
Algebraic decoder specification:

coupling formal-language theory

and statistical machine translation

Matthias Büchse

matthias@buech.se

January 2015

Dissertation zur Erlangung des akademischen Grades
Doktor rerum naturalium (Dr. rer. nat.)

vorgelegt an der Technischen Universität Dresden

Fakultät Informatik

eingereicht von Dipl.-Inf. Matthias Büchse

* 1983-08-12 in Köthen (Anhalt)

eingereicht am 2014-08-05

verteidigt am 2014-12-18

begutachtet durch Prof. Dr.-Ing. habil. Heiko Vogler

Technische Universität Dresden

Prof. Dr. rer. nat. Alexander Koller

Universität Potsdam

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technische Universität Dresden: Qucosa

https://core.ac.uk/display/236372097?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
matthias@buech.se

Abstract

The specification of a decoder, i.e., a program that translates sentences from one natural

language into another, is an intricate process, driven by the application and lacking

a canonical methodology. The practical nature of decoder development inhibits the

transfer of knowledge between theory and application, which is unfortunate because

many contemporary decoders are in fact related to formal-language theory. This thesis

proposes an algebraic framework where a decoder is specified by an expression built

from a fixed set of operations. As yet, this framework accommodates contemporary

syntax-based decoders, it spans two levels of abstraction, and, primarily, it encourages

mutual stimulation between the theory of weighted tree automata and the application.

ii

Contents

1 Introduction 1

1.1 Decoder specification . 3

1.2 Hierarchical phrases . 4

1.3 Explicit syntax . 9

1.4 The algebraic framework, preliminary version 12

1.5 Main contributions . 17

1.6 Related work and bibliographic remarks 21

2 Preliminaries 25

2.1 Mathematical foundations . 25

2.2 Trees . 29

2.3 Algebras and semirings . 32

2.4 Weighted tree automata . 36

3 Input product and output product of a weighted synchronous context-

free tree grammar and a weighted tree automaton 45

3.1 Introduction . 45

3.2 Weighted synchronous context-free tree grammars 47

3.3 Closure under input and output product 52

3.4 An Earley-like algorithm for the input product 61

3.5 Conclusion, discussion, and outlook 81

4 Generic binarization of weighted grammars 83

4.1 Introduction . 83

4.2 Interpreted regular tree grammars . 85

4.3 Binarization mappings . 91

4.4 Constructing a binarization mapping 96

4.5 Constructing a computable binarization mapping 105

4.6 Application to established formalisms 114

4.7 Conclusion, discussion, and outlook 126

iii

5 Determinizing weighted tree automata using factorizations 131

5.1 Introduction . 131

5.2 Preliminary notions and results . 134

5.3 Determinization of classical WTA . 143

5.4 Deciding the twins property . 151

5.5 The case of non-classical WTA . 161

5.6 Conclusion, discussion, and outlook 164

6 Conclusion 167

6.1 The algebraic framework, full version 167

6.2 Outlook . 173

Bibliography 183

Index 203

iv

List of Tables

1.1 Long-term objectives vs. achievements. 2

1.2 Computability of operations, with worst-case complexity. 15

3.1 Results towards closure under Hadamard/input/output product. 46

4.1 Results concerning rule-by-rule complete binarization mappings. 84

4.2 A run of Alg. 4.1. 109

4.3 Ranked alphabets and operations for our algebras. 117

4.4 Algebras for strings and hedges, given an alphabet Σ and a maximum

arity K ∈ N. 118

5.1 Results concerning determinization of WTA subclasses. 132

6.1 Computability of operations, continued from Tab. 1.2. 170

6.2 Computability of operations, continued from Tab. 1.2. 175

v

List of Figures

1.1 Decoder specifications on different levels of abstraction. 2

1.2 An SCFG for German-English SMT; the initial state is S. 5

1.3 Constituent trees. 9

1.4 Tree pairs for an STSG. 11

1.5 Operations of the algebraic framework. 13

1.6 Applying second-order substitution. 17

2.1 Visualization of the WTA of Ex. 2.4.1. 37

3.1 WSCFTG with initial state q1 (adapted from [98, Fig. 2.4]). 49

3.2 Center tree ξex, input tree s = h1(ξex), output tree t = h2(ξex). 49

3.3 WSCFTG G from Ex. 3.3.1 (adapted from [98, Ex. 2.2]). 52

3.4 (a) Shape of center trees of G, where k ∈ N and n1, . . . , nk ∈ N.

(b) Derived tree pair for k = 2, n1 = 2, and n2 = 1. 53

3.5 (a) WTA M from Ex. 3.3.1.

(b) Shape of trees with nonzero weight in JMK, where n ∈ N. 53

3.6 WSCFTG M ⊳G for Ex. 3.3.1. 54

3.7 Two base-item trees of Ex. 3.4.2, where the base items are visualized

as boxes. 62

3.8 Viewing the bullet as a node in a variant of the tree δ(α, β). 64

3.9 Root base item. 66

3.10 Deductive parsing schema for the input product. 69

3.11 Item generation on the transition ρ3 of Ex. 3.3.1, where θ1 = {y1 7→ 0}
and θ2 = {y1 7→ 0, x1 7→ (1, 1)}. 71

3.12 Construction for Lm. 3.4.9 (continued in Fig. 3.13). 74

3.13 Continuation of Fig. 3.12. 75

3.14 Construction for Lm. 3.4.10 (continued in Fig. 3.15). 78

3.15 Continuation of Fig. 3.14. 79

4.1 Overview of the concept IRTG. 86

4.2 Tree homomorphisms h1 and h2. 88

4.3 An IRTG of rank 3 encoding an SCFG. 91

vii

4.4 Center tree (innermost), semantic terms, derived objects (outermost). . 91

4.5 Binarization of the ternary rule in Fig. 4.3. 92

4.6 Outline of the binarization algorithm. 98

4.7 RCBM template. 106

4.8 A yXTT rule in the notation of [79]. 121

4.9 An IRTG rule encoding the rule in Fig. 4.8. 121

4.10 Binarization of the rule in Fig. 4.9. 121

4.11 yXTT rule, slightly adapted to enable binarization. 122

4.12 Rules of a yXTT extracted from Europarl (ext) vs. its binarization (bin). 124

4.13 Illustration of f ′. 125

4.14 A rule and its binarization in a binarization-friendly WSCFHG variant. . 129

4.15 Transitions of the FTA for correctly-typed terms. 129

5.1 “Infinite WTA” obtained via Borchardt’s method. 133

5.2 Bu-det WTA obtained via factorization. 133

5.3 Cutting out the slice starting at w1 and ending at w2. 140

5.4 Two cases in the proof of Lm. 5.2.15. 143

5.5 Moving from parallel execution of M (left-hand side) to the union

WTA M ∪ M̄ (right-hand side). 153

5.6 Finding w1 and w2; note that ht(ζ) > 2 · |Q|2. 160

5.7 Finding w3 and w4; note that ht(ζ) > 3 · |Q|2. 162

6.1 Graphical rendering of a decoder in Vanda Studio (taken from [23]). . . 181

viii

List of Algorithms

3.1 Product construction algorithm. 70

4.1 Algorithm for computing a variable inspection. 108

4.2 Binarization algorithm. 113

5.1 Decision algorithm. 156

5.2 Improved decision algorithm. 158

ix

1 Introduction

In statistical machine translation, a decoder is a mapping that is used to automatically

translate sentences from one natural language into another. It goes without saying that

such a mapping is typically very intricate. Therefore it is commonly specified on dif-

ferent levels of abstraction, which range from prose to equations to computer programs

with hundreds of thousands of lines (see Fig. 1.1). Decoder development is mainly

driven by the application, and the viability of a decoder has to be evaluated on real-

world data. As a result, advances are usually due to practitioners; ad-hoc methods

abound; and experience trumps codified knowledge, which presents a significant entry

threshold for novices. In the absence of a canonical methodology, the refinement pro-

cess, i.e., going from one level of abstraction to the next one, is particularly involved;

intermediate levels are routinely being neglected; and the relationship between speci-

fications on adjacent levels is informal at best. In the end, the intricate and practical

nature of decoder development inhibits the transfer of knowledge between theory and

application. This situation is unfortunate because many contemporary decoders are in

fact related to formal-language theory.

Any effort to provide a method to mitigate this situation should pursue the long-term

objectives shown in Tab. 1.1 (left column). This thesis seeks to take a first step towards

such a method, with a high priority on Objective (d). To this end, this thesis proposes an

algebraic framework where a decoder is specified by an expression built from a fixed

set of operations. In the present form, the framework achieves the objectives to the

degree shown in Tab. 1.1 (right column). These achievements rest on the three main

contributions of this thesis, which comprise

1. the input product and the output product of a weighted synchronous context-free

tree grammar and a weighted tree automaton (Ch. 3),

2. generic binarization of weighted grammars (Ch. 4), and

3. determinization of weighted tree automata using factorizations (Ch. 5).

We1 proceed as follows. In the subsequent sections, we first review current ap-

proaches to decoder specification. Second, we introduce a preliminary version of the

1Throughout this work, “we” refers to the group of people consisting of the author and the reader.

1

1 Introduction

idea

abstract

specification
effective

specification
efficient

specification
computer

program

formalizes

implements

approximates

implements

Figure 1.1: Decoder specifications on different levels of abstraction.

long-term objective:

any method should . . .

achievement:

the present framework . . .

(a) be versatile enough to accommodate

the state of the art

accommodates contemporary

syntax-based decoders

(b) facilitate the refinement process (the

cascade in Fig. 1.1)

permits refining each operation in

isolation; as yet it only treats the

“abstract” and the “effective” level

(c) include formal relationships between

adjacent levels of abstraction

guarantees equivalence between the

two levels

(d) encourage mutual stimulation

between theory and application

is an interface to theory involving

weighted tree automata and related

devices; it asks for both exploiting

and developing said theory

(e) be easy to learn and to maintain is difficult, because it incorporates

many advanced concepts

Table 1.1: Long-term objectives vs. achievements.

2

1.1 Decoder specification

proposed framework. Third, we review the three main contributions. We conclude this

chapter with a brief overview of related work. In Ch. 2, we recall basic notions from

formal-language theory and algebra, and we introduce the notation that we will use in

the remaining chapters. Chapters 3–5 are dedicated to the three main contributions of

this thesis. These chapters rely on Ch. 2, but are otherwise self-contained. Finally,

Ch. 6 concludes this thesis; in particular, we revisit the achievements from Tab. 1.1, we

consider the full version of the framework, and we discuss potential improvements of

the proposed framework as well as open problems.

1.1 Decoder specification

The aim of machine translation is to use computers to automatically translate texts

from one natural language to another, for example from French into English. Follow-

ing a tradition established in [21], we will use this language pair as a proxy for any

given language pair. In statistical machine translation (SMT), translation rules are in-

ferred automatically from a large body of existing translations, called a parallel corpus.

Parallel corpora are readily available for many language pairs; e.g., the proceedings of

the European parliament constitute several parallel corpora [109].

In the context of SMT, a decoder is a mapping

D : Ω→ EF ,

where Ω is a set called parameter space, E is the set of all English sentences, F is the

set of all French sentences, and EF denotes the set of all mappings from F to E. The

problem of computing D(ω)(f) for given ω and f is called decoding.

The process of devising a decoder is called modelling. In order to translate with

a decoder, one first needs to fix a “good” element ω of Ω, given a parallel corpus

c ∈ (E × F)∗. This process is called training. Some training methods are guided

by fundamental principles, others by heuristics and intuition. Ultimately, whether ω is

indeed good is up to empirical evaluation; for this, we apply D(ω) to previously unseen

sentences, and we evaluate the resulting translations, either manually or automatically

by comparing them with reference translations.

An introduction into SMT is given in [106, 122, 110, 173]; here we focus on how

to build a decoder. Ideally, we follow a “refinement cascade”, thereby specifying two

decoders D0 and D. This cascade consists of five specifications (cf. Fig. 1.1):

1. the idea, i.e., a description in prose based on examples;

2. the abstract specification, i.e., a mathematical description of a decoder D0 that is

not necessarily constructive;

3

1 Introduction

3. the effective specification, i.e., a constructive mathematical description of D0 that

is not concerned with time and space limitations;

4. the efficient specification, i.e., a mathematical description of a decoder D that is

efficient and approximates D0;

5. the computer program that implements D.

In reality, (3) is usually omitted, and (4) is often fragmentary and presented in an oper-

ational style. Then (5) becomes the definitive specification of D.

It is safe to say that (1) and (2) are well suited for a casual conversation and for

formal reasoning, respectively. Since the empirical evaluation is based on (5), the ques-

tion arises whether it permits any conclusions concerning the viability of (1) and (2);

otherwise the conversation and the reasoning could be considered futile. Fortunately,

for certain cases D0 and D coincide on real-world data [36]. In other cases, we assume

that the transition from D0 to D introduces more “unhappy accidents” than “happy ac-

cidents”, i.e., on average D0 is better than D. Again, in certain cases, this assumption

is backed by empirical evidence [39, Sec. 6.2] [164, Sec. 7].

1.2 Hierarchical phrases

Let us now illustrate the conventional specification of a decoder by means of a con-

temporary example, namely Hiero [38, 42, 39]. We begin with the underlying idea:

hierarchical phrases. In order to translate an input sentence such as

“die katze ließ er frei” (German for “he freed the cat”)

into English, we first segment it into phrases, and these phrases into subphrases, and so

on. If we indicate (sub)phrases by square brackets, then we may obtain

[[die katze] ließ [er] frei] ,

where the whole sentence is a phrase that contains two subphrases. Second, we translate

individual subphrases:

die katze the cat , er he , x1 ließ x2 frei x2 freed x1 . (1.1)

Finally, we produce an English translation by composing the English subphrases to

“he freed the cat” .

4

1.2 Hierarchical phrases

ρ1: S → α1(NP) α1 = 〈x1 ließ er frei, he freed x1〉

ρ2: S → α2(PPER) α2 = 〈die katze ließ x1 frei, x1 let the cat out〉

ρ3: S → α3(PPER,NP) α3 = 〈x1 ließ x2 frei, x1 freed x2〉

ρ4: S → α4(PPER,NP) α4 = 〈x2 ließ x1 frei, x1 freed x2〉

ρ5: PPER → α5 α5 = 〈er, he〉

ρ6: NP → α6 α6 = 〈die katze, the cat〉

Figure 1.2: An SCFG for German-English SMT; the initial state is S.

We will see that the segmentation into subphrases as well as their translation can be

captured by a finite set of rules that resemble (1.1).

It is possible that other segmentations and other translations are also valid, such as

[die katze ließ [er] frei] and die katze ließ x1 frei x1 let the cat out ,

respectively. In this example, we obtain a different translation, namely

“he let the cat out” ,

but this need not be the case. At any rate, we want to output a single translation. There-

fore we assign a real number, called score, to each way of segmenting and translating.

Then we can either choose the way with the highest score and output the corresponding

translation; or we can aggregate the scores of all ways that lead to the same translation

and output the translation with highest aggregate score.

This concludes our account of the idea behind Hiero, and we proceed to the abstract

specification. For this, we first formalize the aforementioned rules by means of syn-

chronous context-free grammars (SCFGs). This formalism first appeared in [119] by

the name of syntax-directed transduction, and its viability for SMT was first shown via

Hiero.

Let Σ be an alphabet. An SCFG G over Σ is a triple (Q,R, q0) where Q is a finite

set (of states), q0 ∈ Q is called initial state, and R is a finite set of rules of the form

q → 〈w1, w2〉(q1, . . . , qk) ,

where q, q1, . . . , qk ∈ Q and wi is a string over Σ and the variables x1, . . . , xk such

that xj occurs exactly once for every j ∈ {1, . . . , k}. We call k the rank of the

rule. For our example, we might use the SCFG G shown in Fig. 1.2, where Σ =
{ließ, er, frei, he, freed, . . . }.

Technically, we do not distinguish between Σ∗, E, and F ; the latter two are merely

more mnemonic. An SCFGG over Σ represents a set of pairs of strings in Σ∗ by means

5

1 Introduction

of two concepts: abstract syntax trees (ASTs) and center trees. Intuitively, an AST

encodes a derivation of the grammar, and a center tree encodes the information about

the derived string pair. The corresponding French and English strings are extracted

from a center tree via mappings h1 and h2, respectively.

Let us now make these concepts more precise. For this, let Γ be an alphabet. We

denote the set of all trees over Γ by TΓ; it is the smallest set T ⊆ (Γ∪{(,)}∪{, })∗ such

that γ(t1, . . . , tk) ∈ T for every k ∈ N, γ ∈ Γ, and t1, . . . , tk ∈ T . For every state q
we define the set Dq(G) of q-ASTs of G as follows. The family (Dq(G) | q ∈ Q) is the

smallest family (Dq | q ∈ Q) with Dq = {ρ(d1, . . . , dk) | ρ ∈ R, ∃q1, . . . , qk, α : ρ =
(q → α(q1, . . . , qk)), dj ∈ Dqj}. Let Γ be the set of all 〈w1, w2〉 that occur in R,

and let πΓ : TR → TΓ be the mapping that replaces each label q → α(q1, . . . , qk) by

α. Then a center tree is a tree over Γ that is obtained from an element of Dq0(G) by

applying πΓ. In our example, ρ4(ρ5, ρ6) is an S-AST and α4(α5, α6) is a center tree.

We define h1, h2 : TΓ → Σ∗ recursively by letting hi(〈w1, w2〉(t1, . . . , tk)) be the

string obtained from wi by replacing every occurrence of xj by hi(tj). For instance,

h1(α4(α5, α6)) = h1(α6) ließ h1(α5) frei = die katze ließ er frei = h1(α1(α6)) ,

h2(α4(α5, α6)) = h2(α5) freed h2(α6) = he freed the cat = h2(α1(α6)) .

Let f ∈ Σ∗. Then the informal process of segmenting f into phrases corresponds to

finding a center tree t such that h1(t) = f , and the informal process of translating the

subphrases corresponds to computing h2(t). As stated above, there may be several cen-

ter trees t with h1(t) = f , and we intend to use scores in order to choose a translation.

Now we turn to the formalization of these scores.

To this end, we consider an approach that is almost universally applied, namely linear

models [152, 173]. Here we assign to each tree over R a linear combination of feature

values for this tree. A feature is a mapping φ : TR → sR, where sR = R ∪ {−∞,∞}. It

is up to the engineer to devise suitable features. For the sake of simplicity, we focus on

three of Hiero’s seven features:

• We assume that we have a probability assignment for G, i.e., a mapping µ : R→
[0, 1]; we extend µ to TR and we define the feature φµ by letting

µ(ρ(d1, . . . , dk)) = µ(d1) · · ·µ(dk) · µ(ρ) , φµ(d) = logµ(d) ,

where we assume that log 0 = −∞.

• Likewise, we assume that we have a probability distribution PLM on E, called a

language model; and we define the feature φLM by

φLM(d) = logPLM(h2(πΓ(d))) .

6

1.2 Hierarchical phrases

• We also count the number of words in the English string, i.e., we let

φ#(d) = |h2(πΓ(d))| .

The first and the second feature can be regarded as scoring the faithfulness and the

fluency of the translation, respectively [99, Sec. 25.3]. For Hiero, PLM is an n-gram

model. It is beyond the scope of this text to explain how such a language model is

obtained (for details, see [99, Ch. 4]); suffice it to say that it can be simulated by a

deterministic weighted string automaton [4, Sec. 4].

We note that a sequence φ1, . . . , φm of features uniquely determines a mapping

Φ: TR → sR
m by

Φ(d) =

φ1(d)
...

φm(d)

 ,

and vice versa. We call Φ a representation mapping (of dimension m).

Let θ ∈ R
m, which we call the feature weight vector. This vector contains the

coefficients for our linear combination. Let d ∈ TR. Then the score of d is Φ(d) · θ,

where · is the operation known variably as the dot product, scalar product, or inner

product, i.e., Φ(d) · θ =
∑

j : 1≤j≤m φj(d) · θj .
Finally, we arrive at the following abstract specification of Hiero:

Ω = {(G,µ, θ) | G is an SCFG, µ is a probability assignment for G, θ ∈ R
3} ,

D0 : Ω→ EF , D0(G,µ, θ) :

f 7→ h2(πΓ
(
argmaxd∈Dq0 (G) : h1(πΓ(d))=f ΦG,µ(d) · θ

)
) ,

where ΦG,µ is the representation mapping consisting of φµ, φLM, and φ#; and argmax
is defined as follows. For every set X , we let argmaxX : sR

X → X be a partial map-

ping such that argmaxX(f) is a member of {x′ | ∀x : f(x′) ≥ f(x)} if that set is

nonempty, and argmaxX(f) is undefined otherwise. Instead of argmaxX(f), we write

argmaxx∈X f(x), and we usually silently assume that it is defined. Note that argmaxX
is not uniquely determined; we stipulate that the above “let” fixed exactly the mapping

that the (fictitious, potential) implementation of choice provides.

The structure of the parameter space Ω is in part motivated by the training method

that is used with Hiero. For the sake of completeness, let us briefly sketch this method.

Recall that training amounts to determining a specific triple (G,µ, θ) ∈ Ω, given a par-

allel corpus c ∈ (E×F)∗. First, we split c into two parts c1 and c2. Second, we perform

rule extraction, i.e., we use a simple heuristic based on automatically induced word

7

1 Introduction

alignments [151] to determine G and µ from c1; for details, see [39, Secs. 3.2 and 4.3].

Finally, we determine the vector θ. To this end, let c2 = (e1, f1), . . . , (el, fl). Simply

put, we select

θ̂ = argminθ∈R3

∑

j : 1≤j≤l L(D0(G,µ, θ)(fj), ej) , (1.2)

where L : E × E → R is a mapping, called a loss function, and L(e′j , ej) is our loss

when fj is translated to e′j instead of the reference translation ej . A typical loss function

employed for Hiero is based on the BLEU score [153]. When this loss function is used,

then (1.2) is called minimum error-rate training (MERT) [150]. Other loss functions

are also common; for details see [84].

This concludes our account of the abstract specification. For the sake of brevity, we

only summarize the effective specification. By means of a weighted deductive parsing

system [89], Fig. 8 of [39] provides a weighted hypergraph that finitely encodes the

mapping that maps each AST in {d | d ∈ Dq0(G), h1(πΓ(d)) = f} to its score. In

principle, the highest-scoring AST can now be found by solving a shortest-path problem

on the hypergraph. For this we may use standard algorithms such as Knuth’s algorithm

[108, 142] and the like [94, 28].

As indicated in [39, Sec. 6.2], the decoder D0 is not practical, for decoding a sen-

tence with D0 takes too much time. The efficient specification therefore describes a

decoder D that differs from D0 in two respects: (a) the parameter space is restricted to a

certain subclass of SCFGs, and (b) the search for the highest-scoring AST is performed

approximately. The algorithm that performs this approximate search is a variant of

the aforementioned shortest-path algorithms, and it is dubbed cube pruning. Like said

algorithms, cube pruning explores the weighted hypergraph, but it enforces a (user-

defined) limit concerning the number of visited nodes [39, Sec. 5.3.4]. Recently, an

exact alternative to cube pruning has been described [164].

In more recent years, variants of Hiero have been investigated [13, 121] that do not

choose the highest-scoring AST, but the best translation, as follows:

D
′
0 : Ω→ EF , D′

0(G,µ, θ) :

f 7→ argmaxe∈E
∑

d∈Dq0 (G) : h1(πΓ(d))=f,h2(πΓ(d))=e
exp(ΦG,µ(d) · θ) ,

where exp is the natural exponential function, i.e., exp(x) = ex, and we assume that

exp(−∞) = 0.

Decoding with D
′
0 is known to be NP hard [121, 172, 35]. Therefore, the efficient

specification describes a different decoder that approximates D′
0. The decoder of [13,

Sec. 3.3] uses a method that might be dubbed beam search. Like cube pruning, it

explores a hyphergraph – albeit a slightly different one – with a limited-memory re-

striction. In contrast, the decoder of [121] uses a technique called variational decod-

ing. Here we use the same hypergraph as for cube pruning, and we compute the inside

8

1.3 Explicit syntax

S

NP

ART

die

NN

katze

VVFIN

ließ

PPER

er

PTKVZ

frei

S

NP

PRP

he

VP

VBD

freed

NP

DT

the

NN

cat

Figure 1.3: Constituent trees.

weight and outside weight of each node [121, 8, 118, 157]. Using these weights, we

determine an n-gram language model that is “as close as possible” to the mapping

e 7→ 1
Z ·

∑

d∈Dq0 (G) : h1(πΓ(d))=f,h2(πΓ(d))=e
exp(ΦG,µ(d) · θ) ,

where Z is the normalization constant
∑

d∈Dq0 (G) : h1(πΓ(d))=f
exp(ΦG,µ(d) · θ). Since

the n-gram language model is basically a particular deterministic weighted string au-

tomaton, the highest-weighted string can be found easily using standard shortest-path

algorithms such as Dijkstra’s algorithm [55, 70]. We note that variational decoding is

very similar in spirit to [143].

At this point, it should be evident that we cover substantial distances when we re-

fine a conventional specification, going from an “argmax formula” on the one end to

various algorithms that work on a weighted hypergraph on the other end. This kind of

refinement requires a great deal of mental labor, and it is hard to see how the two ends

are related.

1.3 Explicit syntax

In recent years, decoders have been investigated that go beyond hierarchical phrases by

considering explicit syntax information in the form of constituent trees, such as those

in Fig. 1.3. These decoders are based on formalisms similar to SCFGs, such as

• tree-to-string transducer (yXTT) [79, 96, 90],

• synchronous tree-substitution grammar (STSG) [62],

• synchronous tree-sequence-substitution grammar [183, 130],

• synchronous tree-adjoining grammar (STAG) [171, 1],

9

1 Introduction

• synchronous tree-insertion grammar (STIG) [167, 148, 149, 147, 51, 50],

• extended multi-bottom-up tree transducer (MBOT) [20, 65].

While yXTTs employ explicit syntax information on the source or target side only,

the other formalisms do so on both sides. For the rule extraction of these formalisms,

we use a parallel corpus that contains constituent trees instead of sentences. There are

two principal advantages of explicit syntax information:

• Rule extraction is linguistically more informed due to the constituent trees in the

training data [79, 40].

• We can use the constituent trees generated by the grammar to define more so-

phisticated features [41].

Let us elucidate the syntax-based approach by means of an example decoder that is

based on STSGs. If we replace α1, . . . , α6 in Fig. 1.2 by the values given in Fig. 1.4,

then we obtain an STSG. The rules now have the form q → 〈t1, t2〉(q1, . . . , qk), where

ti is a tree over Σ ∪ {x1, . . . , xk}, and each variable occurs exactly once in ti. The

notions of a probability assignment, an AST, and a center tree carry over to this new

setting. We define the mappings h1, h2 : TΓ → TΣ as for SCFGs, only that we perform

the variable replacement in a tree instead of a string. For instance, if we denote the trees

of Fig. 1.3 by t1 (left tree) and t2 (right tree), then

hi(α4(α5, α6)) = ti = hi(α1(α6)) .

Moreover, we define the yield mapping yd: TΣ → Σ∗ as follows. Let t ∈ TΣ, t =
σ(t1, . . . , tk). If k = 0, then yd(t) = σ. Otherwise, yd(t) = yd(t1) · · · yd(tk).
Continuing the example, we have that

yd(t1) = die katze ließ er frei , yd(t2) = he freed the cat .

One feature that capitalizes on syntax information is the following, we call the pars-

ing feature. We assume that we have the conditional probability P (t | f) for every

constituent tree t and foreign sentence f with yd(t) = f . It is outside the scope of

this text to explain how these probabilities are determined; this task is the subject of

statistical natural-language parsing [99, Ch. 14]. Suffice it to say that said probabili-

ties are usually represented finitely using formalisms akin to probabilistic context-free

grammars; for more details, see [155, 156, 47, 12, 37]. Then the parsing feature is

φP(d) = logP (h1(πΓ(d)) | yd(h1(πΓ(d)))) .

10

1.3 Explicit syntax

α1 =

〈
S

x1 VVFIN

ließ

PPER

er

PTKVZ

frei

,

S

x1 VP

VBD

freed

NP

DT

the

NN

cat

〉

α2 =

〈

S

NP

ART

die

NN

katze

VVFIN

ließ

x1 PTKVZ

frei
,

S

x1 VP

VBD

let

NP

DT

the

NN

cat

PRT

out

〉

α3 =

〈
S

x1 VVFIN

ließ

x2 PTKVZ

frei

,

S

x1 VP

VBD

freed

x2

〉

α4 =

〈
S

x2 VVFIN

ließ

x1 PTKVZ

frei

,

S

x1 VP

VBD

freed

x2

〉

α5 =

〈PPER

er
,

NP

PRP

he

〉

α6 =

〈
NP

ART

die

NN

katze

,

NP

DT

the

NN

cat

〉

Figure 1.4: Tree pairs for an STSG.

11

1 Introduction

This feature and variants thereof have been used successfully in [96, 137, 93].

Now we can define our example decoder as follows. We let

Ω = {(G,µ, θ) | G is an STSG, µ is a probability assignment for G, θ ∈ R
3} ,

D0 : Ω→ EF , D0(G,µ, θ) :

f 7→ yd(h2(πΓ
(
argmaxd∈Dq0 (G) : yd(h1(πΓ(d)))=f ΦG,µ(d) · θ

)
)) ,

where ΦG,µ is the representation mapping that consists of the three features φµ, φLM
(adapted to the STSG case via yd), and φP.

1.4 The algebraic framework, preliminary version

The algebraic framework is essentially a collection of operations, and it allows us to

define D(ω)(f) as an expression over these operations, ω, and f . In order to keep the

exposition simple, we only consider a preliminary version of the framework; the full

version follows in Sec. 6.1. As a foundation, we utilize the notions of a weighted string

language, a weighted tree language, and a weighted tree transformation [61, 57]. For

the weight domain, we utilize the concept of a commutative semiring [91, 87].

A (commutative) semiring S is an algebraic structure consisting of a set S, called

domain, two binary operations + and · on S, called addition and multiplication, re-

spectively, and neutral elements 0, 1 ∈ S for addition and multiplication, respectively.

Furthermore, there are certain requirements that the operations be “well behaved”; for

the purposes of this introduction, however, it is sufficient to imagine a commutative

semiring as “a field without subtraction and division”. For instance, the nonnegative

reals R≥0, extended by∞, with conventional addition and multiplication constitute the

semiring Real. Another example is the arctic semiring Arct, where the domain is sR,

the operations are maximum for addition and (conventional) addition for multiplication,

and the neutral elements are−∞ and 0, respectively. A semiring is complete if, roughly

speaking, infinite sums are defined. The two aforementioned semirings are complete.

For a formal definition of semirings and complete semirings, see Sec. 2.3.2.

Let S be a commutative semiring and Σ an alphabet. A weighted string language ϕ
over Σ and S is a mapping ϕ : Σ∗ → S, a weighted tree language ϕ over Σ and S is a

mapping ϕ : TΣ → S, and a weighted tree transformation τ over Σ and S is a mapping

τ : TΣ × TΣ → S. We abbreviate the corresponding sets as follows:

K = SΣ∗

, L = STΣ , T = STΣ×TΣ .

We define the string injection 1., the language yield Yd, the inverse language yield

Yd−1, the Hadamard product ⊙, the input product ⊳, the output product ⊲, the output

12

1.4 The algebraic framework, preliminary version

1. : Σ∗ → K , (1.w)(w′) = if w = w′ then 1 else 0 ,

Yd: L → K , Yd(ϕ)(w) =
∑

t : yd(t)=w ϕ(t) , (∗)

Yd−1 : K → L , Yd−1(ϕ)(t) = ϕ(yd(t)) ,

⊙ : L × L → L , (ϕ1 ⊙ ϕ2)(t) = ϕ1(t) · ϕ2(t) ,

⊳ : L × T → T , (ϕ⊳ τ)(s, t) = ϕ(s) · τ(s, t) ,

⊲ : T × L → T , (τ ⊲ ϕ)(s, t) = τ(s, t) · ϕ(t) ,

π2 : T → L , π2(τ)(t) =
∑

s τ(s, t) , (†)

best : SI → I , best(ϕ) = argmaxi∈I ϕ(i) . (‡)

restrictions: (∗) S complete or {t | yd(t) = w,ϕ(t) 6= 0} finite

(†) S complete or {s | τ(s, t) 6= 0} finite

(‡) I set, S ∈ {Real,Arct}

Figure 1.5: Operations of the algebraic framework.

projection π2, and the best-index operation best as shown in Fig. 1.5. These operations

constitute the preliminary version of the algebraic framework.

In order to illustrate the framework, we devise an alternative specification of D0 of

Sec. 1.3. For this, let S = Arct, G an STSG, µ a probability assignment forG, θ ∈ R
3,

and θ = (θ1, θ2, θ3). We claim that

D0(G,µ, θ)(f) = best(Yd(π2
(
(Yd−1(1.f)⊙ ϕP)⊳ τ ⊲Yd−1(ϕLM)

)
)) , (1.3)

where τ ∈ T , ϕLM ∈ K, and ϕP ∈ L with

τ(t1, t2) = max{θ1 · logµ(d) | d ∈ D
q0(G), hi(πΓ(d)) = ti} ,

ϕLM(e) = θ2 · logPLM(e) ,

ϕP(t) = θ3 · logP (t | yd(t)) .

In order to prove the claim, we derive

D0(G,µ, θ)(f)

= yd(h2(πΓ
(
argmaxd∈Dq0 (G) : yd(h1(πΓ(d)))=f

θ1 · φµ(d) + θ2 · φLM(d) + θ3 · φP(d)
)
))

= argmaxw∈Σ∗ maxt∈TΣ : yd(t)=wmaxs∈TΣ : yd(s)=f

maxd∈Dq0 (G) : h1(πΓ(d))=s,h2(πΓ(d))=t θ1 · φµ(d) + θ2 · φLM(d) + θ3 · φP(d)

13

1 Introduction

= argmaxw∈Σ∗ maxt∈TΣ : yd(t)=wmaxs∈TΣ : yd(s)=f

ϕP(s) + τ(s, t) + ϕLM(yd(t))

= argmaxw∈Σ∗ maxt∈TΣ : yd(t)=wmaxs∈TΣ

(1.f)(yd(s)) + ϕP(s) + τ(s, t) + ϕLM(yd(t))

= best(Yd(π2
(
(Yd−1(1.f)⊙ ϕP)⊳ τ ⊲Yd−1(ϕLM)

)
)).

Note that, although we continue to use 1. to denote the string injection, the semiring 1
and the semiring 0 in our case are 0 and −∞, respectively.

In the following, we unveil that the preliminary framework already exhibits the

achievements from Tab. 1.1. As for (a), we already managed to specify a state-of-the-

art decoder, apart from the limited repertory of features. As for (b)–(e), we proceed as

follows. We will define subclasses ofK, L, and T that correspond to certain formalisms

such as weighted string automaton (WSA, [165, 11, 115, 166]), weighted tree automa-

ton (WTA, cf. Sec. 2.4), or weighted context-free grammar (WCFG, [89, 46, 154]); in

particular, we will define the notion of a weighted STSG (WSTSG, [74, 129]). Then

we will gather established results about settings in which the aforementioned subclasses

are effectively closed under the operations in Fig. 1.5. Finally, we will argue that the

objects τ , ϕLM, and ϕP each belong to one of the new subclasses. At that point, it

will become clear that (1.3) is already effective as it is (cf. (b), (c)), that we exploit the

theory a great deal (cf. (d)), and that many concepts are involved (cf. (e)).

A WSTSG G over Σ and S is a quadruple (Q,R, µ, q0) where (Q,R, q0) is an STSG

over Σ and µ : R → S is called weight assignment. The objects Dq(G), Γ, πΓ, and

h1 and h2 are defined as for (Q,R, q0). We define the mapping 〈.〉µ : TR → S induc-

tively by letting 〈ρ(d1, . . . , dk)〉µ = 〈d1〉µ · · · 〈dk〉µ · µ(ρ). Finally, the meaning JGK
of G is the weighted tree transformation with

JGK(t1, t2) =
∑

d∈Dq0 (G) : hi(πΓ(d))=ti
〈d〉µ .

For this definition to be sound, we require one of two conditions: (i) S is complete

or (ii) the index set of sum is finite for every (t1, t2). We can satisfy Condition (ii) by

requiring thatG be productive (cf. [74]), i.e., for every 〈t1, t2〉 ∈ Γ, we have t1, t2 6= x1.

This is a common requirement (cf. [39, Sec. 3.2]). We note that a WSTSG is a particular

WTA with an alternative meaning assigned to it.

We define the following classes:

KRec = {ϕ | ϕ ∈ K, ϕ is the meaning of some WSA} ,

KCF = {ϕ | ϕ ∈ K, ϕ is the meaning of some WCFG} ,

LRec = {ϕ | ϕ ∈ L, ϕ is the meaning of some WTA} ,

TSTSG = {τ | τ ∈ T , τ is the meaning of some WSTSG} .

14

1.4 The algebraic framework, preliminary version

operation closure/restrictions publications complexity

1. Σ∗ → KRec [11, 168] O(n)
Yd LRec → KCF [176, 71] O(r)

Yd−1 KRec → LRec [132] O(pk)
⊙ LRec × LRec → LRec [15, Cor. 3.9] O(r1 · r2)

⊳ LRec × TSTSG → TSTSG [128] O(r2 · p
k2
1)

⊲ TSTSG × LRec → TSTSG [128] O(r1 · p
k1
2)

π2 TSTSG → LRec [75] O(r)
best KCF → Σ∗, (†) [108, 94, 28] O(r · log p)
best LRec → TΣ, (†) [108, 94, 28] O(r · log p)
best TSTSG → TΣ × TΣ, (†) [108, 94, 28] O(r · log p)
best KRec → Σ∗, (‡) [134, 94], (Thm. 5.5.3) (?)

best LRec → TΣ, (‡) [134, 94], (Thm. 5.5.3) (?)

Yd LCF → KMac [71] O(r)

⊳ LRec × TSCFTG → TSCFTG (Thm. 3.3.3) O(r2 · p
c2·k2
1)

⊲ TSCFTG × LRec → TSCFTG (Thm. 3.3.3) O(r1 · p
c1·k1
2)

π2 TSCFTG → LCF (conjecture) O(r)
best KMac → Σ∗, (†) (conjecture) O(r · log p)

⊳ LRec × TSTSG → TSTSG, (∗) (Thm. 4.5.10, Sec. 4.6.5) O(r2 · p
3
1)

⊲ TSTSG × LRec → TSTSG, (∗) (Thm. 4.5.10, Sec. 4.6.5) O(r1 · p
3
2)

legend: n . . . length of the string

p . . . number of states

r . . . number of transitions/rules

k . . . maximal rank of a transition/rule

c . . . grammar-dependent constant

index 1, 2: first or second argument

(†) S = Arct and

either CFG/WTA acyclic [94] or weights negative [108]

(‡) S = Real and WTA unambiguous or acyclic [134, 94]

(∗) WSTSG rule-by-rule binarizable

Table 1.2: Computability of operations, with worst-case complexity.

15

1 Introduction

The first section of Tab. 1.2 lists the closure results for our operations. Be advised

that each entry corresponds to an algorithm; for instance, as implied by the table, [15]

presents an algorithm that expects WTA M1 and M2 and outputs a WTA M with

JMK = JM1K⊙ JM2K. We note that constructing a WSA for 1.f is straightforward, but

it is beyond the scope of this text. Suffice it to say that, in the terminology of rational

series [11, 165], 1.f is a polynomial; hence, it is rational and, thus, recognizable [168],

which is tantamount to 1.f ∈ KRec. Furthermore, we note that the second conjunct

in (†) guarantees that a best element exists. Technically, this condition should be incor-

porated into our subclasses KCF and LRec, or additional classes should be introduced,

but we refrain from these complications. In practice, where unbounded translations are

not in demand, it is often acceptable to simply make the CFG or the WTA in question

acyclic, e.g., by removing transitions or “intersecting” it with a finite language.

We argue that (i) τ ∈ TSTSG, (ii) ϕLM ∈ KRec, and (iii) ϕP ∈ LRec. For (i), let G′

be the WSTSG over Σ and Arct that is obtained from the STSG G by using the weight

assignment µ′ with µ′(ρ) = θ1 · logµ(ρ). Then it is easy to verify that JG′K = τ .

For (ii) and (iii), we use that any n-gram model can be equivalently represented by a

deterministic WSA M over Real [4, Sec. 4], and like [137, 93] we assume that the

parsing probabilities are represented by a PCFG, which can be viewed as a bottom-

up deterministic WTA M ′ over Real. Since deterministic devices do not employ the

addition of the semiring, we can transfer them to the arctic semiring by applying log to

each transition weight. (We will treat this construction more thoroughly in Sec. 6.1.)

We transform the resulting WSA and WTA into a WSA for ϕLM and a WTA for ϕP by

multiplying each transition weight by θ2 and θ3, respectively.

At this point, we can evaluate the expression on the right-hand side of (1.3) by com-

posing the algorithms referred to in the table and applying the composite algorithm to

the objects that we constructed for (i)–(iii). Put differently, (1.3) is effective.

So far, we only employed the framework to rephrase the definition of an existing

decoder. Correspondingly, we had to prove (1.3). Now it is time to use the framework

according to its purpose – to specify a decoder. We let S = Arct, and we define

D1 : TSTSG ×KRec × LRec → EF , D1(τ, ϕ, ϕ
′) :

f 7→ best(Yd(π2
(
(Yd−1(1.f)⊙ ϕ′)⊳ τ ⊲Yd−1(ϕ)

)
)) . (1.4)

Since we defined D1 “from scratch”, we were able to define D1(τ, ϕ, ϕ
′)(f) by an

expression over the operations and τ , ϕ, ϕ′, and f . Cosmetic details aside, D1 and D0

are very similar; the principal difference is the absence of a feature weight vector in D1.

Technically, we might assume that the feature weights are already present in τ , ϕ,

and ϕ′. However, the training procedure usually determines the feature weight vector

in a dedicated step, and it is at least debatable whether the training procedure should be

16

1.5 Main contributions

x3

S

x1 VP

V

saw

x2

Lx3/

S

Adv

yesterday

y1 M =

S

Adv

yesterday

S

x1 VP

V

saw

x2

.

Figure 1.6: Applying second-order substitution.

burdened with the task of incorporating the feature weight vector into τ , ϕ, and ϕ′. The

bottom line is that D1 lacks feature weights.

We end this section by discussing what differentiates the preliminary version of al-

gebraic framework from the full version of Sec. 6.1. In the preliminary version, all

operations act on the same semiring, and best basically forces us to choose Arct. Re-

call that our construction ofG′ was somewhat monolithic, as it already incorporated θ1.

This begs the question whether we have to provide a similar construction every time we

modify (1.3), and the answer is probably yes. In the definition of τ , we apply the log
and the multiplication with θ1 on the level of individual ASTs, and this level is not ex-

posed to the meaning of an WSTSG over the arctic semiring; it is “blurred” by the max.

More precisely, since multiplication does not distribute over max (consider θ1 < 0), we

cannot “pull” this multiplication “out” of the max, where it would be exposed. In other

words, it is not possible to describe the integration of θ1 as an operation on T . This is

the reason why D1 does not include feature weights. The full version of the framework

permits “switching” the semiring via semiring homomorphisms. Then, using the mul-

tiset semiring, we are able to describe, i.a., the integration of θ1 as an operation on T .

On the whole, this relieves us of the burden of constructing grammars, as in (i)–(iii).

1.5 Main contributions

1.5.1 Input product and output product of a weighted synchronous
context-free tree grammar and a weighted tree automaton

So far, we have dealt with decoders based on SCFGs or on STSGs. Recently it has been

suggested that SCFGs, STSGs, and yXTTs are not well suited to capture all phenomena

that we encounter in real-world parallel corpora, and that STIGs and STAGs, among

others, are better suited in that respect [170, 101, 83, 100].

17

1 Introduction

These two formalisms are more powerful than the former three because they include

an operation called second-order substitution. Roughly speaking, second-order substi-

tution allows us to replace an occurrence of a variable x that has k successors, where

k > 0 is permitted. The tree that we plug in for x usually contains the variables

y1, . . . , yk, and yj is replaced by the jth successor of the occurrence of x. Figure 1.6

shows an example where we replace x3; for a formal definition, see Sec. 2.2.2.

While STIGs do permit second-order substitution, they do so only in a limited fash-

ion. In fact, they are weakly equivalent to yXTTs, which means that they have the same

power for describing pairs of strings. To the author’s knowledge, there are two decoders

based on STIGs – [147] and [50] –, and they are fairly limited. More specifically, in

the case of [147, Sec. 7.2.2], the variable arrangement in a rule has to follow a strict

regime, and the decoder does not include a language-model feature. And in the case of

[50, Sec. 4.3], decoding is accomplished by converting the STIG into a weakly equiv-

alent yXTT. In this process, the explicit syntax information on the foreign side is lost.

Consequently, this procedure is not suitable when we want to use the parsing feature.

Our algebraic framework is indifferent about the way in which we represent our

weighted tree transformations – be it using an STSG, an STIG, or an STAG. Hence,

we can readily use the framework to specify STIG- or STAG-based decoders; for in-

stance, we can apply (1.3) also if G is an STAG. Crucially, this specification does not

suffer from the limitations of the two above-mentioned decoders. There is one prob-

lem though: if we want our specification to be effective (let alone efficient), we can no

longer rely on the first section of Tab. 1.2, because it mainly applies to TSTSG.

In order to tackle this problem, we introduce further subsets of K, L, and T as

follows, using the concepts of weighted context-free tree grammar (WCFTG, [19]),

weighted synchronous context-free tree grammar (WSCFTG, cf. Sec. 3), and weighted

macro grammar (WMG, called macro system in [71]):

KMac = {ϕ | ϕ ∈ K, ϕ is the meaning of some WMG} ,

LCF = {ϕ | ϕ ∈ L, ϕ is the meaning of some WCFTG} ,

TSCFTG = {τ | τ ∈ T , τ is the meaning of some WSCFTG} .

The class TSCFTG subsumes the meanings of STAGs and STIGs [103].

The second section of Tab. 1.2 lists additional results concerning the computability

of our operations. The results concerning the input and output product are taken from

Ch. 3, and they constitute the first of the three main contributions of this thesis. To

the author’s knowledge, these results are novel, aside from the publications on which

Ch. 3 is based. Therefore this contribution is crucial to underscore the viability of the

algebraic framework for STIG-, STAG-, or WSCFTG-based decoders. As mentioned

above, the framework does not impose the restrictions of current decoders.

18

1.5 Main contributions

1.5.2 Generic binarization of a weighted grammar

For the next main contribution of this thesis, let us turn to the matter of decoding com-

plexity. As we can see from the first section of Tab. 1.2, the most expensive operations

in decoding are the input and the output product. For both operations, the complexity

is exponential in the maximal rank of any rule of the given WSTSG. The same com-

plexity can be observed with established decoders, which is why they are only applied

to grammars with maximal rank 2 (cf., e.g., [39, Sec. 3.2]) or to otherwise restricted

grammars (cf., e.g., [147, Sec. 7.2.2]).

In view of these complexity considerations, it is a natural question whether we can

transform a given grammar into an equivalent one where the maximal rank of any rule is

bounded by a given constant; in particular, where it is bounded by 2. The latter kind of

transformation is called binarization. It is well known that every CFG can be binarized

[45], and that some SCFGs can not be binarized [2]. Hence, binarization procedures

are in general partial. Here we shall focus on effective binarization procedures (how

to construct a solution in favorable cases) rather than on purely existential statements

(whether a solution exists).

The state of the art in binarization procedures is a rule-by-rule approach, where we

replace each rule of rank greater than 2 by an equivalent collection of rules of rank at

most 2, if possible. This approach has been applied to CFGs (for the Chomsky nor-

mal form) and to SCFGs [97]. On the other hand, binarization of yXTTs, STSGs, or

WSCFTGs has – to the author’s knowledge – not yet been investigated. As indicated by

the third section of Tab. 1.2, having a binarization procedure for STSGs or WSCFTGs

would underscore the viability of the algebraic framework, because it may improve the

complexity. Of course, it is possible to try and construct several binarization proce-

dures, one for yXTTs, one for STSGs, and one for WSCFTGs.

In contrast, the second main contribution of this thesis (Ch. 4) consists of (i) a generic

rule-by-rule binarization procedure that can be tailored to many grammar formalisms

by changing a parameter at runtime and (ii) considerations about the application to

yXTTs and WSCFTGs (which subsume STSGs). The second item is crucial because

said parameter is not trivial to come by, and moreover, it turns out that yXTTs and

WSCFTGs do not lend themselves to binarization. As a remedy, we consider the (ad-

hoc) formalisms of hedge-to-string transducers and weighted synchronous context-free

hedge grammars, which encompass yXTTs and WSCFTGs, respectively.

1.5.3 Determinizing weighted tree automata using factorizations

In [134], it has been suggested that the translation quality can be improved by selecting

the best English constituent tree instead of the best AST. On an abstract level, the

19

1 Introduction

following decoders were compared (albeit for yXTT):

Ω′ = {(G,µ) | G is a productive STSG, µ is a probability assignment for G} ,

D1,D2 : Ω
′ → EF ,

D1(G,µ) : f 7→ yd(h2(πΓ
(
argmaxd∈Dq0 (G) : yd(h1(πΓ(d)))=f µ(d)

)
)) ,

D2(G,µ) : f 7→ yd
(
argmaxt

∑

d∈Dq0 (G) : yd(h1(πΓ(d)))=f,h2(πΓ(d))=t
µ(d)

)
.

It turned out that D2 yields higher translation quality than D1 [134, Sec. 5.1].

In the algebraic framework, we obtain that

yd(best(π2(Yd
−1(1.f)⊳ JG′K))) =

{

D1(G,µ) if S = (sR,max, ·, 0, 1),

D2(G,µ) if S = Real,

whereG′ is the WSTSG over Σ and S obtained fromG by using the weight mapping µ.

SinceG′ is productive, one can derive that the WTA for the output projection is acyclic.

Let us delve into how best is computed in both cases. The workhorse in this com-

putation is a shortest-path algorithm for weighted hypergraphs [108, 94, 28], where a

“path” corresponds to a run of the WTA, which is comparable to an AST of an STSG.

Roughly speaking, the weight of a tree is the (semiring) sum of the weights of all runs

on the tree. For D1, where the addition is max, the highest possible weight of any tree

coincides with the highest possible weight of any run, or: the “shortest” path. For D2,

however, we can only exploit the shortest path if we make further assumptions concern-

ing the given WTA. In fact, if the WTA is unambiguous – that is, for every tree, there

is at most one run with non-zero weight –, then the highest possible weight of any tree

again coincides with the highest possible weight of any run.

These considerations give rise to the question whether we can transform any given

WTA into an equivalent WTA that is unambiguous. As in the case of binarization, we

are interested in effective procedures that work in favorable cases rather than purely

existential statements. Therefore, we turn to a related problem: transform a given WTA

into an equivalent one that is bottom-up deterministic. This transformation is called

determinization. Bottom-up determinism is a syntactic property that is easily decided

in time linear in the number of transitions, and it implies the property of being unam-

biguous. It is well known that bottom-up deterministic WTA are strictly less powerful

than WTA, so determinization procedures are partial.

In [134], the authors present a determinization procedure – albeit without proof –

that applies to acyclic WTA over the nonnegative reals, and they put it in front of the

shortest-path algorithm in order to compute best in Real. As in the case of D
′
0 of

Sec. 1.2, decoding with D2 is NP hard, which is reflected in the complexity of the de-

terminization procedure. Correspondingly, the authors state that determinization did

20

1.6 Related work and bibliographic remarks

not finish in a reasonable amount of time for 26.7 % of their test sentences. When-

ever the determinization procedure exceeded some fixed time limit, they fell back on

an approximation method called crunching, where they determined the best tree by

examining the 500 best runs of the WTA. Despite this occasional approximation, D2

produced better translations than both D1 and a version of D2 where determinization

was completely replaced by crunching [134, Sec. 5.1].

Apart from best, determinization has another application in SMT, which is connected

to the parsing feature and our argument for ϕP ∈ LRec in Sec. 1.4. Recall that this

argument rested on the assumption that the parsing probabilities are represented by

a PCFG. In contrast, modern-day parsers [155, 156] use an enriched formalism called

PCFG with latent annotations (PCFG-LA). Like a PCFG, a PCFG-LA can be viewed as

a WTA over the nonnegative reals; however, this WTA is far from being unambiguous.

Clearly, if we are able to determinize this WTA, then we can again show that ϕP ∈ LRec.

These two applications of determinization in SMT constitute a part of the motiva-

tion of the third and final main contribution of this thesis (Ch. 5): a determinization

construction that generalizes and consolidates earlier work, including [134], which is

thereby proved correct. However, it should be noted that the contribution is entirely

theoretical, for it does not offer new use cases for SMT.

To be more specific, our construction generalizes [134] from the nonnegative reals to

commutative semirings and [105] from WSA to WTA. The latter work requires that the

semiring be extremal (a+ b ∈ {a, b}) and that the WSA have a certain property called

the twins property [44]. We transfer this property to the tree case, and we show that our

construction applies with the same requirements. Moreover, we transfer results about

the decidability of the twins property [5, 104] from the string case to the tree case.

1.6 Related work and bibliographic remarks

The algebraic framework proposed here draws inspiration from many sources and from

ideas accumulated over time, and it is hard to trace them back to the origins. Therefore,

the following account is most probably incomplete.

We defined our grammars in the spirit of bimorphisms [6]. The framework uses

weighted tree languages and weighted tree transformations as the foundation, as op-

posed to WTA and WSTSG, respectively, which follows the idea that a specification

should describe the “what” rather than the “how”. This practice goes back to age-old

notions such as a recognizable language or a rational language. Moreover, we used

established operations such as the input product or the output projection.

From the perspective of universal algebra, the algebraic framework is essentially a

many-sorted algebra [85], and the algorithms underlying Tab. 1.2 constitute a many-

21

1 Introduction

sorted algebra as well, albeit with somewhat more fine-grained sorts. With suitable

modifications, we may imagine that these two algebras have a common signature, and

that the expression on the right-hand side of (1.4) is a term over that signature, where τ ,

ϕ, ϕ′, and f are viewed as variables. By applying the corresponding homomorphism,

we can interpret the term in either algebra, obtaining either a function that resembles

D0 or an algorithm for computing said function.

It should be noted that conventional decoder specifications, such as the deductive

system of [39, Fig. 8], do contain the automata-theoretic constructions for said opera-

tions, although in an implicit and interweaved manner, or adapted to special cases. By

close inspection, a reader who is proficient in automata theory can “excavate” these

operations.

A valuable source of information, certainly richer than the scant publications in SMT,

is the program code of those decoders that are freely available, such as Moses [111],

Joshua [120], or cdec [59]. A reader who is proficient in programming can learn a

lot, in particular from cdec; for instance, when we view a synchronous grammar as

a particular WTA, then a feature in cdec is merely a bottom-up deterministic WTA

over the same alphabet, and feature weights are incorporated into said grammar via the

Hadamard product – albeit approximately for complexity reasons.

For the sake of completeness, we note that even further variants of Hiero have been

investigated, which choose neither the highest-scoring AST (cf. D0 in Sec. 1.2) nor the

best translation (cf. D′
0), but an English sentence that is similar (according to some sim-

ilarity function) to many high-scoring translations. This approach is called concensus

decoding [53, Sec. 2].

Algebraic decoder specification is not a new idea. For instance, Tiburon [135, 133]

is a toolbox that allows to perform common operations on weighted tree transducers

and weighted tree automata, such as Hadamard product, determinization, composition,

application, and so on. Tiburon differs from our framework in three ways:

1. It focuses on automata and transducers rather than languages and transforma-

tions; therefore it is limited to the aforementioned devices.

2. It is limited to predefined semirings, most notably the tropical semiring and the

nonnegative reals.

3. Next to a specification framework, it is primarily a computer program.

Another strand of research is concerned with interpreted regular tree grammars (or

IRTGs, [112]; see also Sec. 4.2). Using the idea of initial-algebra semantics [86],

this formalism unifies many common grammar formalisms, including CFGs, SCFGs,

STSGs, etc. The IRTG framework differs from ours in three ways:

22

1.6 Related work and bibliographic remarks

1. It is as yet unweighted. (Section 4.2 offers a weighted variant.)

2. It is not limited to tree languages or tree transformations.

3. Like Tiburon, it has a focus on manipulating grammars.

The IRTG framework is probably better viewed as a means of investigating grammar

formalisms and their problems in a uniform way, rather than a specification framework.

In Ch. 4, we will employ the IRTG framework in this spirit. We may also use IRTGs to

produce new effectiveness results for our algebraic framework, comparable to Tab. 1.2.

In fact, a precursor of our first main contribution has been described in this way [113];

cf. Sec. 3.1.

While the documentation for Tiburon and IRTGs describes critical operations for de-

coder specification, it remains vague and sketchy when it comes to the topic of actually

specifying a state-of-the-art decoder.

Coincidentally, our notation for SCFGs is similar to the compact notation of [114]

for linear context-free rewriting systems (LCFRSs). However, in contrast to SCFGs,

LCFRSs do not treat the components in 〈w1, w2〉 independently, and thus, there is a

dedicated set of variables for each component. For instance, in the compact LCFRS

notation, our rule ρ3 could be written as

S → 〈x1 ließ y1 frei, x2 freed y2〉(PPER,NP) .

Here the variants of x refer to the first successor (PPER) and the variants of y refer to

the second successor (NP).

A promising alternative to STIGs and STAGs may be MBOTs. While they also

exceed the power of STSGs, they are not based on second-order substitution. Instead,

MBOTs permit specifying a sequence of trees on the English (target) side. In this

regard, they can be viewed as “explicit-syntax versions” of synchronous linear context-

free rewriting systems (SLCFRS) whose fanout on the source side is 1 [100].

It is the opinion of the author that the literature in both areas, formal-language the-

ory and SMT, is somewhat unsatisfactory. In formal-language theory, the relevant

sources span several decades, they follow varying notational conventions and vary-

ing approaches to semantics (such as term rewriting, fixpoint semantics, initial algebra

semantics, etc.), and, on top of that, many texts are not available online, so that – even

these days – the esteemed SMT practitioner has to plow through a library catalog, only

to get acquainted with a topic that he is not necessarily fond of in the first place. It

would be desirable to have a survey of modern formal-language theory, in particular,

concerning semiring-weighted devices on strings and trees, that is available online and

mentally accessible to practical and theoretical researchers alike.

23

1 Introduction

In SMT, which admittedly is progressing rapidly, publications are often scant, ad-

hoc, and particularly parsimonious when it comes to citations for established concepts;

for instance, WCFGs are defined ad-hoc in [89, Sec. 2.3] (semiring-weighted) and [145,

Sec. 2] (nonnegative reals), and neither publication cites a source. If this practice is due

to the aforementioned obstacles concerning literature on formal-language theory, then

an authoritative, comprehensive, yet plain survey of modern formal-language theory is

all the more desirable.

24

2 Preliminaries

2.1 Mathematical foundations

Most concepts of this section can be found, e.g., in [179, Sec. 1.1, 1.3].

2.1.1 Sets, relations, mappings

By N we denote the set {0, 1, 2, . . . } of nonnegative integers. We denote the empty

set by ∅, set difference by \, and the subset and the strict subset relations by ⊆ and ⊂,

respectively. Let A and B be sets. Then B is a partition of A if ∅ 6∈ B,
⋃

b∈B b = A,

and b1 ∩ b2 6= ∅ implies b1 = b2 for every b1, b2 ∈ B. The elements of a partition are

also called blocks. The powerset P(A) of A is the set of all subsets of A; in particular,

∅, A ∈ P(A). If A is finite, then the cardinality |A| of A is the number of elements

of A. If |A| = 1, then we call A a singleton. We denote the Cartesian product of

A and B by A×B.

A relation R from A into B is a subset of A×B. Let R be a relation from A into B.

Instead of (a, b) ∈ R, we also write aRb. The inverse R−1 of R is the relation from B
into A given by R−1 = {(b, a) | aRb}. Let C be a set and S a relation from B into C.

The relation product (or: composition) R;S of R and S is the relation from A into C
defined by R;S = {(a, c) | ∃b : aRb, bSc}. Instead of R;S (read “R, then S”) we also

write S ◦R (read “S after R”).

Let A′ ⊆ A and B′ ⊆ B. By R(A′) we denote the set {b | ∃a ∈ A′ : aRb}. The

relation R is called

• left-total on A′ if A′ ⊆ R−1(B);

• functional if aRb and aRb′ implies b = b′ for every a ∈ A and b, b′ ∈ B;

• surjective on B′ if R−1 is left-total on B′;

• injective if R−1 is functional;

• a partial mapping from A into B if it is functional; and

• a mapping from A into B if it is functional and left-total on A.

25

2 Preliminaries

Let f be a partial mapping from A into B. We also say that f is of type A → B,

and instead of f({a}) = {b}, we also write f(a) = b or a 7→ b. We call f−1(B) the

domain dom f of f and f(A) the image of f or range of f . For every a ∈ dom f , we

call f(a) the image of a (under f) and we say that we apply f to a. Note that f is a

partial mapping of type A′ → B′ iff A′ ⊇ dom f and B′ ⊇ f(A); i.e., the type of f is

not unique. If f is a mapping, then dom f = A, and it is a mapping of type A′ → B′

iff A′ = A and B′ ⊇ f(A). We denote the fact that f is a mapping from A into B
by f : A → B. If we explicitly mention “partial mapping”, then we may use the same

notation in that sense as well.

Let f : A → B. Clearly, f is surjective on f(A). For every b ∈ B, we also write

f−1(b) instead of f−1({b}), and we call f−1(b) the preimage of b (under f). The

restriction f |A′ of f to A′ is the mapping f ∩ (A′ × B). The mapping f is bijective

on B′ if it is injective and surjective on B′. If B′ = B, then we omit the reference

to B′. The set of all mappings of type A → B is denoted by BA. Let g : B → C.

Then f ; g (alternatively, g ◦ f) is a mapping from A to C with a 7→ g(f(a)). Now let

g : C → B, C ⊇ A, and g|A = f . Then g is an extension of f ; note that f is already a

partial mapping from C intoB. We will sometimes extend f to C; formally, this means

that we define an extension g of f , but instead of g, we will use the same symbol f .

Naturally, since f |A is known, we will then only define f |C\A.

The identity relation idA onA is defined by idA = {(a, a) | a ∈ A}. Let f : A→ A.

Then f is idempotent if f = f ◦ f . For every n ∈ N, we define n-th iterate fn of f
by letting f0 = idA and fn+1 = fn ◦ f . An element a ∈ A is called fixpoint of f of

f(a) = a.

The set A is called countably infinite if there is a bijective mapping of type A → N,

and it is countable if it is finite or countably infinite.

2.1.2 Families, sequences, and operations

Let I andA be sets. An I-indexed family of elements ofA is a mapping a from I intoA.

Instead of “domain of a”, we also call I the index set of a, and instead of a(i) we write

ai. We denote the fact that a is an I-indexed family by (ai | i ∈ I). Note that this

notation does not indicate A; in order to compensate, we usually state that (ai | i ∈ I)
is a family of elements of A. We extend the Cartesian product to an arbitrary number

of sets as follows. Let (Ai | i ∈ I) be a family of sets. Then by×iAi we denote the

set of all families (ai | i ∈ I) of elements of
⋃

iAi with ai ∈ Ai. If I = {1, 2}, then

we identify the Cartesian product A1 × A2 with×iAi. If I = N, then each element

of×iAi is called a sequence, and we sometimes denote a sequence a by (a1, a2, . . .).
If I = {1, . . . , n}, then we denote ×iAi by A1 × · · · × An, each element a in that

set is called a (finite) sequence (of length n), we denote a by (a1, . . . , an), and we have

26

2.1 Mathematical foundations

|a| = n. We usually identify the sequence (a1) with a1. If I = ∅, then we observe that

×iAi is a singleton, as there is only one mapping from ∅ into another set, namely ∅.
In order to reduce confusion, we will denote this empty sequence by () or ε.

A finite sequence of length n is also called an n-tuple; if n = 2, 3, 4, 5, then we also

use the words pair, triple, quadruple, and quintuple, respectively. Let f : A → B. We

call the mapping f n-ary if there are A1, . . . , An such that A = A1 × · · · ×An; if n =
0, 1, 2, 3, then we also use the words nullary, unary, binary, and ternary, respectively.

We usually write f(a1, . . . , an) instead of f((a1, . . . , an)).
For every n ∈ N, the n-fold product An of A is defined by An = A1×· · ·×An with

Ai = A. The Kleene star A∗ of A is defined by A∗ =
⋃

nA
n. An n-ary operation f

on A is a mapping from An into A. We often use symbols such as + or · to denote

binary operations, and then we use the infix notation a+ b instead of +(a, b). A binary

operation · is associative if a1 ·(a2 ·a3) = (a1 ·a2) ·a3, and it is commutative if a1 ·a2 =
a2 · a1. The concatenation operation, denoted by · or by juxtaposition, is the binary

operation over A∗ defined by (a1, . . . , an) · (b1, . . . , bm) = (a1, . . . , an, b1, . . . , bm).
For every w ∈ A∗ and n ∈ N we define the sequence iterate wn inductively by letting

w0 = ε and wn+1 = wwn.

An alphabet is a nonempty, finite set, and we call the elements of an alphabet sym-

bols. Let Σ be an alphabet. We call each element of Σ∗ a string (over Σ), and instead

of (a1, . . . , an), we denote a string also by a1 · · · an. A (string) language (over Σ) is a

subset L ⊆ Σ∗. We extend the concatenation operation to string languages by letting

L1 · L2 = {w1w2 | w1 ∈ L1, w2 ∈ L2}. Note that L · ∅ = ∅ = ∅ · L.

2.1.3 Orders and equivalence relations

A binary relation R on A is a relation from A into A. Let R be a binary relation on A.

LetA′ ⊆ A and a′ ∈ A′. Then a′ is anR-minimal element inA′ if aRa′ implies a 6∈ A′

for every a ∈ A. We say that R is

• reflexive if idA ⊆ R.

• symmetric if R ⊆ R−1.

• transitive if R;R ⊆ R.

• antisymmetric if R ∩R−1 ⊆ idA.

• well founded if every nonempty subset of A has an R-minimal element.

• a (partial) order on A if it is reflexive, antisymmetric, and transitive.

• an equivalence relation on A if it is reflexive, symmetric, and transitive.

27

2 Preliminaries

We usually denote orders by variants of ≤ or ⊑, their inverses by ≥ or ⊒, respectively,

and equivalence relations by variants of ∼ or ≡. We will often use that the usual order

≤ on N, i.e., 0 ≤ 1 ≤ 2 ≤ · · · , is well founded.

Let≤ be an order onA. Note that≥ is an order onA as well. Two elements a, b ∈ A
are comparable (by ≤) if a ≤ b or b ≤ a. Let A′ ⊆ A. Then A′ is called a chain if

its elements are pairwise comparable. An element a ∈ A is called upper bound of A′

if a′ ≤ a for every a′ ∈ A′. An element a ∈ A′ is called least element (in A′) if

a ≤ a′ for every a′ ∈ A′. Note that each set has at most one least element. If the set

of upper bounds of A′ contains a least element a, then a is called the supremum supA′

of A′. The notions lower bound and greatest element are defined dually, with ≥ in

place of ≤. If the set of lower bounds of A′ contains a greatest element a, then a is

called the infimum inf A′ of A′. The order ≤ is linear or total if A is a chain. If ≤
is linear, the notions “least element” and “≤-minimal element” coincide, as well as

“greatest element” and “≥-minimal element”. The least element of a set A′, if it exists,

is denoted by minA′. Likewise, the greatest element is denoted by maxA′. An ω-chain

a is a sequence a ∈ AN such that ai ≤ ai+1 for every i ∈ N. Let a ∈ AN. Recall that

a(N) = {ai | i ∈ N}. Instead of “upper bound of a(N)” and “supremum of a(N)”, we

say “upper bound of a” and “supremum of a”, respectively. The order ≤ is ω-complete

if A has a least element ⊥ and every ω-chain has a supremum.

A (partially) ordered set (poset) is a pair (A,≤) where A is a set and ≤ is an order

on A. A poset (A,≤) is a linear, total, or ω-complete poset if ≤ is linear, total, or

ω-complete, respectively. We often identify (A,≤) and A. Let A and B be posets

and f : A → B. Then f is monotone if a ≤ a′ implies f(a) ≤ f(a′). Recall that

f ◦a = (f(ai) | i ∈ N) for every a ∈ AN. LetA andB be ω-complete. The mapping f
is ω-continuous if, for every ω-chain a, sup(f ◦a) is defined and f(sup a) = sup(f ◦a).
If f is ω-continuous, then it is monotone, for if a ≤ a′, then sup{f(a), f(a′)} =
f(sup{a, a′}) = f(a′) and, hence, f(a) ≤ f(a′). Consequently, f ◦ a is an ω-chain if

a is an ω-chain. We observe that the composition of ω-continuous mappings is again

ω-continuous.

The following theorem is sometimes called fixpoint theorem.

Theorem 2.1.1 ([115, Thm 3.1], [179, Sec. 1.5.2, Thm. 7]) Let A be an ω-complete

poset with least element ⊥ and f : A → A an ω-continuous mapping. Then (f i(⊥) |
i ∈ N) is an ω-chain and it has a least upper bound, which is the least fixpoint of f ;

i.e.,

min{a | f(a) = a} = sup{f i(⊥) | i ∈ N} .

Let ≤ be an order on A and I a set. We extend ≤ pointwise to AI by letting a ≤ a′

if ai ≤ a′i for every a, a′ ∈ AI and i ∈ I . Here we understand the word extend in

28

2.2 Trees

the same way as for mappings, in contrast to other established notions of extending an

ordering that refer to adding pairs to the relation. If the order on A is ω-complete, then

so is the extended order. We define the lexicographic order on N
∗, often denoted by ≤,

by letting w1 ≤ w2 if

1. w1 = ε or

2. there are i1, i2 ∈ N and w′
1, w

′
2 ∈ N

∗ such that w1 = i1 · w
′
1, w2 = i2 · w

′
2,

i1 ≤ i2, and i1 = i2 implies w′
1 ≤ w

′
2.

Let ≡ be an equivalence relation on A. For every a ∈ A, we define the equivalence

class [a]≡ represented by a by letting [a]≡ = {a′ | a ≡ a′}; and the quotient set

A/≡ of A modulo ≡ is the partition of A defined by letting A/≡ = {[a]≡ | a ∈ A}.
Conversely, every partition B of A gives rise to the equivalence relation on A that

relates two elements precisely when they belong to the same block. If B = A/≡, then

this equivalence relation is again ≡.

2.1.4 Bibliographic remarks

Our definitions of ω-complete order and ω-continuous mapping mainly follow [115,

Sec. 2]. Other definitions are established as well, cf. [179, Sec. 1.5]. The latter author

uses countable chains instead of ω-chains in his definitions, which is equivalent because

every ω-chain has a supremum precisely when every countable chain has a supremum

[179, Sec. 1.5, Prop. 3]. Moreover, his notion of ω-continuous also applies in the case

that A and B are not ω-complete; correspondingly, he then only considers ω-chains a
that have a supremum.

2.2 Trees

2.2.1 Unranked trees

Let Σ be an alphabet and V a set. We write TΣ(V) for the set of all well-formed

expressions over Σ with variables V , i.e., the smallest set T such that (i) V ⊆ T
and (ii) for every σ ∈ Σ, k ≥ 0, and t1, . . . , tk ∈ T , we have σ(t1, . . . , tk) ∈ T .

Alternatively, we view TΣ(V) as the set of all (rooted, labeled, ordered, unranked)

trees over Σ indexed by V , and draw them as usual. By TΣ we abbreviate TΣ(∅). We

will often denote the tree σ() just by σ. A tree language over Σ is a subset of TΣ.

Let t ∈ TΣ(V). Next we define the set pos(t) of positions of t, the height ht(t) of t,
the rank rkt(w) of the position w in t, the label t(w) of t at w, the subtree t|w of t at w,

and the tree t[t′]w obtained from t by replacing the subtree at w by t′ [7, Def. 3.1.3].

29

2 Preliminaries

To this end, we define two mappings pos: TΣ(V) → P(N∗) and ht: TΣ(V) → N;

for every t ∈ TΣ(V), three mappings rkt : pos(t) → N, t(.) : pos(t) → Σ ∪ V , and

t|. : pos(t) → TΣ(V); and for every t, t′ ∈ TΣ(V), the mapping t[t′]. : pos(t) →
TΣ(V), by induction as follows. For every v ∈ V , we let

pos(v) = {ε} , ht(v) = 1 , rkv(ε) = 0 , v(ε) = v , v|ε = v , v[t′]ε = t′ ,

and for every σ(t1, . . . , tk) ∈ TΣ(V), i ∈ {1, . . . , k}, and w ∈ pos(ti), we let

pos(σ(t1, . . . , tk)) = {ε} ∪ {iw | i ∈ {1, . . . , k}, w ∈ pos(ti)} ,

ht(σ(t1, . . . , tk)) = 1 +max{ht(ti) | i ∈ {1, . . . , k}} ,

rkσ(t1,...,tk)(ε) = k , rkσ(t1,...,tk)(iw) = rkti(w) ,

σ(t1, . . . , tk)(ε) = σ , σ(t1, . . . , tk)(iw) = ti(w) ,

σ(t1, . . . , tk)|ε = σ(t1, . . . , tk) , σ(t1, . . . , tk)|iw = ti|w ,

σ(t1, . . . , tk)[t
′]ε = t′ , σ(t1, . . . , tk)[t

′]iw = σ(t′1, . . . , t
′
k) ,

where t′i = ti[t
′]w, t′j = tj for j 6= i, and we assume that max ∅ = 0. Sometimes

we use the word node instead of position. The tree t is binary if rkt(w) ≤ 2 for every

w ∈ pos(t); and it is suprabinary otherwise. For each pair w1, w2 of positions, we say

that w1 is above w2 if w1 is a prefix of w2, i.e., there is a w ∈ N
∗ with w2 = w1 · w.

Likewise, w1 is strictly above w2 if w1 is above w2 and w1 6= w2.

Let V ′ ⊆ Σ ∪ V . We say that t is linear (nondeleting) in V ′ if every element of V ′

occurs at most once (at least once) in t. Moreover, let W be a set and t′ ∈ TΣ(W). We

say that t is a V ′-prefix of t′ if there is a mapping κ from {w | t(w) ∈ V ′} into TΣ(W)
such that t′ is obtained from t by replacing the subtree at each w ∈ domκ by κ(w).
If V ′ = V , we omit the reference to V ′, simply speaking of linear, nondeleting, and a

prefix. We denote the set of all linear trees over Σ indexed by V by T lin

Σ (V), and we

denote the set of all linear nondeleting trees over Σ indexed by V by CΣ(V). By CΣ

we abbreviate CΣ({z}), where z is a special symbol that does not occur in Σ. We call

each element of CΣ a context (over Σ).

2.2.2 Substitution

Let X = {x1, x2, . . . } and Y = {y1, y2, . . . } be disjoint sets, whose elements we call

variables. We let Xk = {x1, . . . , xk} and Yk = {y1, . . . , yk} for every k ≥ 0.

Let V ′ ⊆ Σ ∪ V ∪ X ∪ Y and f : V ′ → TΣ(V). Then we define the mappings

f ♭, f ♭♭ : TΣ(V)→ TΣ(V), called first-order substitution and second-order substitution,

30

2.2 Trees

respectively, as follows. For every v ∈ V , we let

f ♭(v) = f ♭♭(v) =

{

f(v) if v ∈ V ′,

v if v 6∈ V ′.

For every σ(t1, . . . , tk) ∈ TΣ(V), we let

f ♭(σ(t1, . . . , tk)) =

{

f(σ) if σ ∈ V ′,

σ(f ♭(t1), . . . , f
♭(tk)) if σ 6∈ V ′.

If V ′ = {v1, . . . , vl}, then we also denote f ♭(t) by t[v1/f(v1)] · · · [vl/f(vl)]. We let

f ♭♭(σ(t1, . . . , tk)) =

{

f(σ)[y1/f
♭♭(t1)] · · · [yk/f

♭♭(tk)] if σ ∈ V ′,

σ(f ♭♭(t1), . . . , f
♭♭(tk)) if σ 6∈ V ′.

If V ′ = {v1, . . . , vl}, then we also denote f ♭♭(t) by tLv1/f(v1)M · · · Lvl/f(vl)M.
Although second-order substitution is being performed in parallel, we may often

imagine that we substitute the variables sequentially. This notion is made more precise

in the following observation.

Observation 2.2.1 Let V1, V2 ⊆ Σ ∪ V ∪ X ∪ Y , V1 ∩ V2 = ∅, f1 : V1 → TΣ(V),
f2 : V2 → TΣ(V), and f = f1 ∪ f2. Then f : V1 ∪ V2 → TΣ(V). If, for every v1 ∈ V1,

the tree f1(v1) does not contain occurrences of elements of V2, then f ♭♭ = f ♭♭1 ; f ♭♭2 .

Instead of t[a/t′] we also write t′ ·a t, and we omit the subscript a if a = z; recall

that z is the special symbol that we use for contexts.

The following observation basically states that first-order substitution is “associa-

tive”, e.g., we have that t3 · (t2 · t1) = (t3 · t2) · t1.

Observation 2.2.2 Let k, l ∈ N, f : Xl → T∆(X), and g : Xk → T∆(Xl). Then

f ♭(g♭(t)) = (f ♭ ◦ g)♭(t) for every m ∈ N and t ∈ T∆(Xk) with |pos(t)| ≤ m.

2.2.3 Ranked trees

A ranked alphabet is a pair (Σ, rk) where Σ is an alphabet and rk : Σ → N assigns a

natural number to each symbol, called its arity or rank. We write Σ(k) for the subset of

all k-ary symbols of Σ. We denote the ranked alphabet by Σ as well. A ranked alphabet

is binary if the arities do not exceed 2. Likewise, a symbol is binary if its arity is 2,

and it is suprabinary if its rank exceeds 2. We also use σ(k) to denote that σ ∈ Σ(k), in

31

2 Preliminaries

particular when specifying a ranked alphabet, e.g., Γ = {α(0), σ(2)}. We say that a tree

t ∈ TΣ(V) is Σ-ranked if t(w) 6∈ V implies rkt(w) = rk(t(w)) for every w ∈ pos(t).
We will use the following convention: Σ usually denotes a “plain” alphabet (i.e.,

without ranks), while Γ, ∆, and their variants usually denote ranked alphabets. If Σ is a

ranked alphabet, then we regard TΣ(V), TΣ, T lin

Σ (V), CΣ(V), and CΣ to be restricted

to Σ-ranked trees. The same convention shall hold when we talk about tree languages

over Σ.

2.3 Algebras and semirings

2.3.1 Algebras

Let ∆ be a ranked alphabet. A ∆-algebra A is a pair (A, .A) where A is a nonempty

set called domain and .A maps each symbol δ ∈ ∆ with rank k to a k-ary operation

δA : Ak → A, which is also called the realization of δ in A; .A is called realization

mapping. In the context of algebras, ∆ is also called a (single-sorted) signature, and it

can be viewed as an abstract data type, while a ∆-algebra can be viewed as its imple-

mentation.

Let A and B be ∆-algebras. A mapping h : A → B is a ∆-homomorphism from A
into B if

h(δA(a1, . . . , ak)) = δB(h(a1), . . . , h(ak))

holds for every k, δ ∈ ∆(k), and a1, . . . , ak ∈ A. We write h : A → B to indicate

that h is a ∆-homomorphism from A into B. Note that the composition of two ∆-

homomorphisms is a ∆-homomorphism. Let h : A → B, A′ ⊆ A, and f : A′ → B. If

h|A′ = f , then h is a homomorphic extension of f (with respect to A).

The ∆-term algebra T∆(V) over V has the domain T∆(V), and its operations are

given by

δT∆(V)(t1, . . . , tk) = δ(t1, . . . , tk)

for every k ∈ N, δ ∈ ∆(k), and t1, . . . , tk ∈ T∆(V). It is well known that every

mapping f : V → B has a unique homomorphic extension f ♯ with respect to T∆(V)
[179, Sec. 1.2, Thm. 4]; it is given by

f ♯(v) = f(v) , (v ∈ V)

f ♯(δ(t1, . . . , tk)) = δB(f ♯(t1), . . . , f
♯(tk)) . (δ(t1, . . . , tk) ∈ T∆(V))

Let l ∈ N and t ∈ T∆(Xl). In the area of universal algebra, t is called a term. We

define the term function tB : Bl → B of t by tB(b1, . . . , bl) = f ♯(t) with f(xj) = bj .

32

2.3 Algebras and semirings

In particular, if l = 0, then we often omit the parentheses from tB(), and we view tB as

an element of B.

Observation 2.3.1 Let B be a ∆-algebra, k, l ∈ N, f : Xk → T∆(Xl), and g : Xl →
B. For every m ∈ N and t ∈ T∆(Xk) we have that |pos(t)| ≤ m implies g♯(f ♭(t)) =
(g♯ ◦ f)♯(t).

Corollary 2.3.2 Let B be a ∆-algebra, k, l ∈ N, g : Xl → B, t ∈ T∆(Xk), and

t1, . . . , tk ∈ T∆(Xl). Then g♯(t[x1/t1] · · · [xk/tk]) = tB(g♯(t1), . . . , g
♯(tk)). In par-

ticular, with l = 0, we have (t[x1/t1] · · · [xk/tk])
B = tB(tB1 , . . . , t

B
k).

2.3.2 Semirings

A monoid is a ∆-algebra S with ∆ = {+(2), 0(0)} and carrier set S such that +S is

associative and 0S is neutral with respect to +S , i.e., (omitting the superscript S)

s+ 0 = s = 0 + s .

We represent S by the triple (S,+S , 0S). We call S commutative if +S is commuta-

tive. A monoid homorphism is a ∆-homomorphism h : A → B such that A and B are

monoids. A semiring [91, 87] is a ∆-algebra S with ∆ = {+(2), ·(2), 0(0), 1(0)} and

carrier set S such that (S,+S , 0S) is a commutative monoid, called additive monoid

of S , (S, ·S , 1S) is a monoid, called multiplicative monoid of S , and the following as-

sertions hold (again omitting the superscript S):

s1 · (s2 + s3) = (s1 · s2) + (s1 · s3) , (· distributes over + from the left)

(s1 + s2) · s3 = (s1 · s3) + (s2 · s3) , (· distributes over + from the right)

s1 · 0 = 0 = 0 · s1 . (absorbing element of ·)

We represent S by the quintuple (S,+S , ·S , 0S , 1S). The operations +S and ·S are

called the addition and the multiplication of S , respectively. A semiring homomorphism

is a ∆-homomorphism h : A → B such that A and B are semirings.

Let S = (S,+, ·, 0, 1) be a semiring. We define seven properties of S as follows.

• It is commutative if · is commutative.

• It is zero-divisor free if s1 · s2 = 0 implies that s1 = 0 or s2 = 0.

• It is zero-sum free if s1 + s2 = 0 implies that s1 = 0 = s2.

• It is a semifield if it is commutative and it admits multiplicative inverses, i.e., for

every s ∈ S \ {0} there is a uniquely determined s−1 ∈ S such that s · s−1 = 1.

33

2 Preliminaries

• It is locally finite if for every finite subset S′ ⊆ S the closure of S′ under 0, 1, +,

and · is finite; said closure is the smallest superset S′′ of S′ such that 0, 1 ∈ S′′

and s1, s2 ∈ S
′′ implies s1 + s2, s1 · s2 ∈ S

′′.

• It is extremal if s1 + s2 ∈ {s1, s2} for every s1, s2 ∈ S.

• It is naturally ordered if (S,≤) is an ordered set, where the binary relation ≤
on S is defined by s1 ≤ s2 if there is an s ∈ S with s1 + s = s2.

Example 2.3.3 We consider seven examples of semirings. To this end, let R≥0
∞ denote

the set of nonnegative reals extended by∞ and let sR = R ∪ {∞,−∞}.

1. The semiring Real = (R≥0
∞ ,+, ·, 0, 1), where∞+ r =∞ = r+∞ for every r,

and∞ · r =∞ = r · ∞ for every r with r 6= 0;

2. the arctic semiring Arct = (sR,max,+,−∞, 0) where max(∞, r) = ∞ =
max(r,∞) for every r, and∞+ r =∞ = r +∞ for every r with r 6= −∞;

3. the tropical semiring (R≥0
∞ ,min,+,∞, 0);

4. the Viterbi semiring ([0, 1],max, ·, 0, 1);

5. the Boolean semiring (B,∨,∧, 0, 1) where B = {0, 1}, and ∨ and ∧ denote

disjunction and conjunction, respectively;

6. the semifield (R≥0,+, ·, 0, 1) of nonnegative real numbers;

7. the formal-language semiring (P(Σ∗),∪, ·, ∅, {ε}) over an alphabet Σ.

Semirings 1–7 are naturally ordered, zero-sum free, and zero-divisor free; 1–6 are com-

mutative; 2–5 are extremal; and 5 is locally finite. �

Example 2.3.4 The mappings log and exp are monoid homomorphism from the mul-

tiplicative monoid of Real into the multiplicative monoid of Arct, and vice versa, re-

spectively. �

Let I be a set. Then we refer to the elements in SI also as I-vectors over S. For every

s ∈ S and u ∈ SI , we define s ·u ∈ SI by (s ·u)i = s ·ui. Here and in general, we use

family notation for vectors, i.e., ui instead of u(i). Moreover, SI = (SI ,+,⊙, 0̃, 1̃)
is a semiring, where s̃i = s, the operations + and · are extended to SI pointwise, i.e.,

(u1 + u2)i = (u1)i + (u2)i and (u1 ⊙ u2)i = (u1)i · (u2)i, and ⊙ is called Hadamard

product. If S is commutative (or zero-sum free, or extremal), then so is SI . However,

SI need not be zero-divisor free (or a semifield), even if S is zero-divisor free (or a

semifield, respectively). Let d ∈ N, d ≥ 1. If I = {1, . . . , d}, then we write Sd for SI .

34

2.3 Algebras and semirings

Example 2.3.5 (Ex. 2.3.3 contd.) Let d ∈ N, d > 1. We consider two semirings:

8. Reald = ((R≥0
∞)d,+,⊙, 0̃, 1̃) and

9. ((R≥0
∞)d,min,⊕, ∞̃, 0̃).

In contrast to Semiring 1, Semiring 8 is not zero-divisor free because

(
1
0

)

⊙

(
0
1

)

=

(
0
0

)

. �

Let Σ be an alphabet. A weighted tree language (over Σ and S) is a mapping

ϕ : TΣ → S. A weighted tree transformation (over Σ and S) is a mapping τ : TΣ ×
TΣ → S. If Σ is even a ranked alphabet, then TΣ in this definition is understood to be

restricted to Σ-ranked trees. Note that a weighted tree language over Σ and S is a TΣ-

vector over S; consequently, the Hadamard product applies to weighted tree languages

over Σ and S . Similar reasoning applies to weighted tree transformations.

2.3.3 Complete semirings

Now we turn to the problem of computing infinite sums in a semiring. We call S com-

plete if it has an operation
∑

I : S
I → I for every index set I such that the following

conditions are satisfied [115, Sec. 2]:

(i)
∑

i∈∅ si = 0,
∑

i∈{j} si = sj ,
∑

i∈{j,k} si = sj + sk for j 6= k,

(ii)
∑

j∈J

∑

i∈Ij
si =

∑

i∈I si if
⋃

j∈J Ij = I and Ij ∩ Ij′ = ∅ for j 6= j′,

(iii)
∑

i∈I s · si = s ·
∑

i∈I si,
∑

i∈I si · s =
(∑

i∈I si
)
· s.

Then we call
∑

I infinitary sum operation. Roughly, the three conditions mean that

(i) the infinitary sum extends the finite sum, (ii) it is associative and commutative, and

(iii) it satisfies the distributivity laws. A semiring homomorphism from a complete

semiring into a complete semiring is complete if it also preserves the infinite sums.

Let J be a set. If S is complete, then so is SJ , where (
∑

i∈I ui)j =
∑

i∈I(ui)j .

The semiring S is ω-continuous if it is complete, naturally ordered, and

∀n :
∑

i∈{0,...,n} ai ≤ c =⇒
∑

i∈N ai ≤ c

for every a ∈ AN and c ∈ N.

35

2 Preliminaries

Example 2.3.6 (Ex. 2.3.5 contd.) Semirings 1–5 and 7–9 are ω-continuous; following

[115, Ex. 2.2], the infinite sums are defined by
∑

i∈I si = sup{
∑

i∈E si | E ⊆ I, E finite} .

It can be desirable to have both an infinitary sum operation (as in Semiring 1, but not

in Semiring 6) and multiplicative inverses (as in Semiring 6, but not in Semiring 1).

However, the only element in Semiring 1 that lacks a multiplicative inverse is∞. Con-

sequently, as long as we avoid “∞−1”, we may utilize Semiring 1. �

Theorem 2.3.7 ([115, Thm. 2.3]) Let S be ω-continuous. Then, for every s ∈ SN,

sup{
∑

i∈{0,...,n} si | n ∈ N} =
∑

i∈N si .

Theorem 2.3.8 ([115, Thm. 3.2, Thm. 3.3]) Let S be ω-continuous. Then S is an ω-

complete poset and addition and multiplication are ω-continuous.

2.4 Weighted tree automata

Let Σ be an alphabet and S a semiring. A weighted tree automaton [71] over Σ and S
is a finite-state machine that represents a weighted tree language. It assigns a weight

to every tree based on weighted transitions. The following formal definitions deviate a

little from the literature; the interested reader will find more about the deviations and

the rationale behind them at the end of this section.

2.4.1 Syntax

Formally, a weighted tree automaton M over Σ and S , for short: WTA (over Σ and S),

is a tuple (Q,R, µ, ν) where

• Q is a nonempty, finite set (of states),

• R ⊆ Q∗ × Σ×Q is a finite set (of transitions or (transition) rules),

• µ : R→ S is the weight assignment, and

• ν : Q→ S is the root-weight mapping.

In the following, let M = (Q,R, µ, ν) be a WTA over Σ and S . For a transition

(q1 · · · qk, σ, q), we call σ its terminal symbol and k its rank, so that R can be viewed

as a ranked alphabet. If Σ is a ranked alphabet, then we require that the rank of any

transition coincide with the rank of its terminal symbol. For every q ∈ Q, we denote

by R|q the set of all transitions whose third component is q.

We define four properties of M as follows:

36

2.4 Weighted tree automata

q1 q0α/1
σ/0.5

α/0.2

Figure 2.1: Visualization of the WTA of Ex. 2.4.1.

• It is classical if Σ is a ranked alphabet and R =
⋃

kQ
k × Σ(k) × Q. Then we

denote M by (Q,µ, ν).

• It is bottom-up deterministic (bu-det) if the set

{q | (q1 · · · qk, σ, q) ∈ R,µ(q1 · · · qk, σ, q) 6= 0}

has at most one element for every σ ∈ Σ, k ∈ N, and q1, . . . , qk ∈ Q.

• It is a (finite) tree automaton (FTA) if S is the Boolean semiring and µ(ρ) = 1
for every ρ ∈ R. Then we denote M by (Q,R, F) where F = ν−1(1).

• It is in root-state form if there is a q0 ∈ Q such that νq0 = 1 and νq = 0 for

q 6= q0. In such a case, we call q0 the root state of M , and we denote M by

(Q,R, µ, q0) or by (Q,R, q0) if it is an FTA.

We note that a (weighted) tree automaton in root-state form is a (weighted) regular tree

grammar over Σ and S in normal form [3].

Example 2.4.1 Let S be the Viterbi semiring ([0, 1],max, ·, 0, 1), Γ = {σ(2), α(0)},
and M = (Q,R, µ, ν) the WTA over Γ and S where

• Q = {q0, q1},

• νq0 = 1, νq1 = 0, and

• R and µ are given by the following list:

(ε, α, q1) 7→ 1 , (ε, α, q0) 7→ 0.2 , (q1q0, σ, q0) 7→ 0.5 .

An equivalent representation ofR and µ is the hypergraph visualized in Fig. 2.1; each

node in the hypergraph (drawn as circle) corresponds to a state, and each hyperedge

(drawn as box with arbitrarily many ingoing arcs and exactly one outgoing arc) repre-

sents a transition. Ingoing arcs of a hyperedge are meant to be read counter-clockwise,

starting from the outgoing arc.

37

2 Preliminaries

The WTA M is not bu-det because we have that µ(ε, α, q1), µ(ε, α, q0) 6= 0. Fur-

thermore, it is in root-state form; its root state is q0. An equivalent representation of

R and µ in the spirit of weighted regular tree grammars is the following:

q0 → σ(q1, q0) # 0.5
q0 → α # 0.2
q1 → α # 1 �

2.4.2 Semantics

Now we define the weighted tree language JMK recognized by M . To this end, we

employ the approach of run semantics. Roughly speaking, a run d is a tree over R
with the following property: if a node w is labeled (q1 · · · qk, σ, q), then the node wj
is labeled by a transition in R|qj . We say that d is a run for the tree t that is obtained

from d by projecting each label to the second component. Furthermore, the weight of d
is the product of µ(d(w)) over all positionsw ∈ pos(d). In order to compute the weight

of a tree t, we consider each run d for t, multiply its weight by the root weight ν(q) if

d(ε) is in R|q, and sum up over all weights thus obtained.

Now we formalize the notions of a run and its weight. For our proofs, we will

need runs and their weights to be as easily composable and decomposable as trees and

contexts. Therefore, we will consider trees indexed by semiring elements and even Q-

vectors over S. Moreover, we will consider each state a (trivial) run as well; this will

enable us to speak about “partial runs”.

Formally, we define the mappings

πQ : TR(Q ∪ (SQ ×Q))→ Q , (root state)

πΣ : TR(Q ∪ (SQ ×Q))→ TΣ(Q ∪ S
Q) , and (terminal tree)

〈.〉µ : TR(Q ∪ S ∪ (SQ ×Q))→ S (weight)

as follows. We let 〈s〉µ = s for every s ∈ S. For every q ∈ Q, (u, q) ∈ SQ × Q, and

d ∈ TR(Q ∪ (SQ ×Q)) with d = ρ(d1, . . . , dk) and ρ ∈ R|q, respectively, we let

πQ(q) = q , πQ((u, q)) = q , πQ(d) = q ,

πΣ(q) = q , πΣ((u, q)) = u , πΣ(d) = σ(πΣ(d1), . . . , πΣ(dk)) ,

〈q〉µ = 1 , 〈(u, q)〉µ = u(q) , 〈d〉µ = 〈d1〉µ · · · 〈dk〉µ · µ(ρ) .

The set D(M) of runs of M is the smallest subset D of TR(Q∪ (S
Q×Q)) such that

Q ∪ (SQ ×Q) ⊆ D and ρ(d1, . . . , dk) ∈ D for every ρ ∈ R, ρ = (q1 · · · qk, σ, q), and

sequence d1, . . . , dk ∈ D with πQ(dj) = qj .
Let d ∈ D(M), q ∈ Q, and t ∈ TΣ(Q ∪ S

Q). We define five properties of d.

38

2.4 Weighted tree automata

• It is proper if d ∈ TR(Q). We denote the set of all proper runs by Dpr(M).

• It is complete if d ∈ TR. We denote the set of all complete runs by Dco(M).

• It is a partial run on t if πΣ(d) is a Q-prefix of t.

• It is a run on t if πΣ(d) = t. We denote the set of all runs on t by D(M, t).

• It is a q-run if πQ(d) = q. We use a superscript q to indicate that a set of runs

is restricted to q-runs; this gives rise to the sets Dq(M), Dq
pr(M), Dq

co(M), and

Dq(M, t).

We define the mapping J.KM : TΣ(S
Q)→ SQ by

JtKM (q) =
∑

d∈Dq(M,t) 〈d〉µ .

We will often omit the subscripts µ and M from 〈.〉µ and J.KM , respectively. It will be

clear from the context which M or µ is meant, respectively; either some WTA M is

fixed throughout a section or paragraph, or we compute 〈d〉 for a run d ∈ D(M), and

then the quantification of d indicates µ.

The (weighted) meaning JMK of M is the weighted tree language over Σ and S with

JMK(t) 7→
∑

q∈Q JtKq · νq .

A weighted tree language ϕ over Σ and S is called recognizable if it is the meaning

of some WTA M over Σ and S . We say that two WTA M and M ′ over Σ and S are

equivalent if JMK = JM ′K. The language L(M) of M is the tree language defined by

L(M) = {t | t ∈ TΣ, ∃q ∈ Q : Dq(M, t) 6= ∅, νq 6= 0} .

If M is an FTA, then L(M) = JMK−1(1). A tree language L is recognizable if there is

an FTA M such that L = L(M).

Example 2.4.2 (Ex. 2.4.1 contd.) We show the mappings J.KM and JMK. For nota-

tional convenience, we will write the elements of SQ as column vectors, where the first

row is the q1-component. By elementary computation, we obtain

JαK =

(
1
0.2

)

, Jσ(α, α)K =

(
0

JαKq1 · JαKq0 · 0.5

)

=

(
0
0.1

)

.

Now we form a general hypothesis. To this end, we define the family (tn | n ∈ N) of

trees in TΓ by letting t0 = α and tn+1 = σ(α, tn). It is easy to prove by induction on t
that

JtKq0 =

{

0.2 · 0.5n if t = tn ,

0 otherwise .

By the nature of ν, we obtain JMK(t) = JtKq0 . �

39

2 Preliminaries

The WTA M is acyclic if, for every q ∈ Q, d ∈ Dq
pr(M), and w ∈ pos(d), d(w) = q

implies w = ε. It is unambiguous if, for every t ∈ TΣ, there is at most one run

d ∈ D(M, t) with 〈d〉 6= 0. We observe the following.

Observation 2.4.3 If M is bu-det, then it is unambiguous. Consequently, for every

t ∈ TΣ, there is at most one q ∈ Q with JtKq 6= 0.

The following observation follows from the distributivity law of the semiring.

Observation 2.4.4 Let t ∈ TΣ(S
Q) and t = σ(t1, . . . , tk). Then

JtK = Jσ(Jt1K, . . . , JtkK)K .

If Σ is a ranked alphabet, then we may define the Σ-algebraM associated with M
as the algebra with the carrier set SQ and, for every k ∈ N and σ ∈ Σ(k),

σM(u1, . . . , uk) = Jσ(u1, . . . , uk)K .

In the approach of initial-algebra semantics [86], tM is used in lieu of JtK to define

JMK(t). By Obs. 2.4.4, we obtain that JtK = tM. This means that run semantics and

initial-algebra semantics coincide, which is a known fact [77, Sec. 3.2].

The first statement of the next observation follows from Obs. 2.4.4 (and vice versa),

while the second statement is a direct consequence of the definition of 〈.〉µ.

Observation 2.4.5 Let t ∈ TΣ(S
Q), t′ ∈ TΣ(S

Q ∪ {z}), q ∈ Q, d ∈ Dq(M, t), and

d′ ∈ D(M, q · t′). Then

JJtK · t′K = Jt · t′K and 〈〈d〉 ·q d
′〉 = 〈d ·q d

′〉 .

2.4.3 Order on runs

Next we define a “prefix” order ⊑ on the set Dpr(M) of proper runs. We begin by

illustrating the idea behind ⊑ by means of an example.

Example 2.4.6 (Ex. 2.4.1 contd.) Two runs d1, d2 are in the ⊑ relation if d2 can be

obtained from d1 by simultaneously replacing arbitrarily many occurrences of states,

each by a corresponding run, for instance:

q0 ⊑ (q1q0, σ, q0)
(
q1, q0

)

⊑ (q1q0, σ, q0)
(
(ε, α, q1), q0

)

⊑ (q1q0, σ, q0)
(
(ε, α, q1), (ε, α, q0)

)
.

40

2.4 Weighted tree automata

The setDpr(M) and the relation⊑ bear some resemblance to the set of sentential forms

and the transitive, reflexive closure of the derivation relation of a context-free grammar,

respectively; the main difference is that runs are more akin to abstract syntax trees than

to derivation trees. �

Now we make the notion precise. First we define the family (∧q | q ∈ Q), where

∧q is a binary operation on the set Dq
pr(M), inductively as follows. Let q ∈ Q and

d, d′ ∈ Dq
pr(M). Then

d ∧q d
′ =

q if d(ε) 6= d′(ε) or d(ε) 6∈ R,

d(ε)
(
d|1 ∧q1 d

′|1, . . . , if d(ε) = d′(ε) = (q1 · · · qk, σ, q).

d|k ∧qk d
′|k

)

We define the binary relation ⊑p on the set Dq
pr(M) by letting d ⊑q d

′ iff d = d ∧q d
′,

and we define the binary relation ⊑ on Dpr(M) by letting ⊑ =
⋃

q∈Q⊑q. It is easy to

verify that ⊑ is a partial order.

2.4.4 Properness

We call M proper if
∑

ρ∈R|q
µ(ρ) = 1 for every q ∈ Q.

Lemma 2.4.7 Let S be ω-continuous. Then SQ is an ω-complete poset and there is an

ω-continuous mapping F : SQ → SQ such that

∑

t∈TΣ
JtK = sup{Fn(0̃) | n ∈ N} .

PROOF. By Thm. 2.3.8, S is an ω-complete poset and addition and multiplication are

ω-continuous. Then SQ is again an ω-complete poset. We define the family (Ti | i ∈
N) by letting Ti = TΣ ∩ ht−1(i), and we define F : SQ → SQ by letting

F (u)q =
∑

(q1···qk,σ,q)∈R|q
uq1 · · ·uqk · µ(q1 · · · qk, σ, q) .

Since (a) the semiring operations are ω-continuous, (b) the composition of ω-con-

tinuous mappings is again ω-continuous, and (c) the supremum of a sequence of vectors

can be computed pointwise, we have that F is ω-continuous as well. Moreover, using

distributivity, it is straightforward to show by induction on n that

Fn(0̃) =
∑

i∈{0,...,n}

∑

t∈Ti
JtK .

41

2 Preliminaries

Finally, we derive

∑

t∈TΣ
JtK =

∑

i∈N

∑

t∈Ti
JtK (infinitary sum operation)

= sup{
∑

i∈{0,...,n}

∑

t∈Ti
JtK | n ∈ N} (Thm. 2.3.7)

= sup{Fn(0̃) | n ∈ N} . �

Next, we use Lm. 2.4.7 to show that, if M is proper, then
∑

t∈TΣ
JtK ≤ 1̃. We note

that the mapping F from said lemma can be used to approximate this sum: for this,

we compute F 1(0̃), F 2(0̃), . . . until convergence or until some designated amount of

time is up. Details about this approximation and an alternative method that converges

quicker are discussed in [72].

Lemma 2.4.8 Let M be proper and S ω-continuous. Then
∑

t∈TΣ
JtK ≤ 1̃.

PROOF. Let F be the mapping from Lm. 2.4.7. It is easy to see that 1̃ is a fixpoint of F .

We derive

∑

t∈TΣ
JtK = sup{Fn(0̃) | n ∈ N} (Lm. 2.4.7)

= min{u | u = F (u)} (Thm. 2.1.1)

≤ 1̃ . (least fixpoint)

�

2.4.5 Root-state form, trimness

The root-state form is a normal form, i.e., we have the following lemma.

Lemma 2.4.9 ([3, Prop. 3.1], [16, Lm. 6.1.1]) For every WTA M there is a WTA M ′

in root-state form such thatM andM ′ are equivalent; however, bottom-up determinism

is not preserved.

PROOF. Let M = (Q,R, µ, ν). We let f 6∈ Q and M ′ = (Q ∪ {f}, R ∪ R′, µ′, f)
where

• R′ = {(q1 · · · qk, σ, f) | ∃q : (q1 · · · qk, σ, q) ∈ R},

• µ′ coincides with µ on R, and

• µ′(q1 · · · qk, σ, f) =
∑

q∈Q µ(q1 · · · qk, σ, q) · νq.

Clearly, this construction does not preserve bottom-up determinism. In fact, this

preservation is impossible [16, Lm. 6.1.3]. �

42

2.4 Weighted tree automata

Let M = (Q,R, µ, ν) be a WTA. A state q ∈ Q is reachable if there are q0 ∈ Q,

d ∈ Dq0(M), and w ∈ pos(d) with ν(q0) 6= 0 and d(w) = q; and it is productive if

Dq
co(M) is nonempty. A transition ρ ∈ R is useful if there are q0 ∈ Q, d ∈ Dq0

co(M),
and w ∈ pos(d) with ν(q0) 6= 0 and d(w) = ρ; otherwise ρ is useless. The WTA M
is trim if every state is reachable and productive. We note that then every transition

of M is useful. Converting a WTA into an equivalent trim WTA is called trimming or

reducing.

Lemma 2.4.10 Let M = (Q,R, µ, ν) be a WTA and L(M) 6= ∅. Then there is effec-

tively an equivalent trim WTA M ′ such that M ′ is in root-state form if so is M .

PROOF. The reduction proceeds as known from context-free grammars. First, we de-

termine the set of productive states as follows. We let Q0 = ∅ and Qn+1 = {q |
∃(q1 · · · qk, σ, q) ∈ R : q1, . . . , qk ∈ Qn}. Then, for every n,Qn ⊆ Qn+1 andQn ⊆ Q.

Hence, Qn+1 = Qn for some n. We let Q′ = Qn. One can show that Q′ is the set

of productive states. We note that Q′ 6= ∅ because L(M) 6= ∅. Second, we deter-

mine the set of reachable states of the WTA obtained from M by removing any state

that is not in Q′. To this end, we let P0 = ∅ and Pn+1 = {q0 | q0 ∈ Q′, ν(q0) 6=
0} ∪ {qi | ∃(q1 · · · qk, σ, q) ∈ R : q1, . . . , qk ∈ Q′, q ∈ Pn, 1 ≤ i ≤ k}. Again,

we find that Pn+1 = Pn for some n, and that Pn is the desired set. We construct

M ′ = (Pn, R
′, µ|R′ , ν|Pn) where R′ contains exactly the transitions from R that only

use states from Pn. It is easy to see that M ′ is trim and that JMK = JM ′K. �

2.4.6 Bibliographic remarks

There is an established theory of WTA with varying weight domains, namely fields

[10], commutative semirings [3], continuous semirings [71, 116], m-monoids [116,

117, 125, 73, 175, 76], or tree-valuation monoids [56]. An overview of WTA over

semirings is given in [77].

A WTA (over a semiring) from the literature is a classical WTA by our definition.

When Σ is a ranked alphabet, the generative capacity of WTA and classical WTA is the

same. We deviate from the literature by including the set R of transitions; this has four

advantages, as we can more easily

• define a subclass of WTA by restricting the syntax of transitions; in this way, we

will define weighted synchronous context-free tree grammars in Ch. 3,

• consider constructions that replace a single transition at a time; namely, the bina-

rization procedure of Ch. 4,

• consider a notion of usability of a state that does not depend on S , and

43

2 Preliminaries

• handle unranked trees (with bounded rank).

Note that there is a variant of weighted tree automata that allows specifying weighted

tree languages with unbounded rank [58, Sec. 3].

A potential fifth advantage of explicit transitions may emerge in the context of train-

ing, i.e., estimating transition weights from data. As in the case of probabilistic context-

free grammars [145, Sec. 6], it is conceivable that the data naturally suggest a set of

transitions, and focusing on this set may reduce the training effort. In fact, the state-

splitting method of [155] may be construed as WTA training, and the method uses

explicit transitions.

In the literature, a run is usually defined with respect to a tree t, namely as a mapping

from the set pos(t) of its positions into the setQ of states. We deviate from the literature

by defining a run (roughly) as a tree with labels inR∪Q∪SQ; this has three advantages,

as we can

• consider partial runs and the “prefix” order ⊑ on runs, which we will need in

Chs. 3 and 4,

• use tree manipulation functions, from which we will benefit a great deal in Ch. 5,

and

• compute the weight of a run using a homomorphism.

44

3 Input product and output product of

a weighted synchronous

context-free tree grammar and a

weighted tree automaton

This chapter is a considerably expanded and revised version of [33, 32].

3.1 Introduction

Given a weighted tree tansformation τ over Σ and S and a weighted tree language ϕ
over Σ and S , the input product ϕ ⊳ τ of ϕ and τ and the output product τ ⊲ ϕ of

ϕ and τ are the weighted tree transformations over Σ and S defined by [128]

ϕ⊳ τ : (s, t) 7→ ϕ(s) · τ(s, t) and τ ⊲ ϕ : (s, t) 7→ τ(s, t) · ϕ(t) .

In the following, for the sake of brevity, we restrict our attention to the input product.

The same ideas apply to the output product.

If C is a class of weighted tree transformations over Σ and S , we may ask whether C
is effectively closed under input product (with recognizable weighted tree languages

over Σ and S). In other words, if τ ∈ C and ϕ is recognizable, we ask whether ϕ ⊳ τ
is again in C, and how to construct it. As argued in Sec. 1.5.1, such a closure result

allows for an effective algebraic decoder specification, e.g., if C is the class of STAG

meanings.

Let us review what is known about closure under input product, with a focus on

classes that contain STAG meanings. As a preparation, we relate the input product to

composition of two weighted tree transformations on the one hand and to the Hadamard

product of two weighted tree languages (also known as weighted intersection [145])

on the other hand. For this, we define the mapping f : STΣ → STΣ×TΣ by letting

f(ϕ)(t, t) = ϕ(t) and f(ϕ)(s, t) = 0 for s 6= t.
Given another weighted tree transformation τ ′ over Σ and S , the composition τ ⋄ τ ′

of τ and τ ′ is the weighted tree transformation over Σ and S defined by [75, Sec. 2.6]

τ ⋄ τ ′ : (s, t) 7→
∑

u τ(s, u) · τ
′(u, t) ,

45

3 Input product for weighted synchronous context-free tree grammars

type∗ grammar product semiring

publication F C A I formalism with restriction remarks

[161] ✓ ✓ · · CFTG FTA Boolean

[144] · ✓ · · WLIG WTA nonnegative reals

[127, Sec. 7.2] · ✓ · · STAG FTA Boolean (1)

[113] · ✓ ✓ ✓ STAG tree Boolean (2)

[146] ✓ ✓ · · SCFTG FTA Boolean

(this chapter) ✓ ✓ ✓ · WSCFTG WTA commutative

* Formal closure result, Construction, Algorithm, Implementation.

(1) represents STAG as XTT with explicit substitution

(2) represents STAG as IRTG

Table 3.1: Results towards closure under Hadamard/input/output product.

where we assume that S is complete. Then we observe that

ϕ⊳ τ = f(ϕ) ⋄ τ and τ ⋄ f(ϕ) = τ ⊲ ϕ .

If the class C contains f(ϕ) for every recognizable ϕ, then closure of C under compo-

sition implies closure of C under both input and output product. For instance, the class

of meanings of extended multi-bottom-up tree transducers is closed under composi-

tion, whereas the class of STAG meanings is not [66]. Consequently, it is worthwile to

consider the input product as a topic of its own.

Given another weighted tree language ϕ′ over Σ and S , we observe that

f(ϕ)⊲ ϕ′ = f(ϕ⊙ ϕ′) = ϕ⊳ f(ϕ′) ;

i.e., the input product can be used to compute the Hadamard product. Conversely,

the input product can be viewed as a simple generalization of the Hadamard product.

In fact, the corresponding constructions can be highly similar; roughly speaking, the

input-product construction is merely an intersection construction that accounts for an

additional, yet “uninvolved” component. This intuitive observation is substantiated

formally in the framework of interpreted regular tree grammars (IRTGs, cf. [112]).

Table 3.1 lists existing results with respect to the Hadamard product and the input

product. The first entry is the seminal result in this area: the class of context-free

tree languages is closed under intersection with regular tree languages. In [144] it is

shown that the class of meanings of weighted linear indexed grammars (WLIGs) is

46

3.2 Weighted synchronous context-free tree grammars

closed under Hadamard product with recognizable weighted tree languages. WLIGs

are equivalent to tree-adjoining grammars (TAGs). It is not clear how this result can be

transferred to the synchronous setting. Providing a corresponding construction, [127]

and [113] indicate that the class of meanings of STAGs is closed under input and output

product with recognizable tree languages and singleton tree languages, respectively.

The work [146] extends this result to the class of meanings of synchronous context-free

tree grammars (SCFTGs), which contains all STAG meanings.

In this chapter, we show that the class of meanings of weighted synchronous context-

free tree grammars (WSCFTGs) is closed under input and output product with recogniz-

able weighted tree languages. Moreover, we show that this closure is effective by means

of a product construction, and we provide an Earley-like algorithm [60] for computing

at least the useful rules of said construction. As argued in [89] and [99, Sec. 13.4],

algorithms such as Earley’s are often used for parsing, which is, ultimately, an appli-

cation of the input product [145]. We note that WSCFTGs subsume many grammar

formalisms mentioned in Ch. 1, such as STSGs, STIGs, and STAGs [102]. WSCFTGs

provide additional expressive power, whose relevance to SMT has already been under-

scored in [146]; in particular, the authors cite recent findings concerning lexicalization

of tree-adjoining grammars [131].

We proceed as follows. First, we define WSCFTGs in terms of particular WTA,

and we define the WSCFTG meaning of these WTA (Sec. 3.2). Second, we prove our

closure result (Sec. 3.3). More specifically, given an WSCFTG G and a WTA M , we

construct a WSCFTGM⊳Gwith JM⊳GK = JMK⊳JGK. We prove our closure result

(Thm. 3.3.3) by showing a stronger statement: we relate the runs of G and M on the

one hand to the runs of M ⊳G on the other (Lm. 3.3.2). Roughly speaking, our result

implies that, if M is unambiguous, then the n best runs of M ⊳ G correspond to the

n best runs of G, when adjusted according to the input product. Third, we derive the

Earley-like algorithm for computing at least the useful rules of M ⊳G, and we indicate

that the algorithm is correct (Sec. 3.4).

We end this chapter with a conclusion, discussion, and outlook (Sec. 3.5).

3.2 Weighted synchronous context-free tree grammars

For the remainder of this chapter, let S be a commutative semiring.

Let Σ be an alphabet and l,m, r1, . . . , rl ∈ N. By CΣ(m, r1, . . . , rl) we denote the

set of all unranked trees t over Σ∪Xl ∪ Ym that are linear and nondeleting in Xl ∪ Ym
such that (i) t(w) = xj implies rkt(w) = rj and (ii) t(w) = yj implies rkt(w) = 0.

Note that CΣ(m) = CΣ(Ym) and CΣ(0) = TΣ.

A weighted synchronous context-free tree grammar (WSCFTG) G over Σ and S is a

47

3 Input product for weighted synchronous context-free tree grammars

tuple (Q,R, µ, ν) where

• Q is a ranked alphabet with Q(0) 6= ∅,

• R is a finite set of triples (q1 · · · ql, 〈ζζ
′〉, q) where

– q, q1, . . . , ql ∈ Q and

– ζ, ζ ′ ∈ CΣ(rk(q), rk(q1), . . . , rk(ql)),

• µ : R→ S, and

• ν : Q(0) → S.

Let G = (Q,R, µ, ν) be a WSCFTG over Σ and S , and let Γ be the ranked alphabet

with

Γ = {α(l) | ∃q1, . . . , ql, q : (q1 · · · ql, α, q) ∈ R} .

Then G can be viewed as a WTA G′ = (Q,R, µ, ν ′) over Γ and S where ν ′ extends ν
by mapping every element ofQ\Q(0) to 0. In the following, we will identifyG andG′.

We will also employ the notation G = (Q,R, µ, q0) if G is in root-state form. For a

transition ρ ∈ R, ρ = (q1 · · · ql, 〈ζζ
′〉, q), we call ζ and ζ ′ the input tree and output

tree, respectively.

Example 3.2.1 We consider the WSCFTG G = (Q,R, µ, q1) over Σ and Real, where

• Σ = {S,NP,VP, . . . },

• Q(0) = {q1, q2, q3} and Q(1) = {f},

• R and µ are given in Fig. 3.1; for every transition ρ ∈ R, ρ = (q1 · · · ql, α, q),
the figure contains a line q → α(q1, . . . , ql) # µ(ρ), which is preceded by a

shorthand for ρ. �

Next we will define the WSCFTG meaning of G, which is a weighted tree transfor-

mation over Σ and S . We do so in the spirit of bimorphisms [6], where the WTA G
specifies the weighted center language JGK, and we define two embedded tree homo-

morphisms h1 and h2, which retrieve from a center tree the derived input tree and output

tree, respectively.

Let ζ ∈ CΣ(m, r1, . . . , rl). We define the mapping ζI : TΣ(Y)l → TΣ(Y) by

ζI(t1, . . . , tl) = ζLxl/tlM · · · Lx1/t1M .

As mentioned in Obs. 2.2.1, we may imagine that we substitute the variables sequen-

tially. This lets us specify the type for intermediate results, as follows.

48

3.2 Weighted synchronous context-free tree grammars

ρ1 : q1 → α1(q2, q2, f) # 1 ρ4 : q3 → α4() # 1

ρ2 : q2 → α2() # 0.6 ρ5 : f → α5() # 1

ρ3 : q2 → α3(q3) # 0.4

α1 =

〈

x3

S

x1 VP

V

saw

x2

x3

S

VP

V

sah

x1 x2
〉

α5 =

〈

S

Adv

yesterday

y1

S

Adv

gestern

y1
〉

α2 =

〈
NP

N

Mary

NP

N

Mary

〉

α3 =

〈

NP

x1 N

man

NP

x1 N

Mann

〉

α4 =

〈 D

a

D

einen

〉

Figure 3.1: WSCFTG with initial state q1 (adapted from [98, Fig. 2.4]).

α1

α2 α3

α4

α5

ξex :

S

Adv

yesterday

S

NP

N

Mary

VP

V

saw

NP

D

a

N

man

s :

S

Adv

gestern

S

VP

V

sah

NP

N

Mary

NP

D

einen

N

Mann

t :

Figure 3.2: Center tree ξex, input tree s = h1(ξex), output tree t = h2(ξex).

49

3 Input product for weighted synchronous context-free tree grammars

Observation 3.2.2 Let ζ ∈ CΣ(m, r1, . . . , rl), t1 ∈ CΣ(r1), . . . , tl ∈ CΣ(rl), and

j ∈ {0, . . . , l}. Then ζLxl/tlM · · · Lxj+1/tj+1M ∈ CΣ(m, r1, . . . , rj).

We define the embedded tree homomorphisms h1, h2 : TΓ → TΣ(Y) by

hi
(
〈ζ1ζ2〉(ξ1, . . . , ξk)

)
= ζIi

(
hi(ξ1), . . . , hi(ξk)

)

for every 〈ζ1ζ2〉(ξ1, . . . , ξk) in TΓ. We call the trees in L(G) center trees. For every

center tree ξ, we call (h1(ξ), h2(ξ)) the derived tree pair for ξ.

Example 3.2.3 (Ex. 3.2.1 contd.) Let ξex and s be the trees from Fig. 3.2. We show

that h1(ξex) = s and JGK(ξex) = 0.24. We begin with the former. To this end, let ζ be

the input tree of ρ1.

First, we apply the definitions of h1 and ζI , and we introduce abbreviations:

h1(ξex) = ζLx3/ h1(α5)
︸ ︷︷ ︸

t3

MLx2/ h1(α3(α4))
︸ ︷︷ ︸

t2

MLx1/ h1(α2)
︸ ︷︷ ︸

t1

M .

Second, we perform an auxiliary computation for t1, t2, and t3; we derive

t1 = h1(α2) = NP(N(Mary)) ,

t2 = h1(α3(α4)) = NP(x1,N(man))Lx1/h1(α4)M = NP(D(a),N(man)) ,

t3 = h1(α5) = S(Adv(yesterday), y1) .

Finally, we derive

h1(ξex) = x3(S(x1,VP(V(saw), x2)))Lx3/t3MLx2/t2MLx1/t1M

= S(Adv(yesterday), S(x1,VP(V(saw), x2)))Lx2/t2MLx1/t1M

= S(Adv(yesterday), S(x1,VP(V(saw), t2)))Lx1/t1M

= S(Adv(yesterday), S(t1,VP(V(saw), t2))) = s .

We can show in a similar fashion that h2(ξex) = t, where t is also given in Fig. 3.2.

Now we show that JGK(ξex) = 0.24. It is easy to see that

ρ1(ρ2, ρ3(ρ4), ρ5)

is the only q1-run on ξex. Let us call this run d. We derive

JGK(ξex) = 〈d〉 = µ(ρ2) · µ(ρ4) · µ(ρ3) · µ(ρ5) · µ(ρ1)

= 0.6 · 1 · 0.4 · 1 · 1 = 0.24 . �

50

3.2 Weighted synchronous context-free tree grammars

WSCFTGs are “type safe” in the following sense. Let ζ ∈ CΣ(m, r1, . . . , rl). A tree

ξ ∈ TΓ, ξ = 〈ζζ ′〉(ξ1, . . . , ξl), is called type conformant if ξι is type conformant and

hi(ξι) ∈ CΣ(rι). The following lemma comprises our type-safety statement.

Lemma 3.2.4 Let ζ ∈ CΣ(m, r1, . . . , rl), ξ ∈ TΓ, and ξ = 〈ζζ ′〉(ξ1, . . . , ξl). If ξ is

type conformant, then hi(ξ) ∈ CΣ(m). If D(G, ξ) 6= ∅, then ξ is type conformant.

PROOF. The first statement follows from Obs. 3.2.2.

For the second statement, we prove the following statement by induction on n. For

every n ∈ N and ξ ∈ TΓ, if |pos(ξ)| ≤ n and D(G, ξ) 6= ∅, then ξ is type conformant.

For the induction base (n = 0), there is nothing to show. For the induction step (“n→
n + 1”), we let ξ ∈ TΓ with |pos(ξ)| ≤ n + 1 and D(G, ξ) 6= ∅. Then there are

〈ζζ ′〉 ∈ Γ, ξ1, . . . , ξl ∈ TΓ, d ∈ D(G, ξ), and ρ = (q1 · · · ql, 〈ζζ
′〉, q) such that ξ =

〈ζζ ′〉(ξ1, . . . , ξl) and d(ε) = ρ. Then ζ ∈ CΣ(rk(q), rk(q1), . . . , rk(ql)) and the input

tree ζι of ξι(ε) is in CΣ(rk(qι), r
′
1, . . . , r

′
l′) for some l′ and r′1, . . . , r

′
l′ . By the induction

hypothesis, ξ1, . . . , ξl are type conformant, and by the first statement of the lemma, we

obtain that hi(ξι) ∈ CΣ(rk(qι)). �

Corollary 3.2.5 For every ξ ∈ TΓ with JGK(ξ) 6= 0, we have that hi(ξ) ∈ TΣ.

PROOF. Since JGK(ξ) 6= 0, we have that Dq(G, ξ) 6= ∅ for some q ∈ Q(0). By

Lm. 3.2.4, hi(ξ) ∈ CΣ(0), that is, hi(ξ) ∈ TΣ. �

Finally we define the WSCFTG meaning of G. For this, we call G admissible if

(i) S is complete or (ii) {ξ | ξ ∈ L(G), ∀i : hi(ξ) = ti} is finite for every (t1, t2) ∈
TΣ×TΣ. Let G be admissible. The (WSCFTG) meaning JGK′ of G is the weighted tree

transformation over Σ and S with

JGK′(s, t) =
∑

ξ∈h−1
1 (s)∩h−1

2 (t) JGK(ξ) .

We can satisfy Condition (ii) by requiring that G be productive. This property has

been discussed, e.g., in [74]. In our setting, it amounts to

〈ζ1, ζ2〉 ∈ Γ =⇒ ζi 6∈ {x1, x1(y1)} ,

which is easily tested for by looking at the transitions of G.

In the following, we usually omit the prime from JGK′; there is no confusion with the

WTA meaning because of the different type.

Example 3.2.6 (Ex. 3.2.3 contd.) Let ξex, s, and t be the trees from Fig. 3.1. It is easy

to see that h−1
1 (s)∩h−1

2 (t) = {ξex}, and we compute

JGK(s, t) = JGK(ξex) = 0.24 .

As we will see in Ex. 3.3.4, we can use the input and output product to compute

JGK(s, t) algorithmically. �

51

3 Input product for weighted synchronous context-free tree grammars

ρ1 : q → α1(q, f) # 0.3 ρ3 : f → α3(f) # 0.7

ρ2 : q → α2() # 1 ρ4 : f → α4() # 1

α1 =

〈

x2

S

〈 x1 〉

x2

S

〈 x1 〉

〉

α3 =

〈

S

a x1

S

b y1 c

d

S

a d x1

S

b c y1

〉

α2 =
〈
♦ ♦

〉
α4 =

〈
y1 y1

〉

Figure 3.3: WSCFTG G from Ex. 3.3.1 (adapted from [98, Ex. 2.2]).

3.3 Closure under input and output product

3.3.1 Example and objective

Example 3.3.1 We consider the WSCFTG G given in Fig. 3.3 in the same style as in

Ex. 3.2.1, where q is the root state and f is a unary state. Figure 3.4 shows the shape

of the center trees of G and a concrete derived tree pair. The weight of a center tree of

the given shape is 0.3k · 0.7n1+···+nk , and the derived tree pair for such a center tree

corresponds to the following pair of strings:

(

an1bn1〈 · · · 〈ankbnk〈♦〉cnkdnk〉 · · · 〉cn1dn1 , (ad)n1(bc)n1〈 · · · 〈(ad)nk(bc)nk〈♦〉k
)

.

Furthermore, we consider the WTA M = (P,RM , µM , 0) with root state 0 shown

in Fig. 3.5(a). The states 0 and 1 recognize backbones of even and odd lengths, respec-

tively. Then JMK maps trees of the form shown in Fig. 3.5(b), where the unlabeled

nodes may carry any label in {a, b, c, d, 〈, 〉}, to the weight 0.52n · 0.24n if the number

of occurrences of S is 2n. Every other tree is mapped to 0.

The input product JMK ⊳ JGK maps pairs like in Fig. 3.4(c) to 0.52n · 0.24n · 0.3k ·
0.7n1+···+nk if 2n = k + 2(n1 + · · ·+ nk). Every other pair is mapped to 0.

Our aim is to to construct a WSCFTG M ⊳G with JM ⊳GK = JMK⊳ JGK. For our

example, such a WSCFTG is shown in Fig. 3.6. The underlying idea is to incorporate

the behavior of M into G. To this end, we augment the states of G by states of M ,

so that we have sufficient information to simulate M on the input tree of each rule of

M ⊳G. We note that the input tree in α3 contains exactly two nodes labeled S, so this

52

3.3 Closure under input and output product

α1

. .
.

α1

α2 α3

..
.

α3

α4

α3

..
.

α3

α4

k

nk

n1

(a)

S

a S

a S

b S

b S

〈 S

a S

b S

〈 ♦ 〉

c

d

〉

c

c

d

d

S

a d S

a d S

b c S

b c S

〈 S

a d S

b c S

〈 ♦ 〉

〉

(b)

Figure 3.4: (a) Shape of center trees of G, where k ∈ N and n1, . . . , nk ∈ N.

(b) Derived tree pair for k = 2, n1 = 2, and n2 = 1.

(r1r, S, 0) 7→ 0.5

(r0r, S, 1) 7→ 0.5

(ε,♦, 0) 7→ 1

(ε, x, r) 7→ 0.2 x ∈ {a, b, c, d, 〈, 〉}

(a)

S

..
.

S

♦

2n

(b)

Figure 3.5: (a) WTA M from Ex. 3.3.1.

(b) Shape of trees with nonzero weight in JMK, where n ∈ N.

53

3 Input product for weighted synchronous context-free tree grammars

(q, 0, ε)→ α1

(
(q, 1, ε), (f, 0, 0)

)
0.3 · (0.5 · 0.22)

(q, 1, ε)→ α1

(
(q, 0, ε), (f, 1, 1)

)
0.3 · (0.5 · 0.22)

(q, 0, ε)→ α2() # 1.0

(f, 0, 0)→ α3

(
(f, 1, 1)

)
0.7 · (0.52 · 0.24)

(f, 1, 1)→ α3

(
(f, 0, 0)

)
0.7 · (0.52 · 0.24)

(f, 0, 0)→ α4() # 1.0

(f, 1, 1)→ α4() # 1.0

Figure 3.6: WSCFTG M ⊳G for Ex. 3.3.1.

tree does not affect the parity of the total number of S-labeled nodes. Hence, transitions

of M ⊳ G with α3 only contain the states (f, 0, 0) and (f, 1, 1), but not (f, 0, 1) or

(f, 1, 0). Also note how these transitions alternate between said states. �

In the following, we show that the class of meanings of admissible WSCFTGs is ef-

fectively closed under input product with recognizable weighted tree languages. How-

ever, we do not prove this result directly. We rather consider a stronger statement. For

this, letM = (P,RM , µM , νM) be a WTA over Σ and S . Moreover, let p ∈ P ,m ∈ N,

s ∈ CΣ(m), and p′ = (p1, . . . , pm). Then we define

D(p,p′)(M, s) = Dp(M, s[y1/p1] · · · [ym/pm]) .

Recall thatG is both an admissible WSCFTG over Σ and S and a WTA over Γ and S .

Lemma 3.3.2 There is effectively an admissible WSCFTG M ⊳ G = (Q′, R′, µ′, ν ′)
over Σ and S such that M ⊳G is also a WTA over Γ and S , Q′ =

⋃

mQ
(m)×P ×Pm

with the ranks carried over from Q, ν ′(q,p,ε) = νq · (νM)p, and the following holds.

Let ξ ∈ TΓ be type conformant, s = h1(ξ), and s ∈ CΣ(m). Then there are families

(≡(p,p′) | p ∈ P, p
′ ∈ Pm) and (πq′ | q

′ ∈ Q′(m)) such that

• ≡(p,p′) is an equivalence relation on D(p,p′)(M, s),

• π(q,p,p′) : D
(q,p,p′)(M ⊳G, ξ)→ Dq(G, ξ)×D(p,p′)(M, s)/≡(p,p′)

is bijective,

• πq′(d
′) = (d,D) implies 〈d′〉 = 〈d〉 ·

∑

e∈D〈e〉.

Let us consider some intuition for the lemma. As illustrated in Ex. 3.3.1, the con-

struction of M ⊳G involves “guessing” (and thus fixing) a state of M at various posi-

tions in the input tree. Roughly speaking, the equivalence relation ≡(p,p′) relates those

54

3.3 Closure under input and output product

runs of M that coincide at exactly these “guessing” positions; that is, each equivalence

class corresponds to one way of guessing these states. We will prove Lm. 3.3.2 in two

steps. We will construct M ⊳ G in Sec. 3.3.2, and we will show the remaining part in

Sec. 3.3.3. Now we show how the lemma implies our closure result.

Theorem 3.3.3 Let G be an admissible WSCFTG and M a WTA, both over Σ and S .

There are admissible WSCFTGs M ⊳G and G⊲M such that

JM ⊳GK = JMK⊳ JGK and JG⊲MK = JGK⊲ JMK .

PROOF. Let M = (P,RM , µM , νM). For reasons of symmetry, we only prove the part

of the theorem pertaining to M ⊳ G. Let M ⊳ G = (Q′, R′, µ′, ν ′) be the WSCFTG

from Lm. 3.3.2. First, we show that JM ⊳ GK(ξ) = JMK(s) · JGK(ξ) for every type-

conformant tree ξ ∈ TΓ and s = h1(ξ). Using the families from said lemma, we

derive

JM ⊳GK(ξ) =
∑

q′∈Q′(0)

(∑

d′∈Dq′ (M⊳G,ξ)〈d
′〉
)
· ν ′q′

=
∑

q∈Q(0),p∈P

(∑

d∈Dq(G,ξ),D∈Dp(M,s)/≡(p,ε)
〈d〉 ·

∑

e∈D〈e〉
)
· νq · (νM)p

(πq′ bijective)

=
∑

q∈Q(0),p∈P

(∑

d∈Dq(G,ξ),e∈Dp(M,s)〈d〉 · 〈e〉
)
· νq · (νM)p

(distributivity, partition)

=
∑

q∈Q(0),p∈P

(∑

d∈Dq(G,ξ)〈d〉 ·
∑

e∈Dp(M,s)〈e〉
)
· νq · (νM)p (distributivity)

=
(∑

p∈P,e∈Dp(M,s)〈e〉 · (νM)p
)
·
(∑

q∈Q(0),d∈Dq(G,ξ)〈d〉 · νq
)

(commutativity, distributivity)

= JMK(s) · JGK(ξ) . (distributivity)

Then, for every s, t ∈ TΣ,

JM ⊳GK(s, t) =
∑

ξ∈h−1
1 (s)∩h−1

2 (t)JM ⊳GK(ξ)

=
∑

ξ∈h−1
1 (s)∩h−1

2 (t)JMK(s) · JGK(ξ) (†)

= JMK(s) ·
∑

ξ∈h−1
1 (s)∩h−1

2 (t)JGK(ξ) (distributivity)

= JMK(s) · JGK(s, t) = (JMK⊳ JGK)(s, t) .

At (†), we use the statement that we derived first, together with Lm. 3.2.4. �

Example 3.3.4 (Ex. 3.2.3 contd.) We indicate how to use the input and output product

to compute JGK(s, t). We can easily construct WTAMs andMt over Σ and S such that

JMsK(s) = 1 , JMtK(t) = 1 , JMsK(s
′) = 0 , JMtK(t

′) = 0

55

3 Input product for weighted synchronous context-free tree grammars

for every s′ 6= s and t′ 6= t. Then

JGK(s, t) =
∑

s′,t′(JMsK⊳ JGK⊲ JMtK)(s
′, t′)

=
∑

s′,t′JMs ⊳G⊲MtK(s
′, t′) (Thm. 3.3.3)

=
∑

ξ∈TΓ
JMs ⊳G⊲MtK(ξ) =

∑

ξ∈TΓ
JξKMs⊳G⊲Mt · ν

′

=
(∑

ξ∈TΓ
JξKMs⊳G⊲Mt

)
· ν ′, (distributivity)

where ν ′ is the root-weight mapping ofMs⊳G⊲Mt. For every WTAM over Γ and S ,

we can compute
∑

ξ∈TΓ
JξKM at least approximatively by using the fixpoint method that

is indicated below Lm. 2.4.7. �

3.3.2 Constructing the product WSCFTG

Here we provide our construction of the WSCFTG M ⊳ G, whose existence is pos-

tulated in Lm. 3.3.2. Let G be a WSCFTG and M a WTA, both over Σ and S , with

G = (Q,R, µ, ν) and M = (P,RM , µM , νM).

First, we enrich M so that it can accept trees such as those that occur in Γ, that is,

including variables. To this end, let ζ ∈ CΣ(m, r1, . . . , rl). A (state) assignment for ζ
is a mapping θ that maps each variable xι that occurs in ζ to an element of P ×P rι and

each variable yι to an element of P . Finally, θ maps the special symbol ⋄ to an element

of P . Then, for every assignment θ, we define the WTA Mθ over Σ ∪ Xl ∪ Ym by

Mθ = (P,RMθ, µMθ, θ(⋄)) where

• RMθ = RM ∪ {(p
′, xι, p) | θ(xι) = (p, p′)} ∪ {(ε, yι, p) | θ(yι) = p},

• µMθ(ρ) = µM (ρ) if ρ ∈ RM , and

• µMθ(ρ) = 1 if ρ 6∈ RM .

Second, for every transition ρ ∈ R and suitable θ, we let Mθ “run” on the input tree

of ρ. Formally, we define the product WSCFTG M ⊳G of M and G by

M ⊳G =
(⋃

mQ
(m) × P × Pm, R′, µ′, ν ′

)
,

where the ranks of the states are carried over fromQ, ν ′(q,p,ε) = νq ·(νM)p, andR′ and µ′

are defined as follows. Let ρ ∈ R, ρ = (q1 · · · ql, 〈ζζ
′〉, q), m = rk(q), θ an assignment

for ζ, and p′ = (θ(y1), . . . , θ(ym)). Then we let

ρθ =
((
q1, θ(x1)

)
· · ·

(
ql, θ(xl)

)
, 〈ζζ ′〉,

(
q, (θ(⋄), p′)

))

,

56

3.3 Closure under input and output product

and ρθ ∈ R′ if ζ ∈ L(Mθ). Then its weight is given by

µ′(ρθ) = µ(ρ) · JMθK(ζ) .

This definition is sound because the mapping with (ρ, θ) 7→ ρθ is injective. There are

no further elements in R′. We note that we have identified Q(m) × P × P ′ (a set of

triples) with Q(m) × (P × P ′) (a set of pairs whose second component is a pair). We

will continue to do so.

We have that |R′| ≤ |R| · |P |C where C = max{rk(q0) + · · · + rk(ql) + l + 1 |
(q1 · · · ql, α, q0) ∈ R}. More specifically, the factors |R| and |P |C are due to the

choices of ρ and θ, respectively. An inspection of C suggests that, if we want to keep

the cost for the input product low, then we should try to represent JGK with a WSCFTG

whose states and transitions have as low rank as possible.

Example 3.3.5 (Ex. 3.3.1 contd.) In addition to the transitions shown in Fig. 3.6, the

WSCFTG M ⊳G also contains the following transitions:

(f, 0, 1)→ α3

(
(f, 1, 0)

)
0.7 · (0.52 · 0.2) ,

(f, 1, 0)→ α3

(
(f, 0, 1)

)
0.7 · (0.52 · 0.2) .

As argued in Ex. 3.3.1, applying ρ3 does not affect the parity of the total number of

S-labeled nodes. Hence, these transitions do not occur in any (q, 0, ε)-run of M ⊳ G,

and they can be discarded. �

3.3.3 Proof of Lemma 3.3.2

It is easy to see that M ⊳G is admissible, because L(M ⊳G) ⊆ L(G). We prove the

remaining statement of the lemma by induction on the size of ξ. More precisely, we

prove by induction on n that the following statement P (n) holds for every n:

P (n): Let ξ ∈ TΓ be type conformant, s = h1(ξ), and s ∈ CΣ(m). If

|pos(ξ)| ≤ n, then there are the families as postulated in the lemma.

For the induction base (n = 0), there is nothing to show. We show the induction

step (n → n + 1). For this purpose, let n ∈ N such that P (n) holds (the induction

hypothesis). We show P (n+1). To this end, let ξ ∈ TΓ be type conformant, s = h1(ξ),
s ∈ CΣ(m), and |pos(ξ)| ≤ n+ 1. There are 〈ζζ ′〉 ∈ Γ and ξ1, . . . , ξl ∈ TΓ such that

ξ = 〈ζζ ′〉(ξ1, . . . , ξl). Clearly, ξι is type conformant and |pos(ξι)| ≤ n.

By applying the induction hypothesis to ξ1, . . . , ξl, we obtain the families ≡1 and π1
up to ≡l and πl, respectively. In the following, we will often omit the subscripts (p, p′)

57

3 Input product for weighted synchronous context-free tree grammars

and q′ from ≡ι and πι, respectively. Before we construct ≡ and π, we introduce the

following notion and lemma.

A composition item s is a tuple (θ, e0, e1, . . . , el) such that θ is an assignment for ζ,

e0 ∈ D
θ(⋄)(Mθ, ζ), and eι ∈ D

θ(xι)(M,h1(ξι)). The composite JsK of s is defined by

JsK = v′(e0)
I(v(e1), . . . , v(el)) ,

where v(eι) is obtained from eι by replacing every occurrence of a state in P by the

label of h(ξι) at the same position, and v′ replaces every occurrence of a transition

containing a variable xι or yι by the respective variable or by θ(yι), respectively.

Lemma 3.3.6 For every p ∈ P , p′ ∈ Pm, and e ∈ D(p,p′)(M, s), there is exactly one

composition item s with JsK = e.

PROOF. We prove the following statement by induction on l. For every l ∈ N, ζ ∈
CΣ(m, r1, . . . , rl), s1, . . . , sl with sι ∈ CΣ(rι), and e ∈ D(p,p′)(M, ζI(s1, . . . , sl)),
there is exactly one tuple (θ, e0, e1, . . . , el) such that θ is an assignment for ζ, e0 ∈
Dθ(⋄)(Mθ, ζ), eι ∈ D

θ(xι)(M, sι), and e = v′(e0)
I(v(e1), . . . , v(el)), where v′ and v

are defined as before.

We prove the induction base (l = 0). For this, we let w1, . . . , wm be the positions

of y1, . . . , ym in ζ, respectively. Then we construct p1, . . . , pm by letting pι = e(wι),
e0 = e[(ε, y1, p1)]w1 · · · [(ε, ym, pm)]wm , θ(⋄) = πP (e), and θ(yι) = pι. It is easy to

see by the definition of v′ that (θ, e0) is the only tuple with the desired property.

For the induction step (l→ l+1), we let ζ ′ = ζLxl+1/sl+1M. By Obs. 3.2.2, we have

that ζ ′ ∈ CΣ(m, r1, . . . , rl) and, thus,

ζI(s1, . . . , sl, sl+1) = (ζ ′)I(s1, . . . , sl) .

Hence, we can apply the induction hypothesis, obtaining the tuple (θ′, e′0, e
′
1, . . . , e

′
l).

Let k = rl+1, w the position of xl+1 in ζ and w1, . . . , wk the positions of y1, . . . , yk
in sl+1, respectively. Then we construct p, p1, . . . , pk by letting p = πP (e

′
0|w) and

pj = πP (e
′
0|wwj

), ρ = (p1 · · · pk, xl+1, p), e0 = e′0[ρ(e
′
0|ww1 , . . . , e

′
0|wwk

)]w, eι = e′ι
for ι ∈ {1, . . . , l}, el+1 = (e′0[p1]ww1 · · · [pk]wwk

)|w, and we let θ be obtained from θ′

by adding the entry xl+1 7→ (p, p1 · · · pk). We derive

e = v′(e′0)
I(v(e′1), . . . , v(e

′
l)) (induction hypothesis)

= v′(e0Lρ/v(el+1)M)
I(v(e′1), . . . , v(e

′
l))

= v′(e0)
I(v(e1), . . . , v(el), v(el+1)) .

Again, it is easy to see that (θ, e0, e1, . . . , el+1) is the only tuple that has the desired

property. �

58

3.3 Closure under input and output product

Now we define ≡. Let e1, e2 ∈ D(p,p′)(M, s). We let e1 ≡(p,p′) e2 iff there

are composition items (θ1, e1,0, e1,1, . . . , e1,l) and (θ2, e2,0, e2,1, . . . , e2,l) with com-

posites e1 and e2, respectively, such that θ1 = θ2 and e1,ι (≡ι)θ(xι) e2,ι for every

ι ∈ {1, . . . , l}.
Finally, we define π. Let d′ ∈ D(q,p,p′)(M ⊳ G, ξ), d′ = (ρθ)

(
d′1, . . . , d

′
l

)
, and let

π1(d
′
1) = (d1, D1), . . . , πl(d

′
l) = (dl, Dl). Note that Dι ∈ D

θ(xι)(M,h1(ξι))/≡ι . We

let π(q,p,p′)(d
′) = (d,D) where

d = ρ(d1, . . . , dl) ,

D = {J(θ, e0, e1, . . . , el)K | e0 ∈ D
θ(⋄)(Mθ, ζ), eι ∈ Dι} .

We have to show that our definition of π is sound, i.e., that (d,D) ∈ Dq(G, ξ) ×
D(p,p′)(M, s)/≡(p,p′)

. It is easy to see that d ∈ Dq(G, ξ); and we focus on D. Since

ρθ ∈ R′, we have that there is an e0 ∈ D
θ(⋄)(Mθ, ζ). By the induction hypothesis, Dι

is an equivalence class and, thus, not empty. Hence, D is not empty either, and there is

an e ∈ D. It remains to show that e′ ≡ e iff e′ ∈ D for every e′ ∈ D(p,p′)(M, s). This,

however, is straightforward due to the definition of ≡(p,p′).

Lemma 3.3.7 For every (q, p, p′), the mapping π(q,p,p′) is injective.

PROOF. Let q′ = (q, p, p′) and d′1, d
′
2 ∈ D(q,p,p′)(M ⊳ G, ξ) such that πq′(d

′
1) =

πq′(d
′
2). We show that d′1 = d′2. To this end, let πq′(d

′
1) = (d1, D1) and πq′(d

′
2) =

(d2, D2), and let

π1(d
′
1|1) = (d1,1, D1,1), . . . , πl(d

′
1|l) = (d1,l, D1,l) ,

π1(d
′
2|1) = (d2,1, D2,1), . . . , πl(d

′
2|l) = (d2,l, D2,l) .

We derive

ρ1(d1,1, . . . , d1,l) = d1 = d2 = ρ2(d2,1, . . . , d2,l) ,

which implies

ρ1 = ρ2 , (3.1)

d1,ι = d2,ι . (3.2)

SinceD1 is an equivalence class, it is nonempty, and there is an e ∈ D1. SinceD1 =
D2, we also have e ∈ D2. By definition, there are composition items (θ1, e1,0, . . . , e1,l)
and (θ2, e2,0, . . . , e2,l) with the same composite e. By Lm. 3.3.6, these composition

items coincide and, consequently,

θ1 = θ2 . (3.3)

59

3 Input product for weighted synchronous context-free tree grammars

Furthermore, we obtain that D1,ι and D2,ι share an element (denoted by both e1,ι and

e2,ι). Since these sets are equivalence classes, we conclude that

D1,ι = D2,ι . (3.4)

By the induction hypothesis, (πι)q′ is injective for every q′. Thus, (3.2) and (3.4)

imply d′1|ι = d′2|ι. By (3.1) and (3.3) we obtain d′1(ε) = d′2(ε). �

Lemma 3.3.8 For every (q, p, p′), the mapping π(q,p,p′) is surjective.

PROOF. Let q′ = (q, p, p′) and (d,D) ∈ Dq(G, ξ) × D(p,p′)(M, s)/≡(p,p′)
. We con-

struct a d′ ∈ Dq′(M ⊳ G, ξ) such that πq′(d
′) = (d,D). Since D is an equiva-

lence class, it is nonempty, and there is an e ∈ D. By Lm. 3.3.6, there is a com-

position item (θ, e0, e1, . . . , el) with composite e. By Dι we denote the element of

D(pι,p′ι)(M,h1(ξι))/≡(pι,p
′
ι)

that contains eι, where pι and p′ι are read off from eι in

the obvious way, i.e., such that eι ∈ D
(pι,p′ι)(M,h1(ξι)). By the induction hypothesis,

(πι)q′ is surjective for every q′, and there are d′1, . . . , d
′
l such that πι(d

′
ι) = (d|ι, Dι).

We construct d′ = (d(ε)θ)
(
d′1, . . . , d

′
l

)
.

We show that πq′(d
′) = (d,D). To this end, let πq′(d

′) = (d′, D′). Then d = d′ is

straightforward to show, and we turn to the proof of D = D′. We observe that e ∈ D
(by assumption) and e ∈ D′ (by definition). Since D and D′ are equivalence classes,

the fact that they share an element (namely, e) implies that they are equal. �

Lemma 3.3.9 Let π(q,p,p′)(d
′) = (d,D). Then 〈d′〉 = 〈d〉 ·

∑

e∈D〈e〉.

PROOF. There are ρ and θ such that d′(ε) = ρθ. We let π1(d
′|1) = (d1, D1) up to

πl(d
′|l) = (dl, Dl). Then

〈d′〉 =
(∏

ι〈d
′|ι〉

)
· µ′(ρθ)

=
(∏

ι〈dι〉 ·
(∑

eι∈Dι
〈eι〉

))
· µ(ρ) · JMθK(ζ) (Def. µ′, induction hypothesis)

=
(∏

ι〈dι〉
)
· µ(ρ) · JMθK(ζ) ·

∏

ι

(∑

eι∈Dι
〈eι〉

)
(commutativity)

= 〈d〉 ·
∑

e0∈Dθ(⋄)(Mθ,ζ),e1,...,el : eι∈Dι
〈e0〉 ·

∏

ι〈eι〉 (distributivity)

= 〈d〉 ·
∑

e0∈Dθ(⋄)(Mθ,ζ),e1,...,el : eι∈Dι
〈v′(e0)

I(v(e1), . . . , v(el))〉µM
(commutativity)

= 〈d〉 ·
∑

e∈D〈e〉 . �

60

3.4 An Earley-like algorithm for the input product

3.4 An Earley-like algorithm for the input product

As shown in Ex. 3.3.5, the product WSCFTG M ⊳G of a WTA M and a WSCFTG G
may contain “useless” transitions, in the sense that they do not occur in the computation

of JM ⊳ GK. In this section, we assume that M and G are in root-state form, and we

consider a strategy for enumerating the transitions ofM⊳G that attempts to avoid use-

less transitions. For this, we take inspiration from Earley’s algorithm [60] for parsing

with context-free grammars. Ultimately, this approach leads us to Alg. 3.1. Be advised

that in the worst case, when M ⊳ G does not contain useless transitions, we still have

to construct every transition.

3.4.1 Reasoning about useful transitions

It is possible to compute the set of useful transitions of M ⊳ G: for example, we

can reduce M ⊳ G, as stated in Lm. 2.4.10; then the remaining transitions are useful.

However, this procedure involves exploring the whole set of transitions of M ⊳ G,

which is exactly what we want to avoid. So we settle for an approximation, that is, we

compute a superset of the set of useful transitions. For instance, we can employ the

following simple observation.

Observation 3.4.1 If a transition (q1 · · · qk, α, q) is useful, then the states q1, . . . , qk
and q are reachable.

In other words, if we want to avoid computing useless transitions, then we might focus

on transitions that only contain reachable states, which is reasonably simple.

In the remainder of this section, we will develop a more sophisticated approximation,

which is inspired by Earley’s algorithm. For this, we recall from Sec. 2.4.5 that the

notion of a reachable state is defined in terms of the existence of a certain run of M ⊳
G. We introduce the concept of a base-item tree, which generalizes the concept of a

run. Roughly speaking, base-item trees incorporate the idea that, instead of treating a

transition ρθ ofM⊳G as an atomic entity, we can construct it gradually by performing

a depth-first left-to-right simulation of M on the input tree of ρ.

Example 3.4.2 (Ex. 3.3.5 contd.) Figure 3.7 shows a visualization of two base-item

trees for (q, 0). In general, a base-item tree δ for a pair (q, p) ∈ Q × P has one of

four possible shapes: either it consists only of the state q, or the pair (q, p), or it is a

complete (q, p, p′)-run of M ⊳G for some p′, or its root is labeled by a base item.

A base item represents a partial construction of a transition of M ⊳ G; and for its

description we need the WTA Mζ , which is obtained from M by adding all suitable

transitions for the variables occurring in ζ, each with weight 1. A base item consists of

61

3
In

p
u
t

p
ro

d
u
ct

fo
r

w
ei

g
h
te

d
sy

n
ch

ro
n
o
u
s

co
n
te

x
t-

fr
ee

tr
ee

g
ra

m
m

ar
s

ρ1

x2

S

〈 x1 〉

• 0

2

q ρ3

S

a x1

S

b y1 c

d

(r1r, S, 0)

(0, a, r) • 1 r

1

(f, 1)

ρ1

x2

S

〈 x1 〉

(0, x2, 0)

(r1r, S, 0)

(0, 〈, r) • 1 r

1

(q, 1) ((f, 1, 1), α3, (f, 0, 0))

(ε, α4, (f, 1, 1))

(a) (b)

Figure 3.7: Two base-item trees of Ex. 3.4.2, where the base items are visualized as boxes.

6
2

3.4 An Earley-like algorithm for the input product

a transition ρ ∈ R|q, a partial p-run d of Mζ on the input tree ζ of ρ, a “bullet position”

in d, and an “active index” a. Each base item is visualized as a box whose contents

are, from left to right, ρ, ζ, d, and a. The bullet position is visualized as a • in d. The

run d is of a certain shape: all positions left of the bullet are labeled by a transition; all

positions right of the bullet are labeled by a state. The active index a ranges from 0 to

rk(ρ), and if it is positive, then the bullet is directly in front of the position labeled xa
in ζ; here we use that every position in d is also a position in ζ.

When the root of δ is labeled by a base item for some transition (q1 · · · ql, α, q) of G,

then it has l successors δ1, . . . , δl. If the active index a is positive, then δa is a base-

item tree for (qa, pa) where pa is the state in d directly behind the bullet. If ι 6= a and

(p′, xι, p) occurs in d, then δι is a complete (qι, p, p
′)-run of M ⊳G. If ι 6= a and xι is

right of the bullet, then δι is just qι.

We note that the occurrences of base items in a base-item tree form a “spine”: every

such occurrence is either at the root or a successor of another such occurrence, and then

it is the only successor that is labeled by a base item. �

Now we make the concepts of Ex. 3.4.2 precise. Let ζ ∈ CΣ(m, r1, . . . , rl). Then

the WTA Mζ over Σ ∪ Xl ∪ Ym and S is obtained from M by adding the following

transitions with weight 1:

(p′, xι, p) , (1 ≤ ι ≤ l, p ∈ P , p′ ∈ P rι)

(ε, yι, p) . (1 ≤ ι ≤ m, p ∈ P)

Let d ∈ D(Mζ) be a partial run on ζ. We observe that, for every v ∈ Xl ∪ Ym, d
contains at most one transition with the terminal symbol v. If it does contain such a

transition, then we denote it by d(v). If d does not contain the respective transition,

then the notation d(v) is not defined. Accordingly, whenever we employ the notation,

we imply that the transition be contained.

In the following, when we reason about bullet positions, we will often use the lexi-

cographic order on N
∗ (see Sec. 2.1.3) and denote it by ≤. Let ∆ be an alphabet and V

a set. For every tree t ∈ T∆(V), the set bpos(t) of bullet positions of t is defined by

bpos(t) = {(ε, 0), (ε, 1)} ∪ {(1w, j) | w ∈ pos(t), j ∈ {0, . . . , rkt(w)}} .

Example 3.4.3 We can imagine a bullet position (v, j) of t by means of a tree obtained

from t by putting a special root symbol ⊤ on top and inserting exactly one occurrence

of •, as illustrated in Fig. 3.8. Then v(j+1) is the position of the bullet in the modified

tree, and a position w ∈ pos(t) is left of the bullet if 1w ≤ vj. �

63

3 Input product for weighted synchronous context-free tree grammars

⊤

• δ

α β

⊤

δ

• α β

⊤

δ

α • β

⊤

δ

α β •

⊤

δ

α β

•

(ε, 0) ⊑ (1, 0) ⊑ (1, 1) ⊑ (1, 2) ⊑ (ε, 1)

Figure 3.8: Viewing the bullet as a node in a variant of the tree δ(α, β).

Let • ∈ bpos(t) and • = (v, j). We define two unary predicates on pos(t), “is left

of •” and “is immediately right of •”, as follows. Let w ∈ pos(t). Then we let

w ≤ • ⇐⇒ 1w ≤ vj and • w ⇐⇒ 1w = v(j + 1) .

For every δ ∈ ∆ ∪ V we use δ ≤ • to denote that there is a w ∈ pos(t) such that

t(w) = δ and w ≤ •; and likewise for •δ.

Moreover, we define four partial mappings �, �, �, and � of type bpos(t)→ bpos(t)
as follows.

1. If j < rk⊤(t)(v), then •� = (v, j + 1).

2. If j < rk⊤(t)(v), then •� = (v(j + 1), 0).

3. If j > 0, then •� = (v, j − 1).

4. If v = v′j′ with v′ ∈ N
∗ and j′ ∈ N, then •� = (v′, j′).

Finally, we define the order ⊑ on bpos(t), illustrated in Fig. 3.8, by

(v, j) ⊑ (v′, j′) ⇐⇒ v(j + 1) ≤ v′(j′ + 1) .

In order to facilitate our upcoming considerations, we introduce a new (pseudo) tran-

sition Ω. We let q̂0 6∈ Q, Q̂ = Q ∪ {q̂
(0)
0 }, and Ω = (q0, 〈x1x1〉, q̂0). We note that

Ω 6∈ R. Nevertheless, we will transfer concepts defined for elements of R, such as the

input tree, to Ω as well. This transfer is possible because a WSCFTG with the transition

Ω exists, and said concepts do not depend on the assumption that Ω 6∈ R.

A base item is a quadruple (ρ, d, •, a) such that

(i) ρ ∈ R ∪ {Ω},

(ii) d ∈ D(Mζ) is a partial run on the input tree ζ of ρ,

(iii) • ∈ bpos(d) such that d(w) 6∈ P iff w ≤ • for every w ∈ pos(d),

64

3.4 An Earley-like algorithm for the input product

(iv) a ∈ {0, . . . , rk(ρ)} is called the active index; and if a > 0, then •xa.

We note that we abused notation in the last item. Since • ∈ bpos(d), we also have

• ∈ bpos(ζ), and we interpret •xa in that sense. We will continue to do so. By B

we denote the set of all base items. The same symbol B often denotes the Boolean

semiring, but we will not use this semiring here. We make B a ranked alphabet by

carrying over the rank from the first component of each base item. For every I and ι,
we use I % ι to denote that I ∈ B, ι is the active index of I , and ι > 0.

Recall that R′ is the set of transitions of M ⊳ G. For every (q, p) ∈ Q̂ × P the set

D
(q,p) of base-item trees for (q, p) is a subset of TR′∪B(Q∪(Q×P)), defined as follows.

The family (D(q,p) | (q, p) ∈ Q̂ × P) is the smallest family (D(q,p) | (q, p) ∈ Q̂ × P)
such that for every (q, p) ∈ Q̂× P :

• if q ∈ Q, then (q, p) ∈ D(q,p),

• if q ∈ Q(m) and p′ ∈ Pm, then D
(q,p,p′)
co (M ⊳G) ⊆ D(q,p),

• if I ∈ B, I = (ρ, d, •, a), ρ = (q1 · · · ql, 〈ζζ
′〉, q), πP (d) = p, and, for every

ι ∈ {1, . . . , l},

– if xι ≤ •, then δι ∈ D
(qι,d(xι))
co (M ⊳G);

– if ι = a, then δι ∈ D
(qι,pι) where pι is uniquely determined by •pι,

– otherwise, δι = qι,

then I(δ1, . . . , δl) ∈ D
(q,p).

3.4.2 Item syntax and semantics

Based on the concept of a base-item tree, we can now define refined versions of notions

such as “reachable” and “productive”. Instead of giving each refined notion a proper

name, we use items, i.e., syntactic representations of statements. Now we define the

syntax and semantics of these items.

We begin with a few auxiliary definitions. Let ζ ∈ CΣ(m, r1, . . . , rl) and w ∈
pos(ζ). Aw-assignment θ for ζ is defined like an assignment for ζ, however, its domain

consists only of the variables that occur in ζ|w. Let d ∈ D(Mζ) be a partial run on ζ.

We say that θ and d agree if θ(v) = d(v) for every symbol v in the domain of θ.

Let ρ ∈ R and ρ = (q1 · · · ql, 〈ζζ
′〉, q). Then we set Mρ = Mζ , pos(ρ) = pos(ζ),

and rkρ(w) = rkζ(w) for every w ∈ pos(ζ). An assignment for ρ is an assignment

for ζ, and likewise for w-assignments.

For every i ∈ {0, . . . , 5}, we define the set Ii of items of type i as follows:

65

3 Input product for weighted synchronous context-free tree grammars

Ω x1 • 0 1

Figure 3.9: Root base item.

• I0 = {(q, p) | q ∈ Q, p ∈ P},

• I1 = {[q, p, p
′] | ∃m : q ∈ Q(m), p ∈ P, p′ ∈ Pm},

• I2 = {[ρ, w, p, θ] | ρ ∈ R,w ∈ pos(ρ), p ∈ P, θ is a w-assignment for ρ},

• I3 = {[ρ, w, p] | ρ ∈ R,w ∈ pos(ρ), p ∈ P},

• I4 = {[ρ, w, j, p, p
′] | ρ ∈ R,w ∈ pos(ρ), rkρ(w) = k,

j ∈ {0, . . . , k}, p ∈ P, p′ ∈ P k},

• I5 = {(ρ, w, p) | ρ ∈ R,w ∈ pos(ρ), p ∈ P}.

The set I of items is
⋃

i Ii. Note that this is a disjoint union. We define the mapping

type : I→ {0, . . . , 5} such that, for every I ∈ I, type(I) is the unique i with I ∈ Ii.

We define the models relation as the smallest relation

|= ⊆ {(δ, ω) | δ ∈ D
(q̂0,p0), ω ∈ pos(δ)} × I

such that for every assignment of the free variables the following statements hold:

(δ, ω) |= (q, p) if δ(ω) % ι and δ(ωι) = (q, p);

(δ, ω) |= [q, p, p′] if δ(ω) % ι and δ|ωι ∈ D
(q,p,p′)
co (M ⊳G);

(δ, ω) |= [ρ,w, p, θ] if δ(ω) = (ρ, d, •�, 0), •w, d|w ∈ D
p(Mρ, ζ|w), and θ and d

agree;

(δ, ω) |= [ρ,w, p] if (δ, ω) |= [ρ, w, p, θ];

(δ, ω) |= [ρ,w, j, p, p′] if δ(ω) = (ρ, d, (1w, j), 0) and d(w) = (p′, ζ(w), p);

(δ, ω) |= (ρ,w, p) if δ(ω) = (ρ, d, •, 0), •w, and d(w) = p.

We denote the models relation by |=. An item I is valid if (δ, ω) |= I for some δ and ω;

and it is invalid if it is not valid.

66

3.4 An Earley-like algorithm for the input product

Example 3.4.4 (Ex. 3.4.2 contd.) Let δ1 and δ2 be obtained from the base-item trees

shown in Fig. 3.7 (a) and (b), respectively, by putting the base item from Fig. 3.9 on

top. Then we have, e.g.,

(δ1, 12) |= [ρ3, ε, 1, 0, r1r] , (δ2, 1) |= [ρ1, 1, 1, 0, r1r] ,

(δ1, 12) |= [ρ3, 1, r, ∅] , (δ2, 1) |= [ρ1, 11, r, ∅] ,

(δ1, 12) |= [ρ3, 1, r] , (δ2, 1) |= [ρ1, 11, r] ,

(δ1, 12) |= (ρ3, 2, 1) , (δ2, 1) |= (ρ1, 12, 1) ,

(δ1, 12) |= (f, 1) , (δ2, 1) |= (q, 1) .

We compare our refined notion of reachability with the classical one; more specifically,

we compare the two statements

(a) the item (q, 1) is valid and (b) the state (q, 1) is reachable .

The statements are true because (a) (δ2, 1) |= (q, 1) and (b) ρ′1((q, 1), (f, 0, 0)) ∈
D(q,0)(M ⊳ G), where ρ′1 is the transition that stems from ρ1 via the obvious state

augmentation. In δ2, we do not yet see whether the base item for ρ1 can be extended

to a transition such as ρ′1. In this sense, (a) is a weaker statement than (b). On the

other hand, we see in δ2 that the state for x2 is productive. In this sense, (a) is stronger

than (b). �

We observe that both the set D(q̂0,p0) and the set D(q0,p0)(M ⊳G) can be viewed as

superset approximations of D
(q0,p0)
co (M ⊳G) – albeit with different degrees of sophis-

tication. Hence, we can transfer Obs. 3.4.1 to our new setting, as follows.

Lemma 3.4.5 If a transition ρθ of M ⊳G is useful, then [ρ, ε, θ(⋄), θ′] is valid, where

θ′ is obtained from θ by removing ⋄ from its domain.

PROOF. Let ρθ be a useful transition of M ⊳G. Then there are d′ ∈ D
(q0,p0)
co (M ⊳G)

and ω ∈ pos(d′) such that d′(ω) = ρθ. We will construct a δ such that (δ, 1ω) |=
[ρ, ε, θ(⋄), θ′]. For this, we “prune” d′, removing parts that are not licensed by the

definition of a base-item tree.

To this end, let ω = (ω1, . . . , ωn), ρ1, . . . , ρn+1 ∈ R, and θ1, . . . , θn+1 state as-

signments such that ρjθj = d′(ω1 · · ·ωj−1). Then there are d1, . . . , dn+1 such that

dj ∈ D
θj(⋄)(Mθj , ζj) where ζj is the input tree of ρj . We define trees δ1, . . . , δn+1 in-

ductively. To this end, let j ∈ {1, . . . , n+1} and ρj = (q1 · · · ql, 〈ζζ
′〉, q). If j = n+1,

then we let

δj = (ρj , dj , (ε, 1), 0)
(
d′|ω1, . . . , d

′|ωl
)

.

67

3 Input product for weighted synchronous context-free tree grammars

Otherwise, we let w = (w1, . . . , wm) be the position in ζ labeled xωj
, and we define

trees d̂1, . . . , d̂m+1 inductively. For this, let ̂ ∈ {1, . . . ,m+1} and dj(w1 · · ·wj−1) =

(p1 · · · pk, σ, p). If ̂ = m+ 1, then we let d̂̂ = p. Otherwise, we let

d̂̂ = (p1 · · · pk, σ, p)
(
d′1, . . . , d

′
k

)
,

where d′j′ = dj |w1···ŵ−1j′ if j′ < ŵ, it is d̂̂+1 if j′ = ̂, and it is pj′ otherwise. Now

we let

δj = (ρj , d̂1, •, ωj)
(
δ′1, . . . , δ

′
l

)
,

where

• the bullet position • is determined by •w, and

• δ′ι is d′|ω1···ωj−1ι if xι occurs in ζ strictly left of xωj
, it is δj+1 if ι = ωj , and it is

qι otherwise.

We let δ = (Ω, p0, (ε, 0), 1)
(
δ1
)
. We omit the proof of (δ, 1ω) |= [ρ, ε, θ(⋄), θ′]. �

3.4.3 Algorithm

Lemma 3.4.5 implies that, when we compute every valid item of the form [ρ, ε, p, θ],
then we can read off a superset of the useful transitions of M ⊳ G. This is the basic

approach of our algorithm, Alg. 3.1.

The algorithm proceeds in two steps. In the first step (Lines 1–4), it computes the set

of all valid items by means of the deductive system shown in Fig. 3.10. As usual, the

deductive system consists of inference rules, each one being a syntactic representation

of a conditional implication [89, 142]. Since there are only finitely many items, this

process will terminate. Roughly speaking, the items drive a depth-first left-to-right

simulation of M on the input trees of transitions of G. Items with round brackets are

responsible for top-down traversal, and items with square brackets are responsible for

horizontal and bottom-up traversal. In the second step (Lines 5–9), we use the items to

construct transitions of M ⊳G, together with their weights.

Example 3.4.6 (Ex. 3.3.1 contd.) We demonstrate the inference rules of Fig. 3.10 by

showing the generation of items for the transition ρ3 of G. In Fig. 3.11 we show the in-

put tree ζ of ρ3 in bold-face letters and lines. On top of this syntactic structure, we have

drawn another graph, consisting of items and arrows. Close to every position w of ζ,

we have placed those items that involve w. The arrows show the dependencies between

the items as they are expressed by the rules of the deduction schema. Finally, we note

68

3.4 An Earley-like algorithm for the input product

(1)
(q0, p0)

(2)
(q, p)

(ρ, ε, p)

(3)
(q, p) [ρ, ε, p, θ]

[q, p, p′]

{
p′ = (θ(y1), . . . , θ(ym))

(4)
(ρ, w, p)

[ρ, w, 0, p, p′]

{

(p′, ζ(w), p) ∈ R
(rkζ(w))
M

(5)
[ρ, w, j, p, (p1, . . . , pk)]

(ρ, w(j + 1), pj+1)

{
0 ≤ j < k

(6)
[ρ, w, j, p, (p1, . . . , pk)] [ρ, w(j + 1), pj+1]

[ρ, w, j + 1, p, (p1, . . . , pk)]

{
0 ≤ j < k

(7)
[ρ, w, p, θ]

[ρ, w, p]

(8)
(ρ, w, p)

(qι, p)

{
ζ(w) = xι

(9)
(ρ, w, p) [qι, p, p

′]

[ρ, w, 0, p, p′]

{
ζ(w) = xι

(10)
(ρ, w, p)

[ρ, w, p, {yι 7→ p}]

{
ζ(w) = yι

(11)

[ρ, w, k, p, p′]
[ρ, w1, p1, θ1]
· · · [ρ, wk, pk, θk]

[ρ, w, p, θ ∪ θ1 ∪ · · · ∪ θk]

{
p′ = (p1, . . . , pk)

where θ = {ζ(w) 7→ (p, p′)} if ζ(w) ∈ X , and

θ = ∅ otherwise

Note: we assume that ρ ∈ R, ρ = (q1 · · · ql, 〈ζζ
′〉, q), and q ∈ Q(m).

Figure 3.10: Deductive parsing schema for the input product.

69

3 Input product for weighted synchronous context-free tree grammars

Algorithm 3.1 Product construction algorithm.

Require: a WSCFTG G and a WRTG M with

G = (Q,R, µ, q0) and

M = (P,RM , µM , p0),
Ensure:

Ru contains at least the useful transitions of M ⊳G,

µu coincides with the weight assignment of M ⊳G on Ru

⊲ step 1: compute I
1: I ← ∅
2: repeat

3: add items to I by applying the rules in Fig. 3.10

4: until convergence

⊲ step 2: compute transitions

5: Ru ← ∅
6: for [ρ, ε, p, θ] ∈ I do

7: θ′ ← θ ∪ {⋄ 7→ p}
8: Ru ← Ru ∪ {ρθ

′}
9: µu(ρθ

′)← µ(ρ) · JMθ′K(ζ) where ζ is the input tree of ρ

that the deduction schema in Fig. 3.10 can be considered as an attribute grammar [107,

63, 48] that is based on a macro grammar rather than a context-free grammar. From

this perspective, Fig. 3.11 shows the dependency graph on ζ, where the items are the

attribute occurrences and the arrows are the attribute dependencies. �

The following theorem describes the behavior of Alg. 3.1.

Theorem 3.4.7 LetG be a WSCFTG andM a WTA, both in root-state form. Moreover,

let M ⊳G = (Q′, R′, µ′, q′0), RU the set of useful transitions of M ⊳G, and (Ru, µu)
the output of Alg. 3.1. Then

• Ru ⊆ R
′ and µu = µ′|Ru , i.e., the algorithm is correct;

• RU ⊆ Ru, i.e., the algorithm is complete.

PROOF. Follows from Lms. 3.4.11 and 3.4.12, which we show in Sec. 3.4.4. �

Now we analyze the worst-case space and time complexity of the first step. To this

end, we assume that each item occupies unit space. Following [136] we determine the

space complexity by the number of items, and we determine the time complexity by the

number of instantiations of the inference rules.

70

3
.4

A
n

E
arley

-lik
e

alg
o
rith

m
fo

r
th

e
in

p
u
t

p
ro

d
u
ct

(ρ3, ε, 0) S
[ρ3, ε, 0]

[ρ3, ε, 0, θ2]

(ρ3, 1, r) a
[ρ3, 1, r]

[ρ3, 1, r, ∅]
(ρ3, 2, 1) x1

[ρ3, 2, 1]

[ρ3, 2, 1, θ2]
(ρ3, 3, r) d

[ρ3, 3, r]

[ρ3, 3, r, ∅]

(ρ3, 21, 1) S
[ρ3, 21, 1]

[ρ3, 21, 1, θ1]

(ρ3, 211, r) b
[ρ3, 211, r]

[ρ3, 211, r, ∅]
(ρ3, 212, 1) ∗

[ρ3, 212, 1]

[ρ3, 212, 1, θ1]
(ρ3, 213, r) c

[ρ3, 213, r]

[ρ3, 213, r, ∅]

[ρ3, ε, 0, 0, r1r] [ρ3, ε, 1, 0, r1r] [ρ3, ε, 2, 0, r1r] [ρ3, ε, 3, 0, r1r]

[ρ3, 1, 0, r, ε]

[ρ3, 2, 0, 1, 1] [ρ3, 2, 1, 1, 1]

[ρ3, 3, 0, r, ε]

[ρ3, 21, 0, 1, r0r] [ρ3, 21, 1, 1, r0r] [ρ3, 21, 2, 1, r0r] [ρ3, 21, 3, 1, r0r]

[ρ3, 211, 0, r, ε] [ρ3, 213, 0, r, ε]

[f, 1, 1]

(f, 1)

[f, 0, 0]

(f, 0)

Figure 3.11: Item generation on the transition ρ3 of Ex. 3.3.1, where θ1 = {y1 7→ 0} and θ2 = {y1 7→ 0, x1 7→ (1, 1)}.

7
1

3 Input product for weighted synchronous context-free tree grammars

In our case, the space complexity is either dominated by I2 or I4, and we have |I2| ∈
O
(
|G|in ·|P |

C
)

and |I4| ∈ O
(
|G|in ·|RM |

)
. Here, the factor |G|in denotes the input size

of G, defined by
∑

ρ∈R |pos(ζ(ρ))|, where ζ(ρ) is the input tree of ρ. It captures the

components ρ and w (ρ, w, and j, respectively) in said items, which together identify

exactly one node of an input tree of G. The factor |RM | captures the components p
and p1 · · · pk. Finally, the factor |P |C captures p and θ, where C is given at the end of

Sec. 3.3.2.

In the worst case, which is what we consider here, the algorithm obviously uses more

space than the resulting M ⊳G. The reason is that we need extra space to manage the

depth-first left-to-right traversal. It is our hope, however, that this traversal pays off in

the average case, and that a lot of useless rules can be avoided.

The time complexity is dominated by Rule 12; so it is in O(|G|in · |RM | · |P |
C),

where |P |C captures the union θ ∪ θ1 ∪ · · · ∪ θk, which is disjoint, because the input

tree of any rule is linear in X ∪ Y .

3.4.4 Correctness and completeness

In this section, we show that Alg. 3.1 is correct and complete. We follow a top-down ap-

proach, that is, we prove higher-level statements first and auxiliary statements second.

Formally, we view the deductive system as a relation

R ⊆ I
∗ × I .

Figure 3.10 specifies this relation in terse form, and it translates into

R = {(ε, (q0, p0))} ∪ {((q, p), (ρ, ε, p)) | ρ ∈ R|q, q ∈ Q, p ∈ P} ∪ . . .

We define the mapping F : P(I)→ P(I) such that, for every I ⊆ I, F(I) is the set of

all items that can be generated by applying inference rules to items in I, i.e.,

F(I) = {I | ∃n ∈ N, I1, . . . , In ∈ I : (I1 · · · In, I) ∈ R} .

Then the set I after Line 4 of Alg. 3.1 is the set
⋃

iF
i(∅). We show that the deductive

system is correct and complete; that is, we show the following theorem.

Theorem 3.4.8 Let I⋆ ⊆ I be the set of all valid items, and I ⊆ I be the set of items

computed in Alg. 3.1, i.e., I =
⋃

iF
i(∅). Then

• I ⊆ I⋆, i.e., the deductive system is correct; and

• I⋆ ⊆ I, i.e., the deductive system is complete.

72

3.4 An Earley-like algorithm for the input product

PROOF. Correctness (by contradiction): assume that
⋃

iF
i(∅) contains an invalid item.

Then there is a minimal i such that F i(∅) contains an invalid item. Let I be such an

item. If i = 0, then I ∈ ∅, which is a contradiction. Thus i > 0. Then there are n ∈ N

and I1, . . . , In ∈ F
i−1(∅) such that (I1 · · · In, I) ∈ R. Assume for the time being that

I1, . . . , In ∈ I⋆. By Lm. 3.4.9, also I ∈ I⋆, which is a contradiction. Hence, there is

a j such that Ij is invalid. But Ij ∈ F
i−1(∅), and thus i is not minimal, which is our

final contradiction.

Completeness (by contradiction): assume that I⋆ \ I is not empty. Then the set

C = {(I, δ, ω) | (δ, ω) |= I, I 6∈ I}

is not empty. Let ⊑ be the well-founded order postulated in Lm. 3.4.10. Since C 6=
∅, this set has a minimal element with respect to ⊑, say (I, δ, ω). By said lemma,

there are (I1, δ1, ω1), . . . , (In, δn, ωn) such that (I1 · · · In, I) ∈ R, (δj , ωj) |= Ij , and

(Ij , δj , ωj) ⊑ (I, δ, ω). Assume for the time being that I1, . . . , In ∈ I. Then there

is an i such that I1, . . . , In ∈ F
i(∅). Since (I1 · · · In, I) ∈ R, I ∈ F i+1(∅), and

thus I ∈ I, which contradicts our assumption that (I, δ, ω) ∈ C. Hence, there is a j
such that Ij 6∈ I. It is easy to see from the definition of R that Ij 6= I , and thus

(Ij , δj , ωj) 6= (I, δ, ω). But then (Ij , δj , ωj) is strictly smaller than (I, δ, ω), which

contradicts our assumption that (I, δ, ω) is minimal. �

Lemma 3.4.9 Let (I1 · · · In, I) ∈ R, and let (δ1, ω1) |= I1, . . . , (δn, ωn) |= In. Then

there is a pair (δ, ω) such that (δ, ω) |= I .

Instead of a full proof, we only consider how to construct (δ, ω). To this end, we use

a terse notation, like in the deductive system itself. The construction is shown in Figs.

3.12 and 3.13. We employ the following auxiliary definitions.

Let ρ ∈ R, ρ = (q1 · · · ql, 〈ζζ
′〉, q), δ1 ∈

⋃

pD
(q,p), δ1(ε) = (ρ, d, •, 0), w ∈ pos(d),

•w, p ∈ P , and d(w) = p.

− Let r ∈ R
(rkζ(w))
M , r = (p′, ζ(w), p), and p′ = (p1, . . . , pk). We write (δ1, r)

(4)
−−→ δ

to indicate that

δ = (ρ, d[r(p1, . . . , pk)]w, •�, 0)
(
δ1|1, . . . , δ1|l

)
.

− Let δ2 ∈
⋃

pD
(q,p), δ2(ε) = (ρ, d2, •�, 0), and d2|w ∈ Dp(Mρ, ζ|w). Then

(δ1, δ2)
(6)
−−→ δ means

δ = (ρ, d[d2|w]w, •�, 0)
(
δ′1, . . . , δ

′
l

)
,

where δ′ι is δ1|ι if xι does not occur in ζ|w; otherwise δ′ι is δ2|ι.

73

3 Input product for weighted synchronous context-free tree grammars

(1)
((Ω, p0, (ε, 0), 1)

(
(q0, p0)

)
, ε) |= (q0, p0)

(2)
(δ1, ω1) |= (q, p)

(δ1[(ρ, p, (ε, 0), 0)
(
q1, . . . , ql

)
]ω1ι, ω1ι) |= (ρ, ε, p)

{ δ1(ω1) % ι

(4)
(δ1, ω1) |= (ρ, w, p)

(δ1[δ]ω1 , ω1) |= [ρ, w, 0, p, p′]

{

r = (p′, ζ(w), p) r ∈ R
(rkζ(w))
M

(δ1|ω1 , r)
(4)
−−→ δ

(5)
(δ1, ω1) |= [ρ, w, j, p, (p1, . . . , pk)]

(δ1, ω1) |= (ρ, w(j + 1), pj+1)

{
0 ≤ j < k

(7)
(δ1, ω1) |= [ρ, w, p, θ]

(δ1, ω1) |= [ρ, w, p]

(8)
(δ1, ω1) |= (ρ, w, p)

(δ1[δ]ω1 , ω1) |= (qι, p)

{

ζ(w) = xι δ1|ω1

(8)
−−→ δ

(10)
(δ1, ω1) |= (ρ, w, p)

(δ1[δ]ω1 , ω1) |= [ρ, w, p, {yι 7→ p}]

{

ζ(w) = yι

δ1|ω1

(10)
−−→ δ

Note: we assume that ρ ∈ R, ρ = (q1 · · · ql, 〈ζζ
′〉, q), and q ∈ Q(m).

Figure 3.12: Construction for Lm. 3.4.9 (continued in Fig. 3.13).

74

3
.4

A
n

E
arley

-lik
e

alg
o
rith

m
fo

r
th

e
in

p
u
t

p
ro

d
u
ct

(3)
(δ1, ω1) |= (q, p) (δ2, ω2) |= [ρ, ε, p, θ′]

(δ1[(ρθ)(δ2|ω21, . . . , δ2|ω2l

)
]ω1ι, ω1) |= [q, p, p′]

{
p′ = (θ′(y1), . . . , θ

′(ym))
δ1(ω1) % ι θ = θ′ ∪ {⋄ 7→ p}

(6)
(δ1, ω1) |= [ρ, w, j, p, (p1, . . . , pk)] (δ2, ω2) |= [ρ, w(j + 1), pj+1]

(δ1[δ]ω1 , ω1) |= [ρ, w, j + 1, p, (p1, . . . , pk)]

{

0 ≤ j < k

(δ1|ω1 , δ2|ω2)
(6)
−−→ δ

(9)
(δ1, ω1) |= (ρ, w, p) (δ2, ω2) |= [qι, p, p

′]

(δ1[δ]ω1 , ω1) |= [ρ, w, 0, p, p′]

{

ζ(w) = xι δ2(ω2) % ι′

(δ1|ω1 , δ2|ω2ι′)
(9)
−−→ δ

(11)

(δ′, ω′) |= [ρ, w, k, p, p1 · · · pk]
(δ1, ω1) |= [ρ, w1, p1, θ1]
· · · (δk, ωk) |= [ρ, wk, pk, θk]

(δ′[δ]ω′ , ω′) |= [ρ, w, p, θ ∪ θ1 ∪ · · · ∪ θk]

{

p′ = (p1, . . . , pk)

(δ1|ω1 , . . . , δk|ωk
, δ′|ω′)

(11)
−−→ δ

where θ is defined as in Fig. 3.10.

Note: we assume that ρ ∈ R, ρ = (q1 · · · ql, 〈ζζ
′〉, q), and q ∈ Q(m).

Figure 3.13: Continuation of Fig. 3.12.

7
5

3 Input product for weighted synchronous context-free tree grammars

− Let ζ(w) = xa. Then δ1
(8)
−−→ δ means

δ = (ρ, d, •, a)
(
δ′1, . . . , δ

′
l

)
,

where δ′ι is δ1|ι if ι 6= a, and δ′a is (qa, p).

− Let ζ(w) = xι, qι ∈ Q
(m), p′ ∈ Pm, δ2 ∈ D

(qι,p,p′)
co (M⊳G), and p′ = (p1, . . . , pm).

Then (δ1, δ2)
(9)
−−→ δ shall mean

δ = (ρ, d[(p′, xι, p)
(
p1, . . . , pm

)
]w, •�, 0)

(
δ′1, . . . , δ

′
l

)
,

where δ′ι′ is δ1|ι′ if ι′ 6= ι, and δ′ι′ is δ2 otherwise.

− Let ζ(w) = yι. Then δ1
(10)
−−→ δ means

δ = (ρ, d[(ε, yι, d(w))]w, •�, 0)
(
δ1|1, . . . , δ1|l

)
.

− Let r = (p′, ζ(w), p), p′ ∈ P (rkζ(w)), p′ = (p1, . . . , pk), δ1, . . . , δk, δ
′ ∈

⋃

pD
(q,p),

δ1(ε) = (ρ, d1, •1, 0), . . . , δk(ε) = (ρ, dk, •k, 0), δ
′(ε) = (ρ, d, •k, 0), w ∈ pos(d),

d(w) = r, •j = (1w, j), and dj |wj ∈ Dpj (Mρ, ζ|wj). Then (δ1, . . . , δk, δ
′)

(11)
−−→ δ

means

δ = (ρ, d[r(d1|w1, . . . , dk|wk)]w, •k�, 0)
(
δ′1, . . . , δ

′
l) ,

where δ′ι is δ|ι if xι does not occur in ζ|w; otherwise δ′ι is δj |ι where j is the unique

integer such that xι occurs in ζ|wj .
This finishes our proof sketch for Lm. 3.4.9. Now we turn to the lemma that we use

to prove completeness of the deductive system. To this end, we define I
′ = {(I, δ, ω) |

I ∈ I, δ ∈ D
(q̂0,p0), ω ∈ pos(δ)}.

Lemma 3.4.10 There is a well-founded order ⊑ on I
′ such that the following holds.

Let (δ, ω) |= I . Then there are (I1, δ1, ω1), . . . , (In, δn, ωn) ∈ I
′ such that

• (I1 · · · In, I) ∈ R,

• (δj , ωj) |= Ij , and

• (Ij , δj , ωj) ⊑ (I, δ, ω).

Again, we will not provide a full proof, but the definition for ⊑ and the construction of

(I1, δ1, ω1), . . . , (In, δn, ωn).
First we define the order ⊑. As intermediate steps, we will define an order on

⋃

(q,p)D
(q,p) and one on B as well. As a basis, we will refer back to the order ⊑ on

76

3.4 An Earley-like algorithm for the input product

Dpr(Mρ) for some ρ (see Sec. 2.4.3) and the order ⊑ on bpos(d) for some d. As is

becoming evident now, we keep reusing the symbol ⊑. This avoids clutter, and it is

warranted, because the underlying sets are disjoint and the definitions are adjacent and

only relevant for the purpose of the proof.

We define the binary relation ⊑ on B by letting I ⊑ I ′ if there are ρ, d, d′, •, •′, a,

and a′ such that I = (ρ, d, •, a), I ′ = (ρ, d′, •′, a′), d ⊑ d′, • ⊑ •′, and a ≤ a′. We

define the binary relation ⊑ on the set
⋃

(q,p)D
(q,p) inductively by letting δ ⊑ δ′ if one

of the following statements holds:

• there is a (q, p) ∈ Q× P such that δ = q and δ′ ∈ D
(q,p),

• there is a (q, p) ∈ Q× P such that δ = (q, p) and δ′ ∈ D
(q,p) \ {q},

• there are I ∈ B, I ′ ∈ B, δ1, . . . , δl, and δ′1, . . . , δ
′
l such that δ = I(δ1, . . . , δl),

δ′ = I ′(δ′1, . . . , δ
′
l), I ⊑ I

′, and δj ⊑ δ
′
j ,

• there are I ∈ B, ρ′ ∈ R′, δ1, . . . , δl, and δ′1, . . . , δ
′
l such that δ = I(δ1, . . . , δl),

δ′ = ρ′(δ′1, . . . , δ
′
l), and δj ⊑ δ

′
j ,

• there are ρ ∈ R′, δ1, . . . , δl, and δ′1, . . . , δ
′
l such that δ = ρ(δ1, . . . , δl), δ

′ =
ρ(δ′1, . . . , δ

′
l), and δj ⊑ δ

′
j .

Finally, we define the binary relation ⊑ on I
′ by letting (I, δ, ω) ⊑ (I ′, δ′, ω′) if one

of the following statements holds:

• |pos(δ)| < |pos(δ′)|,

• |pos(δ)| = |pos(δ′)|, δ 6= δ′, and δ ⊑ δ′,

• |pos(δ)| = |pos(δ′)|, δ = δ′, and type(I) < type(I ′),

• |pos(δ)| = |pos(δ′)|, δ = δ′, type(I) = type(I ′), and ω ≤ ω′.

We omit the proof that ⊑ is indeed a well-founded order on I
′.

Now we show the construction of (I1, δ1, ω1), . . . , (In, δn, ωn). To this end, we use

a terse notation again. The construction is shown in Figs. 3.14 and 3.15. Note that for

every possible triple (I, δ, ω), there is a rule in these figures that can be applied to that

triple. In one case, this is not immediately apparent, namely, if I has the form (q, p).
Then we distinguish two cases. Either ω = ε; then I and δ are uniquely determined,

and we can apply Rule (1). Or there are ω′ ∈ N
∗ and j ∈ N such that ω = ω′j; then we

can apply Rule (8). We employ the following auxiliary definition.

Let ρ ∈ R, ρ = (q1 · · · ql, 〈ζζ
′〉, q), d a partial run of Mζ on ζ, w ∈ pos(d), and

δ ∈
⋃

pD
(q,p).

77

3 Input product for weighted synchronous context-free tree grammars

(1)
((Ω, p0, (ε, 0), 1)

(
(q0, p0)

)
, ε) |= (q0, p0)

(2)
(δ, ω) |= (ρ, ε, p)

(δ[(q, p)]ω, ω) |= (q, p)

(4)
(δ, ω) |= [ρ, w, 0, p, p′]

(δ[δ1]ω, ω) |= (ρ, w, p)

{

(p′, ζ(w), p) ∈ R
(rkζ(w))
M

δ1
(4)
←−− δ|ω

(5)
(δ, ω) |= (ρ, w(j + 1), pj+1)

(δ, ω) |= [ρ, w, j, p, (p1, . . . , pk)]

{
0 ≤ j < k

(7)
(δ, ω) |= [ρ, w, p]

(δ, ω) |= [ρ, w, p, θ]

{
δ(ω) = (ρ, d, v, j)
θ and d agree

(8)
(δ, ω) |= (qι, p)

(δ[δ1]ω, ω) |= (ρ, w, p)

{

ω 6= ε

δ1
(8)
←−− δ|ω

(9)
(δ, ω) |= [ρ, w, 0, p, p′]

(δ[δ1]ω, ω) |= (ρ, w, p) (δ[δ2]ω, ω) |= [qι, p, p′]

{

ζ(w) = xι

(δ1, δ2)
(9)
←−− δ|ω

(10)
(δ, ω) |= [ρ, w, p, θ]

(δ[δ1]ω, ω) |= (ρ, w, p)

{

ζ(w) = yι

δ1
(10)
←−− δ|ω

Note: we assume that ρ ∈ R, ρ = (q1 · · · ql, 〈ζζ
′〉, q), and q ∈ Q(m).

Figure 3.14: Construction for Lm. 3.4.10 (continued in Fig. 3.15).

78

3
.4

A
n

E
arley

-lik
e

alg
o
rith

m
fo

r
th

e
in

p
u
t

p
ro

d
u
ct

(3)
(δ, ω) |= [q, p, p′]

(δ[(q, p)]ωι, ω) |= (q, p) (δ[(ρ, d, ε, 1)
(
δ|ω1, . . . , δ|ωl

)
]ω, ω) |= [ρ, ε, p, θ]

δ(ω) % ι ρθ′ = δ(ωι)

d ∈ Dθ′(⋄)(Mθ′, ζ)
θ and d agree

(6)
(δ, ω) |= [ρ, w, j, p, (p1, . . . , pk)]

(δ[δ1]ω, ω) |= [ρ, w, j − 1, p, (p1, . . . , pk)] (δ, ω) |= [ρ, wj, pj]

{

0 < j ≤ k

δ1
(6)
←−− δ|ω

(11)
(δ, ω) |= [ρ, w, p, θ]

(δ[δk]ω, ω) |= [ρ, w, k, p, p′]
(δ[δ1]ω, ω) |= [ρ, w1, p1, θ|w1]
· · · (δ[δk]ω, ω) |= [ρ, wk, pk, θ|wk]

{

(δ1, . . . , δk, p
′)

(11)
←−− δ|ω

p′ = (p1, . . . , pk)

where θ|wj is θ restricted to the variables occurring in ζ|wj

Note: we assume that ρ ∈ R, ρ = (q1 · · · ql, 〈ζζ
′〉, q), and q ∈ Q(m).

Figure 3.15: Continuation of Fig. 3.14.

7
9

3 Input product for weighted synchronous context-free tree grammars

− Let δ(ε) = (ρ, d, •�, 0) and •w. When we write δ1
(4)
←−− δ, we mean that

δ1 = (ρ, d[πP (d|w)]w, •, 0)
(
δ|1, . . . , δ|l

)
.

− Let δ(ε) = (ρ, d, •�, 0), •w, p ∈ P , and d|w ∈ Dp(Mρ, ζ|w). When we write

δ1
(6)
←−− δ, we mean

δ1 = (ρ, d[p]w, •, 0)
(
δ′1, . . . , δ

′
l

)
,

where δ′ι is δ1|ι if xι does not occur in ζ|w, and δ′ι is qι otherwise.

− Let δ(ε) = (ρ, d, •, a) and a > 0. Then δ1
(8)
←−− δ means

δ1 = (ρ, d, •, 0)
(
δ′1, . . . , δ

′
l) ,

where δ′ι is δ1|ι if ι 6= a, and δ′a = qa.

− Let δ(ε) = (ρ, d, •�, 0), •w, and d(w) = (p′, xa, p). By (δ1, δ2)
(9)
←−− δ, we mean

δ1 = (ρ, d[p]w, •, 0)
(
δ′1, . . . , δ

′
l

)
,

δ2 = (ρ, d[p]w, •, a)
(
δ|1, . . . , δ|l

)
,

where δ′ι is δ1|ι if ι 6= a, and δ′a = qa.

− Let δ(ε) = (ρ, d, •�, 0), •w, and d(w) = (ε, yι, p). By δ1
(10)
←−− δ, we mean

δ1 = (ρ, d[p]w, •, 0)
(
δ|1, . . . , δ|l

)
.

− Let δ(ε) = (ρ, d, •�, 0), •w, and d(w) = (p1 · · · pk, ζ(w), p). Let w1, . . . , wl be the

positions in ζ labeled x1, . . . , xl, respectively. By (δ1, . . . , δk, p
′)

(11)
←−− δ, we mean

p′ = (p1, . . . , pk) ,

δj = (ρ, dj , (1w, j), 0)
(
δ′j1, . . . , δ

′
jl

)
,

where

• dk = d and dj−1 = dj [pj]wj ,

• δ′jι is δ|ι if wι ≤ wj, and δ′jι is qι otherwise.

This finishes our proof sketch for Lm. 3.4.10.

Next we show that Alg. 3.1 is correct.

80

3.5 Conclusion, discussion, and outlook

Lemma 3.4.11 LetM⊳G = (Q′, R′, µ′, q′0) and (Ru, µu) the output of Alg. 3.1. Then

Ru ⊆ R
′ and µu = µ′|Ru .

PROOF. Let ρ′ ∈ Ru. By Line 8, there are ρ ∈ R, an ε-assignment θ for ρ, and a p ∈ P
such that [ρ, ε, p, θ] ∈ I, and ρ′ = ρθ′ with θ′ = θ ∪ {⋄ 7→ p}. It remains to show

that ζ ∈ L(Mθ′), where ζ is the input tree of ρ, and that µu(ρ
′) = µ′(ρ′). The latter is

trivial because of Line 9 of the algorithm. We focus on the former.

By Thm. 3.4.8, we have that there is a pair (δ, ω) such that (δ, ω) |= [ρ, ε, p, θ]. That

is, there is a d such that δ(ω) = (ρ, d, ε, 1), d ∈ Dp(Mρ, ζ), and θ and d agree. It is

easy to see that then d ∈ Dp(Mθ′, ζ). �

Now we show that the algorithm is complete.

Lemma 3.4.12 Let RU be the set of useful transitions of M ⊳ G and (Ru, µu) the

output of Alg. 3.1. Then RU ⊆ Ru.

PROOF. This lemma is a direct consequence of Lm. 3.4.5, Thm. 3.4.8, and Line 8 of

the algorithm. �

3.5 Conclusion, discussion, and outlook

We have defined WSCFTGs, we have shown that the class of meanings of WSCFTGs is

closed under input and output product with recognizable weighted tree languages, and

we have considered an Earley-like algorithm for computing the corresponding product

WSCFTG.

Originally, context-free tree grammars (CFTGs) have been defined in [160, 67, 68],

and from that perspective, our WSCFTGs are simple; which refers to the require-

ment that each of the variables y1, . . . , ym shall occur exactly once in every tree in

CΣ(m, r1, . . . , rl). Synchronous CFTGs have already been defined in [146], with the

same requirement. Our definition is inspired by [30, Def. 1].

In view of [102], we might call a WSCFTG whose states have at most rank 1 a

weighted synchronous (non-strict) tree-adjoining grammar. Likewise, if the states have

at most rank 0, we may speak of a weighted synchronous tree-substitution grammar.

Since our product construction does not alter the maximal rank of the states, the closure

result also holds for the restricted classes.

As mentioned at the very top, this chapter is a considerably expanded and revised

version of [33, 32]. In particular, the proofs in these papers are very sketchy and ar-

guably faulty. In the case of Thm. 3.3.3, a corresponding theorem is proved in [33,

Sec. 6.2] in the spirit of Lm. 3.3.2, i.e., using a bijection π and an equivalence relation

81

3 Input product for weighted synchronous context-free tree grammars

≡. However, these objects are defined in a way that does not lend itself to a rigorous

proof, and correspondingly, the proof is very heavy-handed. In this chapter, the key to

the proof of Lm. 3.3.2 is the recursive definition of these objects on the one hand and

Lm. 3.3.6 on the other, which in turn rests on the seemingly simple Obs. 3.2.2.

In the case of Thm. 3.4.7, the proof idea that we used in this chapter is already

present in [33, Sec. 8], using a precursor of our base-item tree, dubbed a partial enriched

derivation. This precursor lacks the pseudo-rule Ω, the bullet position, and the active

index; and the concept of a partial run is only approximated. With these shortcomings,

it is not possible to prove the deductive system sound nor complete; for instance, the

item (q, p) should not mean that R|q is nonempty, but according to [33, Sec. 8] it does.

It should be noted that, in both cases, the proof ideas in [33] are in fact adequate and

the proofs actually quite convincing; this just underscores the obstacles that lie between

an adequate, convincing proof idea and its implementation.

We note that our closure result, when combined with the result of [132], yields clo-

sure under input product and output product with regular weighted string languages.

This combined result is even effective, but most likely inefficient. Consequently, a pos-

sible future contribution might be an algorithm specifically tailored to the input product

with a regular weighted string language. To the author’s knowledge, such an algorithm

has not yet been considered, for existing contributions only consider special cases [178,

141, 149, 52].

One might also explore the possibility of variable-deleting WSCFTGs, i.e., where a

variable xj can be omitted in the input or output tree of a transition. The STSGs of [62]

permit this kind of variable deletion.

Furthermore, it might be interesting to consider alternative approaches to computing

the product WSCFTG. For instance, particularly ifM is bu-det, one might exploreM⊳
G bottom-up, as in a productivity analysis. In addition, one could incorporate pruning.

Roughly speaking, pruning amounts to partitioning the set of items and imposing a

bound on the size of each block. Such a technique has already been presented in [39]

for the cube-pruning algorithm.

82

4 Generic binarization of weighted

grammars

This chapter is a greatly expanded version of [29].

4.1 Introduction

In natural-language processing and statistical machine translation (SMT), the tasks of

parsing and decoding play an important role. Both tasks can be described conveniently

using intersection-like operations, e.g., the intersection of a context-free language with

a regular language [9]. The complexity of the corresponding product construction is

usually exponential in the rank of one of the grammars, i.e., the maximum number of

nonterminal occurrences in the right-hand side of any rule. Consequently, we obtain

substantially better parsing and decoding efficiency if we can transform the grammar

into an equivalent grammar of lower rank. Binarizing a grammar, in particular, means

transforming it into an equivalent grammar of rank at most 2.

It will be helpful to view binarization as the application of a binarization mapping;

roughly speaking, a binarization mapping is a partial mapping from a grammar formal-

ism into itself that preserves meaning and reduces the rank to 2. A common way to

construct a binarization mapping might be dubbed “rule by rule”, as known from the

Chomsky-normal-form transformation for context-free grammars (CFGs). In this set-

ting, we replace each rule of rank greater than 2 by an equivalent collection of rules of

rank 2. For instance, given a rule of rank 4 such as

A→ BCDE

we might introduce new nonterminals [[BC]D] and [BC] and replace the rule by

A→ [[BC]D]E , [[BC]D]→ [BC]D , [BC]→ BC .

This way, the rule-by-rule technique replaces each rule of rank k, k > 2, by k− 1 rules

of rank 2. This increase in the number of rules is reasonable because it still improves

parsing complexity. In general, we expect binarization mappings to be reasonable in

this sense, but we do not formalize this requirement for the sake of simplicity.

We can classify any binarization mapping with respect to, in ascending weakness,

83

4 Generic binarization of weighted grammars

publication formalism totality completeness

[45] CFG yes yes

[159] LCFRS yes∗ yes∗

[97] SCFG no no

[147] STAG no no

* if increased fanout is permitted

Table 4.1: Results concerning rule-by-rule complete binarization mappings.

• totality: the domain contains every grammar;

• completeness: the domain contains every grammar that has an equivalent repre-

sentation of rank 2;

• rule-by-rule completeness: the domain contains every grammar such that for ev-

ery rule of rank greater than 2, there is an equivalent collection of rules of rank

at most 2.

The third property is obtained when we use the above rule-by-rule technique. It is

the state of the art; and rule-by-rule complete binarization mappings (RCBMs) have

been defined for several formalisms, such as CFGs, linear context-free rewriting sys-

tems (LCFRSs, [180]), synchronous CFGs (SCFGs, [119, 39]), and synchronous tree-

adjoining grammars (STAGs, [171]). In some cases, the RCBM is even total; see

Tab. 4.1 for the details. For SCFGs and STAGs, it is not surprising that the respec-

tive RCBM is not total, because such a binarization mapping does not exist [2].

In this chapter, we consider a generic approach for deriving an RCBM for some

grammar formalism. At the core of this approach is an algorithm that can be adapted to

a new formalism by changing a parameter at runtime. Thus the algorithm needs to be

implemented only once and can then be reused for a variety of formalisms. As a proof

of concept, we derive RCBMs for two formalisms, namely hedge-to-string transducers

(which encompass tree-to-string transducers) and weighted synchronous context-free

hedge grammars (which encompass the WSCFTGs of Ch. 3), and we review how the

former RCBM performed on a large hedge-to-string transducer for English-German

SMT. To the author’s knowledge, these RCBMs are the first ones for these cases.

As a theoretical foundation we use interpreted regular tree grammars (IRTG, [112]).

IRTGs subsume many grammar formalisms encountered in SMT models, among them

all those mentioned so far. We proceed in the following five steps. First, we define

a weighted version of IRTGs (Sec. 4.2). Second, we use IRTG terminology to for-

84

4.2 Interpreted regular tree grammars

malize the concepts “binarization mapping”, “complete”, and “rule-by-rule complete”

(Sec. 4.3). Third, we define a simple “template” that gives rise to a class of RCBMs

for IRTGs (Sec. 4.4). However, these mappings are not computable per se. Fourth, we

therefore “outsource the noncomputable part” to the user; i.e., we introduce the above-

mentioned parameter, called b-rule. We thus arrive at a template for a class of efficiently

computable binarization mappings for IRTGs, and we define a condition with respect

to the b-rules that guarantees that these binarization mappings be rule-by-rule complete

(Sec. 4.5). Fifth, and last, we consider how these RCBMs for IRTGs can be used to

derive RCBMs for established formalisms (Sec. 4.6).

We end this chapter with a conclusion, discussion, and outlook (Sec. 4.7).

4.2 Interpreted regular tree grammars

Grammar formalisms employed in parsing and SMT, such as those mentioned in the

introduction, differ in the derived objects – e.g., strings, trees, and graphs – and the

operations involved in the derivation – e.g., concatenation, substitution, and adjoining.

Interpreted regular tree grammars (IRTGs) permit a uniform treatment of many of these

formalisms. To this end, IRTGs combine the following two concepts:

Algebras IRTGs represent the objects and operations symbolically using terms; the

object in question is obtained by interpreting each symbol in the term as a func-

tion. In the parlance of universal-algebra theory, we are employing initial-algebra

semantics [86].

Tree homomorphisms IRTGs separate the finite control (state behavior) of a deriva-

tion from its derived object (in its term representation; generational behavior); the

former is captured by a recognizable tree language, while the latter is obtained

by applying a tree homomorphism. This idea goes back to the tree bimorphisms

of [6].

Now we define the concept of IRTG formally (cf. Fig. 4.1).

A (linear, nondeleting) tree homomorphism is a mapping h : TΓ(X) → T∆(X)
that satisfies the following condition: there is a mapping g : Γ → T∆(X) such that

(i) g(σ) ∈ C∆(Xk) for every σ ∈ Γ(k), (ii) h(σ(t1, . . . , tk)) is the tree obtained from

g(σ) by replacing the occurrence of xj by h(tj), and (iii) h(xj) = xj . This extends the

usual definition of linear and nondeleting homomorphisms [80] to trees with variables.

Note that h(σ(x1, . . . , xk)) = g(σ) for every σ ∈ Γ(k). We abuse notation and write

h(σ) for g(σ) for every σ ∈ Γ.

85

4 Generic binarization of weighted grammars

TΓ

T∆1 · · · T∆n

A1 · · · An

h1 hn

(.)A1 (.)An

S center trees

semantic terms

derived objects

JMK

Figure 4.1: Overview of the concept IRTG.

Let S be a semiring and ∆ = (∆1, . . . ,∆n) a sequence of ranked alphabets. An

interpreted regular tree grammar (IRTG) over ∆ and S is a triple B = (Γ,M, h)
where Γ is a ranked alphabet (control alphabet), M is a WTA over Γ and S , and h =
(h1, . . . , hn) is a sequence such that hi : TΓ(X)→ T∆i

(X) is a tree homomorphism.

Let B = (Γ,M, h) be an IRTG over ∆ and S and M = (Q,R, µ, ν). We call the

trees in L(M) center trees. A rule of B is a transition of M , and the rank rk(B) of B
is max{rk(ρ) | ρ ∈ R}. We define the meaning of B with respect to given algebras.

For this, letA = (A1, . . . ,An) be a sequence such thatAi is a ∆i-algebra. We say that

B is A-admissible if S is complete or {ξ | ξ ∈ L(M), ∀i : hi(ξ)
Ai = ai} is finite for

every (a1, . . . , an). Let B be A-admissible. Then the A-meaning JBKA of B is

JBKA : A1 × . . .×An → S , (a1, . . . , an) 7→
∑

ξ : ∀i : hi(ξ)Ai=ai
JMK(ξ) .

We call the terms in T∆i
(X) semantic terms. We say that two A-admissible IRTGs

B and B′ are A-equivalent if JBKA = JB′KA. Usually we consider A fixed, and then

we omit the subscript from JBKA, and we simply say “admissible” and “equivalent”.

Observation 4.2.1 Let B = (T∆1(∅), . . . , T∆n(∅)). Then A-admissible implies B-

admissible and

JBKA(a1, . . . , an) =
∑

(t1,...,tn)∈T∆1
×···×T∆n : t

Ai
i =ai

JBKB(t1, . . . , tn) .

Consequently, JBKB = JB′KB implies JBKA = JB′KA.

In the case that S is the Boolean semiring, our IRTGs correspond to original IRTGs

in the literature [112]. If S is the Boolean semiring, n = 2, and Ai is the ∆i-term

algebra, then IRTGs are the tree bimorphisms known from the literature [6]; our use of

the letter B for an IRTG can be attributed to this fact.

86

4.2 Interpreted regular tree grammars

Example 4.2.2 We consider the following SCFG rule:

S → α3(PPER,NP) , where α3 = 〈x1 ließ x2 frei, x1 freed x2〉 .

Informally, this rule tells us to derive a pair (w1, w2) of strings for the state PPER

as well as a pair (w′
1, w

′
2) for the state NP . Then we obtain a pair for S from α3 by

replacing x1 and x2 in the first component by w1 and w2, respectively, and replacing

x1 and x2 in the second component by w′
1 and w′

2, respectively. Now we make this

procedure explicit by defining an IRTG.

Let Σ = {freed, ließ, frei, . . . } be the set of terminal symbols of our SCFG. We

consider a ranked alphabet ∆ and a ∆-algebra A with the domain Σ∗ that allows us to

encode string substitution symbolically. We let

∆ = {(con2)(2), (con3)(3), (con4)(4), (con5)(5)} ∪ {σ(0) | σ ∈ Σ} ,

(conk)A(w1, . . . , wk) = w1 · · ·wk , (k ∈ {2, 3, 4, 5})

σA = σ . (σ ∈ Σ)

Then the following terms t1 and t2 represent our substitution procedure for the first and

second component, respectively:

t1 = con4(x1, ließ, x2, frei) , t2 = con3(x1, freed, x2) .

That is, the pair for S , given w1, w2, w
′
1, w

′
2 as above, is (tA1 (w1, w2), t

A
2 (w

′
1, w

′
2)).

Now we define the IRTG. We let Γ = {α
(1)
1 , α

(1)
2 , α

(2)
3 , α

(2)
4 , α

(0)
5 , α

(0)
6 } and M =

(Q,R,S) be the FTA over Γ with Q = {S ,PPER,NP} and

R = {(NP , α1,S), (PPER, α2,S), (PPERNP , α3,S),

(PPERNP , α4,S), (ε, α5,PPER), (ε, α6,NP)} .

The tree homomorphisms h1, h2 : TΓ(X)→ T∆(X) are shown in Fig. 4.2.

Finally, we let B = (Γ,M, (h1, h2)); then B is an IRTG over (∆,∆) and the

Boolean semiring. Since this semiring is complete, B is trivially admissible. We indi-

cate the (A,A)-meaning. To this end, let ξ = α4(α5, α6). Clearly, ξ ∈ L(M) and

h1(ξ)
A = die katze ließ er frei , h2(ξ)

A = he freed the cat .

We note that ξ is not the only center tree for this sentence pair, but since we calculate

in the Boolean semiring, we are content with one center tree. We conclude that

JBK(er ließ die katze frei, he freed the cat) = 1 .

87

4 Generic binarization of weighted grammars

con4(x1, ließ, er, frei)
h1←− [α1

h27−→ con3(he, freed, x1)

con5(die, katze, ließ, x1, frei)
h1←− [α2

h27−→ con5(x1, let, the, cat, out)

con4(x1, ließ, x2, frei)
h1←− [α3

h27−→ con3(x1, freed, x2)

con4(x2, ließ, x1, frei)
h1←− [α4

h27−→ con3(x1, freed, x2)

er
h1←− [α5

h27−→ he

con2(die, katze)
h1←− [α6

h27−→ con2(the, cat)

Figure 4.2: Tree homomorphisms h1 and h2.

Coincidentally, the IRTG B corresponds to the SCFG from Fig. 1.2.

Technically, we do not need the symbols con3, con4, and con5, because

(con3)A = con2(con2(x1, x2), x3)
A ,

(con4)A = con2(con3(x1, x2, x3), x4)
A ,

(con5)A = con2(con4(x1, x2, x3, x4), x5)
A .

However, since concatenation is associative, it is unusual to specify an explicit brack-

eting. After all, the bracketing is rather arbitrary, and we do not want to make our

symbolic representation more specific than necessary. �

Example 4.2.2 shows that, even with fixed algebras, IRTGs can offer a high degree of

freedom for expressing the generational behavior of a rule; for instance, we can express

con4 by nesting con2.

Example 4.2.3 (Ex. 4.2.2 contd.) We modify B in the slightest way: we change h1
so that the image of α3 becomes con4(x2, ließ, x1, frei). Then h1(α3) = h1(α4) and

h2(α3) = h2(α4). Clearly, this changes the meaning of B, but not only that: since the

α3-rule and the α4-rule now describe the same SCFG rule, one might argue that B no

longer corresponds to any SCFG, that it rather corresponds to a variant of SCFG whose

rules are equipped with multiplicities. �

Example 4.2.3 shows that we have to be careful when we describe an established

formalism as a class of IRTGs. The following normal form will be helpful in this

respect. Let B = (Γ,M, h) be an IRTG over ∆ and S , and let M = (Q,R, µ, ν). Then

we define the IRTG ψ(B) over ∆ and S by letting

• ψ(B) = (Γ′,M ′, h′),

• Γ′ =
{
(hi(α) | i ∈ {1, . . . , n})

∣
∣ α ∈ Γ

}
,

88

4.2 Interpreted regular tree grammars

• M ′ = (Q,R′, µ′, ν),

• R′ =
{
(q1 · · · ql, (hi(α) | i ∈ {1, . . . , n}), q)

∣
∣ (q1 · · · ql, α, q) ∈ R

}
,

• µ′(q1 · · · ql, γ, q) =
∑

α∈Γ: γi=hi(α)
µ(q1 · · · ql, α, q), and

• h′i(γ) = γi for every γ ∈ Γ′.

Lemma 4.2.4 The mapping ψ preserves admissibility and meaning.

PROOF. We overload the symbol ψ; we let ψ : Γ → Γ′ with ψ(α) = (hi(α) | i ∈
{1, . . . , n}), and likewise for ψ : TΓ → TΓ′ , ψ : R → R′, and ψ : TR → TR′ . For the

preservation of admissibility, one easily proves by induction on the size of a tree that

{ξ | ξ ∈ L(M ′), ∀i : h′i(ξ)
Ai = ai} ⊆ ψ({ξ | ξ ∈ L(M), ∀i : hi(ξ)

Ai = ai}) .

We prove the preservation of meaning. By Obs. 4.2.1 it suffices to show the case

that A = (T∆1(∅), . . . , T∆n(∅)). It can be shown using standard techniques (mutual

inclusion, induction on the size of a tree) that (⋆) ψ(
⋂

i h
−1
i (ti)) =

⋂

i h
′−1
i (ti) for

every sequence (t1, . . . , tn) with ti ∈ T∆i
.

We prove by induction on m that, for every m ∈ N and ξ′ ∈ TΓ′ with |pos(ξ′)| ≤ m,

we have Jξ′KM ′ =
∑

ξ∈ψ−1(ξ′)JξKM . For the induction base (m = 0), there is nothing

to show. For the induction step (m → m + 1), we let m ∈ N and ξ′ ∈ TΓ′ with

|pos(ξ′)| ≤ m+ 1. Then there are γ ∈ Γ′ and ξ′1, . . . , ξ
′
k such that ξ′ = γ(ξ′1, . . . , ξ

′
k),

and we derive

Jγ(ξ′1, . . . , ξ
′
k)KM ′ = Jγ(Jξ′1KM ′ , . . . , Jξ′kKM ′)KM ′ (Obs. 2.4.4)

=
∑

α : hi(α)=γi
Jα(Jξ′1KM ′ , . . . , Jξ′kKM ′)KM

=
∑

α : hi(α)=γi
Jα(

∑

ξ∈ψ−1(ξ′1)
JξKM , . . . ,

∑

ξ∈ψ−1(ξ′
k
)JξKM)KM

(induction hypothesis)

=
∑

α,ξ1,...,ξk : hi(α)=γi,ξj∈ψ−1(ξ′j)
Jα(ξ1, . . . , ξk)KM =

∑

ξ∈ψ−1(ξ′)JξKM .

Finally, we derive using (⋆)

JBK(t1, . . . , tn) =
∑

ξ∈
⋂

i h
−1
i (ti)

∑

qJξKM (q) · νq

=
∑

q

(∑

ξ∈
⋂

i h
−1
i (ti)

JξKM (q)
)
· νq

=
∑

q

(∑

ξ′∈
⋂

i h
′−1
i (ti)

∑

ξ∈ψ−1(ξ′)JξKM (q)
)
· νq

=
∑

q

(∑

ξ′∈
⋂

i h
′−1
i (ti)

Jξ′KM ′(q)
)
· νq

=
∑

ξ′∈
⋂

i h
′−1
i (ti)

∑

qJξ
′KM ′(q) · νq = Jψ(B)K(t1, . . . , tn) . �

89

4 Generic binarization of weighted grammars

Observation 4.2.5 We have that ψ(B) = ψ(ψ(B)).

Example 4.2.6 (Ex. 4.2.2 contd.) We consider an alternative IRTG B′ for the same

SCFG. For this, we let ∆′ = Γ, B′ = (Γ,M, (h′1, h
′
2)), and h′i(α) = α(x1, . . . , xk)

for every α ∈ Γ(k). Then h′i is merely the identity on TΓ(X). Moreover, we define two

∆′-algebras A1 and A2 with domain Σ∗ by letting αAi = hi(α)
A. One can show that

JBK(A,A) = JB′K(A1,A2). �

Example 4.2.6 shows that, as long as we are free to choose the algebras, we can

dispense with the tree homomorphisms. However, the algebras constitute a kind of

“black box”, and statements about IRTGs will usually depend on external information

about this black box. For instance, the upcoming binarization method requires (from

the user) information about term equivalence in each algebra. Consequently, it will be

beneficial to consider classes of IRTGs with a fixed sequence ∆ of ranked alphabets,

together with a fixed sequenceA of algebras. In such a setting, the tree homomorphisms

are, of course, essential.

The following corollary is a consequence of Cor. 2.3.2.

Corollary 4.2.7 Let h : TΓ(X) → T∆(X) be a tree homomorphism, A a ∆-algebra,

and α(ξ1, . . . , ξl) ∈ TΓ. Then

h(α(ξ1, . . . , ξl))
A = h(α)A(h(ξ1)

A, . . . , h(ξl)
A) .

For the following observation, we use Obs. 2.2.2.

Observation 4.2.8 Let h : TΓ(X) → T∆(X) be a tree homomorphism and f : Xk →
TΓ(X). Then h(f ♭(t)) = (h ◦ f)♭(h(t)) for every m ∈ N and t ∈ TΓ(Xk) with

|pos(t)| ≤ m.

Corollary 4.2.9 Let h : TΓ(X) → T∆(X) be a tree homomorphism, k, l ∈ N, ζ ∈
TΓ(Xk), and ξ1, . . . , ξk ∈ TΣ(Xl). Then

h(ζ[x1/ξ1] · · · [xk/ξk]) = h(ζ)[x1/h(ξ1)] · · · [xk/h(ξk)] .

Combining Cor. 2.3.2 and Cor. 4.2.9, we obtain the following corollary.

Corollary 4.2.10 Let h : TΓ(X)→ T∆(X) be a tree homomorphism, A a ∆-algebra,

l ∈ N, ζ ∈ CΓ(Xl), and ξ1, . . . , ξl ∈ TΓ. Then

h(ζ[x1/ξ1] · · · [xl/ξl])
A = h(ζ)A(h(ξ1)

A, . . . , h(ξl)
A) .

90

4.3 Binarization mappings

(BCD,α,A) , (ε, α1, B) , (ε, α2, C) , (ε, α3, D)

con3(x1, x2, x3)
h1←− [α

h27−→ con4(x3, a, x1, x2)

b
h1←− [α1

h27−→ b

c
h1←− [α2

h27−→ c

d
h1←− [α3

h27−→ d

Figure 4.3: An IRTG of rank 3 encoding an SCFG.

bcd
(.)A1

←− [
con3

b c d

h1←− [
α

α1 α2 α3

h27−→
con4

d a b c

(.)A2

7−→ dabc

Figure 4.4: Center tree (innermost), semantic terms, derived objects (outermost).

4.3 Binarization mappings

Roughly speaking, our aim is to construct a partial mapping from IRTGs into IRTGs

that preserves meaning and reduces the rank to 2, and its domain should contain all

IRTGs that can be binarized rule by rule. In this section, we formalize this problem

statement. We proceed as follows. First, we consider an example. Second, we define

what a binarization of a single rule is, and how the rule is to be replaced. Third, we

define the concept of a rule-by-rule complete binarization mapping.

Example 4.3.1 We consider the IRTG shown in Fig. 4.3, which can be viewed as an

SCFG in the same way as in Ex. 4.2.2. In particular, we reuse the algebraA. Figure 4.4

shows a center tree with its two homomorphic images, which evaluate to the strings bcd
and dabc.

Consider the first transition in Fig. 4.3, which has rank three. It occurs in the run

(BCD,α,A)
(
B,C,D

)
,

which is a partial run on the fragment α(x1, x2, x3) of the center tree in Fig. 4.4. This

fragment is mapped to the semantic terms h1(α) and h2(α) shown in Fig. 4.3.

Now consider the transitions in Fig. 4.5. These transitions make up the run

(A′D,α′, A)
(
(BC,α′′, A′)

(
B,C

)
, D

)
,

which is a partial run on the fragment α′(α′′(x1, x2), x3). Let us call this fragment ξ.

Note that the terms h′1(ξ) and h1(α) are equivalent in that they denote the same term

91

4 Generic binarization of weighted grammars

(A′D,α′, A) , (BC,α′′, A′)

con2(x1, x2)
h′1←− [α′ h′27−→ con2(con2(x2, a), x1)

con2(x1, x2)
h′1←− [α′′ h′27−→ con2(x1, x2)

Figure 4.5: Binarization of the ternary rule in Fig. 4.3.

function, and so are the terms h′2(ξ) and h2(α). Thus, replacing the α-transition by the

transitions in Fig. 4.5 (and merging hi and h′i accordingly) does not change the meaning

of the IRTG. However, since the new rules are binary, parsing and translation will be

cheaper. �

Rule-by-rule binarization of IRTGs closely follows the intuition laid out in this ex-

ample: it means processing each suprabinary rule, attempting to replace it with an

equivalent collection of binary rules. For the remainder of this chapter (unless noted

otherwise), let ∆ = (∆1, . . . ,∆n) be a sequence of ranked alphabets, S a commutative

semiring, and A = (A1, . . . ,An) a sequence such that Ai is a ∆i-algebra. Moreover,

let B = (Γ,M, h) be an A-admissible IRTG over ∆ and S , M = (Q,R, µ, ν), ρ ∈ R,

ρ = (q1 · · · qk, α, q), and k > 2.

4.3.1 Binarization of a rule

Let Γ′ be a binary ranked alphabet and ξ ∈ CΓ′(Xk). A ξ-binarization B′ of ρ is an

IRTG (Γ′,M ′, h′) over ∆ and S such that there is a d with

• d ∈ Dq(M ′, ξ[x1/q1] · · · [xk/qk]),

• 〈d〉 = µ(ρ),

• h′i(ξ)
Ai = hi(α)

Ai ,

• d′ ∈ Dq
pr(M

′) implies d′ ⊑ d, and

• D
qj
pr (M

′) = {qj}.

We call B′ rank normal if Γ′ = Γ′(2).

Example 4.3.2 (Ex. 4.3.1 contd.) Let ρ = (BCD,α,A). A rank-normal ξ-binari-

zation of ρ is given in Fig. 4.5, where

ξ = α′(α′′(x1, x2), x3) ,

d = (A′D,α′, A)
(
(BC,α′′, A′)

(
B,C

)
, D

)
. �

92

4.3 Binarization mappings

We note that a binarization of ρ need not exist, even if B as a whole admits an

equivalent representation of rank at most 2.

Example 4.3.3 It is easy to specify an SCFG (and, thus, an IRTG) of rank 0 for the sin-

gleton language {(abcd, cadb)}. Likewise, one can use the following SCFG of rank 4:

S → 〈x1x2x3x4, x3x1x4x2〉(A,B,C,D) ,

A→ 〈a, a〉, . . . , D → 〈d, d〉 .

Using an IRTG representation in the spirit of Exs. 4.2.2 and 4.3.1, one will find that

there is no binarization of the first rule. We will elaborate on this in Ex. 4.4.12, when

we will have the appropriate tools at our disposal. �

LetB′ = (Γ′,M ′, h′) be a ξ-binarization of ρ andM ′ = (Q′, R′, µ′, ν ′). We say that

B and B′ are compatible if the following conditions are satisfied:

• R′|q ∩R = ∅,

• q′ ∈ Q ∩ (Q′ \ {q, q1, . . . , qk}) implies R|q′ = R′|q′ , and

• hi|Γ∩Γ′ = h′i|Γ∩Γ′ and µ|R∩R′ = µ′|R∩R′ .

We note that the property of compatibility can be readily established by using suit-

able alphabets Q′ and Γ′; e.g., one can use fresh symbols (Γ ∩ Γ′ = ∅ = Q ∩ (Q′ \
{q, q1, . . . , qk})), or one can reuse symbols from Q and Γ wherever possible.

Let B and B′ be compatible. Then we define the IRTG B[ρ/B′] over ∆ and S by

• B[ρ/B′] = (Γ ∪ Γ′,M [ρ/M ′], h′′),

• M [ρ/M ′] = (Q ∪Q′, (R ∪R′) \ {ρ}, µ′′, ν ′′) where

µ′′(ρ′) =

{

µ(ρ′) if ρ′ ∈ R,

µ′(ρ′) if ρ′ ∈ R′ \R,
ν ′′q′ =

{

νq′ if q′ ∈ Q,

0 otherwise,

• h′′i : TΓ∪Γ′(X)→ T∆i
(X) is the tree homomorphism with

h′′i (α) =

{

hi(α) if α ∈ Γ,

h′i(α) if α ∈ Γ′ \ Γ.

In the following, we will omit the subscript from πΓ and πΓ∪Γ′ .

93

4 Generic binarization of weighted grammars

Lemma 4.3.4 There is a (hq | q ∈ Q) such that hq : D
q
co(M) → Dq

co(M [ρ/M ′]) is

bijective and, for every d ∈ Dq
co(M),

hi(π(d))
Ai = h′′i (π(hq(d)))

Ai and 〈d〉 = 〈hq(d)〉 .

PROOF. SinceB′ is a ξ-binarization, there is a dρ ∈ D
q(M ′, ξ[x1/q1] · · · [xk/qk]) with

the properties mentioned in the definition of a ξ-binarization. We let R′′ = (R ∪ R′) \
{ρ}, w1, . . . , wk be the positions of x1, . . . , xk in ξ, respectively, and h′ : TR(X) →
TR′′(X) be the tree homomorphism with

h′(ρ) = dρ[x1]w1 · · · [xk]wk
,

h′(ρ′) = ρ′(x1, . . . , xrk(ρ′)) . (ρ′ 6= ρ)

We will prove the statement P (n) for every n ∈ N, where

P (n): Let p ∈ Q.

1. Let d ∈ Dp
co(M) with |pos(d)| ≤ n. Then h′(d) ∈ Dp

co(M [ρ/M ′]),
hi(π(d))

Ai = h′′i (π(h
′(d)))Ai , and 〈d〉 = 〈h′(d)〉.

2. Let d1, d2 ∈ D
p
co(M) with |pos(d1)|+|pos(d2)| ≤ n. Then h′(d1) =

h′(d2) implies d1 = d2.

3. Let d′ ∈ Dp
co(M [ρ/M ′]) with |pos(d′)| ≤ n. Then there is a d ∈

Dp
co(M) with h′(d) = d′.

With this statement, it is clear that we obtain the desired mapping hq for every q ∈ Q
simply by restricting h′ appropriately.

For the induction base (n = 0), there is nothing to show. We show the induction step

(n → n + 1). To this end, let n ∈ N such that P (n) holds. We show that P (n + 1)
holds. To this end, let p ∈ Q.

Statement 1: Let d ∈ Dp
co(M) and |pos(d)| ≤ n + 1. Then there are ρ′ ∈ R,

ρ′ = (p1 · · · pk, α, p), and d1, . . . , dk such that d = ρ′(d1, . . . , dk), dj ∈ D
pj
co (M), and

|pos(dj)| ≤ n. By the induction hypothesis (i.e., P (n) holds), we have that

• h′(dj) ∈ D
pj
co (M [ρ/M ′]),

• hi(π(dj))
Ai = h′′i (π(h

′(dj)))
Ai , and

• 〈dj〉 = 〈h
′(dj)〉.

94

4.3 Binarization mappings

We distinguish two cases. The case that ρ′ 6= ρ is easy. We turn to the case that ρ′ = ρ.

Then p = q. It is easy to see that h′(d) ∈ Dq
co(M [ρ/M ′]). We derive

hi(π(d))
Ai = hi(π(ρ(d1, . . . , dk)))

Ai = hi(α(π(d1), . . . , π(dk)))
Ai

=
[
hi(α)

(
hi(π(d1)), . . . , hi(π(dk))

)]Ai

= hi(α)
Ai
(
hi(π(d1))

Ai , . . . , hi(π(dk))
Ai
)

(Cor. 4.2.7)

= h′′i (π(h
′(ρ)))Ai

(

h′′i (π(h
′(d1)))

Ai , . . . , h′′i (π(h
′(dk)))

Ai

)

(†)

= h′′i (π(h
′(d)))Ai , (Cor. 4.2.10)

where, for (†), we derive hi(α)
Ai = h′i(ξ)

Ai = h′i(π(h
′(ρ)))Ai . Finally, we derive

〈h′(d)〉 = 〈h′(d1)〉 · · · 〈h
′(dk)〉 · 〈dρ〉 (commutativity)

= 〈d1〉 · · · 〈dk〉 · µ(ρ) = 〈d〉 .

Statement 2: Let d1, d2 ∈ D
p
co(M), |pos(d1)| + |pos(d2)| ≤ n + 1, and h′(d1) =

h′(d2). We distinguish three cases. Case 1: Let d1(ε), d2(ε) 6= ρ or d1(ε) = d2(ε) = ρ.

Then it is easy to apply the induction hypothesis. Case 2: Let d1(ε) = ρ and d2(ε) 6= ρ.

Then h′(d1)(ε) ∈ R
′|q and h′(d2)(ε) ∈ R. SinceM andM ′ are compatible,R′|q∩R =

∅. So this case does not occur. Case 3: Let d1(ε) 6= ρ and d2(ε) = ρ. For reasons of

symmetry, this case does not occur either.

Statement 3: Let d′ ∈ Dp
co(M [ρ/M ′]) with |pos(d′)| ≤ n + 1. We distinguish

two cases. Case 1: Let d′(ε) ∈ R. Moreover, let d′(ε) = (p1 · · · pk, α, p). Then

p1, . . . , pk ∈ Q and, by the induction hypothesis, there are d1, . . . , dk with h′(dj) =
d′|j . We construct d = d′(ε)

(
d1, . . . , dk

)
. It is easy to see that d ∈ Dp

co(M) and

h′(d) = d′. Case 2: Let d′(ε) 6∈ R. Since p ∈ Q, and since M and M ′ are compatible,

we have that p = q. Recall that, for every d′′ ∈ Dq
pr(M

′), we have that d′′ ⊑ dρ.

Since the run d′ is complete, we have that dρ ⊑ d′, i.e., there are d′1, . . . , d
′
k such

that d′ = dρ[d
′
1]w1 · · · [d

′
k]wk

. By the induction hypothesis, we obtain that there are

d1, . . . , dk with h(dj) = d′j . We construct d = ρ(d1, . . . , dk). �

Corollary 4.3.5 Let ρ be a suprabinary rule of B and B′ a binarization of ρ. Then

B[ρ/B′] is admissible and equivalent to B.

PROOF. Let (hq | q ∈ Q) be a family of mappings as postulated in Lm. 4.3.4. Using

said lemma, it is easy to see that, for every q ∈ Q and (a1, . . . , an) ∈ A1 × · · · ×An,

hq({d | d ∈ D
q
co(M [ρ/M ′]), ∀i : h′′i (π(d))

Ai = ai})

= {d | d ∈ Dq
co(M), ∀i : hi(π(d))

Ai = ai} .

95

4 Generic binarization of weighted grammars

This implies that B[ρ/B′] is admissible.

Moreover, let (a1, . . . , an) ∈ A1 × · · · ×An. Then

JBK(a1, . . . , an) =
∑

ξ∈TΓ : hi(ξ)Ai=ai

∑

q∈Q,d∈Dq(M,ξ)〈d〉 · νq

=
∑

ξ∈TΓ,q∈Q,d∈Dq(M,ξ) : hi(ξ)Ai=ai
〈d〉 · νq

=
∑

q∈Q,d∈Dq
co(M) : hi(π(d))Ai=ai

〈d〉 · νq

=
∑

q∈Q,d∈Dq
co(M) : h′′i (π(hq(d)))

Ai=ai
〈hq(d)〉 · νq

=
∑

q∈Q,d′∈Dq
co(M ′) : h′′i (π(d

′))Ai=ai
〈d′〉 · ν ′′q (hq is bijective)

=
∑

ξ∈TΓ∪Γ′ : h′′i (ξ)
Ai=ai

∑

q∈Q,d′∈Dq(M ′,ξ)〈d
′〉 · ν ′′q

=
∑

ξ∈TΓ∪Γ′ : h′′i (ξ)
Ai=ai

∑

q∈Q∪Q′,d′∈Dq(M ′,ξ)〈d
′〉 · ν ′′q = JB[ρ/B′]K(a1, . . . , an) .�

4.3.2 Binarization mappings

Now we are able to formally define binarization mappings for IRTGs. To this end, let C
be a set of admissible IRTGs over ∆ and S . A binarization mapping bin for C is a par-

tial mapping bin : C → C that preserves meaning. The binarization domain bdom(bin)
of bin is the set {B | B ∈ dom(bin), rk(bin(B)) ≤ 2}. A binarization mapping bin is

complete if bdom(bin) ⊇ {B | B ∈ C, ∃B′ ∈ C : JBK = JB′K, rk(B′) ≤ 2}. It is rule-

by-rule complete if bdom(bin) contains every B ∈ C such that for every suprabinary

rule ρ of B there is a binarization of ρ.

We distinguish between the domain of bin and its binarization domain so as to enable

“best-effort binarization”; i.e., even if, for someB ∈ C, we do not find an equivalentB′

of rank 2, we can at least attempt to reduce the number of suprabinary rules. In this

case B ∈ dom(bin) \ bdom(bin). This case can be useful in practice; our theoretical

considerations, however, are limited to bdom(bin).
We abbreviate “rule-by-rule complete binarization mapping” by RCBM. If an RCBM

bin exists, then every complete binarization mapping is also rule-by-rule complete,

for then bin(B) is a witness that B is in the binarization domain of every complete

binarization mapping. Such an RCBM bin , however, need not exist; for instance, the

class C may be so severely restricted that replacing a suprabinary rule by its binarization

leads out of C.

4.4 Constructing a binarization mapping

In this section, we construct an RCBM for IRTGs over ∆ and S . First, we consider

an example of our construction, then we define the necessary concepts, and finally, we

96

4.4 Constructing a binarization mapping

arrive at the construction. The binarization mapping will not be computable in general,

and we will tackle this problem in the next section.

Example 4.4.1 (Ex. 4.3.1 contd.) Now we construct the binarization of our rule sys-

tematically. We proceed as follows (cf. Fig. 4.6). For each of the terms h1(α) and

h2(α) (Fig. 4.6a), we consider all terms that satisfy two properties (Fig. 4.6b): (i) they

are equivalent to h1(α) and h2(α), respectively, and (ii) at each node at most two sub-

trees contain variables. As Fig. 4.6 suggests, there may be several different terms of

this kind. For each of these terms, we analyze the bracketing of variables, obtaining

what we call a variable tree (Fig. 4.6c). Now we pick terms t1 and t2 corresponding to

h1(α) and h2(α), respectively, such that (iii) they have the same variable tree, say τ .

We construct a tree ξ from τ by a simple relabeling, and we read off the tree homo-

morphisms h′1 and h′2 from a decomposition we perform on t1 and t2, respectively; see

Fig. 4.6, dotted arrows, and compare the boxes in Fig. 4.6d with the homomorphisms

in Fig. 4.5. Now the rules in Fig. 4.5 are easily extracted from ξ.

With the tree ξ, the rules, and the tree homomorphisms, we have all ingredients for

a ξ-binarization; and, indeed, we obtain a binarization: our rules are equivalent to the

original one because of (i); they are binary because ξ is binary, which in turn holds

because of (ii); finally, the decompositions of t1 and t2 are compatible with ξ because

of (iii). We call a sequence (t1, t2) a binarization hedge if (i)–(iii) are satisfied. We

will see below that the existence of a binarization is tantamount to the existence of a

binarization hedge. Our main task will be finding a binarization hedge. �

4.4.1 Variable trees and term decomposition

Let us define the concept of variable trees as well as the decomposition that corresponds

to the two outer dotted arrows in Fig. 4.6. In order to keep notation uncluttered, we will

disregard the IRTG B in this subsection and rather proceed in a general setting. To this

end, let ∆ be an arbitrary ranked alphabet and t ∈ T lin

∆ (X).
We begin with a few auxiliary concepts. By var(t) we denote the set of all ele-

ments of X that occur in t, i.e., var(t) = {t(w) | t(w) ∈ X}. Let t1, . . . , tl ∈
T lin

∆ (X). We call this sequence eligible (for a canonical sort) if (i) var(tj) 6= ∅ and

(ii) var(tj) ∩ var(tj′) 6= ∅ implies j = j′. Let t1, . . . , tl be eligible. Then the canoni-

cal sort csort(t1, . . . , tl) of t1, . . . , tl is the sequence obtained from t1, . . . , tl by sorting

the trees according to the least variable index. For instance, we have that

csort(δ′(x3), δ(x2, x4)) =
(
δ(x2, x4), δ

′(x3)
)

,

because the least variable index is 3 in the first argument tree, it is 2 in the second, and

3 > 2, so we have to swap the trees. We call the sequence t1, . . . , tl canonically sorted

if it is equal to its canonical sort.

97

4 Generic binarization of weighted grammars

(a)
con3

x1 x2 x3

con4

x3 a x1 x2

(b)

con2

x1 con2

x2 x3

con2

con2

x1 x2

x3

t1 : con2

con2

x3 a

con2

x1 x2

t2 :
con2

con2

x3 con2

a x1

x2

(c)

(d)

con2

x1 x2

con2

x1 x2

x1 x2

x3

con2

con2

x2 a

x1

con2

x1 x2

x1 x2

x3

(e)

h1←− [α
h27−→

⋆

x1 ⋆

x2 x3

⋆

⋆

x1 x2

x3

τ : ⋆

⋆

x1 x3

x2

con2

con2

x1 x2

x3

t1 :

h′1←− [

α′

α′′

x1 x2

x3

ξ :

h′27−→

con2

con2

x3 a

con2

x1 x2

t2 :

Figure 4.6: Outline of the binarization algorithm.

98

4.4 Constructing a binarization mapping

We define the variable tree v(t) of t by induction. For this, we let v : T lin

∆ (X) →
T lin

{⋆,∅}(X) with

v(xj) = xj ,

v(δ(t1, . . . , tk)) =

∅ if l = 0,

v(t′1) if l = 1,

⋆(v(t′1), . . . , v(t
′
l)) otherwise,

(δ ∈ ∆)

where t′1, . . . , t
′
l is the canonical sort of the sequence that is obtained from t1, . . . , tk

by removing every occurrence of any tree that does not contain any variable; since t is

linear, that sequence is eligible.

Example 4.4.2 Let t1, t2, and τ be given by Fig. 4.6. Then v(t1) = τ = v(t2). �

Observation 4.4.3 (i) var(t) = ∅ iff v(t) = ∅ and (ii) var(t) = var(v(t)).

Next we show that applying a tree homomorphism to a binary tree preserves the

variable tree.

Lemma 4.4.4 Let h : TΓ(X) → T∆(X) a tree homomorphism. For every m ∈ N and

binary ξ ∈ T lin

Γ (X) with |pos(ξ)| ≤ m, we have v(ξ) = v(h(ξ)).

PROOF. By induction on m. For the induction base (m = 0), there is nothing to show.

For the induction step (m → m + 1), let m ∈ N and ξ ∈ T lin

Γ (X) be binary with

|pos(ξ)| ≤ m+ 1. We distinguish three cases. Case 1: ξ ∈ X . Trivial.

Case 2: ξ(ε) ∈ Γ(2). There are α ∈ Γ and ξ1, ξ2 ∈ T
lin

Σ (X) with ξ = α(ξ1, ξ2). We

let v1 = v(ξ1) and v2 = v(ξ2), and we define the following predicates:

P (j) ⇐⇒ var(ξj) 6= ∅ , P (j, w) ⇐⇒ P (j) ∧ xj occurs in h(α)|w .

Note that P (j) ⇐⇒ P (j, ε). We derive

v(ξ) = v(α(ξ1, ξ2))

=

∅ ¬P (1) ∧ ¬P (2)

v1 P (1) ∧ ¬P (2)

v2 ¬P (1) ∧ P (2)

⋆
(
csort(v1, v2)

)
P (1) ∧ P (2)

= v(h(α)|ε[x1/h(ξ1)][x2/h(ξ2)]) (†)

= v(h(α)[x1/h(ξ1)][x2/h(ξ2)])

= v(h(α(ξ1, ξ2))) = v(h(ξ)) ,

99

4 Generic binarization of weighted grammars

where (†) follows from the following statement, which is easily proved by induction:

for every m′ ∈ N and w ∈ pos(h(α)) with |pos(h(α)|w)| ≤ m
′, we have that

v
(
h(α)|w[x1/h(ξ1)][x2/h(ξ2)]

)

=

∅ ¬P (1, w) ∧ ¬P (2, w)

v1 P (1, w) ∧ ¬P (2, w)

v2 ¬P (1, w) ∧ P (2, w)

⋆
(
csort(v1, v2)

)
P (1, w) ∧ P (2, w)

The outer induction hypothesis, v(ξj) = v(h(ξj)), is needed when h(α)|w = xj .
Case 3: ξ(ε) ∈ Γ(0) ∪ Γ(1); similar to Case 2. �

Example 4.4.5 (Ex. 4.4.2 contd.) Lemma 4.4.4 requires that ξ be binary. We consider

a tree homomorphism h and a suprabinary ξ where v(ξ) 6= v(h(ξ)). To this end, we

assume a ternary α that is mapped by h to t2. We let ξ = α(x1, x2, x3). Then h(ξ) = t2,

v(t2) = τ , and v(ξ) = ⋆(x1, x2, x3).

Let ∆1 and ∆2 be ranked alphabets, t1 ∈ T∆1(X), and t2 ∈ T∆2(X). We say that

t1 and t2 are congruent if pos(t1) = pos(t2) and, for every w ∈ pos(t1) and j ∈ N,

t1(w) = xj iff t2(w) = xj .
Next we define the term decomposition f(t) of t by defining the mapping f . For

instance, the term decompositions of t1 and t2 are shown in Fig. 4.6(d). Our aim is to

make f(t) and v(t) congruent, so that we can read off h′1, . . . , h
′
n from f(t1), . . . , f(tn).

For the range of f , we stretch the notion of a ranked alphabet and permit an infinite

set of symbols. Ultimately we will apply f only to a finite number of trees, and for

those instances a finite set of symbols suffices, but that set is cumbersome to describe

in advance. Let ∆′ = {t(k) | t ∈ C∆(Xk)}. We call each element of ∆′ a fragment.

Before we define f : T lin

∆ (X)→ T lin

∆′ (X) formally, we consider some intuition. For

this, let t ∈ T lin

∆ (X), t = δ(t1, . . . , tk), and δ ∈ ∆. Then we construct the root label

of f(t) from the fragment δ(x1, . . . , xk) in two steps. First, for every j such that tj
does not contain any variable, we replace xj by tj . The resulting fragment contains the

variables xj1 , . . . , xjl where tj1 , . . . , tjl are the trees that do contain variables. With the

second step, we avoid nodes of rank 1, because those are not present in a variable tree,

and we want to achieve congruency. So, if l = 1 and the root fragment of f(tj1) is not

a variable itself, we replace xj1 by that fragment. If l 6= 1, then for every ι such that the

root fragment of f(tjι) is unary, we replace xjι by that fragment. The successors of the

root of f(t) are computed accordingly.

Formally, we define f : T lin

∆ (X) → T lin

∆′ (X) inductively as follows. Let t = xj .
Then f(t) = xj . Let t = δ(t1, . . . , tk), δ ∈ ∆, and t′1, . . . , t

′
l be the canonical sort of

100

4.4 Constructing a binarization mapping

the sequence that is obtained from t1, . . . , tk by removing every occurrence of any tree

that does not contain any variable. There are uniquely determined j1, . . . , jl such that

t′ι = tjι for every ι ∈ {1, . . . , l}. Moreover, let u1, . . . , ul with uι = f(t′ι). We proceed

by case distinction.

1. If l = 1 and u1(ε) 6∈ X , then

f(t) = δ(t′′1, . . . , t
′′
k)
(
u1|1, . . . , u1|rku1 (ε)

)

where t′′j1 is u1(ε), and t′′j = tj for j 6= j1.

2. Otherwise, we let

f(t) = δ(t′′1, . . . , t
′′
k)
(
u′1, . . . , u

′
l

)

where, for every ι ∈ {1, . . . , l},

• if rkuι(ε) = 1, then t′′jι = uι(ε)[x1/xι] and u′ι = uι|1,

• if rkuι(ε) 6= 1, then t′′jι = xι and u′ι = uι,

and t′′j = tj for j 6∈ {j1, . . . , jl}.

Example 4.4.6 (Ex. 4.4.2 contd.) We show how to compute f(t2). First, we perform

the canonical sort of the sequence t2|1, t2|2, which yields t2|2, t2|1. Second, we com-

pute u1 = f(t2|2) and u2 = f(t2|1).
For u1, we first observe that the sequence t2|21, t2|22 is already canonically sorted.

We compute f(t2|21) and f(t2|22), which is x1 and x2, respectively. Now we con-

struct u1. Since rkx1(ε), rkx2(ε) 6= 1, we do not merge, and we obtain that u1 =
[con2(x1, x2)](x1, x2). For u2, the sequence t2|11 is also already sorted. We compute

f(t2|11), which is x3. Now we construct u2. Since rkx3(ε) 6= 1, we also do not merge,

and we obtain that u2 = [con2(x1, a)](x3).
Finally, we construct f(t2). We have that rku1(ε) 6= 1 and rku2(ε) = 1, so we have

to merge once. We derive

f(t2) = [con2(u2(ε)[x1/x2], x1)](u1, u2|1)

= [con2(con2(x2, a), x1)]
(
[con2(x1, x2)](x1, x2), x3

)
. �

We show that v(t) and f(t) are congruent if |var(t)| > 1, and we show how to con-

struct a tree homomorphism that maps f(t) back to t. To this end, let ∆′′ ⊆ ∆′ be finite.

Then we define the tree homomorphism h∆′′ : T∆′′(X) → T∆(X) by h∆′′(δ) = δ for

every δ ∈ ∆′′. Moreover, we define ∆′|t = {δ
(k) | δ ∈ ∆′(k), ∃w ∈ pos(t) : t(w) =

δ}.

101

4 Generic binarization of weighted grammars

Lemma 4.4.7 For every m ∈ N and t ∈ T lin

∆ (X) with |pos(t)| ≤ m, we have the

following. If |var(t)| > 1, then v(t) and f(t) are congruent; otherwise, var(f(t)) =
var(t) and pos(f(t)) ⊆ {ε, 1}. Moreover, for every finite ∆′′ with ∆′|f(t) ⊆ ∆′′ ⊆ ∆′,

we have that h∆′′(f(t)) = t.

PROOF. By induction on m. For the induction base (m = 0), there is nothing to show.

We show the induction step (m→ m+1). To this end, letm ∈ N and t ∈ T lin

∆ (X) with

|pos(t)| ≤ m + 1. If t ∈ X , then the statements are easy to see. Let t = δ(t1, . . . , tk)
with δ ∈ ∆, and let t′1, . . . , t

′
l, j1, . . . , jl, and u1, . . . , ul be as in the definition of f .

Let |var(t)| ≤ 1. Then l ≤ 1. If l = 0, then it is easy to see that f(t) = t and,

hence, var(f(t)) = ∅ = var(t) and pos(f(t)) = {ε} (recall that t is the label of the

root of f(t)). If l = 1, then |var(t′1)| = 1. We derive var(f(t)) = var(f(t′1)) =
var(t′1) = var(t). By the induction hypothesis, pos(u1) ⊆ {ε, 1}. By the definition of

f(t), pos(f(t)) ⊆ {ε, 1} holds as well.

Let |var(t)| > 1. If l = 1 and u1(ε) 6∈ X , then |var(t′1)| > 1. By the induc-

tion hypothesis, v(t′1) and u1 are congruent. We derive pos(f(t)) = pos(f(t′1)) =
pos(v(t′1)) = pos(v(t)). Moreover, f(t)(w) = xj iff f(t′1)(w) = xj iff v(t′1)(w) = xj
iff v(t)(w) = xj . If l 6= 1 or u1(ε) ∈ X , we proceed as follows. By the induction

hypothesis, v(t′ι) and f(t′ι) are congruent for every ι with |var(t′ι)| > 1. We derive

pos(f(t)) = {ε} ∪ {ιw | ι ∈ {1, . . . , l}, rkuι(ε) = 1, w ∈ pos(uι|1)}

∪ {ιw | ι ∈ {1, . . . , l}, rkuι(ε) 6= 1, w ∈ pos(uι)}

= {ε} ∪ {ι | ι ∈ {1, . . . , l}, rkuι(ε) = 1}

∪ {ιw | ι ∈ {1, . . . , l}, rkuι(ε) 6= 1, w ∈ pos(v(t′ι))}

= pos(v(t)) ,

where we use the following reasoning. If rkuι(ε) = 1, then uι is not congruent with any

variable tree, and the induction hypothesis yields |var(t′ι)| ≤ 1, which in turn implies

that pos(t′ι) ⊆ {ε, 1}. By assumption, |var(t′ι)| ≥ 0, so |var(t′ι)| = 1. Hence, and

since rkuι(ε) = 1, we obtain that uι|1 ∈ X . By similar reasoning, one can prove that

f(t)(w) = xj iff v(t)(w) = xj .

Now we show that h∆′′(f(t)) = t. We distinguish two cases. First, let l = 1
and u1(ε) 6∈ X . Let t′′1, . . . , t

′′
k be as in the definition of f . We let l′ = rku1(ε) and

g : Xl′ → T∆(X) with g(xj) = h∆′′(u1|j). First, we prove that g♯(t′′j) = tj . If j 6= j1,

then this is trivial. If j = j1, then we derive

g♯(t′′j) = g♯(u1(ε)) = h∆′′(u1)

= tj . (induction hypothesis)

102

4.4 Constructing a binarization mapping

Second, we derive

h∆′′(f(t)) = g♯(δ(t′′1, . . . , t
′′
k)) = δ(g♯(t′′1), . . . , g

♯(t′′k)) = δ(t1, . . . , tk) = t .

Now let l 6= 1 or u1(ε) ∈ X . Let t′′1, . . . , t
′′
k and u′1, . . . , u

′
l be as in the definition

of f , and let g : Xl′ → T∆(X) with g(xj) = h∆′′(u′j). As a first step, we prove that

g♯(t′′j) = tj . If j 6∈ {j1, . . . , jl}, then this is trivial. If there is a ι with j = jι and

rkuι(ε) = 1, then we derive

g♯(t′′j) = g♯(uι(ε)[x1/xι]) = uι(ε)[x1/h∆′′(uι|1)] = h∆′′(uι)

= tj . (induction hypothesis)

If there is a ι with j = jι and rkuι(ε) 6= 1, then we derive

g♯(t′′j) = g♯(xι) = h∆′′(uι)

= tj . (induction hypothesis)

The second step, h∆′′(f(t)) = t, is as in the former case. �

4.4.2 Constructing a binarization

Now we apply the concepts of the previous subsection in our context of IRTGs. Let

t = (t1, . . . , tn) be a sequence such that ti ∈ T∆i
(Xk). We call t a binarization hedge

of ρ if the following two properties hold:

(i) hi(α)
Ai = tAi

i ,

(ii) the terms t1, . . . , tn have the same variable tree, which is binary.

Let t be a binarization hedge of ρ, and let

Γ′ = {(δ1, . . . , δn)
(k) | ∃w ∈ pos(v(t1)) : k = rkv(t1)(w), ∀i : δi = f(ti)(w)} .

This definition is sound because pos(f(ti)) = pos(v(ti)), by Lm. 4.4.7, and v(ti) =
v(t1), by assumption. We construct a tree ξ ∈ CΓ′(Xk) and a ξ-binarization of ρ.

We let ξ be obtained from v(t1) by replacing, at each ⋆-labeled position w, the label

⋆ by (f(t1)(w), . . . , f(tn)(w)). Since v(t1) is binary, so is ξ. Moreover, we let ξ′ =
ξ[x1/q1] · · · [xk/qk], and we define the IRTG B(ρ, t) over ∆ and S with

• B(ρ, t) = (Γ′,M ′, h′),

• M ′ = (Q′ ∪ {q}, q, R′, µ′),

103

4 Generic binarization of weighted grammars

• Q′ = {ξ′|w | w ∈ pos(ξ′), w 6= ε}, and

• R′ = {ρw | w ∈ pos(ξ′), ξ′(w) 6∈ Q} where

ρε : (ξ′|1 · · · ξ
′|rkξ′ (ε), ξ

′(ε), q) ,

ρw : (ξ′|w1 · · · ξ
′|w rkξ′ (w)

, ξ′(w), ξ′|w) , (w 6= ε)

• µ′(ρε) = µ(ρ) and µ′(ρw) = 1 for w 6= ε,

• h′i((δ1, . . . , δn)) = δi.

By Lm. 4.4.7, we have that hi(α)
Ai = tAi

i = h′i(ξ)
Ai . With this, it is easy to see that

B(ρ, t) is indeed a ξ-binarization of ρ. It is even rank normal, because a variable tree

such as v(t1) does not contain any unary nodes.

Example 4.4.8 We can view the binarization of Fig. 4.5 as an instance of our construc-

tion, where we have

α′ =
(
con2(x1, x2), con

2(con2(x2, a), x1)
)

,

α′′ =
(
con2(x1, x2), con

2(x1, x2)
)

,

ξ = α′(α′′(x1, x2), x3) ,

A′ = α′′(B,C) . �

Lemma 4.4.9 The following statements are equivalent:

1. There is a binarization of ρ.

2. There is a binarization hedge of ρ.

3. There is a rank-normal binarization of ρ.

PROOF. “1⇒ 2”. Let (Γ′,M ′, h′) be a ξ-binarization of ρ. Then ξ is binary, and so is

v(ξ). By Lm. 4.4.4, the sequence (h′1(ξ), . . . , h
′
n(ξ)) is a binarization hedge. “2⇒ 3”.

Let t be a binarization hedge of ρ. Then B(ρ, t) is a rank-normal binarization of ρ, as

we have seen. “3⇒ 1”. Trivial. �

It remains to show how we can find a binarization hedge of ρ, if there is any. We

begin our investigation with the following observation.

104

4.5 Constructing a computable binarization mapping

Observation 4.4.10 Let (bi | i ∈ {1, . . . , n}) with

bi : C∆i
(Xk)→ P(C∆i

(Xk)) ,

t 7→ {t′ | t′ ∈ C∆i
(Xk), t

Ai = t′Ai , v(t′) is binary} .

Then there is a binarization hedge of ρ precisely when
⋂

i v(bi(hi(α))) 6= ∅.

Example 4.4.11 (Ex. 4.3.1 contd.) Figure 4.6(b) shows some elements of b1(h1(α))
and b2(h2(α)). �

Example 4.4.12 (Ex. 4.3.3 contd.) Now we can argue that the first rule does not admit

a binarization, by looking at v(b1(h1(α))) ∩ v(b2(h2(α))), where

con4(x1, x2, x3, x4)
h1←− [α

h27−→ con4(x3, x1, x4, x2) .

It is straightforward to enumerate v(bi(hi(α))). For i = 1, each element has yield

x1x2x3x4; for i = 2, no element does. Hence, the corresponding sets are disjoint. �

Observation 4.4.10 constitutes an RCBM “template”, which is depicted in Fig. 4.7.

This template gives rise to a class of RCBMs, where we obtain a concrete RCBM

by specifying the precise order in which the for-loop in Line 2 iterates over the rules

and by making the selections in Lines 5 and 8 deterministic. We note that there is

a technical problem with this template: in Line 9, it is not guaranteed that B′ and

B(ρ, (t1, . . . , tn)) are compatible. However, since our construction for B(ρ, t) follows

a rather strict regime with respect to Γ′ and Q′, we can assume that the assignment in

Line 1 also prepares B′ so that conflicts with this regime are ruled out.

The binarization mappings specified by the template are total (technically, left-total

on the set of all IRTGs over ∆ and S): if a rule of the given IRTG does not have a

binarization, then it is simply carried over to the new grammar, which then has a rank

higher than 2.

4.5 Constructing a computable binarization mapping

In Fig. 4.7, we have seen a template for RCBMs. This template is based on the map-

pings b1, . . . , bn of Obs. 4.4.10, which map a term to the set of all equivalent terms

whose variable tree is binary. However, without any restrictions on the algebras, term

equivalence is undecidable, and bi is thus not computable. Consequently, said RCBMs

are not computable either. In this section, we revise our template so that it describes

computable binarization mappings. To this end, we “outsource” bi to the user. Put more

precisely, we require the user to specify an explicit approximation bi of the mapping bi.
We call this approximation a binarization rule (b-rule).

105

4 Generic binarization of weighted grammars

Input: IRTG B = (Γ,M, h) over ∆ and S

Output: IRTG B′ over ∆ and S

1: B′ ← B
2: for each rule ρ : (q1 · · · qk, α, q) of B with k > 2 do

3: L←
⋂

i v(bi(hi(α)))
4: if L 6= ∅ then

5: select τ ∈ L
6: for i = 1, . . . , n do

7: Li ← bi(hi(α)) ∩ v
−1(τ)

8: select ti ∈ Li
9: B′ ← B′[ρ/B(ρ, (t1, . . . , tn))]

Figure 4.7: RCBM template.

4.5.1 Binarization rule and algorithmization

Let us define the concept of a b-rule. In order to keep notation uncluttered, we will

disregard the IRTG B in this subsection and rather proceed in a general setting. To this

end, let ∆ be an arbitrary ranked alphabet. For this section, we extend the notion of a

(recognizable) tree language to subsets of T∆(X
′) for finite X ′ ⊆ X . We achieve this

by identifying T∆(X
′) with T∆∪{x(0)|x∈X′}.

A binarization rule (b-rule) b over ∆ is a mapping b : ∆→ P(T∆(X)) such that for

every δ ∈ ∆(k)

• b(δ) ⊆ C∆(Xk),

• b(δ) is a recognizable tree language, and

• v(t) is binary for every t ∈ b(δ).

We extend b to T∆(X) by letting

b(xj) = {xj}

b(δ(t1, . . . , tk)) =
{
t[x1/t

′
1] · · · [xk/t

′
k]

∣
∣ t ∈ b(δ), t′j ∈ b(tj)

}
.

Given an algebra A over ∆, b is called a b-rule over A if

t′ ∈ b(t) =⇒ tA = t′A .

106

4.5 Constructing a computable binarization mapping

Such a b-rule encodes equivalence in A, and it does so in an explicit and compact way:

since b(δ) is a recognizable tree language, a b-rule can be specified by a finite collection

of FTAs, one for each symbol δ ∈ ∆.

Example 4.5.1 We consider a b-rule b for the algebra A from Ex. 4.3.1. Each symbol

a ∈ ∆(0) is mapped to the language {a}. Each symbol conk, k ≥ 2, is mapped to

the language recognized by the following FTA with states of the form [j, j′] (where

0 ≤ j < j′ ≤ k) and root state [0, k]:

(ε, xj , [j − 1, j]) , (1 ≤ j ≤ k)

([j, j′′] [j′′, j′], con2, [j, j′]) . (0 ≤ j < j′′ < j′ ≤ k)

This language expresses all possible ways in which conk can be equivalently written in

terms of con2. �

Lemma 4.5.2 For every m ∈ N and t ∈ T∆(X) with |pos(t)| ≤ m, the set b(t) is a

recognizable tree language, and effectively so.

PROOF. By induction on m. For the base case (m = 0), there is nothing to show. We

show the induction step (m → m + 1). To this end, let m ∈ N and t ∈ T∆(X) with

|pos(t)| ≤ m+ 1. We distinguish two cases.

Case 1: Let t = xj . Then b(t) = {xj}, which is trivially recognizable.

Case 2: Let t = δ(t1, . . . , tk) with δ ∈ ∆. By definition, b(δ) is recognizable. By

the induction hypothesis, b(t1), . . . , b(tk) are recognizable. The class of recognizable

tree languages is closed under substitution, and effectively so [80, Prop. 7.3]. �

Now we show that, for every finite X ′ ⊆ X and recognizable tree language L ⊆
C∆(X

′), also v(L) is recognizable. To this end, we introduce an auxiliary result. Let

X ′ ⊆ X be finite and G = (P,R, p0) an FTA over ∆ ∪ X ′ in root-state form. A

(variable) inspection η of G is a mapping η : P → P(X ′) such that for every p ∈ P ,

t ∈ T∆(X
′), d ∈ Dp0(G, t), and w ∈ pos(d), we have var(t|w) = η(πP (d|w)).

Lemma 4.5.3 Let L(G) ⊆ C∆(X
′). Then there is effectively an inspection η of G.

PROOF. Algorithm 4.1 constructs η, along with the set P ′ of productive states. It ter-

minates when P ′ is saturated, which is bound to happen because P ′ never shrinks, and

it is bounded by P . Now we show that η is a variable inspection of G. We note that

this holds regardless of the order in which the rules are iterated in the for loops. Let us

assume that the order is arbitrary, but fixed.

107

4 Generic binarization of weighted grammars

Algorithm 4.1 Algorithm for computing a variable inspection.

Input: FTA G = (P,R, p0) with L(G) ⊆ C∆(X
′)

Output: variable inspection η of G

1: η ← η∅ ⊲ η∅ maps every state to ∅
2: P ′ ← ∅
3: for rule (ε, xj , p) in R do

4: if p 6∈ P ′ then

5: η(p)← {xj}
6: P ′ ← P ′ ∪ {p}

7: while P ′ not saturated do

8: for rule (p1 · · · pk, δ, p) in R with δ ∈ ∆ do

9: if {p1, . . . , pk} ⊆ P
′ and p 6∈ P ′ then

10: η(p)←
⋃

j η(pj)
11: P ′ ← P ′ ∪ {p}

First of all, it is easy to see that the following invariant holds during the run of

the algorithm: for every p ∈ P ′, there is a t ∈ T∆(X
′) with Dp(G, t) 6= ∅ and

var(t) = η(p). Now we prove our main statement by contradiction. For this, let

C = {(p, t, d, w) | t ∈ T∆(X
′), d ∈ Dp0(G, t), w ∈ pos(t), p = πP (d|w),

p 6∈ P ′ ∨ var(t|w) 6= η(p)} .

We assume that C is nonempty. Then there is a (p, t, d, w) ∈ C such that |pos(t|w)| is
minimal (minimality assumption). We distinguish three cases.

Case 1: Let t(w) = xj and p 6∈ P ′. Then (ε, xj , p) ∈ R. By Lines 3 to 6, p ∈ P ′.

Case 2: Let t(w) = δ, δ ∈ ∆, and p 6∈ P ′. Then there are p1, . . . , pk with

d(ε) = (p1 · · · pk, δ, p) and d|wj ∈ Dpj (G, t|wj). By our minimality assumption,

(pj , d, t, wj) 6∈ C. Hence, pj ∈ P
′. By Lines 8 to 11, p ∈ P ′.

Case 3: Let p ∈ P ′. Then var(t|w) 6= η(p). Since p ∈ P ′, there is a t′ ∈ T∆(X
′)

with Dp(G, t′) 6= ∅ and var(t′) = η(p). Thus, there is a d′ ∈ Dp(G, t′). We construct

t′′ = t[t′]w and d′′ = d[d′]w. It is easy to see that t, t′′ ∈ L(G) and that at least one of

them is not in C∆(X
′), which contradicts our assumption that L(G) ⊆ C∆(X

′).

We obtained a contradiction in each case, so we conclude that C is empty. �

Example 4.5.4 (Ex. 4.5.1 contd.) We apply Alg. 4.1 to the FTA for b(con3), and we

protocol the values of P ′ and η at the end of certain lines. Then we obtain Tab. 4.2. �

108

4
.5

C
o
n
stru

ctin
g

a
co

m
p
u
tab

le
b
in

arizatio
n

m
ap

p
in

g

line P ′ η([0, 1]) η([1, 2]) η([2, 3]) η([0, 2]) η([1, 3]) η([0, 3])

3 ∅ ∅ ∅ ∅ ∅ ∅ ∅

7 {[0, 1], [1, 2], [2, 3]} {x1} {x2} {x3} ∅ ∅ ∅

11
{[0, 1], [1, 2], [2, 3],

[0, 2], [1, 3]}
{x1} {x2} {x3} {x1, x2} {x2, x3} ∅

11
{[0, 1], [1, 2], [2, 3],
[0, 2], [1, 3], [0, 3]}

{x1} {x2} {x3} {x1, x2} {x2, x3} {x1, x2, x3}

Table 4.2: A run of Alg. 4.1.

1
0
9

4 Generic binarization of weighted grammars

For every finite X ′ ⊆ X , we transfer the definition of a canonical sort to finite

sequences over P(X ′) as follows. A sequence u1, . . . , ul ⊆ X ′ is eligible if uj 6= ∅
and uj ∩ uj′ 6= ∅ implies j = j′. Let u1, . . . , ul be eligible. Then the canonical

sort csort(u1, . . . , ul) of u1, . . . , ul is the sequence obtained from u1, . . . , ul by sorting

according to the least variable index. For instance,

csort({x3}, {x2, x4}) =
(
{x2, x4}, {x3}

)
.

Observation 4.5.5 Let G be trim and η an inspection of G. Then var(t) = η(p) for

every p ∈ P and t with Dp(G, t) 6= ∅. Consequently, η(p) =
⋃

j η(pj) for every

(p1 · · · pk, δ, p) ∈ R, and the sequence obtained from η(p1), . . . , η(pk) by removing

every occurrence of the empty set is eligible for a canonical sort. Let η′ be an inspection

of G. Then η = η′.

Next, we show that v(L) is recognizable for every recognizable tree language L. We

begin with the corresponding construction. Let G be trim and η an inspection for G.

We define the FTA η(G) over {⋆, ∅} ∪X ′ by

η(G) =
(
η(P), η(R), η(p0)

)

where η(R) is the smallest set R′ of transitions such that the following holds.

• Let (ε, xj , p) ∈ R. Then (ε, xj , {xj}) ∈ R
′.

• Let (p1 · · · pk, δ, p) ∈ R, δ ∈ ∆, and u1, . . . , ul be the canonical sort of the

sequence obtained from η(p1), . . . , η(pk) by removing every occurrence of ∅. If

l = 0, then (ε, ∅, p) ∈ R′. If l ≥ 2, then (u1 · · ·ul, ⋆, η(p)) ∈ R
′.

Example 4.5.6 (Ex. 4.5.1 contd.) Let G be the FTA for b(con3). In this case, each

transition of η(G) is constructed from a transition of G:

(ε, x1, [0, 1]) (ε, x1, {x1}) ,

(ε, x2, [1, 2]) (ε, x2, {x2}) ,

(ε, x3, [2, 3]) (ε, x3, {x3}) ,

([0, 1][1, 2], con2, [0, 2]) ({x1}{x2}, ⋆, {x1, x2}) ,

([1, 2][2, 3], con2, [1, 3]) ({x2}{x3}, ⋆, {x2, x3}) ,

([0, 1][1, 3], con2, [0, 3]) ({x1}{x2, x3}, ⋆, {x1, x2, x3}) ,

([0, 2][2, 3], con2, [0, 3]) ({x1, x2}{x3}, ⋆, {x1, x2, x3}) . �

110

4.5 Constructing a computable binarization mapping

Lemma 4.5.7 LetL ⊆ C∆(X
′) be recognizable. Then v(L) is effectively recognizable.

PROOF. By Lm. 2.4.10, there is a trim FTA G in root-state form with L(G) = L.

Let G = (P,R, p0). By Lm. 4.5.3, there is an inspection η of G. For the proof of

v(L(G)) = L(η(G)), one shows by induction on m that the following two statements

hold. This is straightforward. Statement 1: For every m ∈ N, p ∈ P , and d ∈ Dp
co(G)

with |pos(d)| ≤ m, there is a d′ ∈ D
η(p)
co (η(G)) with π{⋆,∅}∪X′(d′) = v(π∆∪X′(d)).

Statement 2: For every m ∈ N, p ∈ P , and d′ ∈ D
η(p)
co (η(G)), there is a d ∈ Dp

co(G)
with π{⋆,∅}∪X′(d′) = v(π∆∪X′(d)). �

Now we show that L∩v−1(τ) is recognizable for every recognizable tree language L
and every variable tree τ . Again, we begin with the corresponding construction. Let G
be trim, η an inspection for G, and τ = v(t) for some t ∈ C∆(X

′). We define the FTA

η(G, τ) over ∆ ∪X ′ by

η(G, τ) =
(
P, η(R, τ), p0

)

where η(R, τ) is the smallest set R′ of transitions such that the following holds.

• Let (ε, xj , p) ∈ R. If τ(w) = xj for some w ∈ pos(τ), then (ε, xj , p) ∈ R
′.

• Let (p1 · · · pk, δ, p) ∈ R, δ ∈ ∆, and u1, . . . , ul be the canonical sort of the

sequence obtained from η(p1), . . . , η(pk) by removing every occurrence of ∅. If

l < 2 or if there is a w ∈ pos(τ) with rkτ (w) = l, var(τ |w) = η(p), and

var(τ |wj) = uj , then (p1 · · · pk, δ, p) ∈ R
′.

Example 4.5.8 (Ex. 4.5.1 contd.) Let G be the FTA for b(con3) and τ as in Fig. 4.6,

i.e., τ = ⋆(⋆(x1, x2), x3). Then η(G, τ) has the following transitions: (ε, x1, [0, 1]),
(ε, x2, [1, 2]), (ε, x3, [2, 3]), ([0, 1][1, 2], con

2, [0, 2]), ([0, 2][2, 3], con2, [0, 3]). �

Lemma 4.5.9 Let L ⊆ C∆(X
′) be recognizable and τ = v(t) for some t ∈ L. Then

L ∩ v−1(τ) is effectively recognizable.

PROOF. By Lm. 2.4.10, there is a trim FTA G in root-state form with L(G) = L.

Let G = (P,R, p0). By Lm. 4.5.3, there is an inspection η of G. We prove that

L(G) ∩ v−1(τ) = L(η(G, τ)).
We begin with “⊆”. To this end, let t ∈ L(G) such that v(t) = τ . Then there is

a p0-run d of G on t. We show by induction on m that d|w ∈ D
p(G) implies d|w ∈

Dp(η(G, τ)) for every m ∈ N, p ∈ P , and w ∈ pos(d) with |pos(d|w)| ≤ m. For the

induction base (m = 0), there is nothing to show. We show the induction step (m →
m+1). For this, let m ∈ N, p ∈ P , and w ∈ pos(d) such that |pos(d|w)| ≤ m+1 and

111

4 Generic binarization of weighted grammars

d|w ∈ D
p(G). By the induction hypothesis, it suffices to show that d(w) ∈ η(R, τ).

We distinguish two cases.

Case 1: Let d(w) = (ε, xj , p). Then d(w) ∈ η(R, τ).
Case 2: Let d(w) = (p1 · · · pk, δ, p) and δ ∈ ∆. Let u1, . . . , ul be the canonical sort

of the sequence obtained from η(p1), . . . , η(pk) by removing every occurrence of ∅. If

l < 2, then d(w) ∈ η(R, τ) holds trivially. Let l ≥ 2; then by definition v(t|w) =
⋆(v(t′1), . . . , v(t

′
l)) where t′1, . . . , t

′
l is obtained from t|w1, . . . , t|wk by removing every

occurrence of any tree that does not contain any variables. It is easy to see from the

recursive definition of v that v(t|w) occurs in v(t). Since η is an inspection, and since

var(v(t)) = var(t) for every t ∈ T∆, we obtain that η(p) = var(t|w) = var(v(t|w))
and η(pj) = var(t|wj) = var(v(t|wj)). Hence, d(w) ∈ η(R, τ).

Now we show “⊇”. Since η(R, τ) ⊆ R, we obtain that L(η(G, τ)) ⊆ L(G) and

that η is also an inspection for η(G, τ). We show that L(η(G, τ)) ⊆ v−1(τ). The case

that η(p0) = ∅ is easy. Let η(p0) 6= ∅. We make the following crucial observation: for

every u ⊆ Xk, there is at most one w′ ∈ pos(τ) with var(τ |w′) = u. Let t ∈ T∆ and

d ∈ Dp0(G, t). We show by induction on m that, for every m ∈ N and w ∈ pos(d), if

|pos(d|w)| ≤ m and η(πP (d|w)) 6= ∅, then there is a w′ ∈ pos(τ) such that v(t|w) =
τ |w′ . Then, since var(t) = η(p0) = var(τ |ε) and by our observation, we have that

v(t) = τ .

For the induction base (m = 0), there is nothing to show. We show the induction

step (m→ m+ 1). For this, let m ∈ N and w ∈ pos(d) such that |pos(d|w)| ≤ m+ 1
and η(πP (d|w)) 6= ∅. We distinguish two cases.

Case 1: Let d(w) = (ε, xj , p). Clearly, there is a w′ ∈ pos(τ) with τ(w′) = xj .

Case 2: Let d(w) = (p1 · · · pk, δ, p) and δ ∈ ∆. Let u1, . . . , ul be obtained from

η(p1), . . . , η(pk) by removing every occurrence of ∅. There are uniquely determined

j1, . . . , jl such that uι = η(pjι). If l ≤ 2, then l = 1, and ν(p) = u1. By the

induction hypothesis, there is a w′ with v(t|wj1) = τ |w′ . Hence, we can derive that

v(t|w) = v(t|wj1) = τ |w′ . If l ≥ 2, then v(t|w) = ⋆(v(t|wj1), . . . , v(t|wjl)). Since

d(w) ∈ η(R, τ), we have that there is aw′ ∈ τ with var(τ |w′) = η(p) and var(τ |w′ι) =
uι. By the induction hypothesis, we have that there arew′

1, . . . , w
′
l with v(t|wjι) = τ |w′

ι
.

By our initial observation, we obtain that w′
ι = w′ι. Hence, v(t|w) = τ |w′ . �

4.5.2 Binarization under binarization rules

Let b = (b1, . . . , bn) such that bi is a b-rule over Ai. A ξ-binarization (Γ′,M ′, h′)
of ρ is called “under b” if h′i(ξ) ∈ bi(hi(α)). Likewise, a binarization hedge t of ρ
is called “under b” if ti ∈ bi(hi(α)). Lemma 4.4.9 and Obs. 4.4.10 carry over to

these restricted notions. A binarization mapping bin : C → C is called b-complete if

bdom(bin) contains every B ∈ C such that for every suprabinary rule ρ of B there is a

112

4.5 Constructing a computable binarization mapping

Algorithm 4.2 Binarization algorithm.

Input: IRTG B = (Γ,M, h) over ∆ and S ,

b-rules b1, . . . , bn over ∆1, . . . ,∆n, respectively

Output: IRTG B′ over ∆ and S

1: B′ ← B
2: for each rule ρ : (q1 · · · qk, α, q) of B with k > 2 do

3: compute FTA G′ for
⋂

i v(bi(hi(α)))
4: if L(G′) 6= ∅ then

5: select τ ∈ L(G′)
6: for i = 1, . . . , n do

7: compute FTA G′
i for bi(hi(α)) ∩ v

−1(τ)
8: select ti ∈ L(G

′
i)

9: B′ ← B′[ρ/B(ρ, t1, . . . , tn)]

binarization of ρ under b.

By definition, rule-by-rule complete implies b-complete. The converse need not be

true. However, if the b-rules b have a certain property, we can guarantee that b-complete

also implies rule-by-rule complete. More specifically, we say that b is complete on B if

v(bi(hi(α)) = v(bi(hi(α)) for every α ∈ Γ and i ∈ {1, . . . , n}. Then the intersection

in Obs. 4.4.10 is empty in the restricted case iff it is empty in the general case, i.e.,

⋂

i v(bi(hi(α))) 6= ∅ ⇐⇒
⋂

i v(bi(hi(α))) 6= ∅ .

Consequently, if b is complete on every element of C, then b-complete implies rule-by-

rule complete.

Now we have the ingredients that we need for a template that gives rise to a class

of computable binarization mappings. It is shown as Alg. 4.2. As before, we obtain a

concrete binarization mapping by making the for-loop and the selections deterministic.

In Line 3, we use Lms. 4.5.2 and 4.5.7 and that the class of recognizable tree languages

is effectively closed under intersection [80, Prop. 7.1]. In Line 7, we use Lm. 4.5.9.

The following theorem documents the behavior of the template. In short, when we fix

b, the template describes a class of b-complete binarization mappings.

Theorem 4.5.10 Let

• ∆ = (∆1, . . . ,∆n) be a sequence of ranked alphabets,

• S a commutative semiring,

• A = (A1, . . . ,An) a sequence such that Ai is a ∆i-algebra,

113

4 Generic binarization of weighted grammars

• b = (b1, . . . , bn) a sequence such that bi is a b-rule over Ai.
Moreover, let B be an IRTG over ∆ and S . If we execute Alg. 4.2 with input B and b,

then it terminates, and it outputs an IRTG B′ over ∆ and S such that (i) B′ is of rank 2
iff every suprabinary rule of B has a binarization under b, (ii) if B is A-admissible,

then so is B′, and (iii) in that case, B and B′ are A-equivalent.

The runtime of Alg. 4.2 is dominated by the intersection in Line 3, whose runtime

is in O(m1 · · ·mn), where mi is the size of the FTA for bi(hi(α)). The quantity mi is

linear in the size of the terms in {hi(α) | α ∈ Γ} and in the number of transitions in

the FTAs for the b-rule bi. It is convenient to consider this quantity to be constant; then

the overall runtime of our algorithm is in O(|R| · cn) for some c ∈ N.

4.6 Application to established formalisms

In this section we consider how the RCBMs for IRTGs can (or cannot) be used to obtain

RCBMs for established formalisms such as SCFGs, tree-to-string transducers (yXTTs),

or WSCFTGs.

4.6.1 General approach

First, we briefly consider two possible approaches to this question: the solution-transfer

approach and the problem-transfer approach. To this end, let F be a class of devices

(such as SCFGs).

In the solution-transfer approach, we are interested in a partial mapping bin : F → F
that preserves meaning and reduces the rank to 2. We assume that there is a suitable

subclass C of IRTGs for which we already have a binarization mapping bin ′. Then we

define bin as follows: given an element of F , we convert it into an IRTG in C, we

apply (if possible) bin ′, and then we convert the resulting IRTG back; naturally, the

conversion must preserve rank and meaning. The problem is that we cannot make any

meaningful statement about bin (e.g., whether it is rule-by-rule complete) without the

whole formal apparatus for F .

In the problem-transfer approach, we also assume that there is a suitable subclass C
of IRTGs as well as means of converting back and forth. However, we regard this

conversion as rather hypothetical, for when it comes to treating binarization and other

problems formally, we stipulate that C rather than F is the formalism in question, and

that F is effectively obsolete. That is, our aim then is to find a binarization mapping

bin : C → C. This change of perspective enables us to use IRTG terminology through-

out. We note that it remains possible to use existing infrastructure for F , namely via

conversion; we just do not make any formal statements pertaining to F .

114

4.6 Application to established formalisms

In the following, we will pursue the problem-transfer approach. To this end, we

define what a grammar formalism is (from the point of view of IRTGs), we motivate

that definition, and then we define the binarization mapping for a formalism, given

appropriate b-rules. We will consider examples of formalisms, such as SCFGs, and the

respective binarization mappings in the subsequent subsections.

Let ∆ = (∆1, . . . ,∆n) be a sequence of ranked alphabets and S a semiring. A

(grammar) formalism is a triple (C,A, ϕ) such that

• A = (A1, . . . ,An) is a sequence such that Ai is a ∆i-algebra, and

• C is a set of A-admissible IRTGs over ∆ and S ,

• ϕ : C → C is an idempotent mapping (called normal-form mapping) that pre-

serves meaning, rank, and rule-by-rule (non)binarizability, i.e., every suprabinary

rule of B has a binarization iff the same is true for ϕ(B).

Let (C,A, ϕ) be a formalism. We usually identify (C,A, ϕ) with C. For every B ∈ C,

we define the C-meaning JBKC of G by letting JBKC = JBKA.

Let us motivate our definition of a formalism. First, we observe that the definition of

a grammar class such as SCFG implicitly uses a fixed selection of operations, and these

operations can be captured by a fixed sequence A of algebras. Second, it is important

to note that C is often a strict subset of all IRTGs over ∆ and S; e.g., in a WSCFTG

the variables in Y may not occur arbitrarily often in a rule. Third, we recall that IRTGs

can offer a high degree of freedom for expressing the generational behavior of a rule,

as illustrated in Ex. 4.2.2. We accommodate this fact by the normal-form mapping. We

require that rank and rule-by-rule (non)binarizability be preserved so that the normal

form does not interfere with binarization.

Let b = (b1, . . . , bn) be a sequence such that bi is a b-rule over Ai. Moreover, let

binb be a computable b-complete binarization mapping for A-admissible IRTGs over

∆ and S; we know that such a mapping exists because of Thm. 4.5.10. We define the

partial mapping binC : C → C by letting

binC = (binb ◦ ϕ) ∩ (C × C) .

There are three possible causes when B ∈ C \ bdom(binC):

1. some suprabinary rule of B does not have a binarization,

2. the b-rules are not complete on ϕ(B), or

3. binb(ϕ(B)) 6∈ C.

115

4 Generic binarization of weighted grammars

In a practical application, each of these causes may be acceptable. We, however, take

a theoretical stance and accept only the first cause. In other words, we want binC

to be rule-by-rule complete. Correspondingly, we say that C and b are admissible if

binb(ϕ(C)) ⊆ C, and they are complete if b is complete on every element of ϕ(C). If

we have admissibility and completeness, then binC is rule-by-rule complete.

We note that the properties “admissible” and “complete” refer to the combination of

formalism and b-rules. However, for the sake of simplicity, we will also say that some

formalism is admissible or complete, assuming that the b-rules are fixed.

In the following subsections we consider concrete algebras and formalisms.

4.6.2 Useful algebras and b-rules

We consider three algebras together with suitable b-rules: the string algebra, the hedge

algebra, and the hedge algebra with substitution. A hedge is a sequence of trees; this

notion is central to XML-related theory [140, 177], and in work related to natural-

language processing, hedges are also called s-terms [169]. In this section, we deviate

from Sec. 2.2 and define trees and hedges anew.

To this end, let Σ and V be sets. Then the set HΣ(V) of hedges over Σ indexed by V
and the set TΣ(V) of trees over Σ indexed by V are defined by

(HΣ(V), TΣ(V)) = (H,T) ,

where (H,T) is the smallest pair, according to the pointwise subset relation, such that

• T ∗ ⊆ H ,

• V ⊆ T , and

• σ(u) ∈ T if σ ∈ Σ and u ∈ H .

Let V ′ ⊆ Σ ∪ V ∪ X ∪ Y and f : V ′ → HΣ(V). Then we define the mappings

f ♭, f ♭♭ : HΣ(V) → HΣ(V), called first-order substitution and second-order substitu-

tion, respectively, as follows. We let

f ♭(ε) = f ♭♭(ε) = ε .

For every v ∈ V and u ∈ HΣ(V), we let

f ♭(vu) =

{

f(v)f ♭(u) if v ∈ V ′,

vf ♭(u) if v 6∈ V ′.
f ♭♭(vu) =

{

f(v)f ♭♭(u) if v ∈ V ′,

vf ♭♭(u) if v 6∈ V ′.

116

4.6 Application to established formalisms

Ranked alphabets Σ alphabet, K ∈ N

SYM(Σ) = {σ(0) | σ ∈ Σ}

TOP(Σ) = {σ(1) | σ ∈ Σ}

CONK = {(conk)(k) | 0 ≤ k ≤ K, k 6= 1}

ΠK = {πk | 1 ≤ k ≤ K}

SUBK = {(subk)(k+1) | 1 ≤ k ≤ K}

Operations σ ∈ Σ, k ∈ N, D set

symσ : ((Σ ∪X)∗)0 → (Σ ∪X)∗, () 7→ σ

topσ : (HΣ∪X(Y))1 → HΣ∪X(Y), (u1) 7→ σ(u1)

conk,D : (D∗)k → D∗, (w1, . . . , wk) = w1 · · ·wk
pik : (HΣ∪X(Y))0 → HΣ∪X(Y), () 7→ yk

subk : (HΣ∪X(Y))k+1 → HΣ∪X(Y),

(u, u1, . . . , uk) 7→ u[y1/u1] · · · [yk/uk]

Table 4.3: Ranked alphabets and operations for our algebras.

For every σ(u1)u2 ∈ HΣ(V), we let

f ♭(σ(u1)u2) =

{

f(σ)f ♭(u2) if σ ∈ V ′,

σ(f ♭(u1))f
♭(u2) if σ 6∈ V ′.

If V ′ = {v1, . . . , vl}, then we also denote f ♭(u) by u[v1/f(v1)] · · · [vl/f(vl)]. We let

f ♭♭(σ(t1, . . . , tk)u) =

{

f(σ)[y1/f
♭♭(t1)] · · · [yk/f

♭♭(tk)]f
♭♭(u) if σ ∈ V ′,

σ(f ♭♭(t1), . . . , f
♭♭(tk))f

♭♭(u) if σ 6∈ V ′.

If V ′ = {v1, . . . , vl}, then we also denote f ♭♭(t) by tLv1/f(v1)M · · · Lvl/f(vl)M.
Now we proceed to discuss the three algebras promised above. We define these

algebras based on the alphabets and the operations shown in Tab. 4.3; the algebras

themselves are given in Tab. 4.4.

String algebra Roughly speaking, the string algebra is defined like the algebra A
in Ex. 4.2.2. In addition to the alphabet Σ, we have another parameter K ∈ N that

restricts the number of con-symbols.

117

4
G

en
er

ic
b
in

ar
iz

at
io

n
o
f

w
ei

g
h
te

d
g
ra

m
m

ar
s

hedge algebra

string algebra hedge algebra with substitution

over Σ and K over Σ and K over Σ and K

example term

and

denoted object

con2

a b
7→ ab

σ

con2

α

con0

β

con0

7→

σ

α β

sub1

σ

con2

π1 β

con0

α

con0 7→

σ

α β

signature SYM(Σ) ∪ CONK TOP(Σ) ∪ CONK TOP(Σ) ∪ CONK ∪ΠK ∪ SUBK

domain (Σ ∪X)∗ HΣ∪X(Y) HΣ∪X(Y)

realization

mapping

σ 7→ symσ

conk 7→ conk,Σ∪X

σ 7→ topσ
conk 7→ conk,TΣ∪X(Y)

σ 7→ topσ
conk 7→ conk,TΣ∪X(Y)

πk 7→ pik
subk 7→ subk

Table 4.4: Algebras for strings and hedges, given an alphabet Σ and a maximum arity K ∈ N.

1
1
8

4.6 Application to established formalisms

We use the following b-rule b (cf. Ex. 4.5.1): it maps each σ ∈ Σ to {σ}, and it maps

con0 to {con0}. Each symbol conk, k ≥ 2, is mapped to the language recognized by

the following FTA with states of the form [j, j′] (where 0 ≤ j < j′ ≤ k) and root state

[0, k]:

(ε, xj , [j − 1, j]) , (1 ≤ j ≤ k)

([j, j′′] [j′′, j′], con2, [j, j′]) . (0 ≤ j < j′′ < j′ ≤ k)

Hedge algebra This algebra incorporates two main ideas:

1. We can construct a tree σ(t1, . . . , tk) in two steps: first, we construct the hedge

t1 · · · tk of children, and second, we “put” a node labeled σ “on top”.

2. We can identify any tree t with the hedge (t) of length 1.

Correspondingly, the domain is the set HΣ∪X(Y) of hedges, and we have two kinds of

operations: (i) for every σ ∈ Σ, we can put σ on top of a hedge, yielding a hedge of

length 1; and (ii) we can concatenate k hedges, as in the string algebra.

We use the following b-rule b: it maps con0 to {con0} and each unary symbol σ to

{σ(x1)}. Each symbol conk, k ≥ 2, is treated as in the string case.

Hedge algebra with substitution We can supplement the hedge algebra with a

substitution operation; this way we can describe formalisms like WSCFTGs. As an

example for substitution, we consider the term function f of sub1(x2,S (x1)). For

every t1 ∈ TΣ and t2 ∈ CΣ(Y1), we have that f(t1, t2) = tLx2/t2MLx1/t1M, where

t = x2(S(x1)). A similar algebra with substitution has been described in [113, 127];

the basic idea goes back to the derived alphabets of [67].

We use the following b-rule b: it maps con0 to {con0} and each unary symbol σ to

{σ(x1)}. Each symbol conk, k ≥ 2, is treated as in the string case. Furthermore, it

maps πk, k ≥ 1, to {πk}, sub
1 to {sub1(x1, x2)}, and subk, k > 1, to ∅.

In the following, when we use a string algebra (or hedge algebra, or hedge algebra

with substitution), say,A1, we will silently assume that ∆1 is its signature and b1 is the

corresponding b-rule.

4.6.3 Synchronous context-free grammars

Let Σ be an alphabet and K ∈ N. We will define the formalism SCFG(Σ,K), which,

informally speaking, represents SCFGs over Σ whose rules contain strings of length at

most K. To this end, let A be the string algebra over Σ and K.

119

4 Generic binarization of weighted grammars

We let SCFG(Σ,K) = (C, (A,A), ϕ), where we define C and ϕ as follows. We

let C be the set of all IRTGs B over (∆,∆) and Real such that, if B = (Γ,M, h),
then |hi(α)

A(x1, . . . , xl)| ≤ K for every i ∈ {1, 2}, l ∈ N, and α ∈ Γ(l). Now we

define ϕ : C → C. To this end, let B ∈ C and B = (Γ,M, h). We construct ϕ(B) =
(Γ,M, h′) where, for every l ∈ N and α ∈ Γ(l), h′i(α) = f(hi(α)

A(x1, . . . , xl)), and

f : (Σ ∪X)∗ → T∆(X) is defined by

f(σ1, . . . , σk) =

{

conk(σ1, . . . , σk) if k 6= 1,

σ1 otherwise.

It is easy to see that ϕ is idempotent, and that it preserves rank and variable trees (and,

a fortiori, rule-by-rule (non)binarizability).

It remains to show that ϕ preserves meaning. To this end, let i ∈ {1, 2}, l ∈ N, and

g : Xl → Σ∗. Recall that g♯ is the homomorphic extension of g to A. For this proof,

we extend g♯ to T∆i
(Xl)

∗ by letting g♯((t1, . . . , tk)) = g♯(t1) · · · g
♯(tk). A simple

proof by induction on m yields that g♯(t) = g♯(tA(x1, . . . , xl)) for every m ∈ N and

t ∈ T∆i
(Xl) with |pos(t)| ≤ m. From this, we conclude that tA = fi(t)

A, which

implies hi(α)
A = h′i(α)

A for every α ∈ Γ. Now one can employ Cor. 4.2.7 in another

simple proof by induction to show that hi(ξ)
A = h′i(ξ)

A for every ξ ∈ TΓ. From this,

we conclude that JGK = Jϕ(G)K.

The formalism SCFG(Σ,K) is trivially admissible, because the b-rule for the string

algebra does not introduce conk with k > K. It is also complete. We note that our for-

malism would not be complete if ϕ did not collapse occurrences of conk. For instance,

the term con2(con2(x1, x2), x3) is equivalent to itself and to con2(x1, con
2(x2, x3)),

but the b-rules only cover the former. Thus they miss one variable tree. For the col-

lapsed version con3(x1, x2, x3), however, the b-rules cover both variable trees.

The binarization mapping binC coincides with that of [97]: any rule can be binarized

in both frameworks or neither. For instance, for the SCFG rule

A→ α(B,C,D,E), α = 〈x1 x2 x3 x4, x2 x4 x1 x3〉,

the sets v(b(h1(α))) and v(b(h2(α))) are disjoint; thus, no binarization exists.

4.6.4 Tree-to-string and hedge-to-string transducers

Some approaches to SMT go beyond string-to-string translation models such as SCFG

by exploiting known syntactic structures in the source or target language. This perspec-

tive on translation naturally leads to the use of yXTTs [181, 79, 95, 90].

120

4.6 Application to established formalisms

NP

NP

DT

the

x1:NNP POS

’s

x2:JJ x3:NN
−→ das x2 x3 der x1

Figure 4.8: A yXTT rule in the notation of [79].

(NNP JJ NN, α,NP)

NP

con3

NP

con3

DT

the

con0

x1 POS

’s

con0

x2 x3
h1←− [α

h27−→
con5

das x2 x3 der x1

Figure 4.9: An IRTG rule encoding the rule in Fig. 4.8.

(NNP A′, α′,NP)
(JJ NN, α′′, A′)

NP

con2

NP

con2

DT

the

con0

con2

x1 POS

’s

con0

x2

h′1←− [α′ h′27−→

con2

con2

das x2

con2

der x1

con2

x1 x2

h′1←− [α′′ h′27−→
con2

x1 x2

Figure 4.10: Binarization of the rule in Fig. 4.9.

121

4 Generic binarization of weighted grammars

NP

NP

DT

the

x1:NNP POS

’s

NP

x2:JJ x3:NN

−→ das x2 x3 der x1

Figure 4.11: yXTT rule, slightly adapted to enable binarization.

Example 4.6.1 Figure 4.8 shows an example of a yXTT rule in the notation of [79].

This rule might be used to translate “the Commission’s strategic plan” into “das lang-

fristige Programm der Kommission”. By employing both the hedge and the string alge-

bra, we can represent this rule in an IRTG B, as indicated in Fig. 4.9. We may replace

this suprabinary rule by the two binary rules shown in Fig. 4.10 without affecting the

meaning, obtaining the IRTG B′.

However, the binary rules lack a counterpart in the original notation of yXTT, be-

cause h′1(α
′) does not denote a sequence of length 1. Assume that we have a formalism

(C,A, ϕ) and b-rules b1, b2 such that B′ = bin(b1,b2)(ϕ(B)). Now either B′ ∈ C;

then it is unclear what yXTT it corresponds to. Or B′ 6∈ C; then our formalism is not

admissible.

It is not just a coincidence that finding an admissible formalism for yXTT seems

hard. After all, since each child of the root node in Fig. 4.8 contains a variable that may

be replaced with unbounded material, we just cannot factor the rule and at the same

time stay within yXTT. If we are willing to accept a change of meaning, then we could

instead factor the rule in Fig. 4.11. �

Example 4.6.1 illustrates that finding an admissible formalism for yXTTs is not

straightforward. In fact, the author is not aware of an admissible combination of a

formalism and b-rules for yXTTs; and, contrary to its appearance, the article [29] cer-

tainly does not provide such an admissible combination.

Instead of yXTTs, we therefore consider hedge-to-string transducers (yXHTs), an

ad-hoc straightforward generalization of yXTTs (not to be confused with the hedge-

to-string transducers of [34]). On the one hand, this course of action seems logical;

for if we identify a hedge of length 1 with its only tree, then every yXTT is also a

yXHT, and its “yXTT meaning” coincides with its “yXHT meaning”. On the other

hand, we should be aware that existing infrastructure needs to be adapted in order to

accommodate yXHTs, e.g., when it comes to computing the input product.

Let Σ be an alphabet and K ∈ N. We will define the formalism yXHT(Σ,K),
which, informally speaking, represents hedge-to-string transducers over Σ. To this

122

4.6 Application to established formalisms

end, let A1 be the hedge algebra over Σ and K, and let A2 be the string algebra over

Σ and K. We let yXHT(Σ,K) = (C, (A1,A2), ϕ) as follows. We let C be the set of

all IRTGs B over (∆1,∆2) and Real such that, if B = (Γ,M, h), then, for every l ∈ N

and α ∈ Γ(l),

• max{rkt(w) | w ∈ pos(t)} ≤ K, where t = h1(α)
A1(x1, . . . , xl), and

• |h2(α)
A2(x1, . . . , xl)| ≤ K.

Now we define ϕ : C → C. To this end, let B ∈ C and B = (Γ,M, h). We construct

ϕ(B) = (Γ,M, h′), where h′2 is defined as in the SCFG case and, for every l ∈ N and

α ∈ Γ(l), h′1(α) = f(h1(α)
A1(x1, . . . , xl)), where f : HΣ1∪X(Y) → T∆1(X) inserts

conk appropriately, i.e., we let

f(t1, . . . , tk) = conk(f(t1), . . . , f(tk)) , (k 6= 1)

f(xj) = xj ,

f(σ(t)) = σ(f(t)) ,

f(σ(t1, . . . , tk)) = σ(conk(f(t1), . . . , f(tk))) . (k 6= 1)

We omit the proof that ϕ is idempotent and preserves rank, meaning, and rule-by-rule

(non)binarizability.

The formalism yXHT(Σ,K) is trivially admissible, for the same reason as in the

SCFG case. It is also complete. The binarization mapping binC acts as in Ex. 4.6.1.

The author has implemented Alg. 4.2 and the b-rules b1 and b2. In order to test

the implementation, he extracted a yXHT from about a million parallel sentences of

English-German Europarl data [109], using the GHKM rule extractor [78]. Then he

applied the binarization algorithm to the yXHT. The results are shown in Fig. 4.12: of

the 2.15 million rules in the extracted transducer, 460,000 were suprabinary, and 67 %

of these had a binarization. Binarization took 4.4 minutes on a single core of an Intel

Core i5 2520M processor.

4.6.5 Weighted synchronous context-free hedge grammars

Ideally we would like to embed the class of all WSCFTGs into IRTGs and use the

resulting formalism for binarization. However, as in the case of yXTT, and for the

same reasons, the author is not aware of an admissible combination of a formalism

and b-rules. We follow the same course of action as before: instead of WSCFTGs,

we consider an ad-hoc generalization that we call weighted synchronous context-free

hedge grammars (WSCFHGs). We note that “WSCFHG” is not to be confused with the

context-free hypergraph grammar (CFHG) of [64].

123

4 Generic binarization of weighted grammars

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

ext bin

#
 r

u
le

s
(m

il
li

o
n
s)

rank

0
1
2
3
4
5
6-7
8-10

Figure 4.12: Rules of a yXTT extracted from Europarl (ext) vs. its binarization (bin).

Let Σ be an alphabet,K ∈ N, and S a complete commutative semiring. We define the

formalism CFHG(Σ,K,S), which, informally speaking, represents WSCFHGs over

Σ and S . This definition is the spirit of [30, Def. 5, Def. 7], which is in turn inspired by

[49, Prop. 4.10] and [69, Lm. 5.8]. Let A be the hedge algebra with substitution over

Σ and K. Moreover, let m, r1, . . . , rl ∈ N. Then T∆(m, r1, . . . , rl) denotes the set of

all t ∈ T∆(Xl) such that

• t is linear and nondeleting in Πm,

• for every w ∈ pos(t) and j ∈ N, if t(w) = πj , then j ≤ m,

• for every w ∈ pos(t) and k ∈ N, if t(w) = subk, then there is a ι ∈ {1, . . . , l}
with t(w1) = xι and k = rι,

• for every j ∈ {1, . . . , l}, if rj 6= 0, then there is a w ∈ pos(t) with t(w) = subrj

and t(w1) = xj .

In addition, we define the mapping f ′ : T∆(m, r1, . . . , rl)→ HΣ∪X(Y) by letting

f ′(t) = tA(x1(y1, . . . , yr1), . . . , xl(y1, . . . , yrl)) .

Example 4.6.2 Figure 4.13 illustrates f ′. �

We let CFHG(Σ,K,S) = (C, (A,A), ϕ) as follows. We let C be the set of all

IRTGs B over (∆,∆) and S such that if B = (Γ,M, h) and M = (Q,R, µ, ν), then

there is a mapping rk : Q → N such that νq 6= 0 implies rk(q) = 0, and, for every

(q1 · · · ql, α, q) ∈ R and i ∈ {1, 2},

124

4.6 Application to established formalisms

sub1

x2 S

con3

〈

con0

x1 〉

con0

7→

x2

S

〈 x1 〉

S

con3

a

con0

sub1

x1 S

con3

b

con0

π1 c

con0

d

con0
7→

S

a x1

S

b y1 c

d

Figure 4.13: Illustration of f ′.

• hi(α) ∈ T∆(rk(q), rk(q1), . . . , rk(ql)) and

• max{rkt(w) | w ∈ pos(t), t(w) ∈ Σ} ≤ K where t = f ′(hi(α)).

Now we define ϕ : C → C. To this end, let B ∈ C and B = (Γ,M, h). We construct

ϕ(B) = (Γ,M, h′), where, for every l ∈ N, α ∈ Γ(l), and i ∈ {1, 2},

h′i(α) = f(f ′(hi(α)))

and f : HΣ∪X(Y)→ T∆(X) inserts conk and subk appropriately, i.e., we let

f(t1, . . . , tk) = conk(f(t1), . . . , f(tk)) , (k 6= 1)

f(xj) = xj ,

f(xj(t1, . . . , tk)) = subk(xj , f(t1), . . . , f(tk)) , (k 6= 0)

f(σ(t1, . . . , tk)) = σ(f(t1)) , (k = 1)

f(σ(t1, . . . , tk)) = σ(conk(f(t1), . . . , f(tk))) . (k 6= 1)

We omit the proof that ϕ is idempotent and preserves rank, meaning, and rule-by-rule

(non)binarizability.

Example 4.6.3 By reversing the arrows in Fig. 4.13, we obtain an illustration of f . In

fact, f ′(f(u)) = u, and one might say that f(u) is a particularly designated element of

f ′−1(u). �

The formalism CFHG(Σ,K,S) is trivially admissible, for the same reason as in the

SCFG and yXHT cases. It is not complete; for instance, the term

sub2(x1, σ(con
0), σ(con0))

125

4 Generic binarization of weighted grammars

is mapped to the empty set by our b-rule, although the term itself has a binary variable

tree, namely x1. However, we can define a restricted variant of CFHG(Σ,K,S) where

the use of subk and πk with k > 1 is banned; this variant might be called “synchronous

hedge-adjoining grammar”. With the restricted variant, we have both admissibility and

completeness.

We indicate that we can embed the WSCFTGs of Ch. 3 into CFHG(Σ,K,S). To

this end, let M = (Q,R, µ, ν) be a WSCFTG over Σ and S such that for every

(q1 · · · ql, 〈ζ1ζ2〉, q) ∈ R and i ∈ {1, 2}, we have that

• max{rkζi(w) | w ∈ pos(ζi), ζi(w) ∈ Σ} ≤ K.

We construct the IRTG B = (Γ,M, h) over ∆ and S where

• Γ = {γ(k) | ∃q1, . . . , qk, q ∈ Q : (q1 · · · qk, γ, q) ∈ R},

• hi(〈ζ1ζ2〉) = f(ζi).

Then B ∈ CFHG(Σ,K,S). We omit the proof that JBK = JMK.

Conversely, under suitable conditions, we can convert back from CFHG(Σ,K,S)
into WSCFTG. To this end, we employ the normal form via ϕ as well as the normal

form via ψ established below Ex. 4.2.3. Let B ∈ ψ(ϕ(C)), B = (Γ,M, h), and

M = (Q,R, µ, ν). Then we construct the quadruple G = (Q,R′, µ′, ν) with

• R′ = {(q1 · · · ql, 〈f
′(γ1)f

′(γ2)〉, q) | (q1 · · · ql, γ, q) ∈ R} and

• µ′(q1 · · · ql, 〈f
′(γ1)f

′(γ2)〉, q) = µ(q1 · · · ql, γ, q).

Note that µ′ is well defined because the mapping with γ 7→ 〈f ′(γ1)f
′(γ2)〉 is injective.

Let f ′(γi) be a hedge of length 1 for every γ ∈ Γ and i ∈ {1, 2}. ThenG is a WSCFTG.

We omit the proof that JBK = JGK.

Example 4.6.4 Recall the WSCFTG of Ex. 3.3.1. The application of f ′ in Fig. 4.13

yields the input trees of the rules ρ1 and ρ3. �

4.7 Conclusion, discussion, and outlook

We have developed a template that gives rise to a class of efficiently computable bi-

narization mappings for IRTGs, given b-rules. If the b-rules are complete in a sense,

then these mappings are rule-by-rule complete, which is on par with the state of the

art. We have shown how to apply this technology for deriving rule-by-rule complete

binarization mappings for established formalisms, such as SCFGs. In the process, we

126

4.7 Conclusion, discussion, and outlook

discovered that yXHT and WSCFHGs are better suited for binarization than the con-

ventional formalisms yXTT and WSCFTG, respectively.

As mentioned in the introduction, binarization is used to speed up operations that

occur in a typical decoder. Unfortunately, the binarization domain of a rule-by-rule

complete binarization mapping need not contain every grammar, in particular for n ≥
2. According to [54], there is an alternative way of improving the runtime of such a

decoder that only requires binarization for the case n = 1, however at the price that the

result is approximate.

As mentioned at the very top, this chapter is a greatly expanded version of [29]. The

author would like to point out a mistake in said publication: it claims that it provides

a binarization mapping for yXTTs, which is untrue; just like this chapter, it provides a

binarization mapping for yXHTs.

In [113], the authors provide an algebra for representing STAGs as IRTGs. In con-

trast to our hedge algebra with substitution, that algebra is more akin to the Σ-term

algebra, i.e., its domain only covers ranked trees, and it does not provide a string con-

catenation operation. Consequently, the IRTGs using this algebra are indeed close to

STAGs, as opposed to the IRTGs using our algebra, which we therefore call weighted

synchronous context-free hedge grammars. We stress that this deviation is on purpose,

for WSCFHGs are better suited for binarization than WSCFTGs, as illustrated already

for yXTTs in Ex. 4.6.1.

There are at least six items for further research, which we discuss in the following.

First, one might investigate input and output products for the formalisms yXHT and

WSCFHG. To this end, one could start off with existing work for unweighted IRTGs

[112, 113] and “add weights”, or one could start off with existing work for yXTTs or

WSCFTGs (e.g., from Ch. 3) and “add hedges”.

Second, it would be interesting how to select a binarization mapping for “space-

optimal” binarization. To elucidate this problem, we recall the CFG example from

Sec. 4.1, where we replaced

A→ BCDE by A→ [[BC]D]E , [[BC]D]→ [BC]D , [BC]→ BC .

If the next replacement was to be

D → EBCD by D → E[[BC]D] ,

then we could reuse the nonterminal [[BC]D] as well as the corresponding rule. If,

however, we encounter the rule

E → ECDB ,

127

4 Generic binarization of weighted grammars

then we cannot reuse any nonterminal. Then our first replacement had better been

A→ BCDE by A→ [B[CD]]E , [B[CD]]→ B[CD] , [CD]→ CD ,

so that [CD] could be reused. It has been suggested that keeping the number of nonter-

minals of the binarized grammar low also reduces parsing time [174].

In our template, reuse of nonterminals, or rather states, happens automatically due to

the way we construct the binarization B(ρ, t) of a rule ρ from a binarization hedge t.
The interesting question is whether we replace A→ BCDE in the former or the latter

way, and this is controlled by the selection of the variable tree in Line 5 of Alg. 4.2. It

has been stated that finding a space-optimal grammar is impractical, because it cannot

be done rule by rule [97, p. 568]. Therefore, it would be interesting to investigate (and

evaluate empirically) criteria that can be satisfied more easily, e.g., using a heuristic.

The third item is concerned with a formalism that is close to WSCFHGs, but bet-

ter suited for binarization. Instead of the operation subk that replaces the variables

y1, . . . , yk all at once, one could use the operation subY ′ , Y ′ ⊆ YK , that replaces

exactly the variables in Y ′ (it is a small technicality to specify which argument corre-

sponds to which variable). Then the operations subk and subYk coincide, but, contrary

to the former, the latter kind of operation can be easily decomposed, e.g.,

subY2(t, t1, t2) = sub{y2}(sub{y1}(t, t1), t2)

for every t, t1, t2 ∈ HΣ∪X(Y). This kind of decomposition can be captured on the

syntactic level (where subY ′ is represented by the symbol subY ′) by a b-rule. Based on

this new kind of substitution operation, we can define a formalism close to WSCFHG.

Figure 4.14 shows what a rule of this formalism might look like, as well as a bina-

rization of this rule. This example shows that a ranked alphabet is no longer sufficient

to type the states; roughly speaking, a tree pair (t1, t2) described by q′ now contains

exactly the variable y2 in t1 and the variable y1 in t2. It is this heterogeneity that makes

the new formalism binarization-friendly.

Fourth, one might investigate whether it is worthwhile to introduce a type system for

IRTGs. For instance, we might consider a sequence T = (T1, . . . , Tn) where Ti is a

(bottom-up deterministically) recognizable tree language over ∆i, whose elements we

might call correctly-typed terms. Then an IRTG (Γ,M, h) over T and S is an IRTG

over ∆ and S such that hi(L(M)) ⊆ Ti. This property is decidable, because linear tree

homomorphisms preserve recognizability [80, Prop. 7.8] and inclusion of recognizable

tree languages is decidable [80, Prop. 5.3, Prop. 7.1].

For instance, let us consider the hedge algebra with substitution over Σ and K. Each

element u of HΣ∪X(YK) can be categorized as follows:

128

4.7 Conclusion, discussion, and outlook

(q1q2q3, α, q)

subY2(x1, x2, x3)
h1←− [α

h27−→ subY2(x1, x3, x2)

(q′q3, α
′, q) , (q1q2, α

′′, q′)

sub{y2}(x1, x2)
h1←− [α′ h27−→ sub{y1}(x1, x2)

sub{y1}(x1, x2)
h1←− [α′′ h27−→ sub{y2}(x1, x2)

Figure 4.14: A rule and its binarization in a binarization-friendly WSCFHG variant.

(q, σ, q) if σ ∈ Σ ,

(ε, πk, {yk})

(q1 · · · qk, con
k, q) if (i) P (q1, . . . , qk, q), q =

⋃

j qj

or (ii) ¬P (q1, . . . , qk, q), q = ⊥

(Y ′q1 · · · qk, subY ′ , q) if (i) or (ii) as above ,

where P (q1, . . . , qk, q) iff q1, . . . , qk, q ⊆ YK and qj ∩ qj′ 6= ∅ implies j = j′.

Figure 4.15: Transitions of the FTA for correctly-typed terms.

• either there is a Y ′ ⊆ YK such that u ∈ HΣ∪X(Y
′) and y occurs exactly once

in u for every y ∈ Y ′;

• or we have no use for u.

Correspondingly, we define the bu-det FTA G = (Q,R, ∅) with Q = {⊥} ∪ P(YK)
and R in Fig. 4.15. Now we may define the formalism CFHG(Σ,K,S), or the variant

mentioned in the third item, in terms of IRTGs over (L(G), L(G)) and S , and then we

can dispense with the mapping rk : Q→ N that we currently use.

We note that a more restricted alternative to this kind of type system would be many-

sorted algebras. In that setting, the FTA for the set Tj has exactly one transition for

each operation symbol; such an FTA is called a (many-sorted) signature, and its states

are called sorts. We can adapt above FTA G to this setting by enriching the operation

symbols; e.g., we replace the transition

(Y ′q1 · · · qk, subY ′ , q) by (Y ′q1 · · · qk, subY ′,q1···qk , q) .

Fifth, it is an interesting question how the binarization framework established in this

chapter can be generalized. For instance, one might “k-arize”, i.e., reduce the rank of

129

4 Generic binarization of weighted grammars

a grammar to a fixed k or even some “best possible” value that can be achieved using a

rule-by-rule technique. In our terminology, the latter problem consists in constructing a

mapping from IRTGs into IRTGs that replaces each rule by an equivalent collection of

rules of minimal rank. Naturally, there is no reason for such a mapping to be partial, as

opposed to a binarization mapping. In the case of STAGs, this problem has been dealt

with [147].

Another interesting generalization would be to reduce parsing complexity instead of

rank. Recall from the introduction that the rank of a grammar occurs as an exponent

in the parsing complexity. We note that other factors can be crucial as well. For in-

stance, for LCFRSs and WSCFTGs, the maximum rank of any state (called “fanout”

for LCFRS) also plays a key role in said complexity, and reducing the rank alone need

not be optimal. The topics of reducing (a) fanout and (b) parsing complexity of LCFRSs

have been addressed in [88] and [83], respectively.

Finally, one might investigate IRTGs with deleting homomorphisms.

130

5 Determinizing weighted tree

automata using factorizations

This chapter is an extensively revised version of [31] and [27].

5.1 Introduction

The determinization problem for WTA over Σ and S consists in, given a WTA M ,

finding a WTA M ′ that is bu-det and equivalent to M . Before we elaborate on what is

known about this problem, let us consider the advantages and disadvantages of WTA

that are bu-det, as opposed to WTA that are not bu-det. In other words, let us consider

what we can expect from determinization.

We begin with the advantages. First, bu-det WTA are unambiguous (Obs. 2.4.3).

Consequently, the n best complete runs of a bu-det WTA correspond to the n best

trees. As argued in Sec. 1.5.3, this paves the way for syntax-based decoders that aim

at the best translation rather than some translation with the best run. Second, effi-

cient minimization of WTA either requires that the WTA be bu-det or that the semiring

be a field [126]. Third, bu-det WTA and their meaning can be implemented using

space-efficient data structures, because the weight vector JtK of a tree t has at most one

nonzero component (Obs. 2.4.3).

As for the disadvantages, we observe that WTA generalize weighted finite-state

(string) automata (WSA), which in turn generalize finite-state automata (FSA). It is

well known that deterministic FSA are as powerful as general FSA, but nondetermin-

istic FSA are exponentially more succinct than deterministic ones. More formally, for

each n there is an FSA with n states whose minimal equivalent deterministic FSA has

2n states [182, p. 102]. In the weighted case, it is known that there are WSA for which

an equivalent deterministic WSA does not even exist [22, Sec. 1]. Naturally, we cannot

expect the situation to be any better for WTA than for FSA or WSA.

The determinization problem can, therefore, only be solved partially, i.e., for sub-

classes of WTA. Table 5.1 shows known results in this respect. Given a WSA/WTA

M , each of the underlying constructions defines an object M ′ that differs from a

WSA/WTA in one respect only: the set of states and the set of transitions can be infi-

nite. If, however, these sets are finite, then M ′ is indeed a solution to the problem, i.e.,

131

5 Determinizing weighted tree automata using factorizations

publication device restriction semiring restriction remarks

[158] FSA – Boolean

[80, Sec. 5] FTA – Boolean

[138, 22, 139] WSA twins property tropical

[18] WTA – locally finite semifield

[15] WTA – locally finite

[105] WSA twins property commutative, extremal (1)

[134] WTA acyclic nonnegative reals (2)

(this chapter) WTA acyclic commutative

(this chapter) WTA – locally finite

(this chapter) WTA twins property commutative, extremal (1)

legend: (1) requires a maximal factorization from the user

(2) lacks formal proof

Table 5.1: Results concerning determinization of WTA subclasses.

it is a deterministic WSA/bu-det WTA equivalent to M . The requirements mentioned

in the table ensure that this is the case, i.e., that M ′ is a solution.

As is the case for FSA, determinization of FTA is accomplished using the pow-

erset construction. Determinization of WTA was first described by Borchardt and

Vogler [18]. They used a Myhill-Nerode approach, which is restricted to semifields,

and they showed that their construction yields a WTA if the semifield is locally fi-

nite. Borchardt [15] extended this result to locally finite semirings by generalizing the

powerset construction. In his method, the states of M ′ simulate the Σ-algebraM as-

sociated with M . If the semiring is not locally finite, this may yield an infinite set

of states. Let us exemplify this method using the WTA M of Ex. 2.4.2. For this, let

T = {tn | n ∈ N}. The new set Q′ of states is obtained as follows:

Q′ = JTΣK = JTΣ \ T K ∪ JT K

= {

(
0
0

)

} ∪ {

(
1
0.2

)

,

(
0
0.1

)

,

(
0

0.05

)

,

(
0

0.025

)

, . . .} .

Part of the “infinite WTA” resulting from the construction is shown in Fig. 5.1. Notice

how this “WTA” mimics the calculation inM using its states.

Borchardt’s method has one obvious drawback: it does not use the full capacity of

WTA, because the transition weights are “crisp”, i.e., either 0 or 1. Another gener-

alization of the powerset construction to the weighted case goes further by using the

132

5.1 Introduction

(
1
0.2

)

(
0
0.1

) (
0

0.05

)

. . .

σ/1
α/1

σ/1 σ/1

Figure 5.1: “Infinite WTA” obtained via Borchardt’s method.

(
1
0.2

)

(
0
1

)

σ/0.1
α/1

σ/0.5

Figure 5.2: Bu-det WTA obtained via factorization.

concept of a factorization. In order to elucidate this approach, let us consider an exam-

ple in the realm of WTA (anticipating this chapter’s results). Roughly speaking, instead

of moving the complete computation of weights fromM into the new states, we factor

the elements of SQ so that the transition mapping in the new automaton is equipped

with the factor common to all components. When we apply this method to the WTA of

Ex. 2.4.2, we obtain the bu-det WTA of Fig. 5.2.

The first method to use the factorization approach, albeit implicitly, was the one by

Mohri for WSA over the tropical semiring [138]. Later, Kirsten and Mäurer [105] made

the notion of a factorization explicit. This way, they were able to generalize Mohri’s

method to commutative semirings where a + b ∈ {a, b} holds; this property is called

extremal [124]. The factorization is a user-supplied parameter that depends on the

semiring. For zero-sum free semifields, a suitable factorization is readily available.

Both Mohri’s and Kirsten and Mäurer’s method yields a WSA if M has a certain

property that is called twins property [44]. The question whether the twins property

is decidable has remained open for a long time. Decision procedures existed for sub-

classes of WSA, namely for trim, unambiguous WSA over the tropical semiring [138,

Thm. 13] and for trim, cycle-unambiguous WSA over commutative, cancellative semi-

133

5 Determinizing weighted tree automata using factorizations

rings [5]. Only recently, Kirsten [104] provided a decision procedure for general WSA

over the tropical semiring. He also showed that the decision problem is PSPACE-

complete.

May and Knight [134] transferred Mohri’s method to acyclic WTA over the semiring

of nonnegative reals, and they provided empirical evidence that their algorithm was

effective in machine translation and parsing systems, but they did not provide a formal

proof of correctness.

In this chapter, we use the factorization approach of [138, 105] to develop a deter-

minization construction for WTA that subsumes the above results; cf. Tab. 5.1. More-

over, we transfer the aforementioned decision results regarding the twins property from

WSA to WTA; in particular, we show that the twins property is decidable (i) for cycle-

unambiguous WTA over commutative, zero-sum-free, zero-divisor-free semirings (gen-

eralizing [5]) and (ii) for WTA over extremal semifields (generalizing [104]).

We proceed in the following four steps. First, we formalize and investigate the

necessary notions, such as factorizations, extremal semirings, and the twins property

(Sec. 5.2). Second, we develop our determinization construction for the case of classi-

cal WTA and prove its correctness (Sec. 5.3). Third, we develop our decision results,

again for classical WTA (Sec. 5.4). Finally, we transfer the results from classical WTA

to arbitrary (i.e., not necessarily classical) WTA (Sec. 5.5).

We end this chapter with a conclusion, discussion, and outlook (Sec. 5.6).

5.2 Preliminary notions and results

Let Σ be an alphabet, S = (S,+, ·, 0, 1) a semiring, and M = (Q,R, µ, ν) a WTA

over Σ and S . Recall from Sec. 2.3.2 that SQ is a semiring and that 0̃ is the vector that

consists of 0’s only.

5.2.1 Factorizations

We adopt the notion of a factorization from [105]. Let Q be a nonempty finite set. A

pair (f, g) is a factorization (of dimension Q) if

• f : SQ \ {0̃} → SQ,

• g : SQ \ {0̃} → S, and

• u = g(u) · f(u) for every u ∈ SQ \ {0̃}.

A factorization (f, g) is called maximal if for every u ∈ SQ and s ∈ S, we have that

s · u 6= 0̃ implies f(u) = f(s · u). Note that even if f(0̃) were defined, the case

134

5.2 Preliminary notions and results

s · u = 0̃ would still have to be excluded here, because otherwise we would obtain

that f(u) = f(0 · u) = f(0̃) for every u ∈ SQ. The trivial factorization is the

factorization (f, g) with f(u) = u and g(u) = 1. We will abbreviate f(JtK) and g(JtK)
by fJtK and gJtK, respectively.

Lemma 5.2.1 For every u ∈ SQ \ {0̃}, we have that f(u) 6= 0̃ and g(u) 6= 0.

PROOF. By contradiction. Let f(u) = 0̃ or g(u) = 0. Then u = f(u) · g(u) = 0̃,

which contradicts the assumption that u 6= 0̃. �

The following lemma shows a maximal factorization in the case that S is a semifield

and that there is a certain binary operation +′ on S. In particular, the lemma applies

when S is zero-sum free and +′ = +.

Lemma 5.2.2 Let S be a semifield, c ∈ S \{0}, +′ an associative, commutative binary

operation on S such that (i) s · (s1 +
′ s2) = s · s1 +

′ s · s2 and (ii) s1 +
′ s2 = 0 implies

s1 = 0 and s2 = 0; and let (f, g) be the factorization with g(u) = c ·
∑′

q∈Q uq and

f(u) = g(u)−1 · u, where
∑′

is computed with respect to +′. Then (f, g) is maximal.

PROOF. First, we show that (f, g) is a factorization. Let u ∈ SQ \ {0̃}. Since S is a

semifield and +′ is “zero-sum free”, we obtain that g(u) 6= 0 and, hence, g(u) · f(u) =
g(u) ·g(u)−1 ·u = u. Second, we show that (f, g) is maximal. Let s ∈ S with s ·u 6= 0̃,

and let q ∈ Q. Then

[f(s · u)]q =
[
g(s · u)−1 · s · u

]

q
= (c ·

∑′
q′∈Q s · uq′)

−1
· s · uq

= (c · s ·
∑′

q′∈Q uq′)
−1
· s · uq = (s · c ·

∑′
q′∈Q uq′)

−1
· s · uq

= (c ·
∑′

q′∈Q uq′)
−1
· s−1 · s · uq = g(u)−1 · uq = [f(u)]q . �

Example 5.2.3 First, we consider four instances of Lm. 5.2.2 where +′ = +. The

factorization (f, g) is maximal if

1. S is the semiring (R≥0,+, ·, 0, 1) of nonnegative reals, g(u) =
∑

q∈Q uq, and

f(u) = 1
g(u) · u;

2. S is the semiring (R≥0,max, ·, 0, 1), g(u) =
∑

q∈Q uq, and f(u) = 1
g(u) · u;

3. S is the Viterbi semiring ([0, 1],max, ·, 0, 1), g(u) = max{uq | q ∈ Q}, and

f(u) = 1
g(u) · u;

135

5 Determinizing weighted tree automata using factorizations

4. S is the tropical semiring (R≥0
∞ ,min,+,∞, 0), g(u) = min{uq | q ∈ Q}, and

f(u) = −g(u) + u.

The settings in [134] and [138] correspond to Cases 1 and 4, respectively. Their con-

structions implicitly employ the corresponding maximal factorization given here.

Second, we consider an instance of the lemma where +′ 6= +, namely when S is the

field (R,+, ·, 0, 1) of real numbers and +′ = max. We note that S itself, being a field,

is not zero-sum free. In addition, we note that the neutral element of max, which is not

a real number, does not play a role in this scenario because, asQ is nonempty, we never

compute the maximum of the empty set. �

The following lemma shows that (apart from the case that |Q| ≤ 1) maximal factor-

izations only exist for zero-divisor-free semirings.

Lemma 5.2.4 Let S be commutative and (f, g) a maximal factorization. Then |Q| ≤ 1
or S is zero-divisor free.

PROOF. By contradiction. Assume that |Q| > 1 and S has zero divisors, i.e., s1, s2 ∈
S \{0} such that s1 ·s2 = 0. We choose a pair q1, q2 ∈ Qwith q1 6= q2. This is possible

because |Q| > 1. We define the vectors u1, u2 ∈ S
Q such that the qi-component of ui

is 1 while the other components are 0. Since (f, g) is maximal and s1 · s2 = 0, we have

that

f(u1) = f(s1 · u1) = f(s1 · u1 + (s1 · s2) · u2) = f(s1 · (u1 + s2 · u2))

= f(u1 + s2 · u2) .

Thus, and since (f, g) is a factorization, we obtain the following equations (where

u = u1 + s2 · u2)

g(u1) · f(u1)q1 = [u1]q1 = 1 (I)

g(u1) · f(u1)q2 = [u1]q2 = 0 (II)

g(u) · f(u1)q1 = [u]q1 = 1 (III)

g(u) · f(u1)q2 = [u]q2 = s2 (IV)

By (II), (IV), and s2 6= 0, we derive that g(u1) 6= g(u). By (I) and (III), and using

commutativity, we derive

g(u1) = g(u1) ·
(
f(u1)q1 · g(u)

)
=

(
g(u1) · f(u1)q1

)
· g(u) = g(u) .

Thus, we have a contradiction, proving that |Q| > 1 or S zero-divisor free. �

136

5.2 Preliminary notions and results

Let |Q| > 1. Then Lm. 5.2.4 yields that commutative semirings with zero divisors do

not admit maximal factorizations, e.g., Semiring 8 of Ex. 2.3.5. The following example

shows that even zero-divisor-free semirings can defy a maximal factorization.

Example 5.2.5 ([105, Sec. 3.5]) Let S′ be the set of all natural numbers that can be

factored into an even number of primes, e.g., 4 = 2 · 2 and 126 = 2 · 3 · 3 · 7 belong

to S′, but 2 and 18 = 2 · 3 · 3 do not. Let S = S′ ∪ {1,∞}. Then (S,min, ·,∞, 1) is a

semiring, where min is defined by the usual ordering of natural numbers, · is the usual

multiplication of natural numbers, and∞ denotes a new maximal element.

Consider the following chain of equations with vectors u and u1, u2, u3:

(
2 · 3 · 5 · 7
3 · 5 · 7 · 11

)

︸ ︷︷ ︸

u

= (3 · 5) ·

(
2 · 7
7 · 11

)

︸ ︷︷ ︸

u1

= (5 · 7) ·

(
2 · 3
3 · 11

)

︸ ︷︷ ︸

u2

= (3 · 7) ·

(
2 · 5
5 · 11

)

︸ ︷︷ ︸

u3

.

Clearly, the vectors u1 up to u3 can not be factored any further in S. Hence g(ui) = 1
and f(ui) = ui for every factorization (f, g). Now let (f, g) be a maximal factorization.

We apply f to the above equation, obtaining

f(u) = f(u1) = f(u2) = f(u3) .

Since f(ui) = ui, we obtain u1 = u2 = u3, which is obviously a contradiction. Hence,

there is no maximal factorization. �

We will frequently use the following observation, which can be shown by elementary

calculations.

Observation 5.2.6 Let k ∈ N, σ ∈ Σ, u1, . . . , uk ∈ SQ, and s1, . . . , sk ∈ S. If

s1, . . . , sk ∈ {0, 1} or S is commutative, we have that Jσ(s1 · u1, . . . , sk · uk)K =
s1 · · · sk · Jσ(u1, . . . , uk)K.

We will use the following two lemmas.

Lemma 5.2.7 Let (f, g) and (f̃ , g̃) be factorizations, (f, g) maximal, and let u ∈ SQ \
{0̃}. Then f(f̃(u)) = f(u). In particular, f(f(u)) = f(u).

PROOF. We apply that (f, g) is maximal and that (f̃ , g̃) is a factorization:

f(f̃(u)) = f(g̃(u) · f̃(u)) = f(u) . �

137

5 Determinizing weighted tree automata using factorizations

Lemma 5.2.8 Let S be commutative and (f, g) maximal. Furthermore, let k ∈ N,

σ ∈ Σ, u1, . . . , uk ∈ S
Q, and u′1, . . . , u

′
k ∈ S

Q such that u′i ∈ {ui, f(ui)}. Then

Jσ(u1, . . . , uk)K 6= 0̃ =⇒ Jσ(u′1, . . . , u
′
k)K 6= 0̃ ,

and the converse holds if S zero-divisor free. Furthermore,

Jσ(u1, . . . , uk)K 6= 0̃ =⇒ fJσ(u1, . . . , uk)K = fJσ(u′1, . . . , u
′
k)K .

PROOF. We construct the sequence s1, . . . , sk ∈ S by letting

si =

{

g(ui) if u′i = f(ui) ,

1 otherwise.

Using that (f, g) is a factorization and employing Obs. 5.2.6, we derive (⋆):

Jσ(u1, . . . , uk)K = Jσ(s1 · u
′
1, . . . , sk · u

′
k)K = s1 · · · sk · Jσ(u

′
1, . . . , u

′
k)K .

First, let Jσ(u1, . . . , uk)K 6= 0̃. By (⋆) also Jσ(u′1, . . . , u
′
k)K 6= 0̃. Then

fJσ(u1, . . . , uk)K = f(s1 · · · sk · Jσ(u
′
1, . . . , u

′
k)K) (⋆)

= fJσ(u′1, . . . , u
′
k)K . ((f, g) maximal)

Second, let S be zero-divisor free and Jσ(u′1, . . . , u
′
k)K 6= 0̃. Since si 6= 0, (⋆) yields

that Jσ(u1, . . . , uk)K 6= 0̃. �

5.2.2 Extremal semirings

Observation 5.2.9 If S is extremal, then it is zero-sum free and idempotent.

For every D ⊆ D(M) and d ∈ D we call d victorious on D if 〈d〉 =
∑

d∈D〈d〉.
Let t ∈ TΣ, d ∈ D(M, t), and d = (q1 · · · qk, σ, q)

(
d1, . . . , dk

)
. We call d recursively

victorious if d is victorious on Dq(M, t) and di is recursively victorious.

Observation 5.2.10 If S is extremal, then, for every t ∈ TΣ(S
Q) and q ∈ Q, there is a

victorious run d on Dq(M, t). Consequently, 〈d〉 = JtKq.

Lemma 5.2.11 Let S be extremal. For every m ∈ N, q ∈ Q and t ∈ TΣ with

|pos(t)| ≤ m, there is a recursively victorious run d ∈ Dq(M, t).

138

5.2 Preliminary notions and results

PROOF. By induction (on m). For the induction base (m = 0), there is nothing to

show. We show the induction step (m → m + 1). To this end, let m ∈ N, q ∈ Q,

t ∈ TΣ, t = σ(t1, . . . , tk), and |pos(t)| ≤ m+ 1. By Obs. 5.2.10, there is a victorious

run d′ on Dq(M, t). Let d′(ε) = (q1 · · · qk, σ, q). By the induction hypothesis, there

are recursively victorious runs d1 ∈ D
q1(M, t1) up to dk ∈ D

qk(M, tk). We construct

d = d′(ε)
(
d1, . . . , dk

)
. It remains to show that d is victorious. We derive

〈d′〉 =
∑

d′′∈Dq(M,t)〈d
′′〉 (d′ victorious)

= 〈d′〉+
(∑

d′′∈Dq(M,t) : 〈d′′〉6=〈d′〉〈d
′′〉
)

(S idempotent)

=
(

〈d′〉+
(∑

d′′∈Dq(M,t) : 〈d′′〉6=〈d′〉,d′′(ε)=d′(ε)〈d
′′〉
))

+
(∑

d′′∈Dq(M,t) : 〈d′′〉6=〈d′〉,d′′(ε)6=d′(ε)〈d
′′〉
)

= 〈d′〉+
(∑

d′′∈Dq(M,t) : 〈d′′〉6=〈d′〉,d′′(ε)=d′(ε)〈d
′′〉
)

(†)

=
∑

d′1∈D
q1 (M,t1),...,d′k∈D

qk (M,tk)
〈d′(ε)

(
d′1, . . . , d

′
k

)
〉 (S idempotent)

=
(∑

d′1∈D
q1 (M,t1)

〈d′1〉
)
· · ·

(∑

d′
k
∈Dqk (M,tk)

〈d′k〉
)
· µ(d′(ε)) (distributivity)

= 〈d1〉 · · · 〈dk〉 · µ(d
′(ε)) = 〈d〉 . (di victorious)

where (†) holds because the outer sum on the left-hand side is known to be 〈d′〉, thus it

discards the second argument, which is known not to be 〈d′〉. �

Observation 5.2.12 Let S be extremal. Let ζ ∈ CΣ, t ∈ TΣ, p, q ∈ P , d ∈ Dp(M, t),
and d′ ∈ Dq(M,p · ζ) such that d ·p d

′ is victorious on Dq(M, t · ζ). Then 〈d ·p d
′〉 =

J(〈d〉 · ep) · ζKq.

PROOF. We derive

〈d ·p d
′〉 =

∑

d′′∈Dq(M,t·ζ)〈d
′′〉 (victorious run)

= 〈d ·p d
′〉+

∑

d′′∈Dq(M,t·ζ) : 〈d′′〉6=〈d·pd′〉
〈d′′〉 (S idempotent)

= 〈d ·p d
′〉+

∑

d′′∈Dq(M,p·ζ) : 〈〈d〉·pd′′〉6=〈d·pd′〉
〈〈d〉 ·p d

′′〉 (†)

=
∑

d′′∈Dq(M,p·ζ)〈〈d〉 ·p d
′′〉 (S idempotent)

=
∑

d′′∈Dq(M,(〈d〉·ep)·ζ)
〈d′′〉 = J(〈d〉 · ep) · ζKq .

For (†), we use the same kind of reasoning as for (†) in the proof of Lm. 5.2.11. �

5.2.3 Twins property

We define two binary relations SIB(M) (for siblings) and TWINS(M) on Q as follows.

Let p, q ∈ Q. Then

139

5 Determinizing weighted tree automata using factorizations

w1

w2

t1, dq

t2, d
′
q

Figure 5.3: Cutting out the slice starting at w1 and ending at w2.

• (p, q) ∈ SIB(M) iff there is a tree t ∈ TΣ such that JtKp 6= 0 and JtKq 6= 0.

• (p, q) ∈ TWINS(M) iff for every context ζ ∈ CΣ we have that Jep · ζKp 6= 0 and

Jeq · ζKq 6= 0 implies Jep · ζKp = Jeq · ζKq.

The WTA M has the twins property if SIB(M) ⊆ TWINS(M).

Example 5.2.13 (Ex. 2.4.1 contd.) We show that M has the twins property. For this,

let (p, q) ∈ SIB(M). Then there is a t ∈ TΓ such that JtKp 6= 0 and JtKq 6= 0. Moreover,

let ζ ∈ CΓ such that Jep · ζKp 6= 0 and Jeq · ζKq 6= 0. We show that Jep · ζKp = Jeq · ζKq.
If p = q, this is trivial. For reasons of symmetry, it suffices to consider the case that

p = q1 and q = q0. Since Jeq1 · ζKq1 6= 0 and JtKq1 6= 0, we conclude that ζ = z and

t = α. Thus we obtain Jeq1 · zKq1 = 1 = Jeq0 · zKq0 . �

The matter of deciding the twins property is the subject of Sec. 5.4. In short: it is

known that the twins property is decidable for cycle-unambiguous WTA over commuta-

tive, zero-sum-free, zero-divisor-free semirings and for WTA over extremal semifields.

Next, we show a fundamental property that follows from the twins property when

S is commutative and extremal. Before we show the result in detail, we begin with a

simple corollary that summarizes the result. Here and in the following, we use S ·U to

denote {s · u | s ∈ S, u ∈ U} for every set U ⊆ SQ.

Corollary 5.2.14 Let S be commutative and extremal, and let M have the twins prop-

erty. Then there is a finite set U ⊆ SQ with JTΣK ⊆ S · U .

PROOF. Direct consequence of Lm. 5.2.15. �

First, we sketch the proof idea; we develop the formal infrastructure and the cor-

responding lemma afterwards. Let t1 ∈ TΣ. Since S is extremal, for every q ∈ Q
there is a victorious run dq on Dq(M, t1). If t1 is sufficiently “large”, then we find

140

5.2 Preliminary notions and results

positions w1 and w2 such that w1 is strictly above w2 and πQ(dq|w1) = πQ(dq|w2)
for every q ∈ Q. Provided that we have chosen the family (dq | q ∈ Q) of runs in

a suitable manner, the twins property guarantees that each run in this family assigns

the same weight, say s1, to the “slice” of t1 starting at position w1 and ending at po-

sition w2 (depicted as the shaded area in Fig. 5.3). We can remove this slice from t1,

obtaining the smaller tree t2 and family of runs (d′q | q ∈ Q) on t2 with 〈dq〉 = s1 ·〈d
′
q〉.

This procedure can be iterated a finite number of times, yielding the trees t1, . . . , tn and

weights s1, . . . , sn−1, where tn is in a finite set of “small” trees (giving rise to a finite

set U of vectors).

Now we formalize this idea. For this, let t ∈ TΣ and Q′ ⊆ Q. A Q′-run family d

for t is a family (dq | q ∈ Q
′) with dq ∈ D(M, t) and 〈dq〉 6= 0 for every q ∈ Q′. Let

d = (dq | q ∈ Q
′) be a Q′-run family for t. We define JdK ∈ SQ by

JdKq =

{

〈dq〉 if q ∈ Q′,

0 otherwise.

For every w ∈ pos(t), we define the Q′-run family d|w for t|w to be (dq|w | q ∈ Q
′).

We define π′Q(d) ∈ Q
Q′

by letting π′Q(d)q = πQ(dq) for every q ∈ Q′; and we will

omit the prime from π′Q. We define three properties of d:

• It is victorious if dq is victorious on DπQ(dq)(M, t) for every q ∈ Q′.

• It is root if πQ(d)q = q for every q ∈ Q′.

• It is admissible if it is root and for every w1, w2 ∈ pos(t) with w1 strictly above

w2 and πQ(d|w1) = πQ(d|w2), we have that d|w1 is victorious.

For every T ⊆ TΣ, we let

D(T) = {d | ∃Q′ ⊆ Q, t ∈ T : d is an admissible Q′-run family for t} .

We define the state number of d by c(d) = |{πQ(d|w) | w ∈ pos(t)}| and the state

number of M by c(M) = max{c(d) | d ∈ D(TΣ)}. We note that c(M) ≤ |Q||Q|. The

following lemma corresponds to a part of the proof of [105, Thm. 5].

Lemma 5.2.15 Let S be commutative and extremal, and letM have the twins property.

Then JTΣK ⊆ JD(TΣ)K ⊆ S · JD({t | t ∈ TΣ, ht(t) ≤ c(M)})K.

PROOF. We begin with the first inclusion. To this end, let t ∈ TΣ. By Lm. 5.2.11,

there is a recursively victorious run d ∈ Dq(M, t) for every q ∈ Q. We let Q′ = {q |
JtKq 6= 0}, and we construct the family (dq | q ∈ Q

′) by letting dq ∈ D
q(M, t) be some

141

5 Determinizing weighted tree automata using factorizations

recursively victorious run. Then (dq | q ∈ Q
′) is an admissible Q′-run family for t, and

JtK = JdK.

Now we show the second inclusion by contradiction. To this end, we let T = {t |
t ∈ TΣ, ht(t) ≤ c(M)} and

C = {(Q′, t, d, |pos(t)|) | t ∈ TΣ, Q
′ ⊆ Q, d is an admissible Q′-run family for t,

JdK ∈ JD(TΣ)K, JdK 6∈ S · JD(T)K} .

Let (Q′, t, d,m) ∈ C such thatm is minimal. Then ht(t) > c(M) andQ′ 6= ∅, because

otherwise d ∈ D(T). We let d = (dq | q ∈ Q
′), and we fix some q0 ∈ Q

′ for later use.

We let

B = {(w1, w2) | w1, w2 ∈ pos(t), w1 strictly above w2, πQ(d|w1) = πQ(d|w2)} .

Since ht(t) > c(d), and by the pigeonhole principle, the set B is not empty – in other

words, there is a w2 ∈ pos(t) of sufficient length such that a prefix w1 of w2 exists such

that w1 and w2 have the same image under w 7→ πQ(d|w).
Let (w1, w2) ∈ B such that w1 has minimal length. We construct the tree t′ =

t[t|w2]w1 , the run family d
′ = (dq[dq|w2]w1 | q ∈ Q′), the state q′0 = πQ(d|w2)q0 ,

and the semiring element s = Jt[eq′0]w2 |w1Kq′0 . We claim that (i) d′ is admissible and

(ii) JdK = s·Jd′K. Then either Jd′K 6∈ S ·JD(T)K. But then, by (i), (Q′, t′, d′, |pos(t′)|) ∈
C. Since |pos(t′)| < |pos(t)|, this contradicts our assumption that m be minimal. Or

Jd′K ∈ S · JD(T)K, but then so is JdK, due to (ii), which contradicts our assumption that

(Q′, t, d,m) ∈ C.

It remains to show Statements (i) and (ii). For (i), let w′
1, w

′
2 ∈ pos(t′) such that

w1 is above w2 and πQ(d
′|w′

1
) = πQ(d

′|w′
2
). We distinguish two cases, illustrated in

Fig. 5.4. Either (a) there are v1, v2 ∈ N
∗ such that w′

1 = w1 · v1 and w′
2 = w1 · v2.

Then d
′|w′

1
= d|w2v1 and d

′|w′
2
= d|w2v2 . Or (b) d′|w′

1
= d|w1 and d

′|w′
2
= d|w2 . Since

d is admissible, we can derive that d′|w′
1

is victorious in both cases.

For (ii), we let q ∈ Q′, q′ = πQ(d|w2)q, and ζ = t[z]w2 |w1 . Then

JdKq = 〈dq〉 = 〈〈dq|w1〉 · dq[z]w1〉

= 〈J(〈dq|w2〉 · eq′) · ζKq′ · dq[z]w1〉 (Obs. 5.2.12)

= 〈dq|w2〉 · Jeq′ · ζKq′ · 〈1 · dq[z]w1〉 (commutativity)

= 〈dq|w2〉 · Jeq′0 · ζKq′0 · 〈1 · dq[z]w1〉 (†)

= s · 〈〈dq|w2〉 · dq[z]w1〉 = s · Jd′Kq . (commutativity)

We show (†). First, we show that (q′, q′0) ∈ SIB(M). By definition we have 〈dq0〉 6= 0
and 〈dq〉 6= 0. Hence, also 〈dq0 |w2〉 6= 0 and 〈dq|w2〉 6= 0. Since S is extremal, it is

142

5.3 Determinization of classical WTA

(a)

w1

w2

w2v1
w2v2

d :

w1

w1v1
w1v2

d
′ :

(b)

w1

w2
w′
1

w′
2

d :

w1

w′
1

w′
2

d
′ :

Figure 5.4: Two cases in the proof of Lm. 5.2.15.

also zero-sum free, and we obtain that Jt|w2Kq′0 6= 0 and Jt|w2Kq′ 6= 0. Hence, (q′, q′0) ∈
SIB(M). By a similar reasoning, we have 〈dq0 [z]w2 |w1〉 6= 0 and 〈dq[z]w2 |w1〉 6= 0, and

thus Jeq′0 · ζKq′0 6= 0 and Jeq′ · ζKq′ 6= 0. By the twins property, (q′, q′0) ∈ TWINS(M),
and Jeq′0 · ζKq′0 = Jeq′ · ζKq′ . �

We note that the cutting process in general destroys the recursively victorious property

that we established for the first inclusion of the lemma. In other words, JdK = JtK does

not imply Jd′K = Jt′K. This is the reason why we cannot state our result in terms of

S · JT K, and why we need the concept of admissible run families.

5.3 Determinization of classical WTA

We now apply the factorization approach [105, Sec. 3.3] to the tree case. We keep

the notation concise by restricting our attention to classical WTA; we will consider

arbitrary (i.e., not necessarily classical) WTA in Sec. 5.5. For the remainder of this

section, let M = (Q,µ, ν) be a classical WTA over Γ and S .

Let (f, g) be a factorization of dimension Q. The determinization det((f, g),M)
of M by (f, g) is the triple (Q′, µ′, ν ′) where

143

5 Determinizing weighted tree automata using factorizations

• Q′ is the smallest set P ⊆ SQ such that 0̃ ∈ P and, for every k ∈ N, σ ∈ Γ(k),

and u1, . . . , uk ∈ P , if Jσ(u1, . . . , uk)K 6= 0̃, then fJσ(u1, . . . , uk)K ∈ P .

• µ′ :
⋃

k(Q
′)k × Γ(k) ×Q′ → S with

µ′(u1 · · ·uk, σ, u) =

gJσ(u1, . . . , uk)K if Jσ(u1, . . . , uk)K 6= 0̃ and

u = fJσ(u1, . . . , uk)K ,

0 otherwise ,

• ν ′ : Q′ → S with ν ′u =
∑

q∈Q uq · νq.

We note that Q′ is uniquely determined because it is chosen from a set which is closed

under intersection.

In the following, let M ′ = det((f, g),M) and M ′ = (Q′, µ′, ν ′).

Observation 5.3.1 The triple M ′ is a classical WTA over Γ and S iff Q′ is finite. If M ′

is a WTA, then it is bu-det.

The following observation, which can be proved using Thm. 2.1.1, shows a stratifi-

cation of Q′; this basically gives an algorithm for computing Q′ (in case it is finite).

Observation 5.3.2 Let (Q′
i | i ∈ N) be the family with

Q′
0 = ∅ ,

Q′
i+1 = {0̃} ∪ {fJσ(u1, . . . , uk)K | k ∈ N, σ ∈ Γ(k), u1, . . . , uk ∈ Q

′
i,

Jσ(u1, . . . , uk)K 6= 0̃} .

Then Q′ =
⋃

i∈NQ
′
i; moreover, Q′ is finite iff there is an n ∈ N with Q′ = Q′

n.

Example 5.3.3 (Ex. 2.4.1 contd.) We compute det((f, g),M) = (Q′, µ′, ν ′) using the

maximal factorization (f, g) given for the Viterbi semiring in Ex. 5.2.3. First, we com-

puteQ′ according to Obs. 5.3.2. We write the elements of SQ as column vectors, where

the first row is the q1-component; and we use the following abbreviations:

u1 =

(
1
0.2

)

and u2 =

(
0
1

)

.

Then Q′
0 = ∅ and

Q′
1 = {0̃} ∪ {fJαK} = {0̃, f(u1)} = {0̃, u1} ,

Q′
2 = Q′

1 ∪ {fJσ(u1, u1)K} = Q′
1 ∪ {f(0.1 · u2)} = {0̃, u1, u2} ,

Q′
3 = Q′

2 ∪ {fJσ(u1, u2)K} = Q′
2 ∪ {f(0.5 · u2)} = {0̃, u1, u2} , (⋆)

144

5.3 Determinization of classical WTA

where we note for (⋆) that Jσ(u2, u1)K = 0̃ = Jσ(u2, u2)K. Clearly, we have Q′
i = Q′

2

for i ≥ 2. Hence, Q′ = Q2. Figure 5.2 shows µ′. In particular, we can read off from

the above calculation that

µ′(u1u1, σ, u2) = gJσ(u1, u1)K = g(0.1 · u2) = 0.1 ,

µ′(u1u2, σ, u2) = gJσ(u1, u2)K = g(0.5 · u2) = 0.5 ,

and that µ′ maps every remaining transition to 0. Finally, ν ′
0̃
= 0, ν ′u1 = 0.2, and

ν ′u2 = 1. �

The following theorem summarizes the behavior of det((f, g),M). We will prove

the individual statements of the theorem below.

Theorem 5.3.4 Let M = (Q,µ, ν) be a classical WTA over Γ and S , and let (f, g) be

the trivial or a maximal factorization. If (f, g) is not the trivial factorization, let S be

commutative. Moreover, let one of the following conditions hold:

• M is acyclic,

• S is locally finite,

• (f, g) is maximal and M is bu-det, or

• (f, g) is maximal, M has the twins property, and S is extremal.

Then det((f, g),M) is a bu-det classical WTA over Γ and S , and it is equivalent to M .

Moreover, if (f, g) is maximal, then, regarding the number of states, det((f, g),M) is

minimal among all WTA which are obtained by factorization.

PROOF. Let M ′ = det((f, g),M) and M ′ = (Q′, µ′, ν ′). By Obs. 5.3.1, M ′ is a

WTA iff Q′ is finite. If M ′ is a WTA, then, by the same observation, it is bu-det, and

M and M ′ are equivalent, as shown in Thm. 5.3.7. The statement about the number of

states is shown in Thm. 5.3.8.

Finally, the set Q′ is finite if

• M is acyclic – by Lm. 5.3.10 –,

• (f, g) is the trivial factorization and the semiring S is locally finite – by Lm. 4.7

of [15],

• (f, g) is maximal and S is commutative and locally finite – which follows from

the previous item and Thm. 5.3.8 –,

145

5 Determinizing weighted tree automata using factorizations

• (f, g) is maximal, S is commutative, and M is bu-det – by Lm. 5.3.11 –,

• (f, g) is maximal, M has the twins property, and S is commutative and extremal

– by Cor. 5.3.12. �

The reader is invited to compare Thm. 5.3.4 to the overview given in Tab. 5.1.

The theorem lists four conditions that guarantee that det((f, g),M) be a WTA. With

the first condition we provide a formal verification of [134]. The second condition is

adapted from [15]. The third condition ensures that we can determinize a WTA that

is already bu-det. The fourth condition is adapted from [105, Thm. 5]. We note that

the third condition is mainly of theoretical interest. In fact, since testing bottom-up

determinism can be done in linear time, we might precede the determinization proce-

dure with such a test and, if the WTA is already bu-det, refrain from determinization

altogether.

One might be led to believe that the trivial factorization on the one hand and maximal

factorizations on the other hand represent two ends of a spectrum. In view of this, it

may seem curious that we require the factorization to be trivial or maximal. However,

as the following example shows, if this requirement is not satisfied, then det((f, g),M)
can be infinite, even if the semiring is locally finite and M is bu-det.

Example 5.3.5 Let Γ = {γ(1), α(0)}, S = (R≥0 ∪ {∞,−∞},min,max,∞,−∞),
and M the WTA over Γ and S given by (final weights do not matter)

(ε, α, q) 7→ 1 and (q, γ, q) 7→ 0 .

Then Jγn(α)K = 1 for every n ∈ N. If (f, g) is the trivial factorization, then the

determinization det((f, g),M) is given by (again disregarding final weights)

(ε, α, 1) 7→ 1 and (1, γ, 1) 7→ 1 .

Now we let (f, g) be the factorization with

g(u) = min{uq | q ∈ Q} , f(u)q =

{

0.9 · uq if uq = g(u),

uq otherwise,

where 0.9 · uq is the usual product in the reals. For instance, we may calculate

g

(
2
2.5

)

· f

(
2
2.5

)

= 2 ·

(
1.8
2.5

)

=

(
max(2, 1.8)
max(2, 2.5)

)

=

(
2
2.5

)

,

146

5.3 Determinization of classical WTA

where · is the scalar product in our semiring. This example already shows that (f, g) is

not trivial. It is not maximal either:

f(2 ·

(
2
2.5

)

) = f

(
2
2.5

)

=

(
1.8
2.5

)

6=

(
2.7
2.7

)

= f

(
3
3

)

= f(3 ·

(
2
2.5

)

) .

We compute det((f, g),M) again, this time with the new factorization:

(ε, α, 0.9) 7→ 1 , (0.9, γ, 0.81) 7→ 0.9 , (0.81, γ, 0.729) 7→ 0.81 , . . . �

As the following example shows, however, there are cases where a maximal factor-

ization does not exist, the trivial factorization leads to an infinite result, and another

factorization does the trick. These cases are obviously not covered by our theorem.

Example 5.3.6 Let S be the semiring of Ex. 5.2.5. We define the factorization (f, g)
as follows: g(u) is the greatest common divisor (gcd) of the components of u if this

number is in S, and otherwise g(u) is the gcd divided by the largest prime factor it

contains, e.g.,

g(

(
23

24

)

) =
23

2
= 22 .

Finally, we let f(u) = u
g(u) .

Let Γ = {γ(1), α(0)} and M = (Q,µ, ν) be the WTA over Γ and S where Q =
{q, p}, ν is immaterial to our concerns, and µ is given by

(ε, α, q) 7→ 2 · 3 , (p, γ, q) 7→ 2 · 3 , (q, γ, q) 7→ ∞ ,

(ε, α, p) 7→ 5 · 7 , (q, γ, p) 7→ 5 · 7 , (p, γ, p) 7→ ∞ .

We denote the elements of SQ as vectors, with the q-component shown first. Let

u1 =

(
2 · 3
5 · 7

)

, u2 =

(
1
1

)

.

It can be shown that

Jγ2n(α)K = (2 · 3 · 5 · 7)n · u1 , Jγ2n+1(α)K = (2 · 3 · 5 · 7)n+1 · u2 .

Hence, determinization using the trivial factorization yields an infinite result. On the

other hand, det((f, g),M) = (Q′, µ′, ν ′) where Q′ = {u1, u2}, ν
′ is again immaterial,

and µ′:

(ε, α, u1) 7→ 1 , (u1, γ, u2) 7→ 2 · 3 · 5 · 7 , (u2, γ, u1) 7→ 1 ,

and every other transition is mapped to∞. �

147

5 Determinizing weighted tree automata using factorizations

The following theorem is our correctness result; it corresponds to Thm. 1 of [105].

Theorem 5.3.7 Let (f, g) be a factorization. If (f, g) is not the trivial factorization,

then let S be commutative. If M ′ is a WTA, then JMK = JM ′K.

PROOF. Let M ′ be a WTA, i.e., let Q′ be finite. We abbreviate J.KM by J.K and 〈.〉µ′ by

〈.〉. By Obs. 5.3.1, M ′ is bu-det.

We show the following statement by induction on t: for every t ∈ TΓ there are u ∈ Q′

and d ∈ Du(M ′, t) such that (i) 〈d〉 · u = JtK and (ii) 〈d′〉 6= 0 implies d′ = d for every

d′ ∈ D(M ′, t). Note that, if (f, g) is the trivial factorization, then 〈d〉 ∈ {0, 1} for

every t ∈ TΓ, u ∈ Q′, and d ∈ Du(M ′, t).
Let t = σ(t1, . . . , tk). By the induction hypothesis, there are u1, . . . , uk ∈ Q

′ and

d1, . . . , dk with dj ∈ D
uj (M, tj) such that (i) 〈dj〉·uj = JtjK, and (ii) 〈d′j〉 6= 0 implies

d′j = dj . We set u′ = Jσ(u1, . . . , uk)K. We derive (⋆):

JtK = Jσ(Jt1K, . . . , JtkK)K (Obs. 2.4.4)

= Jσ(〈d1〉 · u1, . . . , 〈dk〉 · uk)K (induction hypothesis)

= 〈d1〉 · · · 〈dk〉 · u
′ . (Obs. 5.2.6)

Now we distinguish two cases.

Case 1: Let u′ = 0̃. Then, by (⋆), JtK = 0̃. We construct ρ = (u1 · · ·uk, σ, u
′) and

d = ρ
(
d1, . . . , dk

)
. Then µ′(ρ) = 0, 〈d〉 = 0, and 〈d〉 · u′ = 0̃. Now let d′ ∈ D(M ′, t)

and 〈d′〉 6= 0. Then each of the factors 〈d′|1〉, . . . , 〈d′|k〉, and µ′(d′(ε)) is non-zero.

By the induction hypothesis, d′|j = dj . By definition, µ′(u1 · · ·uk, σ, u) = 0 for

every u ∈ Q′. Hence, µ′(d′(ε)) = 0, and our assumption that 〈d′〉 6= 0 was wrong.

Case 2: Let u′ 6= 0̃. Then we construct u = f(u′), ρ = (u1 · · ·uk, σ, u), and

d = ρ
(
d1, . . . , dk

)
, and we derive

JtK = 〈d1〉 · · · 〈dk〉 · u
′ (⋆)

=
(
〈d1〉 · · · 〈dk〉 · g(u

′)
)
· f(u′) ((f, g) fact.)

= 〈d〉 · u .

Let d′ ∈ D(M ′, t) and 〈d′〉 6= 0. Then each of the factors 〈d′|1〉, . . . , 〈d′|k〉, and

µ′(d′(ε)) is non-zero. By the induction hypothesis, d′|j = dj , and by the definition of

µ′, d′(ε) = d(ε).
Now we show that JMK = JM ′K. Let t ∈ TΓ. Then there are u ∈ Q′ and d ∈

Du(M ′, t) such that 〈d〉 · u = JtK and 〈d′〉 6= 0 implies d′ = d. We derive

JM ′K(t) = 〈d〉 · ν ′u =
∑

q∈Q 〈d〉 · uq · νq =
∑

q∈Q JtKq · νq = JMK(t) . �

148

5.3 Determinization of classical WTA

The next theorem is our minimality statement; it corresponds to Thm. 3 of [105].

Theorem 5.3.8 Let S be commutative, (f, g) and (f̃ , g̃) factorizations, (f, g) maxi-

mal, det((f, g),M) = (Q′, µ′, ν ′), and det((f̃ , g̃),M) = (Q̃, µ̃, ν̃). Then Q′ \ {0̃} =
f(Q̃ \ {0̃}). Consequently, |Q′| ≤ |Q̃| and, if det((f̃ , g̃),M) is a WTA, then so

is det((f, g),M).

PROOF. We first consider the case that |Q| = 1. Then we can identify SQ with S.

Since (f, g) is maximal, we have that f(S \ {0}) = {f(1)}. By Lm. 5.2.1, f(1) 6= 0.

Now either Q′ = {0̃} = Q̃ or Q′ = {0̃, f(1)} and Q̃ ⊃ {0̃}. In both cases, we have

that Q′ \ {0̃} = f(Q̃ \ {0̃}).
Now let |Q| > 1. By Lm. 5.2.4, S is zero-divisor free. We prove f(Q̃ \ {0̃}) =

Q′\{0̃}. We begin with “⊆”. By Obs. 5.3.2, it suffices to prove the following statement

by induction on i: for every i ∈ N, f(Q̃i \ {0̃}) ⊆ Q′ \ {0̃}. To this end, let i ∈ N

and ũ ∈ Q̃i+1 \ {0̃}. Then there are k ∈ N, σ ∈ Γ(k), and ũ1, . . . , ũk ∈ Q̃i such that

ũ = f̃Jσ(ũ1, . . . , ũk)K. By Lm. 5.2.1, ũ 6= 0̃ and f(ũ) 6= 0̃. We show that f(ũ) ∈ Q′

by deriving

f(ũ) = f(f̃Jσ(ũ1, . . . , ũk)K) = f(Jσ(ũ1, . . . , ũk)K) (Lm. 5.2.7)

= f(Jσ(f(ũ1), . . . , f(ũk))K) (Lm. 5.2.8)

∈ Q′ . (induction hypothesis, def. of Q′)

Now we prove “⊇”. Using Obs. 5.3.2 again, it suffices to prove the following state-

ment by induction on i: for every i ∈ N, Q′
i \ {0̃} ⊆ f(Q̃ \ {0̃}). To this end, let i ∈ N

and u′ ∈ Q′
i+1 \ {0̃}. Then there are k ∈ N, σ ∈ Γ(k), and u′1, . . . , u

′
k ∈ Q

′
i such that

Jσ(u′1, . . . , u
′
k)K 6= 0̃ and u′ = fJσ(u′1, . . . , u

′
k)K. By the induction hypothesis, there

are ũ1, . . . , ũk ∈ Q̃ \ {0̃} such that u′i = f(ũi). By Lm. 5.2.1, u′ 6= 0̃. We show that

u′ ∈ f(Q̃) by deriving

u′ = fJσ(f(ũ1), . . . , f(ũk))K = fJσ(ũ1, . . . , ũk)K (Lm. 5.2.8)

= f(f̃Jσ(ũ1, . . . , ũk)K) (Lm. 5.2.7)

∈ f(Q̃) . �

The following corollary corresponds to [105, Lm. 2].

Corollary 5.3.9 Let S be commutative and (f, g) maximal. Then Q′ \ {0̃} = f(JTΓK \
{0̃}).

PROOF. Follows from Thm. 5.3.8 when (f̃ , g̃) is the trivial factorization. �

149

5 Determinizing weighted tree automata using factorizations

In the remainder of this section, we deal with the sufficient conditions for Q′ to be

finite. We begin with a lemma that is useful when M is acyclic.

Lemma 5.3.10 There is an injective mapping ϕ : Q′ \ {0̃} → {t | t ∈ TΓ, JtK 6= 0̃}.

PROOF. The main idea is to define ϕ as the supremum of an ω-chain of injective map-

pings. To this end, let T̃ = {t | t ∈ TΓ, JtK 6= 0̃}. We use Obs. 5.3.2. For every i ∈ N,

we let

T ′
i = {σ(u1, . . . , uk) | σ ∈ Γ(k), uι ∈ Q

′
i, Jσ(u1, . . . , uk)K 6= 0̃} .

Note that T ′
i is finite. We assume that T ′

i is well ordered in some way. Then we define,

for every i ∈ N, the mapping ϕi : Q
′
i \ {0̃} → T̃ as follows. If i = 0, there is nothing

to define. If u ∈ Q′
i, then we let ϕi+1(u) = ϕi(u). Otherwise, we proceed as follows.

There is a least σ(u1, . . . , uk) ∈ T
′
i with u = fJσ(u1, . . . , uk)K. This implies uι 6= 0̃.

We define ϕi+1(u) = σ(ϕi(u1), . . . , ϕi(uk)).
First, we show by induction on i that, for every i ∈ N, we have

(i) ϕi|Q′
j\{0̃}

= ϕj for every j ≤ i,

(ii) i > 0, u ∈ Q′
i, u 6∈ Q

′
i−1, and u 6= 0̃ implies ht(ϕi(u)) = i,

(iii) ϕi is injective.

The induction base (i = 0) is trivial. We show the induction step (i → i + 1). To this

end, let i ∈ N such that the hypothesis holds.

We show (i). For this, let j ≤ i+ 1. The case j = i+ 1 is trivial. If j ≤ i, we derive

ϕi+1|Q′
j\{0̃}

= ϕi|Q′
j\{0̃}

= ϕj .

We show (ii). Let i + 1 > 0, u ∈ Q′
i+1, u 6∈ Q′

i, and u 6= 0̃. There is a least

σ(u1, . . . , uk) ∈ T
′
i with u = fJσ(u1, . . . , uk)K. If i = 0, then k = 0, and we obtain

ht(ϕi+1(u)) = 1. Let i > 0. Assume for the time being that uι ∈ Q
′
i−1 for every ι.

Then u ∈ Qi. Hence, there is a ι such that uι 6∈ Q
′
i−1. By the induction hypothesis,

ht(ϕi(uι)) = i. Then ht(ϕi+1(u)) = i+ 1.

We show (iii). To this end, let u, u′ ∈ Q′
i+1 \ {0̃} and ϕi+1(u) = ϕi+1(u

′). Then

ht(ϕi+1(u)) = ht(ϕi+1(u
′)). By (ii), either u, u′ ∈ Q′

i or u, u′ 6∈ Q′
i. In the former

case, we invoke the induction hypothesis. Otherwise we proceed as follows. There

are least σ(u1, . . . , uk), σ
′(u′1, . . . , u

′
k′) ∈ T ′

i with u = fJσ(u1, . . . , uk)K and u′ =
fJσ′(u′1, . . . , u

′
k′)K. Since ϕi+1(u) = ϕi+1(u

′), we have σ = σ′, k = k′, and ϕi(uι) =
ϕi(u

′
ι). By the induction hypothesis, uι = u′ι. Hence, u = u′.

This completes the inductive proof. Now we construct ϕ : Q′ \ {0̃} → T̃ as follows.

Let u ∈ Q′. Then there is a least i ∈ N with u ∈ Q′
i. We let ϕ(u) = ϕi(u). It remains

150

5.4 Deciding the twins property

to show that ϕ is injective. For this, let u, u′ ∈ Q′ and ϕ(u) = ϕ(u′). There are least

i, i′ with u ∈ Q′
i and u′ ∈ Q′

i′ . Then ϕ(u) = ϕi(u) and ϕ(u′) = ϕi′(u
′). Without loss

of generality, we assume that i ≥ i′. Using (i), we derive

ϕi(u) = ϕ(u) = ϕ(u′) = ϕi′(u
′) = ϕi(u

′) .

Then (iii) yields that u = u′. �

Now we turn to the cases where (f, g) is a maximal factorization, S is commutative,

and either M is already bu-det or M has the twins property and S is extremal.

Lemma 5.3.11 Let S be commutative, (f, g) maximal, andM bu-det. ThenQ′ is finite.

PROOF. By Cor. 5.3.9, Q′ \ {0̃} = f(JTΓK \ {0̃}). Observation 2.4.3 yields that each

vector in JTΓK has at most one nonzero component. By this fact and since (f, g) is

maximal, we can derive that |f(JTΓK \ {0̃})| ≤ |Q|. �

The following corollary generalizes Thm. 5 of [105] from strings to trees.

Corollary 5.3.12 Let S be commutative and extremal, (f, g) maximal, andM have the

twins property. Then Q′ is finite.

PROOF. By Cor. 5.2.14 there is a finite set U ⊆ SQ such that JTΓK ⊆ S ·U . We derive

Q′ \ {0̃} = f(JTΓK \ {0̃}) (Cor. 5.3.9)

⊆ f((S · U) \ {0̃}) (Cor. 5.2.14)

⊆ f(U \ {0̃}) . ((f, g) maximal)

Since U is finite, so is Q′. �

5.4 Deciding the twins property

In this section, we consider two approaches to deciding the twins property. In both ap-

proaches we require that the semiring be commutative, zero-sum free, and zero-divisor

free. For the first approach, we put an additional restriction on the semiring – namely,

that it be an extremal semifield. For the second one, we put a restriction on the WTA –

namely, that it be cycle-unambiguous. As a preparation for both approaches, we show

that we can enumerate SIB(M) in finite time. For the remainder of this section, let

M = (Q,µ, ν) be a classical WTA over Γ and S .

151

5 Determinizing weighted tree automata using factorizations

Lemma 5.4.1 If S is zero-sum free, then SIB(M) ⊆ SIB
′(M), where SIB

′(M) is de-

fined like SIB(M), with the additional condition that ht(t) ≤ |Q|2.

PROOF. By contradiction. Let

C = {
(
p, q, t, |pos(t)|

)
| p, q ∈ Q, t ∈ TΓ, JtKp 6= 0, JtKq 6= 0, (p, q) 6∈ SIB

′(M)} ,

and let (p, q, t,m) ∈ C such that m is minimal.

Since JtKp 6= 0 and JtKq 6= 0, there are dp ∈ D
p(M, t) and dq ∈ D

q(M, t) such that

〈dp〉 6= 0 and 〈dq〉 6= 0. Since (p, q) 6∈ SIB
′(M), we have that ht(t) > |Q|2. By the

pigeonhole principle, there are w1, w2 ∈ pos(t) and p′, q′ ∈ Q such that w1 is strictly

above w2, dp|w1 , dp|w2 ∈ D
p′(M), and dq|w1 , dq|w2 ∈ D

q′(M). Cutting out the slice

between w1 and w2, we construct the tree t′ = t[t|w2]w1 . Moreover, we construct the

runs d′p and d′q accordingly, i.e., d′x = dx[dx|w2]w1 for x ∈ {p, q}.
We have that 〈d′p〉 6= 0 and 〈d′q〉 6= 0, because otherwise 〈dp〉 = 0 or 〈dq〉 =

0. Since S is zero-sum free, we obtain that Jt′Kp 6= 0 and Jt′Kq 6= 0. Clearly,

(p, q, t′, |pos(t′)|) ∈ C and |pos(t′)| < |pos(t)|, which is our contradiction. �

5.4.1 Extremal semifields

In this section we prove the following theorem.

Theorem 5.4.2 Let S be an extremal semifield. There is a procedure that takes any

classical WTA M over Γ and S and outputs whether M has the twins property.

PROOF. Follows from Lm. 5.4.10. �

We proceed as follows. First, we rephrase the problem of deciding the twins property

as the problem of searching a set of vectors for “critical elements”. Moreover, we

indicate that applying a factorization to that set allows us to solve the search problem

in finite time. Finally, we consider two algorithms that solve our problem.

Henceforth, let S be an extremal semifield. Then it is also zero-sum free. By

Lm. 5.2.2, there is a maximal factorization (f, g).

In the definition of TWINS(M), we deal with two vectors Jep · ζK and Jeq · ζK for

each ζ ∈ CΓ. In the following we concatenate these vectors, which enables us to use a

factorization. To this end, we construct a WTA M ∪ M̄ that runs two instances of M in

parallel, as shown in Fig. 5.5. We let M̄ = (Q̄, µ̄, ν̄) be the WTA obtained from M by

renaming states via q 7→ q̄. We construct the WTA M ∪ M̄ = (Q∪ Q̄, µ′, ν ′) where µ′

coincides with µ and µ̄ on the transitions of M and M̄ , respectively; it maps all other

transitions to 0; and ν ′ coincides with ν and ν̄ on Q and Q̄, respectively.

152

5
.4

D
ecid

in
g

th
e

tw
in

s
p
ro

p
erty

ζ :

(ep + eq̄)

z

p →

Jep · ζKM
︷ ︸︸ ︷

...

...

p →

...

1
...

︸ ︷︷ ︸

ep

M

q →

Jeq · ζKM
︷ ︸︸ ︷

...

...

q →

...

1
...

︸ ︷︷ ︸

eq

M

J(ep + eq̄) · ζKM∪M̄ ∈ Tp,q
︷ ︸︸ ︷

...

...

...

...

p →

q̄ →

Q

Q̄

...

1
...

...

1
...

︸ ︷︷ ︸

(ep + eq̄)

p →

q̄ →

M ∪ M̄

Figure 5.5: Moving from parallel execution of M (left-hand side) to the union WTA M ∪ M̄ (right-hand side).

1
5
3

5 Determinizing weighted tree automata using factorizations

Observation 5.4.3 If M has the twins property, then so does M ∪ M̄ .

Using M ∪ M̄ , we are now able to describe the search space of our problem. For

every p, q ∈ Q we define the set Tp,q ⊆ S
Q∪Q̄ by

Tp,q = J{(ep + eq̄) · ζ | ζ ∈ CΓ}KM∪M̄ ,

where we note that ep, eq̄ ∈ S
Q∪Q̄. Moreover, we call any vector u ∈ SQ∪Q̄ critical

(for (p, q)) if up 6= 0, uq̄ 6= 0, and up 6= uq̄. We note that 0̃ is not a critical vector, and

that a vector u ∈ SQ∪Q̄ \ {0̃} is critical iff f(u) is critical. With these prerequisites, we

can make two easy observations.

Observation 5.4.4 Let p, q ∈ Q. Then (p, q) ∈ TWINS(M) iff Tp,q does not contain

any critical vector.

Observation 5.4.5 The following three statements are equivalent.

(a) The WTA M has the twins property.

(b) The set
⋃

(p,q)∈SIB(M) Tp,q is devoid of critical vectors.

(c) The set
⋃

(p,q)∈SIB(M) f(Tp,q \ {0̃}) is devoid of critical vectors.

We call the sets in Obs. 5.4.5(b) and (c) the search space and the compressed search

space, respectively.

In the following, we show that the compressed search space is finite if M has the

twins property. To this end, we will construct, for every (p, q) ∈ SIB(M), a WTA

M(p,q) over Γ ∪ {∗} and S such that (i) there is an injective mapping from Tp,q into

JTΓ∪{∗}KM(p,q)
and (ii) if M has the twins property, then so does M(p,q). This will

enable us later to apply Cor. 5.2.14.

Let M ∪ M̄ = (Q′, µ′, ν ′). We let M(p,q) = (Q′′, µ′′, ν ′′) where

• Q′′ = {0, 1} ×Q′,

• µ′′((b1, q
′
1) · · · (bk, q

′
k), σ, (b, q

′)) = µ′(q′1 · · · q
′
k, σ, q

′) if b =
∑

j bj ,

• µ′′(ε, ∗, (1, p)) = µ′′(ε, ∗, (1, q̄)) = 1,

• µ′′ maps all other transitions to 0,

• ν ′′(1, q′) = ν ′(q′), and ν ′′ maps all other states to 0.

154

5.4 Deciding the twins property

For every b ∈ {0, 1}, we define the mappings

ϕb : S
Q∪Q̄ → S{0,1}×(Q∪Q̄) and ϕ′

b : S
{0,1}×(Q∪Q̄) → SQ∪Q̄

by letting ϕb(u)(b,q′) = uq′ , ϕb(u)(b′,q′) = 0 for b′ 6= b, and ϕ′
b(u)q′ = u(b,q′). The

following observation is easy to show by induction on m.

Observation 5.4.6 For every m ∈ N and t ∈ TΓ∪{∗}, if |pos(t)| ≤ m, then

JtKM(p,q)
=

ϕ0(JtKM∪M̄) if t ∈ TΓ,

ϕ1(Jt[∗/(ep + eq̄)]KM∪M̄) if ∗ occurs exactly once in t,

0̃ otherwise.

Corollary 5.4.7 We have that ϕ1(Tp,q) \ {0̃} = (ϕ1(S
Q∩Q̄) ∩ JTΓ∪{∗}KM(p,q)

) \ {0̃}.

PROOF. Let u ∈ ϕ1(Tp,q) and u 6= 0̃. Then there is a ζ ∈ CΓ such that u = ϕ1(J(ep +

eq̄) · ζKM∪M̄). By Obs. 5.4.6, we have that J∗ · ζKM(p,q)
= u. Hence, u ∈ (ϕ1(S

Q∩Q̄)∩

JTΓ∪{∗}KM(p,q)
) \ {0̃}. Now let u ∈ ϕ1(S

Q∪Q̄) ∩ JTΓ∪{∗}KM(p,q)
and u 6= 0̃. Then

there is a t ∈ TΓ∪{∗} with u = JtKM(p,q)
. Since u ∈ ϕ1(S

Q∪Q̄) \ {0̃}, Obs. 5.4.6

yields that ∗ occurs exactly once in t and that u = ϕ1(Jt[∗/(ep + eq̄)]KM∪M̄). Hence,

u ∈ ϕ1(Tp,q). �

Lemma 5.4.8 If M has the twins property, then so does M(p,q).

PROOF. Let ((b, p′), (c, q′)) ∈ SIB(M(p,q)). Then there is a t ∈ TΓ∪{∗} such that

JtK(b,p′) 6= 0 and JtK(c,q′) 6= 0. Using Obs. 5.4.6, we obtain that either (i) t ∈ TΓ and

b = c = 0 or (ii) ∗ occurs exactly once in t and b = c = 1.

We show that (p′, q′) ∈ SIB(M ∪ M̄). In Case (i), this is trivial. In Case (ii), we

use that (p, q) ∈ SIB(M), thus (p, q̄) ∈ SIB(M ∪ M̄), and thus there is a t′ ∈ TΓ
with (Jt′KM∪M̄)p 6= 0 and (Jt′KM∪M̄)q̄ 6= 0. Since S is an extremal semifield, it is

zero-sum free and zero-divisor free, and we obtain that (Jt[∗/t′]KM∪M̄)p′ 6= 0 and

(Jt[∗/t′]KM∪M̄)q′ 6= 0.

We show that ((b, p′), (c, q′)) ∈ TWINS(M(p,q)). Let ζ ∈ CΓ∪{∗} such that Je(b,p′) ·
ζK(b,p′) 6= 0 and Je(c,q′) ·ζK(c,q′) 6= 0. It is easy to see that then ∗ does not occur in ζ, and

that Je(b,p′) · ζK(b,p′) = Jep′ · ζKp′ and Je(c,q′) · ζK(c,q′) = Jeq′ · ζKq′ . Then the statement

follows because M ∪ M̄ has the twins property, by Obs. 5.4.3. �

Lemma 5.4.9 Let M have the twins property. For every (p, q) ∈ SIB(M) the set

f(Tp,q \ {0̃}) is finite.

155

5 Determinizing weighted tree automata using factorizations

Algorithm 5.1 Decision algorithm.

Require:

M = (Q,µ, ν) a classical WTA over Γ and S ,

S commutative and extremal,

(f, g) a maximal factorization of dimension Q ∪ Q̄
Ensure:

print “yes” iff M has the twins property

1: compute SIB(M)
2: for (p, q) ∈ SIB(M) in parallel do

3: for u ∈ f(Tp,q \ {0̃}) do

4: if u is a critical vector then

5: print “no” and terminate

6: print “yes”

PROOF. Since S is an extremal semifield, it is also zero-sum free, and Lm. 5.2.2 yields

that there is a maximal factorization (f ′, g′) of dimension {0, 1} × (Q ∪ Q̄). We con-

struct a new factorization (f ′′, g′′) where

(f ′′(u), g′′(u)) = (ϕ1(f(ϕ
′
1(u))), g(ϕ

′
1(u))) , (if u = ϕ1(ϕ

′
1(u)))

(f ′′(u), g′′(u)) = (f ′(u), g′(u)) . (otherwise)

It is easy to see that (f ′′, g′′) is indeed a factorization; even a maximal one.

By Lm. 5.4.8 and Cor. 5.2.14, there is a finite set U such that

ϕ1(f(Tp,q \ {0̃})) = f ′′(ϕ1(Tp,q \ {0̃}))

= f ′′((ϕ1(S
Q∪Q̄) ∩ JTΓ∪{∗}K) \ {0̃}) (Cor. 5.4.7)

⊆ f ′′(JTΓ∪{∗}K \ {0̃}) ⊆ f
′′(S · U \ {0̃}) (Cor. 5.2.14)

= f ′′(U \ {0̃}) . (maximal factorization)

Since U is finite and ϕ1 is injective, f(Tp,q \ {0̃}) is finite as well. �

Now we consider two decision algorithms that are based on Lm. 5.4.9. The first one,

Alg. 5.1, searches the compressed search space for critical vectors.

Lemma 5.4.10 Algorithm 5.1 terminates, and it is correct.

PROOF. First, the algorithm enumerates SIB(M). This is possible due to Lm. 5.4.1.

Second, for each (p, q) ∈ SIB(M) in parallel, it enumerates f(Tp,q \{0̃}), checking for

critical vectors. For this step, we distinguish two cases.

156

5.4 Deciding the twins property

If M has the twins property, then, by Lm. 5.4.9 and Obs. 5.4.5, f(Tp,q \{0̃}) is finite

and devoid of critical vectors, and the algorithm terminates with output “yes”.

Otherwise, by Obs. 5.4.5, the algorithm finds a critical vector at some point and

outputs “no”. For this, the parallel processing (Line 2) is critical because there may be

(p, q) ∈ SIB(M) such that f(Tp,q \ {0̃}) is infinite, yet devoid of critical vectors. �

Algorithm 5.1 is rather straightforward, but that comes at a price. In order to enu-

merate the compressed search space, we can in principle enumerate CΓ and compute

fJ(ep + eq̄) · ζK for each ζ ∈ CΓ. However, the weights already computed for subtrees

and subcontexts of ζ are not reused in this approach. For this reason, we consider an

alternative procedure – Alg. 5.2.

Algorithm 5.2 does not enumerate CΓ explicitly; instead, it works on weight vectors,

thereby avoiding redundant calculation. Roughly speaking, it employs a maximal fac-

torization (f, g) of appropriate dimension and computes det((f, g),M(p,q)) for every

(p, q) ∈ SIB(M). The following lemma shows that the state sets of these WTA com-

prise a legitimate alternative to our compressed search space. Let u ∈ S{0,1}×(Q∪Q̄);

then u is a critical vector if ϕ′
1(u) is a critical vector.

Lemma 5.4.11 Let (f, g) be a maximal factorization of dimension {0, 1} × (Q ∪ Q̄),
and let (Q′

(p,q) | (p, q) ∈ SIB(M)) be the family such that Q′
(p,q) is the set of states of

det((f, g),M(p,q)). Then the following are equivalent:

(a)
⋃

(p,q)∈SIB(M) Tp,q contains a critical vector,

(b) f(ϕ1(
⋃

(p,q)∈SIB(M) Tp,q \ {0̃})) contains a critical vector,

(c) ϕ1(S
Q∩Q̄) ∩

⋃

(p,q)∈SIB(M)Q
′
(p,q) contains a critical vector.

PROOF. The first equivalence is easy to see. For the second equivalence, we derive

f(ϕ1(
⋃

(p,q)∈SIB(M) Tp,q \ {0̃}))

=
⋃

(p,q)∈SIB(M) f(ϕ1(Tp,q \ {0̃}))

=
⋃

(p,q)∈SIB(M) f((ϕ
−1
1 (SQ∩Q̄) ∩ JTΓ∪{∗}KM(p,q)

) \ {0̃}) (Cor. 5.4.7)

= ϕ1(S
Q∩Q̄) ∩

⋃

(p,q)∈SIB(M) f(JTΓ∪{∗}KM(p,q)
\ {0̃})

= ϕ1(S
Q∩Q̄) ∩

⋃

(p,q)∈SIB(M)Q
′
(p,q) \ {0̃} . (Cor. 5.3.9)

Recall that 0̃ is not a critical vector. �

157

5 Determinizing weighted tree automata using factorizations

Algorithm 5.2 Improved decision algorithm.

Require:

M = (Q,µ, ν) a classical WTA over Γ and S ,

S commutative and extremal,

(f, g) a maximal factorization of dimension {0, 1} × (Q ∪ Q̄)
Ensure:

print “yes” iff M has the twins property

1: compute SIB(M)
2: if SIB(M) = ∅ then

3: print “yes” and terminate

4: select some (p0, q0) ∈ SIB(M)
5: compute Q′

0 (see below)

6: for i = 1, 2, . . . do

7: compute Q′
i (see below) ⊲ uses (p0, q0) and SIB(M)

8: if Q′
i = Q′

i−1 then

9: print “yes” and terminate

10: if ϕ1(S
Q∪Q̄) ∩Q′

i contains a critical vector then

11: print “no” and terminate

where

Q′
0 = ∅

Q′
i+1 = {0̃} ∪ {fJ∗KM(p,q)

| (p, q) ∈ SIB(M)}

∪ {fJσ(u1, . . . , uk)KM(p0,q0)
| k ∈ N, σ ∈ Γ(k), u1, . . . , uk ∈ Q

′
i,

Jσ(u1, . . . , uk)KM(p0,q0)
6= 0̃} .

158

5.4 Deciding the twins property

Lemma 5.4.12 Algorithm 5.2 terminates, and it is correct.

PROOF. The case that SIB(M) = ∅ is trivial. We turn to the converse case. We

let (Q′
(p,q) | (p, q) ∈ SIB(M)) be the family such that Q′

(p,q) is the set of states of

det((f, g),M(p,q)). For every (p, q) ∈ SIB(M), we apply Obs. 5.3.2 to M(p,q) and

denote the corresponding family by (Q′
(p,q),i | i ∈ N). Let (Q′

i | i ∈ N) be the family

defined in Alg. 5.2. A straightforward proof by induction on i yields that

Q′
i =

⋃

(p,q)∈SIB(M)Q
′
(p,q),i . (∗)

Now we distinguish two cases. EitherM has the twins property. Then, by Lm. 5.4.8,

so does M(p,q) for every (p, q) ∈ SIB(M), and by Lm. 5.3.12, the set Q′
(p,q) is finite,

and Q′
(p,q),i = Q′

(p,q),i+1 for some i. By (∗), then, also Q′
i = Q′

i+1 for some i, and the

algorithm terminates. By Lm. 5.4.11, it outputs “yes”.

Or M does not have the twins property. By Obs. 5.4.5 and Lm. 5.4.11, the algorithm

finds a critical vector at some point and outputs “no”. �

We note that, as is evident from Obs. 5.4.6, at least half of the components of every

vector in Q′
i is zero, so there is room for optimizing the algorithm. For instance, one

can partition Q′
i into the following three blocks:

{0̃} ,
(
ϕ0(S

Q∪Q̄) ∩Q′
i

)
\ {0̃} ,

(
ϕ1(S

Q∪Q̄) ∩Q′
i

)
\ {0̃} .

Then the first block is irrelevant for the algorithm and may be omitted, and the remain-

ing blocks can be represented by their images under ϕ′
0 and ϕ′

1, respectively.

5.4.2 Cycle-unambiguous weighted tree automata

In this section, we show that the twins property is decidable for a decidable subclass of

WTA called cycle unambiguous. This result is inspired by a similar one for the string

case found in [5, Thm. 5]. The following definition is also adapted from [5, Sec. 2.1].

A WTAN = (Q,R, µ, ν) over Σ and S is called cycle unambiguous if for every q ∈ Q
and ζ ∈ CΣ there is at most one d ∈ Dq(N, q · ζ) such that 〈d〉 6= 0. For instance, the

WTA of Ex. 2.4.1 is cycle unambiguous.

Lemma 5.4.13 Let S be commutative, zero-sum-free, and zero-divisor-free, and let M
be cycle unambiguous. Then TWINS

′(M) ⊆ TWINS(M), where TWINS
′(M) is defined

like TWINS(M), with the additional condition that ht(ζ) ≤ 2 · |Q|2.

159

5 Determinizing weighted tree automata using factorizations

w

w1

w2

ζ :

w

w1

w2

ζ :

Case 1: Case 2:

|w| > |Q|2 |w| ≤ |Q|2

Figure 5.6: Finding w1 and w2; note that ht(ζ) > 2 · |Q|2.

PROOF. By contradiction. We let

C = {(p, q, ζ, |pos(ζ)|) | (p, q) ∈ TWINS
′(M), ζ ∈ CΓ,

Jep · ζKp 6= 0, Jeq · ζKq 6= 0, Jep · ζKp 6= Jeq · ζKq} .

Let (p, q, ζ,m) ∈ C such that m is minimal. Since Jep · ζKp 6= 0 and Jep · ζKp 6= 0,

and since M is cycle-unambiguous, there are dp ∈ D
p(M,p · ζ) and dq ∈ D

p(M, q · ζ)
such that Jep · ζKp = 〈dp〉 and Jep · ζKq = 〈dq〉.

Let w ∈ pos(z) such that ζ(w) = z. Since (p, q) ∈ TWINS
′(M), we obtain that

ht(ζ) > 2 · |Q|2. By the pigeonhole principle, there are w1, w2 ∈ pos(ζ) (illustrated in

Fig. 5.6) such that (i) w1 is strictly above w2, (ii) if w1 is above w, then so is w2, and

(iii) πQ(dq|w1) = πQ(dq|w2) and πQ(dp|w1) = πQ(dp|w2). Let w1, w2 be such a pair of

positions, and let p′ = πQ(dp|w1), q
′ = πQ(dq|w2), ζ

′ = ζ[z]w2 |w1 , d′p = dp[p
′]w2 |w1 ,

dq[q
′]w2 |w1 , ζ ′′ = ζ[ζ|w2]w1 , d′′p = dp[dp|w2]w1 , and d′′q = dq[dq|w2]w1 .

We note that 〈d′p〉, 〈d
′′
p〉, 〈d

′
q〉, 〈d

′′
q 〉 6= 0, because otherwise 〈dp〉 = 0 or 〈dq〉 = 0.

Since M is cycle-unambiguous, we obtain that Jp′ · ζ ′Kp′ = 〈d′p〉, Jq′ · ζ ′Kq′ = 〈d′q〉,
Jp · ζ ′′Kp = 〈d

′′
p〉, Jq · ζ ′′Kq = 〈d

′′
q 〉. We distinguish two cases.

Either 〈d′p〉 = 〈d
′
q〉. Then 〈d′′p〉 6= 〈d

′′
q 〉, because otherwise 〈dp〉 = 〈dq〉. Hence,

(p, q, ζ ′′, |pos(ζ ′′)|) ∈ C. Since |pos(ζ ′′)| < |pos(ζ)|, we have a contradiction. Or

〈d′p〉 6= 〈d
′
q〉. Then (p′, q′, ζ ′, |pos(ζ ′)|) ∈ C. Since |pos(ζ ′)| < |pos(ζ)|, we also have

a contradiction in this case. �

160

5.5 The case of non-classical WTA

Theorem 5.4.14 Let S be a commutative, zero-sum-free, zero-divisor-free semiring.

There is a procedure that takes any cycle-unambiguous classical WTA M over Γ and S
and outputs whether M has the twins property.

PROOF. By Lm. 5.4.1, we have that SIB(M) ⊆ SIB
′(M). By Lm. 5.4.13, we have

that TWINS
′(M) ⊆ TWINS(M). In both cases, the converse is trivial, so we obtain

that SIB
′(M) = SIB(M) and TWINS

′(M) = TWINS(M). Hence, the sets SIB(M)
and TWINS(M) can be computed in finite time. Since these sets are finite, checking

SIB(M) ⊆ TWINS(M) is a trivial matter. �

We conclude this section by proving that the property “cycle unambiguous” is decid-

able. We call M finitely cycle unambiguous (fcu) if for every q ∈ Q and ζ ∈ CΓ with

ht(ζ) ≤ 3 · |Q|2, there is at most one d ∈ Dq(M, q · ζ) such that 〈d〉 6= 0.

Lemma 5.4.15 If M is fcu, then it is cycle unambiguous.

PROOF. By contradiction. To this end, let M be fcu, and let

C = {(q, ζ, d, d′, |pos(ζ)|) | q ∈ Q, ζ ∈ CΓ, d, d
′ ∈ Dq(M, q · ζ),

d 6= d′, 〈d〉 6= 0, 〈d′〉 6= 0} .

Let (q, ζ, d, d′,m) ∈ C such that m is minimal. Since d 6= d′, there is a w1 ∈ pos(ζ)
with d(w1) 6= d′(w1). Let w2 ∈ pos(ζ) with ζ(z) = w2, and let w ∈ pos(ζ) be the

longest common prefix of w1 and w2.

Since M is fcu, |pos(ζ)| > 3 · |Q|2. By the pigeonhole principle, there are w3, w4 ∈
pos(ζ) (illustrated in Fig. 5.7) such that (i) w3 is strictly above w4, (ii) if w3 is above w,

w1, or w2, then so is w4, respectively, and (iii) πQ(d|w3) = πQ(d|w4) and πQ(d
′|w3) =

πQ(d
′|w4). We let ζ ′ = ζ[ζ|w4]w3 , e = d[d|w4]w3 , and e′ = d′[d′|w4]w3 . We note that

ζ ′ ∈ CΓ and e 6= e′, both due to Condition (ii). Moreover, we have that 〈e〉, 〈e′〉 6= 0,

because otherwise 〈d〉 = 0 or 〈d〉′ = 0. Hence, (q, ζ ′, e, e′, |pos(ζ ′)|) ∈ C. Since

|pos(ζ ′)| < m, we have the contradiction. �

Corollary 5.4.16 There is a procedure that takes any classical WTA M and outputs

whether M is cycle-unambiguous.

PROOF. Direct consequence of Lm. 5.4.15. �

5.5 The case of non-classical WTA

In this section, we transfer the results of the preceding two sections to arbitrary, i.e., not

necessarily classical, WTA.

161

5
D

et
er

m
in

iz
in

g
w

ei
g
h
te

d
tr

ee
au

to
m

at
a

u
si

n
g

fa
ct

o
ri

za
ti

o
n
s w3

w4

w

w1 w2

ζ :

w

w3

w4

w1 w2

ζ :

w

w3

w4

w1 w2

ζ :

w3

w4

w

w1 w2

ζ :

Case 1: Case 2: Case 3: Case 4:

|w| > |Q|2 |w| ≤ |Q|2 |w| ≤ |Q|2 |w| ≤ |Q|2

|w1| > 2|Q|2 |w1| ≤ 2|Q|2 |w1|, |w2| ≤ 2|Q|2

|w2| > |Q|
2

Figure 5.7: Finding w3 and w4; note that ht(ζ) > 3 · |Q|2.

1
6
2

5.5 The case of non-classical WTA

To this end, let Σ be an alphabet, Γ ⊆ Σ × N a ranked alphabet with rk(σ, k) = k,

and f : TΓ → TΣ the mapping that replaces each label by its first component. Two

weighted tree languages ϕ : TΣ → S and ϕ′ : TΓ → S are related if ϕ(f(t)) = ϕ′(t)
for every t ∈ TΓ and ϕ(t) = 0 for every t ∈ TΣ \ f(TΓ).

Observation 5.5.1 If ϕ1 and ϕ′ are related, and so are ϕ2 and ϕ′, then ϕ1 = ϕ2.

Moreover, let M = (P,R, µ, ν) be a WTA over Σ and S and M ′ = (P ′, µ′, ν ′) a

classical WTA over Γ and S . We say that M and M ′ are related if (p1 · · · pk, σ, p) ∈ R
implies (σ, k) ∈ Γ, P = P ′, ν = ν ′, and

µ′(p1 · · · pk, (σ, k), p) =

{

µ(p1 · · · pk, σ, p) if (p1 · · · pk, σ, p) ∈ R ,

0 otherwise.

Observation 5.5.2 Let M and M ′ be related. Then

(i) M is bu-det iff M ′ is bu-det,

(ii) M has the twins property iff M ′ has the twins property,

(iii) M is acyclic iff M ′ is acyclic,

(iv) M is cycle-unambiguous iff M ′ is cycle-unambiguous, and

(v) JMK and JM ′K are related.

We note that the definition of “related” gives rise to a natural construction turning

any WTA M into a related classical WTA M ′, as well as the converse construction.

From now on, we assume that these constructions are understood, and when we speak

of “the (classical) WTA related to . . . ”, we refer to these constructions.

Let M = (Q,R, µ, ν) be a WTA over Σ and S , and let (f, g) be a factorization of

dimension Q. The unranked determinization udet((f, g),M) of M by (f, g) is either a

WTA over Σ and S or it is undefined, as follows. Let M ′ be the classical WTA related

to M . If det((f, g),M ′) is a WTA, then we let det((f, g),M) be the WTA related to

det((f, g),M ′). Otherwise, udet((f, g),M) is undefined.

Theorem 5.5.3 Let M = (Q,R, µ, ν) be a WTA over Σ and S , and let (f, g) be the

trivial or a maximal factorization. If (f, g) is not the trivial factorization, let S be

commutative. Moreover, let one of the following conditions hold:

• M is acyclic,

• S is locally finite,

163

5 Determinizing weighted tree automata using factorizations

• (f, g) is maximal and M is bu-det, or

• (f, g) is maximal, M has the twins property, and S is extremal.

Then udet((f, g),M) is a bu-det WTA over Σ and S , and it is equivalent to M .

PROOF. This follows from Thm. 5.3.4, Obs. 5.5.1, and Obs. 5.5.2. �

Theorem 5.5.4 Let S be an extremal semifield. Then there is a procedure that takes

any WTA M over Σ and S and outputs whether M has the twins property.

PROOF. This follows from Thm. 5.4.2 and Obs. 5.5.2. �

Theorem 5.5.5 Let S be a commutative, zero-sum-free, and zero-divisor-free semiring.

Then there is a procedure that takes any cycle-unambiguous WTA M over Σ and S and

outputs whether M has the twins property.

PROOF. This follows from Thm. 5.4.14 and Obs. 5.5.2. �

Theorem 5.5.6 There is a procedure that takes any WTA M and outputs whether M is

cycle-unambiguous.

PROOF. This follows from Cor. 5.4.16 and Obs. 5.5.2. �

5.6 Conclusion, discussion, and outlook

We have used the factorization approach of [138, 105] to develop a determinization

construction for WTA. Theorem 5.5.3 and Tab. 5.1 summarize the requirements un-

der which our construction solves the determinization problem. We have also shown

that, roughly speaking, maximal factorizations only exist for zero-divisor-free semi-

rings. Furthermore, we have shown that the twins property is decidable (i) for cycle-

unambiguous WTA over commutative, zero-sum-free, zero-divisor-free semirings and

(ii) for WTA over extremal semifields.

The present determinization result was largely obtained by generalizing [105] from

strings to trees, and many of our proofs follow theirs. Likewise, the decidability result

in Case (i) was obtained by generalizing [5] from strings to trees, but our proofs do

not follow theirs. In particular, they provide a polynomial-time decision algorithm. In

contrast, while our proofs are effective, they do not suggest efficient decision proce-

dures. It is open whether efficient algorithms exist for WTA. We note that the transition

from strings to trees made the proofs more intricate and at some points necessitated

commutativity of the semiring.

164

5.6 Conclusion, discussion, and outlook

As for Case (ii), the notion that the twins property can be decided by searching

for critical vectors in a compressed search space is due to Kirsten [104]. We have

generalized his work in the following two ways. First, we allow arbitrary extremal

semifields instead of the tropical semiring. To this end, we use the notion of a maximal

factorization, which is implicit in his work. Second, we consider WTA instead of WSA.

This makes the proof more complex, as we have to distinguish between contexts and

trees.

Kirsten’s result that deciding the twins property is PSPACE-hard directly transfers to

our setting, giving a lower bound on the complexity of our algorithms. In addition, he

shows that the problem is PSPACE-complete by giving a PSPACE algorithm. It is open

whether this result can be transferred to our setting as well. It is also an open question

which algorithm, Alg. 5.1 or Alg. 5.2, performs better in practice.

As mentioned at the very top, this chapter is an extensively revised version of the

papers [31] and [27]. The former work covers the determinization construction and

Case (i) of the decidability problem, while the latter work is concerned with Case (ii).

In this chapter, we added the case of non-classical WTA. Moreover, we reduced the

question whether the compressed search space is finite to the question whether the set

of all weight vectors of some WTA is finite (cf. the proof of Lm. 5.4.9). The original

contribution, on the other hand, contains a direct proof [27, Lm. 3.3]. Likewise, we

reused the determinization construction for the decision procedure in Alg. 5.2, in con-

trast to the original contribution [27, Alg. 2]. In both instances, the original contribution

duplicates proof work considerably.

We already mentioned some items for further research in passing, namely efficient

decision procedures for Case (i), PSPACE membership of the problem in Case (ii),

and which decision algorithm performs better in practice. We name two more items,

which are related to sufficient conditions for the determinization to be finite. First, one

could consider general requirements that also cover cases like Ex. 5.3.6, where neither

the trivial nor any maximal factorization is viable. Second, it might be desirable to

determinize a WTA that is not acyclic over a semiring that is not extremal, say, the

nonnegative reals.

165

6 Conclusion

Chapter 1 proposed a preliminary version of an algebraic framework for specifying

decoders, promising the achievements in Tab. 1.1. Let us scrutinize this promise:

(a) Sections 1.4 and 1.5.1 showed how to specify syntax-based decoders in the pre-

liminary framework. Our decoders were mostly inspired by Hiero, as are SMT

systems to this day [14]. That being said, current research in SMT is largely con-

cerned with discovering and selecting useful feature functions. The three features

that we covered are not representative of the state of the art; the framework may

need amendments for supporting contemporary features.

(b) We convinced ourselves that our specifications were readily effective from the out-

set. To this end, we treated each operation in isolation and gathered a suitable

closure result. As a whole, the closure results imply a 1:1 translation of a spec-

ification into a (composite) algorithm. The preliminary version still forced us to

provide small constructions ourselves; the full version is supposed to fix that. For

the next refinement steps – the efficient specification and the computer program –

it is yet to be shown that the same per-operation approach works.

(c) The closure results imply that said composite algorithm is correct.

(d) We exploited the theory of weighted tree automata and related devices in Sec. 1.4.

We saw potential for developing the theory in Sec. 1.5. The three main contribu-

tions of this thesis (Chs. 3–5) underscore the viability of the framework, both as a

specification mechanism and as an interface between theory and application.

In the following sections, we consider the full version of the framework, and we dis-

cuss further ways of developing both said theory and the framework itself. In particular,

we gather preliminary evidence that the per-operation approach may be successful for

said refinement steps.

6.1 The algebraic framework, full version

The full version of the algebraic framework capitalizes on semiring homomorphisms

and the multiset semiring. Let us define the multiset semiring, as well as several useful

167

6 Conclusion

homomorphisms. For this, let S = (S,�, 1̄) be a monoid. A (finite) multiset (over

S) is a mapping u : S → N such that {s | us 6= 0} is finite. We denote the set of

all finite multisets over S by N〈S〉. We define (1.) : S → N〈S〉 by letting (1.s)s = 1
and (1.s)s′ = 0 for s 6= s′. The (multiset) Cauchy product · is the binary operation

on N〈S〉 such that (u1 · u2)s =
∑

s1,s2∈S : s=s1�s2
(u1)s1 · (u2)s2 . The semiring N〈S〉

of (finite) multisets over S is (N〈S〉,+, ·, 0̃, 1.1̄), where + is the conventional addition

applied pointwise. The mapping (1.) is a monoid homomorphism from S into the

multiplicative monoid of N〈S〉; and if S is commutative, then so is N〈S〉.
Let S ′ be a monoid and h : S → S ′. We define h♯ : N〈S〉 → N〈S′〉 by letting

h♯(u)s′ =
∑

s : h(s)=s′ us. Then h♯ : N〈S〉 → N〈S ′〉 and (h2 ◦ h1)
♯ = h♯2 ◦ h

♯
1 (see

Lm. 6.1.1 below). Now let S ′ be a semiring whose multiplicative monoid is S . Then

the semiring N〈S ′〉 of multisets over S ′ is N〈S〉. We define hS′ : N〈S〉 → S with

hS′(u) =
∑

s∈S

∑

j : 0≤j<us
s. Then hS′ : N〈S ′〉 → S ′ (see Lm. 6.1.2 below), and we

call it the S ′-aggregation homomorphism.

Let Γ be an alphabet, S a semiring, and M = (Q,R, µ, ν) a WTA over Γ and S .

We define the WTA 1.M over Γ and N〈S〉 by letting 1.M = (Q,R, (1.) ◦ µ, (1.) ◦ ν).
The m-meaning of M is J1.MK. The m-meaning of a WSA/a productive WSTSG is

defined analogously. Let us develop some intuition for the multiset semiring and the

m-meaning. Since (1.) is a monoid homomorphism, we obtain that 〈d〉(1.)◦µ · 1.νq =
1.(〈d〉µ · νq) for every d ∈ Dq(M). Hence, thanks to the multiset semiring, J1.MK(t)s
tells us how many runs with weight s contribute to JMK(t). Of course, this information

is sufficient to compute JMK(t) itself; formally, hS(J1.MK(t)) = JMK(t). Intuitively

speaking, the multiset semiring allows us to expose the runs to the meaning, and this is

exactly what we were looking for in the closing remarks of Sec. 1.4.

Let I be a set, S,S ′ semirings, and h : S → S′. We define h♭ : SI → (S′)I by

letting h♭(u)i = h(ui). If h : S → S ′, then h♭ : SI → (S ′)I (proof omitted). Note

that (h2 ◦ h1)
♭ = h♭2 ◦ h

♭
1. For every d ∈ N, d ≥ 1, and u ∈ R

d, we define the unary

operation (·u) on sR
d by letting (·u)(u′) = u′ · u, where · is the inner product. This

operation is a homomorphism from the multiplicative monoid of Arctd into itself. Here

we do not distinguish between Arct1 and Arct. For every j ∈ {1, . . . , d}, we define

in
(d)
j : sR→ sR

d by letting

in
(d)
j (r)j′ =

−∞ if r = −∞,

r if r 6= −∞, j = j′,

0 otherwise.

Then in
(d)
j : Arct→ Arctd. This concludes the general definitions.

The full version of the algebraic framework is constituted by the operations of the

preliminary version, as well as all operations of the form h♭, provided that the underly-

168

6.1 The algebraic framework, full version

ing semirings are commutative.

In order to illustrate the framework, we rephrase (1.3). For this, let G be an STSG, µ
a probability assignment for G, θ ∈ R

3, and θ = (θ1, θ2, θ3). Moreover, let G′ be the

WSTSG over Σ and Real that is obtained from G by using the weight assignment µ,

let M be a deterministic WSA with JMK(e) = PLM(e), and let M ′ be a bu-det WTA

with JM ′K(t) = P (t | yd(t)). Since N〈Real〉 is not complete, we additionally require

that G′ be productive. We claim (without proof) that

τ = (hArct ◦ ((·θ1) ◦ log)
♯)♭(J1.G′K) , (6.1)

ϕLM = ((·θ2) ◦ log)
♭(JMK) , (6.2)

ϕP = ((·θ3) ◦ log)
♭(JM ′K) , (6.3)

where, via composition, hArct ◦ ((·θj) ◦ log)
♯ : N〈Real〉 → Arct.

We show that the specification is again effective. To this end, we enhance the notation

of our classes K, L, T , and their subclasses by adding the underlying semiring as a

superscript. We introduce the five classes

KS
dRec = {ϕ | ϕ ∈ K

S , ϕ is the meaning of some deterministic WSA} ,

LSdRec = {ϕ | ϕ ∈ L
S , ϕ is the meaning of some bu-det WTA} ,

K
N〈S〉
mdRec = {ϕ | ϕ ∈ K

N〈S〉, ϕ is the m-meaning of some deterministic WSA} ,

L
N〈S〉
mdRec = {ϕ | ϕ ∈ L

N〈S〉, ϕ is the m-meaning of some bu-det WTA} ,

T
N〈S〉

mSTSG = {τ | τ ∈ T N〈S〉, τ is the m-meaning of some productive WSTSG} .

Table 6.1 lists results about the computability of the additional operations. For the

second section of the table, we merely switch from “meaning” to “m-meaning” without

touching the underlying device. For the third section of the table, we perform the

corresponding constructions from Tab. 1.2 on the underlying device (over S); note that

the determinism requirement in L
N〈S〉
mdRec is crucial for ⊙, ⊳, and ⊲. For the fourth

section, we perform g♭ on the underlying device.

The entries referring to g♭ in the first section of the table deserve some discussion.

Although it seems plausible that the semiring addition is immaterial for deterministic

devices, caution is in fact advised: when there is no run, then the empty sum (the

semiring zero) comes into play, and g need not map the zero of S to the zero of S ′. We

can recover the closure result in two ways:

• Either we simply require that g(0) = 0. This property holds for g = log, but

not for g = (1.), because multisets distinguish between 1.0 (“exactly one run; its

weight is 0”) and 0̃ (“no run”). For our application above (ϕ′
LM and ϕ′

P), we can

as well use a variation of (1.) that maps 0 to 0̃.

169

6 Conclusion

operation closure/restrictions publication complexity

h♭ KS
Rec → K

S′

Rec [17, Lm. 3] O(r)

h♭ KS
dRec → K

S′

dRec [17, Lm. 3] O(r)

h♭ LSRec → L
S′

Rec [17, Lm. 3] O(r)

h♭ LSdRec → L
S′

dRec [17, Lm. 3] O(r)

h♭ T S
STSG → T

S′

STSG [17, Lm. 3] O(r)

g♭ KS
dRec → K

S′

dRec (conjecture) O(r)

g♭ LSdRec → L
S′

dRec (conjecture) O(r)

(1.)♭ KS
dRec → K

N〈S〉
mdRec (conjecture) O(1)

(1.)♭ LSdRec → L
N〈S〉
mdRec (conjecture) O(1)

(hS)
♭ T

N〈S〉
mSTSG → T

S
STSG (conjecture) O(1)

1. Σ∗ → K
N〈S〉
mdRec (conjecture) O(n)

Yd−1 K
N〈S〉
mdRec → L

N〈S〉
mdRec (conjecture) O(pk)

⊙ L
N〈S〉
mdRec × L

N〈S〉
mdRec → L

N〈S〉
mdRec (conjecture) O(r1 · r2)

⊳ L
N〈S〉
mdRec × T

N〈S〉
mSTSG → T

N〈S〉
mSTSG (Lm. 3.3.2) O(r2 · p

k2
1)

⊲ T
N〈S〉

mSTSG × L
N〈S〉
mdRec → T

N〈S〉
mSTSG (Lm. 3.3.2) O(r1 · p

k1
2)

(g♯)♭ K
N〈S〉
mdRec → K

N〈S′〉
mdRec (conjecture) O(r)

(g♯)♭ L
N〈S〉
mdRec → L

N〈S′〉
mdRec (conjecture) O(r)

(g♯)♭ T
N〈S〉

mSTSG → T
N〈S′〉

mSTSG (conjecture) O(r)

where S and S ′ are semirings, h : S → S ′, and g : S → S′ is

a monoid homomorphism from the multiplicative

monoid of S into the multiplicative monoid of S ′

Table 6.1: Computability of operations, continued from Tab. 1.2.

170

6.1 The algebraic framework, full version

• Or we preprocess the given WSA or WTA: roughly speaking, we add a sink state

and, where necessary, transitions of weight 0. This intrusion does not affect the

meaning, but it guarantees that there is exactly one run for every string or tree, so

that empty sums are ruled out.

As in Sec. 1.4, let us now use the framework according to its purpose and specify a

new decoder. We let χj = ((in
(3)
j ◦ log)

♯)♭ and define

D2 : T
N〈Real〉

mSTSG ×K
N〈Real〉
mdRec × L

N〈Real〉
mdRec × R

3 → EF , D2(τ, ϕ, ϕ
′, θ) :

f 7→ best(Yd(π2
(
[hArct ◦ (·θ)

♯]♭(ϕ0)
)
)) , where (6.4)

ϕ0 =
(
Yd−1(1.f)⊙ χ3(ϕ

′)
)
⊳ χ1(τ)⊲Yd−1

(
χ2(ϕ)

)
.

This specification enjoys the nice property that, by a minor change, we obtain a decoder

in the spirit of D′
0 of Sec. 1.2, which selects the translation with the highest aggregate

score. The change consists in replacing hArct by hReal ◦ exp
♯. Be advised that, like D′

0,

the resulting decoder is NP hard.

We conclude this section by providing the two promised lemmas and by discussing

the prospects of “infinite multisets”.

Lemma 6.1.1 Let S,S ′,S ′′ be monoids and h : S → S ′. Then h♯ : N〈S〉 → N〈S ′〉.

Moreover, let h1 : S → S
′, h2 : S

′ → S ′′. Then (h2 ◦ h1)
♯ = h♯2 ◦ h

♯
1.

PROOF. For the first statement, only the multiplication is somewhat tricky. We derive

[h♯(u1) · h
♯(u2)]s′

=
∑

s′1,s
′
2 : s

′=s′1�′s′2
h♯(u1)s′1 · h

♯(u2)s′2

=
∑

s′1,s
′
2 : s

′=s′1�′s′2

(∑

s1 : h(s1)=s′1
(u1)s1

)
·
(∑

s2 : h(s2)=s′2
(u2)s2

)

=
∑

s′1,s
′
2 : s

′=s′1�′s′2

∑

s1 : h(s1)=s′1

∑

s2 : h(s2)=s′2
(u1)s1 · (u2)s2 (distributivity)

=
∑

s′1,s
′
2,s1,s2 : s

′=h(s1)�′h(s2),h(s1)=s′1,h(s2)=s
′
2
(u1)s1 · (u2)s2

=
∑

s′1,s
′
2,s1,s2 : s

′=h(s1�s2),h(s1)=s′1,h(s2)=s
′
2
(u1)s1 · (u2)s2

=
∑

s1,s2 : s′=h(s1�s2)
(u1)s1 · (u2)s2 =

∑

s,s1,s2 : h(s)=s′,s=s1�s2
(u1)s1 · (u2)s2

=
∑

s : h(s)=s′
∑

s1,s2 : s=s1�s2
(u1)s1 · (u2)s2 = h♯(u1 · u2)s′ .

For the second statement, we derive

(h2 ◦ h1)
♯(u)s′′ =

∑

s : h2(h1(s))=s′′
us =

∑

s′,s : h2(s′)=s′′,h1(s)=s′
us

=
∑

s′ : h2(s′)=s′′
∑

s : h1(s)=s′
us =

∑

s′ : h2(s′)=s′′
h♯1(u)s = h♯2(h

♯
1(u))s′′ . �

171

6 Conclusion

Lemma 6.1.2 Let S be a semiring. Then hS : N〈S〉 → S .

PROOF. Let h = hS . We have that h(0̃) = 0 and h(1.1) = 1. For every j ∈ N, let

[j] = {j′ | 0 ≤ j′ < j}. We derive

h(u1 + u2) =
∑

s∈S

∑

j∈[(u1)s+(u2)s]
s

=
∑

s∈S

∑

j∈{s}×{1}×[(u1)s]∪{s}×{2}×[(u2)s]
s (⋆)

=
∑

j∈
⋃

s∈S

(
{s}×{1}×[(u1)s]∪{s}×{2}×[(u2)s]

) s

=
∑

j∈
(⋃

s∈S{s}×{1}×[(u1)s]
)
∪
(⋃

s∈S{s}×{2}×[(u2)s]
) s

=
(∑

j∈
⋃

s∈S{s}×{1}×[(u1)s]
s
)
+
(∑

j∈
⋃

s∈S{s}×{2}×[(u2)s]
s
)

=
(∑

s∈S

∑

j∈{s}×{1}×[(u1)s]
s
)
+
(∑

s∈S

∑

j∈{s}×{2}×[(u2)s]
s
)

=
(∑

s∈S

∑

j∈[(u1)s]
s
)
+
(∑

s∈S

∑

j∈[(u2)s]
s
)
= h(u1) + h(u2) .

Next, we derive

h(u1 · u2) =
∑

s∈S

∑

j∈[(u1·u2)s]
s

=
∑

s∈S

∑

j∈[
∑

s1,s2∈S : s=s1·s2
(u1)s1 ·(u2)s2]

s

=
∑

s∈S

∑

j∈
⋃

s1,s2∈S : s=s1·s2
{s1}×{s2}×[(u1)s1]×[(u2)s2]

s

=
∑

s1∈S

∑

s∈S

∑

j∈
⋃

s2∈S : s=s1·s2
{s1}×{s2}×[(u1)s1]×[(u2)s2]

s

=
∑

s1∈S

∑

s2∈S

∑

s∈S : s1·s2=s

∑

j∈{s1}×{s2}×[(u1)s1]×[(u2)s2]
s

=
∑

s1∈S

∑

s2∈S

∑

j′∈[(u1)s1]

∑

j∈{s1}×{s2}×{j′}×[(u2)s2]
s1 · s2

=
∑

s1∈S

∑

j∈[(u1)s1]

∑

s2∈S

∑

j∈[(u2)s2]
s1 · s2

=
∑

s1∈S

∑

j∈[(u1)s1]

(
s1 ·

∑

s2∈S

∑

j∈[(u2)s2]
s2
)

=
(∑

s1∈S

∑

j∈[(u1)s1]
s1
)
·
(∑

s2∈S

∑

j∈[(u2)s2]
s2
)
= h(u1) · h(u2) . �

Let S be a complete semiring. We let N∞ = N ∪ {∞}. A multiset over S is a

mapping u : S → N∞; we denote the set of all multisets over S by N∞〈〈S〉〉. Note

that this is a generalization of the finite multisets over S . Recall that (N∞,+, ·, 0, 1)
with conventional addition and multiplication is a complete semiring. The semiring

N∞〈〈S〉〉 is defined in the same way as N〈S〉, and it is complete. The definition of an

S-aggregation mapping transfers to the new setting easily – unlike Lm. 6.1.2.

In fact, we can not readily prove that hS is a complete semiring homomorphism,

even if S is complete. To see this, we inspect (⋆) of the proof. There we switch the

172

6.2 Outlook

index set of the innermost sum:

[(u1)s + (u2)s]
(
{s} × {1} × [(u1)s]

)
∪
(
{s} × {2} × [(u2)s]

)
.

Here either both sets have the same finite cardinality, so the corresponding sums co-

incide, or both sets are countably infinite, and the sums coincide as well, because the

infinitary sum is invariant with respect to renaming of index elements. When we try out

the same technique to prove h(
∑

i∈I ui) =
∑

i∈I h(u)i, we are faced with

[
∑

i∈I(ui)s]
⋃

i∈I{s} × {i} × [(ui)s] .

Here the following case can occur: the left set is countably infinite, while the right set

is uncountable. Then the sums need not coincide. However, it should be possible to

recover the result by considering countable multisets and “countably complete” semi-

rings throughout, for countable unions of countable sets are again countable (assuming

the axiom of choice). Or, should one be so inclined, one might try and define multisets

where the multiplicities are cardinal numbers.

6.2 Outlook

Throughout this thesis, we encountered open problems. For instance, some entries in

Tabs. 1.2 and 6.1 are marked as conjectures; they should be looked into. It was sug-

gested to investigate variable-deleting WSCFTGs (Sec. 3.5) and IRTGs with deleting

homomorphisms, to study the input product for yXHGs and WSCFHGs, to examine

binarization-friendly WSCFHGs, and to work on the problem of rank-optimization (all

Sec. 4.7). One might also consider determinization of non-acyclic WTA over non-

extremal semirings (Sec. 5.6). Finally, it would be interesting to replace the concept

of complete semirings by the concept of countably complete semirings, and to show

whether Lm. 6.1.2 can be generalized to countable multisets.

In the remainder, we consider how to extend the algebraic framework.

6.2.1 An n-best operation

Our definition of a decoder as a mapping D : Ω → EF is closely tailored to its appli-

cation for translation: we assume that some “good” ω is known, and we translate any

sentence f by computing D(ω)(f). From this idealized perspective, the inner work-

ings of D – e.g., the flow of information through the defining expression of D – are

irrelevant, and therefore these inner workings are not exposed in the type of D.

However, during development it is likely that a decoder does not meet our expecta-

tions. That is, it performs poorly on a test sentence, as measured by our professional

173

6 Conclusion

intuition. Simply put, we feel that the translation selected by best is bad. It is natural

to ask whether the argument WSA of best offers a better, yet lower-scored translation.

Maybe our defining expression of D needs a revision. Or maybe ω was not so good

after all, and we can spot a problem with our training procedure.

An established diagnostic tool for this situation is the list of n best runs of said WSA

[70, 94]. This list is also used to finitely approximate the meaning of the WSA: for

instance, many training procedures work on this list, in particular, to select the feature

weight vector (cf. [150, Sec. 4], [43, Sec. 2], [92, Sec. 2], [84, Sec. 2]).

In our algebraic ideology, we express the computation of the n-best list as an oper-

ation on the meaning level, and we already have the right notions at our disposal: the

multiset semiring and the m-meaning. In order to keep the presentation simple, we let

S be Arct or Real.
Let n ∈ N and I a set. We define nbest : N∞〈〈S〉〉

I → N〈S〉I , also denoted [.]n, as

follows. Let ϕ ∈ N〈S〉I . Using the pointwise extension of ≤, we define

C(n, ϕ) = {ϕ′ | ϕ′ ∈ N〈S〉I ,
∑

i∈I,s∈S ϕ
′(i)s ≤ n, ϕ

′ ≤ ϕ} ,

nbest(ϕ) = argmaxϕ′∈C(n,ϕ)

∑

i∈I hS(ϕ
′(i)) .

With this operation, we can express the n-best list for D2(τ, ϕ, ϕ
′, θ)(f) as

[
Yd(π2

(
[(·θ)♯]♭(ϕ0)

)
)
]

n
. (6.5)

Transferring the m-meaning from N〈S〉 to N∞〈〈S〉〉, we define the six classes

K
N∞〈〈S〉〉
mRec = {ϕ | ϕ ∈ KN∞〈〈S〉〉, ϕ is the m-meaning of some WSA} ,

L
N∞〈〈S〉〉
mRec = {ϕ | ϕ ∈ LN∞〈〈S〉〉, ϕ is the m-meaning of some WTA} ,

T
N∞〈〈S〉〉

mSTSG = {τ | τ ∈ T N∞〈〈S〉〉, τ is the m-meaning of some WSTSG} ,

KS
fin = {ϕ | ϕ ∈ KS , {i | ϕ(i) 6= 0} finite} ,

LSfin = {ϕ | ϕ ∈ LS , {i | ϕ(i) 6= 0} finite} ,

T S
fin = {τ | τ ∈ T S , {i | τ(i) 6= 0} finite} .

Table 6.2 shows computability results for nbest. Let us briefly sketch the idea behind

the second section in the table on the basis of the string case. We convert the underlying

WSA M into a WSA M ′ with weights in 1.S such that [JMK]n = [JM ′K]n as follows.

For every transition whose weight u is not in 1.S, we introduce at most n “dummy”

states, corresponding to the n best entries in u, we remove said transition, and for

each dummy state, we introduce a transition from the original source to the dummy,

reading the original symbol with the appropriate weight in 1.S, and we a introduce

174

6.2 Outlook

operation closure/restrictions publications complexity

nbest K
N∞〈〈S〉〉
mRec → K

N〈S〉
fin , (†) [94, 28] (�)

nbest L
N∞〈〈S〉〉
mRec → L

N〈S〉
fin , (†) [94, 28] (�)

nbest T
N∞〈〈S〉〉

mSTSG → T
N〈S〉

fin , (†) [94, 28] (�)

nbest K
N∞〈〈S〉〉
Rec → K

N〈S〉
fin , (†) (conjecture) (?)

nbest L
N∞〈〈S〉〉
Rec → L

N〈S〉
fin , (†) (conjecture) (?)

nbest T
N∞〈〈S〉〉

STSG → T
N〈S〉

fin , (†) (conjecture) (?)

(�) O(r + p · n · log(r + n))

Table 6.2: Computability of operations, continued from Tab. 1.2.

an ε-transition from the dummy to the original target with weight 1.1. Instead of ε,
the latter transition can also read some special symbol; then we have to postprocess

[JM ′K]n accordingly in order to arrive at [JMK]n.

As for the effectiveness of (6.5), we observe that Tab. 6.1 lacks entries for Yd and

for π2. For these, we can keep using Tab. 1.2 via the trivial inclusions

L
N〈S〉
mRec ⊆ L

N〈S〉
Rec ⊆ L

N∞〈〈S〉〉
Rec , T

N〈S〉
mSTSG ⊆ T

N〈S〉
STSG ⊆ T

N∞〈〈S〉〉
STSG .

6.2.2 Reranking and crunching

The refinement step from an effective specification towards an efficient one usually

involves introducing approximations. To that effect, n-best lists can be used.

For instance, if the computation of D2 is being held up by the output product, then

we could use the following alternative of ϕ0:

ϕ′
0 =

[(
Yd−1(1.f)⊙ χ3(ϕ

′)
)
⊳ χ1(τ)

]

n
⊲Yd−1

(
χ2(ϕ)

)
,

Now the output product acts on a finite weighted tree transformation, which makes it

cheap for reasonable n; in fact, we merely rerank a finite list. Therefore, this approxi-

mation technique is called reranking.

Another technique is crunching (cf. [134, Sec. 5.1], [121, Sec. 2.4]). As mentioned

below our definition of D2, we obtain a decoder that sums over ASTs by replacing hArct

by hReal ◦ exp
♯, and that decoder is NP hard. We define the decoder D′

2 with the same

175

6 Conclusion

parameter space and with

D
′
2(τ, ϕ, ϕ

′, θ)(f) = best(h♭Real(
[

Yd(π2([[exp ◦(·θ)]
♯]♭(ϕ0)))

]

n
)) .

Here the aggregation homomorphism can be imagined as “crunching” a finite list. Evi-

dently, computing best of a finite weighted string language is trivial.

6.2.3 Relatively-useless pruning

Reducing a WSA to a finite list of runs, nbest is a quite drastic and crude measure. In

contrast, pruning refers to a class of more refined techniques, which merely reduce the

number of states or the number of transitions in one way or another.

For instance, relatively-useless pruning (RUP) [93, Sec. 4.3] is based on evolving

the useful/useless dichotomy for transitions that we established in Sec. 2.4.5. Let M =
(Q,R, µ, q0) be a WTA over Σ and Arct in root-state form. We define the utility η(ρ)
of a transition ρ ∈ R as the highest weight of any complete run that contains said

transition, i.e.,

η(ρ) = max{〈d〉 | d ∈ Dq0
co(M), ∃w ∈ pos(d) : d(w) = ρ} .

In [93], the utility is called merit, and it is computed efficiently using the inside and

outside weights of M (where the former correspond to the mapping F of Lm. 2.4.7).

Clearly, a useless transition has utility 0, but not vice versa. We also consider the

highest weight of any run

η0 = max{〈d〉 | d ∈ Dq0
co(M)} = max{η(ρ) | ρ ∈ R} .

For RUP, we let δ ∈ R
≥0. We construct the WTA δrup(M) from M by dropping

every transition ρ with η0 − η(ρ) > δ. We observe that

{d | d ∈ Dq0
co(M), 〈d〉 ≥ η0 − δ} ⊆ Dq0

co(δrup(M)) ⊆ Dq0
co(M) , (6.6)

where the second set may still contain runs with weight below η0 − δ. It is hard to

estimate, without inspecting R, the number of dropped transitions, and thus the gain in

efficiency of subsequent operations. We may need to try different values of δ until we

find a practical trade-off between accuracy and efficiency.

Let us attempt to express RUP on the m-meaning level. For this, let I a set. A δ-rup

mapping is an operation δrup: N∞〈〈Arct〉〉I → N∞〈〈Arct〉〉I such that

ϕδ ≤ δrup(ϕ) ≤ ϕ , (6.7)

176

6.2 Outlook

where ϕδ ∈ N∞〈〈Arct〉〉
I with

ϕδ(i)s =

{

ϕ(i)s if s ≥ s0(ϕ)− δ,

0 otherwise,

s0(ϕ) = max{s | ∃i : ϕ(i)s 6= 0} .

The inequations (6.7) model (6.6). This definition of a δ-rup mapping is permissive:

for instance, it includes the identity on N∞〈〈Arct〉〉I . It is unclear how to narrow down

the definition, because the identities of the runs and their interdependencies via the

transitions are masked on the m-meaning level. For use in decoder specifications, we

let δrup be a δ-rup mapping; and we stipulate that it be the one that the (fictitious,

potential) implementation of choice provides.

6.2.4 Cube pruning

In the strict sense [39, 81, 82], cube pruning is an algorithm that explores a certain

weighted hypergraph under a limited-memory restriction concerning the number of

nodes. Roughly speaking, this weighted hypergraph encodes the output-product con-

struction of an acyclic WSCFG and an n-gram model. In the broad sense [25], which

we adopt, cube pruning is a general technique for approximating product constructions

such as the output product, the input product, or the Hadamard product, when at least

one operand is given by an acyclic device.

Although a detailed formal account of this technique is long overdue, it would go

beyond the scope of this text. Suffice it to say the following. Since cube pruning is very

operational in nature, it cannot be easily expressed as an operation on the m-meaning

level. As was the case for RUP, one can probably only give a very permissive (or

even vacuous) definition; for instance, one that does not reflect the limited-memory

restriction. It may turn out inevitable that we supplement the formal definition with

informal requirements that refer to the automata level.

6.2.5 Support for more feature functions

We have considered four features: one that is induced by a probability assignment, one

that incorporates a language model for English, one that counts the number of words

in the English string, and one that incorporates parsing probabilities for French. Each

feature can be regarded as the composition of an “adapter mapping” and a “substance

mapping”; for instance, in the setting of Sec. 1.3, we observe that

φLM = (log ◦PLM) ◦ (yd ◦h2 ◦ πΓ) ,

177

6 Conclusion

where yd ◦h2 ◦ πΓ is the adapter and log ◦PLM caters for the substance.

For these features, the substance is either a probability assignment or the meaning

of some grammar; and the adapter is either the identity, or it refers to the French side

(via h1), or it refers to the English side (via h2). We could transfer these features into

the algebraic framework easily, by using a WSTSG, by using the input product, or by

using the output product, respectively.

Current SMT systems use features that depend on both the French and the English

side, e.g., the feature τ0 ◦ ad with

ad : TR → TΣ × TΣ ,

ad(d) = (h1(πΓ(d)), h2(πΓ(d))) ,

τ0 : TΣ × TΣ → sR ,

τ0(t1, t2) =

{

1 if t1 contains NN(katze) and t2 contains NN(cat),

0 otherwise.

In order to incorporate such a feature into the framework, we need a subclass T ′ ⊆ T
such that (i) T ′ contains τ0 (and the like) and (ii) τ ∈ TSTSG, τ

′ ∈ T ′ implies τ ⊙ τ ′ ∈
TSTSG, where we use the Hadamard product in the general sense of Sec. 2.3.2.

For instance, one might define the notion of a “duplex WTA” M that basically con-

sists of two WTA M1 and M2, but it has a central root-weight mapping ν that acts

on the product state space. Then the meaning JMK of M would be the weighted tree

transformation defined by

JMK(t1, t2) =
∑

(q1,q2)
Jt1KM1(q1) · Jt2KM2(q2) · ν(q1, q2) .

The author conjectures that the class of meanings of WSTSGs is closed under Hada-

mard product with meanings of duplex WTA, which includes τ0.

6.2.6 Improving the learning curve

Evidently the framework incorporates a great many concepts, and its current form is

closer to a proposal than to a product. Furthermore, the presentation in this thesis is

geared towards researchers who may work on the framework itself, rather than towards

practitioners. As a result, this thesis fails to achieve Objective (e). However, that does

not mean that the framework inherently defies an instructive presentation.

Already, the “native” specifications in (1.4) and (6.4) are rather concise and instruc-

tive. We can make them more palatable by introducing a few conventions, e.g.,

• we omit the Yd−1, the ♯, and the ♭,

178

6.2 Outlook

• we abbreviate (·θ)(τ) by τ · θ, and

• if S = N∞〈〈S
′〉〉, then we define best = best ◦ hS′ (this definition is not circular

because the semiring is being switched).

Thereby we reduce redundancy, which is warranted because decoder specifications will

consist of a number of established stereotypes. Metaphorically speaking, decoder spec-

ifications will usually be variations on a well-known theme.

Now D2 can be expressed by

D2 : T
N〈Real〉

mSTSG ×K
N〈Real〉
mdRec × L

N〈Real〉
mdRec × R

3 → EF , D2(τ, ϕ, ϕ
′, θ) :

f 7→ best(Yd(π2
(
[χ3(1.f ⊙ ϕ

′)⊳ χ1(τ)⊲ χ2(ϕ)] · θ
)
)) ,

and we can attach a casual narrative to this specification, e.g.,

We take the tree transformation (τ), the target language model (ϕ), and the

parsing model (ϕ′); we intersect the parsing model with our sentence (f);

we convert all weights into vector form; we combine the three pieces; and

we incorporate the feature weight vector. It remains to project the resulting

transformation to the output string language and find the translation with

the highest score.

It is an interesting open question whether the algebraic notation can be taught to a

practitioner by means of a collection of pairs (example, narrative), without delving into

concepts such as a multiset semiring, a complete semiring, or a closure result.

6.2.7 Formal syntax and term rewriting

So far, we were content with treating specifications informally. For instance, when we

sloppily refer to “the defining expression of D2(τ, ϕ, ϕ
′, θ)(f)”, we mean the mathe-

matical expression shown in (6.4). In contrast to a tree over ∆, this expression is itself

not a mathematical object, i.e., we cannot use mathematics to describe its properties or

potential transformations.

The informal treatment got us very far, for we could in many cases prove that a speci-

fication is effective, using tables such as Tab. 1.2. However, these proofs still amounted

to manual labor. If we are to automate these proofs, to implement a specification in

a programming language, or to build an integrated development environment (IDE)

for our specifications, then there is no way around a formal treatment, either in said

programming language itself or in a more abstract framework.

One possible framework is the initial-algebra approach of [86, 85]. As mentioned

in Sec. 1.6, we may view our algebraic framework as a many-sorted algebra over a

179

6 Conclusion

suitable signature and a specification as a term (read: a tree) over this signature. By

considering additional algebras over the same signature, we obtain other meanings of

the same term.

This way, we can, e.g., transform the term into a term over a more elaborate signature

that captures a lower-level view. In this view, the meaning JGK′ of a WSCFTG G (cf.

Sec. 3.2) could be represented directly by the weighted tree language JGK of center

trees. For example, a term that represents best(Yd(π2(JGK′))) might be transformed

into a term that represents best(Yd(h2(JGK))).
Simple relationships, such as (for S = Arct)

best ◦Yd = yd ◦ best , best ◦h2 = h2 ◦ best ,

can be encoded as formal equations and interpreted as rewrite rules, so that we may

automatically rewrite

best(Yd(h2(JGK))) yd(best(h2(JGK))) yd(h2(best(JGK))) ,

which improves the runtime because yd is cheaper than Yd and h2 is cheaper on a

single tree than on a weighted tree language. It is an interesting question whether this

kind of automatic rewriting is important to achieve state-of-the-art performance.

6.2.8 Implementation and tooling

Next to the initial-algebra approach, the programming language Haskell can be used to

formalize the algebraic framework. In fact, a rudimentary precursor of the framework

has been implemented as a Haskell library called Vanda [26, 23]. A key feature of

Haskell is its evaluation strategy, which is called lazy evaluation. It is conceivable that

during the evaluation of an operation such as best, only a part of the argument WSA is

being explored, so it might be prudent to construct said WSA lazily, i.e., on demand.

Note that a conventional decoder implementation typically uses a monolithic algorithm

that is highly “hand-optimized”, and that interweaves the operations and thereby saves

redundant calculation. It is an open question whether lazy evaluation indeed helps

attaining the performance of conventional decoders.

Having a formal language for specification also paves the way for tooling. For in-

stance, we can build an IDE for decoder specification that represents the defining ex-

pression of a decoder graphically as a workflow diagram (Fig. 6.1). Indeed, the devel-

opment of such an IDE had been begun under the name of Vanda Studio [26, 23]. This

program turns the graphical specification into a Haskell program that uses the Vanda

library. However, the focus of Vanda Studio has recently shifted [24] from algebraic

specification to the integration of conventional tools and systems such as the Berkeley

Parser [155], GIZA [151], or Moses [111].

180

6.2 Outlook

Figure 6.1: Graphical rendering of a decoder in Vanda Studio (taken from [23]).

It should be an interesting task to extend Vanda and Vanda Studio to cover the alge-

braic framework.

6.2.9 Context of decoder development

A decoder is only one component of an SMT system, and the best decoder is worth

nothing without a training procedure and neat parallel corpora. Rule extraction is par-

ticularly crucial in this respect because it has to be tailored to the grammar formalism

in question. It would be interesting to investigate the merit of the algebraic framework

for the SMT system as a whole.

At any rate, if the algebraic framework is to gain the respect of practitioners, it has

to be applied in the development of a competitive SMT system.

181

Bibliography

[1] Anne Abeillé, Yves Schabes, and Aravind K. Joshi. “Using lexicalized tags for

machine translation”. In: Proceedings of the Thirteenth International Confer-

ence on Computational Linguistics (COLING ’90). Vol. 3. 1990, pp. 1–6 (cit.

on p. 9).

[2] Alfred V. Aho and Jeffrey D. Ullman. “Syntax directed translations and the

pushdown assembler”. In: Journal of Computer and System Sciences 3 (1969),

pp. 37–56 (cit. on pp. 19, 84).

[3] Athanasios Alexandrakis and Symeon Bozapalidis. “Weighted grammars and

Kleene’s theorem”. In: Information Processing Letters 24.1 (1987), pp. 1–4

(cit. on pp. 37, 42, 43).

[4] Cyril Allauzen, Mehryar Mohri, and Brian Roark. “Generalized Algorithms for

Constructing Statistical Language Models”. In: Proceedings of the 41st Annual

Meeting on Association for Computational Linguistics - Volume 1. ACL ’03.

2003, pp. 40–47. DOI: 10.3115/1075096.1075102 (cit. on pp. 7, 16).

[5] Cyrill Allauzen and Mehryar Mohri. “Efficient Algorithms for Testing the

Twins Property”. In: J. of Automata, Languages and Combinatorics 8.2 (2003),

pp. 117–144 (cit. on pp. 21, 134, 159, 164).

[6] André Arnold and Max Dauchet. “Bi-transduction de forêts”. In: Proc. 3rd Int.

Coll. Automata, Languages and Programming. 1976, pp. 74–86 (cit. on pp. 21,

48, 85, 86).

[7] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge

University Press, 1998 (cit. on p. 29).

[8] James K. Baker. “Trainable grammars for speech recognition”. In: Speech Com-

munication Papers for the 97th Meeting of the Acoustical Society of America.

Ed. by D. H. Klatt and J. J. Wolf. 1979, pp. 547–550 (cit. on p. 9).

[9] Yehoshua Bar-Hillel, Micha Perles, and Eli Shamir. “On formal properties of

simple phrase structure grammars”. In: Z. Phonetik Sprach. Komm. 14 (1961),

pp. 143–172 (cit. on p. 83).

[10] Jean Berstel and Christophe Reutenauer. “Recognizable formal power series on

trees”. In: Theoret. Comput. Sci. 18.2 (1982), pp. 115–148 (cit. on p. 43).

183

http://dx.doi.org/10.3115/1075096.1075102

Bibliography

[11] Jean Berstel and Christophe Reutenauer. Rational Series and Their Languages.

Vol. 12. EATCS Monographs on Theoretical Computer Science. Springer, 1988

(cit. on pp. 14–16).

[12] Dan Bikel. “On The Parameter Space of Generative Lexicalized Statistical Pars-

ing Models”. PhD thesis. University of Pennsylvania, 2004 (cit. on p. 10).

[13] Phil Blunsom, Trevor Cohn, and Miles Osborne. “A discriminative latent vari-

able model for statistical machine translation”. In: Proceedings ACL-HLT 2008.

2008, pp. 200–208. URL: http://aclweb.org/anthology-new/P/

P08/P08-1024.pdf (cit. on p. 8).

[14] Ondřej Bojar, Christian Buck, Chris Callison-Burch, Barry Haddow, Philipp

Koehn, Christof Monz, Matt Post, Herve Saint-Amand, Radu Soricut, and Lu-

cia Specia, eds. Proceedings of the Eighth Workshop on Statistical Machine

Translation. ACL, 2013. URL: http://www.aclweb.org/anthology/

W13-22 (cit. on p. 167).

[15] Björn Borchardt. “A pumping lemma and decidability problems for recogniz-

able tree series”. In: Acta Cybernet. 16.4 (2004), pp. 509–544 (cit. on pp. 15,

16, 132, 145, 146).

[16] Björn Borchardt. “The Theory of Recognizable Tree Series”. PhD thesis. Tech-

nische Universität Dresden, 2005 (cit. on p. 42).

[17] Björn Borchardt, Andreas Maletti, Branimir Šešelja, Andreja Tepavčević, and

Heiko Vogler. “Cut sets as recognizable tree languages”. In: Fuzzy Sets and

Systems 157.11 (2006), pp. 1560–1571. DOI: 10.1016/j.fss.2005.11.

004 (cit. on p. 170).

[18] Björn Borchardt and Heiko Vogler. “Determinization of finite state weighted

tree automata”. In: J. Autom. Lang. Combin. 8.3 (2003), pp. 417–463 (cit. on

p. 132).

[19] Symeon Bozapalidis. “Context-free series on trees”. In: Inform. and Comput.

169.2 (2001), pp. 186–229 (cit. on p. 18).

[20] Fabienne Braune, Andreas Maletti, Daniel Quernheim, and Nina Seemann.

“Shallow local multi bottom-up tree transducers in statistical machine trans-

lation”. In: Proc. 51st Annual Meeting of the Association for Computational

Linguistics. Ed. by Pascale Fung and Massimo Poesio. 2013, pp. 811–821 (cit.

on p. 10).

[21] Peter F. Brown, Vincent J. Della Pietra, Stephen A. Della Pietra, and Robert L.

Mercer. “The mathematics of statistical machine translation: parameter estima-

tion”. In: Comp. Ling. 19 (2 1993), pp. 263–311 (cit. on p. 3).

184

http://aclweb.org/anthology-new/P/P08/P08-1024.pdf
http://aclweb.org/anthology-new/P/P08/P08-1024.pdf
http://www.aclweb.org/anthology/W13-22
http://www.aclweb.org/anthology/W13-22
http://dx.doi.org/10.1016/j.fss.2005.11.004
http://dx.doi.org/10.1016/j.fss.2005.11.004

Bibliography

[22] Adam L. Buchsbaum, Raffaele Giancarlo, and Jeffery R. Westbrook. “On the

Determinization of Weighted Finite Automata”. In: SIAM J. Comput. 30.5

(2000), pp. 1502–1531. DOI: 10.1137/S0097539798346676 (cit. on

pp. 131, 132).

[23] Matthias Büchse. “As Easy As Vanda, Two, Three: Components for Machine

Translation Based on Formal Grammars”. In: Proceedings 22nd Theorietag

“Automata and Formal Languages”, Prague, Czech Republic, October 3–5,

2012. Ed. by František Mráz. Charles University in Prague, Faculty of Mathe-

matics and Physics. 2012, pp. 41–44 (cit. on pp. 180, 181).

[24] Matthias Büchse. “Vanda Studio – Instructive, Rapid Experiment Develop-

ment”. Unpublished manuscript. 2013. URL: http : / / www . inf . tu -

dresden . de / content / institutes / thi / gdp / research /

vanda-demo.pdf (cit. on p. 180).

[25] Matthias Büchse, David Chiang, Liang Huang, and Michael Pust. “Some re-

marks on cube pruning”. Unpublished manuscript. 2011 (cit. on p. 177).

[26] Matthias Büchse, Toni Dietze, Johannes Osterholzer, Anja Fischer, and Linda

Leuschner. “Vanda – A Statistical Machine Translation Toolkit”. In: Proceed-

ings 6th International Workshop “Weighted Automata: Theory and Applica-

tions” (WATA 2012). Ed. by Manfred Droste and Heiko Vogler. Online pro-

ceedings. 2012, pp. 36–38. URL: http://wwwtcs.inf.tu-dresden.

de/wata2012/Proceedings.pdf (cit. on p. 180).

[27] Matthias Büchse and Anja Fischer. “Deciding the Twins Property for Weighted

Tree Automata over Extremal Semifields”. In: Proceedings of the Workshop

on Applications of Tree Automata Techniques in Natural Language Processing.

2012, pp. 11–20. URL: http://www.aclweb.org/anthology/W/

W12/W12-0802 (cit. on pp. 131, 165).

[28] Matthias Büchse, Daniel Geisler, Torsten Stüber, and Heiko Vogler. “n-Best

Parsing Revisited”. In: Proceedings of the 2010 Workshop on Applications of

Tree Automata in Natural Language Processing, ACL 2010. Uppsala, Sweden,

16 July 2010. 2010, pp. 46–54 (cit. on pp. 8, 15, 20, 175).

[29] Matthias Büchse, Alexander Koller, and Heiko Vogler. “Generic binarization

for parsing and translation”. In: Proceedings of the 51st Annual Meeting of

the Association for Computational Linguistics (Volume 1: Long Papers). 2013,

pp. 145–154. URL: http://www.aclweb.org/anthology/P13-

1015 (cit. on pp. 83, 122, 127).

185

http://dx.doi.org/10.1137/S0097539798346676
http://www.inf.tu-dresden.de/content/institutes/thi/gdp/research/vanda-demo.pdf
http://www.inf.tu-dresden.de/content/institutes/thi/gdp/research/vanda-demo.pdf
http://www.inf.tu-dresden.de/content/institutes/thi/gdp/research/vanda-demo.pdf
http://wwwtcs.inf.tu-dresden.de/wata2012/Proceedings.pdf
http://wwwtcs.inf.tu-dresden.de/wata2012/Proceedings.pdf
http://www.aclweb.org/anthology/W/W12/W12-0802
http://www.aclweb.org/anthology/W/W12/W12-0802
http://www.aclweb.org/anthology/P13-1015
http://www.aclweb.org/anthology/P13-1015

Bibliography

[30] Matthias Büchse, Andreas Maletti, and Heiko Vogler. “Unidirectional deriva-

tion semantics for synchronous tree-adjoining grammars”. In: Proc. 16th Int.

Conf. Developments in Language Theory. Ed. by Hsu-Chun Yen and Oscar H.

Ibarra. Vol. 7410. LNCS. 2012, pp. 368–379. DOI: 10.1007/978-3-642-

31653-1_33 (cit. on pp. 81, 124).

[31] Matthias Büchse, Jonathan May, and Heiko Vogler. “Determinization of

weighted tree automata using factorizations”. In: Journal of Automata, Lan-

guages and Combinatorics 15.3/4 (2010) (cit. on pp. 131, 165).

[32] Matthias Büchse, Mark-Jan Nederhof, and Heiko Vogler. “Tree Parsing with

Synchronous Tree-Adjoining Grammars”. In: Proceedings of the 12th Inter-

national Conference on Parsing Technologies. 2011, pp. 14–25. URL: http:

//www.aclweb.org/anthology/W11-2903 (cit. on pp. 45, 81).

[33] Matthias Büchse, Heiko Vogler, and Mark-Jan Nederhof. “Tree parsing for tree-

adjoining machine translation”. In: Journal of Logic and Computation 24.2

(2014). first published online December 6, 2012, pp. 351–373 (cit. on pp. 45,

81, 82).

[34] Mathieu Caralp, Emmanuel Filiot, Pierre-Alain Reynier, Frédéric Servais, and

Jean-Marc Talbot. “Expressiveness of Visibly Pushdown Transducers”. In: Pro-

ceedings TTATT 2013. 2013, pp. 17–26. URL: http://arxiv.org/abs/

1311.5571 (cit. on p. 122).

[35] Francisco Casacuberta and Colin de la Higuera. “Computational Complexity

of Problems on Probabilistic Grammars and Transducers”. In: ICGI. Ed. by Ar-

lindo L. Oliveira. Vol. 1891. Lecture Notes in Computer Science. 2000, pp. 15–

24 (cit. on p. 8).

[36] Yin-Wen Chang and Michael Collins. “Exact Decoding of Phrase-Based Trans-

lation Models through Lagrangian Relaxation”. In: Proceedings of the 2011

Conference on Empirical Methods in Natural Language Processing. 2011,

pp. 26–37. URL: http://www.aclweb.org/anthology/D11-1003

(cit. on p. 4).

[37] Eugene Charniak and Mark Johnson. “Coarse-to-Fine n-Best Parsing and Max-

Ent Discriminative Reranking”. In: Proceedings of the 43rd Annual Meeting of

the Association for Computational Linguistics (ACL’05). 2005, pp. 173–180.

URL: http://www.aclweb.org/anthology/P05-1022 (cit. on

p. 10).

186

http://dx.doi.org/10.1007/978-3-642-31653-1_33
http://dx.doi.org/10.1007/978-3-642-31653-1_33
http://www.aclweb.org/anthology/W11-2903
http://www.aclweb.org/anthology/W11-2903
http://arxiv.org/abs/1311.5571
http://arxiv.org/abs/1311.5571
http://www.aclweb.org/anthology/D11-1003
http://www.aclweb.org/anthology/P05-1022

Bibliography

[38] David Chiang. “A hierarchical phrase-based model for statistical machine

translation”. In: ACL ’05: Proceedings of the 43rd Annual Meeting on Asso-

ciation for Computational Linguistics. 2005, pp. 263–270 (cit. on p. 4).

[39] David Chiang. “Hierarchical Phrase-Based Translation”. In: Comp. Ling. 33.2

(2007), pp. 201–228 (cit. on pp. 4, 8, 14, 19, 22, 82, 84, 177).

[40] David Chiang. “Learning to Translate with Source and Target Syntax”. In: Pro-

ceedings of the 48th Annual Meeting of the Association for Computational

Linguistics. 2010, pp. 1443–1452. URL: http://www.aclweb.org/

anthology/P10-1146 (cit. on p. 10).

[41] David Chiang, Kevin Knight, and Wei Wang. “11,001 New Features for Statis-

tical Machine Translation”. In: Proceedings of Human Language Technologies:

The 2009 Annual Conference of the North American Chapter of the Associa-

tion for Computational Linguistics. 2009, pp. 218–226. URL: http://www.

aclweb.org/anthology/N/N09/N09-1025 (cit. on p. 10).

[42] David Chiang, Adam Lopez, Nitin Madnani, Christof Monz, Philip Resnik,

and Michael Subotin. “The Hiero machine translation system: extensions, eval-

uation, and analysis”. In: HLT ’05: Proceedings of the conference on Human

Language Technology and Empirical Methods in Natural Language Process-

ing. 2005, pp. 779–786 (cit. on p. 4).

[43] David Chiang, Yuval Marton, and Philip Resnik. “Online large-margin training

of syntactic and structural translation features”. In: Proceedings EMNLP 2008.

2008. URL: http://www.isi.edu/˜chiang/papers/mira.pdf

(cit. on p. 174).

[44] Christian Choffrut. “Une Caracterisation des Fonctions Sequentielles et des

Fonctions Sous-Sequentielles en tant que Relations Rationnelles.” In: Theoret.

Comput. Sci. 5.3 (1977), pp. 325–337 (cit. on pp. 21, 133).

[45] Noam Chomsky. “On certain formal properties of grammars”. In: Inform. Con-

trol 2 (1959), pp. 137–167 (cit. on pp. 19, 84).

[46] Noam Chomsky and Marcel-Paul Schützenberger. “The algebraic theory of

context-free languages”. In: Computer Programming and Formal Systems. Ed.

by Paul Braffort and David Hirschberg. 1963, pp. 118–161 (cit. on p. 14).

[47] Michael Collins. “Head-driven Statistical Models for Natural Language Pars-

ing”. PhD thesis. University of Pennsylvania, 1999 (cit. on p. 10).

[48] Bruno Courcelle. “Attribute grammars: definitions, analysis of dependencies,

proof methods”. In: Methods and tools for compiler construction. Ed. by

Bernard Lorho. 1984, pp. 81–102 (cit. on p. 70).

187

http://www.aclweb.org/anthology/P10-1146
http://www.aclweb.org/anthology/P10-1146
http://www.aclweb.org/anthology/N/N09/N09-1025
http://www.aclweb.org/anthology/N/N09/N09-1025
http://www.isi.edu/~chiang/papers/mira.pdf

Bibliography

[49] Bruno Courcelle and Paul Franchi-Zannettacci. “Attribute grammars and recur-

sive program schemes I”. In: Theoret. Comput. Sci. 17.2 (1982), pp. 163–191

(cit. on p. 124).

[50] Steve DeNeefe. “Tree-Adjoining Machine Translation”. PhD thesis. University

of Southern California, 2011 (cit. on pp. 10, 18).

[51] Steve DeNeefe and Kevin Knight. “Synchronous Tree-Adjoining Machine

Translation”. In: EMNLP ’09: Proceedings of the 2009 Conference on Em-

pirical Methods in Natural Language Processing. 2009, pp. 727–736 (cit. on

p. 10).

[52] John DeNero, Mohit Bansal, Adam Pauls, and Dan Klein. “Efficient Parsing

for Transducer Grammars”. In: Proceedings of Human Language Technologies:

The 2009 Annual Conference of the North American Chapter of the Associa-

tion for Computational Linguistics. 2009, pp. 227–235. URL: http://www.

aclweb.org/anthology/N/N09/N09-1026 (cit. on p. 82).

[53] John DeNero, David Chiang, and Kevin Knight. “Fast Consensus Decoding

over Translation Forests”. In: Proceedings of the Joint Conference of the 47th

Annual Meeting of the ACL and the 4th International Joint Conference on Nat-

ural Language Processing of the AFNLP. 2009, pp. 567–575. URL: http:

//www.aclweb.org/anthology/P/P09/P09-1064 (cit. on p. 22).

[54] John DeNero, Adam Pauls, and Dan Klein. “Asynchronous Binarization for

Synchronous Grammars”. In: Proceedings of the ACL-IJCNLP 2009 Confer-

ence Short Papers. 2009, pp. 141–144. URL: http://www.aclweb.org/

anthology/P/P09/P09-2036 (cit. on p. 127).

[55] Edsger W. Dijkstra. “A note on two problems in connection with graphs”. In:

Numerische Mathematik 1 (1959), pp. 269–271 (cit. on p. 9).

[56] Manfred Droste, Doreen Götze, Steffen Märcker, and Ingmar Meinecke.

“Weighted Tree Automata over Valuation Monoids and Their Characterization

by Weighted Logics”. In: Algebraic Foundations in Computer Science. Ed. by

Werner Kuich and George Rahonis. Vol. 7020. Lecture Notes in Computer Sci-

ence. 2011, pp. 30–55. DOI: 10.1007/978-3-642-24897-9_2 (cit. on

p. 43).

[57] Manfred Droste, Werner Kuich, and Heiko Vogler, eds. Handbook of Weighted

Automata. EATCS Monographs in Theoretical Computer Science. Springer,

2009 (cit. on p. 12).

188

http://www.aclweb.org/anthology/N/N09/N09-1026
http://www.aclweb.org/anthology/N/N09/N09-1026
http://www.aclweb.org/anthology/P/P09/P09-1064
http://www.aclweb.org/anthology/P/P09/P09-1064
http://www.aclweb.org/anthology/P/P09/P09-2036
http://www.aclweb.org/anthology/P/P09/P09-2036
http://dx.doi.org/10.1007/978-3-642-24897-9_2

Bibliography

[58] Manfred Droste and Heiko Vogler. “Weighted logics for unranked tree au-

tomata”. In: Theory of Computing Systems 48.1 (2011). first published online

June 29, 2009, pp. 23–47. DOI: 10.1007/s00224-009-9224-4 (cit. on

p. 44).

[59] Chris Dyer, Adam Lopez, Juri Ganitkevitch, Jonathan Weese, Ferhan Ture, Phil

Blunsom, Hendra Setiawan, Vladimir Eidelman, and Philip Resnik. “cdec: A

Decoder, Alignment, and Learning Framework for Finite-State and Context-

Free Translation Models”. In: Proceedings of the ACL 2010 System Demonstra-

tions. 2010, pp. 7–12. URL: http://www.aclweb.org/anthology/

P10-4002 (cit. on p. 22).

[60] Jay Earley. “An Efficient Context-Free Parsing Algorithm”. In: Communica-

tions of the ACM 13.2 (1970), pp. 94–102 (cit. on pp. 47, 61).

[61] Samuel Eilenberg. Automata, Languages, and Machines – Volume A. Vol. 59.

Pure and Applied Mathematics. Academic Press, 1974 (cit. on p. 12).

[62] Jason Eisner. “Learning non-isomorphic tree mappings for machine transla-

tion”. In: Proceedings of the 41st Annual Meeting on Association for Compu-

tational Linguistics - Volume 2. ACL ’03. 2003, pp. 205–208 (cit. on pp. 9,

82).

[63] Joost Engelfriet. “Attribute grammars: attribute evaluation methods”. In: Meth-

ods and tools for compiler construction. Ed. by Bernard Lorho. 1984, pp. 103–

138 (cit. on p. 70).

[64] Joost Engelfriet and Linda Heyker. “The string generating power of context-

free hypergraph grammars”. In: Journal of Computer and System Sciences

43.2 (1991), pp. 328–360. URL: http://www.sciencedirect.com/

science/article/pii/002200009190018Z (cit. on p. 123).

[65] Joost Engelfriet, Eric Lilin, and Andreas Maletti. “Extended Multi Bottom-up

Tree Transducers”. In: Proc. 12th Int. Conf. Developments in Language Theory.

Ed. by Masami Ito and F. M. Toyama. Vol. 5257. LNCS. 2008, pp. 289–300 (cit.

on p. 10).

[66] Joost Engelfriet, Eric Lilin, and Andreas Maletti. “Extended Multi Bottom-up

Tree Transducers – Composition and Decomposition”. In: Acta Inf. 46.8 (2009),

pp. 561–590 (cit. on p. 46).

[67] Joost Engelfriet and Erik M. Schmidt. “IO and OI I”. In: J. Comput. System Sci.

15.3 (1977), pp. 328–353 (cit. on pp. 81, 119).

[68] Joost Engelfriet and Erik M. Schmidt. “IO and OI II”. In: J. Comput. System

Sci. 16.1 (1978), pp. 67–99 (cit. on p. 81).

189

http://dx.doi.org/10.1007/s00224-009-9224-4
http://www.aclweb.org/anthology/P10-4002
http://www.aclweb.org/anthology/P10-4002
http://www.sciencedirect.com/science/article/pii/002200009190018Z
http://www.sciencedirect.com/science/article/pii/002200009190018Z

Bibliography

[69] Joost Engelfriet and Heiko Vogler. “Macro Tree Transducers”. In: Journal of

Computer and System Sciences 31 (1985), pp. 71–146 (cit. on p. 124).

[70] David Eppstein. “Finding the k Shortest Paths”. In: SIAM Journal on Comput-

ing 28.2 (1998), pp. 652–673. DOI: 10.1137/S0097539795290477 (cit.

on pp. 9, 174).

[71] Zoltán Ésik and Werner Kuich. “Formal Tree Series”. In: J. Autom. Lang. Com-

bin. 8.2 (2003), pp. 219–285 (cit. on pp. 15, 18, 36, 43).

[72] Javier Esparza, Stefan Kiefer, and Michael Luttenberger. “Derivation Tree

Analysis for Accelerated Fixed-Point Computation”. In: Theoretical Computer

Science 412.28 (2011), pp. 3226–3241 (cit. on p. 42).

[73] Zoltán Fülöp, Andreas Maletti, and Heiko Vogler. “A Kleene theorem for

weighted tree automata over distributive multioperator monoids”. In: Theory

Comput. Syst. 44 (2009), pp. 455–499 (cit. on p. 43).

[74] Zoltán Fülöp, Andreas Maletti, and Heiko Vogler. “Preservation of Recog-

nizability for Synchronous Tree Substitution Grammars”. In: Proceedings of

the 2010 Workshop on Applications of Tree Automata in Natural Language

Processing, ACL 2010. Uppsala, Sweden, 16 July 2010. 2010, pp. 1–9. URL:

http://www.aclweb.org/anthology/W/W10/W10-2501.pdf

(cit. on pp. 14, 51).

[75] Zoltán Fülöp, Andreas Maletti, and Heiko Vogler. “Weighted Extended Tree

Transducers”. In: Fundam. Inform. 111.2 (2011), pp. 163–202 (cit. on pp. 15,

45).

[76] Zoltán Fülöp, Torsten Stüber, and Heiko Vogler. “A Büchi-like theorem for

weighted tree automata over multioperator monoids”. In: Theory of Computing

Systems 50.2 (2012). first published online October 28, 2010, pp. 241–278. DOI:

10.1007/s00224-010-9296-1 (cit. on p. 43).

[77] Zoltán Fülöp and Heiko Vogler. “Weighted tree automata and tree transduc-

ers”. In: Handbook of Weighted Automata. Ed. by Manfred Droste, Werner

Kuich, and Heiko Vogler. EATCS Monographs in Theoretical Computer Sci-

ence. 2009. Chap. 9 (cit. on pp. 40, 43).

[78] Michael Galley. GHKM Rule Extractor. http://www-nlp.stanford.

edu/˜mgalley/software/stanford-ghkm-latest.tar.gz,

retrieved on March 28, 2012. 2010 (cit. on p. 123).

190

http://dx.doi.org/10.1137/S0097539795290477
http://www.aclweb.org/anthology/W/W10/W10-2501.pdf
http://dx.doi.org/10.1007/s00224-010-9296-1
http://www-nlp.stanford.edu/~mgalley/software/stanford-ghkm-latest.tar.gz
http://www-nlp.stanford.edu/~mgalley/software/stanford-ghkm-latest.tar.gz

Bibliography

[79] Michel Galley, Mark Hopkins, Kevin Knight, and Daniel Marcu. “What’s in

a translation rule?” In: HLT-NAACL 2004: Main Proceedings. Ed. by Susan

Dumais, Daniel Marcu, and Salim Roukos. 2004, pp. 273–280 (cit. on pp. 9,

10, 120–122).

[80] Ferenc Gécseg and Magnus Steinby. “Tree Languages”. In: Handbook of For-

mal Languages. Ed. by Grzegorz Rozenberg and Arto Salomaa. Vol. 3. 1997.

Chap. 1, pp. 1–68 (cit. on pp. 85, 107, 113, 128, 132).

[81] Andrea Gesmundo and James Henderson. “Faster Cube Pruning”. In: Proceed-

ings of the seventh International Workshop on Spoken Language Translation

(IWSLT). Ed. by Marcello Federico, Ian Lane, Michael Paul, and François

Yvon. 2010, pp. 267–274. URL: http://www.mt- archive.info/

IWSLT-2010-Gesmundo.pdf (cit. on p. 177).

[82] Andrea Gesmundo, Giorgio Satta, and James Henderson. “Heuristic Cube

Pruning in Linear Time”. In: Proceedings of the 50th Annual Meeting of the

Association for Computational Linguistics (Volume 2: Short Papers). 2012,

pp. 296–300. URL: http://www.aclweb.org/anthology/P12-

2058 (cit. on p. 177).

[83] Daniel Gildea. “Optimal Parsing Strategies for Linear Context-Free Rewriting

Systems”. In: Human Language Technologies: The 2010 Annual Conference of

the North American Chapter of the Association for Computational Linguistics.

2010, pp. 769–776. URL: http://www.aclweb.org/anthology/

N10-1118 (cit. on pp. 17, 130).

[84] Kevin Gimpel and Noah A. Smith. “Structured Ramp Loss Minimization for

Machine Translation”. In: Proceedings of the 2012 Conference of the North

American Chapter of the Association for Computational Linguistics: Human

Language Technologies. 2012, pp. 221–231. URL: http://www.aclweb.

org/anthology/N12-1023 (cit. on pp. 8, 174).

[85] Joseph A. Goguen, Jim W. Thatcher, and Eric G. Wagner. “An Initial Alge-

bra Approach to the Specification, Correctness and Implementation of Abstract

Data Types”. In: Current Trends in Programming Methodology. Ed. by Ray-

mond T. Yeh. Vol. IV: Data Structuring. also IBM Research Report RC-6487

(1976). 1978 (cit. on pp. 21, 179).

[86] Joseph A. Goguen, Jim W. Thatcher, Eric G. Wagner, and Jesse B. Wright. “Ini-

tial algebra semantics and continuous algebras”. In: J. ACM 24 (1977), pp. 68–

95 (cit. on pp. 22, 40, 85, 179).

191

http://www.mt-archive.info/IWSLT-2010-Gesmundo.pdf
http://www.mt-archive.info/IWSLT-2010-Gesmundo.pdf
http://www.aclweb.org/anthology/P12-2058
http://www.aclweb.org/anthology/P12-2058
http://www.aclweb.org/anthology/N10-1118
http://www.aclweb.org/anthology/N10-1118
http://www.aclweb.org/anthology/N12-1023
http://www.aclweb.org/anthology/N12-1023

Bibliography

[87] Jonathan S. Golan. Semirings and their Applications. Kluwer Academic, 1999

(cit. on pp. 12, 33).

[88] Carlos Gómez-Rodrı́guez, Marco Kuhlmann, Giorgio Satta, and David Weir.

“Optimal Reduction of Rule Length in Linear Context-Free Rewriting Sys-

tems”. In: Proceedings of Human Language Technologies: The 2009 Annual

Conference of the North American Chapter of the Association for Computa-

tional Linguistics. 2009, pp. 539–547. URL: http://www.aclweb.org/

anthology/N/N09/N09-1061 (cit. on p. 130).

[89] Joshua Goodman. “Semiring Parsing”. In: Comp. Ling. 25.4 (1999), pp. 573–

605 (cit. on pp. 8, 14, 24, 47, 68).

[90] Jonathan Graehl, Kevin Knight, and Jonathan May. “Training Tree Transduc-

ers”. In: Comp. Ling. 34.3 (2008), pp. 391–427 (cit. on pp. 9, 120).

[91] Udo Hebisch and Hanns Joachim Weinert. Semirings: Algebraic Theory and

Applications in Computer Science. Vol. 5. Series in Algebra. World Scientific,

1998 (cit. on pp. 12, 33).

[92] Mark Hopkins and Jonathan May. “Tuning as Ranking”. In: Proceedings

EMNLP 2011. 2011 (cit. on p. 174).

[93] Liang Huang. “Forest-based Algorithms in Natural-Language Processing”.

PhD thesis. University of Pennsylvania, 2008. URL: http://www.cis.

upenn.edu/˜lhuang3/Dissertation.pdf (cit. on pp. 12, 16, 176).

[94] Liang Huang and David Chiang. “Better k-best parsing”. In: Parsing ’05: Pro-

ceedings of the Ninth International Workshop on Parsing Technology. 2005,

pp. 53–64. URL: http://www.cis.upenn.edu/˜lhuang3/huang-

iwpt-correct.pdf (cit. on pp. 8, 15, 20, 174, 175).

[95] Liang Huang, Kevin Knight, and Aravind Joshi. “A syntax-directed translator

with extended domain of locality”. In: Proceedings of the Workshop on Com-

putationally Hard Problems and Joint Inference in Speech and Language Pro-

cessing. CHSLP ’06. 2006, pp. 1–8 (cit. on p. 120).

[96] Liang Huang, Kevin Knight, and Aravind Joshi. “Statistical syntax-directed

translation with extended domain of locality”. In: Proceedings AMTA 2006.

2006, pp. 66–73. URL: http://www.cis.upenn.edu/˜lhuang3/

amta06-sdtedl.pdf (cit. on pp. 9, 12).

[97] Liang Huang, Hao Zhang, Daniel Gildea, and Kevin Knight. “Binarization of

Synchronous Context-Free Grammars”. In: Comp. Ling. 35.4 (2009), pp. 559–

595. URL: http://www.aclweb.org/anthology/J/J09/J09-

4009.pdf (cit. on pp. 19, 84, 120, 128).

192

http://www.aclweb.org/anthology/N/N09/N09-1061
http://www.aclweb.org/anthology/N/N09/N09-1061
http://www.cis.upenn.edu/~lhuang3/Dissertation.pdf
http://www.cis.upenn.edu/~lhuang3/Dissertation.pdf
http://www.cis.upenn.edu/~lhuang3/huang-iwpt-correct.pdf
http://www.cis.upenn.edu/~lhuang3/huang-iwpt-correct.pdf
http://www.cis.upenn.edu/~lhuang3/amta06-sdtedl.pdf
http://www.cis.upenn.edu/~lhuang3/amta06-sdtedl.pdf
http://www.aclweb.org/anthology/J/J09/J09-4009.pdf
http://www.aclweb.org/anthology/J/J09/J09-4009.pdf

Bibliography

[98] Aravind K. Joshi and Yves Schabes. “Tree-Adjoining Grammars”. In: Hand-

book of Formal Languages. Ed. by Grzegorz Rozenberg and Arto Salomaa.

Vol. 3. 1997 (cit. on pp. 49, 52).

[99] Daniel Jurafsky and James H. Martin. Speech and Language Processing – An

Introduction to Natural Language Processing, Computational Linguistics, and

Speech Recognition. Second edition. Prentice-Hall, 2009 (cit. on pp. 7, 10, 47).

[100] Miriam Kaeshammer. “Synchronous Linear Context-Free Rewriting Systems

for Machine Translation”. In: Proceedings of the Seventh Workshop on Syn-

tax, Semantics and Structure in Statistical Translation. 2013, pp. 68–77. URL:

http://www.aclweb.org/anthology/W13-0808 (cit. on pp. 17,

23).

[101] Laura Kallmeyer, Wolfgang Maier, and Giorgio Satta. “Synchronous Rewriting

in Treebanks”. In: Proceedings of the 11th International Conference on Parsing

Technologies (IWPT’09). 2009, pp. 69–72. URL: http://www.aclweb.

org/anthology/W09-3810 (cit. on p. 17).

[102] Stephan Kepser and James Rogers. “The Equivalence of Tree Adjoining Gram-

mars and Monadic Linear Context-Free Tree Grammars”. In: The Mathemat-

ics of Language. Ed. by Christian Ebert, Gerhard Jäger, and Jens Michaelis.

Vol. 6149. Lecture Notes in Computer Science. 2010, pp. 129–144. DOI: 10.

1007/978-3-642-14322-9_11 (cit. on pp. 47, 81).

[103] Stephan Kepser and Jim Rogers. “The Equivalence of Tree Adjoining Gram-

mars and Monadic Linear Context-free Tree Grammars”. In: Journal of Logic,

Language and Information 20.3 (2011), pp. 361–384 (cit. on p. 18).

[104] Daniel Kirsten. “Decidability, Undecidability, and PSPACE-Completeness of

the Twins Property in the Tropical Semiring”. In: Theoretical Computer Science

420 (2012), pp. 56–63 (cit. on pp. 21, 134, 165).

[105] Daniel Kirsten and Ina Mäurer. “On the determinization of weighted automata”.

In: J. Autom. Lang. Comb. 10 (2005), pp. 287–312 (cit. on pp. 21, 132–134, 137,

141, 143, 146, 148, 149, 151, 164).

[106] Kevin Knight. “Automating knowledge acquisition for machine translation”.

In: AI Magazine 18.4 (1997), pp. 81–96. URL: http://www.aaai.org/

ojs/index.php/aimagazine/article/viewArticle/1323 (cit.

on p. 3).

[107] Donald E. Knuth. “Semantics of context–free languages”. In: Math. Systems

Theory 2 (1968), pp. 127–145 (cit. on p. 70).

193

http://www.aclweb.org/anthology/W13-0808
http://www.aclweb.org/anthology/W09-3810
http://www.aclweb.org/anthology/W09-3810
http://dx.doi.org/10.1007/978-3-642-14322-9_11
http://dx.doi.org/10.1007/978-3-642-14322-9_11
http://www.aaai.org/ojs/index.php/aimagazine/article/viewArticle/1323
http://www.aaai.org/ojs/index.php/aimagazine/article/viewArticle/1323

Bibliography

[108] Donald E. Knuth. “A Generalization of Dijkstra’s Algorithm”. In: Inform. Pro-

cess. Lett. 6.1 (1977), pp. 1–5 (cit. on pp. 8, 15, 20).

[109] Philipp Koehn. “Europarl: A Parallel Corpus for Statistical Machine Transla-

tion”. In: Proceedings of MT Summit X. 2005, pp. 79–86 (cit. on pp. 3, 123).

[110] Philipp Koehn. Statistical Machine Translation. Cambridge University Press,

2010 (cit. on p. 3).

[111] Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Mar-

cello Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran,

Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra Constantin, and Evan

Herbst. “Moses: open source toolkit for statistical machine translation”. In:

Proceedings of the 45th Annual Meeting of the ACL on Interactive Poster and

Demonstration Sessions. ACL ’07. 2007, pp. 177–180. URL: http://www.

aclweb.org/anthology/P07-2045 (cit. on pp. 22, 180).

[112] Alexander Koller and Marco Kuhlmann. “A Generalized View on Parsing and

Translation”. In: Proceedings of the 12th International Conference on Pars-

ing Technologies. 2011, pp. 2–13. URL: http://www.aclweb.org/

anthology/W11-2902 (cit. on pp. 22, 46, 84, 86, 127).

[113] Alexander Koller and Marco Kuhlmann. “Decomposing TAG Algorithms Us-

ing Simple Algebraizations”. In: Proceedings of the 11th Workshop on TAG

and related formalisms (TAG+). 2012, pp. 135–143 (cit. on pp. 23, 46, 47, 119,

127).

[114] Marco Kuhlmann. “Mildly Non-Projective Dependency Grammar”. In: Com-

putational Linguistics 39.2 (2013), pp. 355–387 (cit. on p. 23).

[115] Werner Kuich. “Semirings and Formal Power Series: Their Relevance to For-

mal Languages and Automata”. In: Handbook of Formal Languages. Ed. by

Grzegorz Rozenberg and Arto Salomaa. Vol. 1. 1997. Chap. 9, pp. 609–677

(cit. on pp. 14, 28, 29, 35, 36).

[116] Werner Kuich. “Formal power series over trees”. In: 3rd International Confer-

ence on Developments in Language Theory, DLT 1997, Thessaloniki, Greece,

Proceedings. Ed. by Symeon Bozapalidis. 1998, pp. 61–101 (cit. on p. 43).

[117] Werner Kuich. “Linear systems of equations and automata on distributive mul-

tioperator monoids”. In: Contributions to General Algebra 12 - Proceedings of

the 58th Workshop on General Algebra “58. Arbeitstagung Allgemeine Alge-

bra”, Vienna University of Technology. June 3-6, 1999. 1999, pp. 1–10 (cit. on

p. 43).

194

http://www.aclweb.org/anthology/P07-2045
http://www.aclweb.org/anthology/P07-2045
http://www.aclweb.org/anthology/W11-2902
http://www.aclweb.org/anthology/W11-2902

Bibliography

[118] Karim Lari and Steve J. Young. “The estimation of stochastic context-free

grammars using the Inside-Outside algorithm”. In: Computer Speech and Lan-

guage 4 (1990), pp. 35–56 (cit. on p. 9).

[119] Philip M. Lewis and Richard E. Stearns. “Syntax directed transduction”. In:

Foundations of Computer Science, IEEE Annual Symposium on (1966), pp. 21–

35 (cit. on pp. 5, 84).

[120] Zhifei Li, Chris Callison-Burch, Chris Dyer, Juri Ganitkevitch, Sanjeev Khu-

danpur, Lane Schwartz, Wren N. G. Thornton, Jonathan Weese, and Omar F.

Zaidan. “Joshua: an open source toolkit for parsing-based machine translation”.

In: Proceedings of the Fourth Workshop on Statistical Machine Translation.

StatMT ’09. 2009, pp. 135–139. URL: http://dl.acm.org/citation.

cfm?id=1626431.1626459 (cit. on p. 22).

[121] Zhifei Li, Jason Eisner, and Sanjeev Khudanpur. “Variational decoding for sta-

tistical machine translation”. In: ACL-IJCNLP ’09: Proceedings of the Joint

Conference of the 47th Annual Meeting of the ACL and the 4th International

Joint Conference on Natural Language Processing of the AFNLP: Volume 2.

2009, pp. 593–601 (cit. on pp. 8, 9, 175).

[122] Adam Lopez. “Statistical machine translation”. In: ACM Comput. Surv. 40.3

(2008), pp. 1–49 (cit. on p. 3).

[123] Bernard Lorho, ed. Methods and tools for compiler construction. Cambridge

University Press, 1984.

[124] Bernd Mahr. “Iteration and summability in semirings”. In: Annals of Discrete

Mathematics 19 (1984), pp. 229–256 (cit. on p. 133).

[125] Andreas Maletti. “Relating Tree Series Transducers and Weighted Tree Au-

tomata”. In: Int. J. Found. Comput. Sci. 16.4 (2005), pp. 723–741 (cit. on p. 43).

[126] Andreas Maletti. “Minimizing Deterministic Weighted Tree Automata”. In: In-

form. and Comput. 207.11 (2009), pp. 1284–1299 (cit. on p. 131).

[127] Andreas Maletti. “A Tree Transducer Model for Synchronous Tree-Adjoining

Grammars”. In: Proc. 48th Annual Meeting Association for Computational Lin-

guistics. Ed. by Jan Hajič, Sandra Carberry, Stephen Clark, and Joakim Nivre.

2010, pp. 1067–1076 (cit. on pp. 46, 47, 119).

[128] Andreas Maletti. “Input and Output Products for Weighted Extended Top-down

Tree Transducers”. In: Proc. 14th Int. Conf. Developments in Language The-

ory. Ed. by Yuan Gao, Hanlin Lu, Shinnosuke Seki, and Sheng Yu. Vol. 6224.

LNCS. 2010, pp. 316–327 (cit. on pp. 15, 45).

195

http://dl.acm.org/citation.cfm?id=1626431.1626459
http://dl.acm.org/citation.cfm?id=1626431.1626459

Bibliography

[129] Andreas Maletti. “Why Synchronous Tree Substitution Grammars?” In: Human

Language Technologies: The 2010 Annual Conference of the North American

Chapter of the Association for Computational Linguistics. 2010, pp. 876–884.

URL: http://www.aclweb.org/anthology/N10-1130 (cit. on

p. 14).

[130] Andreas Maletti. “Synchronous Forest Substitution Grammars”. In: Proc. 5th

Int. Conf. Algebraic Informatics. Ed. by Traian Muntean, Dimitris Poulakis,

and Robert Rolland. Vol. 8080. LNCS. 2013, pp. 235–246 (cit. on p. 9).

[131] Andreas Maletti and Joost Engelfriet. “Strong Lexicalization of Tree Adjoining

Grammars”. In: Proceedings of the 50th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers). 2012, pp. 506–515. URL:

http://www.aclweb.org/anthology/P12-1053 (cit. on p. 47).

[132] Andreas Maletti and Giorgio Satta. “Parsing Algorithms based on Tree Au-

tomata”. In: Proc. 11th Int. Conf. Parsing Technologies. 2009, pp. 1–12 (cit. on

pp. 15, 82).

[133] Jonathan May. “Weighted Tree Automata and Transducers for Syntactic Natu-

ral Language Processing”. PhD thesis. University of Southern California, 2010

(cit. on p. 22).

[134] Jonathan May and Kevin Knight. “A better N-best list: practical determiniza-

tion of weighted finite tree automata”. In: Proceedings of the main conference

on Human Language Technology Conference of the North American Chapter

of the Association of Computational Linguistics. 2006, pp. 351–358 (cit. on

pp. 15, 19–21, 132, 134, 136, 146, 175).

[135] Jonathan May and Kevin Knight. “Tiburon: A Weighted Tree Automata

Toolkit”. In: Proceedings of the 11th International Conference of Implemen-

tation and Application of Automata, CIAA 2006. Ed. by Oscar H. Ibarra and

Hsu-Chun Yen. Vol. 4094. Lecture Notes in Computer Science. 2006, pp. 102–

113 (cit. on p. 22).

[136] David McAllester. “On the complexity analysis of static analyses”. In: J. ACM

49 (4 2002), pp. 512–537 (cit. on p. 70).

[137] Haitao Mi, Liang Huang, and Qun Liu. “Forest-Based Translation”. In: Pro-

ceedings of ACL-08: HLT. 2008, pp. 192–199. URL: http://www.aclweb.

org/anthology/P/P08/P08-1023 (cit. on pp. 12, 16).

[138] Mehryar Mohri. “Finite-State Transducers in Language and Speech Process-

ing”. In: Comp. Ling. 23.2 (1997), pp. 1–42 (cit. on pp. 132–134, 136, 164).

196

http://www.aclweb.org/anthology/N10-1130
http://www.aclweb.org/anthology/P12-1053
http://www.aclweb.org/anthology/P/P08/P08-1023
http://www.aclweb.org/anthology/P/P08/P08-1023

Bibliography

[139] Mehryar Mohri. “Weighted automata algorithms”. In: Handbook of Weighted

Automata. Ed. by Manfred Droste, Werner Kuich, and Heiko Vogler. EATCS

Monographs in Theoretical Computer Science. 2009. Chap. 6, pp. 213–254 (cit.

on p. 132).

[140] Makoto Murata. “Extended Path Expressions of XML”. In: Proceedings of

the Twentieth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of

Database Systems. PODS ’01. 2001, pp. 126–137. DOI: 10.1145/375551.

375569 (cit. on p. 116).

[141] Mark-Jan Nederhof. “The computational complexity of the correct-prefix prop-

erty for TAGs”. In: Computational Linguistics 25.3 (1999), pp. 345–360 (cit. on

p. 82).

[142] Mark-Jan Nederhof. “Weighted deductive parsing and Knuth’s algorithm”. In:

Comp. Ling. 29(1) (2003), pp. 135–143 (cit. on pp. 8, 68).

[143] Mark-Jan Nederhof. “A General Technique to Train Language Models on Lan-

guage Models”. In: Computational Linguistics 31.2 (2005), pp. 173–185 (cit.

on p. 9).

[144] Mark-Jan Nederhof. “Weighted parsing of trees”. In: Proceedings of the 11th

International Conference on Parsing Technologies. 2009, pp. 13–24 (cit. on

p. 46).

[145] Mark-Jan Nederhof and Giorgio Satta. “Probabilistic Parsing”. In: New Devel-

opments in Formal Languages and Applications. Ed. by G. Bel-Enguix, M. Do-

lores Jiménez-López, and C. Martı́n-Vide. Vol. 113. Studies in Computational

Intelligence. 2008, pp. 229–258 (cit. on pp. 24, 44, 45, 47).

[146] Mark-Jan Nederhof and Heiko Vogler. “Synchronous Context-Free Tree Gram-

mars”. In: Proceedings of the 11th International Workshop on Tree Adjoining

Grammars and Related Formalisms (TAG+11). 2012, pp. 55–63. URL: http:

//www.aclweb.org/anthology-new/W/W12/W12-4607 (cit. on

pp. 46, 47, 81).

[147] Rebecca Nesson. “Synchronous and Multicomponent Tree-Adjoining Gram-

mars: Complexity, Algorithms and Linguistic Applications”. PhD thesis. Har-

vard University, 2009 (cit. on pp. 10, 18, 19, 84, 130).

[148] Rebecca Nesson, Stuart M. Shieber, and Alexander Rush. Induction of Prob-

abilistic Synchronous Tree-Insertion Grammars. Tech. rep. Computer Science

Group, Harvard University, Cambridge, Massachusetts, 2005 (cit. on p. 10).

197

http://dx.doi.org/10.1145/375551.375569
http://dx.doi.org/10.1145/375551.375569
http://www.aclweb.org/anthology-new/W/W12/W12-4607
http://www.aclweb.org/anthology-new/W/W12/W12-4607

Bibliography

[149] Rebecca Nesson, Stuart M. Shieber, and Alexander Rush. “Induction of Prob-

abilistic Synchronous Tree-Insertion Grammars for Machine Translation”. In:

Proceedings of the 7th Conference of the Association for Machine Translation

in the Americas (AMTA 2006). 2006, pp. 128–137 (cit. on pp. 10, 82).

[150] Franz Josef Och. “Minimum Error Rate Training in Statistical Machine Trans-

lation”. In: Proceedings ACL 2003. 2003, pp. 160–167 (cit. on pp. 8, 174).

[151] Franz Josef Och and Hermann Ney. “Improved statistical alignment models”.

In: Proceedings of the 38th Annual Meeting on Association for Computa-

tional Linguistics. ACL ’00. 2000, pp. 440–447. DOI: 10.3115/1075218.

1075274 (cit. on pp. 8, 180).

[152] Franz Josef Och and Hermann Ney. “Discriminative Training and Maximum

Entropy Models for Statistical Machine Translation”. In: Proceedings ACL

2002. 2002, pp. 295–302 (cit. on p. 6).

[153] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. “BLEU: a

method for automatic evaluation of machine translation”. In: ACL ’02: Proceed-

ings of the 40th Annual Meeting on Association for Computational Linguistics.

2002, pp. 311–318 (cit. on p. 8).

[154] Ion Petre and Arto Salomaa. “Algebraic systems and pushdown automata”. In:

Handbook of Weighted Automata. Ed. by Manfred Droste, Werner Kuich, and

Heiko Vogler. EATCS Monographs in Theoretical Computer Science. 2009.

Chap. 7, pp. 257–289 (cit. on p. 14).

[155] Slav Petrov, Leon Barrett, Romain Thibaux, and Dan Klein. “Learning Accu-

rate, Compact, and Interpretable Tree Annotation”. In: Proceedings of the 21st

International Conference on Computational Linguistics and 44th Annual Meet-

ing of the Association for Computational Linguistics. 2006, pp. 433–440. URL:

http://www.aclweb.org/anthology/P/P06/P06-1055 (cit. on

pp. 10, 21, 44, 180).

[156] Slav Petrov and Dan Klein. “Improved Inference for Unlexicalized Parsing”. In:

Human Language Technologies 2007: The Conference of the North American

Chapter of the Association for Computational Linguistics; Proceedings of the

Main Conference. 2007, pp. 404–411. URL: http://www.aclweb.org/

anthology/N/N07/N07-1051 (cit. on pp. 10, 21).

[157] Detlef Prescher. “Inside-Outside Estimation Meets Dynamic EM”. In: Proceed-

ings of the 7th International Workshop on Parsing Technologies (IWPT-01),

October 17-19. 2001, pp. 241–244 (cit. on p. 9).

198

http://dx.doi.org/10.3115/1075218.1075274
http://dx.doi.org/10.3115/1075218.1075274
http://www.aclweb.org/anthology/P/P06/P06-1055
http://www.aclweb.org/anthology/N/N07/N07-1051
http://www.aclweb.org/anthology/N/N07/N07-1051

Bibliography

[158] Michael O. Rabin and Dana Scott. “Finite automata and their decision prob-

lems”. In: IBM J. Res. 3 (1959), pp. 115–125 (cit. on p. 132).

[159] Owen Rambow and Giorgio Satta. “Independent parallelism in finite copying

parallel rewriting systems”. In: Theoretical Computer Science 223.1–2 (1999),

pp. 87–120 (cit. on p. 84).

[160] William C. Rounds. “Mappings and Grammars on Trees”. In: Math. Systems

Theory 4.3 (1970), pp. 257–287 (cit. on p. 81).

[161] William C. Rounds. “Tree-oriented Proofs of Some Theorems on Context-free

and Indexed Languages”. In: Proceedings of the Second Annual ACM Sympo-

sium on Theory of Computing. STOC ’70. 1970, pp. 109–116. DOI: 10.1145/

800161.805156 (cit. on p. 46).

[162] Grzegorz Rozenberg and Arto Salomaa, eds. Handbook of Formal Languages.

Vol. 1. Springer, 1997.

[163] Grzegorz Rozenberg and Arto Salomaa, eds. Handbook of Formal Languages.

Vol. 3. Springer, 1997.

[164] Alexander M. Rush and Michael Collins. “Exact Decoding of Syntactic Trans-

lation Models through Lagrangian Relaxation”. In: Proceedings of the 49th An-

nual Meeting of the Association for Computational Linguistics: Human Lan-

guage Techologies. 2011, pp. 72–82. URL: http://www.aclweb.org/

anthology/P11-1008 (cit. on pp. 4, 8).

[165] Jacques Sakarovitch. “Rational and recognisable power series”. In: Handbook

of Weighted Automata. Ed. by Manfred Droste, Werner Kuich, and Heiko

Vogler. EATCS Monographs in Theoretical Computer Science. 2009. Chap. 4

(cit. on pp. 14, 16).

[166] Arto Salomaa and Matti Soittola. Automata-Theoretic Aspects of Formal Power

Series. Texts and Monographs in Computer Science. Springer, 1978 (cit. on

p. 14).

[167] Yves Schabes and Richard C. Waters. “Tree insertion grammars: a cubic-time,

parsable formalism that lexicalizes context-free grammar without changing the

trees produced”. In: Comput. Linguist. 21 (1994), pp. 479–513 (cit. on p. 10).

[168] Marcel-Paul Schützenberger. “On the definition of a family of automata”. In:

Information and Control 4 (1961), pp. 245–270 (cit. on pp. 15, 16).

[169] Hiroyuki Seki and Yuki Kato. “On the Generative Power of Multiple Context-

Free Grammars and Macro Grammars”. In: IEICE - Trans. Inf. Syst. E91-D.2

(2008), pp. 209–221. DOI: 10.1093/ietisy/e91-d.2.209 (cit. on

p. 116).

199

http://dx.doi.org/10.1145/800161.805156
http://dx.doi.org/10.1145/800161.805156
http://www.aclweb.org/anthology/P11-1008
http://www.aclweb.org/anthology/P11-1008
http://dx.doi.org/10.1093/ietisy/e91-d.2.209

Bibliography

[170] Stuart M. Shieber. “Probabilistic Synchronous Tree-Adjoining Grammars for

Machine Translation: The Argument from Bilingual Dictionaries”. In: Proceed-

ings of the Workshop on Syntax and Structure in Statistical Translation. Ed. by

Dekai Wu and David Chiang. 2007 (cit. on p. 17).

[171] Stuart M. Shieber and Yves Schabes. “Synchronous Tree-Adjoining Gram-

mars”. In: Proceedings of the 13th International Conference on Computational

Linguistics (COLING ’90). Vol. 3. 1990, pp. 253–258 (cit. on pp. 9, 84).

[172] Khalil Sima’an. “Computational complexity of probabilistic disambiguation by

means of tree-grammars”. In: Proceedings of the 16th Conference on Compu-

tational Linguistics - Volume 2. 1996, pp. 1175–1180 (cit. on p. 8).

[173] Noah A. Smith. Linguistic Structure Prediction. Synthesis Lectures on Human

Language Technologies. Morgan and Claypool, 2011 (cit. on pp. 3, 6).

[174] Xinying Song, Shilin Ding, and Chin-Yew Lin. “Better Binarization for the

CKY Parsing”. In: Proceedings of the Conference on Empirical Methods in

Natural Language Processing. EMNLP ’08. 2008, pp. 167–176. URL: http:

//dl.acm.org/citation.cfm?id=1613715.1613739 (cit. on

p. 128).

[175] Torsten Stüber, Heiko Vogler, and Zoltán Fülöp. “Decomposition of Weighted

Multioperator Tree Automata”. In: Int. J. Found. Comput. Sci. 20.2 (2009),

pp. 221–245 (cit. on p. 43).

[176] James W. Thatcher. “Characterizing derivation trees of context-free grammars

through a generalization of finite automata theory.” In: J. Comput. System Sci.

1.4 (1967), pp. 317–322 (cit. on p. 15).

[177] Akihiko Tozawa. “Towards Static Type Checking for XSLT”. In: Proceedings

of the 2001 ACM Symposium on Document Engineering. DocEng ’01. 2001,

pp. 18–27. DOI: 10.1145/502187.502191 (cit. on p. 116).

[178] K. Vijay-Shanker and Aravind K. Joshi. “Some computational properties of

tree adjoining grammars”. In: Proceedings of the 23rd Annual Meeting of the

Association for Computational Linguistics. 1985, pp. 82–93. URL: http://

www.aclweb.org/anthology/P85-1011 (cit. on p. 82).

[179] Wolfgang Wechler. Universal Algebra for Computer Scientists. First edition.

Vol. 25. Monogr. Theoret. Comput. Sci. EATCS Ser. Springer, 1992 (cit. on

pp. 25, 28, 29, 32).

[180] David J. Weir. “Characterizing Mildly Context-Sensitive Grammar For-

malisms”. PhD thesis. University of Pennsylvania, 1988 (cit. on p. 84).

200

http://dl.acm.org/citation.cfm?id=1613715.1613739
http://dl.acm.org/citation.cfm?id=1613715.1613739
http://dx.doi.org/10.1145/502187.502191
http://www.aclweb.org/anthology/P85-1011
http://www.aclweb.org/anthology/P85-1011

Bibliography

[181] Kenji Yamada and Kevin Knight. “A syntax-based statistical translation

model”. In: ACL ’01: Proceedings of the 39th Annual Meeting on Association

for Computational Linguistics. 2001, pp. 523–530 (cit. on p. 120).

[182] Sheng Yu. “Regular Languages”. In: Handbook of Formal Languages. Ed. by

Grzegorz Rozenberg and Arto Salomaa. Vol. 1. 1997. Chap. 2, pp. 41–110 (cit.

on p. 131).

[183] Min Zhang, Hongfei Jiang, Aiti Aw, Haizhou Li, Chew Lim Tan, and Sheng Li.

“A Tree Sequence Alignment-based Tree-to-Tree Translation Model”. In: Pro-

ceedings of ACL-08: HLT. 2008, pp. 559–567. URL: http://www.aclweb.

org/anthology/P/P08/P08-1064 (cit. on p. 9).

201

http://www.aclweb.org/anthology/P/P08/P08-1064
http://www.aclweb.org/anthology/P/P08/P08-1064

Index

abstract syntax tree, 6

score, 7

active index, 65

aggregation homomorphism, 168

agreement

of w-assignment and run, 65

algebra, 32

domain, 32

of hedges with substitution, 119

of strings, 117

algebra of hedges, 119

alphabet, 27

assignment

state assignment, 56

w-assignment, 65

weight assignment, 36

AST, see abstract syntax tree

b-rule, see binarization rule

base item, 63, 64

active index, 65

order, 77

base-item tree, 61, 65

order, 77

bdom, see binarization mapping,

binarization domain

binarization, 83

best-effort, 96

compatible, 93

of a rule, 92

of a rule under b-rules, 112

rank normal, 92

binarization hedge, 97, 103

under b-rules, 112

binarization mapping, 83, 96

binarization domain, 96

complete, 84, 96

rule-by-rule complete, 84, 96

total, 84

binarization rule, 85, 106

admissible, 116

complete on a formalism, 116

complete on a grammar, 113

over an algebra, 106

block, 25

bpos, 63

bullet position, 63

immediately-right-of predicate, 64

left-of predicate, 64

operations, 64

order, 64

canonical sort

of a set sequence, 110

of a tree sequence, 97

canonically sorted, 97

Cartesian product, 25

generalized, 26

Cauchy product, 168

center tree, 6, 50, 86

203

Index

type conformant, 51

chain, 28

comparable, 28

composite, 58

composition, 45

composition item, 58

concatenation, 27

congruent, 100

context, 30

control alphabet, 86

countable, 26

countably infinite, 26

critical vector, 154, 157

crunching, 175

cube pruning, 8

decoder, 3

decoding, 3, 8

deductive system, 68

derived tree pair, 50

determinization, 143

unranked, 163

eligible

for a canonical sort, 97, 110

embedded tree homomorphism, 50

equivalence class, 29

equivalence relation, 27

evaluation, 3

extended multi-bottom-up tree

transducer, 10, 46

factorization, 134

maximal, 134

trivial, 135

family, 26

index set, 26

fcu, see weighted tree automaton,

finitely cycle unambiguous

feature, 6

parsing, 10

finite tree automaton, 37

fixpoint, see mapping, fixpoint

fixpoint theorem, 28

formalism, see grammar formalism

fragment, 100

FTA, see finite tree automaton

generational behavior, 85

grammar formalism

admissible, 116

complete, 116

in IRTG terminology, 115

normal-form mapping, 115

greatest bound, 28

Hadamard product, 34

hedge

tree sequence, 116

hedge algebra, 119

with substitution, 119

hedge-to-string transducer, 122

homomorphic extension, 32

homomorphism, 32

aggregation homomorphism, 168

ht, 30

inference rule, 68

infimum, 28

infinitary sum operation, 35

initial-algebra semantics, 40, 85

injective, see relation, injective

input product, 45

inspection, see variable inspection

interpreted regular tree grammar, 85,

86

admissible, 86

compatible, 93

control alphabet, 86

normal form ψ, 88

204

Index

normal form ϕ, 115

IRTG, see interpreted regular tree

grammar

item, 65

invalid, 66

type, 65

valid, 66

language, 27

language model, 6

least element, 28

linear model, 6

loss function, 8

lower bound, 28

m-meaning, 168

machine translation, 3

statistical, 3

mapping, 25

extension, 26

fixpoint, 26

iterate, 26

preimage, 26

restriction, 26

MBOT, see extended multi-bottom-up

tree transducer

meaning

grammar formalism, 115

IRTG, 86

weighted synchronous

context-free tree grammar, 51

weighted tree automaton, 39

MERT, see minimum error-rate

training

minimum error-rate training, 8

model

linear, 6

models relation, 66

monoid, 33

additive, 33

commutative, 33

multiplicative, 33

n-ary mapping, 27

binary, 27

nullary, 27

ternary, 27

unary, 27

n-ary operation, 27

n-best list, 174

n-fold product, 27

n-tuple, 27

pair, 27

quadruple, 27

quintuple, 27

triple, 27

operation, 27

associative, 27

commutative, 27

order, 27

ω-complete, 28

lexicographic, 29

linear, 28

pointwise, 29

total, 28

ordered set, see poset

output product, 45

parallel corpus, 3

parsing feature, 10

partial mapping, 25

domain, 26

image, 26

range, 26

partition, 25

pos, 30

poset, 28

ω-complete, 28

205

Index

linear, 28

total, 28

position, 30

above, 30

strictly above, 30

powerset, 25

product WSCFTG, 56

quotient set, 29

rank

of a grammar, 83

ranked alphabet, 32

binary, 32

RCBM, see binarization mapping,

rule-by-rule complete

realization mapping, 32

recognizable

tree language, 39

weighted tree language, 39

relation, 25

antisymmetric, 27

binary, 27

functional, 25

identity, 26

injective, 25

inverse, 25

left-total, 25

product, 25

reflexive, 27

surjective, 25

symmetric, 27

transitive, 27

well founded, 27

reranking, 175

rk (rank)

of a position, 30

of a symbol, 32

of an IRTG, 86

root state, 37

root-state form, 37

root-weight mapping, 36

rule

of an IRTG, 86

transition rule, 36

rule extraction, 7

run, 38

complete, 39

on a tree, 39

order, 41

partial run on a tree, 39

proper, 39

q-run, 39

recursively victorious, 138

root state, 38

terminal tree, 38

victorious, 138

weight, 38

run family, 141

admissible, 141

root, 141

state number, 141

victorious, 141

run semantics, 38

SCFG, see synchronous context-free

grammar

score, 7

search space, 154

compressed, 154

semantic term, 86

congruent, 100

semifield, 33

semiring, 12, 33

addition, 12, 33

Arct, 12, 34

arctic, 12, 34

Boolean, 34

206

Index

commutative, 33

complete, 12, 35

ω-continuous, 35

domain, 12

extremal, 34

formal-language semiring, 34

locally finite, 34

multiplication, 12, 33

naturally ordered, 34

Real, 12, 34

tropical, 34

Viterbi, 34

zero-divisor free, 33

zero-sum free, 33

sequence, 26

concatenation, 27

eligible for a canonical sort, 97,

110

empty, 27

finite, 26

iterate, 27

SIB(M), 139

TWINS(M), 139

signature, 32

singleton, 25

SMT, see statistical machine

translation

STAG, see synchronous tree-adjoining

grammar

state, 36

productive, 43

reachable, 43

state assignment, 56

state behavior, 85

statistical machine translation, 3

STIG, see synchronous tree-insertion

grammar

string, 27

string algebra, 117

STSG, see synchronous

tree-substitution grammar

substitution

first order, 31

first order (hedges), 116

second order, 18, 31

second order (hedges), 116

supremum, 28

surjective, see relation, surjective

symbol, 27

binary, 32

rank, 32

realization, 32

suprabinary, 32

synchronous context-free grammar, 5

synchronous tree-adjoining grammar, 9

synchronous tree-insertion grammar,

10

synchronous

tree-sequence-substitution

grammar, 9

synchronous tree-substitution

grammar, 9

term, 33

term algebra, 32

term decomposition, 100

term function, 33

training, 3, 7

minimum error rate, 8

transition, 36

input tree, 48

output tree, 48

rank, 36

terminal symbol, 36

useful, 43

useless, 43

transition rule, 36

tree, 29

207

Index

binary, 30

height, 30

label, 30

linear, 30

nondeleting, 30

positions, 30

ranked, 32

subtree, 30

suprabinary, 30

unranked, 29

tree bimorphisms, 85

tree homomorphism, 85

tree language, 29

recognizable, 39

weighted, 35

tree-to-string transducer, 9

twins property, 140

type conformant, 51

type safety

of WSCFTG, 51

upper bound, 28

variable

formal, 30

variable inspection, 107

variable tree, 97, 99

vector, 34

w-assignment, 65

weight assignment, 14, 36

weighted synchronous context-free

hedge grammar, 123

weighted synchronous context-free

tree grammar, 47

admissible, 51

input size, 72

productive, 51

weighted synchronous tree-substitution

grammar, 14

productive, 14

weighted tree automaton, 36

acyclic, 40

associated algebra, 40

bottom-up deterministic, 37

bu-det, 37

classical, 37

cycle unambiguous, 159

finitely cycle unambiguous, 161

proper, 41

reducing, 43

root-state form, 37

run semantics, 38

state number, 141

trim, 43

twins property, 140

unambiguous, 40

weighted tree language, 35

recognizable, 39

weighted tree transformation, 35

WSCFHG, see weighted synchronous

context-free hedge grammar

WSCFTG, see weighted synchronous

context-free tree grammar

WSTSG, see weighted synchronous

tree-substitution grammar

WTA, see weighted tree automaton

yXHT, see hedge-to-string transducer

yXTT, see tree-to-string transducer

208

	Introduction
	Decoder specification
	Hierarchical phrases
	Explicit syntax
	The algebraic framework, preliminary version
	Main contributions
	Related work and bibliographic remarks

	Preliminaries
	Mathematical foundations
	Trees
	Algebras and semirings
	Weighted tree automata

	Input product and output product of a weighted synchronous context-free tree grammar and a weighted tree automaton
	Introduction
	Weighted synchronous context-free tree grammars
	Closure under input and output product
	An Earley-like algorithm for the input product
	Conclusion, discussion, and outlook

	Generic binarization of weighted grammars
	Introduction
	Interpreted regular tree grammars
	Binarization mappings
	Constructing a binarization mapping
	Constructing a computable binarization mapping
	Application to established formalisms
	Conclusion, discussion, and outlook

	Determinizing weighted tree automata using factorizations
	Introduction
	Preliminary notions and results
	Determinization of classical WTA
	Deciding the twins property
	The case of non-classical WTA
	Conclusion, discussion, and outlook

	Conclusion
	The algebraic framework, full version
	Outlook

	Bibliography
	Index

