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Zusammenfassung 

 

 

Aufgrund der hohen Nachfrage nach Datenrate und wegen der Knappheit an Ressourcen in 

Funknetzen ist die effiziente Allokation von Leistung ein wichtiges Thema in den heutigen 

Mehrnutzer-Kommunikationssystemen. Die Spieltheorie bietet Methoden, um egoistische und 

soziale Konfliktsituationen zu analysieren. 

 

Das vorgeschlagene System befasst sich mit der Erfüllung der auf 

Signal-zu-Rausch-und-Interferenz-Verhältnis (SINR) basierenden Quality-of-Service 

(QoS)-Anforderungen aller Nutzer mittels effizienter Leistungsallokation, anstatt die 

Übertragungsrate zu maximieren. Es wird ein Framework entworfen, um die 

Leistungsallokation mittels universellen Pricing-Mechanismen umzusetzen. In der 

Dissertation werden zentralisierte und verteilte Leistungsallokationsalgorithmen unter 

Verwendung verschiedener Pricing-Ansätze diskutiert. 

 

Die Nutzer in Funksystemen handeln rational im spieltheoretischen Sinne, indem sie ihre 

eigenen Nutzenfunktionen maximieren. Die mobilen Endgeräte, die dasselbe Spektrum 

nutzen, haben den Anreiz durch bewusste Fehlinterpretation ihrer privaten Informationen das 

eigene Ergebnis zu verbessern. Daher ist es wichtig, die Funktionalität des Systems zu 

überwachen und durch Optimierung des Pricings und Priorisierungsgewichte zu beeinflussen. 

 

Für den zentralisierten Ressourcenallokationsansatz werden der allgemeine 

Mehrfachzugriffskanal (Multiple Access Channel, MAC) und der Broadcastkanal (BC) mit 

linearen bzw. nichtlinearen Empfängern untersucht. Die Preise, die resultierenden 

Kostenterme und die optimale Leistungsallokation, mit der die QoS-Anforderungen in der 

zulässigen Ratenregion erfüllt werden, werden in geschlossener Form hergeleitet. Lineare und 

nichtlineare Pricing-Ansätze werden separat diskutiert. Das unendlich oft wiederholte Spiel 

wird vorgeschlagen, um Spieler vom Betrügen durch Übermittlung falscher 

Kanalinformationen abzuhalten. 

 

Für die verteilten Ressourcenvergabe wird das nichtkooperative Spiel in Normalform 

verwendet und formuliert. Die Nutzer wählen ihre Sendeleistung zur Maximierung ihrer 

eigenen Nutzenfunktion. Individuelle Preise werden eingeführt und so angepasst, dass die 

QoS-Anforderungen mit der Leistungsallokation im eindeutigen Nash-Gleichgewicht erfüllt 

werden. Verschiedene Arten des Nutzerverhaltens werden bezüglich der Täuschung ihrer 

Nutzenfunktion analysiert, und ein Strategy-Proof-Mechanismus mit Strafen wird entwickelt. 

 

Die Ergebnisse für den MAC sind anwendbar auf heterogene Netzwerke, wobei zwei 

neuartige Ansätze zur Kompensation bereitgestellt werden, die den hybriden Zugang zu 

Femtozell-Netzwerken motivieren. Mithilfe des Stackelberg-Spiels wird gezeigt, dass die 

vorgeschlagenen Ansätze in einer Win-Win-Situation resultieren. 
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Abstract

The efficient allocation of power is a major concern in today’s wireless communications sys-

tems. Due to the high demand in data rate and the scarcity of wireless resources such as power,

the multi-user communication systems like the multiple access channel (MAC) and broadcast

channel (BC) have become highly competitive environments for the users as well as the sys-

tem itself. Theory of microeconomics and game theory provide the good analytical manner

for the selfish and social welfare conflict problems.

Instead of maximizing the system sum rate, our proposed system deals with fulfilling the

utility (rate) requirement of all the users with efficient power allocation. The users formulate

the signal to interference-plus-noise ratio (SINR) based quality-of-service (QoS) requirements.

We propose the framework to allocate the power to each user with universal pricing mecha-

nisms. The prices act as the control signal and are assumed to be some virtual currency in the

wireless system. They can influence the physical layer operating points to meet the desired

utility requirements. Centralized and distributed power allocation frameworks are discussed

separately in the thesis with different pricing schemes.

In wireless systems we have users that are rational in the game theoretic sense of making

decisions consistently in pursuit of their own individual objectives. Each user’s objective is to

maximize the expected value of its own payoff measured on a certain utility scale. Selfishness

or self-interest is an important implication of rationality. Therefore, the mobiles which share

the same spectrum have incentives to misinterpret their private information in order to obtain

more utility. They might behave selfishly and show also malicious behavior by creating in-

creased interference for other mobiles. Therefore, it is important to supervise and influence

the operation of the system by pricing and priority (weights) optimization.

In the centralized resource allocation, we study the general MAC and BC (with linear and

nonlinear receiver) with three types of agents: the regulator, the system optimizer and the

mobile users. The regulator ensures the QoS requirements of all users by clever pricing and

prevents cheating. The simple system optimizer solves a certain system utility maximization

problem to allocate the power with the given prices and weights (priorities). The linear and

nonlinear pricing mechanisms are analyzed, respectively. It is shown that linear pricing is a

universal pricing only if successive interference cancellation (SIC) for uplink transmission or

dirty paper coding (DPC) for downlink transmission is applied at the base station (BS). For

MAC without SIC, nonlinear pricing which is logarithmic in power and linear in prices is a

universal pricing scheme. The prices, the resulting cost terms, the optimal power allocation

to achieve the QoS requirement of each user in the feasible rate region are derived in closed
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form solutions for MAC with and without SIC using linear and nonlinear pricing frameworks,

respectively.

The users are willing to maximize their achievable rate and minimize their cost on power by

falsely reporting their channel state information (CSI). By predicting the best cheating strategy

of the malicious users, the regulator is able to detect the misbehavior and punish the cheaters.

The infinite repeated game (RG) is proposed as a counter mechanism with the trigger strategy

using the trigger price. We show that by anticipating the total payoff of the proposed RG, the

users have no incentive to cheat and therefore our framework is strategy-proof.

In the distributed resource allocation, each user allocates its own power by optimizing the

individual utility function. The noncooperative game among the users is formulated. The in-

dividual prices are introduced to the utility function of each user to shift the Nash equilibrium

(NE) power allocation to the desired point. We show that by implicit control of the proposed

prices, the best response (BR) power allocation of each user converges rapidly. The Shannon

rate-based QoS requirement of each user is achieved with minimum power at the unique NE

point. We analyse different behavior types of the users, especially the malicious behavior of

misrepresenting the user utility function. The resulting NE power allocation and achievable

rates of all users are derived when malicious behavior exists. The strategy-proof mechanism

is designed using the punishment prices when the types of the malicious users are detected.

The algorithm of the strategy-proof noncooperative game is proposed. We illustrate the con-

vergence of the BR dynamic and the Price of Malice (PoM) by numerical simulations.

The uplink transmission within the single cell of heterogeneous networks is exactly the same

model as MAC. Therefore, the results of the pricing-based power allocation for MAC can be

implemented into heterogeneous networks. Femtocells deployed in the Macrocell network

provide better indoor coverage to the user equipments (UEs) with low power consumption

and maintenance cost. The industrial vendors show great interest in the access mode, called

the hybrid access, in which the macrocell UEs (MUEs) can be served by the nearby Femtocell

Access Point (FAP). By adopting hybrid access in the femtocell, the system energy efficiency

is improved due to the short distance between the FAP and MUEs while at the same time,

the QoS requirements are better guaranteed. However, both the Macrocell base station (MBS)

and the FAP are rational and selfish, who maximize their own utilities. The framework to

successively apply the hybrid access in femtocell and fulfill the QoS requirement of each UE

is important.

We propose two novel compensation frameworks to motivate the hybrid access of femto-

cells. To save the energy consumption, the MBS is willing to motivate the FAP for hybrid

access with compensation. The Stackelberg game is formulated where the MBS serves as the

leader and the FAP serves as the follower. The MBS maximizes its utility by choosing the com-

pensation prices. The FAP optimizes its utility by selecting the number of MUEs in hybrid

access. By choosing the proper compensation price, the optimal number of MUEs served by

the FAP to maximize the utility of the MBS coincides with that to maximize the utility of the
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FAP. Numerous simulation results are conducted, showing that the proposed compensation

frameworks result in a win-win solution.

In this thesis, based on game theory, mechanism design and pricing framework, efficient

power allocation are proposed to guarantee the QoS requirements of all users in the wireless

networks. The results are applicable in the multi-user systems such as heterogeneous net-

works. Both centralized and distributed allocation schemes are analyzed which are suitable

for different communication scenarios.
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ũ(p,w,β) System utility function for centralized power allocation

pmaax
i Single user power constraint

βM
i Punishment price for malicious users

pBR
i Best response power allocation of user i

pNE
i Nash equilibrium power allocation of user i

π SIC decoding order

qi Power allocation of user i for BC

κ Compensation price

α̂i Reported channel state information of user i



xiv List of Tables

ûi Short-term user utility of user i
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1 Introduction

1.1 Motivation

Wireless communication has undergone significant development over the past years, e.g. by

the introduction of new physical layer technologies, marketing of new application layer ser-

vices and entry of players who were not traditionally considered an operator participating in

the market. To tame such an ever-changing market of wireless systems, it is pivotal to ensure

that wireless resources are allocated in a socially optimal manner.

Research results show that nowadays about 0.2% of the global CO2 emissions are due to

mobile telecommunication networks, and this percentage is expected to increase. The funda-

mental concern of radio resource management is the physical layer transmit power allocation.

In a wireless system, each user’s objective may be maximizing the expected value of its own

payoff measured on a certain utility scale, while the system regulator aims at minimizing the

system total resource consumption. This makes the users and the system regulator conflicting

entities. Game theory is suitable for analyzing this kind of problems. Each user is endowed

with intelligence in a game theoretic sense of knowing the rules about the underlying game.

Since the self-interested users act selfishly, the outcome of the game may not be the best

operating point. How to allocate communications resource fairly and more efficiently in or-

der to not only minimize the energy consumption of the whole system, but also achieve the

quality-of-service (QoS) requirement of each user is the main issue discussed in this thesis.

The signal-to-interference plus noise ratio (SINR) based Shannon rate is set to be the criterion

of the QoS requirement.

Today’s wireless communications and networking practices are tightly coupled with eco-

nomic considerations [1]. In particular, pricing on the system resources such as power is a

useful tool to lead the resource allocation result to the socially optimal point. The prices are

assumed to be some virtual currency in the wireless system and can influence the physical

layer operating points to meet the desired utility requirements. However, the mobiles which

share the same spectrum have incentives to misinterpret their private information in order to

obtain more utility. They might behave selfishly and show also malicious behavior by creat-

ing increased interference to other mobiles. A pricing mechanism is said to be strategy-proof

if with properly designed pricing, the user behavior is guided to a more robust and efficient

point. Pricing is typically motivated because it is beneficial to the wireless system regulator

and it encourages better resource allocation and more reliable user behavior. Comparing with

the real monetary charges on the higher layer, pricing on the physical layer refers more to the

control signal [2].
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We basically distinguish two models for the user-centric resource allocation of the multi-

user wireless systems.

• The first model deploys a central controller which supervises and influences the operation

of the system by pricing and priority (weights) optimization. The central controller is

referred to as the regulator. The regulator acquires all necessary information of the whole

system. It is responsible of detecting and preventing the user misbehavior.

• The second model allocates the power based on the distributed manner. The noncoop-

erative game is played among the multiple users. Each user allocates its own power by

maximizing its utility function. The individual prices are introduced into the user util-

ity function to motivate a more efficient distributed resource allocation and better user

behavior.

The multiple access channel (MAC) is a typical multi-user transmission system. Due to

the uplink-downlink duality, the broadcast channel (BC) is also considered. Firstly, the MAC

instantiating in different scenarios is investigated. In the traditional setting, multiple transmit-

ters send at the same time and frequency to one base station (BS). The BS is interested in all

data and applies the optimal receive strategy, e.g., the minimum mean square error (MMSE)

estimator receiver plus successive interference cancellation (SIC) [3]. Another case occurs in

the passive infrastructure sharing if one BS is shared by several operators with different radio

access networks (RANs). In this case, we assume that SIC is not applied and complete inter-

ference from all other mobile stations is present in the single user decoder. In order to guaran-

tee the QoS requirements of all the users in the wireless system, linear and nonlinear pricing

mechanisms are investigated, respectively. Different types of user behavior are analyzed in de-

tail. A variety of games are proposed to prevent user misbehavior with the carefully tailored

prices. We show that by clever pricing, the users in the system have no incentive to cheat and

therefore our framework is strategy-proof.

With the explosion of 4G, the indoor wireless data traffic is increasing rapidly. Many mobile

operators have launched femtocell service, including Vodafone, SFR, AT&T, Sprint Nextel,

Verizon and Mobile TeleSystems. The Femtocell Access Points (FAPs), also known as home

BSs, are small and low power devices to provide high-quality indoor coverage. These FAPs

are connected to the operators’ macrocell networks via backhaul DSL, optical fibre or other

connections [4]. By adopting femtocells, the expensive spectrum is better utilized. Different

from other wireless access equipments, the macrocell BS (MBS) is able to get all the information

about the femtocells inside its range by the backhaul connection. The MBS is responsible to

allocate the wireless resource in the femtocell in order to manage the interference between the

femto and macrocells.

Within the single cell of macrocell or femtocell, the uplink transmission is exactly the same

model as MAC. In order to ensure the rate requirement of each user equipment (UE), the

power allocation analyzed in MAC can be implemented in the setting of heterogeneous net-
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works. Currently, there are three access control mechanisms: open access, closed access [5]

and hybrid access. From an energy aware point of view, by selecting the nearby macrocell

UEs (MUEs) under the range of service of the femtocell, hybrid access shows the most poten-

tial and is of high interest to the industry operators.

The MBS and the FAPs are considered to be simple and selfish devices, who maximize their

own interest. In order to gain in the energy saving of the whole two-tier macro-femtocell sys-

tem, the MBS is willing to compensate the FAP for accepting some nearby MUEs. Pricing is

introduced in the compensation function to motivate the hybrid access. The MBS can indi-

rectly control the two-tier system by adapting the compensation prices in the compensation

function.

1.2 Multiple Access and Broadcast Channel

The thesis mainly discusses the user-centric resource allocation in the general multiple access

and broadcast channels under the QoS requirement of each user. In this section, the mathe-

matical model of the multiple access and broadcast channels are described.

1.2.1 Multiple Access Channel

The uplink transmission with multiple transmitters and single receiver is referred to as MAC.

A common example of MAC is a couple of mobiles communicating with a BS. The general

MAC with K transmitters is depicted in Fig. 1.1. The K transmitters wish to communicate to

the BS over the common channel. They send signal xi, i ∈ 1, · · · ,K to the BS simultaneously.

Both the transmitters and the receiver BS are equipped with single antenna. The transmission

power of the transmitter i is pi with single user power constraint pmax, i,e., 0 < pi ≤ pmax. The

transmitters in the MAC compete not only with the received noise, but also the interference

from each other [6].

The quasi-static block flat-fading channels are statistically independent of each other and

remain constant for a sufficient long time period. The channel coefficient from the transmitter

i to the BS is denoted as hi.

The received complex signal in the equivalent base-band representation for the BS in MAC

is given by

y =
K∑

i=1

hixi + n, (1.1)

where n ∼ CN(0, σ2
n) is the additive white Gaussian noise (AWGN) with zero-mean and vari-

ance of σ2. The channel gain from the transmitter i to the BS is αi = |hi|
2. All xi and n are

statistically independent. The data signal xi is created by a Gaussian codebook with zero-

mean and variance pi ≥ 0.
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Transmitter 1 x1

Transmitter 2 x2

Transmitter 3 x3

Transmitter K xK

y BS

h1

h2

h3

hK

Figure 1.1: General multiple access channel

Let S ⊆ {1, 2, . . . ,K}. Let Sc denote the complement of S. Denote R(S) =
∑

i∈S Ri and

x(S) = {xi : i ∈ S}. Then the capacity region of the K-user MAC is derived as follows [6].

1.1 Definition. The capacity region of the K-user MAC is the closure of the convex hull of the

rate vectors satisfying

R(S) ≤ I(x(S); y | x(Sc)) for all S ⊆ {1, 2, . . . ,K}. (1.2)

The BS receives the superposition of all signals from the K transmitters. If the BS treats the

interference from all the other transmitters as noise, then the achievable rate ri of transmitter

i at the BS without successive interference cancelation1 (SIC) is

ri = I(xi; y)

= log

(

1 +
αipi

1 +
∑

k 6=i αkpk

)

, (1.3)

where the noise power is normalized to be 1.

1.2 Definition. Successive Interference Cancelation (SIC) decodes the signals in an arbitrary or-

der and subtracts the re-encoded signal, which effectively increases the SINR. It is iteratively

repeated for K transmitters.

1SIC is explained in Sec. 1.2.3
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Receiver 1 y1

Receiver 2 y2

Receiver 3 y3

Receiver K yK

BS x

h1

h2

h3

hK

Figure 1.2: General broadcast channel

1.2.2 Broadcast Channel

If there are single input and multiple outputs for the channel, it is referred to as the BC. Typ-

ically, the mathematical model of the BC is to describe the simultaneous communication of

information from single source to several receivers [6].

Fig. 1.2.2 shows the standard representation of the BC. The received complex signal in the

equivalent base-band representation at each receiver i for BC is

yi = hi

K∑

k=1

xi + n. (1.4)

If there is no dirty paper coding2 (DPC), the achievable rate ri achieved at the receiver i is

ri = I(x; yi)

= log

(

1 +
αipi

1 + αi

∑

k 6=i pk

)

. (1.5)

2DPC will be discussed in Sec. 1.2.3.
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1.2.3 Successive Interference Cancelation and Dirty Paper Coding

The growing need for QoS enhancements along with the dense user deployment in the wire-

less systems contradict mainly to capacity limitations. Interference plays a crucial role in such

limitations. Interference cancelation (IC) is an interesting alternative to the interference avoid-

ance [7]. The SIC, where the signals are decoded at the receiver successively, is first suggested

in [6]. By adopting SIC, the signal of one user is removed in the following decoding process if

it is already decoded. Thus, it is more efficient when comparing with conventional reception,

where the interference from all the other users are treated as noise.

The achievable rate ri of transmitter i in the general MAC when SIC is adopted with the

decoding order π = [K → · · · → 1] is then

ri = I(xi; y | x1, . . . , xi−1)

= log

(

1 +
αipi

1 +
∑

k<i αkpk

)

. (1.6)

DPC is an efficient transmission technique when some interference is known to the transmit-

ter. It requires channel state information (CSI) of all users. As long as the full knowledge of

the i.i.d interference is given to the encoder, the capacity of a channel with additive Gaussian

noise and power constrained input is not affected [8]. In the downlink BC, the transmitter

precodes the data in order to cancel the interference. If DPC is adopted with the precoding

order π in the BC , the achievable rate ri of receiver i, i = [1, . . . ,K] is

ri = log

(

1 +
αipi

1 + αi

∑

k<i pk

)

. (1.7)

1.2.4 Uplink-Downlink Duality

Given a set of powers, the uplink performance of the kth user is only a function of the receive

filter of user k. In the downlink, however, the SINR of each user is a function of all transmit

signals of the users. Thus, the problem is seemingly more complex. However, there is in fact

an uplink-downlink duality to achieve the same SINR for the users under the same sum power

[9].

For the transmission with single antenna at both the transmitters and receivers, the SINR

for user i of the uplink transmission with normalized noise is given by

SINRi :=
αipi

1 +
∑

j 6=i αjpj
, (1.8)

where pi is the power allocated to user i.
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Now consider the downlink channel that is naturally ’dual’ to the given uplink channel. The

SINR for user i of the downlink transmission with normalized noise is given by

SINRi :=
αipi

1 + αi

∑

j 6=i pj
. (1.9)

The relationship between the performance of the downlink transmission and its dual uplink

is that to achieve the same SINR for the users in both links, the total transmit power is the same

for the MAC and BC systems.

Denote p := [p1, . . . , pK ] as the power allocation for the uplink transmission and q :=

[q1, . . . , qK ] as the power for the dual downlink transmission, respectively. Then to achieve

the same SINR, the power is solved by

p = (Da −At)−1 ·1, (1.10)

q = (Db −A)−1 ·1, (1.11)

where Da := diag( 1
a1
, . . . , 1

aK
), Db := diag( 1

b1
, . . . , 1

bK
) and 1 is the column vector of all 1’s. A

is a K ×K matrix with index of α, i.e.,

At =








α1 . . . αk . . . αK

...
. . .

...
. . .

...

α1 . . . αk . . . αK







. (1.12)

Since the SINR requirement is the same for both the uplink and its dual downlink,

ai :=
SINRi

(1 + SINRi)αi
, bi :=

SINRi

(1 + SINRi)αi
,

a = b. (1.13)

Therefore, the total transmit power for both links is

K∑

i=1

pi = 1
t(Da −At)−1

1 = 1
t
[
(Da −At)−1

]t
1

= 1
t(Da −A)−1

1 =

K∑

i=1

qi. (1.14)

The duality holds that under the same sum transmit power, the MAC and its dual BC can

achieve the same SINR. The individual powers pi and qi are not the same in both links to

achieve the same SINR. The results in (1.10) and (1.11) are utilized to calculate the power

allocation under SINR-based QoS requirement in this thesis.
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1.3 User-Centric Resource Allocation

We aim to investigate an user-centric interference management perspective of resource alloca-

tion strategies. User-centric refers to that each user k in the system has a QoS requirement uk,

or more specifically the Shannon rate requirement to be guaranteed by the wireless system.

The user-centric resource allocation problem is to allocate the power efficiently under differ-

ent criterions while guaranteeing the QoS requirement of each user. These criterions include

minimum power, energy efficiency (EE), social welfare and so on, which will be discussed in

detail in Chapter 3-6.

In a wireless system, consider K transmitters with source messages are transmitting with

power3 p = [p1, · · · , pK ]T , and at least K sinks are interested in their messages. Consider a

general utility function

u(p,ω) =

K∑

k=1

ωkgk

(
pk

Ik(p)

)

, (1.15)

where ωk is the weight for user k, ω = [ω1, · · · , ωK ] and ωk is usually between zero and one,
∑

ωk = 1.

The QoS requirement of each user k is fulfilled if the following condition is satisfied.

gk

(
pk

Ik(p)

)

≥ uk, (1.16)

where gk

(
pk

Ik(p)

)

is a general SINR-based utility function.

Ik(p) is from the set of simple linear interference (plus noise) functions I(p).

1.3 Definition. Interference functions: I(p): RK+1
+ 7→ R+ is an interference function for all p ≥ 0

if the following properties are satisfied [10].

• Positivity: I(p) > 0

• Monotonicity: I(p) ≥ I(p′) if p ≥ p′

• Scalability: αI(p) > I(αp) for all α > 1.

The vector inequality p > p′ is a strict inequality in all components. The property of posi-

tivity is implied by the nonzero background receiver noise. The property of scalability shows

that if all powers are scaled up uniformly, the resulting interference is smaller than scaling

up the existing interference function directly. In other words, the SINR of scaling up all the

powers simultaneously is better than the original SINR [10].

One general expression of an interference function is

Ik(p) = aT ·p+ σ2
n, (1.17)

3The sources as well as sinks could be collocated resulting in MAC or BC.
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u2(g(p))

u1(g(p))

u(p*)

g1(p)

g2(p)

g(p*)

p1

p2

(c)

p
*=[p1

*, p2
*]

(a) (b)

Figure 1.3: Illustration of a set of resources p and the QoS set u for the case of 2 users in a
wireless system. (a) QoS region after the transformation of the SINR region via the utility
function mapping u(p) = u(g(p)); (b) SINR region corresponding to the set of powers, with
the transformation g = g(p); (c) Set of power resources for 2 users. In this case the set of
powers are permitted by the power constraints for the 2 users.

where the vector a depends on the concrete system scenario and contains the effective channel

coefficients, e.g., by adopting SIC, some ai are zero. σ2
n is the additive noise power.

The general interference function possesses the properties of positivity, scalability and mono-

tonicity with respect to the power allocation and strict monotonicity with respect to the noise

component [11]. We assume gk ∈ Conc.

1.4 Definition. [12] Conc is the family of all strictly monotonic increasing, continuous func-

tions g, such that g(x) is concave.

In the whole thesis, the Shannon rate is referred to as criterion of the QoS requirement if

without specification. Then (1.16) becomes

rk(α,p) = gk

(
pk

Ik(p)

)

(1.18)

rk(α,p) ≥ uk, (1.19)

where rk(α,p) is the achieved rate of user k as a function of the power allocation p and CSI α.

Fig. 1.3 shows an example of wireless communication for a 2-user resource allocation prob-

lem under QoS requirement. Each user has an SINR-based QoS requirement to be guaranteed

by the wireless system, which is shown in (a) as the QoS region. The corresponding SINR



10 1 Introduction

region to achieve the QoS as a function of the set of powers is shown in (b). (c) shows the

region of power resource such that the QoS requirements are fulfilled in (a). The user-centric

resource allocation we are dealing with is to find the efficient power allocation in (c) such that

the QoS requirements in (a) can be achieved.

The dense deployment of the wireless equipments and the scarcity of the wireless resources,

such as power, frequency, etc., make the resource allocation an important problem [13]. The

conflicts are not only among the users who wish to transmit with higher data rate and there-

fore create more interference to others, but also between the users and the system. Since the

users may have incentives to manipulate their private information, such as CSI or user pref-

erences, in order to maximize their own utility, the system regulator is responsible to detect

and prevent the user misbehavior. Otherwise the QoS requirements of each user cannot be

guaranteed.

Microeconomic theory [14, 15] provides an efficient manner to analyze this kind of conflict

problem. The alternative approach based on economic models has been introduced to resource

allocation problem in wireless systems [16, 17, 18, 19]. Each user in the system is assume to be

rational, who only cares about its own utility.

Each user in the system plays the role as a decision maker in the market. Game theory

studies the interaction among rational decision makers. In the book The Theory of Games and

Economic Behavior [20], von Neumann and Morgenstern introduced game theory. One could

study the strategic interactions of multiple agents from different directions, such as sociology,

psychology, biology, etc. Game theory emphasizes the mathematical modeling on the conflict

problem of the rational agents. These economic agents are referred to as ’players’ in game

theory. Each player aims at maximizing its own utility function by choosing a particular com-

bination of strategies. Selfishness or self-interest is an important implication of rationality in

traditional models.

Game theory has been deeply developed and widely applied to many aspects such as eco-

nomics, politics and engineering in the last decades. Indeed, most economic behavior can be

viewed as special cases of game theory. We will discuss game theory in detail in Sec. 1.3.1.

In wireless systems we have agents that are rational in the game theoretic sense of making

decisions consistently in pursuit of their own individual objectives. In particular, each agent is

strategic, i.e. takes into account its knowledge or expectation of the behaviour of other agents

and is capable of carrying out the required computations. For example the users would like to

maximize their individual rate and therefore cause more interference to others. In multiuser

wireless communications, resource allocation is a challenging topic in studying the conflict

problems between the wireless resources and the demands of users. Such resources include

the time slots, frequency bands, orthogonal codes or spaces, power, etc. From an economic

theoretic point of view, these resources can be regarded as valuable goods that are allocated by

the BS to the multiple users centrally or among the users distributively. Time division multiple

access (TDMA), frequency division multiple access (FDMA), code division multiple access
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Microeconomics Theory

Game Theory PricingMechanism Design

Nash Equilibrium Repeated Game Stackelberg Game

Linear Pricing Non-Linear Pricing

Figure 1.4: Distinctions in microeconomics related to user centric resource allocation in wire-
less communications.

(CDMA) and space division multiple access (SDMA) are commonly used resource allocation

methods. In our work, we focus on the power allocation where the system organizer has

to intelligently conjure a mechanism to design a game such that the individual user’s QoS

requirement is satisfied and the system efficiency is achieved.

In our system the users have the possibility to manipulate the system objective by falsely

reporting their private types such as CSI and/or individual preference for utilities. We shall

utilize tools from microeconomics such as mechanism design, pricing and game theory and

analyze this problem from an information theoretic point of view to obtain resource allocation

strategies for wireless systems. These resource allocation strategies shall possess the properties

of non-manipulability of the system, system spectral efficiency and non-dictatorial behaviour

for all users in the system.

Fig. 1.4 shows the branches in microeconomics theory that are related to the resource alloca-

tion for the user centric interference management in wireless communications. The centralized

and decentralized implementation of these strategies or outcome rules are studied in terms of

complexity, feedback overhead, and performance. The tools from game theory, mechanism

design and pricing are analyzed in Sec. 1.3.1, Sec. 1.3.2 and Sec. 1.3.3, respectively.

1.3.1 Game Theory

In this section, the basic knowledge about game theory is introduced, especially those applied

in our study of the user-centric resource allocation for wireless communications. Game theory
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is the study of mathematical models of conflict and cooperation between intelligent rational

decision-makers [19]. Game theory is widely used in economics, political science, psychology,

logic and biology. Nowadays, game theory is applied to a broader range of studies such as

in engineering. It provides a powerful manner to analyze interactions between self-interested

users and to predict their strategies [21, 22, 23].

There are three basic elements to describe a game G(K, S,U) in strategic (or normal) form:

the set of players i ∈ K. K is the finite set {1, 2, . . . ,K}; The strategy space Si of each user i, S =

S1×S2 · · ·×SK is the set of strategy profiles; and player i’s von Neumann-Morgenstern utility

ui(s) for each strategy profile s = {s1, . . . , sK}. For example, the most familiar interpretations

of strategies in economics may be the choices of prices or output levels [23].

The structure of the game is common knowledge among the players. All players participat-

ing in the game are assumed to be fully aware of the game structure of the strategic form. The

players are supposed to be rational that they know that their opponents know this, and are

aware that their opponents know that they know, and so on ad infinitum. Strategic form of

finite games are usually depicted as matrices. A pure strategy provides a complete definition of

how a player will play a game. A mixed strategy is a probability distribution over pure strate-

gies. Mixed strategies are not considered in this thesis, because mixed strategies correspond

to time-sharing which requires coordination overhead [24].

1.5 Definition. [23] Pure strategy si is dominated for player i if there exists s′i ∈ Si such that

ui(s
′
i, s−i) ≥ ui(si, s−i) for all s−i ∈ S−i, (1.20)

and the inequality is strict for at least one s−i.

The strategy si is strictly dominated if the inequality (1.20) holds with strong inequality. A set

of dominating strategies is not guaranteed to exist.

1.3.1.1 Nash Equilibrium

In game theory, the concept of Nash equilibrium (NE) [25, 26] takes a very important role. NE

is a profile of strategies of a noncooperative game such that the strategy of each player is an

optimal response to other players’ strategies. The formal definition of NE is as follows.

1.6 Definition. A strategy profile s∗ ∈ S is an NE if, for all players i, i ∈ [1, . . . ,K],

ui(s
∗
i , s

∗
−i) ≥ ui(si, s

∗
−i) for all si ∈ Si. (1.21)

At the NE, no unilateral deviation in strategy by any single player is profitable for that player.

When the inequality above holds strictly for all players and all feasible alternative strate-

gies, then the equilibrium is classified as a strict NE. If instead, for some player, there is exact

equality between s∗i and some other strategy in the set S, then the equilibrium is classified
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as a weak NE. By definition [27], a strict NE is necessarily a pure-strategy equilibrium such

that each user has a unique best response (BR) to his rivals’s strategies. The BR of player i is

the strategy or set of strategies from Si that maximizes player i’s utility function against the

strategies of other players.

The NE is a stable state when each player in the game chooses his BR to the strategies of

other players. Therefore the NE is achieved by playing the BR dynamic (BRD), i.e., a series of

BRs [28]. Strict NE is more compelling and robust to various small changes in the nature of

the game. However, strict NE needs not exist. Conditions for the existence and uniqueness of

a pure strategy NE are proposed in [29].

A game can have either a pure-strategy or a mixed NE (in the latter a pure strategy is chosen

stochastically with a fixed probability). All players choose the strategy which is the BR to the

anticipated action of their opponents. In a noncooperative game, the NE holds the property

that all players can predict it, predict that their opponents can predict it and so on.

J. Nash in his work [25] shows the existence of a NE: Every finite strategic-form game has

a mixed strategy equilibrium. A pure-strategy equilibrium is an equilibrium in degenerate

mixed strategies. However, the NE point may not be efficient. That is why pricing is intro-

duced to indirectly influence the outcome of the game to the desired efficient point.

1.3.1.2 Repeated Game

In the previous part, the game in static form is discussed, where the players choose their ac-

tions simultaneously. However, many applications of game theory have an important dynamic

structure. Such dynamic situations can be represented by using the concept of extensive form

games. The extensive form allows explicit representation of the order in which players move,

and what acquired by each player when making each strategy.

The following information should be contained when defining the extensive form of a game:

• the set of players

• the order of moves

• the players’ payoffs as a function of the moves that were made

• what the players’ choices are when they move

• what each player knows when he makes his choices

• the probability distributions over any exogenous events.

Repeated game (RG) is the best understood class of dynamic games [23, 19, 30, 31]. The

RG consists of certain number of repetitions of some stage game and the player’s long-term

overall payoff is a weighted average of the payoffs in each stage. The RG leads to different

equilibrium outcomes to that of the stage game which is played only once. Because the players

are able to condition their strategies on the past actions of their opponents.
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The RG can be divided into two classes: infinite RG and finite RG, depending on the hori-

zon played in the game is infinite or finite. The outcome of the finite RG is determined by

backward-induction because finite horizon of the game is played. If the terminal horizon of

the game is not a common knowledge to players, the infinite RG is a suitable measure of de-

scribing a game. It is found that the optimal method of playing an RG is to cooperate and play

a socially optimum strategy. One essential part of infinite RG is to punish players who deviate

from this cooperative strategy.

There are several alternative utility functions to describe a infinite RG.

• Discounting RG: Players discount future utilities by the discount factor δi, 0 < δi < 1.

Player i’s total payoff is

ūi = (1− δi)
∞∑

t=0

δtigi(s
t), (1.22)

where δtigi(s
t) is the payoff of each stage game. t denotes the number of rounds in the RG.

• Limit of means RG: If the players are completely patient, corresponding to the limit δi = 1,

the time-average criterion can be implemented. Player i’s total payoff is

ūi = lim
T→∞

1

T

T∑

t=0

gi(s
t). (1.23)

The players in the RG choose their strategy by anticipating the long-term total payoff as

shown in (1.22) or (1.23). The game designer can punish those players when they perform

actions not leading to the social optimal outcome. Then by predicting the overall payoff of the

infinite RG, no user will have incentives to misbehave.

1.3.1.3 Stackelberg Game

The Stackelberg game is a strategic game named after the German economist Heinrich Frei-

herr von Stackelberg [32]. The players of the Stackelberg game are a leader and a follower

competing on quantity. The leader chooses her strategy s1 first and the follower chooses his

own strategy s2 after observing s1.

The leader should predict that the follower will choose the best response s2(s1) to whatever

s1 she chooses. The follower’s strategy is to solve s∗2 = maxs2 u2(s1, s2(s1)). Before choosing

her own strategy, the leader predicts s∗2 first and then solves s∗1 = maxs1 u1(s1, s
∗
2). Comparing

to the possibly existing NEs where the strategies are the same as if the players move simultane-

ously, the ’Stackelberg equilibrium’ is the unique credible outcome [23]. ’Backward induction’

is applied to obtain this Stackelberg equilibrium. The idea is to firstly solve the BR of the last

mover and then compute backward of the BR for the player before, and so on [33, 34].
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1.3.2 Mechanism Design

Mechanism Design is a branch of the study in game theory. It can be thought as the reverse

game theory and is rather unique in economics to have an engineering perspective. From the

game theoretic point of view, the objective of each user is to maximize the expected value of

its own payoff measured on certain utility. Each rational user is endowed with intelligence in

a game theoretic sense of knowing the rule about the underlying game. Since each player in

the game is strategic by taking into account the strategy of other players, announcing one’s

true private type or preference to the system regulator may not be the best strategy of players.

That is why the theory of mechanism design comes into play.

In order to allocate the resources in a socially optimal manner, the system regulator has the

pivotal role to envisage and extract the true value of the user preferences and/or private types.

The preferences or private types of users include CSI, location, data traffic, QoS and other

private information. Mechanism design concerns the settings for the problem of aggregating

the announced preferences of multiple users in a collective or social decision. Assume that

all the players act rationally, mechanism design attempts to implement the desired goals in a

strategic setting. The goals of the proposed mechanism is normally viewed as social choice.

1.7 Definition. Social Choice is an aggregate or sum of individual preferences of different users

into a single combined social welfare decision.

Mechanism design theory uses the framework of non-cooperative games with incomplete

information and seeks to investigate how the privately held preferences or types can be elicited

from the users. Furthermore it investigates the extent to which the information elicitation

problem constrains the way in which social decisions can respond to individual preferences.

The main focus of mechanism design is to design institutions or outcome rules (protocols)

that satisfy certain desired objectives, assuming that the individual users, interacting through

the institution will act strategically and may hold private information that is relevant to the

decision at hand [23].

1.8 Definition. In mechanism design, a process is Incentive Compatible if all participants fare

best when they truthfully reveal any private information asked for by the mechanism.

1.9 Definition. In game theory, an asymmetric game where players have private information

is said to be Strategy Proof if none of the players has an incentive to lie about or hide their

private information from the other players.

Strategy proofness is also known as dominant strategy incentive compatibility. For the user-

centric resource allocation we studied in wireless communications, incentive compatibility

and strategy proofness are very important. Due to the interference coupling, the wireless sys-

tem is able to guarantee the QoS requirement only when each user reveals its true information

to the system.
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1.3.3 Pricing in Wireless Communications

As stated in Sec. 1.3.1, the outcome of a game such as the NE, may not be efficient, some

measure should be implemented to lead the outcome of the game to the desired point. Pricing

is a useful tool to design such a framework. Traditionally, engineers design the physical layer

algorithm in wireless communications without considering how the communication services

or the wireless resources are priced. However, due to the scarcity of wireless resources and

the exploded demand of data transmission in the competitive market, technology and pricing

are highly related with each other. In particular, pricing affects the way how communication

services are used and the resources are consumed. Modern networking technologies provide

possibilities for producers and consumers to exchange economic signals on fast time scale [35].

Pricing can be viewed as a mechanism designed by the system regulator to motivate the users

to utilize the network efficiently. As a result, the robustness and stability of the wireless system

is enhanced with the mechanism of pricing. The strategies that the users choose according to

the pricing mechanism can also feed back some signal to the system regulator about their user

preferences, which helps the system regulator allocate the wireless resource and make sure

that the system is incentive compatible.

A well designed pricing mechanism is responsible to collect the correct information about

the users. With these information, the system regulator can allocate the resources amongst the

users indirectly to meet the desired operating point.

One simple model for pricing a single link can be formulated as follows [35]. Let P denote

the problem of maximizing the total user benefit, i.e.,

P : max
x1,··· ,xN

N∑

i=1

ui(xi)

s.t.
N∑

i=1

xi ≤ C, (1.24)

where C is the capacity of the link. Each of the N customers is allocated xi bits per second

with the utility function ui.

If each ui is a concave increasing function, then there exists a price β̄ such that each user is

able to choose xi to solve the problem

P : max
xi

ui(xi)− β̄xi (1.25)

and therefore, P can be solved simply by setting this price β̄.

Let xi(β) be the demand function of user i, which is the amount of bandwidth he wishes to

purchase if the price per unit bandwidth is β. By setting the price β = β̄, the system operator

ensures the total bandwidth purchased equals the supply, i.e.,
∑

i xi(β̄) = C . This allocation

leads the total benefit to the social welfare of all the users.
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It is also possible to tailor the prices to individual users. For example, nonlinear pricing

could be adopted in order to increase the revenue of the system operator or to motivate the

social welfare.

How can the wireless system meet the high QoS requirement of its users with the limited

resources? The pricing mechanism gives the system regulator an opportunity to ensure the sys-

tem efficiency and the social welfare. The system regulator needs to adapt the prices smartly.

The pricing mechanism in our context is introduced formally as follows.

Let U be the family of utility functions u(p,ω). u(p,ω) is not jointly concave with respect

to p for all w > 0. The utility u(p,ω) is a function of the weights ω and the SINR. Moreover,

u(p,ω) is not a convex optimization problem even for linear interference functions [12].

The utility function in (1.15) is a frequently encountered utility maximization problem in

wireless systems based on the SINR. The utility u(p,ω) is a strictly monotonic increasing con-

tinuous function defined on R+. Denote Fk(βk, pk) as the function of the price βk and power

pk, βk ≥ 0. Let F be the family of the pricing functions. The UMP with pricing is defined as

ũ(p,β,ω) = u(p,ω)− Fk(βk, pk). (1.26)

Denote the optimal power allocation p∗(β,ω) of the system as a function of the prices β and

the weights ω. p∗(β,ω) solves the UMP in (1.26), i.e.,

p∗(β,ω) = arg max
0≤p≤pmax

ũ(p,β,ω) (1.27)

s.t. gk

(
pk

Ik(p)

)

≥ uk for all k. (1.28)

The pricing mechanism in the context of SINR-based utility optimization problem is defined

as follows.

1.10 Definition. [12] Pricing Mechanism: A pricing mechanism is a mapping from U(α) to F.

U(α) is the feasibility region for channel states α = [α1, · · · , αK ]:

U(α) =
⋃

p≥0

(g1(p1/I1(p)), · · · , gK(pK/IK(p))) . (1.29)

The pricing mechanism is a tool used by the system regulator to force the resource allocation

in such a way that the resulting operation point meets the required point. For the user centric

resource allocation of wireless communication, the means of pricing is to choose the pricing

parameters β such that the QoS requirement of each user is achieved with minimum power.

The universal pricing mechanism is introduced in the next subsection.
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1.3.3.1 Universal Pricing Problem

The pricing problem is to find the universal pricing parameter β∗ for given ω and u ∈ U(α),

i.e.,

Find β∗ (1.30)

s.t. gk

(
p∗k(β

∗,ω)

Ik(p∗(β∗,ω))

)

= uk

for all k ∈ K .

1.11 Definition. Universal Pricing: A universal pricing scheme finds a pricing vector β for all

channels α and all weights ω and their feasible utility requirements u ∈ U(α).

In the following chapters, we investigate the universal pricing framework for different sce-

narios in wireless communication networks. Normally pricing is related to the higher layer

revenue. However, pricing on physical layer also plays an important role to affect the resource

allocation for wireless systems. There are research works concerning about pricing of different

scenarios of wireless networks [1, 36, 37]. We focus on the pricing framework for the physical

layer power allocation in order to guarantee the QoS requirement of each user in the wire-

less system. Particularly, the possible user misbehavior in the system is discussed and the

strategy-proof mechanisms using pricing are proposed to counter the malicious behavior in

the system. The prices in the current context are rather the control signaling than pecuniary

units. The physical layer resource consumption certainly influences the application layer cost

and revenue of the system vender. However, the mapping of the physical layer pricing and

the higher layer monetary prices is out of the scope of our research. When we refer to cost

terms or fee of the power allocation, it is an additional evaluation to indicate the performance

of the universal pricing mechanism.
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2 General System Model and Problem Formulation

2.1 User Centric System Model

Consider the general MAC or BC as shown in Sec. 1.2. A set K := {1, . . . ,K} of transmitters

(or receivers) are communicating with the BS simultaneously on the same spectrum band.

Each user has an SINR-based QoS requirement u to be guaranteed by the system.

In this thesis, the achievable Shannon rate is adopted as the QoS criterion. Each user suffers

from the interference caused by other users in the system. In order to meet the rate require-

ment of each user with minimum resource, the system regulator should make sure that each

user reports its information accurately, which includes the CSI, and/or its preferences, such

as the utility function. Denote uk as the rate-based QoS requirement of each user. The achiev-

able rate rk of each user k should be larger than or equal to its QoS requirement uk. From the

energy saving point of view, the system guarantees the user QoS requirement by achieving it

with the minimum power, i.e., equality holds for (1.16)

gk

(
pk

Ik(p)

)

= uk = log

(

1 +
αkpk
Ik(p)

)

. (2.1)

Game theoretic analysis and pricing mechanisms are introduced to tailor the resource alloca-

tion amongst the users. From the game theoretic point of view, the rational users are not only

interested in achieving its rate requirement uk, but also maximizing its own utility function

uk. As denoted in Sec. 1.3.3, pricing is adopted in the described wireless system to control

the power allocation such that the QoS requirements are satisfied. The game can be played

either between the users and the system regulator or among the users. We propose two types

of power allocation games.

In the first game, the system regulator not only controls the power allocation, but also de-

tects and prevents the user misbehavior by careful game design and price selection. The result

of the game is that the QoS requirement of each user is achieved with the minimum power

consumption and no user has the incentive to cheat for their own user utility.

Given the conditions of the universal pricing in Sec. 1.3.3.1, if the power allocation is cen-

tralized at the BS with the given prices β, the power is allocated by solving the UMP:

p = arg max
0≤p≤pmax

K∑

k=1

wkrk(αk, pk)−
K∑

k=1

Fk(βk, pk) (2.2)

s.t. rk(αk, pk) ≥ uk for all k,
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where Fk(βk, pk) is the pricing term as a function of the price βk and the power pk of user k.

This optimization solves the social welfare of all users, which maximizes the difference be-

tween the weighted sum achievable rates and the cost of power for all users.

In the second game, the noncooperative users choose their transmit power distributively.

The NE power allocation is reached in the proposed noncooperative game. By smart price

adaptation, the QoS requirement of each user is met with the minimum power at the NE

point. A reasonable utility function uk of each user k is the difference between the achievable

rate rk(αk, pk) and the pricing term Fk(βk, pk).

uk = rk(αk, pk)− Fk(βk, pk). (2.3)

Each user k transmits with power pk from its feasible strategy space Sk defined as

pk ∈ Sk := {p : 0 < pk ≤ pmax}. (2.4)

The strategy profile is a set of joint strategies for all transmitters defined as

(p1, . . . , pK) ∈ S1 × · · · × SK . (2.5)

In the noncooperative game formulation, given the strategy profile, each user chooses its

own transmit power pk distributively by maximizing its own utility function.

p = arg max
0≤p≤pmax

uk(pk, βk) (2.6)

s.t. rk(αk, pk) ≥ uk for all k.

Given the proper prices β, (2.2) and (2.6) find the optimal power allocation p to achieve the

QoS requirement of each user.

By a user centric approach, the users have access to a broader strategy space due to the

following reasons:

• The self-interest driven users have more intelligence and possibility to manipulate the

system while ignoring the system objective in order to maximize their own user utility.

• The users have incentives to manipulate their preferences measured on utility functions

or their private types such as CSI to the system regulator with the objective of obtaining

a better resource allocation.

In order to ensure the QoS requirements of all users in the system, the user misbehavior

should be carefully analyzed. By predicting the user misbehavior, the strategy-proof mech-

anism is designed. Such mechanism should satisfy effectiveness and incentive compatibility

with the tool of pricing.

The quasi-static block flat-fading channels are assumed for the general MAC and BC. The

CSI is assumed to be known even though the users can manipulate αk.
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2.2 Problem Statement and Contributions

In this section, the problems studied in this thesis are formulated. The methodologies related

to these problems are stated. At the end of this section, the papers that are published concern-

ing the solutions to these problems are listed.

Both the centralized and distributed resource allocations for the general MAC and BC are

discussed, where pricing is utilized to indirectly force the power allocation of each user. Due

to the interference coupling among the users, each user’s behavior influences the rate of other

users. Therefore, pricing is also employed to feedback the private information about the users

and prevent user misbehavior. Different types of games are adopted in order to guarantee the

QoS requirement of each user in the system.

Problem 1 and 2 arise in Chapter 3. Universal linear pricing is investigated for the general

MAC and BC under QoS requirements.

Problem 1. Is the pricing mechanism which is linear in both the prices and power a universal pricing

mechanism for the general MAC and BC?

When considering the pricing mechanism, the linear pricing is the simplest and most direct

method to apply. We investigate the conditions of the linear pricing to be a universal pricing

mechanism for the general MAC and BC, where SIC and DPC are applied respectively at

the BS. The prices β are proposed for the certain decoding (encoding) order for the general

MAC and BC, respectively. With the given prices β, the power allocation p for the K users is

optimized in such a way that the QoS requirement of each user is reached with the minimum

power. We also analyze the cost terms for each user under this linear pricing mechanism. The

best coding order to minimizing the sum transmit power is obtained.

Problem 2. What is the user behavior when maximizing its own payoff measured on certain utility?

Is it possible to design an incentive compatible mechanism to prevent user cheating?

From the game theoretic point of view, announcing one’s true information may not be the

best strategy of rational users when considering to maximize its own payoff. It is the responsi-

bility of the system regulator to detect and prevent the user misbehavior. Otherwise, the QoS

requirement of the users are no longer guaranteed. In such a sense, a game is formulated not

among the users but between the users and the system regulator who provides the univer-

sal prices. The cheating behavior and its results are investigated. The mechanism to prevent

cheating is discussed.

Chapter 4 deals with Problem 3 and 4. We focus the scenario on the general MAC, with and

without SIC, respectively. The non-linear pricing which is logarithmic in power and linear in

the prices is shown to be a universal pricing mechanism.

Problem 3. Given the linear pricing framework, how does the non-linear pricing which is non-linear

in the power and linear in the prices work as the universal pricing mechanism for the general MAC?
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Problem 3 is studied in Chapter 4.2. Given the conditions of the linear pricing to be universal

pricing, we analyse other pricing mechanisms for the general MAC with and without SIC,

respectively. The pricing mechanism which is logarithmic in power and linear in the pricing

parameters are universal pricing mechanism for log-convex interference functions1. The prices

are proposed with the given QoS requirements. The optimal power allocation is derived under

the pricing mechanism so that the rate requirement of each user is achieved with minimum

sum power. The cost terms corresponding to the universal non-linear pricing of each user are

analyzed, where the weights are optimized with respect to the revenue of the system regulator.

Problem 4. What is the best cheating strategy if the selfish/malicious users maximize their own

user utility? How to design an incentive compatible mechanism to prevent cheating with cheat-proof

pricing?

Problem 4 is studied in Chapter 4.3 and 4.4. The best cheating strategy is derived if the

selfish/malicious users misrepresent their private information on the purpose of maximizing

their own user utility. A worst case strategy is designed in order to guarantee the QoS require-

ment of all the honest users, where the malicious users are excluded from the system UMP.

According to the best cheating strategy, we propose different types of infinite RG to counter

the user misbehavior. The cheat-proof pricing is derived so that no user will have incentives

to cheat. The simulation results illustrate that the proposed RG is an incentive compatible

mechanism.

After the theoretical analysis on the centralized power allocation for the general MAC, we

apply the user-centric resource allocation problem to the heterogeneous networks. Chapter 5

investigates Problem 5.

The two-tier macro-femtocell scenario is considered. The MBS adopts certain well-designed

compensation framework to motivate the femtocell access points (FAPs) to serve the nearby

macrocell user equipments (MUEs). While ensuring the rate requirement of each UE, the total

power consumption of the whole two-tier network is minimized.

Problem 5. How does the proposed centralized power allocation work in the heterogeneous net-

works?

Due to the fact that the indoor wireless data traffic explodes rapidly, heterogeneous net-

works such as the two-tier macro-femtocell networks have attracted high interest in both

academy and industry. With the results of the power allocation to fulfill the QoS requirement

of each UE, we develop the novel compensation framework to motivate the hybrid access in

the uplink transmission of the femtocell network. A Stackelberg game is formulated where the

MBS serves as a leader and the FAP serves as a follower. Two compensation frameworks are

proposed, where in the first model the regulator exists in the system and the universal power

price obtained in Chapter 4 is utilized in the compensation function. In the second model, the

1log-convex interference functions will be discussed in Sec. 4.1.2
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energy efficiency of the whole macro-femtocell network serves as the utility of the MBS. The

optimal number of accepted MUEs in the hybrid access and the optimal compensation price

are derived in both frameworks. The first model is studied in Chapter 5.1 and the second

model is studied in Chapter 5.2.

At last but not the least, the distributed resource allocation for the general MAC is con-

sidered. Chapter 6 deals with Problem 6. Each user chooses the transmit power as its best

response to maximize its own utility. The individual prices are proposed so that the QoS re-

quirement of each user is achieved at the NE transmit power.

Problem 6. How is the pricing mechanism for distributed resource allocation of the general MAC

with and without SIC?

We develop the noncooperative game with individual pricing for the general MAC with

and without SIC, respectively. Each user allocates its own power by optimizing the individual

utility function with clever price adaptation. We show that by the proposed prices, the BR

power allocation of each user converges rapidly. The individual prices are proposed such

that the Shannon rate-based QoS requirement of each user is achieved at the unique NE point.

Different types of user behavior are analyzed and the strategy-proof mechanism is designed

with the punishment prices when the types of the malicious users are detected.

2.3 State of the Art

In this section, we first describe works about interference management in the wireless sys-

tems, including interference alignment, superposition coding. Then related works regarding

resource allocation that apply game theory and microeconomic theory such as pricing are

provided. Furthermore, we mention works on the analysis of the user behavior and the mech-

anism design to prevent the user misbehavior. Afterwards, related works on heterogeneous

networks and distributed resource allocation for wireless communications are discussed.

2.3.1 Interference Management

Consider K non-cooperative transmitter-receiver communicating pairs. They interfere each

other if they communicate over a wireless channel on the same frequency band. Through a

new strategy known as interference alignment [38, 39, 40, 41, 42, 43, 44], it is possible to have

each transmitter operate up to 1
2 its interference-free capacity. The ergodic interference align-

ment for the K-user interference channel with time-varying fading is developed [45]. If the

channel gains have independent, uniform phases, this technique allows each user to achieve at

least 1
2 its interference-free ergodic capacity at any signal-to-noise ratio. The interference align-

ment, decomposition and performances are analyzed for a multiple-antenna X-channel with

two transmitters and two receivers [46]. Based on the idea of interference alignment, authors

in [47] show that the degrees of freedom achieves K
2 for the K user time-varying interference
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channel. The results in [48] show that an interference alignment model for the determinis-

tic K-user interference channel can be applied into a fully connected Gaussian interference

network.

The superposition coding enhances the achievable rate region for the general interference

channel [49]. The capacity of DPC to that of TDMA for a multiple-antenna (multiple input

multiple-output (MIMO)) Gaussian BC is compared [50]. They show that the sum-rate capac-

ity (achievable using DPC) of the multiple-antenna BC is larger than single-user capacity (i.e.,

the TDMA sum-rate) in the system. This result also holds for the sum-rate gain of SIC over

TDMA for the uplink channel. In a high-interference regime for cognitive radio, multiuser

decoding at the primary receiver is shown to be optimal [51, 52].

2.3.2 Resource Allocation with Game Theory and Pricing

The optimal power allocation is studied to maximize the weighted sum rate under interference

power constraints and individual transmit power constraints [53], for a cognitive multiple ac-

cess channel. The authors [54] introduce hierarchy in energy games modeled by a decentral-

ized MAC. In [55], the energy aware MAC region with and without SIC is studied. In [56],

the precoding strategy selection algorithm of the secondary users in cognitive MIMO MAC

system is proposed to maximize the sum rate, based on the game-theoretic framework. In

[57], the auction mechanisms for sharing spectrum among a group of users is analyzed with

the constraint of the interference temperature at a measurement point. Motivated by the idea

of cooperative communication, the authors study the cooperation and competition within the

cognitive radio networks [58].

Pricing has been successively utilized in the wireless networks to enforce the system effi-

ciency. There exist previous works concerning universal pricing mechanism for interference

coupled systems [12]. Traditionally, pricing in communications networks is treated on the ser-

vice layer. However, pricing also affects how services are used and resources are consumed

[35]. On the physical layer, pricing is applied to manage interference and resource allocation.

The impact of interference coupling on the convexity of certain utility functions is character-

ized [59]. The Pareto efficiency of a pricing policy in terms of the transmit power and the

Nash equilibria are characterized by using the supermodularity property [2]. Linear pricing

in femtocell networks based on Stackelberg games is studied in [60]. By a pricing scheme,

the transmitted power is allocated to maximize the total utility summed over all users subject

to power constraints in a two CDMA adjacent cell networks [61]. In [62], the power control

and beamformer design are investigated for interference networks, based on the exchange of

interference prices. A set of prices corresponding to all degree of freedoms (DoFs) must be

exchanged to achieve the centralized optimal allocation.
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2.3.3 User Misbehavior and Mechanism Design

The behavior of users on networked systems ranges from altruistic on the one end to malicious

(adversarial) on the other end. While altruistic users aim to improve the overall network per-

formance, selfish users develop strategies to maximize their own utility and obtain a share of

resources. A malicious user, on the other hand, aims to disrupt the whole network. Malicious

behavior may be due to the users inherent maliciousness or in competitive scenarios where the

loss of a competing user will likely result in future gains for oneself. Well-known examples of

such adversarial behavior include jamming in wireless networks and denial-of-service (DoS)

attacks [63, 64, 65]. User misbehavior is studied in [66] on the network layer and a clever proto-

col is designed. In contrast to our work on the physical layer, they typically address trust and

misbehavior on the medium access control or network layer. For the inaccurate SINR feedback

in interference networks, [67] studies the impact on the distributed power update algorithm.

The authors in [68] show that the set of correctly behaving links has the ability to detect the

behavior of misrepresenting the utility, if and only if the restricted global dependency matrix

Grestricted is irreducible. The games for networked systems and the user behavior are analyzed

[69]. They also describe the algorithms for cheat-proof mechanism design.

Resource allocation based on d’Aspremont and Gerard-Varet (AGV) mechanism for an in-

centive compatible spectrum sharing game is proposed in [70]. In [71], finite RG and dis-

counted RG equilibrium are analyzed. A repeated graphical game with incomplete informa-

tion is proposed in [72] for interaction of legitimate and malicious users.

2.3.4 Heterogeneous Networks

Interference coordination becomes the primary challenge in the heterogeneous networks. Sev-

eral cognitive radio inspired approaches to enhance the interference coordination for femtocell

networks are applied in [73]. Distributed power control scheme for closed access femtocell

networks in down-link is formulated in [74] by using a noncooperative game model. In [75],

the power allocation to achieve the SINR based QoS requirement is provided for the uplink

transmission. The authors [76] propose a game-theoretical mechanism to derive the optimal

allocation in the general femtocell channel allocation problem with or without prioritized fem-

tocells.

A Stackelberg Game to investigate the price-based resource allocation strategies for the two-

tier spectrum sharing femtocell networks is proposed in [60]. The utility-aware refunding

framework for hybrid access femtocell network is analyzed [77], where they use TDMA for

data transmission. A resource allocation mechanism is designed for the two-tier orthogonal

frequency-division multiple-access (OFDMA) femtocell networks with the analysis of wireless

users’ selfish characteristic and private traffic information [78]. For the two-tier femtocell net-

works, the throughput maximization problem subject to QoS constraints in terms of success

probabilities and per-tier minimum rates is formulated in [79]. In [80], the uplink interference
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problem in OFDMA-based femtocell networks is dealt with partial cochannel deployment. An

inter-tier interference mitigation strategy offers significant performance improvement over the

existing methods. The authors devise a cooperative resource allocation algorithm, which is an

enhanced modified iterative water-filling, to improve intercell fairness in femtocell networks

[81].

2.3.5 Distributed Resource Allocation

The distributed resource allocation have been discussed plentifully for different wireless com-

munication scenarios. Each user allocates its resources independently to optimize its own

utility function. In [82], the authors consider a distributed power control scheme for wireless

ad hoc networks, in which each user announces a price that reflects compensation paid by

other users for their interference. The MAC game models are discussed in [83] in which each

transmitter makes individual decisions regarding their power level or transmission probabil-

ity. The authors in [84] address the efficient distributed power control via convex pricing of

users’ transmission power in the uplink of CDMA wireless networks supporting multiple ser-

vices. The CDMA power control as a noncooperative game is also discussed in [85], where a

cost function is introduced as the difference between the pricing and utility functions. A game-

theoretic approach is investigated in [86] for power control in ad-hoc networks. The conditions

of the unique NE and the global convergence of MIMO iterative waterfilling are discussed

in [87]. The distributed joint power and admission control algorithms are proposed [88] for

the management of interference in two-tier femtocell networks, where the newly-deployed

FUEs share the same frequency band with the MUEs using CDMA. The optimal decentralized

power allocation in fast fading MIMO MAC is investigated by the authors in [89], where the

players (the mobile terminals) are free to choose their power allocation in order to maximize

their individual transmission rates. A distributed interference pricing for allocating power

among multiple transmitters is presented [90] in order to optimize the weighted sum-rate in

interference channels.

2.4 Contributions and Structure

In the List of Publications, the published papers in which results of this thesis were discussed

are listed. The results of Problem 1 and 2 are published in [II] and correspond to Chapter 3.

The results of Problem 3 and 4 are published in [I] and [III] and correspond to Chapter 4. The

results of Problem 5 are published in [IV] and [V] and correspond to Chapter 5. The results

of Problem 6 are published in [VI] and [VII] and correspond to Chapter 6 in the thesis. The

conclusions and future works are discussed in Chapter 7.
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3 Centralized Universal Linear Pricing for MAC and BC under

QoS Requirements

In this chapter, we address the problem of power allocation in the uplink MAC and downlink

BC with linear pricing framework to ensure that each user in the wireless network can achieve

its utility requirement. The prices are provided by the system regulator. As illustrated in Sec.

1.3.3, by introducing prices, the resulting power allocation ensures the QoS requirement of

each user. The system optimizer, which can be the BS, is proposed in the framework which

maximizes the system utility with pricing function. The existence of the universal linear pric-

ing mechanism is characterized. The algorithms for solving the linear pricing problems in

MAC and BC are proposed. The sufficient condition for universal linear pricing in MAC with

SIC and its best decoding order are analyzed.

3.1 System Preliminaries

As shown in Fig. 3.1, consider in a wireless system K transmitters with source message are

transmitting with power p = [p1, . . . , pK ]T , and at least K sinks1 are interested in their mes-

sages. The power is allocated centrally by the system. The system optimizer can be the BS or a

separate device. It is a simple dumb device that optimizes the system maximization problem

(SMP) with the given parameters such as CSI α, prices β and weights w.

In the wireless system,

• Each user k has a rate requirement uk.

• The regulator chooses the optimal universal linear pricing parameter β∗
k and weights (pri-

orities) wk in order to achieve the rate requirement uk for each user k.

• The system optimizer maximizes the system utility ũ(p,β,ω) with respect to the pricing

parameter βk and weight ωk and allocates power p∗k to each user k.

In an interference wireless system, each user k is mainly interested in maximizing its own

utility, but not the entire system utility. As shown in Fig. 3.1, the regulator chooses linear

prices β = [β1, · · · , βK ] with the knowledge of channel states α in order to achieve all the

1The sources and sinks could be collocated resulting in MAC or BC.
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Regulator

System Optimizer

Interference Network

Cost ck= βkpk

Channel states αk

Weights ωk

Prices βk

Utility requirements uk

Power Allocation pk

Channel states αk

RXK

RX2

RX1

TXK

TX2

TX1

Figure 3.1: System model of centralized universal linear pricing framework for interference
network

desired points of QoS requirement uk for each user k. And the system maximizes the system

utility ũ(p,β,ω) given below with the linear pricing mechanism.

ũ(p,β,ω) = u(p,ω)−

K∑

k=1

βkpk =

K∑

k=1

ωkgk

(
pk

Ik(p)

)

−

K∑

k=1

βkpk. (3.1)

We denote the solution to this SMP as the optimal power allocation, i.e.,

p∗(β,ω) = argmax
p≥0

ũ(p,β,ω). (3.2)

The fee ck = βkpk on power of link k is paid by the link to the regulator either directly or

via the system optimizer, see Figure 3.1. The pricing serves as a trade off between maximizing

the rate and minimizing the power consumption.

The linear pricing which is linear in both the prices β and the power allocation p is utilized.

From Definition 1.11, the following Lemma states the conditions for the existence of linear

pricing mechanism for the utility u(p,ω).

3.1 Lemma. Let g1, · · · , gK ∈ Conc. And assume I1(p), · · · , IK(p) are linear interference functions.

If and only if u(p,ω) is jointly concave in p for all α ∈ RK
+ , and ω > 0, then there exists a universal

linear pricing mechanism.

Proof. The proof is provided in Proof 3.5.1.

Note that there might occur cases in which the individual utility function does belong to a

natural competitive user utility (NCUU) function as defined in [59]. However, the channel re-
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alizations or the SINR is by chance chosen to provide a jointly concave system utility function,

then all rates can be achieved by linear pricing. This behavior could change if another channel

realization leads to a non-concave system utility function.

The result of Lemma 3.1 is related to Theorem 1 in [91]. However here the optimal power al-

location is determined centrally by a system utility (3.1) but not the (possibly unique) outcome

of a noncooperative game.

3.2 User-Centric Universal Linear Pricing for Multiple Access Channel with SIC

It is well known that with SIC at the BS, the capacity region of the single antenna Gaussian

MAC can be achieved. Assume that the BS decides the best decoding order πi = {πi
1, · · · , π

i
K}

with perfect knowledge of the channel states α = [α1, · · · , αK ]. The best decoding order will

be determined later.

Assume a SIC decoding order as π1 = [K → K−1 → · · · → 1]. Let the SINR-based function

gk

(
pk

Ik(p)

)

= rk(p). Then the rate function without pricing for each user k is

rk(p) = log

(

1 +
αkpk

1 +
∑k−1

l=1 αlpl

)

≥ uk. (3.3)

Obviously the individual user rate depends on the SIC decoding order. The system optimizer

allocates p for the MAC with SIC by solving

max
p≥0

ũ(p,β,ω) = max
p

K∑

k=1

ωk

(

log

(

1 +
k∑

m=1

αmpm

)

− log

(

1 +
k−1∑

m=1

αmpm

))

− βkpk. (3.4)

In general, the optimal power allocation is characterized by the first order optimality condi-

tions

∂

∂pl
= ωl

αl

1 +
∑l

m=1 pmαm

+

K∑

k=l+1

ωk

(

αl

1 +
∑k

m=1 αmpm
−

αl

1 +
∑k−1

m=1 αmpm

)

−βl = 0. (3.5)

Calculate the power allocation and substitute it into (3.3), then the linear pricing parameter

βk can be derived. For illustration, we now perform a case study.

3.2.1 Two-User Case in MAC

For simplicity and illustration, we investigate the special case with two users first and assume

ω1 6= ω2.

3.2 Lemma. For SIC decoding order [1 → 2], the optimal power allocation with respect to ω and β is

p∗1→2
1 (β∗

1) =
ω1
β1

− α2(ω1−ω2)
α2β1−α1β2

for user 1 and p∗1→2
2 (β∗

2) =
α1(ω1−ω2)
α2β1−α1β2

− 1
α2

for user 2.
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Figure 3.2: Cost terms for 2-user MAC with different SIC decoding order

The corresponding pricing parameters are β∗1→2
1 = α1ω1

2u1+u2
for user 1 and β∗1→2

2 = α2
2u2

(
ω1
2u1 +ω2 −

ω1

)

for user 2.

For the SIC decoding order [2 → 1], the optimal power allocation is p∗2→1
1 (β∗

1) =
α2(ω2−ω1)
α1β2−α2β1

− 1
α1

for user 1 and p∗2→1
2 (β∗

2) =
ω2
β2

− α1(ω2−ω1)
α1β2−α2β1

for user 2.

The corresponding pricing parameters are β∗2→1
1 = α1

2u1

(
ω2
2u2 + ω1 − ω2

)
for user 1 and β∗2→1

2 =
α2ω2

2u1+u2
for user 2.

Proof. Please refer to Proof 3.5.2.

Fig. 3.2 shows the sum of the cost terms for the 2-user MAC with both SIC decoding orders.

The x − y domain shows the feasible QoS region. It illustrates that for the weights ω1 = 1
3 ,

ω2 = 2
3 and equal channels α1 = α2, the sum cost term for decoding order [1 → 2] is higher

than [2 → 1]. This will be analyzed later in Subsection 3.2.5.

3.2.2 K-User Case in MAC

Now we investigate the scenario where K users are transmitting signal to the BS. First, assume

all weights ωi are pairwise disjunct ω1 6= · · · 6= ωK .
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3.3 Theorem. In order to guarantee the QoS requirements u of each user, the universal linear pricing

parameter β for K-user MAC with SIC decoding order πi = [πi
i → πi

2 → · · · → πi
K ] is given by

β = A−1 · 2s, (3.6)

where the matrix of different channels is denoted by A,

A =











απi
K−1

−απi
K

0 · · · 0

0 απi
K−2

−απi
K−1

· · · 0

. . . . . . . . . . . . . . . . .

0 0 0 · · · απi
0











.

The vector s is given by

s =











log
(
(ωπi

K
− ωπi

K−1
)απi

K
απi

K−1

)
− uπi

K

log
(
(ωπi

K−1
− ωπi

K−2
)απi

K−1
απi

K−2

)
− uπi

K
− uπi

K−1

...

log(ωπi
1
απi

1
)− uπi

K
− · · · − uπi

1











.

The power allocation for the K-user MAC with the SIC decoding order πi = [πi
1 → πi

2 → · · · → πi
K ]

by solving (3.4) is

pπi
k
=

ũπi
k
− 1

απi
k

·
K∏

j=k+1

ũπi
j
, (3.7)

where ũi = 2ui , απi
0
= 1 and ωπi

0
= 0.2

Proof. The proof is provided in Proof 3.5.3.

If identical weights ω1 = · · · = ωK = ω are considered, results in Theorem 3.3 are derived

as follows.

3.4 Corollary. The optimal prices β and power allocation p for the K-user MAC with equal weights

and the SIC decoding order [K → · · · → 1] are

βl =
αl

2
∑K

k=1 uk

, (3.8)

pl =
2
∑l

k=1 uk − 2
∑l−1

k=1 uk

αl
.

Proof. Please refer to Proof 3.5.4.

2The power allocation in (3.7) is derived by methods in [92, Chapter 10].
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For the K-user MAC, the system regulator provides the prices β in (3.6) to the system opti-

mizer. Then the power p is allocated by the system optimizer such that the QoS requirements

u are achieved.

3.2.3 Condition for Jointly Concave Utility for MAC with SIC

As indicated in Lemma 3.1, the universal linear pricing exists if and only if u(p,ω) if jointly

concave in p. The following lemma provides the condition of the existence of the universal

linear pricing.

3.5 Lemma. For certain decoding order πi, if πi = [πi
1 → πi

2 → · · · → πi
K−1 → πi

K ], a sufficient

condition for a jointly concave utility function u(p,ω) irrespective of the channel realizations α is

ωπi
K
≥ ωπi

K−1
≥ · · · ≥ ωπi

2
≥ ωπi

1
. (3.9)

Proof. Please refer to Proof 3.5.5.

Fig. 3.2 shows that different SIC decoding orders result in different cost terms for MAC.

Therefore, in the next section, the choice of best SIC decoding order is analyzed.

3.2.4 Choosing Best Decoding Order

The idea for the best SIC decoding order is not to compare the system utility functions for

different decoding orders but to minimize the sum transmit power in the MAC system with

different decoding orders.

3.6 Lemma. The best SIC decoding order depends on the channel state α. In order to maximize the

system utility function ũ(p,β,ω) fulfilling the rate requirement uk with minimum sum power, the

decoding order πi = [πi
1 → πi

2 → · · · → πi
K−1 → πi

K ] is induced by

απi
1
≥ απi

2
≥ · · · ≥ απi

K−1
≥ απi

K
. (3.10)

If the order of weights in (3.9) for some users does not fit the order of channels in (3.10), e.g., if the

order of channel states is αK ≥ · · · ≥ αk+1 ≥ αk ≥ · · · ≥ α1, but the weight ωk < ωk+1 for user k

and k + 1, then it is sufficient to use the unweighted sum utility maximization as (3.31) at the system

maximizer.

Proof. Please refer to Proof 3.5.6.

3.2.5 Cost Analysis

Figure 3.2 illustrates the cost terms c[ · ] =
∑

i βipi for different SIC decoding orders.3 In Section

3.2.4, we analyze the best decoding order regarding the channel states α with respect to min-

3[ · ] denotes the SIC decoding order.
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imize the sum transmit power. Now we will analyze the relationship between cost terms and

the SIC decoding order. From (3.6), for a certain decoding order πi = [πi
1 → πi

2 → · · · → πi
K ],

the pricing parameters for the K-user MAC can be rewritten as

β =















απi
1

( ω
πi
1

∏K
j=1 ũπi

j

)

απi
2

( ω
πi
2
−ω

πi
1

∏K
j=2 ũπi

j

+
ω
πi
1

∏K
j=1 ũπi

j

)

...

απi
K

(ω
πi
K
−ω

πi
K−1

ũ
πi
K

+
ω
πi
K−1

−ω
πi
K−2

∏K
j=K−1 ũπi

j

+ · · ·+
ω
πi
1

∏K
j=1 ũπi

j

)















.

It is shown that by multiplying the power allocation in (3.7), the cost terms c[ · ] are independent

of the channel states α.

The cost term cπ
i

is then

cπ
i

= (ωπi
K
− ωπi

K−1
)
ũπi

K
− 1

ũπi
K

+ (ωπi
K−1

− ωπi
K−2

)
( ũπi

K−1
− 1

ũπi
K−1

+
ũπi

K
− 1

∏K
K−1 ũπi

j

)

+ · · ·

+ωπi
1

( ũπi
1
− 1

ũπi
1

+
ũπi

2
− 1

∏2
j=1 ũπi

j

+ · · ·+
ũπi

K
− 1

∏K
j=1 ũπi

j

)

. (3.11)

3.7 Lemma. The cost terms c[ · ] are only dependent on the weights ω and the utility requirements u of

each user for different decoding orders. The regulator can charge highest from the SIC decoding order

[K → · · · → 1] if the order of weights is ω1 ≥ · · · ≥ ωK .

Proof. Please refer to Proof 3.5.7.

It is of interest for the regulator to devise the individual weights ω in order to achieve the

unique power allocation with concave utility function, which indeed coincides with the high-

est charge from the users. Fig. 3.2 illustrates this for the 2-user MAC.

3.2.6 Reordering Mechanism

Lemma 3.6 shows that the best SIC decoding order πi is determined by the order of chan-

nel states α. Lemma 3.5 provides the order of individual wights ω induced by a given SIC

decoding order as a sufficient condition for the utility function u(p,ω) to be jointly concave.

Therefore, in order to ensure that the system works with a unique optimal solution, the regu-

lator could set the individual weight ωk according to the order of channel states α and reorder

the kth user according to the channel states as well.

Assume that the channel states are ordered as απi
1
≥ απi

2
≥ · · · > απi

K−1
≥ απi

K
which

induce the SIC decoding order as πi = [πi
1 → πi

2 → · · · → πi
K−1 → πi

K ]. Set the weights in

order ωπi
K

≥ ωπi
K−1

≥ · · · > ωπi
2
≥ ωπi

1
to ensure a jointly concave utility function u(p,ω).
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Reorder the user with channel state απi
1

as the Kth user, the user with channel state απi
2

as the

K − 1th user, and so on. Then the SIC decoding order is shifted to π1 = [K → · · · → 1]. It

is analogue for different decoding orders. Therefore, any fixed SIC decoding order could be

obtained by simply reordering the users with the order of their channel states.

If channel states change, then the regulator changes the weights and SIC decoding order

accordingly.

3.3 User-Centric Universal Linear Pricing for Broadcast Channel with DPC

Known as the duality between MAC and BC, with the same total transmit power, MAC and

BC can achieve the same rate. This duality holds provided that the decoding order of SIC in

the uplink MAC is the reverse of the DPC order in the downlink BC [9]. Using this interesting

duality, we analyze the universal linear pricing problem in BC.

The general utility function for BC is

u(q,ω) =
∑

k∈K

ωkgk

(
qk

Ik(q)

)

, (3.12)

where q is the power allocation in BC. Note that the interference function I(q) here for BC is

different from that in MAC. For a certain DPC precoding order π̃i = [π̃i
1 → · · · → π̃i

K ], the

interference function for BC is

Iπ̃i
k
= απ̃i

k

K∑

j=k+1

qπ̃i
j
+ σ2

n. (3.13)

The regulator chooses linear pricing parameters β′ = [β′
1, · · · , β

′
K ] and the system utility is

ũ(q,β′,ω) = u(q,ω)−

K∑

k=1

β′
kqk. (3.14)

3.3.1 Two-User Case in BC

Similar to the analysis in MAC, we consider the special case of two users in the BC first.
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3.8 Lemma. For BC with DPC precoding order as [1 → 2] according to the SIC decoding order in

MAC as π1 = [2 → 1], the optimized power allocation with respect to the utility requirement uk and

the pricing parameters are

q∗1 = (2u1 − 1)

(
1

α1
+

2u2 − 1

α2

)

,

q∗2 =
2u2 − 1

α2
.

β∗′

1 =
ω1α1α2

2u1(α2 − α1 + α12u2)
,

β∗′

2 =
ω1α1α2(1 + 2u1)

2u1(α2 − α1) + α12u1+u2
−

ω2α2

2u2
. (3.15)

Proof. Please refer to Proof 3.5.8.

For the DPC precoding order as [2 → 1], the calculations of optimal power allocation and

pricing parameters are similar. In the next section, the power allocation for K-user BC using

universal linear pricing in order to guarantee the QoS requirement of each user is discussed.

3.3.2 K-User Case in BC

Now, we investigate the universal linear pricing problem in BC for general K-user cases. Due

to the duality between MAC and BC, the rate requirement for each user k in BC is the same as

in MAC as uk.

3.9 Lemma. Assume the DPC precoding order as [K → K − 1 → · · · → 2 → 1], the pricing

parameters β∗
′

given by regulator for BC are

β∗′

l =
ωlαl

Zl

+
K∑

m=l+1

αmωm

(
1

Zm
−

1

Ym

)

, (3.16)

where Yl = 1 + αl

∑l−1
1 qi, and Zl = 1 + αl

∑l
1 qi = Yl + αlql with ωK+1 = 0.

Proof. Please refer to Proof 3.5.9.

3.4 Contrary Example

MAC without SIC is one of the contrary example for our universal linear pricing mechanism.

The interference function for MAC without SIC is

Ik(p) =
∑

l 6=k

αlpl + σ2, (3.17)

where σ2 is the noise power.
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Then the utility function u(p,ω) =
∑

k∈K ωkgk(
pk

Ik(p)
) is no longer jointly concave with re-

spect to p in general. It becomes the NU function in [12]. There is no universal linear pricing

for these functions in general. For example, if u1 = log
(
1 + α1p1

1+α2p2

)
and u2 = log

(
1 + α2p2

1+α1p1

)
,

the eigenvalues for the Hessian matrix with α1 = α2 = 1 and p1 = p2 = 1 are 0.25 and -

0.194444. Therefore, ũ = u1 + u2 is not jointly concave in p1 and p2. It is possible to be jointly

concave if the Hessian matrix of the system utility ũ(q,β,ω) is larger than 0.

3.5 Proofs

3.5.1 Proof of Lemma 3.1

Proof. "⇒": Assume u(p,ω) is jointly concave in p, then the optimization problem

max
p≥0

ũ(p,β,ω) = max
p≥0

(

u(p,ω)−

K∑

k=1

βkpk

)

(3.18)

has a unique solution characterized by the first order optimality condition:

∂

∂pl
u(p∗,ω)− βl = 0 if p∗l > 0. (3.19)

Let us assume that uk ∈ F(α) is achieved by a certain power allocation p, i.e.,

gk(pk/Ik((p))) = uk (3.20)

for all k ∈ K . For positive utility requirements, the required power p∗k is always positive and

thereby justifying (3.19).

Then choose a pricing parameter

β∗
l (p) =

∂

∂pl
u(p,ω) |p=p

in order to achieve the necessary power allocation.

"⇐": It is proved in Theorem 1 in [12].

3.5.2 Proof of Lemma 3.2

Proof. For user 1, the rate requirement for SIC decoding order of [1 → 2] is fulfilled by u1 =

r1(p
∗
1(β1)) = log

(

1 +
α1p

∗
1(β1)

1+α2p
∗
2(β2)

)

. For user 2, the rate requirement is fulfilled by u2 = r2(p
∗
2(β2)) =

log(1 + α2p
∗
2(β2)).

Therefore, the power needed to achieve the rate requirement is

p∗1(β1) =
2u1 − 1

α1
(1 + α2p

∗
2(β2)) =

2u2(2u1 − 1)

α1
, (3.21)
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p∗2(β2) =
2u2 − 1

α2
. (3.22)

From (3.21) and (3.22), the system maximizes the system utility ũ(p,β,ω) with linear pricing

term

max
p≥0

ũ(p,β,ω) = max
p≥0

(

ω1 log
(
1 +

α1p1
1 + α2p2

)
− β1p1 + ω2 log(1 + α2p2)− β2p2

)

. (3.23)

The optimal power allocation solves this maximization problem by

∂

∂p1
=

ω1α1

1 + α1p1 + α2p2
− β1 = 0, (3.24)

∂

∂p2
=

ω1α2

1 + α1p1 + α2p2
−

(ω1 − ω2)α2

1 + α2p2
− β2 = 0. (3.25)

Now we obtain the power allocation p∗k with respect to the weight ωk as well as the pricing

parameter βk. Substitute p∗k into (3.21) and (3.22), the pricing parameter β∗
k is observed. The

case for the decoding order [2 → 1] is analogue.

3.5.3 Proof of Theorem 3.3

Proof. It is sufficient to consider the case with SIC decoding order [K → · · · → 1]. In order to

obtain the universal pricing of β, set Xl = 1 +
∑l

k=1 αkpk. Note that ωK+1 = 0 and αK+1 = 1,

(3.5) can be written as

∂

∂pl
= αl

(
ωl − ωl+1

Xl

+
ωl+1 − ωl+2

Xl+1
+ · · ·+

ωK−1 − ωK

XK−1
+

ωK

XK

)

− βl = 0. (3.26)

Since ∂
∂pK

= ωKαK

XK
− βK = 0, XK = αKωK

βK
. Insert XK into (3.26), we get Xl =

(ωl−ωl+1)αlαl+1

αl+1βl−αlβl+1
.

Therefore,

log(Xl) =

cl
︷ ︸︸ ︷

log((ωl − ωl+1)αlαl+1)
︸ ︷︷ ︸

c̃l

− log (αl+1βl − αlβl+1)
︸ ︷︷ ︸

Dl

. (3.27)

Since ωl and αl are given numbers, the first item on the right handside in (3.27) is constant

number cl. Denote D = [D1, · · · ,DK ], D = A ·β.

From (3.3), the rate of each user l is

rl =







log( Xl

Xl−1
) : otherwise

log(Xl) : l = 1
(3.28)
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Then we obtain 2r1 = X1 and 2rl = Xl

Xl−1
for 1 < l ≤ K , thus Xl =

∏l
k=1 2

rk = 2
∑l

k=1 rk .

Therefore, log(Xl) =
∑l

k=1 rk = X̃l. From (3.27), X̃ = c − log(A ·β), i.e. 2s = A ·β, where

s = c− X̃ . A−1 always exists because ωk > 0, αk > 0 for all k, 1 ≤ k ≤ K .

This proves the universal linear pricing parameter β in (3.6).

From (3.20) and (3.3), the rate requirement uk for each user with SIC decoding order [πi
1 →

πi
2 → · · · → πi

K ] is achieved by certain power allocation p where

uk = log

(

1 +
απi

k
pπi

k

1 +
∑K

l=k+1 απi
l
pπi

l

)

. (3.29)

Compute the power allocation p in the SIC decoding order πi as a function of utility require-

ment u and the channel states α,

pπi
k

=
2
u
πi
k − 1

απi
k

· (1 +
K∑

l=k+1

απi
l
pπi

l
)

=
2
u
πi
k − 1

απi
k

· 2
∑K

j=k+1 uπi
j . (3.30)

This proves the second statement in Theorem 3.3.

3.5.4 Proof of Corollary 3.4

Proof. When considering the equal weight, the pricing problem is easier to characterize, since

the optimization problem of (3.4) becomes

max
p≥0,π

ũ(p,β,ω) = max
p

K∑

k=1

log(1 +

k∑

m=1

αmpm)− log(1 +

k−1∑

m=1

αmpm)− βkpk

= max
p≥0,π

logXK −

K∑

k=1

βkpk. (3.31)

The solution of the optimization problem is

∂

∂pl
=

αl

1 +
∑K

k=1 αkpk
− βl

=
αl

XK
− βl = 0 (3.32)

if pl > 0.

The optimization holds for pl = 2
∑l

k=1
uk−2

∑l−1
k=1

uk

αl
and βl = αl

Xk
. This result is similar to

equation (6) in [92].
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3.5.5 Proof of Lemma 3.5

Proof. Recall the utility function u(p,ω) for the K users in MAC with SIC. First considering

the SIC decoding order is π1 = [K → K − 1 → · · · → 2 → 1],

u(p,ω) =
K∑

k=1

ωk log(1 +
αkpk

1 +
∑k−1

m=1 αmpm
)

= ωK log(1 +

K∑

m=1

αmpm) + · · · + (ωk−1 − ωk) log(1 +

k−1∑

m=1

αmpm)

+ · · ·+ (ω1 − ω2) log(1 + α1p1). (3.33)

(3.33) is the sum of weighted concave functions. Since all weights are non-negative, the

overall function is concave, too. For the SIC decoding order π1, if the weights are ordered as

ω1 ≥ ω2 ≥ · · · ≥ ωK−1 ≥ ωK , then the utility u(p,ω) is jointly concave.

The analysis is analogue for any given decoding order πi = [πi
1 → πi

2 → · · · → πi
K−1 →

πi
K ].

3.5.6 Proof of Lemma 3.6

Proof. Since the rate requirements u are fixed for different decoding orders, the basic idea to

prove the first statement in Lemma 3.6 is to find the best decoding order which consumes

the lowest sum transmit power. It is sufficient to consider the power allocation pk+1→k and

pk→k+1 for two users k+1 and k with the decoding order k+1 → k and k → k+1, respectively

[55]. Assume a decoding order π1 = [K → · · · → 1] and αK ≥ · · · ≥ αk+1 ≥ αk ≥ · · · ≥ α1.

From the power allocation of (3.7),

pk+1→k
k+1 =

2uk+1 − 1

αk+1
· 2

∑k
i=1 ui ,

pk+1→k
k =

2uk − 1

αk

· 2
∑k−1

i=1 ui . (3.34)

pk→k+1
k+1 =

2uk+1 − 1

αk+1
· 2

∑k−1
i=1 ui ,

pk→k+1
k =

2uk − 1

αk
· 2

∑k−1
i=1 ui · 2uk+1 . (3.35)

Now compare the sum power
∑

i p
k+1→k
i and

∑

i p
k→k+1
i . Define N =

∑

i p
k+1→k
i −

∑

i p
k→k+1
i .

N = 2
∑k−1

i=1 ui(2uk+1 − 1)(2uk − 1)

(
1

αk+1
−

1

αk

)

. (3.36)
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Since the rate requirement u > 0, 2uk > 1, 2uk+1 > 1 and 2
∑k−1

i=1 ui > 0. With the assumption

αk+1 > αk, N < 0. Therefore, decoding order k+1 → k consumes lower transmit power than

decoding order k → k + 1 for [K → · · · → 1]. For any arbitrary decoding orders π 6= [K →

· · · → 1] with the channel states αK ≥ · · · ≥ αk+1 ≥ αk ≥ · · · ≥ α1, reordering the successive

two neighbor indices lowers the sum transmit power. It is analogue for any other orders of

channel states α and πi.

This proves the first statement in Lemma 3.6.

Deduced by (3.10), the SIC decoding order for the order of channel statesαK ≥ · · · ≥ αk+1 ≥

αk ≥ · · · ≥ α1 is [K → · · · → 1]. If ωk < ωk+1, then ωk − ωk+1 ≤ 0, using ωk = ωk+1 maximizes

the utility function u(p,ω). This proves the second statement in Lemma 3.6.

3.5.7 Proof of Lemma 3.7

Proof. It is sufficient to compare the cost terms ck+1→k and ck→k+1 of two successive users

k and k + 1 with the decoding order k + 1 → k and k → k + 1, respectively. Assume the

weights for each user are ordered by ω1 ≥ · · · ≥ ωK , which induce the SIC decoding order

as [K → · · · → 1]. By changing the decoding order of two successive users k + 1 and k, the

corresponding pricing parameters are

βk+1→k
k+1 = αk+1 ·

(ωk+1 − ωk+2
∏k+1

i=i ũi
+ · · ·+

ωK
∏K

i=1 ũi

)

,

βk+1→k
k = αk ·

(ωk − ωk+1
∏k

i=i ũi
+ · · ·+

ωK
∏K

i=1 ũi

)

. (3.37)

βk→k+1
k+1 = αk+1 ·

( ωk+1 − ωk
∏k−1

i=i ũi · ũk+1

+
ωk − ωk+2
∏k+1

i=i ũi
+ · · ·+

ωK
∏K

i=1 ũi

)

,

βk→k+1
k = αk ·

(ωk − ωk+2
∏k+1

i=i ũi
+ · · ·+

ωK
∏K

i=1 ũi

)

. (3.38)

Note that ωK+1 = 0, ũ0 = 1, and ũi = 2ui . Now we compare the cost terms ck+1→k and

ck→k+1. Define M = ck+1→k − ck→k+1, where ck+1→k = βk+1→k
k+1 pk+1→k

k+1 + βk+1→k
k pk+1→k

k and

ck→k+1 = βk→k+1
k+1 pk→k+1

k+1 + βk→k+1
k pk→k+1

k . From (3.34) and (3.35), the difference between the

cost terms of the two decoding orders for user k + 1 and k is

M =
(ũk − 1)(ũk+1 − 1)

ũk · ũk+1

(ωk − ωk+1) . (3.39)

Since u ≥ 0, ũ ≥ 1. With ωk ≥ ωk+1, M ≥ 0. Therefore. the cost term for decoding order

k + 1 → k is higher than decoding order k → k + 1. For any arbitrary decoding order π 6=

[K → · · · → 1] with the weights ω1 ≥ · · · ≥ ωK , reordering the successive two neighbor

indices increases the cost term. It is analogue for any other orders of weights α and decoding

orders πi.
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3.5.8 Proof of Lemma 3.8

Proof. According to the MAC and BC duality, the sum transmit power in BC is

∑

i

qi =
∑

i

pi,

q1 + q2 =
2u1 − 1

α1
+

2u1(2u2 − 1)

α2

=
2u1(α2 − α1) + α12

u1+u2 − α2

α1α2
. (3.40)

And solve the optimization problem in (3.14), ∂
∂q1

= ω1α1
1+α1q1+α1q2

−β1 = 0 and ∂
∂q2

= ω1α1
1+α1q1+α1q2

−
ω1α1

1+α1q2
+ ω2α2

1+α2q2
−β2 = 0. Hence, knowing the sum power in (3.40), the optimal pricing param-

eters β∗′

1 and β∗′

2 are solved.

3.5.9 Proof of Lemma 3.9

Proof. From (3.14), the system utility for BC is

max
q≥0

ũ(q,β′,ω) = max
q≥0

K∑

k=1

ωk log

(

1 +
αkqk

1 + αk

∑k−1
j=1 qj

)

−

K∑

k=1

β′
kqk. (3.41)

The first optimization condition with respect to ql is

∂

∂ql
=

K∑

m=l+1

(
ωmαm

Zm
−

ωmαm

Ym

)

+
ωlαl

Zl

− βl = 0. (3.42)

Then the rate requirement u is

ul = log

(

1 +
αlql

1 + αl

∑l−1
m=1 qm

)

= log
(Zl

Yl

)

. (3.43)

To solve Yl and Zl, the power given in Chapter 10.3.2 of [9] could be used.

q = (Da −B)−1
1,

where Da := diag
(

1
a1
, · · · , 1

aK

)

, and 1 is the vector of all 1’s. And B have components of αk,

ak :=
2uk − 1

2ukαk

. (3.44)

By inserting Da into Yl and Zl, the optimal pricing parameters β′ are solved.
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3.6 Summary

We propose a linear pricing framework in which a general system utility function is optimized

under the QoS requirements of each user in the uplink MAC as well as in the downlink BC. For

the MAC with SIC, we characterize the conditions for the system utility to be jointly concave

with respect to power allocation which support the universal linear pricing. Furthermore,

we provide an algorithm of the pricing parameters to achieve the QoS requirement for each

user. The best decoding order for SIC in MAC which minimizes the sum transmit power is

proposed. A reordering mechanism for the K-user MAC with regard to the order of individual

weight wk is proposed so that the SIC decoding order can be fixed.

In the downlink BC, due to the duality to MAC under the sum power constraint, the univer-

sal linear pricing algorithm is also proposed.

The contrary example shows that linear pricing is not a universal pricing mechanism for the

general MAC without SIC. Because the SINR-based utility function for MAC without SIC is

no longer jointly concave with respect to the power allocation.

In the next chapter, the universal nonlinear pricing mechanism for the general MAC both

with and without SIC is analyzed. Moreover, the user misbehavior is discussed and the

strategy-proof mechanism to prevent cheating is proposed.
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4 Centralized Universal Cheat-Proof Non-Linear Pricing

Framework for MAC

In this chapter we analyze the universal cheat-proof non-linear pricing framework for the gen-

eral MAC system with and without SIC, respectively. It serves as a benchmark. The detailed

system model are introduced and described.

4.1 System Overview and Universal Pricing for General MAC

In order to achieve the utility requirement of each user in the system, we adopt a universal

non-linear pricing mechanism at the system optimizer to enforce the power allocation of the

whole system.

4.1.1 System Preliminaries

We study the system operation with universal cheat-proof non-linear pricing for a wireless

MAC with three types of agents as shown in Fig. 4.1: the system operator serving as the benev-

olent regulator, the BS serving as the dumb system optimizer and the transmitters serving as

the selfish (malicious) users. In total, there are K transmitters (users) in the MAC system, each

with single antenna. Each user k has an SINR-based utility requirement uk to be guaranteed

by the system and maximizes its short-term user-utility as well as the long-term total payoff

in the RG. The pricing mechanism is designed as a virtual currency in the system to help the

regulator to shift the system operating point to the utility requirement of each user. Each user

has to pay some virtual money to the system operator based on their utility requirement. We

regard this cost term as the virtual fee for the power allocation in the MAC system. The cost

terms might be a basis for the operator to develop a tariff model. However, the pricing frame-

work influences more on the physical layer processing than on the application layer revenue.

Therefore the time scale is based on the real time physical layer power allocation. These agents

interact and behave in each round i, i = 0, . . . ,∞ (for infinite RG), according to the following

characteristics:

The regulator applies pricing to i) maximize revenue, ii) satisfy the QoS requirements of

all users and iii) guarantee the correct system operation (e.g. punishing the misbehavior of

agents).

1. Obtain the utility requirements u from the K users (higher layer)

2. Compute the universal non-linear pricing parameters βi = [βi
1, . . . , β

i
K ] ≥ 0 and charge

the total cost ciK from users
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3. Choose weights w = [w1, . . . , wK ] > 0 with
∑K

j=1wj = 1

4. Send βi and w to the system optimizer

5. Punish user k with trigger strategy Vk involving the trigger pricing βtr
k once detecting the

user misbehavior.

The system optimizer automatically allocates the power to the users by solving the system

utility maximization problem (UMP) ũ(p,β,w) with given parameters.

1. Obtain prices βi and weights w from the regulator

2. Obtain CQI α̂1, . . . , α̂K from the users, α̂ > 0

3. Solve the UMP to allocate the power pi1, . . . , p
i
K with maximum single user power con-

straint pmax, 0 < pik ≤ pmax

4. Send the power allocation to users and the regulator

The users require system service u = [u1, · · · , uK ] with the proper power allocation p and

pay the fee to the system regulator.

1. Receive the pricing parameters βi
1, . . . , β

i
K from the regulator

2. Report CQI α̂i
1, . . . , α̂

i
K to system optimizer by calculating their own short-term user-

utility

3. Receive transmit power allocation pi1, . . . , p
i
K

4. Pay cost cik(β,p) = βk log pk to the regulator

5. Transmit with power pik over the true channel αk

6. Anticipate the long-term total payoff ūk in the repeated game.

4.1.2 Universal Non-linear Pricing

Let us start from the correct operation for the physical layer power allocation with truthful

agents using the universal pricing. We discuss the general MAC system with and without SIC,

respectively. Denote the operation with SIC with · SIC . Consider a general utility function

u(p,ω) =

K∑

k=1

ωk log

(

1 +
αkpk
Ik(p)

)

. (4.1)

Ik(p) is from the set of simple linear interference (plus noise) functions where for MAC with-

out SIC, it is a linear interference function I link (p) =
∑

l 6=k αlpl + σ2
n, and for MAC with SIC

decoding order π = [π1 → · · · → πK ], ISICπk
(p) =

∑K
l=k+1 απl

pπl
+ σ2

n.
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MAC
Trigger Strategy

UMP

QoS

Cost

System Optimizer

channel states

power allocation

utility requirements
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Regulator
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cK
i

αk

ũ(p, β, w)

u,

ck= βklogpk

TX1

TX2

TXK

α̂k

pk

ωk

βk

maxûk(u, α̂
i, w)

uk

Figure 4.1: System model for general MAC with three agents: regulator, system optimizer and
mobile users

A universal pricing mechanism is a tool where the regulator can utilize to shift the operating

point of the wireless communication system to the desired utility requirement of each user k.

Theorem 1 in [12] shows that linear pricing in power pk is not sufficient for achieving all points

if the links are interference coupled, e.g., for the linear interference function. Theorem 2 and 3

in [12] show that linear pricing in βk and logarithmic in pk is a universal pricing mechanism

for log-convex interference functions. An interference function F : RK+1
+ → R+ is said to be a

log-convex function if F is log-convex on R
K+1.

Linear interference functions are also log-convex interference functions. Therefore, after the

transformation pk = esk , the utility function
∑K

k=1wk log(1 + αkpk
Ik(p)

) is jointly concave with

respect to s for both MAC with and without SIC. The system utility with pricing mechanism

which is linear in βk and logarithmic in pk is given by

ũ(p,β,w) = u(p,w)−
∑

k

βk log pk. (4.2)

4.1 Definition. The pricing term βk log pk which is linear in βk and non-linear in pk is said to

be universal non-linear pricing if the utility function (4.1) is jointly concave in sk.

In the following section, we consider the rate based utility maximization function as follows.

ũ(p,β,w) =

K∑

k=1

wk log

(

1 +
αke

sk

Ik(es)

)

−

K∑

k=1

βksk, (4.3)

where wk is the weight, βk is the universal non-linear price and sk = log pk.
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4.2 System Operation with Truthful Agents

First we analyze the standard procedure to allocate power pk with corresponding price βk and

weight wk for the truthful agents in the K-user MAC with and without SIC, respectively, using

the universal non-linear pricing mechanism. Therefore, we assume that the CQI α1, ..., αK are

known perfectly and reported truthfully. We omit the notation i for round i in this section for

simplicity. The UMP is to maximize

ũ(p,β,w) =
K∑

k=1

wk log
(

1 +
αke

sk

1 +
∑

j 6=k αjesj

)

−
K∑

k=1

βksk (4.4)

for MAC without SIC and similarly

ũ(p,β,w)SIC =
K∑

k=1

wSIC
πk

log
(

1 +
απk

es
SIC
πk

1 +
∑K

j=k+1 απj
e
sSIC
πj

)

−
K∑

k=1

βSIC
πk

sSICπk
(4.5)

for MAC with SIC decoding order π = [π1 → · · · → πK ].

4.2.1 Linear Receiver without SIC

For MAC without SIC, we characterize the optimal power allocation as a function of utility

requirements and the reported CQI. Then, the corresponding pricing parameters are derived.

4.2.1.1 Power Allocation and Universal Non-linear Pricing

The system optimizer allocates the power to each user by solving

p = argmax
p

ũ(p,β,w).

s.t. 0 ≤ p ≤ pmax

4.2 Proposition. In the K-user MAC without SIC, the power of each user k allocated by the system

optimizer in order to optimize UMP is a function of the QoS requirements u and the CQI αk.

pk =
BK

αk

·
2uk − 1

2uk
, (4.6)

where BK = 1
∑K

j=1
1

2
uj

−K+1
is a constant for given uj, j = 1, · · · ,K .
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The regulator can ensure the QoS requirements u by pricing parameters (k = 1, · · · ,K)

βk =
(

1−
1

2uk

)



1−
∑

j 6=k

wj2
uj



 (4.7)

and weights w from the following interval

1 + 1
2uk − 1

K−1 ·
∑K

j=1
1

2
uj

K − 1
< wk <

1

2uk(K − 1)
. (4.8)

Proof. See Proof 4.5.1.

The achievable rate of each user in the general MAC without SIC is restrict by the total

number of users in the wireless system.

4.3 Corollary. The feasible region U for the K-user MAC system without SIC is

K − 1 <

K∑

j=1

1

2uj
< K, (4.9)

where feasible means that the utility requirements are achievable in the K-user MAC system.

Proof. From (4.6), the utility requirement uk of user k is achievable with positive power al-

location pk if and only if BK > 0 so that K − 1 <
∑K

j=1
1

2
uj

. For positive uk, 2uk > 1 and

0 < 1
2uk < 1, therefore

∑K
j=1

1
2
uj

< K is proved.

The definition of the utility requirement uk allows us to rewrite the criterion of feasible util-

ity region (4.9) through an effective bandwidth characterization:
∑K

j=1
2
uj−1
2
uj

< 1 and
∑K

j=1
SINRj

1+SINRj
<

1, where the effective bandwidth
∑K

j=1
2
uj−1
2
uj is a simple monotonic function of uj . Therefore the

utility region is feasible if and only if the sum of the effective bandwidths of the K users is less

than one. This region is similarly characterized in [93], where the authors focus on the user

capacity of synchronous CDMA systems with linear MMSE multiuser receivers. The right

handside (RHS) one of the criterion represents the degrees of freedom in the system.

4.4 Corollary. The feasible utility region Upmax with single user power constraint pmax for the K-user

MAC system without SIC is

max
1≤k≤K

(

1− 1
2uk

pmax ·αk

)

+K − 1 <
K∑

j=1

1

2uj
< K. (4.10)

Proof. By solving pk < pmax, we obtain
∑K

j=1
1

2
uj >

1− 1
2uk

pmax ·αk
+ K − 1, k = 1, . . . ,K. Since

(
1− 1

2uk

pmax ·αk

)

is always positive, K > max1≤k≤K

(
1− 1

2uk

pmax ·αk

)

+K − 1 > K − 1.
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Figure 4.2: Feasible utility region Upmax for 2-user MAC with pmax and no SIC

Fig. 4.2 shows the feasible utility region Upmax for the 2-user MAC without SIC.

4.5 Remark. If pmax → ∞, then the feasible utility region Upmax → U.

4.6 Remark. The power allocation pk for user k is only dependent on its own channel αk and

the utility requirements u of all the users. The power allocation satisfies

1

αk

(1−
1

2uk
) < pk < pmax, (4.11)

since BK > 1 from Corollary 1. Note that the CQI α 6= 0 due to the single power constraint

pmax. Since the system guarantees the utility requirement uk of each user k, the power alloca-

tion pk is inversely proportional to its CQI αk.

4.7 Remark. The pricing parameter βk is independent of the CQI α. This observation is impor-

tant because the regulator does not need to know the channels α1, . . . , αK and can adapt the

prices β to the less fluctuating QoS requirements u. This property reduces the computational

complexity of the regulator and since u is a long-term constant, the update of the universal

pricing parameters is slow.

Given the weights w in (4.8), the pricing parameters are within the interval

0 < βk < 1−
1

2uk
,

since 0 < 1− 1
2uk and 0 < 1−

∑

j 6=k wj2
uj < 1.
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4.2.1.2 Cost Terms and Optimal Weights

We assume all the users pay the virtual fee to the system operator for the service depending

on their transmit power allocation. The total cost paid to the regulator by all the users is

cK(β,p) =

K∑

j=1

βj log pj. (4.12)

On the basis of guaranteeing the rate requirement of each user, the regulator will choose the

weight vector w in order to maximize the revenue cK from the users, i.e., w := maxw cK(β,p).

Inserting the results in Proposition 4.2,

cK(β,p) =

K∑

j=1

(1−
1

2uj
)
(

1−
∑

l 6=j

wl2
ul

)

log pj

= ξ −

K∑

j=1

(1−
1

2uj
) log pj ·

∑

l 6=j

wl2
ul ,

where ξ =
∑K

j=1(1−
1

2
uj ) log pj is a constant with respect to weights w.

Since pj is independent of w, we formulate a linear programming (LP) problem to solve w.

minw lT ·w (4.13)

s.t.
1 + 1

2uk − 1
K−1 ·

∑K
j=1

1
2
uj

K − 1
< wk <

1

2uk(K − 1)
,

where lT = [2u1
∑K

j=2(1−
1

2
uj ) log pj, · · · , 2

uk
∑

j 6=k(1−
1

2
uj ) log pj, · · · , 2

uK
∑K−1

j=1 (1− 1
2
uj ) log pj ].

4.8 Example. The LP problem for the general K-user MAC system without SIC can be solved

easily. Here we provide the result of the 2-user MAC without SIC. With w1 = 1 − w2, if

2u2(1− 1
2u1 ) log p1−2u1(1− 1

2u2 ) log p2 ≥ 0, then w1 =
1

2u1 for user 1 and w2 = 1− 1
2u1 for user 2.

Otherwise w1 = 1− 1
2u2 and w2 = 1

2u2 . Fig. 4.3 shows the contour result of the corresponding

cost terms in the feasible utility region Upmax using optimal pricing and weights.

4.2.2 Non-linear Receiver with SIC

In Chapter 3 [94], universal linear pricing for MAC with SIC was presented. To gain a com-

prehensive understanding and to compare the pricing mechanism with and without SIC, we

consider the same universal non-linear pricing mechanism of the MAC with SIC.
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4.2.2.1 Power Allocation and Universal Non-linear Pricing

Without loss of generality, we assume the SIC decoding order as π = [K → · · · → 1] and

denote the variables with SIC . This decoding order remains the same throughout the whole

paper if not specified otherwise.

4.9 Proposition. In the MAC system with SIC decoding order of π = [K → · · · → 1], the power of

each user k allocated by the system optimizer in order to maximize the UMP is

pSICk =
2uk − 1

αk
·
k−1∏

j=1

2uj . (4.14)

The pricing parameter charged by the regulator for ensuring the user QoS requirement u is

βSIC
k = (2uk − 1)

K∑

j=k

wj − wj+1
∏j

m=k 2
um

. (4.15)

Proof. See Proof 4.5.2.

4.10 Remark. The power allocation pSICk is only dependent on its own channel αk and utility

requirement uk, and ul of all the users l which are decoded after user k. pSICk is the same as

(3.7). In contrast to the results of Theorem 1 in [94] ((3.6) in Chapter 3), the pricing parameter

βSIC
k is only dependent on the weights wl and all the ul of user l which are decoded earlier

than user k. In particular, same as βk for MAC without SIC, βSIC
k is independent of the CQI

α.

4.11 Corollary. If the regulator provides weights

wSIC
1 ≥ · · · ≥ wSIC

k ≥ · · ·wSIC
K , (4.16)

then the corresponding pricing parameters are in the range 0 ≤ βSIC
k < 1− 1

2uk .

Proof. Another form of the pricing parameter βSIC
k in (4.15) is

βSIC
k =

(
1−

1

2uk

)
·
(

wk + wk+1(
1

2uk+1
− 1) + · · ·+ wK ·

1
∏K−1

j=k+1 2
uj

(
1

2uK
− 1)

)

. (4.17)

Since u ≥ 0, 1
2
uj

− 1 < 0. From
∑K

j=1wj = 1, βSIC
k is always smaller than 1− 1

2uk . From (4.15),

if the weights given by the regulator are in order (4.16), then βSIC
k is always larger than 0.
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4.2.2.2 Cost Terms and Optimal Weights for MAC with SIC

As in the MAC system without SIC, the regulator in the MAC system with SIC chooses weights

wSIC in order to maximize its total revenue, i.e.,

wSIC := max
w

cSICK (βSIC , pSIC),

from all the K users. Here cSICK (βSIC , pSIC) =
∑K

j=1 β
SIC
j log pSICj .

The weight vector wSIC can be solved by the LP problem as follows.

maxwSIC lSIC ·wSIC (4.18)

s.t. wSIC
1 > · · · > wSIC

k > · · · > wSIC
K ,

K∑

j=1

wSIC
j = 1,

where lSIC = [(1− 1
2u1 ) log p

SIC
1 , (1− 1

2u1 )(
1

2u2 −1) log pSIC1 +(1− 1
2u2 ) log p

SIC
2 , · · · ,

∑K−1
j=1 (1−

1
2
uj
)( 1

2uK
− 1) · 1

∏K−1
i=j+1 2

ui
log pSICj + (1− 1

2uK ) log pSICK ].

4.12 Example. We address the result for the 2-user MAC with SIC decoding order of π = [2 →

1]. This order is the best by means of minimizing the sum power [94]. If (1 − 1
2u1 )(

1
2u2

−

2) log pSIC1 + (1 − 1
2u2 ) log p

SIC
2 ≥ 0, then wSIC

2 = maxwSIC
2 < wSIC

1 . Otherwise wSIC
2 =

minwSIC
2 . Fig. 4.4 shows the contour result of the corresponding cost terms in the feasible rate

region. We use maxw2 = 0.4 and minw2 = 0.1 in Fig. 4.4.

The curves in the u1 − u2 plane in Fig. 4.3 and Fig. 4.4 show the cost terms for different QoS

requirements in the feasible utility region with optimal weights. It is clear that the higher the

utility requirements, the higher the cost. Notice that the cost terms are below zero for small u

because the power allocation for small utilities is low. This can be seen as a stimulation mea-

sure, that the users with good channels and low utility requirements could even get payback

from the system because they consume less power and produce lower interference to the oth-

ers. Of course, this negative cost terms can be compensated by adding a constant cost, so the

system which provides service will in total always get positive fees or become at least budget

balanced.

4.3 Cheating Problem

From a game theoretic point of view, the users have incentives not to report their true types. It

is possible for the user k to manipulate the universal non-linear pricing scheme by reporting

the CQI α̂k instead of the true αk in order to maximize its own short-term user-utility.

In this section, we analyze the incentives of the user misbehavior and their best cheating

strategy. Based on this, the cheat-proof pricing strategy is proposed in the next section. First
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Figure 4.3: Cost term for the 2-user MAC without SIC in the feasible utility region Upmax with
the optimal pricing and weights given in Example 4.8
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we investigate the influence on power allocation and the resulting achievable rate if there ex-

ists a cheater, namely user k, who cheats on its CQI by reporting α̂k 6= αk. Then, we study

the optimal cheating strategy of the cheater for the MAC system with and without SIC, respec-

tively.

4.3.1 Rate Analysis

Since the power pk(α̂) allocated by the system optimizer is only dependent on u and α̂k, pk(α̂)

satisfies the QoS requirements u with the reported channels α̂, i.e.,

uk = log

(

1 +
α̂kpk(α̂)

Ik(p)

)

, and

ul = log

(

1 +
αlpl(α̂)

Il(p)

)

, l 6= k. (4.19)

When l 6= k for MAC without SIC and l > k for MAC with SIC, the component α̂kpk(α̂) of the

cheated CQI α̂k and the power allocation pk(α̂) after cheating is involved in Il(p). i.e.,

I linl (p) = 1 +
∑

j 6=l,j 6=k

αjpj(α̂) + α̂kpk(α̂) (4.20)

for l 6= k in MAC without SIC and

ISICl (p) = 1 +

l−1∑

j=1,j 6=k

αjpj(α̂) + α̂kpk(α̂) (4.21)

for l > k in MAC with SIC. We interpret the optimal power allocation as a function of α̂, i.e.,

p(α̂) solves (4.19). The actual rate achieved after cheating for each user k is rk(α̂).

4.13 Lemma. By cheating only the own power allocation does change. e.g., if α̂k > αk (α̂k < αk),

then the power allocation is

1. pk(α̂) < pk(α) (pk(α̂) > pk(α)),

2. pl(α̂) = pl(α) for all l 6= k.

The actual rate rl(α̂) achieved after cheating deviates from the rate requirement ul. If α̂k < αk, then

the actual rate

1. rk(α̂) > uk for the cheater k;

2. rl(α̂) < ul for l 6= k in MAC without SIC;

3. rSICl (α̂) < ul for l > k and rSICl (α̂) = ul for l < k in MAC with SIC.

And vice versa.
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Proof. See Proof 4.5.3.

In round i the regulator is able to detect the misbehavior of user k in round i − 1 since the

rates achieved by some other users are lower than the utility requirements while the rate of

user k is higher than its utility requirement if α̂k < αk.

4.3.2 Optimal Cheating by User Utility Maximization

Besides achieving its SINR-based QoS requirement uk, each user k has its own short-term user

utility ûk(u, α̂
i,w) in each round i to maximize with respect to the reported CQI α̂k. Denote

ûk(u, α̂
i,w) and ûk(u,α

i,w) as the user-utility with and without cheating, respectively. Since

the pricing parameter is independent of the CQI, βi
k is the same for both ûk(u, α̂

i,w) and

ûk(u,α
i,w), where

ûk(u, α̂
i,w) = rik(α̂)− βi

k log p
i
k(α̂) (4.22)

= log

(

1 +
αk

α̂k

(2uk − 1)

)

− βi
k log

( yk
α̂i
k

)

,

ûk(u,α
i,w) = uk − βi

k log

(
yk
αk

)

. (4.23)

For MAC without SIC, yk = BK
2uk−1
2uk , βk = (1− 1

2uk )(1−
∑

j 6=k wj2
uj) and for MAC with SIC,

ySICk = (2uk − 1)
∏k−1

j=1 2
uj and βi,SIC

k = (2uk − 1)
∑K

j=k
wj−wj+1
∏j

m=k
2um

, respectively.

From Lemma 4.13, the users do not have incentives to cheat for a higher CQI α̂k > αk since

its rate requirement uk will not be fulfilled after cheating. Due to single user power constraint

pmax in the wireless system, the minimum effective CQI in transmission for each user k is

αmin,k =
BK

pmax

2uk − 1

2uk

for MAC without SIC and

αSIC
min,k =

2uk − 1

pmax

k−1∏

j=1

2uj

for MAC with SIC.

4.14 Theorem. Assume u ∈ Upmax . If the regulator provides weights as in (4.8) for MAC without

SIC or in (4.16) for MAC with SIC, then in round i the malicious (selfish)1 user always reports its

lowest CQI αmin,k or αSIC
min,k in order to maximize its own user-utility ûk(u, α̂

i,w), respectively.

Proof. See Proof 4.5.4.

1Note that the cheating user is selfish (because it maximizes its own user-utility ûk(u, α̂
i
,w)) and also malicious

(because all other users in the system suffer according to Lemma 4.13).
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After cheating with the CQI αmin,k, the user utility of user k in round i is

max ûk(u, α̂
i,w) = log (1 + zk(2

uk − 1))− βi
k log

( yk
αmin,k

)

, (4.24)

where zk = αk

αmin,k
= 2r

i
k
(α̂)

−1
2uk−1 and yk is defined below (4.23). The real rate for the cheater k in

MAC without SIC achieved after cheating in round i is

rik(α̂) = log

(

1 +
αkpmax

BK
· 2uk

)

. (4.25)

The real rate for MAC with SIC after cheating with α̂SIC
k = αSIC

min,k is

ri,SICk (α̂) = log

(

1 +
αkpmax
∏k−1

j=1 2
uj

)

. (4.26)

In Theorem 4.14, we derive how the user, who cheats, misbehaves by reporting the smallest

CQI αmin,k and αSIC
min,k for the MAC without and with SIC. In the next section, we propose a

repeated game mechanism with trigger pricing which counters such misbehavior.

4.4 Cheat-proof Pricing and Repeated Game

In this section, we calculate the incentive compatible mechanism to prevent cheating in the

general MAC system with and without SIC. The mechanism includes two parts: 1) Worst case

strategy to ensure the utility requirement of all the honest users: We propose the worst case

power allocation with the worst case pricing parameters. 2) Repeated game formulation with

trigger strategy: We show that it is possible to provide the proper trigger price in order to

prevent user misbehavior analysed in Sec. 4.3.

4.4.1 Repeated Game Design

We assume the regulator adopts the repeated game so that the user misbehavior is detected

and the cheating on the CQI is prevented. A typical repeated game is played in several or

infinite rounds, denoted as i = [0, · · · ]. We adopt the infinite RG in this section in order to

prevent the users cheating. A model with an infinite horizon is appropriate if, after each

round, the players believe that the game will continue for an additional round, while a model

with a finite horizon is appropriate if the players clearly perceive a well-defined final round

[95]. In this case, the finite RG is not appropriate. Because the players can change their strategy

profile in each round of the finite RG. It is possible that the selfish (malicious) users cheat in

the last round of the finite repeated game while pretend to be honest in the first played rounds.

If so, then no punishment can be applied to the cheaters and the utility requirements of the

other users can not be guaranteed.
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For the case in which one user misbehaves, e.g., user k, we assume that in each round i, the

selfish user k maximizes its own short-term user-utility ûk(u, α̂
i,w) = rik(α̂) − βk log pk(α̂).

The users may have incentives to cheat on their CQI (α̂ 6= α) to achieve additional profits in

ûk(u, α̂
i,w). In order to prevent cheating, a RG is operated among all the users in the system

and the regulator. Whenever the regulator detects a user misbehavior, the trigger strategy Vk

is applied on the cheater k from that round on with the trigger pricing parameter βtr
k .

Instead of adjusting the strategy in each stage game, the players in the infinite RG choose

their best strategy once at the beginning of the game by anticipating the expected total payoff.

The mechanism of RG serves as a deterrence (threat) for the players who utilize it, since by

anticipating the long-term total payoff in RG, the cheater will gain nothing and the honest

users will always fulfill their utility requirements with the worst-case strategy.

It is always apposite to consider user k cheats for αmin,k in the 0-th round in the RG. In order

to guarantee the utility requirements ul for users l 6= k, the worst case strategy is performed

for all the K − 1 honest users, where user k is removed from the system optimization.

4.4.2 Worst Case Strategy for Honest Users

From the cheating round on, the system optimizes UMP of the K − 1 users with the standard

procedure given in Sec. 4.2. We denote the parameters in worst case strategy with notation wc.

We refer to it as worst case strategy because the best cheating strategy of the malicious user is

to report α̂k = αmin,k. If the regulator can ensure the rate requirement of all the honest users

in this case, then u can always be guaranteed.

ũ(p,β,w)wc =
∑

l 6=k

wl log

(

1 +
αlp

i,wc
l

Iwc
l (pwc)

)

−
∑

l 6=k

βi,wc
l log

(
pi,wc
l

)
, (4.27)

where for MAC without SIC, I linl,wc(p
wc) = N+

∑

j 6=k,l αjp
i,wc
j and for MAC with SIC, ISICl,wc (p

wc) =

NSIC +
∑l−1

j=1, 6=k αjp
i,SIC
j,wc . N = 1 + αkpmax is the worst-case noise-plus-interference.

The system optimizer in round i observes the misbehavior of user k by its actual rate ri−1
k (α̂).

Then the real CQI2 αk of user k for MAC without SIC is calculated by

αk =
2r

i−1
k

(α̂) − 1

2uk − 1
αmin,k =

2r
i−1
k

(α̂) − 1

pmax

(

BK ·
1

2uk

)

. (4.28)

And for MAC with SIC,

αSIC
k =

2r
i−1,SIC
k (α̂)− 1

pmax
·
k−1∏

j=1

2uj . (4.29)

2Note that the calculation of the real channel αk is different for MAC systems with and without SIC.
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Since users l 6= k are honest, by observing αk of the cheater k in N , the utility requirement ul
for all l 6= k needs to be achieved in the worst-case, which solves (4.27).

4.15 Proposition. For the MAC system without SIC, the worst case power allocation pi,wc
l for all the

honest users l 6= k, after user k cheated in the i− 1th round, is

pi,wc
l =

N

αl
·
2ul − 1

2ul
·BK−1, l 6= k, (4.30)

where BK−1 =
1

∑

j 6=k
1

2
uj

−K+2
and N = 1+ (2r

i−1
k

(α̂)− 1)BK

2uk . The real rate achieved by user k in the

(i− 1)-th round ri−1
k (α̂) is obtained by (4.25).

The worst case pricing parameter is

βi,wc
l =

(

1−
1

2ul

)(∑

j 6=k

wi
j −

∑

j 6=l,k

wi
j · 2uj

)

. (4.31)

If the regulator gives wi
k = 0 for the cheating user k, then

∑

j 6=l,k w
i
j = 1.

Proof. See Proof 4.5.5.

4.16 Proposition. For the MAC with SIC decoding order π = [K → · · · → 1], the worst-case power

allocation pi,SICl,wc for all the honest users l 6= k, after user k cheated in the i− 1th round, is

1. pi,SICl,wc = pi,SICl , for l < k

2. pi,SICl,wc = (2ul−1)
αl

∏l−1
j=1,j 6=k 2

uj · 2r
i−1,SIC

k
(α̂), for l > k.

The worst case pricing parameter is

1. βi,SIC
l,wc = (2ul − 1)

(
∑k−1

j=l
wj−wj+1
∏j

i=l
2ui

+
∑K

j=k
wj−wj+1

∏j
i=l, 6=k

2ui · 2r
i−1,SIC
k

(α̂)

)

, for l < k

2. βi,SIC
l,wc = βi,SIC

l , for l > k.

Proof. See Proof 4.5.6.

4.17 Corollary. After user k cheated in the i − 1th round, the worst case power allocation for all the

honest users l 6= k is always larger than or equal to the power in (4.6) and (4.14), respectively.

Proof. For MAC without SIC, since ri−1
k (α̂) > uk, N > 1 + (2uk − 1)BK

2uk =

∑

j 6=k
1

2
uj

−K+2
∑K

j=1
1

2
uj

−K+1
=

BK

BK−1
> 1. Substituting (4.30) with N > BK

BK−1
, then pi,wc

l > BK

αi

2ui−1
2ui = pl is proved.

For MAC with SIC, from Lemma 4.13 and Theorem 4.14, ri−1,SIC
k (α̂) > uk, therefore, com-

paring pi,SICl,wc with pSICk in (4.14), the worst case power allocation pi,SICl,wc ≥ pSICk .
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4.4.3 Repeated Game with Cheat-proof Pricing

Finally, a repeated game is designed to prevent cheating. All the users participating in the

RG know the rules and the trigger strategy. Since in real life, the players are not patient and

thereby they discount the future payoff in the infinite RG, we will focus our analysis in the

δ-discounting infinite RG at first. Later on, the extension to other specification of the time-

average infinite games is also discussed (See Proof 4.5.8). We conclude that by adopting the

well designed infinite RG using the trigger strategy with the proper trigger price βtr
k , no player

will have incentive to cheat on their reported CQI.

For the δ-discounting infinite RG, each user anticipates its long-term total payoff in the RG3

as

ūk = (1− δk)

∞∑

i=0

δikûk(u, α̂
i,w), (4.32)

where δk is the discount factor, 0 < δk < 1. When the honest users report their real CQI

α̂i
k = αk to the system optimizer, their total payoff is

ūk(α) = uk(u,α
0,w) · (1− δk)

∞∑

i=0

δik

= uk(u,α
0,w) = uk − β0

k log p
0
k. (4.33)

When cheating occurs, without loss of generality, we assume that user k cheats αmin,k in round

zero. Then the system optimizer detects it by (4.25) and (4.26) and reports it to the regulator in

the first round. From then on, the trigger strategy works on the malicious user k and leads to

a certain trigger utility Vk. The long-term total payoff ūk(Vk) for user k to cheat with αmin,k is

ūk(Vk) = (1− δk) · ûk(u, α0
min,k,w) + (1− δk)

∞∑

i=1

δikVk

= (1− δk) ·
(
r0k(α̂)− β0

k log(pmax)
)
+ δkVk. (4.34)

In order to prevent users from cheating about their channels, the overall long-term payoff

ūk(Vk) with cheating should be smaller than the honest total payoff ūk(α) with true CQI αk.

Thereby, the overall payoff gain ∆uk(Vk) = ūk(α)− ūk(Vk) of user k should be positive, where

∆ūk(Vk) = uk − β0
k log p

0
k − (1− δk)

·
(
r0k(α̂)− β0

k log(pmax)
)
− δkVk. (4.35)

We claim that the RG formulation is an incentive compatible strategy-proof mechanism.

3We will use ūk with different arguments depending on the context.
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Figure 4.5: Overall payoff gain ∆ū2(V2) between honesty and cheating as a function of the
number of rounds T with βtr

2a < βtr
2 . pmax = 5, u1 = 0.5, u2 = 1, u3 = 0.1, α2 = 1, w2 =

0.3, w3 = 0.2, δ2 = 0.5 for 3 users MAC

4.18 Proposition. In an infinite repeated game, it is possible for the regulator to compute a trigger

pricing parameter βtr
k such that misbehavior is prevented for the MAC with and without SIC.

Proof. See Proof 4.5.7 for the δ-discounting infinite RG and Proof 4.5.8 for the time-average

RG.

4.4.4 Numerical Illustration

All the illustrations are made for the δ-infinite RG.

Fig. 4.5 shows the overall payoff gain ∆ū2(V2) of user two with and without cheating in

both the 3-user MAC systems with and without SIC, respectively, if the upper limit of rounds

is T (where T → ∞, it is ūk in (4.32)). The SIC decoding order is [3 → 2 → 1]. It can be

observed that, only after one round, the total payoff ū2(V2) with cheating is smaller than the

honest total payoff ū2(α). With the punishment trigger strategy, the users will always report

their true CQI α in order to maximize their total payoff in the RG.

Fig. 4.6 shows how fast ∆ū2(V2, δ2) is changing with δ2. The overall payoff gain ∆ū2(V2, δ2)

of user two without and with cheating is always positive for all discount factor 0 < δ2 < 1. No-

tice that ∆ū2(V2, δ2) using βtr,SIC
2a is constant with respect to δ2. This is because by substituting

βtr,SIC
ka into (4.35), ∆ūSICk (Vk) = β0,SIC

k log

(

pmax

p
0,SIC
k

)

is independent of the discount factor δk.
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Figure 4.6: Overall payoff gain ∆ū2(V2, δ2) between cheating and honesty as a function of δ2
with βtr

2a < βtr
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Figure 4.7: Sum utility of each user up to different rounds for the 5-user MAC without SIC.
pmax = 5, u1 = 0.3, u2 = 0.5, u3 = 0.1, u4 = 0.2, u5 = 0.1, α1 = 1, α2 = 2, α3 = 0.5, α4 = 1, α5 =
0.2, w1 = 0.2, w2 = 0.3, w3 = 0.2, w4 = 0.1, w5 = 0.2. User 1 cheats in the 0th round, user 2
cheats in the 1st round and all the others are honest.
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Fig. 4.7 shows the sum utility of each user up to different rounds for the 5-user MAC without

SIC. We assume user 1 cheats in the 0-th round, user 2 cheats in the first round and all the

others are honest. Trigger strategy is applied immediately after the misbehavior is detected. It

is shown that by cheating, the short-term utility is higher. However, with the trigger strategy

as a punishment, the sum utility decreases rapidly. Therefore, with the proposed RG, no user

will have incentive to cheat.

4.5 Proofs

4.5.1 Proof of Proposition 4.2

The power allocation for the uplink MAC can be obtained by p = (Da −At)−1 ·1 [9, Chapter

10.3.2], where Da := Diag( 1
a1
, . . . , 1

aK
) with ak = SINRk

(1+SINRk)αk
and At is a K × K matrix

with index of α. 1 is a vector with all 1s. Define the coupling matrix CK = Da − At, then

CK ·p = 1 . With QoS requirement uk = log(1 + SINRk), so ak = 2uk−1
2ukαk

and the matrices

At =







α1 . . . αk . . . αK

...
. . .

...
. . .

...

α1 . . . αk . . . αK






,

CK =











α1
2u1−1 −α2 . . . −αK

−α1
α2

2u2−1 . . . −αK

...
...

. . .
...

−α1 −α2 . . . αK

2uK−1











. (4.36)

From Cramer’s rule [96], the power allocation pi, i = 1, . . . ,K, is solved by

pi =
det(Ci

K)

det(CK)
, i = 1, . . . ,K, (4.37)

where Ci
K is the matrix formed by replacing the ith column of CK by the column vector 1 .

Thereby, pi is solved by det(Ci
K) =

∏

j 6=i
αj

2
uj−1

· 2uj and det(CK) =
∏

j αj · det(C
′

K), where

C
′

K is a matrix with diagonal indices of 1
2ui−1 and all the other components of −1, so that

det(C
′

K) = (−1)K ·
∏K

j=1
2
uj

1−2
uj

·
(

1
2u1 −

∑K
j=2

2
uj−1
2
uj

)

=
∏K

j=1
2
uj

2
uj−1

· (
∑K

j=1
1

2
uj

−K+1). Then

from (4.37), the power allocation (4.6) for the K-user MAC without SIC is proved.

The pricing parameters β can be solved by the first optimality condition ∂ũ(p,β,w)
∂sk

= 0. With

pk = esk , the pricing parameter is βk = αkpk

(

1
1+

∑K
j=1 αjpj

−
∑

j 6=k
wj

1+
∑

i6=j αipi

)

. By substitut-

ing pk in (4.6), the closed form of the pricing parameter βk is obtained as (4.7).

The regulator always provide positive prices, so the weights should ensure the range of

1−
∑

j 6=k wj2
uj > 0. We use a matrix formulation to solve wj for

∑

j 6=k wj2
uj < 1, j = 1, . . . ,K,
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as UK ·W < 1 . The indices of UK are [UK ]m,m = 0 and [UK ]m,n = 2un , m 6= n. Applying

Cramer’s rule, 0 < wi <
det(U i

K)
det(UK) , where U i

K is the matrix formed by replacing the ith column

of UK by the column vector 1 . wi is solved by det(U i
K) = (−1)K−1 ·

∏

j 6=i 2
uj and det(UK) =

(−1)K−1(K − 1)
∏K

j=1 2
uj so that the upper bound of wi is wi <

det(U i
K)

det(UK) =
1

2ui · (K−1) .

Since
∑K

j=1wj = 1, 0 < 1 −
∑

j 6=k wj < 1
2uk · (K−1) . In order to obtain the lower bound of

wk, we calculate 1 − 1
2
uj · (K−1)

<
∑

j 6=k wj < 1 by the matrix E ·W > F , where E = 1 − I

is a K × K matrix and each row i of F is 1 − 1
2ui(K−1) . Use the Cramer’s rule, wi >

det(Ei)
det(E) ,

where det(E) = (−1)(K−1) · (K − 1) and det(Ei) = (−1)(K−1) ·
[

1 + 1
2ui −

1
K−1 ·

∑K
j=1

1
2
uj

]

.

Therefore, wi >
det(Ei)
det(E) =

1+ 1
2ui

− 1
K−1

· ∑K
j=1

1

2
uj

K−1 , and in Upmax , (4.8) is always true.

4.5.2 Proof of Proposition 4.9

For MAC system with SIC and universal non-linear pricing mechanism, the result for power

allocation is the same as in [94], because the pricing mechanism does not change the system

power allocation in order to achieve the single user utility requirement u. However it can also

be calculated by pSIC = (DSIC
a − At

SIC)
−1 ·1 , where Da

SIC is same as Da for the K-user

MAC without SIC. For the SIC decoding order of π = [K → · · · → 1], At
SIC and the coupling

matrix CSIC
K = (DSIC

a −At
SIC) are lower-triangular matrices of At and CK , respectively.

The regulator offers the pricing parameters βSIC by solving the first optimality condition
∂ũ(p,β,w)SIC

∂sk
= αke

sk

(
∑K

j=k

wSIC
j

1+
∑j

i=1 αie
si
−
∑K

j=k+1

wSIC
j

1+
∑j−1

i=1 αie
si

)

− βSIC
k = 0. Substitute pSICk

in (4.14) for esk and denote xSICj = 1 +
∑j

i=1 αip
SIC
i =

∏j
i=1 2

ui (see Theorem 1 in [94]), then

βSIC
k = αkp

SIC
k ·

(wSIC
k − wSIC

k+1

xSICk

+ · · ·+
wSIC
K−1 − wSIC

K

xSICK−1

+
wSIC
K

xSICK

)

. (4.38)

With αkp
SIC
k = (2uk − 1)

∏k−1
j=1 2

uj , βSIC
k in (4.15) is proved. For other SIC decoding orders

than π = [K → · · · → 1], the process is similar.

4.5.3 Proof of Lemma 4.13

Since all the utility requirements uj , j = 1, . . . ,K are fixed, both the power allocation in (4.6)

and (4.14) are only dependent on and are monotonically decreasing in the reported CQI α̂k.

If α̂k < αk, then pk(α̂) > pk(α) and vice versa. For all honest users, α̂l = αl, l 6= k, thereby

pl(α̂) = pl(α).

The actual rate rk(α̂) achieved by power allocation pk(α̂) for the cheater k with the real CQI

αk is rk(α̂) = log
(

1 + αkpk(α̂)
Ik(p)

)

= log
(

1 + αk

α̂k
(2uk − 1)

)

. Compare with the rate requirement

uk calculated in (4.19). If α̂k < αk then rk(α̂) > log(1 + 2uk − 1) = uk and vice versa.
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For MAC without SIC, the actual rate achieved by the honest user l, l 6= k, is

rl(α̂) = log

(

1 +
αlpl

1 +
∑

m6=l,k αmpm + αkpk(α̂)

)

. (4.39)

For MAC with SIC decoding order π = [K → · · · → 1], the actual rate achieved by each user

l, l < k, remains the same as ul since the misbehavior of user k has no influence on those users

who are decoded later than it. But the actual rate achieved by each user l, l > k, is

rSICl (α̂) = log

(

1 +
αlpl

1 +
∑l−1

m=1,m6=k αmpm + αkpk(α̂)

)

. (4.40)

If α̂k < αk, then pk(α̂) > pk(α) and αkpk(α̂) > α̂kpk(α̂). Comparing with (4.19), rl(α̂) < ul,

and vice versa. Note that for all users l 6= k in MAC with SIC, rl(α̂) = ul holds if and only if

the cheater is the first decoded user at the receiver by SIC. This completes the proof.

4.5.4 Proof of Theorem 4.14

First we make a curve analysis of ûik(u, α̂,w). Rewrite (4.23) as

ûik(u, α̂,w) = log
((α̂k + αk(2

uk − 1))α̂
βi
k

k

α̂k · y
βi
k

k

)

= log
( α̂

βi
k

k + αk(2
uk − 1) · α̂

(βi
k
−1)

k

y
βi
k

k

)

,

where yk > 0 in Upmax . From (4.7) and (4.15), 0 < βi
k < 1 − 1

2uk , βi
k − 1 < 0. Therefore,

limα̂k→0 u
i
k(u, α̂,w) → ∞ and limα̂k→∞ uik(u, α̂,w) → ∞. It is important to check the utility

ûik(u, α̂,w) with respect to the reported CQI α̂i
k. Assume that user k cheats for α̂k in round

0, the first and second derivative of û0k(u, α̂,w) are ∂û0
k
(u,α̂,w)
∂α̂k

= 1
α̂k+αk(2

uk−1) +
βi
k
−1

α̂k
and

∂2û0
k
(u,α̂,w)

∂α̂2
k

= −1
(α̂k+αk(2

uk−1))2
+

1−βi
k

α̂2
k

, respectively. There is only one valid α̂∗
k =

1−βi
k

βi
k

αk(2
uk −1)

fulfilled with ∂û0
k
(u,α̂,w)
∂α̂k

= 0. Since the second derivative at α̂∗
k

∂2û0
k
(u,α̂,w)

∂α̂2
k

∣
∣
∣
α̂k=α̂∗

k

=
βi2
k

α2
k
(2uk−1)2

(
βi
k

1−βi
k

)

is always positive, α̂∗
k is the global minimum of the user own utility uik(u, α̂,w).

As shown in Fig 4.8, in the feasible utility region for both MAC systems, the short-term user

utility û0k(u, α̂,w) is convex in α̂k with global minimum α̂∗
k =

1−βi
k

βi
k

αk(2
uk − 1). At α̂k = αk,

the user utility is decreasing since its first derivative ∂û0
k
(u,α̂,w)
∂α̂k

∣
∣
∣
α̂k=αk

=
1+(βi

k
−1)2uk

αk2
uk

is always

negative. Therefore, in order to maximize its own utility, the user will always report αmin,k.
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Figure 4.8: User utility û0k(u, α̂,w) vs. reported channel α̂k

4.5.5 Proof of Proposition 4.15

The system optimizer allocates the power by solving the worst-case UMP in (4.27) for all the

K − 1 honest users with the same procedure as in Sec. 4.2. The differences lie in At
K−1 and

the corresponding coupling matrix CK−1 = Da − At
K−1, where the indices of [At

K−1]m,n =

αn for m,n 6= k and [CK−1]m,m = αm

2um−1 , [CK−1]m,n = −αn for m 6= n and m,n 6= k.

Solve CK−1 ·pi,wc = N by using the Cramer’s rule, pi,wc
l =

detCi
K−1

detCK−1
. Since detCK−1 =

∏

j 6=k αj
2
uj

1−2
uj ·

[
∑

j 6=k
1

2
uj −K + 2

]

and detCi
K−1 = N

∏

j 6=k,l αj
2
uj

2
uj−1

, the worst-case power

(4.30) is proved.

The derivation of βwc
l is similar to Section 4.2. Substitute N and BK−1 for pwc

l to solve

βwc
l = αlp

wc
l

(
∑

j 6=k
wj

N+
∑

i6=k αip
wc
i

−
∑

j 6=k,l
wj

N+
∑

i6=j,k αip
wc
i

)

. Then Proposition 4.15 is proved.

4.5.6 Proof of Proposition 4.16

From Remark 4.10, when user k cheats, since the power allocation of user l for MAC with SIC

is only dependent on u of users which are decoded later than l, pi,SICl,wc = pSICl for l < k.

For the users l > k, their QoS requirements are achieved even though the cheater k uses

pmax

rwc,SIC
l = log

(

1 +
αlp

i,SIC
l,wc

xwc
l−1 + αkpmax

)

= log
( qwc

l

qwc
l−1

)

≥ ul, l > k (4.41)

where xwc
l−1 = 1 +

∑l−1
j=1,j 6=k αjp

wc
j . Denote qwc

l = xwc
l + αkpmax. Since pi,SICl,wc = pSICl for l < k,

xwc
k−1 = xk−1 =

∏k−1
j=1 2

uj (see proof of Theorem 1 in [94]). Thereby, qwc
k = xk−1 + αkpmax =
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∏k−1
j=1 2

uj+αkpmax. Then qwc
k+1 = 2uk+1 · (

∏k−1
j=1 2

uj+αkpmax) and qwc
l =

∏l
j=k+1 2

uj · (
∏k−1

j=1 2
uj+

αkpmax), l > k, if equality holds in (4.41). From ul = log

(

1 +
αlp

i,SIC
l,wc

qwc
l−1

)

and pi,SICl,wc = 2ul−1
αl

· qwc
l−1,

pi,SICl,wc =
2ul − 1

αl
·

l−1∏

j=k+1

2uj · (
k−1∏

j=1

2uj + αkpmax), (4.42)

for l > k.

Then substitute αk given in (4.29), pi,SICl,wc = 2ul−1
αl

·
∏l−1

j=k+1 2
uj · 2r

i−1,SIC
k

(α) is proved.

For the pricing parameters for MAC with SIC, βi,SIC
l,wc remains the same as βi,SIC

l for l > k

since it is only dependent on wj and uj where j > l. For l < k, the system optimizer will

solve the UMPSIC of (4.27). With the result of pi,SICl,wc and αk, the worst case pricing parameter

βi,SIC
l,wc is solved. The trick is that the regulator chooses the weight wSIC

k,wc = 0. Thereby, in the

pricing βi,SIC
l,wc , there is no component of wSIC

k,wc and all the components of 2uk are replaced with

rSICk (α̂).

4.5.7 Proof of Proposition 4.18 (for δ-discount RG criterion)

The road map of the proof is that the MAC system with and without SIC are treated together

at the beginning. Later on, they will be analyzed separately with SIC to denote the MAC with

SIC. The trigger utility Vk is some realization of the utility function with the trigger pricing

parameter βtr
k when pmax is allocated to the cheater k since α̂k = αmin,k, i.e.,

Vk := log

(

1 +
αkpmax

Ik(pwc)

)

− βtr
k log(pmax). (4.43)

In order to ensure ∆ūk(Vk) ≥ 0, the trigger strategy Vk fulfills

Vk ≤
uk
δk

−
1− δk
δk

r0k(α̂)

−
β0
k

δk

(
log(p0k)− (1− δk) · log(pmax)

)
. (4.44)

For MAC system without SIC, the interference function in (4.43) is I link (pwc) = 1+
∑

l 6=k αlp
i,wc
l .

With the worst case power allocation (4.30), I link (pwc) = 1−N +N ·BK−1.

For convenience, we define the RHS of (4.43) as V l
k , and RHS of (4.44) as V r

k so that βtr
k is

solved by fulfilling V l
k ≤ V r

k . Since p0k < pmax, δk < 1 and β0
k < (1− 1

2uk ), we obtain

V r
k >

1− δk
δk

(
uk

1− δk
− r0k(α̂)

)

− β0
k log(pmax) (4.45)

>
1− δk
δk

(
uk

1− δk
− r0k(α̂)

)

− log(pmax). (4.46)
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V l
k is upper bounded by the utility with no interference and pmax allocated to user k. Therefore

V l
k ≤ log (1 + αkpmax)− βtr

k log(pmax). If the regulator gives the trigger pricing parameter

βtr
k ≥ 1 +

1

log(pmax)
·
(

E −
uk
δk

+
1− δk
δk

r0k(α̂)

)

(4.47)

by applying (4.46), or more tightly

βtr
ka ≥ β0

k +
1

log(pmax)
·
(

E −
uk
δk

+
1− δk
δk

r0k(α̂)

)

(4.48)

by applying (4.45), where E = log(1 + αkpmax), then ∆ūk(Vk) is always positive.

For MAC with SIC decoding order [K → · · · → 1], the interference function in (4.43) is

ISICk (pwc) = 1 +
∑

l<k αlp
i,SIC
l,wc . From Proposition 4.16, pi,SICl,wc = pi,SICl for all l < k, therefore

V SIC
k = r0,SICk (α̂)− βtr,SIC

k log(pmax). (4.49)

Substitute V SIC
k into (4.34) and (4.35), respectively. The overall payoff difference for MAC

with SIC is

∆uk(V
SIC
k ) = uk − r0,SICk (α̂)− β0,SIC

k log p0,SICk + log(pmax)
(

(1− δk)β
0,SIC
k + δkβ

tr,SIC
k

)

.

Solve for ∆uk(V
SIC
k ) ≥ 0, the regulator should provide the trigger pricing parameter

βtr,SIC
k >

1

δk · log pmax

(

r0,SICk (α̂) + β0,SIC
k log p,0,SICk

−uk − (1− δk)β
0,SIC
k log(pmax)

)

(4.50)

in order to prevent cheating. Since pSICk ≤ pmax and β0,SIC
k < (1 − 1

2uk ), the regulator could

provide the trigger pricing parameter in MAC system with SIC as

βtr,SIC
k >

(

r0,SICk (α̂)− uk + log(pmax)δk

)

δk · log pmax
. (4.51)

βtr,SIC
ka >

(

r0,SICk (α̂)− uk + β0,SIC
k log(pmax)δk

)

δk · log pmax
.

4.5.8 Proof of Proposition 4.18 (for time-average RG criterion)

If the players are completely patient, corresponding to the limit δ = 1, the time-average crite-

rion can be implemented. Any forms of time-average criterion implies that players are uncon-
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cerned not only about the timing of payoffs but also their payoff in finite number of periods.

The objective of each player in the ’limit of means’ RG is

ūk = lim
T→∞

1

T

T∑

i=0

ûk(u, α̂
i,w). (4.52)

Now we will describe shortly if the ’limit of means’ RG is adopted, how it works for the gen-

eral MAC system without SIC. For the honest users, since they do not cheat on their reported

CQI, i.e. α̂k = αk, their expected total payoff is

ūk(α) = lim
T→∞

1

T

T∑

i=0

uk(u,α
0,w)

= lim
T→∞

1

T
·Tuk(u,α0,w)

= uk(u,α
0,w). (4.53)

This result is the same as the total payoff for honest users in the discounting RG.

For the cheater k, the resulting total payoff for the cheater k in the ’limit of means’ RG is

ūk(Vk) = lim
T→∞

1

T

(

u0k(u, α̂,w) +

T∑

t=1

Vk

)

= Vk. (4.54)

In order to prevent cheating in the ’limit of means’ RG, the regulator should provide the

trigger price βtr
k as follows,

βtr
k >

log
(

1 + αkpmax

Ik(pwc)

)

− uk + β0
k log p

0
k

log(pmax)
, (4.55)

so that no users will have incentives to cheat. Since log(pmax) > log p0k, any trigger price

βtr
k > β0

k +
log

(

1+
αkpmax
Ik(pwc)

)

−uk

log p0
k

will work.

The procedure for the MAC system with SIC using the ’limit of means’ RG is similar. There-

fore we skip it here.

We can conclude that if the players are completely patience, the counter mechanism using

the trigger strategy with the trigger price βtr
k in the time-average infinite RG such as ’limit of

means’ RG also works for our proposed scenario.

4.6 Summary

For the general MAC, we propose a universal non-linear pricing framework. At first, we

characterize the feasible utility region, the optimal power allocation and pricing for ensuring
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the rate requirements. Then, the user behavior is studied with reporting the false CQI values.

It is shown that the selfish users have incentives to cheat for a smaller CQI value than their

real one to achieve a higher short-term user utility. In order to prevent cheating, we introduce

a repeated game mechanism and derive a suitable trigger strategy which satisfies the rate

requirements for the honest users and punishes the cheating users. Numerical results confirm

that the long-term total payoff after cheating is made smaller than the honest total payoff

leading to a stable incentive-compatible operation.

Serving as a benchmark, the power allocation to ensure the QoS requirement of each user

in the wireless system and the properly proposed universal prices are implemented into the

heterogeneous networks in Chapter 5.

The research of the universal pricing framework can be continued to the distributed topol-

ogy. Chapter 6 investigated the distributed resource allocation for the general MAC system

with and without SIC using the linear and nonlinear pricing framework, respectively. The

noncooperative game is adopted, where the QoS requirement of each user is achieved at the

unique NE power allocation.
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5 Applications of User-Centric Resource Allocation in

Heterogeneous Networks

Due to the services of 3G and 4G, more and more wireless data traffic is expected from indoor

users. The femtocells, also known as home BS, due to their small and low power characteristics

to provide high-quality indoor coverage, have recently attracted significant research consider-

ation. These FAPs, working as BSs, are connected to the operators’ macrocell networks by

backhaul DSL, optical fibre or other connections [4].

A limited number of UEs can be supported by femtocells and therefore the access control

mechanism is pivotal. Currently, three access modes are adopted: open access, closed access

and hybrid access. By allowing unregistered MUEs to access the nearby FAP and guaranteeing

the QoS of each UE with low cost, the hybrid access shows the most potential. The compen-

sation framework, which not only motivates the FAP for hybrid access, but also benefits the

MBS is challenging.

The QoS requirement of each UE is a dominant issue. Hence, how to utilize communications

resource such as power and spectrum fairly and more efficiently is of great importance. The

uplink transmission is considered in this chapter, both for the macrocell and the femtocell.

Since the FAPs are small and simple devices, SIC is not applied in the femtocells. The resource

allocation for MAC without SIC analyzed in Chapter 4 can be adopted in this scenario of

heterogeneous networks.

Both the MBS in the macrocell and FAP in the femtocell networks are considered selfish and

rational. On the one hand, due to the low cost and better indoor coverage, the traffic load

and power consumption of the MBS will be greatly reduced with the help of FAP to accept

some MUEs which are nearby. On the other hand, the FAP has no incentive to open access to

other MUEs since the utility of its own reserved FUEs is diminished by sharing the radio and

power resource with the unregistered MUEs. Based on this, we develop the compensation

frameworks such that the utilities of both the MBS and the FAP are maximized respectively.

Two compensation frameworks of motivating the hybrid access of the femtocell are inves-

tigated in this chapter. The first part utilizes the compensation as a function of the universal

nonlinear price βi given in Chapter 4. The second part focuses on the system global energy

efficiency. The MBS compensates the FAP in order to maximize its utility which is the energy

efficiency of the whole two-tier system.
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FAP

FUE

MUE

MBS

MUE

MUE

MUE

MUE

Regulator

u1, ..., uK

(β1, ..., βK)

Figure 5.1: System model of compensation framework with regulator using universal non-
linear pricing

5.1 Compensation Framework with Regulator using Universal Nonlinear
Pricing

In this section, we integrate the universal non-linear pricing into the compensation framework

for the two-tier macro-femtocell wireless networks which motivates the FAP to apply the hy-

brid access. By adopting the proposed compensation framework, both the utilities of the MBS

and the FAP are maximized. The protocol of hybrid access is provided and numerical simula-

tions are conducted.

5.1.1 Problem Formulation

As depicted in Fig. 5.1, there is a MBS in the macrocell and a FAP in each femtocell network.

In our model, we consider the single macro-femtocell cluster. We assume in total N MUEs

are subscribed by the MBS and M FUEs are subscribed by the FAP, respectively. Due to the

mobility of UEs, some MUEs are in the coverage of the FAP. The MBS is willing to compensate

the FAP by the compensation function for accepting a certain number of MUEs in the hybrid

access since on the one hand, the total power consumption of the MBS is reduced which sig-

nificantly lowers the cost. On the other hand, the revenue of the FAP is improved by fully

utilizing its wireless resource.

In the user-centric wireless system, the main task is to satisfy the QoS requirement uj of each

user j. Otherwise the UEs will leave the service package and as a result, the revenue of the
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system vendor is declined significantly. The uplink transmissions within the macrocell and

the femtocell are exactly the same as MAC model set up in Chapter 4. The MBS and the FAP

are considered as the BSs. Both the multiple mobile UEs and the BSs are equipped with single

antenna. Therefore the interference management is dealt with the power allocation given in

(4.6).

We propose a compensation framework to motivate the hybrid access for the femtocell net-

work. The power allocation and the universal non-linear prices are used for interference man-

agement and the compensation paid by the MBS to motivate the hybrid access. A Stackelberg

game is introduced to optimize the utility functions of both the MBS in the macrocell and the

FAP in the femtocell. Denote K as the number of accepted MUEs in the hybrid access. The

compensation function cK is paid by the MBS to the FAP for serving K MUEs nearby.

The larger the amount of compensation cK paid to the FAP by the MBS, the more MUEs

should the FAP accept since this will benefit its own revenue while ensuring the QoS require-

ments of its own subscribed FUEs. In contrast, the MBS wishes to assign maximum number

K of MUEs to the FAP with minimum compensation in order to maximize the utility of the

macrocell. This tradeoff can typically be modeled with game theory.

The MBS and the FAP are players in a game. They maximize their own utilities, respectively.

The strategy of the MBS is the compensation price κ and the strategy of the FAP is the optimal

accepted number of MUEs when hybrid access is motivated by the compensation framework.

The utilities of the MBS and the FAP are as follows.

The utility of the MBS is

UM = vM (K)− cK(K,κ), (5.1)

where vM (K) is the utility of the macrocell itself when K MUEs are served by the nearby FAP

in the hybrid access. We call it self-utility of macrocell. κ is introduced as the compensation

price so that the MBS can influence the strategy of the FAP in choosing the optimal number

K∗ of accepted MUEs. Both the self-utility of macrocell vM (K) and the compensation function

cK(K,κ) are functions of K .

The utility of the FAP is

UF = vF (K)− F + cK(K,κ). (5.2)

where F is the fixed fee paid by the FAP to the MBS for the backhaul network support. F

is independent of the number K of accepted MUEs. Similarly, the self-utility of femtocell is

vF (K).

5.1.2 Hybrid Access Protocol between Macro- and Femtocell

In this section, the process of the hybrid access with the compensation framework is discussed.

We adopt the Stackelberg game between the MBS and the FAP and apply the market clear-

ance1.
1The market clears if the quantity of supply is equal to the quantity of demand [14].
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The hybrid access protocol between the two-tier macro- and femtocell works as follows. The

MBS and the FAP compete for the number of MUEs which are served by the FAP in the hybrid

access. This can be modeled as a market. The MBS and FAP can be considered as the consumer

and producer in the market, where the supply of the FAP sF is the optimal number of served

MUEs by maximizing its utility UF , i.e.

sF = K∗
F := arg max

0≤KF≤N
UF . (5.3)

The demand of the MBS dM is the optimal number of out-served MUEs accepted by the FAP,

dM = K∗
M := arg max

0≤KM≤N
UM . (5.4)

The utility functions of the MBS and the FAP must be concave functions with respect to K so

that the number of accepted MUEs in the hybrid access can be optimized.

The MBS must take steps to motivate, monitor, and enforce the FAP’s interaction with the

compensation in the hybrid access. If the market clears, the optimal compensation price κ∗

provided by the MBS solves the function where the market demand equals the supply, i.e.,

Find κ∗

s.t. dM = sF . (5.5)

The protocol is formulated as a Stackelberg game, where the MBS acts as a leader with the

compensation price κ as its strategy and the FAP acts as a follower with the accepted number

K of MUEs in the hybrid access as its strategy. The MBS first predicts the best response of

the FAP with the given compensation price κ, and then optimizes its own best response in

choosing the optimal κ∗ so that the resulting optimal number of accepted MUEs K∗
F is equal

to K∗
M . They interact as follows.

• Optimal Compensation Price κ Selection for MBS

The MBS will maximize its own utility UM with the compensation by choosing the op-

timal compensation price κ. Since the MBS has all the information about the femtocell

from the backhaul support, it can force the FAP to meet the demand of K∗
M by providing

a proper compensation price κ.

• Utility Optimization of FAP with Given κ

The FAP will automatically find the optimal number K of MUEs it would open access to

by maximizing its own utility UF with the compensation function cK of the given com-

pensation price κ. As a result, this optimized K∗
F coincides with the number K∗

M which

maximizes the utility UM of the MBS with cK . Indeed, K∗
F = K∗

M makes the market clear

and leaves the market stable.
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The mechanism which forces the best response of the FAP to be equal to the need of the

MBS is summarised in the following Lemma.

5.1 Lemma. The condition of market clearance for the hybrid access protocol in the two-tier macro-

femtocell networks is that UF and UM are concave functions with respect to K and

∂vM (K)

∂K
= −

∂vF (K)

∂K
. (5.6)

The self-utility vM of the MBS is an increasing function with respect to K and the self-utility vF of the

FAP is a decreasing function of K .

Proof. In order to achieve market clearance in (5.5), the utility functions of the MBS UM and

the FAP UF should be concave to K . Solving their first derivatives, it results in

∂vM (K)

∂K
−

∂cK(K,κ)

∂K
= 0

∂vF (K)

∂K
+

∂cK(K,κ)

∂K
= 0. (5.7)

Since the more MUEs are out-served by the FAP, the higher self-utility the MBS should achieve.

vM is an increasing function of K and therefore vF is a decreasing function of K .

Due to the utility requirement uk of each UE, the total number of acceptable UEs in each cell

is restricted as follows.

5.2 Corollary. If all the users belong to the same service class, i.e., u1 = . . . = uN = u, then the

number of supportable UEs N in the system to fulfill u is bounded by

0 < N <
1

1− 2−u
. (5.8)

Proof. It is easy to prove from Corollary 4.3.

If there exist M registered FUEs served by the FAP and K MUEs assigned by the MBS and

all the UEs belong to the same service class u, then from (5.8), the achievable rate region for

serving M +K FUEs and MUEs in the FAP is

1 < 2u <
K +M

K +M − 1
. (5.9)

So it follows 0 < u < log

(

1
1− 1

K+M

)

. We define for serving K +M UEs,

2u =
1

λ
·

M +K

M +K − 1
, (5.10)

where λ > 1 is a load factor due to the inequality in (5.8).
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5.3 Remark. For any given class of QoS requirements u, the maximum number Kmax of UEs

that can be served in the system to ensure the user u is restricted by 1
1−2−u . It shows that

the FAP cannot serve too many additional MUEs. This restriction is reflected later in the

compensation paid by the MBS to the FAP and the optimal K of accepted FUEs is influenced

by the number M of subscribed FUEs as well.

5.4 Corollary. For identical QoS requirement (5.10) of each UE, the number of UEs in the system is

restricted by u and the system load factor λ,

max(N,M +K) ≤
1

2uλ− 1
+ 1, (5.11)

where N is the total number of MUEs in the macrocell, M is the total number of FUEs subscribed by

the FAP and K is the MUEs served by the FAP as well if hybrid access is operated in the system.

Proof. The relationship between the total number N (not necessarily equal to the total number

of MUEs in the MBS) of UEs in the system and their QoS requirements u is N
N−1 = 2uλ. The

number of supportable UEs is a function of u and λ,

N(u, λ) =
1

2uλ− 1
+ 1. (5.12)

Since N
N−1 is a decreasing function with respect to N , N(u, λ) ≥ max(N,M + K), which

indicates that no matter all the N MUEs are served by the MBS or the hybrid access is adopted

by the FAP to serve M FUEs and K MUEs, the QoS requirement u is guaranteed in the wireless

system.

The compensation framework which benefits not only both the MBS in the macrocell and

the FAP in the femtocell, but also all UEs in the whole wireless system to fulfill their QoS

requirements u is of great importance.

In the following, we will conduct the utility functions of the MBS and the FAP, respectively,

as well as the suitable compensation function cK .

5.1.3 Utility of FAP in Femtocell

Concerning in a single femtocell, the FAP is only motivated to serve K MUEs if its own utility

UF is maximized with the given compensation from the MBS. The utility of the FAP is defined

as the rate-based utility vF of its own registered FUEs plus the compensation function cK

when accepting K MUEs. The self utility vF of the total M FUEs served by the FAP itself is

defined as

vF =
M∑

k=1

2uk . (5.13)
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Obviously, from the analysis in Remark 5.3, vF is monotonically decreasing in K because the

more MUEs are served, the less utility for FUEs in the femtocell is available.

For identical u, we define the rate-based utility vF as a M -fold rate-based utility function

vF = M · 2u =
M

λ

M +K

M +K − 1
. (5.14)

Since vF is a decreasing function of the number K of accepted MUEs and an increasing

function of the number M of registered FUEs, the larger K the less the first term of UF .

5.1.4 Utility of MBS in Macrocell

One of the main reasons why the MBS would like to compensate the FAP for hybrid access is

the physical layer energy savings, which will result in cost reduction in the higher (application)

layers. The question is how much benefit the MBS can earn from the hybrid access for the K

out-served MUEs by paying the compensation cK to the FAP. Therefore we define the utility

UM of the MBS as the profit from energy saving minus the compensation paid to the FAP.

The utility of the MBS is

UM = η(N −K) log
E[PMBS

sum (N)]

E[PMBS
sum (N −K)]

− cK , (5.15)

where N is the total number of MUEs subscribed by the MBS, K is the number of MUEs served

by the FAP. E[ · ] denotes the expectation of the sum power. η is the equivalent revenue per

unit of relative energy savings. The energy saving part ES = E[PMBS
sum (N)]

E[PMBS
sum (N−K)]

is denoted as the

ratio of sum power consumption of the total N MUEs to that of N minus K MUEs if hybrid

access is adopted by the FAP.

It can be interpreted that ES is an increasing function of K . The larger K is, the more

revenue from ES will the MBS earn.

However in practice, the MBS should not assign all the MUEs to other FAPs. One possible

scenario could be that some MUEs will leave the service package provided by the MBS since

they are always served by the FAPs. Besides, from Corollary 5.2, it is not possible for the FAP

to accept too many MUEs as well because the QoS requirement cannot be reached if the total

number of served UEs is too large. Therefore, N − K in UM serves as a barrier function to

prevent the slope of the ES part monotonically increasing.

5.1.5 Compensation Function

We assume that the compensation cK is a function of the power price βj (4.7) and it is averaged

over the CSI αj of each UE j. This represents the power consumption and the cost for serving

different UEs with variable channel states. It indeed provides an explicit connection of the

physical layer cost to the upper (application) layer revenue. Since the MBS has the whole

information about the femtocell with the backhaul network support, such as the number M
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of registered FUEs, it can influence the outcome of the hybrid access with the compensation

price (will be discussed in Sec. 5.1.6.2).

The compensation function cK paid by the MBS to the FAP for hybrid access serving K

MUEs is given by

cK =
κλ

λ− 1

K∑

k=1

βkµk, (5.16)

where κ is the compensation price determined by the MBS. The power price βk is described in

(4.7). The averaged CSI is µj = E[log( 1
αj
)]. The compensation cK is a function of 1

αk
since the

power allocation pk (4.6) of each UE k is inversely proportional to the CSI αk.

Equation (5.16) shows the relationship between the compensation function in the macro-

femtocell networks and the total cost for the power allocation in the general MAC system

without SIC in Chapter 4.

From (4.7), the regulator can ensure the identical QoS requirements u in (5.10) of the K

MUEs and M FUEs served by the FAP by providing the power price

βk = β = (1− 2−u)

(

1−
K +M − 1

K +M
2u
)

= (1− 2−u)

(

1−
1

λ

)

=

(

1− λ+
λ

K +M

)
λ− 1

λ
. (5.17)

Since β > 0, the system load factor λ satisfies

1 < λ <
K +M

K +M − 1
. (5.18)

Note that the QoS requirement u is the same for all the users regardless of the total number

of UEs in the macrocell or the femtocell. Therefore, the load factor λ should fulfill Corollary

5.2 for different total numbers in the single cells.

In order to ensure the rate requirement u of each UE with a positive power price β, the

following Lemma holds.

5.5 Lemma. In the two-tier macro-femtocell system, in which there are N MUEs in total and M

registered FUEs in the femtocell, if the FAP adopts hybrid access and accepts K MUEs, then the system

load factor λ is bounded by

M +K

M +K − 1
> λ >







M+K−1
M+K

· N
N−1 if M +K > N

M+K
M+K−1

N−1
N

otherwise.
(5.19)
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Proof. For different numbers of UEs in the single cells, the load factor λ should fulfill 2u =
1
λ

M+K
M+K−1 = 1

λ′
N

N−1 < min
(

M+K
M+K−1 ,

N
N−1

)

. N−K
N−K−1 is ignored because x

x−1 is a monotonically

decreasing function. If N > M + K , then 1
λ

· M+K
M+K−1 < N

N−1 . For N < M + K it is similar.

Concluding the above, we get the lower bound for the load factor λ as

λ >
M +K

M +K − 1
·
N − 1

N
if N > M +K

λ >
M +K − 1

M +K
·

N

N − 1
otherwise. (5.20)

Since β > 0, the load factor λ should also fulfill (5.18). Then Lemma 5.5 is proved.

5.6 Remark. The load factor λ with restriction in Lemma 5.5 is very close to 1 when M and

K are not too small, so λ
λ−1 is multiplied in cK in order to amplify the influence of the power

price βk and the CSI αk, which illustrates the physical layer power consumption. Moreover, it

enhances the influence of the compensation cK in the utility function of the FAP.

5.1.6 Analysis of Compensation Framework and Stackelberg Game Formulation

For simplicity of analysis, we have the following assumptions:

1. All the UEs belong to the same service class and have equal weights, i.e., uk = u and

wk = w with
∑K

k=1wk = 1, so the power pricing parameter βk = β.

2. The system load factor (λ > 1) satisfies Lemma 5.5.

3. We assume the quasi-static block flat-fading channels apply the exponential distribution

e−αk . All the UEs are symmetric distributed. According to Rayleigh fading,

µk = E[− log αk]

= −

∫ ∞

0
e−αk · logαkdαk = γ, (5.21)

for all k where γ ≈ 0.5772 is the Euler-Mascheroni constant.

With the power price β in (5.17) and µk in (5.21), the compensation cK becomes

cK =
κλ

λ− 1

K∑

k=1

(

1− λ+
λ

K +M

)λ− 1

λ
·µk

= κKγ

(

1− λ+
λ

K +M

)

. (5.22)

Fig. 5.2 shows the compensation function cK with respect to the number K of accepted

MUEs in the femtocell. It is a concave but not monotonically increasing function of K , which

very well illustrates the characteristics of the two-tier system. The compensation should be
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Figure 5.2: Compensation function with respect to K for power-price based compensation
framework.

larger with the increment of K MUEs served by the FAP, while in the mean time should also

put certain restriction on K due to Corollary 5.2 and 5.4. The maximum affordable number of

UEs is restricted by the users’ QoS requirements u.

With all the aforementioned utilities of the MBS and the FAP, the two-tier macro-femtocell

networks can apply the hybrid access by maximizing their own UM and UF , respectively.

We will apply the backward induction in the following analysis.

5.1.6.1 Utility Optimization of FAP with Given κ

As analyzed before, with the compensation function cK , the expected utility UF at the FAP is

UF =
M(K +M)

λ(K +M − 1)
− F + κKγ

(

1− λ+
λ

K +M

)

. (5.23)

The FAP optimizes the number of acceptable MUEs K in order to maximize UF , i.e.,

K∗ := arg max
0≤K≤N

UF . (5.24)

5.7 Corollary. The utility UF of the FAP with the compensation function cK is bounded with

UF ≤ UF ≤ ŪF , (5.25)
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where the lower bound of UF is

UF =
M

λ

(
K +M + 1

K +M

)

− F + κKγ
(

1− λ+
λ

K +M

)

(5.26)

and the upper bound of UF is

ŪF =
M

λ

(
K +M

K +M − 1

)

− F + κKγ
(

1− λ+
λ

K +M − 1

)

. (5.27)

Proof. Function x+1
x

and 1
x

are decreasing functions of x, so that changing the variables in UF

results in the lower and upper bounds UF and ŪF , respectively.

5.8 Proposition. If the utility of the FAP UF is the utility function in (5.23) and the compensation

term paid by the MBS to the FAP for hybrid access is cK in (5.22), then the optimal number K∗ of

MUEs will the FAP serve (solving (5.24)) is bounded by

K∗ ≤ K∗ ≤ K̄∗, (5.28)

where the upper bound of the optimal number of MUEs K̄∗ will the FAP serve (solving K̄∗ :=

argmax0≤K≤N UF ) is

K̄∗ =

⌊√

κγMλ2 −M

κγλ(λ− 1)
−M

⌉+

, (5.29)

and the lower bound of the optimal number of MUEs K∗ will the FAP serve (solving the optimization

problem K∗ := argmax0≤K≤N ŪF ) is

K∗ =

⌊√

κγ(M − 1)λ2 −M

κγλ(λ− 1)
−M + 1

⌉+

. (5.30)

Proof. Please refer to Proof 5.3.1.

Fig. 5.3 shows the utility function UF of the FAP with respect to the number of accepted

MUEs K comparing with the rate-based utility vF and the compensation function cK . It is

shown that UF is concave with respect to K and vF is a decreasing function of K .

Fig. 5.4 shows that the higher the compensation price κ is, the more number of MUEs K∗

the FAP will serve to maximize its own utility UF .

Table 5.1 provides the comparison of the number of optimal accepted MUEs K∗ with the

lower and upper bound K∗ and K̄∗, respectively, for given parameters. It is shown that when

the compensation price κ > 5, the numerically obtained K∗ is the same as K∗ even though M

and K are in small values.
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Table 5.1: Comparison of approximation K̄∗ and K∗ to numerical results K∗.

M = 5, λ = 1.01, γ = 0.5772

κ K̄∗ K∗ K∗ maxUF

3 9 7 8 6.3008

4 12 10 11 6.4297

5 13 12 13 6.9717

6 14 13 14 7.3180

25 17 16 17 13.9951

In order to ensure UF as a concave function to a positive K∗, the compensation price κ

decided by the MBS to optimize its own utility UM is restricted as follows.

5.9 Lemma. The compensation price κ provided by the MBS in order to motivate the FAP to accept K

MUEs in the hybrid access fulfills

κ > max

[
M

M − 1

1

γλ(λ− (M − 1)(λ − 1))
,

1

γλ(λ−M(λ− 1))

]

. (5.31)

Proof. Please refer to Proof 5.3.2.

5.1.6.2 Optimization of the Compensation Price at MBS

With the power allocation in (4.6), E[PMBS
sum (N)] = E[

∑N
j=1 pj] and E[PMBS

sum (N − K)] =

E[
∑N−K

j=1 pj], respectively. Therefore the utility function of the MBS is

UM = η(N −K) log
E[
∑N

j=1
BN

αj
(1− 2−u)]

E[
∑N−K

j=1
BN−K

αj
(1− 2−u)]

− cK

= η(N −K) log
E[ 1

αj
]
(

(1−2−u)
N(2−u−1)+1

)

N

E[ 1
αj
]
(

(1−2−u)
(N−K)(2−u−1)+1

)

(N −K)
− cK

= η(N −K) log
N(N −K)(2−u − 1) +N

N(N −K)(2−u − 1) +N −K
− cK . (5.32)

We propose two methods for the MBS to optimize its compensation price κ. On the one

hand to maximize its own utility UM (K∗(κ)), and on the other hand to make sure that the

FAP will accept the optimal number of MUEs K∗ given κ.

5.1.6.3 Close to Optimal Compensation Pricing

The first method is based on the market clearance. Since the optimal number of MUEs ac-

cepted by the FAP is only numerically obtained, the following proposition is calculated with
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the lower and upper bound of K∗. In order to clear the market, i.e., find κ∗, s.t. K∗
M = K∗

(5.5), the MBS applies the following compensation price κ∗.

5.10 Proposition. The FAP will automatically accept K∗ = K∗
M MUEs from the MBS in order to max-

imize its own utility UF , if the MBS provides the compensation price κ∗ = M

γ((K∗
M

+M)2λ(1−λ)+Mλ2)
for the upper bound K̄∗ and κ∗ = M

γλ((λ−1)(K+M−1)2−(M−1)λ) for the lower bound K∗.

Proof. The proof is straightforward and omitted here.

5.1.6.4 Numerical Search for Compensation Price

The second method is to search the compensation price κ numerically by solving the equation

argmaxκ UM (K∗(κ)) = K∗. Fig. 5.5 illustrates the numerical search of the optimal compen-

sation price κ∗. The MBS predicts the results for K∗ and K̄∗ of the FAP first. The blue and

red curves correspond to the upper and lower bound K̄∗ and K∗ that the FAP will serve in

the hybrid access with respect to different κ. The green line shows the optimal number K∗
M of

out-served MUEs at the MBS side as an example. The intersection points are the optimal com-

pensation prices κ̄∗ and κ∗. K∗
M can be obtained by numerical results solving (5.4). Therefore

the MBS decides its optimal compensation price and pays the compensation cK to the FAP to

motivate the hybrid access in the femtocell. With the given compensation price κ∗, the FAP

will automatically accept K∗ MUEs by maximizing its own utility UF (κ
∗). In general, both the

utilities of the MBS and the FAP are maximized with the proposed compensation framework

while at the same time, the utility requirement u of each UE is guaranteed.

In this section, the compensation framework is established to motivate the hybrid access of

the femtocell based on the power allocation and universal non-linear price β in Chapter 4. In

the next section, the energy efficiency of the whole two-tier system is considered as the utility

function of the MBS.

5.2 Energy-Aware Compensation Framework for Hybrid Macro-femtocell
Networks

The user-centric compensation structure is suggested in Sec. 5.1, which is based on the uni-

versal non-linear price controlled by a regulator in the system. In this section, we focus on

the energy efficiency of the whole macro-femtocell system as depicted in Fig. 5.6, where the

power price β is released. The compensation function is free of β and therefore no regula-

tor is required. We investigate the utility functions of both the MBS and the FAP with proper

compensation and power allocation. The compensation is a function of the channels which de-

pend on the positions of the UEs. A Stackelberg game is formulated and the strategies of the

MBS and the FAP adjust due to the mobility of UEs. The novel hybrid access protocol for the

uplink transmission of the two-tier macro-femtocell networks is proposed and the following

contributions are made.
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mal number of MUEs K∗

M that the MBS wants the FAP to serve as an example.

• The utility functions of the MBS in the macrocell and the FAP in the femtocell are pro-

vided, in which the MBS maximizes the energy efficiency of the whole system and the

FAP maximizes its own revenue with the given compensation function.

• The compensation which is a function of the CSI of the out-served MUEs and the com-

pensation price is established.

• The hybrid access protocol is investigated, where the optimal acceptable MUEs in the

femtocell is drawn with the proposed optimal compensation price.

• Numerous simulations are conducted to illustrate the compensation framework for moti-

vating hybrid access.

5.2.1 Energy Aware Compensation Framework

In this section, the compensation framework applied by the MBS to motivate the hybrid ac-

cess in the femtocell is proposed based on the power consumption of all the UEs (MUEs and

FUEs). The MBS is able to save the energy of the whole system while guaranteeing the QoS

requirement u of each UE by utilizing the femtocell wireless resource. The FAP serves the

nearby MUEs with its spare resource for the compensation paid by the MBS such that its own

utility is maximized.
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Figure 5.6: System model of energy-aware compensation framework for hybrid macro-
femtocell networks.

We define the energy aware utility UM of the MBS and the utility UF of the FAP as follows.

5.2.1.1 Utility of MBS in Macrocell

As analyzed above, the power pk (4.6) allocated to each UE, no matter it is served by the MBS

or the FAP, is dependent on their QoS requirement u and the CSI α. We assume the CSI α is

a function of the distance between the UEs and the BSs. Therefore, from an energy efficiency

point of view, the MBS would like to compensate the FAP for hybrid access of K MUEs if they

are nearer to the FAP than the MBS. In the following, we define the utility UM of the MBS

as the two-tier network global energy efficiency, i.e., the ratio between the total throughput

and the sum power consumption for all UEs in the system to support their QoS requirements

when hybrid access is adopted.

UM =
η(M +N)u

(
∑

j∈N−K pj +
∑

j∈M+K pj

) , (5.33)

where N −K is the set of MUEs served by the MBS, M+K is the set of FUEs and acceptable

MUEs served by the FAP in the hybrid access mode. η is the equivalent revenue per unit of

energy efficiency.
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From (4.6), it can be interpreted that the energy consumption part EC =
∑

j∈N−K pj +
∑

j∈M+K pj is an decreasing function of the CSI αj . For identical rate requirement u and fixed

number of UEs M + N , the numerator of UM (5.33) is a constant. Thus the objective of the

MBS is to minimize the total power consumption of the whole two-tier networks. If the MBS

wants to motivate the FAP to serve the MUEs, which are near the FAP but farther from the

MBS, then it has to pay.

The MBS is able to determine how many and which are the K out-served MUEs it would

like the nearby FAP to serve by solving

K∗
M = max

0≤KM≤N
UM . (5.34)

The more compensation cK is paid to the FAP, the larger K will be. However in practice,

due to Corollary 5.2 the total number of UEs in the FAP is restricted. Otherwise the QoS

requirement cannot be reached. The MBS can control this in the hybrid access by choosing the

proper compensation price κ in cK .

5.2.1.2 Utility of FAP in Femtocell

The FAP can help the system operator to utilize the expensive wireless spectrum more thor-

oughly and spend the power more efficiently by adopting the hybrid access to serve the nearby

MUEs. However, the FAP is responsible to select the number of acceptable MUEs so that its

own utility UF is maximized. Since the utility of the M subscribed FUEs is diminished with

the increment of K . The utility UF of the FAP is a tradeoff between the rate based utility vF

of its own subscribed M FUEs and the compensation cK paid by the MBS for serving the K

MUEs. We define UF = vF + cK − F .

From (5.10), in the femtocell u = log K+M
λ(K+M−1) . The utility vF of the registered FUEs is a

M -fold rate function

vF = M ·u

= M log
M +K

λ(M +K − 1)
. (5.35)

It is intuitive that the first term vF of UF is a decreasing function of the number of accepted

MUEs K . Therefore, in order to construct a concave utility function with respect to K , the

compensation function cK is defined as follows.

5.2.1.3 Compensation Function

The main idea of this section is to motivate the hybrid access of the femtocell network so that

the MBS is able to satisfy the QoS requirement u of all the MUEs and FUEs with minimum

power consumption. Since the power allocation pk to each UE is a function of the CSI αk,
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which depends on the distance between the UE k and the corresponding MBS or the FAP, we

propose the compensation function cK paid by the MBS to the FAP for serving K MUEs as

cK =

(

κ+
κK

K +M
−

K

M

) K∑

k=1

1

αk
, (5.36)

where κ is the compensation price determined by the MBS.
∑K

k=1
1
αk

illustrates the power

allocation of the UEs as an inverse function of the chennels. cK in (5.36) is conducted to be a

concave function with respect to K .

5.11 Remark. The compensation function cK indicates the physical layer power consumption

for the FAP to serve the K nearby MUEs with M FUEs because pk in (4.6) is an inverse function

of α. Since cK is usually applied on the higher layers (e.g. application layer), the compensation

framework provides a simple manner to reflect the physical layer energy consumption to the

higher layer revenue of the networks. The compensation price κ is introduced such that the

MBS can influence the choice of the FAP in the acceptable number K of MUEs in order to

enhance the global energy efficiency.

5.2.2 Hybrid Access Protocol between Macro- and Femtocell

Similar to Sec. 5.1, we model the hybrid access protocol as a Stackelberg game, where the MBS

acts as a leader and the FAP acts as a follower. The strategies of the MBS and the FAP are

the compensation price κ and the optimal number K∗
F of acceptable MUEs, respectively. By

backward induction, the MBS first predicts the strategy K∗
F of the FAP and then determines

the compensation price κ to force K∗
F = K∗

M so that the global energy efficiency is maximized

in the two-tier macro-femtocell networks.

The MBS and the FAP are capable to sense the change of the wireless environment such as

the CSI αk and therefore adjust their strategies. The MBS and the FAP interact in the energy-

aware hybrid access as follows.

• Optimal Compensation Price κ Selection for MBS

In order to minimize the energy consumption in its utility UM , the MBS optimizes K∗
M

MUEs which are nearer to the FAP. By predicting the strategy of the FAP, the MBS chooses

the optimal compensation price κ∗ so that the FAP automatically accepts K∗
M = K∗

F

MUEs.

• Utility Optimization of FAP with Given κ

The simple FAP maximizes its own utility UF by selecting the K∗
F nearby MUEs with the

compensation function cK , in which the compensation price κ is determined by the MBS.

As a result, this optimized K∗
F coincides with the the number K∗

M . This is performed by

backward induction [23, pp.68], which starts to solve for the optimal choice of the FAP,
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and then computes backward the optimal choice of the MBS in order to fulfill the QoS

requiement u with the minimum total power consumption.

We apply the backward induction in the following analysis.

5.2.2.1 Utility Optimization of FAP with Given κ

Given the compensation function cK in (5.36) and vF in (5.35), the utility UF at the FAP is

UF = M log
K +M

λ(K +M − 1)
− F +

(

κ+
κK

K +M
−

K

M

) K∑

k=1

1

αk
. (5.37)

The FAP optimizes K in order to maximize UF , i.e.,

K∗
F := arg max

0≤K≤N
UF . (5.38)

5.12 Proposition. Given the compensation term cK in (5.36) paid by the MBS to the FAP for hybrid

access, the FAP maximizes its utility UF in (5.37) by accepting K∗
F MUEs (solving (5.38)). K∗

F can be

solved numerically and its mathematical approximation K̂∗
F is

K̂∗
F =

⌊

M
(
√

κ−
1

∑K
k=1

1
αk

− 1
)
⌉+

. (5.39)

Proof. Please refer to Proof 5.3.3.

5.13 Remark. For energy aware compensation framework, the FAP will accept K∗
F > 0 MUEs

in hybrid access if the compensation price κ provided by the MBS satisfies

κ > 1 +
1

∑K
j=1

1
αj

. (5.40)

5.2.2.2 Utility Optimization of MBS of the Compensation Price

Substitute the power allocation pk (4.6) and the QoS requirement u into the utility function UM

of the MBS. For identical rate requirement u, we have

UM =
η(M +N)u

(
∑

j∈N−K

BN−K

αj
+
∑

j∈M+K

BM+K

αj

)

(1− 2−u)
. (5.41)

The MBS will obtain the optimal number K∗
M of MUEs by numerical search to maximize its

utility UM . The result is provided in Sec. 5.2.3. Since the CSI αk is dependent on the distance

between the UE k and the corresponding MBS or the FAP, K∗
M changes through time due to

the UEs’ mobility. After obtaining the K∗
M , the MBS will determine the compensation price κ
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Figure 5.7: Sum power versus CSI as a function of the distance dk.

so that the FAP will automatically accept K∗
F = K∗

M MUEs in the hybrid access. The following

proposition provides the optimum strategy of the MBS.

5.14 Proposition. The FAP accepts K∗
F = K∗

M MUEs in the hybrid access if the MBS provides the

compensation price as

κ∗ =
K +M

D(K +M − 1)
+

(K +M)2

M2
. (5.42)

Proof. We obtain (5.42) by solving ∂UF

∂K
= 0 (5.51) for κ as a function of K .

5.2.3 Numerical Results

In this section, numerous simulations are conducted in order to evaluate the compensation

framework to motivated hybrid access in the macro-femtocell networks. For all UEs, the dis-

tance dk between the UE k and the MBS or the FAP has been randomly generated in the inter-

val [0, 100] meters. The CSI is generated as realizations of d−2
k so the power decay factor is of

2. The total number of the MUEs in Fig. 5.7 is N = 11. The system load factor is λ = 1.01.

In the left part of Fig. 5.7, the green points are the positions of the N MUEs. The red point is

the position of the MBS denoted as ’M’ and the blue point is the position of the FAP denoted

as ’F’. The points connected to the MBS with dashed lines in red are those MUEs nearer to the
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Figure 5.8: Compensation function with respect to K for energy aware compensation frame-
work.

MBS and similarly, those points connected to the FAP with dashed lines in blue are relatively

nearby the FAP. With this comparison, the MBS would like to assign K∗
M = 6 MUEs to the FAP

in order to minimize the total power consumption, which is shown in the right part of Fig. 5.7.

P1 shows the sum power for the MBS to serve all the N MUEs by itself and P2 shows the sum

power allocated by the MBS to serve N−K MUEs plus the sum power allocated by the FAP to

serve K nearby MUEs. It is clear that when the CSI is a function of the distance dk between the

UEs and BSs and the power allocation to each UE is inversely proportional to the CSI, then by

adopting hybrid access in the macro-femtocell network, the total power consumption is much

lower. From the simulations, more than 50% of the energy in the physical layer is saved. We

will use this numerical result K∗
M = 6 in the following simulations.

Fig. 5.8 shows the compensation function cK with respect to the number K of accepted

MUEs in the femtocell for different compensation price κ and MUEs M . It is increasing with

K at the beginning since the more K the FAP serves, the more compensation it should receive.

However, due to Corollary 5.2, only limited number of UEs can be served in a single cell in

order to achieve the QoS requirement u of each UE. Since the FAP is a simple device who

only cares about its utility UF , the MBS guarantees this restriction by smartly making the

compensation cK concave but not monotonically increasing with the number K .

Fig. 5.9 and 5.10 show the utility function UF of the FAP with respect to the number of K

MUEs and M FUEs for different compensation prices κ, respectively. UF is a concave function

of K and the numerical result of the optimal acceptable K∗
F is given in the figure.

Fig. 5.11 and 5.12 show the optimal number of acceptable MUEs K∗
F to maximize the utility

function UF of the FAP versus the compensation price κ and the number of registered FUEs
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0 5 10 15 20
20

40

60

80

100

120

140

160

180
K=6,λ=1.01

M

U
f

 

 

κ=5.5

κ=3.1

Figure 5.10: Utility of the FAP UF as a function of number M of FUEs.



5.2 Energy-Aware Compensation Framework for Hybrid Macro-femtocell Networks 91

0 5 10 15 20 25 30 35 40
−5

0

5

10

15

20

25

30

35

κ

K
*

λ=1.01

 

 

M=4

M=6

Approx.K* M=4

Approx.K* M=6

Figure 5.11: Optimal number of acceptable MUEs K∗ vs. compensation price κ.

0 5 10 15
0

5

10

15

20

25

M

K
*

λ=1.01

 

 
κ=5.5

κ=3.1

Approx.K* κ=5.5

Approx.K* κ=3.1

Figure 5.12: Optimal number of acceptable MUEs K∗ vs. the number of FUEs M .



92 5 Applications of User-Centric Resource Allocation in Heterogeneous Networks

M . Note that the star points are the approximate results calculated in (5.39). It indicates that

for different couples of parameters even when M and K are not large integers, K̂∗
F is quite

accurate and simple to be implemented.

5.3 Proofs

5.3.1 Proof of Proposition 5.8

Proof. In order to find the optimal number of acceptable MUEs K , the FAP checks the first

derivative of (5.23) with respect to K

∂UF

∂K
=

M

λ

−1

(K +M − 1)2
+

κγMλ

(K +M)2
+ κγ(1 − λ). (5.43)

To solve ∂UF

∂K
= 0 in (5.43) is difficult since there are the 4th, 3rd order of K .

For the upper bound, we approximate the term K +M − 1 to K +M . For large K and M

this is naturally true, but we will show with simulation results that even for small value of K

and M , this approximation is quite accurate and thereby simplifies the problem significantly.

Set K +M = x. After the transformation, ∂UF

∂K
= 0 becomes

M

λx2
=

κγMλ

x2
+ κγ(1 − λ)

(K +M)2 =
M − κγMλ2

κγλ(1− λ)

K̄∗ =

√

M − κγMλ2

κγλ(1− λ)
−M.

The lower bound of the optimal number of MUEs served by the FAP is obtained by solving

∂ŪF

∂K
=

M

λ

−1

(K +M − 1)2
+ κγ(1 − λ) +

κγλ(M − 1)

(K +M − 1)2

=
κγλ(M − 1)− M

λ

(K +M − 1)2
+ κγ(1 − λ) = 0. (5.44)

Then we obtain

κγλ2(M − 1)−M

λκγ(λ− 1)
= (K +M − 1)2. (5.45)

The lower bound K∗ in (5.30) is proved.
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Note that K should always be positive integers, we find the nearest integer of the approxi-

mation result. Therefore the number of accepted MUEs in the femtocell is

⌊√

κγ(M − 1)λ2 −M

κγλ(λ− 1)
−M + 1

⌉+

≤ K∗ ≤

⌊√

κγMλ2 −M

κγλ(λ − 1)
−M

⌉+

.

5.3.2 Proof of Lemma 5.9

Proof. In order to ensure the utility function of the FAP UF to be concave, the compensation

price κ should fulfill

∂2UF

∂K2
=

M

λ

2

(K +M − 1)3
−

2κγMλ

(K +M)3
< 0

κγλ2 >
(K +M)3

(K +M − 1)3

κ >
(K +M)3

(K +M − 1)3
1

γλ2
. (5.46)

In order to ensure the optimal number K∗ of accepted MUEs in the Femtocell to be positive,

both the lower and the upper bound K∗ and K̄∗ should be positive.

For the upper bound of optimal number of accepted MUEs K̄∗ to be positive values, from

(5.29), it follows

M − κγMλ2

κγλ(1 − λ)
> 0 and

M − κγMλ2

κγλ(1− λ)
> M2. (5.47)

We obtain κ > max
[

1
γλ2 ,

1
γλ(M(1−λ)+λ)

]

. Since λ > 1, λ > λ + M(1 − λ). Then to ensure a

positive K̄∗, the compensation price should fulfill

κ >
1

γλ(M(1 − λ) + λ)
. (5.48)

For the lower bound of optimal number of accepted MUEs K∗ to be positive values, from

(5.30), it follows

κγ(M − 1)λ2 −M

κγλ(λ− 1)
> 0 and

κγ(M − 1)λ2 −M

κγλ(λ− 1)
> M − 1. (5.49)

We obtain κ > max
[

M
M−1

1
γλ2 ,

M
M−1

1
γλ(λ−(M−1)(λ−1))

]

. Since λ > λ − (M − 1)(λ − 1), to ensure

a positive K∗, the compensation price should satisfy

κ >
M

M − 1

1

γλ(λ− (M − 1)(λ − 1))
. (5.50)
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Together with the conditions in (5.46), (5.48), (5.50), we have

κ > max
[ (K +M)3

(K +M − 1)3
1

γλ2
,

1

γλ(M(1 − λ) + λ)
,

M

M − 1

1

γλ(λ− (M − 1)(λ− 1))

]

.

Since x
x−1 is a decreasing function with respect to x, M

M−1
1

γλ(λ−(M−1)(λ−1)) > (K+M)3

(K+M−1)3
1

γλ2 .

Therefore, in order to guarantee a positive K∗ of the optimal number of accepted MUEs

in the femtocell, the compensation price κ determined by the MBS is restricted with κ >

max
[

M
M−1

1
γλ(λ−(M−1)(λ−1)) ,

1
γλ(λ−M(λ−1))

]

, which depends on the number of FUEs registered

in the femtocell M and the system load factor λ.

5.3.3 Proof of Proposition 5.12

Proof. The first derivative of (5.37) is

∂UF

∂K
=

−M

(K +M)(K +M − 1)
+

K∑

k=1

1

αk

(
κM

(K +M)2
−

1

M

)

. (5.51)

Mathematically solving ∂UF

∂K
= 0 in (5.51) is difficult because of the 3rd order of K . We

approximate the term K + M − 1 to K + M . For large K and M this is naturally true, but

we will show with simulation results in Sec. 5.2.3 that even for small values of K and M , this

approximation is quite accurate and thereby simplifies the problem significantly.

Since
∑K

k=1
1
αk

is independent of κ and M , we set
∑K

k=1
1
αk

= D. After the transformation

and approximation, ∂UF

∂K
= 0 becomes

D

(
κM

(K +M)2
−

1

M

)

=
M

(K +M)2

(K +M)2 = M2

(

κ−
1

D

)

.

Note that K should always be positive integers. Therefore the mathematically calculated

optimal number of accepted MUEs in the femtocell is K̂∗
F =

⌊

M
(√

κ− 1
∑K

k=1
1
αk

− 1
)
⌉+

.

5.4 Summary

For the two-tier macro-femtocell wireless networks, we propose two compensation frame-

works to motivate the hybrid access. The utility functions of the FAP in femtocell and the

MBS in macrocell are analyzed, respectively. The compensation function is provided by the

MBS to encourage the FAP for hybrid access to accept the MUEs nearby. The Stackelberg game

is formulated where the MBS plays as the leader and the FAP plays as the follower.
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Firstly, the compensation framework based on the universal non-linear power pricing (Chap-

ter 4) in order to fulfill the QoS requirement of each UE is discussed. The compensation frame-

work with the universal power pricing provides the insight between the physical layer power

cost to the upper layer revenue. The power allocation and the universal nonlinear prices ob-

tained in Chapter 4 are applied in the compensation framework.

Secondly, in order to fulfill each UE’s SINR-based QoS requirement with the minimum sys-

tem sum power, we proposed an energy aware compensation framework. The MBS maxi-

mizes the global energy efficiency of all the UEs in the system. And the FAP maximizes its

utility with the given compensation paid by the MBS.

The MBS predicts the best response of the FAP and chooses the compensation price. The

closed form solution of the optimal number of acceptable MUEs is obtained. The optimal

compensation price is calculated at the MBS as its strategy. Simulation results show that the

utilities of both the FAP at the femtocell and the MBS at the macrocell are maximized with the

proposed compensation frameworks, which result in a win-win solution.
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6 Pricing for Distributed Resource Allocation in MAC Under QoS

Requirements

In the previous chapters, the centralized resource allocation is studied using the frameworks

of linear and nonlinear pricing. For the uplink transmission, it is convenient to allocate the

resource such as power centrally since the BS obtains all the information about the transmitters.

By the centralized pricing mechanism, the QoS requirements of all the users in the system can

be guaranteed. However, there are situations where no centralized control is possible. The

power should be allocated by each user themselves. How to ensure the QoS requirement of

each user with distributed power allocation under the circumstances of interference coupling

is interesting.

In this chapter, the distributed power allocation is investigated in the analytical setting of

game theory for the general MAC system with and without SIC, respectively. The noncoop-

erative game is formulated. The outcome of the game is the unique NE power allocation. If

each self-optimizing user in the game aims at maximizing its own rate, then transmitting at

the full power is their best strategy. However, this will cause high interference to other users

and waste energy. For the mobile users, the battery life is an important problem. Saving en-

ergy for the long-term run is as well of interest to each user in the wireless system. Besides,

the objective of each user in our system is not to pursue maximum rate but to fulfill its rate

requirement. Therefore, transmitting with full power in order to achieve higher rate is not

necessarily the best strategy of each user.

The individual price on the transmit power is introduced into the utility function of each

user. The pricing performs as the trade-off between maximizing the rate and minimizing the

transmit power and therefore limiting the interference to other users. The individual prices

are carefully designed to ensure the existence, uniqueness and convergence of the NE power

allocation and as a result to guarantee the rate requirement of each user at the NE point.

In the following, the noncooperative game is discussed firstly without the malicious users.

Later on, the malicious behavior is analyzed and the strategy-proof pricing to counter the user

misbehavior is proposed.

6.1 System Preliminaries

Consider the general MAC with K transmitters and one receiver as the BS. The uplink trans-

mission system works as follows. We assume the system guarantees the rate requirement ui
of each self-optimizing user by providing the individual prices βi. The transmit power pi is

allocated by each user i in a distributed fashion. Due to the interference coupling, the non-
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cooperative game is formulated among the K users in the system. Each user as a player in the

game maximizes its own utility ui as a function of the price βi and the transmit power p. The

pure strategy set of each user is their transmitting power with single user power constraint

pi < pmax
i .

The noncooperative game in normal form G(K,P,U) is described by the set of players i ∈ K,

where K is a finite set K = {1, 2, . . . ,K} with the strategy profile of transmit power p. Their

strategy space is a compact and convex set denoted by P = [0, pmax
1 ]× [0, pmax

2 ]×· · ·× [0, pmax
K ].

The utility function is the set U = {u1(p1, p−1), u2(p2, p−2), . . . ,

uK(pK , p−K)}. The pricing controls the interference caused by each user and therefore leads

the NE point of the noncooperative game to the desired region guaranteeing the rate require-

ment ui of each user i.

The users play the BRD to reach the NE power allocation. The individual prices β are

designed such that the feasible rate requirement of each user can be achieved at the NE point

of the non-cooperative game with minimum power allocation.

6.1 Definition. The strategy profile of transmit power p∗ is said to be the NE power allocation

for G(K,P,U) if and only if no unilateral deviation in strategy by any single player is profitable

for that player, i.e.,

ui(p
∗
i , p

∗
−i) ≥ ui(pi, p

∗
−i), ∀i, i ∈ [1, . . . ,K],

0 < pi ≤ pmax
i , (6.1)

where p−i = [p1, · · · , pi−1, pi+1, · · · , pK ] denotes the transmit power of all the other users ex-

cept user i.

At the NE power allocation, no user can improve its own utility by changing its power level

individually given the choices of others.

6.2 Noncooperative Game for MAC without SIC

In this section, the distributed power allocation for the general MAC system without SIC is

discussed. The noncooperative game is formulated.

6.2.1 System Operation with Truthful Agents

The noncooperative game of the MAC system can be formulated as an economic model, where

the consumers are the users. The trading good is the power. The producer provides the indi-

vidual prices βi to each consumer i. Since each user has a rate requirement ui to be guaranteed

and the interferences are coupled among all the users, the demand in power of each user is

dependent on others. The BS is responsible to tune the prices such that the pricing enforces the

NE power allocation to meet the rate requirement of each user in the system with minimum

power.
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There are various possibilities for pricing policies on transmit power, among which linear

pricing is the easiest to apply. However, for the general MAC system without SIC, the linear

pricing cannot implement a universal pricing mechanism [12]. In order to better illustrate the

properties of the model, we introduce the normalized distributed pricing term βi(p−i) as a

function of the individual price βi and the demand of all the other users Ii(p−i), i.e.,

βi(p−i) =
βi

Ii(p−i)
. (6.2)

6.2 Definition. Ii(p−i) is a function denoting the demand on power p for all the other users

except i.

The normalized pricing term denotes the quality of the good (power). If the interference

from other users is high, then the price of the power for user i should be lower in order to

guarantee its rate requirement. The utility function of each self-interested user is based on its

achievable rate ri(pi, p−i) and the normalized pricing term as follows.

ui(pi, p−i) = ri(pi, p−i)− βi(p−i)pi. (6.3)

When there is single link or Ii(p−i) is a constant, the utility function is ui(pi, p−i) = ri(pi, p−i)−

βipi. In the multiuser case, the interference obviously influences the quality of the good (re-

source) that user i buys. In order to express the quality loss due to interference, the higher

interference, the lower the pricing term, and thus the more power consumed. Therefore,

the pricing term βi(p−i) is normalized by the noise plus interference caused by all the other

users. Let the normalized noise plus interference to user i caused by all the other users be

Ii(p−i) = 1 +
∑

k 6=i αkpk. The utility of user i with normalized pricing term is

ui(pi, p−i) = ri(pi, p−i)−
βi

Ii(p−i)
pi

= log

(

1 +
αipi

Ii(p−i)

)

−
βi

Ii(p−i)
pi. (6.4)

Each user plays its BRD by maximizing its own utility function ui(pi, p−i), i.e., each rational

self-optimizing user chooses its power level as the BR to the power chosen by other users.

6.3 Definition. Best response power allocation is the strategy which produces the most favorable

outcome for a player, taking other players’ strategies as given [23]. In our scenario,

ui(p
BR
i , p−i) ≥ ui(pi, p−i) ∀i, i ∈ [1, . . . ,K]. (6.5)

The game BRD for user i can be expressed as the K coupled problems ∀i = 1, . . . ,K,

max
0≤pi≤pmax

i

ui(pi, p−i) = ri(pi, p−i)−
βi

Ii(p−i)
pi s.t. ri(pi, p−i) ≥ ui (6.6)
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A basic result from game theory is that each fixed point of the BRD is an NE point, although

in general, convergence of the BRD is not guaranteed, nor is the existence of the fixed point.

In the following section, the BR power of each user i is obtained in closed form.

6.2.1.1 Best Response Power Allocation

If the prices βi = 0, transmitting with full power pmax
i is the BR of each user. Due to the pricing

term with positive βi > 0, we can conclude the users’ BR of transmit power as follows.

6.4 Proposition. For all i = 1, . . . ,K , define p
i
(p−i) as

p
i
(p−i) =

(
1

βi
−

1

αi

)(

1 +
∑

k 6=i

αkpk

)

. (6.7)

The i-th user’s best-response is given by pBR
i = max(0,min(p

i
(p−i), p

max
i )). Moreover, the noncoop-

erative game G(K,P,U) always admits an NE {pBR
i }Ki=1.

Proof. Please refer to Proof 6.5.1.

Each user plays its BR strategy on the transmit power by taking the other users’ BR power

into consideration. In the following section, the existence, convergence and uniqueness of the

NE power allocation of the game is investigated.

6.2.1.2 Nash Equilibrium Power Allocation

The noncooperative game G(K,P,U) always admits at least one NE power allocation {pNE
i }Ki=1.

In this part, we figure out the NE point and show that it is unique.

6.5 Proposition. The Nash equilibrium power allocation of each user i in the noncooperative game

G(K,P,U) for the general MAC system without SIC is pNE
i = max(0,min(pNE

i
, pmax

i )). With given

individual prices βi,

pNE

i
=

αi − βi
α2
i

·
1

∑K
j=1

βj

αj
−K + 1

. (6.8)

The noncooperative game G(K,P,U) always admits this unique NE point.

Proof. Please refer to Proof 6.5.2.

In order to ensure the positive power allocation and therefore to guarantee the rate require-

ment of each user, the following conditions regarding the number of users in the wireless

system, the individual prices and the channel states should be fulfilled.
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6.6 Corollary. In the general K-user MAC system without SIC, the rate requirement of each user i is

achieved by the NE power allocation if and only if

K − 1 <

K∑

i=1

βi
αi

< K. (6.9)

Proof. In order to ensure the rate requirement of each user, the system guarantees pNE
i

> 0 in

(6.8) by providing the prices β. From (6.7), βi < αi. Therefore, the right part of the inequality

is proved. The left part of the inequality is obtained by ensuring 1
∑K

j=1

βj

αj
−K+1

> 0 in (6.8).

The existence and uniqueness of the NE power allocation for the general MAC system with-

out SIC is proved. In the numerical simulation, the convergence rate of the NE is shown. We

will observe that the proposed noncooperative game converges very fast.

By definition, the best-response correspondence (BRC) BR(p) = {BRk(p−k)}
K
k=1 is a stan-

dard function if, it satisfies the following three properties [10]. 1) Positivity: BRk(p−k) ≥ 0

for all p−k ≥ 0, k = 1, . . . ,K . 2) Monotonicity: BRk(p
(1)
−k) ≥ BRk(p

(2)
−k) for all p(1)−k ≥ p

(2)
−k,

k = 1, . . . ,K . 3) Scalability: λBRk(p−k) > BRk(λp−k) for all p−k ≥ 0, λ > 1, k = 1, . . . ,K.

Now, the following proposition holds.

6.7 Proposition. The non-cooperative game G(K, S,U) admits a unique NE, and its BRD is guaran-

teed to converge to the unique NE.

Proof. The key concept of the proof is to realize that the BRC of the noncooperative game

G(K, S,U) is a standard function. From Corollary 6.6, p
i
(p−i) in (6.7) is positive for all p−i ≥ 0.

Since
(

1
βi

− 1
αi

)

> 0, p
i
(p−i) is monotonically increasing with p−i. The equality in the prop-

erty of monotonicity holds if pBR
i = pmax

i or pBR
i = 0.

Since λ > 1, it holds that λ
(

1
βi

− 1
αi

)(

1 +
∑

k 6=i αkpk

)

=
(

1
βi

− 1
αi

)(

λ + λ
∑

k 6=i αkpk

)

>
(

1
βi

− 1
αi

)(

1 +
∑

k 6=i αkλpk

)

=
(

1
βi

− 1
αi

)(

1 + λ
∑

k 6=i αkpk

)

.

Therefore, the BRC in Proposition 6.4 is a standard function which satisfies the properties of

positivity, monotonicity and scalability.

It is shown in [10] that the fixed point p = BR(p) is unique for a standard function. There-

fore, standard games, are known to admit a unique NE and to have a BRD that converges to

the NE, provided an NE exists [2].

6.2.1.3 Pricing for QoS Requirements

The objective of pricing in the proposed noncooperative game G(K,P,U) is to implicitly en-

force the NE power allocation to the desired point. The NE power allocation is efficient if the

rate requirement of each user is guaranteed with minimum power. The prices β are chosen to

ensure that the efficient NE is the outcome of the game.
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As shown in [97], the power allocation is solved as a function of the rate requirement u of

each user to achieve the SINR-based QoS requirements. Recall (4.6) in Chapter 4 that

pUi =
BK

αi
·
2ui − 1

2ui
, (6.10)

where BK = 1
∑K

j=1
1

2
uj

−K+1
is a constant for given uj , j = 1, · · · ,K . This power allocation is

done centrally at the system optimizer, which could be the BS for the general MAC system.

With the properly designed universal pricing term, the power allocation in (6.10) is solved

such that the rate requirement u is guaranteed for all the users.

For the noncooperative game G(K,P,U), the individual price βi is designed by the BS such

that the rate requirement ui of each user i is achieved at the NE transmit power pNE
i . For

the problem at hand, in order to determine the individual prices, pNE
i

should be equal to pUi .

Therefore, we solve the universal individual prices for the distributed power allocation in

MAC without SIC as follows.

6.8 Lemma. In the K-user non-cooperative game G(K,P,U) of the general MAC system without SIC,

the rate requirement ui of each user i is achieved with the NE power allocation pNE
i if the individual

price is

βi =
αi

2ui
. (6.11)

Proof. Solve the equation pNE
i

= αi−βi

α2
i

· 1
∑K

j=1

βj
αj

−K+1
= pUi = BK

αi
· 2ui−1

2ui for βi.

6.9 Remark. The region in (6.9) is equivalent to the feasible utility region in Corollary 1 in [75]

(Corollary 4.3), if the individual prices βi are given in (6.11).

The price βi is only dependent on the individual CSI αi and the rate requirement of each

user ui. Therefore, it is the local information of each user i. The users can update its individual

prices when its CSI and rate requirement change.

6.10 Remark. The closed form individual price βi allows the distributed implementation of

the proposed noncooperative game. The prices acting as a control signal can be broadcasted

by the BS to all the transmitters before the game is played.

From the power allocation in (6.10), the sum power consumption in the MAC system is

Psum(α1, . . . , αK) =
∑K

i=1
BK

αi
· 2ui−1

2ui . If we consider the special case of identical rate require-

ments ui = u, i ∈ [1, . . . ,K], the following Lemma is provided.

6.11 Lemma. Given the identical rate requirement ui = u, i ∈ [1, . . . ,K], the sum power consumption

for the general MAC without SIC is Psum(α1, . . . , αK) = BK · 2u−1
2u ·

∑K
i=1

1
αi
. Psum(α1, . . . , αK) is

Schur-convex in the CSI α = [α1, . . . , αK ] of all users, i.e.,

Psum(1, 0, . . . , 0) ≥ Psum(α1, . . . , αK) ≥ Psum

(
1

K
, . . . ,

1

K

)

, (6.12)
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for all αi ≥ 0,
∑K

i=1 αi = 1.

Proof. Psum(α1, . . . , αK) is a symmetric function because its value is the same for any permu-

tation of its K variables α, i.e.,

Psum(α1, α2, . . . , αK) = Psum(α2, α1, . . . , αK) = · · · = Psum(α1, . . . , αK , αK−1).

Psum(α1, . . . , αK) is Schur-convex because it is symmetric and convex.

As described in Fig. 4.8 in [98], Lemma 6.11 shows that in the perspective of energy effi-

ciency, all users distributed equally around the BS is the best scenario.

6.2.1.4 Algorithm of Noncooperative Game

The algorithm of the proposed noncooperative game for the general MAC without SIC where

the transmit power is allocated in a distributed manner is provided in Algorithm 1.

Algorithm 1 Noncooperative game for MAC without SIC
Input:

Input K ; (u1, . . . , uK); (α1, . . . , αK); (β1, . . . , βK); n; ǫ: required accuracy
Initialize:

P0 = (p01, . . . , p
0
K); p−1

i = 0
1: while | pni − pn−1

i |≥ ǫ do

2: for i = 1 : 1 : K do

3: Pn = (pn1 , . . . , p
n
K);

4: pni =
(

1
βi

− 1
αi

)(

1 +
∑

k 6=i αkp
n−1
k

)

5: n = n+ 1
6: end for

7: end while

8: return

NE power Pn = (pn1 , . . . , p
n
K)

With the provided individual price βi, each user can achieve its rate requirement ui at the

NE transmit power when playing the BRD in the noncooperative game.

The problem when there exist malicious users is analyzed in the next section.

6.2.2 Malicious Behavior for MAC without SIC

From the game theoretic point of view, the users have incentives to hide their private types.

These types include the private information, such as the CSI, or its own utility preferences.

For the noncooperative game, the users are more likely to conceal their true utility functions

to each other in order to overtake the other users when performing the BRD. In this section,

we investigate the user misbehavior where the malicious users try to enhance its own utility
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Table 6.1: Private type of user behavior

User behavior Vi

Malicious users 0 < Vi ≤ 1

Selfish users Vi = 0

Altruistic users −1 ≤ Vi < 0

0

ViSelfish

MaliciousAltruistic

1-1

Figure 6.1: Private type of user behavior

by harming the other users. The private type determines the utility function of each user and

is independent of each other.

We define Vi to denote the private type [99] of user behavior in the system. See Table 6.1. As

shown in Fig. 6.1, the private type Vi of each user i is a continuous normalized value between

[−1, 1], which denotes the extent of its behavior. For example, if user i’s private type is Vi = 1,

then it is an extreme malicious user and if Vi = −1, then it is an extreme altruistic user.

The utility function of each user i with the private type Vi is denoted as ui(pi, p−i, Vi). Since

each user i in the noncooperative game Gv(K,P,Uv) has the individual rate requirement ui
to be achieved besides maximizing its utility function ui(pi, p−i, Vi), altruistic users who ben-

efit the other users’ utilities are not concerned in the current model. Later on, we focus on

considering the malicious behavior with private types Vi.

The utility function of user i with type Vi for MAC without SIC is defined as

ui(pi, p−i, Vi) = ri(pi, p−i, Vi)−
βi

Ii(p−i)
pi +

Viαipi
Ii(p−i)

, (6.13)
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where the third term reflects the interference to all the other users. For malicious users, they

benefit from harming all the other users.

In the following, the noncooperative game Gv(K,P,Uv) is played for the general MAC with-

out SIC where malicious behavior exists.

6.2.2.1 Best Response Power Allocation with Malicious Users

Follow a similar procedure as in Section 6.2.1, by maximizing the utility function ui(pi, p−i, Vi),

we obtain the BR and the NE power allocation of each user i with private type Vi for MAC

without SIC.

6.12 Lemma. For all users i = 1, . . . ,K with private type Vi and utility ui(pi, p−i, Vi) in (6.13),

define p
i
(Vi) as

p
i
(Vi) =

(
1

β̃i(Vi)
−

1

αi

)(

1 +
∑

k 6=i

αkpk(Vk)
)

. (6.14)

Here β̃i(Vi) = βi − Viαi is the individual price with type Vi. The i-th user’s best-response power

allocation with type Vi is given by pBR
i (Vi) = max(0,min(p

i
(Vi), p

max
i )).

Proof. Please refer to Proof 6.5.3.

Define the BR power allocation with Vi of malicious users as pBR
i,m(Vi) and selfish users as

pBR
i,s (Vi), respectively. We observe that the BR power allocation of the malicious user is higher

than that if all users are regular, i.e., pBR
i,m(Vi) > pBR

i . Because β̃i(Vi) = βi − Viαi < βi for

positive Vi. For selfish users, although its own private type Vi = 0, pBR
i,s (Vi) is higher than

it should be to achieve the rate requirement due to the increment of transmit power of other

existing malicious users, i.e., pBR
i,s (Vi) > pBR

i . If there is no malicious users in the system, the

BR transmit power in the proposed noncooperative game with the private type V remains the

same as in Sec. 6.2.1. If Vi = 0 for all i, i ∈ [1, . . . ,K], pBR
i (Vi) = pBR

i .

6.13 Remark. Notice that the BRD of Gv(K,P,Uv) for the MAC without SIC when considering

the malicious behavior of users is not restricted to single malicious user. The number of the

malicious users can be arbitrary integers. The BR transmit power of each user i is independent

of the private types of other users. So the users do not require information exchange about the

private types of each other to perform the BRD of the game. The property that the proposed

noncooperative game is applicable for arbitrary number of malicious users also holds for the

NE power calculation in the next subsection.

6.2.2.2 Nash Equilibrium Power Allocation with Malicious Users

In this part, we analyse the NE power allocation of the noncooperative game Gv(K,P,Uv) with

private type Vi. From (6.8), we can conclude the following result.
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6.14 Proposition. The Nash equilibrium power allocation of each user i in the noncooperative game

Gv(K,P,Uv) for the general MAC system without SIC and with private type Vi is pNE
i (Vi) = max(0,

min(pNE
i

(Vi), p
max
i )). Given the individual prices β̃i(Vi) with type Vi,

pNE

i
(Vi) =

αi − β̃i(Vi)

α2
i

·
1

∑K
j=1

β̃j(Vj)
αj

−K + 1
. (6.15)

The noncooperative game always admits this unique NE point.

Proof. The proof follows the same steps as in the Proof 6.5.2 by replacing the individual price

βi with β̃i(Vi).

This NE power is achieved when there are arbitrary number of malicious users. The differ-

ence in the number of malicious users implies in
∑K

j=1
β̃j(Vj)
αj

.

From Proposition 6.14, we observe that the NE power pNE
i

(Vi) is a function of types V =

[V1, . . . , VK ] of all the users in the system. However, given the values of the typesV ,
∑K

j=1
β̃j(Vj)
αj

can be considered as a constant. pNE
i

(Vi) can be seen as a function of its own type Vi and CSI

αi under the assumption that the type values remain constant for a long period of time.

6.15 Remark. Define pNE
i,s (Vi) as the NE transmit power for the selfish users and pNE

i,m (Vi) as

the NE transmit power for the malicious users, respectively. The NE power of user i when

there are malicious users in the system is higher than that when there are no malicious users,

no matter user i itself is malicious or selfish. Comparing with pNE
i in (6.8), for malicious users,

due to the private type 0 < Vi ≤ 1, both parts αi−β̃i(Vi)
α2
i

and 1
∑K

j=1

β̃j (Vj )

αj
−K+1

in (6.15) become

larger. Therefore, pNE
i,m (Vi) > pNE

i . For selfish users, 1
∑K

j=1

β̃j(Vj )

αj
−K+1

is larger since there exist

malicious users in the system. Therefore, pNE
i,s (Vi) > pNE

i as well.

This observation is important because the system power consumption is much higher when

there are malicious users. In order to understand the influence of the malicious behaviour on

the resulting NE power and the rate of both the selfish and malicious users comprehensively,

we have the following Proposition.

6.16 Proposition. With the individual price βi = αi

2ui , the NE power allocation pNE
i (Vi) in (6.15)

of each user i in the noncooperative game Gv(K,P,Uv) for the general MAC system without SIC and

with private type Vi is higher than or equal to pUi in (4.6). Denote pNE
i

(Vi, V−i.u) as a function of the

rate requirement ui, i = [1, . . . ,K],

pNE

i
(Vi, V−i.u) =

1 + Vi − 2−ui

αi
·

1
∑K

j=1(2
−uj − Vj)−K + 1

. (6.16)
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Given the type value V of all the users,

pNE
i

(Vi, V−i,u) =
1 + Vi − 2−ui

αi
·BK(V ), (6.17)

where BK(V ) = 1
∑K

j=1(2
−uj−Vj)−K+1

.

The resulting rate ri(Vi) of user i is

• ri(Vi) = ui, for selfish users with Vi = 0

• ri(Vi) > ui, for malicious users with 0 < Vi ≤ 1.

Proof. Please refer to Proof 6.5.4.

When there are malicious users in the MAC system without SIC, the feasible region for the

individual prices β is different due to the values of user private types V .

6.17 Corollary. In the general MAC system without SIC, when there exist malicious users with private

types V , the rate requirement of each user i is achieved by the NE power allocation if and only if

K − 1 +
K∑

j=1

Vj <
K∑

j=1

βj
αj

< K +
K∑

j=1

Vj . (6.18)

Proof. The proof follows the same step as in Corollary 6.6 to ensure the positive NE power in

(6.15).
∑K

j=1
β̃j(Vj)
αj

−K+1 > 0 proves the left part of the inequality. And αi−βi+Viαi

α2
i

> 0 proves

the right part of the inequality for positive αi.

For the uplink transmission, when the achievable rate ri(Vi) of user i is obtained by the BS,

the private type Vi of each user i can be detected.

6.18 Lemma. Given the achievable rate ri(Vi) of each user i ∈ [1, . . . ,K], the private type Vi is

obtained as

Vi = 2−ui − 2−ri(Vi), (6.19)

where the achievable rate of each user i in the general MAC without SIC is

ri(Vi) = log

(
1

2−ui − Vi

)

. (6.20)

Proof. Please refer to Proof 6.5.5

6.19 Remark. The achievable rate of each user is only dependent on its own private type Vi

and the rate requirement ui in the proposed noncooperative game Gv(K,P,Uv) for the MAC

system without SIC when users misbehavior is considered. Therefore, no collusion can be

formed in the system.
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If Vi = 0, then ri(Vi) = ui for selfish users. Otherwise if 0 < Vi ≤ 1, then ri(Vi) > ui for

malicious users. The selfish users can achieve its rate requirement but the malicious users can

achieve better rates. The selfish users compensate the higher interference from malicious users

by increasing its transmit power as well. The system is responsible to detect the malicious

users by means of Lemma 6.18 and investigate the mechanism to counter the user misbehavior.

The number of the malicious users M and the total users K , the private type Vi and the rate

requirement ui are mutually restricted to ensure the positive NE power allocation pNE
i (Vi),

and therefore to ensure the positive achievable rate ri(Vi).

6.20 Lemma. In the general K-user MAC system without SIC, the rate requirement ui of each user i

can be achieved if and only if the following conditions are fulfilled ∀j, j ∈ [1, . . . ,K].

0 ≤

K∑

j=1

Vj <

K∑

j=1

2−uj −K + 1 and 0 ≤ Vj < 2−ui (6.21)

Proof. Since 2−uj < 1 and 0 ≤ Vi ≤ 1, the first term in (6.16) is positive. In order to achieve

the rate requirement ui, positive power allocation must be ensured. Thus the second term in

(6.16) should be positive as well. With β̃i(Vi) = βi − Viαi, 0 ≤
∑K

j=1 Vj <
∑K

j=1 2
−uj −K + 1

is obtained. Since the feasible region of the rate requirement is given in Corollary 1 in [75] as

K − 1 <
∑K

j=1 2
−uj < K,

∑K
j=1 Vj < 1 is satisfied.

The single type constraint in Lemma 6.20 is to ensure the positive rate ri(Vi) in (6.20). Thus
1

2−ui−Vi
> 1. With 2−ui < 1, (6.21) is proved.

6.21 Remark. Note that if the user types V do not fulfill Lemma 6.20, then the NE power

allocation pNE
i (Vi, V−i) and the achievable rate of each user i is negative no matter it is selfish

or malicious. Thereby, the utility requirements u are not feasible. Then the rates of all users

cannot be guaranteed and the misbehaviour is immediately detected by the receiver.

Lemma 6.18 provides the BS the opportunity to capture the misbehavior and the type values

of the malicious users. Since the uplink transmission is considered, the BS is able to obtain the

rate ri(Vi) of all the users. If the rate achieved by user i is higher than its rate requirement ui,

then the BS detects the malicious user i and applies the punishment strategy on it with the

strategy-proof price βM
i . The following section gives the details.

6.2.3 Strategy-Proof Pricing

In this section, we design the strategy-proof prices in order to counter the malicious behavior

analysed in Section 6.2.2. If the types of the malicious users are detected, then the following

mechanism can be adopted.

Denote βM
i as the trigger price applied on the malicious user i whenever it is detected by the

system. In order to counter the malicious behavior, the price given to the malicious users βM
i
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should be tailored such that the BR power allocation of the malicious users are made smaller

than if it is selfish. βM
i can be considered as the punishment price. The following Proposition

on cheat-proof pricing is obtained.

6.22 Proposition. In the K-user non-cooperative game Gv(K,P,Uv) of the general MAC system

without SIC, no user has an incentive to behave maliciously if the punishment price βM
i is given as

βM
i ≥ βi + Viαi. (6.22)

Proof. With the individual price βi, pBR
i,m(Vi) > pBR

i (Vi). Therefore, the punishment price βM
i

should be introduced such that the BR power allocation of malicious users pBR
i,m(βM

i ) is smaller

than the BR power allocation of the selfish users, i.e.,

(
1

βM
i − Viαi

−
1

αi

)

Ii(p−i) ≤
( 1

βi
−

1

αi

)

Ii(p−i). (6.23)

Since Ii(p−i) > 0 and αi > 0, (6.23) becomes 1
βM
i −Viαi

≤ 1
βi

. Therefore, (6.22) is proved.

The punishment price βM
i can be seen as the original individual price βi plus an additional

price Viαi which is proportional to the private type of users.

Whenever the malicious behavior is detected by means of Lemma 6.18, the punishment

price is applied on the malicious user. This is the rule of the proposed game and all rational

players are fully aware of the rule before the game is played. By maximizing its own utility

function ui(pi, p−i, Vi) in (6.13), no user will have incentives to harm the other users.

From Lemma 6.18, the private type Vi of each user i is detected at the BS from the achievable

rate ri(Vi) and the rate requirement ui. By observing the user misbehavior, the BS is able to

punish the targeted malicious user with the trigger price βM
i in (6.22). Otherwise, the BS can

take the default value Vi = 1 for malicious users in the punishment price. Since the individual

utility ui(pi, p−i, Vi) is a linear function of the private type Vi of each user i, the optimal private

Vi for malicious users is the maximum value that fulfills the restrictions in Lemma 6.20.

6.2.4 Strategy-Proof Algorithm for MAC without SIC

If there exist malicious users in the general MAC system without SIC, the noncooperative

game works as follows. The Input values of the individual prices become β̃i(Vi) with the

private type Vi of users. If the misbehavior is detected, the strategy-proof price βM
i = βi+Viαi

is adopted to the malicious user i from then on.

The strategy-proof algorithm for MAC without SIC is shown in Algorithm 2. The system

operation with all truthful agents is a special case of Algorithm 2.
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Algorithm 2 Noncooperative game for MAC without SIC with private type Vi and trigger
strategy in (6.22)
Input:

Input K ; (u1, . . . , uK); (α1, . . . , αK); (β̃1(V1), . . . , β̃K(VK)); ǫ: Required accuracy; n
Initialize:

P0 = (p01, . . . , p
0
K); p−1

i = 0
1: while | pni − pn−1

i |≥ ǫ do

2: for i = 1 : 1 : K do
3: Pn = (pn1 , . . . , p

n
K);

4: pni =
(

1
β̃i(Vi)

− 1
αi

)(

1 +
∑

k 6=i αkp
n−1
k

)

5: if ri(Vi) > ui then

6: Vi = 2−ui − 2−ri(Vi)

7: β̃i(Vi) = βi + Viαi

8: end if

9: n = n+ 1
10: end for

11: end while

12: return
NE power Pn = (pn1 , . . . , p

n
K);

6.3 Numerical Results

In this section, we present some numerical results of our proposed distributed power alloca-

tion framework with pricing in the general MAC system without SIC under individual QoS

requirement ui.

Define the channel gains αi =| hi |
2∼ χ2

n with diversity order n. Fig. 6.2 shows the system

average sum NE power
∑K

i=1 p
NE
i with different diversity orders n for different numbers of

users in the MAC. The rate requirement is set as identical ui = 0.05.

Fig. 6.3 demonstrates the convergence rate of the BRD using the chosen price βi in (6.11)

for the 2-user MAC. It is shown that the BRD converges very fast. Results of different sets of

parameters are shown. The convergence points of the power allocation are the same as the NE

power pNE
i

in (6.8), where pNE
i

= pUi in (4.6).

Fig. 6.4 shows the Price of Malice (PoM) [100] of the proposed model. The PoM captures the

ratio between the NE in a purely selfish system and the worst NE with M malicious players.

Formally, PoM in our case is

PoM(M) =
PNE
sum(0)

PNE
sum(M)

, (6.24)

where PNE
sum(M) denotes the sum power allocation at the NE when there are M malicious users.

PNE
sum(M) =

∑K
i=1 p

NE
i (Vi) in which M users are with Vi > 0 and K −M selfish users are with

Vi = 0.
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Figure 6.2: Average sum power required to fulfill the QoS requirement for different number
of total users
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Figure 6.4: Price of Malice vs. number of malicious users
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We apply the PoM(M) to evaluate how much the sum power consumption of the whole

K-user MAC system loses when there exist M malicious users. In the simulation, the total

number of users in the system is K = 10. Different sets of rate requirements of each user ui
are performed. The channel gain is set to be αi = 1. The private type of the M malicious user

i is Vi = 0.06, while Vj = 0 for the K −M selfish users. When there is no malicious user in the

system, PoM(M) is one and it is strictly decreasing with the number of malicious users. It is

observed that the PoM quickly drops from one if one or two malicious users are added. For

some QoS requirements, the PoM(M) decreases more than 20% when there is one malicious

user, which indicates the importance of the counter mechanism.

If we define the PoM in a different way as PoMu(M) =
∑K

i=1 ui(pi,p−i,Vi)−
∑K

i=1 ui(pi,p−i)
∑K

i=1 ui(pi,p−i)
[99],

then Fig. 6.5 shows the curves for K = 10 users with different rate requirements u. The

CSI α and the individual prices β as well as the private types V are set to be identical. It is

shown that the more malicious users in the MAC system, the higher the difference between

the sum utilities of the system with and without malicious users. Since PoMu(M) is positively

correlated to 2−u, the impact of malicious users is larger if the rate requirement u is smaller.

PoMu(M) is almost linearly dependent on the number of malicious users.

In Fig. 6.6, the relation between the proposed prices β and the resulting NE transmit power

as a summation PNE
sum =

∑K
j=1 p

NE
j is shown for different total numbers of users. In the simu-

lation, the individual prices are restricted to the region in Corollary 6.6 for different K . That

is the reason why the starting points of βi are different. In order to show the influence on the

resulting NE power of price choices, identical CSI and prices for all users are assumed. It is

intuitive to see that the higher the individual prices β, the lower the NE transmit power pNE
i

of each user. From Lemma 6.8, to ensure the rate requirement of each user the individual price

βi is related to ui and the CSI αi. Therefore, βi in (6.11) provides the best individual price to

lead the NE transmit power of the noncooperative game to the desired point with the mini-

mum power consumption. Due to the identical CSI αi = 1, for all i, i ∈ [1, . . . ,K], the curves

in Fig. 6.6 show exactly the individual prices to ensure different rate requirement of each user

and the resulting sum NE power. The points in the figure show β = α
2u as an example, where

u = 0.2 for K = 5 and u = 0.1, K = 10, respectively.

Fig. 6.7 compares the BRD transmit power of the proposed noncooperative game for the

2-user MAC without SIC when there is no malicious user and when user 2 is malicious. We

observe that both the power of the selfish user 1 and the malicious user 2 become larger com-

pared to the BRD transmit power without malicious user. It shows the importance to detect

and prevent the misbehavior of users when they allocate their power distributively.

6.4 Distributed Power Allocation for MAC with SIC

In this section, we extend the pricing for distributed resource allocation to the general MAC

with SIC. Without loss of generality, we assume the SIC is performed at the receiver with the
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SIC decoding order as [K → · · · → 1] for the K transmitters. In the following, this decoding

order is fixed if without specification. The operation for MAC with SIC is denoted as .SIC .

The linear pricing, which is linear in both the prices β and the power p is adopted for the

distributed power allocation in the general MAC with SIC. Linear pricing is a universal pricing

for interference functions in MAC with SIC. Linear pricing for MAC with SIC is a simple and

more efficient pricing scheme. Given the non-linear pricing for the general MAC without SIC,

the whole picture of distributed power allocation in MAC under QoS requirement of each user

is provided with the linear pricing analysed in this section.

6.4.1 System Operation with Truthful Agents

Different from the characterization for the MAC system without SIC, the utility function of

each user for MAC with SIC is based on the achievable rate rSICi (pSICi , pSIC−i ) and the linear

pricing term βSIC
i pSICi as follows.

uSICi (pSICi , pSIC−i ) = rSICi (pSICi , pSIC−i )− βSIC
i pSICi (6.25)

The noncooperative game GSIC(K,P,U) is played among the K users. The utility function

of each user i is uSICi (pSICi , pSIC−i ). Their strategy space is the transmit power pSICi ∈ [0, pmax
i ].

In the following, the BRD and NE power of the noncooperative game GSIC(K,P,U) are ana-

lyzed.

The BRD of this noncooperative game can be expressed as the K coupled problems

max
0<pSIC

i <pmax
i

uSICi (pSICi , pSIC−i ) s.t. rSICi (pSICi , pSIC−i ) ≥ ui ∀i = 1, . . . ,K. (6.26)

Each user maximizes its own utility function uSICi (pSICi , pSIC−i ) and then plays the BRD in

the noncooperative game.

6.4.1.1 Best Response Power Allocation for MAC with SIC

The BR power allocation for the noncooperative game of MAC with SIC decoding order [K →

· · · → 1] is concluded as follows.

6.23 Proposition. For all i = 1, . . . ,K , define pSIC
i

as

pSIC
i

(pSIC−i ) =
1

βSIC
i

−
1

αi

(

1 +

i−1∑

k=1

αkp
SIC
k

)

. (6.27)

The i-th user’s best-response for the general MAC system with SIC decoding order [K → · · · → 1] is

given by pBR
i,SIC = max(0,min(pSIC

i
, pmax

i )). Moreover, the noncooperative game GSIC always admits

an NE {pBR
i,SIC}

K
i=1.
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Proof. Please refer to Proof 6.5.6.

6.4.1.2 Nash Equilibrium Power Allocation for MAC with SIC

In this part, we figure out the unique NE point of the noncooperative game GSIC(K,P,U) for

the general MAC with SIC.

6.24 Proposition. The Nash equilibrium power allocation of each user i in the noncooperative game

GSIC(K,P,U) for the general MAC system with SIC decoding order [K → · · · → 1] is pNE
i,SIC =

max(0,min(pNE
i,SIC

, pmax
i )). Given individual prices βSIC from the BS,

pNE

i,SIC
=

1

βSIC
i

−
αi−1

αi

1

βSIC
i−1

, (6.28)

where pSIC1 = 1
βSIC
1

− 1
α1

. The noncooperative game GSIC always admits this unique NE point.

Proof. Please refer to Proof 6.5.7.

6.4.1.3 Pricing for MAC with SIC under QoS Requirements

The BS of the uplink transmission provides the individual price βi to each user and leads the

NE point of the noncooperative game to guarantee the rate requirement of each user with

minimum power.

The minimum power to achieve the QoS requirement ui in the general MAC with SIC de-

coding order [K → · · · → 1] is shown in [97] as a function of u. Recall (4.14) as

pUi,SIC =
2ui − 1

αi

i−1∏

j=1

2uj . (6.29)

In order to achieve the QoS requirement ui, the NE power allocation of the game GSIC(K,P,U)

should be set equal to the power pUi,SIC in (6.29). This could be managed by providing a set

of properly designed prices βSIC . Thereby, the individual price βSIC
i of the noncooperative

game GSIC(K,P,U) for the general MAC with SIC is set as follows.

6.25 Lemma. In the K-user non-cooperative game GSIC(K,P,U) of the general MAC system with

SIC decoding order [K → · · · → 1], the rate requirement ui of each user i is achieved with the NE

power allocation pNE
i,SIC if the individual price βSIC

i is

βSIC
i = αi · 2−

∑i
j=1 uj . (6.30)

Condition
βSIC
i

βSIC
i−1

< αi

αi−1
ensures the positive NE power pNE

i,SIC
in (6.28).

Proof. Solve the equation pNE
i,SIC

= 1
βSIC
i

− αi−1

αi

1
βSIC
i−1

= pUi,SIC = 2ui−1
αi

∏i−1
j=1 2

uj for βi using the

forward substitution.
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The NE power in (6.28) pNE
i,SIC

= 1
βSIC
i

− αi−1

αi

1
βSIC
i−1

> 0 proves the condition βSIC
i

βSIC
i−1

< αi

αi−1
.

In the noncooperative game proposed for MAC with SIC, the last decoded user’s strategy

on transmit power is fixed in order to meet its rate requirement due to total interference cance-

lation. From the game theoretical point of view, it is a dominant strategy. Then by backward

induction, the best strategy of the users decoded earlier will be fixed. The NE point of this

game is quickly reached. However the game still needs to be played because the best re-

sponse power allocation of the users are dependent on the strategies made by those users who

are decoded later than them. Here the analysis of user misbehavior comes into play.

6.4.2 Malicious Behavior for MAC with SIC

If there exist malicious users in the MAC system with SIC as mentioned in Sec. 6.2.2, the

private type Vi still applies. We follow the same procedure as in Sec. 6.2.2 in this section.

We assume for the general MAC with SIC, the utility function of each user with the private

type Vi is as follows.

uSICi (pSICi , pSIC−i , Vi) = rSICi (pSICi , pSIC−i )− βSIC
i pSICi + Viαip

SIC
i , (6.31)

where the third term denotes the influence to the users who are decoded later than the user i.

Since the interference caused by the malicious user i is only due to its own power allocation, it

is simplified as the linear term to keep consistent with the linear pricing. The higher the term

Viαip
SIC
i , the more interference to the other users.

6.4.2.1 Private Type Best Response Power for MAC with SIC

Follow a similar procedure as in Section 6.4.1, we obtain the distributed BR power allocation

of each user with private types Vi and NE point with malicious users in the system.

6.26 Lemma. For all i = 1, . . . ,K with type Vi in the general MAC with SIC decoding order [K →

· · · → 1], define pSIC
i

(Vi) as

pSIC
i

(Vi) =
1

β̃SIC
i

−
1

αi

(

1 +
i−1∑

k=1

αkp
SIC
k (Vk)

)

. (6.32)

Here β̃i
SIC

(Vi) = βSIC
i − Viαi is the individual price with type Vi. The i-th user’s best-response with

type Vi is given by pBR
i,SIC(Vi) = max(0,min(pSIC

i
(Vi), p

max
i )).

Proof. Solve pSIC
i

(Vi) for the first derivative
∂uSIC

i (pSIC
i ,pSIC

−i ,Vi)

∂pSIC
i (Vi)

= 0 from (6.31).

∂uSICi (pSICi , pSIC−i , Vi)

∂pSICi (Vi)
=

αi

1 +
∑i

j=1 αjp
SIC
j

− βi + Viαi = 0
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provides the result in (6.32).

The second derivative with respect to pSICi (Vi) is

∂2uSICi (pSICi , pSIC−i , Vi)

∂2pSICi (Vi)
=

−α2
i

(1 +
∑i

j=1 αjpSICj )2
< 0. (6.33)

Therefore, pSIC
i

(Vi) in (6.32) is the global optimum.

If there is no malicious user in the system, the result in Lemma 6.26 is exactly pBR
i,SIC in (6.27)

when Vi = 0 for all i, i ∈ [1, . . . ,K].

6.4.2.2 NE Power Allocation with Malicious Users for MAC with SIC

The K users in the system play the BRD in the proposed noncooperative game and their NE

point is derived as follows.

6.27 Proposition. The NE power allocation of each user i in the noncooperative game GSIC(K,

P,Uv) for the general MAC system with SIC decoding order [K → · · · → 1] and private type Vi is

pNE
i,SIC(Vi) = max(0,min(pNE

i,SIC
(Vi), p

max
i )). Given the individual prices β̃i

SIC
(Vi) with type Vi,

pNE

i,SIC
(Vi) =

1

β̃SIC
i (Vi)

−
αi−1

αi

1

β̃SIC
i−1 (Vi)

. (6.34)

The noncooperative game always admits this unique NE point.

Proof. The proof follows the same steps as in Proof 6.5.7 by replacing the individual price βSIC
i

with β̃SIC
i (Vi).

Given the individual price βSIC
i = αi · 2−

∑i
j=1 uj , the NE power in (6.34) can be expressed

as a function of the rate requirement u and the private types V .

6.28 Proposition. With the individual price βSIC
i = αi · 2−

∑i
j=1 uj , the Nash equilibrium power

allocation pNE
i,SIC(Vi) of each user i in the noncooperative game GSIC(K,P,Uv) for the general MAC

with SIC decoding order [K → · · · → 1] and private type Vi is higher than or equal to pUi,SIC in (6.29).

pNE

i,SIC
(Vi,u) =

1

αi

( 1
∏i

j=1 2
−uj − Vi

−
1

∏i−1
j=1 2

−uj − Vi−1

)

, (6.35)

where pNE
1,SIC

(V1,u) =
1

α1

(
1

2−u1 − V1
− 1

)

. (6.36)

Proof. Insert β̃SIC
i (Vi) = βSIC

i − Viαi with βSIC
i = αi · 2−

∑i
j=1 uj into (6.34), then (6.35) is

proved. If all the users are selfish, pNE
i,SIC

(Vi, V−i) = pUi,SIC, which is the minimum power

allocation in order to achieve the rate requirement ui of each user i.
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From (6.32), for malicious users with private type 0 < Vi ≤ 1, the transmit power is larger

than that of a selfish user.

For the uplink transmission, by comparing with the rate requirement of each user, the

achievable rate serves to detect the user misbehavior. The achievable rate rSICi (V ) is obtained

given the rate requirements u and the private types V of user i and all the users decoded later

than i.

6.29 Lemma. Given the private types V of the users, the rate achieved for each user i in the general

MAC with SIC decoding order [K → · · · → 1] is

rSICi (V ) = log

(∏i−1
j=1 2

−uj − Vi−1
∏i

j=1 2
−uj − Vi

)

, where rSIC1 (V ) = log

(
1

2−u1 − V1

)

. (6.37)

Proof. Insert the result of NE power with the malicious users in (6.35) into the rate rSICi (V ). If

the SIC decoding order is [K → · · · → 1] without generality, the rate of user 1 is

rSIC1 (V ) = log
(
1 + α1p

NE
1,SIC(V1, V−1)

)
= log

( 1

2−u1 − V1

)

. (6.38)

For the users i > 1,

rSICi (V ) = log






1 +
∑i

k=1

(
1

∏k
j=1 2

−uj−Vk

− 1
∏k−1

j=1 2
−uj−Vk−1

)

1 +
∑i−1

k=1

(
1

∏k
j=1 2

−uj−Vk

− 1
∏k−1

j=1 2
−uj−Vk−1

)




 . (6.39)

Eliminate the same items step by step in the numerator and denominator, respectively. Then

we obtain rSICi (V ) = log





1
∏i

j=1 2
−uj−Vi

1
∏i−1

j=1
2
−uj−Vi−1



 and rSICi (V ) in (6.37) is proved.

The extent of users’ malice is restricted by the rate requirements u. Otherwise no user can

achieve its rate requirement and the malicious users cannot benefit by the misbehavior.

6.30 Lemma. In the general MAC system with SIC decoding order [K → · · · → 1], the rate require-

ment ui of each user i can be achieved if and only if the following conditions of the user private type Vi,

the total number of users K and the rate requirement ui are fulfilled.

i−1∏

j=1

2−uj (1− 2−ui) > V SIC
i−1 − V SIC

i , (6.40)

2uiVi ≥ Vi−1, (6.41)

0 ≤ V SIC
i <

i∏

j=1

2−uj . (6.42)
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Proof. The rate requirement of each user is only achieved with positive transmit power. There-

fore, (6.40) is proved by ensuring (6.35) to be positive.

As shown in (6.37), the achievable rate is a function of the rate requirements u and the type

value V . The actual rate rSICi (V ) is higher than or equal to ui if and only if
∏i−1

j=1 2
−uj−Vi−1

∏i
j=1 2

−uj−Vi

≥

2ui . Therefore, condition (6.41) is proved.

The third condition is due to the positive rate in (6.37). ui > 0, 0 < 2−ui < 1, therefore,
∏i

j=1 2
−uj < 1.

Given the expression of the achievable rate rSICi (V ) as a function of the private types of the

users, the type values can be calculated by the BS.

6.31 Lemma. In the general MAC with SIC decoding order [K → · · · → 1], the private types V of

the users are obtained by the BS given the achievable rate rSICi (V ) and the rate requirement ui.

V SIC
i =

i∏

j=1

2−uj −

i∏

j=1

2−rSIC
j (V ), i ∈ [1, . . . ,K]. (6.43)

Proof. From (6.37), we obtain

Vi =
2r

SIC
i (V )

∏i
j=1 2

−uj −
∏i−1

j=1 2
−uj + Vi−1

2r
SIC
i (V )

. (6.44)

The proof is given by the forward induction. For the last decoded user i = 1, its private type is

V SIC
1 = 2−u1 − 2−rSIC

1 (V ). Insert V SIC
1 into V SIC

2 and calculate the type values forwardly and

so on, (6.43) is proved.

Similar to Sec. 6.2.3, when the user misbehavior is detected, the strategy-proof pricing for

MAC with SIC is applied on that user with βSIC
i,M = βSIC

i +Viαi. By maximizing the individual

utility function uSICi (pSICi , pSIC−i , Vi), no user will have incentives to harm the other users and

therefore, the rate requirements of all users in the system are guaranteed.

Figure 6.8 compares the regions of individual prices for 2-user MAC with and without SIC

and malicious user, respectively. The colors are changed due to the transparent effect of the

overlapping regions. The CSI of the two users are set to be α1 = 1 and α2 = 2. For the case

of MAC with user misbehavior, user 2 is assumed to be malicious with private type V2 = 0.1.

User 1 is selfish with private type V1 = 0. According to Lemma 6.8 and Remark 6.9, we

understand that the region of individual prices in Corollary 6.6 corresponds to the region of

feasible QoS requirements in Corollary 4.3 of Chapter 4. In other words, for every point ui in

the feasible rate region, there exists an individual price βi or βSIC
i such that ui can be achieved

by the proposed noncooperative game for MAC without and with SIC, respectively.

The feasible QoS regions for MAC with and without SIC are illustrated in Fig. 4.3 and 4.4

in Chapter 4. The rate region for MAC with SIC is larger than that without SIC. Therefore in

Fig. 6.8, the region of individual prices for MAC with SIC is larger as well. The right lower
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Figure 6.8: Regions of individual prices for MAC with and without SIC and malicious user.

part denotes the SIC decoding order [2 → 1] and the left upper part denotes the SIC decoding

order [1 → 2]. Due to different CSIs, the regions of the two decoding orders are not symmetric.

The regions of prices for MAC without SIC are from Corollary 6.6 and 6.17. The regions of

prices for MAC with SIC are from Lemma 6.25 for feasible QoS requirements u. The region

of MAC with SIC and malicious user is restricted by β̃SIC
i

β̃SIC
i−1

< αi

αi−1
, where β̃SIC

i = βSIC
i − Viαi.

It is shown that the regions with malicious user is smaller than that without malicious user,

which implies that the rate region is declined due to user misbehavior. The regions converge

to the point A and B because of the single user power constraint pmax.

6.5 Proofs

6.5.1 Proof of Proposition 6.4

Proof. Solve the first derivative of ui(pi, p−i) to be zero with respect to pi.

∂ui(pi, p−i)

∂pi
=

αi

1 +
∑

k 6=i αkpk + αipi
−

βi
1 +

∑

k 6=i αkpk

= 0. (6.45)

The positive result p
i
(p−i) is achieved in (6.7) if βi < αi. Otherwise it is set to zero to avoid

negative power.
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The second derivative of ui(pi, p−i) with respect to pi is

∂2ui(pi, p−i)

∂p2i
=

−α2
i

(1 +
∑

k 6=i αkpk + αipi)2
< 0. (6.46)

Therefore, p
i
(p−i) in (6.7) is the global maximum.

By observing that the strategy set of each user is a compact and convex set, ui(pi, p−i) is a

continuous function with respect to the powers of all users, and concave with respect to pi,

which implies the existence of at least one NE.

6.5.2 Proof of Proposition 6.5

Proof. In order to determine the NE power allocation pNE
i

, we find the fixed point by jointly

solving the set of utility maximization problems in (6.6). We formulate it as linear equations

A+D ·p = p. Therefore, p is solved by

p = (I −D)−1 ·A, (6.47)

where the matrix D is formulated as

D =






0 A1α2 . . . A1αK
A2α1 0 . . . A2αK

...
...

. . .
...

AKα1 AKα2 . . . 0




 , (6.48)

where Ai =
1
βi

− 1
αi

.

Using the Cramer’s rule, p = det(Bi)
det(B) , where B = I −D. The matrix Bi is the matrix of B

where the ith column is replaced by the vector A.

B =






1 −A1α2 . . . −A1αK
−A2α1 1 . . . −A2αK

...
...

. . .
...

−AKα1 −AKα2 . . . 1




 . (6.49)



6.5 Proofs 123

Now we solve det(Bi) and det(B).

det(Bi)

=
K∏

i=1

Ai ·
∏

j 6=i

αj · det











1 −1 . . . −1

1 1
A2α2

. . . −1
...

...
. . .

...

1 −1 . . . 1
AKαK











=

K∏

i=1

Ai ·
∏

j 6=i

αj · det











1 0 . . . 0

1 1+A2α2
A2α2

. . . 0
...

...
. . .

...

1 0 . . . 1+AKαK

AKαK











=

K∏

i=1

Ai ·
∏

j 6=i

αj

(

1 +
1

Ajαj

)

. (6.50)

det(B) =
K∏

i=1

Aiαi(−1)K · det











−1
A1α1

1 . . . 1

1 −1
A2α2

. . . 1
...

...
. . .

...

1 1 . . . −1
AKαK











=

K∏

i=1

Aiαi · det











C 1+A1α1
A1α1

. . . 1+A1α1
A1α1

0 1+A2α2
A2α2

. . . 0
...

...
. . .

...

0 0 . . . 1+AKαK

AKαK











=
∏

j

(1 +Ajαj)



1−
K∑

j=1

Ajαj

1 +Ajαj



 , (6.51)

where C = 1
A1α1

− 1+A1α1
A1α1

·
∑

j 6=1
Ajαj

1+Ajαj
. Therefore, the NE power p

i
= det(Bi)

det(B) is

p
i
=

Ai

1 +Aiαi
·

1

1−
∑K

j=1
Ajαj

1+Ajαj

. (6.52)

Insert Ai =
1
βi

− 1
αi

, The proposition is proved.
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6.5.3 Proof of Lemma 6.12

Proof. Solve p
i
(Vi) for the first derivative ∂ui(pi,p−i,Vi)

∂p
i

= 0 from (6.13).

ui(pi, p−i, Vi)

p
i

=
αi

αipi + Ii(p−i)
−

βi
Ii(p−i)

+
Viαi

Ii(p−i)

= 0. (6.53)

We obtain

αipi + Ii(p−i) =
αiIi(p−i)

βi − Viαi
.

Therefore (6.14) is proved.

The second derivative of ui(pi, p−i, Vi) with respect to pi is

∂2ui(pi, p−i, Vi)

∂p2
i

=
−α2

i

(αipi + Ii(p−i))2
< 0. (6.54)

Therefore, the global optimum of the utility function with private type Vi in (6.13) is guaran-

teed. pBR
i (Vi) = max(0,min(p

i
(Vi), p

max
i )) ensures the positive transmit power to achieve the

rate requirement of each user under single user power constraint pmax
i .

6.5.4 Proof of Proposition 6.16

Proof. Insert β̃i(Vi) = βi − Viαi with βi = αi

2ui into (6.15), then (6.16) is proved. It can be

observed that the second term in (6.16) is a constant for all the users with the given type Vj and

it is larger if there exists at least one user with Vi > 0. If all the users are selfish, pNE
i

(Vi, V−i) =

pUi , which is the minimum power allocation in order to achieve the rate requirement ui of each

user i.

Finally, we calculate the achievable rate of each user with pNE
i (Vi). The rate requirement ui

can be achieved for the selfish users with Vi = 0. Since the power allocation of malicious users

is larger than that of selfish users, their actual rate is greater than their rate requirements.

6.5.5 Proof of Lemma 6.18

Proof. Insert pNE
i

(Vi, V−i) in (6.17) into ri(Vi).

ri(Vi) = log

(

1 +
(1 + Vi − 2−ui)BK(V )

1 +
∑

j 6=i(1 + Vj − 2uj )BK(V )

)

= log

(

1 +
1 + Vi − 2−ui

2−ui − Vi

)

= log

(
1

2−ui − Vi

)

. (6.55)
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From the result of the achievable rate ri(Vi) in (6.20), Vi in (6.19) is obtained.

6.5.6 Proof of Proposition 6.23

Proof. Solve the first derivative of uSICi (pSICi , pSIC−i ) to be zero with respect to pSICi .

∂uSICi (pSICi , pSIC−i )

∂pSICi

=
αi

1 +
∑i−1

k=1 αkp
SIC
k + αipSICi

− βSIC
i = 0. (6.56)

The positive result pSIC
i

is achieved in (6.27) if 0 < βSIC
i < αi

1+
∑i−1

k=1 αkp
SIC
k

. Otherwise it is set

to zero to avoid negative power.

The second derivative of uSICi (pSICi , pSIC−i ) with respect to pSICi is

∂2uSICi (pSICi , pSIC−i )

∂p2i,SIC
=

−α2
i

(1 +
∑i

k=1 αkp
SIC
k )2

< 0.

Therefore pSIC
i

(pSIC−i ) in (6.27) is the global optimum of the utility function.

By observing that the strategy set of each user is a compact and convex set, uSICi (pSICi ,

pSIC−i ) is a continuous function with respect to the power of all users, and concave with respect

to pSICi , which implies the existence of at least one NE.

6.5.7 Proof of Proposition 6.24

Proof. The NE power allocation is obtained by jointly solving the set of utility maximization

problem in (6.26). pSIC is solved by the linear equations

C ·pSIC = A, (6.57)

where C is a lower triangular matrix

C =














1 0 0 . . . 0

α1
α2

1 0 . . . 0

α1
α3

α2
α3

1 . . . 0
...

...
...

. . .
...

α1
αK

α2
αK

α3
αK

. . . 1














, (6.58)

and Ai =
1

βSIC
i

− 1
αi

.

The matrix equation with lower triangular matrix is very easy to solve by an iterative pro-

cess called forward substitution. Therefore, the NE power allocation is obtained in (6.28).
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6.6 Summary

In this chapter, we investigate the distributed power allocation by means of noncooperative

game for the general MAC system with and without SIC, respectively. Each user in the game

allocates its own power by maximizing its individual utility function. We propose the in-

dividual prices in the utility function such that the Shannon rate-based QoS requirement of

each user is satisfied at the NE point power allocation. We provide the BRD power allocation,

which converges rapidly to the NE point. The existence, uniqueness and convergence of the

NE power allocation are proved. The different private types regarding the user behavior are

analysed, especially the malicious behavior. The resulting power allocation and the achiev-

able rates at the NE power allocation for all the users with the different individual types are

observed. It is proved that with the presence of malicious users, the number of users satisfying

the QoS requirement will be less compared to a all regular user network if the power alloca-

tion remains the same. The strategy-proof mechanism is designed with the punishment price

to counter the malicious behavior, in which an additional price proportional to user types is

introduced. The private types of users are detected by comparing the achievable rates and the

QoS requirements. Numerical results illustrate the PoM and show that the BRD of the pro-

posed noncooperative game converges rapidly to the unique NE point. With the punishment

price, no self-optimizing user will have incentives to behave maliciously.

6.6.1 Comparison of Centralized and Distributed Pricing-based Resource Allocation

Comparing with the centralized power allocation investigated in Chapter 4, the resulting NE

power allocation in the proposed noncooperative game achieves the same power as in the cen-

tralized algorithm. This is the minimum power allocation which ensures the QoS requirement

of each user in the general MAC system. Therefore, the outcome of the proposed noncoopera-

tive game is led to the efficient point by introducing the individual prices into the user utility

function.

The prices in the centralized allocation is independent of the user CSI. This is important for

the central controller (system regulator) to provide the prices. Because by knowing the QoS

requirements u of the transmitters, which are the relatively long-term constants, the regulator

needs not to update the prices as a control signal rapidly with the change of channel states. The

regulator is released from updating the CSI of users and the prices of the centralized allocation

are the long-term parameters. The regulator in this setting could be the higher layer devices

such as the wireless vender and can locate far away from the transmitters. The stable pricing

parameters also make possible the mapping between the physical layer resource allocation

and the higher layer revenue.

The individual prices provided by the BS in the distributed allocation are dependent on the

QoS requirements u and each user’s own CSI. For the BS in MAC, the CSI of all the users
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are acquired due to the uplink transmission. For each transmitters, its own CSI is the local

information. Therefore, each user can allocate its transmit power with the local optimization.

By playing the proposed noncooperative game with the individual prices, the NE power al-

location is achieved. No user will deviate unilaterally from the NE power allocation. Since the

NE point is the same as the centralized power allocation, the rate requirements of all the users

in the feasible rate region are guaranteed. From Definition 1.11, both the pricing framework

of the centralized and distributed resource allocation are universal pricing.

For the uplink transmission where single receiver exists, the centralized power allocation is

a proper mechanism. Since the prices are independent of CSI, the computational complexity

is manageable, However, there are scenarios where the centralized control is not available.

In that cases, the distributed power allocation is necessary. In our proposed noncooperative

game, each user achieves the NE power allocation by local estimation of others. Due to the

closed form results in both the centralized and distributed frameworks, the computational

complexity of both frameworks are very low.

Moreover, the two frameworks discuss different user misbehavior and cheat-proof strate-

gies. In the centralized allocation, the manipulation of the CSI is analyzed. The worst case

study to ensure the QoS requirements of all the honest users and the RG to prevent malicious

users from cheating are investigated. In the distributed allocation, since each self-interested

user maximizes its own utility, the misrepresentation of the utility function is studied. The

strategy-proof mechanism by adopting the punishment prices to the malicious users is pre-

sented. By anticipating the resulting payoff, no user in the MAC system will have incentives

to behave maliciously.
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7 Conclusions and Future Work

We investigate the resource allocation for the general MAC and BC under individual QoS

requirements, particularly we focus on the uplink MAC scenario. The single-user decoding

is assumed at the receivers, therefore interference is treated as noise. The quasi-static block

flat-fading channels are statistically independent of each other. Due to the high demand in

data rate and the scarcity of wireless resources such as power, it is important to allocate the

resource in a socially optimal manner. The theory of microeconomics, typically game theory

and mechanism design come into play.

Instead of maximizing the achievable rates, our problem deals with allocating the power

efficiently to guarantee the QoS requirement of all the users in the wireless system. The Shan-

non rate is set to be the criterion of the QoS requirement. From the game theoretic point

of view, revealing one’s true private information or announcing one’s exact preferences for

utilities might not be the best interest of users. The designed system must be capable of mon-

itoring and preventing the user misbehavior such that the power allocation ensures the rate

requirement of each user.

Pricing on the physical layer resources is proposed in our system model. We investigate the

universal pricing mechanism to allocate the power in the wireless system. A pricing mech-

anism is said to be universal pricing if for all the points in the feasible utility region, there

exists a price such that the required utility is achieved by the price-based resource allocation.

Both linear and nonlinear pricing frameworks are studied. Linear pricing in the current con-

text refers to the pricing term which is linear in both the prices and power. Nonlinear pricing

refers to the pricing term which is logarithmic in power and linear in the prices. The condi-

tions for both linear and nonlinear pricing to be universal pricing are analyzed.

Typical multi-user communication systems include MAC and BC. For the general MAC

system, we show that linear pricing is a universal pricing if SIC is applied at the receiver.

The regulator is introduced into the system to provide the prices and weights (priority) to the

system. The regulator is responsible to make sure the QoS requirement of each user is achieved

by selecting the prices. The power of each user is allocated by the system optimizer. Being a

simple device, the system optimizer allocates the power to each user by maximizing the UMP

with the given prices and weights. The prices serve as the tradeoff between maximizing the

sum rate and minimizing power. Therefore the UMP is the difference between the system

weighted sum rate and the sum pricing term. We show that with the proposed prices, the

power allocation is derived such that all users achieve their QoS requirements. The best SIC

decoding order regarding to minimize the sum power consumption is provided. Based on

the SIC decoding order, the cost terms are analyzed with regard to different orders of weights.
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Due to the uplink-downlink duality, the linear pricing based power allocation for BC with

DPC is analyzed as well. MAC without SIC is shown as a contrary example for the linear

pricing to be the universal pricing mechanism.

There are scenarios where no SIC is applied at the receiver, for example the single BS is

shared by several operators with different RANs. Nonlinear pricing is shown to be universal

pricing for the MAC system without SIC. Besides guaranteeing the QoS requirements of all

users by providing the prices and weights to the system optimizer, the regulator takes the

responsibility in detecting and preventing the users from cheating their reported CSI. The op-

timal power is allocated by the system optimizer with the given prices. The prices are shown

to be long-term values which are independent of the user CSI. Restricted by the total number

of users in the system, the feasible rate region of the general MAC is characterized. The cost

terms on power are analyzed with regard to different weights. It is possible for the selfish (ma-

licious) users to manipulate the universal nonlinear pricing scheme by reporting the lower CSI

instead of the true values for higher short-term utility. The users’ best cheating strategy and

the results on rates of all the users in the system are investigated. Derived from this, the re-

peated game is introduced to prevent users from cheating. In the RG, the trigger strategy with

the suitable trigger price is applied to the cheated user whenever the misbehavior is detected.

All the honest users are protected by the worst-case strategy. By anticipating the total payoff

of the proposed RG, we show that no user will have incentives to cheat. Numerical results

confirm that the long-term total payoff after cheating is made smaller than the honest total

payoff leading to a stable incentive-compatible operation. The nonlinear pricing mechanism

works as well for the general MAC with SIC.

The uplink transmission within the heterogeneous networks is exactly the same scenario as

MAC. From the energy efficient point of view, the MBS in the macrocell is willing to motivate

the hybrid access of femtocells, which the nearby MUEs can be served by the FAP instead of

the MBS itself. Based on the universal nonlinear pricing framework for MAC without SIC, the

power allocation to ensure the feasible QoS requirements of all users in the system is adopted

into the heterogeneous networks. Since both the MBS and FAP are self-interested devices, two

compensation frameworks are proposed to motivate the hybrid access. The Stackelberg game

is formulated where the MBS serves as the leader with the compensation price as its strategy

and the FAP serves as the follower with the accepted number of MUEs in the hybrid access

as its strategy. The first compensation framework is based on the universal non-linear power

pricing, which provides a good connection between the physical layer power cost to the upper

layer revenue. Concerning the total power consumption of the whole two-tier macro-femtocell

network, an energy aware compensation framework is discussed in the second model. The

MBS determines the best compensation price by maximizing the global energy efficiency of

all the UEs in the system. And the FAP chooses the optimal number of accepted MUEs in

the hybrid access by maximizing its utility with the given compensation paid by the MBS.

Numerous simulations are conducted showing that the proposed compensation frameworks
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result in a win-win solution. The utilities of both the FAP at the femtocell and the MBS at the

macrocell are maximized with the given compensation frameworks.

For multi-user communication systems where there is single BS, centralized power alloca-

tion is appropriate. However, there are situations when central control is not possible. Here

the distributed power allocation comes into play. Each user in the system allocates its own

power by maximizing its utility function. The noncooperative game is applied to analyze the

distributed power allocation for the general MAC with and without SIC, respectively. It is

well known that the NE point of a noncooperative game might not be efficient. The individual

prices are introduced to the utility functions of each user in the proposed noncooperative game

such that the resulting NE power allocation achieves the QoS requirement of each user. We

prove that the unique NE power allocation exists. The BRD is provided to converge rapidly to

the unique NE point. The different private types regarding the user behavior are analysed, es-

pecially the malicious behavior. The resulting power allocation and the achievable rates at the

NE point for all the users with the different individual types are observed. In order to counter

the malicious behavior, the strategy-proof mechanism is designed with the punishment price,

in which an additional price proportional to user types is introduced. The PoM, the conver-

gence of BRD and the comparison of power allocation with and without malicious behavior

are illustrated with numerical results. The regions of prices are shown for 2-user MAC with

and without SIC and malicious user, respectively. The price region corresponds to the region

of feasible QoS requirements. For every point in the feasible rate region, there exists an indi-

vidual price such that the QoS requirement can be achieved by the proposed noncooperative

game for MAC without and with SIC, respectively.

The universal pricing are successfully applied to resource allocation for the multi-user com-

munication systems. By smart price selection and adaptation, the QoS requirement of each

user in the system is guaranteed. The user misbehavior is analyzed, where for centralized

resource allocation the malicious users cheat for their reported CSI and for distributed alloca-

tion the malicious users misrepresent their utility functions. Methods from game theory and

mechanism design are utilized to prevent user misbehavior. By proposing the proper punish-

ment prices, no user has incentives to behave maliciously. Furthermore, some potential future

works are discussed in the following.

7.1 Future Works

In this thesis, we focus our scenario on the single cell of multi-user communication systems

where single BS exists. The pricing framework could be implemented to multi-cell scenarios.

Besides, the general MAC or BC can be extended to interference channels.

For the heterogeneous network, it is interesting to extend results from the single macro-

femtocell cluster to multi-femtocells. The different femtocells competes for the nearby MUEs

in order to maximize their revenue. The MBS is responsible to distribute different MUEs to
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separate FAPs in order to improve the energy efficiency of the whole two-tier system. Auction

can be utilized to model such scenarios. Each FAP acting as the bidder bids for the quantity of

acceptable MUEs. The MBS acting as the auctioneer decides the winner of the auction.

The universal pricing mechanism is adopted in this thesis in order to lead the power alloca-

tion to fulfill the QoS requirement of each user in the system. Other methods besides pricing

could be interesting for the future works.



133

List of Publications

I Fei Shen and Eduard Jorswieck, "Universal Non-Linear Cheat-Proof Pricing Framework

for Wireless Multiple Access Channels," Wireless Communications, IEEE Transactions on,

vol.13, no.3, pp.1436-1448, March 2014.

II Fei Shen and Eduard Jorswieck, "Universal Linear Pricing for Multiple Access and Broad-

cast Channels under QoS Requirements," In Proceedings of the 5th International ICST

Conference on Performance Evaluation Methodologies and Tools (VALUETOOLS ’11),

ICST , pp. 538-547, May, 2011.

III Fei Shen and Eduard Jorswieck, "Universal cheat-proof pricing for multiple access chan-

nels without SIC under QoS requirements," Communications (ICC), 2012 IEEE Interna-

tional Conference on, pp.3895-3899, 10-15 June 2012.

IV Fei Shen and Eduard Jorswieck, "User-centric Compensation Framework with Universal

Pricing for Hybrid Femtocell Networks," Wireless Communications and Signal Process-

ing (WCSP), 2012 IEEE International Conference on, pp.1-6, 25-27 Oct. 2012. ’Best Paper

Award’

V Fei Shen, Ming Zhang and Eduard Jorswieck, "User-centric Energy Aware Compensation

Framework for Hybrid Macro-Femtocell Networks," 2013 IEEE Global Communications

Conference (Globecom), 09-13 Dec. 2013.

VI Fei Shen, Eduard Jorswieck, Anil Kumar Chorppath and Holger Boche, "Pricing for Dis-

tributed Resource Allocation in MAC without SIC under QoS Requirements with Ma-

licious Users," Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks

(WiOpt), 12th International Symposium on, pp. 557-562, May 2014.

VII Fei Shen, Eduard Jorswieck, Anil Kumar Chorppath and Holger Boche, "Pricing for Dis-

tributed Resource Allocation in MAC under QoS Requirements with Malicious Users,"

Wireless Communications, IEEE Transactions on, under review, 2014.



134 7 Conclusions and Future Work

VIII Alessio Zappone, Zhijiat Chong, Fei Shen and Eduard Jorswieck, "Energy-Aware Com-

petitive Resource allocation in Relay-Assisted Interference Channels," Wireless Commu-

nication Systems (ISWCS), 2012 International Symposium on, pp.1029 - 1033, 28-31 Aug.

2012.



135

Bibliography

[1] J. Huang and L. Gao, “Wireless network pricing,” Synthesis Lectures on Communication

Networks, 2013.

[2] C. Saraydar, N. Mandayam, and D. Goodman, “Efficient power control via pricing in

wireless data networks,” Communications, IEEE Transactions on, vol. 50, no. 2, pp. 291–

303, 2002.

[3] D. Tse and S. Hanly, “Multiaccess fading channels. I. Polymatroid structure, optimal

resource allocation and throughput capacities,” Information Theory, IEEE Transactions on,

vol. 44, no. 7, pp. 2796–2815, 1998.

[4] T. Zahir, K. Arshad, A. Nakata, and K. Moessner, “Interference management in femto-

cells,” IEEE transactions surveys & tutorials, pp. 1–19, 2012.

[5] P. Xia, V. Chandrasekhar, and G. Andrews, “Open vs. closed access femtocells in the

uplink,” Wireless Communications, IEEE Transactions on, pp. 1–26, 2010.

[6] T. M. Cover and J. A. Thomas, Elements of Information Theory. John Wiley & Sons, 1991.

[7] N. Miridakis and D. Vergados, “A survey on the successive interference cancellation

performance for single-antenna and multiple-antenna OFDM systems,” Communications

Surveys Tutorials, IEEE, vol. 15, no. 1, pp. 312–335, 2013.

[8] M. H. M. Costa, “Writing on Dirty Paper,” Information Theory, IEEE Transactions on, vol. I,

no. 3, pp. 439–441, 1983.

[9] D. Tse and P. Viswanath, Fundamentals of wireless communication. Cambridge University

Press, 2005.

[10] R. D. Yates, “A framework for uplink power control in cellular radio systems,” Selected

Areas in Communications, IEEE Journal on, vol. 13, no. 7, pp. 1341–1347, 1995.

[11] H. Boche and M. Schubert, “Concave and convex interference functions-general charac-

terizations and applications,” Signal Processing, IEEE Transactions on, vol. 56, no. 10, pp.

4951–4965, Oct. 2008.

[12] H. Boche, S. Naik, and T. Alpcan, “Universal pricing mechanism for utility maximiza-

tion for interference coupled systems,” European Wireless Conference-EW, pp. 661–666,

Apr. 2010.



136 Bibliography

[13] Z. Han and K. J. R. Liu, Resource Allocation for Wireless Networks: Basics, Techniques, and

Applications. Cambridge University Press, 2008.

[14] H. Varian, Microeconomic analysis. W.W. Norton, 1992.

[15] G. Jehle and P. Reny, Advanced microeconomic theory, ser. The Addison-Wesley series in

economics. Addison-Wesley, 1998.

[16] N. Feng, N. B. Mandayam, and D. J. Goodman, “Joint power and rate optimization for

wireless data services based on utility functions,” in Conference in Information Sciences

and Systems, 1999., vol. 1, Mar 1999, pp. 109–113.

[17] H. Ji and C.-Y. Huang, “Non-cooperative uplink power control in cellular radio sys-

tems,” Wirel. Netw., vol. 4, no. 3, pp. 233–240, Mar. 1998.

[18] D. Famolari, N. Mandayam, D. Goodman, and V. Shah, “A new framework for power

control in wireless data networks: Games, utility, and pricing,” in Wireless Multimedia

Network Technologies, ser. The International Series in Engineering and Computer Science,

R. Ganesh, K. Pahlavan, and Z. Zvonar, Eds. Springer US, 2002, vol. 524, pp. 289–309.

[19] R. B. Myerson, Game Theory : Analysis of Conflict. Harvard university press, 1991.

[20] J. von Neumann and O. Morgenstern, Theory of games and economic behavior, 3rd ed.

Princeton, NJ: Princeton Univ. Press, 1953.

[21] A. Mas-Colell, M. D. Whinston, and J. R. Green, Microeconomic Theory. Oxford Univer-

sity Press, 1995.

[22] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani, Algorithmic Game Theory. Cam-

bridge University Press, 2007.

[23] D. Fundenberg and J. Tirole, Game Theory. MIT Press, 1991.

[24] M. Charafeddine and Z. Han, “Crystallized rates region of the interference channel via

correlated equilibrium with interference as noise,” 2009. ICC’09. IEEE, pp. 1–6, Jun. 2009.

[25] J. F. Nash, “Equilibrium points in n-person games,” Proceedings of the National Academy

of Sciences, vol. 36, no. 1, pp. 48–49, 1950.

[26] J. Nash, “Non-cooperative Games,” The Annals of Mathematics, vol. 54, no. 2, pp. 286–295,

1951.

[27] J. Harsanyi, “Oddness of the number of equilibrium points: A new proof,” International

Journal of Game Theory, vol. 2, no. 1, pp. 235–250, 1973.

[28] T. Basar and G. J. Olsder, Dynamic Noncooperative Game Theory (Classics in Applied Mathe-

matics), 2nd ed. Soc. for Industrial & Applied Math, 1999.



Bibliography 137

[29] J. B. Rosen, “Existence and uniqueness of equilibrium points for concave n-person

games,” Econometrica, vol. 33, no. 3, pp. pp. 520–534, 1965.

[30] J. Mertens, S. Sorin, and S. Zamir, Repeated Games. Centre for Operations Research and

Econometrics, 1994, no. pt. 2.

[31] G. J. Mailath and L. Samuelson, Repeated Games and Reputations: Long-Run Relationships.

Oxford University Press, 2006.

[32] H. von Stackelberg, Market Structure and Equilibrium. Springer, 2011.

[33] T. C. Schelling, The strategy of conflict. Oxford University Press, 1960.

[34] X. He, A. Prasad, S. Sethi, and G. Gutierrez, “A survey of Stackelberg differential game

models in supply and marketing channels,” Journal of Systems Science and Systems Engi-

neering, vol. 17, no. 2, pp. 385–413, June 2008.

[35] C. Courcoubetis and R. Weber, Pricing communication networks. John Wiley & Sons, Ltd,

2003.

[36] S. Shakkottai and R. Srikant, “Economics of network pricing with multiple ISPs,” Net-

working, IEEE/ACM Transactions on, vol. 14, no. 6, pp. 1233–1245, Dec. 2006.

[37] J. Shu and P. Varaiya, “Pricing network services,” IEEE INFOCOM, no. C, 2003.

[38] V. R. Cadambe, S. Member, and S. A. Jafar, “Interference alignment and degrees of free-

dom of the K user interference channel,” Information Theory, IEEE Transactions on, vol. 54,

no. 8, pp. 3425–3441, 2008.

[39] S. A. J. A. H. K. Cenk M. Yetis, Tiangao Gou, “On feasibility of interference alignment in

MIMO interference networks,” Signal Processing, IEEE Transactions on, vol. 58, no. 9, pp.

4771–4782, 2010.

[40] S. Choi, S. Jafar, and S. Chung, “On the beamforming design for efficient interference

alignment,” Communications Letters, IEEE, vol. 13, no. 11, pp. 847–849, 2009.

[41] K. Gomadam, V. R. Cadambe, and S. a. Jafar, “A distributed numerical approach to

interference alignment and applications to wireless interference networks,” Information

Theory, IEEE Transactions on, vol. 57, no. 6, pp. 3309–3322, Jun. 2011.

[42] V. Cadambe, S. Jafar, and C. Wang, “Interference alignment with asymmetric complex

signaling − Settling the Host−Madsen−Nosratinia conjecture,” Information Theory, IEEE

Transactions on, vol. 56, no. 9, pp. 4552–4565, 2010.

[43] T. Gou, C. Wang, and S. A. Jafar, “Aiming perfectly in the dark-blind interference,” Sig-

nal Processing, IEEE Transactions on, vol. 59, no. 6, pp. 2734–2744, 2011.



138 Bibliography

[44] H. Maleki, S. A. Jafar, and S. Shamai, “Over interference networks,” IEEE Journal of

Selected Topics in Signal Processing, vol. 6, no. 3, pp. 228–240, 2012.

[45] S. A. J. S. V. Bobak Nazer, Michael Gastpar, “Ergodic interference alignment,” Information

Theory, IEEE Transactions on, vol. 58, no. 10, pp. 6355–6371, 2012.

[46] M. Maddah-Ali, A. Motahari, and A. Khandani, “Communication over mimo x chan-

nels: Interference alignment, decomposition, and performance analysis,” Information

Theory, IEEE Transactions on, vol. 54, no. 8, pp. 3457–3470, Aug 2008.

[47] V. R. Cadambe and S. Jafar, “Interference alignment and the degrees of freedom of wire-

less networks,” Information Theory, IEEE Transactions, vol. 55, no. 9, pp. 3893–3908, 2009.

[48] V. R. Cadambe, S. a. Jafar, and S. Shamai (Shitz), “Interference alignment on the de-

terministic channel and application to fully connected gaussian interference networks,”

Information Theory, IEEE Transactions on, vol. 55, no. 1, pp. 269–274, Jan. 2009.

[49] T. Han and K. Kobayashi, “A new achievable rate region for the interference channel,”

Information Theory, IEEE Transactions on, vol. 27, no. 1, pp. 49–60, Jan 1981.

[50] N. Jindal and A. Goldsmith, “Dirty-paper coding versus tdma for mimo broadcast chan-

nels,” Information Theory, IEEE Transactions on, vol. 51, no. 5, pp. 1783–1794, May 2005.

[51] A. Jovicic and P. Viswanath, “Cognitive radio: An information-theoretic perspective,”

Information Theory, IEEE Transactions on, vol. 55, no. 9, pp. 3945–3958, Sept 2009.

[52] N. Devroye, P. Mitran, and V. Tarokh, “Achievable rates in cognitive radio channels,”

Information Theory, IEEE Transactions on, vol. 52, no. 5, pp. 1813–1827, May 2006.

[53] L. Zhang and Y. Xin, “Cognitive multiple access channels: optimal power allocation for

weighted sum rate maximization,” Communications, IEEE Transactions on, vol. 57, no. 9,

pp. 2754–2762, 2009.

[54] S. Lasaulce, Y. Hayel, and R. E. Azouzi, “Introducing hierarchy in energy games,” Wire-

less Communications, IEEE Transactions on, vol. 8, no. 7, pp. 3833–3843, 2009.

[55] E. Jorswieck, H. Boche, and S. Naik, “Energy-aware utility regions: multiple access

Pareto boundary,” Wireless Communications, IEEE Transactions on, vol. 9, no. 7, pp. 2216–

2226, Jul. 2010.

[56] W. Zhong, Y. Xu, and H. Tianfield, “Game-theoretic opportunistic spectrum sharing

strategy selection for cognitive MIMO multiple access channels,” Signal Processing, IEEE

Transactions on, vol. 59, no. 6, pp. 2745–2759, Jun. 2011.

[57] J. Huang, R. a. Berry, and M. L. Honig, “Auction-Based Spectrum Sharing,” Mobile Net-

works and Applications, vol. 11, no. 3, pp. 405–408, Apr. 2006.



Bibliography 139

[58] J. Zhang and Q. Zhang, “Stackelberg game for utility-based cooperative cognitive ra-

dio networks,” Proceedings of the tenth ACM international Symposium on Mobile Ad Hoc

Networking and Computing, pp. 23–31, 2009.

[59] H. Boche and S. Naik, “Impact of interference coupling - Loss of convexity,” IEEE Global

Telecommunications Conference-GLOBECOM, pp. 1–6, Nov. 2009.

[60] X. Kang and R. Zhang, “Price-based resource allocation for spectrum-sharing femtocell

networks: A Stackelberg game approach,” Selected Areas in Communications, IEEE Journal

on, vol. 30, no. 3, pp. 538–549, Apr. 2011.

[61] C. Zhou, M. Honig, and S. Jordan, “Utility-based power control for a two-cell CDMA

data network,” Wireless Communications, IEEE Transactions on, vol. 4, no. 6, pp. 2764–2776,

Nov. 2005.

[62] D. A. Schmidt, C. Shi, R. A. Berry, M. L. Honig, and W. Utschick, “Pricing algorithms for

power control and beamformer design in interference networks,” IEEE Signal Processing

Magazine, vol. 26, no. 5, pp. 53–63, 2009.

[63] W. Xu, W. Trappe, Y. Zhang, and T. Wood, “The feasibility of launching and detecting

jamming attacks in wireless networks,” in MobiHoc ’05 Proceedings of the 6th ACM inter-

national symposium on Mobile ad hoc networking and computing, 2005, pp. 47–56.

[64] K. Avrachenkov, E. Altman, and A. Garnaev, “A jamming game in wireless networks

with transmission cost,” Lecture Notes in Computer Science, vol. 4465, pp. 1–12, 2007.

[65] M. H. Manshaei, Q. Zhu, T. Alpcan, T. Bacşar, and J.-P. Hubaux, “Game theory meets
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