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Zusammenfassung 

Die Uferbereiche großer Flüsse sind für die Biodiversität und Funktion dieser Ökosys-

teme von enormer Bedeutung. Uferdegradierung und Kanalisierung gehören zu wichti-

gen Faktoren, die Flussökosysteme nachhaltig beeinträchtigen. Wie sich anthropogene 

Umstrukturierungen der Uferbereiche auf die Zusammensetzung benthischer Ge-

meinschaften und deren  Ökosystemfunktion auswirken ist jedoch weitestgehend unbe-

kannt. In dieser Arbeit werden die Effekte von uferspezifischen Habitatfaktoren auf die 

Komposition des Makrozoobenthos und den Anteil an Neozoen getestet. Zudem wurden 

die gemeinschaftsassoziierten Ökosystemfunktionen in Bezug auf Sekundärproduktion 

und Ressourcennutzung erfasst und bewertet. Die benthische Gemeinschaft des Haupt-

stroms bestand lediglich aus wenigen spezialisierten Arten, welche nur geringfügig zur 

Gesamtsekundärproduktion des Flusses beitrugen. Dies war vermutlich auf die rauen 

Bedingungen im Hauptstrom (insbesondere hohe Strömungsgeschwindigkeiten und 

damit verbundener Sedimenttransport) zurückzuführen. Die Makrozoobenthosgemein-

schaften des Hauptroms wurden von den jeweils angrenzenden Ufertypen nicht beein-

flusst. Im Gegensatz zum Hauptstrom zeigte jeder der untersuchten Ufertypen hohe 

Dichten an benthischen Invertebraten wobei sich Zusammensetzung und Funktion der 

Artengemeinschaften zwischen den Ufertypen stark unterschieden. Dabei brachte das 

Parallelwerk die diverseste und produktivste Makroinvertebratenfauna hervor, welche 

enorme Mengen basaler Ressourcen ingestierte (1,323 g DM m-2y-1). Hauptfaktoren für 

eine Erhöhung von Biodiversität, Sekundärproduktion und Ressourcennutzung waren 

neben variablen Sedimentzusammensetzungen und Makrophytenbeständen sich oft än-

dernde Fließgeschwindigkeiten mit lentischen Phasen. Allochthone Steinhabitate waren 

generell anfällig für die Invasion nicht heimischer Arten. Diese Neozoen waren weniger 

produktiv als viele heimische Taxa und nutzten nur geringe Mengen pelagischer Algen, 

welche die meist verfügbare Ressource darstellten. Aus dem ökologischen Vergleich der 

verschiedenen Ufertypen lassen sich Managementempfehlungen zur Verbesserung des 

ökologischen Zustandes in Bezug auf Biodiversität und Ökosystemfunktionen ableiten, 

welche für große Flüsse mit degradierter und unveränderbarer Makrostruktur in Be-

tracht gezogen werden können. In ihrer Gesamtheit liefert diese Arbeit ein fundiertes 

mechanistisches Verständnis über die Effekte von Ufermanipulationen auf benthische 

Gemeinschaften und deren assoziierte Ökosystemfunktionen in großen Flüssen. 
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Abstract 

Shore zones of large rivers are hot spots of biodiversity and contribute significantly to 

riverine ecosystem functioning. Today, shore degradation and other structural impair-

ments like river straightening and channelization are strong impact factors on river eco-

system health. However, we still lack a thorough understanding of how structural shore 

zone degradation affects benthic community composition and their inherent ecosystem 

functions. In this thesis I tested the influence of training structure induced environmen-

tal factors on benthic macroinvertebrate community composition and the share of non-

native species. Moreover, I assessed the community-associated ecosystem functions in 

terms of secondary production and resource utilization. In the main channel, communi-

ties were composed of only a few specialized taxa with low abundances, which contrib-

uted little to riverine secondary production. This is probably due to the harsh conditions 

produced by constantly high flow velocities and relocation of the fine sandy sediment. 

Main channel habitats were hardly affected by the adjacent training structure. Hence, 

species compositions and productivities were similar at all investigated main channel 

sites. By contrast, each of the shore communities was diverse, highly abundant and pro-

ductive in comparison to the main channel. However, variations between shore struc-

ture communities and their ecosystem functions were prominent. One particular train-

ing structure, i.e. the off-bankline revetment, bore the most diverse and by far most pro-

ductive benthic community, which utilized vast total amounts of basal resources (1,323 

g DM m-² y-1). Varying sediment compositions, availability of macrophytes and diverse 

flow velocities, including lentic conditions, were revealed as key factors for increasing 

biodiversity, secondary production and resource utilization. Allochthonous boulder hab-

itats were generally highly prone to non-native species invasion. Neozoa proved less 

productive than many native community members and consumed minor relative and 

total amounts of the prevailing resource pelagic algae. The present quantitative compar-

ison of shore type specific effects on biodiversity, biomass and productivity provides 

managers with a tool to improve the ecological attributes of large river ecosystems with 

an unchangeable, impaired macrostructure. In its entirety, this thesis constitutes a 

sound basis to increase the mechanistic understanding of the way in which shore zone 

manipulation can affect riverine benthic communities and their associated ecosystem 

functions.   
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General introduction and aim of the study 

Large rivers and human impacts 

Large rivers are important freshwater systems that fulfill a variety of functions for hu-

man well-being (Postel & Carpenter 1997). They provide freshwater, exhibit both land-

scapes and diverse possibilities for recreation and represent frequently used waterways 

(Millenium Ecosystem Assessment 2005). From an ecological point of view, large rivers 

are important habitats for a magnitude of plants and animals adapted to riverine ecosys-

tems. Particularly the shore zones and flood plains are hot spots of biodiversity and eco-

system processes (Bornette, Amoros & Lamouroux 1998; Strayer & Findlay 2010). Riv-

er-dwelling organisms accomplish essential ecological functions like the channeling of 

nutrients and, as in the case of insect larvae, their removal from the river through emer-

gence (Newbold et al. 1981; Jackson & Fisher 1986; Arthington et al. 2010). Thus, many 

riverine macroinvertebrates realize the coupling between terrestrial and aquatic envi-

ronments. Healthy freshwater bodies in general are requisite for human life, but show 

serious global scarcity and impairment (Vörösmarty et al. 2010). It should therefore be a 

major task to maintain the limited number of intact freshwater bodies and to direct an 

increasing effort towards the restoration of human-impacted systems.  

 Despite a far-reaching comprehension of the necessity to preserve and protect 

our freshwater bodies, the human freshwater demand followed by the utilization of 

freshwater systems, e.g. as navigation channels, still has severe impacts on their struc-

ture and ecological performance. Major anthropogenic threats turned out to be overex-

ploitation, pollution, fragmentation, facilitation of invasion by non-native species and 

the change or destruction of habitats (Malmqvist & Rundle 2002; Dudgeon et al. 2006; 

Arthington et al. 2010). Factors of pollution in terms of eutrophication due to untreated 

sewage disposal have been considered during the last decades, for instance by installing 

modern sewage plants in developed countries (Gücker, Brauns & Pusch 2006). Hence, in 

Europe chemical aspects of water quality are largely improving (Lyche-Solheim et al. 

2010). However, especially in large navigable rivers, structural degradation persists or 

is even increasing, so that to date river rehabilitation has to focus more on structural 

habitat properties (Hering et al. 2010). Navigation, flood protection and land use require 

drastic deviations from the pristine river morphology and hence man-made artificial 

shore structures dominate the majority of the world’s large rivers (Gregory 2006). Con-
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structions like rip raps and standard groynes prevent shore erosion and concentrate the 

discharge to the main channel to create conditions that allow for a convenient naviga-

tion (Sukhodolov, Uijttewaal & Engelhardt 2002). Dikes are installed to protect the civi-

lization from flooding events and to keep drained areas usable. At the same time, valua-

ble habitats that are normally situated in the shallow shore zone become rare (Bis, 

Zdanowicz & Zalewski 2000; Strayer & Findlay 2010). The concentrated discharge leads 

to high current velocities and heavy sediment movement (Church 1992). Hence, a deep-

ening of the river bed and a subsequent decrease of the groundwater level occur. Hence, 

the main river is largely being disconnected from its floodplain and oxbows and tem-

poral lakes are endangered by decreasing water supply (Ward 1998).   

 Nowadays, structural degradation such as river straightening and channelization 

as well as general habitat alterations are among the strongest impact factors on river 

ecosystem health (Hughes et al. 1990; Strayer & Findlay 2010). Many ecological niches 

of specialized species are being altered or destroyed. Previous research has shown that, 

due to river shore zone degradation, we are facing a severe loss of aquatic species and 

an increase of invasive taxa at the same time (e.g. Allan & Flecker 1993; Bis et al. 2000). 

At the current state non-native species are frequently the dominating members of ben-

thic communities (Hall, Dybdahl & VanderLoop 2006; Sousa et al. 2008b). The primary 

reason for these invasions is the loss of natural barriers due to shipping, channel con-

nection and other human activities (Hulme et al. 2008). Nevertheless, the successful es-

tablishment of a neozoa population depends on the local opportunities offered to the 

invader in its new environment. The physical habitat presents one important factor that 

can contribute to the success of an invasive species (Moyle & Light 1996). For example, a 

recent study illustrated that suitable ecological niches for biological invasions are creat-

ed by morphological and physicochemical degradation of streams and rivers (Frueh, 

Stoll & Haase 2012). This has also been shown to occur in the River Rhine, where inva-

sive Amphipoda dominated macroinvertebrate communities in artificial stone habitats 

(Van Riel et al. 2006; Van Riel, Van der Velde & De Vaate 2011). However, despite a long-

lasting history of studies assessing anthropogenic and non-native species’ impacts on 

riverine ecosystems, we lack a mechanistic understanding of how structural degradation 

affects benthic communities and their inherent ecosystem functions (Strayer et al. 2012; 

Cross et al. 2013). 
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Assessment of riverine ecosystems and the role of macroinvertebrates  

For decades now, the assessment of an aquatic ecosystem’s status has been a strongly 

considered field of research. Particularly macroinvertebrates have traditionally been 

used as indicators to assess the ecological status of streams and rivers (Kolkwitz & 

Marsson 1909; Reynoldson et al. 1997; Hering et al. 2004). Common assessment proce-

dures are based on the presence and abundance of different taxa that bear a specific tol-

erance concerning water and/or habitat quality (Birk & Hering 2002). A lack of particu-

lar sensitive taxa may thus indicate some kind of impairment. Although those methods 

provide a fast and convenient type of assessment that furthermore delivers results that 

allow for a comparison of different systems, biodiversity or indicative taxa alone can 

only partly give insights into an ecosystem’s functional status. Functional aspects may 

respond to environmental impacts in a different way than biodiversity does (Benke 

2010).  

 One measure of a relevant ecosystem function that went into the focus of ecol-

ogists is the production of biomass over a certain time period defined as secondary pro-

duction (Waters 1977; Huryn, Benke & Ward 1995; Butkas, Vadeboncoeur & Vander 

Zanden 2010). A prominent reason for the consideration of secondary production in the 

assessment of ecological conditions is that its reaction to environmental changes is often 

more pronounced than the effect on biodiversity and abundance (Chung, Wallace & 

Grubaugh 1993; Whiles & Wallace 1995). As secondary production integrates several 

components of ecological performance, i.e. biomass, density, growth rate and mortality, 

it can be applied to investigate effects of ecological stressors on communities (Benke 

1993, 2010; Benke & Huryn 2006). However, just like results from diversity studies, 

secondary production estimates alone can be misleading. High production values do not 

necessarily indicate a healthy ecosystem as only a few exceptionally productive species 

can dominate the production of an entire community (Hall et al. 2006; Dolbeth et al. 

2007; Sousa et al. 2008b). Studies combining both diversity and production estimates 

should therefore reveal more meaningful results than studies dealing with only one of 

these aspects (Benke & Huryn 2010).   

 Estimates of community structure and productivity provide a powerful tool for 

the functional assessment of stressors on populations or entire communities inhabiting 

a particular system. However, these estimates do not allow for the determination and 

quantification of basal resources that fuel community production and cannot entangle 
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trophic interactions between consumers and their food items. Beyond the assessment of 

secondary production and biodiversity, estimates of community structure and produc-

tivity can be integrated into food web analyses that allow further insights into energy 

flows within a system or population (Benke & Wallace 2011). According to bioenergetics 

theory energy is either transferred or lost when it is consumed (Lindeman 1942). This 

theory has played a major role in ecology for several decades and describes energy flows 

and energy transformation between species and their resources (Benke 2010). Food 

webs can mirror how effective basal resources are utilized and channeled through dif-

ferent trophic levels. In addition, food webs enable researchers to detect whether van-

ished species can be replaced by functionally comparable taxa or if functional gaps re-

main in a community.   

 Interactions between consumers and their resources can be revealed either by 

consumer gut content analyses (Cross et al. 2011; Benke & Wallace 2014) or the anal-

yses of stable isotope ratios of consumers and their diet (Peterson & Fry 1987; Layman 

et al. 2012). Gut content analyses detect food items that were ingested at a particular 

time and hence provide a snapshot of a consumers feeding habit. This procedure re-

quires much laboratory work as many specimens from several sampling dates have to 

be analyzed under the microscope to allow for temporal differences in ingestion. In con-

trast, the analysis of stable isotopes detects a consumer’s diet that was actually assimi-

lated (Peterson & Fry 1987; Jardine et al. 2014). The incorporation of a diet’s isotopic 

signature into a consumer’s tissue takes some time and therefore stable isotope analysis 

mirrors an integrative assimilation picture. Stable isotope analyses require less animal 

material from only few sampling dates and thus safe both laboratory time and staff. On 

the other hand, analytical costs can be high and further processing and interpretation of 

the results demand specific computational skills. However, the outcome of both tech-

niques, the proportions of ingested or assimilated food, can be converted into one an-

other by applying appropriate factors of assimilation and net production efficiencies 

(Benke & Wallace 1980, 1997; Pandian & Marian 1986). Irrespective of the chosen 

method, several food web types exist and have advantages and disadvantages for partic-

ular research questions. Connectivity webs describe interactions among species and 

their food items and are based on presence/absence determinations by consumer gut 

analyses (Woodward et al. 2005). Food quantity webs provide additional information 

about the proportions of the food items in the guts of examined specimens, but still do 
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not quantify the actual energy flow (Wallace et al. 1987). Assimilation webs mirror the 

proportions of food items that actually contributed to a species production in terms of 

metabolism and growth (Benke & Wallace 2011). Assimilated resource proportions can 

be combined with secondary production estimates to access the quantified trophic base 

of secondary production. The most complex type of food web is represented by flow or 

ingestion webs. Flow food webs give information about the ingested amount of food 

resources (Benke & Wallace 2011). They reveal resource demands of single taxa or en-

tire communities and allow conclusions about top down or bottom up effects and an 

ecosystem’s energetic potential.  

Motivation, aims and study site 

Today, we are facing severe problems concerning the ecological status of large river sys-

tems. However, despite the ongoing methodological advancement for its assessment, 

surprisingly little progress has been made in linking anthropogenic stressors and large 

river ecosystem functioning. While the effects of structural alteration on biodiversity 

and community composition are at least partially documented (Kleinwächter et al. 2005; 

Strayer et al. 2012), the implications of altered hydromorphology for the functioning of 

large river ecosystems are largely unknown.  

 Studies concerning the patterns of benthic secondary production in large sandy 

rivers suggest that the secondary production follows patterns of biodiversity with the 

highest values measured at the shore and riparian zone and the lowest values in the 

main channel (Benke et al. 1984; Zilli 2013). Given this tight relationship between com-

munity structure and functioning, secondary production may be sensitive to changes in 

the hydromorphology as induced by shore constructions (c.f. Elosegi & Sabater 2013). 

Furthermore, many non-native macroinvertebrate taxa are by now common members of 

riverine communities. Due to the frequent arrival of ever new invaders in various eco-

systems, databases for their assessment and general knowledge on their functional in-

fluence on riverine communities are scarce. However, non-native species are often the 

dominating members of benthic communities that can reach high proportions of a com-

munity’s biomass (Hall et al. 2006; Sousa et al. 2008b). As taxa within communities af-

fected by species invasion have not co-evolved, food web structure and energy pathways 

can be substantially impaired (Vander Zanden, Casselman & Rasmussen 1999; Hobbs et 

al. 2006). Functional analyses like production estimates and food web determination 

can help in decrypting direct influences of non-native species on native communities’ 
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performances and their role in resource utilization and energy channeling. It can be ex-

pected that non-native species might further enhance negative effects of structural deg-

radation on native communities by acting as competitors and by disturbing pristine 

functional patterns.  

 The objective of this thesis was to gain and improve the mechanistic understand-

ing of how structural shore degradation in large rivers can affect the composition of ben-

thic macroinvertebrate communities and their inherent functional performances in 

terms of productivity and resource utilization. The thesis aims at detecting relevant dif-

ferences in environmental factors among already well-established shore types, i.e. a 

standard groyne, an off-bankline revetment and a rip rap, that may in turn influence the 

composition and functional performance of the inhabiting fauna. Knowledge on the in-

fluences that human-induced stressors have on an aquatic ecosystem’s performance is 

urgently needed. Due to hard socio-economic boundary conditions like navigation or 

flood protection, large-scaled restructuring in large river systems seems impossible (bij 

de Vaate, Breukel & van der Velde 2006; Hering et al. 2010) and local habitat alteration 

mostly provides the only possibility to influence the river morphology. This thesis shall 

provide researchers and managers with fundamental insights on how riverine ecosys-

tem functioning is linked to specific structural impairments and may therefore be useful 

to help incorporate ecological demands in future restoration activities. Additionally, a 

collection of data required for functional studies in large European lowland rivers is 

presented that will facilitate studies in these rarely treated ecosystems and thus con-

tribute to increase the understanding of how anthropogenic stressors in general affect 

riverine ecosystem functions.  

  To investigate how shore structure alterations affect riverine community compo-

sition and their functional performance, the German River Elbe provides favorable con-

ditions. In former times the river has been heavily polluted by untreated urban and in-

dustrial sewage. As a result, the Elbe became one of the most heavily polluted rivers in 

Germany (Guhr, Dreyer & Spott 1996). At this point in time, navigation did not play an 

important role yet, so that the river’s structure was not as heavily influenced as other 

large river systems (Thielcke 1999). After the reunion of eastern and western Germany, 

extensive political and economic changes lead to an improvement of the water quality, 

but also to an increased navigation activity (Faist & Trabandt 1996). Although the Elbe’s 

structure and morphology were adapted to fulfill demands of navigation, it still provides 
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areas and sections that can be considered at least near-natural, like Europe’s largest 

flood plain forest (Pusch & Fischer 2006). Hence, the River Elbe bears heavily impacted 

shore types comparable to the majority of large navigable rivers in combination with 

largely unaffected sites. Those unaffected sites may function as sources of organisms 

that could theoretically recolonize other, morphologically different sections of the river 

(Cairns & Dickson 1977; Wallace 1990).  

Thesis outline 

I present the results of my thesis in four chapters:   

For Chapter 1 new methodological datasets were created that are essential for studies 

on riverine ecosystem function. It provides the basis for all quantitative functional esti-

mates coming up in the subsequent chapters of my thesis. Newly established head 

width-body length and length-mass regressions as well as cohort production intervals 

(CPIs), which constitute indispensable elements for precise and convenient biomass or 

secondary production estimates, are presented. Already published length-mass regres-

sions and CPIs complete the data-set. As more and more non-native species enter new 

ecosystems, several allometric regressions had to be developed, most of them for inva-

sive Crustacea. Hence, frequently updated databases like this one are necessary and of 

great interest. The combination of published and new data led to a comprehensive col-

lection that will facilitate future functional studies in large European lowland rivers. 

 Chapter 2 detects relevant structural habitat factors that determine benthic ma-

croinvertebrate communities and their associated productivity. I compared mesohabi-

tat-specific macroinvertebrate community structure, secondary production and the 

share of neozoa between three shore types, i.e. an off-bankline revetment, a standard 

groyne and a rip rap as well as the adjacent main channel of the Elbe. I tested the hy-

pothesis that benthic diversity and secondary production in the main channel is low and 

independent from the adjacent shore type. Furthermore, I investigated if the shore con-

struction types systematically differ between one another and whether a particular 

mesohabitat facilitates the establishment of non-native species. Results from diversity 

and secondary production estimates provide the basis for the investigations following in 

chapter 4.  

 Chapter 3 reports on an unexpected detection of the rare mayfly Ametropus fra-

gilis that constitutes the first record for Saxony-Anhalt. The significance of this record 

for the assessment of riverine recolonization potential is briefly discussed on a theoreti-
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cal basis.   

 Beyond diversity and production estimates, Chapter 4 focuses on quantified in-

gestion flows at the resource-primary consumer interface. Results from chapter 2 are 

used to construct quantified flow food webs based on stable isotope analyses of 13C and 

15N. I tested the influence of the specific shore structures on the magnitude and effec-

tiveness of basal resource utilization. In addition, taxa-specific organic matter flows are 

compared between shore types to detect functional key-players and potential missing 

links in resource utilization. Here, I present the first quantified basal food webs that 

have ever been constructed for large European river-dwelling benthic communities.
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1. Chapter: 

Support for the functional assessment of large European riv-

ers: a collection of length-mass relationships and cohort pro-

duction intervals (CPIs) with new data from the River Elbe, 

Germany  

1.1 Introduction 

Estimating biomass and secondary production has increasingly gained importance as a 

key element in the assessment of ecosystem functioning in various aquatic systems 

(Schonborn 1987; Buffagni & Comin 2000; Cross et al. 2011). Hence, both parameters 

also constitute a fundamental basis for this thesis. Along with an appropriate sampling 

strategy and choice of the calculation method, the assessment of reliable biomass data is 

crucial for the establishment of meaningful secondary production estimates (Johnston & 

Cunjak 1999; Benke et al. 1999). As the direct weighing of fresh or preserved specimens 

is often technically impossible and time-consuming, applying allometric equations like 

length-mass regressions turned out to be the most convenient and precise method in 

biomass determination (Leuven, Brock & van Druten 1985; Burgherr & Meyer 1997). 

Besides the time-economic advantages, the use of length-mass regressions permit the 

subsequent use of specimens for further analyses, whereas direct weighing would re-

quire a prior, structure-destroying drying step (Burgherr & Meyer 1997).  

 The most common types of length-mass regressions consider either total body 

length or head width for the determination of individual weight (Johnston & Cunjak 

1999; Benke et al. 1999). For the former regression type, specimens are measured from 

the most anterior part of the head to the posterior part of the last abdominal segment, 

whereas for the latter type a fixed extension of the head is measured, usually the largest 

extension perpendicular to the body (Burgherr & Meyer 1997; Poepperl 1998). Although 

whole body length-mass regressions are in most cases more precise and account for a 

higher variation than head width-mass regressions (Meyer 1989; Burgherr & Meyer 

1997), the application of the latter is essential when gut content biomasses is to be esti-

mated or when specimens are damaged due to a rough sampling procedure or sample 

treatment (Johnston & Cunjak 1999). Furthermore, if head capsule width has to be 
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measured anyway, as is the case when instar identification is desired, a supplementary 

body length measurement would be additionally time-consuming.  

 There are two main types of methods for calculating secondary production, i.e. 

cohort based methods that calculate the production of a given cohort and non-cohort 

based methods that in principal calculate the production of a fictive cohort over a given 

time span (Waters 1977). While the former methods require detection of respective co-

horts, the latter can be applied when the life cycle of a population is more complex. An 

important parameter for accurate secondary production estimates when non-cohort 

based calculations such as the size frequency method (Hynes & Coleman 1968; Hamilton 

& Hynes 1969; Benke 1979) are used, is a correction factor that is based on the cohort 

production interval (365*CPI-1; Benke 1979). This factor corrects the calculated annual 

production value of the single fictive cohort for the development time, which strongly 

varies between taxa. The cohort production interval is defined as the time span needed 

from hatching to completion of somatic growth for a given taxa. Compared to fully 

aquatic organisms, it is easier to detect CPIs for insects as they make a first appearance 

some day in the year and eventually start emerging at a later point in time. The period 

between both events can be defined as the CPI. For fully aquatic taxa such as Gastropoda 

and Crustacea, the detection of one complete life cycle turns out to be more difficult in 

the field. Thus, CPIs for those taxa are often based on intensive field studies or rather 

laboratory experiments (Streit 1976; Sousa, Antunes & Guilhermino 2008a). Secondary 

production is usually estimated for a period of one year and as the vast majority of 

aquatic benthic organisms complete their somatic growth in a shorter time span, con-

sideration of CPIs mainly prevents underestimation. This is especially true for taxa that 

can develop within only a few weeks, like, for example, several Chironomidae (Mackey 

1977; Nolte & Hoffmann 1992; Walther et al. 2006).   

 Presently, comprehensive reviews of length-mass regressions for many taxa from 

various systems can be found in literature (Burgherr & Meyer 1997; Poepperl 1998; 

Johnston & Cunjak 1999; Benke et al. 1999). However, a specific collection of length-

mass regressions of typical large lowland river dwelling organisms does not exist. A col-

lection of CPI values from large European lowland rivers is, to my knowledge, also lack-

ing. For the best results of biomass estimation it is largely recommended to use equa-

tions for the lowest taxonomic level (Burgherr & Meyer 1997; Benke et al. 1999). Addi-

tionally, it is advisable that they originate from climatic regions and habitats comparable 
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to those that are under study, because these equations explain a greater proportion of 

variance (Smock 1980; Meyer 1989; Johnston & Cunjak 1999). As the variety of habitats 

and associated taxa is enormous, so is the respective number of required equations and 

CPIs for entire community studies in a particular ecosystem. Unfortunately, many au-

thors put a great effort in developing length-mass relationships and determined CPIs for 

their studies, but do not present their results in the publications (Benke et al. 1999). 

Therefore, the required information is widely scattered in the literature and often diffi-

cult to access for the scientific community.   

 As large rivers are already colonized by high numbers of invasive species, the 

need for neozoa-specific length-mass regressions in these systems is apparent. However, 

for invasive taxa regressions derived from studies in large rivers are scarcely available. 

Two of the few published regressions are available for determining the body mass of 

Chelicorophium curvispinum and Dikerogammarus villosus (Rajagopal et al. 1999; Bruijs 

et al. 2001). However, they are presented as a linear relationship rather than power 

equations, which will be presented in this chapter. Taking into account that our aquatic 

ecosystems will very likely be constantly invaded by new non-native species, updated 

collections of length-mass equations and CPIs are and will be needed regularly now and 

in the future.   

 It has been essential for my studies to conduct a comprehensive literature re-

search combined with new equations from the River Elbe. As results from the following 

chapters are largely based on reliable biomass and production estimates, data presented 

in the following collection constitute an essential part of this dissertation. Here, length-

mass regressions and CPI values are provided for the lowest taxonomic level possible 

from climatic regions that are comparable to those in which large European lowland 

rivers are situated. The collection consists mainly of reviewed data from a wide range of 

literature. I complete the reviewed collection with self-constructed length-mass equa-

tions and CPIs derived from this study, whenever published equations and CPIs failed in 

applicability or simply did not exist. As often only body length-mass regressions are 

provided rather than head width-mass regressions, additional self-constructed equa-

tions that can be used to convert head width into body length for most Trichoptera, 

Ephemeroptera and Odonata are presented. These can find applicability whenever sole-

ly head measurements are feasible or have to be conducted anyway, though the availa-

ble regressions for mass conversion are based on body length. 
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1.2 Material and Methods 

New regressions and CPIs for taxa from the River Elbe 

Sampling took place in the River Elbe (Germany, river kilometer 250-254; 

51.87861045°N, 12.30674744°E). I sampled three different shore types, i.e. a standard 

groyne, an off-bankline revetment and a rip rap. Additionally, the main channel was 

sampled in front of each shore type. During the sampling period, the discharge of the 

river Elbe ranged from 160 to 1,080 m³ s-1 with an average of 339 m³ s-1 (Fig. 1.1). The 

mean water temperature during the study was 12.2 °C (min. 3.9 °C, max. 21.6 °C; Fig. 

1.2). Basic information about abiotic conditions can be gleaned in Table 1.1. For detailed 

information of abiotic conditions at the shore types see supplement Table S1.  

  Macroinvertebrates were sampled monthly from April 2011 to March 2012, ex-

cept for January and February 2012, where high water levels prevented sampling. All 

available habitats, except boulders, were sampled with a Surber sampler (250 µm 

mesh). Boulders were sampled by carefully brushing off attached macroinvertebrates. 

 

Fig. 1.1 Discharge during the sampling period measured at the gauging station Vockerode 

5 km upstream of the study site. 
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Fig. 1.2 Monthly water temperature measured during the sampling period from April 2011 until 

March 2012 in the main channel at the gauge Wittenberg, river km 214.1. 

Samples from the main channel in front of each shore type were taken by an air-lift-

sampler (100 µm mesh, UWITEC, Mondsee, Austria) operated from the research vessel 

“ALBIS” (Helmholtz-Centre for Environmental Research - UFZ, Magdeburg). All samples 

were preserved in 70% alcohol in the field. The time of preservation differed between 

samples. Samples from the main channel, which contained leaching-sensitive Robackia 

demeijerei, were treated after one week. Samples containing insensitive Crustacea were 

preserved for up to two month. Macroinvertebrates were identified to the lowest taxo-

nomic level possible and measured for body length and/or head width to the nearest 

0.01 mm with the digital measurement function of an automated microscope (VHX-

1000, Keyence) in the laboratory. Total body length was measured from the most ante-

rior part of the head without antennae to the posterior of the last abdominal segment. 

Head width was measured at the widest part of the head perpendicular to the body.

 After length determination only clean and intact individuals were transferred to 

pre-weighted tin caps and dried at 60°C for 48h. Large specimens were weighted as sin-

gle individuals. Small specimens were grouped into size classes to minimize the weigh-

ing error. After a cooling step in a desiccator individuals or size classes were determined 

to the nearest 0.001 mg with a micro balance (ME5, Sartorius, Surrey, UK).  
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Table 1.1 Mean (± SE) values of habitat and resource variables of the studied shore types and the 

adjacent main channel. Abbreviations are: AFDW = ash free dry mass, Chl a = chlorophyll a, ben-

thic FPOM = benthic fine particulate organic matter, SPOM = suspended particulate organic mat-

ter, - = not present. 

 Standard 
groyne 

Off-bankline    
revetment 

Rip rap Main 
channel 

Habitat variables     

Benthic FPOM (%)   0 ± 0    2 ± 1 0 ± 0 0 ± 0 

Gravel (%) 68 ± 9    20 ± 14 17 ± 13 31 ± 6 

Macrophytes (%)   1 ± 1  14 ± 8 0 ± 0 - 

Oxygen concentration (mg L
-1

) 13 ± 1  13 ± 2    14 ± 2 12 ± 1 

Sand (%) 31 ± 9   78 ± 13 83 ± 13 69 ± 6 

     

Resource variables     

     Chl a from SPOM (µg L
-1

)  45 ± 26  20 ± 14 42 ± 31 38 ± 28 

     Periphyton standing stock (mg AFDM m
-2

)  8 ± 4  6 ± 5 6 ± 3 - 

     Sediment organic matter (%)  4 ± 1  9 ± 3 1 ± 0 0 ± 0 

     SPOM (mg AFDM L
-1

)  9 ± 5  4 ± 3 16 ± 12 12 ± 5 

 

  Using sigma plot (Version 12, Systat Software), I calculated length-mass and head 

width-length regressions on taxon, genus or family level, provided that at least ten use-

ful individuals were at hand. All length-mass equations presented in this paper are of the 

form  

M = a × Lb         (1) 

with M = dry mass [mg], L = body length [mm] and a and b as fitted constants. This pow-

er equation provided the highest values for the coefficient of determination for length-

mass relationships in many studies, no matter if whole body length or head capsule 

width was used (Smock 1980; Burgherr & Meyer 1997; Benke et al. 1999). Furthermore, 

it delivers direct biomass values that can be used without any transformations. The head 

width-body length regressions are presented as the linear equation  

BL = a + b × HW        (2) 

with BL = total body length [mm], HW = head width [mm] and a and b as fitted con-

stants. I only present self-constructed regressions that result in a high coefficient of de-

termination (r²>0.85 for length-mass; r²>0.7 for head width-length) and are statistically 

significant (p<0.005).   

  To determine CPI values for taxa of which no development time was accessible in 
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literature, I applied two methods:   

Either, CPI values were derived from maximum body length or maximum instar due to 

head capsule width. That means, although I was not able to follow entire cohorts, I de-

fined the respective CPI as 365 × number of size maxima-1 when clear and temporally 

well-separated (min. two months) size maxima could be detected in a population over 

the year. By applying this rather conservative method I made sure to at least account for 

the minimum number of possible cohorts.   

Or, when taxa were not abundant in every campaign, it was sometimes possible to detect 

the time of hatching and the time of the first occurring size maxima for the respective 

cohort. This time span between both occurrences was defined as development time. As 

this happened only either at the beginning or the end of the year when water tempera-

tures were colder and cohorts were not yet overlapping, I can be certain to present a 

conservative value that is not underestimating the actual CPI.  

Published length-mass regressions and CPIs 

I conducted an extended online and library search for studies that included length-mass 

regressions and CPIs. I attempted to find equations and CPIs for the lowest taxonomic 

level possible. Whenever available, I preferred equations and CPIs from habitats and 

climatic regions comparable to my study site. If more than one useful equation was 

available for a certain taxa, I picked the one with higher explained variance (coefficient 

of determination; r²). If those values were very close I chose the one with higher number 

of used individuals (n). Every equation had to be valid for dry mass (DM) calculation. I 

tried to find regressions that include a coefficient of determination (r²), the number and 

size range of used individuals (n; min.-max.) and the constants a and b, preferably when 

they included one standard error (SE). For the majority of Chironomidae species I calcu-

lated CPIs by applying the formula published in Mackey (1977):  

CPI = (a + b × T)-1        (3) 

with CPI = cohort production interval [d]; T = water temperature [°C] and a and b as 

taxa-specific fitted constants. As temperature I used the mean annual temperature of the 

River Elbe. 
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1.3 Results 

Length-mass regressions 

For the development of the new regression equations 3,483 specimens of three invasive 

Crustacea taxa (Chelicorophium curvispinum, Dikerogammarus villosus, Jaera istri), of the 

family Gomphidae (most likely Gomphus flavipes and Gomphus vulgatissimus) and of the 

Chironomidae Robackia demeijerei were measured and weighted either as individuals or 

size classes (Fig. 1.3; Table 1.2). Four of the new regressions were best described by the 

power function (eq. 1), or at least almost identical to the quadratic form concerning co-

efficient of determination and residuals.   

  As an exception, the regression for Chelicorophium curvispinum resulted in simi-

lar r²-values and slightly lower residuals when a quadratic or even linear form was ap-

plied. As the results concerning coefficients of determination were still almost identical 

(linear r²=0.98, quadratic r²=0.98, power r²=0.97), I chose the power form for the sake 

of a comparable and convenient data collection. The significance of all the regressions 

was very high (p<0.001) and so was the accuracy with coefficients of determination ex-

plaining at least r²=0.97 of variation for Chelicorophium curvispinum, Jaera istri and 

Robackia demeijerei (Fig. 1.3 a, c, e). The equations for Gomphidae and Dikerogammarus 

villosus explained more than 86% of variation (r²=0.86 and r²=0.88, respectively; Fig. 1.3 

b, d). The lowest coefficient of determination (r² = 0.86) was calculated for the regres-

sion on the family level for Gomphidae and is based entirely on the measurements of 

single individuals, whereby the lowest number of individuals was used for this regres-

sion (n=12; Table 1.2). The highest r²=0.99 was calculated for the regressions of Jaera 

istri and Robackia demeijerei. Both equations are based on size class measurements in-

cluding a total of n=241 and n=1,311 individuals, respectively. Except for the equation 

for Gomphidae, which was estimated solely with individuals from a relatively small size 

range not exceeding 9.76 mm, all equations most likely cover the entire size spectra for 

the respective taxon (Table 1.2). As the entire body size range of Jaera istri was the 

smallest of the proceeded taxa (0.45 mm - 2.85 mm), only nine size classes were estab-

lished here. The largest size range could be detected in individuals of Dikerogammarus 

villosus, ranging from 1 mm to 27.23 mm. Here, a measurement of nine size classes and 

59 single individuals was conducted (Fig. 1.3 b; Table 1.2).  



Chapter 1 

 

22 
 

 

Fig. 1.3 Plots of size classes or single individuals, their respective weight and curves of the re-

gression equations shown for the three invasive Crustacea Chelicorophium curvispinum, Dikero-

gammarus villosus and Jaera istri (a-c), Gomphidae (d) and Robackia demeijerei (e). The coeffi-

cient of determination (r²) indicates the percentage of explained variation. The form of the equa-

tion is M = a × Lb with M = dry mass [mg], L = body length [mm] and a and b as fitted constants. 

The number of used individuals are presented in Table 1.2.   
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Together with the regressions from literature, eleven regressions on the species level, 

20 on the genus level, eleven on the family level and three on the order level are provid-

ed (Table 1.3). Often, it was impossible to retrace the type of aquatic system or habitat 

from which the regressions originate, but the sampled region and country was always 

ascertainable. The majority of regressions originate from Germany, Austria or Switzer-

land (28), while 15 were established in the central US and one in Wales, United King-

dom. I converted logarithmic equations into the power form to provide regressions that 

can be used for dry mass calculation without a subsequent conversion step. As several 

studies provided the fitted constant a and the respective standard error (SE) in the loga-

rithmic form, it was only possible to convert the constant itself, but not the SE. The fitted 

constant a is stated 20 times together with the respective SE and 25 times without. The 

SE of the fitted constant b was available for almost all taxa except for regressions on the 

family level for Chironomidae and Empididae (Table 1.3). The chosen regressions show 

at least a coefficient of determination of r²=0.67 (Tanytarsini), but in most cases a much 

higher one. Five of eight coefficients of determination r²<0.80 are based on regressions 

from the family- or Chironomidae-clade level. Nine of 13 regressions with a coefficient of 

determination r²>0.95 originate from species, three from genus and one from family 

level. Size ranges are given for all but four regressions and the number of individuals (n) 

is lacking for one single regression only. The number of used individuals ranges from 

n=6 to n=1,311 with a mean number of n=195. In the majority of studies (37) individu-

als were proceeded fresh or frozen. In only six cases scientists used ethanol and in two 

studies formalin served as a preservative.   

Head width-body length regressions 

During the study I measured head width and total body length of 1,552 individuals for 

the development of head width-body length regression equations. In total, 21 head 

width-body length regressions; nine on the species level, nine on the genus level, two on 

the family level and one on the sub-order level were established (Table 1.4). The entire 

set of regressions was best described by the linear function (2). 
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Table 1.2 Data used for the calculation of the self-constructed length-mass regressions. Number of individuals measured per size class and for length-

mass regression equation in total, mean length of size class or total length of individual [mm] and mean dry mass of size class or total dry mass of 

individual [mg] is shown for three invasive Crustacea taxa Chelicorophium curvispinum, Jaera istri and Dikerogammarus villosus, one Diptera Robackia 

demeijerei and one Odonata family Gomphidae.  

Chelicorophium curvispinum Jaera istri Robackia demeijerei Gomphidae 

Number of  
individuals/   

size class 

Length of 
Individual or  

size class [mm]  

Dry 
mass 
[mg] 

Number of  
individuals/   

size class 

Length of 
Individual or  

size class [mm]  

Dry 
mass 
[mg] 

Number of  
individuals/   

size class 

Length of 
Individual or  

size class [mm]  

Dry 
mass 
[mg] 

Number of  
individuals/   

size class 

Length of 
Individual or  

size class [mm]  

Dry 
mass 
[mg] 

13 0.93 0.009 2 0.45 0.005 7 0.84 0.003 1 1.30 0.010 

69 1.20 0.013 65 0.75 0.003 110 1.60 0.003 1 2.94 0.030 

77 1.47 0.019 54 1.05 0.009 43 2.34 0.006 1 5.30 0.999 

72 1.73 0.034 41 1.35 0.020 190 3.14 0.007 1 5.30 0.409 

58 2.00 0.063 20 1.65 0.029 165 4.10 0.009 1 6.10 0.347 

53 2.27 0.093 14 1.95 0.053 237 5.08 0.011 1 6.25 0.221 

49 2.53 0.138 29 2.25 0.085 161 5.86 0.014 1 6.33 0.889 

41 2.80 0.190 14 2.55 0.104 54 6.84 0.023 1 6.92 0.456 

29 3.07 0.261 2 2.85 0.149 52 7.78 0.037 1 7.02 0.769 

29 3.33 0.271 --- --- --- 77 8.70 0.058 1 7.43 1.100 

20 3.60 0.369 --- --- --- 96 9.58 0.065 1 9.41 2.418 

18 3.87 0.440 --- --- --- 75 10.45 0.078 1 9.76 2.197 

24 4.13 0.464 --- --- --- 39 11.35 0.086 --- --- --- 

16 4.40 0.468 --- --- --- 5 12.28 0.120 --- --- --- 

15 4.67 0.539 --- --- --- --- --- --- --- --- --- 

14 4.93 0.546 --- --- --- --- --- --- --- --- --- 

10 5.20 0.579 --- --- --- --- --- --- --- --- --- 

14 5.47 0.661 --- --- --- --- --- --- --- --- --- 

3 6.00 0.702 --- --- --- --- --- --- --- --- --- 

Total individuals: 624 Total individuals: 241 Total individuals: 1,311 Total individuals: 12 
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Dikerogammarus villosus 

Number of 
individuals/    

size class 

Length of 
Individual or  

size class [mm]  

Dry 
mass 
[mg] 

Number of 
individuals/    

size class 

Length of 
Individual or  

size class [mm]  

Dry 
mass 
[mg] 

Number of 
individuals/    

size class 

Length of 
Individual or 

size class [mm]  

Dry 
mass 
[mg] 

Number of 
individuals/    

size class 

Length of 
Individual or 

size class [mm]  

Dry 
mass 
[mg] 

323 1.00 0.017 1 10.87 2.322 1 16.65 7.522 1 22.90 23.880 

330 3.00 0.045 1 11.13 2.711 1 17.11 11.579 1 23.28 29.052 

305 3.00 0.047 1 11.43 2.353 1 17.38 10.608 1 24.08 13.949 

60 5.00 0.210 1 11.92 2.569 1 17.76 15.081 1 24.29 28.761 

62 5.00 0.195 1 12.29 4.201 1 18.04 16.053 1 24.62 30.856 

67 5.00 0.208 1 12.50 5.258 1 18.33 7.111 1 24.96 16.316 

1 5.61 0.681 1 12.75 2.570 1 18.60 15.887 1 25.78 28.223 

35 7.00 0.533 1 13.05 5.707 1 19.00 8.943 1 26.06 34.139 

25 7.00 0.669 1 13.28 5.162 1 19.29 15.226 1 26.26 29.043 

30 7.00 0.505 1 13.54 2.605 1 19.47 14.776 1 27.23 26.758 

1 8.04 1.264 1 13.89 4.920 1 19.73 20.251 --- --- --- 

1 8.34 1.526 1 14.46 6.989 1 20.11 15.568 --- --- --- 

1 8.68 1.584 1 14.78 6.964 1 20.42 22.999 --- --- --- 

1 8.93 1.232 1 14.86 7.466 1 20.62 15.700 --- --- --- 

1 9.30 1.679 1 15.15 14.096 1 21.26 17.249 --- --- --- 

1 9.67 1.522 1 15.44 9.301 1 21.42 20.596 --- --- --- 

1 9.82 2.252 1 15.93 5.812 1 21.93 31.385 --- --- --- 

1 10.31 1.805 1 16.27 9.522 1 22.28 22.680 --- --- --- 

1 10.60 2.127 1 16.47 6.245 1 22.66 23.969 --- --- --- 

Total individuals: 1,295 
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Table 1.3 Length-mass regression equations of the form DM = a × Lb, with DM = dry mass [mg], L = total body length [mm] (unless otherwise stated 

behind taxon), and a and b as fitted constants. The constants a and b are provided with one standard error if available. HW behind taxon = head width 

was used for the regression instead of total body length. The regressions are significant with p<0.05. Locality/system, country = location or aquatic 

system and country, range = range of body length or head width measured for the regression [mm], n = number of individuals used, preservative = 

chemical or type of preservation, source = reference, -- = not stated. 

Taxon Locality/system, country a ± 1 SE b ± 1 SE r² Range [mm] n Preservative Source 

BIVALVIA 
            Corbiculiidae 
                Corbicula fluminea North Carolina, USA 0.0141 3.01 0.97 --- 21 Fresh or formalin Lauritsen & Mozley 1983 

    Dreissenidae 
                Dreissena polymorpha Kiel, Germany 0.2222  2.4683 ± 0.1261 0.98 1.0-33.0 463 Fresh Poepperl 1998 

    Sphaeriidae 
                Pisidium sp. Kiel, Germany 0.1066 2.9132 ± 0.0564 1.00 1.0-4.0 1,078 Fresh Poepperl 1998 

        Sphaerium sp. Kiel, Germany 0.0288 3.4024 ± 0.0876 0.99 1.0-12.0 1,071 Fresh Poepperl 1998 

CRUSTACEA 
            Corophiidae 
                Chelicorophium curvispinum Elbe, Germany 0.0349 ± 0.0064 1.7264 ± 0.1154 0.97 0.93-6.00 624 70 % ethanol own study 

    Gammaridae 
                Dikerogammarus villosus Elbe, Germany 0.0118 ± 0.0061 2.4047 ± 0.1673 0.88 1.00-27.23 1,295 70 % ethanol own study 

    Janiridae 
                Jaera istri Elbe, Germany 0.0085 ± 0.0010 2.7335 ± 0.1266 0.99 0.45-2.85 241 70 % ethanol own study 
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Taxon Locality/system, country a ± 1 SE b ± 1 SE r² Range [mm] n Preservative Source 

DIPTERA 
            Ceratopogonidae 
                Palpomyia spp. Group Virginia, USA 0.0039 ± 0.0007 2.144 ± 0.531 0.71 1.4-7.0 33 Fresh or frozen Benke et al. 1999 

    Chironomidae Wales, UK 0.00113 2.73 0.81 2-19 --- Ethanol Potter & Learner 1974 

    Chironominae Virginia, USA 0.0059 ± 0.0009 2.099 ± 0.235 0.88 1.7-10.8 50 Fresh or frozen Benke et al. 1999 

    Orthocladiinae Virginia, USA 0.0020 ± 0.0006 2.254 ± 0.396 0.74 1.6-5.8 39 Fresh or frozen Benke et al. 1999 

    Chironomini Alabama, USA 0.0007 ± 0.0001 2.952 ± 0.118 0.93 1.0-6.7 51 Fresh or frozen Benke et al. 1999 

        Chironomus spp. Alabama, USA 0.00068 ± 0.00004 2.620 ± 0.112 0.96 2.0-13.7 26 Fresh or frozen Benke et al. 1999 

        Dicrotendipes sp. Alabama, USA 0.00059 ± 0.00005 3.142 ± 0.312 0.87 2.6-6.7 17 Fresh or frozen Benke et al. 1999 

        Robackia demeijerei Elbe, Germany 0.0002 ± 0.0001 2.4834 ± 0.1442 0.99 0.84-12.28 1,311 70 % ethanol own study 

    Tanytarsini Virginia, USA 0.0008 ± 0.0012 2.728 ± 0.197 0.67 1.3-5.3 45 Fresh or frozen Benke et al. 1999 

        Tanytarsus spp. Alabama, USA 0.0012 ± 0.0001 2.294 ± 0.317 0.81 1.6-5.8 14 Fresh or frozen Benke et al. 1999 

    Tanypodinae Virginia, USA 0.0026 ± 0.0005 2.503 ± 0.458 0.81 2.3-8.2 46 Fresh or frozen Benke et al. 1999 

        Ablabesmyia sp. Alabama, USA 0.0010 ± 0.0001 2.884 ± 0.166 0.94 0.8-7.5 20 Fresh or frozen Benke et al. 1999 

        Procladius spp. Alabama, USA 0.00077 ± 0.00006 2.693 ± 0.154 0.91 1.0-9.8 32 Fresh or frozen Benke et al. 1999 

    Empididae Black forest, Germany 0.0047 2.7288 0.72 1.8-6.2 32 Frozen Meyer 1989 

    Limoniidae Kiel, Germany 0.0039 2.4403 ± 0.1530 0.99 6.0-16-0 22 Fresh Poepperl 1998 

    Simuliidae Necker, Switzerland 0.0029 2.49 ± 0.17 0.92 1.2-7.8 20 Frozen Burgherr & Meyer 1997 

    Tipulidae 
                Pedicia sp. Black forest, Germany 0.0009 3.1059 ± 0.1667 0.95 6.5-32.0 19 Frozen Meyer 1989 

EPHEMEROPTERA Lake Constance, Germany 0.0078 2.74 ± 0.11 0.77 --- 180 Fresh Baumgartner & Rothhaupt 2003 

    Baetidae 
                Baetis spp. Necker, Switzerland 0.0039 2.67 ± 0.13 0.91 1.2-9.5 42 Frozen Burgherr & Meyer 1997 

    Caenidae 
                Caenis spp. Lake Constance, Germany 0.0051 2.75 ± 0.16 0.76 1.15-6.30 99 Fresh Baumgärtner & Rothhaupt 2003 

    Heptageniidae Necker, Switzerland 0.0013 3.55 ± 0.10 0.94 2.1-16 73 Frozen Burgherr & Meyer 1997 

GASTROPODA Lake Constance, Germany 0.0193 3.30 ± 0.18 0.95 --- 18 Fresh Baumgärtner & Rothhaupt 2003 

    Hydrobiidae 
                 Potamopyrgus antipodarum Kiel, Germany 0.1526 2.3761 ± 0.0435 1.00 0.6-5.2 703 Fresh Poepperl 1998 

    Planorbidae 
                Ancylus fluviatilis  Black forest, Germany 0.0357 3.1403 ± 0.0960 0.98 1.7-7.8 27 Frozen Meyer 1989 
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Taxon Locality/system, country a ± 1 SE b ± 1 SE r² Range [mm] n Preservative Source 

HETEROPTERA 
            Corixidae 
                Sigara sp. North Carolina, USA 0.0031 ± 0.0002 2.904 ± 0.157 0.81 3.4-6.8 14 Frozen Smock 1980 

HIRUDINEA Kiel, Germany 0.0252 1.8413 ± 0.2733 0.73 --- 93 Fresh Poepperl 1998 

    Erpobdellidae 
                Erpobdella octoculata Kiel, Germany 0.0058 2.2255 ± 0.1190 0.98 2.0-32.0 42 Fresh Poepperl 1998 

    Glossiphoniidae 
                Helobdella stagnalis Kiel, Germany 0.0294 1.7525 ± 0.1230 1.00 4.0-10.0 31 Fresh Poepperl 1998 

ODONATA 
            Calopterygidae 
                Calopteryx sp. Virginia, USA 0.0050 ± 0.0008 2.742 ± 0.222 0.87 2.0-16.1 25 Fresh or frozen Benke et al. 1999 

    Coenagrionidae 
                Coenagrion puella Herzogenburg, Austria 0.02 ± 1.34 1.85 ± 0.16 0.89 1.0-15.4 68 Pres. formalin Waringer 1982 

    Gomphidae Elbe, Germany 0.0019 ± 0.0021 3.1294 ± 0.4991 0.86 1.30-9.76 12 70% ethanol own study 

        Gomphus spp. Virginia, USA 0.0060 ± 0.0008 2.847 ± 0.388 0.90 3.0-37.1 24 Fresh or frozen Benke et al. 1999 

TRICHOPTERA 
            Hydropsychidae 
                Hydropsyche spp. (HW) Black forest, Germany 1.2312 2.8606 ± 0.0695 0.827 0.3-2.5 357 Frozen Meyer 1989 

    Leptoceridae 
                Ceraclea spp. Lake Constance, Germany 0.0013 4.63 ± 0.55 0.95 2.23-4.56 6 Fresh Baumgärtner & Rothhaupt 2003 

        Mystacides sp. (HW) Kiel, Germany 3.7059 3.5539 ± 0.7503 0.92 0.15-0.65 60 Fresh Poepperl 1998 

        Oecetis spp. Virginia, USA 0.0034 ± 0.0006 3.212 ± 0.251 0.71 1.2-8.0 23 Fresh or frozen Benke et al. 1999 

    Limnephilidae Black forest, Germany 0.0054 2.966 ± 0.0866 0.93 1.3-23.4 93 Frozen Meyer 1989 

    Psychomyiidae Black forest, Germany 0.0018 3.1298 ± 0.2382 0.88 3.1-13.6 26 Frozen Meyer 1989 
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Table 1.4 Head width-body length regression equations derived from my study in the River Elbe, 

Germany. Equations are of the form BL = a + b × HW, with BL = total body length [mm], HW = 

head width [mm], and a and b as fitted constants. The regressions are significant with p<0.0005. 

Range HW = range of head width measured for the regression [mm], Range BL = range of total 

body length measured for the regression [mm], n = number of individuals used. 

Taxon a ± 1 SE b ± 1 SE r² Range HW [mm] Range BL [mm] n 

DIPTERA 

          Simuliidae 

              Simulium sp. -0.5027 ± 0.1330 9.3906 ± 0.3278 0.76 0.162-0.628 0.932-5.823 262 

EPHEMEROPTERA 

          Baetidae 

              Cloeon dipterum 0.1311 ± 0.1358 5.4157 ± 0.1955 0.80 0.182-1.352 1.215-8.875 146 

    Caenidae 

              Caenis sp. -0.0750 ± 0.0606 4.5544 ± 0.1185 0.83 0.149-1.168 0.833-6.164 315 

        Caenis luctuosa 0.0250 ± 0.1177 4.2341 ± 0.2161 0.79 0.299-0.871 1.116-4.300 104 

        Caenis macrura -0.5749 ± 0.1946 5.5912 ± 0.3745 0.79 0.299-0.941 1.084-5.066 60 

    Heptageniidae 

              Heptagenia sp. -0.2885 ± 0.1456 3.4267 ± 0.0923 0.95 0.196-4.005 0.587-15.396 75 

        Heptagenia flava -1.2445 ± 0.5735 3.8398 ± 0.2614 0.90 0.341-4.005 1.387-15.396 26 

ODONATA 

      Anisoptera 

          Gomphidae 0.1949 ± 0.1632 4.8805 ± 0.0853 0.99 0.179-6.103 0.936-30.374 45 

        Gomphus sp. 0.8102 ± 0.2674 4.7555 ± 0.1056 0.99 0.179-6.103 0.936-30.374 24 

        Gomphus vulgatissimus 1.0220 ± 0.4121 4.6760 ± 0.1174 0.99 0.910-6.103 5.303-30.374 12 

        Ophiogomphus sp. -0.2563 ± 0.1205 4.8592 ± 0.1573 0.98 0.350-2.135 1.193-9.763 18 

Zygoptera -0.7763 ± 0.2593 5.1245 ± 0.1543 0.91 0.284-4.131 1.805-21.218 114 

    Coenagrionidae 

              Coenagrion sp. -0.7558 ± 0.2660 5.0898 ± 0.1623 0.92 0.284-4.131 2.012-21.218 87 

    Platycnemididae 
              Platycnemis pennipes 0.2005 ± 0.5889 4.1275 ± 0.3203 0.92 0.784-2.641 3.387-12.123 16 

TRICHOPTERA 

          Leptoceridae 

              Mystacides sp. -1.0042 ± 0.4564 16.4872 ± 1.3915 0.93 0.141-0.602 0.879-8.957 12 

        Oecetis sp. -0.2550 ± 0.1805 6.9855 ± 0.5417 0.83 0.120-0.632 0.752-4.777 36 

        Oecetis notata -0.3561 ± 0.5214 6.9743 ± 1.3806 0.72 0.242-0.548 1.843-3.924 12 

    Limnephilidae 0.1861 ± 0.3593 8.6398 ± 0.3961 0.88 0.162-2.049 1.270-18.518 70 

        Limnephilus sp. 0.1184 ± 0.4142 8.6246 ± 0.4311 0.88 0.162-2.049 1.323-18.518 59 

        Limnephilus lunatus 0.4538 ±0.3616 7.9122 ± 0.4409 0.88 0.162-1.445 1.323-13.389 48 

        Limnephilus rhombicus 0.9024 ± 2.2970 8.6211 ± 1.6176 0.76 0.422-2.049 3.298-18.518 11 
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I chose only those regressions that exceeded a coefficient of determination of r²>0.70, 

which was not the case for e.g. Ceraclea sp. or Leptoceridae (data not shown). Only five 

regressions yielded an r²<0.80, ten reached or exceeded a value of r²=0.90 (Table 1.4). 

The shortest range of head width was detected for Oecetis notata with 0.242-0.548 mm, 

but it is very likely that there were some smaller-headed individuals missing in the re-

gression that could not unambiguously be determined to the species level (see Oecetis 

sp., which doubtless includes several individuals of Oecetis notata). With 0.179-6.103 

mm, the by far largest range of head width could be detected for Gomphidae. While the 

lowest number of measured individuals for the regression construction was applied for 

Limnephilus rhombicus (n=11), the highest number of individuals was used for the re-

gression of Caenis sp. (n=315). The mean number of used individuals was n=74. 

Cohort production intervals (CPIs) 

New cohort production intervals (CPIs) were constructed and the literature was re-

viewed for all taxa that were highly abundant and frequently found during all sampling 

campaigns and could thus be processed for secondary production estimates (for details 

see chapter 2). This collection comprises CPI values for 32 taxa; eleven on the species 

level, 14 on the genus level, two on the Chironomidae-tribe level and five on the family 

level (Table 1.5). From the 32 CPI values I derived five on my own, i.e. Jaera istri, Roback-

ia demeijerei, Tanytarsini, Simuliidae and Setodes punctatus.   

  The slowest development time was found for Pisidium sp. (CPI=1,043 d), while 

the fastest development time was calculated for species of the genus Rheotanytarsus 

(CPI=11 d). The mean value of all CPIs in this study is 222 days. Except for the family 

Chironomidae, the sources from which the CPI values were extracted differ widely. The 

majority (14 of 16) of the CPIs for Chironomidae were calculated applying the equation 

(3) published by Mackey (1977).   
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Table 1.5 Collection of cohort production intervals (CPI) for several taxa that were sufficiently abundant, frequently found and thus processed in sec-

ondary production estimates during my study. CPI values were either extracted from literature or developed during this study (indicated as “own da-

ta”). CPI = development time in days, source = reference. 1 Arithmetic mean from all Orthocladiinae, 2 Arithmetic mean from all Chironomini. 

Taxon CPI [d] Source Taxon CPI [d] Source 

BIVALVIA 
 

          Eukiefferiella sp. 17 Mackay 1977 1 

    Corbiculiidae 
 

          Tvetenia sp. 17 Mackay 1977 1 

        Corbicula fluminea 913 Sousa et al. 2008     Tanypodinae 
      Sphaeriidae 

 
          Procladius sp. 173 Mackay 1977 

        Pisidium sp. 1,043 Holopainen & Hanski 1986     Tanytarsini 30 Own data 

        Sphaerium sp. 365 Mitropolskii 1966         Cladotanytarsus sp. 13 Mackay 1977 

CRUSTACEA 
 

          Tanytarsus sp. 40 Mackay 1977 2 

    Corophiidae 
 

      Simuliidae 61 Own data 

        Chelicorophium curvispinum 365 Rajagopal et al. 1999 EPHEMEROPTERA 
      Gammaridae 

 
      Baetidae 

          Dikerogammarus villosus 365 Pöckl 2009         Cloeon dipterum 102 Harker 1997 

    Janiridae 
 

      Caenidae 
          Jaera istri 365 Own data         Caenis sp. 299 González, Basaguren & Pozo 2001 

DIPTERA 
 

  GASTROPODA 
      Ceratopogonidae 365 (González et al. 2001)     Hydrobiidae 
      Chironomidae 

 
          Potamopyrgus antipodarum 451 Roth 1987 

    Chironominae 
 

      Physidae  365 Glöer 2002 

    Chironomini  40 Mackay 1977 2      Planorbidae 
          Camptocladius stercorarius 17 Mackey 1977 1         Ancylus fluviatilis 365 Streit 1976 

        Chironomus sp. 30 Mackay 1977 ODONATA 
          Cryptochironomus sp. 73 Mackay 1977     Coenagrionidae 365 Waringer & Humpesch 1984 

        Dicrotendipes nervosus 65 Mackay 1977 TRICHOPTERA 
          Polypedilum sp. 29 Mackay 1977     Hydropsychidae   

        Rheotanytarsus sp. 11 Mackay 1977         Hydropsyche sp. 365 Lecureuil et al. 1983 

        Robackia demeijerei 121 Own data     Leptoceridae   

    Orthocladiinae. 17 Mackay 1977 1         Setodes punctatus 240 Own data 

        Cricotopus sp. 21 Mackay 1977    
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1.4 Discussion 

Length-mass regressions and cohort production intervals are crucial elements for a con-

venient and precise estimation of biomass and secondary production (Benke 1979; 

Meyer 1989; Poepperl 1998; Benke et al. 1999). The literature search and construction 

of new regression equations resulted in a comprehensive data base for both the follow-

ing analyses in this thesis and future studies. As former studies were mainly conducted 

in smaller streams, this is the first time a collection provides selected equations and CPIs 

for large European lowland river-dwelling organisms including common non-native 

species.  

Application and assessment of length-mass regressions 

The predictive quality of the self-constructed length-mass regressions can be assessed 

as high (c.f. Benke et al. 1999). The percentage of explained variation for all length-mass 

regressions by far exceeds 80%. The b values of the regressions for the aquatic insects 

and also two Crustacea fall into the range of most published data, which is close to 3 

(Benke et al. 1999). In contrast to the majority of published regressions, which mainly 

used single individuals for their establishment (e.g. Smock 1980; Poepperl 1998; 

Johnston & Cunjak 1999; Benke et al. 1999), I used size classes, partly with very high 

numbers of individuals, at least for the very small size ranges. The regressions for which 

I solely applied size classes resulted in high coefficients of determination (r²>0.97; Fig. 

1.3; Table 1.2). The use of size classes has several advantages, though it might also have 

some drawbacks. On the one hand, the error of the balance is evened out, especially for 

the smallest individuals. In case of Robackia demeijerei an error of only 1 µg would result 

in a relative weighting error of more than 33% for the first size classes (Table 1.2). Addi-

tionally, when using size classes, undesired particles like detritus or dust that may acci-

dently remain on some individuals do not play a significant role. Therefore, it is suffi-

cient to clean individuals roughly with forceps and needles under the microscope in-

stead of using ultrasonic sound as a pre-treatment. On the other hand, an inherent vari-

ance due to taxa-specific and mass-influencing sexual dimorphism, as occurring in many 

Crustacea taxa (e.g. Devin et al. 2004), cannot be assessed. The use of high numbers of 

individuals per size class evens out the variance that would be generated if only single 

individuals were used for the regression establishment. However, whole community 

biomass estimates or secondary production calculations require the handling of vast 

numbers of individuals from several periods of the year (e.g. Georgian & Wallace 1983; 
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Benke 1998; Cross et al. 2011). It is very likely that in this type of studies individuals are 

used that cover the entire range of possible individual variance concerning length and 

weight and thus the lack of information on the degree of variance for size class-

dependent equations does not play a significant role. Technically seen the use of size 

classes safes a lot of time and laboratory material while at the same time providing use-

ful results for large data sets.   

 Apart from the above-mentioned types of biases, several other factors are regu-

larly being discussed to have a profound influence on the quality and applicability of 

length-mass regressions. One very important factor turns out to be the type of preserva-

tive used before the establishment of the regressions. In principle, four types of sample 

treatments can be found: fresh (Benke & Jacobi 1994), frozen (Meyer 1989), formalin-

preserved (Clifford, Hamilton & Killins 1979) and ethanol-preserved (Breitenmoser-

Würsten & Sartori 1995). All of these handling techniques, including the use of fresh in-

dividuals, result in a certain bias. The fact that many studies accounted for gut clearing 

or removed the gut contents before processing (e.g. Mason 1977; Dudgeon 1989; 

Poepperl 1998), while others used individuals that still contained unknown amounts of 

food items (Meyer 1989; Baumgartner & Rothhaupt 2003), has an influence on dry mass 

even for fresh or frozen individuals. Chemical preservation can result either in a men-

tionable mass reduction of dry mass (Howmiller 1972; Ladle, Bass & Jenkins 1972; 

Iversen 1980; Leuven et al. 1985), or, as is the case for large caddisfly larvae, only in 

negligible changes (Ross & Wallace 1983; Mackay 1984). I preserved samples in 70% 

ethanol. It is reported that individuals of Simulium sp. can lose about 20% of dry mass 

through conservation in ethanol (Schwoerbel 1994). Being a close relative with a com-

parable morphology, much the same may apply to the individuals of Robackia demeijerei 

in my study. It was the only handled taxa with a thin and fragile cuticle, a fact that could 

cause a mass loss through leaching. Lowest losses, however, are reported for the Crusta-

cea Gammarus fossarum that only loses about 8% of dry mass after several days of 

preservation in 70% ethanol (Schwoerbel 1994). It can be assumed that due to the com-

parably thick exoskeleton the three Crustacea taxa from my study are subjected to simi-

lar minor mass losses. Contrary to the mass loss, other authors found that about 4% of 

dry mass of Chironomus plumosus (Chironomidae) could be designated to gut content 

(Landahl & Nagell 1978) and even higher proportions can be expected for other taxa 

(Johnston & Cunjak 1999). Hence, there are arguments for both under- and overestima-
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tion, so that in total reasonable results with low error can be assumed in this study at 

least for Crustacea.   

  Possibly even more important than the chosen preservative is the consideration 

of the size range for which a regression is constructed. As body mass increase is higher 

in larger individuals than in smaller ones, applied equations should be constructed from 

organisms covering the entire size range of the processed individuals (Johnston & 

Cunjak 1999). This becomes obvious by taking a closer look at the regression plots of 

Dikerogammarus villosus and Robackia demeijerei (Fig. 1.3). If only the first 30% of the 

entire size range were used for the regression calculation, the plane slope at the begin-

ning of the curve would have to be strongly extrapolated for larger organisms and would 

most likely result in highly deviating estimates in upper size ranges. In the particular 

case for D. villosus, applying a regression that is only based on the first 20 values (Table 

1.2) resulted in significantly lower dry mass estimates. Dry weight estimation of an indi-

vidual that has a length of 25 mm would result in a 26% lower value than if it was calcu-

lated by the entire size range-based regression (data not shown). Generally, the quality 

of the regression equations for the different taxa increases with the sample size and 

when the samples are equally distributed over the size range (Baumgartner & 

Rothhaupt 2003). Apart from the equation for Gomphidae, my length-mass regressions 

most likely cover the entire size spectra that can occur in the respective taxa (Table 1.2), 

as sampling was conducted over the span of an entire year. Additionally, I used vast 

numbers of organisms from a narrow size class interval for each of the regressions. 

Hence, the quality of the newly established regression equations is further consolidated.

 A significant part of variation in predictions may not only be attributable to 

methodological distinctions, but also to regional, climatic and taxonomic differences in 

mass and length (Johnston & Cunjak 1999). In the majority of cases the equations for a 

lower taxonomic level explain a greater proportion of variance than equations on higher 

taxonomic levels do. It is thus recommended to choose equations for the lowest taxo-

nomic level possible whenever a high accuracy is needed (Smock 1980; Meyer 1989). 

Then again, several authors recommended caution as regressions for the same taxa from 

different regions or systems can vary significantly (e.g. Smock 1980; Meyer 1989; 

Wenzel, Meyer & Schwoerbel 1990; Burgherr & Meyer 1997). Besides variation between 

investigators, regional differences accounted for the largest proportion of variation (1-

17%) in a recent study (Méthot et al. 2012). This may be mainly due to the physical-
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chemical environment and the quality and availability of food (Johnston & Cunjak 1999; 

Benke et al. 1999). I tried to account for the climatic region and the system from where 

length-mass regressions were established. However, especially the latter precondition 

was hard to fulfill because during my study I also found many lentic species in slow 

flowing areas of the River Elbe. The remarkable combination of large river and highly 

specific meso-habitat significantly reduces the chance of finding regressions in literature 

for exactly those conditions. Thus, some length-mass regressions had to be taken from 

different systems (e.g. Lake Constance, Baumgartner & Rothhaupt 2003), although the 

majority of regressions for highly abundant taxa (e.g. Dikerogammarus villosus) originat-

ed from related systems. 

Usefulness of head width-body length regressions 

In a variety of situations head width-body length regressions can be useful. If, for in-

stance, in addition to biomass estimation the question of interest is the determination of 

instars, measurement of head width is the most reasonable strategy (Dermott & 

Paterson 1974). Another situation can be the dry mass estimation of damaged individu-

als (e.g. due to rough sampling or partly digestion in stomach analyses), because the 

heavily sclerotized head capsule is hardly affected by physical or chemical stress and can 

hence still be used for biomass determination. If in those scenarios available length-

mass regressions are based on body length, head width-body length regressions provide 

support.   

 The 21 established head width-body length regressions provided here are all of 

high accuracy (r²>0.72; Table 1.4). While head capsule width barely changes between 

instars, body length can do so considerably (Johnston & Cunjak 1999). Hence, one may 

expect the highest proportion of explained variation in taxa that bear the highest num-

ber of larval instars, because the entire final body length is distributed over several, rela-

tively fixed head capsule widths. Although Odonata run through only 15 instars (Corbet 

1980), in this study they yielded much higher mean coefficients of determination (mean 

r²=96; Table 1.4) than Ephemeroptera, which often run through more than 25 instars 

(Fink 1980) (mean r²=0.85). One likely explanation is that the intraspecific head width 

and length variation of Caenis luctuosa is higher than in taxa of the order Zygoptera that 

were measured. As for both groups a comparable number of individuals were assessed, 

their coefficients of determination are not influenced by the sample size. Although it 

seems obvious that if a taxon has more instars, the more precise the head width-body 
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length regression should be, this cannot be confirmed by my data. However, the calcu-

lated values for the factor b in the presented equations seem to be reasonable and well 

in range with formerly published regressions (Burgherr & Meyer 1997). The mean value 

of all Trichoptera (b=9.2) almost precisely matches the value calculated by Burgherr and 

Meyer (b=8.9), thus supporting the applied methodology.   

  Like for the dry mass, chemical preservation was also detected to potentially 

cause significant changes in length (Britt; Kulka & Corey 1982; Lasenby, Yan & Futter 

1994). It can be expected that these effects are most prominent in taxa bearing a thin 

cuticle and having a very large length to width ratio, like Oligochaeta or several Chiron-

omidae taxa. This may also apply to some of the Trichoptera species, especially from the 

family Leptoceridae, which have only a slightly sclerotized abdomen. However, the 

above-mentioned b value, which is almost perfectly in range with that from other pub-

lished equations, proves that in this case the changes in length due to preservation are 

not severe. Species from Ephemeroptera and Odonata are more or less heavily sclero-

tized and should, if at all, hardly be affected.   

  The possible shrinking of body length after chemical preservation should be at 

least taken into account when applying head width-body length regressions for some 

taxa prone to shrinking. Furthermore, as the growth pattern in head capsules happens 

stepwise and not continuously, head width often accounts for less variation in length-

body mass regressions than total body length does (Meyer 1989; Wenzel et al. 1990; 

Towers, Henderson & Veltman 1994; Burgherr & Meyer 1997; Johnston & Cunjak 1999). 

Nevertheless, the presented regressions for length conversion are of high accuracy and 

hence provide support if dry mass cannot be calculated from head width immediately.  

Difficulties in cohort production interval (CPI) establishment 

Cohort production intervals (CPIs) are even less available than length-mass regressions. 

Hence, the CPI collection provided in this study is, to my knowledge, the first that in-

cludes all highly abundant taxa occurring in a large lowland river.   

  Many CPIs accessible from literature are based on assumptions or are often 

roughly defined to be one year (e.g. Waringer & Humpesch 1984; Pöckl 2009), so the 

applicability had to be tested carefully for the system I worked in. At least, the resulting 

CPI of 365 days provides a conservative estimate that is, in most cases, not underesti-

mating the real development time. It is easier to detect CPIs for insects than for fully 

aquatic taxa such as Gastropoda and Crustacea, for which the recognition of one com-
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plete life cycle in the field is quite difficult. This is why CPIs for these taxa are often 

based on intensive field studies or laboratory experiments (e.g. Streit 1976; Sousa et al. 

2008a). However, the maximum life span that is detected in laboratories does not neces-

sarily reflect the conditions in the field. Organisms may grow much shorter in nature 

due to frequent harsh conditions or predation.  

  For this chapter conservative values for the CPI collection that should not under-

estimate the actual development time were chosen (Table 1.5). If several values were 

available for one taxon, I calculated the mean. All CPIs in this collection that do not re-

flect the maximum development time (e.g. Corbicula fluminea or Pisidium sp.) were care-

fully checked for convergence with my data nevertheless. Hence, I can be certain to have 

used and provide CPI values whose application is very unlikely to result in an overesti-

mation of the actual secondary production presented in chapter 2 and of that in future 

studies.  

Conclusion 

This study presents carefully chosen and generated data that provide the basis for bio-

mass and secondary production estimates following in the next chapters. All methods 

and preservatives produce certain kinds of biases. Some result in an over-, others in an 

underestimation of biomass. Errors by mass losses through leaching in a certain pre-

servative for some taxa might be compensated by gut contents that remained in the in-

dividuals. However, other sources of errors (e.g. sampling procedure or interval) may 

substantially affect final results and will be taken into account for secondary production 

estimates in chapter 2. The presented collection will facilitate future functional studies 

in large European lowland rivers and comparable systems. The information given here is 

crucial for the estimation of whole benthic community biomass and secondary produc-

tion, especially when non-cohort based calculation methods are used. As non-native 

species are frequently establishing in new ecosystems, updated data bases already are 

and regularly will be needed in future. I added three new regressions and one CPI for 

common and widespread invasive Crustacea that will help to minimize current 

knowledge gaps. 
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2. Chapter: 

Shore types control diversity and secondary production of 

macroinvertebrate communities in a large lowland river  

2.1 Introduction 

The majority of the world’s large rivers are characterized by rip raps, groynes, or similar 

structures that are key components of their shores and riparian zones (Shields 1995; 

Gregory 2006; Habersack, Jäger & Hauer 2013). Most of these structures are created to 

confine the river flow to the main channel causing an increase in bed shear stress and 

incision of the river channel, thus facilitating commercial navigation (McCartney et al. 

2012). Man-made shore structures also alter the near-shore hydromorphology and sed-

iment dynamics (Sukhodolov et al. 2002). Groynes, for example, a common shore type in 

lowland rivers, are sinks for fine sediments (Ockenfeld & Guhr 2003; Schwartz & 

Kozerski 2004) and cause an accumulation of particle-bound heavy metals and organic 

pollutants (Echols et al. 2008; Baborowski et al. 2012). Furthermore, river channeliza-

tion alters habitat availability and configuration. The heterogeneous mosaic of various 

mesohabitats with their different hydraulic regimes is usually replaced by construction 

materials that are not autochthonous, for example stones or boulders (Battle, Jackson & 

Sweeney 2007). Alterations of riparian hydromorphology may have serious ecological 

consequences as the shore and riparian zone are hot spots for riverine biodiversity 

(Wolter & Bischoff 2001; Strayer & Findlay 2010). Strayer et al. (2012) studied ma-

croinvertebrate, fish and terrestrial plant communities in the Hudson River and showed 

that their diversity was lower at altered than at natural shores. Standard groynes in the 

River Elbe had a lower abundance of indicator species for natural, sandy riverine habi-

tats compared to ecologically optimized groynes with higher hydromorphological diver-

sity (Kleinwächter et al. 2005). On the other hand, rip rap structures have been shown to 

have a comparable macroinvertebrate diversity and numerical abundance like natural 

shorelines (Shields, Cooper & Testa 1995). The extent to which shore modification im-

pacts main channel communities has, to my knowledge, not been studied previously. 

 Besides the direct effects exerted by flow modification and degradation of habi-

tats there is preliminary evidence that anthropogenic shore types may favor the estab-

lishment of non-native species (Johnson, Olden & Vander Zanden 2008). The primary 
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reason for such invasions is the loss of natural barriers due to shipping, channel connec-

tion and other human activities (Hulme et al. 2008). Nevertheless, the successful estab-

lishment of a neozoa population depends on the local opportunities an invader is pro-

vided with in its new environment. Besides the availability of resources and the ability 

to act as a predator, the physical habitat presents an important factor that can contrib-

ute to the success of an invasive species (Moyle & Light 1996). For example, a recent 

study illustrated that suitable ecological niches for biological invasions are created by 

morphological and physicochemical degradation of streams and rivers (Frueh et al. 

2012). This has also been shown to occur in the River Rhine, where invasive amphipods 

dominated macroinvertebrate communities in artificial stone habitats (Van Riel et al. 

2006, 2011). Therefore, neozoa might further enhance negative effects of hydromorpho-

logical degradation on native communities by acting as competitors and predators. Giv-

en the fact that man-made corridors between formerly isolated catchments are known 

to support the invasion of new species in a non-controllable way, it is a challenge for 

river management to create habitat conditions that hamper the establishment of invad-

ing neozoa.   

  While the effects of shore modifications on biodiversity and community composi-

tion are at least partially documented, the implications of altered hydromorphology for 

the functioning of large river ecosystems are largely unknown. Published studies con-

cerning the patterns of benthic secondary production in large sandy rivers suggest that 

the secondary production follows patterns of biodiversity with the highest values meas-

ured at the shore and riparian zone and the lowest values in the main channel (Benke et 

al. 1984; Zilli 2013). Given this tight relationship between community structure and 

functioning, secondary production may be sensitive to hydromorphological changes in-

duced by artificial shore types (c.f. Elosegi & Sabater 2013).   

  In the present study, mesohabitat-specific benthic macroinvertebrates from three 

different shore types as well as the adjacent main channel of the River Elbe (Germany) 

were sampled over a period of twelve months. First, the hypothesis that both benthic 

diversity and secondary production in the main channel are low and independent from 

the adjacent shore type was tested. Second, diversity and production were compared to 

test if the three shore types have systematically different effects on the benthic commu-

nity. Third, the share of neozoa to community composition and functioning was com-
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pared between the three shore types to test if the establishment of neozoa may be facili-

tated by a certain construction type. 

2.2 Material and Methods 

Study site 

A 4-km reach of the River Elbe, an 8th order sandy lowland river, upstream from the city 

of Dessau (river km 250-254; 51°52'53.68"N, 12°17'56.53"E) was studied. The river is 

used for commercial and private navigation and most sections of the watercourse are 

modified by standard groynes and other shore constructions (Scholten et al. 2005). As 

study sites the three most abundant shore types, i.e. standard groyne, rip rap and off-

bankline revetment, were chosen. The studied standard groyne consists of stone bars 

installed almost perpendicular to the shore (Fig. 2.1) with a ratio between the length of 

the groyne to the length of the groyne field of 0.7. The studied off-bankline revetment 

(terminology following McCartney et al. 2012) is a stone bar with a length of approxi-

mately 500 m installed 5-30 m in front of the shore, parallel to the flow direction (Fig. 

2.1). The shoreline itself is not modified and exhibits a near-natural sediment regime, 

including erosion. An upstream and a downstream opening created a secondary flow 

that varied with the river’s water level and also included stagnant pool conditions dur-

ing low water levels. At each shore type the three prevailing mesohabitats were sam-

pled, i.e., the transition zone, ranging from the water margin to a water depth of up to 30 

cm; the groyne field, defined as the area with a water depth of 30 to 150 cm; and stones 

that constitute the actual construction. These mesohabitats were chosen as they have 

previously been shown to harbor a distinct macroinvertebrate fauna (Brunke et al. 

2002). Samples from the main channel in front of each shore type were taken at a dis-

tance of 15 m from the top of the respective structure.  

  The wetted areas of the mesohabitat types from the standard groyne and off-

bankline revetment were mapped using a total station equipped with a differential GPS 

(Leica TPS 1200, Leica Geosystems, Munich, Germany) for all wadable areas and an 

echosounder (Humminbird 1198c, Johnson Outdoors Marine Electronics, Eufaula, USA) 

for areas not wadable. Geographical coordinates and height were measured every 2.5 m 

along transversal transects spaced 6.5 m apart in the standard groyne and every 3.5 m 

along transversal transects spaced 20 m apart in the off-bankline revetment.  
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Fig. 2.1 Bathymetric map and photo of the standard groyne (A, B) and the off-bankline revetment (C, D) and the proportions of the mesohabitats for an 

average water level over the course of the study. The rip rap (not shown) has not been bathymetrically mapped due to its constant inclination of 30°. 
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Subsequently, after creating a regularly spaced grid with a grid cell area of approximate-

ly 0.2 m², a linear interpolation was conducted using Matlab (Version 8.0, MathWorks 

Inc., USA). Daily water levels for the sampling sites were calculated by linearly interpo-

lating mean daily values from the two nearest gauging stations (Vockerode at km 246, 

Rosslau at km 258). Finally, the wetted area of each shore type and mesohabitat on each 

day was calculated as the number of grid cells covered at a given water level multiplied 

by the grid cell area. The wetted area of stones was visually estimated in the field during 

sampling. I did not map mesohabitat areal extensions of the rip rap as it has a constant 

inclination of 30° and the proportions of the mesohabitats were constant, irrespective of 

the water level. Here, transition zone and groyne field theoretically contributed 20 and 

80%, respectively, to the shore type, but were corrected for the contribution of stones in 

each campaign.  

Macroinvertebrate sampling and processing  

Macroinvertebrates were sampled monthly from April 2011 to March 2012, except for 

January and February 2012, where a flood prevented sampling (Fig. 1.1). The mesohabi-

tats transition zone and groyne field were sampled with a Surber sampler (250 µm 

mesh). Five replicates were taken in both mesohabitats at each structure (sampled area: 

0.31 m²). The mesohabitat stones was sampled by randomly selecting three to five boul-

ders (sampled area: approx. 0.3 m²) and brushing off attached macroinvertebrates. The 

sampled area was calculated by measuring length, height and width of each boulder. 

Samples from the main channel in front of each shore type (total sampled area: 0.21 m²) 

were taken by an air-lift-sampler (100 µm mesh, UWITEC, Mondsee, Austria), operated 

from the research vessel “ALBIS” (Helmholtz-Centre for Environmental Research - UFZ, 

Magdeburg). Samples were preserved in 70% alcohol and macroinvertebrates were 

sorted, counted and identified to species or genus, except for Oligochaeta (order level) 

and Diptera (family level) excl. Chironomidae (species or genus level, identified by Dr. 

Emmanuel Gaulme (Arles, France) und Dr. Xavier-Francois Garcia (Berlin, Germa-

ny)). The first 200 individuals of each taxon were measured for body length to the near-

est 0.01 mm with a microscope (Keyence VHX-1000, Keyence Corporation, Osaka, Ja-

pan). Individual weight was calculated using the length-mass relationships from chapter 

2. 
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Secondary production 

Secondary production was calculated for all taxa except Oligochaeta (see below) that 

were sufficiently abundant (N > 100) in each mesohabitat and shore type using the size-

frequency method. The size-frequency method was chosen as taxa encountered in this 

study had either overlapping or undiscernible cohorts. Secondary production at the spe-

cies level could not be estimated if identification of early instars was impossible. In such 

cases, production estimates were made at the genus or family level. I corrected for co-

hort production intervals (CPI) using the values from chapter 2. For rare taxa having a 

total abundance of <100 individuals per mesohabitat at a given shore type, but >100 

individuals at the entire shore type, shore type-specific production and P/B ratios were 

calculated. The P/B ratio was subsequently multiplied by the mesohabitat-specific mean 

annual biomass of the respective taxa to estimate the mesohabitat-specific production. 

Secondary production for Oligochaeta was estimated using a P/B ratio of 5 (Benke & 

Huryn 2010), because the high taxonomic level and the poor condition after sample 

treatment and preservation prevented the determination of individual weights.  

  Uncertainties in the estimates of secondary production were quantified using 

non-parametric bootstrap analysis (Efron & Tibshirani 1994). Briefly, size-specific 

abundance data from replicate samples in each mesohabitat on each date were 

resampled a 1,000 times to generate vectors of mean size-specific abundance and indi-

vidual weights. These values were subsequently used to calculate means and 95% confi-

dence intervals for each taxon and mesohabitat combination. When comparing second-

ary production between shore types, non-overlapping confidence intervals were inter-

preted as evidence for a significant difference (Babler, Solomon & Schilke 2008).  

Habitat and resource variables 

Variables related to habitat conditions and food resource availability were measured to 

explain potential differences between the main channel and the shore as well as be-

tween the three shore types. Percentages of gravel, sand and benthic fine particulate 

organic matter (FPOM) were determined from five sediment cores taken at equidistance 

across each shore type. The percentages of semi-terrestrial macrophytes and boulders at 

each site were estimated visually during each campaign. Flow velocity at each shore type 

and campaign was visually classified as 0 = no flow, 1 = low flow, 2 = medium flow, 3 = 

high flow. Water temperature and oxygen concentration were measured with a multi-

parameter probe (YSI 6920 V2, YSI, Yellow Springs, USA).   
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  Resources were quantified as concentrations of chlorophyll a and suspended par-

ticulate organic matter (SPOM) in water samples from each shoreline type and adjacent 

main channel using standard methods. Standing stock of periphyton was quantified from 

three randomly collected boulders at each site. Attached periphyton was scraped off, 

dried, combusted at 550°C, and reweighed to determine ash-free dry mass (AFDM) per 

m². Organic matter content from bottom sediments was measured as loss of ignition 

from subsamples taken for particle size analysis.  

Statistical analyses 

For statistical analysis at the spatial scale of the shore type, biomass and secondary pro-

duction were weighted by the wetted area of the mesohabitats for a given shore type. I 

compared community composition by principal coordinate analyses (PCO) and permuta-

tional multivariate analysis of variance in PRIMER (PRIMER-E Ltd., Plymouth, U.K.). Pri-

or to analysis, I removed all taxa that were found only once during all campaigns and 

square root-transformed abundances.   

  Differences in compositional, functional and environmental variables were tested 

by repeated measure (RM) ANOVA and followed by Holm-Sidak tests, except for catego-

ries of flow velocity that were compared using a Friedman test followed by Tukey post-

hoc tests. All other variables were tested for normality and homogeneity of variances 

and were appropriately transformed if necessary (Sigma plot, Version 12, Systat Soft-

ware, San Jose, USA).  

2.3 Results 

Comparison of main channel and shore 

Species richness in the main channel differed significantly among shore types (P < 

0.001). The main channel community adjacent to the off-bankline revetment had a sig-

nificantly higher species richness (5 ± 3) than communities adjacent to standard groyne 

(2 ± 1) and rip rap (3 ± 1). Biomass (P = 0.881) and composition of the main channel 

communities (P = 0.209), however, did not differ significantly between associated shore 

types. Secondary production of the main channel differed only marginally among shore 

types (Table S3) and thus, I did not differentiate the main channel by shore type in sub-

sequent analyses.   
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Fig. 2.2 Species richness (a), weighted biomass (b), total weighted secondary production (+ 95% 

CI) (c) at the studied shore types and the adjacent main channel. Significant differences (P < 

0.05, RM ANOVA and Holm-Sidak pairwise comparisons) are indicated by different letters. The 

box-whisker plots represent the data from the different samplings. The horizontal line within 

each box indicates the median, bottom and top of the box indicate the 25th and 75th percentiles, 

and whiskers indicate min. and max. 
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In contrast to the marginal differences between the main channel communities, they all 

differed significantly from the adjacent shore communities (P < 0.001). Furthermore, 

main channel communities had significantly lower species richness and biomass than 

shore communities (Fig. 2.2 a,b). Secondary production was more than two orders of 

magnitude lower in the main channel than at the shores sites (Fig. 2.2c), with Chirono-

midae, Oligochaeta and Bivalvia being the only producers (Table S3). Robackia demei-

jerei (Chironomidae) alone contributed more than 50% to the total secondary produc-

tion of the main channel.  

Comparison of shore types 

Macroinvertebrate communities grouped by shore type in the PCO ordination (Fig. 2.3) 

and permutational analysis of variance (PERMANOVA) revealed significant composi-

tional differences for all pairwise comparisons (P < 0.01).  

 

Fig. 2.3 Principal coordinate analysis of macroinvertebrate communities at the three studied 

shore types. Numbers refer to sample campaigns from April 2011 (1) to March 2012 (12). Cam-

paigns January (10) and February (11) are missing due to flood events. 

Species richness was significantly higher at the off-bankline revetment than at the 

standard groyne and the rip rap, but did not differ between the latter two shore types 
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(Fig. 2.2a). Similarly, biomass was significantly highest at the off-bankline revetment, but 

did not differ between standard groyne and rip rap (Fig. 2.2b). Secondary production 

was highest at the off-bankline revetment, threefold lower at the standard groyne and 

more than fourfold lower at the rip rap. The non-overlapping 95% CI indicate that the 

shore types differed significantly with respect to total secondary production.  

Contribution of neozoa 

The percentage contribution of neozoa to biomass did not differ significantly between 

shore types (P = 0.063). However, the contribution of invasive Crustacea to biomass at 

the rip rap site was significantly higher than at the other two shore types (Fig. 2.4a, P < 

0.001). Conversely, the contribution of invasive Gastropoda to biomass was significantly 

higher at the off-bankline revetment than at the standard groyne and the rip rap (Fig. 

2.4a, P < 0.001). The contribution of invasive Bivalvia to biomass did not differ between 

shore types (P=0.082). Within one and the same shore type, the contribution of neozoa 

to secondary production was distinctly lower than their contribution to biomass. This 

pattern was most obvious at the off-bankline revetment, where neozoa contributed to 

total biomass with an average of 67%, but less than 21% to secondary production (Fig. 

2.4 a, b). However, at the rip rap site, neozoa were the most productive group with a 

contribution of 50% to total secondary production.  

  On the mesohabitat scale I tested whether a particular mesohabitat favors the 

contribution of neozoa to ecosystem structure and function irrespective of the shore 

type. The contribution of neozoa to species richness did not differ between mesohabitats 

(Fig. 2.5) and amounted to approximately 10%. However, stone mesohabitats had signif-

icantly higher contributions of neozoa to mesohabitat-specific biomass than transition 

zone and groyne field (Fig. 2.5). Similarly, stone mesohabitats exhibited higher contribu-

tions of neozoa to secondary production than the other mesohabitat types. Differences 

in contributions of neozoa to secondary production between the transition zone and the 

groyne field were less pronounced and overlapping bootstrapped 95% CI indicate no 

significant difference at the 0.05 level.  
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Fig. 2.4 Percentage contribution of the major taxonomic groups, separated into native and non-

native taxa, to weighted biomass (a) and total weighted secondary production (b). 
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Fig. 2.5 Percentage contribution of non-native species to species richness, biomass, and total 

secondary production (+95% CI) in the mesohabitats found at the shore types. Significant differ-

ences (P < 0.05, RM ANOVA and Holm-Sidak pairwise comparisons) are indicated by different 

letters. The box-whisker plots represent the data from the different shore types and samplings 

of each mesohabitat (whiskers = min. and max.). 

Habitat and resource variables  

Macrophytes and boulders were not to be found in the main channel and proportions of 

sand were significantly higher in the main channel than at the standard groyne (Table 

2.1). Categories of flow velocity did not differ between main channel and rip rap, but 

were significantly higher than at the standard groyne or the off-bankline revetment. Re-

source variables differed only marginally between main channel and the shore sites, ex-

cept for sediment organic matter content, which was significantly lower in the main 

channel than at the standard groyne and the off-bankline revetment.   

  Differences between shore types were more pronounced; especially the variables 

describing microhabitat structure differed significantly. For example, contribution of 

boulders and flow velocity were significantly higher at the rip rap than the other two 

shore types (Table 2.1). The contribution of macrophytes and FPOM was significantly 

higher at the off-bankline revetment than at the other two shore types. Surprisingly, var-

iables related to food resource availability showed only minor differences between 
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shore types. Only sediment organic matter content differed between all three shore 

types (Table 2.1).  

Table 2.1 Mean (± SE) values of habitat and resource variables of the studied shore types and the 

adjacent main channel. Significant differences (P<0.05) (RM ANOVA and Holm-Sidak pairwise 

comparisons) are indicated by different letters. Flow velocity is presented as median categories 

(± mean deviation from the median) and was compared using a Friedman test followed by Tuk-

ey post-hoc tests. Abbreviations are: AFDW = ash free dry mass, Chl a = chlorophyll a, FPOM = 

fine particulate organic matter, SPOM = Suspended particulate organic matter, - = not present. 

 Standard 

groyne 

Off-bankline 

revetment 

Rip rap Main 

channel 

Habitat variables     

Boulder (%) 2 ± 1 
a
 7 ± 6 

a
 80 ± 12 

b
 - 

Flow velocity 2 ± 0 
a
 1 ± 1 

a
 3 ± 0 

b
 3 ± 0 

b
 

FPOM (%) 0 ± 0 
a
 2 ± 1 

b
 0 ± 0 

a
 0 ± 0 

a
 

Gravel (%) 68 ± 9 
a
 20 ± 14 

b
 17 ± 13 

b
 31 ± 6 

a,b
 

Macrophytes (%) 1 ± 1 
a
 14 ± 8 

b 
  0 ± 0 

a
 - 

Oxygen concentration (mg L
-1

) 13 ± 1 
a
 13 ± 2 

a
 14 ± 2 

a
 12 ± 1 

a
 

Sand (%) 31 ± 9 
a
 78 ± 13 

b
 83 ± 13 

b
 69 ± 6

 b
 

Water temperature (°C) 15 ± 5 
a
 15 ± 6 

a
 15 ±  5 

a
 14 ± 6 

a
 

     

Resource variables     

Chl a from SPOM (µg L
-1

) 45 ± 26 
a
 20 ± 14 

a
 42 ± 31 

a
 38 ± 28 

a
 

Periphyton standing stock (mg AFDM m
-2

) 8 ± 4 
a
 6 ± 5 

a
 6 ± 3 

a
 - 

Sediment organic matter (%) 4 ± 1 
a
 9 ± 3 

b
 1 ± 0 

c
 0 ± 0 

c
 

SPOM (mg AFDM L
-1

) 9 ± 5 
a
 4 ± 3 

b
 16 ± 12 

a
 12 ± 5

a
 

 

2.4 Discussion 

Shores are hotspots of riverine diversity and function  

This is to my knowledge the first comprehensive study that relates both the structure 

and functioning of macroinvertebrate communities from all relevant mesohabitats in a 

large river to common types of shore types. The data show that the main channel of a 

large sandy lowland river was colonized by a distinct community consisting of only a 

few specialized species. Thus, diversity and biomass were significantly lower than at any 
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of the studied shore types. This is in line with previous studies showing that sand-

dominated main channels are inhabited by very few specialized species with low numer-

ical abundances and biomasses (Simpson et al. 1986; Nakano & Nakamura 2006). More-

over, the results show that the low diversity and biomass also have functional conse-

quences as total secondary production was more than two orders of magnitude lower in 

the main channel than at the shore zone.   

  The structure and functioning of main channel communities did not systematical-

ly vary with the adjacent shore type, suggesting that all of these structures have similar 

effects on main channel communities. Most habitat and resource variables did barely 

differ between main channel and shore zone and were probably not the primary reasons 

for the observed differences. However, all shore types were characterized by a steep 

gradient of flow velocity from the shore towards the main channel, which was generated 

by the structure. I did not measure flow velocity or turbulences directly, but another 

study conducted at the River Elbe at standard groynes similar to the one studied here 

showed that current velocity could be as low as 0.2 m sec-1 in the groyne field and in-

creased up to 1.3 m sec-1 in the main channel during mean discharge (Henning & 

Hentschel 2013). The corresponding hydraulic stress, along with the mobility of the pre-

vailing sediments, causes the formation of mobile sand dunes (Aberle et al. 2010) that 

may additionally contribute to the high environmental disturbance and thus to the low 

diversity and productivity of the main channel habitat. It remains unclear whether the 

difference between the shore and main channel is solely the result of the flow alteration 

caused by the shore types, as unchannelized reference sites are not present in the River 

Elbe. However, gradients in flow velocity could be expected to be less steep and the bio-

logical difference between the shore zone and main channel might be less pronounced if 

shores were unaltered. 

Effects of shore types depend on habitat 

In contrast to the main channel, the studied shore sites were hot spots of diversity, bio-

mass and secondary production, even though the shore types differed from one another. 

Compared to the other shore types, the off-bankline revetment had significantly higher 

diversity, biomass and secondary production. The differences between the shore types 

concerning secondary production may, to a small extent, be related to differences in var-

iables describing resource availability. This is because differences were either not signif-

icant or too small to have an ecological effect. Contrastingly, I found that variables de-
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scribing habitat structure such as proportions of macrophytes and FPOM, as well as var-

iation in flow velocity were significantly higher in the off-bankline revetment than in the 

other shore types (Table 2.1). The higher variation of flow velocity and the occurrence of 

lentic conditions and pool phases during low discharges are known to favor diverse 

communities in large rivers (Arthington et al. 2006; Garcia, Schnauder & Pusch 2012). 

Thus, I detected taxa that are either related to slow or no flow (e.g. Dicrotendipes ner-

vosus (Diptera) and Physidae (Gastropoda)), or related to macrophytes (e.g. Cricotopus 

sp. (Diptera), Cloeon dipterum (Ephemeroptera)) and several taxa that are strongly re-

lated to fine sediments (e.g. Camptocladius stercorarius and Chironomus sp. (Diptera)) in 

the off-bankline revetment (Table S2). With 50%, particularly the latter taxa contributed 

strongly to total secondary production. The rip rap, however, had a significantly higher 

and less variable flow velocity in combination with a significantly higher proportion of 

boulders. As a result, this structure was dominated by rheophilic species associated with 

hard-bottom, lital habitats, e.g. Ancylus fluviatilis (Gastropoda), the invasive Dikerogam-

marus villosus (Crustacea) and Hydropsyche sp. (Trichoptera). These taxa had a lower 

productivity compared to the highly productive Chironomidae community at the stand-

ard groyne or the off-bankline revetment (Table S3), explaining the relatively low sec-

ondary production at the rip rap despite slightly higher community biomasses com-

pared to the standard groyne.  

Configuration of shore type determines neozoa contribution 

The contribution of non-native species to the structure and functioning of the macroin-

vertebrate community varied systematically with shore type. Contributions to biomass 

and secondary production were highest at the rip rap, intermediate at the off-bankline 

revetment and lowest at the standard groyne (Fig. 2.4). This result coincides with the 

proportion of boulders that contributed on average 80% to total area at the rip rap but 

only 7% and 2% at off-bankline revetment and standard groyne, respectively (Table 

2.1). The mesohabitat specific analysis underlined this relation, as the mesohabitat stone 

had a significantly higher contribution of non-native species to biomass and production 

than transition zone or groyne field (Fig. 2.5). In fact, several neozoa found at the rip rap, 

like Dikerogammarus villosus, are typical colonizers of hard substrates. A high share of 

neozoa on boulders used for artificial shore constructions has also been found in other 

riverine systems (MacNeil et al. 2010; Boets et al. 2013). Hence, the local and habitat-

specific results suggest that the shore type may drive the establishment success of neo-
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zoa and provides evidence that even though invasions of non-native species are omni-

present in navigable rivers, their standings stocks and secondary production could most 

likely be regulated by mesohabitat structure.   

  It could also be shown that the contribution of neozoa to secondary production 

was substantially lower than their contribution to biomass at a given shore type. For 

example, non-native Potamopyrgus antipodarum (Gastropoda) contributed on average 

40% to total weighted biomass but only 9% to total production at the off-bankline re-

vetment (Fig. 2.4). This suggests that the importance of P. antipodarum would be overes-

timated if the impact on the local community was assessed by its dominance in terms of 

biomass (Hall et al. 2006). The low contribution to secondary production indicates that 

the local functional impact of P. antipodarum is rather small and suggests that parame-

ters describing contribution to ecosystem functioning may provide a better indication 

for the ecological significance of non-native species than structural indicators.  

Implications for large river management 

The contemporary management of large rivers has to deal with the trade-off between 

maintaining the usability for navigation and maintaining or restoring the ecological in-

tegrity, i.e. biodiversity and ecosystem functioning (Gore & Petts 1989; Kotenko 2005). 

This trade-off is exacerbated by the fact that restoration of a natural riverine hydromor-

phology on larger spatial scales is virtually impossible under a given human use regime 

like navigation (Gore & Shields 1995). Hence, scientific knowledge on structural and 

functional aspects associated with different shore types is important to be able to de-

termine the type and location of management measures on local scales (Large, Boon & 

Raven 2012). Based on the presented results that combine biodiversity, impact of neo-

zoa measured by their dominance and macroinvertebrate secondary production as in-

dependent measures of ecosystem integrity, three management recommendations can 

be derived. First, river management should allow for sufficient space for shallow shore 

zones, because these sites provide physical habitat for macroinvertebrate communities 

with a substantially higher diversity and productivity compared to the main channel. 

River sections altered by confined shore constructions such as rip raps contribute little 

to secondary production and biodiversity and should thus be avoided whenever possi-

ble. Given that most of the secondary production takes place at the shore zone and sec-

ondary production itself represents patterns of larger scaled energy fluxes (Benke & 

Huryn 2010), the shore type is likely to also have implications for whole-river ecosystem 
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functioning. Secondly, a high diversity of flow patterns should be supported, in particu-

lar through the establishment of shore types that create stagnant, backwater-like condi-

tions during periods of low water levels. It was shown that those sections are colonized 

by lentic communities that contribute to the diversity and production of the entire river. 

Off-bankline revetments are a promising strategy to maintain navigation in the main 

channel while simultaneously protecting the near shore zone from the associated ad-

verse effects. Lastly, the restricted use of shore types constructed of non-autochthonous 

substrates such as stones or boulders in sandy rivers is recommended to limit niche op-

portunities for non-native species. Given that already established invasive species facili-

tate the establishment of other neozoa (Simberloff & Von Holle 1999; Green et al. 2011), 

any significant reduction of the numerical abundance or standing stock of neozoa 

through local management measures is useful in case large-scale measures to prevent 

invasion are not feasible. In conclusion, the study showed the great potential of appro-

priate shore types to improve macroinvertebrate community diversity and functioning 

in a large lowland river. Nonetheless, more studies that adopt other measures of ecosys-

tem functioning are needed to derive ecologically sound management recommendations 

for large rivers. 
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3. Chapter: 

First record of Ametropus fragilis Albarda, 1878 (Insecta: 

Ephemeroptera, Ametropodidae) in Saxony-Anhalt (Germa-

ny): Implications for the recolonization potential of large 

lowland rivers1 

3.1 Introduction 

Ametropus fragilis is a typical psammophilous mayfly in large lowland rivers. The first 

record for Germany was made by Berger and Rothe in 1998 in the Lusatian Neisse. To 

that date this marked the most western record in Europe, apart from the detection of the 

type species in the Netherlands. This has, however, been the only record of A. fragilis in 

the Netherlands (Mol 1985). Surprisingly, Cozilis and Chovet recorded a single larva in 

the River Loire in France in 2010. Despite this recent record, A. fragilis still belongs to 

the rarest and probably also most endangered European mayflies (Landa & Soldán 

1985; Russev 1992; Sowa 1992; Berger & Rothe 1999).  

  A large body of management activities is directed towards the recolonization of 

impaired sites by rare species in order to improve their biodiversity (Ward 1998; 

Dudgeon et al. 2006). Actually, to the current state only few large river management ac-

tivities resulted in detectable biodiversity increases (Palmer, Menninger & Bernhardt 

2010; Haase et al. 2012). One prominent reason may be the fact that the recolonization 

success does not only depend on the constitution of the habitat that is to be colonized 

itself, but also largely on the surrounding catchment (Lake, Bond & Reich 2007; 

Sundermann, Stoll & Haase 2011). Appropriate sources of desired species like tributar-

ies or wetlands have to be present in close proximity to the restored site. Furthermore, 

suitable shore types within a riverine system of interest may be valuable habitats that 

function as stepping stones for recolonizing taxa. Former studies showed that the maxi-

mum distance from a putative source to the location of interest approximates 5,000 m 

for a successful inoculation, but at a distance larger than 1,000 m the recolonization suc-

cess already declined markedly (Sundermann et al. 2011; Tonkin et al. 2014). However, 

                                                        
1 Main results of this chapter were published in Brabender, M. & M. Brauns (2013): First record of Ame-
tropus fragilis Albarda, 1878 (Insecta: Ephemeroptera, Ametropodidae) in the River Elbe in Saxony-
Anhalt, Germany.- Lauterbornia 76: 1-3 
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appropriate assessment of potential sources is difficult and requires much effort and 

large datasets of the surrounding catchment.   

  In the course of this study, two individuals of A. fragilis were recorded in the Riv-

er Elbe. Here, I will report on these findings and put them into the broader context of the 

recolonization potential of a large river. 

3.2 Material and Methods 

The study area at the River Elbe is situated in the biosphere reserve “Mittelelbe” near 

Dessau (German river kilometer 252) in Saxony-Anhalt. Here, monthly samplings of ben-

thic macroinvertebrates at different types of shore structures (standard groyne, off-

bankline revetment and rip rap) were conducted between April 2011 and April 2012. All 

mesohabitats present at each shore structure were sampled quantitatively using hand 

nets or a Surber sampler. For details see chapters 1 and 2.  

3.3 Results  

In October 2011, a larva of Ametropus fragilis was collected at the downstream opening 

of the off-bankline revetment (51.884082° N, 12.308082° E; WGS 84). The specimen was 

10.1 mm long (without cerci) and had a thoracic width of 1.9 mm (Fig. 3.1).  

 

Fig. 3.1 Ametropus fragilis, dorsal view 
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A second record was made in April 2012 in close proximity to the first location. In April 

the mayfly had reached a total length of 17.4 mm (without cerci) and a thoracic width of 

3.8 mm. Both individuals had normally developed forelegs (Fig. 3.1). Numerous bristles 

insert at the coxae of the forelegs and form a kind of bow net (Fig. 3.2). The labial palps 

resemble pincer-like structures.  

 

Fig. 3.2 Ametropus fragilis, ventral view, showing the bristles at the coxae of the foreleg 

The location in which the specimens were found is situated directly behind the down-

stream opening of the off-bankline revetment in a water depth of 70-90 cm (Fig. 3.3). 

The bottom sediment was dominated by sand (97%) with only a minor amount of or-

ganic material (0.7%), which is due to the from time to time high flow velocities of up to 

0.8 m s-1, depending on the water level (Table S1). The water column was characterized 

by high chlorophyll a concentrations of up to 144 µg L-1, which reduced the water trans-

parency to less than 40 cm at some dates of the year (Table S1). 

3.4 Discussion 

Overall, the environmental conditions at the locality at the River Elbe largely match 

those described from the River Neisse, where flow velocities amounted to 0.6 to 1.0 m s-1 
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and the sediment was also dominated by sand (Berger & Rothe 1999). The fact that both 

individuals showed normally developed forelegs support Jacob (2006), who suggests 

that the often described reduction of the forelegs (Bauernfeind & Humpesch 2001; 

Eiseler 2005) is due to an aberration of single specimens.  

 

Fig. 3.3 Location in which Ametropus fragilis was detected. The image shows the downstream 

outflow of the off-bankline revetment. The sandy structure at the end of the technical groyne 

construction continues under the water surface. This picture was taken at a water level consid-

erably lower than the mean.  

Ecological traits and required habitat conditions 

Information on the feeding mode of A. fragilis is inconsistent. The numerous bristles in-

serting at the coxae of the forelegs form a kind of bow net that enables A. fragilis to filter 

suspended particulate material (Fig. 3.2). The labial palps that resemble pincers may be 

used to strip off particles entangled in the bristles (Berger & Rothe 1999). While 

Kazlauskas (1962) assumed that A. fragilis passively feeds on detritus, Edmunds et al. 

(1976) supposed that they consume microbial food, mainly algae, that is collected from 

the interstitial. At my sampling location, both feeding modes are possible and further 

investigations are needed to clarify whether detritus or algae are being preferred. The 

stable isotope analysis of the recently found specimen indicates that pelagic algae con-

tributed more to A. fragilis’ diet than benthic FPOM (data not shown, for details of stable 
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isotope analyses see chapter 4).   

  It can be assumed that A. fragilis has disappeared from most European streams as 

a result of both discharging untreated waste water into riverine systems (Soldan 1978; 

Klausnitzer, Jacob & Joost 1982) and, like several other sensitive taxa, the widespread 

structural river degradations (Arthington et al. 2010). An improvement of the water 

quality as well as favorable shore structures that include well flown-through, sandy hab-

itats in some localities of the River Elbe may have facilitated the dispersal of A. fragilis. 

The recent discovery in France (Cozilis & Chovet 2010) suggests that recolonization 

sources might also to be found in other parts of middle Europe. The locality described 

here is characterized by natural, moderate and thus not destructive sediment dynamics. 

These are, however, no longer to be found in most large lowland rivers. The main chan-

nel may provide sediment with an appropriate grain size, but the constantly high flow 

velocities lead to harsh sediment movements (Aberle et al. 2010). The majority of large 

river shore zones are either dominated by rip raps or standard groynes, while natural 

shore zones or off-bankline revetments are still the exception. Both of the former shore 

types lack the required habitat conditions for A. fragilis and hinder its establishment at 

the banks of most European rivers that are used as waterways. In addition, potential 

sources for the recolonization are still rare or at least unknown. Hence, based on the 

only two German records, the classification as “Critically Endangered” on both the Red 

Lists of Saxony-Anhalt and Germany is suggested for A. fragilis.  

Recolonization potential of large rivers 

Taking into account the fact that this record of A. fragilis is the first for Germany since 

more than a decade, it becomes clear that potential recolonization sources are presently 

unknown. One potential source for the recolonization of the investigated study site may 

have been the sand-dominated River Mulde, which provides suitable habitat conditions 

for A. fragilis. However, it is situated approximately 4.5 km to the west of the study loca-

tion and may therefore be too far away to serve as a direct recolonization source 

(Sundermann et al. 2011; Tonkin et al. 2014). Although a minor factor, the potential path 

for a compensatory flight is strongly interrupted by a flood plain forest that may further 

impede a successful arrival at the respective site (Tonkin et al. 2014). It is conceivable 

that A. fragilis’ distribution took place within the River Elbe itself. Hence, favorable shore 

structures in large rivers that are in close proximity to each other seem appropriate to 

partly compensate for missing tributaries or flood plains in the surroundings. In contrast 
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to other large navigable rivers, shore constructions at the River Elbe are often in techni-

cally poor conditions, so that groyne stone bars are perforated or clogged with sand and 

can thus form valuable habitats. Moreover, in the course of recent restoration activities 

in the nature reserve catchment, entire shore constructions at several locations have 

been removed. These, in other large rivers rare habitats, may have functioned as step-

ping stones for the arrival of A. fragilis at the study site from either downstream or up-

stream. Although their recolonization may take many years (Langford et al. 2009), im-

plementing many small projects as stepping stones has already been suggested by oth-

ers (Rouquette & Thompson 2007; Jähnig, Lorenz & Hering 2008). The valuable and un-

expected double record of A. fragilis at an off-bankline revetment of the River Elbe indi-

cates that the chemical requirements for the reestablishment of rare taxa may largely be 

met nowadays, but that riverine systems mostly do not provide sufficiently well-

structured shore zones. In accordance with the former recommendations (Rouquette & 

Thompson 2007; Jähnig et al. 2008), it can be further assumed that sites far away from 

putative recolonization sources can still be reached by desired taxa via the construction 

of suitable habitat islands in close proximity to each other. These may serve as stepping 

stones from an inoculating source to large river sections further away. The detection of 

A. fragilis is welcome news for the improvement of biodiversity in German aquatic eco-

systems. It is encouraging for renaturation activities that even a species that was long 

thought to have vanished from Germany has reappeared in a large navigable river. 
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4. Chapter: 

Shore structure alters connectivity patterns and interaction 

strength among basal resources and primary consumers in 

benthic large river food webs 

4.1 Introduction 

Rivers are important habitats for many specialized plants and animals (Allan & Flecker 

1993). Those ecosystems and the inhabiting species perform a variety of crucial ecosys-

tem services like the exchange of substances between aquatic and terrestrial areas or 

the channelization and transformation of nutrients (Postel & Carpenter 1997; Millenium 

Ecosystem Assessment 2005). As most rivers have been structurally altered by human 

use, these valuable habitats are increasingly threatened. Nowadays, the impaired hy-

dromorphology is one of the main stressors for riverine ecosystems (Hughes et al. 1990; 

Allan & Flecker 1993). Habitat-induced alterations in hydromorphology and community 

composition can lead to functional changes like the availability of basal resources and 

the flow of energy in benthic macroinvertebrate food webs (Chapin et al. 2000; Cross et 

al. 2013). Modifications in resource utilization may have long-range consequences for 

the river itself in terms of eutrophication, nutrient channelization and loads of particu-

late matter, but also for adjacent ecosystems (Sabo & Hagen 2012).  

  Determining the origin and flow of energy that fuels aquatic secondary produc-

tion has been a main effort in ecological research (Lindeman 1942; Benke & Wallace 

1980; Pingram et al. 2012). The majority of studies determining food web structure and 

the trophic basis of secondary production in large rivers revealed autochthonous algal 

production as the main basal resource (Roach 2013). Some rare exceptions are known in 

which secondary production was mainly fueled by detrital organic matter, but those 

were derived from systems with high turbidity and sediment loads (Roach 2013; 

Wellard Kelly et al. 2013). Not only the availability, but also the quality of resources is an 

important factor for their utilization by benthic communities (Marcarelli et al. 2011). In 

addition, community composition and the inherent species traits play a crucial role for 

resource uptake and energy channeling through the food web (Vaughn 2010; 

Vandewalle et al. 2010). Structural changes in communities can strongly influence both 

the use of resources and the effectiveness of energy transfer through food webs, e.g. due 
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to missing or newly established links (Vander Zanden et al. 1999; Chapin III et al. 2000). 

Individual species can act as functional key players that dominate energy flow or shift 

resource utilization away from pristine patterns (Hall et al. 2006; Vaughn 2010). Partic-

ular resources may thus be inadequately incorporated into food webs or even remain 

entirely untouched.  

  As earlier studies revealed profound impacts of the shore morphology on species 

composition and secondary production (see chapter 2), effects on the food web struc-

ture and interaction strength are likely. Given that most of the secondary production 

takes place at the shore zone and secondary production itself represents patterns of 

larger scaled energy fluxes (Benke & Huryn 2010), the shore type can be expected to 

have implications for whole-river ecosystem functioning. Additionally, the shore type 

specific communities differed substantially concerning their contributions of non-native 

species (chapter 2). This may be one particular important element that influences shore 

type specific food web attributes as interacting species have not co-evolved (Hobbs et al. 

2006). These potential changes in community-resource interactions can best be de-

scribed by the use of flow food webs rather than simple connectivity food webs, which 

lack information about interaction strength (Benke & Wallace 2011). As new methods 

were established and the descriptive power of flow food webs was approved, studies on 

the quantified trophic base of secondary production and the energy transfer from one 

trophic level to another gained importance in recent research (Benke & Huryn 2010). 

Flow food webs can provide a powerful tool to describe impacts that human alterations 

like river damming, the degree of land use or habitat degradation have on the functional 

performance of aquatic ecosystems (Woodward & Hildrew 2002; Benke & Wallace 2011; 

Cross et al. 2013).  

  However, despite a long-lasting history of studies assessing human impacts on 

ecosystems and the ongoing methodological progress, our understanding of food webs 

and energy flow in large riverine systems is still limited (Johnson, Richardson & Naimo 

1995; Cross et al. 2013). The majority of food web analyses have been conducted in 

smaller streams (e.g. Hall Jr, Wallace & Eggert 2000; Peipoch, Martí & Gacia 2012; 

Whiting et al. 2014). While some qualitative information on large river food webs from 

several locations exist (Herwig et al. 2007; Pingram et al. 2012), quantified organic mat-

ter fluxes from temperate lowland rivers do not (but see Lewis et al. 2001 for a tropical 

river analysis). Most of the few large river food web studies were conducted to detect 
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the origin of basal resources to test energetic concepts (Thorp & Delong 2002; Roach 

2013), rather than to quantify energy transfer in relation to anthropogenic stressors. 

 As the majority of large river systems are morphologically impaired, mechanistic 

understanding of how this degradation may affect the structure and magnitude of ener-

gy flow is essential to assess widespread human impacts on aquatic ecosystem function-

ing. Especially in navigable rivers, shore construction types mostly provide the only pos-

sibility for structural improvement within a fixed, large river macrostructure (Gore & 

Shields 1995; Large et al. 2012). Therefore, it is this particular knowledge that is needed 

to provide guidelines for functional management in these seemingly unchangeable sys-

tems. Managers and researchers can apply the results in attempts to influence the food 

web attributes and in turn produce desired outcomes (Cross et al. 2013).   

  In this study I used annual secondary production estimates and mean annual re-

source assimilation rates from three seasonal campaigns to construct fully quantified 

basal ingestion flow food webs for three different shore types. The objectives were two-

fold. First (i), I sought to determine the influence of different shore type morphologies 

on the basis of secondary production and the quantity of matter fluxes from basal re-

sources to benthic primary consumer communities. As the River Elbe provides high 

amounts of pelagic algae and this type of high quality food was shown to fuel food webs 

in several large river systems (Roach 2013), I predicted that pelagic algae constitute the 

main basal resource for all benthic communities in the Elbe irrespective of the shore 

type. In contrast, I expected a shore type dependent effect concerning the relative im-

portance of benthic FPOM and periphyton. I predicted that FPOM is of higher relative 

importance in the off-bankline revetment because previous analyses revealed higher 

standing stocks there (Table 2.1). At the same time, I hypothesized that due to the higher 

proportion of boulders at the rip rap, which should function as a preferential substrate 

for scrapers, the relative importance of periphyton is highest there. My second main ob-

jective (ii) was to test the effect of shore types on patterns and magnitudes of basal 

trophic interactions including the detection of energy flow key players, potential missing 

links and resource utilization efficiencies in terms of resource ingestion/availability re-

lationships. 
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4.2 Material and Methods 

Sampling of food web components 

Sampling for stable isotope analyses (SIA) material (except for suspended fine particu-

late organic matter) was conducted in early summer (end of May) in autumn (October) 

2011, and in early spring (end of March) 2012 to account for inter annual variation in 

δ13C and δ15N signatures (Walters & Post 2008; Sabo et al. 2010). All available taxa of 

macroinvertebrates were qualitatively sampled at the three shore types described 

above, i.e. off-bankline revetment, standard groyne and rip rap (see chapter 1 and 2 for 

details). When possible, several replicates for each taxon were collected, but some taxa 

were only represented by a single sample due to limited material. Sampling devices 

were used as described above (see chapter 2). Individuals were immediately sorted and 

determined to species or genus, except for Oligochaeta (order level) and Diptera (family 

level). Living animals were transferred to filtered river water for several hours to allow 

for gut clearance.   

  Benthic macroinvertebrates have access to four potential basal resources, i.e. 

suspended fine particulate organic matter (SPOM), periphyton, benthic fine particulate 

organic matter (FPOM) and terrestrial coarse particulate organic matter (terrestrial 

CPOM). SPOM was sampled monthly from April 2011 until March 2012 as the contained 

algae may exhibit high temporal variability in δ13C and δ15N signatures (Singer et al. 

2005; Rasmussen & Trudeau 2007). In each of the shore types and the adjacent main 

channel, 40 l of river water, pre-filtered through a 100 µm gaze net to remove coarse 

particles, were concentrated by cross flow filtration (0.1 µm cassette filter, Millipore, 

Merck, Darmstadt) to gain sufficient quantities for stable isotope analyses. Periphyton 

was sampled once per season by brushing at least three stones per site with a plastic 

nail brush that was subsequently rinsed with filtered river water. In most cases samples 

from different stones were combined to one composite sample. Benthic fine particulate 

organic matter (FPOM) was sampled by combining the uppermost centimeter-part from 

five sediment cores taken at equidistance across each shore type. In order to prevent 

contamination, FPOM was carefully checked for macroinvertebrates, which were then 

removed from the sample. Leaves and shoots from all available terrestrial plants near 

the sampling site, i.e. poplar (Populus), willow (Salix), elm (Ulmus) and semi terrestrial 

grasses (Phalaris) were sampled by hand to represent terrestrial coarse particulate or-
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ganic matter inputs (terrestrial CPOM). Different plant taxa were treated as separate 

samples.  

Sample preparation and stable isotope analyses (SIA) 

In the laboratory, single individuals of consumers were transferred to glass vials if they 

provided enough mass to meet the required minimum dry weight for sample analyses 

(min. 300 µg). Otherwise several individuals from one taxon were pooled. Snails and 

mussels were separated from their shells and only the soft body was used for analyses, 

because shell material is enriched in δ13C and does not reflect the δ13C signature of con-

sumed food (Mitchell et al. 1996).  

  A major problem in analyzing the stable isotope composition of SPOM is the con-

tamination of algal seston, which can easily be assimilated, with recalcitrant detritus 

(Jardine et al. 2014). Inclusion of the detrital signal in the food web analyses may result 

in misleading signatures if consumers just excrete this material rather than assimilating 

it (Trakimas et al. 2011). I accounted for this problem by separating pelagic algae from 

detritus by density gradient centrifugation through a colloidal silica matrix following the 

manual provided by Hamilton et al. (1992). Briefly, I transferred 20 ml (5 ml per tube) of 

highly concentrated SPOM from each sample to four 50 ml Falcon tubes (Sarstedt, 

Nümbrecht) containing a colloidal silica matrix (1.16 specific gravity at 25°C). After 10 

minutes of centrifugation (1,000 rpm), the supernatants that contained the algal fraction 

were carefully removed with a pipette. Although the supernatant may contain minor 

amounts of heterotrophic organisms like flagellates or ciliates, it is much more likely to 

reflect the true algal isotopic signature than the bulk SPOM would do. To remove acci-

dentally transferred colloidal silica matrix, the supernatants were resuspended with 

particle-free river water and filtered onto a pre-ashed glass fiber filter (Whatman GF/F, 

nominal pore size 0.7 mm; Whatman, Clifton, New Jersey, USA). The filter cake was 

scraped off with a spatula and transferred into a glass vial. This procedure was also ap-

plied to the detrital fraction that was situated at the bottom of the tube. Additionally, 

from each site a sample of the concentrated bulk SPOM was kept to evaluate the separa-

tion success. I also applied the colloidal silica separation technique to separate light and 

heavy fractions of periphyton as high ash-contents indicated that it is strongly contami-

nated by detritus in the River Elbe (data not shown). Due to technical problems in the 

summer campaign, only the bulk sample of periphyton exists. FPOM and terrestrial 

CPOM samples were transferred into large aluminum bowls (22*13 cm) to accelerate 
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the drying process. All samples were dried at 60°C until they reached a constant dry 

weight and were subsequently stored in a desiccator. To prepare samples for SIA they 

were ground to fine powder using a mortar or, for fibered resources, a ball mill. Con-

sumers (ca. 500 µg) and resources (1-25 mg, depending on expected C and N content) 

were weighed in tin capsules to the nearest 0.001 mg with a micro balance (ME5, Sarto-

rius, Surrey, UK). Isotope ratios were measured using a Delta Advantage isotope ratio 

mass spectrometer connected to a Flash HT Elemental Analyzer (Thermo Finnigan, 

Bremen, Germany). Stable isotope ratios of samples (13C/12C and 15N/14N) are expressed 

as delta (δ) and defined as parts per thousand (‰) relative to international standards 

(PeeDee Belemnite for δ13C, atmospheric N2 for δ15N; Peterson & Fry 1987). Repeated 

analyses of an internal standard resulted in a typical accuracy (±1 SD) of 0.12 and 

0.05‰ for carbon and nitrogen, respectively. 

Food web analyses 

Annual organic matter flow food webs were constructed for each shore type. As the ob-

jective was to quantify the organic matter flux that fuels benthic secondary production, 

only primary consumers were included into the model, so no feeding interaction be-

tween species will be shown. Conclusions about interaction strength and effectiveness of 

resource utilization can be drawn by calculating the relation between the potential 

availability of food resources and total ingested food quantities. These outcomes are 

based on benthic secondary production estimates (see chapter 2), composition of assim-

ilated diet, assimilation and production efficiencies, and estimates of annual potential 

availability of food resources.   

  Relative composition of assimilated diet for each taxon of the benthic community 

was modelled based on the natural stable isotope signatures of 13C and 15N. Three sea-

sonal proportions of assimilated diet per site were modelled. Finally, the annual mean 

assimilated diet proportions were used to construct site-specific food webs. Only prima-

ry consumers representing the key players of secondary production in my study (chap-

ter 2), were chosen as food web members. Dikerogammarus villosus and Hydropsyche sp. 

were formerly revealed as potentially omnivorous (e.g. Benke & Wallace 1980; Dick, 

Platvoet & Kelly 2002; van Riel et al. 2006). I accounted for potential omnivory in the 

studied system by estimating consumers’ trophic positions relative to a site-specific 

baseline (primary producers as trophic position 1). Trophic positions higher than 2.6 

indicate that some biomass has been derived from consuming animal material and leads 
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to the exclusion of the respective taxa from the analyses. A common indirect procedure 

in trophic baseline estimation is the use of long-living primary producers, e.g. suspen-

sion-feeding Bivalvia, as they integrate the variable isotopic signature of the microalgal 

food resource (Post 2002; Howard, Cuffey & Solomon 2005; Gustafson et al. 2007). As 

Bivalvia also consume significant amounts of fine particulate organic matter (Raikow & 

Hamilton 2001; Atkinson et al. 2009), they are useful baseline organisms representing 

the average baseline δ15N from two prevailing basal resources of food webs (Jardine et 

al. 2014). Rather than applying an indirect method for baseline determination, I was 

able to use temporally resolved isotope signatures of pelagic algae and benthic FPOM as 

baseline representatives. It may be useful to include the entire set of basal resources 

(including terrestrial CPOM and periphyton) into baseline estimates when trophic posi-

tions from all food web members and food chain length are of interest. Here, trophic po-

sition estimates only served as criteria for omnivory exclusion. Hence, I chose the two 

lowest basal resources in terms of δ15N concentration to produce the most conservative 

baseline that prevents underestimation of trophic positions. The δ15N signatures from 

pelagic algae from May until August 2011 and from March 2012 were chosen, as high 

chlorophyll a values of water samples indicated strong algal dominance of the entire 

SPOM pool. The potential amount of heterotrophic organisms in the algal fraction can 

thus be assumed to be negligible. Additionally, the seasonal δ15N values of benthic FPOM 

were included. The site-specific annual trophic baseline is reflected by the mean δ15N 

value from mean benthic FPOM and mean pelagic algae signatures. I assumed evenly 

assimilated proportions of benthic FPOM and pelagic algae and an enrichment of +3.4‰ 

δ15N per trophic transfer (Post 2002), so that the actual trophic position (TP) of a con-

sumer (con) was calculated using the equation: 

TPcon =1 + (δ15Ncon - δ15Nbase) × 3.4-1    (4) 

where δ15Ncon = δ15N of consumer; δ15Nbase = δ15N of baseline; 3.4 = one trophic level in-

crement in δ15N. The final annual trophic position of a consumer was calculated as the 

mean of the trophic positions from the three seasonal campaigns.  

  Before modelling, resources were also examined for reasonable applicability. Sta-

tistical analyses (repeated measures ANOVA followed by Holm-Sidak tests or, if not 

normally distributed, Friedman repeated measures ANOVA on ranks followed by Tukey 

post-hoc tests) of the algal isotopic signatures between shore type and the adjacent main 
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channel revealed only significant differences for the off-bankline revetment and the re-

spective main channel. Main channel signatures did not differ among each other. To 

reach the highest number of possible replicates, I used the mean algal isotopic values 

and the respective standard deviations from the main channel samples for food web 

modelling in standard groyne and rip rap, as they were statistically identical. For off-

bankline revetment food webs, the pelagic algal signature from the respective shore type 

was applied. Signatures of pelagic detritus and benthic FPOM were not sufficiently dis-

tinct (overlapping standard deviations) to be simultaneously included in the models. 

However, benthic FPOM can be expected to exhibit a slightly integrated signature of pe-

lagic detritus due to precipitation. Therefore, pelagic detritus was excluded from the 

model. All different samples of terrestrial CPOM should be available at each site as 

leaves can be spread by wind or downstream by river flow. Thus, for each site the mean 

signatures and respective standard deviations from all seasonal sampled plants were 

applied.  

  Consumers can show considerable time lags (some days to several months) in 

tissue turnover, so that incorporation of the resource signature does not take place im-

mediately after consumption (Hamilton et al. 2004). Due to the reaction rate tempera-

ture rule, the reaction rate doubles or quadruples as a consequence of a temperature 

increase by 10°. It is thus obvious that tissue turnover time strongly depends on season 

and/or water temperature. The so-called “Q10’’ factor of acceleration has been applied 

in former studies (e.g. Cross et al. 2013). I accounted for temperature-influenced tissue 

turnover rates in each seasonal food web by including pelagic algal signatures from a 

reasonable time interval (see also Choy et al. 2009). For summer food webs, when water 

temperature reached about 20°C (Fig. 1.2), tissue turnover rates were assumed to be 

high and only the pelagic algae signatures of the summer campaign itself were included. 

In autumn, water temperature dropped below 15°C, so that an intermediate tissue turn-

over rate was assumed and pelagic algae signatures from the autumn campaign and the 

previous month were included. During winter, water temperature barely reached 5°C 

and did not rise above 10° C during spring campaigns. Hence, signatures from spring 

and the two earlier months were applied. For the remaining resources, isotopic signa-

tures from the respective campaigns were used. If resource replicates were missing due 

to sampling design or technical problems, standard deviations from comparably variable 

resources and the same campaign were used to provide reasonable errors for food web 
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modelling (pelagic detritus SD applied on FPOM). Furthermore, periphyton can be ex-

pected to exhibit a comparable temporal variability like SPOM (Singer et al. 2005). Con-

sequently, I assumed the standard deviation of both resources to be similar and trans-

ferable from the SPOM fractions to the periphyton fractions.   

  As Bayesian mixing models, such as the one applied here, calculate resource con-

tributions even when a certain resource is out of a reasonable range of a consumers diet 

(Parnell et al. 2010), pre-evaluation of the data is essential. I used simulated mixing pol-

ygons for the evaluation of consumer data (Smith et al. 2013). In summary, this method 

generates 1,000 possible mixing polygons based on resource data (mean values and 

standard deviations) with a Monte Carlo simulation and tests if consumers lie inside 

these polygons (point-in-polygon, e.g. Benstead et al. 2006). For each consumer the pro-

portion of iterated polygons containing the respective consumer is calculated. Consum-

ers that were inherent in less than 5% of the iterations were discarded from the final 

model. For the simulation of mixing polygons the same data and uncertainties incorpo-

rated in the final Bayesian mixing model were used. For data evaluation and the final 

model I assumed a trophic enrichment of +0.4 ± 1.3‰δ13C and +3.4 ± 1.0‰δ15N per 

trophic transfer (Post 2002). The final assimilation food webs were modelled using the 

R-based software package MixSIAR (Stock & Semmens 2013). The model estimates the 

probability distributions of each resource to a consumer’s tissue (5th, 25th, 50th, 75th 

and 95th percentiles) and considers uncertainty associated with multiple sources and 

isotope signatures (SD). Within MixSIAR Gibbs sampling was performed for three 

chains. The model was run for 100,000 iterations using a burn-in-phase of 50,000 and 

every 50th draw was retained. From the resulting 1,000 taxa-specific relative assimilat-

ed dietary proportions for each site and season, the mean and variance for the final 95% 

confidence interval determination were calculated.  

  Relative annual incorporated diet proportions were multiplied by absolute taxa-

specific secondary production values (see chapter 2) to gain absolute amounts of incor-

porated resources. The absolute amount of consumer j’s production attributed to re-

source i (PRji measured in g DM m-2 y-1) is 

PRji = Pj × Ri       (5) 

where Pj = annual secondary production of consumer j (g DM m-2 y-1), Ri = relative pro-

portion of secondary production attributed to resource i.  
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  I calculated assimilation efficiencies (AE) for consumers based on the nitrogen 

content of the basal resources after Pandian and Marian (1986; Table 4.1). The applied 

formula for the calculation of AE (%) of resource i is 

AEi = 9.29 + 8.82 × Ni      (6) 

where Ni = Nitrogen concentration of resource i (%).  

Table 4.1 Shore type specific assimilation efficiencies and nitrogen contents for each resource in 

percent. 

 
Rip rap Standard groyne Off-bankline revetment 

Resource 
Assimilation 

efficiency [%] 
Nitrogen  

content [%] 
Assimilation 

efficiency [%] 
Nitrogen  

content [%] 
Assimilation 

efficiency [%] 
Nitrogen  

content [%] 

Benthic FPOM 16.8 0.9 16.1 0.8 17.2 0.9 

Pelagic algae 31.7 2.5 31.7 2.5 34.9 2.9 

Periphyton 20.9 1.3 21.1 1.3 23.4 1.6 

Terrestrial CPOM 32.6 2.6 32.6 2.6 32.6 2.6 

 

  The absolute amount of ingested resource i by consumer j (CRji measured in g DM 

m-2 y-1) was calculated as 

CRji = PRji × (AEi × NPE)-1     (7) 

where PRji = the absolute amount of consumer j’s production attributed to resource i, AEi 

= assimilation efficiency of resource i, NPE = net production efficiency (Benke & Wallace 

1980; Cross et al. 2013). NPE was assumed to be 0.4 (Wallace et al. 1987).   

  I accounted for uncertainties in consumption estimates by combining the errors 

(95% bootstrapped confidence intervals) of secondary production and diet assimilation 

estimates and applying this error on the absolute mean amounts of ingested resources. 

Means without overlapping 95% confidence intervals were interpreted as significantly 

different. Errors associated with AEs or NPE were not incorporated, but this source of 

error is far outweighed by accounting for uncertainties in secondary production esti-

mates and diet assimilation proportions (Cross et al. 2013).  

Potentially available amounts of resources 

  Site-specific potentially available annual amounts of resources were calculated 

based on data accessed in this study and from literature. For pelagic algae availability 

(i.e. transported load), I used mean annual chlorophyll a values (Table 2.1), site-specific 
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mean water depth and assumed mean flow velocities (compare seston availability esti-

mates by Benke and Wallace 2014). The mean of published carbon to chlorophyll a rati-

os for pelagic algae was approximately 100:1 (Garnier & Mourelatos 1991; Erikson et al. 

1998) and the amount of algal carbon was assumed to be 50% of their dry mass 

(McCutchan & Lewis 2002). From these factors I calculated the annual mean algal dry 

mass (Al measured as g DM L-1):  

Al = 100 × Chla × 0.5-1      (8) 

where Chla = mean chlorophyll a concentration (g L-1).   

  With the help of the mapping data (see chapter 2), I was able to estimate the 

mean annual site-specific water depth (0.091 m at the off-bankline revetment, 0.91 m at 

the standard groyne and 0.75 m at the rip rap) and therefore the mean annual water 

volume of the water column above 1m² (Vol measured as L m-²): 

Vol = dep × 1,000      (9) 

where dep = mean annual depth (m) and 1,000 = liters per m3.   

  Mean annual flow velocities were derived from literature (0.55 m s-1 at the off-

bankline revetment, 0.8 m s-1 at the standard groyne and 1.1 m s-1 at the rip rap; Pusch & 

Fischer 2006). Finally, annual potential available amounts of algae were calculated with 

the equation (Ay measured as g DM m-² y-1): 

Ay = Al × Vol × v × 31,536,000    (10) 

where v = flow velocity (m s-1) and 31,536,000 = seconds per year.   

  Mean annual availability of FPOM is estimated with the help of sedimentation 

rates published for the River Elbe. Mean daily sedimentation in a standard groyne field 

was 67 g DM m-² d-1 (Ockenfeld & Guhr 2003). In spite of the slightly higher mean flow 

velocity at the standard groyne, I assumed the same precipitation rate at the off-

bankline revetment. Sedimentation rates at the rip rap were related to flow velocity de-

pendent sedimentation estimates for the Elbe (Schwartz & Kozerski 2004). I assumed 

sedimentation to be 2.5 g DM m-² d-1.   

  Concerning periphyton I accounted only for bacterial production because, turbid-

ity in the Elbe is very high and therefore benthic algal growth can be assumed to be 

strongly reduced in zones deeper than 50 cm (Fischer, Hardenbicker & Schöl 2012). As a 

mean value from literature I assumed bacterial production to be 0.12 g C m-2 d-1 (Carr, 
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Morin & Chambers 2005; Fukuda et al. 2006). The potential annual available periphyton 

dry mass was calculated as (Py measured as g DM m-² y-1): 

Py = Pd × Cp-1 × 365     (11) 

where Pd = daily periphyton carbon production (g C m-2 d-1), Cp = site-specific relative 

carbon concentration in periphyton and 365 = days per year.   

  For the amount of annual available terrestrial CPOM 80 g DM m-² y-1 were chosen, 

because this is the mean value from 6th, 7th and 9th order streams (Benfield 1997). 

Consumer-resource interaction strength 

To quantify which site-specific proportion of the potentially available basal resources is 

actually consumed by benthic primary consumers (“resource utilization efficiency”; 

Rue), the annually consumed amount of resource i is divided by its potentially available 

dry mass (e.g. Benke & Wallace 2014; c.f. Christensen & Pauly 1992; Benke & Wallace 

2011; Cross et al. 2013): 

Rue = CRi × ARi-1      (12) 

where CRi = consumed amount of resource i (g DM m-² y-1), ARi = potentially available 

amount of resource i (g DM m-² y-1). A value of 1 indicates effective utilization of a re-

source in terms of its total consumption by benthic primary consumers and thus a high 

interaction strength.  

 

4.3 Results 

Trophic basis of secondary production 

The main ingested resource at all sites was benthic FPOM with proportions reaching 

from 32% at the rip rap to 60 % at the off-bankline revetment (Fig. 4.1 a). Relative pro-

portions of all resources were almost identical at rip rap and standard groyne. This was 

also the case for the proportions of periphyton and pelagic algae from the off-bankline 

revetment when compared to the other shore types, whereas FPOM was ingested in 

mentionable higher (60%) and terrestrial CPOM in significantly lower (4%) proportions 
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Fig. 4.1 Mean relative (a) and absolute (b) annual community ingestion of the basal resources 

periphyton (yellow), pelagic algae (green), benthic fine particulate organic matter (brown) and 

terrestrial coarse particulate organic matter (blue) at each shore type. Error bars show 95% 

confidence intervals. 

when comparing 95% confidence intervals (errors not shown). Absolute mean ingestion 

rates differed between shore types (Fig. 4.1 b). The prevailing utilized resource FPOM 

was ingested in high rates ranging from 115 g DM m-² y-1 at the rip rap to 794 g DM m-² 

y-1 at the off-bankline revetment. Periphyton constituted the second-most ingested re-

source with 69 g DM m-² y-1 at the rip rap, 116 g DM m-² y-1 at the standard groyne and 

348 g DM m-² y-1 at the off-bankline revetment. Pelagic algae were the least ingested re-

source at rip rap and standard groyne, while at the off-bankline revetment terrestrial 

CPOM was ingested in minor amounts. In the latter shore type higher absolute ingested 

amounts of all resources, except for terrestrial CPOM, were significant when compared 
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to ingestions at the other shore types. The only significant difference of resource inges-

tions between rip rap and standard groyne could be revealed for terrestrial CPOM. With 

101 g DM m-² y-1 it was consumed in significantly higher rates at the standard groyne 

compared to the rip rap (55 g DM m-² y-1).  

Patterns of food web attributes 

Basal food webs substantially differed between shore types concerning their complexity, 

key players and magnitudes of flows. The least complex food web in terms of basal 

trophic links was detected at the rip rap bearing a total of 32 connections (Fig. 4.2 a). I 

found highest complexity at the off-bankline revetment with a total of 44 links from ba-

sal resources to the main groups or taxa, respectively (Fig. 4.2 c). Strongest flows at the 

rip rap were detected for non-native Dikerogammarus villosus consuming the majority of 

entire community ingested FPOM (72 g DM m-² y-1; Table S4). Except for Chironominae, 

Orthocladiinae and Ancylus fluviatilis, matter flows to the remaining taxa did not exceed 

1.5 g DM m-² y-1. At the standard groyne, organic matter flow was strongly dominated by 

Chironominae that consumed 118 g DM m-² y-1 of total community ingested FPOM and 

104 g DM m-² y-1 of total community ingested periphyton (Fig. 4.2 a; Table S4). The re-

mainder of organic matter flows was relatively evenly distributed among the communi-

ty, which included two more invasive taxa (Potamopyrgus antipodarum and Corbicula 

fluminea). Magnitudes of the remaining flows were mostly below 3.5 g DM m-² y-1 except 

for D. villosus, which ingested 6.3 g DM m-² y-1 of FPOM and 4 g DM m-² y-1 of periphyton 

at the standard groyne. In contrast, the off-bankline revetment food web showed several 

strong links (above 10 g DM m-² y-1) to each of the main taxonomic groups (Diptera, Gas-

tropoda, Bivalvia, Crustacea and Others; Fig. 4.2 c). The by far largest flow of organic 

matter is represented by Chironominae that were consuming 633 g DM m-² y-1 of total 

community ingested FPOM. It is important that the number of species included in the 

group Chironominae can be expected to be much higher here than at the standard 

groyne and especially at the rip rap (Table S2). The off-bankline revetment food web 

was the only one bearing a significant contribution to organic matter flows by native 

Bivalvia (Sphaerium sp.). This taxon covered its need of resources mainly by pelagic al-

gae (17 g DM m-² y-1; Fig. 4.2, Table S4). While terrestrial CPOM constituted 15-21% of 

Dikerogammarus villosus’ total ingested resources at rip rap and standard groyne, re-

spectively, at the off-bankline revetment the invasive Crustacea did not ingest terrestrial 

CPOM at all (Fig. 4.2 c). 
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Fig. 4.2 Averaged ingestion flow food webs from rip rap (a), standard groyne (b) and off-

bankline revetment (c). Line widths correspond to the magnitude of flows. Sizes of the resource 

dots and the internal values show mean absolute annual community ingestions in g DM m-2. Ba-
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sal resources are periphyton (yellow), pelagic algae (green), benthic fine particulate organic 

matter (brown) and terrestrial coarse particulate organic matter (blue). Consumer taxa are: Chi-

ronominae, Orthocladiinae, Simuliidae (Diptera), Ancylus fluviatilis, Potamopyrgus antipodarum 

(Gastropoda), Corbicula fluminea, Sphaerium sp. (Bivalvia), Chelicorophium curvispinum, Dikero-

gammarus villosus, Jaera istri (Crustacea), Hydropsyche sp., Cloeon dipterum and Oligochaeta 

(Others). Native taxa are surrounded by solid lines, invasive taxa by dotted lines.  

Resource utilization efficiencies  

The four basal resources in the river Elbe differed widely with respect to their potential 

availability (Table 4.2). The smallest amount of potential annual dry mass was that of 

terrestrial CPOM with 0.08 kg DM m-² y-1, a mean value of several large rivers. Potential 

sink areas for terrestrial CPOM were not detected and thus not accounted for. Although I 

assumed periphyton to grow at the same rates, availability differed between shore types 

(0.37-0.41 kg DM m-² y-1) due to varying C-concentrations.  

Table 4.2 Annual potentially available basal resources in each shore type based on literature and 

empirical data from this study. 

 

Much higher amounts of available dry mass were calculated for benthic FPOM at stand-

ard groyne or off-bankline revetment, respectively (24.5 kg DM m-² y-1). Higher flow ve-

locities and thus reduced precipitation lead to much smaller amounts of FPOM at the rip 

rap (0.9 kg DM m-² y-1). The by far highest amounts of potential available dry mass were 

calculated for pelagic algae. This resource was available from 5,540 kg DM m-² y-1 at the 

off-bankline revetment to 191,226 kg DM m-² y-1 at the rip rap. It is important to keep in 

mind that pelagic algae availability does not constitute a production or precipitation 

rate, but the load of dry mass in the water column flowing above one m² within one year. 

Resource utilization efficiencies differed between resources and shore types due to the 

highly variable amounts of availability and utilization rates. 

 Resource [kg DM m
-2

 y
-1

] Rip rap Standard groyne Off-bankline revetment 

Periphyton 0.37 0.41 0.34 

Pelagic algae 191,226 168,743 5,540 

Benthic FPOM 0.9 24.5 24.5 

Terrestrial CPOM 0.08 0.08 0.08 
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Fig. 4.3 Resource utilization efficiencies per m² and year expressed as the total community in-

gestion (Icons) relative to the potential availability (Pres) of the basal resources periphyton (yel-

low), pelagic algae (green), benthic fine particulate organic matter (brown) and terrestrial 

coarse particulate organic matter (blue) at each shore type. Error bars show 95% confidence 

intervals. Values higher than 1 are actually unrealistic, but appear in this calculation as the po-

tential availability of periphyton is based on bacterial production only and does not include algal 

production. For terrestrial CPOM values higher than 1 occur, because terrestrial litter input is a 

total river mean so that sink habitats can have higher availability.  

The most effectively utilized resource at all sites was terrestrial CPOM (Fig. 4.3). More 

than half of the available material is ingested at the rip rap and off-bankline revetment, 

whereas at the standard groyne it was entirely and significantly more effectively utilized 

(I/P=1.3). Although resource utilization efficiency values >1 are not possible in reality, 

terrestrial CPOM may have been more available at the standard groyne. Terrestrial 

CPOM amounts are whole river means, so that certain sink zones may retain more, and 

high flow zones less material. The second most effectively utilized resource is periphy-

ton. At the rip rap and standard groyne about 19 and 28% of potentially available pe-

riphyton were consumed, respectively (Fig. 4.3). At the off-bankline revetment the en-

tire amount of periphyton is consumed, which leads to a significantly higher resource 

utilization efficiency (I/P=1.0). The vast amounts of available FPOM and pelagic algae 
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mostly lead to efficiency values below 0.01, except for FPOM consumption at rip rap and 

off-bankline revetment (0.13 and 0.03, respectively). The relatively high value of 0.13 at 

the rip rap was the result of a much lower FPOM precipitation (Table 4.2). 

4.4 Discussion 

This chapter presents quantified flow food webs from a large lowland river. The empiri-

cal analysis of basal organic matter flows at different shore types revealed strong site-

specific patterns in food web structure, identities of interactions and quantities of uti-

lized basal resources. Benthic FPOM was the prevailing energy source at all sites. In con-

trast, pelagic algae played only a minor role despite vast available amounts. Total inges-

tion mostly followed patterns of secondary production and thus was lowest at the rip 

rap and much higher at the off-bankline revetment, especially concerning benthic FPOM. 

As also apparent from chapter 2, shore morphology changed ingestion-dominating taxa 

from native Diptera at standard groyne and off-bankline revetment to non-native Crus-

tacea at the rip rap. Exclusively in the off-bankline revetment, native Bivalvia played a 

mentionable role in resource utilization. These results demonstrate that man-made 

shore constructions alter the pattern and magnitude of links at the resource-consumer 

interface and provide mechanistic understanding for future functional research and im-

plications for management activities. 

Trophic basis of benthic macroinvertebrate secondary production 

There is an ongoing debate about the type of energy that fuels aquatic secondary pro-

duction in large rivers (Delong et al. 2001; Zeug & Winemiller 2008; Roach 2013). The 

majority of studies revealed that most large river food webs were qualitatively based on 

algal production (Thorp et al. 1998; Delong et al. 2001; Roach 2013). However, at least a 

few studies examined river food webs that were fueled to only a limited extend by pelag-

ic algae, but mainly by detritus and FPOM instead, e.g. at the Brazos River in Texas (Zeug 

& Winemiller 2008). This chapter designated benthic FPOM as the main ingested re-

source in all food webs from the River Elbe (Fig. 4.1). This contradicts with the predic-

tion that pelagic algae constitute the main ingested resource at all sites due to the high 

loads available in the Elbe. One prominent reason for the increased importance of detri-

tus in aquatic food webs is the high availability in terms of large sediment loads and tur-

bidity (Roach 2013; Cross et al. 2013). On the other hand, the most available resource is 

not necessarily the one that is also consumed most (McCutchan & Lewis 2002), a point 
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that is also evident from this study. It is rather a combination of food resource availabil-

ity and quality that decides on their utilization by benthic communities (Marcarelli et al. 

2011). The facts that microalgae typically provide a higher nutritional value than ben-

thic FPOM (Sarkanen & Ludwig 1971; Renaud, Thinh & Parry 1999), and that pelagic 

algae were available in vast quantities in the studied system, let the Elbe food webs ap-

pear somewhat abnormal. Obligatory filter feeders are largely missing and facultative 

filter feeders seem to use other pathways (Fig. 4.2). One likely explanation is that ben-

thic FPOM in the River Elbe is actually of higher nutritional quality than generally as-

sumed. Chemical analyses of Elbe FPOM indeed uncovered relatively high N-

concentrations, which lead to higher assimilation efficiencies (Table 4.1) compared to 

those usually applied in food web studies (AE=0.1; Benke & Wallace 1980; Cross et al. 

2013). Nutritional value and N-content of benthic FPOM is often increased by bacterial 

production, which can be so substantial that it accounts for the majority of the entire 

riverine bacterial production (Edwards 1987). Additionally, extracellular polymeric 

substances (EPS) excreted by bacteria, as well as bacterivorous protists can make a sub-

stantial contribution to an increase in food quality (Carlough & Meyer 1989; Couch, 

Meyer & Hall 1996). The potentially higher nutritional value and the accompanied in-

crease in assimilation efficiency of FPOM have already been taken into account in past 

and recent studies (Benke & Wallace 1997, 2014) and are likely explanations for the 

dominance of benthic FPOM as basal resource for secondary production in the Elbe. 

Shore type specific uptake of basal resources 

Chapter 2 showed that shore morphology affects community composition and secondary 

production patterns. It became clear that it also impacted the organic matter flux. Total 

community ingestion followed secondary production patterns with total resource inges-

tion being lowest at the rip rap and highest at the off-bankline revetment (Figs. 2.2c; 

4.1b). As quantified trophic base estimations are rare or even lacking from large rivers, 

no data exist from a system comparable to that I worked in. The only available results 

from larger rivers (sixth order) do by far not reach consumption rates of FPOM like 

those found in the off-bankline revetment (794 g DM m-² y-1; Fig 4.1 b). Cross et al. 2013 

reported total community (macroinvertebrates and fish) ingestion of all resources to be 

219 g AFDM m-² y-1 and interpreted these results as high. Benke and Wallace (2014) 

worked in a sixth order subtropical blackwater river and found amorphous detritus in-

gestion rates of 332 g DM m-² y-1. As they assessed the secondary production rates as 
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“extremely high”, so should be the ingestion of the prevailing basal resource. However, 

FPOM ingestion at the off-bankline revetment was still more than twofold higher than 

the highest rates formerly reported. Total ingestion of all resources (1,323 g DM m-² y-1) 

even exceeded the high ingestion rates reported by Cross et al. (2013) by six times. 

Whole community ingestion rates of all resources and in particular ingestion of benthic 

FPOM can hence so far be designated as extremely high at the off-bankline revetment. 

Total ingestions at the rip rap and the standard groyne (282 and 413 g DM m-² y-1, re-

spectively) can rather be assessed as moderate or high. Despite these much higher total 

ingestion rates at the off-bankline revetment, absolute consumption of terrestrial CPOM 

was in the range of that at the rip rap or even less compared to standard groyne (Fig. 

4.1b). Of course, those massive differences in FPOM consumption and the moderate uti-

lization of terrestrial CPOM in the light of vast amounts of total ingested resources af-

fected the relative resource ingestion rates between off-bankline revetment and the oth-

er shore types. Relative ingestion rates did not markedly differ between rip rap and 

standard groyne (Fig. 4.1a). This was also the case for periphyton and pelagic algae at 

the off-bankline revetment and is thus in contrast to my prediction that periphyton 

should be relatively more important at the rip rap. Although the rip rap constituted an 

ineffective sink for FPOM (Table 4.1), this very resource was the main food ingested 

there. More taxa were expected that could be designated as grazers on the hard sub-

strate, mostly provided by the rip rap, and hence a higher periphyton consumption. My 

third prediction that FPOM would play a relatively more important role at the off-

bankline revetment than at the other shore types was confirmed (Fig. 4.1.a). The main 

reason, however, cannot really have lain in the larger standing FPOM stock that was re-

vealed in chapter 2 (Table 2.1), because precipitation rates from the seston were too 

high for FPOM availability to be limiting macroinvertebrate ingestion elsewhere (Table 

4.2). It is more likely that besides the nutritional quality of benthic FPOM, the different 

compositions of shore type specific communities and the inherent traits were responsi-

ble for relative differences in resource uptake. This has also been revealed by Vaughn 

(2010). However, high community diversity does not always lead to high ingestion rates. 

Many estimates of high production and thus ingestion were shown to be associated with 

low taxonomic diversity, e.g. from non-native Gastropoda or Bivalvia (Hall et al. 2006; 

Sousa et al. 2008b). This did not apply to the community with highest ingestion flows at 

the off-bankline revetment, as species richness was also highest there (Fig. 2.2 a). The 
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strongest link was to Chironominae, which most likely included a high number of sedi-

ment feeding species (Fig. 4.2 c; supplement Table S1). Additionally, several strong links 

to other community members were detected here. Indeed, at the rip rap the strongest 

ingestion flows were associated with only a single non-native taxon, Dikerogammarus 

villosus.  

 Chapter 2 revealed the availability of macrophytes, varying flow velocities and 

the proportion of allochthonous boulder material as main factors that influence a ben-

thic community’s assemblage and their productivity. The tight relationship between 

species composition, secondary production and organic matter flow patterns shows that 

shore type induced habitat conditions and hydromorphology strongly affect the magni-

tude and, to a certain degree, also the relative proportions of consumed basal resources 

as well.    

Organic compound retention and ingestion dominating food web members 

The direct assessment of mass balances in terms of resource availabilities and their uti-

lization by consumers is essential to detect top down or bottom up effects. If the direct 

influence of predators like fish on their prey has to be measured, the so-called eco-

trophic efficiency is often applied (Christensen & Pauly 1992; Daskalov et al. 2007; Cross 

et al. 2013). The ecotrophic efficiency is the relative amount of prey production that is 

actually consumed by predators. A value of 1 indicates the entire consumption of a 

predator’s prey and thereby a strong top down control. A comparable kind of mass bal-

ance assessment is also useful for basal matter flows (e.g. Poepperl 2003; Benke & 

Wallace 2014). In contrast to ecotrophic efficiency calculations, in this study not only 

mere production estimates of resources were used, but also their loads which mirror 

potential availabilities. Resource utilization efficiencies were calculated on the primary 

consumer level to shed light on the question of which amounts of available basal re-

sources are actually utilized and which parts remain untouched.   

  Terrestrial CPOM and periphyton were consumed with high efficiency (Fig. 4.3). 

Most taxa were opportunistic concerning their food resource, so that a switch was pos-

sible if needed. Dikerogammarus villosus at the off-bankline revetment, for example, 

shifted diet compositions and did not consume any terrestrial CPOM, whereas at the 

other shore types it did (Fig. 4.2). Due to the effective utilization of terrestrial CPOM and 

periphyton, both resources seem irrelevant from a particle load perspective. In contrast, 

benthic FPOM and pelagic algae consumption could not reach mentionable efficiencies 
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due to the vast amounts available in the Elbe. The only taxa that covered about half their 

nutritional needs by consuming the most common large river resource, i.e. pelagic algae 

(Thorp et al. 1998; Delong et al. 2001; Roach 2013), were Sphaerium sp. and Simuliidae 

(Fig. 4.2 c; Table S4). Both were exclusively present in sufficient numbers for secondary 

production estimates at the off-bankline revetment. Although in comparison to rip rap 

and standard groyne, contributions of Bivalvia to total off-bankline revetment communi-

ty ingestion are relatively high, benthic communities and thus food webs at the River 

Elbe generally lacked high proportions of mussels and clams (Figs. 2.4; 4.2). In other 

large river systems, Bivalvia often dominate benthic community biomass and ensure 

that pelagic algae are utilized in large amounts (Strayer 1999). Why bivalve molluscs did 

not establish prominent populations in the River Elbe can only be speculated. As, in 

principle, at the off-bankline revetment mussel populations could establish, growth-

repressing factors like food quality and toxic components in the sediment (Byrne & 

O’Halloran 2001; Wacker & Von Elert 2003) are no likely reasons for low mussel contri-

butions in the River Elbe. One plausible reason for a hampered establishment of large 

mussel populations may lie in top down pressure due to fish predation (Magoulick & 

Lewis 2002; Lappalainen, Westerbom & Heikinheimo 2005; Nakano, Kobayashi & 

Sakaguchi 2010). The access that fish have to benthic macroinvertebrates differed con-

siderably between the different shore types, so that the off-bankline revetment bore the 

only habitats that could not be reached by larger fish most of the time. However, it is a 

fact that algal diet proportions of Chironomidae were substantially higher than those of 

the non-native Dikerogammarus villosus (Table S4). The increased contribution of Chi-

ronomidae to secondary production did therefore result in higher amounts of utilized 

pelagic algae, whereas high contributions of D. villosus resulted in low amounts of uti-

lized pelagic algae. Hence, productive facultative filter feeding Chironomidae dampen 

the effect of missing obligatory filter feeders, at least slightly. As amounts of pelagic al-

gae did not mirror the production, but the transported dry mass that is available in the 

water column, small increases in pelagic algae utilization along the entire river stretch 

would have an integrative effect and thus potential amounts might substantially de-

crease downstream (c.f. Benke & Wallace 2014). That means an installation of shore 

structures such as off-bankline revetments, which enhance pelagic algal retention, in 

relatively close and regular distances along the river, would most likely achieve drastic 

reductions of algal charges.   
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  Irrespective of the fact that benthic FPOM constituted the main basal resource for 

benthic macroinvertebrate secondary production and was ingested in high amounts, due 

to its more or less recalcitrant character it is continuously re-deposited by excretion 

(Benke & Wallace 2014). However, excreted FPOM is a food resource for microbes 

which in turn increase the FPOM’s nutritional value again (Wotton & Malmqvist 2001). 

Hence, even if the FPOM standing stock cannot be effectively decreased by macroinver-

tebrate consumption, the organic compounds will be channeled and thereby reduced. At 

the rip rap total FPOM ingestion was lowest and Dikerogammarus villosus dominated the 

local FPOM ingestion flows. The benthic community provided by the off-bankline revet-

ment was dominated by Chironomidae and channeled six to seven times higher amounts 

of benthic FPOM compared to standard groyne and rip rap, respectively. Thus it did not 

only play a crucial role for pelagic algae utilization, but also in reducing the organic 

compounds of FPOM, the second most available resource in the River Elbe.   

  When matter fluxes through the entire food web were studied on a more than 

basal level, food webs were assessed as efficient if the majority of invertebrate produc-

tion was consumed by top predators such as fish (Cross et al. 2013). The proportion of 

invertebrate production that may be consumed by fish remains unclear in this study, but 

even if large parts of secondary production were not consumed at the off-bankline re-

vetment and thus organic compounds were processed and partly decreased, energy 

could still be removed by emergent insects (Jackson & Fisher 1986). In terms of organic 

compound removal emerging insects could be seen as an efficient mechanism in aquatic 

systems because organic material is directly transported out of the system. The off-

bankline revetment bore the highest secondary production of emergent insects (84 g m-2 

y-1) and hence provided the highest nutrient removal potential (Figs. 2.2c; 2.4b). The rip 

rap community, however, is dominated by invasive Crustacea that have holoaquatic life 

cycles and do not remove any nutrients from the riverine system by emergence.  

Conclusion 

In contrast to the majority of large riverine food webs, secondary production at the Riv-

er Elbe was mainly fueled by benthic FPOM. Flow food web analyses showed that habitat 

characteristics and the hydromorphology induced by anthropogenic shore structures do 

not only determine community composition and productivity (chapter 2), but also 

strongly affect energy pathways and organic compound retention. The off-bankline re-

vetment led to a community that consumed the highest absolute amounts of pelagic al-
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gae and by far the highest amounts of benthic FPOM, the two most abundant resources 

in the Elbe. Here, the only mentionable population of filter feeding Bivalvia was detect-

ed, which, in combination with vast quantities of potentially emergent Chironomidae, 

contributed significantly to the retention of the most available resource, namely pelagic 

algae. In contrast, the rip rap community is dominated by non-native Crustacea that uti-

lize only minor proportions of pelagic algae and do not have the potential to directly re-

move organic compounds due to their holoaquatic life cycle. This study provides mecha-

nistic understanding of how anthropogenic shore constructions impact riverine benthic 

ecosystem functioning. From a management perspective, creating hydromorphological 

conditions similar to those at off-bankline revetments seems promising for substantially 

increasing organic matter channeling and retention in large navigable rivers.  
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General Discussion 

Rationale 

Large rivers provide a variety of economical goods and perform several crucial ecosys-

tem services (Millenium Ecosystem Assessment 2005). Nevertheless, those ecosystems 

are threatened by human-induced stressors like chemical and structural impairment 

(Allan & Flecker 1993; Vaughn 2010). Structural degradation, as one of the most promi-

nent stressors nowadays (Hughes et al. 1990; Allan & Flecker 1993), was formerly 

shown to influence the composition and diversity of benthic macroinvertebrate commu-

nities (Dudgeon et al. 2006; Strayer & Findlay 2010). A recent study also detected im-

pacts from damming on the structure and magnitude of matter flow (Cross et al. 2013), 

but studies that determine stressor effects on those ecosystem functions require high 

efforts. Relatively few attempts have been made to test the direct influence of man-made 

structural degradation on an ecosystem’s performance. However, as there is virtually no 

large river system free from structural impairment (Hughes et al. 1990), it is of funda-

mental importance to get insights into how this particular stressor affects benthic com-

munities and, as a result of this, influences ecosystematic features like productivity and 

organic matter fluxes.  

  The main objective of this study was to improve the mechanistic understanding 

of how particular shore types in large rivers affect benthic macroinvertebrate communi-

ties and their inherent functional performances in terms of productivity and resource 

utilization. Additionally, it aims at facilitating future studies on ecosystem functioning in 

large rivers by providing a comprehensive collection of already published and newly 

established data essential for biomass and secondary production estimates.  

Abiotic factors determining macroinvertebrate communities 

This study showed that habitat structure and hydromorphology were key elements that 

affected community compositions and their associated ecosystem functions. Habitat 

conditions in the main channel differed substantially from those at the shore zones. 

However, the habitat conditions at the shore types themselves showed characteristic 

differences between one another.  

  Constantly high flow velocities and relocation of the fine sandy sediment pro-

duced harsh conditions in the main channel, which most probably led to a community 
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composed of only a few taxa. This is in line with previous studies which showed that 

sand-dominated main channels are inhabited by very few specialized species with low 

numerical abundances and biomasses (Simpson et al. 1986; Nakano & Nakamura 2006). 

The unfavorable conditions also affected the functional performance of the main channel 

community, as secondary production was more than two orders of magnitude lower 

than the shore community productions (Fig. 2.2c). These pronounced negative effects on 

riverine communities occurred irrespective of the adjacent shore type and thus desig-

nate navigable large sand-dominated lowland river main channels as zones of poor eco-

system functioning. However, for some species the sandy substrate seems to be less a 

problem than the high flow velocity. This is indicated by the detection of Ametropus fra-

gilis at the outflow of the off-bankline revetment. It suggests that fine sandy substrates 

that are mainly overflown by only moderate velocities can indeed be inhabited by spe-

cies other than the usually to be found Oligochaeta and small Chironomidae.   

  Differences between shore type communities and their respective ecosystem 

functions could barely be explained by resource variables or availabilities. Many taxa 

were able to shift contributions of particular resources to their diet and the availability 

of the most ingested resource, benthic FPOM, was not limiting at all. Rather, differences 

in habitat conditions were responsible for shore type specific community assemblages 

and their associated functions. The sediment composition differed between shore types, 

as a result of near-bed hydraulic conditions (Statzner, Gore & Resh 1988). Sediment 

grain size and structure have profound influences on the inhabiting fauna and so does 

the hydraulic regime itself. High variation of flow velocity and the occurrence of lentic 

conditions and pool phases during low discharges are known to favor diverse communi-

ties in large rivers (Arthington et al. 2006; Garcia et al. 2012). Additionally, macrophytes 

which are dependent on particular sediment and flow conditions play a special role as 

riverine habitats. Lorenz et al. (2009) found a large number of taxa on macrophytes that 

could not be detected in straightened river regions. As a result of those direct and indi-

rect hydraulic influences, species that are related to slow or no flow (e.g. Dicrotendipes 

nervosus (Diptera) and Physidae (Gastropoda)) or macrophytes (e.g. Cricotopus sp. (Dip-

tera) and Cloeon dipterum (Ephemeroptera)), as well as several taxa that are strongly 

related to fine sediments (e.g. Camptocladius stercorarius and Chironomus sp. (Diptera)) 

were detected in the off-bankline revetment (Table S2). The latter taxa in particular con-

tributed 50% to the total secondary production and obviously used the FPOM-
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dominated sediments as habitat and food resource at the same time.  

  A special type of habitat is provided by allochthonous stones or boulders that are 

used for building most of the technical shore constructions. The boulder-dwelling ma-

croinvertebrate fauna is apparently hardly affected by the shore type in which it is situ-

ated. Communities and secondary production patterns were comparable between the 

mesohabitat stones of all shore types (data not shown). Similar observations were made 

by several former studies, which showed the hardened shoreline to produce a largely 

distinct biota (Chapman 2003; Bulleri, Chapman & Underwood 2005; Moschella et al. 

2005). The most prominent members of the boulder community concerning biomass 

and secondary production were non-native species. At the rip rap boulders made up 

more than 80% of the total habitat and, as a result, non-native species controlled the 

entire food web and organic matter flow at this shore type. It could thus clearly be 

shown that boulders provide the key substrate for a successful establishment of invasive 

species, especially Dikerogammarus villosus. This finding is supported by Frueh et al. 

(2012), who in a comprehensive meta-analysis recently detected that physically degrad-

ed shore zones face a higher risk of being invaded by neozoa species than non-impacted 

shores. Furthermore, van Riel et al. (2006) found enormous neozoa contributions (up to 

95%) to total macroinvertebrates on boulders during field experiments in a large low-

land river.  

  This study highlighted the fundamental importance of the shore type induced 

hydraulic regime and the associated direct effects on mesohabitat conditions for the es-

tablishment of diverse communities and their functional integrity. If the percentage con-

tribution of shallow shore zones with a highly dynamic flow regime was increased in 

large rivers, the proportion of unproductive main channel area would decrease at the 

same time. Profound large-scaled positive effects concerning biodiversity improvement 

and resource utilization increase could thus be expected. Additionally, as allochthonous 

building material for shore constructions could be designated the main reason for local 

non-native species establishment, its proportional reduction or replacement by alterna-

tive materials like deadwood will most likely result in lower shares of undesired species 

and an eased influence on the functional performance of native communities. 

Shore type dependent functional attributes 

Despite the areal dominance of main channel habitat in large navigable rivers, its func-

tional role has been revealed as negligible. Therefore, food web analyses and matter flux 
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determinations in this study focused on the shore zone dwelling communities. Here, 

community productivity and matter fluxes as well as the food web structure were 

strongly influenced by the shore construction type. However, in contrast to most large 

river food webs that were qualitatively based on algal production (Thorp et al. 1998; 

Delong et al. 2001; Roach 2013), this study generally revealed benthic FPOM as the main 

ingested resource in all food webs from the River Elbe (Fig. 4.1). Food webs in which a 

high fraction of secondary production is derived from detritus are thought to have less 

secondary production but higher species diversity than food webs that are supported by 

algae (Rooney & McCann 2012). This applied to the relatively low secondary production 

at the rip rap, but, deviating from this, species richness was also only moderate here 

(Fig. 2.2a). At the standard groyne species numbers was comparable to the rip rap, but 

secondary production was substantially higher. The most prominent contradiction to 

the statement of Rooney and McCann (2011) was found at the off-bankline revetment, 

where highest species numbers were found and secondary production estimates could 

be assessed as very high (Huryn & Wallace 2000). As amounts of ingested resources 

more or less followed secondary production estimates, basal matter fluxes at the off-

bankline revetment could even be designated as extremely high (Cross et al. 2013; 

Benke & Wallace 2014), especially with respect to benthic FPOM.   

  Differences of secondary production between shore types become particularly 

apparent when their areal extension in the river’s cross section is considered. The rip 

rap did not only show the least productivity and ingestion flows, but also the lowest 

suitable area for macroinvertebrates due to its steep inclination. Assuming a maximum 

suitable depth of two meters, the areal extension of the rip rap towards the main chan-

nel would only add up to four to five meters. The mean cross extension of a standard 

groyne and off-bankline revetment is manifold larger with about 40 and 20 meters, re-

spectively. That means, compared to a rip rap controlled river section, the whole river-

ine cross section secondary production would be more than ten times higher if standard 

groynes constituted the shore protection type and more than 16 times higher if off-

bankline revetments were installed (cf. Fig. 2.2c). If benthic FPOM ingestions were com-

pared in the same way, differences would be even more pronounced, designating the off-

bankline revetment the most productive shore type with highest community ingestion 

rates. (Entire river cross section ingestion will be dealt with in more detail below.)  

  The food web at the off-bankline revetment showed the highest values of com-
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munity ingestions as well as the highest number of basal trophic links. Additionally, 

whole community ingestion was more evenly distributed between food web compo-

nents than at standard groyne and rip rap. Although there was a single most prominent 

link from benthic FPOM to Chironominae, the high resolution in Chironomidae determi-

nation showed a large number of single midge taxa inhabiting the off-bankline revet-

ment (Table S2). Hence, it is likely that FPOM matter flows are distributed among many 

Chironominae taxa. The combination of the enormous amount of benthic FPOM that is 

utilized at the off-bankline revetment and the more evenly distributed magnitudes of 

connections allow the assumption that food webs should exhibit high community re-

sistance and resilience to disturbances here (DeAngelis 1992; McCann, Hastings & Huxel 

1998). In contrast, the rip rap food web was characterized by only a few links and one 

taxon dominating the entire matter flow, indicating low food web stability. However, as 

the dominating taxon Dikerogammarus villosus is very tolerant to a variety of stressors 

(Maazouzi et al. 2011; Gabel et al. 2011; Bundschuh et al. 2013), it is unlikely that rip rap 

food webs are especially prone to disturbances, at least at the current state of succes-

sion. Now, the functional dominance of a single tolerant, non-native taxon accompanied 

with lower total species richness and community productivity paradoxically seems to 

bear negative connotations of stability.  

  It should be mentioned that the presented resource flows were exclusively be-

tween the trophic basis of secondary production and primary consumers. Modelling was 

based on a pre-evaluation of the consumers’ trophic positions. Two taxa (Hydropsyche 

sp. and Dikerogammarus villosus) that were formerly reported as potentially omniv-

orous (e.g. Benke & Wallace 1980; Dick et al. 2002; van Riel et al. 2006), are treated here 

as primary consumers. All taxa with a mean trophic position >2.6 were discarded to 

avoid the inclusion of omnivores. Nevertheless, as trophic positions were mean values 

from several seasonal samples, it may be that few specimens were included that derived 

some biomass from consuming animal tissue. For Hydropsyche sp. such an overestima-

tion of ingested basal organic matter would be negligible at all sites because contribu-

tions to whole community ingestion were very low (Fig. 4.2). The consumption of animal 

prey by D. villosus is, in contrast to a widespread opinion, actually unlikely. The vast ma-

jority of former studies designating D. villosus as a “killer shrimp” were performed under 

laboratory conditions (Dick et al. 2002; MacNeil & Platvoet 2005). Recent results from 

field studies found no evidence for carnivorous behavior (Koester & Gergs 2014), and so 
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did trophic position estimates from this study. In general, omnivory is often an adaptive 

response to nutritional limitations, competition and frequent disturbance (Jepsen & 

Winemiller 2002; Loeuille & Loreau 2005; Wilder & Eubanks 2010). All those factors can 

be excluded at the rip rap, where ingestion proportions from the potentially omnivorous 

taxa were highest (Fig. 4.2). For the abovementioned reasons the overestimation of ba-

sal resource ingestion due to omnivory can be neglected. Hence, extremely high inges-

tion rates at the off-bankline revetment and much lower resource utilization rates at the 

rip rap and standard groyne are further validated. 

Potential for particle retention and organic compound removal 

One main objective of this thesis was the qualitative and quantitative detection of basal 

resource ingestion by benthic primary consumers. In contrast to the high number of 

studies that were directed toward resolving the origin of energy-fueling aquatic second-

ary production to test energetic concepts (Delong et al. 2001; Zeug & Winemiller 2008; 

Roach 2013), results from this work allow for a quantified direct assessment of resource 

utilization and retention. One prominent example that mirrors the ecological and eco-

nomic problems that high organic particle loads in riverine systems can generate is the 

sedimentation process at estuarine harbors. Here sedimentation leads to massive FPOM 

layers that regularly have to be removed for the sake of navigation (Owens et al. 2005). 

Furthermore, pelagic freshwater algae entering the brackish water section rapidly die, 

precipitate in vast amounts, and their microbial degradation leads to oxygen depres-

sions that can even constitute insurmountable barriers for migrating fish (Kerner 2007). 

This example alone already illustrates the need for a systematic understanding of how 

organic particle loads in large rivers are influenced by structural degradation.  

  The mere particle load can be reduced by filter feeding taxa that remove particles 

from the water column and deposit a certain, assimilation efficiency depended fraction 

to the benthic environment by excretion (Strayer 1999). The reduction or export of or-

ganic compounds from the aquatic system by benthic macroinvertebrates, however, is in 

principle accomplished by two mechanisms. The first is the ingestion and subsequent 

processing of a resource. This leads to a reduction of organic compounds through respi-

ration (Benke 2010), which in turn depends on the net production efficiency (Benke & 

Wallace 1997, 2011). The second mechanism, the direct removal of organic matter, can 

be achieved by specimens that leave the aquatic environment, e.g. through emergence 

(Jackson & Fisher 1986; Gratton & Vander Zanden 2009). Resource ingestion and thus 
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benthic FPOM utilization and the retention of pelagic algae were directly quantified in 

this study.  

 At the off-bankline revetment enormous amounts of benthic FPOM that were six- 

to sevenfold higher than at the standard groyne and the rip rap were ingested per m². 

When the river cross section ingestion is compared (see above), FPOM ingestion is more 

than 27 times higher than at a rip rap-controlled river section and it is still three times 

higher if standard groynes constitute the shore protection. Irrespective of the fact that 

benthic FPOM is continuously re-deposited by excretion due to its more or less recalci-

trant character (Benke & Wallace 2014), excreted FPOM is a food resource for microbes, 

which, in turn, increase the FPOMs nutritional value again (Wotton & Malmqvist 2001). 

Hence, even if the mere benthic FPOM load cannot be decreased effectively by macroin-

vertebrate consumption, the organic compounds are channeled several times and there-

by reduced step by step.   

  In the River Elbe the annual mean value of pelagic algae concentration is more 

than six times higher than in the River Rhine (Hardenbicker et al. 2014). In contrast to 

the Rhine, where filter feeding macroinvertebrates cause high losses of pelagic algae 

(Viergutz et al. 2007; Friedrich & Pohlmann 2009), low contributions of obligatory filter 

feeders and missing links from facultative filter feeders make pelagic algae in Elbe food 

webs a less important resource, despite vast availabilities (Fig. 4.2; Table 4.2). In the 

current state algal loads are so high that retention by riverine macroinvertebrates are 

virtually negligible (Fig. 4.3). However, annual pelagic algae ingestion per m² of the ben-

thic community at the off-bankline revetment exceeded that of standard groyne and rip 

rap by more than two and three times, respectively. Given the fact that due to inoculat-

ing impoundments in the upper regions of the River Elbe initial chlorophyll a loads are 

much higher than in other large rivers (Fischer et al. 2012), it can be expected that small 

increases in pelagic algae utilization, especially at the base of those impoundments, may 

hamper the rapid algal growth further downstream. In general, the implementation of 

shore structures that promote the consumption of pelagic algae along the entire river 

stretch can be expected to have an integrative decreasing effect on potential algal 

amounts, no matter if they are placed in upper regions or elsewhere (c.f. Benke & 

Wallace 2014). When pelagic algae consumption is again calculated for the whole river 

cross section (see above) and compared between shore types, the off-bankline revet-

ment’s value is comparable to that of the standard groyne but more than twelve times 
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higher than that of the rip rap. It is impossible to exactly predict how the shore type spe-

cific retention rates would impact the total riverine algal load as suitable measurements 

of algal production have not been conducted yet. Moreover, changes in algal densities 

would lead to complex cascading effects of growth-controlling factors like self-shading 

(e.g. Basu & Pick 1996). However, when considering the river cross section, it became 

obvious that standard groyne and off-bankline revetment communities retain pelagic 

algae in amounts more than one order of magnitude higher than those at a rip rap. 

Hence, despite the enormous pelagic algae standing stock, it is likely that a long river 

stretch entirely framed by standard groynes or off-bankline revetments would result in 

an integrative effect on the pelagic algal load. This possible effect would of course be 

even more pronounced if contributions of taxa that preferably consume pelagic algae, 

like clams or mussels, increased further.  

  Although emerging biomass was not measured during this study, it has to be con-

sidered for organic compound removal nevertheless. Emerging biomass can reach high 

proportions (about 30%) of a population’s secondary production (Jackson & Fisher 

1986). The highest absolute production attributed to emerging insects was found at the 

off-bankline revetment (84 g m-2 y-1), the lowest at the rip rap (10 g m-2 y-1; Figs. 2.2; 

2.4b). It can be assumed that a large part of the benthic secondary production is con-

sumed by fish (Gilinsky 1984; Diehl 1992; Dahl 1998). Food webs could thus be assessed 

as efficient (e.g. Cross et al. 2013), but organic compounds would largely be channeled 

within the system instead of being entirely removed. At the off-bankline revetment high 

proportions of unconsumed benthic secondary production would directly be removed 

from the aquatic system by emergence, whereas at the rip rap a high proportion of un-

consumed macroinvertebrate production would remain in the system as a result of the 

holo-aquatic life cycle of most taxa (Crustacea, Gastropoda). Shore types displaying habi-

tat conditions that are comparable to those at off-bankline revetments will therefore 

either contribute significantly to fish biomass production or to an effective organic com-

pound removal from aquatic to terrestrial environments. In addition, they were shown 

to provide the most productive benthic communities, which utilize vast amounts of the 

prevailing basal resources and will thus further contribute to organic compound chan-

neling and reduction.  
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The role of neozoa in riverine ecosystem functioning 

Non-native species are often the dominating members of benthic communities and can 

reach high proportions of a community’s production (Hall et al. 2006; Sousa et al. 

2008b). As taxa within communities affected by species invasion have not co-evolved, 

food web structure and energy pathways can be substantially impaired (Vander Zanden 

et al. 1999; Hobbs et al. 2006). This study revealed that the contribution of neozoa to a 

community’s secondary production was in general substantially lower than their contri-

bution to biomass at a given shore type (Fig. 2.4). For example, non-native Po-

tamopyrgus antipodarum (Gastropoda) contributed with an average of 40% to total 

weighted biomass, but only 9% to total production at the off-bankline revetment. In con-

trast, native Chironomidae were effective biomass producers in such an extent that a 

contribution to biomass of less than 20% resulted in a contribution of about 70% with 

respect to secondary production at the off-bankline revetment. The only exception was 

detected at the rip rap, where invasive Crustacea contributed more than 80% to com-

munity biomass and therefore also dominated secondary production (but again in lower 

proportions compared to the biomass).  

  In this study, all relevant non-native species were larger than the most produc-

tive group of Chironomidae. For instance, the most prominent invader, Dikerogammarus 

villosus, grew to a total body size of about 28 mm (chapter 1) and can reach a total 

length of 30 mm in some natural environments (Nesemann, Pöckl & Wittmann 1995). 

Most Chironomidae taxa are considerably smaller, have a lower body weight and can 

thus reach much higher production values (Mackey 1977; Benke 1998). Former studies 

indicated that D. villosus shows higher growth rates than native amphipods, despite 

comparable or even larger body size (Devin et al. 2004). It can thus be assumed that the 

detected lower contributions to secondary production by non-native species are mainly 

based on larger body sizes that in turn lead to lower turnover rates (Brown et al. 2004; 

Woodward et al. 2005) and that native communities in principle have higher production 

rates if Chironomidae are sufficiently present.   

   Direct pressure of the prominent invader Dikerogammarus villosus on native 

community members as a result of a predatory feeding type could not be detected in this 

study and has recently been rejected by others (Koester & Gergs 2014). Then again, 

Gergs et al. (2014) found a negative correlation between the density of D. villosus and 

the amount of aquatic emergence and made a predatory feeding type responsible, alt-
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hough D. villosus’ diet was not assessed. However, the fact that D. villosus is capable of 

reducing the emerging biomass intensifies the already-present poor organic compound-

removal-potential of rip raps. Moreover, there are generally no emerging insects among 

invasive species, so that their shown negative impact on the potential of organic com-

pound removal from aquatic systems is further increased.  

  The most abundant non-native taxa in this study, Dikerogammarus villosus and 

Potamopyrgus antipodarum, meet their nutritional requirements with only minor por-

tions of pelagic algae (Table S4). A functional dominance of those taxa would lead to a 

further reduction of pelagic algae utilization in a way that is already detectable at the rip 

rap. Those functional influences of non-native taxa were buffered by native members at 

the standard groyne and especially at the off bankline revetment, whereas in the boulder 

habitat of the rip rap the community was not able to dampen the functional dominance 

of D. villosus. This study showed that non-native species can have a profound influence 

on the functioning of benthic communities. However, it also became apparent that the 

degree of functional impact strongly depends on the habitat conditions and particularly 

on the percentage contribution of boulders. It is still under considerable debate if non-

native species like D. villosus actively replace native inhabitants or if they just benefit 

from habitat modification that lead to unfavorable conditions for native taxa (Didham et 

al. 2005). My results indicate that at least direct pressure by predation on native taxa is 

not fundamental for maintaining a stable non-native species-dominated population.  

Implications for future management and research  

Man-made shore types dominate the riparian zone of the River Elbe. These construc-

tions have a strong influence on the diversity and ecosystem functioning of benthic ma-

croinvertebrate communities and their share of non-native species. As there are virtual-

ly no aquatic ecosystems free from structural degradation (Arthington et al. 2010; 

Vörösmarty et al. 2010), this situation can be considered the norm. Due to hard socio-

economic boundary conditions like navigation or flood protection, large-scaled restruc-

turing in large river systems is virtually impossible (bij de Vaate et al. 2006; Hering et al. 

2010) and local habitat alteration mostly provides the only possibility to influence their 

morphology (Large et al. 2012). Hence, this study provides researchers and managers 

with fundamental knowledge on how communities respond to specific local structural 

impairments. I revealed the complex hydromorphology detected at the off-bankline re-

vetment to be essential for diverse and productive benthic communities. As a secondary 
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effect, near-bed hydraulic conditions determine the sediment composition (Statzner & 

Higler 1986) and lead to different mesohabitats, which is important for the establish-

ment of a diverse fauna. The partly prominent influences of the shore types on biodiver-

sity might be the result of valuable recolonization sources in the surrounding of the 

sampling sites (although they were not apparent). The detection of the ancient lowland 

river dwelling mayfly Ametropus fragilis, which is now listed as extremely endangered, 

supports this assumption. Increases of biodiversity after manipulation experiments or 

management actions can only be expected if sources providing the desired taxonomic 

pool are in close proximity to the managed site (Sundermann et al. 2011). The recoloni-

zation potential of the Elbe may present a considerable advantage over many other riv-

erine systems (Jähnig, Lorenz & Hering 2009), in which diversity increases could be 

hampered or slowed down due to the presence of long sections of monotonous struc-

tures that can hardly be overcome by many organisms. However, if structural manipula-

tions are applied at sites with low recolonization potential, at least a shift of dominances 

within already established benthic communities and the respective functional response 

is to be expected. In this study, Chironomidae were functional key players of both pro-

duction and organic matter flow, whereas non-native taxa turned out to be relatively 

unproductive. Both taxa are ubiquitous in large river systems. As boulders provided 

habitats highly prone to invasion, a reduction of this allochthonous material would most 

likely result in lower shares of neozoa. If shore manipulations additionally changed the 

hydromorphology to conditions comparable to those at the off-bankline revetment, a 

change of the dominance patterns from e.g. non-native Crustacea towards native Chi-

ronomidae and therefore higher production and resource utilization rates could be ex-

pected, irrespective of the re-establishment of vanished taxa. Consequently, manage-

ment activities at sites with low recolonization potential are nonetheless promising to 

deliver useful results and desired functional outcomes.   

  In my study three frequently applied scientific methods turned out to be only 

partly successful for the functional assessment. First, most taxa showed links to each of 

the resources (Fig. 4.2), so that it seems unlikely that the classical feeding type assign-

ment (Cummins & Klug 1979) is valid for the River Elbe. The use of functional feeding 

types is still common for several research questions (Rawer-Jost et al. 2000; Cummins, 

Merritt & Andrade 2005). However, the application is restricted. Smock and Roeding 

(1986) quantified matter flows to an entire macroinvertebrate assemblage and showed 
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that, contrary to their functional group categorization, a high fraction of scraper inges-

tion originated from consuming fine particulate organic matter and a high fraction of 

shredder ingestion originated from consuming algae. These findings strengthen my as-

sumption and show that traditional functional feeding groups should be applied with 

care. Second, it became further apparent that food web complexity alone does not allow 

predictions about key resources and consumers, insufficient connections or food web 

stability (Benke & Wallace 2011). The application of flow food webs allowed for such 

predictions and pointed out strong differences between the different shore construction 

types. Although the construction of flow food webs demands high efforts, the surplus of 

analytical power and scientific interpretability outweigh the extra work that has to be 

invested. And third, the here detected generally higher relative contribution of non-

native species to benthic community biomass than to secondary production suggests 

that their functional importance would be overestimated if the impact on the local com-

munity was assessed by its dominance in terms of abundance or biomass (Hall et al. 

2006). Hence, parameters describing contribution to ecosystem functioning may pro-

vide a better indication on the ecological significance of non-native species than struc-

tural indicators.  

Conclusion 

This study demonstrated that shore morphology in large lowland rivers profoundly af-

fects the composition of benthic macroinvertebrate communities, the contribution of 

non-native species and the communities’ functional performance. It was revealed that 

structural habitat conditions and the hydromorphology in off-bankline revetments sup-

port highly valuable benthic communities in terms of biodiversity and organic matter 

utilization. A diverse flow pattern including lentic conditions and the occurrence of mac-

rophytes have to be emphasized as particularly beneficial. Furthermore, the use of al-

lochthonous building material like boulders turned out to facilitate and support the es-

tablishment of non-native species. These insights provide managers with a powerful tool 

to improve the biodiversity and functional attributes of virtually unchangeable ecosys-

tems. The gained knowledge can help to develop new scientific methods for the assess-

ment of impacts that the ongoing structural impairment of riverine shore zones has on 

the system’s functional status. In its entirety, this thesis constitutes a sound basis to in-

crease the mechanistic understanding of how shore zone manipulation can affect river-

ine benthic communities and their associated ecosystem functions.  
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Appendix 

Table S1 Abiotic factors taken every two month in each of the shore types. Mean, minimum and 

maximum values are shown.  

Environmental       
factor 

Standard groyne 
Off-bankline           
revetment 

Rip rap 

mean min max mean min max mean min max 

Percentage contribution of habitat to total shore and current 

Macrophytes [%] 1.26 0.00 3.71 13.53 1.93 32.31 0.02 0.00 0.20 

Boulders [%] 2.44 1.00 5.00 6.67 0.00 30.00 80.09 60.00 98.00 

Grain size distribution 

D90/D10 244.54 11.84 931.62 504.35 4.34 2928.97 536.52 3.17 2730.47 

Gravel (2-64mm) [%] 68.43 51.07 84.68 19.56 4.61 39.65 16.99 2.66 52.81 

Sand (>0.063mm<1mm)[%] 31.35 15.18 48.86 78.11 59.31 93.01 82.73 46.96 97.00 

Mud(<0.063mm) [%] 0.22 0.07 0.39 2.33 0.86 6.53 0.28 0.15 0.39 
Loss of ignition [%] 3.79 1.90 6.35 8.67 3.30 13.63 0.86 0.68 1.17 

Standard parameters from probe measurement 

Temperature [C] 14.84 5.56 21.23 15.11 3.04 24.34 15.17 5.59 21.22 

SpKond [µS cm
-1

] 476.14 430.40 554.00 456.17 421.60 486.00 487.66 437.40 561.20 

pH 9.11 8.01 9.60 8.98 8.54 9.53 9.03 8.02 9.56 

ODOSat [rel. %] 133.77 93.14 174.64 126.27 110.10 151.44 134.07 93.70 171.64 
ODO Conc [mg L

-1
] 13.50 10.46 15.53 12.89 9.65 15.23 13.37 11.19 15.53 

Chemical water analyses 

Chl-A [µg L
-1

] 45.44 3.64 134.10 20.07 4.29 42.65 41.76 3.78 143.70 

DOC [mg L
-1

] 4.69 4.21 5.47 5.81 3.95 9.04 4.75 4.02 5.59 
UV Absorption_254nm 0.13 0.12 0.15 0.17 0.11 0.29 0.14 0.12 0.15 

NH4-N [mg L
-1

] 0.04 0.01 0.09 0.03 0.01 0.09 0.05 0.01 0.09 

NO3-N [mg L
-1

] 3.11 2.11 4.03 2.33 0.09 3.62 3.14 2.09 4.16 

POC [mg L
-1

] 3.43 0.80 7.70 2.78 0.60 8.50 4.51 0.80 14.20 
Particulate matter                                            
ash content [mg L

-1
] 

9.42 2.40 18.20 3.87 0.50 10.00 15.96 2.00 71.60 

SO42- [mg L
-1

] 75.22 46.10 91.80 65.86 41.60 88.90 79.02 51.00 106.00 

Cl- [mg L
-1

] 34.84 20.70 41.70 30.67 21.20 38.10 36.38 24.40 49.10 

SRP [mg L
-1

] 0.04 0.01 0.07 0.04 0.01 0.08 0.04 0.01 0.08 
TP [mg L

-1
] 0.14 0.11 0.17 0.16 0.08 0.31 0.15 0.09 0.21 

TSi [mg L
-1

] 4.95 3.29 6.21 4.16 2.19 5.47 5.23 3.60 8.13 

Chemical sediment analyses 

As [mg Kg
-1

] 6.44 5.00 9.50 5.29 3.00 11.00 2.31 1.50 3.50 

Cr [mg Kg
-1

] 12.39 0.00 20.00 21.60 6.50 45.50 30.66 16.00 52.00 

Cu [mg Kg
-1

] 6.17 5.50 7.60 10.40 5.00 25.50 5.23 4.00 6.00 

Mn [mg Kg
-1

] 215.79 159.00 280.20 465.04 192.00 1590.50 226.16 118.00 324.50 
Zn [mg Kg

-1
] 53.86 43.00 64.00 84.30 43.40 191.50 39.77 31.00 49.50 

Ni [mg Kg
-1

] 7.11 5.50 9.40 8.07 2.50 15.50 5.98 1.67 10.50 

Fe [mg Kg
-1

] 5419.71 2821.00 6470.00 6686.14 3122.00 14235.00 6040.52 3584.00 11785.00 

P [mg Kg
-1

] 318.43 235.00 582.00 502.14 235.00 1330.00 243.52 176.67 400.00 

Pb [mg Kg
-1

] 16.06 13.50 21.00 44.77 13.20 202.00 13.52 11.33 17.00 
Sn [mg Kg

-1
] 3.16 1.50 4.00 3.87 0.00 6.00 10.35 0.00 26.50 
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Table S2 List of mean, min and max abundances from all taxa detected during this study. Non-

native species are shown with a grey background. Numbers of species that were exclusively 

found at a particular shore type are shown in bold.  

Taxon Group 
Rip rap Standard groyne 

Off-bankline  
revetment 

   mean min max mean min max mean min max 

Corbicula fluminea Bivalvia 85 1 667 81 2 448 1 0 7 

Dreissena polymorpha Bivalvia 1 0 4 0 0 3 0     

Pisidium sp. Bivalvia 79 4 506 55 0 222 82 0 262 

Sphaerium sp. Bivalvia 3 0 30 7 0 27 64 6 422 

Dryops sp. Lv. Coleoptera 0 0 1 -- -- -- -- -- -- 

Hydrophilus piceus Ad. Coleoptera -- -- -- -- -- -- 1 0 3 

Laccophilus hyalinus Ad. Coleoptera -- -- -- -- -- -- 4 0 35 

Asellus aquaticus Crustacea 0 0 1 -- -- -- -- -- -- 

Atyaephyra desmaresti Crustacea 0 0 1 -- -- -- 9 0 83 

Chelicorophium curvispinum Crustacea 824 16 4289 151 1 1046 824 0 6024 

Dikerogammarus villosus Crustacea 627 17 2874 136 5 276 508 10 2253 

Gammarus roeselii Crustacea 0 0 1 -- -- -- 1 0 3 

Jaera istri Crustacea 706 57 3136 241 25 894 90 2 345 

Orconectes limosus Crustacea -- -- -- -- -- -- 0 0 3 

Proasellus sp. Crustacea -- -- -- -- -- -- 1 0 8 

Ablabesmyia sp. Diptera 0 0 1 1 0 6 63 36 596 

Atrichopogon sp. Diptera -- -- -- -- -- -- 23 0 227 

Brillia bifida Diptera 0 0 2 0 0 0 0 0 1 

Bryophaenocladius sp. Diptera 1 0 3 0 0 2 2 0 6 

Camptocladius stercorarius Diptera 14 2 49 4 0 33 75 1 291 

Ceratopogoninae/Palpomyiinae Gen. sp. Diptera 1 0 2 9 3 41 61 8 196 

Chironomus acutiventris acutiventris Diptera 13 1 76 62 8 194 1594 0 10736 

Chironomus agilis Diptera 26 0 121 700 38 4130 985 1 6355 

Chironomus annularius Diptera 0 0 1 3 0 23 11 0 69 

Chironomus bernensis Diptera 0 0 2 1 0 9 17 0 117 

Chironomus commutatus Diptera 0 0 0 1 0 8 2 0 17 

Chironomus plumosus-Gr. Diptera 3 0 20 6 0 28 556 0 4224 

Chironomus riparius-Agg. Diptera 0 0 1 0 0 1 8 0 62 

Chironomus sp. Diptera 0 0 1 0 0 1 7 0 34 

Cladotanytarsus mancus-Gr. Diptera 1 0 4 527 12 3405 584 2 2038 

Cladotanytarsus vanderwulpi-Gr. Diptera 591 12 2423 1517 18 5090 789 0 5527 

Conchapelopia sp. Diptera -- -- -- -- -- -- 2 0 18 

Corynoneura sp. Diptera 3 0 10 7 0 72 68 17 297 

Cricotopus sp.4 Diptera 81 4 213 15 0 84 168 0 694 

Cricotopus sp.5 Diptera 35 2 97 16 0 59 520 0 2348 

Cricotopus tremulus Diptera 16 1 70 20 0 175 108 0 606 

Cricotopus intersectus-Agg. Diptera 3 0 11 1 0 8 22 0 131 

Cryptochironomus sp. Diptera 62 1 326 402 16 827 95 3 474 

Cryptotendipes sp. Diptera 0 0 1 13 0 101 1 0 4 
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Dicrotendipes modestus Diptera 0 0 0 0 0 0 0 0 1 

Dicrotendipes nervosus Diptera 19 0 97 10 1 65 1411 1 7627 

Dicrotendipes notatus Diptera 0 0 1 0 0 0 15 0 151 

Dolichopodidae Gen. sp. Diptera -- -- -- -- -- -- 1 0 5 

Eloeophila sp. Diptera 1 0 3 1 0 5 -- -- -- 

Empididae Gen. sp. Diptera 0 0 3 -- -- -- 5 1 35 

Ephydridae Gen. sp. Diptera -- -- -- 1 0 5 5 1 25 

Eukiefferiella sp. Diptera 110 2 765 8 0 34 89 0 391 

Glyptotendipes barbipes Diptera 0 0 1 0 0 0 6 0 54 

Glyptotendipes pallens-Agg. Diptera 1 0 7 0 0 2 106 0 483 

Glyptotendipes paripes Diptera 0 0 1 0 0 0 0 0 1 

Hayesomyia tripunctata Diptera 3 0 20 12 0 69 16 0 140 

Limnophyes sp. Diptera 1 0 2 0 0 1 5 0 39 

Limoniidae Gen. sp. Diptera 0 0 1 -- -- -- 1 0 6 

Lipiniella moderata Diptera 10 0 31 5 0 27 119 0 431 

Lispe sp. Diptera -- -- -- -- -- -- 2 0 13 

Microchironomus tener Diptera 2 0 14 0 0 4 135 0 991 

Micropsectra apposita Diptera 0 0 2 7 0 70 11 0 70 

Microtendipes pedellus-Gr. Diptera 0 0 1 0 0 0 16 0 154 

Nilotanypus dubius Diptera -- -- -- -- -- -- 1 0 9 

Orthocladiinae sp.B Diptera 0 0 0 0 0 0 6 0 53 

Orthocladiinae sp.C Diptera 0 0 4 0 0 0 0 0 1 

Orthocladius (Eu-) sp. Diptera 79 4 430 10 0 78 135 0 411 

Orthocladius consobrinus Diptera 0 0 0 0 0 0 0 0 1 

Orthocladius sp. Diptera 261 12 605 161 0 1048 1069 15 5804 

Parachironomus frequens-Gr. Diptera 6 0 49 0 0 1 4 0 27 

Parachironomus gracilior-Gr. Diptera 3 0 30 3 0 23 387 0 2617 

Paracricotopus sp. Diptera -- -- -- -- -- -- 10 0 100 

Parakiefferiella bathophila Diptera 32 2 70 13 0 48 60 3 145 

Paratanytarsus sp. Diptera 0 0 4 3 0 23 415 0 2680 

Paratendipes albimanus Diptera 2 0 15 54 0 296 101 0 755 

Paratrichocladius sp. Diptera 0 0 3 -- -- -- -- -- -- 

Polypedilum acifer Diptera 129 1 467 71 17 692 180 2 655 

Polypedilum albicorne Diptera 0 0 0 1 0 6 0 0 1 

Polypedilum nubeculosum Diptera 8 0 58 524 3 1974 3158 0 16883 

Polypedilum scalaenum Diptera 1 0 4 37 0 352 3 0 22 

Polypedilum uncinatum Diptera 1 0 4 42 0 422 7 0 40 

Procladius sp. Diptera -- -- -- 10 1 55 542 60 1998 

Prodiamesa olivacea Diptera -- -- -- 6 0 42 2 0 15 

Prosimulium sp. Diptera -- -- -- -- -- -- 0 0 1 

Psectrocladius obvius/platypus Diptera -- -- -- 13 131 131 -- -- -- 

Psectrocladius sordidellus-Gr. Diptera -- -- -- -- -- -- 0 0 0 

Pseudosmittia sp. Diptera 1 0 3 0 0 2 7 0 40 

Psychodidae Gen. sp. Diptera -- -- -- -- -- -- 1 0 5 

Rheocricotopus sp. Diptera 1 0 4 1 0 3 3 0 9 

Rheotanytarsus sp. Diptera 730 4 5497 11 0 64 194 0 1858 

Rhypholophus sp. Diptera 1 0 7 1 0 2 5 0 21 
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Robackia demeijerei Diptera 86 0 304 36 3 163 40 0 206 

Saetheria reissi Diptera 8 0 50 65 20 202 22 0 76 

Simulium sp. Diptera 2 0 8 0 0 1 20 0 193 

Smittia aquatilis-Gr. Diptera 8 1 28 3 0 22 51 0 236 

Stenochironomus gibbus Diptera 0 0 0 0 0 0 2 0 21 

Stictochironomus sp. Diptera 0 0 1 1 0 8 1 0 5 

Synendotendipes dispar-Gr. Diptera 1 0 3 8 0 37 19 0 114 

Tanypodinae sp.1 Diptera 5 0 25 36 19 235 27 8 111 

Tanytarsus buchonius-Agg. Diptera 74 3 501 316 9 1044 253 0 1135 

Tanytarsus ejuncidus Diptera 0 0 0 0 0 2 3 0 21 

Tanytarsus heusdensis Diptera 10 2 75 999 0 8417 103 0 670 

Tanytarsus mendax Diptera 5 1 18 53 0 333 2741 6 25482 

Tanytarsus sylvaticus Diptera 0 0 0 0 0 2 8 0 78 

Tanytarsus brundini-Agg. Diptera 2 0 11 63 0 348 61 0 244 

Telopelopia fascigera Diptera 21 4 158 47 2 274 1 0 9 

Thienemanniella flaviforceps Diptera 1 0 3 0 0 1 1 0 5 

Thienemanniella sp. Diptera 0 0 1 1 0 4 1 0 3 

Tipulidae Gen. sp. Diptera -- -- -- -- -- -- 1 0 5 

Tvetenia verralli/discoloripes Diptera 221 2 1769 12 0 58 68 0 270 

Ametropus fragilis Ephemeroptera 0 0 1 -- -- -- -- -- -- 

Baetis sp. Ephemeroptera 0 0 2 -- -- -- 1 0 6 

Caenis horaria Ephemeroptera -- -- -- 1 0 3 5 0 20 

Caenis luctuosa/macrura Ephemeroptera 4 0 18 51 6 131 50 2 255 

Caenis pseudorivulorum Ephemeroptera -- -- -- 2 0 8 1 0 4 

Cloeon dipterum Ephemeroptera -- -- -- 0 0 2 60 0 177 

Heptagenia flava Ephemeroptera 4 1 15 1 0 3 4 0 13 

Heptagenia sulphurea Ephemeroptera 2 0 5 0 0 2 0 0 1 

Kageronia fuscogrisea Ephemeroptera -- -- -- -- -- -- 0 0 3 

Potamanthus luteus Ephemeroptera 0 0 1 -- -- -- 0 0 0 

Procloeon bifidum Ephemeroptera -- -- -- -- -- -- 0 0 3 

Serratella ignita Ephemeroptera -- -- -- 0 0 0 -- -- -- 

Ancylus fluviatilis Gastropoda 95 6 207 2 0 11 8 0 56 

Bithynia tentaculata Gastropoda -- -- -- 0 0 1 13 9 124 

Gyraulus albus Gastropoda -- -- -- -- -- -- 7 0 62 

Gyraulus chinensis Gastropoda -- -- -- -- -- -- 12 0 124 

Lymnaea stagnalis Gastropoda -- -- -- -- -- -- 3 0 30 

Physidae Gen. sp. Gastropoda 0 0 1 -- -- -- 234 54 1055 

Potamopyrgus antipodarum Gastropoda 33 1 238 86 1 375 3485 31 14602 

Radix auricularia/balthica/labiata Gastropoda 0 0 2 -- -- -- 46 2 372 

Valvata piscinalis piscinalis Gastropoda -- -- -- -- -- -- 11 1 94 

Corixidae Gen. sp. Heteroptera -- -- -- -- -- -- 2 0 9 

Micronecta sp. Heteroptera 0 0 1 -- -- -- 1 0 6 

Erpobdella octoculata Hirudinea -- -- -- 0 0 0 1 0 9 

Erpobdella vilnensis Hirudinea 0 0 1 -- -- -- -- -- -- 

Helobdella stagnalis Hirudinea -- -- -- 1 0 5 -- -- -- 

Piscicolidae Gen. sp. Hirudinea 0 0 2 2 0 11 2 0 14 

Calopteryx splendens Odonata -- -- -- -- -- -- 1 0 5 
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Coenagrion sp. Odonata -- -- -- -- -- -- 41 0 138 

Enallagma cyathigerum Odonata -- -- -- -- -- -- 0 0 2 

Gomphus sp. Odonata 0 0 1 8 1 26 1 0 3 

Ophiogomphus sp. Odonata 0 0 2 5 0 15 1 0 5 

Platycnemis pennipes Odonata -- -- -- -- -- -- 19 5 106 

Oligochaeta Gen. sp. Oligochaeta 1266 96 4309 2859 217 9925 16274 2495 50027 

Brachyptera braueri Plecoptera 0 0 2 0 0 1 -- -- -- 

Leuctra sp. Plecoptera 0 0 1 -- -- -- -- -- -- 

Nemoura sp. Plecoptera 0 0 1 0 0 0 -- -- -- 

Anabolia furcata/nervosa Trichoptera -- -- -- -- -- -- 1 0 9 

Brachycentrus subnubilus Trichoptera 0 0 3 -- -- -- -- -- -- 

Ceraclea dissimilis Trichoptera 3 0 9 1 0 8 3 0 15 

Cheumatopsyche lepida Trichoptera 0 0 2 0 0 0 0 0 0 

Halesus digitatus/tesselatus Trichoptera 0 0 2 -- -- -- 0 0 0 

Hydropsyche bulgaromanorum Trichoptera 132 2 343 1 0 6 2 0 11 

Hydropsyche contubernalis contubernalis Trichoptera 27 0 94 2 0 8 0 0 3 

Hydroptila sp. Trichoptera 1 0 5 0 0 3 1 0 4 

Limnephilus lunatus Trichoptera -- -- -- -- -- -- 23 0 106 

Limnephilus rhombicus rhombicus Trichoptera -- -- -- -- -- -- 3 1 31 

Mystacides sp. Trichoptera 0 0 4 1 0 6 13 0 68 

Oecetis ochracea Trichoptera 1 0 7 1 0 3 1 0 5 

Oecetis testacea Trichoptera 2 0 14 2 0 7 3 0 24 

Orthotrichia sp. Trichoptera 1 0 2 0 0 3 3 0 17 

Oxyethira sp. Trichoptera 1 0 5 0 0 4 4 0 33 

Psychomyia pusilla Trichoptera 12 0 35 0 0 1 0 0 1 

Setodes punctatus Trichoptera 15 1 128 27 1 86 3 0 14 

Triaenodes bicolor/unanimis Trichoptera 0 0 0 0 0 0 2 0 21 
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Table S3 Weighted biomass (B; mg DM m-2), Weighted secondary production (P; mg DM m-2 y-1), and the P/B of macroinvertebrates found at the studied 

shore types. For each taxon, the cohort production interval correction factor (365/CPI) and its source are given. 

 
Standard groyne 

 
Off-bankline revetment 

 
Rip rap 

 
Main channel   

 
B P P/B 

 
B P P/B 

 
B P P/B 

 
B P P/B   

Bivalvia 
               

  

Corbicula fluminea 263 321 1.2 
     

298 433 1.5 
    

  

Pisidium sp. 181 107 0.6 
 

169 147 0.9 
 

148 112 0.8 
 

164 122 0.7   

Sphaerium sp. 7 12 1.7 
 

2,728 4,699 1.7 
        

  

Crustacea 
               

  

Chelicorophium curvispinum 81 174 2.2 
 

230 554 2.4 
 

218 444 2.0 
    

  

Dikerogammarus villosus 621 1,318 2.1 
 

2,343 7,482 3.2 
 

2,633 12,262 4.7 
    

  

Jaera istri 9 21 2.2 
 

41 104 2.5 
 

27 80 3.0 
    

  

Diptera 
               

  

Camptocladius stercorarius 
    

13 461 35.9 
        

  

Ceratopogonidae 
    

15 53 3.6 
        

  

Chironomini  7 208 29.1 
 

29 159 5.6 
 

19 76 3.9 
 

0 8 27.8   

Chironomus sp. 675 21,342 31.6 
 

2,231 58,770 26.3 
 

33 1,284 39.3 
    

  

Cladotanytarsus sp. 140 11,515 82.3 
 

86 6,670 77.4 
 

49 3,060 62.7 
 

1 57 54.0   

Cricotopus sp. 3 72 25.1 
 

5 153 31.8 
 

4 66 18.4 
    

  

Cryptochironomus sp. 107 417 3.9 
     

18 308 16.9 
    

  

Dicrotendipes nervosus 
    

128 2,687 21.0 
        

  

Eukiefferiella sp. 0 4 31.5 
     

20 618 31.5 
    

  

Orthocladiinae. 18 628 34.7 
 

134 6,293 47.0 
 

48 1,560 32.5 
 

0 20 56.2   

Polypedilum sp. 45 1,073 24.0 
 

1,007 3,581 3.6 
 

7 217 32.8 
 

27 564 20.7   

Procladius sp. 
    

186 718 3.9 
        

  

Rheotanytarsus sp. 0 53 110.9 
 

2 174 77.3 
 

28 1,477 53.3 
    

  

Robackia demeijerei 5 31 6.9 
 

2 9 4.4 
 

8 42 5.5 
 

144 1,213 8.4   

Simuliidae 
    

2 37 16.4 
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Table S2 continued 

 
Standard groyne 

 
Off-bankline revetment 

 
Rip rap 

 
Main channel 

 
B P P/B 

 
B P P/B 

 
B P P/B 

 
B P P/B 

Tanytarsini Gen. sp. 2 57 27.6 
 

2 55 34.9 
 

0 11 41.9 
 

0 19 41.2 

Tanytarsus sp. 38 858 22.4 
 

164 3,151 19.2 
 

4 88 23.8 
    Tvetenia sp. 0 6 32.0 

 
1 46 32.0 

 
38 1,589 41.6 

    Ephemeroptera 
               Caenis sp. 23 70 3.1 

 
8 24 3.1 

 
1 3 3.1 

    Cloeon dipterum 
    

22 104 4.8 
        Gastropoda 

               Ancylus fluviatilis 13 26 2.0 
 

30 196 6.4 
 

580 2,179 3.8 
    Physidae  

    
2,898 8,690 3.0 

        Potamopyrgus antipodarum 239 338 1.4 
 

5,624 12,851 2.3 
 

18 60 3.3 
    Odonata 

               Coenagrionidae. 
    

186 409 2.2 
        Oligochaeta 

               Oligochaeta  198 992 5.0 
 

765 3,827 5.0 
 

38 191 5.0 
 

26 128 5.0 

Trichoptera 
               Hydropsyche sp. 16 59 3.8 

 
2 6 3.8 

 
89 343 3.9 

    Setodes punctatus 8 23 2.9 
     

4 12 2.8 
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Table S4 Taxa and shore type specific ingestion rates for each resource (benthic FPOM; pelagic 

algae; periphyton and terrestrial CPOM in absolute and relative amounts  

Taxon/group Resource Rip rap Standard groyne Off-bankline revetment 

  
  

Absolute  
[g DM m

-²
 y

-1
] 

Relative  
[%] 

Absolute  
[g DM m

-²
 y

-1
] 

Relative  
[%] 

Absolute  
[g DM m

-²
 y

-1
] 

Relative  
[%] 

Ancylus fluviatilis 

Benthic FPOM 7.99 35.9 0.07 25.5 0.55 31.2 

Pelagic algae 3.23 14.5 0.05 19.0 0.14 8.0 

Periphyton 4.39 19.8 0.08 30.4 --- --- 

Terrestrial CPOM 6.62 29.8 0.07 25.0 1.06 60.8 

Chelicorophium curvispinum 

Benthic FPOM 0.98 23.8 0.48 28.7 1.58 28.5 

Pelagic algae 1.47 35.8 0.33 20.0 0.43 7.7 

Periphyton 0.50 12.1 0.22 13.4 2.04 36.7 

Terrestrial CPOM 1.16 28.3 0.63 38.0 1.50 27.0 

Chironominae 

Benthic FPOM 18.40 27.8 117.94 31.8 622.61 68.0 

Pelagic algae 17.04 25.8 57.86 15.6 80.32 8.8 

Periphyton 19.01 28.7 104.02 28.1 175.48 19.2 

Terrestrial CPOM 11.72 17.7 90.52 24.4 37.20 4.1 

Cloeon dipterum 

Benthic FPOM --- --- --- --- 0.25 23.9 

Pelagic algae --- --- --- --- 0.22 20.9 

Periphyton --- --- --- --- 0.50 48.1 

Terrestrial CPOM --- --- --- --- 0.07 7.1 

Corbicula fluminea 

Benthic FPOM --- --- 0.70 23.0 --- --- 

Pelagic algae --- --- 0.23 7.6 --- --- 

Periphyton --- --- 0.65 21.3 --- --- 

Terrestrial CPOM --- --- 1.47 48.1 --- --- 

Dikerogammarus villosus 

Benthic FPOM 72.23 50.4 6.26 42.5 64.96 68.2 

Pelagic algae 14.98 10.4 1.33 9.0 4.07 4.3 

Periphyton 34.30 23.9 4.04 27.4 26.20 27.5 

Terrestrial CPOM 21.93 15.3 3.11 21.1   0.0 

Hydropsyche sp. 

Benthic FPOM 1.02 29.7 0.14 25.7 0.01 17.6 

Pelagic algae 0.53 15.5 0.07 12.9 0.02 31.6 

Periphyton 0.80 23.2 0.04 6.7 0.01 17.9 

Terrestrial CPOM 1.08 31.5 0.29 54.7 0.02 32.8 

Jaera istri 

Benthic FPOM 0.32 36.5 0.08 38.0 0.69 56.1 

Pelagic algae 0.11 12.4 0.06 27.5 0.05 4.2 

Periphyton 0.29 32.9 0.02 8.5 0.39 31.7 

Terrestrial CPOM 0.16 18.2 0.06 26.0 0.10 8.0 

Oligochaeta 

Benthic FPOM 0.63 31.5 3.31 31.7 18.02 41.4 

Pelagic algae 0.38 19.4 1.18 11.3 4.33 9.9 

Periphyton 0.57 28.9 3.14 30.1 21.20 48.7 

Terrestrial CPOM 0.40 20.2 2.80 26.8 --- --- 

Orthocladiinae 

Benthic FPOM 13.15 33.3 2.48 33.6 16.03 22.0 

Pelagic algae 5.01 12.7 1.50 20.3 11.67 16.0 

Periphyton 9.12 23.1 1.83 24.8 45.10 62.0 

Terrestrial CPOM 12.21 30.9 1.57 21.3 --- --- 

Potamopyrgus antipodarum 

Benthic FPOM --- --- 1.48 37.0 60.84 42.3 

Pelagic algae --- --- 0.18 4.4 13.06 9.1 

Periphyton --- --- 1.85 46.3 62.18 43.2 

Terrestrial CPOM --- --- 0.49 12.3 7.88 5.5 

Simuliidae 

Benthic FPOM --- --- --- --- 0.03 9.3 

Pelagic algae --- --- --- --- 0.17 55.6 

Periphyton --- --- --- --- 0.10 30.5 

Terrestrial CPOM --- --- --- --- 0.01 4.5 

Sphaerium sp. 

Benthic FPOM --- --- --- --- 7.73 18.1 

Pelagic algae --- --- --- --- 16.71 39.1 

Periphyton --- --- --- --- 15.21 35.5 

Terrestrial CPOM --- --- --- --- 3.13 7.3 
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