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Abstract

KRAS is a gene that plays a very important role in the initiation and development of

several types of cancer. In particular, 90% of human pancreatic cancers are due to KRAS

mutations. KRAS is difficult to target directly and a promising therapeutic path is its

indirect inactivation by targeting one of its Synthetic Lethal Partners (SLPs). A gene G

is a Synthetic Lethal Partner of KRAS if the simultaneous perturbation of KRAS and

G leads to cell death. In the past, efforts to identify KRAS SLPs with high-throughput

RNAi screens have been performed. These studies have reported only few top-ranked

SLPs. To our knowledge, these screens have never been considered in combination for

further examination.

This thesis employs integrative analysis of the published screens, utilizing additional,

independent data aiming at the detection of more robust therapeutic targets. To this

aim, “RankSLP”, a novel statistical analysis approach was implemented, which for the

first time i) consistently integrates existing KRAS-specific RNAi screens, ii) consistently

integrates and normalizes the results of various ranking methods, iii) evaluates its find-

ings with the use of external data and iv) explores the effects of random data inclusion.

This analysis was able to predict novel SLPs of KRAS and confirm some of the existing

ones.
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Chapter 1

Motivation

In the past, various synthetic lethal screens have been performed aiming at the detection

of KRAS SLPs, but their results agree only partially, as extensively presented in section

4.1. The problem is that due to this inconsistency and due to improper cell line selection

(see subsection 2.2.4), almost none of the detected SLPs was really successful in clinical

trials. The only exception is bortezomib (velcade), a compound targeting the APC/C

complex. Bortezomib was approved in 2003 by FDA for use in lung cancer patients with

the KRAS mutation [1]. However, since 2003, many other studies concerned with KRAS

SLPs have been driven. The aim is to find other drugs that target KRAS SLPs and can

effectively kill other than lung cancer tumours as well.

Until now, every new effort towards the detection of KRAS SLPs has been involving

the creation of a new biological dataset, comprising of KRAS mutant and KRAS wild

type cells. To our knowledge, only one study based on integration of existing datasets

has been performed [2], despite the invaluable information that they may hide. This is

mainly due to the many challenges that such an integration underlies; within each new

experiment different cell lines are screened, having variable KRAS mutations and using

different RNAi libraries (i.e. this means that different genes are targeted in each study).

On top of this, the inherent noise of RNAi screens, owed primarily to OTEs (see section

2.2.3), has transformed the dataset integration to an undoubtedly difficult problem. The

current thesis is concerned with a computational integration analysis of existing RNAi

datasets for the prediction of new KRAS Synthetic Lethal Partners (SLPs). The aim

is to find a consistent hit that ranks relatively high among all screens. Therefore, it

is more robust and more reliable as real KRAS SLP, and could be applied to a new

tumor. To this end, a novel strategy which involves a statistical analysis approach has

been developed. The current implementation allows for a completely new perspective

on the existing datasets. This is of course facilitated and driven by the nature of RNAi

1
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screens; their advantage is exactly the fact that they are performed in large scale. These

high-throughput datasets constitute a perfect input for statistical and computational

analysis, which can lead to novel findings in a quick and cheap way.

This first step in integrative analysis of RNAi data may inspire the scientific community

towards the direction of their consistent integration. The motivation of this thesis is

summarized in figure 1.1.

Figure 1.1: If a gene ranks consistently high in all screens, this provides more evidence
in favor of the detected drug target functioning in many patients.

1.1 The open problems

1.1.1 Clinically relevant problem: Treatment of KRAS dependent

cancers remains unresolved

The open problem from the medical point of view is that KRAS dependent cancers

haven’t met an efficient means of treatment yet. Many synthetic lethal partners have

been suggested but very few of them are confirmed by followup experiments, making

difficult to treat clinical cases of KRAS mutant cancers. With the increasing rates

of KRAS incidence in human cancers, the need for a treatment becomes more and

more imperative. The computational approach followed in this thesis by integrating

multiple datasets and methods, although still far away from the clinics, will provide
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robust resulting genes that can act as targets towards the treatment of these cancers

and might convince biologists and physicians to conduct wet lab experiments accordingly.

1.1.2 Studies do not agree: Why can computer science help us to this

aim?

A number of biological RNAi studies towards detection of KRAS SLPs have been con-

ducted. There should be some additional knowledge in the already existing data and

an effective way to extract it from all relevant information needs to be found. The

provided datasets are high-throughput, high dimensional and involve a lot of varying

parameters. Thus computer science techniques are a proper path to follow, without the

need to perform additional experiments, that require invaluable time and money. Data

integration towards KRAS SLP detection is something that, to our knowledge, hasn’t

been addressed in the past. To our knowledge, no bioinformatics methods specific to the

detection of synthetic lethal pairs have been developed yet. It is a problem that remains

open and multiple ways of addressing it will be covered in this work. However there is

one study that follows an integrative approach using some of the methods that RankSLP

is also using, towards the detection of genes affecting sensitivity to tamoxifen [2]. This

study doesn’t compare its finding with external data though, which is the innovative

part in this thesis.

1.1.3 Problems with integration

Consistent RNAi screening data integration is not a trivial task as there are many

parameters that vary among the screens. Some of them are differing screen sizes, different

cell lines e.t.c. This inconsistency was a big challenge to this analysis. Appropriate

selection of datasets and computational methodologies in order to bring the data in a

comparable format was investigated in this thesis.

1.1.4 Comparison of Rankings and General Applicability

This thesis examines how different ranking methods relate, employing the KRAS ex-

ample. Calculation of rankings by employment of several methods, and aggregation of

the ranking results are of interest and of general applicability in many fields. From a

common example, like the selection of a University to proceed one’s studies, to a more

specific but old case, like the design of a robust voting scheme, efficient rank aggregation

is present in many aspects of human life.
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1.2 Strategy

To alleviate the open problems, different ranking methods were compared and their

findings were integrated. The established methodology is divided in two parts:

• RNAi screen ranking. This part involves the application of already developed

methods to prioritizing the hits of an RNAi screen (RIGER, RSA, RNAiCut e.t.c.).

The parameters of these methods were tuned to meet the needs of the provided

datasets. Multiple shRNAs per gene are effectively treated both by these existing

methods and by a newly developed approach, based on the selection hit frequency

of an shRNA (Venn diagrams - see section 4.6). This first part also includes the

aggregation of rankings from the applied methods to conclude with a first set of

potential candidates.

• Evaluation of findings. This second part makes use of external datasets, like

networks, compound inhibition screens and existing literature towards filtering

the results of the first part. Proper ranking techniques are combined with network

enrichment of the initial hit genes. At the end, the similar genes between both

parts are collected and the ones that don’t agree (false positives), probably due to

OTEs, are discarded.

1.3 Thesis Outline

The remainder of this thesis is organized as follows:

• Chapter 2 initially provides insight into the biology that underlies wild type and

mutant KRAS function. It then presents synthetic lethality as a way of treating

KRAS mutant tumours. The basic principles of RNAi screens are explained, which

are the type of datasets that are used in the current work. Chapter 2 concludes

by adding a background on aggregation of ranks, which is one of the main topics

of this thesis.

• In Chapter 3, at first an overview of the RNAi datasets used in this thesis is

given. The different ranking algorithms that are applied on these data in order

to prioritize the hit genes are described. The techniques and algorithms that are

implemented are extensively presented.

• In Chapter 4, the known from literature KRAS SLPs are reported. It is shown that

existing findings do not agree and the importance of detecting KRAS SLPs that are
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consistent among various datasets is stressed. This Chapter further discusses the

problems and considerations on RNAi dataset integration and RankSLP’s method-

ology for overcoming them. The results of applying the methods described in

Chapter 3 are presented. Furthermore, several ways of evaluating the findings are

presented: Comparison with SLPs from literature and with external chemical ge-

nomics screens, along with integration with gene network information. Creation

of a randomized dataset and selection of genes that are immune to noise are also

performed. Chapter 4 concludes with a number of more probable KRAS SLPs

identified by the current analysis.

• In Chapter 5, the results are discussed and reasonable explanations to support

them are provided. The ranking methods used by RankSLP are compared and

evaluated. The advantages of the developed approach along with potential pitfalls

are also discussed.

• Finally, Chapter 6 summarizes the findings of this thesis and highlights how the

open problems that are mentioned in the Motivation were solved. The contribution

of this thesis to cancer systems biology and to computer science is shown. Potential

future expansions are also mentioned.



Chapter 2

Background

Chapter 2 provides a broad introduction on KRAS and its biological function when

in the mutant and when in the wild type state. Synthetic lethality is explained and

suggested as a promising approach to the treatment of KRAS mutant tumours. Since in

this thesis synthetic lethal KRAS-specific RNAi screens will be used as basis, the basic

principles of RNAi screening are explained here. Potential problems with RNAi screens

and reasons for disagreement with clinical studies are discussed. This Chapter concludes

by adding a background on aggregation of ranks, which is one of the main topics of this

thesis.

2.1 Cancer and KRAS

It is now well known that, in eukaryotic cells, DNA undergoes continuous modifications

during an individual’s life, including damage. Cells have different strategies for counter-

balancing DNA damage through DNA repair pathways. These pathways work properly

in normal cells. However, in cells where mutations in some crucial genes are accumu-

lated, the effectiveness of these pathways may be disrupted, which in turn transforms

these cells to cancer cells.

Mutations are crucial, not only for the initiation of cancer but also for the support of the

cell’s tumorigenic state and for cancer progression [3]. The three main types of genes

that play a role in cancer are oncogenes, tumor suppressor genes and stability genes

[4]. Our gene of interest, KRAS, is a proto-oncogene. A proto-oncogene can become

oncogene due to elevated gene expression levels, due to chromosomal translocation or

due to mutations within either the proto-oncogene itself or one of its regulatory regions.

In the case of KRAS and of the focus of this thesis, an activating mutation in just one of

6
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Figure 2.1: This graphic illustrates the stages of how a normal cell is converted to a
cancer cell, when an oncogene becomes activated. Figure and caption are provided by
National Cancer Institute, having AV Number: AV-8808-3615.

its alleles can transform it to oncogene and suffices to enhance tumorigenesis on the cell,

since the presence of an oncogene makes a cell more susceptible to cancer. The term

”oncogene” is attributed to the National Cancer Institute scientists who aptly represent

with figure 2.1 its connection to cancer.

2.1.1 GTPase KRAS

KRAS stands for V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog, a name that

stems from its first discovery in rats. KRAS is a member of the tyrosine kinase pathway

and it is a small GTPase molecule: In its wild type state it acts as a GTP to GDP

converter, facilitated by the GAP protein. The function of KRAS is presented visually

in figure 2.2.

When KRAS is in its active or GTP -bound state, it contributes to the propagation of

growth factor signals from the extracellular environment to the nucleus. Growth factors

are responsible for stimulating important to the cell processes, such as cellular growth,

proliferation, healing, and cellular differentiation.

Normally, KRAS is inactivated again by GAP. However, mutated KRAS loses this ca-

pability and remains locked in its active state. As a result, when KRAS is mutated,

the MEK/ERK pathway, which is a proliferation pathway, is constitutively activated.

The proliferation signals are continuously propagated leading to unnecessary growth and

subsequently to tumour formation.

An important point is that a KRAS mutant cell can be KRAS addicted or not, meaning

that its growth and survival can often be impaired by the inactivation of the KRAS

oncogene alone. This phenomenon is often observed in cancer cells and is referred

to as ’oncogene addiction’. Interestingly, the KRAS addiction of a cell is influenced
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Figure 2.2: Figure taken from [5]. Wild type and mutant KRAS function and the
effector pathways that are constitutively activated when KRAS is locked in its GTP-
bound state.

by epithelial - mesenchymal transition (EMT), a procedure in which epithelial cells

lose their cell polarity and cell-cell adhesion, acquire invasive properties and finally get

transformed to mesenchymal stem cells. Epithelial KRAS-mutant cells usually being

KRAS-dependent and mesenchymal cells usually being KRAS-independent [6]. The

same study underlines also that a cell’s dependency on KRAS increases with KRAS

amplification.

2.1.2 Clinical significance

Pancreatic cancer is an especially therapy resistant form of cancer. Some very famous

personalities, like Steve Jobs, Luciano Pavarotti and Patrick Swayze died of it. KRAS

is mutated in 90% of pancreatic cancers [7]. Moreover, somatic KRAS mutations are

very often detected in leukemias, ovarian cancer, colon cancer, thyroid cancer and lung

cancer as well [8]. As long as all cancer types are considered, KRAS is one of the most

activated oncogenes, with 17 to 25% of all human tumors harboring an activating KRAS

mutation. A single nucleotide substitution is sufficient to turn KRAS on and lock it to

its GTP-bound state. The critical activating KRAS mutations happen in codons 12, 13,

59, 61 and 63. Most frequent among them is the mutation in codon 12, followed by the

mutations in codons 13 and 61 [8]
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2.2 Synthetic Lethality

Synthetic lethality is a genetic phenomenon which was first observed in 1922 in Drosophila

melanogaster [9]. The term, however, was generated by Dobzhansky in 1946, to describe

complementary lethal systems in wild-type population of Drosophila pseudoobscura. He

induced synthetic lethality by recombining two homologous chromosomes of different

origin that had been perfectly viable as homozygotes. “Certain genes, born by each

original chromosome, were now on the same chromosome and interacted to produce a

recessive lethal effect” [10]. Synthetic lethality happens when the simultaneous pertur-

bation (including mutation) of two genes results in cellular or organismal death, whereas

individual perturbation of one of them doesn’t lead to lethal phenotype. The concept

of synthetic lethality is depicted in figure 2.3.

Figure 2.3: Schematic representation of synthetic lethality. Two genes are synthetic
lethal only when their simultaneous inactivation results in cellular or organismal death.
In this example, perturbation of either gene A or gene B does not affect viability whereas
perturbation of both at the same time is lethal. [11]

2.2.1 Synthetic Lethality for Drug Discovery

The majority of chemotherapeutic drugs are able to kill rapidly growing cells. However,

many of these drugs also kill healthy cells along with cancer cells [12]. Some examples

are doxorubicin (toxic to the heart), bleomycin (toxic to the lung) and cytarabine (toxic

to the cerebellum) [13]. Another undesired outcome of current cancer treatment is the

development of chemotherapy resistance in tumors [14]. So, here comes the challenge for

the drug industry: The need to develop highly selective drugs, with reduced side effects,

is urgent. Thus, more recent cancer drug discovery is aiming at developing selective

drugs adapted to the characteristics of the specific tumor (personalized therapy). The

concept of synthetic lethality seems to be promising towards this aim, as it may explain

the sensitivity of cancer cells to certain drugs. Cancer cells have different properties

than normal cells, and their gene and protein networks expose a different wiring [15].
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Conventional treatment approaches are usually non effective, because they are not based

on these special properties of cancer cells and are often as general as to kill normal cells as

well. New approaches, as synthetic lethality, are better suited for the gene interactions

in cancer cells. Current drug development efforts are being shifted to this direction.

Synthetic lethality takes advantage of the high instability of tumor cells and can be

addressed either in cases of loss-of function mutants or in other types of perturbations,

like gene over-expression, environmental influence (e.g. stress) and others. This high

instability is a unique property of the cancer cells and should be exploited. As Paul

Workman, Ph.D., director of Cancer Research U.K.’s Center for Cancer Therapeutics,

said, “What do cancer cells have that normal cells don’t?... They have mutations, and

you can take advantage of those” [16].

Therapeutic strategies leveraging synthetic lethality have recently been brought to clin-

ical trials having very encouraging first results [17]. The most promising example is the

synthetic lethal interaction of PARP and BRCA1/BRCA2 in cases of ovarian and breast

cancer, which was very successful in phase II clinical trials [18]. The gene PARP is es-

sential for the repair of single-strand DNA breaks in cases of DNA damage. However,

in cases where BRCA gene is mutated, the cell has become a cancer cell and PARP, by

fixing the DNA breaks helps to the survival of this cancer cell. When PARP action is

inhibited, and at the same time both copies of the BRCA gene are mutated, the cancer

cell is led to apoptosis.

A second example is the treatment of VHL mutant renal cancer by inhibiting its SLP

mTOR, which made it to phase II clinical trials [7]. Moreover, some treatments based

on SLP pairs gave encouraging results in phase I trials, like MSH2 + methotrexate [7],

and Chk1 /2 + carboplatin or cisplatin [19]. These are now embarking for phase II trials

and there is high confidence that they will be successful.

Until recently, KRAS was considered undruggable, meaning that it cannot be directly

targeted by small molecules [20, 21]. The reasons for that are its high binding affinity for

GTP/GDP (picomolar range) and the lack of knowledge for other allosteric regulatory

sites [22]. However, in 2013, Ostrem et al. [23] managed to develop small molecules

which are able to irreversibly bind to KRAS G12C mutant and de-activate it, without

influencing the wild type protein. The result of this binding is the disruption of both

switch-I and switch-II sites of mutant KRAS, preventing KRAS from locking to the active

GTP-state, and thus preventing the initiation of downstream tumorigenic pathways (i.e.

MEK/ERK pathway) Until the work [23] was published, where a direct way to target

KRAS was detected, efforts had been shifted to targeting KRAS indirectly. The concept

of synthetic lethality seems to be promising towards this aim [13], because it is a more
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stable way of impairing the tumorigenic action of KRAS and also covers the cases where

the rest of the codons (apart from codon 12) are mutated.

A number of RNAi screens aiming at the identification of such synthetic lethal partners

of KRAS have been conducted [6, 24–28].

2.2.2 RNAi screening as a tool for SLP discovery

RNAi screens are a tool for gene knock-down, not knock-out. This means that they are

used to destroy the mRNA that is transcribed by a gene, without affecting the respective

gene in the cell’s DNA. This is currently achieved through either synthetic siRNAs or

vector-expressed short hairpin RNAs (shRNAs), having complementary sequence to the

mRNA produced by the gene of interest. Please consult the Appendix for a deeper

insight into shRNA and siRNA function and differences. RNAi should ideally be very

selective and knock out its target without affecting other genes. Its major property is

its simplicity; it is much more simple than modifying a gene. This property made RNAi

technology a considerable player in the treatment of cancer, since it could ideally target

the cancer-causing gene in a simple way [29].

RNAi technology soon enabled high throughput screens in cell cultures. The respective

small and large scale RNAi action is depicted (see figure 2.4).

Some highlights regarding RNAi screens are:

• One of their largest contributions is their use as Loss-Of-Function (LOF) screens

for drug discovery [31, 32]. In this context, they enable gene characterization with

respect to their LOF phenotypes. This is a simple tool towards gene discovery,

with the potential of being an interesting drug target.

• Another very interesting application is their use as modifier or pathway screens,

where ’RNAi is used to identify genes and pathways that, when silenced, can either

enhance or suppress a given phenotype of interest’ [31].

• A specific category of the pathway screens, which can be considered as a stand-

alone category, are synthetic lethal screens. In this case, various genes are silenced

in pairs, and a lethal to the cell combination is sought. In the setting of cancer

drug discovery, we are interested in cancer cells that contain a mutant allele of

a gene (perturbed from its normal function) and the gene which, when knocked-

down leads to cell lethality, is sought. The first who introduced RNAi screening

towards the detection of synthetic lethal partners of cancerous gene mutants was

Hartwell in 1997 [33].
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Figure 2.4: Left: Figure and caption adapted from [30]. Low scale intracellular pro-
cess of RNAi interference function. For simplicity we have shown how microRNAs
(miRNAs) can mediate RNA interference in mammalian cells by causing the degrada-
tion of protein-coding transcripts. What usually happens in experiments is that viruses
or plasmids containing miRNA-coding or shRNA-coding sequences are introduced into
mammalian cells and these mimic the production of endogenous miRNA and shRNA
and are processed into siRNA in the same way. Alternatively, the siRNA can be di-
rectly inserted in the cell. Right: Figure and caption adapted from [31]. Large scale,
high-throughput RNAi screening. In standard siRNA transfection, siRNA is added to
pre-plated cells.

It can thus be concluded that RNAi screens are a tool for synthetic lethal pair de-

tection. This is also clearly stated by William G. Kaelin in [13]. However, the high

genomic redundancy of human cells can make the discovery of novel and significant ge-

netic interactions very difficult. It is also a time-consuming and expensive procedure

[12].

2.2.3 OTEs and noise in RNAi screens

Since 2006, when Fire and Mello were awarded the Nobel Prize in Physiology or Medicine

for detecting that one can suppress a target gene’s expression using RNA interference

(RNAi), RNAi screening has been extensively used for drug target detection [34, 35].

Although many experiments have been performed, only a handful of the top-identified

genes proceeded to follow-up experiments. Astonishingly, none of them was verified at

second stage [36]. This threw down the gauntlet for the scientific community which
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started seeking the reason of this discrepancy. One possible explanation is that the

observed effects on the cell of interest are the result of an interaction / synergy be-

tween siRNAs or shRNAs and other cellular components or genes. This means that the

observed phenotype (i.e. lethality) is due to combinatorial effects and may not be target-

specific. Each oligo siRNA or shRNA sequence, exactly because of its small size, can be

complementary to many other genes apart from the target gene. One possible reason for

these unintentional binding is that DICER, the enzyme that cleaves the double-stranded

precursor miRNA to create miRNA, from which later on siRNA is synthesized, is not

always accurate [37]. A recent paper found that DICER recognizes also the 5’ RNA end

[38], and not only the 3’ end as it was believed in the past. So, mutations in the 5’ end

may affect DICER’s cleavage ability.

That is why the observed signatures are often “siRNA specific rather than target spe-

cific” [39]. In [39] the authors also suggested pooling many siRNAs together for better

result. In brief, this alerts us that much of the observed phenotype is random effects

or noise. For RNAi screening this term is called “Off Target Effects” (OTEs). A re-

cent publication [40] discusses the high prevalence of OTEs, which are sometimes even

more than the intended, “on-target” effects of an RNAi screen. The authors performed

quantitative analysis on 3 RNAi published datasets and discovered that there exist some

“seed” sequences that systematically block cellular infection by pathogens, independent

of the intended effect. They suggest the design of novel siRNA oligo sequences, and the

production of new libraries, that contain deliberately a number of such seeds. Biological

experiments, RNAi screening included, should always be performed in replicates. In the

case of the new suggested libraries, with repetitive experiments, the seeds will be repet-

itively screened. Thus, their effects will be systematic in every repetition, and in this

way they will be more easily detected. Consequently, this will allow screen performers

to correct for the bias they introduce.

In summary, OTEs can influence a lot the outcome of an RNAi screen. This does not

leave the KRAS synthetic lethal RNAi screens unaffected. Previous KRAS -directed

RNAi studies came up with genes that were not further validated. For example, Scholl

et al. [28], identified STK33 as KRAS SLP. Follow-up studies however failed to observe a

significant differential viability effect between knocking down STK33 in KRAs mut and

KRAS wt cells [41, 42]. Barbie et al. [24], reported TBK1 as KRAS SLP. Once more,

further studies did not confirm this finding [43]. A final example is PLK1, identified by

Luo et. al. [25] as KRAS SLP. However, there are many studies on different cancer types

from other four groups, which expose the general role of this gene in cancer [44, 45] and

in cellular viability [46–48]. This perhaps implies that the observed effect by Luo et. al.

is not connected to the status of KRAS.
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2.2.4 Cell Lines used as Tumour Models

Another reason why the RNAi screening results for drug-target detection have not been

successful in clinical trials, is the difference between the overall profile of cell lines, used

in the in vitro experiments, and real tumours. A recent project funded by the Broad

Institute, the Cancer Cell Line Encyclopedia (CCLE), has investigated the common

characteristics between real tumours and approximately 1000 human cancer cell lines

[49]. The comparison has been made in terms of shared mutations, DNA CNV, SNP

e.t.c.. It has been found that the cell line mutation status, on which previous studies

had been relying for comparison between cell lines and tumours, is not sufficient for

proper transfer of the in vitro findings to clinics. A following study is inspired by the

CCLE initiative and focuses in transfer of finidings in ovarian cancer from the lab to

the clinics. It compares the commonly used for derivation of clinical conclusions ovarian

cell lines, IGROV1, OC316, EFO27, OVK18 and TOV21G to high-grade serous ovarian

cancer (HGSOC) tumours [50]. The comparison is conducted based on the Copy Number

Alterations (CNA); the correlation of the CNA profile of each cell line to the tumours

is calculated. It is astonishing that none of the most often used cell lines correlates well

with the mean CNA tumour profile. This implies that there should be established new

criteria for selection of cell lines on which experiments are performed.

2.3 Background in aggregation of ranks

One of the contributions of this thesis is consistent aggregation of ranked gene lists as

calculated by various methods. The rank aggregation problem is concerned with the

combination of many different orderings of the same elements, which are provided by

different ranking schemes, in one list that best reflects the orderings of the underlying

lists. The distance of the final list to the individual lists should be minimized.

This principle of rank aggregation is depicted in Figure 2.5.

This problem has troubled mathematicians in the past. Different approaches have been

proposed, starting with Borda (1770), soon followed by Condorcet (1785). In the 1990’s

Arrow (1951) and Kemeny (1959) proposed small alternatives of the established method-

ologies, with the latter additionally satisfying the Pareto principle: In many events,

about 80% of all the effects are due to 20% of the causes.

Two different philosophies have been formed throughout the years:
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Figure 2.5: The idea is the detection of a super list that has as smaller distance as
possible to the input lists. This figure presents and example of 3 lists, L1, L2 and L3
that are being aggregated in the “Super-list”, d1, d2 and d3 are the distances of each
of the individual lists to the final one, and the rank aggregation procedure tries to
minimize them

• Majoritarian Principle: This principle follows the “Condorcet” criterion: If rank(A) >

rank(B) more often than not in the input lists, then rank(A) > rank(B) in the

final list.

• Consensus among individual ordered lists: The rank of an item x in the final list

is a consensus function of its ranks in the individual lists. Simple such consensus

functions are the minimum, maximum, average, mean and others of the individual

ranks of x. The Borda count, which is the average of the ranks of x in the individual

lists, is a good representative of this category.

The selection of the best approach depends on the specific problem. Usually different

approaches have different results.

The prevailing property of an aggregated ranking is the satisfaction of the “Condorcet’s

criterion”. A natural step towards effective rank aggregation was given by Kemeny, who

introduced the “Kemeny optimal ordering” [51]: Given k orderings τ1, ..., τk, a Kemeny

optimal ordering σ minimizes the sum of the bubble sort distances

k∑

i=1

K(σ, τi)
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However, Kemeny optimal without further reduction is a NP-hard problem, even for

the aggregation of 4 lists [51]. Dwork et al in [51] suggest a more relaxed version of

the Kemeny optimal criteria; local Kemeny optimal aggregation, which still satisfies

Condorcet’s criteria and can be computed in O(knlogn) time, where k is the number of

input lists and n is the length of the lists.

Figure 2.6: This small example shows two lists that contain the same elements in
different order. The Spearman footrule distance counts what is the shift of each element
between the lists. Kendall’s tau just counts the number of disagreements of an items
ordering between the input lists. So, for this example, in List 2 B is before A, D is
before A and before C, though in List one their order is opposite. Thus there are 3
disagreements.

There are different types of distance measures that can be used to measure the distance

between the individual lists and the SL. The most prevalent among them are Spearman’s

footrule (2.1) and Kendall’s tau rank distances (2.2). The smaller the distance the

bigger the similarity between the lists. Spearman’s footrule measures the total element-

wise displacement from the identity permutation Given a permutation σ on n elements,

Spearman’s footrule distance F(σ) is the sum of the absolute differences between i and

σ(i) over all values of i.

F (σ) =

n∑

i=1

|σ(i)− i| (2.1)

The Kendall tau metric counts the number of pairwise inversions between two ranking

lists.

K(σ) =

n∑

(i,j):i>j

[σ(i) < σ(j)] (2.2)

Their similarity is that they both consider the ordering of lists. Their main difference

is that Spearman additionally takes into account the amount of elements between the

different ranks of item i in the lists. Moreover, Spearman is shown to be a good ap-

proximation for local Kemeny optimal aggregation. An example is provided in Figure

2.6.
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Data and Methods

In this Chapter, the datasets used in this thesis are initially presented. One of the most

serious problems with gene ranking is the existence of many shRNAs per gene. Different

techniques of shRNA-to-gene assignment are explored and the way in which each of them

contributes to final gene ranking is shown. The overall methodology is divided in two

parts. This Chapter is the first part of the analysis, and describes the methods that are

applied in order to retrieve a first set of candidate KRAS SLPs. It also investigates the

efects of the inclusion of an additional or a random screen in the analysis pipeline. The

second part is essentially the evaluation of the findings of the first part and is covered in

the Results Chapter. Since none of the techniques discussed is fully reliable by its own,

the final results are the combination of all methods.

3.1 The datasets

The current analysis is based on three RNAi screens that were performed on isogenic

colon cancer cell lines [25–27]. Colon (or colorectal) cancer, is the type of cancer with

the second highest percentages of activating KRAS mutations after pancreatic, reaching

30 − 40% [52]. Initially, a larger number of screens had been collected for analysis by

RankSLP. The final analysis was restricted to these three datasets as an effort to confront

the high genomic variability of cell lines among different screens. It was impossible

to account for all possible mutations, SNPs and CNVs of the cell lines involved in

the screens. Each cell line’s phenotype would be certainly dependent on all of these

parameters and not only on the KRAS mutation. As RankSLP was interested in the

effect of the KRAS mutation alone on the phenotype, it was decided to focus on clear

datasets consisting of pairs of isogenic cell lines; they differ only in the existence or not

of KRAS mutation.

17
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Table 3.1: RNAi datasetes

Author Source No of targeted genes No of cell lines

Luo et. al Cell, 2009 [25] 19569 2 isogenic: KRASwt : DLD1+/−

KRASmut : DLD1−/−

Wang et. al Oncogene, 2010 [27] 1740 2 isogenic: KRASwt : HKE3
KRASmut : HCT116

Steckel et. al Cell Research, 2012 [26] 7283 2 isogenic: KRASwt : HKE3
KRASmut : HCT116

Table 3.1 summarizes the datasets on which the analysis was based. The genes claimed

in this Table are calculated based on known - HGNC gene identifiers. Some more

information about each screen is provided hereafter:

• Luo screen[25] : This is a genome-wide screen. The original data were provided

after direct correspondence with the authors. They consist of fold changes, corre-

sponding to viability values, for three biological replicates of each cell line. The

data were already sample-wise normalized and log-transformed.

• Wang screen[27]: Raw data were provided by a third party1. This screen targets

approximately 2000 genes, covering the majority of known human cancer genes

and protein kinases. As in the Luo screen, the data consist of log-transformed fold

changes, corresponding to viability values, for three biological replicates of each cell

line, but they are not cell-line normalized. Thus, after initial data collection, they

were subjected to sample-wise MAD normalization: For each sample, its median

medians and its standard deviation sds were calculated. Then, for each sample s

its ith value vsi was transformed as:

vsi ′ =
vsi −medians

sds
(3.1)

Moreover, plate-wise normalization was attempted for the Wang dataset. The

results were very similar to the ones retrieved by cell line-wise normalization. In

further computations, the latter was used.

• Steckel screen[26]: The data are freely provided as supplementary information to

the publication and were downloaded from the web. Approximately 7000 human

druggable genes are knocked down by siRNA pools. This screen also contains

replicates but the provided data are also summarized per cell line (and normalized);

thus each cell line (sample) value is the mean of its three replicates. The data are

reported by the authors to be cell line-normalized.

1Alok Jaiswal, FIMM-EMBL PhD student, alok.jaiswal@helsinki.fi
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The Luo and Wang screens are performed based on the protocol described by Schlabach

et al. in [53], depicted schematically in Figure 3.1. Six shRNAs pools are used to silence

the target genes. The same hairpin barcoded shRNAs are transfected into viruses which

then infect with a 50:50 ratio both the KRAS mutant (GFP+) and the KRAS wild

type cells (GFP−). The relative ratio of KRAS mutant versus KRAS wild type cells is

examined at approximately seven days post infection. The shRNAs that are induced to

the surviving cells are then rescued, whereas the shRNAs that are introduced in the cells

that died are depleted from the population. Afterwards, the rescued barcodes are PCR

amplified and are used to conduct a two-color microrray experiment. For the Luo screen,

custom microarrays containing the HH barcode probe sequences, provided by Roche

Nimblegen, are used. For the Wang screen, the microarray experiments are performed

by Affymetrix Human Genome U133A 2.0 arrays using standard Affymetrix protocols.

The final readout are the values from the microarray, bringing along background noise

and printing errors, inherent in microarray technology. The genes corresponding to

the rescued shRNAs are in abundance, and thus they are overexpressed on the array

(Cy5 signal). On the other hand, the genes represented by the depleted shRNAs are

underexpressed (Cy3 signal). Candidate KRAS SLPs are the genes of which the shRNA

insertion has led to KRAS mut cell death after virus infection, thus the genes having a

negative log fold change. This corresponds to green fluorescent microarray signal.

Figure 3.1: Figure and caption taken from [53]. Overview of the pool-based dropout
screen with barcode microarrays. (a) Schematic of library construction and screening
protocol, (b) Schematic of the HH barcode hybridization
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The Steckel screen is performed in a different way: Pools of four siRNAs are used

against each gene (“SMARTpools” from Dharmacon). siRNAs against KRAS are used

as internal control. The readout of this assay is the fluorescence value of specific proteins

which are induced during apoptosis, for example caspases. Fluorescence is read on an

EnVision 2012 Plate-reader. This type of readout comes along with inherent mechanical

errors accompanied by noisy readout signal.

3.2 Assignment of a single value in the case of multiple

shRNAs per gene.

In the Luo and Wang screens, each gene is targeted by multiple numbers of shRNAs.

This was treated with caution by the ranking algorithms that were used to prioritize the

candidate genes. The assignment of only one value per gene was of most importance, in

order to enable us to assess the gene’s potency as a KRAS SLP candidate. This value

should be representative of the real effect of the knock down of the intended gene. There

are a number of algorithms fit for this shRNA-gene-value assignment. What should be

taken into consideration when opting for which algorithm to apply is:

• The background distribution. Evaluation against the background distribution adds

supporting evidence that the findings are different from random and accounts for

the decrease in the number of False Positives (FP).

• The difference between the two classes, mutant and wild type. This is of great

importance because the interesting genes are not just the ones of which the knock

down leads the KRAS mutant cells to death. It should additionally be requested

that the same genes don’t lead the wild type cells to death. The desired effect

(death) must be mutant KRAS specific.

In this thesis, the problem was approached by the application of three different methods,

which took into account the above characteristics: A straightforward Standard method,

the RSA and the RIGER methods.

3.2.1 Standard method

The Standard method simply ranks the genes based on how strongly their knock-down

decreases the viability of the tumour cells, and selects the genes that score below a

threshold. The search space was not yet limited at this first step in order to avoid

early restriction of the dataset, as further steps and validations would follow. Therefore,
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Figure 3.2: Top: Wang and Luo ranking approach. We apply the paired t-test
between the columns. Bottom: Steckel dataset ranking. This is an apoptosis screen,
so the higher the z-score difference (mut-wt) for a gene, the more probable KRAS SLP
the gene is

all the shRNAs targeting a gene were included and ranked based on their differential

effect on the viability of the KRAS mutant versus KRAS wild type cells. Of interest

are the genes of which the depletion decreases the viability of the KRAS mutant cells

but not the viability of the KRAS wild type cells. This can easily be captured by a

statistical test which compares the means between the two conditions, in the case that

a sufficient number of replicate experiments has been performed. As far as the Luo and

Wang screens are concerned, they contain three replicate measurements for each cell

line. Having only three replicates per cell line, normal distribution was safely assumed.

The three mutant and three wild type replicates are connected, as they occupy the same

well on the plate when the experiment is conducted. Hence, the paired t-test was applied

between the two samples:

t =
XD − μ0

sD/
√
n

In the above equation XD and sD are respectively the mean and standard deviation

of the difference D between the two pairs of samples (mutant and wild type KRAS in
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this case). μ0 is a constant used only for testing if the average of the differences is

significantly different from μ0. This was not important in the current case, so it was set

to 0. Finally, n is the number of samples in each category.

The null hypothesis tested, was that depletion of a specific shRNA has no significant

effect on the viability between KRAS mutant and KRAS wild type cell lines. The respec-

tive alternative hypothesis was that the viability of the KRAS mutant cells decreases

more than the viability of their isogenic wild type counterparts. This is illustrated in

figure 3.2. According to the Standard method, a gene was reported as hit when the best-

ranking of all the shRNAs that target it was below threshold. The amount of shRNAs

against the same gene, which rank below threshold, was further considered. The hy-

pothesis that RankSLP made here, was that the more shRNAs targeting the same gene

rank below threshold, the stronger the support that this gene is a true positive, i.e a

more probable candidate for KRAS SLP (see section 4.6). Attention was paid to the

trade off between the number of shRNAs targeting a gene and their frequency below the

selected threshold.

As far as the Steckel screen is concerned, no replicate data are provided, as explained

at the beginning of this Chapter. Thus, only the difference of the z-scores (mutant-

wild type) was considered. This summarized value has the disadvantage that it doesn’t

take into account the variance variability, since it actually is a mean value. It has to

be noticed that this is an apoptosis screen, so the result was inverted in order to be

comparable to the other two viability screens. The rank R in this case was calculated

as:

R = −rank(z.scoremut − z.scorewt)

Calculation of the ranks by the Standard method was very quick (O(nk)), where n is the

number of lists and k is the length of each one. This process provided a first estimation

of the importance of each gene to the survival of a KRAS mutant cancer cell. Other

methods followed, yelding supporting evidence for some of the highly ranking genes.

3.2.2 RIGER

The RIGER method was introduced in 2008 by Luo et. al. [54] and it is provided by the

BROAD Institute of MIT and Harvard2. It is used towards the detection of hit genes in

RNAi screens, in the case that each gene is targeted by multiple shRNAs. Thus, in the

current data, it is applicable only for the Luo and Wang screens. RIGER calculates the

ranking of a gene based on the averaged ranking of the two shRNAs with the strongest

2http://www.broadinstitute.org/)
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differential effect between the viabilities of the mutants and the wild type cells. The

respective algorithm has been incorporated into the freely available GENE-E software3.

The steps that were followed by the RIGER algorithm are:

• Feature selection: each shRNA is scored according to its differential effect be-

tween two classes, here KRAS mutant and wild type. The RIGER tool provides

a selection of methods for this step, like classical log-fold change criteria and t-

test. To RankSLP’s aim, the scoring was done based on the signal-to-noise metric

as suggested by the authors. The data consist of two classes, mutant and wild

type, having three samples in each category. This can be represented by a vector

c = (0, 0, 0, 1, 1, 1), which contains the labels for each sample, with 0 corresponding

to mutant and 0 corresponding to wild type. The means μ0, μ1 and the standard

deviations σ2
0, σ

2
1 are the means and standard deviations of the mutant and wild

type class respectively. For each shRNA, the signal to noise ratio is given by (3.2)

SNR =
μ0 − μ1

σ2
0 + σ2

1

(3.2)

Only the genes selected at this step were forwarded to the second stage.

• Calculation of raw enrichment score: This is done in the same way as for the Gene

Set Enrichment Analysis (GSEA) [55], also provided by the Broad Institute. To

this end, a gene-score assignment is performed by calculation of the weighted sum

of the first two ranks of hairpins for a gene. Another approach that is provided by

the RIGER tool is the weighted KS statistic (Kolmogorov-Snirnov). This statistic

represents the degree to which these hairpins are overrepresented at the top or

bottom of the ranked list of hairpins in the dataset. RankSLP was interested in

the selection of genes that are overrepresented at the top of the list, that is why

the weighted sum approach was chosen.

• Calculation of a normalized RIGER score: As a last step, the RIGER method nor-

malizes the raw enrichment score (ES) to account for variable numbers of shRNAs

across different genes. A background distribution was considered here, by 1000

random permutations of a hairpin set of the same size. Each gene had to be

supported by at least two shRNAs for being subjected to normalization.

RIGER has the advantage of being a very quick procedure. The source code is not

available but the real calculation time for RankSLP was between five and ten seconds.

3http://www.broadinstitute.org/cancer/software/GENE-E/
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3.2.3 RSA

Figure 3.3: Illustration of RSA algorithm in siRNA hit selection. (a) Forty siRNAs
are ranked according to their activities (potent on top) and colored according to their
target gene identities. The top eight hits by both RSA and Cutoff algorithms are
highlighted, with five common hits marked as ”O”, RSA-only hits as ↑ and Cutoff-only
hits as ↓. siRNAs identified as outliers by RSA are marked as ”X”. (b) Iterative RSA p-
value calculation process as illustration by Gene C (3 siRNAs) and Gene D (4 siRNAs).
For a given gene, accumulative hypergeometric p-values are calculated for each siRNA,
the curve dips at each siRNA targeting the gene itself (big filled circle). The global
minimum is then identified (indicated by arrow) and separate siRNAs into two groups:
hits and outliers. One and three least potent siRNAs are identified as outliers for Gene
C and D, respectively. Gene C achieves a global minimum of 0.01, much lower than the
0.2 for Gene D, therefore, the activity distribution of Gene C is much less likely to occur
by chance, therefore the gene is more likely to be confirmed. Figure and caption are
taken from the RSA tutorial (http://tex.stackexchange.com/questions/35043)

RSA stands for Redundant siRNA Activity. The respective algorithm was introduced

by Koenig et. al. in 2007 [56]. It is applied towards the detection of hit genes from RNAi

screens in the cases where the same gene is targeted by multiple shRNAs or siRNAs. The

final score of the gene is calculated based on the collective activities of all its shRNAs

or siRNAs and a p-value is attributed to it. This p-value indicates how significant it

is that all wells targeting the same gene are distributed among the higher ranking slots

and it is computed by an iterative hypergeometric distribution formula. Intuitively,

RSA assigns higher scores to genes that are targeted by more than one shRNAs with

moderate activity, than to the genes with only one very active shRNA.
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RSA belongs to the Gene Set Analysis (GSA) methods. It incorporates a “maximum

mean” statistic for increasing the score of a gene, by calculating the absolute value of

the mean of the gene scores in the mutant and in the wild type cells. The highest score

is assigned to the category with the largest value. Efron and Tibshirani in their 2006

paper [57] show that this “maximum mean” statistic is often more powerful than the

modified Kolmogorov-Smirnov statistic used in GSEA. RSA additionally calculates a

null distribution by permuting both the genes (rows) and the samples (columns), which

is different from sole column permutation (done in GSEA).

The R version of the algorithm was used. It was downloaded from the official web-

site4.The implemented algorithm iterates twice through the length of the input lists n

and it computes the accumulated hypergeometric distribution function, which depends

on the total number k of shRNAs in the library. Thus the final computation time was

O(nk)+O(n2). Based on the same source, an illustrative example of the RSA algorithm

is provided in Figure 3.3.

3.3 RNAiCut

RNAiCut is an algorithm, result of a collaborative project between Massachusetts Insti-

tute of Technology (MIT) and Harvard Medical School [58]. It is developed specifically

for assessment of RNAi screen findings. A very common question when examining an

RNAi screen’s findings is “Where to cut?”. RNAiCut is aiming at the robust selection

of a significance threshold for genes examined in such a screen, by combining it with

the underlying PPI network information. The algorithm is based on the hypothesis that

the true hits should be connected in an underlying network. Thus, for each set of top

k genes, it calculates the p-value of finding a connected PPI subgraph of at least size k

by chance. The lower the p-value, the more significant the input list k. This calculation

was done quite fast by RankSLP (30 seconds for each list).

This resource was used as a complementary approach for threshold selection. It was

applied on the ranked lists of the shRNAs which target the 1069 common genes of the

screens Luo, Steckel and Wang. The Luo and Wang screens contain multiple shRNAs

targeting these genes. None of them was excluded or pre-selected, for accordance with

the previous steps of RankSLP. In this case of repeated genes in the input list, the

algorithm internally discards each listing of the gene except for the first one.

4http://carrier.gnf.org/publications/RSA/
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3.4 Rank Aggregation

In section 3.2.1, it is described how the rankings of each list were calculated using the

Standard method. In this part, the interest is in finding a ranked list (super-list SL)

that is as close as possible to each of the three individual rankings and best reflects

the results from the ordered lists. This means that the final list minimizes the number

of total disagreements. This procedure was applied only in the output rankings of the

Standard method because of the need for broader applicability of RankSLP’s findings;

Standard is the only method which can be implemented on all three screens.

3.4.1 Sophisticated Rank Aggregation using heuristics

Rank aggregation is an optimization problem. One sophisticated way to generate candi-

date “super-lists” is by using heuristic functions. To this aim the RankAggreg R method

was used [59], which incorporates two iterative heuristics:

• The Genetic Algorithm (GA): This algorithm, mimics the natural selection pro-

cess. As chromosome parts can be exchanged, and genes can be deleted, inserted

or just replaced by others, in the same way, the elements of the input lists can

be rearranged. This algorithm tests different rearrangements of the lists based on

the input parameters. The most important are: 1) Cross over probability (CP):

Two ordered lists can interchange their last slots which start at a random position

with the CP probability, similar to how chromosomes interchange their tails. 2)

Mutation rate (MR): Cross overs allow only for the re-arrangement of the lists.

Mutations are more drastic events that will radically change the population, since

they can completely alter the elements of the lists. Mutations can happen with

probability MP. More details are provided in the book [60].

• The Cross Entropy Monte Carlo algorithm (CE): Essentially the n input ordered

lists can be re-arranged, and an element replaces another with a certain probabil-

ity. This reminds a bit of a Markov Chain of states, where the states are replacing

each other with different probabilities. As the Markov Chain develops, these prob-

abilities get stabilized. That is the stationary property of a Markov Chain and

the CE algorithm sorts the n candidate lists based on these probabilities. At each

stage it generates a random data sample from the input lists. It then updates the

parameters of the model based on the data. The aim is to produce a ’better’ sam-

ple in the next iteration by reducing cross-entropy. More details on the algorithm

are provided in the respective paper [61].
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Both heuristics are iterative. The methods converge when the optimal “super-list”

remains optimal for a number of consecutive iterations. They both require a distance

measure which calculates the similarity of each iteration’s output list with each of the

input lists. Spearman’s footrule distance was chosen because i) it is the one which takes

into consideration the distance between the ranks of the same element across lists, as

opposed to the Kendall’s tau metric and ii) it is a very good approximation of Kemeny’s

local optimization (NP-hard problem), but can instead be computed in polynomial time

(O(n3)), where n is the amount of element in the lists. RankSLP’s main interest was

essentially the retrieval of a robust set of genes at the top of the super-list. It thus

aggregated the top 10% hits of the three screens which translates to 107 genes (initial

number of common genes is 1069). It has to be noticed that the original paper [59] clearly

points out that the RankAggreg() function does not guarantee an optimal solution for

a large number of items (where large is defined as more than around 100). This is a

supplementary reason why the ranking of only the top 107 genes were aggregated.

Once the genes from the aggregation of the top 10% of the lists were retrieved, RankSLP

examined which of them are even more robust by aggregating the top 5% of the ranked

lists.

Last but not least, this package encourages the use of importance weights on the input

lists. This is reasonable; not all of them should be equally taken into account if it is

suspected that one is of better quality than the others. The selection of a representative

importance scheme is examined in section 4.8

Details on the complexity time of the algorithm are not provided but generally, the

heuristics that make use of Markov Chain property are O(n3), where n is the amount

of elements in each list. Considering that the calculation of the Spearman Distance is

of polynomial time O(n), the total algorithm is O(n3). The real time that is consumed

in this calculation is about six hours in one Core of an Intel X5650 CPU, 2.83Hz, 96GB

of memory.

3.5 Random or additional screens: How much do they

alter the result?

A novel methodology which explores whether the incorporation of an extra or a random

screen alters the retrieved set of significant genes was developed. The aim is to judje the

robustness of the approach followed in this thesis. To this end, a table with the ranks

of each gene in each screen was created. An example case is visualized in Table 3.2. All

the genes that appear at least once in the screens were considered.
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Each screen’s gene rank was assigned as described in Table 3.2 and further transformed

to a percentage value by dividing it with the number of genes in the screen, excluding

NAs. Thus, in the end, the table was filled with float values, which from now on we

will call “relative ranks”. Then the Fisher method for combining relative ranks was

applied, using the fisher.method function from the R MADAM package. The approach

as described by Fisher combines relative ranks to a statistic

S = −2

k∑
logp,

which follows a χ2 distribution with 2k degrees of freedom, where k is the number of

tests being combined. All possible screen combinations were considered; one screen only,

pairwise, three-wise and all four. The complexity of this process is O(nk2), where n is

the length of the input lists and k is the amount of lists. The combined relative ranks

were calculated and used in the proceeding steps.

Table 3.2: Each column corresponds to the ranks in the respective screen. The total
number of genes (and consequently the rows of the table) is n, equal to the number of
genes screened in Luo, because Luo is the genome-wide screen. Each gene may or may
not be present in the rest of the screens. In case it is present, a value vi is assigned
to it, which is the rank of its best ranking shRNA, based on the Standard Method
ranking. The best ranking shRNA was used for consistency with the general procedure
that was followed in all the Standard and Rank Aggregation rankings. In case a gene
is not present in one of the screens, the respective field takes the NA value. The fisher
method, takes into account the NAs in the calculation of the summarized relative rank

Gene Luo Wang Steckel Barbie/Random
G1 v1,1 v1,2 v1,3 v1,4
G2 v1,2 NA v1,3 NA
G3 v1,3 NA NA NA
Gm ... ... ... ...
Gn v1,n NA v1,3 v1,4

3.5.1 Extra screen: Barbie

Barbie et al. provided this screen in their publication [24]. It is maintained by the Broad

Institute as “Achilles 1” dataset, because it is supposed to retrieve the Achilles heel set

of genes which, if targeted, can kill a KRAS mutant cancer cell. 957 genes are targeted

in 19 human cancer cell lines. Mutation status of KRAS is either complementary to

the dataset or retrieved by COSMIC (see subsection 4.11.2). The obtained values are

plate-wise normalized and provided as B-scores, which were retrieved from CanSar5 after

direct correspondence with Joe Tym, the CanSar database curator, on 28 March 2012.

5https://cansar.icr.ac.uk/
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The cells were separated into KRAS mutant and KRAS wild type, as done with the rest

of datasets (Figure 3.2). The cells are not isogenic in this case, but the existence or not

of the KRAS mutation only was considered, being aware that this is a simplified case.

The wilcoxon rank sum test was applied on each shRNA between the KRAS mutant and

the KRAS wild type cells. The respective rank for each gene in Table 3.2 is the rank of

its best ranking shRNA, for consistency with the Standard method.

3.5.2 Random screen

For the calculation of the random values, the original relative ranks for the three screens

were pooled together. Afterwards, as many elements as the total amount of genes (equal

to the size of the Luo screen) were sampled with replacement from this pool of values.

This was regarded as our random screen.
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Results

At the beginning of this Chapter, more detailed information is provided on the existing

screens that have detected potential KRAS synthetic lethal partners. The genes retrieved

from each study are presented. Their small overlap was a strong motivation for the

current work. Additionally, an overview of the data used and the integration problems

that they expose is given, and ways in which the integration problems were encountered

are described.

The core part of the results starts with exposing the results of the application of the

Standard method, RIGER and RSA. These are followed by the findings of the three

screens’ rank aggregation and by RNAiCut. Among methods, some different and some

common genes are retrieved. At the end, some more probable candidate KRAS SLPs are

identified. The basis of the hit detection method used in this thesis, is the combination

of different approaches to a final result. The more frequently a gene is retrieved when

all methods are considered, the more potent it is.

The set of candidate concluding genes is further evaluated against the genes that are

already reported in the literature as KRAS SLPs and against independent compound

inhibition screens. Moreover, the modules of the enriched genes are represented on

networks and interesting connections are further discussed. Finally, the candidate list is

further limited based on the evaluation outcome. In total, the results of nine methods

are reported and considered for the final gene selection: Standard method, RIGER,

RSA, RankAggreg, RNAiCut, hypergeometric test on the significance of the genes of

which two or three shRNAs rank above the threshold, evidence from literature, network

enrichment and results from external drug screens. The retrieved genes’ immunity to

noise was also examined. Few promising genes are subject to experimental testing by

our collaborators at the Medical Faculty.

30
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The followed methodology in this work is high dimensional and involves the selection of

many parameters. Each of the following sections explain the parameters chosen by each

method and its results. Here, the whole procedure is summarize with the help of two

figures 4.1 and 4.2.

Figure 4.1: Approach: Schematic 1. The first set of methods that were followed for the analysis
of the screens along with selected thresholds.
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Figure 4.2: Approach: Schematic 2. The evaluation methods and the final gene selection
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4.1 KRAS SLPs in Literature

As already stated, there are various experimental studies aiming at the identification of

KRAS SLPs. Some of them are performed using high-throughput RNAi screening at first

(genome-wide or more focused), followed by low-throughput experiments on the initial

hits, for example Scholl et. al. [28]. Some others, are based on previous indications and

focus just on low throughput experiments on specific cells [62]. In order to retrieve the

KRAS SLPs we searched PubMed, initially with the query “KRAS synthetic lethal”.

The result of the query, as of 17-03-2014, contained 28 papers, including KRAS SLPs in

species different from human. Some of the retrieved studies detected drug di and gene

gi combinations as KRAS SLPs [63]. This means that a gene gi is SLP of KRAS only

under the presence of a specific drug di. To avoid missing any potential SLPs, the query

was expanded to “RAS synthetic lethal”. This resulted in 68 papers, including KRAS

and other members of the Ras-family (HRAS, NRAS) SLPs as well.

Table 4.1: KRAS SLPs in literature

KRAS SLPs From datasets 1 From rest literature

Alt-NHEJ pathway [64]
√

APC / C complex (e.g ANAPC1, ANAPC4,

CDC16, CDC27) [1, 25, 26]

√ √

ATR [65]
√

BCL2 [66]
√

BCL2L1 [24]
√

BCL2L1 + MEKi [63]
√

BIRC5 [25, 46]
√

BRIX1 [25]
√

cAMP / PKA pathway [67]
√

CASC5 [25]
√

CCNA2 [25]
√

CDC6 [26]
√

CDCA8 [25]
√

CDK4 [62]
√

CHEK1 [65, 68]
√

COPS3 [25]
√

COPS4 [25]
√

COPS8 [25]
√

REL (encodes c-REL tr.factor) [24]
√

1The datasets that were incorporated in RankSLP
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CUX1 [69]
√

DHX8 [25]
√

SMAC + TRAIL2 [15, 70]
√

EIF3C [25]
√

EIF3G [25]
√

FBL [25]
√

FIP1L1 [25]
√

GATA2 [26, 71, 72]
√ 2

GSPT1 [25]
√

HNRNPC [25]
√

IL8 [73]
√

JAK1 [25]
√

KIF2C [25]
√

LDHA (only under hypoxia conditions) [74]
√

MAP3K7 [75]
√

METAP1 [25]
√

MIS18A [25]
√

NAE1 [25]
√

NEDD8 [25]
√

NFKB pathway [24]
√

NOL56 [25]
√

NXF1 [25]
√

OIP5 [25]
√

PI3K-AKT-mTOR pathway [76, 77]
√

PKCδ (PRKCD) [78]
√

PLK1 [25]
√

PSMA5 [25, 26]
√

PSMB5 [25, 26]
√

PSMB6 [25, 26]
√

PSMD14 [26]
√

RALB [24]
√

SAE1 [25]
√

SIAH2 [73]
√

SMAD1 [75]
√

SMC4 [25]
√

SNAI2 [27]
√

STK33 [28]
√

2Although GATA2 comes form a publication from which some data were used in this thesis, GATA2
was evaluated on an independent dataset to which we worked with.
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SYK [6]
√

TBK1 [24]
√

THOC1 [25]
√

TOP1 [26]
√

TOP2A [26]
√

TPX2 [25]
√

TWIST1 [79]
√

UBA1 [25]
√

UBA2 [25]
√

UBE2I [25]
√

USP39 [25]
√

VDAC3 [80]
√

WT1 (Hugo symbol: PAWR) [81]
√

Table 4.1 contains published KRAS SLPs in alphabetic order, along with the respective

publication. Many of them consist of secondary screen findings as there is just a hint in

the respective publication that they may be KRAS SLPs. Subsections 4.1.1 and 4.1.2

highlight the KRAS SLPs from the RNAi screens that were used by RankSLP and from

the rest of literature respectively.

4.1.1 KRAS SLPs from RNAi screens

Three high-throughput RNAi screens with available data are used for the current analysis

by RankSLP. These studies are conventionally named as Luo, Wang and Steckel, based

on the name of their first author. The datasets are extensively presented in section 4.3.

The main KRAS SLP candidates that the authors of the respective papers identified

were extracted from the second column of Table 4.1 (4 in total): PLK1 [25], SNAIL2

[27], CDC6 and GATA2 [26]

4.1.2 KRAS SLPs from the rest of literature

Studies without available datasets are kept as well, with the intention to be used as

an independent set for the evaluation of RankSLP’s findings. These studies come up

with 24 different modules which are identified as KRAS SLPs and are indicated in

the third column of Table 4.1. They are called “modules” because some of them are

whole pathways. The respective genes are 28 in total: AKT1, AKT2, AKT3, APC/C,

ATR, BCL2, BCL2L1, BIRC5, CDK4, CHEK1, CUX1, FRAP1, GATA2, IL8, LDHA,

MAP3K7, NFKB1, PAWR, PRKCD, RALB, REL, SIAH2, SMAD1, STK33, SYK,
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TBK1, TWIST1, VDAC3. In the following Chapters, this set of genes will be referred to

as Gold Standard Genes (GSGs). In this set of GSGs we intentionally don’t include the

4 genes mentioned in 4.1.1, because they are coming from the screens that we analyze;

thus they are not appropriate for use in validation of the developed methods.

4.1.3 Overlap

The next step was to examine if the existing screen findings agree. A comparison of

the KRAS SLPs from literature was conducted, including both the SLPs in the datasets

which are used by RankSLP and the ones without data. The observed agreement was

partial: Only BIRC5 clearly agrees between only two studies. Components of the pro-

teasome (APC/C, PSMA5, PSMB5, PSMB6) are also detected as KRAS SLPs by both

Luo et. al [25] and Steckel et. al [26]. The novel idea that motivated this work is

that there should be more SLPs in the screens that were underestimated at first place.

RankSLP’s goal is to apply integrative analysis approaches for retrieving genes that score

consistently high in all the screens. The idea is that, even if they don’t score at first

positions in all of the screens, as long as they score relatively high this is undoubtedly

stronger evidence that they are real SLPs. It is more probable that targeting one of

them in a new KRAS mutant sample, will successfully drive it to lethality.

4.2 Getting to grips with the datasets

The datasets that were used in this integrative analysis are thoroughly presented at 3.1.

A summary of the differences they expose is:

• Luo and Wang screens use shRNAs to silence the genes of interest, whereas the

Steckel screen uses pools of four siRNAs.

• In Luo and Wang screens many shRNAs are used against the same gene. On the

other hand, in the Steckel screen, the siRNA pools are not deconvoluted to their

individual oligonucleotide molecules, thus only one value per gene is available.

• The Luo and Wang are viability screens; the viability of the cells, with respect

to a specific shRNA knock down is measured. The Steckel screen is an apoptosis

screen, meaning that the apoptosis of cells is measured

• Luo and Wang datasets essentially contain microarray values, corresponding to

log-fold changes of the cases versus the controls. The Steckel dataset contains one

value which is the normalized fluorescent signal of proteins that are released during

apoptosis (i.e. caspases)
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As explained in 3.1, the values of Luo and Steckel screens are already log-transformed and

normalized. The Wang screen data were subjected to cell line-wise MAD normalization.

Figure 4.3 depicts the distribution of the data in the final format in which they were

used in proceeding analysis.

a

dc

b

Figure 4.3: a. Cell viabilities for mutant and wild-type cell lines in the Luo screen.
There are three wild type and three mutant replicates. b,c,d: The density of the
normalized data for Luo, Steckel and Wang datasets respectively. The plots show the
averaged values over the three replicates of each cell line.

4.2.1 Multiple shRNAs per gene

In Luo screen, the average number is five shRNAs per gene, however there are consid-

erable differences among the genes. For example, there are genes (e.g. TBK1) that are

targeted by two shRNAs, and genes that are targeted by seven shRNAs (e.g. COPS2).

The problem is that the cell viability values corresponding to each shRNA against the

same gene don’t agree. Different shRNAs have differences in their effectiveness on knock-

ing down the target gene, which happens mainly due to OTEs. To visualize one of the
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cases, the values of two of the three shRNAs targeting the same gene in the mutant

cell lines of the Wang screen are plotted (Figure 4.4). To connect this with the actual

microarray values and fluorescence, the fluorescence of three example genes in the Wang

screen are also presented in Figure 4.5.

Figure 4.4: The values of the first and second shRNA (out of three in total) targeting
a gene in the mutant cell lines in the Wang screen are plotted respectively on the x
and y axis. Many shRNAs agree in values close to zero, as shown by the big bulk at
the center of the plot, but these cases are uninformative to our analysis. There exist
differences between the first two shRNAs for the rest of the values, except around only
10 out of the common 1070 genes. These are targeted by shRNAs of which the fold
changes both agree to < -2 (depleted ones).

4.2.2 How differences in knock-down technologies and readout meth-

ods were encountered?

The above points raised the question: “How to compare the different screens?” Despite

the variability among the screens, they essentially measure the same thing: How much

a gene’s knock-down influences the viability of the cancer cells and what is the observed

difference between KRAS wild type and KRAS mutant cells. The numerical comparison

of the screens was accomplished by normalizing all measurements (conversion to z-scores)

and calculating based on them. The normalizations were performed cell line-wise as

explained above. Gene-wise normalization was not needed because the data were not

combined into a bigger dataset; only the independent gene ranks from each individual

screen were needed.
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Figure 4.5: Fluorescence of three example genes, PAK4, STK31 and MAP2K4, on
the microarray that measures the viability of the cell lines of the Wang dataset. The
colors correspond to the Cy3(green) and Cy5(red) dyes that are used on the microarray,
with green and red reflecting gene depletion and abundance respectively.

4.3 How was screen size variance encountered?

Figure 4.6: Overlap of the targeted genes in the three screens. Only 1069 genes are
screened in all of them and these are the ones that were considered for further analysis
in the current work. This means that ∼ 19000 genes were dropped.

The three screens that were used as basis for our analysis vary in size (Figure 4.6).

Luo is genome-wide but the other two target only a part of the human genome. This

variability in screen size was the first obstacle to RankSLP. Which genes should be

considered? In order to retrieve results that are applicable in wide scale, which is the

aim of this thesis, as many genes as possible need to be covered. However, comparison of

the findings between the screens required focusing on the common genes only. We had of

course many considerations before proceeding to this step. For example, if a gene is very
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promising in one screen but is not even examined in the others, RankSLP would miss it.

This is a limitation of the current approach which is based on the hypothesis that a gene

has to be important in all screens in order to be a KRAS SLP candidate. Thus, this

type of genes was missed, but at least widest possible application of RankSLP’s fidings

was ensured.

The number of common genes among the three screens is 1069. To map the provided

gene symbols to HGNC identifiers, the PubMed gene file3 as of 25 February 2014 was

used. The majority of them, 1026, were already HGNC identifiers. The rest 43 genes

had the same identifier among the screens but this was not HGNC identifier. For screen

overlap, the name appearing in the screens was used. Only two of the non-HGNC

identifiers were hits by RankSLP’s analysis: MLL3 and MDS1. The respective HGNC

identifiers are KMT2C and MECOM. The HGNC symbols of these two genes were used

in further steps; annotation, enrichment and evaluation of hits using external data.

The next question was: Why three screens and not three or four, e.t.c.? The amounts

of common genes between each screen pair and among all three screens are:

Luo - Steckel: 5807

Luo - Wang: 1423

Steckel - Wang: 1207

Luo - Steckel - Wang: 1069

As it can be observed, for two screens there is still a relatively high overlap. For three

screens this drops very quickly and for four screens it would drop even more. Initially,

an additional screen (Barbie) had been included, and the total overlap was 400 genes.

Keeping the Barbie screen would have shrunk the searching space a lot. Then, why not

just two screens? Because, as already explained, the main aim was the widest possible

applicability of this work’s findings. For two screens, the pairwise overlap is high but,

two screens is a borderline number. When a third screen is included, the overlap is

above 1000 genes, still not bad. Thus, three screens was considered a good number for

counter-balance between general applicability and sample size.

4.4 How were cell line differences encountered?

The cell lines used in the selected experiments belong all to colorectal (colon) cancer.

As described in table 3.1, the Steckel and Wang screens are performed on the same

cell lines, HCT116 (KRAS mutant) and HKE3 (KRAS wild type). On the contrary,

Luo screen is applied on DLD1 : KRAS wild type and mutant. In the latter case, the

mutation G13D at codon 13 of the KRAS gene is technically induced.

3ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/GENE_INFO/Mammalia/
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Although the cell lines differ among the screens, they are comparable. The reason for

that is that they all are isogenic, meaning that the respective mutant and wild type cells

are similar, apart only from the KRAS mutation. In addition, all the mutants harbor the

same KRAS G13D mutation in codon 13, where the amino acid glycine is substituted

by aspartic acid. According to [82], G13D mutations are met in 19% of human colon

cancers. Having isogenic cell lines is very advantageous for detecting differential genes

because the only thing that differs is this mutation [83].

Figure 4.7: Structure of wt and mut KRAS, with codon 13 colored at GTP binding
site. This figure is created using PyMOL4 and shows the structures of KRAS G13D and
KRAS wild type, with codon 13 colored at GTP binding site. The published crystal
structure 3GFT from PDB was used. Left: wild type KRAS. Right: mutant G13D
KRAS. The GDP /GTP binding site is circled by yellow dashed line. The bound GTP
is shown in orange in both figures. The mutation happens at the P-loop of the KRAS
molecule and leads to a dramatic change at the GTP-binding socket. This results in
KRAS being constitutively locked to GTP.

4.5 Retrieved genes from the three main methods:

Standard, RIGER and RSA

Technical details on the three main methods incorporated in RankSLP are provided in

section 3.2. For the standard method and for the Luo andWang datasets, all the shRNAs

that target each gene were considered. RankSLP was interested in significant shRNAs,

having a p-value < 0.05. Thus, this threshold criterion is applied on the shRNAs of the

whole dataset.
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For the Steckel screen, where only z-scores and no replicates are available, the stan-

dard criteria z-score smaller than a threshold was applied. First, the extensively used

threshold −2 was selected. Due to small hit retrieval with this threshold, RankSLP also

experimented with −1, which is the one that was finally used.

RIGER and RSA methods also return a p-value for each gene, after evaluating the

contribution of the different shRNAs that target it. The RIGER algorithm calculates a

p-value for each gene, indicative of the significance of the differential KRAS mutant and

KRAS wild type cell viability, caused by the gene’s knock down. To this aim a weighted

sum approach based on the signal to noise ratio was utilized. For the RIGER method,

a simple criteria of p-value < 0.05 was sufficient.

RSA method on the other hand assigns a value to each experimental well and in this case

the selection criteria are a bit more complicated. The inputs provided to RSA are the

summarized mutant-wild type values per well for Luo and for Wang screens. According

to RSA, a lower bound LB and an upper bound UB are defined, between which hit genes

are sought. These bounds intuitively correspond to fold changes. Wells with lower scores

than LB are guaranteed hits, whereas wells with larger scores than UB are guaranteed

non-hits. After correspondence with the methods’ developers and matching of the LB

and UB bounds with fold change, RankSLP opted for LB = −2 and UB = 0. There was

increased confidence in favor of their being hits if the log transformed and normalized

fold change is < −2. The ones having a positive fold change (> 0) correspond to the

surviving cells, thus they were rejected. The most significant hits were selected based

on two criteria:

• The p-value for each gene (p-values are the same for all wells corresponding to a

gene) should be < 0.05, and

• The gene should have at least two active wells (OPI Rank < 99999 for at least

two wells)

It has to be noticed that the rank of at least two wells, having p-value < 0.05, should

be a real number (RSA returns infinite if a rank cannot be calculated).

The retrieved ranks were mapped on 3D axes, with each axis representing the rankings as

calculated by each method (Figure 4.8). An obvious observation was that although the

exact ranking number differed, there was a general trend of correlation. The pairwise

Spearman correlation values were calculated for the rankings of the Luo and Wang

screens. After this step, RankSLP proceeded to hit gene set selection by each of the

three main methods, by applying a two-step procedure:
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Figure 4.8: Scatterplots of the gene ranks retrieved by the three main methods for
the Luo (top) and Wang (bottom) screens. The Standard, RIGER and RSA ranks
are shown on the x, y and z axis, respectively. There is no complete matching of the
rankings but a general correlation trend exists. Spearman correlations (approximate
values at the second decimal point): i) Luo screen: Standard-RIGER = 0.74, Standard-
RSA = 0.7, RIGER-RSA = 0.8, ii) Wang screen: Standard-RIGER = 0.65, Standard-
RSA = 0.59, RIGER-RSA = 0.76
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1. The intersection among the retrieved hits for each screen was calculated. The aim

was to have relatively restricted results for greater accuracy, but still a sufficient

number of genes for proceeding to next step filtering. There are 1069 common

genes among the three screens, which is a proper enough amount to continue with.

That is why the intersection was chosen instead of the union for the retrieval of

within method hits.

2. Both the intersection and the union of step 1 findings (intersection of hits from all

the screens for each method) was investigated. The intersection returned a narrow

set of candidates, which are probably the more robust ones.

RIGER & RSA: BRCA2, PSMD12, SPRY1

RIGER & Standard Method: SPRY1, FOS, COPB2

Standard Method & RSA: SPRY1

It is worth noticing that SPRY1 is the only common gene among all screens and

all methods. This will be further considered, when the final list of candidate genes

is reported.

However, the union of the methods was kept for further analysis as it allowed for

a broader range of candidates at first step.

Table 4.2: Retrieved genes by each method. Intersection among the 3 screens.

Standard Method RSA RIGER
AKAP8L BRCA2 BRCA2
ASB2 KCNN3 COPB2
BACH2 NCOR1 CTNNA1
COPB2 POLR2H EZH1

DNTTIP1 PSMD12 FOS
ERN1 SH3BP4 GSG2
FOS SPRY1 KCNRG

GUCY1A3 TOP1 MARCKSL1
HDAC9 USP48 MECOM
ISL2 NFKB1

MYBL1 PAX6
NKIRAS1 PSMD12
PLAG1 PSMD3
RAB7L1 RPL30
RAP1A SMAD1
SPRY1 SON

SUV39H2 SPRY1
TTK
UBE2I
WASF3

Table 4.2 contains the intersection of genes that are retrieved by each method for all

three screens.
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4.6 Genes with many of their shRNAs ranking below

threshold

Figure 4.9: Intersections of genes of which the shRNAs rank twice below our threshold
for the standard method, for both Luo and Wang screens which have multiple shRNAs
per gene (Luo 2,Wang 2), with RIGER and RSA results.

Figure 4.10: Intersections between the genes of which the shRNAs rank three
times (Luo 3,Wang 3) or twice (Luo 2,Wang 2) below our threshold for the standard
method, for both Luo and Wang screens which have multiple shRNAs per gene.

Regarding the Luo and Wang screens, some genes were targeted by shRNAs that scored

as hits more than once, when the Standard method was applied. On the other hand,

the RSA and RIGER methods take as input all the shRNAs but they return only one
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Figure 4.11: Intersections of genes of which two shRNAs against the same genes
rank below threshold for the standard method, for both Luo and Wang screens
(Luo 2,Wang 2), with RIGER and RSA results. Additionally to Figure 4.9, the in-
tersections with the hit genes for the standard method and for the three screens Luo,
Steckel and Wang is depicted, considering only the best ranking shRNA.

p-value per gene. So, each significant gene was retrieved only once after applying the

respective threshold criteria. Figures 4.9, 4.10 and 4.11 present with Venn diagrams

the intersections between the methods for the Luo and Wang screens, when multiple

shRNAs that target the same gene ranked below threshold by the Standard method.

From the above, it seems that some genes are more potent candidates. These are:

BCL2L13, BRCA2, EZH1, FOS, GSG2, HDAC9, KCNN3, MECOM, NCOR1, NFKB1,

PAX6, RAP1A, SMAD1 and TOP1. That is because they intersect among the methods.

The significance of each intersection was calculated using the phyper R function. This

function decides on the significance of the results retrieved by two different methods,

by using a hypergeometric distribution test on the intersection of methods. Table 4.3

shows the results of this test. Some intersections were significant while others weren’t.

The additional intersection Wang2-Luo2, not shown in the table, was also calculated.

The respective p-value was ∼ 0.124 which is far from the significance level.

Selection of the genes from the significant intersections concluded to 22 genes (out of the

initial 40, contained in the union of Standard, RIGER and RSA methods - Table 4.2):

FOS(4), SPRY1(3), BRCA2(3), RAP1A(2), NFKB1(2), HDAC9(2), TTK(1), TOP1(1),

SUV39H2(1), SON(1), SMAD1(1), PAX6(1), NCOR1(1), MYBL1(1), MECOM(1), KCNN3(1),

GSG2(1), EZH1(1), DNTTIP1(1), CTNNA1(1), COPB2(1), BACH2(1). The frequency

of significant intersection is indicated in the parenthesis. Additional methods were

needed to support the validity of this initially retrieved set of genes.
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Table 4.3: Significance of intersections among the 3 screens for the Standard, the
RIGER and the RSA methods

Luo-Steckel-Wang (best shRNA) RSA RIGER
Luo2 0.03792517 0.2977 0.00029
Luo3 - - 0.062
Wang2 0.002453423 6.51 e-8 0.0476
Wang3 0.3916075 - 0.007

4.7 Results from RNAiCut

The results after application of the RNAiCut method are shown in Table 4.4 in juxta-

position with the results from the Standard method.

Table 4.4: Comparison of retrieved hit genes between RNAiCut and Standard ranking
computations, applied on the 1069 common genes only

Screen No of genes:
RNAiCut

No of genes:
Computations

Intersection

Luo 101 223 22

Steckel 217
Stringent (Z=-2): 35 31
Relaxed (Z=-1): 126 98

Wang 136 685 136

• For the Luo screen, the threshold was initially set too low by RNAiCut: only four

genes out of 1069 were selected as true positives. I contacted the author of the

respective paper, Prof Irene Kaplow, and she indeed admitted that sometimes the

algorithm gets trapped in local minima. She suggested to look for the next local

minima which in this case is met at the 101st hit. From the original analysis, a set

of 223 genes was retrieved, including 22 of the aforementioned 101. This difference

is raising questions but at least assigns highest confidence to these 22 genes.

• For the Steckel screen, 217 genes were selected by RNAiCut, while 35 genes

(stringent criteria) and 126 genes (relaxed criteria) were selected by the Standard

method. Table 4.4 shows that most of the genes coming from computations were

included in the set of genes retrieved by RNAiCut. It is interesting that RNAiCut

stresses even more genes than the ones retrieved by applying the relaxed criteria

of z-score < -1.

• For the Wang screen, 136 genes were detected by RNAiCut, whereas 685 genes

were detected by the Standard method. The larger set contained all the genes of

the smaller set.
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Table 4.5: Comparison of retrieved hit genes between RNAiCut and the three basic
ranking methods

intersection Standard method RIGER RSA
Luo ERN1, BACH2, PLAG1, BRCA2, CTNNA1, BRCA2

COPB2, MYBL1, WASF3 SMAD1, COPB2, FOS
HDAC9, FOS, SUV39H2 MDS1, NFKB1

NKIRAS1
Steckel All FOS, SON, SPRY1 BRCA2, SPRY1

BRCA2, COPB2
Wang BACH2, SUV39H2, TTK GSG2, NFKB1, PAX6 SPRY1, TOP1

HDAC9, FOS, RAB7L1 SON, FOS, COPB2
ISL2, DNTTIP1, SPRY1 EZH1, SPRY1

COPB2

The genes retrieved by RNAiCut were investigated and compared with the genes that

were retrieved by each of the three basic ranking methods. Almost all the genes that

were detected by the Standard method, RIGER and RSA were below the threshold that

RNAiCut imposed. Moreover, BCL2L13, a gene that is present in the intersections of two

screens (see Venn diagrams), but not of three screens, was also selected by RNAiCut. On

the one hand this high intersection was a positive result, since it implied that RankSLP

was heading towards the right direction. On the other hand, RNAiCut did not provide

any significant additional information at the final selection of hit candidates.

4.8 Incorporation of the genes retrieved by rank

aggregation

The rank aggregation method was applied by using the R function RankAggreg() (see

details in section 3.4). It was applied on the ranks of the Standard method for the three

screens. For detecting the hit genes, significance thresholds were imposed. However,

for the case of RankAggreg, the whole ranked list is needed as input and the algorithm

requires the use of only one shRNA per gene. Therefore, in the case of Luo and Wang

screens, the best ranking shRNA was used, for consistency with Standard method. In

this part, the findings of RankAggreg R function are exhibited. As explained in the

Methods section, the top 10% of the genes that would rank high in a combined super -

list were collected.

Two heuristics towards the generation of the list with the minimum Spearman distance

to all three lists, were compared: the Genetic Algorithm (GA) and the Cross Entropy

Monte Carlo (CE). The Genetic Algorithm did not converge, but two genes, REL and

AKT1 were selected very often, with different parameter choice.
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Figure 4.12: Frequency of retrieved GSGs at the top % of each ranked list, as calcu-
lated by the Standard method. The best ranking shRNA was considered in Luo and
Wang screens. It is clear that Luo screen ranking outperforms the other two.

The CE algorithm converged and its findings were further used. CE is also preferred

by the developers of the method, as it performs better than GA on real data [59]. The

chosen distance measure was the Spearman footrule distance. The rarity parameter ρ

used in updating the cell probabilities was set to 0.01.

RankSLP assigned importance coefficients on the lists based on how well they rank the

GSGs at their top 10% positions. Figure 4.12 clearly shows that, in these terms, the

Luo screen is of better quality. For proper calculation of the importance coefficients that

should be assigned to each screen, the fractions of GSGs that are retrieved at different

cutting thresholds starting from the top of each ranked screens were calculated. These

fractions are measured by dividing the number of GSGs that are ranked at top 10%

positions, by the number of GSGs that are part of the common genes among all three

screens (21). The percentages are 6
21 ,

1
21 and 3

21 for the Luo, Steckel and Wang screens

respectively.

RankSLP looked for a proper multiplier mult to standardize these percentages so that

they sum up to one. Thus, the following simple equation model was fitted (4.1):

mult =
1

perc.luo+ perc.steckel + perc.wang
(4.1)
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weight Luo = perc.luo ∗mult = 0.6

weight Steckel = perc.steckel ∗mult = 0.1

weight Wang = perc.wang ∗mult = 0.3,

where perc.luo, perc.steckel and perc.wang are the importance weights, corresponding

to the percentages of GSGs that were retrieved at the top 10% positions of each ranking.

The resulting genes that are common with the identified hits of sections 4.5 and 4.6

are COPB2, NCOR1 and SPRY1 (see Table 4.6). RankSLP also experimented with the

significant genes when aggregating the top 5% of the ranked input lists. The above genes

were retrieved as well, indicating that these three are quite robust both to the ranking

method and to the screen.

Table 4.6: Intersections of weighted top 5% and top 10% RankAggreg results, with
Standard, RIGER and RSA methods

Method Common genes, top 5% or 10%
Standard method (relaxed criteria) COPB2, SPRY1

RIGER COPB2, SPRY1
RSA NCOR1, SPRY1

4.9 First hit genes selection and pathways enrichment

At this stage some first results were already retrieved. Before proceeding to evaluation,

the pathways of the hit genes were investigated, in order to estimate if the previous

analysis was correctly directed. To this aim, the genes that were confirmed by at least

two of the already examined methods were selected. The 25 resulting genes were searched

in five publicly available databases: i) WikiPathways [84], ii) GeneCards [85], iii) KEGG,

release 71.0, July 1 2014, iv)PubMed Gene, accessed in May 2014 and v) REACTOME

pathway database5. The main pathways in which the hit genes participate are shown

in table 4.7. The majority are cancer pathways. This was a proof that the followed

procedure leads to meaningful findings.

4.10 Comparison with literature genes

In this section, a comparison of the current findings with the KRAS synthetic lethal

partners that are discussed in existing literature is provided (GSGs - see subsection

5The accessed databases following the text order are http://www.wikipathways.org, www.

genecards.org, http://www.genome.jp/kegg, http://www.ncbi.nlm.nih.gov/gene, http://www.

reactome.org/
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Table 4.7: Pathways in which the hit genes participate. The genes are ordered alpha-
betically.

BACH2 lymphocyte signaling
BCL2L13 legionellosis
BRCA2 cell cycle, HR (Homologous recombination), DNA repair
COPB2 membrane trafficking
CTNNA1 hippo pathway, adherence junction
DNTTIP1 no information found
ERN1 Alzheimer disease, unfolded protein response
EZH1 gene expression
FOS MAPK/ERK, Wnt signaling, TNF
GSG2 no information found
HDAC9 histone deacetylation, viral carcinogenesis
MECOM MAPK/ERK
MYBL1 HTLV-I infection, IL4-mediated signaling event
NCOR1 notch-delta pathway, signaling by Erbb4
NFKB1 MAPK/ERK, NF-kappa B, PI3k/Akt/mTOR, Viral carcinogenesis
PAX6 CDC42 signaling events, maturity onset diabetes of the young,

regulation of gene expression in beta cells
PSMD12 proteasome
RAP1A chemokine signaling pathway, focal adhesion, IL-3 Signaling Pathway,

MAPK/ERK, long-term potentiation
SMAD1 hippo pathway, angiogenesis, TGF-beta signaling,

transcriptional misregulation in cancer
SON NCAM signaling for neurite out growth, oxytocin signaling pathway

SPRY1 JAK/STAT signaling pathway, signaling by EGFR
SUV39H2 lysine degradation
TOP1 caspace cascade in apoptosis
TTK RB/E2f pathway in cancer, cell signaling, cell cycle, checkpoint control
UBE2I cell cycle, meiotic synapsis, SUMOylation, TNF-alpha/NFKB,

ubiquitin mediated proteolysis

4.1.2). To this aim, the comparison was done with the GSGs that are retrieved from

literature only. It is crucial that this comparison is done with the external to the three

used screens’ data only, in order to avoid overestimation of the ranking methods used.

The literature genes that are supported by external sources are 28 in total. Out of these,

21 intersect with the common genes among the three screens. RankSLP detected only

two of them, NFKB1 and SMAD1. This limited overlap, made me investigate the ranks

of the GSGs that were retrieved by the Standard, RIGER and RSA methods, described

in the Data and Methods Chapter. In the cases where more than one shRNAs target

the same gene, its rank was the best rank of its shRNAs. Simple consensus metrics,

including the minimum, maximum, average and median of the individual screen ranks

were calculated across the three screens for each gene. Figures 4.13 and 4.14, illustrate

these consensus ranks and the percentage of GSGs that are retrieved in the first quantile

(top 25%) of ranks.
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Figure 4.13: Consensus ranks of the common genes across the Luo, Steckel and Wang
screens. The ranks are plotted in black dots. The red dots are the GSGs and the cyan
dot indicates the first quantile. The x axis shows the consensus metric that is utilized
in each bar. At the bottom of the bar is shown the percentage of GSGs that lay in the
first quantile.

The coverage of GSGs at the first quantile is varying, exhibiting highest scores for the

Standard method on the Luo and Wang screens and for the RSA method. Judgement of

which of the methods (Standard method, RIGER and RSA) is best based on the ranks

that it assigned to GSGs was not a trivial task. There is not a clear pattern and the

number of GSGs is small (21). This is further discussed in the next Chapter. Overall

though, the GSGs rank relatively well.

It has to be noticed that three of the detected genes, COPB2, PSMD3 and PSMD12

(the two latter are proteasome components) were confirmed internally by Luo and Wang

screens. This is not as strong evidence as for the NFKB1 and SMAD1 genes, which were

confirmed by external data.

4.11 Comparison with high throughput drug screens

In an RNAi screen, a gene of interest is knocked down (silenced) by an siRNA or shRNA

that has complementary sequence to it. In the same way, in a compound inhibition screen

or drug screen, a drug targets a gene of interest in order to silence it. For KRAS mutant

cell lines and in both RNAi and drug screens, if a KRAS SLP is targeted and knocked
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Figure 4.14: The figures depict the RIGER (left) and RSA (right) ranks of the genes
that are common between the Luo and Wang screens remember, RIGER and RSA can
only be applied in these two screens because they require multiple shRNAs per gene).
The ranks are plotted in black dots. The red dots are the GSGs and the cyan dot
indicates the first quantile. The x axis shows the screen of which the rankings are
represented by each bar. At the bottom of the bar there is the percentage of GSGs
that lay in the first quantile.

down (KD) by an RNAi inhibitor or drug D respectively, the cell dies. So, following the

reverse path, our hypothesis is that: If for two KRAS mutant cell lines being targeted by

drug D and shRNA corresponding to gene KD the same lethal phenotype is observed,

then drug D targets gene KD. This hypothesis is shown in Figure 4.15, right hand side.

Table 4.8: Chemical Genomics Screens

The field Year corresponds to when the respective study took place. CCLE, GDSC and NCI60
datasets are often being updated. The versions of June 2013 were used.

Screen Name Year No of Compounds Cell Lines
NCI60 1990 - Present ∼20000 59
GDSC 2012 138 714
CCLE 2012 24 504

Steckel Drug 2012 108 2

Based on this hypothesis, four external drug screen datasets were analyzed in order to

compare and confirm the findings from the RNAi screens. These are summarized in

Table 4.8
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Figure 4.15: Left: Drug response curve. The viability of the tumor cell line is
dropping as the drug concentration is increasing. A 50% decrease in tumour growth
corresponds to the IC50 drug dosage (dashed line). Right: Our hypothesis: If P is
similar to P, then we suppose that drug D targets gene KD

4.11.1 Dataset retrieval

In this part, a general description of each drug dataset is provided.

1) Cancer Cell Line Encyclopedia (CCLE) [49]: This project was initiated in 2012 by

Broad Institute and consists of an effort to systematically characterize genetically a large

panel of human cancer cell lines, in terms of their mutation, DNA CNV, SNP e.t.c. A

part of this project is the drug response testing of 24 anticancer drugs on these cell

lines. In total, 1000 cell lines are examined and the mutation status of ∼ 1600 genes

is captured. The drug response data were downloaded in May 2013 from the CCLE

database6.

2) Genomics of Drug Sensitivity in Cancer (GDSC) dataset [86]: This is an effort of the

Sanger Institute towards the detection of cancer therapeutic biomarkers, through the

examination of the responses of cancer cells to specific drugs. To this aim, 700 cancer cell

lines are tested for their sensitivity/resistance against 138 chemical compounds. Overall,

around ∼ 75000 experiments have been conducted. For the current analysis, the resource

named “cell line drug sensitivity, mutations and tissue type” was downloaded by the

GDSC database7, in April 2013.

3) National Cancer Institute dataset (NCI60): This data is part of the Developmental

Therapeutics program which was initiated in late 1908’s by the National Institute of

6http://www.broadinstitute.org/ccle
7http://www.cancerrxgene.org/downloads/
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Health (NIH) in Bethesda - US, and it is still ongoing [87]8. The number 60 comes

because of the effects on 60 tumour cell lines. However, complete data allowing further

analysis exist only for the 59 of them. The datasets are accessible via the CellMiner por-

tal [88], [89]. The cell line-wise normalized drug response data (DTP) were downloaded

from this site. The respective dataset contains 20,502 compounds and their effects on

59 human cancer cell lines.

4) Steckel Drug: The fourth Steckel Drug screen, is performed by the same group of

scientists that conducted the Steckel RNAi screen [26] and is freely accessible online

from the publication website.

4.11.2 CCLE, GDSC and NCI60 screens

Three of the four screens, namely CCLE, GDSC and NCI60 contain information about

each cell line’s sensitivity to each drug. This is captured by the IC50 value: This value

represents the compound dosage that reduces the natural tumour growth of the cell to

50% in 48 hours. The drug response curve shows the decrease in tumour growth with

respect to a drug’s concentration. The shape is usually sigmoid and an example is shown

in Figure 4.15 along with the IC50 value.

Figure 4.16: The KRAS mutant cell lines were separated from the KRAS wild type.
The wilcoxon rank sum test was applied with alternative less. The H0 assumes that
there is no differential effect of the drug between the two cell line categories.

In this case a simple statistical analysis between KRAS mutant and KRAS wild type cell

lines was performed. The mutation status for CCLE data were provided by the CCLE

8http://dtp.nci.nih.gov/index.html
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portal. Only the mutations that led to a protein change (no UTR’s e.t.c.) were con-

sidered. The GODS and NCI60 mutations were retrieved from additional files provided

together with the data. Extra searching was required in few cases; these additional mu-

tation data were obtained from the Sanger Institute Catalogue Of Somatic Mutations In

Cancer9 (COSMIC) [90]. The performed statistical analysis involves the following four

steps:

1) Initially all the IC50 values were converted to micromolars (uM), which is the most

common unit for drug concentrations.

2) Afterwards, the data were subjected to double normalization, drug-wise and cell line-

wise, in order to avoid all possible biases in further analysis.

3) Finally, the Wilcoxon rank sum test was applied to the datasets, as shown in Figure

4.16. The Ho assumes that there is no differential drug effect between the KRAS mutant

and the KRAS wild type cell lines.

The alternative was set to less.

4) The significant drugs were the ones that had a p-value < 0.05. By rejecting the Ho

at the 95% significance level, it means that there exists just a 5% probability that the

observed less viability of the mutant cells versus the wild type is attributed to chance.

4.11.3 Steckel Drug screen

In the case of the Steckel drug dataset, IC50 values are not available. The data consist

of four different concentrations of each drug and the viability ratio wt/mut.

In order to detect the significant drugs, based on their effect on KRAS mutants viability,

the following steps were performed:

1) Deletion of negative control rows.

2) Inversion of the viability ratio so as to have mut/wt viability R.

3) Normalization over the negative controls R′ = (R− μ(nc))/σ(nc)

4) Selection of the drugs with R′ < 0, because the interesting drugs are the ones that

lead to a smaller viability for mutants than for wild types.

4.11.4 Drug-Target matching

In previous sections, the selection scheme of significant drugs is explained. But how can

these results be compared to the results coming from the RNAi screen analysis? To this

aim, STITCH v3 [91], a fully up-to-date database that contains all known drug target

9http://www.sanger.ac.uk/cosmicwere
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relationships for all species integrated from other databases, was used. The database

is freely accessible online at http://stitch.embl.de/. The underlying structure of

STITCH is a graph with nodes representing compounds or genes and edges representing

their connections (see Figure 4.17). The color and width of each edge correspond to the

source from which the specific connection is provided and to the confidence that this

connection really exists, respectively.

Figure 4.17: An example screenshot of a search for the compound ’etoposide’ in the
STITCH database.

The frequency of the number of compound-target pairs in STITCH with respect to the

confidence threshold is presented in Figure 4.18. For the current analysis, STITCH

drug-target pairs with a relatively “high” confidence threshold of at least 70% were

considered, as suggested by the developers of the database. Since STITCH provides

protein identifiers, matching with the respective gene identifiers was performed through

BioMart interrogation10, using the R Bioconductor package bioMart.

For each of the drug datasets, RankSLP matched their provided identifier with the ones

provided in Stitch. For all the drug datasets the matching was done using aliases. For

the CCLE, GDSC and Steckel Drug datasets, this was the only provided identifier. For

the NCI60 dataset, the SMILES codes of some of the tested compounds were provided.

The matching with STITCH was first attempted through InchiKeys. The SMILES-to-

InchiKey conversion was done using the Open Babel Package11 (accessed in June 2013).

However, the SMILES codes were provided as a seperateset list (IC50) to the drug

response data. Only 2,530 of these SMILES codes were accompanied by the respective

10http://www.biomart.org/
11http://openbabel.sourceforge.net/
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Figure 4.18: Cumulative distribution of scores. For each confidence score cutoff, the
number of chemicals (top) and protein–chemical interactions (bottom) that have at
least this confidence score in the human protein–chemical network. For example, there
are 110,000 chemicals with a high-confidence interaction (score at least 0.7). Note
that interactions with confidence scores below 0.15 are not stored in STITCH. Steps
in the data correspond to large numbers of compounds that have a maximum score in
manually curated databases or the ChEMBL database (with different confidence levels).
Both the figure and the caption are taken from the original paper [91].

alias, which is required for matching with the IC50s. On the other hand, the NCI60

compound aliases that can match with STITCH (using the alias only) are 2,682. That

is why the matching based on aliases was further used. Unfortunately, since the aliases

are not unique identifiers, this resulted in an incomplete matching of the compound

names with STITCH. The matching algorithm has O(nk) complexity, where n is the

amount of drugs that pass the 70% threshold criteria in STITCH and k the amount of

compounds in each drug dataset. Considering the vast amount of drugs with known

targets in STITCH, this procedure takes much time(approximately one hour for CCLE

which is the smallest drug dataset and three to four hours for NCI60 which is the largest

drug dataset).
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4.11.5 Identified genes from the analysis of drug response data

The drug screen analysis was completed by concluding in the emerging gene hits. A

crucial assumption that was made at this stage, was that if a drug-target pair is detected,

it is considered as valid, without taking into account the effects of polypharmacology.

This is a scenario that was followed in order to decrease the problem’s complexity. To

be totally realistic, we should have considered the effects of the selected drug on other

target genes and potential interactions among them should have been considered. This

assumption is further discussed in the Discussion Chapter.

Table 4.9 provides the results in a summarized way.

Table 4.9: Drug screen analysis results

Screen Hits also confirmed by RNAi screens
CCLE BRCA2, HDAC9, NFKB1, TOP1
GDSC BRCA2, ERN1, FOS, NFKB1, TOP1
NCI60 FOS, NFKB1

Steckel Drug BRCA2, FOS, HDAC9, NCOR1, NFKB1, PAX6, TOP1

Some additional notes on Table 4.9 are:

• Regarding the CCLE dataset, the targets of the 24 screened drugs are provided

under the official CCLE portal12. Only one protein target per drug is given and

we suppose that this is the intended target. Table 4.10 shows the differential drugs

between KRAS mutant and KRAS wild type cells and their intended targets in

the CCLE database. As it can be noticed, there is no exact match between these

Table 4.10: CCLE: Significant compounds and their intended targets, as provided by
the official CCLE portal http://www.broadinstitute.org/ccle

Compound Intended target protein
17-AAG HSP90
AZD0530 MEK
Irinotecan TOP2
Nilotinib ABL
Paclitaxel TUBB1
PD-0325901 MEK
ZD-6474 EGFR

genes and the ones that were retrieved by taking all the targets of a drug using a

12http://www.broadinstitute.org/ccle
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70% threshold, as described in section 4.11.4. However, there is a general trend

for silencing of the MAPK/ERK pathway (MEK, EGFR). This is in accordance

with the detection of the FOS oncogene as hit. In addition, TOP1 is detected as

target using STITCH analysis, instead of TOP2.

• Regarding the NCI60 dataset, only few compounds had a significant differential

effect between the cancer cell lines. Attention was paid to that; a larger number,

given the amount of compounds (around 20,000) that were tested. Searched for

supporting evidence I came across the 2012 paper by Burkard M. E. [92], where

the authors show that there are few differential drugs in the NCI60 database.

The SPRY1 gene, the only common hit between the three main used methods for RNAi

screen ranking (see section 4.5), was not detected by the drug screens. This case was

investigated and it was found that indeed, no drugs that target SPRY1 are screened in

any of the four examined compound inhibition datasets.

4.12 Network enrichment

In this section, the position of the hit genes in the human protein network and their

connections are investigated. The hypothesis is that strong network connections of

the hit genes and possible interactions with KRAS would help to verify the findings of

section 4.9. To this aim, the retrieved genes and their containing modules were examined

using WebGestalt. WebGestalt stands for“WEB-based GEne SeT AnaLysis Toolkit”

and it is a freely accessible online tool for gene enrichment analysis, provided by the

Vanderbilt University [93], [94]. It is mainly used for the analysis of the significant genes

(i.e. differentially expressed genes) resulting from high throughput genetic datasets, like

functional genomics and proteomics. WebGestalt contains information from different

public databases, and provides a unique interface to all of them, facilitating and speeding

up the expanded analysis of genetic data.

In RankSLP, homo sapiens was selected as the organism of interest. The gene ID type

was hsapiens gene symbol. The enrichment analysis methods that were used are Path-

way Commons, Gene Ontology terms (GO) and Protein Interaction Network Module.

The reference set was hsapiens genome and the statistical method was hypergeometric.

Further multiple test correction was performed using the Benjamin-Hochberg procedure

(BH). The significance level was set to top 10 and the minimum number of genes for a

category was three. Using the above parameters, significant modules were highlighted.

The selected modules were mapped into Cytoscape, version v.3.213, using the STRING

13http://www.cytoscape.org
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network connections as of the March 2014 version. No confidence threshold was imposed

on the edges of the network. The visualization was a five-step procedure:

1) For each of the modules, its consisting genes were detected and highlighted.

2) Their first neighbors were retrieved (the undirected version of the network was used

for that)

3) A subnetwork, containing all the nodes and edges that are part of steps 1 or 2, was

created.

4) The Gold Standard Genes along with the KRAS gene were also highlighted in the

final network.

5) The network was re-arranged to ameliorate its readability. The genes that were end

nodes without further connections were deleted for simplicity, except if they belong to

the ones retrieved in steps 1-4 or have some known important cancer-related function.

4.12.0.1 Pathway Commons analysis

One of the analysis available by WebGestalt is Pathway Commons [95]. It highlights the

common cell signaling and metabolic pathways in which the retrieved genes participate,

providing also information about gene-gene interactions. One set of RankSLP’s hit genes

participates in the TNF alpha and the NF-kB pathways (Figure 4.19), which are known

to be cancer-related, and another set is enriched in nine different pathways (Figure 4.20).

In the first case KRAS was not even present in the network. Many of the hit genes, like

HDAC9, NCOR1, NFKB1, PSMD3 and PAX6 are quite central with many connections.

This means that many pathways can be affected by their silencing, and thus one should

be very careful when knocking any of them down.

In the second case, CTNNA1, FOS, RAP1A, SPRY1, TOP1 and UBE2I exhibit a high

connectivity as well, along with the aforementioned NCOR1, NFKB1, PSMD3 and

PAX6. Three of our GSGs, are also present: MAP3K7, NFKB1 and SMAD1. The

presence of KRAS is noticeable and its direct connectivity with CTNNA1 makes this

gene a stronger candidate. Hence, if CTNNA1 is knocked down, the signal will directly

be transmitted to KRAS, without intermediate steps that may potentially make it alter

or fade.
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Figure 4.19: TNF alpha/NF-kB pathways: Blue nodes are the hit genes and purple
nodes are their first neighbors.

4.12.0.2 Gene Ontology analysis

Another interesting analysis that WebGestalt offers, is protein grouping based on com-

mon Gene Ontology (GO) term enrichment. The GO project is a collaborative effort

towards consistent descriptions of gene products [96]. It is widely used as a common

reference by the scientific community, thus it was interesting to show some of its results

on the hits detected by RankSLP. Three example GO categories, with three or more hit

genes enriched, are depicted in Figures 4.21 and 4.22. The rest enriched GO categories,

having significance (adjusted p-value) of magnitude 10−2 to 10−4 are presented in Table

4.11.
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Figure 4.20: The highlighted in blue genes participate in nine pathways, having ap-
proximately the same significance level ( e− 05): 1. tIFNgamma pathway, 2. Throm-
binprotease-activated receptor (PAR) pathway, 3. PDGF receptor signaling network, 4.
IL5-mediated signaling events, 5. GMCSF-mediated signaling events, 6. ErbB receptor
signaling network, 7. Urokinase-type plasminogen activator (uPA) and uPAR-mediated
signaling, 8. Internalization of ErbB1 and 9. Plasma membrane estrogen receptor sig-
naling. Blue nodes are the hit genes and purple nodes are their first neighbors. Yellow
nodes are the GSGs. NFKB1 and SMAD1 are GSGs as well, but they are also hit
genes, thus they are painted in blue.

4.12.0.3 Enrichment having as basis human kinases

The GO categories that were retrieved by the previous analysis, using as reference the

whole human genome, are very general. To create a more specific GO enrichment out-

come, the human kinases were used as basis. In the Wang screen [27], the targeted

genes are “known human cancer genes” and “protein kinases”. RankSLP’s integrative

analysis is applied on the genes that lay in the intersection of the three screens. Thus,

they consist of a subcategory of the genes screened by Wang et. al. The “known can-

cer genes” are not a specific set of genes but the human protein kinases are. Hence,

the latter were used as a reference aiming at a more informative GO anlysis. A set of

620 human kinases was downloaded from the Human Kinome Project14 [97], on July

14http://kinase.com/human/kinome/
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Figure 4.21: Blue nodes are the hit genes and purple nodes are their first neighbors.
Yellow nodes are the GSGs.
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Figure 4.22: Blue nodes are the hit genes and purple nodes are their first neighbors.

20 2014. Their HGNC gene symbols were not directly available, thus the Entrez gene

identifiers were used for WebGestalt GO enrichment. The multiple test adjustment was

kept to BH and the minimum number of genes for a category was kept to three, for

consistency with the previous network enrichment analysis. The significance level was

altered though: instead of top 10 which was used in the previous GO analysis, here it

was set to 0.05 to enrich with larger confidence for a category. Only three genes were

enriched in many GO categories: ERN1, GSG2 and TTK. Two of these categories scored

below the significance threshold: negative regulation of cell cycle, and cell cycle arrest.

Thus, these three genes are significant regulators of cell cycle. Their interactions are

visualized in Cytoscape and presented in Figure 4.23.
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Table 4.11: Enriched GO terms with respective p-values

GO term No of genes enriched Adjusted p-value
negative regulation of biological process 19 6.1e-03
positive regulation of metabolic process 20 6.1e-03
macromolecule modification 17 6.1e-03
positive regulation of macromolecule metabolic process 14 6.1e-03
positive regulation of cellular metabolic process 14 7.3e-03
positive regulation of metabolic process 15 6.1e-03
positive regulation of cellular process 19 6.1e-03
cellular protein metabolic process 19 7.3e-03
protein modification process 16 7.3e-03
cellular protein modification process 16 7.3e-03
nucleic acid binding transcription factor activity 8 1.17e-02
chromatin binding 5 7.3e-03
sequence specific DNA-binding transcription factor activity 8 1.17e-02
SMAD binding 3 9.3e-03
enzyme binding 8 1.45e-02
DNA binding 13 1.6e-02
regulatory region nucleic acid binding 5 9.3e-03
regulatory region DNA binding 5 9.3e-03
sequence-specific DNA binding 7 9.3e-03
transcription regulatory DNA binding 5 9.3e-03
intracellular 38 1.4e-03
intracellular part 37 2.4e-03
organelle lumen 17 2.5e-03
intracellular organelle lumen 17 2.5e-03
nucleus 25 1.8e-03
nuclear part 19 4e-04
nucleoplasm 13 4e-04
nuclear lumen 17 8e-04
nuclear chromosome part 5 1.8e-03
nucleoplasm part 8 2.5e-03

4.12.0.4 Discussion on network enrichment

The Protein Interaction Network Module also revealed interesting modules, however

almost covered by the two previous analyses. Many of the hit genes hold important

roles in the human gene network and they are inter-connected. Surprisingly, almost

all the genes (except CTNNA1 and EZH1) that we identified as KRAS SLPs are not

directly connected with KRAS. So, they affect KRAS indirectly, and the signal passes

through other nodes in its way. In conclusion, it could be supported that there are

six genes that are significantly enriched for KRAS SLPs: i) the two direct interactors,

CTNNA1 and EZH1, ii) the three enriched genes for cell cycle arrest: ERN1, GSG2 and

TTK and iii) the very central and participating in almost all modules NFKB1 gene.
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Figure 4.23: The connections of the three genes, ERN1, GSG2 and TTK, that are
enriched when the human kinases are used as reference. Some other of the hit genes are
present as well. Blue nodes are the hit genes and purple nodes are their first neighbors.

4.13 Final selection of genes for experimental validation

In this section, the results of all the previously mentioned methods are combined in

Table 4.12. All the genes that were identified by at least two methods are considered

and they are prioritized according to their total score (i.e. number of methods by which

they were retrieved). A hint paper, as referred to in Table 4.12, is one that supports

the respective gene as being very important in keeping the tumorigenic state of a KRAS

mutant cell, without specifically mentioning that it is a KRAS SLP candidate (GSG).

Here, the three genes for which there is such evidence, along with the respective source,

are given:

1) ERN1: Evidence for this gene comes from the paper that introduced the Barbie screen

[24]. It is found in the top 218 genes that, according to the authors, are more probable

to be KRAS SLP candidates.

2) FOS: This is a gene downstream of KRAS and is one of the important factors in retain-

ing the cancerous state of KRAS-dependent cells [98]. As member of the MAPK/ERK

pathway it may be involved in the regulation of KRAS expression and for retaining the

KRAS-induced tumors [99]



Chapter 4. Results 68

3) SPRY1: This Sprouty homolog 1 gene, is declared as antagonist of FGF signaling in

Drosophila cells. It has been found that in KRAS mut cells it supports and facilitates

EGFR signaling [100]. It thus acts as a positive feedback loop that retains the tumori-

genic KRAS signaling.

After careful inspection of the table, the few top genes were concentrated, and provided

to experimentalists, who were convinced to proceed with wet lab validation. The hit

genes are the ones that have evidence from five or more sources in their favor: BRCA2,

COPB2, ERN1, FOS, NFKB1 and SPRY1. Recall at this point that SPRY1 is the

gene that was retrieved by all of the three basic methods (section 4.5). This is the

first gene in which our experimental collaborators were interested. Moreover, quite a

number of genes collected favorable evidence from four sources. These are CTNNA1,

EZH1, HDAC9, NCOR1, PAX6, TOP1 and TTK. It has to be noticed that, although

SMAD1 has a total score of 3, it is a GSG, a criteria that has more weight than the rest

approaches. Thus, it can be considered a strong candidate.
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4.14 Analysis and result on the incorporation of an extra

or random screen

In section 3.5, a novel methodology, which examines if the inclusion of an extra or random

screen alters the result, is described. Its results are presented hereafter. For each gene,

the combination of screens in which its rank is minimized was found. Then, RankSLP

examined which genes are assigned with their minimum ranking by the combination of

Luo-Steckel and Wang screens and compared them with the original findings from these

three screens’ analysis. The encouraging observation was that, both when a random

screen or when the Barbie screen are included, many of the detected hit genes are

conserved.

More specifically, when the Barbie or a random screen was included, 15 and 13 genes

respectively received their minimum p-value for the combination of the Luo, Steckel and

Wang screens. The detailed findings are shown in Table 4.13.

Table 4.13: Genes enriched for best ranking by Luo-Steckel-Wang combination and respective
p-values

Enriched gene p-value Enriched gene Enriched gene and p-value
when Barbie is included when random is included

BACH2 0.0023606279 CBL 0.0773371394
BRCA2 0.0548169947 COPB2 0.0130130515
CBL 0.0773371394 DNTTIP1 0.0086737373

COPB2 0.0130130515 FOS 0.0002950633
DNTTIP1 0.0086737373 HDAC9 0.0103203843

FOS 0.0002950633 ISL2 0.0290333177
HDAC9 0.0103203843 PLAG1 0.0011660877
ISL2 0.0290333177 RAB7L1 0.0257575380

PLAG1 0.0011660877 RRM1 0.0517120796
RAB7L1 0.0257575380 SPRY1 0.0294268330
RRM1 0.0517120796 SUV39H2 0.0021080075
SPRY1 0.0294268330 TRIB3 0.0345644340

SUV39H2 0.0021080075 UBE2I 0.0588745334
TRIB3 0.0345644340
UBE2I 0.0588745334

Among the genes that are enriched when the Barbie or a random screen is included,

BRCA2, COPB2, FOS and SPRY1 have evidence from five or six sources according

to RankSLP’s analysis. HDAC9 has evidence from four sources. The genes BACH2,

DNTTIP1, PLAG1, ISL2, RAB7L1 and SUV39H2, also appear in Table 4.12 but with

less sources of evidence. Finally, UBE2I is not seen for the first time; it was detected

by Standard method when the best ranking shRNA was considered. However, it was

not confirmed by any of the other methods, that is why it is not reported in Table
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4.12. The only genes that are new are CBL, TRIB3 and RRM1. Among these, CBL

is very strongly connected with a network to SPRY1, one of RankSLP’s most potential

candidates. Moreover, the p-values of these additional genes are not very significant

(except TRIB3). In conclusion, according to the random or extra screen analysis, the

majority of the genes identified by the methodology implemented in this thesis are

confirmed robust candidates.



Chapter 5

Discussion

This Chapter further discusses the findings of this thesis. First of all, the selected

most probable KRAS SLP candidates are deeper investigated and associated with the

hallmarks of cancer. These are the properties of cancer cells, as proposed by Hanahan

and Weinberg [101]. Moreover, the relatively small overlap between the genes that are

detected by this analysis and the Gold Standard Genes is discussed. This Chapter also

provides an evaluation of the three basic ranking methods that are applied in this work:

Standard method, RIGER and RSA. In addition, the Cross Entropy rank aggregation

is compared with baseline rank aggregation techniques. Furthermore, the methods and

the parameter selection decisions are assessed here. Finally, this Chapter discusses the

contribution of this thesis and compares it with existing work in the field.

5.1 Final selected genes and their roles in cancer

development

Hanahan and Weinberg, in their seminal paper in 2000 [102], proposed the six properties

that are shared among cancer cells, and showed that they are necessary for tumour

initiation and expansion. They call these properties “hallmarks of cancer”. They further

expanded this initial set of six hallmarks to nine in their 2011 paper [101]. A cancer

cell usually exhibits the characteristics of more than one hallmark category. These

hallmarks are widely established in cancer biology and are often used as a reference. The

functionalities of the candidate KRAS SLPs with evidence from four or more sources

(see Table 4.12) are explored and associated with the nine, updated hallmarks. To this

72
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aim, PudMed-Gene1 and Gene Cards2 were interrogated (access date: 23 July 2014),

and the following list was populated.

Figure 5.1: This figure it adapted from the latest paper of Hanahan and Weinberg
[101]. Alongside the cycle, the nine hallmarks of cancer are presented with the use of
a characteristic symbol for each of them. The rays of the cycle are manually expanded
to surround the hit genes that are associated with the respective hallmark.

BRCA2: It is involved in maintenance of genome stability, as it is responsible for the

repair of double strand breaks. BRCA2 is considered a tumor suppressor gene, as tumors

with BRCA2 mutations generally exhibit loss of heterozygosity (LOH) of the wild-type

allele. That is why it is associated with the resisting cell death hallmark.

CTNNA1: This gene participates in catenin-cadherin binding and is important in

keeping cadherin cell-adhesion properties. It is reported as a potential crucial player in

cell differentiation. The annotation of this gene is not very informative. I hypothesize

that it participates in epithelial-to-mesenchymal transition, thus it is associated with

activating invasion.

COPB2: This gene is a member of the Golgi coatomer complex and is essential for

1http://www.ncbi.nlm.nih.gov/gene/
2http://www.genecards.org/
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Golgi budding and vesicular trafficking. Due to its role in signal transduction, it is rea-

sonably associated with sustaining proliferative signaling.

ERN1: ERN1 is important in altering gene expression as a response to endoplasmic

reticulum-based stress signals, thus it is assigned to sustaining proliferative signaling.

EZH1: EZH1 interferes with methylation of histone H3 and helps in maintaining em-

bryonic stem cell pluripotency and plasticity. It is required for embryonic stem cell

derivation and self-renewal. In the Hanahan-Weinbeg cycle, it is associated with en-

abling replicative immortality.

FOS: This gene is widely known as regulator of cell proliferation, differentiation, and

transformation and sometimes as responsible for apoptotic cell death. It is also a mem-

ber of the MEK/ERK pathway and may have a positive feedback role in retaining KRAS

tumorigenic state. Hence it is placed in the sustaining proliferative signaling category.

HDAC9: This is a histone deacetylation protein and affects the way transcription fac-

tors regulate DNA transcription by altering chromosome structure. Depending on what

genes are covered by the histone that is deacetylated, this gene can have various effects

on the cell’s life. Here it is put in the resisting cell death category, but it could be

assigned in other parts of the cycle as well.

NCOR1: This gene negatively controls transcriptional repression of thyroid hormone

and retinoic-acid receptors by sponsoring chromatin condensation. It is part of a com-

plex which also includes histone deacetylases and transcriptional regulators. This is

confirmed by the network analysis, where it is found to be directly connected to HDAC9

(section 4.12). It is thus put in the same hallmark with HDAC: resisting cell death.

NFKB1: NFKB1 is a very influential transcription regulator. Its inappropriate acti-

vation leads to diseases of the inflammatory system and its inhibition to problematic

development of the cells’s immune system. It is thus playing an important role in the

cell’s inflammation and invasion (immune system cells are particularly invasive). There-

fore it is assigned to two hallmark categories: activating invasion and tumor promoting

inflammation.

PAX6: This gene contains DNA-binding domains which regulate gene transcription,

thus it is put in the sustaining proliferative signaling category. It is also required in the

differentiation of pancreatic islet alpha cells. As found in the STRING DB3, accessed on

23 July 2014, it is connected to gene IPO13. The latter mediates the import of specific

cargo proteins from the cytoplasm to the nucleus and is dependent on the Ras-related

nuclear protein-GTPase system. PAX6 is furthermore connected to the transcription

factors SOX2 and SOX3, which participate and influence development of the embryo

and cell fate. It is also found to promote blood vessel creation.

SMAD1: SMAD1 is a member of the SMAD family of proteins, which possesses sig-

nal transducing and transcriptional modulating capacities. It affects multiple cellular

3http://string-db.org/
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pathways and influences development, immune system response and other crucial cell

functions. It is also critical for blocking PAI, so it possibly regulates the invasion of tu-

mour cells. Thus, it is connected with two hallmark categories: sustaining proliferative

signaling and activating invasion.

SPRY1: The Sprouty homolog 1 gene, is declared as antagonist of FGF signaling in

Drosophila cells. In normal cells it acts as an inhibitor of FGF and EGF signaling

pathway activation, since it negatively regulates Receptor Tyrosine Kinases (RTKs).

However, in KRAS mutant cells, it has been found to act in the opposite fashion and

actually support and facilitate EGFR signaling [100]. It is clearly connected to the sus-

taining proliferative signaling hallmark.

TOP1: This gene encodes a DNA topoisomerase, an enzyme that controls and alters

the topologic states of DNA during transcription. This enzyme catalyzes the transient

breaking and rejoining of a single strand of DNA, which allows the strands to pass

through one another, thus altering the topology of DNA. Due to its property to counter-

balance DNA damage, it is placed to the resisting cell death hallmark.

TTK: This gene encodes a protein kinase which is able to phosphorylate tyrosine, serine

and threonine. It is essential for chromosome alignment at the centromere during mito-

sis and for centrosome duplication. It is thus crucial for cell proliferation, and therefore

assigned to sustaining proliferative signaling.

The majority of the hit genes are predominantly associated with the sustaining prolifer-

ative signaling hallmark. This corroborates Hanahan and Weinberg’s claim: “Arguably

the most fundamental trait of cancer cells involves their ability to sustain chronic prolif-

eration”. They support that this hallmark is the most commonly represented in cancer

cells, since it clearly is an accelerator of tumour development. It is consequently stronger

compared to tumor suppressor genes. Of course, as they claim, “often these signals in-

fluence yet other cell-biological properties, such as cell survival and energy metabolism”

[101].

Most hit genes can be associated with at least one hallmark. This confirmation ascertains

that the scientific methodology followed in this work is rational and in accordance with

established biological knowledge. However, the analysis of the identified genes may be

expanded as additional roles are identified. The specific subdivision on Hanahan and

Weinberg hallmarks presents the authors opinion.
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5.2 Overlap of Gold Standard Genes with RankSLP

findings

As shown in section 4.10, there is a moderate overlap between the genes retrieved in this

thesis and the GSGs reported in literature. Please note that with GSGs here, the overlap

of all GSGs with the genes that are commonly screened by the three main screens (Luo,

Steckel and Wang) is meant. Only two of the GSGs, NFKB1 and SMAD1, are identified

as hits by the overall analysis, a fact that nominates them of being stronger candidates.

The rest GSGs achieve moderate to high rankings, but not the highest. This finding is

positive since it is in accordance with our hypothesis; existing studies from which the

GSGs were extracted mainly concentrate on the top genes. Another explanation for that

could be the inherent to RNAi screening OTEs, extensively presented in section 2.2.3.

Some of the GSGs may in reality be screen artifacts and this implies that one shouldn’t

rely too much on them. In the current context, however, there exists nothing else to

help evaluate the findings. Therefore the GSGs were considered for validation, having

awareness of their limited evaluation power.

Despite these problems with GSGs, the hypothesis that a gene may not rank at the top

in any of the screens but relatively high in all of them revealed new potent candidate

KRAS SLPs, was confirmed by a multitude of methods. The confirmation of two of the

existing GSGs by RankSLP is, on the other hand, indicating that its methodology is

rational and in accordance with existing biological knowledge.

5.3 Overview of methods used in this thesis

In this section it is adressedd why the specific methods were chosen by RankSLP. Are

there additional methods that could be applied and how would they alter the findings?

5.3.1 Three basic methods for hit detection

At first, the three main methods that RankSLP applied are examined. They are “main”

because they perform the first, crucial filtering for hit genes.

• Standard Method: This method is essentially retrieving the hit genes by filtering

them using two types of criteria: i) Mean ± k Standard Deviations or Median ±
k MAD and ii) p value < a defined threshold. Both criteria have been extensively

used for detection of hits from RNAi screens [103], [104], [105], [25].
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• RIGER: The RIGER method, provided by BROAD Institute of MIT and Harvard,

takes into account the background distribution, the difference between the mutant

and wild type classes and the gene enrichment. Therefore, it satisfies the required

criteria for method selection which are set at section 3.2. RIGER is used for hit

detection in the case of pooled shRNA or siRNA screens and has been applied by

Luo et. al. [25] and Barbie et. al. [24]. These publications and their respective

datasets constitute a basis for RankSLP’s analysis, and the methods they sug-

gest were highly considerable. According to the original work where RIGER was

introduced [54], RIGER has very good performance on real datasets.

• RSA: In accordance to the RIGER method, RSA method takes into account the

background distribution and the difference between the mutant and wild type

classes. According to König et al. [56], it performs astonishingly better than the

activity-based method as its hits have higher reconfirmation rates on follow-up

screens. Birmingham et al. in their review paper [105], suggest RSA to be the

most robust method for RNAi screening hit detection, when multiple shRNAs

target the same gene. It is also incorporated in the stability rankings algorithm

[106] and reported to score very well compared to the other alternatives of the

algorithm.

It has to be noticed that both RSA and RIGER are easily implemented, easily interpreted

and most widely used. They are furthermore applied as combinatorial methods to the

Standard method by other studies in the field of integration [2], [107].

There are additional methods that could be used to identify hit genes from RNAi screens,

according to the review [105]. These are

• Strictly Standardized Mean Difference (SSMD): This method is analogous to the

standard z-score when no replicate samples exist. In the case of replicate samples

however, SSMD allows for control of both false positive and false negative rates.

In addition, it is not dependent on sample size. These two are advantages that

increase its reliability. It has been recently implemented in [108].

• Rank Products (RP): This method was originally developed for hit identification

from microarray studies [109]. In the case of replicate RNAi screens, its premise

is that a sample which ranks high in one sample should rank high in all samples.

• Significance Analysis of Microarrays: This method was developed by Tusher et.

al in 2001 [110]. This methods assigns a score to each gene by measuring the

gene’s expression and correcting it based on the standard deviation of repeated
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measurements. Essentially, it is another robust way of detecting hit differentially

expressed genes between two classes.

RP and SAM methods are in the same direction with t-test that has already been used

by RankSLP. Given that, at the end, multiple methods are combined and their results

are compared with external data, it was decided that RP and SAM application would

not provide an additive advantage to the current work. SSMD on the other hand is very

robust and different from the methods used so far in this analysis. It has not been used

in this work because it requires extensive screen plate information and image data which

were not available to us. The incorporation of SSMD analysis could be a very potent

future addition in this work, once the respective data are retrieved and explained by

the providers. However, RIGER and RSA are very robust methods as well towards the

detection of hit genes from replicate RNAi screens.

5.3.2 Evaluation of Standard, RSA and RIGER methods: Which

performs best?

This part discusses the output of the three basic methods that were applied in the

current analysis. An effort to evaluate their performance based on how many of the

final selected genes they retrieve is made (see section 4.13). The set of final retrieved

high-confidence genes consists of BRCA2, COPB2, ERN1, FOS, NFKB1, SMAD1 and

SPRY1.

• Standard method: It retrieved COPB2, ERN1, FOS and SPRY1 out of its 20

totally retrieved genes.

• RSA: It retrieved BRCA2, SPRY1 out its 9 hit genes.

• RIGER: It retrieved BRCA2, COPB2, FOS, NFKB1 and SPRY1. In total

RIGER retrieved 17 genes.

The Standard method pinpoints four final hits among its 20 genes, which is translated

into 20% retrieval capacity. RSA, on the other hand, retrieves only two of the strongest

candidates which means ∼ 22% recall. This method is very specific and, although the

retrieval capacity is similar to that of the standard method, in absolute quantities only

two of the strong candidates are captured, a fact that does render this method less

appropriate if one wanted to use only one method towards hit gene detection. Finally,

the RIGER method detects six out of seven strongest candidates. Having a total retrieval

of 17 genes, this number translates to ∼ 29% recall. In addition, the absolute numbers

of hit gene recall are higher in RIGER.
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Figure 5.2: The overall precision is not very large. This was expected, due to the
low evaluation power of the GSGs (explained in section 5.2). However, an encouraging
finding is that the largest precision values are met in the top of the ranked lists, which
is the aim of this thesis. Another positive result is that all methods outperform the
random ranking. In comparative terms, best precision for the top of the ranked lists
is achieved by the application of the RIGER method on the Luo screen. Second best
is the Standard method for Luo. Standard method for Steckel and RSA for Wang and
for Luo follow.

Figure 5.2 depicts the precision-recall curves for all the Standard, the RIGER and the

RSA methods, along with a random ranking (in black). All the applied techniques

outperform the random case.

In Figure 5.2 it can be seen that all three methods contribute to the final set of genes.

This is also explained in the previous Chapters (Data and Methods, Results); the final

RankSLP’s result stems from all methods’ combination. However, if one had to apply a

single method, this would be RIGER, as it detects most of the genes that are further sub-

ject to experimental validation. Moreover, RIGER achieves the largest overall precision

for the top of the Luo ranked list. It seems that the RIGER approach of calculating the
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signal to noise ratio and the weighted sum of the shRNAs that target a gene, followed

by gene enrichment analysis and normalization, is suitable for RNAi screen analysis.

These are encouraging news for biologists, given that the RIGER method tool can be

freely downloaded from its main page4 and executed through a friendly Graphical User

Interface (GUI), which can be used by someone without any computational background.

5.3.3 Rank aggregation methods

RankSLP uses the RankAggreg() [59] method from R since the whole pipeline is devel-

oped with this language. Pihur et al. [59] show that their function works very well on

real data. In this subsection, a comparison between the RankAggreg() procedure and

baseline rank aggregation methods is performed.

Figure 5.3: The comparison is made with respect to three baseline methods: Average
voting, median voting and weighted average voting. Luo, Steckel and Wang are the
three ranked input lists that correspond to each screen’s ranking by Standard method.
The best ranking shRNA is considered when many shRNAs target the same gene (Luo
and Wang case). RLuo, RSteckel and RWang are the rankings of the common gene g1
as calculated by each of the screens. rank g1 is the ranking of gene g1 as calculated by
the three baseline methods.

The respective Precision-Recall curves which evaluate the performance of the rank ag-

gregation methods are shown in Figure 5.4. The comparison is made on the top 10%

4http://www.broadinstitute.org/cancer/software/GENE-E/
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retrieved features by all the methods because the RankAggreg() procedure was imple-

mented only for this part of the ranking lists, due to complexity reasons (see subsection

3.4.1).
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Figure 5.4: Evaluation of the top 107 (top 10%) genes retrieved by different rank
aggregation methods based on the retrieval of the 21 common in all screens GSGs.
All the methods retrieve two of the GSGs in their top 10% but in different ranking
positions. The largest precision is achieved by median voting, followed by the weighted
Cross Entropy rank aggregation that was implemented in RankSLP.

They all outperform the random case and all apart from the weighted average voting

retrieve two out of the 21 GSGs in their top 10%. When the remaining collected genes

are investigated, the average, median and weighted average voting approaches select

23, 24 and 20 genes respectively, intersecting with the hit 40 genes initially selected by

Standard, RIGER and RSA methods (section 4.5). RankAggreg, on the other hand,

retrieves only three genes in its top 107 ranks: COPB2, NCOR1 and SPRY1. This does

not necessarily mean that it is worse (as PR curve shows that it performs similarly with

the rest) but that it is more specific and targeted. It was applied in this work because

it implements entropy, which is a benchmark and extensively used approach for the

solution of optimization problems. A noticeable point is the good performance of the
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median rank aggregation: This corroborates the proof by Dwork et al. that the median

consensus ranking is a good aproximation of the Spearman distance criteria between the

final super -list and the input rankings [51].

5.4 Assessment of screen quality

From the previous section, the Steckel screen seems of lowest quality; The standard

method on Steckel screen performs worse than RIGER and than Standard method on

Wang and Luo screens. Moreover, the best performing RIGER method is actually

applied on two screens only: Luo and Wang. The Steckel screen is not taken at all

into consideration as it is not performed with many shRNAs targeting the same gene.

Since RIGER still retrieves more of the strongest candidates compared to the other two

methods, the quality and relevance of the Steckel screen is interrogated. In addition to

that, the weight that is attributed to Steckel screen before the execution of RankAggreg()

(section 4.8) is 0.1, in opposition with Luo and Wang screen coefficients which are 0.6

and 0.3 respectively.

Considering these findings, one could argue that Steckel screen could be omitted if

the aim is a handful of candidate SLPs and there are time limitations for final result

retrieval. For the current thesis though, it is useful enough to observe that the rescued

genes from the other two screens are also important in the Steckel screen. This supports

the hypothesis that a relatively highly ranked gene in one screen can be also relatively

highly ranked in another screen, which makes it a more probable candidate.

To quantitatively assess the quality of the Steckel dataset ranking, a metric often adopted

in Information Retieval (IR) and more specifically in Natural Language Processing

(NLP) approaches was employed. This is the Normalized Discounted Cumulative Gain

(NDCG). NDCG measures the relevance of a feature based on its position in the re-

trieved result list, using a graded relevance scale of features in a search engine result

set. It imposes a penalty on the features (here genes) that are retrieved lower than they

should in the ranked list. It applies a logarithmic reduction factor for smoother discount

of these cases. The formula of DCG is given by

DCGp = rel1 +

p∑

i=2

reli
log2i

,

where reli is the graded relevance result at position i and p is a particular rank position.

Similar to precision at k, it is evaluated over some number k of top search findings. The

normalized measure NDCG is given by dividing the DCG with the maximum possible
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achieved DCG at position p. This is a real number between 0 and 1; the closer it is to

1, the best the information retrieval capacity of the applied method.

In the present case, the ranked Steckel gene list, as calculated by the Standard method,

was the retrieved result list of which the relevance was calculated. The ideal ranking with

which it was compared, is a ranked list in which all GSGs are ranked in the top positions.

The NDCG result for the applied threshold on the Steckel ranked list (z < −1) was

∼ 0.28. For comparison, the NDCG metric for the Luo and Wang rankings as retrieved

by the Standard method was calculated. These are ∼ 0.55 and ∼ 0.28 respectively. This

result shows that the Steckel screen is not of that bad quality and probably if more

values per gene were provided in this dataset, then the RIGER method could be applied

on it with expected good results.

Moreover, the NDCG metric shows that the Luo screen ranking is of best quality. Gen-

erally, Luo screen is more reliable as also proved from Figure 5.2, where the Luo screen

achieves the highest precision at the 10%-20% recall level.

5.5 How does the selection of thresholds and methods

influence the final SLPs?

In this section, a critical view of the methodologies and the threshold criteria that were

applied in this work are discussed. Did the decisions that RankSLP took in various

cases influence its final results? Some of its choices are very deeply investigated but

some others allow room for improvement. Critical steps of the analysis and assessment

of their stability are provided in table 5.1.

Table 5.1: Assessment of methods and thresholds chosen

Good Assessment Needs improvement

Cell line variability The amount of genes tested
RankAggreg() top 10% Threshold selection for the main methods
RankAggreg() distance measure Best ranking shRNA used in some functions
Statistical test WebGestalt thresholds
RNAiCut threshold STITCH-drug datasets compound matching
STITCH drug-target confidence threshold Drug to target assignment
Venn diagrams & phyper
Comparison with GSGs
Mapping of gene identifiers

In what follows, table 5.1 is explained, starting with the Good Assessment column and

proceeding from top to bottom.
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Cell line variability can in theory influence the findings. Taking that into account,

RankSLP carefully selected the datasets so that they consist of isogenic cell lines, dif-

fering only in the KRAS mutation, a fact that minimizes variability.

For the RankAggreg() R function, RankSLP searched for the most significant features in

the top 10% and 5% of genes from the three screens. That is because the RankAggreg()

method is of high complexity and the optimal solution is guaranteed only in the case

that the input lists do not contain more than around 100 elements. As far as the data

used in this work are concerned, the top 10% elements for each list correspond to 107

genes. Moreover, the distance measure (Spearman’s footrule distance) and the other

parameters of RankAggreg() are carefully selected and this selection is justified in 3.4.1

and in 4.8

The statistical test that was applied in the case of Luo and Wang screens was the

paired t-test, because the samples are paired (isogenic cell lines and three replicates

corresponding to the same well of the 96-well-plate) and only one independent variable,

the viability of the cell line, is measured. The distribution can be considered normal

with only three samples.

As far as the RNAiCut method is concerned, for each set of top-k samples, an underlying

PPI network of a size at least as the size of k is sought. The returned network is the

one for which the first local minimum p-value is met. In the Luo case, this first local

minimum was too small; Thus, after correspondence with the developers of the method,

the next one was selected.

The drug-target matching confidence threshold was set to 70% according to the sugges-

tion of STITCH creators. This choice is explained in subsection 4.11.4 and shown in

Figure 4.18.

Regarding the Luo and Wang screens, where multiple shRNAs target the same gene,

more than one shRNAs for the same gene often pass the threshold criteria. As shown in

section 4.5, the intersections of genes of which multiple shRNAs rank below threshold

are evaluated using a hypergeometric distribution test. This test returned a clear p-value

and RankSLP simply selected the genes in the significant intersections (p-value < 0.05).

Furthermore, existing literature and past findings have extensively and in detail been

investigated. Hence, the list of GSGs with which the comparison is done is full.

The mapping of identifiers among the screens and the conclusion in 1069 common genes

is also performed very carefully, by conversion to HGNC identifiers. In some cases, the

same gene is knocked down among the screens but it is reported by a commonly used
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symbol in all three of them, which is not the HGNC identifier. These cases are also

investigated in detail.

On the other hand, the second column of table 5.1 contains some of the RankSLP’s

decisions which allow improvement. The final set of tested genes for synthetic lethality

with KRAS, are the common genes among all screens. This means that if a gene is

ranking very high in one screen but is not even screened in the second, it will not even

be investigated. On the one side, the datasets with fewer genes (Wang, Steckel) contain

a pre-selection of cancer related proteins, thus more probable KRAS SLPs. On the other

side, a not-so well annotated gene may be a strong candidate. The following elaboration

could be considered in the future: After an initial examination of the RNAi screens

based on the common genes, one should proceed with the drug-screen analysis part. If a

gene is retrieved as hit from the drug screens but is not screened in all the RNAi screens,

its performance should be investigated in as many screens as it is present.

A question that was risen, is if the thresholds that RankSLP selected were arbitrary and

how their choice may affect the findings. Before proceeding to the p-value threshold of

0.05, RankSLP had experimented with the Standard, RIGER and RSA methods and

with cutting at different thresholds from the top of the ranked list: 10%, 20% and 30%.

It then applied the 0.05 p-value criterion, as this was the prevailing thresholds used by

RIGER and RSA methods. The significance threshold for the Standard method was

set to p-value < 0.05 for consistency with RIGER and RSA. For the Steckel screen,

where no replicates are provided, the relaxed z-score < −1 criteria was applied. The

genes that intersected among the screens and among the methods were not very much

different from the ones that were retrieved by the higher thresholds of 10%, 20% or

30%. These first findings were not restrictive. As shown in the Results section, seven

other ways to confirm these genes were incorporated for the final selection of the KRAS

SLP candidates. Thus, the thresholds were not so influential. Overall, each method

provided some highly potent genes but at the end, all the methods were combined and

the genes that were relatively high among all are reported. The final resulting genes are

quite robust to these thresholds because they are rescued after integration of multiple

methods. However, there is room for further tuning in selection of thresholds.

In the cases where only one out of multiple shRNAs that target the same gene should

be chosen from the Standard method findings, the best ranking shRNA was selected.

This is actually the shRNA with the strongest knock-down effect. RankSLP used this

approach because of the reasoning that if an shRNA depletes a gene, then the resulting

phenotype should be gene knock down, as this strong effect will be more dramatic for

the gene. In addition, experts in the field usually consider the shRNA with the strongest

effect against a gene of interest, given that there is at least another shRNA targeting
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the same gene, which leads to a similar viability value [24, 25, 111]. That is why the

existence of more than one shRNAs against a gene that rank below threshold was also

considered by RankSLP (see section 4.6). However, this is not a trivial problem and a

more sophisticated method could be developed in the future.

The criteria and thresholds used for the WebGestalt analysis are the default ones. They

were consistent for the different runs of the algorithm that were conducted but more

alternatives could be investigated in the future.

Something that requires improvement, is the mapping of drugs between STITCH and

the drug datasets. STITCH attaches to each drug its corresponding inchi key, which is

a unique identifier. On the contrary, as mentioned in 4.11.4, the compound inhibition

screens provide only the aliases for each compound, making very difficult the retrieval

of common drugs between each screen and STITCH.

Finally, in the comparisons with high throughput drug screens conducted in this work

(see section 4.11), the assumption made is that as long as a specific protein is among

a drug’s targets it is knocked down by it. This is an simplified approach as usually

a drug targets more than one genes which may interact with each other; the drug’s

effect on the one gene may counter-act the drug’s effect on the other gene and many,

non -linear relationships may evolve. However, there is evidence that in some cases this

oversimplified binary assumption worked on drug-target interaction assessment [112,

113]. For RankSLP the evidence that a gene is targeted by a drug with differential

effect between the KRAS mutant and the wild type cells suffices for inclusion of the

target gene in the SLP candidates.

5.6 Connection of this work with previous methods

and findings

In this thesis, a novel method which takes as input various synthetic-lethal for a specific

gene RNAi screens and analyzes them integratively was developed. The result is a set

of potential SLPs of the gene, detected by a purely in vitro methodology. The approach

is general and can be applied to other oncogenes, like MYC. MYC is another currently

undruggable oncogene, the SLPs of which are investigated. In the search of potential

computational methods, developed towards targeting MYC SLPs, PubMed has been

queried with “MYC synthetic lethal” as of 24 July 2014. There is not a single study

that tries to identify candidate MYC SLPs by using purely computational methods.

Some studies perform high throughput RNAi screens [114], [115], of which the findings

are further analyzed using bioinformatics. Since MYC is the only oncogene apart from
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KRAS which is so well known and investigated, it can be claimed that RankSLP is a novel

method that can be used in the context of MYC as well. The existence of bioinformatic

methods specific to the detection of synthetic lethal pairs has been further interrogated.

A poster, where the boolean nature of synthetic lethal pairs is considered [116] has been

detected. However this work is at a preliminary stage yet and no published results exist.

From the bological point of view, previous approaches towards the treatment of KRAS-

dependent tumours suggested dual disruption of the PI3K/Akt/mTOR and the MEK/ERK

pathways, especially in the case of pancreatic KRAS-dependent cancer [117, 118]. This

is reasonable since KRAS in its mutant state is needed for both MEK/ERK and PI3K

pathway activity, but not in its wild type. The first pre-clinical studies in Non Small

Cell Lung Cancer (NSCLC) which followed this combinatorial approach had impressive

results [119]. In 2013, Downward et al. followed a similar approach in NCLSC cells,

this time by minimizing induced toxicity, having again encouraging results [120]. It is of

future work to bring all these methodologies to clinics. One of the top genes retrieved

by the current analysis is NFKB1. This gene participates in MAPK/PI3K pathways,

a fact that is in accordance with the previous suggestion and exhibits high potential of

positive clinical results.

Apart form NFKB1, RankSLP detected a set of genes, some of which were not reported

in the past and could be worth looked further into.



Chapter 6

Conclusions and future extensions

This final Chapter summarizes the achievements of this thesis towards the solution of the

open problems, presented in section 1.1. It emphasizes the complexity of the calculations

and the contributions to biology and computer science. Furthermore, possible future

extensions are presented.

6.1 Summary

In this work, a robust set of KRAS SLPs is sought, by investigating the molecular

characteristics of the processes in which mutant KRAS participates and its mechanism of

action. The detection of KRAS SLPs is important for the advancement of human health,

because these can provide new targets for the treatment of KRAS-dependent cancers (i.e.

pancreatic cancer). Many studies have been conducted towards the detection of KRAS

SLPs, either RNAi or compound inhibition screens. A number of SLPs is detected by

each of them but, as claimed in section 4.1.3, the results rarely agree. This variation

can in part be explained by the use of genetically different cell lines, different methods

used for quantifying cell viability, and technical and biological noise. However, this

inconsistency implies that the selected genes by each study are probably able to work

only on the specific dataset and not on new data. Sufficient additional and un-exploited

information should be present in these existing high throughput sets; data that have

been underestimated in the past can be analyzed collectively and reveal more stable

KRAS SLPs, having legitimate results in more than one datasets.

In this thesis, a combination of computational approaches on data ranking and hit

detection was applied towards the retrieval of KRAS SLPs, through integration of three

existing high throughput KRAS-specific RNAi screens. Many considerations regarding
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this integration potential were risen. From an external point of view it may seem like

trying to “compare apples and pears”, due to the many differences between the data.

However, formulation of some criteria and definition of rules that must be fulfilled so

that dataset integration can be possible was achieved (see 3, sections 4.3, 4.4, 3.2).

Although the application of such rules may restrict the search space, at least it ensures

the robustness of the findings, since they are confirmed by more than one experimental

datasets. In addition, a set of external data for evaluation of intermediate findings has

been utilized. The role of the retrieved hit genes in cancer has been analyzed, with

respect to the widely accepted Hanahan and Weinberg “hallmarks of cancer” [101].

These hallmarks represent nine properties of cancer cells to establish a solid tumor (see

section 5.1). The detected hits were found to fit to one or more of these hallmarks.

In conclusion, seven genes that are confirmed by the majority of applied approaches

and thus concentrate highest evidence of being potent KRAS SLPs, are reported as

hits. These are: BRCA2, COPB2, ERN1, FOS, NFKB1, SMAD1 and SPRY1. It is

suggested that these genes can further be tested in vivo and, if successful, be brought

to clinical trials. Yet, the possibility of detecting an additional potential candidate in

their proximity or their influential network should not be ignored. The reason for that

is exactly the limitation in genes that were screened and in the provided cell lines.

6.2 Complexity

The overall time that RankSLP needs for completion of its calculations is ∼18 CPU

hours on one Core of an Intel X5650 CPU, 2.83Hz, 96 GB of memory. The datasets were

transferred to a local partition to avoid the time spent fetching and writing them from

and to the hard disk. It is considerable that the datasets downloaded from STITCH

and used in the analysis occupy 23GB, since they consist of millions of drug-target

interactions and drug identifiers. Most of the time is spent on the calculations on

STITCH and on the drug datasets (11 CPU hours) and on the Cross Entropy Rank

Aggregation (6 CPU hours). The respective procedures are explained in sections 4.11

and 2.3, 3.4. The rest of the RankSLP process takes around one CPU hour. These are

the durations of the final version of RankSLP, after having tuned all the parameters

and having concluded to the final variable values. A lot of time was spent on dataset

selection and parameter optimization. The most crucial bottlenecks were faced at:

• FDR calculation: Initially, an effort was made to calculate the False Discovery

Rate (FDR) of the three RNAi screens with replicate information (Luo, Wang,

Barbie), aiming to further judge screen quality based on the shape of their empirical

cumulative distribution function (ecdf). However, these screens are very noisy and
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calculation of FDR led to almost zero signal. This is a prevalent opinion at the

RNAi screen field and it was once again confirmed in this work.

• Threshold selection: As explained in section 5.5, RankSLP had experimented with

cutting the ranked lists in different thresholds, like top 10%, 20% or 30%. An

extensive literature search was made and that is when RNAiCut was detected

and applied: the genes in the ranked list are connected with their underlying PPI

network, in order to decide the cutting point. More details are provided in sections

3.3 and 4.7. However, the selection of a threshold based on a ranked list per-se is

not a trivial task. Therefore, widely used statistical criteria were finally applied

(p-value < 0.05 and z -score < −1). As explained in section 5.5, these criteria are

not restirctive, since the final result is a combination of numerous methods.

• Multiple shRNAs-to-gene value assignment: For the cases where multiple shRNAs

per gene are available, before concluding to the consideration of the best ranking

shRNA, the median and the mean were also tested.

• STITCH thresholds. Initially, no confidence threshold at all was applied to the

drug-target pairs in STITCH. This doubled the computation time with no gain in

accuracy.

• CanSAR dataset. CanSAR is a cancer research and drug discovery knowledgebase,

developed by the Computational Biology and Chemogenomics Team, Cancer Re-

search UK Cancer Therapeutics Unit at the ICR1 [121]. This database was inter-

rogated for drug response IC50 values at its very early version (spring 2012). At

this point, the dataset consisted of 67,531 drug profiles on 1,056 cell lines. Analysis

of such a huge dataset, for only the tuning of one of the parameters, was taking

approximately 5 days (∼100 CPU hours) on one Core of an Intel E7440 CPU,

2.4GHz, 128 GB of memory (available machine at that time). Even with paral-

lelization (R snow package), the total time was still around 60 CPU hours. On

top of that, at that early version of CanSAR, the drugs were not well annotated

and the mutations of the tested cell lines were not provided. A manual search on

COSMIC would have taken very long. Overall, processing of the CanSAR dataset

whould have caused long delays. Thus, for this version of RankSLP it was ig-

nored, given that the remaining four drug datasets would be able to rescue the

most important candidates.

• Aliases-to-SMILES codes mapping: As explained in subsection 4.11.4, a search

for global drug identifiers was performed for each of the compound inhibition

datasets. A limited amount of SMILES codes was detected for the NCI60 dataset

1https://cansar.icr.ac.uk/
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and conversion to InchiKeys was performed. However, this mapping was not used

for the final calculation, as explained in 4.11.4.

• Rank Aggregation: Several parameters were tuned for the RankAggreg() function

application, which is described in section 3.4. Instead of incorporating the rank

of best ranking shRNA for each gene, the median, and mean of the top 2 was

also considered. Moreover, use of the GA heuristic was attempted, with tuning of

many parameters, leading to no conversion. These parameters, were also the ones

tested for the CE heuristic: Kendal or Spearman distance, top 5% or top 10% of

the ranked lists, inclusion or not of importance weights for each list. Taking into

account that RankAggregation takes ∼6 CPU hours, this testing took ∼400 CPU

hours.

6.3 Contributions

The current thesis answers the main question: “Which is a set of robust KRAS SLPs?”.

This question is biological and this work exhibited how existing computational methods

can be used in an innovative manner in order to answer it. The contributions of the

current analysis are:

1. The determination of five new KRAS SLPs that have not been discovered in the

past: BRCA2, COPB2, ERN1, FOS and SPRY1. This brings KRAS-dependent

cancers closer to treatment.

2. The confirmation of the already known KRAS SLPs: NFKB1 and SMAD1.

3. For the first time, RNAi screens are analyzed integratively, towards SLP finding.

The developed pipeline is general and can be applied to synthetic lethal partner

detection of other genes as well. Some examples are MYC, p53, Retinoblastoma

protein (Rb), protein kinases (e.g. mTOR) and at least 20 more cases [7, 19].

4. It integrates existing datasets towards the detection of KRAS SLPs, in contra-

diction with previous studies which involved generation of new data.

• To our knowledge, this is the first purely computational approach towards

SLP detection. It is also an implication that in some biology problems, there

may be no need for generation of new data. This is much more ethical (less

animals killed), and has the advantage of decreased time and costs.

• Integration of RNAi screens and of external data leads to results with broader

applicability.
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5. The current approach differs from state-of-the-art methods in the confirmation of

its candidates by external data. These data form a confident test set, coming

especially from high-throughput compound inhibition screens and network infor-

mation. This is a novel way of approaching the most critical inherent RNAi screen

problem, which is noise. The real signal of an RNAi screen is so low that cross-

validation is not reliable. External data ensure robustness. In this setting, exter-

nal data detected NFKB1, which is already a GSG. They also confirmed BRCA2,

ERN1, FOS, HDAC9, NCOR1, PAX6, TOP1 (section 4.11) and CTNNA1, ERN1,

GSG2, TTK (section 4.12), which are all associated with at least one hallmark of

cancer (Figure 5.1).

6. This thesis exhibited how different rankings and their local optima relate. Meta-

analysis of rankings leads to global optima solutions.

7. This is the first comparison between RIGER and RSA on real datasets. As shown

in subsection 5.3.2, RIGER performs better than RSA in terms of retrieval of Gold

Standard Genes. At its top level (10-20%) of recall, it has 60% larger precision.

This is in accordance with the amount of publications that reference it: RIGER

has 158 references on Google Scholar, while RSA has 70 (as of March 2014).

8. Development of a new method which examines the effects of the inclusion of a

random or extra screen (sections 3.5, 4.14).

9. Until now, RNAi screening analysis was based only on the best ranking shRNA

or the mean of the first two shRNAs. However, due to noise in RNAi screening,

pre-selection of data may lead to loss in accuracy. Thus, RankSLP implements an

additional approach that does not have to pre-decide on which shRNAs to include

in further ranking; it examines all of them. This method selects its final hits based

on the frequency of the hit shRNAs and on statistical criteria (section 4.6). It

then integrates these findings with the ones from the rest methods. As a result,

it detects two GSGs, SMAD1 and NFKB1, and overall six out of the seven most

potential candidates, in which RankSLP concludes.

10. Enriched/top genes are connected in a PPI network, as shown in Chapter Results.

11. After significant tuning, it was shown that the 10% percentile is an acceptable

threshold. However, this was not proved.

The concentrated, final code of RankSLP is ∼2,200 lines, but if all testing described

in section 6.2 is considered, this number is doubled. The total calculation time is ∼18

CPU hours on one Core of an Intel X5650 CPU, 2.83Hz, 96 GB of memory.
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Suggestions:

1. For proper statistical analysis, more replicates are needed. Thus, biologists are

advised to perform multiple experiments, when possible, and computer scientists

to opt for datasets with a sufficient sample size.

2. A guideline for biologists, resulting from the current work, could be the perfor-

mance of synthetic lethal experiments on isogenic cell lines, or, at least, on cell

lines with the minimum possible variation. This will ensure “clearer” phenotype

and gene signatures.

3. At this point, the obvious should be stated: Closer collaboration of biologists with

computer scientists is important. If the data are in a proper format they can

quickly and robustly be analyzed. It is not trivial for a bioinformatician to try

to “transform” the already generated data and to understand all the details of an

experiment, without the guidance of its performer.

6.4 Possible extensions

This work covers a lot of aspects of integrative analysis of high throughput datasets,

towards the detection of potent KRAS SLPs. However, there are some parts that could

be further investigated in the future and could make this study more complete. These

parts are discussed in what follows.

Figure 6.1: This figure is a toy example for the exhibition of a drug’s action. A
drug D can be effective against a cell line L, translated in a low IC50 for the cell line.
Drug D has 3 target genes b,c and d. The sensitivity that L exposes against drug D,
is a combinatorial effect of D on its targets. The extend to which each gene’s profile
contributes to the low IC50 of L is depicted by different coloring, with darker levels
corresponding to stronger effect. The overall effect on L is a mixture of the three
shades of blue. There are many ways that the genes’ profiles can influence the final
drug response phenotype.

• In the comparison with external chemical genomics screens, it is assumed that

there are no relationships among the targets of a drug. However, the real picture
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is that a drug has multiple targets which can interact with each other. This is

schematically shown in figure 6.1.

For comparing a viability/apoptosis score from an RNAi screen with an IC50 value

from a drug screen, two main approaches that can be followed are suggested:

1. Calculation of the average of the multiple gene entries in the RNAi screen and

comparison of this value with the IC50 value of the drug screen. This, however,

assumes that the effect of the drug in the drug screen is averaged across its targets,

which is not necessarily the case. A drug can have different efficiency on each of

its targets. Moreover, the targets of the same drug may interact with each other

when targeted. In addition to that, the shRNAs against the same gene in an RNAi

screen, are not similarly effective on it. For example, one shRNA may have 70%

knock-down efficiency and another 90%.

2. Consideration of a drug’s IC50 value from one drug screen, as many times

as the number of its targets. Each IC50 will be regressed against one z -score

from the RNAi screen, each one corresponding to each of the targets. However,

this violates the basic regression assumption which is the existence of independent

measurements.

These are points that could be further investigated in the future.

• Another extension in the topic of drug screen analysis is that the updated CanSAR

dataset could be included in the pipeline.

• A suggestion is that better annotation of drug datasets, with inclusion of global

and unique identifiers (e.g. SMILES codes), should be performed.

• Regarding additional ranking methods that can be applied, the SSMD method

presented in section 5.3 seems very promising, provided that special information

and additional data on how each screening is performed are accessible.

• In the topic of rankings and more specifically rank aggregation of top n elements

of k lists, the followed procedure RankAggreg from R with the choice of CE as

heuristic and Spearman as the metric for list distance calculation, is O(nk) +

O(n) = O(nk). This is already a significant decrease from the original complexity

time that Kemeny optimization requires (NP-hard). Since in the current case

this method is applied on only three lists and still takes around five hours to be

computed for approximately the top 100 genes of the lists, there is much room

for improvement with the development of quicker algorithms and algorithms that

have robust results when they aggregate a larger top-subset of the input lists.
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• The synteny of the detected genes could be investigated and evidence from other

species could be incorporated. Maybe synteny analysis will reveal some candidates

in the proximity of the genes selected by RankSLP.

Last but not least, since this analysis was able to detect a set of well-performing can-

didate KRAS SLPs on three datasets, proper experimental validation is encouraged.

Given the results of this thesis, experimental validation seems feasible and may boost

the quality of this study. If successful, it may lead to the development of new therapeutic

targets of KRAS mutant dependent cancers.



Appendix A

Appendix

A.1 siRNAs and shRNAs

Figure A.1: The central dogma of Biology: DNA can replicate and can also transcribe
to RNA. RNA can reverse transcribe and translate to protein. siRNAs or shRNAs
are small RNA sequences that are specific to a gene of interest and can turn off its
translation. Please note that the amino acids shown on the schematic are just example
amino acids and they don’t correspond to the preceding nucleotide sequences.

A short hairpin RNA (shRNA) is an RNA sequence, having a characteristic hairpin

turn, which can be used to silence target gene expression via RNA interference (RNAi).

shRNA’s length varies from 19 to 29 base pairs. The shRNA of interest is transcribed

by a plasmid vector and it can also be packaged in viruses. The plasmid is used in

transfection of human cell lines and the viruses are used for infection of the cell lines. It

is then transcribed to a one-stranded small RNA that is loaded into the RNA-induced

silencing complex (RISC) where it is pre-processed and “unwanted” parts are cleaved.

The remaining part can then bind to target mRNAs and, in turn, silence their translation

to proteins.
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Small interfering RNA (siRNA) on the other hand is an already processed, 20-25 base

pairs long double stranded RNA, stemming from shRNA or dsRNA. It is named after

its action, which is to interfere with RNA that is transcribed from specific DNA parts

of interest (genes) and silence their expression. As a result, the intended protein is not

translated. The procedure by which an shRNA or dsRNA is transformed to an siRNA

involves the action of the enzyme Dicer, also known as ’endoribonuclease Dicer’ or ’he-

licase with RNase motif’. Dicer cleaves the shRNAs or dsRNAs to double stranded

siRNAs. It also helps towards the activation of the RNA-induced silencing complex

(RISC), which is essential for RNA interference realization. Its function is exposed in

figure A.2. The activity of siRNAs depends on its binding activity to RISC. Their func-

tion is similar to microRNAs; their difference is that microRNAs have a complementary,

while siRNAs have specific sequence to the DNA of interest.

Figure A.2: Short RNAs derived from Dicer cleavage of dsRNA are incorporated into
multiprotein effector complexes, such as RISC and RITS (RNA-induced initiation of
TGS) to target mRNA degradation (RNAi/PTGS), translation inhibition, or TGS and
genome modifications. Figure and caption are taken from [122]

The use of both siRNAs and shRNAs for gene silencing seems to be a great tool towards

personalized cancer therapy. Despite its promising nature, it is very challenging, and

should be performed with caution. The reason for that is that they both exhibit different

effectiveness on different types of cells. They also both have Off Target Effects (OTEs),

meaning unintended silencing of genes with close sequence similarity to the gene that

actually needs to be blocked. Many reviews exist on their function and whether the one

or the other is better to use [123], [124]. Despite profound research, they are inconclu-

sive, since both siRNAs and shRNAs have advantages and disadvantages. For example,

siRNA transfection is said to be more effective than shRNA, but, on the other hand,
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more OTEs are observed with siRNAs. A common observation is that when the quantity

of both the DNA and the reagent is increased, they both lead to a clearer phenotype.

Overall, it seems that there is no ’best’ solution, and but always depends on the types

of cells, of the targeted genes and of the overall experimental design.
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Stern, Stuart L Schreiber, and Todd R Golub. STK33 kinase inhibitor BRD-8899



Bibliography 103

has no effect on KRAS-dependent cancer cell viability. Proceedings of the National

Academy of Sciences of the United States of America, 109(8):2860–5, 2012.

[42] Carol Babij, Yihong Zhang, Robert J Kurzeja, Anke Munzli, Amro Shehabeldin,

Manory Fernando, Kim Quon, Paul D Kassner, Astrid A Ruefli-Brasse, Vivienne J

Watson, Flordeliza Fajardo, Angela Jackson, James Zondlo, Yu Sun, Aaron R

Ellison, Cherylene A Plewa, Miguel Tisha San, John Robinson, John McCarter,

Ralf Schwandner, Ted Judd, Josette Carnahan, and Isabelle Dussault. STK33

kinase activity is nonessential in KRAS-dependent cancer cells. Cancer research,

71(17):5818–26, 2011.

[43] B Vangamudi, A. E. Ayres, J. P. Burke, A. G. Waterson, O. W. Rossanese1, and

Fesik S. W. Evaluation of TBK1 as a novel cancer target in the K-Ras pathway .

Cancer Research, 72(8), 2012.

[44] S A Watt, C Pourreyron, K Purdie, C Hogan, C L Cole, N Foster, N Pratt, J-C

Bourdon, V Appleyard, K Murray, A M Thompson, X Mao, C Mein, L Bruckner-

Tuderman, A Evans, J A McGrath, C M Proby, J Foerster, I M Leigh, and A P

South. Integrative mRNA profiling comparing cultured primary cells with clinical

samples reveals PLK1 and C20orf20 as therapeutic targets in cutaneous squamous

cell carcinoma. Oncogene, 30(46):4666–77, 2011.

[45] Yan Ding, Dan Huang, Zhongfa Zhang, Josh Smith, David Petillo, Brendan D

Looyenga, Kristin Feenstra, Jeffrey P Mackeigan, Kyle A Furge, and Bin T Teh.

Combined gene expression profiling and RNAi screening in clear cell renal cell

carcinoma identify PLK1 and other therapeutic kinase targets. Cancer research,

71(15):5225–34, 2011.

[46] Aparna V Sarthy, Susan E Morgan-Lappe, Dorothy Zakula, Lawrence Vernetti,

Mark Schurdak, Jeremy C L Packer, Mark G Anderson, Senji Shirasawa, Takehiko

Sasazuki, and Stephen W Fesik. Survivin depletion preferentially reduces the

survival of activated K-Ras-transformed cells. Molecular cancer therapeutics, 6(1):

269–76, 2007.

[47] Kristina A Cole, Jonathan Huggins, Michael Laquaglia, Chase E Hulderman,

Mike R Russell, Kristopher Bosse, Sharon J Diskin, Edward F Attiyeh, Rachel

Sennett, Geoffrey Norris, Marci Laudenslager, Andrew C Wood, Patrick A Mayes,

Jayanti Jagannathan, Cynthia Winter, Yael P Mosse, and John M Maris. RNAi

screen of the protein kinome identifies checkpoint kinase 1 (CHK1) as a therapeu-

tic target in neuroblastoma. Proceedings of the National Academy of Sciences of

the United States of America, 108(8):3336–41, 2011.



Bibliography 104

[48] Min Zheng, Susan E Morgan-Lappe, Jie Yang, Katrina M Bockbrader, Deepika

Pamarthy, Dafydd Thomas, Stephen W Fesik, and Yi Sun. Growth inhibition and

radiosensitization of glioblastoma and lung cancer cells by small interfering RNA

silencing of tumor necrosis factor receptor-associated factor 2. Cancer research, 68

(18):7570–8, 2008.

[49] Jordi Barretina, Giordano Caponigro, Nicolas Stransky, Kavitha Venkatesan,

Adam A Margolin, Sungjoon Kim, Christopher J Wilson, Joseph Lehár, Gre-

gory V Kryukov, Dmitriy Sonkin, Anupama Reddy, Manway Liu, Lauren Murray,

Michael F Berger, John E Monahan, Paula Morais, Jodi Meltzer, Adam Korejwa,
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