language. Hence, spoken in ISC terminology, combination modules realize slot-identification
functions. Given the SDF modules of metalanguage, object language and combination, SDF
generates an integrated template-language parser which is used by Repleo to create parse trees
from syntactically correct template files. Based on the parse tree, the object-language grammar
and an input model, the template engine performs a tree traversal and interprets the metalanguage
constructs by performing rewrites on the parse tree. Interestingly, [Arnoldus 2011] also investi-
gates static semantic checks for Repleo templates based on JastAdd. Therefore, a prototypical
JastAdd-based realization of the metalanguage is discussed as well as a name-based mapping
of object-language grammars in SDF to JastAdd. In parts of the experiment, it was possible
to specify semantic checks of metalanguage concepts as well as reusing checks of a small toy
language. However, in a larger experiment an integration of Repleo and JastAddJ failed because
of mismatches in the SDF Java grammar and the JastAddJ grammar. This is due to the fact that
JastAddJ has both an AST grammar and a parser grammar while Repleo only supports declarative
SDF grammars. During the parse, JastAddJ creates AST nodes which already are abstractions
from the original parse tree and cannot be covered by simple mappings in all cases.

In comparison with the research conducted in this thesis, the work of [Arnoldus 2011] is much
more focused on a small class of template abstractions, assuming that everything else already is in
ideal shape in the input model so that additional computations or non-linear transformations are
not required. In contrast, the scope of this thesis is broader, covering abstractions for templates
but also cross-cutting concerns and composition interfaces. Considering a typical code generator,
different concerns are tangled and scattered throughout the generator’s implementation. Using a
simple template language, it is hard to express and organize these concerns as they have to be
organized linearly along templates—in the worst case on a per file basis. A fragment composition
system does not force a code generator to be organized along template files. Instead, it can be
much better organized along the generator’s logic.

Model-aware templates

[Heidenreich et al. 2009c] describe an approach on extending model-based textual languages with
template-metaprogramming constructs. Similar to Repleo, the approach features a predefined
set of metalanguage constructs which is provided as an EMOF metamodel (cf. Section 3.2.2)
including constructs for iteration, conditionals and placeholders. Object languages are assumed
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to be provided as a metamodel for abstract syntax and an EMFText grammar defining the
metamodel’s textual representation. To combine the object language with template concepts, the
language’s metamodel is transformed automatically in such a way that every reference declaration
in the metamodel refers to an abstract class whereas the original classes become their subclasses
(cf. the slotification operator of Reusewair discussed in Section 4.3). The so prepared metamodel
and the model of the metalanguage are then imported into a third metamodel which combines
both via subclassing. Besides abstract syntax, the newly derived template language needs to be
provided with a concrete syntax. This is achieved by supplying another EMFText grammar that
imports the object language syntax and adding template specific symbols (e.g., hedge symbols).
Observe that although EMFText does not support scannerless or generalized parsing, grammar
conflicts can be avoided by carefully choosing keywords and markup syntax. Concerning well-
formedness, the authors of [Heidenreich et al. 2009c] do not follow a clear approach. At least,
it is suggested to use the reference-resolver stubs of EMFText which are generated for each
non-containment reference declared in the metamodel. This has the disadvantage that reference
resolvers in EMFText can only be used practically for name analysis and the algorithms cannot
be modularized nicely along their semantic concerns.

In comparison with the approach of this thesis, the statements concerning Repleo also hold
for the approach of [Heidenreich et al. 2009c]. Moreover, an automatic extension of the object-
language metamodel seems inadequate as it tends to pollute the specification and easily breaks
other tooling.

SafeGen

SafeGen [Huang et al. 2011] is a template-metaprogramming language for safely generating
Java code. SafeGen combines axioms in first-order logic with basic code-analysis algorithms to
check a template’s correctness using an automatic theorem prover on the axioms. If a template
is recognized as correct, it is guaranteed to produce well-formed Java code for any valid input
parameters. Observe that “correctness” here means correct w.r.t. the axioms. According to [Huang
et al. 2011], this includes checking the presence of a non-final super class id declared, valid
argument types of a method and a correct typing of a returned value. As the generic approaches
above, SafeGen’s expressiveness is restricted to control-flow and iteration statements. Moreover,
the parameters of a template can only be obtained by reflective queries over the existing class base
(e.g., querying a class or method name), which means that no custom input models are supported.

In comparison to the approach of RAG-based fragment contracts developed in this thesis,
axioms in SafeGen play a role similar to attribute-based assertions in fragment contracts. They
formulate well-formedness conditions that are checked before or during composition or template
expansion. RAGs are much more expressive than first-order axioms as they can easily implement
typical static analysis algorithms for complex real-world languages. At a downside, RAGs cannot
be checked by a theorem prover. However, it could be a viable approach to combine first-order
axioms as fragment assertions mapping them to characteristic attributes as “built-in predicates”
provided by the underlying RAG.
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C++ Templates and Concepts

The C++ programming language provides a standardized set of class and function templates
provided with the C++ standard library [ISO/IEC 2011]. Templates in C++ are different from
the template languages described above as they are part of the language by definition and allow
parametrizing class and function declarations with type names, constants as well as function and
member pointers. Hence, their main purpose is providing generic-programming abstractions for
C++ developers (e.g., providing type-independent data structures) not code generation per se. A
template is instantiated when it is used in a program by binding type names to template parameters
(i.e., type slots). As they are integrated with the object language, the parser checks if templates are
syntactically correct. However, the adequateness of types is mostly checked after the instantiation
of a template by the compiler, which tries to compile classes or functions generated from templates.
Thus, the error messages delivered to the user in case of compilation problems are not related to
the template but to the generated artifacts, which makes it difficult to find the problems’ actual
causes. To improve there, concepts have been suggested as a declarative extension to the C++
standard [Sutton and Stroustrup 2012]. Using concepts, requirements on type parameters can
be specified w.r.t. template parameters by constraints and axioms. Constraints define functions
and operators a type argument must provide, while axioms are semantic requirements that must
hold at execution time. Consequently, type-related problems during template instantiation can be
detected earlier and provide better understandable error messages.

With ISC and SkAT it is easy to implement template languages such as C++ templates.
Moreover, using well-formed ISC and fragment contracts, static problems can be detected earlier
and provide better error messages (e.g., by checking type arguments). However, also RAGs can
only reason about information which is available to the system. For example, type information
may not be completely derivable so that checks are still incomplete. An approach such as concepts
can provide the missing information and complete the analysis. As concepts are declared by
template developers, they can be considered as user-defined fragment contracts.

8.2. Macros and Preprocessors

As the term “macro” is frequently used in a very broad sense (e.g., [Tatsubori et al. 2000]), it
is first approximately defined what is considered as a macro in this section. Macros are static
metaprograms nested in a host language which are specified by a macro definition consisting of a
pattern (e.g., a name and a list of parameters) and a replacement rule. A macro call consists of a
declared macro’s name and a list of arguments matching the requirements of the declaration’s
pattern. Knowing all macro definitions, a macro processor locates all occurrences of macro calls
in a program and replaces them according to the respective replacement rules. Typically, macro
syntax is transparently integrated with the host language in such a way that using macros “feels”
similar to using a non-macro language feature. Replacements are usually specified using templates
whereas the template may respect the host language’s syntax (syntactic macro languages) or not
(lexical macro languages) [Brabrand and Schwartzbach 2002]. Well-known representatives of
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both classes are pattern-based macros in Scheme [Kelsey et al. 1998] and macros supported by
the C preprocessor (CPP) [Harbison III and Steele 2002].

The relation between embedded ISC, and definition and expansion of syntactic macros is
investigated in [Henriksson 2009, p. 204ff]. The ideas presented there are closely related
to [Brabrand and Schwartzbach 2002], who suggest a macro-definition approach with custom
syntax metamorphing macro calls into host-language syntax. In terms of embedded ISC, a macro
call is represented by a composer node with custom syntax in the AST and the macro definition is
given as a composition program. Although not studied extensively, the RAG-based specification
method for FCMs presented in this thesis is capable of defining such macro abstractions by
employing generalized composers (cf. Section 5.2.2). In comparison, it is more flexible than the
embedded ISC approach since it does not dictate a specific language-extension pattern and allows
reusing attributes from the CnL’s RAG (e.g., to check static semantic properties).

Moreover, based on minimal ISC and island FCMs, the SkAT framework can be used to
implement lexical preprocessors and preprocessors with partial language awareness. The UPP
discussed in Section 7.4 demonstrates this. A tool like the UPP is of practical interest since its
syntax and semantics are derived from the CPP which is widely used in any kinds of C/C++
programs. Based on its extensible component model, RAGs and island grammars, it can be used
to provide a safer preprocessing or to detect preprocessor-related errors in existing programs.
Research in that direction has received some attention during the last years. [Kästner and
Apel 2009] analyze the (bad) effects of #ifdef directives on code quality and suggest several
tool-supported improvements for better handling these effects, e.g., view-based coloring of
source-code variants or disciplined annotations. The UPP could be a basis of such tooling. In
a later work, [Kästner et al. 2011a] suggest a partial preprocessor which expands macro calls
and #include directives only leaving #ifdefs intact to be able to perform a variability-aware
analysis of the source code in context of a larger tool chain called TypeChef [Kästner et al. 2011b].
The integrated tool chain can be used to detect preprocessor-related syntax errors [Medeiros
et al. 2013]. Recently, the authors of [Heumüller et al. 2014] reported on an approach to fully
parse a C code base including preprocessor statements. The process involves two preparsing
transformations to be able to fully parse the very most of the code. The first transformation
is normalizing #ifdefs in such a way that only complete C constructs are contained in the
#ifdefs while the second transformation distinguishes macro calls from normal identifiers or
type declarations by crawling the code base for finding corresponding macro or type declarations.
Interestingly, the authors also mention island grammars as an alternative approach for solving the
parsing problem, but discard it because island grammars may not consider contextual information
sufficiently. This is certainly true in a sense that only an exact parser and analysis tool can provide
all contextual information. However, an island-grammar-based approach such as the UPP can be
useful to perform the two described preparsing transformations as islands are essentially syntactic
patterns to be detected in a stream of characters or tokens.

275



Chapter 8. Related Work

8.3. Aspect Languages

As the basic ideas of aspect-oriented programming (AOP) have already been introduced in
Chapter 1, it is kindly referred back to that discussion in case it is required to refresh one’s
knowledge in this respect. Moreover, in AOP the following common terminology is used: Aspects
are compilation units encapsulating crosscutting concerns. They mainly consist of advice and
pointcut definitions. An advice declaration defines a piece of code (i.e., a fragment) that should
be woven (i.e., composed) with a program and information on how it should be woven (e.g., by
extension or replacement). Pointcuts denote sets of joinpoints, where joinpoints are points in the
static structure or execution of a program that can be extended by aspects (i.e., hooks). Pointcuts
are defined using pointcut expressions, which are essentially patterns matching joinpoints.

As already discussed by [Aßmann 2003] and [Henriksson 2009], AOP abstractions can be
implemented using ISC. This section therefore focuses on some specific AOP implementations
which are specifically related to the contents of this thesis.

Static Aspects in JastAdd

First of all, it should be recalled that the SkAT implementation is based on the aspect-based
module system of JastAdd. This is a natural approach because static semantic analysis algorithms
often are crosscutting in nature. Since JastAdd aspects only support attributes, inter-type declara-
tions, and static joinpoints and advices in form of refining equations, it would immediately be
possible to “bootstrap” the JastAdd module system with SkAT. As a positive side effect, slots
could be introduced into the RAG specification language in such a way that generic attribute
declarations and equations become possible. Thinking further, these may be used to provide
composition-system developers with templates of SkAT FCM equations, which currently have
to be handcrafted. Moreover, common patterns of name- and type-analysis algorithms could be
provided as reusable templates.

AspectBench Compiler

The AspectBench Compiler (ABC) presented in [Avgustinov et al. 2006] is an extensible compiler
of the AspectJ AOP implementation for Java [Kiczales et al. 2001]. It provides an extensible
component model for aspects, an extensible parser and a Java-bytecode weaver. The main
purpose of ABC is to facilitate the development and testing of additions to the original set of
AOP abstractions in AspectJ. Conceptually on a broader scale, the SkAT framework provides a
similar infrastructure for ISC systems. SkAT/Core provides an extensible FCM infrastructure
and composition semantics. The SkAT/Full and SkAT/Minimal projects are then extensions that
are used by concrete composition systems such as SkAT4J, which themselves are also extensible.
Extensions in ABC are organized in packages for syntax extensions, AST classes, compiler passes,
behavioral changes, type-system changes and weaving. SkAT systems are typically organized
in groups of RAG modules, AST grammar files and parser-grammar modules. Thanks to the
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RAG modules and JastAdd’s own aspect-based abstractions, composition-system specifications
can be organized more efficiently and compact than in the ABC system, which is mainly based
on delegation and the visitor pattern [Gamma et al. 1995]. The paper [Avgustinov et al. 2008]
supports this claim by studying a replacement of parts of the ABC frontend with a JastAdd-based
counterpart. In comparison with the original implementation, the JastAdd-based implementation
has a smaller specification, provides better extensibility and is faster.

Generic Aspects

The authors of [Lohmann et al. 2004] propose an extension of AspectC++ [Spinczyk et al.
2002]—an AOP implementation for C++ which adds support for generic types to the aspect
language. They discuss generic extensions to AspectC++ in two dimensions. The first dimension
is concerned with improvements of the pointcut-expression language and joinpoint model enabling
the weaving of C++ templates and instances. The second dimension is concerned with generic
advices, which may statically access information on parametrized types (e.g., from parametrized
argument or return types) available at specific joinpoints. Using this information, advices can
parametrize templates themselves, which may be part of and aspect or defined anywhere else in
the program.

In ISC, genericity and extensibility are naturally supported via slots and hooks. However,
implementing context-dependent, generic advices in a dedicated composition language (such as
AspectC++) is cumbersome with the previous CFG-based approaches to ISC since it requires
program-analysis algorithms to provide context-dependent information. Fortunately, the RAG-
based approach presented in this thesis provides a better support in this respect since it is based
on RAGs that can also host implementations of such algorithms.

8.4. General Approaches to Software Composition

There are of course other general approaches to software composition with fragments. Two of
them will be discussed below.

AHEAD

The Algebraic Hierarchical Equations for Application Design (AHEAD) model and tool collec-
tion [Batory et al. 2004] is a software-composition approach based on step-wise refinements [Wirth
1971]—a general development methodology for step by step refining programs with high-level
abstractions to full-fledged programs. Using AHEAD, the refinement concept has been applied to
model multi-dimensional separation of concerns (MDSoC) [Batory et al. 2003] and AOP [Apel
et al. 2007] abstractions. In the AHEAD model, a refining composition is realized as “a function
that transforms arbitrarily nested containment hierarchies down to the most primitive artifacts. A
refinement may alter a containment hierarchy by adding new nodes [. . . ] or it may refine existing
nodes” [Batory et al. 2004, p. 357]. Refinements are expressed using a form of mathematical
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equation system whose equations consist of constants, functions and collectives. Constants denote
the most basic artifacts in the containment hierarchy, e.g., a class declaration. Functions denote
binary refinement operations applied to constants or collectives. Collectives define a composite
set-based structure, as they may contain constants, functions or collectives themselves. The
refinement operation is polymorphic, i.e., it can be applied to nested collectives. However, at
the level of constants, a refinement composition operator has to be provided as a black box for
each kind of artifact used in the equation system (e.g., if Java class declarations shall be refined,
a corresponding composition-operator implementation is required). Given an equation system,
basic composition operators and a set of artifacts, the AHEAD tool suite generates an application.
Observe that different equation systems produce different variants of a program.

The AHEAD approach and ISC have some commonalities. Refinement as a composition
operation is related to the extend composition operator of ISC, which can be considered as a
fine-grained refinement operation applied to fragment hooks. Moreover, the authors of [Batory
et al. 2004] suggest that refinement is a generalization of mixin-based inheritance. As shown
in Section 6.4.2, mixins can easily be implemented using ISC and may be integrated in larger
composition scenarios. Hence, ISC provides an adequate model and implementation technique to
provide composition operators on artifacts in AHEAD while its equation language is a high-level
composition language.

Considering their differences, the model of ISC is more detailed and more complete than the
refinement model of AHEAD, which merely abstracts from composer implementation at a certain
degree. Moreover, the equation language of AHEAD seems rather simple, which gives rise to
questions concerning its expressiveness (e.g., how can recursion and constrained compositions be
supported). On the other hand, AHEAD supports composition of fragments in different languages
and may also support bytecode composition. In this thesis, this has not been investigated for ISC.
However, multiple languages could be supported by a multi-language environment aggregating
multiple fragment languages or multiple composition systems.

Choice Calculus

The choice calculus [Erwig and Walkingshaw 2011] is a general approach to formally represent
software variation (e.g., as it occurs with #ifdefs in the CPP). The main objective of the
calculus is to have a common theoretical model to represent software variation. The calculus
works on and transforms an artifact’s (or a fragment’s) tree representation. To encode variability,
the tree contains specific expressions which are recognized and transformed by the calculus’
replacement rules (e.g., to derive a specific variant or to reduce the number of possibilities).
Choices are the most basic constructs supported by the calculus as they model equally ranked
variants of artifact-language expressions as well as calculus expressions. Moreover, variability
dimensions provide a flexible handling of different variability concerns (e.g., variable names,
operator implementation, concurrency) by decoupling the mapping of variant names and variants
declared within choices. Remaining concepts are references and bindings. References group
equally named points that can be varied by variant bindings.
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In comparison with ISC, the choice calculus is a strict formal model to describe software
variation on paper with the purpose of promoting the discourse on theoretical software-variation
research while ISC is rather an implementation technique for fragment composition systems and
the related research.1 While the model of ISC also supports extensibility, grammars and compo-
nent interfaces, the choice calculus only supports the concepts discussed above. Nevertheless, it
could be used (or extended) to describe a subset of ISC.

In [Chen et al. 2014], the variational lambda calculus is introduced as an advancement of the
choice calculus. It is completely based on the lambda calculus and considers the type system of
the underlying language for the inference of variational types. Hence, the calculus could provide
a strict formal basis for variability languages based on well-formed ISC.

8.5. Formal Models of ISC

In this thesis, RAGs are used to specify a model of ISC as well as to check and validate fragment
components via fragment contracts. Moreover, a formal definition of the core concepts of ISC
concepts—ISCcore—was given in Section 4.1.3. Both approaches do not support automatic
verification directly: RAGs are rather an expressive implementation technique than a framework
for proving things while ISCcore could be used to prove certain properties of FCMs or composition
scenarios on paper (e.g., termination of a composition program), but not automatically. For such
purposes, logics-based or tool-supported formalizations might be a better choice.

F-Logic

In [Azurat 2007], the author suggests to use F-Logic [Kifer et al. 1995] to describe fragment-
composition scenarios and apply automatic reasoning to conclude certain properties of the
composition and to specify constraints. F-Logic integrates object-oriented features required by
ISC such as encapsulation, polymorphism and containment-relations with resolution-based rea-
soning. The paper provides a small case study that realizes fragment components, implicit hooks
and composers using F-Logic concepts. Fragment classes are realized as object facts, specific
fragment components are fragments with specific instance rules (called f-molecules in F-Logic)
and composition operations are expressed using normal f-logic rules. Although the example is
incomplete and does not provide a full FCM (only fragment identification is considered), it at
least sketches how composition-constraint checking could principally work in F-Logic.

Theorem Proving

The authors of [Kezadri et al. 2012] present a formalization of basic ISC concepts using set
theory and metamodel-based multigraphs with the purpose of providing a framework for semi-
automatic composition verification using the Coq theorem prover [Bertot and Castéran 2004].

1In the broadest sense, there is of course something like a tree-based calculus behind ISC, whose basic operations
are the binding of slots and the extension of hooks.
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Therefore, the notions of fragment-box interface, compositional points as well as the bind and
extend operations are formally defined. A fragment-box metamodel is constructed by extending
the original fragment metamodel (i.e., the CnL definition) with explicit metaclasses for hooks,
prototypes (cf. Section 4.4) and fragment nodes. This modification allows any node (object) in
a fragment component to be an instance of a hook or a prototype. The composition operators
bind and extend are then defined on the basis of the extended, explicit fragment-box interface
by graph-node and -edge replacement. Structural properties of the composition are then proved
using a semi-automatic proof assistant. For example, it is verified that the resulting structure
also is a multigraph, that the fragment-box interface is respected by the composition and that
the resulting fragment always is an instance of the original CnL metamodel. In comparison, the
formalizations of ISC used in this thesis are based on the assumption that fragments are basically
trees with additional reference edges (i.e., multigraphs with spanning trees), while above general
typed multigraphs are used. The checks proposed by the authors of the above paper are quite
reasonable and could also be applicable for ISCcore. However, a more explicit consideration
of component-model specifications at the meta level would make a verification more valuable.
Moreover, proving properties such as confluence of a specific composition scenario with a set of
compositions would be a reasonable add-on.

Recently, in [Kezadri Hamiaz et al. 2014] the authors of [Kezadri et al. 2012] extended their
work towards consistent model composition. This means that syntactic constraints of the CnL’s
metamodel such as feature cardinalities, bidirectional references and containment are verified.
Moreover, the authors suggest to use pre- and postconditions to avoid compositions that violate
well-formedness constraints (e.g., duplicate attributes in a metaclass). Hence, the approach
in [Kezadri Hamiaz et al. 2014] is related to the notion of fragment contracts developed in
this thesis (and originally in the paper [Karol et al. 2012]), while the focus of both works is
complementary: the first is verification while the latter is specification and implementation.

8.6. Metaprogramming and Rewriting

In this thesis, JastAdd was used for implementing composition systems based on JastAdd’s API
and AST rewrites. There are other metaprogramming systems that support language extensions
by AST manipulation via rewriting.

Stratego/XT and TXL

Stratego/XT [Bravenboer et al. 2008] is a metaprogramming system that supports a declarative
specification of program transformations. It splits up into a rewrite specification language and
execution engine (Stratego), and an accompanying infrastructure and tool set (XT), which amongst
others includes the SDF syntax specification language and SGLR parser generator [Visser 1997;
Brand et al. 2002]. The foundation of Stratego is term rewriting [Baader and Nipkow 1999]
of annotated terms using the ATerm format [Brand and Klint 2007] as a term representation.
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Thus, Stratego is adequate for transforming arbitrary (abstract) syntax trees represented as terms.
Transformations in Stratego are specified by a set of declarative rewrite rules consisting of a
matching pattern and a replacement pattern, and optionally a rewrite condition. A rewrite rule is
applicable to a term if it is matched by the matching pattern and its condition succeeds whereas
the replacement is given by the unification of the match and the replacement pattern. As term
rewriting is context-free, normal rewrite rules cannot use context-sensitive information. However,
Stratego offers so-called dynamic rewrite rules to circumvent this problem. Dynamic rewrite
rules generate new rewrite rules at transformation time so that a local match may imply rewrites
at distant nodes in a syntax tree. One of the main problems of declarative rewriting in general is
that a rewrite system given by a set of rewrite rules and an input data structure (e.g., a term or
graph) may yield different results for different orders of rewrite applications (i.e., the system is
not confluent [Baader and Nipkow 1999]) or may not terminate. As a tool for handling confluence
and termination problems, Stratego offers programmable rewrite strategies. These strategies
can be employed by transformation developers to define traversal strategies (e.g., bottom-up or
top-down traversal) and rule application strategies (e.g., rule interdependency).

TXL [Cordy 2006] also is a program-transformation language and engine with roots in term
rewriting. Like Stratego/XT, TXL comprises a rich tool set for solving typical tasks in source-
to-source transformations. This includes a parser generator and specification language based on
agile parsing, and a language for pretty printing. Rules are specified by matching patterns and
replacements, whose semantics can be compared to that of Stratego rules. While TXL does not
support strategies as first class concepts, it allows developers to “program” traversals, guards and
scopes using first-order functional programming.

Stratego/XT and TXL are suitable tools for implementing translational semantics of language
extensions and for transforming trees in general. Although they are not a direct counterpart,
the composition strategies developed in this thesis were inspired by Stratego. Nevertheless,
Stratego/XT and TXL have not been chosen as an implementation framework in this thesis for the
following reasons. Expressing fragment component models and composition environments seems
difficult as it “feels” not natural to express them as ATerms (Stratego) and rewrite rules since they
introduce many context-sensitive constraints that are better expressed using RAGs. Moreover,
RAG tools like JastAdd allow falling back to imperative code if it is necessary and do not force
users to rely on a specific set of tools, which may not be required to solve the actual problem.
Regarding fragment contracts, plain term rewriting seems to not be an adequate implementation
technique since a language’s name and type analysis algorithms are to be reused and extended. In
this regard, term rewriting offers no advantages [Klint et al. 2005a].

DMS

The Design Maintenance System R© (DMS) [Baxter et al. 2004] is a commercial program trans-
formation and analysis toolkit that has been applied in a row of large-scaled industrial projects.
Similar to TXL and Stratego/XT, it features a rule-based transformation engine based on term
rewriting, and tools such as parser generators and pretty printers. Besides that, it has support for
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a wide variety of additional analysis algorithms concerned with static semantics and symbolic
execution, e.g., control-flow analysis, name analysis, call graphs. Moreover, it comprises a paral-
lel attribute evaluation engine and equation language to implement custom analyses. Out of the
box, the DMS provides implementations of frontends of more than 30 languages (cf. [Semantic
Designs, Inc. 1995–2014]), including an extensible implementation of the current standard of
C++ [ISO/IEC 2011] and dialects as well as current versions of Java. Besides, DMS also has
cross-language support, i.e., applications may mix several languages in the same workspace.

It seems likely that SkAT could have been implemented using DMS as Java and AGs are
supported. However, it is not clear from the publications how the toolkit is organized internally
and what kind of attribute grammar is supported so that it is not clear if the component’s interplay
would be adequate. Moreover, since DMS is commercial, it has not been an option.

RACR

The RACR tool for reference attribute grammar controlled rewriting [Bürger 2012] is a demand-
driven RAG library for Scheme [Kelsey et al. 1998] that includes a rewrite engine for program
transformation. Since RACR orientates itself to JastAdd, its rewrite rules are not based on
pattern matching, but are specified w.r.t. node types and expressions over attribute values (cf.
Section 5.3.4). In comparison with the metaprogramming tools described above, RACR enables a
strong integration of semantic analysis algorithms on reference-attributed ASTs and term rewrites
with alternating phases of attribute evaluation and rewriting, which is also different from JastAdd
whose rewrite and attribute evaluation phases are interleaved. Moreover, like Stratego, RACR
supports basic rewrite strategies. Internally, RACR caches all attribute values and maintains a
fine-grained dynamic attribute dependency graph. After a rewrite phase, these dependencies
are used to compute a nearly optimal revaluation of only those attribute values that directly or
indirectly depend on information that has been changed by a rewrite (e.g., an inserted node or a
changed terminal value). Such automatic optimizations are hardly possible with loosely coupled
tools, which would need extra manual tweaking effort to achieve the same results or must strictly
separate analyses from rewriting as independent passes.

The RACR system is a good candidate for implementing well-formed ISC systems such
as SkAT. In comparison to recent versions of JastAdd, it has a more fine-grained dynamic
dependency graph which is nicely integrated with the rewriting API and it supports strategic
rewrites. Thus, it can be expected that RACR metaprograms are likely more efficient out of
the box than their JastAdd-based counterparts if many rewrites are used. Recent experiments
comparing naïve implementations of hook composition in RACR and JastAdd showed that RACR
indeed scales significantly better in presence of constant well-formedness checking after each
composition step [Тасић 2014]. Nevertheless, still JastAdd has been chosen as an implementation
framework because RACR was still in its early development stage at that time while JastAdd
already was available and actively maintained frontend implementations for full programming
languages such as JastAddJ.

282



9
Epilogue

As this is the final chapter of this thesis, it is now time to lean back and see what has been achieved.
A general observation from the previous chapters is that RAGs are well-suited as a specification
and implementation framework for fragment composition systems based on the ISC model. This
is due to features that are essential for advanced ISC systems: typed AST structures, overlay
graphs induced by reference attributes and modular specifications. Moreover, the implementation
style of modern RAG evaluators is advantageous over previous implementation techniques of
ISC. Dynamic and demand-driven attribute evaluation strategies are combinable with AST
manipulation operations such as bind and extend. The advantages of RAGs pay-off in the SkAT
system, which, on the one hand, is an extensible implementation framework for classic ISC
systems and, on the other hand, supports the novel extensions to the classic ISC model—well-
formed and scalable ISC.

The remainder of this chapter is structured as follows: Section 9.1 recapitulates the main
contributions. Section 9.2 discusses open issues and gives an outlook on future work.

9.1. Achievements in Detail

In Chapter 2, the research objectives and claimed contributions (C1, . . . , C4) of this thesis were
discussed. In the following, realization and quality of these contributions are evaluated and their
provided progress beyond the state of the art in software-composition research is justified.
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C1: Well-Formed ISC

The ingredients of well-formed ISC were presented in Chapter 5. This includes a RAG-based
model for fragment composition environments. The specified attributes handle the identification of
compositional points such as slots, hooks and rudiments, which were introduced as a new category
of deletable points. The basic composition operators bind, extend and extract are supported via
explicit composer declarations contained in fragment environments, where attributes are used
to provide the basic infrastructure of composer and point look-up as well as for checking the
adequateness of syntactic types (cf. [C1a] in Section 2.2).

For composer interpretation, three parametrizable composition strategies were suggested
which give users a better control over problems related to composition interactions (cf. [C1b] in
Section 2.2). Operator-determined composition resembles term rewriting where sets of rewrite
rules are matched and applied to a given fragment tree. Point-determined composition resembles
weaving algorithms where fragments are inserted when a point is reached in program execution.
Attribute-determined composition integrates composition execution with attribute evaluation.

Finally, fragment contracts were introduced as a novel concept to incorporate static semantic
analyses in fragment composition. Fragment contracts allow specifying composition-related
pre- and postconditions as well as invariants based on attributes and equations. Using fragment
contracts, a composition system can provide better cause-related error messages in case of
problems that are typically only detected in later compilation phases (cf. [C1c] in Section 2.2).

Progress. The combination of RAGs and ISC is beneficial since the implementation of many
tasks of ISC systems can be simplified using RAGs. Moreover, strategies for composition are a
novel concept to ISC and provide a precise configurable semantics to composer interpretation,
which has not yet been addressed by other fragment-composition approaches so far. Fragment
contracts are a step toward a better consideration of type systems and other static semantic
properties of fragment languages. While this is completely new to ISC implementations, there
are only a few non-language-specific approaches to software composition addressing related
problems in any way (cf. Chapter 8).

C2: Scalable ISC

Scalable ISC and its ingredients have been presented in Chapter 7. Based on island gram-
mars [Moonen 2001], island fragment component models were introduced as a means to support
component models for only a subset of the concepts of a fragment language (or CnL) while still
being able to process the whole language. Island FCMs are an instance of the basic RAG model
of ISC. The model provides predefined concepts of islands and water, where islands denote
constructs of the CnL and compositional constructs such as slots or composer signatures, while
water covers parts that are not considered by the system (cf. [C2b] in Section 2.2).

Minimal ISC covers a special class of islands FCMs which do not depend on any syntactic
construct of any language, only operating on strings or tokens respectively. Thus, minimal ISC
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Figure 9.1.: A complete overview of SkAT.

can be used to realize string-based code generation in the style of lexical macro or template
languages. As a special case, minimal FCMs only support slots as islands that may occur at
arbitrary positions in a fragment (cf. [C2a] in Section 2.2).

Agile composition-system development was described as a generic workflow specified with
BPMN. The workflow consists of a composite diagram with several complex activities concerned
with syntax and semantic specification as well as FCM refinement activities which typically
occur in the development of ISC systems. Since this thesis is concerned with composition,
component-model refinement was detailed using an extra workflow diagram. The refinement
workflow covers “small” incremental changes to FCMs including syntax and semantics based on
islands, as well as “large” increments based on the full well-formed ISC approach (cf. [C2c] in
Section 2.2).

Progress. Scalable ISC bridges the gaps between lexical, syntactic and well-formed fragment
composition—a problem that has not yet been addressed by any preceding approach to ISC.
Moreover, the author of this thesis is not aware of any other general approach to fragment
composition covering such a broad class of fragment languages. Leveraging modular FCM
specifications based on RAGs and island component models, the scalable ISC workflow suggests a
novel style of agile composition-system development, enabling test and evaluation of composition-
system features at early development stages without requiring a full grammar and parser of the
CnL. An evaluation of the workflow in a larger scenario over a longer period remains as future
work.

C3: The SkAT Framework

The SkAT framework has been introduced in Chapter 6 (SkAT/Full and applications) and Chap-
ter 7 (SkAT/Minimal and applications). The now completed layered architecture of SkAT is
replicated in Figure 9.1.
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SkAT/Core provides the basic infrastructure of all derived SkAT tools and extensions based
on the JastAdd RAG tool. This comprises basic RAG modules with attributes and equations
for point identification and look-up, as well as the fragment environment. Augmenting that
infrastructure, SkAT/Full adds composer declarations for bind, extend and extract composition
operators, as well as support of composition strategies. Moreover, it supports fragment-contract
specifications as JastAdd attributes and incorporates these checks into composer execution (cf.
[C3a] in Section 2.2).

Extending SkAT/Full, SkAT4J implements a full-fledged fragment composition system for
Java 1.5. It has a COMPOST-like composition API for programming composition programs in
Java which is also its composition language. SkAT4J provides some fragment contracts based
on pre- and postcondition that check well-formedness of expression types and avoid duplicate
declarations (cf. [C3b] in Section 2.2).

SkAT4J was used to implement a case study of a fragment library for parallel algorithmic skele-
tons [Cole 1989]. The fragment library incorporates single and multi-threaded implementations
of map, reduce and mapreduce skeletons which were used to generate single and multi-threaded
variants of a keyword analysis on Wikipedia documents (cf. [C3c] in Section 2.2).

SkAT/Minimal augments SkAT/Core with support for scalable ISC. It adds island FCMs and
a minimal FCM whose slot syntax can be parametrized with custom hedge symbols (cf. [C3d] in
Section 2.2).

Extending SkAT/Minimal, the Slot Template Language (STpL), the Variant Template Lan-
guage (VTpL) and the Universal Extensible Preprocessor (UPP) are three extensible island
composition systems where UPP additionally is a composition language. STpL is a minimal slot
language that adds a concrete syntax for slots. VTpL extends STpL with markup for variants in
arbitrary fragment languages while UPP extends STpL with C-like macro syntax and preprocessor
directives (cf. [C3e] in Section 2.2).

Progress. SkAT is the first ISC framework that supports fragment contracts and well-formed
ISC enabling a cause-related error detection and reporting w.r.t. context-sensitive fragment-
language constraints. Further, it is the first ISC system that can be parametrized with different
composition strategies which enable users to choose the most adequate interpretation w.r.t. to
their respective problems. Moreover, by now, SkAT4J is the most reliable and complete ISC
system for code generation in Java as demonstrated by the business application framework (BAF)
case study. Additionally, SkAT is the first ISC framework that supports scalable ISC by island
FCMs and extensible composition-system construction. This is achieved by leveraging island
grammars and RAG modules. Scalable ISC tools like the UPP are a testbed for combining existing
composition abstractions such as fragment-language-unaware macros with language-specific
syntactic constructs.

286



9.2. Outlook

C4: Review of ISC Systems

Existing ISC systems have been discussed in Chapter 4 while SkAT/Full was introduced and
compared in Chapter 6.

ISCcore was introduced as a formal model of essential ISC constructs based on CFGs. The
model abstractly defines concepts such as compositional points, fragments, and how they are
related to productions and nonterminals of a given CFG by point and fragment-identification
functions (cf. [C4a] in Section 2.2).

Besides SkAT4J, COMPOST, Reusewair and Reuseware have been chosen to implement the
BAF example. Their respective FCM specification and implementation approaches where related
by describing how they realize the corresponding part defined by ISCcore. While with SkAT4J it
was possible to fully implement all requirements of the BAF generator as proposed in Chapter 2,
from the other approaches only COMPOST could implement the BAF code generator nearly as it
was required (cf. [C4b] in Section 2.2).

A detailed comparison of SkAT/Full and the above-mentioned existing ISC approaches was
provided by Table 6.5 in Chapter 6 as well as in the corresponding discussion (cf. [C4c] in
Section 2.2).

Progress. The analysis of ISC systems has shown that not all systems provide sufficient means
to fully support the concepts defined in ISCcore (e.g., Reusewair). Moreover, it was discovered that
the approach of Reuseware has severe issues w.r.t. expressiveness of its composition language and
specification DSLs. In contrast, RAGs are a good compromise between a completely declarative
specification approach as in Reuseware and implementation-centric approaches as in COMPOST.

9.2. Outlook

This section discusses open issues that have not been addressed in this thesis and suggests
potential starting points for future work.

Support of Model-Based Languages

As it is completely based on JastAdd, the current version of SkAT does not support modeling
languages out of the box so that composition systems for textual or graphical modeling languages
cannot be realized with SkAT. However, an integration with model-based languages has turned
out as an advantage in the Reuseware/Reusewair frameworks since those languages share a
standardized metamodel. Hence, in future versions of SkAT, it would be beneficial if model-
based languages would be supported. As a basis for this, JastEMF [Software Technology Group
2013] or a similar tool can be used as a starting point. Using JastEMF would have the positive
effect that JastAdd RAGs can be used transparently with EMF-based modeling languages (cf.
Section 3.2.2 and [Bürger et al. 2011]). While this would enable fragment composition systems
for textual modeling languages immediately, for graphical languages more work has to be done.
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Figure 9.2.: Generating RAG-based FCM specifications from a high-level DSL-based
specification.

This includes an adequate co-composition of layout information [Johannes 2011] and a seamless
integration of RAGs with graphical editors and views which are highly interactive and may
interfere with the attribute evaluation [Bürger et al. 2011].

Component-Model Specification Support

While RAGs are an adequate and expressive approach for specifying FCMs, it requires developers
to invest a significant effort in learning their concepts and how they are used efficiently. Moreover,
composition-system developers need to know the basic attribution patterns of ISC and their
interplay to be able to use them. Future RAG-based ISC frameworks may support their users in
these issues by providing specification tools. For example, templates of the required attributes and
equations can be supplied and parametrized by using a fragment composition system. Moreover,
DSLs for FCM specification as employed in Reuseware/Reusewair could be used to provide high-
level specifications and generate attribute grammars from this. Figure 9.2 sketches this: given a
high-level specification, the FCM generator instantiates a set of internal templates to generate
a RAG-based FCM specification from it. A RAG tool like JastAdd takes these specifications
to generate a corresponding evaluator implementation. Additionally, if something was not
expressible using the high-level language, developers may add custom RAG modules providing
the required functionality. However, finding the right abstractions for such high-level DSLs turned
out to be difficult in the past. Future research and development activities should consider this.

Macro Languages Based on Scalable ISC

In Chapter 7, scalable ISC has been used to implement UPP, a macro language and processor in
the style of C’s preprocessor. Such a tool has several potential applications. It can be extended
with fragment-language-specific constructs to support partially syntax-aware macro definitions
and directives. For example, it may enforce a matching number of opening and closing curly
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braces in a fragment in such a way that developers are informed about related issues when
writing preprocessor constructs. Another opportunity could be experimenting with different
textual representations of macro constructs, e.g., using Java comment syntax or XML syntax for
preprocessor usage in Java or XML, as language-specific representations may be better received
by developers who use such languages. Moreover, the fragment AST structure and RAGs provide
static analysis capabilities that can be used to analyze dependencies between macros or to impose
additional semantic constraints on preprocessor constructs.

Besides classic preprocessors, preprocessors bound to programming languages could mimic
macros as specific language constructs and expand them as required, e.g., for providing an
advanced module system or backend-specific variants of a parallel loop. Currently, a SkAT-based
Fortran Extensible Preprocessor (FPP) for the Fortran programming language is developed to
investigate research opportunities in that direction.

Heterogeneous Skeleton Libraries

The map and reduce skeleton library based on SkAT4J that was introduced in Section A.4.3
showed that ISC is a good choice for implementing parallel algorithmic skeletons to support
parallel programming. However, the current version of the SkAT-based skeleton tooling only
supports a small set of skeletons and built-in operations as single- or multi-threaded variants
programmed in Java. In future work, the library should be extended with more skeletons and
operations, as well as support for non-shared memory scenarios, e.g., using Java’s remote method
invocation capabilities. Moreover, different dimensions of heterogeneity should be considered.
Other languages typically used in the development of highly parallel applications should be
supported with skeleton components, e.g., C/C++ and Fortran. Including such languages is
important because they are frequently used in scientific computing and are well-integrated with
established standards for parallel programming such as OpenMP [OpenMP Architecture Review
Board 2013]. As a second dimension of heterogeneity, different target architectures should be
supported by the skeleton tooling. This can be achieved by providing variants optimized for
different computing platforms. For example, a variant that runs well enough on a desktop PC may
not perform adequately on embedded devices or high-performance clusters, because of their very
different architectures. Hence, a heterogeneous skeleton library should support those variants by
an extensible design and a model for architecture metadata.

Performance Optimizations

In favor of a good readability and extensibility, the current implementation of the SkAT framework
has not been realized towards a performance-optimal evaluation of attributes. That is, almost all
attributes in the composition environment are not cached and only some performance-critical
attributes were supplied with performance-optimal equations. To improve here, two options are
viable. The first is introducing attribute caching as a manually maintained side effect in attribute
equations and composition execution. Second is using a RAG framework like RACR [Bürger
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2012] with automatic caching and cache management during rewrite execution. Both approaches
have their advantages: automatic cache management is transparent and does not introduce extra
implementation efforts. In contrast, manual caching introduces additional implementation efforts
but one may choose custom data structures and custom dependency management reducing the
memory footprint of the caches. As discussed in Section 8.6, essentially in combination with
heavy usages of fragment contracts caching will significantly improve performance.

Conceptual Improvements

Considering the RAG-based model of ISC developed in Chapter 5, several opportunities of
improvement remain as sketched below.

The current approach to fragment contracts can be improved in several ways. Besides contracts
in FCM specifications, also user-defined contracts could be supported by a specific contract
language and a set of characteristic attributes. Based on such contracts, users of a composition
system can specify their own constraints on specific fragments or points that must hold as
pre- or postconditions before or after composition. A typical application of a user-defined
contract is annotating information about the expected type of an expression or declaration to
slots. Such annotations can be necessary to enable a more precise type analysis in cases of
fragments with many slots [Sutton and Stroustrup 2012]. Another issue is a better consideration
of cyclic dependencies between fragments induced by contracts, which are not supported by the
current composition strategies. As an example of such a dependency consider two fragments:
a declaration of a global variable v and a declaration of a method m. Further, assume that the
variable declaration has an initialization expression that calls m and m using v in its declaration’s
body. If there is an active contract that checks that all uses of variables and methods in a fragment
need to have a corresponding declaration, v and m will not be inserted at composition time as v
requires m (which is not present) while m requires v (which is not present). As a simple solution
to this kind of problem, the composition environment could provide composite composers to
group interdependent fragments and contracts based on postconditions or invariants.

Another potential way of improving the model is a support of more advanced point-matching
capabilities such as patterns or a point-matching language since the current approach relies
on regular path names only. Moreover, users could benefit from a static analysis of composer
declarations w.r.t. potential composition conflicts rising from accidental matches of the same
compositional points (cf. [Karol et al. 2011]).
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Appendix

A.1. Supplements of Chapter 2

A.1.1. Full Code Examples

Listing A.1: Resulting Java class for Employee.
1 public class Employee extends Person {
2
3 private int workload;
4
5 public int getWorkload() {
6 return workload;
7 }
8
9 public void setWorkload(int workload) {

10 this.workload = workload;
11 }
12
13 private Date employed;
14
15 public Date getEmployed() {
16 return employed;
17 }
18
19 public void setEmployed(Date employed) {
20 this.employed = employed;
21 }
22
23 public String asString(){
24 String v = "Employee";
25 v+= "\\n id:" + getID();
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26 v+= "\\n name:" + getName();
27 v+= "\\n workload:" + getWorkload();
28 v+= "\\n employed:" + getEmployed();
29 return v;
30 }
31 }

Listing A.2: Resulting Java class for EmployeeCustomer.
1 public class EmployeeCustomer extends Employee
2 implements IEmployee,ICustomer {
3
4 public EmployeeCustomer(){
5 discount = 20;
6 }
7
8 private int discount;
9

10 public int getDiscount() {
11 return discount;
12 }
13
14 public void setDiscount(int discount) {
15 this.discount = discount; }
16
17 public String asString(){
18 String v = "EmployeeCustomer";
19 v+= "\n id:" + getID();
20 v+= "\n name:" + getName();
21 v+= "\n workload:" + getWorkload();
22 v+= "\n employed:" + getEmployed();
23 v+= "\n discount:" + getDiscount();
24 return v;
25 }
26 }

A.1.2. Business DSL Specifications

Concrete Syntax

Listing A.3: Syntax of the business DSL in EMFText.
1 SYNTAXDEF bm
2 FOR <http://www.emftext.org/language/businessmodel>
3 START BusinessModel
4
5 RULES {
6 BusinessModel ::= "application" "roles" "{" roleDefinitions* "}";
7 RoleDefinition ::=
8 "object" name[] ("is_a" superRoles[] ("," superRoles[])* )? (":" properties+)?;
9 PropertyDefinition ::= name[] ":" type;

10 Date ::= "Date" ("[" default[] "]")?;
11 Hours ::= "Hours" ("[" default[] "]")?;
12 Percentage ::= "Percentage" ("[" default[] "]")?;
13 }

292



A.2. Supplements of Chapter 4

Abstract Syntax

BusinessModel RoleDefinition
name : EString

PropertyDefinition
name : EString

PropertyType
default : EString
getTargetType() : EString

Date
targetType : EString

Percentage
targetType : EString

Hours
targetType : EString

roleDefinitions

0..*

properties
0..*

superRoles

0..*

type
1

Figure A.1.: EMF Metamodel of the business DSL.

A.2. Supplements of Chapter 4

Listing A.4: Resulting EmployeeCustomer.java of COMPOST and RECODER using the
composition program in Listing 4.5.

1 public class EmployeeCustomer extends Employee {
2
3 public String asString() {
4 String v = "EmployeeCustomer";
5 v += "\n" + " id:" + getID();
6 v += "\n" + " name:" + getName();
7 v += "\n" + " discount:" + getDiscount();
8 v += "\n" + " workload:" + getWorkload();
9 v += "\n" + " employed:" + getEmployed();

10 return v;
11 }
12 public int getDiscount() {
13 return discount;
14 }
15 public void setDiscount(int discount) {
16 this.discount = discount;
17 }
18 private int discount;
19 public EmployeeCustomer() {
20 super();
21 System.out.println("setting defaults ...");
22 setDiscount(20);
23 }
24 }
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Listing A.5: Resulting EmployeeCustomer.java of Reusewair and Java–using the compo-
sition program of Listing 4.10.

1 public class EmployeeCustomer extends Employee {
2 private int discount=20;
3
4 public void setDiscount(int discount) {
5 this.discount=discount;
6 }
7
8 public int getDiscount() {
9 return discount;

10 }
11 public String asString(){
12 String v ="EmployeeCustomer";
13 v+="\n" + " id:" + getID();
14 v+="\n" + " name:" + getName();
15 v+="\n"+" employed:"+getEmployed();
16 v+="\n"+" workload:"+getWorkload();
17 v+="\n"+" discount:"+getDiscount();
18 return v;
19 }
20 }

Listing A.6: Resulting EmployeeCustomer.java of Reuseware and JaMoPP using the com-
position program of Figure 4.11.

1 public class EmployeeCustomer extends Person {
2 public String asString(){
3 String v = "EmployeeCustomer";
4 v+= "\\nid:" + getID();
5 v+= "\\nname:" + getName();
6 return v;
7 }
8
9 private Mixin.int discount;

10
11 public Mixin.int getDiscount() {
12 return discount;
13 }
14
15 public void setDiscount( Mixin.int discount) {
16 this.discount = discount;
17 }
18 }

A.3. Supplements of Chapter 5

The following definition extends Definition 4.1 on fragment component models with a notion of
removable points.

Definition A.1 (fragment component model with rudiments):
A fragment component model FCM with rudiments is a 7-tuple (G,S,H,R,F ,∫ ,L∫ ) with
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• R ⊆ N the finite set of rudiment candidates,

• ∫ = ∫R ∪ ∫ ′, where ∫R assigns identifiers to rudiments and the compartments of ∫ ′ =
∫S ∪ ∫H ∪ ∫F are given Definition 4.1,

• (G,S,H,F ,∫ ′,L∫ ) is a fragment component model according to Definition 4.1.

If n ∈ R, then there must exist l → αnβ ∈ P , where P is the set of productions of G and
α, β ∈ (Σ ∪N)∗, so that l is a list nonterminal or an optional nonterminal, i.e., there also
exists l → αβ ∈ P . Subsequently, let T = (V,E,Lab,LΣ) ∈ T (LΣ) be a syntax tree w.r.t.
G|n = (N|n,Σ|n, P|n, n), so that nV∗G T , and name ∈ L∫ is an identifier. The rudiment
identification function ∫R is defined as follows:

∫R(T, v) : T (LΣ)× V  L∫ so that

∫R(T, v) =

{
name if Lab(v) ∈ R and v ∈ V shall be a rudiment in T ,
⊥ otherwise.

�

Complementing the above extended FCM definition, Definition A.2 specifies the extract (de-)
composer, which can be used to remove fragments at rudiments.

Definition A.2 (extract composer):
Let FCM = (G,S,H,R,F , ∫ ,L∫ ) be a fragment component model with rudiments, where
G = (N,Σ, P, S) is a CFG. The extract composer π-FCM (T,m) : T (LΣ)× (T (LΣ)→ 2V ) 
T (LΣ) is a partial function removing subtrees from a given FCM fragment component T =
(V,E,Lab,LΣ) with T ∈ T (LΣ) at points m(T ) ⊂ V . The result of applying π-FCM is a valid
syntax tree w.r.t. G or undefined (⊥), if the transformation cannot yield a valid tree.

In the following, let f = Lab(R) where fV∗G T , Q = m(T ) and R is the root of T . π-FCM is
given as follows:

π-FCM (T,m) =



T [Q/∅] = T ′ if Q 6= ∅
and f ∈ F
and ∫F (T ) 6= ⊥
and ∀v ∈ Q : ∫R(T, v) 6= ⊥ ∧ v 6= R
and fV∗G T

′,
T if Q = ∅,
⊥ otherwise.

T1[Q/∅] removes all k = |Q| subtrees (rudiments) ti = li[. . .] = (Vi, Ei,Labi,LΣ) in T =
f [. . . , T1, . . . , ti, . . . , tk, . . .] where Ri ∈ Q is the root of T and 1 ≤ i ≤ k. Hence, T ′ =
(V ′, E′,Lab′,LΣ) with V ′ = V \

⋃k
i=1 Vi, E

′ = E \
⋃k

i=1Ei, Lab′ = Lab \
⋃k

i=1 Labi and
root R′ = R. �
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A.4. Supplements of Chapter 6

A.4.1. Specifications of SkAT/Core

Listing A.7: Fragment API from the FragmentSystem.jadd module of SkAT/Core.
1 public abstract class FragmentSystem extends java.lang.Object {
2 // Returns the (absolute) base/output/input URI.
3 public String getBaseURI() { ... }
4 public String getOutURI() { ... }
5 public String getInURI() { ... }
6
7 // Obtain the underlying composition environment.
8 public CompositionEnvironment getEnv() { ... }
9

10 // Adds a fragment to the environment.
11 public void addFragment(Box fragment) { ... }
12
13 // Adds a list of fragments to the environment.
14 public void addFragment(Collection<Box> fragments) { ... }
15
16 // Uses the environment’s look-up functionality to obtain the fragment with
17 // the provided ’name’.
18 public Box findFragment(String name){ ... }
19
20 // Create a copy of the fragment with ’oldName’, set its name to ’newName’,
21 // add it to the environment and return the new box.
22 public Box copyBox(String oldName, String newName){ ... }
23
24 // Persist all fragments using their input names or their output names if specified.
25 public void persistFragments() throws IOException { ... }
26
27 // Persist all fragments whose names match the given pattern.
28 public void persistFragments(String regex) throws IOException{ ... }
29
30 // Composition systems implement this in a subclass to adapt their pretty printer.
31 public abstract void doPersist(Box fragment) throws IOException;
32
33 // Composition systems need to implement this in a subclass to adapt their
34 // initialization needs such as parsing.
35 protected abstract CompositionEnvironment createEnvironment() throws IOException;
36
37 // Composition systems need to implement this to define when the underlying
38 // environment is in consistent state, e.g., if validating attributes say so.
39 public abstract boolean isConsistent();
40
41 // (De-)activate recovery mode. In recover mode the system remains healthy unless
42 // a failure status is pushed to the status stack. With recovery mode enabled,
43 // the system may execute compositions even if an error is on the status stack.
44 public void setRecoverMode(boolean mode){ ... }
45
46 // If the environment is healthy, changes/compositions are allowed to be processed.
47 public boolean isEnvHealthy(){ ... }
48
49 // Prints status information on the composition system to console.
50 public void printStatus(){ ... }
51 }
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Listing A.8: Excerpt from the Rudiments.jrag specification of SkAT/Core.

1 aspect Rudiments{
2 // Default attributes, determining rudiments. By default, slots which are direct
3 // children of an Opt or List are rudiments by default.
4 syn boolean ASTNode.isRudiment() =
5 isSlot()?(hasParent()&&(getParent().isList()||getParent().isOpt())):false;
6 syn String ASTNode.rudimentName() = isSlot()?slotName():"";
7 }
8
9 aspect RudimentCollection{

10 // Attribute decls for collecting rudiments.
11 syn java.util.List<ASTNode> ASTNode.collRudiments();
12 syn ASTNode ASTNode.findRudiment(Pattern qName);
13 syn java.util.List<ASTNode> ASTNode.findRudiments(Pattern qName);
14 ...
15 }

Listing A.9: Excerpt from the Hooks.jrag specification of SkAT/Core.

1 aspect Hooks {
2 // The hook determining attributes. Since lists are transparent in JastAdd, they
3 // cannot have inherited attributes. Thus, these are simulated using synthesized
4 // ones which delegate decisions to the parent.
5 syn boolean ASTNode.isHook() = false;
6 syn String ASTNode.hookName() = "";
7 syn String[] ASTNode.hookAliases() = new String[0];
8 syn int List.hookIndex(String hookName);
9

10 // Mirrored attributes defined at the parent of a hook node taking the hook-list
11 // node as an argument.
12 syn boolean ASTNode.isHook(List hook) = false;
13 syn String ASTNode.hookName(List hook) = "";
14 syn String[] ASTNode.hookAliases(List hook) = new String[0];
15 syn int ASTNode.hookIndex(List hook, String hookName) = 0;
16 syn Class[] ASTNode.compatibleFragmentTypes(List hook)
17 = new Class[]{BottomFragmentType.class};
18
19 // The gluing default equations.
20 eq List.isHook()
21 = isInEnvironment()&&(owningBox()!=null)?getParent().isHook(this):false;
22 eq List.hookName() = getParent().hookName(this);
23 eq List.hookAliases() = getParent().hookAliases(this);
24 eq List.hookIndex(String hookName) = getParent().hookIndex(this,hookName);
25 eq List.compatibleFragmentTypes() = getParent().compatibleFragmentTypes(this);
26 }
27
28 aspect HookCollection{
29 // Attribute declarations for collecting hooks
30 syn java.util.List<List> ASTNode.collHooks();
31 syn List ASTNode.findHook(QRef qName);
32 syn java.util.List<List> ASTNode.findHooks(QRef qName);
33 ...
34 }
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A.4.2. Detailed SkAT4J Specifications

Figure A.2 contains a graphical representation of SkAT4J’s box model.
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Figure A.2.: SkAT4J’s Boxology in UML class-diagrammatic representation.
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Listing A.10: Slots.jrag specification of SkAT4J.

1 aspect Slots {
2 eq ExprSlot.isSlot() = true;
3 eq ExprSlot.slotName() = isSlot()?extract(getSlotName(),"[[","]]"):"";
4 eq ExprSlot.compatibleFragmentTypes() = new Class[]{Expr.class};
5 eq ExprSlot.checkContractPre(Object fragment) = true;
6 eq ExprSlot.checkContractPost(Object fragment) {
7 if(fragment instanceof Expr){
8 Object result = assertCompatibleType((Expr)fragment);
9 if(result!=Boolean.TRUE)

10 return result;
11 }
12 return true;
13 }
14
15 eq StmtSlot.isSlot() = true;
16 eq StmtSlot.slotName() = isSlot()?extract(getSlotName(),"[[","]]"):"";
17 eq StmtSlot.compatibleFragmentTypes() = new Class[]{Stmt.class};
18
19 eq MemberDeclSlot.isSlot() = true;
20 eq MemberDeclSlot.slotName() = isSlot()?extract(getSlotName(),"[[","]]"):"";
21 eq MemberDeclSlot.compatibleFragmentTypes() = new Class[]{MemberDecl.class};
22
23 eq TypeAccessSlot.isSlot() = true;
24 eq TypeAccessSlot.slotName() = isSlot()?extract(getSlotName(),"[[","]]"):"";
25
26 eq TypeAccessSlot.compatibleFragmentTypes()
27 = new Class[]{TypeAccess.class,ParseName.class /* 3 more */};
28 eq GenericTypeAccessSlot.compatibleFragmentTypes()
29 = new Class[]{ParTypeAccess.class,AmbiguousAccess.class,ParseName.class};
30 eq ArrayTypeAccessSlot.compatibleFragmentTypes()
31 = new Class[]{ArrayTypeAccess.class,AmbiguousAccess.class,ParseName.class};
32
33 eq TypeVariableSlot.isSlot() = true;
34 eq TypeVariableSlot.slotName() = isSlot()?extract(getID(),"[[","]]"):"";
35 eq TypeVariableSlot.compatibleFragmentTypes()
36 = new Class[]{TypeVariable.class,ParseName.class};
37
38 eq VarAccessSlot.isSlot() = true;
39 eq VarAccessSlot.slotName() = isSlot()?extract(getSlotName(),"[[","]]"):"";
40 eq VarAccessSlot.compatibleFragmentTypes()
41 = new Class[]{VarAccess.class,ParseName.class,AmbiguousAccess.class};
42
43 eq MethodDecl.isSlot() = name().endsWith("Slot");
44 eq MethodDecl.getChild(int i).isInSlot() = isSlot();
45 eq MethodDecl.slotName() = isSlot()?name().substring(0,name().length()-4):"";
46
47 // Terminal slots:
48 inh TypeDecl TypeDeclNameSlot.SlotOwner();
49 eq SlotableClassDecl.getTypeDeclNameSlot().SlotOwner() = this;
50 eq SlotableInterfaceDecl.TypeDeclNameSlot().SlotOwner() = this;
51
52 eq TypeDeclNameSlot.isSlot() = isHedged(SlotOwner().getID(),"[[","]]"); // eq. (1)
53 eq TypeDeclNameSlot.slotName()
54 = isTerminalSlot()?extract(SlotOwner().getID(),"[[","]]"):""; // eq. (2)
55 eq TypeDeclNameSlot.compatibleFragmentTypes()
56 = new Class[]{StringValue.class,ParseName.class,AmbiguousAccess.class}; // (3)
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57
58 // eq. (4), using syn attribute instead of inh, because usage is not supported.
59 syn MethodDecl MethodDeclNameSlot.SlotOwner() = (MethodDecl)getParent().getParent();
60 eq MethodDeclNameSlot.isSlot() = ... // like eq. (1)
61 eq MethodDeclNameSlot.slotName() = ... // like eq. (2)
62 eq MethodDeclNameSlot.compatibleFragmentTypes() = ... // like eq. (3)
63
64 syn ConstructorDecl ConstructorDeclNameSlot.SlotOwner() = ... // like eq. (4)
65 eq ConstructorDeclNameSlot.isSlot() = ... // like eq. (1)
66 eq ConstructorDeclNameSlot.slotName() = ... // like eq. (2)
67 eq ConstructorDeclNameSlot.compatibleFragmentTypes() = ... // like eq. (3)
68
69 syn MethodAccess MethodAccessNameSlot.SlotOwner() = ... // like eq. (4)
70 eq MethodAccessNameSlot.isSlot() = ... // like eq. (1)
71 eq MethodAccessNameSlot.slotName() = ... // like eq. (2)
72 eq MethodAccessNameSlot.compatibleFragmentTypes() = ... // like eq. (3)
73
74 syn StringLiteral StringValueSlot.SlotOwner() = ... // like eq. (4)
75 eq StringValueSlot.isSlot() = slotName()!=null;
76 eq StringValueSlot.slotName(){
77 String literal = SlotOwner().getLITERAL();
78 int open = literal.indexOf("[[");
79 if(open>=0){
80 int close = literal.indexOf("]]");
81 if(close>open){
82 return literal.substring(open+2,close);
83 }
84 }
85 return null;
86 }
87 eq StringValueSlot.compatibleFragmentTypes()
88 = new Class[]{StringValue.class,Literal.class,Access.class};
89
90 syn FieldDeclaration FieldDeclNameSlot.SlotOwner() = ... // like eq. (4)
91 eq FieldDeclNameSlot.isSlot() = ... // like eq. (1)
92 eq FieldDeclNameSlot.slotName() = ... // like eq. (2)
93 eq FieldDeclNameSlot.compatibleFragmentTypes() = ... // like eq. (3)
94
95 syn VariableDecl VariableDeclNameSlot.SlotOwner() = ... // like eq. (4)
96 eq VariableDeclNameSlot.isSlot() = ... // like eq. (1)
97 eq VariableDeclNameSlot.slotName() = ... // like eq. (2)
98 eq VariableDeclNameSlot.compatibleFragmentTypes() = ... // like eq. (3)
99

100 syn VariableDeclaration VariableDeclarationNameSlot.SlotOwner() =... // l. eq. (4)
101 eq VariableDeclarationNameSlot.isSlot() = ... // like eq. (1)
102 eq VariableDeclarationNameSlot.slotName() = ... // like eq. (2)
103 eq VariableDeclarationNameSlot.compatibleFragmentTypes() = ... // like eq. (3)
104
105 syn ParameterDeclaration ParameterDeclNameSlot.SlotOwner() = ... // like eq. (4)
106 eq ParameterDeclNameSlot.isSlot() = ... // like eq. (1)
107 eq ParameterDeclNameSlot.slotName = ... // like eq. (2)
108 eq ParameterDeclNameSlot.compatibleFragmentTypes() = ... // like eq. (3)
109 }
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Listing A.11: Hooks.jrag specification of SkAT4J.

1 aspect Hooks {
2 // "statements" hook.
3 syn boolean Block.isMethodRootBlock() =
4 getParent().getParent() instanceof MethodDecl;
5 eq Block.isHook(List hook) = hook == getStmtList() && !isInSlot() ;
6 eq Block.hookName(List hook) = "statements";
7 eq Block.hookAliases(List hook) {
8 if(isMethodRootBlock()){
9 return new String[] {"methodEntry","methodExit","statementsEnd"};

10 }
11 else if(!isMethodRootBlock() && endsWithReturn()){
12 return new String[] {"methodExit" + numReturns(),"statementsEnd"};
13 }
14 else /* All other situations, e.g., constructors, static blocks. */
15 return new String[] {"statementsEnd"};
16 }
17 eq Block.hookIndex(List hook, String hookName) {
18 if("methodEntry".equals(hookName) || "statements".equals(hookName)){
19 return 0;
20 }
21 else if (hookName.startsWith("methodExit") && endsWithReturn()){
22 return hook.numChildren()-1;
23 }
24 else /* All other situations: length of the list. */
25 return hook.numChildren();
26 }
27 eq Block.compatibleFragmentTypes(List hook) = new Class[]{Stmt.class};
28
29 // "imports" hook.
30 syn boolean CompilationUnit.isImportDeclHook(List hook) =
31 getImportDeclList()==hook && !isSlot() && !isInSlot();
32
33 eq CompilationUnit.isHook(List hook) = isImportDeclHook(hook);
34 eq CompilationUnit.hookName(List hook)
35 = isImportDeclHook(hook)?"imports":super.hookName(hook);
36 eq CompilationUnit.hookIndex(List hook, String hookName) = hook.numChildren();
37 eq CompilationUnit.compatibleFragmentTypes(List hook) = isImportDeclHook(hook)?
38 new Class[]{ImportDecl.class}:new Class[]{BottomFragmentType.class};
39
40 // "members" hook.
41 syn boolean TypeDecl.isMembersHook(List hook) =
42 getBodyDeclList()==hook && !isSlot() && !isInSlot();
43
44 eq TypeDecl.isHook(List hook) = isMembersHook(hook);
45 eq TypeDecl.hookName(List hook) =
46 isMembersHook(hook)?"members":super.hookName(hook);
47 eq TypeDecl.hookAliases(List hook) = isMembersHook(hook)?
48 new String[]{"membersEntry","membersExit"}:super.hookAliases(hook);
49 eq TypeDecl.hookIndex(List hook, String hookName)
50 = (isMembersHook(hook)&&!"membersEntry".equals(hookName))?hook.numChildren():0;
51 eq TypeDecl.compatibleFragmentTypes(List hook) = isMembersHook(hook)?
52 new Class[]{BodyDecl.class}:new Class[]{BottomFragmentType.class};
53
54 eq TypeDecl.checkContractPre(List hook, Object fragment){
55 Object contractValue = Boolean.TRUE;
56 if(isMembersHook(hook)){
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57 if(fragment instanceof MethodDecl)
58 contractValue = assertNotDeclared((MethodDecl)fragment);
59 if(contractValue == Boolean.TRUE && fragment instanceof FieldDeclaration)
60 contractValue = assertNotDeclared((FieldDeclaration)fragment);
61 if(contractValue == Boolean.TRUE)
62 contractValue = assertVariablesProvided((ASTNode)fragment);
63 }
64 return contractValue;
65 }
66 eq TypeDecl.checkContractPost(List hook, Object fragment) = true;
67
68 // "implements" hook.
69 syn boolean ClassDecl.isImplementsHook(List hook) =
70 getImplementsListNoTransform()==hook && !isSlot() && !isInSlot();
71
72 eq ClassDecl.isHook(List hook) = isImplementsHook(hook)||super.isHook(hook);
73 eq ClassDecl.hookName(List hook) =
74 isImplementsHook(hook)?"implements":super.hookName(hook);
75 eq ClassDecl.hookIndex(List hook, String hookName)
76 = isImplementsHook(hook)? hook.numChildren(): super.hookIndex(hook,hookName);
77 eq ClassDecl.compatibleFragmentTypes(List hook) = isImplementsHook(hook)?
78 new Class[]{TypeAccess.class,ParseName.class}:super.compatibleFragmentTypes(hook);
79
80 // "paramters" hook.
81 syn boolean MethodDecl.isParametersHook(List hook) =
82 getParameterList()==hook && !isSlot() && !isInSlot();
83
84 eq MethodDecl.isHook(List hook) = isParametersHook(hook);
85 eq MethodDecl.hookName(List hook) =
86 isParametersHook(hook)?"parameters":super.hookName(hook);
87 eq MethodDecl.hookIndex(List hook, String hookName)
88 = isParametersHook(hook)?hook.numChildren():0;
89 eq MethodDecl.compatibleFragmentTypes(List hook) = isParametersHook(hook)?
90 new Class[]{ParameterDeclaration.class}:super.compatibleFragmentTypes(hook);
91 }

Listing A.12: Assertions.jrag specification of SkAT4J.
1 aspect FragmentAssertions{
2 // Assert that method is not declared in this TypeDecl.
3 syn Object TypeDecl.assertNotDeclared(MethodDecl decl){
4 String signature = decl.signature();
5 if(localMethodsSignatureMap().containsKey(signature))
6 return "Sig. ’" + signature + "’ already declared in type ’" + getID() + "’.";
7 return true;}
8 // Assert that method is not declared in this TypeDecl or super type.
9 syn Object TypeDecl.assertNotDeclaredGlobal(MethodDecl decl){

10 String signature = decl.signature();
11 if(methodsSignatureMap().containsKey(signature))
12 return "Sig. ’" + signature + "’ already declared in type ’" + getID()
13 + "’ or super type.";
14 return true;}
15
16 // Assert that field is not declared in this TypeDecl.
17 syn Object TypeDecl.assertNotDeclared(FieldDeclaration decl) {
18 String name = decl.getID();
19 if(localFieldsMap().containsKey(name))
20 return decl.assertionID() + " already declared in type ’" + getID() + "’.";
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21 return true;}
22 // Assert that field is not declared in this TypeDecl or super type.
23 syn Object TypeDecl.assertNotDeclaredGlobal(FieldDeclaration decl) {
24 String name = decl.getID();
25 if(memberFieldsMap().containsKey(name))
26 return decl.assertionID() + " already declared in type ’" + getID()
27 + "’ or super type.";
28 return true;
29 }
30 // Assert that all variables used in fgmt are provided by this TypeDecl.
31 syn Object TypeDecl.assertVariablesProvided(ASTNode fgmt){
32 Collection<String> requires = fgmt.danglingVars(null);
33 String missing = "";
34 for(String var:requires){
35 if(memberFields(var).isEmpty()&&lookupVariable(var).isEmpty())
36 missing += " ’" + var + "’";
37 }
38 if(!missing.equals(""))
39 return fgmt.assertionID() + " requires variable(s)" + missing + ".";
40 return true;
41 }
42 // Assert that all variables called in fgmt are provided by this TypeDecl.
43 syn Object TypeDecl.assertMethodsProvided(ASTNode fgmt){
44 Collection<String> requires = fgmt.danglingCalls(null);
45 String missing = "";
46 for(String cal:requires){
47 if(memberMethods(cal).isEmpty()&&lookupVariable(cal).isEmpty())
48 missing += " ’" + cal + "’";
49 }
50 if(!missing.equals(""))
51 return fgmt.assertionID() + " requires method(s)" + missing + ".";
52 return true;
53 }
54 // Assert an expression’s type compatibility comparing its both sides’ types.
55 syn Object ExprSlot.assertCompatibleType(Expr fgmt){
56 Expr expr = getParent() != null?this:fgmt; // Pre- or postcondition situation?
57 if(expr.getParent() instanceof AssignExpr){
58 AssignExpr parent = (AssignExpr)expr.getParent();
59 if(parent.getSource() == expr){
60 TypeDecl sourceType = fgmt.type();
61 TypeDecl destType = parent.getDest().type();
62 if(sourceType == expr.unknownType() || destType==expr.unknownType()
63 || !sourceType.wideningConversionTo(destType))
64 return "Type of Expr fragment ’" + sourceType.getID()
65 + "’ does not fit left-hand type ’" + destType.getID() + "’.";
66 }
67 else if(parent.getDest() == expr){
68 TypeDecl sourceType = parent.getSource().type();
69 TypeDecl destType = fgmt.type();
70 if(sourceType == expr.unknownType() || destType==expr.unknownType()
71 || !sourceType.wideningConversionTo(destType))
72 return "Type of Expr fragment ’" + sourceType.getID()
73 + "’ does not fit right-hand type ’" + destType.getID() + "’.";
74 } }
75 return true;}
76 }
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Listing A.13: Excerpt from the fragments.parser Beaver grammar of SkAT4J (AST con-
struction has been removed).

1 ASTNode goal = java_fragment_box | java_fragment_list;
2
3 // Boxes:
4 JavaFragmentBox java_fragment_box = method_declaration.decl |
5 constructor_declaration.decl | field_declaration.decl | block.block |
6 if_then_statement.stmt | if_then_else_statement.stmt |
7 while_statement.stmt | for_statement.stmt |
8 java_fragment_box_prefixed | java_fragment_box_prefixed_type ;
9

10 JavaFragmentBox java_fragment_box_prefixed = FRAGMENT block_statement.stmt |
11 FRAGMENT literal.expr | FRAGMENT type.type | FRAGMENT import_declaration.decl ;
12
13 JavaFragmentBox java_fragment_box_prefixed_type= FGMT_STATEMENT block_statement.stmt |
14 FGMT_LITERAL literal.expr | FGMT_EXPRESSION expression.expr |
15 FGMT_IMPORT import_declaration.decl | FGMT_FIELD field_declaration.decl |
16 FGMT_VARIABLE local_variable_declaration_statement.stmt | FGMT_BLOCK block.block |
17 FGMT_METHOD method_declaration.decl | FGMT_NAME name.name | FGMT_TYPE type.type ;
18
19 List java_fragment_list = java_fragment_box.box1 java_fragment_box.box2 |
20 java_fragment_list.l java_fragment_box.box ;
21
22 // Slots:
23 Stmt statement = SLOTIDENTIFIER SEMICOLON ; //StmtSlot
24 ClassDecl class_declaration
25 = modifiers.m? CLASS SLOTIDENTIFIER super.s? interfaces.i? class_body.b ;
26 InterfaceDecl interface_declaration
27 = modifiers.m? INTERFACE SLOTIDENTIFIER extends_interfaces.i? interface_body.b ;
28 MethodDecl method_header = modifiers.m? type.t SLOTIDENTIFIER LPAREN
29 formal_parameter_list.l? RPAREN dims.d? throws.tl?
30 | modifiers.m? VOID SLOTIDENTIFIER LPAREN formal_parameter_list.l? RPAREN throws.tl?;
31 ParameterDeclaration formal_parameter = modifiers.m? type.t SLOTIDENTIFIER dims.d? ;
32 VariableDecl variable_declarator_id = SLOTIDENTIFIER dims.d? ;
33 ConstructorDecl constructor_declaration
34 = modifiers.m? SLOTIDENTIFIER LPAREN formal_parameter_list.pl? RPAREN throws.tl?
35 LBRACE explicit_constructor_invocation.c? block_statements.l? RBRACE;
36 BodyDecl class_member_declaration = SLOTIDENTIFIER SEMICOLON ;
37
38 Expr class_instance_creation_expression
39 = NEW normal_type_slot.t LPAREN argument_list.l? RPAREN ;
40 Expr array_creation_uninit
41 = NEW normal_type_slot.t dim_exprs.d | NEW normal_type_slot.t dim_exprs.d dims.e ;
42 Expr assignment_expression = SLOTIDENTIFIER ;
43 Expr primary = LPAREN SLOTIDENTIFIER RPAREN ;
44 Expr assignment = SLOTIDENTIFIER EQ assignment_expression.source ;
45
46 Access class_type = SLOTIDENTIFIER ;
47 Access interface_type = SLOTIDENTIFIER ;
48 Access method_invocation = SLOTIDENTIFIER LPAREN argument_list.l? RPAREN ;
49 Access field_access = primary.p DOT SLOTIDENTIFIER ;
50 Access type = normal_type_slot | array_type_slot ;
51 Access normal_type_slot = SLOTIDENTIFIER ;
52 Access array_type_slot = SLOTIDENTIFIER dims.d ;
53
54 TypeVariable type_parameter_1 = SLOTIDENTIFIER GT ;
55 Access reference_type_1
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56 = SLOTIDENTIFIER GT | SLOTIDENTIFIER LT type_argument_list_2.l;
57 Access reference_type_2
58 = SLOTIDENTIFIER RSHIFT | SLOTIDENTIFIER LT type_argument_list_3.l;
59 Access reference_type_3 = SLOTIDENTIFIER URSHIFT ;

A.4.3. Map and Reduce Skeletons

Listing A.14: Contents of simple_map.jbx.
1 {
2 // Initialize a list to maintain output results.
3 List<[[OUT_TYPE]]> results = new LinkedList<[[OUT_TYPE]]>();
4 // Request the first input data chunk.
5 [[IN_TYPE]] inValue = [[IN_PORT_INIT]];
6
7 while(inValue!=null){
8 // Call map operation with input data.
9 [[OUT_TYPE]] result = [[MAP_OP]](inValue);

10 results.add(result);
11 // Request next chunk of data.
12 inValue = [[IN_PORT_CONT]];
13 }
14 // Pass results to the output port.
15 [[OUT_PORT]] = results;
16 }

Listing A.15: Contents of simple_reduce.jbx.
1 {
2 // Initialize result sink.
3 [[OUT_TYPE]] result = [[OUT_INIT]];
4 // Request the first input data chunk.
5 [[IN_TYPE]] inValue = [[IN_PORT_INIT]];
6
7 while(inValue!=null){
8 // Call reduce operation with input data.
9 [[REDUCE_OP]](inValue,result);

10 // Request next chunk of data.
11 inValue = [[IN_PORT_CONT]];
12 }
13 // Pass reduced value to the output port.
14 [[OUT_PORT]] = result;
15 }

Listing A.16: Contents of concurrent_map.jbx.
1 {
2 // Allocate worker threads:
3 ExecutorService executor = Executors.newFixedThreadPool([[WORKERS]]);
4 // Futures contain the thread output.
5 List<Future<[[OUT_TYPE]]>> futures = new LinkedList<Future<[[OUT_TYPE]]>>();
6 // Initialize a list to maintain output results.
7 final List<[[OUT_TYPE]]> results = new LinkedList<[[OUT_TYPE]]>();
8 // Request the first input data chunk.
9 [[IN_TYPE]] inValue = [[IN_PORT_INIT]];

10
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11 // As long as input data is available:
12 while(inValue!=null){
13 final [[IN_TYPE]] inArg = inValue;
14 futures.add(executor.submit(
15 new Callable<[[OUT_TYPE]]>(){
16 public [[OUT_TYPE]] call() throws Exception {
17 // Call map operation with input data.
18 [[OUT_TYPE]] result = [[MAP_OP]](inArg);
19 synchronized (results) {
20 results.add(result);
21 }
22 return result;
23 }}
24 ));
25 // Request next chunk of data.
26 inValue = [[IN_PORT_CONT]];
27 }
28
29 executor.shutdown();
30 while(!executor.isTerminated()){
31 // As long as there’s work in the thread pool: wait.
32 }
33 // Pass reduced value to the output port.
34 [[OUT_PORT]] = results;
35 }

Listing A.17: Contents of concurrent_mapreduce.jbx.
1 {
2 // Allocate worker threads:
3 ExecutorService executor = Executors.newFixedThreadPool([[WORKERS]]);
4 // Futures contain the thread output and the map results.
5 List<Future<[[OUT_TYPE]]>> futures = new LinkedList<Future<[[OUT_TYPE]]>>();
6 // Initialize result sink.
7 [[OUT_TYPE]] reduceResult = [[OUT_INIT]];
8 // Request the first input data chunk.
9 [[IN_TYPE]] inValue = [[IN_PORT_INIT]];

10
11 // Map related tasks.
12 // As long as input data is available:
13 while(inValue!=null){
14 final [[IN_TYPE]] inArg = inValue;
15 // Submit work to workers.
16 futures.add(executor.submit(
17 new Callable<[[OUT_TYPE]]>(){
18 public [[OUT_TYPE]] call() throws Exception {
19 // Call map operation with input data.
20 [[OUT_TYPE]] mapResult = [[MAP_OP]](inArg);
21 return mapResult;
22 }}
23 ));
24 // Request next chunk of data.
25 inValue = [[IN_PORT_CONT]];
26 }
27
28 // Reduce-related tasks.
29 // As long as not all threads were reduced:
30 while(futures.size()>1){
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31 Future<[[OUT_TYPE]]> current1 = futures.remove(0);
32 if(current1.isDone()){
33 // Request processed data from thread (1).
34 final [[OUT_TYPE]] arg1 = current1.get();
35 while(futures.size()>0){
36 // Request processed data from thread (2).
37 Future<[[OUT_TYPE]]> current2 = futures.remove(0);
38 if(current2.isDone()){
39 final [[OUT_TYPE]] arg2 = current2.get();
40 // Submit work to workers.
41 futures.add(executor
42 .submit(new Callable<[[OUT_TYPE]]>() {
43 public [[OUT_TYPE]] call() throws Exception {
44 // Call map operation on input data.
45 [[REDUCE_OP]](arg2,arg1);
46 return arg1;
47 }
48 }));
49 break;
50 }
51 else{
52 futures.add(current2);
53 }
54 }
55 }
56 else{
57 futures.add(current1);
58 }
59 }
60
61 executor.shutdown();
62 Future<[[OUT_TYPE]]> lastResult = futures.get(0);
63 while (!lastResult.isDone()) {
64 }
65 // Request final result.
66 reduceResult = lastResult.get();
67
68 // Pass reduced value to the output port.
69 // Use a list output type to provide a compatible type to map.
70 [[OUT_PORT]] = java.util.Collections.singletonList(reduceResult);
71 }

Listing A.18: Single-threaded MapReduce variant WikiCrawler1.java.
1 public class WikiCrawler1 {
2 public Map<String, Integer> compute(Collection<String> in) throws Exception {
3 Iterator<String> it = in.iterator();
4 Collection<Map<String, Integer>> mapResult = null;
5 {
6 List<Map<String, Integer>> results = new LinkedList<Map<String, Integer>>();
7 String inValue = it.hasNext() ? it.next() : null;
8 while(inValue != null){
9 Map<String, Integer> result = map(inValue);

10 results.add(result);
11 inValue = it.hasNext() ? it.next() : null;
12 }
13 mapResult = results;
14 }
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15 Iterator<Map<String, Integer>> mIt = mapResult.iterator();
16 Map<String, Integer> reduceResult = null;
17 {
18 Map<String, Integer> result = new HashMap<String, Integer>();
19 Map<String, Integer> inValue = mIt.hasNext() ? mIt.next() : null;
20 while(inValue != null){
21 reduce(inValue, result);
22 inValue = mIt.hasNext() ? mIt.next() : null;
23 }
24 reduceResult = result;
25 }
26 return reduceResult;
27 }
28 public static Map<String, Integer> map(String text) {
29 ... 1:1 from map_op.jbx ...
30 }
31 public static boolean isWS(char c) {
32 ... 1:1 from map_op.jbx
33 }
34 public static void reduce(Map<String, Integer> in1, Map<String, Integer> inout2) {
35 ... 1:1 from reduce_op.jbx
36 }
37 }

Listing A.19: Dual-threaded MapReduce variant WikiCrawler2.java.
1 public class WikiCrawler2 {
2 public Map<String, Integer> compute(Collection<String> in) throws Exception {
3 Iterator<String> it = in.iterator();
4 Collection<Map<String, Integer>> mapResult = null;
5 {
6 ExecutorService executor = Executors.newFixedThreadPool((2));
7 List<Future<Map<String, Integer>>> futures
8 = new LinkedList<Future<Map<String, Integer>>>();
9 Map<String, Integer> reduceResult = new HashMap<String, Integer>();

10 String inValue = it.hasNext() ? it.next() : null;
11 while(inValue != null){
12 final String inArg = inValue;
13 futures.add(executor.submit(new Callable<Map<String, Integer>>() {
14 public Map<String, Integer> call() throws Exception {
15 Map<String, Integer> mapResult = map(inArg);
16 return mapResult;
17 }
18 }));
19 inValue = it.hasNext() ? it.next() : null;
20 }
21 while(futures.size() > 1){
22 Future<Map<String, Integer>> current1 = futures.remove(0);
23 if(current1.isDone()) {
24 final Map<String, Integer> arg1 = current1.get();
25 while(futures.size() > 0){
26 Future<Map<String, Integer>> current2 = futures.remove(0);
27 if(current2.isDone()) {
28 final Map<String, Integer> arg2 = current2.get();
29 futures.add(executor.submit(new Callable<Map<String, Integer>>() {
30 public Map<String, Integer> call() throws Exception {
31 reduce(arg2, arg1);
32 return arg1;
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33 }
34 }));
35 break ;
36 }
37 else {
38 futures.add(current2);
39 }
40 }
41 }
42 else {
43 futures.add(current1);
44 }
45 }
46 executor.shutdown();
47 Future<Map<String, Integer>> lastResult = futures.get(0);
48 while(!lastResult.isDone()){
49 }
50 reduceResult = lastResult.get();
51 mapResult = java.util.Collections.singletonList(reduceResult);
52 }
53 Iterator<Map<String, Integer>> mIt = mapResult.iterator();
54 Map<String, Integer> reduceResult = null;
55 reduceResult = mIt.next();
56 return reduceResult;
57 }
58 public static Map<String, Integer> map(String text) {... 1:1 from map_op.jbx ...}
59 public static boolean isWS(char c) {... 1:1 from map_op.jbx }
60 public static void reduce(Map<String, Integer> in1, Map<String, Integer> inout2) {
61 ... 1:1 from reduce_op.jbx
62 }
63 }

A.5. Supplements of Chapter 7

A.5.1. Minimal ISC Specifications

Listing A.20: JastAdd AST grammar of the minimal FCM and STpL.
1 CompositionEnvironment ::= fragments:Fragment*;
2
3 abstract Fragment;
4 GenericFragment:Fragment ::= <name:String> elements:Element*;
5
6 abstract Element;
7 abstract WaterElement:Element;
8 abstract IslandElement:Element;
9 TextBlob:WaterElement ::= <content:String>;

10 abstract Compositional:IslandElement ::= <name:String>;
11 Slot:Compositional;

Listing A.21: JastAdd AST grammar of the VTpL extension.
1 VariantList:Compositional ::= variants:Element* <ActiveName:String>;
2 Prototype:Compositional ::= content:Element*;
3 Variant:Compositional ::= content:Element*;
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VTpL grammar in SimpAG notation:

CompositionEnvironment ::= fragments:Box*
GenericFragment .Fragment ::= elements:Element*
@Box ::= name:<string>
@Element ::= ε
@WaterElement .Element ::= ε
TextBlob .WaterElement ::= content:<string>
@IslandElement .Element ::= ε
@Compositional .IslandElement ::= name:<string>
Slot .Compositional ::= ε
VariantList .Compositional ::=

variants:Element* activeName:<string>?
Variant .Compositional ::= content:Element*
Prototype .Compositional ::= content:Element*

Figure A.3.: Data-flow representation of Figure 7.5.

A.5.2. A Comment-Based Syntax for VTpL

The VTpL is language independent and was not designed to support a specific target language.
Hence, if a file containing VTpL code (variants and prototypes) is opened in a language-specific
editor, it will most likely complain about lexical and syntactical errors. Figure A.4 shows
a screenshot of a Java file with embedded VTpL in the Eclipse Java IDE. In the error view
the editor complains about 21 errors of which 20 are lexical or syntactical and fails to give
semantic feedback. However, if the delimiters of composers and slots are chosen carefully

310



A.5. Supplements of Chapter 7

Figure A.4.: VTpL template opened in the JDT Java editor of Eclipse 4.2. The code corresponds
to Listing 7.12.

(i.e., more language specific), the editor tool’s massive stumbling on lexical errors can be
avoided in most cases such that the editor can give much more usable feedback. As an example,
consider Figure A.5. Here the normal VTpL markup is mimicked in Java comment syntax.
/*!vtpl:DEFINITION*/ denotes the common prefix of all compositional constructs of the
VTpL. Slots are declared by /*!vtpl:slot PFX’SLOTNAME’SFX */ where PFX and
SFX are optional patterns that are concatenated to the bound value. The other concepts are
straight-forward, pt stands for prototype, vl for variant list, and var stands for actual variants.
According to Figure A.5, the feedback given by the Java editor is more valuable. The number of
errors decreased to 4 and, since the file is correctly parsed as a Java file, all of them stem from
the analysis of the semantic analyzer. Three messages report a missing setChild() method,
which is indeed not declared in the example used for taking the screenshot and thus not related to
the template. In contrast, the fourth error is related to the template since the suffix of set has to
be provided by binding the ARG slot.

Hence, using nondestructive syntax—like comments in free-form languages like Java or C—for
compositional constructs in minimal ISC systems enables composition-unaware editor tools (or
compiler frontends) to provide better syntactic semantic analysis results than with destructive
syntax. However, it does not give compositional guarantees about the composition result like
full/well-formed ISC.
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Figure A.5.: The same template as in Figure A.4, but in alternative comment syntax.

A.5.3. Detailed UPP Specifications

Listing A.22: Reference attributes to perform the look-up of macro declarations in Macro-
LookUp.jrag.

1 aspect MacroLookUp {
2 inh MacroDecl ASTNode.lookUpMacro(String macroName);
3 syn MacroDecl Element.lookUpMacroLocal(String macroName) = null;
4 syn MacroDecl MacroRef.macro() = lookUpMacro(getName());
5
6 syn MacroDecl MacroDecl.lookUpMacroLocal(String macroName)
7 = macroName.equals(getName())?this:null;
8
9 eq GenericFragment.getElements(int index).lookUpMacro(String macroName) {

10 // counting backwards looking for a #define or #undefine with the
11 // corresponding macro name
12 for(int i=index-1;i>=0;i--){
13 MacroDecl decl = getElements(i).lookUpMacroLocal(macroName);
14 if(decl!=null)
15 return decl;
16 if(getElements(i) instanceof UnDefine){
17 if(((UnDefine)getElements(i)).getName().equals(macroName)){
18 return null;
19 }
20 }
21 }
22 return null;
23 }
24 }

312



A.5. Supplements of Chapter 7

Listing A.23: UPP JastAdd AST grammar for expressions in Expression.ast.
1 abstract Expression;
2 abstract UnaryExpression:Expression ::= Arg:Expression;
3 abstract BinaryExpression:Expression ::= LeftArg:Expression RightArg:Expression;
4 abstract AdditiveExpression:BinaryExpression;
5 abstract MultiplicativeExpression:BinaryExpression;
6 abstract BooleanExpression:BinaryExpression;
7
8 Constant:Expression ::= <StringValue:String> <Type:Type>;
9 Call:Expression ::= <OpName:String> Args:Expression*;

10 Defined:Expression ::= Reference:MacroRef;
11 Nested:Expression ::= Expression;
12
13 Or:BooleanExpression;
14 And:BooleanExpression;
15 LessThen:BooleanExpression;
16 GreaterThen:BooleanExpression;
17 Equals:BooleanExpression;
18
19 Plus:AdditiveExpression;
20 Minus:AdditiveExpression;
21
22 Mult:MultiplicativeExpression;
23 Div:MultiplicativeExpression;
24
25 Not:UnaryExpression;

Listing A.24: The Rats! UPP island grammar modulo AST construction actions.
1 module parser.UPPParser(ISCBase);
2 modify ISCBase;
3
4 // spacing
5 transient void Space = ’ ’ / ’\t’ ;
6 transient void LS = Space*;
7 transient void LB = ’\r’ ’\n’ / ’\r’ / ’\n’ ;
8 transient String LBS = ’\r’ ’\n’ / ’\r’ / ’\n’ ;
9 transient void WS = ( Space / LB )*;

10
11 // constant types
12 String Str = (![\"] _ )* ;
13 String Literal = "\"" (![\"] _ )* "\"" ;
14 transient String IntNum = [0-9]+;
15 transient String Bool = "true" / "false";
16
17 // delimiters
18 transient String Pfx = PfxDelimiter LS;
19 transient String PfxDelimiter = "#";
20 transient String SlotDelimiter = PfxDelimiter;
21 transient String Delimiters = PfxDelimiter;
22 transient String EscapeDelimiter = "\\" ;
23
24 // tethering directives as islan elements
25 IslandElement Island := yyValue:Include
26 / yyValue:MacroDecl
27 / yyValue:IfCondition
28 / yyValue:UnDefine
29 / yyValue:Error
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30 / yyValue:IfDef
31 / yyValue:IfNotDef
32 / yyValue:SlotDecl
33 / yyValue:MacroCall {};
34
35 // #include declarations
36 Include Include = Pfx "include" LS ’"’ name:Str ’"’ LB {};
37
38 // #define: two alternatives - single-line and multi-line
39 MacroDecl MacroDecl = MacroDeclML / MacroDeclSL {};
40
41 // #define: multi-line ending with #end (different from CPP)
42 MacroDeclML MacroDeclML = Pfx "define" LS name:Identifier LS
43 params:("(" yyValue:MacroParams ")" LS )?
44 content:(yyValue:SlotDecl/ yyValue:MacroCall/ yyValue:TextElement)* Pfx "end"
45 LB {};
46
47 // #define: single-line (like in the C standard)
48 MacroDeclSL MacroDeclSL =
49 Pfx "define" LS name:Identifier LS params:("(" yyValue:MacroParams ")" LS )?
50 content:(yyValue:SlotDecl / yyValue:MacroCall / yyValue:MacroContentSL)* LB {};
51
52 TextBlob MacroContentSL = value:MacroWater {};
53 transient String MacroWater = ( (EscapeDelimiter LBS ) / !( LBS / Island) _ )+ ;
54
55 // parameter list of a macro definition
56 List<MacroParam> MacroParams =
57 name:Identifier {} param:("," LS name:Identifier {} )* {};
58
59 // #undef to invalidate a defined macro via its name
60 UnDefine UnDefine = Pfx "undef" LS macro:MacroRef LB {};
61
62 // #ifdef
63 IfDef IfDef = Pfx "ifdef" LS macro:MacroRef LB content:TplElements Pfx "endif" LB {};
64
65 // #ifndef like #ifdef, but checks if a macro is undefined
66 IfNotDef IfNotDef = Pfx "ifndef" LS macro:MacroRef LB
67 content:TplElements Pfx "endif" LB {};
68
69 // #if-then-#else clause
70 IfCondition IfCondition = Pfx "if" LS yyValue:IfBody {};
71
72 // the tail and body of an #if-then-#else-#endif clause
73 IfCondition IfBody =
74 condition:Or LB then:TplElements elz:( Pfx "elif" LB body:IfBody {}
75 / Pfx "else" LB yyValue:TplElements)? Pfx "endif" LB {};
76
77 // #error to issue error messages and fail the transformation process
78 Error Error = Pfx "error" LS message:Literal LB {};
79
80 // call a macro in a function like style
81 MacroCall MacroCall = ref:MacroRef LS "(" args:MacroCallArgs ")"{} / ref:MacroRef {};
82 List<MacroCallArg> MacroCallArgs =
83 head:MacroCallArg {} tail:("," yyValue:MacroCallArg)* {};
84
85 // call args can be expressions or elements
86 MacroCallArg MacroCallArg = "$" LS value:Or {} / value:MArgWater {};
87
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88 transient String MArgWater = Literal / SimpleMArg / NestedMArg;
89
90 // normal case for call args: no parentheses and no comma, but everything else
91 transient String SimpleMArg = ( !( "(" / ")" / "," ) _ )+ ;
92
93 // special case for call args: parentheses allowed in balance and also nested commas
94 transient String NestedMArg = "(" ( MArgWater / ( !( "(" / ")" ) _ )+ ) ")";
95
96 // the leafs of the expression tree
97 Expression Atomic = Constant / NestedExpression / CallExpression / Defined;
98 Expression NestedExpression = "(" LS nested:Or LS ")" {};
99 Constant Constant = value:Literal {} / value:IntNum {} / value:Bool {};

100 Defined Defined = "defined" LS "(" macro:MacroRef ")" {};
101 Call CallExpression = ident:Identifier LS "(" LS ")" {} /
102 ident:Identifier LS "(" LS args:CallArgs LS ")" {};
103 List<Expression> CallArgs = head:Or {} tail:("," LS yyValue:Or )* {};
104
105 MacroRef MacroRef = ident:Identifier {};
106
107 Expression Or = leftArg:And LS "||" LS rightArg:Or {} / yyValue:And;
108
109 Expression And = leftArg:Comparatives LS "&&" LS rightArg:And {}
110 / yyValue:Comparatives;
111
112 Expression Comparatives = leftArg:Additives LS "<" LS rightArg:Comparatives {}
113 / leftArg:Additives LS ">" LS rightArg:Comparatives {}
114 / leftArg:Additives LS "==" LS rightArg:Comparatives {}
115 / yyValue:Additives;
116
117 Expression Additives = leftArg:Multiplicatives LS "+" LS rightArg:Additives {}
118 / leftArg:Multiplicatives LS "-" LS rightArg:Additives {}
119 / yyValue:Multiplicatives;
120
121 Expression Multiplicatives = leftArg:Unary LS "*" LS rightArg:Multiplicatives {}
122 / leftArg:Unary LS "/" LS rightArg:Multiplicatives {}
123 / yyValue:Unary;
124
125 Expression Unary = "!" arg:Atomic {} / yyValue:Atomic ;
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