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ABSTRACT

Research on forest ecosystems receives high attention, especially nowadayswith regard to sustain-
able management of renewable resources and the climate change. In particular, accurate informa-
tion on the 3D structure of a tree is important for forest science and bioclimatology, but also in the
scope of commercial applications.

Conventional methods to measure geometric plant features are labor- and time-intensive. For
detailed analysis, trees have to be cut down, which is often undesirable. Here, Terrestrial Laser
Scanning (TLS) provides a particularly attractive tool because of its contactless measurement tech-
nique. The object geometry is reproduced as a 3D point cloud. The objective of this thesis is the
automatic retrieval of the spatial structure of trees from TLS data. We focus on forest scenes with
comparably high stand density and with many occlusions resulting from it. The varying level of
detail of TLS data poses a big challenge.

We present two fully automatic methods to obtain skeletal structures from scanned trees that have
complementary properties. First, we explain a method that retrieves the entire tree skeleton from
3D data of co-registered scans. The branching structure is obtained from a voxel space represen-
tation by searching paths from branch tips to the trunk. The trunk is determined in advance from
the 3D points. The skeleton of a tree is generated as a 3D line graph.

Besides 3D coordinates and range, a scan provides 2D indices from the intensity image for each
measurement. This is exploited in the second method that processes individual scans. Further-
more, we introduce a novel concept tomanage TLS data that facilitated the researchwork. Initially,
the range image is segmented into connected components. We describe a procedure to retrieve
the boundary of a component that is capable of tracing inner depth discontinuities. A 2D skele-
ton is generated from the boundary information and used to decompose the component into sub
components. A Principal Curve is computed from the 3D point set that is associated with a sub
component. The skeletal structure of a connected component is summarized as a set of polylines.

Objective evaluation of the results remains an open problem because the task itself is ill-defined:
There exists no clear definition of what the true skeleton should be w.r.t. a given point set. Con-
sequently, we are not able to assess the correctness of the methods quantitatively, but have to rely
on visual assessment of results and provide a thorough discussion of the particularities of both
methods.

We present experiment results of bothmethods. The firstmethod efficiently retrieves full skeletons
of trees, which approximate the branching structure. The level of detail is mainly governed by the
voxel space and therefore, smaller branches are reproduced inadequately. The second method
retrieves partial skeletons of a tree with high reproduction accuracy. The method is sensitive to
noise in the boundary, but the results are very promising. There are plenty of possibilities to
enhance the method’s robustness. The combination of the strengths of both presented methods
needs to be investigated further and may lead to a robust way to obtain complete tree skeletons
from TLS data automatically.
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KURZFASSUNG

Die Erforschung des ÖkosystemsWald spielt gerade heutzutage imHinblick auf den nachhaltigen
Umgang mit nachwachsenden Rohstoffen und den Klimawandel eine große Rolle. Insbesondere
die exakte Beschreibungder dreidimensionalen Struktur eines Baumes istwichtig für die Forstwis-
senschaften und Bioklimatologie, aber auch im Rahmen kommerzieller Anwendungen.

Die konventionellen Methoden um geometrische Pflanzenmerkmale zu messen sind arbeitsinten-
siv und zeitaufwändig. Für eine genaue Analyse müssen Bäume gefällt werden, was oft uner-
wünscht ist. Hierbei bietet sich das Terrestrische Laserscanning (TLS) als besonders attraktives
Werkzeug aufgrund seines kontaktlosenMessprinzips an. DieObjektgeometriewird als 3D-Punkt-
wolke wiedergegeben. Basierend darauf ist das Ziel der Arbeit die automatische Bestimmung
der räumlichen Baumstruktur aus TLS-Daten. Der Fokus liegt dabei auf Waldszenen mit vergle-
ichsweise hoher Bestandesdichte und mit zahlreichen daraus resultierenden Verdeckungen. Die
Auswertung dieser TLS-Daten, die einen unterschiedlichen Grad an Detailreichtum aufweisen,
stellt eine große Herausforderung dar.

Zwei vollautomatische Methoden zur Generierung von Skelettstrukturen von gescannten Bäu-
men, welche komplementäre Eigenschaften besitzen, werden vorgestellt. Bei der ersten Methode
wird das Gesamtskelett eines Baumes aus 3D-Daten von registrierten Scans bestimmt. Die Ast-
struktur wird von einer Voxelraum-Repräsentation abgeleitet indem Pfade von Astspitzen zum
Stamm gesucht werden. Der Stamm wird im Voraus aus den 3D-Punkten rekonstruiert. Das
Baumskelett wird als 3D-Liniengraph erzeugt.

Für jeden gemessenen Punkt stellt ein Scan neben 3D-Koordinaten und Distanzwerten auch 2D-
Indizes zur Verfügung, die sich aus dem Intensitätsbild ergeben. Bei der zweitenMethode, die auf
Einzelscans arbeitet, wird dies ausgenutzt. Außerdemwird ein neuartiges Konzept zumManage-
ment von TLS-Daten beschrieben, welches die Forschungsarbeit erleichtert hat. Zunächst wird
das Tiefenbild in Komponenten aufgeteilt. Es wird eine Prozedur zur Bestimmung von Kompo-
nentenkonturen vorgestellt, die in der Lage ist innere Tiefendiskontinuitäten zu verfolgen. Von
der Konturinformation wird ein 2D-Skelett generiert, welches benutzt wird um die Komponente
in Teilkomponenten zu zerlegen. Von der 3D-Punktmenge, die mit einer Teilkomponente assozi-
iert ist, wird eine Principal Curve berechnet. Die Skelettstruktur einer Komponente im Tiefenbild
wird als Menge von Polylinien zusammengefasst.

Die objektive Evaluation der Resultate stellt weiterhin ein ungelöstes Problem dar, weil die Auf-
gabe selbst nicht klar erfassbar ist: Es existiert keine eindeutige Definition davon was das wahre
Skelett in Bezug auf eine gegebene Punktmenge sein sollte. Die Korrektheit der Methoden kann
daher nicht quantitativ beschrieben werden. Aus diesem Grund, können die Ergebnisse nur vi-
suell beurteilt werden. Weiterhinwerden die Charakteristiken beiderMethoden eingehend disku-
tiert.

Es werden Experimentresultate beider Methoden vorgestellt. Die erste Methode bestimmt effi-
zient das Skelett eines Baumes, welches die Aststruktur approximiert. Der Detaillierungsgrad
wird hauptsächlich durch den Voxelraum bestimmt, weshalb kleinere Äste nicht angemessen re-
produziert werden. Die zweite Methode rekonstruiert Teilskelette eines Baums mit hoher De-
tailtreue. Die Methode reagiert sensibel auf Rauschen in der Kontur, dennoch sind die Ergeb-
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nisse vielversprechend. Es gibt eine Vielzahl von Möglichkeiten die Robustheit der Methode zu
verbessern. Die Kombination der Stärken von beiden präsentierten Methoden sollte weiter un-
tersucht werden und kann zu einem robusteren Ansatz führen um vollständige Baumskelette au-
tomatisch aus TLS-Daten zu generieren.
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1 INTRODUCTION

Forests are the most important terrestrial ecosystem on planet earth. Roughly 31% of total land
area is covered by forests of various types [FAO-2010]. Forests are a habitat for countless plants
and animals. They play a major role in the atmospheric carbon cycle and thus influence global
climate. But above all, forests are closely linked to the cultural history of mankind as living space,
and source of food and goods. Up to this day, wood is still a favored material for construction and
energy production.

The demand for forest goods, which comprises wood and non-wood products, is high. Moreover,
it can be expected to increase further due to the earth’s growing population and intensified effects
of globalization [FAO-2011]. Hence, large parts of rainforests are quickly turned into plantations
for production of bioenergy, pulp for the paper industry, or the food processing industry.

Information about the tree population is fundamental to determine the amount of plants that
can be harvested without depleting the resource and thus to manage natural as well as planted
forests sustainably [West-2009]. Deforestation is the result of improper management, which has
significant negative impact on the socio-economic situation, soil characteristics, groundwater level,
and climatic conditions in the area.

Clearly, information about trees is obtained by measuring them. Since the beginning of the 18th
century, forest mensuration was treated seriously and became the subject of scientific research
[Van Laar-2007]. Today, measurement of dendrometric properties of a single tree is still manual
work. As a result, assessment of dendrometric parameters of a larger sample is time-intensive,
cumbersome, and therefore costly.

Faster and precise measuring methods are a clear advantage for the forest industry regarding the
improvement of harvest forecasting and estimation of yield rates. Moreover, comprehensive data
about trees is naturally of high interest to forest science and bioclimatology. But the number of
parameters that can be measured in practice at the standing specimen with acceptable effort is
limited. Eventually, trees have to be cut down in order to assess properties, which are infeasible to
analyze otherwise. Obviously, destructive methods can be applied only once to one and the same
plant, rendering long-term monitoring of it plainly impossible.

In particular the crown, which is the tree’s interface to the atmosphere, is of major importance
to forest research, though only a small amount of measurement data exist [Pretzsch-2011]. Doc-
umenting the intricate branching structure of a tree with conventional methods is a highly chal-
lenging task, not to mention the foliage that is truly in the focus of research.

The interplay of form and function in a tree crown also inspired Gaudí, who copied the branch-
ing structure of trees and based the supporting structure of the cathedral La Sagrada Familia in
Barcelona on their model [Tomlow-2002]. It is likewise an impressive example that designing
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shapes, which resemble the spatial structure of trees, is by far easier than the accurate reconstruc-
tion of an existing real-world tree. Forest mensuration using conventional methods is already
reaching its limits. Therefore, the development of alternatives to measure trees automatically re-
ceives much attention of forest research and industry.

Instead of performing the work manually, diligent and tedious processing is clearly a task better
left to a computer. This requires a representation of the trees that can be processed by a machine.
One way to obtain this data is Terrestrial Laser Scanning (TLS). Over a period of about twenty
years, TLS has proven to be a very handy tool for freezing a real world scene as a digital 3D point
cloud and thus opened up new possibilities of analyzing the world around us.

A terrestrial laser scanner is a device that automatically samples the surfaces of objects that sur-
round it in a sequential fashion. The result is a description of the visible surfaces at a particular
moment in time as a high density 3D point cloud. Hence, assessment of objects is translated from
on-site measuring to off-site processing in the office. At the same time, the entire process of mea-
suring becomes reproducible.

As shown by Vosselman and Maas [Vosselman-2010] and Sansoni et al. [Sansoni-2009], TLS has
already entered numerous application domains and is actively employed for documentation of
cultural heritage, as well as in medical analysis, architecture, civil engineering, forensics, and ac-
cident assessment. In brief, TLS is used anywhere, where the geometry of real-world objects is of
interest.

Quite early, the potential of TLS in forestry has been realized and it has been continuously investi-
gated in numerous studies. The non-destructive character is an especially attractive feature of this
remote sensing technique. In addition, once acquired data can be stored and reused, which allows
long-time observation of the same plants that was not practicable before to the same extent.

Beyond automating established methods to measure dendrometric properties for forest invento-
ries, researchers consider to leverage TLS also in other areas of forestry. For instance, the assess-
ment of wildlife habitats is vital to protect and preserve biodiversity and initial studies to apply
TLS in this context have been conducted with populations of bats and birds [Azmy-2012; Michel-
2008]. Furthermore, the analysis of the spatio-temporal development of crowns and canopies is
relevant not only to silviculture. Detailed data about the spatial structure of trees are an advantage
to radiation transfer models [Propastin-2013], wind field models [Bienert-2010], and fire hazard
models [García-2011].

The fundamental task that the majority of these problems share is the retrieval of the spatial tree
structure from TLS data. Estimation of conventional dendrometric properties is necessarily the
starting point for analyzing trees that are captured by TLS. But a thorough examination requires a
comprehensive description of the tree shape that provides a basis on which advanced knowledge
about standing trees can be inferred.

1.1 Objective

The general aim of the thesis is the retrieval of the spatial tree structure from TLS data, which has
not been addressed as intensively in the literature as the estimation of dendrometric parameters.

TLS data is a set of 3D points. Therefore, the recognition of continuous surfaces and object shapes
is a challenging task. Moreover, effects that are inherent to the scanning technique, such as noise in
the measurements, and seemingly missing data due to occlusions, need to be taken into account.
Movement in the scene due to wind during a scan is also a cause for apparently strange artifacts
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in TLS data. In fact, there is never a perfect day for scanning forest scenes without any wind or
other disturbing influences. Consequently, those effects have to be considered in the design of
processing algorithms.

Up to now, the majority of studies has focused on measuring single, possibly free-standing trees.
Most often, the selected specimen is the central object of a multiscan consisting of several co-
registered scans. As a result, the considered tree is usually densely covered by sample points
and represented with a high level of detail in the point cloud. However, this kind of experimental
setup poses serious limitations on the prospective applicability of the developed methods.

For the purpose of assessing densely wooded areas in the long run, we concentrate on approaches
that are adequate to analyze entire forest scenes instead of previously selected specimens. That
means the considered TLS data sets have been acquired with the intention to assess a represen-
tative plot of the study site with high stand density. Therefore, trees in the scans are represented
with a varying degree of completeness and detail.

Clearly, only the spatial tree structure that is actually represented in the TLS data can be recon-
structed at all. That means that the retrieval may be limited to a partial reconstruction depending
on the coverage of the tree by scan points. The generation of a complete treemodel by synthesizing
apparently missing parts in order to obtain a perceptually pleasing result is not our intent.

The objective of the thesis is the retrieval of the spatial tree structure in a compact form as a tree
graph. The resulting reconstruction should be as complete as feasible w.r.t. the given data sets.
Considering these requirements, we approach the problem from two different perspectives.

One the one hand, we investigate the reconstruction of a tree on the basis of multiscan data sets.
The approach is restricted to trees that have been visible in more than one scan. Processing is per-
formedmainly in a voxel space representation of the data. The result is a graph that approximates
the shape of an entire tree to a certain degree of completion.

One the other hand, we examine the internal data organization of a single scan, which leads to a
reconstruction approach on the basis of image processing tools. The transition of processing a 2D
raster to obtaining 3D structural descriptions is achieved with the application of Principal Curves
[Kégl-1999]. The result is a partial reconstruction of the tree, but with high level of detail.

Important to realize is that evaluation of results appears to be a difficult problem in itself. As
pointed out previously, the basis of processing is the content of the scan data. Therefore, it is
not appropriate to evaluate the results against the real-world tree. However, there is no objective
ground truth available for the TLS data either. As a consequence, we rely on a human operator to
assess the results of computation with regard to the capability of the considered method and the
given input data.

Among the remote sensing techniques that are evaluated in forestry contexts in the literature are
also airborne laser scanning (ALS), mobile laser scanning (MLS), as well as the full-waveform
TLS prototype Echidna, which is especially built for silviculture [Strahler-2008; Hilker-2010]. van
Leeuwen and Nieuwenhuis [vLeeuwen-2010] give a comprehensive overview about the domain.
In this work, we deal exclusively with data from standard terrestrial laser scanners as the Z+F Im-
ager 5006i or the Faro Focus 3D. Another restriction is that we focus on the aspect of computational
geometry and leave assessment of biophysical properties to the forest scientists.

1.1 Objective 3



1.2 Outline

First, we shed light on the term skeleton, which is often used in the literature but only seldom
defined, in chapter 2. In addition, we give a brief introduction to TLS, before we review exist-
ing approaches to obtain dendrometric information up to methods to retrieve the entire spatial
structure of trees from TLS data. Finally, a summary of the properties that are required from the
prospective skeleton representation and method w.r.t. the input data are presented.

In chapter 3, we state the contribution of the thesis to the question of retrieving skeletal structures
from TLS data. Furthermore, the related publications are listed.

The data sets that have been used to conduct the experiments are described in chapter 4. The study
sites and TLS instruments are introduced briefly to provide an overview over the TLS data, which
had chiefly driven the development of the proposed methods.

The first method to retrieve the spatial structure from a TLS data set of an individual tree is pre-
sented in chapter 5. After determination of the trunk centerline as an initial processing stage, the
branching structure is recovered from a voxel space representation of the input data. The result-
ing skeleton is a tree graph that reflects the main spatial features of the tree, which is a cutout of a
larger multiscan. First, we explain the sub procedures of the method. Second, we present exper-
iments and results. Last, we discuss the proposed method in detail and provide suggestions for
further development.

In chapter 6, we approach the management and processing of TLS data from the perspective of
a raster representation as for instance offered by an intensity image of a single scan. Our inves-
tigations lead to a novel data container concept that facilities TLS processing. The core of work
that is presented in this chapter is a method for tracing the boundaries of connected components
from Connected Component Labeling [Shapiro-2001] that includes depth discontinuities. After
describing the procedures, we present experiment results and discuss the findings.

The procedures that are presented in chapter 6 lay the foundations for the second method to re-
trieve spatial structure from scanned trees, which is introduced in chapter 7. The core concept
of the method is the idea that the 2D raster alignment of a scan can be immediately utilized to
achieve a segmentation of the corresponding 3D point set. Subsequently, the spatial structure can
be represented as a set of polylines, which are the result of the Polygonal Line Algorithm by Kégl
[Kégl-1999] that approximates a Principal Curve for a given point cluster. First, we describe the
method in detail. Second, we present experiment results. Last, we discuss the proposed method
and the intricate interrelationship of its sub procedures. The chapter is closed with some ideas for
future work.

In the last chapter, we summarize our investigations and give a critical evaluation of the proposed
methods. We conclude with some final remarks.
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2 STATE OF THE ART

In this chapter, we briefly review the notion of an object’s skeleton that originates in the field of
image analysis. Afterwards, we give an introduction to TLS and evaluate the applicability of the
skeleton definition to TLS data. Then, we discuss related efforts to retrieve the spatial structure of
trees from TLS data. Finally, we summarize the demands on the prospectivemethod and skeleton.

2.1 The Medial Axis

Borrowed from anatomy, the term skeleton is frequently used to convey the notion of summarizing
the significant geometric features of an object as a line graph. Blum [Blum-1967] was the first to
introduce this concept and termed the compact representation as the Medial Axis. He employed
an analogy to a fire on dry grassland that starts at the entire boundary of the shape in the same
moment and smoothly feeds inward. Spotswhere both fire fronts collide are considered theMedial
Axis.

An alternative way of comprehension is the composition of the object boundary by maximal in-
scribed disks [Cornea-2007] as depicted in figure 2.1. The boundary of a maximal inscribed disk
is tangent to the object boundary in at least two points. In a number of cases, those points will be
located on opposite sides. Then, the disk center is located midway between them. As evident in
figure 2.1, the Medial Axis consists of the set of disk centers, which are centered within the object
shape.

Figure 2.1: Centers of maximal inscribed disk constitute the Medial Axis of the object shape.
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Figure 2.2: In 3D, the Medial Axis becomes the Medial Surface.

The Medial Axis is actively investigated and subject of thorough mathematical analysis because
it is a vital concept for questions in numerous fields, such as pattern recognition, and computer
vision, but also computer graphics and human computer interfaces [Siddiqi-2008]. The concept
that was initially suggested for 2D shapes can be extended to 3D objects. Then, the Medial Axis
possibly becomes a Medial Surface [Cornea-2007] as shown in figure 2.2.

In any case, the human reader intuitively grasps the notion of an object’s skeleton. Naturally, stick
figures share the same fundamental idea. We can easily judge whether a particular stick figure
is a good or bad representation of the considered object. Moreover, an average person is usually
capable of drawing a skeleton into an arbitrary 2D shape that is perceptually pleasing. Evidently,
the skeleton concept is closely connected to human cognition [Siddiqi-2008].

Solutions to compute the trueMedial Axis are solely known for simple polygons and polyhedrons
[Biasotti-2008]. However, the Medial Axis of complex object shapes is of high interest and mo-
tivated plenty of skeletonization approaches that have been proposed since Blum [Blum-1967].
The main tools for this task are Distance Transforms and thinning approaches, the Voronoi Dia-
gram, and Shock graphs. A comprehensive overview about all established methods and aspects
of the Medial Axis is given by Siddiqi and Pizer [Siddiqi-2008]. Because the true Medial Axis of
complex shapes is exceedingly difficult to obtain in practice, results of the proposed methods are
approximations of varying accuracy.

The Medial Axis is very sensitive to geometrical particularities of the shape’s boundary as ex-
plained in [Siddiqi-2008]. This interrelationship is clearly an inherent feature of the overall con-
cept. But it also means that the Medial Axis reacts to even small modifications of the boundary.
Consequently, tiny perturbations in the boundary are reflected by the Medial Axis. For instance,
due to a tiny bump in the boundary, an entirely new branch of the Medial Axis emerges as shown
in figure 2.3. In addition, the description of an object shape in 2D or 3D is not given in continuous,
but in discrete space in the majority of cases. As a result, the boundary of the object may be an ap-
proximation of the true shape in itself. Hence, the corresponding Medial Axis contains a number
of apparently spurious branches.

Figure 2.3: Small perturbations in the boundary cause additional edges in the Medial Axis.
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When contemplating real-world trees, the expected stick figure intuitively coincides with a tree
graph in the graph-theoretic sense. Similarly, the true tree shape can be modeled as a composite
of cylinders of decreasing radii. In this case, the cylinder axes roughly correspond to the tree
skeleton.

2.2 Terrestrial Laser Scanning

Terrestrial Laser Scanning (TLS) is a ground-based LiDAR (light detection and ranging) technique
that rapidly samples visible object surfaces. Since the late 1990s it gained widespread popularity
across numerous application domains that benefit from digitizing object geometry such as archi-
tecture, civil engineering, cultural heritage, product design, and forensics. For a comprehensive
survey on TLS, as well as airborne laser scanning (ALS), we refer to Shan and Toth [Shan-2009]
and Vosselman and Maas [Vosselman-2010].

Laser ranging is an active measurement technique: A laser pulse is emitted from the scanning
device itself. The first object surface that obstructs the laser’s path causes a reflection pulse that
travels back to the scanner. A sensor registers the reflection and triggers intensity and range mea-
surement. The amplitude of the reflected pulse relative to the source signal strength is commonly
referred to as intensity, which we denote by w. Range measurement can be distinguished in two
methods:

Time-of-flight (TOF) scanners measure the elapsed time t between pulse emission and reflection
registration at the scanning device in order to determine the range d to the object as

d = c · t
2

(2.1)

where c is the speed of light. Clearly, precision of the measurement and the minimal discernible
distance are directly dependent on the accuracy of the scanner’s internal clock and duration of
the query time interval. The maximal measurable range is defined by the signal strength of the
laser pulse. Current models by Riegl, for example, can reach up to 6 km [Riegl-2014]. Due to the
measurement technique, TOF scanners usually operate slower than phase-shift scanners.

In contrast, phase-shift scanners emit a continuous laser beam. The carrier wave of the laser beam
ismodulated by amplitudemodulation to transport ameasurement wave, which usually has sinu-
soidal shape [Petrie-2009a]. If the laser beam hits an object surface, a beam reflection is registered
at the scanning device. By comparing the phase pattern of the source signal to the reflected sig-
nal, the phase difference is determined. The phase difference represents a range in the half-open
interval [0, λ) where λ is the wavelength of the measurement wave. A range beyond this interval
cannot be measured with a single measurement wave because the number of full wavelengths
between beam emission and object contact cannot be reconstructed. For this reason, several mea-
surements are executed in quick succession and with different wavelengths. Subsequently, the ac-
tual range d is determined as the solution of the resulting equation system, as explained by Petrie
and Toth [Petrie-2009a]. The maximal resolvable range rmax is defined by the measurement wave
with the largest wavelength λmax. As a consequence, the range of objects located outside the in-
terval [0, λmax) is calculated wrongly, since the number of wavelengths λmax before object contact
cannot be established. On the one hand, such measurements may be filtered by their particularly
low intensity values, since the laser beam strength decreases with distance. On the other hand,
such measurements may remain in the final point cloud and appear as noise points. Similarly, the
minimal resolvable range is governed by the precision of the phase angle determination. Phase-
shift scanners cover comparably short ranges of maximal ca. 100m, but operate significantly faster
than their TOF counterparts.

2.2 Terrestrial Laser Scanning 7
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Figure 2.4: The θ axis of the scanner’s own spherical coordinate system coincides with the Z axis of the
scanner’s own Cartesian coordinate system (SOCS). The gray box in the center represents the scanner
device.

Regardless of measuring technique, beam divergence is common to all TLS devices. A laser emits
highly collimated light, which means that it spreads only minimally with distance. Nevertheless,
the area of the cross-section of a laser beam, usually referred to as footprint, increaseswith distance.
This property has significant influence on the measuring accuracy, since the laser beam does not
sample a geometrically ideal point on the object surface, but in fact a surface area that may cause
multiple reflections. Whether one beam return receives priority over the others or all range mea-
surements are combined into one result depends likewise on the strategy of the scanner producer
and is commonly not disclosed to the user.

In addition, object material reflectivity, surface slope, and incident angle of laser beams influence
the measurement accuracy and may cause noise effects [Boehler-2003; Blaskow-2014]. Further-
more, the authors point out that TLS models are built in small numbers only and the accuracy
varies between each instrument.

Besides the applied measuring technique, TLS built types are distinguished by their field of view
in full-spherical, panoramic, and camera scanners. Full-spherical and panoramic scanners can
sample their entire surroundings with one single scan; whereas camera scanners are limited in
view and need multiple scans with different orientation on the same position to cover their sur-
roundings completely. By now, the instruments on the market and their particular characteristics
are manifold. Petrie and Toth [Petrie-2009b] give a broad overview about producers and products.
In the following, we are concentrating on the Z+F Imager 5006i – a full-spherical, phase-shift TLS
device. Another TLS instrument of comparable design is the Faro Focus 3D1. Both instruments
and the data sets that have been acquired with them are described in chapter 4.

Generally speaking, a typical scan is performed by setting up the scanner onto a tripod. During
a scan, a spherical coordinate system with the laser deflection unit as its origin is assumed, as
illustrated in figure 2.4. A motor rotates the scanner head in the horizontal XY-plane around its Z
axis in discrete steps of ∆φ. As a result, the horizontal plane is subdivided into N = dφmax/∆φe
scan lines. At each scan line position, a rotating or oscillating mirror deflects the laser beam in
the vertical plane in discrete steps of ∆θ, resulting in a discrete subdivision of M = dθmax/∆θe
measurements per vertical scan line. In case of the Z+F Imager 5006i, a scan of the full sphere is

1According to [Faro-2013], Trimble recently entered into an OEM agreement with Faro to re-brand and sell the Faro
Focus 3D as the Trimble TX 5.
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conducted by setting φmax = π/2 and θmax = π. In this way, the scanner head rotates π/2 around
the Z axis, whereas the mirror performs full turns of π at each increment step. Since the beam
deflection unit is a mechanical device, slight deviations of the horizontal and vertical increments
occur. That means that the actual observed values of φ and θ per measurement are noisy.

In contrast to photography, laser scanning is a sequential measuring technique. A single scan is
built up successively by a sequence of measurements sampling the scene in a fixed, predefined
spatial pattern. Therefore, a changing scene may cause uninterpretable artifacts in a scan. Espe-
cially wind is an important factor in outdoor operation of a TLS instrument. In case of trees, windy
weather conditions during a scan causes wavy patterns at branch structures in the point cloud, as
demonstrated in figure 2.5. Although, weather conditions should be considered in outdoor scan-
ning projects, we found that in practice there is never a completely windless day and such effects
inevitably need to be considered in processing.

(a)

(b) (c)

Figure 2.5: Wavy pattern in the intensity image are the result of wind during scanning. The intensity image
is inverted, i.e. white indicates zero intensity here.

Internally, the measuring process is performed in a spherical coordinate system. But the result of
a scan is a 3D point cloud in Cartesian coordinates with the scanner position at the origin, which is
denoted the scanner’s own coordinate system (SOCS). The XY-plane is parallel to the ground and
the positive Z axis points upward. During a scan, the object surfaces that are in the line of sight
to the scanner are sampled. For this reason, the object representation in the point cloud is not a
complete sampling of the entire object geometry, as indicated in figure 2.6. Analogous to light, the
term scan shadow denotes the unobserved area, which lies behind the point where the laser beam
was intercepted by a surface closer to the scanner.

Multiple scans from different viewpoints may be performed and co-registered via artificial mark-
ers or object geometry with the intention to sample the target object as completely as possible, as
illustrated in figure 2.7. Whether complete coverage of the target object is possible at all strongly
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Figure 2.6: Only one side of an object can be sampled from one scanner viewpoint. Object surfaces that
are obstructed or that do not face the scanner remain unobserved.

depends on the nature and the size of the object. Clearly, the more complex an object is, the more
scans are necessary for complete coverage, or the less complete the result will be respectively.

Co-registration transforms all scans into the project coordinate system (PCS) based on a set of
recognizable, common points over all scans. Often, ball-shaped targets are placed in the scene
prior to scanning, which are later identified semi-manually in the scans. Afterwards, the TLS
software fits a sphere to the 3D points that represent the target surface in order to obtain a defined
3D point with higher accuracy for the co-registration. Inmost cases, one scan is used as the anchor
and all other scans are transformed relative to it. Therefore, the PCS is often identical to one of the
SOCS of the scans.

In the standard case, the product of a single scan is a set of points comprising all valid measure-
ments. Ameasurement is invalid if no pulse reflection returned to the laser scanner. This happens
for instance, if the laser beam is emitted towards the sky. For each valid measurement, 3D coor-
dinates (X,Y, Z), intensity (w), range (d), and spherical coordinates (φ, θ) are provided by the
scanner software. Whereas only spherical coordinates can be obtained for invalid measurements.

scanner
viewpoint 1

unobserved surfaces
located in scan shadow

scanner
viewpoint 2

sampled
object surface

sampled
object surface

Figure 2.7: The object can be captured from all sides by a multiscan setup. But even if the object is scanned
from more than one viewpoint, unobserved surfaces might remain.
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During a scan, the TLS data is commonly stored in a proprietary, closed file format. Consequently,
operation of a TLS instrument is depending on the same vendor’s software to retrieve the mea-
surement data in a file format that is accessible to the user. Though, software export features
and therefore actually available measurement data strongly depend on the particular instrument
vendor. Unfortunately, there is no definite standard exchange format for terrestrial laser scans
between software. In the majority of cases, simple plain text exports of point coordinate lists are
used because they are human-readable and easily processable [Huber-2011].

With the power ofmodern laser scanners even single scans can reachwell over 2GBwhen exported
as plain text file. Considering a project with several, co-registered scans, i.e. amultiscan, this poses
a serious challenge for current TLS data handling strategies as well as processing.

2.3 Retrieval of Spatial Tree Structure

In essence, known approaches to estimate the Medial Axis of a scanned object cannot be applied
to 3D point clouds obtained by TLS. The prerequisite to compute the Medial Axis is a boundary
curve or surface, which is closed. This constraint is not fulfilled by an unordered set of discrete
3D points in continuous Euclidean space.

Naturally, a single scan alone does not contain sufficient geometric information because at least the
opposite object half is not visible from the scanner. But also a multiscan may not capture each and
every geometrical shape feature. Especially in forest scenes, unobserved surface regions caused
by occlusions from other trees and self-occlusions in the crown are inevitable.

A point cloud is a mapping of the true object geometry as a discrete set of points that may be a
composite of more than one scan. Therefore, the quality of the mapping of the object shape also
depends on the accuracy of the co-registration. A co-registration of poor qualitymost likely results
in a skeletal representation of equally poor quality.

Depending on the tree species, wind in the tree crown causes the upper trunk to bend, which is
then visible in the point cloud as displacement. As a consequence, the representation quality of a
tree point cloud from a multiscan that was performed under windy conditions is poor in spite of
possibly high accuracy of the co-registration.

Clearly, a TLS point cloud usually represents the tree object surface incompletely and with a cer-
tain amount of noise. For this reason, approaches that are different from known methods for the
Medial Axis have been investigated in studies to retrieve the spatial structure of a tree from TLS
point clouds.

The first studies about usage of TLS in a forest were conducted by Hopkinson et al. [Hopkinson-
2004] and Watt and Donoghue [Watt-2005], who demonstrated the potential benefit of the instru-
ment in forestry. Since then, the general aim has been to automatize the processing. However, so
far a great amount of work is still performed manually or semi-manually. Our focus is on auto-
maticmethods that require atmostmanual input of initial parameters. A clear distinction between
methods targeting the determination of selected dendrometric parameters and methods aiming
at the retrieval of spatial shape can hardly be made because the transition between both tasks is
usually rather smooth. Therefore, we first review approaches that concentrate on dendrometric
parameters briefly before we zoom in onmethods specifically designated to retrieve the branching
structure of a tree.

2.3 Retrieval of Spatial Tree Structure 11



Retrieval of dendrometric parameters

Dendrometry (from Greek dendron = a tree, and metria = to measure) covers the measurement of
the geometrical properties of trees. Themost important parameter is the diameter of the tree trunk
at breast height (DBH), which has only a rough international standard. According to [West-2009],
the breast height is 1.3 m from the ground at the tree foot point, but can vary up to 1.4 m between
countries. In the USA, DBH is defined as 4’ 6” = 1.3716 m [West-2009].

In order to conduct a measurement relative to the ground surface like measuring of DBH or total
tree height, a reference surface is required. An important topic in processing laser scanning data
is therefore the determination of a digital terrain model (DTM). The basic assumption is that the
ground surface is sampled by a large number of points. Often, the total area in the TLS data is
partitioned into square or cubic regions. The DTM then comprises the points with the lowest
height coordinate per region after filtering steps are applied [Simonse-2003; Li-2010; Thies-2004;
Moskal-2012]. Alternatively, a histogram of point numbers is established along the up direction
of each region and the bin with the largest number of points denotes the local ground surface
[Maas-2008].

In a large number of studies dendrometric parameters were determined with the DTM as prereq-
uisite, e.g. [Aschoff-2004a; Thies-2004; Maas-2008; Moskal-2012]. Trunk properties can commonly
be retrieved with high accuracy if the trunk is covered sufficiently with scan points. Naturally, the
trunk is the tree part that is represented by a comparably high number of points in TLS data be-
cause it often provides the largest patch of unobstructed, continuous surface area of the considered
tree that is visible from the scanner.

The detection of trees present in TLS data is the necessary first step for the assessment of specific
geometrical properties. The core of the proposedmethods is the determination of candidate point
subsets of trunk samples for fitting of circles or cylinders [Maas-2008; Liang-2012; Simonse-2003;
Schilling-2011a] or the clustering of points from a particular height slice into disjoint subsets ful-
filling certain constraints [Király-2007; Li-2010]. The trunk shape is reconstructed with varying
level of detail.

Tree detection and trunk modelling often go hand in hand. Originally, Simonse et al. [Simonse-
2003] proposed to utilize the Circle Hough Transform (CHT) by Duda and Hart [Duda-1972] to
detect trees. The key idea of the CHT is outlined in figure 2.8. In a horizontal slice through a
point cloud, point clusters of tree cross-sections are recognizable by their characteristic circle- or
arc-like configuration as shown in figure 2.9. The CHT is a suitable procedure to detect them and
was applied by Aschoff et al. [Aschoff-2004b], and Chmielewski et al. [Chmielewski-2010]. As
pointed out by Chmielewski et al. [Chmielewski-2010], the assumption that trunk cross-sections
are perfect circles usually does not hold. As a result, the performance of the CHT degrades when
applied on trees that have more irregular shapes in cross-section or when the TLS data is rather
noisy.

A common approach to trunkmodeling is the decomposition of the point cloud into slices parallel
to the XY-plane, which are evaluated separately. Aschoff and Spiecker [Aschoff-2004a] applied the
CHT to detect trunk cross-sections in the point subsets. Detected trunk circles are sorted by height
and employed as the starting point of a more sophisticated reconstruction of the trunk surface as
a triangulated irregular network. In contrast, Maas et al. [Maas-2008] inspected the point subset
of a slice with a mask in order to detect arc-shaped clusters. A circle is fitted to a candidate cluster.
Apart from circles, cylinders are frequently fitted to point clusters to retrieve the tree structure
as a composite of geometrical primitives. Pfeifer and Winterhalder [Pfeifer-2004b] retrieved tree
trunks as a sequence of cylinders that closely approximate the actual trunk shape. Moreover, cross-
sections are modeled as B-Splines, which are eventually combined to a spline surface that covers
the entire trunk.
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Figure 2.8: Key idea of the Circle Hough Transform. (a) A circle around a point on the perimeter on the
sought circle of same radius intersects the sought circle’s center point. (b) Consequently, the circle center
can be recognized as the spot where all the circles around perimeter points intersect.

If the trunk shape is retrieved as a set of circles or cylinders, the trunk centerline can be represented
as the set of circle centers or cylinder axes. From this information, a 3D polygonal line (polyline
for short) that approximates the Medial Axis can be interpolated. In other words, if the trunk is
sufficiently covered with scan points, the obtained trunk centerline can be considered to be a part
of the skeleton of the tree. However, if the tree representation is not adequate, retrieval of the
trunk centerline may not be a trivial task.

Accurate reconstruction of the tree trunk is primarily interesting for the forest industry with the
objective to provide precise harvest forecasting, whereas obtaining insights about tree crowns and
their dynamics is a central research question in forest science. In comparison to the tree trunk, the
crown exhibits highly complex structure.

A first step to assess the crown is the determination of an outer hull from 3D points. Zhu et al.
[Zhu-2008] used alpha shapes, which are based on a 3D Delaunay triangulation of the points, in
order to carve out the outer hull as a triangle mesh. In contrast, Pfeifer et al. [Pfeifer-2004a] com-
puted a set of polygons that describe the convex hull of crown points in slice-wise partitions. Fleck
et al. [Fleck-2007] also determined the convex hull of the crown points after projecting them onto
the XY-plane. The proposed strategy is more closely related to established practices to determine
the crown spanning area. In general, the description of the crown shape with an outer hull may
be useful for biomass estimation in canopies, but does not provide information about the intricate
branching structure.

Volume estimates of trees are often performed on a voxel space representation of the data [Moskal-
2012; Lefsky-2008; Vonderach-2012; Hosoi-2013; Bienert-2014]. The 3D points are mapped to a
constant partition of continuous Euclidean space into cells – the voxel space. The number of voxels
that complies with the defined constraints is established and converted to a volume unit with a
predefined conversion factor. Clearly, the incomplete representation of the tree is a problematic
issue for those procedures.

A related task is the determination of voxel occupancy. For this analysis, laser rays, which are
spanned by a 3D point and the corresponding TLS viewpoint, are traced. Traversed voxels are
annotated whether they are passed by a beam, not traversed, or occupied, which means that they
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Figure 2.9: Characteristic arc-like point configurations formed by 3D points sampled on the trunk surface.

contain a 3D point. Bienert et al. [Bienert-2010] conducted an analysis to provide data for a wind
field analysis. Henning and Radtke [Henning-2006] estimated voxel occupancy parameters to as-
sess parameters pertaining to plant surface. Durrieu et al. [Durrieu-2008] proposed to utilize a
constant partition of the spherical coordinate system as voxel space, which is more suited for anal-
ysis with regard to the original scan situation.

Retrieval of the spatial tree structure

There are only few approaches in the literature, which determine the spatial tree shapewith higher
level of detail based on a voxel space representation. Bucksch [Bucksch-2011] mapped the point
cloud to an Octree. In this method, the cell-dual of the Octree is constructed: Occupied cells are
represented as vertices. If two cells share a common cell wall, the two corresponding vertices are
connected by an edge. The resulting graph is restructured based on predefined rules to eliminate
redundant edges. Initially, the centroid of the 3D points contained within the considered Octree
cell is attached to the corresponding vertex. In the course of processing, vertex coordinates are
updated accordingly whenever a substructure of the graph is collapsed. A predecessor of this
method was presented by Bucksch and Lindenbergh [Bucksch-2008].

Although, an Octree is chosen as data structure, the inherent hierarchical partitioning capabilities
were not exploited by Bucksch [Bucksch-2011]. Instead, the Octree depth is equal for all leaves,
which turns the Octree into a common voxel space representation. Bucksch et al. [Bucksch-2010]
reported that the procedure is specifically designed for botanical trees. But the test data consists
of only three trees of comparably small height; two of which were captured by a multiscan. Nev-
ertheless, the resulting skeleton graph of one of the test trees contains a cycle that is caused by
unresolvable noise problems [Bucksch-2010].

Gorte and Pfeifer [Gorte-2004a] proposed an approach to obtain the spatial structure as a graph
based on thinning. The point cloud is mapped to voxel space, where trunks appear as hollow
tubes if covered sufficiently with scan points on the entire surface. Holes are filled by morpholog-
ical closing with a predefined structuring element. Subsequently, the component in voxel space is
thinned, i.e. layer by layer is removed until no further voxels can be eliminated without changing
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the topology of the object. The voxel-dual of the remaining voxel cluster is then constructed as
graph, similar to [Bucksch-2010]. Due to ramifications of the scanned tree, ambiguities arise. That
means, the voxel cluster might not be exactly one voxel wide in all places. As a result, the cor-
responding graph contains cycles, which are eliminated by computing a Minimal Spanning Tree
(MST). The root voxel of the MST is selected as the lowest voxel of the considered connected com-
ponent. Prior to computation, edges are weighted differently depending on whether the voxels,
which correspond to the vertices adjacent to the edge, share a voxel wall, border or corner. Finally,
unique branch labels are established. Starting at the skeleton voxels, labels are propagated towards
the exterior in the original unthinned component either by a distance transform [Gorte-2004a] or
by a k nearest neighbor strategy [Gorte-2004b].

Commonly, when mapping a point cloud to a voxel space, several disjoint voxel clusters emerge.
Connected Component Labeling (CCL) is a handy tool to identify disjoint groups of connected
items. Within the scope of this thesis, we utilize a CCL procedure described by [Shapiro-2001]
that targets grid data, which is summarized in algorithm 2.1 for 2D pixel grids. In order to iden-
tify connected components of non-empty voxels in 3D voxel space, the function that evaluates
whether two adjacent items are connected needs to be suitably defined for the task. For instance,
the function isConnected can be defined for adjacent voxels vi, vj as

Function bool isConnected(vi, vj)
return !isEmpty(vi) ∧ !isEmpty(vj)

endFunc

In addition, the adjacency that is checked in line 8-19 of algorithm 2.1 has to be augmented to test
the 13 previously encountered voxels in the 26-adjacency ofD(x, y). Other definitions of adjacency
are possible as well.

The method presented by Gorte and Pfeifer [Gorte-2004a] was developed further. Gorte [Gorte-
2006] proposed to compute aMST directly from the unthinned connected component and to refine
the result afterwards. Each voxel is annotated by the length of the longest path of the MST that
passes through it. Subsequently, the neighborhood of each leaf voxel, i.e. voxels where no other
path passes through, is examined by amask of predefined size. If any of the considered neighbors
is annotated by a longer path length, the center voxel and its associated path are eliminated. A
similar strategy was applied by Gatziolis et al. [Gatziolis-2010].

Another modification by Gorte [Gorte-2006] was the integration of a hierarchical approach. Pro-
cessing is performed starting with a coarse voxel space. Iteratively, the voxel size is decreased and
consequently the resolution of the voxel space increases. The skeletonization procedure is con-
strained to prefer discovered paths of coarser levels of detail. Only in the case of apparent gaps,
results from a voxel space with finer resolution are incorporated.

Intuitively, a tree in the graph-theoretical sense is the expected result if the task is the retrieval of
a skeleton from a real-world tree. For this reason, the computation of a MST via the shortest path
algorithm byDijkstra [Dijkstra-1959] is a popular tool to select only a subset of all graph edges that
form a tree graph. If all edge weights are equal, then all spanning trees that can be identified are
equal in total weight. However, the result may not be intuitively the best solution or perceptually
pleasing. A MST was retrieved from the cell-dual of a connected component in voxel space in
[Gorte-2004a; Gorte-2006; Gatziolis-2010]. Similarly, a MST was computed from the adjacency
graph of point clusters in [Xu-2007; Yan-2009; Livny-2010; Delagrange-2011; Wang-2012].

Selecting the voxel size is a major issue for the voxel space approach because it has significant im-
pact on the overall outcome and quality of the processing results. Therefore, a number of methods
focus on the retrieval of spatial shape from the raw 3D point cloud.
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Algorithm 2.1 Connected Component Labeling with Union-Find Path Compression [Shapiro-
2001]
1 procedure CCL(D: matrix of N ×M range values)
2 L← 0N×M
3 i← 2 . Label indices start with 2
4 for x← 0 . . . N − 1 do
5 for y ← 0 . . .M − 1 do
6 if D(x, y) > 0 then
7 S ← ∅
8 if isConnected(D(x, y), D(x− 1, y)) then
9 S ← S ∪ L(x− 1, y)
10 end if
11 if isConnected(D(x, y), D(x− 1, y − 1)) then
12 S ← S ∪ L(x− 1, y − 1)
13 end if
14 if isConnected(D(x, y), D(x, y − 1)) then
15 S ← S ∪ L(x, y − 1)
16 end if
17 if isConnected(D(x, y), D(x+ 1, y − 1)) then
18 S ← S ∪ L(x+ 1, y − 1)
19 end if
20 Smin ← minS
21 if Smin 6= ∅ then
22 L(x, y)← Smin
23 for all s ∈ S/Smin do
24 union(Smin, s) . Join labels via union-find path compression
25 end for
26 else
27 L(x, y)← i
28 createLabel(L(x, y)) . Create new label in union-find data structure
29 i← i+ 1
30 end if
31 end if
32 end for
33 end for
34 for all i← 0 . . . (N − 1) · (M − 1) do
35 L(i)← find(L(i)) . Update labels from union-find data structure
36 end for
37 return L: matrix of labels
38 end procedure
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Côté et al. [Côté-2011] filtered the 3D point cloudmanually based on intensity values. Afterwards
skeletonization as proposed by Verroust and Lazarus [Verroust-2000] was performed. Experi-
ments were conducted on four selected coniferous trees that had been captured by multiscans.
The skeletonization by Verroust and Lazarus [Verroust-2000] is a level set method. Basically, clus-
ters of points per height slice are built. Then, cluster centroids are used as vertices to construct an
adjacency graph based on their mutual distance relations. Also, Dijkstra’s algorithm is utilized to
identify the shortest paths in the graph. A similar idea was proposed by Delagrange and Rochon
[Delagrange-2011].

The skeletal structures that are computed by Côté et al. [Côté-2011] provide an initial estimate,
but do not completely capture the significant spatial structure of the tree. For this reason, it is
utilized only as a starting point to populate it with synthetic branching structure and foliage. The
synthesizing of unobserved phyto-elements is achieved using a method described by Runions et
al. [Runions-2007] that is based on a space colonization algorithm (SCA).

Xu et al. [Xu-2007] constructs an adjacency graph from the 3D point cloud by connecting a point
to each of the neighboring points within a sphere of predefined radius. Again, Dijkstra’s algo-
rithm is applied to each vertex to determine the shortest path to a previously selected root vertex.
Subsequently, vertices are binned according to path length and adjacency relations. The actual
skeleton graph is then built with the centroids of the vertex bins. The basic approach of the pro-
cedure presented by Livny et al. [Livny-2010] is similar. However, Livny et al. [Livny-2010] refine
the obtained skeleton estimate in an additional optimization step, which minimizes weights that
are assigned to vertices. A weight of a vertex is calculated from the extent of the attached sub-tree
and the orientation of adjacent edges. After optimization, the skeleton is globally smoothed.

Similarly, Yan et al. [Yan-2009] built an adjacency graph by creating edges between a 3D point and
its k nearest neighbors. K-means clustering is used to partition the data set into point groups. For
each of the point groups a cylinder is fitted. If that operation does not yield appropriate results,
the cluster is subdivided further and cylinder fitting is repeated for each of the newly created
point groups. After this iterative subdivision and fitting scheme, the skeleton graph is obtained
from the cluster centroids. Furthermore, the skeleton is refined by fitting B-Splines to the retrieved
branches. Wang et al. [Wang-2012] also utilizes a combination of k-means clustering and a kD-tree
to partition the point cloud into small clusters. Then, normal directions of points are estimated
to find the average plane in which all points lie. Afterwards, skeleton vertices are determined by
circle fitting.

In contrast, a contraction strategy is applied on the 3D point cloud in [Su-2011] and [Preuksakarn-
2010]. Iteratively, 3D point coordinates are manipulated. Su et al. [Su-2011] proposed to move
points along their normal directions. Preuksakarn et al. [Preuksakarn-2010] utilized a contraction
scheme described in [Giannitrapani-1999] that is based on moving towards the centroid of the
points in the vicinity. As a result, spots of high point density are created and the processed point
cloud resembles the expected skeleton. Since the number of points remains unchanged, additional
processing is required to retrieve a compact, minimal skeleton graph from the condensed 3D point
cloud.

Pfeifer et al. [Pfeifer-2004a] approximated the spatial tree shape as a composite of cylinders. Nor-
mal directions of all points are computed based on the points in their vicinity. Normals are used to
filter stray 3D points and to generate estimates for cylinder axes. A point cluster of tubular shape is
reconstructed as a sequence of cylinders. An initial cylinder is fitted to candidate points. In order
to determine the next section, the cylinder is slightly shifted along its main axis. The points that
are new in its adjacency are used to recompute the cylinder. If the obtained parameters satisfy the
predefined quality constraints, the cylinder is accepted and the procedure repeated until a new
cylinder is rejected. However, cylinder following has to be initialized manually.
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Retrieval of a cylinder composite is also the objective of Raumonen et al. [Raumonen-2013]. They
propose to partition the 3D point cloud into small point groups, which are called cover sets. A
cover set consist of the points that are located within a sphere of predefined radius. First, the
space is randomly coveredwith sphere centers in order to obtain an initial segmentation. Second, a
refined cover set segmentation is generated since a pointmay be located closer to a different sphere
center than the initial one. Then, cover sets, which are oriented parallel to the trunk growing
direction that had been computed previously, are identified. From this component, spots where
branches are forking off are detected by the distance of associated cover sets to the trunk centerline.
An iterative procedure that fits cylinders to point subsets, which are generated by subdivision, is
performed in order to reconstruct the branching structure with cylinders. Finally, cylinders that
are apparentlymissing from the composite are added. In otherwords, gaps between two cylinders,
which fulfill certain continuity criteria, are bridged with an additional cylinder.

Recently, Bremer et al. [Bremer-2013] presented an approach for the retrieval of tree skeletons
based on region growing. So-called planar surface facets are detected by RANSAC [Fischler-1981]
with a model of a 3D plane. Then, found facets are augmented by points of similar normal di-
rection. The step takes the curvature at trunks into account. Subsequently, facet groups having a
similar principal direction are merged to segments that are later simplified to 3D polylines.

For the most part, the obtained skeletal structures represent only a fraction of the entire tree skele-
ton. Though the aspect of creating connections between disjoint skeletal parts is clearly relevant,
it is seldom investigated. Wang et al. [Wang-2012] simply searches for the nearest disconnected
vertex that complies with the predefined continuity criteria. A bit more intricate is the approach
by Xu et al. [Xu-2007], who limit the search to a cone of predefined field of view. Preuksakarn et
al. [Preuksakarn-2010] proposed to employ a SCA for this task. Bremer et al. [Bremer-2013] uti-
lizes an iterative strategy related to region growing in order to attach disjoint segments to base
segments if their locations and orientations comply with the given continuity criteria.

Beside the voxel space representation and the raw 3D point cloud, a third principal approach to
retrieve spatial structure is the range data of a single scan. Most often, the characteristics and
origin of the processed range image are not explained. Commonly, it is assumed that the range
data is mapped and interpolated to a regular image coordinate system as described by Vosselman
and Maas [Vosselman-2010].

Reulke and Haala [Reulke-2005] experimented with a segmentation of the range image based
on curvature properties, which are calculated from point groups, to assess forest inventory pa-
rameters. The spatial structure of a tree was reconstructed from a range image by Cheng et al.
[Cheng-2006]. Normals are estimated with a local shape element to obtain curvature information
for points. Then, the data is segmented by considering the similarity of principal directions and
range values of points in immediate vicinity. Finally, cylinders are fitted to the point groups and
cylinder centroids are connected to form a skeleton graph based on their adjacency relation. The
method presented by Dai et al. [Dai-2010] differs only insofar as a quadric surface is fitted to ob-
tain local curvature information and the segmentation is more closely related to a region growing
strategy.

An enhanced scheme was proposed by Cheng et al. [Cheng-2007]. First, so-called jump edges are
identified. A jump edge results if two neighboring raster elements exhibit a significant difference
in range values. Consequently, the corresponding scan points most likely are not located on the
same surface patch. The silhouette boundary of the tree object in the range image as well as depth
discontinuities between bordering phyto-elements are jump edges, which are used to generate a
coarse skeleton. The midpoint between a pair of raster elements, which are located on the same
scanline and which are both jump edge elements, is considered a skeleton vertex. The authors
report that it is a sufficient approximation of the targeted skeleton. In fact, the approach is obvi-
ously closely related to the notion of the Medial Axis as discussed in section 2.1. Second, the set
of skeleton vertices is utilized to segment the data into patches. A cylinder is fitted to each patch,
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which is used to refine the skeleton vertices. Finally, the skeleton vertices are connected based on
their adjacency relation in order to construct a cylinder composite.

Recently, Eysn et al. [Eysn-2013] followed the stick figure idea. Skeletons are manually sketched
onto pine trees of an intensity image from a single scan. Then, the associated 3D points in the
vicinity of the skeleton are used in a cylinder fitting procedure to generate a cylinder composite
of the tree. Clearly, this approach is a straight forward implementation of the skeleton notion,
though it is manual work. In this work, we pick up the basic idea of the presented method and
specifically address the problem of automatizing the task in chapter 7.

2.4 Issues of the Presented Methods

There are issues that frequently arise in the literature. Above all, the setup design is a crucial
factor, which has major impact on the processing strategy as well as the general feasibility of the
developed method in research and beyond.

If the focus is on the processing of range and intensity images, then a single scan suffices. However,
mostmethods require the input data as a 3Dpoint cloud. The tree is therefore scanned from several
viewpoints to capture it from all sides. The number of viewpoints that are included in a multiscan
of a single tree varies between studies. Furthermore, the majority of the conducted experiments
concentrate on separate, possibly free-standing trees. In other words, the tree is the sole object in
focus of the performed multiscan. Due to the different number of viewpoints, the coverage of the
tree can be assumed to vary strongly, as well. As a consequence, experiments that are discussed
in studies are not easily comparable or reproducible.

Even though the power of TLS instruments has increased, a scanning project inwooded area is still
a time- and labor-intensive endeavor. As a result, the number of data sets that are used to evaluate
algorithms is usually rather limited. It is not always stated whether the presented method aims
at processing deciduous trees in either leaf-on or leaf-less state or coniferous trees. The retrieval
of spatial structure from coniferous trees is evidently an even more challenging problem than the
retrieval from deciduous trees in leaf-less state. Similarly, it can be expected that results from
deciduous trees with leaves will be less complete than from their counterparts without foliage.

In the long term, taking multiscans of single trees from a representative sample in order to ob-
tain the relevant forest inventory parameters is extremely costly. Despite the development of TLS
instruments in the last years and the prospective gain in objectivity and accuracy, such a com-
prehensive on-site data collection is plainly too time-consuming to compete against conventional
methods. For this reason, we focus on processing data of forest scenes. Our data sets are multi-
scans that do not contain only a single tree, but an entire study area with comparably high stand
density. Clearly, a large number of trees are therefore not completely scanned because a high
amount of occlusions and self-occlusions occurred.

Naturally, the performance and the result of a particular method depend on the characteristics of
the input data set. Often, the input data is expected to represent a tree with a high degree of com-
pleteness. As just pointed out, this cannot be guaranteed in a forest scene setup. Consequently, it
is not clear how the reviewedmethods perform if the data set is a more fragmented representation
of a tree.

Within the scope of a research project, new scan data is acquired with the TLS instrument that is
at hand. Since there is no strict agreement on the protocol how a scan should be conducted, the
outcome of amultiscan is diverse. In addition, the type of the instrument influences the scan result
because phase-shift scanners exhibit a different noise characteristic than TOF scanners [Boehler-
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2003]. For this reason, it is possible that a particular method performs differently if the test data
was acquired with another TLS device. To our knowledge, there is no open, well-documented
repository of TLS data of single trees or forest scenes that could be considered for benchmarking
the proposed methods.

Moreover, detailed information about the TLS device or scan setup that was used in experiments
is not always given. Basically, the discussed methods can be distinguished by the research field
they come from: Studies rooted in the environmental sciences usually provide comprehensive in-
formation about the utilized instruments, study site, and experimental setup. In contrast, studies
originating in computer science commonly propose approaches that are likely to be more compu-
tationally complex, but often omit any kind of information about the origin and specifications of
the experiment data.

The objective of the presented methods is regularly summarized using the term skeleton by the
majority of the relevant publications. But as discussed in section 2.1, this term alone does not
sufficiently specify what the aim during development of the method actually was. We found that
only Bucksch [Bucksch-2011] and Raumonen et al. [Raumonen-2013] actually state requirements
for the sought skeleton. Similarly, the initial assumptions, on which the methods are built, are
only seldom discussed. As a result, a comparison of methods from the literature is rather difficult
due to the different starting points.

Above all, there is no ground truth available that could be compared against the obtained results.
Establishing the ground truth of a tree skeleton manually even for a single data set is also a very
expensive task. Moreover, ambiguities may arise because data regions might be uninterpretable
even for a human operator due to occlusions and noise. In brief, it is exceedingly difficult to ob-
jectively quantify the quality of an obtained skeleton. Therefore, the evaluation of the presented
method is mainly performed by visual examination of the results. This fact has several impli-
cations: The development of novel methods is unintentionally steered by the continuous visual
feedback of intermediate results. Consequently, the process is likely biased to produce perceptu-
ally pleasing results. Especially if the test data consist of very few trees, the developer runs the
risk of tuning the method too much towards the experiment data. However, a "nice" looking tree
skeleton is not necessarily the accurate reproduction of what is actually contained in the TLS data
set.

The questionWhat does the TLS data actually represent? is an extremely difficult one. It is important
to realize that the TLS data is a mapping of the real-world tree geometry to a low fidelity represen-
tation as a 3D point cloud. If we look at the 3D point cloud, we can usually recognize the object as a
tree in spite of data gaps or noise. In ourminds, we are able to compose a discrete set of points into
a solid object. This happens, because we know how trees ought to look and this meta knowledge
influences our perception. The study of perceptual organization began in the early 20th century
as Gestalt theory and is an active field of research today [Wagemans-2012]. Because we see the
real-world tree, we usually expect the result of the skeletonization operation from the TLS data to
concur with this mental image. Evidently, this influences how processing results are judged.

Translating this notion of a mental image into an algorithm is a problem in the field of artificial
intelligence and beyond the scope of this thesis. Here, an algorithm is ignorant to themental image
the human operator has of the data and will work through any input data given. Consequently, a
method can only be evaluated for the performance on the information that is actually contained in
the data set regardless of anymeta information a human personmight add in his mind. Therefore,
a result may not correspond to the human expectation of a perceptually pleasing skeleton, yet be
an adequate summary of the spatial structure of the input data.

Exactly because the retrieved tree skeleton might appear as inadequate, a fraction of the studies
synthesizes apparently missing phyto-elements in order to generate a plausible tree [Côté-2011;
Xu-2007; Livny-2010] w.r.t. visual inspection. For applications in the field of visualization and
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virtual reality, this is clearly a reasonable solution. However, we consider it inappropriate if the
objective of the research is the truthful assessment of the geometric features of the scanned tree.

2.5 Conclusion

As can be seen, the task of retrieving skeletal structures of trees from TLS data is in fact an ill-
defined problem. Given the lack of a clear definition of the expected problem solution, we tried
to establish a baseline for our research in form of properties that the prospective method and its
results should satisfy. We follow the example of Bucksch [Bucksch-2011] and Raumonen et al.
[Raumonen-2013] and give a summary of the determined properties:

Automatic processing Manual intervention during the processing must not be necessary. The
method should run fully automatic.

Runtime limits The method should produce results in short time. At best, only seconds are
needed to obtain the output. On average, a fewminutes to generate the skeleton of an entire
tree should be adequate. Yet, processing time should preferably be less than a quarter hour.

Computational efficiency Optimization of the method implementation is a problem pertaining
to software engineering and beyond the scope of this thesis. Even though the runtime limits
should be kept with a prototypical implementation of the proposed method. This implies
that an algorithmically elegant solution is favored.

Control parameters The set of necessary parameters to control the programflow should be as low
as possible. Parameters should preferably be easy to comprehend and intuitive to control.

Plausibility of results The method should not explicitly synthesize apparently missing features.
Similarly, data gaps should not be filled intentionally. Reconstruction of seemingly missing
structures is an issue that can be considered to be future work.

Compact representation Skeletal structures that are produced by the method should be repre-
sented in a compact form as a 3D line graph. A real-world tree can be represented by a tree
graph, which is the targeted kind of graph. But in the course of processing, ambiguities may
arise. Therefore, the constraint that the result has to be a tree graph should not be artifically
enforced.

Centering Vertices of a skeletal polyline that describes a branch should concur with the centroids
of associated point adjacencies. If the point adjacency has a circle-like cross-section, the
centroid of the points is truly on the centerline of the branch. If the branch is not completely
represented by points, the centroid of the point adjacency is shifted towards the scanner
viewpoint. As a result, the centering of the skeletal structure can only be controlled implicitly
by the generated segmentation of points and depends on the input data as well.

Evaluation Evaluation of skeletal structures is done based on visual inspection w.r.t. the input
data. In addition, the advantages and weaknesses of the method should be thoroughly an-
alyzed.
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The listed properties served as a guideline during the research work. Though, the aspect of find-
ing a working solution to the stated problem has been of paramount importance throughout the
research. As a consequence, pragmatic decisions were taken during the development, which was
clearly data-driven, to achieve this aim.

In this thesis, skeletal structures subsume the notion of a full tree skeleton, as well as a partial
skeleton. The meaning of the term skeleton is depending on the particular method and explained
in the particular chapter in correspondence with the described method.
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3 CONTRIBUTION OF THE THESIS

The contribution of the thesis is two methods to retrieve the skeletal structures of trees from TLS
data. The proposed methods are rather distinct in their respective approaches to the problem.
Therefore, the corresponding results also have rather complementary properties.

The first method that is described in chapter 5 targets the retrieval of a full skeleton from a scanned
tree. The input data set is a cutout of a larger multiscan and represents an entire tree. The method
consists of two main steps.

First, amodification of theCircleHoughTransform [Duda-1972] is proposed in section 5.2.1, which
we call Disc Hough Transform (DHT). The DHT is more suited to detect trunk cross-sections from
noisy TLS data, which are not of perfect circular shape. After application of the DHT to slices
of the TLS data, the trunk centerline can be retrieved as a sequence of center points forming an
almost straight line segment via RANSAC [Fischler-1981].

Second, we present an approach to retrieve the branching structure of the tree from a voxel space
representation. The trunk centerline is required to mark the corresponding voxels as trunk. A
greedy search algorithm is employed to find paths to the trunk from voxels that represent branch
tips. The approach is similar to [Gorte-2004a] and [Gorte-2006], but does not require the compu-
tation of a MST to eliminate cycles, since no cycles are introduced in the course of processing.

Due to the characteristics of the voxel space, the level of detail of the resulting skeleton is limited.
Furthermore, tree positions have to be known in advance. In other words, the input data set is
expected to contain a single tree approximately located in the center of the point set. A preceding
version of this method has been published in [Schilling-2012b] and [Schilling-2011b].

The second method has been designed with the objective to enhance the level of detail of the tree
skeleton in comparison to the results from the first method. For this reason, the method is more
complex. The retrieval task is subdivided in two main components:

• The retrieval of boundary information of a connected component in a single scan.

• The retrieval of skeletal structures on the basis of the obtained boundary information.

In chapter 6, Connected Component Labeling [Shapiro-2001] is applied to the range image to par-
tition it into connected components similar to [Bienert-2013]. Boundary tracing as explained by
Sonka et al. [Sonka-1998] is adapted to obtain the silhouette outline of the connected components.
Here, the key contribution is an extension to boundary tracing that allows the inclusion of depth
discontinuities, which is based on a graph-theoretic interpretation of the data that was inspired
by Klette and Rosenfeld [Klette-2004] and Gross and Tucker [Gross-1987].
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In chapter 7, a novel approach to the task of retrieving skeletal structures from TLS data is pre-
sented. The key idea is that a segmentation of the 3D point set can be achieved by analyzing and
segmenting the corresponding 2D representation of the data. For this analysis, boundary informa-
tion is fundamental. After segmentation of scan data in 2D, processing transitions to 3D space. The
Polygonal Line Algorithm by Kégl [Kégl-1999] is the essential tool to generate a Principal Curve as
a 3D polyline for each of the segmented subset of points, which represents an individual branch.
The applicability of the Polygonal Line Algorithm to TLS data has been shown by Schilling et al.
[Schilling-2012a].

The basic idea to evaluate the 2D representation of a scan in order to obtain information about the
generating 3D object shapes has been recently proposed by Eysn et al. [Eysn-2013]. However, no
automatization of the approach has been presented so far. To our best knowledge, the automatic
retrieval of skeletal structures as described in chapter 6 and 7 has not been done before in this way.

In summary, both methods run fully automatic. Processing is controlled by a few steering pa-
rameters that do not need adjustment between input data sets, which originate from the same
multiscan. In other words, the parameters of the procedure do not have to be changed for each
individual tree. Therefore, the methods are applicable and suited to process data in batch mode.

Furthermore, the methods are designed to work on data from larger forest scenes. The input data
sets are sections from a much larger multiscan, which is described in the next chapter. Therefore,
development of the methods has been particularly aimed at dealing with data that exhibits a high
amount of occlusions and possibly artifacts due to wind. To our knowledge, this has not been
addressed equally intensively yet.

Last, we present a novel approach to the efficient handling and processing of TLS data, which has
essential influence on the overall processing scheme that can be applied to scan data in general.
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4 DATA SETS, INSTRUMENTS,
AND STUDY SITES

In this chapter, we introduce the data sets that are used in the experiments. The TLS data of
the study site with birch trees had been acquired prior to the beginning of the actual research
work. Consequently, it constitutes the baseline that chiefly steered the development process. Later,
another study site with pine trees was scanned with the same TLS device. In addition, a data set
representing eucalyptus trees that was scanned with a different TLS instrument is presented. The
pine and the eucalyptus data sets are used for testing the approaches presented in chapters 6 and
7. The birch data set is the base data and is used for all the experiments in chapters 5, 6, and 7.

Figure 4.1: An intensity image from data set B. White corresponds to zero intensity.
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Figure 4.2: Overview of the tree positions and scan setup on the study site where data set B was taken.

4.1 Data Set B - Birch trees

The study site (50◦ 58’ 37.8”N, 13◦ 41’ 53.0” E) is located inWilmsdorf nearDresden, Germany, and
comprises a plain stock of Silver Birch (Betula Pendula). The area is about 1.3 ha (160 m × 80 m) in
size. A total of 422 trees including a few conifers were counted within the established rectangular
region of interest. The birch trees, which are more than 55 years old, have been under observation
by the chair of Silviculture of TU Dresden for more than 40 years. The Silver Birches exhibit a
rather straight growth and reach up to about 28.3 m in height. DBH varies between 16.6 cm to
34.4 cm according to manual measurements that were conducted on selected trees on-site with a
measuring tape. Mostly, the crown begins well above 10 m from the ground and commonly no
branches are forking off in between. Figure 4.1 shows an intensity image of a scan on the study
site, which was scanned in the scope of the DFG project PAK 311 "Reconstruction of the 3D forest
structure with multisensory methods".

The Z+F Imager 5006i [ZF-2005] was used to scan the study site. 12 fixed viewpoints were marked
on the site in order to achieve a sufficient overlapping between the scan regions as depicted in
figure 4.2. Each scan was restricted to the measurements that are sampled within a radius of
r = 37 m around the scanner position. 38 spherical targets were permanently mounted to selected
trees for co-registration, which was done semi-manually with the Z+F LaserControl software after
scanning. Co-registration accuracy is given in table 4.1. The scans were then transformed to the
SOCS of the first scan.
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Scanning was accomplished in March 2010, when the birch trees were still in leaf-less state. The
TLS instrument was set up on a tripod in about 1.6 m height. For all 12 scans, angular resolution
was set to ∆φ = ∆θ = 0.018◦. In order to achieve a full-spherical scan, the field of view in the
vertical plane was set to θ ∈ [0 . . . 360◦]. Accordingly, the field of view in the horizontal plane was
set to φ ∈ [0 . . . 182◦] to achieve about 2◦ overlapping with the objective to ensure a gap-less scan.
On average, each of the 12 scans has about 36.4 Mio. scan points that are valid measurements
under the given range constraint.

For the experiments, a set of 42 trees from the study site was selected. Figure 4.2 gives an overview
about their positions and resulting scan coverage. The trees were separated automatically such
that each one formed an individual data set. A cylinder with radius r = 6 m was cut out around
the known tree position. The smallest tree data set contains 801,787 points; the largest tree data
set has 14,231,724 points. Tree data sets comprise about 4,162,461 points on average. Clearly, the
closer a tree is located to a scan viewpoint, the higher the number of points at the tree will be.

Average deviation Standard deviation Maximal deviation

12.3 mm 7.8 mm 45.5 mm

Table 4.1: Results of the co-registration of the 12 scans from data set B.

4.2 Data Set P - Pine trees

The study site (50◦ 58’ 6.1” N, 13◦ 33’ 12.7” E) is located close to Tharandt near Dresden, Germany,
and comprises a plain stock of Scots Pine trees (Pinus sylvestris L.). Within the area that is about
1.2 ha in size, a total of 552 pine trees were identified. In contrast to leafless birch trees, pine trees
have a dense crown with needles that are grouped into small clusters. The crown starts relatively
high at the trunk. Before the crown starts, smaller branches may fork off. An overview of a scan is
given in figure 4.3. Like the birch study site, the pine trees were scanned in the scope of the DFG
project PAK 311.

Figure 4.3: An intensity image from data set P. White corresponds to zero intensity.
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Figure 4.4: Overview of the tree positions and scan setup on the study site where data set P was taken.

The setup and scanning did not differ from the descriptions for data set B: The Z+F Imager 5006i
with the same settings for angular resolution was employed. 12 fixed viewpoints were marked
permanently and co-registered manually subsequent to the scanning on the basis of 38 spherical
targets that had been mounted to selected trees. Co-registration accuracy is given in table 4.2.

For the experiments, we have chosen three pine trees, which are marked in figure 4.4. The pine
trees serve as a test to assess whether the approaches in chapter 6 and 7 can be applied to TLS data
of other species. In general, the approach aims at processing data of deciduous trees.

Average deviation Standard deviation Maximal deviation

8.0 mm 3.8 mm 18.8 mm

Table 4.2: Results of the co-registration of the 12 scans from data set P.

4.3 Data Set E - Eucalyptus trees

The study site is located on the eucalyptus plantation Fazenda Campo Limpo 1 (20◦ 29’ 4.30” S, 51◦
44’ 42.94” W) of Eldorado Brasil1 near Três Lagoas in Mato Grosso do Sul, Brazil. The eucalyptus

1www.eldoradobrasil.com.br
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trees (Eucalyptus urograndis) are approximately fully grown and about 26.5 m tall. The bark of the
trees is mostly rather smooth. However, patches of bark can peel off and hang down in shreds that
obstruct the actual trunk surface of the tree. The eucalyptus trees have a comparably small crown
and little branching structure. Along the entire trunk length, very thin but long branches can fork
off. Figure 4.5 shows the intensity image of the scan. The data was captured in the scope of the
DAAD project PROBAL in cooperation with the Universidade Federal do Paraná in Brazil.

In the experiments, we include one recording of a eucalyptus plantation that was scanned with
the Faro Focus 3D 120 [Faro-2013]. The angular resolution was set to ∆φ = ∆θ = 0.035◦. The scan
covers a field of view of θ ∈ [0 . . . 152.5◦] in the vertical plane and φ ∈ [0 . . . 110◦] in the horizontal
plane. In sum, 6,347,505 valid scan points were sampled. The number or position of the individual
trees that are located on the study site was not assessed.

The data set of eucalyptus trees is used in the experiments in chapter 6 and 7 with the objective to
apply the presented approach to data sets that were acquired with different settings and another
TLS instrument. As pointed out before, the scanned data may exhibit differing characteristics
depending on the employed TLS device. Clearly, testing with data sets of various TLS instruments
and settings is vital in order to ensure that the approach is not tuned too much toward a specific
appliance or scan setup, which may severely limit its general applicability.

Eucalyptus trees are not of particular importance to forest research. The plantations are operated
with the aim to produce pulp for the paper industry. Therefore, the trunk that provides the largest
biomass of the plant is exclusively of interest. In the context of commercial forest management,
rapid and accurate assessment of the tree population is of utmost importance in order to assess
and confidently predict prospective yield rates and resulting profits.

Figure 4.5: An intensity image from data set E. White corresponds to zero intensity.
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5 SKELETON RETRIEVAL FROM 3D
POINT CLOUDS

In this chapter we introduce a method to retrieve the spatial structure of a tree from its voxel
space representation. First, the trunk centerline is determined via a modified Circular Hough
Transform [Duda-1972]. Subsequently, the tree graph is obtained by an iterative application of a
search algorithm. Finally, we present experiment results and discuss the proposed approach in
detail.

5.1 Motivation

Data set B is a co-registered multiscan containing numerous trees. Therefore, we decided to break
the larger data set down and focus on cutouts. We consider only a bounding volume of interest
with the tree approximately located in the middle. Tree detection can be performed in advance as
discussed in section 2.3.

Restricting the analysis to a bounding volume, which contains only a single tree, allows the cre-
ation of a voxel space with comparably small voxel size of 10 cm or less. Voxel space analysis is
an established tool to process 3D point clouds because it provides a discrete partition of continu-
ous space and thus creates neighborhood relations, which the point cloud usually lacks. For this
reason, we have opted for using a voxel space representation in order to facilitate processing.

In data set B as primary example of a larger forest scene, the stand density is comparably high. A
tree is usually not scanned from all sides. As a result, the trunk is not represented as a complete,
hollow tube of voxels. Yet, trunks are in general well-represented in scans in comparison to the
branching structure. The lower parts of trunks are located closer to the scanner than crowns and
therefore tree trunks aremore densely covered by sample points. As a consequence, they are easier
to recognize in 3D point clouds than other phyto-elements. In addition, a number of reasonable
assumptions can be made like the average direction of growth, expected diameter, and minimal
length that help to recognize tree trunks in the data set.

Hence, we propose to retrieve the trunk centerline from the 3D point cloud by utilizing a variant of
the Circle Hough Transform. Afterwards, we begin processing in voxel space in order to retrieve
the branching structure of the crown. Naturally, we can expect the crown to be positioned above
the retrieved trunk structure, but connected to it. In fact, if a branch of a real-world tree is followed
starting from its tip, it is eventually connected to the tree trunk. Similarly, if a data set of a single
tree is transformed to voxel space, a single branch will most likely be represented by a chain of
adjacent occupied voxels.
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Figure 5.1: Key idea of the Circle Hough Transform. (a) A circle around a point on the perimeter on the
sought circle of same radius intersects the sought circle’s center point. (b) Consequently, the circle center
can be recognized as the spot where all the circles around perimeter points intersect.

Basically, we propose to retrieve the branching structure in voxel space by searching paths to trunk
voxels from voxels that are supposedly representing branch tips. For prior identification of branch
tips, weweight each voxel with its distance to the closest trunk voxel. On the basis of these weights
present in a voxel’s 26-adjacency, a suitable set of candidate voxels can be found.

5.2 Method

For the retrieval of tree trunks, we propose a variation of the CircleHough Transform. Afterwards,
the branching structure is obtained from a voxel space representation. The result of the proposed
method is an approximation of the spatial tree structure as a graph. Clearly, the skeleton only
resembles the actual tree geometry to a certain degree because the level of detail of the provided
voxel space is limited.

5.2.1 Disc Hough Transform

The original Hough Transform was developed by Hough [Hough-1962]. Duda and Hart [Duda-
1972] revised the original formulation and turned it into a tool to recognize parametric curves in
images. The Circle Hough Transform (CHT) denotes the restriction to a circle as a special case of
a parametric curve. Figure 5.1 depicts the key concept of the CHT. All circles ci ∈ C with radius r
intersect in one point pm if the center points of the set C are located on the perimeter of the same
circlem, which has radius r as well. Consequently, the point pm is the center point of circlem. If
the radius r is not known in advance, it can be obtained by repeated application of the procedure
with different radii until intersection of all circles occurs.

Although the intersection point of all circles can be determined analytically, it is exceedingly dif-
ficult to achieve in practice. In fact, the strength of this tool lies in its efficiency when applied to
discrete raster images. Instead of the continuous parameter plane in figure 5.1, a 2D grid A is uti-
lized as the parameter space. Each grid cell functions as accumulator that is initialized as empty.
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LetQdenote the set of selected pixels that are not background. Then, a query pixel q = (qx, qy) ∈ Q
is transformed to its parametric representation with

(qx − a)2 + (qy − b)2 = r (5.1)

The equation holds for a set H of parameter tuples (a, b) ∈ Z2+. Each parameter tuple (a, b) is a
2D index to an accumulator unit A(a, b) in the parameter space grid. On access, the accumulator
value is increased by one. Obviously, if the radius is not known in advance, a 3D accumulator grid
can be used. The additional dimension represents increasing radius values. As a consequence,
the accumulator with the maximum value is the grid cell, where the maximum amount of circles
intersects. The obtained index (a, b) of the accumulator grid concurs with the 2D coordinates of
the sought-after circle center in the raster image. Similarly, the radius r may be obtained as third
index from the 3D parameter space grid.

Application of the 2D CHT to 3D TLS data requires a pre-processing step to transform 3D points
into an appropriate 2D representation. Considering that the growth direction of tree trunks in the
data sets is approximately parallel to the Z axis, we partition the bounding volume of the data set
along the Z axis into bins of size tZ . Each bin represents a slice through the point cloud parallel to
the XY-plane in SOCS. For each slice, a 2D histogram of point numbers is created. We initialize a
2D gridB, which partitions the XY-plane into cells of side length tc. The set of 3D points, which are
associatedwith a particular slice, is projected onto the XY-plane andmapped to the corresponding
2D grid. Consequently, each grid cell holds the number of points that project onto it as shown in
figure 5.2.

After preprocessing the TLS data, the CHT can be applied. However, results of the CHT are subop-
timal on this kind of input data because scan data is rather noisy. The bark surface texture causes
additional point displacement from a perfect circle. Moreover, Chmielewski et al. [Chmielewski-
2010] pointed out that a trunk cross-section seldom resembles a perfect circle. For this reason, the
authors proposed a fuzzy CHT variant.

In order to relax the constraint that the model has to be a perfect circle, we propose to use a disc
instead of a circle in the accumulation routine. In this way, the disc radius functions as an upper
limit on the unknown radius r and a 3D parameter space grid is not required. In contrast to
standard CHT that considers only each filled pixel of the 2D grid B, we consider each 3D point
separately in the accumulation process. In other words, we do not summarize points that project

Z

Figure 5.2: 3D points are projected onto a 2D grid. For points on trunks, a characteristic arc shape forms
in the grid.
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onto the same 2D grid cell, but incorporate the values of the 2D histogram of a slice directly. Thus,
an accumulator unit is increased by the value of a source cell in the 2D histogram. As a result,
peaks in the accumulator grid appear much more distinct, as indicated in figure 5.3. However,
noise and other objects that have circular shaped cross-sections are amplified to some degree as
well.

Center points of estimated circle- and arc-shaped point clusters emerge as peaks of high values in
the accumulator grid. Though, the highest peak is not necessarily the center point of the trunk,
which is sought. Often enough, trunks are occluded by other vegetation. As a result, a bin may
contain only a fraction of the trunk surface that exhibits the characteristic arc-shape in cross-
section. Due to other vegetation present in the same data set, it does not always cause the highest
peak in the accumulator grid. Therefore, it is adequate to consider a number of local peaks in the
accumulator grid.

(a) 3D points from a horizontal slice through data set E projected onto the XY plane.

(b) Resulting accumulation grid if CHT is applied to (a).

(c) Resulting accumulation grid if DHT is applied to (a).

Figure 5.3: Comparison of CHT and DHT. The grayscale colormap is the same for (b) and (c).
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Hence, the accumulator grid is thresholded with parameter tG. The resulting "islands" of local
peaks are determined with CCL as explained in section 2.3. For each obtained connected com-
ponent, the component cell with the highest value is identified as the targeted circle center point.
Finally, the 3D coordinates of the considered grid cell are calculated. A circle is fitted to a set of
points that are locatedwithin radius r around the obtained center point. If the fitted circle satisfies
the requirements, i.e. if the circle radius is within a valid interval, the calculated center point is
added to the set of candidate points for retrieval of the actual trunk centerline.

5.2.2 Recovery of the Trunk Centerline

The set of retrieved candidate pointsmost likely contains a subset that can be interpreted as a point
sequence of a polyline tracing the trunk centerline, as depicted in figure 5.4. Trees in data set B are
growing rather straight. For this reason, the trunk centerline can be modeled by a straight 3D line
segment. With the objective to find a subset of candidate points that are located along an unknown
but discernible straight line, we employ RANSAC [Fischler-1981] with a 3D line segment as model
template.

Z

Figure 5.4: The set of inliers and the line segment that had been determined by RANSAC from the set of
circle center points that were computed by applying the DHT to horizontal slices of the input data.
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Since the number of candidate points is usually rather small, RANSAC quickly retrieves a suit-
able subset of inliers. Furthermore, the trunk centerline is often the only discernible line in the
candidate point set. The set of inlier points is sorted along the Z axis. Naturally, each bin can
only contain a single estimate point, which contributes to the trunk centerline. Subsequently, the
retrieved inliers are successively connected to a polyline.

5.2.3 TLS Data Preprocessing in Voxel Space

We utilize a voxel space to retrieve the branching structure that is connected to the obtained trunk
structure. A voxel space is a constant, rectilinear grid that partitions a region of continuous 3D
space into cells. Usually, each cell is of cubic shape and called a voxel in analogy to a pixel. The
extent E = (Ex, Ey, Ez) of a voxel space V ∈ [0 . . . Ex) × [0 . . . Ey) × [0 . . . Ez) that envelops the
entire point cloud P =

{
pi = (xi, yi, zi) ∈ R3|i = 1..K

}
can be determined as

E = [Ex Ey Ez]
T

=

⌈
(maxP −minP ) · 1

sv

⌉
(5.2)

where sv is the voxel size, i.e. the length of a cell wall.

A point pi ∈ P is mapped to voxel space V with

p′i =

⌊
(pi −minP ) · 1

sv

⌋
(5.3)

As a result, a number of points inR3 may be mapped to the same voxel, which is governed by the
voxel size. The voxel size is a crucial parameter, which controls the total extent of the voxel space.
With decreasing voxel size, the voxel space exhibits an exponential growth behavior. Therefore,
the employed hardware is usually the limiting factor for actual feasible processing unless this effect
is specifically treated in implementation.

In addition to the number of points that map to a voxel, the centroid of this point group is asso-
ciated with the voxel. Figure 5.5 shows a voxel space of a tree from data set B. In the following,
we consider voxels to be occupied voxel cells. Voxels without any 3D points mapping to it or any
other special property such as trunk are considered to be empty space.

The polyline that approximates the trunk centerline is mapped to voxel space, as well. Voxels,
which are intersected by the trunk polyline, are tagged as trunk. Clearly, a significant number of
trunk voxels are actually empty voxels because those particular voxels are located in the trunk
interior, i.e. beneath the trunk surface, which was captured by TLS.

Furthermore, a high number of voxels that represent ground surface is present. Since no branching
structure is expected at the tree foot, the voxel space is processed layer-wise and such voxels are
cleared. Each voxel layer parallel to the XY-plane is tested separately until a predefined height is
reached. In a layer, we locate the trunk voxel. Voxels that are outside an axis-aligned box, which
is centered at the trunk voxel, are set to empty. The side-length of the box is determined manually
in advance.

As a next step, we filter voxels by their number of points in order to carve out the tree surface
that has been sampled densely. If the number of points of a voxel is below a predefined threshold
Np, the voxel is cleared. However, trunk voxels are a special case and remain unchanged. Subse-
quently, CCL as explained by Shapiro and Stockmann [Shapiro-2001] (see section 2.3) is applied to
the voxel space. In this case, we consider adjacent voxels to be connected, if neither of the voxels
is empty. Again, trunk voxels are handled as a special case and considered to be non-empty. As a
result, each voxel is associated with a component label indicating to which connected component
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Figure 5.5: A tree from data set B as (a) 3D point set and (b) corresponding voxel representation.

it contributes as illustrated in figure 5.6a. Subsequently, we assume that the main tree shape is
represented by a comparably large connected component.

But before the considered connected component is isolated, two additional preprocessing steps
are performed in order to preserve more details of the actual tree shape. First, we filter the voxel
space for stray voxels. After CCL, a number of connected components that consist of single voxels
can be identified. Such voxels are considered to be noise and eliminated.

Second, we join connected components that are in close proximity. If the voxel space is inspected,
a number of connected components that apparently represent branch fragments are disconnected
from the considered tree component as demonstrated in figure 5.6b. Therefore, we create artificial
links to join connected components if the two disconnected components are only one empty voxel
apart. We test every unoccupied voxel if its 26-adjacency contains voxels of different labels. In this
case, we consider the unoccupied voxel as a linking voxel and treat it as a special case. All voxels of
the connected components that are joined by the created link voxel obtain a new label indicating
their unity.

Afterwards, all connected components but the considered tree component are eliminated from
voxel space. Since trunk voxels are already tagged, we can identify this particular connected com-
ponent as the largest one that has trunk voxels. Figure 5.7a shows the isolated tree component.
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Figure 5.6: Voxel space representation after labeling by CCL. Labels are indicated by colors. (a) The gray
component is the largest component and considered to be the sought tree. (b) Creation of a link voxel,
indicated in red, between the tree component and an apparently disconnected branch.

All remaining voxels are part of the same connected component. If the voxel space is interpreted
as a graph with voxels as vertices and adjacency relations as edges, a path that connects each pair
of vertices can be found. Since our objective is to find paths from branch tips to the trunk, which
is already known, a set of branch tips has to be established.

In the following, apex voxels denote voxels that supposedly represent branch tips. In order to se-
lect a set of apex voxels, each voxel is weighted by the minimal number of voxels that have to be
traversed until the lowest trunk voxel is reached, which is summarized in algorithm 5.1. As illus-
trated in figure 5.7a, weights are monotonously increasing and reach local maxima at extremities.
Subsequently, an apex voxel is identified as a voxel that has only equal or lower weights in its
26-adjacency. Clearly, only voxels that have an adjacency, which is not fully occupied, conform
with this constraint. The resulting set of apex voxels is small in comparison to the total number of
component voxels as depicted in figure 5.7a.

5.2.4 Retrieval of the Branching Structure by Searching

A set of trunk voxels and a set of apex voxels in voxel space were obtained. Hence, we propose to
apply a search algorithm to find a path through the voxel component from an apex voxel to the
trunk. As mentioned previously, each branch is eventually connected to the trunk. Therefore, we
employ trunk voxels as goal states. A search is performed for each apex voxel to find a sequence
of voxels that leads to a goal state.

The search starts at a voxel that is considered to be an initial state. At each state, possible next states
are evaluated. In other words, the neighborhood of the current voxel is examined for a suitable
candidate tomove to. The search advances to the next state, i.e. the yet unvisited neighborn, which
minimizes the path cost function g. The path cost function must not overestimate the actual path
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Figure 5.7: (a) Isolated tree component with a colormap indicating the smooth increase in weights starting
at the bottom. Apex voxels are indicated in gray. (b) Resulting tree graph after searching a path from each
apex voxel through the component to the trunk.

cost [Russell-2010]. Therefore, the previously assigned weights are utilized as g. In cases, where
adjacent voxels have the same voxel weight, the Euclidean distance from the voxel to the closest
trunk voxel is used for decision-making. In this way, the question which neighboring voxel should
be visited next is solved by making the locally optimal choice. As a consequence, the performed
search is an informed, greedy search.

In addition, testing for goal states or already traversed paths in the adjacency of a state gets priority
over minimization of the path cost function. First, if a neighbor represents a goal state, it is im-
mediately selected to move to. Second, if a voxel is discovered that has already been traversed by
another path, the current traversal is terminated and both paths are linked. Again, the Euclidean
distance to the closest goal state is employed to decide if there are more than one candidate voxels
in the adjacency. As a result, searches are terminating faster the more paths have already been
retrieved. If the current voxel has no goal states, no voxels with path indices nor unvisited vox-
els in its neighborhood, then the path is backtracked until unexplored voxels are encountered. In
the worst case, the traversed path is traced back to the initial state. If a voxel is backtracked, the
assigned path index of the current search is removed.
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Each apex voxel is considered as an initial state and a search is started. The visited property of
voxels is reset before the next search is performed, otherwise it may block subsequent searches.
Since the path cost per voxel does not change between searches, the Euclidean distance of a voxel
to the closest trunk voxel is computed in advance.

The result of a search is a sequence of voxels, which is added to a graph T that represents the
spatial tree structure. For each voxel that is not yet included in T , a vertex is added to the graph.
The centroid of 3Dpoints thatmap to the particular voxel, whichwas determined earlier, is utilized
as 3D coordinates of the new vertex. If the voxel is a special case such as a link or trunk, the voxel
center point is employed as vertex coordinates and transformed to the coordinate system of the
3D source data accordingly. Between each pair of subsequent voxels in the sequence, an edge
connecting the corresponding vertices is added to graph T . Figure 5.7b shows the resulting tree
graph T that was obtained from the voxel space in figure 5.5.

After assembly of the tree graph, we perform a relabeling of vertices summarized in algorithm
5.2, which allows sorting all paths by size afterwards. As a result, information about the branch a
vertex belongs to and the branch length can be easily retrieved from the tree graph. Furthermore,
the longest path then contains all trunk vertices.

5.3 Experiment Setup and Results

We have conducted experiments with the 42 selected Silver Birch trees from data set B (see section
4.1). In figure 5.8 and 5.9, selected experiments results are shown. For each tree, a bounding
box of cylindrical shape was cut out from the multiscan. The Z axis at the given tree position is
considered to be themain axis of the bounding cylinder. The radius of the cylinderwas set to 4.3m
. The average number of 3D points within the chosen bounding cylinders is between 388,198 to
7,073,548 points.

The DHT was implemented in Mathworks MATLAB R2009a (32 bit). Only 3D points below a
height of Z = 13.0 mwere considered for the procedure in order to skip processing of points that
most likely belong to the crown. Slice thickness was set to tZ = 0.15 m. A cell size of tc = 0.01 m
wasused to discretize the 3Dpoints to the 2D raster. Similarly, the disc radiuswas set to r = 0.15m.
After preliminary testing, the thresholding parameter was defined as tG = maxA · 1

14 points in a
raster element. Circle fitting is performed using aMATLAB script [Chernov-09b] that implements
the circle fit method of Pratt [Pratt-1987]. Circles need to have a radius larger than 0.07 m to be
considered further; otherwise the circle is discarded. The threshold was included on the basis that
trees in data set B are unlikely to be thinner than 0.14 m in diameter.

The set of points located within a cylinder of radius rc = 1.0 m at the given tree position is consid-
ered further. A straight line segment is retrieved from this point set with RANSAC with a 3D line
model using a MATLAB script by Kovesi [Kovesi-00]. Overall processing in MATLAB takes about
15.9 to 90 seconds for each of the 42 tree data sets. Clearly, processing time is chiefly depending
on the number of points, i.e. the bounding volume that is considered.

The intermediate resultwas further processed by aC++ implementation utilizing the Eigen [Eigen]
and Boost [Boost] libraries on a dual-core machine (4 GB RAM, Linux, 64 bit). The voxel size was
set to vs = 0.1 m for the voxel space analysis. A ray tracing algorithm [Williams-2005] was used in
order to trace the obtained trunk polyline through the voxel space and tag voxels accordingly. The
minimum number of projected points per voxel was set to K = 10. Iterative searching is rather
fast with 1.5 s to 54.3 s for 161 to 5001 paths, respectively. Obviously, memory consumption is
governed by the voxel size setting. In general, the implementation is not particularly optimized.
On average, generation of a tree graph takes about 37.85 s time (min. 12.7 s and max. 105.24 s).
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Algorithm 5.1Weighting scheme
1 initizalize stack Q← ∅
2 for all voxels v in component C do
3 weight(v)←∞ . A weight of∞ signifies an unweighted voxel
4 end for
5 weight(vroot)← 0 . Assign zero to lowest trunk voxel vroot of component C
6 Q.push(vroot)
7 while Q 6= ∅ do
8 vcur ← Q.pop()
9 N ←neighbors(vcur) . Retrieve set of neighboring voxels.
10 if weight(vcur) =∞ then
11 wmin ← minimum weight of all n ∈ N
12 weight(vcur)← wmin + 1
13 end if
14 for all n ∈ N do
15 if n /∈ Q then
16 Q← Q ∪ n
17 end if
18 end for
19 end while

Algorithm 5.2 Relabeling
1 procedure RELABELVERTICES(G: tree graph )
2 set S ← ∅
3 for all vertices v ∈ G do
4 weight(v)← −1 . Initizalize weights of all vertices
5 if degree(v) = 1 then
6 S ← S ∪ v . Select all graph vertices of degree one
7 end if
8 end for
9 i← 0
10 for all vertices v in S do
11 i← i+ 1
12 vcur ← v
13 vparent ← getParent(vcur) . Except the root, every vertex has a parent
14 id(vcur)← i . Each path obtains an index
15 weight(vcur)← 0
16 while vparent 6= ∅ and weight(vparent) ≤weight(vcur) do
17 weight(vparent)← weight(vcur) + 1
18 id(vparent)← id(vcur)
19 vcur ← vparent
20 vparent ← getParent(vcur)
21 end while
22 end for
23 end procedure
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Figure 5.8: Results of the experiments. The retrieved skeleton graph is drawn in red as overlay onto the
3D point set in gray. Subfigure (c) shows a case where the neighboring tree trunk is included in the skeleton
due to intertwined crowns.
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Figure 5.9: Results of the experiments. The retrieved skeleton graph is drawn in red as overlay onto the
3D point set in gray. In subfigure (c), apparently strange artifacts are visible at the beginning of the crown
that were caused by wind during a scan.
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5.4 Discussion

The experiments have shown that the presented method provides an adequate solution to rapidly
generate a tree graph representing the spatial structure of the scanned tree. Processing times
of the experiments can be considered to be an indicator that a non-optimized implementation
completes the task in a satisfying amount of time. Consequently, there are possibilities to enhance
the performance of the procedure. In addition, the overall memory requirements are low. They
depend mainly on the chosen voxel size, which controls the extent of the voxel space. In this way,
efficient processing is achieved. At the same time, the level of detail of the tree graph and the
degree to which it represents the perceptible tree in the TLS data set is limited.

In the following, the subprocedures are assessed separately: First, the DHT seems to be an ad-
equate modification for TLS data. In contrast to CHT, the point density of the 3D point cloud is
directly exploited, whichwas pointed out by Schilling et al. [Schilling-2011a]. Structures with near
perfect circular cross-sections that are sampled by a high number of points result in distinct peaks
in the accumulator grid. Tree trunks face the scanner with the largest patch of continuous surface
in comparison to branches or understory vegetation. Consequently, trunks are densely covered
with points, which cause the highest peaks in the accumulator grid. Of course, the actual scan
coverage and representation quality depends on the distance of the object to the scanner, as well
as occlusions. But as the experiments show, the procedure is well suited to detect cross-sections
of tree trunks in practice.

The parameter tG that is used to threshold the accumulator grid chiefly controls the result of
the procedure. A low threshold results in more peaks that are evaluated. If the threshold is too
high, trunks that are not as densely sampled in contrast to nearby understory vegetation may be
removed. The threshold parameter was defined in dependence of the accumulator element of
maximal value after empirical testing. Clearly, the current strategy to filter the accumulator by a
global threshold is a working, but suboptimal solution. It would be beneficial to test alternative
strategies to improve results.

The precision that is lost due to the disc template is recovered by circle fitting. Schilling et al.
[Schilling-2012b] employed a circle fit by Kasa [Kasa-1976; Chernov-09a]. However, this algebraic
fit is biasedwhen the points cover only a small arc. For this reason, we use the circle fittingmethod
that was proposed by Pratt [Pratt-1987].

Furthermore, we have conducted preliminary tests with a ring template instead of a disc in the
accumulation process. The objective was to test whether a ring is a suitable template to compen-
sate slight point displacement and enforce a minimal radius of the circular structure at the same
time. However, the results have shown that a ring has no clear advantage over the original CHT
formulation. The peaks in the accumulator grid are not as distinct as with the disc.

The retrieval of a set of circle centers by DHT is controlled by few parameters. The parameter
values that were used in the experiments were set after empirical testing with data set B. Similar to
the voxel size, the slice thickness and the cell size have great impact on the processing results. Slice-
wise processing was limited to a certain height in order to omit crown points, since the branching
structure is targeted in the next computation step. The objective of the slice-wise application of
the DHT is to obtain a sufficiently large set of candidate points to determine a line segment with
RANSAC. We do not aim to model the entire trunk length in this subprocedure.

Moreover, we only consider center points of circles that have a radius larger than a minimum
value. Valid trunk centers that are located at higher heights may be lost with this radius-based
filter due to the taper of the trunk, i.e. decreasing diameter of trunk with height. This can be
neglected because the objective is to retrieve a sufficiently large part of the trunk centerline to tag
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as trunk. In the experiments, this is always achieved. However, if the processing aim is altered
then parameters and subprocedures have to be adapted to the new task.

The trunk centerline is quickly retrieved byRANSACbecause the set of circle centers is comparably
small. For a larger set of candidates, RANSACmay perform considerably more iterations in order
to find a best-fit solution. Beside the actual content of the slices, the parameters that are used for
peak detection have a significant influence on the cardinality of the candidate set and consequently
also on the performance of RANSAC. A 3D straight line segment is utilized as model by RANSAC.
For the data set B, the assumption that trunks can be represented by a line segment is reasonable
because the Silver Birches grow rather straight. Even if they have a slightly bending trunk, a limited
set of trunk center points that confirms with the model can be found as the experiments have
shown.

After retrieval of the approximate trunk centerline, further processing is performed in voxel space.
The voxel size is of essential importance. If the voxel size is large, less memory space is needed
for the voxel space, which is then a rather down-sampled representation of the source data. If
the voxel size is small, more memory is consumed and the voxel space represents the data with a
higher level of detail. At the same time also data gaps are directly reflected in voxel space as empty
voxels causing a considerably fragmented representation of the data. Hence, a finer resolution
due to a small voxel size does not necessarily result in a more complete and detailed tree graph.
On the contrary, a lot more tree parts may be missing because of the resulting higher number of
connected components, as demonstrated in figure 5.10. For the experiments, voxel size was set to
vs = 0.1 m. By empirical testing, we found that it is an adequate setting to achieve a satisfying
balance between a sufficiently detailed voxel representation, maintainable memory requirements,
and observable completeness of the results. The defined voxel size is a reasonable choice that
complies with the demanded spatial resolution w.r.t. the utilization of the retrieved structural
description in the context of a radiation transfer model, which was the original intention during
development.

After mapping the 3D point cloud to voxel space, trunk voxels are marked. The line segment that
is spanned by two adjacent polyline vertices is traced. Voxels that are intersected are tagged as
trunk. Tracing of line segments is performed using a ray tracing algorithm [Williams-2005]. It
may seem overly elaborate to apply a ray tracing algorithm for this task, though it is certainly
necessary to ensure a gapless chain of trunk voxels. Furthermore, the algorithm byWilliams et al.
[Williams-2005] specifically targets ray tracing though a 3D grid and solves the task efficiently.

Closely related to the voxel size is the filter sizeNp for the removal of voxels that are only sparsely
occupied by 3D points. In fact, data set B represents trees in leaf-less state, but when inspected
visually, a high number of apparently noise points are present in tree crowns. As a result, elimina-
tion of voxels that have a low number of points is crucial to uncover the relevant woody tree parts
which are usually sampled more densely. Obviously, if the value is too large, a significant fraction
of proper voxels are eliminated as well. If the value is too small, filtering is ineffective. The filter
size was set to Np = 10 for data set B, which achieves a seemingly reasonable filtering by visual
examination.

Filtering is the crucial factor that influences how many connected components are determined by
the followingCCLprocedure. If the number of connected components is high, it is likely thatmore
parts of the tree are eventuallymissing from the tree graph because they are obviously represented
by disjoint components. If the number of components is very low, the resulting tree graph might
be a too coarse description of the real-world tree. However, the voxel size setting has to be taken
into account to assess the situation.

Since filtering is required, creation of link voxels between components that are only disjoint due to
one single (emptied) voxel seems like an adequate compromise to moderate the effect of filtering.
The subprocedure is based on visual examination of the voxel space after filtering and CCL. We
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Figure 5.10: Tree graph as result of a voxel space representation with (a) a voxel size of 10 cm and (b) a
voxel size of 5 cm.

found that the positive effect of re-attaching a strong branch to the chief tree component predom-
inates the possibly negative influence of appending small, insignificant components. Naturally,
connections between disjoint components that are separated by more than a single voxel are not
created. As a consequence, some tree parts are definitely missing in the final result if the source
data has relevant data gaps that are reflected in voxel space. Without at least a reasonable hypoth-
esis about the component shapew.r.t. its semantic meaning for the tree and its direction of growth,
it seems counter-productive to connect those components. However, an analysis of the voxel space
that considers different levels of resolution as done by Gorte [Gorte-2006] may provide a solution
to this problem.

Presently, weights, which are assigned to voxels in order to identify apex voxels, coincide with the
number of steps required to reach a voxel with a Breadth-First traversal starting at the lowest trunk
voxel. Theweighting scheme is closely related to a distance transform. Most often, the determined
apex voxels truly represent extremities of branches. However, a number of apex voxels, which
are identified with the selection criterion, are not considered appropriate candidates on visual
judgment but rather represent small perturbations on the tree surface as shown in figure 5.7a.
Consequently, an equal number of spurious paths are created in the tree graph. A revision of the
strategy to find apex voxel with the objective to decrease the number of false positives would be

46 Chapter 5 Skeleton Retrieval from 3D Point Clouds



beneficial. Distance transforms with various metrics could be tested whether they achieve better
results, for instance. Though, the detection of apex voxels cannot be completely solved if only the
26-adjacency of a particular voxel is considered. In general, a larger region of interest needs to be
examined.

The core mechanism of the approach to retrieve the branching structure is the informed greedy
search. A consequence of the greedy heuristic is that the resulting search paths are not necessarily
globally optimal paths. Instead, paths are the result of taking the locally optimal decision at each
statewith regard to the given path cost function. For a plausible reconstruction, it is important that
the path cost function appropriately describes the distance of a voxel to the goal state through the
interior of the connected component. We found that the Euclidean distance from each voxel to the
closest goal state does not produce satisfying results, for instance, if voxels resemble a hollow tube
in the upper trunk section, but an incomplete tube in the lower trunk section. In this case, a search
might follow the voxels down the tube side that is not connected to the lowest trunk voxel because
the path cost function indicates that a goal state would be spatially near. Only after exploring all
adjacent voxels, the search actually backtracks to the point where a path to the goal state can be
found at all. Therefore, the weights that were assigned for the detection of apex voxels are utilized
in the path cost function. The Euclidean distance is only used to decide, fromwhich of the equally
weighted neighbors the goal state might be quicker to reach in contrast to picking one of them
arbitrarily.

Presently, the tree graph structure is not globally centered in the given 3D point cloud. If a path
includes a voxel that provides a centroid of the 3D points, which were mapped to it, the vertex
is centered in this small point cluster. If a path traversed a trunk or link voxel, which are unoc-
cupied, the coordinates of the voxel center are utilized. As a result, the tree graph is not always
smooth. [Gorte-2006] propagates labels of the skeleton located in the interior of the voxel compo-
nent towards the exterior of it. Obviously, the application of a similar strategy with the objective
to improve the centering of the retrieved skeleton on the basis of 3D points within voxels of the
same label would be beneficial.

Given these points, the resulting tree graph is an adequate description of the spatial structure that
is contained in the data set. The main branching structure is retrieved rapidly and reliably with
respect to the provided scan coverage. The quality of the fine branches and twigs is suboptimal,
though causes and possibilities to improve it were already pointed out. All in all, the obtained
skeleton graph can be considered to be a fast approximation of the real-world tree.

It is important to realize that the input data sets are cutouts of a larger multiscan representing an
entire study site, in contrast to themajority of data sets in the studies that were discussed in section
2.3. Unlike these setups in which a particular tree is the single, central object of a multiscan, the
tree may be represented with poor detail in our source data. In other words, the scan coverage of
the tree in the data sets is not checked in advance. Anyway, we ensured that the 42 trees of data
set B that were selected for the experiments had been scanned from more than one viewpoint.
Clearly, data from a single viewpoint is insufficient if a complete skeleton is sought. However, the
definition of a bounding volume for cutting out a section of data from a multiscan is problematic.
For the experiments, the bounding volume was a cylinder with the main axis parallel to the Z
axis located at the given tree position. The choice of the cylinder radius is a difficult issue. If the
radius is selected to small, the bounding cylinder will be too narrow for the tree and the crown
will be inadvertently pruned. In addition, it has to be taken into account that the tree may exhibit
a skewed growth, which is not reflected by the cylinder. If the cylinder radius is large, nearby
trees may be included in the bounding volume. If there is a visible gap between tree crowns that
is also reflected in voxel space, the presence of other vegetation within the bounding cylinder of
the considered tree does not influence the processing. However, crowns of nearby trees often
grow seemingly into one another. As a consequence, both trees emerge in voxel space as a single
connected component. In this case, the longest path often connects the lowest voxels of both tree
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trunks. At least, this could be employed as an indicator to recognize these cases. At the moment,
such configurations are not addressed by the method.

Furthermore, the co-registration accuracy of the multiscan might be unsatisfying in some regions
due to shifts in point locations that were caused by wind during the scanning. Since such effects
are not compensated, a single branch may appear as two branches in the point cloud. Then, the
resulting tree graph also includes two spurious branches instead of the true one. Point offsets
caused by wind are a common problem to TLS processing. At present, there does not exist an
established strategy to overcome those effects.

All things considered, the presented method relies on a few parameters that chiefly control the
outcome. Although these parameters were fixed in all conducted experiments, they depend on
the characteristics of the input data. Most likely, they need to be changed if other data sets are
processed, which limits the general applicability of the method to some degree. As pointed out
previously, development was mainly data-driven. Therefore, it is certainly necessary to test the
methodwith other data to limit the effects of over-tuning the processing to a particular data set. In
the scope of the thesis, thiswas not possible: Scots Pine as a coniferous species is not an appropriate
input to the method, and Eucalyptus trees do not have enough branching structure to serve as a
relevant comparison.

5.5 Future Work

Apart from the aforementioned improvements, there are a few aspects that would profit from
revision. For instance, tree detection has not been addressed. Instead it was assumed that the
position of the tree is known in advance, possibly as the result of the previously mentioned tree
detection methods or by manual selection. Integration of this task into the presented method
would be beneficial.

In fact, the method is in principle not limited to receive single tree data sets as input. If an ap-
propriate data management strategy is implemented, such that the multiscan data is available at
runtime, the DHT could be applied to a larger region of interest. Consequently, several trunk cen-
terlines could be obtained in the same processing step. Moreover, RANSAC is not the only way
to retrieve them. If the tree trunk was sufficiently sampled by 3D points, the DHT will detect a
trunk circle in each slice. A tree commonly grows rather monotonously upwards. For this reason,
we can expect that the displacement between centers of trunk circles of two adjacent slices will be
limited with respect to the slice thickness. As a result, RANSAC could be replaced with a tracking
scheme in order to simultaneously track several trunk centerlines during application of the DHT
to each separate slice.

Furthermore, utilizing an Octree or a kD-tree instead of a voxel space with a constant grid may be
advantageous.
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6 COMPONENT BOUNDARY
TRACING IN TLS SCANS

In this chapter we introduce a novel approach to handle scan data from TLS. On this basis, we
present a strategy to trace the boundary of components that have been determined by Connected
Component Labeling [Shapiro-2001] on range data. The boundary tracing is inspired by a graph-
theoretical approach [Gross-1987], which enables to include depth discontinuities of a component.
Finally, we present experiment results and discuss the proposed strategy in detail, which lays the
foundation for the skeleton retrieval of the following chapter.

6.1 Motivation

TLS data is usually interpreted as a set of 3D points. Since explicit adjacency relations are not
provided, it is understood as being unstructured data. The lack of inherent neighborhood relations
in 3D point clouds is therefore the main argument for the voxel space approach. However, as
discussed in the previous chapter, the voxel size has great influence on the overall processing
performance, which makes it a critical task to define it appropriately.

Although a 3D point cloud is often considered unorganized data, it is also obvious that a single
scan contains point neighborhood information due to vertical and horizontal laser beamdeflection
in fixed increments ∆φ,∆θ. As a matter of fact, TLS data of a single scan is highly ordered data
due to the sequential scanning process that is summarized in algorithm 6.1. Clearly, preserving
the original scan sequence as raster is beneficial for processing.

Algorithm 6.1 Scanning process
1 N ← dφmax/∆φe . Number of increments in horizontal plane
2 M ← dθmax/∆θe . Number of increments in vertical plane
3 for x← 0 . . . N − 1 do
4 φx ← x ·∆φ
5 for y ← 0 . . .M − 1 do
6 θy ← y ·∆θ
7 q ← x+ y ·N . Index of measurement
8 perfom measurment at (φx, θy)
9 determine intensity w, and range r
10 compute 3D Cartesian coordinates pq ← (Xq, Yq, Zq) from (φx, θy, r)
11 end for
12 end for
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Information about the scan sequence is often available in form of the PTX format from TLS soft-
ware. Since PTX is a plain text format, we have developed a binary data container in order to
facilitate prototyping with TLS data in its original raster alignment. Accessing TLS data as a raster
alignment allows the application of image processing methods because a 3D point can be queried
like an image pixel. Consequently, we propose to identify point groups that are supposedly sam-
pled from the same object surface via CCL. Subsequently, we present a method to retrieve bound-
ary information from connected components, which is able to trace inner depth discontinuities as
well.

6.2 TLS Data in Raster Alignment

Most often, point clouds are exported as plain text files that can contain 3D coordinates, inten-
sity, range, and the actual measured spherical coordinates. The exported data normally comprises
only the measurements that yielded valid results. In contrast, laser beams that were emitted to-
wards the sky are inevitably invalid measurements because no range can possibly be determined.
Naturally, 3D coordinates cannot be computed if the range cannot be properly measured.

6.2.1 Intensity and Range Images

In order to generate a range or intensity image from the subset of valid measurements, the raster
alignment is usually restored from the spherical coordinates φ, θ [Vosselman-2010; Eysn-2013;
Bienert-2013]. If the increments ∆φ and ∆θ are known, the 2D image coordinate can be computed
as

(
x
y

)
=

(
b(φ− φmin)/∆φc
b(θ − θmin)/∆θc

)
(6.1)

The resulting raster has the size

(
M
N

)
=

(
d(φmax − φmin)/∆φe
d(θmax − θmin)/∆θe

)
(6.2)

The laser deflection unit is a mechanical device. Therefore, the actual spherical coordinates ex-
hibit slight offsets from the perfect grid-like spacing. As a result, more than one point may be
mapped to a single element of the raster. Since a pixel cannot be subdivided further, a strategy
for computing a single intensity or range value from multiple entries per raster element has to be
chosen. Furthermore, a raster element may stay empty, which results in a data gap and thus a
background pixel in the generated image. The need for interpolation and resulting data gaps are
clearly a drawback when the raster is restored on the basis of noisy spherical coordinates.

According to [Vosselman-2010], the intensity values are scaled to the interval [0 . . . 1] or [0 . . . 255]
to obtain a valid gray level representation. Often the intensity image is directly available as image
export, for example as TIFF. Similarly, range values are used for mapping if a range image is the
target output. However, the interval of range values is usually color-mapped to exploit the RGB
color space. A limit to the 1D integer interval [0 . . . 255] would result in a down-sampling of the
range information.
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Figure 4.1 shows an intensity image from data set B. Clearly, a scan as raster looks distorted similar
to a Mercator projection of the earth globe. The farther rows are away from the row that corre-
sponds to the scanner’s XY-plane in SOCS, the more distorted object shapes appear in the raster.
This effect is an inherent property of the mapping of a curvilinear spherical coordinate system
onto a constant, rectilinear grid. Still, the raster alignment gives an overview of the entire scan
and provides rather intuitive access to the TLS data.

6.2.2 The PTX format

A grid-like scan representation of single scans is often readily available from TLS software in form
of the PTXfile format. This export option is offered for instance byZ+FLaserControl [ZF-2012] and
Trimble SCENE [Trimble-2013]. The scan order is not lost even if several scans are co-registered.
Co-registration only affects the transformation matrix that transforms points from SOCS to PCS.

Admittedly, dependence on a particular export format is arguable. But the Imager series by Z+F
as well as the Faro Focus 3D are popular instruments. Therefore, we considered it appropriate to
investigate the beneficial properties of the PTX format.

PTX is a proprietary plain text format originally created by Leica Geosystems for the Cyclone
software suite. A brief description of the format is available from the LeicaGeosystemsKnowledge
Base [Leica-2012] and an example is presented in table 6.1.

20238 // nb of columns in raster

10000 // nb of lines in raster

27.627 -5.215 0.100 // scanner position

-0.509305 -0.860586 0.000126 // X axis of SOCS in PCS

0.860586 -0.509305 -0.000683 // Y axis of SOCS in PCS

0.000653 -0.000239 1 // Z axis of SOCS in PCS

-0.509305 -0.860586 0.000126 0.0 // 4x4 homogeneous transformation matrix SOCS→ PCS

0.860586 -0.509305 -0.000683 0.0

0.000653 -0.000239 1 0.0

27.627 -5.215 0.100 1.0

0.0000 0.0032 22.3854 0.000 // scan data

0.0000 0.0032 22.3859 0.000 // 3D coordinates as 3 float, intensity as 1 float

0.0000 0.0032 22.3746 0.000 // optionally RGB ∈ [0 . . . 255]3 per line

0.0000 0.0032 22.3535 0.000

0.0000 0.0032 22.3862 0.000

0.0000 0.0032 22.3760 0.000

0.0000 0.0032 22.3879 0.000

0.0000 0.0032 22.3863 0.000

.0 .0 .0 .0 // invalid measurement denoted by zeros

0.0000 0.0032 22.3796 0.000

0.0000 0.0021 14.4961 0.000

. . . // listing reduced

Table 6.1: Example of a scan export in PTX format.

The first two integers denote the number of columns N and rows M of the raster A that is to
be filled. The following four lines include translation and rotation of the SOCS to the PCS if a
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co-registration was performed. The next four lines are occupied by a 4 × 4 homogeneous trans-
formation matrix H that stores the same information. If the PCS coincides with the SOCS, the
transformation matrix is identical to the identity matrix. The remaining N ×M lines contain the
actual point cloud data. Each line lists 3D coordinates of a point pq ∈ R3 , the intensity value
scaled to wq ∈ [0 . . . 1], as well as RGB color values rgbq ∈ [0..255]3 if available.

The data tuple of a line corresponds exactly to one raster element. Its position in the raster can be
calculated with (

x
y

)
=

(
q mod N
bq/Mc

)
(6.3)

with q ∈ [0 . . . (N ·M) − 1] as the index of the particular line, i.e. the number of lines that were
encountered before. In other words, each subsequent set ofN data tuples is interpreted as a row of
the raster, which is built in row-major order from the given data set. The data set includes all valid
measurements as well as all invalid ones. Invalid measurements are indicated by a line containing
only zeros as in line 19 of table 6.1.

If the PCS is not identical to the SOCS, each point pq = (Xq, Yq, Zq) has to be transformed to PCS
by the provided homogeneous transformation matrix H4×4 with

p̃q = HT ·
(
Xq Yq Zq 1

)T (6.4)

In general, it is unclear, which operations are executed in proprietary software between scanning
and data export unless explained in the software documentation, which is hardly the case. The
Z+F Imager 5006i takes a full scan as follows: A scan line is caused by deflecting the laser beam
overhead in the vertical plane by a rotating mirror. The total amount of rotation of the scanner
head in the horizontal plane is significantly smaller. With this in mind, the expected data raster
would look like in figure 6.1a, whereas the actual PTX content appears to be the raster in figure
6.1c. Moreover, PTX export of Trimble SCENE provides the data raster as in figure 6.1b. The
side-by-side arrangement of two scan parts results in a noticeable seam in figure 6.1c. At this
seam, raster elements are not truly neighbors and would compromise any processing based on
adjacency information in the raster. For this reason, we simply split the data set in two sides A
andB if the PTX file includes such a seam. Trimble SCENE outputs are split accordingly regarding
their horizontal seam. As a positive side effect, a data set is easier to handle if split in half.

To sum up, it is helpful to think of the recovered raster as a multidimensional image with stacked
data layers. The available data items per raster element A(x, y) from a PTX file are

• its 1D linear raster index q
• its 2D raster coordinates (x, y)

• 3D coordinates pq = (Xq, Yq, Zq) in SOCS
• 3D coordinates in PCS p̃q if different from SOCS
• intensity value wq
• optional RGB values if imagery was available

In addition, the distance to the laser scanner can be restored from 3D coordinates as

rq = ‖p̃q − pscanner‖ (6.5)

with ‖·‖ denoting the Euclidean distance.

According to [Leica-2012], the PTX format was specifically created to allow other software the es-
timation of normals from scan data, which is facilitated if the grid-like scan structure is preserved.
As a consequence, cumbersome restoration of the intensity or range image can be omitted if this
format is available as export option in TLS software.
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(a) (b)

(c)

Figure 6.1: Comparison of the raster alignment as (a) expected w.r.t. the scanning process of the Z+F
Imager 5006i and the Faro Focus 3D, (b) actual raster alignment in PTX export of scan from Trimble SCENE,
(c) actual raster alignment in PTX export of scan from Z+F LaserControl. The actual image representations
exhibit a distortion due to the mapping of the curvilinear grid to a rectilinear raster, which has been omitted
in the illustration.

6.2.3 Indexed Attribute Lists

At the same time, the advantage of a raster alignment is also its drawback considering memory
consumption. In a PTX file, the internal data order is maintained by insertion of zero tuples to
denote invalid measurements. As a result, the number of redundant zeros in outdoor scenes is
rather high. A significant amount of measurements is oriented towards the sky, which inevitably
results in invalid measurements. For this reason, we propose a binary data container concept,
which maintains the internal data order with little overhead in comparison to a simple binary list
of the valid measurements.

Beside all valid measurements, which are often stored as unorganized point cloud data in a plain
text file, the 2D raster coordinates of a data item need to be preserved. In PTX format, this infor-
mation is encoded implicitly in the sequential data listing, which fills the raster in fixed row-major
order. If lines that contain invalid measurements are removed, the order is irreversibly lost.

Basically, we propose to transfer the information about occupied and empty raster elements to a
designated binary mask. The point list is kept in sequence as obtained from the PTX file, but all
lines with invalid measurements are removed. The binary mask functions as indicator about a
data item’s raster position. If the raster is built up from the appended point list in fixed row-major
order, onlymask elements, which are true signify raster elements that are to be filled by data items.
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Figure 6.2: Overview of IAL format structure.

In other words, the mask is traversed in row-major order starting at the top-left corner until the
current element is reached. The number of true mask elements, which are encountered before the
current element, is the index of the data item in the attached list. The data item is then associated
with the raster element.

The basic structure of the data container, which we call Indexed Attribute List (IAL), is presented
in figure 6.2. First, two integer values in the file indicate the number of columnsN and rowsM of
the raster. The next integer states the dimension of attributesD of a single data item. For instance,
if the raster contains 3D points, each data item has D = 3. Consequently, the attribute dimension
is not fixed to 3, but can assume other values depending on the data that is to be stored.

Since binary information occupies only 1 bit, the mask can be represented as a bit mask. M · N
bit are necessary to store the actual mask data. K denotes the number of true bits in the mask,
which concurs with the number of items in the data block. The mask bits are followed by (8 −
(M · N) mod 8) bit padding to a full byte. Finally, a data block is appended, which contains the
actual scan data: All data items are successively listed according to the mask in row-major order.
For each data item, a space of D attributes of data type T is allocated, i.e. K ·D · sizeof(T ) bytes
contain the actual scan data.

In this way, the information of a PTX file can be stored efficiently, while keeping the data structure
as simple as possible. The IAL data container has only little more memory consumption in com-
parison to a simple point list of valid measurements in binary form. In the worst case, all elements
of the mask are occupied and therefore the mask information is redundant. However, the mask is
usually several magnitudes smaller than the data block. Table 6.2 shows a comparison of memory
consumption between the original PTX data, the point list of valid measurements as binary, and
data as IAL files. In this example, the IAL files (Table 6.2 d) need at least 70% less memory than
the corresponding binary PTX representation (Table 6.2 b).

Very similar in design to the presented IAL data container, is the PTG format that was developed
by Leica Geosystems [Leica-2008] as well, but no resources are provided from the Leica website
directly. PTG is a binary format that encodes the sequence information in a separate bit mask per
scan line. Moreover, it is explicitly restricted to contain only 3D coordinates as float values.

To our knowledge, open source tools for working either with PTX or PTG are not available. For
this reason, the proposed data container appears to be an advantageous contribution to TLS pro-
totyping. In contrast to PTG, IAL has the advantage that it is easier to implement andmore flexible
in regard to the data that can be stored.
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Raster Size File Type Size on HDisk Data Content Raster Occupany

(a) exported PTX file from Z+F LaserControl

[20238, 10000] PTX, plain text 4.8 GB XYZW per raster element fully occupied

(b) 1. Clipping of raster to 7000 rows; size reduction by 30%

2. Limiting of range values to max. 37 m (see Section 4)

3. Splitting of PTX along seam into part A and B

[10119, 7000] A.PTX.dat, binary 1.05 GB XYZW per raster element
fully occupied

[10119, 7000] B.PTX.dat, binary 1.05 GB XYZW per raster element

(c) Files containing only valid measurement data as binary

[16354870,1] A.xyzw.dat 301.29 MB XYZW per data item list of

[19745268,1] B.xyzw.dat 249.55 MB XYZW per data item unorganized points

(d) Separation of data layers into intensity layer and 3D coordinate layer

[10119, 7000] A.ial.w 83.76 MB W for occupied elements
occupancy: 27.9 %

[10119, 7000] A.ial.xyz 234.41 MB XYZ for occupied elements

[10119, 7000] B.ial.w 70.83 MB W for occupied elements
occupancy: 23.09%

[10119, 7000] B.ial.xyz 195.61 MB XYZ for occupied elements

Table 6.2: Comparison of memory consumption of (a) original PTX file, (b) the clipped representation in
binary form, (c) the total number of valid measurements as unorganized point list, and (d) the corresponding
IAL representation that preserves the raster information.

IAL is intended as a tool for prototyping and does not target archiving tasks or exchange of TLS
data sets. Exactly for this reason, no additional metadata is included in the format in order to
provide fast I/O facilities and keep the data container lightweight and generic.

We have implemented an interface to read and write IAL files with C/C++ and Mathworks MAT-
LAB. The condensed IAL form is for storing the file on hard disk. For processing, an IAL file is
inflated into the raster representation as an array. If the raster information is not necessary, the
data block can be accessed as a list of data items as done with unorganized point clouds. Both
methods of data access are supported. Currently, zero is interpreted as the value that signifies
empty raster elements. However, it is possible to extend the format and leave the choice of the
particular value to the user.

During the development of the methods presented in the remainder of the thesis, IAL data con-
tainers have proven to be beneficial by significantly speeding up the working process. IAL is a
binary file; therefore, I/O is rather fast, which is usually the bottleneck of working with plain text
files. Since the data is already provided as raster if the IAL file is inflated, generation of images
from raster data is a straight forward procedure. This is particularly important for evaluation as
visual inspection is still the fastest way to assess results and to detect errors. For example, intensity
or range can be stored as their original float values and need only to be converted to an actual im-
age format like TIFF if necessary. Images that highlight different range intervals may be generated
from a single IAL source file. Moreover, such an image gives an overview about the entire scan (A
or B, respectively).

Another positive aspect of IAL is that data layers can be stored in separate files. Not every pro-
cessing operation requires all layers of scan data. Often, only 3D coordinates are processed while
intensity values are neglected. Therefore, it is convenient to store each data layer as a separate IAL
file. As shown in table 6.2 d), intensity data and 3D coordinates can be stored as different files.
Furthermore, an IAL file is not restricted to data originating in PTX files. Intermediary results
from processing of raster data can be stored in this generic data container as well. For instance,

6.2 TLS Data in Raster Alignment 55



File Content per Item Data Type
Required Memory Required Memory

for IAL file for Deflated Array

e01.spn01.B.ial.xyz 3D coordinates float 201 MB 811 MB

e01.spn01.B.ial.w intensity float 45 MB 271 MB

e01.spn01.B.ial.label label unsigned int 45 MB 271 MB

e01.spn01.B.ial.nn validity of half-edges unsigned char 18 MB 68 MB

Figure 6.3: Comparison of memory requirements for a scan of size 10119×7000 measurments from data
set B. unsigned int and float are assumed as 4 byte each, unsigned char is 1 byte in size.

IAL was already used to store the hemispherical projections that were generated from TLS data
by Schmidt et al. [Schmidt-2012] using a virtual camera.

As a result, separate data layers are available for each TLS scan, which are currently distinguished
by file extension:

• *.ial.xyz: 3D coordinates per element

• *.ial.w: intensity per element

• *.ial.d: range per element

Table 6.3 compares the memory requirements of IAL files and their array representations if the
data is inflated to the raster.

Currently, file extensions serve as a hint to the user, who has to specify the primitive data type of
the IAL data block manually when reading and writing files. The information about the data type
is not included in the IAL file, though the format specification could be augmented accordingly.
Furthermore, the data type is fixed for the entire data block. In other words, a data tuple cannot
consist of attributes that are of different data modality. It has to be stored in separated files, i.e. as
separate data layers.

6.3 Method

On the basis of the raster alignment of TLS data, we can apply image processingmethods. In order
to gain insights about the shape of trees that are present in the considered data set, we propose to
adapt CCL and boundary tracing to the specific characteristics of TLS raster data. The methods
that are presented in the following lay the foundations for the retrieval of skeletal structures, which
is explained in the next chapter.

6.3.1 Connected Component Labeling

In a single scan, the TLS instrument samples object surfaces that are in the line of sight of the
scanner, as explained in section 2.3. Points that were measured from the same, small area of object
surface are located in the same region of 3D space. At the same time, these points appear in the data
raster in close proximity as well. Connected Component Labeling (CCL) can be utilized to assign
a unique group label to raster elements that share a predefined property such as spatial proximity.
Each group of elements is referred to as a connected component. The notion of connectedness has
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to be defined specifically for the considered data set in order to decide whether a pair of adjacent
elements actually belongs to the same group.

We propose to perform CCL directly on the 2D data raster that is provided as an IAL file. For
this task, we employ CCL as described in [Shapiro-2001], which is summarized in algorithm 2.1.
In order to process 3D TLS data with this algorithm, connectedness is redefined: Two adjacent
raster elements are connected, i.e. most likely to be sampled from the same object surface, if the
difference of attached range values is below a predefined threshold εCCL. If this condition holds,
their attached 3D points pi, pj are in close proximity. The condition can be expressed as

abs(‖pi − pscanner‖ − ‖pj − pscanner‖) < εCCL (6.6)

with pscanner denoting the scanner position. Figure 6.4 shows the result of the modified CCL. As a
result, the parameter εCCL controls how fine-grained or coarse the assignment of raster elements
to clusters will be. If εCCL is very small, the resulting number of connected components will be
very high. Consequently, if εCCL is selected rather large, the number of connected componentswill
be small. In this case, also sets of raster elements, which were sampled from surfaces of different
objects, might be joined in the same connected component.

The resulting label matrix can be stored as IAL file (*.ial.label), which is congruent to the other
data layers of the same source data, and contains the label as an unsigned integer value for each
raster element.

Figure 6.4: Result of applying the CCL on a scan from data set B. Labels are mapped to random colors.
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6.3.2 Boundary Tracing of a Connected Component

After the retrieval of connected components, our objective is to retrieve information about a com-
ponent’s shape from its interior boundary. The sequence of raster elements that traces a compo-
nent’s interior boundary is part of the component, whereas elements of a component’s exterior
boundary do not belong to the component as indicated in figure 6.5. Determining the interior
boundary of a component is fundamental for the retrieval of skeletal structures that is presented
in the next chapter.

Figure 6.5: Raster elements of the interior boundary (black line) belong to the connected component (ele-
ments in dark gray), whereas elements of the exterior boundary do not.

In order to obtain interior boundary information, we construct an oriented adjacency graph from
the raster alignment that is illustrated in figure 6.6a and 6.6b. Each element is a vertex. A pair
of adjacent elements is connected by a pair of half-edges, which are pointing in opposite direc-
tions as depicted in figure 6.6c and 6.6d. The set of outgoing half-edges per vertex is sorted in
clockwise order. The resulting configuration coincides with a rotation system of the raster if it is
interpreted as a graph [Mohar-2001]. Closely related to a rotation system from graph theory is
the Half-Edge Data Structure [Mäntylä-1988], which is a popular data structure for representing
polygonal meshes that need to support queries about connectivity and orientation of polygons in
order to apply subdivision schemes, for instance.

The label matrix, which was computed by a CCL procedure on TLS range data, is the basis for
the construction of the rotation system. Edges between vertices of different labels are marked
as invalid edges. Since, each element in a 2D raster with 8-adjacency has 8 outgoing half-edges,
the information about the individual validity of all 8 half-edges can be stored as 1 byte per raster
element. As a result, a new IAL file (*.ial.nn) can be generated, which represents the rotation
system. We enumerate half-edges in clockwise order starting with the North pointing half-edge
in the least significant bit, as demonstrated in figure 6.7.

If traversal is started along a half-edge of an arbitrarily selected inner vertex and continued by
advancing always along the next outgoing half-edge in clockwise order, the result is a round-
trip path, which is called an atomic cycle by Klette and Rosenfeld [Klette-2004], as highlighted
in figure 6.6e. In a rotation system of a 4-adjacency raster grid, an atomic cycle always traverses
4 edges in counter-clockwise order. Analogously, in a rotation system of an 8-adjacency raster
grid, the corresponding atomic cycle traverses 8 half-edges and results in a self-crossing path as
demonstrated in figure 6.6f. Only the boundary cycle is traversed clockwise. In 4-adjacency, the
boundary of inner holes is traversed counter-clockwise but longer than an atomic cycle. In 8-
adjacency, the boundary of inner holes can be recognized because the path is not self-crossing and
also counter-clockwise.

Cycles that are relevant for describing shape features of the component in the label matrix can
be easily recognized by their traversal order and path length. The sequence of interior boundary
elements of a connected component with 8-adjacency can be efficiently retrieved by traversing the
boundary cycle as summarized in algorithm 6.2. First, the raster is traversed in row-major order
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starting at the top left corner until an element with the label in question is encountered. There-
fore, the direction from which this element, i.e. the vertex was entered, is known. The opposite
half-edge corresponding to the entering direction is determined and the next valid half-edge in or-
der is determined and traversed. The already traversed half-edge is marked as visited. Basically,
this procedure is repeated until the first element is visited another time and the next clockwise
half-edge is found to be already visited. The algorithm is also described by Gross and Tucker
[Gross-1987]. However, we suppress self-crossings bymarking half-edges as visited if their traver-
sal would result in a self-crossing (algorithm 6.2, lines 9-20).

The result of the boundary tracing is a sequence of raster elements that traces the component
silhouette. During boundary tracing, a raster element may be visited several times, but entered

(a) (b)

(c) (d)

(e) (f)

Figure 6.6: The raster is interpreted as graph with (a) 4-adjacency, (b) 8-adjacency. Resulting rotation
system with two opposite pointing half-edges per edge in (c) 4-adjacency and (d) 8-adjacency. Atomic cycle
in (e) 4-adjacency, and (f) 8-adjacency. Boundary cycle is always traversed in clockwise order.
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Algorithm 6.2 Cycle tracing using a rotation system of the raster with 8-adjacency
1 procedure TRAVERSE((x, y): 2D raster coordinates, hdir: entering direction to access (x, y))
2 P ← ∅ . Initialize sequence of boundary elements as empty.
3 prev1 ← ∅
4 prev2 ← ∅
5 while isUnvisited(x, y, hdir) do
6 isUnvisited(x, y, hdir)← false
7 P ← P ∪ (x, y)
8 (x, y)← move along half-edge hdir to next element
9 if prev1 = N and prev2 = SE then
10 hasHalfEdge(x, y, SW)← false
11 end if
12 if prev1 = E and prev2 = SW then
13 hasHalfEdge(x, y, NW)← false
14 end if
15 if prev1 = S and prev2 = NW then
16 hasHalfEdge(x, y, NE)← false
17 end if
18 if prev1 =W and prev2 = NE then
19 hasHalfEdge(x, y, SE)← false
20 end if
21 hopp ← opposite half-edge to hdir
22 for i← 1 . . . 7 do
23 hnext ← (hopp + i) mod 8
24 if hasHalfEdge(x, y, hnext) then
25 hdir ← hnext
26 break
27 end if
28 end for
29 end while
30 return P
31 end procedure
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Figure 6.7: Adjacency of a raster element is named with compass directions. Validity of the half-edge
towards each of the 8 adjacent elements is encoded in a byte. Each direction corresponds to a bit, starting
with the North element in the least significant bit.

from different directions. As a result, a partial sequence of boundary elements may form a closed
loop, i.e. a polygon, as illustrated in figure 6.8b. If the polygon does not directly share a raster
element with another polygon, both are connected via a polyline bridge, where the boundary
tracing visited exactly the same raster elements in both directions like in figure 6.8c. In addition,
boundary perturbations, i.e. appendices, which do not bridge between two boundary loops, may
occur as shown in figure 6.8d.

Boundary tracing on a connected component in the label matrix retrieves only the component’s
silhouette boundary. The strategy is closely related to the method described in [Sonka-1998]. In-
formation about inner rifts, which are caused by depth discontinuities in a component’s interior,
is not included in the label matrix, as illustrated in figure 6.9.

(c)

(d)

(b)

(a)

(b) (c) (d)

Figure 6.8: The resulting component boundary in (a) consists of three types of shapes: Boundary elements
can form (b) a closed polygon, (c) a bridge between polygons, (d) an appendix.
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(a) (b)

(c) (d)

Figure 6.9: Comparison of the connected component and resulting boundaries: (a) 3D point set that corre-
sponds to (b) the connected component in the raster. The traced component silhouette in (c) lacks contours
of inner holes and depth discontinuties of branches, in contrast to (d) the tracing of all contours including
inner rifts.
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6.3.3 Boundary Tracing Including Inner Rifts

In a connected component, a pair of raster elements is mutually reachable via a path of raster
elements. For each pair of adjacent elements equation 6.6 holds. However, not every single pair
of adjacent raster elements that is part of the component fulfills condition 6.6. Range values of
two adjacent elements may be very different, even though both elements are part of the same
connected component. In this case, there is a rift between both elements as they are apparently
not nearest neighbors in 3D space. In other words, information about the connectedness of a
particular element regarding its 8-adjacency is relevant for recognizing depth discontinuities. A
similar suggestion was formulated by Cheng et al. [Cheng-2007].

For this reason, we propose to evaluate the validity of half-edges in the rotation system on the
basis of the TLS range data. The IAL file (*.ial.nn) is generated as explained previously, but for
each half-edge condition 6.6 is evaluated separately. As a result, a half-edge is only valid if the two
vertices have the same label and if their corresponding range values fulfill condition 6.6. In this
way, inner rifts within a component that are caused by depth discontinuities in the range data are
reflected by the rotation system.

Boundary tracing is performed as in algorithm 6.2 but on the updated rotation system. Conse-
quently, inner rifts that share vertices with the interior boundary are traversed as well as shown in
figure 6.9d. Therefore, the resulting sequence of boundary elements reflects the shape of the point
cloud in 3D as seen from the scanner position more precisely than the component’s silhouette
boundary.

6.3.4 Tracing of Hole Boundaries and Inner Rifts

Frequently, a component has holes, i.e. groups of elements which are entirely surrounded by
component elements but do not belong to the component themselves. The group of elements may
be a separate connected component. But more likely values are simply missing and the group
appears as a data gap. Tracing of holes is essential to determine a component shape precisely.
For example, if holes are not determined in the crown component, the component shape might be
modeled insufficiently.

As indicated in figure 6.9b, a branch may point towards the scanner position. In the 2D view of
the raster alignment, there may be only comparably small holes at the location or no holes at all.
But the inner rift that is caused by such a depth discontinuity is included in the rotation system.
Similarly, modeling of such inner rifts, which are embedded in a component, is vital.

As a consequence, we trigger a traversal at each vertex, which has a degree less than 8 in 8-
adjacency. In other words, if the vertex is not an inner vertex and consequently not connected
to all of its neighbors, it is located near a hole or an inner rift. Naturally, traversed half-edges are
marked as visited such that a particular path can be traversed only once.

6.4 Experiment Setup and Results

We have conducted experiments with all three data sets B, K, and E. The representation of a tree
in data set B consists of data from at least two viewpoints. In other words, a tree data set actually
comprises several IAL files. Each IAL file contains scan datawithin a cylindrical bounding volume
at the given tree position from the respective viewpoint, as shown in figure 6.10. Some of the
regions of interest may be overlapping because neighboring trees were selected. In data set E,
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trees were not detected in advance and the data of the entire viewpoints that is depicted in figure
4.5 was processed directly.

In order to generate IAL files from PTX source files, tools were implemented to perform the re-
quired conversions. As stated in section 4, the rangewas limited to 37m for each viewpoint. More-
over, it has to be noted that measurements in the PTX file may have 3D coordinates even though
the intensity value equals zero. Though, we exclusively consider measurements with intensity
greater than zero for further processing.

The proposed algorithms were implemented in C++. Eigen [Eigen] and Boost [Boost] libraries are
employed as well. All experiments were computed on a dual-core machine (4 GB RAM, Linux, 64
bit). IAL files were utilized for input and output operations of data sets.

The result of the CCL procedure on a tree of data set B is demonstrated in figure 6.11. For each
raster element in the source file containing 3D coordinates, a label is assigned, which indicates its
association with a particular connected component. The raster is stored as *.ial.label file on disk.
At the same time, a *.ial.nn file is created, which stores the corresponding rotation system that has
been created on the basis of the range values.

CCL was performed on all data sets with εCCL = 0.05 m. The threshold was set after empirical
testing. It is crucial that range values, i.e. the Euclidean distance of a 3D point to the scanner is
used for condition 6.6 in the CCL procedure. If only the Euclidean distance of a point’s projection
onto the XY-plane to the projection of the scanner position is considered, elements that are defini-
tively not located on the same object surface are joined in one component. Considering the scan
situation of the Z+F Imager 5006i, a large amount of scan points is contained in a conical space
above the scanner’s position. If distances on the XY-plane are used for CCL, basically all those
points will be joined in one connected component. However, those points exhibit strong variation
in Z-coordinates. Therefore, only distances in 3D space should be considered for CCL computa-

Figure 6.10: Mask of an IAL file representing a tree data set. The 3D points have been restricted to a
cylinder around a given tree position. Only black regions are considered in the experiments. Gray regions
have been omitted.
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Figure 6.11: Resulting label matrix after applying CCL to a Birch tree from data set B. Labels are mapped
to random colors.

tion. The generation of the *.ial.label and *.ial.nn files on the basis of the input *.ial.xyz file is rather
fast and takes about 0.01 to 5.04 seconds.

The tracing of boundaries, inner rifts, and holes was performed on the label matrix (*.ial.label) and
the rotation system (*.ial.nn), which were generated in the previous step. For the experiments, the
processing was limited to connected components that are between 1,000 and 100,000 pixels in size.
The algorithm does not rely on any parameters that have to be set. Furthermore, no significant
additional memory is allocated beside the memory space needed for the input data sets and an
additional array of same characteristics as the rotation system in order tomark half-edges thatwere
visited. As already pointed out in table 6.2, the memory consumption of *.ial.label, and *.ial.nn
files is depending on the raster size and occupancy, but in comparison to the original 3D data set
rather low. The processing is rapid: Boundaries with inner rifts and holes of 2543 components are
calculated in 7.8 min in total. Naturally, the processing time depends on the component size and
the number of atomic cycles that have to be tested. Some processing results are demonstrated in
figure 6.12 and 6.13. The output of the algorithm is a sequence of 2D raster coordinates. Each item
has a label that indicates to which sequence – either main boundary or hole – it contributes.

6.4 Experiment Setup and Results 65



(a) (b)

(c) (d)

Figure 6.12: Results of the experiments on data set B. Components that have been processed are drawn
in dark gray. Retrieved boundaries are drawn as black lines. Components in light gray have been omitted in
the experiments. The tree in subfigure (d) is the same used in figure 5.5a in chapter 5.
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(b)

(c)

Figure 6.13: Results of the experiments on data set P in subfigure (a) and (b), and on data set E (c).
Components that have been processed are drawn in dark gray. Retrieved boundaries are drawn as black
lines. Components in light gray have been omitted in the experiments. A case when the main boundary has
not been found is visible in the right section of subfigure (c).
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6.5 Discussion

As pointed out before, the dependence on a particular, moreover proprietary format as PTX is
arguable. Though, it seems to be a common format to exchange TLS datasets between software.
Therefore, it can be assumed that it will not become deprecated anytime soon.

In any case, it is worthwhile to investigate the raster alignment that can be recovered either from
a PTX file or from the measured spherical coordinates as the experiments have shown. Generally
speaking, a scan in raster alignment seems to be a more natural way to organize the 3D data in
contrast to a voxel space that imposes an arbitrarily defined structure onto the scan data. However,
this organization is then restricted to a single scan.

The presented data management concept in form of IAL was created as a tool to provide fast I/O
facilities and a simple but efficient way to store the TLS data as well as interim results. Plain text
files, which are often used, are slow considering I/O operations: Character sequences need to be
parsed and converted to their corresponding numeric binary representations. Although this is a
native feature of the programming language, these operations are very time consuming for large
data sets. However, simple binary dumps of the same data give rise to errors, e.g. when data is
interpreted not as intended because the lack of additional description or meta data.

There are efforts to establish international standards for laserscanner data formats, e.g. LAS [LAS-
2011] or E57 [Huber-2011]. But they are chiefly targeting ALS data. In addition, these formats
include comprehensive meta data in their specifications for each data set, which is beneficial for
achieving and exchange. Though, the same feature makes it rather unsuited for development and
prototyping tasks. Plenty of processing operations do not require the provided meta data at all.
For this reason, a lightweight, generic data container is of advantage. IAL files turned out to be
very handy during the research work presented in the thesis. Several extensions to make the IAL
files and working with them more user-friendly are possible.

CCL on range images is not a new invention, but was performed before. For instance, Bienert and
Schneider [Bienert-2013] mapped a limited interval of range values to gray levels and afterwards
performed CCL. The major difference to the method as presented in the thesis is that TLS data is
evaluated directly. Since the data is not mapped to an intermediary gray level image, there is also
no need to enforce restrictions considering the range values. Visualization of the input or output
data sets is an operation, which is separate from the CCL process.

As a result, the entire content of a scan can be processed at once. Moreover, only a single parameter
is presently needed for the CCL procedure. The threshold εCCL decides whether two adjacent
raster elements are connected, i.e. whether their range values are similar enough to be sampled
on the same surface. Since the parameter is fixed for a data set, there are regions that are under-
or oversegmented in the resulting partition. Often, large parts of ground surface are joined with
raster elements representing trunk surface in the same connected component due to the spatial
proximity. In the experiments with data set B, a high amount of very small connected components
can be found in the tree crowns. It has to be emphasized that data set B was acquired in winter,
when the treeswere in leaf-less state. Consequently, it is unclearwhy there are somany, apparently
noise points present in the tree crowns. We consider this to be a specific issue of the employed
TLS instrument. Clearly, it would be advantageous to replace the single parameter εCCL with a
mechanism that takes the beam divergence and consequently the increasing inter-point distances
in dependence of the range values into account. Recently, Bienert and Schneider [Bienert-2013]
already proposed such an approach that could be adapted to our method as well.

A rotation system [Gross-1987] on the basis of the 8-adjacency graph of a label matrix from CCL
can be studied regarding its topological characteristics and the result of traversing the graph as
described is clear. However, if the rotation system was manipulated by evaluating equation 6.6
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for each half-edge as proposed, the outcome of traversal is not necessarily clear in advance. The
validity of both half-edges that compose one full edge is determined simultaneously. In other
words, a half-edge has always the same state as the corresponding opposite half-edge. But since
the range values are depending on the particular object, scanner and possibly noise effects, the
resulting rotation system might include odd configurations of edges. The traversal of successive
half-edges may eventually block itself. In the conducted experiments and excessive testing during
the development of the method, this occurred only rarely and appears to be connected to strong
distortion effects due to wind. In this case, normal boundary tracing on the label matrix can be
considered as a fallback solution. Clearly, this issues needs to be investigated further.

As demonstrated in figure 6.9d, component boundaries that are enhanced by descriptions of in-
ner rifts represent the discernible shape of the point cluster in 3D space more closely than the
silhouette contour, which may lack significant features. The locations of half-edges that are part
of an interesting cycle instead of an atomic cycle in the rotation system are unknown. They have
to be detected by a linear search over all raster elements. Similarly, the relevance of a particular
cycle can only be assessed after completing it. However, these considerations can be neglected in
practice because processing is very fast. Besides the memory that is occupied by the input data
(*.ial.nn, *.ial.label), only a copy of the rotation system is needed to mark visited half-edges during
the procedure. An explicit graph structure for the rotation system is not constructed. Instead the
algorithm operates directly on the array data, which makes it particularly efficient. Moreover, no
parameters have to be set to control the algorithm performance.

In the experiments, the retrieved boundary descriptions in general concur with the boundaries
that can be recognized by visual inspection of the rotation system (*.ial.nn). It is important to
realize that the inner rifts that are caused by branches, which grow out of the trunk towards the
scanner position, are not recognizable if the connected component in the label matrix is inspected.
In fact, this information is not present in the label matrix at all. For this reason, inner rifts cannot
be retrieved by a standard approach to boundary tracing on raster images. The information about
inner rifts that originates in the range data is exclusively embedded in the rotation system.

In 2D space, the resulting boundary contour is rather ragged. Especially trunk boundaries have
plenty of perturbations. In 3D space, the corresponding polyline is equally jagged. A connected
component naturally has a main boundary and possibly a number of hole boundaries. Presently,
we have no definitive mechanism to decide whether a particular hole boundary is solely the result
of missing data or a topologically relevant feature. The area of a hole or its boundary length could
be used to decide this question. But similar to previously discussed parameter values, it does not
seem adequate to set an absolute threshold because the component sizes vary strongly within a
scan.

In the experiments, we found that there are differences between the scan data of the two TLS
instruments, which has a major impact on the quality of the results. As shown in figure 6.14,
the Faro Focus 3D, which was used to scan data set E, samples 3D points between a branch and
the trunk surface. On close visual examination, these points seem to be floating in the air. Most
likely, they are a result of averaging the range values of an emitted laser beam that caused several
reflections. In any event, the sequence of spurious points is reflected in the rotation system as well
and prevents the tracing of the rift between branch and trunk surface to the full extent. Therefore,
the boundary description cannot capture all of the relevant features, which are discernible in the
point cloud. We have not noticed similar issues with data that was acquired with the Z+F Imager
5006i. Clearly, this example demonstrates that the differences between TLS instruments have to
be considered and eventually compensated. Moreover, it proves that methods that were proposed
in the literature have to be assessed w.r.t. the used input data and TLS device, which must not be
neglected.
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Figure 6.14: The Faro Focus 3D samples points between branch and trunk surface that are apparently
floating in the air and do not represent actual surface samples. These spurious points hinder tracing of the
rift between branch and trunk to the full extend.

6.6 Future Work

Besides the improvements that were already pointed out, the data from the PTX file could be used
to estimate normal directions as it was its original purpose. On the basis of the label matrix, point
neighborhoods for fitting surface patches in order to compute normal directions can be readily
determined. Furthermore, curvature parameters could be retrieved as well. The data could help
to differentiate hole boundaries in descriptions of shape features and contours of data gaps, which
could be eventually discarded.

Up to now scans have been processed separately. But one of the most important aspects of laser-
scanning objects is the full 3D representation of objects. For this reason, components and their
boundaries from different viewpoints, which describe different parts of the same objects, need to
be somehow combined accordingly. After extraction of relevant components and boundaries, the
voxel space may provide an appropriate framework to recognize neighborhood relations between
established connected components. The combination of element-wise analysis in the raster align-
ment and the evaluation of spatial relations on a larger scale in the voxel space appear to be a
promising approach.
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7 RETRIEVAL OF SKELETAL
STRUCTURES FROM A TLS SCAN

In this chapter, we present a novel approach to retrieve skeletal structures from single scans. The
key idea is that an intermediary 2D skeleton is generated and utilized to reconstruct the 3D skele-
ton of a connected component. Connected Component Labeling (CCL) and boundary tracing as
explained in the previous chapter are essential for the presented method. Finally, we present ex-
periment results and discuss the method in detail.

7.1 Motivation

The aim of skeleton retrieval is to generate an accurate and compact representation of an object’s
geometry. However, the method presented in chapter 5 provides only an approximation of the
object’s expected skeleton. The level of detail that can be reconstructed strongly depends on the
resolution of the voxel space and the particularities of the input data set.

With the insights gained regarding the scanning process and neighborhood relations, we have
come to the conclusion that the task of skeleton retrieval should be approached from a different
side. As a result, we have developed a novel strategy for retrieving skeletal structures from con-
nected components that represent parts of a tree. The method produces partial skeletons that are
of higher detail in comparison to the skeletons, which can be retrieved from voxel space. Our
strategy relies on the raster alignment of TLS data (see section 6.2), CCL (see section 6.3.1), and
boundary tracing including inner rifts (see section 6.3.3). Thereby, it represents an immediate
continuation of the work presented in the previous chapter.

Generally speaking, the automatic determination of a tree skeleton from a 3D point cloud that had
been segmented manually is basically doable. A cluster of 3D points may be distributed among
an invisible, yet discernible space curve. Hence, it most likely represents a tree branch. But how to
obtain at least an approximation of this invisible space curve is a challenging task. Hastie [Hastie-
1984] and Hastie and Stuetzle [Hastie-1989] were the first to introduce the notion of summarizing
such a point distribution as a space curve, which they called a Principal Curve. However, their
definition of Principal Curves makes computation in practice too cumbersome according to [Kégl-
1999]. Kégl [Kégl-1999] revised the definition of a Principal Curve and introduced the Polygonal
Line Algorithm (PLA) that computes a descriptive polyline for an input set of 3D points.

We have conducted initial experiments in order to assess, whether the PLA is applicable to TLS
data [Schilling-2012a]. For this first evaluation, individual trees were isolated in single scans of
data set B. Trees were manually segmented into point subsets that represent branches or trunks.
For each determined subset of 3D points from the single scan, a Principal Curve was computed
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by the PLA.We found that the PLA [Kégl-1999] is a suitable tool to obtain a summarizing polyline
for a set of 3D points from TLS data.

For this reason, the focus of our research was to replace the manual segmentation of a single scan
with an automatic procedure. Similarly to the preliminary experiments, our starting point for
performing segmentation of a single scan is the label matrix. A label matrix, which is determined
by CCL, provides an initial partitioning of the data set. The applied CCL procedure is explained in
section 6.3.1. Henceforth, our approach to skeleton retrieval is founded on the assumption that the
topology of a connected component in a label matrix concurs with the discernible topology of the
corresponding 3D point set. If the connected component is interpreted as a graph, the difference
between its 2D and 3D geometry is basically the displacement due to range values since the grid-
like alignment is preserved.

7.2 Method

The key idea of the approach is that the skeleton of a component in the 2D raster arrangement can
be used to segment the 3D point set into clusters, which represent individual branches or trunk
parts. Then, point subsets can be subjected to the PLA to obtain a compact description of the
component as a set of 3D polylines, which is possible because the relation of 2D raster coordinates
to 3D coordinates is given.

In the following, the term skeleton concurs with skeletal structure and means the description of
the main shape features of the considered connected component in the label matrix as a line graph
either in 2D or 3D. Consequently, we aim at retrieving skeletons from single TLS scans only. Com-
bination of several skeletal structures to represent a complete tree skeleton is considered future
work.

7.2.1 2D Skeleton Approximation via Voronoi Diagram

As explained in section 6.3.3, the boundary information of a connected component can be effi-
ciently retrieved from the label matrix in combination with a rotation system that takes the mea-
sured range values into account. The 2D skeleton of the considered connected component can
then be determined straightaway from the Voronoi diagram [Aurenhammer-2000].

We calculate a Voronoi diagram from the set of boundary elementsB of a connected componentC.
B comprises the elements of the component’s silhouette contour, the elements of traced inner rifts,
as well as boundaries of embedded holes and their attached rifts. Figure 7.1 shows the resulting
Voronoi diagram.

Only Voronoi edges, which are entirely containedwithin the component’s boundary, contribute to
the Medial Axis approximation of the component. The set of relevant Voronoi edges can be iden-
tified by testing each one whether its Voronoi vertices are located within the boundary polygon.
The resulting initial skeleton estimate is illustrated in figure 7.2. If hole boundaries are included in
the computation of the Voronoi diagram, the skeleton graph is not necessarily a tree graph. Most
often, holes are reflected directly and cause cycles in the skeleton graph.

As shown in figure 7.2, the initial skeleton estimate might consist of several disjoint sub graphs.
Naturally, an adequate skeleton of a connected component can only be represented by a connected
graph,where each twographvertices are reachable. Consequently,missing edges have to be added
to the skeleton estimate.
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Figure 7.1: Clipped Voronoi Diagram from the set of boundary points from a connected component that is
part of a scan from data set B. The original component is rotated by 90◦.

Refinement of the initial 2D skeleton

Separation of sub graphs occurs if the boundary forms a corridor that is too narrow as for instance
in figure 7.2a. In addition, if the boundary forms a closed loop, i.e. a polygon, which is only
connected by a bridge to another polygon, both contained skeleton parts are separated as in figure
7.2b. If the area of a boundary polygon is too small as in figure 7.2c, it will not contain a Voronoi
edge. For this reason, completion and refinement of the obtained 2D skeleton is mandatory prior
to segmentation.

(a) (b) (c)

(a)

(b)

(c)

(d)

Figure 7.2: The set of Voronoi edges constitutes a skeleton that might consist of several disjoint sub
graphs. Disconnection of sub graphs occurs due to (a) narrow corridors, (b) bridges in the boundary, or (c)
small boundary polygons.
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(a) (b) (c)

Figure 7.3: Linking of sub graphs is done on a Delaunay triangulation as search space using breadth-first
search [Russell-2010]. Compare with figure 7.2d.

Addition of a straight line segment in order to connect the nearest vertices of two disjoint sub
graphs would be a trivial solution. In case of figure 7.2c, the connection edge would intersect
boundary edges. Consequently, parts of the skeleton graph would be located outside the bound-
ary, which is inappropriate for the targeted segmentation. Therefore, we propose to link all sub
graphs together to form a single skeleton graph by iteratively searching suitable connection paths.

As basis for searching, we compute a Delaunay triangulation, which is constrained and confirm-
ing to the Delaunay condition [Shewchuk-1996], as an interim support structure. The Delaunay
triangulation is constrained because all boundary edges and skeleton edges are retained. In order
for the triangulation to maintain the Delaunay condition for each triangle, input edges may be
subdivided and new vertices are inserted. Holes in the boundary are also holes in the Delaunay
triangulation.

As long as there are disjoint sub graphs, we pick one of them. For each of its vertices, we search
a path along the Delaunay triangulation to another sub graph as depicted in figure 7.3. All ver-
tices that belong to other sub graphs are interpreted as goal nodes. Traversal of the graph given
by the Delaunay triangulation is performed in breadth-first order, which consequently finds the
shallowest goal node [Russell-2010]. If a vertex of another sub graph is encountered, the traversal
is terminated. The shortest path of the found ones that connects the considered sub graph to an-
other sub graph is added to the skeleton. If paths are of equal length, the path that connects to a
skeleton vertex of degree one is preferred. After this procedure, the resulting skeleton consists of
a single connected graph that may share some edges with the boundary.

Connected components determined fromCCLonTLS 3Ddata frequently have rather noisy, ragged
boundaries. Especially, components representing trunk surface patches often have plenty of per-
turbations in their boundary as pointed out in section 6.5. Without additional information, it is
infeasible to decide whether a boundary perturbation is only noise or a twig that has been sam-
pled by only few points. As a result, a significant number of spurious edges are part of the initial
skeleton estimate as indicated in figure 7.4. Clearly, filtering of the skeleton estimate is a necessary
step.

Among three other variants, Ogniewicz and Kübler [Ogniewicz-1995] proposed a Potential Resid-
ual function that can be used to filter edges of a Voronoi diagram. Basically, a Voronoi edge e is
weighted by the distance along the boundary B between the two boundary elements bU , bV (U <
V ), which generated e. The Potential Residual can be calculated by

distB(bU , bV ) = min(WV
U ,W

|B|−1
0 −WV

U ) (7.1)

with

WV
U =

V−1∑
i=U

‖bi − bi+1‖ (7.2)

74 Chapter 7 Retrieval of Skeletal Structures from a TLS Scan



Figure 7.4: The skeleton estimate has a number of spurious edges marked in red, which are pruned using
the Potential Residual [Ogniewicz-1995].

Voronoi edges that have a weight below a predefined threshold are assumed to be spurious edges,
which do not contribute to the component’s skeleton. In order to ensure the connectedness of the
skeleton graph, we employ an iterative elimination scheme of Voronoi edges. In each iteration,
only Voronoi edges that are incident to skeleton graph leaves are checked whether their weight is
below a threshold εW . The procedure is summarized in algorithm 7.1. In order to ensure that the
skeleton graph is not entirely eliminated in case the component is rather small, filtering is stopped
if the entire skeleton graph has only two vertices that are leaves. Consequently, further refinement
of such a component is skipped and the processing proceeds with the computation of a Principal
Curve from the 3D points that are associated with the connected component.

Due to the dense boundary sampling, which is required for the Voronoi diagram, the skeleton
graph consists of a large number of vertices. Since the 2D skeleton ismerely a tool for analyzing the
component shape, we apply a smoothing operation to facilitate further processing by reducing the

Algorithm 7.1 Pruning of spurious Voronoi edges with Potential Residual [Ogniewicz-1995]
1 procedure FILTEREDGES(G: skeleton graph with edge set E)
2 for all e ∈ E do
3 if e.isVoronoiEdge() then
4 (bU , bV )← e.getGenerators() . Get boundary elements that generated this edge.
5 e.w← distB(bU , bV ) < minDistance
6 end if
7 end for
8 nbEdgesBefore← 0
9 nbEdgesAfter← |E|
10 while nbEdgesBefore 6= nbEdgesAfter do
11 if only 2 vertices in G are leaves then . Graph consists of one connected path.
12 break
13 end if
14 nbEdgesBefore← nbEdgesAfter
15 for all e ∈ E do
16 if e.w ∧ e.hasLeafVertex() then
17 remove e from E
18 end if
19 end for
20 nbEdgesAfter← |E|
21 end while
22 remove all vertices from G that have no incident edges
23 end procedure
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number of skeleton nodes. Similar to Kégl andKrzyżak [Kégl-2002], we use amethod proposed by
Eu and Toussaint [Eu-1994] to smooth paths between two irregular vertices of the skeleton. A new
path between the two end vertices is determined with fewer vertices than before. The deviation of
the vertices that are removed is constrained to be no larger than∆s px. The result of the smoothing
is a simplification of all paths in the skeleton graph. Clearly, skeleton smoothing is not essential
for component segmentation as it does not change the topology of the skeleton. However, we
found that it favorably influences processing in terms of performance and clarity when temporary
processing results are evaluated.

After filtering and smoothing, the skeleton represents only significant component topology, except
for a small number of possibly spurious edges. The next step is the attachment of component
elements to skeleton nodes to prepare the component for segmentation.

7.2.2 Component Segmentation Based on 2D Skeleton

Each component element needs to be associated with its closest, adequate skeleton node to prop-
agate the imminent segmentation of the 2D skeleton later amongst the 3D points. The minimum
distance of an element to a skeleton edge e is the Euclidean distance

de(p) =
∥∥proje(p)− p∥∥ (7.3)

between the 2D coordinates of the element p and its projection point proje(p)

proje(p) =
(p− a)T · (b− a)

(b− a)T · (b− a)
· (b− a) (7.4)

on the skeleton edge e(a, b). In order to be a valid projection, the projection point proje(p) has to
be a point on the edge e: The corresponding line parameter t has to be in the interval t ∈ (0..1).
Otherwise, the point p is closer to one of the vertices a or b of the edge e.

For a skeleton vertex a, the minimum distance is the Euclidean distance between the element p
and the 2D coordinates of skeleton vertex a

da(p) = ‖a− p‖ (7.5)

However, assigning an element to the closest of all skeleton parts is not adequate. As demon-
strated in figure 7.5, the skeleton node, which is closest to a point w.r.t. Euclidean distance in 2D
might not be the proper skeleton branch it evidently belongs to. For this reason, it is important
that assignments are determined under the constraint that boundary edges should not be inter-
sected by the imaginary line that connects the considered point pwith its respective skeleton node.
Algorithm 7.2 summarizes the basic task. An element can only be attached to one skeleton node.
If an element has the same distance to more than one skeleton node, a particular skeleton node is
picked arbitrarily. For the experiments, this point location problem has been solved with a more
sophisticated strategy, which is outlined in appendix A, to improve perfomance.

Finally, the skeleton is subdivided into a set of paths. Because the component elements are asso-
ciated with skeleton nodes, segmentation of the skeleton graph implicitly partitions the elements
as well.

First, the skeleton graph is contracted to an intermediary graph structure. Starting from a structure
as in figure 7.6a, we build a condensed graph from the skeleton GS to facilitate the path retrieval.
All irregular vertices of the skeleton graph are also part of the condensed graph GC . A sequence
of edges between regular vertices, which connects two irregular vertices, is contracted to a single
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Skeleton

With Euclidean metric, the nearest
skeleton node would be on the other
branch

special case: projection line intersects
boundary in any case

Raster element with projection line
to skeleton node

Figure 7.5: Points are attached to their closest skeleton node under the constraint that boundary edges
should not be intersected if possible.

edge in GC . Before edge insertion, the corresponding path between the two irregular vertices
is tested whether it forms an arc: A path vertex that is adjacent to an irregular vertex is picked.
If the distance from this vertex to all other path vertices increases monotonously, when they are
tested in sequential order, then the path is represented by a single edge in GC . Otherwise, the
path is split into two parts at the vertex that is furthest from the considered vertex. The regular
vertex is added to the condensed graph, as well as two edges representing both parts of the path
in the skeleton graph. Furthermore, each edge inGC is annotated with the propertiesNe, and Le:
Ne is the number of points that are associated to skeleton nodes, which are represented by the
considered edge inGC ; Le is the length of the path inGS , which is represented by the edge inGC .
The resulting condensed graph in comparison to the skeleton graph is depicted in figure 7.6b.

Second, segmentation is performed by retrieving paths from the condensed graphGC . The graph
is traversed in depth-first order starting at the root. Similar to Gorte [Gorte-2006] and Bucksch
[Bucksch-2011], the root vertex is selected as the vertex with the largest y-coordinate considering
the coordinate system of the 2D raster with the origin at top-left. At each vertex, we test whether
any of the incident edges is an appropriate continuation of the edge that has been traversed before.
Since the aim of segmentation is the computation of a Principal Curve from 3D point clusters, the
characteristics of the PLAhave to be taken into account during path retrieval. In otherwords, point
clusters should have a rather uniform distribution of points along the unknown but discernible
space curve in order to obtain a smooth polyline. If the point distribution is unbalanced, the ability
of the polyline to describe the point set degrades respectively.
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Algorithm 7.2 Basic description of point attachment
1 procedure ASSIGNPOINTS2SKELETONNODES(Gskel: skeleton graph, B: set of boundary seg-
ments, P : 2D point set)

2 for all p ∈ P do . Iterate over point set.
3 dmin ←∞
4 nmin ← ∅
5 for all nodes n ∈ Gskel do . Iterate over skeleton nodes.
6 L← line segment of minimum length between p and n
7 if ‖L‖ < dmin then
8 m← 0
9 for all boundary segments b ∈ B do . Iterate over boundary segments.
10 if L intersects b then
11 break
12 else
13 m← m+ 1
14 end if
15 end for
16 if m = |B| then
17 dmin ← ‖L‖
18 nmin ← n
19 end if
20 end if
21 end for
22 if nmin 6= ∅ then
23 nmin.add(p) . Assign p to the determined skeleton node.
24 else . All tested connection lines intersect the boundary.
25 find a path from p to a skeleton node for instance using the raster
26 adjacency graph (see section 6.3.2) with breadth-first traversal
27 end if
28 end for
29 end procedure

For this reason, we evaluate the ratio R for each edge e

R(e) =
Ne
Le

(7.6)

that describes how many points are projected onto the skeleton path in the length of a unit mea-
sure. The ratio of a candidate edge eA is compared to the ratio of the last traversed edge eC by
calculating

w(eA, eC) =
min(R(eC), R(eA))

max(R(eC), R(eA))
(7.7)

The candidate edge eA that has the highest weight is selected and tested whether the weight ex-
ceeds a predefined threshold εweight. If w(eA, eC) > εweight then the candidate edge eA is checked
whether the already identified path that is associated with the previously traversed edges would
form an arc if eA, i.e. its skeleton path is appended. In this case, the candidate edge is discarded
and the current path is terminated. If w(eA, eC) ≤ εweight then the candidate edge is immediately
discarded because the respective ratios differ by more than (1 − εweight) · 100%. In this case, the
current path terminates and new one is started. In the best case, a path can be successfully tra-
versed until a leaf vertex of the condensed graph is encountered. An example of the resulting path
partitioning is given in figure 7.6c. Irregular vertices belong to all their incident paths at the same
time.
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If the skeleton graph contains cycles, the condensed graph will contain the same cycles as well.
However, the condition that a path must not form an arc suppresses the retrieval of a path that is
a cycle. At present, cyclic structures are not addressed further in processing.

After path retrieval, the point clusters that are subjected to the Principal Curve computation can
be collected. Each retrieved path of the condensed graph represents an ordered set of nodes of the
skeleton graph. Since point subsets are associated with each skeleton node, the point cluster of a
particular path can be obtained as the union of the point sets that belong to the respective skeleton
nodes as depicted in figure 7.6d. The relation between 2D raster coordinates and 3D coordinates
from TLS data is known as explained in section 6.2. Therefore, the result of the operation is a
segmentation of the component into clusters of 3D points.
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Figure 7.6: Segmentation of the connected component on the basis of the 2D skeleton: (a) Smoothed
skeleton GS that is the starting point. (b) The topology of the skeleton is represented as the condensed
graph GC . (c) Here, the root vertex for path retrieval was A because the illustration is rotated by 90◦. Re-
trieved paths are mapped to colors. (d) The paths partioning is propagated to all elements of the connected
component.
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Figure 7.7: Outline of the Polygonal Line Algorithm (PLA, [Kégl-1999])

7.2.3 Retrieval of Principal Curves from 3D Point Subsets

Before a 3D point cluster is subjected to the PLA, data normalization is performed as suggested by
Hartley and Zisserman [Hartley-2003]. The 3D point cluster D is transformed isotropically with
the homogenous matrix T

T =


√
2
m 0 0 0 −

√
2 · µX

m

0
√
2
m 0 0 −

√
2 · µY

m

0 0
√
2
m 0 −

√
2 · µZ

m
0 0 0 0 1

 (7.8)

with µ as mean andm as mean value of the standard deviation of D ∈ R3 [MVG-2004].

Subsequently, the PLA, which is outlined in figure 7.7, is applied to the normalized point cluster.
First, an initial straight line estimate is generated as the eigenvector that corresponds to the largest
eigenvalue, which is calculated by a Principal Component Analysis [Jolliffe-2002]. Afterwards,
all data points are projected onto the polyline estimate and partitioned according to their closest
polyline node. An optimization follows that iteratively moves polyline vertices along their ap-
proximated gradient vectors in order to minimize a quality measure of the polyline. This measure
is calculated from the mean square distance error of each vertex to its associated point set. The
optimization routine terminates if the change in polyline quality between two iterations is lower
than a predefined threshold. Then, the polyline edge with the highest number of data points is
subdivided by adding a new polyline vertex, which splits the edge midway. Data projection, op-
timization, and insertion of a new vertex are repeated iteratively until a termination condition
is fulfilled. The termination condition takes the current number of polyline edges, the overall
smoothness of the polyline relative to extend and cardinality of the data set into account. As illus-
trated in figure 7.8, the polyline becomes smoother in each iteration and reflects the distribution
of the data points more and more.
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Figure 7.8: The polyline that is initialized from (a) the 3D point set as (b) a straight line segment is approx-
imated more closely in each iteration. b) The points are projected onto the polyline. (c) The optimization
draws the polyline vertices inwards. (d) The edge is split midway. Subfigures (e)-(h) depict the points and
polyline after a number of iterations. The final result is shown in (i).
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Figure 7.9: The segmentation from figure 7.6d is colormapped to the 3D point set. The 3D polylines that
are the result of the PLA on the point groups are shown in black.

The resulting 3D polyline is then transformed back to the original coordinate frame bymultiplying
its 3D coordinates of vertices with the inverse of the transformation matrix T

T−1 =


m√
2

0 0 0 µX
0 m√

2
0 0 µY

0 0 m√
2

0 µZ
0 0 0 0 1

 (7.9)

that is obtained from the original data set D. Figure 7.9 demonstrates the resulting set of 3D
polylines that corresponds to the segmented connected component in figure 7.6d.

As a result of the path retrieval procedure, every path has a parent path, except for paths that
contain the root vertex. The parent of a particular path is the one that terminates at the very vertex
in GC , where the considered path starts. Consequently, the 3D polyline has a parent polyline,
too. Though, joining of the set of resulting polylines to form a connected graph that represents
the component’s skeleton is a task that belongs to future development. At present, the skeletal
structure of a particular connected component is retrieved as a set of disjoint polylines.
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7.3 Experiment Setup and Results

All three data sets B, K, and E were used in the experiments. The presented method is imple-
mented in C++ utilizing Eigen [Eigen] and Boost [Boost] libraries, which also provide the compu-
tation of a Voronoi diagram. TheDelaunay triangulation is constructed using Triangle [Shewchuk-
1996]. The PLA that was available in [PLA-1999] was ported to C++. The point attachment routine
as summarized in algorithm 7.2 is a naïve formulation of the task. Therefore, a more sophisticated
assignment strategy, which is explained in appendix A, was implemented to accomplish the task.
Again, the experiments were done on a dual-core machine (4 GB RAM, Linux, 64 bit).

The input data was provided in form of IAL files. Similar to the experiments in section 6.5, only
points located within a cylindrical bounding volume at the tree position are considered for tree
data from data set B, and K. In addition, all input data was manipulated with the objective to
remove the ground surface. Restriction of the data is justified by the fact that patches of ground
surface or understory vegetation are not of interest in the context of this thesis. Therefore, the data
was reduced tomeasurements, which are located above theXY-parallel plane atZ = pZscanner+5m.
For all scans in chapter 4, the TLS instrument was positioned at least in 1.60 m above ground level.
With the additional offset, it is ensured that the ground surface is eliminated even if the terrain is
slightly sloped. As a consequence, tree trunks are pruned to a varying degree, which is neglected
in the experiments. Since our main focus is on the retrieval of branching structure of the tree
crown, we refer to methods that have been discussed in section 2.3 to model tree trunks from TLS
data.

Furthermore, the experiments have been limited to compute only connected components between
1,000-100,000 raster elements in size for each input data set. Smaller components are omitted be-
cause the probability that a component is an apparently uninterpretable noise artifact is inversely
proportional to its number of elements. Larger components are omitted because most often they
represent considerable patches of trunk surface. Especially if the tree was close to the scanner, the
trunk surface is amply sampled by points. At present, the performance of our method drastically
decreases if huge patches of trunk surface are processed. Asmentioned previously, there aremore
suitable methods for trunk reconstruction in the literature.

The number of elements that belong to a component influences the overall processing time linearly.
The point attachment procedure currently denotes the computational bottleneck of the implemen-
tation. In general, point location tests are commonly rather costly. Moreover, the iterative reparti-
tioning and optimization, which is performed by the PLA, is also chiefly governed by the number
of points. However, the overall time that is necessary to retrieve the spatial structure of a mod-
erately large connected component, which represents branching structure, is in the magnitude of
seconds up to a few minutes. The maximal time that elapsed for a component in the experiments
was 2.7 min. The average runtime is below 3 s for the 2543 tested components. Results of the
experiments are demonstrated in figure 7.10, 7.11, 7.12, and 7.13.

There are only fewparameters that control the processing. Again, the threshold εCCL = 0.05mhas
been used for the CCL procedure, which creates the basis for the subsequent structure retrieval.
The boundary tracing itself does not require any parameters. Butwe test all obtained boundaries of
a component to filter out particularly small polygons, which aremost likely data gaps. A boundary
sequence has to consist of more than 4 elements and its area on the 2D raster has to be larger
than tA = 5 px to be included in the computation of the Voronoi diagram. After linking the sub
graphs, the Voronoi edges of the initial skeleton estimate are filtered to remove spurious edges.
The Potential Residual [Ogniewicz-1995] of a Voronoi edge has to be higher than tPR = 40 px. The
threshold εweight that controls the continuation of paths during the path retrieval procedure has
been set to εweight = 0.6. In other words, the ratios R(eA) and R(eB) should not differ by more
than 40% relative to the largest of both values. The threshold ∆s that is used in the smoothing
operation has been set to ∆s = 0.25 px. As a result, only skeleton vertices with incident edges
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that form an almost straight angle are removed by the smoothing. The set of parameters has been
chosen after empirical testing and kept fixed for all experiments. The parameters that control the
PLA have been set to the same values that were preset in [PLA-1999]. Though, the PLA has only
been applied to point clusters that consist of more than 10 points.

The output of the processing is a set of 3D polylines for each detected connected component of the
input data set, which has been compliant with the predefined size constraint.

7.4 Discussion

The experiment results show that the method retrieves the spatial structure with higher repro-
duction accuracy than the first method (see chapter 5). Intertwined crowns or the definition of
an appropriate bounding volume are no issues for this method. In contrast to the voxel space
approach, a lot more details and smaller structures can be adequately reconstructed because the
method operates directly on the scan point level. On average, the time andmemory resources that
are required for processing are modest, which is favorable.

The obvious drawback is that only partial skeletons of the entire tree in the scan are recovered.
However, possibilities to develop the presented method further to overcome the current limita-
tions are addressed in section 7.5. In the following, we concentrate on the properties of the sub-
procedures and discuss their interdependence within the processing scheme.

The CCL procedure has been discussed previously in section 6.3.1. For the experiments, we have
restricted the data to above ground measurements prior to CCL. Another key point in the data
manipulation is that a connected component of a tree, which stood close to the scanner, represents
a large part of the trunk and a considerable patch of ground surface. In this form, it is an inap-
propriate input for the method. It is important to realize that the method will produce a result
for any input component. But if the spatial structure cannot be adequately summarized by a set
of space curves in the first place, then the output will certainly be unsatisfying and not reflect the
component structure as expected.

Boundary information is fundamental for the approach. Besides themain boundary, all depth dis-
continuities, which are embedded in the connected component, are properly traced as explained
in section 6.3.3. Evidently, larger components have commonly a higher number of holes caused
by missing data than smaller components. The majority of these data gaps does not represent
relevant shape features of the object that was scanned. For this reason, we remove hole bound-
aries by testing against simple thresholds regarding the boundary size and polygon area. But the
selection of suitable parameters is difficult due to the variety in size of components and holes.
If hole boundaries that contribute relevant shape information are removed by filtering, the re-
production accuracy of the resulting skeleton decreases. If irrelevant holes are included in the
method, the initial skeleton will reflect them as cycles, which also eventually degrade the final
result. Clearly, this problem requires special attention to enhance the method further. Boundaries
and their neighboring elements could be thoroughly analyzed to distinguish relevant from irrele-
vant holes. Moreover, the initial skeleton that is obtained on the basis of the boundary information
could be restructured to compensate such spurious topology.

A skeleton of the 2D component is efficiently determined via the Voronoi diagram. The high
number of perturbations in component boundaries leads to an equally high number of spurious
edges. This problem can be approached from two sides: If the boundary is smoothed before the
Voronoi diagram is calculated, less spurious edges would emerge. Similarly, spurious edges can
be removed by filtering after calculating the Voronoi diagram as presently done in the method.
Then, the problem is again: How to determine whether a particular Voronoi edge is generated by
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Figure 7.10: Results of the experiments on data set B. Subfigure (a) and (b) show the boundaries of the
connected component in gray and the 2D skeleton in black. Subfigures (c) and (d) show the 3D point sets
and retrieved skeletal structures that correspond to (a) and (b). Each colormapped point group represents
a subset that generated a polyline via PLA. The 3D polylines are drawn as overlay onto the corresponding
point subsets.
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Figure 7.11: Results of the experiments on data set B. Subfigure (a) and (b) show the boundaries of the
connected component in gray and the 2D skeleton in black. Subfigures (c) and (d) show the 3D point sets
and retrieved skeletal structures that correspond to (a) and (b). Each colormapped point group represents
a subset that generated a polyline via PLA as in figure 7.10
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Figure 7.12: Results of the experiments on data set P. Subfigure (a) and (b) show the boundaries of the
connected component in gray and the 2D skeleton in black. Subfigures (c) and (d) show the 3D point sets
and retrieved skeletal structures that correspond to (a) and (b). Each colormapped point group represents
a subset that generated a polyline via PLA. The 3D polylines are drawn as overlay onto the corresponding
point subsets.
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Figure 7.13: Results of the experiments on data set E. Subfigure (a) shows the boundaries of the connected
component in gray and the 2D skeleton in black. Subfigure (b) shows the 3D point sets and retrieved skele-
tal structures that correspond to (a). Each colormapped point group represents a subset that generated a
polyline via PLA. The 3D polylines are drawn as overlay onto the corresponding point subsets.
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a relevant shape feature or not? Currently, the question is answered with the help of the Potential
Residual by Ogniewicz and Kübler [Ogniewicz-1995]. While maintaining connectivity, we sup-
press Voronoi edges generated by perturbations that are described by a boundary section, which
is less than tPR = 40 px in length. In most cases, the threshold produces appropriate results in the
experiments. However, the arbitrary definition of the parameter is clearly not of universal validity
and the filtering consequently removes to many or too few Voronoi edges in some cases. In this
context, the straight cutting edge of components from trunks, which have emerged as a result of
the pruning prior to CCL, influences the skeleton estimate favorably.

Before filtering Voronoi edges, the skeleton sub graphs are linked to a single graph. If this is not
performed in advance, smaller sub graphs may be entirely eliminated because of the filtering.
For the linking procedure, a constrained confirming Delaunay triangulation is constructed and
used as search space. Nodes of skeleton sub graphs are annotated accordingly in the interim
support structure. Then, breadth-first search is started at a particular skeleton vertex. The search
terminates when the shallowest goal node is found, i.e. as soon as a vertex, which belongs to a
different sub graph, is encountered. The length of the search path refers to the number of vertices
that are traversed until the goal vertex is reached. As a result, the obtained path is not the shortest
path w.r.t. the Euclidean metric, but the path from start to goal with the least nodes. For this
reason, it is important that theDelaunay triangulation is not only constraint to include the skeleton,
boundary, and hole nodes, but also to be truly confirming to the Delaunay condition. Due to the
Delaunay criterion, the triangles of the resultingmesh are compact. Consequently, the search path
has not necessarily the shortest Euclidean length, but it is normally a suitable approximation of it,
which is sufficient for solving the task. In the experiments, our linking strategy created connections
between disjoint sub graphs as expected. But actually the linking procedure does not rely on this
particular formulation and could be replaced with an equally adequate mechanism.

The sequence of procedures to obtain and refine a 2D skeleton from a particular connected com-
ponent is intricate and strongly interdepending. The resulting 2D skeleton lays the foundation for
the following segmentation. In fact, truthful as well as spurious topology of the 2D skeleton is
propagated to the set of 3D polylines. Therefore, the quality of it is of essential importance to the
final result of processing.

The segmentation of the connected component into point clusters is subdivided in point attach-
ment and path retrieval. The basic algorithm to attach points to their nearest, appropriate skeleton
node with respect to the boundary limits has been summarized in algorithm 7.2. For the experi-
ments, a sophisticated solution had been implemented, which is explained in appendix A.

It has to be kept in mind that the component boundary, which includes inner rifts, represents
depth discontinuities. In other words, adjacent elements of the component are close in 2D, but
possibly far away in 3D space. Therefore, it results in false point segmentation if the imaginary
line that connects a particular point to its respective skeleton node intersects the boundary. How-
ever, component elements that are at the same time also boundary elements need to be specially
handled. In case of appendices, bridges or boundary polygons, which do not contain skeleton
nodes, the component elements are attached simply to the closest skeleton node. Naturally, the
resulting imaginary connection line most likely intersects the boundary. In general, the number
of such occurrences is low in comparison to the total number of component elements. In the ex-
periments, we have not noticed a significant influence on the segmentation. For this reason, this
trivial solution suffices for the few special cases, which are not addressed further. For all other
component elements, the imaginary connection line to the skeleton node must not intersect the
boundary.

Following point attachment, the actual segmentation of the component is performed in the path
retrieval procedure. The skeleton graph is contracted to a graph, which mainly represents its
topology. The geometry is only queried to test whether a candidate edge would form an arc when
appended to the current path. The test was integrated because the PLA cannot model this partic-
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ular point configuration. In the 2D skeleton, it is simple to recognize such a case and ensure that it
is represented by two separate polylines. On the basis of preliminary testing, we found that split-
ting an arc into two parts is an appropriate solution, since branches are not growing exceedingly
twisted in general.

Similarly, the continuity criteria was designed to obtain point clusters that are especially suited as
input for the PLA. The geometry of the skeleton is not considered. Therefore, the path retrieval
does not rely on any predefinition or limitation of the growing direction. The continuity of paths at
graph vertices is based on the assumption that smaller branches fork off into a different direction
from the stronger one, which keeps its previous growing direction also after the ramification.
Furthermore, we assume that the number of sample points changes only gradually on a particular
surface patch. In addition, abrupt changes in surface continuity are not to be expected on a tree. In
other words, one can observe that a smaller branch is sampled by less scan points than its parent
branch because the latter faced the scanner with a larger surface area. Consequently, it leads to
results of higher quality from the PLA if the two parts of the stronger branch before and after
the ramification are merged in the same point cluster. The smaller branch, which forks off, is
an inadequate choice to continue the stronger branch after the ramification because it has fewer
points. An inhomogeneous point distribution is reflected in the polyline that is computed by the
PLA, but this is often undesired. For this reason, we based the path retrieval on the proposed
continuity criterion, which takes the path length and the number of attached points into account
with the objective to generate clusters of homogeneous point distribution. Clearly, a small number
of branches that are represented with a high level of detail is more favorable than a large set of
polylines of insufficient quality.

At the same time, the path retrieval reacts sensitive to spurious skeleton edges exactly because of
the continuity criterion. After the point attachment, a set of points is associated with the spurious
edge, which should have been assigned to the nearby true skeleton nodes. Therefore, the value of
the ratio R of the apparently true skeleton edges decreases because of the spurious point attach-
ment to another skeleton node. The difference between the ratios of successive edges then does
not exceed the predefined threshold. As a consequence, the current path is terminated and a new
path is started. The component shape is represented by more polylines than actually necessary.
Most importantly, the partitioning into paths has an immediate impact on the point distribution
of a particular cluster, which chiefly governs the polyline that is eventually generated from it.

Generally speaking, the segmentation of a component into separate clusters of 3D points depends
strongly on the previous processing steps. The point distribution of the obtained clusters can
exhibit a great diversity. But not every point cluster is an appropriate input to the PLA, which tries
to summarize a given set of points as a polyline. If a point set has been sampled on the surface
of a branch and the invisible space curve, which is traced by the points, is clearly perceptible by
a human, the PLA will generate an appropriate polyline. But if the point set really represents
nothing but a patch of surface, then a polyline is definitely not the proper geometric primitive to
summarize this shape. To put it simple: If a human cannot perceive the invisible space curve in
a point set, then the PLA will yield unexpected, unintended results. For instance, the point set in
figure 7.14 is summarized by the PLA as a meandering polyline embedded in the point set.

In the context of the proposed method, the difficulty lies in the fact that all scan points from TLS
are surface points. Therefore, clusters represent exclusively patches of object surface. Solely the
extent and distribution of a particular point cluster decides whether it traces an invisible space
curve or not. Unfortunately, we have no possibility to test if a point cluster is a suitable input
for the PLA. Clearly, retrieving information about the distribution of points is the very reason
why the PLA is applied at all. But also the evaluation of the generated polylines poses a serious
challenge. Currently, the PLA as available from [PLA-1999] is integrated as a kind of black box.
Two parameters – MSE (mean of squared distances) and penalty – are delivered that inform about
the state of the computed polyline.
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Figure 7.14: A sample representing a patch of surface results in a meandering polyline from the PLA.

The MSE is the mean value of the squared distance of all points to their associated polyline node.
However, this measure cannot be used to distinguish apparently good polylines (e.g. figure 7.9)
from bad ones that are spiraling or meandering as in figure 7.14. The aim of the optimization
routine is to minimize the distances. For this very reason, the polyline assumes the meandering
shape for point clusters that represent surfaces patches. But the degree to which the distances are
minimized or not does not offer any information regarding the polyline shape.

The penalty of a polyline refers to the average angle between incident edges at vertices. If the
polyline is rather smooth, the penalty is low. However, it does not necessarily indicate that the
polyline shape is equal to a straight line. The penalty also depends on the number of polyline
edges. If an arc of high curvature is represented by a high number of short polyline edges, the
total penalty may also be rather low. Similarly, a higher penalty value is not an indicator that
the polyline is meandering in a sample of surface area instead of tracing an invisible space curve.
Commonly, branches do not grow as straight sticks, but bend and twist to some degree in possibly
various spots. Naturally, the penaltywould reflect this with a higher value, whichwould be totally
appropriate in that case.

Given these points, we cannot assess a polyline quantitatively. Therefore, we rely on visual exam-
ination in order to examine the set of polylines at present. Yet, a Principal Curve as a polyline is
an adequate tool to summarize a suitable point cluster, because it is a piecewise sequence of prin-
cipal components with respect to an imposed subdivision of the point set. Therefore, the polyline
is always centered in the given point set.

Beside Kégl [Kégl-1999], several other studies have investigated the notion of Principal Curves.
Since the experiments have shown that Principal Curves are a valuable tool for retrieving skeletal
structures from TLS data, it is naturally of interest to evaluate whether the proposed method can
be enhanced by an alternative approach to Principal Curves. Further experiments with different
algorithms that generate Principal Curves from point sets, but also extensive testing to find more
suitable parameter values would certainly be beneficial.

Another crucial issue came to light during preliminary testing with the PLA: Data normalization
appears to be of utmost importance for processing TLS data. A 3D point is usually represented
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as floating point number with the IEEE 754-2008 standard [IEEE754-2008]. In contrast to integers,
the spacing between floating point numbers is not homogeneous as pointed out for instance by
Isenburg [Isenburg-2013]. In fact, a spot of high precision is located around zero, whereas the
spacing between successive representable numbers becomes greater the further they are away
from zero. In other words, a floating point number may have a large figure before the comma, but
then only a very limited number of decimal places can be represented. In contrast, if a number is
close to zero, it can be represented with many decimal places. In the scope of processing TLS data,
this issue becomes relevant if small changes should be applied to point coordinates. For instance,
the gradient vectors that are computed in the optimization routine of the PLA are rather small
in length. The point coordinates are considerably large because of the co-registered multiscan.
As a result, the addition of the gradient vectors to the point coordinates has no effect because
the change in decimal places cannot be accurately represented. Consequently, the optimization
routine functions properly but to no avail. On the contrary, since only decimal places right after
the comma have any effect, the resulting polyline may even exhibit a zig-zag shape.

For this reason, we integrated a data normalization step prior to applying the PLA in order to
prepare the coordinate frame of the points with respect to the targeted algorithm as suggested by
Hartley and Zisserman [Hartley-2003]. By moving the point cluster to the origin and scaling it to
a maximal extent of

√
(2) along a coordinate axis, the point set is located at the aforementioned

spot of high precision. In this way it is at least ensured that this issue has only a comparably tiny
influence on the resulting polylines. By and large, issues pertaining to the digital representation
of numbers as for instance the particularities of floating point arithmetic should always be kept in
mind when processing laserscanning data.

Summing up, the proposed method constitutes a promising approach to retrieve skeletal struc-
tures from TLS data representing trees. The key idea is motivated chiefly geometrically with re-
spect to the Medial Axis concept, which is favorable. The exploitation of the relationship between
2D raster coordinates and 3D point coordinates is clearly a vital aspect in the processing of TLS
data. The scheme of sub procedures that is proposed to implement the key idea in practice is ad-
mittedly intricate. The processing is controlled by only few parameters, which is beneficial. How-
ever, the set of parameters has a considerable influence on the output of the method. Yet, the same
parameter values have been used for all conducted experiments andmostly yield satisfying results
w.r.t. the particular input data. The method is not limited to a particular tree species. Naturally, a
higher number of satisfying results is obtained from leafless deciduous trees than coniferous ones.
But the main reason for this behavior is the foliage of coniferous trees, which cannot be properly
represented by space curves. However, single branches as for instance demonstrated in figure 7.12
can be successfully retrieved from the Scots Pine as well.

Another key point is that the method can be applied immediately to data of a single scan. Tree
detection is not a mandatory pre-processing step, though helpful to evaluate the results. As a
consequence, the method could also be tuned to detect trees.

Asmentioned before, the apparent weakness of the proposed approach is the fact that only partial
skeletons are generated from single scans. As a result, there is still a long way to go until a full
skeleton can be retrieved automatically. In fact, the skeletal structures have to be interpreted as
building bricks, which still need to be assembled to the true skeleton of the tree. This process bears
the prospect of compensating wind effects, which are very often in TLS data of forest scenes, as
well as occlusions.
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7.5 Future Work

Beside the improvements that are clearly pending for the presented method, there are several
tasks to solve in order to produce a full skeleton of a tree. The skeletal structures of a tree in a
single scan need to be collected and combined if possible. For this task, the Voronoi diagram may
be of use again to recognize neighborhood relations between connected components in the 2D
raster. Naturally, the assembly of results from individual trees of a multiscan is the essential task
to generate full skeletons of trees. As pointed out by Eysn et al. [Eysn-2013], this could lead to
a more robust retrieval scheme for tree skeletons than existing approaches in the literature. In
general, plenty of extensions and enhancements are imaginable for the proposed method, which
is clearly a vital contribution in the scope of retrieving skeletal structures of trees from TLS data.
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8 CONCLUSION

Information about the spatial tree structure is important for forest science to gain insights about the
processes and interrelationships within the forest ecosystem. The rapid and contactless sampling
of object surfaces as a 3D point cloud via TLS is a sensible choice to obtain geometry data of trees,
which can assume an amazing variety of shapes. For this reason, the retrieval of skeletal structures
from TLS data is also an ill-defined problem: Neither the starting point, nor the expected solution
has a clear definition. Hence, the task has to be approached in a pragmatic way to developworking
solutions to this particularly challenging problem.

In this thesis, we proposed twomethods to generate skeletal structures of trees from TLS data. An
especially decisive aspect during development has been the applicability of the methods to forest
scenes with comparably high stand density in contrast to a multiscan that concentrates on a single
tree.

Due to the lack of a comprehensive solution definition, we initially compiled a number of proper-
ties that the prospective methods and respectively their results should have in section 2.5. Com-
paring the created methods and the experiment results to the stated requirements, we conclude
that both solutions confirm to them to a large extent.

The first method that is explained in chapter 5 generates a skeleton from a tree data set fully auto-
matically, with few control parameters and in short time. A variation of the Circle Hough Trans-
form [Duda-1972] is proposed and used in a scheme with RANSAC [Fischler-1981] to trace the
trunk centerline. Subsequently, processing is performed on a voxel space representation of the
data. A greedy search is started at each of the voxels that supposedly represent branch tips to
find a path to the trunk through the voxel space. Evidently, it is a working solution to the prob-
lem. However, the particular result of the method strongly depends on the content of the 3D point
cloud that is delivered as input. In other words, the scan coverage has a high impact on the overall
result. In particular the voxel space structure that is imposed onto the data has ambivalent quali-
ties: On the one hand, the adjacency relationships that are introducedmake the retrieval of spatial
structure possible at all. On the other hand, the same mechanism induces a potentially spurious
topology.

At present, the evaluation of the retrieved skeletons is limited to visual assessment. We found
that the representation is often not a description of the full tree that is discernible in the 3D point
cloud. Branches are disconnected from the main tree component in voxel space. Therefore, they
aremissing in the skeleton. In some cases, the skeleton does not represent only a single tree. Due to
the high stand density on the study site, tree crowns are intertwined, which is eventually reflected
by the retrieved skeleton. Moreover, the skeleton vertices are centered in the point group that was
contained within a particular voxel, but centering the skeleton globally in the point cloud is not
enforced.
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The method is a fast tool to retrieve the main geometric features and to generate a 3D line graph
from the data set that approximates the spatial tree structure. Although the method functions ad-
equately and consequently represents a solution to the given problem, we found that the approach
is in general rather limited. This reasoning provoked the revision of the problem’s starting point,
which led to an approach with completely different characteristics than the first one.

The second method integrates a novel strategy to organize all attributes of TLS data from a single
scan, which is discussed in chapter 6. The raster alignment opened up interesting possibilities
to analyze the data and is the basis for the retrieval of skeletal structures. An efficient, yet rather
simple strategy is proposed to trace boundaries including depth discontinuities of connected com-
ponents that were detectedwith Connected Component Labeling [Shapiro-2001] in chapter 6. The
obtained boundary information is then input to a routine that estimates the 2D skeleton of the con-
nected component via the Voronoi Diagram [Aurenhammer-2000]. After refinement of the initial
skeleton, the component is decomposed into parts that represent branches or the trunk. Each el-
ement of the component directly translates to a 3D point. The decomposition of the component
shape therefore represents a segmentation of the corresponding 3D point set. The point distribu-
tion of each segmented subset is summarized as a Principal Curve in form of a polyline using the
Polygonal Line Algorithm [Kégl-1999]. The result of the method is a set of polylines that reflects
the distribution of the component’s 3D point set with a comparably high degree of detail.

The presented method is fully automatic and exploits the 2D-3D coordinate relation of raster ele-
ments in a clever and efficient way in the course of processing. The key idea of Principal Curves
is the summarizing of a point set’s distribution as a space curve that traces along the "middle" of
a point set [Kégl-2002]. Evidently, the polylines that are generated by the Polygonal Line Algo-
rithm are therefore properly centered in the given point set. However, the point set needs to have
such a "middle", otherwise the polyline is not the appropriate tool to simplify the point set to a
line graph. The number of control parameters is higher in contrast to the first method, but the
method consists also of more subprocedures and is more elaborate in general. The initially stated
runtime limits are kept on average. In its current implementation, the runtime of the method ex-
hibits a direct dependence on the size of the component that is processed. This is mainly due to
the point location problem, which is solved in the method. But also the iterative nature of the
Polygonal Line Algorithm leads to longer processing times if the point set is large. For this reason,
the experiments had been limited regarding the allowed component size.

The obvious drawback of the second method is that partial skeletons are retrieved. Though, these
partial skeletons represent in fact a large part of the branching structure in the tree crown in some
cases. Generally speaking, the results of this method trace the perceptible shape of the 3D point
sets with much more detail than the previously presented method. At the same time, the method
is at present rather sensitive to noise effects. There are a number of issues that need to be imple-
mented in amore sophisticatedway as discussed in section 7.5. Themethod consists of an intricate
combination of procedures, but it is founded on established concepts from image analysis like the
Medial Axis. In contrast to the first method, the second method can be much better theoretically
analyzed and consequently starting points for further developments are plentiful.

Ultimately, construction of full tree skeletons on this basis is imaginable: The partial skeletons
that are of high reproduction accuracy could be considered as building bricks to a bottom-up
assembling scheme to create a complete skeleton. We arrived at the conclusion that this is most
likely a very promising way to achieve a robust solution to the problem of retrieving the spatial
structure of trees from TLS data.
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A POINT ATTACHMENT STRATEGY

In this section, we describe the strategy that is used to assign a skeleton node to each element of
the connected component as explained in chapter 7. The basic task is summarized in algorithm
7.2 of section 7.2.2. In the experiments, a more sophisticated implementation has been applied to
enhance performance. Another essential aspect was the clarity of the procedure: Since the actual
implementation of algorithm 7.2 is cumbersome to debug in practice, we decided to decompose
the general task into smaller problems that are in a sense simpler to solve one by one. First, we state
the given problem. Second, we explain the solution that was implemented for the experiments.
Last, we give a brief discussion of the applied strategy.

A.1 Problem Description

The given input is a graphG that is the union of the set of boundary nodes and the set of skeleton
nodes. The set of boundary nodes represents the component’s interior boundary and possible
boundaries of holes that were determined as described in section 6.3.3. Each boundary vertex has
2D integer coordinates because it is also a raster element. Edges that belong to the main boundary
form a closed curve. If the component has holes, boundary edges that form smaller closed curves
are contained within the main boundary.

The set of skeleton nodes represents the 2D skeleton graph that was obtained in section 7.2.1.
Each skeleton vertex has 2D coordinates in continuous Euclidean space. The 2D skeleton graph is
not necessarily a tree. If the component has holes, they are most likely reflected by cycles in the
skeleton graph. A skeleton edge can belong to the set of boundary elements at the same time as a
result of the linking of sub graphs in section 7.2.1.

Beside the graphG, a set of points is given. Each point represents a raster element of the connected
component. Therefore, each point has 2D integer coordinates and 3D coordinates in continuous
Euclidean space that were measured during the scan. Consequently, raster elements that are part
of the interior component boundary or a hole boundary are represented as boundary vertices and
points at the same time.

The problem is that the points do not know about their location relative to any node of graph G.
However, this information is essential to segment the point set on the basis of the skeleton graph.
Hence, each point has to be assigned to its closest, appropriate skeleton node.

In order to solve this task, two aspects have to be taken into account: First, the point location
problem needs to be treated. As stated in section 7.2.2, the shortest Euclidean distance between a
point and a graph edge is the distance between the point and its projection point on the edge. If
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the projection point is located outside the line segment that is represented by the graph edge, then
the closest skeleton node to the point is one of the vertices of the edge or another edge respectively.
Consequently, a point is assigned to a skeleton vertex only if it cannot be properly assigned to a
skeleton edge.

Second, the assignment of a point to a skeleton node needs to be appropriate. Assigning the point
to the closest skeleton node does not necessarily result in the segmentation that is desirable. Points
may be located closer to a different branch in the skeleton graph than to the branch, to which they
apparently belong (see figure 7.5). As a result, it has to be ensured that the connection line between
a point and the projection point on the skeleton does not intersect the boundary. Exceptions are
points that coincide with boundary vertices and points that are located on or inside boundary
elements, where no skeleton part exists. The pruning of spurious edges from the skeleton graph
(see section 7.2.1) removes skeleton edges that reach into component regions, which represent
small twigs or perturbations of the boundary. These regions are often connected to the main body
of the component by a narrow corridor. Straight projection lines that connect points located in
these regions to skeleton nodes inevitably intersect the boundary, although the assignment to the
particular node is correct.

A.2 Method

Our solution to the given problem is inspired by the partitioning strategy that was applied by
[Kégl-2002]: First, we try to assign a point to a skeleton edge. Only if no suitable candidate in
the edge set can be found, we test the set of skeleton vertices to find a suitable assignment for the
point.

We decompose the given problem into subtasks that are solved one after another. The basic idea
is to partition the component shape into polygons. The partitioning integrates skeleton nodes and
boundary nodes. Afterwards, it the set of skeleton nodes that is nearest to a particular polygon is
known. For each point, we query among the set of polygons to find the one, which contains the
particular point. Finally, each polygon has a set of points and a set of close skeleton nodes. For
each point in a polygon, we test the nodes of the corresponding set of skeleton nodes and assign
the point to the node that minimizes the 2D Euclidean distance to this point. In the following, we
explain the subtasks in detail.

Enforcement of subdivision constraint

As a first step, we ensure that each edge of the skeleton graph has only one adjacent vertex v of
deg(v) 6= 2. If both vertices of an edge are not regular line vertices i.e. they are both of a degree
different from 2, the edge is split midway and a new skeleton vertex is added accordingly.

Component partitioning

We consider only vertices of deg(v) < 3 in this subprocedure. A line vertex of deg(v) = 2 has two
angles that are spanned by its two incident edges. Each angle is treated separately: We calculate
the bisector vector that subdivides the angle in two equal parts. Starting at the vertex position, we
trace along the direction of the bisector vector until an intersection with a node of graph G occurs.
If the hit node is a boundary node, a new edge connecting the vertex to the point of intersection is
added to the graph. The point of intersection is integrated as a new boundary vertex accordingly.
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If the hit node is a skeleton node, the bisector is discarded. If no intersection occurred until a
maximum distance td has been traced, the bisector is discarded as well.

A leaf, i.e. a vertex of deg(v) = 1 has only one incident edge. In this case, we trace along the
direction of the normal vector of the incident edge in both directions in the same way.

After treating all considered vertices, the graph G consists of skeleton nodes, boundary nodes,
and partition edges that may intersect each other. In order to restore the planarity of the graph,
these intersections of partition edges are integrated into the graph. In other words, an intersection
of two partition edges is properly replaced by four edges and a new partition vertex.

The graph G represents a partitioning of the component into polygons because each atomic cycle
of the graph’s rotation system is a polygon (see section 6.3.2). Consequently, we build a rotation
system of graphG to retrieve the information about polygons and their adjacency relations among
each other. The result is basically a list of polygons. Furthermore, the neighboring polygons to a
particular polygon are known as well.

Propagation of skeleton node location among polygons

A number of polygons has an edge or vertex that is a skeleton node. The information about the
relative location of skeleton nodes is propagated iteratively among the polygons.

Each polygon has a set Nskel of skeleton nodes that are in its proximity. First, each polygon is
checked whether it has edges or vertices that are skeleton nodes. These nodes are added to the set
Nskel. Polygons that are adjacent to skeleton nodes are of first class.

Second, each polygon is tested whether it has polygons of first rank in its adjacency. If yes, the
current polygon’s set Nskel obtains the union of all sets Nskel of neighboring polygons that are of
first class. The polygon is then of second class.

Iteratively, each polygon is testedwhether it has polygons in its adjacency that have been ranked in
a previous iteration, which implies that they are located nearer to skeleton nodes than the currently
considered polygon. The iteration is stopped when all polygons have been ranked or if no further
change of classes occurred.

As explained in section 6.3.2, the boundary can form smaller polygons that have no adjacency
beside a bridge that connects it to another boundary element. In this case, the set Nskel from the
next reachable polygon is propagated.

Point location querying

Beside the set Nskel of nearest skeleton nodes, a polygon also has a setMP of points. Each point
is tested against the axis aligned bounding box of each polygon. If a point is located within a
polygon’s bounding box, a precise point-in-polygon test is performed. If the point is truly located
within the considered polygon, the point is added to the polygon’s point setMP . Boundary ver-
tices are points as well. They are directly assigned to the setMP of the adjacent polygon.

Clearly, each point can only belong to one polygon. The result of the subprocedure is therefore a
proper partition of the point set.
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Assignment of points to skeleton nodes

Each polygon has a set ofMP of points and a set Nskel of nearby skeleton nodes. For each point
p ∈ MP , we find the skeleton node s ∈ Nskel that minimizes the 2D Euclidean distance to the
point. Finally, the point is assigned to the determined skeleton node.

A.3 Discussion

The presented strategy to implement the point attachment task results in a proper assignment of
points to skeleton nodes in the majority of cases. However, not all situations are handled ade-
quately. Most importantly, we currently neglect vertices v of deg(v) > 2, which can lead to an
undesirable assignment for small subsets of points. At present, the integration of these vertices in
the partition routine of section A.2 seems too expensive in comparison to the improvement that
is gained by it. The constraint that is described in section A.2 was introduced instead to confine
a potentially unsatisfying assignment to a small region of the component around a vertex v of
deg(v) > 2.

At present, the task is solved in an adequate way. As pointed out previously, our focus was on
replacing the monolithic formulation given in algorithm 7.2 by a solution that maintains clarity
with regard to an actual implementation. Therefore, we decided to decompose the big problem
into smaller subtasks following a divide-and-conquer philosophy.

Despite of being only a prototypical implementation, the point attachment procedure is rather
quick on average as the experiments showed. However, we noticed that the performance degrades
severely if the component size increases considerably. Due to this behavior we excluded compo-
nents that exceed 100,000 elements in size. These components mostly represent large patches of
trunk and only rarely branching structure. Evidently, the proposed strategy needs to be enhanced
and optimized to find a solution with high performance for the given problem.

Clearly, this is not the only possible solution to the given problem. A less complex and more
elegant algorithm to solve the task would be favorable.
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B GLOSSARY & ACRONYMS

B.1 Glossary

Adjacency The adjacency of an object comprises neighboring objects that share certain structures.
In case of a 3D voxel space, the 26-adjacency of a voxel consists of all neighboring voxels that
share a border, corner or wall with the considered voxel. In a 2D grid, the 4-adjacency of a
raster element comprises elements that share a border with the considered element; the 8-
adjacency comprises elements that share a border or a corner with the considered element.
In a graph, the adjacency of a vertex comprises the vertices that are endpoints of the edges
that are incident to the considered vertex.

Adjacency graph From a given point set, an adjacency graph can be created by interpreting the
points as vertices and inserting edges between them. Often, edges between a point and each
one of the k nearest neighbors of the considered point are inserted. Alternatively, edges can
be created between a point and each point that is located within a certain radius around the
considered point. Instead of individual points, vertices may also represent point groups.
The definition depends on the particular application context.

Centroid The geometric centroid of a set of points is the mean value of the coordinates of the
points.

Connected component A connected component is a set of elements in a grid where each pair
of elements is mutually reachable w.r.t. the applied definition of connectedness. In a binary
image, a connected component is commonly a set ofwhite pixels on black backgroundpixels,
where each pair of adjacent pixels is white. In a voxel space, a pair of voxels is reachable
if a sequence of voxels between them can be found, where each two successive voxels are
connected (see section 2.3).

Constrained confirming Delaunay triangulation A constrained confirming Delaunay triangula-
tion is a Delaunay triangulation that maintains a predefined set of edges between vertices.
In order to satisfy the Delaunay criterion for each of the triangles, a predefined edge may
be split up into several smaller edges. The resulting newly inserted vertices can be used to
create conforming triangles.

Convex hull The convex hull of a finite set of 2D points consists of the subset of points that form
a convex polygon in which all remaining points of the set are located. The notion can be
extended to 3D accordingly.

Degree The degree (or valence) of a vertex is the number of edges that are incident to the consid-
ered vertex, e.g. a leaf vertex v has deg(v) = 1.
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Dendrometry Dendrometry is the measurement of geometrical properties of plants like for in-
stance plant height or diameter of extremities.

Edge An edge is an atomic unit of a graph that connects exactly two vertices. If coordinates are
associated with the vertices, the edge can be interpreted as a line segment and drawn onto
a 2D plane or rendered in 3D space, respectively. An edge can be annotated by properties
such as the length of the line segment or a set of points.

Graph A graph consists of a set of vertices and a set of edges that connect pairs of vertices.

K nearest neighbor strategy Since the a point set has no inherent adjacency relations, the adja-
cency of a point is defined as the k points that are nearest to the considered point if ordered
by their Euclidean distance. The number of points K is a parameter that needs to be given.

Kmeans k-means clustering is a well-known clustering algorithm that partitions a given set of
points into k disjoint subsets. Each point is assigned to the cluster with the nearest mean
value, see e.g. [Weisstein-2014a].

Leaf In a graph, a vertex that has only a single incident edge is called a leaf.

Multiscan Amultiscan is a short term to convey the notion of a scan project that consists of several
co-registered scans of the same scene.

Octree An octree is a tree data structure, where each vertex in the tree has exactly eight children
except the leaves. Different levels of detail can be represented within this data structure
because the level of subdivision among the vertices can vary.

Phyto-element A phyto-element is any part of a tree like a branch, trunk or leaf.

Polyline A polygonal line (polyline for short) is a sequence of line segments.

RANSAC RANSAC (Random Sample Consensus) [Fischler-1981] is a robust estimation scheme
to find a set of inliers from given data that complies with a given model.

Rotation system A rotation system is a cyclic permutation of edges at each vertex that can be used
to traverse all possible cycles in a given graph [Gross-1987], which is explained in section
6.3.2.

Topology "Topology is themathematical study of the properties that are preserved throughdefor-
mations, twistings, and stretchings of objects. Tearing, however, is not allowed." [Weisstein-
2014b] For instance, a tea cup with a handle and a torus are topologically equivalent ob-
jects. In other words, topology can be in investigated without considering the geometric
coordinates of the elements. But geometry cannot be examined without the topology of the
elements.

Tree graph A tree is a graph that contains no cycles.

Vertex A vertex is an atomic unit of a graph. In the thesis, we associate coordinates in 2D or 3D
with a graph vertex. In addition, a vertex can be annotated with additional properties.

Voxel An element of the voxel space is called a voxel. Commonly, a voxel has cuboid shape and
is annotated by attributes as for instance the number of 3D points that were mapped to it.
A voxel with an empty point set is referred to as an empty voxel. A voxel has 3D integer
coordinates that indicate its position within the voxel space.

Voxel space A voxel space is a partition of a region of continuous Euclidean 3D space into a reg-
ular spatial orthogonal array. Each array element is called a voxel. A 3D point set can be
mapped to voxel space by a transformation as given in section 5.2.3.
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B.2 Acronyms

2D Two dimensional.
3D Three dimensional.

ALS Airborne laser scanning.

CCL Connected Component Labeling.
CHT Circle Hough Transform.

DAAD Deutscher Akademischer Austauschdienst (German Academic Exchange Serive).
DBH Diameter at breast height.
DFG Deutsche Forschungsgemeinschaft (German Research Foundation).
DHT Disc Hough Transform.
DTM Digital terrain model.

I/O Input/ output.
IAL Indexed Attribute List.

Laser Light amplification by stimulated emission of radiation.
LiDAR Light detection and ranging.

MLS Mobile laser scanning.
MSE Mean square error.
MST Minimal spanning tree.

OEM Original equipment manufacturer.

PCS Project coordinate system.
PLA Polygonal line algorithm.

RGB Color model with channels red, green, blue.

SCA Space colonization algorithm.
SOCS Scanner’s own coordinate system.

TLS Terrestrial laser scanning.
TOF Time of flight.
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