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Summary 
 

All cells maintain essential metal nutrients at optimal levels by metal homeostasis. P-

type ATPases, a crucial superfamily of integral membrane proteins, are involved in the 

active transport of metal ions across biological membranes driven by the motive force of 

ATP- hydrolysis. The PIB-type ATPase subfamily, also called CPx-ATPases, fulfills a 

key role in heavy metal homoeostasis among the most widespread species from bacteria 

to human. In humans, the defect in copper transporters is the direct cause of severe 

neurological and hepatic disorders such as Wilson and Menkes diseases, therefore, 

understanding the molecular function of these pumps is of paramount importance in 

human health. Cu+-ATPases have two transmembrane metal binding sites (TM-MBS) 

and three cytosolic domains, namely the actuator (A-domain) and phosphorylation and 

nucleotide-binding domain (PN), and regulatory N-terminal heavy metal binding domain 

(HMBD).  

Here, we have studied the Legionella pneumophila CopA (LpCopA) and its 

isolated cytosolic domains to improve our understanding of the functional interaction of 

the protein domains during metal transport relate this to the known structure of this 

ATPase. To elucidate how cytosolic ligands (Cu+ and nucleotide) stimulate the 

interactions among the cytosolic domains and may transmit conformational changes to 

the TM-MBS, the interactions among recombinant isolated cytosolic domains were first 

examined biochemically by co-purification and spectroscopically by circular dichroism, 

time-resolved fluorescence and site-directed fluorescent labeling assays. The Cu+-

dependent interaction between the A-domain and HMBD has been postulated as a 

mechanism for activating the ATPase cycle. This question was addressed here by 

studying copper-dependent interactions between the isolated expressed domains. 

Spectroscopic evidence is provided that an HMBD-A complex is formed in the presence 

of Cu+ which binds with 100-200 nM affinity to the recombinant HMBD. In contrast, 

the A-domain interacts with the PN domain in a nucleotide-dependent fashion. This 

molecular recognition is required for the dephosphorylation step in the catalytic cycle. 

The interaction was investigated in more detail by the use of a decameric peptide 

derived from the PN-binding interface of the A-domain and carrying the conserved 

TGE-motif involved in dephosphorylation. Its binding to the isolated PN domain in a 

weakly nucleotide-dependent manner, is demonstrated here by stopped-flow 

 



 

fluorescence spectroscopy. Several ATPase assays were modified to assess the 

functionality of the PN-domain and full length LpCopA. The peptide was found to 

reduce the catalytic turnover of full length LpCopA. This agrees with the expected 

slowing down of the reformation of the PN-A-domain interaction since the peptide 

occupies their binding interface. Thus, the synthetic peptide provides a means to study 

specifically the influence of PN-A-domain interactions on the structure and function of 

LpCopA. This was done by time-correlated single photon counting (TCSPC) method. 

The time-dependent Stokes shift of the environmentally sensitive fluorophore BADAN 

which was covalently attached to the conserved CPC-motif in the TM-MBS was 

measured. The data indicate that the interior of the ATPase is hydrated and the mobility 

of the intra-protein water varies from high to low at C382 at the “luminal side” and 

C384 at the “cytosolic side” of the TM-MBS, respectively. This finding is consistent 

with the recent MD simulation of LpCopA, bringing the first experimental evidence on 

a luminal-open conformation of E2~P state. The A-domain-derived decapeptide, 

although binding to the cytosolic head piece, induces structural changes also at the TM-

MBS. The peptide-stabilized state (with a disrupted PN-A interface) renders the C384 

environment more hydrophobic as evidenced by TCSPC. 

 

Taken together, the data from cytosolic domain interactions, ATPase assays and 

of time-dependent Stoke shift analyses of BADAN-labeled LpCopA reveal the presence 

of hydrated intramembraneous sites whose degree of hydration is regulated by the 

rearrangement of cytosolic domains, particularly during the association and dissociation 

of the PN-A domains. Copper affects this arrangement by inducing the linkage of the A-

domain to the HMBD. The latter appears to play not only an autoinhibitory but also a 

chaperone-like role in transferring Cu+ to the TM-MBS during catalytic turnover. 
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  Preface  

Preface 
 
I am pleased to give a short overview of my doctoral research study supported by the 

Dresden International Graduate School for Biomedicine and Bioengineering (DIGS-

BB). The dissertation focuses on the study of the mechanistic properties and structural 

aspects of P1B-type Cu+-ATPase from Legionella pneumophila (LpCopA) using 

Molecular biological and spectroscopic techniques. Understanding the molecular 

function of the bacterial Cu+-ATPases (as models) could support in finding therapy for 

human diseases caused by malfunction of this enzyme. Therefore, I focused on studying 

the interactions between the cytosolic domains of LpCopA and their implications on 

opening and closing the ion gate. During this study, I was trying to bring a novel 

ideology and to use new methodologies. Here, this study utilized a synthetic peptide 

approach and employed TCSPC method for investigating the cytosolic domains 

rearrangement in the Albers-Post cycle and the structural aspects of P-type ATPase. 

The outcome of this study is divided into five Chapters (3-7). In Chapter 3, the 

expression and purification of the LpCopA and its cytosolic domains were described 

with showing the obstacles and the solutions accompanying their production. Also, the 

functional characterization of proteins is shown. In Chapter 4, the structural aspects and 

ligand affinity of cytosolic domains were determined. In addition, the Chapter shows 

how to study the protein stability with ligands using circular dichroism. Chapter 5 

shows the interaction between the expressed cytosolic domains, namely heavy metal-

binding domain, actuator domain and phosphorylation/nucleotide-binding domains, 

using the co-purification and fluorometric assays. The data obtained from this study 

elucidate how cytosolic ligands stimulate the interactions among the cytosolic domains, 

suggesting new aspects in the classical ATPase cycle of Cu-ATPases. 

In Chapter 6, a synthetic peptide derived from a conserved site of actuator 

domain was designed to investigate the impact of this motif on the structure and 

function of the LpCopA. The stopped flow fluorescence measurement was carried out 

Dr. Yixin Zhang’s lab in BCUBE–Center for Molecular Bioengineering. In chapter 7, 

the water distribution around the metal-binding site in transmembrane core of LpCopA 

was studied by time-correlated single photon counting method. The measurements and 

data analysis were carried out in our collaborator’s lab, Prof. Hof, in the Jaroslav 

Heyrovsky Institute of Physical Chemistry. 
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Chapter 1 Introduction and Background 
 

1.1 Copper and Life 
 

Living cells require essential transition metals such as Cu, Fe, Co, Zn, Mn and Mo ions 

to carry out biological functions. Heavy metals act as cofactors for enzymatic reactions 

including group transfer, redox and hydrolysis. It has been reported that more than a 

quarter of the known enzymes require a particular metal ion for full catalytic activity[1]. 

These enzymes can be classified into metalloenzymes and metal-activated enzymes. The 

latter require the metal ions to become stimulated; the metals are loosely bound to the 

enzymes.  For instance, heavy metals-transporting ATPase is activated in presence of 

the metal ions and consumes ATP molecule for metal transportation across the cell 

membrane. In metalloproteins, the metals have several structural or catalytic roles such 

as: 1) constituting enzyme active sites; 2) stabilizing enzyme geometry structure; 3) 

forming weak-bonds with substrates contributing to their orientation to support chemical 

reactions; and 4) stabilizing charged transition states [2]. In this case, the metal ion is 

firmly bound to the enzyme and is frequently recycled after protein degradation, for 

example Heme groups in hemoglobin or cytochromes tightly bind a Fe2+ ion. Cations of 

transition metal (such as Cu, Fe) have unpaired electrons that allow their participation in 

redox reactions involving mostly one electron loss (oxidation) or gain (reduction). Thus, 

they are essential micronutrients required for diverse essential cellular functions such as 

electron transfer, dioxygen utilization and osmotic balance. 

 

Copper is an essential trace element with key physiological and biochemical 

functions. It became biologically important to organisms most likely over 300 million 

years ago when the Earth’s atmosphere became aerobic due to the evolution of 

photosynthesis by cyanobacteria. While enzymes involved in anaerobic metabolism 

needed to work in the lower portion of the redox spectrum, the presence of dioxygen 

created the need for a redox-active metal such as the redox potential Cu(II)/Cu(I) of 

copper which has 200 to 800 mV depending on its coordination with protein [3, 4]. 

Divalent copper has the highest affinity of the divalent essential metals for binding to 

metalloproteins according to the Irving–Williams series of the order of stability of metal 

complexes: Ca(II) < Mg(II) < Mn(II) < Fe(II) < Co(II) < Ni(II) < Cu(II) > Zn(II) [5]. 
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Copper (I) is a soft Lewis acid, which prefers coordination to S and N groups, 

such as cysteine sulfhydryl (SH) groups and histidine nitrogen in proteins, as well as to 

oxygen groups in other biological molecules while Cu (II) is a moderate strength Lewis 

acid preferring coordination to harder nitrogen ligands such as nitrite [6, 7]. Both 

nitrogen and sulfur ligands can bind to Cu(I) and Cu (II), however ligands with sulfur 

donor groups bind Cu(I) stronger than they bind Cu (II) [8]. Cu associates with 

numerous proteins involved in biological processes in the cell; such as superoxide 

dismutase (SOD) for antioxidant activity, cytochrome C oxidase for oxidative 

phosphorylation, ceruloplasmin for iron metabolism, lysyl oxidase for connective tissue 

formation, tyrosinase/laccase for innate immune system [9-11]. However, the excess of 

copper ions is extremely toxic. The transition between a stably oxidized-Cu2+ and 

unstable reduced-Cu+ can generate free radicals such as superoxide radical and hydroxyl 

radical which in turn cause damages to many biomolecules such as nucleic acids and 

membrane lipids and eventually lead to cell death [12].  Therefore, cell needs highly 

regulated mechanisms for Cu homeostasis. 

1.2 Ion transport in cell 

Most molecules and ions enter or leave the cell aided by transporter proteins.  There are 

three major classes of membrane transport proteins, depicted in Fig. 1.1, they are 

integral transmembrane proteins and exhibit a high specificity for the transported 

substance.  First, ion channel proteins play a key role in the functioning of nerve cells by 

transporting ions and water molecules down their concentration gradient and electric 

potential gradients. They form an open gate across the membrane through which 

multiple water molecules or ions move simultaneously at a very rapid rate — up to 108 

per second without consuming ATP molecules. Many other types of channel proteins are 

usually closed, and open only in response to specific signals. A second class of 

membrane proteins is the Transporters, which move a wide variety of molecules and 

ions across the cell membrane. In contrast to channel proteins, transporters undergo 

conformational changes in their structures to move one (or a few) substrate molecules at 

a time, with relatively slow rate of 102 – 104 molecules per second. Thirdly, ATP-

powered pumps are enzymes known as ATPases which harness the energy released from 

the hydrolysis of ATP to pump ions across the membrane against a chemical 

concentration gradient or electric potential in a process known as active transport. Such 

pumps mediate, for example, the metal homeostasis inside virtually all animal cells, and 
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generate the low pH inside animal-cell lysosomes, plant-cell vacuoles, and the lumen of 

the stomach. 

 

 

 

 

 

 

 
 
 
Figure 1.1. Schematic  diagram  illustrating  the  three  major  types of  membrane 
transport proteins. 

 Channels catalyze the movement of specific ions (or water) down their electrochemical 

gradient. Electrochemical potential-driven transporters facilitate movement of specific small 

molecules such as amino acids and glucose. Pumps utilize the energy released by ATP 

hydrolysis to power movement of specific ions (red circles) or small molecules against their 

electrochemical gradient. Gradients are indicated by triangles with the tip pointing toward 

lower concentration, electrical potential, or both. 

 

1.3 Copper homeostasis in E.coli bacteria 

 
In  bacteria,  Cu  enters  the  periplasm  by  an  unknown  mechanism,  possibly  through  the 

porins,  OmpC  and  OmpF  [13, 14].  After  entering  the  cell,  Cu  is  bound  to  the  Cu 

chaperones, therefore there are almost no free Cu ions in the cytosol [15, 16].  The Cu 

chaperones,  for  example  CopZ  in Enterococcus  hirae, are  small  cytosolic  proteins 

which deliver  Cu  ion  to  Cu-transporting  ATPases,  and  to  Cu-dependent  enzymes. Cu 

chaperones will be discussed in details in section 1.5.1.  In E. coli, the CusCFBA system 

is exclusively found in Gram-negative bacteria that could export Cu+ outside the cell via 

the proton gradient across the inner membrane as an energy source [13]. The CusCFBA 

system includes four proteins, which are CusA, CusB, CusC and CusF. These proteins 

are  members  of  the  RND1  (resistance,  nodulation,  division)  or  CBA  type  of  efflux 

systems. Delivery of copper to the CusCFBA system may occur via the periplasm, the 

cytoplasm  or  the  copper-binding  chaperone  CusF  from  the  periplasm  [17].  Also,  it  is 

well known that CopA and CopB, which belong to the P1B- type ATPases, are exported 
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out of  the cells by energy produced by ATP hydrolysis [18, 19]. No intracellular copper 

chaperone has yet been identified in E. coli [13]. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.2. Copper homeostasis mechanisms in E. coli. 

Copper enters the bacterial cell through an unknown importer. The CusCBA system, RND-

driven tripartite complex, exports Cu+ from both the cytoplasm and the periplasm (via CusF) 

to the extracellular space. The CopA ATPase exports cytosolic copper across the inner 

membrane. CopB (or PcoB) has a putative function of exporting Cu2+ across the outer 

membrane [19, 20]. CueO, multicopper oxidase, oxidize periplasmic Cu (I); CusF, Cu(I)-

binding metallochaperone. 
 

1.4  P-type ATPase superfamily 

 
The P-type ATPase superfamily is a group of proteins that is involved in the transport of a 

variety  of  ions  (H+,  Na+,  K+,  Cu+,  Ca2+,  Mg2+,  Cd2+, Cu2+,  Zn2+,  etc.)  across  biological 

membranes by the energy produced from ATP hydrolysis. The key feature of pump, to be 

classified as a putative P-type ATPase, is the phosphorylation of an aspartate (D) residue 

found  in  the  amino  acid  sequence  DKTGT  motif  [21].  All  P-type  ATPases  are  multi-

domain  membrane  proteins  with  molecular  masses  of  70–150  kDa  [22].  Both  their 

carboxyl and amino termini face the cytoplasmic side of the membrane, so they all have 

an  even  number  of  transmembrane  segments.  Based  on  sequence  homology,  the 

phylogenetic  tree  of  conserved  core  sequences  in  159  P-type  ATPases  classifies  the 

proteins,  independent  of  the  organism  from  which  they  are  isolated,  into  five  major 

branches denoted type I-V ATPases (Fig. 1.3.). Each subtype is specific for a particular 
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substrate ion [23]. The PI group is divided into: PIA: bacterial Kdp-like ATPases and 

PIB or CPx-ATPases: soft transition metal ions transporters.  The PII group includes: 

Na+/K+ ATPases, H+/K+- ATPases sarcoplasmic reticulum (SR) Ca2+-ATPases, and 

plasma membrane Ca2+-ATPases, Group PIII are: H+ and Mg2+ transporters. Group PIV 

are eukaryotic enzymes that are involved in the transport of aminophospholipids lipid 

transporters. PV is a group with unknown substrate specificity.  

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 
 
 
Figure 1.3. Phylogenetic tree of the P-type-ATPase family.  
Subfamilies cluster according to their ion specificities: type IA, bacterial Kdp-like K+-
ATPases; type IB, soft-transition-metal-translocating ATPases; type IIA, sarcoplasmic-
reticulum (SR) Ca2+-ATPases; type IIB, plasma-membrane Ca2+-ATPases; type IIC, 
Na+/K+-ATPases and H+/K+-ATPases; type IID, eukaryotic Na+-ATPases; type IIIA, H+-
ATPases; type IIIB, bacterial Mg2+-ATPases; type IV, 'lipid flippases'; and type V, 
eukaryotic P-type ATPases of unknown substrate specificity. Representative gene products 
are color coded by species: green, genes from Arabidopsis thaliana; orange, Caenorhabditis 
elegans; grey, E. coli; dark blue, Homo sapiens; light blue, Methanobacterium 
thermoautotrophicum; yellow, Methanococcus jannaschii; purple, Synechocystis PCC6803; 
and red, Saccharomyces cerevisiae. The figure is adapted from [22] , and the classification 
is according to Axelsen and Palmgren [23]. 
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1.5 Structural aspects of P1B-ATPases 
 

P1B-ATPases are a subgroup of P-type ATPases that plays an important role in metal 

homeostasis in organisms including archea, bacteria, fungi, and Eukaryotes by selective 

transport of heavy metals such as Cu (I), Cu (II), Pb (I), and Co (II) across biological 

membranes. They are differentiated into at several subgroups with distinct metal 

selectivity: (P1B−1: Cu+, P1B−2: Zn2+, P1B−3: Cu2+, P1B−4: Co2+) based on their 

signature sequences which give the enzymes their characteristic metal selectivity [24]. In 

eukaryotes they play a role in metal micronutrient absorption, distribution and clearance. 

The two human P1B-ATPases, called Menkes (ATP7A; MNK) and Wilson (ATP7B; 

WND), exhibit around 60% amino acid sequence identity, and are both localized 

primarily in a trans-Golgi compartment.  In bacteria, the genes encoding copper-

transporting ATPases are named CopA and CopB, since disruption of the genes rendered 

the cells copper-dependent and copper-sensitive, respectively [25]. CopA and CopB from 

Enterococcus hirae share 35–40% sequence identity with the human Menkes and 

Wilson copper ATPases, respectively[26]. 

 

 The P1B-ATPases consist of eight transmembrane (TM) helices, of which three 

(TM6, TM7, and TM8) form the transmembrane metal-binding site, and four cytosolic 

domains: a heavy-metal binding domain (HMBD) at the N-terminus, an actuator domain 

(A-domain) between TM4 and TM5, phosphorylation and nucleotide-binding domains 

(PN-domain)  linking TM6 and TM7. Some other P1B-ATPases have additional C-

terminal metal binding domain (C-MBD) such as CopB of the archaeon Archaeoglobus 

fulgidus [27, 28]. In contrast, the Ca2+-ATPases have ten transmembrane helices of which 

the last four helices are missing in the CPx-ATPase, while two extra helices are found in 

the N-terminal part of CPx-ATPase. Therefore, the 4th-8th TMs of CPx-ATPase correspond 

to 2nd- 6th TMs of Ca2+-ATPase [29, 30].  Contrary to Ca2+-ATPase in which 

transmemebrane aspartate and glutamate residues mediate Ca2+ ion translocation [31], the 

P1B-ATPases have a putative transmembrane metal binding CPx motif: C (cysteine), P 

(proline) and x (cysteine, serine, or histidine) in the 6th TM [24]. Another feature of P1B-

type ATPases is the presence of N-terminal heavy metal binding domain (HMBD) which is 

missing in Ca2+-ATPase.  
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Figure 1.4. Topology diagram of LpCopA and SERCA. 

Both  ATPases  consist  of  three  similar  domains  architecture  facing  to  the  cytoplasm:  actuator 

(A)–,  phosphorylation  (P)- and  nucleotide  binding  (N) – domain.  LpCopA  consists  of eight 

putative  transmembrane  segments  (according  to  LpCopA  numbering  from  N-terminus  :  MA, 

MB/MB̀  and  1-6  ) [32].  Conserved  motifs  are  highlighted.    SR  Ca2+-ATPase  consists  of  10 

transmembrane  helices  (numbered) [33].  The  transmembrane  copper-binding  CPC  motif  of 

LpCopA  located  in  TM4. The HMBD  which  is  exclusively  located  in  the  N-terminus  of 

LpCopA is  replaced  by  a  long  tail  in  SR  Ca2+-ATPase.  The  P-domain  includes  a  conserved 

asparate residue responsible for phosphorylation in phosphoenzyme intermediates. 
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The  crystal  structure  of  CPx- ATPases  has been  solved  excluding the  metal-binding 

domain  due  to  weak  or  absent  electron  density  for  the  region [32],  for  instance  copper-

transporting  ATPase  LpCopA  from Legionella  pneumophila (PDB  ID:  3RFU; E2~P  and 

3B9R; E2P states) [32, 34], AfcopA from A. fulgidus (3J08 and 3J09)[35], zinc-transporting 

ATPase zntA  from S.  sonnei (PDB  ID:  4UMW  for E2~P  and  4UMW  for E2P  states) 

[36].  LpCopA  exhibits  a  significant  level  of  sequence  identity  with ATP7A/ATP7B 

reach 35.4 and 36.3% [37]. The Wilson and Menkes ATPases contain six CxxC motif 

sequences in the N terminus, while LpCopA has only one CxxC motif. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 1.5. Crystal structural model of CopA from Legionella pneumophila.  

The  cartoon  representation  shows  the  P-,  N-,  A-  domains in  blue,  red  and  yellow  colors, 

respectively.  The  crystal  structure  captures  the LpCopA in E2~P (PDB  ID:  3RFU).  The 

HMBD location is denoted by the dotted circle. The solid circle demonstrates the location of 

CPC motif,  metal binding site within the transmembrane helices in wheat color. MA, MB 

and MB̀ are in cyan color. 
 
 
 
 
 
 
 
 
 

Cytosol 

P-domain 

A-domain 

N-domain 

HMBD 
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1.5.1 Metal-binding domain and Cu-Chaperones 

Almost all P1B-type ATPases have a regulatory cytoplasmic metal binding domains in the 

N-terminus (N-HMBDs), C-terminus (C-HMBDs), or both. These domains, which are of 

much smaller size in comparison with other cytoplasmic domains, have the ferredoxin-like 

fold with metal binding-motifs which give them their characteristic metal-binding 

selectivity. HMBDs could be found with either His-rich sequence, such as in A. fulgidus 

CopB and E. hirae CopB or MxCxxC motif (x= amino acid residues) in CopA proteins.  

The number increases from one or two copper-binding domains in bacteria[25], yeast [38] 

and plants [39] to three in C. elegans [40], four in Drosophila [41], five in rat [42], and 

finally six in ATP7A and ATP7B of humans [43, 44]. Although the current structural 

information provides a good model for the transfer of copper between a copper chaperone 

and copper-binding domains of a target ATPase, but still actual function of this domain is 

conclusive. The biochemical data on HMBD function show that an impaired activity is 

typically observed when the HMBD is removed or the metal-binding (CxxC) motif is 

mutated [45]. It is thought that it may play a regulatory role [46] a pseudo-atomic mode 

suggests that the N-terminal MBD may be auto-inhibitory in the Cu-free state, leading to 

Cu-dependent regulation of CopA activity [47]. 

The copper chaperones, such as CopZ of B. subtilis and E. hirae, Atx1 of S. 

cerevisiae and Hah1 or Atox1 of mammalians, bind and deliver copper ions to 

intracellular compartments and insert the copper ion into Copper-transporting ATPases 

[48, 49]; they have a ferredoxin-like fold (βαββαβ) typical of proteins that bind inorganic 

ions or clusters, such as ferredoxins (Fe-S cluster proteins), nickel-responsive 

transcriptional factor (NikR), and bacterial mercury resistance protein (MerP) [50-52]. 

Bacterial cytosolic copper chaperone CopZ is a small protein (approximately 70 

residues) containing a metal binding MxCxxC motif, while both Atx1 and Atox1 have 

MxCxGC motif [53].  CopZ delivers copper to CopA for copper exporting and to CopY 

repressor protein in E. hirea for protein regulation [54].  

 

Several HMBD structures have been solved separately from the integrated Cu (I)-

transporting ATPase (Fig. 1.6). Strikingly, C-MBD monomers of A. fulgidus form a 

domain-swapped dimer structure, which has not been observed previously for similar 

domains [55]. 
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Figure 1.6. Structures of isolated metal-binding domains and Cu-chaperone. 

The  cartoon is represented  by  Pymol  and  UCSF  Chimera  software.  The  structures  are 

retrieved from PDB webpage. The spheres are denoted to copper ion.  
 

The mechanism of copper transfer between copper chaperones and CopA is unknown, 

but it is proposed to involve conserved MxCxxC sequence motifs in both the chaperone 

and N-MBD of Cu-ATPases. For instance, the structure similarity between BsCopA and 

BsCopZ of B. subtilis, suggests that the two proteins could interact one with the other as 

shown  in Fig.  1.7. The  conformation  variability of N-terminal  cysteine  of  the  CxxC 

CopAC-MBD 

A. fulgidus 
3FRY 

MNK 4th-MBD 

Homo sapiens 
2AW0 

Ccc2a N-MBD 

S. cerevisiae 
1FVS 

ZntAN-MBD 

E.coli 
1MWZ 

CupA (Cu-Chaperone) 
S. pneumoniae 
4F2E 
 

CopAN-MBD 

S. pneumoniae 
4F2F 
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motif in many copper transporting proteins suggests that this may be the cysteine which 

binds first to the copper (I) [56]. 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.7. Superimposition of HMBD and CopZ from Bacillus subtilis. 

Protein structures were retrieved from PDB. The HMBD (PDB ID: 1KQK) and CopZ (PDB 

ID: 1K0V)  are  in  yellow  and  salmon  colors,  respectively.  The  cysteine  residues  of 

C14xxC17  and  C13xxC16  motif  belong  to the HMBD  and  CopZ  structures,  respectively.  

Both sequences are copper loaded, but one copper ion was eliminated for simplifying.   

 

According to biochemical and spectroscopic data, both chaperone and target 

proteins bind Cu (I), which is coordinated by the two Cys residues in the MxCxxC 

sequence motif. Figure 1.8 shows a proposed mechanism of copper transferring 

between copper chaperone (e.g. Hah 1) and copper-binding site of a partner. 

 

F 

 

 

 
Figure 1.8. Proposed mechanism of copper ion transfer to Menkes and Wilson protein. 

Hah1 is in blue color, and the partner protein is in magenta. Figure is adapted from [57]. 

 
 
 
 
 
 

C1
 

C1
 C16 

C13 
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The crystal structure of LpCopA, illustrated a putative Cu transfer mechanism 

from cytosolic Cu-chaperone to the entry site of LpCopA. The MB` segment is kinked 

and forms an electropositive platform at the cytoplasm/membrane interphase. Therefore, 

it is suggested, based on electrostatic potential of cytosolic domains, that the positively 

charged platform in LpCopA serves as the docking site for both the Cu-loaded 

chaperone and HMBD in different manner as shown in Fig. 1.9. The chaperone in turn 

releases the Cu ion to the transiently ligating conserved Met and Glu of CopA, which 

form the entrance of the metal permeation path [30]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.9.A schematic model of CopZ/HMBD interaction mediates the allosteric Cu+-
ATPase regulation. 
A) the first Cu+ ion delivery from CopZ-like chaperones to the HMBD may facilitate 
opening the entry gate for the second Cu+ ion by oppositely charged areas (red, negative; 
blue, positive), and HMBD dissociation from the docking platform. B) When the HMBD is 
Cu+ occupied, copper chaperone may donate the second Cu+ to entry site to trigger the 
catalytic cycle. The figure is adapted from [30]. 

 

 

 

A               B 
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1.5.2  Phosphorylation-/Nucleotide-binding domains 

P-type ATPases transport metal ions across membranes in an ATP-dependent fashion. In 

solution,  the  enthalpy  of  the  ATP  decomposition  into  hydrated  ADP  and  inorganic 

phosphate  is  −20.5-31 kJ/mol,  with  a  change  in  free  energy  3.4 kJ/mol,  at  standard 

temperature and pressure [58, 59]; 40-60% of this enthalpy produces heat and the rest is 

used for other biological processes. The total quantity of ATP in the human body at any 

one time is about 0.1 mol. It cannot be stored and so it has to be recycled 2000 to 3000 

times during the day [60].  

 

The distinctive feature of P-type ATPases is the nucleotide-binding domain (N-

domain)  that carries the ATP-binding  pocket  and  the  phosphorylation  domain  (P-

domain)  where  a  covalent  phosphate  bond  intermediate  with an aspartate  residue is 

formed [47,  48].   These  domains  are  located  between  TM  helices  6  &  7  of  P1B-

ATPases.  The  N-domain  has  two  sequence  motifs  characteristic  only  to  members  of 

CPx-ATPase; the HP motif is present 34-43 residues from the phosphorylated aspartate 

and a protein kinase-like GxGxxG/A motif is found downstream in the same domain[29, 

32].  

 

 

 

 

- 

 

 

Figure 1.10.Crystal structure of PN domain derived from LpCopA structure. 

 The secondary structure is shaded by magenta for α-helix and yellow for β-sheet.  The AlF4- 

is  denoted  as  phosphate  analog  near  to  the  conserved  D426  residue  in  E2~P  state  of 

LpCopA (PDB ID: 3RFU). The cartoon structure is displayed by UCSF Chimera software. 

AlF4- 

D426 
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The role of the histidine in HP motif is ambiguous, the mutagenesis studies have 

reported that mutations of the residue affect ATP binding, retain significant ATPase 

activity in vitro [61, 62] and impair the phosphorylation, which suggests that the residue 

might participate in steps of the catalytic cycle other than ATP binding [61]. It is 

believed that the HP motif plays a role in the interaction of the N-domain with other 

cytosolic domains. The interaction between the HMBD with the PN domain is already 

reported to occur in a Cu (I)-dependent manner [47, 63, 64]. The GxGxxG/A motif has 

been demonstrated to interact with ATP in the nucleotide-binding pocket of protein 

kinases [65] and perhaps participates in the nucleotide binding in P1B-ATPases as well 

[66].  

 

The P-domain, belonging to the haloacid dehalogenase superfamily [67, 68], contains 

signature motifs for the auto(de)phosphorylation of a P-type ATPase.  The conserved 

aspartate side chain of the DKTG motif is covalently phosphorylated by γ-phosphate of 

ATP during the catalytic cycle [42]. The orientation of the attached phosphate is 

provided by a magnesium ion in the P-domain that interacts with the DKTG motif and 

the MXGDGXNDXP (Asp-703 and Asp-707 of Ca2+-ATPase) motif. This magnesium 

ion plays a key role for the energy transduction during the reaction cycle [69]. The 

sequence MXGDGXNDXP motif, found in the hinge region that connects the P- domain 

to N-domain might be responsible for the large rigid body movements during catalysis.  
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1.5.3 Actuator domain 

The A-domain is highly conserved among all members of the P- type ATPases (45% 

sequence similarity and 23% sequence identity, determined by averaging between Ca2+-

ATPase and archaeal CPX-ATPases) [70]. The actuator domain exists as a smaller loop 

(compared to the PN domain) between 4th &5th TM helices of PIB-type ATPases and 

separates from N-terminal HMBD by two transmembrane helices. In Ca2+-ATPase also a 

small portion of the N-terminal peptide adds to the A-domain which places in 2nd &3rd TM 

helices. 
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Chapter 1  Introduction and Background 

The common signature  sequences of A-domains  in  all  P-type  ATPases are  the 

conserved sequence  motif (S/T)GE(P/S) as  shown  in  Fig. 1.12  This  sequence  makes a 

loop, located  at  the  tip  of  a  solvent  accessible  loop  on  the  side  of  the  A-domain (Figure 

1.13). Several structural and biochemical studies revealed that the A-domain interacts with 

the  P-domain  during  enzyme  phosphorylation/de-phosphorylation  [32, 71],  with the  N-

domain upon ATP binding [72, 73] and associates with the HMBD [47, 74, 75].   

 

The  entire  A-domain, highly  mobile, undergoes  a  significant  rigid  body  movement with 

subsequent  rearrangement  of  TMs during  the  catalytic  cycle  This  arrangement regulates 

the  binding  and  release of metal ions [71, 76], The  A-domain comes  very  close  to  the 

phosphorylation site of the DKTG motif in the E2 and E2P states. 

In  the  E2P  state,  this  loop  appears  to  be  very  important  for  shielding  the  aspartyl 

phosphate from bulk water and meanwhile localizing the Glu residue of this loop in close 

contact to the bound Mg2+ next to the phosphorylation site of the DKTG motif [32, 77], 

facilitating a particular water molecule to attack the acylphosphate bond [32, 78, 79].   

 

 

 

 

 

 

 

Figure 1.13. Cartoon representation of A-domain of crystal LpCopA structure. 

 The secondary structure is shaded by magenta for α-helix and yellow for β-sheet. The  A-

domain consists of a 7 β-strand cores with 2 α-helices connecting the TMs. The structure (PDB 

code: 3RFU) is displayed by UCSF Chimera software. 

T277 G278 

E279 
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1.5.4 Transmembrane helices domain 

The transmembrane segments (TM helical segments) are connected to the cytosolic 

domains through five linker regions. The transmembrane domain of CPx-ATPases consists 

of eight hydrophobic putative helices. The structure of LpCopA shows that the six core 

helices share a principal organization as the first six helices of other P-type ATPases, in 

additional to the two PIB-specific helices (MA and MB) at the N-terminus. The MA 

interacts with TM2 and TM6, while the MB interacts with TM1 and TM2. The MB 

segment consists of two helices separated by a highly conserved glycine; membrane-

spanning helix (MB) and a perpendicular amphipathic helix at the cytoplasmic interface, 

MB′ (Fig. 1.4). Because of its positively charged residues toward the cytoplasmic 

environment, MB′ can form a putative docking platform for copper chaperones and 

HMBD.  Cytosolic copper chaperones interact with a structural platform in CopA and 

deliver copper into the ion permeation path; the putative Cu+ entry of LpCopA is formed 

by the three highly conserved residues, Met148 (M1), Glu205 (M2) and Asp337 (M4). The 

TM helical segments are connected to the cytosolic soluble domains “headpiece” through 

five linker regions.  The TM4 harbors the CPx motif, which forms a transient ion binding 

site by providing the amino acid side chain ligands for heavy metals as shown in Table 1.1. 

 
Table 1.1. Structural characteristics of each subgroup in the P1B-ATPase subfamily.  
Metal specificity of subgroup is shown in addition to the signature conserved sequences in 
transmembrane regions TM6-TM8 and N-MBD. Transmembrane signature motifs are 
shown as defined in [80]. 

Subgroup Metal specificity N-MBD TM6 TM7 TM8 

IB-1 Cu+/Ag+ CxxC CPC-x6-P N-x6-YN-x4-P P-X6-M-x2-SS-
x5-[N/S] 

IB-2 Zn2+/Cd2+/Pb2+ CxxC+ 
(Hx)n 

CPC-x4- 
S-x-P N-x7-K D-x-G-x7-N 

IB-3 Cu+/Cu2+/Ag+ H-rich CPH N-x5-GY-N- 
x4-P 

P-x6-MS-x-ST-
x5-N 

IB-4 Co2+ -- SPC-x6,7-P 
N 
at the cytoplasmic 
 end 

HEG-[G/S]-T-
x5-[N/S]-
[G/S/A] 

IB-5 unidentified -- TPCP-x5-P Q-x4-G-x3- 
S-x3-M 

P-x6-QE-x2-D-
x5-N 
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1.6 Catalytic Mechanism of P-type ATPases 
 

All P-type ATPases, including CPx-ATPases, undergo similar conformational changes during 

E1-E2 states based on experimental evidence [81, 82]. SERCA is the best characterized P-type 

ATPase up to date, used as a representative example for a P-type ATPase.  Figure 1.14 depicts 

an overview of all available crystal structures in the classical E1/E2 cycle of SERCA ATPase. 

The transport process is made up of a series of steps: ion binding, ATP hydrolysis, 

conformational changes in the protein, and ion release to the extracellular domain. Recently, 

the proposed copper transporting mechanism has been illustrated as well for LpCopA based on 

crystallographic data and MD simulation [30, 34].   

 

The Ca2+-ATPase in the E1 state has a high affinity for Ca2+ from the cytoplasmic side 

to form E1.2Ca2+ state and the enzyme undergoes a conformational change. In contrast, an 

enzyme in the E2 state has a low affinity for Ca2+ and the binding sites face the opposite side of 

the membrane. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 1.14 A cartoon illustrating the cytosolic domain arrangement in SERCA1 
during the reaction cycle. 
 P-, N- and A-domains stand for phosphorylation, nucleotide-binding and actuator domains. 
The diagram shows the rotation of the A-domain during the catalytic cycle. The figure is 
adapted from [83]. 
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ATP binds to the N-domain and occlusion of the ions occurs through 

conformational changes of the P-type ATPase (Ca2+-E1-ATP).  ATP binds near the hinge 

between the P-and N-domains and penetrates P-domain, so that the γ-phosphate of ATP 

and Mg2+ (or Ca2+) bind to the P-domain [83]. The N-domain tilts towards the P-domain 

to initiates the hydrolysis of ATP and formation of phosphoenzyme intermediate, “ADP-

sensitive phosphoenzyme” or “Ca2+ E1-ADP~P”.  The covalent phosphate binding triggers 

the opening of the membrane domain towards the extracellular/luminal side (E2P) and the 

A-domain rotates so that the conserved TGE loop is positioned close to the phosphor-

aspartate of the DKTG group which is exposed to a water molecule attack and 

dephosphorylate[79]. In E1·2Ca2+→E2P transition, the rotation of A-domain occurs in 

subsequent steps; first rotation is by ∼30° due to ATP binding and bending of the P-

domain, followed by 90° upon the E1P–E2P transition [83]. The two Ca2+ ions are 

delivered to the lumen in exchange for 2–3 luminal protons. The counter ions “protons” 

are released on the cytoplasmic side concluding a fully-functional cycle and ready for a 

new substrate export cycle (E2) [84].  Strikingly, Crystal structures of SERCA1a in 

several key catalytic states reveal that this enzyme can bind a nucleotide throughout the 

entire reaction cycle, either in a catalytic (E1) or a modulatory (E2) mode [85-87]. The 

two modes of ATP binding, catalytic or modulatory, can take place in the same pocket, 

but differ slightly [88-90]; the γ-phosphate of modulatory ATP is 9 Å away from the 

phosphorylation site. The modulatory ATP with low affinity accelerates the E2-E1 

transition [82]. 
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Figure 1.15. Post-Albers cycle of P-type ATPases.  

The transport cycle is exemplified from structural models of SR Ca2+-ATPase. The catalytic 

cycle starts with binding of Ca2+ to the E1 state of the ATPase. ATP binds to the N-domain 

to  form the  Ca2.E1.ATP  state  and  occludes  the  Ca2+ ion.  Upon  ATP  hydrolysis, the γ-

phosphate  of  ATP  is  transferred  to  the  aspartate  of  the  DKTG  motif  to  form  Ca2E1P, an 

ADP-sensitive  phosphoenzyme  intermediate.  The  A-domain  rotates  toward  the  P-domain, 
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causing rearrangement of TMs in E2P state, an ADP-insensitive phosphoenzyme 
intermediate. Thereby, Ca2+ ions are excluded and protons are involved in the E2P state. The 
A-domain dephosphorylates the aspartate residue and protons get released to the cytoplasm 
in the E2 state. Alternatively, the modulatory ATP binds to the N-domain from E2P to E2 
states according to [88-90]. The corresponding PDB-IDs of the different conformational states 
are identified by bold font. All structures are aligned to each other and displayed by PyMol 
program. The N-terminal loop, A-, P-, N-, TM domains are in wheat, yellow, blue, red and 
cyan, respectively. E2+SO4

2- state represents likely a phosphate ion before release into the 
bulk medium [72].  

 

In LpCopA, the copper chaperones deliver the first copper ion to the HMBD, thereby 

the interaction between the PN-domain and the HMBD is diminished to allow ATP 

binding to the N-domain. Next, the second Cu ion is delivered to the transmembrane 

metal-binding site in Cu+-E1-P~ADP to trigger the catalytic cycle [63, 82].  

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

 
Figure 1.16. Proposed catalytic and transport cycle of Cu+-ATPases.  
CopZ chaperone delivers cytoplasmic Cu+ ion binding to trigger the copper-transporting 
cycle. Discontinued lines indicate proposed steps in the cycle. PCh indicates a 
hypothetical periplasmic Cu+-chaperone/acceptor. The figure is adapted from [82]. 
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Aim of this study 
 

The Cu (I)-transporting ATPase (CopA) plays a key role in cellular copper 

homoeostasis and its malfunction causes severe diseases such as Wilson and Menkes 

diseases in human.  Copper pumps consume ATP molecule as an energy source through 

its cytosolic domains interaction for transporting copper across cell membranes. Till 

nowadays, the entire structure of Cu-ATPase (including the cytosolic heavy-metal 

binding domain (HMBD)) is not available and the function role of HMBD in the 

catalytic ATPase cycle is still unknown. Recently, the crystal structure of HMBD-

truncated CopA from Legionella pneumophila (LpCopA) was determined in transition 

E2~P and E2P states. The Molecular Dynamic (MD) simulation on the same protein 

shows a unique ion pathway in which the water molecules penetrate the transmembrane 

metal-binding site in E2~P.  

This study aims at: 

1- Improving our understanding of the cytosolic domain interactions in Cu+-

ATPase, driving ATP binding, hydrolysis, phosphorylation, and copper 

transport. 

2- Studying the structural and functional properties of LpCopA and its 

cytosolic domains and providing structural insights into the transmembrane 

helical domain. 

3- Investigating the role of HMBD in the catalytic turnover and addressing the 

question of whether the HMBD plays an inhibitory role, an activating role or 

both. 

4- Studying the domain-domain interactions using synthetic model peptides 

combining with circular dichroism and time-resolved fluorescence 

spectroscopy. 

5- Investigating the water accessibility and mobility of the transmembrane 

metal-binding site using time-resolved fluorescence spectroscopy. 

Examining the validity of MD study of LpCopA using site-directed 

mutagenesis and site-specific fluorescent labeling in combination with 

Time-Correlated Single Photon Counting (TCSPC) technique.  
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Chapter 2 Materials and Methods 
  

2.1 Materials 
2.1.1 Culture Media and Antibiotics  

Luria Bertani Medium (LB) medium: 

• 20 g/l bacto-tryptone 
• 5 g/l yeast extract 
• 5 g/l NaCl 

SOB medium 

• 20 g/l bacto-tryptone 
• 5 g/l yeast extract 
• 0.5 g/l NaCl 
• 0.186 g/l KCl 
• 10 mM MgCl2 
• 10 mM MgSO4 

Heat sterilize the medium and add sterile MgCl2 and MgSO4 just before use. 

 
2x YT medium 

• 16 g/l Bacto-Tryptone.  
• 10 g/l Bacto Yeast Extract.  
• 5 g/l NaCl.  

 
Adjust pH to 7.0 with 5N NaOH.  
 
 
Antibiotics 
 
If not otherwise noted antibiotics were applied at the following concentrations: 

• 100 µg/ml  Ampicillin  
• 500 µg/ml Kanamycin  
• 500 µg/ml Chloramphenicol  

 
LB-plates 

1 liter of LB medium supplemented with 15 g agar were autoclaved, and cooled to 50 °C 

under stirring. If desired, antibiotics were added from a stock solution. Finally the 

mixture was poured into petri-dishes and allowed to harden at RT. 
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2.1.2 Oligonucleotides and Vectors 

Table 2.1. List of PCR primers, vectors and the fusion tags. 
Domains Purification 

tag 
Vector Primers 
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N-term 6x His  pProExHTa Fw_Eco_PN 

5’ATTGAA TTCATGGCACAGAGC GGTGTTCTG 
Rev_xho_PN  
5’ATT CTC GAG TTA GCT CAG ACG ACG TGC TT pET28a 

N-term Strep-
tag II 

pET-51b Ek-
LIC 

Fw_lic_PN  
5’ACGACGACAAGATGGCACAGAGCGGTGTTCTGA 
Rev_lic_PN  
5’GAGGAGAAGCCCGGTTAGCTCAGACGACGTGCT
TT 

N-term Strep-
tag&  C-term 
10x His tag 

Fw_lic_PN  
5’ACGACGACAAGATGGCACAGAGCGGTGTTCTGA 
Rev_lic_noStop_PN  
5’GAGGAGAAGCCCGGTGCGCTCAGACGACGTGCT
TT 

C-term 10x 
His tag 

Mod_pET-
51b 

The  codon-optimized DNA sequence of PN domain 
inserted in Mod_pET-51b was synthesized by GeneArt® 

PN
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 Fw_PN_L466Y 
5'GGAACATCAGAGCGAACATCCGTATGCAAATGC
AATTGTTCATGCAG 
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N-term 6x His  pET28a Fw_Eco_A-domain 
5'ATTGAATTCATGAAAGCTCGCGAACAAACG 
Rev_xho_A-domain 
5'TATCCTCGAGTTATCGCTGAATCGGCGCAC 

N-term 
Strep-tag II 

pET-51b Ek-
LIC 
 

Fw_Lic_A-domain 
5'GACGACGACAAGATGAAAGCTCGCGAACAAAC
G 
Rev_Lic_A-domain 
5'GAGGAGAAGCCCGGTTATCGCTGAATCGGCGCA 
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N-term 
6x His  

pET28a Fw_I281W_A-dom 
5'TTACCGGTGAACCGTGGCCGGTTGCAAAA 
Rev_I281W_A-dom 
5'TTT TGC AAC CGG CCA CGG TTC ACC GGT AA 
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N-term 
Strep-tag II 

 
pET-51b Ek-
LIC 
 
 

Fw_Lic_MBD 
5'GACGACGACAAGATGAAACACGACCACCA 
Rev_Lic_MBD 
5'GAGGAGAAGCCCGGTTAATCAAGATATTCA GG 
 
 
 
 
 
 
 
 

 
 

Page | 25  
 



Chapter 2  Materials and Methods 

Table 2.1. (Cont.). 
Proteins Purification 

tag 
Vector Primers 

L
pC

op
A

 

N-term 
 6x His tag 
 
 

pProExHTa 
 
 

Fw_CopA 
5' ATC GAA TTC ATG AAA CAC GAC CAC 
CAT CAA GGA 
Rev_CopA 
5'ATTCTCGAGTTACAGGGTCACACGTTTC
AG 

L
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A
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B
D
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Lp
C
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A
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Fw_CopA∆MBD 
5'ATG GAA TTC ATG GTT AGT CCG GAA 
TAT CTG 
 

 
C-term  
10x His tag 

mod pET-
51b 
 
(the DNA 
sequences of 
Strep-tag and 
EK in pET-51b 
Ek-LIC vector 
are replaced 
with EcoRI 
recognition site 
while XhoI 
recognition site 
is inserted 
prior to 5`-end 
of 10x His-tag) 

Fw_CopA∆MBD 
5'ATG GAA TTC ATG GTT AGT CCG GAA 
TAT CTG 
Rev_CopA 
5'ATTCTCGAGTTACAGGGTCACACGTTTC
AG 
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Fw_C384S  
5'TGATTATTGCATGTCCGAGCGCACTGGG
TCTGGCAAC 
Rev_CopA 
5'ATTCTCGAGTTACAGGGTCACACGTTTC
AG  
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2.1.3 DNA constructs  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.1. DNA constructs used for expression of LpCopA and its cytosolic domains.  
The labels indicate the names of plasmids and the inserts. 

pProEx-HTa_LpCopAΔHMBD 
7165 bp 

pProEx-HTa_LpCopA 

6903bp 

pET51b(+)EK_LIC_PN domain 
5986bp 

pET51b(+)EK_LIC_HMBD 
5416bp 

 

mod_pET51b(+)syn PN 
domain 
5989bp 
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2.1.4 Common buffers 

The most common buffers are listed here: 
 
PBS buffer  
50 mM NaH2PO4 pH 7.4 
100 mM NaCl  
1 mM EDTA 
 
Buffer A 
50 mM Tris-HCl pH 7.5, 
200 mM NaCl 
1mM MgCl2   
30 mM Imidazole 
10% glycerol 
 
Buffer B  
50 mM HEPES-NaOH pH7.4 
200 mM Na2SO4 
50 mM K2SO4  
3 mM MgSO4 

20 % glycerol 
0.05 %DDM 
50 mM imidazole 
 
Buffer C  
50 mM Tris-HCl pH 7.4 
50 mM NaCl 
1 mM MgCl2 

 
 
 
 
 
 
 
 
 

 
 
 
 
Buffer W 
100 mM Tris-HCl pH 8.0 
150 mM NaCl  
1 mM DTT 
1 mM EDTA 
 
Buffer E 
100 mM Tris-HCl pH 8.0 
150 mM NaCl  
1 mM DTT 
1 mM EDTA 
2.5 mM D-desthiobiotin 
 
Assay buffer A  
30 mM Tris-HCl pH 7.5 
100 mM NaCl 
5 mM MgCl2 
 
Assay buffer B 
30 mM HEPES-KOH pH7.4 
100 mM KCl 
3 mM MgCl2 
1 mM β-mercaptoethanol 
0,05 % DDM 
1 mg/ml Asolectin 
100 μM CuSO4 
 
Assay buffer C 
50 mM Tris-HCl pH 7.4 
100 mM KCl 
1 mM MgCl2 
10% glycerol 
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2.2 Molecular cloning methods  
 

2.2.1 Oligonucleotides design 

Polymerase chain reaction (PCR) primers were designed with the aid of online software 

e.g. (http://www.bioinformatics.org/sms2/pcr_primer_stats.html and 

http://www.basic.northwestern.edu/biotools/OligoCalc.html). The primers that were 

selected satisfied the General Guidelines for Standard PCR Primers outlined in the Taq 

PCR Handbook. Primers were synthesized by Eurofins MWG Operon, Germany. 

Lyophilized primers were dissolved in a small volume of autoclaved MilliQ water to make 

a 100 pmol/μl stock solution. Aliquots of working solutions containing 10 pmol/μl were 

prepared to avoid repeated thawing and freezing. Store all primer solutions at –20 °C. 

2.2.2 Polymerase chain reactions 

Unless stated otherwise, the following conditions were constant for all PCRs and the solutions 

were from the QIAGEN Phusion® High-Fidelity DNA Polymerase Kit (Catalog number 

M0530S). The reaction was set up as described in the following: 

 
Table 2.2. The components of PCR reaction. 
 

 50 µl FINAL 
COMPONENT REACTION CONCENTRATION 

Nuclease-free water to 50 µl  
5X Phusion HF Buffer 10 µl 1X 

10 mM dNTPs 1 µl 200 µM 
10 µM Forward Primer 2.5µl 0.5 µM 
10 µM Reverse Primer 2.5 µl 0.5 µM 

Template DNA variable < 250 ng 

Phusion DNA Polymerase 0.5 µl 1.0 units/50 µ1 PCR 

 
Precautions were taken to limit the PCR contamination or to detect any 

contamination that may occur. All PCR components were divided into smaller aliquots in 

fresh sterile tubes. The master mixes were prepared in a DNA-free environment using 

aerosol resistant tips and pipettors dedicated only to setting up PCR master mixes. All 

microfuge tubes were also from a sterile stock dedicated to making PCR master mixes. A 

negative control that contained no template was included in every set of reactions. When 
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appropriate, an additional negative control containing a template, such as an empty vector, 

was included to check the specificity of primers. 

Polymerase chain reactions (PCRs) were carried out using a T1 Thermocycler 

(Biometra, Göttingen). An initial annealing temperature of T1=55-65 °C was increased 1 

°C per cycle over 10 cycles, followed by 20 cycles at a constant annealing temperature of 

T2=60-70 °C depending on the primers used. 

 

Table 2.3. Touch-up PCR protocol 
 

Temperature Time Cycle No. 
Initial denaturation 94 °C 5 min 1 

Denaturation 94 °C 30 s 10 
Annealing T1+= 55 

+1 °C/cycle 45 s  

Elongation 72 °C 90 s  

Denaturation 94 °C 30 s 20 
Annealing T2 45 s  

Elongation 72 °C 90 s  

Final Elongation 72 °C 10 min 1 
Store 4 °C ∞ 1 

   
  

2.2.3 Agarose gels 

Agarose gel electrophoresis was used for the analysis of restriction and PCR products, and 

the preparative purification of DNA fragments. Agarose gels were made with 1x TBE and 

contained between 0.8 and 2.0% agarose. The percentage of agarose used in each gel 

varied with the expected size and desired resolution of the nucleic acid product(s); 

generally the concentration of agarose was increased as the expected size of the product(s) 

decreased. The agarose gels were all run in freshly diluted 0.5x TBE at 130 V ( Voltage). 

Before loading, DNA samples were mixed with 6x loading dye. λ-DNA/Eco130I was used 

as DNA marker. DNA was visualized using a standard ultraviolet transilluminator. 

2.2.4 Gel extraction 

The amplified PCR products were purified from agarose gels using the Wizard® SV Gel 

and PCR Clean-Up System Kit (Promega Catalog number A9281). The gel extraction 

carried out according to manufacturer’s protocol. 
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2.2.5 DNA Cloning 

 
All DNA constructs were prepared using restriction enzyme cloning except pET51b- 

Ek/LIC vector prepared by Ligation independent cloning (LIC). 

 

2.2.5.1 Restriction enzyme digestion 
 
Purified PCR products and the target vector were digested by EcoRI/XhoI restriction 

enzymes. In a sterile 500-µl microfuge tube, 5-7 µg DNA was mixed with 2.5 µl of each 

restriction enzyme (NEB), 5 µl of 10X restriction enzyme buffer, 0.5 µl of 100X BSA  

and sterile water to 50 µl at 37 °C for 2-4 h. The reaction was stopped by heat 

inactivation at 65 ˚C for 20 min. Desired fragments were separated by standard agarose 

electrophoresis and eluted as described above.  

2.2.5.2 Ligation 

Vector and fragment (1:2 molar ratio) were mixed with 2 µl of 10X ligation buffer 

and 20U T4 DNA ligase (NEB) in a final volume of 20 µl and incubated overnight at 

18 °C. 

2.2.5.3 Ligation independent cloning (LIC) 
 

PCR products were ligated into pET-51b Ek/LIC according to the manufacturer’s 

protocol  (Novagen Ek/LIC Cloning  kit, catalog number 71570-3)  
 

2.2.6 Site-directed mutagenesis  

Site-directed mutagenesis was performed either by a mutagenesis kit or overlap 

extension PCR method.  The QuikChange Lightning Multi Site-Directed Mutagenesis 

Kit was used according to the manufacturers’ instructions. Site-directed mutagenesis by 

overlap-extension PCR has been described in [91]. The two separated PCR reactions 

produced two overlapping fragments of the original template, both containing the 

mutation within the overlap region. These fragments then needed to be purified from 

template DNA by agarose gel electrophoresis and subsequent extraction from the gel. At 

the second stage, these two PCR products were annealed to generate the entire fragment 

with the mutation. The flanking primers contain the restriction sites for ligating the 

fragment into the desired vector. 
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Figure 2.2. Strategy used to introduce mutations via overlap extension PCR.  
The diagram was taken from [91].  

 

2.2.7  The production of competent Escherichia coli cells 

Competent cells were produced according to Inoue et al. [92]. An LB plate was streaked 

from a E. coli strains glycerol stock and incubated overnight at 37 °C. An isolated colony 

from this plate was used to inoculate 5 ml of LB liquid medium that was then incubated 

overnight at 37 °C and 250 RPM. One hundred µl of this overnight culture was used to 

inoculate 125 ml of SOB liquid medium in a 500 ml flask. The inoculated SOB was then 

grown at 25 °C and 200 RPM until it reached an OD600 of 0.4-0.6. The culture was 

rapidly cooled on ice for at least 10 min, then cells were collected by centrifugation for 10 

min at 3000 x g and 4° C.  

The pellets were resuspended in a total of 25 ml of fresh TB and  chilled on ice for 

10 min, then centrifuged for 10 min at 3000 x g and 4 °C. The pellets were then 

resuspended in a total of 4.7 ml of TB and pooled. The pooled mixture was swirled as 350 

µl of DMSO was added. This mixture was divided into 50 µl aliquots that were shock- 

frozen in liquid nitrogen and stored at -80  C. A number of precautions were taken to help 

produce highly competent cells. All glassware was washed, rinsed thoroughly, and 

sterilized before use. All reagents and medium were prepared immediately before use. 

When appropriate, all solutions and tubes were chilled before use. Whenever possible, 

manipulations were performed in the laminar flow hood. 
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2.2.8 Transformation of competent Escherichia coli DH5α cells 

Both ligation mixtures or  intact plasmids were transformed into competent E. coli cells, 

DH5α for DNA cloning and BL21(DE3) (Invitrogen) for overexpression. Competent cells 

were thawed on ice and 5-10 µl of the ligation mixture or 5 ng of intact plasmid was 

added to the cells that were then left on ice for 15 minutes. The cells were exposed to a 42 

°C heat shock for 45 seconds and then transferredon ice for at least 5 min. 200 µl of LB 

broth was added to the cells and they were incubated with shaking at 37 °C for 1 hour. 

Microcentrifuge tubes were centrifuged for 1 min at 5,000 rpm in a microfuge centrifuge, 

and then 150 μl of the supernatant were removed and the cells resuspend in the remaining 

medium. The cell suspension was plated out on a LB agar plate containing the appropriate 

antibiotic and incubated overnight at 37 °C. Negative controls containing only competent 

cells and ligation control were always setup. 

2.2.8.1 Glycerol stocks 
 
Glycerol stocks were created to maintain each E. coli strain that had been transformed 

with a vector of interest. All glycerol stocks were made by mixing 0.5 ml of a sterile 

glycerol/LB liquid medium solution (1:1) with 0.5 ml of an overnight culture made of a 

single colony. The mixture was partitioned into sterile microcentifuge tubes, frozen with 

liquid nitrogen, and stored at -80 °C. 

 

2.3 Molecular biological methods 
2.3.1 Expression of recombinant proteins  

Recombinant proteins were commonly expressed either in E. coli BL21 (DE3) Gold 

or OverExpress C43(DE3)pLysS (lucigen).  The cells were grown in 2x YT media 

with 50-100 µg/ml appropriate antibiotics at 37 °C untill they reached an OD600 of 

0.6 for the expression of cytosolic LpCopA domains and an OD of 1 for membrane 

protein expression. The expression started by the addition of IPTG at a final 

concentration of 0.5 mM (overnight at 18 °C).  Cells were harvested at 10,000 xg, 

resuspended in PBS buffer (50 mM NaH2PO4, 100 mM NaCl and 1 mM EDTA) and 

again harvested at 10,000 xg. The cell pellet was frozen at -20 °C. 
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2.3.2 Purification of His-tagged Cytosolic domains  

All procedures were performed at 4 °C unless stated otherwise.  Frozen cells from 2l 

culture were suspended in 40 ml of buffer A (with 20 µg/ml DNaseI, 1 mM 

phenylmethylsulphonyl fluoride and 1x protease inhibitor cocktails (Sigma)) using a 

homogenizer. The cells were disrupted by 5 pass cycles through Microfluidizer M-110L 

at 16,000-18,000 p.s.i. The total cell lysates were centrifuged at 20,000 xg for 30 min, 

and the supernatant was filtered through 0.2 µm nitrocellulose filters to remove large 

aggregates before applying it to 2 ml of Ni-NTA Superflow resin slurry (Qiagen), pre-

equilibrated with buffer A. The column was washed with 20 CV (column volumes) of 

buffer A, followed by vertical mixing with 5 CV of wash buffer A plus 10 mM MgCl2 

and 5 mM ATP for 20 min to remove DnaK.  Finally, the column was washed with 3 

CV of wash buffer A with 100 mM imidazole for C-terminal 10x His tagged protein and 

30 mM imidazole for N-terminal 6x His tagged protein. The bound proteins were eluted 

in buffer A with 0.3 M imidazole. 

To remove metal traces, 1 mM EDTA was added to the eluate before it was 

concentrated and exchanged  for 50 mM Tris-HCl pH 7.4, 200 mM NaCl, 1 mM MgCl2 

and 10% glycerol using PD-10 desalting columns (GE Healthcare). The protein samples 

were divided into aliquots, flash-frozen in liquid nitrogen and stored in -80 °C. The 

protein purity was analyzed on 13% or 15% SDS-PAGE.  

2.3.3 Purification of Strep-tagged cytosolic domains 

The Strep-tagged cytosolic domains were purified in 1 ml Strep-Tactin Superflow slurry 

(IBA GmbH, Göttingen, Germany) according to manusfacture`s protocol [93]. The 

cleared lysates in buffer W were applied to the column equilibrated previously with the 

same buffer. The column was washed with 5 CV of buffer W to remove unbound 

proteins before the bound protein was eluted 6 times with 0.5 ml of buffer E (buffer W 

with 2.5 mM D-desthiobiotin). In the HMBD purification, mixtures of chelating agents 

(50 mM EDTA and 10 mM EGTA) and reducing agents (20 mM DDT and 5 mM 

TCEP) were added to the cell lysate. 
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2.3.4 Anion-Exchange Chromatography 

The anion exchange purification was carried out only for the PN domain. The protein 

was dialyzed twice for overnight against buffer C (50 mM Tris-HCl pH 7.4, 50 mM 

NaCl, 1 mM MgCl2). The eluate was applied to a (CV= 1 ml) monoQ HR10/10 anion 

exchange column (GE-healthcare, Hamburg), pre-equilibrated with the buffer C. After a 

10 CV washing step, the protein was eluted by applying a linear salt gradient from 0.05-

1 M NaCl over 20 CV (flow rate 1 ml/min) and fractionated to 1ml.  

2.3.5 The solubilization of membrane proteins 

The protein expression and cell disruption of membrane proteins (LpCopA, 

LpCopA∆HMBD and C384S mutant) were carried out as described above in sections 

2.3.1 and 2.3.2 except the buffer B with 20 µg/ml DNaseI, 1 mM 

phenylmethylsulphonyl fluoride and 1x protease inhibitor cocktails (Sigma) was used 

instead. 5 mM β-mercaptoethanol (β-ME) was added for LpCopA purification only.  

The total cell lysates were centrifuged at 10,000 xg for 15 min. 

The solubilization was done either by addition of DDM to membrane pellet or 

directly to clear lysate as descried below.  In the solubilization protocol established in 

our lab, the lysate supernatant  was centrifuged at 200,000 xg at 4 °C in a T647.5 rotor 

(Sorvall ultracentrifuge) for 1h, the membrane pellet was suspended in buffer B and 

solubilized by addition of solid DDM at 1% final concentration with gentle stirring for 

60 minutes.  Unsolubilized material was removed by ultracentrifugation at ~165,000 xg 

for 1 h at 4 °C. While, in the direct solubilization protocol, the supernatant of cell lysate 

was gradually titrated with 5% DDM solution till obtaining relatively clear solution (up 

to ~0.5% DDM, final concentration) and finally filtered by 0.2 µm nitrocellulose filter.  

2.3.6 Purification of membrane proteins 

The solubilized membrane proteins were applied to a pre-equilibrated 1 ml HisTrap HP 

column (GE Healthcare) at a rate of 1 ml/min and subsequently washed with 5 CV of 

buffer B with 0.5% DDM, 20 CV buffer B and finally 5 CV of buffer B plus 50 mM 

imidazole. Bound proteins were eluted with 400 mM imidazole and the buffer was 

exchanged with buffer B without imidazole before freezing as 300 µl aliquots in liquid 

nitrogen for storage at -80 °C.  
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2.3.7 Reconstitution of membrane protein in lipid 

Proteoliposomes of LpCopA∆HMBD and C384S mutant were prepared with 

modifications as indicated in [94]. 50 mg Asolectin lipid was dissolved in 

Chloroform/Methanol (2:1) and dried under N2 gas stream for 2 h to remove organic 

solvent traces. The lipid was resuspended in pre-heated buffer of 50 mM HEPES pH 7.4 

above the phase transition temperature (60 °C) to a final concentration of 25 mg/ml. 

MLVs were prepared by 11 freezing/thawing cycles and followed by extruding 20 times 

through 0.1 µm polycarbonate membrane (Avanti Polar Lipids, Inc.) to form LUVs.  

LUVs solution was diluted in 50 mM HEPES pH 7.4 and 20% glycerol to a final 

concentration of 2.5 mg/ml and supplemented with 10% Triton X-100 at a 

detergent/lipid ratio of 3:5 (wt/wt). Purified BADAN-labeled LpCopA∆HMBD and 

C384S mutant were added to lipid at a ratio of 1:50 (wt/wt; protein: lipid) at a final 

concentration of 0.05 mg/ml of protein. Bio-Beads SM2 was added as indicated, and the 

proteoliposomes were harvested at 42’000 rpm for 30 min at 4 °C. The pellets were 

resuspended in 50 mM HEPES pH 7.4 and 20% glycerol and stored at -80 °C. 

Incorporation of BADAN-labeled proteins was checked by SDS PAGE gel. 

2.3.8 SDS polyacrylamide gel electrophoresis (SDS-PAGE) 

One-dimensional SDS polyacrylamide gel electrophoresis (SDS-PAGE)  of proteins 

was carried out essentially as described in [95]. Buffers were prepared as follows: 
 
Separating gel buffer 
1.5 M Tris-Cl pH 8.8 
0.4 % (w/v) SDS 

Stacking gel buffer 
0.5 M Tris-Cl pH 6.8 
0.4 % SDS 
 

10x Running buffer  
0.25 M Tris-base 
2 M glycine 
1% (w/v) SDS 
 

3 x Sample buffer * 
150 mM Tris-HCl pH 6.8 
30% (v/v) glycerol 
10% (w/v) SDS 
0,05% (w/v) bromophenol blue  
10 mM DTT or ß-mercaptoethanol  
 

Staining solution 
0.025% (w/v) Coomassie brilliant blue 
G250 
 50% (w/v) methanol  
10 % (w/v) acetic acid 

Destaining solution 
30% (v/v) methanol  
10% (v/v) acetic acid 
 

*stored at -20 °C and rest at room temperature. 
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Table 2.4. Preparation of SDS-PAGE gels. 
 Separating Gel Stacking Gel 
% Acrylamide 11% 

 
13% 
 

15% 5% 
30% Acryl/0.8%Bisacryl-amide 

 
7.3 ml 8.5 ml 10 ml 1.3 ml 

Separating gel buffer 
 

5 ml 5 ml 5 ml - 
Stacking gel buffer 
 

- - - 2.5 ml 
ddH2O 10.3 ml 9.1 ml 7.6 ml 6.1 ml 
TEMED* 13 µl 13 µl 13 µl 10 µl 
10% Ammoniumpersulfate 67 µl 67 µl 67 µl 50 µl 
*: N,N,N’,N’-tetramethylethylendiamine (TEMED) 
 
 

Gels were composed as shown in Table 2.4. The proteins were separated using 

the BioRad Mini Protean 3 system. The gel was cast using two different layers of 

acrylamide concentrations. First, the components of the separating gel were poured into 

the space between two glass plates to a height of about 4 cm from the top of the glass 

plates and then covered by isopropanol to avoid contact with air until polymerization 

was complete. Isopropanol was then discarded and the stacking gel was poured over the 

separating gel up to the top of the glass plates. A comb was placed into the stacking gel 

which was left to polymerize. The gel cassette sandwich was covered with a wetted 

tissue and kept at 4 °C until use.  

 

Samples were diluted with 3x concentrated sample buffer and incubated for 5 

min at 90 °C prior to loading of the gels.  Electrophoresis was carried out at voltage         

(200 V) in 1x running buffer. After SDS-PAGE, gels were stained using a staining 

solution for around 1 h and destained by incubation in destain solution. 

2.3.9 Protein concentration determination  

Protein concentration was determined as described by Bradford (1976) [96].   Bradford 

reagent (BioRad) was mixed with the protein sample, incubated at RT for 5 min and 

absorbance was determined at 595 nm using a spectrophotometer. Samples containing 

known concentrations of bovine serum albumin (BSA) were used to generate a standard 

curve. The absorption is proportional to the amount of protein present in the sample. 

Also, protein concentration was spectroscopically measured using the extinction 

coefficient calculated from with the Expasy website (http://web.expasy.org/protparam/). 
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2.4 Biophysical and Biochemical analysis 
2.4.1 ATPase assay 

2.4.1.1 Fluorimetric enzyme-coupled ATPase assay 

 
In the presence of inorganic phosphate, the enzyme purine nucleoside phosphorylase 

(PNP, EC 2.4.2.1) can phosphorylate the fluorescent substrate 7-methylguanosine 

(m7Guo) to 7-methylguanine (m7Gua) which has a much lower fluorescent quantum 

yield. Therefore, the  PNP-catalyzed reaction can be coupled to an ATPase and 

phosphate production evaluated from a fluorescent decreasing in the following 

manner[97]: 

 

 

 

 

 

 

 

 
Figure 2.3. Reaction mechanism of 7-methylguanosine (m7Guo) phosphorylation by 
phosphate liberated from ATPase.  

 

 
PNP enzyme  (Sigma) was diluted to 30 U/ml and dialyzed  overnight against 20 

mM Tris-HCl pH 7.4 to remove additives from the enzyme. The PNP enzyme 

concentration was calculated by measuring absorbance at λ276nm using a millimolar 

extinction coefficient 42.3 mM-1 cm-1, while m7Guo substrate conc. was measured  at  

λ257nm and λ281nm with millimolar extinction coefficient 81 and 7.7 mM-1 cm-1 [98]. 

The assay was performed with a Perkin–Elmer LS-55 Luminescence Spectrometer. An 

assay mixture contained 100µM m7Guo, 0.5 µM nucleoside phosphorylase, 1 mM ATP 

in assay buffer A (30 mM Tris-HCl pH 7.5, 100 mM NaCl, 5 mM MgCl2). The buffer 

was equilibrated for 10 min until a constant fluorescence spectrum was obtained, 

symbolized as (F0). Then, PN domain was added in at a final concentration of 120 µg 

/0.5 ml to initiate the reaction. The decrease in fluorescence was recorded per 1 min at 
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380 nm (λex ~ 300 nm) over 20 min and the final spectrum denoted as (F). Finally, 1 

mM KH2PO4 was added to convert the rest of m7Guo to m7Gua, and the fluorescence 

value of m7Gua measured as (F∞) and subtracted from all fluorescence values. A 

standard curve of 1, 5, 10, 26 and 65 µM ATP concentrations was prepared as previous.  

The rate of fluorescence decay of m7Guo was calculated as following: 

 
 

 

 

2.4.1.2 Malachite green assay  

 
Alternatively, the malachite green assay was used as a classical ATPase assay described 

by Lanzetta et.al [93]. This method is based on the complex formation between 

malachite green, ammonium molybdate, and free orthophosphate (inorganic phosphate, 

Pi) under acidic conditions. Orthophosphate, liberated by an ATPase, forms a complex 

with ammonium molybdate in a solution of hydrochloric acid.  The formation of the 

malachite green phosphomolybdate complex, measured at 620-650 nm, is directly 

related to the free Pi concentration. The malachite green assay is rapid and very sensitive 

to nanomolar Pi concentrations, but the color development is influenced by some assay 

components (such as glycerol, SDS and DMSO) and pH change. The malachite 

green/ammonium molybdate reagent was prepared by addition of 3 volumes 0.045 % 

malachite green hydrochloride, 1 volume of ammonium molybdate (4.2 % in 4 M HCl), 

and 1/50 volume of 1 % Triton X-100 and left stand in dark for 1 hour before filtration 

through Whatman #2 paper. 

The reaction mixture (150 μl) contained 10–20 μg full length LpCopA in assay 

buffer B and 50-100 μg PN or actuator domains in assay buffer A. The reaction was 

initiated by 2 mM ATP for 20 min at 37°C and stopped by 20 mM EDTA. The 

inhibitory effect of actuator-derived peptides was measured by addition of various conc. 

of Act-1 (0, 25, 50,100 and 200 μM) to assay buffer B. 100 μl reaction mixture was 

mixed with 800 μl malachite green/ammonium molybdate reagent. After 1 min at RT, 

100 μl 34 % sodium citrate was added to stop the color development. Absorbance at 630 

nm was measured, and phosphate release was quantified by comparison to inorganic 

phosphate standards. 
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2.4.2 BCA Cu+ Assay 

2.4.2.1 Cu+ Loading to Proteins 
 

Cu+ loading of the HMBD was performed by incubating the protein in the presence of a 

5-fold molar excess of CuCl2, 25 mM HEPES-NaOH pH 8.0 and 10 mM ascorbic acid 

for 10 min at room temperature with gentle agitation. The unbound Cu+ was removed by 

passing through a PD-10 column. The blank was prepared as the following: the same 

amount of CuCl2 was added to the buffer instead of HMBD and loaded to PD-10 column 

to use the eluted CuCl2 traces as a blank. The amount of Cu+ bound was determined by 

the BCA method [99]. CuCl2 solutions were used as standards.  

2.4.2.2 Cu+-Binding Affinity 
 

The KD value of HMBD·Cu+ was determined by using a competition assay with BCA 

(Pierce) followed by colorimetric determination of the BCA2·Cu+ complex at 356 nm 

[93].  2 µl of 1mM CuCl2 was titrated into a 400 µl solution of 5 μM HMBD in 30 mM 

HEPES pH 7.3, 50 μM BCA and 1 mM ascorbic acid at RT. The color development was 

monitored at 356 nm. The standard curve of BCA2·Cu+ complex was prepared under the 

same conditions. 

2.4.3 Co-purification assay for domain-domain interaction study 

Using Micro-spin column (23 mm length x 4 mm diameter, Pierce), the Strep-tagged 

HMBD (2 nmol) in 30 mM HEPES-NaOH pH 8, 100 mM NaCl, 1 mM DTT and 1 mM 

ascorbic acid buffer was mixed with 10 µM Ammonium tetrathiomolybdate (TTM) or 

with 30 µM CuCl2 and loaded onto 50 µl Strep-Tactin resin, and washed with 4 CVs 

buffer to remove unbound HMBD and free Cu+. Afterwards, 2 nmol of A-domain or C-

term 10xHis-tag PN domain (±100 µM AppNp) were added to the column containing 

Cu+-loaded or Cu+-free HMBD, and followed by washing with 8 CVs buffer. Finally, 

the HMBD was eluted with two consecutive 50 µl of elution buffer (containing the 

washing buffer plus 5 mM D-desthiobiotin). Because of the close proximity in size 

between the HMBD (which forms a dimer) and the A-domain, all SDS samples obtained 

from co-purification were labeled with 0.5 mM BADAN (thiol-reactive dye) to 

distinguish between the A-domain (cysteine-free) and the HMBD (containing 4 

cysteines) bands under UV light. Thus the A-domain is visible only after Coomassie-
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blue staining but not under UV light. Each SDS-PAGE gel was exposed to the UV light 

prior to staining with Coomassie blue dye.  

 

The co-purification assay of the PN domain with the A-domain was also 

performed under the same conditions with some modifications. 6 nmol A-domain was 

loaded into 2 nmol of the dual tagged PN domain with N-term Strep and C-term 10xHis 

tags while it isbound to100 µl Strep-Tactin resin. The column washed twice with 4CV 

of 50 mM Tris-HCl pH 8, 100 mM NaCl, 1 mM DTT, 1% glycerol. 0.1 mM 

ATPγS/5mM MgCl2 was added to PN domain during binding to the column. The bound 

PN domain was eluted by adding 100 µl elution buffer (washing buffer with5 mM D-

desthiobiotin). 

 

2.4.4 Circular Dichroism measurements 

2.4.4.1 Secondary structure determination of cytosolic domains 
 

The PN and actuator domains (final concentration, 5 μM) were dialyzed twice against   

7 mM KH2PO4 pH7.4 buffer for overnight and filtrated using dialysis membrane (MW 

cut off 10kDa) .  The far-UV CD spectra of PN and A domains (260-178 nm) were 

measured at 25 °C in a 1 mm path-length cell using a Jasco J-815 Circular Dichroism 

Spectrometer. 400 μl proteins were supplemented with 2μl of 1M MgSO4, 5 mM 

AMPPNP or ATP, 5 mM ADP, 10 mMAct1 and 20 mM VO4. The measurement 

parameters were 50 nm/min scanning Speed, 3nm bandwidth, baseline correction and 3 

accumulations. 

 

2.4.4.2 Thermal stability of cytosolic domains with additives 
 

CD measurements of 5μM PN domain, dissolved in 1ml of 10 mM KH2PO4 pH 7.4 and 

3 mM MgSO4 buffer containing of 100 μM ATPγS, 50 μM Act-1 or both, were 

performed on a Jasco J-815 Circular Dichroism Spectrometer equipped with a 

temperature-controlling unit, using a 1 cm path-length cell with a magnetic stirrer. 
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To monitor thermal denaturation, CD spectra at 195-300 nm range were recorded 

at 2 °C steps, with increasing temperature from 20-91 °C at 2 °C/min with 1 nm 

bandwidth and 2s response time. Blank spectra of buffer solutions were subtracted from 

the PN domain spectra. At 222 nm, ellipticity was taken as a measure of the alpha-

helical content of the protein and plotted against temperature. 

 

2.4.5 Isothermal titration calorimetry (ITC) 

An isothermal titration MicroCalorimeter (VP-ITC, from Microcal Inc., Northampton, 

MA) was used to measure the enthalpy changes resulting from the association of the PN 

domain with ligands.  A typical titration involved 16 injections of 1.2 mM Act-2 (first 5 

μl/10 s and the rest 10 µl aliquots / 20 s), at 3 min intervals, into the sample cell (volume 

of 1.4359 ml) containing 50 μM PN domain in buffer C. All solutions were degassed 

prior to loading into the cell or syringe. The temperature of the solution in the titration 

cell was 25 °C and the solution was stirred at 307 rpm throughout the experiments. The 

resultant enthalpy changes were then analyzed using the inbuilt MicroCal Origin 

Version 7.0 to obtain the apparent dissociation constant, Kapp, and other thermodynamic 

parameters (∆H and ∆S). 

2.4.6 Cysteine accessibility assay of a CPC motif 

2.4.6.1 Fluorescent CPM Assay 
 
N-[4-(7-diethylamino-4-methyl-3-coumarinyl)phenyl]maleimide (CPM from Setareh 

biotech), a fluorescent thiol reactive dye, was dissolved in DMSO (Sigma) at 4 mg/ml as 

the stock solution. The stock solution was diluted to 250 μM in dye dilution solution (50 

mM Tris-HCl pH 7.4, 150 mM NaCl, 3 mM MgCl2 and 0.1% DDM) before use. The 

thiol reactivity assay was performed with total volume of 130 μl of 10 μM 

LpCopA∆HMBD or C384S samples in 50 mM Tris-HCl pH 7.4, 150 mM NaCl, 3 mM 

MgCl2, 5% glycerol 0.1% DDM, 1mg/ml asolectin and ± 50 µM Act-1 in a 1 cm path-

length quartz micro-cuvette (Hellma).  The reaction started by addition of 7.5 of the 

diluted dye to the protein solution and it was incubated for 20 min at room temperature. 

The mixed solution was excited at 387 nm and emission spectra in range of 400-550 nm 

was recorded every 1 min using a Perkin–Elmer LS-55 Luminescence Spectrometer.  
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2.4.6.2 Colorimetric 4-DPS assay 
 

Another experiment was used to investigate the cysteine accessibility of 

LpCopA∆HMBD using 4,4′-Dithiodipyridine (4-DPS from Sigma). When 4-DPS is 

reduced by thiols, it forms 4-thiopyridone (4-TP), which absorbs strongly at 324 nm.   

13 mM 4-DPS was dissolved in 95% ethanol and diluted to 2.5 mM in assay buffer 

before use. 50 μM 4-DPS was added to 5 μM LpCopA∆HMBD in 250 μl of 50 mM 

Tris-HCl pH 7.4, 150 mM NaCl, 3mM MgCl2, 0.1% DDM, 1mg/ml Asolectin and ± 50 

μM Act-1 in a 1 cm path-length cell (Hellma). The time course of 4-TP formation was 

monitored at 324 nm using Perkin Elmer Lambda 35 UV-VIS spectrometer. 

2.4.7 Steady-state Fluorescence measurements 

2.4.7.1 TNP-nucleotides affinity of PN domain 
 

Trinitrophenyl (TNP) nucleotides, i.e., fluorescent analogues of nucleotides, have been 

utilized as a valuable probe for examining the nucleotide affinity of the PN domain in 

other P-type ATPases. Here, 3 µM of PN domain in 500 µl of assay buffer C was 

titrated with 400 µM TNP-ATP (Jena Bioscience) or TNP-AMP at room temperature. 

The concentration of TNP-nucleotides was determined spectrophotometrically using an 

extinction coefficient of 25.0 and 18.5 mM-1 cm-1 at λmax 259 and 470 nm, respectively.  

Binding of TNP-nucleotides was observed by measuring the increases in fluorescence 

from 480-600 nm at excitation wavelength 405 nm. The same experiment procedure was 

used with assay buffer C without protein as a control and the result subtracted from all 

measurements. All titrations were carried out in 1.0 cm path length quartz cuvette. 

 

 

 

 

 

 

 

 
 
Figure 2.4. Structure of TNP-ATP at neutral or basic pH values. 
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2.4.7.2 Interaction of actuator-derived peptides with the PN domain 
 

The titration was carried out by measuring changes in Trp emission of Act-2 upon 

binding to the PN domain. The measurement was made using quartz cuvette containing 

130 µl of buffer C (50 mM Tris-HCl pH 7.5, 200 mM KCl, 1 mM MgCl2, and 10% 

glycerol) and constant concentration of Act-2 at 25 µM throughout titration. 

Fluorescence changes were monitored by recording emission spectra between 300 -400 

nm with excitation at 285 nm. 

The titration started by addition of equal volumes of PN domain and Act-2 to 

reach at 130 µl of 55 µM and 25 µM final concentrations, respectively.  Secondly, 50 µl 

of 25 µM Act-2 was added to dilute the PN domain to 40 µM.  Sequentially, 50 µl of 

reaction mixture was replaced by 50 µl of 25 µM Act-2. The concentration of PN 

domain was calculated throughout the titration. The same experimental scheme was 

repeated in the presence of 100 µM AppNp. 

2.4.7.3 Binding kinetics of actuator-derived peptides to the PN domain: 
Stopped-Flow Fluorescence 

 

The kinetics of the association of Act-2 with the PN domain was monitored by changes 

in the tryptophan emission intensity of Act-2 over the time. A tryptophan residue has 

been introduced in the actuator-derived sequence specifically for this purpose (see 

Chapter 6).  The time course of Act-2 emission was measured using a Perkin–Elmer LS-

55 Luminescence Spectrometer equipped with a SFA-20 rapid kinetic accessory from 

Hi-Tech Scientific. Equal volumes of Act-2 and PN domain were rapidly mixed with a 

dead time ~ 8ms to make final concentrations of 25 µM and 20 µM, respectively. The 

sample was constantly excited at 285 nm and the emission recorded at 335 nm with 

integration time and time interval of 20 ms. To measure the association in the presence 

of a non-hydrolyzable ATP analog, 200 µM AppNp was added to the PN domain prior 

to rapid-mixing with peptide Act-2. Three to four injections were averaged to generate 

the final traces. 

2.4.8 Fluorescence lifetime measurements 

The local environment around the conserved CPC motif in the TM-MBS of LpCopA 

was investigated by covalently labeling the thiol residues of the conserved motif with 

BADAN probe and measuring the time-resolved fluorescence of the bound dye using 
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TCSPC method. The labeling assay was carried out by two protocols as described below 

for LpCopA∆HMBD and C384S mutant.  

2.4.8.1 Labeling of LpCopA∆HMBD and C384S mutant with BADAN 
 

Initially, the kinetics of LpCopA∆HMBD and C384S mutant reactivity with the Cys-

reactive fluorophore BADAN was measured by addition of equivalent volumes of 10 

µM LpCopA∆HMBD or C384S mutant and 27 µM BADAN (Molecular Probes), pre-

incubated in buffer (50 mM Tris-HCl pH 7.4, 150 mM NaCl, 3 mM MgCl2 and 0.3% 

DDM) for at least 1hr prior to the reaction. The reactivity was monitored by measuring 

emission spectra of BADAN between 410-700 nm at excitation wavelength 390 nm for 

20 min.  

2.4.8.2 On-column BADAN labeling of LpCopA∆HMBD and C384S mutant 
 

As described in section 2.3.6 and before elution, the LpCopA∆HMBD and the C384S 

mutant bound to the Ni-NTA column were washed with 10 CV of 20 µM BADAN in 

buffer B at 0.5 ml/min followed by 50 CV of buffer B to remove excess BADAN. The 

BADAN removal was checked by measuring emission spectra between 410-700 nm 

(λ3exc = 390 nm) in the washing fractions. Bound proteins were eluted with 400 mM 

imidazole and concentrated using Vivaspin 500 membrane 10,000 MWCO (Sartorius 

AG, Germany) before loading them on a disposable PD-10 desalting column (GE 

Healthcare) to remove imidazole. Protein were frozen in 300 µl aliquots in liquid 

nitrogen and stored in -80 °C. The BADAN-labeled proteins were reconstituted into 

lipid bilayer of Asolectin as described in section 2.3.7. 

2.4.8.3 Time-Correlated Single Photon Counting (TCSPC) measurements 
 

TCSPC measurements and analyses were carried out by Mr. Petr Pospisil, at Prof. 

Martin Hof’s lab. Stationary emission spectra were obtained on Fluorolog-3 

spectrofluorometer (model FL3-11; HORIBA Jobin Yvon) equipped with a Xenon-arc 

lamp. All spectra were collected in 1 nm steps (2 nm bandwidths were typically chosen 

for both the excitation and emission monochromators). Time-resolved fluorescence 

decays were measured using the time-correlated single photon counting technique on an 

IBH 5000 U SPC instrument equipped with a cooled Hamamatsu R3809U-50 
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microchannel plate photomultiplier with 40 ps time resolution and time setting of 14 ps 

per channel. Bandwidths for both the excitation and emission monochromators were set 

to 16 nm for the DDM measurements and for the proteoliposomes measurement 

bandwidths were set to 32 nm and 16 nm for excitation and emission monochromators 

respectively. In order to eliminate scattered light, a 399 nm cut-off filter was used. 

Samples were excited at 373 nm with an IBH NanoLED-11 diode laser (80 ps fwhm) 

with a repetition frequency of 1 MHz. The detected signal was kept below 20 000 counts 

per second in order to avoid shortening of the recorded lifetime due to the pile-up effect. 

Measurements were performed under magic angle in order to avoid anisotropy effect. 

Fluorescence decays were fitted (using the iterative reconvolution procedure with IBH 

DAS6 software) to a multiexponential function (eq. 1) convoluted with the experimental 

response function IRF ("prompt"), yielding sets of lifetimes τi and corresponding 

amplitudes Ai.  

( ) it
i

i
I t A e IRFτ−= ⊗∑

       (1) 
The effect of hydration and mobility of the environment can be estimated from 

the dynamic Stokes shift. Stokes shift is usually manifested as a time evolution of the 

maxima of the time resolved emission spectra (TRES). TRES is calculated from the 

intensity decays D(t,λ) and steady state emission spectra S0(λ) (eq. 2).   
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Chapter 3  
 
 

Expression, Purification and Functional characterization of 
Copper-Transporting ATPase and its Cytosolic domains 

from L. pneumophila 
 

Introduction 
 
PIB-type ATPases transport heavy metal ions against the electrochemical gradient across 

membranes using energy liberated from ATP hydrolysis. It consists of 4 cytosolic 

domains termed the HMBD (N-terminal heavy metal-binding domain), the A- 

(actuator), the P- (phosphorylation), the N- (nucleotide-binding) domains and 8 

transmembrane (TM) helices with a CPX or SPC motif at the 6th TM. The 

rearrangement of the cytosolic domains induces open–close movements of the TM 

helices. Several studies have used the isolated catalytic fragments of the copper-

transporting CPx-ATPase for studying their functional characterization and for 

determining their crystal structures due to the difficulties in crystallization of integral 

membrane proteins. Recently, the crystal structure of HMBD-truncated Copper-

transporting ATPase from L. pneumophila (LpCopA) has been determined in E2~P and 

E2P states [32, 100].  

 

Here, we expressed functionally the LpCopA and its cytosolic domains for 

further structural, biochemical and biophysical characterizations as it will be discussed 

later in Chapters 4-7.  Moreover, we developed and optimized a fluorometric ATPase 

assay for suiting the harsh assay conditions of heavy-metal transporting ATPases. 
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Results and discussion  

3.1 Expression and Purification of Cytosolic domains of LpCopA 
 
A) 
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 B) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1. The overview of the expressed cytosolic domains.   
A) The amino acid sequence of LpCopA. B) A schematic diagram of LpCopA structure. 
The cytosolic HMBD, A-, P- and N-domains in yellow denote to the heavy metal-binding 
domain, the actuator, the phosphorylation and the nucleotide-binding domains, respectively. 
Transmembrane helices (MA, MB and TM1-TM6) are in green. Both cysteines 384 and 382 
of TM-MBS locate at TM4.  The amino acid sequence of LpCopA retrieved from uniprot 
(Q8RNP6). The TM segments determined by DAS-TMfilter server and according to 
LpCopA crystal structure [32]. 
 

The cytosolic domains of P-type ATPases play a key role in the modulation of 

ion transport. The expression and biophysical characterization of the isolated cytosolic 

domains contribute to the understanding of their functionality as modules in the 

conformational transitions of the full length protein. During the Post-Albers cycle, the 

cytosolic domains rearrange in a specific manner to mediate the metal ion (de)occlusion, 

ATP hydrolysis and (de)phosphorylation steps. The experiments described in this part 

aim at over-expression and purification of these domains.  

 

The constructs will then be used to investigate their structure and possible 

autonomous interactions independently of the transmembrane part of the ATPase. This 

approach can give insight into the role of different domain interactions during the Post-

Albers- cycle. Furthermore, the expression and functional analysis of the isolated 

cytosolic domains are of conceptual importance for peptide interference studies 

performed in this work (see Chapter 6), where the synthetic peptides from an 

interdomain-binding epitope are used to disrupt interaction during the catalytic cycle. 

Obviously, the binding of such peptides would have to be demonstrated for the isolated 

cytosolic domain in the first place.  
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The cloning and purification will be described as well as the establishment of a 

fluorometric ATPase assay. The latter was chosen and optimized to allow measuring the 

ATPase activity in aqueous solution in both the absence and the presence of detergent, 

such that data could be obtained under identical conditions for the isolated cytosolic 

domains and the full length constructs of LpCopA.  

 

3.1.1 DNA cloning of cytosolic domains. 

 
Using touch-up PCR (TU-PCR) protocol in which PCR begins with an initial annealing 

temperature increasing by one degree with each cycle, the DNA sequences of the cytosolic 

domains, i.e. HMBD (250 kb), A-domain (390 kb) and PN domain (819 kb) were 

isolated from the codon-optimized DNA sequence of LpCopA synthesized by GeneArt 

(Invitrogen) as shown in Fig. 3.2. Afterward, the PCR products were extracted from 

DNA gel using the Wizard SV Gel and PCR Clean-Up System kit and the purified DNA 

fragments of HMBD and A-domain were cloned into pET-51b(+) Ek/LIC, pET28a 

plasmids, respectively. While the DNA fragment of the PN domain was ligated initially 

into pET28a plasmid and latter re-cloned into several plasmids, such as pET-51b(+) 

Ek/LIC, modified pET-51b(+),  pPR-IBA1 and pProEX-HTa plasmids to optimize the 

expression and the stability of the protein as it will be discussed in the next sections. 

Both of the PCR fragments of PN-domain and desired vector were digested with 

EcoRI/XhoI restriction enzymes and purified using the same method mentioned above. 

Figure 3.3 shows the DNA gel electrophoresis of digested pET28a plasmid with 

EcoRI/XhoI restriction enzymes. 
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Figure 3.2. DNA gel Electrophoresis of the isolated DNA encoding cytosolic LpCopA 
domains.  
The DNA sequences of cytosolic domains were isolated from the codon-optimized DNA 
sequence of LpCopA protein (GeneArt) by PCR technique and purified using the Wizard 
SV Gel and PCR Clean-Up System (Promega). A) The PCR products of the cytosolic 
domains. B) The purification of PCR products.  M, 1 Kb molecular weight DNA Ladder; 
lanes 1&5, PCR product encoding PN domain; lanes 2&4, PCR product encoding Actuator 
domain and lane 3, PCR product encoding HMBD domain. The samples were run in 1% 
agarose gel. 
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Figure 3.3. DNA gel Electrophoresis of digested pET28a 
plasmid.  
The pET28a plasmid was digested with EcoRI/XhoI restriction 
enzymes and loaded into 0.8% agarose gel.  The digest pET28a 
was extracted according to manufacture’s protocol of the 
Wizard SV Gel and PCR Clean-Up System (Promega).  Lane 
M, 1 Kb molecular weight DNA Ladder; lane 1, undigested 
pET28a plasmid, lane 2, digested pET28a plasmid. 
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3.1.2 Expression and purification of cytosolic domains  

The two contiguous cytosolic regions, responsible for transient phosphorylation and 

nucleotide binding (i.e. the PN domain) on the one hand and for dephosphorylation (i.e. 

the A-domain) on the other hand, were initially expressed in BL21-Gold(DE3) harboring 

pET28a with an N-terminal 6x His tag in 2xYT medium at 18 °C. Additionally, the 

heavy metal-binding domain (HMBD) was expressed with N-terminal Strep-tag in 

BL21-Gold(DE3) /pET51b in the same expression conditions as mentioned above. These 

domains are easily soluble in cell lysis buffer and can be separated from insoluble 

materials by centrifugation at 10,000 xg. 

3.1.2.1 The purification of HMBD  
 

The N-terminal heavy metal-binding domain (HMBD), containing around 75 amino acid 

residues, is suggested to play a regulatory role during the catalytic ATPase cycle. The 

crystal structures of the most CPx-ATPases are solved without including the HMBD; the 

independent expression of the HMBD could therefore allow understanding its functional 

role in the catalytic cycle by studying its interaction with other cytosolic domains.  Such 

a study is particular of interest for the putative autoinhibitory role of the HMBD in the 

Cu-free state as will be further discussed in Chapter 5. The DNA sequence encoding the 

HMBD was isolated from the whole DNA sequence of LpCopA via PCR and ligated 

into pET51b vector using a ligation-independent cloning (LIC) method. The insertion of 

the HMBD-encoding DNA sequence was confirmed by DNA sequencing. The HMBD, 

tagged with an N-terminal Strep tag II, was expressed overnight in BL21-Gold(DE3) by 

0.5 mM IPTG. 

 

 

 

Figure 3.4. Schematic diagram of 11 kDa Strep-tagged HMBD protein.  
  

The SDS-PAGE gel of the expressed host shows a dimer formation of HMBD as 

shown in Fig. 3.5. This anomalous band does not change in the presence of strong 

reducing agents added to the SDS-loading buffer, so that a disulfide-induced dimer 

formation is unlikely. The reason for this dimerization is unknown as it has not been 

C 

Strep-tag HMBD  EK N 
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observed previously [63, 64], except in the case of the C-HMBD from A. fulgidus [55] 

where a domain-swapped dimer forms in crystals as well as in solution due to salt 

bridges and hydrogen bonding between monomers [55]. Another possibility could be 

that the HMBD, which contains a ferredoxin-like fold, exhibits copper-mediated 

dimerization such as several CopZ(s) [53, 101-105].  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. SDS-PAGE analysis of HMBD expression in 2xYT medium 
A) The HMBD domain is expressed in BL21 Gold strain carrying pET51b vector. B) The 
elution of Strep-tagged HMBD from Strep-Tactin column. The HMBD always appears in 
dimeric form.  Lane M, molecular mass standard (kDa); lane Un, uninduced cells; lane In, 
induced cells; lane E, the purified HMBD from Strep-Tactin column. The lane In exhibits a 
smear due to addition of excess of β-ME. 

 

Attempting to break down the interaction between HMBD mononers, mixtures 

of metal chelators, such as 50 mM EDTA, 10 mM EGTA and 20 µM TTM (in some 

preparations), and reducing agents, such as 20 mM DDT and 5 mM TCEP, were added 

to the cell lysate prior to loading into Strep-Tactin resin to chelate the metal ions and 

break down the disulfide bonds. The HMBD bound to Strep-Tactin column was washed 

with 4CVs with the same buffer as above and the concentration of reducing agents and 

metal chelator gradually reduced to 1 mM DTT and 1 mM EDTA in the elution buffer.  

In other preparations, EDTA was omitted from the elution buffer for further metal 

affinity assay. The SDS-gel of purified HMBD shows the persistence of domain 

dimerization despite the harsh chelating and reducing condition; this reveals that the 

dimerization is caused by another process than metal binding or disulfide bond 

formation.  

    In       Un    M                                  E           M A) B) 

50 
40 
 
 
 

30 
 

20 
15 

50 
40 
 
 
 
 
 

30 
 
 
 
 

20 

Page | 53  
 



Chapter 3  Results and discussion 

3.1.2.2 Actuator domain purification 
 

The Actuator domain (A-domain), containing 124 amino acid residues (~18 kDa), was 

expressed in BL21-Gold(DE3) strain at 18 °C in 2xYT medium (Fig. 3.7). The I281 side 

chain of A-domain was replaced with tryptophan, according to the instructions of 

Stratagene Site-Directed Mutagenesis Kit, for further spectroscopic experiments 

discussed in the Chapters 2.  

 

 

 

Figure 3.6. Schematic diagram of N-terminal 6xHis-tagged A-domain proteins were 
used in this study. 

 

The supernatant of the cell lysate was filtrated before loading onto Ni-NTA 

slurry. The purification of the A-domain was unproblematic and the protein was often 

purified in a single-step thoroughly >95% purity as shown in Fig. 3.7A. The 6xHis-tag 

of A-domain was cleaved off by Thrombin protease (Fig. 3.7B) for further interaction 

assay of A-domain with HMBD (see Chapter 5). 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.7. SDS-PAGE analysis of purified A-domain. 
A) The A-domain protein, tagged with N-term 6xHis-tag, was purified using Ni-NTA resin.  
Lane M, molecular mass standard (kDa) and lane E, the eluted A-domain from the Ni-NTA 
column (12% acrylamide gel used), while B) the 6xHis-tag was removed by treatment A-
domain with 0.1 Unit Thrombin. Lane 1: before and lane 2: after the His-tag cleaved from 
A-domain (15% acrylamide gel used). 
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3.1.2.3 Phosphorylation-/Nucleotide-binding domain purification 
 

As the phosphorylation domain forms many intramolecular contacts with the nucleotide-

binding domain in the structure of P-type ATPases, we expressed both domains as a 

single domain named “PN domain”. Initially, the PN domain was expressed in pET28a 

vector with an N-terminal 6xHis-tag and purified by Ni-NTA resin. Unfortunately, the 

PN domain was found to be prone to partial degradation upon cell lysis as shown in Fig. 

3.8. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8. SDS-PAGE analysis of N-terminal His-tagged PN domain purification.  
The PN domain expressed in BL21-Gold(DE3) harboring pET28a plasmid at 18°C in 2xYT 
medium. PN domain was purified using Ni-NTA chromatography. PN domain exposed to 
degradation upon cell lysis. Lane M, molecular mass standard (kDa); lane 1, cell induced 
PN domain; lane 2, soluble fraction of cell extracts; while lane 3, degraded fragments of PN 
domain. 13% acrylamide gel was used. 

 

 Despite using a wide spectrum of protease inhibitors (Table 3.1) and performing 

all purification steps on ice, the degradation of PN domain was not suppressed even 

though the protease inhibitors were added to the lysis buffer before cell disruption.  
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Table.3.1. List of protease inhibitors were used to prevent PN domain degradation. 
 

Protease inhibitors 

Complete protease inhibitor cocktail (EDTA-free, Roche) 

SIGMAFAST™ Protease inhibitor cocktail (EDTA-free) 

Home protease inhibitor mix (provided by Prof. Soloiz) 

o-Phenanthroline 

TPCK (Tosyl-Phenylalaninechloromethylketone) 

p-Aminobenzamidin-HCl  

TLCK (Tosyl-Lysinechloromethylketone) 

PMSF (Phenylmethylsulfonylfluoride)  

1mM EDTA 

 

Therefore, we tried to change the purification strategy by unfold the protein 

during the purification and refold it afterwards. 

 

 

 

 

 

 

 

 

 

 

 

 

Thus, the PN domain was purified under denaturing condition; the protein 

degradation was inhibited using urea concentration above 3 M as shown in Fig. 3.9. This 

protocol increased protein stability, but the ATPase assay of refolded PN domain did not 

show any activity.  However, we did not push much more efforts in improving refolding 

conditions. Instead, different expression systems and conditions were examined to 

stabilize the N-terminally fusion tagged PN domain, such as varying incubation 

temperatures (25, 30 and 37 °C instead of 18 °C), short induction period (4 h instead of 

Figure 3.9. SDS-PAGE analysis of of PN domain stabilization in 
6 M urea. 
N-terminal His-tagged PN domain was purified using Ni-NTA 
chromatography under denaturation conditions using 6M urea. Lane 
M, molecular mass standard (kDa); lane 1, unfold PN domain eluted 
from Ni-NTA column. 

1        M 
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overnight), various IPTG concentrations (0.1-1 mM) and finally using different 

expression vectors, e.g. pProEX-HTa vector with a weak trc promoter for slowing 

protein synthesis and pET51b EK/LIC vector with N-terminal Strep-tag (Fig. 3.10).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10. Schematic diagram of all recombinant PN domain proteins produced for 
this study.  
The recombinant PN domain proteins produced in this study are listed in: A) recombinant 
PN-domain proteins were unsuccessfully purified due to degradation effect while B) the 
recombinants were successful purified by Ni-NTA column. L466Y mutant refers to 
replacement of L466 side chain of PN domain with Tyr. The EK, 3C, THR and TEV 
symbols stand for the recognition site of enterokinase, 3C protease, thrombin and TEV 
protease, respectively. 
 
 

Unfortunately, none of these attempts produced catalytically active PN domains. 

Therefore alternative expression vectors with C-terminal fusion tag were examined (Fig 

3.10 B). A C-terminal Strep-tagged PN domain was produced but did not bind to the 

resin. Finally, the protein was successfully purified with a C-terminal 10xHis tag; the 

PN domain was expressed in either pET51b vector with dual N-Strep and C-10xHis tag 

or mod_ pET51b vector with only C-terminal 10xHis tag (Fig. 3.10 B).  

A) 
 
 
 
 
 
 
 
 
 
 
B) 
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The dual-tagged PN domain was utilized in co-purification assay (see chapter 5) while 

the PN domain with a single C-term 10xHis-tag was used for spectroscopic 

measurements (see Chapter 4). The purity of C-term 10xHis-tagged PN exceeded 95% 

as shown in Fig. 3.11 when 5 mM ATP was supplied in the washing buffer.  

Additionally, the PN domain was purified by Ion-exchange chromatography (Fig. 3.12). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.11. SDS-PAGE analysis of C-terminal His-tagged PN domain purification.  
The PN domain was expressed in pET51b vector with C-terminal 10xHis-tag in 2xYT 
medium at 18 °C. PN domain was purified using both Ni-NTA and Ion-exchange 
chromatography. PN domain exposed to degradation upon cell lysis. Lane M, molecular 
mass standard (kDa); lane 1, induced cell PN domain; lane 2, soluble fraction of cell 
extracts; lane 3, eluted PN domain from Ni-NTA; lane 4, purified PN domain from Ion-
exchange chromatography.  
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Figure 3.12. Chromatographic purification of PN domain.  
500 µl protein sample (8 mg/ml) was loaded on a Mono-Q anion-exchange 
chromatography column and eluted with a gradient from 0.05-1 M NaCl at a flow rate of 
1 ml/min. 

 

3.2 Expression of membrane proteins  

 

Escherichia coli, the main heterologous expression host, is employed for recombinant 

protein over-expression. However, the over-expression of a foreign membrane protein 

usually leads to inclusion body formation, improperly folded proteins, or toxicity for 

bacterial cells. Several factors can play critical roles for minimizing those effects such as 

the cell growth conditions, type of the bacterial strain, expression vector, and induction 

rate.   
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Therefore, we tried to improve the expression of LpCopA by reducing the rate of protein 

synthesis. The protein expression rate can be slowed down by cultivating the host cells 

at 18 °C, examining different bacterial hosts, using expression vector with weak 

promoter or lowering the inducer concentration. The codon-optimized nucleotide 

sequence of LpCopA was provided into pET28a plasmid by GeneArt (Invitrogen); the 

DNA sequence was re-cloned into pProEX-HTa plasmid. The latter contains a Trc-

promoter, a weak promoter that is advantageous for improving the solubility of 

recombinant membrane proteins inside the bacterial cell. Both expression vectors 

encode an N-terminally 6xHis-tagged LpCopA.  The expression test for both vectors in 

BL21-Gold(DE3) growing in LB medium shows no expression of LpCopA in the 

pET28a-bearing host in contrast to the pProEX-HTa-bearing host. Therefore, the 

pProEX-HTa plasmid encoding LpCopA is commonly used. 

 

We further examined the expression level of LpCopA using the standard inducer 

(IPTG) and an alternative induction method called “auto-induction” which has been 

established for the expression of toxic membrane proteins in several bacterial hosts, such as 

C41(DE3) and C43(DE3), as well as Gold(DE3), Rosetta(DE3) and CodonPlus-RIL(DE3) 

strains. The pLysS strains were also used for suppressing the basal expression of T7 RNA 

polymerase. The auto-induction protocol, in which protein production is induced by 0.5% 

(v/v) glycerol, 0.05% (w/v) glucose and 0.02% (w/v) α-lactose, was designed to enhance the 

overproduction efficiency of the membrane proteins [106]. As shown in Fig. 3.13 and 3.14 

(lane5), the protein expression level of LpCopA in C41(DE3) pLysS, C43(DE3) pLysS and 

Gold (DE3) is higher than in others strains. Furthermore, the auto-induction protocol did not 

properly work for LpCopA over-expression (Fig. 3.13). We saw no obvious advantage of 

C41(DE3) pLysS and C43(DE3)pLysS strains over Gold (DE3) strain in expression level and 

stability of LpCopA. Therefore, Gold(DE3) strain was routinely used for LpCopA 

expression throughout this study. 
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Figure 3.13.SDS-PAGE analysis of LpCopA expression in different hosts using two 
induction methods.  
All cells were induced by 0.5 mM IPTG except those symbolized by “Auto” were induced 
according to the auto-induction protocol. The normalized OD of bacterial cells was loaded 
into the lanes. The C41, C41s, C43, C43s, Codon and R symbols stand for C41(DE3), 
C41(DE3)pLysS, C43(DE3), C43(DE3)pLysS, BL21(DE3) CodonPlus-RIL and 
Rosetta(DE3) strains, respectively. The symbols of “Un” and “In” denote to the uninduced 
and induced cells. The arrow refers to the expressed LpCopA band. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14. SDS-PAGE analysis of LpCopA expression screening with various IPTG 
concentrations.  
The E.coli Gold cells harboring pProEX-HTa plasmid were induced by the concentration 
range of 0.05-1 mM IPTG. The OD of bacterial cells was normalized before loading into the 
lanes.  Lane M, molecular weight markers; lane 1, uninduced cells; lane 2, induced cells 
with 0.01 mM IPTG; lane 3, induced cells with 0.12 mM IPTG; lane 4, induced cells with 
0.25 mM IPTG; lane 5, induced cells with 0.5 mM IPTG; lane 6, induced cells with 1mM 
IPTG. The arrow refers to the expressed LpCopA band. Unfortunately not all the marker 
bands are appeared. 
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Another factor, affecting the protein solubility, is the IPTG concentration; the higher 

IPTG concentration may become toxic to the cells while the lower concentration may 

not be enough for appropriate expression. Therefore, we investigated the threshold IPTG 

concentration for appropriate expression of LpCopA. Figure 3.14 shows the expression 

level of LpCopA in E. coli Gold(DE3) induced overnight by variable IPTG 

concentrations from 0.05-1 mM. It is clear to the naked eye that the concentrations 

between 0.25-0.5 mM IPTG are quite similar in the protein expression level and thereby 

we can conclude that the 0.25 mM IPTG is quite sufficient concentration for LpCopA 

expression in E. coli Gold(DE3). 

 

In summary, the optimal expression conditions of LpCopA and its mutants, 

namely LpCopA∆HMBD and a C384S mutant used for site-directed fluorescence 

labeling (see Chapter 7), were obtained from E. coli Gold(DE3) carrying the pProEX-

HTa plasmid induced overnight by 0.25 mM IPTG at 18 °C in 2xYT medium.  

3.3 Solubilization and purification Membrane protein  
 

The solubilization of integral membrane proteins is a process in which the proteins and 

membrane lipids are suitably dissociated in a detergent solution. The solubilization is 

one of the most critical steps for protein extraction from lipid membrane in active form; 

it depends on several factors such as the type and concentration of detergent used, 

temperature and buffer compositions.  

Figure 3.15. A schematic representation of membrane proteins solubilization by 
detergents.   
The detergent micelles penetrate the membrane to dissociate the protein and lipids into the 
solution. As the concentration of detergent increases, the membrane bilayer is disrupted and 
protein totally delipidated to form mixed micelles of lipid and detergent and that of protein 
and detergent. 
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We tried to balance between retaining the ATPase activity of the protein and 

getting an appropriate yield.  We used n-Dodecyl-β-maltoside (DDM, CMC of 0.17 

mM) as the most versatile detergent used in membrane protein extraction and 

purification [107]. In addition, we used Sarkosyl detergent coupled with DDM in the 

purification of LpCopA as it will be discussed in the next section.  In this study, there 

are three solubilization protocols to be considered: 1) the well-established protocol in 

our lab, 2) the dual-detergent method and 3) the direct solubilization protocol.  

3.3.1 Classical solubilization protocol 

Initially, both LpCopA and LpCopA∆HMBD were solubilized according to an 

established protocol in our lab for membrane protein solubilization.  In this protocol, the 

membrane fraction, obtained from the cell lysis was collected by ultracentrifugation and 

the pellet re-solubilized by adding DDM in a ratio of protein/detergent (1:4, wt/wt). The 

solubilized proteins were applied to Ni-NTA resin, washed and eluted with imidazole 

gradient.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.16. SDS-PAGE analysis of N-terminal 6xHis-tagged LpCopA solubilized by 
typical protocol.  
The membrane pellet was solubilized by DDM and the soluble fractions were loaded to Ni-
NTA column. Lane M, molecular mass standard (kDa); lane SM, solubilized membrane 
proteins; lane FT, flow-through from Ni-NTA affinity column; lane W, washing with 50mM 
Imidazole; lane E1, eluted LpCopA protein with 400mM Imidazole from Ni-NTA affinity 
column. 
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The SDS gel of purified 6xHis tagged LpCopA shows a band at 80 kDa, corresponding 

to LpCopA, and two additional bands at around 70 kDa and 50 kDa. These bands were 

frequently associated with LpCopA purification, however many attempts to remove 

them by intensive washing and by gradient elution did not work.  Most likely, these 

bands are caused by His-tagged proteins (i.e. byproducts of LpCopA degradation) or 

protein chaperones. 

 

 

 

 

 

    

 

 

 
Figure 3.17. Western blot analysis of 6x His-tagged LpCopA.  
The degraded fragments of LpCopA protein were detected by blotting with Rabbit anti-6x 
His tag antibody. Lane M, molecular mass standard (used as negative control); lane 1, 
uninduced cells; lane 2, induced cells;  lane 3, solubilized membrane proteins; lane 4, flow-
through from Ni-NTA affinity column; lane 5, eluted LpCopA protein from Ni-NTA 
affinity column.  This gel is a part of joint project in our lab. 

 

The bands were blotted with the Rabbit anti-6x His tag antibody revealing the 

recognition of the anti-6x his tag antibody in these bands, which therefore are assigned 

to degraded LpCopA fragments (Fig. 3.17). Further purification by gel-filtration was not 

successful (Fig. 3.18).  The protein yield obtained after purification was low at ~1-2 mg 

of LpCopA/2L of cell culture. 
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Figure 3.18. Size-exclusion chromatographic profile of LpCopA purification.  
This chromatography is a part of joint project in our lab. 

 

3.3.2 Sarkosyl-mediated solubilization of membrane proteins 

 

As described above, the quality and quantity of LpCopA from previous purification 

protocols was not sufficient. Therefore, we tried to improve the solubilization step by 

using an alternative detergent. N-lauroylsarcosine (Sarkosyl), a mild anionic detergent, 

is often used for solubilization of cytoplasmic membrane only (inner membrane) [108-

110] and aggregated proteins [111, 112]. It has been used previously for ATPases [113-

117].  Here, we combined two detergents in the solubilization and purification processes 

for LpCopA. In the solubilization step, 0.5% Sarkosyl detergent was initially added to 

the membrane pellet which was then gently agitated for 1hour. It was obvious that the 

membrane solubilization was enhanced in this step, but the residual Sarkosyl can 

Page | 65  
 



Chapter 3  Results and discussion 

interfere with protein reconstitution and with the further spectroscopic measurements 

because of its large background signal in circular dichroism spectroscopy [118].  

 

 

 

 

 

 

 

 

 

 
 
 
Figure 3.19. SDS-PAGE analysis of Sarkosyl-mediated LpCopA purification  
The membrane pellet was solubilized by 0.5% Sarkosyl detergent that is exchanged with 
0.1% DDM detergent while the protein was bound to the column. Lane M, Molecular 
weight markers and lane 1, Purified LpCopA eluted from Ni-NTA column. 11% 
polyacrylamide gel was used. 

 

Therefore, the Sarkosyl detergent was exchanged gradually with 0.1% DDM 

while the protein was bound to the resin.  As shown in Fig. 3.19, the purified LpCopA in 

the SDS gel appears as a single band.  The total LpCopA yield obtained by this method 

is around 10 mg/1L of cell culture. Moreover, The CD spectrum of LpCopA exhibits 

two negative bands at 208 nm and 222 nm corresponding to α-helix spectrum (Fig. 

3.20). The secondary structure analysis of these data agrees with spectroscopic and 

crystallographic results for LpCopA. Whereas the secondary structure content of crystal 

LpCopA structure (PDB code: 3RFU) is calculated according to DSSP method 

(available at http://2struc.cryst.bbk.ac.uk) as 49% α-helix, 14% β-sheet (37% others),  

the CD analysis (CDSSTR method) estimates the secondary structure of Sarkosyl-

solubilized LpCopA as 56 % α-helix, 18% β-sheet (26% others). Although LpCopA 

appears well-folded, its ATPase activity was diminished or negligible. It seems that 

Sarkosyl detergent deactivates the LpCopA by complete delipidation of protein from 

essential lipids.  Therefore, an alternative solubilization method was established as 

described in the following. 
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Figure 3.20. Circular dichroism spectrum of Sarkosyl-solubilized LpCopA.  
The secondary structure is estimated as 56% α-helix, 18% β-sheet and 26% others using 
CDSSTR method (at http://dichroweb.cryst.bbk.ac.uk) 

 

3.3.3 Direct solubilization 

The third and eventually more effective method was “direct solubilization”. In this 

method, the detergent is added while the membrane lipids are suspended in the 

supernatant of cell lysate[119]. This method, however it is not commonly used for CPx-

ATPase solubilization. However, it is described in several handbooks of membrane 

protein purification such as GE-Healthcare handbook of Purifying Challenging 

Proteins: Principles and Methods [119], Laboratory Methods in Enzymology: Protein 

part C [120] and others[121, 122] and has been used for several transporters[123] 

including SR Ca2+-ATPase [124]. We employed this method with some modifications. 

Briefly, after removing the large aggregates, a concentrated DDM solution was titrated 

into the supernatant of the cell lysate of 8 g cell wet weight unit the solution became less 

turbid, nearly up to 0.5% DDM final concentration. Then the insoluble fragments were 

removed by centrifugation and filtration before loading the solubilized fraction on a Ni-

NTA slurry. This method produces a higher LpCopA yield of 3-4 mg/L of cell culture as 

compared to purification from membrane pellets. Figure 3.21 shows the purified 

LpCopA (with either N-term 6x His or C-term 10x His) and LpCopA∆HMBD. There 
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was no detectable ATPase activity of C-term 10x His-tagged LpCopA, in contrast to that 

tagged with N-term 6xHis. Therefore, N-term 6xHis tagged LpCopA is commonly used 

for functional study. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.21. SDS-PAGE analysis of purified membrane proteins prepared using the 
"direct solubilization" method.  
The membrane suspensions of N-terminal and C-terminal His-tagged LpCopA and C-
terminal His-tagged LpCopA∆HMBD were directly solubilized by DDM detergent below 
the total membrane solubilization.  The proteins were purified via Ni-NTA chromatography.  
Lane M, Molecular weight markers and lane 1, purified N-term. His-tag LpCopA; lane 2, 
purified C-term. 10xHis-tag LpCopA; lane 3, purified C-term. 10xHis-tag 
LpCopA∆HMBD.  The proteins were run on 11% acrylamide gel. 
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3.4 Measurements of the catalytic activity of LpCopA and the 
isolated cytosolic PN domain in vitro 

  

3.4.1 Use of the Lanzetta assay 

 

The Lanzetta or malachite green assay is calorimetric assay for determination of 

nanomole amounts of inorganic phosphate produced by ATPases [93]. It is a classical 

ATPase assay commonly used for most P-type ATPases.  

In the Lanzetta method, the inorganic phosphate forms a complex with 

molybdate salt which in turn associates with the malachite green to produce a strong 

absorbance peak near 640 nm as shown in Fig. 3.22B.  The color development of the 

phospho-molybdate complex needs at least 20 minutes to stabilize. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.22. Standard curve of inorganic phosphate measured by Lanzetta assay.  
Various concentrations of KH2PO4 (5-20nmol) were mixed with Malachite green reagent. A) 
Standard curve of KH2PO4 at 630 nm. B) Absorbance spectrum of a 5 nmol phospho-
molybdate complex was monitored from 600-660 nm. 
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Figure 3.23. Estimated ATPase activity of LpCopA and expressed cytosolic domains.  
The of LpCopA was estimated in presence of 100 µM Cu(I) while ATPase activity of 
cytosolic domains was measured without heavy metal including in the assay buffer. See the 
assay conditions in Chapter 2. 

 

Preserving and measuring the in vitro ATPase activity of the purified LpCopA 

was the largest biochemical challenge encountered in this work. Correspondingly much 

effort was invested in trying and adapting different ATPase assays to the specific needs 

of a metal-dependent membrane protein. The trials, optimizations and finally the 

standardized application of two assays will be described in the following. One assay, a 

modified Lanzetta assay allows assessing inorganic phosphate at certain time intervals 

during catalysis, whereas another assay based on substrate fluorescence enables real-

time monitoring of the enzyme activity. Among several protein preparations, we were 

finally able to detect remarkable ATPase activity of LpCopA prepared by the "direct 

solubilization" method. The maximum activity was found at 100 µM CuSO4 around 80 

nmol/mg/min as shown in Fig. 3.23; above of this copper concentration, the ATPase 

activity was inhibited. The reaction was carried out in 30 mM HEPES-KOH pH 7.4, 100 

mM KCl, 3 mM MgCl2, 1 mM β-ME, 0.05 % DDM and 1 mg/ml Asolectin buffer at 37 

°C. 

The ATPase activity of the PN domain was very low (1.5 nmol/mg/min) similar 

to the ATPase activity of the same domain in S. solfataricus CopB [125]. Interestingly, 

we detected an ATPase activity also for the A-domain of (~10 nmol/mg/min) under the 

same assay conditions used for the PN domain. This was not expected because the A-

domain does not contain a nucleotide binding site. A possible explanation could be that 
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that the A-domain, which is a phosphatase domain, has some diffusive access to ATP 

molecules in solution and stimulated their hydrolysis at a low rate. 

3.4.2 Fluorometric real-time monitor for the ATPase activity of LpCopA 
and the PN domain 

 

Besides the thorough optimization of the conditions for complete expression and 

purification of LpCopA and the cytosolic PN domain, as shown above, the 

demonstration of its catalytic activity is crucial for further experiments.  In addition to 

the time interval-based Lanzetta assay, we were interested in a real-time assay of 

ATPase hydrolysis, as it is potentially more sensitive, non-hazardous material and 

simple. Therefore, we have optimized a continuous fluorometric ATPase assay which is 

not commonly used for P-type ATPases; It has been used for monitoring the ATPase 

activity of Na+/K+ ATPase [126] and myosin [97].  

 

It is an enzyme-coupled assay based on the decrease in fluorescence intensity of 

N7-methylguanosine (m7Guo) upon phosphorylation by utilizing free inorganic 

phosphate liberated from the ATPase. The m7Guo phosphorylation is catalyzed by a 

bacterial purine nucleoside phosphorylase (PNP) to produce non-fluorescent 7-

methylguanine [97, 98]. Commercially, the PNP enzyme coupled with alternative 

substrate, named MESG in EnzChek® Phosphate Assay kit (molecular probes), is used 

for colorimetric ATPase assay [127]. Here, we used an alternative low-cost method, in 

which the fluorescent m7Guo is substrate in the following reaction:  
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3.4.2.1 Cytosolic domain activity 
 

The PN domain exhibited low enzymatic ATPase activity (Fig.3.25) which was 

determined by both the m7-Guo-based real-time fluorometry and the malachite green-

based colorimetry malachite with activities of 3.4 and 1.5 nmol/mg/min, respectively. 

The standard curve of KH2PO was run at the same condition (Fig 3.24). In the same 

context, it had been reported a comparable ATPase activity value of the similar isolated 

domain from S. solfataricus CopB [125]. This low enzymatic activity of the isolated PN 

domain was expected because of the absence of the A-domain which catalyzes the 

hydrolysis of the aspartyl phosphate intermediate during the ATP turnover. The ATPase 

assays of the isolated PN domain indicate that the aspartyl-426 phosphate bond is 

exposed slowly to water attack causing dephosphorylation. Such basal turnover has been 

observed in another isolated PN domain [125]. 

 

 

. 

 

 

 

 

 

 

 

 

 
Figure 3.24. Concentration-dependent calibration of the fluorometric assay using 
KH2PO4 as a Pi source.  
A) Emission spectra of m7Guo/m7Gua at free phosphate (Fo), at 10 µM Pi (F) and at 
saturated Phosphate (F∞). B) Standard curve at 1, 5, 10, 26, 65 µM KH2PO4 averaged from 
triplicates. The assay mixture contained 0.5 µM bacterial purine nucleoside phosphorylase 
(PNP), 100 µM m7Guo in 30 mM Tris-HCl pH 7.4, 100 mM NaCl, 5 mM MgCl2, was 
initiated by KH2PO4. The decrease in fluorescence (λex 300 nm) was recorded after a stable 
intensity was achieved (F) which corresponds to the Pi concentration. Then, KH2PO4 was 
added at a final concentration of 1 mM to convert the rest of m7Guo to m7Gua whose 
background signal subtracted from all spectra. 
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Figure 3.25. Fluorometric ATPase activity of the PN domain.  
A) Fluorescence spectra of m7Guo decrease as function in PN ATPase activity. Each 
spectrum was taken every 5 min. B) Kinetic rate of ATPase activity of PN domain. The 
assay mixture containing 0.5 µM bacterial PNP, 100µM m7Guo and 1mM ATP in 30 mM 
Tris-HCl pH 7.4, 100 mM NaCl, 5 mM MgCl2, was initiated by addition of 120 µg PN 
domain. The arrow indicates the decreasing rate of fluorescence intensity. 
Fo, F and F∞ symbols are denoted to the initial m7Guo fluorescence, the change in emission 
spectrum at a given time after adding PN domain and the fluorescence after completely 
converting m7Guo with addition of 1 mM Pi, respectively. 

  

 

3.4.2.2 Optimization of the fluorometric ATPase assay for LpCopA 
 

Although the fluorometric assay was successful in measuring the ATPase activity of the 

soluble cytosolic PN domain, it was not clear whether it is also compatible with the 

ATPase activity conditions of the full-length LpCopA, i.e. in the presence of copper ion, 

detergent and lipid. Therefore, the fluorometric assay was tested in the presence of metal 

ions and mixed detergent lipid micelles.   
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3.4.2.2.1 The effect of SO42- ions on assay performance 
 

In some ATPase assays, sulfate salts were used instead of chloride when silver ions were 

present to avoid the formation of AgCl precipitation. We examined the activity of PNP 

enzyme in both buffers under the same conditions of pH and substrates concentrations 

and found that the conversion rate of 180 µM m7Guo was reduced to 0.70 ±0.03 s-1 in 

the presence of 30 mM SO42- ions, i.e., the reaction was 7 fold times slower than in 

chloride buffer (0.103 ±0.0007 s-1) as shown in Fig. 3.26. This indicates that SO42- ions 

may act as phosphate competitors. Therefore, the sulfate buffer is not recommended in 

this ATPase assay. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.26. Comparison of conversion rate of m7Guo to m7-Gua by PNP in chloride 
and sulfate buffer.  
150 µM  K2HPO4  was added to 0.5 µM bacterial PNP enzyme and 180 µM m7Guo in buffer 
of 30 mM Tris-HCl pH 7.4 (●) and Tris-H2SO4 pH 7.4 (○). The rate constants of m7Gua 
formation were 0.70±0.03 s-1 and 0.103±0.0007 s-1, respectively. 
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3.4.2.2.2 The effect of metal ions on assay performance 
 

Another crucial factor for CopA ATPase activity is the cation concentration and redox 

state. For instance, CopB exhibits a high ATPase activity with few micromoles of Cu2+ 

while CopA shows a maximum ATPase activity at sub-millimolar concentrations of Cu+ 

[21, 128]. We examined the effect of both Cu+ and of Ag+ ions on the PNP enzyme 

activity. Up to 10 µM metal ions, there is no significant effect, but above this 

concentration the activity of the PNP was dramatically reduced as shown in Fig. 3.27. In 

addition, a reducing agent (DTT) is essential in the presence of copper above 10 µM. 

Therefore the divalent copper can be used in this assay up to 10 µM. 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 3.27. Copper ion reduces the bacterial PNP enzyme activity.  
Activity of 0.5 µM bacterial PNP in buffer containing 30 mM Tris-HCl pH 7.4, 100 µM 
m7Guo, 20 µM K2HPO4  and 1 mM β-ME was measured in A) absence and B) presence 
of 60 µM CuSO4. 

 

3.4.2.2.3 The effect of pH on assay performance 
 

As the most ATPase assays of P-type ATPases are carried out at slightly acidic pH [32, 

63, 129, 130], the validity of the fluorometric assay was examined at different pHs. The 

spectral profile of fluorescence emission from m7Guo changes with pH forming a sharp 

and intense peak at lower pH, and a very broad and less intense peak at higher pH as 

shown in Fig. 3.28. Also, the PNP activity decreased at pH 6.2 (Fig. 3.29).  
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Knowing these influential factors, the standard conditions of the fluorometric assay were 

fixed to pH 6.8-7.4. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.28. pH-dependence of fluorescence spectra of m7Guo .  
The emission spectra of 100 µM m7Guo in 30 mM Tris-HCl were recorded at different pHs 
(from top to bottom) 6.2, 6.8, 7.3 and 8. The m7Guo was excited at λex 300 nm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 3.29. pH-dependence of the bacterial PNP enzyme activity.  
 The activity of 0.5 µM bacterial PNP enzyme was measured in different pH buffers 
containing 30 mM Tris-HCl, 100 µM m7Guo, 20 µM K2HPO4. 
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3.4.2.3 Fluorometric ATPase assay of LpCopA  
 

Based on the optimizations described above, the ATPase activity of LpCopA was 

measured at room temperature in assay buffer of 30 mM Tris-HCl pH 7.3, 100 µM 

m7Guo, 100 mM NaCl, 2 mM ATP, 3 mM MgCl2, 60 µM CuSO4, 1 mM β-ME, 0.1% 

DDM and 0.3 mg/ml Asolectin. The Asolectin lipid concentration was reduced in the 

assay buffer to 0.3 mg/ml to minimize the light scattering. The reaction started by 

adding 20 µg LpCopA (final concentration) after a stable emission spectrum of m7Guo 

had been recorded.  Using the time-dependent change of m7-Guo emission, the ATPase 

activity of LpCopA was calculated as 22.3 nmol/mg/min comparable to the 24 

nmol/mg/min measured by the malachite green assay.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.30. ATPase activity of LpCopA monitored by the time-dependent 
fluorometric ATPase assay.  
The assay buffer contained 30 mM Tris-HCl pH 7.3, 100 µM m7Guo, 100 mM NaCl, 2 mM 
ATP, 3 mM MgCl2, 60 µM CuSO4, 0.1% DDM  and 0.3 mg/ml Asolectin was pre-incubated  
at 25 oC  to obtain a stable fluorescence spectrum of m7Guo (λex 300nm). Then, 20 µg 
LpCopA was added to assay buffer. Each point was taken every 2 min.    
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Summary and discussion 
 

The Cu (I)-transporting ATPase (CopA), the most widespread among PIB-type ATPases, 

has received considerable attention during recent years from several groups of workers, 

including our own, because the defect in the human copper-translocating ATP7A and 

ATP7B is the direct cause of the severe Menkes and Wilson diseases, respectively. 

 

The crystal structure of LpCopA was determined at 3.6 Å in a transition state of 

dephosphorylation (E2~P state) excluding the heavy-metal binding domain (HMBD) 

[32] .  We employed the LpCopA as a model to better understand the mechanism of 

metal transport, and the accompanying structural changes. To do that, the entire 

LpCopA structure and its isolated cytosolic domains were expressed and purified, as 

described in this chapter, for further analyses in the next chapters.  In term of retaining 

the enzymatic activity, the production of LpCopA protein was elusive using a traditional 

solubilization protocol which is established in our lab.  

 

Alternatively, the direct solubilization method allowed obtaining the enzyme, 

solubilized by DDM detergent, in active form. The maximum ATPase activity of 

LpCopA was estimated as 82 nmol/mg/min at 100 µM Cu+ ion, over this copper 

concentration the enzymatic activity was inhibited; we were unable to detect the highest 

activity of LpCopA in 1 mM Cu+ ion as reported by Gourdon, P., et al  2011 [32]. In 

another hand, the soluble cytosolic domains of LpCopA were also produced with some 

difficulties. In general, the N-terminal fusion tag is preferable because sometimes 

addition of a C-terminal tag to a protein impairs its function, producing a growth defect 

if the protein activity is essential cell viability [131]. In the light of the foregoing, we 

expressed the cytosolic domain with N-terminal tag. Unfortunately, the purification of 

PN domain was also a big challenge; it was vulnerable to degradation during cell lysis 

and none of attempts succeeded to keep the protein in entire form with N-terminal 

fusion tag. Alternatively, the addition of fusion tag at the C-terminus of PN domain 

allows obtaining the protein un-degradable.  
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The ATP turnover activity of PN domain was remarkably slow (1.5 nmol/mg/min), this 

is consistent with an ATPase activity of the similar isolated domain from S. solfataricus 

CopB [125]. Interestingly, and for the first time, we report an ATPase activity of A-

domain, the phosphatase domain, addressing a question of the real role of A-domain in 

the catalytic cycle.  The third cytosolic domain, HMBD, expressed in a dimer form as 

such as the C-MBD of A. fulgidus CopA form a domain-swapped dimer [55]. Therefore, 

it is suggested that HMBD dimerization is due to a domain-swapped dimer which 

temporally dissociates by passing through the 10 kDa MWCO filter. 

 

Finally, we developed a sensitive fluorescence assay for measuring ATPase 

activity of cytosolic domain and membrane protein with some limitations. In this assay, 

we coupled the bacterial purine nucleoside phosphorylase (PNP) with ATPase enzyme. 

The assay is sensitive to pH change, metal concentration, sulfate salts and lipid 

concentration. 
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Chapter 4  
 

Structural and Biophysical Characterization of the 
expressed Cytosolic domains from Legionella pneumophila 

CopA 
 
Introduction 
 
The particular ligands binding to the cytosolic domains induce essential conformations 

of Cu-ATPase for ion transport. The binding affinity of ligand to corresponding domain 

can be affected by the domain-domain interactions. Therefore, the isolation of cytosolic 

domains from transmembrane segments can facilitate studying independently the 

structure and function of each domain. For instance, the isolated N-terminal metal-

binding domains of human copper-ATPases were purified from Escherichia coli in a 

soluble form for characterizing their metal-binding properties [132]; these domains, 

binding to Cu (I) with stoichiometry of one copper per metal-binding domain, can 

protect the N-MNK and N-WND against labeling with the cysteine-directed probe. 

 

Another example of ligands inducing structural changes in their domain is the sulfate 

anion; the crystal structures of isolated PN domain from S. solfataricus CopB and 

SERCA1 bound to SO42- anion are assigned the proteins to E2~P state because the 

sulfate anion acts as phosphate analog, bound at the phosphate-binding location in P-

domain [72, 133].  

 

Here, we characterized the secondary structure and ligand affinity of each cytosolic 

domain has been purified in Chapter 3 using fluorescence and circular dichroism 

methods.  
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Results and Discussion  

 

4.1  Circular Dichroism analysis of cytosolic domains with ligands 
4.1.1 Secondary structure of the expressed cytosolic domains 

 
The previous sections showed the functional expression of the PN domain. In the 

context of the catalytic cycle of full length LpCopA, conformational transitions in the 

cytosolic domains need to be transmitted to the transmembrane domain to modulate Cu-

affinity and accessibility to either the intra or extracellular side. The secondary structure 

of the expressed cytosolic domains and possible structural transitions within the PN 

domain in response to nucleotide binding are addressed in the following based on 

circular dichroism spectra. 

 

Figure 4.1 shows the CD spectra of the PN, HMBD and A domains of LpCopA. The 

percentage of helical, strand and random structure was estimated by the CD database 

provided by DICHROWEB server [134] as shown in Table II.1. Depending on the 

dataset used, the α-helical content of the cytosolic domains in solution varies between 

38-23%, while the α-helical content of LpCopA from the crystal structure (PDB ID: 

3RFU) is calculated as 49% using the DSSP method. Although the secondary structure 

composition varies with the use of the data set, the ratio of α-helix to strand, i.e. the 

more reliable predictions, is well reproduced and in line with the crystal structure. 

Importantly, however, CD spectroscopy is used here to detect structural changes in 

response to nucleotides, copper ion or temperature, rather than to determine the absolute 

secondary structure composition (which is particularly error-prone for membrane 

proteins, because CD datasets are largely based on structure analyses of soluble 

proteins). 
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Figure 4.1. Secondary structure characterization of LpCopA cytosolic domains.   
CD spectrum of 5 µM C-terminal His-tagged PN domain (A) and 5 µM N-terminal His-
tagged Actuator domain (B) were measured in 7 mM KH2PO4 pH 7.4 and 5 mM MgSO4 
buffer , while 13 µM Strep-tagged HMBD domain (C) was measured in 3 mM MOPS pH 
7.6 and 1 mM ascorbic acid. All measurements were carried out using a 1 mm path length 
quartz cell (Hella) at 25 °C. Each spectrum was accumulated at least five times. 
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4.1.2 The changes in the structural conformation of cytosolic domain 
with ligands  

Figure 4.2 shows the effect of nucleotides on the CD signature of the PN domain. The 

effect of nucleotides binding on PN domain is small and not accompanied by dramatic 

changes in secondary structure. This low but significant changes had also been observed 

in CD spectra with binding of ATP to Rad51 [135] and to GroEL [97]. The small 

changes are reproducible and indicate a 5-10% increase in helical structure upon ATP 

binding, whereas no significant change is produced upon ADP binding.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.2. Effect of nucleotides on the CD spectrum of the PN domain.  
25 µM nucleotides were added to 5 µM PN domain in 7 mM KH2PO4 pH 7.4 at 25 °C. The 
CD spectrum change of PN domain upon binding to (A) ATP and to ADP nucleotides (B) 
was small but reproducible beyond experimental uncertainty. The blank (buffer only) was 
subtracted from the CD spectrum of each sample. 
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Figure 4.3. CD spectral changes of the HMBD upon Cu+ ion binding.  
300 µl of 13 µM Strep-tagged HMBD ±30 µM CuCl2 was measured in 3 mM MOPS pH 7.6 
and 1 mM ascorbic acid buffer using 1 mm path length quartz cell (Helma) at 25 °C. The 
buffer including copper was used as a blank before adding the HMBD. 

 
In contrast, larger effects are observed for the isolated HMBD domain. Cu+ 

binding to the HMBD induced a change in the CD spectrum shown in Fig. 4.3. The α-

helical content increased at the expense of unordered structure (Table 4.1). The more 

pronounced spectral change agrees with the large copper-dependent modulation of the 

affinity of the HMBD to the actuator domain described in Chapter 5.  

Table 4.1 summarizes the secondary structures of cytosolic domains estimated from 

their CD-spectra analysis using online SELCON3 program. 
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Table 4.1. Secondary structure composition of cytosolic domains.  
The secondary structure contents were estimated using SELCON3 program from the online 
CD analysis site, DICHROWEB (http://dichroweb.cryst.bbk.ac.uk). 

 
 
Helix1, regular α-helix; Helix2, distorted α-helix; Strand1, regular β-strand; Strand2, distorted β-
strand.  The normalized root-mean-square deviation (NRMSD) values were <0.15 indicating 
good fitting between the experimental spectrum and calculated secondary structure.  
 
 

4.2 Ligand binding assay of cytosolic assay 
 

4.2.1 TNP-nucleotides affinity of PN domain  

 

Whereas the ATPase assays demonstrated the ATP-hydrolyzing functionality of the 

PN domain (Chapter 3), they do not allow determining the nucleotide affinity. 

Therefore, ATP analogs were used that exhibit spectroscopic changes upon binding 

to ATP-binding sites which allows deducing estimates of the affinity. 

 

Trinitrophenyl (TNP)-nucleotides are a fluorescently labeled nucleotides to 

examine the structural integrity of an ATP binding sites, since these nucleotide 

derivatives increase their fluorescence at 545 nm drastically upon binding to an 

appropriate binding site. It has been shown that TNP-nucleotides bind to members of 

the P-type ATPase family and have been used for structural studies [85, 136-141]. 
 

 Helix1
% 

Helix2
% 

Strand1
% 

Stran2
% 

Turns
% 

Unordered
% 

PN domain 11.8 12.8 1.2 8.6 44.6 35.4 

PN domain+25 µM  ATP 17.3 13.4 5.4 9.0 34.1 37.1 
PN domain+25 µM  ADP 12.7 12.0 2.5 8.9 44.6 33.7 

A-domain 19.1 19.10 1.9 4.0 17.8 35.6 
HMBD 14.0 10.0 17.0 7.0 18.0 35.0 

HMBD + 30 µM Cu+ 33.0 13.0 14.0 10.0 9.0 22.0 
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Figure 4.4. Fluorescence change of TNP-nucleotide (λex 408 nm) upon binding to PN 
domain. 
10 µM PN domain added to 20 µM TNP-ATP in 50 mM Tris-HCl pH 7.4 and 200 mM 
KCl buffer results in intensity increasing and blue-shift of TNP-ATP fluorescence from 
553 nm to 545 nm. 
 
 

Figure 4.4 shows the increase of TNP-ATP upon binding to the PN domain. The 

increase is typically related to the restricted motion of the dye within the binding pocket 

as compared to the dissolved state, where more frequent collisions deactivate the excited 

state. The observed blue shift of the emission maximum is typical of the exposure to a 

more hydrophobic environment as expected for the binding site in comparison to the 

state in aqueous solution.  

 

Using titration experiments, the KD values were estimated from the concentration 

of the nucleotide analogs that evoked half of the maximal fluorescence change, when 

titrated to a solution of the PN domain as shown in Fig. 4.5. The TNP-nucleotides had a 

high affinity to the PN domain with an apparent binding constant (KD) in the 4-8 µM 

range for both nucleotide analogs. These values are in the typical range of nucleotide 

binding domains [138, 142, 143]. Together with the catalytic assays, the data reveal that 

the recombinant PN domain is a well folded catalytically active protein and thus suitable 

for further structural and functional analysis. 
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Figure 4.5. Titration of TNP-nucleotides to 3μM PN domain. 
 A) TNP-AMP and B) TNP-ATP were titrated to 3 μM PN domain in 50 mM Tris-HCl pH 
7.4 and 200 mM KCl buffer. TNP-nucleotides were excited at λex 408 nm and emission 
spectra recorded from 500-600 nm range. In parallel, the same titration system of TNP-
nucleotides to buffer without protein were performed as control and subtracted from all data 
points.  The dissociation constants (Kd) of TNP-AMP and TNP-ATP were determined to be 
4-8 μM. Data were fitted to one site model using GraphPad Prism software.  
 
 

4.2.2 Copper(I) affinity of the HMBD 

We studied the characteristic interaction of Cu+ with the LpCopA HMBD as a soluble 

cytosolic domain. The Cu+ binding to the HMBD was studied in the presence of the Cu+ 

indicator bicinchoninic acid (BCA). The BCA competition assay has been developed for 

the determination the copper affinity of metal binding domain as an alternative to other 

methods [144-146]. Two molecules of BCA bind to one Cu+ ion to form a colored 

[BCA2·Cu+] complex with KD= 1×10-11 M2 [147]. The color development can be 

monitored at 356 nm [99].  As shown in Fig. 4.6 , 5 µM HMBD almost completely 

displaced Cu+  from 50 µM of the competing BCA at 5 µM CuCl2 concentration, i.e. 

there was almost no absorbance of the BCA2·Cu+ complex at this copper concentration 

as compared to the control without the HMBD. Therefore, KD of the HMBD·Cu+ 

complex must be significantly lower than a 5×10-6 M. More specifically, the presence of 

the HMBD reduces the BCA-Cu complex concentration by a factor of 8, corresponding 
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to 0.63 µM. The explicit use of the KD of the BCA-Cu+ complex yields a free copper 

concentration of 450 nM which together with the BCA-bound Cu+ adds up to 1.1 µM 

Cu+. This leaves 3.9 µM Cu+ that is bound to the HMBD at 450 nM free Cu+. From this 

we obtain the more realistic estimate of the KD of the Cu+ HMBD complex of 130 nM.  

On another hand, the Cu+ loading assay (as described in Chapter 2 section 2.4.2.1) 

indicates that the stoichiometry of copper binding by HMBD is 1:1.5 (protein : metal). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.6. The BCA competition assay of HMBD copper complex formation.  
In 400 µl total assay volume, A) 5 µM HMBD and 50 µM Pierce BCA mixture, in 30 mM 
HEPES pH 7.3 and 1 mM ascorbic acid buffer,  was titrated with 1 mM CuCl2 with 
continuous stirring at room temperature. The bright purple color of [BCA2·Cu+] complex is 
detected at λ =356 nm.  B) Standard curve of the [BCA2·Cu+] complex.  The insert is the 
absorbance difference between HMBD+BCA mixture and BCA alone. 
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4.2.3 Thermal stability of cytosolic domains 

 
Thermal unfolding monitored by spectroscopy is widely used to determine protein 

stability. Circular dichroism spectroscopy (CD) measurements taken at small 

temperature intervals were used to determine the melting temperature, Tm, of the 

expressed soluble proteins by following the changes in secondary structure  in the entire 

far-UV CD region or at a specific wavelength over time (i.e. at different temperatures 

during constant heating). The measurement can be performed with micrograms of 

protein; therefore the technique is very effective for membrane proteins. Here, we have 

studied the thermal stability of the recombinant cytosolic domains as a function of a 

ligand using the CD spectroscopy.  

 

The CD signal at 222 nm corresponding to the alpha-helical content can be used 

to distinguish folded and unfolded states of protein. We examined the thermal 

denaturation of the PN and actuator domains by recording the CD signal   between 298 

and 364 K. Data points of the 222 nm signal were collected every 2 K  (Fig. 4.7 & 4.8). 

The Tm was determined by curve fitting according to the equation described in Chapter. . 

The Tm values were calculated from the midpoint of the transition curves between 

folded and unfolded states of the proteins. The Tm value for the denaturation of the PN 

domain was at 334.3 K.  In the presence of 0.1 mM ATPγS, the PN domain exhibited 

two apparent melting temperatures, indicative of the nucleotide stabilizing only the N 

domain but not the P domain within the expressed PN domain (Fig. 4.7). In contrast, the 

actuator domain was less stable and melted at 315 K (Fig. 4.8). 
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Figure 4.7. Thermal Denaturation of PN domain was determined by circular 
dichroism.  
A) Far-UV circular dichroism (Far-UV CD) of 3 µM PN domain in 10 mM KH2PO4 pH 7.4 
and 3 mM MgCl2 using 1-cm cylindrical cuvette recorded at different temperatures (from 
298 to 364 K ). B) Unfolding of the PN domain in the absence (red line) and presence (blue 
line) of 0.1 mM ATPγS was monitored with the CD signal at 222 nm. The unfolding is 
identical within experimental error in the lower temperature half, assigned to unfolding of 
the N domain. The curves deviate in the higher temperature side by the shift to higher 
temperature of the curve recorded with ATPγS, indicating the independent folding 
properties of the two domains, i.e., there is no indication for a cooperative effect nucleotide-
induced stabilization of both domains. 
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Figure 4.8. Thermal denaturation of A-domain. 
 A) Far-UV CD of 10 µM A-domain in 10 mM KH2PO4 pH 7.4 and 3 mM MgCl2 using 1-
cm cylindrical cuvette was recorded. B) Thermal denaturation profile of A-domain was 
determined by tracing ellipticity at 222 nm at a 2 K/min heating rate from 298 to 364 K. 
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Interestingly 5 mM magnesium sulfate stabilized the PN domain by ~5 K in comparison 

with 5 mM magnesium chloride as shown in Fig. 4.9. This anion-specific effect 

indicates that the sulfate anion may have bound to the P-domain as a phosphate 

surrogate at the crystallographically identified phosphate-binding location. It has been 

reported that sulfate ion acts as phosphate analog at P-domain of the S. solfataricus 

CopB [133] and SERCA1a [72]. Therefore, it is suggested that sulfate ion has a 

comparable impact on the P-domain stabilization. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.9. PN domain is thermally stabilized by MgSO4. 
 At 222 nm, the CD signals of 3 µM PN domain, in 20 mM Tris-HCl pH 7.5 + 5 mM MgCl2 
buffer (black traces) and in 20 mM Tris-H2SO4 pH 7.5 + 5 mM MgSO4 buffer (red traces), 
were recorded at different temperatures from 324 to 370 K with ramp rate of 1 °C/min. 
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Summary and discussion  
 

Our data show that the expressed cytosolic domains are well-folded and capable of 

binding to the particular ligands. The secondary structure estimated from CD signals of 

cytosolic domains show that the alpha-helical content varies between 23 and 38% in line 

with the total secondary content of crystal structure of LpCopA (PDB ID: 3RFU) 

calculated by the DSSP method. Moreover, the data analysis of CD and fluorescence 

spectroscopy show that PN domain bind with the nucleotide with an apparent binding 

constant (Kd) of the 4-8 µM range, inducing a limited structural alteration, while Cu (I) 

binding to HMBD induce increasing in α-helical content in high affinity (Kd <5× 10-6 

M). In another hand, the thermal stability profiles of PN domain show that sulfate-bound 

P-domain is considerably stabilized the entire PN domain by ~5 K, while ATPγS weakly 

stabilized the N-domain merely. Finally, the biophysical characterizations of cytosolic 

domain demonstrated the structural integrity and proper function of expressed domains. 
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Chapter 5  
 

The ligand-dependent Interactions among Cytosolic 
domains of Legionella pneumophila CopA 

 
 
Introduction 
 

The cytosolic domains interaction and rearrangement modulate the conformation of TM 

domain and regulate the metal binding and release. The structures of full Ca2+-ATPase 

are solved in all transition states, on contrast to the structure of Cu-ATPases which is 

failed to be entirely solved including the Heavy metal-binding domain (HMBD). 

Therefore, it remains unknown how the HMBD interacts with other cytosolic domain in 

the catalytic cycle. The exact role of HMBD in the enzymatic function of CopA is 

somewhat controversial.  HMBD does not play a role in the direct metal transfer to the 

entry site of TM; however it can exchange the Cu+ with soluble chaperones.  

 

The biochemical studies on the function of HMBD are not conclusive; the 

truncation of HMBD in A. fulgidus CopA yielded a higher enzymatic turnover while 

alterations in the MxCxxC motif or HMBD truncation impaired the enzymatic activity 

of CopA in T. maritima and L. pneumophila.  Argüello and his co-workers suggested 

that N-MBD plays a regulatory and self-inhibitory role for controlling the turnover rate 

of the enzyme [148]. This hypothesis is supported by electron microscopy and docking 

studies of Stokes et al that place the N-MBD of AfCopA in close contact with N- and A- 

domains to restrict the movement of these domains in Cu+-free state while displaced 

upon Cu+ binding and thus, launch the catalytic motions of the domains [149]. However, 

the co-purification assay of AfCopA N-MBD with A-domain shows no interaction under 

any conditions.  

 

In contrast, Hatori and his coworkers proposed that the HMBD is an integral part of 

enzyme headpiece and its Cu+ loading is required to produce an active conformation and 

full activity of CopA [150]. Recently, our model study, L. pneumophila CopA 

(LpCopA), has been structurally solved in E2P and E2~P states (excluding HMBD) by 

X-ray crystallography [100] and its domain interaction have not been investigated yet.  
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Here, utilizing the functionally expressed cytosolic domains in Chapters 3 and 4, 

we investigate the interactions among cytosolic domains of LpCopA in function of 

appropriate ligands, and try to answer the question of whether the HMBD interacts with 

other cytosolic domain and play a catalytic role. Our data show Cu+-dependent 

interaction of HMBD with A-domain and suggest that HMBD of LpCopA has an 

activating role in presence of Cu+ and an inhibitory role in absence of Cu+ ion. 
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Results and discussion  
After proving the structural and functional integrity of the expressed cytosolic domains 

in previous sections, the interactions among the cytosolic domains were monitored by 

two different assays, co-purification and fluorometric assays.  

In the latter, the cysteine side chains of HMBD were previously labeled with fluorescent 

dyes, CPM (7-Diethylamino-3-(4'-Maleimidylphenyl)-4-Methylcoumarin) and BADAN 

(6-Bromoacetyl-2-Dimethylaminonaphthalene), to monitor its interaction with A-

domain. 

5.1 Co-purification assay of cytosolic domain interactions  
 
The proposed interactions among cytoplasmic domains of CPx-type ATPases had 

previously been studied by co-purifying the isolated cytosolic domains as function of 

ligands via batch affinity chromatography in order to mimic the different states of the 

catalytic cycle of P-type ATPases [55, 63, 64, 151, 152].  The assessment of domain-

domain co-purification provides a remarkable insight into the way these domains 

interact during the catalytic cycle without providing affinity values. Here, we employed 

the column chromatography instead of batch affinity chromatography to investigate the 

interaction among the HMBD, PN- and A-domains of LpCopA. This method is 

characterized with: 1) simple mixing without disrupting the interaction, 2) easy ligand 

exchange, 3) partner domains stay in close contact, and 4) easy elimination of unbound 

protein.  

 

 

 
 
 
 
 
 
 
 
Figure 5.1. A schematic diagram represents domain-domain co-purification assay.  
Micro-spin column (23 mm length x 4 mm diameter) was filled with 50-100 µM Strep-
Tactin, and buffer is exchanged either by centrifugation at the lowest speed or by gravity-
flow. The strep-tagged protein acts as immobilized “bait” protein for the partner protein 
“prey” in function of ligand “L”. Unbound proteins are washed away, and the target protein 
complex is recovered by elution with desthiobiotin. 
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In all co-purification assays, Strep-Tactin resin was preferred over Ni-NTA resin due to 

its high specificity, and to prevent binding of the HMBD to Ni-NTA or interference of 

Ni2+ ions with Cu+ ions.  The Strep-tagged protein bound to Strep-Tactin resin was used 

as a stationary phase for the partner protein in micro-spin column (Pierce) as shown in 

Fig. 5.1. 

5.1.1 The HMBD interacts with A-domain in a copper-dependent 
manner 

Under gravity flow, the HMBD (2 nmol) mixed with 10 µM TTM or with 30 µM Cu+ 

ion (reduced by ascorbic acid) was loaded onto 50 µl Strep-Tactin resin, and washed to 

remove unbound HMBD and free Cu+ . In this stage, most of the loaded HMBD protein 

was bound to the resin as shown in Fig. 5.2 & 5.3 (lane FTMBD). Afterwards, 2 nmol A-

domain, previously digested with Thrombin protease to remove the 6x His-tag, was 

added to the column containing Cu+-loaded or Cu+-free HMBD, and the unbound 

protein was washed out before elution of the HMBD with 5 mM desthiobiotin. Because 

of the close proximity in size between the HMBD (which elutes forms a dimer) and the 

A-domain, all SDS samples obtained from co-purification were labeled with the thiol-

reactive dye, BADAN, for detecting the HMBD band under UV light as opposed to the 

A-domain which has no thiols and is thus visible only after Coomassie-blue staining but 

not under UV light. Each SDS-PAGE gel was exposed to the UV light prior to staining 

with Coomassie blue dye.  

 
In Fig. 5.2, The SDS-PAGE analysis of co-purification of the Cu+-free HMBD 

with the A-domain shows that the elution bands of the HMBD in both the control (lane 

E) and after loading the A-domain (lane EA) are alike. This suggests that the HMBD 

does not interact with the A-domain in absence of Cu+ ion. 
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Figure 5.2. SDS-PAGE analysis of co-purification assay of Cu+-free HMBD with A-
domain.  
2nmole strep-tagged HMBD with10 µM TTM was loaded onto 50 µl Strep-Tactin resin, 
followed by 4CVs washing buffer. 2 nmole A-domain was added to the bound HMBD. The 
samples were labeled with excess BADAN dye prior to gel loading. The gel was displayed 
first under UV light (Right panel) and then the stained gel under white light (Left panel). 
Lane M, protein molecular weight standards (kDa); lane FTMBD, flow-through of HMBD; 
lane FTA, flow-through of A domain; lane E, Elution of HMBD (control); lane EA, Elution 
of HMBD co-purified with A domain. 

 

 

In contrast, the Cu+-loaded HMBD seems to interact with the A-domain as 

shown in Fig. 5.3 in the presence of 30 µM Cu+. Comparing the equivalent SDS-PAGE 

gel of co-purification of Cu+-loaded HMBD with A-domain under white and UV light, it 

is obvious that  most of the bound HMBD was now associated with the flow-through of 

the A-domain (Fig. 5.3, lane FTA). Furthermore, the elution band of HMBD appears 

now more intense under white light than under UV light (Fig. 5.3, lane EA1) which 

indicates that the A-domain is co-eluted with HMBD, thereby enhancing the Coomassie 

stain but not the fluorescence stain. The HMBD association with the flow-through of A-

domain was unexpected and striking as the binding affinity of Strep-tag II to Strep-

Tactin resin is strong (Kd ~1 µM) according to IBA manufacturer instructions[153]; 

however, a similar behavior  has also been detected in the co-purification assay of the 

same domains from A. fulgidus CopB in presence of copper (Fig.  2.9c from [152]).   

These two observations suggest that the HMBD interacts with the A-domain in Cu+-

dependent manner with an affinity that is higher than that between Strep-tag and Strep-

Tactin resin. 
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Figure 5.3. SDS-PAGE analysis of co-purification assay of Cu+-loaded HMBD with A-
domain.  
A mixture of 2 nmole strep-tagged HMBD and 30 µM CuCl2 was loaded into 50 µl Strep-
Tactin resin. 2 nmole untagged A-domain was added to the bound HMBD. The assay was 
carried out in buffer of 30 mM HEPES-NaOH pH 8, 100 mM NaCl, 1 mM DTT and 1 mM 
ascorbic acid. The gel was displayed under UV light (Right panel) and under white light 
(Left panel). Lane M; protein molecular weight standards (kDa); lane MBD, HMBD before 
loading onto the column; lane FTMBD, flow-through of Cu+-loaded HMBD; lanes E1 and E2, 
two consecutive elutions of HMBD (control) with 50 µl of 5 mM desthiobiotin; lane Adomain, 
A-domain prior to loading; lane FTA, flow-through of A domain; lanes EA1 and EA2, two 
consecutive elutions of HMBD co-purified with A domain. The arrow indicates a 
fluorescence artifact under UV light, which is not due to protein bands (no corresponding 
Coomassie stained band under white light) but to excess BADAN. 

 

This assay provides the first experimental finding that supports the interaction 

between the HMBD and the A-domain in a Cu-specific manner. For instance, the co-

purification of C-MBD from A. fulgidus CopA [55] and N-MBD from A. fulgidus CopB 

[152] with the A-domain showed always interaction in a Cu+-independent manner, 

while the N-MBD from A. fulgidus  CopA did not show any interaction at any state 

[63].   Nevertheless in the latter study there was an indication of an interaction between 

these domains according to the SDS gel of the A-domain/Cu+-loaded N-MBD co-

purification (Fig. 5.3), but the authors ignored it [63].     

 

Moreover, the assay provides additional experimental support for the 

pseudoatomic model of A. fulgidus CopA [47, 149], the biochemical study of domain 

organization of T. maritima copA [74], the structural model of E. hirae CopA based on 

chemical cross-linking[154], and crystallographic and NMR studies of S. pneumoniae 

CopA  HMBD [75]; in which  the association of the HMBD with the A-domain is 

suggested even in a Cu+-free state.  
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The propose interaction between the HMBD and the A-domain can be understood on 

the basis of electrostatic surface potential analysis of these domains from S. pneumoniae 

[75] and E. hirae CopA[154] suggesting that the positively charged HMBD could 

preferentially dock against the negatively charged A-domain. This electrostatic contact 

is likely to be strengthened when Cu+ binds to the HMBD. In LpCopA, the electrostatic 

surface of the HMBD cannot be determined because the LpCopA structure does not 

resolve the HMBD.  The electrostatic surface of the resolved A-domain is indeed 

negatively charged at the close proximity to the proposed site of the HMBD.  

 
 

5.1.2 The HMBD does not bind to the PN domain 

 
The co-purification of the HMBD with the C-terminal 10xHis tagged PN domain was 

examined as well. The tag of the PN domain was left uncleaved as the tag was not 

exposed to the corresponding protease enzyme. In this assay, the PN domain with and 

without AppNp (as a non-hydrolyzable trinucleotide analog) was co-purified with Cu+-

free and Cu+-loaded states of the HMBD as described above.  We were unable to detect 

any interaction between these domains under these experimental conditions as shown in 

Fig. 5.4.  

 
 
 
 
 
 
 
 
 
 
 
Figure 5.4. SDS-PAGE analysis of PN domain co-purification with HMBD.  
2 nmole PN-domain was co-purified with 2 nmole HMBD bound to the column in function 
of 10 µM TTM (Cu-chelator), 30 µM CuCl2 (6 nmol) or 100 µM AppNp. The assay buffer 
contains of 30mM HEPES-NaOH pH 8, 100 mM NaCl, 1 mM DTT, 1% glycerol and 1mM 
ascorbic acid.  The protein samples were labeled with fluorescent BADAN dye and detected 
in the gel under A) white and B) UV light. Lane M, protein molecular weight standards 
(kDa); lane FTMBD, flow-through of HMBD; lane FTPN, flow-through of PN domain; lane E, 
Elution of HMBD co-purified with PN domain.  
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This result, however, does not agree with previously equivalent assays of the same 

domains from human ATP7B [64] and A. fulgidus CopA [63]  in which those domains 

interact with each other in a specific manner. Also, cryo-EM study of CopA from A. 

fulgidus suggests that the HMBD interacts with the A- and N-domains [149]. 

 

5.1.3 The controls for the HMBD co-purification assay 

 As a control, the His-tagged TEV protease was used for examining the specificity of the 

assay. The Cu (I)-loaded HMBD was co-purified with His-tagged TEV protease under 

the identical conditions. The recombinant TEV protease is rich in cysteines which can 

be labeled and monitored on the gel under UV light. As shown in Fig. 5.5, there was no 

detection of TEV protein band in HMBD elution. On another hand, no band of HMBD 

was detected in the flow-through (FT) of TEV protease. The last observation indicates, 

therefore, that the HMBD eluted with the FT of A-domain in Fig. 5.3 perhaps occurred 

in a specific manner due to strong interaction between these domains.  

 
   
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.5. SDS-PAGE analysis of N-term 6xHis TEV protease co-purified with 
HMBD as negative control.  
The recombinant TEV protease rich in cysteine residues can be also labeled with BADAN 
and monitored under UV light.  2 nmole HMBD with 6 nmole CuCl2 was loaded onto 50 µl 
Strep-Tactin resin. Then, 2 nmole 6xHis TEV was added to the bound HMBD. The gel was 
displayed under UV light (Right panel) and under white light (Left panel). Lane FTMBD, 
Flow-through of HMBD; lane FTTEV, Flow-through of 6xHis-TEV protease and lane E, 
Elution of HMBD.  
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Moreover, the specificity of Strep-Tactin was examined by using Strep-tag-free PN or 

A-domains instead of HMBD. The SDS-PAGE gel shows no detection of 6xHis-tagged 

PN domain or A-domain in the elution fraction as shown in Fig. 5.6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.1.4 Co-purification of PN domain with A-domain 

It has been established that the A-domain is associated with P-domain in 

phosphoenzyme (EP) conformations in all P-type ATPases. In the E1.ATP state of the 

Ca2+-ATPase, the N-domain is more inclined towards the P-domain [72, 155], causing 

gathering of the cytosolic domains to form a compact headpiece after widely separating 

in the E1.2Ca2+ state. This in turn causes a tilt of  the A-domain by 30° around an axis to 

make contact with the N-domain with a different interface compared to the E2(TG) [72, 

83, 155].  

Therefore, the interaction between the PN- and the A- domains has been 

investigated by a co-purification assay as a function of nucleotide. Unfortunately, the 

designated FRET measurement between L466Y mutant of PN domain and I281W 

mutant of A-domain was cancelled due to anomalous emission spectrum of tyrosine in 

L466Y mutant (data not shown). In co-purification assay, 10 µM dual-tagged PN 

domain (N-Strep and C-10xHis tags) was co-purified with 30 µM 6xHis-tagged A-

domain on a Strep-Tactin resin in the presence of 100 µM ATPγS/5 mM MgCl2, a non-

hydrolyzable analogue of ATP. The column was washed twice with 4 CV of washing 

buffer, and then eluted with 5 mM desthiobiotin.  
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Figure 5.6. SDS-PAGE gel indicates the specificity 
of Strep-Tactin resin for co-purification assay.  
2 nmole 6xHis-tagged PN or A domains were loaded in 
free Strep-Tactin resin to check the specificity of the 
column. M; protein Marker (kDa), FTA; Flow-through 
of A domain loading, EA; Elution of A-domain; FTPN; 
Flow-through of PN domain loading, EPN; Elution of 
PN-domain. 
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Figure 5.7. SDS-PAGE analysis of co-purification of PN domain with A-domain.  
6 nmol A-domain was loaded into 2nmol dual tagged PN domain (±0.1 mM ATPγS/5 mM 
MgCl2) bound to100 µl Strep-Tactin resin. The column washed twice with 4CV of 50 mM 
Tris-HCl pH 8, 100 mM NaCl, 1 mM DTT, 1% glycerol ±0.1 mM ATPγS/5 mM MgCl2.  
Lane M, Molecular weight marker (kDa); lane EControl, Elution of A-domain loaded to Strep-
Tactin resin (control); lane FT, Flow-through of A-domain; W, first washing aliquot; E: 
Elution of PN domain. Arch refers to duplicated lane of The FT of A-domain. 
 

In Fig. 5.7, The SDS-PAGE gel of these domains co-purification indicates that 

A-domain co-eluted merely with ATPγS-bound PN domain and did not bind to the 

nucleotide-free PN domain. The same result has been obtained when ATPγS was 

replaced by 100 µM ADP/5 mM MgCl2 (data not shown). This indicates that the binding 

between these domains probably involves directly the nucleotide pocket of the N-

domain rather than the P domain. 

 

There are two possible explanations for this affinity; first the bound nucleotide 

induces conformational changes at the nucleotide pocket of the N-domain, thereby 

exposing side chain residues for interaction. A key feature of CPx-ATPase is the 

conserved HP motif located on the outermost surface of the N-domain which is involved 

in ATP binding and perhaps  in interaction of the N-domain with other domains [156].   

 

The second explanation is that the A-domain interacts directly with the bound 

nucleotide. This hypothesis is supported by an unexpected ATPase activity of the A-

domain in solution as discussed in Chapter 3, section 3.4.1. However, further 

experiments are required to substantiate this hypothesis.  
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Moreover, it is worth mentioning that the crystal structure of the Ca2+-ATPase (PBD ID: 

3B9R) in E2.AlF4-.AppCp conformation indicates that the A-domain interacts with a 

modulatory ATP bound to the N-domain. Specifically the Arg174, Ile188, and Lys205 

side chains of the A-domain in the Ca2+-ATPase are closely associated with the bound 

nucleotide to modulate the phosphoenzyme processing [73]. Also, the Ser186 side chain 

of the A-domain and the Glu439 side chain of the N-domain are closely located to the 

modulatory ATP binding site for the EP isomerization and their hydrogen bond 

stabilizes the E2P ground state structure [157]. Knowing that the Copper-ATPase also 

shows the two modes of ATP binding, catalytic and modulatory, in the same pocket, but 

slightly separated as well as the other P-type ATPases [37, 63, 90], and the crystal 

structure of LpCopA bound with either catalytic or modulatory ATP has not been solved 

yet.  Taken together, it is suggested that A-domain in LpCopA has a close contact with 

modulatory ATP-bound N-domain through relevant residues to those in Ca2+-ATPase, 

Figure 5.8 shows the comparative position of residues in the A-domain of LpCopA to 

those bound to modulatory ATP in Ca2+-ATPase have interaction with. 

 

In Fig. 5.8, the superposition of the Ca2+-ATPase bound with modulator 

nucleotide in E2~P-AppCp state (PBD ID: 3B9R) and LpCopA in E2~P state (PBD ID: 

3RFU) demonstrates that the LpCopA structure shares a basic architecture with the 

Ca2+-ATPase despite of a low degree of sequence identity. Considering the crystal 

structure of LpCopA has no AppCp nucleotide (in Fig. 5.8), the Arg268, Ala284 and 

Lys290 residues of LpCopA are in a close proximity to the Arg174, Ile188, and Lys205 

residues of Ca2+-ATPase which interact with the modulatory ATP bound in N-domain.  
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Figure 5.8. Superimposition of LpCopA and Ca2+-ATPase with modulatory nucleotide.  

 The cartoon represents the superimposed Ca2+-ATPase in E2.AlF4-.AppCp state (PDB ID: 

3B9R) with LpCopA in E2.AlF4- state (PDB ID: 3RFU). The LpCopA structure is in cyan 

color  and  Ca2+-ATPase  structure  in  forest  color. A)  The  overall  structure  of  both 

superimposed  ATPases  shows  similarity  in  a  basic  architecture.  Nucleotide-binding, 

Phosphorylation and Actuator domains were denoted as N-, P- and A-domains, respectively. 

B)  Close-view  of the  binding  interface  between  N-domain  and  A-domain,  proposed  by 

Clausen et al.[73], shows the exist of Arg268, Ala284 and Lys290 residues of LpCopA (in 

yellow color) in relatively close position to the Arg174, Ile188, and Lys205 residues of Ca2+-

ATPase  (in  light-blue  color).the  distance  in Å is  measured  between  α-carbons  of  comparative 

residues. 

AlF4- 

A-domain 
N-domain 

P-domain 

Cytosol 

AlF4- 

A 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
B 

Page | 105  
 



Chapter 5  Results and discussion 

5.2 Fluorometric assay of Cu (I) dependent interaction of HMBD 
with A-domain 

  

As described in the co-purification assay, the A-domain exhibited a specific interaction 

with Cu (I)-bound HMBD. This interaction needed further proof by another assay. Here, 

we benefit from the naturally occurring cysteines in the sequence of the HMBD as 

compared to the Cys-free A-domain for detecting their interaction using Fluorometric 

assay. The amino acid sequence of HMBD contains of four cysteines and many histidine 

residues. Two of these cysteines are in the conserved MxCxxC motif and the others at 

the N-terminal MxCxxC motif of the HMBD. Labeling these cysteines with a 

fluorescent thiol-reactive dye will assist to monitor the proposed interaction. 

 

The cysteine residues of HMBD were randomly labeled with either the 

fluorescent CPM or BADAN dyes in solution. In this labeling method, the HMBD was 

reacted with excess concentrations of CPM or BADAN dye (1:6, molar ratio of protein: 

dye) in solution to label the largest possible number of cysteines, and then the excess of 

un-reacted dye was removed by a PD-10 Desalting column followed by dialysis against 

the assay buffer for 4 hours with adjustment of the pH. The untagged A-domain (6xHis 

tag was cleaved off as described in Chapter 3 in section 3.1.2.2) was also dialyzed in the 

same assay buffer of 30 mM HEPES-NaOH pH 8, 100 mM NaCl and 1% glycerol. 1 

mM ascorbic acid was added later to the assay buffer prior to launching the assay. 

 

To examine whether the dye-labeled HMBD still has a metal affinity to Cu+ ion, 

the BCA assay was performed by titration of CuCl2 to 10 µM of dye-labeled HMBD 

(CPM or BADAN) as described in the materials and methods chapter. The assay 

detected the capability of the CPM-labeled HMBD to bind  Cu+ in stoichiometry 2:1 

(protein : copper ion), suggesting at least one cysteine at the MxCxxC motif is still 

available after  labeling of the other cysteine of the MxCxxC motif  with the fluorescent 

dye. Knowing, the stoichiometry of copper binding by the HMBD is estimated at 1:1.5 

(protein: metal; see Chapter 4). 
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Figure 5.9. Cartoon  representation  shows  the  orientation  of  cysteine  residues  of 
HMBD in Bacillus subtilis CopA.  

Protein  structure  was  retrieved  from  PDB  ID:1KQK.  The  copper  binding  residues  of 
MxCxxC motif are displayed in red color 

 

5.2.1 The fluorescent CPM labeling monitored the domain-domain 
interaction 

The fluorometric assay was started by adding first either 30 µM CuCl2 or 5 µM of A-

domain to 10 µM CPM-labeled HMBD. After measuring the induced spectral changes 

of  the  CPM  dye  (λex=  387 nm),  the  second  constituent  was  added.  The  copper  ion 

quenches the fluorescence spectrum of CPM and causes a small peak shift from 478 nm 

to 477 nm as shown in Fig. 5.10. 
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Figure 5.10. The emission spectrum of CPM-labeled HMBD is quenched by Cu+.  
30 µM CuCl2 was added to 10µM HMBD in buffer assay containing 1 mM ascorbic acid. 
The dye was excited at 387nm. 
 
 

The addition of the A-domain to the HMBD in the absence of copper did not 

cause a substantial change in the fluorescence spectrum of CPM as shown in Fig. 

5.11A.  The time-resolved emission spectra of CPM-labeled HMBD were slightly 

shifted from 478 nm to 477 nm, indicating perhaps that the A-domain weakly interacts 

with the HMBD in absence of Cu+ ion (Fig 5.11A). 

This interaction is strongly increased in the presence of Cu+ as shown in Fig. 5.11B. 

The 5 µM A-domain induced a time-dependent increase of the emission intensity of 10 

µM CPM-labeled HMBD with 30 µM Cu+ ion, in addition to blue-shifting the emission 

maximum from 477 nm to 474 nm (Fig. 5.11B). The latter result had been again 

obtained when 30µM CuCl2 was added to a mixture of 5 µM A-domain and 10 µM 

CPM-labeled HMBD (Fig.5.12). Titration of Cu+ ion to CPM-labeled HMBD with 

caused slightly peak shift from 478 nm to 477 nm (Fig. 5.12). 
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Figure 5.11. Fluorometric assay of copper-dependent binding of the CPM-labeled 
HMBD to the A-domain.   
A) In the absence and B) in the presence of 30 µM CuCl2, the emission spectra of 10 µM 
CPM-labeled HMBD interaction with 5 µM A-domain were recorded every 2 min at λex 
~387 nm. The initial spectrum in B, i.e., in the presence of Cu+ but before addition of the A 
domain, is identical with the one in Fig. 5.10 after Cu+ addition (red trace).  
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Figure 5.12. Normalized fluorescence emission spectra of CPM-labeled HMBD with A-
domain. 
 The interaction between HMBD with A-domain was initiated by adding either A) 10 
µM A-domain to the mixture of 10 µM Cu+-loaded HMBD or B) 30 µM CuCl2 to 10 
µM HMBD + 5 µM A-domain mixture. The legend order (top to bottom) indicates the 
sequence of titration and measurements. 
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5.2.2 The fluorescent BADAN labeling monitored the domain-domain 
interaction 

Likewise, the interaction between HMBD and A-domain was monitored by labeling the 

HMBD with BADAN, an excellent environment-sensitive probe. Interestingly, the 

spectrum of BADAN-labeled HMBD was changed upon Cu+ ion binding to the protein 

(Fig. 13.A). 30 µM Cu+ induced a time-dependent emission decrease of BADAN-labeled 

HMBD. The emission decay was decreased in the presence of 5 µM A-domain and new 

peaks appeared at 481 and 443 nm as shown in Fig. 5.13.B. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.13. Emission spectra of BADAN-labeled HMBD domain binding to Cu+ and 
the A-domain. 
Binding rate of 10 µM BADAN-labeled HMBD with 30 µM Cu+ ion was monitored by 
measuring the changes in emission spectra of BADAN-labeled HMBD (λex=387 nm) every 
2 min in the absence A) and presence B) of 5 µM A-domain.  
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In a complementary experiment, the addition of 5 µM A-domain to 10 µM BADAN-

labeled HMBD, pre-equilibrated with 30 µM Cu+, induced the increase of the emission 

spectrum of BADAN and a blue-shift from 520 nm to 518 nm as shown in Fig. 5.14. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.14. Fluorometric binding assay of Cu+-loaded HMBD/BADAN domain with 
A-domain. 
 Emission spectral changes of 10 µM BADAN-labeled HMBD domain loaded with 30 µM 
Cu+ion were recorded every 2 min after adding 5 µM A-domain in the assay buffer 
containing 30 mM HEPES-NaOH pH 8, 100 mM NaCl and 1% glycerol and 1mM ascorbic 
acid. The BADAN was also excited at 387 nm. 
 

All these results are consistent with the results of the co-purification assay of 

these domains and underscore the interaction of the A-domain with HMBD in a copper-

dependent manner. We suggest that the copper binding to the HMBD initiates the 

molecular recognition between the HMBD and the A-domain which together are 

required for the proper interaction of these cytosolic domains during catalytic turnover.  

Finally, and most importantly, this study provides for the first time, direct 

experimental proof for the proposed cytosolic domain organization during the copper-

transporting mechanism as it  can explain the discussed  copper-dependent inhibitory or 

activating role of the HMBDs in P-type ATPases by its direct interaction with the A-

domain. More specifically, our data supports the view of Hatori and co-workers who 

suggest that copper binding to the N-terminal HMBD is required to obtain the active 

conformation that sustains catalytic and transport cycles [150].
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Summary and discussion  
 

The rearrangements of cytosolic domains during the catalytic turnover induce 

conformational changes in the transmembrane domain, leading to metal transport. We 

assumed that the cytosolic ligands (Cu+ and nucleotide) modulate the interactions among 

cytosolic domains in catalytic cycle. To prove this hypothesis, the interactions among 

isolated cytosolic domains were examined in function of appropriate ligands by co-

purification and fluorometric assays. Through the co-purification assays, we try to 

answer the question of what the role of HMBD in the enzymatic function of CopA. In 

AfCopA, The co-purification assay demonstrated that N-MBD interacts with PN domain 

only in the absence of Cu+ or ADP while it does not interact with A-domain. On another 

hand, the electron microscopy and docking studies of ΔC-AfCopA place the N-MBD in 

close contact with the N- and the A- domains in Cu+-free state. All these findings lead 

Argüello and Stokes to the assumption that N-MBD plays auto-inhibitory role in 

absence of Cu+ while it dissociates from the catalytic domains upon Cu+ binding, 

allowing the enzymatic cycle starts (Fig. 5.15) [148]. 

 

Here, our data on the cytosolic domains of LpCopA show a different interaction 

pattern of HMBD from LpCopA with the other domains than that of N-MBD from 

AfCopA. The HMBD of LpCopA undergoes a Cu+-dependent interaction with the A-

domain and does not interact with the PN domain regardless of a ligand. On the other 

hand, the A-domain does interact with the PN domain in the presence of either ATP or 

ADP. In agreement with previous studies of Hatori et al. 2008 [74, 150] on another, we 

postulate that the A-domain interaction with the Cu+-loaded HMBD is required for 

forming a catalytically compact headpiece with other cytosolic domains for launching 

the catalytic turnover and copper transport. Perhaps the A-domain is associated with the 

HMBD in the E1P~ADP and E2P intermediates [74]. It has been reported that the two 

TM-MBSs are independently loaded with Cu+. However, their simultaneous occupation 

is associated with ATP binding to the N-domain.  
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Figure 5.15 A schematic diagram shows the difference in the putative HMBD 
rearrangement in LpCopA and AfCopA upon Cu+ binding. 
 The copper chaperone delivers the first Cu+ ion to the cytosolic metal binding domain of 
CopA, causing rearrangement of the cytosolic headpiece. There are two proposed 
mechanisms of HMBD rearrangement upon Cu+ binding: A) The N-MBD of AfCopA 
dissociates from other cytosolic domain, suggesting auto-inhibitory role for N-MBD. B) In 
our model, the HMBD of LpCopA may play a catalytic role by association with A-domain 
upon Cu+ binding for leaving room for ATP binding to form an active conformation for 
launching the catalytic cycle. The HMBD, A-, P- and N- domains stand for Heavy metal 
binding domain, actuator domain, phosphorylation- and nucleotide-binding domain, 
respectively. 

 

In the light of our recent data, and besides our knowledge about mechanistic 

characteristics of P-type ATPases, we can suggest a copper transport mechanism of 

LpCopA (Fig 5.16). In E1 state, a copper chaperone delivers the first copper ion to 

HMBD, causing dissociation of HMBD from the interfacial platform helix (MB`) and 

thereby leading to opening of the transmembrane entry site of the ion transport pathway 

for occupying the first TM-MBS with second copper delivered directly by a copper 

chaperone. In line with the previous step, the copper-occupied HMBD does interact with 

A-domain allowing the N-domain to receive one ATP molecule. Upon ATP binding, 

AfCopA           LpCopA 

A B 
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both of N- and P- domains incline to each other and the A-domain, the latter linked with 

the HMBD as shown in this study, rotates with a small angle (by ~30° parallel to the 

membrane) to make a contact with N-domain [83]. At this stage, the compact headpiece 

forms the higher energetic state, (Cu+).E1P~ADP, in which the second TM-MBS is 

occupied, perhaps, by the copper bound HMBD [146, 158]. In the E1P→E2P state 

transition, the A-domain rotates toward the high-energy aspartyl-phosphate intermediate 

at P-domain, causing a drastic rearrangement of the transmembrane helices leading to 

the opening of the luminal gate and releasing the Cu+ ions into the lumen (extracellular 

space). Finally the P-domain is dephosphorylated by the A-domain and the 

conformation recycles to E1 state. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.16. Schematic diagram shows the classical P-type–ATPase reaction cycle 
including the interaction among LpCopA cytosolic domains in this study.  
The cytosolic HMBD, A-, P- and N- domains are colored in light-blue, yellow, red and blue, 
respectively, and the TM domain is gray. The box with white ground indicates on the 
proposed mechanism based on the cytosolic domains interaction concluded from this study. 
According to our hypothesis, the A-domain associates with copper-loaded HMBD leaving 
room for ATP binding, subsequently the A-domain-linked HMBD makes contact with N-
domain to form compact headpiece for catalytic turnover. The HMBD, A-, P- and N- 
domains stand for Heavy metal binding domain, actuator domain, phosphorylation- and 
nucleotide-binding domain, respectively.
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Chapter 6  
 

The Structural impact of Model peptides derived from 
Actuator domain on the Cytosolic Headpiece and the CPC-

motif conformations in L. pneumophila  CopA 
 
 
Introduction 
 

 

The actuator domain (A-domain) is flexible to take different positions imposed by other 

domains to regulate the occlusion and extrusion of ions [79]. The A-domain plays role 

for coupling the ATP hydrolysis with structural rearrangements of the transmembrane 

segments. The domain contains a loop with a conserved TGE sequence motif which its 

geometric configuration presumably facilitates interactions with the P-domain [159]. In 

the crystal structure of Ca2+-ATPase, the TGE motif contacts the phosphorylation site 

closely in the E2 and E2P states, but in  E1 state it is ~30 Å away from the 

phosphorylated aspartate in P-domain [22].  The glutamate residue of TGE motif is 

critical for the dephosphorylation of E2 and E2P, but is of little functional importance in 

E1 and E1P [160]. 

 

Here, we addressed the questions of whether or not the TGE motif can bind to 

the PN domain, independently of the rest of A-domain sequence, and what its impacts 

on the structure and function of the other cytosolic domains and transmembrane 

segments of LpCopA. Therefore, we designated model peptides derived from the TGE 

loop sequence of A-domain in LpCopA and studied the kinetics binding and affinity of 

these peptide to the PN-domain using Stopped-flow fluorescence. Our data show that 

peptides binding to the PN domain induce structural changes at cytosolic headpiece and 

TM-MBS. 
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 Results and discussion 

6.1 Synthesis of Actuator-derived peptides 

 
Synthetic  peptides  were  used  in  spectroscopic,  calorimetric  and  functional  assays  to 

investigate  the  nature  of  cytosolic  domain  interactions  between  the  actuator  and  PN 

domain.  The  concept  behind  this  is  the  use  of  peptides  as  putative  inhibitors  of  these 

interactions.  Thereby,  catalytic  intermediates  may  become  enriched  under  steady  state 

conditions or the Post-Albers cycle arrested in the extreme case. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.1. Design of synthetic peptide models derived from Actuator domain. 

The synthetic peptides are derived from the conserved TGE-containing site of the Actuator 

domain  that  catalyzes  dephosphorylation  of  the  P  domain  of LpCopA. A) list  of peptide 

sequences that were designed to mimic the conserved TGE motif of Actuator domain.  The 

gray  color  indicates  the  mutated  residues  from  wild-type  sequence.    B)  Cartoon 

representation  of  the  TGE  loop  in  the  Actuator  domain  of LpCopA (PDB  entry:  3RFU 

visualized by PyMOL software).  
.  
 
 
 

 
A)                                                                
 
Peptide 
name  

                     Sequence 

Act-1 
Act-2 
Act-3 
Act-4 
Act-5 

Acyl-NH-VTG EPI PVA S-CONH2 (Native) 
Acyl-NH-VTG EPW PVA S-CONH2    
Acyl-NH-VTG EGW PVA S-CONH2    
Acyl-NH-VTG EPW GVA S-CONH2    
Acyl-NH-VTG EGW GVA S-CONH2 

 

B
) 
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Figure 6.2. CD spectrum of Act1 peptide in Phosphate buffer.  
50 µM Act1 peptide in 7 mM KH2PO4 buffer pH 7.4 was measured from 185-260 nm in 1 
mm cell using Jasco J-815 Circular Dichroism (CD) Spectropolarimeter. 
 
 

The actuator domain (A-domain) is involved in the E1P ↔ E2~P conversion by 

replacing the N domain from the active surface of the P domain. The A-domain contains 

a highly conserved TGE motif, which has an important role in the dephosphorylation of 

the E2-P catalytic state of P-type ATPases. In SERCA, mutation within the TGE motif 

inhibits the dephosphorylation of E2-P without a reduction of Ca2+ binding and 

phosphorylation capacity [161-163].  

 

Here, we investigate the physical nature of domain interactions at the TGE site 

independently of the full A-domain sequence. Based on the LpCopA crystal structure 

(PDB ID: 3RFU), we designed peptides whose sequences are derived from the putative 

interaction site of the actuator domain with the PN domain. There is a conserved 

hydrophobic cluster next to the conserved TGE-motif (Fig. 6.1) composed of prolines, 

isoleucine, valine and alanine. The peptides were synthesized with modification at both 

ends with N-terminal acetylation and C-terminal amidation, which remove the 

respective terminal charges to mimic the natural peptide backbone. The peptide-based 

approach to the study of domain interactions requires sufficient affinity of the peptide to 

its native binding epitope. Therefore, it was necessary to also provide a corresponding 

observable of peptide protein interactions. To monitor the latter fluorometrically, the 
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Act-1-peptide (wild-type sequence) was modified by replacing the central isoleucine 

(corresponding to I281 in actuator domain) by tryptophan as a natural fluorophore in the 

novel peptide Act-2. Moreover, the prolines in wild-type sequence were further replaced 

with glycines individually or the two of them in the synthetic peptides Act-3 / Act-4 and 

Act-5, respectively. The motivation of these replacements is to address the role of the 

prolines for molecular recognition of the binding epitope at the P domain.  The CD 

spectrum of Act-1 peptide (Fig 6.2) reveals that the peptide is neither helical nor β-sheet 

but more similar to a random coil as we expected from the crystal structure shown in 

Fig. 6.1.  

 

6.2 Thermal stabilization of PN domain  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.3. Thermal stabilization of the PN domain by peptide Act-1. 
The thermal stability of PN domain was monitored in function of Act-1 by CD 
spectroscopy. The data points were taken from the thermally induced CD-spectral changes 
shown in the insets between 232 to 222 nm (heating rate of 2oC/min). Open circles:  PN 
domain alone at 5 µM, filled square: PN domain at 5 µM in the presence of 50 µM Act-1 
peptide. Experiments were performed in 10 mM phosphate buffer pH 7.2, 3 mM MgSO4 
using a 1cm cuvette with stirrer. 
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Thermal denaturation of the PN domain in the presence of the synthetic Act-1 peptide 

was performed to investigate the capability of the Act-1 peptide to bind and thereby 

thermally stabilize the PN domain. Circular dichroism (CD) spectroscopy was used 

because it allows observing secondary structural changes in real time. The thermal 

denaturation of the PN domain was monitored by measuring the temperature-dependent 

CD spectra of 5 µM PN domain in the absence and presence of 50 µM Act-1 peptide as 

shown in Fig. 6.3. We have evaluated the temperature-induced loss of the integral CD 

signal between 230 and 222 nm, where the CD of α-helical structure dominates the 

spectrum (as a negative signal). Thereby, the unfolding of the PN domain was observed 

in a range that does not overlap with the peptide signal. The sigmoidal shape of the 

resulting denaturation curve was fitted to the data with a two state unfolding model, 

leading to an unfolding enthalpy and entropy of 174 kJ and 528 J, respectively, 

reproducing the both the unfolding midpoint temperature of Tm = 56.0 °C and the 

steepness of the transition. In the presence of the actuator Act-1 peptide, the unfolding 

curve is shifted by ~4 K to higher temperature, indicating a stabilization of the PN 

domain in the presence of the peptide. The more complicated transition composed of 

both unfolding of the PN domain and unbinding of the peptide prevents the fit of a 

simple two state model across the entire unfolding regime. However, from the shift of 

∆Tm by ~4 K, a ∆∆H > 2 kJ mol-1 can be estimated (Material and Methods), assuming 

an unchanged unfolding entropy. An upper boundary can be derived from the maximal 

slope of the unfolding curve in the presence of the peptide which results in an estimate 

of ∆∆H < 20 kJ. 

 

The data show qualitatively that the Act-1 peptide binds to the PN domain. How can the 

affinity, i.e., the KD of the peptide binding be estimated from these data? In the realm of 

a two state model, the unfolding curve of the PN domain alone can be used because it 

predicts the degree of denaturation of the free PN domain at the any temperature. 

Therefore, the amount of unfolded free PN domain is known also for denaturation of the 

PN domain in the presence of Act-1. 
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 In this case, the Tm is 59.5 °C. With the definition for the concentration ratio of 

denatured (D) to native state (N) of the PN domain Kden: = [D]/[N] one obtains 

 
Kden= exp(528 JK-1/R)*exp(-174 kJ/(R*T) 
 
In the presence of an additional peptide-bound state (NP), the fraction S of denatured 
protein as determined from the CD denaturation curve is 
S = [D] / ([N] + [NP] + [D]) 
 
   = Kden / (1 + [NP]/[N] + Kden)  which leads to: 
 
 
[NP] / [N] = Kden · (S-1 - 1) - 1. 
With the total concentration of the native protein [Ntot] = [N] + [NP] one obtains: 
 
[Ntot] / [N] =  Kden · (S-1 - 1), 
 
[Ntot] = (1-S) · Ctot, with Ctot the total protein concentration. Therefore 
 
[N] = (1-S) · Ctot / (Kden· (S-1-1)) 
 
[NP] = [Ntot] - [N] = Ctot (1 - S (1 + Kden-1)) 
 
[P] = [Ptot] - [NP] 

Thus the concentrations of free native protein [N], its peptide-bound form [NP] and the 

free peptide concentration [P] are all known from experiment. 

Consequently the KD of peptide binding to the PN domain can be determined. Using this 

approach, the affinity of the Act-1 peptide is 50-100 µM and for PN concentrations of 5 

to 50 µM and thus not affected by errors in the determination of the absolute protein 

concentration. The evaluation assumes binding of the Act-1 peptide only to the native 

PN domain. 
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6.3 Fluorometric binding assay of peptide Act-2 to PN domain 
 

 
Figure 6.4. Trp emission spectra of Act-2 peptide with decreasing in concentration of 
PN domain.  
Traces from 1-7 correspond to various PN concentrations from 55 to 10.9 µM, respectively, 
and a constant concentration of Act-2 peptide (25 µM).  The Act-2 was excited at 280 nm.  
 
 

 

We have addressed the binding of the actuator peptide to the PN domain by an 

alternative approach using fluorescence spectroscopy. For that purpose the isoleucine 

corresponding to ILE 281 in the native sequence was replaced by a tryptophan in the 

Act-2 peptide, rendering it a fluorescence sensor of binding to the PN domain. Figure 

6.4 shows the decrease of Trp emission as a function of increasing the Act-2/PN ratio at 

a constant concentration of Act-2 peptide. This was accomplished by diluting a solution 

with excess PN domain over Act-2 with aliquots of an Act-2 solution that contained the 
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identical peptide concentration as the initial mix. Expecting sufficient hydrophobicity of 

a TRP side chain to become buried into the equivalent environment of the PN domain as 

the native ILE, a blue shift of the TRP emission was expected upon the transition from 

the aqueous to the PN-domain-bound state of the peptide. The apparent dissociation 

constant KD was calculated as ~30-100 µM. Here, the ratio of free and bound peptide 

was determined by subtracting the spectrum obtained with excess PN domain (bound 

state of the peptide) from the fluorescence spectra measured at all other PN 

concentrations. The subtraction constant was chosen such that the resulting spectrum 

after the subtraction has the identical shape as that of the free peptide. The criterion for 

this is the linearity of the plot of the emission spectrum of the free peptide vs. the 

spectral result from the subtraction as shown in Fig. 6.4 (inset).  

 

The slopes are the relative concentrations between bound and free peptide. The 

corresponding absolute concentration of the protein-bound peptide is thus obtained from 

the known (constant) total peptide concentration. In this way, the amount of bound 

peptide could be determined as a function of the PN domain as shown in the lower panel 

of the inset. The evaluation leads to a similar peptide affinity as that determined by 

thermal denaturation. 

  

 

6.4 Stopped-flow kinetics of Act-2 interaction with PN domain 
 

The above described equilibrium experiments indicate that actuator domain-derived 

peptides bind to the PN domain with apparent Kd in the 30-100 µM range. We have 

asked whether a consistent description is possible also under non-equilibrium 

conditions, when the reaction of the PN domain with a peptide is monitored in a time 

dependent experiment. Therefore, we have used stopped flow Trp emission experiments 

to determine rate constants of association and dissociation of Act-2 with PN. 

 
 
 
 
 
 
 

Page | 123  
 



Chapter 6  Results and discussion 

 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
Figure 6.5.Stopped-flow fluorescence kinetics of peptide Act-2/ PN domain interaction.  
A) Tryptophan emission changed upon rapid mixing of 25 μM Peptide Act-2 (final conc.) 
with 21 μM the PN domain (final conc.). The excitation was at 285 nm and emission 
accumulated at 335 nm. B)  Mixing of peptide Act-2 with buffer (Blue) was taken as a 
control.  Red color indicates the model fit. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.6. The effect of ATP analog on the kinetics of the Act-2/PN domain 
interaction. 
Stopped-flow traces of Trp emission in Act-2 peptide (25 µM, final conc.) were 
recorded upon mixing with the PN domain (21µM, final conc.) in absence (black color) 
and in presence (green color) of 100 µM AppNp. The rate constants for association and 
dissociation were 1) 22000 M-2s-1 and 0.7 M-1s-1 in absence of AppNp and 2) 20000 M-

2s-1 and 1.0 M-1s-1 in presence of 100 µM AppNp, respectively. The apparent 
dissociation constant KD is 30-50 µM.  
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The fluorescence traces fit best to the mode: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figures 6.5 and 6.6 show the results from fluorescence stopped flow 

experiments. The emission of the peptide act-2 was excited at 285 nm and measured at 

330 nm, i.e. at the blue side of the emission band, where the maximal emission increase 

occurs upon a binding-induced blue shift. In contrast to the CD data, a five-fold higher 

amount of the PN-domain (21 µM) and a reduced concentration of the Act-2 peptide (25 

µM) was used to increase the ratio of bound to unbound peptide. Upon rapid mixing of 

equal volumes of PN and Act-2 solutions, a fast fluorescence increase was observed 

within the first two seconds after mixing, which was followed by a slower slight 

decrease to a final emission level established after ~10 seconds. The initial reaction was 

modelled by a bimolecular reaction with an association and dissociation rate constant 

ka= 22000 M-2s-1 and kd = 0.7 M-1s-1, respectively, leading to a dissociation constant KD 

= kd/ka = 32 µM. The ensuing slow decrease to the final emission level (which is still 

higher than the initial state of the peptide emission in the absence of the PN domain) can 

be described by a monomolecular reaction of the PN-peptide complex with a rate 

constant of kb = 0.4 s-1.  Mechanistically, the affinity of the actuator to the PN-domain in 

LpCopA requires the opening of the P and N domain interface.  
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This interface is not accessible when ATP links the two domains in the E1 state. 

Therefore, we have asked whether the affinity of the act-2 peptide to the isolated PN 

domain is regulated by the conformational state of the nucleotide-binding pocket of the 

P-domain. Comparison of the stopped flow data in Fig.6.6 shows that the TRP emission 

increase is affected but not abolished in the presence of the non-hydrolyzable ATP 

analogue, AppNp. From the kinetic analysis rate constants of ka = 20000 M-2s-1 and kd = 

1.0 M-1s-1 are obtained which correspond to a slightly increased dissociation constant KD 

= 50 µM, i.e. a slightly reduced affinity of the peptide to the nucleotide-bound state of 

the PN-domain. A slow ensuing emission change was observed in the presence of the 

nucleotide as well, indicating that the initial fast binding event is probably followed by a 

rearrangement of the peptide within the binding site in an induced fit process. 

 

In summary, the on and off rates of peptide binding to the PN domain reproduce 

the apparent KD values in the 30-100 µM range that were found also by equilibrium 

measurements in the temperature-dependent CD and fluorescence experiments.   

 

6.5 Thermodynamics parameters of Act-2/PN domain interaction  
 

The above results have revealed the 30-100 µM affinity of actuator domain-derived 

peptides to the PN domain. The data do not allow, however, specifying the entropic and 

enthalpic contributions. Knowledge of the latter is of interest, because these quantities 

are directly related to the binding mode. Therefore, isothermal titration calorimetry was 

applied to determine both terms in the binding constant.   
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Figure 6.7. Isothermal titration calorimetry (ITC) of peptide Act-2 with 50 µM PN 
domain 
Dissociation constants (KD) were determined by integrated heat effects normalized to the 
amount of injected protein and curve fitted based on a 1:1 binding model. in 50 mM Tris-
HCl pH7.4, 200 mM KCl, 1 mM MgCl2 and 10% glycerol 
 
 

Isothermal Titration Calorimetry (ITC) was used to measure the binding 

constants for the interaction of Act-2 and the PN domain. The binding reaction was 

performed in buffer containing physiological salt concentration; 50 mM Tris-HCl 

pH7.4, 200 mM KCl, 1mM MgCl2 and 10% glycerol. 2 mM Act-2 peptide was titrated 

into 50 µM PN domain solution with 5 min time intervals. 

 

Qualitatively, the ITC results show an endothermic reaction (a positive ITC 

signal corresponds to heat uptake upon binding) and thus a positive ΔH for the binding 

reaction as shown in Fig. 6.7. Thus, binding is not driven by lowering of the enthalpy, as 

for example in electrostatic attraction, but must be driven by a favorable TΔS. The 
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entropically driven binding of the Act-2 peptide is an indication for hydrophobic 

interactions. This would agree with the hydrophobic nature of the central region of the 

peptide and the hydrophobic epitope on the PN domain, seen in the crystal structure. 

The stoichiometry obtained from the fit of the ITC data (one site) was 1.2, within error 

this agrees with the expected 1:1 binding of Act-2 peptide to the PN domain. 

6.6 The effect of actuator peptides on transmembrane helices 
structure 

 
As shown above, the actuator peptides exhibit the capability to bind to the PN domain 

and cause structural changes. Now, the question is whether the binding of the peptides at 

cytosolic domain can result in structural changes at the transmembrane helices which 

may affect the ATPase activity of LpCopA. 

Here, we try to answer these questions by measuring the reactivity of the 

conserved CPC motif toward a thiol-reactive dye. Furthermore, the catalytic activity of 

LpCopA was addressed with an ATPase assay of LpCopA in dependence of actuator-

derived peptides. 

 

6.6.1 Inhibitory effect of Actuator-derived peptides on ATPase activity  

 
The ATPase activity assay of LpCopA was carried out at 37 °C in the presence of the 

Act-1 peptide varying from 0-200 µM under reducing conditions. The activity was 

induced by adding 80 µM CuSO4 and 2 mM ATP. 

The data show that the Actuator-derived peptide Act-1 weakly but reproducibly 

inhibits the ATPase activity of the full length LpCopA as shown in Fig. 6.8.  In the 

context of the binding studies of Act-1 and Act-2 to the isolated PN domain, we assign 

the inhibitory effect of the peptides to their interference with PN-Actuator interactions 

close to the TGE binding interface.  Remarkably, this inhibitory affect is also seen with 

other related peptides, where the flanking prolines have been replaced by glycines 

individually as simultaneously (Fig.6.9). Therefore, we conclude that the binding 

interface between the PN and A-domain becomes accessible to hydrophobic interactions 

with soluble peptides that mimic part of the actuator surface in the PN–Actuator 

interface. Thereby, they interfere with the post-Albert cycle during repetitive ATPase 

turnovers. 
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Figure 6.8. ATPase activity of LpCopA as a function of Act1 peptide 
10-20 µg N-term 6x His-tagged LpCopA in buffer of 30 mM HEPES-NaOH pH 7.4, 100 
mM KCl, 3 mM MgCl2, 1 mM β-ME, 0.05% DDM and 1mg/ml Asolectin was induced by 
80 µM CuSO4 and 2 mM ATP in presence of various concentrations of Act-1. Plotted data 
are averages of 3 experiments and values are normalized to activity in the absence of Act-1. 
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Figure 6.9. ATPase activity of LpCopA with different actuator-driven peptides.  
Under the same condition in Fig 6.8, the ATPase activity of N-term 6x His-tagged LpCopA 
was measured in presence of various peptides (at 100 µM final concentrations) whose 
sequences are variety based on prolines replacement by glycines. The values are normalized 
to activity in the absence of peptides. 
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6.6.2 Structural impact of peptide Act-1 on the Cys384 residue in the 
CPC motif 

6.6.2.1 Fluorometric assay 
 
We have asked whether the demonstrated interference of the actuator-derived peptides 

affect also the transmembrane domain at the conserved CPC motif. For this purpose, the 

LpCopA∆HMBD was produced by truncation of the metal-binding domain (MBD) from 

LpCopA which is a cysteine-rich domain that would otherwise interfere with thiol-

reactivity at the CPC motif. In addition, the cysteine residue at position 384 in 

LpCopA∆HMBD was replaced by serine to study the accessibility of the C382 residue 

to the dye. We have used the thiol-reactive dye “7-diethylamino-3-(4'-

maleimidylphenyl)-4-methylcoumarin (CPM)” which exhibits increased fluorescence 

yield upon reaction with cysteine. The 4 mg/ml CPM in DMSO was diluted in assay 

buffer with ratio 1:40, “working solution” and then added at 1.5 time of protein 

concentration. The full spectra were recorded (from 400-550 nm) every 1-min for 20 

min as shown in Fig. 6.10 and 6.11. Observing the fluorescence increase overtime 

during reaction with LpCopA∆HMBD, we are able to address the accessibility of the 

CPC motif as a function of the Act-1 peptide interference at the PN-actuator interface. 

 

The data show that LpCopA∆HMBD was more influenced by actuator peptide, 

Act-1, more than the C384S mutant (Fig. 6.12 & 6.13). However, the CPM stability in 

aqueous solution is still controversial. To reduce the exposure time of CPM to the 

aqueous solution, the same experiments were repeated by replacing the buffer of the 

working solution with DMSO, i.e. the final DMSO conc.in assay was raised from 

~0.04% to 1.6% to increase the CPM stability; the data was reproduced.  

 

In summary, the data show that C384 residue is more strongly affected by the presence 

of the Act-1 peptide, but both conserved cysteines are accessible to CPM. 
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Figure 6.10. Fluorometric assay of cysteine(s) reactivity of the conserved CPC motif of 
LpCopA∆HMBD 
CPM dye (λex 387nm) used as a probe to monitor accessibility of cysteine residues. Full 
fluorescence spectra of LpCopA∆HMBD (10 µM) with CPM probe (15 µM) were recorded 
every 1min in A) absence and B) presence of 50 µM Act-1 The assay carried out in a buffer 
containing  0.1%DDM and 1mg/ml Asolectin at RT (See Materials and Methods, Chapter 
2). 
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Figure 6.11. Fluorescence spectra of thiol reactivity of cysteine at 382 in the C384S 
mutant 
The reactivity of C384S mutant (10 µM) with CPM (15 µM) was recorded every 1 min 
under the same conditions mentioned above; A) in absence and B) in presence of 50 µM 
Act-1. 
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Figure 6.12. Time course of the peak intensity of the CPM-Cys adduct for 
LpCopA∆HMBD 
The reaction was occurred without (■) and with 50 µM Act-1 (□). CPM background (▲) 
was measured during the assay. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.13. Time course of the peak intensity of the CPM-Cys adduct for the C384S 
mutant 
The reaction was occurred without (●) and with 50 µM Act-1 (○). CPM background (▲) 
was recorded during the assay. 
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6.6.2.2 Colorimetric assay 
 
In parallel measurement, the accessibility of the cysteines in the CPC-motif of 

LpCopA∆HMBD in function of peptide Act-1 was also investigated using an alternative 

colorimetric method.  The 4,4-dithiodipyridine (4-DPS), thiol-reactive agent,  reacts 

with cysteine forming 4-thiopyridone (4-TP) which absorbs strongly at 324 nm. Figure 

6.14 shows the reactivity of LpCopA∆HMBD with 4-DPS was inhibited in presence of 

50 M Act-1.   

 

In summary, the results conclude that the actuator-derived peptide Act-1 induces 

structural changes at C384 residue in the transmembrane CPC motif. This conclusion is 

emphasized by Time-Correlated Single Photon Counting (TCSPC) measurements in 

Chapter 7- section 7.4.2.2. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.14. Time course of thiol reactivity of LpCopA∆HMBD with 4-DPS 
In 250 μl total assay volume, 50 μM 4-DPS (final conc.) was added to 5 μM 
LpCopA∆HMBD with (red trace) and without (black trace) 50 μM peptide Act-1 in 50 mM 
Tris-HCl pH 7.4, 150 mM NaCl, 3mM MgCl2, 0.1% DDM, 1 mg/ml Asolectin buffer.  The 
conversion rate of 4-DPS to 4-TP was monitored by measuring the absorbance at 326nm 
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Summary and discussion  
 
 
It is well-known that A-domain is primarily responsible for cleavage of aspartyl-

phosphate bond in the dephosphorylation step and ion release. We addressed question of 

the role of highly conserved TGE motif in A-domain in the stimulation of 

conformational changes in transmembrane domain independently of the rest of the A-

domain structure.  To answer this question, decameric peptides driven from the 

conserved TGE motif of A-domain sequence, Acyl-NH-VTGEP(I/W)PVAS-CONH2, 

were synthesized.  

 

The data analysis of circular dichroism and stopped-flow fluorescence 

spectroscopy reveal that the actuator-driven peptide binds to the PN domain with KD 

varying from 30-50 µM with a weakly ATP-dependent fashion, and induces structural 

changes in PN domain at the expense of α-helical content. We suppose that the peptide 

binds at the phosphorylation site in closely comparative position to that of A-domain as 

the peptide exhibits a weak inhibitory effect for ATPase activity of LpCopA.  The 

peptide not only cause a conformation change at cytosolic part, but also at 

transmembrane helical core of LpCopA; this change has been detected by blue-shifting 

in a static fluorescence of BADAN-labeled TM-MBS of LpCopAΔHMBD (see chapter 

7) and also by inhibiting the rate of the online thiol labeling of the CPC motif by the 

CPM fluorophore when it reacted with this mutant, on the other hand, the thiol reactivity 

of C384S mutant did not inhibit. This indicates that C384 residue is much affected by 

the peptide binding.   
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Chapter 7  
 

Time-resolved Structural Dynamics of the Transmembrane 
CPC Motif in LpCopA: Time-correlated Single-photon 

Counting Technique (TCSPC) 
 

Introduction 
The structural changes in cytosolic headpiece of CopA, induced by ligand binding, 

transmit to the transmembrane domain for ion occlusion or extrusion. Recently, the 

molecular dynamics (MD) simulations of LpCopA suggested that TM domains of the 

E2~Pi and E2P states are both open toward the extracellular side as shown in Fig 7.1 ; 

the extracellular bulk water penetrates the TM-MBS and reach the M717, C382 and 

C384 residues (from high to low water density, respectively) [34].   

Here, we investigate the water accessibility and mobility of the TM-MBS in 

function of ligands and membrane lipids by applying Time Correlated Single Photon 

Counting (TCSPC) to site-specifically fluorescently labeled LpCopA. Our data in 

collaboration with Prof. Martin Hof presented the first experimental evidence on a 

luminal-open conformation of E2~Pi state of a hydration gradient along the TM-MBS of 

LpCopA. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.1. Previous MD simulations suggest the E2~Pi and E2P states to be open in 
LpCopA. 
A) Cartoon representation from the previous simulation study [34] of the LpCopA in E2~Pi 
state show lipid phosphates and water in orange and red density, respectively [34].  B) 
Water density plot show the water distribution in TM domain. The number of water 
molecules within 7 Å from the protein relative to bulk solution along the membrane normal 
(intracellular side is positive). The figure is adapted from [34]. 

B 
 
 

A 
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Results and discussion 
 

7.1 Fluorescence properties of BADAN dye: for lifetime 
measurements 

 
BADAN (6-Bromoacetyl-2-Dimethylaminonaphthalene) is a thiol-reactive probe to 

monitor the protein conformations and ligand binding due to the environmental 

sensitivity of its fluorescence.  It reacts covalently with cysteine to form a very strong 

and stable alkylated bond. The alkylation of cysteine is achieved by reaction of the thiol 

group with the α-bromide carbonyl of BADAN. 

O

N
Br

+

O

N

NH

O

Cysteine

S

NH

O

HS

Peptide

Peptide

BADAN

Peptide

Peptide

  
Figure 7.2. Covalent chemical reaction of thiol residue of a protein with Fluorescent 
BADAN 
 

 

The sensitivity of the chromophore to both solvent polarity and solvent mobility is the 

basis for the use of BADAN to assess water mobility in proteins. Here, BADAN was 

used to address the water accessibility and mobility of the copper-binding site of 

LpCopA. Since the latter is obtained in a detergent-solubilized state, the effect of DDM 

on BADAN fluorescence needed to be measured as a control. The emission spectrum of 

BADAN was blue-shifted and the intensity was slowly and continuously increased as 

soon as 0.3% DDM detergent was added to the assay buffer. This agrees with the 

expected effect of increased hydrophobicity in the molecular environment of the 

chromophore and indicates that the hydrophobic property of the dye causes its 

partitioning into the detergent micelles.  Therefore, the BADAN was diluted into assay 

buffer containing 0.3% DDM and incubated at 4 °C for overnight to stabilize the 

fluorescence intensity prior to starting the reaction with the membrane proteins. The 

maximum emission spectrum of BADAN under previous conditions is at 496 nm as 

shown in Fig. 7.3. 

Page | 137  
 



Chapter 7  Results and discussion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.3. Fluorescence emission spectrum of BADAN. 
10 µM BADAN incubated in buffer containing 0.3%DDM was excited at 390 nm. 
Continuous emission spectra were measured till obtaining a stable intensity.  

 

BADAN is structurally similar to RODAN and LAURDAN in which the excited 

state can be either a non-hydrogen-bonded intramolecular charge transfer (ICT) state, or 

a hydrogen-bonded intramolecular charge transfer (HICT) state (Fig 7.4). In the excited 

sate, a previously non-bonded state can evolve into a state that is hydrogen-bonded  to 

solvent molecules and the latter can further reorient in the excited state in a process 

called ''solvent relaxation" [164]. Thus, the charge distribution around BADAN changes 

during the life time of the excited state, and result in the reorientation of the solvent 

molecules into an energetically favorable state with respect to the charge distribution of 

the electronically excited BADAN [165]. This leads to the stabilization of the negative 

charge on the carbonyl moiety by the hydrogen bond and a further reduction of the 

energy gap between the ground and excited state, respectively [164].  

 

As the energy of the excitation state is lowered, the relaxation process causes 

a continuous red-shift of the recorded time-resolved emission spectra (TRES). Thus, 

solvent polarity and the local environment have thorough effects on the emission 

spectra of BADAN [165]. 
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Figure 7.4. Schematic excited level diagram of BADAN 
The non-hydrogen-bonded ICT state is lowered to hydrogen-bonded HICT state in an 
immobilized environment (HICTi) and in a mobile environment (HICTm). The LD and SD 
stand for internal label dynamics and solvent relaxation, respectively. the diagram is 
captured from [164]. 

7.2 Site-directed labeling of transmembrane metal-binding site 
 

LpCopA contains six cysteine residues that interact with copper; four are localized in the 

cytosolic heavy metal-binding domain (HMBD) and the other two in the C382-P-C384 

motif of the transmembrane metal-binding site. The transmembrane cysteines in the 

CPC motif are highly conserved in all ATPases CopA. The C382 localizes closer to the 

extracellular side where the copper ion exits, while C384 is closer to the cytosol, where 

copper enters he ATPase. Therefore, the study of the solvent polarity at the CPC motif 

bears structural information about the accessibility of the two cysteines during the 

catalytic ATPase cycle. Using a water-sensitive monitor at this site will particularly 

address the question of the fate and possible role of hydration water in the transport 

mechanism, because copper enters the pump as a fully hydrated ion. To monitor the 

local environment at the CPC motif by site-specific BADAN labeling, the HMBD had to 

be truncated from the LpCopA structure, leading to the construct denoted as 

LpCopA∆HMBD. In this construct both transmembrane cysteines can potentially react 

with BADAN.  In addition, C384 side chain of LpCopA∆HMBD was further replaced 

with serine, denoted as C384S mutant, in order to study the local environment at the 

single cysteine at position 382. Serine was selected for the replacement to mimic the 

steric conditions of the cysteine. Furthermore, this mutant putatively maintains the 

ability of the metal-binding site to bind to ions as inferred from the conserved CPX 

motif of copper-transporting ATPase from other prokaryotes [29, 166]. 
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7.2.1 BADAN labeling assay of LpCopA mutants  

The kinetic labeling assay of LpCopA∆HMBD and C384S mutant with BADAN was 

performed to find the optimal conditions and time required for completing the labeling.  

In the beginning, the labeling assay was carried out in buffer containing 0.1% DDM at 

room temperature but it was found that the LpCopA∆HMBD and C384S mutant were 

unstable and precipitated during the assay. This precipitation may be due to the 

hydrophobicity of BADAN that results in accumulation with DDM detergent and 

consequently reduces the micelles around the membrane proteins.  Therefore, the DDM 

concentration was increased to 0.3% and the temperature lowered to 15 °C to slow down 

the reaction. Equivalent volumes of LpCopA∆HMBD or C384S mutant were rapidly 

mixed with a BADAN solution which was pre-incubated overnight in buffer containing 

0.3% DDM.  During the reaction of the fluorophore with LpCopA∆HMBD, the 

emission spectra of BADAN was blue-shifted from 496 nm to 488nm in about 30 

seconds after  mixing, and then over 20 min, the  emission intensity slowly increased 

and the peak shifted further to 484 nm as shown in Fig.7.5.  

 
Figure 7.5. Kinetic assay of BADAN-labeling LpCopA∆HMBD.  
The fluorescence emission spectra of 13 µM BADAN reacting with 6 µM LpCopA∆HMBD 
was recorded every 6 min in the assay buffer containing 0.3% DDM. The excitation 
wavelength was at 390 nm and emission spectra were collected from 410-700 nm.  The 
arrow indicates to the intensity increasing with time. 
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While the emission spectra of BADAN reactivity with C384S mutant was blue-shifted 

to 494 nm within 30 seconds and stabilized at 490 nm over 20 min (Fig. 7.6), the 

emission spectra of a BADAN-labeled C382S mutant, prepared in a parallel project of a 

colleague in our group, showed similarity to that of BADAN-labeled LpCopA∆HMBD 

(data not shown), i.e. a more pronounced blue-shift, indicative of a more hydrophobic 

molecular environment of BADAN. These findings indicate that C384 residue is 

preferentially labeled, even when both cysteines of the CPC motif are present. The C382 

residue is embedded deeper within the transmembrane helical core than C384 residue. 

This could lead to a situation that labeling of C384 residue blocks that of C382 residue if 

the entrance of BADAN to the transmembrane helices occurs favorably via the cytosolic 

side. The presented data further show that C382 samples a more hydrophilic part of the 

copper entry site although it is deeper within the protein than C384. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.6. Kinetics of BADAN-labeling C384S mutant. 
The fluorescence emission spectra of 10 µM BADAN reaction with 10 µM C384S mutant 
was recorded every 6 min in the same assay conditions as mentioned above.  The arrow 
indicates to the intensity increasing with time. 
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7.2.2 On-Column BADAN labeling 

 
Although, the BADAN labeling of LpCopA∆HMBD and C384S mutant was 

successfully monitored in solution, the Time-Correlated Single Photon Counting 

(TCSPC) experiments of the labeled membrane proteins prepared in this way, indicated 

the presence of non-reacted BADAN based on a large fraction of a very fast solvent 

relaxation component typical of "free" water exposed BADAN.  Apparently, the dialysis 

and PD-10 desalting methods were unable to remove free BADAN; perhaps this is due 

to the integration of BADAN into detergent micelles.  To overcome this problem, 

LpCopA∆HMBD and the C384S mutant were labeled with BADAN when the 

membrane protein was still bound to the Ni-NTA column after the washing steps. After 

incubation with BADAN, the column was further washed with buffer and the removal of 

unbound BADAN was fluorometrically monitored (Fig. 7.7.). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.7. Removal of excess BADAN dye from Ni-NTA column 
The fluorescence emission spectra of BADAN waste were recorded during the washing of 
BADAN-labeling membrane proteins bound to the Ni-NTA column. The excitation 
wavelength was at 390 nm and emission spectra were collected from 410-700 nm.  The 
arrow indicates the successive removal of BADAN from the wash buffer. 
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After removing unbound BADAN, the LpCopA∆HMBD and the C384S mutant 

were eluted with elution buffer containing 0.05% DDM, and imidazole was removed by 

a PD-10 desalting column; Figure 7.8 shows the purification pattern of BADAN- labeled 

proteins. The emission spectra of “on column” BADAN-labeled LpCopA∆HMBD 

showed a further blue-shifted to 480 nm (Fig. 7.9) as compared to the sample labeled in 

solution (Fig. 7.5). This behavior was expected for an enrichment of protein-bound 

(more hydrophobic) over “free” BADAN (more hydrophilic) BADAN. In contrast, the 

C384S mutant labeling did not show an equivalent peak shift after on-column labeling. 

This indicates that C384 is mainly responsible for providing the hydrophobic 

environment sampled by BADAN when it reacts with the intact CPC motif as already 

inferred from the data of the BADAN reaction in solution. On the other hand, the fact 

that also the C384 mutant reacts with BADAN shows that C382 is also accessible for the 

dye but places it in a more hydrophilic environment. Taking the two results together, it 

can be concluded that C384 reacts preferentially (over C382) with BADAN in the 

presence of both conserved cysteines. Upon removal of Cys384, however, C382 also 

reacts with BADAN. This means both cysteines are solvent accessible but unexpectedly, 

the more cytosolic one (C384) resides in a more hydrophobic environment, probably; 

the labeling of C384 impedes the labeling of the second cysteine (C382) by steric 

constraints. The data show that: 1) the labeling on column is an efficient method to 

improve protein-specific labeling and 2) there is a strong hydration gradient within the 

single helical turn at the CPC motif. 
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Figure 7.8. SDS-PAGE analysis of purified BADAN-
labeled membrane proteins 
 Lane M: Molecular weight marker, lane1: the elution of 
BADAN-labeled LpCopA∆HMBD (72 kDa), and lane2:  
that of BADAN-labeled C384 from Ni-NTA column. 
Membrane protein fractions were separated by 11% 
acrylamide gel. 
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Figure 7.9. Fluorescence emission spectra of on-column BADAN-labeled C384S 
mutant and LpCopA∆HMBD.  
While the membrane proteins were bound to Ni-NTA resin, the column was washed with 
BADAN solution. The excess of un-reacted BADAN was removed by washing with buffer. 
The excitation wavelength was at 390 nm. 
 
 

7.3 Reconstitution of BADAN-labeled membrane proteins 
 
Reconstitution of membrane proteins into lipid bilayers is a powerful tool to study their 

structure and function in a native-like environment.  The lipid packing affects the 

rigidity and conformation of membrane proteins and also the solutes and solvent 

mobility. Thus, the lipid reconstitution is an attractive system to study the mobility of 

solvent molecules at transmembrane helices of the BADAN-labeled ATPase mutants. 

For this purpose time-correlated single photon counting (TCSPC) is a sensitive 

technique to measure local solvent relaxation times in the pure protein or independence 

on ligand binding. The detergent-mediated reconstitution method has been successfully 

used for many transporters; e.g. various kinds of ATPase [167], bacterioorhodopsin  

[168], lactose transport protein (LacS) [169], and ABC transporters [94, 170].    
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The LpCopA∆HMBD and C384S mutant were reconstituted into soybean phospholipid 

(Asolectin) liposomes using detergent-mediated reconstitution according to [94] with 

some modifications. Asolectin, a mixture of phosphatidylethanolamine, 

phosphatidylcholine, and several minor lipids, is frequently used for reconstitution of 

ATPases [146, 171-173]. 

 

According to Geertsma and his coworkers [94], large unilamellar vesicles (LUVs) 

were prepared using liposome extruder with approximately 100 nm in diameter pore and 

then titrated with Triton X-100 below the onset of total lipid solubilization (Rsol) to form 

detergent-destabilized liposomes. The DDM-solubilized ATPase LpCopA∆HMBD and 

C384S mutant were mixed with Triton X-100-destabilized preformed liposomes and the 

detergents were subsequently removed by adsorption onto polystyrene Bio-Beads SM-2 

to form tightly sealed proteoliposomes.  LpCopA∆HMBD was successfully incorporated 

into liposomes and its concentration estimated from SDS-PAGE gel as 0.4-0.5 mg/ml; 

whereas C384S mutant did not incorporate (Fig. 7.10).   

 

 

 

 

 

 

 

 

 

 

Figure 7.10. SDS-PAGE analysis of the reconstituted BADAN-labeled 
LpCopA∆HMBD and C384S mutant. 
 Concentration of reconstituted BADAN-labeled membrane proteins was estimated by 
running a series of BSA standard concentrations in 11% acrylamide gel.  Lane M: 
Molecular weight marker (kDa), Lane1, reconstituted on-column BADAN-labeled 
LpCopA∆HMBD; lane 2, reconstituted on-column BADAN-labeled C384S mutant; lane 3, 
0.1 mg/ml BSA; lane 4, 0.2 mg/ml BSA; lane 5, 0.3 mg/ml BSA; lane 6, 0.4 mg/ml BSA. 
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The efficiency of protein incorporation and orientation into liposomes are controlled by 

several factors; i.e. detergent concentration and type, protein to lipid ratio, salts and the 

way of detergent removal [167, 168, 174].  For example, slow detergent removal was 

found to be more appropriate than a rapid one [175]. Thus, the use of Bio-Beads SM-2 

satisfies all the criteria that make the procedure a powerful and better alternative to 

dialysis or dilution for proteoliposome reconstitution [174]. The change in protein/lipid 

ratio of Na+/K+-ATPase reconstitution from 1:10 to 1:75 caused an increase in the 

inside-out-oriented molecules to 30% [167]. 

 

Triton X-100 is more efficient than other detergents in mediating membrane 

reconstitution.  It has been reported for several membrane proteins that Triton X-100 

often mediates the membrane protein incorporation in an unidirectional orientation, 

whereas the reconstitution with DDM has led to random orientations [94, 167, 170, 

176]. However, other works have determined also a bidirectional arrangement of protein 

molecules (Fig. 7.11) in Triton X-100- mediated incorporation [167, 177, 178].  

 

 

 

 

 

 

 

 

 
Figure 7.11. Scheme for proposed Cu+-ATPase orientation in liposome   

The protein orientation inside liposomes can be a) inside-out, and b) right-side-out. 

 

 
In this study, it was difficult to investigate the protein orientation because the 

HMBD-truncated ATPase is unable to either hydrolyze ATP molecules or transfer metal 

ions. However, according to Table III.1, most membrane proteins have inserted 

unidirectionally, in either the inside-out or right-side-out orientation. 
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Table 7.1 Comparison of the membrane proteins orientation in Triton X-100-mediated 
proteoliposomes 

Membrane proteins  Inside-out (Right-side-out) 

orientation % 

Reference 

Bacterioorhodopsin 

• partial solubilization 

• total solubilization 

 

80-85% (20-15%) 

65-70% (35-30%) 

 

[168] 

[168] 

ABCC3 transporter 25% (75%) [170] 

LacS protein ~100% (0) [176] 

Ca2+-ATPase 

 

25% (75%) 

40-50% (60-50%) 

58% (42%) 

[179] 
[180] 
[177] 

Na+/K÷-ATPase 14% (86%) [178] 

 
 
 

7.4 Time-resolved Fluorescence measurements  
 

7.4.1 The principle of time-correlated single photon counting (TCSPC) 
fluorescence decay lifetime 

As discussed in section 7.1, the polar solvent molecules are oriented so that their dipole 

moments compensate for the dipole moment of the fluorophore in order to minimize the 

total energy of the fluorophore and solvation envelope as shown in Fig 7.10.  Upon the 

fluorophore excitation, the charge redistribution causes reorientation of the 

fluorophore’s dipole moment to an energetically unfavourable state. The system again 

relaxes through reorientation of fluorophore’s solvation envelope to a state of lower 

energy, i.e. leading to the red shift of the emission spectrum. The time-scale of the 

solvent relaxation depends on the mobility of fluorophore’s solvation envelope. The 

increasing in the solvent polarity leads to the larger red-shift of the fluorophore’s 

emission spectrum, and vice versa. Thus, the solvent relaxation process causes a 

continuous red-shift of the recorded time-resolved emission spectra (TRES).  
In principle Time Correlated Single Photon Counting (TCSPC) is measuring the 

time between the excitation of the sample and the consecutive emission of a single 
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photon. The fluorescence decay curves are then reconstructed from the individual delay 

times. The fluorescence signal is attenuated so that typically only one photon per 

1000 excitation pulses is detected.  The time, measured between the excitation pulse 

and the observed photon, is stored in a histogram. A typical histogram is an exponential 

decay curve which can be fitted to single or multiple exponential decay function to 

extract the fluorescence lifetime [181]. 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 7.12 Fluorescence lifetime decay of a fluorophore in the solvent relaxation 
process.  
The change in the dipole moment of the fluorophore (in blue arrow) upon excitation causes 
reorientation of the dipole moment of solvent molecules (in red arrows) in a time-dependent 
on the environment viscosity. Time-Resolved Emission Spectra (TRES) are recorded with 
nanosecond scale and plotted as intensity vs. wavelength. The figures are adapted from Prof. 
Hof’s lectures, available at (www.jh-inst.cas.cz/~fluorescence/lectures.html). 
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7.4.2 Solvent relaxation around the CPC motif measured by Time 
Correlated Single Photon Counting  

Here, we utilize the environment-sensitive dye BADAN to investigate the solvent 

accessibility of transmembrane CPC motif using TCSPC technique and to measure the 

time scale of solvation response under different conditions. Upon excitation, a large 

change in dipole momentum is produced between the tertiary amine and ketone at 

opposite ends of BADAN structure (Fig. 7.13), and the energy is lowered during the 

excited state life time as the result of solvent relaxation, i.e., water molecules re-

orienting around the strong dipole. 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 7.13. Dipole moment generated upon BADAN excitation 
 Cartoon diagram shows structure of BADAN linked to Cys382 of LpCopA∆HMBD (PDB 
entry: 3RFU) with hydrogen bond with a water molecule via its carbonyl group (dashed 
line). The arrow represents the excitation dipole. 

 

For lifetime measurements, both BADAN-labeled LpCopA∆HMBD and the 

C384S mutant were excited by a pulsed laser, and the emitted fluorescence photons 

collected.  For each detected photon, the decay of emission on the nanosecond time 

scale, measured by TCSPC, shows a correlation between the lifetime of the BADAN 

probe and the degree of solvent exposure. The kinetics measured at any discrete 

wavelength is affected by solvation processes that occur on a comparable time scale; 

therefore, the lifetime of the probe was determined by fitting the integrated intensity of 

the time-resolved emission spectra (TRES).  All TRES experiments were performed in 

collaboration with Prof. D.Sc. Martin Hof’s lab (J. Heyrovský Institute of Physical 
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Chemistry of the ASCR, Prague) and data analyzed by Petr Pospisil (PhD student, Prof. 

Hof group). In essence, the data allow reconstructing a full emission spectrum for each 

sampled time point. Here, typically 20 ns have been covered and the results are 

displayed as the shift of the emission maximum as a function of time after excitation. At 

time zero, the maximal Stoke shift between the excitation (373 nm) and emission energy 

is measured. For BADAN this is 22000 cm-1 and rather independent of the environment, 

which makes BADAN a preferred fluorescent monitor for time-dependent Stoke shift 

analyses. The proposed location of BADAN at the C382PC384 motif is displayed in 

Fig. 7.14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.14. Cartoon diagram represents a proposed location of BADAN in CPC motif. 
The alkylation of transmembrane cysteine residues by BADAN was generated in Accelrys 
Discovery Studio Visualizer software with coordinates of PDB file 3RFU. Shown as gray 
stick models are the side chain of Cys384 and Cys382, and the BADAN molecule.  The 
orientation of the BADAN relative to the rest of LpCopA helices is hypothetical and was 
carried by minimizing visually steric clashes between the Cys-BADAN and surrounding 
amino-acid side chains. Software-based energy minimization of Cys-BADAN was not 
attempted. 
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7.4.2.1 Time-Resolved Fluorescence measurements of the CPC motif in 
mixed micelles and liposomes 

 
The TRES analysis of BADAN-labeled LpCopA∆HMBD embedded in 0.3% DDM 

micelles solution, with both cysteines i.e. the C384 is preferentially labeled, shows 

slower emission decay than that of BADAN-labeled C384S mutant (Fig.7.15), 

indicating on immersion of C384 residue of LpCopA∆HMBD into high hydrophobic 

environment while C382 residue is exposed to hydrophilic side. 
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Figure 7.15 Time-resolved emission spectra (TRES) of LpCopA∆HMBD and C384S 
mutant in detergent micelles solution. 
 5 µM BADAN-labeled LpCopA∆HMBD and C384S mutant was excited at 370 nm at 15 °C 
and the time decay of emission maximum of C384S mutant was faster than that of 
LpCopA∆HMBD.   
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In all TRES experiments, LpCopA mutants were dissolved in buffer containing 

high concentrations of sulfate salts. It is worth pointing out that the sulfate ion acts as 

phosphate analogue in the phosphorylation domain of ATPases [72, 133, 182]; it binds 

at the identical phosphate-binding site as has been assigned in the structures of the E2-Pi 

intermediate state in rabbit SERCA1 [72] and Sulfolobus solfataricus CopB-B [133]. 

Consequently, the structure of BADAN-labeled CopA under TRES experiment 

conditions is likely to prefer the E2-Pi like conformation but probably fluctuates 

between E2-E1 states, because the detergent provides little structural constraints.  

 

In the E2-Pi state, LpCopA, embedded in a dioleoylphosphocholine (DOPC) lipid 

bilayer, has been proposed to be open at the luminal side and water molecules penetrate 

the transmembrane domain to reach Cys382, Met717, Glu189 and Ala714 according to 

Molecular Dynamics (MD) simulation study [100]. Taken together, the TRES results of 

LpCopA∆HMBD and C384S mutant are consistent with MD stimulation study [100] to 

be the first experimental study providing the solvent accessibility difference between 

Cys384 and Cys382 of transmembrane metal-binding site of ATPase CopA in E2-Pi 

state. 
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Figure 7.16 TRES comparison between LpCopA∆HMBD in liposome and 
detergent micelles solution  
Either BADAN-labeled LpCopA∆HMBD in 0.3% DDM detergent solution or 
reconstituted in liposome was excited at 370 nm at 15 °C. The time decay of emission 
maximum of reconstituted LpCopA∆HMBD is slower than that in detergent solution.   
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To address the role of lipid bilayers on the membrane protein structure and intra-protein 

water mobility at the CPC region of the LpCopA transmembrane helices, the 

fluorescence lifetime was measured on the nanosecond time scale also for BADAN-

labeled LpCopA∆HMBD embedded into liposomes. The comparison between TRES 

data of LpCopA∆HMBD in liposomes and DDM detergent (Fig. 7.15) shows a slower 

decay of the Stoke shift for proteoliposomes. This shows that the Asolectin lipid bilayer 

induces a tighter packing of the transmembrane helices and thereby reduces the water 

mobility at the conserved CPC motif. To our knowledge, this is the first study utilizing 

site-directed labeling and TCSPC method to investigate the water dynamics at the active 

core of transmembrane the helices in a P-type ATPase and to address lipid protein 

interactions. Other studies have used voltage-sensitive membrane dyes (e.g. RH421, 

Oxonol VI and Laurdan) to detect changes of membrane potential associated with the 

activity of ATPases [183-185] . This underlying effect is produced by dye-lipid 

interaction and does not giver structural information on pump function. In addition, 

these dyes exhibit a in terms of phototoxicity and photochemical instability [186]. The 

TCSPC method was used to characterize the cytoplasmic PN domain of the Na+/K+-

ATPase [187] and of the SERCA1 [188] to measure the fluorescence decays of single-

tryptophan mutants and a fluorescein isothiocyanate (FITC) probe, respectively. 

Although informative on structural transitions, these data do not report on the specific 

role of water mobility inside the transmembrane helical domains of these proteins. 

 

The finding reported here for LpCopA, although preliminary, can be considered 

a platform for further work on the effect of the lipidic phase, its compositions, thickness 

and fluidity on the transmembrane core of ATPase and specifically the mobility of intra-

protein water.   

 

 

 

 

 

 

 

Page | 153  
 



Chapter 7  Results and discussion 

7.4.2.2 Modulation of the water relaxation by functionally relevant ligands 
 

The changes in water relaxation of LpCopA∆HMBD and the C384S mutant were 

measured as function of lipid, nucleotides and the actuator domain-derived peptide Act-

1. Starting with DDM micelles of LpCopA∆HMBD or the C384S mutant, the conditions 

were changed during the TCSPC experiment by adding to the cuvette appropriate 

aliquots of stock solutions to supplement the sample in the following order with1 mM 

Asolectin first and then either 100 µM nucleotides or 100 µM Act-1. Figures 17, 19, 

20A show that there was no obvious change in TRES of either LpCopA∆HMBD or the 

C384S mutant in detergent micelles and in liposome. However, the static emission 

spectra were altered upon addition of these additives (Figs. 18 and 21).  For example, in 

proteoliposomes, the Act-1 peptide slightly changed the TRES of LpCopA∆HMBD by 

lowering the rate of the Stoke shift decay (Fig. 20B), indicative with lower water 

mobility. In line with this observation, the corresponding emission spectrum was blue-

shifted (Fig. 21B) indicative of a more hydrophobic environment.  

 

 

The latter findings are consistent with the fluorometric CPM assay of the CPC 

motif (Chapter 6) and both emphasize that the actuator-derived peptide induces 

conformational changes at the cytosolic domains which thereby transmitted into 

transmembrane domain, shifting C384 residue to more hydrophobic environment.    
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Tau 
zero 

(cm-1) 

Tau inf. 
(cm-1) 

Total 
(cm-1) 

Relaxation 
time 
(ns) 

AppCp 23500 19550 3950 1,2 
ADP 23500 19550 3950 1,5 
Act-1 23500 19650 3850 1,4 

Figure 7.17 TRES analysis of BADAN-labeled LpCopA∆HMBD with ligands in mixed 
micelles. 
 In all measurements, 7 µM LpCopA∆HMBD was measured first in 0.3% DDM detergent 
solution, and then followed by addition of 1 mM Asolectin lipid and lastly: A) 100 µM 
AppCp, B) 100 µM ADP or C) 100µM peptide Act-1.  The protein dissolved in 50 mM 
HEPES pH 7.5,150 mM Na2SO4, 5mM MgSO4 and 0.3% DDM.  The legends in each panel 
(top to bottom) show the measurements in the order.   
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Figure 7.18 Fluorescence emission spectra of BADAN-labeled LpCopA∆HMBD in 
mixed micelles. 
 The spectra are according to the measurements in Fig. 7.17. The ligands A) 100 µM AppNp 
nucleotide, B) 100 µM ADP or C) 100 µM peptide Act-1 was added to 7 µM protein in 
buffer containing 0.3% DDM. 
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 C384S 
mutant 

Tau 
zero 

(cm-1) 

Tau inf. 
(cm-1) 

Total 
(cm-1) 

Relaxation 
time 
(ns) 

AppCp 23500 19150 4350 1,1 
ADP 23500 19150 4350 1,1 
Act-1 23500 19300 4200 0,7 

Figure 7.19 TRES analysis of BADAN-labeled C384S mutant with ligands in mixed 
micelles. 
 In all measurements, 7 µM C384S mutant was measured first in 0.3% DDM detergent 
solution, and then followed by addition of 1 mM Asolectin lipid and lastly: A) 100 µM 
AppCp, B) 100 µM ADP or C) 100µM peptide Act-1.  The protein dissolved in 50 mM 
HEPES pH 7.5,150 mM Na2SO4, 5mM MgSO4 and 0.3% DDM.  The legends in each panel 
(top to bottom) show the measurements in the order.   
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Tau 
zero 

(cm-1) 

Tau inf. 
(cm-1) 

Total 
(cm-1) 

Relaxation 
time 
(ns) 

Proteoliposome 23500 19900 3600 1,28 
AppNp 23500 19900 3600 1,25 

 Tau zero 
(cm-1) 

Tau inf. 
(cm-1) 

Total 
(cm-1) 

Relaxation 
time 
(ns) 

Proteoliposome 23500 19800 3700 1,23 
Act-1 23500 19850 3650 1,23 

Figure 7.20 TRES analysis of lipid reconstituted BADAN-labeled LpCopAΔHMBD 
with ligands. 
 In all measurements, 1 µM reconstituted BADAN-labeled LpCopAΔHMBD was measured 
in 50 mM HEPES pH 7.5, 150 mM Na2SO4, 5mM MgSO4. In function of ligand, A) 100 
µM AppNp nucleotide or B) 100 µM Act-1 was added to the reconstituted protein.  The 
buffer is 50 mM HEPES pH 7.5,150 mM Na2SO4, 5mM MgSO4.   
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Figure 7.21 Fluorescence emission spectra of BADAN-labeled LpCopA∆HMBD in 
liposomes.  
The spectra are according to the measurements in Fig 7.20. The ligands A) 100 µM AppNp 
nucleotide or B) 100 µM peptide Act-1 was added to 1 µM reconstituted protein. 
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Summary and discussion  
 
The study of water distributions in the transmembrane domain of LpCopA improves our 

understanding to the entry/exit ion pathway. Therefore, the water accessibility and 

mobility of the transmembrane metal binding site (TM-MBS) was investigated by 

measuring the changes in the time-dependent Stokes shift of BADAN specifically 

labeled the thiol residues of C382PC384 and C382PS384 motif in LpCopA∆HMBD and 

C384S mutant, respectively. The measurements were performed using Time Correlated 

Single Photon Counting (TCSPC) in collaboration with Prof. Martin Hof. BADAN, a 

Fluorescent environment-sensitive dye, labeled the proteins in innovative method in 

which the protein was labeled during binding to the Ni-NTA column to facilitate 

removing of the excess unreacted dye. We postulate that BADAN entered to the TM-

MBS through the cytosolic side of LpCopA∆HMBD, labeling the C384 residue which, 

in turn, blocked the labeling of C382 residue as shown in Fig 7.22.  This hypothesis is 

based on the close similarity between the emission spectra of BADAN-labeled 

LpCopA∆HMBD and BADAN-labeled C382S mutant prepared in a parallel project in 

our lab (where the C384 is only labeled). The BADAN-labeled proteins were dissolved 

in buffer containing sulfate anion which behaves as phosphate analog assigning the 

protein to E2~P-like state according to our data (see Chapter 4) and other studies [72, 

133]. 

The analysis of the time-resolved emission spectra (TRES) with either 

preferential labeling of C384 or exclusive labeling at C382 shows a slower Stoke shift 

for the labeling at position 384 than position 382. This indicates that C384 residue is 

highly exposed to hydrophobic environment more than C382 residue in the E2~P-like 

conformation in agreement with the recent MD simulation study of LpCopA [100]; this 

MD simulation study concluded that the luminal ion gate is open in E2P or E2~P states 

to extracellular side, allowing the water molecules penetrate TM domain to reach as far 

as the metal-binding site [100]. Moreover, the impact of membrane lipid and ligands on 

the solvent accessibility of the CPC motif were also studied. The reconstitution of 

LpCopA∆HMBD in lipid bilayer caused more decay of the TRES than in detergent 

micelles, indicating on the insertion of C384 residue in more hydrophobic environment; 

this decay was slightly increased in presence of the peptide Act-1 (Fig. 7.20). This latter 

observation emphasizes the influence of the actuator-derived peptide on the structural 

conformation of transmembrane domain of LpCopA.  
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 . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.22. Schematic diagram illustrates the putative BADAN labeling mechanism of 
the CPC motif and its environments impact on the water distributions.  
BADAN enters to the TM-MBS through the cytosolic side, labeling C384 of 
LpCopA∆HMBD and C382 of the C384S mutant in E2~P like conformation. The C384 
residue is exposed to more hydrophobic environment (less water; blue circles) than C382 
residue. Embedding LpCopA∆HMBD into the lipid bilayer lowers the water molecules 
distribution in TM domain. Addition of peptide Act-1 induces conformational changes, 
moving the C384 residue in more hydrophobic environment, probably by closing the ion 
gate.  
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Chapter 8  Conclusion and outlook 
 

 P-type ATPases comprise a big family of homologous enzymes which are involved in 

transporting a wide variety of ions across cell membranes using ATP hydrolysis as an 

energy source. The Cu(I)-transporting ATPase (CopA), the most widespread among PIB-

type ATPases, has received considerable attention during recent years from several 

groups, because the defect in the human copper-translocating membrane proteins 

ATP7A and ATP7B is the direct cause of the severe Menkes’ and Wilson’s diseases, 

respectively.  Legionella pneumophila CopA (LpCopA) is one such ATPase shown to 

transport selectively Cu (I). In 2011, The crystal structure of LpCopA was solved in a 

transition state of dephosphorylation (E2~P state) in the copper-free state [32].   

 

Here, the recombinant LpCopA and its expressed cytosolic domains were used 

as model for P1B-ATPases to investigate the interaction between its cytosolic domains. 

They are organized as functional modules that rearrange upon ATP binding, hydrolysis 

and phosphorylation, thereby inducing the conformational changes in the 

transmembrane domain that lead to metal transport.  The data presented here have 

revealed a strong Cu+-dependent binding between the N-terminal heavy metal binding 

domain (HMBD) and the actuator domain (A-domain) in their isolated state in solution. 

In agreement with previous studies of Hatori et al. [74, 150] on another, we postulate 

that the A-domain interaction with the Cu+-loaded HMBD is required for forming a 

catalytically compact headpiece with other cytosolic domains for launching the catalytic 

turnover and copper transport.  This result suggests that in the presence of copper, i.e., 

during catalytic turnover, this interaction could be crucial in positioning the A-domain 

relative to the phosphorylation and nucleotide-binding domain (PN-domain), thereby 

opening or closing the ATP-binding site at the PN-A interface. The data, can thus 

explain an autoinhibitory action of the HMBD in LpCopA [47]. Since the truncation of 

the HMBD, however, also abolishes ATP hydrolysis, it is very likely that the HMBD-A 

association is transiently formed and broken as a part of the catalytic cycling through 

structural intermediates and not only in an initial de-inhibition step. Our spectroscopic 

and biochemical data on Cu+-binding to the HMBD-A complex thus imply that the 

HMBD would not be constantly copper-loaded. Instead, it may participate directly in 

turnover by mediating Cu+-transfer to the transmembrane transport sites. In this view, 
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the HMBD is a copper sensor (autoinhibition in the absence of copper) and a chaperon-

like cytosolic domain involved in both induction of conformational changes (A-domain 

binding) and copper transfer (transient copper binding and release).  

 

In the full length LpCopA the cytosolic domain interactions lead to 

transmembrane helix rearrangements. The opening and closing of the PN-A interface, 

which is proposed here to be HMBD- and copper-dependent, is a central step in the 

catalytic cycle and experiments were designed how this opening may affect the solvent 

accessibility at the copper entry near the conserved transmembrane copper-binding 

CPC-motif. Combining peptide synthesis, site-directed mutagenesis, site-specific 

fluorescent labeling and time-resolved fluorescence spectroscopy, it could be shown 

here that the blockage of the PN-A interface by a peptide mimetic leads to the reduction 

of the water accessibility to the protein interior. The peptide interference further leads to 

the expected reduction of catalytic turnover measured by ATPase assays that were 

specifically modified in this study. Taken together with the copper-dependent HMBD-A 

interactions, the data are consistent with an initial cytosolic copper loading step at the 

HMBD, followed by its association with the A-domain which then leads to a “closure” 

of the entry site from the bulk water phase. This hydrophobization of the copper entry 

site may be a crucial step in shielding Cu+-CPC-motif from the cytosolic side such that it 

will not react back (putatively to the HMBD from which it was released to the 

transmembrane domain) but move to the next transmembrane copper-binding site of the 

catalytic cycle. 

A model that is consistent with the data, although not fully proven, is shown in 

the Fig. 8.1. It emphasizes the chaperone-like function of the HMBD and rationalizes 

the occlusion of the copper entry site from the solvent in preparing for the 

intramolecular copper transfer from the HMBD to the conserved transmembrane CPC-

motif.    
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Figure 8.1. Model of cytosolic domain interactions and their influence on membrane 
domain accessibility for copper and solvent 
 The model emphasizes the proposed Copper chaperone-like function of the HMBD and its 
copper-dependent association with the A-domain demonstrated in this study.  
Left panel (autoinhibited state): No HMBD-A interaction, ATP-binding site inaccessible, 
CPC motif with high solvent accessibility. 
Right panel (copper-activated state): HMBD-A association, opening of the ATP-binding 
site, shielding of the CPC-motif from solvent, copper-transfer from the HMBD to CPC-
motif in the occludes state of the entry to the transmembrane domain. The interaction site on 
the PN-domain of an A-domain-derived synthetic peptide (Act), carrying the conserved 
TGE motif, is shown and blocks the closure of the PN-A interface and occludes the copper 
entry site near the CPC motif (even in the absence of the HMBD as shown in this study by 
time-resolved fluorescence spectroscopy). A: actuator domain, PN: phosphorylation and 
nucleotide-binding domain, HMBD: N-terminal heavy metal-binding domain, Act: synthetic 
peptide derived from the TGE-carrying conserved sequence in the A domain involved in 
dephosphorylation of the PN-domain. 

 

 
On another hand, it has been recently concluded from molecular dynamics (MD) 

simulations that extracellular water molecules have access to the TM-MBS of LpCopA 

in E2-P (as well as E2P state) suggesting a unique Cu+ release mechanism that does not 

require the fully occluded state of the transported ion and is thus distinct from that of 

SERCA [34]. Here, we presented the first experimental evidence on a luminal-open 

conformation of E2~P state of a hydration gradient along the TM-MBS of LpCopA 

applying Time Correlated Single Photon Counting (TCSPC) to site-specifically 

fluorescently labeled LpCopA (collaboration with Prof. Martin Hof). The technique 

observes the changes in the Stokes shift of the fluorophore bound to one of the 
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conserved transmembrane cysteines in LpCopA which allows deducing the reorientation 

of dipole moments of neighboring water molecules after excitation. The 

LpCopA∆HMBD, with native C382PC384 sequence and mutated C382PS384 sequence 

(C384S mutant), is labeled with thiol-reactive BADAN, a Fluorescent environment-

sensitive dye, using innovative labeling method in which the protein was labeled during 

binding to the Ni-NTA column to facilitate removing of the excess unreacted dye. The 

analysis of the time dependent Stokes shift (TDSS) with either preferential labeling of 

C384 or exclusive labeling at C382 in sulfate buffer shows a slower Stoke shift for the 

labeling at position 384 than position 382. Thus the more cytosolic cysteine resides 

nevertheless in a more hydrophobic environment than the more membrane inserted 

cysteine 382. Considering the sulfate a phosphate analog occupying the phosphorylation 

site of the P-domain in E2-P state [72, 133], the TCSPC data indicate that C384 residue 

is highly exposed to hydrophobic environment more than C382 residue in the E2-P-like 

conformation. This supports the existence of a hydrated cavity in the transmembrane 

part of the ATPase, consistent with the MD simulation [34].  

 

In the light of these data, we also examined the effect of membrane lipid, 

detergent and cytosolic ligands on the intraprotein water at the TM-MBS. The lipidic 

phase surrounding LpCopA∆HMBD reduced the water penetration to C384 residue as 

compared to the detergent micelle system, while cytosolic ligands did not induce 

remarkable changes in the TDSS of LpCopA∆HMBD and the C384S mutant. As a 

future plan, we would study the interaction of HMBD and A-domain within the entire 

LpCopA structure using mutagenesis and labeling methods. In combination with 

TCSPC more specific questions can be addressed, such as the effect of lipid composition 

on water accessibility of the transmembrane domains.   
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