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Chapter 1

Introduction

1.1 Motivation

Constant observation of nature has been a fundamental part and parcel of the process of
human inquiry. The very act of observation involves light bouncing off from matter and
reaching us with packets of information. With the advent of lasers, the process of using
light to "see" objects extended to the process of being able to "control" objects. In the
remarkable papers of [9, 46, 38]; it was suggested that lasers can be used to exert force
on atoms that can not only cool them but also trap them. Since then, it has become
a routine procedure to cool [208] and trap neutral atoms/ions in magnetic optical traps
(MOTS) [165], Paul traps [155], dipole traps [36] and optical lattices [175]. This gave
rise to a new field of research in physics namely ‘ultra-cold physics’. This field has made
such rapid progress that at least six Nobel prizes were given in this area in the last
twenty years.

Some of the important milestones were the creation of the first Bose-Einstein con-
densate (BEC) in 1995 [5], the realization of a superfluid state in BEC’s [88] and its
transition to the Mott insulator state [86]. Fermi condensates were created in 2004 [87].
Atom-atom interactions were enhanced at such low temperatures in a controlled manner
using the technique of Feschbach resonance [40]. BEC in optical lattices lead to observa-
tions of theoretical predictions such as the Kosterlitz-Thouless crossover [93]. Ultra-cold
atomic gases in optical lattices had further applications such as the implementation of
the Bose-Hubbard model [98, 122, 27, 47], study of disordered systems and Anderson lo-
calization [181], realization of frustrated models [56, 48], spinor models [53] and creation
of artificial magnetic fields [153]. In all of the above examples, the interaction between
the ground state atoms are mediated by the short range s-wave scattering. As the in-
terest in using ultra-cold systems to simulate quantum processes for condensed matter
grew [122], the need to implement long range interactions became obvious. It turns out
that Rydberg atoms are ideal for implementing these long range interactions.

A Rydberg atom is an atom whose valence electron is excited to a state with a
very large principal quantum number (n = 10, 40, 80...). As a result of such an excita-
tion, these atoms are known to have very large size and thereby increased sensitivity to
surrounding fields [154]. Advances in laser technology has permitted the efficient produc-
tion [97, 33] and manipulation of Rydberg atoms [8, 126]. Gases of Rydberg atoms are
prepared at densities higher than 1010 cm−3 and at temperatures in the micro-Kelvin
regime giving rise to what is known as the ‘frozen Rydberg gas limit’ [146]. In this
regime, the thermal motions are suppressed allowing to explore the interactions of the
Rydberg atoms. Effects of Rydberg interactions such as density dependent broadening
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of resonances [166, 186], modification to collision processes [52] and molecular resonances
due to avoided crossings [64] have been observed. Rydberg atoms have also been useful
in the study of inter-stellar gases [77] and plasma physics [161, 201, 14]. An interest-
ing effect of the Rydberg-Rydberg interaction is the “dipole blockade” effect where the
excitation of more than one Rydberg atom is suppressed within the blockade radius de-
termined by the density of particles and the intensity of the laser [172]. The effect was
first used to theoretically construct fast quantum gates [99, 131]. It was also used to
improve the resolution of atomic clocks [29] and to create single atom and single photon
sources [170]. The dipole blockade was experimentally verified in [195, 196]. Recently
it has also been observed for an ensemble of Cs Rydberg atoms [203, 202]. This effect
have been used to study the crystalline phase of Rydberg excitations [205, 160]. More
applications of Rydberg atoms involve the simulation of strongly correlated physics such
as the Kiteav model [206] and in nonlinear quantum optics [81, 157, 164]. Most of these
applications are implemented using alkali Rydberg atoms and has driven the theoretical
field of study of mainly alkali Rydberg atoms.

Historically moving from single electron atom (H atom) to the study of two electron
atoms (He, H−) lead to novel physics starting with revolutionizing the old quantum
theory [24], testing of chaos theory analogous to the the Keplerian three body problem
[22, 92] and the study of rich doubly excited autoionizing spectrum [132]. One might then
ask the question, what interesting physics can occur if one makes a transition from alkali
atoms to alkaline-earth atoms in ultra-cold physics? Recently laser cooled alkaline-earth
atoms have had applications to optical metrology [191, 66, 15, 130], quantum sensors [194]
and for the study of quantum degenerate gases [189, 51]. The first strontium BEC was
realized in 2009 [190, 50]. There have been proposals that involve using of alkaline-earth
atoms in quantum computation to construct few qubit quantum registers [79, 44], study
of many-body phenomena governed by spin-orbital interactions [80] and Mott insulator
phase with alkaline-earth atoms in optical lattice [72]. However all of these applications
were done using ground state alkaline-earth atoms. In this thesis, the question we would
like to address is what are the implications of a Rydberg alkaline-earth atom in
ultra-cold systems? One of the main purpose of this thesis is to investigate many-body
physics using Rydberg alkaline-earth atoms in optical lattices.

1.2 Outline

Chapter 2 is an introduction to Rydberg atoms explained in the context of alkali atoms.
Apart from historical origin, the purpose of studying Rydberg atoms in terms of alkali
atoms is two fold. Firstly the different properties of a Rydberg atom that scale with the
principal quantum number are universal and can be understood for the simpler case of
single electron atom. Secondly, it provides a background for comparison with the next
chapter where we calculate Rydberg atoms for two electron atoms. Rydberg states for
alkaline-earth atoms are calculated for the particular case of strontium using a mean field
theory approach in chapter 3. The second valence electron of the alkaline earth Rydberg
atoms provides this unique opportunity to trap both the Rydberg and the ground state
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atom in the same optical lattice as explored in chapter 4 where “magic wavelengths”
have been identified for the trapping laser [148]. This is not possible with alkali atoms
where either one of the internal state can be trapped in an optical lattice but not both.
The study of different decay processes involved in such a lattice is included in chapter
4. Using the magic lattice for Rydberg atoms, we implement a strongly interacting spin
system in chapter 5. The dynamics of the spin system is similar to the one seen in an
effective Ising model where the fields are controlled by the laser parameters. We present
a scheme involving the variation of the laser intensity in a specific manner resulting in
the creation of a maximally entangled state, more well known as the GHZ (Greenberger,
Horne and Zeilinger) state for a large number of particles [148]. The magical wavelengths
identified earlier applies as much to ions as to Rydberg atoms. So in chapter 6, we
investigate the process of ion transport in one dimensional lattice system. We first
study a simpler system of a Rydberg molecular ion where the hopping of the Rydberg
electron is calculated exactly for very small inter-nuclear distances. We then couple the
ground states to the excited spectrum of the molecular Rydberg ion and derive dynamical
equations purely in terms of the ground states. We derive conditions for coherence and
show that for a large range of detunings and lattice spacings, one avoids de-phasing in
the dynamics. Finally we numerically simulate the ion transport over 19 sites using
the dynamical parameters obtained numerically as well as analytically [147]. In the
concluding chapter, all the essential results of the thesis are summarized followed up
with an outlook on the future scope of this research.





Chapter 2

Alkali Rydberg atoms

Contents
2.1 Single electron model for alkali Rydberg atoms . . . . . . . . . . 5

2.2 Structure and properties . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Rydberg energies and wave functions . . . . . . . . . . . . . . . . . 7

2.2.2 Dipole matrix element . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.3 Spontaneous decay . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.4 Response to electric fields . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.5 Atom-atom interactions . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

This chapter provides a basic introduction to Rydberg atoms focusing on alkali atoms.
Any atom that is excited to large principle quantum number (n > 10) is a Rydberg atom.
From a theoretical perspective, the study of alkali Rydberg atoms is simplified by using
the effective single electron approximation. The highly excited single valence electron is
attracted to the compact ionic core (consisting of the nucleus and the inner electrons)
with total positive charge of unity similar to hydrogen. We introduce the concept of
quantum defects and discuss the different properties of a Rydberg atom such as size,
energy, lifetime, polarization and atom-atom interaction. Particular emphasis is given
on how these different properties scale with the principal quantum number as it provides
a simple and elegant way to distinguish them from those of ground state atoms.

2.1 Single electron model for alkali Rydberg atoms

Rydberg series were identified in the hydrogen spectrum by Balmer [13] already in 1885.
Bohr solved the hydrogen atom [28] and verified the 1/n2 scaling of the energy with the
principal quantum number n. Solving a multi-electron atom such as the alkali atom is
more involved since one has to solve the Schrödinger equation for many electrons and
include the inter-electronic interactions. An alkali Rydberg atom has a finite size closed
shell core and single valence electron which can be excited to any higher bound state. A
highly excited valence electron is so far from the core that the atom effectively behaves
like a hydrogen atom but with a modified core. This is often known as the single active
electron approximation. Using this approximation, we write the Schrödinger equation
for a Rydberg electron as given in [32],



6 Chapter 2. Alkali Rydberg atoms

[
− ~2

2m
∇2 + VC(r)

]
ψnlml(r) = Enlψnlml(r) . (2.1)

where ~ is the reduced Planck constant and m is the reduced mass of the Rydberg
electron. The Rydberg electron experiences the nuclear potential that is screened by the
inner core electrons and is described by the effective core potential VC . The Rydberg
states are labeled with the principal quantum number n > 0, orbital quantum number
l ∈ {0 (s state), 1 (p state), 2 (d state) . . . n− 1} and the magnetic quantum number
ml ∈ {−l,−l + 1, . . . 0 . . . l − 1, l}. The wave function ψnlml(r) can be separated into a
radial Rnl(r) and angular Ylml(ϑ, ϕ) components.

ψnlml(r) = Rnl(r)Ylml(ϑ, ϕ) ≡ |nlml〉 . (2.2)

The radial eigenfunction satisfies the radial part of the Schrödinger equation given as[
− ~2

2m

{
d2

dr2
− l(l + 1)

r2

}
+ VC(r)

]
rRnl(r) = Enl rRnl(r) . (2.3)

The larger the l, the more difficult it is for the Rydberg electron to penetrate the core
owing to the repulsive centrifugal barrier l(l+1)/2r2. Although the high l Rydberg states
do not enter the core, they do polarize it to a certain extent [74]. In contrast, a Rydberg
electron with small orbital angular momentum (l < 3) has significant overlap with the
inner electrons leading to stronger penetration and polarization of the core. The effect
of the core on the Rydberg electron is thus dependent on the angular momentum of the
Rydberg electron and is accounted by the effective core potential. The most commonly
used effective core potential taken from [133, 137] and is written as

VC(r) = − q2

4πε0r

[
1 + (Z − 1)e−a1(l)r − r(a3(l) + a4(l)r)e−a2(l)r

]
− αc

2r4

(
1− e−(r/rc)6

)
.

(2.4)
where q is the charge and ε0 is the vacuum permittivity. a1−4(l) are parameters that
depend on the orbital angular momentum. αc is the core dipole polarizability and rc
is the cut off radius that prevents any divergence at the origin. The values for a1−4(l)

for alkali atoms are determined by fitting the low lying energies using the effective core
potential against experimentally measured energies for various alkali atoms [143, 94].
Core polarizabilities αc of alkali atoms are obtained by measuring the difference in the
energies for different l states [39, 115]. It is clear that the success to obtain accurate
Rydberg states from Eq.(2.1) depends on the accurate knowledge of the effective model
potential, which relies on the accuracy and the abundance of empirical data available for
a particular alkali element. From Eq.(2.4), we see that far from the core, the potential
experienced by the Rydberg electron is similar to that due to a single proton like in
hydrogen. At distances closer to the nucleus, the potential has significant deviations
from the Coulomb potential (see Fig.2.1). The deviation in potential due to penetration
of the Rydberg electron into the core are determined by the second and third terms
in Eq.(2.4), while the deviation due to the polarization of the core is given by the last
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Figure 2.1: Comparison of Coulomb potential (blue) with effective core potential for Rb
(red) with l=0 given by Eq.(2.4).

term in Eq.(2.4). The essential difference between a single electron Rydberg atom and
a hydrogen atom is the behaviour of the Rydberg electron with low l’s (l < 3), where
the energies are not degenerate due to the deviations from the Coulomb potential. This
difference in behaviour is already captured by the low lying states of the alkali atom and
so it is worthwhile to note that the model potential obtained by fitting low lying states
can actually describe the high lying Rydberg states. The effect of broken degeneracy
will have significance for the properties of the Rydberg atom as we shall see in the next
section.

2.2 Structure and properties

In this section, the Rydberg states are calculated by solving the Schrödinger equation
(2.1). Several of the key atomic properties along with the different scaling laws with
respect to the principal quantum number n are discussed here.

2.2.1 Rydberg energies and wave functions

Various analytical [111] and numerical methods such as the Numerov algorithm [25]
have been used to solve Eq.(2.1). For our purposes, the Rydberg states are calculated
by discretizing the radial part of the Hamiltonian given in Eq.(2.3) in position space
up to second order, generating a tri-diagonal matrix which is then diagonalized. The
eigenfunctions obtained show an increase in the frequency of the radial oscillations pulling
the nodes of the radial wave function closer to the origin compared to the hydrogen wave
function (see Fig.2.2). This is because the effective model potential is deeper than the
Coulomb potential at small distances from the core (see Fig.2.1). The oscillations of the
Rydberg wave function extent up to 5000 a.u. for n, l = 50, 0 which is much larger than
the size of the core (∼ 5 a.u.). At large distances, the effective model potential is similar
to the Coulomb potential. The deviation from the Coulomb potential near the core is



8 Chapter 2. Alkali Rydberg atoms

like a change in the boundary condition for a free particle reflected from the core. This
gives a phase shift to the Rydberg radial wave function at large distances when compared
to the hydrogen wave function as seen in Fig.2.2. Another interpretation of the radial
phase shift is that it is the measure of the difference in momentum between the Rydberg
electron of an alkali atom and that of a hydrogen atom [74]. This radial shift is directly
proportional to a quantity known as the quantum defect δn,l. The energies of Rydberg
states are expressed in terms of an effective principal quantum number [183] defined as ,

n∗ = n− δn,l . (2.5)

The corresponding Rydberg energy for a state in |nl〉 is

Enl = −
(
mq4

8ε2
0h

2

)
1

(n∗)2
∼ (n∗)−2 . (2.6)

The energy of a Rydberg state depends not only on the principal quantum number n but
also on the orbital quantum number l in contrast to the hydrogen atom. The different
angular momentum states (l = 0, 1, . . . n − 1) belonging to the same n of the hydrogen
atom are degenerate. For a Rydberg atom, only the high l states are degenerate with
essentially zero quantum defect. For low l Rydberg states, this degeneracy is broken by
the non-zero quantum defects. Experimentally measured quantum defects for Rb taken
from [125] in different n(= 40 − 60)l states are δns = 3.131, δnp = 2.654, δnd = 1.348

and δn(l>3) ' 0. From Eq.(2.6), it is clear that the energy scales as n−2 and the energy
difference for neighbouring Rydberg states scale as follows [74],

|Enl − En′l′ | ∼ n−3 . (2.7)

Most of these scaling laws for other atomic properties such as size, optical transition
strengths, lifetime are derived by studying the behavior of the energy and the radial
matrix element of the Rydberg state. For a low lying state |n′l′〉 far away from a Rydberg
state |nl〉, the radial matrix element is determined the overlap of the low lying state wave
function with the Rydberg wave function [32], which is given as

rnl,n′l′ = 〈n′l′|r|nl〉 =

∫ ∞
0
Rnl(r)Rn′l′(r)r3dr ∼ n−3/2 for n′ � n . (2.8)

Since only the outer part of the Rydberg wave function contributes to the overlap, the
above scaling law comes from the normalization constant which scales as n−3/2. While
for a neighbouring Rydberg state |n′l′〉 close to |nl〉, the scaling law is given as

rnl,n′l′ ∼ n2 for n′ ∈ {n− 1, n, n+ 1} . (2.9)

The size of the Rydberg atom is given by the expectation value rnl,nl and scales as n2.
In case of Rb, the size of the Rydberg atom for the state 50s is 5000 times the size of the
ground state hydrogen atom. Large size of the Rydberg atom means that it can exhibit
long range interactions (refer section 2.2.5) and have larger sensitivity to external fields.
Interaction with fields lead to optical transitions of the atom which are determined by
dipole matrix element.
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Figure 2.2: Comparison of hydrogen wave function (black) with Rb Rydberg wave func-
tion (red) for (a) n, l = 50, 0 (b) n, l = 50, 10. The radial wave functions for a Rydberg
atom differ from the hydrogen wave function for l < 3.

2.2.2 Dipole matrix element

One of the first theoretical calculations of transition strengths for low l states for alkali
atoms were done in [16]. The transition from an initial state |nlml〉 to a final state
|n′l′m′l′〉 is determined by the dipole matrix element defined as

µnlml,n′l′m′l′
= 〈n′l′m′l′ |µ|nlml〉 ∼

{
n−3/2 for n′ � n ,

n2 for n′ ∈ {n− 1, n, n+ 1} . (2.10)

where µ = qr is the electric dipole moment for an electron with charge q. The angular
part gives the well known dipole selection rules for optical transition between atomic
states, |l − l′| = ±1 and |m−m′| = 0,±1. The radial part of the dipole matrix element
µnl,n′l′ = 〈n′l′|µ|nl〉 = q rnl,n′l′ determines the scaling law which follows from Eq.(2.8)
and (2.9). The n2 scaling of the µnl,n′l′ is responsible for the strong interaction between
Rydberg atoms due to the strong dipole coupling. Whereas the n−3/2 scaling plays a role
in the spontaneous decay rates for Rydberg atoms as will be discussed in the following
section.

2.2.3 Spontaneous decay

Rydberg lifetimes for alkali atoms like Li, Na, Rb have been measured using time resolved
laser induced fluorescence techniques [75, 82] confirming larger lifetimes, for example 100
µs for Rb 80s. The rate with which a given state |nlml〉 decays to a particular dipole
allowed state |n′l′m′l′〉 is given by

Γnlml,n′l′m′l′
=
ω3
nl,n′l′µ

2
nlml,n′l′m

′
l′

3πε0~c3
∼
{
n−3 for low l (< 3) ,

n−5 for high l (' n− 1) .
(2.11)
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|g〉

high l states low l states

|nl〉

Γ ∼ n−3Γ ∼ n−5

Figure 2.3: The figure shows that Rydberg states with high l decays to the ground state
indirectly via multiple dipole allowed inter-mediate transitions. This accounts for higher
life times compared to Rydberg states with low l where the dominant transition is to its
ground state.

where ωnl,n′l′ = (Enl − En′l′)/~ > 0 corresponds to transition frequency between the
relevant states. The spontaneous decay rate can be understood by classifying the be-
haviour of the transition frequency and the dipole moment for different l’s. There are
two different routes of decay for an initial Rydberg state depending on its l. For small
l Rydberg state, the transition frequency ωnl,n′l′ � µnlml,n′l′m′l′

and thus the dominant
dipole allowed transition is the transition to the ground state (typically the ground state
is s or p). In this case, the transition frequency is independent of the initial Rydberg
principal quantum number since it is so close to the threshold. The radial dipole matrix
element scales as n−3/2 from Eq.(2.10). Thus the over all decay rate for low l states
scales as n−3.

For Rydberg states with high l (' n− 1), the decay process involves cascading down
to a low lying states via the dipole allowed transitions to neighbouring Rydberg states
|n′l′〉. The transition frequency for this case ωnl,(n′'n)(l′=l±1) scales as n−3 (refer to
Eq.(2.7)) and the radial dipole matrix element scales as n2 as shown in Eq.(2.9). This
gives an overall scaling of n−5 for the decay rate of high l Rydberg states. Often high l
Rydberg states are accessed using microwave lasers for their longer lifetimes compared
to the low l Rydberg states for atom manipulation using electric fields.

2.2.4 Response to electric fields

There have been many experiments measuring Stark effect in alkali Rydberg atoms
[150, 199, 100, 106]. Rydberg atoms are susceptible to external fields due to its large size.
The ground state of hydrogen exhibits a quadratic stark effect as it has zero permanent
electric dipole moment. While the degenerate excited states of hydrogen exhibit linear
Stark effect which follows from a pure Coulomb potential [24]. Any deviation from the
Coulomb potential will destroy the linear Stark effect. The Rydberg electron with low
orbital momentum (l < 3) will experience an effective potential that is different from
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Figure 2.4: Stark effect for Na reproduced from [218]. The quadratic Stark effect is
clearly visible for the p state. The presence of avoided crossings for large field intensities
is a result of the non-zero quantum defects.

the Coulomb potential (see Fig.2.1). Even for extremely weak fields, the energies for
different low l states are different for the same n resulting in a quadratic Stark shift (see
Fig.2.4). Using non-degenerate perturbation theory in the weak field limit, one derives
the shift in the energy for a Rydberg atom with l < 3 to be second order with respect
to the electric field and is given by

EStark = α
E2

2
, (2.12)

Here α is the scalar, static polarizability defined as

α = −2
∑

nlml 6=n′l′m′l′

|〈n′l′ml′ |µ|nlml〉|2
|~ωnl,n′l′ |

∼ n4

n−3
∼ n7 . (2.13)

For weak field, the states couple to the energetically close by states and hence the scaling
of the polarizability is given by the combined scaling of the dipole moment and transition
frequency for neighbouring Rydberg states.

For l > 3, the Rydberg states are degenerate and exhibit a linear Stark effect. The
resulting shift is calculated using degenerate perturbation theory. When very strong
electric fields are applied to Rydberg states then perturbation theory is not valid any-
more. Nevertheless for strong fields, one can diagonalize the Hamiltonian for several n
states as was done in [218]. The number of basis states depends on the required accuracy
and strength of the field. Yet another difference in the Stark map between an excited
hydrogen atom and a Rydberg atom is the presence of avoided crossings in the strong
field regime (see Fig.2.2). One can solve the hydrogen atom in the external electric field
in parabolic co-ordinates by exploiting the symmetry due to the 1/r potential. As a



12 Chapter 2. Alkali Rydberg atoms

result of this symmetry, there is no coupling between the degenerate excited states and
thus no avoided crossings. The strong coupling between the n and n − 1 manifolds of
the alkali Rydberg atom for low l states occurs for non-zero quantum defects where this
degeneracy is broken. By changing the electric field along the avoided crossings in a
controlled manner, one is able to selectively prepare high l states in a Rydberg atom
which is not possible in hydrogen atom [154, 69].

2.2.5 Atom-atom interactions

Strong Rydberg interactions can be used to study short as well as long range interactions
in many body physics. The very first direct measurement of van der Waals interaction
between two Rydberg atoms was done very recently in [17]. Two Rydberg atoms placed
next to each other at a distance R will experience an interaction due to the mutually
induced electric dipole moments. The position of the electron relative to their respective
nuclei is denoted by ri=1,2. The Hamiltonian for such a system is

H = H
(1)
A +H

(2)
A + Vint(r1, r2,R) . (2.14)

where H(i)
A ≡ HA(ri) is the atomic Hamiltonian defined in Eq.(2.1) and Vint(r1, r2,R) is

the interaction potential given as

Vint(r1, r2,R) =

[
1

|R| −
1

|R− r1|
− 1

|R + r1|
+

1

|R− r1 + r2|

]
. (2.15)

If the inter-nuclear distance between the two Rydberg atoms is much larger compared
to the size of the individual Rydberg electronic wave function (R >> ri), we can ap-
proximate Vint(r1, r2,R) using the multipole expansion. Keeping the dipole terms in
Eq.(2.15), we get

Vint(R) '
[
µ1 · µ2

R3
− 3(R · µ1)(R · µ2)

R5

]
. (2.16)

where µi=1,2 are the electric dipole moments corresponding to each atom. Consider that
each of the two Rydberg atoms are in state |ns0〉. In the two atom basis, the state is
given as |ns0, ns0〉 which are coupled to to energetically close by states, |n′p,m′p, n′′pm′′p〉
due to the interaction defined by Eq.(2.16),

V (R) = 〈n′pm′p, n′′pm′′p|Vint(R)|ns0, ns0〉

= δm′p,0δm′′p ,0

[
µns,n′p · µns,n′′p

R3
− 3(R · µns,n′p)(R · µns,n′′p)

R5

]
. (2.17)

where n′, n′′ = n ± 1. In general, all the m sub levels contribute to the van der Waals
coefficient, but for simplicity, we assume that the quantization axis is along the inter-
nuclear axis (which is the z-axis). The Hamiltonian expressed in the two atom basis
{|ns0, ns0〉, |n′p0, n′′p0〉} is written as
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(
∆E V (R)

V (R) 0

)
, (2.18)

where ∆E = 2Ens − (En′′p + En′p). Upon diagonalization we get the eigenvalues,

V±(R) =
∆E ±

√
(∆E)2 + 4V 2(R)

2
. (2.19)

Depending on the strength of the interaction V (R) and the energy difference ∆E, there
are two different limiting cases.

(a) Dipole-Dipole interaction (V (R) � ∆E): For small distances, the dipole-
dipole interaction dominates (see Fig.2.5). This is derived by expanding Eq.(2.19) around
∆E = 0 which gives,

Vdip = ±V (R) =
C3

R3
∼ n4 . (2.20)

The scaling law for n is determined by the square of the radial dipole matrix element for
nearest neighbouring Rydberg states.

(b) van der Waals interaction (∆E � V (R)): The van der Waals interaction is
dominant at large distances (see Fig.2.5) and is calculated perturbatively by expanding
in terms of V (R)/∆E in Eq.(2.19),
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Property n scaling
Size 〈r〉 n2

Energy Enl n−2

Energy difference |Enl − En′=n±1 l′=l±1| n−3

Geom. cross section σ n4

Dipole moment µnl,n′=n±1 l′=l±1 n2

Radiative lifetime τ n3

Polarizability α n7

van der Waals interaction C6 n11

Table 2.1: Properties of Rydberg atoms scaling with the principal quantum number.

VvdW =
V (R)2

∆E
=
C6

R6
∼ (n4)2

n−3
∼ n11 . (2.21)

The strength of this long range interaction is determined by the van der Waal coefficient
(dispersion coefficient) C6. The nature of the interaction (attractive/repulsive) is deter-
mined by the sign of ∆E which in turn depends on the quantum defects. The scaling
law for n is determined by the square of the radial dipole matrix element and the energy
difference in the denominator. This scaling indicates that for a highly excited state,
the interactions are very strong. For example, the interaction between two Rb Rydberg
atoms in 40s state can be 15 orders of magnitude larger compared to their ground state
counterparts [186]. The transition from the short range interaction to the long range
interaction occurs at the van der Waals radius defined as RvdW = 6

√
|C6/∆E| where the

van der Waals interaction equals the dipole interaction. Although we have derived here
for a reduced basis set involving only two Rydberg states, the interactions determined
by the the full state (including all the magnetic sub levels) will have the same qualitative
behaviour as discussed here (refer to Appendix B).

2.3 Summary

The multi-electron alkali Rydberg atom is studied as an effective single electron atom.
An electron in the Rydberg state is far from the ionic core and the effective potential ex-
perienced by it is modified by the inner electrons. The deviation from the pure Coulomb
potential is given by the quantum defects and is included in the effective principal quan-
tum number. The quantum defects determine the extent of non-degeneracy for low l

states of a Rydberg atom in contrast to hydrogen atom. A direct consequence of the
non-degenerate low l states of a Rydberg atom, is the quadratic stark effect and avoided
crossings for high electric field. Rydberg atoms are ideal for manipulation due to its
high sensitivity to surrounding fields as a result of its large atomic size (three orders of
magnitude larger than the ground state hydrogen atom). Since the Rydberg electron is
isolated from the core, there is small overlap with its ground state resulting in long life-
times (few hundred µs for 70s Rb) of the Rydberg atom. The interaction energy between
two Rydberg atoms has a scaling law with respect to the principal quantum number as
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n11 giving rise to very strong interactions between atoms. Table 2.1 summarizes the
different scaling laws for the various properties of the Rydberg atom.

In the next chapter, we study alkaline-earth Rydberg atoms which have two valence
electrons where one of the valence electron is in the Rydberg state. The extra valence
electron provides an opportunity to have additional control on the Rydberg atom but in
order to calculate the Rydberg states of any alkaline-earth atom, one needs to take into
account the effect of the interaction between the two valence electrons.
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Alkaline-earth Rydberg atoms will have additional control due to the presence of two
valence electrons. One of the valence electron is free for manipulation while the other is
excited to the Rydberg state. One direct application is the optical detection of Rydberg
states using the second non-excited electron [185]. Similar to alkali Rydberg atoms,
alkaline-earth Rydberg atoms are treated effectively as two electron atoms [176, 85]. The
crucial difference with alkali Rydberg atoms is the effect of the interaction between the
two valence electrons present in alkaline-earth Rydberg atoms. Focusing on strontium
(Sr), the Rydberg states are calculated using single configuration mean field theory. The
calculated states are compared with available experimental data. The van der Waals
interaction for ns states of strontium are evaluated and compared with alkali Rydberg
atoms.

3.1 Effective two electron model for strontium

The full Hamiltonian for the strontium Rydberg atom consists of the singly ionized stron-
tium Hamiltonian and the electron-electron repulsion between the two valence electrons
located at positions r1 and r2 relative to the nucleus respectively,



18 Chapter 3. Alkaline-earth Rydberg atoms: Strontium

Ĥψ(r1, r2) =

[
ĤSr+

1 + ĤSr+

2 +
1

r12

]
ψ(r1, r2) . (3.1)

where r12 = r2 − r1 is the distance between the two valence electrons. Similar to
alkali atoms, the singly ionized strontium atom has one valence electron. Using the
single electron approximation (refer section 2.1), one defines an effective model potential.
This simplifies the study of strontium Rydberg atom to effectively a two electron atom
problem.

3.1.1 Singly ionized strontium atom

The Schrödinger equation for a singly ionized strontium atom (Sr+) is

ĤSr+

1,2 ψSr
+

k (r1,2) =

[
− ~2

2m
∇2 + V Sr+

eff (r)

]
ψSr

+

k (r1,2) = ESr
+

k ψSr
+

k (r1,2) . (3.2)

where k = nljmj , with j ∈ {l − 1/2, l + 1/2} as the total angular momentum of the
individual electron andmj ∈ {−j,−j+1, . . . j−1, j} is the projection of the total angular
momentum on the quantization axis. V Sr+

eff (r) is the effective model potential for the
singly ionized strontium atom [176] given as

V Sr+

eff (r) = V Sr+

C (r) + V Sr+

SO (r) . (3.3)

It has two parts, the core potential and the spin-orbit coupling potential. The core
potential V Sr+

C (r) [176, 85] is similar to the potential used for alkali Rydberg atoms in
Eq.(2.4) as seen below,

V Sr+

C (r) = − q2

4πε0r

[
2 + (Z − 2)e−a1(l)r + a2(l)re−a3(l)r

]
− αc

2r4

[
1− e−(r/rl)

6
]
. (3.4)

The physical significance for each of the above terms has been discussed in great detail
in section 2.1. The parameters of the model potential are determined from fits to experi-
mental data for low and inter-mediate levels of Sr+ energies [116, 89]. The fine structure
interval is determined by the interaction of the valence electron with the polarized core
and is defined in the spin-orbit coupling interaction term which is defined as

V Sr+

SO (r) =
1

4m2c2

1

r

dV Sr+

C

dr
(j(j + 1)− l(l + 1)− s(s+ 1)) . (3.5)

This interaction depends on the inverse power of r and scales as n−3 [74]. Thus the spin-
obit coupling is negligible for highly excited states as compared to the low lying states of
the atom [61]. This is also why we did not include it for the model potential in the alkali
Rydberg atoms in Eq.(2.4). But for our purposes, we would often be dealing with low
lying states and its coupling to the Rydberg states particularly in later chapters. Thus
from here onwards we do not refer to the index j,mj for the Rydberg states but only for
the low lying states.
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3.1.2 Singlet and triplet states

The total spin for a two electron atom can either be in a singlet or triplet state. Denoting
χ± as the total spin wave function for the two electron atom where

(S = 0) χ− =
1√
2

[↑↓ − ↓↑] , (3.6)

(S = 1) χ+ =


1√
2

[↑↓ + ↓↑]
↑↑
↓↓ .

S is the total spin quantum number which takes value 0 (singlet state) or 1 (triplet state)
depending on whether the spins of the two valence electrons are aligned or anti-aligned.
Radiative transitions between the singlet and triplet states (intercombination lines) are
dipole forbidden where the spin-orbit interactions are negligible as is the case in He
atom [103]. In contrast to lighter atoms, for heavier atoms such as strontium, there can
be weak intercombination lines. A shorthand notation to write the two electron state
in LS coupling (Russel-Saunders coupling) is 2S+1 LJ where L = l1 + l2 is the total
orbital quantum number and J = L + S is the total angular momentum (orbital and
spin). Forbidden low lying transition lines have applications, for example the 1S0-3P1

(689 nm) transition has been used to trap strontium in red detuned MOT’s [105] of the
inter-mediate state which has a lifetime of 21.32 µs. While the transition 1S0-3P0 (698
nm) has been used for lattice clocks [191] exploiting the large lifetime (159 s) of the
meta-stable state.

3.2 Theory of two electron Rydberg atoms

Already for the simplest two electron atom, helium, exact analytical solutions cannot
be found even for the ground state and approximate solutions have been obtained using
variational principle [109, 118] or perturbation theory [188]. In the central field theory,
the total energy of the atom depends on the electronic configuration which determines
the distribution of the electrons with respect to the quantum numbers n and l. For a
closed shell, it is sufficient to describe the quantum states of the valence electrons which
are referred as the optically active electrons. In general for alkaline-earth atoms, there
are many possible configurations. For example for strontium, one can have 5sns, 5snp,
5pns, 5pnp . . . and so on. In order to take into account the electron-electron interaction
in Eq.(3.1), one uses multi-configuration Hartree-Fock theory (MCHF). Such full scale
configuration interaction calculations have been carried out for various alkaline-earth
atoms [197]. MCHF equations are solved using a trial wave function given as a sum of
single Slater determinant wave function ψi [74],

Ψ(r1, r2) =
∑
i

Ciψi(r1, r2) . (3.7)
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Consider a particular configuration i ≡ 5sns then the corresponding single Slater deter-
minant is given by

ψ5sns(r1, r2) =
1√
2

∣∣∣∣ u5s(r1) uns(r1)

u5s(r2) uns(r2)

∣∣∣∣ . (3.8)

where uk = φkχk are spin-orbital wave functions for a single particle. Here φk and
χk correspond to the atomic orbital and spin wave function of the single particle re-
spectively. The energy corresponding to the full wave function Ψ is variationally min-
imized with respect to the coefficients and the single Slater determinants. For suffi-
ciently large number of configurations included in Eq.(3.7), the diagonalization of the
two electron Hamiltonian in terms of the single Slater wave functions gives a reason-
ably accurate result. The difference in the energy obtained from single configuration
Hartree-Fock method (EHF) and MCHF (EMCHF) is the measure of the correlation en-
ergy Ecorr = |EHF − EMCHF|. This can be significant in certain cases, for example for
ground state He, it is Ecorr = −0.042. This implies that the interactions between the
two or more configurations cannot be neglected. Interactions between configurations
occur when there are accidental resonances or near resonances between states belonging
to two different series. However, there are special cases where the states in question
are described by a single channel and one can employ single configuration Hartree-Fock
theory. The concept of channel mixing is best understood using multi-channel quantum
defect theory (MQDT).

3.2.1 Multi-channel quantum defect theory

MQDT was first used by Seaton [183] and Fano [62, 63] to study interacting Rydberg
series. Two different Rydberg series (channels) converge to two different ionic states
with the continua above them (see Fig.3.1). For spherically symmetric ground state, one
assumes that all the excited states of the ion are far away from the Rydberg states of
the atom. This is usually justified if the inner core does not exchange energy or angular
momentum with the Rydberg electron. A particular state of one series is a perturbing
state if that particular state is resonant to another bound state or a continuum state
belonging to another series. The latter corresponds to autoionization where one of the
electron is lost to the continuum. For example for strontium, 5p2 is a perturber to
the 5sns series as it is near resonant to 5s7s as shown in Fig.3.1. This phenomena of
resonance interference is studied in great detail using MQDT [176, 74]. The effect of the
perturbers in alkaline-earth atoms has been theoretically investigated to a great extent
using MQDT [10, 11]. Experimentally it was shown that the only perturber that exists
to the strontium 5sns series is 5p2. No perturbers were found for high lying states.

The basic principle of MQDT is borrowed from scattering theory which is to distin-
guish the effects of the long range and short range interaction between the core and the
valence electron. In chapter 2, we know that an electron within the core radius expe-
riences a deeper Coulomb potential which leads to a phase shift of πδ for the reflected
outer part of the wave function since the incoming Coulomb wave scatters from the core
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Figure 3.1: The figure shows different series of bound Rydberg states (thin lines) of
strontium converging to respective ionic states (bold lines) with their corresponding
continuum states (grey region). The electron-electron interaction causes coupling be-
tween different channels as depicted by the red dashed lines. The energies have been
taken from various sources [158, 60, 83, 210]

and not a proton. Far away from the core, the open channel (also known as collision
channels) wave function would be similar to a scattering wave function [74] given as

ψo
i =

1

r
[f(Ei, l, r) cosπνi + g(Ei, l, r) sinπνi]Fi . (3.9)

where Fi is the product of the angular part of the Rydberg wave function, spin part
and the ionic wave function. f is the regular Coulomb wave function while g is the
irregular Coulomb wave function, both dependent on the Rydberg energy Ei and angular
momentum l. For r → 0, f ∝ rl+1 and g ∝ r−l. For r →∞, f and g are sine and cosine
functions respectively. The open channel wave functions match the outer boundary
condition of vanishing at r → ∞ iff Ei = −1/(2(n∗)2

i ) (in atomic units), where n∗ is
the effective principal quantum number defined in Eq.(2.5). For close to the ion core,
the wave functions would correspond to normal modes scattered from the core which are
given as standing waves [74] given as

ψc
α =

1

r

∑
i

Uiα [f(Ei, l, r) cosπµα + g(Ei, l, r) sinπµα]Fi . (3.10)

The above is a linear combination of all the incoming hydrogen wave functions and the
outgoing phase shifted wave functions with eigenchannel quantum defects µα. The above
closed wave function satisfies the inner boundary condition for r = rc (core radius). For
a Rydberg wave function at an arbitrary distance r > rc, one can express it either in
terms of the open or closed channel eigenfunctions.

Ψ(r1, r2) =
∑
i

A
(n)
i ψo

i +
∑
α

B(n)
α ψc

α . (3.11)
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One can define a unitary transformation Uiα that takes one basis to the other as follows,

A
(n)
i =

∑
α

Uiα cos[π(n∗i + µα)B(n)
α . (3.12)

It essentially describes the change in the coupling between the core and the electron as
the distance varies. Using Eq.(3.9) and Eq.(3.10) into Eq.(3.11), one obtains the Fano
formulation of QDT [62] with the following equations,

1

2(n∗i )
2

=
1

2(n∗j )
2

= . . . , (3.13)

det|Uiα sin[π(n∗i + µα)| = 0 . (3.14)

The above two sets of fundamental equations in MQDT need to be simultaneously sat-
isfied. The full wave function is expressed as a linear combination of the normalized
bound wave functions corresponding to each channel from Eq.(3.11),

Ψ(r1, r2) =
∑
i

Z
(n)
i ψo

i =
∑
i

(n∗1)3/2

Nn
A

(n)
i ψo

i . (3.15)

where Z(n)
i are the admixture coefficients corresponding to each channel and N2

n =∑
i(A

(n)
i )2(n∗i )

3 is the normalization constant. As an exercise, we consider two channels
for the 1S0 series of strontium, namely 5sns denoted as channel 1 and the 5pnp series
denoted as channel 2. Then we have,

Ψ(r1, r2) = Z
(n)
1 ψo

1(r1, r2) + Z
(n)
2 ψo

2(r1, r2) . (3.16)

The unitary matrix Uiα for two channels is determined using parameters β and µ1,2 given
as (

cosβ sin[π(n∗1 + µ1) cosβ sin[π(n∗1 + µ2)]

cosβ sin[π(n∗2 + µ1)] cosβ sin[π(n∗2 + µ2)]

)
. (3.17)

β is the interaction parameter between the two channels. Both these parameters (β
and µ1,2) are determined either by using R-matrix theory [12] or by fitting the energies
from experimental data as was done in [43]. Following [43], the admixture coefficients
corresponding to each channel are

A
(n)
1 = (−1)l1+1

[
cosβ cos[π(n∗1 + µ1)]C

(n)
1,1 + sinβ cos[π(n∗1 + µ2)]C

(n)
1,2

]
, (3.18)

A
(n)
2 = (−1)l2+1

[
− sinβ cos[π(n∗2 + µ1)]C

(n)
2,1 + cosβ cos[π(n∗2 + µ2)]C

(n)
2,2

]
. (3.19)

where C(n)
i,α is defined as

C
(n)
i,α =

Cof [Ui,α]√
Cof [Ui,1]2 + Cof [Ui,2]2

. (3.20)
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where Cof [Ui,α] is the co-factor of the 2 × 2 matrix in Eq.(3.17). The admixture coef-
ficients are calculated for low lying states. As shown in Table 3.1, there is considerable
mixing of the series for the low lying states but it effectively reduces to a single channel
theory for large n’s in 5sns series.

5s(n)s |Z(n)
1 |2 |Z(n)

2 |2
6 0.86 0.14
7 0.72 0.28
8 0.98 0.02
9 0.9998 0.0002
10 0.998 0.002
11 0.99995 0.00005

Table 3.1: The admixture coefficients were calculated for MQDT parameters, µ1 = 0.291,
µ2 = 0.145, β = 0.359 taken from [43].

This implies that for singly excited Rydberg state belonging to the 5sns series, a
single configuration approximation can be used as they are no states from another series
resonant to it. All the other states in other series are far away from the Rydberg states
5sns (some are shown in Fig.3.1). Having justified the single configuration approxima-
tion, we now proceed to solving the Hartree-Fock equations for the effective two electron
model.

3.2.2 Hartree-Fock equations

We solve for the specific case of a singly excited Rydberg atom and thus considering
only a single configuration. Thus the wave function for the effective two electron atom
expressed in terms of the ground state |5s〉 and a Rydberg state |nl〉 (refer to the orbital
part of uk in Eq.(3.8)) is

ψ±(r1, r2) =
1√
2

(φ5s(r1)φnl(r2)± φ5s(r2)φnl(r1)) . (3.21)

It is assumed that the single particle orbitals are orthonormal. One applies variational
principle where the energy of the full system δE[ψ] remains stationary (δE[ψ] = 0) for
small variation in the Slater determinant. To calculate the energy functional E[ψ], we
need to evaluate the matrix elements for the Hamiltonian in Eq.(3.1) in terms of the
trial wave function ψ±,
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E[ψ±] =〈ψ±(r1, r2)|Ĥ|ψ±(r1, r2)〉
=
[
〈φ5s(r1)|ĤSr+

1 |φ5s(r1)〉+ 〈φnl(r2)|ĤSr+

2 |φnl(r2)〉
]

+

1

2

[
〈φ5s(r1)φnl(r2)| 1

r12
|φ5s(r1)φnl(r2)〉+ 〈〈φ5s(r2)φnl(r1)| 1

r12
|〈φ5s(r2)φnl(r1)〉

± 〈φ5s(r1)φnl(r2)| 1

r12
|φ5s(r2)φnl(r1)〉+ 〈φ5s(r2)φnl(r1)| 1

r12
|φ5s(r1)φnl(r2)〉

]
.

(3.22)

The second line consists of only single particle matrix elements while the last line contains
two particle matrix elements. One can define a Fock operator that acts on the single
particle state as follows,

F̂ φ5s(r1) = HSr+(r1)φ5s(r1) + Vnl(r1)φ5s(r1)± V5s,nl(r1)φnl(r1) , (3.23a)

F̂ φnl(r2) = HSr+(r2)φnl(r2) + V5s(r2)φnl(r2)± Vnl,5s(r2)φ5s(r2) . (3.23b)

φ5s,nl solve Eqs.(3.23a,3.23b) and (Vnl(r1), V5s(r2)) are the direct Coulomb potentials
defined as

Vnl(r1) =

∫ ∞
0

1

r12
φ∗nl(r2)φnl(r2)dr2 , (3.24)

V5s(r2) =

∫ ∞
0

1

r12
φ∗5s(r1)φ5s(r1)dr1 . (3.25)

It is the local Coulomb field experienced by one electron due to other located at a distance
r12 from it. Whereas V5s,nl(r1), Vnl,5s(r2) are the non-local exchange potentials defined
as follows,

V5s,nl(r1) = Vnl,5s(r2) =

∫ ∞
0

1

r12
φ∗nl(r2)φ5s(r2)dr2 =

∫ ∞
0

1

r12
φ∗5s(r1)φnl(r1)dr1 .

(3.26)
The above potential is based on the spatial exchange symmetry and distinguishes the
singlet from the triplet state. A sufficient but not necessary condition ensuring that
δE[ψ] = 0 is fulfilled if the Fock operators defined Eq.(3.23a)-(3.23b) are diagonal in the
single particle basis states and thus giving

[HSr+(r1) + Vnl(r1)]φ5s(r1)± V5s,nl(r1)φnl(r1) = ε5sφ5s(r1) , (3.27a)

[HSr+(r2) + V5s(r2)]φnl(r2)± Vnl,5s(r2)φ5s(r2) = εnlφnl(r2) . (3.27b)

The above coupled set of equations are not eigenvalue equations since the potential
terms depend on the single particle orbitals itself. Hartree-Fock method involves a self
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consistency issue which is solved iteratively. The integro-differential equations (3.27a)
and (3.27b) can be solved by starting with a trial function φ(0)

1 and then using them in
(3.27a) and (3.27b) iteratively to obtain φ

(0)
1 , φ(1)

0 , φ(1)
1 and so on until convergence is

achieved. Quite often the trial functions used for the single particle orbitals φi’s are the
eigenfunctions of the single particle Hamiltonian which in our case is the singly ionized
strontium wave functions ψSr+k where k = nl (suppressing the j,mj).

3.2.3 Perturbation theory

Due to the very small overlap between the Rydberg electron and the ground state elec-
tron, we treat the Rydberg potential on the ground state (Vnl(r1)) and the exchange
terms (V5s,nl(r1), Vnl,5s(r2)) as perturbations to the ionic energies ESr+5s and ESr+nl . The
starting point is to take the ground state wave function for strontium ion as our initial
trial function φ(0)

5s = ψSr
+

5s (r) with energy ε(0)
5s = ESr

+

5s satisfying Eq.(3.2). Using φ(0)
5s in

Eq.(3.25), the ground state potential for the Rydberg electron is calculated and inserted
into the following equation,

[HSr+(r2) + V5s(r2)]φ
(0)
nl (r2) = ε

(0)
nl φ

(0)
nl (r2) , (3.28)

where V5s(r2) =

∫ ∞
0
|φ5s(r1)|2 r

2
1dr1

r>
. (3.29)

to obtain Rydberg wave functions φ(0)
nl with energies ε(0)

nl . Using the Rydberg wave
functions, we calculate the first order corrections to the ground state energy and the
Rydberg energy

ε5s = ESr
+

5s + E
(1)
nl,D ± E

(1)
nl,Ex , (3.30)

εnl = ε
(0)
nl ± E

(1)
nl,Ex . (3.31)

where the energy corrections E(1)
D and E(1)

Ex are given by

E
(1)
nl,D = 〈φ(0)

5s (r2)|Vnl|φ(0)
5s (r2)〉

=

∫ ∞
0
|φ(0)

5s (r1)|2|φ(0)
nl (r2)|2 1

r>
r2

1r
2
2dr1dr2 , (3.32)

E
(1)
nl,Ex = 〈φ(0)

nl (r2)|Vnl,5s(r2)|φ(0)
5s (r1)〉 = 〈φ(0)

5s (r1)|V5s,nl(r1)|φ(0)
nl (r1)〉

=
1

2l + 1

∫ ∞
0

φ
(0)
5s (r1)φ

(0)
5s (r2)φ

(0)
nl (r1)φ

(0)
nl (r2)

rl<

rl+1
>

r2
1r

2
2dr1dr2 . (3.33)

The expressions for the potential V5s in Eq.(3.29) and the energy corrections in Eqs.(3.32)-
(3.33) are obtained by implementing multipole expansion for 1

r12
. The properties of

spherical harmonics are used to solve the angular part of the integrals (see Appendix C).
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Figure 3.2: (a) Calculated energies for ns states of strontium and are compared to
experimental data from [43](black square),[158](red rhombus) and [141](green triangle).
(b) np energies of strontium and compared to experimental data from [158](red square)
and [141](green triangle).

3.3 Structure and properties

Many of the strontium Rydberg atom properties such as the oscillator strength, lifetime,
and Stark effect have been calculated theoretically and measured experimentally [174,
114, 139, 217, 140]. In this section, we show the results of our calculations such as the
Rydberg energies and wave functions of strontium and the Rydberg-Rydberg interaction
for ns states.

3.3.1 Rydberg energies and wave functions

Considering that a simplified (single configuration) mean field approach was used to
calculate the Rydberg states, the energies obtained for (for n > 10) agree with available
experimental data within an error of 0.1-0.2% as shown in Table 3.2 and Fig.3.2. The
first order correction from the exchange energies are two to three orders of magnitude
less than the ionic energies (see Fig.3.3). Negligible exchange energies for the Rydberg
states imply that the Rydberg singlet and the triplet states are nearly degenerate.

In order to obtain reliable quantum defects, we however require a higher accuracy in
energies than obtained in Table 3.2. Thus we fit the experimentally measured energies
of ns and np from [141] with Langer’s formula [74] to obtain more accurate quantum
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Figure 3.3: The plot compares the first order energy corrections of the exchange energy
with the unperturbed energy (refer to Eq.(3.31)) for a Rydberg electron in s and p states.

10 20 30 40 50 60 70
n

3.24

3.25

3.26

3.27

3.28

3.29

!
 s

 [n
]

’11 Experimental data

Fitting using Langer’s formula

(a)

(b)

10 20 30 40 50 60 70
n

2.67

2.68

2.69

2.7

2.71

2.72

!
p
 [n

]

’11 Experimental data

Fitted data using Langer’s formula

Figure 3.4: Fitted quantum defects for (a) s states (b) p states as a function of the
principal quantum number given by Eqs.(3.34) and (3.35).

defects (see Fig.3.4).
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Rydberg states [78, 158, 60] [a.u.] Theory [a.u.] Error [%]
50s -0.000228588 -0.000228704 0.05
65s -0.000130771 -0.000131083 0.2
40p -0.000361228 -0.000360699 0.14
45p -0.000280687 -0.000280328 0.12

Table 3.2: Calculated values of ns and np Rydberg energies.
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Figure 3.5: Sr wave functions for 50s and 50p states. The inpanel shows the ground
state wave function.

δs = 3.27 +
1.34

2n2
−
(

0.016

2n2

)2

, (3.34)

δp = 2.715 +
1.79

2n2
−
(

5.16× 10−9

2n2

)2

, (3.35)

where n is the principal quantum number. In the next section, we employ the strontium
Rydberg wave functions and fitted energies to calculate the Rydberg interactions. The
accuracy of the quantum defects play an important role in determining the nature of the
Rydberg interactions (repulsive/attractive).

3.3.2 Rydberg interactions

In section 2.2.5, we discussed the shift in the Rydberg energies as a result of the induced
interaction between two Rydberg atoms. Here we calculate the van der Waals interaction
for the 1S0 series for Sr. The dominant coupling considered here is the ns + ns→ (n+1)p

+ (n−1)p. The expression for the van der Waals interaction for this coupling (as shown
in Appendix B) is given as

VvdW =
4µ2

ns,n′pµ
2
ns,n′′p

3∆ER6
= −C6

R6
, (3.36)
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Figure 3.6: Scaling of the van der Waals coefficient with the principle quantum number
as given in Eq.(3.37).

where ∆E = 2Ens − (En′′p + En′p) and µns,n′(n′′)p are the induced dipole moments. In
the above formula, Using the fitted energies and the calculated Rydberg wave functions,
the scaling law for the C6 coefficient for ns states of strontium obtained is as follows

C6[a.u.] ' −(1.4 + 2.2× 10−1n− 9.0× 10−4n2)n11. (3.37)

The van der Waals interaction for ns strontium is attractive (see Fig.3.6) in contrast to
the alkali Rydberg atom particularly Rb [187]. Spin-orbit coupling can have significant
effect on the interactions. For example, the calculation of C6 coefficient, neglecting
the spin-orbit coupling for Rb at n=60 has an error by a factor of 3-5 [187]. The
exchange energy though argued to be small for ns strontium Rydberg states, is sufficient
to contribute a flip in the sign of the interactions via the energy difference ∆E for the
triplet ns states. The Rydberg interactions for the 1D2 and 3S0 series in strontium were
shown to be repulsive [54, 142, 198]. Thus the accuracy of the quantum defects is crucial
in determining the nature of the interactions.

3.4 Summary

Singly excited Rydberg states for strontium are calculated using three main approxi-
mations. Firstly, similar to alkali atoms discussed in chapter 2, we assume an effective
model potential for the singly ionized alkaline-earth atom. This reduces the many elec-
tron problem to an effective two electron atom problem. We then solve the two electron
Hamiltonian using mean field theory similar to Hartree-Fock theory but for a single con-
figuration. This is our second approximation. Single configuration mean field theory is
justified from experimental observations that show no high lying perturbers as discussed
in section 3.2.1. Finally due to the asymmetry in the size of the Rydberg electron and
the ground state electron, the exchange interaction between the two valence electrons
is treated perturbatively while solving the mean field equations. The energies obtained
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agrees with experimental data with a 99% accuracy. For more precise energies, we fitted
the experimental data to obtain the quantum defects for strontium Rydberg atom. Using
our wave functions and the fitted energies, the Rydberg interactions were calculated for
ns strontium states and were found to be attractive unlike those of Rb. Attractive inter-
actions in Rydberg gases have had interesting implications such as forming self-focusing
nonlinear optical response [184] and Rydberg induced solitons in BEC’s [136].

In this thesis, we will explore yet another application of attractive Rydberg inter-
action which is the generation of multi-particle entanglement (in Chapter 5). A direct
example of involving the manipulation of the second valence electron is shown in the
forthcoming chapter, where the possibility to trap Rydberg atoms along with the ground
state atoms in the same optical lattice is explored.
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If the trapping potential for the ground state atom is different from that of the
Rydberg state atom, then the coupling between the two internal states will lead to
excitation of higher motional states of the trapped atoms. Excited motional states are
responsible for de-coherence and lead to lower fidelity in many of the theoretical proposals
of quantum simulation [206] and quantum information [73, 172, 207] involving Rydberg
atoms. A magic lattice is an optical lattice that is identical for two different internal
states of the atom [104]. The challenge is to create traps for Rydberg atoms that are
sufficiently as strong as the trap for ground state atoms. In this respect, divalent alkaline-
earth atoms offer a promising approach due to the extra valence electron. The chapter
begins with a general discussion on the basic principles of optical trapping. The trapping
potential is derived in terms of the dynamic polarizability of the atom for a standing wave
laser field. The trapping potential for the Rydberg electron known as the ponderomotive
potential [58] is also discussed. The polarizabilities for the ground and Rydberg state
for strontium are calculated and compared to identify magic wavelengths of the trapping
laser. The feasibility of realizing such a lattice system with experimentally realistic values
for different parameters is discussed by considering the relevant decay processes.
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Figure 4.1: The figure shows the construction of a one dimensional optical lattice with
lattice spacing a.

4.1 Laser trapping of atoms: Optical lattice

Trapping of atoms using dipole force was first suggested in [121]. Since then the far
off resonance optical traps (FORTS) often referred as optical tweezers have been used
to manipulate micrometer size particles, from colloids, bacteria to DNA [36]. In this
section, we give a brief introduction to optical lattices and how the lattice spacings and
depth are controlled by the laser parameters.

Here we treat the laser field classically where the electric field component of the laser
at any given position r(x, y, z) is given as

E(r, t) = ε̂E0 cos(k · r− ωLt) = E0 cos(k · r− ωLt) . (4.1)

where E0 is the electric field amplitude, ε̂ is the polarization, k(kx, ky, kz) is the wave
number and ωL is the off-resonant laser frequency. An atom subjected to a far detuned
laser experiences a dipole force. The dipole moment d experienced by such an atom is
given as [138],

d(r, t) = αE(r, t) , (4.2)

where α is the dynamic polarizability. To trap atoms using light, one requires a potential
gradient. The trapping potential due to a light field as given in [35] is

U(r) = −1

2
〈d · E(r, t)〉t = −1

2
α〈E2(r, t)〉t . (4.3)

The angular brackets with the subscript t indicates time averaging. The spatially de-
pendence of the trapping potential is obtained from the spatial variation in the intensity
of the electric field. One way to create a spatially varying potential is to construct a
standing wave using two or more lasers. A one dimensional optical lattice is formed by
superimposing two laser beams (with a retro-reflected laser) to form a standing wave
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Figure 4.2: (a) A pair of lasers used to modify the lattice spacing as a function of the
angle θ. (b) Variable lattice spacing for a 3D lattice.

[159] as shown in Fig.4.1. Assuming that the two counter-propagating laser beams have
the same intensity, we then have

E2(r, t) =E2
0 [cos(k1 · r− ωLt) + cos(k2 · r− ωLt)]2 (4.4)

=4E2
0 cos2

(
(k1 + k2) · r− 2ωLt

2

)
cos2

(
(k1 − k2) · r

2

)
. (4.5)

Here we have neglected the laser profile in the direction perpendicular to the axes of prop-
agation and have assumed linear, parallel polarization. If the two counter-propagating
lasers travel along the z axis with the same wave number k = 2π/λL, then using
k1 = −k2 = k in Eq.(4.5), we get

E2(z, t) = 4E2
0 cos2(kz) cos2(ωLt) . (4.6)

Taking the time average of the above equation and defining E(z) = 2E0 cos(kz) gives,

〈E2(z, t)〉t = 2E2
0 cos2(kz) =

E2(z)

2
. (4.7)

The period of the lattice is given by the condition of cos2(nka) = 1 where n is the site
number and a is the lattice spacing and is equal to λL/2 (refer to Fig.4.1). Thus using the
above expression for time averaged intensity into Eq.(4.3), we get the trapping potential
for a one dimensional optical lattice,

U(z) = 2U0 cos2(kz) . (4.8)

where U0 = −1
2αE2

0 and the trap depth of the lattice is 2U0 .

4.1.1 Variable lattice spacing

Often one requires lattice spacing larger than the λL/2 to balance the strong Rydberg
interactions between the atoms. As demonstrated in [151, 123], one can have variable
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Figure 4.3: The figure shows that for a deep optical lattice, every site can be approxi-
mated by a parabola (blue) around the minima of the trap. The different motional states
of the trapped particle are shown in orange.

lattice spacings in optical lattices by introducing an angle θ between the two laser beams
as shown in Fig.4.2(a). In that case, the individual components of the wave numbers are
kx1 = −kx2 = 2k sin θ/2 and ky1 = ky2 = 2k cos θ/2 respectively. Thus the lasers interfere
to form a standing wave in the x̂ direction (see Fig.4.2(a)). Hence,

〈E2(x, t)〉t = 〈E2
0 [cos(kx sin(θ/2)− ωLt) + cos(−kx sin(θ/2)− ωLt)]2〉t

= 2E2
0 cos2(kx sin(θ/2)) . (4.9)

Thus the condition for lattice spacing is cos2(nka′ sin(θ/2)) = 1 which gives a′ = λL
2 sin(θ/2) .

Hence the lattice spacing can be varied by adjusting the angle θ between the two co-
propagating lattice beams.

4.1.2 Harmonic approximation

For a deep enough lattice, which is when U0 is larger than the thermal energy of the atoms
given by kBT , where kB is the Boltzmann constant and T is the average temperature of
the trapped atoms, one can make a harmonic approximation for the trap. Defining the
relative displacement (along the axis) of the trapped particle at the minima of a site as
Z = z − Z0 as shown in Fig.4.3, we can expand cos2(kZ − π

2 ) giving,

cos2(kZ − π

2
) = sin2(kZ) =

(
kZ − (kZ)3

3!
+ . . .

)2

' k2Z2 . (4.10)

Thus around the minima at every site of the lattice, one can approximate the trap to be
parabolic as shown in Fig.4.3. This implies that the particle trapped at every site can
be effectively treated as a harmonic oscillator problem. The Hamiltonian of a particle in
a harmonic potential is

ĤCoM =
−~2∇2

Z

2M
+

1

2
Mω2

trZ
2 . (4.11)
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complete control of the experimentalist. For example, 
the geometry of the trapping potentials can be changed 
by interfering laser beams under a di! erent angle, thus 
making even more complex lattice con" gurations19, 
such as Kagomé lattices20. # e depth of such optical 
potentials can even be varied dynamically during 
an experimental sequence by simply increasing or 
decreasing the intensity of the laser light, thus turning 
experimental investigations of the time dynamics of 
fundmental phase transitions into a reality.

Each periodic potential formed by a single 
standing wave has the form

Vlat(x) = V0sin2(kLx),

where kL = 2π/λL is the wave vector of the laser 
light used to form the optical standing wave and V0 
represents the lattice potential depth, usually given 
in units of the recoil energy ER = h _ 2kL

2/2m (m being 
the mass of a single neutral atom), which is a natural 
energy scale for neutral atoms in periodic light " elds. 
Note that by choosing to interfere two laser beams 
at an angle less than 180°, one can form periodic 
potentials with a larger period.

# e motion of a single particle in such periodic 
potentials is described in terms of Bloch waves 
with crystal momentum q. However, an additional 
harmonic con" nement arises due to the gaussian 
pro" le of the laser beams (see Fig. 2). Although this 
harmonic con" nement is usually weak (typically 
around 10–200 Hz oscillation frequencies) 
compared with the con" nement of the atoms on 
each lattice site (typically around 10–40 kHz), it 
generally leads to an inhomogeneous environment 
for the trapped atoms. One must be careful, 
therefore, when comparing experimental results 
derived for a homogeneous periodic potential case 
to the ones obtained under the inhomogeneous 
trapping conditions as described.

Owing to the large degree of control over the 
optical lattice parameters, a number of detection 
techniques have become available to directly measure 
the band populations present in the periodic potential. 
A good example of such a measurement technique 
is the mapping of a Bloch state in the nth energy 
band with crystal momentum q onto a free-particle 
momentum in the nth Brillouin zone (see Fig. 3). # is 
can be achieved by adiabatically lowering the lattice 
potential depth, such that the crystal momentum 
of the excitation is preserved during ramp-down. 
# en, the crystal momentum is eventually mapped 
onto a free-particle momentum in the corresponding 
Brillouin zone21,22 (see Fig. 3). For instance, for an 
equal statistical mixture of Bloch states in the lowest 
energy band, one expects a homogeneously " lled 
momentum distribution of the atom cloud within 
the " rst Brillouin zone (a square in momentum space 
with width 2h _ kL). # e atom cloud for such an input 
state should then expand like a square box a$ er the 
adiabatic lowering of the optical lattice potential, 
which has indeed been observed experimently22–24. 
Occupation of higher energy bands becomes visible 
as higher Brillouin zones are populated, and the atom 
cloud expands in a stair-case density distribution a$ er 
adiabatic turn-o! 23 (see Fig. 3e).

a

b

Figure 1 Optical lattice potentials formed by superimposing two or three orthogonal standing waves. 
a, For a 2D optical lattice, the atoms are confi ned to an array of tightly confi ning 1D potential tubes. 
b, In the 3D case, the optical lattice can be approximated by a 3D simple cubic array of tightly 
confi ning harmonic oscillator potentials at each lattice site.
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Figure 2 Optical lattice potentials. a, The standing-wave interference pattern creates a periodic 
potential in which the atoms move by tunnel coupling between the individual wells. b, The gaussian 
beam profi le of the lasers, a residual harmonic trapping potential, leads to a weak harmonic confi nement 
superimposed over the periodic potential. Thus the overall trapping confi guration is inhomogeneous.
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Figure 4.4: The figure shows optical lattices in higher dimensions reproduced from [26].

where ωtr is the trapping frequency of the harmonic trap. The above Hamiltonian de-
scribes the motion of the trapped particle with nuclear mass M . The eigenstates also
referred as the motional states of the trapped atom |n〉 are defined as follows,

〈Z|n〉 =

√
1√

π2nn!σ0
e
−1/2( Z

σ0
)2
Hn(

Z

σ0
) . (4.12)

where Hn are the Hermite polynomials and σ0 =
√

~
Mωtr

is the size of the motional
ground state φ0(Z). For a trapping frequency of 500 KHz and the nuclear mass of
strontium being M = 87.2 (in atomic mass units), the typical extension for motional
ground state is few tens of nanometers. These motional eigenstates satisfy the following
equation,

ĤCoM|n〉 =

[(
n+

1

2

)
~ωtr

]
|n〉 =

[(
â†â+

1

2

)
~ωtr

]
|n〉 , (4.13)

with the property 〈n|m〉 = δnm. â† and â are the creation and annihilation operators
respectively for the motional states with its usual properties [32]. By comparing the
potential energy energy of the trapped particle in a harmonic potential with Eq.(4.8)
with the harmonic approximation, we obtain

U0k
2Z2 =

1

2
Mω2

trZ
2 , (4.14)

=⇒ ωtr = k

√
2U0

M
. (4.15)
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FIG. 1. Cross section of the calculated trapping potential
formed by the LG03 beam in the plane perpendicular to the
optical axis.

We constructed a standard vapor-cell MOT [16] to trap
85Rb atoms. A cell was pumped by a turbo pump and an

ion pump, and the pressure was typically 1027 Pa. Two

external-cavity diode lasers were used for cooling and re-

pumping the atoms. The cooling laser was tuned 17 MHz

below the 5S1!2"F ! 3# 2 5P3!2"F 0 ! 4# transition, and
the repumping laser was resonant with the 5S1!2"F !
2# 2 5P3!2"F0 ! 3# transition. The diameter and inten-
sity of the cooling laser were 10 mm and 10 mW!cm2, and

those of the repumping beamwere 15 mm and 3 mW!cm2.

The diameter of the MOT was 1.5 mm, and the number

and temperature of the trapped atoms were determined to

be 3 3 108 and 150 mK by a time-of-flight (TOF) method
[3]. The TOF signal was provided by a probe laser beam

with a diameter of 0.4 mm propagating 7 mm below the

MOT. The distance between the probe beam andMOTwas

far enough that the initial spatial distribution of the trapped

atoms did not significantly influence the TOF signal.

An LG beam was generated from a Hermite-Gaussian

(HG) beam [17], which was produced by a Ti:sapphire

(TS) laser pumped by an all-line Ar-ion laser. The TS laser

consisted of a four-mirror bow-tie cavity, a birefringent

filter, an optical diode, and a thin etalon, and oscillated

at a single frequency of a few-tens-megahertz linewidth.

A tungsten wire of 20 mm diameter was inserted into the

laser cavity, and the position was adjusted to generate the

HG03 laser beam. It was converted to the LG03 mode by an

astigmatic mode converter, which was composed of a pair

of cylindrical lenses (focal length: f ! 25 mm) separated
by a distance of d !

p
2 f.

A schematic illustration of the novel optical trap is

shown in Fig. 2. Precooled atoms are trapped in the dark

core of the doughnut beam (2D trap). Because there is no

restoring force along the z axis, we add two “plugging”
laser beams to make the three-dimensional optical trap

(3D trap). To generate the plugging beams, we recycle

the doughnut beam which is divided into two beams and

redirected to the trap with a separation of 2 mm. The

doughnut beam is 1.5 mm in diameter, and the plugging

beam 0.7 mm. Thus the plugging beam provides a higher

potential barrier than the doughnut beam.

The procedure for constructing the novel trap was as

follows. Rubidium atoms were first trapped by MOT and

FIG. 2. Schematic illustration of the novel optical trap.

further cooled to 10 mK by PGC, which was achieved by
(i) switching off the magnetic field for MOT quickly (less

than 1 ms), (ii) gradually increasing the cooling laser de-

tuning from217 to 280 MHz in 15 ms, (iii) reducing the
cooling laser intensity to one-tenth of the initial intensity,

and (iv) waiting about 3 ms. Subsequently, the PGC laser

beams were turned off, and the doughnut beam was imme-

diately introduced into the atomic cloud by opening a me-

chanical shutter within 1 ms. The atoms were then stored

in the novel trap.

We used the TOF technique to examine performance

of the novel trap. After a certain period of trapping, the

atoms were released by shutting off the doughnut beam,

and the falling atoms were detected as absorption of the

probe laser beam. We obtained the largest TOF peak

when the doughnut beam detuning was 157 GHz to the
85Rb 5S1!2"F ! 3# 2 5P3!2"F0 ! 4# transition with the
maximum available power of 600 mW. Figure 3 shows

the TOF signals of the 2D and 3D traps under this con-

dition. Individual signals were obtained by varying the

trapping time, and the origin of the time axis corresponds to

the instant when the trapping beams were turned on. The

first TOF peak is due to the atoms not trapped by the novel

trap; the second, to trapped atoms. An asymmetric shape

of the first peak is presumably due to heating and pushing

of the untrapped atoms by the trapping beams. The single

TOF peak of zero trapping time corresponds to the atoms

initially trapped in the MOT.

We can deduce the number and temperature of the

trapped atoms from the peak height and width of the TOF

signal. Figure 4 shows the decay of the number of the

trapped atoms as a function of the trapping time. The life-

time of the 3D trap was determined to be 150 ms. The

decay of the 2D trap was faster than that of the 3D trap and

did not fit a simple exponential function. By extrapolating

the decay line to zero trapping time, we can estimate that

one-third of the atoms in the MOT is initially loaded in

the novel trap. Hence the absolute number is about 108.

The temperature of the trapped atoms was approximately

18 mK and almost independent of the trapping time.

4714

(c)

Figure 4.5: (a) The figure depicts atoms confined in optical traps for two different kinds
of polarizabilities. Below is the intensity profile as a function of distance. (a) For α < 0

(red) atoms are confined in the high intensity region. (b) For α > 0 (blue) atoms are
confined in the low intensity region. (c) Blue detuned trap with hollow beams reproduced
from [113].

4.1.3 Types of optical lattice

Optical lattices can be easily generalized to higher dimensions using more pairs of laser
beams [138]. For example, a 3 dimensional optical lattice is constructed with the help of
three pairs of laser beams as shown in Fig.4.4. From equation Eq.(4.8), one sees that for
α < 0, the atoms are high field seeking while for α > 0 are low field seeking (see Fig 4.5).
It is easier to experimentally realize traps for the case α < 0 case, since the focus of the
laser beam with a Gaussian profile naturally forms a confining potential well. In case of
α > 0, since the atoms are pushed away from the high fields, the decay rates associated
with photon scattering are low. But the construction of low field seeking optical traps
are experimentally more involved. Hollow laser beams with radial confinement [113] (see
Fig 4.5) and two dimensional trapping using optical walls with elliptical focusing of the
laser [49] have been very successful. Yet another method is the use of evanescent waves
formed by the total internal reflection on the surface of the dielectric medium [55].

4.2 Dynamic polarizability of an atom

To calculate the trapping potential from Eq.(4.8) for a given intensity, we need to evaluate
the dynamical polarizability. In this section we calculate the polarizability for the core
electron and the Rydberg electron separately.

4.2.1 Core polarizability

To derive the dynamic polarizability for the core electron is derived by solving the
Schrödinger equation for an electron of an atom interacting with a standing laser field.
Here the atom is treated quantum mechanically and the laser field classically. In the
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framework of the dipole approximation and using Eq.(4.6), the Hamiltonian describing
the optical coupling of the atom to the laser field is [38],

ĤO(t) = −~Ω

2

[
eiωLt + e−iωLt

]
. (4.16)

where the identity cosωLt = eiωLt+e−iωLt

2 has been applied. The Rabi frequency of the
coupled two level system is defined as

Ω = (2µ · E)/~ , (4.17)

where µ denotes the electric dipole moment. For simplicity we first consider a two level
atom which is later generalized to a multi-level system. The two levels of the the atom
are denoted as |a〉 for the ground state and |b〉 for a low lying excited state with energies
~ωa and ~ωb respectively. The Hamiltonian for the atom is thus written as

ĤA = ~ωa|a〉〈a|+ ~ωb|b〉〈b| . (4.18)

The wave function |ψ(r, t)〉 is expressed as a linear combination of the two level electronic
eigenfunctions,

|ψ(r, t)〉 = ca(t)e
−iωat|a〉+ cb(t)e

−iωbt|b〉 . (4.19)

The Schrödinger equation for an atom in the presence of a laser field is

i~∂tψ(r, t) =
[
ĤA + ĤO(t)

]
ψ(r, t) . (4.20)

The basis states |a〉 and |b〉 satisfy the orthonormality conditions and thus at all times t,
we have |ca(t)|2 + |cb(t)|2 = 1. Defining ωab = (ωb − ωa) > 0 as the transition frequency
and inserting Eqs.(4.19) into Eq.(4.20) and multiplying the corresponding kets 〈a, b| , we
get

iċa(t) = −
∑
b

Ωab

2

(
ei(ωL−ωab)t + e−i(ωL+ωab)t

)
cb , (4.21a)

iċb(t) = −Ωab

2

(
e−i(ωL−ωab)t + ei(ωL+ωab)t

)
ca . (4.21b)

where Ωab = 〈b|Ω|a〉. Due to the odd parity of the Hamiltonian ĤO, we have used
〈a|ĤO|a〉 = 〈b|ĤO|b〉 = 0. The above equations can be solved analytically under certain
approximations. When the laser frequency near resonance, then one can apply the so
called rotating wave approximation. In which case, the fast rotating (counter rotating)
terms such as e±i(ωL+ωab)t are ignored which is justified when ωL − ωab � ωL + ωab.
This approximation does not hold anymore for a far-off resonant laser, which is the
typical situation for an optical dipole trap. Assuming that the coupling of the electron
to the light field given by the Rabi frequency is smaller compared than the transition
frequency ωab, we treat ĤO(t) as a perturbation to ĤA. Using Dirac’s formulation of
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time dependent perturbation theory, we take the integral form of the Eqs.(4.21a) and
(4.21b), giving us

ca(t) = ca(0)−
∑
b

Ωab

2i

∫ t

0

(
ei(ωab+ωL)t′ + e−i(ωL−ωab)t

′
)
cb(t

′)dt′ , (4.22)

cb(t) = cb(0)− Ωab

2i

∫ t

0

(
ei(ωab+ωL)t′ + e−i(ωL−ωab)t

′
)
ca(t

′)dt′ . (4.23)

By substituting the ca,b(t) back into the above equations repeatedly, one obtains an
iterative expression for the coefficients as given below

ca(t) = c(0)
a + c(1)

a (t) + c(2)
a (t) + . . . , (4.24)

cb(t) = c
(0)
b + c

(1)
b (t) + c

(2)
b (t) + . . . . (4.25)

Assuming that the initial state of the system is the ground state i.e. c(0)
a (t = 0) = 1,

c
(0)
b (t) = 0 which yields c(1)

a (t) = 0. The next non-zero term is the first order solution
for cb,

c
(1)
b (t) = −Ωab

2i

∫ t

0

(
ei(ωab+ωL)t′ + e−i(ωL−ωab)t

′
)

dt′ ,

=
Ωab

2

[
ei(ωab+ωL)t

ωab + ωL
− e−i(ωL−ωab)t

ωL − ωab

]
+

Ωabωab
ω2
L − ω2

ab

. (4.26)

From the above equation one can calculate the population in the excited state up to the
first order which is ,

〈|cb(t)|2〉t =
Ω2
ab

2

ω2
L + 3ω2

ab

(ω2
L − ω2

ab)
2
. (4.27)

The small population of the excited state induces a dipole moment to the atom given by

da = 〈ψ(r, t)|µ|ψ(r, t)〉
=
∑
b

c∗acbµabe
−iωabt + c∗bcaµbae

iωabt

'
∑
b

µabΩab

2

[
eiωLt

ωab + ωL
− e−iωLt

ωL − ωab
+

e−iωLt

ωab + ωL
− eiωLt

ωL − ωab
+

4 cos(ωabt)ωab
ω2
L − ω2

ab

]
.

(4.28)

and thus the trapping potential for a given low lying level |a〉 evaluated from Eq.(4.3) is,

Ua(Z) = −1

2
〈da · E(Z, t)〉t =

1

2
αaE2(Z) . (4.29)
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Within the perturbation expansion, all the states that contribute to dynamic polariz-
ability αa are added for a given state |a〉 and is

αa =
∑
b

αba =
∑
b

µ2
ab

~

(
ωab

ω2
L − ω2

ab

)
, (4.30)

where αba is the dynamic polarizability arising from optical dressing on a specific tran-
sition from ground state |a〉 to an excited state |b〉. The dipole matrix elements µab are
obtained from the lifetimes of the relevant states using the following equation [32],

µab =

√
3πε0~c3

ω3
ba

(Γba)
−1 . (4.31)

Here Γba denotes the rate of radiative decay from level |b〉 to |a〉. From Eq.(4.30), one can
conclude that the dominant contribution to αa comes from states that are energetically
close to the state |a〉 and have large transition dipole moments. From Eq.(4.30), it is
evident that the sign of the dynamic polarizability depends on the detuning of the laser
∆ = ω − ωab. Thus a blue detuned laser (∆ > 0 =⇒ αa > 0) gives rise to a low field
seeking potential while a red detuned laser (∆ < 0 =⇒ αa < 0) gives high field seeking
trapping potential (refer section 4.1.3). This was the polarizability for the deeply bound
core electron. The frequency of the trapping laser (driving the low lying transitions) is so
far away from any Rydberg state that the polarizability defined in Eq.(4.30) is negligible
for the Rydberg electron. However the oscillating laser field of the trapping laser does
provide a trapping potential for the Rydberg electron and is known as ‘ponderomotive
potential’ which is discussed in the next section.

4.2.2 Rydberg polarizability

Ponderomotive potential is the potential experienced by a free charge due to an oscillating
electric field. A classical derivation involves taking the time average of the kinetic energy
of a charge q with mass m in an oscillating laser field which is given as [212],

〈K.E.〉 =
ω

2π

∫ 2π/ω

0

1

2
mẋ2dt =

q2E2
0

4mω2
, (4.32)

where the velocity of the electron is ẋ = (−qE0)/(ωm) sin(ωt) in an oscillating field with
frequency ω. The ‘quivering’ motion which is induced by the oscillating laser field is
along the polarization of the laser field of the form ε̂xE0(Z) cos(ωt).

Similarly the Rydberg polarizability is derived in a semi-classical treatment, where
the valence electron of the Rydberg atom is considered to be (quasi)free and the light
field is treated classically. For a trapped Rydberg atom in an optical lattice, the different
dynamics involved are that of the trapped nuclei, the orbiting of the Rydberg electron
and the ‘quivering’ motion of the Rydberg electron as shown in Fig.4.6. The fastest
dynamics corresponds to the quivering motion and then the electronic dynamics which
is generally faster than the nuclear dynamics. Thus one can separate out both, the
electronic and the quivering dynamics from the center of mass dynamics by applying the
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Figure 4.6: Semi-classical picture of the quivering motion of the Rydberg electron in the
presence of oscillating laser field.

Born-Oppenheimer (BO) approximation [58]. Assuming that the optical lattice is along
the ẑ axis and Z is the position of the nuclei from the origin (see Fig.4.6), then the BO
potential Vp is the same as in Eq.(4.32) and is given as

Vp(Z + r) =
αpE(Z + r)2

2
, (4.33)

where αp is the dynamical polarizability for a Rydberg electron defined as

αp =
q2

2mω2
L

. (4.34)

The use of ponderomotive shift to trap alkali Rydberg atoms was first studied theoreti-
cally [211, 108] and experimentally implemented for Rb atoms [7, 6]. Typically Rydberg
polarizabilities are much weaker than the core polarizabilities [204].

4.3 Magic trapping for ground and Rydberg atoms

Now we are in a position to calculate the trapping potential for strontium in the ground
and Rydberg state. From Eqs.(4.30) and (4.34), we see that the polarizabilities are
functions of the trapping wavelength. Therefore we need to find wavelengths for which
the total ground state polarizability equals the total Rydberg polarizability,

αg = αc + αp = αm . (4.35)

The wavelength for which this condition is satisfied is known as the magic wavelength
(λm) and the corresponding frequency is the magic frequency ωm = 2πc/λm. For stron-
tium, the additional core potential leads to a much deeper Rydberg atom lattice poten-
tial. The lifetimes and transition lines are given in Fig.4.7. In the case of strontium
ground state, the relevant transitions are 5s2 → 5s5p and 5s2 → 5s6p. Thus the total
ground state dynamic polarizability is
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Figure 4.7: The figure shows the level scheme for optical dressing of the Sr(5s2 1S0)
ground state and the Sr(ns5s 1S0) Rydberg state to provide an optical lattice for both
states. E(r) couples the ground state |g〉i and the also the core of the Rydberg atom
to their corresponding low lying states at site i. The transitions and lifetimes are taken
from [145, 71, 101].

αg = α5s5p
5s2

+ α5s6p
5s2

. (4.36)

For a range of laser wavelengths considered for the ground state atom, the dynamic polar-
izability for the strontium Rydberg core has significant contributions from the transitions
5s1/2ns1/2 → 5p1/2ns1/2 and 5s1/2ns1/2 → 5p3/2ns1/2 as shown in Fig.4.7. Thus the core
polarizability for a strontium Rydberg atom is

αc = α
5p1/2ns1/2
5s1/2ns1/2

+ α
5p3/2ns1/2
5s1/2ns1/2

. (4.37)

The total polarizabilities of the ground (αg) and Rydberg (αe) states along with the
individual contributions of the core resonances and the ponderomotive shift are shown
in Fig.4.8. We find a broad range of wavelengths for which the ground and Rydberg state
polarizabilities are nearly identical. This range is marked by the grey area in Fig.4.8.
One finds the magic wavelengths at λm = 323.4 nm with αm = 93.9 in atomic units and
one at λm = 418.6 nm with αm = 460.3 in atomic units which correspond to blue detuned
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Figure 4.8: Scalar polarizability as a function of wavelength. Shown are the polariz-
ability of Sr(5s2) ground state atoms (blue solid line), the total polarizability of the
Sr(5sns),ns Rydberg states (red dashed line) and the individual contributions of the Ry-
dberg electron (green dotted line), and the core (black dash-dotted line). The two magic
wavelengths at which the ground state and Rydberg state lattice potentials coincide are
marked by the arrows.

lasers. Around the 323.4 nm, there is a broad range of wavelengths which contains the
third harmonic of the Nd:YAG laser at λ = 355 nm, where single-frequency CW lasers are
available with reasonable output power. The magic wavelength at 418.6 nm are reached
using commercially available tunable frequency-doubled diode laser systems. Identifying
blue magic wavelengths for the optical trap has the added benefit of suppressing various
intensity dependent decay rate. A similar analysis for rubidium Rydberg states revealed
a magic wavelength, based solely on the balance of the atomic ground state polarizability
and the ponderomotive Rydberg atom potential [171]. Optical traps for alkali Rydberg
atoms are much weaker than the traps for alkali ground state atoms. For this reason,
it is difficult to confine both these internal states available in the same optical lattice
without inducing motion of the atoms.

4.4 Decay processes in magic lattice

Lifetime of the magic lattice with ground and Rydberg atoms is limited by several addi-
tional decay channels apart from the spontaneous decay of the dressed ground state and
the Rydberg state. There are transitions induced by blackbody radiation. Blackbody ef-
fects exist independent of the optical trap and have been measured for low and moderate
principal quantum numbers. [84]. There are also decay processes such as autoionization
for the weakly doubly excited state and photoionization, both of which are intensity
dependent processes.
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Figure 4.9: Experimental Sr(5sns) lifetimes from [78] (triangles), [84] (dots), and [140]
(squares), extrapolated to high principal quantum numbers using (4.39) (solid red line).
The dashed and dotted blue lines shows the separate contributions of spontaneous decay
and black body radiation, respectively.

4.4.1 Spontaneous decay

For the magic frequency ωm obtained in the previous section, the spontaneous decay
for the relevant inter-mediate states (5s5p, 5s6p) for ground state are given as (refer to
Fig.4.7),

Γ5s5p
5s2

= 32 MHz, Γ5s6p
5s2

= 0.3 MHz . (4.38)

The core ground electrons are weakly dressed to the inter-mediate excited states. One
notices that inter-mediate 5s5p state has significant decay rate. But the strength of the
coupling to this state is determined by the Rabi frequency Ω5s2,5s5p (see Eq.(4.17)) and
hence the intensity of the laser.

The lifetime of Sr(5sns) Rydberg states due to spontaneous decay and black body
radiation has been measured for low and moderate n in [140]. Lifetimes up to n=11 have
been experimentally observed in [78] and MQDT calculations were performed in [43] for
higher n’s(up to 40). In order to estimate lifetimes of higher excited states we have fitted
this data to the expected behaviour at large effective principal quantum numbers n? [23],

γryd =
Γs

n?3
+

Γbbr

n?5
(
exp

(
n3

T/n
?3
)
− 1
) . (4.39)

yielding Γs = 2× 108 Hz, Γbbr = 2× 109 Hz and nT = 8.9 (parameter dependent on the
radiation temperature T ). Spontaneous decay rates for Rydberg states typically follow
the scaling law τ−1

ryd ∝ (n∗)3 and are independent of the laser intensity. As shown in
Fig.??, this simple formula yields a rather good fit of the available experimental data.
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4.4.2 Autoionization

The Rydberg atoms considered for trapping are essentially singly excited atoms with
states belonging to the series for example 5sns. These are bound states. But by applying
a trapping laser, there is a small admixture of the inter-mediate 5s5p state to the Rydberg
state due to the Rydberg core polarizability. This implies that the Rydberg atom is
weakly dressed to a doubly excited state belonging to the series 5pns, which has a strong
coupling to the continuum (refer to section 3.2.1, Fig.3.1) due to the electron-electron
interaction. Any perturbation to this discrete state will cause an interaction with the
neighbouring continuum states resulting in a radiationless transition from the doubly
excited state to a ionized configuration which is known as autoionization. Rydberg
states have been shown to be unstable against autoionization [74]. The corresponding
rates for 5pns have been measured over a broad range of principal quantum numbers
[162, 210, 128] and were found to be well described by

Γ
5p1/2
ai =

6.0× 1014

n?3
Hz , Γ

5p3/2
ai =

9.0× 1014

n?3
Hz . (4.40)

A simple picture based on super elastic electron scattering of ionic core electron 5p gives
the scaling law for autoionization rates with respect to n and l. In this semi-classical
picture, the Rydberg electron orbits elliptically (depending on the l state), approaches
the ionic core and gets scattered from it. From the scattering, the Rydberg electron
gains enough energy to escape the Coulomb potential of Sr+ leaving the core electron in
the ground state. Thus the autoionization rates for high l states are lower than for low l

states. In general autoionization rates can be much larger than the Rydberg spontaneous
decay. But Γ

5p1/2
ai are dependent on the population of the excited state 5s5p (determined

by Eq.(4.27)). This population depends on the strength of the coupling which is given
as Ω5s2,5s5p which in turn depends on the intensity of the laser E2(z). We will return to
this point in section 4.4.4.

4.4.3 Photoionization

It has been well known that for far off resonance traps, the laser field causes decay of
the Rydberg state via photoionization [163, 204, 192, 134]. The photoionization rate is
given by the general expression [70]

Γpi =
σI

~ω
. (4.41)

where I is the intensity of the field and σ is the cross section for a transition from a
bound Rydberg state ψnl and to the continuum state φεl′ . The cross section is defined
as

σ =

(
2π~q2

mc

)
df

dE

∣∣∣∣
E=(Enl+~ω)>0

=

(
2π~q2

mc

) l′=l+1∑
l=l−1

2mωl>
3~(2l + 1)

∣∣∣∣∫ ψnl(r)rφεl′(r)r
2dr

∣∣∣∣2 .

(4.42)
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Figure 4.10: Lifetime of the trapped Sr(5s2s) ground state and Sr(5s50s,1S0) Rydberg
atoms as a function of the local trapping frequency at (a) λm = 323.4 nm and (b)
λm = 418.6 nm . The thick red solid line shows the total lifetime of the atoms obtained
by summing all decay rates for both ground and Rydberg states. The thin blue lines
show the individual contributions from radiative Rydberg states decay (solid line), spon-
taneous decay of the admixed p-states (dashed line), autoionization (dotted line) and
photoionization (dash-dotted line).

The energy normalized continuous wave function is given by φεl(r) ∼
√

2m
π~2k sin(kr +

δεl) with the continuum phase shift δεl and k = ~−1
√

2mE. The oscillator strength
distribution over the energy df

dE with f is the oscillator strength for the corresponding
transition is calculated by evaluating the bound-free radial matrix element using a semi-
classical formula given in [59]. Photoionization at optical frequencies takes place far
above threshold and the corresponding cross sections are expected to be small. The
high l states have very little photoionization but for low l states it is significant. Using
Eq.(4.42), the photoionization cross-section for Rb 50s is 9.45 × 10−25m2 which agrees
with [204]. Similarly for Sr 50s one finds it to be 4.2× 10−25m2 employing the quantum
defects from [18].

4.4.4 Intensity dependent suppression of decay rates

For a tightly confined optical lattice, it is important to consider the effect of the intensity
dependent losses. Since large trapping frequency requires large intensities, decay pro-
cesses such as spontaneous decay of the 5s5p state, autoionization and photoionization
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will affect the lifetime significantly. Our magic lattice however corresponds to a blue
detuned laser (refer to Fig.4.8). As already discussed in section 4.3, a blue detuned
trapping laser confines atoms in the low intensity field regions thereby minimizing the
intensity dependent rates. For a given magic frequency ωm, we know that the population
of the excited state 5s5p from Eq.(4.27) and thus the admixed fraction of the excited
state is given by [38]

S5s5p
5s2

(Z) =
Ω2

5s2,5s5p(Z)

2

ω2
m + 3ω2

5s2,5s5p(
ω2

m − ω2
5s2,5s5p

)2 . (4.43)

Assuming that the trapping potential is deep enough so that the confining atoms occupy
the lowest motional state |0〉, the effective intensity experienced by the atoms is deter-
mined by the spatial average of the intensity over the motional states. Using Eq.(4.29)
and the harmonic approximation in Eq.(4.14)

〈0|E2(Z)|0〉 =
2Um(Z)

αm

=
M

αm
ω2

tr〈0|Z2|0〉

=
M

αm
ω2

tr

[
~

2Mωtr
〈0|â2 + â†â+ ââ† + (â†)2|0〉

]
=

~
2αm

ωtr

[
2(0 +

1

2
)δ0,0

]
=

~ωtr

2αm
. (4.44)

Here the position was expressed in terms of the creation/annihilation operators (â†/â)
for the harmonic oscillator with its usual properties [70]. Using Eq.(4.43) and (4.44),
one obtains a simple relation for the averaged suppression factor,

S̄5s5p
5s2

= 〈0|S5s5p
5s2

(Z)|0〉

=
ω2

m + 3ω2
5s2,5s5p

2
(
ω2

m − ω2
5s2,5s5p

)2 〈0|Ω2
5s2,5s5p(Z))|0〉

=
ω2

m + 3ω2
5s2,5s5p

2
(
ω2

m − ω2
5s2,5s5p

)2

(
ω2

m − ω2
5s2,5s5p

)
α5s5p

5s2

~ω5s2,5s5p
〈0|E2(Z)|0〉

=

(
ω2

m + 3ω2
5s2,5s5p

ω2
m − ω2

5s2,5s5p

)(
ωtr

ω5s2,5s5p

)(
α5s5p

5s2

4αm

)
. (4.45)

The above expression will serve as a suppression factor for decay rates like spontaneous
decay of the 5s5p state and autoionization. This is because the contribution from the
quickly decaying excited state is minimized as it is not populated.
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γ5s2 = Γ5s5p
5s2

S̄5s5p
5s2

+ Γ5s6p
5s2

S̄5s6p
5s2

, (4.46)

γai = Γ
5p1/2
ai S̄

5p1/2
5s1/2

+ Γ
5p3/2
ai S̄

5p3/2
5s1/2

. (4.47)

The suppression of the photoionization rate is stems solely from the fact that it is inten-
sity dependent and so for a blue detuned laser one obtains the following expression by
using Eq.(4.44) in Eq.(4.41),

γpi = 〈0|Γpi|0〉 =
cε0σωtr
4αmω

. (4.48)

where we used I(z) = cε0
2 E2(z). We show our calculated lifetimes as a function of

the local trap frequency for Sr(5s50s) Rydberg states for the two magic wavelengths
(see Fig.4.10). The relevance of the different decay processes strongly depends on the
wavelength of the optical lattice. Most importantly, we find that the atomic lifetime is
not affected by the additional trapping fields for typical lattice parameters. Even for
very large trap frequencies of ωtr ∼ 1 MHz the total lifetime at both magic wavelengths
is solely limited by the Rydberg state decay.

4.5 Summary

A magic lattice that permits simultaneous trapping of the ground and Rydberg state
atom was possible only with alkaline-earth atoms due to the extra valence electron. Alkali
Rydberg atoms lack the core polarizability. Hence they are trapped optically solely on
the merit of the ponderomotive force which is much weaker than the trap for the ground
state atom. Whereas for strontium, we identify broad ranges of trapping frequencies
that are in the blue detuned region. Blue detuned trapping lasers have experimental
challenges to construct one and two dimensional traps compared to a red detuned trap,
however three dimensional traps are easily made [26]. An essential advantage of a blue
detuned trap is that the intensity dependent processes that lead to the ionization of the
Rydberg atom are highly suppressed. The study of the different loss mechanisms show
that the entire Rydberg lattice setup decays with its natural Rydberg lifetime for fairly
large range of trap frequencies.

The Rydberg lattice established in this chapter offers new possibilities to explore
many-body physics in ultra-cold systems. Two particular many-body systems will be
discussed in the subsequent chapters, one is about implementing multi-particle entan-
glement and the other deals with coherent ion transport in an optical lattice.
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In this chapter, we propose to create a many-body superposition state for a large
number of particles, more specifically a GHZ (Greenberger, Horne and Zeilinger) state
known to have applications in quantum information [96]. In general to have a large scale
entanglement, one requires strong interactions between the particles which in this case is
provided by the long range Rydberg interactions of strontium atoms (see section 3.3.2).
We consider a situation where ground state strontium atoms are confined in the magic
lattice and are optically coupled to strongly interacting Rydberg states. We study the
the spatial dependence of the Rabi frequency and the effect of the strong interactions on
the motion of the trapped particles in the magic lattice. The energy spectrum for the zero
laser field case shows an interesting cross over between the many-body all ground state
atoms and many-body all excited state atoms for attractive Rydberg interactions. We
propose a protocol for multi-particle entanglement where the dynamics is similar to the
one in a quantum Ising model. We also study the effect on the scheme of entanglement
by considering trapped atoms arranged in different optical lattice geometries.

5.1 Rydberg atoms in optical lattice

Consider a setup where N strontium atoms are confined in an optical lattice with one
particle per site. Each atom is coupled to a Rydberg state with the help of an excitation
laser (see Fig.5.1). The underlying Hamiltonian for such a system is given by

Ĥ = Ĥopt + ĤCoM + ĤI . (5.1)
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Figure 5.1: The position of the atoms are given by ri = ai + Zi. Atoms in the ground
state |gi〉 are shown in blue and the corresponding Rydberg state |ei〉 are shown in red.
The two internal states are coupled with a Rabi frequency Ω and detuning ∆ giving rise
to a strongly correlated excitation dynamics due to the strong van der Waals interactions
between atoms in states |ei,j〉. The shaded orange region represents the motional states.

where Ĥopt describes the coupling of an atom in ground state |g〉 to its Rydberg state
|e〉 at every site. It is written in terms of the projection operators defined by the two
internal states,

Ĥopt =
~Ω

2

N∑
i=1

(
eikZi |ei〉〈gi|+ e−ikZi |gi〉〈ei|

)
− ~∆

N∑
i=1

|ei〉〈ei| . (5.2)

where Ω and ∆ are the Rabi frequency and detuning respectively determined by the
laser. The Hamiltonian ĤCoM corresponds to the center-of-mass (CoM) dynamics of
the trapped atoms within the optical trap. Assuming that the optical lattice is one
dimensional (along the ẑ-axis) where the harmonic approximation is valid at every site
of the lattice (refer to section 4.1.2), then ĤCoM is simply a sum of harmonic oscillators
given as

ĤCoM =

N∑
i=1

~2∇2
Zi

2M
+

N∑
i=1

1

2
Mω2

trZ
2
i . (5.3)

ωtr is the trapping frequency of the optical lattice and Zi is the relative atomic dis-
placement at the corresponding site as introduced in section 4.1.2. The van der Waals
interaction between the Rydberg atoms is represented by ĤI,

ĤI =
∑
i

∑
j>i

C6

|a(i− j) + Zi − Zj |6
|e〉i〈e| ⊗ |e〉j〈e| . (5.4)

where a is the lattice spacing along the z-axis and C6 are determined from Eq.(3.37)
derived in section 3.3.2. The presence of strong Rydberg interactions between the atoms
can lead to the excitation of higher motional states. Populating higher motional states



5.2. Atomic motion in optical lattice 51

within the trap implies heating of atoms. An important question in the dynamics of
any many-body Hamiltonian such as in Eq.(5.1) is how to minimize decoherence effects
caused by the the heating of atoms in optical lattices [209].

5.2 Atomic motion in optical lattice

In this section, we will show that for sufficiently strong confinement, interaction-induced
coupling to higher motional states are adiabatically eliminated. This gives rise to an
effective lattice Hamiltonian for spatially frozen atoms. Both the Hamiltonians, Ĥopt

and ĤCoM are dependent on the position of the nuclei. Expressing Ĥopt in terms of
creation (â†i ) and annihilation (âi) operators of the harmonic oscillator (refer to section
4.1.2), we obtain

Ĥopt =
~Ω

2

N∑
i=1

(
eiη0(â†i+âi)|ei〉〈gi|+ e−iη0(â†i+âi)|gi〉〈ei|

)
− ~∆

N∑
i=1

|ei〉〈ei| . (5.5)

where η0 = kσ0√
2
is the Lamb Dicke parameter of the optical lattice with σ0 =

√
~/Mωtr

is the extent of the ground state motional wave function |0〉. In general, the matrix
element for the diagonal and off-diagonal coupling of the motional states via the Rabi
frequency is given as [117],

Ω0,0 = Ω〈0|eiη0(â†i+âi)|0〉 = Ωe−η
2
0/2 ' Ω

(
1− η2

0

2
+ . . .

)
, (5.6)

Ω0,1 = Ω〈1|eiη0(â†i+âi)|0〉 = Ωe−η
2
0/2η0 ' Ω

(
η0 −

η3
0

2
+ . . .

)
. (5.7)

Lamb Dicke regime is where η0 � 1 which implies that both the wave number of the
laser k and the size of the motional ground state σ0 must be small. The latter is small
for large trapping frequencies. However, often exciting an atom to a Rydberg state is
a two photon process and the resultant wave number given as k1 + k2 can be large if
they are in the same direction. In such a case, the two photon excitation is achieved by
having the two lasers in opposite directions. This gives a resultant wave number that is
small. Using second order perturbation theory and assuming Ω < ~ωtr, we can estimate
the energy correction resulting from the coupling to excited motional states due to the
spatial variation of the Rabi frequency as

E(2) =
~|Ω0,1|2
ωtr

=
~Ω2

ωtr
η2

0 . (5.8)

Consider the example of ωtr = 500 kHz which gives σ0 = 15 nm for strontium atoms
(M=87.2 a.u.). Typical optical transitions to Rydberg states are of the order of few 1000
nm [95] and so η2

0 = 0.004. Tight confinement of the optical lattice ensures that the above
correction E(2) is small. In such an optical lattice, where the extent of the local atomic
CoM wave functions is much smaller than the lattice spacing (|Zi − Zj | � a(i− j)), we



52 Chapter 5. Multi-particle entanglement in strontium Rydberg lattice

can expand the van der Waals potential in terms of Taylor series to leading order in the
atomic CoM displacements Zi,

Vee =
C6

|ai + Zi − aj − Zj |6

≈ C6

a6(i− j)6

[
1− 6

Zi − Zj
a(i− j)

]
=

C6

a6(i− j)6
+

6C6

a7(i− j)7

σ0√
2

(
â†j − â

†
i + âj − âi

)
=

V0

(i− j)6
+

Ṽ0

(i− j)7

(
â†j − â

†
i + âj − âi

)
. (5.9)

Here V0 = C6/a
6 is the nearest neighbour interaction between adjacent sites. We see

that the Rydberg interactions not only yield the desired level shifts of excited pair states,
but also lead to intra-band coupling with a coupling strength Ṽ0 = 6σV0/(a

√
2). This

coupling can however be strongly suppressed by realizing sufficiently strong trapping
potentials, for which the vibrational splitting ~ωtr exceeds the coupling strength Ṽ0.
Similar to Eq.(5.8), we the energy correction for interacting atoms located at i and j

respectively to be

E
int,(2)
ij =

〈01|Ṽ0

(
â†j − â

†
i + âj − âi

)
|00〉|2

(i− j)7~ωtr

=
V 2

0

2(i− j)7~ωtr

(
6σ

a

)2

=
V 2

0 η
2
ij

2~ωtr(i− j)7
. (5.10)

The motional intra-band coupling simply yields a correction ηij =
(

6σ
a

)
to the van der

Waals shifts. The above energy correction has an explicit dependence on the lattice
spacing. Small lattice spacings are required to reach the blockade limit (half a µm for
60s Rb [182]) which is often required for certain applications in quantum information
[172]. In such a limit, the van der Waals interaction V0 can be considerably higher
counteracting the small ηij . Nevertheless, for a typical Rydberg state with n = 50 and
a lattice spacing of a = 3 µm, one obtains an interaction of strength V0 = 9.6 MHz
and using the preceding trapping frequency of 500 kHz, the resulting correction factor
ηii+1 = 0.02 is indeed negligibly small. Multiplying by 2 to Eq.(5.8) and Eq.(5.10)
in order to take into account the coupling to |10〉 as well, the effective single-band
Hamiltonian for the lowest band of the atomic lattice is
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Ĥ =
~Ω

2

N∑
i=1

(|e〉i〈g|+ |g〉i〈e|)
[
1− η2

0

2

]
− ~∆

N∑
i=1

|e〉i〈e|

+ V0

∑
i

∑
j>i

|e〉i〈e| ⊗ |e〉j〈e|
(i− j)6

[
1 +

V0

~ωtr(i− j)
η2
ij

]
+

~Ω2

ωtr
η2

0 . (5.11)

This simple discussion shows that despite the presence of strong interactions that greatly
exceed the energy scale of the lattice confinement, for reasonable experimental parame-
ters, atomic motion can be practically frozen out. Such large interactions are essential to
assure a sufficiently short timescale for the many-body dynamics of the internal states,
which must be faster than the decay of the Rydberg lattice.

5.3 Many body energy spectrum

Henceforth we assume that the trapping potential is deep enough such that the intra-
band coupling between motional states are suppressed. The many-body Hamiltonian
in Eq.(5.11) can be scaled by the Rydberg interactions by introducing dimensionless
quantities for the detuning ∆̃ = ~∆/|V0| and the Rabi frequency Ω̃ = ~Ω/|V0|. We then
have,

Ĥ =
Ω̃

2

∑
i

(|ei〉〈gi|+ |gi〉〈ei|)− ∆̃
∑
i

|ei〉〈ei| −
∑
i

∑
j>i

|ei〉〈ei| ⊗ |ej〉〈ej |
(i− j)6

. (5.12)

Let us study the features of the many-body spectrum when the laser field is switched
off (Ω̃ = 0). Each atom can either be in the ground state or Rydberg state. Thus for
N atoms in an optical lattice, we have 2N possible many-body states. The energy for a
configuration where there are n Rydberg atoms is given as

En = −n∆̃−
∑
i

∑
j>i

1

(i− j)6
. (5.13)

For an arbitrary configuration of 0 < n < N Rydberg atoms in a lattice of N atoms,
there maybe a set of degenerate states. For example, the many-body configuration state
|ggeg...〉 has a N-fold degeneracy as it corresponds to any one atom in Rydberg state
with all the others in the ground state. Nevertheless the configuration where all atoms
are in the ground state (n = 0) or when all atoms are in the Rydberg state (n = N) are
unique. We denote these two many-body states as |G〉 ≡ |ggg . . .〉 and |E〉 ≡ |eee . . .〉
respectively. Depending on the sign of the V0, there are two interesting scenarios. For
repulsive Rydberg interactions, the energy spectrum show a step-wise crossing between
|n〉 and |n + 1〉 state as the detuning is varied from a large negative value to zero (see
Fig.5.2(a)). It was shown in [160] that a using an excitation laser with a chirped pulse,
one can adiabatically prepare a crystal of n < N Rydberg states starting from a |G〉
configuration. Due to the repulsive nature of the interaction, the ground state of the
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Figure 5.2: Many body spectrum for Ω̃ = 0 with N=8 particles: (a) for repulsive inter-
actions and (b) for attractive interactions. The crossover between |G〉 and |E〉 occurs
for attractive interactions only.

configuration at every step corresponds to the case where Rydberg atoms are maximally
separated giving rise to the crystal structure.

In this chapter we explore the effect of attractive interactions. In the many-body
spectrum, we find that there is a real crossing between the many-body state |G〉 and
|N〉, which did not exist for the repulsive case. For a finite one dimensional lattice, the
value of the detuning (∆̃C) at which this crossing occurs can be calculated from the
condition EN = 0, where EN is the energy corresponding to |E〉 given by Eq.(5.13).
Thus,

EN =−N∆̃C −
∑
i

∑
j>i

1

(i− j)6
' −N∆̃C − (N − 1) = 0 ,

⇒∆̃C = −N − 1

N
. (5.14)

Here we have assumed that number of Rydberg atoms N is large enough to ignore edge
effects and that the nearest neighbour interactions are the dominant ones. This particular
detuning ∆̃C at which the cross over between |G〉 and |E〉 occurs takes an interesting
interpretation in the context of the quantum Ising model discussed in section 5.6. For
now, we proceed to examine a scheme that generates many-body entanglement between
the states |G〉 and |E〉.



5.4. Generating entanglement: Double sweep protocol 55

-1.5 -1 -0.5 0 0.5 1

!
"

-4

-3

-2

-1

0

1

2

3

4

m
an

y
 b

o
d

y
 e

n
er

g
y
 [

V
0
]

-2 -1.8 -1.6 -1.4 -1.2 -1

-1

0

1

2

3

4

5

∆̃

|G〉

|E〉

= |gg〉

= |ee〉

m
an

y
b
o
d
y

en
er

gy
[V

0
]

0 0.5 1 1.5 2

t

1

2

3

4

!"

0 1 2 3 4
-4

-2

0

2

4

E
N

0

0.2

0.4

0.6

0.8

1

P
N

0 0.5 1 1.5 2

t

1

2

3

4

!"

0 1 2 3 4
-4

-2

0

2

4

E
N

0

0.2

0.4

0.6

0.8

1

P
N

t = V0 · T

PG

PE

0 0.5 1 1.5 2

t

1

2

3

4

!"

0 1 2 3 4
-4

-2

0

2

4

E
N

0

0.2

0.4

0.6

0.8

1

P
N

Ω̃

(a) (b)

(c)

|eg〉, |ge〉

Figure 5.3: (a) The figure shows the crossing between |G〉 and |E〉 for the energy spec-
trum of two particles. (b) Here it shows the variation in the energy of the four instan-
taneous states (green lines) as a function of the scaled Rabi frequency for a two particle
sysytem. (c) The double sweep protocol is applied for the two particle system and the
corresponding overlap states PG and PE are shown.

5.4 Generating entanglement: Double sweep protocol

Amaximally entangled state of three or more particles is a GHZ (Greenberger, Horne and
Zeilinger) state [19, 214]. The non-classical properties of a GHZ state and its applications
have been extensively studied [200]. The simplest three entangled state qubit is

|ψE〉 =
1√
2

(|ggg〉+ |eee〉) . (5.15)

In the above state, there is an equal probability to measure a state either in |ggg〉 or in
|eee〉. Bouwmeester was the first to create a three particle GHZ state by entangling the
polarizations of three individually separated photons [30]. This can be generalized to a
larger manifold of qubits with N>3,

|ψGHZ〉 =
1√
2

(
|g〉⊗N + |e〉⊗N

)
≡ 1√

2
(|G〉+ |E〉) . (5.16)

One of the challenges is to have a scalable multi-particle entanglement. With the help
of a temporally varying laser profile (see Fig.5.3), we investigate the dynamics of the
Hamiltonian in Eq.(5.12). The laser is switched on and its intensity is increased to a
certain value and then decreased back to zero. The duration of this entire pulse is given
by pulse width (T ). At the beginning of the pulse, the degeneracy between |G〉 and |E〉
is lifted creating an avoided crossing (See Fig.5.3(a)) which then closes at the end of the
pulse. During this process, one can have a Landau-Zener transition [215] between the
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two many-body states and finally end up with a collective state of N atoms which is a
superposition of the |G〉 and |E〉 states controlled by the pulse width and the intensity
of the laser. Thus the Hamiltonian Ĥ(t) in Eq.(5.12) is time dependent. At any given
instant t, the time dependent eigenstates are expressed in terms of the many-body basis
states,

|m(t)〉 =
∑
n

(c0(t)|ggg . . .〉+ c1(t)|egg . . .〉+ . . .+ c2N (t)|eee . . .〉) . (5.17)

If |Ψ(t)〉 is the full many-body wave function at any instant t, then expressed in terms
of the new eigenstates, it is given as

Ψ(t) =
∑
m

bm|m(t)〉 . (5.18)

We can evaluate the overlap of the full wave function with the GHZ state given in
Eq.(5.16) as follows

|〈Ψ(t)|ψGHZ〉|2

=
1

2
[〈Ψ(t)|G〉+ 〈Ψ(t)|E〉]2

=
1

2

[
PG + PE + 2

√
PG
√
PE

]
. (5.19)

where PG = |〈Ψ(t)|G〉|2 and PE = |〈Ψ(t)|E〉|2. If the dynamics were entirely adiabatic
then we get back close to the same un-entangled state we started with. This is because the
overlap of the instantaneous eigenstates of the time evolving Hamiltonian with the time
evolving wave function are all conserved according to the adiabatic theorem. In Fig.5.3,
we implement the scheme of double sweep of the field for a system of two particles. In
(a), we see that there is a crossing between the states |gg〉 and |ee〉 at ∆̃C = −0.5 as
expected from Eq.(5.14). The next higher states are the degenerate states |eg〉 and |ge〉.
On turning on the field, there is an avoided crossing and the time dependent states |m(t)〉
(shown in green lines in Fig.5.3(b)) are a superposition of the all the four basis states
with which we started. At the end of the double ramp with a pulse width of 2 V0 ·T , we
get a two particle GHZ state with 0.94 % fidelity. Using the same procedure for different
pulse widths, we show the creation of GHZ state for 15 particles in Fig.5.4.

When the laser field is on, other many-body states (such as the ones |eg〉, |ge〉 for
the two atom) from energy spectrum will also get shifted. In the case of a finite chain
one dimensional lattice, the next excited many-body state |N − 1〉 corresponding to the
configuration of (N − 1) Rydberg atoms will come closer to the state |E〉. This is not
favourable as the coupling of |G〉 to other excited many-body states (apart from |E〉)
will spoil the fidelity of the GHZ state. This depends on the intensity of the laser field
and the energy gap between the state |E〉 and |N −1〉. One obvious way to increase this
energy gap is to have more interacting atoms for every single Rydberg atom.
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Figure 5.4: The final population PG (blue dashed line) and PE (red dot-dashed line)
for the many-body ground |G〉 and excited state |E〉 are plotted as a function of the
excitation pulse duration for N=15 atoms. We find a GHZ state for 15 atoms with a
fidelity of 95 % in a short pulse length of V0T ' 27 and a fidelity of 99.9 % in V0T ' 76.

5.5 Geometry effects of the lattice

The difference between the many-body state |E〉 and |N − 1〉 is that one of the Rydberg
atom in |E〉 is de-excited to a ground state atom. Thus the energy gap between these two
many-body states depends on the number of Rydberg interaction links lost on de-exciting
one Rydberg atom. By considering different arrangements of the Rydberg atoms in the
lattice, we can modify the number of interacting Rydberg atoms and thus the energy
gap. Let the energy of |N − 1〉 denoted by EN−1 is calculated using Eq.(5.13). We
first calculate the energy gap for the one dimensional finite case and then we repeat the
same calculations for a periodic chain (ring), square lattice and three dimensional cubic
lattice. Adopting a more general notation for atomic distances, we switch i, j to ri, rj .
Thus the energy of the many-body state |E〉 in a lattice of any geometry is given as

EN = −N∆̃C −
∑
i

∑
j>i

1

(ri − rj)6
. (5.20)

Using the condition EN = 0 and similar to Eq.(5.14), the value of the detuning for the
cross over between |G〉 and |E〉 in a lattice of any geometry is given as

∆̃C = − 1

N

∑
i

∑
j>i

1

(ri − rj)6
. (5.21)

As shown in Fig.5.5, the Rydberg atom that gets de-excited are from the edges. Thus
the energy of the state |N − 1〉 at detuning ∆̃C is given as

EN−1 = −(N − 1)∆̃C −
∑
i

∑
j>i

1

(ri − rj)6
+ L , (5.22)
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Figure 5.5: The figure shows the many-body spectrum for Ω̃ = 0 and the corresponding
energy difference to the next excited state at ∆̃C (in purple double arrow): (a) 1D finite
lattice (N=8 particles) (b) 1D periodic lattice (N=8 particles) (c) 2D square lattice (N=9
particles) (d) 3D cubic lattice (N=8 particles).

where L is constant parameter depending on the type of geometry considered. It repre-
sents the change in the Rydberg interaction energy as one Rydberg atom from the edge
is de-excited. Thus using Eq.(5.20) and (5.22) in general the energy gap at ∆̃C is given
as
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EN−1 − EN = ∆̃C + L . (5.23)

The main results are summarized in Table 5.1.

Geometry N ∆̃C L |EN−1 − EN |
1D open lattice 8 -0.88773 1 0.112
1D periodic lattice 8 -1.01 2 0.987
2D square lattice 9 -1.462 2 + ( 1√

2
)6 = 2.125 0.663

3D cubic lattice 8 -1.706 3 + 3( 1√
2
)6 + ( 1√

3
)6 = 3.41 1.704

Table 5.1: For different lattice geometries we calculate the gap energy between many-
body state |E〉 and |N − 1〉 at the detuning ∆̃C .

Thus for the open chain the energy difference between the last and penultimate
energy levels at ∆̃C scales inversely with N. For very large number of atoms, this energy
gap vanishes. This severely restricts in obtaining an entangled state purely in terms of
many-body states |G〉 th and |E〉.

5.6 Quantum Ising model

Rydberg atoms and trapped ions have often been used to model spin systems [180,
102, 110]. The Hamiltonian in Eq.(5.12) can be studied as an effective quantum Ising
model. Using the transition operators of a two level system, one can define the Pauli
spin matrices as follows

σx =
1

2
(|ei〉〈gi|+ |gi〉〈ei|) , (5.24)

σy =
−i
2

(|ei〉〈gi| − |gi〉〈ei|) , (5.25)

σz =
1

2
(|gi〉〈gi| − |ei〉〈ei|) . (5.26)

The Hamiltonian Eq.(5.12) can be re-written to obtain the general quantum Ising model,

H =

N∑
i

 N∑
j>i

−Jijσizσjz + hzi σ
i
z + hxσix

+ constant term . (5.27)

where

Jij = Ṽij =
1

(i− j)6
, (5.28)

hx = Ω̃ , (5.29)

hzi = ∆̃ +
N∑
j>i

Ṽij
2

. (5.30)
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The study of the transverse Ising model with non-zero longitudinal field is nontrivial
and quite interesting in itself. At the particular value of detuning ∆̃C , where the many-
body state |G〉 and |E〉 have a cross over, the shift due to the interaction cancels with
the detuning setting the second term (the longitudinal term) in Eq.(5.27) to zero. This
reduces the above equation to a transverse Ising model given as

H =

N∑
i

 N∑
j>i

Jijσ
i
zσ

j
z + hxσix

 . (5.31)

The two atomic internal state can correspond to the spin | ↑ (↓)〉i at site i. There
are two ferromagnetic ground states (|E〉 ≡ | ↑↑↑ . . .〉, |G〉 ≡ | ↓↓↓ . . .〉) that are
degenerate in the absence of the field. For a non-zero field, there exists a critical point
in the thermodynamic limit which corresponds to g = hx

Jij
= 1. For g > 1, there is

spontaneous symmetry breaking resulting in a phase transition to the paramagnetic state.
One dimensional quantum Ising model is the simplest model to study ferromagnetism
and is known to show second order quantum phase transition [168]. Analytical solutions
are known for the one dimensional transverse Ising model by mapping it to the classical
(1+1) dimension Ising chain [168]. These analytical results may provide a useful insight
to the dynamics of the many-body entanglement process.

The effectiveness of the double sweep protocol described in section 5.4 can be assessed
from the following intuitive picture. Thus one starts with the symmetry breaking un-
entangled ground states of Hz and increases the transverse field hx from zero to a finite
value pass the critical point and then ramp it back to zero. In the end, it is numerically
shown (Fig.5.4) that the final state has significant overlap with the GHZ state. The
memory of the initial state is retained in the final state despite crossing the critical point
where all the symmetry breaking ground states (|G〉, |E〉) have a substantial overlap with
the wave function ψ(t). However the introduction of non-adiabacity into the dynamics
helps weakening this memory bias by exciting higher energy states. Thus by ramping
the field faster it is possible to generate entangled states. But to perform this protocol in
a systematic manner is difficult since the properties of high energy excitations are fully
not understood and the dynamics is extremely complicated.

5.7 Summary

We study a Hamiltonian that describes the excitation of ground state strontium atoms
to Rydberg states confined in a magic optical lattice with one particle at every site. We
show that for deep enough lattices (few hundred KHz) and with large lattice spacings
(few µm), it is sufficient to guarantee that the trapped atoms remain in their motional
ground states. As a result of attractive Rydberg interactions, at a particular detuning,
the many-body energy spectrum for the zero field case exhibits a cross over between
the state with all atoms in the ground state and all atoms in the Rydberg state. These
two many-body states correspond to the two degenerate ferromagnetic ground states of
the quantum Ising model. A phase transition occurs by applying a temporally varying
laser field from the ferromagnetic phase to the paramagnetic phase and dynamics of
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the many-body system culminated with an entangled state. The crossing of the critical
point in a non-adiabatic manner is the key element for entanglement generation. This
is verified in Fig.5.4 where we see that that the final state is remarkably close to a GHZ
state.
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Dynamics of charged particles in a gas of neutral atoms/BEC have been studied
before [41, 178, 42, 149]. The question of controlling and ensuring coherent charge
transport is still open. This chapter studies yet another application of strontium Rydberg
atom, specifically the possibility of ion dynamics immersed among strontium atoms. By
weakly exciting the atom to a Rydberg state, we show that the probability for the electron
to hop onto its neighbouring ion is enhanced. The ion-atom system is studied for small
distances using a non-perturbative treatment. Since the dynamics is strongly dependent
on the inter-nuclear distance of the particles, any motion of the particle would result
in de-phasing of the dynamics. To control the de-phasing issue, we propose to optically
trap the ion-atom system. A compact set of dynamical equations are derived that ensure
coherent hopping. These equations are solved numerically and compared with analytical
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Figure 6.1: The ionic potentials are shown corresponding to the ion (red) and atom core
(blue). The ground state is optically coupled to its Rydberg state for which the tunneling
T is higher since it has a stronger overlap with the neighbouring core.

results. Finally we test the coherence of the dynamics for a two site case which is later
generalized to many-sites. With the help of a spatially dependent laser field, we are able
to choose the direction of the transport. We conclude with a discussion on the relevant
time scales and the possibility of experimental realization of the system.

6.1 Setup for ion transport

Consider the simple case of an ion placed next to an atom. If the atom is in its ground
state, then the electron is highly localized with its atomic core. While for a Rydberg
atom, the wave function of the electron has a large spatial extension (refer to section 2.2)
and thus crosses the ionic potential barrier as shown in Fig.6.1. Thus having the atom
in its Rydberg state enhances the hopping probability. One can also view this process as
the transport of the ion (hole) with an effective mass of the electron. It is important to
have the dynamical time scale for the ion transport much smaller than the lifetime of the
system, which is partly determined by the lifetime of the Rydberg atoms. One enhances
the lifetime of the Rydberg state by a fraction (2∆/Ω)2, where ∆ is the detuning of
the laser and Ω is the Rabi frequency. In the forthcoming sections, we determine the
Rydberg spectrum of the ion-atom system and study the process of optically coupling
the ground state to the Rydberg state of the ion-atom.

6.2 Rydberg states of molecular ion

A typical Hamiltonian that describes any molecular ion system (as in our case Sr+2 )
consists of the kinetic energy of the electron, the attractive ionic potential experienced
by the electron with respect to each of the nuclei and the repulsive potential between
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Figure 6.2: A schematic diagram showing the different electronic and nuclear interactions
co-ordinates of an atom and ion.

the two nuclei as shown schematically in Fig.6.2. Explicitly it is written as

Ĥel = −5
2
r

2
− 1

|r1|
− 1

|r2|
+

1

|R| . (6.1)

The distance between the atom and the ion is denoted by R. If r is the co-ordinate for
the electron, then the relative position with respect to the ion is r1 = r−R/2 and that
to the atom, r2 = r + R/2 (See Fig.6.2). Ĥel is invariant with respect to the exchange
of r1 ↔ r2. This exchange symmetry is used to define a symmetric (gerade) and anti-
symmetric (ungerade) basis. Thus the Rydberg molecular ion wave function expressed
in terms of the localized (un)gerade basis is given as

|e(±)〉 = c(±) [|ψnlml(r1)〉 ± |ψnlml(r2)〉] . (6.2)

where |e(±)〉 are the excited states of the molecular ion corresponding to each symmetry.
ψnlml(ri=1,2) = Rnl(r)Ylml(ϑ, ϕ) are the bare atomic strontium Rydberg states calcu-
lated in section 3.3.1. Note that here ri=1,2 denites the position of the excited valence
electron of strontium while the position for the second valence electron is suppressed
compared to Eq.(3.21). We choose the inter-nuclear axis along the z-axis and focus on
ml = 0 (henceforth we omit this label). Using Eq.(6.1), we now calculate the hopping
rate of the Rydberg electron perturbatively.

6.2.1 Perturbative treatment

Assuming that the ion-atom distance (R) is much larger compared to the size of the
Rydberg wave function (r1,2), then we can apply multipole expansion upto the second
order to

(
1
r1

+ 1
r2

)
about the center (O in Fig.6.2) of the inter-nuclear distance. Defining

the hopping rate of the Rydberg electron as
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as a function of inter-nuclear distance.

Tnl(R) =
1

2

[
〈ψnl(r1)|Ĥel|ψnl(r2)〉+ 〈ψnl(r2)|Ĥel|ψnl(r1)〉

]
=

(
εnl −

1

R

)
〈ψnl(r1)|ψnl(r2)〉+ 〈ψnl(r2)|4r

2(1− 3 cos θ)

R3
|ψnl(r2)〉 . (6.3)

Owing to the the non-orthogonality of the wave functions defined at different locations,
there is a small non-zero overlap function 〈ψnl(r1)|ψnl(r2)〉. To evaluate Tnl(R), we
express r1,2 in terms of r and R. The purpose of weakly exciting to Rydberg states is
to have large hopping rates for fast dynamical time scales. As we see in Fig.6.4, one can
achieve large hopping rate (order of GHz) but only for small inter-nuclear spacings. For
example, the 60s state has few GHz hopping rate for an inter-nuclear distance of 750
nm, after which it drops exponentially. The exponential drop comes from the overlap
of the tails ends of the Rydberg wave functions. This means that we need to calculate
the ion-atom interaction for distances for which the coupling to other Rydberg states
is greater than the energy differences between the states. At such small distances, the
validity of multipole expansion comes into question and perturbative calculations break
down.

6.2.2 Non-perturbative treatment

Since we are dealing in the regime where strong coupling causes mixing of different
states, more than one Rydberg state is included into the basis Eq.(6.2). The molecular
ion wave function expressed in terms of the different bare atomic Rydberg states |ψnl〉
of the strontium atom is given as
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|eα,(±)〉 =
∑
n,l

c
α,(±)
nl [|ψnl(r1)〉 ± |ψnl(r2)〉] . (6.4)

which satisfies the following eigenvalue equation

Ĥel|eα,(±)〉 = ~ωα,±el (R)|eα,(±)〉 . (6.5)

The index α = 1, 2, . . . represents the different excited states of the molecular ion. The
corresponding matrix elements in the (un)gerade basis are

〈eα,(±)|Ĥel|eα,(±)〉
=
∑
n,l

∑
n′,l′

(c
α,(±)
nl )(c

α,(±)
n′l′ )

[
〈ψn′l′(r1)± ψn′l′(r2)|Ĥel|ψnl(r1)± ψnl(r2)〉

]
=
∑
n,l

∑
n′,l′

(c
α,(±)
nl )(c

α,(±)
n′l′ )

[
〈ψn′l′(r1)|Ĥel|ψnl(r1)〉+ 〈ψn′l′(r2)|Ĥel|ψnl(r2)〉

± 〈ψn′l′(r2)|Ĥel|ψnl(r1)〉 ± 〈ψn′l′(r1)|Ĥel|ψnl(r2)〉
]
. (6.6)

Thus there are two kinds of matrix elements, the one center matrix elements and the
two center matrix elements given in the last line of the above equation. Similarly it can
be shown that

〈eα,+|Ĥel|eα,−〉 = 〈eα,−|Ĥel|eα,+〉 = 0 . (6.7)

The advantage of expressing the basis in the (un)gerade basis is that they can be solved
seperately by diagonalization. The larger the basis size, the more accurate are the
eigenvalues for smaller distances. For the calculations shown here, we used a basis size
consisting of all Rydberg states within the energy band of 5× 10−5 a.u. around the 50s

atomic Rydberg energy. This amounted to 476 different Rydberg states with n ranging
from 46 to 56 along with all the relevant angular momentum states. In the next section
we discuss the details for evaluating the specific matrix elements.

Matrix elements

Calculating the matrix elements involves performing a two dimensional numerical inte-
gration, one for the radial part and the other for the angular part. The coupling between
states of an atom located at the same position and is given as
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Figure 6.4: The plot evaluates the single center matrix element for a specific case us-
ing Eq.(6.8) where the sum was terminated on convergence (red circles) and the full
calculation (black).

〈ψn′l′(r1)|Ĥel|ψnl(r1)〉

=

(
εnl +

1

R

)
δn
′l′

nl + 〈ψn′,l′(r1)| 1
r2
|ψn,l(r1)〉

=

(
εnl +

1

R

)
+

∫ π

0

∫ ∞
0

ψnl(r1)ψn′l′(r1)Y∗l,0(cosϑ1)Yl′,0(cosϑ1)

r2
r2

1dr1dΩ1

=

(
εnl +

1

R

)
+

l+l′∑
lp=|l−l′|

√
π(2l + 1)(2l′ + 1)

(2lp + 1)

〈
ll′00|lp0

〉2

×
∫ π

0

∫ ∞
0

ψnl(r1)ψn′l′(r1)Y∗lp,0(cosϑ1)

r2
r2

1dr1 sinϑ1dϑ1 . (6.8)

where the big angular brackets correspond to the Clebsch-Gordan coefficients (refer to
Appendix B). Similar expressions are obtained for ψn,l(r2). In the last line we used the
standard properties for the product of spherical harmonics [32]. The coupling between
states for atoms at two different locations and is given as

〈ψn′l′(r1)|Ĥel|ψnl(r2)〉 =

(
εnl +

1

R

)
〈ψn′,l′(r1)|ψn,l(r2)〉+ 〈ψn′,l′(r1)| 1

r2
|ψn,l(r2)〉 .

(6.9)
The above equation is a two center integrals. Evaluating two center matrix elements
especially for small distances can be quite demanding [167]. This is because at every
step of the integration, one has to transform the position of the electron defined at one of
the centers to the other center. Also for small distances, the Rydberg wave functions are
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Figure 6.5: The dashed orange line is the combined result of Eq.(6.12) for small distances
and Eq.(6.13) for large distance. The green dots were also calculated using Eq.(6.12)
used for fitting Eq.(6.13). The bold black line corresponds to spatial integration. At large
distances, the spatial integration becomes inaccurate due to the limitation in step-size.

highly oscillatory and to resolve them requires a very fine grid size. To do this repeatedly
for a very large basis size is inefficient.

These integrals can however be easily solved in momentum space for small and in-
termediate distances as is often done in the study of ion-atom scattering processes [173].
The advantage in solving the two center integrals in momentum space is that the an-
gular part can be separated out which simplifies the integration to two one dimensional
integrals. If ψnl is spatial wave function then the momentum counterpart is given by its
Fourier transform,

ψ̃nl(k) =
1

(2π)3/2

∫ ∞
0

e−ik·rψnl(r)d3r

=

√
2

π
ilYl0(ϑk, ϕk)

∫ ∞
0

ψnl(r)jl(kr)r
2dr

=

√
2

π
ilYl0(ϑk, ϕk)ψ̃nl(k) . (6.10)

where we used the fact that generalized spherical harmonics are orthonormal and the
following expansion,

eik·r = 4π

∞∑
L=0

iLjL(kr)

L∑
M=−L

Y∗LM (ϑ, ϕ)YLM (ϑk, ϕk) . (6.11)

jL are the Bessel functions [70]. For the overlap integral, we have we define the momen-
tum representation of ψnl(r1) and ψn′l′(r2) as eik·Rψ̃nl(k) and ψ̃′n′l′(k) respectively.
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〈ψnl(r1)|ψn′l′(r2)〉 = 〈ψnl(r2 + R)|ψn′l′(r2)〉

=

∫ ∞
0

eik·Rψ̃∗nl(k)ψ̃′n′l′(k)d3k

=
∑
L

2il
′−l+L√4π(2l + 1)(2l′ + 1)(2L+ 1)

〈
ll′00|L0

〉2
Y∗L0(ϑ, ϕ)

×
∫ ∞

0
ψ̃nl(k)ψ̃′n′l′(k)jL(kR)k2dk . (6.12)

The attraction integral (second term in Eq.(6.9)) is solved in the similar manner as above
by defining ψ̃′n′l′(k) for ψn′l′(r2)/r2 instead of just ψn′l′(r2). As seen from Fig.6.5, the
two center integrals from the momentum method agree with the spatial integration up to
an intermediate distance. To calculate the Bessel functions accurately for large distances
is inefficient. So for large distances (> (n2+n′2)), there exists analytical formulae for two
center integrals which are expressed in terms of the Slater like wave functions [112, 152].
The analytical formulae involve the evaluation of factorials which are dependent on the
principal and angular quantum numbers. Since these can be quite large (∼ 45-55) for
Rydberg states, it is also inefficient to calculate them explicitly. Instead for large inter-
nuclear distances, we express the two center integrals in terms of the Slater like wave
function using a simplified formula given as

〈ψnl(r1)| 1
r2
|ψn′l′(r2)〉 = C0

(ρ
2

)
eC1

[
e−u(1−v) + e−u(1+v)

]
. (6.13)

Coefficients C0 and C1 are fitted linearly from the matrix elements calculated for inter-
mediate values of R using Eq.(6.12). The prolate spheroidal co-ordinates (u, v) are
defined as

u =
R

2
(ξ1 + ξ2), v =

ξ1 − ξ2

ξ1 + ξ2
where ξi =

Z

ni
. (6.14)

In Fig.6.5, the evaluation of the two center integrals is shown using the three different
methods. Combining the results from Eq.(6.12) for small and inter-mediate distances
and Eq.(6.13) for large distances, we obtain the dashed orange curve in Fig.6.5.

Numerical results

The strontium Rydberg molecular ion potential curves (~ωα,±el ) are represented in pairs,
each corresponding to a symmetry group of (un)gerade basis as shown in Fig.6.6. Poten-
tial curves belonging to the same symmetry group have avoided crossings while poten-
tials from different symmetry groups cross. The strong mixing of the different l states
is reflected in the potential curves as multiple avoided crossings particularly at small
distances giving a ‘spaghetti’ like spectrum (see Fig.6.6). From the eigenvalue energies
obtained, one defines the splitting energy between the gerade and ungerade state as

Tα(R) =
~(ωα,+el (R)− ωα,−el (R))

2
. (6.15)
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Figure 6.6: Potential curves for high lying Rydberg states of a Sr+
2 molecular ion. The

molecular energies are given relative to the Sr+
2 (50S) asymptote. The relative energies,

δEα,± = ~ωα,(±)
el − (~ωα,(+)

el + ~ωα,(−)
el )/2, of a selected pair (α = 243, thick lines) with

(un)gerade symmetry is shown in the inset. Panels (b) and (c) show the corresponding
(un)gerade electronic wave functions at an internuclear distance of R = 750 nm. At this
distance the tunnel splitting is as large as several 100 MHz, while the electronic wave
function is well localized at each ionic core.

for a given excited molecular ion state α (see Fig.6.6(a)). Tα is the non-perturbative
hopping rate and has contributions from a large number of Rydberg states particularly
at small distances unlike the T in Eq.(6.3). The inpanel of Fig.6.6 shows that for small
distances (less than 700 nm), Tα has significant oscillations before it decreases. Different
l states polarize differently and since all the l states contribute in the wave function, there
is a rich complexity of the wave functions shown in Fig.6.7. The Rydberg molecular ion
wave function shown in Fig.6.7(a) shows some higher probability for the electron to be
between the two centers of the nuclei while the other wave functions ((b)-(e)) are for
inter-nuclear distances where the Rydberg molecular ionic state is not over the ionic
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Figure 6.7: The figure shows plots of the molecular ion wave functions (|eα,(±)|2) for a
selected pair of curves (α = 243) at different inter-core distances:(a) R = 500 nm (b) R
= 600 nm (c) R = 640 nm (d) R = 670 nm (e) R = 700 nm.
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C oherent cont rol of ion- t ransp or t v ia R y d b erg d ressing of an a tom ic op t ical la t t ice
(Dated: June 4, 2013)

We study the dynamics of an ion in an optical lattice of alkali earth atoms with single atom per
site by weakly coupling to the Rydberg state. The effect of the charged particle on these highly
excited states results into a spaghetti like molecular potential curves of a stable mesoscopic molecular
ion which propagates through the lattice in strong reminiscence of an exciton whose effective mass
is defined by the laser parameters. A detailed analysis on the effect of the motional states on
the dynamics provides a criterion that distinguishes coherent dynamics from incoherent dynamics.
This opens up possibilities such as the creation of the Schrödinger kitten in which the ion is in a
superposition of non-overlapping wave packets separated by tenths of micrometers.

PACS numbers:

The ability to control ultra cold atoms in optical lat-
tices has opened the door for experimental studies of a
wide range of quantum many-body problems []. At the
same time, techniques to manipulate trapped ions have
reached an impressive level of accuracy that enables ap-
plications for quantum information science [], quantum
optics [] as well as quantum simulations []. Yet, the com-
bination of ultracold atoms and ions entails phenomena
not observable separately in either system, such as long-
range collisions [], the formation of mesoscopic molecular
ions [] or strongly coupled polaron states []. These in-
triguing prospects have stimulated several experiments
that recently demonstrated the great potential of ion-
atom hybrid traps []. Of particular interest are exchange
processes, that drive chemical reactions [] and may al-
low to study charge transport processes in the ultracold
domain [].

Here we introduce a scheme that allows to enhance
and control charge exchange by coherent coupling of an
atomic lattice to high-lying electronic states. Such so-
called Rydberg states possess a number of appealing
properties []. In particular, the strong van der Waals in-
teraction between Rydberg atoms can act over several µm
and has enabled recent experimental breakthroughs in
neutral-atom quantum computing [] and nonlinear quan-
tum optics []. However, for typical principal quantum
numbers, n = 50...100, even the electron orbit of a Ry-
dberg atom exceeds several hundred nanometers, which
can give rise to long-range Rydberg-ground state atom
molecules [] and giant molecular ions [] confined in strong
magnetic fields.

At such high excitations, electron transfer between ions
and Rydberg atoms also takes place over enormous dis-
tances and at typical optical lattice spacings occurs with
a rate of several GHz. As described below, optical cou-
pling to such states can give rise to a novel kind of coher-
ent ion transport, where a compound particle consisting
of the ion and a Rydberg atom is formed and propagates
according to a Hamiltonian with a spatially dependent
mass. The resulting dynamics resembles that of exci-
tons propagating in a crystal [], but can be monitored
directly and continuously tuned by the applied optical
fields. This is shown to provide a versatile platform to ex-
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FIG. 1: Sr atoms are trapped in 1D optical lattice with an
ion (red) at site k. Another laser with Rabi frequency Ω and
detuning ∆ weakly couples the ground state (green) atoms
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atoms (blue) couple more strongly compared to all the others
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plore ionic quantum transport through extended atomic
systems, enabling, e.g., coherent control of ion transport
as well as the preparation of non-classical states.

Basic principle. – Consider first the simplified situa-
tion of an ion (|i〉) and an atom with a ground state |g〉
and a Rydberg state |e〉, as sketched in Fig.??a. Due to
exchange symmetry, the corresponding molecular states
are given by the (un)gerade superpositions, |g(±)〉 and
|e(±)〉, of the electron being bound to either ionic core
in the ground and excited state, respectively. For suffi-
ciently large ion-atom distances, R, one can apply per-
turbation theory to determine the excited state molec-

ular energies E
(±)
e , which are shifted by the polariza-

tion interaction V ∝ R−4 and split by the tunnel cou-
pling ±T (see Fig.??a). Optical coupling between the
atomic states with a laser detuning ∆ = V (R) and a
Rabi frequency Ω # T (R) then leads to Rydberg-dressed
molecular ground states |g̃(±)〉 that contains only a small
Rydberg fraction, (Ω/T )2, and therefore features an en-
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Figure 6.8: Two photon excitation to a Rydberg state via the inter-mediate state |5s5p〉.

potential barrier.

6.3 Optical coupling of electronic states

The ground states of the molecular ion is coupled to the excited molecular ion states
|eα,(±)〉 with the help of an excitation laser. Adopting a two particle state notation, we
have

|ieα〉 =
1√
2

(
|eα,+〉+ |eα,−〉

)
, |eαi〉 =

1√
2

(
|eα,+〉 − |eα,−〉

)
. (6.16)

where |i〉 represents the ionic state of a particle. By using this two particle state, we
explicitly show whether the atom is to left or right of the ion. Similarly the ground state
of the molecular ion is given as |ig〉 and |gi〉 where where |g〉 = |5s2〉. The energy of the
ground state is set to zero. The full wave function of the molecular ion with all its states
is given as

|ψ〉 = cig(t)|ig〉+ cgi(t)|gi〉+
∑
α

(
cie,α(t)|ieα〉+ cei,α(t)|eαi〉

)
(6.17)

and the corresponding time dependent Schrödinger equation is

i~
d|ψ〉
dt

= Ĥopt|ψ〉 . (6.18)

where Ĥopt is the Hamiltonian for optical coupling similar to Eq.(5.12) introduced in
the earlier chapter but now for more number of Rydberg states and including Tα of
Eq.(6.15),
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Ĥopt =~
∑
α

[
−∆α (|ieα〉〈ieα|+ |eαi〉〈eαi|) +

Ωα

2
(|ieα〉〈ig|+ |eαi〉〈gi|+ h.c.)

+
Tα

~
(|ieα〉〈eαi|+ h.c.)

]
. (6.19)

The above Hamiltonian considers that a laser with frequency ωL is detuned with respect
to a particular excited molecular ion state |eα〉 given by ∆α = ωL − (ωα,−el + ωα,+el )/2.
The corresponding Rabi frequency is given by Ωα assuming that the intensity of the laser
field is spatially constant. Later in section 6.5.2, we will generalize Ĥopt for a spatially
varying laser field.

The coupling of the ground state atom to the excited molecular ion state is achieved
via a two photon excitation (See Fig.6.8). We define a reference Rabi frequency which
corresponds to the coupling of the ground state to the 50s Rydberg state via the inter-
mediate state 5s5p. Assuming that the second laser is largely detuned (∆5p

5s) from the
inter-mediate 5p state, we have an effective Rabi frequency to the 50s state given by
Ω50s

5s . For our calculations we take the reference frequency to be Ω50s
5s = 20 MHz. Thus

we have,

Ωα(R) =
µα(R)

µ50s
Ω50s

5s , (6.20)

where µ50s = 〈5p|µ|50s〉 and µα(R) = 〈5p|µ|eα(R)〉. Since the coupling to the excited
state is via the inter-mediate state 5s5p state, the contribution to the Rabi frequencies
for any given |eα〉 is determined by the strength of the coupling to ns and nd components
of molecular ion state. The Rabi frequencies depend on inter-nuclear distance R as the
dipole moments vary with R as do the molecular ion wave functions (see Fig.6.7). Solving
Eq.(6.18) gives the following dynamical equations

i∂tc
ig =

Ωα

2
cie , (6.21a)

i∂tc
gi =

Ωα

2
cei , (6.21b)

i∂tc
ie,α = −∆αcie,α +

Ωα

2
cig +

Tα

~
cei,α , (6.21c)

i∂tc
ei,α = −∆αcei,α +

Ωα

2
cgi +

Tα

~
cie,α . (6.21d)

For a constant laser field, it is more convenient to work in the (un)gerade basis as
the above set of dynamical equations decouple to two independent sets of dynamical
equations, each corresponding to a symmetry group. We solve the two sets of dynamical
equations numerically to obtain instantaneous states that are a superposition of the
ground and Rydberg states.
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6.3.1 Dressed state

Defining the ground states in the (un)gerade basis similar to the ones for the excited
molecular states in Eq.(6.4), we have

|g±〉 =
1√
2

(|ig〉 ± |gi〉) . (6.22)

Using the following change of variables

cg,± = 1/
√

2(cig ± cgi), cα,± = 1/
√

2(cie,α ± cei,α) . (6.23)

we re-write dynamical equations in Eqs.(6.21a)-(6.21d) in the (un)gerade basis

i∂tc
g,+ =

Ωα

2
cα,+ , (6.24a)

i∂tc
g,− =

Ωα

2
cα,− , (6.24b)

i∂tc
α,+ = −∆α,+cα,+ +

Ωα

2
cg,+ , (6.24c)

i∂tc
α,− = −∆α,−cα,− +

Ωα

2
cg,− . (6.24d)

where ∆α,± = ωL−ωα,(±)
el = ∆α∓ Tα

~ . Defining the transition operators in terms of the
internal states |g(±)〉 and |eα,(±)〉, we re-write the Ĥopt in Eq.(6.19), which is

Ĥ±opt = ~
∑
α

[
−∆α,(±)|eα,(±)〉〈eα,(±)|+ Ωα

2
(|eα,(±)〉〈g(±)|+ h.c.)

]
. (6.25)

At any given time t, the instantaneous eigenstates of the above Hamiltonian will be a
superposition of the ground and excited molecular ion states given as

|ξβ,(±)〉 = c
g,(±)
β |g(±)〉+

∑
α

c
α,(±)
β |eα,(±)〉 . (6.26)

These states |ξβ,(±)〉 are known as dressed states [38]. They satisfy the following eigen-
value equation

Ĥ
(±)
opt |ξβ,(±)〉 = ~ωβ,(±)

opt (R)|ξβ,(±)〉 , (6.27)

The energies of the corresponding dressed states are given as ~ωβ,±opt (R), where β =

1, 2, . . . represents excited dressed states and are ordered according to states with in-
creasing energy. The energy levels of the dressed states obtained numerically are shown
in Fig.6.9. At resonance, there is equal mixture of the electronic ground state and the
Rydberg molecular ion states in the dressed ground state. Thus in Fig.6.9(a), we see
that the contribution of the electronic ground state drop to 0.5 whenever the laser hits
a potential curve at different distances. Similarly the ground dressed energies are in-
versely related to the detuning. At resonances, the dressed energies spike up as shown
in Fig.6.9(b).
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Figure 6.9: For ∆ = −60.2 GHz: (a) Contribution of the gerade (black) and ungerade
(dashed red) electronic ground state to the dressed ground state at different distances R
calculated numerically in Eq.(6.34). (b) Dressed ground state energies obtained numer-
ically from Eq.(6.35).

6.3.2 Adiabatic optical coupling

In the previous section, we discussed about coupling the electronic ground states to
the molecular excited states using an excitation laser. The excitation laser is gradu-
ally switched on and thus the Rabi frequency varies temporally till it achieves its final
value. This introduces a time dependence in the Hamiltonian Ĥ(±)

opt (t). Thus the dressed
eigenstates are also time dependent.

Ĥ
(±)
opt (t)|ξβ,(±)(t)〉 = ~ωβ,(±)

opt (R, t)|ξβ,(±)(t)〉 . (6.28)

Since the dressed eigenstates are orthonormal at every instant of time, the general solu-
tion for each symmetry independently expressed in terms of the instantaneous eigenstates
ξβ,±(t) is

|ψ(±)〉 =
∑
β

[
c±β (t)|ξβ,±(t)〉e−i

∫ t
0 ω

β,±
opt (t′)dt′

]
. (6.29)

Solving the corresponding time dependent Schrödinger equation for each symmetry, we
have
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i~
∑
β

[
ċ±β (t)|ξβ,±(t)〉+ c±β (t)|ξ̇β,±(t)〉 − ic±β (t)|ξβ,±(t)〉ωβ,±opt

]
e−i

∫ t
0 ω

β,±
opt (t′)dt′

=
∑
β

c±β (t)Ĥ±opt|ξβ,±(t)〉e−i
∫ t
0 ω

β,±
opt (t′)dt′ . (6.30)

The dot represents time derivative in the above equations. The third term in the L.H.S.
cancels with the R.HS. giving,

∑
β

ċ±β (t)|ξβ,±(t)〉e−i
∫ t
0 ω

β,±
opt (t′)dt′ = −

∑
β

c±β (t)|ξ̇β,±(t)〉e−i
∫ t
0 ω

β,±
opt (t′)dt′ (6.31)

Taking inner product with 〈ξα,±(t)|, gives

ċ±α (t) = −c±α 〈ξα,±(t)|ξ̇α,±(t)〉 −
∑
β 6=α

c±β 〈ξα,±(t)|ξ̇β,±〉e−i
∫ t
0 (ωβ,±opt (t′)−ωα,±opt (t′))dt

= −c±α 〈ξα,±(t)|ξ̇α,±(t)〉 −
∑
β 6=α

c±β
〈ξα,±(t)| ˙̂

H±opt|ξβ,±〉
~(ωβ,±opt − ωα,±opt )

e−i
∫ t
0 (ωβ,±opt (t′)−ωα,±opt (t′))dt .

(6.32)

In the above equations, going from the first line to the next, we used the Hellmann-
Feynman theorem for time dependent wave functions [67] which states,

i~
d

dt
〈ξα,±| d

dλ
ξβ,±〉 = 〈ξα,±| d

dλ
Ĥ±opt|ξβ,±〉 , (6.33)

In our case the parameter λ ≡ t. The second term in Eq.(6.32) couples a state starting
initially in |ξα,±(t)〉 to other states |ξβ 6=α,±(t)〉. If the process of switching on the laser
is done very slowly then adiabatic approximation states that the time derivative of the
Hamiltonian in Eq.(6.32) is small. The only time dependent term in the Hamiltonian
is the Rabi frequency in Eq.(6.25). Let us assume that the time taken to increase
Ωα,±(t = 0) = 0 to its final value is τp. At t = 0, the instantaneous ground state
are the electronic ground states since the laser is off and there is no coupling to the
Rydberg states. However on switching on the laser adiabatically, the instantaneous
ground state of the system will be the dressed ground states. Dressed ground state is the
dressed eigenstate with the lowest energy in absolute magnitude (since electronic ground
state energy is taken to be zero) and is denoted by |ξβ=0,(±)〉 ≡ |g̃(±)〉. Thus following
Eq.(6.26),

|g̃(±)〉 = c
g,(±)
g̃ |g(±)〉+

∑
α

c
α,(±)
g̃ |eα,(±)〉 , (6.34)

and from Eq.(6.27), the dressed ground states satisfy the following eigenvalue equation,

Ĥ
(±)
opt |g̃(±)〉 = ~ωg̃,±opt (R)|g̃(±)〉 . (6.35)



78 Chapter 6. Coherent charge transport in optical lattice

Thus for the instantaneous state of the system to be the dressed ground state, we require
the second term in Eq.(6.32) to be negligible and this is the case if

τp �
Ωα,±(t = τp)− Ωα,±(t = 0)

ωβ=1,±
opt − ωg̃,±opt

. (6.36)

Typical Rabi frequencies considered in Eq.(6.20) are in the order of tens of MHz. Nu-
merically the energy difference between the closest excited dressed state (β = 1) to the
dressed ground state (g̃ ≡ β = 0) is of the order of at least few hundreds of MHz. Hence
as an estimate, if the time taken for the excitation laser to reach its final value of inten-
sity is more than 0.1 s, then by the adiabatic approximation, the instantaneous state of
the system is the sum of the dressed ground states,

|ψ(t)〉 =
(
cg̃,+(t) |g̃+〉+ cg̃,−(t) |g̃−〉

)
. (6.37)

Solving the time dependent Schrödinger equation for the Hamiltonian Ĥ
(±)
opt , we get

dynamical equations in terms of the dressed ground states,

i∂tc
g̃,+ = ωg̃,+opt c

g̃,+ (6.38a)

i∂tc
g̃,− = ωg̃,−opt c

g̃,− (6.38b)

The above dynamical equations can be expressed in the left/right basis using the follow-
ing definition,

cig̃ = 1/
√

2(cg̃,+ + cg̃,−), cg̃i = 1/
√

2(cg̃,+ − cg̃,−) . (6.39)

where |cig̃,g̃i|2 gives the probability of the ion to be to the left/right of the atom in the
molecular ion. It should be noted that the cig̃,g̃i are not the same as cig,gi given in
Eqs.(6.21a)-(6.21d) because the states |ig̃, g̃i〉 contain the ground states |ig〉, |gi〉 as well
as the Rydberg states |ieα〉, |eαi〉 (see Eq.(6.34) and Fig.6.9). Substituting the above
coefficients into Eq.(6.38a) give

i∂tc
ig̃ = U(R)cig̃ + J(R)cg̃i , (6.40a)

i∂tc
g̃i = U(R)cg̃i + J(R)cig̃ . (6.40b)

where

U(R) =
ωg̃,+opt (R) + ωg̃,−opt (R)

2
, J(R) =

ωg̃,+opt (R)− ωg̃,−opt (R)

2
. (6.41)

The dynamics of the charge between the instantaneous ground states is thus determined
by the dynamical parameters U(R) and J(R). U(R) is the self-energy of the molecular
ion with inter-nuclear distance R , while J(R) is the energy required for the electron to
hop to the neighbouring ion. J(R) is the hopping rate between the dressed ground states
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Figure 6.10: Plot of the dynamical parameters for ∆ = −60.2 GHz as a function of inter-
nuclear distance: (a) U(R) and (b) J(R) from Eq.(6.41). Asymmetric contributions to
U(R) and J(R) occurs (see at 690 nm) where the slope of the potential curve changes
significantly.

which is different from Tα of Eq.(6.15), which is the hopping rate between the electronic
Rydberg states located at different centers.

These dynamical parameters are calculated using the numerically obtained energies
from Eq.(6.35). U(R) and J(R) are large when the laser frequency is near or on resonance
as shown in Fig.6.10. The parameters take negative and positive values depending on the
sign of the detuning. For a potential curve with a fixed slope, these positive and negative
contributions are symmetrical and effectively cancel out. However for potential curves
with a relatively large change in its slope across the resonance, there is more contribution
of either region (positive/negative), for example near R = 690 nm in Fig.6.10.

6.4 Ion transport in a double well

The dynamical equations Eqs.(6.40a)-(6.40b) discussed in the previous section describe
the hopping of the Rydberg electron from an atom to its neighbouring ion in their
dressed ground states. But the dynamical parameters U(R) and J(R) are dependent on
distance and so any change in distance will lead to dephasing of the transport process.
Thus to control the motion of the particles, we propose to trap the ion and the atom in
a double well optical trap. In Fig.4.8 (referring to section 4.3 of chapter 4), the black
dash-dotted line corresponds to the polarizability of the ground state strontium ion. At
magic wavelengths, this polarizability of the ion matches with the Rydberg atom and the
ground state atom. Hence one can use the same optical lattice to trap the ion and the
Rydberg dressed ground state atom. The trapping frequency of the optical lattice can
be used as a control knob to alter the energy gap between the motional states. Large
trapping frequencies ensure that higher motional states of the trapped nuclei are not
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!ω01

〈00|U(R)|01〉
〈00|J(R)|01〉〈00|J(R)|10〉
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〈00|U(R)|00〉
〈00|J(R)|00〉

Figure 6.11: The figure represents the idea of using the trapping frequency as a control
parameter to suppress the coupling to excited motional states.

excited during the hopping process of the Rydberg electron as shown in Fig.6.11. We
write the Hamiltonian for the nuclear motion for our two site model as a sum of two
harmonic oscillators (refer to Eq.(5.3) in section 5.1),

ĤCoM |n1n2〉 =
∑
i=1,2

[
−
~252

Zi

2M
+ ω2

n1n2
Z2
i

]
|n1n2〉 = ~ωn1n2 |n1n2〉 . (6.42)

where |ni=1,2〉 is the motional state at the corresponding site and |n1n2〉 is the two
particle motional eigenstate. The eigenvalue for the two particle motional state is defined
as ωn1n2 = (n1 + n2)ωtr, where ωtr is the trapping frequency of the lattice. Z(1,2) is the
relative motion of the corresponding trapped nuclei at each site. The time dependent
Schrödinger equation for the full quantum dynamics is

i~
d|Ψ〉
dt

= (Ĥ+
opt + Ĥ−opt + ĤCoM )|Ψ〉 . (6.43)

|Ψ〉 given as a product state of the electronic eigenstates (also known as internal states)
and the motional states (also known as external states) is,

|Ψ〉 =
∑
n1,n2

(
cg̃,+n1n2

(t) |g̃+〉+ cg̃,−n1n2
(t) |g̃−〉

)
|n1n2〉 . (6.44)

Switching to left/right basis and multiplying with 〈n1n2| throughout we get the dynam-
ical equations in terms of the left/right dressed ground states,

i∂tc
ig̃
n1n2

= (〈n1n2|U(R)|n1n2〉+ ωn1n2) cig̃n1n2
+ (〈n1n2|J(R)|n1n2〉) cg̃in1n2

(6.45a)

+
∑

n1,n2 6=n′1n′2

[
〈n′1n′2|U(R)|n1n2〉

]
cig̃
n′2n
′
2

+
∑

n1,n2 6=n′1n′2

[
〈n′1n′2|J(R)|n1n2〉

]
cg̃i
n′2n
′
2
,

i∂tc
g̃i
n1n2

= (〈n1n2|U(R)|n1n2〉+ ωn1n2) cg̃in1n2
+ (〈n1n2|J(R)|n1n2〉) cig̃n1n2

(6.45b)

+
∑

n1,n2 6=n′1n′2

[
〈n′1n′2|U(R)|n1n2〉

]
cg̃i
n′2n
′
2

+
∑

n1,n2 6=n′1n′2

[
〈n′1n′2|J(R)|n1n2〉

]
cig̃
n′2n
′
2
.
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Figure 6.12: The figure shows the plot of G as defined in Eq.(6.47). Despite the resonances
in Fig.(6.9), it verifies that on averaging over the motional states, there is no significant
population of the electronic excited states.

Here we used the transformation defined in Eqn.(6.39). In the above set of equations,
we observe that higher motional states are coupled via the dynamical parameters U(R),
J(R). These are the non-adiabatic couplings due to the spatial variation of the dynami-
cal parameters. There is yet another type of non-adiabatic coupling that arises due to the
spatial variation of the dressed electronic wave functions. However we have assumed the
Born Oppenheimer (BO) approximation to derive the above sets of dynamical equations
where the derivatives of the dressed ground state with respect to the inter-nuclear dis-
tance is assumed to be negligible. The validity of the BO approximation for our problem
has been addressed in detail in Appendix D.

6.4.1 Population of the excited states

For a given detuning, one observes many resonances in the spectrum (see Fig.6.9(a)).
This would imply that there is a significant population of the Rydberg states in the
dressed ground states |g̃(±)〉. But if one averages the dressed ground state over the
motional states then one finds that the cross section of exciting a Rydberg atom is
indeed very small as shown in Fig.6.12. Evaluating the expectation value of the Rydberg
and ground state population with respect to the motional states |n1n2〉, the following
condition,

〈n1n2|(cg,±g̃ (R))2|n1n2〉 � 〈n1n2|(ce,±g̃ (R))2|n1n2〉 ∀n1, n2 . (6.46)

The above condition is evaluated for different values of detuning and lattice spacing by
averaging over the ground motional state using the following quantity,

G = 〈00|
(cg,+g̃ )2 + (cg,−g̃ )2

2
|00〉 . (6.47)

G will be less than one if the laser frequency is resonant with the potential of either
symmetry. In the density plot shown in Fig.6.13(a), one sees that G ' 1 for small lattice
spacings. This is because at small lattice spacings, the potential curves have a steeper
slope. A potential curve with a steep slope when averaged over the extent of the ground
motional state, then the effect of the resonance is negligible. This aspect is again verified
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where one observes a drop in G (red regions) for flatter potential curves (for example
around 760 nm at ∆ =-57 GHz). Wherever G ' 1, we have |g̃±〉 ' |g±〉 (see Eq.(6.34).
This is important for the lifetime of the system. By not strongly populating the Rydberg
state, we have a larger lifetime since the dressed state is dominated by the electronic
ground state.

6.4.2 Lifetime of the system

It is important that the dynamics of the electron is fast enough within the life time of
the system to have transport over significant distance. There are two main decay rates
play an important role for the life time of the system. One is the decay rate of the
intermediate 5s5p state (Γ5s5p = 32 MHz) which has a life time of 4.97 ns. Assuming

that the dressing for the intermediate state as strong as Ω5p
5s

2∆5p
5s

= 0.005 (refer to Eq.(6.20)),
then the lifetime of the inter-mediate state is enhanced to 200 µs. The life time of the
Rydberg state (ignoring black body radiation) is (from Eq.(4.39)),

τα =
∑
nl

|cnl|2 ×
(n∗)3

2π × 2× 108
, (6.48)

where α is one of the excited molecular potential curves and

n∗ =

{
n− δl for l=0,1,2 ,

n9

( 3n2

2
− l(l+1)

2
)2

for l>2 . (6.49)

where δl is the quantum defects calculated for strontium. The pre-factor in the denomi-
nator was taken from [74]. Eq.(6.48) gives the bare lifetime to be 25 ms for a particular
potential curve and with dressing it amounts to 250 ms (since 〈00|(ce,±g̃ )2|00〉 ' 0.1).
This implies that the real bottle neck in terms of the life time is the decay rate of the
intermediate 5p singlet state. A way around this is to populate the meta-stable triplet
5p state with the help of a sufficiently strong laser (and has been achieved in cases for
strontium clock). Our molecular potential curves ignore the spin exchange energy since
its quite negligible for the Rydberg states therefore valid for both the singlet and triplet
states. Another way around it is to have a single photon Rydberg excitation skipping
the intermediate 5p state.

6.4.3 Condition for coherent dynamics

We are not only interested in the electronic ground states but also in the motional
ground state. Hence from the general dynamical equations in (6.45), those specific to
the motional ground state are
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Figure 6.13: The figure shows two density plots to test conditions given in Eq.(6.46)
and Eq.(6.51) in the parameter space of detuning (∆) and lattice spacing. Molecular
potential curves are plotted on top. In (a), we plot G represents the population of the
dressed ground state and in (b) we plot the quantity C defined in Eq.(6.52).

i∂tc
ig̃
00 = (〈00|U(R)|00〉+ ω00) cig̃00 + 〈00|J(R)|00〉cg̃i00 (6.50a)

+
∑

n′1n
′
2 6=00

[
〈00|U(R)|n′1n′2〉cig̃n′2n′2 + 〈00|J(R)|n′1n′2〉

]
cg̃i
n′2n
′
2
,

i∂tc
g̃i
00 = (〈00|U(R)|00〉+ ω00) cg̃i00 + 〈00|J(R)|00〉cig̃00 (6.50b)

+
∑

n′1n
′
2 6=00

[
〈00|U(R)|n′1n′2〉cg̃in′2n′2 + 〈00|J(R)|n′1n′2〉

]
cig̃
n′2n
′
2
.

The set of dynamical equations can be be further simplified by finding a condition of co-
herence which when satisfied ensures that the higher motional states are never populated
and hence can be thrown away from the dynamical equations. For a given ωL and lattice
spacing R, the condition for not populating the first excited motional state (as higher
motional states will be further suppressed if the first excited state is not populated)
within the same site or the neighbouring site is

〈01|U(R)|01〉 − (〈00|U(R)|00〉+ ωtr) >> 〈01|U(R)|00〉, 〈01|J(R)|00〉 . (6.51)

where ωtr = ω10 − ω00. To verify this condition for the first motional state, we define

C =
〈10|U(R)|00〉+ 〈10|J(R)|00〉

〈10|U(R)|10〉 − (〈00|U(R)|00〉+ ωtr)
. (6.52)

If C � 1 for the first excited motional state, then the probability to excite higher mo-
tional states is even lower. Thus the density plot in Fig.6.13(b) that coherent dynamics
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C oherent cont rol of ion- t ransp or t v ia R y d b erg d ressing of an a tom ic op t ical la t t ice
(Dated: June 4, 2013)

We study the dynamics of an ion in an optical lattice of alkali earth atoms with single atom per
site by weakly coupling to the Rydberg state. The effect of the charged particle on these highly
excited states results into a spaghetti like molecular potential curves of a stable mesoscopic molecular
ion which propagates through the lattice in strong reminiscence of an exciton whose effective mass
is defined by the laser parameters. A detailed analysis on the effect of the motional states on
the dynamics provides a criterion that distinguishes coherent dynamics from incoherent dynamics.
This opens up possibilities such as the creation of the Schrödinger kitten in which the ion is in a
superposition of non-overlapping wave packets separated by tenths of micrometers.

PACS numbers:

The ability to control ultra cold atoms in optical lat-
tices has opened the door for experimental studies of a
wide range of quantum many-body problems []. At the
same time, techniques to manipulate trapped ions have
reached an impressive level of accuracy that enables ap-
plications for quantum information science [], quantum
optics [] as well as quantum simulations []. Yet, the com-
bination of ultracold atoms and ions entails phenomena
not observable separately in either system, such as long-
range collisions [], the formation of mesoscopic molecular
ions [] or strongly coupled polaron states []. These in-
triguing prospects have stimulated several experiments
that recently demonstrated the great potential of ion-
atom hybrid traps []. Of particular interest are exchange
processes, that drive chemical reactions [] and may al-
low to study charge transport processes in the ultracold
domain [].

Here we introduce a scheme that allows to enhance
and control charge exchange by coherent coupling of an
atomic lattice to high-lying electronic states. Such so-
called Rydberg states possess a number of appealing
properties []. In particular, the strong van der Waals in-
teraction between Rydberg atoms can act over several µm
and has enabled recent experimental breakthroughs in
neutral-atom quantum computing [] and nonlinear quan-
tum optics []. However, for typical principal quantum
numbers, n = 50...100, even the electron orbit of a Ry-
dberg atom exceeds several hundred nanometers, which
can give rise to long-range Rydberg-ground state atom
molecules [] and giant molecular ions [] confined in strong
magnetic fields.

At such high excitations, electron transfer between ions
and Rydberg atoms also takes place over enormous dis-
tances and at typical optical lattice spacings occurs with
a rate of several GHz. As described below, optical cou-
pling to such states can give rise to a novel kind of coher-
ent ion transport, where a compound particle consisting
of the ion and a Rydberg atom is formed and propagates
according to a Hamiltonian with a spatially dependent
mass. The resulting dynamics resembles that of exci-
tons propagating in a crystal [], but can be monitored
directly and continuously tuned by the applied optical
fields. This is shown to provide a versatile platform to ex-
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FIG. 1: Sr atoms are trapped in 1D optical lattice with an
ion (red) at site k. Another laser with Rabi frequency Ω and
detuning ∆ weakly couples the ground state (green) atoms
to the Rydberg state ensuring that the nearest neighbouring
atoms (blue) couple more strongly compared to all the others
as they are highly off-reonant due to the shift in energy levels.

plore ionic quantum transport through extended atomic
systems, enabling, e.g., coherent control of ion transport
as well as the preparation of non-classical states.

Basic principle. – Consider first the simplified situa-
tion of an ion (|i〉) and an atom with a ground state |g〉
and a Rydberg state |e〉, as sketched in Fig.??a. Due to
exchange symmetry, the corresponding molecular states
are given by the (un)gerade superpositions, |g(±)〉 and
|e(±)〉, of the electron being bound to either ionic core
in the ground and excited state, respectively. For suffi-
ciently large ion-atom distances, R, one can apply per-
turbation theory to determine the excited state molec-

ular energies E
(±)
e , which are shifted by the polariza-

tion interaction V ∝ R−4 and split by the tunnel cou-
pling ±T (see Fig.??a). Optical coupling between the
atomic states with a laser detuning ∆ = V (R) and a
Rabi frequency Ω # T (R) then leads to Rydberg-dressed
molecular ground states |g̃(±)〉 that contains only a small
Rydberg fraction, (Ω/T )2, and therefore features an en-

!ωe,+

!ωg,+

!ωg,−

!ωe,−

el

el

el

el

Figure 6.14: A schematic figure showing that though the the ground states are coupled
to a large set of Rydberg states, there is always one Rydberg state of either symmetry
(gerade or ungerade potential curve) which is closest to the laser frequency and can thus
be simplified into a pair of two levels.

can be achieved for a wide range of detuning and lattice spacing. One reason for which
the coherence condition is so easily satisfied is because we have chosen a relatively large
trapping frequency of 1 MHz. If this condition of coherence holds, then a simple analyt-
ical form of a set of closed equations in ground states can be written down.

i∂tc
ig̃
00(t) = 〈00|U(R)|00〉cig̃(t) + 〈00|J(R)|00〉cg̃i(t) , (6.53a)

i∂tc
g̃i
00(t) = 〈00|U(R)|00〉cg̃i(t) + 〈00|J(R)|00〉cig̃(t) . (6.53b)

So now we have closed form of dynamical equations purely in terms of the ground states.
Whenever adiabatic elimination of the Rydberg states is possible, analytical expressions
are derived for the dynamical parameters.

6.5 Analytical expressions for dynamical parameters

In this section, we derive analytical expressions for the dynamical parameters U(R) and
J(R). Previously we calculated the dynamical parameters in Eq.(6.41) using dressed
ground state energies that were obtained numerically and considered contributions from
all the Rydberg states. However the dominant contribution comes from the pair that
is closest to the laser frequency and one can reduce the basis to a four level system as
shown in Fig.6.14. We thus write the full wave function in terms of the relevant electronic
states as follows,

Ψ = cg,+|g+〉+ cg,−|g−〉+ ce,+|e+〉+ ce,−|e−〉 . (6.54)

Since there is only one Rydberg state, we have dropped the superscript α.
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6.5.1 Constant laser field

Since we are considering only one Rydberg state (or a single pair of (un)gerade Rydberg
states), the Hamiltonian for optical coupling given in Eq.(6.25) is reduced to the following

Ĥ±red = ~
[
−∆(±)|e(±)〉〈e(±)|+ Ω

2
(|e(±)〉〈g(±)|+ h.c.)

]
. (6.55)

The advantage of the (anti)symmetric basis is that for a constant Rabi frequency, we get
two independent sets of dynamical equations, one for each symmetry group,

i∂t

cg,±
ce,±

 =

0 Ω
2

Ω
2 −∆±

cg,±
ce,±

 . (6.56)

We are required to find analytical expressions for the lowest eigenvalues since those are
the ones that correspond to the dressed ground states |g̃(±)

red 〉 and thus satisfying

Ĥ
(±)
red |g̃

(±)
red 〉 = λg̃,±red |g̃

(±)
red 〉 . (6.57)

I. Four levels

The analytical expressions for the smallest eigenvalues for each of the two level system
(one for gerade and the other for ungerade) is given by [4]

λg̃,±red (R) =


−∆±+

√
(∆±)2+Ω2

2 if ∆± > 0 ,
−∆±−

√
(∆±)2+Ω2

2 if ∆± < 0 .
(6.58)

These eigenvalues are valid for all ranges of detuning, that is near resonance and also
away from resonances as schematically shown in Fig.6.15. We call it the effective four
level system because both the pair of ground states and the pair of excited states are
relevant.

II. Effective three level system

For an arbitrary detuning, its often that the laser frequency is near resonance to only
one potential (gerade or ungerade) out of the pair (see Fig.6.15(a)). In such cases, it is
possible to reduce the four level system to an effective three level system by adiabati-
cally eliminating one of the excited states (either gerade or ungerade) depending on the
detuning of the laser. If the gerade pair is adiabatically eliminated then

λg̃,+red (R) ' Ω2

4∆+
assuming ∆+ � Ω (6.59a)

λg̃,−red (R) =


−∆−+

√
(∆−)2+Ω2

2 if ∆− > 0 ,
−∆−−

√
(∆−)2+Ω2

2 if ∆− < 0 .
(6.59b)
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If the un-gerade pair is adiabatically eliminated then

λg̃,−red (R) ' Ω2

4∆−
assuming ∆− � Ω (6.60a)

λg̃,+red (R) =


−∆++

√
(∆+)2+Ω2

2 if ∆+ > 0 ,
−∆+−

√
(∆+)2+Ω2

2 if ∆+ < 0 .
(6.60b)

This approximation is not valid when the laser frequency is equidistant from the gerade
and ungerade potential curve which happens when the laser frequency ωL = T/2 is
half-way through the splitting or at large enough distances where both the gerade and
ungerade potentials have similar variation over R.

III. Effective two level system

A further simplification is if both the excited states can be adiabatically eliminated giving
rise to an effective two level system. In such a case both the eigenvalues are obtained
perturbatively, where we assume ∆(±) � Ω,

λg̃,±red (R) ' Ω2

4∆±
assuming ∆(±) � Ω . (6.61)

This approximation is not valid at and near by the resonances. In general, for an arbitrary
detuning, the most commonly occurring scenario is where the laser frequency is close to
one of the two pair of Rydberg states as shown in Fig.6.15. In such a case, the effective
three and four level approximation works well. However for small distances (where the
potential curves are steep), the positive and the negative contributions to U and J

around the resonance cancel out. Often the Rydberg spectrum of the molecular ion
contain potential curves alternate between steeply sloped and flat sloped curves (see the
blue potential curves in Fig.6.13) along R. During such a transition, an asymmetric
contribution will show in U(R) and J(R) (as seen in Fig.6.9). Major contribution to U
and J comes from regions where there is this asymmetry and again for these regions the
effective three and four level approximation works well. This explains why the averaged
values of dynamical parameters from the effective three and four level approximation fits
better with the full numerical calculation in Fig.6.16.

Similar to the equations in (6.53), we get the following dynamical parameters,

U(R) =
λg̃,+red (R) + λg̃,−red (R)

2
, J(R) =

λg̃,+red (R)− λg̃,−red (R)

2
. (6.62)

In Fig.6.17, we show that the dynamics for two particles for different cases where the
coherent condition is satisfied in the density plot Fig.6.13. The dynamical parameters
from the analytical results (Eqs.(6.59), (6.60) in (6.62)) and from numerics (Eq.6.41) are
used in Eq.(6.50) and compared. The overall timescales of the dynamics obtained from
both methods agree.
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J(R) ! U(R)J(R) ! U(R) J(R) ! U(R)

(I + II + III)(I + II)

J(R) ! 0

R
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Figure 6.15: The figure shows the regions where the different analytical approximations
are valid for a given pair of (un)gerade potential curves. The dashed line corresponds to
the laser frequency ωL. When is the laser is closest to one of the Rydberg state, then the
effective four and three level approximation are valid (shown in magenta). Away from
the resonance the effective two level approximation is valid (shown in green).

0

100

200

U
 [

k
H

z]

Numerical calculations
Effective four levels
Effective three levels
Effective two level (perturbation)

680 700 720 740
R [nm]

0

100

200

300

J 
[k

H
z]

Lattice spacing [nm]

〈0
0
|U

|0
0
〉

〈0
0
|J

|0
0
〉

(b)

[k
H

z]
[k

H
z]

(a)

Figure 6.16: Comparision of different analytical approximations for ∆ = −60.2 GHz:
Average of the dynamical parameters U(R) and J(R) are calculated from Eqs.(6.61) in
(6.62)(dotted cyan), Eqs.(6.59), (6.60) in (6.62) (dashed indigo), Eqs.(6.58) in (6.62)
(dashed orange) and compare it with the calculation of U(R) and J(R) from the full
Hamiltonian having all the Rydberg states using Eqs.(6.41)(dark blue).

6.5.2 Spatially varying laser field

If the intensity of the laser is to be used as a control knob for the transport process of
the Rydberg electron, then we need to allow to vary the intensity profile of the laser
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Figure 6.17: The figure shows the converged results of the dynamics obtained numer-
ically from Eq.(6.50) for 8 motional states with U, J taken from Eqs.(6.59), (6.60) in
(6.62)(dashed red) and Eq.(6.41) (black) respectively. (a) At ∆ = −67.3 GHz, R = 771

nm (b) At ∆ = −60.1 GHz, R = 768 nm (c) At ∆ = −60.2 GHz , R = 690 nm (d) At
∆ = −60.2 GHz, R = 715 nm.

with distance. Hence analytical solutions for the spatially varying Rabi frequency will
be useful to characterize the dynamics. Generalizing the Hamiltonian in (6.19) for a
spatially varying laser field, we get

Ĥvary =~
[
−∆ (|ie〉〈ie|+ |ei〉〈ei|) +

(
Ω2

2
|ie〉〈ig|+ Ω1

2
|ei〉〈gi|+ h.c.

)
+
T

~
(|ie〉〈ei|+ h.c.)

]
.

(6.63)

Parameters: ∆ = −60.2 GHz, lattice spaing R = 690 nm 〈00|U |00〉 [s−1] 〈00|J |00〉 [s−1]

Full calculations (Eq.(6.41)) 36444.9 × 2π 109434 × 2π

Effective four levels (Eqs.(6.58) in (6.62)) 30786.4 × 2π 110341 × 2π

Effective three levels (Eqs.(6.59), (6.60) in (6.62)) 30788.5 × 2π 110344 × 2π

Effective two level (Eqs.(6.61) in (6.62)) 32898 × 2π 188420 × 2π

Table 6.1: Comparing the averaged values of the onsite energies and hopping rates
calculated from different approximation methods.
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Solving the time dependent Schrödinger equation using |ψ〉 = cig(t)|ig〉 + cgi(t)|gi〉 +

cie(t)|ie〉+ cei(t)|ei〉, gives the following dynamical equations

i∂tc
ig =

Ω2

2
cie , (6.64a)

i∂tc
gi =

Ω1

2
cei , (6.64b)

i∂tc
ie = −∆cie +

Ω2

2
cig +

T

~
cei , (6.64c)

i∂tc
ei = −∆cei +

Ω1

2
cgi +

T

~
cie . (6.64d)

The subscripts in the Rabi frequencies Ω1,2 correspond to the case if the laser field inten-
sity varies spatially and hence the atom to the left of the ion will couple to the Rydberg
state differently than for the atom to the right of the ion. The variation is determined
by changing the intensity profile of the laser along the sites. This is independent from
the variation in R due to the change in the dipole moments as defined in Eq.(6.20).
Unlike for the constant field case, there is no advantage in defining the above equations
in (un)gerade basis as the equations do not de-couple to their corresponding symmetry.
Instead we express only the excited states in the (un)gerade basis and we obtain

i∂t


cig

cgi

ce,+

ce,−

 =


0 0 Ω2

2
√

2
Ω2

2
√

2

0 0 Ω1

2
√

2
− Ω1

2
√

2
Ω2

2
√

2
Ω1

2
√

2
−∆+ 0

Ω2

2
√

2
− Ω1

2
√

2
0 −∆−




cig

cgi

ce,+

ce,−

 . (6.65)

However it is hard to find analytical expressions for the full 4× 4 matrix unless certain
approximations are made. In Fig.6.16, it was shown that the assumption that at least
one of the excited states can be eliminated is valid for most most lattice spacings. Let
us assume that the gerade Rydberg state can be adiabatically eliminated (∆+ � Ω1,2

2
√

2
)

giving the resultant matrix Hamiltonian as

i∂t


cig

cgi

ce,−

 =


Ω2

2
8∆+

Ω1Ω2
8∆+

Ω2

2
√

2

Ω2Ω1
8∆+

Ω2
1

8∆+ − Ω1

2
√

2
Ω2

2
√

2
− Ω1

2
√

2
−∆−



cig

cgi

ce,−

 . (6.66)

Of course it could also be ungerade that is adiabatically eliminated and the analysis
would remain the same. Even if one of the excited states is adiabatically eliminated, one
requires additional approximations to Eq.(6.66) and reduce it to a form of effective three
level system where analytical results can be derived. Since ∆+ � Ω1,2

2
√

2
, we approximate

terms like
Ω2

1,2

8∆+ and Ω2Ω1
8∆+ as negligible compared to the other matrix elements. Thus the

approximate matrix is
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Figure 6.18: The plot compares the two lowest eigenvalues (red and green) obtained
numerically by solving Eq.(6.65) and analytical eigenvalue (black) for the approximated
matrix given in Eq.(6.67). The parameters are ∆ = −60.2 GHz and Ω2 = 2Ω1.

i∂t


cig

cgi

ce,−

 =


0 0 Ω2

2
√

2

0 0 − Ω1

2
√

2
Ω2

2
√

2
− Ω1

2
√

2
−∆−



cig

cgi

ce,−

 . (6.67)

With these approximations, our matrix reduces to a standard lambda level system with
analytical solutions used in electromagnetic induced transparency [68]. The solution
consists of three dressed states, one of which is considered a dark state. It is a state which
has no contribution of the excited state. By varying the couplings (Rabi frequencies)
adiabatically in a systematic manner, one can achieve a coherent population transfer
from one ground state to the other [21]. The dressed ground states for this case will
correspond to the dark state of our approximated system and the state with the smallest
non-zero eigenvalue. The dark state for our three level system is

λ−vary = 0 , (6.68)

|g̃−vary〉 = cosσ|ig〉 − sinσ|gi〉 . (6.69)

The eigenstate with the lowest non-zero eigenvalue depending on the sign of the detuning
for our system is

λ+
vary =


−∆−+

√
(∆−)2+(Ω2

1+Ω2
2)/2

2 if ∆− > 0 ,
−∆−−

√
(∆−)2+(Ω2

1+Ω2
2)/2

2 if ∆− < 0 ,
(6.70)

|g̃+
vary〉 = sinσ sin ρ|ig〉+ cos ρ|e−〉+ cosσ sin ρ|gi〉 . (6.71)
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with the following definitions,

tanσ =
Ω2

Ω1
,

tan 2ρ =

√
(Ω2

1 + Ω2
2)/2

∆−
.

Consider the case where Ω1 = Ω2, then we have σ = π/4, giving |g̃−vary〉 = |g−〉 and
|g̃+

vary〉 = sin ρ|g+〉 + cos ρ|e−〉 with the same eigenvalues as in the effective three level
case for constant field. If we have Ω1 = Ω2 and ∆− � Ω1,2 then we get ρ ' π/2 giving
|g̃−vary〉 = |g−〉 and |g̃+

vary〉 = |g+〉, which is the effective two level for a constant field
as expected. Assuming that both the conditions (6.46) and (6.51) are satisfied and the
averaging over the motional states, we have 〈00| cos ρ|00〉 ' 0 and 〈00| sin ρ|00〉 ' 1

as the excited states are not populated (see Fig.6.12). Assuming that the total wave
function for the effective three level system for the spatially varying Rabi frequency is
given as,

|Ψ〉 = c−vary(t)|g̃−vary〉+ c+
vary(t)|g̃+

vary〉 . (6.72)

then we obtain the same dynamical equations as in (6.53) with,

Uig(R) = λg̃,+vary(R) cos2 σ + λg̃,−vary(R) sin2 σ , (6.73a)

Ugi(R) = λg̃,+vary(R) sin2 σ + λg̃,−vary(R) cos2 σ , (6.73b)

J(R) =
λg̃,−vary(R)− λg̃,+vary(R)

2
sin 2σ . (6.73c)

where we used Eq.(6.39) and the following transformation of basis,(
c−vary

c+
vary

)
=

(
cosσ − sinσ

sinσ cosσ

)(
cig

cgi

)
. (6.74)

6.6 Ion transport in an optical lattice

In generalizing the two site model to N sites, the essential physics of the charge hopping is
the same but now there is the additional van der Waal’s interaction between the Rydberg
atoms. In the presence of the laser field, all the atoms are dressed to the Rydberg states
and the Rydberg-Rydberg interaction will lead to a shift in energy of the dressed states.
By choosing the laser frequency ωL close to a particular Rydberg state |e〉, we ensure
that atoms that are nearest neighbours to the ion are strongly dressed to their Rydberg
state while all the others are far away from resonance. The next nearest atoms are
located at about little more than a micrometer (>19000 a0 ) away. This means that the
Rydberg states for these atoms correspond to the bare atomic states with the effect of
the ion treated perturbatively ( n7

R4 ) on them. An atom being accidentally excited far
away from the ion despite choosing the laser off resonant from any bare atomic state (due
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Figure 6.19: The averaged values of the dynamical parameters are plotted for the spa-
tially varying case of Ω2 = 2Ω1 and ∆ = −60.2 GHz using Eq.(6.73). The dashed and
bold lines in top plot corresponds to averaged values of Uig and Ugi respectively.

to Rydberg shifts), will anyways not contribute to the dynamics. Also the probability of
two atoms to be excited simultaneously to dressed Rydberg states of energy is given by
|ce,±g̃ |2 × |c

e′,±
g̃ |2 ' 10−4, which is extremely low.

6.6.1 Many-body Hamiltonian

Thus the basis consists of three types, all atoms in the ground state with an ion at site
k (|I(k)〉), a Rydberg atom to the right of the ion (|R(k)〉) and a Rydberg atom to the
left of the ion (|L(k)〉). Thus the reduced basis set for the many-body Hamiltonian is

|I(k)〉 = |g1...gk−1 ik gk+1...gN 〉 , (6.75a)

|R(k)〉 = |g1...gk−1 ik ek+1...gN 〉 , (6.75b)

|L(k)〉 = |g1...ek−1 ik gk+1...gN 〉 . (6.75c)

The full many-body wave function is given as a linear combination of the three different
basis,

Ψ =
∑
k

(
CIk |I(k)〉+ CRk |R(k)〉+ CLk |L(k)〉

)
. (6.76)

Generalizing the two site Hamiltonian in Eq.(6.63) to the many-body body Hamil-
tonian for N particles describing the charge(ion) transport within the optical lattice, we
have



6.6. Ion transport in an optical lattice 93

C oherent cont rol of ion- t ransp or t v ia R y d b erg d ressing of an a tom ic op t ical la t t ice
(Dated: June 4, 2013)

We study the dynamics of an ion in an optical lattice of alkali earth atoms with single atom per
site by weakly coupling to the Rydberg state. The effect of the charged particle on these highly
excited states results into a spaghetti like molecular potential curves of a stable mesoscopic molecular
ion which propagates through the lattice in strong reminiscence of an exciton whose effective mass
is defined by the laser parameters. A detailed analysis on the effect of the motional states on
the dynamics provides a criterion that distinguishes coherent dynamics from incoherent dynamics.
This opens up possibilities such as the creation of the Schrödinger kitten in which the ion is in a
superposition of non-overlapping wave packets separated by tenths of micrometers.

PACS numbers:

The ability to control ultra cold atoms in optical lat-
tices has opened the door for experimental studies of a
wide range of quantum many-body problems []. At the
same time, techniques to manipulate trapped ions have
reached an impressive level of accuracy that enables ap-
plications for quantum information science [], quantum
optics [] as well as quantum simulations []. Yet, the com-
bination of ultracold atoms and ions entails phenomena
not observable separately in either system, such as long-
range collisions [], the formation of mesoscopic molecular
ions [] or strongly coupled polaron states []. These in-
triguing prospects have stimulated several experiments
that recently demonstrated the great potential of ion-
atom hybrid traps []. Of particular interest are exchange
processes, that drive chemical reactions [] and may al-
low to study charge transport processes in the ultracold
domain [].

Here we introduce a scheme that allows to enhance
and control charge exchange by coherent coupling of an
atomic lattice to high-lying electronic states. Such so-
called Rydberg states possess a number of appealing
properties []. In particular, the strong van der Waals in-
teraction between Rydberg atoms can act over several µm
and has enabled recent experimental breakthroughs in
neutral-atom quantum computing [] and nonlinear quan-
tum optics []. However, for typical principal quantum
numbers, n = 50...100, even the electron orbit of a Ry-
dberg atom exceeds several hundred nanometers, which
can give rise to long-range Rydberg-ground state atom
molecules [] and giant molecular ions [] confined in strong
magnetic fields.

At such high excitations, electron transfer between ions
and Rydberg atoms also takes place over enormous dis-
tances and at typical optical lattice spacings occurs with
a rate of several GHz. As described below, optical cou-
pling to such states can give rise to a novel kind of coher-
ent ion transport, where a compound particle consisting
of the ion and a Rydberg atom is formed and propagates
according to a Hamiltonian with a spatially dependent
mass. The resulting dynamics resembles that of exci-
tons propagating in a crystal [], but can be monitored
directly and continuously tuned by the applied optical
fields. This is shown to provide a versatile platform to ex-
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FIG. 1: Sr atoms are trapped in 1D optical lattice with an
ion (red) at site k. Another laser with Rabi frequency Ω and
detuning ∆ weakly couples the ground state (green) atoms
to the Rydberg state ensuring that the nearest neighbouring
atoms (blue) couple more strongly compared to all the others
as they are highly off-reonant due to the shift in energy levels.

plore ionic quantum transport through extended atomic
systems, enabling, e.g., coherent control of ion transport
as well as the preparation of non-classical states.

Basic principle. – Consider first the simplified situa-
tion of an ion (|i〉) and an atom with a ground state |g〉
and a Rydberg state |e〉, as sketched in Fig.??a. Due to
exchange symmetry, the corresponding molecular states
are given by the (un)gerade superpositions, |g(±)〉 and
|e(±)〉, of the electron being bound to either ionic core
in the ground and excited state, respectively. For suffi-
ciently large ion-atom distances, R, one can apply per-
turbation theory to determine the excited state molec-

ular energies E
(±)
e , which are shifted by the polariza-

tion interaction V ∝ R−4 and split by the tunnel cou-
pling ±T (see Fig.??a). Optical coupling between the
atomic states with a laser detuning ∆ = V (R) and a
Rabi frequency Ω # T (R) then leads to Rydberg-dressed
molecular ground states |g̃(±)〉 that contains only a small
Rydberg fraction, (Ω/T )2, and therefore features an en-

〈00|J |01〉

〈00|J |00〉 〈00|J |00〉

Figure 6.20: Ground state strontium atoms (green) and an ion (red) are trapped in the
optical lattice. Due to optical coupling, only the nearest neighbouring strontium atoms
are strongly dressed Rydberg dressed (blue) while all the others are off-resonant due to
Rydberg interaction. J is the effective coherent hopping between sites while J is the
incoherent hopping between sites.

ĤMany sites =

N−1∑
k=1

[
−~∆|R(k)〉〈R(k)|+ ~Ωk+1

2

(
|R(k)〉〈I(k)|+ h.c

)]

+
N∑
k=2

[
−~∆|L(k)〉〈L(k)|+ ~Ωk−1

2

(
|L(k)〉〈I(k)|+ h.c

)]

+

N−1∑
k=1

T

2

[
|R(k)〉〈L(k+1)|+ h.c

]
.

(6.77)

T is the hopping between the Rydberg states of neighbouring sites. It is to be noted
that the states |R(N)〉 and |L(1)〉 does not exist for a finite size optical lattice. The set
of dynamical equations determining the motion of the ion placed at site k are

i∂tC
I
k =

Ωk−1

2
CLk +

Ωk+1

2
CRk , (6.78a)

i∂tC
R
k = −∆CRk +

Ωk+1

2
CIk +

T

~
CLk+1 , (6.78b)

i∂tC
L
k = −∆CLk +

Ωk−1

2
CIk +

T

~
CRk−1 . (6.78c)

Defining a (un)gerade amplitudes for the many-body excited states

CE,±k =
1√
2

(
CRk ± CLk+1

)
, (6.79)

with which we obtain,

i∂tC
E,+
k = −∆+CE,+k +

Ωk+1

2
√

2
CIk +

Ωk

2
√

2
CIk+1 , (6.80a)

i∂tC
E,−
k = −∆−CE,−k +

Ωk+1

2
√

2
CIk −

Ωk

2
√

2
CIk+1 . (6.80b)
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where ∆± = ∆∓ T
~ . For the more non-trivial case of spatially varying laser field over N

sites is derived in Appendix E. Here we do the simpler case where we assume that both
the excited states can be adiabatically eliminated ∆± � Ω and use the following basis
transformation to get the left/right basis for the excited states,

CRk =
1√
2

(
CE,+k + CE,−k

)
, (6.81)

CLk =
1√
2

(
CE,+k−1 − C

E,−
k−1

)
. (6.82)

and averaging over the motional states for lattice spacings and detunings where the
conditions (6.46) and (6.51) are satisfied, we obtain the dynamical equations for the
ground states,

i∂tC
I
k = 〈00| (Uk−1 + Uk+1) |00〉CIk + 〈00|Jk,k−1|00〉CIk−1 + 〈00|Jk,k+1|00〉CIk+1 . (6.83)

and the dynamical parameters are

Uk(R) =

(
Ω2
k

8∆+
+

Ω2
k

8∆−

)
, Jk,k+1(R) =

(
ΩkΩk+1

8∆+
− ΩkΩk+1

8∆−

)
. (6.84)

One can re-write the Eq.(6.83) in terms of h†k/hk which represent creation and annihila-
tion operators for the ion at site k. Thus we have,

Ĥ =
∑
k

Ukh
†
khk +

∑
k

Jk,k+1

(
h†k+1hk + h.c.

)
. (6.85)

This is a more compact form of the transport equation for the ion with similarities to
the effective Hubbard model.

6.6.2 Numerical simulation

Parameters C 〈00|J |00〉
〈00|U |00〉 〈00|J |00〉 [s−1]

∆ = −57.3 GHz, lattice spacing 771 nm 0.23 0.84 5843 × 2π

∆ = −60.1 GHz, lattice spacing 768 nm 10−2 132 24108 × 2π

∆ = −60.2 GHz, lattice spacing 690 nm 10−1 3 109434 × 2π

∆ = −60.2 GHz, lattice spacing 715 nm 2× 10−2 7.35 28105 × 2π

Table 6.2: Listed are the averaged values of the dynamical parameters along with their
coherence conditions. It appears for ∆ = −60.2 GHz, lattice spaing R = 690, 715 nm
are most suitable because it has high hopping rate along and well satisfy the coherence
condition.

In [2] it was shown that quantum spin networks described by Hamiltonian with a har-
monic spectrum (such as given below) follows perfect state transport (without loss).
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Figure 6.21: Left panel corresponds to the density plot of the tunneling 〈00|J |00〉 while
on the right panel its the density plot of the ratio P = 〈00|J |00〉

〈00|U |00〉 as a function of the
detuning and lattice spacing.
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. (6.86)

where the coupling term is given as Ak =
√

(N − k)k and N is the number of spins in
a 1D chain. Inspired from this model, we implement a similar perfect transport process
in our 1D model for the ion by enforcing the following criteria on our Rabi frequency,

Ωk =
√

(N − k − 1)(k + 1) Ω . (6.87)

Thus for k to take values from 0 to 18, we have N=19. It has to be noted that our
diagonal elements are non-zero and is also dependent on the intensity field. Therefore
we not going to have perfect quantum transport with 100 % fidelity like in the spin chain
[2]. Nevertheless if we can look for regions where 〈00|J |00〉 � 〈00|U |00〉 (see Fig.6.21),
then hopefully the transport process shows minimal dephasing. For a given detuning
and distance, one can calculate the variation of Uk and Jk,k+1 at every site. We simulate
the transport of the charge over a chain of 19 atoms by solving the discretized time
dependent Schrödinger equation in (6.83) for a detuning as -60.2 GHz at lattice spacing
715 nm as shown in Fig.6.23. In Fig.6.23(a), we find that with time, the many-body
wave function |I(k)〉 is spreading coherently over few micrometers creating a Schrödinger
kitten like state. While Fig.6.23(b), we achieve almost perfect quantum transport but
the non-zero onsite energies U is responsible for the inertia in the transport process due
to which the we see diffusion at later times.
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Figure 6.22: Both the figures are the plot the averaged values of U (green) and J (blue)
with Rabi frequency from Eq.(6.87) into Eq.(6.84) at ∆ = −60.2 GHz, lattice spacing
715 nm.

6.7 Summary

We study ion transport in a gas of atoms by dressing the ion with neighbouring Rydberg
atoms. Owing to the large size of the Rydberg electron, it tunnels across the ionic poten-
tial barrier and is captured by the ion. The physics of the hopping process is understood
by studying a simpler model of ion-atom pair. We calculate the molecular spectrum of
the Sr+2 Rydberg molecular ion in the (un)gerade basis. The potential curves come with
a rich structure and contain the information of the polarizability and hopping rate of
the Rydberg electron. The optical coupling of the electronic ground states to Rydberg
molecular ion states is assumed to be adiabatic leading to dressed ground states. The dy-
namical equations are expressed in terms of the dressed ground states and determined by
two parameters that are defined by the dressed ground state energies. Numerical results
confirm that the Rydberg state closest to the laser frequency dominates the dynamics.
This fact is exploited to derive analytical results for the dynamical parameters using dif-
ferent approximations. For spatially varying laser field, the derivation is more involved
but with additional approximations, we reduce our Hamiltonian to a solvable lambda
system similar to an EIT case. The dynamical parameters are spatially dependent and
hence any motion of the ion or atom will result in variation of these parameters. In
order to achieve coherent dynamics, we trap the particles in a double well. Conditions
are derived for maintaining not only dressed ground states but also motional ground
states during dynamical process. Density plots for these conditions over the parameter
space of detuning and lattice spacing show that the possibiltiy to have coherent charge
transport is quite general. The model is then generalized to many sites and a spatially
varying laser field is used to implement directionality in the transport process. A nu-
merical simulation performed shows that the transport of the ion over 18 sites using the
calculated dynamical parameters.
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Figure 6.23: The figures show the dynamics of the ion by solving the discretized Eq.(6.83)
for a lattice of 19 sites with lattice spacing 715 nm and detuning -60.2 GHz for a spatially
varying field using dynamical parameters from Fig.6.22 (a) The ion initially located at
site 9 and propagates in both directions. (b) The ion initially located at site 1 propagates
coherently in one direction and then on reflection at the edge, propagates backwards and
re-emerges at site 1.





Chapter 7

Conclusion and Outlook

The field of ultra-cold atoms and Rydberg physics is mainly driven using alkali atoms.
The reason for this is that experiments involving alkali atoms are easily turned into
gases and their spectral transitions correspond to wavelengths that are accessible by the
available lasers [125, 3, 129]. Recently there is a growing interest in alkaline-earth metals
(Ca, Mg, Sr, Ba, Ra) for laser cooling [31, 15, 130] and realization of quantum devices
[79, 80, 45]. The presence of two valence electrons in alkaline-earth atoms provide that
additional degree of freedom for manipulation which is absent in alkali atoms. Although
much of the interest so far has been in alkaline-earth ground state atoms, the use of
alkaline-earth Rydberg atoms in ultra-cold systems are yet to be explored. With this
motivation, the research presented in this thesis studies alkaline-earth Rydberg atoms in
optical lattices and explores the possible applications to many-body physics.

In chapter 3 we lay down the ground work for the study of alkaline-earth Rydberg
atoms by calculating the singly excited Rydberg states specifically for strontium (Sr)
using an effective mean field theory approach. Using the active single electron approx-
imation described in section 2.1, we reduced the problem of solving the multi-electron
atom to an effective two electron atom. Strontium Rydberg energies obtained agreed
very well with known experimental data as shown in section 3.3.1. Interaction between
strontium Rydberg atoms were calculated using the energies and wave functions obtained
in section 3.3.1 for ns singlet states and were found to be attractive (see section 3.3.2).

The Rydberg atoms are often sources of strong interactions to simulate quantum
systems [206, 107, 124, 119, 156]. However strongly interacting atoms have significant
motion which lead to de-coherence effects and is unfavourable for most many-body ap-
plications [26]. One approach is to trap the atoms in an optical lattice [86, 98, 122].
It is a challenge to trap a Rydberg atom along with a ground state atom in the same
optical lattice while coupling the two internal states. In this context, in chapter 4 we
show that alkaline-earth atoms offer a promising solution which was otherwise not pos-
sible with alkali atoms. In section 4.2, we calculate the core polarizability along with
the Rydberg polarizability for a Rydberg atom and compare it with that of the ground
state atom. Wavelengths (referred as magic wavelengths) of the trapping laser were
identified that ensures identical trapping potential for both the internal states (ground
and Rydberg). A broad range of experimentally relevant magic wavelengths were found
around 323 nm and at 418 nm (see section 4.3). Both of these correspond to a blue
detuned trapping laser which has the added benefit that it minimizes any intensity de-
pendent decay process such as autoionization and photoionization. In order to balance
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the strong Rydberg-Rydberg interactions among atoms in the optical lattice, one needs
to have large lattice spacings of a few µm and rather large trapping frequencies of a few
100 kHz. This requires large peak intensities of 2 × 105W/cm2 at the maxima of the
periodic intensity pattern. In this regard, the suppression of intensity dependent decay
rates is an essential advantage. The over-all lifetime of the system was shown in section
4.4 to follow the natural lifetime of the Rydberg state for reasonable range of trapping
laser intensities.

Using the magic lattice for strontium Rydberg atoms, we explored two specific ex-
amples of many-body physics.

Multiparticle entanglement

In chapter 5, we present a scheme for the production of multi-particle GHZ (Greenberger-
Horne-Zeilinger) state. Generation and manipulation of entangled states is an active area
of research because of its fundamental importance in quantum mechanics and its poten-
tial for quantum information applications [20, 96]. One of the challenges in this area is
to have a scalable multi-particle entanglement. In general to have a large scale entan-
glement, one requires strong interactions between the particles. This was provided by
the optical excitation of strontium atoms confined in a magic lattice to strongly inter-
acting atomic states. This yields an effective Ising model with controllable parameters.
The attractive Rydberg interactions in the system features a quantum phase transition
between para- and ferromagnetic states. The effects of the spatial variation of the Rabi
profile and the strong interactions on the motional states are described in section 5.2
with the conclusion that for large enough lattice spacing (few µm) and strong confine-
ments (trapping frequencies with few hundred kHz), the atoms maintain their motional
ground state. Lattice spacings larger than half the magic wavelength can be obtained
for our optical lattice using a technique of tilted laser beams described in section 4.1.1.
Previous works with ions/photons have had some success [169, 57, 216] with the current
record of 14 particles being entangled experimentally [144]. Using suitable field ramps
across the transition, we created a GHZ state for 15 atoms with a 0.997 fidelity for a
pulse width of 1.2 µs.

Coherent ion transport in a lattice

In [41], the following question was asked, "What happens to a mixture of positive ions
and neutral atoms at ultra low temperatures?". In the same article, charge hopping
was considered by placing a Na+ in a gas of Na atoms at µK temperature. A dilute
gas was considered at very low temperatures such that the de Broglie wavelength of the
electron was large enough to have a certain amount of overlap with the neighbouring
ion. It is not obvious that this hopping would be coherent. Over time, as the hopping
process continues, the motion of the atoms will heat the gas and lower the hopping
probability. The effect of the motion of particles were not considered in [41] and the over
all cross-section of the hopping process was quite low.

In [120], it was suggested to use a Rydberg state for enhancing charge transport. The
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model consisted of two ions confined in a Penning trap with one common electron to
share, similar to a H+

2 model. With the help of an excitation laser, the electron would be
excited to a Rydberg state and the de-localized wave function of the Rydberg electron
would easily cross the ionic potential barrier onto the neighbouring ion. This system
indeed had higher hopping rates compared to [41] but the details of the Rydberg states
were not studied. An ion placed in the same trap to a Rydberg atom will cause significant
mixing of the levels of the bare atomic states. Although limited to two particles, it is not
clear if the system allows multiple charge exchange or in other words, if the lifetime of
the system is significantly larger than the dynamical timescale so that charge exchange
occurs more than once.

In chapter 6, we look into a particular charge transport process by placing an ion
in a gas of ground state strontium atoms, both of which are confined in an optical
lattice. The atoms are weakly dressed to Rydberg states and not excited as in the
case of [120]. We show that by weakly mixing the Rydberg states to the ground state
atoms, we already obtain very high hopping rates along with extended lifetime. The
large lifetime will permit multiple hopping over many atoms like an electric current
passing through an ensemble of atoms at low temperature as originally envisaged in
[41]. The advantage of trapping the ion and the Rydberg dressed atoms in an optical
lattice was to control the motion of the atoms in a systematic manner. In section 6.4,
we determined analytical conditions for not populating the excited electronic states and
excited motional states which depends on the trapping frequency and the particular
Rydberg state to which it is coupled. Thus it is important to know the details of the
excited states for a Rydberg molecular ion because accordingly a certain Rydberg state
can be chosen which has higher hopping rate and satisfies the coherence condition. Sr+2
molecular ion Rydberg states were calculated in section 6.2. At small distances (little
more than half a µm), the perturbative treatment fails and exact diagonalization was
used to obtain the molecular ion potential curves. The Rydberg molecular potential
curves have a ‘spaghetti like’ spectrum as a result of the multiple avoided crossings as
shown in section 6.2.2. The corresponding wave functions reflect the fact that all the
different bare Rydberg states (with different l) are strongly mixed. Numerical studies
showed that not all the Rydberg states play an equal role in the charge transfer process
but only the pair closest to the laser frequency. This simplified the study to a great
extent allowing us to derive analytical expressions for the dynamical parameters given
in section 6.5. For our trapping frequency ωtrap = 1 MHz, we showed that the coherence
condition is easily satisfied for a wide range of detunings and lattice spacings (650-750
nm). However, we can’t have too large lattice spacing since the hopping rate drops to
low values. But for our chosen, value of ∆ = −60.2 GHz and lattice spacing of 715
nm, the hopping rate was sufficient to travel over a chain of 19 atoms well within the
life time. In conclusion, coherent and controlled charge transport is achievable with the
excitation laser and the trapping laser as our controlling knobs.
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Future perspectives

The scenario of an ion immersed in an optical lattice at otherwise unity atomic filling
with laser excitation to Rydberg states permits electron tunneling over large distances
of several 100 nm to a nearby ion. The described scheme opens up several possibilities
for simulation of quantum phenomena.

Simulation of Hubbard-Holstein model

The one dimensional Holstein model involves only the electron-phonon coupling and can
be solved analytically [91]. The two dimensional Holstein model has been studied using
quantum Monte Carlo (QMC) and density matrix renormalization group (DMRG) sim-
ulations based on Migdal-Eliashberg theory [135]. By including the repulsive Coulomb
interaction of the electrons, the Holstein model is generalized to an effective Hubbard-
Holstein model for which exact results are not available. QMC and simulations were
done for small systems [177]. The study of the phase diagram for the Hubbard-Holstein
model is crucial for understanding strongly correlated phenomena such as charge density
wave and superconductivity in certain compounds [90]. It essentially consists of four
terms in the Hamiltonian, the nearest neighbour hopping of the electron determined by
coupling t, the on-site energy determined by the coupling U , the kinetic energy of the
Einstein phonons with frequency ω0 and the electron-phonon coupling term determined
by g.

In [127], the ground state phase diagram of the one dimensional Hubbard-Holstein
model was studied using a non-perturbative approach. However, the theory used was
valid for very limited regions. Firstly, it assumed that the onsite energy was much larger
than the hopping term, so that the model could be mapped to an effective Hubbard
model. Also it was assumed that the phononic energy has to be much larger than the
hopping term and thus the phase diagram was obtained in the limit where t/ω0 � 1

or so called the non-adiabatic limit. Apparently most of the literature obtained phase
diagrams mainly within this regime [193, 37, 65].

Our model in section 6.4, particularly the Eq.(6.45), can be used to simulate the
Hubbard-Holstein model for a more general parameter regime than [127]. The J and
U in Eq.(6.45) are respectively the hopping and onsite coupling terms for the electron.
The trapping frequency ωtr corresponds to the phononic energy and the non-adiabatic
coupling term which couples a particular state |ig̃〉|n1n2〉 to another another motional
state |ig̃〉|n′1n′2〉 represents the electron-phonon coupling term. For the charge transport
process, we wanted to suppress the higher motional states. However by playing with the
trapping frequency, we can selectively allow the population of certain motional states,
thereby controlling the electron-phonon coupling.

Study of many-body quantum pheonomena: Schrödinger kitten state,
quantum walk and spin squeezing

While simulating the transport of the ion over 19 sites in section 6.6.2, we showed that
the many-body wave function coherently de-localizes over distances of several tens of
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micrometers creating an ionic Schrödinger kitten. The system can also be used to gen-
erate a quantum walk [1]. In a quantum random walk, due to the quantum interference
of different paths, the spatial distribution goes as 〈x̂2〉 ∝ N2 as compared to the Bi-
nomial distribution of a classical walk 〈x̂2〉 ∝ N , where N is the number of steps. To
perform any quantum walk, we require two unitary operations. One is a flip operator
that flips the state of the system and the other is the shift operator that translates
the states. The hopping parameter takes part (or whole) of the ionic wave function
and transports it across the sites which is similar to the shift operator. On reaching
the edges, the ion starts to travel backwards. This is the flip operator where the right
moving wave function becomes left moving and vice-versa. Thus after many such op-
erations, the coherent many-body wave function will interfere multiple times to give
the required distribution. An important feature of a quantum walk is its reversibility.
Of course in our model, perfect reversibility would not be possible if the onsite energy
U is large. But one may optimize the transport process by trying to obtain a perfect
harmonic spectrum using a suitable laser profile for the spatially dependent U and J .
Quantum walks have importance in finding quantum search algorithms that are faster
than their classical counterpart [34]. Quantum walks have been realized previously using
ions [213, 179], where they also showed the significance of the motional states entangling
with the internal states leading to decoherence in the walk.

One can similarly use a lattice clock and dressed Rydberg states to achieve spin
squeezing. An optical lattice clock consists of trapped strontium atoms using a laser with
frequency corresponding to the intercombination transition from the singlet ground state
1S0 to a meta-stable triplet state 3P0. Using another laser, the intermediate meta-stable
state is weakly coupled to a Rydberg state which introduces the required long range
interaction for multi-particle squeezing. Using the long range interacting Ising model
described in section 5.6, the transverse and longitudinal fields can be manipulated in a
systematic manner similar to a spin echo type protocol as is explored in [76].

There are experimental groups working with strontium atoms such as Thomas Kil-
lian’s group at Rice university and particularly our experimental collaborators in Matthew
Jones’s group in Durham university, where they are actively pursuing to trap strontium
Rydberg atoms in an optical lattice in the coming future.





Appendix A

Properties of spherical harmonics

As mentioned in chapter 2, the angular part of the Rydberg wave function is given by
generalized spherical harmonics. For a specific orbital angular momentum l and magnetic
number m, it is given as

Ylm = (−1)m

√
(2l + 1)(l −m)!

2(l +m)!
Pml (cosϑ) eimϕ. (A.1)

where Pml are the associated Legendre polynomials [32]. To derive expressions for the
mean field potentials and energy correction, we will use some of the properties of spherical
harmonics. Thus we briefly outline the properties that will be need for our derivations.

1. Y∗l,m(cosϑ, ϕ) = (−1)−mYl,−m(cosϑ, ϕ) .

2.
1

|r12|
=

∞∑
l′=0

l′∑
m′=−l′

4π

2l′ + 1

rl
′
<

rl
′+1
>

Y∗l′,m′(cosϑ1, ϕ1)Yl′,m′(cosϑ2, ϕ2) .

3.

∫
Yl1,m1(ϑ, ϕ)Yl2,m2(cosϑ, ϕ)Yl3,m3(cosϑ, ϕ)

)
dΩ

= (−1)m3

√
(2l1 + 1)(1l2 + 1)

(2l3 + 1)4π

〈
l1l200

∣∣∣l30
〉〈
l1l2m1m2

∣∣∣l3 −m3

〉
.

The big angular brackets are the Clebsch-Gordan coefficients [32]. These coefficients
determine the contribution from each angular momentum state, when two states |j1m1〉
and |j2m2〉 are added to give a resultant state |j1, j2; jm〉 in the following manner,

|j1, j2; jm〉 =
∑
m1,m2

〈
j1j2m1m2

∣∣∣j3m3

〉
|j1m1〉|j2m2〉 . (A.2)

The Clebsch-Gordan coefficients are non zero for |j1−j2| ≤ j ≤ j1+j2 andm = m1+m2.
One can analytically solve the angular part for the mean field potentials and energy
corrections for the two electron Rydberg atom in order to obtain simplified expressions.





Appendix B

van der Waals coefficient for ns

states

As discussed in section 2.2.5 of chapter 2, the van der Waals interaction between two
Rydberg atoms, each in state |ns〉 is given by

VvdW =
∑

n′l′m′,n′′l′′m′′

|〈n′l′m′, n′′l′′,m′′|Vint(R)|ns, ns〉|2
∆E

, (B.1)

where ∆E = 2Ens− (En′′l′′ +En′l′) and Vint(R) is approximated using multipole expan-
sion (refer to Eq.(2.16)) and is given as

Vint(R) =
1

(4πε0)

[
µ1 · µ2

R3
− 3(R · µ1)(R · µ2)

R5

]
. (B.2)

In order to obtain an expression for C6 for ns states one evaluates 〈n′p0, n
′′p0|Vint(R)|ns0, ns)〉

for nearest dipole allowed Rydberg states (n′, n′′ = n ± 1) including all the ml states.
Defining the radial components as ri=1,2 = (xi, yi, zi), R = (Rx, Ry, Rz) and expressing
the atomic state in terms of spherical polar co-ordinates we have

1
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r1
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∆E

R

|ns〉|ns〉
|n′p〉|n′′p〉

|ns〉|n′′p〉

|ns〉|n′p〉
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Figure B.1: (a) Schematic diagram of two neighbouring Rydberg atoms (b)Pair of Ryd-
berg atoms interacts and couples to energetically close Rydberg states.
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|ns0〉 = Y00(ϑ, ϕ)Rns(ri) =
Rns(ri)√

4π
, (B.3)

|np1〉 = Y11(ϑ, ϕ)Rnp(ri) = − exp(iϕ) sinϑ

√
3

8π
Rnp(ri) , (B.4)

|np0〉 = Y10(ϑ, ϕ)Rnp(ri) = cosϑ

√
3

4π
Rnp(ri) , (B.5)

|np− 1〉 = Y1−1(ϑ, ϕ)Rnp(ri) = exp(−iϕ) sinϑ

√
3

8π
Rnp(ri) . (B.6)

We use a short-hand notation for the different m states as |l0,±〉 ≡ |lml = 0,±1〉. Thus
the non-zero transition dipole moment for a single atom with an initial state |ns〉 can be
shown to be

〈ns|zi|n′p0〉 =
µns,n′p√

3
, (B.7)

〈ns|xi|n′p+〉 = −〈ns|xi|n′p−〉 = −µns,n′p√
6

, (B.8)

〈ns|yi|n′p+〉 = 〈ns|yi|n′p−〉 = −iµns,n′p√
6

. (B.9)

Using the above equations into Eq.(2.21), one obtains the following van-der Waals terms
in the two atom basis,

〈n′p±, n′′p±|Vint(R)|ns0, ns0〉 =
µ2
ns,n′pµ

2
ns,n′′p

4

[
(R2

x −R2
y)

2 + 4R2
xR

2
y

]
, (B.10)

〈n′p±, n′′p0|Vint(R)|ns0, ns0〉 =
µ2
ns,n′pµ

2
ns,n′′p

2
R2
z

[
R2
x +R2

y

]
, (B.11)

〈n′p±, n′′p∓|Vint(R)|ns0, ns0〉 = µ2
ns,n′pµ

2
ns,n′′p

[
R4

9
+

(R2
x +R2

y)
2

4
−

(R2
x +R2

y)R
2

3

]
,

(B.12)

〈n′p0, n
′′p0|Vint(R)|ns0, ns0〉 =

µ2
ns,n′pµ

2
ns,n′′p

9
R2
z[(R

2 − 3R2
z)

2] . (B.13)

Multiplying by 2 with each of the above term to get the 〈ns0, ns0|Vint(R)|n′p±,0, n′′p±,0〉
terms and then summing them all to get the total energy correction gives

VvdW =
4µ2

ns,n′pµ
2
ns,n′′p

3∆ER6
= −C6

R6
(B.14)



Appendix C

Mean field potentials and energy
corrections

Here we calculate the Coulomb potentials and the exchange potentials used in the
Hartree-Fock equations for the effective two electron atoms.

Mean field direct Coulomb potentials

The Coulomb potential due to the ground state electron is taken from Chapter 3 and
1
r12

is expanded in terms in terms of spherical harmonics as defined in property 2 in
Appendix A. Thus,

V5s =

∫ ∞
0

1

r12
φ∗5s(r1)φ5s(r1)dr1

=

[ ∞∑
l′=0

l′∑
m′=−l′

4π

2l′ + 1

rl
′
<

rl
′+1
>

(∫ ∞
0
|φ5s(r1)|2r2

1dr1

)
×

Y∗l′,m′(ϑ2, ϕ2)

∫
Y∗0,0(ϑ1, ϕ1)Yl′,m′(ϑ1, ϕ1)Y0,0(ϑ1, ϕ1)dΩ1

]

=

[ ∞∑
l′=0

l′∑
m′=−l′

4π

2l′ + 1

rl
′
<

rl
′+1
>

(∫ ∞
0
|φ5s(r1)|2r2

1dr1

)

Y∗l′,m′(ϑ2, ϕ2)

√
(2l′ + 1)

4π

〈
0l′00

∣∣∣00
〉〈

0l′0m′
∣∣∣00
〉]

=4π

∫ ∞
0
|φ5s(r1)|2 r

2
1dr1

r>

√
1

4π

√
1

4π
=

∫ ∞
0
|φ5s(r1)|2 r

2
1dr1

r>
. (C.1)

The above Clebsch-Gordan coefficients are non-zero provided l′,m′ = 0 (see Appendix
A). Similarly for the Coulomb potential due to the Rydberg state electron,
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Vnl =

∫ ∞
0

1

r12
φ∗nl(r2)φnl(r2)dr2

=

[ ∞∑
l′=0

l′∑
m′=−l′

4π

2l′ + 1

rl
′
<

rl
′+1
>

(∫ ∞
0
|φnl(r2)|2r2

2dr2

)
×

Y∗l′,m′(ϑ2, ϕ2)

∫
Y∗l,m(ϑ1, ϕ1)Yl′,m′(ϑ1, ϕ1)Yl,m(ϑ1, ϕ1)dΩ1

]

=

[ ∞∑
l′=0

l′∑
m′=−l′

4π

2l′ + 1

rl
′
<

rl
′+1
>

(∫ ∞
0
|φnl(r2)|2r2

2dr2

)

(−1)−mY∗l′,m′(ϑ2, ϕ2)

√
(2l + 1)(2l′ + 1)

4π(2l + 1)

〈
ll′00

∣∣∣l0〉〈ll′ −mm′∣∣∣l −m〉] . (C.2)

The number of terms within the sum are determined by the rules of Clebsch-Gordan
coefficients given in Appendix A. The above expression has only one term For |ns〉
states while it has three terms for |np〉 states. The higher the l, the more terms and
hence more time consuming. Next, we use these Coulomb potentials to evaluate the first
order energy corrections using perturbation theory. Due to the large asymmetry in the
sizes of the Rydberg and ground wave function, we can treat the exchange energy and
the Rydberg potential for the ground electron to be small.

First order energy corrections

The first order energy corrections are for the Rydberg potential and the exchange po-
tential which are

E
(1)
D = 〈φ(0)

nl (r2)|V5s|φ(0)
nl (r2)〉 , (C.3)

E
(1)
Ex = 〈φ(0)

nl (r2)|Vnl,5s(r2)|φ(0)
5s (r1)〉 = 〈φ(0)

5s (r1)|V5s,nl(r1)|φ(0)
nl (r1)〉 . (C.4)

The first order energy correction due to the Rydberg potential
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E
(1)
D =

[ ∞∑
l′=0

l′∑
m′=−l′

4π

2l′ + 1

rl
′
<

rl
′+1
>

(∫ ∞
0
|φ(0)

5s (r1)|2|φ(0)
nl (r2)|2r2

1r
2
2dr1dr2

)
∫
Y∗0,0(ϑ1, ϕ1)Y∗l′,m′(ϑ1, ϕ1)Y0,0(ϑ1, ϕ1)dΩ1

×
∫
Y∗l,m(ϑ2, ϕ2)Yl′,m′(ϑ2, ϕ2)Yl,m(ϑ2, ϕ2)dΩ2

]

=

[ ∞∑
l′=0

l′∑
m′=−l′

4π

2l′ + 1

rl
′
<

rl
′+1
>

(∫ ∞
0
|φ(0)

5s (r1)|2|φ(0)
nl (r2)|2r2

1r
2
2dr1dr2

)
(

(−1)−m
′
√

2l′ + 1

4π

〈
0l′00

∣∣∣00
〉〈

0l′0m′
∣∣∣00
〉)

(
(−1)−m

√
(2l + 1)(2l′ + 1)

4π(2l + 1)

〈
ll′00

∣∣∣l0〉〈ll′ −mm′∣∣∣l −m〉)]

=

∫ ∞
0
|φ(0)

5s (r1)|2|φ(0)
nl (r2)|2 1

r>
r2

1r
2
2dr1dr2 . (C.5)

The above Clebsch-Gordan coefficients are non-zero provided l′,m′ = 0. Similarly the
first order energy correction due to exchange potential is

E
(1)
Ex =

[ ∞∑
l′=0

l′∑
m′=−l′

4π

2l′ + 1

rl
′
<

rl
′+1
>

(∫ ∞
0

φ
(0)
5s (r1)φ

(0)
nl (r2)φ

(0)
5s (r2)φ

(0)
nl (r1)dr2dr1

)
∫
Y∗0,0(ϑ1, ϕ1)Y∗l′,m′(ϑ1, ϕ1)Yl,m(ϑ1, ϕ1)dΩ1

×
∫
Y∗l,m(ϑ2, ϕ2)Yl′,m′(ϑ2, ϕ2)Y0,0(ϑ2, ϕ2)dΩ2

]

=

[ ∞∑
l′=0

l′∑
m′=−l′

4π

2l′ + 1

rl
′
<

rl
′+1
>

(∫ ∞
0

φ
(0)
5s (r1)φ

(0)
nl (r2)φ

(0)
5s (r2)φ

(0)
nl (r1)dr2dr1

)
(

(−1)−2m

√
2l′ + 1

4π(2l + 1)

〈
0l′00

∣∣∣l0〉〈0l′0m′
∣∣∣lm〉)(

(−1)−m
√

(2l + 1)(2l′ + 1)

4π

〈
ll′00

∣∣∣00
〉〈
ll′ −mm′

∣∣∣00
〉)]

=
1

2l + 1

∫ ∞
0

φ
(0)
5s (r1)φ

(0)
5s (r2)φ

(0)
nl (r1)φ

(0)
nl (r2)

rl<

rl+1
>

r2
1r

2
2dr1dr2 . (C.6)

The above Clebsch-Gordan coefficients are non-zero provided l′ = l and m′ = m = 0.





Appendix D

Non-adiabatic couplings

The Born-Oppenheimer approximation separates the motional dynamics (dynamics of
the trapped nuclei) from the electronic dynamics. If this approximation is not valid
then there can be significant coupling between the dressed electronic states due to the
motion of the trapped nuclei. This means that though we initially start with the dressed
ground state, during the dynamics we may end up in a excited dressed state. Loss
of population from the dressed ground state to the excited dressed states via the non-
adiabatic couplings can cause serious limitations to the lifetime of the system. Hence here
we estimate the strength of the non-adiabatic couplings. The time dependent Schrödinger
equation,

i~
d|Ψ〉
dt

= (Ĥ+
opt + Ĥ−opt + ĤCoM )|Ψ〉 , (D.1)

where Ĥ±opt and ĤCoM are taken from Eq.(6.27) and Eq.(6.42) of chapter 6. The corre-
sponding wave function is

|Ψ〉 =
∑
n1,n2

∑
β

[
cβ,+n1n2

(t) |ξβ,+(r,R)〉+ cβ−n1n2
(t) |ξβ,−(r,R)〉

]
|n1n2〉 . (D.2)

Multiplying by 〈n1n2|〈g̃±| throughout the time dependent Schrödinger equation gives,

iċg̃,±n1n2
(t) =

(
〈n1n2|ωg̃,±opt (R)|n1n2〉+ ωn1n2

)
cg̃,±n1n2

(t)

+
∑

n′1,n
′
2 6=n1n2

〈n1n2|ωg̃,±opt (R)|n′1n′2〉cg̃,±n′1n′2(t)

−
∑
i=1,2

∑
β 6=0

∑
n′1,n

′
2 6=n1n2

[
〈n1n2|〈g̃±|

~2∇2
Zi

2M
ξβ,±〉|n′1n′2〉

+
~2

M
〈n1n2|〈g̃±|∇Ziξβ,±〉|∇Zi(n′1n′2)〉

]
cβ,±n′1n′2(t) . (D.3)

where Zi=1,2 is the relative motion of the nucleus at site 1 or site 2 with respect to the
the center of every site. In general there are two types of non-adiabatic matrix elements.
One is the second term in the first line where higher motional states are coupled. The
other type is in the second and third lines which involves the derivatives of the dressed
electronic eigenstates. The first one is tackled in the main chapter 6 in section 6.4.
Evaluating the double derivative for the specific motional states |00〉,
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Figure D.1: Plotting κ defined in Eq.(D.7) for the gerade (black) and ungerade (red)
states.

〈00|〈g̃±|
~2∇2

Zi

2M
ξg̃,±(r,R)〉|00〉 =

m

M
〈00|〈g̃±|

~2∇2
Zi

2m
ξβ,±(r,R)〉|00〉 , (D.4)

while the first derivative is written as

~2

M
〈00|〈g̃±|∇Ziξβ,±〉|∇Zi(00)〉

=
~2

M
〈00|〈g̃±|∇Ziξβ,±〉|

p̂i
−i~(00)〉

=
~2

M
〈00|〈g̃±|∇Ziξβ,±〉|

√
Mωtr

2~

(
âi − â†i

)
(00)〉

=
~2

√
2Mσ0

(
〈00|〈g̃±|∇Ziξβ,±〉|00〉 − 2

√
2〈00|〈g̃±|∇Ziξβ,±〉|01〉

)
. (D.5)

where σ0 =
√
~/Mωtr. The conditions that ensure that excited dressed states are not

populated due to the non-adiabatic terms are

m2

M2

(〈00|〈g̃±|
~2∇2

Zi
2m

ξβ=1,±(r,R)〉|00〉)2

〈00|ωβ=1,±
opt (R)|00〉−〈00|ωg̃±opt(R)|00〉

� 1

~2√
2Mσ0

(〈00|〈ξg̃,±|∇Ziξ
β=1,±〉|00〉)2

〈00|ωβ=1,±
opt (R)|00〉−〈00|ωg̃±opt(R)|00〉

� 1

2~2
Mσ0

(〈00|〈ξg̃,±|∇Ziξ
β=1,±〉|01〉)2

〈01|ωβ=1,±
opt (R)|01〉−〈00ωg̃±opt(R)|00〉

� 1 (D.6)

The first condition is easily satisfied even when the Rabi frequencies are comparable
to the difference in the dressed energy state due to the ratio m

M . While for the second
condition, one has to evaluate the the variation of the dressed eigenfunction with the
parameter Zi. Defining the following quantity,

κ =
~2

√
2Mσ0

(〈00|〈ξg̃,±|∇Ziξβ=1,±〉|00〉)2

〈00|ωβ=1,±
opt (R)|00〉 − 〈00|ωg̃±opt(R)|00〉

, (D.7)
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we show in Fig.D.1, that the non-adiabatic couplings are indeed small for the dressed
ground states.





Appendix E

Spatially varying laser field for N

sites

We extend the derivation of dynamical equations for a spatially varying field given in
section 6.5.2 to N sites. Using the many-body Hamiltonian in Eq.(6.77) and the many-
body reduced basis Eq.(6.76) defined in chapter 6 , we re-write the dynamical equations
for the ground state,

i∂tC
I
k =

Ωk−1

2
√

2

(
CE,+k−1 − C

E,−
k−1

)
+

Ωk+1

2
√

2

(
CE,+k + CE,−k

)
, (E.1)

i∂tC
I
k−1 =

Ωk−2

2
√

2

(
CE,+k−2 − C

E,−
k−2

)
+

Ωk

2
√

2

(
CE,+k−1 + CE,−k−1

)
, (E.2)

i∂tC
I
k+1 =

Ωk

2
√

2

(
CE,+k − CE,−k

)
+

Ωk+2

2
√

2

(
CE,+k+1 + CE,−k+1

)
. (E.3)

where we expressed the excited states in the (un)gerade basis using the definition in
Eq.(6.81), which we re-write here

CE,±k =
1√
2

(
CRk ± CLk+1

)
. (E.4)

The dynamical equations for the excited states correspondingly are

i∂tC
E,+
k = −∆+CE,+k +

Ωk+1

2
√

2
CIk +

Ωk

2
√

2
CIk+1 , (E.5a)

i∂tC
E,−
k = −∆−CE,−k +

Ωk+1

2
√

2
CIk −

Ωk

2
√

2
CIk+1 . (E.5b)

i∂tC
E,+
k−1 = −∆+CE,+k−1 +

Ωk

2
√

2
CIk−1 +

Ωk−1

2
√

2
CIk , (E.5c)

i∂tC
E,−
k−1 = −∆−CE,−k−1 +

Ωk

2
√

2
CIk−1 −

Ωk−1

2
√

2
CIk . (E.5d)

Similar to the analysis in section 6.5.2, we assume that the Rydberg state of either
symmetry can be adiabatically eliminated. Assuming that ∆+ � Ωk+1,Ωk implying
that the gerade excited states |E+,(k)〉 and |E+,(k−1)〉 can be adiabatically eliminated.
Thus terms like Ωk+1Ωk

8∆+ and Ω2
k

8∆+ are considered to be negligible compared to ∆− and
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Ωk. We thus end up with two sets of lambda systems that are coupled to a common
many-body ground states.

i∂t


CIk

CIk−1

CE,−k−1

 =


0 0 Ωk

2
√

2

0 0 −Ωk−1

2
√

2

Ωk
2
√

2
−Ωk−1

2
√

2
−∆−




CIk

CIk−1

CE,−k−1

 . (E.6)

and

i∂t


CIk

CIk+1

CE,−k

 =


0 0

Ωk+1

2
√

2

0 0 − Ωk
2
√

2
Ωk+1

2
√

2
− Ωk

2
√

2
−∆−




CIk

CIk+1

CE,−k

 . (E.7)

By writing the above reduced equations, we have made another approximation for the
many-sites that did not exist for the two sites. The ground states |I(k−1)〉 and |I(k+1)〉
also couple to the excited states |E±,(k−2)〉 and |E±,(k+1)〉 respectively. However we
start with the initial condition that the ion is at site k and thus as we argued in the
beginning of section 6.6 that the probability to have double excitation is very low. Hence
|CE,±k−1 |2, |C

E,±
k |2 � |CE,±k−2 |2, |C

E,±
k+1 |2. Thus following the same procedure as in section

6.5.2, we have the following dynamical equation,

i∂tC
I
k = (Uk−1 + Uk)C

I
k + Jk,k−1C

I
k−1 + Jk,k+1C

I
k+1 . (E.8)

where

Uk =


−∆−+

√
(∆−)2+(Ω2

k+1+Ω2
k)/2

2

(
sin2 σ

)
if ∆− > 0 ,

−∆−−
√

(∆−)2+(Ω2
k+1+Ω2

k)/2

2

(
sin2 σ

)
if ∆− < 0 ,

(E.9)

Jk+1,k =


∆−−

√
(∆−)2+(Ω2

k+1+Ω2
k)/2

2

(
sin 2σ

2

)
if ∆− > 0 ,
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√

(∆−)2+(Ω2
k+1+Ω2

k)/2

2

(
sin 2σ

2

)
if ∆− < 0 ,

(E.10)

where tanσ =
Ωk+1

Ωk
and tan 2ρ =

√
(Ω2
k+1+Ω2

k)/2

∆− .



Appendix F

Spin degree of Freedom

We may encounter a problem regarding the electron tunneling if the spin degree of the
additional core electrons is taken into account. The scheme is based on optical dressing
of the singlet ground state to a highly excited singlet Rydberg state. However, since
the singlet and triplet Rydberg states are nearly degenerate the excited singlet state
is equally coupled to a triplet state of an adjacent particle. The trouble is, that this
state is not coupled to the original ground state, resulting in an open channel for the
hopping process, or in other words, a possible source for loss of population into undesired
many-body states.

Considering many particle basis and assuming that we have initially one singlet,
ground state atom and one ion, there two possible (uncoupled) configuration corre-
sponding to a total spin of the three electrons of M = 1/2 and M = −1/2, respectively.
We re-write the Hamiltonian(ignoring the detuning for now) and the wave function we
are considering.

ĤMany sites =

N−1∑
k=1

[
−~∆|R(k)〉〈R(k)|+ ~Ωk+1

2

(
|R(k)〉〈I(k)|+ h.c

)]

+
N∑
k=2

[
−~∆|L(k)〉〈L(k)|+ ~Ωk−1

2

(
|L(k)〉〈I(k)|+ h.c

)]

+

N−1∑
k=1

T

2

[
|R(k)〉〈L(k+1)|+ h.c

]
. (F.1)

Ψ =
∑
k

(
CIk |I(k)〉+ CRk |R(k)〉+ CLk |L(k)〉

)
(F.2)

The equation of motion in terms of the amplitude are

i∂tC
I
k =

Ωk−1

2
CLk +

Ωk+1

2
CRk

i∂tC(↑gk−1↓gk−1)(↑gk)(↑gk+1↓gk+1)

=
Ωk−1

2

[
C(↑ek−1↓gk−1)(↑gk)(↑gk+1↓gk+1) + C(↑gk−1↓ek−1)(↑gk)(↑gk+1↓gk+1)

]
+

Ωk+1

2

[
C(↑gk−1↓gk−1)(↑gk)(↑ek+1↓gk+1) + C(↑gk−1↓gk−1)(↑gk)(↑gk+1↓ek+1)

]
(F.3)
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The dynamical equation for the excited atom on the right of the ion is

i∂tC(↑gk−1↓gk−1)(↑gk)(↑gk+1↓ek+1) =−∆C(↑gk−1↓gk−1)(↑gk)(↑gk+1↓ek+1) +
Ωk+1

2
Cak−1ikak+1

+
T

~
C(↑gk−1↓gk−1)(↑gk↑ek)(↓gk+1) (F.4)

i∂tC(↑gk−1↓gk−1)(↑gk)(↑gk+1↓ek+1) =−∆C(↑gk−1↓gk−1)(↑gk)(↑gk+1↓ek+1) +
Ωk+1

2
Cak−1ikak+1

+
T

~
C(↑gk−1↓gk−1)(↑gk↓ek)(↑gk+1) (F.5)

Similarly the dynamical equation for the excited atom on the left atom of the ion is

i∂tC(↑ek−1↓gk−1)(↑gk)(↑gk+1↓gk+1) =−∆C(↑ek−1↓gk−1)(↑gk)(↑gk+1↓gk+1) +
Ωk−1

2
Cak−1ikak+1

+
T

~
C(↓gk−1)(↑ek↑gk)(↑gk+1↓gk+1) (F.6)

i∂tC(↑gk−1↓ek−1)(↑gk)(↑gk+1↓gk+1) =−∆C(↑gk−1↓ek−1)(↑gk)(↑gk+1↓gk+1) +
Ωk−1

2
Cak−1ikak+1

+
T

~
C(↑gk−1)(↓ek↑gk)(↑gk+1↓gk+1) (F.7)

The states that are not stable due to Pauli principle and so will tunnel through to give
the following two equations,

C(↓gk−1)(↑ek↑gk)(↑gk+1↓gk+1) =
T

~∆
C(↑ek−1↓gk−1)(↑gk)(↑gk+1↓gk+1) (F.8)

C(↑gk−1↓gk−1)(↑gk↑ek)(↓gk+1) =
T

~∆
C(↑gk−1↓gk−1)(↑gk)(↑ek+1↓gk+1) (F.9)

Thus in Eqs.(F.4) and (F.6), we get

i∂tC(↑gk−1↓gk−1)(↑gk)(↑gk+1↓ek+1) =−∆C(↑gk−1↓gk−1)(↑gk)(↑gk+1↓ek+1) +
Ωk+1

2
Cak−1ikak+1

+
T 2

~2∆
C(↑gk−1↓gk−1)(↑gk)(↑ek↓gk+1) (F.10)

i∂tC(↑ek−1↓gk−1)(↑gk)(↑gk+1↓gk+1) =−∆C(↑ek−1↓gk−1)(↑gk)(↑gk+1↓gk+1) +
Ωk−1

2
Cak−1ikak+1

+
T 2

~2∆
C(↓gk−1↑ek)(↑gk)(↑gk+1↓gk+1) (F.11)

This implies that the states that violate Pauli exclusion principle are simply adiabatically
eliminated and returns to the Pauli obeying Rydberg states at the rate of (T/~∆)T .
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