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Preface

A wide variety of physical processes exhibits the phenomenon that the physical quantities
of interest change drastically in a small region. Such phenomena are called layers for
the quantities of interest. For example, air flows form boundary layers along wings of
planes (cf. [GEL04, SG03]). These layers are most important in the understanding of the
capability of planes to fly. Other examples include the skin effect used for surface hardening
of steel (cf. [FH99]) and the depletion layers of the p-n junctions of semiconductor devices
(cf. [Sel84, PHS87]).

Providing and modifying of physical prototypes for tests is often very expensive. Some-
times it is even impossible to place measuring instruments properly. Therefore, one is
interested in mathematical models for such processes. These models are singularly per-
turbed differential equations. Their solutions are difficult to obtain. Usually, it is not
known or very difficult how to derive analytic solutions. On the other hand the applica-
tion of standard techniques, such as finite element method (FEM) on a uniform mesh, to
solve differential equations using a computer does not produce satisfying results. This is
mainly due to the existence of the layers mentioned above. In the past many approaches
were developed to overcome these difficulties. Some of them are presented in the com-
prehensive books [RST08, Lin10]. Nevertheless, this field is far from being understood
conclusively.

In most cases, the models derived to describe such physical processes are very complex.
Hence, it is an open problem how to analyze these models and solution algorithms math-
ematically. Therefore, one considers as a first step simpler differential equation problems.
Those problems are obtained by some mathematical simplifications like linearization or
usage of plausible assumptions. Additionally, one considers only problems with simple
geometries or time independent solutions. Of course, this is motivated by the hope that
the simpler problems still have similar properties compared to the original ones. A mathe-
matical model problem frequently used in this context is the convection-diffusion problem
given by

− ε∆u+ b1ux + cu = f in Ω ⊆ R
n, u

∣

∣

∂Ω
= g (1)

for a very small parameter 0 < ε≪ 1 and some functions b1, c, f , g that are independent
of ε. Since ε is very small it seems reasonable to assume some similarity in the behavior
of the solution to the excluded case ε = 0, but especially in the layer regions this is not
true. Hence, this problem is called singularly perturbed.

In the last years one observes a widely spread interest in the analysis of optimal control
problems with singularly perturbed differential equations as side constraints (cf. [CH02,
BV07, HYZ09, HL10, LH12]). These problems arise naturally (cf. [Tr10]) when one is
interested in optimizing physical processes that lead to mathematical models which are
singular perturbed. However, the results known for singularly perturbed differential equa-
tions are so far not adopted to the optimization problems in their full extend.

As indicated above, the basic analysis (application of the Céa-Lemma) of the FEM we
consider here, using some uniform mesh leads for problem (1) to an error estimate of the
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Preface

numerical solution uN compared with the exact solution u of the form

‖u− uN‖ε ≤ C

(

1

N
+

1

N2
√
ε

)

‖u‖2,2

whereN is a number indicating the amount of work and memory invested into the numeric
solution, ‖·‖ε is a measurement of the error, arising naturally from the mathematical
formulation of problem (1), and ‖·‖2,2 is some measure for the quality of a function.
Obviously, this estimate becomes meaningless for very small values of ε and in fact one
observes that the numerical error of the standard FEM increases as ε gets smaller. These
drawbacks also apply to the usual way to analyze optimal control problems (cf. [Tr10])
with singularly perturbed differential equations as side constraints.
Using appropriate techniques one can construct algorithms that admit improved error

bounds, cf. [CH02, BV07, HYZ09, HL10]. The presented bounds are of the form

‖u− uN‖ε + . . . ≤ C

N
‖u‖2,2.

for various algorithms. This seems to be the solution to the problems described above.
On a first glance these bounds look very strict even for small values of ε. But in general
the value of ‖u‖2,2 is proportional to ε−3/2. Hence, it tends to infinity for small values
of ε and the estimates become meaningless again. Nevertheless this is a big improvement,
especially since similar algorithms for singularly perturbed differential equations without
optimization admit localization of this estimates to subdomains. Thus, it is reasonable to
expect that also in the case of optimal control problems one may be able to prove localized
estimates. This would ensure that the algorithms produce good results away from layer
regions. But as was already observed in [HL10] the method analyzed therein does not
produce as good results as one would expect away from layers. This indicates that not all
proposed algorithms admit convenient localized estimates for the optimal control problem,
although such estimates are proved for related algorithms for single differential equation
problems.
In this thesis we apply additional techniques known for singularly perturbed differential

equations to optimal control problems. We strive to develop an algorithm with proved
bounds of the form

‖u− uN‖ε ≤ C
ln(N)

N
,

where the right hand side constant is independent of ε. Still such an algorithm is not the
salvation from all problems since even then the computed solution may show some peculiar
oscillations that are not present in the exact solution. However, the results presented here
allow a better understanding of the structure of the solution, because we derive detailed
estimates for the solution and its derivatives. Future research may use this achievements
to develop even better algorithms.
During the work that lead to this thesis it has been observed, that almost all results

in the field of singularly perturbed differential equations so far use data b1, c, f and g
in problem (1) that are smooth. In optimal control we have to work with a nonlinear
term that is not very smooth. Thus, it became necessary to establish results similar to
already known estimates only using minimal smoothness prerequisites. Such results are
also present here.
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Notation

Throughout this text C (sometimes superscripted) denotes a generic constant that is
independent of the perturbation parameter ε and the mesh size N . Its value may vary in
different equations, but to clarify the used mathematics we add or modify superscripts in
one equation to signal the change of the constant.

We write |·| without any subscripts for the absolute value.
For real vectors we denote the euclidean norm by ‖·‖ and the inner product by 〈·, ·〉.
By L

p(D) we denote the Lebesgue space of measurable functions on D with a bounded
p-norm

‖f‖p,D :=

(∫

D
fp dλ

) 1
p

for p ∈ [1,∞) and ‖f‖∞,D := ess sup
D

|f |.

The L
2(D) inner product will be denoted by 〈·, ·〉D.

For a subset D ⊆ R
n we denote the boundary by ∂D. Ihe Lebesgue measure of D will

be referred to by λ(D).
By W k,p(D) we denote the Sobolev spaces of measurable functions on D with all

weak derivatives of order up to k in L
p(D). The corresponding norms are denoted by

‖·‖k,p,D. The half norms of W k,p(D) considering only the k-th order derivatives are de-
noted as |·|k,p,D. Also, we will use an ε-weighted W 1,2-norm ‖·‖ε,D := ‖·‖2,D +

√
ε|·|1,2,D,

referred to as ε-norm. When D coincides with the domain of the arguments we omit it as
a subscript to the inner product or the norms.

The completion of the set of smooth continuous functions with compact support C∞
0 (D)

in W 1,2(D) (i.e. the functions in W 1,2(D) that vanish on ∂D) is denoted by H1
0 (D) ⊂

W 1,2(D).
At some time we need the spaces Ck, Ck,α of functions with continuou, Hölder-continuous

derivatives of order up to k, respectively.
Later on we will split functions into a smooth part and layer parts located at x = 0,

x = 1, the sum of the layers at y ∈ {0, 1}, the sum of the corner layers located at
(x, y) ∈ 0 × {0, 1}, (x, y) ∈ 1 × {0, 1} and a nonsmooth but small part. For such a
function f we will denote the parts by

fS, fx0, fx1, f y, f c0, f c1, fn, respectively.

If we need several components contributing to such a part we will append an index k ∈ I
for some index set I ⊆ N in the form

f ... =
∑

k∈I
f ...,k.

For the boundary and corner layer terms we will derive pointwise bounds, where the
functions

E
x
0(x) := e−

βx
ε , E

x
1(x) := e−

β(1−x)
ε , E

y(y) := e−
√

γ
ε
y + e−

√
γ
ε
(1−y)
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play a key role.
Furthermore, we use continuation operators C∆

D from D to ∆ ⊇ D with

∥

∥C
∆
D(f)

∥

∥

k,p,∆
≤ C ‖f‖k,p,D ,

for any k ∈ N, p ∈ [1,∞] (cf. [Ro04]).
Also, we denote by Bτ (x, y) :=

{

(ξ, η) ∈ R
2
∣

∣ (x− ξ)2 + (y − η)2 < τ2
}

the ball with
radius τ and center (x, y).
We use the Landau big O notation with respect to the limit to 0, i.e.

O
(

f(x)
)

:=
{

g : R → R
∣

∣∃x0 > 0, C > 0∀x ∈ (0, x0) : |g(x)| ≤ Cf(x)
}

the class of all functions that are asymptotically not larger than f .
To distinguish it from the regularly used index i we denote the imaginary unit by ı̂.
Since we work with functions in Sobolev spaces all pointwise estimates are to be consid-

ered λ-almost-everywhere, with λ the Lebesgue measure. But for shortening of notation
we omit this in the following text.
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Introduction

In this thesis we are mainly interested in the problem

min
u,q∈L2

(

1

2
‖u− ud‖22 +

µ

2
‖q‖22

)

(0.1a)

subject to the singularly perturbed convection-diffusion equation

Lu := −ε∆u+ bux + cu = f + q in Ω, u
∣

∣

∂Ω
= 0 (0.1b)

and the box constraints

q ∈ Qad :=
{

w ∈ L
2
∣

∣qa ≤ w ≤ qb
}

(0.1c)

for the control, where the lower bound qa or the upper bound qb might be absent. As
domain we consider Ω = (0, 1)n ⊂ R

n for the one-dimensional (n = 1) and two-dimensional
(n = 2) case.

As stated in the Preface the standard Finite Element Method and optimization methods
fail in general to compute good solutions for small values of ε. The main problem is that
the solution has boundary layers and for this reason the global L2-norms of the second
order derivatives have very large values. Although problem (0.1) was discussed in the
literature (cf. [CH02, BV07, HYZ09, HL10, LH12]) there is not much known about the
layer structure of its solution. With exception of [LH12] the proofs published so far are
not very restrictive in the case of boundary layers since they contain norms on the right
hand side of the error estimates that scale like ε−3/2. The proof presented in [LH12] uses
a solution to the reduced system attained by setting ε = 0 in the differential equation
and neglecting some boundary conditions. For the optimization problem without control
constraints −qa = qb = ∞ this works well. But this approach can not be generalized to
the case with active control constraints since the solution of the reduced problem may not
be in W 2,2(Ω) but the corresponding norm would be required. Therefore, we strive to
prove detailed bounds for the solution of the optimization problem (0.1) as a first step.

In optimal control theory it is well known that the solution (u, q) of problem (0.1)
together with the adjoint state v satisfy the optimality system

Lu = −ε∆u+ bux + cu = f + q in Ω, u
∣

∣

∂Ω
= 0, (0.2a)

L∗v = −ε∆v − bvx + (c− b′)v = u− ud in Ω, v
∣

∣

∂Ω
= 0, (0.2b)

〈v + µq, w − q〉 = 0 for all w ∈ Qad. (0.2c)

For the case Qad = L
2 this system simplifies to a linear system of two coupled differential

equations. This system has the interesting property that the sign in front of the convection
coefficient b is different in the second equation compared to the first one. There is some
analysis done for systems of singularly perturbed differential equations in the literature,
e.g. [Cen05, Lin07]. The proofs presented there only apply to the case, where both con-
vection terms have the same sign. Linß claims in [Lin07] to show bounds for the case with
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Introduction

different signs, but applies the results of [KT78] incorrectly for the derivatives of order k
with k ≥ 2. Thus, it is necessary to establish rigor proofs for the properties of the solution
of (0.2).
We start by considering a linear system of singularly perturbed differential equations in

1D that is a slight generalization to (0.2) for Qad = L2. We construct an asymptotic ex-
pansion for the solution and demonstrate sharp bounds for its derivatives up to the second
order. This technique can easily be extended to prove estimates for arbitrary derivatives,
given the data are smooth enough. Subsequently, we use the attained information on the
solution to prove convergence results for standard FEM on some layer adapted Shishkin
meshes.
In Chapter 2 we attend to the optimization problem (0.1) for the one-dimensional case.

It is nontrivial to adopt the method of asymptotic expansion to this case since the op-
timality system is not linear for Qad 6= L

2. Hence, we adopt the techniques presented
in [KT78] to derive bounds for the solution similar to the results from Chapter 1. By
using the optimality properties of the solution we are able to derive these bounds with
less requirements than we used for the asymptotic expansion. Due to the nonlinearity of
the optimality system these proofs can not be iterated to acquire bounds for arbitrary
derivatives.
We use the attained bounds to provide convergence results for various discretization

schemes motivated in Chapter 1 and the discussion of semi-discretization (cf. [HYZ09])
and full-discretization (cf. [BV07]). The proofs presented in this section carry over to the
multidimensional case provided we are able to prove sufficient convergence results for the
primal and adjoint equation neglecting the optimization.
In Chapter 3 we present estimates for the solution u and its derivatives of the problem

Lu = −ε∆u+ βux + cu = f in Ω := (0, 1)2, u
∣

∣

∂Ω
= 0 (0.3)

under the mild regularity assumption f ∈W 1,∞. We do so to adopt the convergence results
of Chapter 2 to the two-dimensional case. Surprisingly there is not much known for such a
non-smooth right hand side f . Most of the known techniques can not be generalize to this
case, because the convenient tool of differentiation is used excessively, and one requires
something like f ∈ C

2,α for some α ∈ (0, 1) and compatibility conditions (cf. [KS05, LS01,
OS08, Ro02]). This seems to be unnecessary since we have u ∈ W 2,2 without any of
these additional requirements. To conceive sharp bounds on u that can be used to prove
ε-uniform convergence we rely heavily on the Green’s function of problem (0.3). We adopt
the estimates presented in [FK12] to serve in our case. Especially to get bounds for the
layer corrections this is very technical. Unfortunately, so far there is one term we can
not prove a sufficiently sharp bound for, although numeric calculations indicate this term
behaves nicely – even better than required for the convergence proofs.
One may ask why we assume f ∈ W 1,∞ even though we have u ∈ W 2,2 for f ∈ L

2

(cf. [LU68]). To answer this we consider the simple example u = x(1− x) sin(ε−1/2πy) for
ε−1/2 ∈ N. It is easy to check we have ‖Lu‖2 ≤ C. However in the preponderant part of
the domain we have uyy ∼ ε−1. Thus, we can not expect that there is a piecewise bilinear
function on a relatively coarse mesh that approximates uy with the order of ε−1/2. But if
there is no such function we will not be able to construct an algorithm that computes a
good solution approximation with respect to the ε-norm. This shows that the assumption
‖f‖2 ≤ C is too weak to expect appropriate convergence results.
Finally, we state in Chapter 4 some facts for the optimization problem (0.1) in 2D.

The analysis for this problem is not complete. Especially the characteristic layers induce

2



Introduction

problems that are not understood completely so far. In literature there is only the arti-
cle [Sh00] that tackles a similar problem. But the bounds derived there in are very weak.
Further research is required to get useful results concerning this problem.
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1. A System of Weakly Coupled Singularly

Perturbed Convection-Diffusion

Equations in 1D

This chapter is primarily a replication of [RR11], the initial work that led to the results
presented in the following chapters.

We consider the system

−εu′′1 + b1u
′
1 + c11u1 + c12u2 = f1, u1(0) = u1(1) = 0, (1.1a)

−εu′′2 − b2u
′
2 − c21u1 + c22u2 = f2, u2(0) = u2(1) = 0, (1.1b)

under the assumptions

0 < ε≪ β, (1.2a)

b1, b2 ≥ β > 0, (1.2b)

c11, c22 ≥ 0, (1.2c)

c12c21 > 0, |c12|, |c21| ≥ γ > 0. (1.2d)

We assume that the functions bi, cij , fi, (i, j ∈ {1, 2}) are sufficiently smooth.

For simplification in writing we assume furthermore

c12, c21 ≥ γ > 0

but the results can easily be generalized to include the case c12, c21 ≤ −γ < 0.

The system (1.1) has the interesting property that the convection in the second differ-
ential equation opposes the convection in the first equation. These special assumptions
about the sign properties of bi and cij are due to the application of the mathematics
derived in this chapter. In Chapter 2 we will see that the optimality systems of some op-
timal control problems have the form we consider here – hence, the special sign structure
of system (1.1).

In Section 1.1 we construct a solution decomposition and derive various estimates for
its terms. Some technical details of the construction are presented in Section 1.2. Sub-
sequently, we use the discovered solution properties to analyze a special FEM for solving
convection-diffusion problems of the form (1.1). Finally we present some computational
results for our method to confirm our theoretical results.

1.1. Properties of the Exact Solution

First we formulate sufficient conditions for the existence of a weak solution of the sys-
tem (1.1).

5



1. Weakly coupled System in 1D

Theorem 1.1

If the assumptions

2c11c21 − (b1c21 + εc′21)
′ ≥ 0 (1.3a)

2c22c12 + (b2c12 − εc′12)
′ ≥ 0 (1.3b)

hold, the system (1.1) has a unique weak solution u ∈ V :=
(

H1
0 (0, 1)

)2
.

Proof

First we multiply the first and second equation of the system (1.1) by c21 and c12,
respectively. This leads to an equivalent system with corresponding bilinear form

ã(u, v) :=

∫ 1

0
εc21u

′
1v

′
1 + (b1c21 + εc′21)u

′
1v1 + (c11c21u1 + c12c21u2)v1 dλ

+

∫ 1

0
εc12u

′
2v

′
2 − (b2c12 − εc′12)u

′
2v2 + (c22c12u2 − c21c12u1)v2 dλ. (1.4)

We use the well known relation
∫ 1

0
b̃uiu

′
i dλ = b̃u2i

∣

∣

1

x=0
−
∫ 1

0
b̃′u2i + b̃uiu

′
i dλ ⇔ 2

∫ 1

0
b̃uiu

′
i dλ = −

∫ 1

0
b̃′u2i dλ

for ui ∈ H2
0 (0, 1) and the fact, that the terms c12c21u2v1 and −c21c12u1v2 cancel each

other for ui = vi, to acquire

ã(u, u) :=

∫ 1

0
εc21

(

u′1
)2

+

(

−(b1c21 + εc′21)
′

2
+ c11c21

)

u21 dλ

+

∫ 1

0
εc12

(

u′2
)2

+

(

(b2c12 − εc′12)
′

2
+ c22c12

)

u22 dλ.

The V-ellipticity of this bilinear form is obviously ensured by condition (1.3). Thus,
the Lax-Milgram lemma establishes the unique solvability. �

Easily we get from the V-ellipticity of the bilinear form ã(·, ·) the a priori estimate

ε
(

|u1|21 + |u2|21
)

≤ C
(

‖f1‖20 + ‖f2‖20
)

. (1.5)

As a next step we want to prove precise bounds for the derivatives of u1 and u2. While
in [Lin07] the inverse monotony of the matrix

Γ :=





1 −
∥

∥

∥

c12
c11

∥

∥

∥

∞
−
∥

∥

∥

c21
c22

∥

∥

∥

∞
1



 (1.6)

to split the system into two single equations with known bounds for the right hand side
is used to prove these bounds, we use an asymptotic expansion. To do so we need an
existence theorem for the solution of the reduced system.
Let us consider the reduced problem

b1v
′
1 + c11v1 + c12v2 = f̃1, u1,l(0) = ν1, (1.7a)

−b2v′2 + c22v2 − c21v1 = f̃2, u2,l(1) = ν2. (1.7b)

6



1.1. Properties of the Exact Solution

Theorem 1.2

Assume

c11c22 + c12c21 − b2c12

(

c11
c12

)′
≥ 0 or (1.8a)

c11c22 + c12c21 + b1c21

(

c22
c21

)′
≥ 0. (1.8b)

Then the reduced problem (1.7) has a unique solution u. Its smoothness depends on
the smoothness of f̃1 and f̃2.

Proof

The system (1.7) can be transformed to a second order boundary value problem in
two ways. This leads to

b1b2v
′′
1+

(

b2c12

(

b1
c12

)′
− b1c22 + b2c11

)

v′1 −
(

c11c22 + c12c21 − b2c12

(

c11
c12

)′)

v1

= c12f̃2 − c22f̃1 + b2c12

(

f̃1
c12

)′

and

−b1b2v′′2−
(

b1c21

(

b2
c21

)′
− b1c22 + b2c11

)

v′2 +

(

c11c22 + c12c21 + b1c21

(

c22
c21

)′)

v2

= c21f̃1 + c11f̃2 + b1c21

(

f̃2
c21

)′

.

Conditions (1.8) ensure the applicability of maximum principle to one of the resulting
boundary value problems. Thus, the method of continuity (cf. [GT01]) gives existence
of a solution. �

For sufficiently smooth coefficients this lemma implies the relation

‖v1‖k+2,2 + ‖v2‖k+2,2 ≤ C
(

‖f̃1‖k+1,2 + ‖f̃2‖k+1,2

)

. (1.9)

Remark 1.3

In case of constant coefficients c11, c12, c21 and c22 the prerequisites (1.2) imply the
requirement (1.8). If additionally b1 and b2 are constant the prerequisites also imply
condition (1.3).

Remark 1.4

The system

−εu′′1 + b1u
′
1 + c11u1 + c12u2 = f1, u1(0) = u1(1) = 0, (1.10a)

−εu′′2 + b2u
′
2 + c22u2 + c21u1 = f2, u2(0) = u2(1) = 0, (1.10b)

with b1, b2 > 0 is significantly different from our system (1.1). First, the reduced
problem leads to an initial value problem which always has a unique solution. Second,
the transformation ui = eϑxvi, i ∈ {1, 2} leads to a system where we can choose ϑ in
such a way that Γ defined in (1.6) is inverse monotone for all sufficiently small values
of ε. Therefore, the coefficients c11, c12, c21, c22 have little influence on the behavior
of the solution of system (1.10). These are significant differences to the system (1.1)
we study here.
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1. Weakly coupled System in 1D

Next we construct an asymptotic expansion for u1, u2 and introduce the local variables
ξ := x/ε, η := (1− x)/ε:

u1 =

n
∑

l=0

εluS,l1 +

n
∑

l=1

εlux0,l1 (ξ) +

n
∑

l=0

εlux1,l1 (η) +R1,n, (1.11a)

u2 =

n
∑

l=0

εluS,l2 +

n
∑

l=1

εlux0,l2 (ξ) +

n
∑

l=0

εlux1,l2 (η) +R2,n. (1.11b)

For details see Section 1.2.
Combining the results for the asymptotic expansion we get:

Theorem 1.5

If the data are sufficiently smooth and the assumptions (1.3) and (1.8) hold, the solu-
tion of system (1.1) can be decomposed as

u1 = uS1 + ux01 + ux11 , u2 = uS2 + ux02 + ux12 (1.12a)

with

‖uS1 ‖2,2 + ‖uS2 ‖2,2 ≤ C, (1.12b)

|ux01
(k)

(x)| ≤ Cε1−kEx0(x), (1.12c)

|ux11
(k)

(x)| ≤ Cε−kEx1(x), (1.12d)

|ux02
(k)

(x)| ≤ Cε−kEx0(x), (1.12e)

|ux12
(k)

(x)| ≤ Cε1−kEx1(x) (1.12f)

for k ≤ 2. Recall that the constant C is independent of ε.

Proof

To show the result, we consider the asymptotic expansion (1.11) for n = 1. Thus,
estimate (1.20) gives

‖Ri,1‖2,2 ≤ C for i ∈ {1, 2}.
Furthermore, we can use estimate (1.9) to get

‖uS,0i ‖2,2 + ‖uS,1i ‖2,2 ≤ C.

Combining this results we get for

uSi :=

1
∑

l=0

εluS,li +Ri,1

the estimate
‖uSi ‖2,2 ≤ ‖uS,0i ‖2,2 + ε‖uS,1i ‖2,2 + ‖Ri,1‖2,2 ≤ C.

We define the layer correction terms via

ux01 :=

n
∑

l=1

εlux0,l1 , ux11 :=

n
∑

l=0

εlux1,l1 , ux02 :=

n
∑

l=0

εlux0,l2 and ux12 :=

n
∑

l=1

εlux1,l2 .

From Theorem 1.7 we know that the boundary term ux11 of the asymptotic expan-
sion (1.11) has the form

∑1
l=0 ε

l
Pl(x/ε) exp(−b̂x/ε). Differentiation proves the esti-

mates. Analogously, one can prove the bounds for the other layer terms ux01 , ux02 and
ux12 . �
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1.2. Asymptotic Expansion

This result also yields estimates for ‖u‖∞ and ‖u′‖∞. To receive them one has to apply
Sobolev imbedding theorems to the smooth part. For the other components we have
pointwise estimates already.

1.2. Asymptotic Expansion

In the following we construct an asymptotic expansion

u1 =

n
∑

l=0

εluS,l1 +

n
∑

l=1

εlux0,l1 (ξ) +

n
∑

l=0

εlux1,l1 (η) +R1,n, (1.13a)

u2 =

n
∑

l=0

εluS,l2 +

n
∑

l=1

εlux0,l2 (ξ) +

n
∑

l=0

εlux1,l2 (η) +R2,n. (1.13b)

of the solution of system (1.1) using the local variables ξ := x/ε, η := (1 − x)/ε. The
construction can mainly be done the same way it is done for a single differential equation
(cf. [RST08, Section 1.1.1]), but the coupling of the two solutions u1 and u2 requires
the consideration of a boundary layer on either side of the domain. We desire that the
differential equations of system (1.1) are fulfilled for

∑n
l=0 ε

luS,l1 and
∑n

l=0 ε
luS,l2 . Here

we skip the boundary condition at the right and left side in the first and second line of
the system, respectively. Furthermore, we demand that the corresponding homogeneous
differential equations of system (1.1) are satisfied for the boundary terms. Transformation
of the resulting system to the local variables ξ and η leads to the following equations.

For the first component of the smooth parts we attain the reduced system

b1u
S,0
1

′
+ c11u

S,0
1 + c12u

S,0
2 = f1, uS,01 (0) = 0, (1.14a)

−b2uS,02

′
+ c22u

S,0
2 − c21u

S,0
1 = f2, uS,02 (1) = 0. (1.14b)

For the subsequent components (l ≥ 1) of the smooth parts we have to correct the error
introduced by uS,l−1 and boundary errors from layer components via

b1u
S,l
1

′
+ c11u

S,l
1 + c12u

S,l
2 = uS,l−1

1

′′
, uS,l1 (0) = −ux0,l1 (0), (1.15a)

−b2uS,l2

′
+ c22u

S,l
2 − c21u

S,l
1 = uS,l−1

2

′′
, uS,l2 (1) = −ux1,l2 (1). (1.15b)

The correction at x = 0 has to compensate the neglected boundary condition of uS,l2 , thus
we have

−ux0,l1

′′
+ b̃1,0u

x0,l
1

′
=−

l
∑

j=1

(

b̃1,ju
x0,l−j
1

′
+ c̃11,j−1u

x0,l−j
1 + c̃12,j−1u

x0,l−j
2

)

, (1.16a)

lim
ξ→∞

ux0,l1 (ξ) = 0, (1.16b)

−ux0,l2

′′ − b̃1,0u
x0,l
2

′
=−

l
∑

j=1

(

−b̃2,jux0,l−j2

′
+ c̃22,j−1u

x0,l−j
2 − c̃21,j−1u

x0,l−j
1

)

, (1.16c)

lim
ξ→∞

ux0,l2 (ξ) = 0, ux0,l2 (0) = −uS,l2 (0) (1.16d)
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1. Weakly coupled System in 1D

for l ≥ 0. Analogously, the correction at x = 1 has to compensate the neglected boundary
condition of uS,l1 , and we have

−ux1,l1

′′ − b̂1,0u
x1,l
1

′
=−

l
∑

j=1

(

−b̂1,jux1,l−j1

′
+ ĉ11,j−1u

x1,l−j
1 + ĉ12,j−1u

x1,l−j
2

)

, (1.17a)

lim
η→∞

ux1,l1 (η) = 0, ux1,l1 (0) = −uS,l1 (1), (1.17b)

−ux1,l2

′′
+ b̂2,0u

x1,l
2

′
=−

l
∑

j=1

(

b̂2,ju
x1,l−j
2

′
+ ĉ22,j−1u

x1,l−j
2 − ĉ21,j−1u

x1,l−j
1

)

, (1.17c)

lim
η→∞

ux1,l2 (η) = 0 (1.17d)

for l ≥ 0. Here z̃i and ẑi denotes the i-th coefficient of the Taylor expansion of z(εξ)

and z(1 − εη) at ξ = 0 and η = 0, respectively. Note the difference uS,l1 (0) = −ux0,l1 (0),

uS,l2 (1) = −ux1,l2 (1) from the standard expansion. This modification is necessary because

the limitary condition for ξ, η → ∞ determines ux0,l1 (0) and ux1,l2 (1) completely. To prove
this we need the following theorems.

Theorem 1.6

The first terms of the boundary layer correction have the form

ux0,01 (ξ) = 0, ux1,01 (η) = −uS,01 (1) e−b1(1)η , (1.18a)

ux0,02 (ξ) = −uS,02 (0) e−b2(0)ξ , ux1,02 (η) = 0. (1.18b)

Therefore, the solutions u1 and u2 have a strong boundary layer only at the right and
left boundary, respectively.

Proof

By solving the explicitly given boundary value problems (1.16) and (1.17). �

Theorem 1.7

The terms of boundary layer correction have the form

ux0,l1 (ξ) ∈ Pl−1(ξ) e
−b2(0)ξ , ux1,l1 (η) ∈ Pl(η) e

−b1(1)η , (1.19a)

ux0,l2 (ξ) ∈ Pl(ξ) e
−b2(0)ξ , ux1,l2 (η) ∈ Pl−1(η) e

−b1(1)η , (1.19b)

where Pn(x) denotes the set of polynomials in the unknown x of degree at most n.

Proof

By inductive solution of the ordinary boundary value problems for ux0,l1 , ux1,l1 , ux0,l2

and ux1,l2 . �

Combining the previous results we get

Ri,n(0) ∈ O(εn+1), Ri,n(1) ∈ O
(

εn+1
)

,

‖L(R1,n, R2,n)‖2 ≤ C ‖εn+1 + εne−βξ + εne−βη‖2 ∈ O

(

εn+
1
2

)

.

Thus, we get by our a priori estimate (1.5) the information

‖Ri,n‖1,2 ∈ O(εn)

for i ∈ {1, 2}. For the W 2,2-norm we get

‖Ri,n‖2,2 ≤ ε−1C(‖L(R1,n, R2,n)‖2 + ‖Ri,1‖1,2) ∈ O
(

εn−1
)

. (1.20)
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1.3. Error Estimates for Linear FEM on Shishkin Meshes

1.3. Error Estimates for Linear FEM on Shishkin Meshes

Next we want to use the previous estimates to prove an a priori estimate for the error of
a finite element method. We are using meshes that are adapted to the layer properties of
the solution.

In this section we discretize the system (1.1)

−εu′′1 + b1u
′
1 + c11u1 + c12u2 = f1, u1(0) = u1(1) = 0,

−εu′′2 − b2u
′
2 − c21u1 + c22u2 = f2, u2(0) = u2(1) = 0,

with linear finite elements. We start from the weak formulation

ã(u, v) = 〈f, v〉 for all v ∈ V =
(

H1
0 (0, 1)

)2
with

ã(u, v) :=

∫ 1

0
εb21u

′
1v

′
1 + (a1b21 + εb′21)u

′
1v1 + (b11b21u1 + b12b21u2)v1 dλ

+

∫ 1

0
εb12u

′
2v

′
2 − (a2b12 − εb′12)u

′
2v2 + (b22b12u2 − b21b12u1)v2 dλ.

Recall we denote the L
2 inner product by 〈f, v〉 =

∫ 1
0 f1v1 + f2v2 dλ. Denoting our finite

element space by V N ⊂ V , the finite element method reads:

Find uN ∈ V N such that ã(uN , v) = 〈f, v〉 for all v ∈ V N .

Based on the information from Theorem 1.5 concerning the layer structure we use a
Shishkin mesh for the discretization. Because u1 has a strong layer at x = 1 and u2
at x = 0, we use different meshes for the two solution components. We neglect the
weak layers for the construction of the mesh. A Shishkin mesh is a piecewise equidis-
tant mesh. To cope with a boundary layer at x = 0 one chooses the transition point
σ0 := min{1/2, 2ε ln(N)/β} and uses for the two subdomains Ωf := [0, σ0], Ωc := [σ0, 1]
an equidistant mesh with N/2 nodes each. Analogously, one chooses the transition point
σ1 := max{1/2, 1 − 2ε ln(N)/β} to take account for a boundary layer at x = 1. This
leads to meshes of a form shown in Figure 1.1.

σ0 = 2ε lnN/β σ1 = 1− 2ε lnN/β

u1

u2

Figure 1.1.: Used Shishkin meshes

Now we will prove a priori estimates for our Galerkin method in the ε-norm. This norm
is inherent to the problem (1.1), because it is equivalent to the energy norm induced by
‖u‖ã := ã(u, u) (cf. (1.5)). Denoting the nodal linear interpolant of u by uI , we first bound
the interpolation error ‖u− uI‖ε by using the inequalities of formula (1.12).

For some terms we use on the fine part Ωf of the mesh a different estimation than on
the coarse part Ωc. We denote the locally constant mesh size by hΩf and h = hΩc .
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1. Weakly coupled System in 1D

Theorem 1.8

Provided the solution u = (u1, u2) has a decomposition that satisfies the bounds of
formula (1.12) for k ≤ 2, the interpolation error satisfies

‖u− uI‖ε ≤ CN−1 ln(N) and ‖u− uI‖2 ≤ CN− 3
2 . (1.21)

Proof

By standard interpolation results we estimate

‖uS1 − uS1
I‖2 ≤ C̃h2|uS1 |2,2 ≤ CN−2, (1.22a)

‖ux11 − ux11
I‖2,Ωf ≤ C̃h2Ωf |u

x1
1 |2,2,Ωf ≤ C

√
ε N−2 ln2(N), (1.22b)

|uS1 − uS1
I |1,2 ≤ C̃h|uS1 |2,2 ≤ CN−1, (1.22c)

|ux11 − ux11
I |1,2,Ωf ≤ C̃hΩf |ux11 |2,2,Ωf ≤ Cε−

1
2N−1 ln(N). (1.22d)

Using the decaying of the boundary terms we derive furthermore

‖ux11 − ux11
I‖2,Ωc ≤ ‖ux11 ‖2,Ωc + ‖ux11

I‖2,Ωc ≤ 2‖ux11 ‖∞,Ωc ≤ CN−2, (1.22e)

|ux11 − ux11
I |1,2,Ωc ≤ |ux11 |1,2,Ωc + |ux11

I |1,2,Ωc
≤ ‖ux11

′‖2,Ωc + h−1
Ωc

‖ux11 ‖∞,Ωc ≤ C
(

ε−
1
2N−2 +N−1

)

. (1.22f)

These estimates are all attained by well-known techniques used e.g. in [Lin10]. The
interpolation error of the weak boundary layer can be bounded by

|ux01 − ux01
I |1,2 ≤ C̃h|ux01 |2,2 ≤ Cε−

1
2N−1, (1.22g)

‖ux01 − ux01
I‖2 ≤ C̃h|ux01 |1,2 ≤ Cε

1
2N−1 and

‖ux01 − ux01
I‖2 ≤ C̃h2|ux01 |2,2 ≤ Cε−

1
2N−2

which follow from the usual interpolation error estimates. This implies

‖ux01 − ux01
I‖2 ≤ Cmin

{

ε
1
2N−1, ε−

1
2N−2

}

≤ CN− 3
2 . (1.22h)

The bounds of the terms uS2 , u
x0
2 and ux12 can be proved similarly. Combining all

these results proves the theorem. �

From the previously attained interpolation error estimates we can deduce an error esti-
mate for ‖u− uN‖ε:

Theorem 1.9

Provided the solution u of the system (1.1) has a decomposition that satisfies the
estimates (1.12) for k ≤ 2 the finite element error on a mesh as depicted in Figure 1.1
satisfies

‖u− uN‖ε ≤ CN−1 ln(N). (1.23)

Proof

In the following we use the abbreviations χ := uI−uN and ψ := uI−u. The coercivity
of ã(·, ·) and the Galerkin orthogonality of our method provide

γ‖χ‖2ε ≤ ã(χ, χ) = ã(ψ,χ)

≤ εC|χ|1,2|ψ|1,2 + C‖χ‖2 ‖ψ‖2 + C

∣

∣

∣

∣

∫

Ω
χ1ψ

′
1 dλ

∣

∣

∣

∣

+ C

∣

∣

∣

∣

∫

Ω
χ2ψ

′
2 dλ

∣

∣

∣

∣

.
(1.24)
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1.3. Error Estimates for Linear FEM on Shishkin Meshes

To estimate the remaining integral terms we split ψ as we did in (1.22). This way we
obtain for the smooth part uS1 of the solution u using estimate (1.22a)
∣

∣

∣

∣

∫

Ω
χ1

(

uS1 − uS1
I
)′

dλ

∣

∣

∣

∣

≤ ‖χ1‖2
∥

∥

∥

∥

(

uS1 − uS1
I
)′
∥

∥

∥

∥

2

≤ CN−1‖χ1‖2 ≤ CN−1‖χ1‖ε.
(1.25a)

For the estimation of the boundary layer terms we transform the integral via integra-
tion by parts

∣

∣

∣

∣

∫

Ω
χ1

(

ux1 − ux1
I
)′

dλ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Ω
−χ′

1

(

ux1 − ux1
I
)

dλ

∣

∣

∣

∣

≤ ‖χ′
1‖2 ‖ux1 − ux1

I‖2.

Using this transformation we can estimate by (1.22h) the weak layer term via
∣

∣

∣

∣

∫

Ω
χ1

(

ux01 − ux01
I
)′

dλ

∣

∣

∣

∣

≤ ‖χ′
1‖2 ‖ux01 − ux01

I‖2

≤
√
εCN−1|χ1|1,2 ≤ CN−1‖χ1‖ε. (1.25b)

For the strong boundary layer term we split the integral at the mesh transition point
and use an inverse inequality on the coarse part of the mesh domain. This leads to
the following formulas
∣

∣

∣

∣

∣

∫

Ωf

χ1

(

ux11 − ux11
I
)′

dλ

∣

∣

∣

∣

∣

≤ C
√
εN−2 ln2(N)‖χ′

1‖2,Ωf ≤ CN−1‖χ1‖ε,Ωf , (1.25c)

∣

∣

∣

∣

∫

Ωc

χ1

(

ux11 − ux11
I
)′

dλ

∣

∣

∣

∣

≤ C̃N−2‖χ′
1‖2,Ωc ≤ CN−1‖χ1‖ε,Ωc. (1.25d)

The integral containing χ2 can be estimated analogously. Combining (1.21), (1.24),
(1.25) and their equivalents for χ2 we get the result

‖uI − uN‖ε = ‖χ‖ε ≤ C̃
(

‖ψ‖ε +N−1
)

≤ CN−1 lnN.

A triangle inequality completes the proof. �

For a single convection-diffusion equation it is well-known that one has supercloseness
of the type

‖uI − uN‖ε ≤ C
(

N−1 ln(N)
)2
. (1.26)

This leads to the optimal estimate

‖u− uN‖2 ≤ C
(

N−1 ln(N)
)2
. (1.27)

Note that in the singularly perturbed case it is not possible to use the Aubin-Nitsche-trick
to attain optimal L2-estimates that are independent of ε.

For our system the interpolation error estimate (1.22h) indicates that we do not have op-
timal L2-error bounds if we ignore the weak layers for the mesh construction (cf. numerical
experiments in Section 1.4).

If we, however, use equal meshes for u1 and u2 with a refinement at each side of the
domain (cf. Figure 1.2) we can adopt the proofs for a single equation (cf. [Lin10]). The
estimates of the weak boundary layer do no longer pose a problem; due to the refinement
of the grid they can be handled the same way the strong layers are. Consequently we
obtain

‖uI − uN‖ε ≤ C
(

N−1 ln(N)
)2

and ‖u− uN‖2 ≤ C
(

N−1 ln(N)
)2
.

13



1. Weakly coupled System in 1D

σ0 = 2ε lnN/β σ1 = 1− 2ε lnN/β

u1

u2

Figure 1.2.: Two-sided Shishkin mesh

1.4. Computational Results

In the following we solve the test problem

−εu′′1 +
√
2u′1 + u2 = 2, u1(0) = u1(1) = 0, (1.28a)

−εu′′2 −
√
2u′2 − u1 = 1, u2(0) = u2(1) = 0 (1.28b)

numerically. Obviously, our theory from the previous chapters applies, because this prob-
lem has constant coefficients.
An explicit solution of the system (1.28) is given by

u1 = −1 +

4
∑

i=1

ūi e
λix, u2 = 2 +

4
∑

i=1

ūi pi e
λix

with

λi := ±
√

1±
√
1− ε2

ε
, pi := (ελi −

√
2)λi.

1−10ε 1−5ε 1
 

 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ε = 1e−4

0 5ε 10ε
−1

−0.5

0

0.5

1

1.5

2
u1
u2

1−10ε 1−5ε 1
 

 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ε = 1e−4

0 5ε 10ε
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
u′
1

u′
2

Figure 1.3.: Solution to model problem (1.28)

Here ū ∈ R
4 is the solution of the linear system









1 1 1 1
eλ1 eλ2 eλ3 eλ4

p1 p2 p3 p4
p1e

λ1 p2e
λ2 p3e

λ3 p4e
λ4









ū =









1
1
−2
−2
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1.4. Computational Results

derived from the boundary conditions of the problem (1.28). A plot of the solution is given
in Figure 1.3. The regions near the boundary are stretched for a better visualization of
the layer behavior. The wedge in the plot of the solution at the points 10ε and 1− 10ε is
induced by this stretching. Having this exact solution, we can compute the discrepancy
of the numerical to the explicit solution in various norms.

As in the previous analysis of Theorem 1.9, we first use a Shishkin mesh which only
accounts for the strong boundary layers for the computations. Using N +1 mesh intervals
we have N degrees of freedom for u1 and u2 each. From these computations we attained
the results shown in Figure 1.4.
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Figure 1.4.: Error of the linear FEM on one-sided Shishkin meshes (cf. Figure 1.1)

These numerical results confirm the theoretical result of an ε-independent convergence in
the ε-norm. However, they do not show the almost second order convergence measured in
the L2-norm one could expect knowing the superconvergence results for a single equation.
The L

2-error rather exhibits a range of stagnating convergence in the order of magnitude
of the perturbation parameter.

Next we compare the results from the previous calculations with the error attained
using a two-sided version of the Shishkin mesh where we refine in the region of the weak
boundary layers as well as in the region of the strong ones.

The results of this computations are presented in Figure 1.5. As predicted we now get
almost second order convergence in the L

2-norm. Furthermore, the range of stagnating
convergence does not exist. But the absolute error measured in the ε-norm is larger com-
pared to the previous calculations. This is not surprising because in the first calculations
we have more nodes of the grid to resolve the strong layer and the smooth region of the
solution.
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1. Weakly coupled System in 1D
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Figure 1.5.: Error of the linear FEM on a two-sided Shishkin mesh (cf. Figure 1.2)
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2. Optimal Control with Singularly

Perturbed Convection-Diffusion

Equations in 1D

In the following we want to analyze the optimal control problem

min
u,q∈L2

J(u, q) := min
u,q

(

1

2
‖u− ud‖22 +

µ

2
‖q‖22

)

(2.1a)

subject to the singularly perturbed convection-diffusion equation

Lu := −εu′′ + bu′ + cu = f + q in (0, 1), u(0) = u(1) = 0 (2.1b)

and the box constraints

q ∈ Qad :⇐⇒ −∞ ≤ qa ≤ q ≤ qb ≤ ∞ in (0, 1) (2.1c)

for the control q.

It is well known from optimal control theory (cf. [Tr10]) that (u, q) is a solution for the
problem (2.1) if and only if there is an adjoint state v such that the system

Lu = f + q , u(0) = u(1) = 0, (2.2a)

L∗v = u− ud, v(0) = v(1) = 0, (2.2b)

〈v + µq, w − q〉 = 0 for all w ∈ Qad (2.2c)

is fulfilled, where L∗ is the adjoint operator to L. One can derive easily that the last
equation (2.2c) is equivalent to

q = max
{

qa,min
{

qb,−µ−1v
}}

=: Π[qa,qb]

(

−µ−1v
)

almost everywhere. (2.3)

For simplification of notation we define

va := −µqb and vb := −µqa.

Using these definitions we have

q = Π[qa,qb]

(

−µ−1v
)

= −µ−1Π[va,vb](v).

Thus, the problem above can be written as

Lu = −εu′′ + bu′ + cu = f − µ−1Π[va,vb](v), u(0) = u(1) = 0, (2.4a)

L∗v = −εv′′ − bv′′+ (c− b′)v = −ud + u, v(0) = v(1) = 0. (2.4b)

17



2. Optimal Control in 1D

In the following we assume

0 < ε≪ β, (2.5a)

b, c ∈ C
2, (2.5b)

b ≥ β̃ > β > 0, (2.5c)

c ≥ 0, (2.5d)

2c− b′ ≥ 2γ > 0, (2.5e)

µ ≥ 0, (2.5f)

|f (k)(x)| ≤ C
(

1 + ε−kEx0(x) + ε−k−
1
2E

x
1(x)

)

, (2.5g)

|u(k)d (x)| ≤ C
(

1 + ε−k−
1
2E

x
0(x) + ε−kEx1(x)

)

, (2.5h)

for k ∈ {0, 1}. For the lower constraint qa we either assume

|q(k)a (x)| ≤ C
(

1 + ε−kEx0(x) + ε−k−
1
2E

x
1(x)

)

for k ∈ {0, 1} or qa = −∞. (2.5i)

Analogously, we assume that qb meets either

|q(k)b (x)| ≤ C
(

1 + ε−kEx0(x) + ε−k−
1
2E

x
1(x)

)

for k ∈ {0, 1} or qb = ∞. (2.5j)

The requirement (2.5e) seems not really restrictive since it can be assured via a variable
transform (cf. [RST08, Remark 1.6]) for sufficient small ε ≤ ε0. However, this transform
leads to a change of the norms one has to consider to attain an equivalent optimization
problem. In that case the optimality system (2.2) has an other structure and our theory
can not be applied.
The coefficient ε−k−

1
2 in prerequisite (2.5g), (2.5h), (2.5i) and (2.5j) seems a bit unusual.

Knowing [KT78] or the fact |LEx1 | ≤ Cε−1
E
x
1 one might expect the coefficient ε−k−1. How-

ever, we also require the L
2-norm of the respective functions to be bounded ε-uniformly.

Since we have ‖Ex1‖2 = C
√
ε we can allow coefficients down to the order ε−k−

1
2 for our

proofs to work.

Remark 2.1

For qa = −∞ and qb = ∞ the system (2.2) simplifies to a system of the form (1.1).
Since the corresponding coefficients c12 = µ−1 and c21 = 1 are constant the assump-
tions (1.3) and (1.8) from the previous chapter read

2c− b′ ≥ 0, c(c− b′) + µ−1 − bc′ ≥ 0, c(c − b′) + µ−1 + b(c− b′)′ ≥ 0.

Obviously, they are satisfied by constant coefficients b and c.

In the following we will use the special structure of the optimization problem to omit
some requirements. Additionally, the following proofs are applicable to the case of box
constraints for the control q.
We start by constructing a solution decomposition and derive detailed estimates for

its terms. Some technical details are deferred to Section 2.2. Subsequently, we consider
different ways of discretizing the optimal control problem (2.1). We modify two proofs from
the literature to provide ε-uniform convergence rates. Also, we present a new proof that
does not need the requirement that we have to use the same mesh for the discretization
of the state u and the adjoint state v. In Section 2.4 we present computational results to
illustrate the theoretical results.
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2.1. Analytic Properties of the Solution

2.1. Analytic Properties of the Solution

As a first step we establish the solvability of the optimization problem (2.1) and establish
some preliminary regularity estimates. From our prerequisites (2.5) we get the coercitivity
of the bilinear form a associated with L (cf. proof of Theorem 1.1), i.e.

a(u, u) =

∫ 1

0
εu′2 +

(

c− b′

2

)

u2 dλ ≥ ε|u|1,2 + γ‖u‖2.

Thus, we have the estimate

C‖u‖2ε ≤ a(u, u) = 〈f + q, u〉 ≤ ‖f + q‖2‖u‖2 ⇒ ‖u‖2 ≤ ‖u‖ε ≤ C‖f + q‖2 (2.6)

and standard optimization theory (cf. [Tr10]) assures the existence of a unique solution
(u, q) ∈ L

2 × L
2. Hence, we can apply the theory for differential equations (cf. [GT01,

LU68]) to acquire u ∈ W 2,2 ∩H1
0 and v ∈ W 2,2 ∩H1

0 . From properties of the max- and
min-operators (cf. [GT01]) we get

|q(k)| ≤ |q(k)a |+ µ−1|v(k)|+ |q(k)b | for k ∈ {0, 1}. (2.7)

Hence, we have q ∈ W 1,2 and ‖q‖1,2 ≤ ‖qa‖1,2 + µ−1‖v‖1,2 + ‖qb‖1,2. In fact, we will see
later on bounds in W 2,∞ for u and v.

Next we analyze the solution properties in more detail.

Lemma 2.2

The optimal control satisfies

‖q‖2 ≤ C. (2.8)

Proof

We define

q0 := Π[qa,qb](0) ∈ Uad.

Since (2.5i) and (2.5j) hold we have

‖q0‖2 ≤ ‖qa‖2 + ‖qb‖2 ≤ C.

Let u0 be the solution of the primary equation (2.2a) for the inhomogeneity f + q0.
Thus, the standard estimates for convection-diffusion problems and the bound (2.5g)
give by (2.6) the estimate

‖u0‖2 ≤ C̃
(

‖f‖2 + ‖q0‖2
)

≤ C.

Using (2.5h) we conclude

µ

2
‖q‖22 ≤ J(u, q) ≤ J(u0, q0) =

1

2
‖u0 − ud‖22 +

µ

2
‖q0‖22 ≤ C.

�

Using estimates for some single differential equation problems like (2.2a) or (2.2b) we
derive in the next section, we are able to prove explicit bounds for the solution and its
derivatives.
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2. Optimal Control in 1D

Theorem 2.3

If the prerequisites (2.5) hold, the solution (u, q, v) of problem (2.2) satisfies almost
everywhere

|u(k)(x)| ≤ C
(

1 + ε1−kEx0(x) + ε−kEx1(x)
)

, (2.9a)

|v(k)(x)| ≤ C
(

1 + ε−kEx0(x) + ε1−kEx1(x)
)

(2.9b)

for k ∈ {0, 1, 2} and

|q(k)(x)| ≤ C
(

1 + ε−kEx0(x) + ε1−kEx1(x)
)

(2.9c)

for k ∈ {0, 1}.
Proof

By Lemma 2.2 and the bound (2.5g) for f , we have ‖Lu‖2 ≤ C. Hence, Lemma 2.5
gives

u = uS + ux1, ‖uS‖1,2 ≤ C, |ux1(k)(x)| ≤ Cε−kEx1(x)

for k ∈ {0, 1}. Using this estimate and the bound (2.5h) of ud we can invoke the
Lemma 2.5 for the adjoint problem and obtain

v = vS + vx0, ‖vS‖1,2 ≤ C, |vx0(k)(x)| ≤ Cε−kEx0(x)

for k ∈ {0, 1}. Thus, the Sobolev imbedding theorem ensures

‖uS(x)‖∞ + ‖vS(x)‖∞ ≤ C

and the bounds (2.9a) and (2.9b) for k = 0 are established. These estimates and the
projection property (2.7) imply the stated bound for |q|.

Hence, we can conclude

|−εu′′ + bu′| = |−cu+ f + q| ≤ C
(

1 + ε−1
E
x
1(x)

)

and

|−εv′′ − bv′| = |−(c− b)v + u− ud| ≤ C
(

1 + ε−1
E
x
0(x)

)

.

Using Lemma 2.6 with i = 1 provides the stated estimates (2.9) (k = 1) for u′ and v′.
Invoking (2.7) again we can conclude |q′| ≤ |q′a| + µ−1|v′| + |q′b|. Therefore, we have
established the bound (2.9c) (k = 1) for q′.

By differentiation of the primal and adjoint equation (2.2a, 2.2b) we get

|−ε(u′)′′ + b(u′)′| = |−b′u′ − c′u− cu′ + f ′ + q′|
≤ C

(

1 + ε−1
E
x
0(x) + ε−2E1(x)

)

|−ε(v′)′′ − b(v′)′| = |b′v − (c− b′)′v − (c− b′)v′ + u′ − u′d|
≤ C

(

1 + ε−2
E
x
0(x) + ε−1E1(x)

)

and Lemma 2.6 (i = 2) gives the stated bounds for u′′ and v′′. �

The estimates of Theorem 2.3 for u and v yield decompositions

u = uS + ux0 + ux1, v = vS + vx0 + vx1, (2.10a)

‖uS‖2,∞ ≤ C, |ux0(k)(x)| ≤ Cε1−kEx0(x), |ux1(k)(x)| ≤ Cε−kEx1(x), (2.10b)

‖vS‖2,∞ ≤ C, |vx0(k)(x)| ≤ Cε−kEx0(x), |vx1(k)(x)| ≤ Cε1−kEx1(x) (2.10c)

for k ∈ {0, 1, 2}. This is proved the way devised by Linß in [Lin00].
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2.2. Auxiliary Estimates for some Single Differential Equation Problems

2.2. Auxiliary Estimates for some Single Differential Equation

Problems

First we consider the so called reduced problem.

Lemma 2.4

The solution w of

bw′ + cw = g, w(0) = w0 (2.11)

satisfies under the assumptions

‖g‖p ≤ C, |w0| ≤ C, b, c ∈ L
∞, b ≥ β̃ (2.12)

for p ∈ [1,∞] the estimate

‖w‖∞ + ‖w‖1,p ≤ C. (2.13)

Proof

It is easy to check that the solution of problem (2.11) is given by

w(x) :=

∫ x

0

g(ξ)

b(ξ)
η(ξ, x) dξ +Kη(0, x) with

η(r, s) := exp

(

−
∫ s

r

c(t)

b(t)
dt

)

for x ∈ (0, 1). The boundary condition gives

w0 = w(0) = K.

Since b ≥ β̃ > 0 and c ≥ 0 we have

0 < η(r, s) ≤ 1

for r ≤ s. This yields by application of the Hölder inequality

|w(x)| ≤
∫ x

0

|g(ξ)|
β̃

dξ + |w0| ≤ C̃
(

‖g‖1 + 1
)

≤ C.

Furthermore, we have

w′(x) =
∫ x

0
−g(ξ)
b(ξ)

η(ξ, x)
c(x)

b(x)
dξ +

g(x)

b(x)
−Kη(0, x)

c(x)

b(x)
.

Thus, we obtain

‖w′‖p ≤ ‖g‖p
(‖c‖∞

β̃2
+

1

β̃

)

+ w0
‖c‖∞
β̃

≤ C.
�

Ideas motivated by asymptotic expansions of solutions of singularly perturbed problems
(cf. [RST08]) lead to the following
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2. Optimal Control in 1D

Lemma 2.5

If the assumption
‖g‖2 ≤ C (2.14)

holds, then the solution of the problem

Lw = −εw′′ + bw′ + cw = g, w(0) = w(1) = 0 (2.15)

has a decomposition in a smooth and a boundary layer part satisfying

w = wS + wx1, (2.16a)

‖wS‖1,2 ≤ C, (2.16b)

|wx1(k)(x)| ≤ Cε−kEx1(x) (2.16c)

for k ∈ {0, 1}.
Proof

First, we look at the reduced problem (2.11). Let us denote the solution of this
reduced problem by wr. Application of Lemma 2.4 establishes ‖wr‖∞ + ‖wr‖1,2 ≤ C.
Furthermore, we define the boundary layer correction

wx1(x) := −wr(1)e−
b(1) (1−x)

ε .

Since wr is ε-uniformly bounded, wx1 satisfies the bounds (2.16c).
From

|Lwx1(x)| =
∣

∣

∣

∣

−b(1)
2

ε
wx1(x) + b(x)

b(1)

ε
wx1(x) + c(x)wx1(x)

∣

∣

∣

∣

=

∣

∣

∣

∣

−b(1)
ε

∫ 1

x
b′(t) dt+ c(x)

∣

∣

∣

∣

|wx1(x)|

≤
(

1− x

ε
‖b‖∞‖b′‖∞ + ‖c(x)‖∞

)

|wx1(x)|

we conclude

‖Lwx1‖22 ≤ C̃

∫ 1

0

(

1− x

ε
E
x
1(x) + E

x
1(x)

)2

dx ≤ Cε. (2.17)

Defining R := w − wr − wx1 we get

|R(0)| = |wr(1)|e−
b(1)
ε ≤ Cε, R(1) = 0.

Thus, R̃ := R − (1 − x)R(0) satisfies homogeneous boundary conditions. Let a(·, ·)
denote the bilinear form of the weak formulation associated with L, i.e.

a(w, v) :=

∫ 1

0
εw′v′ + bw′v + cwv dλ.

Using (2.17) and Lemma 2.4 we conclude

‖R̃‖2ε ≤ C̃
∣

∣a(R̃, R̃)
∣

∣ = C̃
∣

∣

∣
a(w, R̃)− a(wr, R̃)− a(wx1, R̃)− a

(

(1− x)R(0), R̃
)

∣

∣

∣

= C̃

∣

∣

∣

∣

−ε
∫ 1

0
wr ′R̃′ dλ+

∫ 1

0
(Lwx1)R̃ dλ−R(0)

∫ 1

0
L(1− x)R̃ dλ

∣

∣

∣

∣

≤ Ĉ
(

ε|wr|1,2|R̃|1,2 + ‖Lwx1‖2‖R̃‖2 + |R(0)|‖R̃‖2
)

≤ C
√
ε‖R̃‖ε.
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2.2. Auxiliary Estimates for some Single Differential Equation Problems

From this we derive
‖R‖1,2 ≤ ‖R̃‖1,2 + 2|R(0)| ≤ C.

Setting wS := wr +R we have proved the lemma. �

Finally, we use pointwise estimates for a related differential equation problem.

Lemma 2.6

Let us assume the bounds

|g(x)| ≤ C
(

1 + ε1−iEx0(x) + ε−iEx1(x)
)

, (2.18a)

|w0|+ |w1| ≤ Cε1−i (2.18b)

hold for i ≥ 1. Then the solution w of the differential equation problem

− εw′′ + bv′ = g, w(0) = w0, w(1) = w1 (2.19)

with b ≥ β̃ > β satisfies

|w′(x)| ≤ C
(

1 + ε1−iEx0(x) + ε−iEx1(x)
)

. (2.20)

The proof of this Lemma follows ideas presented in [KT78].

Proof

One can check that the solution of problem (2.19) is given by

w(x) :=

∫ 1

x
−ŵ(ξ) dξ +K1

(

1− η(x, 1)
)

+K2 with

ŵ(ξ) :=

∫ 1

ξ

g(ζ)

ε
η(ξ, ζ) dζ, η(r, s) := exp

(

−
∫ s

r

b(t)

ε
dt

)

for x ∈ (0, 1). Using the upper and lower bounds of b we get

0 < e−
‖b‖∞(s−r)

ε ≤ η(r, s) ≤ e−
β̃(s−r)

ε ≤ e−
β(s−r)

ε (2.21)

for r ≤ s. These estimates yield

|ŵ(ξ)| ≤ C

∫ 1

ξ
ε−1e−

β(ζ−ξ)
ε + ε−ie−

β(2ζ−ξ)
ε + ε−i−1e−

β−β̃ξ+(β̃−β)ζ
ε dζ

≤ C

(

β−1 +
ε1−i

2β
e−

βξ
ε +

ε−i

β̃ − β
e−

β(1−ξ)
ε

)

. (2.22)

We apply this result to get

∣

∣

∣

∣

−
∫ 1

x
ŵ(ξ) dξ

∣

∣

∣

∣

≤ C̃

∫ 1

x
1 + ε1−iEx0(ξ) + ε−iEx1(ξ) dξ

≤ C̃

(

1 +
ε2−i

β
E
x
0(x) +

ε1−i

β

)

≤ Cε1−i

since we assumed i ≥ 1. Thus, we observe

|K2| = |w(1)| ≤ Cε1−i
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2. Optimal Control in 1D

and acquire the estimate

|K1| =
∣

∣

∣

∣

∣

w0 +
∫ 1
0 ŵ(ξ) dξ −K2

1− η(0, 1)

∣

∣

∣

∣

∣

≤ Cε1−i. (2.23)

Obviously, w′(x) = ŵ(x) − K1
b(x)
ε η(x, 1) holds, thus we derive from (2.21), (2.22)

and (2.23) the final estimate

|w′(x)| ≤ C
(

1 + ε1−iEx0(x) + ε−iEx1(x)
)

+ Cε−iEx1(x) �

The results above can by applied to the corresponding problems of (2.11), (2.15), (2.19)
with b substituted by −b by a change of the variable x̃ = 1 − x. Note that this leads to
an exchange of the boundary points and the respective layer terms.

2.3. Numerical Analysis

In this section we will use the decomposition of the solution (2.10) derived above to prove
convergence rates for some finite element methods.

We choose piecewise linear ansatz functions on Shishkin meshes. As in the previous
analysis of the system of differential equations (cf. Chapter 1), we may resolve the strong
layers only – or we choose to resolve also the weak ones. This leads to meshes shown in
Figure 1.1 or Figure 1.2. By the previous analysis we can apply Theorem 1.8 to acquire

‖u− uI‖ε + ‖v − vI‖ε ≤ CN−1 lnN (2.24)

for the nodal interpolants uI , vI to u, v, respectively.

In the literature one can find different approaches to prove convergence of a numerical
method for solving the optimality system (2.2). In [CH02, HL10, LH12] the linearity of
the problem for Qad = L

2 is used. Therefore, we can not adopt their approach to the case
Qad 6= L

2. Other approaches ([BV07, HYZ09]) rely on the fact that the discrete problem
is also an optimization problem. This is not the case when we use different meshes to
discretize u and v as we have in the Chapter 1.

Remark 2.7

In the case Qad = L
2 we can use the approach of Theorem 1.9. Thus, we do not need

any further requirements like (2.5e) (assuring the coercitivity of the primal and dual
equation) to prove convergence, provided the solution decomposition (2.10) and the
corresponding estimates are valid. Hence, we have

‖u− uN‖ε + ‖v − vN‖ε + ‖q − qN‖ε ≤ CN−1 lnN.

In the following we derive estimates for Qad 6= L
2. Due to the projection Π the resulting

optimality system is not linear, thus the analysis is more involved than in Chapter 1. For
the analysis in the following sections we use the linear solution operator S of the primal
problem (2.1b) and its counterpart S∗ for the adjoint problem (2.2b). Also, we will denote
the corresponding operators for the discrete problems by S

N and (S∗)N , respectively.
We present three discretizations with different limitations and prove their convergence.

The so called full-discrete problem presented in Section 2.3.2 has the big advantage of being
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2.3. Numerical Analysis

easy to implement. However, the convergence proof is pretty long and more technical than
for the other two algorithms.

Note that the convergence proofs presented here are easily adopted to the case of a
multidimensional domain for the considered functions in the optimal control problem.
The basis for the following proofs is an ε-uniform convergence estimate for single differ-
ential equation problems. The additions to that only rely on techniques also available for
multidimensional domains.

2.3.1. Symmetric Discretization Using the Continuous Projection

The discrete problem we present here is based on the ideas of Hinze (e.g. [HYZ09]) to
discretize only the differential equations and to leave the projection unchanged. The
mathematics to analyze such a semi-discretization are very neat. The implementation on
the other hand is more difficult, especially for arbitrary functions qa and qb. One has to
evaluate integrals of the form

∫

Π(v)w dλ for v,w ∈ V N . Since Π(v)′ may have jumps not
only at the nodes of the mesh, one has to pay special attention to this term. We discuss
the details of the implementation later.

The convergence proof presented in [HYZ09] for this semi-discretization is based on
(

S
N
)∗

= (S∗)N . We modify this way of thought to derive ε-independent convergence
rates. To do so, we need a symmetric discretization of the primal and adjoint equation.
This implies that we have to use the same mesh to discretize u and v. Consequently, we
attain a discrete problem that is an optimality system of a discrete optimization problem.

In Section 2.3.3 we present an other approach where we use something like V-ellipticity
of the nonlinear (semi-discrete) systems. But this leads to a lower bound for the regular-
ization parameter µ, which may be undesirable.

As stated above we use the same mesh to discretize the primal and adjoint equation.
Hence, we refine on both ends of the interval (cf. Figure 1.2) and use the same discrete
space V N ⊂ H1

0 of piecewise linear ansatz functions to discretize u, v and the test functions.
We do not discretize the projection Π[va,vb](v). We attain the semi-discrete problem

uN ∈ V N : aN(uN , w) =
〈

f − µ−1Π[va,vb](v
N ), w

〉

for all w ∈ V N , (2.25a)

vN ∈ V N : aN(w, vN ) =
〈

uN − ud, w
〉

for all w ∈ V N , (2.25b)

where aN (·, ·) denotes the bilinear form associated with L. For simplification in writing
we define qN := −µ−1Π[va,vb](v

N ). Thus, we have

aN(uN , w) =
〈

f + qN , w
〉

for all w ∈ V N and (2.25c)
〈

vN + µqN , w − qN
〉

≥ 0 for all w ∈ Qad. (2.25d)

We start the analysis of the semi-discretization by recalling some convergence results
for singularly perturbed differential equation problems.

Lemma 2.8

For the numeric solution ũN (q) := S
N (f + q) of the primal equation using the contin-

uous optimal control q on the right hand side we have

‖u− ũN (q)‖ε ≤ CN−1 lnN. (2.26)

Analogously, we have for the numeric solution ṽN (u) := (S∗)N (u− ud) of the adjoint
equation using the continuous optimal state u on the right hand side the estimate

‖v − ṽN (u)‖ε ≤ CN−1 lnN. (2.27)
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2. Optimal Control in 1D

Proof

The proof works the same way as the proof of Theorem 1.9. �

Lemma 2.9

For the solution (uN , vN , qN ) of the semi-discretization (2.25) we have the estimate

‖u− uN‖2 + ‖q − qN‖2 ≤ CN−1 lnN. (2.28)

Proof

As indicated above this proof is done with methods from [HYZ09].
First we note, that due to the discretization with equal meshes for the primal and

adjoint equation we have
(

S
N
)∗

= (S∗)N . (2.29)

We test the projection property (2.25d) with q and add the continuous optimality
condition (2.2c) tested by qN ∈ Qad. Hence, we attain

0 ≤
〈

vN + µqN , q − qN
〉

+
〈

v + µq, qN − q
〉

=
〈

v − vN + µ(q − qN ), qN − q
〉

=
〈

v − vN , qN − q
〉

− µ‖q − qN‖22.

This and an application of Young’s inequality leads to the relation

µ‖q − qN‖22 ≤
〈

v − vN , qN − q
〉

=
〈

v − ṽN (u), qN − q
〉

+
〈

ṽN (u)− vN , qN − q
〉

≤ ‖v − ṽN (u)‖2‖qN − q‖2 +
〈

ṽN (u)− vN , qN − q
〉

≤ 1

2µ
‖v − vN (u)‖22 +

µ

2
‖qN − q‖22 +

〈

ṽN (u)− vN , qN − q
〉

where ṽN (u) = (S∗)N (u − ud) denotes the numerical solution of the adjoint equa-
tion starting from the analytic solution u on the right hand side. Using the weak
formulation of the discrete primal equation (2.25b) we acquire

〈

ṽN (u)− vN , qN − q
〉

= aN
(

uN − ũN (q), ṽN (u)− vN
)

where ũN (q) = S
N (f + q) denotes the numerical solution of the primal equation start-

ing from the analytic solution q on the right hand side. Since we have uN−ũN (q) ∈ V N

and the relation (2.29) we can furthermore derive, using the weak formulation of the
discrete adjoint equation (2.25b), that

aN
(

uN − ũN (q), ṽN (u)− vN
)

=
〈

u− uN , uN − ũN (q)
〉

=
〈

u− uN , u− ũN (q)
〉

− ‖u− uN‖22

holds. Combining these estimates we get

µ‖q − qN‖22 ≤
1

2µ
‖v − ṽN (u)‖22 +

µ

2
‖qN − q‖22 +

〈

u− uN , u− ũN (q)
〉

− ‖u− uN‖22

≤ 1

2µ
‖v − ṽN (u)‖22 +

µ

2
‖q − qN‖22 +

1

2
‖u− ũN (q)‖22 −

1

2
‖u− uN‖22

where we used again Young’s inequality. By Lemma 2.8 we conclude

µ‖q − qN‖22 + ‖u− uN‖22 ≤
1

µ
‖v − ṽN (u)‖22 + ‖u− ũN (q)‖22 ≤ C

(

N−1 lnN
)2
.

�
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2.3. Numerical Analysis

Theorem 2.10

Assume that

‖q − qN‖2 ≤ CN−1 lnN. (2.30)

Than we have

‖u− uN‖ε + ‖v − vN‖ε ≤ CN−1 lnN. (2.31)

Proof

By standard stability estimates we get

‖uN − ũN (q)‖2ε ≤ aN
(

uN − ũN (q), uN − ũN (q)
)

=
〈

qN − q, uN − ũN (q)
〉

≤ ‖qN − q‖2‖uN − ũN (q)‖2 ≤ C‖uN − ũN (q)‖εN−1 lnN.

Thus, the result of Lemma 2.8 and a triangle inequality gives

‖uN − u‖ε ≤ ‖uN − ũN (q)‖ε + ‖ũN (q)− u‖ε ≤ CN−1 lnN.

Analogue argumentation gives the bound for ‖v − vN‖ε. �

Combining Lemma 2.9 and Theorem 2.10 we proved

Corollary 2.11

The semi-discrete problem (2.25) using a symmetric mesh as depicted in Figure 1.2
satisfies

‖u− uN‖ε + ‖v − vN‖ε ≤ CN−1 lnN. (2.32)

2.3.2. Symmetric Discretization with Discretized Projection

In this section we discretize not only the primal and adjoint equation, but also the pro-
jection. The convergence proof presented in this section resembles the ideas presented in
[BV07]. As in the previous section we use

(

S
N
)∗

= (S∗)N for the solution operators SN

and (S∗)N of the discrete primal equation (2.33a) and adjoint equation (2.33b), respec-
tively. To have this property we use again piecewise linear ansatz functions on a Shishkin
mesh that accounts for both boundary layer terms for both the state u and the adjoint v
(cf. Figure 1.2). We discretize the box constraints of Qad by enforcing them only in the
grid points. This gives the method

uN ∈ V N : aN (uN , w) =
〈

f + qN , w
〉

for all w ∈ V N , (2.33a)

vN ∈ V N : aN (w, vN ) =
〈

uN − ud, w
〉

for all w ∈ V N , (2.33b)

qN ∈ V N : qN (xi) = min
{

max
{

−µ−1vN (xi), qa(xi)
}

, qb(xi)
}

. (2.33c)

We call this the full-discrete problem.

A solution of this problem can easily be found by applying an active set algorithm.
Thus, the implementation is much easier than for the semi-discretization presented in
Section 2.3.1.

Our convergence proof presented below uses some additional assumptions: The lower
bound qa satisfies either

∣

∣

∣q(k)a (x)
∣

∣

∣ ≤ C
(

1 + ε−kEx0(x) + ε−kEx1(x)
)

for k ∈ {0, 1} or qa = −∞. (2.34a)
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2. Optimal Control in 1D

Analogously, we assume that qb meets either

∣

∣

∣
q
(k)
b (x)

∣

∣

∣
≤ C

(

1 + ε−kEx0(x) + ε−kEx1(x)
)

for k ∈ {0, 1} or qb = ∞ (2.34b)

and we have an ε-independent constant δq ∈ R with

qb(x)− qa(x) ≥ δq for all x ∈ (0, 1). (2.34c)

Obviously, the optimal control q is not necessarily in QNad =
{

w ∈ V N
∣

∣qIa ≤ w ≤ qIb
}

.
Thus, we first construct an approximation q̃ ∈ QNad of q by linear interpolation of

q̃(xi) :=











qa(xi), ∃ x ∈ (xi−1, xi+1) : q(x) > −µ−1v(x),

qb(xi), ∃ x ∈ (xi−1, xi+1) : q(x) < −µ−1v(x),

q(xi), otherwise.

In other words we set the interpolant to the upper or lower bound in xi if the upper or
lower bound is reached in the vicinity of the grid point. Otherwise we set the interpolant
to the solution q.
Obviously, this interpolation is well defined in case max{−qa, qb} = ∞, i.e. there is no

upper or no lower bound for q. Otherwise the assumptions (2.34) enable us to show that
this interpolant is well-defined for N ≥ N0 by

Lemma 2.12

There is an N0 independent of ε such that

δq,i := essmax
(xi−1,xi)

q̂ − essmin
(xi−1,xi)

q̂ ≤ δq
3

for i ∈ {1, . . . , N} (2.35)

holds for the function q̂ := q − qa and all N ≥ N0.

Proof

By the previous requirements (2.34) and Theorem 2.3 we can split q̂ = q̂S + q̂x with

|q̂S(k)(x)| ≤ C, |q̂x(k)(x)| ≤ C
(

ε−kEx0(x) + ε−kEx1(x)
)

for k ∈ {0, 1}.
From the Bramble-Hilbert lemma we know

essmax
(xi−1,xi)

w − essmin
(xi−1,xi)

w ≤ Ch‖w′‖∞,(xi−1,xi).

Hence, we have in the coarse part of the grid Ωc :=
(

2ε
β ln(N), 1− 2ε

β ln(N)
)

the relation

δq,i ≤ C̃
(

2‖Ex0‖∞,Ωc + 2‖Ex1‖∞,Ωc + h‖q̂S ′‖∞,Ωc

)

≤ C̃

(

4

N2
+

3

N
‖q̂S ′‖∞

)

≤ CN−1.

In the fine part of the grid we have h = CεN−1 lnN and conclude

δq,i ≤ C̃h‖q̂′‖∞ ≤ CN−1 lnN.

Thus, the term δq,i diminishes ε-uniformly in both parts of the grid and we can find
an N0 with 3δq,i ≤ δq for all i ∈ {1, . . . , N}. �
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2.3. Numerical Analysis

From the proof above and the usual interpolation estimate (cf. Theorem 1.8) we can
derive

‖q̃ − q‖2 ≤ ‖q̃ − qI‖2 + ‖qI − q‖2 ≤ CN−1 lnN. (2.36)

Furthermore, we have the useful approximation property

Lemma 2.13

The estimate

‖q̃ − qN‖2 ≤ CN−1 lnN (2.37)

holds.

Proof

By
(

S
N
)∗

= (S∗)N we have

µ‖q̃ − qN‖22 ≤
〈

S
N (q̃ − qN ), SN (q̃ − qN )

〉

+ µ
〈

q̃ − qN , q̃ − qN
〉

≤
〈

(S∗)N
(

S
N (q̃ + f)− ud

)

+ µq̃ − (S∗)N
(

S
N (qN + f)− ud

)

− µqN , q̃ − qN
〉

.

The projection property (2.33c) ensures

〈

(S∗)N
(

S
N (qN + f)− ud

)

+ µqN , q̃ − qN
〉

=
〈

vN + µqN , q̃ − qN
〉

≥ 0

for q̃ ∈ QNad.
By construction of q̃ we have

v + µq < 0 ⇔ −v/µ > q = qb ⇒ q̃ = qIb ⇒ q̃ ≥ qN ,

v + µq > 0 ⇔ −v/µ < q = qa ⇒ q̃ = qIa ⇒ q̃ ≤ qN .

and can conclude

〈

S
∗ (S(q + f)− ud) + µq, q̃ − qN

〉

=
〈

v + µq, q̃ − qN
〉

=
〈

v + µq, q̃ − qN
〉

v+µq<0
+
〈

v + µq, q̃ − qN
〉

v+µq>0
≤ 0.

Combining these estimates we get

µ‖q̃ − qN‖22
≤
〈

(S∗)N
(

S
N (q̃ + f)− ud

)

+ µq̃ − S
∗ (S(q + f)− ud)− µq, q̃ − qN

〉

≤
(∥

∥

∥
(S∗)N

(

S
N (q̃ + f)− ud

)

− S
∗ (S(q + f)− ud)

∥

∥

∥

2
+ µ‖q̃ − q‖2

)

‖q̃ − qN‖2

≤ 1

2µ

(∥

∥

∥(S∗)N
(

S
N (q̃ + f)− ud

)

− S
∗ (S(q + f)− ud)

∥

∥

∥

2
+ µ‖q̃ − q‖2

)2
+
µ

2
‖q̃ − qN‖22

where we used Young’s inequality. This yields

µ‖q̃ − qN‖2 ≤
∥

∥

∥(S∗)N
(

S
N (q̃ + f)− ud

)

− S
∗ (S(q + f)− ud)

∥

∥

∥

2
+ µ‖q̃ − q‖2

≤
∥

∥

∥(S∗)N
(

S
N (q + f)− ud

)

− S
∗ (S(q + f)− ud)

∥

∥

∥

2

+
∥

∥

∥(S∗)N
(

S
N (q̃ − q)

)

∥

∥

∥

2
+ µ‖q̃ − q‖2.
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By the usual stability result

γ
∥

∥

∥(S∗)N (u1)
∥

∥

∥

2

2
≤ aN

(

(S∗)N (u1), (S
∗)N (u1)

)

=
〈

u1, (S
∗)N (u1)

〉

≤ ‖u1‖2
∥

∥

∥(S∗)N (u1)
∥

∥

∥

2

for the adjoint equation and its analogue for the primal equation we have

∥

∥

∥
(S∗)N

(

S
N (q + f)− ud

)

− S
∗ (S(q + f)− ud)

∥

∥

∥

2
+
∥

∥

∥
(S∗)N

(

S
N (q̃ − q)

)

∥

∥

∥

2

≤
∥

∥

∥
(S∗)N

(

S
N (q + f)− S(q + f)

)

∥

∥

∥

2
+
∥

∥ṽN (u)− v
∥

∥

2
+ γ−1

∥

∥S
N (q̃ − q)

∥

∥

2

≤ γ−1
∥

∥ũN (q)− u
∥

∥

2
+
∥

∥ṽN (u)− v
∥

∥

2
+ γ−2 ‖q̃ − q‖2 .

Combining these estimates, the approximation error (2.36) and Lemma 2.8 leads to

µ‖q̃ − qN‖2 ≤ CN−1 lnN. �

A triangle inequality gives ‖qN − q‖ ≤ CN−1 lnN and we can apply Theorem 2.10 to
acquire

Corollary 2.14

Under the additional assumptions (2.34) the full-discrete problem (2.33) using a sym-
metric mesh as depicted in Figure 1.2 satisfies

‖u− uN‖ε + ‖v − vN‖ε ≤ CN−1 lnN. (2.38)

2.3.3. Non-Symmetric Discretization Using the Continuous Projection

In the following we derive estimates for the semi-discrete problem (2.25) that allow to
chose a different discretization of the primal and the adjoint equation. Thus, we are able
to refine only in the part of the domain, where the boundary layers impair the interpolation
estimates. As in Section 2.3.1 the implementation of the algorithm presented in this section
has to deal with the problem of evaluating integrals for non-smooth functions. We assume
that at least one of the bounds is finite (cf. Remark 2.7). For simplification we assume
furthermore that we have qb <∞. But all the proofs can be modified to serve for the case
−∞ < qa, qb = ∞. As an additional requirement for our proofs to work we need

c− b′

2
≥ γ ≥ 1√

µ
. (2.39)

As a first step we reformulate the optimality system (2.4) as follows

Lu = f − µ−1va − µ−1Π[0,vb−va](v − va), u(0) = u(1) = 0, (2.40a)

L∗v = −ud + u, v(0) = v(1) = 0. (2.40b)

To simplify the notation in this section we define

Π̃ := v 7→ Π[0,vb−va](v − va).

As a first ingredient we use the pointwise estimate
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Lemma 2.15

For x ∈ (0, 1) we have
∣

∣

∣
Π̃(v1)(x) − Π̃(v2)(x) −

(

v1(x)− v2(x)
)

∣

∣

∣
≤ |v1(x)− v2(x)|. (2.41)

Proof

For brevity we omit the argument x of the functions in this proof. Nevertheless
everything is meant pointwise for any x ∈ (0, 1).

Obviously, the statement is true for Π̃(v1) = Π̃(v2).
Thus, we assume without loss of generality Π̃(v1) < Π̃(v2) – otherwise we could

switch v1 and v2. This relation is only possible for v1 < v2 and 0 ≤ Π̃(v1) < Π̃(v2) ≤
vb − va. Hence, we conclude

Π̃(v1) = max{0, v1 − va} ≥ v1 − va and

Π̃(v2) = min{v2 − va, vb − va} ≤ v2 − va.

Using these estimates we acquire
∣

∣

∣
Π̃(v1)− Π̃(v2)− v1 + v2

∣

∣

∣
=
(

Π̃(v1)− (v1 − va)
)

+
(

(v2 − va)− Π̃(v2)
)

= (v2 − v1) +
(

Π̃(v1)− Π̃(v2)
)

≤ v2 − v1 = |v1 − v2|. �

Next we multiply the primal equation with µ and consider the associated weak formu-
lation of (2.40):

a(u, v;ϕ,ψ) = 〈(µf − va), ϕ〉 − 〈ud, ψ〉 for all ϕ,ψ ∈ H1
0 (0, 1) (2.42a)

with

a(u, v;ϕ,ψ) :=

∫ 1

0
εµu′ϕ′ + bµu′ϕ+ cµuϕ+ Π̃(v)ϕ

+ εv′ψ′ − bv′ψ + (c− b′)vψ − uψ dλ. (2.42b)

Lemma 2.16

Under the assumption (2.39) the form a(·, · ; ·, ·) is uniformly monotone (cf. [Zei90]),
i.e.

a(u1, v1;u1 − u2, v1 − v2)− a(u2, v2;u1 − u2, v1 − v2)

≥ C
(

‖u1 − u2‖2ε + ‖v1 − v2‖2ε
)

. (2.43)

Proof

Using Lemma 2.15 and Young’s inequality we conceive

∫ 1

0

(

Π̃(v1)− Π̃(v2)− v1 + v2

)

(u1 − u2) dλ

≥ −
∥

∥

∥
Π̃(v1)− Π̃(v2)− v1 + v2

∥

∥

∥

2
‖u1 − u2‖2

≥ −‖v1 − v2‖2‖u1 − u2‖2

≥ − 1

2
√
µ
‖v1 − v2‖22 −

√
µ

2
‖u1 − u2‖22.
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By integration by parts, we have the well-known result

∫ 1

0
bw′w dλ = −

∫ 1

0
b′w2 dλ−

∫ 1

0
bw′w dλ

for w ∈ H1
0 (0, 1). Thus, we can deduce the estimate

a(u1, v1;u1 − u2, v1 − v2)− a(u2, v2;u1 − u2, v1 − v2)

=

∫ 1

0
εµ(u1 − u2)

′2 +
(

c− b′
2

)

µ(u1 − u2)
2 + ε(v1 − v2)

′2 +
(

c− b′
2

)

(v1 − v2)
2

+
(

Π̃(v1)− Π̃(v2)− (v1 − v2)
)

(u1 − u2) dλ

≥ εµ|u1 − u2|21,2 + γµ‖u1 − u2‖22 + ε|v1 − v2|21,2 + γ‖v1 − v2‖22
−

√
µ
2 ‖u1 − u2‖22 − 1

2
√
µ‖v1 − v2‖22.

Using the assumption (2.39) we get

a(u1, v1;u1 − u2, v1 − v2)− a(u2, v2;u1 − u2, v1 − v2)

≥ C
(

‖u1 − u2‖2ε + ‖v1 − v2‖2ε
)

. �

Theorem 2.17

Under the assumption (2.39) the problem (2.40) and its discrete counterparts have a
unique solution in the weak sense. The error of the semi-discrete problem correspond-
ing to (2.42) – that is equivalent to the semi-discretization (2.25) – using linear finite
elements on meshes that only account for the strong boundary layers (cf. Figure 1.1)
is bounded by

‖u− uN‖ε + ‖v − vN‖ε ≤ CN−1 lnN. (2.44)

Proof

From Lemma 2.16 we know that a(·, · ; ·, ·) is uniformly monotone. Together with
the continuity of a(·, · ; ·, ·) this implies that a(·, · ; ·, ·) is hemicontinuous. Therefore,
problem (2.42) and its discrete counterparts are uniquely solvable (cf. [Zei90]).

Obviously, we have Π̃(0) = 0 and a(0, 0;ϕ,ψ) = 0. Thus, we get from Lemma 2.16
the estimate

a(u, v;u, v) = a(u, v;u, v) − a(0, 0;u, v) ≥ C
(

‖u‖2ε + ‖v‖2ε
)

.

The new inhomogeneity f̃ := f − µ−1va of the primal equation satisfies the same
bounds as f . Thus, we have a solution decomposition of the form (2.10) and can
apply the techniques of the proof of Theorem 1.9 to derive the desired bounds for
uN − uI and vN − vI . �

2.4. Computational Results

We illustrate our theoretical results from the previous sections with some examples.
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2.4.1. Example with a Known Good Approximation to the Solution

As a first example we consider the test problem

min
u,q∈L2

J(u, q) := min
u,q

(

1

2
‖u− 1‖22 +

1

20
‖q‖22

)

(2.45a)

subject to

−εu′′ +
√
2u′ + 4u = ex − 2x+ q in (0, 1), u(0) = u(1) = 0 and (2.45b)

q ∈ Qad :=
{

w ∈ L
2(0, 1)

∣

∣qa ≤ w
}

(2.45c)

with
qa := − 17

100 . (2.45d)

The problem has constant coefficients and we have c2 = 16 > 10 = µ−1. Thus, the theory
from the previous sections can be applied.

The solution of this problem is given by

u(x) = −εv′′(x) +
√
2v′(x) + 4v(x), v(x) =











v1(x), x ≤ x1,

v2(x), x1 ≤ x ≤ x2,

v3(x), x2 ≤ x

with

v1(x) =
ex

8+(4−ε)2 − x
13 +D1e

κ1x +D2e
κ1(x1−x) +D3e

κ2x +D4e
κ2(x1−x),

v2(x) =
ex

−2+(4−ε)2 − x+ 17
200
8 +D5e

κ3(x−x1) +D6e
κ3(x2−x) +D7e

κ4(x−x1) +D8e
κ4(x2−x),

v3(x) =
ex

8+(4−ε)2 − x
13 +D9e

κ1(x−x2) +D10e
κ1(1−x) +D11e

κ2(x−x2) +D12e
κ2(1−x),

κ1 = −ε−1
√

4ε+ 1−
√
8ε+ 1− 10ε2, κ2 = −ε−1

√

4ε+ 1 +
√
8ε+ 1− 10ε2,

κ3 = −ε−1
√

4ε+ 1−
√
8ε+ 1, κ4 = −ε−1

√

4ε+ 1 +
√
8ε+ 1

for some unknown parameters xi and Di. The solution must furthermore satisfy

v ∈ C
4, v(0) = u(0) = 0, v(1) = u(1) = 0, v

∣

∣

[x1,x2]
≥ 17

1000 , v
∣

∣

[0,x1]∪[x2,1] ≤
17

1000 .

Thus, the solution satisfies

v(0) = 0 u(0) = 0 v(1) = 0 u(1) = 0, (2.46a)

v1(x1) =
17

1000 v2(x1) =
17

1000 v2(x2) =
17

1000 v3(x2) =
17

1000 , (2.46b)

v′1(x1) = v′2(x1), v′′1 (x1) = v′′2 (x1), v′′′1 (x1) = v′′′2 (x1), (2.46c)

v′2(x2) = v′3(x2), v′′2 (x2) = v′′3 (x2), v′′′2 (x2) = v′′′3 (x2). (2.46d)

The relations v
(4)
1 (x1) = v

(4)
2 (x1) and v

(4)
2 (x2) = v

(4)
3 (x2) follow from v ∈ C

3 and the
differential equations. However, the requirements v

∣

∣

[x1,x2]
≥ 17

1000 and v
∣

∣

[0,x1]∪[x2,1] ≤
17

1000

are neglected in the equations (2.46), but it shows later on that these conditions are
satisfied for the values of ε we use.

The nonlinear system (2.46) is difficult to solve analytically. Thus, we decided to use
Newton’s method to acquire the solution of system (2.46). Unfortunately, the required
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2. Optimal Control in 1D

Jacobians have a high condition number (about 1019 for ε = 10−8), at least for small ε.
We circumvented this problem by using Matlab’s variable-precision arithmetic to do all
calculations with about 64 decimal digits. As a stopping criterion for the Newton iterations
we used

‖F (Di
1, . . . ,D

i
12, x

i
1, x

i
2)‖+ ‖(Di

1 −Di+1
1 , . . . ,Di

12 −Di+1
12 , xi1 − xi+1

1 , xi2 − xi+1
2 )‖ ≤ 10−32.

This gives a very good approximation to the analytic solution of our test problem. A plot
of the solution is given in Figure 2.1. For better visualization we stretched the region of
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Figure 2.1.: Solution to model problem (2.45)

the boundary layers in the plots. Note, that the wedges in the plots of the solution at
10ε and 1 − 10ε are a result of this stretching. As in Chapter 1 we perceive the strong
layers of u and v at x = 1 and x = 0, respectively. Also we notice the weak layers at the
opposing side of the domain in u and v. Finally, we observe that there is no layer in the
vicinity of the boundary of the active set at x1 ≈ 2.3ε and x2 ≈ 0.69 in u or v.
First we use Shishkin meshes which only account for the strong boundary layers. The

number of degrees of freedom is denoted by N which gives us N + 1 mesh intervals. We
solve the problem

uN ∈ V N : aN (uN , w) =
〈

f + qN , w
〉

for all w ∈ V N ,

vN ∈WN : aN (w, vN ) =
〈

uN − ud, w
〉

for all w ∈WN ,

qN ∈WN : qN (xi) = min
{

max
{

−µ−1vN (xi), qa(xi)
}

, qb(xi)
}

that corresponds to full-discrete scheme (2.33) for WN = V N where we enforce the upper
and lower bound of the control only in the mesh points. We solve this problem by using an
active set algorithm (cf. [Tr10]). From these computations we attained the results shown
in Figure 2.2.
Next we use a semismooth Newton’s method (cf. [HPUU09]) to compute a numeric

solution of problem (2.25) which fulfills the projection everywhere in Ω.
This algorithm has to evaluate integrals with integrands of very low regularity, i.e.

integrands with wedges (jumps in the first derivative) or even jumps. To accomplish this,
we use an adaptive Simpson rule algorithm. In case of a wedge the convergence order
drops to one, so it is slow but works. In case of a jump this algorithm may not converge
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Figure 2.2.: Error of the linear FEM satisfying the control constraints in the grid points,
on one-sided Shishkin meshes (cf. Figure 1.1)

at all. To circumvent this problem we add a jump detection to the algorithm, for details
see Section A.3.

The results are shown in Figure 2.3.
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Figure 2.3.: Error of the linear FEM satisfying the control constraints everywhere, on
one-sided Shishkin meshes (cf. Figure 1.1)

These numerical results confirm the theoretical findings of an ε-independent convergence
in the ε-norm for the semi-discrete algorithm. We also note that even the first algorithm
shows comparable convergence, although we were not able to prove this. Furthermore, we

observe a behavior of the L2-error ‖uN−uR‖2 and the superconvergence error ‖uN−uRI‖ε
that are very similar to the convergence of the corresponding errors in the previous chapter.
We observe a range of stagnating convergence when the error has the order of magnitude
of 10−2ε.

Next we consider a Shishkin mesh where we refine in the region of the weak boundary
layers as well as in the region of the strong ones. The results of this computations are
presented in Figures 2.4 and 2.5.
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Figure 2.4.: Error of the linear FEM satisfying the control constraints in the grid points,
on a two-sided Shishkin mesh (cf. Figure 1.2)
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Figure 2.5.: Error of the linear FEM satisfying the control constraints everywhere, on a
two-sided Shishkin mesh (cf. Figure 1.2)

As in the previous chapter we now get almost second order convergence in the L2-norm
and the range of stagnating convergence does not exist. The same is true for the super-

convergence error ‖uN − uR
I‖ε.

These results indicate that for first order FEM it is not necessary to use the continuous
projection. This very costly method improves the quality of the results only marginally,
but from a theoretical point of view, this technique is rather helpful.

2.4.2. A more Complex Example

Now we consider a second example with a different admissable set and corresponding
projection

min
u,q∈L2

J(u, q) := min
u,q

(

1

2
‖u− 1‖22 +

1

20
‖q‖22

)

(2.47a)
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subject to

−εu′′ +
√
2u′ + 4u = 5 + q in (0, 1), u(0) = u(1) = 0 and (2.47b)

q ∈ Qad :=
{

w ∈ L
2(0, 1)

∣

∣qa ≤ q ≤ qb
}

(2.47c)

with

qa := x− e−4(1−x) − 1
2 , (2.47d)

qb :=
1
2 − 3

8 sin(4πx) + max
(

1
4 cos(16πx), 0

)

. (2.47e)

As in the first example we are able to apply our theory. The upper bound qb is chosen in
a fashion that it is active in its convex and its concave regime – thus, it seems unlikely to
get positive side effects from QNad ⊆ Qad or qN ∈ Qad in the full-discrete scheme (2.33).

Due to the complex structure – especially the nonlinearity from the projection – we do
not know an exact solution to the problem (2.47). To overcome this problem we use a
reference solution on a relatively fine grid (two-sided Shishkin mesh, N = 107) to compute
the numerical errors in various norms. Because this grid is very fine we use the double-
double-precision number class from the QD-library [HLB08] to avoid the pollution of the
reference solution by round-off errors. Such a reference solution is depicted in Figure 2.6.
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Figure 2.6.: Reference solution to model problem (2.47)

As in the first example we apply all four versions of our algorithm. The attained results
are shown in Figures 2.7 to 2.10.

These numerical results correspond to the results we attained for the first example (2.45).
Again, we see the ε-independent convergence in the ε-norm and the range of stagnating
convergence in the L2-error for the one-sided Shishkin meshes. For the two-sided Shishkin
mesh, we even see second order convergence in the L

2-error.
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Figure 2.7.: Error of the linear FEM satisfying the control constraints in the grid points,
on one-sided Shishkin meshes (cf. Figure 1.1)
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Figure 2.8.: Error of the linear FEM satisfying the control constraints everywhere, on
one-sided Shishkin meshes (cf. Figure 1.1)
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Figure 2.9.: Error of the linear FEM satisfying the control constraints in the grid points,
on a two-sided Shishkin mesh (cf. Figure 1.2)
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Figure 2.10.: Error of the linear FEM satisfying the control constraints everywhere, on a
two-sided Shishkin mesh (cf. Figure 1.2)
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3. A Singularly Perturbed

Convection-Diffusion Equation with Low

Regularity of the Inhomogeneity in 2D

In this chapter we consider the problem

Lu = −ε∆u+ βux + cu = f in Ω := (0, 1)2, u
∣

∣

∂Ω
= 0. (3.1)

We analyze the properties of its solution u under the relatively weak assumption

f ∈W 1,∞(Ω). (3.2)

From the standard regularity theory for elliptic equations (cf. [GT01, LU68]) we immedi-
ately get u ∈ H1

0 (Ω) ∩W 2,2(Ω), although the corresponding norms may not be bounded
ε-uniformly. But a proper decomposition of u with estimates of its terms will be sufficient
to prove satisfactory convergence results for the problem on a layer adapted mesh.

As we have seen in Chapter 2 the optimal state of a special optimal control problem
satisfies an equation similar to (3.1). Its right hand side f includes the projection of the
adjoint state. This projection entails a low regularity of f and may impair the properties
of the optimal state. Therefore, we are interested in the properties of the solution of
problem (3.1).

We assume for the data

ε ∈ (0, β] ∩ (0, 12 ], (3.3a)

β ∈ (0,∞), (3.3b)

c ∈ C
2
(

(0,∞)× R
)

, (3.3c)

c ≥ γ > 0, (3.3d)

‖f‖1,∞ ≤ C. (3.3e)

Note we require the function c to be defined and meet the requirements on (0,∞) × R.
The prerequisite ε ≤ 1

2 is only for simplifying the notation for we can use the fact |ln(ε)| ≥
|ln(12)| > 1

2 .
The assumption that the coefficient of the convective term has to be constant is required

because we use the explicitly known Green’s function of the differential equation

L̂u := −ε∆u+ βux = f

to derive various estimates. It may be possible to extend this results to the Green’s
function of the problem with a non-constant coefficient as was done for related estimates
in [FK12].

In the following we construct a decomposition of the solution u. Unfortunately, we are
not able to prove sharp bounds for all derivatives of one of the used terms. However, we
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3. Equation with Low Regularity in 2D

present a numeric example that motivates that the term might behave nicely. The proofs
presented use very technical estimates of norms of Green’s functions. These estimates are
presented and used in in Sections 3.1.1 to 3.1.3. Some of the integrals used in this sections
are derived in Section A.1. Subsequently, we use this decomposition to prove almost linear
convergence of the standard FEM on a layer adapted Shishkin mesh. Finally, we present
computational results to confirm our theoretical results.

3.1. Analytic Properties of the Solution

Theorem 3.1

The solution u of problem (3.1) can be decomposed into four parts u = uS
∣

∣

Ω
+ux1

∣

∣

Ω
+

uy
∣

∣

Ω
+ uc1

∣

∣

Ω
. The smooth part uS satisfies

‖uS‖1,∞,H +
√
ε‖uSxx‖∞,S +

√
ε‖uSyy‖∞,H ≤ C, (3.4a)

‖uSxx‖2,Ω + ‖uSxy‖∞,H ≤ C|ln(ε)| (3.4b)

with H := (0,∞) × R and S := (0, 1) × R. The outflow layer part ux1 meets

|ux1(x, y)|+ |ux1y (x, y)| +
√
ε|ux1yy(x, y)| ≤ CE

x
1(x), (3.4c)

ε|ux1x (x, y)|+ ε2|ux1xx(x, y)| ≤ CE
x
1(x), ‖ux1xy(x, ·)‖2,(0,1) ≤

C

ε
E
x
1(x). (3.4d)

The characteristic layer part uy satisfies

|uy(x, y)| + |uyx(x, y)|+
√
ε|uyy(x, y)|+ ε|uyyy(x, y)| ≤ C

(

E
y
0(y) + E

y
1(y)

)

(3.4e)

and the corner layer part uc1 satisfies

|uc1(x, y)|+ ε|uc1x (x, y)|+
√
ε|uc1y (x, y)| ≤ CE

x
1(x)

(

E
y
0(y) + E

y
1(y)

)

, (3.4f)

‖uc1xx‖2,Ω ≤ Cε−
5
4 , ‖uc1xy‖2,Ω ≤ Cε−

3
4 and ‖uc1yy‖2,Ω ≤ Cε−

1
4 . (3.4g)

Proof

The line of argumentation is very lengthy and technical. Therefore, we give at this
point only an overview. The details are presented in the following subsections.

We define the smooth part uS by a continuation of the problem (3.1) to the half
plane H = (0,∞) ×R via

LuS = −ε∆uS + βuSx + cuS = ωBC
H

Ωf =: fu in H, (3.5a)

uS(0, ·) = 0, lim
‖(x,y)‖→∞

uS(x, y) = 0, (3.5b)

where ωB ∈ C
∞(H) is a suitable cut-off function with ωB

∣

∣

Ω
= 1 and ωB

∣

∣

H\B2(0,0)
= 0.

Note we have ‖fu‖1,∞,H ≤ C‖f‖1,∞,Ω and supp(fu) ⊆ B2(0, 0). The bounds stated
in the theorem are derived in Lemma 3.20.

Next, we define a layer correction term ux1 to compensate the neglected boundary
condition at x = 1. To this end we consider the problem

Lux1 = 0, ux1(0, ·) = 0, ux1(1, ·) = −ωI(·)uS(1, ·) (3.6)

42



3.1. Analytic Properties of the Solution

on the stripe S = (0, 1) × R, where ωI ∈ C
∞(R) is a cut-off function with suppωI ⊆

[−2, 3], ωI
∣

∣

[0,1]
= 1 and |ωI | ≤ 1. By Lemma 3.21 ux1 satisfies the stated bounds.

The correction term uy that accounts for the so far ignored Dirichlet boundary
conditions at y ∈ {0, 1} is defined via

Luy = 0, uy(0, ·) = 0, uy(·, 0) = −uS(·, 0)ωI(·), uy(·, 1) = −uS(·, 1)ωI (·). (3.7)

Since we have uS(0, ·) = 0 the imposed boundary conditions of uy are continuous.
The estimates are provided in Lemma 3.22.

As a last step we define a corner layer by

Luc1 = 0, uc1(0, ·)
∣

∣

x=0
= 0, uc1

∣

∣

y∈{0,1} = −ux1, uc1
∣

∣

x=1
= −uy. (3.8)

Note that the boundary conditions posed on uc1 are continuous because the con-
structions of ux1 and uy yield −ux1(1, 0) = uS(1, 0) = −uy(1, 0) and −ux1(1, 1) =
uS(1, 1) = −uy(1, 1). The stated bounds are derived in Lemma 3.23 �

Remark 3.2

The bound for uSyy seems to be to loose, but consider a case where the solution can be

written as the product of two functions uS(x, y) = ϕ(x)ψ(y). This induces a behavior
in y-direction that is similar to the solution of

−εψyy + cψ = g, ψ(0) = ψ(1) = 0.

The solution to this problem for c = 4 and g(y) = 4− 4 |1− 2y| is given by

ψ(y) =































2y −√
ε
e

2y−1√
ε − e

− 2y+1√
ε

1 + e
− 2√

ε

, y ≤ 1
2 ,

2− 2y +
√
ε
e

2y−3√
ε − e

− 2y−1√
ε

1 + e
− 2√

ε

, y ≤ 1
2 .

The second derivative of ψ is

ψ′′(y) =































4√
ε

e
2y−1√
ε − e

− 2y+1√
ε

1 + e
− 2√

ε

, y ≤ 1
2 ,

4√
ε

e
2y−3√
ε − e

− 2y−1√
ε

1 + e
− 2√

ε

, y ≤ 1
2 .

Obviously, this is of order ε−1/2 in the vicinity of the wedge in the inhomogeneity g
at y = 1

2 . This indicates that u
S
yy is of order ε−1/2 near wedges in the inhomogeneity

that are parallel to the convection. Thus, the L
∞-bound of uSyy may be sharp.

Conjecture 3.3

We assume to have

‖uyxx‖2,Ω ≤ C|ln(ε)|ε 1
4 . (3.9)
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3. Equation with Low Regularity in 2D

Remark 3.4

Knowing the usual pointwise results (e.g. [KS05, Lin10, RST08]) for layer terms of
the structure above it is reasonable to assume something like

uyxx(x, y) ∼ uyxx(x, 0)E
y
0(y) + uyxx(x, 1)E

y
1(y)

and we would get the assumed bound from the previous estimates.

A further indication that the assumption may be valid is given by the numerical
example that follows. We consider the problem

−ε∆u+ ux + u = 0 in (0, 10) × (0, 1),

u(x, 0) = ν(x), u(x, 1) = 0, u(0, y) = u(10, y) = 0,

ν(x) :=























ν1(x), x ∈ [0, 2ε],

ν2(x− 2ε), x ∈ (2ε, 1 + 2ε],

ν3(x− 1− 2ε), x ∈ (1 + 2ε, 2 + 2ε],

0, x ∈ (2 + 2ε, 10]

with the functions

ν1(x) := x+
x2 sin

(

1 + x
ε

)

√
ε

,

ν̃2(ξ) := sin(ξ) + ε2 sin

(

πξ

ε

)

− ln(ε)(ξ + 2ε)2 ln(ξ + 2ε) +
|sin(10πξ)| sin(10πξ)

10
,

ν2(ξ) := ν̃2(ξ)− ν̃2(0) + ν1(2ε) + (1− e−ξ)
(

ν1x(2ε) − ν̃2ξ (0)
)

,

ν3(ξ) := ν2(1)(ξ − 1)2(2ξ + 1) + ν2ξ (1)ξ(ξ − 1)2.

The function ν defined above meets the bounds we have for uS(x, y)ωI(x) and it
violates further smoothness in several ways. The second derivative νxx is discontinuous
at
{

2ε+ k
10

∣

∣k ∈ {0, 1, · · · , 10}
}

∪{2} and in the remaining domain the third derivative

νxxx is of order ε−3/2.

We solve this problem numerically using the finite element method on a special
tensor grid. As basis functions we use the products of third order Hermite base in
x-direction and second order Lagrangian base in y-direction, thus we get an element
with the degrees of freedom depicted in Figure 3.1. As a consequence the solution uyN

Figure 3.1.: Element used for the numeric example for uy

and its first order x-derivative are continuous. Therefore, the second derivative in
x-direction is in L

∞ ⊆ L
2 and we can evaluate its L2-norm by elementwise integration.

For the computations we use a Shishkin type mesh. To be on the safe side we refine
at y = 0 and y = 1 to account for possible layer terms of the form e−y/ε and the
form e−y/

√
ε. In x-direction we use nested Shishkin grids at x = 0 and x = 10 also
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10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

 

 
‖uy Nxx ‖2,Ω
10|ln(ε)|ε1/4

Figure 3.2.: L2-norm of uyNxx for the numerical example for uy

for terms of the form e−x/ε and e−x/
√
ε and additionally we use the locations of the

discontinuities of νxx as mesh points. The results are depicted in Figure 3.2.
These results support our conjecture. Unfortunately, we can only compute uyNxx for

relatively large ε ≥ CN−1
x . For smaller ε the solution shows strange oscillations in

the derivatives. The attempt to resolve these oscillations better by refining the grid
locally leads to vanishing of the oscillations on one hand, but induces oscillations at
the rim of the refinement. Therefore, we believe this is a problem due to numerical
issues.

It remains to show a simple consequence of our conjecture for the norm of uyxx and the
estimate we have for uyyy:

Lemma 3.5

If we assume Conjecture 3.3 holds we have

‖uyxy‖2,Ω ≤ C|ln(ε)|ε− 1
4 . (3.10)

Proof

We consider the solution of problem (3.7) in the domain Ω = (0, 1)2. We can split it
as uy = ũ+ û with

û(x, y) :=

uy(1, y)x −
ω(x)

(

uS(x,0)

(

e
−
√

γ
ε y−e−

√
γ
ε (2−y)

)

+uS(x,1)

(

e
−
√

γ
ε (1−y)−e−

√
γ
ε (1+y)

))

1−e−2
√

γ
ε

.

Using the variable transform x̃ := x, ỹ := y√
ε
, Ω̃ := (0, 1) × (0, 1√

ε
) we get

‖ũỹỹ‖2,Ω̃ = ε
3
4‖ũyy‖2,Ω, ‖ũx̃x̃‖2,Ω̃ = ε−

1
4 ‖ũxx‖2,Ω and ũ

∣

∣

∂Ω
= 0.

Thus, the estimates above and a usual norm estimate for the second order derivatives
of the solution to the Laplace equation (cf. [LU68]) give

‖ũxy‖2,Ω = ε−
1
4‖ũx̃ỹ‖2,Ω̃ ≤ ε−

1
4

(

‖ũỹỹ‖2,Ω̃ + ‖ũx̃x̃‖2,Ω̃
)

≤ C|ln(ε)|ε− 1
4 .

A triangle inequality completes the proof. �
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3. Equation with Low Regularity in 2D

Remark 3.6

The bounds above raise the question: What happend to the corner layers from the
probably violated first compatibility condition f(0, 0) = f(0, 1) = 0 ? Numerical
experiments and the publication [Vo65] suggest that only the mixed derivative uxy
tends to infinity for (x, y) → (0, 0) and (x, y) → (0, 1). Nevertheless, the L

2-norm of
uxy is bounded (probably not ε-uniform).

Subsequently, we present the details of the proof of Theorem 3.1.

3.1.1. Estimates for Some Half Plane Problems

In the definition of the smooth part (3.5) we use a half plane problem of the form

Lu = −ε∆u+ βux + cu = f in H, u(0, ·) = ν, lim
‖(x,y)‖→∞

u(x, y) = 0, (3.11)

where we have lim|x|→∞ ν(x) = 0. Therefore, we establish some properties for this problem
in the following.

Lemma 3.7

The solution u of problem (3.11) satisfies

‖u‖∞ ≤ max

{

1

γ
‖f‖∞, ‖ν‖∞

}

. (3.12)

Proof

Since we have lim|x|→∞ ν(x) = 0 and lim‖(x,y)‖→∞ u(x, y) = 0, there is a ball Bτ (0, 0)
with

‖u‖∞,H\Bτ (0,0) ≤ max

{

1

γ
‖f‖∞, ‖ν‖∞

}

.

Thus, we can apply a maximum principle (cf. [GT01]) on Bτ (0, 0) with the comparison
function wc = γ−1 to get

‖u‖Bτ (0,0) ≤ max

{

1

γ
‖f‖∞, ‖ν‖∞

}

and we have proved the lemma. �

Lemma 3.8

For supp(f) ⊆ Bτ (0, 0), |ν| ≤ C and supp(ν) ⊆ (−τ, τ) the solution u of prob-
lem (3.11) satisfies

|u(x, y)| ≤ Ce−α̺, ̺ :=
√

x2 + y2, α := −1

2
+

√

1

4
+
γ

β
> 0. (3.13)

Proof

We consider the domain H \ Bτ (0, 0). In this domain u satisfies the homogeneous
differential equation with inhomogeneous but bounded (cf. Lemma 3.7) boundary
conditions on H ∩ ∂Bτ (0, 0). For the comparison function wc = e−α̺ > 0 we have

Lwc =
(

εα
̺ − εα2 − βαx

̺ + c
)

e−α̺ ≥
(

−βα2 − βα+ γ
)

e−α̺ = 0.

In combination with Lemma 3.7 we have established

|u| ≤ max

{

1

γ
‖f‖∞, ‖ν‖∞

}

eατwc = Ce−α̺.
�
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3.1. Analytic Properties of the Solution

An important tool in our analysis is a Green’s function g of

L̂u := −ε∆u+ βux = f in H, u(0, ·) = ν, lim
‖(x,y)‖→∞

u(x, y) = 0. (3.14)

that is given by (cf. [FK12, RST08])

g(x, y; ξ, η) :=
1

2πε
eq

ϕ
ε

[

K0

(

q r
[x]

ε

)

−K0

(

q r
[−x]
ε

)]

with (3.15)

q := β
2 , r[s] :=

√

(s− ξ)2 + ψ2, ϕ := x− ξ, ψ := y − η,

where Ki denotes the modified Bessel functions of the second kind of order i. Thus, we
have

u(x, y) =

∫

H

g(x, y; ξ, η)f(ξ, η) dλ(ξ, η) +

∫

R

gξ(x, y; 0, η)ν(η) dλ(η). (3.16)

Differentiation gives

gx =
q

2πε2
eq

ϕ
ε

[

K0

(

q r
[x]

ε

)

−K0

(

q r
[−x]
ε

)

− ϕ

r[x]
K1

(

q r
[x]

ε

)

+
x+ ξ

r[−x]
K1

(

q r
[−x]
ε

)

]

,

gy = − q

2πε2
eq

ϕ
ε

[

ψ

r[x]
K1

(

q r
[x]

ε

)

− ψ

r[−x]
K1

(

q r
[−x]
ε

)

]

.

In order to use these relations to get estimates for u and its derivatives we need some
properties of the modified Bessel functions.

Remark 3.9

From [AS84] we get that K0 and K1 are monotonically decreasing and that the fol-
lowing holds

∀s > 0 : 0 < K0(s) ≤ K1(s), ∀s ∈ (0, 12) : K0(s) ≤ −C ln(s), (3.17a)

∀s > 0 : K1(s) ≤
C

s
and ∀s ≥ C > 0 : K0(s) ≤ K1(s) ≤

C̃√
s
e−s. (3.17b)

Easily we deduce from this properties that

∀s > 0 : K0(s) ≤ K1(s) ≤
C

s
e−

s
2 (3.17c)

holds. As shown in detail in Section A.2 we have

∣

∣

∣
K0

(

q r

ε

)

− s

r
K1

(

q r

ε

)

∣

∣

∣
≤
(

ψ2

r(r + s)
+

ε

2qr

)

K1

(

q r

ε

)

(3.18)

for r :=
√

s2 + ψ2.

For simplification in writing we omit the superscript of r for s = x and define

G1(x, y; ξ, η) :=
1

ε2
eq

ϕ
εK1

(

q rε
)

and (3.19)

Gx(x, y; ξ, η) :=
1

ε2
eq

ϕ
ε

(

ψ2

r(r + ϕ)
+
ε

r

)

K1

(

q rε
)

. (3.20)
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3. Equation with Low Regularity in 2D

Obviously, we have

|gy(x, y; ξ, η)| ≤
q|ψ|
2πr

G1(x, y; ξ, η) and |gx(x, y; ξ, η)| ≤
3q

2π
G1(x, y; ξ, η). (3.21a)

Using (3.18) we also get

|gx(x, y; ξ, η)| ≤
q

2πε2
eq

ϕ
ε

[

∣

∣

∣
K0

(

q rε
)

− ϕ

r
K1

(

q rε
)

∣

∣

∣
+
∣

∣

∣
K0

(

q r
[−x]
ε

)

− x+ ξ

r[−x]
K1

(

q r
[−x]
ε

)∣

∣

∣

]

≤ q

2πε2
eq

ϕ
ε

[(

ψ2

r(r + ϕ)
+

ε

2qr

)

K1

(

q rε
)

+

(

ψ2

r[−x](r[−x] + x+ ξ)
+

ε

2qr[−x]

)

K1

(

q r
[−x]
ε

)

]

≤ q

πε2
eq

ϕ
ε

(

ψ2

r(r + ϕ)
+

ε

2qr

)

K1

(

q rε
)

≤ max
{ q
π ,

1
2π

}

Gx(x, y; ξ, η). (3.21b)

Subsequently, we derive several bounds for (weighted) norms of the Green’s function.
They will be used in Section 3.1.3 to acquire estimates for derivatives of the solution of
problems of the form (3.14).

Lemma 3.10

For x ∈ [0, ε] we have
‖gζ(x, y; ·, ·)‖1,H ≤ C (3.22a)

for ζ ∈ {x, y}. For larger x ∈ (ε, 1] we have

‖gx(x, y; ·, ·)‖1,H ≤ C|ln(ε)|, ‖gy(x, y; ·, ·)‖1,H ≤ C√
ε
. (3.22b)

For x ≥ 0 and we(ξ, η) := e−α
√
ξ2+η2 we have

‖gx(x, y; ·, ·)we(·, ·)‖1,H ≤ C|ln(ε)|
̺

, ‖gy(x, y; ·, ·)we(·, ·)‖1,H ≤ C√
ε̺

(3.22c)

with ̺ :=
√

x2 + y2 for ζ ∈ {x, y} and any α > 0. Finally, we have

‖gy(x, y; ·, ·)wE
x

(·, ·)‖1,S ≤ C√
ε
E
x
1(x) (3.22d)

for S := (0, 1) × R and wE
x
(ξ, η) := E

x
1(ξ) ad x ∈ (0, 1).

Proof

By (3.21) it suffices to prove the desired bounds for gy only for |ψ|
r G

1 ≤ G1. Analo-
gously, it suffices to show the bounds desired for gx for G1 or Gx.

The rest of the proof is a modification of the proofs in [FK12]. In analogy to
this reference we split the domain of integration H into two subdomains Ω1, Ω2 (cf.
Figure 3.3).

More explicitly we define Ω1 :=
{

(ξ, η) ∈ R
2
∣

∣

∣ϕ < max{ε, |ψ|4 }
}

where we used the

definitions ϕ = x − ξ and ψ = y − η from above. Via the transformation to polar
coordinates (r, ϑ) and the relations (cf. Remark 3.9)

ϕ < ε+ |ψ|
4 ≤ ε+ r

4 and K1(s) ≤ Cs−1e−
s
2

48
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Ω1

Ω2

η

ξ

y

x

Figure 3.3.: Splitting of the domain

we get

0 ≤ eq
ϕ
εK1

(

q rε
)

≤ C̃
ε

qr
eq

ϕ
ε
− qr

2ε ≤ C̃
ε

qr
eq(1+

r
4ε

− r
2ε

) ≤ C
ε

r
e−

qr
4ε .

Thus, we conclude

‖G1(x, y; ·, ·)‖1,Ω1 ≤
∫ ∞

0

∫ 2π

0

1

ε2
eq

ϕ
εK1

(

q rε
)

r dϑ dr

≤
∫ ∞

0

∫ 2π

0

C̃

ε
e−

qr
4ε dϑ dr ≤ C.

The first bound (3.22a) of the lemma follows since we have Ω2 = ∅ for x ≤ ε. Using
the techniques above and the triangular inequality

√

ξ2 + η2 ≥
√

x2 + y2 − r = ̺− r
we get the bound

‖G1(x, y; ·, ·)we(·, ·)‖1,Ω1 ≤
∫ ∞

0

C̃

ε
e−

qr
4ε

∫ 2π

0
we dϑ dr

≤ 2πC̃

ε

(∫ ̺

0
e−

qr
4ε e−α(̺−r) dr +

∫ ∞

̺
e−

qr
4ε dr

)

≤ Ĉ
(

e−α̺ + e−
q̺
4ε

)

≤ Ce−α̺.

We start the estimate of the norm including the weight wE
x
by noting

‖G1(x, y; ·, ·)wE
x

(·, ·)‖1,Ω1∩S =
1

ε2
e−

β(1−x)
ε

∫

Ω1∩S
eq

ϕ
εK1

(

q rε
)

e−
2qϕ
ε dλ(ξ, η).

To obtain the desired bounds we split Ω1 ∩ S again into subdomains Ω1a, Ω1b (cf.
Figure 3.4).

In Ω1a :=
{

(ξ, η) ∈ R
2
∣

∣

∣
|ϕ| < max{ε, |ψ|4 }

}

we have

|ϕ| < ε+ |ψ|
4 ≤ ε+ r

4
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Ω1a

Ω1b

η

ξ

y

x

Figure 3.4.: Splitting of Ω1

and receive similarly to the estimates above

‖G1(x, y; ·, ·)wEx (·, ·)‖1,Ω1a ≤ C̃

ε
e−

β(1−x)
ε

∫ ∞

0
e−q

ϕ
ε
− qr

2ε dr

≤ C̃

ε
e−

β(1−x)
ε

∫ ∞

0
e1−

qr
4ε dr ≤ Ce−

β(1−x)
ε .

In Ω1b :=
{

(ξ, η) ∈ R
2
∣

∣

∣−1 ≤ ϕ ≤ −max{ε, |ψ|4 }
}

we use the variable transform

ϕ̃ = −ϕ to get

‖ |ψ|
r G

1(x, y; ·, ·)wEx (·, ·)‖1,Ω1b
≤
∫ −ε

−1

∫ ∞

0

2ψ

ε2r
eq

ϕ−2+2ξ
ε K1

(

q rε
)

dψ dϕ

≤ 2e−
β(1−x)

ε

∫ −ε

−1

∫ ∞

0

ψ

ε2|ϕ|e
q−ϕ
ε K1

(

q rε
)

dψ dϕ

≤ 2e−
β(1−x)

ε

∫ 1

ε

∫ ∞

0

ψ

ε2ϕ̃
eq

ϕ̃
εK1

(

q rε
)

dψ dϕ̃.

The remaining integral coincides with an intermediate result in the norm estimates
on the domain Ω2. Using the results presented below in (3.23) for Ω2 we receive the
estimate

‖ |ψ|
r G

1(x, y; ·, ·)wE
x

(·, ·)‖1,Ω1b
≤ C√

ε
e−

β(1−x)
ε .

Next we analyze the integrals on Ω2 :=
{

(ξ, η) ∈ R
2
∣

∣

∣
max{ε, |ψ|4 } ≤ ϕ < x

}

. As

in [FK12] we estimate by using the relations

qr

ε
≥ qϕ

ε
≥ q ⇒ K1

(

q rε
)

≤ C

√

ε

qr
e−q

r
ε ,

ϕ ≤ r =
√

ϕ2 + ψ2 ≤
√
17ϕ,

0 > ϕ− r =
ϕ2 − r2

ϕ+ r







≤ −ψ2

dϕ ,

≥ −ψ2

ϕ ,
d := 1 +

√
17.
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Thus, we have

0 ≤ eq
ϕ
εK1

(

q rε
)

≤ C

√

ε

qr
eq

ϕ−r
ε ≤ C

√

ε

qϕ
e−q

ψ2

dεϕ .

We use this to estimate

‖ |ψ|
r G

1(x, y; ·, ·)‖1,Ω2 ≤ C̃

∫ 1

ε

∫ ∞

0

ψ

ε2ϕ
eq

ϕ
εK1

(

q rε
)

dψ dϕ

≤ Ĉ

∫ 1

ε

∫ ∞

0

ψ

ε3/2ϕ3/2
e
−q ψ

2

dεϕ dψ dϕ

= Ĉ

∫ 1

ε

d

2q
√
εϕ

dϕ ≤ C√
ε

(3.23)

for x ∈ [0, 1]. This result implies immediately

‖ |ψ|
r G

1(x, y; ·, ·)wE
x

(·, ·)‖1,Ω2 ≤ ‖ |ψ|
r G

1(x, y; ·, ·)‖1,Ω2‖wE
x

(·, ·)‖∞,Ω2 ≤ C√
ε
e−β

1−x
ε .

Similarly, we obtain

‖Gx(x, y; ·, ·)‖1,Ω2 ≤ C̃

∫ 1

ε

∫ ∞

0

(

ψ2

ε3/2ϕ5/2
+

1√
εϕ3/2

)

e
−q ψ

2

dεϕ dψ dϕ

≤ C

∫ 1

ε

1

ϕ
dϕ = C|ln(ε)|. (3.24)

From |y| − |η| ≤ |y − η| ≤ 4(x − ξ) ≤ 4x in Ω2 we conceive |η| ≥ |y| − 4x. For
|y| ≥ 5x we have |η| ≥ x and deduce

√

ξ2 + η2 ≥ |η| ≥ |y| − 4x ≥ |y|
5

=
1√
26

√

y2

25 + y2 ≥ 1√
26
̺.

Hence, we have ‖we‖∞,Ω2
≤ e

− α√
26
̺
and conclude

‖gy(x, y; ·, ·)we(·, ·)‖1,Ω2
≤ ‖gy(x, y; ·, ·)‖1,Ω2

‖we‖∞,Ω2
≤ C√

ε
e
− α√

26
̺
,

‖gx(x, y; ·, ·)we(·, ·)‖1,Ω2
≤ ‖gx(x, y; ·, ·)‖1,Ω2

‖we‖∞,Ω2
≤ C|ln(ε)|e−

α√
26
̺
.

So we are left with the case |y| < 5x. Using the first part of (3.24) we receive

‖Gx(x, y; ·, ·)we(·, ·)‖1,Ω2
≤ C̃

∫ x

ε

∫ ∞

0

(

ψ2

ε3/2ϕ5/2
+

1√
εϕ3/2

)

e
−q ψ

2

dεϕ e−αξ dψ dϕ

≤ Ĉe−αx
∫ x

ε

1

ϕ
eαϕ dϕ = Ce−αx

[

Ei(αx)− Ei(αε)
]

where Ei denotes the exponential integral (cf. [AS84]). Furthermore, we know

1

x
eαx =

∞
∑

n=0

αnxn−1

n!
=

1

x
+ α+ α

∞
∑

n=1

αnxn

(n+ 1)!
≥ α

∞
∑

n=1

αnxn

2nn!

⇒ e−αx
∞
∑

n=1

αnxn

nn!
≤ 2

αx
. (3.25)
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Therefore, we conceive from the series expansion of Ei the estimate

‖Gx(x, y; ·, ·)we(·, ·)‖1,Ω2
≤ C̃e−αx

(

ln(x)− ln(ε) +

∞
∑

n=1

αnxn

nn!

)

≤ C
|ln(ε)|
x

≤ C
√
26

|ln(ε)|
̺

.

Analogously, we can estimate using the first part of (3.23) as follows

‖ |ψ|
r G

x(x, y; ·, ·)we(·, ·)‖1,Ω2 ≤ C

∫ x

ε

∫ ∞

0

ψ

ε3/2ϕ3/2
e
−q ψ

2

dεϕ e−αξ dψ dϕ

= Ce−αx
∫ x

ε

d

2q
√
εϕ
eαϕ dϕ

= −ı̂Cd
2q

√

π

αε
e−αx

[

erf(̂ı
√
αx)− erf(̂ı

√
αε)
]

where erf denotes the error function. Using the series expansion of the error function
(cf. [AS84]) we get

‖ |ψ|
r G

x(x, y; ·, ·)we(·, ·)‖1,Ω2 ≤ C̃√
ε
e−αx

[

1√
x

∞
∑

n=0

(αx)n+1

n!(2n + 1)
− 1√

ε

∞
∑

n=0

(αε)n+1

n!(2n+ 1)

]

≤ C̃√
εx
e−αx

∞
∑

n=0

(αx)n+1

(n+ 1)!
≤ C√

εx
≤ C 4

√
26√
ε̺

.

Combining the results on the subdomains, the lemma is proved. �

Lemma 3.11

For x ∈ [2ε, 1] and wl(ξ, η) := max
(

− ln(ξ), 1
)

we have

‖gx(x, y; ·, ·)wl(·, ·)‖1,H ≤ C|ln(ε)|
(

1 + |ln(x)|
)

(3.26a)

and for x ∈ (0, 2ε) we have

‖gx(x, y; ·, ·)wl(·, ·)‖1,H ≤ C|ln(x)| (3.26b)

Proof

As in the previous proof it suffices by (3.21) to prove the desired bounds for G1 or Gx.

First we consider the case x ∈ [2ε, 1]. We will again split the domain of integra-
tion H, but this time into three pieces Ω̂i (cf. Figure 3.5) with

Ω̂1 :=
{

(ξ, η) ∈ (x− ε,∞) × R

}

⊆ Ω1,

Ω̂2 := Ω2 =
{

(ξ, η) ∈ R
2
∣

∣

∣max{ε, |ψ|4 } ≤ ϕ < x
}

and

Ω̂3 :=
{

(ξ, η) ∈ R
2
∣

∣

∣ε < ϕ ≤ x ∧ 4ϕ < |ψ|
}

⊆ Ω1.

To establish the following bounds we use the calculations and estimates we obtained
in the proof of Lemma 3.10.
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3.1. Analytic Properties of the Solution

Ω̂3

Ω̂3

Ω̂2

Ω̂1

η

ξ

y

x

Figure 3.5.: Splitting of the domain

We start by estimating

‖G1(x, y; ·, ·)wl(·, ·)‖1,Ω̂1
≤ ‖G1(x, y; ·, ·)‖1,Ω1‖wl‖∞,Ω̂1

≤ C|ln(ε)|.

Furthermore, we get similarly to (3.24) the bound

‖Gx(x, y; ·, ·)wl(·, ·)‖1,Ω̂2
≤ C

∫ x

ε

1

ϕ

(

1− ln(ξ)
)

dϕ = C

∫ x

ε

1

ϕ
− ln(x− ϕ)

ϕ
dϕ

= C
(

ln(x)− ln(ε) + ln(x) ln
(

ε
x

)

+ dilog(0) − dilog
(

x−ε
x

)

)

where dilog denotes the dilogarithm (cf. [AS84]). From

|dilog(s)| ≤
∞
∑

k=1

k−2 =
π2

6
for s ∈ [0, 2] (3.27)

we get

‖Gx(x, y; ·, ·)wl(·, ·)‖1,Ω̂2
≤ C̃

(

|ln(ε)|+ ln(x)
(

ln(ε)− ln(x)
)

+
π2

3

)

≤ C|ln(ε)|
(

1+| ln(x)|
)

.

On Ω̂3 we use

4ϕ < |ψ| ⇒ r =
√

ϕ2 + ψ2 >
√

ϕ2 + 16ϕ2 =
√
17ϕ

and r ≥ ε to estimate

0 < eq
ϕ
εK1

(

q rε
)

≤ eq
ϕ
ε

√

ε

qr
e−q

r
ε ≤

√

ε

qr
e
q r
ε

(

1√
17

−1
)

=

√

ε

qr
e−

√
2q̃ r
ε
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with q̃ :=
√
17−1√
34

> 0. Thus, we get from r ≥ 1√
2

(

|ϕ|+ |ψ|
)

the bound

‖G1(x, y; ·, ·)wl(·, ·)‖1,Ω̂3
≤
∫ x

ε

∫ ∞

0

C

ε3/2
√
r
e−q̃

|ϕ|+|ψ|
ε

(

1− ln(x− ϕ)
)

dψ dϕ

≤
∫ x−ε

0

∫ ∞

0

C

ε2
e−q̃

x−ξ+|ψ|
ε

(

1− ln(ξ)
)

dψ dξ

=

∫ x−ε

0

C

q̃ε
e−q̃

x−ξ
ε

(

1− ln(ξ)
)

dξ

=
C

q̃2
e−q̃

x
ε

(

eq̃
x−ε
ε − 1 + Ei

(

q̃
ε(x− ε)

)

− γe

− ln
(

q̃
ε

)

− e
q̃
ε (x−ε) ln(x− ε)

)

where γe ≈ 0.58 denotes Euler’s constant. In (3.25) we established

e−
q̃
ε
x

∞
∑

n=1

q̃nxn

εnnn!
≤ 2ε

q̃x

and from [AS84] we know

Ei(s) = γe + ln(s) +

∞
∑

n=1

sn

nn!
.

Therefore, we conclude using the monotonicity of Ei that we have

‖G1(x, y; ·, ·)wl(·, ·)‖1,Ω̂3
≤ C̃ + C̃e−q̃

x
ε

(

Ei
(

q̃
εx
)

− γe − ln
(

q̃
ε

)

− e
q̃
ε (x−ε) ln(x− ε)

)

≤ C̃ + C̃e−q̃
x
ε

(

ln(x) +

∞
∑

n=1

q̃nxn

εnnn!
− e

q̃
ε (x−ε) ln(x− ε)

)

≤ C̃ + C̃

(

2ε

q̃x
− e−q̃ ln(x− ε)

)

≤ C|ln(ε)|.

Next we analyze the case x ∈ [0, 2ε]. In this case we split the domain of integration
into

Ω̃1 :=
{

(ξ, η) ∈
(

x
2 ,∞

)

× R

}

⊆ Ω1 and Ω̃2 :=
{

(ξ, η) ∈
(

0, x2
)

× R

}

.

Easily we get

‖G1(x, y; ·, ·)wl(·, ·)‖1,Ω̃1
≤ ‖G1(x, y; ·, ·)‖1,Ω1‖wl‖∞,Ω̃1

≤ C|ln(x)|.

On Ω̃2 we use

0 < ξ <
x

2
≤ ε, |K1(s)| ≤

1

s
e−

s
2 and (x− ξ) + |ψ| ≤

√
2r

to get

‖G1(x, y; ·, ·)wl(·, ·)‖1,Ω̃2
≤ C

ε

∫ ∞

0

∫ x
2

0

− ln(ξ)

(x− ξ) + ψ
e−q

ψ
2ε dξ dψ

=
C

ε

∫ ∞

0

∫ x+ψ

x
2
+ψ

− ln(x+ ψ − s)

s
e−q

ψ
2ε ds dψ

=
C

ε

∫ ∞

0

[

dilog(0) + ln(x+ ψ) ln
( x

2
+ψ

x+ψ

)

− dilog
(

1−
x
2
+ψ

x+ψ

)]

e−q
ψ
2ε dψ.
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3.1. Analytic Properties of the Solution

For x ≤ ψ we have

0 > ln

( x
2 + ψ

x+ ψ

)

≥ ln
(

ψ
2ψ

)

= ln
(

1
2

)

and for x > ψ we can estimate

0 > ln

( x
2 + ψ

x+ ψ

)

> ln

( x
2

2x

)

= ln
(

1
4

)

.

Using the bound (3.27) of the dilogarithm, we conclude

‖G1(x, y; ·, ·)wl(·, ·)‖1,Ω̃2
≤ C̃

ε

∫ ∞

0

(

π2

3
+ ln(x+ ψ) ln

( x
2
+ψ

x+ψ

)

)

e−q
ψ
2ε dψ

≤ C̃

ε

(

π2

3
+ ln(x) ln

(

1
4

)

)∫ ∞

0
e−q

ψ
2ε dψ ≤ C|ln(x)|.

Combining the results for the subdomains we have proved the lemma. �

Additionally, we will use an approximation of the Green’s function for the problem

L̂u = −ε∆u+ βux = f in S = (0, 1) × R, u(0, ·) = 0, u(1, ·) = 0. (3.28)

Defining the approximation

g̃(x, y; ξ, η) := g(x, y; ξ, η) +
1

2πε
eq

ϕ
ε

[

K0

(

q r
[−2+x]

ε

)

−K0

(

q r
[2−x]
ε

)

+K0

(

q r
[2+x]

ε

)

−K0

(

q r
[−2−x]
ε

)

]

with g̃(x, y; 0, η) = 0 and g̃(x, y; 1, η) 6= 0 of the Green’s function of problem (3.28) we
have the representation

u(x, y) =

∫

S

g̃(x, y; ξ, η)f(ξ, η) dλ(ξ, η) −
∫

R

g̃(x, y; 1, η)ux(1, η) dλ(η) (3.29)

for the solution u of problem (3.28).

Corollary 3.12

Obviously, we have

|g̃y(x, y; ξ, η)| ≤
3q|ψ|
2πr

G1(x, y : ξ, η) (3.30)

for (x, y) ∈ S.

Since all estimates for gy in Lemma 3.10 were deduced using |gy| ≤ C |ψ|
r G

1, they
are also valid for g̃y on S ⊆ H:

‖g̃y(x, y; ·, ·)‖1,S ≤ C for x ∈ [0, ε], (3.31a)

‖g̃y(x, y; ·, ·)‖1,S ≤ C√
ε
, (3.31b)

‖g̃y(x, y; ·, ·)we(·, ·)‖1,S ≤ C√
ε̺

and (3.31c)

‖g̃y(x, y; ·, ·)wE
x

(·, ·)‖1,S ≤ C√
ε
E
x
1(x). (3.31d)
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3. Equation with Low Regularity in 2D

Lemma 3.13

We have

‖g̃y(x, y; 1, ·)‖1,R ≤ C
e−

β
2ε

ε
e−β

1−x
ε (3.32)

for (x, y) ∈ S.

Proof

Differentiation gives

|g̃y(x, y; 1, η)| =
q

2πε2
e−q

1−x
ε

∣

∣

∣

∣

∣

ψ
√

(3 + x)2 + ψ2
K1

(

q

√
(3+x)2+ψ2

ε

)

− ψ
√

(3− x)2 + ψ2
K1

(

q

√
(3−x)2+ψ2

ε

)

∣

∣

∣

∣

∣

≤ q

2πε2
e−q

1−x
ε K1

(

q

√
4+ψ2

ε

)

for x ∈ [0, 1]. Using Remark 3.9 we can estimate

|g̃y(x, y; 1, η)| ≤
q

2πε2
e−q

1−x
ε K1

(

q

√
4+ψ2

ε

)

≤ C

ε2
e−q

1−x
ε e−q

√
4+ψ2

ε .

Integration leads to

‖g̃y(x, y; 1, ·)‖1,R ≤ C̃

ε2
e−q

1−x
ε

[∫ 1

0
e−

2q
ε dψ +

∫ ∞

1
e−q

√
4+ψ
ε dψ

]

≤ C

ε
e−q

1−x
ε

(

e−
2q
ε + e−

√
5q
ε

)

≤ 2C

ε
e−q

3−x
ε ≤ 2C

e−
β
2ε

ε
e−β

1−x
ε . �

Later on we will use information of the solution of

−∆ũ = 0 in H, ũ(0, y) = ν(y), lim
‖(x,y)‖→∞

ũ(x, y) = 0. (3.33)

The advantage of this problem is the simple structure of the associated Green’s function.
It allows us to get a sharper estimate for the norms of the derivatives.

Lemma 3.14

If ‖ν‖1,∞,R ≤ C holds we have for the solution ũ of (3.33) the estimates

|ũ(x, y)| ≤ π‖ν‖0,∞,R and |ũx(x, y)| ≤
{

C|ln(x)|, x ∈ (0, 12),

Cx−1, x ≥ 1
2 .

(3.34)

Proof

By using the Green’s function

ḡ∆(x, y; ξ, η) :=
1

2π
ln
(

r[x]
)

, g∆(x, y; ξ, η) := ḡ∆(x, y; ξ, η) − ḡ∆(−x, y; ξ, η),

we have the representation (cf. [GT01])

ũ(x, y) =

∫ ∞

−∞
g∆ξ (x, y; 0, η)ν(η) dη = −

∫ ∞

−∞

x

πr2
ν(y − ψ) dψ.

56



3.1. Analytic Properties of the Solution

Consequently, we can estimate

|ũ(x, y)| ≤ ‖ν‖0,∞,R

∫ ∞

−∞

x

πr2
dψ = ‖ν‖0,∞,R

[

arctan
(

ψ
x

)]∞

ψ=−∞
= π‖ν‖0,∞,R

for x > 0.

Also, we have

ũx(x, y) =

∫ ∞

−∞
g∆ξx(x, 0; 0, ψ)ν(y − ψ) dψ =

∫ ∞

−∞

x2 − ψ2

πr4
ν(y − ψ) dψ

and conclude for x ∈ (0, 12)

|ũx(x, y)| ≤
∣

∣

∣

∣

∫ 1

−1

x2 − ψ2

πr4

(

ν(y)−
∫ ψ

0
ν ′(y − s) ds

)

dψ

∣

∣

∣

∣

+

∫ ∞

1

ψ2 − x2

πr4
|ν(y − ψ) + ν(y + ψ)| dψ

≤ C̃

[∣

∣

∣

∣

∫ 1

−1

x2 − ψ2

r4
dψ

∣

∣

∣

∣

+

∫ x

0

x2 − ψ2

r4
ψ dψ

+

∫ 1

x

ψ2 − x2

r4
ψ dψ +

∫ ∞

1

ψ2 − x2

r4
dψ

]

≤ C̃
(

4 + |ln(x)|
)

≤ C|ln(x)|.

For x ≥ 1
2 we have

|ũx(x, y)| ≤ C

∫ ∞

0

∣

∣

∣

∣

x2 − ψ2

r4

∣

∣

∣

∣

dψ =
C

x
.

�

Remark 3.15

The logarithmic bound in Lemma 3.14 is not caused by improper estimates, but a
sharp bound. This leads to the result, that the first derivative in x-direction is not
bounded near the edge x = 0. In fact for ν(y) = |y − 1| + |y + 1| − 2|y| ∈ W 1,∞ we
have

ũ(x, 0) = −
∫ 1

−1

x

π(x2 + η2)

(

|η − 1|+ |η + 1| − 2|η|
)

dη

= − 4

π

∫ 1

0

x

x2 + η2
(1− η) dη =

2

π

(

x ln(x2 + 1)− 2x ln(x) + 2 arctan

(

1

x

))

.

Differentiation gives

ũx(x, 0) =
2

π

(

ln(x2 + 1) +
2x2

x2 + 1
− 2 ln(x)− 2− 2

(1 + 1
x2 )x

2

)

=
2

π

(

ln(x2 + 1)− 4

x2 + 1
− 2 ln(x)

)

and we can see, that this has a logarithmic singularity at x = 0.
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3.1.2. Estimates for a One-Dimensional Auxiliary Problem

Later on we use some one-dimensional estimates to acquire sharp bounds for x-derivatives
of solutions. To that end we consider the auxiliary problem

L1Dw := −εwxx + βwx = g, w(0) = w0, w(1) = w1. (3.35)

The techniques we use to prove the following lemmata are modifications of the proofs
presented in [KT78] that we also used in Chapter 2.

Lemma 3.16

For ‖g‖∞ ≤ C and |w0|+ |w1| ≤ C we have for the solution w of (3.35) the estimates

|wx(x)| ≤ C
(

1 + ε−1
E
x
1(x)

)

and |wxx(x)| ≤ C
(

ε−1 + ε−2
E
x
1(x)

)

. (3.36a)

If additionally ‖g‖1,∞ ≤ C holds, then we have

|wxx(x)| ≤ C
(

1 + ε−2
E
x
1(x)

)

. (3.36b)

Proof

It is easy to check that the solution w is given by

w(x) = −
∫ 1

x
ŵ(ξ) dξ +K1 +K2

(

e−β
1−x
ε − e−

β
ε

)

with

ŵ(ξ) =

∫ 1

ξ

g(ζ)e−β
ζ−ξ
ε

ε
dζ.

First we note

w0 = w(0) = −
∫ 1

0
ŵ(ξ) dξ +K1.

Using the prerequisites on g we deduce

|K1| ≤ |w0|+
∫ 1

0

∫ 1

ξ

‖g‖∞e−β
ζ−ξ
ε

ε
dζ dξ = |w0|+

∫ 1

0

‖g‖∞
β

(

1− e−β
1−ξ
ε

)

dξ ≤ C.

Thus, we derive

|K2| =
|w1 −K1|
1− e−

β
ε

< |w1|+ |K1| ≤ C.

For the first derivative we estimate

|wx(x)| =
∣

∣

∣

∣

∫ 1

x

g(η)

ε
e−β

η−x
ε dη +K2

β

ε
e−β

1−x
ε

∣

∣

∣

∣

≤ ‖g‖∞
β

(

1− e−β
1−x
ε

)

+ |K2|
β

ε
e−β

1−x
ε ≤ C

(

1 + ε−1e−β
1−x
ε

)

.

For the second derivative we have

|wxx(x)| =
∣

∣

∣

∣

−g(x)
ε

+

∫ 1

x

βg(η)

ε2
e−β

η−x
ε dη +K2

β2

ε2
e−β

1−x
ε

∣

∣

∣

∣

≤ ‖g‖∞
ε

+
‖g‖∞
ε

(

1− e−β
1−x
ε

)

+ |K2|
β2

ε2
e−β

1−x
ε ≤ C

(

ε−1 + ε−2e−β
1−x
ε

)

.
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Using the derivative of g we can sharpen this bound as follows

|wxx(x)| =
∣

∣

∣

∣

−g(x)
ε

+

∫ 1

x

β

ε2

(

g(x) +

∫ η

x
g′(ξ) dξ

)

e−β
η−x
ε dη +K2

β2

ε2
e−β

1−x
ε

∣

∣

∣

∣

≤
∣

∣

∣

∣

−g(x)
ε
e−β

1−x
ε +

∫ 1

x

β‖g′‖∞
ε2

(η − x)e−β
η−x
ε dη +K2

β2

ε2
e−β

1−x
ε

∣

∣

∣

∣

≤ ε‖g‖∞ + β2|K2|
ε2

e−β
1−x
ε +

β‖g′‖∞
ε2

∫ 1−x

0
se−β

s
ε ds

=
ε‖g‖∞ + β2|K2|

ε2
e−β

1−x
ε + ‖g′‖∞

(

1

β
− 1− x

ε
e−β

1−x
ε − 1

β
e−β

1−x
ε

)

≤ C
(

1 + ε−2e−β
1−x
ε

)

. �

Lemma 3.17

For |g(x)| ≤ C
(

e−β
x
ε + εl

)

with l ≥ 0 and w0 = w1 = 0 we have

|w(k)(x)| ≤ Cε1−k
(

e−β
x
ε + εl + εmin{l−1,0}e−β

1−x
ε

)

(3.37)

for k ∈ {1, 2}.

Proof

Similarly to the previous proof we consider the solution representation

w(x) = −
∫ 1

x
ŵ(ξ) dξ +K

(

1− e−β
1−x
ε

)

where ŵ(ξ) =

∫ 1

ξ

g(ζ)e−β
ζ−ξ
ε

ε
dζ.

From the prerequisites on g we deduce

|ŵ(ξ)| ≤
∫ 1

ξ

C̃
(

e−β
ζ
ε + εl

)

e−β
ζ−ξ
ε

ε
dζ ≤ C

(

e−β
ξ
ε + εl

)

and

|ŵ′(ξ)| =
∣

∣

∣

∣

β

ε
ŵ(ξ)− g(ξ)

ε

∣

∣

∣

∣

≤ C

(

1

ε
e−β

ξ
ε + εl−1

)

.

The boundary condition at x = 0 implies

|K| =
∣

∣

∣

∣

∣

∫ 1
0 ŵ(ξ) dξ

1− e−β
1
ε

∣

∣

∣

∣

∣

≤ Cεmin{l,1}

1− e−
β
ε

≤ Cεmin{l,1}.

Using this estimates we get

|wx(x)| =
∣

∣

∣

∣

ŵ(x)−K
β

ε
e−β

1−x
ε

∣

∣

∣

∣

≤ C
(

e−β
x
ε + εl + εmin{l−1,0}e−β

1−x
ε

)

and

|wxx(x)| =
∣

∣

∣

∣

ŵ′(x)−K
β2

ε2
e−β

1−x
ε

∣

∣

∣

∣

≤ C

(

1

ε
e−β

x
ε + εl−1 + εmin{l−1,0}−1e−β

1−x
ε

)

. �

Lemma 3.18

The solution w of the special case g(x) = 1 − ln(1 − x), w0 = 1, w1 = 0 of (3.35)
satisfies

0 ≤ w(x) ≤ C. (3.38)
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Proof

By applying maximum principle we conclude from g > 0, w1 > 0 that w(x) ≥ 0 holds.
Again, we use the solution representation

w(x) = −
∫ 1

x
ŵ(ξ) dξ +K

(

1− e−β
1−x
ε

)

where ŵ(ξ) =

∫ 1

ξ

g(ζ)e−β
ζ−ξ
ε

ε
dζ.

From the boundary conditions and

0 ≤
∫ 1

0
ŵ(ξ) dξ =

∫ 1

0

(

1− ln(1− ζ)
)

∫ ζ

0

e−β
ζ−ξ
ε

ε
dξ dζ

=

∫ 1

0

(

1− ln(1− ζ)
)1− e−β

ζ
ε

β
dζ ≤ 2

β

we conclude

|K| =
∣

∣

∣

∣

∣

∫ 1
0 ŵ(ξ) dξ + w0

1− e−
β
ε

∣

∣

∣

∣

∣

≤
2
β + 1

1− e−
β
ε

≤ C.

Since we know ŵ(ξ) ≥ 0 we conceive

0 ≤
∫ 1

x
ŵ(ξ) dξ ≤

∫ 1

0
ŵ(ξ) dξ ≤ 2

β
.

Thus, we conclude w(x) ≤ C. �

Lemma 3.19

For |g(x)| ≤ Ce−β
1−x
ε and |w0|+ |w1| ≤ C we have

|w(k)(x)| ≤ Cε−ke−β
1−x
ε (3.39)

for k ∈ {1, 2}.

Proof

The solution w is given by

w(x) = −
∫ x

0
w̃(ξ) dξ +K1

(

e−β
1−x
ε − e−

β
ε

)

+K2 with

w̃(ξ) =

∫ ξ

0

g(ζ)e−β
ζ−ξ
ε

ε
dζ.

Using the prerequisites on g we deduce

|w̃(ξ)| ≤
∫ ξ

0

Ce−β
1−ξ
ε

ε
dζ =

C

ε
ξe−β

1−ξ
ε and

|w̃′(ξ)| =
∣

∣

∣

∣

β

ε
w̃(ξ) +

g(ξ)

ε

∣

∣

∣

∣

≤ C
ξ + ε

ε2
e−β

1−ξ
ε .

The boundary condition at x = 0 implies

|K2| = |w(0)| = |w0| ≤ C.
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3.1. Analytic Properties of the Solution

From the estimate of w̃ from above we get

∣

∣

∣

∣

∫ 1

0
w̃(ξ) dξ

∣

∣

∣

∣

≤
∫ 1

0

C

ε
e−β

1−ξ
ε dξ ≤ C

β

and we obtain, using the boundary condition at x = 1,

|K1| =
∣

∣

∣

∣

∣

−
∫ 1
0 w̃(ξ) dξ −K2 + w1

1− e−
β
ε

∣

∣

∣

∣

∣

≤ C̃ + |K2|+ |w1|
1− e−

β
ε

≤ C.

Combining this estimates we get

|wx(x)| =
∣

∣

∣

∣

−w̃(x) +K1
β

ε
e−β

1−x
ε

∣

∣

∣

∣

≤ C

ε
e−β

1−x
ε and

|wxx(x)| =
∣

∣

∣

∣

−w̃′(x) +K1
β2

ε2
e−β

1−x
ε

∣

∣

∣

∣

≤ C

ε2
e−β

1−x
ε . �

3.1.3. Estimation Details for the Solution Decomposition

We recall that the smooth part uS is defined via problem (3.5), a prolongation of the
differential equation to the half plane H = (0,∞) × R:

LuS = −ε∆uS + βuSx + cuS = ωBC
H

Ωf = fu in H,

uS(0, ·) = 0, lim
‖(x,y)‖→∞

uS(x, y) = 0.

Lemma 3.20

We have

‖uS‖1,∞,H +
√
ε‖uSxx‖∞,S +

√
ε‖uSyy‖∞,H ≤ C and (3.40a)

‖uSxx‖2,Ω + ‖uSxy‖∞,H ≤ C|ln(ε)|. (3.40b)

Proof

Note, we have supp fu ⊆ B2(0, 0). Applying Lemma 3.8 to the differential equation
problem (3.5) we get |uS | ≤ Ce−α̺. Reordering the differential equation leads to

−ε∆uS + βuSx = fu − cuS =: fu∗.

From |fu∗| ≤ Ce−α̺ and the estimates for the Green’s function of this problem pro-
vided in Lemma 3.10 we conclude

‖uSζ ‖∞,(0,ε)×R ≤ ‖fu∗‖∞‖gζ(x, y; ·, ·)‖1 ≤ C and

|uSζ (x, y)| ≤ C̃‖gζ(x, y; ·, ·)we(·, ·)‖1 ≤ C√
ε̺

for ζ ∈ {x, y}. Therefore, we can differentiate the equation (3.5) and receive

LuSζ = −ε∆(uSζ ) + β(uSζ )x + cuSζ = fuζ − cζu
S , (3.41a)

|uSζ (0, ·)| ≤ C, lim
‖(x,y)‖→∞

uS(x, y) = 0 (3.41b)
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3. Equation with Low Regularity in 2D

for ζ ∈ {x, y}. Hence, we can apply Lemma 3.7 and receive

‖uSx‖∞ + ‖uSy ‖∞ ≤ C.

Reordering the terms of (3.41) gives

−ε∆(uSy ) + β(uSy )x = fuy − cyu
S − cuSy =: fu∗,y in H,

uSy (0, ·) = 0, lim
‖(x,y)‖→∞

uSy (x, y) = 0.

Since we know already ‖fu∗,y‖∞ ≤ C we can apply Lemma 3.10 to acquire

|uSyx(x, y)| ≤ ‖fu∗,y‖∞‖gx(x, y; ·, ·)‖1 ≤
{

C, x ∈ [0, ε],

C|ln(ε)|, x ∈ (ε, 1),

|uSyy(x, y)| ≤ ‖fu∗,y‖∞‖gy(x, y; ·, ·)‖1 ≤ C√
ε
for x ∈ [0, 1].

Due to the nonzero boundary condition for the differentiated problem for uSx we can
not apply this technique to get bounds for uSxx. We circumvent this problem by the
splitting

uS(x, ·) = ũ(x, ·) + û(x, ·) with
L1Dũ= fu∗, ũ(0, ·) = 0, ũ(1, ·) = uS(1, ·),
L1Dû= εuSyy, û(0, ·) = 0, û(1, ·) = 0.

From the previous calculations we know ‖fu∗‖1,∞,Ω ≤ C and ‖εuSyy‖∞,Ω ≤ C
√
ε.

Thus, we can apply Lemma 3.16 to acquire

|ũxx| ≤ C
(

1 + ε−2
E
x
1(x)

)

and |ûxx| ≤ C
(

ε−
1
2 + ε−

3
2E

x
1(x)

)

,

which gives the preliminary bound

|uSxx(x, y)| ≤ C
(

ε−
1
2 + ε−2

E
x
1(x)

)

.

For x ∈ (2ε, 1) we estimate by considering the problem

−ε∆(uSx ) + β(uSx )x = fux − cxu
S − cuSx =: fu∗,x in H,

uSx (0, ·) = νx, lim
‖(x,y)‖→∞

uSx (x, y) = 0

which we receive from reordering the terms of (3.41). Note that we have by the
estimates above

‖νx‖1,∞,R = ‖uSx (0, ·)‖∞,R + ‖uSxy(0, ·)‖∞,R ≤ C, ‖fu∗,x‖∞ ≤ C.

Now we split uSx = ũ+ û in two parts satisfying

−∆ũ = 0, ũ(0, y) = νx(y), lim
‖(x,y)‖→∞

ũ(x, y) = 0,

−ε∆û+ βûx = fu∗,x − βũx, û(0, y) = 0, lim
‖(x,y)‖→∞

û(x, y) = 0.
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3.1. Analytic Properties of the Solution

From Lemma 3.14 we know |−ε∆ũ + βũx| = β|ũx| ≤ Cmax
(

− ln(x), 1
)

. Thus, the
Green’s function representation gives with Lemma 3.11 the estimate

|ûx(x, y)| ≤ C̃‖gx(x, y; ·, ·)wl(·, ·)‖1,H ≤ C|ln(ε)|(1 + |ln(x)|).

Combining these results we obtain

|uSxx| ≤
{

C√
ε
, x ≤ 2ε,

C|ln(ε)|(1 + |ln(x)|), x > 2ε.

By integration we receive
‖uSxx‖2,Ω ≤ C|ln(ε)|. �

Next we recall the definition of the layer correction term ux1 given in (3.6)

Lux1 = 0, ux1(0, ·) = 0, ux1(1, ·) = −ωI(·)uS(1, ·).

Lemma 3.21

For ux1 we have the estimates

|ux1(x, y)|+ |ux1y (x, y)|+
√
ε|ux1yy(x, y)| ≤ CE

x
1(x), (3.42a)

ε|ux1x (x, y)|+ ε2|ux1xx(x, y)| ≤ CE
x
1(x) and ‖ux1xy(x, ·)‖2,(0,1) ≤

C

ε
E
x
1(x). (3.42b)

Proof

By application of maximum principle with comparison function wc = e−β
1−x
ε − e−

β
ε

and successive differentiation in y-direction we get

|∂kyux1(x, y)| ≤ ‖∂kyuS‖∞,R

(

e−β
1−x
ε − e−

β
ε

)

for k ∈ {0, 1, 2}.
Reordering the differential equation leads to

L1Dux1 = −εux1xx + βux1x = εux1yy − cux1, ux1(0, ·) = 0, ux1(1, ·) = ν1(·).

Since |ν1(y)| ≤ ‖ux1‖∞ ≤ C we can apply Lemma 3.19 to acquire

|∂kxux1(x, y)| ≤ Cε−kEx1(x)

for k ∈ {1, 2}.
To obtain bounds for the mixed derivative, we split ux1 = ũ+ û with

L̂ũ = 0, ũ(0, ·) = 0, ũ(1, ·) = −ωIuS and

L̂û = −cux1, û(0, ·) = 0, û(1, ·) = 0.

We estimate û by differentiation of the differential equation and receive

L̂ûy = −cyux1 − cux1y =: f̂ , ûy(0, ·) = 0, ûy(1, ·) = 0, (3.43a)

L̂ûyy = f̂y, ûyy(0, ·) = 0, ûyy(1, ·) = 0. (3.43b)
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3. Equation with Low Regularity in 2D

From the previous estimates we know |f̂(x, ·)| + √
ε|f̂y(x, ·)| ≤ CE

x
1(x). Applying a

maximum principle with comparison function wc = (1 − x)
(

e−β
1−x
ε − e−

β
ε

)

to each

problem of (3.43) we get

|ûy(x, ·)| +
√
ε|ûyy(x, ·)| ≤ CE

x
1(x) and |ûxyy(1, ·)| ≤

C√
ε
.

Next we apply the Green’s function representation formula (3.29) to the differentiated
problem (3.43b)

ûyyy(x, y) =

∫

S

g̃y(x, y; ξ, η)f̂y(ξ, η) dλ(ξ, η) −
∫

R

g̃y(x, y; 1, η)ûxyy(1, η) dλ(η)

and deduce from Corollary 3.12 and Lemma 3.13 the estimate

|ûyyy(x, y)| ≤
C̃√
ε

(

‖g̃y(x, y; ·, ·)wE
x‖1,S + ‖g̃y(x, y; 1, ·)‖1,R

)

≤ C

ε
E
x
1(x).

Hence, we have

L1Dûy := −εûxxy + βûxy = f̂ + εûyyy, ûy(0, ·) = 0, ûy(1, ·) = 0

and conclude using Lemma 3.16 and Lemma 3.19 that

|ûxy(x, y)| ≤ C̃

(

1

ε
E
x
1(x) +

1√
ε
E
x
1(x)

)

≤ C

ε
E
x
1(x)

holds.
To get bounds for ũ, we use techniques similar to the proof of [NKS09, Lemma 3.1].

We define the Fourier transform in y-direction via

Fũ(x, η) :=
1√
2π

∫

R

e−iyηũ(x, y) dy.

Then, we get

0 = F(L̂ũ) = −εF(ũ)xx + βF(ũ)x + εη2F(ũ),

F(ũ)(0, ·) = 0, F(ũ)(1, ·) = F(−ωIuS)(1, ·) =: ν̃(·).

Consequently, we have

F(ũ)(x, η) = ν̃(η)
e−

(β+
√
β2+4ε2η2)(1−x)

2ε − e−
β
ε e−

(−β+
√
β2+4ε2η2)(1+x)

2ε

1− e−
√
β2+4ε2η2

ε

and

|F(ũxy)(x, η)| = |ηF(ũ)x(x, η)| ≤
C

ε
|ην̃(η)|Ex1(x) =

C

ε

∣

∣F
(

(ωIu
S)y
)

(x, η)
∣

∣ E
x
1(x).

From this formula we get by Plancherel’s theorem immediately

‖ũxy(x, ·)‖2,R = ‖F(ũxy)(x, ·)‖2,R ≤ C̃

ε
‖ω′

Iu
S + ωIu

S
y ‖2,REx1(x)

≤ Ĉ

ε
‖uS(1, ·)‖1,∞,(−1,2)E

x
1(x) ≤

C

ε
E
x
1(x). �
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3.1. Analytic Properties of the Solution

Recall the definition (3.7) of the characteristic layer correction at y ∈ {0, 1}

Luy = 0, uy(0, ·) = 0, uy(·, 0) = −ωI(·)uS(·, 0), uy(·, 1) = −uS(·, 1)ωI(·). (3.44)

Note that the boundary conditions are continuous because we have uS(0, ·) = 0.

Lemma 3.22

We have

|uy(x, y)|+ |uyx(x, y)| +
√
ε|uyy(x, y)|+ ε|uyyy(x, y)| ≤ C

(

E
y
0(y) + E

y
1(y)

)

(3.45)

for (x, y) ∈ Ω.

Proof

Since we know |uS | + |uSx | ≤ C and uS(0, ·) = 0 we apply a maximum principle with
wc = E

y
0(y) + E

y
1(y) to acquire

|uy(·, y)| ≤ C
(

E
y
0(y) + E

y
1(y)

)

.

Additionally, we can apply on Ω a maximum principle with wc = x
(

E
y
0(y)+E

y
1(y)

)

to
get

|uyx(0, y)| ≤ C
(

E
y
0(y) + E

y
1(y)

)

.

Since we know uyx
∣

∣

y∈{0,1} = −ωIuSx
∣

∣

y∈{0,1} − ω′
Iu
S
∣

∣

y∈{0,1} we can use a maximum

principle on the differentiated equation to prove

|uyx(x, y)| ≤ C(1 + x)
(

E
y
0(y) + E

y
1(y)

)

.

To acquire bounds for uyy we split uy = ũ− û with

û(x, y) := uS(x, 0)ωI(x)
e−

√
γ
ε
y − e−

√
γ
ε

1− e−
√

γ
ε

+ uS(x, 1)ωI(x)
e−

√
γ
ε
(1−y) − e−

√
γ
ε

1− e−
√

γ
ε

. (3.46)

Thus, we have

|Lũ| = |Lû| ≤ C
(

ε‖uSxx‖∞ + ‖uSx‖∞ + ‖uS‖∞
) (

E
y
0 + E

y
1

)

≤ C
(

E
y
0 + E

y
1

)

and
ũ(0, ·) = 0, ũ(·, 0) = ũ(·, 1) = 0.

Hence, we can apply a maximum principle with comparison function

wc0 :=
C√
ε



ye−
√

γ
ε
y + (1− y)e−

√
γ
ε
(1−y) − e−

√
γ
ε
e−

√

‖c‖∞
ε

y + e−
√

‖c‖∞
ε

(1−y)

1 + e−
√

‖c‖∞
ε





to deduce
|ũ(x, y)| ≤ wc0

and conclude

‖uyy‖∞,(0,∞)×{0,1} ≤ ‖ũy‖∞,(0,∞)×{0,1} + ‖ûy‖∞,(0,∞)×{0,1} ≤
C√
ε
.
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We use uyy(0, ·) = 0 and a maximum principle on the differentiated equation and get

|uyy(x, y)| ≤
C√
ε
(1 + x)

(

E
y
0(y) + E

y
1(y)

)

.

For the second order y-derivative we have by ∂kxu
y
∣

∣

(0,∞)×{0,1} = −∂kx(ωIuS) for

k ∈ {0, 1, 2} and the differential equation

ε‖uyyy‖∞,(0,∞)×{0,1} = ‖−εuyxx + βuyx + cuy‖∞,(0,∞)×{0,1}

≤ C̃
(

ε‖uSxx‖∞,(0,∞)×{0,1} + ‖uS‖1,∞,(0,∞)×{0,1}
)

≤ C.

Thus, we have

|Luyyy| ≤
C√
ε

(

E
y
0(y) + E

y
1(y)

)

,

uyyy(0, ·) = 0, ‖uyyy‖∞,(0,∞)×{0,1} =
C

ε

and conclude using a maximum principle

|uyyy(x, y)| ≤
C

ε
(1 + x)

(

E
y
0(y) + E

y
1(y)

)

.
�

As a last step we recall the definition (3.8) of the corner layer correction

Luc1 = 0, uc1
∣

∣

x=0
= 0, uc1

∣

∣

y∈{0,1} = −ux1, uc1
∣

∣

x=1
= −uy.

Note that the boundary conditions posed on uc1 are continuous since we have −ux1(1, 0) =
uS(1, 0) = −uy(1, 0) and −ux1(1, 1) = uS(1, 1) = −uy(1, 1).

Lemma 3.23

We have

|uc1(x, y)|+ ε|uc1x (x, y)|+
√
ε|uc1y (x, y)| ≤ CE

x
1(x)

(

E
y
0(y) + E

y
1(y)

)

, (3.47a)

‖uc1xx‖2,Ω ≤ Cε−
5
4 , ‖uc1xy‖2,Ω ≤ Cε−

3
4 and ‖uc1yy‖2,Ω ≤ Cε−

1
4 . (3.47b)

Proof

From a maximum principle we get

|uc1(x, y)| ≤ Ce−
β
ε
(1−x)

(

e−
√

γ
ε
y + e−

√
γ
ε
(1−y)

)

.

We split uc1 = ũ− û with

û(x, y) :=
(

uy(1, y) − Y
(

ux1(1, 0), ux1(1, 1), y
)

)

X(x) + Y
(

ux1(x, 0), ux1(x, 1), y
)

,

X(x) := e−
β
ε (1−x)−e−

β
ε

1−e−
β
ε

, Y (r, s, y) :=
r

(

e
−
√

γ
ε y−e−

√
γ
ε

)

+s

(

e
−
√

γ
ε (1−y)−e−

√
γ
ε

)

1−e−
√

γ
ε

.

Using |−εux1xx + βux1x | = |εux1yy − cux1| ≤ CE
x
1 we conclude

|Lû| ≤ |−εuyyy + cuy|X + CY (1, 1, ·)X + |−εux1xx + βux1x |Y (1, 1, ·) + |ux1|Y (1, 1, ·)
≤ CE

x
1

(

E
y
0 + E

y
1

)

.
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3.1. Analytic Properties of the Solution

Hence, ũ satisfies

|Lũ| = |Lû| ≤ CE
x
1(x)

(

E
y
0(y) + E

y
1(y)

)

, ũ
∣

∣

∂Ω
= 0. (3.48)

We apply a maximum principle with comparison function

wc = (1− x)
(

e−
β
ε
(1−x) − e−

β
ε

)(

e−
√

γ
ε
y + e−

√
γ
ε
(1−y)

)

to (3.48) and acquire

|ũx
∣

∣

x=0
| ≤ C

e−
β
ε

ε

(

e−
√

γ
ε
y + e−

√
γ
ε
(1−y)

)

and

|ũx
∣

∣

x=1
| ≤ C

(

e−
√

γ
ε
y + e−

√
γ
ε
(1−y)

)

.

Similarly, we use a maximum principle with comparison function

wc = e−
β
ε (1−x)
√
ε

(

ye−
√

γ
ε
y + (1− y)e−

√
γ
ε
(1−y) − e−

√
γ
ε
e
−
√

‖c‖∞
ε y

+e
−
√

‖c‖∞
ε (1−y)

1+e
−
√

‖c‖∞
ε

)

to obtain

|ũy
∣

∣

y∈{0,1}| ≤
C√
ε
e−

β
ε
(1−x).

Thus, we have

|Luc1x | = |cxuc1| ≤ CE
x
1

(

E
y
0 + E

y
1

)

, |uc1x
∣

∣

∂Ω
| ≤ C

ε
E
x
1

(

E
y
0 + E

y
1

)

and

|Luc1y | = |cyuc1| ≤ CE
x
1

(

E
y
0 + E

y
1

)

, |uc1y
∣

∣

∂Ω
| ≤ C√

ε
E
x
1

(

E
y
0 + E

y
1

)

.

Application of a maximum principle gives

|uc1x (x, y)| ≤ C
2− x

ε
e−

β
ε
(1−x)

(

e−
√

γ
ε
y + e−

√
γ
ε
(1−y)

)

and

|uc1y (x, y)| ≤ C
2− x√

ε
e−

β
ε
(1−x)

(

e−
√

γ
ε
y + e−

√
γ
ε
(1−y)

)

.

For the second order derivatives we use the splitting uc1 = ũ − û again. Thus, we
have

∆ũ = ∆uc1 +∆û = ε−1(βuc1x + cuc1) + ûxx + ûyy.

We use the variable transform x̃ := x, ỹ :=
√
εy, Ω̃ := (0, 1) × (0,

√
ε) and get

‖ũx̃x̃ + ũỹỹ‖2,Ω̃ ≤ βε−
3
4 ‖uc1x ‖2,Ω + ‖c‖∞ε−

3
4 ‖uc1‖2,Ω + ε

1
4 ‖ûxx‖2,Ω + ε−

3
4‖ûyy‖2,Ω

≤ Cε−1.

Thus, the usual norm estimates for the second order derivatives of the solution to the
Laplace equation (cf. [LU68]) provides

‖ũxx‖2,Ω = ε−
1
4 ‖ũx̃x̃‖2,Ω̃ ≤ Cε−

5
4 , ‖ũxy‖2,Ω = ε

1
4 ‖ũx̃ỹ‖2,Ω̃ ≤ Cε−

3
4 and

‖ũyy‖2,Ω = ε
3
4 ‖ũỹỹ‖2,Ω̃ ≤ Cε−

1
4 .

A triangle inequality completes the proof. �
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3.2. Error Estimates for Bilinear FEM on a Shishkin Mesh

We use a Shishkin mesh of the form depicted in Figure 3.6, where we split the domain in
a course part and several finer subparts to compensate the boundary layers. In every part
of the splitting we refine with an equidistant tensor grid using N/2 and N/3 intervals in
x- and y-direction, respectively.

Ω0

Ωy

Ωy

Ωx

Ωc

Ωc
0

σy := 2
√

ε
γ lnN

1− σy

1

0 1− σx 1

σx := 2 εβ lnN

Figure 3.6.: Used Shishkin Mesh

We denote the mesh width in the coarse subdomain by H ∈ O(N−1). The fine mesh
width in x-, y-direction in Ωx, Ωy we denote by hx ∈ O(εN−1 lnN), hy ∈ O(

√
εN−1 lnN),

respectively. Additionall, we define Ωxc := Ωx ∪ Ωc, Ω0y := Ω0 ∪ Ωy, Ωyc := Ωy ∪ Ωc
and Ω0x := Ω0 ∪ Ωx, the subdomains with equal subdivision in either x- or y-direction.
Furthermore, we define Ω0xy := Ω \ Ωc, the subdomain without the corner sections.

Theorem 3.24

Provided the solution u of problem (3.1) has a decomposition as in Theorem 3.1 and
Conjecture 3.3 we have

‖u− uI‖ε ≤ CN−1 ln(N). (3.49)

Proof

By standard anisotropic interpolation results (cf. [Ape99]) we can estimate

‖uS − uS
I‖2 ≤ C̃H|uS |1,2 ≤ CN−1,

‖ux1 − ux1
I‖2,Ωxc ≤ C̃

(

hx‖ux1x ‖2,Ωxc +H‖ux1y ‖2,Ωxc
)

≤ Cε
1
2N−1 ln(N),

‖uy − uyI‖2,Ωyc ≤ C̃
(

H2‖uyxx‖2,Ωyc +Hhy‖uyxy‖2,Ωyc + h2y‖uyyy‖2,Ωyc
)

≤ Cε
1
4
(

|ln(ε)|N−2 ln(N) +N−2 ln2(N)
)

,

‖uc1 − uc1
I‖2,Ωc ≤ C̃

(

h2x‖uc1xx‖2,Ωc + hxhy‖uc1xy‖2,Ωc + h2y‖uc1yy‖2,Ωc
)

≤ Cε
3
4N−2 ln2(N),

|uS − uS
I |1,2 ≤ C̃H|uS |2,2 ≤ Cε−

1
2N−1,

|ux1 − ux1
I |1,2,Ωxc ≤ C̃

(

hx‖ux1xx‖2,Ωxc +H‖ux1xy‖2,Ωxc +H‖ux1yy‖2,Ωxc
)

≤ Cε−
1
2N−1 ln(N),
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|uy − uyI |1,2,Ωyc ≤ C̃
(

H‖uyxx‖2,Ωyc +H‖uyxy‖2,Ωyc + hy‖uyyy‖2,Ωyc
)

≤ Cε−
1
4 |ln(ε)|N−1 ln(N),

|uc1 − uc1
I |1,2,Ωc ≤ C̃

(

hx‖uc1xx‖2,Ωc + hy‖uc1xy‖2,Ωc + hy‖uc1yy‖2,Ωc
)

≤ Cε−
1
4N−1 ln(N).

Using the decay of the boundary terms and inverse estimates we furthermore derive

‖ux1 − ux1
I‖2,Ω0y ≤ 2‖ux1‖∞,Ω0y ≤ CN−2,

|ux1 − ux1
I |1,2,Ω0y ≤ |ux1|1,2,Ω0y + |ux1I |1,2,Ω0y

≤ ‖ux1x ‖2,Ω0y + ‖ux1y ‖2,Ω0y + 2h−1
y ‖ux1‖∞,Ω0y ≤ Cε−

1
2N−1,

‖uy − uyI‖2,Ω0x ≤ 2‖uy‖∞,Ω0x ≤ CN−2,

‖(uy − uyI)x‖2,Ω0x ≤ C̃H|uyx|1,2,Ω0x ≤ Cε−
1
4 |ln(ε)|N−1,

‖(uy − uyI)y‖2,Ω0x ≤ ‖uyy‖2,Ω0x + ‖uyyI‖2,Ω0x

≤ ‖uyy‖2,Ω0x + 2H−1‖uy‖∞,Ω0x ≤ Cε−
1
4N−2,

‖uc1 − uc1
I‖2,Ω0xy ≤ 2‖uc1‖∞,Ω0xy ≤ CN−2,

‖(uc1 − uc1
I
)y‖2,Ω0xy ≤ ‖uc1y ‖2,Ω0xy + 2h−1

y ‖uc1‖∞,Ω0xy ≤ Cε−
1
2N−1,

‖(uc1 − uc1
I
)x‖2,Ω0y ≤ ‖uc1x ‖2,Ω0y + 2H−1‖uc1‖∞,Ω0y ≤ Cε−

1
2N−1,

‖(uc1 − uc1
I
)x‖2,Ωx ≤ ‖uc1x ‖2,Ωx + ‖uc1Ix‖2,Ωx

≤ ‖uc1x ‖2,Ωx + 2
√

λ(Ωx)h
−1
x ‖uc1‖∞,Ωx ≤ Cε−

1
2N−1.

All this estimates are attained using well-known techniques used e.g. in [Lin10]. �

Theorem 3.25

Assume the solution u of problem (3.1) has a decomposition as in Theorem 3.1 and
Conjecture 3.3. Then the solution uN of the first order FEM discretization of (3.1)
on a Shishkin mesh according to Figure 3.6 has a numerical error satisfying

‖uN − uI‖ε ≤ CN−1
(

ln(N) + |ln(ε)|
)

. (3.50)

Proof

By the V-ellipticity of a(·, ·) and the Galerkin orthogonality we have

C̃‖uI − uN‖2ε ≤ a(uI − uN , uI − uN ) = a(uI − u, uI − uN )

≤ C‖uI − u‖ε‖uI − uN‖ε + β
∣

∣

〈

(uI − u)x, u
I − uN

〉∣

∣ .

To estimate the remaining integral we use integration by parts in x-direction
〈

(uI − u)x, u
I − uN

〉

(0,1)×Y = −
〈

uI − u, (uI − uN )x
〉

(0,1)×Y

for subdomains Y ⊆ (0, 1). Now we split uI − u according to our solution decomposi-
tion and can estimate for the smooth part

∣

∣

∣

〈

(uS
I − uS)x, u

I − uN
〉∣

∣

∣ ≤ ‖uSx
I − uSx‖2‖uI − uN‖2

≤ C̃H
(

‖uSxx‖2 + ‖uSxy‖2
)

‖uI − uN‖2
≤ CN−1|ln(ε)|‖uI − uN‖ε.
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For the boundary layer term ux1 we get by an inverse inequality
∣

∣

∣

〈

(ux1
I − ux1)x, u

I − uN
〉∣

∣

∣

=

∣

∣

∣

∣

〈

ux1
I − ux1, (uI − uN )x

〉

Ωxc
+
〈

ux1
I − ux1, (uI − uN )x

〉

Ω0y

∣

∣

∣

∣

≤ C̃
(

hx|ux1x |2,Ωxc +H|ux1y |2,Ωxc
) 1√

ε
‖uI − uN‖ε,Ωxc

+ 2‖ux1‖∞,Ω0y

1

H
‖uI − uN‖2,Ω0y

≤ CN−1 ln(N)‖uI − uN‖ε.

For the characteristic layer term uy we can estimate similarly
∣

∣

∣

〈

(uyI − uy)x, u
I − uN

〉∣

∣

∣

≤
∣

∣

∣

∣

〈

(uyI − uy)x, u
I − uN

〉

Ωyc

∣

∣

∣

∣

+

∣

∣

∣

∣

〈

uyI − uy, (uI − uN )x

〉

Ω0x

∣

∣

∣

∣

≤ ‖(uyI − uy)x‖2,Ωyc‖uI − uN‖2,Ωyc

+

∣

∣

∣

∣

〈

uyI − uy, (uI − uN )x

〉

Ω0

∣

∣

∣

∣

+

∣

∣

∣

∣

〈

uyI − uy, (uI − uN )x

〉

Ωx

∣

∣

∣

∣

≤ C̃
(

H|uyxx|2,Ωyc + hy|uyxy|2,Ωyc
)

‖uI − uN‖2,Ωyc
+ 2‖uy‖∞,Ω0

1

H
‖uI − uN‖2,Ω0 + 2

√

λ(Ωx)‖uy‖∞,Ωx

1√
ε
‖uI − uN‖ε,Ω0

≤ CN−1 ln(N)‖uI − uN‖ε.

Finally, we estimate
∣

∣

∣

〈

(uc1
I − uc1)x, u

I − uN
〉∣

∣

∣

≤
∣

∣

∣

∣

〈

uc1
I − uc1, (uI − uN )x

〉

Ω0y

∣

∣

∣

∣

+

∣

∣

∣

∣

〈

uc1
I − uc1, (uI − uN )x

〉

Ωxc

∣

∣

∣

∣

≤ 2‖uc1‖∞,Ω0y

1

H
‖uI − uN‖2,Ω0y + ‖uc1I − uc1‖2,Ωxc

1√
ε
‖uI − uN‖ε,Ωxc

≤ 2‖uc1‖∞,Ω0y

1

H
‖uI − uN‖2,Ω0y

+ C̃
(

√

λ(Ωx)‖uc1‖∞,Ωx + hx|uc1x |2,Ωc + hy|uc1y |2,Ωc
) 1√

ε
‖uI − uN‖ε,Ωxc

≤ CN−1 ln(N)‖uI − uN‖ε.

Combining these results we have

‖uI − uN‖2ε ≤ C
(

‖uI − u‖ε +N−1 ln(N) +N−1|ln(ε)|
)

‖uI − uN‖ε
and the assertion follows by Theorem 3.24. �

3.3. Computational Results

In the following we solve the test problem

− ε∆u+ ux + u = f :=
∣

∣x− 1
2

∣

∣

∣

∣y − 1
3

∣

∣+
∣

∣sin
(

6xy − 3
4

)∣

∣ , u
∣

∣

∂Ω
= 0. (3.51)
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3.3. Computational Results

Obviously, the first order weak derivatives of f exist and are bounded. Nevertheless, they
have discontinuities along the curves x = 1

2 , y = 1
3 , xy = 1

8 and xy = 1
24 (4π + 3). Thus, f

has wedges in Ω with almost any direction, minded the symmetry of the problem in the
y-axis.

Unfortunately, we do not know an analytic solution of our test problem (3.51). To
handle this difficulty we consider a reference solution uR on a very fine mesh (N = 7200)
computed with our method to be almost the exact solution. All errors shown below are
calculated using this reference solution uR instead of the exact solution u.

A plot of uR for ε = 10−4 is given in Figure 3.7. Note that the layer regions are stretched
in the plot. We can see clearly the different boundary layers.
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Figure 3.7.: Plot of the reference solution uR for ε = 10−4

We discretize our test problem (3.51) with bilinear finite elements using a Shishkin mesh
as depicted in Figure 3.6 with N +1 intervals in x- and y-direction each. Thus, we have a
total of N2 degrees of freedom, the function values at the inner mesh points. The attained
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Figure 3.8.: Error of the bilinear FEM on a Shishkin mesh (cf. Figure 3.6)

convergence rates are shown in Figure 3.8.
These results confirm the assertion of an almost ε-independent almost first order con-

vergence from Theorem 3.25. In fact, we are not able to verify the factor |ln(ε)| in the
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3. Equation with Low Regularity in 2D

error. The attained rates rather suggest that this factor does not occur in practice but is
an oddity in the proofs presented here.
Moreover, we observe even an ε-independent almost second order superconvergence of

‖uN − uI‖ε, although we were not able to prove this. The convergence break-down one
may suspect at the end of the plot most likely results from the error ‖uR − u‖ε, since the
reference solution is not evaluated at its grid points to attain uRI on the considered mesh.
This improved convergence may result from the fact that the inhomogeneity f is a very
smooth function in the preponderant part of the domain.
Finally, we present the plots of the reference solution along the line x = 0.6 in Fig-

ure 3.9. Note that the inhomogeneity has wedges on this line at y0 = 5
24 ≈ 0.208 and
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Figure 3.9.: Reference solution uR plotted along the line x = 0.6

y1 =
1
3 ≈ 0.333. Since we only use bilinear elements to compute the reference solution we

use central differences to get an approximation DcuRy of the derivative uyy. As discussed

in Remark 3.2 we expect uyy to be of order ε−1/2. At least near the wedge that is parallel
to the x-axis at y1 we observe this behavior. In the vicinity of the almost parallel wedge
at y0 this is not the case. Although we have something that looks like a layer near y0, its
magnitude does not change when ε gets smaller.
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4. Optimal Control with Singularly

Perturbed Convection-Diffusion

Equations in 2D

In the following we want to analyze the optimal control problem

min
u,q∈L2

J(u, q) := min
u,q∈L2

(

1

2
‖u− ud‖22 +

µ

2
‖q‖22

)

(4.1a)

subject to the singularly perturbed convection-diffusion equation

Lu := −ε∆u+ βux + cu = f + q in Ω := (0, 1)2, u
∣

∣

∂Ω
= 0. (4.1b)

and the box constraints

q ∈ Qad :⇐⇒ −∞ ≤ qa ≤ q ≤ qb ≤ ∞ in Ω (4.1c)

for the control q.
As in Chapter 2 we introduce the adjoint state v and receive the equivalent optimality

system

Lu = f − µ−1Π[va,vb](v), (4.2a)

L∗v = u− ud, (4.2b)

with
va := −µqb and vb := −µqa.

We assume

ε ∈ (0, β] ∩ (0, 12 ], (4.3a)

β ≥ 0, (4.3b)

c ∈ C
2
(

R
2
)

, (4.3c)

c ≥ γ > 0, (4.3d)

µ >
1

γ2
> 0, (4.3e)

‖f‖1,∞ + ‖ud‖1,∞ ≤ C, (4.3f)

qa, qb ∈ R ∪ {−∞,∞}. (4.3g)

Without loss of generality we assume qa ≤ 0 ≤ qb, otherwise one can modify the optimality
system as we have done in (2.40).

Note that we require the function c to be defined and meet the requirements on R
2

because some terms of the solution decomposition we construct are defined on half planes
containing Ω. The prerequisite ε ≤ 1

2 is only for simplifying the notation for we can use
the fact |ln(ε)| ≥ |ln(12 )| ≥ 1

2 .
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4. Optimal Control in 2D

Remark 4.1

Note that the following proofs can also be applied to the differential equation system

L1u := −ε∆u+ βux + c1u = f1 − d1v in Ω, u = 0 on ∂Ω, (4.4a)

L2v := −ε∆v − βvx + c2v = f2 − d2u in Ω, v = 0 on ∂Ω (4.4b)

under the assumptions

ε ∈ (0, β] ∩ (0, 12 ],

ci ∈ C
2
(

R
2
)

,

ci ≥ γ > 0,

‖f i‖1,∞ ≤ C,

di ∈ C
1
0

(

B2(0, 0)
)

,

‖d1‖∞‖d2‖∞ < γ2,

for i ∈ {1, 2}.

4.1. Analytic Properties of the Solution

Theorem 4.2

The solution u, v of (4.2) can be decomposed as

u = uS + ux1 + ux0 + uy + uc1 + un + ur and (4.5a)

v = vS + vx0 + vx1 + vy + vc0 + vn + vr. (4.5b)

The smooth parts uS, vS satisfy

‖uS‖1,∞ + ‖vS‖1,∞ +
√
ε
(

‖uSxx‖∞ + ‖vSxx‖∞ + ‖uSyy‖∞ + ‖vSyy‖∞
)

≤ C, (4.5c)

‖uSxx‖2 + ‖vSxx‖2 + ‖uSxy‖∞ + ‖vSxy‖2 ≤ C|ln(ε)|. (4.5d)

The outflow layer parts ux1, vx0 meet

|∂kxux1(x, y)| ≤
C

εk
E
x
1(x), |ux1y (x, y)| ≤ C

(

E
x
1(x) +

√
εχ(1−σ∗,1]

)

, (4.5e)

‖ux1xy‖2 ≤
C|ln(ε)|√

ε
, |ux1yy(x, y)| ≤

C√
ε

(

E
x
1(x) + χ(1−σ∗,1]

)

, (4.5f)

εk|∂kxvx0(x, y)|+ |vx0y (x, y)|+
√
ε|vx0yy (x, y)| ≤ CE

x
0(x), ‖vx0xy‖2 ≤

C√
ε

(4.5g)

for k ∈ {0, 1, 2}, σ∗ := − ε
β ln(ε) and χI the characteristic function of I × R. The

inflow layer parts ux0, vx1 satisfy

|∂kxux0(x, y)| ≤ Cε
1
2
−k

E
x
0(x), |ux0y (x, y)| +

√
ε|ux0yy(x, y)| ≤ Cχ[0,σ∗), (4.5h)

|∂kxvx1(x, y)| ≤ Cε1−kEx1(x), |vx1y (x, y)|+
√
ε|vx1yy (x, y)| ≤ Cχ(1−σ∗,1], (4.5i)

‖ux0xy‖2 ≤
C|ln(ε)|√

ε
, ‖vx1xy‖2 ≤ C (4.5j)
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for k ∈ {0, 1, 2}. The characteristic layer parts uy, vy satisfy

|uy(x, y)|+ |uyx(x, y)|+
√
ε|uyy(x, y)|+ ε|uyyy(x, y)| ≤ C

(

E
y
0(y) + E

y
1(y)

)

, (4.5k)

|vy(x, y)|+ |vyx(x, y)|+
√
ε|vyy(x, y)|+ ε|vyyy(x, y)| ≤ C

(

E
y
0(y) + E

y
1(y)

)

. (4.5l)

The corner layer parts uc1, vc0 meet

|uc1(x, y)|+ ε|uc1x (x, y)|+
√
ε|uc1y (x, y)| ≤ CE

x
1(x)

(

E
y
0(y) + E

y
1(y)

)

, (4.5m)

|vc0(x, y)|+ ε|vc0x (x, y)| +
√
ε|vc0y (x, y)| ≤ CE

x
0(x)

(

E
y
0(y) + E

y
1(y)

)

, (4.5n)

‖uc1xx‖2,Ω + ‖vc0xx‖2,Ω ≤ Cε−
5
4 , ‖uc1xy‖2,Ω + ‖vc0xy‖2,Ω ≤ Cε−

3
4 and (4.5o)

‖uc1yy‖2,Ω + ‖vc0yy‖2,Ω ≤ Cε−
1
4 . (4.5p)

The small but non-smooth parts un, vn fulfill

‖un‖2 + ‖vn‖2 ≤ Cε, |un|1,2 ≤ C
√
ε|ln(ε)|, |vn|1,2 ≤ C

√
ε and (4.5q)

|un|2,2 + |vn|2,2 ≤
C√
ε

(4.5r)

and the remaining parts ur, vr that contain some characteristic layer components and
corner layer components satisfy

|ur|+ |vr| ≤ C
(

e−2
√

γ
ε
y + e−2

√
γ
ε
(1−y)

)

. (4.5s)

Proof

Note that some of the different parts of the decomposition itself are a sum of terms
that arise from different subproblems. In this way we have

uS = uS,1, ux1 = ux1,1 + ux1,2, un = un,2 + un,3,

vS = vS,1 + vS,2, vx0 = vx0,1 + vx0,2, vn = vn,3.

We start by defining a smooth approximation by

LuS,1 = −ε∆uS,1 + βuS,1x + cuS,1 = fu − µ−1P+
[va,vb]

vS,1 in H
+, (4.6a)

uS,1(0, ·) = 0, lim
‖(x,y)‖→∞

uS,1(x, y) = 0, (4.6b)

L∗vS,1 = −ε∆vS,1 − βvS,1x + cvS,1 = f v + P−uS,1 in H
−, (4.6c)

vS,1(1, ·) = 0, lim
‖(x,y)‖→∞

vS,1(x, y) = 0 (4.6d)

where we define H
+ := (0,∞) × R, H− := (−∞, 1) × R and

(

P+
[wa,wb]

v
)

(x, y) =

{

ωBΠ[wa,wb](v)(x, y), x ≥ 0,

0, x < 0,
(4.6e)

(

P−v
)

(x, y) =

{

ωBv(x, y), x ≤ 1,

0, x > 1.
(4.6f)
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4. Optimal Control in 2D

The inhomogeneities are defined as

fu := ωBC
H

+

Ω f and f v := −ωBCH
−

Ω ud

with a suitable cut-off function ωB ∈ C
∞(R2) that satisfies ωB

∣

∣

Ω
= 1, 0 ≤ ωB ≤ 1 and

supp(ωB) ⊆ B2(0, 0). Hence, we have

‖fu‖1,∞ ≤ C‖f‖1,∞, ‖f v‖1,∞ ≤ C‖ud‖1,∞ and

supp(fu) ∪ supp(f v) ⊆ B2(0, 0).

By the L
∞-stability of the system (4.6) we are able to prove W 1,∞-estimates. Using

the techniques from Chapter 3 we conceive the remaining bounds of uS,1 and vS,1

stated above. The details are presented in Lemma 4.10 and Corollary 4.11.
As next parts we define the layer corrections ux1,1, vx0,1 at the outflow boundary,

uy, vy at the characteristic boundaries and the corner layer corrections uc1, vc0 in
the same way we defined the corresponding terms in Chapter 3. Hence, we conceive
similar estimates applying Lemmata 3.21 and 3.22. Mind that the opposed convection
direction in the adjoint equation leads to a layer at x = 0. The previously presented
proofs can be applied using the variable transform x̃ = 1− x.

We proceed by defining a correction for the influence of ux1,1 at the right hand side
of the adjoint equation (4.2b) via

L∗ṽx1 = ux1,1, ṽx1(0, ·) = ṽx1(1, ·) = 0. (4.7)

In Lemma 4.12 we prove

|ṽx1|+ |ṽx1y |+
√
ε|ṽx1yy | ≤ Cε, ‖ṽx1xy‖2,Ω ≤ C and

|∂kx ṽx1| ≤ Cε1−k
(

ε+ E
x
0(x) + E

x
1(x)

)

, k ∈ {1, 2}.

Subsequently we construct in Lemma 4.13 a splitting ṽx1 = vx0,2+vS,2+vx1 satisfying
the bounds above.

Due to the projection, we are not able to apply Lemma 4.12 to a similar correction
for the term vx0,1 defined by

Lũx0 = −µ−1Π[vSa ,v
S
b
](v

x0,1), ũx0(0, ·) = ũx0(1, ·) = 0 (4.8)

where vSa := va−Π[va,vb](v
S,1) and vSb := vb−Π[va,vb](v

S,1). However, using the Green’s
function representation formula (3.29) we are able to derive the weaker estimates

|ũx0| ≤ Cε, |ũx0y | ≤ Cmin
{

1,
√

ε
x

}

|ũx0yy | ≤
C√
ε
, ‖ũx0xy‖2,Ω ≤ Cε−

3
4 and

|∂kx ũx0| ≤ Cε
1
2
−k(ε+ E

x
0(x) + E

x
1(x)

)

, k ∈ {1, 2},

in Lemma 4.15. In the follow-up we construct a splitting ũx0 = ux0 + un,2 + ux1,2

satisfying the bounds above.
The needed correction for the influence of ũx0 and ṽx1 on the right hand side of the

optimality system we define by

Lun,3 = −µ−1Π[vx0a ,vx0b ](ṽ
x1 + vn,3), un,3

∣

∣

∂Ω
= 0, (4.9a)

L∗vn,3 = ũx0 + un,3, vn,3
∣

∣

∂Ω
= 0 (4.9b)
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with vx0a := va−Π[va,vb](v
S,1−vx0,1) and vx0b := vb−Π[va,vb](v

S,1−vx0,1). Obviously, we
have a right hand side of this system of order ε. Thus, ‖un,3‖2 + ‖vn,3‖2 ≤ Cε follows
and the simple estimates for singularly perturbed problems (cf. [RST08, LU68]) give

‖un,3‖ε + ‖vn,3‖ε ≤ Cε and |un,3|2,2 + |vn,3|2,2 ≤
C√
ε
.

It remains to construct corrections for the influence of uy, vy, uc1 and vc0 on the
right hand side of system (4.2). We may do so by

Lur = −µ−1P+
[vna ,v

n
b
](v

y + vc0 + vr), ur
∣

∣

∂Ω
= 0, (4.10a)

L∗vr = P−(uy + uc1 + ur), vr
∣

∣

∂Ω
= 0 (4.10b)

with vna := va − Π[va,vb](v
S,1 − vx0,1 − ṽx1 − vn) and vnb := vb + (vna − va). Note, we

define the remaining layer compensation as system of differential equations since we
do not have the property ‖L−1

E
y
0‖∞ ≤ Cεδ for some δ > 0, which we used for the

layer correction terms in x-direction. Unfortunately, we are not able to prove useful
bounds for this remaining terms or a splitting considering the corrections for (uy, vy)
and (uc1, vc0) separately. We only conceive the stated bound for ur and vr by some
maximum principle arguments in Lemma 4.17. �

In analogy to Conjecture 3.3 and Lemma 3.5 it is reasonable to assume similar properties
for the second order derivatives of the characteristic layer parts:

Conjecture 4.3

We assume we have

‖uy,1xx ‖2,Ω + ‖vy,1xx ‖2,Ω ≤ C|ln(ε)|ε 1
4 and (4.11a)

‖uy,1xy ‖2,Ω + ‖vy,1xy ‖2,Ω ≤ C|ln(ε)|ε− 1
4 . (4.11b)

Subsequently, we discuss some problems concerning the estimates we attained in Theo-
rem 4.2.

Remark 4.4

The estimates for ũx0 may not be sharp, but the definition we used here introduces the
layer ũx0 that is slightly stronger than ṽx1. This is due to the fact that ∂yΠ(v

x0,1) may
not be exponentially small away from x = 0. Possibly, the definition of the correction
is not adequate and could be improved.

Remark 4.5

The estimates we have for ux0 do not suffice to get first order convergence of the

interpolant ux0
I
on a one-sided Shishkin mesh refined only at x = 1. Instead we have

to refine also at x = 0. In the latter case we can adapt the estimates we used in
Theorem 3.24 easily to the terms ux0, ux1, vx0 and vx1.

Surprisingly, this situation improves in the case of system (4.4) where only the right
hand side is not smooth. In this case we can apply Lemmata 4.12 and 4.13 to the
correction term ũx0 and attain similar bounds as for ṽx1 = vx0 + vS,2 + vx1,2. Then it
suffices to refine at x = 1 for the discretization of u.

Similarly, we can derive improved bounds for ũx0 when we assume the bounds qa
and qb to be constant. In this case we know

|∂yΠ(vx0,1)| ≤ |vx0,1y |
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4. Optimal Control in 2D

and regain the exponential decay of the derivatives of the right hand side in the
definition (4.8) of ũx0.

Remark 4.6

There is very little about differential equation systems with parabolic layers in the
literature. Essentially we have [Sh00]. There one can find some results for a problem
similar to (4.4) on a stripe S := R× (0, 1). For the layer correction V1 of this system,
it is only shown

|∂kx∂lyV1| ≤ Cε−
l
2 ,

which would correspond to our expectations neglecting the exponential decline away
from the boundary. But instead of low regularity they used a smooth inhomogeneity
and a nonzero coefficient b1 for V1y in S, satisfying only b1

∣

∣

S
= 0.

Remark 4.7

The bounds we conceived for the strong layer part ux1 seem to be too weak to acquire
sharp interpolation error estimates similar to the results of Theorem 3.24. However,
we have

σ∗ = − ε

β
ln(ε) ≤ 2

ε

β
ln(N) = σx

for the mesh transition point σx defined in Section 3.2 for the most interesting case
N < ε−1. Therefore, we still have

‖ux1y ‖∞,Ω0y ≤ CN−2

on the coarse part Ω0y of the mesh in x-direction. In the second order y-derivative we
loose a logarithmic factor in the L

2-norm, receiving only

‖ux1yy‖2 ≤ C

√

|ln(ε)|
ε

.

This loss carries over to the interpolation and error estimates for this term.

Remark 4.8

The newly introduced part un poses no problem in the interpolation and error es-
timates. Recall that it is only necessary to estimate the convective term to attain
an estimate for the numerical error (cf. proof of Theorem 3.25). Straight forward
computations show

‖un − unI‖2,Ω ≤ C̃H‖un‖1,2,Ω ≤ C
√
εN−1,

|un − unI |1,2,Ω ≤ C̃H‖un‖2,2,Ω ≤ Cε−
1
2N−1,

∣

∣

∣

〈

(unI − un)x, u
I − uN

〉∣

∣

∣
=
∣

∣

∣

〈

unI − un, (uI − uN )x

〉∣

∣

∣

≤ ‖un − unI‖2
1√
ε
‖uI − uN‖ε ≤ CN−1‖uI − uN‖ε.

4.2. Details of the Estimates

We start by some preliminary considerations for the prolongations P+ and P−. We omit
the subscript of P+ in the case P+

[va,vb]
in the following.
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4.2. Details of the Estimates

Easily, we realize that for any lower and upper bound with wa ≤ 0 ≤ wb we have the
properties

|P+
[wa,wb]

(w)| ≤ |w| and |P−(w)| ≤ |w|. (4.12a)

We also have the bound

∣

∣∂ζP
±(w)(x, y)

∣

∣ ≤ |ω(x, y)|
(

‖wζ‖∞ + ‖waζ‖∞ + ‖wbζ‖∞
)

+ |ωζ(x, y)| ‖w‖∞ (4.12b)

for ζ ∈ {x, y} that can be derived from

∣

∣∂ζΠ[wa,wb](w)(x, y)
∣

∣ =











|wζ(x, y)|, wa(x, y) ≤ w(x, y) ≤ wb(x, y),

|waζ(x, y)|, w(x, y) < wa(x, y),

|wbζ(x, y)|, wb(x, a) < w(x, y)

≤ ‖wζ‖∞ + ‖waζ‖∞ + ‖wbζ‖∞. (4.13)

Now we examine the smooth parts uS,1 and vS,1 defined by system (4.6). Note that
we can apply the results from Chapter 3 to the first and second equation independently
provided we have sufficient information on the right hand side. For the adjoint equation
we only have to use the variable transformation x̃ = 1 − x and then it corresponds to a
differential equation with an operator of the form L on H

+. Hence, it suffices to combine
this estimates with the technique from [Lin07] to get estimates for the system:

Lemma 4.9

For the solution (uS,1, vS,1) of (4.6) we have

|uS,1|+ |vS,1| ≤ Ce−α̺. (4.14)

Proof

We apply Lemma 3.7 to each line of the system and receive

‖uS,1‖∞ ≤ 1

γ
‖fu − µ−1P+vs‖∞ ≤ C‖f‖∞ +

µ−1

γ
‖vS,1‖∞,

‖vS,1‖∞ ≤ 1

γ
‖f v + P−uS,1‖∞ ≤ C‖ud‖∞ +

1

γ
‖uS,1‖∞.

Thus, we have

Γ

(

‖uS,1‖∞
‖vS,1‖∞

)

≤ C

(

‖f‖∞
‖ud‖∞

)

with Γ :=

(

1 −µ−1/γ
−1/γ 1

)

. (4.15)

Obviously, we get

Γ−1 =
γ2

γ2 − µ−1

(

1 µ−1/γ
1/γ 1

)

.

Thus, Γ is inverse monotone (i.e. Γ−1 ≥ 0) for µ−1 < γ2 ⇔ µ > γ−2 (cf. (4.3e)) and
we conceive

‖uS,1‖∞ + ‖vS,1‖∞ ≤ C.

This and the fact supp(fu) ∪ supp(P+vS,1) ∪ supp(f v) ∪ supp(P−uS,1) ⊆ B2(0, 0)
enables us to apply Lemma 3.8 to each differential equation of (4.6) to conclude

|uS,1(x, y)|+ |vS,1(x, y)| ≤ Ce−α̺. �
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4. Optimal Control in 2D

Lemma 4.10

For the solution (uS,1, vS,1) of (4.6) we have

‖uS,1‖1,∞ + ‖vS,1‖1,∞ ≤ C. (4.16)

Proof

From Lemma 4.9 we have for the reordered differential equation system

L̂+uS,1 := −ε∆uS,1 + βuS,1x = fu − µ−1P+vS,1 − cuS,1 =: fu∗ in H, (4.17a)

uS,1(0, ·) = 0, lim
‖(x,y)‖→∞

uS,1(x, y) = 0, (4.17b)

L̂−vS,1 := −ε∆vS,1 − βvS,1x = f v + P−uS,1 − cvS,1 =: f v∗ in H̃, (4.17c)

vS,1(1, ·) = 0, lim
‖(x,y)‖→∞

vS,1(x, y) = 0 (4.17d)

the estimate
|fu∗|+ |f v∗| ≤ Ce−α̺.

By application of Lemma 3.10 we acquire

‖uS,1ζ ‖∞,(0,ε)×R ≤ ‖fu∗‖∞‖gζ(x, y; ·, ·)‖1 ≤ C,

|uS,1ζ (x, y)| ≤ C̃‖gζ(x, y; ·, ·)we(·, ·)‖1 ≤ C√
ε̺
,

‖vS,1ζ ‖∞,(0,ε)×R ≤ ‖f v∗‖∞‖gζ(x, y; ·, ·)‖1 ≤ C and

|vS,1ζ (x, y)| ≤ C̃‖gζ(x, y; ·, ·)we(·, ·)‖1 ≤ C√
ε̺

for ζ ∈ {x, y}.
Differentiating and reordering of (4.6) gives

L(uS,1ζ ) = fuζ − cζu
S,1 − µ−1∂ζP

+vS,1 =: fu,ζ in H
+, (4.18a)

uS,1ζ (0, ·) = νu
S,1ζ , lim

‖(x,y)‖→∞
uS,1ζ (x, y) = 0, (4.18b)

L∗(vS,1ζ ) = f vζ − cζv
S,1 + ∂ζP

−uS,1 =: f v,ζ in H
−, (4.18c)

vS,1ζ (1, ·) = νv
S,1ζ , lim

‖(x,y)‖→∞
vS,1ζ (x, y) = 0. (4.18d)

We use (4.12) to get the relations

‖fuζ − cζu
S,1 − µ−1∂ζP

+vS,1‖∞ ≤ ‖fuζ − cζu
S,1‖∞ + µ−1‖vS,1ζ ‖∞

+ Cµ−1
(

‖vS,1‖∞ + ‖qa‖1,∞ + ‖qb‖1,∞
)

and

‖f vζ − cζv
S,1 + ∂ζP

−uS,1‖∞ ≤ ‖f vζ − cζv
S,1‖∞ + C‖uS,1‖∞ + ‖uS,1ζ ‖∞

with ζ ∈ {x, y}. Using Lemma 3.7 we conceive

‖uS,1ζ ‖∞ ≤ ‖νuS,1ζ‖∞ +
1

γ
‖fuζ − cζu

S,1 − µ−1∂ζP
+vS,1‖∞ ≤ C +

1

γµ
‖vS,1ζ ‖∞,

‖vS,1ζ ‖∞ ≤ ‖νvS,1ζ‖∞ +
1

γ
‖f vζ − cζv

S,1 + ∂ζP
−uS,1‖∞ ≤ C +

1

γ
‖uS,1ζ ‖∞
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4.2. Details of the Estimates

which is equivalent to

Γ

(

‖uS,1ζ ‖∞
‖vS,1ζ ‖∞

)

≤ C

where Γ is the inverse monotone matrix defined in (4.15). Consequently, we have

‖uS,1ζ ‖∞ + ‖uS,1ζ ‖∞ ≤ C

for ζ ∈ {x, y}. �

Recalling the reordered system (4.18), we have established ‖fu,ζ‖∞ + ‖f v,ζ‖∞ ≤ C.
Hence, we can apply the techniques from Lemma 3.20 to each equation separately to
receive:

Corollary 4.11

The second order derivatives of the smooth components uS,1 and vS,1 satisfy

‖uS,1xx ‖∞,H+ + ‖uS,1yy ‖∞,H+ ≤ C√
ε
, ‖uS,1xy ‖∞,H+ + ‖uS,1xx ‖2,Ω ≤ C|ln(ε)|, (4.19a)

‖vS,1xx ‖∞,H− + ‖vS,1yy ‖∞,H− ≤ C√
ε
, ‖vS,1xy ‖∞,H− + ‖vS,1xx ‖2,Ω ≤ C|ln(ε)|. (4.19b)

Next we recall the definition (4.7) of the compensation for the contribution of ux1,1 at
the right hand side

L∗ṽx1 = ux1,1, ṽx1(0, ·) = ṽx1(1, ·) = 0.

Lemma 4.12

We have the estimates

|ṽx1|+ |ṽx1y |+
√
ε|ṽx1yy | ≤ Cε, ‖ṽx1xy‖2,Ω ≤ C and (4.20a)

|∂kx ṽx1| ≤ Cε1−k
(

ε+ E
x
0(x) + E

x
1(x)

)

, k ∈ {1, 2}. (4.20b)

Proof

For wc = 1 + e−
β
ε − E

x
0(x)− E

x
1(x) we have L̂−wc = 2β2

ε E
x
1(x) (cf. (4.17)) and

wcx =
β

ε

(

E
x
0(x)− E

x
1(x)

)

{

> 0, x ∈ [0, 12 ),

< 0, x ∈ (12 , 1].

In combination with wc(0, ·) = wc(1, ·) = 0 this leads to wc ≥ 0. Thus, using wc as a
comparison function to the (differentiated) equation (4.7) we conclude

|ṽx1| ≤ Cεwc, |ṽx1y | ≤ Cεwc and |ṽx1yy | ≤ C
√
εwc.

By applying the one-dimensional estimates of Lemma 3.17 to the reordered differ-
ential equation we get

|∂kx ṽx1| ≤ Cε1−k
(

ε+ E
x
0(x) + E

x
1(x)

)

for k ∈ {1, 2}.
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We consider the solution ṽx1 in the domain Ω = (0, 1)2. We can split it as ṽx1 = v̄+v̂
with

v̂(x, y) := ṽx1(x, 0)(1 − y) + ṽx1(x, 1)y.

Using the variable transform x̃ := x, ỹ :=
√
εy, Ω̃ := (0, 1) × (0,

√
ε) we get

‖v̄ỹỹ‖2,Ω̃ = ε−
3
4‖v̄yy‖2,Ω, ‖v̄x̃x̃‖2,Ω̃ = ε

1
4‖v̄xx‖2,Ω and v̄

∣

∣

∂Ω
= 0.

Thus, the estimates above and a usual norm estimate for the second order derivatives
of the solution to the Laplace equation (cf. [LU68]) give

‖v̄xy‖2,Ω = ε
1
4‖v̄x̃ỹ‖2,Ω̃ ≤ ε

1
4

(

‖v̄ỹỹ‖2,Ω̃ + ‖v̄x̃x̃‖2,Ω̃
)

≤ C.

A triangle inequality completes the proof. �

Now we construct a splitting of ṽx1 into three parts. Two of them can be added to
already existing terms and do not deteriorate the corresponding estimates significantly.

Lemma 4.13

We can split ṽx1 = vx0,2 + vS,2 + vx1 satisfying

|∂kxvx0,2| ≤ Cε1−kEx0(x), |vx0,2y |+
√
ε|vx0,2yy | ≤ CE

x
0(x), ‖vx0,2xy ‖2,Ω ≤ C, (4.21a)

‖vS,2‖1,∞ + ‖vS,2xx ‖∞ + ε‖vS,2xy ‖2,Ω +
√
ε‖vS,2yy ‖∞ ≤ Cε, (4.21b)

|∂kxvx1| ≤ Cε1−kEx1(x), |vx1y |+
√
ε|vx1yy | ≤ Cεχ[1−σ∗,1], ‖vx1xy‖2,Ω ≤ C (4.21c)

for k ∈ {0, 1, 2} and the characteristic function χ[1−σ∗,1](x, y) of the set [1−σ∗, 1]×R

with σ∗ := − ε
β ln(ε).

Proof

As was devised in [Lin00] we set σ∗ := − ε
β ln(ε) and define

vS,2 := C
(0,1)×R

(σ∗,1−σ∗)×R
ṽx1,

vx1 :=

{

0, x ≤ 1− σ∗,

ṽx1 − vS,2, x > 1− σ∗
and

vx0,2 :=

{

ṽx1 − vS,2, x < σ∗,

0, x ≥ σ∗.

Thus, we have

‖vS,2‖1,∞ + ‖vS,2xx ‖∞ + ε‖vS,2xy ‖2,Ω +
√
ε‖vS,2yy ‖∞ ≤ Cε.

Also, we get

|∂kxvx1| ≤ Cε1−kEx1(x), k ∈ {1, 2}, |vx1y |+
√
ε|vx1yy | ≤ Cε, ‖vx1xy‖2,Ω ≤ C

and via integrating vx1x (cf. [Lin00]) we conceive

|vx1| ≤ CεEx1(x).

Since we know vx1(x, y) = 0 for x < 1− σ∗ and have E
x
1(1− σ∗) = ε, we conclude

|vx1y |+
√
ε|vx1yy | ≤ CE

x
1(x).

Analogously, we deduce the bounds for vx0,2. �
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4.2. Details of the Estimates

Recall the definition (4.8)

Lũx0 = −µ−1Π[vSa ,v
S
b ]
(vx0,1), ũx0(0, ·) = ũx0(1, ·) = 0.

Note, we have vSa ≤ 0 ≤ vSb . To prove sufficient bounds for ũx0 we use some estimates for
the Green’s function:

Lemma 4.14

Using the weight function wEx0 (ξ, η) = E
x
0(ξ) we have for the approximation g̃ of the

Green’s function on the stripe S (cf. (3.29)) the estimate

‖g̃y(x, y; ·, ·)wEx0 (·, ·)‖1,(0,1)×R ≤ CE
x
0(x) (4.22a)

for x ∈ (0, ε). For larger x we have

‖g̃y(x, y; ·, ·)wEx0 (·, ·)‖1,(0,1)×R ≤ C

√

ε

x
. (4.22b)

Proof

By Corollary 3.12 it suffices to prove the desired bounds for |ψ|
r G

1.

In analogy to the proofs of Lemma 3.10, 3.11 and [FK12] we split the domain of
integration S ⊆ H

+ into subdomains Ω1, Ω2 (cf. Figure 3.3), but use a different
splitting angle.

More explicitly we define Ω1 :=
{

(ξ, η) ∈ R
2
∣

∣

∣
ϕ < max{ε, |ψ|8 }

}

. Via the transfor-

mation to polar coordinates (r, ϑ) and the relations (cf. Remark 3.9)

ϕ < ε+ |ψ|
8 ≤ ε+ r

8 and K1(s) ≤ Cs−1e−
s
2

we get

0 ≤ eβ
ϕ
ε eq

ϕ
εK1

(

q rε
)

≤ C̃
ε

qr
eq

3ϕ
ε
− qr

2ε ≤ C̃
ε

qr
eq(3+

3r
8ε

− r
2ε

) ≤ C
ε

r
e−

qr
8ε

and conclude

‖G1(x, y; ·, ·)wEx0 (·, ·)‖1,Ω1 ≤ e−β
x
ε

∫ ∞

0

∫ 2π

0

1

ε2
eβ

ϕ
ε eq

ϕ
εK1

(

q rε
)

r dϑ dr

≤ C̃e−β
x
ε

∫ ∞

0

∫ 2π

0

1

ε
e−

qr
8ε dϑ dr ≤ Ce−β

x
ε .

Since Ω2 = ∅ for x ≤ ε the first assertion of the Lemma is established.

Next, we analyze the integral on Ω2 :=
{

(ξ, η) ∈ R
2
∣

∣

∣
max{ε, |ψ|8 } ≤ ϕ < x

}

. We

estimate by using the relations

qr

ε
≥ qϕ

ε
≥ q ⇒ K1(s) ≤ Cs−

1
2 e−s,

ϕ ≤ r =
√

ϕ2 + ψ2 ≤
√
65ϕ,

0 > ϕ− r =
ϕ2 − r2

ϕ+ r







≤ −ψ2

dϕ ,

≥ −ψ2

ϕ ,
d := 1 +

√
65.
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Thus, we have

0 ≤ eq
ϕ
εK1

(

q rε
)

≤ C

√

ε

qr
eq

ϕ−r
ε ≤ C

√

ε

qϕ
e−q

ψ2

dεϕ .

This can be used to estimate

‖ |ψ|
r G

1(x, y; ·, ·)wEx0 (·, ·)‖1,Ω2 ≤ C̃e−β
x
ε

∫ x

ε

∫ ∞

0

ψ

ε3/2ϕ3/2
e
−q ψ

2

dεϕ e2q
ϕ
ε dψ dϕ

= C̃e−β
x
ε

∫ x

ε

d

2q
√
εϕ
e2q

ϕ
ε dϕ

= Ce−β
x
ε ı̂

[

erf
(

ı̂
√

β
)

− erf

(

ı̂

√

βx
ε

)]

.

Using the series expansion of the error function (cf. [AS84]) we conceive

ı̂

√
π

2

[

erf
(

ı̂
√

β
)

− erf

(

ı̂

√

βx
ε

)]

= ı̂

∞
∑

n=0

ı̂βn+
1
2

n!(2n+ 1)
− ı̂

∞
∑

n=0

ı̂
(

βx
ε

)n+ 1
2

n!(2n+ 1)

≤
√

ε

βx

∞
∑

n=0

(

βx
ε

)n+1

(n+ 1)!
≤
√

ε

βx
e
βx
ε .

Thus, we can conclude

‖ |ψ|
r G

1(x, y; ·, ·)wE
x
0 (·, ·)‖1,Ω2 ≤ C

√

ε

x

and the Lemma is proved. �

Lemma 4.15

We have the estimates

|ũx0| ≤ Cε, |ũx0y | ≤ Cmin
(

1,
√

ε
x

)

(4.23a)

|ũx0yy | ≤
C√
ε
, ‖ũx0xy‖2,Ω ≤ Cε−

3
4 and (4.23b)

|∂kx ũx0| ≤ Cε
1
2
−k
(

ε+
√
εEx0(x) + E

x
1(x)

)

, k ∈ {1, 2}. (4.23c)

Proof

As in the proof of Lemma 4.12 we use the comparison function wc = 1+e−
β
ε −E

x
0(x)−

E
x
1(x) with L̂

+wc = 2β2

ε E
x
0(x). Applying a maximum principle we get

|ũx0| ≤ Cεwc.

We proceed by considering the representation formula (3.29) for the reordered equa-
tion

L̂+ũx0 = −cũx0 − µ−1Π[vSa ,v
S
b
](v

x0,1), ũx0(0, ·) = ũx0(1, ·) = 0.

Applying Corollary 3.12 and Lemmata 3.13 and 4.14 we get

|ũx0y | ≤
{

CE
x
0 , x ≤ ε,

√

ε
x , x > ε.
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4.2. Details of the Estimates

Differentiation in y-direction leads to

L̂+ũx0y = −cyũx0 − cũx0y − µ−1∂yΠ[vSa ,v
S
b ]
(vx0,1), ūy(0, ·) = 0.

From the bound on the projection (4.13) we get |L̂+ũx0y | ≤ C. Hence, we can apply
Corollary 3.12 and Lemma 3.13 again to obtain

|ũx0yy | ≤
C√
ε
.

By applying the one-dimensional estimates of Lemma 3.17 to the reordered differ-
ential equation we get

|∂kx ũx0| ≤ Cε1−k
(√

ε+ E
x
0(x) +

1√
ε
E
x
1(x)

)

for k ∈ {1, 2}.
As a last step we consider the solution ũx0 in the domain Ω = (0, 1)2. We can split

it as ũx0 = ū+ û with

û(x, y) := ũx0(x, 0)(1 − y) + ũx0(x, 1)y.

Using the variable transform x̃ := x, ỹ := ε1/4y, Ω̃ := (0, 1) × (0, ε1/4) we get

‖ūỹỹ‖2,Ω̃ = ε−
3
8‖ūyy‖2,Ω, ‖ūx̃x̃‖2,Ω̃ = ε

1
8 ‖ūxx‖2,Ω and ū

∣

∣

∂Ω
= 0.

Thus, the estimates above and a usual norm estimate for the second order derivatives
of the solution to the Laplace equation (cf. [LU68]) give

‖ūxy‖2,Ω = ε
1
8‖ūx̃ỹ‖2,Ω̃ ≤ ε

1
8

(

‖ūỹỹ‖2,Ω̃ + ‖ūx̃x̃‖2,Ω̃
)

≤ Cε−
3
4 .

A triangle inequality completes the proof. �

As for ṽx1 we now construct a splitting of ũx0 into three parts. One of them can be added
to an already existing one without deteriorating the corresponding bounds decisively.

Lemma 4.16

We can split ũx0 = ux0 + un,2 + ux1,2 where the separate parts satisfy

|∂kxux0| ≤ Cε
1
2
−k

E
x
0(x), |ux0y |+

√
ε|ux0yy | ≤ Cχ(0,σ∗), (4.24a)

‖un,2‖2 ≤ Cε, |un,2|1,2 ≤ C
√
ε|ln(ε)|, |un,2|2,2 ≤

C√
ε
, (4.24b)

|∂kxux1,2| ≤ Cε
1
2
−k

E
x
1(x) and |ux1,2y |+ ε|ux1,2yy | ≤ C

√
εχ(1−σ∗,1) (4.24c)

where k ∈ {0, 1, 2} and χI(x, y) is the characteristic function of I × R. Furthermore,
we have

‖ux0xy‖2 + ‖ux1,2xy ‖2 ≤ C|ln(ε)|√
ε

. (4.24d)
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4. Optimal Control in 2D

Proof

We define the separate terms via

un,2 = C
(0,1)×R

(σ∗,1−σ∗)×R
ũx0,

ux0 :=

{

ũx0 − un,2, x < σ∗,

0, x ≥ σ∗,
and

ux1,2 :=

{

0, x ≤ 1− σ∗,

ũx0 − un,2, x > 1− σ∗

with σ∗ := − ε
β ln(ε). Hence, we receive

‖un,2‖2 ≤ Cε, |un,2|1,2 ≤ C
√
ε|ln(ε)| and ‖un,2xx ‖2 + ‖un,2yy ‖2 ≤

C√
ε
.

Furthermore, we can use the norm estimate for Laplace equation with ū = un,2− û in
Ω′ := (σ∗, 1− σ∗)× (0, 1) with

û(x, y) := un,2(x, 0)(1 − y) + un,2(x, 1)y

+
(

un,2(σ∗, y)− un,2(σ∗, 0)(1 − y)− un,2(σ∗, 1)y
)1− σ∗ − x

1− 2σ∗

+
(

un,2(1− σ∗, y)− un,2(1− σ∗, 0)(1 − y)− un,2(1− σ∗, 1)y
) x− σ∗

1− 2σ∗

and obtain

‖ūxy‖2,Ω′ ≤ C
(

‖un,2xx ‖2,Ω′ + ‖ûxx‖2,Ω′ + ‖un,2yy ‖2,Ω′ + ‖ûyy‖2,Ω′ + ‖ûxx‖2,Ω′

)

≤ C√
ε
.

A triangle inequality yields ‖un,2xy ‖2,Ω ≤ C̃‖un,2xy ‖2,Ω′ ≤ C√
ε
.

In analogy to the proof of Lemma 4.13 we get

|∂kxux0| ≤ Cε
1
2
−k

E
x
0(x), |ux0y | ≤ Cχ(0,σ∗), |ux0yy| ≤

C√
ε
χ(0,σ∗),

|∂kxux1,2| ≤ Cε
1
2
−k

E
x
1(x), |ux1,2y | ≤ C

√
εχ(1−σ∗,1) and |ux1,2yy | ≤ C√

ε
χ(1−σ∗ ,1)

for k ∈ {0, 1, 2}. Note that the L
2-norm of the y- and yy-derivative improves over

the L
∞-norm, by using the facts ux0(x, y) = 0 for x > σ∗ and ux1,2(x, y) = 0 for

x < 1− σ∗.
By definition we have ux0xy(x, y) = 0 for x ≥ σ∗. Thus, we only consider the domain

Ω̂ := (0, σ∗)× (0, 1) to acquire bounds for the mixed second order derivative. We split
ux0xy
∣

∣

Ω̂
= ũ+ û with

û(x, y) = (1− y)ux0(x, 0) + yux0(x, 1)

+
(

ux0(0, y) − (1− y)ux0(0, 0) − yux0(0, 1)
)e−

x
ε − e−

σ∗
ε

1− e−
σ∗
ε

.

86



4.2. Details of the Estimates

This construction provides

‖ũxx‖2,Ω̂ ≤ ‖ux0xx‖2,Ω̂ + ‖ûxx‖2,Ω̂ ≤ C

ε
,

‖ũyy‖2,Ω̂ ≤ ‖ux0yy‖2,Ω̂ + ‖ûyy‖2,Ω̂ ≤ C|ln(ε)|, and ũ
∣

∣

∂Ω̂
= 0.

Using the variable transform x̃ := x, ỹ :=
√
εy, Ω̃ := (0, σ∗)× (0,

√
ε) we get

‖ũỹỹ‖2,Ω̃ = ε−
3
4 ‖ũyy‖2,Ω̂, ‖ũx̃x̃‖2,Ω̃ = ε

1
4 ‖ũxx‖2,Ω̂.

Thus, the estimates above and a usual norm estimate for the second order derivatives
of the solution to the Laplace equation (cf. [LU68]) give

‖ũxy‖2,Ω = ‖ũxy‖2,Ω̂ = ε
1
4 ‖ũx̃ỹ‖2,Ω̃ ≤ ε

1
4

(

‖ũỹỹ‖2,Ω̃ + ‖ũx̃x̃‖2,Ω̃
)

≤ C|ln(ε)|√
ε

.

A triangle inequality completes the proof.
The mixed derivative of ux1,2 can be estimated analogously. �

As a last step we recall the definition of the remainder

Lur = −µ−1P+
[vna ,v

n
b
](v

y + vc0 + vr), ur
∣

∣

∂Ω
= 0,

L∗vr = P−(uy + uc1 + ur), vr
∣

∣

∂Ω
= 0

given in (4.10). So far it is an open problem to prove sufficient estimates for the remainder.
At least we have the estimate

Lemma 4.17

For µ > 4
γ2

we have

|ur|+ |vr| ≤ C
(

e−
√

γ
2ε
y + e−

√
γ
2ε

(1−y)
)

. (4.25)

Proof

Let us define

ω := e−
√

γ
2ε
y + e−

√
γ
2ε

(1−y), ‖f‖ω :=
∥

∥

∥

f
ω

∥

∥

∥

∞,Ω
.

A maximum principle yields

‖ur‖ω ≤ 2

γ
‖Lur‖ω ≤ C‖vy + vc0‖ω +

2

µγ
‖vr‖ω and

‖vr‖ω ≤ 2

γ
‖Lvr‖ω ≤ C‖uy + uc1‖ω +

2

γ
‖ur‖ω.

Hence, we have

Γ

(

‖ur‖ω
‖vr‖ω

)

≤ C

(

‖vy + vc0‖ω
‖uy + uc1‖ω

)

with Γ :=

(

1 −2/(µγ)
−2/γ 1

)

.

The condition assumed for µ assures the inverse monotonicity of Γ and we conclude

‖ur‖ω + ‖vr‖ω ≤ C. �
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4. Optimal Control in 2D

4.3. Computational Results

Although our analysis of the solution properties is not conclusive, we got some insights
in the solution structure. As stated before it is easy to adapt the convergence proofs of
Chapter 2 to the higher dimensional case, provided one has good estimates for the primal
and adjoint equation errors. At the moment we are not able to establish rigor proofs
of this convergence. In the following we illustrate the results and assumptions we have
derived in the previous section with some numerical computations.
We consider the example

min
u,q

(

1

2
‖u− ud‖22 +

3

20
‖q‖22

)

, qa ≤ q ≤ qb, (4.26a)

Lu := −ε∆u+ ux + 2u = f + q in Ω = (0, 1)2, u
∣

∣

∂Ω
= 0 (4.26b)

with

f = x3 − x− y2 + exy, (4.26c)

ud = cos
(

π(x− y2)
)

, (4.26d)

qa = −
(

2 + 3 cos(5y + 2
√
x) + 5 sin(10x) + 5x(1− x)

)

/10, (4.26e)

qb =
(

7− 4 sin(6x)
)

/10. (4.26f)

Note we have µ−1 = 10
3 ≤ 4 = γ2 and hence our previously presented theory applies. We

emphasize that our example only uses very regular data f , ud, qa and qb. The irregularities
involved are only induced by the projection Π[qa,qb](q). However, this problem is hard to
solve. Hence, we do not know an analytic solution. We circumvent the related difficulties
by using a reference solution uR, vR computed on a fine mesh (N = 3500). All errors
presented below are computed with respect to this reference solution instead of the exact
solution.
In Figure 4.1 we present a plot of the solution. For better visualization we stretched the

layer parts. The upper two images show the state uR and the adjoint vR. Clearly, we see
the strong layers. The third image depicts the optimal control qR. To get a better idea
where the control bounds are active, we changed the coloring in those regions to a blueish
shade. In the remaining domain, we applied a reddish shade.
In Chapter 2 we discussed several options of discretizing the optimal control problem.

There we noted that the results do not show big discrepancies of the various solutions. The
semi-discrete schemes were difficult to implement since integrals over nonsmooth functions
had to be evaluated. It is obvious that this difficulties increase in the higher-dimensional
case. Thus, in this chapter we only present results for the full-discrete scheme although
we have no convergence prove for the use of different meshes for u and v.
As we outlined in Remark 4.5, our analysis is not able to prove ε-independent conver-

gence if the mesh is not refined in the region of the weak layers. Thus, we start using the
mesh depicted in Figure 4.2. Recall that our incomplete estimates for the terms ur and vr

suggest the existence of characteristic layers of the form e−
√
γ/(2ε) y and e−

√
γ/(2ε) (1−y).

Therefore, we use, in contrast to Chapter 3, the mesh transition point σy = 2
√

2ε
γ lnN .

The numeric results are presented in Figure 4.3.
As motivated by our analysis and the results attained in Chapter 2, we observe almost

first order convergence. Even the logarithmic factor |ln(ε)| in our analysis seems to be an
artifact of the proofs. Moreover we even get almost second order super convergence.
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Figure 4.1.: Plot of the reference solution uR, vR and qR for ε = 10−4
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Figure 4.2.: Two-sided Shishkin mesh

Now we test our assumptions for the characteristic layers hidden in ur and vr. To

this end we use the mesh transition point σ̃y := 2
√

ε
γ lnN = σy/

√
2 instead of σy. If

the analysis is sharp the superconvergence observed in the first calculations should be

reduced this time (for we have only e−
√
γ/(2ε) σ̃y = N−

√
2). The results of this second

computation are given in Figure 4.4. As we can see, we attain an ε-independent second
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Figure 4.3.: Error of the bilinear FEM on a two-sided Shishkin mesh (cf. Figure 4.2)
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Figure 4.4.: Error of the bilinear FEM on a two-sided Shishkin mesh (cf. Figure 4.2) using

σ̃y = 2
√

ε
γ lnN instead of σy = 2

√

2ε
γ lnN

order superconvergence again. This indicates that the terms ur and vr admit a much
sharper bound. However, we also see that there is almost no difference in the errors
from the first and second computation. A direct comparison of the errors yields that the
computation using σ̃y is better by about 3%. Thus, an overestimate of the layer width
appears to be relatively harmless.

In Chapter 2 we also discussed the case of only refining the strong layer part. Although
our analysis is too weak to give satisfying results (cf. Remark 4.5) we present tests for this
case. We use one-sided Shishkin meshes as depicted in Figure 4.5 for the discretization.
The attained numerical errors are given in Figure 4.6.

Obviously, we attain an ε-independent almost first order convergence, thus our decom-
position of the solution and the corresponding bounds seem not to be sharp enough. In
contrast to the expectations based on the results of Chapter 2 it seems as if we had second
order superconvergence. But at the lower end of the plot for ε = 10−4 we observe some
convergence break-down. To investigate if this is merely a numerical error in context of
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Figure 4.6.: Error of the bilinear FEM on one-sided Shishkin meshes (cf. Figure 4.5)

using a reference solution and not the exact solution for computing the errors we present
additional results in Figure 4.7.

The situation is not as obvious as in Chapter 2, but we see a range where the convergence
of the numerical solution uN measured in the L

2-norm is diminished. This range starts
when the error is in the order of magnitude of ε.
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Figure 4.7.: Error of the bilinear FEM on one-sided Shishkin meshes (cf. Figure 4.5)
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Conclusions and Outlook

Recalling the central results of Theorem 2.3, Theorem 3.1 and Theorem 4.2 we have seen,
that the solutions of optimal control problems with singularly perturbed differential equa-
tions as side constraints have a special structure. They exhibit not only an outflow bound-
ary layer and characteristic layers as one would expect knowing the results for singularly
perturbed differential equations but also a weak boundary layer at the inflow boundary.
Furthermore, we learned that the solutions lose regularity away from the boundary layers,
especially the derivative orthogonal to the convection direction. This is induced by the
projection to the admissible set.

Of course, there are open problems. For example, we have no sharp bounds for the
characteristic layer terms – neither for a single singularly perturbed differential equation
with low regularity inhomogeneity nor for the optimal control problem. Further research
is needed to get rigor bounds for these terms.

Nevertheless, we constructed adapted algorithms that show an ε-independent conver-
gence rate for the considered problems. These algorithms have a very simple structure,
i.e. we only adapted the mesh according to ideas devised by Shishkin. In further investiga-
tions one should use the information we attained on the solution to construct even better
algorithms. Especially some stabilized methods could be considered.

Because the solution of the optimal control problem with box constraints for the control
is not very regular, it is not easy to construct higher order solving methods. In this
context it may be helpful to get more information on the behavior of the solution near the
boundaries of the active set. Such additional estimates could be useful for the construction
of adapted meshes near this boundary.
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A. Appendix

A.1. Integrals

In the following we derive for some of the more complex integrands the indefinite integrals.
Via substitution we derive

∫

e−A
√
B+x dx =

∫

2ξe−Aξ dξ = − 2

A2
e−A

√
B+x

(

A
√
B + x+ 1

)

,

∫

e−Ax
2
dx =

∫

1√
A
e−ξ

2
dξ =

√
π

2
√
A

erf
(√

Ax
)

,

∫

xe−Ax
2
dx =

∫

1

2
e−Aξ dξ = − 1

2A
e−Ax

2
,

∫

1√
x
eAx dx = −

∫

2ı̂√
A
e−ξ

2
dξ = −ı̂

√

π

A
erf
(

ı̂
√
Ax
)

,

∫

e−Ax
2+Bx dx =

∫

e
B2

4A

√
A
e−ξ

2
dξ =

√
πe

B2

4A

2
√
A

erf

(√
Ax− B

2
√
A

)

,

∫

xe−Ax
2+Bx dx =

∫

− 1

2A
eξ dξ +

B

2A

∫

e−Ax
2+Bx dx

= − 1

2A
e−Ax

2+Bx +

√
πBe

B2

4A

4A
3
2

erf

(√
Ax− B

2
√
A

)

,

∫

− ln(A− x)

x
dx = −

∫

ln(A) + ln(1− ξ)

ξ
dξ = − ln(A) ln(ξ) +

∫

ln(η)

1− η
dη

= − ln(A) ln
( x

A

)

+ dilog
(

1− x

A

)

where ı̂ denotes the imaginary unit and A and B are positive real constants and dilog
denotes the dilogarithm (cf. [AS84]) defined by

dilog(x) = −
∫ x

1

ln(t)

t− 1
dt.

Using these integrals and integration by parts we obtain
∫

x2e−Ax
2
dx = − x

2A
e−Ax

2
+

∫

1

2A
e−Ax

2
dx = − x

2A
e−Ax

2
+

√
π

4A
3
2

erf
(√

Ax
)

,

∫

x2e−Ax
2+Bx dx =

∫
(

ξ2

A
+

Bξ

A3/2
+

B2

4A2

)

e
B2

4A

√
A
e−ξ

2
dξ

= −
(

x

2A
+

B

4A2

)

e−Ax
2+Bx +

√
πe

B2

4A

8A5/2
(2A+B2) erf

(√
Ax− B

2
√
A

)

.

Next, we recall the definition of the exponential integral (cf. [AS84])

Ei(x) = —

∫ x

−∞

et

t
dt
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where –
∫

denotes the Cauchy principal value of the integral. We derive

∫ b

a

eAx

x
dx = —

∫ Ab

−∞

eξ

ξ
dξ − —

∫ Aa

−∞

eξ

ξ
dξ =

[

Ei(Ax)
]b

x=a

where we assumed A,B > 0, b > a > 0.

Last but not least, we have

Lemma A.1

We have

∫ s

0
− ln(ξ)eAξ dξ =

1

A

(

Ei(As)− γe − ln(A)− eAs ln(s)
)

=: F (s) (A.1)

where γe ≈ 0.58 denotes Euler’s constant.

Proof

First we note

F ′(s) =
1

A

(

Ei′(As)A−AeAs ln(s)− eAs

s

)

=
1

A

(

eAs

s
−AeAs ln(s)− eAs

s

)

= −eAs ln(s).

Also we have by the series expansion of Ei the relation

A lim
sց0

F (s) = lim
sց0

(

γe + ln(As) +
∞
∑

n=1

Ansn

nn!
− γe − ln(A)− eAs ln(s)

)

= lim
sց0

(

ln(s)− eAs ln(s)
)

= lim
sց0

1
s

(1− eAs)−2AeAs
= lim

sց0

(1− eAs)2

AseAs

=
1

A
lim
sց0

−2(1− eAs)AeAs

eAs +AseAs
= 0. �

A.2. Properties of Bessel Function

From [AS84] we know

Kν(s) =

∫ ∞

0
e−s cosh(t) cosh(νt) dt.

Since the integrand is positive we have Kν(s) > 0. Using cosh(x) ≥ 1 = cosh(0) for all
x ≥ 0 we can deduce

K0(s) =

∫ ∞

0
e−s cosh(t) dt ≤

∫ ∞

0
e−s cosh(t) cosh(t) dt = K1(s).

Also from [AS84] we know

√

π

2s
e−s

(

1− 1

8s

)

≤ K0(s) and K1(s) ≤
√

π

2s
e−s

(

1 +
3

8s

)
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for s > 0. Hence, we have

K1(s)

(

1− 1

2s

)

≤
√

π

2s
e−s

(

1− 1

8s
− 3

16s

)

≤
√

π

2s
e−s

(

1− 1

8s

)

≤ K0(s).

Thus, we can estimate for r :=
√

s2 + ψ2, q > 0 and ε > 0 as follows

∣

∣K0

(

q r

ε

)

− s
r
K1

(

q r

ε

)∣

∣ ≤
{

K0

(

q r

ε

)

− s
r
K1

(

q r

ε

)

≤
(

1− s
r

)

K1

(

q r

ε

)

s
r
K1

(

q r

ε

)

−K0

(

q r

ε

)

≤ ε
2qrK1

(

q r

ε

)

≤
(

ψ2

r(r+ s)
+

ε

2qr

)

K1

(

q r

ε

)

.

A.3. Jump detection for numerical integration

We consider the integral

I(a,b) :=

∫ b

a
f(x) dx

where f is piecewise smooth but has a finite number of jumps at unknown locations. As
a basic integration algorithm we use an adaptive Simpson rule to evaluate I up to a given
precision ε̄, where the adaptivity is guided by an h

2 -strategy (cf. [Her11]). Our goal is
to add an automatic detection of jumps of f , thus enabling us to integrate to a given
precision. Note that f is bounded in the bounded set (a, b) since it is piecewise smooth.

The main idea to handle a jump is to locate it in an sufficiently small interval (xl, xu) ⊆
(a, b) and then proceed using

I∗ :=
∫ xu

xl

f(x) dx ≈ (xu − xl)
f(xl) + f(xu)

2
=: I∗N ,

E∗ := |I∗ − I∗N | ≈ (xu − xl)|f(xu)− f(xl)| =: E∗N .

For a sufficiently small interval width h∗ := xu − xl the error E∗ will be small since f is
bounded. Obviously, the same is true for the estimate E∗N .

Next we consider the problem, how to detect a jump. For the adaptive Simpson rule we
have to evaluate f in the mesh points xi := a+ ih ∈ [a, b]. We want to use this function
values for the jump detection to reduce the overhead of our algorithm. We define

∆i := |f(xi)− f(xi+2)| and δi := |f(xi)− f(xi+1)|.

For a smooth integrand and small h it is reasonable to expect

∆i ≈ 2δi (A.2)

since we have ∆i = 2hf ′(ξ∆i) and δi = hf ′(ξδi) for ξ∆i ∈ (xi, xi+2) and ξδi ∈ (xi, xi+1)
and therefore ξ∆i ≈ ξδi. In contrast we would expect

∆i ≈ δi ≈ | lim
xցx∗

f(x)− lim
xրx∗

f(x)| (A.3)

in the vicinity of a jump at x∗ ∈ (xi, xi+1). Thus, the algorithm decides to expect a jump
if we have

∆i < e
ln 2+ln 1

2 δi =
√
2δi, (A.4)
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i.e. the quotient is more like 1 than 2.
In case this rule indicates a jump, we refine the corresponding interval and search again

for a jump until either the rule (A.4) does not apply anymore or the error estimator E∗N

has a sufficiently small value E∗N ≤ ε̄
3 . For the intervals (a, xl), (xu, b) we call recursively

the adaptive routine with the error bound ε̄
3 .

Note that the improvement to the pure h
2 -strategy comes from the fact that we allow a

much larger error to be accepted in the vicinity of the jump compared to the pure recursive
call of the adaptive Simpson rule (ε̄ ∈ O(h)).
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